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Multi-level Conditional VaR Estimation
in Dynamic Models�

Christian Francq and Jean-Michel Zakoı̈an��

Abstract. We consider joint estimation of conditional Value-at-Risk (VaR) at sev-
eral levels, in the framework of general conditional heteroskedastic models. The
volatility is estimated by Quasi-Maximum Likelihood (QML) in a first step, and the
residuals are used to estimate the innovations quantiles in a second step. The joint
limiting distribution of the volatility parameter and a vector of residual quantiles
is derived. We deduce confidence intervals for general Distortion Risk Measures
(DRM) which can be approximated by a finite number of VaR’s. We also propose
an alternative approach based on non Gaussian QML which, although numerically
more cumbersome, has interest when the innovations distribution is fat tailed. An
empirical study based on stock indices illustrates the theoretical findings.

1 Introduction

Under the regulations introduced in Finance since Basel 2, bank capital is risk-
sensitive. Financial institutions are required to measure the riskiness of their assets
and, for instance, to hold more capital to compensate more risk. While the Value-
at-Risk (VaR), defined as a quantile of some loss distribution, continues to play
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4 C. Francq and J.-M. Zakoı̈an

a prominent role in the mainstream financial risk management, a variety of alter-
native risk measures have been introduced and studied in recent years. The Ex-
pected Shortfall (ES), and more generally the Distortion Risk Measures (DRM), are
quantile-based measures which, by comparison with the VaR at a given level, give

further insight on the shape of the loss distribution
1
.

Whatever the choice of a risk measure, it depends on unknown characteristics of
the loss distribution which, for practical use, have to be estimated. In the so-called
standard approach, the quantity of interest is a parameter, defined as a characteristic
of the marginal loss distribution. In the so-called advanced approaches, the focus is
on conditional characteristics of the loss distributions, that is, characteristics which,
at the current date, take into account the available past information. The conditional
VaR, and more generally conditional risk measures, are stochastic processes which
are not directly observable, just like volatility. This complicates the statistical in-
ference of risk measures. The problem is not only to get consistent estimators of

conditional risks but also to evaluate the accuracy of such estimators
2
.

Confidence intervals for conditional VaR’s were derived, in the recent economet-
ric literature, using different approaches. Chan, Deng, Peng, Xia (2007) constructed
confidence intervals under the assumption that the errors have heavy tails, using the
Extreme-Value Theory, while Spierdijk (2013) proposed a residual subsample boot-
strap approach. Francq and Zakoı̈an (2012) used a QML approach. They showed
that the problem of estimating a conditional risk measure, for instance a VaR at a
given level, in GARCH-type models reduced to the estimation of a parameter, called
risk parameter.

In the present article we extend those results to the joint estimation of several con-
ditional risks. In practice, it is often important to handle several risk levels, in order
to have a better view on the tail properties of the conditional distribution. We will
provide statistical tools for jointly estimating conditional VaR’s corresponding to
different levels, in a general GARCH-type framework which does not impose a spe-
cific form for the volatility, and for estimating the accuracy of such VaR estimates.
Our approach is aimed at, not only providing VaR estimates, but also confidence
intervals based on asymptotic results. A tractable risk measure based on a vector of
risk levels can be defined by weighting the corresponding VaR’s, that is, by defining
a portfolio of VaR’s. This approach can be connected with DRMs through an appro-
priate choice of the weights. For a given DRM, our asymptotic results allow us to
construct upper and lower bounds based on a finite number of VaR’s.

1
These measures are also advocated because, contrary to the VaR, they satisfy a set of
”coherence requirements” for a large family of distributions.

2
In July 2009, the Basel Committee issued a directive requiring that financial institutions
quantify ”model risk”. The Committee states that ”Banks must explicitly assess the need
for valuation adjustments to reflect two forms of model risk: the model risk associated
with using a possibly incorrect valuation methodology; and the risk associated with using
unobservable (and possibly incorrect) calibration parameters in the valuation model.” For
instance, an important issue in determining the reserves of a financial institution is whether
VaR estimates remain reliable in very hectic periods.
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This paper is organized as follows. In Section 2, we start by introducing a general
class of GARCH-type models. Then we derive the asymptotic joint distribution of
the Quasi-Maximum Likelihood Estimator (QMLE) and a vector of empirical quan-
tiles of the residuals. We deduce asymptotic confidence intervals for the VaR’s and
for VaR portfolios. Section 3 proposes another approach for conditional VaR esti-
mation based on non Gaussian QMLEs. An empirical illustration based on major
stock indices is proposed in Section 4. Section 5 concludes.

2 Two-Step VaR Estimation in Volatility Models

2.1 Conditional VaR in a General Model

Consider a GARCH-type model of the form
{
εt = σtηt

σt = σ(εt−1,εt−2, . . . ;θθθ0)
(1)

where (ηt) is a sequence of iid random variables, ηt is independent of {εu,u < t},
θθθ0 ∈R

d is a parameter belonging to a parameter spaceΘ , and σ : R∞×Θ→ (0,∞).
The most widely used specifications of volatility belong to this class, in particular
the GARCH(p,q) model of Engle (1982) and Bollerslev (1986),

{
εt = σtηt ,
σ2

t = ω0 +∑q
i=1 a0iε2

t−i +∑p
j=1 b0 jσ2

t− j,
(2)

where θθθ 0 = (ω0,a01, . . . ,b0p)
′ satisfies ω0 > 0,a0i ≥ 0, b0 j ≥ 0. For this model, if

the lag polynomial β (L) = 1−∑p
j=1 b0 jL j has its roots outside the unit disk, we

have a representation of the form (1) given by

σ2
t = β (1)−1ω0 +

∞

∑
i=1

γiε2
t−i,

where β (L)−1∑q
i=1 aiLi = ∑∞

i=1 γiLi. Other classical examples of models belonging
to the class (1) are the EGARCH, GJR-GARCH, TGARCH, QGARCH, APARCH,
Log-GARCH, models introduced, respectively, by Nelson (1991), Glosten, Jagan-
nathan and Runkle (1993), Zakoı̈an (1994), Sentana (1995), Ding, Granger and En-
gle (1993), and for the log-GARCH, under slightly different forms, by Geweke
(1986), Pantula (1986) and Milhøj (1987). See Francq and Zakoı̈an (2010) for an
overview on GARCH models.

The conditional VaR of a process (εt) at risk level α ∈ (0,1), denoted by
VaRt(α), is defined by

Pt−1[εt <−VaRt(α)] = α,

where Pt−1 denotes the historical distribution conditional on {εu,u < t}. When (εt )
satisfies (1), the theoretical VaR is then given by
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VaRt(α) =−σ(εt−1,εt−2, . . . ;θθθ0)ξα (3)

where ξα is the α-quantile of ηt .

Remark 1. It can be noted that in the standard GARCH(p,q) model, the conditional
VaR at level α automatically satisfies the stochastic recurrence equation

VaR2
t (α) = ω0ξ 2

α +
q

∑
i=1

a0iξ 2
αε2

t−i +
p

∑
j=1

b0 jVaR2
t− j(α).

Direct modelling of the conditional VaR has been proposed in several papers, for
instance Engle and Manganelli (2004), Koenker and Xiao (2006), Gouriéroux and
Jasiak (2008). A difficulty in this approach is to constrain the model so as to guar-
antee the monotonicity of the conditional VaR as a function of the risk level. Mono-
tonicity is automatically satisfied in our approach.

2.2 Asymptotic Properties of the Multi-level Two-Step VaR
Estimator

A two-step standard method for evaluating the VaR at different levels αi ∈ (0,1), for
i = 1, . . . ,m consists in estimating the volatility parameter θθθ0 by Gaussian QMLE,
and then estimating the ξαi by the corresponding empirical quantiles of the residuals;
see, for instance, Chapter 2 in McNeil, Frey and Embrechts (2005). For a compar-
ison of alternative strategies based on residuals following a preliminary volatility
estimation, see Kuester, Mittnik and Paolella (2006).

Given observations ε1, . . . ,εn, and arbitrary initial values ε̃i for i ≤ 0, we define,
under assumptions given below,

σ̃t(θθθ ) = σ(εt−1,εt−2, . . . ,ε1, ε̃0, ε̃−1, . . . ;θθθ),

which is used to approximate σt(θθθ ) = σ(εt−1,εt−2, . . . ,ε1,ε0,ε−1, . . . ;θθθ). A QMLE
of θθθ0 in Model (1) is defined as any measurable solution θ̂θθ n of

θ̂θθ n = arg min
θθθ∈Θ

Q̃n(θθθ), (4)

with

Q̃n(θθθ ) = n−1
n

∑
t=1

�̃t(θθθ ), �̃t(θθθ ) =
ε2

t

σ̃2
t (θθθ )

+ logσ̃2
t (θθθ).

The following assumptions are required to derive the asymptotic properties of the
QMLE θ̂θθn.

A1: (εt ) is a strictly stationary and ergodic solution of Model (1). Moreover,
E|ε0|s < ∞ for some s > 0.

A2: For any real sequence (xi), the function θθθ �→ σ(x1,x2, . . . ;θθθ) is continu-
ous. Almost surely, σt(θθθ) ∈ (ω ,∞] for any θθθ ∈Θ and for some ω > 0.
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A3: The function θθθ �→ σ(x1,x2, . . . ;θθθ) has continuous second-order deriva-
tives, and

sup
θθθ∈Θ

{
|σt(θθθ )− σ̃t(θθθ )|+

∥∥∥∥∂σt(θθθ )
∂θθθ

− ∂ σ̃t(θθθ )
∂θθθ

∥∥∥∥+
∥∥∥∥∂

2σt(θθθ)
∂θθθ∂θθθ ′

− ∂ 2σ̃t(θθθ )
∂θθθ∂θθθ ′

∥∥∥∥
}
≤C1ρ t ,

where C1 is a random variable which is measurable with respect to {εu,u < 0}
and ρ ∈ (0,1) is a constant.

A4 (θθθ ∗0): θθθ ∗0 belongs to the interior ofΘ and σt(θθθ ∗0)/σt(θθθ ) = 1 a.s. iff θθθ = θθθ ∗0.

A5 (θθθ ∗0): There exist no non-zero x ∈ R
d such that x′ ∂σt (θθθ∗0)

∂θθθ = 0, a.s.
A6(θθθ∗0): There exists a neighborhood V (θθθ∗0) of θθθ ∗0 such that the following

variables have finite expectation:

sup
θθθ∈V (θθθ∗0)

∥∥∥∥ 1
σt(θθθ )

∂σt(θθθ )
∂θθθ

∥∥∥∥
4

, sup
θθθ∈V (θθθ∗0)

∥∥∥∥ 1
σt(θθθ )

∂ 2σt(θθθ )
∂θθθ∂θθθ ′

∥∥∥∥
2

, sup
θθθ∈V (θθθ∗0)

∣∣∣∣σt(θθθ ∗0)
σt(θθθ )

∣∣∣∣
2δ
.

Note that Assumptions A2, A3, A5 and A6 can be simplified for specific forms of
σt : for instance if the model is the GARCH (p,q) Model (2), A2 reduces to standard
assumptions on the lag polynomials of the volatility and A3, A5, A6 can be directly
verified. Note also that the only moment assumption on the observed process is the
existence of a small moment in A1, which is automatically satisfied for standard
models such as the classical GARCH(p,q).

Now let the residuals of the QML estimation

η̂t =
εt

σ̃t(θ̂θθ n)
, t = 1, . . . ,n,

and let ξn,αi denote the empirical αi-quantile of η̂1, . . . , η̂n. Let ααα = (α1, . . . ,αm)
′,

ξξξ n,ααα = (ξn,α1 , . . . ,ξn,αm)
′ and let ξξξααα = (ξα1 , . . . ,ξαm)

′ denote the vector of popula-
tion quantiles.

Remark 2. The derivation of the joint asymptotic properties of sample quantiles
goes back to Cramér (1946) in the iid case. Different articles have extended these re-
sults for the marginal quantiles of stationary processes, under different dependence
assumptions. See Dominicy, Hörmann, Ogata and Veredas (2013) and the references
therein. We cannot apply their results because (η̂t) is not a stationary process.

The next result gives the joint asymptotic distributions of (θ̂θθ
′
n,ξξξ

′
n,ααα). Let DDDt(θθθ )=

σ−1
t (θθθ)∂σt (θθθ)/∂θθθ .

Theorem 1. Assume ξαi < 0, for i= 1, . . . ,m, Eη2
t = 1 and κ4 :=Eη4

t <∞. Suppose
that η1 admits a density f which is continuous and strictly positive in a neighbor-
hood of ξαi , for i = 1, . . . ,m. Let A1-A3 and A4(θθθ0)-A6(θθθ0) hold. Then

( √
n
(
θ̂θθ n−θθθ 0

)
√

n(ξξξ n,ααα − ξξξααα)

)
L→ N (0,ΣΣΣα), ΣΣΣα =

( κ4−1
4 JJJ−1 λλλ ′ααα ⊗ JJJ−1ΩΩΩ

λλλααα ⊗ΩΩΩ ′JJJ−1 ζζζααα

)
,
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where ΩΩΩ = E(DDDt), JJJ = E(DDDtDDD′t) with DDDt = DDDt(θθθ 0), λλλααα = (λα1 , . . . ,λαm)
′, ζζζααα =

(ζi j)1≤i, j≤m and

λαi = ξαi

κ4− 1
4

+
pαi

2 f (ξαi)
,

ζi j = ξαiξα j

κ4− 1
4

+
ξαi pα j

2 f (ξα j )
+

ξα j pαi

2 f (ξαi)
+

(αi ∧α j)(1−αi∨α j)

f (ξαi) f (ξα j )
,

with pα = E
(
η2

1 1{η1<ξα}
)−α.

Proof. In view of Francq and Zakoı̈an (Proof of Theorem 4, 2012), we have, for
i = 1, . . . ,m,

√
n(ξαi− ξn,αi) = ξαiΩΩΩ

′√n(θ̂θθ n−θθθ 0)+
1

f (ξαi)

1√
n

n

∑
t=1

(1{ηt<ξαi} −αi)+ oP(1),

and

√
n(θ̂θθ n−θθθ 0) =

−JJJ−1

2
√

n

n

∑
t=1

(1−η2
t )DDDt + oP(1).

Hence

Covas

(
√

n(θ̂θθ n−θθθ 0),
1√
n

n

∑
t=1

(1{ηt<ξαi} −αi)

)
=

1
2

pαiJJJ
−1ΩΩΩ .

It follows that, for i≤ j,

Covas{
√

n(ξαi − ξn,αi),
√

n(ξα j − ξn,α j)}

=

{
ξαiξα j

κ4− 1
4

+
ξαi pα j

2 f (ξα j )
+

ξα j pαi

2 f (ξαi)

}
ΩΩΩ ′J−1ΩΩΩ +

αi(1−α j)

f (ξαi) f (ξα j )
,

Covas

(√
n(θ̂θθ n−θθθ 0),

√
n(ξαi − ξn,αi)

)

= λαiJJJ
−1ΩΩΩ .

We have ΩΩΩ ′JJJ−1ΩΩΩ = 1 (see Remark 3.1 in Francq and Zakoı̈an, 2013) and thus we
obtain

Covas{
√

n(ξαi − ξn,αi),
√

n(ξα j − ξn,α j)} = ζi j.

By the CLT for martingale differences, we get the announced result. �

Let VaRt(ααα) = (VaRt(α1), . . . ,VaRt(αm))
′, the vector of VaR’s at levels αi. We

have
VaRt(ααα) =−σ(εt−1,εt−2, . . . ;θθθ 0)ξξξααα . (5)



Multi-level Conditional VaR Estimation in Dynamic Models 9

A natural estimator of VaRt(ααα) is thus

V̂aRt(ααα) =−σ̃t(θ̂θθ n)ξξξ n,ααα .

Remark 3. A classical problem, called quantile crossing, in quantile regression is
that two or more estimated conditional quantile functions can cross or overlap. This
drawback occurs because each conditional quantile function is independently es-
timated (see Koenker (2005)). It is thus worth noting that our estimation proce-
dure does not face this problem. By construction, the estimated conditional VaR are
monotonous functions of the α’s.

Remark 4. For the standard GARCH(p,q) model, we have JJJ−1ΩΩΩ = 2θθθ0, where

θθθ 0 =

(
θθθ [1:q+1]

0
0p

)
, θθθ [1:q+1]

0 = (ω0,a01, . . . ,a0q)
′,

(see Francq and Zakoı̈an (2013)), and the asymptotic variance in Theorem 1 takes
the more explicit form

ΣΣΣααα =

(
κ4−1

4 JJJ−1 2λλλ ′ααα ⊗θθθ0

2λλλααα ⊗θθθ ′0 ζζζααα

)
.

2.3 Constructing Confidence Intervals for the VaR’s

Let Σ̂ΣΣα denote a consistent estimator of the asymptotic variance ΣΣΣα . Such an esti-
mator can be constructed by i) replacing JJJ by ĴJJ = n−1∑n

t=1 DDDt(θ̂θθ n)DDDt(θ̂θθn)
′; ii) using

the residuals η̂t to construct an estimator f̂ of the density function f of the innova-
tion, and to replace the theoretical moments of the process (ηt) by their empirical
counterpart.

The delta method thus suggests a (1− α0)% confidence interval (CI) for the
VaRt(αi) whose bounds are

−σ̃t(θ̂θθ n,αi)ξn,αi±
Φ−1

1−α0/2√
n

{(
Δ̂ΔΔαΣ̂ΣΣαΔ̂ΔΔ

′
α

)
ii

}1/2
, (6)

where

Δ̂ΔΔα =

(
ξξξ n,ααα

∂ σ̃t (θ̂θθn,α)

∂θθθ ′
, σ̃t(θ̂θθ n)IIIm

)
,

Φ−1
α0

denotes the α0-quantile of the standard Gaussian distribution, and IIIm denotes
the m×m identity matrix. Note that the choice of α0 (the risk estimation level) is
independent from that of the αi’s (the financial risk levels). Drawing such CI allows
to underline the importance of the estimation risk for VaR evaluation.
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2.4 A Portfolio of VaR’s

Focusing only on VaR at a given level for measuring risk can be misleading since it
gives a limited view of the distribution, which may result in lack of robustness for
risk management and risk control. To circumvent this problem, several risk measures
have to be jointly considered in practice. To this aim, Distortion Risk Measures
(DRM) have been introduced in the insurance literature, in a series of papers by
Wang and coauthors [see Wang (2000) and the references therein]. A particular case
is the conditional expected shortfall (ES) which, at level α ∈ (0,1), can be written
as

ESt(α) =−Et−1[εt | εt <−VaRt(α)] =
1
α

∫ α

0
VaRt(u)du.

More general DRM take the form

DRMt =

∫ 1

0
VaRt(u)dG(u), (7)

where the distortion function, G, is a given cumulative distribution function (cdf) on

[0,1]
3
. It follows from (3) that, for Model (1),

DRMt =−σ(εt−1,εt−2, . . . ;θθθ 0)

∫ 1

0
ξudG(u). (8)

In the spirit of DRM, a risque measure which can be interpreted as a portfolio of
VaR’s at different levels is defined by

ppp′VaRt(ααα) =
m

∑
i=1

piVaRt(αi)

where ppp = (p1, . . . , pm) with pi ≥ 0 for i = 1, . . . ,m and ∑m
i=1 pi = 1. This risk mea-

sure can be interpreted as a special DRM with associated distortion function corre-
sponding to Dirac masses at the points αi. In view of (6), an asymptotic CI at level
α0 for this risk measure is

−σ̃t(θ̂θθn,αi)ppp′ξξξ n,ααα ±
Φ−1

1−α0/2√
n

{
ppp′Δ̂ΔΔαΣ̂ΣΣαΔ̂ΔΔ

′
α ppp

}1/2
. (9)

2.5 Choosing the Weights to Approximate DRMs

An estimator of the DRM in (8) can be constructed as follows:

3
Examples of DRM are the Proportional Hazard DRM, defined with G(u) = ur, and the
Exponential DRM defined with G(u) = (1− eru)/(1− er), both of them defined for r >
0. These distortion functions are concave for 0 < r < 1 and r > 0, respectively, which
corresponds to coherent risk measure in the sense of Artzner, Delbaen, Eber and Heath
(1999) [see e.g. Wirch and Hardy (1999)].
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D̂RMt =−σ(εt−1,εt−2, . . . ; θ̂θθn)
n

∑
i=1

{
G

(
i
n

)
−G

(
i− 1

n

)}
η̂n,i, (10)

where (η̂n,n−i) denotes the order statistics, obtained by ranking the η̂t in ascending
order: η̂n,1 < · · ·< η̂n,n.

However, deriving the asymptotic distribution of this estimator, might be a
formidable task. To our knowledge such results do not exist in the literature. In
this section, we use VaR portfolios to obtain lower and upper bounds for a class of
DRM, leading to (approximate) asymptotic CI’s for such DRM.

It is not restrictive to assume α1 < α2 < .. . < αm. Suppose that the support of
the distortion cdf G is [α1,αm], that is

DRMt =
∫ αm

α1

VaRt(u)dG(u). (11)

In other words, we focus on ”moderate risks”: we do not consider extreme risks,
corresponding to values of α approaching 0. An example of class of such DRM,
parameterized by the coefficient r > 0 and adapted from the so-called ”proportional
hazard” DRM, is defined by

G(u) =

(
u−α1

αm−α1

)r

1u∈(α1,αm) + 1u∈(αm,1), (12)

where 1A denotes the indicator function of any set A.
Lower and upper bounds for the DRM in (11), can be constructed as follows.

Because u �→VaRt(u) is decreasing we have, noting that G(α1) = 0 and G(αm) = 1,

ppp′LVaRt(ααα)≤ DRMt(α)≤ ppp′U VaRt(ααα)

where

pppL = (0,G(α2),G(α3)−G(α2), . . . ,1−G(αm−1)) ,

pppU = (G(α2),G(α3)−G(α2), . . . ,1−G(αm−1),0) .

It follows that a CI at significance level α∗0 ≤ α0 for this risk measure is

[
−σ̃t(θ̂θθ n,αi)ppp′Lξξξ n,ααα −

Φ−1
1−α0/2√

n

{
ppp′LΔ̂ΔΔαΣ̂ΣΣαΔ̂ΔΔ

′
α pppL

}1/2
,

−σ̃t(θ̂θθn,αi)ppp′Uξξξ n,ααα +
Φ−1

1−α0/2√
n

{
ppp′U Δ̂ΔΔαΣ̂ΣΣαΔ̂ΔΔ

′
α pppU

}1/2
]
. (13)
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3 NonGaussian QML Estimation of VaR’s

In this section we develop an alternative method for estimating the conditional
VaR’s. This method is based on a reparameterization of model (1). QML inferences
based on similar reparameterizations were proposed by Francq, Lepage and Zakoı̈an
(2011), Fan, Qi and Xiu (2012), Francq and Zakoı̈an (2013).

3.1 Reparameterization and VaR Parameter

The approach of this section requires the following assumption

A7: There exists a function H such that for any θθθ ∈Θ , for any K > 0, and any
sequence (xi)i

Kσ(x1,x2, . . . ;θθθ ) = σ(x1,x2, . . . ;θθθ ∗), where θθθ ∗ = H(θθθ ,K).

This assumption is not very restrictive as it is satisfied by all commonly used
GARCH-type formulations, in particular those mentioned in Section 2. It means
that scaling the volatility is equivalent to a change of parameter. In general, the
new parameter satisfies θθθ ∗ ≥ θθθ , componentwise, when K ≥ 1. For instance, in the
GARCH(p,q) model (2) we have θθθ ∗ = (K2ω ,K2a1, . . . ,K2aq,b1, . . . ,bp)

′.
In view of (3), we have under A7, provided αi is small enough so that −ξαi > 0,

VaRt(αi) = σ(εt−1,εt−2, . . . ;θθθ0αi) (14)

where θθθ 0,αi = H(θθθ 0,−ξαi). This parameter depends on both the dynamics of the
GARCH process, through the volatility parameters, and the innovations distribution
through the α-quantile. It is called VaR-parameter in Francq and Zakoı̈an (2012)
(hereafter FZ). Similarly, if −∫ 1

0 ξudG(u)> 0, the DRM in (8) can be written as

DRMt = σ(εt−1,εt−2, . . . ;θθθG
0 ) (15)

where θθθG
0 is a DRM-parameter defined by

θθθG
0 = H

(
θθθ 0,−

∫ 1

0
ξudG(u)

)
. (16)

It follows from (14) that, with the notation used in (5),

VaRt(ααα) =

⎛
⎜⎝
σ(εt−1,εt−2, . . . ;θθθ 0α1)

...
σ(εt−1,εt−2, . . . ;θθθ0αm)

⎞
⎟⎠ .

The approach, in this section, consists in estimating by QML the θθθ0αi’s instead of
θθθ0. The idea is to interpret, for i = 1, . . . ,m, the VaR-parameter θθθ 0αi as a volatility
parameter in a reparameterized model. We note that
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εt = σ(εt−1,εt−2, . . . ;θθθ 0αi)ηi,t , where ηi,t =
ηt

−ξαi

.

The problem is thus to estimate by QML the model
{
εt = σi,tηi,t , P[ηi,t <−1] = αi,
σi,t = σ(εt−1,εt−2, . . . ;θθθ 0,αi).

(17)

Note that the Gaussian QML cannot be employed because it requires the assumption
that Eη2

t = 1. FZ derived the asymptotic distribution of the non-Gaussian QMLE of
θθθ0,αi defined by

θ̂θθ n,αi = argmax
θθθ∈Θ

n

∑
t=1

log
1

σ̃t(θθθ)
hαi

(
εt

σ̃t(θθθ )

)
(18)

where hαi is given by

hαi(x) = λαi(1− 2αi)|x|2λαi−1{|x|−λ1{|x|>1}+ 1{|x|≤1}} (19)

for some (unimportant) positive constant λ .
As noted by FZ, the non-Gaussian QML estimator in (18) can be interpreted

as a nonlinear quantile regression estimator. Letting ρα(u) = u(α − 1{u≤0}), for
α ∈ (0,1), we have

θ̂θθn,αi = argmin
θθθ∈Θ

1
n

n

∑
t=1

ρ1−2αi

{
log

( |εt |
σ̃t(θθθ)

)}
.

In the next section, we derive the joint distribution of the θ̂θθ n,αi’s.

3.2 Asymptotic Joint Distribution of the VaR Parameter
Estimators

We introduce the following additional assumption.

A8: The density f of η0 is symmetric, continuous and strictly positive at the
points ξαi , for i = 1, . . . ,m, and satisfies M = supx∈R |x| f (x) < ∞. Moreover
E| log |η0||< ∞.

Let θθθ 0ααα = (θθθ ′0α1
, . . . ,θθθ ′0,αm

)′ and let θ̂θθn,ααα = (θ̂θθ
′
n,α1

, . . . , θ̂θθ
′
n,αm

)′.

Theorem 2. Under the assumptions A1-A3, A7, A8 and if, for i = 1, . . . ,m, αi ∈
(0,1/2) and A4(θθθ0αi)-A6(θθθ0αi) hold, there exists a sequence of local minimizers

θ̂θθn,ααα of the QML criterion satisfying

√
n(θ̂θθ n,ααα −θθθ0,ααα)

d→N (0,ΞΞΞααα) ,

where ΞΞΞααα is a md×md matrix whose (i, j)-block of size d× d is
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ΞΞΞααα [i, j] =
2αi∧α j (1− 2αi∨α j)

4 f (ξαi) f (ξα j )
JJJ−1
αiαi

JJJαiα j JJJ
−1
α jα j

with JJJαiα j = EDDDt(θθθ 0,αi)DDD
′
t(θθθ 0,α j).

Proof. Note that ν̂ννn,αi :=
√

n(θ̂θθ n,αi−θθθ 0,αi) is such that

ν̂ννn,αi = arg min
ννν∈Λn,αi

S̃n,αi(ννν),

where Λn,αi :=
√

n(Θ −θθθ0,αi) and

S̃n,αi(ννν) =
n

∑
t=1

ρ1−2αi

{
log

( |εt |
σ̃t(θθθ 0,αi + n−1/2ννν)

)}
−ρ1−2αi

{
log

( |εt |
σ̃t(θθθ 0,αi)

)}
.

For notational convenience, write a
c
= b when a = b+ c. Showing that the initial

values are asymptotically negligible, and noting that εt/σt(θθθ 0,αi) =−ηt/ξαi , it can
be proven that, uniformly in ν belonging to an arbitrary compact set (see Lemma 2
in FZ),

S̃n,αi(ννν)
oP(1)
= Sn,αi(ννν) :=

n

∑
t=1

ρ1−2αi

{
log

( |εt |
σt(θθθ 0,αi + n−1/2ννν)

)}

−ρ1−2αi

{
log

∣∣∣∣ηt

ξi

∣∣∣∣
}
.

Doing a Taylor expansion of logσt(θθθ 0,αi +n−1/2ννν) around ννν = 000, and using Lemma
2 in FZ, we obtain

Sn,αi(ννν)
oP(1)
= S∗n,αi

(ννν) :=
n

∑
t=1

ρ1−2αi

{
log

∣∣∣∣ ηt

ξαi

∣∣∣∣− 1√
n
ννν ′DDDt(θθθ0,ααi

)

}

−ρ1−2αi

{
log

∣∣∣∣ ηt

ξαi

∣∣∣∣
}
.

Note that S∗n,αi
(·) is equal to the function Zn(·) defined by Equation (17) in

Koenker and Xiao (2006), when applied to the quantile regression of log |ηt/ξαi |
on DDDt(θθθ 0,ααi

) at the level 1− 2αi. Even if our framework is not that of the above-
mentioned paper, similar results hold true. More precisely, FZ show that the finite-
dimensional distributions of S∗n,αi

(ννν) and

S∗∗n,αi
(ννν) :=− 1√

n

n

∑
t=1

ννν ′DDDt(θθθ0,αi)
(

1− 2αi− 1{|ηt |<−ξαi}
)
+ f (ξαi)ννν

′JJJαiαiννν

converge to those of the same Gaussian process. Noting that the trajectories of
S∗n,αi

(·) and S∗∗n,αi
(·) are convex, we also have uniform convergence over every com-

pact set in the space of the continuous function on R
d . By Lemma 2.2 in Davis,
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Knight and Liu (1992) the minima of S∗n,αi
(·) and S∗∗n,αi

(·) are asymptotically the
same. By Remark 1 of the above-mentioned paper, we finally obtain

ν̂ννn,αi

oP(1)
=

1
2 f (ξαi)

JJJ−1
αiαi

1√
n

n

∑
t=1

DDDt(θθθ0,αi)
(

1− 2αi− 1{|ηt |<−ξαi}
)
.

The conclusion follows easily. �

Remark 5. Theorems 1 and 2 provide the asymptotic distributions of two estimators
for VaR portfolios. At first sight, the method of this section is not attractive because
it is more cumbersome, from a numerical point of view, than that of the previous
section. Indeed, it requires the optimization of m QML criteria, whereas the first
method requires one. However, it is important to note that the assumptions required
for the asymptotic results are different. In particular, the fourth moment assumption
Eη4

t < ∞ of the first method, is not required in Theorem 2. On the other hand, the
latter theorem is valid under a symmetry assumption on the noise distribution. To
conclude, the method of this section can only be recommended in presence of very
heavy-tailed errors distribution.

4 Empirical Illustration

In this section we present empirical results using returns of nine major stock indices:
CAC (Paris), DAX (Frankfurt), FTSE (London), Nikkei (Tokyo), NSE (Bombay),
SMI (Switzerland), SP500 (New York), SPTSX (Toronto), and SSE (Shanghai). Our
sample spans the period from January, 2 1991 to August, 26 2011 (but all series are
not available for the whole period, see Table 1 for the sample sizes). For each series
of log-returns, εt = log(pt/pt−1) where pt denotes the value of the index, we used a
GARCH(1,1) model for the volatility dynamics. We estimated the DRM parameter
θθθG

0 = (ωG,aG,bG), defined in (16), with r = 1/2, α1 = 0.01 and αm = 0.1 for the
DRM function G defined in (12). In view of (10) and (16), the DRM-parameter
estimator is given by

θ̂θθ
G
n = H

(
θ̂θθ n,−

n

∑
i=1

{
G

(
i
n

)
−G

(
i− 1

n

)}
η̂n,i

)
,

where H(ω ,α,β ;K) = (K2ω ,K2α,β ). The CI’s are obtained using (13) with m =
20 and α0 = 5%.

We report in Table 1 our estimates of the conditional DRM parameter and the
corresponding CI’s. Caution is needed in the interpretation of this table because
the DRM parameter is not the usual volatility parameter. In particular, the fact that
aG + bG > 1 is not in contradiction with the usual empirical finding, a+ b ≈ 1,
for GARCH(1,1) models. Noticeable differences appear between these series, par-
ticularly for the coefficientsωG and aG and their CI’s. Replacing the number m= 20
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Table 1 Estimation of the conditional DRM parameter for 9 stock market indices. The ap-
proximate 95% confidence intervals are displayed into brackets.

Index n ωG aG b
CAC 5229 0.11 [0.05,0.17] 0.31[0.22,0.41] 0.90 [0.88,0.92]
DAX 5226 0.12 [0.04,0.20] 0.31[0.18,0.45] 0.90 [0.86,0.93]
FTSE 5217 0.04 [0.02,0.07] 0.32[0.24,0.41] 0.91 [0.89,0.92]
Nikkei 5078 0.20 [0.11,0.30] 0.37[0.26,0.48] 0.88 [0.85,0.91]
NSE 2265 0.25 [0.06,0.46] 0.40[0.20,0.65] 0.87 [0.82,0.92]
SMI 5209 0.17 [0.08,0.27] 0.46[0.27,0.65] 0.84 [0.79,0.89]
SP500 5206 0.03 [0.01,0.05] 0.27[0.19,0.36] 0.92 [0.90,0.94]
SPTSX 2934 0.03 [0.01,0.06] 0.27[0.17,0.38] 0.93 [0.91,0.95]
SSE 2982 0.11 [0.03,0.20] 0.25[0.15,0.37] 0.93 [0.90,0.95]

Fig. 1 Returns (in blue), estimated -VaR (at the 10% and 1% levels, in green), -DRM (in
red), and CI’s of the VaR’s and DRMs, for the DAX index from April, 8, 2011 to August, 26,
2011. Estimation of the volatility and risk parameters is based on the 1000 previous values.
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of αi’s used for the discretization of the DRM by m = 10 or m = 30 left almost
unchanged the CI’s, so we did not report the results. We can depict three categories
of assets: i) the FTSE, SP500 and SPTSX display similar coefficients, relatively
small ωG’s, large persistence parameter b’s, small CI’s; ii) Nikkei, NSE and SMI
provide, by comparison, larger ωG’s and aG’s, smaller persistence and much larger
CI’s; iii) the CAC, DAX and SSE display intermediate results. Examination of the
CI’s shows that the differences between parameters of series in groups i) and ii)
are statistically significant. Note also that larger CI’s are not always due to smaller
sample size.

Figure 1 displays the returns, estimated -VaR (at the 10% and 1% levels), -DRM,
and their accuracy intervals for the DAX index from April, 8, 2011 to August, 26,
2011. The (1−α0)% confidence intervals (for α0 = 5%) are obtained from formula
(13). We reported the opposite of the conditional risks (VaR and DRM), because in
terms of capital reserves, only large negative returns matter. As expected, the accu-
racy on VaR estimation decreases when the risk α approaches 0. Interestingly, the
accuracy of the DRM is comparable to that of the VaR’s, despite the more sophisti-
cated construction of this measure of risk. Note also that, in turbulent periods, both
the market risks, as measured by the VaR’s or the DRM, and the estimation risks, as
measured by the CI’s, increase.

5 Conclusion

In this paper, we proposed procedures for joint statistical inference on the VaR’s at
different levels, in the framework of conditionally heteroskedastic models. We also
introduced an approximation of general DRM based on a finite number of VaR’s.
Our empirical analysis showed that confidence intervals based on this measure of
risk have similar magnitude as those obtained for VaR’s.

One alternative for deriving the asymptotic distribution of the DRM estimator
would be to establish a functional CLT, in function of α , for the vector of the volatil-
ity parameter estimator and the empirical quantile of the residuals. Deriving this
asymptotic distribution could be a formidable challenge. Moreover, the asymptotic
distribution would certainly be non explicit. The approximation proposed in this ar-
ticle, which provides an explicit and easily estimable asymptotic distribution, thus
has the advantage of simplicity.

One object of this study was also to draw attention on the estimation risk, in other
words the effects of parameter estimation on the accuracy of VaR’s evaluations. We
showed that estimation risk can be explicitly taken into account, leading to con-
fidence bounds for portfolios, or more generally any smooth function, of VaR’s.
For risk management purposes, or from a regulation point of view, such confidence
intervals could be used to increase the capital reserve in order to account for the
underlying estimation uncertainty.
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7. Dominicy, Y., Hörmann, S., Ogata, H., Veredas, D.: Marginal Quantiles for Station-
aryProcesses. Statistics and Probability Letters 83, 28–36 (2013)

8. Engle, R.F.: Autoregressive conditional heteroskedasticity with estimates of the variance
of the United Kingdom inflation. Econometrica 50, 987–1007 (1982)

9. Engle, R.F., Manganelli, S.: CAViaR: Conditional Value at risk by Quantile Regression.
Journal of Business and Economic Statistics 22, 367–381 (2004)

10. Fan, J., Qi, L., Xiu, D.: Quasi Maximum Likelihood Estimation of GARCH Models with
Heavy-Tailed Likelihoods. Discussion Paper,
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1540363

11. Francq, C., Lepage, G., Zakoı̈an, J.-M.: Two-stage non Gaussian QML estimation of
GARCH Models and testing the efficiency of the Gaussian QMLE. Journal of Econo-
metrics 165, 246–257 (2011)

12. Francq, C., Zakoı̈an, J.-M.: GARCH Models: Structure, Statistical Inference and Finan-
cial Applications. John Wiley (2010)

13. Francq, C., Zakoı̈an, J.-M.: Risk-parameter estimation in volatility models. MPRA
Preprint No. 41713 (2012)

14. Francq, C., Zakoı̈an, J.M.: Optimal predictions of powers of conditionally heteroskedas-
tic processes. Journal of the Royal Statistical Society - Series B 75, 345–367 (2013)

15. Geweke, J.: Modeling the persistence of conditional variances: a comment. Econometric
Review 5, 57–61 (1986)

16. Glosten, L.R., Jaganathan, R., Runkle, D.: On the relation between the expected values
and the volatility of the nominal excess return on stocks. Journal of Finance 48, 1779–
1801 (1993)

17. Gouriéroux, C., Jasiak, J.: Dynamic Quantile Models. Journal of Econometrics 147, 198–
205 (2008)

18. Knight, K.: Limiting distributions for L1 regression estimators under general conditions.
The Annals of Statistics 26, 755–770 (1998)

19. Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge (2005)
20. Koenker, R., Xiao, Z.: Quantile autoregression. Journal of the American Statistical As-

sociation 101, 980–990 (2006)
21. Kuester, K., Mittnik, S., Paolella, M.S.: Value-at-Risk predictions: A comparison of al-

ternative strategies. Journal of Financial Econometrics 4, 53–89 (2006)
22. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management. Princeton Univer-

sity Press (2005)

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1540363


Multi-level Conditional VaR Estimation in Dynamic Models 19

23. Milhøj, A.: A multiplicative parameterization of ARCH Models. Working Paper, Depart-
ment of Statistics, University of Copenhagen (1987)

24. Nelson, D.B.: Conditional Heteroskedasticity in Asset Returns: a New Approach.
Econometrica 59, 347–370 (1991)

25. Pantula, S.G.: Modeling the persistence of conditional variances: a comment. Economet-
ric Review 5, 71–74 (1986)

26. Pollard, D.: Asymptotics for Least Absolute Deviation Regression Estimators. Econo-
metric Theory 7, 186–199 (1991)

27. Sentana, E.: Quadratic ARCH Models. Review of Economic Studies 62, 639–661 (1995)
28. Spierdijk, L.: Confidence intervals for ARMA-GARCH Value-at-Risk. Working paper,

University of Groningen (2013)
29. Wang, S.: A class of distortion operators for pricing financial and insurance risks. Journal

of Risk and Insurance 67, 15–36 (2000)
30. Wirch, J.L., Hardy, M.R.: A Synthesis of Risk Measures for Capital Adequacy. Insur-

ance: Mathematics and Economics 25, 337–347 (1999)
31. Zakoı̈an, J.M.: Threshold Heteroskedastic Models. Journal of Economic Dynamics and

Control 18, 931–955 (1994)



Part II
Fundamental Theory



The Effects of Management and Provision
Accounts on Hedge Fund Returns – Part I:
The High Water Mark Scheme�

Serge Darolles and Christian Gourieroux

Abstract. A characteristic of hedge funds is not only an active portfolio manage-
ment, but also the allocation of portfolio performance between different accounts,
which are the accounts for the external investors and an account for the management
firm, respectively. Despite a lack of transparency in hedge fund market, the strategy
of performance allocation is publicly available. This paper shows that, for the High
Water Mark Scheme, these complex performance allocation strategies might explain
empirical facts observed in hedge fund returns, such as return persistence, skewed
return distribution, bias ratio, or implied increasing risk appetite.

1 Introduction

The applied literature has shown that the return dynamics of individual hedge funds
1

(HF) are very different from the return dynamics of more standard assets such as
stocks, currencies, or mutual funds. The HF return dynamics can depend on the
management style, but generally, feature persistence, especially at short term and
in extreme returns [Agarwal, Naik (2000), Koh, Koh, Teo (2003), Getmanski, Lo,
Makarov (2004)], local asymmetries around zero, called bias ratio in the literature
[Abdulali (2006), Bollen, Pool (2009), Darolles, Gourieroux, Jasiak (2009)], very
heavy tails, for instance for Convertible Arbitrage or Fixed Income Arbitrage funds;
moreover, some HF returns are weakly correlated with major asset market returns
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[Fung, Hsieh(1999)]. These empirical facts reflect an underlying nonlinear dynamic
of HF return, which can be explained by:

i) The frequent path dependent updating of the portfolio associated with the fund
[see e.g. Lo (2008)];
ii) The procedure used to allocate the performance between different accounts, that
are the investor’s account and the account of the management firm.

Since the sequence of portfolio updatings and allocations are not observable by

the econometrician and the standard investor
2
, the management style and its effect

on returns are difficult to analyse. On the other hand, the procedures used to allo-
cate the total performance between the different accounts are precisely described in
the prospectus written at the creation of the fund and validated by the appropriate
authorities. The aim of this paper and of its companion paper [Darolles, Gourieroux
(2013)] is to discuss the possible effects of these rather complex procedures and to

see if they can partly explain empirical facts observed on individual HF returns
3
.

In Section 2, we provide an example of allocations between accounts used in
practice. We consider the rather standard high-water mark (HWM) scheme. The
presence of several accounts can imply significant differences between the return
of the managed porfolio and the published HF return. We describe in detail the
nonlinear filter to pass from the portfolio return to the published HF return.

Section 3 compares the portfolio and fund returns when the portfolio returns are
independent and identically Gaussian distributed. The i.i.d. Gaussian assumption on
portfolio returns corresponds to a rather exogenous portfolio management, whereas
the hedge fund manager will account for the existence of multiple accounts in his/her
management strategy.

In Section 4, we discuss the mean-variance efficient portfolio management ac-
cording to the account of interest. If the fund performance has to be maximized,
the management differs from the standard mean-variance management of the global
portfolio. More precisely, the allocation scheme between accounts has a significant

2
They are known by the fund manager and partly known by large investors, who profit
of due diligence, or investors in US funds reporting their holdings on Form 13F with
the Security Exchange Commission (SEC). This creates asymmetric information on HF
markets.

3
Performance based fees (also called incentive fees) are characteristics of hedge funds;
they are much less frequent for mutual funds. For instance, in 1999 only 108 out of a
total 6.716 bond and stock mutual funds used incentive fees [Elton, Gruber, Blake(2001)].
Moreover by law the mutual funds must use a special form of incentive fees known as
fulcrum fee (see the 1970 amendment to the Investment Company Act of 1940). Typically,

the fulcrum fees are centered around an index
4

and have upper and lower limits in size.
Such constraints do not exist for HF.

4
As noted in Elton, Gruber, Blake (2003), 43 different indices were used as benchmark in
1999, as the S&P 500 index, the Russell 2000, Morgan Stanley’s EAFE, Lipper Growth,
or Income Fund Index.
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impact on the optimal portfolio management. There exists a theoretical literature
in the introduction of multiple accounts as an incentive for the hedge fund man-

ager
5
. However, this question is often considered under rather irrealistic assump-

tions such as continuous time incentives, whereas the barrier effects apply monthly
[see e.g. Goetzmann, Ingersoll, Ross (2003), Kouwenberg, Ziemba (2007)], com-
petitive hedge fund market, whereas each hedge fund has a specific design and its
secondary market is not very active [see e.g. Christoffersen, Musto, Yilmaz (2013)],
two periods instead of multiperiod optimization [see e.g. Christoffersen, Musto, Yil-
maz (2013)], risk-neutral manager [Paganeas, Westerfield (2009)], binary returns
[Christoffersen, Musto, Yilmaz (2013)], or rather ad-hoc account description, which
does not correspond to the account allocations proposed in the hedge fund industry
[Kazemi, Li (2009), Aragon, Nanda (2012)]. We try in this section to stay as close
as possible to the actual hedge fund designs and to focus on their dynamic features.
Section 5 contains conclusions. Proofs are gathered in Appendices.

2 High-Water Mark Allocation Scheme

There exist almost as many account allocation schemes as hedge funds shares, which

explains why any precautionary investor, regulator, or researcher
6

should study in
details the prospectus of the funds. We describe below a standard scheme used to
allocate the performance between the account invested by external clients, called
class A units in the following, and the account invested by the management firm,

called class B units
7
.

This allocation scheme is parametrized by an allocation rate, called performance
fee rate, a return benchmark, called hurdle rate, and a validity period corresponding
to the duration between consecutive resets of class B account. These parameters
differ according to the fund share.

2.1 Allocation between A and B Accounts

Let us first consider two accounts, with respective values At , Bt at month t, t =
0, ...,T . The contractual hurdle rate is denoted by yh,t ,yh,t ≥ 0, and is assumed to be

5
There exists also a more empirical literature studying the links between the risk taken by
the hedge fund manager, often summarized by means of the HF return volatility, and some
characteristics of the HF, such as proxies for the optional feature of the compensation
scheme [see e.g. Kazemi, Li (2009)]. These analysis are often based on the rather simple
static linear regression techniques and thus neglect the complexity of the compensation
scheme, especially its dynamics and nonlinear features.

6
Typically, it is misleading to consider as an homogenous class the set of funds reporting
a high-water mark benchmark in the standard Lipper/TASS database [see e.g. Aragon,
Nanda (2012)].

7
To simplify, we assume that there is neither redemption, nor subscription after the inception
date and no misreporting of the data. The changes observed in the values of the different
accounts come from the evolution of the portfolio return only.
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predetermined and observable at date t. The contractual hurdle rate is a benchmark
introduced to define the performance allocations. This hurdle can be set to zero [see
e.g. Panageas, Westerfield (2009)], or to a cash return like the 1-month London In-

terbank Offered Rate (LIBOR)
8
. The maximal value reached on the past by account

A is discounted at rate yh,t and called the high-water mark (HWM). This HWM is
first computed at date t by:

HWMt = max
0≤τ≤t

[
Aτ

t

∏
τ∗=τ

(1+ yh,τ∗)

]
, t = 0, ...,T − 1, (1)

and then compare to At+1 at date t + 1. The fee schedule is endogenous
9

as a func-
tion of past successes, but is entirely defined at date t, due to the choice of the
predetermined hurdle rate. We deduce that:

HWMt = max [HWMt−1,At ] (1+ yh,t), t = 1, ...,T − 1, (2)

with initial condition HWM0 = A0(1+ yh,0).
At period t, the global portfolio value At +Bt is invested and provides at the end

of the period a return net of base management fees
10

denoted by yt+1. Then, the
change in total portfolio value (At +Bt)yt+1 is allocated between the two accounts.
The performance fee is not charged if the fund is globally in a deficit of performance
with respect to the high-water mark. Thus, this allocation depends on the location
of:

At(1+ yt+1), (3)

with respect to the predetermined HWMt as follows:

1. if HWMt ≥ At(1+ yt+1),

{
At+1 = At(1+ yt+1),
Bt+1 = Bt(1+ yt+1).

(4)

2. If HWMt < At(1+ yt+1),

{
At+1 = At(1+ yt+1)−α[At(1+ yt+1)−HWMt ],
Bt+1 = Bt(1+ yt+1)+α[At(1+ yt+1)−HWMt ],

(5)

8
The hurdle rate has to be defined in the same currency as the fund reference currency, e.g.
US Dollar, Euro, Yen, ...

9
Exogenous HWM of the type HW Mt = HW M0∏t

τ=1(1+ yh,τ ) are often assumed in the
HF literature [see e.g. Hodder, Jackwerth (2007)]. Such HWM schemes correspond to the
fulcrum scheme for mutual funds, but are very different from the actual HWM for hedge
funds.

10
The base management fee is generally proportional to the asset value managed by the fund.
Without loss of generality, we take them into account by considering portfolio return net
of base management fee.
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where 0<α < 1 is the (high-water mark) performance fee rate. This performance
fee rate varies from 15% to 50%, with an increase in recent years [see e.g. Fung,
Hsieh(1999), Table 2, Zuckerman (2004)]. It is equal to 20% for the Quantum
Fund reported in Goetzmannn, Ingersoll, Ross (2003).

The updating equations (2.4)-(2.5) can also be written as:

{
At+1 = At(1+ yt+1)−αAt [yt+1− (HWMt −At)/At ]

+ ,

Bt+1 = Bt(1+ yt+1)+αAt [yt+1− (HWMt −At)/At ]
+ ,

(6)

where X+ = max(X ,0), to highlight the presence of an option component. When
the fund gains enough value, the manager is paid and the strike price increases, but
when the fund loses money, the strike price remains unchanged and the manager
retains his/her option at the old strike price.

At short term horizon equal to 1, the future account values involve the payoff of

a European call option
11

written on yt+1, with predetermined path dependent strike
equal to y0,t = (HWMt −At)/At . At larger horizon, we get a sequence of European
calls with changing strike prices. Both rolling effect and path dependent strike show
that the option interpretation of the account allocation is significantly different from
the simplified European call interpretations introduced for instance in Kouwenberg
and Ziemba (2007) or Diez de los Rios, Garcia (2008), eq. (2.5), which neglects
path dependence.

For a zero hurdle rate, the recursive equation for account A can also be written
as:

At+1 = At(1+ yt+1)−α(HWMt+1−HWMt)
+, (7)

which shows that the fund manager receives a fraction of the increase in HWM as
conpensation.

In practice, the management firm is periodically paid by means of the manage-
ment account, generally at the end of the year. The recursive equations are valid on
a period {0,T − 1} of a given length T corresponding to the duration between con-
secutive resets, i.e. 0 and T . At time T , the management account is reset to the initial

fixed
12

contractual value B0 and the HWM reset
13

to AT (1+ yh,T ). Since the alloca-
tion scheme may create nonstationary features, this practice breaks down possible
explosive behavior.

If the reset time is T = 1, the HWM is equal to At(1+yt+1) and regimes (2.4) and
(2.5) are active depending if the portfolio management out- or underperforms the
hurdle. We get y0,t = yh,t and the HWM disappears in equation (2.6) that becomes:

{
At+1 = At(1+ yt+1)−αAt

[
yt+1− yh,t

]+
,

Bt+1 = Bt(1+ yt+1)+αAt
[
yt+1− yh,t

]+
,

(8)

11
Or of a European put option if we note that coefficient −α is negative and account for the
put-call parity relationship.

12
That is, this contractual value is not discounted.

13
There exist funds with different reset times for the HWM and the B account.
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and is reset at each date. In this setup a fixed proportion α of the return above
the hurdle is allocated to class B at each period, which corresponds to a standard
fulcrum scheme.

To summarize, the evolutions of account values depend on the portfolio manage-
ment, that is, the sequence of portfolio returns (yt), and on the allocation design

characterized by hurdle rate (yh,t), performance fee rate α , and reset time
14

T . The
dynamic system is recursive, since value (At) has an autonomous dynamic, and
value (Bt) is fixed later. Let us finally remark that the value of account A can de-
crease and even become smaller than the initial value A0, or negative. Therefore, the

HF can fail
15

before the contractual reset time T . We will consider in the theoretical
analysis that the fund fails if At becomes negative before reset time. From equation
(2.6), we see that the portfolio return is necessarily larger than −1 before the po-
tential failure time, and account B is positive. From this theoretical point of view,
fund failure arises as the consequence of an abnormal negative return. In practice, it
is also possible that the fund manager decides to liquidate the fund if the losses on
account A are too large, even if At is still positive, or if his/her fees Bt are too small.

2.2 Discussion of the High-Water Mark Scheme

Let us now discuss scheme (2.1)− (2.5). Since HWMt ≥ At , regime (2.4) applies if
the spread between the net portfolio return and the hurdle yt+1− yh,t is negative. If
the spread is negative, the total loss is allocated proportionally to each account. If the
spread is positive and small, regime (2.4) still applies and the same return is applied
to accounts A and B. If the spread is positive and large enough to hit the HWM, the
allocation rule is no longer proportional. The gain is shared between accounts A and
B, with an allocation more favorable for the managing firm [see (2.5)]. The values
of accounts A and B can increase or decrease, but the effect of net portfolio return
yt+1 is no longer symmetric.

If the reset time is T = 1, the dependence of ΔAt+1 = At+1−At (resp. ΔBt+1 =
Bt+1−Bt) with respect to net portfolio return yt+1 is described in Figure 1 (resp.
Figure 2).

The value of the class A unit is a continuous increasing function of the net port-
folio return with a change of slope at threshold y0,t . The payoff on B account is a
convex function of the return, which might be an incentive for the fund manager to

14
It is important to distinguish the reset time and the termination date of an hedge fund.
Whereas most hedge fund management contracts do not have a pre-specified termination
date, a reset time is often indicated. The presence of a reset time has significant implica-
tions on fund management and returns, and has to be taken into account. By implicitely
assuming an infinite reset time, a part of the literature considered rather unrealistic models
[see e.g. Panageas, Westerfield (2009)]. Typically, in a continuous time framework, the
reset time will imply jumps of an endogenous size at predetermined dates.

15
A HF fails when the fund manager decides to liquidate the fund and gives back the remain-
ing asset under management to investors. The decision for liquidation is not contractual,
but is at the discretion of the fund manager.
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Fig. 1 ΔAt+1 as a function of yt+1 (unitary reset time)
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Fig. 2 ΔBt+1 as a function of yt+1 (unitary reset time)

take risk, i.e. to produce large positive returns at some date to feed account B. These
extreme positive returns might have to increase in time due the increasingness of the
high-water mark as function of past successes. This misleading intuition has been
challenged by Carpenter(2000), Ross(2004), Panageas, Westerfield(2009) [see also
the discussion in Section 4].
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Let us also discuss this scheme if the fund manager invests only in a riskfree

asset, yt+1 = y f ,t , with a riskfree return larger than the hurdle, y f ,t ≥ yh,t , say
16

. Since
At(1+ y f ,t) ≥ At(1+ yh,t) = HWMt , the fund manager would profit systematically
of such a static riskfree investment. Surprisingly, this account allocation scheme is
often used in the HF industry with a zero hurdle rate yh,t = 0.

2.3 The Returns and Effective Performance Fees

A major point in the discussion of fund returns is the definition of returns in case of
several accounts. Indeed, the following returns can be introduced:

i) the total portfolio net return yt+1,

ii) the return on B account
17

: yB,t+1 = (Bt+1−Bt)/Bt ,
iii) the return on A account: yA,t+1 = (At+1−At)/At .

The fund returns available in the standard Hedge Funds Research (HFR) or Lipper-
Tass databases are returns (yA,t) corresponding to class A units. They can feature
dynamics very different from the dynamics of (yt) and (yB,t). For instance, return
yA,t is always smaller or equal to the total net porfolio return yt . It coincides with
it at some endogeneous periods, and is strictly below, otherwise. It can be impor-
tant in the analysis to distinguish the reported HF return yA,t and the underlying
total portfolio return yt . As an illustration, the methodology proposed in Henriks-
son, Merton (1981) [see also Glosten, Jagannathan (1994), Agarwal, Naik (2004),
Diez de los Rios, Garcia (2008)] to detect the market timing ability of a portfolio
manager consists in running a regression of the HF return on a market return and
on a put option payoff written on this market return, say, and to test if the optional

component is significant
18

. Applied to reported HF return yt , this optional effect will
likely appear as a consequence of the HWM scheme, even if this effect is not present
in the total portfolio return, that is, if the portfolio manager shows no market tim-
ing ability. This might explain why ”this option like payoff (effect) is not restricted
only to trend followers and risk arbitrageurs, but is a feature on a wide range of
hedge funds strategies” [Agarwal, Naik (2004), p. 66]. Anyway, the first equation
in (2.6) shows that the observed return yA,t is a complicated nonlinear function of

yt ,yt−1, ...,yh,t ,yh,t−1, ... , function which is known from the prospectus
19

.

16
Under no arbitrage opportunity, this means that the contractual riskfree rate has been fixed
at a level strictly smaller than the market riskfree rate.

17
We have to choose a contractual positive B0 initial value to give a meaning to this return.

18
This methodology has to be applied on individual hedge funds, not on HF indices, to get
this interpretation.

19
In Getmanski, Lo, Makarov (2004), the observed return yA,t is written as a Moving Average
MA(2) process of the underlying porfolio return. This moving average representation is a
linar stochastic approximation of the actual known nonlinear deterministic relation existing
between the returns. Its interpretation, which neglects nonlinearity, can be misleading.
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The ex-post performance allocation rate, i.e.:

αt =
Bt+1−Bt

At+1 +Bt+1− (At +Bt)
=

BtyB,t

AtyA,t +BtyB,t
, (9)

is not constant in time, can be erratic and rather different from the announced rate
α . An effective performance allocation rate can be computed on a larger period to
smooth the α ′t s, for instance on the period [0,T ] corresponding to the time between
resets. This effective performance allocation is:

α̂T =
BT −B0

AT +BT − (A0 +B0)
, (10)

and can also be different from α even for large T . Rate α̂T is likely strictly larger
than α , since the total loss is assigned to account A, when the portfolio underper-
forms. It can even be larger due to the nonlinear allocation filtering which can create
a convexity effect (see Appendix 1).

3 The Effects of the Scheme on i.i.d. Gaussian Portfolio Returns

In this section, we assume a zero riskfree rate, a zero hurdle rate yh,t = 0, and
i.i.d. Gaussian net portfolio returns yt ∼ N(m,σ2), where m (resp. σ2) is the path-
independent expected return (resp. volatility). Thus, we assume a constant hedge
fund leverage ratio [see Getmanski, Lo, Makarov (2004), eq. 10] and do not con-
sider the additional uncertainty associated with the hurdle. Except in the special
case of unitary reset time in the standard allocation scheme (see Appendix 1), a the-
oretical analysis of the dynamics of bank accounts is difficult due to the nonlinear
path dependent allocation schemes. The dynamic properties are discussed below by
means of simulation studies.

In the standard High-Water Mark allocation scheme with zero hurdle, the joint
dynamics of Class A value and high-water mark is characterized by the bivariate
recursive system:

{
At+1 = At(1+ yt+1)−α[At(1+ yt+1)−HWMt ]

+,
HWMt+1 = max [HWMt ,At(1+ yt+1)−α(At(1+ yt+1)−HWMt)

+] .
(1)

with given initial condition (A0,HWM0). The bivariate process (At ,HWMt) is a
Markov process. The joint transition distribution of (At ,HWMt) involves two partly

degenerate distributions. Therefore, the joint bivariate transition is given by
20

:

ft(at+1,HWMt+1)

=
{

Iat+1>HW Mt × 1
(1−α)Atσ

√
2π ϕ

[
at+1−At(1+m)+α [At(1+m)−HW Mt ]

(1−α)Atσ

]
+ Iat+1<HW Mt × 1

Atσ
√

2π ϕ
[

at+1−At(1+m)
Atσ

]}
⊗ ε(HW Mt+1=Max(HW Mt ,at+1)),

(2)

20
Note that yt+1 > y0,t , iff At+1 > HW Mt .
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Fig. 3 Return Dynamics

where ε(.) denotes a point mass, ϕ the probability density function (pdf) of the
standard normal distribution and ⊗ the tensor product.

To illustrate the consequences of the allocation scheme on accounts returns, let
us consider risky returns following a Gaussian distribution with mean m = 1%, and
volatility σ = 3.46%. We set the performance fee rate at α = 20%. The initial values
of the accounts are A0 = 100, B0 = 10 and the reset time is set to T = 72 months= 6
years.

The return dynamics for yt , yA,t , yB,t are given in Figure 3. The return on man-
agement account is much more volatile than the underlying portfolio return and we
observe the clustering for positive returns corresponding to the threshold effect of

the HWM. The trajectories of yt and yA,t are quite close
21

: the HWM effect is seen
by the smoothing of peaks of yt trajectories for the account A. These evolutions can
be summarized in different ways. First, we compare the historical distribution of
returns yt and yA,t . Second, we consider the associated autocorrelogram.

21
It could be rather misleading to analyse the correlation between both returns in this dy-
namic framework. For instance, for a unitary reset time, we would have yA,t = yt −αy+t .
We see immediately that the conditional correlation between yA,t and yt for ”small” return
yA,t < 0 (resp. ”large” return yA,t > 0) is equal to 1 [resp. 1], whereas the unconditional
correlation between the returns is positive, but significantly smaller than 1, with a value
function of α .
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Fig. 4 Historical Distributions of Returns

The smoothed historical distributions of yt and yA,t are given in the first panel of
Figure 4 and the histogram of yA,t in the second panel. The presence of the man-
agement account explains the negative drift observed when passing from a positive
portfolio return yt to account A return. Indeed, the left part of the distribution is
not impacted by the allocation scheme, whereas the right part is. The probability to
observe high return is lower; the return distribution becomes more concentrated and
skewed.

The nonlinear autoregressive effect due to the HWM barrier is difficult to detect
from a standard linear analysis of serial dependence, but also from an analysis of
the linear dependence between squared returns (see Figure 6). We observe a cycle

effect in both autocorrelograms
22

, which is just significant.
Let us now compare the characteristics of HF returns yA,t+1, for different values

of the performance fee rate α , α = 0%, 10%, 20%, 50%, the limiting case α = 0%
corresponding to yA,t+1 = yt+1. We fix the initial values to A0 = 100, B0 = 10. Fi-

22
This is a consequence of the threshold autoregressive effects in the HWM dynamics [see
Tong (1983)].
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Fig. 5 ACF on Return and Squared Return

nally, we set m to 1%, consider different underlying annualized Sharpe performance

ratio
23

for the portfolio return P=
√

12×m/σ = 0.5, 1, 1.5 and different reset times
for the fund, i.e. T = 24 (2 years), 48(4 years), 72(6 years).

Table 1 provides the mean, variance, annualized Sharpe performance, skewness,
excess kurtosis and 5%− 95% quantiles of the average class A return on period
(0,T ), that is yA(T ) = (AT − A0)/(TA0). These summary statistics are obtained
with S = 10000 replications for each Monte-Carlo design.

For a zero performance fee, the return of class A unit is equal to the return of
the underlying portfolio, i.e. yA(T ) =

1
T

[
∏T

t=1(1+ yt)− 1
]
. For horizon T �= 1, this

return is no longer Gaussian and a convexity effect appears in the computation of
the mean and the variance. For instance, we get:

E [yA(T )] =
1
T

{
(1+m)T − 1

}� 1+m+
T − 1

2
m2, (3)

23
The Sharpe performance ratio measures the annualized excess return per unit of annualized
risk.
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Table 1 Statistics on yA(T )
Panel A: T = 24 (2 years)

Incentive fee α level Mean SD Sharpe Median Skew Exc. Kurt. 5%-Quant. 95%-Quant.

Sharpe ratio = 0.5
0% 0.0116 0.0187 0.4375 0.0082 1.0815 2.0117 -0.0130 0.0472
10% 0.0095 0.0166 0.4028 0.0069 0.9282 1.4905 -0.0132 0.0406
20% 0.0074 0.0147 0.3585 0.0056 0.7649 1.0259 -0.0134 0.0346
50% 0.0020 0.0100 0.1408 0.0018 0.1794 0.0138 -0.0142 0.0188
Sharpe ratio = 1
0% 0.0114 0.0091 0.8867 0.0104 0.5458 0.4780 -0.0021 0.0279
10% 0.0099 0.0081 0.8644 0.0092 0.4594 0.3658 -0.0023 0.0244
20% 0.0084 0.0072 0.8337 0.0079 0.3605 0.2722 -0.0026 0.0211
50% 0.0044 0.0047 0.6541 0.0044 -0.0748 0.2169 -0.0036 0.0121
Sharpe ratio = 1.5
0% 0.0113 0.0060 1.3325 0.0109 0.3794 0.2175 0.0021 0.0220
10% 0.0100 0.0053 1.3234 0.0096 0.3242 0.1782 0.0017 0.0194
20% 0.0087 0.0047 1.3077 0.0084 0.2604 0.1514 0.0013 0.0168
50% 0.0049 0.0030 1.1832 0.0049 -0.0416 0.2505 0.0001 0.0098

Panel B: T = 48 (4 years)

Incentive fee α level Mean SD Sharpe Median Skew Exc. Kurt. 5%-Quant. 95%-Quant.

Sharpe ratio = 0.5
0% 0.0129 0.0170 0.3809 0.0094 1.4832 3.5525 -0.0073 0.0462
10% 0.0106 0.0145 0.3675 0.0080 1.2944 2.7091 -0.0075 0.0389
20% 0.0085 0.0123 0.3468 0.0066 1.0988 1.9638 -0.0077 0.0322
50% 0.0031 0.0074 0.2141 0.0027 0.4239 0.2953 -0.0082 0.0161
Sharpe ratio = 1
0% 0.0128 0.0081 0.7888 0.0120 0.6983 0.7160 0.0012 0.0280
10% 0.0111 0.0070 0.7901 0.0104 0.6100 0.5503 0.0008 0.0240
20% 0.0094 0.0060 0.7864 0.0090 0.5141 0.4055 0.0005 0.0203
50% 0.0050 0.0035 0.7168 0.0049 0.1242 0.1760 -0.0006 0.0110
Sharpe ratio = 1.5
0% 0.0128 0.0054 1.1905 0.0124 0.4623 0.2722 0.0047 0.0225
10% 0.0112 0.0046 1.2056 0.0109 0.4086 0.2061 0.0041 0.0195
20% 0.0096 0.0039 1.2178 0.0094 0.3512 0.1498 0.0035 0.0166
50% 0.0054 0.0022 1.2134 0.0054 0.1246 0.0832 0.0019 0.0092

Panel C: T = 72 (6 years)

Incentive fee α level Mean SD Sharpe Median Skew Exc. Kurt. 5%-Quant. 95%-Quant.

Sharpe ratio = 0.5
0% 0.0147 0.0181 0.3325 0.0104 2.1096 8.0992 -0.0046 0.0489
10% 0.0120 0.0148 0.3312 0.0087 1.8247 6.0745 -0.0048 0.0401
20% 0.0096 0.0121 0.3242 0.0073 1.5464 4.3958 -0.0050 0.0326
50% 0.0038 0.0065 0.2424 0.0032 0.6854 0.9820 -0.0056 0.0154
Sharpe ratio = 1
0% 0.0147 0.0084 0.7090 0.0135 0.9212 1.5418 0.0031 0.0302
10% 0.0125 0.0071 0.7227 0.0117 0.8129 1.2204 0.0026 0.0254
20% 0.0105 0.0059 0.7334 0.0099 0.7005 0.9372 0.0021 0.0211
50% 0.0055 0.0031 0.7238 0.0054 0.2917 0.3452 0.0007 0.0109
Sharpe ratio = 1.5
0% 0.0146 0.0056 1.0754 0.0141 0.6007 0.6736 0.0065 0.0245
10% 0.0126 0.0047 1.1035 0.0122 0.5348 0.5452 0.0057 0.0208
20% 0.0107 0.0039 1.1304 0.0104 0.4668 0.4310 0.0049 0.0175
50% 0.0058 0.0020 1.1872 0.0057 0.2266 0.1934 0.0027 0.0092

for small mean m, and:

V [yA(T )] =
1

T 2 V

[
T

∏
t=1

(1+ yt)

]

=
1

T 2

⎧⎨
⎩E

[
T

∏
t=1

(1+ yt)
2

]
−

(
E

[
T

∏
t=1

(1+ yt)

])2
⎫⎬
⎭

=
1

T 2

{[
σ2 +(1+m)2]T − (1+m)2T

}
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� 1
T 2

[
T (m2 +σ2 + 2m)+

T (T − 1)
2

(m2 +σ2 + 2m)2−T (m2 + 2m)

− T (T − 1)
2

(m2 + 2m)2
]

� σ2

2
+(T − 1)2mσ2,

for small m, σ of a same magnitude. The convexity effects on these moments and
the associated Sharpe ratio can be checked on all rows of Table 3 corresponding to
α = 0.

As expected from the design of management fees, the return distribution is shifted
to the left. Thus, the mean, median and quantiles diminish when α increases. There
is also a diminution of risk, since this distribution becomes more concentrated as
observed on the values of the standard deviation and kurtosis. Finally, the distri-
bution is right skewed for α = 0, due to the convexity effect describe above, but
the skewness diminishes when α increases due to the option interpretation of the
HWM.

4 Endogeneous Portfolio Management

By considering i.i.d. Gaussian portfolio return in Section 3, we have implicitely as-
sumed that the portfolio manager was investing in a kind of market portfolio, and
in particular that his/her management strategy does not account for the existence of
multiple accounts. The aim of this section is to discuss how the dynamics of ac-
count returns is modified with an endogenous investment strategy. In practice, the
fund manager will account for an incentive mix such as reporting of good investor’s
performance, benefiting from the HWM on the management account, and control-
ling the risk of fund closure. In this section, we focus on mean-variance myopic
strategies without taking into account the risk of fund closure. The strategies differ
by the account value which is chosen as the main target. We consider the case of
unitary reset times, where explicit strategies can be derived and analysed.

For illustration, let us assume that the fund manager invests only in a riskfree

asset with zero riskfree rate and in a risky asset with i.i.d. Gaussian returns
24

, de-
noted by y∗t . With unitary reset time and the hurdle rate equal to the riskfree rate
yh,t = y f ,t = 0, the allocation between A and B accounts is given by (2.8):

{
At+1 = At(1+ yt+1)−αAt(yt+1)

+,
Bt+1 = Bt(1+ yt+1)+αAt(yt+1)

+.
(1)

where yt+1 is the portfolio return. Let us now consider the portfolio allocation at
date t. The total budget is allocated between the two assets: Wt = At +Bt = a0,t +at ,
where a0,t (resp. at) is the value invested in the riskfree asset (resp. risky asset). At
date t + 1, the portfolio value becomes:

24
This assumption is compatible with the standard Black-Scholes model.
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Wt+1 = a0,t + at(1+ y∗t+1) =Wt + aty
∗
t+1.

We deduce the portfolio return as:

yt+1 =
Wt+1−Wt

Wt
= δt y

∗
t+1, (2)

where δt = at/(At +Bt) denotes the fraction invested in risky asset. By substitution
in (4.1), we get:

{
At+1 = At + δt

[
Aty∗t+1−αAt(y∗t+1)

+
]
,

Bt+1 = Bt + δt
[
Bty∗t+1 +αAt(y∗t+1)

+
]
,

(3)

and
At+1 +Bt+1 = (At +Bt)(1+ δty

∗
t+1). (4)

Let us now consider a myopic mean-variance investor
25

, with absolute risk aver-

sion
26 η . The optimal allocation depends on the account he/she is interested in.

i) If the account of interest is the total account A+B, the optimal allocation is the
standard mean-variance efficient allocation [Markovitz (1952)] given by:

δ ∗t =
1

At +Bt

1
η

E(y∗t+1)

V (y∗t+1)
. (5)

Under the i.i.d. Gaussian assumption, the value invested in the risky asset is time
dependent. As usual, the portfolio manager is proportionally investing less in risky
asset, when At +Bt increases. This total change in portfolio value, (At +Bt)δ ∗t y∗t+1 =
1
η

E(y∗t+1)

V (y∗t+1)
y∗t+1, is i.i.d. Gaussian, whenever y∗t+1 is i.i.d. Gaussian.

ii) If the account of interest is account B, the efficient allocation becomes:

Btδ ∗B,t =
1
η

E[y∗t+1 +αγt(y∗t+1)
+]

V [y∗t+1 +αγt(y∗t+1)
+]

, (6)

where γt = At/Bt . As expected, the allocation is different from the standard alloca-
tion δ ∗t . It changes in time due to the evolution of both accounts (At ,Bt). Moreover,
the ratio between this allocation and the standard one shows a double effect: the ef-
fect of portfolio size, which diminishes from At +Bt to Bt and implies an increase of
the quantity invested in the risky asset; the effect of the optional component depends
on time and tail distribution of the underlying return. The global effects is unclear.

25
This corresponds to the two periods behavior analyzed in Christoffersen, Musto, Yilmaz
(2013).

26
We assume that the risk aversion is constant. Thus, the fund manager does not change
his/her risk aversion as function of the size of the managed portfolio, or his/her past
successes.
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For instance, if γt is large, the investment in risky asset will become very small.
Contrary to a usual belief, it is not guaranteed that giving an option to the fund man-
ager makes him/her willing to take risk, even if he/she focus on the management
account. This is compatible with the recent literature on incentives, in which sev-
eral authors arrive to similar conclusions for instance by changing the utility func-
tion [Ross(2004)], introducing an infinite horizon [Panageas, Westerfield (2009)],
or considering an option on the portfolio itself, not on the HWM [Carpenter(2000)].
As noted in this literature, if the value of account B becomes large, that is ”if the
HF manager has a substantial personal investment in the fund, this will inhibit ex-
cessive risk taking” [Fung, Hsieh (1999)]. This can lead to surprising consequences:
for instance, at initial date 0, a small value of B0 can be an incentive to take risk at
the beginning; equivalently, introducing more frequent reset times with rather small
B0 can be an incentive to take risk regularly (ceteris paribus, i.e. for fixed gamma).
In addition to this size effect, there is the optional feature since account B is a port-
folio in the underlying asset and a call written on this asset. As noted in Hodder,
Jackwerth (2007), this ”generates risk-taking below the HWM, when the manager
tries to assure that his/her incentive option will finish in the money”. But ”at perfor-
mance levels modestly above the HWM, he/she reverses that strategy and opts for
very low risk positions to lock in the option payoff”.

iii) If the account of interest is account A, the efficient allocation is:

Atδ ∗A,t =
1
η

E[y∗t+1−α(y∗t+1)
+]

V [y∗t+1−α(y∗t+1)
+]

. (7)

This allocation depends on the evolution of account A only. The change in account
value is:

At+1−At = Atδ ∗A,t [y
∗
t+1−α(y∗t+1)

+]

= cst [y∗t+1−α(y∗t+1)
+].

If the risky return is i.i.d. Gaussian, this change in value is still i.i.d., but no longer
Gaussian.

iv) Finally, the fund manager can also own at date t a fraction νt of the fund, i.e. of
account A [see e.g. the discussion in Fung, Hsieh (1999), or Kouwenberg, Ziemba
(2007)]. Then his/her account of interest is νtAt+1 +Bt+1, which leads to a mix of
cases ii) and iii) above, if νt is taken exogenous.

In practice, it is difficult to know what is really the criterion selected by the fund
manager. This is likely a mix, which takes into account his/her individual wealth,
that is account B, and probably a fraction of account A. But he/she has also to ac-
count for the rankings of fund managers, which are regularly published in the press,

and are a strong incentive for considering the preferences of fund investors
27

. To

27
See Chevalier, Ellison (1997) for a deeper discussion of the agency conflict between fund
investors and fund companies.
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Fig. 6 Efficient Allocation in Risky Asset

illustrate the consequences of these portfolio managements on accounts returns, we
consider risky returns following a Gaussian distribution with mean m = 1%, and
volatility σ = 3.46%. We set the performance fee rate at α = 25%, with unitary
reset time and the absolute risk aversion at η = 0.08. The initial values of the ac-
counts are A0 = 100, B0 = 10. The length of the simulation period is T = 72. The
explicit expressions of the mean and variance-covariance matrix of [y∗t+1,(y

∗
t+1)

+]
are derived in Appendix 2. They are used to compute the optimal allocations.

Figure 6 displays the dynamics of efficient allocation in risky asset for the three
strategies, that are δ ∗t , δ ∗A,t , δ ∗B,t .

The size effect is dominant in the three situations, where the allocation in risky as-
set diminishes in time. This shows the main role of the reset frequencies. If this fre-
quency is the year, this might explain the empirical fact around Christmas discussed
in Agarwal, Daniel, Naik (2011). We provide in Figure 7 the historical distributions
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Fig. 7 Historical Distribution of Returns

of account A return when the managed portfolio is the market itself [δt = 1], and
for endogenous portfolio management with objectives A+B and A, respectively.
An endogenous portfolio management has clearly two effects: an increase of the
discontinuity at zero and a more concentrated distribution.

However, the myopic mean-variance behaviour is not sufficient to create highly
significant short term correlation on returns as shown on Figure 8. The serial correla-
tion, which can be observed on real data, are more likely due to either the nonlinear
dynamics of the basic assets introduced in the portfolio, or a non myopic, intertem-
poral portfolio management [see Darolles, Gourieroux (2014)]. In this respect, it
could be interesting to reproduce the same simulation exercice with a market return
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Fig. 8 ACF on Return

conditionally Gaussian, but including an ARCH effect. Indeed, this volatility effect
could create linear serial correlation after passing by the nonlinear filter of HWM
and provision account.

5 Conclusion

The selected HWM scheme for allocating gains and profits between the investor’s
account and management account has a significant impact on the performance of
the investor’s account. This effect is twofold. There is a direct effect on account
A return due to the nonlinear scheme, especially the barrier effect included in the
HWM. There is an additional indirect effect, when the fund manager ajusts his/her
portfolio management to this scheme. These effects explain a part of the empirical
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facts observed on hedge fund returns, such as the skewness of the return distribution,
its discontinuity at zero, or some cyclical serial correlation. The special type of
nonlinearity involved in this scheme can also lead to misleading interpretations for
the analysis using thresholds effect, such as the study of market timing ability, or
the comparison of unconditional correlations with correlations restricted to period
of poor (or large) performances.

The hedge fund industry is known for its lack of transparency. Surprisingly, a
lot of information is available in the prospectus of a fund, especially the scheme of
allocation between the different accounts. A wise investor should analyse the conse-
quences of these schemes on the performance of his own account before any invest-
ment in hedge funds. Similarly, it is important to take into account these schemes in
the academic study of HF returns and of the behaviour of HF portfolio managers.
In other terms, we have to correct the results for the management account bias and
the provision account bias, and these corrections will differ due to the variability of
schemes followed by individual hedge funds.
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Appendix 1

Long Term Analysis of HWM Allocation Scheme

In HWM scheme (2.8), the dynamics of A account does not depend on the pe-
riodic reset of B account. The Net Asset Value (NAV) dynamics can be written as:

At+1 =
[
1+ yt+1−α(yt+1− yh,t)

+
]

At , (1)

and (At) is an autoregressive process with stochastic autoregressive coefficient. Let
us assume yh,t = 0, and i.i.d. portfolio returns, with yt >−1/(1−α). We can write:

At+1 = exp
[
log(1+ yt+1−αy+t+1)

]
At , (2)

and by recursive substitution:

http://ssrn.com/abstract=1364757
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At = A0 exp

[
t

∑
τ=1

log(1+ yτ−αy+τ )

]
. (3)

Following the approach used in Nelson (1990), Bougerol, Picard (1992), we can
determine the Lyapunov exponent of process (At) as follows. We have:

At = A0 exp

[
t
1
t

t

∑
τ=1

log(1+ yτ−αy+τ )

]
(4)

� A0 exp
[
tE log(1+ yt−αy+t )

]
, (5)

for large t, by the Law of Large Number. Thus, the long term return on class A
account is:

r∞,A = lim
t→∞

1
t

log(At/A0) = E log(1+ yt−αy+t ). (6)

Since log(1+ x)≤ x, we note that:

r∞,A ≤ E(yt −αy+t ) = Eyt −αEy+t ≤ (1−α)Eyt . (7)

As expected, this rate is strictly smaller than the long term rate on the portfolio
crudely adjusted for performance rate α , i.e. (1−α)Eyt . It can also be significantly
smaller than Eyt −αE(y+t ), with a difference which increases with the variability
on (yt).

Appendix 2

First- and Second-Order Moments of the Truncated Normal

Let us consider a Gaussian variable with mean m and unitary variance 1. The
variable can be written as: Y = m+U , U ∼ N(0,1).

i) First-Order Moments

We have:

E[Y+] = E[(m+U)+]

=
∫ ∞

−m
(m+ u)ϕ(u)du

= m
∫ ∞

−m
ϕ(u)du+

∫ ∞

−m
uϕ(u)du

= m[1−Φ(−m)]−
∫ ∞

−m

dϕ(u)
du

du

= mΦ(m)+ϕ(m),
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where ϕ [resp. Φ] is the pdf [resp. cdf] of the standard normal, by using the sym-
metry of the standard normal. Therefore: [EY,EY+] = [m,mΦ(m)+ϕ(m)].

ii) Second-Order Moments

Let us consider the expected squared variables, that are: E[Y 2], E[YY+], E[(Y+)2],
and introduce Y− = Max(−Y,0). We have: Y = Y+−Y− and E[Y−Y+] = 0. Thus:

E[Y 2] = 1+m2

E[YY+] = E[(Y+)2].

Therefore, all second-order moments are directly deduced from the quantity
E[(Y+)2]. We get:

E[(Y+)2] = E[((m+U)+)2]

=

∫ ∞

−m
(m+ u)2ϕ(u)du

= m2
∫ ∞

−m
ϕ(u)du+ 2m

∫ ∞

−m
uϕ(u)du+

∫ ∞

−m
u2ϕ(u)du

= m2Φ(m)+ 2mϕ(m)−
∫ ∞

−m
udϕ(u)

= m2Φ(m)+ 2mϕ(m)− uϕ(u)]∞−m +

∫ ∞

−m
ϕ(u)du,

= m2Φ(m)+mϕ(m)+Φ(m).

We deduce:

V

[
Y

Y+

]
= E

[(
Y

Y+

)(
Y, Y+

)]−E

(
Y

Y+

)
E
(

Y, Y+
)

=

(
1 Φ(m)

Φ(m) m2Φ(m)+mϕ(m)+Φ(m)− [mΦ(m)+ϕ(m)]2

)
.



The Effects of Management and Provision
Accounts on Hedge Fund Returns –
Part II: The Loss Carry Forward Scheme

Serge Darolles and Christian Gourieroux

Abstract. In addition to active portfolio management, hedge funds are characterized
by the allocation of portfolio performance between the external investors and the
management firm accounts. This allocation can take different forms, such as the
Loss Carry Forward scheme, and some of them can be coupled with performance
smoothing techniques. This paper shows that this additional smoothing component
might explain some empirical facts observed on the distribution and the dynamics
of hedge fund returns.

1 Introduction

In addition to an active portfolio management
1
, hedge funds (HF) are characterized

by the allocation of portfolio performance between the external investors and the
management firm accounts. There exist almost as many account allocation schemes
as hedge funds shares. This explains why any precautionary investor, regulator, or
researcher should study in details the prospectus of the funds, and in particular the
fee structure. This paper completes the discussion of the effect of the High Water
Mark (HWM) allocation scheme in Darolles, Gourieroux (2014). The HWM scheme
basically describes the allocation between the account invested by external clients,
called class A units, and the account invested by the management firm, called class
B units. The Loss Carry Forward Scheme introduced in this paper can in addition
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1
The active management includes the possibility for the hedge fund manager to invest in
illiquid assets, in derivatives, in junk assets, and last but not least to borrow in such assets
to increase his leverage.
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include a provision account used to smooth the performance of the class A account.
We describe the Loss Carry Forward (LCF) allocation scheme in Section 2 and the
dynamics of the allocation between the A, B accounts and the reserve account C. We
also characterize the returns of the different accounts for a given trajectory of the
total portfolio return. This additional smoothing component might increase the im-
pact of the fee structure on the hedge fund return characteristics. Section 3 compares
the portfolio and fund returns for the LCF allocation schemes, when the portfolio
returns are independent and identically Gaussian distributed. The i.i.d. Gaussian
assumption on portfolio returns corresponds to a rather exogenous portfolio man-
agement. This assumption allows us to focus on the way the hedge fund manager
will account for the existence of multiple accounts in his/her management strategy.
We emphasize the special role of the provision account in this scheme. Section 4
contains conclusions. Proofs are gathered in Appendices.

2 The Loss Carry Forward Scheme

We first introduced the basic LCF scheme without provision account. We then con-
sider a more complex scheme including a provision account.

2.1 The Basic Scheme

The basic Loss Carry Forward (LCF) allocation scheme is parametrized by a per-
formance fee rate α , a hurdle rate yh,t , and a reset time T . The difference with the
HWM scheme described in Darolles, Gourieroux (2014) is the definition of the pre-
determinated path dependent scheme.

(a) Allocation between A and B Accounts

Let us first consider two accounts, with respective values At , Bt at date t, t = 0, ...,T .
The A account is invested by external clients while the B account is invested by the
management firm. The contractual hurdle rate is denoted by yh,t ,yh,t ≥ 0, and is
assumed to be predetermined and observable at date t [see Darolles, Gourieroux
(2014)]. The global portfolio value At +Bt is invested and provides at the end of the
period a return yt+1. The change in portfolio value (At +Bt)yt+1 can be positive, or
negative. The possibility of negative return has to be considered seriously for HF,
especially when they use a high leverage ratio, i.e. borrow a lot on financial markets.
This change in total portfolio value has to be allocated between the two accounts.
As in the HWM framework [see Darolles, Gourieroux (2014)], the performance fee
is not charged if the fund is globally in a deficit of performance, called loss carry

forward
2

(LCF). This measure of deficit is recursively defined by LCF0 = 0 and:

2
The loss carry forward is an accounting technique that applies the current year’s losses to
future years gains in order to reduce tax liability.



The Effects of Management and Provision Accounts on Hedge Fund Returns 49

LCFt = −
[
LCFt−1 +At−1(yt − yh,t−1)

]−
, (1)

= −At−1
[
yt − (At−1yh,t−1−LCFt−1)/At−1

]−
, (2)

where X− = max(−X ,0). The LCF is always nonpositive and corresponds to the
cumulated negative performance. The hurdle rate yh,t−1 is fixing an objective for
the portfolio return. If this objective is not reached, that is if yt < yh,t−1, this is
considered as a loss and the measure of deficit increases. The LCFt becomes negative
if yt is not large enough to cover (potential) previous losses.

Then, the allocation depends on LCF and is driven by the following updating
equations:

{
At+1 = At(1+ yt+1)−αAt

[
yt+1− (Atyh,t −LCFt)/At

]+
,

Bt+1 = Bt(1+ yt+1)+αAt
[
yt+1− (Atyh,t −LCFt)/At

]+
,

(3)

where α , α > 0, is the performance rate. Thus the management firm (B account)
receives a bonus, if the portfolio return is sufficiently large, i.e. if yt+1 > Atyh,t −
LCFt , receive nothing otherwise.

The fee rate α , α = 20%, say, is often presented at a first place when pro-
moting a fund, whereas the complicated formulas (2.2), (2.3) can only be re-
vealed by the careful reading of the prospectus. Therefore a naive investor may
have the impression that the management firm receives at date t + 1 the quantity
(At +Bt)yt+1(1+α). This is clearly not the case. The payment to the management
firm includes some incentives to get extreme positive performance in order to in-
crease the bonus and to optimize the reduction of tax liability. As important as the
fee rate is of course the choice of the hurdle rate and its dynamics.

At short term horizon equal to 1, the future account values involve the payoff of
a European call written on yt+1, with predetermined path dependent strike equal to
y0,t = (Atyh,t −LCFt)/At .

The recursive equations (2.3) are valid on period {0,T − 1}. At reset time T , the
management account is reset to the contractual initial value B0 and the LCF reset to
zero.

If the reset time is T = 1, the LCF is always set to zero, y0,t = yh,t , and the
recursive equation (2.3) can be simplified and becomes:

{
At+1 = At(1+ yt+1)−αAt

[
yt+1− yh,t

]+
,

Bt+1 = Bt(1+ yt+1)+αAt
[
yt+1− yh,t

]+
.

(4)

that corresponds to the HWM scheme [see Darolles, Gourieroux (2014)]. Therefore,
the HWM and LCF schemes are equivalent for a unitary reset time. The dependence
of the change of account value ΔAt+1 = At+1−At (resp. ΔBt+1 = Bt+1−Bt) with
respect to net portfolio return yt+1 is described in Figure 1 (resp. Figure 2).

When T = 1, the value of the class A unit is a continuous increasing function
of the net portfolio return with a change of slope at threshold y0,t . The payoff on
B account is a convex function of the return. This convexity property shows the
incentive mechanism.
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Fig. 1 ΔAt+1 as a function of yt+1 (unitary reset time)
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Fig. 2 ΔBt+1 as a function of yt+1 (unitary reset time)

(b) The Case of a Zero Hurdle Rate

Larger the hurdle rate, greater is the incentive for the fund manager to take risk
and to increase the leverage in order to get a high bonus. In the HF industry the
hurdle rate is generally positive and indexed on some basic rate such as the LIBOR.
However, a significant number of HF set the hurdle rate to zero, that is do not adjust
for a riskfree rate. We consider this special LCF scheme in this section to better
highlight the link with the HWM framework.
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Proposition 1: The HWM and LCF schemes are identical for zero hurdle rate, with
LCFt = At −HWMt .

Proof: see Appendix 1.

For a nonzero hurdle rate, the HWM and LCF approaches differ by their
discounting scheme and the dependence of ΔAt+1 (resp. ΔBt+1) with respect to net
portfolio return yt+1 is more complex.

Proposition 2: For zero hurdle rate, there exists a one-to-one relationship between
the trajectories of the portfolio return yt and the return of the investors’ account yA,t .
More precisely, we can deduce the underlying portfolio return as a deterministic
function:

yt = g(yA,t ,yA,t−1, ...,yA,1,A0), say.

Proof: By the transformation in Figure 1, we have:

At = At−1 + b(yt ,y0,t−1),

and by recursive substitution:

At = b∗(yt ,At−1,At−2, ...,A0), say,

where b∗ is one-to-one in the first argument yt . Thus, by introducing return yA,t , we
deduce the formula of Proposition 2.

�

The return yA,t on the investors’ account is regularly reported by the HF manager
and use to promote the fund. They do not report the underlying portfolio return yt

in order not to reveal clearly their portfolio management, but also the actual level
of fees. As a consequence, the academic literature is often using the return yA,t as a
proxy of yt , that is neglects the effect of the management fee. Proposition 2 shows
that we are able to derive the underlying portfolio return from the return of account
A by simply inverting the filter, which defines the accounts allocation. Even if the
data on portfolio return are not made directly observable by the fund manager, we
can recursively reconstruct them. Of course the relation between yt and yA,t is not
static, and no deterministic link of the type yt = g∗(yA,t), say, will be detected by a
joint plot of (yt ,yA,t). When the hurdle rate is nonzero, we still have a one-to-one
relationship conditional on the knowledge of the hurdle rate history, that is:

yt = g(yA,t ,yA,t−1, ...,yA,1,yh,t−1,yh,t−2, ...,A0), say.
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2.2 An Allocation Scheme with Provision Account

More sophisticated allocation scheme can include a third account, called provision

account
3
. This scheme involves additional allocation parameters characterizing the

allocation between the external investors’ A account and the provision C account.

(a) Allocation between A, B and C Accounts

Let us now consider three accounts, with respective values At , Bt and Ct at date t,
t = 0, ...,T . The global portfolio value At +Bt +Ct is invested and provides at the
end of the period a return denoted by yt+1. Then, the change in total portfolio value
is (At +Bt +Ct)yt+1. As in Section 2.1., we first assume that the return on B account
is always allocated to the corresponding class. We only consider how (At +Ct)yt+1

has to be allocated between the three accounts depending on some predetermined
regimes.

We consider below an allocation process based on a modified LCF measure of
performance deficit. In this case, the LCF can be interpreted as the negative part of
a virtual provision account (whereas the value of the actual provision account has
to be always positive). Hence, at any date t, the sum LCFt +Ct is only impacted by
one of its two components, the other one being zero. The LCF starts to be negative
when the provision account is empty and Ct starts to be positive when the LCF is
null . For expository purpose, the allocation scheme is described below in two steps
to highlight the smoothing technique.

i) Three accounts - no smoothing

A proportion β of the change in the A+C accounts value up to the hurdle rate, that
is (At +Ct)(yt+1− yh,t), is allocated to the provision account, under the positivity
constraint on this account. The loss carry forward is defined by:

LCFt+1 =−
[
LCFt +Ct +β (At +Ct)(yt+1− yh,t)

]−
, (5)

and the corresponding provision account value is:

Ct+1 =
[
LCFt +Ct +β (At +Ct)(yt+1− yh,t)

]+
, (6)

with initial conditions LCF0 = C0 = 0. Then, the values of accounts A and B are
deduced from the dynamics of the provision account by the following equations:

{
At+1 = (At +Ct)(1+ yt+1)−Ct+1,
Bt+1 = Bt(1+ yt+1).

(7)

3
In HF literature, this account is called reserve account. It seems preferable to avoid this
terminology, which will become misleading if some Basel type of regulation is applied to
HF in a near future.
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By construction, the provision account value (resp. the LCF) is always nonnegative
(resp. nonpositive). Moreover, only one of the LCF and C value can be different
from zero at any given date.

When Ct = 0, equation (2.5) reduces to the standard LCF recursive equation
(2.1). When Ct > 0 (and LCFt = 0), a capital appreciation (At +Ct)(yt+1−yh,t)> 0
will increase the value of the provision account, whereas the LCF will stay equal
to zero. Finally, if Ct > 0 and there is a large capital depreciation up to the hurdle
rate, the provision account is set to zero and the complete return allocated to the A
account.

ii) Three accounts with smoothing

We now add to the previous allocation scheme the smoothing component. This ef-
fect is obtained through a change in the recursive equation (2.6) giving the C account
dynamics. We assume that a proportion of the provision account is allocated to the
external investors’ and management firm accounts in case of bad portfolio perfor-
mance. The recursive system becomes:

LCFt+1 =−
[
LCFt +Ct +β (At +Ct)(yt+1− yh,t)

]−
, (8)

for the LCF,

Ct+1 = [1−ϕA(yt+1)−ϕB(yt+1)]
[
LCFt +Ct +β (At +Ct)(yt+1− yh,t)

]+
, (9)

for the provision account, and:

{
At+1 = (At +Ct)(1+yt+1)+ [ϕA(yt+1)−1]

[
LCFt +Ct +β (At +Ct )(yt+1−yh,t )

]+
,

Bt+1 = Bt(1+yt+1)+ϕB(yt+1)
[
LCFt +Ct +β (At +Ct)(yt+1−yh,t)

]+
,

(10)

for A and B accounts, where the smoothing functions ϕA, ϕB are positive and such
that ϕA +ϕB ≤ 1.

A simple scheme assumes constant smoothing functionsϕA(y)=ϕA, ϕB(y) =ϕB,
say. For instance, if ϕA and ϕB are such that ϕA +ϕB = 1, and if moreover β = 1,
the provision account is always empty, and the scheme reduces to the standard LCF
scheme with two accounts described in Section 2.2.

However, more sophisticated smoothing functions are introduced in the hedge

fund industry. For instance, we can fix a predetermined level
4

y0,t < 0, different
from the hurdle rate, and define the smoothing functions as:

ϕA(yt+1) = ϕB(yt+1) =
1
2

min

[
1,

(
yt+1

y0,t

)+
]
. (11)

4
The level y0,t can be constant and set for example to−1% to smooth small negative returns.
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Thus, if yt+1 < y0,t , we get ϕA(yt+1) = ϕB(yt+1) =
1
2 , and a full use of the pro-

vision account to smooth A (and B) return. If y0,t < yt+1 < 0, we have a partial
smoothing. Finally, if yt+1 > 0, we get ϕA(yt+1) = ϕB(yt+1) = 0 and the previous
account is feeded to insure the fund against future potential losses.

(b) Returns and Asset Values

By analogy with the standard scheme, we can consider different returns. The most
important ones are:

i) The total portfolio return: yt+1;
ii) The return for class A account: yA,t+1 = (At+1−At)/At ;
iii) The return associated with both A and C accounts: yA,C,t+1 = (At+1 +Ct+1−
(At +Ct))/(At +Ct).

Indeed, it is important to distinguish the net asset value (NAV) for class A, i.e. At ,
and the value including also the provision account, i.e. At +Ct . The net asset value
At is provided for at least two purposes. This is the accounting value which has to
be introduced by the investors in their balance sheet. This is also the benchmark
for the selling price proposed by the fund management to an investor who wants to
redeem its investment. This NAV At is a kind of bid price (i.e. selling price), which
is smaller or equal to the ”fair value” of the fund equal to At +Ct .

Clearly, the provision account creates a ”conditional return smoothing” when
passing from yt to yA

t , to follow the terminology of Bollen, Pool (2008). However,
this (known) smoothing is much more complicated than usually described in the
academic literature [see e.g. Bollen, Pool (2008), eq 7].

3 The Effects of the Scheme on i.i.d. Gaussian Portfolio Returns

In this section, we assume a zero riskfree rate, a zero hurdle rate yh,t = 0, and
i.i.d. Gaussian net portfolio returns yt ∼ N(m,σ2), where m (resp. σ2) is the path-
independent expected return (resp. volatility). Thus, we assume a constant hedge
fund leverage ratio [see Getmanski, Lo, Makarov (2004), eq. 10] and do not con-
sider the additional uncertainty associated with the hurdle. Except in the special case
of unitary reset time in the standard allocation scheme for which the LCF and HWM
coincide [see Darolles, Gourieroux (2014)], a theoretical analysis of the dynamics
of bank accounts is difficult due to the nonlinear path dependent allocation schemes.
The dynamic properties are discussed below by means of simulation studies.

3.1 The Loss Carry Forward Allocation Scheme (Without
Provision Account)

From Proposition 1, we know that the LCF scheme is identical to the HWM scheme
for a zero hurdle rate. The associated LCF∗ = LCF trajectory is given in the fourth
panel of Figure 3.
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Fig. 3 Trajectories of Account Values, HWM, LCF∗ (without provision account)

We display in Figure 3 the trajectories of the two account values, the HWM, the
implied LCF∗t = At −HWMt (see Proposition 1) and the relative weights of both
accounts, i.e. the ratio wt =

At
Bt

B0
A0

.
Due to the selected performance fee rate of the portfolio management, the two

account values are increasing, but this increase is larger for the management account
than for the investor’s account. We also observe that the ratio wt is decreasing in time
and clearly different from the announced 1−α = 80%.

3.2 The Allocation Scheme with Provision Account

We display in Figure 4 the trajectories of the three accounts A, B, C, and the LCF.
We consider independent risky returns following a Gaussian distribution with mean
m = 1%, and variance σ2 = 1%, set the provision rate at β = 25%, and use the
smoothing functions (2.11) with level y0 =−1%.
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The return dynamics for yt , yA,t , yB,t are provided in Figure 5. We observe that the
presence of a provision account smooths the investor’s account return. This makes
more marketable the published HF returns yA,t by reducing the value of the usual
fund risk indicators such as the return volatility.

i) Historical distribution of returns

As in the HWM allocation scheme [see Darolles, Gourieroux (2014)], the return
dynamics can be summarized in different ways. First, we compare the historical
distributions of returns yt and yA,t in Figure 6. In presence of a provision account, the
two sides of the distribution are modified. The left side (corresponding to negative
return) is moved to the right, that is, we get less negative returns, especially around
zero. Moreover, the right part is also impacted, due to the smoothing rule used in this
simulation. The high positive returns are less frequent, but the probability to observe
small positive returns increases. Thus, the provision account implies right skewness
and discontinuity on the return distribution, which is clearly seen on the histogram of
yA,t provided in the second panel of Figure 6. The discontinuity is less pronounced
with return computed on two consecutive periods (3d panel of Figure 6), which
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is compatible with the observation by Bollen, Pool (2009) that the discontinuity
can disappear when the horizon increases. These empirical facts have already been
documented in the literature. However, they have been explained by either fraud
[Abdulali (2006)], misreporting of returns, if the manager fully report gains, but
delays reporting losses [see e.g. Bollen, Pool (2009)], survivorship bias [Brown,
Goetzmann, Ibbotson (1999)], or backfilling bias, when both superior and inferior
performers stop reporting [Ackermann, McEnally, Ravenscraft (1999)]. In fact, the
bias ratio is likely a consequence of the (transparent) design of the allocation scheme
between the three accounts.

ii) Return dynamics

The nonlinear autoregressive effect due to the provision account is still difficult to
detect from a simple linear analysis of serial dependence (see Figure 7), even if the
cycle effect due to the threshold autoregressive dynamics (2.10) [see Tong (1983)]
becomes more significant. This cycle effect implies in particular negative autocorre-
lations at periodic lags. This dependence created by the account allocation scheme
is not able to explain the positive short term persistence emphasized in the HF lit-
erature [see e.g. Agarwal, Naik (2000), Getmanski, Lo, Makarov (2004)], but is
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Table 1 Statistics on yA(T ) (with provision account)
Panel A: T = 24 (2 years)

Provision β level Mean SD Sharpe Median Skew Exc. Kurt. 5%-Quant. 95%-Quant.

Sharpe ratio = 0.5
0% 0.0116 0.0187 0.4375 0.0082 1.0815 2.0117 -0.0130 0.0472
5% 0.0110 0.0181 0.4310 0.0079 1.0431 1.8856 -0.0130 0.0456
10% 0.0105 0.0175 0.4241 0.0076 1.0037 1.7617 -0.0130 0.0439
20% 0.0095 0.0165 0.4086 0.0070 0.9222 1.5221 -0.0131 0.0404
Sharpe ratio = 1
0% 0.0114 0.0091 0.8867 0.0104 0.5458 0.4780 -0.0021 0.0279
5% 0.0110 0.0088 0.8840 0.0101 0.5216 0.4443 -0.0021 0.0269
10% 0.0106 0.0085 0.8810 0.0098 0.4967 0.4129 -0.0021 0.0259
20% 0.0098 0.0079 0.8736 0.0091 0.4449 0.3583 -0.0022 0.0240
Sharpe ratio = 1.5
0% 0.0113 0.0060 1.3325 0.0109 0.3794 0.2175 0.0021 0.0220
5% 0.0110 0.0058 1.3344 0.0105 0.3615 0.1990 0.0020 0.0212
10% 0.0106 0.0056 1.3361 0.0102 0.3435 0.1827 0.0019 0.0204
20% 0.0098 0.0052 1.3385 0.0095 0.3073 0.1591 0.0018 0.0189

Panel B: T = 48 (4 years)

Provision β level Mean SD Sharpe Median Skew Exc. Kurt. 5%-Quant. 95%-Quant.

Sharpe ratio = 0.5
0% 0.0129 0.0170 0.3809 0.0094 1.4832 3.5525 -0.0073 0.0462
5% 0.0124 0.0163 0.3787 0.0091 1.4406 3.3529 -0.0073 0.0444
10% 0.0118 0.0157 0.3763 0.0088 1.3976 3.1588 -0.0074 0.0425
20% 0.0108 0.0146 0.3703 0.0081 1.3101 2.7869 -0.0074 0.0389
Sharpe ratio = 1
0% 0.0128 0.0081 0.7888 0.0120 0.6983 0.7160 0.0012 0.0280
5% 0.0124 0.0078 0.7901 0.0116 0.6794 0.6806 0.0011 0.0270
10% 0.0120 0.0076 0.7911 0.0112 0.6603 0.6468 0.0010 0.0259
20% 0.0111 0.0070 0.7925 0.0104 0.6213 0.5842 0.0009 0.0239
Sharpe ratio = 1.5
0% 0.0128 0.0054 1.1905 0.0124 0.4623 0.2722 0.0047 0.0225
5% 0.0124 0.0052 1.1950 0.0120 0.4510 0.2590 0.0045 0.0217
10% 0.0120 0.0050 1.1993 0.0116 0.4398 0.2468 0.0044 0.0209
20% 0.0111 0.0046 1.2076 0.0108 0.4177 0.2260 0.0041 0.0193

Panel C: T = 72 (6 years)

Provision β level Mean SD Sharpe Median Skew Exc. Kurt. 5%-Quant. 95%-Quant.

Sharpe ratio = 0.5
0% 0.0147 0.0181 0.3325 0.0104 2.1096 8.0992 -0.0046 0.0489
5% 0.0141 0.0173 0.3327 0.0100 2.0462 7.6148 -0.0047 0.0468
10% 0.0134 0.0165 0.3328 0.0096 1.9832 7.1516 -0.0047 0.0447
20% 0.0122 0.0150 0.3322 0.0088 1.8577 6.2843 -0.0047 0.0405
Sharpe ratio = 1
0% 0.0147 0.0084 0.7090 0.0135 0.9212 1.5418 0.0031 0.0302
5% 0.0141 0.0081 0.7126 0.0130 0.8981 1.4693 0.0030 0.0289
10% 0.0136 0.0077 0.7162 0.0126 0.8749 1.3992 0.0029 0.0277
20% 0.0125 0.0071 0.7229 0.0117 0.8283 1.2663 0.0026 0.0254
Sharpe ratio = 1.5
0% 0.0146 0.0056 1.0754 0.0141 0.6007 0.6736 0.0065 0.0245
5% 0.0141 0.0053 1.0822 0.0136 0.5871 0.6452 0.0063 0.0235
10% 0.0136 0.0051 1.0891 0.0131 0.5736 0.6180 0.0061 0.0226
20% 0.0126 0.0047 1.1026 0.0122 0.5469 0.5674 0.0056 0.0208

compatible with the negative autocorrelation detected in Bollen, Pool (2009), when

lagged returns are just above zero
5
.

5
A linear analysis of serial correlation can also be rather misleading. Indeed conditional
serial correlations can be very different. For instance, it is equal to zero when yA,t is suf-
ficiently large, since yA,t = yt , but will become significant when yA,t is small, due to the
effect of the optional component which depends on the past. These different levels of con-
ditional serial correlations are just consequences of the HWM schemes. We cannot nec-
essarily conclude that a ”manager smooths more likely losses than gains” [Bollen, Pool
(2008), (2009)].
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iii) Summary statistics on return

Let us now compare the characteristic of HF returns yA,t+1, for different values of
the provision rate β assigned to account C, β = 0%, 5%, 10%, 20%; the limiting
case β = 0% corresponds to yA,t+1 = yt+1. All other parameters are set to the values
used to compute Table 1.

We observe that the distribution is shifted to the left when the β parameter in-
creases, but this shift is less pronounced than in the scheme without provision ac-
count. Moreover, the risk parameters also diminish when the β parameter increases.
In consequence, the Sharpe ratio is stable, and then is less sensitive to the manage-
ment fee politics. The skewness and kurtosis parameters also decrease with β .

4 Conclusion

The LCF scheme used for allocating gains and profits between the investor’s ac-
count, management account and provision account has a significant impact on the
performance of the investors’ account. The first effect is related to the nonlinearity
of the scheme, especially the barrier effects, An additional effect is introduced by
the smoothing component associated with the provision account. These two effects
explain a part of the empirical facts observed on hedge fund returns, such as the
skewness of the return distribution, it discontinuity at zero, or some cyclical serial
correlation.

We see that the complexity of the formulas defining the allocation schemes and
also the diversity of these schemes, which depend on the choice of the free rate,
sequence of hurdle rate, the rate of the capital appreciation/depreciation and the
smoothing functions. This diversity makes difficult the comparison of what is pro-
posed by different funds. From a regulatory point of view, there is a need for a
standardization of these allocation schemes, that is of the way the ”bonuses” of the
HF management firms are computed.
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Appendix 1

Proof of Proposition 1

i) Let us first consider the HWM scheme and denote by LCF∗t = At −HWMt the
implied LCF associated with this scheme. The recursion for the HWM scheme is:

{
At+1 = At(1+ yt+1)−αAt [yt+1− (HWMt −At)/At ]

+ ,
HWMt+1 = max(HWMt ,At+1) ,

or equivalently,

{
At+1 = At(1+ yt+1)−αAt

(
yt+1 +

LCF∗t
At

)+
,

LCF∗t+1 =−(LCF∗t +At+1−At)
− .

We get the two following regimes:

• Regime 1: LCF∗t +Atyt+1 > 0,
with:

At+1 = At(1+ yt+1)−αAt

(
yt+1 +

LCF∗t
At

)
. (1)

Then:

LCF∗t +At+1−At = LCF∗t +At+1−αAt

(
yt+1 +

LCF∗t
At

)

= (1−α)(LCF∗t +Atyt+1)> 0.

We deduce that:
LCF∗t+1 = 0. (2)

• Regime 2: LCF∗t +A1yt+1 < 0.
We get:

At+1 = At(1+ yt+1). (3)

Thus, LCF∗t +At+1−At = LCF∗t +Atyt+1 < 0, and we deduce that:

LCF∗t+1 = LCF∗t +Atyt+1. (4)

ii) Let us now consider the recursion for the LCF scheme:
{

At+1 = At(1+ yt+1)−αAt [yt+1 +LCFt/At ]
+

LCFt+1 =−(LCFt +Atyt+1)
− .
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We get the two following regimes:

• Regime 1: LCFt +Atyt+1 > 0,
{

At+1 = At(1+ yt+1)−αAt [yt+1 +LCFt/At ] ,
LCFt+1 = 0.

(5)

• Regime 2: LCFt +Atyt+1 < 0,
{

At+1 = At(1+ yt+1),
LCFt+1 = LCFt +Atyt+1.

(6)

The recursive equations (1.1)− (1.4) are identical to the equations (1.5)− (1.6).
Proposition 1 follows by noting that the initial values of the LCF and implied LCF
are the same: LCF∗0 = A0−HWM0 = 0, LCF0 = 0.

�



How to Detect Linear Dependence
on the Copula Level?

Vladik Kreinovich, Hung T. Nguyen, and Songsak Sriboonchitta

Abstract. In many practical situations, the dependence between the quantities is
linear or approximately linear. Knowing that the dependence is linear simplifies
computations; so, is is desirable to detect linear dependencies. If we know the joint
probability distribution, we can detect linear dependence by computing Pearson’s
correlation coefficient. In practice, we often have a copula instead of a full distri-
bution; in this case, we face a problem of detecting linear dependence based on
the copula. Also, distributions are often heavy-tailed, with infinite variances, in
which case Pearson’s formulas cannot be applied. In this paper, we show how to
modify Pearson’s formula so that it can be applied to copulas and to heavy-tailed
distributions.

1 Introduction: Traditional Approach to Detecting Linear
Dependence

Locally, linear dependencies are ubiquitous.

Dependencies between quantities are often described by smooth (even analytical)
functions y = f (x1, . . . ,xn). An analytical function can be expanded in Taylor series
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around each point x(0) = (x(0)1 , . . . ,x(0)n ):

y = f (x(0))+
n

∑
i=1

ci · (xi− x(0)i )+
n

∑
i=1

n

∑
j=1

ci j · (xi− x(0)i ) · (x j− x(0)j )+ . . . (1)

For values xi close to x(0)i , we can safely ignore terms which are quadratic in xi−x(0)i
(or of higher order), and thus, approximate the dependence by a linear function

y≈ f (x(0))+
n
∑

i=1
ci · (xi− x(0)i ).

Linear dependencies are often global.

In many practical situations, linear dependencies extend beyond local, they hold

even for situations in which differences xi− x(0)i are reasonably large.

It is important to know if we have a linear dependence.

Linear dependencies make computations easier. For example, there are efficient al-
gorithms for solving systems of linear equations, while a solution to the system of
non-linear equations is, in general, NP-hard; see, e.g., [10].

An exact linear dependence is easy to detect.

Let us first consider the ideal case, when estimation and measurement errors can be
safely ignored, and the dependence is exactly linear. In this case, if we have K situa-
tions in which we measured all the values xi and y, then, based on the corresponding

values (x(k)1 , . . . ,x(k)n ,y(k)), k = 1,2, . . . ,K, we can check the dependence is linear by
checking whether the corresponding system of linear equations with unknowns ci

has a solution:

y(k) = f (x(0))+
n

∑
i=1

ci ·
(

x(k)i − x(0)i

)
, k = 1, . . . ,K. (2)

As we have mentioned, there exist efficient algorithms for checking solvability of
such a linear system.

How the presence of an approximate linear dependence is detected now.

Since linear dependencies make computations easier, it is desirable to detect them
even when we only have an approximate linear dependence: e.g., due to measure-
ment or approximation errors, or due to actual non-linear terms in the dependence,
or due to the fact that the value of the quantity y is only approximately determined
by the values x1, . . . ,xn.

In the case of the exact linear dependence, possible values of the tuple

(x1, . . . ,xn,y) form a linear surface y = f (x(0))+
n
∑

i=1
ci ·(xi−x(0)i ). When we observe
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the frequency with which different tuples occur, we get a probability distribution on
this surface.

In the case of an approximate linear dependence, tuples can deviate from the sur-
face corresponding to the exact linear equation. In this case, the probability distribu-
tion is no longer limited to this surface. Instead, we have a probability distribution
on the (n+1)-dimensional space. Let ρ(x1, . . . ,xn,y) denote the probability density
of this probability distribution.

In traditional statistics, in the simplest case n = 1, the linearity of the corre-
sponding dependence can be gauged by computing the Pearson’s correlation coeffi-
cient (see, e.g., [21]). For a 2-D distribution with a cumulative distribution function
F(x,y) = Prob(X ≤ x&Y ≤ y) corresponding to probability density ρ(x,y), Pear-
son’s correlation coefficient is defined as

r(F) =
CXY

σX ·σY
, (3)

where
CXY

def
= E[(X−E[X ]) · (Y −E[Y ])] = E[X ·Y ]−E[X ] ·E[Y] =∫

x · y ·ρ(x,y)dxdy−E[X ] ·E[Y], (4)

E[X ]
def
=

∫
x ·ρ(x,y)dxdy, E[Y ]

def
=

∫
y ·ρ(x,y)dx, (5)

σX
def
=
√

VX , σY
def
=
√

VY , (6)

VX
def
= E[(X−E[X ])2] = E[X2]− (E[X ])2 =

∫
x2 ·ρ(x,y)dxdy−

(∫
x ·ρ(x,y)dxdy

)2

, (7)

VY
def
= E[(Y −E[Y ])2] = E[Y 2]− (E[Y ])2 =

∫
y2 ·ρ(x,y)dxdy−

(∫
y ·ρ(x,y)dxdy

)2

. (8)

In the case of an exact linear dependence Y = c0 + c1 ·X , this coefficient r(F) is
equal to 1 if c1 > 0 and to −1 if c1 < 0. Vice versa, if r(F) = ±1, this means that
with probability 1, we have Y = c0 + c1 ·X for appropriate coefficients c0 and c1.

In general, values r(F) �= 0 indicate that there is an approximate linear depen-
dence – and the closer |r(F)| to 1, the closer is the the actual dependence to a linear
one.

Validating a linear model.

The square R2 = (r(F))2 is used, in statistics, as a “measure of fit” which is used to
validate the linear model: the closer this square to 1, the better the fit.
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2 Detecting Linear Dependence Based on a Copula:
Formulation of the First Problem

Need for copulas.

In the general case, a distribution of a random variable X can be described by the

cumulative distribution function FX(x)
def
= Prob(X ≤ x), and a joint distribution of

two variables X and Y can be described by the cumulative distribution function

F(x,y)
def
= Prob(X ≤ x&Y ≤ y).

A problem with this description is that it depends on the units in which we de-
scribe x and y. For example, if we use meters instead of feet to describe x, or if we
use a logarithmic scale of decibels instead of a linear scale of energy to describe
noise, we get different cumulative distribution functions F(x,y).

It is desirable to describe the dependence between x and y in a way which is
independent on the units for measuring x and y. Such a description is known as
a copula. The main idea behind a copula is that, once we know the probability
distribution, we no longer need to use any artificial units to describe each of the
quantities x and y:

• to describe the value of x, we can use the probability FX(x) = Prob(X ≤ x); and
• to describe the value of y, we can use the probability FY (y) = Prob(Y ≤ y).

Thus, instead of asking for a value F(x,y) = Prob(X ≤ x&Y ≤ y) corresponding
to given real numbers x and y, we can ask for a value C(a,b) of this probability
corresponding to given probabilities a = FX(x) and b = FY (y).

Formally, the copula is defined as a function C(a,b) for which a = FX(x) and
b = FY (y) imply that F(x,y) = c(a,b), i.e., equivalently, as a function for which
F(x,y) =C(FX(x),FY (y)) for all x and y.

Copulas are useful.

Copulas have been successfully used to describe dependencies in many application
areas, including econometrics; see, e.g., [9, 17, 19].

Formulation of the problem.

We need to be able to detect linear dependence between the quantities x and y based
only on the copula C(a,b) that describes their dependence.

3 Detecting Linear Dependence Based on a Copula: Main Idea
and the Resulting Definition

Main idea behind the new definition.

We consider a situation in which we know the copula C(a,b) but we do not know the
marginal distributions FX(x) and FY (y). We would like to know whether there exist
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some marginal distributions for which the dependence between the corresponding
random variables x and y is linear, i.e., for which, for which, for the corresponding
probability distribution F(x,y) =C(FX(x),FY (y)), the Pearson’s coefficient is equal
either to 1 or to −1.

For different marginal distributions, we have different values of the Pearson’s
correlation coefficient. The possibility to have r(F) = 1 for at least one pair of the
marginal distributions means that the maximum L+ of r(F) over all pairs of possible
marginal distributions is equal to 1. Thus, we can use this maximum to gauge to
what extent a given copula represents an increasing linear dependence.

Similarly, the possibility to have r(F) = −1 for at least one pair of marginal
distributions means that the minimum L− of r(F) over all such pairs is equal to −1.
Thus, we can use this minimum to gauge to what extent a given copula represents a
decreasing linear dependence. So, we arrive at the following definition.

Definition

Let a copula C(a,b) be given. By measures of linearity corresponding to this copula,
we mean the values

L− def
= min

FX (x),FY (y)
r(C(FX (x),FY (y)); (9a)

L+ def
= max

FX (x),FY (y)
r(C(FX (x),FY (y)), (9b)

where r(F) denote Pearson’s correlation coefficient (3) corresponding to F(x,y) =
C(FX(x),FY (y)), and the minimum and maximum are taken over all possible
marginal probability distributions FX(x) and FY (y).

Thus defined values L− and L+ depend only on the copula.

In the above definition, we fix a copula C(a,b), and we consider all possible 2-D
probability distributions F(x,y) corresponding to this copula. Therefore, the above-
defined values L− and L+ depend only on the copula.

The values L− and L+ describe the possibility of a linear dependence.

If L+ = 1, this means that there exist marginal distributions FX(x) and FY (y) for
which r(F) = 1, i.e., for which the corresponding random variables X and Y are
linearly related by an increasing linear dependence Y = c0 + c1 ·X , with c1 > 0.
Similarly, if L− = −1, this means that the exist marginal distributions FX(x) and
FY (y) for which r(F) = −1, i.e., for which the corresponding random variables X
and Y are linearly related by a decreasing linear dependence Y = c0 + c1 ·X , with
c1 < 0.

In general, values L+ > 0 or L− < 0 indicate that there is an approximate lin-
ear dependence – and the closer |L+| or |L−| to 1, the closer is the approximate
dependence to a linear one.
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How to define the corresponding measure of fit.

For validating a linear model, as a measure of fit M, it is reasonable to take the
largest possible value of the traditional measure of fit R2 = (r(F))2 over all possible
probability distributions corresponding to the given copula.

If the largest value of (r(F))2 is attained when r(F) > 0, then L+ ≥ |L−|, and
the above-defined measure of fit is equal to (L+)2. If the largest value of (r(F))2

is attained when r(F)< 0, then |L−| ≥ L+, and the above-defined measure of fit is
equal to (L−)2. These two cases can be combined into a single formula

M = max((L−)2,(L+)2).

How to actually compute L− and L+ based on F(x,y): an idea.

A direct application of the above definition based on the known probability distribu-
tion F(x,y) seems computationally expensive: first, we need to compute the copula,
and then, based on this copula, we need to solve two optimization problems. It turns
out that it is possible to compute L− and L+ more efficiently.

This possibility is related to the fact that, once we know a joint distribution F(x,y)
for non-discrete random variables X and Y (i.e., for random variables for which the
corresponding marginal distributions FX(x) and FY (y) are continuous functions), we
can explicitly describe all other random variables (X ′,Y ′) with the same copula as
(X ,Y ).

Indeed, by definition of the copula, for the original random pair (X ,Y ), we
have F(x,y) =C(FX(x),FY (y)). Thus, we have C(a,b) =F(F−1

X (a),F−1(b)), where
F−1(x) denotes an inverse function. Since the pair (X ′,Y ′) is described by the same
copula C(a,b) as the pair (X ,Y ), the distribution function F ′(x′,y′) for this pair
has the form F ′(x′,y′) = C(FX ′(x

′),FY ′(y
′)), where FX ′(x

′) and FY ′(y
′) are the cor-

responding marginal distributions. Substituting the above expression for the copula
C(a,b) into this formula, we conclude that F ′(x′,y′) = F(a(x′),b(y′)), where we

denoted a(x′) def
= F−1

X (FX ′(x
′)) and b′(x′) def

= F−1
X (FX ′(x

′)).
By definition of a cumulative distribution function F(x,y) =

Prob(X ≤ x&Y ≤ y), the formula F ′(x′,y′) = F(a(x′),b(y′)) means that Prob(X ′ ≤
x′&Y ′ ≤ y′) = Prob(X ≤ a(x′)&Y ≤ b(y′)).

Since the cumulative distribution functions are non-decreasing, the inverses
F−1

X (a) and F−1(b) are also non-decreasing and thus, the compositions a(x′) and
b(y′) are also non-decreasing. So, the condition X ≤ a(x′) is equivalent to A(X)≤ x′,
where A(x) denotes an inverse function to a(x), and similarly the condition Y ≤ a(y′)
is equivalent to B(Y ) ≤ y′, where B(y) denotes an inverse function to b(y). Thus,
we conclude that Prob(X ′ ≤ x′&Y ′ ≤ y′) = Prob(A(X)≤ x′&B(Y )≤ y′). In other
words, the probability distribution of the pair (X ′,Y ′) is exactly the same as the
probability distribution of the pair (A(X),B(Y )).

Vice versa, one can easily check that if we take any two strictly increasing func-
tions A(x) and B(y), then for the pair (X ′,Y ′) with X ′ = A(X) and Y ′ = B(Y ), we get
the exact same copula as for the original pair (X ,Y ).
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In other words, all possible probability distributions (X ′,Y ′) corresponding to
the same copula C(a,b) as the pair of random variables (X ,Y ) can be obtained by
considering appropriate non-decreasing transformations X ′ = A(X) and Y ′ = B(Y ).
For the variables, mean, variance, covariance, and correlation can be explicitly de-
termined in terms of the functions A(x) and B(y). Thus, we arrive at the following
easier-to-compute equivalent formulas for describing the desired measures of lin-
earity L− and L+.

Towards an easier-to-compute equivalent definition of L− and L+.

Let (X ,Y ) be random variables corresponding to a copula C(a,b). Then, the mea-
sures of linearity L− and L+ can be computed as

L− = min
A(x),B(y)

r(A(X),B(Y )), L+ = max
A(x),B(y)

r(A(X),B(Y )), (9c)

where maximum and minimum are taken over all possible non-decreasing functions
A(x) and B(y), and r(A(X),B(Y )) is the Pearson’s correlation coefficient relating
the random variables A(X) and B(Y ).

By definition of Pearson’s correlation coefficient r(F), we conclude that

L− = min
A(x),B(y)

L(A,B); L+ = max
A(x),B(y)

L(A,B), (10)

where

L(A,B)
def
=

C(A,B)
σ(A) ·σ(B) , (11)

C(A,B) = E[(A(X) ·B(Y))]−E[A(X)] ·E[B(Y)] =∫
A(x) ·b(y) ·ρ(x,y)dxdy−

(∫
A(x) ·ρ(x,y)dxdy

)
·
(∫

B(y) ·ρ(x,y)dxdy

)
, (12)

σ(A) def
=

√
V (A), σ(B) def

=
√

V (B), (13)

V (A)
def
= E[A2(X)]− (E[A(X)])2 =

∫
A2(x) ·ρ(x,y)dxdy−

(∫
A(x) ·ρ(x,y)dxdy

)2

, (14)

V (B)
def
= E[B2(X)]− (E[B(X)])2 =

∫
B2(y) ·ρ(x,y)dxdy−

(∫
B(y) ·ρ(x,y)dxdy

)2

. (15)
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Comment.

Strictly speaking, the above equivalence between copulas and non-linear re-scalings
requires that we consider only strictly increasing functions a(x) and b(y), for which
the inverses A(x) and B(y) are also strictly increasing. However, one can easily
show that any non-decreasing function A(x) can be approximated, with any given
accuracy, by a strictly increasing one: e.g., we can approximate A(x) by A(x)+ ε · x
for a sufficiently small ε > 0. Thus, in (10), it does not matter whether we take only
strictly increasing functions or all non-decreasing ones.

Explicit expressions for L− and L+ in terms of the copula.

The above equivalent reformulation was intended for the case when we still need to
compute the copula. However, even when we already know the copula C(a,b), the
above reformulation can still simplify computations.

Indeed, the formula (9c) can be applied to any probability distribution corre-
sponding to a given copula. In particular, it is well known that the copula itself is a
probability distribution on the box [0,1]× [0,1], corresponding to uniform marginal
distributions FX(x) = Prob(X ≤ x) = x and FY (y) = Prob(Y ≤ y) = y. For this prob-

ability distribution, F(x,y) =C(x,y) and thus, ρ(x,y) =
∂ 2C(x,y)
∂x∂y

. For this proba-

bility density, we can apply the above formulas (10)–(15), and compute the desired
values L− and L+.

4 How to Actually Compute L− and L+

Analysis of the problem.

In accordance with the above idea, for computing L− and L+, we will use the easier-
to-compute equivalent reformulation (10) of the original definition of these two
measures of linearity.

According to calculus, one way to find minimum and maximum of an expression
is to equate the derivative to 0. In our case, we need to situations when the un-
knowns are two functions A(x) and B(y), the rules for corresponding differentiation
are described in variational calculus; see, e.g., [7].

Here, σ(B) does not depend on A(x), so, by using the usual rules of differentiating
the ratio, we get:

δ
δA(x)

L(A,B) =
1

σ(B)
· δ
δA(x)

(
C(A,B)
σ(A)

)
=

1
σ(B)

· δ
δA(x)

·
δC(A,B)
δA(x)

·σ(A)−C(A,B) · δσ(A)
δA(x)

σ2(A)
. (16)
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Thus, the derivative is equal to 0 if

δC(A,B)
δA(x)

·σ(A)−C(A,B) · δσ(A)
δA(x)

= 0. (17)

Since σ(A) =
√

V (A), the chain rule for differentiation implies that

δσ(A)
δA(x)

=
1

2σ(A)
· δV (A)
δA(x)

. (18)

For V (A) =
∫

A2(x) ·ρ(x,y)dxdy− (
∫

A(x) ·ρ(x,y)dxdy)2, we get

δV (A)
δA(x)

= 2A(x) ·
∫
ρ(x,y)dy− 2E[A(X)] ·

∫
ρ(x,y)dy. (19)

Similarly, for

C(A,B) =
∫

A(x) ·B(y) ·ρ(x,y)dxdy−
(∫

A(x) ·ρ(x,y)dxdy

)
·
(∫

B(y)) ·ρ(x,y)dxdy

)
, (20)

we get
δC(A,B)
δA(x)

=
∫

B(y) ·ρ(x,y)dxdy−E[B(Y)] ·
∫
ρ(x,y)dy. (21)

Thus, the above equation (17) takes the form

C1 ·
∫

B(y) ·ρ(x,y)dxdy+C2 ·A(x) ·
∫
ρ(x,y)dy+C3 ·

∫
ρ(x,y)dy = 0 (22)

for some constants Ci. From this equation, we can determine A(x) as

A(x) = a1 + a2 ·E[B(Y ) |X = x], (23)

where ai are appropriate constants, and the conditional expected value

E[B(Y ) |X = x] (24)

has the form

E[B(Y ) |X = x] =

∫
B(y) ·ρ(x,y)dxdy∫
ρ(x,y)dxdy

. (25)

By differentiating with respect to B(y), we get a similar equation

B(y) = b1 + b2 ·E[A(X) |Y = y], (26)

for appropriate constants b1 and b2.
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These expressions depend on constants ai and b j which need to be determined. To
make the expressions easier, we can take into account that the correlation coefficient
does not change if we apply a linear transformation to the variables. Thus, instead of
the functions A(x) and B(y), we can use arbitrary linear re-scalings a+a′ ·A(x) and
b+ b′ ·B(y). We can use this ambiguity to normalize the functions A(x) and B(y),
e.g., by setting A(0) = B(0) = 0 and A(1) = B(1) = 1. By applying these conditions
to the above formula for B(y), we conclude that

B(0) = 0 = b1 + b2 ·E[A(X) |Y = 0], (27)

B(1) = 1 = b1 + b2 ·E[A(X) |Y = 1]. (28)

Subtracting the first equation from the second one, we get

1 = b2 · (E[A(X) |Y = 1]−E[A(X) |Y = 0]), (29)

hence

b2 =
1

E[A(X) |Y = 1]−E[A(X) |Y = 0]
. (30)

From the equation (27) for B(0), we can now conclude that

b1 =− E[A(X) |Y = 0]
E[A(X) |Y = 1]−E[A(X) |Y = 0]

. (31)

Substituting the expressions for b1 and b2 into the formula (26) for B(y), we thus
conclude that

B(y) =
E[A(X) |Y = y]−E[A(X) |Y = 0]
E[A(X) |Y = 1]−E[A(X) |Y = 0]

. (32)

Similarly, we get

A(x) =
E[B(Y )) |X = x]−E[B(Y) |X = 0]
E[B(Y ) |X = 1]−E[B(Y) |X = 0]

. (33)

Resulting algorithm.

Formulas (32) and (33) prompts the following natural iterative algorithm. We start
with arbitrary initial functions A0)(x) and B0)(y), e.g., with functions A(0)(x) = x and
B(0)(y) = y. Then, on each iteration, once we know the values A(k)(x) and B(k)(y),
we compute the values corresponding to the next iteration as follows:

A(k+1)(x) =
E[B(k)(Y )) |X = x]−E[B(k)(Y ) |X = 0]

E[B(k)(Y ) |X = 1]−E[B(k)(Y ) |X = 0]
, (34)

B(k+1)(y) =
E[A(k)(X) |Y = y]−E[A(k)(X) |Y = 0]

E[A(k)(X) |Y = 1]−E[A(k)(X) |Y = 0]
. (35)
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We stop when the new functions A(k+1)(x) and B(k+1)(y) are close to functions
A(k)(x) and B(k)(y) from the previous iteration: e.g., when the differences do not
exceed some threshold ε:

|A(k+1)(x)−A(k+1)(x)| ≤ ε; |B(k+1)(y)−B(k+1)(y)| ≤ ε. (36)

We then take A(k+1)(x) and B(k+1)(y) as the desired functions A(x) and B(y). Based
on these functions, we use the formula (11) to compute the desired value L+.

Comment.

As a result of this algorithm, we get functions A and B which minimize and max-
imize the expression (9c), and we have already shown that the resulting minimum
L− and maximum L+ depend only on the copula. Thus, the result of applying
this algorithm depends only on the copula – and do not depend on the marginal
distributions.

However, since we start with some distribution ρ(x,y) corresponding to the given
copula, the conditional expectations computed on each iteration will be, in general,
different. In other words, if we start with the distributions F(x,y) corresponding to
different marginal distributions FX(x) and FY (y), then:

• on each iteration, we get different functions, but
• for all starting distributions (X ,Y ) corresponding to the same copula, in the limit

(after all the iterations) we get functions A(x) and B(y) for which the distribu-
tion of the pair (X ′,Y ′) = (A(X),B(Y )) is the same – namely, the distribution
which, among all distributions corresponding to the given copula, maximizes (or
minimizes) the Pearson correlation coefficient r(F).

Example.

To make sure that this algorithm makes sense, let us analyze what happens when
we apply this algorithm to the standard case of two jointly distributed correlated
Gaussian variables.

Let us start with the simplest initial functions A(0)(x) = x and B(0)(y) = y. For
these functions, the formulas (34) and (35) for computing the next iteration A(1)(x)
and B(1)(y) take the form

A(1)(x) =
E[Y |X = x]−E[Y |X = 0]
E[Y |X = 1]−E[Y |X = 0]

, (37)

B(1)(y) =
E[X |Y = y]−E[X |Y = 0]
E[X |Y = 1]−E[X |Y = 0]

. (38)

It is know that when variables X and Y have a Gaussian joint distribution, then
E[Y |X = x] is a linear function of x, i.e.,

E[Y |X = x] = c0 + c1 · x (39)
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for some constant c0 and c1. Substituting this expression (30) into the formula (37),
we get

A(1)(x) =
(c0 + c1 · x)− (c0 + c1 ·0)
(c0 + c1 ·1)− (c0+ c1 ·0) =

c1 · x
c1

= x. (40)

Similarly, we get B(1)(y) = y.
Here, we have A(1)(x) = A(0)(x) and B(1)(y) = B(0)(y) for all x ad y, so we stop

iterations, and take A(x) = A(1)(x) = x and B(y) = B(1)(y) = y. For these functions
A(x) = x and B(y) = y, the expression (11) becomes the usual expression (3) for the
Pearson’s correlation coefficient r(F). So, for the usual Gaussian case, the above
algorithm converges and leads to the desired result.

Important mathematical subtleties.

1◦. There are cases when the above algorithm – and even the definition (9) – do not
lead to the desired result.

For example, if Y = X when X ≥ 0 and Y = X − Z2 for X < 0, where Z is a
random variable which is independent of X , then the maximum in (9) is attained
when we take A(x) = x for x ≥ 0, A(x) = 0 for x ≤ 0, and similarly, B(y) = y for
y≥ 0 and B(y) = 0.

For these functions A(x) and B(y), we have A(X) = B(Y ) and thus, L(A,B) = 1.
This value seems to indicate that X and Y are perfectly correlated, but in reality, they
are only correlated when X ≥ 0 and Y ≥ 0 and they are definitely not well correlated
when X < 0 and Y < 0.

This counterintuitive feature of the definition (9) appeared because we allowed
functions A(x) and B(y) which are constant on some intervals. To avoid this counter-
intuitive feature, it is therefore reasonable to make sure that functions A(x) and B(y)
are never constant. The functions A(x) and B(y) are supposed to be non-decreasing.
Non-decreasing means that the derivative is non-negative, while constant means
derivative is 0. Thus, it makes sense to select a small positive number δ > 0 and, in
the definition (9), only consider functions for which A′(x)≥ δ and B′(y)≥ δ for all
x and y.

2◦. Another important issue is the existence of the functions A(x) and B(y) which
maximize L(A,B). In general, a continuous function is guaranteed to attain its
maximum value on a given domain D only if this domain is compact. A known
Ascoli-Arzela theorem states that a compact class of functions should be uniformly
continuous; for smooth functions, this means that there should be an upper bound
M on the derivatives, such that A′(x)≤M and B′(y)≤M for all x and y.

3◦. Because of Comments 1 and 2, it makes sense to fix two positive real numbers
δ < M and to restrict ourselves only to functions A(x) and B(y) for which δ ≤
A′(x)≤M and δ ≤ B′(y)≤M.
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5 Case of Heavy-Tailed Distribution: Second Related Problem

Need to go beyond Pearson’s correlation coefficient.

Pearson’s correlation coefficient r(F), as defined by the formula (3), implicitly as-
sumes that the marginal distributions for X and Y have finite variance. In reality,
however, many econometric-related distributions are heavy-tailed, with infinite vari-
ance. Let us show how we can extend the above definitions to the heavy-tailed case.
For that, we first need to briefly recall the need for heavy-tailed distributions.

Heavy-tailed distributions are ubiquitous.

In many practical situations, e.g., in economics and finance, we encounter heavy-
tailed probability distributions, i.e., distributions for which the variance is infinite.
These distributions surfaced in the 1960s, when Benoit Mandelbrot, the author of
fractal theory, empirically studied the fluctuations and showed [12] that larger-scale
fluctuations follow the power-law distribution, with the probability density function
ρ(y) = A ·y−α , for some constant α ≈ 2.7. For this distribution, variance is infinite.

The above empirical result, together with similar empirical discovery of heavy-
tailed laws in other application areas, has led to the formulation of fractal theory;
see, e.g., [13, 14].

Since then, similar heavy-tailed distributions have been empirically found in
other financial situations [2, 3, 4, 16, 22, 23], and in many other application areas
[1, 8, 13, 15, 20].

Utility: reminder.

People’s economic behavior is determined by their preferences. A standard way to
describe preferences of a decision maker is to use the notion of utility u; see, e.g.,
[5, 11, 19]. According to decision theory, a user prefers an alternative for which the

expected value
n
∑

i=1
pi ·ui of the utility is the largest possible. Alternative, we can say

that the expected value
n
∑

i=1
pi ·Ui of the disutility U

def
= −u is the smallest possible.

Disutility caused by probabilistic uncertainty.

If we know the exact value of a quantity, then we can make an optimal decision
based on this value. If we do not know the exact value – e.g., if we only know
the probability distribution ρ(y) on the set of all possible values – then we have
to make a decision based on some value m. Since the actual value y is, in general,
different from m, this decision is not as perfect as the decision based on the exact
knowledge y.

For example, if we knew exactly what will be the future price y of a certain
financial instrument (e.g., stock), then (after applying an appropriate future-related
discount), we will be able to find the exact price that we are willing to pay for
this instrument. In practice, we do not know this future price; at best, we know the



76 V. Kreinovich, H.T. Nguyen, and S. Sriboonchitta

probability of future value. As a result, we set up a price corresponding to some
“expected” value m.

• If the actual value y is smaller than our prediction m, then we overpay and thus,
lose money on this transaction.

• If the actual value y is larger than m, this means that we may have missed an
opportunity to invest in this instrument.

In both cases, the difference between the actual value x and the selected value m
leads to disutility.

Let U(d) denote the disutility caused by the difference d = y−m. When the value
m has been selected, the average disutility is equal to

∫
U(y−m) ·ρ(y)dy. We select

the value m for which this disutility is the smallest possible. The resulting minimal
disutility is the disutility caused by the probabilistic uncertainty:

dU(X)
def
= min

m
E[U(Y −m)] = min

m

∫
U(y−m) ·ρ(y)dy. (41)

What if y partly depends on a known quantity x?

If the desired quantity y is somewhat dependent on another (known) quantity x, then,
once we know x, we thus have more knowledge about y and hence, our uncertainty-
caused disutility will decrease.

It is reasonable to take the percentage of this decrease as a measure of dependence
between x and y.

Case of linear dependence.

In this paper, we are interested in the case of linear dependence y = c0 + c1 · x. A
linear dependence is either increasing or decreasing.

If we expect the dependence to be increasing, then it makes sense to consider de-
pendencies with c1 ≥ 0. Among all such dependencies, we should select the values
c0 and c1 ≥ 0 for which the expected disuility E[U(Y − (c0 + c1 ·X)] is the smallest
possible. The resulting remaining disutility is equal to

d+
U (Y |X) = min

c0;c1≥0
E[U(Y − (c0 + c1 ·X)] =

min
c0;c1≥0

∫
U(y− (c0 + c1 · x)) ·ρ(x,y)dxdy. (42)

The corresponding decrease D+
U (Y |X) in disutility can be thus estimated as

D+
U (Y |X)

def
=

dU(Y )− d+
U (Y |X)

d(Y )
. (43)

Similarly, if we expect the dependence of y on x to be decreasing, we should
consider dependencies with c1 ≤ 0. Among all such dependencies, we should also
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select the values c0 and c1≤ 0 for which the expected disuility E[U(Y−(c0+c1 ·X)]
is the smallest possible. The resulting remaining disutility is equal to

d−U (Y |X) = min
c0;c1≤0

E[U(Y − (c0 + c1 ·X)] =

min
c0;c1≤0

∫
U(y− (c0 + c1 · x)) ·ρ(x,y)dxdy. (44)

The corresponding decrease D−U (Y |X) in disutility can be thus estimated as

D−U (Y |X)
def
=

dU(Y )− d−U (Y |X)

dU(Y )
. (45)

How is this idea related to Pearson’s correlation coefficient?

It turns out that the Pearson’s correlation coefficient r(F) corresponds to
the quadratic disutility function U(d) = d2. Specifically, for the case when U(d) =
d2, as one can easily check:

• the optimal value m is the mean of the random variable Y : m = E[Y ];
• the corresponding value dU(Y ) is equal to the variance V (Y );
• for r(F)≥ 0, the decrease D+

U(Y |X) is equal to R2 = (r(F))2; and
• for r(F)≤ 0, the decrease D−U(Y |X) is equal to R2 = (r(F))2.

How to modify the above definition so that it depends only on the copula.

Let us assume that we have a copula C(a,b) and a disutility function U(d). We can
then define the corresponding measures of linearity L− and L+ as the maximum,
correspondingly, of the expression D−U(Y |X) or of the expression D+

U (Y |X) over
all possible probability distributions F(x,y) =C(FX(x),FY (y)) corresponding to the
given copula C(a,b).

This definition clearly depends only on the copula (and not on the marginal dis-
tributions).

An easier-to-compute equivalent reformulation.

Similarly to the case of the Pearson’s correlation coefficient, we can show that
the above definitions can be reformulated in an easier-to-compute equivalent form.
Namely, for a joint distribution of two random variables X and Y , the above mea-
sures of linearity L−U and L+

U can be equivalently defined as

L− = max
A(x),B(y)

D−U (B(Y ) |A(X)), L+ = max
A(x),B(y)

D+
U (B(Y ) |A(X)), (46)

where maximum is taken over all possible non-decreasing functions A(x) an B(y),
and the values D±U are defined by the formulas (41)–(45).
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An Innovative Financial Time Series Model:
The Geometric Process Model

Jennifer S.K. Chan, Connie P.Y. Lam, and S.T. Boris Choy

Abstract. Geometric Process (GP) model is proposed as an alternative model for
financial time series. The model contains two components: the mean of an under-
lying renewal process and the ratio which measures the direction and strength of
the dynamic trend pattern over time. They simultaneously account for the uncer-
tainty on the mean and the autoregressive and time-varying nature of the volatility.
Compare to the popular GARCH and SV models, this model is simple and easy to
implement using the least squares (LS) method. We extend the GP model to analyze
the daily asset price range which exhibit threshold and asymmetric effects for some
exogenous variables. Models are selected according to mean square error (MSE).
Finally forecasting are performed for the best model that allows for both threshold
and asymmetric effects.

1 Introduction

In asset price series, an important feature is the time-varying variance called het-
eroskedasticity. A related and important measure of heteroskedasticity is volatility
which refers to the variation of price over time. Volatility has become a standard
risk measure in financial markets. Two main classes of models have been proposed
to capture the dynamics of the volatility precisely, and they are the generalised au-
toregressive conditional heteroskedastic (GARCH) models (Bollerslev, 1986) and
the stochastic volatility (SV) models (Hull and White, 1987).

These models usually employ squared close to close asset returns to model return
volatility. However many papers have shown the intra-day range to be a far more
efficient measure of return volatility, e.g. see Parkinson [20], Garman and Klass [12]
and recently Anderson and Bollerslev [1] and Chen et al. [8]. The daily range has
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been used in volatility models: Alizadeh et al. (2002) incorporated the range with
the stochastic volatility model and Chou [9], Brandt and Jones [3], Chen et al. [8]
proposed range-based heteroskedastic models, using observed range data and a link
between the range and volatility. To capture the trend dynamic in range data, Chan
et al. [7] extended the conditional autoregressive range (CARR) model of Chou [9]
to incorporate the Geometric Process (GP) model of Lam [16].

Lam [16] first proposed to model a monotone trend directly by a monotone pro-
cess called the GP. A GP is related to a renewal process (RP) (Feller [11]) which is
an arrival process with event count N(t) and independent and identically distributed

interarrival intervals Yi > 0 such that N(t) = n if
n
∑

t=1
Yi ≤ t <

n+1
∑

i=1
Yi. A sequence of

positive random variables X1, X2, . . . forms a GP if there exists a positive real num-
ber a such that {Yt = at−1Xt , t = 1,2, . . .} is a RP. The real number a is called the
ratio of the GP. Note that the latent RP {Yt} is stationary and the observed GP {Xt}
is increasing if a < 1, decreasing if a > 1 and stationary if a = 1. If we denote the
mean and variance for the latent RP {Yt} to be μ and σ2 respectively, the mean and
variance for the observed data {Xt} are given by

E(Xt) = μ/at−1 and Var(Xt) = σ2/a2(t−1) (1)

respectively. The GP model identifies effects on the trend movement by two compo-
nents: the mean μ of the underlying RP and the ratio a which measures the direction
and strength of the trend dynamic.

The original GP model mainly focused on modeling the interarrival time of a
series of events in reliability and maintenance problem in system engineering (Lam
[19]). Chan et al. [5] first extended the application of GP model to health science
by applying threshold GP models to describe multiple trends at different stages of
development for the Severe Acute Respiratory Syndrome (SARS) epidemic in 2003.
More applications of GP model on Poisson count times series in clinical trials can be
found in Wan and Chan ([24], [25]) in the analyses of bladder cancer data. The GP
model was also extended to binary data in Chan and Leung [6] with an application to
methadone clinic data. This paper advances the application of GP model to finance.

The GP model has several advantages over the popular financial time series mod-
els such as GARCH, defined as

Xt = μt + εt

where εt = σt zt ,

σ2
t = α+

p

∑
i=1

βiε2
t−i +

q

∑
i=1

γiσ2
t−i (2)

and zt is a white noise process. Firstly, a GARCH model applies to return data and
treats volatility as an unobserved process. Hence the modelling of volatility is less
efficient due to the lack of volatility information. On the other hand, a GP model
describes directly the intra-day range which has been shown in many researches
to be a far more efficient measure of return volatility as it utilizes two pieces of
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information (the high and low prices) rather than just the closing price. Secondly, a
GARCH model needs a separate volatility equation in (2) to allow for heteroskedas-
ticity whereas equation (1) for a GP model shows that both of its mean and variance
change with a and hence it allows for heteroskedasticity without a separate model.

Thirdly, financial time series often exhibit volatility clustering. Volatility clus-
tering has periods of elevated volatility interspersed among more tranquil periods.
This effect often produces distinct trend patterns that should be accommodated in a
model. The ratio parameter a of a GP model can model the trend movement directly
and gives a straightforward interpretation for the progression of trends. Moreover
the two components, the mean μ and ratio a, can be modeled separately and hence
the model distinguishes effects on the underlying stationary process Yt from effects
on the strength and direction of trend movement. Lastly with the inherent geometric
structure, forecast of volatility using E(Xt) in equation (1) is simple and straightfor-
ward whereas it relies on the more complicated volatility equation in (2) condition
on previous unobserved εt−i and volatility σt−i in the GARCH model.

The objective of this paper is to extend the GP model to capture many impor-
tant features in the intra-day price range of some stock markets. Firstly, we include
covariate effects in the mean μ and ratio a parameters to describe the dynamics of
mean and variance in equation (1). Moreover as the price range may be subject to
abrupt and unanticipated asymmetric effects from certain variables, the model is
further extended to incorporate regime switching to allow model change after some
threshold times as well as when the outcomes exceed certain threshold levels. We
show that the extended GP model provides a simple analytical tool for analyzing
daily price range series.

For model implementation, Lam [17] first proposed the non-parametric (NP) least
squares (LS) approach. Chan et al. [5] applied the LS and log-LS approaches to an-
alyze the SARS epidemic data in 2003. By adopting a lifetime distribution to the
underlying RP Yi, the model can be implemented by a parametric approach. Lam
and Chan [18] investigated the statistical inference and properties of the maximum
likelihood (ML) estimators with lognormal distribution and Chan et al. [4] consid-
ered gamma distribution. Wan and Chan ([24], [25]) adopted the Bayesian approach
and Chan and Leung [6] compared all three LSE, ML and Bayesian approaches for
the binary GP model. Although parametric inference has been a popular choice of
inference, it sometimes fails for complicated model especially when data deviate
considerably from the distributional assumptions. Nonparametric inference is re-
leased from distribution assumption and hence offers an attractive choice of model
implementation. Despite nonparametric inference may be less efficient than para-
metric inference, such disadvantage will be lessen if the data size is large enough,
usually the case for financial time series. We adopt the LS approach and show how
the model can be easily implemented under this approach.

The paper is presented as follows. Section 2 introduces the GP model and its
extension to capture covariate, multiple trends and asymmetric effects respectively.
Section 3 describes the method of inference. Then the models are fitted to four
intra-day asset price range data in Section 4 and finally, a conclusion is given in
Section 5.
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2 The GP Model and Its Extensions

2.1 Extension to Covariate Effect

Original GP model adopts a constant mean and a constant ratio over time. The adop-
tion of a homogeneous mean over time is over-simplified in many cases. For exam-
ple, business cycle and seasonal effect commonly appear in financial time series. As
the outcome measures may evolve over time subject to different internal and exter-
nal effects, covariates should be incorporated into the mean μ and ratio a of the GP
model to allow for these effects. The resulting mean and ratio become time-varying
mean μt and ratio at functions respectively.

Adopting the framework of linear models (LM), the mean function is linked to
a linear function ημt of p covariates ztk, k = 1, . . . p using a log link function. In
subsequent analysis, the model adopts one covariate zt (p = 1) and hence the time-
varying mean function as log-linked to this covariate is defined as

μt = exp(ημt) = exp(βμ0 +βμ1 zt). (3)

Moreover the ratio a which models the direction and strength of the movement
can change gradually over time t. The time effects can be modeled by different func-
tional forms, for example, t or ln t. Other covariates can also be included to allow for
their effects on the trend movement. The extended model is called the adaptive GP
(AGP) model because the mean μt and ratio at functions adapt to changes in covari-
ates and hence the model can adaptively model the progression of trend movement
over time. In subsequent analysis, we consider either

a constant ratio (C): at = exp(ηat) = exp(βa0), or
a time-evolving ratio (R): at = exp(ηat) = exp(βa0 +βa1 ln t).

(4)

Since at affects both the mean and variance of Xt , the variance of the resulting GP
model will change over time with different volatility levels. The vector of param-
eters is β = (β T

μ ,β T
a ) where β μ = (βμ0,βμ1)

T and β a = (βa0) or (βa0,βa1)
T for

a constant or time-evolving ratio function respectively. Note that the latent process
{Yt} is now a stochastic process (SP) in general.

2.2 Extension to Threshold Time

Persistent changes may occur in a financial time series when some external or struc-
tural factors take place from certain time points T called the threshold times. Chan et
al. [5] extended the GP model to the threshold GP (TGP) model by fitting a separate
GP to each stage, growing, stabilizing and declining, of an epidemic as identified by
turning points using the LS method of inference.

Let Tm, m = 1, . . . ,M be the thresholds time for the m-th GP. When Tm ≤ t <
Tm+1, the mean and variance for Xt are
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E(Xt) = μtm/atm
t−Tm and Var(Xt) = σ2

m/atm
2(t−Tm), (5)

where

μtm = exp(ημtm) = exp(βμ0m +βμ1mzt), (6)

atm = exp(ηatm) = exp(βa0m), (7)

T1 = 1, Tm = 1+
m−1
∑
j=1

n j, m = 2, . . . ,M, nm is the number of observations for the m-

th GP, and
M
∑

m=1
nm = n. The extended model is called the threshold time GP (TTGP)

model.
To estimate the threshold times when trends change their movements, Chan et al.

[5] proposed a moving window technique in which separate GP model is applied
to each subset of data of fixed length L starting from time i = 1, i = 2 and so on
up to i = n− L + 1. Since the ratio a of a GP changes according to the moving
windows, threshold times Tm can be located when a changes from “less than 1” to
“greater than 1” or vice versa. As different window widths L produce different sets
of parameter estimates and threshold times, an optimal L is selected from a range
which gives the least Adjusted Mean Square Error (AMSE). The penalized term
in AMSE is a scalar multiple of the number of parameters. Although this method
may detect several threshold times simultaneously, it is computationally intensive
as both the window width L and the window (i, i+L− 1) have to vary in detecting
the threshold times Tm.

A more direct way is to estimate the threshold times condition on M. We first set
M = 2 and search T2 over certain interval not too close to the end points 1 and n.
Condition on each threshold time T2, two GP models are fitted to data with time
t < T2 and t ≥T2 respectively. Optimal T2 is chosen to minimize the MSE in (15).
Then M is set to 3 and the search for T3 given T2 is similarly repeated from the
remaining time points not too close to T2, 1 and n. This method is essentially a
partial LS method where β is obtained by LS method but {Tm} by searching. The
number of threshold times M can be chosen by some model selection criteria, say
the cross validation (CV ).

2.3 Extension to Threshold Outcome

Financial time series are sometimes subject to abrupt and unanticipated asymmetric
effects due to a certain risk variable. We assume that a temporary model shift oc-
cur when an observable lag-d risk variable, Wt−d , t = d + 1, . . . ,n, exceeds certain
threshold levels. Let Wh, h = 1, . . . ,H be the latent threshold levels for Wt−d . When
Wh ≤ wt−d < Wh+1, the mean and variance for Xt are

E(Xt) = μth/at−1
th and Var(Xt) = σ2

h /a2(t−1)
th , (8)
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where

μth = exp(ημth) = exp(βμ0h +βμ1hzt), (9)

ath = exp(ηath) = exp(βa0h +βa1h ln t), (10)

W1 = 0 or −∞ depending on whether Wt is positive continuous or continuous and
WH+1 =∞. The extended model is called the threshold level GP (TLGP) model. The
risk variable Wt is preferable to be positively related to Xt and contains some market
information. Examples include lagged values of Xt , or lagged values of an exoge-
nous factor, such as international market movement, a financial index or interest
rates.

To estimate the threshold levels Wh, we first set H = 2. The search for threshold
level W2 for the risk variable Wt is similar to that of the threshold time model. Con-
ditioning on d = 1, we search W2 over certain interval which is approximately the
median to the 95 percentile of Wt because W2 which indicates a model shift should
be large in general. For each threshold value W2 in the interval, two GP models are
fitted to data xt with wt−d < W2 and wt−d ≥ W2 respectively. Then we set d = 2
and fit two GP models for each W2 similarly. Optimal W2 is chosen to minimize the
MSE in (15) over a range of d. Then we may set H = 3 and repeat the search for
W3 again. This method is as well a partial LSE method where β is obtained by LS
method but {Wh} by searching.

3 Methodology of Inference

The least squares (LS) method is perhaps the simplest method in parameter estima-
tion. Lam [17] considered the LS method on lnXt and Chan et al. [5] adopted the
LS method on both lnXt and Xt . In this paper, we adopt the LS method on Xt by
minimizing the sum of squared errors SSE given by

SSE =
n

∑
t=1

[Xt −E(Xt)]
2 (11)

where E(Xt), for the AGP model with constant (C) and time-varying (R) ratio, the
TTGP model with threshold times (T) and the TLGP model with threshold levels
(L) are given by (1), (5) and (8) respectively, the mean functions μt by (3), (6) and
(9) respectively and the ratio functions by (4), (7) and (10) respectively.

To solve for the parameter estimates β that minimize the SSE in the score equa-
tion SSE ′(β ) = 0, we use the Newton Raphson (NR) iterative procedure. In each
NR iteration, current parameter estimates β (v) in the v-th iteration are updated to
β (v+1) in the (v+ 1)-th iteration by

β (v+1) = β (v)− [SSE ′′(β (v))]−1SSE ′(β (v)) (12)

and the procedure continues until ‖ β (v+1)−β (v) ‖ is sufficiently small. Then the

LS estimates are given by β̂ LSE = β (v+1). The first and second order derivatives as
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required in the NR procedure are given by vector SSE ′(β (v)) and matrix SSE ′′(β (v))
respectively with elements

∂SSE
∂β jkm

= −2
n

∑
t=1

(xt − x̂t) x̂t z′jkt (13)

∂ 2SSE
∂β j1k1m1∂β j2k2m2

= −2
n

∑
t=1

z′j1k1t z′j2k2t x̂t (xt − 2x̂t) (14)

where x̂t = Ê(Xt |Xt = xt ,β = β (v)), j, j1, j2 = μ ,a; k,k1,k2 = 0,1; m,m1,m2 =
1, . . . ,G (G = 1 for AGP model, G = M for TTGP model and G = H for TLGP
model); z′μ0t = 1, z′μ1t = zt , z′a0t = −(t− 1) and z′a1t = −(t− 1) lnt. Standard error
estimates are given by the square root of the diagonal elements in the inverse of the
second order derivative matrix SSE ′′(β (v+1)).

Estimates for σ2, σ2
m and σ2

h in (1), (5) and (8) respectively are given by the mean

sum of squared residuals 1
nl

Tl+nl−1
∑

t=Tl

(xt− x̂t)
2 where nl denote the data size in the l-th

GP when Tl ≤ t < Tl+1 for the TTGP model or Wl ≤ wt−d < Wl+1 for the TLGP
model. The method and standard error calculation can be easily implemented in R.

4 Empirical Study

4.1 The Intra-day Range Data

We analyze the intra-day high-low prices from four stock markets, obtained from the
website “finance.yahoo.com”. The data is collected from January 1, 2000 to Decem-
ber 31, 2006 and it includes four Asia-Pacific Economic Cooperation (APEC) finan-
cial markets which are in order Nikkei 225 Index (N225, Japan), Hang Seng Index
(HSI, Hong Kong), All Ordinaries Index (AORD, Australia) and Taiwan weighted
index (TWII, Taiwan). The variable of interest is the daily range which is the dif-
ferences between the log of the daily maximum xmax,t and minimum xmin,t indice
defined as

xt = [ln(xmax,t )− ln(xmin,t)]× 100.

Figures 1 to 4 show that the data exhibit different trend patterns. Volatility clustering
is also one of salient features about daily range data. Hence each daily range data is
fitted to four proposed GP models, namely, the AGP model with constant (C) and
time-varying (R) ratio, the TTGP (T) model and the TLGP (L) model that allow for
these characteristics in the data.

4.2 Numerical Results

Experience show that the daily range z′t of the Standard & Poors 500 (US) with delay
d = 1 (zt = z′t−1) is a significant covariate (correlation coefficient r ranges from 0.33
to 0.36 for the four regions). Hence it is included in the mean functions (3), (6) and
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(9) for the AGP, TTGP and TLGP models respectively. For the ratio function, we
adopt both constant (C) and time-varying (R) function in (4) for the AGP model,
constant in (7) for the TTGP model and time-varying in (10) for the TLGP model.

For the threshold models, we set the number of threshold times and threshold
levels to be both M = H = 2. For the TLGP model, we choose the threshold vari-
able to be Xt and search the lag d from 1 to 5 because autocorrelation often drops
with increasing lag so that the optimal lag will not be very large. The lag 1-5 au-
tocorrelations r j for Xt are (0.38,0.36,0.38,0.31,0.33), (0.46,0.47,0.48,0.45,0.45),
(0.37,0.35,0.31,0.33,0.25) and (0.48,0.44,0.46,0.44,0.42) respectively for the four
regions which are higher than the correlation between Xt and Zt−1. Optimal lags are
often related to the lag with high autocorrelation.

Tables 1 to 4 report parameter estimates, standard errors in parenthesis, and MSEs
for the four daily range data fitted to the four proposed GP models. Significant pa-
rameters are indicated by ‘∗’. Parameters βμ1l , l = 1,2 indicate the effect of US
daily range while βakl , k = 0,1, l = 1,2 reveal distinct trend movements after allow-
ing for the US daily range effect. These effects can be viewed in Figures 1(a),(b)
to 4(a),(b) which plot the fitted daily range x̂t over time for the TTGP and TLGP
models and their trends are described as below.

The trend of the daily range of N225 shows a drop (βa0 > 0 in model C) over time
in general. Specifically, it drops slowly before June 22, 2004 (βa01 > 0, T2 = 1059
in T) and increases faster from a lower level afterwards (βμ02 < βμ01, βa02 < 0 in T).
With the lag d in TLGP model estimated to be 3, 7.6% of daily range (xt−3 ≥ 2.69)
are modeled by the upper-level model and they remain constant over time (βa02, βa12

insignificant, W2 = 2.69 in L) while the rest of daily range increase at a decreasing
rate and then decrease over time (βa01 < 0, βa11 > 0 in L). The US daily range has
a positive and significant effect (βμ1l > 0) for all the four models.

The general trend of the daily range of HSI is again a drop over time but it drops
faster before Mar 18, 2003 and slower afterwards. The lag d is estimated to be 5 and
29% of daily range (xt−5 ≥ 1.6) are modeled by the upper-level model. They drop
at a decreasing rate over time while the rest also drop over time. The upper-level
model starts at a higher level but approaches the lower-level model. The US daily
range has a positive and significant effect for all the four models except after Mar
18, 2003 and when the lag-5 daily range is below 1.60.

The daily range of AORD also trend downward in general. In particular, they
drop before Feb 14, 2005 but increase afterwards. The estimated lag d is 3 and 32%
of daily range (xt−3 ≥ 1.33) are modeled by the upper-level model. They remain
constant over time while the rest drop at a decreasing rate. The US daily range has
positive and significant effects for all the four models.

Lastly, the daily range of TWII also trend downward over time. They increase
sharply till Nov 27, 2000 and drop afterwards. With a lag of one, about 18% of daily
range lie above 2.30 and they remain constant over time while the rest increase at
a decreasing rate and then drop. The US daily range has positive and significant
effects for all the four models except after Nov 27, 2000 and when the lag one daily
range is above 2.30.
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4.3 Model Selection

A natural way to compare models is to use a criterion that is based on the trade-off
between model fit and model complexity. For nonparametric inference, Chan et al.
[5] adopted the Penalized Mean Squares of Error (PMSE) measure that adds to the
MSE a term which penalizes the number of parameters as follow

PMSE = 2pk ln

(
n

∑
t=1

xt/n

)
+MSE

where

MSE =
1
n

n

∑
t=1

(xt − x̂t)
2, (15)

the penalized term in PMSE accounts for the scale of measurement Xt , the size of
data n and the number of parameters p estimated using the LSE method. The size
of constant k adjusts for the level of penalty. However the value of k can be quite
arbitrary and we set k = 0 to indicate that no penalty is applied.

Result show that MSEs drop consistently across the four models for all data. The
TLGP model shows the best MSE and hence is chosen to be the best model. Re-
sult shows that a small portion of daily range should adopt a separate model with
larger mean and variance in response to previous changes. Trends in mean and vari-
ance over time for the TLGP model can be viewed in Figures 1(b),(c) to 4(b)(c).
Specifically, Figures 1(c) to 4(c) give the bounds for the lower and upper fitted daily
range which are two standard deviation from the mean when the variance is calcu-
lated using (8). These intervals called the predictive intervals show a noncoverage of
4.9%, 18.9%, 12.3% and 7.4% respectively for the four regions. Their σ2

l estimates
are (0.430,0.943), (0.232,0.588), (0.112,0.236) and (0.502,1.214) respectively. Note
that the proportions need not be close to 5% because we do not have the normality
assumption. Higher proportions indicate that the data are more volatile.

Obviously the upper-level model has a wider predictive interval than that of the
lower-level model. However such difference often lessens over time as the daily
range become less volatile over the measurement period. Hence the predictive in-
tervals for both lower- and upper-level models become shorter over time. This is
particularly the case for the daily range of N225 and TWII.

4.4 Forecasting

Forecasting is one of the main objectives for model fitting. Twenty day forecasts
from Jan 2, 2007 are performed for the four regions using the chosen TLGP
model. The MSEs during the forecasting period are 0.280, 0.453, 0.070 and 0.134
respectively and they are all less than the fitted MSEs in Tables 1-4 except the daily
range of HSI which exhibit high volatility. The lower MSEs for regions other than
HK are probably due to the low level of daily range during the forecasting period so
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Table 1 Parameter estimates with standard errors in parenthesis and model assessment mea-
sures for the N225 data

Threshold Mean parameter Ratio parameter
thres. intercept US. intercept time

Model T2 or W2 βμ0l βμ1l βa0l ×103 βa1l×103 MSE

C 0.4432∗ 0.1297∗ 0.2654∗ 0.5003
( 0.0315 ) ( 0.0103 ) ( 0.0261 )

R 0.3066∗ 0.1205∗ -2.2730∗ 0.3420∗ 0.4928
( 0.0434 ) ( 0.0107 ) ( 0.5252 ) ( 0.0707 )

T t < 1059 0.4218∗ 0.1137∗ 0.0947∗ 0.4751
( 0.0337 ) ( 0.0109 ) ( 0.0405 )

t ≥ 1059 -0.2977 0.2165∗ -0.6694∗
( 0.2254 ) ( 0.0653 ) ( 0.1492 )

L xt−3 < 2.69 0.2336∗ 0.1263∗ -2.4985∗ 0.3680∗ 0.4688
( 0.0499 ) ( 0.0132 ) ( 0.5721 ) ( 0.0768 )

xt−3 ≥ 2.69 0.8208∗ 0.0674∗ 0.7512 -0.0774
( 0.0916 ) ( 0.0202 ) ( 1.1761 ) ( 0.1598 )

* Parameter is significant at 5% significant level.

Fig. 1(a) Observed and fitted N225 daily range using TTGP model

that all data adopt the lower-level model. For the daily range of HSI, about 65% of
data adopt the upper-level model. Noncoverage of the predictive intervals are 0.10,
0.50, 0.00 and 0.10 respectively for the four regions, showing satisfactory forecast-
ing performance except the HSI daily range. Indeed, forecasting performance can
be improved using a more predictive risk variable.
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Fig. 1(b) Observed and fitted N225 daily range using TLGP model

Fig. 1(c) Observed, fitted lower and upper N225 daily range within 2 sd using TLGP model
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Table 2 Parameter estimates with standard errors in parenthesis and model assessment mea-
sures for the HSI data

Threshold Mean parameter Ratio parameter
thres. intercept US. intercept time

Model T2 or W2 βμ0l βμ1l βa0l ×103 βa1l ×103 MSE

C 0.7278∗ 0.0572∗ 0.6684∗ 0.3619
( 0.0347 ) ( 0.0133 ) ( 0.0313 )

R 0.9063∗ 0.0696∗ 4.3482∗ -0.4997∗ 0.3465
( 0.0409 ) ( 0.0132 ) ( 0.4947 ) ( 0.0670 )

T t < 764 0.7772∗ 0.0929∗ 1.1301∗ 0.3424
( 0.0358 ) ( 0.0135 ) ( 0.0686 )

t ≥ 764 0.3354∗ -0.0192 0.6111∗
( 0.1383 ) ( 0.0478 ) ( 0.0957 )

L xt−5 < 1.60 0.7421∗ 0.0132 1.9865∗ -0.1933 0.3355
( 0.0841 ) ( 0.0235 ) ( 0.9027 ) ( 0.1192 )

xt−5 ≥ 1.60 0.8950∗ 0.0967∗ 4.5496∗ -0.5372∗
( 0.0513 ) ( 0.0132 ) ( 0.7749 ) ( 0.1092 )

* Parameter is significant at 5% significant level.

Fig. 2(a) Observed and fitted HSI daily range using TTGP model
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Fig. 2(b) Observed and fitted HSI daily range using TLGP model

Fig. 2(c) Observed, fitted lower and upper HSI daily range within 2 sd using TTGP model
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Table 3 Parameter estimates with standard errors in parenthesis and model assessment mea-
sures for the AORD data

Threshold Mean parameter Ratio parameter
thres. intercept US. intercept time

Model T2 or W2 βμ0l βμ1l βa0l ×103 βa1l ×103 MSE

C -0.5295∗ 0.2273∗ 0.0687 0.1463
( 0.0600 ) ( 0.0148 ) ( 0.0518 )

R -0.2122∗ 0.2350∗ 5.2465∗ -0.6899∗ 0.1357
( 0.0728 ) ( 0.0144 ) ( 0.8182 ) ( 0.1089 )

T t < 1260 -0.3708∗ 0.2247∗ 0.4329∗ 0.1315
( 0.0599 ) ( 0.0151 ) ( 0.0748 )

t ≥ 1260 -0.8151 0.4474∗ -0.6219∗
( 0.4974 ) ( 0.0964 ) ( 0.3168 )

L xt−3 < 1.33 -0.3155∗ 0.3181∗ 6.5713∗ -0.8733∗ 0.1232
( 0.0895 ) ( 0.0184 ) ( 0.9201 ) ( 0.1219 )

xt−3 ≥ 1.33 -0.1290 0.1302∗ 1.0083 -0.1312
( 0.1435 ) ( 0.0288 ) ( 1.8059 ) ( 0.2419 )

* Parameter is significant at 5% significant level.

Fig. 3(a) Observed and fitted AORD daily range using TTGP model
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Fig. 3(b) Observed and fitted AORD daily range using TLGP model

Fig. 3(c) Observed, fitted lower and upper AORD daily range within 2 sd using TLGP model
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Table 4 Parameter estimates with standard errors (in italics) and model assessment measures
for the TWII data

Threshold Mean parameter Ratio parameter
thres. intercept US. intercept time

Model T2 or W2 βμ0l βμ1l βa0l ×103 βa1l ×103 MSE

C 0.9190∗ 0.0382∗ 0.5927∗ 0.7170
( 0.0285 ) ( 0.0110 ) ( 0.0241 )

R 0.7933∗ 0.0299∗ -1.9257∗ 0.3423∗ 0.7073
( 0.0372 ) ( 0.0112 ) ( 0.4582 ) ( 0.0622 )

T t < 211 0.4316∗ 0.1005∗ -2.6725∗ 0.6863
( 0.0634 ) ( 0.0187 ) ( 0.3378 )

t ≥ 211 0.8727∗ 0.0198 0.6715∗
( 0.0400 ) ( 0.0137 ) ( 0.0329 )

L xt−1 < 2.30 0.6374∗ 0.0397∗ -1.8549∗ 0.3176∗ 0.7060
( 0.0452 ) ( 0.0150 ) ( 0.4987 ) ( 0.0677 )

xt−1 ≥ 2.30 1.0889∗ -0.0010 -0.5150 0.1433
( 0.0558 ) ( 0.0156 ) ( 0.8797 ) ( 0.1238 )

* Parameter is significant at 5% significant level.

Fig. 4(a) Observed and fitted TWII daily range using TTGP model
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Fig. 4(b) Observed and fitted TWII daily range using TLGP model

Fig. 4(c) Observed, fitted lower and upper TWII daily range within 2 sd using TLGP model

5 Conclusion

In this paper, we generalize the GP models to financial time series with different fea-
tures and propose four extended GP models to allow for these features. The extended
GP models show distinct trend movements, identify significant covariate effects and
detect threshold times and threshold levels that indicate shift of models. Moreover
the models allow variance to change over time and forecasts are simple and straight
forward. Adopting the LS method, model implementation is also greatly simplified.

Four extended GP models including the AGP model with separate linear function
of covariates for the mean μt and ratio at , the TTGP models with threshold times
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and the TLGP model with threshold levels are proposed and applied to analyze the
intra-day price range from four stock markets of four Asian cities and countries.
Result shows that the TLGP model is the best model. The model identifies signif-
icant trend movements and covariate effects. Noncoverages of predictive intervals,
which are two standard deviations from either sides of the mean, range from 5% to
19%. Twenty day forecasts show reasonable MSEs and noncoverages of predictive
intervals. The only exception is the daily range of HSI which are much more volatile
during the forecasting period. In summary, the proposed GP models are simple, easy
to implement and give reliable estimates of the mean and volatility.
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Residual Based Cusum Test for Parameter
Change in AR-GARCH Models

Sangyeol Lee and Jiyeon Lee

Abstract. In this paper we consider the problem of testing for a parameter change
in AR(1)-GARCH(1,1) models based on the residual cusum test. It is shown that
the limiting distribution of the residual cusum test statistic is the sup of a Brow-
nian bridge. Through a simulation study, it is demonstrated that the proposed test
performs adequately. A real data analysis is provided for illustration.

1 Introduction

Since Page (1955), the problem of testing for a parameter change has been an im-
portant issue in economics, engineerin and medicine, and a vast number of articles
have been published in various research areas. For earlier work, we refer to Csörgő
and Horváth (1997). The change point problem has drawn much attention from
many researchers in time series analysis since time series often suffer from struc-
tural changes owing to changes of policy and critical social events. It is well known
that detecting a change point is a crucial task and ignoring it can lead to a false
conclusion: see, for example, Hamilton (1994), page 450.

The GARCH model has long been popular in financial time series analysis. Inclán
and Tiao’s (1994) cumulative sum (cusum) test was originally designed for testing
for variance changes and allocating their locations in iid samples. Later, it is demon-
strated that the same idea can be extended to various time series models such as
ARMA-GARCH, ARCH regression, Poisson GARCH, multivariate GARCH mod-
els, tail indices, and diffusion processes: see Lee and Park (2001), Lee, Ha, Na and
Na (2003), Lee, Tokutsu and Maekawa (2004), Lee, Nishiyama and Yosida (2006),
Lee and Song (2008), Kang and Lee (2009), Kim and Lee (2009), and Na, Lee and
Lee (2012, 2013). See also the papers cited therein for a general review.

The cusum test is designed based on checking the discrepancy between the se-
quentially obtained estimators and the one obtained from the whole observations.
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This estimates-based approach performs well in many situations but has been proven
to suffer from severe size distortions and low powers in GARCH type models. Par-
ticularly, Song and Lee (2008) studied the change point problem in ARMA-GARCH
models without conducting a simulation study. Lee, Tokutsu and Maekawa (2004)
made an effort to overcome the defect by considering the cusum test based on resid-
uals and demonstrated its validity. A simulation study therein illustrated that the
residual based test discards correlation effects and much improves the performance
of the test. However, their simulation study was restricted to the pure GARCH model
case and there has been a demand to investigate the performance of the cusum test
in more general GARCH type models. Motivated by this, we study the residual
based cusum test in ARMA-GARCH models since they are widely used in practice.
Special attention is paid to AR(1)-GARCH(1,1) models for simplicity although our
method could be extended to general ARMA-GARCH models.

The organization of this paper is as follows. In Section 2, we introduce the resid-
ual cusum test and show that its limiting distribution is the sup of a Brownian bridge.
In Section 3, we perform a simulation study and conduct a real data analysis. Finally,
in Section 4, we provide concluding remarks.

2 Residual Based Cusum Test

Suppose that {yt} satisfies the following equation:

yt = φyt−1 + εt

εt = ht ·ξt

h2
t = ω+αε2

t−1 +βh2
t−1, (1)

where ξt are iid random variables with zero mean and unit variance, φ is a real
number in (−1, 1), and ω ,α,β are nonnegative real numbers with α +β < 1. We
assume that E|εt |4+δ < ∞ and E|ξt |4+δ < ∞ for some δ > 0.

Given the observations y1, . . . ,yn, our objective is to test the following hypothe-
ses:

H0 : θ = (ω ,α,β ) remains the same for the whole series. vs.
H1 : not H0.

For a test, as in Lee et al. (2004), we consider the cusum test based on residuals{
ξ̂ 2

t

}
obtained from equation (1) such as

T̃n :=
1√
nτ̂

max
q+1≤k≤n

∣∣∣∣∣
k

∑
t=q+1

ξ̂ 2
t −

k− q
n− q

n

∑
t=q+1

ξ̂ 2
t

∣∣∣∣∣ , (2)

where τ̂2 is an estimator of τ2= Var
(
ξ 2

t

)
, q is a positive integer, and ξ̂ 2

t = (yt −
φ̂yt−1)

2/ĥ2
t , which are obtained by estimating the unknown parameters φ ,ω ,α,β .

These estimators play an important role to detect changes in the GARCH parameters
in the presence of changes, while the iid property of the true errors remains when
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no change occurs. From this reasoning, one can anticipate that the residual cusum
test should be more stable and produce better powers.

Now, we construct the residual cusum test. Similarly to

h2
t = a+α

∞

∑
j=0

β jε2
t−1− j,

we define

ĥ2
t = â+ α̂

qn−1

∑
j=0

β̂ j ε̂2
t−1− j,

where a =
ω

1−β , ε̂t = yt − φ̂yt−1, and φ̂ , â, α̂ , β̂ are the estimators based on

y1, . . . ,yn for φ , a, α , β with

√
n
(
φ̂ −φ

)
= OP (1) ,

√
n(â− a) = OP (1) ,

√
n(α̂−α) = OP (1) ,

√
n
(
β̂ −β

)
= OP (1) (3)

under the null hypothesis, and qn is a sequence of positive integers such that qn→∞
and qn/n → 0 as n → ∞. In practice, one can either employ the quasi maximum
likelihood estimators (QMLEs) as in Lee and Song (2008) or two-step estimators,
namely, one first estimates φ by the least squares method and then estimate the
GARCH parameters based on the least squares residuals. It is noteworthy that our
cusum test is not suitable to detect the change of the autoregressive parameter φ ,
and further, a change of φ does not much affect the performance of the cusum test.
The following is a main result of this section.

Theorem 1. Let

T̂n :=
1√
nτ̂

max
qn+1≤k≤n

∣∣∣∣∣
k

∑
t=qn+1

ξ̂t
2− k− qn

n− qn

n

∑
t=qn+1

ξ̂t
2
∣∣∣∣∣ , (4)

where τ̂2 =
1

n− qn

n
∑

t=qn+1
ξ̂t

4−
(

1
n− qn

n
∑

t=qn+1
ξ̂t

2
)2

. Then if nρ2qn → 0 for all ρ ∈
|0,1), under H0,

T̂n
d→ sup

0≤u≤1

∣∣∣∣
0
B (u)

∣∣∣∣ , n→ ∞,

where
0
B denotes a Brownian bridge, namely,

0
B is a Gaussian process on [0,1] with

mean zero and Cov(
0
B(s),

0
B(t)) = s∧ t− st for all s, t ∈ [0,1].

Remark. A typical example of qn is [(logn)ζ ] with ζ > 1. The proof below is similar
to that of Theorem 1 of Lee et al. (2004) and is presented without detailing all
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algebras. However, in our proof, we do not need their (A4), since this condition
may be violated in our case, so that our proof is a lot simpler than the original one.
The above theorem may be generalized to ARMA-GARCH models without serious
troubles. We leave this as a task of our future study.

Proof. We decompose ξ̂ 2
t into A1t +A2t +A3t , where

A1t = ξ 2
t ·

h2
t

ĥ2
t

, A2t =
2εt yt−1(φ − φ̂)

ĥ2
t

, A3t =
ε2

t y2
t−1(φ − φ̂)2

ĥ2
t

.

We first deal with A1t . We express

A1t = ξ 2
t +

(
h2

t

ĥ2
t

− 1

)
·ξ 2

t = ξ 2
t +Bt +Ct ,

where

Bt =
h2

t − ĥ2
t

h2
t

·ξ 2
t and Ct =

(
h2

t − ĥ2
t

)2

h2
t · ĥ2

t

·ξ 2
t .

We first show that

1√
n

max
qn+1≤k≤n

∣∣∣∣∣
k

∑
t=qn+1

Bt − k− qn

n− qn

n

∑
t=qn+1

Bt

∣∣∣∣∣= oP (1) . (5)

Note that

h2
t − ĥ2

t = (a− â)+ (α− α̂)
qn−1

∑
j=0

β jε2
t−1− j

+ α̂
qn−1

∑
j=0

β̂ j(ε2
t−1− j− ε̂2

t−1− j)

+ α̂
qn−1

∑
j=0

(
β j− β̂ j

)
ε2

t−1− j +α
∞

∑
j=qn

β jε2
t−1− j

:=
5

∑
i=1

Bit/
(
ξ 2

t /h2
t

)
. (6)

To show (5) with Bt replaced by B4t , we use the invariance principle for the strong
mixing process: see Carrasco and Chen (2002) and Theorem 1.7 of Peligrad (1986)
and follow the arguments in the proof of argument (6) of Lee et al. (2004). In a

similar fashion, one can readily show that (5) with Bt replaced by
3
∑

i=1
Bit is oP (1).

Then, (5) follows from the fact E

[
1√
n

n
∑

t=qn+1
|B5t |

]
= O(

√
nβ qn) = o(1).
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Now, we prove

1√
n

max
qn+1≤k≤n

∣∣∣∣∣
k

∑
t=qn+1

Ct −
(

k− qn

n− qn

) n

∑
t=qn+1

Ct

∣∣∣∣∣= oP (1) . (8)

In view of (6), we have that

Ct � d
5
∑

i=1
B2

it/ĥ2
t for some d > 0.

It is easy to see that
1√
n

n
∑

t=qn+1

4
∑

i=1
B2

it/ĥ2
t = oP (1). Since

1√
n

n
∑

t=qn+1
B2

5t = OP(√
nβ 2qn

)
, (8) follows. Combining (5) and (8), we have

1√
n

max
qn+1≤k≤n

∣∣∣∣∣
k

∑
t=qn+1

A1t−
(

k− qn

n− qn

) n

∑
t=qn+1

A1t

∣∣∣∣∣

− 1√
n

max
q+1≤k≤n

∣∣∣∣∣
k

∑
t=qn+1

ξ 2
t −

(
k− qn

n− qn

) n

∑
t=qn+1

ξ 2
t

∣∣∣∣∣= oP (1) . (9)

Meanwhile, in a similar fashion to the above, one can show that

1√
n

max
qn+1≤k≤n

∣∣∣∣∣
k

∑
t=qn+1

Ait −
(

k− qn

n− qn

) n

∑
t=qn+1

Ait

∣∣∣∣∣= oP (1) , i = 2,3, (10)

where we have used Donsker’s invariance principle for the partial sum process of
martingale differences yt−1ξt in dealing with A2t , while we only used the moment
condition and stationarity in dealing with A3t . Further, we can easily verify that

τ̂2 P→ τ2. Hence, it follows from (9) and (10) that T̂n−Tn = oP (1), where

Tn =
1√
nτ

max
qn+1≤k≤n

∣∣∣∣∣
k

∑
t=qn+1

ξ 2
t −

k− qn

n− qn

n

∑
t=qn+1

ξ 2
t

∣∣∣∣∣ ,

and the theorem follows from Donsker’s invariance principle (cf. Billingsley
(1999)). This completes the proof. �

3 Empirical Study

3.1 Simulation Study

In this section, we evaluate the performance of the test statistic T̂n through a simula-
tion study. In this simulation we perform a test at nominal level 0.05. The empirical
sizes and power are calculated as the rejection number of the null hypothesis out of
1000 repetitions.
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In order to see the performance of T̂n, we consider the model

yt = φyt−1 + ht ·ξt

h2
t = ω+αy2

t−1 +βh2
t−1,

where y0 is assumed to be 0 and {ξt} are iid standard nomal random variables. Now
we consider the problem of test the following hypotheses:

H0 : θ = (ω ,α,β ) are constant during the time t = 1, · · · ,n. vs.
H1 : θ changes to θ ′ = (ω ′,α ′,β ′) at n/2.

Here we evaluate T̂n with sample sizes n = 500,800,1000,2000 and use qn =[
(logn)3/2

]
. The empirical sizes and powers are summarized in Tables 1-3.

Tables 1-3 show that T̂n has no severe size distortions in most cases. It can be seen
that when α+β is close to 1 (see Tables 2 and 3), T̂n exhibits some size distortions
for small sample sizes. In fact, the empirical size gets very close to the nominal level

0.05 as n increases in all the cases. As mentioned earlier, this is because ξ̂ 2
t behaves

asymptotically like iid ξ 2
t , unaffected by the GARCH parameters. Meanwhile, we

can see that the powers are more than 0.9 at the sample size 2000. Generally, the
cusum test in GARCH models requires a much larger sample size to make an accu-
rate inference compared to the iid sample case. It seems that the GARCH data with
volatility makes it harder to identify small changes. All these results indicate that T̂n

performs adequately for the GARCH parameter change test.

Table 1 (φ ,ω,α,β ) = (0.3,0.5,0.2,0.2)

(φ ′,ω ′,α ′,β ′ ) n = 500 n = 800 n = 1000 n = 2000
size 0.059 0.058 0.057 0.055

(0.3,3.0,0.2,0.2) 0.564 0.743 0.790 0.978
(0.3,0.5,0.6,0.2) 0.768 0.912 0.962 0.999
(0.3,0.5,0.2,0.6) 0.938 0.984 0.997 1.000
(0.3,3.0,0.6,0.2) 0.386 0.604 0.713 0.948

Table 2 (φ ,ω,α,β ) = (0.3,0.1,0.4,0.4)

(φ ′,ω ′,α ′,β ′ ) n = 500 n = 800 n = 1000 n = 2000
size 0.067 0.065 0.059 0.056

(0.3,0.4,0.4,0.4) 0.989 1.000 1.000 1.000
(0.3,0.1,0.1,0.4) 0.350 0.663 0.859 1.000
(0.3,0.1,0.4,0.1) 0.504 0.873 0.965 1.000
(0.3,0.4,0.1,0.1) 0.443 0.604 0.653 0.902



Residual Based Cusum Test for Parameter Change in AR-GARCH Models 107

Table 3 (φ ,ω,α,β ) = (0.3,0.1,0.2,0.7)

(φ ′,ω ′,α ′,β ′ ) n = 500 n = 800 n = 1000 n = 2000
size 0.071 0.057 0.054 0.057

(0.3,0.4,0.2,0.7) 0.797 0.973 0.993 1.000
(0.3,0.1,0.2,0.2) 0.242 0.523 0.763 1.000
(0.3,0.1,0.1,0.7) 0.138 0.246 0.431 0.941
(0.3,0.4,0.7,0.2) 0.474 0.616 0.685 0.907

Fig. 1 Plot of daily JPY/USD data
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3.2 Real Data Analysis

In this section, we apply our test to the foreign exchange rate(JPY/USD) data. The
data is a daily log return of the JPY/USD exchange rate from Nov 1, 2007 to Feb
29, 2009 with 486 observations. Based on the SACF, SPACF, AIC and BIC re-
sults, we fit the AR(1) model to the data. Moreover, Figures 1 and 2 show that the
returns have some volatility clustering phenomenon. By examining the Ljung-Box
and LM-ARCH tests, it is revealed that the GARCH(1,1) model is reasonable to this
series. From this, the AR(1)-GARCH(1,1) model in (1) is fitted to the data and the
QMLE for the parameter is obtained as (φ̂ , ω̂ , α̂ , β̂ ) = (0.293,0.011,0.085,0.888).

Fig. 2 Plot of daily log return JPY/USD data
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To test H0, we use qn =
[
(logn)3/2

]
and the critical value 1.342 at the nominal

level 0.05 (see the horizon line in Figure 3). As seen in Figure 3, the T̂n,k plot with

T̂n,k =
1√
nτ̂

∣∣∣∣∣
k
∑

t=qn+1
ξ̂ 2

t −
k− qn

n− qn

n
∑

t=qn+1
ξ̂ 2

t

∣∣∣∣∣ shows that the maximum value of T̂nk is

1.43 at Sep, 4, 2008 (see the vertical line in Figures 1-3). The QMLE for the data
in the first period from Nov 1, 2007 to Sep, 4, 2008 is obtained as (φ̂1, ω̂1, α̂1, β̂1)
= (0.291,0.022,0.071,0.830) and the QMLE for data in the second period from Sep,
5, 2008 to Feb 29, 2009 is obtained as (φ̂2, ω̂2, α̂2, β̂2) = (0.278,0.017,0.051,0.922).
The above results indicate that the GARCH parameters experience a significant
change.

Fig. 3 Plot of T̂nk
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4 Concluding Remarks

In this paper, we proposed a residual based cusum test and derived that the test
statistic is asymptotically distributed as the sup of a Brownian bridge under regular-
ity conditions. This paper was motivated to overcome the drawbacks of the estimates
based cusum test. The simulation result showed that our test performs adequately
and a real data analysis was illustrated. Overall, it is believed that our test is a func-
tional tool for testing for a paramter change in AR(1)-GARCH(1,1) models. We
anticipate that the residual cusum test can be extended to other type of GARCH
models. We leave the task of extension as our future study.

Acknowledgements. We would like to thank the referee for his careful reading. This work
was supported by the National Research Foundation of Korea(NRF) grant funded by the
Korea government(MEST) (No. 2012R1A2A2A01046092).
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Dependence and Association Concepts through
Copulas

Zheng Wei, Tonghui Wang�, and Wararit Panichkitkosolkul

Abstract. In this paper, dependence concepts such as affiliation, left-tail decreas-
ing, right-tail increasing, positively regression dependent, and positively quadrant
dependent are studied in terms of copulas. Relationships among these dependent
concepts are obtained. An affiliation is a notion of dependence between two posi-
tively dependent random variables and some measures of it are provided. It has been
shown that the affiliation property is preserved using bilinear extensions of subcop-
ula. As an application, the affiliation property of skew-normal copula is investigated.
For illustration of dependent concepts and their relationships, several examples are
given.

1 Introduction

With the rapid development of mathematical finance and risk management in the
last two decades, more and more attention has been paid to creating some practi-
cal statistical models beyond normal settings to improve competitive performance
in finance and insurance fields. The copula is one of the most important models
used in mathematical finance. Specifically, copulas, introduced in [25], are used to
model multivariate data as they account for the dependence structure and provide
a flexible representation of the multivariate distribution. Copulas are multivariate
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distributions with [0,1]-uniform marginal, which contain the most multivariate de-
pendence structure properties and do not depend on the marginals. For references,
see [10], [7], [20], and [22].

In analysis of auction theory, valuations of different bidders (modeled as random
variables) could be affiliated. In similar situations in econometrics, when depen-
dence of random variables is a concern, the theory of affiliated copulas, which will
be defined in next section, offers an appropriate approach. Recently, Rinotta and
Scarsini studied the total positivity order for multivariate normal distributions in
[20]. The importance of the affiliation properties in application of auction theory
can be found in [14], [4], [19], [24] and [21].

As an extension of normal settings, multivariate skew normal distributions are
widely used in almost all fields for almost three decades. For references on skew
normal distributions, see [1], [2], [8], and many other papers listed in the website
of Azzalini [3]. The concept of affiliation on the class of multivariate skew normal
family has not been investigated in the literature.

This paper is organized as follows. Dependence and association concepts as well
as their relationships are obtained in Section 2. Bilinear extension method of a two
dimensional subcopula together with their affiliation property is studied in Section
3. Average and local measures of affiliation are provided with several examples in
Section 4. Conditions under which the bivariate skew-normal copulas are affiliated
are discussed in Section 5.

2 Basic Concepts

Following the notions of [25], we have definition of affiliation.

Definition 1. The random variables X and Y are said to be affiliated (or positively
likelihood ratio dependent(PLRD)) if

h(x,y∗)h(x∗,y)≤ h(x,y)h(x∗,y∗) (1)

holds for all x∗ ≤ x and y∗ ≤ y, where h(·, ·) is the joint density function of (X ,Y ).

Recall that a copula C is a function C(·, ·) : [0,1]2 → [0,1] satisfying
(i) C(u,0) =C(0,v) = 0, for u,v ∈ [0,1],
(ii) C(u,1) = u,C(1,v) = v, for u,v ∈ [0,1], and
(iii) For any (u,v)≤ (u′,v′), C(u′,v′)−C(u,v′)−C(u′,v)+C(u,v)≥ 0.

Sklar’s theorem states that if H is the joint distribution of (X ,Y ), then there is
a copula C such that H(x,y) = C(F(x),G(y)) for (x,y) ∈ R2. Copula character-
izes dependence structures and dependence measures which is also independent
of marginal distributions. It can be viewed as a joint distribution of two random
variables U and V located on [0,1]. Motivated by this, we give the corresponding
affiliation definition for a copula as follows.

Definition 2. A copula C(u,v) is said to be affiliated if

c(u,v∗)c(u∗,v)≤ c(u,v)c(u∗,v∗) (2)
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holds for all u∗ ≤ u and v∗ ≤ v, where c(·, ·) is the joint density corresponding to

copula C(u,v) with c(u,v) = ∂ 2C(u,v)
∂u∂v .

Remark. It is true that the random variables X and Y are affiliated if and only if
their corresponding copula is affiliated. Indeed, suppose X and Y are affiliated. Let
h(x,y) and c(u,v) be the corresponding density function and copula density, respec-
tively. Then h(x,y) = c(F(x),G(y)) f (x)g(y), where F(x) and G(y) are cumulative
distribution functions (CDF) of X and Y , respectively. Since X and Y are affiliated,
by definition,

h(x,y∗)h(x∗,y)≤ h(x∗,y∗)h(x,y), x∗ ≤ x,y∗ ≤ y,

which is equivalent to

c(F(x),G(y∗)) f (x)g(y∗)c(F(x∗),G(y)) f (x∗)g(y)
≤ c(F(x∗),G(y∗)) f (x∗)g(y∗)c(F(x),G(y)) f (x)g(y),

which is reduced to

c(F(x),G(y∗))c(F(x∗),G(y))≤ c(F(x∗),G(y∗))c(F(x),G(y)).

Since both F and G are distribution functions and therefore non-decreasing, for any
u∗ ≤ u,v∗ ≤ v, let x∗ = F−1(u∗),x = F−1(u) and y∗ = G−1(v∗),y = G−1(v), where
F−1(u) = inf{x ∈ R|F(x)≥ u}. Therefore

c(u,v∗)c(u∗,v)≤ c(u∗,v∗)c(u,v).

The converse relation can be proved similarly. �

For the connection between affiliation property and positively quadrant depen-
dence (PQD), let us recall the definition of PQD given below.

Definition 3. A copula C : [0,1]× [0,1] �→ [0,1] is said to be positively quadrant
dependent if C(u,v)≥ uv holds for all u,v.

The following Lemma of [10] will be used in the proof of our next result.

Lemma 1. Let H(x,y), F(x), and G(y) be the joint, and marginal CDFs of X and
Y , respectively. If X and Y are positively quadrant dependent, then

H(x,y) = F(x)G(y)+w(x,y) x,y ∈R (3)

with w(x,y) satisfying the following conditions:
(i) w(x,y) ≥ 0 for all x and y,
(ii) w(x,∞) = w(∞,y) = w(x,−∞) = w(−∞,y) = 0, for all x and y, and

(iii) ∂ 2w(x,y)
∂x∂y ≥ 0.

Recall that a function w(u,v) is totally positive of order-2 (TP2) if
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w(u′,v)w(u,v′)≤ w(u′,v′)w(u,v) for all u′ ≤ u,v′ ≤ v.

Also w(u,v) is said to be 2-increasing if

w(u′,v′)+w(u,v)−w(u′,v)−w(u,v′)≥ 0 for all u′ ≤ u,v′ ≤ v.

Using above lemma, it is easy to prove the similar result given below.

Proposition 1. If a copula C(u,v) can be written as

C(u,v) = uv+W(u,v) for all u and u,

where W (u,v) satisfying the following conditions:
(i) W (u,v)≥ 0,
(ii) W (u,1) =W (1,v) =W (u,0) =W (0,v) = 0,

(iii) ∂ 2W (u,v)
∂v∂u ≥−1,

(iv) ∂ 2W (u,v)
∂v∂u is a function with TP2 property and is 2-increasing, then the copula C

is affiliated.

Note that if we let W (u,v) = C(u,v)− uv, then by Theorem 1 below, we know
that C(u,v) is affiliated implies it is PQD, then by Lemma 1, conditions (i), (ii), and
(iii) hold for W , but (iv) does not necessarily hold.

Example 2.1. For the CDF of Farlie-Gumbel-Morgenstern bivariate distribution [8]:

F(x,y) = FX(x)FY (y)[1+ρ(1−FX(x))(1−FY (y))], −1≤ ρ ≤ 1,

the corresponding copula is C(u,v) = uv[1+ρ(1− u)(1− v)],−1≤ ρ ≤ 1. By the
remark after Definition 2, it is easy to see Farlie-Gumbel-Morgenstern family is
affiliated for 0≤ ρ ≤ 1. �

In order to show that affiliation implies PQD, we need the following definition.

Definition 4. The random variable Y is said to be positively regression dependent
in X , denoted by PRD(Y |X), if P(Y ≤ y|X = x) is non-increasing in x for all y. Y
is said to be left-tail decreasing in X , denoted by LT D(Y |X), if P(Y ≤ y|X ≤ x) is
non-increasing in x for all y.

Corresponding to copulas, we have the following definition.

Definition 5. The random variable V in C is said to be positively regression de-
pendent in U, denoted by PRD(V |U), if pu(u,v) is non-increasing in u for all v,

where pu(u,v) =
∂C(u,v)
∂u . V in C is said to be left-tail decreasing in U, denoted by

LTD(V |U), if C(u,v)
u is non-increasing in u for all v.

Proposition 2. The following result gives the relationship between X and Y and
their corresponding U and V .

(i) The random variables X and Y are positively regression dependent in X if and
only if V in the corresponding copula C(u,v) is positively regression dependent in
U.
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(ii) The random variables X and Y are left-tail decreasing in X if and only if V
in the corresponding copula C(u,v) is left-tail decreasing in U.

(iii) The random variables X and Y are PQD if and only if U and V in the corre-
sponding copula C(u,v) are PQD.

Proof. We prove (i) and (ii) only, and the proof of (iii) is trivial. For (i), suppose Y
is Positively regression dependent in X . Let Hy|x(y|x) be the conditional CDF of Y
given X = x. By definition, it is non-increasing in x. Also

Hy|x(y|x) =
y∫

−∞
hy|x(t|x)dt =

y∫
−∞

h(x, t)
f (x)

dt =

y∫
−∞

∂
∂ t

(
∂C(F(x),G(t))

∂x

)
1

f (x)
dt

=

y∫
−∞

∂
∂ t

pu(F(x),G(t))dt = pu(F(x),F(y))− pu(F(x),0)

= pu(F(x),G(y)).

Since both F,G are distribution functions and therefore non-decreasing, so that,
Hy|x(y|x) is non-increasing in x if and only if pu(u,v) is non-increasing in u.

(ii) Let Y is Left-tail decreasing in X , by definition, P(Y ≤ y|X ≤ x) = H(x,y)
F(x) is

non-increasing in x. Since both F,G are distribution functions and therefore non-
decreasing, so that, LT D(Y |X) if and only if LTD(V |U). �

Theorem 1. Let C : [0,1]× [0,1] �→ [0,1] be a copula, then the following implica-
tions are true.

Affiliation ⇒ PRD(V |U) ⇒ LTD(V |U) ⇒ PQD.

Proof. Suppose that U and V are affiliated.
To show it implies PRD(V |U), for any u∗ < u,v∗ < v, we have, by definition,

c(u,v∗)c(u∗,v)≤ c(u,v)c(u∗,v∗) ⇒ C(v|u)
c(u|v) ≤

C(v|u∗)
c(u|v∗) .

Let G(v|u) = c(v|u)
C(v|u) , then we have G(v|u)≥G(v|u∗) for all u∗ < u,v∗ < v. Note that

G(u|v) = ∂ ln(C(v|u))
∂v . We obtain

1− ln(C(v|u)) =
1∫

v

G(t|u)dt ≥
1∫

v

G(t|u∗)dt = 1− ln(C(v|u∗)).

Thus, C(v|u∗)≥C(v|u) for u∗ < u, which implies PRD(V |U).
For PRD(V |U)⇒ LTD(V |U), we need the fact that for any interval I ⊆ [0,1],
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P(V > v|U ∈ I) =

∫
I

P(V > v|U = u)dP(U ≤ u)

P(U ∈ I)
.

LTD(V |U) is equivalent to the Pr(V > v|U ≤ u) is non-decreasing in u for all v,
which, in turn, is equivalent to

P(V > v|U ≤ u)≥ P(V > v|U ≤ u∗)

for u∗ < u and all v. This is also equivalent to P(V > v|u∗ <U ≤ u)≥ P(V > v|U ≤
u∗), for all u > u∗. Note that,

P(V > v|u∗ <U ≤ u) =

u∫
u∗

P(V > v|U = u)dP(U ≤ u)

P(u∗ <U ≤ u)

≥
P(V > v|U = u∗)

u∫
u∗

dP(U ≤ u)

P(u∗ <U ≤ u)
= P(V > v|U = u∗)

≥

u∗∫
−∞

P(V > v|U = u)dPr(U ≤ u)

P(−∞<U ≤ u∗)
= P(V > v|U ≤ u∗),

which implies LTD(V |U).
For LT D(V |U)⇒ PQD, note that

P(V ≤ v|U ≤ u)≥ P(V ≤ v|U ≤ 1) = P(V ≤ v) = v, (4)

which is equivalent to C(u,v)≥ uv.
Note that the FGM-copula has properties PRD,LTD,PQD for 0≤ ρ ≤ 1. Several

counterexamples of the converse relations of Theorem 2.1 can be found in [25] and
[15].

3 Invariance of Affiliation of Subcopula through Bilinear
Interpolation

In this section, we are going to discuss the affiliation property of copula, which is
obtained from a subcopula through the method of bilinear interpolation.

Definition 6. A two-dimensional subcopula is a function C′ with the following
properties:

(a) Domain of C′ is S1×S2, where S1 and S2 are subsets of [0,1] containing 0 and
1,

(b) C′ is 2-increasing and C′(u,0) =C′(0,v) = 0,
(c) For every u in S1 and every v in S2, and

C′(u,1) = u and C′(1,v) = v.
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Also, any sub-copula can be extended to a copula, but the extension is generally
non-unique. Here we introduce one popular method called bilinear interpolation
[20]:

Definition 7. Let C′ be a sub-copula with domain S1 × S2, now for any (a,b) ∈
[0,1]2, let a1 and a2 be, respectively, the greatest and least elements of S1 that satisfy
a1 ≤ a≤ a2; and let b1 and b2 be, respectively, the greatest and least elements of S2

that satisfy b1 ≤ b ≤ b2, where S is the closure of set S . Note that if a is in S1, then
a1 = a = a2; and if b is in S2, then b1 = b = b2. Now let

λ =

{
a−a1
a2−a1

if a1 < a2

1 if a1 = a2

and

μ =

{
b−b1
b2−b1

if b1 < b2

1 if b1 = b2.

The copula C given by

C(a,b) = (1−λ )(1− μ)C′(a1,b1)+ (1−λ )μC′(a1,b2)+λ (1− μ)C′(a2,b1)

+λμC′(a2,b2),

is a well defined copula.

The following result shows that the invariance between a subcopula and its bilin-
ear interpolation of affiliation property.

Theorem 2. Let C′ be a sub-copula over S1 × S2, and C : [0,1]2 → [0,1] be the
copula, which is constructed by bilinear interpolation from C′.

(i) If C′ is affiliated, then C is also affiliated. Furthermore, if C′ is not affiliated,
then C is also not affiliated.

(ii) If C′ is PQD, then C is also PQD. Furthermore, if C′ is not PQD, then C is
also not PQD.

Proof. Let a < c,b < d. Suppose a1,a2,b1,b2,c1,c2,d1,d2 and λ1,μ1,λ2 and μ2 are
defined according to the method of bilinear interpolation.

Then

C(a,b) =
a2−a
a2−a1

b2−b
b2−b1

C′(a1,b1)+
a2−a
a2−a1

b−b2

b2−b1
C′(a1,b2)+

a−a2

a2−a1

b2−b
b2−b1

C′(a2,b1)

+
a−a2

a2−a1

b−b2

b2−b1
C′(a1,b1).

Then

c(a,b) =
∂ 2C(a,b)
∂a∂b

=
C′(a1,b1)−C′(a1,b2)−C′(a2,b1)+C′(a2,b2)

(a2− a1)(b2− b1)
.

To show (i), we shall consider the following cases,
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Case 1. suppose a1 = c1, a2 = c2, b1 = d1 and b2 = d2, in this case, c(a,b) =
c(c,d) = c(a,d) = c(c,b). Thus c(a,b)c(c,d)≥ c(a,d)c(c,b) holds.

Case 2. suppose a1 < c1, a2 < c2, b1 = d1 and b2 = d2. then we have c(a,b)= c(c,b)
and c(a,d) = c(c,d). Thus c(a,b)c(c,d)≥ c(a,d)c(c,b) holds.

Case 3. suppose a1 = c1, a2 = c2, b1 < d1 and b2 < d2, the proof follows from Case
1 and Case 2.

Case 4. suppose a1 < c1, a2 < c2, b1 < d1 and b2 < d2, then,

c(a,b)c(c,d) =
C′(a1,b1)−C′(a1,b2)−C′(a2,b1)+C′(a2,b2)

(a2− a1)(b2− b1)

×C′(c1,d1)−C′(c1,d2)−C′(c2,d1)+C′(c2,d2)

(c2− c1)(d2− d1)

=
c′(a2,b2)

(a2− a1)(b2− b1)

c′(c2,d2)

(c2− c1)(d2− d1)

≥ c′(a2,d2)

(a2− a1)(b2− b1)

c′(c2,b2)

(c2− c1)(d2− d1)

=
C′(a1,d1)−C′(a1,d2)−C′(a2,d1)+C′(a2,d2)

(a2− a1)(b2− b1)

×C′(c1,b1)−C′(c1,b2)−C′(c2,b1)+C′(c2,b2)

(c2− c1)(d2− d1)
= c(a,d)c(c,b),

Note that the inequality above holds because affiliation property of c′(u,v). There-
fore, c(a,b)c(c,d)≥ c(a,d)c(c,b) holds. This completes the proof of (i).

For (ii), assume that C′ is PQD, and for any a,b ∈ [0,1],

C(a,b) = (1−λ )(1−μ)C′(a1,b1)+(1−λ )μC′(a1,b2)+λ (1−μ)C′(a2,b1)+λμC′(a2,b2)

≥ (1−λ )(1−μ)a1b1 +(1−λ )μa1b2 +λ (1−μ)a2b1 +λμa2b2

= ab,

The last equality hold since (1−λ )a1+λa2 = a and (1−μ)b1+μb2 = b, therefore,
C is PQD as desired. �

Example 1. For the subcopula C and its mass function c given below:

�
��U

V 1/3 2/3 1

1/3 1/3 1/3 1/3
2/3 1/3 2/3 2/3
1 1/3 2/3 1

�
��U

V 1/3 2/3 1

1/3 1/3 0 0
2/3 0 1/3 0
1 0 0 1/3

it is easy to see that C is affiliated so that the corresponding copula constructed by
the bilinear extension is also affiliated.
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4 Average and Local Measures of Affiliations

Copula characterizes dependence structures and dependence measures. For exam-
ple, random variables X and Y are independent if and only if their corresponding
copula C(u,v) = uv. A measure of dependence indicates in some particular manner
how closely the random variables X and Y are related; Hence a variety of measures
are needed to reveal the nature of affiliation dependence. We review measures of an
affiliation discussed in [11]. Let T denote the average measure of the affiliation for
−∞< x1 < x2 < ∞ and −∞< y1 < y2 < ∞, that is,

T =

∞∫
−∞

∞∫
−∞

y2∫
−∞

x2∫
−∞

[h(x2,y2)h(x1,y1)− h(x1,y2)h(x2,y1)]dx1dy1dx2dy2.

Also, it could be defined as average measure for affiliation of copula,

TC =

1∫
0

1∫
0

v2∫
0

u2∫
0

[c(u2,v2)c(u1,v1)− c(u1,v2)c(u2,v1)]du1dv1du2dv2.

After some calculation, we can get 1
2τ = T , where τ is Kendall’s τ(See [17]).

For discrete copula, we give the following discrete average measure,

TC =
n

∑
i=0

m

∑
j=0

i

∑
k=0

j

∑
l=0

[c(uk,vl)c(ui,v j)− c(ui,vl)c(uk,v j)]. (5)

Holland and Wang[5, 6] defined the local dependence index for affiliation as

γ(x,y) =
∂ 2 logh(x,y)

∂x∂y
.

Also, it can be defined for copula

γ(u,v) =
∂ 2 logc(u,v)

∂u∂v
.

We list several properties of this local measure of affiliation:

(i) −∞< γ(u,v)< ∞.
(ii) γ(u,v) = 0 for all u,v if and only if U and V are independent.
(iii) If X and Y have a bivariate normal distribution with correlation coefficient

ρ , then γ(x,y) = ρ
1−ρ2 , a constant.

Example 2. Consider the experiment of tossing an unbalanced coin 3 times with
success rate p. Let X be the total number of heads observed and Y be the number of
heads on the second toss. Then the joint density of X and Y is given by
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�
��Y

X 0 1 2 3

0 (1− p)3 2(1− p)2 p (1− p)p2 0
1 0 (1− p)2 p 2p2(1− p) p3

The corresponding copula density of U and V is

�
��V

U (1− p)3 (1− p)2(1+2p) 1− p3 1

1− p (1− p)3 2(1− p)2 p (1− p)p2 0
1 0 (1− p)2 p 2p2(1− p) p3

Note that U and V are affiliated, its bilinear interpolation is also affiliation. By (5),
the average measure for this discrete copula is T = (1− p)5p+8p3(1− p)3+2(1−
p)2 p4 +(1− p)p5. Note that if the coin is balanced then T = 3/16.

Example 3. Consider the experiment of tossing a unbalanced coin with success rate
p. Let X be value 2K , where K is number of tosses until the first head occurs, and Y
be the number of heads in the first toss. Note that E(X) does not exists for p < 1/2.
For p ∈ [0,1], the joint distribution of X and Y is

�
��Y

X 20 21 ... 2n ...

0 0 p(1− p) ... p(1− p)n−1 ...
1 p 0 ... 0 ...

and its corresponding copula is,

�
��V

U p, p(1− p)+ p, ..., (1− p)(1− (1− p)n−1)+ p, ..., 1

p 0, p(1− p), ..., p(1− p)n−1, ..., p
1 p, p(1− p)+ p, ..., p(1− p)n−1 + p, ..., 1

This is a discrete copula which is not PQD. The average measure for this discrete
copula T =−p2(1− p)− p2(1− p)2−·· ·− p2(1− p)n−·· ·=−p(1− p)< 0.
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5 Conditions on Affiliation in the Bivariate Skew Normal
Family

We first recall the definition of the multivariate skew-normal distribution which are
given in [2]. A k-dimensional random variable Z is said to have a multivariate skew-
normal distribution if it is continuous with density function

2φk(z;Σ)Φ(αT z), z ∈ R
k,

where φk(z;Σ) is the k-dimensional normal density with zero mean and correlation
matrix Σ , Φ(·) is the CDF of N(0,1), and α is a k-dimensional vector. Here we only
consider the case where k = 2. The density of (X ,Y ) is given by

h(x,y) = 2φρ(x,y)Φ(α1x+α2y), (6)

where

φρ(x,y) = (2π)−1(1−ρ2)−1/2 exp

{
1

2(1−ρ2)
(x2− 2ρxy+ y2)

}
,

and α1 and α2 ∈ R are skewness parameters.

Theorem 3. Consider the bivariate skew normal random vector (X ,Y ) with density
given by (6). Then X and Y are affiliated if and only if ρ ≥ 0 and α1α2 ≤ 0.

Proof. For the “i f ” part, assume that ρ ≥ 0 and α1α2 ≤ 0. By Lemma 3.5 of Rinott
and Scarsini [20], we know that ρ ≥ 0 implies that bivariate normal density is affil-
iated. That is

φρ(x′,y)φρ(x,y′)≤ φρ(x′,y′)φρ(x,y) for all x′ < x and y′ < y. (7)

Now it is sufficient to show that X and Y in Φ(α1x+α2y) are affiliated. Without
loss of generality, we assume that α1 < 0,α2 > 0. For any x′ < x,y′ < y, we have

α1x+α2y′ ≤ α1x′+α2y′ ≤ α1x′+α2y

and
α1x+α2y′ ≤ α1x+α2y≤ α1x′+α2y.

Since Φ is log concave, we have

logΦ(α1x′+α2y)− logΦ(α1x′+α2y′)
α2(y− y′)

≤ logΦ(α1x+α2y)− logΦ(α1x+α2y′)
α2(y− y′)

,

which implies

logΦ(α1x′+α2y)− logΦ(α1x′+α2y′)≤ logΦ(α1x+α2y)− logΦ(α1x+α2y′).
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Thus

log
[
Φ(α1x′+α2y)Φ(α1x+α2y′)

] ≤ log
[
Φ(α1x+α2y)Φ(α1x′+α2y′)

]
,

which is reduced to

Φ(α1x′+α2y)Φ(α1x+α2y′)≤Φ(α1x+α2y)Φ(α1x′+α2y′). (8)

Combining (7) and (8), we obtain

φρ (x′,y)Φ(α1x′+α2y)φρ (x,y′)Φ(α1x+α2y′)≤ φρ (x,y)Φ(α1x+α2y)φρ (x′,y′)Φ(α1x′+α2y′),

so that X and Y are affiliated.
For the “only i f ” part, assume that X and Y are affiliated. It is suffices to show

that if conditions ρ ≥ 0 and α1α2 < 0 are not satisfied, then there exist x′ < x, y′ < y
such that

φρ (x,y)Φ(α1x+α2y)φρ (x′,y′)Φ(α1x′+α2y′)< φρ (x′,y)Φ(α1x′+α2y)φρ (x,y′)Φ(α1x+α2y′)

which is equivalent to

ρ
1−ρ2 (x− x′)(y− y′)+ log

[
Φ(α1x+α2y)Φ(α1x′+α2y′)
Φ(α1x′+α2y)Φ(α1x+α2y′)

]
< 0. (9)

Now consider the following cases.

Case 1. For ρ < 0 and α1α2 ≤ 0, without loss of generality, we assume that α1 ≤
0,α2 ≥ 0, if we pick x′ = y′ = 0, and y = exp(x), then (9) is reduced to

ρ
1−ρ2 xexp(x)+ log

[
1
2Φ(α1x+α2 exp(x))

Φ(α2 exp(x))Φ(α1x)

]

=
ρ

1−ρ2 xexp(x)− log(Φ(α1x))+ log

[
1
2Φ(α1x+α2 exp(x))

Φ(α2 exp(x))

]
,

which goes to −∞ as x tends to ∞.

Case 2. For ρ > 0 and α1α2 > 0, without loss of generality, we assume that α1 >
0,α2 > 0, if we pick x′ = y′ = 0, and y = 1, then (9) is reduced to

ρ
1−ρ2 x+ log

[
1
2Φ(α1x+α2)

Φ(α2)Φ(α1x)

]
,

which goes to −∞ as x tends to ∞.

Case 3. For ρ < 0 and α1α2 > 0, then the first part and second part of (9) are all
strictly negative, therefore, the desired result follows. �
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Pairs Trading via Three-Regime Threshold
Autoregressive GARCH Models

Cathy W.S. Chen�, Max Chen, and Shu-Yu Chen

Abstract. Pairs trading is a popular strategy on Wall Street. Most pairs trading
strategies are based on a minimum distance approach or cointegration method. In
this paper, we propose an alternative model to the process of pair return spread.
Specifically, we model the return spread of potential stock pairs as a three-regime
threshold autoregressive model with GARCH effects (TAR-GARCH), and the up-
per and lower regimes in the model are used as trading entry and exit signals. An
application to the Dow Jones Industrial Average Index stocks is presented.

1 Introduction

Pairs trading is a popular strategy on Wall Street. It became well known by the
Quant team led by Nunzio Tartagli from Morgan Stanley in the mid-1980s. The
main principle underlying pairs trading is the simple idea of reversion, which is
the process of identifying two stocks whose prices move together closely. When the
spread between them widens, short the high price one and long the low price one.
If the past is a good mirror of the future, then prices will converge and the pairs
trading will result in profit. There are many ways to find stocks which are moving
together. The simplest one is the Minimum Squared Distance method (MSD), which
involves calculating the sum of squared deviations between two normalized stock
prices and choosing the one which has the minimum value. Gatev, Goetzmann and
Rouwenhorst (2006) give detailed results using US CRSP stock prices. Do and Faff
(2010) examine the validity of MSD in more recent datasets. Another way to find
stocks which are moving together utilizes the equilibrium relation among stocks,
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referred to as the cointegration approach. A group of nonstationary stock prices can
have a common stochastic trend (cf. Engel and Granger, 1987). Vidyamurthy (2004)
describes how to apply this method to pairs trading. Kawasaki, Tachiki, Udaka,
and Hirano (2003) use this cointegration method to find stock pairs in the Tokyo
Stock Exchange. Perlin (2009) applies it to the Brazilian stock market. The third
way models the spread as a mean-reverting a Gaussian Markov chain and trading is
triggered when the forecasting spread is different from the subsequent spread in a
significant level. Elliott, van der Hoek, and Malcolm (2005) show how to estimate
this model in detail. To obtain appropriate investment decisions, observations of the
spread are compared with predictions from calibrated model.

In previous literature, the pair spread is assumed to be a single regime process.
However, practitioners often find that the pair spread seems to switch between dif-
ferent regimes, and the usual pairs trading methods fail to identify potential arbitrage
opportunities. A recent empirical study by Bock and Mestel (2009) proposes a two-
state, first-order Markov-switching process to model the spread and apply it to their
trading rules. Since financial time series often exhibit some stylized facts such as
volatility clustering, asymmetry in conditional mean and variance, mean reversion,
and fat-tailed distributions, it is important to develop an appropriate model which
can capture these stylized facts.

To capture the dynamic features of volatility, the popular choices are the au-
toregressive conditional heteroscedastic (ARCH) and generalized ARCH (GARCH)
models of Engle (1982) and Bollerslev (1986), which allow the conditional volatility
to be predicted from its lagged terms and past news. Both ARCH and GARCH mod-
els are widely employed for describing dynamic volatility in financial time series.
Bollerslev, Chou, and Kroner (1992) advocate that a GARCH(1,1) model would
usually be sufficient for most financial time series.

In this paper, we propose an alternative: a three-regime threshold nonlinear
GARCH model, with a fat-tailed error distribution (TAR-GARCH), to capture mean
and volatility asymmetries in financial markets. The salient feature of this model is
that it can capture asymmetries in the average return, volatility level, mean rever-
sion, and volatility persistence. For a brief review of the TAR model in finance, refer
to Chen, So, and Liu (2011). We employ a Bayesian method, based on Markov chain
Monte Carlo (MCMC) methods, allowing simultaneous inference for all unknown
parameters in a TAR-GARCH model.

The remainder of this study proceeds as follows. Section 2 introduces the three-
regime TAR-GARCH model with a fat-tailed error distribution which is applied to
identify pairs trading signals. Bayesian estimation is also briefly discussed in this
section. Section 3 presents some results for stocks from the Dow Jones 30 index.
These stocks are the most liquid stocks in the US market that traders can buy and
sell at any time. Conclusions are presented in Section 4.



Pairs Trading via Three-Regime Threshold Autoregressive GARCH Models 129

2 Methodology

We would like to model the return spread of potential stock pairs as a three-regime
threshold autoregressive model with GARCH effects (TAR-GARCH), and the upper
and lower regimes in the model are used as trading entry and exit signals.

2.1 Threshold AR Model with GARCH Effect

Li and Li (1996) model both mean and volatility asymmetry in a double thresh-
old (DT-)ARCH model; Brooks (2001) further generalizes this to a double thresh-
old GARCH model. Chen, Chiang, and So (2003) further allow an exogenous
threshold variable (U.S. market news) and nonlinear mean spill-over effects. Chen
and So (2006) propose a threshold heteroskedastic model to capture the mean and
variance asymmetries which allows the threshold variable to be formulated with
auxiliary variables. This avoids subjectively choosing the threshold variable and en-
ables the relative importance of the auxiliary variables to be examined after model
fitting. Most of these studies focus only on two-regime models. The model used
here is a three-regime threshold nonlinear GARCH model, with a fat-tailed error
distribution, to capture mean and volatility asymmetries in financial markets, which
has been studied by Chen, Gerlach, and Lin (2010). This model is characterized by
several non-linear factors commonly observed in practice, such as asymmetry in de-
clining and rising patterns of a process. In fact, all mean and volatility parameters
are allowed to change between regimes. Due to its complexity, Bayesian estimation
and inference for this class of model is considered.

The three-regime model is specified as:

yt =

⎧⎪⎨
⎪⎩
φ (1)

0 +φ (1)
1 yt−1 + at , yt−d < c1

φ (2)
0 +φ (2)

1 yt−1 + at , c1 ≤ yt−d < c2

φ (3)
0 +φ (3)

1 yt−1 + at , yt−d ≥ c2

at =
√

htεt , εt
i.i.d.∼ t∗ν ,

ht =

⎧⎪⎨
⎪⎩
α(1)

0 +α(1)
1 a2

t−1 +β (1)
1 ht−1, yt−d < c1

α(2)
0 +α(2)

1 a2
t−1 +β (2)

1 ht−1, c1 ≤ yt−d < c2

α(3)
0 +α(3)

1 a2
t−1 +β (3)

1 ht−1, yt−d ≥ c2,

(1)

where c1 and c2 are the threshold values that satisfy −∞ = c0 < c1 < c2 < c3 =
∞; ht is Var(yt |y1, . . . ,yt−1); the integer d is the threshold lag; t∗ν is a standardized
Student-t error distribution with a mean of zero and a variance of one. Some standard
restrictions on the variance parameters are given.

α( j)
0 > 0, α( j)

1 , β ( j)
1 ≥ 0 and α( j)

1 +β ( j)
1 < 1, (2)

The lagged return yt−1 is included in the model (1) in order to test zero serial
correlations. We would like to know whether the series has a statistically significant
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lag-1 autocorrelation which indicates the lagged returns might be useful in predict-
ing yt . When the lag-one autocorrelation is not statistically significant, it indicates
that potential pair arbitrage opportunities may not exist.

Bayesian estimation requires the specification of a likelihood and prior distribu-
tions on the model parameters. We select prior distributions that are mostly uninfor-
mative, so that the data dominates inference via the likelihood.

2.2 Priors and Likelihood

Let the full parameter vector be denoted as θ = (φ1,φ 2,α1,α2,c,ν,d)′, where φ j

= (φ ( j)
0 ,φ ( j)

1 ), α j = (α( j)
0 ,α( j)

1 ,β ( j)
1 )′, and c = (c1,c2)

′ and d0 denotes the maximum
delay lag. The conditional likelihood function of the model is:

L(θ | y) =
n

∏
t=2

⎧⎨
⎩

2

∑
j=1

Γ ( ν+1
2 )

Γ ( ν2 )
√

(ν− 2)π
1√
ht

[
1+

(yt − μt)
2

(ν− 2)ht

]− ν+1
2

I jt

⎫⎬
⎭ , (3)

where μt = φ ( j)
0 +φ ( j)

1 yt−1 and I jt is an indicator variable of I(c j−1 ≤ yt−d < c j).
Our prior settings are similar to those used by Chen, Gerlach, and Lin (2010).

A Gaussian prior distribution is assumed for φ j ∼ N(φ j0,V j), constrained for mean

stationarity, where φ j0 = 0 and V−1
j is a matrix with ‘large’ numbers on the diagonal.

With the maximum delay d0, we assume a discrete uniform prior p(d) = 1
d0

for d.
To ensure the required constraint equation (2) on p(α j), we adopt a uniform prior
p(α j) over the region which is the indicator I(S j), j = 1,2, where S j is the set of
α j that satisfies the restriction in (2). The prior for the threshold parameters c, as
proposed by Chen, Gerlach, and Lin (2010), for three regimes is:

c1 ∼ Unif(lb1,ub1) ; c2|c1 ∼ Unif(lb2,ub2),

where we can set lb1 = h and ub1 = (1− 2h). If we choose h = 0.1, then c1 ∈
(0.1,0.8). Further, set ub2 = (1− h) and lb2 = c1 + h. The prior for (c1,c2) is
flat over the region ensuring c1 + h ≤ c2 and at least 100h% of observations are
contained in each regime. Finally, the degrees of freedom ν is re-parametrised to
ν∗ = ν−1 with uniform prior I(ν∗ ∈ [0,0.25]), this restricts ν > 4, so that the first
four moments of the error distribution are finite.

We assume a prior independence among the groupings φ1,φ 2,α1,α2,c, ν , and
d. Multiplication of each prior followed by the conditional likelihood function in (3)
leads to the conditional posterior density for each parameter group. Detailed condi-
tional posteriors can be found in Chen, Gerlach, and Lin (2010). Except for parame-
ter d, the conditional posterior distributions for each remaining parameter group are
non-standard. We thus incorporate the Metropolis and Metropolis-Hastings (MH)
methods to draw the MCMC iterates for the other parameter groups, see Chen and
So (2006) for the discussion on the MH method. To speed up convergence and al-
low optimal mixing, we employ an adaptive MH-MCMC algorithm that combines a
random walk Metropolis and an independent kernel MH algorithm. We extensively
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examine trace plots and autocorrelation function (ACF) plots from multiple runs of
the MCMC sampler for each parameter to confirm convergence and to infer ade-
quate coverage. We set the MCMC sample size N sufficiently large, discarding the
burn-in iterates, and keep the last N−M iterates for inference.

2.3 Pairs Selection

The series of returns are calculated by taking differences of the logarithms of the
daily closing price, r j

t = ln(P j
t /P j

t−1), where P j
t is the closing price index of asset j

on day t. Our implementation of pairs trading has two stages. The procedure is given
as follows:

Stage 1: We calculate the MSD between the two normalized price series among
the pairs. The formula of MSD is given as follows.

MSD =
n

∑
t=1

(PA
t −PB

t )
2, (4)

where Pi
t is normalized price of asset i at time t. Five pairs are selected with the

smallest MSD.
Stage 2: We calculate the return spread between the selected pairs, yt = rA

t − rB
t ,

and fit a three-regime TAR model with GARCH effect to the return spread. Once
the model is fitted, the upper and lower threshold values in the model are used as
trading entry and exit signals.

We open a position in a pair when the pair return spread (yt ) is larger (smaller)
than the high (low) threshold value, as estimated by the TAR-GARCH model, that
is, we short (long) A and long (short) B. We unwind the position when the pair
return spread crosses over the same threshold value again. If the spread doesn’t
cross before the end of the last trading day of the trading period, gains or losses are
calculated at the end of the last trade of the trading period.

The average trading return on the short stock A and long stock B position is
calculated as follows:

r1 =
1
D

[
− ln

PA
sold

PA
bought

+ ln
PB

sold

PB
bought

]
, (5)

where D stands for the number of holding days. On the other hand, the average
trading return on the long stock A and short stock B position is given as follows.

r2 =
1
D

[
ln

PA
sold

PA
bought

− ln
PB

sold

PB
bought

]
, (6)

where D stands for the number of holding days.
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3 Empirical Results

The daily close prices (adjusted for dividends and splits) of constituents of the Dow
Jones Industrial Average Index (DJIA) are used as an illustration. The data are ob-
tained from Yahoo Finance US over a 7-year time period, from January 2, 2006
to May 31, 2013. The in-sample period of this study is from January 2, 2006 to
February 28, 2013 and the out-of-sample period is from March 1, 2013 to May 31,
2013.

The companies that comprise the DJIA are 3M (MMM), Alcoa (AA), Amer-
ican Express (AXP), AT&T (T), Bank of America (BAC), Boeing (BA), Cater-
pillar (CAT), Chevron Corporation (CVX), Cisco Systems (CSCO), Coca-Cola
(KO), Dupont (DD), ExxonMobil (XOM), General Electric (GE), Hewlett-Packard
(HPQ), The Home Depot (HD), Intel (INTC), IBM (IBM), Johnson & Johnson
(JNJ), JPMorgan Chase (JPM), McDonald’s (MCD), Merck (MRK), Microsoft
(MSFT), Pfizer (PFE), Procter & Gamble (PG), Travelers (TRV), UnitedHealth
Group Incorporated (UNH), United Technologies Corporation (UTX), Verizon
Communications (VZ), Wal-Mart (WMT), and Walt Disney (DIS).

Table 1 gives the descriptive statistics of the DJIA stock prices. Table 1 shows
that 13 companies have a standard deviation of greater than 10, and IBM has the
highest standard deviation, 41.67. A volatile stock will have a high standard de-
viation. Figure 1 shows the time series plots of 30 DJIA company’s daily closing
prices.

We calculate the MSD between the two normalized price series, and the number
of possible pairs is 435 (i.e. C30

2 ). The five pair trading candidates are

Pair 1: Caterpillar (CAT) vs Chevron Corporation (CVX)
Pair 2: IBM (IBM) vs Johnson & Johnson (JNJ)
Pair 3: Merck (MRK) vs Microsoft (MSFT)
Pair 4: Verizon (VZ) vs Wal-Mart Stores Inc.(WMT)
Pair 5: Wal-Mart Stores Inc. (WMT) vs The Walt Disney Company (WAL).
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Fig. 1 The times series plots of 30 DJ company’s prices
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The MSD values of the five pairs are shown in Table 2. All five return spread series
exhibit the standard property: they have fat-tailed distributions, as indicated by the
highly significant Jarque-Bera normality test statistics, a joint test for the absence of
skewness and kurtosis which are given in Table 2. Descriptive statistics of the DJIA
stock returns are given in Table 3. Table 3 shows that the returns of all companies are
close to zero, and this result coincides with the mean reversion theory. Furthermore,
there are 6 companies’ stock index returns that are negative.

We then fit a three-regime TAR model with GARCH effect to these five selected
pairs’ return spreads. Allowing yt−1 in the conditional mean helps account for pos-
sible autocorrelations in the pairs’ return spreads. Once the model is fitted, the upper
and lower threshold values in the model are used as trading entry and exit signals.
When the return spread is above (below) the upper (lower) threshold value, we then
short (long) one share A stock and long (short) one share B stock. Once the position
is open and the spread falls back to the threshold, the position is closed.
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Table 1 The descriptive statistics of the DJIA stock prices from January 2, 2006 to February
28, 2013

Company Symbol Mean Maximun Minum Std
3M MMM 72.30 103.59 37.40 12.41
Alcoa AA 18.50 42.63 4.99 9.84
American Express AXP 43.59 62.38 9.47 11.35
AT&T T 25.37 36.98 16.69 4.75
Bank of America BAC 22.51 47.13 3.09 14.58
Boeing BA 64.12 92.06 26.24 13.33
Caterpillar CAT 67.05 112.91 19.87 20.77
Chevron Corporation CVX 75.19 116.21 42.71 18.95
Cisco Systems CSCO 20.78 32.55 13.01 3.96
Coca -Cola KO 25.76 39.45 16.13 6.27
DuPont DD 37.33 52.57 13.68 8.51
ExxonMobil XOM 69.90 91.67 48.45 10.49
General Electric GE 20.38 33.71 5.83 6.42
Technology HPQ 35.06 51.30 11.46 9.51
The Home Depot HD 32.36 67.79 15.80 11.10
Intel INTC 18.73 27.86 10.47 3.47
IBM IBM 123.84 208.22 65.28 41.68
Johnson&Johnson JNJ 55.72 75.78 40.23 6.19
JPMorgan Chase JPM 37.59 49.14 14.78 5.15
MeDonald’s MCD 58.55 97.03 25.57 20.45
Merck MRK 32.28 47.56 17.45 6.30
Microsoft MSFT 24.62 32.39 13.62 3.45
Pfizer PFE 17.66 27.48 9.85 3.35
Procter & Gamble PG 56.10 76.82 38.60 6.51
Travlers TRV 49.24 87.37 26.74 12.17
United Technologies Corp. UTX 63.43 90.51 33.84 11.76
UnitedHealth Group Incorporated UNH 40.95 59.75 15.51 11.55
Verizon Communications Inc. VZ 29.54 46.05 19.63 6.26
Wal-Mart Stores Inc. WMT 49.34 75.78 36.96 8.91
The Walt Disney Company DIS 32.52 55.73 14.77 8.19

Table 2 Stock pairs with the smallest MSD and Jarque-Bera test for pair return spreads

Pairs Company A Company B MSD Jarque-Bera test
Statistic p-value

1 Caterpillar(CAT) Chevron Corporation(CVX) 454.94 2363.27 0.00
2 IBM (IBM) Johnson & Johnson(JNJ) 649.18 5515.45 0.00
3 Merck (MRK) Microsoft(MSFT) 661.11 7845.45 0.00
4 Verizon(VZ) Wal-Mart Stores Inc.(WMT) 681.79 4031.88 0.00
5 Wal-Mart Stores Inc.(WMT) The Walt Disney Company(WAL) 701.61 1755.15 0.00
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Table 3 The descriptive statistics of the DJIA stock log returns from January 2, 2006 to
February 28, 2013

Company Symbol Mean Maximun Minum Std
3M MMM 0.0003 0.0941 −0.0938 0.0156
Alcoa AA −0.0006 0.2077 −0.1742 0.0315
American Express AXP 0.0002 0.1877 −0.1933 0.0283
AT&T T 0.0004 0.1506 −0.0799 0.0154
Bank of America BAC −0.0007 0.3020 −0.3422 0.0422
Boeing BA 0.0001 0.1437 −0.0805 0.0198
Caterpillar CAT 0.0004 0.1375 −0.1569 0.0233
Chevron Corporation CVX 0.0005 0.1895 −0.1333 0.0188
Cisco Systems CSCO 0.0001 0.1482 −0.1768 0.0212
Coca-Cola KO 0.0005 0.1298 −0.0907 0.0125
DuPont DD 0.0002 0.1088 −0.1205 0.0197
ExxonMobil XOM 0.0003 0.1587 −0.1504 0.0174
General Electric GE −0.0001 0.1800 −0.1365 0.0221
Technology HPQ −0.0002 0.1353 −0.2238 0.0217
The Home Depot HD 0.0004 0.1316 −0.0858 0.0193
Intel INTC 0.0000 0.1119 −0.1318 0.0204
IBM IBM 0.0006 0.1089 −0.0611 0.0145
Johnson&Johnson JNJ 0.0002 0.1154 −0.0798 0.0106
JPMorgan Chase JPM 0.0002 0.2240 −0.2325 0.0315
MeDonald’s MCD 0.0007 0.0897 −0.0830 0.0130
Merck MRK 0.0003 0.1192 −0.1595 0.0180
Microsoft MSFT 0.0001 0.1707 −0.1247 0.0185
Pfizer PFE 0.0003 0.0975 −0.1121 0.0157
Procter & Gamble PG 0.0003 0.0972 −0.0823 0.0118
Travlers TRV −0.0004 0.2005 −0.2274 0.0213
United Technologies Corp. UTX 0.0004 0.1281 −0.0917 0.0169
UnitedHealth Group Incorporated UNH −0.0001 0.2984 −0.2059 0.0244
Verizon Communications Inc. VZ 0.0005 0.1369 −0.0842 0.0150
Wal-Mart Stores Inc. WMT 0.0003 0.1051 −0.0840 0.0130
The Walt Disney Company DIS 0.0005 0.1484 −0.1026 0.0192

We performed 20,000 MCMC iterations and discarded the first 8,000 iterates as
a burn-in sample for each data series. The parameter estimates for the model in each
selected pairs’ return spreads are summarized in Table 4, which include posterior
medians and standard deviations (Std.) for each parameter. Note that the c1 and
c2 are the threshold values. All five pairs return spreads clearly display no series
correlation across the three regimes, in response to the lag-one spread return. Since
in-sample fitting may contain information for out-of-sample trading, AR lag-one

coefficient remains in our proposed model. Regarding volatility persistence (α( j)
1 +

β ( j)
1 ), the second regime displays the lowest level of persistence across spreads. We

can see from Table 4 that most of the high and low threshold values are opposite
signs, indicating possible different regime processes.

Table 5 shows the mean returns of companies in five pairs from March 1, 2013 to
March 31, 2013, and the mean return of five pairs. It is a one-month out-of-sample
result. In a similar way, we also calculate a three-month out-of-sample result. Table
6 shows the mean returns of companies in five pairs from March 1, 2013 to May 28,
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Table 4 Bayesian inference of three-regime TAR model with GARCH effect for the five pair
return spreads

Pairs CAT-CVX IBM-JNJ MRK-MSFT VZ-WMT WMT-WAL

Par. Med Std Med Std Med Std Med Std Med Std

φ (1)0 0.0000 0.0031 −0.0001 0.0012 −0.0012 0.0028 0.0017 0.0011 −0.0041 0.0028

φ (1)1 0.0591 0.0971 −0.0297 0.0710 0.0855 0.0811 0.1242 0.0644 −0.0942 0.0921

φ (2)0 0.0000 0.0005 0.0002 0.0003 0.0008 0.0004 0.0003 0.0004 −0.0002 0.0004

φ (2)1 0.0558 0.0685 0.0068 0.0680 0.0229 0.0469 0.0029 0.0712 −0.0633 0.0595

φ (3)0 −0.0006 0.0020 −0.0007 0.0017 0.0023 0.0024 0.0005 0.0022 −0.0014 0.0021

φ (3)1 0.0200 0.0789 0.0855 0.0790 −0.0470 0.0772 −0.0088 0.0916 0.0943 0.0863

α(1)
0 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

α(1)
1 0.0281 0.0223 0.0308 0.0169 0.0182 0.0154 0.0575 0.0192 0.0379 0.0178

β (1)
1 0.9289 0.0459 0.9474 0.0283 0.9674 0.0232 0.9124 0.0276 0.9279 0.0323

α(2)
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

α(2)
1 0.0393 0.0194 0.0698 0.0219 0.0758 0.0228 0.0542 0.0191 0.0365 0.0174

β (2)
1 0.9159 0.0229 0.8890 0.0190 0.8696 0.0222 0.8993 0.0245 0.9104 0.0156

α(3)
0 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

α(3)
1 0.0870 0.0260 0.0287 0.0156 0.0291 0.0211 0.0359 0.0170 0.0870 0.0255

β (3)
1 0.7847 0.0675 0.9313 0.0353 0.9400 0.0387 0.9039 0.0460 0.8880 0.0360

c1 −0.0184 0.0015 −0.0062 0.0018 −0.0192 0.0020 −0.0052 0.0020 −0.0172 0.0027

c2 0.0105 0.0046 0.0103 0.0018 0.0147 0.0032 0.0139 0.0021 0.0113 0.0032

ν 5.5336 0.7293 4.2734 0.2758 4.2981 0.2910 5.1025 0.5995 5.1695 0.6468

Table 5 Company returns in five pairs and pairs returns from March 1, 2013 to March 28,
2013

Pairs Company A Mean Return Company B Mean Return No. of Trading Pairs Return

1 CAT -0.260 % CVX 0.086 % 4 -1.173 %

2 IBM 0.263 % JNJ 0.321 % 4 3.494 %

3 MRK 0.241 % MSFT 0.122 % 3 3.849 %

4 VZ 0.267 % WMT 0.255 % 7 4.758 %

5 WMT 0.255 % WAL 0.138 % 5 1.019 %

Table 6 Company returns in five pairs and pairs returns from March 1, 2013 to May 31, 2013

Pairs Company A Mean Return Company B Mean Return No. of Trading Pairs Return

1 CAT -0.090 % CVX 0.090 % 13 10.448 %

2 IBM 0.047 % JNJ 0.160 % 17 3.225 %

3 MRK 0.160 % MSFT 0.363 % 17 15.780 %

4 VZ 0.075 % WMT 0.087 % 24 8.082 %

5 WMT 0.087 % WAL 0.208 % 11 1.600 %
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2013, and the mean return of five pairs. Figure 2 is a time series plot of the third
pair’s return spread (MRK-MSFT) during in-sample period. The red and blue lines
are estimated threshold values, c1 and c2, respectively. Figure 3 shows the pairs
return spread of asset MRK and its pair, MSFT, during the out-of-sample period.
Again, red and blue lines locate at threshold values which are employed as trading
entry and exit signals.

From Tables 5 and 6, we find that there are 4.6 round trips trading on average
in the one-month period and 16.4 round trips trading on average in the three-month
period. The average 5 pairs profits are 2.389% and 7.827%, respectively. The pair re-
turns increase with the trading horizons in most pairs. This indicates that the longer
the trading horizon, the better the mean reversion process works.

For a comparison, we would like to consider the cointegration approach. In the
cointegration pairs trading literature, there is a potential problem, that is, we can’t
find enough cointegration pairs in the sample. Hakkio and Rush (1991) had observed
that “cointegration is a long-run concept and hence requires long spans of data to
give tests for cointegration much power rather than merely large numbers of obser-
vations.” Indeed when we apply the cointegration test to the five selected pairs, only
the third pair (MRK/ MSFT) is found to be cointegrated in the in-sample period.

PMRK =−4.13+ 1.47PMSFT + εIN .

We then define the residual out-of-sample as

εOUT = PMRK,OUT + 4.13− 1.47PMSFT,OUT .

When the indicator (defined as εOUT /εIN) is larger (smaller) than one (negative one),
then we short (long) one share of the first stock (MRK) and long (short) 1.47 shares
of the second stock (MSFT). In this case, we short 1 share MRK, and long 1.47
shares of MSFT. The final pairs average return is 0.85% ( 1

41×(− ln( 41.84
47.38)+ 1.47×

ln( 32.38
27.76)) in the three-month out of sample period. The profit is significantly less

than that of the proposed method which yields an average return 15.780%.

4 Conclusions

In this study, we model the daily return spread of stock pairs as a three-regime
TAR-GARCH process, and the upper and lower regimes in the model are used as
trading entry and exit signals. We apply the trading rules to the Dow Jones Industrial
Average Index stocks. The in-sample period of this study is from January 2, 2006 to
February 28, 2013 and the out-of-sample period is from March 1, 2013 to May 31,
2013.

The empirical results suggest that the combination of MSD and TAR-GARCH
trading rules generate positive excess returns, relative to the underlying stocks.
The average pairs trading profits are 2.389% and 7.827% in the one-month and
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three-month trading periods, respectively. With the proposed three-regime TAR-
GARCH pairs trading strategy, traders can reap adequate profits from the Dow Jones
30 stocks. Transaction costs and rolling in-sample fitting and out-of-sample trading
will be analyzed in future studies.
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Testing Dependencies in Term Structure of
Interest Rates

Kian-Guan Lim

Abstract. In this paper we study the term structure of interest rates and test the ra-
tional expectations hypothesis using single regression equations and then multivari-
ate regression equations. Single regression equations are found to produce results
that are sensitive to outliers due to finite sample. Multivariate regression equations
produce results that are less sensitive to outliers due to a larger sample size, and
in our sample, yield a borderline rejection of the rational expectatons hypothesis.
We apply a distance covariance test statistic measuring the deviation from indepen-
dence between the forward forecast errors and present information variables. This
measure is asymptotically distributed to be bounded below by χ2

1 for usual ranges
of critical region, and does not require any distributional assumption. The rational
expectation hypothesis is more clearly rejected using the distance covariance metric.
There is thus preliminary evidence that distributional and linearity mis-specification
of the rationality hypothesis in the term structure could potentially biased toward
non-rejection of an otherwise generally unsustainable hypothesis.

1 Introduction

There is a copious amount of work on testing term structure theories up to the early
2000s. Most of the studies either test the rational expectations hypothesis within
the term structure context, or else test the predictability of future spot interest rates.
However, it is one of a few areas of financial economics where empirical results
have been rather diverse and different with not much of a conclusion. [9] found that
forward interest rates on a contract due over a long maturity do not predict the cor-
responding future spot rates well. [7] had firmly rejected the rational expectations
hypothesis of the interest rate term structure. But [2] concluded that correlation
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between the forward and spot rates seemed positively high. [6] also found forward
rates to be good predictors when the forward horizon grew longer. [4] cited a num-
ber of studies that showed opposite results regarding the rational expectations hy-
pothesis on interest rates in UK, in Germany, and in other European countries. [5]
remarked that, “Tests generally reject the hypothesis that expectations are rational,
which is then a rejection of the expectations theory of the term structure...”

Though there have been enough studies and replications to show that the ratio-
nal expectations hypothesis on the term structure of interest rates (in short, “REH”)
does not work in many situations, it remains a controversy as to when it would work
and when it would not. Some new methods have surfaced now and then, such as the
vector autoregression approach by [3]. In this paper, we contribute to the literature
by employing a new distance covariance test statistic to show how distributional and
linearity mis-specification of the rationality hypothesis in the term structure could
potentially biased toward non-rejection of an otherwise generally unsustainable
hypothesis.

2 Deriving the Spot and Forward Rates

Daily annualized U.S. Treasury bill investment yields and Treasury bond market
bond equivalent yields (based on semi-annual compounding) with constant maturi-
ties of 1-month, 3-month, 6-month, 1-year, 2-year, 3-year, 5-year, 7-year, 10-year,

and 20-year, are available from the U.S. Federal Reserve System database.
1

The
daily time series is from 31 July 2001 till June 2013. We use the end of month cal-
endar data on the above dataset, so that at each end of month starting from July 2001
till June 2013, we have time series with a sample length of 144 months. We use t
to denote the time corresponding to the number of months starting from July 2001.
Thus, data on August 2001 corresponds to t = 2, September 2001 corresponds to
t = 3, and so on. The Fed data reported are in terms of investment yields. These in-
vestment yields are first converted to annualized spot rates St(0,T ) where subscript
t denotes spot rate available as at time t indexed in months from July 2001, and T
refers to the term in years of the spot rate.

A spot rate with a term T implies that a $1 put in a deposit at time t will yield
$(1+ St(0,T ))

T at time T > t. Note that the rates in the Fed database are all annual-
ized rates. For Treasury bills with maturities less than a year, the investment yields
are also the spot rates. For Treasury notes and bonds with maturities greater than or
equal to a year, say T ≥ 1 year maturity, the T -year annualized spot rate is St(0,T ) =
(1+ yt(0,T )/2)2 − 1 where yt(0,T ) is the corresponding annualized investment
yield. For each t = 1,2, . . . ,144, a cubic spline curve is fitted to pass through all
the discrete annualized spot rates St(0,n), n = 1

12 ,
3

12 ,
6
12 ,1,2,3,5,7,10,20 in terms

of n years; each pair of adjacent spot rates is connected with a cubic polynomial.
Moreover, the ends of the curves at both the right side and the left side of a yield

1
Source is webpage
http://www.federalreserve.gov/releases/h15/data.htm

http://www.federalreserve.gov/releases/h15/data.htm
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rate are connected such that their first and second derivatives equal. The latter are
sometimes called smooth pasting conditions. The additional two conditions used to
identify all the cubic polynomials of a cubic spline are the slope conditions at the
start and end points of the spline. Once these are defined, then the method of cubic
spline is termed the “clamped” method. We set the starting and end slopes to zeros.

Thus for each day at end of month, indexed by t, the following annualized
spot rates can be obtained from the fitted spline: St(0, 1

12 ), St(0, 2
12), St(0, 3

12 ),
. . . ,St(0,T ), . . ., St(0,20), where T denotes the number of years into the future from
t. For example, T = x

12 denotes x months after t, while T = 3 2
12 denotes 3 years

and 2 months, or 38 months, after t. The annualized continuously compounded spot

rate over time interval (0,T ) starting at T is given by R(T )
t = 1

T ln(1+ St(0,T ))
T ,

or simply R(T )
t = ln(1+ St(0,T )). The superscript ′′(T )′′ denotes the spot term of T

years.
We can also obtain the time t annualized forward rate ft(k,k + 1

12) denot-
ing a contract at t that $1 can be deposited at time k years forward of t, and

yielding $
(
1+ ft(k,k+ 1

12 )
) 1

12 at time t + k + 1
12 or a month later, for k ≥ 0.

Thus at each t, there is a corresponding series of 239 forward rates as follows:
ft(0, 1

12 ), ft ( 1
12 ,

2
12 ), ft ( 2

12 ,
3

12 ), . . . , ft (19 11
12 ,20). By no arbitrage argument,

(
1+ ft(k,k+

1
12

)

) 1
12

=

(
1+ St(0,k+ 1

12)
)k+ 1

12

(1+ St(0,k))
k ,

so ln
(
1+ ft(k,k+ 1

12 )
)
= 12

[
(k+ 1

12 ) ln
(
1+ St(0,k+ 1

12 )
)− k ln(1+ St(0,k))

]
.

We define annualized continuously compounded forward rate F
(k, 1

12 )
t to be

ln
(
1+ ft(k,k+ 1

12)
)
. The superscripts ′′(k, 1

12 )
′′ denotes deposit at k year after t,

and collection at 1
12 year or a month after deposit. Then,

F
(k, 1

12 )
t = 12

[
(k+

1
12

)R
(k+ 1

12 )
t − kR(k)

t

]

= (12k+ 1)R
(k+ 1

12 )
t − 12kR(k)

t . (1)

It is instructive to note that for k = 0, F
(0, 1

12 )
t = R

( 1
12 )

t , for k = 1
12 , F

( 1
12 ,

1
12 )

t = 2R
( 2

12 )
t −

R
( 1

12 )
t , for k = 2

12 , F
( 2

12 ,
1

12 )
t = 3R

( 3
12 )

t −2R
( 2

12 )
t , for k = 3

12 , F
( 3

12 ,
1
12 )

t = 4R
( 4

12 )
t −3R

( 3
12 )

t ,
and so on.

If the market is risk-neutral, then for N = 1,2,3, . . . ,240,

exp

(
N
12

R
( N

12 )
t

)
= Et

[
N−1

∏
i=0

exp

(
1

12
R
( 1

12 )

t+ i
12

)]
,

where Et [·] denotes expectation conditional on all information available at time t.

When N = 1, exp

(
1
12 R

( 1
12 )

t

)
= Et

[
exp

(
1
12 R

( 1
12 )

t

)]
. When N = 2,
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exp

(
2

12
R
( 2

12 )
t

)
= Et

[
exp

(
1

12
R
( 1

12 )
t +

1
12

R
( 1

12 )

t+ 1
12

)]
.

When N = 3,

exp

(
3
12

R
( 3

12 )
t

)
= Et

[
exp

(
1

12
R
( 1

12 )
t +

1
12

R
( 1

12 )

t+ 1
12
+

1
12

R
( 1

12 )

t+ 2
12

)]
,

and so on. Even if the market is risk-averse, the equation is correct provided the con-
ditional probability distribution is a risk-neutral distribution, which is an empirical
distribution subjected to a Girsanov transformation under condition of no arbitrage.
The latter is sometimes termed as the fundamental theorem of asset pricing.

Taking natural logarithms on both sides, and dividing by N
12 , we have

R
( N

12 )
t =

12
N

lnEt

[
N−1

∏
i=0

exp

(
1
12

R
( 1

12 )

t+ i
12

)]
.

In the academic literature (see [3] for example), this is usually approximated by the
relationship

R
( N

12 )
t =

12
N

N−1

∑
i=0

1
12

Et

[
R
( 1

12 )

t+ i
12

]

=
1
N

N−1

∑
i=0

Et

[
R
( 1

12 )

t+ i
12

]
. (2)

The approximation allows for tractable analytical formulation, and is acceptable
when the spot rates are small. The approximation can be explained by the following
example: if St(0, 1

12) and St+ 1
12
(0, 1

12 ) are conditionally independent, then

lnEt

[
(1+ St(0,

1
12

))
1
12 (1+ St+ 1

12
(0,

1
12

))
1
12

]

= lnEt(1+ St(0,
1

12
))

1
12 + lnEt(1+ St+ 1

12
(0,

1
12

))
1
12

≈ Et ln(1+ St(0,
1

12
))

1
12 +Et ln(1+ St+ 1

12
(0,

1
12

))
1
12

=
1

12
Et

[
(R

( 1
12 )

t +R
( 1

12 )

t+ 1
12

]
.

We shall work with empirical distribution, so all random variables {Xt} in our
study belong to a product sample space Ω = R×R× . . .×R, where R is the real
line. The filtered probability space is (Ω ,F ,{F}t ,P) where {F}t is a natural
filtration, and P is the joint probability measure on the sigma algebra F .

When we include the existence of risk aversion (or risk preference) in the market,
then Eq. (2) can be generalized to the following
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R
( N

12 )
t =

1
N

N−1

∑
i=0

Et

[
R
( 1

12 )

t+ i
12

]
+CN−1, (3)

where CN−1 is a risk premium per unit of time, or per year in this case, that may
vary with term represented by N, but not with t. It may be thought of as a time-
homogeneous variable risk premium of the term structure of interest rates. The use
of subscript N− 1 for C here instead of N is arbitrary, and does not have affect the
theoretical construction in any way.

3 Term Structure of Interest Rates

We shall derive the rational expectation theory of term structure in this section and
formulate several testable hypotheses. We consider spot rate spaced at monthly in-

tervals (dropping the elaboration of “annualized continuously compounded”): R
( N

12 )
t ,

where N ∈I + is a positive integer, and is the number of months of the term struc-
ture.

Applying Eq. (3) recursively for N = 1,2,3, . . . and so on, we can obtain the
following.

R
( 1

12 )
t+ = Et

[
R
( 1

12 )
t+

]
+C0, (4)

where t+ refers to a very small positive interval close to zero.

R
( 2

12 )
t =

1
2

{
Et

[
R
( 1

12 )
t

]
+Et

[
R
( 1

12 )

t+ 1
12

]}
+C1

=
1
2

{
R
( 1

12 )
t +Et

[
R
( 1

12 )

t+ 1
12

]}
+C1. (5)

R
( 3

12 )
t =

1
3

{
R
( 1

12 )
t +Et

[
R
( 1

12 )

t+ 1
12

]
+Et

[
R
( 1

12 )

t+ 2
12

]}
+C2. (6)

R
( 4

12 )
t =

1
4

{
R
( 1

12 )
t +Et

[
R
( 1

12 )

t+ 1
12

]
+Et

[
R
( 1

12 )

t+ 2
12

]
+Et

[
R
( 1

12 )

t+ 3
12

]}
+C3. (7)

If we take two times the LHS and RHS of Eq. (5), then subtract the LHS and
RHS of Eq. (4) accordingly, we obtain:

2 R
( 2

12 )
t −R

( 1
12 )

t+ = Et

[
R
( 1

12 )

t+ 1
12

]
+(2C1−C0), (8)
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where we take the limit that Et [R
( 1

12 )

t+δ ] = R
( 1

12 )
t as δ ↓ 0. We shall not put any further

assumption on the limit of C0 as δ ↓ 0. Since the LHS of Eq. (8) is F
( 1

12 ,
1
12 )

t , as δ ↓ 0,
from Eq. (1), we have

Et

[
R
( 1

12 )

t+ 1
12

]
= F

( 1
12 ,

1
12 )

t +(C0− 2C1). (9)

Similarly, subtracting Eq. (5) from Eq. (6), we obtain:

Et

[
R
( 1

12 )

t+ 2
12

]
= F

( 2
12 ,

1
12 )

t +(2C1− 3C2). (10)

Subtracting Eq. (6) from Eq. (7), we obtain:

Et

[
R
( 1

12 )

t+ 3
12

]
= F

( 3
12 ,

1
12 )

t +(3C2− 4C3). (11)

In general, we obtain:

Et

[
R
( 1

12 )

t+ k
12

]
= F

( k
12 ,

1
12 )

t +(kCk−1− [k+ 1]Ck). (12)

We can always write, from Eq. (9),

R
( 1

12 )

t+ 1
12
= a0 +F

( 1
12 ,

1
12 )

t + εt+ 1
12
, (13)

where a0 = C0 − 2C1, and Et

[
εt+ 1

12

]
= 0. The rational expectations hypothesis

would add a substantive content to the above regression Eq. (13) by the condition
that

Et

[
F
( 1

12 ,
1

12 )
t εt+ 1

12

]
= 0.

In other words, F
( 1

12 ,
1
12 )

t ∈ φt (part of the information set φt available to the market
at time t) is independent (implying also zero covariance with) of εt+ 1

12
. Economi-

cally, this means that any information contained in F
( 1

12 ,
1

12 )
t which is available at t,

cannot be used to make any non-zero forecast of the next innovation εt+ 1
12

occuring

from t to t + 1
12 . More generally, any information available at t is independent of

innovation or surprise εt+ 1
12

. We shall adhere to this construction of independence
rather than mere contemporaneous zero correlation which is a weaker and linear
concept.

From Eq. (13), we can express

R
( 1

12 )

t+ 1
12
−F

( 1
12 ,

1
12 )

t = a0 + a1

(
F
( 1

12 ,
1

12 )
t −R

( 2
12 )

t

)
+ εt+ 1

12
, (14)
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where

Et

[(
F
( 1

12 ,
1
12 )

t −R
( 2

12 )
t

)
εt+ 1

12

]
= 0.

Under the rational expectations hypothesis, H0 : a1 = 0 in regression Eq. (14).
Nominal interest rates are often found to be non-stationary in the literature (see

[1] and [8]), but are usually cointegrated with other interest rates. Therefore, by
constructing the dependent and explanatory variables as differences in interest rates,
regression Eq. (14) is well specified.

In the same way, we can construct regression equations from Eq. (10) and Eq.
(11) as follows to test for the rational expectations hypothesis in the term structure
of interest rates.

From Eq. (10),

R
( 1

12 )

t+ 2
12
−F

( 2
12 ,

1
12 )

t = b0 + b1

(
F
( 2

12 ,
1
12 )

t −R
( 3

12 )
t

)
+ηt+ 2

12
, (15)

where

Et

[(
F
( 2

12 ,
1
12 )

t −R
( 3

12 )
t

)
ηt+ 2

12

]
= 0,

and H0 : b1 = 0.
From Eq. (11),

R
( 1

12 )

t+ 3
12
−F

( 3
12 ,

1
12 )

t = c0 + c1

(
F
( 3

12 ,
1
12 )

t −R
( 4

12 )
t

)
+ εt+ 3

12
, (16)

where

Et

[(
F
( 3

12 ,
1
12 )

t −R
( 4

12 )
t

)
εt+ 3

12

]
= 0,

and H0 : c1 = 0.

4 Tests of Dependencies

We first test Eqs. (14), (15), and (16) individually. Next we combine them into a
stacked regression to test under a joint hypothesis that all their slopes are zeros. Fi-
nally we consider the vector of the 3 different dependent variables, and the vector of
the 3 different explanatory variables, and test for independence between the vectors
based on the distance covariance metrics.

Single Regression Test

For the 144 months (using end-of-month data) from July 2001 till June 2013, let t
denote end of July 2001, t + 1

12 denote end of August 2001, and so on. Let 143× 1

vector Y =(y1,y2, . . . ,y j, , . . . ,y143)
′ where y j =R

( 1
12 )

t+ j
12
−F

( 1
12 ,

1
12 )

t+ j−1
12

. Let 143×2 matrix

X of explanatory variables be
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 F
( 1

12 ,
1
12 )

t −R
( 2

12 )
t

1 F
( 1

12 ,
1
12 )

t+ 1
12

−R
( 2

12 )

t+ 1
12

...
...

1 F
( 1

12 ,
1
12 )

t+ j−1
12

−R
( 2

12 )

t+ j−1
12

...
...

1 F
( 1

12 ,
1
12 )

t+ 142
12

−R
( 2

12 )

t+ 142
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let 143× 1 vector of disturbances be E =
(
εt+ 1

12
,εt+ 2

12
, . . . ,εt+ 143

12

)′
. Let A =

(a0,a1)
′. Then Eq. (14) can be represented by Y = XA+E , and the least squares

estimates Â can be obtained as (X ′X)−1(X ′Y ). The null of H0 : a1 = 0 can thus be
tested.

To test Eq. (15), we avoid overlapping data problem, and use the subsample of
time series t, t + 2

12 , t +
4
12 , t +

6
12 , . . . , t +

142
12 (72 sample points). Let 71× 1 vector

Y = (y1,y2, . . . ,y j, , . . . ,y71)
′ where y j = R

( 1
12 )

t+ 2 j
12
−F

( 2
12 ,

1
12 )

t+ 2( j−1)
12

. Let 71× 2 matrix X of

explanatory variables be

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 F
( 2

12 ,
1

12 )
t −R

( 3
12 )

t

1 F
( 2

12 ,
1
12 )

t+ 2
12

−R
( 3

12 )

t+ 2
12

...
...

1 F
( 2

12 ,
1
12 )

t+ 2( j−1)
12

−R
( 3

12 )

t+ 2( j−1)
12

...
...

1 F
( 2

12 ,
1

12 )

t+ 142
12

−R
( 3

12 )

t+ 142
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The 71× 1 vector of disturbances is E =
(
ηt+ 2

12
,ηt+ 4

12
, . . . ,ηt+ 142

12

)′
. Let B =

(b0,b1)
′. Then Y = XB+E and the null of H0 : b1 = 0 is tested.

To test Eq. (16), again we avoid overlapping data problem, and use the subsample
of time series t, t+ 3

12 , t+
6
12 , t+

9
12 , . . . , t+

141
12 (48 sample points). Let 47×1 vector

Y = (y1,y2, . . . ,y j, , . . . ,y47)
′ where y j = R

( 1
12 )

t+ 3 j
12
−F

( 3
12 ,

1
12 )

t+ 3( j−1)
12

. Let 47× 2 matrix X of

explanatory variables be
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 F
( 3

12 ,
1

12 )
t −R

( 4
12 )

t

1 F
( 3

12 ,
1
12 )

t+ 3
12

−R
( 4

12 )

t+ 3
12

...
...

1 F
( 3

12 ,
1
12 )

t+ 3( j−1)
12

−R
( 4

12 )

t+ 3( j−1)
12

...
...

1 F
( 3

12 ,
1

12 )

t+ 138
12

−R
( 4

12 )

t+ 138
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The 47× 1 vector of disturbances is E =
(
εt+ 3

12
,εt+ 6

12
, . . . ,εt+ 141

12

)′
. Let C =

(c0,c1)
′. Then Y = XC+E and the null of H0 : c1 = 0 is tested.

The above single regressions can be construed as testing if present information

variables F
( k

12 ,
1

12 )

t+ k( j−1)
12

−R
k+1
12

t+ k( j−1)
12

can predict future surprises in spot rates or the forward

forecast errors. The results for the above single regression tests are reported in Table
1 as follows.

Table 1 Single Regression Tests of Term Structure Dependency

Statistic Eq. (14) Eq. (15) Eq. (16)
Sample Size 143 71 47

Constant Estimate −0.085∗∗∗ −0.154∗∗∗ −0.249∗∗∗
(t-Statistic) (-3.943) (-3.714) (-2.814)

Slope Estimate 1.217∗∗∗ -0.021 -0.468
(t-Statistic) (2.985) (-0.087) (-1.050)
F-Statistic 8.911∗∗∗ 0.008 1.103
(p-Value) (0.003) (0.931) (0.299)

R2 0.059 0.000 0.024

∗∗∗ indicates rejection of null of zero at significance level of 1%.

The negative constant shows that forward rate carries a positive risk premium.
In other words, for a borrower to lock in a forward deposit rate in the future, he
or she has to pay a positive risk premium over and above the expected future spot
rate. This implies a risk or volatility of future increases in spot interest rates, or else
more risk aversion or excess demand on the part of borrowers than lenders. Table
1 also shows that out of the 3 cases of single regressions, one rejects the REH as
the estimated slope coefficient is significantly different from zero, while the other
two did not reject the null of zero slope. The results for the single regressions are
similar across different k for the explanation variables, and so we do not report all
the details.

As a robust observation, single regression equations such as Eqs. (14), (15), (16),
are found to produce results that are sensitive to outliers due to finite sample. For



150 K.-G. Lim

example, if we remove two to three large forecast errors, the slope estimate could
change drastically from being significantly different from zero to being insignif-
icantly different from zero. Employing generalized least squares did not alter the
substantive results.

Joint Test

Now to perform a joint multivariate regression test, we define random variable Ỹ1 to
have the 47× 1 random sample(

R
( 1

12 )

t+ 1
12
−F

( 1
12 ,

1
12 )

t R
( 1

12 )

t+ 4
12
−F

( 1
12 ,

1
12 )

t+ 3
12

R
( 1

12 )

t+ 7
12
−F

( 1
12 ,

1
12 )

t+ 6
12

... R
( 1

12 )

t+ 139
12
−F

( 1
12 ,

1
12 )

t+ 138
12

)
.

Define random variable Ỹ2 to have the 47× 1 random sample

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Define random variable Ỹ3 to have the 47× 1 random sample

⎛
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.

Stack the above vectors to become a 141× 1 Y ∗ = (Y ′1,Y
′
2,Y

′
3)
′. Similarly define

47× 1 X1 to be
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Define 47× 1 X2 to be
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Define 47× 1 X3 to be
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−R
( 4

12 )

t+ 3
12

F
( 3

12 ,
1
12 )

t+ 6
12

−R
( 4

12 )

t+ 6
12

...

F
( 3

12 ,
1

12 )

t+ 138
12

−R
( 4

12 )

t+ 138
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Similarly, stack the above vectors to become a 141× 1 X∗ = (X ′1,X
′
2,X

′
3)
′.

Let 47× 3 matrix D1 be

⎛
⎜⎜⎜⎜⎝

1 0 0
1 0 0
1 0 0
...
1 0 0

⎞
⎟⎟⎟⎟⎠.

Let 47× 3 matrix D2 be

⎛
⎜⎜⎜⎜⎝

0 1 0
0 1 0
0 1 0
...
0 1 0

⎞
⎟⎟⎟⎟⎠.

Let 47× 3 matrix D3 be

⎛
⎜⎜⎜⎜⎝

0 0 1
0 0 1
0 0 1
...
0 0 1

⎞
⎟⎟⎟⎟⎠.

Stack D1,D2,D3 to become a 141×3 D∗. Concatenate Z = (D∗,X∗) to be a 141×4
matrix. Let Θ = (θ1,θ2,θ3,θ4)

′. Let 141× 1 disturbance term be U . Then perform
regression on Y ∗= ZΘ+U . The covariance of U in this case is heteroskedastic since
var(εt) = σ2

1 , var(ηt) = σ2
2 , var(εt) = σ2

3 , are different from each other. Moreover,
cov(εt ,ηt) = σ1,2 �= 0, cov(εt ,εt ) = σ1,3 �= 0, and cov(ηt ,εt ) = σ2,3 �= 0. Let 3× 3
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matrix V be

⎛
⎝ σ2

1 σ1,2 σ1,3

σ1,2 σ2
2 σ2,3

σ1,3 σ2,3 σ2
3

⎞
⎠. Then cov(U) = V ⊗ I47×47 and we test for the

H0 : θ4 = 0 using generalized least squares. The results are reported in Table 2.

Distance Covariance Test

The above stacked multivariate regression or sometimes known as seemingly unre-
lated regressions, assumes linearity in the relationship between forecast errors and
present information variables, as well as an assumption of the distribution of the
disturbances, usually Gaussian. The linearity and Gaussian assumptions may lead
to mis-specification biases, particularly in finite samples. To avoid these biases, we
employ the distance covariance metric of [10] as a test of the independence of the
forward forecast errors and the present information variables.

We consider Y ∗ to be realizations from a random 3× 1 vector (Ỹ1,Ỹ2,Ỹ3)
′. Also

consider X∗ to be realizations from a random 3×1 vector (X̃1, X̃2, X̃3)
′. We then em-

ploy the distance covariance method to test the independence of these two random
vectors.

[11] used the idea that two random functions, in our case vectors Ỹ ∗ and X̃∗,
are independent if and only if the characteristic function of the joint distribution,
fỸ ∗,X̃∗(t,s) equals the product of their characteristic functions, fỸ ∗(t) fX̃∗(s). The
theoretical distance covariance metric is formulated as

V 2(Ỹ ∗, X̃∗) =
∫

R6
| fỸ ∗,X̃∗(t,s)− fỸ ∗(t) fX̃∗(s)|2× (cpcq|t|1+p

p |s|1+q
q )−1dt ds,

where |t|p is the usual Euclidean norm in R p, and cp =
π (1+p)/2

Γ ((1+ p)/2)
. The nor-

malized sample equivalent of this metric is TV̂ 2/S
d−→ Q as sample size T → ∞,

where

S = T−2
T

∑
n=1

T

∑
m=1

|Xn−Xm||Yn−Ym|.

V̂ 2 = T−2∑T
n=1∑T

m=1 AnmBnm where Anm = anm− an· − a·m + a·· , anm = |Xn−Xm|,
an· = T−1∑T

m=1 anm, a·m = T−1∑T
n=1 anm, and a·· = T−2∑T

n=1 ∑
T
m=1 anm. According

to [11] Theorem 6, Q is asymptotically distributed as This measure is asymptotically
distributed to be bounded below by χ2

1 for usual ranges of the critical region, such
as 10%, 5%, or 1%, and does not require any distributional assumption.

We report the results of the joint tests and the distance covariance test statistic in
Table 2.

Table 2 shows that in the joint multivariate test, the common slope coefficient
is estimated at close to one, and is significantly different from zero at a p-value
of 9.8%. It is a borderline case whereby REH may appear to hold. However, the
distance covariance test yields a Q-statistic of 3.4607 with a p-value smaller than
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Table 2 Joint Tests of Term Structure Dependency

Statistic Estimate z-Statistic p-Value
θ̂1 -0.0346 (-0.232) 0.816
θ̂2 −0.369∗∗ (-2.310) 0.021
θ̂3 1.708∗∗∗ (10.052) 0.000
θ̂4 1.108∗ (1.654) 0.098

Statistic Estimate Upper Bound for p-Value
Q-Test 3.4607∗ 0.0628

Sample size of joint test is 141. ∗∗∗ indicates rejection of null of zero at significance level of
1%, ∗∗ indicates rejection of null of zero at significance level of 5%, and ∗ indicates rejection
of null of zero at significance level of 10%.

0.0628. This is clearly a stronger rejection of the REH than in the case of the linear
multivariate joint test.

5 Conclusions

Rational expectations constraints are set up in the term structure relationship be-
tween forward interest rate forecasts and present information variables containing
differences of forward and spot rates. REH would suggest that present information
values did not have any impact on the future forecast surprises. Using linear single
regressions, we show results that are sensitive to outliers such as unusually high
forecast errors in some months.

In joint test involving more than one regression equation, the rational expectation
hypothesis is more clearly rejected using the distance covariance metric. There is
thus preliminary evidence that distributional and linearity mis-specification of the
rationality hypothesis in the term structure could potentially biased toward non-
rejection of an otherwise generally unsustainable hypothesis.
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Joint Distributions of Random Sets and Their
Relation to Copulas

Bernhard Schmelzer

Abstract. Random sets are set-valued random variables. They have been applied in
various fields like stochastic geometry, statistics, economics, engineering or com-
puter science, and are often used for modeling uncertainty. This paper is concerned
with joint distributions of random sets. Generalizations of the Choquet theorem are
presented which state that the joint distribution of random sets can be characterized
by multivariate analogues of capacity functionals. Furthermore, it is shown how
copulas can be used to describe the relation between a joint distribution of random
sets and their marginal distribution.

1 Introduction

Roughly speaking, random sets are random variables whose values are sets. They
have been applied in various fields like stochastic geometry, statistics, economics,
engineering or computer science. Random sets are frequently interpreted as impre-
cise observations of random variables [4]. Thus, they can be used to model uncer-
tainty when there is only vague knowledge about a random variable or when only
imprecise or incomplete observations are available. In this interpretation, it is as-
sumed that the values of a random set contain the values of the true (but unavailable)
random variable.

Just like distributions of random variables can be uniquely described by distri-
bution functions, distributions of random sets can be characterized by set functions
with special properties, so-called capacity or containment functionals [5]. This is
stated by the well-known Choquet theorem (or Matheron-Kendall-Choquet theo-
rem) [5] which is of central importance in random set theory. Capacity and con-
tainment functionals have been interpreted as plausibility and belief functions in
evidence theory [15] and upper and lower probabilities [3] in imprecise probability

Bernhard Schmelzer
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theories [16]. For further information on random sets the reader is referred to the
textbooks [5, 7, 10].

This paper will present generalizations of the Choquet theorem to the multidi-
mensional case; some of the presented ideas first appeared in [14]. More precisely,
multivariate analogues of capacity functionals will be introduced and it will be
demonstrated that the latter fully characterize joint distributions of random sets.
Furthermore, the paper is addressed to the question if or how copulas can be used to
describe the relation of joint distributions of random sets and their marginal distri-
butions. Copulas are a popular tool for dependence modeling in statistics (see [20]
for an introduction). A proposition will be presented which shows that copulas can
be used to relate joint containment functionals to its marginal containment func-
tionals. This proposition suggests that, in general, a single copula is not enough to
completely describe dependence of two random sets.

The plan of the paper is as follows. In Section 2 basic facts about random sets are
reviewed. Section 3 summarizes the most important results from [14] concerning
joint distributions of random sets and characterization by set functions. Section 4 is
addressed to the question how copulas can be used to describe the dependence of
random sets.

2 Random Sets

Random sets can be seen as random variables whose values are subsets of some
given set E. These values are called focal sets of the random set. The simplest case
arises when a random set consists of finitely many focal sets. In this case, one speaks
of finite random sets or Dempster-Shafer structures [3, 15]. Each of the focal sets
Xi, i = 1, . . . , � comes with a probability weight pi such that ∑ pi = 1.

A finite random set X with focal sets X1, . . . ,X� can be seen as a set-valued ran-
dom variable by defining an �-point probability space Ω = {1, . . . , �} with prob-
ability weights {p1, . . . , p�}. The assignment X : i �→ Xi is the defining set-valued
random variable.

Following Dempster and Shafer [3, 15] one can consider two set functions as-
sociated with a random set. For each event B ⊆ E these set functions are defined
by

ϕ̃(B) = ∑
Xi⊆B

pi, ϕ(B) = ∑
Xi∩B �= /0

pi

Clearly, ϕ̃(B) ≤ ϕ(B) for all B ⊆ E, ϕ̃( /0) = ϕ( /0) = 0 and ϕ̃(E) = ϕ(E) = 1 if all
focal elements are non-empty. Note that ϕ̃ and ϕ are dual set functions which means
that

ϕ̃(B) = 1−ϕ(Bc)

where Bc denotes the set-theoretic complement of B. Furthermore, ϕ̃ and ϕ have
special properties: The set function ϕ̃ is completely monotone (or monotone of infi-
nite order) which means that for any k≥ 2, and B1, . . . ,Bk ⊆ E it holds that
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ϕ̃

(
k⋃

j=1

B j

)
≥ ∑

/0 �=J⊆{1,...,k}
(−1)|J|+1 ϕ̃

(⋂
j∈J

B j

)
(1)

By duality, one has that ϕ is completely alternating (or alternating of infinite order),
i.e.,

ϕ

(
k⋂

j=1

B j

)
≤ ∑

/0 �=J⊆{1,...,k}
(−1)|J|+1ϕ

(⋃
j∈J

B j

)
(2)

Note that for probability measures, equality holds in equations (1) and (2). A com-
pletely monotone set function yielding 0 for the empty set and 1 for E is called a be-
lief function whereas a completely alternating set function yielding 0 for the empty
set and 1 for E is called a plausibility function [10, 15]. In the framework of impre-
cise probabilities [16] ϕ̃ and ϕ can be interpreted as lower and upper probabilities.
This is due to the fact that the two set functions bound the values of all probability
distributions on E induced by random variables whose values are contained in the
focal sets of the random set (see [6], for example).

Example 1. Let E = {x1,x2,x3} and let X be the (finite) random set with focal sets
X1 = {x1,x2}, X2 = {x3}, X3 = {x2,x3} and probability weights p1, p2, p3. Then
one obtains the following values for the associated belief and plausibility function.

B /0 {x1} {x2} {x3} {x1,x2} {x1,x3} {x2,x3} E

ϕ̃(B) 0 0 0 p2 p1 p2 p2 + p3 1

ϕ(B) 0 p1 p1 + p3 p2 + p3 p1 + p3 1 1 1

When the basic set E is finite then also its power set 2E, i.e., the set of all subsets
of E, is finite: it has 2|E| elements. In this case, a finite random set X with focal
elements X1, . . . ,X� induces a basic probability assignment m on 2E [15]:

m(A) =

{
pi if A = Xi

0 else

Note that m( /0) = 0 if all focal sets are non-empty and that∑A⊆E m(A) = 1. By using
the basic probability assignment m the belief and the plausibility function associated
with X can be written as

ϕ̃(B) = ∑
A⊆B

m(A), ϕ(B) = ∑
A∩B �= /0

m(A)

On the other hand, given a belief function ϕ̃ on 2E there exists a unique basic
probability assignment m on 2E such that ϕ̃(B) = ∑A⊆B m(A). An explicit formula
to compute m from ϕ̃ is given by the so-called Moebius inversion formula [15]:

m(A) = ∑
B⊆A

(−1)|A\B|ϕ̃(B) (3)

where A\B denotes the set-theoretic difference.
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In general, random sets are random elements defined on an arbitrary probability
space Ω equipped with a σ -algebra Σ and a probability measure P. Furthermore, it
is usual to assume that E is an infinite set satisfying certain topological properties
(more precisely, E is a locally compact Hausdorff second countable space) and that
the focal sets are closed subsets of E because this implies favorable properties. A
random closed set is then a map fromΩ into the closed subsets of E, denoted by F ,
such that for each compact subset K of E its upper inverse [10] X−(K) of K under
X defined by

X−(K) = {ω ∈Ω : X(ω)∩K �= /0}
is measurable, i.e., X−(K) is an element of Σ .

Given a random closed set X one can define a set function on the family of com-
pact subsets of E, denoted by K , which assigns to each K ∈K the probability of
the upper inverse, i.e.,

ϕ(K) = P(X−(K)) = P({ω : X(ω)∩K �= /0})

It can be shown that the set function ϕ has the following three properties:

(1) ϕ( /0) = 0
(2) ϕ is completely alternating, i.e., for every finite family of compact sets Equa-

tion (2) holds.
(3) ϕ is continuous from above, i.e., for each decreasing sequence {Kn}∞n=1 (i.e.,

Kn+1 ⊆ Kn for all n≥ 1) it holds that

lim
n→∞

ϕ(Kn) = ϕ

(
∞⋂

n=1

Kn

)
.

A set function satisfying these three properties is called a capacity functional [5].
Note that the terms capacity functional and plausibility function essentially mean
the same but stem from different theories. A minor difference is that a capacity
functional does not generally assign the value 1 to E since the latter is, in general,
not compact. But if one assumes that the values of the random set are non-empty
with probability 1, then it holds that

sup{ϕ(K) : K ∈K }= 1

The dual set function ϕ̃ of the capacity functional ϕ is called a containment func-
tional [5] and assigns to every complement Kc of a compact set K the probability
that the random set X is contained in Kc, i.e.,

ϕ̃(Kc) = 1−ϕ(K) = P
({ω : X(ω)⊆ Kc})

Obviously, containment functionals are essentially the same as belief functions.

Example 2. Random sets with basic probability space (0,1] equipped with the
Lebesgue measure λ (uniform probability distribution) are frequently used for un-
certainty modeling. They are sometimes called random sets of indexable type [1]. As
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an example a Chebychev random set [12] is considered. Such a random set is useful
for modeling uncertainty about a variable where the only information available are
values for the mean μ and the standard deviation σ . The random set assigns to each
ω ∈ Ω = (0,1] the interval in which the variable lies with a probability of at least
1−ω irrespective of the distribution of the variable. The intervals are constructed
from the well-known Chebychev inequality and are given by

X(ω) =
[
μ− σ√

ω
,μ+

σ√
ω

]

In addition to the fact that the random set X is of indexable type, it is special inas-
much, that the focal sets are linearly ordered by set inclusion, i.e., for ω2 ≥ ω1 it
holds that X(ω2)⊆ X(ω1). Thus, upper inverses X−(K) are always intervals and the
values of the capacity functional associated with X are the lengths of these intervals,
i.e., for a compact set K one has

ϕ(K) = λ
((

0,max{ω : X(ω) ∩ K �= /0}]) = max{ω : X(ω) ∩ K �= /0}

This further implies that ϕ is maxitive, i.e., for K,L ∈K one has

ϕ(K ∪L) = max{ϕ(K),ϕ(L)}

Example 3. Every finite random set can be represented as a random set of indexable
type. For the random set from Example 1 this can be done by dividing (0,1] into
the subintervals I1 = (0, p1], I2 = (p1, p1 + p2] and I3 = (p1 + p2,1]. Note that the
lengths of the intervals correspond to the probability weights. Then X can be defined
as an infinite random set by assigning to ω ∈ (0,1] the focal set Xi with i such that
ω ∈ Ii.

Similar to the case where E is finite, a capacity functional uniquely determines
a probability distribution on the family F of closed subsets of E. The following
classes of subsets of F constitute important classes of events (K ∈K ):

FK = {F ∈F (E) : F ∩K �= /0}, FK = {F ∈F (E) : F ∩K = /0}

Note that these events are related to the containment and the capacity functional of
a random closed set X in the following way:

ϕ̃(Kc) = P
(
X ∈FK)

, ϕ(K) = P
(
X ∈FK

)

The smallest family of events, i.e., the smallest σ -algebra containing all events of
the form FK , K ranging through K , is called Effros-σ -algebra and denoted by
B(F ). The Choquet theorem (or Choquet-Kendall-Matheron theorem [5, 7, 10])
states a one to one correspondence between capacity functionals and probability
distributions on F . More precisely, the theorem reads as follows.
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Theorem 1 ([5, 7, 10]). Let ϕ : K → [0,1] be a capacity functional. Then there
exists a unique probability measure Π on B(F ) such that ϕ(K) =Π

(
FK

)
for all

K ∈K .

By duality, a probability measureΠ on F is also uniquely determined by a contain-
ment functional ϕ̃ via the relation

ϕ̃
(
Kc

)
=Π

(
FK)

Note that in the case where E is finite the Moebius inversion formula (3) admits the
explicit computation of the density of the distribution Π .

3 Joint Distributions of Random Sets

In the last section it has been mentioned that the distribution of a random (closed)
set can be fully characterized by its capacity (or containment) functional. In [14] it
has been shown that similar results hold concerning the joint distribution of finitely
many random sets. The aim of this section is to summarize the most important re-
sults from [14] without giving the proofs (for proofs the reader is referred to [14]).
For the sake of simplicity the considerations are restricted to the two-dimensional
case although all statements can be transferred to the n-dimensional case without
any problems.

In the following let E1 andE2 be two topological spaces with favorable properties
(more precisely, let E1 and E2 be two locally compact Hausdorff second countable
spaces), and let Fi and Ki denote the families of closed and compact subsets of Ei,
respectively, i = 1,2. Let Xi : Ω →Fi, i = 1,2, be two random closed sets defined
on the probability space (Ω ,Σ ,P). The joint distribution of the two random sets is a
probability measure on the product space F1×F2 = {(F1,F2) : Fi ∈Fi} equipped
with the product-σ -algebra B(F1)⊗B(F2).

Motivated by the one-dimensional case one could define a set function on K1×
K2 by

(K1,K2) �→ P
(
X1∩K1 �= /0,X2∩K2 �= /0

)
= P

(
X−1 (K1)∩X−2 (K2)

)
= P

(
(X1,X2) ∈FK1

×FK2

)

i.e., pairs of compact sets (K1,K2) is assigned the probability of (X1,X2) belonging
to the cylindrical event FK1

×FK2
. In fact, this approach is not fruitful. It is more

favorable to assign to pairs of compact sets the probability of the union of their
upper inverses.

Proposition 1 ([14]). Let Xi : Ω →Fi, i = 1,2, be random closed sets on a proba-
bility space (Ω ,Σ ,P). Then

ψ : K1×K2 → [0,1],(K1,K2) �→ P
(
X−1 (K1)∪X−2 (K2)

)

has the following properties:
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(1) ψ( /0, /0) = 0
(2) ψ is jointly completely alternating, i.e., for all k≥ 2, 1≤ j≤ k, K j

i ∈Ki, i = 1,2
it holds that

ψ

(
k⋂

j=1

K j
1 ,

k⋂
j=1

K j
2

)
≤ ∑

/0 �=J⊆{1,...,k}
(−1)|J|+1ψ

(⋃
j∈J

K j
1 ,

⋃
j∈J

K j
2

)
.

(3) ψ is jointly continuous from above, i.e., for all decreasing sequences {Kk
i }∞k=1⊆

Ki (i.e., Kk+1
i ⊆ Kk

i ), i = 1,2, it holds that

lim
k→∞

ψ(Kk
1 ,K

k
2) = ψ

(
∞⋂

k=1

Kk
1 ,

∞⋂
k=1

Kk
2

)

Note that for each component the set function ψ simultaneously satisfies the condi-
tions of a capacity functional. Thus a set function satisfying the above three condi-
tions shall be called a joint (or multivariate) capacity functional. Furthermore, note
that

ψ(K1,K2) = P
(
(X1,X2) ∈ (FK1

×F2)∪ (F1×FK2
)
)

i.e., ψ assigns to the pair (K1,K2) the probability of the event

(FK1
×F2)∪ (F1×FK2

) = {(F1,F2) : F1∩K1 �= /0 or F2∩K2 �= /0}.

Similar to the one-dimensional case a joint probability distribution of two (or
more generally finitely many) random sets is completely determined by a joint ca-
pacity functional.

Proposition 2 ([14]). Let ψ : K1×K2 → [0,1] be a joint capacity functional (i.e.,
a set function satisfying Conditions (1) - (3) of Proposition 1). Then there ex-
ists a unique probability measure Π : B(F1)⊗B(F2)→ [0,1] such that for all
(K1,K2) ∈K1×K2 it holds that

ψ(K1,K2) =Π
((

FK1
×F2

)∪ (
F1×FK2

))

The dual set function of ψ is defined on K c
1 ×K c

2 and is given by

ψ̃(Kc
1 ,K

c
2) = 1−ψ(K1,K2) = 1−P

(
X−1 (K1)∪X−2 (K2)

)
= P

(
X1∩K1 = /0,X2∩K2 = /0

)
= P

(
(X1,X2) ∈FK1 ×FK2

)

By duality, ψ̃ has the following properties and can be called a joint (or multivariate)
containment functional:

(1) ψ̃(E1,E2) = 1

(2) ψ̃ is jointly completely monotone, i.e., for all k≥ 2, 1≤ j≤ k, Lj
i ∈K c

i , i = 1,2
it holds that
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ψ̃

(
k⋃

j=1

Lj
1,

k⋃
j=1

Lj
2

)
≥ ∑

/0 �=J⊆{1,...,k}
(−1)|J|+1 ψ̃

(⋂
j∈J

L j
1,

⋂
j∈J

L j
2

)
.

(3) ψ̃ is jointly continuous from below, i.e., for all increasing sequences {Lk
i }∞k=1 ⊆

K c
i (i.e., Lk

i ⊆ Lk+1
i ), i = 1,2, it holds that

lim
k→∞

ψ̃(Lk
1,L

k
2) = ψ̃

(
∞⋃

k=1

L1,
∞⋃

k=1

L2

)

By duality and Proposition 2, one can conclude that a probability measure Π on
B(F1)⊗B(F2) is uniquely determined by a joint containment functional ψ̃ via
the relation

ψ̃(Kc
1 ,K

c
2) = 1−ψ(K1,K2) = 1−Π

((
FK1

×F2
)∪ (

F1×FK2

))

=Π
((

FK1 ×F2
)∩ (

F1×FK2
))

=Π
(
FK1 ×FK2

)

It should be pointed out that joint distributions of random (closed) sets, i.e.,
probability measures on F1 ×F2 can also be characterized by set functions de-
fined on certain classes of subsets of E1×E2. The canonical but misleading way
would be to consider capacity functionals on K (E1×E2), i.e., the family of com-
pact subsets of the product space E1 ×E2. Application of the Choquet theorem
would lead to a probability measure on the family of closed subsets of E1×E2,
i.e., F (E1 ×E2) = {F ⊆ E1 ×E2 closed}. The latter is obviously not the same
as F1 ×F2 = {(F1,F2) : Fi ∈ Fi}. It has been shown in [14] that the family

ˆK 2∪ = {K1×E2∪E1×K2 : Ki ∈Ki} is suitable.

Proposition 3 ([14]). Let φ : ˆK 2∪ → [0,1] be a capacity functional, i.e., φ( /0) = 0, φ
is completely alternating and continuous from above for sets from ˆK 2∪ . Then there
exists a unique probability measure Π : B(F1)⊗B(F2)→ [0,1] such that

φ
((

K1×E2
)∪ (

E1×K2
))

=Π
((

FK1
×F2

)∪ (
F1×FK2

))

for all Ki ∈Ki. If, in addition, it holds that

sup{φ(K1×E2) : K1 ∈K1}= 1 and sup{φ(E1×K2) : K2 ∈K2}= 1

then Π
(
(F1 \ { /0})× (F2\ { /0}))= 1 and for all L ∈ ˆK 2∪ it holds that

φ(L) =Π
({(F1,F2) ∈F1×F2 : F1×F2∩L �= /0}).

The additional condition implies that an empty set only appears with probability
zero, and in this case the relation between φ and Π is very similar to that in the
Choquet theorem. Of course, one can again give a dual formulation of the above
proposition. To this end, consider the dual set function of φ which is defined on
the complements of ˆK 2∪ . The latter are the cylindrical sets whose components are
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complements of compact sets, i.e., (K c)2× = {Kc
1 ×Kc

2 : Ki ∈Ki}. Thus, a prob-
ability measure Π on F1 ×F2 is uniquely determined by a containment func-
tional φ defined on the cylindrical sets (K c)2× via the relation φ̃(Kc

1 × Kc
2) =

Π
(
FK1 ×FK2

)
.

In the case of finite spaces E1 and E2 one speaks of belief and plausibility func-
tions, again. A joint belief function is a set function φ defined on 2E1 × 2E2 =
{(A1,A2) : Ai ⊆ Ei} such that φ̃( /0, /0) = 0, φ̃(E1,E2) = 1 and which is jointly com-
pletely monotone. By duality, a joint plausibility function is a set function φ defined
on 2E1 × 2E2 such that φ̃( /0, /0) = 0, φ̃(E1,E2) = 1 and which is jointly completely
alternating in each component. Proposition 2 implies that given a joint belief func-
tion it is possible to find a probability distribution on 2E1 × 2E2 . As in the one-
dimensional case it is even possible to compute a joint density (basic probability
assignment), i.e., a set function m on 2E1× 2E2 that satisfies

(1) m( /0, /0) = 0
(2) ∑

A1⊆E1,A2⊆E2

m(A1,A2) = 1.

The following proposition shows how to obtain a joint belief function from m and
how to compute a joint basic probability assignment from a joint belief function.
Formula (5) can be seen as a two-dimensional Moebius inversion formula.

Proposition 4 ([14]). Let m : 2E1× 2E2 → [0,1] be a joint basic probability assign-
ment. Then

ψ̃ : 2E1× 2E2 → [0,1],(A1,A2) �→ ∑
B1⊆A1,B2⊆A2

m(B1,B2) (4)

is a joint belief function. On the other hand, if ψ̃ : 2E1×2E2 → [0,1] is a joint belief
function then

m(A1,A2) = ∑
B1⊆A1,B2⊆A2

(−1)|A1\B1|+|A2\B2| ψ̃(B1,B2) (5)

is the unique joint basic probability assignment such that Equation (4) holds.

4 Random Sets and Copulas

This section is addressed to the question how copulas can be used to describe the
relation between joint distributions of random sets and its marginal distributions.
Again, the considerations are restricted to the case of two random sets.

Copulas are a useful tool for modeling dependence of random variables. A bi-
variate copula C is a function C : [0,1]2 → [0,1] satisfying the following properties:

(1) C(u1,0) = 0 and C(0,u2) = 0 for all u1,u2 ∈ [0,1]
(2) C(u1,1) = u1 and C(1,u2) = u2 for all u1,u2 ∈ [0,1]
(3) C(v1,v2)−C(v1,u2)−C(u1,v2)+C(u1,u2)≥ 0 for all ui ≤ vi, i = 1,2
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A bivariate subcopula is a function whose domain is a subset D of [0,1]2 and which
satisfies the preceding three conditions on D.

The joint distribution of two random variables ξ1, ξ2 is fully determined by the
joint distribution function (x1,x2 ∈ R)

F(x1,x2) = P(ξ1 ≤ x1,ξ2 ≤ x2) = P
(
(ξ1,ξ2) ∈ (−∞,x1]× (−∞,x2])

Hence, the rectangular events (−∞,x1]× (−∞,x2] completely determine the distri-
bution of the random vector (ξ1,ξ2). The marginal distribution functions of ξ1 and
ξ2 are given by

Fi(xi) = P
(
ξi ≤ xi

)
= P

(
ξi ∈ (−∞,xi]

)
The well-known Sklar theorem [20] says that given a joint distribution function F
there exists a copula C that links F to its marginals F1, F2 by

F(x1,x2) =C
(
F1(x1),F2(x2)

)

The copula C is uniquely determined if F1 and F2 take all values between 0 and 1.
On the other hand, given two marginal distribution functions F1, F2 and a copula C,
the mapping (x1,x2) �→ C

(
F1(x1),F2(x2)

)
yields a joint distribution function. Note

that in the formulation of Sklar’s theorem there is no reference to the underlying
random variables, it only requires the knowledge of the distribution functions. For
further information on copulas the reader is referred to the monograph [20].

The question arises whether copulas can be used to describe dependence of ran-
dom sets in a similar manner. The role of distribution functions should be played
by (joint) capacity or containment functionals since the latter uniquely determine
the (joint) distribution of random sets (see Theorem 1 and Proposition 2). The de-
sired result would thus be that a joint capacity or containment functional can be
related to its marginals by a copula. The marginals of a joint capacity functional
ψ : K1×K2 → [0,1] are given by

ϕ1(K1) = ψ(K1, /0), ϕ2(K2) = ψ( /0,K2)

This can be seen by using Theorem 1 and Proposition 2

ψ(K1, /0) =Π
((

FK1
×F2

)∪ (
F1×F/0

))
=Π

(
FK1

×F2
)
=Π1

(
FK1

)
= ϕ1(K1)

where Π1 is the marginal distribution of Π with respect to the first component. By
duality, the marginals of a joint containment functional ψ̃ : K c

1 ×K c
2 → [0,1] are

given by
ϕ̃1(K

c
1) = ψ̃(Kc

1 ,E2), ϕ̃2(K
c
2) = ψ̃(E1,K

c
2)

Scarsini [13] has presented a generalization of Sklar’s theorem which applies to
probability measures on very general spaces. More precisely, he considers Polish
spaces (i.e., completely metrizable separable spaces) and shows that when choosing
in each component an increasing family of subsets, i.e., a family of subsets which
can be linearly ordered by set inclusion, there exists a unique subcopula that links
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the joint distribution to the marginals when the latter are restricted to the chosen
increasing subclasses. Since the families F1 and F2 of closed subsets of E1 and
E2 are Polish spaces (when equipped with the so-called Fell topology - see [2] for
details) one can make use of [13, Theorem 3.1] to obtain the following Proposition.

Proposition 5. Let ψ̃ : K c
1 ×K c

2 → [0,1] be a joint containment functional and let
ϕ̃1 and ϕ̃2 denote its marginal containment functionals. Furthermore, let I1 and
I2 denote increasing families of subsets of K c

1 and K c
2 , respectively. Then there

exists a unique subcopula CI1,I2 on ϕ̃1(I1)× ϕ̃2(I2) such that

ψ̃
(
Kc

1 ,K
c
2

)
=CI1,I2

(
ϕ̃1

(
Kc

1

)
, ϕ̃2

(
Kc

2

))
(6)

for each Kc
1 ∈I1, Kc

2 ∈I2.

Proof. By Theorem 1 and Proposition 2 and by duality ψ̃ , ϕ̃1 and ϕ̃2 uniquely de-
termine probability measures Π , Π1 and Π2 on F1×F2, F1 and F2, respectively.
The families F1 and F2 of closed subsets are Polish spaces when equipped with the
so-called Fell topology [2], and thus F1×F2 is also Polish. Since Ii are increas-
ing subclasses of K c

i , i = 1,2, the families Ai = {FKi : Kc
i ∈ Ii} are increasing

subclasses of Fi, i = 1,2. Thus, [13, Theorem 3.1] implies that there exists a unique
subcopula C on

Π1(A1)×Π2(A2) = ϕ̃1(I1)× ϕ̃2(I2) =
{
(ϕ̃1(K

c
1), ϕ̃2(K

c
2)) : Ki ∈Ii

}

such that for all Kc
i ∈Ii, i = 1,2 it holds that

Π(FK1 ×FK2) =C
(
Π1(F

K1),Π2(F
K2 )

)

But this implies Equation (6) since Π(FK1 ×FK2) = ψ̃(Kc
1 ,K

c
2) and Πi(FKi ) =

ϕ̃(Kc
i ), i = 1,2, by Proposition 2 and Theorem 1.

The proposition suggests that in contrast to the classical case (of random variables),
a single (sub-) copula is not enough to link a joint containment functional to its
marginal containment functionals. In fact, it seems that a whole family of copulas is
necessary to completely describe the relation. It is enough, though, to consider in-
creasing families Ii in K c

i and the so induced increasing families {FKi : Ki ∈Ii}
in Fi. This is due to the fact that the family {FKi : Ki ∈ Ki} is closed under
finite intersections, i.e., if Ki,Li ∈ Ki then FKi ∩F Li ∈ {FKi : Ki ∈ Ki} since
FKi ∩F Li = FKi∪Li . Furthermore, {FKi : Ki ∈Ki} is a generator of the Effros-
σ -algebra B(Fi). Thus, the probability measures Πi induced by the containment
functionals ϕ̃i are completely determined by their values on {FKi : Ki ∈Ki}. In a
similar manner, the joint distribution Π (induced by ψ̃) is completely determined
by its values on {FK1 ×FK2 : Ki ∈Ki, i = 1,2}. It remains as a topic for further
research if all increasing subclasses of K c

i have to be considered to obtain the
complete relation between a joint containment functional and its marginals or if it is
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enough to restrict oneself to certain subfamilies of K c
i . Furthermore, it has to be

investigated if the (sub-) copulas induced by the increasing subclasses have to satisfy
some kind of compatibility conditions.

It should be noted that there have already been attempts to use copulas for mod-
eling the dependence of random sets. Alvarez [1] has presented an approach which
can be applied to random sets of indexable type (see Example 2) whose underlying
probability space is the interval (0,1], and which directly deals with random sets
instead of their capacity (or containment) functionals. The approach makes use of
the fact that associated with a copula C one can define a measure μC on (0,1]2 by

μC
(
(u1,v1]× (u2,v2]

)
=C(v1,v2)−C(v1,u2)−C(u1,v2)+C(u1,u2)

where ui ≤ vi, ui,vi ∈ [0,1], i = 1,2. The idea in [1] is to define a joint random
(closed) set X from marginal random (closed) sets X1 and X2. The underlying prob-
ability space is Ω = (0,1]2 equipped with the measure μC and the focal sets of X are
defined by X(u1,u2) = X1(u1)×X2(u2). One can define the following set function
which is a joint containment functional by Proposition 1:

ψ̃(Kc
1 ,K

c
2) = μC

({(u1,u2) : X(u1,u2)⊆ Kc
1×Kc

2}
)

= μC
({(u1,u2) : X1(u1)⊆ Kc

1 ,X2(u2)⊆ Kc
2}

)
(7)

Of course, this approach is also applicable for random sets in finite spaces E1, E2,
if they are represented as random sets of indexable type as explained in Example 3.
However, ψ̃ defined in (7) depends on the order of the subdivisions of the intervals
(0,1] since μC not only depends on the lengths of the subintervals but also on their
bounds. This has recently been noted by Nguyen [11] who has also shown that
(in case of finite sets E1, E2) every joint belief function can be represented in the
form (7) with X1 and X2 being random sets constructed from the marginal belief
functions and their densities.

Note that Alvarez approach differs from the approach given in Proposition 5 not
only by the fact that it directly uses random sets, but also by the fact that the copula
is used on the basic probability spaces instead of the image spaces. When regarding
random sets with basic probability space (0,1] the question arises if there exists a
(simple) relation between the copula used in (7) and the family of copulas from
Proposition 5. The following example suggests that this is not the case.

Example 4. Let E1 = {x1,x2,x3}, E2 = {y1,y2}, let X1 be the random set from Ex-
ample 1 and let Y2 be the random set with focal sets {y2}, {y1,y2} = E2, {y1} and
probability weights q1, q2, q3, respectively. Furthermore, let ϕ̃1, ϕ̃2 be the belief
functions associated with X1, X2, let C be a copula and let ψ̃ be the joint belief func-
tion defined by Equation (7). The following table lists all combinations of sets for
which ψ̃ yields non-trivial values.
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A1 A2 ϕ̃(A1) ϕ̃(A2) ψ̃(A1,A2)

{x3} {y1} p2 q3 p2−C(p1 + p2,q1 + q2)+C(p1,q1 + q2)

{x3} {y2} p2 q1 C(p1 + p2,q1)−C(p1,q1)

{x1,x2} {y1} p1 q3 p1−C(p1,q1 + q2)

{x1,x2} {y2} p1 q1 C(p1,q1)

{x2,x3} {y1} p2 + p3 q3 1− p1− q1− q2 +C(p1,q1 + q2)

{x2,x3} {y2} p2 + p3 q1 q1−C(p1,q1)

{x1,x3} {y1} p2 q3 p2−C(p1 + p2,q1 + q2)+C(p1,q1 + q2)

{x1,x3} {y2} p2 q1 C(p1 + p2,q1)−C(p1,q1)

Consider the increasing classes I1 =
{

/0,{x3},{x2,x3},E1
}

, I2 =
{

/0,{y2},E2
}

.
By Proposition 5 there exists a subcopula CI1,I2 defined on {0, p2, p2 + p3,1}×
{0,q1,1} whose only non-trivial values are

CI1,I2(p2,q1) =C(p1 + p2,q1)−C(p1,q1)

CI1,I2(p2 + p3,q1) = q1−C(p1,q1)

These equations suggest that there does not exist a trivial relation between the cop-
ulas C and CI1,I2 .

5 Conclusion and Outlook

After reviewing the most important facts about random sets generalizations of the
Choquet theorem and the Moebius inversion formula to the multidimensional case
have been presented. It has been demonstrated that joint distributions of random sets
can be characterized by multivariate analogues of containment or capacity function-
als (Proposition 2) or by usual containment or capacity functionals whose domain is
restricted to particular cylindrical subsets of the product space or their complements,
respectively (Proposition 3).

Section 4 was devoted to the question how copulas can be used to describe de-
pendence of random sets. Proposition 5 has been derived from a more general result
from [13] and says that the relation between a joint containment functional and its
marginals can be described by a family of copulas depending on increasing classes
of subsets. In addition, an approach from [1] has been reviewed that uses copulas
for modeling dependence of random sets of indexable type, and which seems to be
fundamentally different from the approach of Proposition 5.

As a topic for further research the relation between the two approaches should
be studied in more detail. Furthermore, it should be investigated if (and how) Equa-
tion (6) can be used to model dependence of random sets (or containment func-
tionals). One open question is whether the copulas for each increasing class can be
chosen arbitrarily or whether they have to satisfy some compatibility conditions.
Moreover, it should be investigated if (7) can be used in general to describe the
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dependence of random sets by a single copula. Recently, Nguyen [11] has given a
positive answer for the case of finite sets.
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Vine Copulas As a Way to Describe and Analyze
Multi-Variate Dependence in Econometrics:
Computational Motivation and Comparison
with Bayesian Networks and Fuzzy Approaches

Songsak Sriboonchitta, Jianxu Liu, Vladik Kreinovich, and Hung T. Nguyen

Abstract. In the last decade, vine copulas emerged as a new efficient techniques
for describing and analyzing multi-variate dependence in econometrics; see, e.g.,
[1, 2, 3, 7, 9, 10, 11, 13, 14, 21]. Our experience has shown, however, that while
these techniques have been successfully applied to many practical problems of
econometrics, there is still a lot of confusion and misunderstanding related to vine
copulas. In this paper, we provide a motivation for this new technique from the com-
putational viewpoint. We show that other techniques used to described dependence
– Bayesian networks and fuzzy techniques – can be viewed as a particular case of
vine copulas.

1 Copulas – A Useful Tool in Econometrics: Motivations and
Descriptions

Need for Studying Dependence in Econometrics

Many researchers have observed that economics is more complex than physics. In
physics, many parameters, many phenomena are independent. As a result, we can
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observe (and thoroughly study) simple systems which can be described by a small
number of parameters. Based on these simple systems, we can separately determine
the laws that describe mechanics, electrodynamics, thermodynamics, etc., and then
combine these laws to describe more complex phenomena.

In contrast, in economics, most phenomena are interrelated. Thus, to numerically
describe economic phenomena, we need to take into account several dependent pa-
rameters. So, in econometrics, studying dependence is of utmost importance.

Statistical Character of Economic Phenomena

An additional complexity of economics – as compared to physics – is that while
most physical processes are deterministic, in economics, we can only make statis-
tical predictions. If we repeatedly drop the same object from the Leaning Tower of
Pisa (as Galileo did), we will largely observe the exact same behavior every time.
In contrast, if several very similar restaurants open in the same area, some of them
will survive and some will not, and it is practically impossible to predict which will
survive – at best, we can predict the probability of survival. We can deterministi-
cally predict the future trajectory of a spaceship, but we can, at best, make statistical
predictions about the future values of a stock index.

Conclusion: We Need to Study Dependence between Random Variables

Because of the statistical character of economic phenomena, each parameter de-
scribing the economics is a random variables. Thus, the need to study dependence
means that we need to study dependence between random variables.

Simplest Case When Random Variables Are Independent: Reminder

In order to analyze how to describe dependence of random variables, let us recall
how independent random variables can be described.

In general, a random variable Xi can be described by its cumulative distribution

function Fi(xi)
def
= Prob(Xi ≤ xi). If two random variables X1 and X2 are independent,

this means that their joint distribution function F(x1,x2)
def
= Prob(X1 ≤ x1 &X2≤ x2)

is equal to the product of the marginal distributions F1(x1) and F2(x2): F(x1,x2) =
F1(x1) ·F2(x2).

Towards Describing Dependence between Two Random Variables: The Notion of a
Copula

In the independent case, general, the joint distribution function F(x1,x2) of two
random variables X1 and X2 is equal to the product F1(x1) ·F2(x2) of the marginal
distributions. In general, when the random variables X1 and X2 are dependent, the
joint distribution function F(x1,x2) is different from the product F1(x1) ·F2(x2). It
is reasonable to describe this general joint distribution in such a way that we will
clearly see how different is the joint distribution from the independent case. In the
independent case, F(x,x2) is the product of the marginal distributions F1(x1) and
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F2(x2); to describe deviations from this product, it make sense to consider more
general combination functions, i.e., to consider expressions of the type

F(x1,x2) =C(F1(x1),F2(x2)). (1)

Such combination functions C(a,b) are known as copulas; see, e.g., [19, 26] (see
also [1, 2, 3, 7, 9, 10, 11, 13, 14, 21]).

The independence case corresponds to the product combination function
C(a,b) = a · b. The more the combination function C(a,b) is different from the
product, the more dependent are the random variables X1 and X2.

Probability Density Function in Terms of the Copula

The expression for the probability density function f (x1,x2) =
∂ 2F(x1,x2)

∂x1∂x2
in terms

of the copula can be obtained by differentiating the above formula with respect to
x1 and x2. As a result, we get the expression

f (x1,x2) = c(F1(x1),F2(x2)) · f1(x1) · f2(x2), (2)

where c(a,b)
def
=

∂ 2C(a,b)
∂a∂b

and fi(xi)
def
=

dFi(xi)

dxi
are probability densities of the

marginal distributions.

Can Copulas Describe All Possible Dependencies?

The expression (1) is a natural generalization of the independence case. At first
glance, it may sound that such expressions describe some special class of dependent
variables. However, it can be shown that this expression is general enough to capture
the general dependence between random variables. Namely, for continuous distribu-
tions, e.g., for distributions with well-defined probability density functions, once we
know the joint distribution function F(x1,x2) and marginal distributions F1(x1) and
F2(x2), we can get the representation (1) if we take C(a,b) = F(F−1

1 (a),F−1
2 (b)),

where F−1
i (a) denotes a function which is inverse to the function Fi(x).

Computational Advantage of Copulas

In many applications of econometrics, it is important not only to have the right
models for describing the corresponding phenomena, it is also extremely important
to have efficient algorithms which use these models for predicting future values
of the corresponding quantities. For example, if several agents have access to the
models that can predict the increase in the price of a certain stock, but one of the
agents has a faster algorithm for this prediction, then this agent can learn about this
future increase before everyone else. This computational advantage will give this
agent the opportunity to buy the about-to-increase stock for the current price, and
thus, earn a profit when the price of this stock actually increases.
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From this viewpoint, it should be noticed that a copula representation indeed
speeds up computations. To explain this speed-up, let us start with the case of a sin-
gle random variable. For a single variable Xi, we can use its observations xi1, . . . ,xiN

to estimate the corresponding probability distribution. For example, we can use a
histogram distribution, i.e., approximate the probability by the corresponding fre-

quency: Fi(xi) = Prob(Xi ≤ xi)≈ 1
N
·#{ j : xi j ≤ xi}.

Comment

In practice, we rarely use the histogram distribution. Usually, we find a smooth dis-
tribution which is sufficient close to the histogram one (e.g., in the sense of the
Kolmogorov-Smirnov criterion), so that this smooth distribution is statistically pos-
sible, and use the corresponding smooth distribution.

For two random variables X1 and X2, we can, in principle, also use the corresponding
pairs of observations (x1 j,x2 j), 1≤ j ≤ N, and estimate the probability F(x1,x2) =

Prob(X1 ≤ x1 &X2 ≤ x2) as the corresponding frequency
1
N
·#{ j : x1 j ≤ x1 &x2 j ≤

x2}. From the computational viewpoint, this would mean, however, that we need to
process all N pairs (x1 j,x2 j) (i.e., all 2N numbers x1 j and x2 j) to find each of the
values F(x1,x2). Usually, we have a large amount of economic data, so the need to
process all the data all the time makes computations longer.

If instead of representing the unknown distribution by its joint distribution func-
tion F(x1,x2), we use a copula representation, in which a distribution is represented
by two marginals F1(x1), F2(x2), and a copula C(a,b), then, to find each of the
marginals Fi(xi), we only need to process N values xi j ( j = 1, . . . ,N) (and we only
need to process all 2N real values to determine the copula C(a,b)). This decrease in
the number of inputs speed up computations.

Case of Three of More Variables

As we have mentioned, to adequately describe economic phenomena, we need to
use several random variables

X1, . . . ,Xn, n� 2.

Each such random tuple can be described by its probability distribution

F(x1, . . . ,xn) = Prob(X1 ≤ x1 & . . . &Xn ≤ xn). (3)

Similarly to the case of two variables, when all the random variables are indepen-
dent, the joint distribution is equal to the product of all the marginal distributions:

F(x1, . . . ,xn) = F1(x1) · . . . ·Fn(xn).
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Similarly to the two-variables case, the general distribution can be obtained by ap-
plying an appropriate combination function (copula) C(a1, . . . ,an) to the marginals:

F(x1, . . . ,xn) =C(F1(x1), . . . ,Fn(xn)). (4)

To prove that such a representation is possible for a given joint distribution
F(x1, . . . ,xn), we can take

C(a1, . . . ,an) = F(F−1
1 (a1), . . . ,F

−1
n (an)). (5)

2 From General Copulas to Vine Copulas: Motivations and
Descriptions

From the Computational Viewpoint, Additional Speed-Up Is Needed

Similarly to the two-variables case, the use of multi-dimensional copulas decreases
the computation time. However, this decreased computation time still exponentially
increases with the dimension n.

Indeed, a full knowledge about a function f (x) of one variable defined on an
interval [0,1] would mean that we know infinitely many values of this function,
corresponding to infinitely many real numbers x ∈ [0,1]. In practice, we can only
store finitely many values. So, to describe a function in a computer, we select a

small step h and only consider
1
h

values

f (0), f (h), f (2h), . . . , f (k ·h), . . . , f (1), k = 1,2, . . . ,
1
h
. (6)

Similarly, to describe a copula C(a1, . . . ,an), we need to store values

C(k1 ·h, . . . ,kn ·h)

corresponding to all possible combinations of integers k1, . . . ,kn corresponding to

ki = 1, . . . ,
1
h
. For each of n variables ki, we have

1
h

possible values. Thus, the total

number of tuples (k1, . . . ,kn) is equal to
1
hn .

Each of these values needs to be estimated and processed. Thus, the resulting

computation time is proportional to
1
hn and hence, exponentially grows with the

number of variables n. For large n, this computation time becomes unrealistically
large (see, e.g., [22]) – especially in view of the above-mentioned fact that in econo-
metrics, we need computations to be as fast as possible. Thus, an additional speed-up
is needed.

We already know that for two variables, a copula-based description – which only
uses functions of two variables – is realistic and practically useful. From this view-
point, it is desirable to only use functions of two variables in our description of
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multi-variate distributions. Such a description is possible if we use vine copulas. Let
us explain how the corresponding vine copula techniques naturally emerge from the
analysis of our problem.

Main Idea: Using Conditional Probabilities

Our objective is to represent dependence. To arrive at the copula techniques, we
started with the description of independence, and we used this description to come
up with a general copula-based description of dependence. From the mathematical
viewpoint, this copula-based description is sufficient to describe an arbitrary de-
pendence. However, from the computational viewpoint, we need to go beyond the
general copula-based formula. To move forward, let us go back to the independence
case, and see if there are some other independence-related techniques that we can
generalize to the general dependence case.

Our previous analysis was based on the fact that independence between random
variables can be described in terms of the product of the corresponding probabil-
ities: F(x1,x2) = F1(x1) · F2(x2). There is, however, an equivalent (and probably
more intuitive) description of independence, a representation in term of conditional
probabilities: F1|2(x1 |x2) = F1(x1), where

F1|2(x1 |x2)
def
= Prob(X1 ≤ x1 |X2 = x2). (7)

To relate this representation to the previous one, let us describe the conditional
probability in terms of the copula. By definition of the conditional probability, we
have

F1|2(x1 |x2) = Prob(X1 ≤ x2 |X2 = x2) =

lim
ε→0

Prob(X1 ≤ x2 |x2− ε ≤ X2 ≤ x2 + ε) =

lim
ε→0

Prob(X1 ≤ x2 &x2− ε ≤ X2 ≤ x2 + ε)
Prob(x2− ε ≤ X2 ≤ x2 + ε)

. (8)

The probability in the numerator N of the corresponding fraction can be described
as

N = Prob(X1 ≤ x1 &X2 ≤ x2 + ε)−Prob(X1 ≤ x1 &X2 ≤ x2− ε) =
F(x1,x2 + ε)−F(x1,x2− ε). (9)

In terms of the corresponding copula C12(a,b) and the marginals F1(x1) and F2(x2),
we get

N =C12(F1(x1),F2(x2 + ε))−C12(F1(x1),F2(x2− ε)). (10)

Since ε is small, we get

N ≈ 2ε · ∂C12(F1(x1),F2(x2))

∂x2
= 2ε ·C1|2(F1(x1),F2(x2)) · f2(x2), (11)
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where we denoted C1|2(a,b)
def
=
∂C12(a,b)

∂b
, and f2(x2) =

dF2(x2)

dx2
is the probability

density of the second marginal distribution.
Similarly, the denominator D has the form

D = Prob(X2 ≤ x2 + ε)−Prob(X2 ≤ x2− ε) = F2(x2 + ε)−F(x2− ε). (12)

Since ε is small, we get
N ≈ 2ε · f2(x2).

Thus, the ratio F1|2(x1 |x2) is equal to:

F1|2(x1 |x2) =C1|2(F1(x1),F2(x2)). (13)

The corresponding conditional probability density f1|2(x1 |x2) can be obtained by
differentiating both sides of this equation with respect to x1:

f1|2(x1 |x2) = c12(F1(x1),F2(x2)) · f1(x1), (14)

where

c12(a,b) =
∂C1|2(a,b)

∂a
=

∂
∂a

(
∂C12(a,b)

∂b

)
=
∂ 2C12(a,b)
∂a∂b

.

There are two ways to use conditional probabilities to speed up our computations.
Let us illustrate both of them on the example of trivariate distributions.

First Idea: D-vine Copulas

We know how to describe bivariate distributions in terms of copulas: namely, each
pair of random variables X1 and X2 with a joint distribution F(x1,x2) can be repre-
sented as F(x1,x2) =C12(F1(x1),F2(x2)). We would like to use this idea to describe
three random variables X1, X2, and X3. A natural idea is to fix the value x3, and to
consider corresponding conditional distributions. For each x3, we can have a similar
representation of the corresponding conditional distribution

F12|3(x2,x2 |x3)
def
= Prob(X1 ≤ x1 &X2 ≤ x2 |X2 = x3) =

C12|3(F1(x1 |x3),F2(x2 |x3),x3). (15)

In general, for different values x3, we can have different copulas C(a,b) =
C12|3(a,b,x3). These copula describe the dependence between X1 and X2. In many
practical situations, it makes sense to assume that the dependence between X1 and X2

does not depend on the value of X3. In such situations, the copula C12|3(a,b) which
describes this dependence does not depend on x3: C12|3(a,b,x3) =C12|3(a,b). Then,
the formula (14) takes the simplified form

F12|3(x1,x2 |x3) =C12|3(F1|3(x1 |x3),F2|3(x2 |x3)). (16)
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We already know how to describe conditional distributions F1|3(x1 |x3) and
F2|3(x2 |x3) in terms of bivariate copulas and marginals: specifically, we can use the
formula (13). Thus, we can describe the conditional probabilities F12|3(x1,x2 |x3) in
terms of bivariate copulas and marginals.

Our goal is to compute the distribution function F(x1,x2,x3). To describe the
corresponding probabilities F(x1,x2,x3) in terms of conditional probabilities
F12|3(x1,x2 |x3), we can use the formula of total probability:

F(x1,x2,x3) =

∫ x3

−∞
F12|3(x1,x2 |z) · f3(z)dz. (17)

Combining formulas (13), (16), and (17), we get the following expression of the
multivariuate distribution in terms of bivariate copulas and marginal distributions:

F(x1,x2,x3) =

∫ x3

−∞
C12|3(F1(x1 |z),F2|3(x2 |z))dz, (18)

where

F1|3(x1 |z) =C1|3(F1(x1),F3(z)), F2|3(x2 |z) =C2|3(F2(x2),F3(z)), (19)

C1|3(a,b)
def
=
∂C13(a,b)

∂b
, and C2|3(a,b)

def
=

∂C23(a,b)
∂b

. This description is a particu-

lar case of a D-vine copula.

Second Idea: C-vine Copulas

The idea behind C-vine copulas comes from considering not directly probabilities
and conditional probabilities (as for D-vine copulas), but rather probability densi-
ties and conditional probability densities. A multivariate probability density can be
described in terms of conditional probability densities, as

f (x1,x2,x3) = f1|23(x1 |x2,x3) · f23(x2,x3). (20)

The probability density f23(x2,x3) can also be similarly represented as f2|3(x2 |x3) ·
f3(x3), so we conclude that

f (x1,x2,x3) = f1|23(x1 |x2,x3) · f2|3(x2 |x3) · f3(x3). (21)

We know, from the formula (14), that

f2|3(x2 |x3) = c23(F2(x2),F3(x3)) · f2(x2). (22)

For dependence f1|23(x1 |x2,x3), we have a similar formula for each x3:

f1|23(x1 |x2,x3) = c12|3(F1|3(x1 |x3)),F2|3(x2 |x3),x3) · f1|3(x1 |x3). (23)
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In general, the corresponding copula c12|3 depends on x3. However, in many practi-
cal situations, it makes sense to assume that this copula – describing the dependence
– does not depend on x3, i.e., that we have

f1|23(x1 |x2,x3) = c12|3(F1|3(x1 |x3)),F2|3(x2 |x3)) · f1|3(x1 |x3). (24)

We already know how to describe conditional distributions F1|3(x1 |x3) and
F2|3(x2 |x3) and conditional probability density f1|3(x1 |x3) in terms of bivariate cop-
ulas and marginals: specifically, we can use the formulas (13) and (14). Thus, we
can describe the conditional probability density f1|23(x1 |x2,x3) in terms of bivariate
copulas and marginals. By combining the formulas (21), (22), and (24), we get

f (x1,x2,x3) = c12|3(F1|3(x1 |x3)),F2|3(x2 |x3)) · f1|3(x1 |x3)·

c23(F2(x2),F3(x3)) · f2(x2) · f3(x3), (25)

where

F1|3(x1 |x3) =C1|3(F1(x1),F3(x3)); F2|3(x2 |x3) =C2|3(F2(x2),F3(x3));

f1|3(x1 |x3) = c13(F1(x1),F3(x3)) · f1(x1). (26)

This description is a particular case of a C-vine copula.

Comment

Similar expressions can be obtained for any number of variables. To get such an ex-
pression, we need to make some assumptions about copula independence. Depend-
ing on which assumptions we make, we get different expressions. For example, the
above expression (25)–(26) corresponds to the case when we assume that the copula
combining:

• the conditional dependence F1|3(x1 |x3) of x1 on x3 and
• the conditional dependence F2|3(x2 |x3) of x2 on x3

into a conditional joint dependence F12|3(x1,x2 |x3) of x1 and x2 on x3 does not
depend on x3. Alternatively, we could assume that the copula combining:

• the conditional dependence F2|1(x2 |x1) of x2 on x1 and
• conditional dependence F3|1(x3 |x1) of x3 on x1

into a conditional joint dependence F23|1(x2,x3 |x1) of x2 and x3 on x1 does not
depend on x1; this would lead to a different expression of the type (25)–(26).

How do we select a model? In some cases, from the econometric context, we
know which dependencies are independent in each variables. In many practical sit-
uations, however, such an information is not available. In such situations, out of
models corresponding to different dependencies, we need to select the model which
is the best fit for the observations.
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3 Comparing Vine Copulas with Other Techniques for
Describing Multi-Variate Dependence

Vine Copulas vs. General Copulas

Vine copulas are a practically important class of copulas: they only use bivariate
functions to describe a multi-variate dependence and are, thus, computationally eas-
ier (and more feasible) to implement.

It is important to remember, however, that vine copulas do not describe a general
dependence. As we have mentioned earlier, vine copulas are based on certain inde-
pendence assumptions: e.g., that the copula that transforms the conditional distribu-
tions F1|3(x1 |x3) and F2|3(x2 |x3) into a joint conditional distribution F12|3(x1,x2 |x3)
does not depend on the value x3.

It is worth mentioning that vine copulas’ inability to represent a general function
of three or more variables is not a drawback of any particular scheme, but rather a
general property of smooth (differentiable) functions. Namely, as part of the work
on D. Hilbert’s 13th problem – one of the famous 23 problems presented in 1900 as
a challenge to 20 century mathematics – a Russian mathematician A. G. Vitushkin
proved that for any given integer N, it is not possible to represent (or even approx-
imate) a general smooth function of three (or more) variables as a composition of
functions of two or fewer variables; see, e.g., [5, 16, 27, 28, 29].

Vine Copulas vs. Bayesian Networks

Another approach actively used in applications to represent multivariate dependence
is the approach of Bayesian networks, initiated by Judea Pearl; see, e.g., [18, 23,
24, 25]. Bayesian newtorks are based on the assumption that for some variables,
the corresponding conditional distributions are independent. For example, for the
case of three variables, a typical assumption is that the conditional distributions
F1|3(x1 |x3) and F2|3(x2 |x3) are independent, i.e., that

F12|3(x1,x2 |x3) = F1|3(x1 |x3) ·F2|3(x2 |x3). (27)

One can easily see that the resulting formula is a particular case of the vine cop-
ula formula (16), corresponding to C1|2(a,b) = a · b. Thus, the Bayesian network
approach can be viewed as a particular case of the general vine copula approach.

Vine Copulas vs. Fuzzy Techniques

Another practically successful approach for describing and analyzing multivariate
dependence is an approach of fuzzy techniques; see, e.g., [12, 20, 30].

One of the main ideas behind fuzzy techniques is that

• while we can extract, from the experts, their degrees of confidence (= subjective
probability) in different possible statements S1,S2, . . . ,Sn about their domain of
expertise,
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• it is not realistically possible to extract, from the users, their degrees of confi-
dence in different logical combinations of such statements, such as Si &S j or
Si &S j &Sk – since there are, in general, exponentially many (2n) such combina-
tions.

Since we cannot elicit all the values, we need to estimate the degree of confidence
in a statement S &S′ based on the known degrees of confidence d(S) and d(S′) in
component statements S and S′. The algorithm f&(a,b) which transforms the known
degrees a = d(S) and b = d(S′) into an estimate f&(d(S),d(S′)) for the desired
degree d(S &S′) is known as an “and”-operation or a t-norm.

From the mathematical viewpoint, there are many possible t-norms. In practice,
a t-norm is selected empirically, based on the cases when we do elicit the expert’s
degree of confidence d(S &S′) in the composite statement S &S′. Once these values
are known, we select a function f&(a,b) for which f&(d(S),d(S′)) ≈ d(S &S′) for
all such pairs of statements.

The resulting “and”-operation depends on the domain. Such an empirical deter-
mination was first implemented for the world’s first practically successful expert
system, a medical expert system MYCIN intended for diagnosing rare blood dis-
eases; see, e.g., [6]. It is worth mentioning that the authors of the corresponding
empirical study initially thought that the resulting “and”-operation is a general de-
scription of human reasoning. Alas, when they applied their idea to geophysics, it
turned out that the medically best “and”-operation is not appropriate for geophysics
at all. After the fact, it makes sense: e.g., in search for oil, it makes sense to start
drilling a well once there is a reasonable expectation that this well will be produc-
tive – and it is OK that a large portion of these wells do not produce, as long as
on average, we are successful. In contrast, in medicine, we do not want to perform
a serious surgery on a patient unless we are absolutely sure about the diagnosis.
In short, in medicine, experts use very conservative estimates, while in geophysics,
they use more optimistic ones. As a result, different application domains use dif-
ferent “and”-operations – but the same “and”-operation is useful for all statements
within a given application domain.

The main problem that we solve by using copulas can be described in similar
terms. Namely, we have two statements S = “X1 ≤ x1” and S′ = “X2 ≤ x2”, whose
probabilities are values of the marginal distributions d(S) = F1(x1) and d(S′) =
F2(x2). The logical combination S &S′ is the statement

X1 ≤ x1 &X2 ≤ x2

whose probability is equal to F(x1,x2). Our objective
is to transform the known degrees d(S) = F1(x1) and
d(S′) = F2(x2) into an estimate f&(d(S),d(S′)) = f&(F1(x1),
F2(x2)) for F(x1,x2):

F(x1,x2)≈ f&(F1(x1),F2(x2)). (28)

From this viewpoint, the copula is an “and”-operation.
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The fuzzy approach can be viewed as a particular case of the vine copula ap-
proach, The main difference between fuzzy approach and the general vine copula
approach is that:

• in the fuzzy case, the same “and”-operation is used to combine the probabilities
corresponding to different variables, while

• in the general vine copula approach, we can use different copulas to combine the
probabilities of different pairs of variables.

Summarizing Our Analysis

Vine copulas are a particular case of general copulas, and Bayesian network and
fuzzy approaches can be viewed as particular cases of the vine copula approach:

General copulas
↓

Vine copulas
↙ ↘

Bayesian Fuzzy
networks techniques

Vine Copula Approach Combines Advantages of Bayesian and Fuzzy Approaches

Both Bayesian networks and fuzzy techniques have numerous successful applica-
tions. The very fact that both techniques have been successful means that for each
of these techniques, there is an application areas where this particular technique
works well. The fact that both techniques co-exist seems to indicate that for each of
these techniques, there are application areas where the other technique works better.

In other words, each of these techniques has its own advantages and limitations.
Numerous researchers have expressed the desire to come up with a new technique
that would combine the advantages of both techniques – and have none of their
limitations. From this viewpoint, the vine copula approach, an approach of which
both Bayesian network and fuzzy techniques are particular cases, seems like the
desired combination:

• in contrast to Bayesian techniques, vine copula can handle dependence between
variables, not just independence;

• in contrast to fuzzy techniques, where the same “and”-operation (t-norm) is ap-
plied for combining all pieces of information, the vine copulas allow the use
of different “and”-operations (copulas) to combine information about different
variables.
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4 How Vine Copulas Are Used in Econometrics

Main Challenge: Econometric Processes Are Dynamic

Vine copulas describe dependence between a few random variables X1, . . . ,Xn. In
econometrics, however, processes are highly dynamic, so what we have is random
processes X1(t), . . . ,Xn(t), not random variables. How can we use vine copulas to
describe the dependence between random processes?

Main Idea: Use Known Models to Describe the Dynamics of Each Variable

For each of the econometric dynamic variables rt
def
= Xi(t), there are known ways

to describe its dynamics. One of the most (and probably the most) adequate mod-
els for such a dynamics are described by an appropriate combination of the Auto-
Regressive Moving-Average Model (ARMA) and the Glosten-Jagannathan-Runkle
(GJR) form of a Generalized Auto-Regressive Conditional Heteroskedasticity
(GARCH) model [4]; see, e.g., [8, 15]. The corresponding ARMA(p,q)-GJR(k, �)
model has the form

rt = c+
p

∑
i=1

ϕi · rt−i + εi

q

∑
j=1

ψ j · εt− j, (29)

εt = ht ·ηt , (30)

h2
t = ω+

k

∑
i=1

αi · ε2
t−i + ∑

i: εt−i<0
γi · ε2

t−i +
�

∑
j=1

β j ·h2
t− j, (31)

where εt and ht are auxiliary variables, c, ϕi, ψ j, ω , αi, and β j are real-valued
constants (which need to be determined based on the observations), and residuals ηt

corresponding to different moments of time t are independent identically distributed
random variables.

The distribution of the residuals is usually assumed to be distributed according
to skewed student-t or skewed Generalized Error Distribution (GED). A skewed t-
distribution means that we combine, with fixed weights, t-distributions f1(x) and
f2(x) with different scalar parameters limited to, correspondingly, positive and neg-
ative values xi: f (x) = w1 · f1(x) when x≥ 0 and f (x) = w2 · f2(x) when x < 0.

A GED distribution is a distribution with a probability density proportional to

exp

(
−|x|

ν

σν

)
; it generalizes Gaussian distribution – which corresponds to ν = 2. A

skewed GED distribution is a combination of two GED distributions f1(x) and f2(x)
corresponding to different values σ (but the same value ν): f (x) = w1 · f1(x) when
x≥ 0 and f (x) = w2 · f2(x) when x < 0, where wi are appropriate weights.
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Resulting Solution: Copula Describes the Joint Distribution of Residuals

Copulas in general (and vine copulas in particular) are a good technique for describ-
ing the dependence between several random variables X1, . . . ,Xn. In the dynamical
case, instead of n variables X1, . . . ,Xn, we have, in effect, a much larger number of
dependent random variables Xi(t) corresponding to different values i and different
moments of time t. Not only are variables Xi(t) and Xj(t) corresponding to the same
moment of time depending on each other, the values Xi(t) and Xi(t ′) corresponding
to different moments of time also depend on each other – and thus, we also have
dependence between Xi(t) and Xj(t ′).

We have already observed, in our motivation for the use of vine copulas, that
the larger the number of dependent variables to consider, the more computation-
ally complex the resulting problem, the more computation time it takes to process
this data. We have econometric data corresponding to dozens of years, hundreds
of months, thousands of days, so we have thousands of dependent quantities corre-
sponding to different values of i and t. Thus, to be able to describe and process the
dependence between different econometric quantities within a reasonable amount of
computation time, we need to be able to reduce this dependence between thousands
of variables to a dependence between a much smaller number of variables.

Good news is that such a reduction is possible: for such a reduction, we can use
the above dynamical equations. Indeed:

• while the values Xi(t) and Xi(t ′) of the original quantity at different moments of
time t and t ′ are, in general,

• the residuals ηt and ηt′ corresponding to different moments of time are indepen-
dent (so all the dependence between Xi(t) and Xi(t ′) is described by the dynami-
cal equations themselves).

Since residuals corresponding to different moments of time are independent of each
other, it is sufficient to consider, for each moment of time t, the dependence between
n residuals corresponding to this moment of time; see, e.g., [17]. Thus, for each t,
we use a multi-variate copula to describe the dependence between the n residuals
corresponding to the original n quantities X1, . . . ,Xn.
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Extreme Value Copula Analysis of Dependences
between Exchange Rates and Exports of
Thailand

Chakorn Praprom and Songsak Sriboonchitta

Abstract. This study aims to investigate a correlation of the dependence structure
between USD/THB exchange rate and exports of Thailand, using extreme value cop-
ula by combining the bivariate Generalized Pareto Distribution (GPD) extreme value
theory and copula. Maximum likelihood method was adopted to fit a parameter esti-
mation based on the GPD extreme value model, and a behavior of dependence was
determined by the dependence function. The procedure is suggested for the mea-
surement of the copula function to recover the joint tail distribution by comparing
four extreme value copulas. The results of this analysis denote that the Tawn copula
analysis is the most appropriate method to best fit extreme value copula because the
AIC of this method is the lowest when compared with the other copulas. We applied
Value at Risk (VaR) to calibrate the probability of the joint tail that may occur over
the threshold. We found that Tawn copula stands the maximum risk of exceeding the
threshold. This result could be beneficial for exporters and policy makers to predict
the possibility of extreme economical fluctuation in the future.

1 Introduction

After it had to undergo the Asian financial Crisis (Tom Yam Kung Crisis) in 1997,
Thailand changed its currency exchange system from the fixed exchange rate system
to the floating exchange rate system since July 2, 1997. This change has immensely
affected the economy of Thailand as well as of other countries in Asia, resulting in
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high volatility of the economy throughout the region, which we are able to observe
in the dynamics of the various economic indicators such as exchange rate, interest
rate, exports, imports, GDP, inflation, etc. Due to the floating exchange rate system,
the fluctuating exchange rate directly affects the exports and imports. Theoretically,
the exports expansion slows down or accelerates depending on whether the currency
exchange rate is on an appreciation or a depreciation inclination, respectively. In
addition, the fluctuation of the exchange rates has a chain reaction effect on Current
Account as well as Balance of Payment, and will eventually affect the countrys GDP.
Therefore, this study focused on the relationship between the currency exchange rate
and the exports in order to see how it would be if the currency exchange rate were
to change. The study laid emphasis on the data of changes in the exchange rates
during the period from July 1997 to December 2012, and the data with extreme
values or excess values above threshold that would affect the exports. The theory
called Extreme Value Copula was applied for this economic research.

Extreme value theory is a branch of statistics dealing with the analysis of data
with extreme values, whether high or low. The theory is widely used to analyze
general data and excess data above threshold, as well as the behavior of a process at
unusually large or small levels. Specifically, extreme value analysis usually requires
an estimation of the probability of events that are more extreme than any that have
been observed (Cole, [5]). Generally, extreme value theory is widely used in many
fields of work, ranging from finance, insurance, hydrology, and environment.

In probability theory and statistics, a copula is a kind of distribution function
used to describe the dependence between random variables. Copula is also widely
accepted and has been used extensively to measure or evaluate the relationship of
dependences between two or more variables. Copula connects marginals to obtain
possible joint distributions. It is obvious that they provide the most general way to
build multivariate statistical model marginals for the various applications of statis-
tical sciences (Hung, [8]). The study of the relationship (correlation) between ran-
dom variables using the copula method can provide more details than the traditional
method (linear correlation) because the relationship between the two variables can
be characterized as a kind of skewness and kurtosis, or as asymmetric and symmet-
ric. From the information mentioned above, we used the extreme value copula to
investigate the correlation of excess data above threshold in our research, while the
variables used in this research were the USD/THB exchange rate and the exports of
Thailand. The difference between extreme value copula and vine copulas is last one
emphasize to study behavior of multivariate variable in general but extreme value
copula explicit focus risk assessment unlike vine copulas. In this study, in addition
to the extreme value theory, we used the theory of Value at Risk (VaR) to analyze
the probability that two variable values were likely to exceed the threshold at a con-
fidence level of 95%. We hope that after this study, we can use the trend of the
changing exchange rates for adaptation for the use of exporters and policy makers.

The remainder of this paper is organized as follows: Section 2 presents literature
review Section 3 presents the definition of bivariate extreme value and its Gener-
alized Pareto Distribution (GPD) which is used to estimate models of distribution
of maximum series, the concept of copulas, extreme value copulas, and joint tail
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estimation, which have been employed in this study. Section 4 reveals the empirical
findings. Lastly, section 5 presents the conclusion.

2 Review Literature

There are very few papers studying exports, imports, and economic growth by com-
bining the extreme value theory and the copula method. Most of the studies applied
either the extreme value or the copulas, separately, for investigation. Liu et al. [15]
applied the copula-based GARCH model to analyze the volatility of the two depen-
dences: tourist arrivals from China to Thailand and Singapore. They assumed that
both the dependences were skewed-t distributions, and so, ARMA-GARCH was
adopted to fit it. This paper shows 15 classes of copulas which are fit statics copula
between two margins; the study used time-varying copulas to describe the dynamic
Kendalls tau process. To ascertain whether the goodness of fit of static and dynamic
copula are suitable or not, the AIC and BIC were used as the statistical criteria appli-
cation in order to select the copula. The results of this analysis indicate that the AIC
and BIC of the time-varying Gaussian copula had the highest explanatory power,
more than the other copulas. Lu et al. [10] examined the extreme value copula anal-
ysis of the risk dependence for the exchange rate. This study observed the monthly
maxima or minima (negative maxima) of daily USD/GBP, USD/EUR foreign return
data, and applied the Block Maxima Model (BMM) Generalized Extreme Value
Distribution (GEV) extreme value to analyze these excess dependences. In addition,
copula was adopted to study the correlation between these exchange rates as well as
to emphasize the joint tail dependence and the joint tail risk, based on the extreme
value copulas. The results, as stated in this paper, show that three copula families,
namely, Gumbel, Galambos, and Hsler-Reiss could be suitable for measuring the
tail risk of their empirical market variables. Regarding the VaR estimation, there is
a risks opportunity of about 0.004 of exceeding the threshold, in all of the copula
families. Chuangchid et al. [4] utilized the extreme value copula to analyze palm
oil prices and also used the GEV extreme value copula to study the dependence
structure between the returns on palm oil future prices in three palm oil future mar-
kets, namely, Singapore Exchange Derivatives Trading Limited (SCX-DT), Dalian
Commodity Exchange (DCE), and Malaysian future markets (KLSE). The Gumbel
and Hsler-Reiss copulas were adopted to examine the extreme dependences. The
results showed that the Gumbel and Hsler-Reiss copula parameters of KLSE and
SGX-DT have dependence in the extreme, at 3.034 and 2.287, respectively. How-
ever, the returns on palm oil future prices between KLSE and DCE, and SGX-DT
and DCE did not show any dependence. Velayoudoum et al. [18] applied the ex-
treme value and Value at Risk (VaR) to explain the link between the oil price in the
markets and the economic indicators. This paper emphasizes the need to measure
risk at a given probability level, which is very important in risk management. In
addition, extreme value was naturalized to compare with conventional models such
as GARCH, Filtered Historical, and Historical Simulation. It was found that the ex-
treme value theory and the Filtered Historical Simulation procedures symbolize a
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major improvement over the non-parametric and parametric methods. Moreover, it
holds true that the GARCH(1,1)-t model gives good results which are comparable
to the combined procedures.

3 Data and Model Specification

3.1 Model

The data was restrictive since they were not daily data. However, the export of Thai-
land is secondary data which were collected monthly. Before 1997, the exchange
rate of Thailand was fixed under fixed exchange rate system. For this reason, the data
used in this study have been used since July 1997, after the Asian financial crisis.
Due to such a restriction, we had only 186 observations; with such few data, it could
not be divided into the Block Maxima (BMM) GEV extreme value. Therefore, the
General Pareto Distribution (GPD) was selected to analyze the dependence struc-
ture. The GPD extreme value method is the best choice to study correlation between
two margins. This method is more flexible and advantageous than the GEV (Block
Maxima) method because the GPD has not demonstrated significantly whether the
dependence is independent and identically distributed (i.i.d.) or not. This is unlike in
the case of GEV that Mn = (x1,x2, ...,xn) is sample maxima which must be an i.i.d.
random variable inR. If Mn =(x1,x2, ...,xn) are not i.i.d., we cannot use this variable
to estimate the dependence structure by using the GEV extreme value, according to
Fisher and Tippett [28].

3.2 Bivariate Extreme Value and Generalized Pareto Distribution

In this paper, we employed the Extreme Value Theory (EVT) to define the relation-
ship between the excess data of the USD/THB exchange rates and the exports of
Thailand. The EVT is a concept of modeling and measuring extreme events which
occur with a very small probability (see Brodin and Kluppelberg, [2]). There are
two principal kinds of models for extreme values, the Generalized Extreme Value
Distribution (GEV) and the Generalized Pareto Distribution (GPD). The GEV dis-
tribution, also known as the Block Maxima Model (BMM), was provided by Fisher
and Tippett [28]. This method is the oldest method for analyzing extreme data which
consist of the largest or the smallest values during a certain period. GPD was devel-
oped by Pickands [12], and it focuses on the behavior of large data exceeding the
higher threshold in the sample. For the GPD method, there are two ways for deter-
mining excess data surpass threshold. Given ux and uy are the thresholds for each of
the margins,X ,Y are the distribution of the excess values of x and y,respectively. If
(X ,Y )∼ F(x,y) then

P((X− ux,Y − uy)≤ (x,y) | (X ,Y )≥ (ux,uy)) (1)
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P((X− ux,Y − uy)≤ (x,y) | (X ,Y )� (ux,uy)) (2)

The asymptotic distributions are called Bivariate Generalized Pareto Distribution
(BGPD). The (1) definition is called BGPD Type I and the (2) definition is called
BGPD Type II. In this study, we employed the BGPD Type I for analyzing the joint
exceedance to the bivariate extreme value of our data. In the univariate case, it is as
follows:

P(X− u < x | X > u)→ 1− (1+ γ
x
σ
)−

1
γ (3)

According to Cole [5], we can estimate the tail of X by

G(x) = 1−ηu{1+ γ(x− u)
σ

}− 1
γ ,x > u (4)

ηu = P(X > u)

For the bivariate distribution, an arbitrary joint distribution F(X ,Y ) on the
region of the form x > ux,y > uy, for large enough ux and uy has to be evaluated.
Suppose (x1,y1), ...,(xn,yn) are independent realizations of a random variable
(X ,Y ) with joint distribution function F . For suitable thresholds ux and uy, each of
the marginal distributions of F has an approximation of the form (4)(Cole, [5]). By
approximating the tail of F(x,y) for x > ux,y > uy, we can estimate the tail of X for
x > ux with G(x : ηx,σx,γx) and the tail of Y for y > uy with G(y : ηy,σy,γy). The
result for the bivariate extreme value distribution suggests that

G(x̃, ỹ) = exp
(
− (

1
x
+

1
y
)A(

x̃
x̃+ ỹ

)
)

where x̃ and ỹ are distributions with Frechet margins. We use the approximates of
the tails of X ,Y and then transform them to unit Frechet.

x̃ =−
(

ln{1−ηx[1+
γx(x− ux)

σx
]−

1
γx }

)−1

ỹ =−
(

ln{1−ηy[1+
γy(y− uy)

σy
]
− 1
γy }

)−1

If x > ux and y > uy, then

F(x,y) ≈ G(x,y) = e−V(x̃,ỹ)

where γ ,σ are the shape and the scale parameter, respectively. V is the homogene-
ity property. The results of the research by Balkema and de Haan [1] and Pickands
[12] state that the distribution of excesses may be estimated using the GPD method
by selecting γ and σ and by setting a high threshold u. The GPD can be estimated
using many different methods (Ramazan et al., [13]). There is evidence that the
maximum likelihood normality conditions were met and that the maximum likeli-
hood estimates were asymptotical, normal distributions (Hosking and Wallis, [7]).
For our paper, we used the maximum likelihood estimation because this method
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can approximate the standard error for the estimators of γ and σ which can be ob-
tained using the maximum likelihood estimation (Ramazan et al, [13]). The bivariate
peaks over the threshold models were fitted by maximizing the censored likelihood
(Cole, [5]).

3.3 Extreme Value Copulas and Joint Tail Estimation

After our study about BGPD, we proceeded to learn about the concept of copulas
and extreme value copulas, which indicates correlations between the margins which
is given in this section. Furthermore, we pointed out the class of extreme value
copula that can identify the excess dependence structure of the growth data.

3.4 Copula Function and Extreme Value Copulas

In this analysis, we applied copulas to calibrate the correlation between the
USD/THB exchange rates and the exports of Thailand because copulas are flexible
and provide more details as compared to other tools. Copulas are more suitable for
use with non-linear marginal distributions as against the Pearson correlation which
is appropriate for use with linear distributions. In addition, the approximation be-
tween the USD/THB exchange rates and the exports of Thailand was simultane-
ously estimated using the extreme value as well as the copulas. This method gives
parameter values closer to facts, better than if we were to estimate the extreme value
and the copula separately. The copula theory was first proposed by Sklar [25]. If x,y
are real value random variables, then the commonly known marginal distribution
functions are F(·) and G(·) of X and Y , respectively, which is not sufficient for our
study. So, we take the joint distribution function B(·) of (x,y). If B is an arbitrary
bivariate distribution function with marginal distribution functions F and G, then B
is of the form

B(x,y) =C(F(x),G(y))

where C is a copula, x,y ∈R. Moreover, the copula is a parameter of the correlation
between the two marginal distribution functions that forms the joint distribution.
Therefore, the copula equation can be rewritten as

C(u,v) = B(F−1(x),G−1(y))

where F,G are the marginal distributions of x,y, respectively, and F−1(·) is the
quantile of the function F(·). The theory of BGPD extreme value can be reproduced
in terms of extreme value copulas, which is a branch of the class of copulas. The
bivariate extreme distribution B can be connected by the extreme value copula as

B(x,y) =C0

(
Hx(x : ux,γx,σx),Hy(y : uy,γy,σy)

)

where u,γ,σ are parameters of BGPD and H, the GPD margin. The unique copula
shows that
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C0(u
t ,vt) = ct

0(u,v), t > 0

Specifically, the bivariate copula is an extreme value copula if and only if it is con-
verted into the form

C0(u,v) = P(Bx(x)≤ u,By(y)≤ v) = exp{ln(uv)A
( ln v

ln(uv)

)
}

where A(t) =
∫ 1

0 max[(1− t)x, t(1− x)]dB(x).
The function A(t) is known as the dependence function B on [0,1]. A(t) must

satisfy the following properties: max(t,1− t)≤ A(t) ≤ 1 for 0 ≤ t ≤ 1. If A(t) = 1
then (x,y) are strongly dependent. Extreme value copulas allow the modeling of
the dependence between the components of a random couple that represents two of
the largest values observed over the same time period (Cebrian et al., [3]). In this
paper, we chose four families of copula for practice, which are as follows:

Gumbel Copula

C(u,v) = exp
(
− [(−lnu)θ +(−lnv)θ ]

1
θ
)

The dependence function is

A(t) = (tθ +(1− t)θ)
1
θ

where θ is the Gumbel copula parameter, and θ ∈ [1,+∞). Gumbel copula is the
only copula that belongs to both the extreme value family and the Archimedean
family. Complete dependence is obtained in the limit as θ approaches zero.
Independence is obtained when θ = 1 (Stephenson, [16]).

Galambos Copula

C(u,v) = uv exp[(−lnu)−θ +(−lnv)−θ ]−
1
θ

The dependence function is

A(t) = 1− (t−θ +(1− t)−θ)−
1
θ

where θ is the Galambos copula parameter, θ ∈ [0,+∞). If θ = 0, these depen-
dences will be independent; also, complete dependence is obtained as θ is led to
infinity.

Hsler-Reiss Copula

C(u,v) = exp{−ũΦ(
1
θ
+

1
2
+θ ln(

ũ
ṽ
))− ṽΦ(

1
θ
+

1
2
θ ln(

ũ
ṽ
))}
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The dependence function is

A(t) = tΦ(θ−1 +
1
2
θ ln(

t
1− t

))+ (1− t)Φ(θ−1− 1
2
θ ln(

t
1− t

))

where θ ∈ [0,+∞), ũ = −ln u, ṽ = −ln v and Φ is the standardized normal
distribution.

Tawn Copula

C(u,v) = exp{ln u1−δ + ln v1−ρ− [(−δ ln u)θ +(−ρ ln v)θ ]
1
θ }

The dependence function is

A(t) = [δθ (1− t)θ +ρθ tθ ]
1
θ +(δ −ρ)t + 1− δ

where θ ∈ [1,+∞), δ ∈ [0,1] and ρ ∈ [0,1]. This is an asymmetric extreme value
copula that becomes exchangeable when δ = ρ . The Gumbel copula corresponds to
δ = ρ = 1.

3.5 Joint Tail Estimation

In this part, we endeavor to assess risk in its various forms: financial risk, credit risk,
etc., and how to measure, assess, and manage market risk. The Value at Risk (VaR)
is a popular method to measure and evaluate a risk. From the equation

B(x,y) =C0

(
Hx(x : ux,γx,σx),Hy(y : uy,γy,σy)

)

we obtained the joint tail estimation of the BGPD, corresponding to relative Value
at Risk under other confident levels p.

Bp = B(VaRx(p),VaRy(p)) =C0

(
Hx(VaRx(p)),Hy(VaRy(p))

)
=C0(p, p)

The above equation is useful for applying copula functions to determine the joint
probability of the two returns that do not exceed specific VaR. It is assigned as a
quantile of the distribution of return of the portfolio in question. Then, VaR can be
computed as

VaR(p) = u+[σ
(−ln p)−γ

γ− 1
]

where p is the probability value of VaR, and 0 < p < 1, which means that higher
values of VaR correspond to higher levels of risk. From the identity

p(X > x,Y > y) = 1−Hx(x)−Hy(y)+B(x,y)

specified as a joint survival function, we can get the joint tail exceeding approximate
for the two returns.
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3.6 Data

The data on monthly USD/THB exchange rates and the exports of Thailand, begin-
ning from July 1997 to December 2012 were used in this study, and the observations
were 186. The data were obtained from the Bank of Thailand.

4 Empirical Results

To decrease the problem of data being non-stationary, each monthly data was con-
verted into log-difference, and then the following function was obtained as

Yt = 100 ∗ (log(gt)− log(gt−1))

where gt are USD/THB exchange rates or exports of Thailand at period t.

4.1 Parameter Estimation of Bivariate Generalized Pareto
Distribution (BGPD) Model

In the GPD model, we lay emphasis on the statistical behavior of exceedance over
the threshold. The first step is the determination of the threshold. In our paper,
we define the threshold of the two dependences as 90%. Therefore, the threshold
points of the USD/THB exchange rate returns and the export returns of Thailand are
0.1293 and 0.0235, respectively. Table 1 shows the estimator results of the Gum-
bel, Galambos, and Hsler-Reiss classes which have two parameters of either de-
pendence, namely, σ and γ of the BGPD model, based on the maximum likelihood
method, except the Tawn class which has four parameters, namely,σ ,γ, t1, t2. In all
of the classes, the element in the bracket corresponds to the standard deviation. The
standard deviation estimates of the exchange rate returns were lower than the stan-
dard deviation estimates of the export returns of Thailand.

4.2 Results of Parameter Estimation of Copulas and Related
Dependence Function

Table 2 shows the parameters of the various copulas (θ ) including the AIC and A( 1
2 )

which presented the information of tail dependence between margins. All four pa-
rameters of all the copulas can represent the dependence structure of the empirical
exceedence over the threshold. To ascertain whether the goodness of fit of the copula
is suitable or not, the Akaikes Information Criterion (AIC), which is the statistical
criteria application for selecting the copula, is used. It has been found that the AIC
of the Tawn copula shows the best explanatory ability compared to the other copu-
las because the AIC of the Tawn copula is 64.7684 which is the lowest value among
all the copulas. Therefore, it was concluded that the two variables are correlated at
1.4552 by the Tawn copula. To explain the dependence function, as given in Table 2,
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Table 1 Parameter Estimation Results Using Maximum Likelihood Method Based on BGPD
Model

Variable Kind of Copula σUSD/T HB γUSB/THB σExports γExports δ ρ

Gumbel 0.0339 -0.1155 0.0155 0.8244
Maxima of (0.0157) (0.4165) (0.0076) (0.4839)
USD/THB Galambos 0.0347 -0.1115 0.0153 0.7507

exchange rates (0.0159) (0.4238) (0.0075) (0.4546)
and exports Hsler-Reiss 0.0349 -0.1066 0.0153 0.7339
of Thailand (0.0160) (0.4258) (0.0074) (0.4482)

Tawn 0.03354 -0.1660 0.0166 0.8200 0.2599 0.9997
(0.0156) (0.4043) (0.0078) (0.4819)

Source: Computation.
Note: the element in the brackets correspond to the standard errors.

the estimated value of A( 1
2) for the exchange rates and the exports of Gumbel and

Galambos do not show any sharp contrast, whereas those of Tawn and Hsler-Reiss
are rather skewed to the right. We can see that the parameters of the dependence
function of all the types of copula are convex in function. All of them equal 0.9,
which shows the asymptotic dependence of the data. Figure 1 presents the plot of
estimation of the dependence function in each copula. If the upper A( 1

2 ) = 1, they
are both independent, and if the lower bound A( 1

2 ) = 0.5, it indicates perfect depen-
dence. This figure shows the sharp of the four dependence functions of all the four
copulas; it shows that the Tawn copula is located in the bottom curve compared to
the other copulas, and that its line is rather skewed to the right. In addition, A( 1

2 )
of the Tawn copula is 0.9175, which is the lowest value among all the dependence
functions. Thus, the dependence function value can categorically confirm that the
Tawn copula is the appropriate-fitting copula.

4.3 Results of Joint Tail Estimation

VaR is the probability of joint tail risk that can occur over the threshold at different
confidence levels. Table 3 shows the results of VaR under diverse copulas. For ex-
ample, 0.0226 involved the Tawn copula representing the joint tail probability of the
USD/THB exchange rates over the threshold 0.0792 (VaR estimate of the exchange
rates at the 0.95 confidence level). Likewise, 0.0226 is the probability of the exports
of Thailand exceeding over the threshold 0.2156 (VaR estimate of the exchange rates
at the 0.95 confidence level). We found that the Tawn copula has the maximum risk
of exceeding over the threshold because there is a probability of VaR of 0.0226.
Besides, the VaR of Hsler-Reiss is 0.0107. This means that the probability of joint
tail risk of Hsler-Reiss that can occur over the threshold of the USD/THB exchange
rates and the exports of Thailand are 0.8947 and 0.1673, respectively. Gumbel and
Galambos provide results similar to each others for VaR.
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Table 2 Estimation of Copula Parameters and Dependence Function

Variable Kind of Copula θ AIC A( 1
2 )

Gumbel 1.0950 65.8518 0.9414
Maxima of (0.0709)
USD/THB Galambos 0.3319 65.3474 0.9225

exchange rates (0.1144)
and exports Hsler-Reiss 0.6586 65.2267 0.9337
of Thailand (0.1552)

Tawn 1.4552 64.7684 0.9175
(0.0654)

Source: Computation.
Note: the element in the brackets correspond to the stan-

dard errors.

Fig. 1 A(t) estimation for the USD/THB exchange rates and exports of Thailand
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Table 3 Joint Tail Exceeding Probability at 0.95 Confidence Level

VaR estimation of Maxima of USD/THB 0.95 Confidence Joint tail exceeding
exchange rates and exports level probability

Gumbel (0.0859,0.2031) 0.0101
Hsler-Reiss (0.8947,0.1673) 0.0107
Galambos (0.0885,0.1733) 0.0104

Tawn (0.0792,0.2156) 0.0226

Source: Computation.

5 Conclusion

This paper investigates the correlation between two dependence structures, the
USD/THB exchange rates and the exports of Thailand. It is of interest that the ex-
treme events in the future can be predicted by using the dependances over the thresh-
old. We used a combination of the extreme value theory and the copulas to explain
the relationship between the two dependence structures. This study confirms that the
maximum likelihood method can be appropriately employed to estimate the GPD
extreme value in each of the copula approaches. The main results confirm that the
Tawn copula is the most suitable, best-fitting copula because we obtained the best
parameter for this copula as against the other classes. In addition, we measured the
dependence function in order to recover the tail dependence properties in compari-
son with all of the copula classes. The Tawn dependence function is in the bottom
curve compared to the other copulas; this line is rather skewed to the right, and has
the lowest value among all the dependence functions. Thus, the dependence func-
tion value can surely confirm that the Tawn copula is the appropriate-fitting copula.
In addition, we applied Value at Risk (VaR) to calibrate the probability of the joint
tail that may occur over the threshold. We found that the Tawn copula has the maxi-
mum risk of exceeding the threshold because there exists a probability of VaR equal
to 0.0226. The results of this research are beneficial to policy makers and exporters
for use in economic risk management. However, the clear relationship between the
two variables would possibly be more noticeable if the data after 2000 were applied.
Because Thailand had to request financial help from International Monetary Fund
(IMF) in 1997 during the time of the economic crisis, the Thai policies were concise
directed by the IMF which might not have been suitable for Thailand.
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Analysis of Volatility of and Dependence
between Exchange Rate and Inflation Rate in
Lao People’s Democratic Republic Using
Copula-Based GARCH Approach

Tongvang Xiongtoua and Songsak Sriboonchitta

Abstract. This paper aims to conduct a study of the volatility and dependence be-
tween the exchange rate and inflation rate in Laos. The results of the study show
that the ARMA (1, 1) - GARCH (1, 1) models were appropriate for two random
variables. The KS and Box-Ljung tests for skewed-t distribution and autocorrela-
tion performed in the study found that the two margins were skewed-t distribution
and had no autocorrelation. The modeling of the best-fit copula from the testing
process found that the time-varying t copula was the best of all static copulas and
time-varying copulas in terms of the AIC and the BIC, which means that it has the
highest explanatory power of all the dependence structures. In addition, we can see
that the indicator of the correlation (dependence parameter: ) between the growth
rates of the exchange rate and the inflation rate describes a high correlation in the
long term, and also evinces that the dependence between the growth rates of the
exchange rate and the inflation rate was positive, meaning that when the US Dollar
appreciates, the inflation rate increases as well. Thus, this model as the time-varying
t copula can help policy makers become more aware of what is likely to happen in
the future.

1 Introduction

The inflation rate is a key problem for macroeconomic systems. A low rate of infla-
tion is generally considered to be a good target because a high inflation rate often
discourages investment and leads to lower long-term growth. As high and volatile
inflation creates uncertainty and confusion about future prices and costs, invest-
ments tend to get reduced, leading to lower rates of growth of the economy, and
this translates into frequent prices reductions, which means losses incur red. Also,
high rates of inflation may call for frequent wage negotiations with trade unions,
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which constantly struggling to maintain the employees real wages; this can be costly
for a manufacturing firm. High inflationary growth is often unsustainable. Reduc-
ing inflation often requires painful readjustments such as higher interest rates and
deflationary fiscal policy, which again lead to lower growth rates of the economy.
Therefore, countries going through high inflation could be susceptible to a period
of recession in the near future. Exchange rate volatility can have an impact on the
inflation rate. The effect of exchange rate fluctuations on domestic inflation has been
an issue of concern, and has been discussed in the contemporaneous economics lit-
erature of Farah, Asma, and Khalid [14]; high exchange rate volatility contributes
to higher exchange rate pass-through to inflation. For the Lao Peoples Democratic
Republic (Lao PDR), during 1995 - 2012, there was high economic growth, of about
5.9 - 8.3%, but it was observed that Lao PDR had gone a high price phase during
the period 1995 - 2005. The headline inflation stayed at more than 7% during this
period, and the highest inflation rate in 1999 was 134%. During 2006 - 2012, the
inflation rate decreased by about 0.03 - 7%, and the lowest rate was observed in
2009 as 0.03% (from the economic report of the Bank of Lao PDR). The exchange
rate showed a tendency to increase during 1995 - 2002; the volatility in this period
was so high that the average growth rate of the exchange rate dropped to 28.77% in,
62% in 1998, and 46.8% in 1999. It showed a decreasing trend during 2003 - 2012,
with such low volatility in this period that the highest growth rate of the exchange
rate was -5.69% in 2008 (from the annual economic re-port of Bank of Lao PDR).
This study aims to investigate the volatility of and dependence between exchange
rate and inflation rate in Lao Peoples Democratic Republic.

2 Literature Review

In some literature, while discussing the relationship between exchange rate volatility
and inflation, exchange rate volatility was shown to have no connection to macroe-
conomic variables; an example for such is the literature of Flooda and Rose [21],
who studied the fixing of the exchange rates, in their work. PARSLEY and WEI [19]
studied the explanation that the border effects were due to the roles of exchange rate
variability, shipping costs, and geography. ROGOFF [22] studied the perspectives
on exchange rate volatility, as well. DUARTE and STOCKMAN [12] also studied
the comments on exchange rate pass-through, exchange rate volatility, and exchange
rate disconnect. However, the literature of the other authors who studied the connec-
tion between the exchange rate and macroeconomic variable volatilities shows that
it was a closed correlation; this can be seen in the work of Luis Carranza [17], who
studied the exchange rate and inflation dynamics in dollarized economies. Augus-
tine and Srinivas [5] studied the variations in the exchange rates and inflation in 82
countries by conducting an empirical investigation. PARSLEY and WEI [11] also
studied the border effects by analyzing the roles of exchange rate variability, ship-
ping costs, and geography. Stephen Morris [27] studied the inflation dynamics and
the parallel market for foreign exchange. Carlos, Jorge, and Scott [8] researched
on how much the inflation targeters should care about the exchange rate. In this
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study, we use the copula-based GARCH (generalized autoregressive conditional
heteroskedasticity) approach to investigate the volatility and dependence between
the exchange rates and the inflation rates. Of late, the copula-based GARCH model
has been very popular in the financial field as it can be used to analyze the volatil-
ities and dependence structure. Chih-Chiang Wu [9] studied the economic value
of the co-movement between oil prices and exchange rates by using copula-based
GARCH models, and Songsak Sriboonchitta [24] researched the modeling volatil-
ity and dependency of agricultural price and production indices of Thailand using a
static versus time-varying copulas approach. Jianxu Liu and Songsak Sriboonchitta
[16] also analyzed the volatility and dependence between tourist arrivals from China
to Thailand and Singapore by using the copula-based GARCH approach.

3 Econometric Model

3.1 Models for Marginal Distribution

The growth rates of both the exchange rates and the inflation rates have the char-
acteristics of heteroscedasticity, volatility, skewness, etc. Then, we use the ARMA-
GARCH model in which standardized residuals satisfy the skewed-t distribution.
Bollerslev (1986) proposed the GARCH (generalized autoregressive conditional
heteroskedasticity) model that has replaced the ARCH model in application; the
GARCH model has since been widely used in econometrics, economics, etc. In ac-
cordance with the findings of Songsak [24], the ARMA (p, q)-GARCH (k, l) model
can be formulated as

rt = c+
p

∑
i=1

φirt−i +
q

∑
i=1

ψiεt−i + εt (1)

εt = ht •ηt (2)

ht = ϖ +
k

∑
i=1

αiε2
t−i +

l

∑
i=1

βiht−i (3)

where ∑p
i=1 φi < 1,ω > 0,αi ≥ 0,βi ≥ 0and ∑k

i=1αi +∑l
i=1βi < 1. The values of

αiand βi indicate the effect of short run shock and the persistence of volatility. When
the values of αiare large, the short-term effects have greater influence. If the values
of βi are large, then the impact of unexpected shock on volatility is of longer dura-
tion.

3.2 Skewed Student-t Distribution

The skewed student-t distribution displays both flexible tails and possible skewness,
each entirely controlled by a separate scalar parameter. The formula of skewed-t
distribution, as taken from JianxuLiu [16], is shown as
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P(xi|v,γ) = 2
(γ+ 1/γ)

{
fv(xi/γ)I[0,∞](xi)+ fv(γxi)I[−∞,0](xi)

}
(4)

where fv(.) is the density function of the student-t distribution. The parameter v
represents the degree of freedom, and γ is the skewness parameter that is defined
from 0 to ∞ ; I denotes the indicator function.

3.3 Copula Functions

If there are uniform univariate marginal distribution functions in a multivariate dis-
tribution function, then the multivariate distribution function is a copula. A copula
is a function that can link two or more marginal distributions together to form a joint
distribution.

Ever since Sklar (1959), in the very beginning, described the original theorem of
the relationship between a joint distribution and its marginal distributions, copula
has been widely analyzed and applied in statistics.

Let F be an n-dimensional distribution function with marginalF1, ...,Fn. Then,
there exists an n-copula C such that for all X inRn

H(x1,x2, ...,xn) =C(F1(x1),F2(x2), ...,Fn(xn)) (5)

If F1, ...,Fnare all continuous, then C is uniquely defined. The vice versa holds
true for every copula C and for all types of distributionsF1, ...,Fn. Sklar’s theorem
shows that the probability density function of any multivariate probability distribu-
tion can be represented by a marginal distribution and a dependence structure as
follows:

f (x1, ...,xn) =
∂F(x1, , ...,xn)

∂x1, , ...,∂xn

=
∂F(x1, , ...,xn)

∂x1, , ...,∂xn
×∏∂F(xi)

∂ (xi)
(6)

= c(u1, ...,un)×∏ fi(xi)

This paper has two random variables, namely, the growth exchange rate, Xt , and
the inflation rate, Yt , with H(x,y) as their joint probability distribution, which is a
two-dimensional distribution function, as follows:

H(x,y) =C(Fx(X),Fy(Y )) (7)

(a) Static Copulas

This study employed a variety of parametric copulas. Copulas include the Gaussian,
t, Gumbel (rotated), Clayton (rotated), Frank, Joe (rotated), BB1 (rotated), BB6 (ro-
tated), BB7 (rotated), and BB8 (rotated) copulas.
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1. Gaussian copula: We follow the Patton [1] formula as follows:

CGa(u,v|ρ) =
∫ φ−1(u)

−∞

∫ φ−1(v)

−∞
1

2π
√

1−ρ2
exp

{
−X2− 2ρXY +Y2

2(1−ρ2)

}
dXdY

(8)
where u and v are cumulative distribution functions or empirical cumulative func-
tions of standardized residuals subjected to a uniform distribution between 0 and
1, the correlation coefficient ρ is Pearson’s linear correlation.

2. t-copula: The formula for t-copula is as follows (from Songsak) [24]:

CT (u,v|) =
∫ T−1(u)

−∞
dX

∫ T−1(v)

−∞
dY

1

2π
√

1−ρ2

{
1+

X2− 2ρXY +Y2

v(1−ρ2)

}−(v+2)
2

(9)

where, Tv(x) =
∫ x
−∞

Γ ((v+1)/2)√
πvΓ (v/2) (1+

Z2

v )
−(v+2)

2

T is the student-t distribution with degrees of freedom v and Pearson’s correla-
tion ρ , which is still linear. In comparison with the Gaussian copula, the biggest
advantage of the t-copula is that it can capture tail dependence.

3. Archimedean copulas
Archimedean copulas include the Clayton, Frank, and Gumbel copulas. The
different copulas have different properties and applications, such as: The
Clayton copula is an asymmetric Archimedean copula exhibiting greater depen-
dence in the negative tail than in the positive. The Frank copula is a symmetric
Archimedean copula, and the Gumbel copula is an asymmetric Archimedean
copula exhibiting greater dependence in the positive tail than in the negative.

4. BBX copulas
BBX copulas are two-parameter copulas in that BB6 and BB8 can capture the
upper tail dependence, and BB1 and BB7 can reflect both the upper tail and the
lower tail dependences.

5. Rotated copulas
Many copulas cannot display negative tail dependences (e.g., the Gumbel, Clay-
ton, Joe, and BBX copulas). Once the bivariate random variable has negative
dependence, these copulas do not fit. However, these copulas may then be “ro-
tated” 90◦, 180◦, and 270◦, and applied again.

(b) Time-Varying Copulas

Time-varying copulas can be considered as the dynamic generalizations of a Pear-
son correlation or Kendall’s tau. Patton [1] pointed out that it is still difficult to find
causal variables to explain such dynamic characteristics, as did Songsak [24]. In
practice, time-varying copulas are often assumed to follow the autoregressive mov-
ing average ARMA (p, q) process. The following are some formulas of time-varying
copulas:
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1. Time-varying Gaussian copula

ρt = Λ̃(ωN +βNρt−1 + ...+βN pρt−p +αN
1
q

q

∑
j=1

Φ−1(ut− j)Φ−1(vt− j)) (10)

where Λ̃ is a logistic transformation, which is defined asΛ̃ = (1− e−x)(1 +
e−x)−1.

2. Time-varying t-copula

ρt = Λ̃ (ωT +βT 1ρt−1 + ...+βT pρt−p +αT
1
q

q

∑
j=1

T−1(ut− j;DoF)•T−1(vt− j;DoF))

(11)

where T−1is the inverse function of the student t-distribution with the given de-
grees of freedom (DoF).

3. Time-varying (rotate) Gumbel copula

τt =Λ(ωG +βG1τt−1 + ...+βGpτt−p +αG
1
q

q

∑
j=1

∣∣ut− j− vt− j
∣∣) (12)

whereΛ = (1+ e−x)−1. This guarantees that Kendall’s tau will be between -1
and 1.

4. Time-varying (rotate) Clayton copula

τt =Λ(ωC +βC1τt−1 + ...+βCpτt−p +αC1 |ut−1− vt−1|+ ...+αCq
∣∣ut−q− vt−q

∣∣ .
(13)

3.4 Goodness-of-Fit Tests

We can consider the best-fit copula from two steps, as follows:

1. Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC),
and the formula as taken from Brechmann [13]. We have

AIC :=−2
T

∑
t=1

ln[c(ût , v̂t ;θ )]+ 2k (14)

BIC :=−2
T

∑
t=1

ln[c(ût , v̂t ;θ )]+ ln(T )k (15)

where k=1 for one-parameter copulas, and k=2 for two-parameter copulas.
2. Two tests based on Kendall’s transform.

Using Cramer-von Mises and Kolmogorov-Smirnov statistics, we estimate the
p-values by using bootstrapping. In accordance with the research findings of
Songsak [24], Genest and Rivest [7], and Genest [10], the formula can be written
as follows:
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Sn =

∫ 1

0
|κn(t)|2 dKθn(t) (16)

Tn = sup
0≤t≤1

|κn(t)| (17)

4 Descriptive Data and Empirical Results

The estimations in this part include the data description and statistics, the estimation
of the marginal distribution of two random variables, the KS and Box-Ljung tests,
static copulas, goodness-of-fit test for static copulas, and time-varying copulas.

4.1 Data Descriptions and Statistics

The statistics, as given in Table 1, show that the data for the growth rates of the
exchange rate and the inflation rate are not normally distributed; the Jarque-Bera
test is rejected at the 0.01 significance level. The distribution of the growth rate data
is positively skewed. Therefore, we guess that these two marginal distributions were
skewed-t distributions.

Table 1 Data Description and Statistics

Statistics Growth Rate of Exchange
Rate

Growth Rate of Inflation Rate

Mean 0.009072 0.012984
Median 0.00045 -0.0001
Maximum 0.2325 0.6223
Minimum -0.1296 -0.4564
Std. Dev. 0.049376 0.164491
Skewness 1.416947 0.530071
Kurtosis 7.456132 4.016922
Jarque-Bera 320.7128 24.81737
Probability 0 0.000004
Observation 276 276

4.2 Estimates of Marginal Distribution of Growth Rates of
Exchange Rate and Inflation Rate

For both the marginal distributions of the growth rates of the exchange rate and the
inflation rate, it was found that the ARMA (1, 1)-GARCH (1, 1) skewed-t distribu-
tions, which are corresponding residuals, satisfy the i.i.d(0,1). The omega (ω) and
alpha (α) are not significant, as shown in Table 2, which means that the constant
as well as the residuals had no impact on the exchange rate. For both the distri-
butions, λ is statistically significantly different from 1, implying that the skewed-t
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distribution is necessary for these data sets; also, the β = 0.81 in Table 2 and the
α+β = 0.94 in Table 3, respectively, illustrate the growth rate of the exchange rate
and the inflation rate, and also that there is a long-run persistence of volatility.

Table 2 Results of Growth Rate of Exchange Rate in ARMA (1,1)-GARCH (1,1) Skewed-t

Estimate Std. Error t-value Pr(>|t|)
ar1 0.9740 0.0142 68.4000 <2e-16 ***
ma1 -0.9620 0.0192 -50.2000 <2e-16 ***
ω 0.0000 0.0001 0.2360 0.814
α 1.0000 1.2200 0.8210 0.412
β 0.8130 0.0706 11.5000 <2e-16 ***
λ 1.0700 0.0460 23.3000 <2e-16 ***
Dof 2.1300 0.1560 13.7000 <2e-16 ***

Source: Computation.
Note: Signif. codes: 0.01 ‘***’, 0.05 ‘**’, 0.1 ‘*’.

Table 3 Results of Growth Rate of Inflation Rate in ARMA (1, 1)-GARCH (1, 1) Skewed-t

Estimate Std. Error t-value Pr(>|t|)
ar1 0.9850 0.0186 53.1000 <2e-16 ***
ma1 -0.9740 0.0235 -41.4000 <2e-16 ***
ω 0.0015 0.0010 1.5000 0.1347
α 0.1240 0.0522 2.3800 0.0172 **
β 0.8200 0.0717 11.4000 <2e-16 ***
λ 1.2500 0.1170 10.7000 <2e-16 ***
Dof 10.0000 4.1800 2.3900 0.0167 **

Source: Computation.
Note: Signif.Codes: 0.01 ‘***’, 0.05 ‘**’, 0.1 ‘*’.

4.3 KS and Box-Ljung Tests

Table 4 shows the margin values ûi and v̂i of the growth rates of the exchange rate
and the inflation rate. The results as obtained by the KS test are very clear: each
series accepts the null hypothesis, which means that both the margins have uniform
distribution. The Box-Ljung test for autocorrelation found the serial independence
of the first four moments, and all of them accept the null hypothesis at the 0.10 level,
implying that there is no autocorrelation from the first to the fourth moments.
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Table 4 KS Test for Uniform Distribution and Box-Ljung Test for Autocorrelation

KS Test of Both
Margins for Uni-
form Distribution

Statistic P-value Hypothesis
ûi 0.0018 1 0 (acceptance)
v̂i 0.0018 1 0 (acceptance)
Box-Ljung Test of
Both Margins for
Autocorrelation

X-squared P-value
ûi First moment 4.1075 0.534

Second moment 1.7182 0.8866
Third moment 6.6791 0.2456
Fourth moment 3.0073 0.6989

v̂i First moment 6.3313 0.7867
Second moment 9.697 0.4675
Third moment 13.326 0.206
Fourth moment 9.9248 0.4471

Source: Computation.

4.4 Static Copulas

The results from the estimation of the static copulas with one parameter, as shown
in Table 5, demonstrate that for each family of copulas, the best-fit copula fits the
data with P < 0.05. From the AIC and BIC perspective, the Gumbel copula was the
best among the one-parameter static copulas. For two-parameter static copulas, as
illustrated in Table 6, the results showed that the only Rotated BB6 copula (180◦)
was not significant. The best copula model for the two-parameter static copula was
the t-copula. However, we take into consideration the Gumbel copula and the t-
copula by choosing from the AIC and the BIC. The t-copula was the best of all
static copulas as it could capture tail dependence as well, as it has upper tail and low
tail correlation. The value of the lower tail dependence is the same as the upper tail
dependence, which is 0.48.

4.5 Goodness-of-Fit Test

Table 7 illustrates the results of the goodness-of-fit tests. In this study, we used the
two tests based on the Kendall’s transform for investigation, which are the Cramer-
von Mises (CvM) test and the Kolmogorov Smirnov (KS) test. The results of the
goodness-of-fit test, by providing the probability values for CvM and KS, show
that half of the copulas did not reject the null hypothesis, that is, copulas such as
the Gaussian copula, T copula, Joe copula, BB1 copula, BB7 copula, Rotated Joe
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Table 5 Results for Copula Models of One Parameter

Copula Parameter Kendall’s tau AIC BIC
Gaussian 0.6922*** 0.4867 -177.185 -173.565

0.0258
Clayton 1.3462*** 0.4023 -136.995 -133.374

0.4109
Gumbel 1.9833*** 0.4957 -191.348 -187.728

0.0991
Frank 5.9672*** 0.5124 -173.704 -170.083

0.4789
Joe 2.3091*** 0.4166 -160.283 -156.663

0.1419
Rotated Clayton (180◦) 1.4673*** 0.4231 -162.022 -158.401

0.1441
Rotated Gumbel (180◦) 1.9521*** 0.4877 -180.306 -176.686

0.0975
Rotated Joe (180◦) 2.191*** 0.3946 -136.674 -133.054

0.1371

Note: Signif. codes: 0.01 ‘***’, 0.05 ‘**’, 0.1 ‘*’.

Table 6 Results for Copula Models of Two Parameters

Copula δ θ Kendall’s tau AIC BIC
t copula 0.71176*** 2.6914*** 0.5041 -205.98 -198.74

0.0345 0.6671
BB1 0.2952** 1.7686*** 0.5073 -195.32 -188.07

0.1305 0.1251
BB6 1.001*** 1.9819*** 0.4957 -189.32 -182.08

0.1251 0.4011
BB7 2.0044*** 0.8489*** 0.484 -191.98 -184.74

0.1532 0.1669
BB8 4.0109*** 0.8513*** 0.4978 -178.96 -171.72

1.0024 0.0962
Rotated BB1 (180◦) 0.5722*** 0.5722*** 0.5058 -197.75 -190.51

0.1496 0.1167
Rotated BB6 (180◦) 1.001 1.9508** 0.4876 -178.27 -171.03

0.7316 0.9481
Rotated BB7 (180◦) 1.7509*** 1.1491*** 0.8488 -195.45 -188.21

0.1471 0.1656
Rotated BB8 (180◦) 6*** 0.6568*** 0.4917 -165.19 -157.95

2.1038 0.1467

Note: Signif. codes: 0.01 ‘***’, 0.05 ‘**’, 0.1 ‘*’.
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copula (180◦), Rotated BB1 (180◦), and Rotated BB7 (180◦), which means that
they can appropriately model the dependency structure. Other copula candidates
have rejected the null hypothesis, which were no fit for these data sets. As for which
copula is the best-fit copula, we still choose the t-copula.

Table 7 Results of Goodness-of-Fit Test of Copula Models

Copula CvM KS CvM KS
Gaussian 0.29 0.39 Gumbel 0.05 0.1
T copula 0.6 0.39 Clyton 0 0
Joe 1 0.92 Frank 0 0.02
BB1 0.43 0.36 Rotated Clayton (180◦) 0.03 0.02
BB7 0.62 0.71 Rotated Gumbel (180◦) 0 0.01
Rotated Joe (180◦) 1 1 BB6 0.09 0.12
Rotated BB1 (180◦) 0.38 0.34 BB8 0 0
Rotated BB7 (180◦) 0.43 0.34 Rotated BB6 (180◦) 0 0

Rotated BB8 (180◦) 0 0

Source: Computation.

4.6 Time-Varying Copulas

As for the time-varying copulas, we still selected the AIC and the BIC as the criteria
for choosing the best time-varying copulas. Table 8 shows the results of the time-
varying copula analysis, and it displays the parameter values of the time-varying
copulas, the standard error, the AIC, and the BIC. This study found that it is only
the time-varying t-copula whose parameters are significant at the 0.01 level; also,
the AIC and BIC values are smaller than those for the family of static copulas, and
the autoregressive parameter β in the time-varying t copula was 1.42, suggesting
that there was a high degree of persistence pertaining to the dependence structure
between the growth rates of the exchange rate and the inflation rate. Therefore, the
time-varying t copula is the best-fit copula for the dependence structure; also, we
can see from Figure 1 that the Kendall’s tau value of the time-varying t copula has
a nonlinear, positive correlation, meaning that it can capture upper tail dependence.
The smallest Kendall’s tau was about 0.28, and the highest was about 0.88. In this
study, we chose the time-varying t copula for policy implication.

Table 8 Results of Time-varying Copula Analysis

Ω β α AIC BIC
Time-varying
t copula

1.3934***
(0.2852)

1.4211***
(0.2281)

-2,4861***
(0.2272)

- 226.4208 - 237.2820

Source: Computation.
Note: Signif. codes: 0.01 ‘***’, 0.05 ‘**’, 0.1 ‘*’.
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Fig. 1 Dependence parameter (ρt ) from the time-varying t copula

5 Policy Implication

The testing process of the best-fit copula shows that the exchange rate and the in-
flation rate have strong nonlinear correlation such as that in the dynamic Kendalls
tau, which explains the dependence between the growth rates of the exchange rate
and the inflation rate; thus, obviously, it can be used to predict the next periods de-
pendence. For the positive dependence structure, what this implies is that when the
US Dollar is on an appreciation swing, it causes the inflation rate to increase. In
addition, the time-varying t copula can help policy makers become aware of what is
likely to happen in the future. Then the policy makers concerned with exchange rate
policy should issue stronger policies for managing inflation.

6 Conclusion

This study modeled volatility and dependence. The marginal density shows that
the ARMA (1, 1)-GARCH (1, 1) model was appropriate for the analysis of the
growth rates of the exchange rate and the inflation rate. In addition, the Kolmogorov-
Smirnov and Box-Ljung tests found that the two margins were skewed-t distribu-
tions, and that there was no autocorrelation for these data sets. The family of static
copulas was used to analyze the dependence between the exchange rate and the in-
flation rate. Another point is that we applied time-varying copulas that explained
the dynamic Kendall’s tau. The empirical results show that the time-varying t cop-
ula was the best among the several copula candidates in terms of the AIC and BIC
values, and that it has the highest explanatory power of all the dependence structures
between the exchange rate and the inflation rate.
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Modeling Dependence of Accident-Related
Outcomes Using Pair Copula Constructions for
Discrete Data

Jirakom Sirisrisakulchai and Songsak Sriboonchitta

Abstract. This paper investigates the relationship between accident-related out-
comes and per capita income, and explores the interdependency between them by
using vine pair copula constructions. Equations for number of accidents, number of
fatalities, and number of people injured are estimated using a provincial level data of
Thailand in 2011. We discovered that there exists an inverted U-shaped relationship
between accident-related outcomes and per capita income. Moreover, it was found
that the accident-injury pair had stronger concordance and tail dependence, whereas
the accident-fatality and fatality-injury pairs had weaker concordance and tail de-
pendence. Our findings provide useful insight and information to policymakers who
can then use the same to select appropriate road safety measures.

1 Introduction

The World Health Organization (WHO) reports that over 1.2 million people die and
about 20 to 50 million people sustain non-fatal injuries from road accidents each
year. WHO also estimates that road traffic injuries were the ninth leading cause
of global mortality and burden of disease in 2004. Projections to 2030 show that
road traffic injuries will move up in rank to become the fifth leading cause of global
mortality, resulting in an estimated 2.4 million people per year. This problem is more
severe in developing countries than in developed countries. Over 90 percent of the
worlds traffic fatalities occur in developing countries which have only 48 percent of
the worlds vehicles (WHO, 2009).

In Thailand, road accidents have killed approximately 130,000 people and in-
jured nearly 500,000 people in the past decade (Source: Royal Thai Police). This has
made road accidents the second leading cause of death in the country (Bundham-
charoen et al., 2011). These losses of human lives and ability to work have caused
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substantial damage to the economy. It was estimated that the economic loss due to
road accidents was about 232 billion Baht (approximately, 8 billion US dollars), or
about 2.8 percent of the countrys GDP (Taneerananon, 2008). When compared with
the recent estimates of national economic loss due to road traffic injuries across the
country, which shows the range as from 1 to 2 percent (Jacob et al., 2000), Thai-
land has suffered more than the average. This may be attributed directly to rapid
economic development, higher motorization levels, and increased complexity in the
traffic patterns.

Tanaboriboon et al. (2005) roughly explained the fluctuation in the accident
trends using the economic business cycle of Thailand. During the economic reces-
sion period (from 1984 to 1986), the fatality rate was rather stable where the average
number of accident cases was around 19,000 per year, with about 5 fatalities and 17
injuries for every 100,000 of the population. In the economic recovery period (from
1987 to 1992), it was not just that the number of accidents rose dramatically about
three times, but the severity of these accidents was also very distressing as the fa-
tality and injury rates leaped to about 15 persons and 41 persons per 100,000 of the
population, respectively. In the bubble economy period (from 1993 to 1996), road
accidents shot up to about two to three folds of the previous period. The fatality rate
also increased to about two times that of the previous period, at approximately 25
deaths per 100,000 of the population. In the economic crisis period (from 1997 to
2000), there was a positive trend in the road accident situation in Thailand. Road ac-
cidents were reduced to about 70,000 cases per year, with a similar downward trend
in the fatality rate, but the injury rate showed a reverse trend with a high rate of 86
persons for every 100,000 of the population, in 1998. As expected, when the econ-
omy began the re-recovery era in the period from 2001 to 2003, the number of road
accidents started to rise again, as did the fatality rate. However, the explanations for
the same were based on intuition and did not use a statistical model.

Empirical literature on the relationship between traffic fatalities and economic de-
velopment establishes the biphasic relationship, with the fatalities rising as a country
develops and falling once the income levels exceed a certain threshold echelon (Law
et al., 2009 and 2011; Bishai et al., 2006; Garg and Hyder, 2006; Koptis and Cropper,
2005; Beeck et al., 2000). Even though these studies used different data and statisti-
cal methods, they concluded that there is an inverted U-shaped relationship between
traffic fatalities and per capita income. This result is similar to the curve Kuznets
found as existing between income inequality and economic growth, which is well-
known to environmental economists as the environmental Kuznets curve (Kuznets,
1955). Economists (Bishai et al., 2006) explain this relationship as follows: At low
levels of income, an increase in income levels leads to higher motorization levels,
which increases the risk to road users and causes traffic fatalities to rise. When in-
come and economic development reach a certain level, general concern about road
safety issues is more, which makes the government and the road users agree to and
comply with the new institutions and regulations in order to enhance road safety.
The more advanced stages of economic development are a prerequisite for the new
institutions and regulations to successfully deal with road safety problems. More-
over, at low levels of income, the government is rational enough to under invest in
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road safety and take the higher risk transport alternatives in order to promote higher
income levels, which can be used to address the other public health issues. In an
early epidemiological transition, curbing infections and nutritional health risks is of
more concern as regards public health, and the government usually gives the first
priority to these issues. In advanced stages of development, it becomes rational for
the government to invest more resources in road safety and advanced medical aid
and technology for road trauma victims. Due to the above-mentioned reasons, traffic
fatalities gradually decline with higher levels of income.

The analysis of factors affecting accident-related outcomes is very often per-
formed by studying only a single outcome. However, in practice there are several
accident-related outcomes such as the number of accidents, the number of fatali-
ties, the number of injuries, and so on. Moreover, road safety measures usually do
not have the same effect on each outcome. A lack of knowledge of these interde-
pendencies between the outcomes may be one reason for selecting inappropriate
policies for reducing those accident-related outcomes. Since these outcomes show
some interdependencies, their multivariate analysis is required to take into account
the entirety of these interdependencies.

Cameron and Trivedi (1998, p. 252) state that applications of multivariate count
models are relatively uncommon. Practical experience has been restricted to some
special computationally tractable cases. However, a multivariate model for multiple
count variables such as accident-related outcomes, as discussed in our paper, is one
example of practical application.

Most of the multivariate count models start from the multivariate Poisson model
(see Johnson et al., 1997). The multivariate Poisson distributions only allow for
positive correlation. Chib and Winkelmann (2001) and Karlis and Xekalaki (2005)
extend the multivariate Poisson model based on mixtures to allow for more flex-
ible correlation structure and overdispersion on marginal distribution. The limita-
tion of this approach is that the possible choices of mixing distribution are limited
and sometimes they lead to the very specific marginal distribution. On the other
side, Winkelmann (2000) constructed the bivariate negative binomial model and the
model based on conditional distributions can be also constructed for bivariate count
model (Berkhout and Plug, 2004). However, these models suffer from the difficulty
to generalize to other families of marginal distributions.

The more innovative and flexible models are based on copula functions.
Nikoloulopoulos and Karlis (2010) present the copula-based model for bivariate
negative binomial regression. So et al., (2011) proposed an alternative bivariate
zero-inflated negative binomial model based on a copula that allows for heteroge-
neous dispersion, negative correlations, and a more general zero-inflation structure.
The advantages of the copula-based bivariate count models are that they allow for
both flexible dependence structure and marginal distributions. Nikoloulopoulos and
Karlis (2009) proposed the multivariate count models by using the multivariate para-
metric family of copulas. In contrast, we use a pair-copula construction for discrete
margins, as proposed by Panagiotelis (2012). Panagiotelis et al. (2012) recently pro-
posed a copula modeling framework for multivariate discrete data that is flexible,
easy to estimate, and applicable in high dimensions. This framework fits very well
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with our empirical work and makes it tractable to perform the multivariate count
model.

This paper has two objectives. The first objective is to identify the relationship
between accident-related outcomes and economic development as measured by per
capita gross provincial product (GPP) in Thailand. The second objective is to per-
form the multivariate count models for accident-related outcomes in order to get a
better understanding of the nature of interdependency between those outcomes.

The rest of this paper is organized as follows. In Section 2, we describe the data
used. In Section 3, we provide a brief discussion of negative binomial regression
and vine pair copula constructions (PCC). In Section 4, we discuss our empirical
results, followed by discussion and conclusion in Section 5.

2 Statistical Models

2.1 Negative Binomial Regression

We proxy the factors affecting accident-related outcomes with the economic devel-
opment of each province, as measured by the per capita gross provincial product
(GPP). Negative binomial distribution is used to model the relationship between
accident-related outcomes and gross provincial products (GPP). We use a quadratic
specification to test for the inverted U-shaped relationship. In our analysis, the risk
of a casualty accident varies across provinces depending on the level of exposure,
such as the population numbers. For example, a province with a higher popula-
tion should have more crashes, given that all other characteristics are held constant.
Thus, we use the population number to normalize the effect of risk exposure on
the accident-related outcomes. This can be done by using population as an offset
variable in our specification. The model specification is

log(Yi) = αi + log(populationi)+β1 log(GPPi)+β2 [log(GPPi)]
2 + εi

where Y stands for crash counts, that is, traffic fatalities, injuries, and numbers of
traffic accidents, GPPi is per capita income (measured at current market prices), αiis
an intercept, and εiis an error term.

2.2 Copula

We perform the multivariate analysis of the accident-related outcome by using the
copula model. In recent years, copula modeling has been extensively applied in
many fields of application. Introduction and standard reference on copula theory
can be found in Joe (1996) and Nelsen (2006). The foundation of copula is based on
the theorem of Sklar (1959), which states that there is a copula function C such that

F(y1,y2, ...,ym) =C(F1(y1),F2(y2), ...,Fm(ym)) (1)
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where y = (y1,y2, ...,ym) is the realization of an m-dimensional random vectorY =
(Y1,Y2, ...,Ym). Fj(y j) is the marginal distribution function of the jthmargin for j =
1, 2, ...,m and F is a joint distribution function. Sklar’s theorem establishes the link
between the multivariate distribution function (copula) and their univariate margins.

In the continuous case, we can obtain the joint density f (y1,y2, ...,ym)by taking
the derivative of both the sides of equation (1), which is

f (y1,y2, ...,ym) = c(F1(y1),F2(y2), ...,Fm(ym)) f1(y1) f2(y2)... fm(ym),

where f j(y j)is the marginal density function of the jthmargin, f is a joint density
function, and c is a copula density function. The copula function is unique for the
continuous random vector Y . For a discrete random vector, the copula function is
unique only over the Cartesian product of the ranges of the marginal distribution
function (Genest and Neslehova, 2007; Panagiotelis et al., 2012). However, Genest
and Neslehova (2007) demonstrated evidence to show that parametric modeling of
discrete variables by copula acquires dependence properties in a way that is similar
to the continuous case.

In general, there are two approaches to compute the probability mass function for
discrete variables. Both are evaluated by taking the difference of the copula function.
Consider the case in which the discrete variables are non-negative integers; the joint
probability mass function (pmf) of Y would be

Pr(Y = y) = ∑
i1=0,1

· · · ∑
im=0,1

(−1)i1+...+imC(F1(y1− i1), ... , Fm(ym− im)) (2)

To compute this pmf, we have to evaluate 2mtimes of the copula functions. The
second approach is based on vine pair copula constructions (PCC), which we will
briefly discuss, both in the continuous and in the discrete cases, in the next section.

2.3 Vine Pair Copula Constructions

Vine pair copula constructions (PCC) were initially proposed by Joe (1996) and
developed in more detail in the works of Bedford and Cook (2001, 2002), and
Kurowicka and Cooke (2006). Aas et al. (2009) provided a principle for construct-
ing multivariate copula from the product of bivariate pair copula and described the
statistical inference techniques for the specific vines which were called canonical
(C-) vines and drawable (D-) vines.

Vine PCCs are tree-like constructions with bivariate copula as the building
blocks. A vine is characterized by m− 1trees. Each tree is made up of nodes, and
edges joining these nodes. The most popular and specific structures of the vine are
the C-vines and D-vines. C-vine trees have a star structure and D-vine trees have
a path structure. As for three-dimensional cases, there are six ways of permuting
the three variables but only three give different decompositions. Moreover, these
decompositions are both C-vine and D-vine.
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For continuousY , a PCC is derived, starting with the factorization of the joint den-
sity function into the conditional density function and the marginal density function,
as follows:

f (y1,y2, ...,ym) = f1|2,...,m (y1 |y2, ...,ym) f2|3,...,m (y2 |y3, ...,ym) ... fm(ym) (3)

By Sklar’s theorem, it can be shown that the conditional density function on the
right hand side of equation (3) can be decomposed into the product of a bivariate
copula density and a univariate conditional density. This can be done recursively
to each of the terms on the right hand side of equation (3) until f (y1,y2, ...,ym)is
decomposed into the product of m(m-1)/2 bivariate copulas (Panagiotelis, 2012).
The decomposition in this manner can be done in several ways. For a summary of
the different ways to decompose the joint density function, the readers are requested
to refer to Bedford and Cooke (2001, 2002).

For discrete margins, we can decompose a pmf, as follows:

Pr(Y1 = y1, ...,Ym = ym) = Pr(Y1 = y1 |Y2 = y2, ...,Ym = ym) ×
Pr(Y2 = y2 |Y3 = y3, ...,Ym = ym) × ...×Pr(Ym = ym)

(4)

And then, in a similar manner as the continuous case, each term on the right hand
side of equation (4) can be decomposed into the product of a bivariate copula. How-
ever, in contrast with the continuous case, for each m(m-1)/2 bivariate copula func-
tion in discrete pmf, we have to evaluate four different values. Therefore, there is a
total of 2m(m-1) evaluation values at a single point.

We now derive a three-dimensional discrete margin PCC in our crash counts
model. For m = 3,

Pr(Y1 = y1,Y2 = y2,Y3 = y3)
= Pr(Y1 = y1 |Y2 = y2,Y3 = y3) ×Pr(Y2 = y2 |Y3 = y3) ×Pr(Y3 = y3)

, (5)

where

Pr(Y1 = y1 |Y2 = y2,Y3 = y3)

=

{
∑i1=0,1∑i2=0,1(−1)i1+i2C12|3 (F1|3 (y1−i1|y3 ),F2|3 (y2−i2|y3 ) )

}
Pr(Y2=y2|Y3=y3)

(6)

And the arguments in the copula function are

F1|3 (y1− i1 |y3 ) =
C13(F1(y1− i1),F3(y3))−C13(F1(y1− i1),F3(y3− 1))

Pr(Y3 = y3)
,

and

F2|3 (y2− i2 |y3 ) =
C23(F2(y2− i2),F3(y3))−C23(F2(y2− i2),F3(y3− 1))

Pr(Y3 = y3)



Modeling Dependence of Accident-Related Outcomes 221

Since the dominator of equation (2) cancels with the second term on the right hand
side of equation (1), the full expression for the pmf of the three-dimensional discrete
margin PCC is

Pr(Y1 = y1,Y2 = y2,Y3 = y3)

=
{
∑i1=0,1∑i2=0,1(−1)i1+i2C12|3

(
C13(F1(y1−i1),F3(y3))−C13(F1(y1−i1),F3(y3−1))

F3(y3)−F3(y3−1) ,

C23(F2(y2−i2),F3(y3))−C23(F2(y2−i2),F3(y3−1))
F3(y3)−F3(y3−1)

)}
[F3(y3)−F3(y3− 1)]

A major advantage of PCC, when compared with the first approach, is the greater
flexibility to model a large range of dependence structures, which greatly reduces the
computational cost of evaluating the higher dimension of pmf (Panagiotelis, 2012).

In this paper, we construct the marginal models by negative binomial distribution
with the covariate that proxy economic development by GPP, as discussed in sec-
tion 2.1. Then we can estimate the parameters of marginal models and dependence
parameters by using maximum likelihood estimation.

3 Data

The accident-related outcomes considered in this study consist of the number of
accidents, the number of fatalities, and the number of injuries. The data used in
this analysis is a cross-sectional data for 77 provinces of Thailand in 2011. Data on
traffic fatalities, injuries, and accidents were obtained from the Royal Thai Police,
Ministry of Public Health (MPH), and Department of Highway (DOH). For the data
on population and gross provincial product, we approached the National Economic
and Social Development Office.

Ponboon and Tanaboriboon (2005) were skeptical of the accuracy of the traffic
fatalities data in Thailand. They showed the difference between the numbers of traf-
fic fatalities as reported by the police and as per hospital records, and the difficulty
in predicting the trend because of the under-reported data. Since there is no distinct
definition of fatality in Thailand, the fatality reports by the police only include death
at the scene. The number of accidents and people injured as reported by the police is
the number of cases to be in lawsuit. As far as MPH data is concerned, we retrieved
the data directly from the trauma accident database system. MPH receives the re-
port on the number of people injured from hospitals. These numbers include minor
injuries as well as serious injuries. Therefore, the number of people injured as re-
ported by MPH is ten times higher than the number reported by the police. As far as
police data is concerned, they tend to report only the serious injury cases. The police
may never hear of a crash in a rural area involving a single vehicle and with slightly
injured people. MPH data also reports the fatality cases in which the victims were
admitted to hospitals and died there. As for DOH, they report only those accident-
related outcomes that take place on the national highways. About 14 percent of the
total fatalities reported by the police occurred on the national highways.
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4 Empirical Results

4.1 Negative Binomial Regressions

The descriptive statistics of accident-related outcomes for three different data sets
are reported in Table 1. The province Amnat Charoen, the poorest, had a per capita
income of about 30,231 Baht, and Rayaong, the richest, had a per capita income of
about 1,235,694 Baht in 2011. That is, the per capita income of the richest province
is about 40 times that of the poorest province. This disparity should explain some of
the variations in traffic fatalities between the provinces.

Table 2 presents the results of estimation of the negative binomial (NB) regres-
sion for the number of accidents, traffic fatalities, and injuries. The likelihood ratio
(LR) test is used to test for over-dispersion in the data (Cameron and Trivedi, 1998).
The LR test results show the existence of over-dispersion. This makes the negative

binomial model a better choice than the Poisson model
1
. The structure of Table 2

consists of three sets of three columns each. The first one shows the results from us-
ing the police data set, the second, those from using the MPH, and the last one, those
from using the DOH. The three columns of each set consist of negative binomial re-
gression for the number of accidents, traffic fatalities, and injuries, respectively. The
standard errors presented in Table 2 are robust standard errors.

The results from the NB model show the presence of the inverted U-shaped pat-
tern of traffic fatalities, and so, it cannot be statistically rejected for the MPH and
DOH data sets. As for the police data, it also has an inverted U-shaped pattern, but
the coefficient estimates are not statistically significant. In contrast to the finding
of Bishai et al. (2006) for international data, we found the presence of the inverted
U-shaped pattern for traffic accidents and injuries in the MPH and DOH data sets.
These results suggest that the drop in the traffic fatality rate for the richer provinces
may be due to fewer injuries and crashes. The interdependencies between these out-
comes shall be discussed in the next section.

Since the MPH data covers a broad range of accident-related outcomes, a discus-
sion on only the coefficient interpretation of the MPH data will be presented here.
The income level at which the traffic fatalities first decline is 301,608 Baht. This
was the approximate income level attained by provinces such as Pathumthani, Cha-

choengsao, and Phuket in 2011. There are 10 provinces
2

which have income levels
higher than this. Figure 1 plots the predicted number of traffic fatalities as a function
of per capita income to give a complete picture of the model results.

Figure 1 also gives the details of the predicted number of accidents and injuries.
The pattern and shape of the traffic accidents and injuries are almost the same. The
income level at which the number of accidents and injuries first declines is about
160,000 Baht. This is the approximate income level attained by provinces such as

1
Note that our data sets do not have a problem of excessive zero observations, so we are not
taking into consideration a zero-inflated negative binomial regression.

2
These provinces comprise Pathumthani, Chachoengsao, Phuket, Ayudthaya, Prachin Buri,
Samut Prakan, Bangkok, Chonburi, Samut Sakorn, and Rayong.
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Trat, Phang Nga, and Nonthaburi. As can be seen from Figure 1, the number of ac-
cidents and injuries first starts to decline when the income reaches a number around
160,000 Baht and then, later, at an income level of about 300,000 Baht. One possi-
ble reason for this may be that economic development empowers more road users to
switch their mode of transport to the safer cars instead of the more dangerous modes
of transport such as motorcycles.

The regression models in Table 3 introduce some control variables, namely, ve-
hicles per capita, number of drunk driving cases, and number of speed limit ex-
ceeding cases. However, the introduction of these variables does not change the
inverted U-shaped pattern in the MPH and DOH data sets. Law et al. (2011) found
the indication that political and institutional development, and medical care and
technology improvement are the main sources of the Kuznets relationships. Upon
controlling these variables, the inverted U-shaped pattern vanished for the interna-
tional data sets. However, the same variables could not be found for the provincial
data in Thailand.

Fig. 1 The predicted number of accident-related outcomes and GPP per capita for the MPH
data

4.2 Discrete Vine PCC Results

Before estimating the vine PCC model, we test for marginal model misspecification
using the Kolmogorov-Smirnov (KS) test. If the marginal distributions are correctly
specified, then the probability transformations should be independent and identically
distributed uniformly (0,1). Table 4 shows the result of the KS-test. We cannot reject
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Table 1 Descriptive Statistics of Accident-related Outcomes

Data set Variable Obs. Mean Std. Dev. Min Max

Police accident 77 890.69 4088.24 54 35947
death 77 119.55 75.17 16 360
injury 77 284.64 894.38 16 7923

MPH accident 52 10800.90 9666.69 105 51867
death 52 168.19 139.22 20 792
injury 52 9959.17 8067.68 44 35916

DOH accident 77 137.75 187.24 10 1455
death 77 16.77 14.59 0 83
injury 77 116.49 99.12 1 437

GPP (Baht) 77 140765.9 175818.1 30231 1235695
pop (1000 person) 77 877.9 846.9 192 6859
No. of drunk cases 70 815.4286 1586.023 4 8875

No. of speeding cases 65 2842.262 5509.052 1 24153
No. of vehicles 77 393791.4 778788.9 14616 6885080

Table 2 Parameter Estimates for Negative Binomial Regression

police mph doh

accident death injury accident death injury accident death injury
Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef.

lGPP 1.345 2.367 2.549 9.084* 3.886* 6.901* 6.175* 5.863* 5.861*
lGPPsq -0.036 -0.095 -0.094 -0.380* -0.154* -0.288* -0.237* -0.236* -0.232*

cons -11.239 -16.540* -18.203 -51.299* -25.751* -38.524* -41.356* -39.807* -38.424*
log(pop) 1 1 1 1 1 1 1 1 1

alpha 0.391* 0.127* 0.258* 0.599* 0.126* 0.659* 0.356* 0.560* 0.481*
LL -517.13 -387.92 -446.38 -524.92 -275.58 -520.6 -418.02 -284.63 -426.45

turning point 1.06E+08 257273 773368 155225 301608 159676 454715 248106 306038
No of province 77 52 77

*indicate statistical significance at the 5 percent level

the null hypothesis that the probability transformations of the margins are a uniform
distribution.

For the three-dimensional model of accident-related outcomes, we estimate all
three combinations of the ordering variables. We consider using the Gaussian,
Student-t, Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7, and BB8 copulas as bivari-

ate copula building blocks
3
. These copulas were chosen because they give different

shapes and they exhibit different tail dependence, namely, no tail dependence, lower
tail dependence, upper tail dependence, symmetric tail dependence, and asymmetric
tail dependence.

3
For details of the copula functional form, see Joe (1997).
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Table 3 Parameter Estimates for Negative Binomial Regression (with some control
variables)

Police MPH DOH

accident death injury accident death injury accident death injury
Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef.

lgppcap 2.397 1.691 2.926* 7.280* 3.018* 5.312 5.268* 4.913* 5.769*
lgppsq -0.101 -0.066 -0.117 -0.311* -0.120* -0.225 -0.201* -0.199* -0.226*

lcar 0.598* -0.191* 0.279* 0.591 0.253 -0.338 -0.219 -0.648* -0.181
ldrink 0.136* 0.002 -0.003 -0.055 -0.035 -0.038 - - -
lspeed - - - - - - -0.003 -0.014 0.019

cons -18.318* -13.603* -21.177* -43.291* -21.756* -30.519 -37.102* -37.668* -39.232*
lpop 1 1 1 1 1 1 1 1 1
alpha 0.209 0.074 0.174 0.462 0.089 0.522 0.341 0.420 0.436
LL -440.36 -335.62 -389.32 -502.79 -259.04 -499.59 -343.87 -232.26 -353.53

No of province 70 50 65

*indicate statistical significance at the 5 percent level.

Since all the models in our analysis have the same number of parameters, we
select the best-fit model by the highest value of log-likelihood. This strategy cor-
responds to selecting the model by popular information criteria such as the Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC). We also
investigate further on the improvement of the goodness of fit of our three combina-
tions of the ordering variables by performing Vuong (1989) and Clarke (2007) tests.
Both Vuong and Clarke tests analyze the null hypothesis that both the models can
explain the data equally well as against the argument that the model with the higher
log-likelihood is to be favored.

As for the police data, the Vuong test cannot reject the null hypothesis of no
difference between those three models. However, the Clarke test selects the model
in which the second tree is conditional on the number of fatalities. As far as the
MPH data is concerned, neither the Vuong test nor the Clarke test can reject the null
hypothesis of no difference between those three models. Therefore, we present only
model 1, which has the same structure as the model fitted on the police data, for
comparison. As for the DOH data, the Clarke test selects the model in which the
second tree is conditional on the number of accidents.

There are two popular approaches for the estimation of unknown parameters in
discrete vine PCC, namely, the inference function for margins (IFM) and full max-
imum likelihood (FML). The results show a slight improvement of the FML over
the IFM estimations in terms of log-likelihood. Table 4 shows the parameter es-
timates and the corresponding Kendall’s tau measures for three-dimensional vine
PCC models by the FML method.

The dependence structure between traffic accident, fatality, and injury has the
same direction for all the three different data sets. The accident–injury pair has
stronger concordance measure (Kendall’s tau) when compared with the accident–
fatality pair and the fatality–injury pair. However, for the best-fit models, there exists
a different pattern of tail dependence (dependence in extreme values) for the three
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different data sets. For example, the MPH data exhibits weak lower tail dependence
in both the accident–fatality pair and the fatality–injury pair, but strong upper tail
dependence in the accident–injury pair.

Table 4 Goodness of Fit Test for Margins by Kolmogorov-Smirnov Test

Police MPH DOH

p-value
Accident 0.07 0.08 0.79
Fatality 0.15 0.97 0.65
Injury 0.86 0.06 0.99

Table 5 Parameter Estimates for Discrete Margins PCC of Accident-related Outcomes

Police MPH DOH

Copula Parameter Value Copula Parameter Value Copula Parameter Value
t par1 0.172 Clayton par1 0.567 BB7 par1 1.262

par2 2.446 par2 0.000 par2 1.125
c12 tau 0.110 c12 tau 0.221 c12 tau 0.408

upper tail 0.205 upper tail 0 upper tail 0.268
lower tail 0.205 lower tail 0.295 lower tail 0.540

t par1 0.434 Clayton par1 0.465 t par1 0.826
par2 4.237 par2 0.000 par2 3.701

c23 tau 0.286 c23 tau 0.189 c13 tau 0.619
upper tail 0.207 upper tail 0 upper tail 0.535
lower tail 0.207 lower tail 0.225 lower tail 0.535

clayton par1 1.493 Gumbel par1 3.030 BB7 par1 1.639
par2 0.000 par2 0.000 par2 0.319

c13c2 tau 0.427 c13c2 tau 0.670 c23c1 tau 0.338
upper tail 0.000 upper tail 0.743 upper tail 0.474
lower tail 0.629 lower tail 0 lower tail 0.114

Note: 1 = number of accidents, 2 = number of fatalities, 3 = number of injuries.

5 Discussion and Conclusion

In the current paper, we demonstrate the application of a vine PCC to model the
dependency between the various accident-related outcomes according to the provin-
cial data in Thailand. The marginal models are negative binomial regressions. The
results show a pattern of inverted U shape between the accident-related outcomes
and the per capita income for the MPH and DOH data sets. The improvements in
medical care and technology are hypothesized to impact the accident-related out-
comes. In future research, the inclusion of these proxy variables to the model could
give a better understanding of the factor underlying the Kuznets relationship. The



Modeling Dependence of Accident-Related Outcomes 227

vine PCCs are performed to find out the dependence model between these accident-
related outcomes.

Based on the strong concordance measure of the accident–injury pair, the poli-
cymaker should consider the effect of road safety measures on both the number of
accidents and the number of people injured, taken together. Road safety measures
aimed at reducing the number of accidents might have the same effect on reduc-
ing the number of people injured, but may not necessarily have the same effect on
reducing traffic fatalities. The vine PCC frameworks used here can be employed
to model the decomposition effect of road safety measures on accident-related out-
comes simultaneously. This model should be able to give a better understanding of
the decomposition effect of road safety measures than single outcome models.
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Dependence Analysis of Exchange Rate and
International Trade of Thailand: Application of
Vine Copulas

Chakorn Praprom and Songsak Sriboonchitta

Abstract. This paper aims to investigate the correlation of multivariate dependences
between the international trade of Thailand and the USD/THB exchange rate us-
ing vine copulas, including canonical (C-vine) and drawable (D-vine) vine copulas
which are very flexible dependency structures. Another advantage is that these meth-
ods overcome limitations and complex dependency models. Before we built the pair-
copula constructions of the vine models, ARMA(1,1)-GARCH(1,1) was adopted to
remove time dependence in each of the marginal time series. Furthermore, we got
the various standardized residuals to transform into appropriate uniform margins
[0,1]. The results can be seen for C-vine case, Gaussian, Rotated Joe, and BB1
which are suitable bivariate copula families for each pair-copula construction. On
the other hand, D-vine case, Gaussian, and Rotated Joe are appropriate copula fam-
ilies for the pair-copula construction. In addition, the sequential log-likelihood is
quite close to the one obtained by joint maximization; it means that both the vine
models are appropriate-fit models. In order to confirm that it is not possible to dis-
tinguish between the two models, we employed the Vuong and Clarke tests to verify
the suitability of the non-nested model. These tests confirm that the C-vine and D-
vine copulas are not distinguishable. It can be concluded that our pair constructions
of the time-varying Gaussian copula could be appropriate fits, better than those of
the static copula. This study will help policy makers take action to combat the ex-
change rate volatility.
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1 Introduction

Over the past two decades, many countries have been turning their attention to the
issue of economic stability more and more because of the occurrence of several
economic crises repeatedly, such as the Asian financial crisis in 1970, the subprime
mortgage crisis in the United States in 2007, the European sovereign-debt crisis in
2009, and, lastly, the Cyprus crisis. These crises introduced adverse economic im-
pacts that spread widely from country to country and, subsequently, reached global
levels. All nations around the world have suffered from this economic impact in one
way or the other, in terms of international trade, foreign investment, international
financial market, foreign capital movement, stock index, and foreign exchange rate
market. These impacts affected each and every countrys economic goals, and, ulti-
mately, it is bound to influence the Gross Domestic Production (GDP) growth.

In our paper, the study will focus on the relationship between the volatility of
the foreign exchange rate, especially the USD/THB exchange rate, and the im-
ports/exports of Thailand to examine how the fluctuating exchange rate would have
a direct effect on the changes in the imports and exports of Thailand. Theoretically,
if the exchange rate appreciates, the exports of Thailand will decrease because of
the higher prices. Foreign purchasers of the countrys products will turn to alterna-
tive producers. On the other hand, the imports of Thailand will increase in volume
because foreign goods are cheaper, and this will result in a trade deficit. However, a
depreciation in the currency exchange rate will provide a good chance for Thailand
exporters to export more products. Meanwhile, it will adversely affect the imports
because imported goods become much more expensive and, eventually, this will lead
to a trade surplus. The traditional volatility of the currency exchange rate also affects
the ability to compete with the National Competitive Advantage. In this study, we
will pay more attention to the analysis of the relationship between the USD/THB
exchange rate and the imports/exports scenario of Thailand, using a model called
vine copula, consisting of two types of vine copulas: the canonical vine (C-vine)
copula and the drawable vine (D-vine) copula.

Vine copula is a branch of copula which is a probabilistic construction of
high-dimensional or multivariate distributions based on bivariate copulas that are
building-block so-called pair-copulas. The dependency structure is assigned by the
bivariate copulas and the nest set of tree (see Kramer [13]). Moreover, this one is
more flexible as we can choose bivariate copula from various families. Presently,
vine copula was widely applied to study a pair-copula construction in economics
and financial modeling, namely, application of exchange rate or stock index from
different countries. Hence, the primary purpose of our study was to investigate the
relationship between the USD/THB exchange rate and international trade; if these
trivariate relations are quite well, it would be very useful for policy makers. In case
of exchange rate volatility, the policy makers would need to take some action to
prevent these problems.

The remainder of this article is organized as follows: Section 2 presents literature
review. Section 3 presents the definition of C-vine and D-vine copulas and reviews
the concept of estimating both the vine copulas and the evaluation of the vine copula
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models which were employed in this study. Section 4 demonstrates the empirical
findings. Lastly, section 5 presents our conclusion.

2 Review Literature

However, in recent years, many researchers have popularly studied the relationship
financial modeling by using vine copulas; however, this method was adopted by very
few for studying international trade or economic growth. Most researchers applied
other methods, for example, VAR-copula, CGE, Panel method, PML-IV method,
etc. Most studies related to economic growth have also confirmed that international
trade is crucial and necessary for the growth and development of all countries.

There are very few papers available to investigate on the subject of the relation-
ship of exchange rate with international trade by using vine copula because most
papers applied vine copula to study financial modeling. The first paper, Czado et
al. [10], clearly explains a pair-copula construction for modeling exchange rate de-
pendence. They employed two possible ways, including bivariate t-copula building
blocks of PCC between a pair of exchange rates and the directed acyclic graph
(DAG) embedded special PCC to estimate the various exchange rates. Exchange
rates were observed for many currencies, including the British pound, US dollar,
Malaysia ringgit, Swiss franc, Japanese yen, Danish crona, and Swedish krona. The
results of this paper indicate that the US dollar becomes the first node of C-vine and
regular vine, while the R-vine specification prefers the DAG specification. More-
over, this indicates that C-vine and R-vine are not distinguishable at α = 0.5 and that
the C-vine specification is the best fit. Aas et al. [23] clearly proposed a pair-copula
construction of the multiple dependences. Four stock indices, including the Norwe-
gian stock index (TOTX), the MSXI world stock index, the Norwegian bond index
(BRIX), and the SSBWG hedged bond index were subjects of study in this research.
D-vine was applied to the building structure, and then, a students t-copula, which
was the best-fitting data set, was used to estimate a pair-copula. Also, Czado et
al. [9] had successfully denoted a maximum likelihood estimation of mixed C-vine
with application to exchange rate. They have been employing the mixed C-vines
model with the maximum likelihood estimation to approximately eight principal
time series of US currency exchange rates with different countries such as the Euro-
pean countries, the United Kingdom, Canada, Australia, Brazil, Japan, Switzerland,
and India. They found that Gaussian t-copula, Clayton, Gumbel, and Frank were
required for the data sets. Furthermore, mixed C-vine (sequential selection without
independence test) and Gaussian copula (same as mixed C-vine, but all pair-copulas
are Gaussian copulas) are the best chosen models when it comes to the selection.
The Voung and Clarke test with Schwarz correction was used to compare the two
models.
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3 Data and Model Specification

Our paper endeavors to study the relationship between three variables, namely, the
USD/THB exchange rate, the imports of Thailand and the exports of Thailand, and
whether each pair has a relationship or not, via the vine copula method. While study-
ing the relationship between these multivariate variables, Czado [7] states, the re-
searchers may face many problems, such as different multivariate data structure,
non-symmetric dependencies between some pairs of variables, heavy tail dependen-
cies between some pairs of variables, etc. Normally, multivariate variables cannot be
modeled with standard parametric distributions such as the Gaussian or multivariate
t distribution. On the other hand, the copula approach allows the modeling of depen-
dencies and marginal distributions separately. However, standard multivariate cop-
ula models such as the elliptical and Archimedean copulas do not allow for different
dependency models between pairs of variables. In order to solve these problems, we
have been adopting vine copula which is a part of copula for our study because vine
copula can overcome all of these troubles.

3.1 Model

(a) Vine Copula

In this section, we present vine copulas that were first introduced by Joe [29] and
developed in more detail by Bedford and Cooke( [2], [3]) who explained the details
about the regular vine (R-vine). This one is a type of vine copulas which can assess
any structure to the needs of those who want to study. Kurowicka and Cooke [9] de-
noted that vines are flexible graphical models for explaining the multivariate copula
make-up using a cascade of bivariate copulas, the so-called pair-copulas. In addi-
tion, Aas, Czado, Frigessi, and Bakken [23] bring the regular vines (R-vine) to con-
tinuous development and proposed the statistical inference techniques for the two
classes of regular vines, that is, the canonical vine (C-vine) and the drawable vine
(D-vine).

Vines are graphical representations of the so-called pair-copula constructions
(PCCs). If we assume that these are three dimensional, we can obviously show an
illustration of the PCCs, as shown in Figure 1. Let X = (X1, ...,X3)∼ G be with the
marginal distribution function G1,G2,G3 and the corresponding densities; we can
write

g(x1,x2,x3) = g(x1)g(x2|x1)g(x3|x1,x2)

By Sklar’s Theorem [25], we denote that

g(x2|x1) =
g(x1,x2)

g1(x1)
=

c1,2

(
G1(x1)G2(x2)

)
g1(x1)g2(x2)

g1(x1)

= c1,2

(
G1(x1),G2(x2)

)
g2(x2)
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g(x3|x1,x2) =
g(x2,x3|x1)

g(x2|x1)
=

c2,3|1
(

G(x2|x1),G(x3|x1)
)

g(x2|x1)g(x3|x1)

g(x2|x1)

=C2,3

(
G(x2|x1),G(x3|x1)

)
g(x3|x1)

= c2,3|1
(

G(x2|x1),G(x3|x1)
)

c1,3

(
G1(x1),G3(x3)

)
g3(x3)

where c1,2,c1,3, and c2,3|1 are the pair-copulas, and C2,3|1 is independent of the con-
ditional variable X1 in facilitating the inference (see Aas et al., [23] and Hobaek

et al., [11]). As for d-dimensional, there are
d(d− 1)

2
vine arranges for the pair-

copulas and d−1 vine arranges for the trees. If these are considered as three dimen-
sional, then, we have 3 pair-copulas and 2 trees. In the case of the C-vines, the first
root node is designed by applying a bivariate copula for each pair. Conditioned on
this variable, pair-wise dependencies with respect to the second variable are mod-
eled, which is the second root node. Moreover, the trees of the C-vines also have
a patterned star structure (see Figure 1, left panel). A root node is chosen in each
tree, and all the pair-wise dependencies with respect to this node are modeled con-
ditioned on all the previous root nodes (see Brechmann et.al, [5]). Then the general
expression of the C-vines can be given as follows:

g(x) =
d

∏
k=1

gx(xk)×
d−1

∏
i=1

d−i

∏
j=1

ci,i+ j|1:(i−1)

(
G(xi|x1, ...,xi−1),G(xi+ j|x1, ...,xi−1)|θi,i+J|1:(i−1)

)

where gk,k = 1, ,d show the marginal densities and θi,i+ j|1:(i−1) is the parameter(s)
of the bivariate copula densities (ci,i+ j|1:(i−1)) (see Aas et al., [23] and Hobaek et
al., [11]).

Identical to this, the D-vines are of regular vine distributions, but there exists no
node in any trees which is connected to more than two edges. It is similarly con-
structed by selecting a specific order of the variable. We assume these to be three
dimensional, in the first tree of this one (see Figure 1, right panel). The dependence
of the first and the second variables, of the second and the third, and so on, is mod-
elled using pair-copulas in the second tree as well, with conditional dependence of
the first and the third, given the second variable (the pair 13|2). Similarly, the general
expression of the D-vines is as follows:

g(x) =
d

∏
k=1

gx(xk)×
d−1

∏
i=1

d−i

∏
j=1

c j, j+i|( j+1):( j+i−1)

(
G(x j|x j+1, ...,x j+i−1),

G(x j+i|x j+1, ...,x j+i−1)|θ j, j+1|( j=1):( j+i−1)

)

(b) Estimation of C-vine or D-vine Copulas and Evaluation of Vine Copula
Models

From our analysis, we learned somewhat about C-vine and D-vine that each tree
node includes bivariate copula pairs. In this part, we progressed toward building a
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structure and selecting tools for the bivariate exploratory analysis. Upon filtering
copula, it can be seen that there are 31 families, including the Archimedean and
elliptical copulas. Each family has different properties; for example, student-t copula
is needed for the degree of freedom or some families have lower and upper tail
coefficients.

To analyze the bivariate copula selection, first we have to provide the structure of
the data. There are various alternatives from which structure can be selected. Many
papers applied matrix of the empirical Kendalls tau to select a variable which will
become the first node. However, other alternatives can also be used, such as man-
ual selection, using expert knowledge, and observing that which is implied by the
structure of the data, for deciding the structure of the C-vine and the D-vine. After
we successfully selected some variables to become the first node, pair-copula fam-
ilies were selected for each pair of the variables. There are two methods to analyze
the bivariate copula: graphical and analytical tools. In our paper, we used analytical
tools to investigate the bivariate copula. Each copula selection was conducted tree
by tree, from the first tree, the second tree, and so on, which depended on the speci-
fication of the previous tree according to the h-function, as follows (see Brechmann
et al. [5]):

h(x,v,θ ) = G(x,v) =
∂Cx.v(x,v,θ )

∂v

For BB1, the h-function is

h =
(

1+((x−θ −1)δ +(v−θ −1)δ )
1
δ

)− 1
θ −1×

(
(x−θ −1)δ +(v−θ −1)δ

) 1
δ −1

(v−θ −1)δ−1v−θ−1

where θ is a parameter of the bivariate copula of the joint distribution function of x
and v. v always corresponds to the conditioning variable and δ is another parameter
of the BB1 copula family. h−(u,v,θ ) is the inverse of the h-function. Thereafter, the
preliminary C-vine and D-vine copula models are fitted by proceeding repeatedly
tree by tree. In addition, we applied the maximum likelihood estimation (MLE) to
estimate the parameter of each pair-copula. Subsequently, as these approximates
provide good fits, it is then naturally interesting to maximize the log-likelihood of
the vine copula specification for the observation u = (uk, j),k = 1, ,N, j = 1, ,d.

The canonical vine (C-vine) copula log-likelihood with parameter set θCV is
given by

lCV (θCV |u) =
N

∑
k=1

d−1

∑
i=1

d− j

∑
j=1

log[ci,i+ j|1:(i−1)(Gi|1:(i−1),Gi+ j|1:(i−1)|θi,i+ j|1:(i−1))]

where G j|i1:im := G(uk, j|uk,i1, ...,uk,im) and the marginal distribution are uniform, at
gk(uk) = 1[0,1](uk). Note that G j|i1:im depends on the parameters of the pair-copula
terms in tree 1 up to tree im.

The drawable vine (D-vine) copula log-likelihood with parameter set θDV is given
by
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lDV (θDV |u) =
N

∑
k=1

d−1

∑
i=1

d− j

∑
j=1

log[c j, j+i|( j+1):( j+i−1) (Gj|( j+1):( j+i−1) ,Gj+i|( j+1):( j+i−1)|θ j, j+1|( j+1):( j+i−1))]

(c) Evaluation of Vine Copula Models

First, we have to choose an appropriate bivariate copula family for the given ob-
servations by using the analytical tools; we have to then obtain copula families as
well as the parameters of each pair of the C-vine and the D-vine. Next, we have to
calculate the log-likelihood of these models for comparison with the log-likelihood
of the joint distribution parameter which is obtained from the previous step. The
parameter of log-likelihood has to be quite close to the parameter of log-likelihood
of the joint distribution (see Brechmann and Schepsmeier, [4]).

Let u = (u
′
1, ...,u

′
N) be the d-dimensional observation with ui = (ui,1, ...,ui,d)

′ ∈
[0,1]d, i = 1, ...,N.

The log-likelihood of C-vine copula is given by

loglik = lCVine(θ |u) =
N

∑
i=1

d−1

∑
j=1

d− j

∑
k=1

ln[c j, j+k|1,..., j−1]

where c j, j+k|1,..., j−1 := c j, j+k|1:( j−1)(G(ui, j|ui,1, ...,ui, j−1),
G(ui, j+k, ...,ui, j−1)|θ j, j+k|1,..., j−1) shows pair-copulas with the parameter
θ j, j+k|1,..., j−1.

Identically, the log-likelihood of the d-dimensional D-vine copula is

loglik = lDVine(θ |u) =
N

∑
i=1

d−1

∑
j=1

d− j

∑
k=1

ln[ck,k+ j|k+1,...,k+ j−1]

again with pair-copula densities shown by

ck,k+ j|k+1,...,k+ j−1 := ck,k+ j|k+1,...,k+ j+1(G(ui,k|ui,k+1, ...,ui,k+ j−1),
G(ui,k+ j|ui,k+1, ...,ui,k+ j−1)|θk,k+ j|k+1,...,k+ j−1).

Normally, Akaikes information criterion (AIC) and Bayesian information crite-
rion (BIC) are used to decide whether these models are appropriate or not. For the
C-vine and D-vine, there is another function that is used to compare these models
to identify the better-fitting vine copula model for the data set. We perform a Vuong
test and a Clarke test to compare the two models.

(d) Vuong Test

This test was introduced by Vuong [31] and it can be used for comparing non-
nested models. Let d1 and d2 be the two compared vines which are compared in
terms of their densities and with the estimated parameters set as θ̂1 and θ̂2. The log

difference of their point-wise likelihood ri := log[ c1(ui|θ̂1)

c2(ui|θ̂2)
] for observations ui =∈

[0,1], i = 1, ...,N.
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statistic := v =
i
n ∑

N
i=1 ri√

∑N
i=1(ri− r̄)2

where v is asymptotically standard normal and the null-hypothesis

H0 : E[ri] = 0∀i = 1, ...,N

Then, we would prefer vine model 1 to vine model 2 at level α if

v >Φ−1(1− α
2
),

where Φ−1 shows the inverse of the standard normal distribution function. If v <
−Φ−1(1− α

2 ), then we would select model 2. If |v| ≤ −Φ−1(1− α
2 ), no decision

on which model to choose is possible.

(e) Clarke Test

Another option is Clarke test which was proposed by Clarke [32]. The null hypoth-
esis of the statistical indistinguishability of the two models is

H0 = P(ri > 0) = 0.5∀i = 1, ...,N

Then, under statistical equivalence of the two models, the log-likelihood ratios of
the single observations are uniformly distributed around 0, and if it is expected that
50% of the log-likelihood ratios are greater than 0, then the statistic is

statistic :=C =
N

∑
i=1

1(0,∞)(ri),

If A is not significantly different from the expected value Np = N
2 , then it is an

indication that model 1 can be comprehended as statistically equivalent to model 2.

(f) Time Varying in the Conditional Copula

In the previous part, we discussed static copula in a clear manner. In this part, we
will deliberate on time-varying copula that Patton [11] proposed in his study, pa-
rameterizing time variation in the conditional copula. He stated that the function
form of the copula remains fixed over the sample whereas the parameters vary ac-
cording to some evolutional equation. Moreover, it is very difficult to know what
factors might influence them to change. Patton [11] applied the Gaussian and SJC
copulas to estimate and investigate the upper and lower tail dependence parameters
following something akin to a restricted ARMA(p,q) process. According to Pattons
paper, it was found that it was an autoregressive term and a forcing variable. In our
paper, we introduced specifically the time-varying Gaussian copula, the evolution
equation, as
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ρt = Ã
(
ωp +βN1 ·ρt−1 + ...+βN p ·ρt−p +αN · 1

q

q

∑
j=1

Φ−1(ut− j) ·Φ−1(vt− j)
)

where Ã(x) is the logistic transformation which is determined as note: Ã(x) ≡ (1−
e−x)(1+ e−x)−1,ρt is the correlation coefficient and ρt ∈ (−1,1) at all times.

3.2 Data

We applied three time series to estimate the vine copulas; these were the monthly
USD/THB exchange rates, the import figures, as well as the export data of Thailand,
starting August 1997 to December 2012. We made a total of 185 observations. The
total data were taken from the Bank of Thailand. To reduce the difficulty of data
being non-stationary, each monthly data was converted into log-difference, and then
calculated as

Yt = 100 ∗ (log(gt)− log(gt−1))

where gt stands for the USD/THB exchange rates, the import figures, or the export
figures of Thailand at the period of t, respectively.

4 Empirical Results

Before the log-returns were used, they were filtered by the ARMA(1,1)-
GARCH(1,1) model via skew-t distributions with the maximum likelihood esti-
mation (MLE). Afterward, we had to test the goodness of fit of each univariate
distribution using the Kolmogorov-Smirnov (K-S) test to ascertain whether it was
appropriate or not. Moreover, we used Ljung-Box tests to indicate the independence
of the standardized residuals. When we tested all process already, standard residuals
of each univariate distribution are transformed to approximately i.i.d. uniform data
on [0,1]. Czado [10] state, across margins these unit interval variables are depen-
dent and we model their dependence structure using the pair-copula constructions
base vine copulas that copula-GARCH have to qualify namely, standard residuals
are i.i.d. with E(ηt) = 0 and Var(ηt) = 1

4.1 Specifications of C-vine and D-vine Copula Models

Next, we had to build pair-constructions that are marginally uniform. In the last sec-
tion, we learned that there are many ways to build pair-constructions, for instance,
manually, by using expert knowledge, as implied by structure, etc. Normally, it can
be observed that the empirical Kendalls tau matrix could be applied for structure
building. But in our analysis, we opted to build pair-constructions by choosing the
expert knowledge method based on the economics theory because our data was not
of the same type that is, some of our data were exchange rates, some were eco-
nomic growth variables, and so on and so forth. According to the economics theory,
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Fig. 1 Pair-constructions of the C-vine (left panel) and the D-vine (right panel) with edge
indices

imports and exports depend on the variations in the exchange rate. For the C-vine
and the D-vine, the building structure could be drawn as follows:

From Figure 1, in the C-vine model, the USD/THB exchange rate was selected
to be the first node of the first tree. This exchange rate determined the exports and
the imports in the second root node and the third root node, respectively. Similarly,
in the D-vine model, the order of the variable of the first tree had to be chosen after
taking the first node of the C-vine as the USD/THB exchange rate, the second and
third variables being imports and exports, respectively. Moreover, in the second tree
of the D-vine, there is conditional dependence of the USD/THB exchange rate and
exports given the imports.

4.2 Estimation of C-vine and D-vine Copula Models

After we built the structure successfully, the next step in the process was the es-
timation of the C-vine and the D-vine copula models which are ordinarily fitted
sequentially by proceeding iteratively tree by tree. All the parameters of the pair-
copula were estimated by the maximum likelihood estimation (MLE) method or by
inversion of Kendall’s τ . Selection results for the C-vine and the D-vine are sum-
marized in Table 1 and Table 2, respectively. The corresponding C-vine and D-vine
tree representations are given in Figure 2. Subsequently, we employed the following
abbreviations: A1 for USD/THB exchange rate, A2 for the import figures, and A3 for
the export figures of Thailand.

Table 1 shows the results of the pair-constructions of the canonical vine, or the
C-vine. We found that Gaussian, Rotated Joe, and BB1 are appropriate bivariate
copula families from a set of possible copula families for A1A2,A1A3, and A2A3|A1,
respectively. In addition, each pair-copula construction proposed appropriate copula
families, and both the parameters estimated by the MLE method concluded that θ
is the parameter of the bivariate copula and the standard error; also, the Akaike’s
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Table 1 Results of Pair-constructions of Canonical Vine, or C-vine

Variable Copula θ δ Pair Pair Kendall’s
Family AIC BIC τ

A1A2 Gaussian 0.1267 0.0000 -0.9522 2.2682 0.0809
(0.0722) (0.0000)

A1A3 Rotated Joe -0.9045 0.0000 -1.0737 2.1466 -0.0578
(90) (0.0716) (0.0000)

A2A3|A1 BB1 0.2585 1.1577 -25.1640 -18.7233 0.2350
(0.1331) (0.0817)

Log-likelihood 17.5955
CDVineLogLik 17.5950

Source: Computation.
Note: the element in the brackets correspond to the standard errors.

information criterion (AIC) and the Bayesian information criterion (BIC) statistics
of the pair-constructions and Kendall’s τ statistic for this model are given in this
table. For example, the third row indicates that BB1 is the appropriate-fitting cop-
ula model for A2A3|A1. There exists two parameters of this, pair-wise, which are
0.2585 and 1.1577, and the AIC and BIC statistics of this one are 25.1640 and -
18.7233, respectively. The Kendall’s τ is equal to 0.2350. Moreover, an extremely
important result is that the sequential log-likelihood and the log-likelihood of joint
maximization are 17.5950 and 17.5955, respectively, which means that the C-vine
was appropriate fitting because the sequential log-likelihood was quite close to the
one obtained by joint maximization.

Identically, from the results of the drawable vine, or the D-vine, in Table 2, each
pair-copula construction also indicated suitable copula families, the parameters of
the pair-wise, the AIC and BIC statistics, and Kendall’s statistic. This shows that
Gaussian is an appropriate choice for A1A2 and A2A3 while Rotate Joe is the appro-
priate copula family for A1A3|A2. Like in the C-vine, we found that the sequential
log-likelihood was quite close to the one obtained by joint maximization. Thus, both
the log-likelihoods establish that the D-vine model is an appropriate fit, just like the
C-vine model.

Normally, two models are compared to find out which model would fit. We usu-
ally employ the Akaike’s information criterion (AIC) and the Bayesian information
criterion (BIC) to justify that one of the two models is better. If the AIC and BIC
statistics of any model is the least, it means that that model which has the least AIC
and BIC would be the suitable fit. Table 3 gives the statistics of the AIC and the
BIC of the C-vine and the D-vine. From this table, it can be seen that the AIC
and BIC statistics of the C-vine are -27.1900 and -14.3085, respectively. The AIC
and BIC statistics of the D-vine are -27.3849 and -17.7239, respectively. It was
found that the statistic values of the D-vine are less than those of the C-vine; this
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Table 2 Results of Pair-constructions of Drawable vine, or D-vine

Variable Copula θ δ Pair Pair Kendall’s
Family AIC BIC τ

A1A2 Gaussian 0.1350 0.0000 -0.9522 2.2682 0.0809
(0.0722) (0.0000)

A2A3 Gaussian 0.3524 0.0000 -23.7302 -20.5098 0.2360
(0.0603) (0.0000)

A1A3|A2 Rotated -0.9389 0.00000 -2.7025 0.5178 -0.0730
Joe (90) (0.0761) (0.0000)

Log-likelihood 16.7109
CDVineLogLik 16.6925

Source: Computation.
Note: the element in the brackets correspond to the standard errors.

Table 3 Akaikes Information Criterion (AIC) and Bayesian Information Criterion (BIC)
Statistics of C-vine and D-vine

Statistic C-vine D-vine

Akaike’s Information Criterion (AIC) statistic -27.1900 -27.3849
Bayesian Information Criterion (BIC) statistic -14.3085 -17.7239

Source: Computation.

Table 4 Results of Comparison of Two Non-nested Parametric Models Using Vuong and
Clarke Tests

Test tatistic statistic statistic p-value p-value p-value
Akaike Schwarz Akaike Schwarz

Vuong Test 0.5281 -0.0688 -1.0300 0.5975 0.9451 0.3030
Clarke Test 106 96 80 0.0564 0.6592 0.0774

Source: Computation.

means that the D-vine is the preferred model, and so, the D-vine copula is the best-
fitting model. In addition to applying the AIC and BIC statistics to compare the
two models for multivariate uniform, Vuong and Clarke tests can also be used to
compare the two models.

Table 4 shows the results of the Vuong and Clarke tests. According to this table,
the two vines specification cannot be distinguished statistically at α = 0.05. We
used both the tests to investigate whether the two vines are distinguishable or not.
If the p-values of the Vuong and Clarke tests are greater than 0.05, it means that
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we cannot distinguish between these two vines statistically. From the above table,
it is clear that the p-values of the Vuong and Clarke tests are 0.5975 and 0.0564,
respectively, which are larger than 0.05, thus confirming that these vines are not
distinguishable.

4.3 Estimation Using Time-Varying Gaussian Copula of All Pair
Constructions

In this estimation, we focused on time-varying copula, following the findings of Pat-
ton [11]. He presented time-varying copula which contained time-varying Gaussian
copula, time-varying rotated Gumbel copula, and time-varying SJC copula. In our
study, we used time-varying Gaussian copula to estimate all the pair constructions
of both the vines because the various static pair constructions used by us were ef-
ficient fitted by the Gaussian copula. From the estimated results given in Table 5,
we can safely assume that our main pair constructions of the time-varying Gaussian
copula are appropriate and fit better than the static copula because the AIC and BIC
statistics of most pairs in the time-varying Gaussian copula are smaller than those in
the static copula, except A1A3|A2. However, it needs to be mentioned that this study
still provided conflicting results.

Table 5 Estimated Results of Time-varying Gaussian Copula

Pairs parameter ω α β AIC BIC

A1A2 ρ 0.4893 -0.7022 -1.2682 -3.4557 -3.4383
Std error 0.0145 0.0826 0.0607

A1A3 ρ -0.1617 -1.4383 -2.0713 -3.6946 -3.6772
Std error 0.0068 0.0529 0.0048

A2A3|A1 ρ 1.5810 -0.0183 0.0377 -58.9220 -58.9202
Std error 0.0588 0.0150 0.0596

A2A3 ρ 0.5554 -0.4590 1.1014 -30.5995 -30.5821
Std error 0.0262 0.0225 0.0509

A1A3|A2 ρ 0.1837 -1.4275 -1.5259 -1.5350 -1.5176
Std error 0.0182 0.0792 0.0294

Source: Computation.

5 Conclusion

In this paper, we discussed an application in multivariate copulas, including the
use of the C-vine and D-vine copulas based on pair-copula constructions. Before
the application of each pair-copula construction for the multivariate copula, we ap-
plied ARMA(1,1)-GARCH(1,1) in order to eliminate the time dependence in each
of the margins of this time series. In addition, the Ljung-Box test was adopted to
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verify whether all marginal distributions are independent and identically distributed
(i.i.d) or not. In addition to this, we effected appropriate uniform margins in the
standardized residual transforming [0,1]. After that, we built the C-vine and D-vine
structures. For the C-vine, there exists Gaussian, Rotated Joe, and BB1 as suitable
bivariate copula families forA1A2,A1A3, and A2A3|A1, respectively. As for the D-
vine, Gaussian is an appropriate choice for A1A2 and A2A3, while Rotated Joe is
an appropriate copula family for A1A3|A2. After both the vine copulas were esti-
mated, many parameters were successfully obtained. We needed to approximate the
AIC and BIC statistics in order to compare between the C-vine and D-vine models.
Moreover, it was found that the sequential log-likelihood of both the models is quite
close to the one obtained through joint maximization; this means that both the vine
models are appropriate fit models.

However, to confirm that the two models are not distinguishable, we applied the
Vuong and Clarke test to verify their suitability for a non-nested model. From the
results, it was evident that the C-vine and the D-vine were not corroboratively dis-
tinguishable. In addition, it was found that it could be safely assumed that our pair
constructions of the time-varying Gaussian copula were more appropriate and better
fitting than those of the static copula. This is because the values of the AIC and BIC
statistics of the time-varying Gaussian copula were less than those of the static cop-
ula. In future studies, we plan to apply a regular (R-vine) for better interpretation.
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A Vine Copula Approach for Analyzing
Financial Risk and Co-movement of the
Indonesian, Philippine and Thailand Stock
Markets

Songsak Sriboonchitta, Jianxu Liu, Vladik Kreinovich, and Hung T. Nguyen

Abstract. This paper aims at analyzing the financial risk and co-movement of stock
markets in three countries: Indonesia, Philippine and Thailand. It consists of ana-
lyzing the conditional volatility and test the leverage effect in the stock markets of
the three countries. To capture the pairwise and conditional dependence between the
variables, we use the method of vine copulas. In addition, we illustrate the compu-
tations of the value at risk and the expected shortfall using Monte Carlo simulation
with copula based GJR-GARCH model. The empirical evidence shows that all the
leverage effects add much to the capacity for explanation of the three stock returns,
and that the D-vine structure is more appropriate than the C-vine one for describ-
ing the dependence of the three stock markets. In addition, the value at risk and
ES provide the evidence to confirm that the portfolio may avoid risk in significant
measure.

1 Introduction

Southeast Asia has emerged as the new Asian tiger at a time when China’s economic
growth is on the wane. Even if the global economy takes a downturn, as before, the
IMF has constantly forecast that the economic growth will be about 6.1% in 2013
for Indonesia, Malaysia, the Philippines, Thailand, and Vietnam.
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Regardless of economic downturn or economic prosperity, the Southeast Asian
countries maintain consistency for instance, the GDPs of Thailand, the Philip-
pines, and Indonesia decreased by 40.0%, 83.4%, and 37.3%, respectively, during
the Southeast Asian financial crisis. Even though in recent years, the growth in the
Southeast Asian countries has been impressive for example, the GDPs of Thailand,
the Philippines, and Indonesia was on a year-on-year increase of 5.9%, 6.6%, and
6.1%, respectively, in 2012. Southeast Asias booming economy has also led to the
prosperity of the stock market. In 2012, the Philippine benchmark stock index rose
29.8%, Indonesias stock market rose 12.6%, and Thailands stock market was up
30%. In addition, the Thailand SET Index earnings per share forecast growth of up
to 24%, and return on equity of up to 19.2%, higher than the 16.9% of India and
16.8% of China. Thus, the Southeast Asian countries have been growing according
to, or above, expectations; in particular, Thailand, Indonesia, and the Philippines
have been very strong over the past year, and they displayed a wave of strong co-
movement and interdependence. Thus, it is evident that the study of the Southeast
Asian stock market is of practical significance for investors, businesses, and govern-
ments.

In addition, a detailed survey of the ASEAN stock market is relevant because of
the increased economic cooperation in accordance with the ASEAN agreement, the
successful financial reforms, the current booming economy, and the distinguished
structure of the emerging stock markets. Moreover, there is a dearth of research ma-
terial and literature that focus on their dependence structure. A noteworthy exception
to this is the study done by Sharma and Wongbangpo [1] who analyze the degree of
the long-term and short-term co-movements in the stock markets of the five ASEAN
countries, Indonesia, Malaysia, Singapore, Thailand, and the Philippines. Their re-
sults revealed that there exists a long-run relationship among the stock markets of
Indonesia, Malaysia, Singapore, and Thailand, but the Philippine market does not
share this relationship. Of course, in recent years, there has emerged some litera-
ture that focuses on the dependence patterns of the Asian stock market, as well. For
example, Ning and Wirjanto [2] used the copula approach to examine the extreme
returnvolume relationship in six countries, Taiwan, Singapore, Malaysia, Thailand,
Indonesia, and Korea. The study applied Clayton, survival Clayton, Frank and
Gumbel copulas to fit asymmetric returnvolume dependence at extremes for these
markets. Lim et al. [3] applied a battery of nonlinearity tests to re-examine the
weak-form efficiency of 10 emerging Asian stock markets that include China, In-
dia, Indonesia, South Korea, Malaysia, Pakistan, the Philippines, Sri Lanka, Tai-
wan, and Thailand. Sharma [4] studied the correlation between emerging Asian
markets and the United States. The study found that the linear positive correlation
between Malaysia and the Philippines reaches up to 0.976. Although there are few
researchers who studied the co-movement or correlations between ASEAN coun-
tries, they focus on pair dependences (see Sharma [4], Ning and Wirjanto [2]) and
the degree of the long-term and short-term co-movement (see Sharma and Wong-
bangpo [1]). Or more accurately, there are not studies of multivariate dependence
structure and tail dependence in ASEAN stock market so far to date.
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Since Bedford and Cooke [6] [7] introduced pair-copula construction (PCC)
of mutivariate distribution, vine copulas have been widely developed and used in
econometrics and finance. Especially, Aas et al. [12] developed standard maxi-
mum likelihood (ML) estimation for Canonical vine (C-vine) and Drawable vine
(D-vine) copulas, where the challenge was to provide a good starting point for the
required high dimensional optimization. Compared vine copulas with standard mul-
tivariate copulas, standard multivariate copulas, such as multivariate normal and
multivariate-t copulas, become inflexible in high dimensions because of never al-
lowing for different dependency structures between pairs of variables. On the con-
trast, vine approach is more flexible, as we can select bivariate copulas from a wide
range of (parametric) families. Additionally, copula approach may capture the up-
per and lower tail dependence, which is more precise to calculate value at risk (VaR)
and expected shortfall (ES).

This paper applies the vine copula approach to study the stock return co-
movement and tail dependence, especially to shed new light on the dependence
between three countries: Indonesia, Philippine and Thailand. Moreover, on the basis
of this approach, we investigate the value at risk (VaR) and the expected shortfalls
(ES). The main contributions of the paper are as follows: (1) This paper describes
the conditional volatility and the leverage effect in Indonesia, the Philippines, and
Thailand; (2) The study makes use of vine copulas to analyze the co-movement and
conditional dependences, and tail dependences; (3) The paper combines vine copula
with the Monte Carlo simulation method, thus enabling the estimation of value at
risk and expected shortfall.

The paper is organized as follows: Section 2 describes the methodology used
in the investigation. Section 3 discusses the empirical results. Section 4 provides
the results of economic application for risk measure. Lastly, Section 5 offers
conclusions.

2 Methodology

Copulas are functions that join multivariate marginal distribution functions to form
joint distribution functions. If X = (X1,X2, . . . ,Xn) is a random vector with joint
distribution function H and marginal distributions F1,F2, . . . ,Fn, then there exists a
copula C, such that

H(x1,x2, . . . ,xn) =C(F(x1),F(x2), . . . ,F(xn)) (1)

In the light of formula (1), the copula function can be expressed as:

C(u1,u2, . . . ,un) = H(F−1(u1),F
−1(u2), . . . ,F

−1(un)) (2)

So, we need to find the appropriate marginal distributions for the copula
model. Taking into consideration the characteristics of stock returns, which
are generally non-normal, volatility clustering, and asymmetric, we employ the
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Glosten-Jagannathan-Runkle (GJR) model with the skewed student-t and skewed
generalized error distribution (SGED) to capture the time-varying volatility and
leverage effect, and to fit the marginal distributions for the copula model.

2.1 A GJR Model for Marginal Distributions

Glosten, Jagannathan, and Runkle [14] extended the Generalized Auto-Regressive
Conditional Heteroskedasticity (GARCH) model. Subsequently, it was named GJR-
GARCH model; it includes leverage terms for modeling asymmetric volatility clus-
tering. The form of the ARMA (P, Q)-GJR (K, L) model can be expressed as

rt = c+
p

∑
i=1

φirt−i +
q

∑
i=1

ψiεt−i + εi (3)

εt = htηt (4)

h2
t = ω+

k

∑
i=1

αiε2
t−i +

k

∑
i=1

γiI[εt−i < 0]ε2
t−i +

l

∑
i=1

βih
2
t−i (5)

where ∑p
i=1 φi < 1,ω > 0,αi >= 0,βi >= 0, αi + γi >= 0, and ∑k

i=1αi +∑l
i=1βi +

1
2 ∑

k
i=1 γi < 1. The formulas (3) and (5) are called mean equation and variance equa-

tion, respectively; the formula (4) describes the residuals εt is consist of standard
variance ht and standardized residuals ηt ; the leverage coefficient γ j is applied to
negative standardized residuals, giving negative changes additional weight. In addi-
tion, the standardized residuals are assumed to be the skewed student-t or skewed
generalized error distribution in this study, and the cumulative distributions of stan-
dardized residuals are formed to plug into copula model.

2.2 Vine Copulas

Regarding vine copulas, it is worth taking a moment to understand the develop-
ment process. Joe and Hu [5] gave the first pair-copula construction (PCC) of a
multivariate copula, the construction of which is dependent on distribution func-
tions. Bedford and Cooke [6] [7]expressed these constructions in terms of densi-
ties, and organized these constructions in a graphical way involving a sequence of
nested trees, which are called regular vines. They also proposed two subclasses of
the PCC: we call them C-vine and D-vine copulas. Furthermore, C-vine and D-vine
copulas have been made use of in analyzing the conditional dependence for finance
asset return, as they are more flexible than some multivariate copulas. For example,
multivariate normal copula does not have tail dependence; multivariate t-copula has
only a single degree of freedom parameter and symmetric tail dependence, while
the nested Archimedian copulas and Hierarchical Archimedian copulas require ad-
ditional parameter restrictions and thus result in reduced flexibility for modeling
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dependence structures (see Joe [15]; Savu and Trede [16]; Czado [17]). Various
studies demonstrate the properties, classifications, structures, and merits of vine
copulas (Nikoloulopoulos et al. [8]; Kurowicka and Cooke [9]; Joe et al. [10];
Joe [11]; Aas et al. [12]).

Compared to the above-mentioned multivariate copulas, the vine copulas are
more flexible in high dimensions because vine copulas allow for different depen-
dency structures between the pairs of variables. C-vine and D-vine copulas are sub-
classes of the vine copula. They possess all the characteristics of the vine copula,
and find applications far and wide. Let us consider the three-dimensional structures
of the C-vine and D-vine copulas, the trivariate distribution, and the density func-
tion, which can be expressed as

F123(x1,x2,x3) =
∫ x1

−∞
C23|1(F2|1(x2|z),F3|1(x3|1))dF1(z) (6)

f123(x1,x2,x3) = c12(F1,F2)× c13(F1,F3)× c23|1(F2|1,F3|1))×
3

∏
i=1

fi(xi) (7)

and
F123(x1,x2,x3) =

∫ x2

−∞
C13|2(F1|2(x1|z),F3|2(x3|z))dF2(z) (8)

f123(x1,x2,x3) = c12(F1,F2))× c23(F2,F3)× c13|2(F1|2,F3|2))×
3

∏
i=1

fi(xi) (9)

respectively. The formulas (6) and (7) reflect the structure of the three-dimensional
C-vine copula, and the formulas (8) and (9) reflect that of the D-vine copula. In
formulas (6) and (7), C23|1(·, ·) and C13|2(·, ·) are the dependency structure of the
bivariate conditional distribution, while ci j(·, ·) is a bivariate copula density in for-
mulas (7) and (9). The marginal conditional distribution in the C-vine and D-vine is
in the form F(rt | υ), which can be written as

F(rt | υ) =
∂Cr,υ j |υ− j

(F(r | υ− j),F(υ j | υ− j))

∂F(υ j | υ− j)
(10)

where Cr,υ j |υ− j
is the dependency structure of the bivariate conditional distribution

of r and υ j conditioned on υ− j, and the vector υ− j is the vector υ excluding the
component υ j (see Aas et al. [12]). For a univariate υ , we use the function h(r,υ ;θ )
to represent the conditional distribution function when r and υ are uniform, i.e.
f (r) = f (υ) = 1, F(r) = r and F(υ) = υ . This special marginal conditional distri-
bution is given by

h(r,υ ;θ ) = F(r|υ) = ∂Cr,υ(r,υ)
∂υ

(11)

where θ is the parameter set of Cr,v. We employ different methods to order the
sequences of variables in the C-vine and D-vine models. For C-vine, we calculate
the sum of empirical Kendall’s tau Si

τ = ∑n
j=1,i�= j τi, j for each variable i, and select
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the maximum one as the first variable. After that, we record the remainder of the
variables and repeat the process of calculating the sum of Kendall’s tau, thus finding
out the second and third variables. For example, there are three variables in our
study. So,S1

τ = τ12+τ13, S2
τ = τ21+τ23 and S3

τ = τ31+τ32, if S2
τ is the biggest value,

then the order should be 2, 1, 3 or 2, 3, 1. For D-vine, we determine the order that
satisfies the maximization of the sum of empirical Kendall’s tau Sτ = ∑n−1

i=1 τi,i+1,
e.g., the Sτ of the order 2, 1, 3 is the biggest, then the preferable order should be 2,
1, 3 or 3, 1, 2.

2.3 Parameter Estimation Method

Generally, we use the two-stage estimation method that is called inference func-
tion margins (IFM) to estimate our model. This point means that we first estimate
GJR-GARCH model thereby getting the marginal distributions, and then plug the
marginal distributions into copula model for estimated parameters of vine copulas.
Joe [15] [18] showed that this estimator is close to and asymptotically efficient to the
maximum likelihood estimator under some regularity conditions. Hence, the two-
stage estimation method can efficiently compute the estimator without losing any
real information. In the process of parameter estimation of vine copulas, we turn
to sequential maximum likelihood estimation method for obtaining initial values of
vine copulas, and then use maximum likelihood estimation to estimate the parame-
ters of C- and D-vine copulas. Aas et al. [12], Czado et al. [13] introduced detailed
calculate process. A brief process of sequential maximum likelihood estimation can
be described as follows.

First, using maximum likelihood estimation to estimate parameters of each non-
conditional copula; second, computing observations by using conditional distribu-
tion function (formula (11)) and known non-conditional copulas in the first step;
third, we estimate the parameters of the copulas conditional on one variable; fourth,
computing observations for copulas given two variables by using formula (10); at
last, we estimate copulas given two variables using observations from the fourth
step. Through these five steps we can get initial values of 4 dimensional vine copu-
las. If there are more 4 dimensional variables, observations may be gotten by using
formula (10) again. We only use the first three steps for getting starting values of
each copula in our study.

In this paper, we use Gaussian copula, T copula, Clayton copula, Frank cop-
ula, Gumbel copula, Joe copula, BB1 copula, BB6 copula, BB7 copula, BB8 cop-
ula, and the rotate copulas to analyze the co-movement. Further details regarding
this, which include their properties and characteristics, are discussed in Liu and
Sriboonchitta [19], Sriboonchitta et al. [20] and Brechmann and Schepsmeier [21].
We should note is that this study applies Akaike information criterion (AIC) and
Bayesian information criterion (BIC) to select a fitting pair-copula family, where
both information criteria correspond to the results of sequential maximum likeli-
hood estimation.
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3 Empirical Results

We investigate, in this, study, the interactions between three major stock market
indices, namely, the Philippine SE (Composite Index in the Philippines), Jakarta
SE (Composite Index in Indonesia), and SET (SET Index in Thailand). Our sample
covers the period from January 2, 2008, to April 30, 2013. The index returns are
calculated by using the differences between the logarithms of the close prices of
each index.

The data description and statistics for three index returns are detailed in Table 1.
Obviously, the three series are very similar. They all have heavy tails, are skewed to
the left, especially the Philippines, and have kurtosis greater than three. In addition,
they do not follow normal distribution. So we assume that the margins are skewed
student-t and skewed GED, which are appropriate.

Table 1 Data Description and Statistics on Daily Returns

Indonesia Philippines Thailand

Mean 0.0005 0.0006 0.0005
Median 0.0013 0.0008 0.0013
Maximum 0.1032 0.0706 0.0861
Minimum -0.1095 -0.1309 -0.1109
Std. Dev. 0.0169 0.0147 0.0153
Skewness -0.5488 -0.9897 -0.4079
Kurtosis 11.0660 11.6427 9.2490
Jarque-Bera 3249 3855 1947
Probability 0.0000 0.0000 0.0000

Table 2 shows the results of the marginal assumption of the skewed student-t dis-
tribution performed with the GJR-GARCH model for the three stock returns. First, it
can be concluded that all the leverage effects add much to the capacity for explana-
tion of the three stock returns, since each leverage effect parameter γ is significant.
Second, this paper calculates the AIC and BIC when the margin is the skewed GED,
and the AIC and BIC are -5.9702 and -5.9357, -5.8278 and -5.8020, -5.8839 and -
5.8537, respectively, for the Philippines, Indonesia, and Thailand. When compared
with the skewed student-t distributions assumption, the AIC and BIC are smaller,
as shown in Table 2. Therefore, the GJR-GARCH model with the skewed student-t
marginal distribution is the better performing in terms of AIC and BIC.

There exists a precondition for using any copula, which is that the marginal
distribution must be uniform (0, 1); if it is not, the wrongly specified model for
the marginal distribution may cause incorrect fit copulas. We use Box-Ljung and
Kolmogorov-Smirnov (KS) tests to test the validity of the models, and the test re-
sults obtained are given in Table 3. None of the KS tests rejects the null hypothesis,
and at 5% level, none of the Box-Ljung tests rejects the null hypothesis. Therefore,
it can be clearly seen that all the series satisfy the condition of iid uniformity (0, 1).
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Table 2 Results of ARMA-GARCH Model

Indonesia Philippines Thailand

C 0.0007* — — — —
(0.0004)

Ar1 0.1122*** — — Ar1 0.0348
(0.0311) (0.0287)

ω 0.831e-05*** ω 0.7e-05** ω 0.7e-05**
(0.3e-06) (0.2e-05) (0.2e-05)

α 0.0601* α 0.0435* α 0.0475**
(0.0254) (0.0193) (0.0182)

β 0.8185*** β 0.8496*** β 0.8454***
(0.0341) (0.0283) (0.0304)

γ 0.1675*** γ 0.1847*** γ 0.1645***
(0.0472) (0.0529) (0.0482)

Skew 0.9433*** Skew 0.8509*** Skew 0.9018***
(0.0412) (0.0320) (0.0370)

ν 7.1698*** ν 5.0109*** ν 7.2489***
(1.3808) (0.7243) (1.4606)

LM-test 0.3958 LM-test 0.8162 LM-test 0.6271
LogL 3527.4720 LogL 3445.0980 LogL 3473.1870
AIC -5.9804 AIC -5.8438 AIC -5.8899
BIC -5.9459 BIC -5.8180 BIC -5.8597

Note: Signif. codes are as follows: 0 *** 0.001 ** 0.01 * 0.05 0.1. The numbers
in the parentheses are the standard deviations.

In the light of the maximum value of the empirical Kendall’s tau, the sequence
for the C-vine copula is Indonesia, the Philippines, and Thailand, and the sequence
for the D-vine copula is Thailand, Indonesia, and Philippines. Thus, we see that
C-vine and D-vine have the same structure, both of which calculate the dependence
between the Philippines and Thailand, conditional to Indonesia. Since there are only
three variables, it is easy to implement, and comprehensive analysis is possible to
study the dependences conditional to each variable. Therefore, we use C-vine to esti-
mate the dependence conditional to Indonesia under maximum empirical Kendall’s
tau, and for others, we make use of D-vine. Table 4 and Table 5 present the es-
timated parameters of the C-vine and D-vine copulas, respectively. According to
the minimum AIC and BIC principle, the optimal choices of the C-vine copula are
BB1, Survival BB1, and BB7 copula, in that order, while the same for the D-vine
copula are Survival BB1, BB1, and T copula when the selected in the order Indone-
sia, Thailand, and the Philippines; the other best choices of the D-vine copula are
survival BB1, BB1, and T copula. First and foremost, it is evident that the D-vine
structure for Thailand is more appropriate than the C-vine one because the sum val-
ues of the AIC and BIC are the smallest for D-vine. Second, all the market pairs
have significant co-movement and tail dependence especially so for the Indone-
sian and Thailand markets which possess the greatest dependence, which includes
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Table 3 KS Test for Uniform and Box-Ljung Test for Autocorrelation

KS Test
Statistic P value Hypothesis

u1,t 0.0167 0.8969 0 (acceptance)
u2,t 0.0239 0.5099 0 (acceptance)
u3,t 0.0330 0.1538 0 (acceptance)
Box-Ljung Test

Moments X-squared P-value
u1,t First moment 5.5303 0.3546

Second moment 7.2354 0.2037
Third moment 5.8187 0.3243
Fourth moment 5.8543 0.3207

u2,t First moment 10.5864 0.0602
Second moment 2.5125 0.7746
Third moment 8.7818 0.1181
Fourth moment 1.0282 0.9603

u3,t First moment 2.4138 0.7894
Second moment 9.4736 0.0916
Third moment 10.5063 0.0621
Fourth moment 9.1190 0.1044

Note: u1,t = Fskt(xphi,t), u2,t = Fskt(xindo,t), and u3,t = Fskt(xthai,t )

their upper tail (0.6013) and lower tail (0.3369), among these three country markets.
Third, the Kendall’s tau of CPT |I and CT,P are 0.1147 and 0.2709, and their upper
tail and lower tail dependence are 0.1234 and 0.0080, and 0.2035 and 0.1591, re-
spectively. So, if the Indonesian market is given as the condition, the Kendall’s tau
falls by 57.66%; the lower tail dependence almost becomes independent, while the
upper tail dependence decreases 39.36%. In addition, if we compare CI,T with CIT |P,
the dependence structure can be observed to undergo a change, when the Philippine
market is given as the condition. Moreover, the Philippine market has been seen to
have a more profound effect on the tail dependence of Indonesia and Thailand. Last,
when the Philippine market is given as the condition, the lower and upper tail depen-
dences between the Thailand and Indonesian markets are seen to become symmetric
and tiny. From the above-mentioned results, we can conclude that the information of
Indonesia stock market has the effective influence to the lower dependence between
Philippine and Thailand, which means the information make investors reduce the
probability of high loss simultaneously. On the contrast, the information of Philip-
pine stock market contributes to reduce the possibilities of high loss and profitability
at the same time. The information of Thailand plays the same role as Philippines.
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Table 4 Results of C-vine Copulas and Kendall’s tau

Copulas parameters standard
error

Lower and up-
per tail depen-
dence

Kendall’tau AIC BIC

BB1 (CI,P) 0.3164*** 0.0563 0.1574 0.2712 -245.1503 -235.0088
1.1847*** 0.0337 0.2049

Survival
BB1(CI,T )

0.2573*** 0.0555 0.3369 0.3498 -389.3588 -379.2173

1.3627*** 0.0448 0.6013
BB7(CT,P|I) 1.1011*** 0.0304 0.0080 0.1147 -51.9699 -41.8285

0.1436*** 0.0389 0.1234
sum -686.479 -656.0546

Table 5 Results of D-vine Copulas Conditional to Thailand and the Philippines

Copulas parameters standard
error

Lower and up-
per tail depen-
dence

Kendall’tau AIC BIC

Survival
BB1 (CI,T )

0.2651*** 0.0559 0.3314 0.3478 -389.3458 -379.2044

1.3538*** 0.0441 0.5993
BB1(CT,P) 0.3187*** 0.0565 0.1591 0.2709 -245.1539 -235.0124

1.1831*** 0.0331 0.2035
T(CI,P|T ) 0.1958*** 0.0292 0.0010 0.1255 -47.3063 -37.1648

20.4644 14.1012 0.0010
sum -681.806 -651.3816
BB1(CT,P) 0.2644*** 0.0539 0.1023 0.2319 -181.6724 -171.531

1.1499*** 0.0309 0.1728
BB1 (CP,I ) 0.3695*** 0.0625 0.2330 0.3446 -384.3979 -374.2564

1.2878*** 0.0390 0.2870
T(CI,T |P) 0.2854*** 0.0290 0.0686 0.1843 -116.2577 -106.1162

6.9649*** 1.5714 0.0686
sum -682.328 -651.9036

4 Economic Application of Risk Measures

Copulas have attracted much attention in the computation of value at risk, expected
shortfall for risk measure, as pointed out by Kole et al. [22], Junker and May [23],
Ouyang et al. [24], etc. In order to strengthen the practical applicability of the
empirical results, we make use of the Monte Carlo simulation and the estimation
results of the vine copula to calculate the VaR and ES of equally weighted portfolio.
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The detailed procedures that we propose to evaluate the risk consist of four steps:
first, we generate 1117 random numbers of CI,P (BB1) and CI,T (Survival BB1);
second, the standardized residual can be got from the inverse function of the skewed
student-t distribution which is an assumption of the marginal distribution in the GJR-
GARCH model; third, the next period stock returns can be forecasted through the
mean equations of the GJR-GARCH models; fourth, we distribute equal weights to
each stock return, and then we get the returns after the weighting; finally, the VaR
and ES can be calculated at the 5%, 2%, and 1% levels. The four processes can be
repeated 1000, 2000, and 5000 times to get the convergence values.

Table 6 presents the results of the VaR and ES of equally weighted portfolio. As
can be seen in Table 6, the VaR converges to -1%, -1.35%, and -1.61% at the 5%,
2%, and 1% levels, respectively, and -1.41%, -1.78%, and -2.08% for the ES. Table
7 provides the VaR and ES of each stock market and the average value at the 5%,
2%, and 1% levels. First, there is no doubt that portfolio may successfully avoid
risk, as can be seen by comparing the results as given in Table 6 with those in Table
7. The VaR and ES of Thailand are the least, which means that the Thailand stock
market is at more risk. At the same time, this illustrates that Indonesia is at less risk,
and that the Philippines is at medium risk.

Table 6 VaR and ES of Equally Weighted Portfolio

VaR 5% 2% 1%

1000 times -0.01002 -0.01353 -0.01607
2000 times -0.01004 -0.01349 -0.01608
5000 times -0.01003 -0.01351 -0.01608
ES
1000 times -0.01412 -0.01777 -0.02081
2000 times -0.01408 -0.01778 -0.02082
5000 times -0.01408 -0.01777 -0.02080

Table 7 VaR and ES for Each Stock Market

VaR (5000 times) Indonesia Philippines Thailand Average

5% -0.0138 -0.0159 -0.0167 -0.0155
2% -0.0194 -0.0217 -0.0225 -0.0212
1% -0.0238 -0.0260 -0.0270 -0.0256
ES (5000 times)
5% -0.0205 -0.0225 -0.0234 -0.0221
2% -0.0269 -0.0287 -0.0295 -0.0284
1% -0.0324 -0.0336 -0.0344 -0.0335
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5 Conclusions

This paper depicts a model for estimating conditional volatility, dependency, VaR,
and ES through a vine copula based GJR-GARCH model, in which the empirical
evidence shows that there do exist leverage effects in these three country stock mar-
kets, and that all appropriate margins are skewed student-t distributions; given these,
the optimal choices of the C-vine copula are BB1, Survival BB1, and BB7 copula,
in that order, while the same for the D-vine copula are Survival BB1, BB1, and T
copula. Another significant observation is that the D-vine structure is more appro-
priate than the C-vine one, as a whole. In addition, the Indonesian and Thailand
markets show the greatest dependence, which includes their upper tail (0.6013) and
lower tail (0.3369) in these three country markets. Also, the Philippine market has
a significant effect on the tail dependence between Indonesia and Thailand. As a fi-
nal note, it needs to be emphasized that the vine copula based GJR-GARCH model
captures the VaR and ES successfully.

References

1. Sharma, S.C., Wongbangpo, P.: Long-term trends and cycles in ASEAN stock markets.
Review of Financial Economics 11, 299–315 (2002)

2. Ning, C., Wirjanto, T.S.: Extreme return-volume dependence in East-Asian stock mar-
kets: A copula approach. Finance Research Letters 6, 202–209 (2009)

3. Lim, K.P., Brooks, R.D., Hinich, M.J.: Nonlinear serial dependence and the weak-form
efficiency of Asian emerging stock markets. Int. Fin. Markets, Inst. and Money 18, 527–
544 (2008)

4. Sharma, P.: Asian Emerging Economics and United States of America: Do they offer a
diversification benefit. Australian Journal of Business and Management Research 1(4),
85–92 (2011)

5. Joe, H., Hu, T.: Multivariate distributions from mixtures of max-infinitely divisible dis-
tributions. Journal of Multivariate Analysis 57(2), 240–265 (1996)

6. Bedford, T., Cooke, R.M.: Monte Carlo simulation of vine dependent random variables
for applications in uncertainty analysis. In: Proceedings of ESREL 2001, Turin, Italy
(2001)

7. Bedford, T., Cooke, R.M.: Vines-a new graphical model for dependent random variables.
Annals of Statistics 30(4), 1031–1068 (2002)

8. Nikoloulopoulos, A.K.: Vine copulas with asymmetric tail dependence and applica-
tions to financial return data. Computational Statistics and Data Analysis 56, 3659–3673
(2012)

9. Kurowicka, Cooke, R.M.: Uncertainty Analysis with High Dimensional Dependence
Modelling. Wiley, New York (2006)

10. Joe, H.: Dependence comparisons of vine copulae with four or more variables. In:
Kurowicka, D., Joe, H. (eds.) Dependence Modeling: Vine Copula Handbook. World
Scientific, Singapore (2010)

11. Joe, H., Li, H., Nikoloulopoulos, A.K.: Tail dependence functions and vine copulas.
Journal of Multivariate Analysis 101, 252–270 (2010)

12. Aas, K., Czado, C., Frigessi, A., Bakken, H.: Pair-copula constructions of multiple de-
pendence. Insurance: Mathematics and Economics 44, 182–198 (2009)



Vine Copula Approach for Analyzing Financial Risk 257

13. Czado, C., Schepsmeier, U., Min, A.: Maximum likelihood estimation of mixed C-vines
with application to exchange rates. Statistical Modelling 12, 229–255 (2012)

14. Glosten, L.R., Jagannathan, R., Runkle, D.E.: On the Relation between the Expected
Value and the Volatility of the Nominal Excess Return on Stocks. The Journal of Fi-
nance 48(5), 1779–1801 (1993)

15. Joe, H.: Multivariate Models and Dependence Concepts. Chapman and Hall, London
(1997)

16. Savu, C., Trede, M.: Hierarchical Archimedean copulas. In: International Conference on
High Frequency Finance, Konstanz, Germany (2006)

17. Czado, C.: Pair-copula constructions of multivariate copulas. Copula Theory and Its Ap-
plications, 93-109 (2010)

18. Joe, H.: Asymptotic efficiency of the two-stage estimation method for copulabased mod-
els. Journal of Multivariate Analysis 94, 401–419 (2005)

19. Liu, J., Sriboonchitta, S.: Analysis of Volatility and Dependence between the Tourist
Arrivals from China to Thailand and Singapore: A Copula-Based GARCH Approach.
In: Huynh, V.N., Kreinovich, V., Sriboonchitta, S., Suriya, K. (eds.) Uncertainty Analysis
in Econometrics with Applications. AISC, vol. 200, pp. 285–296. Springer, Heidelberg
(2013)

20. Sriboonchitta, S., Nguyen, H.T., Wiboonpongse, A., Liu, J.: Modeling volatility and de-
pendency of agricultural price and production indices of Thailand: Static versus time-
varying copulas. International Journal of Approximate Reasoning 54, 793–808 (2013)

21. Brechmann, E.C., Schepsmeier, U.: Modeling Dependence with C- and D-Vine Copulas:
The R Package CDVine. Journal of Statistical Software 52(3), 1–27 (2013)

22. Kole, E., Koedijk, K., Verbeek, M.: Selecting copulas for risk management. Journal of
Banking and Finance 31, 2405–2423 (2007)

23. Junker, M., May, A.: Measurement of aggregate risk with copulas. Econometrics Jour-
nal 8, 428–454 (2005)

24. Ouyang, Z., Liao, H., Yang, X.: Modeling dependence based on mixture copulas and its
application in risk management. Appl. Math. J. Chinese Univ. 24(4), 393–401 (2009)



Studying Volatility and Dependency of Chinese
Outbound Tourism Demand in Singapore,
Malaysia, and Thailand: A Vine Copula
Approach

Jianxu Liu, Songsak Sriboonchitta, Hung T. Nguyen, and Vladik Kreinovich

Abstract. This paper investigates the volatility and dependence of Chinese tourism
demand for Singapore, Malaysia, and Thailand (SMT) destinations, using the vine
copula based auto regression moving average-generalized autoregressive condi-
tional heteroskedasticity (ARMA-GARCH) model. It is found that a jolt to the
tourist flow can have long-standing ramifications for the SMT countries. The es-
timation of the vine copulas among SMT show that the Survival Gumbel, Frank,
and Gaussian copulas are the best copulas for Canonical vine (C-vine) or Drawable
vine (D-vine) among the possible pair-copulas. In addition, this paper illustrates the
making of time-varying Frank copulas for vine copulas. Finally, there is a discus-
sion on tourism policy planning for better managing the tourism demand for the
SMT countries. We suggest tour operators and national tourism promotion author-
ities of SMT collaborate closely in the marketing and promotion of joint tourism
products.

1 Introduction

Outbound tourism in China is growing rapidly, and has become a significant con-
tributor to international tourism. In 2011, the total volume of the outbound tourists
made more than 70 million trips, with an increase by 22.4% year by year. By 2015,

Jianxu Liu · Songsak Sriboonchitta
Faculty of Economics, Chiang Mai University, Chiang Mai 50200 Thailand
e-mail: liujianxu1984@163.com, songsakecon@gmail.com

Hung T. Nguyen
Department of Mathematical Sciences,
New Mexico State University, New Mexico, USA
e-mail: hunguyen@nmsu.edu

Vladik Kreinovich
Computer Science Department, University of Texas at El Paso, Texas, USA
e-mail: vladik@utep.edu

V.-N. Huynh et al. (eds.), Modeling Dependence in Econometrics, 259
Advances in Intelligent Systems and Computing 251,
DOI: 10.1007/978-3-319-03395-2_17, c© Springer International Publishing Switzerland 2014



260 J. Liu et al.

the China National Tourism Administration (CNTA) forecasts, the Chinese interna-
tional passengers will increase to 100 million, a quantity that will put China in the
numero uno position in the international tourism source market.

With the immense increase in Chinese outbound tourism, the number of Chinese
visitors and their expenditure has become the most important and the most potential
passengers’ market. As one of their classic, routine travel destinations, SMT (Sin-
gapore, Malaysia, and Thailand), which is a very popular tourist destination for the
Chinese tourists, is witnessing more changes shining through. For example, China
has become the second largest passenger source country for Singapore, only behind
Indonesia, in 2011; China is Malaysia’s third largest source of tourists, following
Indonesia and Singapore, and in the first half of 2012, 871,959 Chinese tourists
visited Malaysia, up 53.4% year by year; for Thailand, The Tourism Authority of
Thailand (TAT) forecasts that China will become their largest passenger source mar-
ket in 2014. In addition, it is easy to see, as shown in Figure 1, that the outbound
tourism to Singapore, Malaysia, and Thailand maintains the overall upward trend
and reaches peaks and troughs simultaneously. In view of this scenario, we infer
that the volatilities of the outbound tourism to Singapore, Malaysia, and Thailand
may be similar to each other, as well, and that their dependence should be also quite
high.

The tourism industries in Singapore, Malaysia, and Thailand possess their own
prominent places. First, the total contribution of Travel and Tourism to the GDP
of these countries (SMT) accounts for 10.6%, 15.8%, and 16.3%, respectively, of
their total GDP, in 2011. Second, the total contribution of Travel and Tourism to

Fig. 1 Tourist flows to SMT from China
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the employment sector was 266,500 jobs (8.6% of total employment) for Singa-
pore, 1,587,000 jobs (13.8% of total employment) for Malaysia, and 4,468,500
jobs for Thailand (11.4% of total employment), in 2011. Third, in 2011, Singapore,
Malaysia, and Thailand generated SGD 22.5 bn (3.3% of total exports), MYR 62.4
bn (8.4% of total exports) and THB 950.4 bn (11.4% of total exports) from visitor
exports. It is thus clear that it is the tourism industry of Singapore, Malaysia, and
Thailand that drives the development of the whole economy and the society of these
countries.

It is worth mentioning, besides, that the volume of China outbound tourism is
enormous; the great spending power ranked No. 2 (USD 59.52 bn) in the world
in 2011. SMT may benefit from analyzing the international tourism demands from
China. Hence, the analysis of volatility and dependence of tourism demand is essen-
tial for investigating the effects of shocks and co-movements in the SMT tourism
demand from China. Furthermore, for tourism managers and travel corporations,
it is important to evaluate the dependence structure of tourism demand and to dis-
cern attractive opportunities. They also need to figure out the implied threat caused
by volatilities in tourism demand. Mastering the behaviors of volatility and depen-
dence structure can help governments and tourism corporations adjust strategies for
improving the profitability of the tourism industry and reducing adverse impacts
such as political unrest, natural disaster, etc.

This study is organized as follows. Section 2 reviews the tourism research, the
copula based GARCH model, and the vine copulas. The copula based ARMA-
GARCH model is discussed in section 3 which includes ARMA-GARCH models
for margins, copulas, and vines. Data description and empirical findings are pre-
sented in section 4. Policy planning is discussed in section 5, while some concluding
remarks are given in section 6.

2 Literature Review

Recognizing the relevance and significance of tourism industry to SMT economy,
a number of studies have been undertaken on various aspects of outbound tourism
from China to SMT: for example, Li et al. [1] examined the Chinese tourists’ ex-
pectations of outbound travel products, Lee [2] studied the dynamic interactions be-
tween hotel room rates and international inbound tourists in Singapore, and Chang et
al. [3] forecasted tourism demand from East Asia to Thailand. However, none of the
literature relates to the dependencies and volatility of tourism demand from China
to SMT except just one paper which is by Liu and Sriboonchitta [4] who studied the
volatility and dependence between tourist arrivals from China to Thailand and those
to Singapore. It was found that the Gaussian copula fitted very well, and that the
Kendall’s tau was 0.5737. It is thus clear that the dependence of Chinese outbound
tourism demand between the destinations of Singapore and Thailand is very high.

Many scholars studied tourism demand by applying econometric and statis-
tical tools to analyze the volatilities and relationships of inbound or outbound
tourism demand. Kim and Wong [5], and Song et al. [6] used the univariate
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autoregressive conditional heteroskedasticity (GARCH) model to analyze the
volatility of tourism demand. Chan et al. [7] used the symmetric constant condi-
tional correlation-multivariate generalized autoregressive conditional heteroskedas-
ticity (CCC-MGARCH) model and the symmetric vector ARMA-GARCH to model
the multivariate international tourism demand and volatility among the four tourism
source countries to Australia. Hoti et al. [8] made use of the VARMA-GARCH
model to investigate international tourism and country risk spillovers for Cyprus
and Malta. Seo et al. [9] analyzed the relationships of the Korean outbound tourism
demand by using the MGARCH and Vector Error Correction (VEC) models. Lee [2]
investigated the short-run and the long-run dynamic interactions using the cointe-
gration and Granger causality test.

However, the above-mentioned papers always assumed the conditional correla-
tion to be the linear Pearson’s correlation and constant over time, which is a strong
and strict assumption. Of late, the copula-GARCH model has been very popular
in the financial field, as it can be used to analyze the volatilities and dependence
structure. Patton [10] used this model to analyze the dynamic dependence between
the exchange rates of YenUSD and DMUSD. Jondeau and Rockinger [11] assumed
the marginals of the copula-GARCH model to be a skewed student-t distribution
in order to capture heavy tail information regarding the international stock mar-
ket. Lee and Long [12] proposed copula based multivariate GARCH model with
uncorrelated dependent errors, which are generated through a linear combination
of dependent random variables. Wu [13] also researched the economic value of co-
movement between oil prices and exchange rates using copula-based GARCH mod-
els. Wang et al. [14] studied the dynamic dependence between the Chinese market
and other international stock markets using the time-varying copula approach. But
the above-mentioned studies all used the bivariate copula-GARCH model to study
the dependence structure.

To study the multivariate dependence structure, Joe [15] gave the first pair-copula
construction (PCC) of a multivariate copula, the construction of which is dependent
on distribution functions. Bedford and Cooke [17] [18] expressed these construc-
tions in terms of densities, and organized these constructions in a graphical way
involving a sequence of nested trees, which are called regular vines. They also pro-
posed two subclasses of PCC, which we call the C-vine and D-vine copulas. Note
that the C-vine and D-vine copulas have been widely used in finance asset returns
and other data by many researchers, such as Aas et al. [20], Min and Czado [19],
and Czado [21]. For studying the dependence of outbound tourism demand in the
three countries (SMT), we make use of the C-vine and D-vine copulas instead of the
bivariate copula in the copula-GARCH model. In other words, we use the ARMA-
GARCH model to fit the marginals, and then transform the standardized residuals
into specified distributions; finally, we make use of the C-vine and D-vine copulas
to capture the dependence structure.

To sum up, the main contributions of this study are as follows: (1) we intro-
duce the C-vine and D-vine copula based ARMA-GARCH model into tourism de-
mand research; (2) we propose time-varying Frank copula to capture the dynamic
Kendall’s tau for vine copulas; (3) we investigate the impact of the short-run and
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long-run Chinese outbound tourism demand for SMT; (4) we compare the results of
the bivariate copulas with those of the vine copulas, thus finding out the dominant
country among SMT; and (5) finally, through this study, we provide inferences that
are applicable for competitive destination strategies and policy development.

3 Copula Based ARMA-GARCH Model

This paper utilizes copula based ARMA-GARCH model to analyze the volatility
and dependence of Chinese outbound tourism demand to SMT destinations. We fil-
ter growth rate data using the ARMA-GARCH model with appropriate distributions,
for example, the skewed student-t, skewed GED, and skewed normal, and transform
standardized residuals to copula data (u1 = F1(x1), u2 = F2(x2), and u3 = F3(x3)) by
using appropriate distribution functions. After that, we estimate the bivariate cop-
ula and the C-vine and D-vine copulas using the maximum likelihood estimation
method.

3.1 ARMA-GARCH Model for Margins

Bollerslev [23] proposed the GARCH (generalized autoregressive conditional het-
eroskedasticity) model, which has replaced the ARCH model in application and has
since been widely used in econometrics, economics, etc. In accordance with the
findings of Ling [24], the ARMA (p, q)-GARCH (k, l) model can be formed as

rt = c+
p

∑
i=1

φirt−i +
q

∑
i=1

ψiεt−i + εi (1)

εt = htηt (2)

h2
t = ω+

k

∑
i=1

αiε2
t−i +

l

∑
i=1

βih
2
t−i (3)

where ∑p
i=1 φi < 1,ω > 0,αi >= 0,βi >= 0, ∑k

i=1αi +∑l
i=1βi < 1, and the time se-

ries rt are return data; the formulas (1) and (3) are known as the conditional mean
equation and conditional variance equation, respectively; the formula (2) shows
that these return residuals are split into a stochastic piece ηt and a time depen-
dent standard deviation ht .The values of αi and βi indicate the presence or absence
of short-run shock and persistence of volatility, respectively. If the value of αi is
larger, then the short-term unexpected factors affecting the volatility have greater
influence. If the value of ∑k

i=1αi +∑l
i=1βi is larger, then the impact of unexpected

shock to volatility has the longer duration. ηt is the standardized residual, which
can be assumed for any distribution. In this study, we assume the distribution of the
standardized residuals to be the skewed student-t distribution or skewed-generalized
error distribution (GED), both of which can capture the characteristics of heavy tail
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and asymmetry, anyway. The standardized skewed-t and skewed-GED distributions
can be expressed as

fskt(xi|v,γ) = 2
(γ+ γ−1)

{ fv(xi/γ)I[0,∞](xi)+ fv(γ xi)I[∞,0](xi)} (4)

fsged(xi|v,γ) = v(2θΓ (1/v))−1× exp(− |xi− δ |v
(1− sign(xi− δ )γ)vθ v ) (5)

where
A = Γ (2/v)Γ (1/v)−0.5Γ (3/v)−0.5 (6)

S(γ) =
√

1+ 3γ2− 4A2γ2 (7)

δ = 2γA× S(γ)−1 (8)

θ = Γ (3/v)−0.5
√
Γ (1/v)S(γ)−1 (9)

where fv(.) is the density of the student t-distribution, the parameter v represents the
number of degrees of freedom, γ is the skewness parameter ranging from 0 to ∞, I
denotes the indicator function, and ”sign” is the sign function.

3.2 Copulas

Copulas [25] have long been recognized and developed in various fields like econo-
metrics, economics, financials, etc. If X = (X1,X2, . . . ,Xn) is a random vector with
joint distribution function H and marginal distributions F1,F2, . . . ,Fn , then there
exists a function C called copula, such that

H(x1,x2, . . . ,xn) =C(F1(x1),F2(x2), . . . ,Fn(xn)) (10)

The copula C is extracted from the joint H and marginals F1,F2, . . . ,Fn as

C(u1,u2, . . . ,un) = H(F−1
1 (u1),F

−1
2 (u2), . . . ,F

−1
n (un)) (11)

where F−1
i (ui) = in f{x ∈ℜ : Fi(x)≥ ui}. If Fi is absolutely continuous and strictly

increasing, then

f (x1,x2, . . . ,xn) =
∂H(x1,x2, . . . ,xn)

∂x1 · · ·∂xn

=
∂C(u1,u2, . . . ,un)

∂u1 · · ·∂un
×∏ F(xi)

∂xi

= c(u1,u2, . . . ,un)×∏ fi(xi) (12)
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The joint distribution H contains all the statistical information about X = (X1,X2,
. . . ,Xn). In particular, the marginal distributions of the components are derived as

Fi(xi) = H(∞,∞, · · · ,xi,∞,∞) (13)

In this study, the Gaussian copula, T copula, Clayton copula, Frank copula, Gum-
bel copula, Joe copula, BB1 copula, BB6 copula, BB7 copula, BB8 copula, and
rotated copulas have been utilized to analyze the dependence structure (see Brech-
mann and Schepsmeier [16]).

3.3 Vines

A bivariate copula vine specification is called a pair-copula construction or a vine
copula. Compared to some multivariate copulas, vine copulas are more flexible in
the high dimensions. For example, multivariate normal copula does not have tail de-
pendence; multivariate t-copula has only a single degree of freedom parameter and
symmetric tail dependence. For three variables, we can assume that 12 is the first
pair, then the second pair is either 13 or 23, and the third pair should be 23|1 or 13|2.
The structure 12, 13, 23|1 is the standard form of Canonical vine copula (C-vines),
and the other 12, 23,13|2 is called Drawable vine copula (D-vines).

To use the C-vine and D-vine constructions to represent dependency structure
through copulas, we assume that there are three univariate marginals that are uni-
form in [0, 1]. Note that these univariate marginals correspond to cumulative distri-
bution functions of the standardized residuals by generating from ARMA-GARCH
model. Here, we concentrate on the C-vine and D-vine representations with three
variables. The densities of the C-vine and D-vine copulas can be expressed as

c(u1,u2,u3) = c12(u1,u2) · c13(u1,u3) · c23|1(F(u2|u1),F(u3|u1))for C-vine copula
(14)

and

c(u1,u2,u3) = c12(u1,u2) · c23(u2,u3) · c13|2(F(u1|u2),F(u3|u2))for D-vine copula
(15)

where

F(u2|u1) =
∂C12(u1,u2)

∂u1
(16)

F(u3|u1) =
∂C13(u1,u3)

∂u1
(17)

F(u1|u2) =
∂C12(u1,u2)

∂u2
(18)
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F(u3|u2) =
∂C23(u2,u3)

∂u2
(19)

There are two things need to be finished before we estimate vine copulas model.
One is the selection of a specific ordering; the other is the choice of pair-copula
families. In this study, we employ different methods to select the orderings of the
variables in the C-vine and D-vine models. For the C-vine model, we calculate the
sum of the empirical Kendall’s Si

τ =∑n
j=1,i�= j τi, j (see Czado et al. [22]) for each vari-

able i, and select the maximum one as the first variable. After that, we reorder the
remaining variables and repeat the process of calculating the sum of Kendall’s tau,
thus finding out the second and third variables. For the D-vine model, we just deter-
mine the order that satisfies the maximization of the sum of the empirical Kendall’s
tau Sτ = ∑n−1

i=1 τi,i+1.To choose the appropriate pair-copula families, we firstly esti-
mate all possible copula families for C12, C13 (C-vine), and for C12, C23 (D-vine) by
using maximum likelihood method. Then, we determine the required observations
for C23|1 and C13|2 through the formulas (16)-(19). Thus, both C-vine and D-vine
copulas can be estimated, and the Akaike information criterion (AIC) and Bayesian
information criterion (BIC) can be calculated as well. Thereby, the copula families
corresponding to the minimum values of AIC and BIC are selected among many
copula families.

To improve efficiency of estimation of vine copula models, we need consider two-
step maximum likelihood estimation method (see Aas et al. [20], Czado et al. [22]).
The purpose of the first step is to obtain the starting values of the appropriate copula
families, thus this step has been implemented in calculating AIC and BIC process.
In the last step, all parameters of C-vine and D-vine copulas are estimated by the
full maximum likelihood. The corresponding log-likelihood can be constructed by
using the formulas (10) and (11). The log-likelihood functions of C-vine and D-vine
copulas can be written as

LC(u1,u2,u3;θ ) =
n

∑
i=1

[logc12(u1,i,u2,i;θ1)+ logc13(u1,i,u3,i;θ2)

+ logc23|1(F(u2,i|u1,i),F(u3,i|u1,i;θ3))]

(20)

and

LD(u1,u2,u3;θ ) =
n

∑
i=1

[logc12(u1,i,u2,i;θ1)+ logc23(u2,i,u3,i;θ2)

+ logc13|2(F(u1,i|u2,i),F(u3,i|u2,i;θ3))]

(21)

where θ is the parameter vector that need to be estimated; θ1, θ2 and θ3 represent
the parameters corresponding to the appropriate copula families.
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4 Empirical Results

4.1 Data

This paper models the time series of the difference between the logarithms of the
monthly international arrivals (from January 1999 to June 2012) from China to Sin-
gapore, Malaysia, and Thailand. The data description and statistics are shown in
Table 1: all the mean values are positive, the skewness values of both Singapore
and Thailand are negative, and the kurtosis values are greater than 3. It is thus clear
that the data show non-normality and that the data of Singapore and Thailand are
skewed to the left. The results of the Jarque-Bera test reject the null hypothesis
that the data are from a normal distribution, which are more convictive explanations
for non-normality distributions, thereby implying that the skewed distribution is the
more appropriate one for our study.

Table 1 Data Description and Statistics

Singapore Malaysia Thailand

Mean 0.007982 0.012729 0.005707
Median 0.040844 0.007487 0.008301
Maximum 0.923611 2.848938 0.897066
Minimum -1.750788 -2.645770 -1.281747
Std. Dev. 0.325849 0.466296 0.343930
Skewness -0.888538 -0.020366 -0.652907
Kurtosis 7.744626 16.98058 4.556646
Jarque-Bera 172.1994 1311.199 27.69398
Probability 0.000000 0.000000 0.000001

4.2 Estimation Results of ARMA-GARCH Model

Table 2 presents the results of the ARMA-GARCH model with different assump-
tions of marginal distribution. To analyze the volatility of the China outbound tourist
demand to STM, we employ ARMA (12, 4)-GARCH (1, 1) with skewed student-
t distribution for Singapore, ARMA (6, 6)-GARCH (1, 1) with skewed student-t
distribution for Malaysia, and ARMA (12, 4)-GARCH (1, 1) with skewed-GED
distribution for Thailand. The values of the GARCH coefficient, or β , equal 0.5482,
0.8467, and 0.6993, and they are significant as well. These results indicate that a
shock to the tourist arrival series has long-run persistence in all cases, and that Chi-
nese tourists outbound to Malaysia have stronger long-run persistence. The esti-
mated ARCH effect, or α , is significant only to the tourist arrival series from China
to Thailand, and so tourist arrivals from China to both Singapore and Malaysia do
not have short-run persistence. The values of the parameter γ equal 0.8862, 0.9083,
and 0.6626 in each model of SMT, respectively, implying that the Chinese outbound



268 J. Liu et al.

tourism demand in SMT are skewed to the left, and the series of the destination
Thailand is more skewed to the left.

Since the parameters γ and v are significant, we transform the standardized resid-
uals into standard skewed student-t distribution and skewed-GED distribution as
margins. However, the margins must satisfy the condition of uniform distribution
from 0 to 1. If it cannot satisfy this condition, then the misspecified model for the
marginal distribution may cause incorrect-fit copulas. Thus, testing for marginal
distribution model misspecification is a critical step in constructing multivariate
distribution models using copulas. Therefore, we present the Box-Ljung test for
evaluating the serial independence of the marginals, Fskt(xsing,t), Fskt(xmalay,t), and
Fsged(xthai,t), and the Kolmogorov-Smirnov (K-S) test for the distribution specifica-
tion. The results of the KS test and the Box-Ljung test are given in Table 3. It is very
clear that each of the series accepts the null hypothesis, which means that all the
three marginals are of uniform distribution. The second part of Table 3 shows the
results of the Box-Ljung test, which evaluates the serial independence of the first
four moments, and it can be observed that all of them accept the null hypothesis at
the 0.10 level. Therefore, the marginals that we assumed satisfy the two precondi-
tions: uniformity and serial independence.

4.3 Estimation Results of Vine Copulas

For the C-vine copula, the order is Thailand, Malaysia, and Singapore, so we
need to estimate C(Fsged(xthai,t),Fskt(xmalay,t)), C(Fsged(xthai,t),Fskt(xsing,t)), and
C(Fskt(xmalay,t), Fskt(xsing,t)|Fsged(xthai,t )). For the D-vine copula, the order is Sin-
gapore, Thailand, and Malaysia. As far as the structures of the C-vine and D-vine
are concerned, the D-vine has the same pair-copulas as the C-vine. Therefore, in this
case, we only need to do the calculation either for the C-vine or for the D-vine. Nev-
ertheless, all the possible vine structures are calculated for a comprehensive analysis
of the SMT inbound tourism from China.

The possible pair-copula families were the Gaussian copula, T copula, (Survival)
Clayton copula, Frank copula, (Survival) Gumbel copula, (Survival) Joe copula,
(Survival) BB1 copula, (Survival) BB6 copula, (Survival) BB7 copula, (Survival)
BB8 copula, and rotated copulas. We make use of the AIC and BIC to choose the
best copula for each pair. In Table 4, we present the results of the vine copulas and
Kendall’s tau for each best copula. The table shows that the Survival Gumbel, Frank,
and Gaussian copulas are the best copulas for the C-vine or D-vine among the pos-
sible pair-copula families. First, we can find that China outbound tourism demand
between Thailand and Malaysia has lower tail dependence equaling 0.2643, imply-
ing that negative influences may have simultaneous impact on these two countries’
tourism industries. Second, China outbound tourism demand between Thailand and
Singapore shows stronger dependence equaling 0.5285, but there does not exist tail
dependence, which illustrates the fact that any positive and negative shocks cannot
have an effect on these two countries’ tourism industries at the same time. Third,
the dependency parameter of the Gaussian copula between Singapore and Malaysia
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Table 2 Results of ARMA-GARCH Model

Singapore Malaysia Thailand

AR1 0.6281*** Constant 0.0198*** AR1 0.4041***
(6.771e-05) (2.857e-05) (0.0024)

AR2 0.4762*** AR1 0.0495*** AR2 0.6583***
(6.802e-05) (5.772e-05) (0.0023)

AR3 0.4621*** AR2 0.6758*** AR3 0.5453***
(7.236e-05) (5.678e-05) (0.0039)

AR4 1.2550*** AR3 0.2839*** AR4 0.1460***
(6.808e-05) (5.774e-05) (0.0059)

AR5 1.8250*** AR4 0.4870*** AR5 0.1723***
(7.913e-05) (6.088e-05) (0.0025)

AR6 0.0595*** AR5 0.8201*** AR6 0.0143***
(6.816e-05) (6.284e-05) (0.0020)

AR7 0.0231*** AR6 0.3124*** AR7 0.1865***
(6.807e-05) (5.553e-05) (0.0018)

AR8 0.0088*** MA1 0.5572*** AR8 0.0586***
(1.230e-03) (9.567e-05) (0.0022)

AR9 0.1827*** MA2 0.9847*** AR9 0.0047
(1.261e-03) (9.937e-05) (0.0026)

Ar10 0.1512*** MA3 0.2598*** AR10 0.1907***
(7.569e-05) (1.016e-04) (0.0028)

AR11 0.1025*** MA4 0.9287*** AR11 0.0952***
(8.032e-05) (1.038e-04) (0.0024)

AR12 0.3090*** MA5 0.6446*** AR12 0.0329***
(5.710e-05) (1.062e-04) (0.0027)

MA1 0.3453*** MA6 0.9127*** MA1 0.0952***
(1.480e-04) (1.052e-04) (0.0035)

MA2 0.0516*** ω 0.0113 MA2 0.3289***
(1.790e-04) (0.0241) (0.0030)

MA3 0.3352*** α 1.0000 MA3 0.2688***
(1.866e-04) (1.9370) (0.0054)

MA4 0.7582*** β 0.8467*** MA4 0.7845***
(1.758e-04) (0.0614) (0.0039)

ω 6.161e-04 γ 0.9083*** ω 0.0079***
(9.575e-04) (0.0597) (0.0018)

α 1.0000 γ 2.1060*** α 0.2970***
(0.4920) (0.2460) (0.0259)

β 0.5482* LM-test 1.0000 β 0.6993***
(0.1344) (0.0253)

γ 0.8862*** LogL 15.2619 γ 0.6626***
(0.0065) (0.0138)

v 2.7080*** AIC 0.0340 v 1.0000***
(0.3821) (0.0428)

LM-test 0.9841 BIC 0.3785 LM-test 0.4531
LogL 65.4508 LogL 0.0170
AIC 0.5522 AIC 0.2611
BIC 0.1503 BIC 0.6630

Note: Signif. codes are as follows: 0 *** 0.001 ** 0.01 * 0.05 0.1. The numbers
in the parentheses are the standard deviations.
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Table 3 KS Test for Uniform and Box-Ljung Test for Autocorrelation

KS Test
Statistic P value Hypothesis

u1,t 0.0976 0.0933 0 (acceptance)
u2,t 0.0670 0.4650 0 (acceptance)
u3,t 0.0652 0.5013 0 (acceptance)
Box-Ljung Test

Moments X-squared P-value
u1,t First moment 1.7570 0.8816

Second moment 4.1513 0.5278
Third moment 0.9194 0.9688
Fourth moment 2.5339 0.7714

u2,t First moment 2.5915 0.7626
Second moment 2.6553 0.7529
Third moment 4.1255 0.5315
Fourth moment 0.8972 0.9704

u3,t First moment 1.9974 0.8495
Second moment 5.1570 0.3970
Third moment 2.5577 0.7678
Fourth moment 2.0434 0.8431

Note: u1,t = Fskt(xsing,t), u2,t = Fskt(xmalay,t), and u3,t = Fsged(xthai,t ).

conditional on Thailand is not significant, which means that the inbound tourism
demand of Singapore and Malaysia from China is independent, given the Thailand
inbound tourism from China as condition, while the inbound tourism demand of
Singapore and Malaysia from China is not independent, and that the Survival Gum-
bel copula fits them very well. Thus, the Thailand inbound tourism from China
may exert an influence on the inbound tourism demand of Singapore and Malaysia
from China. In addition, both the best CT M|S and CT S|M are Frank copulas. The
Kendall’s tau of CT M|S and CT S|M are 0.1494 and 0.5062, respectively. If we com-
pare CS,T with CST |M , it can be clearly observed that Malaysia inbound tourism from
China makes little difference to the inbound tourism from China to Singapore and
Thailand, whereas Thailand and Malaysia inbound tourism from China are partly af-
fected by Singapore inbound tourism from China, corresponding to CT,M and CMT |S.

4.4 Application of Dynamic Dependence Structure

Patton [10] proposed the time-varying copulas that include the Gaussian and sym-
metric Joe copulas. Manner [26], Wu [13], and Ng et al. [27] further researched
the time-varying copulas. In our case, we follow our predecessors achievements to
invent the time-varying Frank copula. The formula can be expressed as

θt =Λ(ω+αθt−1 +β (ui,t−1− 0.5)(u j,t−1− 0.5)) (22)
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Table 4 Results of Vine Copulas and Kendall’s tau

Copulas parameters tail dependence Kendall’tau AIC BIC

C-vine or D-vine
Survival Gumbel
(CT,M)

1.2570*** 0.2643 0.2045 -14.5042 -11.4228

(0.0769)
Frank(CT,S) 6.2800*** 0 0.5285 -111.5832 -108.5018

(0.6354)
Gaussian(CSM|T ) 0.0454 0 0.0289 1.6484 4.7298

(0.0769)
Other pair copulas
Survival Gumbel
(CS,M)

1.1854*** 0.2054 0.1564 -8.5131 -5.4316

(0.0650)
Frank(CMT |S) 1.3697*** 0 0.1494 -5.7991 -2.7177

(0.4934)
Frank(CST |M) 5.8502*** 0 0.5062 -100.4416 -98.3602

(0.6311)
Dynamic copulas ω α β AIC BIC
Frank(CMT |S) 16.3448*** 0.1852*** 95.1764*** -1.4235 1.6578

(0.4409) (0.0032) (2.2623)
Frank(CST |M) 101.060*** 0.4608*** 1828.80*** -101.9672 -98.8858

(7.6314) (0.0039) (11.4990)

Note: Signif. codes are as follows: 0 *** 0.001 ** 0.01 * 0.05 0.1. The numbers in the
parentheses are the standard deviations.

where Λ(x) = ln(x) is the logistic transformation, 0 =< α =< 1. The formula for
Kendall’s tau derived for the Frank copula is

τ = 1− 4
θ
+ 4

D1(θ )
θ

whereD1(θ ) =
1
θ

∫ θ

0

x
exp(x)− 1

dx (23)

The second part of Table 4 reports the results of the time-varying copulas. In
terms of AIC and BIC, the time-varying CST—M exhibits better explanatory ability
than the static Frank copula, while it is the other way round for CMT |S. We can
see that the autoregressive parameter α in the time-varying Frank copula CST |M
equals to 0.4608, implying a low degree of persistence pertaining to the dependence
structure between Thailand and Singapore inbound tourism demand from China,
given Malaysia inbound tourism demand from China. The dynamic Kendall’s tau
from the Frank copula CST |M is illustrated in Figure 2, and we can see that the
smallest value of Kendall’s tau is approximately 0.36, while the greatest is about
0.54, indicating that the nonlinear correlations are always shifting with time, and
have seasonal volatility.
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Fig. 2 Kendall’s tau from the time-varying Frank copula CST |M

5 Policy Planning

The empirical findings of this study reveal that there exists obvious volatility and
interdependency in the Chinese tourist flow to the countries of SMT. Hence, tour
operators and national tourism promotion authorities of SMT should collaborate
closely in marketing and promoting joint tourism ventures and products.

As for Thailand and Singapore, the Chinese tourist flow to both these countries
is highly correlated, especially in December, January, and February every year. In
this case, the travel agents and airlines in Thailand and Singapore should come to
a strong mutual understanding, cooperate to form a powerful alliance, and launch
tourism packages through different routes. Given that the correlation gets reduced
in May and June every year, it becomes more important that a series of high qual-
ity and low cost travel programs are launched for attracting tourists; as for Thailand
and Malaysia, there exists a lower tail correlation in the Chinese tourist flow to these
countries, which explains why a negative impact will shock their inbound tourism
demand. Therefore, the tourism authorities of Thailand and Malaysia should en-
hance awareness of prevention, and jointly deploy some tourism program for stim-
ulating the development of the tourism market; as for Singapore and Malaysia, the
relevance of Malaysia and Singapore is similar to that of Malaysia and Thailand,
and is also lower tail related, so the two countries should also implement similar
measures toward meeting unexpected needs.
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On the whole, among the three countries, Thailand plays a crucial role. The
tourist population of China traveling to Thailand directly impacts the dependency
of Singapore and Malaysia, since CSM|T indicates that Malaysia and Singapore are
independent in the case of a known tourist flow of Thailand.

6 Conclusions

This paper examined the vine copula-ARMA-GARCH model based on past tourist
arrivals from China which is a major tourist source market for SMT. This paper
applied separately the logarithm differences of the monthly tourist arrivals to SMT
from China. The empirical findings of this study indicate that ARMA-GARCH with
assumed skewed student-t distribution for standardized residuals is the best-fitting
model to explain the volatility of the tourist flow to Singapore and Malaysia from
China, while ARMA-GARCH with assumed skewed-GED distribution for standard-
ized residual is the appropriate model for analyzing the tourist flow to Thailand
from China. In addition, various diagnostic cheeks were also used. We discuss how
traditional tests for marginal distribution, using the Kolmogorov-Smirnov and Box-
Ljung tests, can be implemented to see if the underlying assumptions are satisfied.
In addition, fifteen kinds of static copulas were used to analyze the dependence be-
tween the tourist flows to the SMT from China. Another point is that we applied
the time-varying vine copulas that described the dynamic Kendall’s tau. Finally, in
the light of the empirical findings, we propose some constructive ideas and policy
planning for the attention of the tourism authorities and travel agents.
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Vine Copula-Cross Entropy Evaluation of
Dependence Structure and Financial Risk
in Agricultural Commodity Index Returns

Songsak Sriboonchitta, Jianxu Liu, and Aree Wiboonpongse

Abstract. Many studies used the empirical Kendall’s tau to select a preferable or-
dering of vine copulas or to fix such a sequence. In this study, for high dimension
vine copulas, we propose the vine copula based cross entropy method to figure out
a more appropriate ordering of the vine copula. The goal of this study is to estimate
the non-conditional, conditional, and tail dependences for agricultural price index
returns by using the C-vine and D-vine copula based cross entropy model. In addi-
tion, we show that a framework uses the Monte Carlo simulation and the results of
vine copula to estimate the expected shortfall (ES) of an equally weighted portfolio.
The optimal portfolio allocations can also be estimated using global optimization
with the differential evolution algorithm.

1 Introduction

Copulas have become an essential tool for measuring dependence structure in fi-
nance, economics, etc. Their use has also been extended to include tasks like fore-
casting dependence, evaluating risks, managing portfolios, and formulating sensible
policies. For instance, Sriboonchitta et al. [1] used the time-varying copula based
generalized autoregressive conditional heteroskedasticity (GARCH) model to fore-
cast the agriculture price and policy implications, and Huang et al. [2] estimated
the value at risk (VaR) of the portfolio by using the conditional copula-GARCH
model. Moreover, copulas can be used in high dimension, as propounded by Lieb-
scher [3], and Charpentier and Segers [4]-especially in the case of the pair-copula
construction (PCC), also called vine copulas, which uses only bivariate copulas to
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construct multivariate copulas. PCC includes two special structures: C-vine and D-
vine copulas. Vine copulas have more flexibility than the known classes of multi-
variate copulas like Gaussian and T. Vine copulas have found extensive application
in finance asset returns and other data over the last five years or so, as pointed out
by Nikoloulopoulos et al. [5], Aas et al. [6], Gugan and Maugis [7], etc.

There are many different orderings possible of the variables in the C-vine and D-
vine models. So, it is crucial that we assign some principles to order the sequence of
the variables. Research so far, however, has only been on two main methods which
we can follow. One method consists of depending on the research that takes into
consideration evidence for deciding the ordering of the variables. The other is of
choosing the models with the high dependence in the bivariate condition distribu-
tion, as preferred by Aas et al. [6] and Czado et al. [8]. Also, it is possible for us
to calculate all the structures of the C-vine or D-vine if there are three or four vari-
ables. So, we select the ordering of the vine copula structure only in the descending
order of dependence because a high dependence between the variables may have a
great impact on the other variables. Let the variable that possesses high correlation
be taken as the condition variable, which means we can test the dependence under
more effective information as known condition.

Aas et al. [6] proposed that we determine the optimal ordering of the vine cop-
ula by using the empirical Kendall’s tau method; Aas and Berg [9] chose the most
appropriate ordering according to the degree of freedom of the student-t copula,
because a low number of degree of freedom indicates strong dependence. Regard-
less of whether it was the empirical Kendall’s tau or the degree of freedom, both
of them chose the optimal structure of the vine copula in accordance with the size
of dependence. But the size of dependence only reflects the degree of interdepen-
dence in terms of rank. There is more information corresponding to the correlation
between the two variables, such as lower and upper tail correlations, linear correla-
tions, etc. Therefore, relying solely on the size of dependency while choosing the
optimal structure of the vine copula cannot be entirely justified. However, the cross
entropy method may measure the information theoretical distance between the two
probability distributions of the variables, and the information theoretical distance
completely ignores the oneness of the selection criterion. Moreover, the asymmetric
property of information distance may enable us to understand which among the two
variables plays a more important function.

Previous research, such as those conducted by Engle and Sheppard [10], Rom-
bouts and Verbeek [11], and Chang et al. [12], commonly used the GARCH model
to analyze the dependence structures and portfolio management with linear corre-
lation, but it was premised on strict restriction to ensure a well-defined covariance
matrix. Moreover, we usually assume that the financial returns follow a multivariate
Gaussian or student-t distribution in the multivariate GARCH model, while most
of the asset returns possess the characteristics of being skewed, and having high
kurtosis and fat tails. Although multivariate student-t distributions can capture high
kurtosis and fat tails, it is symmetric, and specifies the same degree of freedom for
both or more financial returns. However, vine copulas may effectively measure rank
correlation, and lower and upper tail dependence, as well as allow the assumption
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of different marginal distributions for the asset returns. Thus, vine copulas may be
preferable for measuring value at risk, expected shortfall, optimal portfolio weights,
etc. Some relationships that exist between agricultural commodity prices are inter-
esting. For instance, knowing which commodities are positively or negatively cor-
related with a given commodity is very important for gaining an understanding of
the future directional movement of the commodity we propose to trade. Thus, we
use a data set with 6 agricultural price indices to measure the dependence, expected
shortfall, and portfolio weights.

The main contributions of the paper are three, and are as follows: (1) we provide
a comprehensive solution to the quandary of the selection of vine copula orderings
by drawing cross entropy into vine copula models; (2) we show how this framework
can be used to estimate expected shortfalls and optimal portfolio weights using the
results of the copulas and the Monte Carlo simulation method; (3) we construct
the optimal portfolio weights of the selected assets under the minimum expected
shortfall framework, allowing for global optimization via a Differential Evolution
algorithm. The paper is organized as follows. Section 2 provides a brief review on
C-vine and D-vine copulas, and introduces the applications of cross entropy, ex-
pected shortfall, and optimal portfolios in vine copulas. Section 3 conducts empiri-
cal analysis for agricultural commodities corresponding to vine copula based cross
entropy model. Finally, section 4 offers conclusions.

2 Methodology

This study uses the auto regression moving average-generalized autoregressive con-
ditional heteroskedasticity (ARMA-GARCH) model to estimate the marginals, and
this leads to the formation of standardized residuals. It is worth mentioning that we
assumed the marginals to follow the skewed generalized error distribution (SGED).
In addition, the Gaussian copula, T copula, Clayton copula, Frank copula, Gumbel
copula, Joe copula, BB1 copula, BB6 copula, BB7 copula, BB8 copula, and rotated
copulas were candidates in the selection of the best one by using the model compar-
ison criteria, Akaike information criteria (AIC) and Bayesian information criteria
(BIC).

2.1 C-vine and D-vine Copulas

The whole idea of vine copulas is that we reduce generic functions of several vari-
ables to only functions of two variables, and vine copulas specify the dependence
and conditional dependence of selected pairs of random variables and all marginal
distribution functions. A few d-dimensional vine copulas are decomposed into d(d-
1)/2 pair-copulas, and the densities of the vine copulas are factorized in terms of
pair-copulas and marginals.
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For the C-vine and D-vine copulas, the densities are, respectively (Aas et al. [6]),

f (x1,x2, . . . ,xd) =
d

∏
k=1

f (xk)×
d−1

∏
j=1

d− j

∏
i=1

c j,i+ j|1,··· , j−1(F(x j|xΦ),F(xi+ j|xΦ)) (1)

and

f (x1,x2, . . . ,xd) =
d

∏
k=1

f (xk)×
d−1

∏
j=1

d− j

∏
i=1

ci,i+ j|i+1,··· ,i+ j−1(F(xi|xΨ ),F(xi+ j|xΨ )) (2)

where Φ = 1, . . . , j− 1 andΨ = i+ 1 : i+ j− 1.For d = 6, for example, the C-vine
density (1) can be written as

f (x1, · · · ,x6) =
6

∏
i=1

f (xi) · c12(F(x1),F(x2)) · c13(F(x1),F(x3))

·c14(F(x1),F(x4)) · c15(F(x1),F(x5)) · c16(F(x1),F(x6))

·c23|1(F(x2|1),F(x3|1)) · c24|1(F(x2|1),F(x4|1))
·c25|1(F(x2|1),F(x5|1)) · c26|1(F(x2|1),F(x6|1))
·c34|12(F(x3|12),F(x4|12)) · c35|12(F(x3|12),F(x5|12))

·c36|12(F(x3|12),F(x6|12)) · c45|123(F(x4|123),F(x5|123))

·c46|123(F(x4|123),F(x6|123)) · c56|1234(F(x5|1234),F(x6|1234)) (3)

For d = 6, for example, the D-vine density (2) can be written as

f (x1, · · · ,x6) =
6

∏
i=1

f (xi) · c12(F(x1),F(x2)) · c23(F(x2),F(x3))

·c34(F(x3),F(x4)) · c45(F(x4),F(x5)) · c56(F(x5),F(x6))

·c13|2(F(x1|2),F(x3|2)) · c24|3(F(x2|3),F(x4|3))
·c35|4(F(x3|4),F(x5|4)) · c46|5(F(x4|5),F(x6|5))
·c14|23(F(x1|23),F(x4|23)) · c25|34(F(x2|34),F(x5|34))

·c36|45(F(x3|45),F(x6|45)) · c15|234(F(x1|234),F(x5|234))

·c26|345(F(x2|345),F(x6|345)) · c16|2345(F(x1|2345),F(x6|2345)) (4)

The vine copulas involve marginal conditional distributions that can be expressed
by h function. Assume that u1 and u2 are uniform, i.e. f (u1) = f (u2)= 1, F(u1) = u1

and F(u2) = u2. Then the univariate conditional distribution is

h(u1|u2;θ ) := F(u1|u2;θ ) =
∂Cu1,u2(u1,u2;θ )

∂u2
(5)

where θ is the parameter vector for Cu1,u2 . If there are two conditional variables, the
h function can be written as
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h(u1|u2,u3;θ ) = F(u1|u2,u3;θ ) =
∂Cu1,u3|u2

(F(u1|u2),F(u3|u2);θ )
∂F(u3)

(6)

In general, we use the form h(u|υ ;θ ) to represent the marginal conditional dis-
tributions. Joe [13] showed that

h(u|υ ;θ ) := F(u | υ) = ∂Cu,υ j |υ− j
(F(u | υ− j),F(υ j | υ− j))

∂F(υ j | υ− j)
(7)

where Cu,υ j |υ− j
is the dependency structure of the bivariate conditional distribution

of u and υ j conditioned on υ− j, and the vector υ− j is the vector υ excluding the
component υ j (see Aas et al. [6]).

In this study, we follow the estimation method of Aas et al. [6]-who used se-
quential estimates as starting values and then estimate the vine copulas through the
maximum likelihood estimation method, again.

2.2 Minimum Cross Entropy

Entropy has been extended for application to the fields of econometrics, extreme
value, etc., as done by Golan [14], Zellner and Tobias [15], Pandey [16], and oth-
ers. Kullback [17] proposed an information-theoretic distance D between the two
probability distributions. This information theoretic distance is known as directed
divergence, or cross entropy.

Assume that the uniforms of a six-dimensional vine copula are U , V , W , X , Y ,
and Z that can be formed from the ARMA-GARCH model. Let U ′

i =Ui/∑T
i=1 Ui be

the probability distribution. In the same way, if we transform V , W , X , Y , and Z into
V ′i , W ′

i , X ′i , Y ′i and Z′i , then the distance between U ′
i and V ′i can be expressed as

D(U ′,V ′) =
T

∑
i=1

U ′
i log(U ′

i /V ′i ) (8)

where D(U ′,V ′) �= D(V ′,U ′), so the cross entropy is asymmetric. Lind [18] proved
that a consequence of minimum cross entropy is that minimum information is in-
ferred from the prior distribution. Thus, we solve the minimum information theoretic
distance D between one variable and the other variables, implying that the two vari-
ables are the closest. It is worth mentioning that the closest distance does not always
mean the maximum empirical Kendall’s tau, linear correlation, or tail dependence.
In addition, the property of asymmetry explains that two markets or variables are
never in the same status, and that the smaller has more impact on the other market
or variable.

The process of selecting the ordering of the C-vine copula is similar to the max-
imum empirical Kendall’s tau method. We calculate the sum of the cross entropies
between one variable and the remaining variables, and select the minimum as the
first variable. Similarly, we reorder the remaining variables and repeat the process
of calculating the sum of the cross entropies, thus finding the second variable, third
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variable, and so on. For the ordering of the D-vine copula, let the minimum pair
be the first two variables; then we calculate the cross entropy between the first two
variables and the other variables, using the minimum pair as the second and third
variables. The rest of the procedure can be done in the same manner.

2.3 ES and Optimal Portfolio

To extend the economically useful application of the vine copula model, we use the
Monte Carlo simulation for the vine copula model to calculate the expected shortfall
of an equally weighted portfolio. After that, the optimal portfolio weights of the se-
lected assets are constructed under a minimum expected shortfall framework, using
global optimization with the differential evolution algorithm.

The method for calculating the expected shortfall consists of, to summarize, four
steps. First, we use the best vine copula to generate the random number whose length
is sample size N. Second, we plug the random number into inverse functions of the
probability distributions of the random variables, such as the skewed generalized
error distribution in this study, and employ the mean and variance equations of the
ARMA-GARCH model to get the N values of each variable at period t + 1. Third,
we distribute equal weights to each variable, and get the totaling variable by adding
them up. Last, the expected shortfall is calculated at 100%, 10%, 5%, 2%, and 1%
levels, and then we repeat the first three steps 1000, 2000 and 5000 times for getting
the convergence values.

Now consider an investor who wants to minimize the ES at 100%, 10%, 5%,
2%, and 1%, subject to achieving a particular expected return. Let wi be the weight
vector of the portfolio weights of the risky assets. The investor solves the following
optimization problem:

Min ES = E[r|r ≤ rα ]
subject to
r = w1× r1,t+1 +w2× r2,t+1 + · · ·+wd× rd,t+1

w1 +w2 + · · ·+wd = 1
0≤ wi ≤ 1, i = 1,2, . . . ,d

where rα is the lower α-quantile, and ri,t+1 represents the asset return of the variable
i at period t+1. Global optimization can then solve this problem with maximum
iterations to be 30 and with only 10 repetitions. Even at this small simulation scale,
the estimated weights still converge.

3 Data and Empirical Results

3.1 Data, KS, and LM Tests

This study uses the Dow Jones-UBS subindices for the prominent agricultural com-
modities, including coffee, corn, cotton, soybean, sugar, and wheat. Our sample
covers the period from January 1, 2008, to January 14, 2013, and, to eliminate the
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spurious correlation arising from holidays, we drop those observations for any hol-
idays associated with the least one index. The return series are 100 times the log-
difference of the commodity indices. Table 1 contains descriptive statistics; these
statistics show that the data for each variable are not a normal distribution, since
the Jarque-Bera test rejects the null hypothesis for each index return. All skewness
values are less than 0, and the values of kurtosis are greater than 3, thereby implying
that all the variables are skewed to the left, high kurtosis, and fat-tailed.

For each data set, we use the ARMA-GARCH process to estimate the marginals,
and assume that all the marginals are skewed generalized error distributions. The
soybean, wheat, and sugar data sets follow the ARMA (0, 0)-GARCH (1, 1) pro-
cess; the corn data set follows the ARMA (1, 1)-GARCH (1, 1) process; the coffee
data set follows the ARMA (1, 0)-GARCH (1, 1) process; and the cotton data set
follows the ARMA (0, 1)-GARCH (1, 1) process. Next, we have to ensure that all
the marginals are uniform distributions and that the i.i.d lies between 0 and 1. Two
kinds of tests, the Kolmogorov-Smirnov test (KS-test) and the Lagrange multiplier
test (LM test), are performed. Table 2 shows that none of the marginals rejects the
null hypotheses of the KS and LM tests at the 5% level. Thus, we can safely assume
that the marginals are skewed generalized error distributions, which is feasible and
appropriate.

Table 1 Data Description and Statistics

Coffee Corn Cottton Soybean Sugar Wheat

Mean −0.0220 0.0104 0.0010 0.0239 0.0245 −0.0720
Median 0.0000 0.0000 0.0427 0.0181 0.0002 −0.0481
Maximum 7.5106 8.6624 6.9333 6.4351 8.1859 8.7966
Minimum −11.2407 −8.1229 −7.1241 −7.3371 −12.3654 −9.9713
Std. Dev. 1.9145 2.1785 2.0603 1.7850 2.4379 2.4578
Skewness −0.2111 −0.0113 −0.1550 −0.2829 −0.4248 −0.0559
Kurtosis 4.5772 4.2833 3.4610 4.6729 4.6770 4.2077
Jarque-Bera 143 88 16 168 190 79
Probability 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000

3.2 The Ordering of Vine Copulas Based Cross Entropy

Table 3 and Table 4 show all the empirical Kendall’s tau for each variable and the
sums of each variable with the other variables; Table 5 and Table 6 are for the re-
sults of the cross entropy method. Apparently, the ordering of the C-vine copula in
the methods of minimum cross entropy and maximum empirical Kendall’s tau are
V, U, W, X, Y, Z and V, U, X, W, Y, Z, respectively. For the D-vine copula, both
the methods have the same ordering, that is, W, V, U, Y, X, and Z. We calculate
the sum of the AIC and BIC for each ordering. The AIC and BIC are −2498.842
and −2364.519 as per the maximum empirical Kendall’s tau method, while they
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Table 2 KS Test and ARCH LM Test

Coffee Corn Cottton Soybean Sugar Wheat

KS test statistics 0.0221 0.0089 0.0180 0.0331 0.0235 0.0242
P value 0.5544 1 0.7937 0.1167 0.4714 0.4329
P value of LM
test
First moment 0.6422 0.7578 0.8158 0.6001 0.1715 0.1622
Second moment 0.8583 0.0948 0.3927 0.4839 0.3623 0.9671
Third moment 0.8655 0.0659 0.6133 0.4046 0.3221 0.8527
Fourth moment 0.8145 0.0738 0.7436 0.3263 0.2969 0.6921

Table 3 Empirical Kendall’s tau for Ordering Sequences in Vine Copulas (1)

U V W X Y Z SUM SUMV

U 1 0.4388 0.3747 0.2093 0.2152 0.2039 2.4419 2.0031
V 0.4388 1 0.5141 0.2029 0.2112 0.2247 2.5917 —
W 0.3747 0.5141 1 0.1977 0.2063 0.1955 2.4882 1.9741
X 0.2093 0.2029 0.1977 1 0.1994 0.2339 2.0432 1.8403
Y 0.2152 0.2112 0.2063 0.1994 1 0.1903 2.0224 1.8112
Z 0.2039 0.2247 0.1955 0.2339 0.1903 1 2.0482 1.8235

Note:U, V, W, X, Y, and Z represent soybean, corn, wheat, coffee, cotton, and sugar,
respectively. SUMV represents the sum cross entropy value that excludes the variable
V.

Table 4 Empirical Kendall’s tau for Ordering Sequences in Vine Copulas (2)

W X Y Z SUMVU SUMVUXSUMVUXW

W 1 0.1977 0.2063 0.1955 1.5995 1.3978 —
X 0.1977 1 0.1994 0.2339 1.6310 — —
Y 0.2063 0.1994 1 0.1903 1.5960 1.3966 1.1903
Z 0.1955 0.2339 0.1903 1 1.6196 1.3857 1.1903

Note: SUMVU,SUMVUX and SUMVUXW have the same meaning with SUMV.

equal to −2499.947 and −2365.651 as per the ordering of minimum cross entropy
method. Therefore, it is explicitly evident that the minimum cross entropy method
is more appropriate than and preferable to the maximum empirical Kendall’s tau
in selecting the sequence of the many different orderings of high dimension vine
copulas. Moreover, the asymmetric differences in the first row are all positive, im-
plying that soybean clearly has a more important status in comparison with the other
agricultural commodities.
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Table 5 Minimum Cross Entropy Values for Ordering Sequences in Vine Copulas (1)

U V W X Y Z Sum SumV

U 0 0.1798 0.2229 0.3308 0.3290 0.3416 1.4042 1.2244
(0.0027) (0.0046) (0.0010) (0.0110) (0.0188)

V 0.1771 0 0.1423 0.3319 0.3326 0.3180 1.3019 —
(0.0028) (−0.0101)(0.0091) (−0.0086)

W 0.2183 0.1395 0 0.3334 0.34090 0.3443 1.3765 1.2370
(0.0266) (0.0045) (−0.0055)

X 0.3298 0.3420 0.3600 0 0.3465 0.3124 1.6907 1.3487
(0.0105) (−0.0024)

Y 0.3180 0.3235 0.3364 0.3360 0 0.3595 1.6734 1.3499
(0.0014)

Z 0.3228 0.3266 0.3498 0.3148 0.3609 0 1.6749 1.3483

Note: SumV represents the sum cross entropy value that excludes the variable V. The
numbers in the parentheses are the asymmetric differences.

Table 6 Minimum Cross Entropy Values for Ordering Sequences in Vine Copulas (2)

W X Y Z SumVU SumVUW SumVUWX

W 0 0.3334 0.3409 0.3443 1.0187 — —
X 0.3600 0 0.3465 0.3124 1.0189 0.6589 —
Y 0.3364 0.3360 0 0.3595 1.0319 0.6955 0.3595
Z 0.3498 0.3148 0.3609 0 1.0255 0.6757 0.3609

Note: SumVU,SumVUW and SumMVUWX have the same meaning with SumV.

3.3 Estimation Results

Table 7 and Table 8 report the parameter estimates for the C-vine and D-vine copu-
las, respectively. 1, 2, 3, 4, 5, and 6, in proper turn, represent the variables of V, U,
W, X, Y, and Z. First, it has to be noted that the fitting pair-copula families of the
C-vine copula structure are T, T, Gaussian, Survival BB1, T, BB7, T, T, T, Frank,
Survival Gumbel, Frank, Survival BB8, Survival BB1, and BB8 in the many differ-
ent copula families, and T, T, Survival BB7, T, BB1, BB7, Frank, T, Frank, Survival
Gumbel, Gaussian, Survival BB8, Frank, T, and Survival Clayton for the D-vine
copula structure. Second, when we compare the sum values of the AIC and BIC
of the C-vine copula with those of the D-vine copula, we find that the C-vine cop-
ula structure offers a better performance. Third, corn and wheat have the maximum
Kendall’s tau, and corn and cotton have the greatest upper tail dependence; also,
the lower and upper tail dependences between corn and soybean are symmetric, of
which one has the greatest lower tail dependence among all the pair-copulas. There
is more exact information in Table 7 and Table 8. Specifically, when we compare
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Table 7 Results of C-vine Copulas and Kendall’s tau

Copulas parameters Lower and up-
per tails

Kendall’tau AIC BIC

T (C12) 0.6424*** 0.2671 0.4442 −736.1186 −725.7860
(0.0165)
5.7249*** 0.2671
(1.105)

T (C13) 0.7196*** 0.2496 0.5114 −955.5787 −945.2462
(0.0125)
8.2569*** 0.2496
(1.9489)

Gaussian (C1,4) 0.3292*** 0 0.2136 −138.5584 −133.3922
(0.0229)

Survival BB1 (C15) 0.1324*** 0.1997 0.2087 −152.8361 −142.5035
(0.0460)
1.1789*** 0.5554
(0.0304)

T (C16) 0.3356*** 0.0194 0.2179 −156.8095 −146.4769
(0.0247)
13.0129*** 0.0194
(4.3773)

BB7 (C23|1) 1.1298*** 0.0061 0.1244 −56.0286 −45.6961
(0.0342)
0.1361*** 0.1531
(0.03949)

T (C24|1) 0.1782*** 0.0022 0.1141 −39.6613 −29.3288
(0.0277)
17.1412* 0.0022
(10.5062)

T (C25|1) 0.1847*** 0.0009 0.1183 −40.4455 −30.1229
(0.0275)
20.4298 0.0009
(12.1983)

T (C26|1) 0.1286*** 0.0053 0.0821 −23.7662 −13.4377
(0.0287)
13.0391*** 0.0053
(5.1834)

Frank(C34|12) 0.4856*** 0 0.0538 −6.7844 −1.6181
(0.1641)

Survival
Gumbel(C35|12)

1.0540*** 0.0698 0.0512 −16.2294 −11.0632

(0.0173)
Frank(C36|12) 0.3691*** 0 0.0409 −3.3367 1.8295

(0.1662)
Survival BB8 (C45|123) 1.9190*** 0 0.1309 −50.1434 −39.8109

(0.5764)
0.6749*** 0
(0.1980)

Survival BB1 (C46|123) 0.0961*** 0.1625 0.1625 −96.6443 −86.3118
(0.0453)
1.1393*** 0.5442
(0.0297)

BB8 (C56|1234) 1.807*** 0 0.0969 −27.0332 −16.7006
(0.2839)
0.7841*** 0
(0.1590)

Sum −2499.974 −2365.651

Note: Signif. codes are as follows: 0 *** 0.001 ** 0.01 * 0.05. The numbers in the
parentheses are the standard deviations.
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Table 8 Results of D-vine Copulas and Kendall’s tau

Copulas parameters Lower and up-
per tails

Kendall’tau AIC BIC

T (C31) 0.7080*** 0.2389 0.5008 −954.7202 −944.3876
(0.0131)
8.2663*** 0.0.2389
(1.8606)

T (C12) 0.5660*** 0.1405 0.3830 −532.4336 −522.1010
(0.0184)
8.3539*** 0.1405
(2.0874)

Survival BB7 (C25) 1.1834*** 0.2036 0.1867 −137.8274 −127.4949
(0.0349)
0.2526*** 0.0643
(0.0432)

T (C54) 0.3054*** 0.0025 0.1976 −127.0945 −116.7620
(0.0247)
20.9189 0.0025
(18.2367)

BB1 (C46) 0.2007*** 0.0441 0.1786 −114.9425 −104.6100
(0.0450)
1.1064*** 0.1289
(0.0277)

BB7 (C23|1) 1.3049*** 0.1385 0.2562 −241.3642 −231.0316
(0.0453)
0.3507*** 0.2991
(0.0530)

Frank(C15|2) 0.8702*** 0 0.0960 −23.8892 −18.7229
(0.1725)

T (C24|5) 0.1430*** 0.0003 0.0913 −22.4205 −12.0880
(0.0282)
22.3778*** 0.0003
(7.8860)

Frank(C56|4) 1.1137*** 0 0.1222 −44.8028 −39.63653
(0.1728)

Survival
Gumbel(C35|12)

1.1007*** 0.1228 0.0543 −34.5325 −29.3663

(0.0207)
Gaussian (C14|25) 0.1458*** 0 0.0932 −29.9344 −24.7681

(0.0268)
Survival BB8 (C26|45) 1.3410*** 0 0.0690 −13.1723 −2.8398

(0.3912)
0.7803*** 0
(0.3201)

Frank(C34|125) 0.1964*** 0 0.1312 −48.4655 −43.2992
(0.1699)

T (C16|245) 0.1832*** 0.0017 0.1173 −35.6728 −25.3403
(0.0274)
18.2518** 0.0017
(7.9812)

S-Clayton (C36|1245) 0.2482*** 0.0612 0.1104 −49.1264 −43.9602
(0.0396)

Sum −2410.399 −2286.409

Note: Signif. codes are as follows: 0 *** 0.001 ** 0.01 * 0.05. The numbers in the
parentheses are the standard deviations.
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Table 9 Expected Shortfall of Equally Weighted Portfolios

ES 100% 10% 5% 2% 1%

1,000 times 0.0025 −1.310 −1.572 −1.897 −2.129
2,000 times 0.0033 −1.309 −1.572 −1.897 −2.127
5,000 times 0.0032 −1.309 −1.572 −1.897 −2.127

Table 10 Optimal Portfolio Weights Based on Minimum ES with MC Simulation Given
Copulas

w1 w2 w3 w4 w5 w6 O.P.R

100% 0.1377 0.1716 0.2059 0.1260 0.2063 0.1525 0.0098
10% 0.1433 0.0833 0.1564 0.3153 0.1075 0.1942 −1.226
5% 0.1083 0.1299 0.1592 0.3334 0.1345 0.1347 −1.465
2% 0.1245 0.1430 0.1524 0.2908 0.1098 0.1795 −1.764
1% 0.1509 0.1372 0.1138 0.3106 0.1229 0.1646 −1.981

some dependences with the conditional dependence, the structures and families may
be seen to have changed, such as C25 and C25|1, C15 and C15|2, etc.

We use the first tree of the C-vine copula to calculate the ES and optimal portfolio
weights since the C-vine copula is the best-performing model in terms of both the
information criteria. Table 9 presents the ES at levels of 100%, 10%, 5%, 2%, and
1%. We can see that the estimated ES converges to 0.003,−1.31,−1.57,−1.90, and
−2.13 at period t+1 at 100%, 10%, 5%, 2%, and 1% levels, respectively. Table 10
is a report of the optimal portfolio weighting estimates at period t+1. As long as we
invest in strict accordance with the optimal portfolio weights, the ES will mitigate
risk by 6.41%, 6.69%, 7.16%, and 7.00% at 10%, 5%, 2%, and 1%, respectively.
The ES at the 100% level represents the mean. Once we begin investing the opti-
mal weights, the interest is bound to increase dramatically 2.27 times. This is clear
evidence of the strategys hedging potential.

4 Conclusions

First and foremost, this paper proposes the vine copula based cross entropy model
as more suitable and preferable to select the ordering and estimate dependence,
conditional dependence, and tail dependence. In addition, we extend the applica-
tion of vine copula to estimate the ES and optimal portfolios by using the Monte
Carlo simulation and global optimization, which provides new and interesting risk
management strategies for managers and investors working with high dimensional
portfolios. Moreover, the empirical analysis of the agricultural commodities shows
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that soybean evidently has a more important status in comparison with the other
agricultural commodities. Another of the significant observations is that the C-vine
copula structure performs better than the D-vine copula.
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Abstract. China’s economy has experienced rapid development in the past 20 years.
In 2010, China’s GDP was valued at $5.87 trillion, surpassing Japan’s $5.47 trillion,
and the nation became the world’s second largest economy after the USA. People’s
incomes are also rapidly rising in all parts of the country. However, along with the
prosperity seems to have come a malady that is the modern world’s woe: obesity.
In China, the prevalence of obesity has increased dramatically. Obesity and its re-
lated diseases lay a heavy burden on medical expenditure and constrain economic
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Our findings show that there is a strong relationship between obesity and some of
the individual socioeconomic factors and living habits, and that this relationship
is mediated by the characteristics of households and areas, as well. The empirical
findings of this study can be used to develop more effective ways of intervention
and strategies for obesity prevention in the specific context of each of the different
regions.

1 Introduction

China is currently undergoing rapid economic development, demographic transfor-
mation and large-scale urbanization. Since the reform and the opening up in 1978,
the average living standards have experienced a sustained and rapid growth. The
gross domestic product per capita has risen by about 220% with an increase in an-
nual growth of around 7%. The rapid increase in productivity has resulted in higher
incomes and an ample food supply. However, at the same time, some worrying
trends have been detected, such as the fast pace of urbanization, dietary transition
with an inclination toward Western-style, fewer fitness activities, serious food safety
problems, and environmental pollution. All of these lead to many health problems,
and more and more people suffer from overweight and obesity. Obesity and over-
weight have been recognized as major worldwide public health concerns, jeopar-
dizing the health of adults as well as children [31]. Excess body fat is associated
with increased morbidity, disability, and premature mortality from cardiovascular
diseases, diabetes, cancers, and musculoskeletal disorders.

Nowadays, the obesity epidemic is a public health challenge not only for devel-
oped countries but also for developing countries, such as China, India, Mexico, and
Thailand. In developing countries, although the obesity rate is lower compared to
the same in the U.S and the Western countries, the increase in the absolute volume
of obese population is striking. In China, the number of overweight and obese adults
and children has continued to grow dramatically in the recent years. In 2010, more
than 340 million adults were diagnosed as overweight, of whom at least 30 million
were certified clinically obese. Among the Chinese adults aged from 18 to 75 years,
the prevalence of overweight has surged from 14.6% in 1992 to 45.38% in 2011. In
the same population, obesity has nearly tripled from approximately 5.2% in 1992
to 15.06% in 2011 [29]. It is now estimated that a fifth of the overweight and obese
individuals in the world are located in China. The sudden onslaught of obesity has
led to an increase in the prevalence of chronic diseases. According to some stud-
ies, in China, the direct and indirect economic loss of CNDs related to overweight
and obesity is up to 23.5 billion Yuan in 2010, and these losses are continually on
the increase [9]. Thus, the medical cost of overweight and obesity in China is enor-
mous. If no actions are taken on obesity prevention, and the opportunities for the
prevention of chronic disease are missed, even worse increases in medical costs can
be expected in the near future [30].

In recent years, the problem of obesity has gradually drawn much more attention
from the whole society. Identifying the risk factors at the individual level as well
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as the regional level is becoming important, since with more information on it, we
can guide people better to change their unhealthy lifestyle and diet habits to avoid
becoming overweight. Meanwhile, at the community level, related policies can be
chalked out and measures taken to change the related social environment in order to
reduce the prevalence of obesity.

The objective of this paper is to identify the risky factors at the individual level,
household level and community level, and evaluate whether the relationship be-
tween area-based socio-economic environment and obesity can be explained by in-
dividual socio-demographic, and socio-economic factors and living habits.

The remainder of the paper is organized as follows. Section 2 describes the data
source we used. Section 3 discusses the multilevel analysis model. The estimated
models and the empirical results are discussed in section 4. Finally, some concluding
remarks are given in the last section.

2 Literature Review

The prevalence of obesity has increased dramatically worldwide, and its dangers and
health hazards have been the focus of attention of many scholars. Manson suggested
that obesity should be paid much more attention since there is a strong relationship
between overweight and the development of chronic illnesses such as diabetes, car-
diovascular disease, osteoarthritis, and some cancers [11]. Sturm found that the ris-
ing obesity rates may be a greater threat to public health than even the smoking or
drinking related problems [23].

Upon reviewing relevant literatures, I found many of the previous studies on
obesity come mainly from the fields of medicine, biology and public health. These
studies reported various factors that were associated with obesity risk from the per-
spectives of medicine, biology, genetic, and epidemiology [2] [12] [16] [24] . How-
ever, the finer details and causes of mechanism of obesity and hypertension still
remains unresolved.

With the participation of social scientists and economists, researches dedicated
to explicating the multifaceted relationship between the socio-economic determi-
nants of obesity prevalence have been on the risen. Philipson and Posner pointed
out that an unhealthy lifestyle had negative influences on the Body Mass Index
(BMI), for example, increased reliance on technology in people’s daily lives has
promoted sedentary lifestyles which, in turn, lead to weight gain [19]. Drewnowski
and Specter found the highest obesity rates among the poorest and the least educated
members of the industrialized societies [6]. Monteiro demonstrated that obesity is
increasing the fastest in the sub-populations with low socio-economic status [18].
McLaren pointed out consistent evidence of a negative relationship between obesity
and socio-economic status of women [15]. Yoon found that there was a strong posi-
tive relationship between high income and obesity in males, but not in females [27].
Ross pointed out that living in disadvantaged regions may affect BMI and obesity
[21]. Lovasi et al also found that differences in area facilities, such as the availabil-
ity and price of healthy food and the absence of parks and sports and recreational
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facilities, may give rise to area differences in dietary intake and physical inactivity
[10]. In Cranes research, social contagion models suggest that people’s behaviour
is influenced by the norms or values of those around them [5]. Matheson examined
the impact of neighbourhood material deprivation on gender differences in BMI
for urban Canadians, and found that living in neighbourhoods with higher material
deprivation was associated with higher BMI [13]. Corsi used a multilevel perspec-
tive to investigate the importance of local geographical context in shaping the BMI
in low and middle income countries, and the results showed that in countries with
greater neighbourhood variation it is possible that the BMI is being influenced by
local conditions more than in countries with lesser neighbourhood variation [4].

However, most of the studies have been conducted on the developed countries,
such as thee US, Canada, Britain, etc., and very limited research has been done on
the developing countries, whose economic and social environments are very differ-
ent from the developed countries.In addition, we found that in China, most studies
about obesity mainly focus on individual influencing factors and neglect the impacts
from the particular region. This will lead to deficiencies in policy formulation in that
the policies will only consider individual factors and overlook the diversifications
at the regional level. Therefore, more studies which consider both micro-level and
macro-level factors should be conducted to make the socio-economic determinants
of obesity in China become clear. This will provide the policy makers with better
and comprehensive information to formulate both macro and micro policies target-
ing the prevention of obesity, and the related chronic non-communicable diseases
(CNDs).

To summarize, there are three main reasons for conducting this research. First,
the quick prevalence of obesity is becoming an urgent problem challenging public
health in China, and they place a heavy burden on the national medical expenditures
and constrain the nation’s socio-economic development. Second, there are limited
researches about the socio-economic determinants of obesity in China. So the im-
pacts of the socio-economic factors of obesity are not clear. Finally, most existing
studies in China mainly focus on the determinants at an individual level and over-
look the influence from the higher levels, such as the household level and the com-
munity level. This leads to inefficiency and inadequacy of policies that target the
prevention of obesity.

3 Data Sets Introduction

The data we used are from the China Health and Nutrition Survey (CHNS) con-
ducted in 2009. CHNS was conducted by an international team of researchers whose
backgrounds include nutrition, public health, economics, sociology, Chinese stud-
ies, and demography. This survey was designed to examine the effects of the health,
and nutrition, programs implemented by the national and local governments and to
see how the social and economic transformation of the Chinese society is affecting
the health and nutritional status of its population.
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A total of nine provinces were covered in this survey. The combined population of
these provinces accounts for approximately 56% of the total population [20]. All the
provinces vary substantially in geography, economic development, public resources,
and health indicators. A multi-stage, random cluster process was used to draw the
samples surveyed in each of the provinces. The counties in these nine provinces
were stratified on the basis of income (low, middle, and high), and a weighted sam-
pling scheme was used to randomly select four counties in each province. In 2009,
there were 218 primary sampling units consisting of 36 urban neighbourhoods, 37
suburban neighbourhoods, 37 towns, and 108 villages. In all, almost 16,000 individ-
uals participated.

In the CHNS, all the questions related to individual activities, lifestyle, health
status, marriage and birth history, body shape, mass media exposure, etc. were cate-
gorized into two sets of individual questionnaires: for adults aged 18 and older and
for children and adolescents under age 18. The adults were made to undergo detailed
physical examinations that included the measuring of weight, height, arm and head
circumference, mid-arm skin-fold measurements, and blood pressure.

In this study, from the data set of 2009, we only used the data set of adults,
and dropped the data of the participants who were younger than 18 years of age.
Pregnant women were excluded, leaving a final sample of 10,931 respondents from
9 provinces; of these, 839 were from the Liaoning province, 821 were from the
Heilongjiang province, 937 were from the Jiangsu province, 818 were from the
Shandong province, 762 were from the Henan province, 792 were from the Hubei
province, 699 were from theHunan province, 956 were from the Guangxi province,
and 757 were from the Guizhou province. All 10931 respondents were nested in
4,423 households, within 218 communities.

Figure 1 shows the proportion of overweight and obesity in the nine provinces;
we can see that the Shandong and the Henan provinces had higher proportions of

Fig. 1 Proportion of Overweight and Obesity in Nine Provinces
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Fig. 2 Proportion of Obesity in 218 Communities

obesity and overweight than the others, and that the lowest ratio of obesity was in the
Hunan province. Figure 2 shows the uneven distribution of the obesity prevalence
in the 218 communities.

4 Methods

Multilevel statistical models allow for the estimation of contextual effects of higher
level factors by accounting for the spatial clustering of individuals within a region.
The Stata 12.0 software package was used to estimate multilevel logistics models.

In this research, since the dependent variable obesity is a binary variable, we be-
gin with a brief review of logit regression model, and then proceed to formulate the
multilevel logit regression model. In logistic regression for binary outcome mea-
sures in non-hierarchically structured data, the probability of ”event” is usually con-
verted to odds:p/(1− p), the logarithm of the odds called the logit, is then treated
as a linear function of a set of explanatory variables, resulting in the following logit
model:

logit (p) = log

(
p

1− p

)
= β0 +

k

∑
k=1

βkxk, (1)

where βk is the regression slope coefficient of the explanatory variable xk. With this
logit transformation of the outcome, the nonlinear relationship between the outcome
and covariates is converted to a linear relationship. A regression coefficient can be
interpreted as the amount of change in the log odds per unit change in the corre-
sponding explanatory variable, controlling for other covariates.

Since the multi-stage random cluster process was used in CHNS to collect data,
the dependence among the observations often comes from several levels of the hi-
erarchy. In this case, the use of single-level statistical models is no longer valid and
reasonable. This is because in traditional logistic regression, the assumptions of it
require: (1) independence of the observations conditional on the explanatory vari-
ables and; (2) uncorrelated residual errors. In the nested dataset, these assumptions
cannot always be satisfied [8]. Hence, in order to draw appropriate inferences and
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conclusions from the multi-stage stratified clustered data we may require tricky and
complicated modelling techniques like multilevel modelling. It allows the simul-
taneous examination of the effects of group level (cluster and division) and indi-
vidual level variables on individual level outcomes while accounting for the non-
independence of the observations within the groups.

Multilevel analyses allow for the estimation of variability within and between the
groups by separating the variation at the individual level from that at the household
level and the community level. According to Wang [8], the three-level logit model
for obesity prevalence is explained as follows:

The individual-level (level-1) model can be written as:

logit
{

Pr
(
yi jk = 1|η1 jk,xni jk

)}
= η1 jk +β1x1i jk + · · ·+β5x5i jk (2)

where y is the binary outcome variable, if people are suffering from obesity, it is
coded as 1, and x1i jk to x5i jk are the covariates at the individual level,and the inter-
cept η1 jk varies between the families j and the communities k. Denoting the two
covariates at the family level as ω1 jk to ω2 jk, the household-level (level-2) model
for the intercept becomes:

η1 jk = π11k +π12ω1 jk +π13ω2 jk + ς (2)jk , (3)

here only the intercept π11k has a k subscript and therefore requires a community-
level model:

π11k = γ111 + γ112ν2k + γ113ν3k + ς (3)k , (4)

where ν2k is the covariate at the community level (level-3). Substituting the model
for π11k in the level-2 model and subsequently for η1 jk into the level-1 model, we
obtain:

Logit
{

Pr
(

yi jk = 1|xni jk,ς
(2)
jk ,ς (3)k

)}
= γ111 +β1x1i jk + · · ·+β5x5i jk

+π12ω1 jk +π13ω2 jk + γ112ν2k + ς (2)jk + ς (3)k

(5)

The intra class coefficient (ICC) is defined as the amount of variation in the re-
sponses explained by the clustering variable. It informs us on the proportion of total
variance in the outcome that is attributable to the area level. Based on above infor-
mation, ICC can be estimated from the empty model. For the same community k but
different households j and j′ we obtain

ICC(communities) = Cor
(

y∗i jk,y
∗
i′ j′ k|xi jkxi′ j′k

)
=

ψ(3)

ψ(2) +ψ(3) +π2/3
(6)

where y∗ is the binary outcome variable, if people are suffering from obesity, it is
coded as 1, x is the covariate at the individual level, and ψ is the variance at the
different levels. Whereas for the same household j and the same community k, we
get:
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ICC(household,communities) = Cor
(

y∗i jk,y
∗
i′ j′ k|xi jkxi′ j′k

)
=

ψ(3) +ψ(2)

ψ(2) +ψ(3) +π2/3
(7)

In a three-level model, ψ(2) > 0 and ψ(3) > 0, and it follows that:

ρ (household,communities)> ρ (communities) , (8)

this makes sense since the individuals of a given family are more similar than the
individuals that belong to a given community but who are from different families.
We can also quantify the unobserved heterogeneity by considering the median odds
ratio (MOR). The MOR is defined as the median value of the odds ratio between the
area at highest risk and the area at lowest risk when randomly picking out two areas.
The MOR estimates the individual risk of obesity in median that can be attributed
to the different level. In the three-level model for the CHNS data, comparing the
individuals of the different families in the same community gives the median odds
ratio as:

MOR(community)median = exp

{√
2ψ(2)Φ−1(3/4)

}
, (9)

where Φ is the cumulative distribution function for a normal distribution. And com-
paring the individuals of the different families from the different communities gives:

MORmedian = exp

{√
2(ψ(2) +ψ(3))Φ−1(3/4)

}
(10)

The modeling strategy consists of sequential model estimation. Model 1 includes
only a constant term that will allow the calculation of the ICC and the MOR. This
intercept-only model predicts the probability of obesity. Then the individual inde-
pendent variables, including the socio-demographic and socioeconomic factors and
the lifestyle factors, are added to the following models. Finally, the family charac-
teristics factors at level-2, and the urbanization index at level-3 are included in the
model sequentially.

4.1 Dependent Variables

Body Mass Index (BMI) is the preferred standard for estimating the dependent vari-
able obesity, since BMI is a population-based easure which has been found in clin-
ical settings to be a good approximation for the assessment of total body fat for a
majority of patients. The BMI is calculated from the respondents’ weight (in kilo-
grams) divided by their height in square meters.

BMI =
weight(kg)
height2(m2)

(11)

Usually, according to the standards stipulated by the WHO, the BMI is classified
into four categories: a BMI < 20kg/m2 is called underweight, a BMI that is between
20 and 25 is defined as normal weight, a BMI of 25kg/m2 is termed as overweight,
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and a BMI of 30kg/m2 is defined as obese. However, for the Asian population,
there is much debate about the most appropriate BMI cut-off points to distinguish
between normal weight, overweight and obesity. Many researchers tend to reduce
the BMI cutoff points for the Asian population [17]. Quite a few researches revealed
that those Asians with a lower BMI had the same major metabolic morbidities as
Americans with a higher BMI [9]. On the basis of the previous studies and according
to the standard proposed by the Ministry of Health of the People’s Republic of
China, this paper used a BMI standard value of 28kg/m2 for obesity. Obesity is
classified as a binary variable, if the BMI value is greater than 28 then the obesity is
coded as 1, otherwise the obesity is taken as 0.

4.2 Independent Variables

The individual independent variables cover many aspects. First, the aspects of socio-
demography, age and gender are included. Age is a continuous variable, and it is
centralized to make it meaningful in a multilevel model. Gender is a binary vari-
able. Second, three measures of socio-economic positions were used: educational
level, employment status and occupation type. Education was categorized into four
levels: primary school or below (reference group), 6-9 years of education (middle
school), 10-12 years of education (high school and technical school), and over 12
years of education (college, university and above). The employment status was a
binary variable, with unemployment as the reference group. The respondents were
of, mainly, four types of occupation: farmers, professionals, administrators, skilled
workers, and service workers. Third, some lifestyle habits, such as smoking, drink-
ing alcohol and participating in activities were included. All of these factors are
binary variables, and the reference individuals are taken to be those who practice no
smoking, no drinking and no activities

At the second level, the total net household income, which is adjusted by CPI,
is included. The household income is classified into five categories. In addition,
the cooking style in the households is also considered; this variable is classified
into two groups, and the reference group is those who tend to process food by
steaming and boiling, and another group is those prefer frying food. In the third
level, the community level, urbanization index which was developed by Popkin is
adapted [8].

5 Results

Table 1 shows the detailed descriptive statistics of the individual level socio-
demographic characteristics, socioeconomic status factors, household level vari-
ables, and community level urbanization index of the sample. The total sample
includes 10,931 adults. It can be seen that the average BMI is 23.29, 42.91% adults
have been classified as overweight, and 14.67% of all the adults have been catego-
rized as obese. Approximately 52% of the sample is female. At the time of the sur-
vey, the average age was 47.85 years old. In the aspect of education, about 40.66%
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received only up to 6 years of education, 34% received 6 to 9 years of education,
18.99% received 9 to 12 years of education, and only 6.1% adults obtained more
than 12 years of education. About 61% of the respondents belonged to the work-
force. The occupation status of the sample is also diverse: 36.61% of the respon-
dents were farmers, 14.72% were professionals, which included senior and junior
professionals, 15.52% were administrators, officers, and office staff, 21.37% were
skilled workers, and 12.05% were service workers. As far as their lifestyle is con-
cerned, we can see that 27.85% of the respondents admitted to smoking at the time,
about one third admitted to drinking alcohol, and about 60% of the people said they
take part in activities, such as running, swimming, gymnasium, etc., at least twice
a week. At the household level, we see that the average household income adjusted
by CPI is about 38,476.23 RMB. In addition, we were also interested in the cooking
method used in the households; we can see that nearly 58.82% families had the ten-
dency to process food by steaming and boiling, and the others preferred to fry food.
At the community level, the average urbanization index is 67.42, and the range of
index is from 30 to 106.

Table 2 and Table 3 display the odds ratio (OR) and the 95% confidence intervals
(CI) from the multilevel logistic regression models (the three-level model). From
Model 1, which is called the empty model, we get the ICC for the household level
and the community level as 27.17% and 11.26%, respectively. The MOR for the
household level and the community level are 2.801 and 1.962, respectively, which
indicates substantial cluster heterogeneity at the contextual level. Model 2 includes
two individual demographic factors; however, these two factors, age and gender, are
insignificant. After adding the socioeconomic status factors in Model 3, we note that
people with 912 years of education are about 18.3% less likely to be obese compared
to those with lower education. Respondents who are working currently have lower
probability (65.2%) of becoming obese. We also see an interesting point which is
that administrators and office staffs have the highest probability of suffering from
obesity compared to the other work types. From Model 4, it can be seen that those
who admitted to smoking at the time have lower odds (OR=71%) in comparison
with those who did not smoke. Other lifestyle habits, such as alcohol consumption
and activity participation, are insignificant. Model 5 considers the characteristics
of households, and we see that the odds of obesity are getting higher with the in-
crease of household income; people from families whose income is located in the
4th quintile have 28% higher possibility of becoming obese. However, people from
the richest of families have only 16% higher odds when compared with the refer-
ence group, and this odds ratio is not significant. In Model 6, all the variables at
the three levels are included. We see that a high urbanization index is associated
with increased odds of obesity in adults. Meanwhile, after being adjusted using this
index, the odds for respondents with more than 12 years of education (OR=0.757)
appear significant at 10% level. In addition, people from families which tend to pro-
cess food by the frying method have nearly 11% higher probability to suffer from
obesity than those who prefer to cook by steaming and boiling.
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Table 1 Descriptive Statistics of Variables (N=10931)

Variable Definition Mean Std. Dev.
Dependent Variables
BMI BMI derived from weight(kg) by height (m)squared 23.292 3.499
Obesity 1 if BMI is equal or larger than 28 kg/m2, 0 if otherwise 14.67% 0.354
Overweight 1 if BMI is equal or larger than 24 kg/m2, 0 if otherwise 42.91% 0.495
Independent Variables
Individual level
Demographic factors
AGE The samples age is restricted to 18 years and older 47.845 15.845
GENDER
Female 1 if gender is female 51.96% 0.499
Male 0 if gender is male 48.04% 0.427
Socioeconomic factors
Education Level
Low 1 if one has 0-6 years of education, 0 otherwise 40.66% 0.419
Medium 1 if one has 6-9 years of education, 0 otherwise 34.25% 0.475
Medium-to-high 1 if one has 9-12 years of education, 0 otherwise 18.99% 0.392
High 1 if one has more than 12 years of education, 0 otherwise 6.10% 0.239
Work status
No jobs 0 if currently no working 38.85% 0.321
Have a job 1 if currently working 61.15% 0.493
Occupation types
Farmers 1 if ones occupation belongs to farmers, 0 otherwise 36.61% 0.371
Professionals 1 if ones occupation belongs to professionals, 0 otherwise 14.72% 0.214
Administrator 1 if ones occupation belongs to officers/administrators, 15.25% 0.224

0 otherwise
Skilled worker 1 if ones occupation belongs to skilled workers, 0 otherwise 21.37% 0.291
Service worker 1 if ones occupation belongs to service workers, 0 otherwise 12.05% 0.326
Lifestyle
Smoking
No smoking 0 if one does not smoke currently 72.15% 0.418
Smoking 1 if one does smoke currently 27.85% 0.448
Alcohol
No Alcohol 0 if one does not drink alcohol 66.87% 0.435
Alcohol 1 if one does drink alcohol 33.13% 0.471
Activity participation
No activity 0 if one does not participate in any activities 42.68% 0.481
Activity 1 if one participates in any kinds of activities 58.32% 0.499

(such as running, etc) more than
twice a week and over 40 min each time

Household level variables
hhinc cpi Household total net income adjusted by CPI 38476.2 46269.77
Cooking method
Steaming 0 if family tends to process food by steaming and boiling 53.82% 0.325
Frying 1 if family tends to process food by frying and baking 46.18% 0.386
Community level variables
Urbanization index An index made from 12 dimensions to reflect the 67.42 19.46

community urbanization level
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Table 2 Odds Ratio Estimated from Random Intercept 3-level Multilevel Logistic Models of
Obesity Prevalence (N=10931) (Models 1-3)

Model 1 Model 2 Model2
OR CI OR CI OR CI

Constant 0.146*** [0.131,0.163] 0.183*** [0.111,0.301] 0.197*** [0.120,0.326]
AGE 0.995 [0.976,1.014] 1.003 [0.983,1.023]
GENDER
Male 1 [1.000,1.000] 1 [1.000,1.000]
Female 0.962 [0.858,1.078] 0.929 [0.824,1.047]
Education Level
< 6 years 1 [1.000,1.000]
6−9 years 0.896 [0.769,1.044]
9−12 years 0.817** [0.675,0.989]
> 12 years 0.825 [0.604,1.126]
Work status
No jobs 1 [1.000,1.000]
Have a job 0.652*** [0.543,0.782]
Primary Occupation
Farmers 1 [1.000,1.000]
Professionals 0.961 [0.656,1.408]
Administrator 1.876*** [1.389,2.533]
Skilled worker 1.373** [1.076,1.752]
Service worker 1.625*** [1.303,2.025]
Lifestyle factors
No smoking
Smoking
No Alcohol
Alcohol
No activity
Activity
Random Effect
Level-2 Variance 0.662*** 0.661*** 0.640***
Level-3 Variance 0.454*** 0.459*** 0.424***
Model fit statistics
AIC 8099.526 8087.79 7143.67
BIC 8113.955 8111.842 7201.404
Note:Exponentiated coefficients; 95% confidence intervals in brackets, * p<0.1, ** p<0.05,
*** p<0.01.
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Table 3 Odds Ratio Estimated from Random Intercept 3-level Multilevel Logistic Models of
Obesity Prevalence (N=10931) (Models 3-6)

Model 4 Model 5 Model6
OR CI OR CI OR CI

Constant 0.210*** [0.127,0.348] 0.294*** [0.167,0.517] 0.225*** [0.131,0.385]
AGE 1.006 [0.986,1.026] 1.007 [0.987,1.027] 1.006 [0.986,1.026]
GENDER
Male 1 [1.000,1.000] 1 [1.000,1.000] 1 [1.000,1.000]
Female 0.829** [0.712,0.967] 0.823** [0.706,0.959] 0.822** [0.705,0.958]
Education Level
< 6 years 1 [1.000,1.000] 1 [1.000,1.000] 1 [1.000,1.000]
6−9 years 0.887 [0.761,1.034] 0.895 [0.768,1.043] 0.885 [0.758,1.032]
9−12 years 0.807** [0.667,0.977] 0.812** [0.670,0.985] 0.792** [0.651,0.963]
> 12 years 0.785 [0.574,1.073] 0.786 [0.574,1.078] 0.757* [0.550,1.042]
Work status
No jobs 1 [1.000,1.000] 1 [1.000,1.000] 1 [1.000,1.000]
Have a job 0.683*** [0.536,0.871] 0.683*** [0.536,0.871] 0.709*** [0.553,0.908]
Primary Occupation
Farmers 1 [1.000,1.000] 1 [1.000,1.000] 1 [1.000,1.000]
Professionals 0.938 [0.640,1.376] 0.948 [0.645,1.392] 0.908 [0.616,1.341]
Administrator 1.891*** [1.399,2.556] 1.872*** [1.382,2.536] 1.794*** [1.317,2.443]
Skilled worker 1.360** [1.065,1.737] 1.380** [1.079,1.764] 1.335** [1.040,1.715]
Service worker 1.617*** [1.296,2.016] 1.618*** [1.296,2.020] 1.555*** [1.238,1.954]
Lifestyle factors
No smoking 1 [1.000,1.000] 1 [1.000,1.000] 1 [1.000,1.000]
Smoking 0.710*** [0.604,0.836] 0.706*** [0.600,0.830] 0.707*** [0.601,0.832]
No Alcohol 1 [1.000,1.000] 1 [1.000,1.000] 1 [1.000,1.000]
Alcohol 1.113 [0.956,1.295] 1.109 [0.953,1.290] 1.111 [0.955,1.292]
No activity 1 [1.000,1.000] 1 [1.000,1.000] 1 [1.000,1.000]
Activity 0.962 [0.783,1.180] 0.961 [0.783,1.180] 0.963 [0.785,1.183]
Household level variables
1st Quintile 1 [1.000,1.000] 1 [1.000,1.000]
2nd Quintile 1.059*** [0.901,1.288] 1.062*** [0.902,1.284]
3rd Quintile 1.180** [0.913,1.316] 1.196** [0.920,1.362]
4th Quintile 1.288** [0.918,1.439] 1.285** [0.946,1.405]
5th Quintile 1.161 [0.791,1.429] 1.165 [0.818,1.435]
Cooking method
Steaming 1 [1.000,1.000] 1 [1.000,1.000]
Frying 1.102 [0.986,1.026] 1.109* [0.978,1.220]
Urbanization index
1st Quantile 1 [1.000,1.000]
2nd Quantile 1.069* [0.890,1.267]
3rd Quantile 1.192** [0.869,1.356]
4th Quantile 1.156** [0.910,1.308]
Random Effect
Level-2 Variance 0.621*** 0.607*** 0.579***
Level-3 Variance 0.453*** 0.421*** 0.406***
Model fit statistics
AIC 7099.526 7067.79 7043.67
BIC 7150.146 7139.842 7101.404
Note:Exponentiated coefficients; 95% confidence intervals in brackets, * p<0.1, ** p<0.05,
*** p<0.01
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6 Discussion

This study has shown that regional and socioeconomic disparities exist in adult obe-
sity in China. People living in high SES and more urbanized areas have higher BMI
and higher odds of obesity than those living in lower SES and rural areas. From
this study, we understand that people with high education have low odds of obesity,
and that the possible reason for this phenomenon is that educated people have more
knowledge about the harmfulness of obesity and tend to control their weight so that
it stays in the normal range. Upon comparing all types of occupation, we find that
the highest ratio of obesity exists in the group of administrators and office staffs.
The possible reason for this is that most of these people spend long hours sitting in
the office and, so, have less time to do exercises; in addition, more chances of social
eating and social drinking also increase the risk of obesity among them. Interest-
ingly, we found that the respondents who admitted to smoking had lower odds of
obesity, and this finding is consistent with that of many other research studies [9],
as some components of cigarette, such as nicotine, can effect weight loss. However,
after the smokers quit smoking, the weight may respond and increase quickly. Peo-
ple from families with lowmedium to mediumhigh incomes tend to have more risk
of being obese, and this result is consistent with many of the studies conducted in
the developing countries[9], this finding is opposite to the results from the devel-
oped countries which find that obesity is more prevalent in families of low income
[25]. Finally, this study finds that the prevalence of obesity is also linked to the
industrialization and urbanization of China. The urbanization has changed peoples
lives in many ways. The fast food outlets have grown dramatically in many areas
during the last decade [14]. It has been reported that more than 18% of the peo-
ple in big cities consume fast food regularly and frequently, and that about 60% of
them are not aware of the fact that it is energy-dense food. In addition, people living
in more urbanized areas own more televisions, video disc players, and computers,
and so they spend more time watching them or playing them, and cut down on the
time for doing exercises [22]. It also seems most probable that the increased use of
automobiles, instead of bicycling or walking, in urban areas has contributed to the
epidemic of obesity [20]. Therefore, all of the afore-mentioned influences coupled
with urbanization have resulted in an increased overweight and obesity prevalence
in these areas.

7 Concluding Remarks

Adult obesity is associated with both immediate and long-term health problems
and psychosocial problems. It burdens the health care system, strains economic re-
sources, and has far reaching social consequences. Much of the rise in healthcare
costs today can be attributed to the increase in obesity-related diseases such as dia-
betes, hypertension, pulmonary conditions, and chronic back pain. Many of today‘s
most commonly prescribed drugs are for obesity-related conditions, and as such,
obese individuals spend two to four times more on prescription medications than
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adults who are non-obese. Therefore, it is crucial for the government to identify
those risk factors related to obesity at individual levels, household levels and com-
munity levels, and then make corresponding, appropriate policies and take effective
measures to reduce the prevalence of obesity.

From this study, we notice an uneven distribution of obesity prevalence, the
prevalence varied from 3.67% to 46.18% in the different areas. This study esti-
mated the magnitude of these differences, and, to the best of my knowledge, it is the
first study in China to determine the influence of the indicators at individual, house-
hold and community levels simultaneously. Information derived from this study can
be used to develop more effective ways of intervention and strategies for obesity
prevention in the specific context of the various regions.

In conclusion, China is a nation undergoing rapid economic development. Obe-
sity, as an important health problem which accompanied economic development,
industrialization and urbanization, should be paid enough attention. Intervention
and strategy development for obesity prevention should be based on this specific
context, targeting the high SES families in the more urbanized areas.
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Statistical Analysis of Political Cycles
in Australian Stock Market Returns

S.T. Boris Choy and Celestine M. Bond

Abstract. Political cycles in the Australian stock market from January 1901 to July
2011 are analysed through econometric volatility models. The stochastic volatility
model with a skew t distribution for return and a Student-t distribution for volatil-
ity is proposed for analysis, estimated via Bayesian techniques. Evidence from the
full period shows higher return under non-Labor governments while there is little
evidence of election or length-of-term effects on market return. If we split the data
before and after World War II, political cycles are non-existent. There is however
clear evidence of positive skewness of returns before the war compared to negative
skewness otherwise.

1 Introduction

Of interest to the broad Australian community of late has been the effect of partic-
ular political parties in power and their policies on financial, economic, industrial
and consumer issues. Of importance to economists and the financial media is the
effect of political outcomes and events on market behaviour and returns. For exam-
ple, in the lead up to elections, politicians promise a combination of progress on
consumer and industrial issues, tax benefits, subsidies and economic stimulation,
all of which may result in varying effects in the stock market. Other effects may
be due to key political strategies between governments such as stance on interest
rates, inflationary measures and unemployment targets. It is the difference between
political parties, their actions and consequent effects of policy decisions over time
and political events which define political cycles.

There has been substantial research into this area in overseas stock markets,
which indicates some key relationships between political variables and market re-
turns. Herbst and Slinkman (1984) found evidence of political cycles in the US
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market where the timing and magnitude of the cycles follow elections and other po-
litical events. In particular, political cycles in market returns peaked in the month
and year where there was a presidential election. Evidence of this phenomenon in
the US dates back to Niederhoffer et al. (1970) and on an international scale by
Bialkowski et al. (2008) who found evidence for significantly higher stock market
volatility due to election surprises in 27 Organisation for Economic Cooperation
and Development (OECD) countries. More recently election effects on market re-
turns have been described by the stage of ministerial term. This stream of research,
investigated by several authors such as Allvine and O’Neill (1980), Huang (1985),
Hensel and Ziemba (1995) and Booth and Booth (2003) find that US market returns
are higher in the second half of a political term than in the first. The basis behind
this is that political parties employ deflationary monetary and fiscal policies before
and during elections, boosting the economy in an attempt to win or regain power for
another term.

Other than evidence of election and political tenure effects in the market, a differ-
ence in policies between political parties may also have an effect on stock market re-
turns. This is explained in a US context by Hibbs (1977) through “partisan theory” in
which the Democratic Party has a more expansionist view on macroeconomic poli-
cies such as inflation and unemployment, leading to higher stock returns than under
Republican rule. This is supported by Hensel and Ziemba (1995), Booth and Booth
(2003), Santa-Clara and Valkanov (2003) and Wisniewski (2009). Santa-Clara and
Valkanov (2003) examined the ‘presidential puzzle’ in which while there is an ap-
parent preference of the market for right-of-centre parties (that is, the Republicans in
the US), average excess market returns are higher for Democratic parties than under
Republicans. However a critique by Powell et al. (2007) suggests that relationships
found by Santa-Clara and Valkanov (2003) are spurious and hence insignificant.

Although there is evidence of higher stock market returns under left-leaning
governments in the US, there is also significant evidence of a preference of the
market for right-of-centre governments predominantly in international markets. Ev-
idence against the ‘presidential puzzle’ in the US include work by Riley and Luk-
setich (1980) and Snowberg et al. (2007). A study by Bohl and Gottschalk (2006)
looked at 15 countries and found that evidence for higher returns under left-leaning
governments only existed in Denmark, Germany and the US, whereas there was
very little evidence of a difference between right- and left-centred governments and
their effects on Australian and New Zealand market returns. In comparison, Cahan
et al. (2005) found that New Zealand stock market returns were lower under the
left-leaning Labor government than National governments, indicating a preference
for right-centred parties. Anderson et al. (2008) also found that stock markets per-
formed better in Australia and New Zealand under right-leaning governments when
inflation is lower.

The bulk of Australian work on political cycles has been performed by Worthing-
ton (2009) who examined the effect of political cycles in the Australian stock market
from January 1901. His analysis examined the difference between market returns in
non-Labor and Labor governments, whether returns vary during a party’s time in of-
fice and whether an election results in an observable difference in returns compared
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to the rest of the ministerial term. His research applied a generalized autoregressive
conditional heteroskedasticity (GARCH) model, which captures the changing vari-
ance of stock returns in the Australian Stock Exchange (ASX). For the full period
of data (1901 to 2005), there was weak evidence that non-Labor governments have
a higher market return than Labor governments. However, from 1950 onwards, this
relationship seems to have disappeared, which Worthington (2009) attributes to a
reduction in bias towards a certain political party by businesses and investors.

Despite this thorough analysis of political cycles, Worthington’s model is not
without limitations. The purpose of this article is to extend on Worthington’s work
by using another type of time-varying variance model, the stochastic volatility (SV)
model, to assess the relationship between the Australian federal political cycle and
the Australian stock market return. In particular, a Bayesian analysis is emphasised,
with model estimation via Markov chain Monte Carlo (MCMC) methods to obtain
posterior inference. For an introduction to MCMC methods, see Smith and Roberts
(1993), Gilks et al. (1996) and Andrieu et al. (2004). By using a Bayesian approach a
variety of flexible error distributions, both symmetric and asymmetric for the return
and volatility are able to be explored.

2 Methodology

2.1 Data and Variable Specification

The data and political variable choices are heavily influenced by Worthington (2009),
since our analysis is mainly an exercise in improving on the original GARCH speci-
fication and to investigate whether these improved models lead to different
conclusions about the effect of Australian political cycles in the stock
market.

Table 1 summarises the governing terms of 32 Prime Ministers of Australia, the
start and end date of their period in office and the average market return in the
Australian All Ordinaries (AORD) Index. Note that the ministries are divided into
two groups of parties: Labor and non-Labor. Labor refers to the Australian Labor
Party while non-Labor refers to all other ministries such as the Liberal and National
parties, as well as the Protectionist, Free Trade, Tariff Reform, Nationalist Labor,
Nationalist, United Australia, Country, and Country Liberal parties which were es-
pecially active in the early 20th century.

The dependent variable used in this analysis is market returns based on the AORD
Index retrieved from Wren Investment Advisers (http://www.wrenresearch.com.au/
downloads). Market returns, rt are defined as monthly returns rt = 100ln(Pt/Pt−1)
where Pt is the closing value of the index at the end of month t. The time period anal-
ysed is from January 1901 to July 2011 using 1327 observations for rt . Although
Worthington (2009) used two additional dependent variables, that is, market returns
in excess of inflation and interest rate, he found no significant evidence for a dif-
ference in excess returns between Labor and non-Labor governments. As such, an
analysis of market return is deemed sufficient for our study.
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Table 1 Australian Prime Minister Terms and Monthly Market Returns

No. Prime Minister Party Start date End date Term in office (months) % Return
1 Barton N-L Jan 1901 Sep 1903 32 0.1522
2 Deakin N-L Sep 1903 Apr 1904 7 1.2177
3 Watson Labor Apr 1904 Aug 1904 4 1.6396
4 Reid N-L Aug 1904 July 1905 11 0.4924
5 Deakin N-L July 1905 Nov 1908 40 0.6269
6 Fisher Labor Nov 1908 June 1909 7 0.4418
7 Deakin N-L June 1909 Apr 1910 10 0.8343
8 Fisher Labor Apr 1910 June 1913 38 0.1929
9 Cook N-L June 1913 Sep 1914 15 0.4717
10 Fisher Labor Sep 1914 Oct 1915 13 -0.2123
11 Hughes Labor Oct 1915 Feb 1923 88 0.4804
12 Bruce-Page N-L Feb 1923 Oct 1929 80 0.6647
13 Scullin N-L Oct 1929 Jan 1932 27 -1.6480
14 Lyons N-L Jan 1932 Apr 1939 87 0.7589
15 Page N-L Apr 1939 Apr 1939 1 -2.398
16 Menzies N-L Apr 1939 Aug 1941 27 0.0000
17 Fadden N-L Aug 1941 Oct 1941 2 2.2156
18 Curtin Labor Oct 1941 July 1945 45 0.2099
19 Forde Labor July 1945 July 1945 1 -0.2821
20 Chifley Labor July 1945 Dec 1949 52 0.5492
21 Menzies N-L Dec 1949 Jan 1966 193 0.4234
22 Holt N-L Jan 1966 Dec 1967 23 1.6199
23 McEwen N-L Dec 1967 Jan 1968 1 -3.8188
24 Gorton N-L Jan 1968 Mar 1971 38 0.3158
25 McMahon N-L Mar 1971 Dec 1972 21 0.8894
26 Whitlam Labor Dec 1972 Nov 1975 35 -1.1102
27 Fraser N-L Nov 1975 Mar 1983 88 0.7075
28 Hawke Labor Mar 1983 Dec 1991 105 1.1189
29 Keating Labor Dec 1991 Mar 1996 51 0.6198
30 Howard N-L Mar 1996 Dec 2007 141 0.7526
31 Rudd Labor Dec 2007 June 2010 30 -1.2462
32 Gillard Labor June 2010 July 2011 14 0.1414
All - - Jan 1901 July 2011 1327 0.4667

Notes: N-L refers to non-Labor ministries. Information retrieved from the Australian Elec-
toral Commission, http://www.aec.gov.au/Elections/
Australian Electoral History, in August 2011.

The political cycle variables used in this analysis completely describe the de-
pendent variable of market return. Following methods outlined in similar literature
and relationships identified in the previous section, the political variables include
dummy variable Lt , indicating whether Labor was in power in month t (equals zero

http://www.aec.gov.au/Elections/Australian_Electoral_History
http://www.aec.gov.au/Elections/Australian_Electoral_History
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when non-Labor is in power), continuous variable Tt measuring the time in office
in months (reset at the next prime minister’s term in office) and dummy variable Et

indicating whether a federal election occurred during month t. The motivation for
including the continuous variable Tt follows the idea that political influence on mar-
ket return may depend on how long that political party has been in office. See, for
example, Huang (1985) and Booth and Booth (2003). Including an election dummy
variable Et allows us to measure the effect of elections in the stock markets, includ-
ing the effect of political promises in the lead up to elections or unexpected election
results such as in Bialkowski et al. (2008).

Worthington (2009) used an additional dummy political variable NLt , to indi-
cate whether a non-Labor party is in power in month t and hence had no intercept
term in the observation equation. In fact, the variables NLt and Lt are perfectly mul-
ticollinear thus one of them should be removed from the model. We measure the
effect of the political power only as changes in the coefficient of Lt in excess of
non-Labor governments. For example, a positive coefficient on Lt would suggest
that higher market returns are expected under Labor governance than non-Labor
governance. We also consider an additional independent dummy variable Wt which
is equal to zero when month t is before January 1946 and one on and after January
1946. The cut off point for this variable was chosen to be around the end of World
War II (WWII), and allows us to measure the effects of political cycles pre- and
post-war without having to perform three separate analysis (full period, pre- and
post-war) on the dependent variable. Moreover, Labor and the Coalition have been
the main political candidates since WWII.

2.2 Descriptive Analysis

Figure 1 plots the monthly market return of the AORD Index from January 1901 to
July 2011. Time series of returns should typically be stationary, with constant mean
and constant fluctuations (variance) around it. The series we analyse does not have
constant variance, especially evident from the period before and after the 1960’s.
This motivates our use of volatility models which are able to account for fluctuating,
time-varying volatility, such as GARCH and SV models in Section 3. There are also
a few peculiar outliers corresponding to the market response to global events such
as the Great Depression in the early 1930’s, the global oil crisis in 1973, the stock
market crash in October of 1987 and the Global Financial Crisis of 2008.

Table 2 provides descriptive statistics of monthly returns on the AORD Index for
all ministries and by Labor and non-Labor groups. The returns are also divided into
the full period before and after WWII. For the full period, return under non-Labor
ministries is higher than for Labor ministries (0.61 compared to 0.17), as well as
the period before WWII (0.60 for non-Labor and -0.16 for Labor). After WWII,
Labor ministries have higher return (0.34 compared to 0.15). However, only in the
period before WWII is this difference significant using a standard t-test for equality
of means. It should also be noted that Labor ministries take the minimum return
values for all three periods. The returns under Labor governments are also more
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Fig. 1 Market Returns of the AORD Index from 1901 - 2011

variable than under non-Labor governments using the standard F-test for equality
of variances rejecting equality at the 1% level of significance.

An important observation which may affect validity of estimates is the fact that
market returns appear non-normally distributed for all time periods considered and
under both ministries. In particular, there is slight negative skewness for the whole
period, slightly positive skewness for the period before WWII and negative skew-
ness in the period after WWII, especially under non-Labor ministries. In addition,
the kurtosis under all ministries for all time periods exhibit tails which are heav-
ier than the normal distribution. The non-normality of returns is supported by the
Jarque-Bera test for normality, which is rejected even at the 1% level of significance
for all time periods under either ministry.

3 Models

3.1 Generalised Autoregressive Heteroskedastic (GARCH)
Models

Market returns commonly exhibit persistent high and low volatilities which can be
captured by a volatility model. Proposed by Bollerslev (1986), the GARCH model
and its derivatives have been widely used for modelling time-varying volatility.
In GARCH models, the conditional variance of the error term is dependent upon
past error terms and past variances. In addition, the volatility component can also
be included in the mean component of the return equation which is known as the
GARCH-in-mean (GARCH-M) model.

Consider the GARCH(1,1)-M model:
Return equation:

rt = β0 +
k

∑
i=1

βixi + γ0σ2
t + εt (1)

εt |Ωt−1 ∼ N(0,σ2
t ) (2)
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Volatility equation:

σ2
t = α0 +α1ε2

t−1 +α2σ2
t−1 (3)

where rt is the market return at time t, xi is a set of political variables which influence
returns, σ2

t is the volatility of the return at time t and εt is the error term of the model
which is distributed as N(0,σ2

t ). The coefficients on the political factors βi measure
the effect of those variables on the stock market return. γ0 measures the effect of the
conditional variance on returns hence the ‘in-mean’ specification. The conditional
variance σ2

t follows a GARCH specification and is dependent upon a time invariant
coefficient α0, past squared error term ε2

t−1 and past volatility σ2
t−1 whose effects

are measured by α1 and α2 respectively. Note that by the nature of the conditional
variance, α1 ≥ 0, and α2 ≥ 0 and for stationarity α0 > 0, and α1 +α2 < 1.

3.2 Stochastic Volatility (SV) Models

SV models are another commonly used volatility modelling which allow the con-
ditional variance to follow a stochastic process. In particular, they have two noise
processes making it more flexible than GARCH-type models. For a comprehensive
overview of SV models, see Ghysels et al. (1996). SV models have also proven
preferable to GARCH models for returns in an Australasian market context by Yu
(2002).

Following the initial ‘in-mean’ specification used by Worthington (2009), we
consider the SV-M model, which has been compared to the GARCH-M model in
international markets by Koopman and Hol Uspensky (2002). The model is specified
by:

Return equation:

rt = β0 +
k

∑
i=1

βixi + γ0σ2
t + εt , εt |ht ∼ N(0,σ2

t ) (4)

Volatility equation:

ht = lnσ2
t =

{
μ+φ(ht−1− μ)+ηt t > 1

μ+
(
1−φ2)

)−1/2ηt t = 1
, ηt ∼ N(0,τ2) (5)

where ht is the log-volatility, φ ∈ (−1,1) is the persistence of the volatility, τ2 is
the variance of the log-volatility, ηt is the normally distributed error term of the
volatility equation with E(ηt) = 0 and V (ηt ) = τ2, and the variables and parameters
in the return equation are interpreted as in the GARCH model.
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3.3 Error Distributions

In our basic SV model, we assume that both the error terms in the return and volatil-
ity equations are normally distributed. Due to the flexibility of Bayesian MCMC
methods, we are able to specify more robust error distributions for both the return
and volatility equation.

There is substantial evidence supporting non-normality of stock returns, not only
from our brief analysis in Section 2.2. In an Australian context some of the evi-
dence which spans over the time period in which we are interested in includes work
by Praet and Wilson (1978), Beedles (1986) and Gray and Kalotay (1998). By using
more robust error distributions we are able to protect parameter estimates against
data which exhibit outlying behaviour. Normal and Student-t error distributions for
the volatility equation are used in our analysis. In addition to these symmetric dis-
tributions, a skew t distribution is utilised for the return equation.

Dermata and McNeil (2005) introduced a skew-t distribution (referred to ST1

here) via a normal mean-variance mixture of the following form:

x|μ ,σ2,θ ,λ ∼ N
(
μ+θλ−1,λ−1σ2) (6)

λ |ν ∼ Ga
(ν

2
,
ν
2

)
(7)

where N(a,b) is the normal distribution with mean a and variance b, Ga(a,b) is
the gamma distribution with mean a/b, μ is the location parameter, σ2 the scale
parameter, θ determines the skewness or asymmetry of the distribution, λ is a scale
mixture variable and ν is the degrees of freedom of the skew t distribution. Alter-
natively, Branco and Dey (2001) proposed a different skew-t distribution (called the
ST2 here) via the following similar mean-variance mixture form:

x|μ ,σ2,θ ,λ ,V ∼ N
(
μ+θλ−1/2V,λ−1σ2

)
(8)

λ |ν ∼ Ga
(ν

2
,
ν
2

)
(9)

where V is an additional scale mixture variable which follows a half normal distri-
bution with probability density function (PDF) given by

f (ν) =
√

2
π

e−
ν2
2 , ν > 0 (10)

In other words, V = |W | where W ∼ N(0,1). Since the half normal distribution
is a special case of the generalised gamma distribution, denoted by GG(r,μ ,β ) and
proposed by Stacy (1962), having PDF

fGG(ν) =
β

Γ (r)
μβ rνβ r−1e−(μν)

β
, ν > 0 (11)
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with r = 2−1, μ = 2−1/2 and β = 2, statistical inference with half normal distribu-
tion can be easily implemented using WinBUGS (Bayesian analysis Using Gibbs
Sampler) package (Spiegelhalter et al., 2007). See Fung and Seneta (2010) for de-
tails.

The main difference between the two skew-t distributions is that the ST2 distri-
bution possesses asymptotic lower tail dependence (Dermata and McNeil, 2005)
while the ST1 distribution does not. In addition, the use of these distributions via
their mean-variance mixture forms can simplify the MCMC algorithms and hence
provide more efficient model estimation. See Choy and Chan (2008) for details.

4 Model Implementation and Estimation

Since the marginal likelihood function of the SV model does not have a closed form,
likelihood approaches such as the quasi-maximum likelihood method (Ruiz, 1994)
and simulated maximum likelihood method (Danielsson, 1994) are cumbersome
and hence are not considered in this paper. Instead, we adopt the Bayesian MCMC
approach which has been widely and successfully used for accurate inferences of
complicated models since the early 1990s. The advantage of this approach is that
exact finite sample inference can be drawn from the joint posterior distributions
through simulation.

To estimate the SV models, we take the Bayesian MCMC approach using the
Gibbs sampling algorithm of Jacquier, Polson and Rossi (1994). This approach iter-
atively simulates posterior samples from the univariate full conditional distribution
of each model parameter conditional on the values of the other parameters and data
and can be easily implemented using WinBUGS package. For comparison purpose,
we also study the GARCH models in this paper. Due to the recursive nature of
the GARCH models, the marginal likelihood function can be obtained. To increase
computing efficiency, we implement the GARCH models using the adaptive MCMC
algorithm of Gerlach and Chen (2008), which adopts a random walk Metropolis-
Hastings algorithm for the burn-in period and an independent kernel Metropolis-
Hastings algorithm for the estimation of parameters, in MATLAB programming
language.

Using Bayesian approach, prior distributions of the model parameters must be
specified in order to complete the Bayesian framework. To express ignorance about
the parameter values before data collection and to get the results similar to those
obtaining from the maximum likelihood approach, diffuse and non-informative prior
distributions can be used. In this paper, we use as many diffuse or non-informative
priors as possible and these prior distributions are assumed to be independent.

In the GARCH models, the priors for the coefficients in the conditional variance
equation are α0 ∼Ga(a0,b0), α1 ∼ Be(a1,b1) and α2 ∼ Be(a2,b2), where Be stands
for the beta distribution. The priors for α1 and α2 suggest that 0 ≤ α1 < 1 and
0 ≤ α2 < 1 for stationarity condition. For the gamma and beta distributions, non-
informative and diffuse priors can be obtained by setting a0 = b0 = 0 and ai =
bi = 1, i = 1,2, respectively. Significance test on α2 = 0 can be performed to assess
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whether there is a persistence in the volatility. In the SV models, the priors are
μ ∼ N(μ0,σ2

0 ), τ
−2 ∼ Ga(aτ ,bτ), 2−1(1+ φ) ∼ Be(aφ ,bφ ) where the persistence

parameter−1≤ φ ≤ 1 as required. σ2
0 can be set to a very large number to suggest

a diffuse prior for μ and aτ = bτ = 0 for a non-informative prior for τ−2. The priors
used for the degrees of freedom of the return equation ν1 and volatility equation
ν2 are truncated exponential distributions νi ∼ Exp(ψ)I(a,b), i = 1,2 where ψ > 0
is chosen such that the mean reflects an integer number around 5 or 10 and I(a,b)
restricts the range of possible values. When utilising a skew-t error distribution for
the return equation, a non-informative prior is used for the skewness parameter γ to
indicate our ignorance about the presence of skewness or the direction of it.

For all models, a single Markov chain is run for 110,000 iterations with the first
10,000 discarded as the burn-in period in the Gibbs sampling algorithm. To avoid
highly correlated simulated realisations, we take every 100th iteration to mimic a
sample of size 1,000 for posterior inferences. Convergence of the Markov chain
is monitored through the trace plots of Markov chain iterations for each model
parameter.

5 Results and Discussion

This section is divided into three subsections to facilitate the analysis of political
cycles based on the various models used. In Section 5.1 we estimate the GARCH and
GARCH-M models as in Worthington (2009) using updated regression variables.
Section 5.2 analyses the data using the SV and SV-M models with various error
distributions, and provides evidence that a stochastic volatility specification better
fits the data. Model comparison is performed in Section 5.2 and the preferred model
is used in Section 5.3 to interpret parameters which have an effect on market returns.
Section 5.4 analyses the pre- and post-WWII data using the preferred model. Table
3 describes the model specification and error distributions considered throughout
this Section.

Developed by Spiegelhalter et al. (2002) for complex hierarchical models where
the number of parameters is not clearly defined, the Deviance Information Criterion
(DIC) is used for model comparison. The DIC is defined as

DIC = E [D(θθθ )]+ΔD(θ̂θθ)

Where θ̂θθ is the posterior mean of the vector of model parameters θθθ , E [D(θθθ )],
the expected value of the deviance, is a measure of the adequacy of model fitting
and ΔD(θ̂θθ ) = E [D(θθθ )]−D(θ̂θθ) estimates the effective number of parameters in the
model. Amongst several models, the model having the smallest DIC is preferred.
Despite there being other measures of model fit in a Bayesian context such as the
Bayes factor and Bayesian Information Criterion (BIC), the DIC is used because it
has been applied successfully in the past to a family of SV models in Berg, Meyer
and Yu (2004) and it can be easily computed in WinBUGS and MATLAB.



Statistical Analysis of Political Cycles in Australian Stock Market Returns 317

Table 2 Monthly Return Comparisons

Statistic All Non-Labor Labor
Returns (Jan 1901 - July 2011)
Count 1327 892 435
Mean 0.4667 0.6135 0.1657
Median 0.6151 0.7174 0.3785
Maximum 20.08 13.24 20.08
Minimum -39.08 -10.97 -39.08
Standard Deviation 3.590 2.960 4.611
Skewness -1.301 -0.185 -1.665
Kurtosis 16.39 5.224 16.27
Jarque-Bera 10.2E+03*** 185.7*** 3313***
Returns (Jan 1901 - Dec 1945)
Count 540 387 153
Mean 0.3874 0.6022 -0.1559
Median 0.4516 0.5977 0.1470
Maximum 20.0765 12.4045 20.0765
Minimum -12.8517 -10.9261 -12.8517
Standard Deviation 2.6800 2.2702 3.4591
Skewness 0.1322 0.0328 0.4706
Kurtosis 12.0470 8.630 11.736
Jarque-Bera 1.80E+03*** 495.3*** 456.9***
Returns (Jan 1946 - July 2011)
Count 787 505 282
Mean 0.5211 0.1512 0.3401
Median 0.8065 0.8635 0.7196
Maximum 13.2434 13.2434 11.1297
Minimum -39.0799 -10.9745 -39.0799
Standard Deviation 4.1005 3.3973 5.1264
Skewness -1.5230 -0.2290 -2.0105
Kurtosis 14.876 4.027 15.550
Jarque-Bera 4864*** 1966*** 25.65***

Notes: A two-sample t-test for equality of means (between Labor and non-Labor) fails to be
rejected for returns for the full period (January 1901 to July 2011) (statistic = -1.85, p-value
= 0.065) and for the latter half (January 1946 to July 2011) (statistic = -0.83, p-value = 0.41)
but is rejected for the period before WWII (January 1901 to December 1945) (statistic = -
2.51, p-value = 0.01). An F-test for equality of variances (between Labor and non-Labor) is
rejected at the 1% level of significance for all three time periods. *** indicates 1% statistical
significance.

5.1 GARCH Model Estimation and Comparison

Worthington (2009) used a GARCH-M specification to analyse the effects of po-
litical cycles on Australian stock market returns. In his return equation, Labor and
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Table 3 Model Specification

Specification Return Error Distribution Volatility Error Distribution
Model 1 GARCH, GARCH-M Normal Normal
Model 2 SV, SV-M Normal Normal
Model 3 SV, SV-M Student-t Student-t
Model 4 SV, SV-M ST1 Student-t
Model 5 SV, SV-M ST2 Student-t

Notes: ST1 and ST2 refer to the two forms of skew-t distributions discussed in Section 3.3.
GARCH-M refers to the GARCH in mean specification and SV-M refers to the stochastic
volatility in mean specification.

non-Labor were specified as two dummy variables and the model was fit without
an intercept. However, his inferences might be subject to a form of misspecification
in that the Labor and non-Labor variables contain the same information, and are in
fact perfectly negatively correlated. We correct this misspecification by only defin-
ing one variable to indicate a Labor or non-Labor government and allowing for a
constant as described in Section 3.

Table 4 provides parameter estimates for the GARCH(1,1) and GARCH-M(1,1)
specifications, estimated via MCMC methods. With regard to the model specifi-
cation, all volatility parameters are significant indicating that it is appropriate to
model the volatility of returns as a time-varying variable. However, although the ‘in-
mean’ specification is insignificant, the better model chosen according to DIC is the
GARCH(1,1) model. In terms of political variables, the only significant variables are
the Labor indicator variable and constant term, consistent with Worthington’s find-
ings. Contrary to his findings and perhaps an indication of model misspecification is
that election indicator variable, β3, is no longer marginally significant. Our constant
term β0 is highly significant, indicating strong evidence for a positive mean return
for the time period considered. This is now separated from the effects of political
party in power contained only in the Labor indicator variable.

5.2 SV Model Estimation

To increase the flexibility of volatility modelling, the deterministic volatility equa-
tion as in the GARCH models can be replaced by the stochastic volatility equation
as in the SV models. Using Gibbs sampling algorithm, the SV models can incorpo-
rate different error distributions for the innovation terms of the return and volatility
equations to account for heavy-tailed and skewed data and volatility. Table 5 outlines
the parameter estimates for SV models with the normal, Student-t or skew-t distri-
butions for the return and the normal or Student-t distributions for the log-volatility.
Table 6 displays the estimates for the ‘in-mean’ versions of those models.
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Table 4 Estimated GARCH Models

GARCH(1,1) GARCH-M(1,1)
Parameter Coefficient 95% CI Coefficient 95% CI

Return equation
β0 0.6739*** (0.4195, 0.9197) 0.5509*** (0.2603, 0.8430)

(0.1231) (0.1483)
β1 -0.2924** (-0.5834, -0.0102) -0.4179*** (-0.7459, -0.0885)

(0.1489) (0.1716)
β2 -0.0001 (-0.0046, 0.0044) -0.0002 (-0.0042, 0.0037)

(0.0023) (0.0021)
β3 0.2001 (-0.5174, 0.8753) 0.2063 (-0.5690, 0.9763)

(0.3534) (0.3964)
β4 0.0356 (-0.2692, 0.3702) 0.0841 (-0.2447, 0.4365)

(0.1596) (0.1731)
γ0 0.0002 (-0.0224, 0.0226)

(0.0114)
Volatility equation

α0 0.4378** (0.2147, 0.7415) 0.4834*** (0.2605, 0.7911)
(0.1409) (0.1393)

α1 0.2466*** (0.1749, 0.3289) 0.2158*** (0.1539, 0.2943)
(0.0400) (0.0363)

α2 0.7431*** (0.6672, 0.8163) 0.7555*** (0.6761, 0.8259)
(0.0392) (0.0387)

DIC 6691.3 6672.6

Notes: The dependent variable is market returns for January 1901 to July 2011. The return
equation includes an intercept term β0, a dummy variable β1 indicating Labor ministries, a
continuous variable measuring time in office β2, a dummy variable β3 indicating an election,
a dummy variable β4 for data collected after the WWII and the in-mean parameter γ0. The
values in parentheses are the standard errors. CI stands for credible interval. *** indicates
statistical significance at 1% level, ** at 5% level and * at 10% level. The values in parenthesis
are standard errors. The volatility equation for the GARCH model includes a constant α0, a
first-order ARCH term α1 and a first-order GARCH term α2.

In comparing SV models with normal return and normal log-volatility (Model 2)
to the GARCH models (Model 1), the smaller DIC value for the SV models reveals
that the SV models are superior to the GARCH models in both original and in-mean
specifications. This suggests that volatility is better modelled by a stochastic process
than by a deterministic process.

The most important political variable, whether Labor is in power or not (β1) is
significant in all models. The coefficients for the other political variables, such as
the time in power Tt and election event effects Et are not useful in explaining mar-
ket returns. We might improve upon these models by removing these variables and
replacing them with macroeconomic factors which better describe market returns,
such as the interest rate.
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All coefficients in the volatility equation for all models are significant, suggest-
ing that the SV model successfully captures the variation in market returns. Of note
is also the degrees of freedom in models which use a Student-t or the skewed ver-
sion in the return or volatility equations. The estimate for the degrees of freedom
is small enough to confirm that the distribution of market returns and its volatility
exhibit heavier tails than the normal distribution, as identified in Section 2.2. The
degrees of freedom for the volatility equation are very small, ranging from 2.95 to
4.44 and have quite narrow confidence bands, suggesting that the distribution for
the log-volatility have heavier tails than market returns. This is in contrast to the
GARCH specifications, where the volatility is modelled by a deterministic process
which is unable to capture random effects via a distribution. Although the asymme-
try parameter θ is not significant in the skew-t models, there is the implication of
slight positive skewness as evidenced by the Bayesian credible intervals.

Comparing the models by the choice of error distributions, the best model is in-
mean version of Model 5, the SV-M model with a skew-t (ST2) error distribution
for the return equation and a Student-t error distribution for the volatility equation.
While the two skew-t distributions are very similar, Model 5 may be preferred be-
cause of dependence in the tails of the distribution. We restrict our interpretation of
the parameters to the in-mean version of Model 5 in the next section.

5.3 Parameter Interpretation

In the preferred model the Labor variable is significant, indicating that the pres-
ence of a Labor or non-Labor government has an effect on monthly market returns
for the period between January 1901 and July 2011. In particular, the coefficient
of this variable is negative which suggests that returns under Labor governments
are less than market returns under non-Labor governments by about 0.26 percent-
age points. This result is very similar to what Worthington (2009) found under a
GARCH-M(1,1) model and also follows the consensus that non-Labor (or right-of-
centre) governments are more favourable to investors because of higher market re-
turns. This finding also mirrors the market preference for right-of-centre presidents
(Republicans) in the United States, as discussed in Section 1.

The other political variables, time in government Tt (β2) and elections Et (β3)
do not have any meaningful effect on market returns. This suggests that the market
returns are independent of the time in which a political party has been in power.
In addition, economic and social stimulus before an election as well as election
surprises does not affect market returns. These results oppose the findings of similar
analysis in the US, for example by Hensel and Ziemba (1995) who suggested that
political re-election campaigns lead to higher stock market returns and Herbst and
Slinkman (1984) who found support for a four-year political-economic cycle.

The persistence parameter φ in the volatility equation is also interpretable. The
parameter is significantly different from zero and is very close to 1. This means that,
in line with previous findings of volatility on market returns and the development
of the GARCH methodology, volatility is persistent in that once high volatility of



Statistical Analysis of Political Cycles in Australian Stock Market Returns 321

Fig. 2 Estimates of Log-Volatility and Volatility of Market Returns from 1901 - 2011

market prices exist, this persistently continues for some time. Similarly, there are
clusters of low volatility as well. This phenomenon is displayed in Figure 2, which
plots the estimates of unobserved volatility and log-volatility over time for the
in-mean Model 5. An advantage of the SV model is that it can estimate the log-
volatility and hence the volatility as a result of the parameters defined in the volatil-
ity equation. In particular, the model’s estimation of high volatility corresponds to
historic events such as the Great Depression in the early 1930’s and recessions in
Australia due to local and global factors in the 70’s, 80’s and early 1990’s. It also
captures the dip in volatility around 1942 during WWII, where there was very lit-
tle trading in the markets. The average level of volatility has also increased in the
late 20th century. It is clear from the graph that market volatility changes over time,
hence SV models are appropriate.

In Model 5, the WWII indicator variable Wt is significant, indicating a positive
change of about 0.39 percentage points in market returns after WWII compared to
the period before. This makes sense as political endeavours and the macroeconomic
environment has changed vastly since 100 years ago. The in-mean parameter γ0 also
suggests that market returns are dependent on the current value of their volatility. In
particular, this parameter is negative which suggests that higher volatility leads to
lower market returns.

Our interpretation was based on a model with a skewed distribution for the return
equation, however the parameter associated with skewness θ is insensitive to the
choice of a symmetric or asymmetric distribution. While the returns may resemble
a symmetric distribution for the full period, they may follow different distributions
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if we divide the data as suggested by the positive level change associated with the
WWII indicator variable. As such, in the next subsection we perform an additional
analysis for Model 5 by physically splitting the data set into two periods and find a
very different interpretation of political effects on market returns.

5.4 Before and after WWII Analysis

To see whether there is a difference in the effect of political variables on the market
return before and after WWII, the data were split into two parts with 540 obser-
vations from January 1901 to December 1945 and 787 observations from January
1946 to July 2011. Table 7 summarises the results when the best model, SV-M model
(Model 5), is fit to this data.

After separating the data, market returns are not affected by the political climate
as no political variables are significant. This means that while there is a minor polit-
ical effect in terms of differences between Labor and non-Labor when considering
the whole time period, there is no difference between parties when only considering
data before and after the war. In addition, the mean return of the AORD is around
zero before WWII, but positive and significant around 3% as indicated by β0 after
the war. Of interest is also the estimate of μ in the volatility equation, which gener-
ally indicates the level at which the log-volatility deviates. When μ is absent from
the volatility equation, the current log-volatility depends only on a fraction of the
previous log-volatility, here given by φ which is close to 1, indicative of a nearly
non-stationary process.

The most interesting of these results is that the asymmetry parameter θ is now
significant. In particular, market return on the AORD index is slightly positively
skewed before the war with parameter estimate of 0.6389 or 0.9569 (depending on
preference of model) and negatively skewed after the war with parameter estimate
around -2.6. This is consistent with previous studies such as in Ghysels, Plazzi and
Valkanov (2011) who showed conditional and unconditional negative asymmetry
for market returns in a number of developed global markets in the past 20 years, as
well as from our descriptive analysis in Section 2.2.

6 Conclusion

This research built upon a previous study by Worthington (2009), by attempting
to use more relevant models which capture market volatility in order to assess the
effect of political cycles in the Australian stock market since January 1901. It was
shown that modelling political variables using stochastic volatility techniques not
only provides a better fit, but also allows for specification of more flexible error
distributions for the return and volatility equations, as the market returns considered
are not normally distributed. The best model used for analysis of political cycles was
a SV model with a skew-t (ST2) distribution for the return equation and Student-t
distribution for the volatility equation.
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The descriptive analysis indicated that there is only a significant difference of
market returns between Labor and non-Labor ministries in the period before WWII,
while there are significant differences between variances for all time periods. When
using the best specification in which volatility varies stochastically, it was found that
for the full period between January 1901 and July 2011 Labor governments have
significantly lower mean return than non-Labor governments by about 0.28%. This
is consistent with previous work mentioned in Section 1 in which there is evidence
that the market prefers non-Labor governments. A reason for this may be because
inflation is shown to be higher under Labor governments (Anderson, Malone and
Marshall, 2008), and this analysis did not consider returns in excess of inflation.
However, when splitting the data in a pre- and post-WWII analysis, the difference in
returns between the governments disappears. Other political variables of note such
as time in office and election surprises are also non-existent in Australia according
to this analysis. Overall, there is very weak evidence to suggest political cycles have
an effect and are able to predict accurately market returns in Australia.

This paper also indicated strong preference for non-deterministic modelling of
the volatility of market returns. It was shown that market returns and volatility can be
modelled appropriately by heavy tailed distributions, especially for market volatil-
ity which exhibits particularly heavy tails. It was also found that skewed distribu-
tions are preferred for modelling Australian market returns when considering the
early 20th century compared to more recent data. If a robust distribution is not used
in market analysis, possible outliers in return and volatility may affect parameter
estimation.

Despite improving on the volatility model used in this basic analysis, we left
modest scope for improving on the general methodology of choice and definition
of political variables. Firstly, only political variables were used to explain market
returns, ignoring other important macroeconomic and global effects. For example,
Bohl and Gottschalk (2006) used macroeconomic variables in a similar analysis
which capture the effects of the business cycle. Secondly, this analysis assumes the
policies and workings behind each Labor and non-Labor government is constant
over time, which is clearly not the case. A more substantial analysis should include
the identification of government by phases in which policies on macroeconomic
topics are consistent. Two important limitations, as also mentioned by Worthington
(2009) is that we are unable to differentiate between large and small market capital-
isation in Australian market return despite there being significant evidence between
right and left wing parties in the US by Hensel and Ziemba (1995), as well as issues
with the limited frequency of sampling.

As a final remark, this paper handles the model misspecification in Worthington
(2009) and provides better techniques to study the effect of political cycles on Aus-
tralian stock market return and volatility. Such techniques can also be used in many
other areas other than political cycles. For the study of political cycles, the inclusion
of additional variables such as government reforms, economic and financial market
policies, returns of other international stock market indices, etc. can further improve
the performance of the models.
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Dependence Structure between Crude Oil,
Soybeans, and Palm Oil in ASEAN Region:
Energy and Food Security Context

Teera Kiatmanaroch and Songsak Sriboonchitta

Abstract. The increase in energy and food prices remains a challenge for the
ASEAN Economic Community (AEC). Understanding the dependence between en-
ergy prices and food prices is imperative for the energy and food security for the
people of the ASEAN countries. The C-vine copula model is a flexible tool to ana-
lyze the relationship between variables, in which the multivariate dependence mod-
eling. It offers us to define the relationship structure between variables or we call
pair-copula construction, according to the purpose of study. This study is interesting
to examine an influence of crude oil price on palm oil price and soybeans price. The
results can conclude that the change of crude oil price has influence on the prices of
palm oil and soybeans. Moreover, the findings show that there exists the dependence
between palm oil price and soybeans price, and crude oil price is one factor that has
influence on relation of their prices. However, the dependence structure of the static
copula for Crude oil–Palm oil (C,P), Crude oil–Soybeans (C,S), Palm oil–Soybeans
(P,S), there exists a weak positive dependence in each pair-copula. This indicates
that the price of each commodity is slightly related to the price of every other. In
the case of soybeans, the ASEAN members should cooperate and incorporate their
efforts to increase the capacity and performance in production to reduce relying on
soybeans being imported from outside the region.

1 Introduction

By 2015, the nations in the Southeast Asian region consisting of Brunei, Cam-
bodia, Indonesia, Laos, Malaysia, Myanmar, the Philippines, Singapore, Thailand,
and Vietnam will agree on establishing an ASEAN Economic Community (AEC),
which has a total population of approximately 600 million people. This regional
integration shall lead to a single market and production that will induce free move-
ment of goods, services, investment, capital, and skilled labor across the ASEAN
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region [1, 2]. The ASEAN boundary is adjacent to the south of China and is linked
to the east of India, both by sea and land. India and China are part of the BRIC
countries, which are the newly industrialized countries, and are considered as two
of the nations that have fast growing economies [3]. According to the information
mentioned above, the premise is that the economic geography makes the AEC play
an important role in the global economy. However, during the past several years, the
AEC has remained restricted due to some challenging circumstances caused by the
global financial crisis in 2008. In addition, the food and fuel crises have caused a
huge burden on the people who are poor and near-poor in the ASEAN region, and
created a negative impact with regard to their social and economic development [4].
The rise in food prices came about due to many factors, such as climate change
which caused a decline in the agricultural production, a rise in fuel prices which
led to a domino effect on the cost of production, and the increase in consumer de-
mand [5].With regard to the rise in fuel prices, the incidence of such factors was
due to an increasing demand in Asia, especially in the emerging markets of India
and China [6]. The rise in food and energy prices is a real challenge for the ASEAN
members while trying to find any crucial means to cooperate in the short- and long-

term situations to solve the problems because food
1

and energy
2

security are funda-
mental for upholding the ASEAN economic and social development goals [7].

Palm oil and soybeans are food commodities that are related to food security
in the ASEAN region because they are used as raw materials in food production
and are converted to the necessary goods, and also used for other aspects of daily
life. Palm oil can be modified as cooking oil, shortening, margarines, etc. Soybeans
can be modified as cooking oil, soy milk, soy sauce, tempeh, tofu, etc. Moreover,
palm oil and soybean oil can be used to produce alternative energy such as the
biodiesel types, Palm Methyl Ester (PME) and Soy Methyl Ester (SME), respec-
tively. In ASEAN, palm oil can be produced sufficiently for intra-regional demand
and the remaining parts can be kept aside for exportation. In 2012/2013, Indonesia
and Malaysia exported palm oil of an approximate volume of 37,300 thousand met-
ric tons, or 89.66% of the total world exports, which was 41,603 thousand metric
tons [8]. However, in the case of soybeans, it has to be imported from outside the
region. In 2012/2013, Indonesia, Thailand, and Vietnam imported about 5,300 thou-
sand metric tons or 5.66% of the total world imports, which was 93,587 thousand
metric tons [9].

1
FAO [14] definition: Food security exists when all people, at all times, have physical,
social, and economic access to sufficient, safe, and nutritious food to meet their dietary
needs and food preferences for an active and healthy life. The four pillars of food security
are availability, access, utilization, and stability. The nutritional dimension is integral to
the concept of food security.

2
United Nations [15] definition: Energy security is a term that applies to the availability
of energy at all times in various forms, in sufficient quantities, and at affordable prices,
without unacceptable or irreversible impact on the environment. These conditions must
prevail over the long term if energy is to contribute to sustainable development. Energy
security has both a producer and a consumer side to it.
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ASEAN has crude oil resources and oil production, but does not have a suffi-
cient supply to meet the intra-regional demand. In 2011, ASEAN imported crude
oil worth not less than 90,000 million US dollars [10]. ASEAN imports crude oil
especially from the Middle East [11]. Although the crude oil benchmark prices of
the international crude oil markets are from Brent, West Texas Intermediate (WTI),
Dubai, and Maya, each of these markets is related to one another. It was found that
in times of crude oil market stress, the crude oil price in each market tends to have
co-movement with the same intensity [25]. In addition, we found that the crude oil
markets are related to the food markets. As in the previous studies of the relation-
ship between energy and agricultural prices, it can be concluded that the long-run
agricultural prices can be driven by the energy prices and that volatility in the energy
markets is transmitted to the food markets [13].

Over the past several years, there have been some evidences of significant volatil-
ity transmissions between the crude oil prices in each of these markets. Moreover,
the volatility in the oil prices can be transmitted to the various food markets. Thus, it
is interesting to analyze the relationship between the crude oil benchmark prices of
the ASEAN and the prices of the two food commodities that can be used to generate
alternative energy, which are the following: (1) palm oil, which can be produced
and be sufficient for intra-regional demand and (2) soybeans, which rely on imports
from outside the region. Since these commodities are related to the energy and food
security for the people in the ASEAN region, and can also be substituted for each
other, it would be quite interesting to learn about the dependence structure of these
commodity prices. Furthermore, it will be useful for making decisions and plans for
the economic and social development of the AEC. Therefore, the purposes of the
study are as follows: (1) to analyze the dependence between crude oil prices (DME)
and two food prices, namely, the prices of soybeans (CBOT) and palm oil (MDEX)
and (2) to analyze the dependence between the soybeans and palm oil prices, with
the crude oil prices as the conditioning variable. The GARCH model was applied
to examine the volatility of the futures prices 1-Pos. of the three data series and
the vine copula model was used to analyze the dependence structure between their
marginal distributions. The data analyses were based on the daily observations from
the period of June 2007 to March 2013.

The remainder of this work is organized as follows: part two is the methodol-
ogy, and part three consists of the data and the empirical findings. Finally, part four
comprises the conclusions.

2 Methodology

Over the past several years, there have been arguments about the relationship be-
tween the energy prices (e.g., crude oil, biodiesel, and ethanol) and the agricultural
commodity prices (e.g., palm oil, soybeans, corn) as to whether they are related or
not. The argument was always divided between a relation and an absence of relation.
From the literature review, we come to know that relationships do exist between
the energy prices and the agricultural commodity prices; what is more, there are
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relationships between the prices of the different agricultural commodities them-
selves. The findings on these relationships depend on many factors such as the
period of study, the data frequency, the statistical analysis, and the modeling. As
for modeling, a number of different models were used in the studies prior to this
study. Baffes [16] used the ordinary least squares (OLS) to analyze the relationship
between the commodity prices and the crude oil price. Serra and Zilberman [13]
mentioned about many econometrics and statistical models that the previous studies
used to find the relationship between the energy prices and the agricultural com-
modity prices, and the relationships between the prices of the different commodities.
A few of such applicable tools are cointegration, causality, vector error correction
model (VECM), vector autoregressive (VAR), autoregressive distributed lag mod-
els (ARDL), vector auto regression moving-average (VARMA), stochastic volatility
model with Merton jumps (SVMJ), panel data, minimal spanning and hierarchical
trees, random parameter model, wavelet, GARCH modeling, and copula modeling.
As mentioned above, we found that the statistics used for analyzing are both para-
metric and non-parametric, and that the relationship analysis between the variables
is both linear and non-linear.

There were several models and each of the models was based on different as-
sumptions in order to test the data. Sriboonchitta et al. [17] applied the copula based
GARCH for modeling the volatility and dependency of the agricultural price and
production indices of Thailand. Based on the study, the work mentioned that this
approach provided more flexibility for finding out the joint distributions and the
transformation of the invariant correlation, without the assumption of linear correla-
tion. Therefore, in this study, we used the GARCH(1,1) model [18] to examine the
volatility of the commodity daily prices which are generally non-normal distribu-
tions and applied the vine copula model to examine the relationship between each
commodity.

The R-package fGarch by Wuertz and Chalabi [19] was used to estimate the
GARCH(1,1) model with the skewed student T (SkT ) residual distribution for the
marginal distribution of the log-difference ln Pt

Pt−1
or the growth rate of crude oil

prices, palm oil prices, and soybeans prices. The standardized residuals with the
skewed student T were transformed to copula data (F1(x1),F2(x2),F3(x3)) by us-
ing the empirical distribution function. After that, we used the R-package CDVine
which was developed by Brechmann and Schepsmeier [20] to estimate the bivariate
copula and C-vine copula.

This study used the C-vine copula modeling to analyze the dependence between
the crude oil prices from the Dubai market (DME) and the two food prices con-
sisting of palm oil prices from the Malaysia market (MDEX) and soybeans prices
from the Chicago market (CBOT), which no one has studied before. The structure
of the C-vine model is shown in Figure 1. This study selected crude oil which was
the first root node, as Brechmann and Schepsmeier [20] hold the view that a vine
structure can be chosen manually or through expert knowledge. Aas et al. [21] said
that modeling C-vine might be advantageous when we know a main variable that
governs the interactions in the data, or when it plays an important role in the depen-
dence structure and when the others are linked to it. Therefore, our assumption in
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Fig. 1 The pair-copulas of three-dimensional C-vine trees

this study is that crude oil prices is a key variable as Serra and Zilberman [13] point
out that energy prices can drive the long-run agricultural price levels.

3 Data and Empirical Findings

To analyze the relationship between crude oil prices and two food prices (palm
oil and soybeans), we selected the commodity prices that are related to the AEC.
The crude oil benchmark price for the Asian market is the Dubai (Oman) crude oil
price [22] since the Middle East is the major source of crude oil for ASEAN [11].
Thus, the crude oil price of the Dubai Mercantile Exchange (DME) was used in
this study. Palm oil prices were obtained from the Malaysia Derivatives Exchange
(MDEX) because Malaysia is a major producer and a world exporter of palm oil [8].
In ASEAN, soybean production in the intra-region was insufficient for meeting the
demand; most of the soybeans was imported from Brazil, Argentina, and America.
Indonesia, Thailand, and Vietnam are the major importers of soybeans in the Asian
region due to their demand for soybeans in the food industry, livestock industry, and
so on [9, 23, 24, 25]. Therefore, we used the soybeans prices of the Chicago Board
of Trade (CBOT) since it provides an updated data and it can be used as a reference
price in the world market. The observations were based on the Futures 1-Pos of the
daily close prices during the period from 1 June 2007 to 15 March 2013, from the
EcoWin database. Each price data series was transformed into the log-difference
ln Pt

Pt−1
, or the growth rates of the prices before were used to analyze by using the

vine copula based GARCH model.
Table 1 presents a descriptive statistics of the growth rates of crude oil, palm oil,

and soybeans. Crude oil and soybeans have positive average growth rates but palm
oil has negative average growth rates. All of three data series exhibit negative skew-
ness. If skewness is negative, the market has a downside risk or there is a substantial
probability of a big negative return. The kurtosis of these data is greater than 3.
Therefore, this kurtosis is called super Gaussian and leptokurtic. This means that
the growth rates of the empirical data have a typically spiky probability distribution
function with heavy tails. The null hypothesis of the normality of the Jarque-Bera
tests are rejected in all the data series. The Dickey-Fuller test shows that these data
series are stationary at p-value 0.01.
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Table 1 Data Descriptive Statistics for Log-difference of Crude Oil, Palm Oil, and Soybeans
Prices

Crude oil Palm oil Soybeans

Mean 0.000354 −0.000107 0.000403
Median 0.000899 0.000000 0.001304
Maximum 0.133869 0.097638 0.203209
Minimum −0.133661 −0.110391 −0.234109
Std. Dev. 0.023000 0.020276 0.020557
Skewness −0.157438 −0.347154 −0.898968
Kurtosis 7.68 7.03 23.50
Jarque-Bera 1,265.75 961.06 24,341.97
(p-value) (0.0000) (0.0000) (0.0000)
p-value of Dickey-Fuller test 0.01 0.01 0.01
Number of observations 1,379 1,379 1,379

From the data given in Table 1, it can be seen that the three data series are inap-
propriate with normal distribution, and exhibit negative skewness and excess kur-
tosis. Therefore, the GARCH(1,1) with the skewed student T residual distribution,
εt ∼ SkT (ν,γ), was modeled for examining the volatility and for estimating the
marginal distributions.

Table 2 presents the result of GARCH(1,1) with skewed student T residual. The
asymmetry parameters, γ , are significant and less than 1, exhibiting that all the data
series are skewed to the left. For crude oil, palm oil, and soybeans, the α + β are
0.9980, 0.9901, and 0.9894, respectively; this implies that their volatilities have
long-run persistence. For the short-run effect of the unexpected factors, we consider
the event from the α parameter. Therefore, we can see that they have close values
(0.0529, 0.0746 and 0.0483) and a small impaction for volatility.

Next, we transformed the standardized residuals from the GARCH(1,1) model
into uniform [0,1] by using the empirical distribution function Fn(x) = 1

n+1Σ
n
i=11

(Xi≤ x), where Xi≤ x is the order statistics and 1 is the indicator function. The trans-
formed data were used in the Kolmogorov-Smirnov (K-S) test for uniform [0,1] and
the Box-Ljung test for serial correlation. More details are illustrated in Patton [26]
and Manthos [27]. These tests are necessary to check for the marginal distribution
models’ misspecification before using the copula model.

The results of the K-S test show that these marginal distributions are uniform, by
accepting the null hypothesis at p-values equal to 1 or nearly 1. The results of the
Box-Ljung test provide that all of the four moments of all the marginal distributions
are i.i.d. by accepting the null hypothesis that does not have a serial correlation at p-
value greater than 0.05. Therefore, our marginal distributions were not misspecified
and can be used for the copula model.
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Table 2 Results of GARCH(1,1) with Skewed Student T Residual for Log-difference of
Crude Oil, Palm Oil, and Soybeans Prices

Crude oil Std. error Palm oil Std. error Soybeans Std. error
(p-value) (p-value) (p-value)

ω 2.325e-06 1.749e-06 3.903e-06 1.721e-06 4.428e-06 1.674e-06
(0.184) (0.0233 * ) (0.00817 **)

α 0.0529 1.214e-02 0.0746 1.501e-02 0.0483 1.115e-02
(1.32e-05 ***) (6.75e-07 ***) (1.52e-05 ***)

β 0.9451 1.231e-02 0.9155 1.606e-02 0.9411 1.173e-02
(< 2e-16 ***) (< 2e-16 ***) (< 2e-16 ***)

ν 5.067 7.455e-01 7.681 1.485e+00 4.917 6.933e-01
(degree of freedom) (1.07e-11 ***) (2.31e-07 ***) (1.32e-12 ***)
γ 9.418e-01 3.112e-02 9.685e-01 3.557e-02 8.795e-01 2.889e-02
(skewness) (< 2e-16 ***) (< 2e-16 ***) (< 2e-16 ***)
Log likelihood 3,499.523 - 3,654.827 - 3,659.68 -
K-S test - - - - - -
(p-value) (1) (0.9208) (1)
Box-Ljung test - - - - - -
(p-value)
1st moment - - - - - -

(0.5832) (0.2515) (0.9540)
2nd moment - - - - - -

(0.7921) (0.8898) (0.4999)
3rd moment - - - - - -

(0.7765) (0.0732) (0.4433)
4th moment - - - - - -

(0.6423) (0.8803) (0.6692)
Note: Significant codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1.

3.1 Results of C-vine Copula Analysis

Figure 1, in the Part 2, presents each of the pair-copulas of the three-dimensional
C-vine tree; there are two pair-copulas in Tree 1 and one pair-copula in Tree 2.
The first and second pair-copulas in Tree 1 are Crude oil–Palm oil (C,P) and Crude
oil–Soybeans (C,S), respectively. The third pair-copula in Tree 2 is a conditional
pair-copula, Palm oil–Soybeans given Crude oil (P,S|C).

We use the Gaussian copula, Student’s T copula, Clayton copula, Gumbel cop-
ula, Frank copula, Joe copula, rotated Clayton 180◦, rotated Gumbel 180◦ copula,
and rotated Joe 180◦ copula to fit the data. The AIC and the BIC are used to ap-
praise as to which copula is the best fit. Kendall’s tau correlation which was trans-
formed from the copula parameter was used because each family of copula has
a different range of copula parameters; hence we inverse a copula parameter into
a Kendall’s tau correlation, and it is bound on the interval [−1,1]. Kendall’s tau is a
measure of concordance which is a function of copula; thus, we can use it to assess
the range of dependence covered by the families of copula. A goodness-of-fit test
based on Kendall’s tau provides the Cramér-von Mises (CvM) and Kolmogorov-
Smirnov (KS) test statistics and the estimated p-values by bootstrapping [20] to test
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the appropriateness of the copula model under the null hypothesis that the empirical
copula C belongs to a parametric class C′ of any of the copulas, H0 : C ∈C′.

The results of the pair-copulas Crude oil–Palm oil (C,P), Crude oil–Soybeans
(C,S), and Palm oil–Soybeans given Crude oil (P,S|C) are presented in Table 3.

The first pair-copula, Crude oil–Palm oil, considering the values of the AIC and
the BIC, the three most appropriate copulas in order are the Gaussian, Student’s T,
and rotated Gumbel 180◦. But the second parameter (ν) of the Student’s T copula is
insignificant with p-values greater than 0.05. The CvM and KS tests of the Gaussian,
Student’s T, and rotated Gumbel 180◦ copula accept the null hypothesis with p-
values greater than 0.05, which means that the dependence structure of the data
series is appropriate for a chosen family. Therefore, the Gaussian copula is chosen to
explain the dependence structure of this pair-copula with a copula parameter 0.2495
and a Kendall’s tau correlation 0.16.

The second pair-copula, Crude oil–Soybeans, considering the values of the AIC
and the BIC, the three most appropriate copulas in order are Student’s T, Gaussian,
and Frank. Although the Student’s T copula is the best fit according to the AIC and
the BIC, it does not give any results for the CvM and KS tests by estimation in
the R-package CDVine. The Gaussian copula is a second order of the AIC and the
BIC values, and shows that the CvM and KS tests accept the null hypothesis with
p-values greater than 0.05. For the Frank copula, the CvM and KS tests reject the
null hypothesis with p-values less than 0.05, which means that the Frank copula is
not an appropriate model. Therefore, the Gaussian copula is chosen to explain the
dependence structure of this pair-copula with a copula parameter of 0.3545 and a
Kendall’s tau correlation of 0.23.

The parameter of each pair-copula from an appropriate copula family in Tree
1 was used to construct the conditional pair-copula of Palm oil–Soybeans given
Crude oil (P,S|C) in Tree 2 of the C-vine copula model, and the results are shown in
Table 3.

For the conditional pair-copula, Palm oil–Soybeans given Crude oil, considering
the values of the AIC and the BIC, the three most appropriate copulas in order are
the Gaussian, Student’s T, and Frank. Although the second parameter (ν) of the
Student’s T copula is insignificant with p-values greater than 0.05, it does not give
any results for the CvM and KS tests by estimation in the R-package CDVine. The
CvM and KS tests of the Gaussian and Frank copulas accept the null hypothesis with
p-values greater than 0.05, which means that the dependence structure of the data
series is appropriate for a chosen family. Therefore, the Gaussian copula is chosen
to explain the dependence structure of this conditional pair-copula with a copula
parameter 0.2303 and a Kendall’s tau correlation 0.15.

In addition, the results of the bivariate copula analysis of Palm oil and Soybeans
(P,S) are shown in Table 4. The Gaussian copula was chosen to explain the depen-
dence structure between Palm oil and Soybeans by considering the AIC and the BIC
values, and the CvM and KS tests accepted the null hypothesis with p-values greater
than 0.05. The Gaussian copula gives a copula parameter of 0.2970 and a Kendall’s
tau correlation of 0.19.
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Table 3 Results of C-vine Copula Model

Tree Pair- Copula Copula Std. error Kendall’s AIC BIC p-value
copula family parameter (p-value) tau CvM KS

1 C,P Gaussian 0.2495 0.0245 0.1600 −86.4655 −81.2364 0.24 0.19
(0.0000)

Student’s T 0.2494 0.0250 0.1605 −84.8997 −74.4415 0.59 0.61
(0.0000)

ν =53.4942 82.9504
(0.2596)

rotated 1.1675 0.0222 0.1434 −77.9826 −72.7535 0.05 0.07
Gumbel 180◦ (0.0000)

1 C,S Gaussian 0.3545 0.0222 0.2307 −182.9177 −177.6885 0.07 0.08
(0.0000)

Student’s T 0.3606 0.0236 0.2349 −190.5264 −180.0682 NA NA
(0.0000)

ν =13.6722 5.1333
(0.0039)

Frank 2.2742 0.1692 0.2407 −179.5645 −174.3354 0.01 0.01
(0.0000)

2 P,S|C Gaussian 0.2303 0.0249 0.1480 −73.0587 −67.8296 0.98 0.99
(0.0000)

Student’s T 0.2318 0.0258 0.1489 −73.7226 −63.2643 NA NA
(0.0000)

ν =26.1814 17.5220
(0.0677)

Frank 1.4004 0.1657 0.1526 −69.5958 −64.3667 0.61 0.67
(0.0000)

Table 4 Results of Palm Oil–Soybeans (P,S) of a Bivariate Copula Model

Pair- Copula Copula Std. error Kendall’s AIC BIC p-value
copula family parameter (p-value) tau CvM KS

P,S Gaussian 0.2970 0.0236 0.1920 −125.1169 −119.8878 0.30 0.35
(0.0000)

Student’s T 0.2990 0.0244 0.1933 −125.5547 −115.0965 NA NA
(0.0000)

ν =26.4778 18.4553
(0.0758)

Frank 1.8284 0.1666 0.1967 −118.7307 −113.5015 0.02 0.16
(0.0000)

By doing a comparison between a C-vine copula model, given in Table 3, and
a bivariate copula model, given in Table 4, we found out that our results show
that the copula parameters and the Kendall’s tau correlations of a conditional pair-
copula (P,S|C) in all the copula families are less than those that were obtained from



338 T. Kiatmanaroch and S. Sriboonchitta

the bivariate pair-copula (P,S); for example, the Gaussian copula of the conditional
pair-copula (P,S|C) offers the copula parameter and the Kendall’s tau correlation as
0.2303 and 0.15, respectively. Further testing reveals that the Gaussian copula of the
bivariate copula (P,S) offers the copula parameter and the Kendall’s tau correlation
as 0.2970 and 0.19, respectively.

This implies that crude oil price (C) has an influence on the relationship between
palm oil price (P) and soybeans price (S). The crude oil price (C) is an important
variable that governs the interactions in the dependence structure between the palm
oil price (P) and the soybeans price (S).

4 Conclusions

The AEC plays an important role in the global economy. However, it remains in a
state of challenge due to the many problems it faces, such as the global economic
recession combined with food and fuel crises, which have an effect on the people
who are poor and near-poor in the ASEAN region and can have a negative impact
on the social and economic development. The rising prices of food and energy are
the challenges for the ASEAN members to overcome. There exist evidences of sig-
nificant price transmissions between the energy market and the food market. Thus,
it is interesting to study the relationship between the crude oil benchmark prices of
the ASEAN and the prices of the two food commodities that can be used to produce
alternative energy, which are as follows: (1) palm oil, which can be produced and be
sufficient for intra-regional demand and (2) soybeans, which relies on imports from
outside the region. Gaining an understanding of the dependence structure of these
commodity prices will be useful in making decisions and plans for the economic
and social development of the AEC.

In this study, the data analyses were based on the daily observations from June
2007 to March 2013. The GARCH model was used to examine the volatility of the
future prices 1-Pos. of the three data series and applied the C-vine copula model to
examine the relationship between each commodity.

The empirical results of the GARCH(1,1) model with skewed student T residual
show that the crude oil prices, palm oil prices, and soybeans prices have long-run
persistence in volatility. The C-vine copula model was used to study the dependence
structure between crude oil price, soybeans price, and palm oil price that related to
ASEAN region. This study is interesting to examine an influence of crude oil price
on palm oil price and soybeans price. The C-vine copula model is a flexible tool
to analyze the relationship between variables, in which the multivariate dependence
modeling. It offers us to define the relationship structure between variables accord-
ing to the purpose of study, and it can describe the relationship between variables
through the graphical model or are called pair-copulas, as shown in Figure 1. In this
study, we assume crude oil price is a condition variable in C-vine structure. The
finding results can conclude that the change of crude oil price has an influence on
the prices of palm oil and soybeans. Moreover, the findings show that there exists
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the dependence between palm oil price and soybeans price, and crude oil price is
one factor that has an influence on relation of their prices.

The C-vine copula contains three pair-copulas: Crude oil–Palm oil (C,P) and
Crude oil–Soybeans (C,S) in the first tree and a conditional pair-copula, Palm oil–
Soybeans given Crude oil (P,S|C), in the second tree. For the pair-copula Crude oil–
Palm oil (C,P), the Gaussian copula is chosen to explain its dependence structure
with a copula parameter of 0.2495 and a Kendall’s tau correlation of 0.16. Simi-
larly, Crude oil–Soybeans (C,S) offers the Gaussian copula as the best fit with a
copula parameter of 0.3545 and a Kendall’s tau correlation of 0.23. For the last pair-
copula, the conditional pair-copula, Palm oil–Soybeans given Crude oil (P,S|C), the
Gaussian copula is chosen to explain its dependence structure with a copula param-
eter of 0.2303 and a Kendall’s tau correlation of 0.15. Furthermore, considering to
a bivariate pair-copula, Palm oil–Soybeans (P,S), we found that there exists a weak
positive dependence and that the Gaussian copula is the best fit with a copula pa-
rameter 0.2970 and Kendall’s tau correlation of 0.19. This indicates that the price of
one commodity is slightly correlated with the prices of the other commodities.

Our results show that the dependence between the crude oil prices and the soy-
beans prices is stronger than the dependence between the crude oil prices and the
palm oil prices due to the increase in biofuel demand and soybeans consumption [28].
Moreover, palm oil is produced on a large scale within the intra-ASEAN region, and
the ASEAN nations do not have to rely on imports from the outside region. So the
price of palm oil is slightly related to the change in crude oil prices. Thus, to reduce
the price transmission and volatility spillover between crude oil prices and food
prices, and to increase food security, the ASEAN members should get together and
cooperate to incorporate innovative and effective plans to increase the capacity and
performance in food production in order to reduce the reliance on food imports from
outside the region, especially in the case of soybeans.
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Chinese and Korean Tourist Arrivals to
Thailand: Implications for Risk Management
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Abstract. China and Korea are two of the important tourist markets for Thailand.
The growth rates of tourist arrivals from these two countries have volatility and also
seem to have co-movement. Understanding the dependence between these tourists
markets has importance for strategic planning and processes for decision-making.
The purpose of this study is to find out the dependence between the growth rates
of tourist arrivals from China and Korea to Thailand by using the copula based
GARCH model. Copula provides a potential and flexible method to model the de-
pendence between random variables. It is preferable to the conventional approach
because the copula can cross over the restriction of normal distribution and linear
assumption, according to the Pearson correlation. The results of the analysis can
contribute to appropriate policy implications. The results show that there exists a
weak positive dependence and that the rotated Joe 180◦ copula is the best fit, which
provides an evidence of lower tail dependence. The growth rates of tourist arrivals
from China and Korea have co-movement that is both upward and downward, but
with a weak dependence. The rise or loss of tourism demand from China (Korea)
is slightly correlated by the rise or loss of tourism demand from Korea (China).
The time-varying rotated Joe 180◦ copula is the best fit and the most significant,
which implies that the dependence parameter has varied over time. The policy im-
plications for the risk management of the tourism demand should provide enough
motivation for the marketing and promotion of the tourism demand by considering
the time-varying dependency of China and Korea. Moreover, they should consider
alternative target markets as substitutes when theres a loss of arrivals from these two
markets in order to diversify the risk of tourism demand.
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1 Introduction

The travel and tourism sector plays an important role in stimulating the economic
growth of a country. In 2011, the total global contribution of travel and tourism
sector to the GDP was 6,346 billion US dollars (9.1% of total GDP) [1]. Global
tourism demand, which is measured by the number of international tourist arrivals,
rose to 1,035 million and increased by 4% in 2012. Asia and Pacific, particularly,
registered the highest growth among all the regions, with a 7% growth within that
period [2]. Thailand is a major tourist destination in the Asia and Pacific region. In
2011, Thailand ranked fourth in the number of arrivals, with 19 million, and third in
international receipts, with 26 million US dollars [3]. International tourist arrivals
to Thailand have been growing over the past decades: 10 million in 2001 to 20 mil-
lion in Nov 2012, which is a 6% yearly growth rate. However, the tourism sector
continues to face challenges due to the prevailing social and economic uncertain-
ties such as global economic recession, climate changes that influence travelers’
behavior [4], terrorism, and natural disasters. These negative shocks and seasonal
occurrences [5] have an effect on the volatility in tourism demand. Although the
shock effects are not permanent, Lean and Smyth [6] found that the negative shocks
made the growth of tourist arrivals slow down. Consequently, these can have some
adverse effects on the businesses, employment, and economic growth. As shown in
Table 1, the tourism demand for Thailand during the period 2002–2012 fluctuated
greatly because of the many shock events. For example, in 2003, 2005, and 2009,
the growth rate of international tourist arrivals to Thailand sharply declined because
of the outbreak of SARS, tsunami, economic recession, and political disturbance.

Table 1 presents the top 10 ranking arrivals and the market share of the inter-
national tourist arrivals to Thailand. There is diversification in the countries of the
various regions. This paper focuses on tourist arrivals to Thailand from the Asia
region, particularly in the extra-ASEAN countries such as China and Korea, for the
following reasons. First, the long distances of travel have increased the cost of travel
and tourism. Second, the European economy has slowed down, thus causing an ef-
fect on the demand for long-haul travel. Therefore, we should lay the emphasis more
on the intra-regional tourism demand. Third, when we consider the recent growth
rate of arrivals during 2010–2012, China and Korea showed a rapid growth in the
rate of arrivals. They ranked at the third and the fourth place of the market share,
respectively. Fourth, China is a part of the BRIC countries; it is a newly industri-
alized country and a fast growing economy. It is the worlds largest exporter and
manufacturer, and is the second largest economy [7] in the world. Korea is part of
the OECD members, is a developed country, and has a high income level. These two
countries have tourism potential and make for interesting studies regarding their in-
terdependence as far as tourism demand to Thailand is concerned. In addition, when
we look at the growth rates of the tourist arrivals from these two countries, they have
volatility and seem to have co-movement, as is illustrated in Figure 1, Part 4. Thus,
these interesting facts lead to our three research questions: (1) Is there dependence
between the growth rates of tourist arrivals from China and Korea to Thailand? (2)
If there is, then what is the magnitude of dependence? (3) What is the nature of
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Table 1 International Tourist Arrivals to Thailand 2002-2012

2002 2003 2004 2005 2006 2007 2008 2009 2012 2011 2012*

1. Malaysia 1.33 1.35 1.40 1.37 1.59 1.54 1.81 1.76 2.06 2.50 2.23
(12%) (2%) (4%) (-2%) (15%) (-3%) (16%) (-3%) (16%) (19%) (-11%)

2. Japan 1.24 1.04 1.21 1.20 1.31 1.28 1.15 1.00 0.99 1.13 1.24
(5%) (-17%) (15%) (-1%) (9%) (-3%) (-10%) (-14%) (-1%) (13%) (9%)

3. China 0.80 0.61 0.73 0.78 0.95 0.91 0.83 0.78 1.12 1.72 2.53
(-0.4%) (-27%) (18%) (6%) (20%) (-5%) (-9%) (-6%) (37%) (43%) (38%)

4. Korea 0.70 0.70 0.90 0.82 1.09 1.08 0.89 0.62 0.81 1.01 1.05
(25%) (-1%) (26%) (-10%) (29%) (-1%) (-20%) (-36%) (26%) (22%) (4%)

5. UK 0.70 0.74 0.76 0.77 0.85 0.86 0.83 0.84 0.81 0.84 0.77
(6%) (4%) (3%) (2%) (9%) (1%) (-4%) (2%) (-4%) (4%) (-9%)

6. USA 0.56 0.51 0.63 0.64 0.69 0.68 0.67 0.63 0.61 0.68 0.68
(5%) (-8%) (20%) (2%) (8%) (-2%) (-2%) (-6%) (-2%) (11%) (-1%)

7. Singapore 0.55 0.52 0.58 0.65 0.69 0.60 0.57 0.56 0.60 0.68 0.71
(3%) (-6%) (11%) (12%) (5%) (-13%) (-6%) (-1%) (7%) (12%) (3%)

8. Australia 0.35 0.29 0.40 0.43 0.55 0.66 0.69 0.65 0.70 0.83 0.85
(0.3%) (-19%) (31%) (7%) (25%) (18%) (5%) (-7%) (8%) (17%) (2%)

9. India 0.28 0.25 0.33 0.38 0.46 0.54 0.54 0.61 0.76 0.91 0.92
(20%) (-10%) (27%) (14%) (19%) (15%) (0.1%) (13%) (21%) (19%) (1%)

10. Germany 0.41 0.39 0.46 0.44 0.52 0.54 0.54 0.57 0.61 0.62 0.59
(2%) (-6%) (16%) (-3%) (16%) (5%) (-0.3%) (6%) (6%) (2%) (-4%)

11. Others 3.9 3.7 4.3 4.1 5.1 5.8 6.1 6.1 6.9 8.3 8.2
(6%) (-7%) (16%) (-6%) (23%) (12%) (5%) (1%) (11%) (19%) (-1%)

Grand Total 10.9 10.1 11.7 11.6 13.8 14.5 14.6 14.1 15.9 19.2 19.8
(7%) (-8%) (15%) (-1%) (18%) (4%) (1%) (-3%) (12%) (19%) (3%)

Note: *The total number of tourist arrivals from January to November.
The numbers in parenthesis are the growth rate of arrivals.
Source: Ecowin Database.

the dependence structure? If we know whether the growth rates of these two coun-
tries have dependence or not, then it becomes useful for policy makers and tourism
businesses to plan for risk management of tourism demand and tourism supply. For
example, if there is high positive dependence, then the shocks can have an effect that
is either decreasing or increasing simultaneously on tourist arrivals from both China
and Korea to Thailand. Conversely, if there is independence or low dependence, it
would be beneficial in terms of risk diversification because the quantities of loss of
arrivals from these two countries are not related.

In order to answer these research questions, it is the purpose of this study to
find out the dependence between the growth rates of tourist arrivals from China
and Korea to Thailand by using the copula based GARCH model. This model was
chosen because GARCH can examine the volatility of the tourist arrivals and copula
can model the dependence structure between the two marginal distributions that
obtain from GARCH model. Copula can measure the dependence without making
an assumption of normal distribution and linear relation as the Pearson correlation
does. Another advantage of copula is that we can find out the dependence without
actually knowing the real marginal distributions of the variables. The contributions
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of this study are toward the policy implications in terms of risk management of the
tourism demand for Thailand that are obtained from the findings in the analysis.

This paper is divided into seven parts. The next part is the literature review. The
third part presents the methodology that describes the GARCH model and the copula
model. The fourth part presents the data used. The fifth part shows the results of this
study. The sixth part presents the policy implication that discusses in detail the risk
management of the tourism demand for Thailand. The last part gives the conclusion
and information on future research.

2 Literature Review

International tourism demand, which is measured as tourist arrivals, plays an im-
portant role in the economy of many countries. Therefore, analyses on the mod-
eling of international tourism demands are vast. There is a vast array of literature
that contains both the studies on the effects of the various determinants and the
forecasting of future international tourism demands. In this paper, we review par-
ticularly the studies on international tourism demand forecasting by using various
time series models. For example, Goh and Law [8] used the Box-Jenkin forecasting
model along with a stochastic nonstationary seasonality (SARIMA) model and an
intervention component (MARIMA) model for predicting tourist arrivals to Hong
Kong. Similarly, Chang et al. [9] used the autoregressive integrated moving aver-
age (ARIMA) model and the seasonal ARIMA (SARIMA) model for forecasting
tourist arrivals from East Asia to Thailand. Chu [10] used three autoregressive mov-
ing average (ARMA) based models to forecast tourist arrivals in nine Asia Pacific
destinations. It’s been known that international tourist arrivals undergo fluctuations
due to many reasons, such as seasonality, economic changes, financial crisis, politi-
cal instability, terrorism, diseases, and natural disasters. That is why a modeling of
the international tourism demand was presented in the case of our study. The gener-
alized autoregressive conditional heteroskedastic (GARCH) model has been widely
used to investigate the volatility of tourism demand. For example, Chan et al. [11]
used three multivariate GARCH models the constant condition correlation volatility
model or the symmetric CCC-MGARCH, the symmetric vector ARMA-GARCH,
and the asymmetric vector ARMA-AGARCH to investigate the volatility of in-
ternational tourism demand to Australia. Shareef and McAleer [12] used ARMA-
GARCH(1,1) and ARMA-GJR(1,1) to examine the international tourist arrivals to
the Maldives. Coshall [13] used ARIMA for conditional mean, and GARCH and
EGARCH for conditional variance to model the outbound UK tourism demand to
international destinations, as well as to test the forecasting ability of these models.

There is no dearth of literature on correlation analysis across international tourism
markets and tourism destinations. For example, Chan et al. [11] and Alvarez et
al. [14] analyzed the conditional correlation-based GARCH model for monthly in-
ternational tourist arrivals shocks. Hoti et al. [15] analyzed the conditional
correlation-based GARCH model across two tourism destinations. Jang and Chen
[16] and Chen et al. [17] analyzed the correlation across international tourist arrivals
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for finding the optimal tourist market mixes by using a portfolio approach. All of the
researches above measured the interdependence, or the correlation, using the con-
ventional approach, namely, the Pearson correlation coefficient. But the drawback
of the Pearson correlation is that it is restricted by the assumption based on normal
distribution and linear relationship of the data series. However, many data series are
not of normal distribution and have non-linear relationships. Therefore, to overcome
that restriction, many studies used copulas to measure the dependency between the
variables, especially in the financial field. Copulas can model the dependence be-
tween random variables without identifying the distribution of the individual vari-
ables [18]. Many studies used those copulas that have cooperated with the GARCH
model, the copula based GARCH, to find the dependence structure of the marginal
distribution of the conditional variance. The copula based GARCH model provides
more flexibility for finding out the joint distributions and the transformation in-
variant correlation, without the assumption of linear correlation [19]. For example,
Patton [20, 21] used the ARMA(p,q)-GARCH(1,1) model to estimate the marginal
distributions of the Deutsche mark-US dollar and Japanese yen-US dollar exchange
rates because the exchange rates had time variation in both the conditional mean and
the conditional variance, and then used the copula to model the dependence struc-
ture of their marginals. Similarly, Goorbergh [22], Jondeau and Rockinger [23],
and Wang and Cai [24] also used the copula based GARCH to model the depen-
dence structure between stock markets. Reboredo [25] extended the copula based
ARMA(p,q)-TGARCH(1,1) to find the co-movements between the world oil prices
and the global prices for corn, soybean, and wheat. In the tourism field, a few pieces
of literature are available on the application of the copula to model the dependence
structure between variables. Zhang et al. [26] used a fully nested Archimedean cop-
ula function to find the dependence between three dependent variables: destina-
tion visits behavior, time use behavior, and expenditure behavior. Liu and Sriboon-
chitta [27] used a copula based GARCH to model the volatility and the dependence
structure between tourist arrivals from China to two destination markets, Thailand
and Singapore. The results of their study showed a strong dependence between two
the destination markets, which led to a policy recommendation about cooperation in
the policy planning of the two destination markets. Therefore, in this paper, we used
the copula based GARCH to estimate the marginal distributions of the conditional
variances of tourist arrivals from China and Korea to Thailand, and examined the
dependence structure between these two marginal distributions. The contribution of
this paper is toward the policy implication that points to the risk management of the
variations in the tourism demand or tourist arrivals from these two countries to Thai-
land. This study is different from a previous study that focused on the cooperation
between the two destination markets or the concept of multi-destinations.

3 Methodology

The copula based ARMA-GARCH model was used to answer the three research
questions dealt with in this paper. The GARCH model [28] has been widely used
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for modeling the volatility of the asset returns in the financial field. This is impor-
tant as volatility is considered a measure of risk. Therefore, we applied the ARMA-
GARCH model to estimate the marginal distributions since this model can capture
the volatility of international tourism demand, as measured by the number of in-
ternational tourist arrivals. The standardized residuals from ARMA-GARCH model
were transformed to copula data (F1(x1),F2(x2)). After that, the copula approach
was used to measure the dependence between the two marginal distributions of the
growth rates of international tourist arrivals. This study used the R-package CDVine
by Brechmann and Schepsmeier [29] to analyze the constant copula since it pro-
vides a range of tools for bivariate data analysis. And for the time-varying copula,
we followed method endorsed by Patton [21].

We adopt the ARMA(1,0)-GARCH(1,1) with the skewed student T (SkT ) distri-
bution residual for the marginal distribution of the logarithm of the monthly growth
rate of tourist arrivals to Thailand from China and Korea (yt ):

yt = a0 + a1yt−1 + εt (1)

εt = zt

√
ht ,zt ∼ SkT (ν,γ) (2)

ht = ωt +αε2
t−1 +βht−1 (3)

In equation (1) presents ARMA(p,0) process where yt−1 is an autoregressive term
of yt and εt is an error term. Equation (2) then define this error term as the product
between conditional variance ht and a residual zt . A residual zt is assumed to follow
the skewed student T (SkT ) distribution with the degree of freedom parameter ν
and the skewness parameter γ . Equation (3) presents GARCH(1,1) process where
ωt ,α ≥ 0,β ≥ 0 are sufficient to ensure that the conditional variance ht > 0. The
ε2

t−1 represent the ARCH term and α refers to the short run persistence of shocks,
while βht−1 represent the GARCH term and β refers to the contribution of shocks
to long run persistence (α+β ).

The property of the GARCH(1,1) model is that it requires the conditional vari-
ance, ht , of the error term, εt , to be stationary and persistent. This paper used the
second moment condition that was presented in the Bollerslev study [28] and the
log moment condition that was presented by Nelson [30] and Lee and Hansen [31]
to check these properties. The second moment condition: α + β < 1 and the log
moment condition: E[ln(αz2

t +β )]< 0.

3.1 Copulas

One approach of modeling the multivariate dependence is the copula. The copula
functions can offer us the flexibility of merging a univariate distribution to get a joint
distribution with an appropriate dependence structure. The fundamental theorem of
copula is Sklar’s theorem by Sklar [32]. Nelson [33] has made a description of the
copula theory, as follows:
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Let H be a joint distribution function with marginal distributions F and G. Then
there exists a copula C for all x,y in real line, with the following property:

H(x,y) =C(F(x),G(y)) (4)

If F and G are continuous, C is unique. Conversely, if C is a copula and F and
G are univariate distribution functions, then the above function H in (4) is a joint
distribution function with marginal distributions F and G. If H is known, the copula
is an equation (4) that one can get from the form,

C(u,v) = H(F−1(u),G−1(v)), (5)

where F−1 and G−1 are the quantile functions of the marginal distributions.

Yan [34] provides a better understanding of the copula. If we have two or more
continuous random variables that can be transformed to uniform [0,1] by probability
integral transformation, then we can find the multivariate dependence structure by
using the copula.

3.2 Characteristics of Copula Families

This paper uses constant copulas as well as time-varying copulas to describe the de-
pendence of two marginal distributions. The copula types that were used to capture
the dependence include the Gaussian copula, Student’s T copula, Clayton copula,
Gumbel copula, Frank copula, Joe copula, rotated Clayton copula, rotated Gumbel
copula, and rotated Joe copula. Each copula type has its own distinct characteristics.

(a) Constant Copulas

Gaussian (Normal) Copula. Trivedi and Zimmer [35] mention in their work that
the Gaussian copula allows for equal degrees of positive and negative dependence.
The following copula function is offered by Lee [36].

C (u1,u2;ρ) =ΦG(Φ−1(u1),Φ−1(u2);ρ) (6)

or

C (u1,u2;ρ) =
∫ φ−1(u1)

−∞

∫ φ−1(u2)

−∞
1

2Π
√
(1−ρ2)

× [
−(s2− 2ρst+ t2)

2(1−ρ2)
]dsdt (7)

whereΦ−1 is the inverse of the standard normal c.d.f. andΦG(u1,u2) is the standard
bivariate normal distribution with the Pearson correlation parameter ρ restricted to
the interval (−1,1). The Gaussian copula is the tail independence.

Student’s T Copula. Trivedi and Zimmer [35] mention that the Student’s T copula
has two dependence parameters, ν degrees of freedom, and correlation ρ . Unlike



350 O. Puarattanaarunkorn and S. Sriboonchitta

the Gaussian copulas, copulas extracted from T-distributions exhibit tail (upper and
lower) dependence.

CT (u1,u2;ρ,ν) =
∫ T−1

ν (u1)

−∞

∫ T−1
ν (u2)

−∞
1

2Π
√

(1−ρ2)
× [1+

(s2−2ρsT +T 2)

ν(1−ρ2)
]−(

ν+2
2 )dsdT

(8)

where T−1
ν (u1) is the inverse of the c.d.f. of the standard univariate T-distribution

with ν degrees of freedom which is controlling the heaviness of the tails.

Clayton Copula. This family of copulas was discussed by Clayton [37].

C(u1,u2;θ ) = (u−θ1 + u−θ2 − 1)−1/θ (9)

for the dependence parameter θ is limited on the range (0,∞). Trivedi and Zim-
mer [35] state that the Clayton copula does not allow for negative dependence. Since
the Clayton copula shows strong lower tail dependence and relatively weak upper
tail dependence, it can be used to study the involved risks.

Gumbel Copula. Nelson [33] points out that the Gumbel copula was first discussed
by Gumbel [38], and thus it was referred to as the Gumbel family.

C(u1,u2;θ ) = exp(−[(− ln(u1))
θ +(− ln(u2))

θ ]
1
θ ) (10)

for the dependence parameter θ is limited on the range [1,∞). The Gumbel copula
cannot account for negative dependence. As the Gumbel copula shows strong upper
tail dependence, we can say that it is in contrast to the Clayton copula [35]. Joe [39]
is of the view that the Gumbel copula is an extreme value copula.

Frank Copula. Acorrding to Nelson [33], the Frank family was first presented in
Frank [40].

C(u1,u2;θ ) =
−1
θ

ln(1+((e−θu1− 1)(e−θu2− 1))/(e−θ − 1)) (11)

for the dependence parameter θ ∈ (−∞,∞)/{0}. Trivedi and Zimmer [35] speak of
the Frank copula as their favorite because of many reasons. For example, the Frank
copula allows for negative dependence. The dependence is tail symmetry, akin to
the Gaussian and Student-t copulas. The Frank copula accounts for strong positive
or negative dependence. Since the Frank copula can capture weak dependence in
the tails better than the Gaussian, it is most appropriate for data that show weak tail
dependence.

Joe Copula. Nelson [33] points out that this family was proposed in Joe’s work [39].

C(u1,u2;θ ) = 1− [(1− u1)
θ +(1− u2)

θ − (1− u1)
θ (1− u2)

θ ]
1
θ (12)
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for the dependence parameter θ restricted to [1,∞).The Joe copula also has upper
tail dependence with 2− 21/θ as the limit and Family Gumbel is the extreme value
limit of Family Joe [39].

Rotating the copula was made for the asymmetric dependence structures such as
those of the Clayton, Gumbel, and Joe. Nelson [33] defined the rotation of the copu-
las by means of CR(u1,u2) = u1 +u2−1+C(1−u1,1−u2). In practice, for rotated
bivariate copulas, we can transform the input arguments u1 and u2 to 1− u1 and
1− u2 for 180 degrees. When rotating copulas by 180 degrees, we can also call the
survival copulas of the corresponding family, for example, survival Clayton [29].
After we rotate copulas, such as with the rotated Gumbel, the copulas will show
stronger dependency in the lower tail instead of the upper tail.

Rotated Clayton Copula. The rotated Clayton copula can capture the upper tail
dependence, converse to the Clayton copula. Fisher [41] shows the functional form
as

C(u1,u2;θ ) = u1 + u2− 1+[(1− u1)
−θ +(1− u2)

−θ − 1]−
1
θ (13)

Rotated Gumbel Copula. The rotated Gumbel copula can capture the lower tail
dependence, converse to the Gumbel copula. Fisher [41] shows the functional form
as

C(u1,u2;θ ) = u1 + u2− 1+ exp(−[(− ln(1− u1))
θ +(− ln(1− u2))

θ ]
1
θ ) (14)

Rotated Joe Copula. The rotated Joe copula can capture the lower tail dependence,
converse to the Joe copula. Fisher [41] shows the functional form as

C(u1,u2;θ ) = u1 + u2− (uθ1 + uθ2 − uθ1 uθ2 )
1
θ (15)

Time-Varying Copulas. Since it is a fact that dependence between the marginal dis-
tributions of the time series variables are not constant through time, they should be
considered as time-varying copulas. We used the functional form of the time-varying
copulas by following an ARMA(1,10) process which was presented by Patton [21].

Time-Varying Gaussian Copula

ρt = Λ(ωρ +βρρt−1 +α
1

10
Σ10

j=1Φ
−1(u1,t− j)Φ−1(u2,t− j)) (16)

where Φ−1 is the inverse of the standard normal c.d.f., Λ(x)≡ (1−e−x)(1+e−x)−1

is the modified logistic transformation, used to hold ρt in the range (−1,1) at all
times, ρt−1 is a regressor to measure any persistence in the dependence parameter,
and 10 is used to average the transformed variables Φ−1(u1,t− j) and Φ−1(u2,t− j)
over the previous 10 lags (ARMA(1,10) process), to capture the variation in the
dependence [21].



352 O. Puarattanaarunkorn and S. Sriboonchitta

Time-Varying for Non-Gaussian Copula. Patton [21] presented the modeling of
the tail dependence parameters using the symmetrized Joe-Clayton (SJC) copula,
where the upper tail TU and the lower tail T L were related to the parameters of
the copulas. Thus, in addition to specifying the tail dependence parameters over
the sample, the equation that follows also specifies the parameters of the copula.
Manner and Reznikova [42] presented an equation which is based on Patton [21] as

θt = Λ(ω+βΛ−1θt−1 +α
1

10
Σ10

j=1|u1,t− j− u2,t− j|) (17)

where Λ(x) is a transformation function to always keep the parameters in their in-
tervals. Λ(x) ≡ (1+ e−x)−1 is the logistic transformation, used to hold the tail de-
pendence in the range (0,1), Λ(x) ≡ ex for the Clayton copula, and Λ(x) ≡ ex + 1
for the Gumbel copula. βΛ−1θt−1 is an autoregressive term, and the last term on the
right-hand side of the equation is the mean absolute difference between u1 and u2

over the previous 10 observations. This is a forcing variable, and under perfect pos-
itive dependence it will be close to zero, in case of perfect negative dependence it
will equal to 0.5, and in case of independence it will equal to 0.33 [21]. In addition,
we used Λ(x)≡ ex + 1 for the Joe copula, same as that for the Gumbel copula.

Time-Varying for Rotated Non-Gaussian Copula. Patton [43] suggested that the
rotated copulas can be formed thus: If (U1,U2) are distributed as the copula C, then
(1−U1,1−U2) will be distributed as the rotated C copula. Thus, with regard to
estimating time-varying for the rotated non-Gaussian copula, we will transform the
input arguments and use the same function as in equation (17).

3.3 Tail Dependence

Tail dependence explains the degree of dependence in the upper and lower tails
of a bivariate distribution. The distributions of the tail dependences in the case of
financial risk are interesting because tail dependences can model the dependence of
loss events across portfolio assets. Joe [44] explained the dependence of the tails
of the bivariate copula.

Let X and Y be the random variables with marginal distribution functions F and
G. The tail dependence of X and Y can be given as

TU = lim
u→1

(P(X > F−1(u)|Y > G−1(u)) = lim
u→1

1− 2u+C(u,u)
1− u

(18)

If TU ∈ (0,1] the joint distribution of X and Y shows upper tail, indicating that the
probability of the joint occurrence of extreme values is positive; if TU = 0, then
there is no upper tail dependence. Similarly, in

T L = lim
u→0

C(u,u)
u

(19)
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Table 2 Function of Kendall’s tau and Tail Dependence for Bivariate Copula

Copula family Kendall’s tau Tail dependence (lower, upper)

Gaussian 2
Π arcsinρ 0

Student’s T 2
Π arcsinρ T L = TU = 2Tν+1(−

√
ν+1

√
1−ρ
1+ρ )

Clayton θ
θ+2 (2−1/θ ,0)

Gumbel 1− 1
θ (0,2−21/θ )

Frank 1− 4
θ +4 D1(θ)

θ (0,0)
Joe 1+ 4

θ 2

∫ 1
0 t log(t)(1− t)2(1−θ)/θdt (0,2−21/θ )

Rotated Clayton 180◦ θ
θ+2 (0,2−1/θ )

Rotated Gumbel 180◦ 1− 1
θ (2−21/θ ,0)

Rotate Joe 180◦ 1+ 4
θ 2

∫ 1
0 t log(t)(1− t)2(1−θ)/θdt (2−21/θ ,0)

Note: D1(θ ) =
∫ θ

0
c/θ

exp(x)−1 is the Debye function. For the first six copula families, please
refer to Brechmann and Schepsmeier [29]. For the next three rotated copulas, the functional
forms of Kendall’s tau are the same as the non-rotated copulas.

if T L ∈ (0,1], the joint distribution of X and Y shows lower tail dependence, indi-
cating that the probability of the joint occurrence of extreme values is negative; if
T L = 0, then there is no lower tail dependence.

3.4 Maximum Likelihood Estimation

The method of maximum pseudo-log likelihood, studied by Genest et al. [45], was
used for estimation since the marginal distribution functions F and G of the random
vectors are unknown. Thus, we can construct the pseudo copula observations by us-
ing the empirical distribution functions to transform the standardized residual series
into uniform [0, 1] as rank based.

Under the assumption that the marginal distributions F and G are continuous, the
copula Cθ is a bivariate distribution with density cθ and pseudo-observations Fn(Xi)
and Gn(Yi), i = 1,2, ...,n. The pseudo-log likelihood function of θ can be given as

L(θ ) = Σn
i=1 log[cθ (Fn(Xi),Gn(Yi))]. (20)

Then, maximizing the pseudo-log likelihood yield as an estimator of θ ,

θ = Σn
i=1

∂
∂θ

log[cθ (Fn(Xi),Gn(Yi))] = 0 (21)

where cθ =
∂ 2Cθ (Fn(x),Gn(y))

∂x∂y , Fn(x) = 1
n+1Σ

n
i=11(Xi ≤ x) and Gn(x) = 1

n+1Σ
n
i=11(Yi ≤

y) are the empirical distributions.



354 O. Puarattanaarunkorn and S. Sriboonchitta

3.5 Selection of Copulas

Selecting a family of copulas is based upon information criteria such as Akaike
Information Criterion (AIC) by Akaike [46] and Bayesian Information Criterion
(BIC) by Schwarz [47]. For examining whether the dependence structure of the
data series is appropriate for a chosen family of copulas, we used a goodness-of-
fit test based on a scoring approach by Vuong [48] and Clarke [49], and a second
goodness-of-fit test based on Kendall’s tau by Genest and Rivest [50], and Wang
and Wells [51].

4 Data

The seasonal adjusted
1

data of tourist arrivals to Thailand from China and Korea
that measure the tourism demands for these two countries were used. The monthly
data of the two countries, during the period from January 1997 to November 2012,
were taken into the logarithm of the monthly arrival rate (the growth rate of tourist
arrivals).

The growth rate of tourist arrivals = ln
Number arrivalst

Number arrivalst−1
(22)

Table 3 Descriptive Statistics for Growth Rate of Tourist Arrivals

China Korea

Mean 0.011 0.005
Median 0.014 0.004
Maximum 0.739 0.826
Minimum −1.099 −1.139
Std. Dev. 0.281 0.196
Skewness −0.903 −1.164
Kurtosis 6.092 11.529
Jarque-Bera 101.538 618.798
(p-value) (0.000) (0.000)
Observations 190 190
Pearson’s correlation 0.33
Note: The null hypothesis of Jarque-Bera = data is taken as the normal distribution.

Table 3 presents a descriptive statistics of the growth rate of the tourist arrivals
to Thailand from China and Korea. Both the countries have positive average growth
rates during the period from January 1997 to November 2012. The negative skew-
ness and the excess kurtosis are exhibited in the data of both China and Korea. This

1
The X12-ARIMA monthly seasonal adjustment method by the U.S. Department of Com-
merce in the Eviews7 program was used.
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Fig. 1 The growth rate of the tourist arrivals to Thailand from China and Korea

means that the two data series have peakedness of distribution and heaviness of the
tail. The null hypothesis of normality of the Jarque-Bera tests are rejected in both
data series. Figure 1 presents the growth rate of the tourist arrivals to Thailand from
China and Korea during this period. It can be seen that the growth rates of both the
countries have considerable fluctuation and co-movement. The Pearson’s correlation
of 0.33 indicates that two data series have correlation.

5 Empirical Results

5.1 Results of ARMA-GARCH Model for Marginal Estimation

To test whether the data are stationary or not, we use the Augmented Dickey-Fuller
test (ADF). The results show that the two data series are stationary at p-value 0.01.
For examining the volatility of the growth rates of the tourist arrivals to Thailand
from China and Korea, the ARMA(1,0)-GARCH(1,1) with skewed student T resid-
ual, εt ∼ SkT (ν,γ), was modeled. The choice of skewed student T distribution is
because of the fact that the two data series exhibit negative skewness and excess
kurtosis. Identification of the optimal models was based on the Akaike information
criterion (AIC). In Table 4, all the parameters of the model are significant at levels
0.01, 0.05, except that the parameter α of Korea is significant at level 0.1 and pa-
rameter ar1, β of China are insignificant at level 0.1. The degree of freedom and the
skewness parameters are also significant at level 0.01. This indicates that the two
data series are the skewed student T distributions. The results show that the volatil-
ity of the growth rates of the tourist arrivals from China has a short run persistence
(α) and no long run persistence since the parameter β is insignificant. As for the
volatility of the growth rates of the tourist arrivals from Korea, it has a weak long
run persistence, although there is a value on the second moment which equals 1.08,
which is more than one. But a value of the log moment equals−0.708, which is less
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than zero; this is necessary and sufficient for it to be the strict stationarity, and the
persistence of conditional variance is also satisfied.

Table 4 Result of ARMA(1,0)-GARCH(1,1) with Skewed Student T Residual for Growth
Rate of Tourist Arrivals to Thailand from China and Korea

China Std. error (p-value) Korea Std. error (p-value)

ar1 −0.092 0.087 (0.292) −0.219 0.078 (0.005)
ω 0.031 0.012 (0.011) 0.011 0.006 (0.044)
α 0.836 0.411 (0.042) 0.869 0.457 (0.057)
β 0.114 0.129 (0.377) 0.211 0.106 (0.045)
ν (degree of freedom) 3.249 0.873 (0.000) 2.980 0.808 (0.000)
γ (skewness) 0.870 0.076 (< 2e-16) 0.842 0.069 (< 2e-16)
Log likelihood 15.699 - - 104.044 - -
AIC −19.398 - - −194.088 - -
2nd moment 0.950 - - 1.080 - -
Log moment −0.978 - - −0.708 - -

Table 5 P-values of K-S Test and Box-Ljung Test for Marginal Distributions

Margin 1 (China) Margin 2 (Korea)

K-S test 1.000 1.000
Box-Ljung test
1st moment 0.437 0.285
2nd moment 0.419 0.894
3rd moment 0.272 0.110
4th moment 0.589 0.939

Note: The null hypothesis of the K-S test = data is uniform; the null hypothesis of the Box-
Ljung test = no serial correlation.

Then we transformed the standardized residuals from these two models into uni-
form [0,1], u1 and u2, by using the empirical distribution function Fn(x) =

1
n+1Σ

n
i=11(Xi ≤ x), where Xi ≤ x is the order statistics and 1 is the indicator func-

tion. For checking whether the marginal distributions that we transformed were cor-
rectly specified, which means that u1 and u2 are i.i.d. uniform [0,1]. We used the
Kolmogorov-Smirnov (K-S) test for uniform [0,1] and the Box-Ljung test for the
serial correlation. The results of the K-S test, as given in Table 5, show that both
of these marginal distributions are uniform, by accepting the null hypothesis at p-
values as equal to 1. The results of the Box-Ljung test show that all of the four
moments of the marginal distributions are i.i.d. by accepting the null hypothesis that
no serial correlation at p-value should be greater than 0.05. Therefore, our marginal
distributions were not misspecified and can be used for the copula model.
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Fig. 2 The dependence of the standardized residuals (left) and the dependence of the trans-
formed standardized residuals to uniform [0,1] (right)

Figure 2 shows the scatterplot of the standardized residuals from the ARMA-
GARCH model for China and Korea, and the scatterplot of the transformed stan-
dardized residuals to uniform. This figure shows that there is weak dependence on
the lower (left) tail between the marginal distributions of China and Korea. There-
fore, to find the true dependence structure between the two marginal distributions
of these two countries, various families of the copulas were used; the results are
presented in the next section.

5.2 Results of Copula Estimations

We used various families of the copulas to examine the dependency and the de-
pendence structure between the marginal distributions of the growth rates of the
Chinese and Korean tourist arrivals to Thailand. For the static copula models, we
used the Gaussian, Student’s T, Clayton, Gumbel, Frank, Joe, rotated Clayton 180◦,
rotated Gumbel 180◦, and rotated Joe 180◦. Table 6 shows the results of each family
of copula, including the copula parameter, standard error, and p-value. Kendall’s tau
correlation that was transformed from the copula parameter was used because each
family of copula has a different range of copula parameters; so we inverse a cop-
ula parameter into a Kendall’s tau correlation, and then it is bound on the interval
[−1,1]. Kendall’s tau is a measure of concordance which is a function of copula;
thus, we can use it to assess the range of dependence covered by the families of the
copula. The lower tail (T L) and upper tail (TU ) dependences were used because,
in the descriptive statistics, we found that China and Korea had heavy-tailed distri-
butions, from the values of kurtosis. The tail dependences can explain the degree
of dependence in the tails or it can model dependence of extreme events such as
loss events. This is of interest as we can be aware of possible concurrent bad events
in the tails. If there exists upper tail dependence, then it is an indication that the
probability of the joint occurrence of extreme values is positive, or that the two vari-
ables rise together. But if there exists lower tail dependence, then it is an indication
that the probability of the joint occurrence of extreme values is negative, or that the
two variables crash together. The AIC and BIC were used for selection of copu-
las. The result shows that all of the estimated copula parameters from each family
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are significant and that there are weak positive dependences between two marginal
distributions. Moreover, most copulas present lower (left) tail dependence (T L) and
very weak upper (right) tail dependence (TU ). This implies that the growth rates of
the Chinese and the Korean tourist arrivals to Thailand have co-movement. When
the AIC and the BIC are looked at for selecting the copula model, the rotated Joe
180◦ copula is chosen for describing the dependence structure. The rotated Joe 180◦
can capture the lower (left) tail dependence. The estimated parameter of the rotated
Joe 180◦ copula is 1.287, the Kendall’s tau correlation is 0.140, and the lower (left)
tail dependence (T L) is 0.286, all of which provides evidence of lower tail depen-
dence. This means that the growth rates of the tourist arrivals from China and Korea
have co-movement that is both upward and downward, but with a weak dependence.
The rise or loss of tourism demand from China (Korea) is slightly correlated by the
rise or loss of tourism demand from Korea (China). Moreover, the lower (left) tail
dependence indicates that there are chances that Thailand will have to face the prob-
ability of joint occurrences of large loss of tourist arrivals from China and Korea.

Table 6 Static Copula Models

Copula parameter Std. error Kendall’s Tau T L TU AIC BIC
(p-value) (Lower tail) (Upper tail)

Gaussian θ = 0.197 0.069 0.127 0 0 −5.461 −2.214
(0.002)

Student’s T θ = 0.200 0.0785 0.128 0.109 0.109 −10.322 −3.828
(0.006)

ν = 4.487 1.847
(0.008)

Clayton θ = 0.381 0.109 0.160 0.162 0 −15.659 −12.412
(3.145e-04)

Gumbel θ = 1.105 0.060 0.095 0 0.127 −1.466 1.781
(0.000)

Frank θ = 1.160 0.451 0.127 0 0 −4.623 −1.376
(0.012)

Joe θ = 1.048 0.087 0.027 0 0.063 1.683 4.930
(0.000)

Rotated θ = 0.091 0.099 0.044 0 0 1.078 4.325
Clayton 180◦ (0.180)
Rotated θ = 1.179 0.059 0.152 0.199 0 −16.062 −12.815
Gumbel 180◦ (0.000)
Rotated θ = 1.287 0.092 0.140 0.286 0 −18.616 −15.369
Joe 180◦ (0.000)

Table 7 presents a goodness-of-fit test of copulas based on the Vuong and Clarke
tests for bivariate copulas. The Vuong and Clarke method tests by comparing the
copulas and also by taking into consideration the null hypothesis, which allows for
statistically significant decision among the two models, and then gives a score for
copulas. The copula with the highest score should be chosen. The results show that



Copula Based GARCH Dependence Model of Chinese and Korean Tourist 359

the rotated 180◦ copula is the best fit which gives the highest score, for both the
Vuong test and the Clake test, followed by the rotated Gumbel 180◦ copula. These
results are consistent with the results obtained from the AIC and the BIC.

Table 7 Goodness-of-fit Test Scores Based on Vuong and Clarke Tests

Gaussian Student’s T Clayton Gumbel Frank Joe rotated rotated rotated
Clayton 180◦ Gumbel 180◦ Joe 180◦

Vuong −2 0 0 −2 0 0 0 2 2
Clarke −3 5 4 −1 −1 −6 −6 4 4

Note: The values in table are the scores at significance level = 0.05 under the null hypothesis
that both copulas are statistically equivalent. The family with the highest score should be
selected.

Table 8 Goodness-of-fit Test Based on Kendall’s Process for Gaussian, Rotated Gumbel
180◦, and Rotated Joe 180◦ Copulas

Gaussian rotated Gumbel 180◦ rotated Joe 180◦

p-value of CvM 0.22 0.94 0.49
p-value of KS 0.05 0.85 0.49

Note: Critical value α= 5%. If p-value > 0.05, it means that the dependence structure of the
data series is appropriate for the chosen family of copulas.

Table 8 presents a second goodness-of-fit test of the copulas, based on Kendall’s
process, which offers the p-values of two statistical analyses, the Cramér-von Mises
test (CvM) and the Kolmogorov-Smirnov test (KS). We selected two copulas that
gave the highest score from the Vuong and Clarke tests and one family from the
elliptical copula, the Gaussian. We used a second goodness-of-fit test to ensure that
the dependence structure of the data series is appropriate for the chosen family
of copulas. The results showed that the p-values of the CvM and KS tests of the
four copula families are greater than 0.05, thus indicating the acceptance of the null
hypothesis.

The dependence structures vary over time. Thus, we also used time-varying cop-
ula models to show the co-movement between the growth rates of the tourist arrivals
from China and Korea to Thailand during this period. We used the time-varying
copula models, as in Patton [21], such as the time-varying Gaussian copula, time-
varying Gumbel copula, and time-varying rotated Gumbel 180◦ copula. Further-
more, we added the time-varying Joe copula and the time-varying rotated Joe 180◦
copula. As given in Table 9, the results showed that the time-varying rotated Joe
180◦ copula is the best fit from the AIC and the BIC, corresponding to the results
from the static copula. All the three copula parameters of the time-varying rotated
Joe 180◦ copula are significant at level 0.01. The parameter β represents the de-
gree of persistence in the dependence. And the parameter α stands for significance,
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Table 9 Time-varying Copula Models

Copula parameters Std. error (p-value) AIC BIC

Time-varying Gaussian ω = 0.560 0.023 (0.000) −3.287 6.454
β = −1.693 0.040 (0.000)
α = 0.838 0.044 (0.000)

Time-varying Joe ω = −0.610 0.068 (1.110e-16) 4.914 14.655
β = 0.271 0.054 (6.934e-07)
α = 1.814 0.138 (0.000)

Time-varying Gumbel ω = −0.196 0.079 (0.007) 2.297 12.039
β = 0.316 0.069 (4.135e-06)
α = 0.564 0.074 (6.984e-13)

Time-varying rotated Gumbel 180◦ ω = 2.204 0.007 (0.000) −14.355 −4.614
β = −1.217 0.015 (0.000)
α = −1.195 0.012 (0.000)

Time-varying rotated Joe 180◦ ω = 2.087 0.034 (0.000) −16.323 −6.582
β = −0.808 0.022 (0.000)
α = −1.819 0.085 (0.000)

implying that there are variations over time in the dependences between the growth
rates of the tourist arrivals from China and Korea. A comparison between the depen-
dences of the static rotated Joe 180◦ copula and the time-varying rotated Joe 180◦
copula is shown in Figure 3. It can be observed that the dependences have fluctuated
significantly through time.

Fig. 3 The static and time-varying of the rotated Joe 180◦ copula
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6 Policy Implications

Our results show that there exists a weak positive dependence between the growth
rates of tourist arrivals from China and Korea to Thailand and that it keeps varying
over time. The dependence structure is the rotated Joe 180◦ copula, and this pro-
vides evidence of lower tail dependence. This means that the growth rates of the
tourist arrivals from China and Korea have co-movement that is both upward and
downward, but with a weak dependence. The rise or loss of tourism demand from
China (Korea) is slightly correlated by a rise or loss of tourism demand from Korea
(China).

For risk management of the tourism demand, policy makers and tourism busi-
nesses should provide adequate and effective marketing and promotion to motivate
the tourism demand by taking into consideration the time-varying dependency of
China and Korea. Moreover, they should consider other target markets for substi-
tution when there is loss of arrivals from these two markets. Especially in the low
season, the simultaneous loss of arrivals will have more impact on the tourism indus-
try and related businesses. Policy makers should examine the dependence structure
of the tourist arrivals and the seasonal pattern of the other market countries for find-
ing the movement across the countries and to ascertain which tourist market can
be substituted when one or the other tourist markets have a loss from shock or low
season so that they can diversify the risk of tourism demand.

7 Conclusion and Future Research

International tourism to Thailand has been growing over the past decade, but its suc-
cessful management still remains a challenge due to the various uncertainties and
events. China and Korea are important target markets which rank third and fourth,
respectively. The growth rates of the tourist arrivals from these two countries have
volatility and seem to have co-movement. This observation is interesting and raises
certain questions, the answers to which we seek: Is there dependence between the
growth rates of the tourist arrivals from China and Korea to Thailand? If so, what
is the magnitude of the dependence? And, how is the dependence structure? In or-
der to answer these research questions, this research work did a study to find out
the dependence between the growth rates of the tourist arrivals from China and Ko-
rea to Thailand by applying the copula based GARCH model. The GARCH model
can examine the volatility of the tourist arrivals and the copula model can find out
the dependence structure between the two marginal distributions without having to
assume normal distribution and linear correlation. The contribution of this study is
based on the finding that it provides policy implications that are different from those
given by Liu and Sriboonchitta [27], which was presented in the literature reviews.
The findings are useful for policy makers and tourism businesses in terms of risk
management of tourism demand.

For the empirical analysis, we first used the data descriptive statistics to analyze
the two data series and found that they rejected the null hypothesis of normality
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and exhibited skewness and excess kurtosis. Second, the ARMA(1,0)-GARCH(1,1)
models with the skewed student-T residual were used to find out the marginal dis-
tributions of the growth rates of the arrivals of the two data series. We found that the
ARMA(1,0)-GARCH(1,1) models could examine the volatility of the growth rates
of the tourist arrivals from these two countries, that China has a short run persis-
tence, and that Korea has a weak long run persistence. Third, the various copula
families were used to measure the dependency and the dependence structure. The
results show that there exists a weak positive dependence and that the rotated Joe
180◦ copula, which can capture the lower (left) tail, is the best fit. This implies that
the growth rates of the tourist arrivals from China and Korea have co-movement
that is both upward and downward, but with a weak dependence. The rise in or loss
of tourism demand from China (Korea) is slightly correlated by the rise in or loss
of tourism demand from Korea (China). Fourth, time-varying copula was used to
show that the dependence parameter had varied over time. The results showed that
the time-varying rotated Joe 180◦ copula is the best fit and that all the parameters
are significant, corresponding to the results from the static copula. Our findings lead
to policy implications on risk management of tourism demand, which has been dis-
cussed previously. For future research, we suggest that the copula based GARCH
be applied to find out the dependence structure of the other tourist arrival countries
for sketching the movement across the different countries.
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Analyzing Relationship between Tourist Arrivals
from China and India to Thailand Using Copula
Based GARCH and Seasonal Pattern

Ornanong Puarattanaarunkorn and Songsak Sriboonchitta

Abstract. Chinese and Indian are the emerging tourist markets for Thailand. The
two nations have tourism potential and make for interesting on doing a study about
their tourism demand that was measure as the number of tourist arrivals. This study
analyzed relationship between the tourist arrivals from China and India to Thailand
by using the copula based GARCH model and the seasonal pattern. The findings
by the copula based GARCH model show that there exists a weak positive depen-
dence between the growth rates of tourist arrivals from China and India to Thailand
and that this dependence keeps varying over time. The rotated Joe 180◦ copula,
which can capture the lower (left) tail dependence, is chosen to describe the de-
pendence structure. These mean that the growth rates of the tourist arrivals from
China and India show a co-movement which is both upward and downward but with
weak dependence. The rise or loss of tourism demand from China (India) is slightly
correlated by a rise or loss of tourism demand from India (China). These results
correspond to the seasonal patterns in which the seasonal pattern of China is in a
direction opposite to the seasonal pattern of India in several periods, and the pat-
terns showing a co-movement during some periods. Understanding the relationship
between Chinese arrivals and Indian arrivals in each time period, it could contribute
to policy implications such as developing the appropriate marketing and promotion
strategies to attract other tourist markets as substitutes when we lose the regular
tourist markets due to shock effects or low season.

1 Introduction

The travel and tourism sector has an important role to economic growth of Thailand.
In 2011, Thailand’s tourism receipts were about 26 million US dollars [1]. Thai-
land has a variety of the tourist arrivals markets. Strategic planning for all tourists
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markets is difficult. Vanhove [2] said that it is difficult for any destination to make
a choice among the potential markets by many reasons such as a destination cannot
be operational on all these markets under limiting budget. Choice of markets is also
one of the most important decisions in a strategic plan of a destination. Chinese and
Indian are the interesting tourist markets for Thailand since the two countries are
emerging markets (BRIC countries) with rapid economic growth and industrializa-
tion. These two countries have tourism potential and make for interesting on doing a
study about their tourism demand that was measure as the number of tourist arrivals.
The recent growth rates of Chinese arrivals to Thailand during 2010–2012 showed
a rapid escalation, with over 30% yearly growth rate. The tourism receipt from the
arrival of the Chinese to Thailand in 2012 was 3,409 million US dollars. The growth
rate of Indian arrivals to Thailand was over 16%, with tourism receipt of 995 million
US dollars in 2011 [3].

Seasonality is one characteristic of tourism demand [2] thus we assumed that
the tourist arrivals from China and India to Thailand have seasonality. When we

take into consideration the seasonal pattern by average seasonal index (SI)
1

that
was calculated from the number of tourist arrivals during 2007–2012, we found
that these two countries have the difference of seasonal pattern. Figure 1 shows
a comparison of the seasonal patterns of the total tourist arrivals, both Chinese and
Indian, to Thailand. The seasonal patterns of the Chinese and Indian tourists’ arrivals
move in different directions during several periods, and together in some periods. As
evident from the data, the period from the months of January–February, and July–
August were high season (SI>100) for the Chinese tourists but low season for the
Indian tourists, while the stretch from May–June was low season (SI<100) for the
Chinese tourists but high season for the Indian tourists. The difference in the arrival
periods is, in fact, an advantage for Thailand in that one tourist market can act as a
substitution market in case of loss of tourists from the other market.
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Fig. 1 Average Seasonal Index for international tourist arrivals to Thailand, 2007–2012

1
A seasonal index (SI) is measured seasonal variation in terms of an index. It is an average
that can be used to compare an actual observation relative to what it would be if there were
no seasonal variation. This study used the method of simple average to calculate seasonal
index, see more in Part 3.
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However, the variation of tourism demand was not only due to the seasonal be-
havior but also because of irregular events, or due to the effect of a shock. Thus,
when we consider the dependency, in addition to considering the seasonal pattern,
we have to consider the dependence between the tourist arrivals due to irregular
events. Understanding the dependence between the tourist arrivals due to irregular
events and their seasonal patterns is important to Thailand’s tourism industry be-
cause both of information can use to the decision making for policy maker. This
study is interested in the dependence structure between the growth rates of tourist
arrivals from China and India to Thailand. It is in the belief that if we can under-
stand the dependence structures correctly and incorporate them with the seasonal
pattern analysis, then these findings can become an important guideline for tourism
promotion planning and management of risk in tourism demand.

The purpose of the study is to analyze the relationship between the tourist arrivals
from China and India to Thailand by using the copula based GARCH model and
seasonal index. The results from the copula based GARCH were analyzed incorpo-
rate with the seasonal pattern and contribute to policy recommendation in terms of
the management of the tourism demand from these two emerging markets to Thai-
land. The copula based GARCH model was chosen because GARCH can examine
the volatility of the tourist arrivals and copula can model the dependence structure
between the two marginal distributions that obtain from GARCH model.

This paper is divided into five parts. The next part, which is the second part, is the
literature review. The third part presents the methodology that describes the method
is used to calculate seasonal index, the GARCH model, and the copula model. The
fourth part presents the data used and the results of this study. The last part gives the
conclusions and policy implications.

2 Literature Review

Modeling international tourism demand is vast. In this paper, we review, particularly,
the studies of international tourism demand forecasting by using various time series
models. For example, Chang et al. [4] used the autoregressive integrated moving
average (ARIMA) model and the seasonal ARIMA (SARIMA) model for forecast-
ing tourist arrivals from East Asia to Thailand. The generalized autoregressive con-
ditional heteroskedastic (GARCH) model has been widely used to investigate the
volatility of tourism demand. For example, Shareef and McAleer [5] used ARMA-
GARCH(1,1) and ARMA-GJR(1,1) to examine the international tourist arrivals to
the Maldives.

There is plenty of literature available on correlation analysis across international
tourism markets and tourism destinations. For example, Chan et al. [6] and Alvarez
et al. [7] analyzed the conditional correlation-based GARCH model of monthly in-
ternational tourist arrival shocks. Jang and Chen [8] and Chen et al. [9] analyzed the
correlation across international tourist arrivals for finding the optimal tourist market
mixes by using a portfolio approach. All of the literature above measured the cor-
relation, by the conventional approach, namely, the Pearson correlation coefficient.
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The Pearson correlation is restricted within the assumption based on the normal
distribution and the linear relationship of the data series. However, many data se-
ries are not normal distributions, and have non-linear relationships. To overcome
that restriction, many studies used copulas to measure the dependency between the
variables, especially in the financial field. Many studies used copulas that have coop-
erated with the GARCH model, that is, the copula based GARCH, to find the depen-
dence structure of the marginal distribution of the conditional variance. The copula
based GARCH model provides more flexibility for finding out the joint distribu-
tions and the transformation invariant correlation, without the assumption of linear
correlation [10]. For example, Patton [11, 12] used the ARMA(p,q)-GARCH(1,1)
model to estimate the marginal distributions of the Deutsche mark-US dollar and
Japanese yen-US dollar exchange rates. Similarly, Jondeau and Rockinger [13] also
used the copula based GARCH model to model the dependence structure between
stock markets. In the tourism field, there is some literature on applying copula to
model the dependence structure between variables. Zhang et al. [14] used a fully
nested Archimedean copula function to find the dependence between three depen-
dent variables: destination visits behavior, time use behavior, and expenditure be-
havior. Liu and Sriboonchitta [15] used a copula based GARCH model to model the
volatility and the dependence structure between tourist arrivals from China to two
destination markets, Thailand and Singapore.

3 Methodology

The copula based GARCH model and seasonal pattern of tourism demand by av-
erage seasonal index in Figure 1 were used to analyze the relationship between the
tourist arrivals from China and India to Thailand. The GARCH model by Boller-
slev [16] has been widely used for modeling volatility in asset returns and tourism
demand. Therefore, we applied the ARMA-GARCH model to estimate the marginal
distributions. The standardized residuals from ARMA-GARCH model were trans-
formed to copula data (F1(x1),F2(x2)). After that, the copula approach was used to
measure the dependence between the two marginal distributions. This study used
the R-package CDVine by Brechmann and Schepsmeier [17] to analyze the con-
stant copula since it provided a range of tools for bivariate data analysis. And, for
the time-varying copula, we followed the method of Patton [12].

3.1 Average Seasonal Index

We used the method of simple average (see Sharma [18]) to calculate seasonal index
of the tourist arrivals from China and India to Thailand during January 2007 to
December 2012. The seasonal index (SI) is measured seasonal variation in terms of
an index. It is an average that can be used to compare an actual observation relative
to what it would be if there were no seasonal variations. The steps of this method
are presented below,
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(1) The number of tourist arrivals (x) were used to calculate the average of each

month by x̄i =
ΣN

j=1xi, j

N ; i= Month 1,...,12, j= Year 1,...,6, N= Number of years. For

example x̄1 =
xJan,2007+...+xJan,2012

6 .
(2) The average 12 months denoted by x̄1, x̄2, ..., x̄12.
(3) We obtain an average of monthly averages by dividing the total of monthly

averages by 12, Ȳ = x̄1+...+x̄12
12 .

(4) We compute the seasonal index (SI) for each month, SIi = x̄i
Ȳ × 100, i =

1, ...,12, for SI > 100 means high season, SI < 100 means low season.

3.2 ARMA-GARCH Model

We adopt ARMA(1,0)-GARCH(1,1) and ARMA(2,0)-GARCH(1,1) with skewed
student T (SkT ) distribution residual for the marginal distribution of the logarithm
of the monthly growth rates of tourist arrivals to Thailand from China and India (yt),
respectively:

yt = a0 +Σ p
i=1aiyt−i + εt (1)

εt = zt

√
ht ,zt ∼ SkT (ν,γ) (2)

ht = ωt +αε2
t−1 +βht−1 (3)

In equation (1) presents ARMA(p,0) process where yt−i is an autoregressive term
of yt and εt is an error term. Equation (2) then define this error term as the product
between conditional variance ht and a residual zt . A residual zt is assumed to follow
the skewed student T (SkT ) distribution with the degree of freedom parameter ν
and the skewness parameter γ . Equation (3) presents GARCH(1,1) process where
ωt > 0,α ≥ 0,β ≥ 0 are sufficient to ensure that the conditional variance ht > 0. The
αε2

t−1 represent the ARCH term and α refers to the short run persistence of shocks,
while βht−1 represent the GARCH term and refers to the contribution of shocks to
long run persistence (α+β ). The second moment condition is α+β < 1.

3.3 Copulas

One approach of modeling the multivariate dependence is the copula. The copula
functions can offer us the flexibility of merging a univariate distribution to get a joint
distribution with an appropriate dependence structure. The fundamental theorem of
copula is Sklar’s theorem by Sklar [19]. Nelson [20] has made a description of the
copula theory, as follows:

Let H be a joint distribution function with marginal distributions F and G. Then
there exists a copula C for all x,y in real line, with the following property:

H(x,y) =C(F(x),G(y)) (4)
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If F and G are continuous, C is unique. Conversely, if C is a copula and F and
G are univariate distribution functions, then the above function H in (4) is a joint
distribution function with marginal distributions F and G. If H is known, the copula
is an equation (4) that one can get from the form,

C(u,v) = H(F−1(u),G−1(v)), (5)

where F−1 and G−1 are the quantile functions of the marginal distributions.

3.4 Characteristics of Copula Families

This paper uses constant copulas and time-varying copulas to describe the depen-
dence between two marginal distributions. Each copula family has different func-
tions and characteristics; these copula families can be taken from Trivedi and Zim-
mer [21], Nelson [20], etc., and they are as follows.

(a) Constant Copulas

Gaussian (Normal) Copula. Trivedi and Zimmer [21] state that the Gaussian cop-
ula allows for equal degrees of positive and negative dependences. This copula func-
tion has been offered by Lee [22].

C (u1,u2;ρ) =ΦG(Φ−1(u1),Φ−1(u2);ρ)

=
∫ φ−1(u1)−∞

∫ φ−1(u2)−∞
1

2Π
√

(1−ρ2)
× [−(s

2−2ρst+t2)
2(1−ρ2)

]dsdt
(6)

whereΦ−1 is the inverse of the standard normal c.d.f. andΦG(u1,u2) is the standard
bivariate normal distribution with the Pearson correlation parameter, ρ ∈ (−1,1).
Gaussian copula is tail independent.

Student’s T Copula. Trivedi and Zimmer [21] point out that the Student’s T copula
has two dependence parameters, ν degrees of freedom, and correlation ρ ∈ (−1,1).
The student’s T copula exhibits tail (upper and lower) dependence.

CT (u1,u2;ρ ,ν) =
∫ T−1

ν (u1)−∞
∫ T−1

ν (u2)−∞
1

2Π
√

(1−ρ2)
× [1+ (s2−2ρsT+T 2)

ν(1−ρ2)
]−(

ν+2
2 )dsdT

(7)
where T−1

ν (u1) is the inverse of the c.d.f. of the standard univariate T-distribution
with ν degrees of freedom which is controlling the heaviness of the tails.

Clayton Copula. This family of copulas was discussed by Clayton [23].

C(u1,u2;θ ) = (u−θ1 + u−θ2 − 1)−1/θ (8)
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for the dependence parameter θ ∈ (0,∞). The Clayton copula shows strong lower
tail dependence and relatively weak upper tail dependence, it can be used to study
involved risks.

Gumbel Copula. The Gumbel copula was first discussed by Gumbel [24], and so it
has been referred to as the Gumbel family.

C(u1,u2;θ ) = exp(−[(− ln(u1))
θ +(− ln(u2))

θ ]
1
θ ) (9)

for the dependence parameter θ ∈ [1,∞). The Gumbel copula shows strong upper
tail dependence, we can say that it contrasts with the Clayton copula. Joe [25] is of
the view that the Gumbel copula is an extreme value copula.

Frank Copula. Nelson [20] points out that the Frank family was first presented in
Frank [26].

C(u1,u2;θ ) =
−1
θ

ln(1+((e−θu1− 1)(e−θu2− 1))/(e−θ − 1)) (10)

for the dependence parameter θ ∈ (−∞,∞)/{0}. The Frank copula allows for nega-
tive dependence. The dependences in the tail symmetry of the Frank copula are akin
to those of the Gaussian and Student-t copulas. The Frank copula can capture weak
dependence in the tails better than the Gaussian.

Joe Copula. Nelson [20] points out that this family was proposed in Joe [25].

C(u1,u2;θ ) = 1− [(1− u1)
θ +(1− u2)

θ − (1− u1)
θ (1− u2)

θ ]
1
θ (11)

for the dependence parameter θ ∈ [1,∞). The Joe copula also has upper tail depen-
dence with 2− 21/θ as the limit.

Rotating the copula was made for the asymmetric dependence structures such as
those of the Clayton, Gumbel, and Joe. Nelson [20] defined the rotation of the copu-
las by means of CR(u1,u2) = u1 +u2−1+C(1−u1,1−u2). In practice, for rotated
bivariate copulas, we can transform the input arguments u1 and u2 to 1− u1 and
1− u2 for 180 degrees. When rotating copulas by 180 degrees, we can also call the
survival copulas of the corresponding family, for example, survival Clayton [17].
After we rotate copulas, such as with the rotated Gumbel, the copulas will show
stronger dependency in the lower tail instead of the upper tail.

Rotated Clayton Copula. The rotated Clayton copula can capture the upper tail
dependence conversely to the Clayton copula. Fisher [27] shows the functional form
as

C(u1,u2;θ ) = u1 + u2− 1+[(1− u1)
−θ +(1− u2)

−θ − 1]−
1
θ (12)
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Rotated Gumbel Copula. The rotated Gumbel copula can capture the lower tail
dependence conversely to the Gumbel copula. Fisher [27] shows the functional form
as

C(u1,u2;θ ) = u1 + u2− 1+ exp(−[(− ln(1− u1))
θ +(− ln(1− u2))

θ ]
1
θ ) (13)

Rotated Joe Copula. The rotated Joe copula can capture the lower tail dependence
conversely to the Joe copula. Fisher [27] shows the functional form as

C(u1,u2;θ ) = u1 + u2− (uθ1 + uθ2 − uθ1 uθ2 )
1
θ (14)

Time-Varying Copulas
Since it is a fact that dependence between the marginal distributions of the time
series variables are not constant through time, they should be considered as time-
varying copulas. We used the functional form of the time-varying copulas by fol-
lowing an ARMA(1,10) process which was presented by Patton [12].

3.5 Maximum Likelihood Estimation

The method of maximum pseudo-log likelihood, studied by Genest et al. [28], was
used for estimation since the marginal distribution functions F and G of the random
vectors are unknown. Thus, we can construct the pseudo copula observations by us-
ing the empirical distribution functions to transform the standardized residual series
into uniform [0,1] as rank based.

Under the assumption that the marginal distributions F and G are continuous, the
copula Cθ is a bivariate distribution with density cθ and pseudo-observations Fn(Xi)
and Gn(Yi), i = 1,2, ...,n. The pseudo-log likelihood function of θ can be given as

L(θ ) = Σn
i=1 log[cθ (Fn(Xi),Gn(Yi))]. (15)

Then, maximizing the pseudo-log likelihood yield as an estimator of θ ,

θ = Σn
i=1

∂
∂θ

log[cθ (Fn(Xi),Gn(Yi))] = 0 (16)

where cθ =
∂ 2Cθ (Fn(x),Gn(y))

∂x∂y , Fn(x) = 1
n+1Σ

n
i=11(Xi ≤ x) and Gn(x) = 1

n+1Σ
n
i=11(Yi ≤

y) are the empirical distributions.

3.6 Selection of Copulas

Selecting a family of copulas is based upon information criteria such as Akaike In-
formation Criterion (AIC) by Akaike [29] and Bayesian Information Criterion (BIC)
by Schwarz [30]. To examine whether the dependence structure of the data series is
appropriate for a chosen family of copulas, we used a goodness-of-fit test in the R-
package CDVine. A goodness-of-fit test based on a scoring approach by Vuong [31]



Analyzing Relationship between Tourist Arrivals from China and India to Thailand 375

and Clarke [32]. A second goodness-of-fit test based on Kendall’s tau by Genest
and Rivest [33], and Wang and Wells [34] was conducted. It offered the Cramér-
von Mises (CvM) and Kolmogorov-Smirnov (KS) test statistics and estimated the
p-values by bootstrapping.

4 Data and Empirical Results

4.1 Seasonal Index

The seasonal index in Table 1 were used to construct the seasonal pattern, Figure 1,
was shown in Part 1. The period from the months of January–February, and July–
August were high season (SI>100) for the Chinese tourists but low season for the
Indian tourists, while the stretch from May–June was low season (SI<100) for the
Chinese tourists but high season for the Indian tourists.

Table 1 Seasonal Index of Tourist Arrivals to Thailand

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Total Arrivals 116 113 110 95 85 89 100 105 79 86 94 129
China 100 111 95 96 80 76 109 119 96 104 107 106
India 86 79 90 93 132 117 98 100 96 103 95 110

4.2 Copula Based GARCH

For modeling the volatility and the dependency of the tourist arrivals from irregular
events, the seasonal adjusted (for removing the seasonal component of a time series
data) of the monthly tourist arrivals to Thailand from China and India, during Jan-
uary 1997 to December 2012, data from the Ecowin database were used. The two
data series are taken into the logarithm of the monthly arrival rates (the growth rates
of tourist arrivals), the growth rate of tourist arrivals =ln Number arrivalst

Number arrivalst−1
.

Table 2 presents a descriptive statistics of the growth rates of tourist arrivals to
Thailand from China and India. Both the countries have positive average growth
rates during January 1997 to December 2012. Both the Chinese and the Indian data
exhibit negative skewness and excess kurtosis. This implies that both the data series
have peak of distribution and heaviness of tail. The null hypothesis of normality of
the Jarque-Bera tests are rejected in both the data series. Figure 2 presents the growth
rates of the tourist arrivals to Thailand from China and India along this period. It can
be seen that the growth rates of both the countries have considerable fluctuation.
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Table 2 Descriptive Statistics for Growth Rate of Tourist Arrivals

China India

Mean 0.011 0.010
Median 0.012 0.006
Maximum 0.739 0.526
Minimum −1.099 −0.606
Std. Dev. 0.279 0.108
Skewness −0.913 −0.341
Kurtosis 6.132 10.342
Jarque-Bera 104.580 432.757
(p-value) (0.000) (0.000)
Observations 191 191

Note: The null hypothesis of Jarque-Bera = data is taken as the normal distribution.

Fig. 2 The growth rates of tourist arrivals to Thailand from China and India

4.3 Results of ARMA-GARCH Model for Marginal Estimation

To test whether the data are stationary or not, we used the Augmented Dickey-Fuller
test (ADF). The results showed that the two data series were stationary at p-value
0.01. The ARMA(1,0)-GARCH(1,1) and ARMA(2,0)-GARCH(1,1) with skewed
student T residual ∼ SkT (ν,γ) are modeled for estimating the marginal distribu-
tions of the Chinese and the Indian data, respectively. A choice of skewed student
T distribution is based on the fact that the two data series exhibit negative skewness
and excess kurtosis. The Akaike Information criterion (AIC) is used to identify the
optimal models. Table 3 provides the estimation results from the ARMA-GARCH
models, with all the parameters having significance at levels 0.01, 0.05, except for
ar1, β of China and ar2 of India having insignificance at level 0.1. These observa-
tions imply that the volatility of the growth rates of tourist arrivals from China has
a short run persistence, and India has a long run with a value of α+β = 0.96.
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Table 3 Results of ARMA(1,0)-GARCH(1,1), εt ∼ SkT (ν,γ) for China and ARMA(2,0)-
GARCH(1,1), εt ∼ SkT (ν,γ) for India

China Std. error (p-value) India Std. error (p-value)

ar1 −0.093 0.087 (0.286) −0.339 0.076 (8.72e-06)
ar2 - - - −0.107 0.067 (0.107)
ω 0.032 0.013 (0.013) 0.004 0.001 (0.005)
α 0.846 0.423 (0.046) 0.479 0.201 (0.017)
β 0.114 0.129 (0.377) 0.337 0.144 (0.019)
ν (degree of freedom) 3.195 0.851 (0.000) 4.201 1.385 (0.002)
γ (skewness) 0.872 0.074 (< 2e-16) 0.724 0.078 (< 2e-16)
Log likelihood 16.759 - - 196.325 - -
AIC −21.517 - - −378.651 - -
2nd moment 0.96 - - 0.82 - -

Then we transform the standardized residuals from these two models into uni-
form [0,1], u1 and u2, by using the empirical distribution function, Fn(x)= 1

n+1Σ
n
i=11

(Xi ≤ x), where Xi ≤ x is the order statistics, 1 is the indicator function. For check-
ing whether the marginal distributions that we transformed are correctly specified,
which means that u1 and u2 should be i.i.d. uniform [0,1], we use the Kolmogorov-
Smirnov (K-S) test for Uniform [0,1] and the Box-Ljung test for serial correlation. In
Table 4, the results of the K-S test are given, which show that both of these marginal
distributions are uniform, by accepting the null hypothesis at p-values equal to 1.
The results of the Box-Ljung test show that all of the four moments of the marginal
distributions are i.i.d. by accepting the null hypothesis that no serial correlation at p-
value is greater than 0.05. Therefore, our marginal distributions are not misspecified
and can be used for the copula model.

Table 4 P-values of K-S Test and Box-Ljung Test for Marginal Distributions

K-S test Box-Ljung test
1st moment 2nd moment 3rd moment 4th moment

Margin 1 (China) 1.00 0.465 0.861 0.342 0.916
Margin 2 (India) 1.00 0.154 0.722 0.071 0.722

Note: The null hypothesis of the K-S test = data is uniform; the null hypothesis of the
Box-Ljung test = no serial correlation.

4.4 Results of Copula Estimations

The various families of copulas were used to examine the dependence structure
between the marginal distributions of China and India. The results show that the ro-
tated Joe 180◦ copula, which can capture the lower (left) tail dependence, is the best
fit by looking at the smallest values of the AIC and the BIC. Moreover, a goodness-
of-fit test of the copulas based on the Vuong and Clarke tests and a goodness-of-fit
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test based on the Kendall’s process can be used to confirm the same. The process of
Vuong and Clarke is tested by comparing the copulas and also by considering the
null hypothesis which allows for a statistically significant decision, and then a score
is given for the copulas. The copula with the highest score should be chosen. The
results in Table 6 show that a rotated Joe 180◦ copula provides the highest scores. A
second goodness-of-fit test based on the Kendall’s process, which offers p-values of
the two statistics, the Cramér-von Mises test (CvM) and the Kolmogorov-Smirnov
test (KS). We selected three copulas, which give the highest score from Vuong and
Clarke tests, and one family from the elliptical copula, the Gaussian, to assure that
the dependence structure of the data series is appropriate as regards a chosen family
of copulas. The results in Table 7 show that the p-values of the CvM and KS tests
of the three copula families are greater than 0.05, thus proving that they accept the
null hypothesis, with the exception of the Gaussian copula.

The estimated parameter of the rotated Joe 180◦ copula is 1.297, the Kendall’s

tau
2
is 0.144, and the lower (left) tail

3
(T L) is 0.293. This means that the growth

rates of the tourist arrivals from China and India have a co-movement which is
both upward and downward but with weak dependence. The rise or loss of tourism
demand from one country is slightly correlated by the rise or loss of tourism demand
from the other. Moreover, the lower (left) tail dependence indicates that Thailand has
chances of facing the probability of joint occurrences of large loss of tourist arrivals
from China and India.

For the time-varying copula, the results show that the time-varying rotated Joe
180◦ copula is the best fit from the smallest AIC and the BIC, corresponding to the
results from the constant copula. All the three copula parameters of the time-varying
rotated Joe 180◦ copula, ω =−0.406, β = 0.675, α = 0.258, are significance at level
0.01. The parameter β represents the degree of persistence in the dependence and
the parameter α stands for significance, implying that there are variations over time
in the dependences between the growth rates of the tourist arrivals from China and
India. A comparison between the dependences of the static rotated Joe 180◦ copula
and the time-varying rotated Joe 180◦ copula is shown in Figure 3. It is evident that
the dependences have fluctuated significantly over time.

2
Kendall’s tau correlation that was transformed from the copula parameter was used be-
cause each family of copula has a different range of copula parameter; so, we inverse a
copula parameter into a Kendalls tau correlation, and then it is bounded on the interval
[−1,1]. Kendall’s tau is a measure of concordance that is a function of copula; hence we
can use it to assess the range of dependence covered by families of copula.

3
The tail dependences can illustrate the degree of dependence in the tails or model the
dependence of extreme events such as loss events. If there exists upper tail dependence,
this indicates that the probability of the joint occurrences of extreme values is positive or
that the two variables rise together. But if there exists lower tail dependence, then it is an
indication that the probability of the joint occurrences of extreme values is negative or that
the two variables to crash together.
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Table 5 Constant Copula Models

Copula parameter Std. error Kendall’s Tau T L TU AIC BIC
(p-value) (Lower tail) (Upper tail)

Gaussian θ = 0.184 0.069 0.118 0 0 −4.482 −1.230
(0.004)

Student’s T θ = 0.155 0.082 0.099 0.123 0.123 −11.600 4.023
(0.031)

ν = 3.777 1.342
(0.003)

Clayton θ = 0.383 0.107 0.161 0.164 0 −16.956 −13.703
(2.229e-04)

Gumbel θ = 1.081 0.058 0.075 0 0.101 −0.243 3.010
(0.000)

Frank θ = 0.930 0.454 0.102 0 0 −2.184 1.068
(0.021)

Joe θ = 1.013 0.078 0.007 0 0.018 1.972 5.224
(0.000)

Rotated θ = 0.056 0.091 0.027 0 0 1.595 4.848
Clayton 180◦ (0.271)
Rotated θ = 1.175 0.057 0.149 0.196 0 −16.196 −12.944
Gumbel 180◦ (0.000)
Rotated θ = 1.297 0.090 0.144 0.293 0 −20.402 −17.150
Joe 180◦ (0.000)

Table 6 Goodness-of-fit Test Scores Based on Vuong and Clarke Tests

Gaussian Student’s T Clayton Gumbel Frank Joe rotated rotated rotated
Clayton 180◦ Gumbel 180◦ Joe 180◦

Vuong −3 0 2 −3 −3 −1 −2 3 7
Clarke −2 7 4 −2 −2 −7 −7 3 6

Note: The values in table are the scores at significance level = 0.05 under the null hypothesis
that both copulas are statistically equivalent. The family with the highest score should be
selected.

Table 7 Goodness-of-fit Test Based on Kendall’s Process for Gaussian, Clayton, Rotated
Gumbel 180◦ , and Rotated Joe 180◦ Copulas

Gaussian Clayton rotated Gumbel 180◦ rotated Joe 180◦

p-value of CvM 0.04 0.11 0.45 0.23
p-value of KS 0.05 0.21 0.55 0.29

Note: Critical value α= 5%. If p-value > 0.05, it means that the dependence structure of the
data series is appropriate for the chosen family of copulas.
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Fig. 3 The dependences of the constant and time-varying copulas of the rotated Joe 180◦
copula

5 Conclusions and Policy Implications

Analyzing relationship between tourist arrivals from China and India to Thailand,
we used the dependency between the growth rates of tourist arrivals that was ob-
tained by copula based GARCH model and the seasonal pattern of tourism demand.

Our empirical findings show that there exists a weak positive dependence be-
tween the growth rates of tourist arrivals from China and India to Thailand and that
this dependence keeps varying over time. The results show that the rotated Joe 180◦
copula, which can capture the lower (left) tail dependence, is chosen to describe the
dependence structure. This means that the growth rates of the tourist arrivals from
China and India show a co-movement which is both upward and downward but with
weak dependence. The rise or loss of tourism demand from China (India) is slightly
correlated by a rise or loss of tourism demand from India (China). This is benefi-
cial in the risk diversification of tourism demand – particularly, on those occasions
where there is a loss of Chinese (Indian) tourists, we can promote tourism to Indian
(Chinese) tourists as a substitute. On the other hand, if the two tourist markets had
a high correlation, then the negative shock could lead to more loss of arrivals from
both the countries, in addition to having a serious impact on the tourism industry
and the related businesses.

The findings correspond to the seasonal patterns in which the seasonal pattern of
China is in a direction opposite to the seasonal pattern of India in several periods,
and the patterns showing a co-movement during some periods. In other words, low
season for Chinese tourists is high season for Indian tourists in several periods, so
Indian tourists can be a substitution market in the low season; this reduces the impact
on the tourism industry.

Thus, it is evident that our findings have important implications for Thailand’s
tourism industry. For example, it can help policy makers examine, and make, the
time-varying dependency cooperate with the seasonal patterns of the Chinese and
the Indian tourists to effect some appropriate strategy plans for risk management.
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For instance, when there is a loss of tourist market from shock effects or low season,
policy makers can provide marketing and promotion strategy in order to attract other
tourist markets as a substitute.
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Modeling Dependency in Tourist Arrivals to
Thailand from China, Korea, and Japan Using
Vine Copulas

Ornanong Puarattanaarunkorn and Songsak Sriboonchitta

Abstract. Market interdependence has always been an interesting topic in the study
of tourism demand. China, Japan, and Korea are important tourist markets for Thai-
land tourism. Understanding how the arrivals relate to each other can help in tourism
management, in a way that it prepares the tourism industry to plan for the risk man-
agement of the tourism demand and tourism supply. The vine copula model was
used to analyze the multiple dependencies by decomposing the diversity of the pair-
copulas which can be arranged and analyzed in a tree structure. For this study, both
the C-vine copula and the D-vine copula were used to answer the research question.
We give the same conditioning variable for both the C-vine and the D-vine cop-
ula models in order to find the answer to our question of whether these two mod-
els would give different results. The contributions of the study are obtained from
the findings. The C-vine and D-vine copulas provided three pair-copulas, namely,
China–Korea, China–Japan, and Korea–Japan given China and there exists a weak
positive dependence in each pair. In addition, the results provide evidence that China
has influence on the dependence between the tourist arrivals from Korea and Japan.
Moreover, the three dimensions of the C-vine and D-vine copula models, which are
given the same conditioning variable in the second tree, optimally provide the same
estimates of the parameters of interest.

1 Introduction

International tourist arrivals to Thailand have been growing over the past decades:
10 million in 2001 to 20 million in Nov 2012, which is a 6% yearly growth rate.
Thailand’s international tourist market is diverse. This paper focuses on the short-
haul tourist market from the Asia region. We are looking in particular at China,
Japan, and Korea, the important tourist markets which rank 2nd to 4th in the market
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share and are also three of the nations from the East Asia region which are in co-
operation with ASEAN (ASEAN+3). The recent growth rates in the arrivals from
these three countries have been on the rise. China was the highest and grew by 39%
on a yearly average during 2010–2012 [1]. Moreover, China is a nation that has
a fast-growing economy and has an impact on the global economy [2]. However,
the management of tourism demand remains a challenge due to continuing social
and economic uncertainty such as global economic recession, climate change that
influences travelers’ behavior [3], terrorism, and natural disasters. These negative
shocks and seasonal effects [4] have an effect on the volatility in tourism demand.
Although the shock effects are not permanent, Lean and Smyth [5] found that the
negative shocks made the growth of tourist arrival slow down. Such occurrences
and consequences can have some adverse effects on businesses, employment, and
economic growth. For example, in 2003, 2005, and 2009, the growth rate of in-
ternational tourist arrivals to Thailand declined sharply because of the outbreak of
SARS, tsunami, economic recession, and political disturbance. Volatility in the in-
ternational tourist arrivals can have an effect on the management decision making
in the tourism industry. Because of the above-mentioned reasons, it is important to
examine the following questions: How does the volatility of the tourist arrivals to
Thailand from China, Korea, and Japan change over time? What is the nature of the
dependence between the growth rates of tourist arrivals from these three countries?
How do the tourist arrivals from China influence the dependence between the tourist
arrivals from Korea and Japan? Understanding the dependence of their arrivals can
help in tourism management, in that it will go a long way in planning for the risk
management of the tourism demand and the tourism supply, for example, in formu-
lating the promotion marketing strategies and in the decision-making of the budget
allocation. In addition, there has been an increasing number of studies on the joint
distribution of all the risk sources. Schirmacher and Schirmacher [6] stated that we
should understand "how all risk sources relate to each other because their potential
synergy can create catastrophic losses". Along with the risk management of inter-
national tourism demand, in this study, we take into consideration how the tourist
arrivals to Thailand from these three countries, China, Korea, and Japan, are related
to each other.

To answer the research questions that we mentioned above, we used the ARMA-
GARCH model to examine the volatility of the growth rates of tourist arrivals from
these three origin countries and the vine copula model to analyze the dependence
between the three marginal distributions. Allen et al. [7] point out that the vine cop-
ula model is a method offering greater flexibility, which allows for the modeling
of complex dependency patterns. Since vine copulas allow us to analyze multiple
dependencies by decomposing the diversity of pair-copulas, which can then be ar-
ranged and analyzed in a tree structure. For this study, the C-vine copula and the
D-vine copula were both used with a view to answering the question of whether
these two models give different results. We gave the same conditioning variable for
both the C-vine and the D-vine copula models.

The copula model is a popular tool in the financial field because this approach
provided more flexibility for finding the joint distributions and the transformation of
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the invariant correlation, without having to assume linear correlation [8], imposed by
the conventional approach, namely, the Pearson correlation coefficient. The standard
references of the copula theory were presented in Joe [9] and Nelson [10].

Vine copula modeling was introduced by Joe [11] and extended by Bedford and
Cooke [12, 13]. It is a graphical model used for describing multivariate copulas,
a graph composed of many bivariate copulas, and so it can be referred to as the
pair-copula constructions (PCCs). In recent years, there has been an increase in the
volume of literature on vine copula application, particularly, in the financial field.
For example, Aas et al. [14] used the D-vine copula to examine the dependence
of four variables of the financial data. Schirmacher and Schirmacher [6] used the
canonical vine, or the C-vine, copula to model the dependence of three currency
exchange rates. Allen et al. [7] used regular vine copula to analyze the dependence
between stock indices. Zimmer [15] used both the C-vine and the D-vine copulas to
analyze co-movement in housing prices. In the tourism field, a few pieces of liter-
ature are available on applying copula to model the dependence structure between
variables. Zhang et al. [16] used a fully nested Archimedean copula function to find
the dependence between three dependent variables, destination visit behavior, time
use behavior, and expenditure behavior. Liu and Sriboonchitta [17] used a copula
based GARCH to model the volatility and the dependence structure between tourist
arrivals from China to two destination markets, Thailand and Singapore.

In this study, we applied the vine copula to examine the dependence of the growth
rates of tourist arrivals to Thailand from the three major origin countries in Asia,
namely, China, Korea, and Japan, by using the C-vine and D-vine models in the
R-package CDVines. Moreover, we used the time-varying copula to model the de-
pendence of the pair-copula of each of these three countries. The contributions of
the study are obtained from the findings that can lead to policy recommendations
in terms of risk management of the tourism demand for Thailand. The paper is di-
vided into six parts. The next part is about the methodology used, which describes
in detail the GARCH model and the vine copula model. The third part presents the
data used. The fourth part shows the results of this study. The fifth part presents the
policy implications that can help the risk management of the tourism demand for
Thailand. The last part gives the conclusion remarks.

2 Methodology

The author of this study applied the marginal ARMA-GARCH models and the vine
copula to answer the research questions in this paper. The GARCH model [18] has
been widely used for modeling volatility. Volatility is a significant factor as it is
considered a measure of risk. Therefore, we applied the ARMA-GARCH model
to estimate the marginal distributions since this model can capture the volatility of
international tourism demand, as measured by the number of international tourist
arrivals. The standardized residuals from ARMA-GARCH model were transformed
to copula data (F1(x1),F2(x2),F3(x3)). After that, the vine copula approach was
used to measure the dependence of the marginal distributions. This study used the
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R-package CDVine by Brechmann and Schepsmeier [19] to analyze the constant
copula since it provided a range of tools for the bivariate data analysis. As for the
time-varying copula, we followed the path laid by Patton [20].

2.1 ARMA-GARCH Model

We adopt the ARMA(1,0)-GARCH(1,1) with the skewed student T (SkT ) distribu-
tion residual for the marginal distribution of the logarithm of the monthly growth
rate of tourist arrivals to Thailand from China, Korea, and Japan (yt) as

yt = a0 + a1yt−1 + εt (1)

εt = zt

√
ht ,zt ∼ SkT (ν,γ) (2)

ht = ωt +αε2
t−1 +βht−1 (3)

In equation (1) presents ARMA(1,0) process where yt−1 is an autoregressive term
of yt and εt is an error term. Equation (2) then define this error term as the product
between conditional variance ht and a residual zt . A residual zt is assumed to follow
the skewed student T (SkT ) distribution with the degree of freedom parameter ν and
the skewness parameter γ . Equation (3) presents GARCH(1,1) process whereω > 0,
α ≥ 0, β ≥ 0 are sufficient to ensure that the conditional variance ht > 0. The αε2

t−1
represent the ARCH term and α refers to the short run persistence of shocks, while
βht−1 represent the GARCH term and β refers to the contribution of shocks to long
run persistence (α +β ). The property of the GARCH(1,1) model is that it requires
the conditional variance, ht , of the error term, εt , to be stationary and persistent.
This paper used the second moment condition that was presented in the Bollerslev
study [18] and the log moment condition that was presented by Nelson [21] and Lee
and Hansen [22] to check these properties.

The second moment condition : α+β < 1 (4)

The log moment condition: E[ln(αz2
t +β )]< 0 (5)

2.2 Multivariate Copula

One approach of modeling the multivariate dependence is the copula. The copula
functions can offer us to merge univariate distributions to get a joint distribution
with an appropriate dependence structure. The fundamental theorem of copula was
given by Sklar [23] as Sklar’s theorem. The standard reference book of the copula
theory was made by Nelson [10].
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Let F be an n-dimensional distribution function with marginal distributions
F1, ...,Fn. Then there exists a copula C for all x = (x1, ...,xn)

′ ∈ [−∞,∞]n,

F(x) =C(F1(x1), ...Fn(xn)) (6)

If F1, ...,Fn are continuous, then C is unique. Conversely, if C is a copula and
F1, ...,Fn are distribution functions, then the above function F(x) in (6) is a joint
distribution function with the marginal distribution F1, ...,Fn. C can be interpreted
as the distribution function of an n dimensional random variable on [0,1]n with
uniform margins [19].

2.3 Vine Copulas

Modeling copulas with high dimension is a difficult task because there are large
numbers of variables. Vine copulas can cross over this restriction, vine copulas are
a flexible tool for describing the multivariate copulas through the graphical model.
The multivariate copulas are constructed from a cascade of bivariate copulas or
are called pair-copulas. The principles of vine copulas propounded by Joe [11] and
extended by Bedford and Cooke [12, 13]. For statistical inference techniques of two
classes of C-vines and D-vines are described by Aas et al. [14].

In this study, we selected the order of the variables by choosing China (C) as
the first root node of the C-vine copula model, with Korea (K) and Japan (J) was
linked to it, as shown in Figure 1 (left). Brechmann and Schepsmeier [19] stated that
a vine structure can be chosen manually or through expert knowledge, or be given
by the data itself [19]. Aas et al. [14] pointed out that modeling C-vine might be
advantageous when we know a main variable that governs the interactions. When
we consider the recent growth rate of the tourist arrivals to Thailand during 2010–
2012, China contributed the highest and had a rapid growth rate of 39% yearly on an
average in this period [1]. China is a fast-growing economy, and the nation does have
an impact on the global economy [2]. Therefore, we assumed and chose the tourist
arrivals from China as the main variable of the C-vine copula model. Similarly, we
also fitted the D-vine copula model with the order of the variables by giving China as
the conditioning variable in order to find the answer to our question of whether these
two models would give different results if we gave the same conditioning variable
for both the C-vine and the D-vine copula models.

In Figure 1, we presented the three dimensions of C-vine and D-vine copulas,
which were what we used in this paper. Let X = (X1,X2,X3) ∼ F with marginal
distribution functions F1,F2,F3 and their density functions f1, f2, f3, which was pro-
posed as follows (see Aas et al. [14])

The density function of C-vine copula

f (x1,x2,x3) = f (x1) · f (x2) · f (x3) · c1,2(F1(x1),F2(x2)) · c1,3(F1(x1),F3(x3))

·c2,3|1(F2|1(x2 | x1),F3|1(x3 | x1))
(7)
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Fig. 1 The structures of the C-vine (left) and the D-vine (right) copulas of the tourist arrivals
to Thailand from China (C), Korea (K), and Japan (J)

where c1,2,c1,3, and c2,3|1 denote the densities of bivariate copulas C1,2,C1,3, and
C2,3|1, respectively. F2|1 and F3|1 are the marginal conditional distributions that can
be derived from formula (9).

We also fitted the D-vine copula model with the order of the variables by giving
China as the conditioning variable.

The density function of D-vine copula

f (x2,x1,x3) = f (x2) · f (x1) · f (x3) · c2,1(F2(x2),F1(x1)) · c1,3(F1(x1),F3(x3))

·c2,3|1(F2|1(x2 | x1),F3|1(x3 | x1))
(8)

where c2,1,c1,3, and c2,3|1 denote the densities of bivariate copulas C2,1,C1,3, and
C2,3|1, respectively. F2|1 and F3|1 are the marginal conditional distributions that can
be derived from formula (9).

The vine copulas involve marginal conditional distributions. The general form of
a conditional distribution function is F(x | v),

F(x | v) = ∂Cx,v j |v− j
(F(x | v− j),F(v j | v− j))

∂F(v j | v− j)
(9)

where v denotes all the conditional variables and Cx,v j |v− j
is a bivariate copula dis-

tribution function. For v is univariate, the marginal condition distribution, e.g. F2|1
can be presented as

F2|1(x2 | x1) =
∂C21(F2(x2),F1(x1))

∂F1(x1)
(10)

2.4 Vine Copula Estimation

In the R-package CDVine, the maximum likelihood was used to estimate the pa-
rameters of copulas. The log-likelihood of C-vine and D-vine copula with three
dimensions in (7) and (8) can be written as
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The log-likelihood of the C-vine copula is

T

∑
t=1

log[c1,2(F1(x1,t),F2(x2,t)) · c1,3(F1(x1,t),F3(x3,t)) · c2,3|1(F2|1(x2,t | x1,t),F3|1(x3,t | x1,t))].

(11)

The log-likelihood of the D-vine copula is

T

∑
t=1

log[c2,1(F2(x2,t),F1(x1,t)) · c1,3(F1(x1,t),F3(x3,t)) · c2,3|1(F2|1(x2,t | x1,t),F3|1(x3,t | x1,t))].

(12)

2.5 Copula Families

The R-package CDVine provide the various copula families to measure the values
of dependence of the pair-copulas. The characteristics of the copula families that
were used in this paper are shown in Table 1 and Table 2.

Table 1 Characteristics of Copula Families

Name Pair-copula function Parameter range

Gaussian C (u1,u2;ρ) =ΦG(Φ−1(u1),Φ−1(u2);ρ) ρ ∈ (−1,1)

=
∫ φ−1(u1)
−∞

∫ φ−1(u2)
−∞ 1

2Π
√

(1−ρ2)
× [−(s

2−2ρst+t2)
2(1−ρ2)

]dsdt

Student’s T CT (u1,u2;ρ,ν) =
∫ T−1

ν (u1)
−∞

∫ T−1
ν (u2)
−∞ 1

2Π
√

(1−ρ2)
× ρ ∈ (−1,1),

[1+ (s2−2ρsT+T 2)
ν(1−ρ2)

]−(
ν+2

2 )dsdT ν > 2

Clayton C(u1,u2;θ ) = (u−θ1 +u−θ2 −1)−1/θ θ ∈ (0,∞)

Gumbel C(u1,u2;θ ) = exp(−[(− ln(u1))
θ +(− ln(u2))

θ ]
1
θ ) θ ∈ [1,∞)

Frank C(u1,u2;θ ) =− 1
θ log(1+ (e−θu1−1)(e−θu2−1)

e−θ−1 ) θ ∈ (−∞,∞)\{0}

Joe C(u1,u2;θ ) = 1− [(1−u1)
θ +(1−u2)

θ − (1−u1)
θ (1−u2)

θ ]
1
θ θ ∈ [1,∞)

Rotated C(u1,u2;θ ) = u1 +u2−1+[(1−u1)
−θ +(1−u2)

−θ −1]−
1
θ θ ∈ (0,∞)

Clayton 180◦
Rotated C(u1,u2;θ ) = u1 +u2−1+exp(−[(− ln(1−u1))

θ+ θ ∈ [1,∞)
Gumbel 180◦ (− ln(1−u2))

θ ]
1
θ )

Rotated C(u1,u2;θ ) = u1 +u2− (uθ1 +uθ2 −uθ1 uθ2 )
1
θ θ ∈ [1,∞)

Joe 180◦
Source: The copula functions are given as presented in Trivedi and Zimmer [24], Nelson [10],
and Fisher [25].
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Table 2 Function of Kendall’s tau and Tail Dependence for Bivariate Copula

Copula family Kendall’s tau Tail dependence (lower, upper)

Gaussian 2
Π arcsinρ 0

Student’s T 2
Π arcsinρ T L = TU = 2Tν+1(−

√
ν+1

√
1−ρ
1+ρ )

Clayton θ
θ+2 (2−1/θ ,0)

Gumbel 1− 1
θ (0,2−21/θ )

Frank 1− 4
θ +4 D1(θ)

θ (0,0)
Joe 1+ 4

θ 2

∫ 1
0 t log(t)(1− t)2(1−θ)/θdt (0,2−21/θ )

Rotated Clayton 180◦ θ
θ+2 (0,2−1/θ )

Rotated Gumbel 180◦ 1− 1
θ (2−21/θ ,0)

Rotate Joe 180◦ 1+ 4
θ 2

∫ 1
0 t log(t)(1− t)2(1−θ)/θdt (2−21/θ ,0)

Source: Kendall’s tau and tail dependence are as presented in Brechmann and Schep-

smeier [19]. Note: D1(θ ) =
∫ θ

0
c/θ

exp(x)−1 is the Debye function.

3 Data

3.1 Descriptive Statistics

The seasonal adjusted
1
data of the tourist arrivals to Thailand from China, Korea,

and Japan, which measures the tourism demands of these three countries, were used.
The monthly data of the three countries, taken from the Ecowin database, during the
period from January 1997 to November 2012, are taken into the logarithm of the
monthly arrival rate, the growth rate of the tourist arrivals = ln Number arrivalst

Number arrivalst−1
.

Table 3 presents the descriptive statistics of the growth rate of the tourist arrivals
to Thailand from China, Korea, and Japan. All the countries have positive average
growth rates during the period from January 1997 to November 2012. Negative
skewness and excess kurtosis are exhibited in the data of the three countries. This
means that all the three data series have peakedness of distribution and heaviness of
tail. The null hypothesis of normality of the Jarque-Bera tests are rejected in all the
data series. Figure 2 presents the growth rate of the tourist arrivals to Thailand from
China, Korea, and Japan along this period. It can be seen that the growth rates of all
the three countries have considerable fluctuation and co-movement.

3.2 Marginal Distributions by ARMA-GARCH Model

To test whether the data are stationary or not, we use the Augmented Dickey-Fuller
test (ADF). The results show that all the data series are stationary at p-value 0.01.
For examining the volatility of the growth rates of the tourist arrivals to Thai-
land from China, Korea, and Japan, the ARMA(1,0)-GARCH(1,1) model with the

1
The X12-ARIMA monthly seasonal adjustment method by the U.S. Department of Com-
merce in the Eviews7 program was used.
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Table 3 Data Descriptive Statistics for Growth Rate of Tourist Arrivals from Three Countries

China Korea Japan

Mean 0.011 0.005 0.003
Median 0.014 0.004 0.011
Maximum 0.739 0.826 0.415
Minimum −1.099 −1.139 −0.366
Std. Dev. 0.281 0.196 0.093
Skewness −0.903 −1.164 −0.501
Kurtosis 6.092 11.529 7.513
Jarque-Bera 101.538 618.792 169.171
(p-value) (0.000) (0.000) (0.000)
Number of observations 190 190 190
Note: The null hypothesis of Jarque-Bera = data is taken as the normal distribution.

Fig. 2 The growth rate of the tourist arrivals to Thailand from China, Korea, and Japan

skewed student T residual εt ∼ SkT (ν,γ), was modeled. The choice of the skewed
student T distribution was based on the two data series exhibiting negative skewness
and excess kurtosis. The identifying of the optimal models was based on the Akaike
information criterion (AIC). In Table 4, it can be seen that all the parameters of
the model have significance at levels 0.01 and 0.05, except the parameter α of Ko-
rea which has significance at level 0.1 and the parameters ar1 and β of China which
have insignificance at level 0.1. These findings imply that the volatility of the growth
rates of the tourist arrivals from China has a short run persistence (α) and no long
run persistent since the parameter β is insignificance. The volatility of the growth
rates of the tourist arrivals from both Korea and Japan has a weak long run persis-
tence, although there are values of the second moment which are higher than one.
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But the values of the log moment are less than zero; this is necessary and sufficient
for the strict stationarity, and the persistence of the conditional variance is satisfied.
The degree of freedom and the skewness parameters also have significance at level
0.01. This indicates that all the data series are skewed student T distributions.

Then we transformed the standardized residuals from these three models into uni-
form [0,1] by using the empirical distribution function Fn(x) = 1

n+1Σ
n
i=11(Xi ≤ x)

where Xi ≤ x is the order statistics and 1 is the indicator function. For checking
whether the marginal distributions that we transformed were correctly specified, we
checked them for being i.i.d. uniform [0,1] and confirmed that they were. We used
the Kolmogorov-Smirnov (K-S) test for uniform [0,1] and the Box-Ljung test for
serial correlation. It appeared that all of these marginal distributions were uniform
because they accepted the null hypothesis at p-values equal to 1. The results of the
Box-Ljung test demonstrated that all of the four moments of all the marginal dis-
tributions were i.i.d. by accepting the null hypothesis that no serial correlation at
p-value is greater than 0.05. Therefore, our marginal distributions were not mis-
specified and can be used for the copula model.

Table 4 Results of ARMA (1,0)-GARCH(1,1) with Skewed Student T Residual for Growth
Rates of Tourist Arrivals to Thailand from China , Korea, and Japan

China Std. error Korea Std. error Japan Std. error
(p-value) (p-value) (p-value)

ar1 −0.092 0.087 −0.219 0.078 −0.280 0.070
(0.292) (0.005) (6.33e-05)

ω 0.031 0.012 0.011 0.006 0.002 0.001
(0.011) (0.044) (0.029)

α 0.836 0.411 0.869 0.457 0.768 0.379
(0.042) (0.057) (0.043)

β 0.114 0.129 0.211 0.106 0.294 0.099
(0.377) (0.045) (0.003)

ν (degree of freedom) 3.249 0.873 2.980 0.808 0.658 0.062
(0.000) (0.000) (<2e-16)

γ (skewness) 0.870 0.076 0.842 0.069 3.050 70.796
(<2e-16) (<2e-16) (0.000)

Log likelihood 15.699 - 104.044 - 241.188 -
AIC −19.398 - −194.088 - −470.375 -
2nd moment 0.950 - 1.080 - 1.062 -
Log moment −0.978 - −0.708 - −0.530 -

4 Empirical Results

4.1 Results of C-vine and D-vine Copula Analysis

Table 5 and Figure 3 present the results of the pair-copula decomposition analysis
for the C-vine copula model. The first tree consists of two pair-copulas. The first
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pair is China–Korea (C,K), which has a weak positive dependence, and the rotated
Joe 180◦ copula which can capture lower tail dependence was adjudged the best
fit by using the AIC and BIC tests, and a scoring goodness-of-fit test based on the
Vuong and Clarke tests and a goodness-of-fit test based on Kendall’s process as the
criteria. This pair-copula provides a copula parameter of 1.287 and a Kendall’s tau
correlation of 0.14. As for the second pair, which is China–Japan (C,J), it has a
weak positive dependence, and the rotated Gumbel 180◦ copula which can capture
lower tail dependence was adjudged the best fit, with a copula parameter of 1.265
and a Kendall’s tau correlation of 0.21. Because the different families of the copulas
have different ranges of copula parameters, we inverse the copula parameter into
a Kendall’s tau correlation, and it is bounded on the interval [−1,1]. Kendall’s tau
is a measure of concordance which is a function of copula; thus, we can use it to
assess the range of dependence covered by the families of the copula. A comparison
using Kendall’s tau correlation indicates that the pair-copula of China–Japan has a
stronger correlation than the pair-copula of China–Korea.

Fig. 3 The C-vine trees, tree 1 and tree 2, with the chosen pair-copula family and the
Kendall’s tau correlation

The second tree consists of the conditional pair-copula, Korea–Japan given China
(K,J|C). There exists a weak positive dependence, and the rotated Gumbel 180◦
copula that can capture lower tail dependence was adjudged the best fit, with a
copula parameter of 1.232 and a Kendall’s tau correlation of 0.19. This Kendall’s tau
correlation is less than which was obtained from the bivariate pair-copula of Korea–
Japan (0.24), which was obtained from a bivariate data analysis. This implies that
China has an influence on the dependence between the tourist arrivals from Korea
and Japan.

The results show that all of the estimated copula parameters from all the pairs
have significance at p-value less than 0.01 and that all the pair-copulas provide ev-
idence of lower tail dependence. This implies that the growth rates of the tourist
arrivals in each of the pairs China–Korea, China–Japan, and Korea–Japan given
China have co-movement that is both upward and downward, but with weak depen-
dence. For example, for the first pair-copula in tree 1, the rise or loss of tourism
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demands from China (Korea) is slightly correlated by the rise or loss of tourism de-
mands from Korea (China); similar is the case with the second pair in tree 1. For the
conditional pair-copula in tree 2, with the tourism demand from China as the con-
ditional variable, the rise or loss of tourism demands from Korea (Japan) is slightly
correlated by the rise or loss of tourism demands from Japan (Korea).

Table 6 presents the results of the pair-copula analysis for the D-vine copula
model. When comparing the C-vine and the D-vine, the results show that both the
models provide the same results for each of the pair-copulas, such as the appropriate
copula family, the copula parameter, a Kendall’s tau correlation value, an AIC value,
and a BIC value. Moreover, we use the Voung test that is obtained in the R-package
CDVines to compare both the models, as shown in Table 7. The test statistics are
close to zero and the large p-values indicate that the three dimensions of the C-vine
and D-vine copula models have to be given the same conditioning variable in the
second tree; otherwise, it cannot be distinguished statistically in this study.

Table 5 Maximum Likelihood Parameter Estimates for C-vine Copula

Tree Pair-copula Copula family Copula parameter Kendall’s AIC BIC
(p-value) tau

1 C,K rotated Joe 180◦ θ = 1.287 0.14 −18.617 −15.370
(0.000)

C,J rotated Gumbel 180◦ θ = 1.265 0.21 −21.848 −18.601
(0.000)

2 K,J|C rotated Gumbel 180◦ θ = 1.232 0.19 −18.367 −15.122
(0.000)

AIC and BIC of a model −58.833 −49.093

Table 6 Maximum Likelihood Parameter Estimates for D-vine Copula

Tree Pair-copula Copula family Copula parameter Kendall’s AIC BIC
(p-value) tau

1 K,C rotated Joe 180◦ θ = 1.287 0.14 −18.617 −15.370
(0.000)

C,J rotated Gumbel 180◦ θ = 1.265 0.21 −21.848 −18.601
(0.000)

2 K,J|C rotated Gumbel 180◦ θ = 1.232 0.19 −18.367 −15.122
(0.000)

AIC and BIC of a model −58.833 −49.093

4.2 Time-Varying Copula

The dependence structures vary over time. Hence, we also used time-varying copula
models to show the co-movement of each pair-copula during this period. We used
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Table 7 Comparison of C-vine and D-vine Models by Voung Test

Voung Akaike Schwarz

Statistic 0.023 0.023 0.023
p-value 0.982 0.982 0.982

Note: The null hypothesis = two model equivalent.

the time-varying copula models as given in Patton [20], such as the time-varying
Gaussian copula, time-varying Gumbel copula, and time-varying rotated Gumbel
180◦ copula. Furthermore, we added the time-varying Joe copula and time-varying
rotated Joe 180◦ copula. The smallest AIC and BIC values were used to select an
appropriate copula family. The parameter β represents the degree of persistence
in the dependences and the parameter α measures the variations over time in the
dependences.

In tree 1, the pair-copula of China–Korea, the time-varying rotated Joe 180◦ cop-
ula is the best fit with the three copula parameters ω = 2.087, β = −0.808, and α
= −1.819. Also, all the copula parameters have significance at level 0.01. For the
pair-copula of China–Japan, the time-varying Gaussian is the best fit with the copula
parameters ω = 0.872, β = −2.202, and α = 1.201. Also, all the copula parameters
have significance at the same level 0.01.

In tree 2, the conditional pair-copula of Korea–Japan given China, the time-
varying Gaussian is the best fit with the copula parameters ω = 0.800, β = 0.449,
and α = −1.042. Also, all the copula parameters have significance at level 0.01.

The parameter α of all the pair-copulas have significance, indicating that the de-
pendence between all the pairs of the tourist arrivals to Thailand, that is, between
China–Korea, China–Japan and Korea–Japan given China keep varying over time.
Moreover, the pair-copula China–Japan shows that it has the highest degree of per-
sistence in the dependence, as indicated by the parameter β .

5 Policy Implications

Our results show that there exists a weak positive dependence between all the pairs
in the growth rates of the tourist arrivals to Thailand from China, Korea, and Japan
and that these values of dependence keep varying over time. This means that all
of the pairs China–Korea, China–Japan, and Korea–Japan given China have co-
movement that is both upward and downward, but with a weak dependence. In other
words, the rise or loss of tourism demand — which is measured as tourist arrivals
from each origin country — of each tourism origin country is slightly correlated
to a rise in or loss of tourism demand of the other. This result has an important
implication for Thailand’s tourism management. In case there occurs a simultaneous
rise or loss of arrivals, it will have considerable impact on the tourism industry and
the related businesses. Therefore, policy makers should consider the time-varying
dependency while planning the risk management of the tourism demand in each time
period. This could be in the form of providing marketing and promotion strategies
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to motivate the tourism demand when there is loss of arrivals from the effect of
shocks or when it is low season. On the other hand, when there is a rise in tourism
demand, the tourism industry can prepare and equip themselves with the appropriate
resources, such as hotels, airline schedules, etc.

6 Concluding Remarks

This paper models the dependency in tourist arrivals to Thailand from the three
major origin countries of the Asia region, namely, China, Korea, and Japan by us-
ing vine copulas. Volatility in international tourist arrival can have an effect on the
management and decision making in the tourism industry. Therefore, we used the
ARMA-GARCH model to examine the volatility of the growth rates of the tourist ar-
rivals from these three countries during the period from January 1997 to November
2012. Thereafter, the marginal distributions from the ARMA-GARCH model were
used to analyze the dependency by using the C-vine and D-vine copula models.
Understanding the dependence of the tourists arrivals can help the tourism industry
achieve better management, as well as in planning for the risk management of the
tourism demand and tourism supply.

The empirical results provided evidence that, first, the three data series of the
growth rates of the tourist arrivals from China, Korea, and Japan rejected the null
hypothesis of normality and exhibited skewness and excess kurtosis through the use
of data descriptive statistical analysis. Second, the ARMA(1,0)-GARCH(1,1) model
with the skewed student T residual can examine the volatility of the growth rates
of the tourist arrivals of each data series. The volatility of the growth rates of the
arrivals from China has short run persistence and the volatility of the growth rates
of the tourist arrivals from both Korea and Japan have weak long run persistence.
Third, the C-vine and D-vine copula models can measure the dependency of the
three marginal distributions. We identified the C-vine and D-vine structures that can
decompose the multivariate copulas to many pair-copulas in a tree structure. We
had two pair-copulas in tree 1: China–Korea and China–Japan, and one conditional
pair-copula in tree 2: Korea–Japan given China. The results show that there exists
weak positive dependence in all of the pairs and that all the pair-copulas provide
evidence of lower tail dependence. China–Japan has the strongest dependence with
a Kendall’s tau correlation 0.21, followed by Korea–Japan given China, 0.19, and
China–Korea, 0.14. In addition, the conditional pair-copula of Korea–Japan given
China provided a Kendall’s tau correlation of 0.19, which is less than that obtained
from the bivariate pair-copula of Korea–Japan which is 0.24. This implies that China
has an influence on the dependence between the tourist arrivals from Korea and
Japan. Moreover, the three dimensions of the C-vine and D-vine copula models,
which are given the same conditioning variable in the second tree, provided the
same results; otherwise, it would not be possible to distinguish between these two
models statistically in this study. Fourth, the time-varying copulas show that the
dependence parameters of all the pair-copulas had varied over time. Our findings
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have important implications and application in the risk management of the tourism
demand and tourism supply for Thailand’s tourism industry, as discussed above.
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Relationship between Exchange Rates, Palm Oil
Prices, and Crude Oil Prices: A Vine Copula
Based GARCH Approach

Teera Kiatmanaroch and Songsak Sriboonchitta

Abstract. The dollar is the leading international currency, and it is used widely in
the majority of international financial transactions. The various food products that
comprise agricultural commodities, as also crude oil, have been using the dollar ex-
change rate for international trade. Over the past several years, the changes in the
dollar exchange rate have shown more volatility in addition to a depreciation trend,
which has had an influence on the prices of those commodities. We analyzed the
relationship between the dollar exchange rates and the prices of two commodities,
palm oil and crude oil, by using the GARCH(1,1) model to examine the volatility of
the exchange rates and the future prices 1-Pos. of the prices of both the commodi-
ties. The vine copula model is used to analyze the dependence structure between
their marginal distributions. The data analyses were based on the daily observations
from June 2007 to March 2013. The empirical results of GARCH(1,1) show that
the exchange rates, palm oil prices, and crude oil prices have a long-run persistence
in volatility. The C-vine copula model reveals that there exists a weak negative de-
pendence for each pair-copula, that is, Exchange rate–Palm oil (E,P) and Exchange
rate–Crude oil (E,C) in tree 1. Also, a conditional pair-copula of Palm oil–Crude oil
given Exchange rate (P,C|E) in tree 2 offers a weak positive dependence. Moreover,
the findings of this study provide evidence that the exchange rate (E) is an important
variable that governs the interactions in the dependence structure between palm oil
price (P) and crude oil price (C).

1 Introduction

At present, there are continuous changes in food prices due to the complex in-
teractions between the several factors. The demand-side factors include popula-
tion growth, and rising food consumption of emerging economies. The supply-side
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factors include the simultaneous use of food grains to produce biofuel, in which
gives rise to a yield of low crops. The others are cyclical factors, such as the de-
preciation of the U.S. dollar, speculative activities, rising oil prices, input costs in
food production, and trading policies of nations [1]. Therefore, it is difficult to take
all the factors into account to estimate the percentage of food price changes. To
elaborate on the increase of food prices, there exist pieces of literature that have a
mention of energy prices and exchange rates which have an effect on food or agri-
cultural commodity prices. There has also been a wide study on energy prices that
are related to many types of agricultural commodities, from which it can be con-
cluded that the long-run agricultural prices are driven by the energy prices and that
the volatility in the energy markets is transmitted to the food markets [2]. A study
on the exchange rate’s effect was conducted by Abbott et al. [3] who reviewed and
analyzed the twenty five studies and arrived at the conclusion that there were three
board factors that drive up the food price. The first is the global changes in produc-
tion and consumption of key commodity goods. The second is the changing rate of
the U.S. dollar. The final factor is the increase in the production of biofuels. The
other studies have been those pertaining to econometric modeling, which is based
on utilization, to explain the relationship between the exchange rate, energy prices,
agricultural commodity prices, and other variables. Their empirical results showed
that the depreciation of the U.S. dollar can have an influence on the energy price
and/or commodity price [4, 5, 6, 7, 8, 9, 10, 11]. Moreover, Anzuini et al. [12] also
found that the expansionary U.S. monetary policy was the cause of the increase in
the crude oil price, food price, and other components of the broad commodity price
index.

The rise in food and energy prices have caused a burden on the people who are
poor and near-poor in the ASEAN region as well as created a negative impact on
social and economic development [13]. Under these circumstances, these are major
challenges for all the ASEAN members, and they have to find any crucial means to
cooperate in the short- and long-term situations in these solving problems because

food
1

and energy
2

security are fundamental for upholding the ASEAN economic
and social development goals [16]. It also well known that the dollar is a leading
currency that is widely used in international financial transactions. The dollar is
also used in the international trade of food, agricultural commodities, and crude oil;
thus, it is clear that it has been used constantly in the market. Over the past sev-
eral years, it has been found that the changes in the dollar exchange rate have more

1
FAO [14] definition: Food security exists when all people, at all times, have physical,
social, and economic access to sufficient, safe, and nutritious food to meet their dietary
needs and food preferences for an active and healthy life. The four pillars of food security
are availability, access, utilization, and stability. The nutritional dimension is integral to
the concept of food security.

2
United Nations [15] definition: Energy security is a term that applies to the availability
of energy at all times in various forms, in sufficient quantities, and at affordable prices,
without unacceptable or irreversible impact on the environment. These conditions must
prevail over the long term if energy is to contribute to sustainable development. Energy
security has both a producer and a consumer side to it.
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volatility and show a depreciation trend [3, 17]. Thus, it is interesting to analyze the
manner in which the volatility of the dollar exchange rates influence the relationship
between palm oil prices (MDEX) and crude oil prices (DME), These two commod-
ity prices spark an interest in this study whose results are relevant for ASEAN. In
the ASEAN region, palm oil can be produced sufficiently intra-regional demand and
the remaining parts can be kept aside for exportation [18]. Moreover, it can be used
for producing alternative energy in the form of biodiesel to reduce the effects from
the crude oil price crisis. ASEAN has relied on imported crude oil from the Middle
East [19]: its price is related to the crude oil prices of other regions such as West
Texas Intermediate (WTI) [20].

The purpose of this study are the following: (1) to analyze the dependence be-
tween the exchange rates (the strength of the U.S. dollar) and two commodity prices:
palm oil (MDEX) and crude oil prices (DME); (2) to analyze the dependence be-
tween palm oil and crude oil prices by considering the exchange rate as a condition-
ing variable.

The copula based GARCH model provides more flexibility for finding out the
joint distribution and the transformation of the invariant correlation, without having
to assume linear correlation [21]. Therefore, in this study, we used the GARCH(1,1)
model [22] to examine the volatility of the exchange rate and the commodity daily
prices, which are generally non-normal distributions, and applied the vine copula
model to examine the relationship between each commodity, by using the R-package
CDVine which was developed by Brechmann and Schepsmeier [23].

The remainder of this paper is organized as follows: part two is the methodol-
ogy, and part three consists of the data and the empirical findings. Finally, part four
provides the conclusions and the policy implications.

2 Methodology

2.1 Marginal Distribution Model

We adopt the GARCH(1,1) model [22] with an appropriate distribution (D), residual
distribution, for the marginal distribution of the log-difference ln Pt

Pt−1
of the three

data series: palm oil prices, crude oil prices, and exchange rates.

yt = μt + εt (1)

εt = zt

√
ht ,zt ∼ (D) (2)

ht = ωt +αε2
t−1 +βht−1 (3)

In equation (1), we decompose the log-difference yt into a mean μt and an error
term εt . Equation (2) define the error term εt as the product between conditional
variance ht and a residual zt . The residual zt will be assumed to follow an appropriate
distribution. Equation (3) presents GARCH(1,1) process where ωt > 0,α ≥ 0,β ≥ 0
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are sufficient to ensure that the conditional variance ht > 0. The αε2
t−1 represent

the ARCH term and α refers to the short run persistence of shocks, while βht−1

represent the GARCH term and β refers to the contribution of shocks to long run
persistence (α + β ). The properties of the GARCH(1,1) model require stationary
and persistence of the conditional variance, ht , of the error term, εt . This paper used
the second moment condition that was α +β < 1 to check for these properties. In
this study, the R-package fGarch by Wuertz and Chalabi [24] was used to estimate
the parameters of GARCH(1,1) model.

For the next analysis by copula functions, the standardized residuals from
GARCH(1,1) model were transformed to copula data (F1(x1),F2(x2),F3(x3)).

2.2 Copula Function

One approach of modeling the multivariate dependence is the copula. The copula
functions can offer us to merge univariate distributions to get a joint distribution
with an appropriate dependence structure. The fundamental theorem of copula was
given by Sklar [25] as Sklar’s theorem. The standard reference book of the copula
theory was made by Nelson [26].

Let F be an n-dimensional distribution function with marginal distributions
F1, ...,Fn. Then there exists a copula C for all x = (x1, ...,xn)

′ ∈ [−∞,∞]n,

F(x) =C(F1(x1), ...Fn(xn)) (4)

If F1, ...,Fn are continuous, then C is unique. Conversely, if C is a copula and
F1, ...,Fn are distribution functions, then the above function F(x) in (4) is a joint
distribution function with the marginal distribution F1, ...,Fn. C can be interpreted
as the distribution function of an n dimensional random variable on [0,1]n with
uniform margins [23].

We used various copula families contained in the R-package CDVine to measure
the dependence of the pair-copula. Table 1 presents the characteristics of the copula
families that were used in this study. Table 2 presents the function of Kendall’s tau.

2.3 Vine Copula Modeling

Modeling copulas with high dimension is a difficult task because there are large
numbers of variables. Vine copulas can cross over this restriction, vine copulas are
a flexible tool for describing the multivariate copulas through the graphical model.
The multivariate copulas are constructed from a cascade of bivariate copulas or are
called pair-copulas. The principles of vine copulas propounded by Joe [29] and ex-
tended by Bedford and Cooke [30, 31]. For statistical inference techniques of two
classes of C-vines and D-vines are described by Aas et al. [32]. Brechmann and
Schepsmeier [23] said that a vine structure can be chosen manually or through ex-
pert knowledge, or be given by the data itself. Aas et al. [32] was of the opinion
that modeling C-vine might be an advantage when we know that the main variable
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Table 1 Characteristics of Copula Families

Name Pair-copula function Parameter range

Gaussian C (u1,u2;ρ) =ΦG(Φ−1(u1),Φ−1(u2);ρ) ρ ∈ (−1,1)

=
∫ φ−1(u1)
−∞

∫ φ−1(u2)
−∞ 1

2Π
√

(1−ρ2)
× [

−(s2−2ρst+t2)
2(1−ρ2)

]dsdt

Student’s T CT (u1,u2;ρ,ν) =
∫ T−1

ν (u1)
−∞

∫ T−1
ν (u2)
−∞ 1

2Π
√

(1−ρ2)
× ρ ∈ (−1,1),

[1+ (s2−2ρsT+T 2)
ν(1−ρ2)

]−(
ν+2

2 )dsdT ν > 2

Clayton C(u1,u2;θ ) = (u−θ1 +u−θ2 −1)−1/θ θ ∈ (0,∞)

Gumbel C(u1,u2;θ ) = exp(−[(− ln(u1))
θ +(− ln(u2))

θ ]
1
θ ) θ ∈ [1,∞)

Frank C(u1,u2;θ ) =− 1
θ log(1+ (e−θu1−1)(e−θu2−1)

e−θ−1 ) θ ∈ (−∞,∞)\{0}

Joe C(u1,u2;θ ) = 1− [(1−u1)
θ +(1−u2)

θ − (1−u1)
θ (1−u2)

θ ]
1
θ θ ∈ [1,∞)

Rotated C(u1,u2;θ ) = u2− [(1−u1)
−θ +u−θ2 −1]−

1
θ θ ∈ (−∞,0)

Clayton 90◦

Rotated C(u1,u2;θ ) = u2−exp(−[(− ln(1−u1))
θ +(− ln(u2))

θ ]
1
θ ) θ ∈ (−∞,−1]

Gumbel 90◦

Rotated C(u1,u2;θ ) = u2−1− [uθ1 +(1−u2)
θ −uθ1 (1−u2)

θ ]
1
θ θ ∈ (−∞,−1)

Joe 90◦

Rotated C(u1,u2;θ ) = u1 +u2−1+[(1−u1)
−θ +(1−u2)

−θ −1]−
1
θ θ ∈ (0,∞)

Clayton 180◦
Rotated C(u1,u2;θ ) = u1 +u2−1+exp(−[(− ln(1−u1))

θ+ θ ∈ [1,∞)
Gumbel 180◦ (− ln(1−u2))

θ ]
1
θ )

Rotated C(u1,u2;θ ) = u1 +u2− (uθ1 +uθ2 −uθ1 uθ2 )
1
θ θ ∈ [1,∞)

Joe 180◦
Source: The copula functions are given as presented in Trivedi and Zimmer [27], Nelson [26],
and Fisher [28].

governs interactions in the data or plays an important role in the dependence struc-
ture, and that the others are linked to it. So, the C-vine copula model offers us to
define the relationship structure between variables according to the purpose of study,
and it can describe the relationship between variables through the graphical model
or are called pair-copulas.

This study used C-vine copula modeling to analyze the dependence between the
palm oil prices, crude oil prices, and exchange rates, a kind of analysis which no
one has attempted before with a view to exploring it in depth. The structure of the
C-vine model is shown in Figure 1. This study selected the exchange rate which was
the first root node. Therefore, our assumption in this study is that the exchange rate
is a key variable that plays a role in the linkage between palm oil prices and crude
oil prices; this is based on the available literature, and includes the currency, the
dollar, which is widely used in international financial transactions. Moreover, the
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Table 2 Function of Kendall’s tau and Tail Dependence for Bivariate Copula

Copula family Kendall’s tau

Gaussian 2
Π arcsinρ

Student’s T 2
Π arcsinρ

Clayton θ
θ+2

Gumbel 1− 1
θ

Frank 1− 4
θ +4 D1(θ)

θ
Joe 1+ 4

θ 2

∫ 1
0 t log(t)(1− t)2(1−θ)/θdt

Rotated Clayton 90◦ θ
θ−2

Rotated Gumbel 90◦ −1− 1
θ

Rotate Joe 90◦ −1− 4
θ 2

∫ 1
0 t log(t)(1− t)−2(1+θ)/θ dt

Rotated Clayton 180◦ θ
θ+2

Rotated Gumbel 180◦ 1− 1
θ

Rotate Joe 180◦ 1+ 4
θ 2

∫ 1
0 t log(t)(1− t)2(1−θ)/θdt

Source: Kendall’s tau is as presented in Brechmann and Schepsmeier [23].

Note: D1(θ ) =
∫ θ

0
c/θ

exp(x)−1 is the Debye function.
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Fig. 1 The pair-copulas of three-dimensional C-vine trees

international trading of food, agricultural commodities, and crude oil is done using
the dollar in their respective markets [3, 17].

We presented the three dimensions, which was what we used in this paper. Let
X = (X1,X2,X3)∼ F with marginal distribution functions F1,F2,F3 and their density
functions f1, f2, f3, which was proposed as follows (see Aas et al. [32]).

F(x1,x2,x3) =C(F1(x1),F2(x2),F3(x3)) (5)

f (x1,x2,x3) = f (x1) · f (x2) · f (x3) · c1,2(F1(x1),F2(x2)) · c1,3(F1(x1),F3(x3))

·c2,3|1(F2|1(x2 | x1),F3|1(x3 | x1))
(6)

where c1,2, c1,3, and c2,3|1 denote the densities of bivariate copulas C1,2, C1,3, and
C2,3|1, respectively. F2|1 and F3|1 are the marginal conditional distributions that can
be derived from formula (7).
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The vine copulas involve marginal conditional distributions. The general form of
a conditional distribution function is F(x | v),

F(x | v) = ∂Cx,v j |v− j
(F(x | v− j),F(v j | v− j))

∂F(v j | v− j)
(7)

where v denotes all the conditional variables and Cx,v j |v− j
is a bivariate copula dis-

tribution function. For v is univariate, the marginal condition distribution, e.g. F3|1
can be presented as

F3|1(x3 | x1) =
∂C31(F3(x3),F1(x1))

∂F1(x1)
(8)

2.4 Vine Copula Estimation

In the R-package CDVine, the maximum likelihood was used to estimate the param-
eters of copulas. The log-likelihood of C-vine copula with three dimensions in (6)
can be written as

T

∑
t=1

log[c1,2(F1(x1,t),F2(x2,t)) · c1,3(F1(x1,t),F3(x3,t)) · c2,3|1(F2|1(x2,t | x1,t),F3|1(x3,t | x1,t))].

(9)

3 Data and Empirical Findings

To analyze the relationship between the exchange rate and the two commodity
prices (palm oil and crude oil), we selected the commodity prices that are related
to the AEC. Palm oil prices were obtained from the Malaysia Derivatives Exchange
(MDEX) because Malaysia is a major producer and world exporter of palm oil [18].
The crude oil benchmark price for the Asian market is the Dubai (Oman) crude oil
price [33] since the Middle East is the major source of crude oil for ASEAN [19].
Hence, the crude oil price of Dubai Mercantile Exchange (DME) was used in this
study. The exchange rate data, or the broad dollar index, was measured as a weighted
average of the foreign exchange values of the U.S. dollar against the currencies of a
large group of major U.S. trading partners (definition from the EcoWin database).

The observations of the three data series were obtained from the EcoWin database
during the period from 1 June 2007 to 15 March 2013. For the prices of palm oil
and crude oil, we used the Futures 1-Pos of daily close prices. Each data series was
transformed into the log-difference, ln Pt

Pt−1
, before it was used to analyze using the

vine copula based GARCH model.
Table 3 presents the descriptive statistics of the log-difference of exchange rate,

palm oil price, and crude oil price. Palm oil has a negative average growth rate but
crude oil has a positive average growth rate. All of the three data series exhibited
negative skewness. If skewness is negative, the market has a downside risk, or there
is substantial probability of a big negative return. The kurtosis of these data is greater
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Table 3 Data Descriptive Statistics for Log-difference of Exchange Rate, Palm Oil Price, and
Crude Oil Price

Exchange rate Palm oil Crude oil

Mean 0.0000 −0.0001 0.0004
Median −0.0001 0.0000 0.0009
Maximum 0.0174 0.0976 0.1339
Minimum −0.0230 −0.1104 −0.1337
Std. Dev. 0.0039 0.0203 0.0230
Skewness −0.1172 −0.3472 −0.1574
Kurtosis 6.5570 7.0304 7.6829
Jarque-Bera 730.13 961.06 1265.75
(p-value) (0.0002) (0.0000) (0.0001)
p-value of Dickey-Fuller test 0.01 0.01 0.01
Number of observations 1,379 1,379 1,379

than 3. Hence, this kurtosis can be said to be super Gaussian and leptokurtic. This
means that the growth rates of the empirical data have a typically spiky probabil-
ity distribution function with heavy tails. The null hypothesis of normality of the
Jarque-Bera tests are rejected in all the data series. The Dickey-Fuller test shows
that these data series are stationary at p-value 0.01.

Table 4 Results of GARCH(1,1) Test with Normal Residual for Exchange Rate Data, and of
Skewed Student T Residual for Palm Oil and Crude Oil Data

Exchange rate Std. error Palm oil Std. error Crude oil Std. error
(p-value) (p-value) (p-value)

ω 1.007e-07 5.176e-08 3.903e-06 1.721e-06 2.325e-06 1.749e-06
(0.0518*) (0.0233*) (0.184)

α 0.0636 1.049e-02 0.0746 1.501e-02 0.0529 1.214e-02
(1.34e-09***) (6.75e-07***) (1.32e-05***)

β 0.9304 1.107e-02 0.9155 1.606e-02 0.9451 1.231e-02
(<2e-16***) (<2e-16***) (<2e-16***)

ν - - 7.6810 1.485e+00 5.0670 7.455e-01
(degree of freedom) (2.31e-07***) (1.07e-11***)
γ - - 0.9685 3.557e-02 0.9418 3.112e-02
(skewness) (<2e-16 ***) (<2e-16 ***)
Log likelihood 5,869.953 - 3,654.827 - 3,499.523 -
K-S test - - - - - -
(p-value) (1) (0.9208) (1)
Box-Ljung test - - - - - -
(p-value)
1st moment - (0.4301) - (0.2515) - (0.5832)
2nd moment - (0.9363) - (0.8898) - (0.7921)
3rd moment - (0.6521) - (0.0732) - (0.7765)
4th moment - (0.8513) - (0.8803) - (0.6423)

Note: Significant codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1.
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Table 4 presents the results of GARCH(1,1) with normal residual for the ex-
change rate data and skewed student T residual for the palm oil and crude oil data.
The asymmetry parameters, γ , are significant and less than 1, thus indicating that
the palm oil and crude oil data series are skewed to the left.

For the exchange rate, palm oil, and crude oil, the α+β are 0.9940, 0.9901, and
0.9980, respectively; this implies that their volatilities have a long-run persistence.
For the short-run effect of the unexpected factors, we considered the event from the
α parameter. Therefore, we can see that they nearly have the values 0.0636, 0.0746,
and 0.0529, and a small impaction for volatility.

Next, we transformed the standardized residuals from the GARCH(1,1) model
into the uniform [0,1] by using the empirical distribution function Fn(x) = 1

n+1Σ
n
i=11

(Xi ≤ x), where Xi ≤ x the order statistics and 1 is the indicator function. The trans-
formed data were used in the Kolmogorov-Smirnov (K-S) test for uniform [0,1] and
the Box-Ljung test for serial correlation. More details are available in Patton [34]
and Manthos [35]. These tests are necessary to check for the marginal distribution
models’ misspecification before using the copula model.

The results of the K-S test show that these marginal distributions are uniform, by
accepting the null hypothesis at p-values equal to 1 or nearly 1. The results of the
Box-Ljung test provide that all of the four moments of all the marginal distributions
are i.i.d., by accepting the null hypothesis that there is no serial correlation at p-
values greater than 0.05. Therefore, our marginal distributions were not misspecified
and can be used for the copula model.

3.1 Results of C-vine Copula

Figure 1 presents each pair-copula of the three-dimensional C-vine tree; there are
two pair-copulas in tree 1 and one pair-copula in tree 2. The first and second pair-
copulas in tree 1 are Exchange rate–Palm oil (E,P) and Exchange rate–Crude oil
(E,C), respectively. The third pair-copula in tree 2 is a conditional pair-copula, Palm
oil–Crude oil given Exchange rate (P,C|E).

We used the Gaussian copula, Student’s T copula, Clayton copula, Gumbel cop-
ula, Frank copula, Joe copula, rotated Clayton 90◦ and 180◦, rotated Gumbel 90◦
and 180◦, and rotated Joe 90◦ and 180◦ copula to fit the data.

The AIC and the BIC are used to appraise which copula is the best fit. The
Kendall’s tau correlation which was transformed from the copula parameter was
used because each family of copula has a different range of copula parameters;
hence we inverse a copula parameter into a Kendall’s tau correlation, and it is
bound on the interval [−1,1]. Kendall’s tau is a measure of concordance and is a
function of copula; hence, we can use it to assess the range of dependence covered
by the families of copula. A goodness-of-fit test based on Kendall’s tau provides
the Cramér-von Mises (CvM) and Kolmogorov-Smirnov (K-S) test statistics and
the estimated p-values by bootstrapping [23] in order to test the appropriateness
of the copula model under the null hypothesis that the empirical copula C belongs
to a parametric class C′ of any copulas, H0 : C ∈C′.
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The results of the pair-copulas, the Exchange rate–Palm oil (E,P), the Exchange
rate–Crude oil (E,C), and the Palm oil–Crude oil given Exchange rate (P,C|E), are
presented in Table 5.

Table 5 Results of C-vine Copula Model

Tree Pair- Copula Copula Std. error Kendall’s AIC BIC p-value
copula family parameter (p-value) tau CvM KS

1 E,P Gaussian −0.2438 0.0246 −0.1568 −82.3568 −77.1276 0.38 0.47
(0.0000)

E,C Gaussian −0.4260 0.0203 −0.2802 −273.8174 −268.5883 0.76 0.74
(0.0000)

2 P,C|E Gaussian 0.1660 0.0259 0.1062 −36.4692 −31.2401 0.61 0.38
(0.0000)

Table 5 presents the results of C-vine copula model. The first pair is the Exchange
rate–Palm oil (E,P), the Gaussian copula provided the smallest AIC and BIC, and
the CvM and K-S tests accepted the null hypothesis with p-values greater than 0.05,
which means that the dependence structure of the data series is appropriate for a
chosen family. Therefore, the Gaussian copula is the best fit copula, with a copula
parameter of −0.2438 and a Kendall’s tau correlation of −0.16. This implies that
when the exchange rate increases (i.e., when the U.S. dollar is stronger), the palm oil
price decreases, and vice versa. However, there exists a weak negative dependence
in this pair-copula, thus indicating that a change in palm oil price is slightly related
to a change in exchange rate.

For the second pair, the Exchange rate–Crude oil (E,C), the Gaussian copula is
chosen to explain the dependence structure of this pair-copula with a copula param-
eter of −0.4260 and a Kendall’s tau correlation of −0.28. This means that when
the exchange rate increases (i.e., when the U.S. dollar is stronger), the crude oil
price decreases, and vice versa. However, this pair-copula has a weak negative de-
pendence, thereby indicating that a change in crude oil price is slightly related to a
change in exchange rate, which is similar to the result of the first pair-copula.

The parameter of each pair-copula from an appropriate copula family in tree 1
was used to construct a conditional pair-copula of Palm oil–Crude oil given Ex-
change rate (P,C|E) in tree 2. This pair-copula provides the Gaussian copula is the
best fit with the copula parameter of the Gaussian copula is 0.1660 and the Kendall’s
tau correlation is 0.11. Therefore, whether it is an upward or a downward trend, both
the commodity prices tend to move together. However, this pair-copula has a weak
positive dependence; this means that a change in palm oil price is slightly related to
a change in crude oil price.

According to our results, the copula parameters and the Kendall’s tau correla-
tions of a conditional pair-copula (P,C|E), 0.1660 and 0.11, are less than those that
are obtained for the bivariate pair-copula Palm oil–Crude oil (P,C). Further testing
reveals that the Gaussian copula of a bivariate copula (P,C) offers a copula param-
eter and a Kendall’s tau correlation of 0.2495 and 0.16, respectively. This implies
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that the exchange rate (E) has an influence in the relationship between the palm oil
price (P) and the crude oil price (C). The exchange rate (E) is an important variable
that governs the interactions in the dependence structure between the palm oil price
(P) and the crude oil price (C).

4 Conclusions and Policy Implications

We analyzed the relationship between the dollar exchange rates and two commod-
ity prices, palm oil price and crude oil price. The analysis was done by using the
GARCH(1,1) model to examine the volatility of the exchange rates and the future
prices 1-Pos. of both the commodity prices. The vine copula model was used to ana-
lyze the dependence structure between their marginal distributions. The data analy-
ses were based on the daily observations during the period from June 2007 to March
2013. The empirical results of GARCH(1,1) showed that the exchange rates, palm
oil prices, and crude oil prices have a long-run persistence in volatility. The C-vine
copula consisted of three pair-copulas (Figure 2), which are Exchange rate–Palm oil
(E,P), Exchange rate–Crude oil (E,C), and Palm oil–Crude oil given Exchange rate
(P,C|E). Of the three, the Exchange rate–Palm oil (E,P) and Exchange rate–Crude
oil (E,C) are in the first tree, and the conditional pair-copula, Palm oil–Crude oil
given Exchange rate (P,C|E), is in the second tree.

The Gaussian copula was chosen to explain the dependence structure of the Ex-
change rate–Palm oil (E,P) pair-copula with a copula parameter of −0.2438 and a
Kendall’s tau correlation of −0.16. Similarly, the Exchange rate–Crude oil (E,C)
indicates the Gaussian copula as the best fit with a copula parameter of −0.4260
and a Kendall’s tau correlation of −0.28.

As for the last pair-copula, the conditional pair-copula Palm oil–Crude oil given
Exchange rate (P,C|E), the Gaussian copula was chosen to explain the dependence
structure with a copula parameter of 0.1660 and a Kendall’s tau correlation of 0.11.
Furthermore, the findings of this research provide evidence that the exchange rate
(E) is an important variable that governs the interactions in the dependence structure
between the palm oil price (P) and the crude oil price (C).

Our results showed that the volatility of the exchange rate, palm oil price and
crude oil price are interrelated (see Figure 2). Considering the Kendall’s tau corre-
lation, the pair-copulas Exchange rate–Palm oil (E,P) and Exchange rate–Crude oil
(E,C) have a weak negative correlation. The conditional pair-copula Palm oil–Crude
oil given Exchange rate (P,C|E) has a weak positive correlation.

This study found some evidences of excess kurtosis, skewness, and non-normal
distribution in each data series, exchange rate, palm oil price and crude oil price.
That is why the copula model is an appropriate tool to measure the relationship be-
tween each variable considered in this study. The copula can model the dependence
between random variables without an assumption of linear correlation.

From the empirical results of this study, it can be concluded that a depreciating
exchange rate has a relation with an increase in palm oil price in the Malaysian
market (MDEX) and crude oil price in the Dubai market (DME). As far as the palm
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Fig. 2 The C-vine copula for the exchange rate, and palm oil and crude oil data with the
pair-copula families and the Kendall’s tau values

oil exports of ASEAN are concerned, a depreciating dollar exchange rate would
prove advantageous to ASEAN because that would generate more income for the
region. But, on the other hand, the incentive in world market price and the increased
profitability in international trade will cause an increase in the volume of palm oil
that is exported from the region. The consequences can be negative in that it can
lead to a rise in the local price, or a shortfall for consumers in some areas of the
ASEAN region. For example, if this were to occur in Indonesia, it would tend to
make palm oil producers increase exports when the world market price increases,
and this would create a shortfall for domestic consumers [18]. Thus, the palm oil
producers and exporters of ASEAN who are from Indonesia, Malaysia, and Thailand
should endeavor to keep the balance between the intra-regional demand and the
exportation demand. As for the crude oil imports of ASEAN, a rise in crude oil
price will increase the cost of living of the people living in the ASEAN region.

So, a depreciation in the exchange rate is related to an increase in the palm oil
price and the crude oil price. The dollar exchange rate is an important variable in that
the ASEAN nations have to monitor and manage its impact in terms of food security
and energy security. As for the investors, they should take into consideration the risk
that could arise from a change in the exchange rate, which, again, is related to the
palm oil price and the crude oil price.

ASEAN can produce enough quantity of palm oil and is the world largest exporter
of this food commodity [18]. However, ASEAN has to rely on import crude oil from
the Middle East [19]: the fact is that the crude oil price of the Dubai Mercantile
Exchange (DME) is related to the West Texas Intermediate (WTI) as well as the
other markets in the world [20]. Thus, the dollar exchange rate should have more
influence on the crude oil price from the Middle East (DME) than the palm oil price
from Malaysia (MDEX). This corresponds to the empirical results of this research:
the negative dependence between the dollar exchange rate and the crude oil price
(DME) is greater than the negative dependence between the dollar exchange rate
and the palm oil price (MDEX).

For the bivariate copula analysis of palm oil price and crude oil price, there
exists a weak positive dependence (a copula parameter 0.2495 and Kendall’stau
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correlation 0.16); this means that the intensity of the co-movement of their prices is
less. It can be explained by the fact that ASEAN has a high production capacity of
palm oil, and so it can reduce the direct and indirect effects of fluctuations in crude
oil prices in the world market. This is the reason why the dependence between the
two commodity prices is weak.

From our findings, it is evident that the dependence between the palm oil price
and the crude oil price is still weak. Also, there exists a high production capacity
of palm oil in ASEAN. Therefore, using biodiesel as alternative energy is one of
the choices that should be considered. Palm biodiesel can reduce energy cost for
consumers when they are faced with a continuous rise in crude oil prices. For ex-
ample, in Malaysia, where there are a lot of cultivated areas of oil palm trees and
there is a high potential for producing palm biodiesel, if the production of biodiesel
were implemented very effectively, it would have a positive impact on the economy
in many ways [36]. However, while deciding to use the produce from the oil palm
tree for biodiesel production, the policy makers should take into consideration the
suitability as regards food security, environment, and critical social needs [18, 37].
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of Erlangen-Nüremberg, Germany (2003),
http://www.statistik.wiso.uni-erlangen.de/forschung/
d0047.pdf (accessed January 25, 2013)

29. Joe, H.: Families of m-Variate Distributions with Given Margins and m(m1)/2 Bivariate
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An Analysis of Interdependencies among
Energy, Biofuel, and Agricultural Markets Using
Vine Copula Model

Phattanan Boonyanuphong and Songsak Sriboonchitta

Abstract. This paper aims to study the structure of interdependencies between the
energy, biofuel and agricultural commodity markets. The work concentrates on the
dependence between ethanol and agricultural futures returns conditional to crude oil
returns, and interdependence among agricultural commodities conditional to crude
oil and ethanol futures returns. The C-vine copula based ARMA-GARCH model
was used to explain the dependence structure of crude oil and the four related vari-
ables, and applied to investigate the risk of energy-agricultural commodity futures
portfolio. We generally found symmetry in the tail dependence between the energy,
biofuel, and agricultural commodities, and also found a greater significant variabil-
ity in dependence, specifically, the dependence between the ethanol and agricultural
commodity futures returns conditional to crude oil as well as interdependence be-
tween corn and soybean conditional to crude oil and ethanol return. This indicates
that there is a rise in ethanol productions and that higher crude oil prices have caused
a price increase in agricultural commodities such as corn and soybean. Moreover,
the higher dynamic dependence and symmetric tail dependences indicate that op-
portunities for portfolio diversification are reduced, particularly during a downturn
in the markets. Finally, our result suggests that the time-varying copula model cap-
tures the portfolio risk better than the static copula models.
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1 Introduction

The rising trend in food commodity prices has shown a significant increase in the
last few years; this has caused substantial impact on the global economic activity,
especially in developing countries. In such a situation, the volatility of food prices,
particularly grain prices, has increased concerns about the world food supply and
security.

One key factor is growth in demand of grain production in the biofuels indus-
try which is the culprit behind the rising trend in agricultural prices. The growth
in global biofuels production has reached phenomenal proportions, especially in
the case of ethanol and biodiesel production, which were, roughly, 30 billion gal-
lons and 9 million tons in 2012[1, 2]. The following two main agricultural produc-
tions were used to produce ethanol from their coarse grains: corn and sugarcane
amounted to 50% of the total global ethanol production via feedstock during 2008-
2010. Biodiesel production is mostly carried out from vegetable oils, particularly,
soybean oil and rapeseed oil[3]. During 2008-2011, the global productions of coarse
grains and sugar were around 11% and 21%, respectively; they were used to pro-
duce ethanol, and 11% of the global production of vegetable oil was used to produce
biodiesel[4].

This dramatic rise in biofuel production has increased the adverse effect on the
prices of the main agricultural commodities that are used for producing ethanol and
biodiesel. The increased production of biofuel has been blamed for being one of the
causes of the 2007/08 and 2010/11 global food crises[3]. Moreover, the emergence
of the new trend of large-scale production of biofuels used for transportation has
reshaped the relationship between agricultural commodities and energy markets.
Traditionally, an energy-food linkage has been connected through the input costs
channels, especially through fuel, fertilizer, and transportation.

The strong connection and increasing volatility of the agricultural and energy
markets have attracted a growing interest in the academic world, especially among
policy makers and researchers, with the latter having closely examined the evolu-
tion of the relationship between energy and the agricultural prices. A considerable
body of research has been devoted to investigating the links between energy and
food prices through the input costs channels. Hanson et al.[5] showed that soaring
crude oil prices drive higher costs of production which, in turn, cause the agricul-
tural commodity prices to increase. Baffes[6] also pointed out that crude oil price
should be included in the aggregate production function that passes through input
functions such as fertilizer, fuel, and transportation. Similarly, the European Com-
mission recognized that the rise in agricultural commodity prices has been effected
by the energy prices through the input channel for a rising cost i n fertilizers, chem-
ical materials, and transportation[7].

Opposed to this point of view is a piece of literature which deals with new links
that are focused only on crude oil and agricultural commodities. There is an over-
whelming amount of study that analyzes the impact of biofuels on food and en-
ergy prices, which can be categorized on the basis of the data used in the empirical
study as relying on biofuel prices or not. Chang and Su[8], Ciaian and Kancs[9],
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Natanelov et al.[10], Nazlioglu and Soytas[11], Du et al.[12], and Boonyanuphong
et al.[13] did a study on the dependency between crude oil and food prices by ig-
noring biofuel prices. Chang and Su[8] found evidence that the substitutive effect
can be represented in the period of the high crude oil price due to the significant
price spillover effects from crude oil futures to corn and soybean futures. Ciaian and
Kancs[9] also discovered a cointegration between crude oil and food commodities,
and found that the interdependencies keep rising over time. Similarly, Nazlioglu and
Soytas[11], and Boonyanuphong et al.[13] discovered that crude oil is in cointegra-
tion with agricultural commodities, especially in the recent years. Results derived
from the work of Boonyanuphong et al.[13] also show that there exists symmetric
tail dependence between crude oil and agricultural commodity prices, and that the
dependences are very volatile over time.

Furthermore, some research papers deal with new linkages that make an analy-
sis of the interdependency between the energy, biofuel, and food markets that rely
on the biofuel prices[14, 15, 16, 17]. Serra et al.[17] provided evidence of two
cointegration relationships: crude oil-gasoline and ethanol-corn-gasoline. The re-
sults show the existence of long-running relationships between ethanol, corn, and
gasoline, thus indicating that the energy-agricultural price relationship is in linkage
with the biofuel market. Du and McPhail[14] also found that the ethanol, gasoline,
and corn prices are more closely linked to a strengthened biofuel relationship. This
could be examined using new developments in the biofuel industry and bioenergy
policy instruments. While the results of the correlation between the oil, ethanol, and
agricultural commodities are relatively strong, the evidence for a causal link from
oil to the commodity prices is still mixed [15].

Literature considering the price link and price volatility interactions among the
biofuel-related markets are extensively analyzed using different econometric tech-
niques. Most of the common methodological approach applied in the study price
level link consists of cointegration analysis and/or estimation of a VECM, while the
prominent methodological approaches employed in investigating the price volatility
interactions consist of the VECM, BEKK, and GARCH-type models[3]. Although
the cointegration analysis methods, the VECM, BEKK, and GARCH-type mod-
els, are still good for measurement and enough for analyzing interdependence and
volatility between random variables, they are based on some strong assumptions
that were not conforming to the data in the empirical studies. Given the drawbacks
of the conventional methodology, researchers are motivated to utilize copulas since
they are more flexible in modeling the volatility and dependence structures. There
are several collections o f bivariate copulas with distinct features that can fit with
the various forms of dependence. However, in a multivariate case, there is only a
standard multivariate copula, such as the Gaussian or the Student-t, as well as the
Archimedean copulas that are lacking in flexibility due to the imposition of strong
restrictions on equal dependence with all pairs of variables. Vine copulas, first pro-
posed by Joe[18] and developed further by Bedford and Cooke[19], are very flex-
ible for use in multivariate variables. The vine copulas can be constructed using
a cascade of bivariate copulas; they produce large collections of bivariate copulas
available in multivariate cases.
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In this study, we attempt to fill the gaps and handle the drawbacks of the tradi-
tional models via the vine copula based ARMA-GARCH model by investigating the
interdependencies between the energy, biofuel, and agricultural markets. The main
purpose of this paper is to analyze the volatilities and dependencies among crude
oil, ethanol, and agricultural commodities future prices including corn, soybeans,
and sugar prices. Moreover, we are interested in the co-movement between the agri-
cultural commodity and ethanol prices conditional to crude oil prices, and the co-
movement between the agricultural commodity prices conditional to crude oil and
ethanol prices. Finally, our paper calculates the value at risks and expected shortfalls
using the results obtained from the use of copulas and the Monte Carlo simulation
method, which can give some revelations for risk management. By answering these
questions, we hope to enhance the understanding of the interdependent among the
prices of crude oil , ethanol, and agricultural commodities.

The remainder of the paper is organized as follows. The second section will pro-
vide a brief review of the copula model, vine copula, the marginal models used for
estimating the volatility and dependence structures of the energy and the other four
related variables. Section 3 provides details of the data set and the empirical results
of this study. Section 4 provides the applications for portfolio management in the
technical field, as well as the empirical results. Finally, the conclusions are presented
in section 5.

2 Econometrics Models

2.1 Copula Models

Of late, copula models have been widely applied for use in measuring and analyz-
ing the dependence structures of joint probability distributions. The copula concept
was first developed by Sklar. For a random vector X = (X1,X2, ...,Xd) ∼ F with a
univariate margins Fi, i = 1, ...,d, there exists a unique function C called copula for
which:

F(x1, ...xd) =C(F1(x1), ...,Fd(xd)) (1)

If F is an absolutely continuous function and Fi, i = 1, ...,d are strictly increasing,
we have the density function as

f (x1, ...xd) =
d

∏
i=1

fi(xi)× c(F(x1, ...,F(xd))) (2)

where c is copula density function. In other words, copulas can be separately decom-
posed in the modeling of the marginal densities and the dependency part in terms of
the copula density.

A large collection of copula families find application in empirical studies, espe-
cially in the finance markets. Two of the most commonly used in this field
are the Gaussian copula and the t-copula. The Gaussian copula has zero tail
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dependence, whereas the tail dependence for the t-copula is symmetric and non-zero
with the same probability of occurrence[20]. The Clayton and Gumbel copulas are
non-symmetric and commonly used to investigate asymmetric tail dependence[20,
21]. The Clayton copula provides strong lower tail dependence and the Gumbel cop-
ula exhibits strong upper tail dependence. Likewise, the Joe copula has higher de-
pendence in the upper tail than in the lower tail, where it is zero. Moreover, Joe[22]
employed two bivariate copula families, namely BB1 and BB7, that provide non-
zero upper and lower tail dependences. Also, the rotation of the bivariate copula
families is utilized to analyze the dependence structure in our empirical study.

2.2 Vine Copulas

Although there exists a large collection of bivariate copula families, the multivariate
distributions carry many restrictions on the dependence relationships between the
random variables. Vine copula is helpful in constructing multivariate distributions
by incorporating the bivariate copula into the dependence structure under the speci-
fied marginal conditional distributions. For the d-dimensional density corresponding
to a canonical vine (C-vine) is given by[23]

f (x1, ...,xd) =
d

∏
k=1

f (xk) ·
d−1

∏
j=1

d− j

∏
i=1

F(x j|x1, ..,x j−1),F(x j+i|x1, ..,x j−1). (3)

For example, the 5-dimensional version of C-vine density (3) in our case can be
written as

f (x1, ...,x5) =
5

∏
i=1

f (xi) · c12(F(x1),F(x2)) · c13(F(x1),F(x3))

· c14(F(x1),F(x4)) · c15(F(x1),F(x5)) · c23|1(F(x2|x1),F(x3|x1))

· c24|1(F(x2|x1),F(x4|x1)) · c25|1(F(x2|x1),F(x5|x1))

· c34|12(F(x3|x1,x2),F(x4|x1,x2)) · c35|12(F(x3|x1,x2),F(x5|x1,x2))

· c45|123(F(x4|x1,x2,x3),F(x5|x1,x2,x3)).

(4)

The vine-copula requires marginal conditional distributions of the form F(x|ν).
Joe[18] showed that for every υ j in the vector ν , we can write F(x|ν) as

F(x|ν) = ∂Cx,υ j |ν− j
{F(x|ν− j),F(υ j|ν− j)}
∂F(υ j|ν− j)

(5)

where Cx,υ j |ν− j
is an arbitrary bivariate copula distribution function. As an example,

the C-vine specification in equation (4) requires F(x2|x1), which can be written as
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F(x2|x1) =
∂C1,2{F(x2),F(x1)}

∂F(x1)
(6)

or equation (4) also requires F(x3|x1,x2), which can be calculated as

F(x3|x1,x2) =
∂C3,2|1{F(x3|x1),F(x2|x1)}

∂F(x2|x1)
(7)

Hence, each of the marginal conditional distributions can be calculated from bivari-
ate copulas and marginal distributions.

2.3 Dynamic C-vine Model

Although the C-vine copula used in our study is flexible in a multivariate setting,
the dependence parameters are still constant over time. By following Heinen and
Valdesogo[24] and Patton[25], we proceeded to introduce the time-varying aspect
into the multivariate dependence model. This method consists of the two-step set-
ting: first, we used the C-vine copula to construct multivariate structures and, sec-
ond, in each building block, the bivariate copula allowed the dependence parameters
to be time-varying. As for the time-varying aspect of the bivariate copula, we will al-
low the dependence parameter of the copula to vary according to the ARMA(1,10)-
type process. In accordance with Patton[25], we proposed some time-varying copula
candidates in the following manner.

The time-varying Gaussian copula can be defined as

ρt =Λ(ψ0 +ψ1ρt−1 +ψ2
1
10

10

∑
j=1

Φ−1(ut− j)Φ−1(vt− j)) (8)

where Λ = (1− e−x)(1 + e−x)−1 is the modified logistic transformation used to
maintain the correlation coefficient, ρt , belonging to (−1,1) at all times. For the t
copula with the timevarying aspect, Φ−1(x) is replaced by t−1

ν (x).
The time-varying Clayton copula and the time-varying Gumbel copula also as-

sumed the tail dependence parameters to follow the ARMA(1,10) process. We pro-
posed that the time-varying Clayton and Gumbel copulas could be given as follows:

τt =Λ(ψ0 +ψ1τt−1 +ψ2
1

10

10

∑
j=1

|(1− ut− j)− (1− vt− j)|), (9)

δt =Λ(ψ0 +ψ1δt−1 +ψ2
1

10

10

∑
j=1

|(1− ut− j)− (1− vt− j)|) (10)

whereΛ = (1+e−x)−1 is the logistical transformation which guarantees that τt and
δt will be between the interval (0,1) at all times.
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2.4 Marginal Models

In order to consider the characteristics of the conditional mean and the conditional
variance, we constructed the marginal distributions of each returns series by using
an ARMA-GARCH model where the type of innovations satisfied a skewed-t distri-
bution. The models employed for the marginal distributions followed Hansen[26],
and we denote the log-difference of the crude oil future price or the agricultural
commodity future prices as the variable rt . Thus, the univariate skewed-t GARCH
model can be formed as

ri,t = μi +
p

∑
j=1

φi, jri,t− j +
q

∑
k=1

ψi, jεi,t−k + εi,t , (11)

εt = ηi,t ·
√

hi,t and ht = ωi +αiε2
i,t−1 +βihi,t−1, (12)

where εi,t ∼ skewed− t(νi,λi). The skewed-t distribution captured the characteris-
tics of asymmetric heavy tail dependence, in which the model has two parameters
λ and ν; they measure the asymmetry and kurtosis behavior of the return series that
we expect to observe in our work.

3 The Data and Empirical Results

3.1 Data

In this paper, we used the daily time series data on the one-month futures prices
of the five closely linked energy and agricultural commodities, namely, crude oil,
ethanol, corn, soybean, and sugar. All that data regarding the futures prices were
collected from the Datastream, where corn and soybean commodities and ethanol
are traded on the Chicago Board of Trade. Sugar futures is sugar no. 11 futures
traded at the ICE market. For crude oil futures prices, we used the Brent crude one-
month futures traded at the ICE Market. Our sample covers the period from March
23, 2005, to January 1, 2013. The length of the sample data depended on the ethanol
futures available on the Chicago Board of Trade.

The descriptive summaries of all futures returns are demonstrated in Table1. The
sample means of all the daily returns series are lower relative to their standard devi-
ations. There is negative skewness in almost all of the returns series, except for corn,
thus revealing the fact that the unconditional distributions have longer left tails than
right tails. With respect to the excess kurtosis statistics, the data show that all the re-
turn series are highly leptokurtic with respect to the normal distribution, indicating
that there is a higher probability for extreme movement occurring in these futures
markets. Furthermore, the Jarque-Bera test results strongly reject the null hypothe-
sis of normality in all returns series, and that is the reason for the inappropriateness
in using the multivariate normal distribution to explain the financial data.
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Table 1 Data Description of Returns

Crude oil Ethanol Corn Soybean Sugar

Mean 0.0004 0.0003 0.0006 0.0004 0.0004
Max. 0.1271 0.1603 0.1276 0.2032 0.1306
Min. -0.1095 -0.1365 -0.1041 -0.2341 -0.1237

Std. Dev. 0.0218 0.0198 0.0213 0.0186 0.0238
Skewness -0.1628 -0.5211 0.0552 -0.7754 -0.2510

Kurtosis 6.5129 8.9927 4.8428 24.0945 5.6761
Jarque-Bera 1038.2380 3086.2750 284.2866 37319.0400 618.4206

Prob. 0.0000 0.0000 0.0000 0.0000 0.0000

3.2 Results of Marginal Models

The findings given in Table2 represent the result of each of the univariate skewed-t
GARCH models. The coefficients of the GARCH term, β are strong as they are in
the range of 0.91 to 0.95. The sums of the ARCH term and the GARCH term are
close to one for all of the series, thus indicating that the conditional variance con-
verges to the long-run variance which takes a longer time. Therefore, we assumed
that the selected time series models are adequate to construct the conditional mean
and variance of the five return series in our study. For all the asymmetry coefficients
of the conditional distribution, λ are positive and significant, implying that the re-
turn series of crude oil, ethanol, and the three agricultural commodities, namely,
corn, soybean, and sugar, are skewed to the right. The degree of freedom parame-
ters range from 4.02 to 10.00, suggesting that the error terms were not normal.

The correct specifications of the marginal distributions are necessary in the joint
copula models. We checked that the marginal models are well-specified by introduc-
ing the Box-Ljung test to assess the serial correlation for the first four moments of
each return series as well as the Kolmogorov-Smirnov (K-S) test to check the den-
sity specification of the marginal distribution assumption. The p-values presented in
Table3 suggest that for all series the null hypothesis of no serial correlation could
be rejected at the 5% significance level; also, the p-values from the K-S test show
that all marginal distribution series can pass at the 5% significance level. Hence, the
results imply that all marginal distribution models were in correct specification.

3.3 Results of Copula Models

We selected the structure of the C-vine with the empirical linkage between the en-
ergy and agricultural commodities. In fact, the crude oil is a dominant variable that
has an influence on the dependencies with the all other related variables. The find-
ings correspond to the objective of our study, which focuses on the dependencies
between the crude oil prices and the prices of the other four related variables, which
consist of ethanol, corn, soybean, and sugar, and the co-movement between the
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Table 2 Parameter Estimates for Marginal Distribution Models

ω α β λ ν LogL

Crude oil 2.38e-06 0.0488 0.9467 0.9169 10.0000 5097.7240
(1.52e-06) (9.86e-03) (1.09e-02) (2.93e-02) (1.7670)

Ethanol 1.25e-05 0.0672 0.9067 0.8826 4.0200 5263.3540
( 6.07e-06) (2.02e-02) ( 3.07e-02) (2.37e-02) ( 3.91e-01)

Corn 4.66e-06 0.0636 0.9289 1.0190 6.6660 5006.1870
(2.35e-06) (1.18e-02) (1.30e-02) (3.11e-02) (9.33e-01)

Soybean 4.09e-06 0.0495 0.9378 0.9095 5.6510 5482.0720
(1.36e-06) (9.74e-03) (1.11e-02) (2.52e-02) (7.47e-01)

Sugar 3.58e-06 0.0515 0.9455 1.0180 5.2330 4830.8570
(1.93e-06) (1.02e-02) (1.06e-02) (2.76e-02) (6.50e-01)

Note: The numbers in the parentheses are the standard errors.

agricultural commodity and the ethanol prices conditional to the crude oil prices.
Also, we investigated the interdependence among the agricultural commodity prices
conditional to the crude oil and ethanol prices. By following this method, we could
do an ordering with regard to the sequential arrangement of the variables for the
C-vine structure, as follows: crude oil, ethanol, corn, soybean, and sugar futures
returns.

Table4 reports the estimate of the bivariate copula parameters that were selected
according to the AIC and the BIC criteria for each of the building blocks in the ap-
propriate C-vine structures. The sequential procedure is used to select an appropriate
C-vine copula for the crude oil and the related copula data, and then used those pa-
rameters are used as starting values to calculate the corresponding maximum like-
lihood estimation (MLE) parameters. The correlation coefficient parameters from
Table4 are statistically significant, but they have relatively low dependence.

For the first tree, the optimal choices of the copula are the symmetry t copula,
except for the pair of crude oil and soybean that is fitted with the Gaussian copula;

Table 3 Goodness-of-fit Test for Marginal Distributions

Crude oil Ethanol Corn Soybean Sugar

Box-Ljung test
first moment 0.973 0.151 0.395 0.978 0.129
second moment 0.268 0.114 0.876 0.957 0.316
third moment 0.983 0.120 0.865 0.622 0.385
fourth moment 0.640 0.082 0.992 0.991 0.581

K-S test 1.000 1.000 1.000 1.000 1.000

Note: The table presents p-values from the Box-Ljung tests and the K-S
tests, respectively.
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the degree of freedom of the t copula ranges from 13.52 to 23.27. These facts imply
that the co-movements and tail dependence between crude oil and ethanol, corn,
and sugar are not strong, especially during the extreme market events. In the sec-
ond tree, we show the relationship between ethanol and corn, soybean, and sugar,
respectively, with conditional prices on crude oil. The best-performing dependence
models for ethanol and corn conditional to crude oil, and ethanol and soybean con-
ditional to crude oil are the t copula. The dependence parameters of the t copula
are slightly above 0.3 for both the pairs of the return series, especially, the pair of
ethanol and corn conditional to crude oil, which has a very low degree of freedom.

Table 4 Structure and Parameter Estimate Results of C-vine Copula for Static Cases

Copula par1 par2 λU λL τ AIC BIC

C1,2 t 0.3293 13.5178 0.0166 0.0166 0.2136 -226.7206 -215.5168
(0.0203) (5.0295)

C1,3 t 0.2843 23.2735 0.0012 0.0012 0.1835 -169.9709 -158.7671
(0.0205) (10.5845)

C1,4 N 0.3473 0.2258 -268.0105 -262.4086
(0.0184)

C1,5 t 0.2306 20.5515 0.0014 0.0014 0.1482 -107.3756 -96.1718
(0.0215) (10.0642)

C2,3|1 t 0.4801 3.8110 0.2524 0.2524 0.3188 -596.1210 -584.9172
(0.0195) (0.2905)

C2,4|1 t 0.2920 11.9419 0.0196 0.0196 0.1887 -170.5151 -159.3112
(0.0223) (1.6695)

C2,5|1 N 0.1266 0.0808 -29.2218 -23.6199
(0.0218)

C3,4|1,2 t 0.5019 6.8857 0.1450 0.1450 0.3347 -632.2034 -620.9996
(0.0174) (1.1653)

C3,5|1,2 N 0.1396 0.0892 -37.0299 -31.4280
(0.0213)

C4,5|1,2,3 R-180G 1.0460 0.0600 0.0439 -12.4627 -6.8608
(0.0143)

Note: 1 = crude oil, 2 = ethanol, 3 = corn, 4 = soybean, 5 = sugar. The numbers
in the parentheses are the standard errors.

Likewise, the dependence among corn and soybean prices conditional to ethanol
and crude oil prices is relatively high, 0.502, and has a very low degree of freedom
of the t copula models. The empirical evidence shows that a rise in ethanol pro-
duction and higher crude oil prices are causing an increase in the prices of related
agricultural commodities like corn and soybean, as well as an increase in the prob-
ability of extremely symmetric co-movement among ethanol price and the related
agricultural prices under the unidirectional prices of crude oil.

The time-varying copula was applied in all the trees within our study by following
the ARMA (1,10) process of Patton[25]. The data given in Table5 reveal that all
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Table 5 Parameter Estimate Results of C-vine copula for Time-varying Cases

copula ψ0 ψ1 ψ2 AIC BIC

C1,2 t 0.0416 0.1149 1.8466 -261.8275 -261.8191
(0.0005) (0.0009) (0.0014)

C1,3 t -0.0189 0.0280 2.1051 -191.7716 -191.7632
(5.07e-
05)

(0.0002) (0.0003)

C1,4 N 1.3053 0.3659 -1.9204 -274.2329 -274.2245
(0.0039) (0.0026) (0.0077)

C1,5 t 0.1833 0.2523 0.9907 -126.8346 -126.8262
(0.0009) (0.0009) (0.0018)

C2,3|1 t 0.0303 0.1027 1.9904 -749.6977 -749.6893
(0.0007) (0.0008) (0.0005)

C2,4|1 t 0.0071 0.0658 1.9851 -239.5575 -239.5491
(4.5e-05) (0.0004) (0.0006)

C2,5|1 N 0.5147 0.0735 -2.0429 -35.5384 -35.5300
(0.0008) (0.0017) (0.0005)

C3,4|1,2 t -0.0969 0.0278 2.3555 -639.7591 -639.7507
(0.0007) (0.0003) (0.0018)

C3,5|1,2 N 0.3343 0.0278 -0.4827 -38.4581 -38.4497
(0.0047) (0.0037) (0.0034)

C4,5|1,2,3 R-180G -0.9927 1.2425 -0.3147 -17.9531 -17.9447
(0.8418) (0.6479) (0.7155)

Note: 1 = crude oil, 2 = ethanol, 3 = corn, 4 = soybean, 5 = sugar. The numbers
in the parentheses are the standard errors.

the time-varying copulas were able to improve the performance of the entire static
copulas in each tree, consistent with the AIC and the BIC.

The parameter ψ1 indicates that the persistence effect is relatively low, which
implies that the related interdependence structure among the crude oil, ethanol, corn,
soybean, and sugar futures returns are generally weak. Meanwhile, the variability of
the dependence parameters (ψ2) is significant and displays greater variability over
time on the dependence between each pair of the crude oil, ethanol, corn, soybean,
and sugar futures returns.

4 Applications for Portfolio Management

In this section, we want to forecast the Value-at-Risk (VaR) and the Expected Short-
fall (ES) of an equally weighted portfolio composed of five assets, crude oil, ethanol,
corn, soybean, and sugar futures return. Moreover, we applied the above results to
compute the optimal weights of each asset, which is one of the major concerns in
the field of portfolio risk management. In order to estimate the VaR and ES of the
portfolio, we need to investigate the joint distribution of the return series of the
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portfolio. Therefore, in this paper, we used the Monte Carlo simulation and the esti-
mation results of the copula based ARMA-GARCH to measure the VaR and ES of
equally weighted portfolio. The procedures to forecast the VaR and ES one day in
advance, based on the copulas at 90%, 95%, and 99% confidence levels, were the
following:

(1) Using the estimated bivariate copula parameters (C12, C13, C14, and C15)
and the inverse distribution of the estimated marginal to simulate a sample of stan-
dardized residuals (η̂T+1,1, ..., η̂T+1,M)′ of the assets 1, ...,M.

(2) Computing the ex-ante returns using the estimated ARMA-GARCH parame-
ters for the assets returns j, j = 1, ...,M,

r̂T+1, j = μ̂i +Σ p
k=1φ̂k, jrT+1−k, j +Σq

k=1ψ̂k, j ĥT+1−k, jη̂T+1−k, j + ĥT+1, jη̂T+1, j (13)

(3) The portfolio returns forecast is then given by r̂T+1,p = ΣM
j=1wj ˆT+1, j, where

wj, j = 1, ...,M with ΣM
j=1wj = 1.

(4) We compute the VaR and ES by taking the 10%, 5% and 1% quantiles of the
portfolio returns forecasts.

(5) Loop the steps (1)-(4) for 1000 times, 2000 times, and 5000 times, and com-
pute the averages of the VaR and ES.

Furthermore, to deal with the optimal portfolio allocation, we assumed that the
weight in each asset within a portfolio is wi = (w1, ...,wM)′, for M assets namely,
crude oil, ethanol, corn, soybean, and sugar futures returns. As for any returns of
the portfolio that obtain a minimum ES and correspond to each given investment
weight vector w, it becomes the optimal portfolio.

Then the optimal portfolio weights are the solution for the following optimization
problem:

minES
s.t. r = wj× r j,t+1

(14)

where 0≤ wj ≤ 1, ∑M
j=1 wj = 1, and j = 1, ...,M. However, the choice of minimum

risk measure depends on the behavior of the investor.
Applying the Monte Carlo simulation and the results of the copula based ARMA-

GARCH model, as discussed in the previous section, we can simulate the returns at
time of the five assets (crude oil, ethanol, corn, soybean, and sugar futures), and
calculate the VaR and ES of the portfolio with equal weights, as shown in Table6.
Table7 presents the results of the optimal portfolio weight analysis and the one with
a minimum portfolio risk.

The data in Table6 reveal that the VaR and ES which are calculated from the
time-varying copula are slightly smaller than those calculated from a static copula
at the same confidence level. This is because the time-varying copulas consider
the dynamic variation of the dependence between each pair of return series that
varies over time corresponding to the situation in the financial markets. Moreover,
the results are consistent with the data given in section 3.3, in which it is pointed out
that the time-varying copulas usually perform better than the constant copulas.



An Analysis of Interdependencies 427

Table 6 VaR and ES of Portfolio under Equally Weighted Criterion

Panel A : static copula

0.99 0.95 0.90

VaR ES VaR ES VaR ES

1000 times 0.0148 0.0178 0.0096 0.0128 0.0072 0.0105
2000 times 0.0147 0.0178 0.0096 0.0127 0.0072 0.0105
5000 times 0.0148 0.0178 0.0096 0.0128 0.0072 0.0105

Panel B : time-varying copula

0.99 0.95 0.90

VaR ES VaR ES VaR ES

1000 times 0.0147 0.0175 0.0095 0.0127 0.0071 0.0104
2000 times 0.0146 0.0176 0.0094 0.0127 0.0072 0.0104
5000 times 0.0146 0.0176 0.0095 0.0127 0.0071 0.0104

Table 7 shows the estimate results of the optimal portfolio weights under min-
imum ES with different levels of significance. We found that the proportions of
investment focused on three assets, namely, crude oil, corn, and soybean, and that
they rise along with a gradual increase in risk, for a static copula. This means that
investors are willing to take more risks to achieve higher expected returns. How-
ever, in the time-varying copula, the weights of corn and soybean become smaller
with higher levels of significance. The proportions of investment in the crude oil,
corn, and soybean become obviously reduced with higher confidence levels. This
gives an indication that the investor changes the weight of each asset in a portfo-
lio with changing market dynamics in order to minimize portfolio risk, which is in
correspondence with the ES at each level of significance. Hence, we reached the
same conclusion that calculating the VaR and ES of the portfolio by using equally

Table 7 Optimal Weights of Portfolio with Minimum Expected Shortfall

Panel A : static copula

Alpha Crude oil Ethanol Corn Soybean Sugar ES VaR

0.10 0.2620 0.1103 0.2068 0.2361 0.1848 0.0104 0.0070
0.05 0.2775 0.0920 0.2067 0.2470 0.1768 0.0125 0.0099
0.01 0.2811 0.0643 0.2169 0.2776 0.1602 0.0158 0.0141

Panel B : time-varying copula

Alpha Crude oil Ethanol Corn Soybean Sugar ES VaR

0.10 0.2529 0.1247 0.2236 0.2186 0.1802 0.0103 0.0074
0.05 0.2463 0.1310 0.2235 0.2089 0.1903 0.0123 0.0093
0.01 0.2992 0.1319 0.1976 0.1679 0.2034 0.0153 0.0138
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weighted as sets with a time-varying copula has greater advantage and accuracy in
forecasting the VaR and ES than with a static copula.

5 Conclusion

In this paper we introduced the C-vine copula based ARMA-GARCH model to
construct the interdependence among the energy, biofuel, and agricultural futures
returns, especially the dependence between the ethanol and agricultural futures re-
turns conditional to crude oil futures returns, as well as the co-movement among
the agricultural futures returns conditional to crude oil and ethanol futures returns.
We also used the advantage of a new approach to estimate the VaR and ES of an
equally weighted portfolio and calculated the optimal portfolio weights with mini-
mum portfolio risk. The C-vine copula is a very flexible multivariate copula, which
can measure symmetry and time variation in the dependence structures of multivari-
ate series of financial returns.

We found evidence that the dependencies among the energy, biofuel, and agricul-
tural futures returns have a significant variability over time and a higher variation
of dependence, especially in the dependence between the ethanol and agricultural
futures returns conditional to crude oil futures returns, and in the interdependence
between corn and soybean futures returns conditional to crude oil and ethanol re-
turns. Furthermore, we found that there was symmetrical tail dependence among
the crude oil, ethanol, and agricultural commodity futures returns. This provides an
implication that the rise in ethanol production and higher crude oil prices are the
cause of the increase in the prices of related agricultural commodities such as corn
and soybean. The higher time-varying dependence and symmetric tail dependences
between the energy, biofuel, and agricultural commodity returns are an indication
that the opportunities for portfolio diversification do become reduced, particularly
during the downturn in markets. Finally, we found that calculating the VaR and
ES of the portfolio under an equally weighted criterion and estimating the optimal
portfolio under minimum portfolio risk using the time-varying copula is better than
computing the process using the static copula. These findings can help investors
better manage their energy-agricultural commodities portfolio risk.
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An Analysis of Volatility and Dependence
between Rubber Spot and Futures Prices Using
Copula-Extreme Value Theory

Phattanan Boonyanuphong and Songsak Sriboonchitta

Abstract. This paper aims to estimate the dependency between spot rubber price
and futures prices using the copula-extreme value theory based on semi-parametric
approaches, which combine copula functions with the conditional extreme value
theory to construct the dependence models. The C-EVT model is used to estimate
the marginal distributions of the returns of rubber spot price and futures prices that
enable the model’s flexibility for the tail behavior. Both static and time-varying cop-
ulas are applied to construct the dependence structure between the returns of the
rubber spot price and the futures prices. The empirical results showed weak spot-
futures dependence between the spot rubber price and the futures prices of Thai
markets, implying that we could not accept the efficient market hypothesis. How-
ever, we found symmetric tail dependence between the spot rubber price and the
futures prices of the Singapore, Tokyo, and Shanghai markets. This means that cash
rubber price is do minated by the futures prices of the Singapore, Tokyo, and Shang-
hai markets. The best-fitting dependence models are the time-varying t-copulas, but
the tail dependence for all pairs is relatively low. This result means that the futures
prices are weak in explaining the changes in spot prices under extreme events.

1 Introduction

In recent years, agricultural commodity prices have experienced strong fluctuations
as a consequence of high demand in the emerging market, demand for biofuels,
global climate changes, and financial issues. Situations of abnormal oscillation dur-
ing such periods can be attributed to the highly important role played by the financial
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instruments. However, financial derivatives such as futures, options, and swaps pro-
vide economic benefits: for example, price discovery, information dissemination and
efficient allocation of resources, and high trading activities with financial derivatives
exacerbated the volatility of the agricultural commodity prices.

During the years from 2005 to 2010, the exchange-traded agricultural derivatives
were on a growing trend of up to 29 percent per year, and in 2010, the number of
contracts traded in the exchange-traded agricultural derivatives went up to 1,436
million[1]. Under these circumstances, many studies tend to investigate the rela-
tionship between the spot and futures prices in the agricultural commodity markets,
which concerns the role of futures and arbitrage, and results in an increase in the
spot prices of agricultural commodities and market inefficiency.

Natural rubber is one of the agricultural commodities that had been traded in high
volumes in the futures market. Therefore, price volatility in the futures rubber mar-
ket might affect the price fluctuation in the countries of production. Thailand is the
worlds largest producer of rubber, which in the period from 2005 to 2010 produced
on an average around 31% of the worlds total output. However, rubber prices are not
determined only by the Thai market because of the importance of the other markets
in the Asian region, such as the Tokyo Commodity Exchange (TOCOM), Singapore
Commodity Exchange and Agriculture Futures Exchange (SICOM), and Shanghai
Futures Exchange (SHFE) which play a significant role in exchange-trading in the
world rubber markets. It is important, therefore, to understand the relationship be-
tween the three major rubber futures markets and the Thai spot markets, as well as
the efficiency of the Thai rubber futures markets.

The presence of co-movement between the spot and futures prices, mostly in
practice, has had many studies done to explain this relationship using different
means and techniques. Yang et al.[2] analyzed the price discovery for corn, oats,
soybeans, and three major types of wheat, and found that the futures markets play
a dominant role in the spot market for storable commodities. Kaur and Rao[3] also
found that no significant volatility had been observed in the spot and futures prices
of the chosen agricultural commodities, which implies that the co-movement in the
spot and futures prices is because of their close relation to each other. Hernandez
and Torero[4] confirmed that the spot prices are generally discovered in futures mar-
kets and also found that the causal linkages are stronger than the reverse. Similarly,
Chang et al.[5] analyzed the relationship between the spot and futures rubber prices
to find evidence that there were spillover effects between most pairs of spot and fu-
tures rubber prices. In addition, they found asymmetric effects of market shocks on
conditional volatility. Other studies, however, discovered contrasting results. Kuiper
et al.[6] tested the futures and spot corn price relationship in the CBOT and showed
that there is weak exogenous change for both long- and short-run parameters. This
implies that the spot price is not just driven by the futures price. Mohan and Love[7]
also found that changes in spot prices do not depend on changes in lagged futures
prices for the coffee futures market. Analogous to this, Wang and Ke[8] investigated
the efficiency of China futures markets for agricultural commodities, namely, wheat
and soybean. They found a weak relationship between the cash and futures prices
for soybean futures markets and also found that the futures market for wheat was
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inefficient. They suggest that speculation and government intervention are the causes
of market ine fficiency.

Some interesting studies have previously examined the relationship between spot
and futures prices by using econometric techniques, such as the co-integration the-
ory, Granger causality test, and multivariate GARCH models, with the aim of ex-
plaining the market efficiency, or the volatility transmission across the markets.
However, very few of them have focused on the spot-future relationship of the rub-
ber markets. For example, Siamwalla et al.[21] used cointegration models to test the
efficiency of AFET futures markets. In another study, Chang et al.[5] analyzed the
relationship between the spot and futures rubber prices by employed the multivari-
ate GARCH models, which is based on some strong assumptions was often used
in order to obtain a desirable variance-covariance matrix. Furthermore, multivariate
GARCH models were assumed to have a linear relationship with multivariate nor-
mal distribution or student-t [9]. These assumptions may be considered as strong
assumptions in empirical studies.

Our study attempts to fill this gap by re-examining the spot-future dependence
structure of the rubber markets by employing the conditional extreme value the-
ory (C-EVT) and the copulas. The C-EVT method provides better flexibility to the
models in the conditional returns distribution due to their stochastic volatility and
fat-tailed behavior; in addition to this, the concept of copula offers a more simple
and flexible method to model the multivariate dependence. More specifically, we at-
tempt to answer three questions: (1) What is the dependence structure between the
spot and futures prices?, (2) Is the dependence symmetric or asymmetric?, and (3)
Is there an existence of extreme tail dependence between the spot and futures mar-
kets? By answering these questions, we hope to enhance the understanding of the
dependence structure between the spot and futures rubber markets, and the market
efficiency hypothesis.

2 Econometrics Models

2.1 Copula Models

We considered several static copulas and time-varying copula models that capture
the different patterns of dependence. The static copula models employed in our work
are the Gaussian, t, (rotated) Clayton, (rotated) Gumbel, and (rotated) Joe copulas.

The bivariate Gaussian is described byCN(u,v;ρ)=Φρ(Φ−1(u),Φ−1(v)), where
the variables u and v are CDFs of the standardized residuals from the marginal mod-
els, where 0 ≤ u,v ≤ 1 and where Φ−1(u) and Φ−1(v) are the inverses of the uni-
variate normal distribution function. The Gaussian copula has zero tail dependence.

Similarly, the t copula is defined by CT (u,v;ρ ,ν) = Tν,ρ(t−1
ν (u), t−1

ν (v)), where
Tν,ρ is the bivariate student-t distribution with degrees of freedom ν and correla-
tion ρ , and t−1

ν (u) and t−1
ν (v) are the inverse student-t distribution functions. The

t-copula provides the symmetric structure non-zero tail dependence with the same
probability of occurrence, λU , λL > 0 on both the positive and negative sides.
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To deal with the asymmetric tail dependence, we used the (rotated) Clayton,
(rotated) Gumbel, and (rotated) Joe copulas which consider lower (upper) tail de-
pendence and negative tail dependence. The Clayton copula is defined as follows
CCL(u,v;θ ) = (u−θ + v−θ −1)−1/θ , where θ ∈ (0,∞). The Clayton copula exhibits
strong lower tail dependence, where there is a high probability that the trend of the
two variables is to go down together at the same time. In contrast, the Gumbel cop-
ula exhibits strong upper tail dependence. If the dependences of the two random
variables follow the Gumbel copula, then there is a high probability that the trend of
the two variables would be to go up together at the same time. The Gumbel copula
is given by CG(u,v;θ ) = exp(−((− ln(u))1/θ +(− ln(v))1/θ )θ ), where θ ∈ [1,∞).
While the Joe copula is defined by CJ(u,v;θ ) = 1− [(1− u)θ + (1− v)θ − (1−
u)θ (1− v)θ ]−1/θ , where θ ≥ 0. The Joe copula has higher dependence in the upper
tail than in the lower tail, where it is zero.

All of the above Archimedean copulas display only positive tail dependence,
whereas the bivariate random variable has negative dependence and it cannot fit
these structures. The rotated copulas are the bivariate copulas that deal with the
negative dependence problems by using (1−u) and (1− v), respectively, instead of
u and v. According to Nguyen and Bhatti[10], a copula is a rotated Clayton copula
if CRC(u,v;θ ) = u+ v−1+[(1−u)−θ+(1− v)−θ ]−1/θ . Also, a copula is a rotated
Gumbel copula if CRG(u,v;θ ) = u+v−1+exp{−[(− lnu)θ −(− lnv)θ ]−1/θ}. The
rotated Clayton and rotated Gumbel copulas can capture upper (lower) tail depen-
dence instead of the lower (upper) tail dependence as compared to the Clayton and
Gumbel copulas, respectively. The property and dependence range of the rotated
copulas are also the same as the original copula functions.

In order to allow for time-varying dependence, we will allow the dependence
parameter of the copula to vary in accordance with the ARMA(1,10)-type process.
Consistent with Patton [11], we propose some time-varying copula candidates as
follows.

The time-varying Gaussian copula can be defined as

ρt =Λ(ψ0 +ψ1ρt−1 +ψ2
1
10

10

∑
j=1

Φ−1(ut− j)Φ−1(vt− j)) (1)

where Λ = (1− e−x)(1 + e−x)−1 is the modified logistic transformation used to
maintain the correlation coefficient ρt belonging to (−1,1) at all times. For the t-
copula with the time-varying aspect, Φ−1(x) is replaced by t−1

ν (x).
The time-varying Clayton copula and the time-varying Gumbel copula also as-

sumed the tail dependence parameters to follow the ARMA(1,10) process. We pro-
pose that the time-varying Clayton and Gumbel copulas are as follows:

τt =Λ(ψ0 +ψ1τt−1 +ψ2
1

10

10

∑
j=1
|(1− ut− j)− (1− vt− j)|), (2)
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δt =Λ(ψ0 +ψ1δt−1 +ψ2
1

10

10

∑
j=1
|(1− ut− j)− (1− vt− j)|) (3)

where Λ = (1+ e−x)−1 is the logistic transformation to keep τt and δt within the
interval (0,1) at all times.

2.2 Marginal Models

The extreme value theory (EVT) models provide better estimations in extremely
volatile markets than the standard approach, which assumes normal distribution.
However, the data series applied in EVT should be independent and identically dis-
tributed (i.i.d.) random variables. To deal with these problems, integration is per-
formed of the EVT with the time series model, which develops into the conditional
extreme value theory (C-EVT), which is helpful in filtering the data.

(a) GARCH Application

To prepare a series of i.i.d. random variables, we propose the use of an ARMA(p,q)−
GJR−GARCH(1,1)model by following the method suggested by Glosten et al.[12]
to filter the returns series of the rubber prices. The model is defined as

rt = ω+
p

∑
i=1

φirt−1 +
q

∑
i=1

ψiεt−i + εt (4)

εt = Gt

√
ht and ht = α0 +

r

∑
i=1

αiε2
t−i +

q

∑
i=1

βiht−iγε2
t−iIt−i (5)

where It−i = 0 if εt−1 > 0 and It−i = 1 if εt−1 < 0. Also, α0 > 0,αi ≥ 0,βi ≥ 0 and
∑k

i=1αi+∑l
i=1βi < 1. Gt are the standardized residuals, which satisfies the student-t

distribution to compensate for the fat tails often associated with financial returns.

(b) Extreme Value Theory

The standardized residuals from the GARCH process, if we only estimate the em-
pirical CDF with a Gaussian kernel, do not catch price jumps caused by extreme
events. In our study, we apply EVT to the residuals of each series, which provides
better estimation for the tails of distribution than the Gaussian kernel. There are two
methods for the extreme value, which can be constructed by the block maxima or
the peaks-over-threshold (POT) method[13]. Therefore, we select the peaks-over-
threshold models because they model all the large observations which exceed a high
threshold and are more suitable for use for the data of the extreme outcomes.
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(c) Generalized Pareto Distribution

Let G(g1,g2, ...,gn) be a sequence of independent and identically distributed (iid)
random variables which represents the standardized residuals of the returns series.
The excess distributions F(g) that explain the probability of G exceeds a fixed
threshold u, which can be estimated using a generalized Pareto distribution (GPD)
fitted using the maximum likelihood method[14]. The tail estimator is defined by

F(ĝ) = 1− k
n

[
1+ ξ̂

g− u

β̂

]−1/ξ̂
, f or g > u (6)

where β and ξ are the scale parameter and the shape parameter, respectively, n
is the number of observation, and k is the number of observations exceeding the
threshold u. The value of shape parameter (ξ ) represents the tailed behavior of the
distributions. When ξ = 0, the distribution belongs to the Gumbel type, as with
normal, log normal, and exponential distributions. When ξ < 0, the distribution
belongs to the Weibull family, as with the beta and uniform distributions. And, when
ξ > 0, the distribution belongs to the heavy-tailed family, including the Pareto, log-
gamma, and t distributions.

2.3 Estimation and Testing

We estimate the parameters in two stages. In the first stage, the scale and sharp
parameters of the marginal distributions are estimated via maximum log-likelihood,
as follows:

θ̂i = argmax
N

∑
t=1

log fi(xi,t ,θi) (7)

The GPD (for the tail of the distribution) and the Gaussian kernel (for the interior of
the distribution) distributions are employed to construct the marginal distributions
ui and vi, which are used to estimate the copula parameters. In the second stage, the
parameters of the copula are estimated via maximum log-likelihood, as follows:

δ̂c = argmax
N

∑
t=1

logc(ûi,t , v̂i,t ,δc) (8)

The performances of the different copula models are important after fitting the cop-
ulas with the marginal distributions, and were evaluated as follows: (1) using the
Akaike Information Criterion (AIC) and the Bayesian Information Criteria (BIC)
in agreement with Brechmann[15] and Bhatti and Nguyen[16] to evaluate the good-
ness of fit.The copula model with the smallest AIC and/or BIC should be considered
as the best fit; and (2) using two tests based on the Kendalls transform to perform



An Analysis of Volatility and Dependence 437

the goodness of fit of the copulas, which calculate the Cramer-von Mises (CvM) and
Kolmogorov-Smirnov (K-S) statistics as well as the corresponding p-values using
bootstrapping[17].

3 Data

In our analysis, we focused on the ribbed smoked sheet no.3 (RSS3) by using the
daily closing prices of the spot and futures returns from the period 1 June 2004 to 14
September 2012, making a total of 2,164 observations. For the spot data set, we used
the averages of the FOB Bangkok and FOB Songkla prices (FOB) as a proxy for
the daily spot prices, whereas the futures data set comprised the four daily futures
prices from different futures markets including the Agricultural Futures Exchange
of Thailand (AFET ), Singapore Commodity Exchange and Agriculture Futures Ex-
change (SICOM), Tokyo Commodity Exchange (TOCOM) and, Shanghai Futures
Exchange (SHFE). Almost all of the data were obtained from DataStream, except
AFET which was collected from the website of the Agricultural Futures Exchange
of Thailand. The daily prices were calculated as returns of market i at time t, as
follows ri,t = log(Pi,t+1)− log(Pi,t) wh ere Pi,t and Pi,t+1 are the closing prices of
spot or futures for days t and t + 1, respectively.

Table 1 Descriptive Statistics of Returns

FOB AFET SICOM TOCOM SHFE

Mean 0.0002 0.0003 0.0004 0.0002 0.0002
Min. -0.0825 -0.0859 -0.1340 -0.2573 -0.1448
Max. 0.0464 0.0680 0.1086 0.1058 0.0849

Std. Dev. 0.0115 0.0157 0.0170 0.0220 0.0156
Skew. -0.9468 -0.4142 -0.6086 -1.1466 -1.0319
Kurt. 10.6150 6.7141 10.7314 14.2414 11.6586

JB stat. 0.0010 0.0010 0.0010 0.0010 0.0010

The descriptive summaries of the spot and futures returns are demonstrated in
Table1. The sample means of all the daily returns series are lower relative to their
standard deviations, and the standard deviations range from 0.012 to 0.022, showing
relatively weak volatility in all the data series. The negative skewness in all the
returns series reveals that the distributions have long tails to the left. As regards
the excess kurtosis statistics, the data show that all the returns series are highly
leptokurtic with respect to the normal distribution. Furthermore, the Jarque-Bera
test results strongly reject the null hypothesis of the normality in all the returns
series, and that is the reason for the inappropriateness in using multivariate normal
distribution to explain financial data.
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4 Empirical Results

4.1 Results for Marginal Models

In order to deal with the stochastic volatility and fat-tailed behavior of the condi-
tional returns distribution, we used the C-EVT which was suggested by McNeil and
Frey[18] and Fernandez[19]. Therefore, we employed the ARMA-GJR-GARCH
to model for volatility, in which the TOCOM and SHFE returns series are fitted
with the ARMA(4,2)-GJR-GARCH(1,1), whereas the AFET, FOB, and SICOM
returns series are fitted with the ARMA(2,1)-GJR-GARCH(1,1), the ARMA(4,3)-
GJR-GARCH(1,1), and the ARMA(4,1)-GJR-GARCH(1,1), respectively. Then, the
GPD is used to estimate the tails of the distributions in each returns series.

Table 2 Estimated Tails from GPD

FOB AFET SICOM TOCOM SHFE

Upper tail
ξ 0.1027 -0.0561 -0.0543 -0.1726 0.0275

(0.0696) (0.0112) (0.0085) (0.0599) (0.0061)
β 0.7074 0.6874 0.6353 0.5811 0.5974

(0.0696) (0.0051) (0.0066) (0.0492) (0.0153)

Lower tail
ξ 0.0322 -0.1004 0.0323 0.0778 0.2003

(0.0930) (0.0109) (0.0304) (0.0573) (0.0744)
β 0.7954 0.7881 0.7070 0.6381 0.5771

(0.1104) (0.0698) (0.0411) (0.0567) (0.0523)

Note: The numbers in the parentheses are the standard errors.

Table2 summarizes the EVT estimations of the tails from the GPD of each returns
series. Of the upper tails, the negative shape parameters (ξ ) of the futures returns
in AFET, SICOM, and TOCOM are significant, which reveals that the upper tails
are finite. In contrast, the shape parameters of the upper tail of the returns distribu-
tions in FOB and SHFE are statistically significantly fat-tailed. Of the lower tails,
the TOCOM and SHFE have significant fat tails on the left side of the returns dis-
tribution, while AFET has significant finite tails, but the shapes of the lower tail of
the returns distributions in FOB and SICOM are not significant. The correct specifi-
cations of the marginal distributions are necessary in the joint copula models. If the
marginal distributions are correctly specified, then the probability transformations
will be i.i.d. uniform (0,1)[20], and hence the copula model will also be correctly
specified. In accordance with the technique promulgated by Patton[11], we used the
Lagrange Multiplier (LM) test for serial in dependence of the probability transforms
and the Kolmogorov-Smirnov (K-S) test for uniform (0,1) to test the specification
of the marginal distribution assumption. First, the LM independence tests are used
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Table 3 Goodness-of-fit Test for Marginal Distributions

FOB AFET SICOM TOCOM SHFE

LM test
first moment 0.16 0.11 0.40 0.87 0.24
second moment 0.13 0.20 0.31 0.64 0.19
third moment 0.20 0.12 0.02 0.77 0.26
fourth moment 0.77 0.12 0.31 0.59 0.33

K-S test 0.75 0.07 0.73 0.30 0.40

Note: The table presents p-values from the LM tests and K-S tests, respectively.

to explain the independence of the first four moments of the variables ut and vt . For
this, we regress (ût − ūt)

k and (v̂t − v̄t)
k on 20 lags of both variables for k=1, 2, 3,

4. The LM test statistic (T − 20)R2 for each regression follows the asymptotic χ2
20

distributions under the null hypothesis, no se rial correlation. Table3 summarizes
all the marginal distribution models that could not reject the null hypothesis of no
serial correlation at the 5% significance level for all series. Second, we employed
the K-S tests to test the null hypothesis that ût and v̂t are uniform (0,1) according to
the specifications of the marginal assumptions, and also that the p-values from the
K-S tests, given in Table3, present the fact that all the marginal distribution series
can pass at the 5% significance level. The results provide significant evidence that
the marginal distribution models are correctly specified. Therefore, it is evident that
the copula model can correctly measure the dependence structures of two returns
series.

4.2 Results for Copula Models

Table4 presents a report of the parameter estimates for the constant dependence
copulas. For all pairs, the parameter dependences of the Gaussian and t-copulas are
positive and strongly significant. The correlation coefficient, ρ , of the Gaussian and
t-copulas range from 0.262 to 0.366 for the pairs of FOB-SICOM, FOB-SHFE, and
FOB-TOCOM, whereas the correlation coefficient of FOB-AFET is close to 0.08.
This means that the spot returns are positive and generally strong in relation with the
futures returns, except for the interdependence between FOB and AFET, which is
relatively low. The degrees of freedom of the t-copula range from 10.96 t0 28.031,
indicating intermediate extreme co-movements and tail dependence in each pair. In
fact, all the tail dependence values of the t-copula were relatively low, and the tail
dependence values between FOB and AFET, FOB and SICOM, FOB and TOCOM,
and FOB and SHFE were 0.0002, 0.0022, 0.0324, and 0.0249, respectively.

In considering asymmetric tail dependence, the parameter estimates for (rotated)
Clayton, (rotated) Gumbel, and (rotated) Joe are positively significant. This shows
that the dependence between the spot returns and the futures returns vary during
the different states of an economy. The Clayton, rotated Gumbel, and rotated Joe
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Table 4 Static Copula Estimates of Spot PriceFutures Prices

N t C G J RC RG RJ

AFET ρ 0.083 0.078 0.101 1.039 1.042 0.064 1.054 1.073
(0.021) (0.022) (0.025) (0.013) (0.018) (0.024) (0.013) (0.019)

ν 28.030
(19.346)

λL 0.0002 0.001 0.069 0.092
λU 0.0002 0.052 0.055 0.0001

AIC -12.189 -12.436 -17.164 -7.997 -4.114 -5.659 -20.131 -19.904
BIC -6.511 -1.080 -11.485 -2.319 1.563 0.018 -14.452 -19.904

SICOM ρ 0.262 0.265 0.294 1.173 1.201 0.281 1.178 1.217
(0.019) ( 0.021) (0.031) (0.018) (0.026) (0.031) (0.018) ( 0.027)

ν 19.885
(9.0375)

λL 0.002 0.095 0.199 0.233
λU 0.002 0.195 0.219 0.084

AIC -143.134 -146.664 -112.302 -120.978 -80.545 -100.499 -125.956 -90.024
BIC -137.456 -137.656 -137.456 -115.301 -74.868 -94.821 -120.278 -84.347

TOCOM ρ 0.362 0.366 0.437 1.277 1.339 0.440 1.277 1.339
(0.018) (0.019) (0.033) (0.021) (0.031) (0.033) (0.021) (0.031)

ν 11.485
(3.036)

λL 0.032 0.205 0.278 0.322
λU 0.032 0.279 0.322 0.207

AIC -283.858 -300.627 -217.726 -261.625 -189.415 -218.587 -259.243 -186.523
BIC -278.181 -289.272 -212.049 -255.948 -183.737 -212.910 -253.566 -180.846

SHFE ρ 0.283 0.292 0.344 1.198 1.229 0.310 1.210 1.264
(0.019) (0.021) (0.032) (0.019) (0.027) (0.032) (0.019) (0.028)

ν 10.969
(2.941)

λL 0.025 0.133 0.227 0.270
λU 0.025 0.217 0.242 0.107

AIC -169.136 -183.556 -142.212 -151.429 -101.349 -118.790 -168.947 -128.4962
BIC -163.459 -172.201 -136.534 -145.752 -95.672 -113.112 -163.269 -122.818

Note: Note: The numbers in the parentheses are the standard errors. λL and λU present
the lower and upper tail dependence values. N = “Gaussian”, C = “Clayton”, RC =“Ro-
tated Clayton”, G = “Gumbel”, RG = “Rotated Gumbel”and J = “Rotated Joe”, RJ =
“Rotated Joe”

copulas represent the lower tail dependence. In contrast, in the rotated Clayton,
Gumbel, and Joe copulas, the upper tail dependence is represented. In general, the
lower tail dependence and the upper tail dependence in each pair are likely to be
the same, signifying that there is a high possibility of the values of spot price and
futures prices crashing (booming) together at the same time.
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However, the AIC and the BIC demonstrated that the rotated Gumbel displayed
the best performance among the static copulas for the pair of FOB and AFET,
whereas the t-copula is best suited for the pairs of FOB and SICOM, and TOCOM
and SHFE, respectively. Table5 presents the goodness of fit of the copula models
according to the Kendalls transform process[17]. The results also showed that the
rotated Gumbel copula is acceptable for the pair of FOB and AFET, while the t-
copula is acceptable for the pairs of FOB and SICOM, and TOCOM and SHFE. As
a result, we could not reject the null hypothesis that the rotated Gumbel copula and
the t-copula are the suitable ones among the constant copula models.

Finally, the time-varying copula, as reported in Table6, reveals that the time-
varying rotated Gumbel copula can improve the performance of all the other copula
specifications for the pair of FOB and AFET. Likewise, the time-varying t-copula
would be able to improve the performance of all the other copula specifications for
the pairs of FOB and SICOM, and TOCOM and SHFE, which are consistent with
the AIC and the BIC, respectively.

Consequently, the results from our analysis can be concluded as follows:
(1) The dependence of the spotfutures prices is generally strong, except for the

dependence parameters between FOB and AFET, which are relatively low, which
implies that the efficient market hypothesis could not be accepted. This finding is
associated with the fact that the AFET market had low liquidity and low total trading
volume besides having to deal with high policy intervention in the rubber market by
the Thailand government[6, 8, 21]. However, our empirical results show that FOB
co-moves with SICOM, TOCOM, and SHFE. This indicates that the spot rubber
price in Thailand is dominated by the futures prices of the SICOM, TOCOM, and
SHFE markets.

(2) In the dependence structure between the spot prices and the futures prices,
there exists extreme dependence for the pairs of FOB-SICOM, FOB-TOCOM, and

Table 5 Goodness of Fit of Cramer-von Mises and K-S Statistics

AFET SICOM TOCOM SHFE

CvM KS CvM KS CvM KS CvM KS

Gaussian 0.07 0.07 0.60 0.60 1.00 1.00 0.80 0.60
Clayton 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00
Gumbel 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Joe 0.60 0.30 1.00 1.00 1.00 1.00 1.00 1.00
Rotated
Clayton

0.30 0.30 0.00 0.00 0.00 0.00 0.00 0.00

Rotated
Gumbel

0.07 0.05 0.00 0.00 0.00 0.10 0.10 0.10

Rotated Joe 0.70 0.70 1.00 1.00 1.00 1.00 1.00 1.00
t 0.30 0.50 0.50 0.70 1.00 1.00 0.80 0.70

Note: This table shows the p-values of the Cramer-von Mises and K-S statistics.
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Table 6 Copula-Time Varying Estimates of Spot PriceFutures Prices

N t RC RG

AFET ψ0 0.220 0.212 -3.623 -1.271
(0.004) (0.005) (0.012) (0.009)

ψ1 -0.116 -0.123 -1.627 1.467
(0.004) (0.003) (0.006) (0.008)

ψ2 -0.514 -0.542 -0.297 -0.144
(0.046) (0.038) (0.003) (0.003)

AIC -14.659 -17.009 -9.039 -23.807
BIC -14.651 -17.001 -9.031 -23.800

SICOM ψ0 1.108 1.127 0.048 1.930
(0.001) (0.001) (0.000) (0.002)

ψ1 -0.262 -0.249 -0.842 -1.082
(0.001) (0.003) (0.002) (0.011)

ψ2 -1.878 -1.897 0.889 -0.842
(0.002) (0.002) (0.000) (0.006)

AIC -147.235 -152.921 -114.085 -131.551
BIC -147.227 -152.913 -114.077 -131.543

TOCOM ψ0 0.409 0.288 0.052 0.502
(0.002) (0.001) (0.023) (0.007)

ψ1 0.256 0.163 -0.289 0.222
(0.005) (0.002) (0.137) (0.005)

ψ2 0.739 1.141 0.982 -1.032
(0.007) (0.001) (0.010) (0.006)

AIC -289.126 -307.965 -265.157 -279.806
BIC -272.091 -290.930 -265.149 -262.771

SHFE ψ0 0.005 0.007 0.024 -0.392
(0.000) (0.000) (0.000) (0.003)

ψ1 0.058 0.049 -0.462 0.762
(0.000) (0.000) (0.001) (0.002)

ψ2 1.995 1.995 0.936 -0.277
(0.001) (0.001) (0.000) (0.003)

AIC -182.476 -195.703 -123.335 -174.343
BIC -165.441 -178.668 -123.327 -157.308

Note: The numbers in the parentheses are the standard errors. N =
“Gaussian”, RC =“Rotated Clayton”,RG = “Rotated Gumbel”

FOB-SHFE, and the best-fitting dependence model is the time-varying t-copula.
However, the tail dependence for all the pairs is generally weak. This evidence
reflects the fact that the futures prices are weak in explaining the changes in the
spot prices under extreme situations. According to the discussion given in Garcia
et al.[22], the grain futures markets fail to explain the convergence of the spot and
futures prices due to the fact that the futures prices at expiration are up to 35% above
the cash grain price.
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5 Conclusion

In this study, we examined the co-movement between the cash rubber market and the
futures markets, including Agricultural Futures Exchange of Thailand (AFET ), Sin-
gapore Commodity Exchange and Agriculture Futures Exchange(SICOM), Tokyo
Commodity Exchange (TOCOM), and Shanghai Futures Exchange (SHFE) by us-
ing copula-EVT models with time invariant and time varying. In order to choose
the correct specification copula function, we used C-EVT, that is, GPD, to model
the tails of the marginal distributions because the GPDs are appropriate in being
able to explain the tail behaviors of financial data. The results revealed that the
interdependence between the spot rubber price and the futures price of the AFET
market is relatively low, indicating that we could not accept the efficient market hy-
pothesis. However, we found symmetric tail dependence between the spot rubber
price and the futures prices of the SICOM, TOCOM, and SHFE markets, res pec-
tively. This means that the cash rubber price is dominated by the futures prices of
the SICOM, TOCOM, and SHFE markets. The best-fitting dependence models are
the time-varying t-copulas, but the tail dependence for all the pairs is relatively low.
This means that the futures prices are weak in being able to explain the change in the
spot prices under extreme events; also, the dependence parameters are very volatile
over time and deviate from their constant levels.

The important implication from these results is the need of a good price transmis-
sion system in which the futures market has to be closely related to the fundamentals
and be good indicators for the spot market. Therefore, the government should con-
sider the policy of promoting the market efficiency of the Agricultural Futures Ex-
change of Thailand and reduce policy intervention in the rubber market which could
be unfavorable to market development. Hedgers and investors can benefit from this
information by hedging in the futures market. However, they should be aware in the
case of an extreme event of the fact that futures prices are weak in explaining the
reason for the changes in the spot prices.
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Effect of Markets Temperature on Stock-Price:
Monte Carlo Simulation on Spin Model

Arjaree Thongon, Songsak Sriboonchitta, and Yongyut Laosiritaworn

Abstract. In this study, we used the Monte Carlo simulations to investigate the phe-
nomena in the stock-price market which we considered as a function of temperature
and external field which reflect the effects of the environment (e.g., access to exter-
nal information). The Monte Carlo simulation was used to simulate the Ising model
with heat-bath algorithm. The results show that the average orientation of the agents
varies with the external field at constant temperature. In other words, the agents al-
ways buy when they get good news. And at high temperature, with constant positive
external field, the average orientation of the agents is decreased to near zero.

1 Introduction

Bubbles and crashes always take place in the stock market. When they occur, they
impact the economy in a tremendous manner. So, their in-depth study is extremely
important. There are many models that are used to explain these phenomena. For
example, the random matrix theory (RMT) [1],[2] finds application in finance. The
RMT which is a matrix-valued random variable has recently been applied to noise
filtering in financial time series. The advantage of the RMT method is that it elim-
inates random properties from the financial time series. But the value of the eigen-
value in this method increases in proportion to the number of stocks. So, the RMT
method is difficult to use in cases where there are large amounts of stocks. Another
method is the minimum spanning tree (MST) method [3]. This method constructs
the asset tree using the correlations between the stock prices [4]. It is very difficult
to form links between the various stocks.
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So, a simple spin model such as the Ising model is widely used to study stock
markets for explaining the bubbles and crashes that occur in them. To improve this
model, the interacting-agent model is used. The interacting-agent model, motivated
by the dynamic of traders in a market, has two main influences: The first is the
strength of others trading on the interested trader, and the second is the strength of
the reaction of the interested trader. There are many methods to solve using model.
One example would be the use of mean field approximation which is a deterministic
algorithm. From this method, some parameters that can describe phase transition
(Bull phase to Bear phase, or Bear phase to Bull phase) can be calculated [5]. After
that, more parameters would be added into the term, the strength of the other trader,
such as fluctuating interaction network and fluctuating environment, to improve the
model [6]. But the results are not effective because this method works only for a
stable state. So, to describe phase transition, Monte Carlo simulation, which is a
stochastics algorithm, is used. In this model, the probability for updating agents
or spins can be measured by using the heat-bath dynamics [7]. Like in the mean
field approximation, the first interacting-agent model has two main influences. The
result from this method is compared to the real result from the Dow Jones daily
changes. It is found that this method closely corresponds to the trading volume in
the stock market [8]. Thereafter, to improve this method, more parameters, as done
in the previous method, are added [9]. But the actual behavior of the investors is not
limited to just buying and selling. Many investors choose to wait and watch at the
stock market without making a purchase or a sale. Hence, the state that describes
this situation is added in the value of 0 [10]. From the above simulation, it was found
that the prices of assets could be predicted. If the demand is high (average spin is
more than 0), the assets will be more expensive. On the other hand, if the supply is
high (average spin is less than 0), the assets will be cheaper.

In the previous works, the temperature and the external field were considered
constant in each step of time. But in reality, the money in the stock market does not
remain constant. The investors often invest in markets that have better returns. This
means that the temperature in the stock markets is not constant either. So, in this
work, we will improve the model by changing the temperature in each step of time.
And, in future work, we will change the external field in each step of time.

2 Ising Model

The Ising model is a mathematical model that is commonly used in ferromagnetism
in statistical mechanics. The model consists of discrete variables that represent the
magnetic dipole moments of atomic spins which can be in one of the two states
(spin up or spin down). In the study of stock market, the spin is used to describe the
investments behaviors: +1 when the agent is buying and -1 when the agent is selling.

In physics, the factor energy is used to find the probability of the changing state
of the spin. For this model, the energy can be found from the Hamiltonian function

H =− ∑
<i j>

Ji jσiσ j−∑
i

hiσi
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Fig. 1 The alignment of the spins of the two-dimensional square lattice as an Ising model.
The spin up is configured as +1 and the spin down is configured as -1.

where the first sum is over pairs of spins (every pair is counted once). Ji j is the
exchange interaction between sites i and j, and σ is the spin. The second term is for
the external field. This can also be written as

H =−∑
i

Iiσi

where Ii = ∑ j Ji jσ j + hi is the local field.
So, in this work, we used the local field to find the probability of changing the

orientation of the agent (σ ) in the Monte Carlo simulation.

3 Monte Carlo Simulation

In this work, the orientation of the agent i(σ i) at time t+1 depends on the local field
[11]

Ii (t) =
1
z

N

∑
j=1

Ai jσ j (t)+ hi

where z is the mean coordination number (the mean number of the non-zero connec-
tions between the agents), Ai j is the interaction strengths per agent, or the influence
from the others, and hi stands for the external fields reflecting the effect of the en-
vironment (e.g., access to external information). In the general situation, the values
of Ai j and hi(t) are not static. But in this work, we assume that Ai j is constant and
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equal to 1. It’s mean that the influence from the others is equal. And hi in the general
situation should be a function of some parameters such as time, volume etc. which
we will evaluate the relationship of function with other parameters in next work. So,
in this work, we will assume hi is constant.

The configuration probability which is used in the decision of the agent is given
by the heat-bath algorithm with inverse temperature (β = 1/T):

probability(p) =
1

{1+ exp[−2β Ii (t)]}
For updating the orientations,

σi (t + 1) =

{
1 with probability p
−1 with probability 1− p

This section shows all the parameters that affect the decisions of investors. The
parameter which we were interested in this work is the temperature which is de-
scribed in the next section.

4 Temperature

For finding the temperature of the stock-price market, we consider the Boltzmann-
Gibbs distribution [12]

P(m) =Ce−m/T

where m is money and T is temperature. To find the equation between C and T, the
normalization conditions are used.

∫ ∞

0
P(m)dm = 1 and

∫ ∞

0
mP(m)dm = M/N

where M is the total money (assume that M become form the total money of this
situation) and N stands for the total agents. By solving the normalization conditions,
we find that

C = 1/T and T = M/N

The price [13] of an asset can be found out as

Pr(tn) = Pr(tn−1)eS(tn−1)

where Pr(t)is price, t is time, n is a time index, and S(t) is the average orientation of
the agents:

S (tn) =
1
N

N

∑
i=1

σi (tn)

The total money in this model will be calculated from the total number of suc-
cessful trade which come from the number of buyers and sellers match fit and the
price at that time.



Effect of Markets Temperature on Stock-Price 449

T (tn) ∝
((

N− (N×|S (tn−1)|)
2

)
×Pr(tn−1)

)
/N

Or T (tn) ∝
(

1−|S(tn−1)|
2

)
×Pr(tn−1)

The term
(

N−(N×|S(tn−1)|)
2

)
is the number of successful trade.

5 Result and Discussion

In this work, the orientation of the agent, or the total number of agents (N), is 10,000,
the interaction strength per agent is constant (Ai j = A = 1), and the time-unit is
defined in terms of Monte Carlo step (mcs) which is widely used in Monte Carlo
Simulation. In each step of time, all agents will determine to buy or sell based on
probability in each step. From the simulations, the effect of the temperature on the
average orientation of the agents at a fixed external field has been revealed. As can
be seen in Figure 2, the average orientation of the agents shows a decrease, and the
error bar shows an increase when the temperature is high. This result is relative to
probability. When the local field is positive and the temperature is very close to zero,
the probability will be very close to 1. Also, when the temperature is very high, the
probability will be 1/2. So, when the temperatures rise, the orientation of the agents
shows the tendency to fluctuate more.

Fig. 2 The average orientation of the agents as a function of temperature (T) at fixed external
field (h) = 0.01
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On considering the effect of the external field only, Figure 3 shows that the aver-
age orientation of the agents varies with the external field, and also that it is a linear
function. This result implies that the external field influences the investor behavior
— or, in other words, that the investors will buy if there is good news but they will
sell if there is bad news.

Fig. 3 The average orientation of the agents as a function of the external field (h) at fixed
temperature (T) = 1

As for the effect of changing the temperature in each step of time, as illustrated in
Figure 4, although the external field is positive, the average orientation of the agents
is both positive and negative. This is due to the higher temperature, or price (see
Figure 5 and Figure 6). When the temperature is very high, the average orientation
of the agents is allowed to be negative so that the local field will become negative
too. When the local field is negative, the probability of the low temperature will be
of opposite value. It will be very close to 0. In such a situation, the price may be
reduced so that the temperature will get reduced too.

This paper presents the spin model that was used to simulate the stock market.
The study evaluates the temperature via the Monte Carlo simulation. The results
show the effect of temperature on the investments behavior. Furthermore, we found
that the external field, too, has an effect on the investments behavior. So, in the work
done in future, we will change the external field in each step of time. In addition,
we will enable the parameters used in this work to represent the real parameters and
compare the results from this model to the real data in the stock market.
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Fig. 4 The average orientation of the agents as a function of time at fixed external field (h) =
0.01 and initial temperature (T0) =1

Fig. 5 The temperature as a function of time



452 A. Thongon, S. Sriboonchitta, and Y. Laosiritaworn

Fig. 6 Price at fixed external field (h) = 0.01 and initial temperature (T0) =1
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An Analysis of Relationship between Gold Price
and U.S. Dollar Index by Using Bivariate
Extreme Value Copulas

Mutita Kaewkheaw, Pisit Leeahtam, and Chukiat Chaiboosri

Abstract. In this study, we analyse the behaviour of the gold price and U.S. dollar
index by using bivariate extreme value and extreme value copulas. For measuring
the dependence structure between the returns on gold price and U.S. dollar index,
the paper uses the extreme value copula theory. This study presents the result that
the returns on gold price and the U.S. dollar index are independence in the extreme.

1 Introduction

There are many methods to estimate co-movement of two variables. The copula
analysis is one important technique used in dependence study. Of late, the copula
method has been finding application in various fields in the study of correlation. The
copula method can define and examine the dependence structure between two vari-
ables more than the classical dependence measures, such as linear correlation, with
their limitations. As for analysing non-linear dependence, the copula can measure
dependence for heavy-tail distributions and is flexible in the cases of parametric,
semi-parametric, or non-parametric models. The study about the asymptotic proper-
ties of the dependence structures is conducted using the copula method (Lei, 2009).
Moreover, the most general margin-free description of the dependence structure of
a multivariate distribution can use the copula approach (Segers, 2005). The major
benefit of using the copula method is avoidance of the impact of the marginal from
the structure when used in the joint probability distribution (Chinnakum et al, 2013).
In the case of extreme events, multivariate distribution - which the copulas can adapt
themselves to - was employed to measure the parameter dependence. Extreme value
theory (EVT) is a branch of statistics which deals with extreme deviations from the
mean of the probability distribution (Lu et al, 2008). The EVT explains the analysis
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and modeling of the extreme maxima and minima observation (Chuangchid et al,
2012). However, there are many distribution functions, and the bivariate extreme
value distribution can handle the problem via multivariate extension (Rakonzai and
Tajvidi, 2010). Many of the latest research papers have presented the topic of ex-
treme value copulas. Lu, Tien, and Zhang (2008) analyzed the risk of the foreign ex-
change data dependence by using the extreme value copulas. They found that three
members of the copula family could be applied to measure the joint tail risk and tail
dependence for the data. Chuangchid et al (2012) arrived at the conclusions about
the dependence measure of palm oil price from the futures prices of Malaysia, Sin-
gapore, and Dalian commodities using the extreme value copula, especially by using
the generalized extreme value as well as the extreme value copulas of HuslerRiess
and Gumble for estimation. The result shows that the extreme value copulas can ex-
plain the dependence structure for palm oil futures prices. Chinnakum et al (2013)
focused on the effect of the economic output in the developed countries. They tested
the panel data that have determinants of economic output in 22 developed countries.
First, they applied the maximum likelihood method and the method from Heckman
(1979) so that the assumption is a multivariate normal distribution. However, the
result showed that the copula approach, especially the Archimedean copula, fitted
the sample selection model and was successful in the identification of the significant
factors affecting the economic output. Sriboonchitta et al (2013) focused on estimat-
ing the dependency between the percentage changes of the agricultural prices and
the production indices of Thailand, and their conditional volatilities using copula-
based GARCH models. The results showed that the skewed-t distributions were
appropriate in marginal density for the growth rates of the agricultural production
and the price indices. The time-varying rotated Joe copula was the best among the
various copula candidates. Liu and Sriboonchitta (2013) found that the time-varying
Gaussian copula has the highest explanatory power of all the dependence structures
to estimate the dependency between the growth rates of tourist arrivals in Thailand
and Singapore from China, as well as to estimate the conditional volatilities.

For centuries, investors have been found to protect their capital by investing in
assets that offer safer stores of value (World Gold Council, 2008). Gold is an im-
portant asset that provides stability to international money markets and international
currency reserves (Chang et al, 2013). The World Gold Council has published the
gold demand trends of the first quarter of 2013 (Q1). The gold demand trends of
the first quarter show strong inclination toward demand for gold jewelry, bars, and
coins, but the overall demand showed a decrease as compared to the first quarter of
2012. Also, the price of gold in most currencies weakened in Q1. However, gold
prices in Q1 of 2013 were higher than Q1 of 2012 which offered the rise in demand
was not only gold price-driven. Moreover, a lot of investment requires the efficiency
exchange currencies that cannot accept the U.S dollar is the one important selec-
tion of investor. Additionally, the prices of gold are determined in U.S. dollars and
influenced by changes in the exchange rate of the U.S. dollar (Wang, 2012). The
alternative tool such as dollar index is a significant tool that can tell the direction of
investment or investment flow (Investor Chart Co., Ltd., 2010). The U.S. Dollar In-
dex (USDX) is a geometrically-averaged calculation of major currencies weighted
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against the U.S. dollar. The USDX was created by the U.S. Federal Reserve in 1973.
Following the ending of the 1944 Bretton Woods agreement, which had established
a system of fixed exchange rates, the U.S. Federal Reserve Bank began calculation
of the U.S. Dollar Index to provide an external bilateral trade-weighted average of
the U.S. dollar as it freely floated against global currencies. USDX is calculated
by six currencies weight namely; Euro (EUR) 57.6%, Japanese yen (JPY) 13.6%,
Pound sterling (GBP) 11.9%, Canadian dollar (CAD) 9.1%, Swedish krona (SEK)
4.2% and Swiss franc (CHF) 3.6%. All weight rate of USDX is Euro has most af-
fect the dollar because weight is 57.6%, and followed by the Japanese yen and the
pound respectively (Intercontinental Exchange Inc, 2012). The paper focuses on the
tail behavior of gold and USDX also, dependence structure between them by using
the bivariate extreme values copulas.

The components of this paper are organized as follow. Section 2 presents bivariate
extreme value distribution (BEVD) with bivariate block maxima model. Section 3
reviews the concept of copulas and extreme value copulas. Section 4 explains the
data uses in the empirical analysis. Section 5 discusses the results and last section is
conclusion.

2 Bivariate Extreme Value

The Extreme Value Theory (EVT) is an approach used for modelling and measuring
extreme events which occur with a very small probability (Alves & Neves, 2010).
There are two approaches to find the extremes in data. The first is Block Maxima
(BM) and the second is Peaks-Over Threshold (POT). BM and POT are the statisti-
cal analyses of maxima or minima, and exceeds over a higher or a lower threshold
(Lai and Wu, 2007). This paper uses bivariate BM models to examine the relation-
ship between the gold prices and the U.S. dollar index.

2.1 Bivariate Block Maxima

The bivariate block maxima model involves both parametric and non-parametric
cases. The study chooses the parametric models that can summarize the bivariate
BM, as follows:

Let (X, Y) denote a bivariate random vector representing the component-wise
maxima of an i.i.d. sequence over a given period of time. Under the appropriate
conditions, the distribution of (X, Y) can be approximated by a bivariate extreme
value distribution (BEVD) with the cumulative distribution function (cdf) G. The
BEVD does the examination using its two univariate margins G1 and G2, which are
necessarily EVD, and also by using its Pickands dependence function A (Rakonczai
and Tajvidi, 2010).

G(x1,x2) = exp

{
log(G1(x1)G2(x2))A(

log(G2(x2))

log(G1(x1)G2(x2))
)

}
(1)
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Under these provisions, A(t) is responsible for capturing the dependence struc-
ture between the margins. A is the Pickands dependence function which is con-
vex and is inside the triangle that is plotted from the points (0, 1), (1, 1), (1/2,
1/2) tying upper left and right corners. In addition, A(t) has three properties: 1)
A(t) is convex, 2) max{(1− t), t} ≤ A(t) ≤ t, and 3) A(0) = A(1) = 1. In the sec-
ond property of A, the lower bound corresponds to complete dependence G(x,y) =
min{G1(x),G2(y)} , whereas the upper bound corresponds to (complete) indepen-
dence G(x,y) = {G1(x),G2(y)}.

For the bivariate block maxima model, this paper identified one parametric model
that has minimum Akaike Information Criterion (AIC) from a total of nine models
(Chuangchid et al, 2012). So, the paper concentrated on the bivariate negative logis-
tic distribution function of A(t) with parameter dependence = r, which is

G(x,y) = exp{−x− y+[x−r+ y−r]−1/r} (2)

where r > 0. Upon the implementation of this, independence is obtained in the
limit as r closes to zero. Complete dependence is obtained when r tends to infinity.

The estimation Parameter of the bivariate block maxima applied generalized ex-
treme value (GEV) distribution (Chuangchid et al, 2012):

Let Zi(i = 1, . . . ,n) denote maximum observation in each block. Zn is normal-
ized to obtain a non-degenerated limiting distribution. The bivariate block maxima
distribution associate with the use of GEV distribution with cdf:

H(z) = exp

{
−

[
1+ ξ

(
z− μ
σ

)]−1/ξ
}

(3)

where μ ,σ and ξ are location, scale and shape parameter respectively. Note that
,¿0. The generalized extreme value has 3 types depending on ξ (shape parameter);
ξ = 0 is Gumbel or double-exponential distribution, ξ > 0 is Frchet distribution,
ξ < 0 is Fisher-Tippet or Weibull distribution. Under the assumption: Z1, . . . ,Zn are
independent variables having the GEV distribution, the log-likelihood for the GEV
parameters when ξ �= 0 is given by:

l(ξ ,μ ,σ) =−n logσ
n

∑
i=1

log

[
1+ ξ

(
Zi− μ
σ

)]
−

n

∑
i=1

[
1+ ξ

(
Zi− μ
σ

)]−1/ξ
(4)

and 1+ξ
(

Zi−μ
σ

)
> 0 for i = 1, . . . ,n. The case ξ = 0 requires separate treatment

using the Gumbel limit of the GEV distribution. The log-likelihood in that case is;

l(μ ,σ) =−n logσ −
n

∑
i=1

(
Zi− μ
σ

)
−

n

∑
i=1

exp

[
−

(
Zi− μ
σ

)]
(5)

The maximization of this equation with respect to the parameter vector (ξ ,μ ,σ)
leads to the maximum likelihood estimate with respect to the entire GEV family.
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3 Copulas and Extreme Value Copulas

The copula approach was introduced by Sklar (1959), and it involves an
n-dimensional distribution into two parts: the marginal distribution functions and
the copulas (Ruschendorf, 2013). This study uses the extreme value distribution for
the extreme value copulas. When determining the bivariate case, let (U,V) be a pair
of random variables, and let both U and V be uniformly distributed on the inter-
val [0,1]. Then the joint distribution function of (U,V) (Segers, 2005) would be as
follows:

C(u,v) = Pr [U ≤ u,V ≤ v] (6)

Then, let (X, Y) be the stochastic behaviour of the two random variables, with
the joint distribution function (Chuangchid et al, 2012)

H(x,y) = Pr [X ≤ x,Y ≤ y] (7)

and marginal distribution functions

F(x) = P(X ≤ x)and G(y) = P(Y ≤ y) (8)

Since F(x) and G(y) are uniformly distributed between 0 and 1, the joint distri-
bution function C on [0,1]2 for all (x.y) ∈ R2 is such that

H(x,y) =C(F(x),G(y)) (9)

where C is called the copula related with X and Y which couples the joint distribu-
tion H with its margins. Set equation (8) is equalled to H(F−1(u),G−1(v)) =C(u,v)
on account of the Sklars theorem, where u = F(x) and v = G(y) are the marginal dis-
tributions of X, Y. The implication of the Sklars theorem is after standardizing the
effects of the margins, and the dependence between X and Y is fully explained by
the copula. This paper combines the copula construction with the extreme value the-
ory. The extreme value copula family is used to represent the Multivariate Extreme
Value Distribution (MEVD). Consider a bivariate sample (Xi,Yi), i = 1, . . . ,n. De-
note component-wise maxima by Mn = max(X1, . . . ,Xn) and Nn = max(Y1, . . . ,Yn).
The object of interest is the vector of the component-wise block maxima: Mc =
(Mn,Nn) The bivariate extreme distribution H can be connected by an extreme value
copula (EV copula) C0 :

H(x,y) =C0(F(x;μ1,σ1,ξ1),G(y;μ2,σ2,ξ2)) (10)

where μi,σi,ξi are the location, scale and shape parameters of the gold price
return and USDX return. F(x) and G(y) are the BEV margins. By Sklars theorem,
the unique copula C0 of H is given by

C0(u
t ,vt) =Ct

0(u,v), t > 0 (11)
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where ut is marginal of x and vt is marginal of y There are many families that
belong to the extreme value copula. The copula HuslerReiss is applied in this paper.

HuslerReiss copula is given as

C(u,v) = exp

{
−ũΦ

(
1
r
+

1
2

r ln

(
ũ
ṽ

))
− ṽΦ

(
1
r
+

1
2

r ln

(
ṽ
ũ

))}
(12)

where u = − lnu , v = − lnv, and Φ is the standardized normal distribution. The
independence copula is obtained in the limit as the value of r becomes 0, and the
complete dependence copula is obtained in the limit as the value of r becomes ∞.
This paper used the Exact Maximum Likelihood (EML) method for the estimation
of the copula parameters.

4 Data

This paper used the time series data was obtained from the World Gold Council and
Reuters. We worked with gold price and U.S. dollar index. This study applied the
gold price and the U.S. dollar index in terms of the U.S. dollar. The first method is of
taking the daily prices of gold and the U.S. dollar index, converted to return series.
Daily prices are computed as return of price i at time t relatively; R = ln(pi,t/pi,t−1)
where R is return of price, pi,t and pt−1 are daily price for day t and day t-1, respec-
tively. The study period was from January 2008 till June 7, 2013.

5 Empirical Result

The test results from using the bivariate BM are shown in Table 1. This table reveals
the distribution function parameter (r), and estimates for the location (μ), shape

Table 1 Bivariate Block Maxima Gold Prices and U.S. Dollar Index

Variables Parameter estimation bivariate BM
Gold Price μ1 -0.010788

(0.00587)
σ1 0.043609

(0.00396)
ξ1 -0.207766

(0.05932)
USDX μ2 -0.008616

(0.00300)
σ2 0.22267

(0.0020)
ξ2 -0.145127

(0.061058)
Note: The terms in the parentheses are the standard errors of the parameter estimates.
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(ξ ), and scale (σ) parameters. The negative logistic model between the log return
rates of gold and USDX estimates r as equal to 0.0576, which implies that the log
return rates of gold and USDX have independence in the extremes.

For the calculation of the copula parameter (r), the result can be estimated using
the HuslerReiss copula analysis. The result gives the value of the copula parame-
ter as 0.0037, which reveals the independence measure structure between the gold
price and the USDX. The standard error for this parameter is too large to calculate
because the two variables, the log return gold price and the U.S. dollar index, have
independent structures.

Table 2 Parameter Estimation

Market HuslerReiss copula
Gold price and USDX 0.0037

6 Conclusion

This paper aims to study the extreme behavior of daily global gold price and the
U.S. dollar index by using bivariate extreme value distribution. The study explains
the dependence measure structure of both the variables using the extreme value
copula HuslerReiss. The result presents the independence structure extreme event
of return in gold and USDX. The consequence of this study corresponded with re-
sult from the paper of Forecasting Gold Prices Using Multiple Linear Regression
Method by Ismail Z. et al (2009). Ismail Z. studied eight independent variables to
forecast gold price and USDX is one of the variables. When they computed model to
gold price prediction, they found insignificant for USDX in multiple linear regres-
sion and Commodity Research Bureau, USD/Euro Foreign Exchange rate, inflation
rate, Money Supply affected gold price change. Additionally, the result could be
constructive for future research about the U.S. dollar index and beneficial to many
investors.
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An Integration of Eco-Health One-Health
Transdisciplinary Approach and Bayesian Belief
Network

Chalisa Kallayanamitra, Pisit Leeahtam, Manoj Potapohn,
Bruce A. Wilcox, and Songsak Sriboonchitta

Abstract. Animal health economics is becoming increasingly important as the assis-
tance for decision making on animal health intervention at all levels in attempting
to optimize animal health management. Economic analysis of the optimal control
of zoonoses associated with livestock production is complex as it depends on the
nature of occurrence, transmission, and circulation of the diseases. Recent studies
show that the emphasis of most of the veterinary economists is usually on the prac-
tical field of the economic evaluation of animal diseases based on a detailed knowl-
edge of the production system. However, the field had not yet begun to address
the more complex and real-world problems such as cause of emerging diseases.
This empirical research employs a more holistic approach such as that advocated by
the Eco-Health One-Health approach, together with the transdisciplinary analytical
framework and Bayesian Belief Network analysis that integrates uncertainties into
consideration to explain Trichinellosis risk. This fundamental research found that
the Bayesian Belief Network modeling for the analysis of zoonoses risk and a com-
bined human and animal health framework can be used to guide decision making
for interventions to solve the Eco-Health One-Health problem of Trichinellosis risk.
However, the scoring rule results from Netica, an easy to use software for working
with Bayesian Belief Network, provide only symmetric loss values based on the as-
sumption that the loss from misestimating is the same in any direction. Nonetheless,
this assumption may not be valid in some practical situations such as what we are
interested in this research, Trichinellosis risk. The research suggests an approach
that takes the idea of decision theory combining the cost of collecting a sample to
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minimize the pre-posterior expected cost. If the sampling cost of collecting data is
very high, or if there is strong prior information about the risk, it is not worth sam-
pling. Also, if the loss of illness is very high, a thorough protection strategy would
be more efficient.

1 Introduction

Animal health economics is becoming increasingly important as the assistance for
decision making on animal health intervention at all levels [20] in attempting to op-
timize animal health management [17]. Economic analysis of the optimal control of
zoonoses associated with livestock production is complex as it depends on the nature
of occurrence, transmission, and circulation of the diseases. Economic approaches
to infectious diseases are embedded in many areas of work nowadays and cannot
be ignored [21]. Even though this was unpopular with the pure economists, it is a
novel way of utilizing economics in explaining a complex and real-world problem.

Recent studies show that the emphasis of most of the veterinary economists is
usually on the cost-benefit analysis [8, 11, 12, 26, 29] in the evaluation of zoonoses
intervention and control efforts [24]. Many of the veterinary economists, such as
Ramsay, Tisdell, and Harrison (1997), concentrated on how better information com-
munication in the field of animal health could enhance decision making. Some vet-
erinary economists have been working on the development of economic analysis
techniques in the study of diseases and their control. Tim Carpenter was the first
to examine the use of various economic analysis techniques such as decision tree
analysis [2, 3, 22, 23], microeconomics analysis of diseases [1], simulation models
to assess animal diseases [4], dynamic programming [5], dual estimation approach
to derive shadow prices for diseases [28], estimation of consumer surplus [18],
willingness to pay for vaccination [25], linear programming [1, 5, 6], and use of
economic analysis to review subsidies to veterinary support institutions [5]. On the
theoretical side, some veterinary economists such as McInerney and Howe began
researching the economics of livestock diseases through the development of con-
ceptual models of farmer behavior toward disease [13, 14].

All the above approaches are in the practical field of the economic evaluation of
animal diseases based on a detailed knowledge of the production system. However,
the field had not yet begun to address the more complex and real-world problem of
cause of emerging diseases. This research employs a more holistic approach such

as that advocated by the Eco-Health One-Health approach
1
, together with the trans-

1
A systematic and participatory approach to understanding and promoting sustainable
health and well-being of humans, animals, and the environment thought of as all part of
one ecosystem, as well as making decisions, taking action, and evaluating outcomes. The
Eco-Health One-Health approach is an emerging field of study and practice that exam-
ines the biological, social, and economic dynamics of an ecosystem, and it relates these
changes to human and animal health, holistically. It brings together people from various
disciplines such as veterinarians, ecologists, economists, social scientists, policy makers,
and others to explore and understand how the above dynamics affect human and animal
health.
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disciplinary analytical framework and Bayesian Belief Network analysis
2

that inte-
grates uncertainties into the consideration to explain Trichinellosis risk, a historic
problem worldwide in humans consuming raw or undercooked pork.

This research explains the population, the sampling design and methodology used
to collect the data, how the data is analyzed, purpose of the modeling, how to de-
velop the model, model structure and parameters, and how to test the modeling.
Finally, we conclude with a presentation of the constraints, limitations, and benefits
of the application of the Bayesian Belief Network and the Eco-Health One-Health
approach.

2 Objectives

The focus of this empirical research is to illustrate how the Bayesian Belief Network
analysis and the Eco-Health One-Health approach are integrated to explain the com-
plex and real-world problem of Trichinellosis risk, and to find out the constraints,
limitations, and benefits of this methodology.

3 Methodology

3.1 Population and Sampling Design

The target population of this study includes ethnic minority groups residing in two
selected highlanders villages in Mae Ai district, Chiang Mai Province. There are a
total of 84 households in the Huai Chan Si village and 118 households in the Huai
Ma Fueang village. Twenty-six households from the Huai Chan Si village and 28
households from the Huai Ma Fueang village were selected using simple random
selection.

3.2 Data Collection

A questionnaire was developed for the household survey, based on the Trichinellosis
risk factors derived from experts opinions. Twelve enumerators including eight stu-
dents from the faculty of Veterinary Medicine and four students from the faculty of
Economics, Chiang Mai University, were trained on how to conduct the question-
naire session in the selected villages; at the same time, the questionnaire was also
tested.

2
A statistical method invented in the 1940s and 1950s to take into account the effects of
uncertainty in management systems in the decision-making processes. It is a graphical
description of the conceptual model that captures the analyst beliefs in the causal relation-
ships of significant variables in the system of interest.
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Fig. 1 Location of the random households in the two selected villages in Mae Ai District

After conducting the household survey, we developed a set of data by preparing
it suitably for the experts to evaluate the Trichinellosis risk circumstance in the
selected villages at the experts meeting. Seven experts were invited to join the focus

groups.
3

Data collected about the components of the Trichinellosis risk factors are trans-
formed into the variables used in a Bayesian Belief Network model.

3
Animal Health Experts:
Assist. Prof. Panuwat Yamsakul, Faculty of Veterinary Medicine, Chiang Mai University
Dr. Veerasak Punyapornwithaya, Faculty of Veterinary Medicine, Chiang Mai University
Ms. Pornpen Tablerk, Department of Livestock Development, Nan Province
Disease Ecologist:
Prof. Bruce A. Wilcox, Integrative Research & Education Program, Faculty of Public
Health, Mahidol University and Tropical Disease Research Laboratory, KhonKaen Uni-
versity
Human Health Experts:
Assoc. Prof. Dr. Pichart Uparanukraw, Faculty of Medicine, Chiang Mai University
Assoc. Prof. Dr. Nimit Morakote, Faculty of Medicine, Chiang Mai University
Mr. Adulsak Wijit, Office of Diseases Prevention and Control 10
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3.3 Data Analysis

(a) Modeling

The complexity of the circumstances to cope with Trichinellosis has led to model-
based approaches for investigating the interconnections and for predicting the man-
agement outcomes [16]. A probabilistic graphical model for qualitative instrument
called Bayesian Belief Network is applied for this analysis. The conceptual trans-
disciplinary framework of the Trichinellosis risk is developed by experts based on
the existing knowledge and the experience from the field study to explain the inter-
connection between animal health, environment, and human health.

(b) Purpose of Modeling

The purpose of this modeling is to find the posterior probability of the Trichinellosis
risk, given the evidence of the related risk factors.

(c) Developing the Model

The Trichinellosis risk framework was developed based on the Eco-Health One-
Health concept by making note of the opinions of veterinarians, disease ecologists,
medical doctors, and public health officers (see Fig. 2). There are a total of 13 vari-
ables to be studied. There are two kinds of variables in this study, including discrete
data and continuous data. These variables are associated with probabilistic func-
tions. There are two sources of information to be fed into the model, including the
data from the field study and the data from the experts opinions. Netica, a pow-
erful and easy-to-use program for working with the Bayesian Belief Network, and
influence diagrams are applied to analyze this set of data.

(d) Model Structure and Parameters

This part explains how the Bayesian Belief Network determines the posterior prob-
ability of the risk of contracting Trichinellosis, based on the associated risk factors.

Posterior Probability Equation of Risk of Getting Trichinellosis

Based on the Bayesian statistics, the posterior probability equation for this model is
defined as

p(RSKHUMi|X) =
p(X |RSKHUMi

p(X)
·(RSKHUMi)

where i is the levels of the risk that humans will be infected by Trichinellosis (high,
medium and low)
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Fig. 2 The Trichinellosis risk framework

X is the set of all the risk factors associated with the Trichinella infection in pigs.
That is, {TRICPIG,ENVMN,PRACTC,GENDFD, INCOME,EDUFD,MT PRE,
PREFER,RAWDNG,FREQMT,CONHAB,KNWFD}.

p(RSKHUMi|X) is posterior probabilities (or the probabilities of the parameters
RSKHUMi),given evidence.

p(X |RSKHUMi) is likelihood functions (or the probabilities of the evidence
X),given the parameters RSKHUMi.

p(RSKHUMi) is prior probability probabilities (or the probabilities of the risk
that humans will be infected by Trichinellosis based on the subjective assessment of
experienced experts).

p(X) is probabilities of all the evidence in set X , regardless of any other
information.

(e) Testing Modeling

The objective of this test is to evaluate the quality of the Bayesian Belief Network
using Netica to process a set of real cases. This test illustrates how well the models
match the actual cases by considering the actual belief levels of the states in deter-
mining how well they agree with the value of the case file. We first incorporate 60
percent of the cases into the model. Then, the nodes in which we wish to find their
inferences which is the RSKHUM node is selected. We use the rest 40 percent of the
samples to verify the validity of the model. When the Netica was done, it printed a
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report called scoring rule results of each of the selected nodes. The reports included
error rate, logarithmic loss score, quadratic (Brier score), and spherical payoff score.

The error rate determines how many times the classifier misclassifies a case di-
vided by the number of classifications. It is only with respect to the probability
distribution of the test cases [19].

Bayes Risk Minimization Using Loss Function

In decision theory, a Bayes estimator is an estimator that minimizes the posterior ex-
pected value of a loss function [9]. Suppose parameter RSKHUMi is known to have
a prior distribution p(RSKHUMi). Let ̂RSKHUMi be an estimator of RSKHUMi

and L(RSKHUMi, ̂RSKHUMi), a loss function.
The Bayes risk of RSKHUMi is;

r( ̂RSKHUMi, p(RSKHUMi|X))

= ∑
RSKHUMi

L(RSKHUMi, ̂RSKHUMi)p(RSKHUMi|X))

In a Bayesian framework, the Bayes risk is based on the data set X and a prior
p(RSKHUMi|X) representing the beliefs about RSKHUMi with density
p(RSKHUMi). An estimator ̂RSKHUMi is considered to be a Bayes estimator if it
minimizes the Bayes risk.

r∗( ̂RSKHUMi, p(RSKHUMi|X))

= min ∑
RSKHUMi

L(RSKHUMi, ̂RSKHUMi)p(RSKHUMi|X))

There are many different types of loss functions. In this analysis, we consider
only the logarithmic loss function and the quadratic loss function.

Logarithmic loss function is one of the symmetric loss functions given by Brown
(1968). Logarithmic loss values are calculated using the natural log;

Lll( ̂RSKHUMi,RSKHUMi) =

∣∣∣∣∣ln
̂RSKHUMi

RSKHUMi

∣∣∣∣∣
Therefore, the Bayes estimator of RSKHUMi under the logarithmic loss function

is;

̂RSKHUMi
ll∗

= exp ∑
RSKHUMi

ln(RSKHUMi)p(RSKHUMi|X)

The logarithmic loss values are between zero and infinity. Zero indicates the best
performance [15, 19].

The logarithmic score only considers the estimated probability for the actual
value of RSKHUMi , whereas the quadratic loss function (the squared error loss
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function) which was first introduced by Brier (1950) also takes into account how the
estimated probabilities are distributed on the false states. Under the quadratic rule,
the forecaster is penalized in proportion to the mean squared difference between the
parameter and the estimator.

Lql( ̂RSKHUMi,RSKHUMi) = ( ̂RSKHUMi−RSKHUMi)
2

Therefore, the Bayes estimator of RSKHUMi under the quadratic loss function
is;

̂RSKHUMi
ql∗

= ∑
RSKHUMi

(RSKHUMi)p(RSKHUMi|X)

The quadratic loss values are between zero and two. The lower the quadratic
score is for a set of predictions, the better the predictions are calibrated [10, 15].

Another scoring rule is the spherical payoff value which is also used to assess the
quality of the probabilistic forecaster between zero and one. One represents the best
performance.

Sphericalpayo f f = MOAC

∣∣∣∣∣∣
pc√
∑n

i p2
i

∣∣∣∣∣∣
where pc is probability predicted for the correct state.
pi is probability predicted for state i, where n is the number of states.
MOAC is mean (average) over all cases [19].

Table 1 Scoring Rule Results of Trichinellosis Risk in Humans

Scoring rule results Values

Logarithmic loss 0.3628
Quadratic loss 0.1804
Spherical payoff 0.8963
Error rate 15%

All scoring rule results show that the prediction of the model is well calibrated.
Another way to verify the validity of the models is to use Netica to pass through

the case file by processing the cases one by one. For each case, the software reads
the case except the nodes whose inferences we wish to find. After that, the software
will revise the actual values for those nodes and compare them with the beliefs the
model generated. Netica accumulates all the comparisons, as illustrated in Table 2.
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Table 2 Probability Table of Trichinellosis Risk in Humans

p(RSKHUM=High) p(RSKHUM=Medium) p(RSKHUM=Low)
Household

RSKHUMi ̂RSKHUMi RSKHUMi ̂RSKHUMi RSKHUMi ̂RSKHUMi

1 0 0 0.33 0.07 0.67 0.93
10 0 0 0 0 1.00 1.00
13 0 0 0.67 0.86 0.33 0.14
15 0 0 0.67 0.75 0.33 0.25
17 0 0 0.33 0.05 0.67 0.95
19 0.33 0.24 0.33 0.51 0.34 0.25
20 0.33 0.06 0 0 0.67 0.94
21 0.33 0.08 0 0 0.67 0.92
22 0 0 0 0 1.00 1.00
23 0 0 0 0 1.00 1.00
25 0.33 0.14 0.67 0.86 0 0
26 0 0 0 0 1.00 1.00
27 0 0 0 0 1.00 1.00
31 0 0 1.00 1.00 0 0
36 0.67 0.49 0.33 0.51 0 0
37 1.00 1.00 0 0 0 0
41 0 0 0 0 1.00 1.00
42 1.00 1.00 0 0 0 0
44 0.67 0.48 0 0 0.33 0.52
46 0.67 0.40 0.33 0.60 0 0
47 0 0 0.33 0.11 0.67 0.89
51 0.33 0.11 0.33 0.19 0.34 0.70

4 Conclusion

4.1 Benefit of Integration of Eco-HealthOne-Health
Transdisciplinary Approach and Bayesian Belief Network

A Bayesian Belief Network is a complex mathematical model incorporating the
qualitative and quantitative aspects of a problem, and has been used for decision
making in human management systems. This research combined the Bayesian Be-
lief Network modeling for the analysis of zoonoses risk and for creating a combined
human and animal health framework that can be used to guide decision making for
interventions to solve the Eco-Health One-Health problem of Trichinellosis risk.

4.2 Constraint of Bayes Risk Minimization Using Symmetric Loss
Function

The scoring rule results from Netica provide only symmetric loss values based
on the assumption that the loss is the same in any direction. Nonetheless, this
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assumption may not be valid in some practical situations such as the one that is
of interest to us in this research, Trichinellosis risk. The false classification of the
risk in the less severe direction (underestimation) would be more serious than a
classification in the more severe direction (overestimation); in such a case, the pol-
icy maker would have to provide protection intervention [15]. Let p(RSKHUMi|X)
be the posterior distribution of a discrete random variable RSKHUMi. The objective
is to find the estimator ̂RSKHUMi that minimizes the Bayes risk;

r∗( ̂RSKHUMi, p(RSKHUMi|X))

= min ∑
RSKHUMi

L(RSKHUMi, ̂RSKHUMi)p(RSKHUMi|X))

( ̂RSKHUMi−RSKHUMi) is the error from the estimation. Therefore, the loss func-
tion L(RSKHUMi, ̂RSKHUMi) can be written in the form;

L(RSKHUMi, ̂RSKHUMi)

=

{
L1(RSKHUMi, ̂RSKHUMi); ̂RSKHUMi ≥ RSKHUMi

L2(RSKHUMi, ̂RSKHUMi); ̂RSKHUMi < RSKHUMi

In the case of overestimation, ̂RSKHUMi ≥ RSKHUMi, the society bears only
the cost of protection, such as field visits, to educate people to stop consuming raw
or undercooked pork while the underestimation bears a lot more if the outbreak of
the disease takes place.

4.3 Lack of Optimal Sample Size Determination

Due to the time and financial constraints, this research does not fulfill the optimal
number of the sample size. The optimal sample size of the symmetric and asymmet-
ric loss functions can be determined differently. Also, there are two main approaches
in determining the size of the sample in the Bayesian study. The first approach is
based on the probability coverage and the length of the interval containing the pa-
rameter. The second approach takes the idea of the decision theory that combines
the costs of collecting a sample, which minimizes the pre-posterior expected cost.
The later approach suggests that if the sampling cost of collecting data is very high,
or if there is strong prior information about the risk, it is not worth sampling [15].
Also, if the loss of illness is very high, a thorough protection strategy would be more
efficient.
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Factors Affecting Hospital Stay Involving Drunk
Driving and Non-Drunk Driving in Phuket,
Thailand

Jirakom Sirisrisakulchai and Songsak Sriboonchitta

Abstract. The purpose of this paper is to investigate the factors affecting hospital
stay involving drunk driving and non-drunk driving of accident victims in Phuket,
Thailand. However, the decisions to drink and drive are made by the road users be-
fore the accidents occurred. Self-selection bias may arise when some component
of the drink and drive decision is relevant to the length of stay in hospital of acci-
dent victims. We discuss a new approach to specifying and estimating zero-inflated
negative binomial models with endogenous switching, based on copula function.
These models provide a framework of analysis for the effect of self-selection in
drunk-driving behaviors on the length of stay in the hospitals. We use the concept
of pair-copula constructions for discrete margins to derive the likelihood function
of our model system. The results suggest that drunk-driving accident victims are
positively selected.

1 Introduction

Drunk driving (or driving under the influence of alcohol) increases the risk of crashes
and violation of traffic laws, which leads to higher severity of injury. In developed
countries about 20% of fatally injured drivers have alcohol in their blood more than
the legal limit. For developing countries, this proportion may be up to 69% (WHO,
2007). Injury surveillance (IS) data of Thailand from 1999 to 2004 showed that
35% to 48% of injury victims aged older than 15 years had illegal blood alcohol
concentration (BAC) above 50 mg/100ml (Ditsuwan et al., 2013). Moreover, there
is probably and underestimate of true proportion since the victims who died at scene
had no BAC test administered (Aungkasuvapala, 2003).

It is often argued that drunk driving in comparison with non drunk driving should
have the higher probability of encountering a serious injury under the same
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circumstances. Eluru and Bhat (2007) studied the influence of seat belt usage on
the crash related injury severity. They found that safety conscious drivers are more
likely to wear seat belts, and this defensive habit leads to less severe injury. Krull,
Khattak, and Council (2000) studied the factors affecting the probability of fatal and
incapacitating injuries. They found that the factors contributing to fatal and severe
injury are rollover involvement, seat belt usage, alcohol consumption, rural roads
and violating speed limits. Kasantikul et al. (2005) studied the role of alcohol in
Thailand motorcycle crashes and found that drinking riders were more likely to be
hospitalized, stay longer in the hospital and more likely to be killed. Santolino et al.
(2012) showed that the factors affecting the hospital stay are age of victim, gender,
and nature of injuries.

The purpose of this paper is to investigate the factor affecting hospital stay in-
volving drunk driving and non drunk driving of accident victims in Phuket, Thai-
land. The analysis is based on IS data from Vachira Phuket Hospital. A central issue
here is the debate whether any effect of the self selection in alcohol consumption of
accident victims on the length of stay in the hospital is causal or associative. The
conventional analysis assumes that, once the explanatory variables that affect the
outcome variable are taken into account, the process by which individual are sorted
into positions is independent of factors influencing the outcome variable itself (Mare
and Winship, 1988).

However, sample selection problem arises when sampling observations are gen-
erated from the population by rules other than simple random sampling (Lung-Fei
Lee, 2003). This make the sample representation of a true population is distorted.
One possible reason in practice is called self-selection bias in which distorted sam-
ple generation result from self-selection decisions by the agents being studied. The
possibility of sample selection bias arises when there are unobservable character-
istics that influence both the observed outcomes and the decision process. In our
situation, the decisions to drink and drive are made by the road users before the ac-
cidents occurred. Self-selection bias may arise when some component of the drink
and drive decision is relevant to the length of stay in hospital of accident victims.

If this self-selection is not accounted for, the parameter estimates using the con-
ventional method will give inconsistent estimates of the effect of the individual de-
cisions (the decisions to drink and drive) and of the other explanatory variables in
the model. In this paper, we apply the copula approach, which allows for the joint
determination of the discrete variables and the outcome that they affect, to examine
the effect of the alcohol consumption of the accident victim on the length of the stay
in the hospital.

The rest of this paper is organized as follows. The next section provides a descrip-
tion of the data used. In section 3 and 4, we provide a brief discussion of switching
regression model for hospital stay and the copula approach for this model. Section
5 presents and discusses the modeling results, followed by conclusion in section 6.
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2 Switching Regression Model for Hospital Stay

Consider two cases; drunk driving and non drunk driving; that are self selected
by the individual rather than randomly assigned. We want to estimate the differ-
ence in length of stay in the hospitals between alcohol related injuries and non-
alcohol related injuries. However, we can observe two outcomes from the hospital
data, namely, injuries (including slightly injured and seriously injured) and fatali-
ties. Therefore, only people injured can observe the length of stay in the hospitals
(either zero or positive numbers) and people who died from accident cannot observe
the length of stay.

The situation discussed above can be modeled by applying Roy’s (1951) endoge-
nous switching model system (See Cameron and Trivedi, 2005 for the detailed dis-
cussion) with additional stage three on the censored outcome (length of stay). The
first stage distinguishes drunk driving from non drunk driving using binary outcome
model. In the second stage, similar to the first stage, we use separated binary out-
come models to distinguish the injury cases from the fatality cases. Finally, in the
third stage, the determinants of the length of stay are identified in separated count
regressions.

Fig. 1 Graphical Illustration of the three stages model for length of stay in the hospitals

To derive a likelihood function of the above model system, we start in the first
stage where accident victims are identified according to whether they are drunk
driving or not using binary outcome model. LetY1 = 0, 1 be the binary outcomes;
where 1 is drunk driving and 0 is non drunk driving; X1the vector of all explanatory
variables thought to explain self selected drunk driving behavior, andβ1a vector of
parameters to be estimated. We can think of this random variableY1is generated from
the binomial distribution:

f (k;n, p) = Pr(Y1 = k) =

(
n
k

)
pk(1− p)n−k, fork = 0, 1,2, ...,n, where(

n
k

)
= n!

k!(n−k)! , n is the number of trials, and p is the probability of success.
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In our case, n = 1
1

and ifpis assumed to be a standard normal distribution (Φ).
We can derive the probability distribution as follows:

Pr(Y1 = 1 |X1,β1 ) =Φ (X1β1)

Pr(Y1 = 0 |X1,β1 ) = 1−Φ (X1β1).

Focusing on the second stage, we define Y2,i = 0, 1 as the binary outcomes; where
1 is an accident victim who dies in the hospital and 0 is an injured accident victim;
X2,ias the vector of all variables explaining the characteristics of the accident vic-
tims, β2,ias a vector of parameters to be estimated, and i as the indicator for drunk
driving or non drunk driving as defined previously for selection variable Y1 . How-
ever, this is not a standard binary outcome model since the probability of observing
fatality or injury depends on the outcome of the selection variableY1, and Y1and
Y2,iare not necessarily independent. Thus we have to specify the joint distribution of
these two variables, which will be discussed in the next section.

Finally, in the third stage, let Y3,ibe defined as the number of day that accident
victim stay in the hospital, X3,ithe vector of all determinants for the length of stay
in the hospital, β3,ia vector of parameters to be estimated, and i is the indicator for
drunk driving or non drunk driving as defined previously for selection variable Y1.
Each of these variablesY3,i is assumed to be discrete distribution for count variables
such as Poisson or Negative Binomial distribution, for instance. However, as dis-
cussed previously in the second stage, Y3,i are dependent with Y2,iandY1. Thus the
joint distribution for these three variables is needed. Now, we can derive the likeli-
hood function of our model system as follows:

For Y1 = 0 and Y2,0 = 0,
L1 =∏ {Pr(Y3,0 |Y2,0 = 0,Y1 = 0 )×Pr(Y2,0 = 0 |Y1 = 0)×Pr(Y1 = 0)}

For Y1 = 0 and Y2,0 = 1,
L2 =∏ {Pr(Y2,0 = 0 |Y1 = 0)×Pr(Y1 = 0)}

For Y1 = 1 and Y2,1 = 0,
L3 =∏ {Pr(Y3,1 |Y2,1 = 0,Y1 = 0 )×Pr(Y2,1 = 0 |Y1 = 0)×Pr(Y1 = 0)}

For Y1 = 1 and Y2,1 = 1,
L4 =∏ {Pr(Y2,1 = 0 |Y1 = 0)×Pr(Y1 = 0)}

For our model system above, it is natural to model the interdependence between
outcome equations and selection equation using copula functions which will be dis-
cussed in the next section.

3 Copula Approach for Modeling Switching Regression

The notion of a copula was introduced by Sklar (1959). A copula is a function
that links multivariate joint distribution with pre-specified univariate distribution

1
This is the special case of binomial distribution which is called Bernoulli distribution.



Factor Affecting Hospital Stay 483

function. Introduction of copula can be found in Joe (1996) and Nelsen (2006). An
introduction for empirical researcher is provided by Trivedi and Zimmer (2007).

The foundation of copula is based on the theorem of Sklar (1959), which states
that given a joint distribution functionF, and respective marginal distribution func-
tions, there exists a copula C such that the copula binds the margins to give the joint
distribution, that is

F(y1,y2, ...,ym) =C(F1(y1),F2(y2), ...,Fm(ym)) (1)

Where y = (y1,y2, ...,ym) is the realization of an m-dimensional random vectorY =
(Y1,Y2, ...,Ym). Fj(y j) is the marginal distribution function of the jthmargin for j =
1, 2, ...,m.

The fact that copula function can be used to build new multivariate distribution
for given univariate marginal distribution is useful for econometric modeling. The
key is that copula can introduce dependence between the two or more random vari-
ables. The degree and type of dependence depends on the choice of copula. In our
analysis, it is essential that copula allows for positive and negative correlation. We
want to learn from the data whether drunk driving has more, less, or equally length
of stay in the hospital in comparison to non drunk driving. Therefore, we consider
three copula functions in this paper, namely, the Normal copula, the Frank copula,
and the Independence copula. Both Normal and Frank copula can reach the Frechet
upper bound and lower bound (See Trivedi and Zimmer, 2007, for a detailed discus-
sion). They can span the full range of dependence.

Some authors proposed the copula approach for modeling endogenous switching
regressions and sample selection models. Ophem (2000) and Zimmer and Trivedi
(2006) used copula approach for event count outcomes. Prieger (2002) and Smith
(2003) offer copula-based selectivity models. Chinakum et al. (2013) applied the
copula approach to a sample selection modeling of panel data. Bhat and Eluru
(2009) showed the application of endogenous switching regressions for continu-
ous outcome in transportation research fields. Spissu et al. (2009) applied cop-
ula approach to the case of sample selection with a multinomial treatment effect.
Luechinger et al. (2010) proposed the copula model of ordered outcome with en-
dogenous self-selection. It should be noted that these papers re-formulate discrete
random variables as continuous latent variables and then construct a joint distribu-
tion of the latent variables by a continuous copula. In contrast, we use a pair copula
construction for discrete margins as proposed by Panagiotelis (2012).

Our model system can be viewed as a three dimensions copula with discrete mar-
gins. The dependent variables for the first and the second stage are binomial distri-
bution margins. The dependent variable for the third stage is zero-inflated negative
binomial distribution, which has the following form:

Pr(Y3,i ≤ n) = ϕ3,i +(1−ϕ3,i)
n

∑
k=0

f (k;μ3,i,θ3,i), n = 0, 1, 2, ... ; i = 0, 1 (2)
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Where f (k;μ3,i)represents the probability mass function (pmf) of the univariate neg-
ative binomial distribution with the dispersion parameterθ3,i , andμ3,iand φ3,iare
given by

μ3,i = exp(X3,iβ3,i), log

(
ϕ3,i

1−ϕ3,i

)
= Z3,iγ3,i

Where Z3,iare the vectors of explanatory variables for zero outcome equations and
γ3,i are the corresponding vectors of parameter.

For each state,i = 0, 1, in our analysis we need three bivariate copula functions,
i.e., C12,i,C13,i,and C23|1 ,i. We perform the derivation of three-dimensional joint pmf
by following Panagiotelis (2012);

Pr(Y1 = y1,Y2,i = y2,Y3,i = n)
= Pr(Y3,i = n |Y2,i = y2,Y1 = y1 )×Pr(Y2,i = y2 |Y1 = y1 )×Pr(Y1 = y1)

(3)

where

Pr(Y3,i = n |Y2,i = y2,Y1 = y1)

=

{
∑i1=0,1∑i2=0,1(−1)i1+i2C23|1,i (F2|1,i (y2−i2|y1 ),F3|1,i (y1−i1|y1 ) )

}
Pr(Y2,i=y2|Y1=y1)

(4)

and the arguments in the copula function are

F2|1,i (y2− i2 |y1 ) =
C12,i(F1(y1),F2,i(y2− i2))−C12,i(F1(y1− 1),F2,i(y2− i2))

Pr(Y1 = y1)
,

and

F3|1,i (n− i3 |y1 ) =
C13,i(F1(y1),F3,i(y3− i3))−C13,i(F1(y1− 1),F3,i(n− i3))

Pr(Y1 = y1)
,

Pr(Y2,i = y2 |Y1 = y1 ) =C12,i(F1(y1),F2,i(y2))−C12,i(F1(y1− 1),F2,i(y2))
−C12,i(F1(y1),F2,i(y2− 1))+C12,i(F1(y1− 1),F2,i(y2− 1))

, (5)

and
Pr(Y1 = y1) = F1(y1)−F1(y1− 1). (6)

By substituting equation (4) – (6) into the likelihood function, we can maximize the
log-likelihood function to get the parameter estimates for our model system.

4 Data

The data used in this paper is an individual data of accident victim who was sent to
Vachira Phuket hospital, Thailand. The data consist of a sample of 10,218 accident
victims involved in traffic crashes during the period of 2008 to 2012. The data on
fatality are the death occurred at the scene and at the emergency department. Since
there is no regulation required for BAC testing for all traffic injury cases, drunk-
driving accident victims were subjectively evaluated for alcohol involvement by
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the hospital officers. The accident victims are simply divided into two groups: had
been drinking (drunk driving) or had not been drinking (non-drunk driving). The
duration of hospital stay is observed for all sample victims. Victims have to be fully
recovered and discharged from hospital. About 30% of the victims are classified as
drunk driving and 70% are classified as non-drunk driving. The average length of
stay is about 3.95 days for non-drunk driving, and 4.98 days for drunk driving. The
description of variables used in this paper and main statistics are shown in Table 1.
We found the existence of excessive zero for duration of hospital stay in the dataset.
Zero represent 28.5% of the data.

Table 1 Description of variables and statistics

Variable Label Description N Mean SD Min. Max.

Dependent variables
Y1 Had been drinking or not 1 if victim had been drinking; 0 otherwise 10218 0.298 0.458 0 1
Y2 Fatality or injury 1 if victim died; 0 otherwise 10218 0.011 0.104 0 1
Y3 Hospital stay Length of hospital stay (number of days) 10218 4.26 6.641 0 50
Explanatory variables
x1 Age Age of the victim 10218 30.182 14.773 0 89
x2 Male 1 if the victim is male; 0 otherwise 10218 0.654 0.476 0 1
x3 Driver 1 if the victim was the driver; 0 otherwise 10218 0.771 0.42 0 1
x4 Motorcycle 1 if the victim used motorcycle; 0 otherwise 10218 0.853 0.354 0 1
x5 Car 1 if the victim used passenger car or pickup or van; 0 otherwise 10218 0.035 0.185 0 1
x6 Night 1 if the accident occurred during 6.01-24.00; 0 otherwise 10218 0.322 0.467 0 1
x7 Severe The severity index 0-6; 6 is the highest level and 0 is the lowest level 10218 1.751 1.096 0 6
x8 Head 1 if injury located in head; 0 otherwise 10218 0.216 0.412 0 1
x9 Thorax 1 if injury located inthorax; 0 otherwise 10218 0.019 0.138 0 1
x10 Pelvic 1 if injury located in pelvic; 0 otherwise 10218 0.35 0.477 0 1
x11 Abdomen 1 if injury located in abdomen; 0 otherwise 10218 0.032 0.175 0 1

5 Empirical Results

The explanatory variables considered in our analysis consist of several categories,
including individual characteristics, mode of travels, time of accident, severity in-
dex, and the injured body regions. We selected the individual characteristics, mode
of travels and time of accident as the explanatory variables for selection equation
and binary outcomes for fatality or injury equations. For hospital stay equations, we
added severity index and the injured body region variables for the determinants of
the length of stay in the hospitals. We encounter the convergence problems for Nor-
mal copula. Therefore, the results provided here are only Independence and Frank
copula for the discussions. The Frank copula model rejects the independence as-
sumption based on likelihood ratio test, indicating the significant existence of self-
selection effects. In the following discussions, we focus on the results of the Frank
copula model specification.

5.1 Binary Choice Equation for Alcohol Consumption

Table 2 gives the results of selection equation. The results of the binary outcome
equation of self-selected alcohol consumption provide the effects of variable on the
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propensity to drink driving relative to non-drink driving. All parameter estimates
were statistically significant at standard level. The parameter estimate shows that
males are more likely to drink and drive. Both car and motorcycle users are more
likely to consume alcohol before travel when compare with other modes such as
bicycle, truck and taxi. There is a linear relationship between age and propensity to
drink driving as expected. Older victims are more likely to drink and drive when
compare with the younger.

Table 2 Estimation results of selection equation

Had been drinking or not

Independence Frank
selection equation
(Intercept) -1.865* -1.597*

male 0.893* 0.787*
driver 0.165* 0.109*
age 0.008* 0.007*

motorcycle 0.406* 0.302*
car 0.385* 0.354*

night -0.143* -0.148*

*indicate statistical significance at the 5% level.

5.2 Binary Outcome for Fatality or Injury

Table 3 provides the estimation results of binary outcome equation for fatality or
injury. Only the dummy variable for motorcycle user was found statistically signif-
icant. The result indicates that motorcycle users are more likely to injure from the
accidents rather than die at the scene. The parameter estimates of non-drunk driv-
ing regime are higher than drunk driving regime, indicating that drunk driving has
higher probability to die from the accident when compare with non-drunk driving.
The dependence parameters θ12,0andθ12,1translate to a Kendall’s Tau value of 0.11
and 0.13, respectively.

5.3 Zero-Inflated Negative Binomial Models for the Length of
Stay in the Hospital

The results of hospital stay outcomes are shown in Table 4. The length of stay in the
hospitals can be explained by the injury location variables and severity index. How-
ever, the factor affecting the length of stay in the hospitals for drunk-driving and
non-drunk driving regimes are different. For instance, head injuries, thorax injuries,
and abdomen injuries are associated with longer stay in the hospitals for non-drunk
driving but injury located at pelvic and abdomen are associated with longer stay in
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Table 3 Estimation results of binary outcome equation for fatality or injury

Independence Frank

Non-drunk driving Drunk driving Non-drunk driving Drunk driving
Outcome equation 1: fatality or injury
(Intercept) -1.936* -1.546* -1.983* -2.411*

male -0.052 -0.023 0.597 0.123
motorcycle -0.778* -0.317* -0.547* -0.291*

age -0.002 -0.004 0.005 -0.003
night -0.041 -0.04 -0.157 -0.071
θ12,0 1.008
θ12,1 1.198

*indicate statistical significance at the 5% level.

Table 4 Estimation results of hospital stay outcomes

Independence Frank

Non-drunk driving Drunk driving Non-drunk driving Drunk driving
Variable zero outcome zero outcome zero outcome zero outcome

Outcome equation: Hospital stay
intercept 1.957* 0.634* 1.251 0.583* -8.99 -0.461* 2.641* -1.15*

male -0.282* 0.036 0.243 0.152* -0.615* 0.458* -1.558* 0.689*
age -0.009* 0.008* -0.002 0.008* -0.109 0.0117* -0.012* 0.013*

night -0.245 0.009 -0.993* 0.008 0.2 -0.007 -0.205 -0.121
motorcycle 1.011* -0.186* 0.671 0.075 0.275 -0.17* -0.627* 0.276*

car -0.293 0.037 1.099 0.126 0.611 0.233* -0.399 0.227
severe -3.178* 0.416* -3.118* 0.316* -1.778* 0.814* 0.864* 0.379*
head -1.817* -0.165* -1.605* -0.017 -0.682* 0.100* 0.120 0.048

thorax -2.350 0.056 0.365 -0.129 -1.509 0.315* -0.756 -0.008
pelvic -1.143* -0.080 -2.635 0.101 -1.608* 0.061 -0.361 0.139*

abdomen -3.071 0.343* -15.956 0.430* -3.8606 0.508* -1.044 0.274*
dispersion 0.811* 0.905* 0.956* 0.835*
θ13,0 6.082*
θ13,1 21.939*
θ23,0 5.614*
θ23,1 10.322*
LL 29880 29420

*indicate statistical significance at the 5% level.

the hospital for drunk driving. The surprising result for non-drunk driving regime is
that motorcycle users are less likely to stay longer in the hospital. One explanation
might be non-drunk motorcycle users ride more careful than drunk driving motorcy-
cle users. For the time of accident occurred, we found that when accident occurred
between 0:00 to 6:00 a.m. the accident victims are more likely to stay longer in
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the hospitals. Finally, as expected the male accident victims are more likely to have
serious injury when compare with the female victims.

The dependency parameters for the Frank copula model are highly statistically
significant and positive. The dependence parametersθ13,0,θ13,1,θ23|1 ,0, and θ23|1 ,1
translate to a Kendall’s Tau value of 0.52, 0.83,0.49, and 0.67 respectively. The
positive dependency indicates that the probability of reporting longer stay in the hos-
pital in drunk-driving regime is higher for persons who actually chose that regime,
relative to the others.

6 Conclusions

In this paper, we apply a copula based approach to model zero-inflated negative
binomial regression with endogenous switching for the length of stay in the hos-
pitals of accident victims using injury surveillance (IS) data from Vachira Phuket
Hospital. Pair copula constructions for discrete margin are used to generate joint
distributions for multivariate discrete random variables. We encountered the conver-
gence problem for normal copula. The models presented in the text are Frank copula
and Independence models. We found statistical evidence for positive self-selection
on alcohol consumption. Failure to accommodate these self-selection effects can
lead to an inconsistent estimate of parameters and mis-estimation of true effects.
Although our model systems in the paper were motivated by a substantive issued
related to health economic research, it is clear that they can be applied to other areas
of empirical economics.
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How Macroeconomic Factors and International
Prices Affect Agriculture Prices
Volatility?-Evidence from GARCH-X Model

Gong Xue and Songsak Sriboonchitta

Abstract. This study explains China’s agricultural commodities volatility by using
the short-term deviations along with the domestic macroeconomic factors as well
as the international price factors. The GARCH-X model shows that the short-term
deviations make significant and positive effect on volatility, and so, it can be taken
as an important factors in estimating and forecasting the agricultural prices. How-
ever, it is disappointing that some of the macroeconomic factors are not significant
in our model. This is because China is in a transition process, and many macroe-
conomic factors are not freely moved. Our study also analyzes China’s policy and
macroeconomic changes in last decades. To give a more thorough understanding
about China’s recent macroeconomic reform is also one of our objectives.

1 Introduction

Agriculture has, for a long time, played a dominant role even in China’s modern
history. Although the percentage of agriculture is lower comparing to industries re-
cently, the importance of agriculture to China has never been insignificant. (Cheng,
2005) [1] Previously, China was a net exporter, but now it has even started to import
many kinds of farm products to satisfy the different requests and demands for the
various kinds of nutrition needs. The export of agricultural commodities increased
from 10.23 billion dollars in 1996 to 50.49 billion dollars in 2011 (an average annual
growth rate is around 11.6 %), while the imports increased from 5.67 billion dollars
to 28.77 billion dollars (an average annual growth rate is about 13.2 %). (NBSC,
2012) [2]

China has been going the market economy way for quite some time now,(Lin et
al., 1996; Lin, 2003) [3, 4] and the previous practice of direct agricultural price con-
trol is gradually disappearing. First, the agricultural market is already formed. The
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scope for governmental action is limited. And, second, with the increasing volume
of agricultural trade, the pricing power of domestic authorities was largely reduced,
especially in the case of imported agricultural products, such as corn and soybean,
as they are closely related to the prices in the world market. (Wang and Xie, 2012;
Yang and Li, 2008) [5, 6] Here, there emerges a few questions: How do the macroe-
conomic factors influence the agricultural price? Do their effects work only on the
price level or on the volatility level also? And, second, with the channel made for
import and export, a relationship has been built between the domestic food prices
and the international food prices; under these circumstances, in what way does the
international agricultural price or energy price impact China’s agricultural prices?
The first objective of our study is to give a brief introduction to China’s macroeco-
nomic reform progress, in support of our empirical econometric study. The second
objective is to investigate the impact of the short-run deviations between the agri-
cultural prices and the domestic macroeconomic factors and international prices on
food price volatility. The forecasting and measurement of food price volatility is of
great importance since the volatility causes uncertainty to producers, consumers and
other stakeholders. In the section 3, we found a significant positive effect of short-
run disequilibrium on the conditional mean and also variance. The results states
that the short-term deviation effects can be used to better forecast the volatility of
agricultural price, and also implies that the further the disequilibrium of the agricul-
tural commodity price and other factors in the long term, the harder to predict the
volatility in the short term.

The paper is organized as follows: In section 2, we present the literature reviews
about the different macroeconomic factors that impact the agriculture commodi-
ties prices and the latest Chinese macro reforms will be presented. In section 3,
the methodology about the GARCH-X is introduced. The empirical results are pre-
sented in section 4. This is followed by a few concluding remarks in section 5.

2 Literature Review

2.1 China Agricultural Commodity Prices, Macroeconomic
Variables and International Price Index

(a) Exchange Rate

Many studies have investigated the role of exchange rate play in the prices of agri-
cultural commodities. They believe that it impacts directly through the channel
of international purchasing power (import agricultural commodities) and export
producer cost (export agricultural commodities) and indirectly through the recent
high oil price. (relationship between energy and agricultural commodities) (Gilbert,
1989) [7] The theory starts with Schuh (1974) [8] who pointed out the importance
of the macroeconomic and financial factors, and especially the exchange rate on the
real prices of the agricultural commodities. Rogoff, Rossi and Chen (2008) [9] ex-
emplify the role of exchange rates in determining agricultural prices. They show that



Macroeconomic Factors and International Prices 493

“commodity currency” exchange rates have remarkably robust power in predicting
global commodity prices, both in-sample and out-of-sample, and against a variety
of alternative benchmarks.

China’s exchange rate policy started reforming in the last two decades. On Jan-
uary 1st 1994, a managed floating exchange rate system was established. In the year
1999, the IMF also tagged China from a “fixed exchange rate system” to a “man-
aged floating exchange rate”. The climax of the exchange rate reform occurred in
2005, on July 21st , with the Chinese government announcing that China will adopt
the new managed floating currency structure which is based on the market. On the
next day, The Washington Post also wrote that:

“China on Thursday took an important step forward in its move toward a market econ-
omy, announcing it would increase the value of its currency, the yuan, and abandon its
decade-old fixed exchange rate to the U.S. dollar in favor of a link to a basket of world
currencies.” (The Washington Post, 2005) [10]

Wen (2012) [11] studied the channel of the Chinese Renminbi exchange rate
impacting on the international import and export volume, and further to the price.
Ni and Qin (2012) [12] estimate the transmission of Renminbin exchange rate to the
agricultural commodity prices, and the results show that the transmission effect is
limited. China is going to be a major player in the international agricultural market.
Therefore, the study on the Chinese exchange rate on China’s agricultural prices is
urgent.

(b) Interest Rates

Agricultural commodities are almost homogenous, quite storable and also trans-
portable. In an absolutely free market, agricultural products can be treated as com-
petitive products. Bosworth and Lawrence (1982) [13] and Okun (1981) [14]
argued that agricultural commodities have flexible prices since the information re-
garding the supply and the demand can reach the price quickly. An empirical study
(Bordo, 1980) [15] also verified that the prices of raw goods respond more quickly
to changes in the money supply than do prices of manufactured goods.

Frankel (1986) [16] explicitly explained the channel of the interest rate’s im-
pact on the commodities price. Frankel (1986) [16] argues that because the price
of agricultural commodities is flexible, while the other goods’ prices are compara-
tively rigid, a change in the interest rate can influence the commodity prices more
than what people would expect. He also summarize three major channels: first, it
decreases the farm’s desire to carry inventories; second, it encourages people to in-
vest into non-physical products, such as treasury bills; and third, it appreciates the
domestic currency and reduces the price of internationally traded commodities.

As for the China’s economy, interest rate policy is the least affected traditional
macroeconomic policy.(Lin, 1996) [3] This is because China government believes
that only the heavy industry-oriented development strategy can develop the Chinese
economy. In this context, the interest rates should be set as low as possible to satisfy
the industry development. In fifteen years of recent past, from 1996 to 2003, the
interest rates have been adjusted and maintained to keep low, however, since 2004,



494 G. Xue and S. Sriboonchitta

the Chinese government started expanding the floating interval of the interest rate.
The reform of interest rate can be checked by the following: the deposit reserve
ratio is the best index which is represented by the interest rate. The government first
started to adjust the deposit reserve ratio from the year 1984, however, until 2003,
in a period f almost 20 years passed, the deposit reserve ratio was adjusted only
six times. In contrast, in the last ten years, adjustments were made over 40 times.
Consequently, the interest rate started to make its effects show on the economies.

There is almost no study of the interest rate effect on the agricultural price in
China. This is due to the interest rate in China cannot move freely, the usual econo-
metric method is difficult to model. In our studies, we do not incorporate it directly
into our empirical study. However the money supply (M1), which can work on both
exchange rate channel and interest rate channel are included as a variable in our
model. In a free economy, the higher money supply will lead to a lower interest rate
and lower exchange rate. Therefore through different ways we just discussed, the
money supply can finally impact on the agricultural commodity.

2.2 International Prices

(a) International Energy Price

With the development of biofuel, agricultural commodity prices are gradually get-
ting connected to energy prices. Agricultural commodities are the major feedstock
for producing biofuel; because of this, the prices of agricultural commodities are
invariably getting linked to the domestic energy price, and, further, with the inter-
national energy price. (Tyner, 2008) [17] As the price of crude oil increased, so did
the price of corn and other agricultural commodities. And when the price of crude
oil started to decline in the summer of 2008, so did the prices of agricultural com-
modities. The basic mechanism is that higher crude oil price leads to higher gasoline
price, which increases the demand for corn ethanol as a substitute for gasoline. An
increase in the demand for corn ethanol causes an increase in the demand for corn,
which, in turn, leads to an increase in the price of corn.

The China’s biofuel industry has rapidly developed since 2001. With the aim
of reducing greenhouse gas (GHG) emissions and the energy security consider-
ations, China government implemented an amount of subsidies policies. Hence
the bioethanol production increased and reached 1.35 million tons in 2007. Not
mentioned to the private small plants, four large stated-own plants located in Hei-
longjiang, Jilin, Henan, and Anhui use approximately 1.5 million tons corn annually.
(Qiu et al., 2010) [18] The largely usage of agricultural commodities in the biofuel
even force China have to import crops from abroad. (FAO, 2013) [19] The direct
and indirect channels of international energy, such as the trade of oil and large-scale
biofuel production could impact on China agricultural commodity price.
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(b) International Agricultural Commodity Prices

The transmission of international agricultural commodity prices to domestic mar-
kets has been found in many developing countries . (FAO, 2009) [20] China’s trans-
mission channel has been found to be as follows: Wang and Xie (2012) [6] use
monthly data to estimate the transmission effect of international agricultural prices
on China’s domestic prices. The paper verified that the international prices have sig-
nificant impact on the domestic prices in China, but that the effects vary greatly for
different products. Wang and Zhao (2012) [21] adopt the four important agricultural
products: cotton, wheat, corn, and soybean to estimate the transmission effects of
international prices by monthly data from January 2002 to December 2010. They
conclude that the international price has positive and significant effect on China’s
prices but China’s price did not impact much on the international prices.

Many Chinese researches have shown the linkage of the domestic price of the
agricultural products and international price. (Wang and Xie, 2012; Wang and Zhao,
2012) [6, 21] However, how does the international price impact on the agricultural
commodity prices in China? Do the international agricultural commodities also im-
pact on the volatility of China’s agricultural commodities? If the effect existed, it is
therefore timely and important to quantity the magnificence.

3 Methodology

3.1 Method of GARCH and GARCH-X Models

(a) GARCH Models

To model the volatility of agricultural commodities, autoregressive conditional het-
eroscedasticity (ARCH) of Engle (1982) [22] and generalized ARCH (GARCH)
of Bollerslev (1986) [23] is a obvious way to measure volatility. This study adopted
an extension of the GARCH model for the error correction models (ECM) of cointe-
grated series, called GARCH-X models. (Lee, 1994) [24] To understand the
GARCH-X models, first we introduce the ECM in the context of cointegration.

The ECM was proposed by Sargan (1964) [25] to deal with the short-run dynam-
ics. Since there are only five cointegrated variables as in our model, we define the
error correction term by:

ξ = yt −β1x1−β2x2−β3x3−β4x4 (1)

Here βi (i = 1, 2, 3, 4) is a cointegration coefficient and ξ is the short-term devi-
ation from the regression of yt on x1,x2,x3,x4, therefore we define the ECM as:

Δyt = αξt−1 +λ1Δx1t +λ2Δx2t +λ3Δx3t +λ4Δx4t + ut (2)

Here ut is i.i.d. The ECM implies that Δyt can be explained by the Δx1t and
also lagged ξt−1, that is, suppose now the ξt−1 > 0, the yt−1 is too high beyond the
equilibrium value, therefore next period yt should be lower, and vice versa. This
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is due to the variables are relatively stable in cointergrating vectors. This idea was
extended into the variance equation by Lee (1994) [24]. He argued that if the short-
run deviation from a long-run cointegrated relationship, has powerful predictive for
conditional mean of the cointegrated series, it could also work on the conditional
variance. (Engle and Yoo, 1987) [26] The GARCH-X model was first applied in
measuring food volatility in the study of Apergis and Rezitis (2010) [27]. They an-
alyzed the monthly data of Greece’s food price in the period from 1985 to 2007.
The results show that the GARCH-X model performs well and there exists a posi-
tive and significant effect between the deviations from macroeconomic factors and
food price volatility. The short-run error from the cointegrating long-run relation-
ship is a useful variable in modeling conditional variance in food price. Our study
applies the GARCH-X model on agricultural commodity price and according to the
China’s situation, we also included the international prices to better model commod-
ity volatility.

Suppose there is a dependent variable as rt which is the return on an asset. The
mean value is mt and the variance is ht at time t, they are defined by past information.
Therefore the r in the time t can be represented as:

rt = mt +
√

htε (3)

Note that mean and variance of ε is 0 and 1. Therefore, rt is equal to the mean
value plus volatility at time t. (Engle, 1982) [22] The GARCH model for the vari-
ance is:

ht+1 = ω+α(rt −mt)
2 +βht = ω+αε2

t +βht (4)

Since in the long-run ht+1 = ht = h, the variance of ε2
t is 1, therefore the long-

run average variance is
√
ω/(1−α−β ), and also this only works if α + β < 1

and α > 0,β > 0,ω > 0. (Bollerslev, 1986) [23] The GARCH model implied that
the volatility prediction is a weighted average of the long-run average volatility,
the volatility predicted for this period, and the most recent squared residual in last
period.

The GARCH-X model aimed to model the conditional variance by the error cor-
rection (EC) terms. Hence, the specification equation of GARCH model changes
into:

ht+1 = ω+α(εt)
2 +βht + γectt

2 (5)

Moreover, like the GARCH model, in order to make the GARCH-X model be sta-
tionary, We also need: α+β < 1 and α > 0,β > 0,ω > 0. Besides, the short-run de-
viations is represented by the squared and lagged error-correction term ectt 2, which
obtains from the equation (1). The parameter γ indicates the effects of the short-run
deviations on the conditional variance of the agricultural commodity prices equa-
tion. If error correction term is responsible for uncertainty i.e., conditional variance,
the agricultural commodity price are more volatile when the disequilibrium is larger.
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In last section, we also use other three GARCH based models to do the ro-
bust test, they are Exponential GARCH (EGARCH), Glosten-Jagannathan-Runkle
GARCH (GJR GARCH), and also GARCH with student t distribution (GARCH-
t). GJR models are the typical asymmetric impact model, which are widely used in
the financial literature. GJR model includes leverage terms for modeling asymmetric
volatility clustering. However, to our knowledge, there is no studies applied the GJR
in estimating agriculture price, although it is has nice property and can capture some
of the agriculture commodities’ characteristics. We also use the GARCH-t model.
This is because in the data description section, we found that the data is skew. The
conditional variance of GJR-GARCH is:

ht+1 = ω+(α1 +α2It)ε2
t +βht (6)

where I = 0 when rt ≥ μ and I = 1 when rt < μ .
The GJR GARCH models different impacts of the positive and negative shocks

on the variance equation.(Grier and Perry, 1998) [28]

4 Empirical Results

4.1 Data Description

We adopt the monthly data from August 2001 to October 2011, taking a total of 130
observations. The China agricultural commodity index (AGR.China) is collected
from the National Bureau of Statistics of China (NBSC), the international food price
(AGR. world), money supply (M1), and world energy price index (ENE), and real
effective exchange rate index (REER) are from the IMF database, the updated ver-
sion in November 2012. Instead of the interest rate, we include M1 to estimate in
the empirical part since the reform of the interest policy is still slow.

The trend of the statistics is shown in the following Figure 1. Different factors
seems moving together. Intuitively, they could be a cointegrating vectors. In the
period of 2001 to 2010, China government relaxed various controls, from price re-
forms to macroeconomic policies. The data movements in the figure also show this.
All the variables are transformed by logarithm form.

4.2 Unit Root Test

To exclude the problem of spurious regression, we test the non-stationarity in price
level and the difference by four unit root tests. They are the Augmented Dickey-
Fuller (ADF) test, Kwiatkowski et al (KPSS) test, Elliott, Rothenberg and Stock
(ERS) test, and Zivot and Andrews (ZA) test. The ADF test is adopted in our study
first. (Dickey and Fuller, 1981) [29] The results are as given in Table 1. The lag
length is determined by Akaike information criterion (AIC) principle. All the vari-
ables in level fail to reject the unit root hypothesis, but the variables in the first
difference all reject the unit root hypothesis at 1% significance level. However, the
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Fig. 1 The Trend of Chinese Agricultural Price and Other Factors

Note: The data span is from August 2001 to October 2011.

ADF test also has shortcomings; to improve the power of ADF test, ERS test was
proposed in 1996, and this test applied ADF test to the detrending data without in-
tercept. (Elliott et al., 1996) [30] The results are similar to the ADF test. However,
the first difference of M1 cannot reject the null hypotheses at 5% significance level.

Since the unit root test results show inconsistencies, to further check the sta-
tionarity in our data, we carry out the KPSS test as well. This test overcomes the
problem of the ADF test which becomes invalid in small samples. (Kwiatkowski et
al., 1992) [31] The null hypothesis is that the series does not have a unit root which
is opposite to the other tests. From Table 1, it can be seen that the results show that
the first difference of M1 is a stationary series.

The last test we performed is the Zivot and Andrews (ZA) test. This test has a null
hypothesis of the unit root process with drift which excludes exogenous structural
change. (Zivot and Andrews, 2002) [32] Since in our data set, the variables may
have structural changes. The results also show that although the variables in the
level such as Agr.China, REER, and M1 are not stationary, all the variables in the
first difference are stationary which is consistent with the ADF test and the KPSS
test.

To sum up, after performing four unit root tests with trend and without trend,
we can conclude that all of the variables are stationary and, therefore, reasonable to
conduct the cointegration analysis, which is in the next section.

4.3 Cointegration Analysis

Now we ensure that all of the variables in the regression are I(1), and then next
question is whether all the variables cointegrating. The intuition of cointegration is
that the I(1) time series with a long-run equilibrium relationship cannot drift too far
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Table 1 Unit Root Tests Results

ADF Test Without Trend With Trend
Levels First Differences Levels First Differences

agr.China 1.624 -3.756(���) -2.244 -4.123(���)
agr.world -2.417 -5.146(���) 0.559 -5.163(���)

ene 0.901 -5.896(���) -2.843 -5.962(���)
reer 0.678 -7.047(���) -1.502 -7.324(���)
M1 7.603 -5.857(���) -2.239 -10.140(���)

ERS Test Without Trend With Trend
Levels First Differences Levels First Differences

agr.China 1.624 -3.756(���) -2.244 -4.123(���)
agr.world -2.122(��) -4.024(���) -3.269(**) -4.060(���)

ene -0.278 -4.504(���) -2.937(��) -4.541(���)
reer -0.880 -3.958(���) -1.301 -4.538(���)
M1 -1.301 -4.538(���) -1.468 -1.693

KPSS Test Without Trend With Trend
Levels First Differences Levels First Differences

agr.China 2.554(���) 0.124 0.122 0.058
agr.world 1.304(���) 0.080 0.152(��) 0.080

ene 2.299(���) 0.043 0.262(���) 0.044
reer 1.235(���) 0.342 0.541(���) 0.061
M1 2.664(���) 0.133 0.378(���) 0.061

ZA Test Without Trend With Trend

agr.China -3.079 -7.654(���)
agr.world -5.808(���) -5.030(�)

ene -6.107(���) -6.127(���)
reer -3.351 -7.858(���)
M1 -3.296 -8.097(���)

Note: The asterisks in the brackets show the significance of the test statistics:
� represents 10 %, �� represents 5 %, ��� represents 1 %

apart from the equilibrium because economic forces will act to restore the equilib-
rium relationship. In our case, the question changes into whether agricultural com-
modity price go together with other macroeconomic factors and international prices.
Therefore, the usual statistical results will hold since we can exclude the spurious
regression problems.(Johansen, and Juselius, 1990) [33]

Both the eigenvalue test statistic and the trace test statistic indicate that there ex-
ists one long-run relationship between relative food prices and macroeconomic vari-
ables, it makes sense to conduct an error correction analysis. The following equation
also shows that the results of long-term relationship among the different macroeco-
nomic variables and world price, world energy price in Table 3.
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Table 2 Cointegration Tests Results

r n-r Eigenvalues 1% Confidence Trace 1% Confidence

lags=8 r=0 r=1 41.38 37.52 111.21 87.31
r≤ 1 r=2 28.12 31.46 69.83 62.99
r≤ 2 r=3 19.48 25.54 41.71 42.44
r≤ 3 r=4 13.50 18.96 22.23 25.32
r≤ 4 r=5 8.73 12.25 8.73 12.25

Note: The null hypothesis H0 of the trace test is that there are r cointegration
vectors, and the alternative hypothesis is that there are n cointegration vectors;
for the maximum eigenvalue test, the null hypothesis H0 is r cointegration
vectors against the alternative hypothesis is r+1 cointegration vectors;
The number of lags was determined through the AIC principle.

Table 3 Long-term Relationship

Estimate Standard Error t value Probability

constant 2.44 0.35 6.89 0.00
agr.World 0.08 0.04 2.08 0.03

ene 0.05 0.02 2.18 0.03
m1 0.3 0.03 8.48 0.00

Note: R2 = 0.955; D.W.=0.115(0.00); the model equation is agr.China = a + b1·agr.World
+ b2·ene + b3·reer + b4·m1

In the long-term relationship, the D.W statistics is 0.115, p value is 0.00 such
that the null hypothesis is rejected, and the same results are found in the LM test,
the statistic is 115.71 and p value is 0.00. There exist serial correlations in data
set. Therefore even we get significant estimates. The estimates could be artificially
higher. The results of the long-term relationship are not explainable, we turn to the
error correction model.

4.4 Error Correction Model

After detecting cointegrating relationship between China’s prices and different vari-
ables, we adopt an error correction vector autoregressive mechanism, which adds
the residuals from the cointegrating vector. We only report variables which turn out
to be significant in Table 4. We choose the lag length followed Enders (2008) [34],
first assume the lag length is 12, and then use the AIC and BIC method to select
appropriate lags.

The important findings are as following. First, the speed of agricultural price’s
adjustment to the disequilibrium although significant, the lag term of China’s agri-
cultural commodities is powerful to explain the price itself, the real exchange rate,
money supply, international agriculture and energy price are also effective to
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predict the price. The real exchange rate (reer) has negative impact, while money
supply (M1) has positive impacts on the agricultural price.

As mentioned in the methodology section, to fully understand the relationship
among the China agricultural price, international price and also macroeconomic
variables, we measure different variables work on the volatility level via the error
correction terms as equation (2).

Table 4 The Short-term Relationship

Estimate Standard Error Probability

ect(−1)2 0.05 0.02 0.03
constant -1.27 0.57 0.03

agr.China(−1) 0.40 0.11 0.00
agr.China(−2) -0.25 0.12 0.04
agr.China(−4) 0.49 0.13 0.00
agr.world(−7) 0.13 0.06 0.03
agr.world(−10) -0.11 0.05 0.05

ene(−10) 0.08 0.03 0.01
reer(−3) -0.26 0.14 0.06

reer(−10) -0.30 0.13 0.03
m1(−4) 0.32 0.14 0.02
m1(−6) 0.42 0.13 0.00

m1(−11) 0.69 0.15 0.00
LM test 0.39(0.53)

D.W. test 1.87(0.17)

Note: We only report the significant variables;
the number in the bracket is the p-value.

4.5 GARCH-X Models

Recall the GARCH (1, 1)-X model in section 3. Here we do not consider other
lag length due to AIC value in GARCH (1, 1) is smallest. In financial literature,
GARCH (1, 1) is usually believed to be the most efficient one. (Tsay, 2005) [35].
The results are interesting as in the Table 5. The error correction term (ect), which
we incorporate into the variance is positive and significant, indicating a direct rela-
tionship between volatility and short-run deviations. In terms of the log-Likelihood
value, the GARCH (1, 1)-X model performs better than the standard GARCH(1,1)
model. For saving the space we do not present the results of GARCH(1, 1) model.
All the parameters in the variance equation are positive, and (α +β ) is lower than
one, implying that our model is workable.

We adopt three other GARCH models to confirm the above results; they are the
EGARCH, the GJR-GARCH, and GARCH-t model. (Nelson, 1993; Glosten et al.,
1993) [36, 37]From the Table 5, we can see that the results in the variance equation
is almost consistent. However, reer and m1 variables are not significant in the mean
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equation. Even some of the lag terms are significant, it is not consistent with last
section’s results. This show that the domestic macroeconomic factors may not work
much on the agricultural commodity price, China is still in a transition economy.
The power of macroeconomic factors is limited.

Table 5 Resutls of GARCH-X Model Comparing with Other Three Models

GARCH-X EGARCH GJR-GARCH GARCH-t

agr.China(-1) 0.335(���) 0.14(���) 0.480(���) 0.400
agr.China(-2) 0.358(���) 0.71(���) 0.740 0.688
agr.China(-4) 0.451(���) 0.41(���) 0.457(��) 0.440
agr.World(-7) 0.681(���) 0.49(���) 0.156 0.166
agr.World(-10) 0.453(���) 0.90(���) 0.474 0.579(���)

energy(-10) 0.220(���) 0.99(���) 0.986 0.708
reer(-3) 0.225 0.165(���) 0.220(���) 0.428
reer(-10) 0.468 0.40(���) 0.479 0.685
m1(-4) 0.125 0.899 (���) 0.103 0.148
m1(-6) 0.059 0.21(���) 0.098 0.048

m1(-11) 0.648(���) 0.102 (���) 0.122 0.021
ω 0.000(���) 0.486(���) 0.000(���) 0.004(���)
α 1.102(���) 0.094(���) 0.600 0.14
β 0.591(���) 0.384(���) 0.329(���) 0.467(���)

ect(-1) 0.294(���) - - -
γ - 0.543(���) -0.09 -

D.F - - - 3.303(��)
Loglikelihood 179.621 -112.11 173.52 152.50

AIC -327.24 242.00 -329.04 -286.99
BIC -314.881 300.33 -270.71 -228.66

Note: AIC is calculated by AIC = 2k−2ln(L), k is the number of parameters
in the statistical model, and L is the maximized value of th likelihood function
for the estimated model. BIC is calculated by BIC =−2ln(L)+kln(n),
n is the sample size.

5 Conclusions and Policy Implications

In this study, we use the GARCH-X method to analyze the relationship of China’s
agricultural price volatility and the short term deviations with a series of macroeco-
nomic variables and international price indexes. The results show that there exists a
cointegrating relationship in some of macroeconomics and international and domes-
tic price variables. However, since China is still in the stages of reform and on the
path to becoming an open market economy, some of the macroeconomics variables
did not show a significant impact on the agricultural commodity prices, unlike in
other studies which were based on open developed countries, the most influential
factors is the international agricultural commodities prices,while the real exchange
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rate, money supply and international energy price have comparatively less effects
on the prices of agricultural commodities.

The empirical results of this study are quite interesting and important. The in-
ternational food and energy price, real exchange rate, money supply influences the
domestic agricultural price not only by the mean level but also by the volatility
through the drift. As a result, we find out that the changes in international food price
can affect the farmers, producers and consumers much more than we had actually
thought they could.

The result is critical to the China’s policy makers, too, as now they can include
the short-term deviation of the macroeconomic variables and international price to
explain the volatility of the Chinese price. It becomes clear that China’s government
has increasingly less control over the agricultural prices. According to our study,
when there is an international food crisis, the domestic agricultural price will be fol-
lowing the international price, both in the mean and in the variance level. Therefore,
the government would do well to take some measures and intervene in the allocation
of the resources, thereby improving the welfare of the whole nation.
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Co-movement of Prices of Energy and
Agricultural Commodities in Biofuel Era: A
Period-GARCH Copula Approach

Gong Xue and Songsak Sriboonchitta

Abstract. This study examines volatility and co-movement structures of coal and
agricultural commodities index returns in China’s bioful era. After taking into ac-
count the periodicity of changes in coal and agriculture prices, we show that the
Period-GARCH (P-GARCH), which captures the characteristics of two commodi-
ties is more adequate in contrast to the previously proposed models where the resid-
uals were skewed and had kurtosis, here the resulting residuals are almost Gaussian.
Finally, our proposed P-GARCH time-varying copula models indicate that the de-
pendence between energy and agricultural commodities index returns is positive and
increasingly stable.

1 Introduction

Traditionally, it has always been a low correlation that existed between the agricul-
tural market and the energy market in China. However, the recent increases in the
technology changes in the field coupled with biofuel production have altered the
agriculture-energy relationship in a fundamental way. (Hertel and Beckman, 2011)
[1]

The agriculture-energy relationship works two ways: First, the agricultural com-
modities price could increase the energy price via the bioethanol industry. As the
third largest bioethanol producer in the world after the United States and Brazil,
China mainly uses grains such as corn and wheat as the feedstock for bioethanol
production. (Qiu et al., 2010) [2] The development of China’s biofuel industry
could be traced back to early 2000. With the aim of reducing greenhouse gas (GHG)
emissions and due to energy security considerations, the Chinese government im-
plemented an host of subsidy policies; hence the bioethanol production increased
rapidly and reached 1.35 million tons in 2007. (Qiu et al., 2010) [2] Although,
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in 2007, the government prohibited the use of cereals such as corn and wheat in
bioethanol plants, four large formerly stat-owned plants still allowed the use of
these. These four plants use approximately 1.5 million tons of corn annually. Sec-
ond, since the industrialization and the subsequent development, more and more
young laborers went away to the western part of China to be workers, and the old la-
borers adopted more machines in their field. Also, the increasing adoption of chem-
ical fertilizers in China calls for more energy usage. Thus, a rise in energy price is
bound to increase farm fertilizer production cost, machine production, transporta-
tion cost, and, finally, the farm rise of produce price. (Hang and Tu, 2007) [3]

China is the major coal producer and exporter in the world. (Gregg et al., 2008)
[4] Coal is still the main energy source for the Chinese people, although there are
many kinds of emerging energy. In the past, the coal price and the prices of other
raw materials were largely kept low because of the planned economy in China,
and a dual price system was adopted, one price for the market and another price
for the power plants. (Wright, 2009) [5] However, after thirty years of reform, the
coal prices are now decided by the market. Since 2002, the government stopped
publishing the “electricity and coal guidance price”, which published every year
until 2002. During the period from 2002 to 2005, the coal market price reform has
been moving both backward and forward. The government announced the price
control schedules temporarily; for example, in 2005, the government announced that
the coal price should be based on last year’s price, and that the growth rate cannot be
larger than 8%. Until the end of 2005, the Chinese government had maintained that
the government will no longer control the coal price. The coal price is finally going
to the market. Without any controls and with a large demand from the industries in
China, the coal prices had experienced unprecedented high levels of fluctuations.
For example, the coal price rose steadily from $36.69 per ton in January 2001 to
$74.23 per ton in October 2006. (Fridley and Eden, 2008) [6] At the same time, the
agricultural commodities prices are also raising drastically, with the price index of
agricultural commodities jumping from 96.6 to 139.3. The positive co-movement of
the two prices in China is an interesting phenomenon. Since energy and agriculture
are the two most important sectors for China, and increasing evidences show that
various factors are causing the agricultural and energy markets to be more highly
integrated. What is the dependence structure between the agriculture commodity
price and coal price in China? Specifically, how do we model price and forecast
accurately the volatility and dependence between the agriculture products price and
the coal price? Understand these relationships can help the Chinese policy makers
formulate better make food and energy policies.

The objective of this study is to investigate the volatility and dependence struc-
tures between China’s energy price and agricultural commodity price using period-
GARCH copula models. The contribution of this study to the relevant literature
are the following: (1) this is the first study to attempt adopting the copula-based
GARCH models to elastically describe the dependence structures of the coal price
and the agricultural commodities price return in China, since China’s coal price
reform has been just reaching its final stages in last decades. (2) The P-GARCH
modeling was first used to model the seasonal changes in China’s commodities
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price volatility, and since the commodities have a persistent demand and supply pat-
tern, we believe that this method can capture the characteristics of the commodities
price well. Moreover, taking into consideration the Chinese government’s “back and
forth” behavior, we also include a variable to represent the government adjustment
on the food price and also the coal volatility function, respectively.

The paper is organized as follows: In Section 2, literature Reviews about relation-
ship of energy and agricultural commodities price and also different methods will
be presented. In Section 3, the methodology about the Period-GARCH and Copula
will be introduced. The empirical results are presented in Section 4. It is followed
by some concluding remarks in Section 5.

2 Literature Review

Recently, many methods have been adopted to estimate the relationship between
the energy and agriculture commodities markets. Most of them use the vector er-
ror correction (VECM) model. Campiche et al. (2007) [7] examine the covariability
between crude oil prices and several agricultural commodities prices from 2003 to
2007. The results show that corn and soybean prices are cointegrated with crude
oil price during the 2006-2007 period, but not during 2003-2005 period. And when
Harri, Nalley and Hudson (2009) [8] added a new variable, exchange rate, into the
cointegrating vector, the results showed that a cointegrating relationship exists be-
tween the agricultural commodities prices and the crude oil prices in April 2006 and
that the exchange rates also have an effect on the cointegrating vectors. There are
several studies that focus on China. Zhang and Reeds (2008) [9] studied the cointe-
grating relationship between the oil price and the pork prices, and showed that the
crude oil price is not the most influential factor for the continuing rise of Chinese
feed grain and pork prices. Wang and Xie (2012) [10] explored whether prices of
foreign agricultural products and other factors, including the international coal fu-
tures, affect Chinese domestic prices of agricultural products. They use the monthly
data by using the cointegrating method. The results show that the international coal
price has positive effect on China’s agricultural commodity prices.

The study of price and return co-movements has both economic and statisti-
cal significance. Therefore, it is of interest to both academicians and practitioners.
Previous research, such as those done by Du and McPhail (2012) [11], Baillie and
Myers (1991) [12], examined the dynamic evolution of the prices of agricultural
commodities and energy over the period of March 2005 to March 2011 via the mul-
tivariate GARCH model. However, the shortcoming of this approach is that it is a
severe assumption based on the multivariate normal and t distributions within an
elliptical world. (Wu et al., 2012) [13] However, the energy and agricultural com-
modities returns are skewed and heavy-tailed, and have excess kurtosis, and seasonal
changes, in our empirical observations. Bester (1999) [14] analyzed the seasonal
volatility by using the Period-GARCH (P-GARCH) model. Six futures price series
such as those of oil, corn, and soybean were examined, and found to have a sig-
nificant seasonal component in volatility. This P-GARCH model can eliminate the
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excess kurtosis in the commodities. In this study, we also modify the P-GARCH
model to exclude the skewness and heavy tail by replacing the normal error term
with the student t distribution. (Baillie and Myers, 1991) [12]

Moreover, the actual dependence between the agricultural and energy commodi-
ties returns can be best captured by asymmetrical modeling. For example, the left
downside risk of coal returns comovment with agricultural commodities is more ob-
vious than the right side. The comovement could be not symmetric. To overcome
these shortcomings, we use time varying Copula models to capture the dependence
structures of coal and agricultural commodities returns. The usage of the copula
makes the modeling more flexible than joint distributions of bivariate normal or
Student-t distributions, and combined with the P-GARCH, it can better capture the
characteristics of the commodities price. The model will hopefully explain the be-
havior of the dynamic dependence of these two commodities.

3 Methodology

3.1 Period-GARCH Modeling for Marginal

The prices of agricultural commodities, such as crops and even energy, for example,
coal, all suffer seasonal changes. Although China is big country, mainland China is
dominated by warm temperate monsoon climate zone. With this type of climate, the
country has four significant seasons, especially from the point of view of agriculture:
the grain is planted during the spring time, it grows in the summer, is harvested
in the autumn, and is in hibernation in the winter. The information regarding the
changes in grain supply reaches grain price. The same is the case with coal, in the
northern part of China, where the lowest temperature can be -30◦in the winter, while
in the summer time, the highest temperature can touch the 40◦in almost the whole
of China. (Zhai and Pan, 2003) [15]In these extreme temperature conditions, the
Chinese residents would invariably need the air conditioning as well as the room-
heating facilities. In the traditional method, the Chinese would burn coals to keep
themselves warm since in the northern China, there is a large number of coalmines.
Nowadays, even though people use a variety of sources to get electricity, coal still
remains the most important energy source for China. Therefore, it is reasonable
to use the P-GARCH model to capture the price characteristics. Furthermore, we
choose to add some variables in order to model the government control behaviors.

Autoregressive conditional heteroskedasticity (ARCH) models and generalized
autoregressive conditional heteroskedasticity(GARCH) models model the price se-
ries by allowing variance to evolve through the time. (Engle, 1982; Bollerslev 1986)
[16, 17] This model is widely used in the financial market since it considers the inde-
pendent properties of the return series. The P-GARCH model, which was proposed
by Bollerslev and Ghysels (1996) [18], accounts for the seasonal changes or the pe-
riod cycle; at first it was developed for the high frequency financial data, the opening
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and closing time will make the price has seasonal change property. However, later,
this model was introduced to estimate and forecast the prices of the commodities,
such as those of energy, agriculture, and so on. (Koopman and Carnero, 2007; Win-
niford, 2003) [19, 20]. The modified P-GARCH model is as follows:

The mean function is
yt = Et−1[yt ]+ εt (1)

where εt =
√

ht · zt , zt denote the independent individual variables (i.i.d.) with ex-
pectation zero, and variance one. The variance function is as follows:

ht = ωs(t) +
q

∑
i=1

αis(t)ε2
t−1 +

p

∑
i=1

βis(t)ht−1 (2)

where s(t) denotes the stage of the seasonal cycle at time t, implying that a different
GARCH parameter will be estimated in different seasons. In our study, we define the
s(t) = k (k=1,2,3,...,12), k represents different calendar months, that is, k=1 denotes
January, k=2 denotes February,. . ., and so on. Here, we only consider the simple
version of the P-GARCH model as there are seasonal changes in ωs(t) but α and
β are constant. This is because first, in this model, the α measures the immediate
impact of the news on volatility, while β measures the smooth, long-term change
on volatility. (Bollerslev and Ghysels, 1996) [18] Second, empirically, it is difficult
to estimate β . The estimations are always not converged. (Bester, 1999) [14] In our
study, our data observations are small also.

Here, we insert the Producer Price Index (PPI) and the Consumer Price Index
(CPI) as the indexes, the reason is, as we mentioned in the last section, because the
government announced that it will not control the price but that it still feels its duty
to stabilize the price; for this reason, we insert these two variables into the variance
functions of coal and agricultural commodities respectively, which implies that the
higher PPI, the higher the distorted pressure from the government. The same is the
case for the agricultural commodities; however, because the food prices are usually
reflected in the CPI, we used CPI as an indicator.

Model One:

ht = ω+
q

∑
i=1

αis(t)ε2
t−1 +

p

∑
i=1

βis(t)ht−1 + γ · index (3)

Model Two:

ht = ωs(t) +
q

∑
i=1

αis(t)ε2
t−1 +

p

∑
i=1

βis(t)ht−1 + γ · index (4)
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3.2 Copula Method

(a) Essence of Copula

Previously, when we wished to know the dependence of two series, we would have
to assume that the marginal distribution is normal, and that the multivariate normal
distribution is then the joint distribution. This is quite inconvenient because normal
distribution is not widely fit for the price return data which has heavy tail. The
invention of the copulas solved this problem. (Sklar, 1958) [21]

The central idea of the copula is to link different margins into a multivariate dis-
tribution functions. Such functions make the joint distribution more flexible, and
therefore can explain the real distribution thoroughly. The highlight of the copula
function allows to the defining of a multivariate distribution with the marginal dis-
tributions F1(x1) and F2(x2) but not the realizations x1 and x2.

According to Sklar’s theorem, if H is a joint distribution between the marginals
F1(x1) and F2(x2), which are defined on the realizations of x1 and x2, and the cop-
ula function C links directly between the marginals F1(x1) and F2(x2), for simple
notations, we define F1(x1) = u1 and F1(x1) = u1. Therefore, it follows that

H(x1,x2) =C(u1,u2) (5)

There are two copula functions in elliptical copula , they are Gaussian copula
and t copula, which are exactly the bivariate normal and the student t distribution,
the pdf, cdf forms and other characteristics can be found in Jondeau and Rockinger
(2006) [22], and Lee and Long (2009) [23] in details. The difference between two
elliptical copulas is the tail dependence. The normal copula has no tail indepen-
dence, however the t copula can capture tail dependence but not asymmetric. Since,
in the financial empirical analysis, the heavy tails always exist and since only tail
can bring about loss, the study on the relationship between the tails is more in-
teresting. To overcome two problems of elliptical copula: symmetric tail and static
dependence, we introduce the Archimedean copulas and also in addition to the time-
varying copula modeling.

We use several Archimedean copulas to model the dependence between the en-
ergy and agricultural returns, they are, Clayton copula, Survival Clayton copula,
mixed Clayton copula ,Frank copula and Ali-Mikhail-Haq(AMH) copula, the de-
tails of these copulas can be checked in the references. (Jondeau and Rockinger,
2006; Lee and Long, 2009) [22, 23] The advantage of the Archimedean copula is
that they can explain the asymmetric tails. Even if the co-movements of the tail
exist, the left-side and the right-side movement could be asymmetric. Therefore the
application of Archimedean copula could help to improve the accuracy of the model.

To relax the assumption of the static dependence parameters, we introduced the
time-varying copulas also into our estimation. This was done because of the fact that
the relationship between the coal price and the agricultural commodities price could
change all the time. Patton (2006) [24] introduced the conditional copula function



Co-movement of Prices of Energy and Agricultural Commodities in Biofuel Era 511

to model time-varying conditional dependence. Assume the marginal conditional
probability density functions are:

u1,t = F1,t(y1,t |ψt−1) (6)

and
u2,t = F2,t(y2,t |ψt−1) (7)

where y1,t and y2,t are the coal price return and the agricultural commodities in-
dex, and F1,t and F2,t are the period GARCH filters, and ψt−1 is the information
set in the last periods. If we plug equation (7) into the equation in Sklar’s theory
(6). Hence we obtain the following time-varying copula equal to the bivariate con-
ditional CDF:

Ct(u1,t ,u2,t |ψt−1) = F(y1,t ,y2,t |ψt−1) (8)

To estimate the copula function, we differentiate and log equation (8), and then
maximize the log-likelihood functions:

l(θ ) =
t

∑
t=1

n

∑
i=1

logc{F1(Yi1;β1),F2(Yi2;β2;αt)+
n

∑
i=1

(log f1(Yi1;β1), log f2(Yi2;β2))

(9)
where F1 and F2 are the CDF of the P-GARCH marginal, f1 and f2 are the PDF of
the P-GARCH marginal,and β1 and β2 are the vectors of the P-GARCH marginal
parameters, and αt is the time-varying copula parameter vector. In our study, four
different copula functions are used in time varying context. Hopefully, they can pro-
vide the most accurate dependence structure between China’s coal and agricultural
commodities prices.

Here we adopt the two-stage estimation method which was proposed by Joe
(1997) [25], and this estimation is also called inference functions for margins (IFM).
The reason to use this method but not the maximum likelihood (ML) is that with
the increase in the number of parameters increases in estimation, the optimization
problem becomes difficult to implement: in our P-GARCH model the estimator is
sixteen, much more than the usual GARCH(1,1) model. The process of this method
is to estimate, in the first stage, the marginal parameters and then to estimate the
copula function with the marginal parameters estimated in first stage. In the empir-
ical study, the results of the IFM and ML are always found to be consistent. (Yan,
2007) [26]

To describe the time-varying dependence structure, we assume that the depen-
dence parameters ρt or τt depend on dependence on the last period ρt or τt and a
drift between the u1,t−1 and u2,t−1. Here, we adjust the previous method to better
solve our problem. Since we believe that these two variables are cointegrating, the
distance between the two((u1,t−1−u2,t−1)

2) could explain the correlation, that is, in
the last period the drift is smaller, and then, in the next period, the dependence will
be larger.

ρt =Λ(a+ bρ(t− 1)+ c(u1,t−1− u2,t−1)
2) (10)
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Following the literature (Patton, 2009 and Wu, 2012) [24,13], Λ is the logistic
transformation, which assures the correlation and kendall’s tau to be always in the
range of [-1, 1].

4 Empirical Results

4.1 Data and Descriptive Statistics

In our study, the monthly agricultural commodity index were abstracted from the
National Bureau of Statistics of China (NBSC), and the monthly coal prices were
sourced from the China Energy Databook 7.0 which published by the Lawrence
Berkeley National Laboratory, in cooperation with China in 2008, which is the stan-
dard reference in use by the international energy community. The data span is from
January 2001 to December 2006. In the coal price data, some of the November
and December are unavailable due to discontinued data in sources. Noted that the
Pearson correlation of these two series is up to 0.92, which implying the strong
correlation of two data series. The comovement of the two series can be observed
in Figure 1. In addition, we included two variables, CPI index and PPI index, into
the estimation. The data for both were recovered from the NBSC monthly database.
To get a stationary series, we follow the literature and logarithm the price: yt =
log(pt/pt−1)× 100. The summary of basic statistics is shown in Table 1.

Fig. 1 The Co-movement of the Coal and Agricultural Price Indexes

Note: This figure shows the co-movement of two series: the upper line is the agricultural
index and the lower line is the coal price. The coal data is discontinued due to the data
sources being incomplete.

It can be read from Table 1 that the standard deviation of coal is higher than the
agricultural index, that is, the coal return is more volatile; however, the agricultural
index return is more skewed toward the right tail. The dominant factor in the two se-
ries is the excess kurtosis statistics, the values of both the coal and agricultural com-
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Table 1 Data Description

Coal Agricultural Commodity Index

Mean 0.997 0.501
S.D. 4.039 1.978

Skewness 0.487 2.245
Kurtosis 10.217 11.302

Max 19.35 10.74
Min -16.49 -4.162
JB 313.348(0.00) 437.449(0.00)

Note: This table shows the descriptive statistics for monthly coal and
agricultural commodities index returns from January 2001 to December
2006. SD is standard deviation value. JB is the JarqueBera statistic,
a normality test. The p value is in bracket, 0.00 means the null hypothesis
is rejected, and two series are not normal distributions.

modities indexes are significantly positive, implying that the distribution of returns
has heavier tails than the normal distribution. The results of the JarqueBera statistics
also confirm that the two distributions are not normal. Also, the Augmented Dickey-
Fuller (ADF) test rejects the null hypothesis of a unit root in both series; therefore
the two series are stationary.

4.2 Estimation Results

(a) GARCH Modeling with Government Control Variable

The models presented here are estimated via maximum likelihood in the R pro-
gram. The results of the GARCH modeling (Model 1) are presented in Table 2. It is
easy to read from the table that all the estimated coefficients are highly significant,
and robust with respect to initial values. When we compared this with the fGarch

Table 2 Estimation Results of GARCH

Coal Agricultural Commodity Index

ω 2.33(���) 0.38(���)
α 0.40(���) 0.02(���)
β 0.77(���) 0.90(���)
γ -.90(���) -0.24(���)

Loglikelihood -167.26 -101.93
Standard Residuals

Skewness -0.95 2.57
Kurtoiss 8.99 13.50

Note:��� in bracket show the 1% significance.
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package GARCH(1,1) model, we found that our estimates were consistent. The log-
likelihood is bigger in both the series, which means the inclusion of our government
control variable is reasonable. The sign of γ is negative, which implies that the price
adjustment has an effect on the volatility.

(b) P-GARCH Model with Flexible α

To estimate the P-GARCH model, we follow the literature and sum up the con-
ditional log likelihood in each season, and employ the MLE to get the estimates
as the estimation of typical GARCH model as discussed in the previous section.
(Bollerslev and Ghysels, 1996; Bester, 1999) [18,14] We adopt not only the normal
distribution but also the student t distribution, since after GARCH filtering the agri-
cultural commodity index still had high skewness. The results of the second model
are presented in Table 3:

Table 3 Estimation of P-GARCH

Coal Agricultural Commodity Index
Normal Student t Normal Student t

ω1 1.27(�) 1.11 0.83(�) 0.80
ω2 -0.37 0.13 -0.05 -0.02
ω3 -0.57 -0.04 -0.05 -0.02
ω4 0.14 0.17 0.01 0.00
ω5 0.39 0.18 -0.04 0.02(�)
ω6 -0.08 -0.04 0.04 -0.03(�)
ω7 0.58 0.10 0.09 0.18
ω8 0.12 0.09 0.07 0.05
ω9 -0.13 -0.07 0.00 -0.02
ω10 0.48 -0.10 0.03 0.01
ω11 -0.13 -0.12 -0.02 -0.03
ω12 -0.26 0.07(��) -0.01(�) -0.03
α -0.20(���) 0.04(���) 0.20 0.20(���)
β 1.07(���) 0.82(���) 0.90(���) 0.85(���)
γ -1.19(���) -0.74(���) -0.89(���) -0.78(���)
df - -0.74(���) - -0.78(���)

Loglikelihood -153.88 -159.59 -92.90 -100.11
Standard Residuals

Skewness 0.11 -1.37 1.08 1.34
Kurtosis 0.97 5.97 2.72 4.12

Note: ��� in bracket show the 1% significance, �� in bracket show the 5% significance,
� in bracket show the 10% significance.

As mentioned in the last section, the seasonal change variable is the constant
in the GARCH equation. Note that ω̂1 = ω1; ω̂s(t) = ω1 +ωs(t) , in our study, s(t)
represents the seasons in the period of a month. Therefore, t = 1, 2,..., 12; when t = 1,
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s(1) corresponds to January, when t = 2, s(2) is February, etc. The best improvement
of P-GARCH model when compared with the GARCH model is that the Kurtosis
value is largely reduced in all the cases. However, the student t distribution is not
superior to the normal distribution. These results are highly consistent with Bester
(1999). [14]

(c) Static Copula

Some of the Archimedean copulas have complicated Kendall’s tau transformation
functions; hence, it is difficult to make the dependence, which is represented by
Kendall’s tau, change with the time. Therefore, we estimate the static copula just to
roughly understand the dependence between the coal price and the agriculture index
return. As a benchmark, we also include the Gaussian copula to represent the ellip-
tical copula. The results, as shown in Table 4, are quite disappointing. According
to the AIC and the BIC principles, the Gaussian dependence structure is superior
to the others. These results indicate that the tail dependence may not form the core
of the modeling in our analyses. The result is also consistent with Wu et al. (2012)
[13], who studied the dependence between oil and exchange-rate returns during the
period from 1990 to 2009. The similar outcome concludes that the tail dependence
does not add any explanatory ability to the estimations in static context.

Table 4 Estimation Results of Static Copula

Parameter Loglikelihood AIC BIC

Gaussian 0.21 0.16 1.68 3.87
Frank 0.48 0.04 1.91 4.10
AMH 0.11 0.02 1.96 4.15

Note: The AIC is calculated by AIC = 2k− 2ln(L); k is the number of parameters in the
statistical model, and L is the maximized value of the likelihood function for the estimated
model. BIC is calculated by BIC =−2ln(L)+kln(n); n is the sample size, and k is the same
as in the AIC.

(d) Time-Varying Copula

Recall the discussion in section 3. We follow the previous studies to assume that
the dependence relies on the last period dependence and a certain relationship be-
tween the transformed uniform data. The specific function can be found in equation
(10). When estimating, we give a restricted form for b, since b is correlation be-
tween next period and this period, we assume that the correlation should be between
(-1, 1). And also for c, the difference between the two series has persistence effect,
which is between (-1, 1).

Table 4 reports the parameter estimates for the different copula functions. There
are totally four copula functions adopted, and they are Gaussian copula, Clayton
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copula, survival Clayton copula, mixed Clayton copula in the time-varying context.
We do not use the Gumbel copula due to its limited to describe a positive depen-
dence structure. Hence, we tend to use the survival Clayton copula which is similar
to the Gumbel copula. And we also include the time-varying Gaussian copula as a
benchmark to compare. The results are encouraging: looking at the values of the log-
likelihood, Guassian copula in time varying context is higher than the static copula,
that means time-varying copula may outperform. The Clayton dependence structure
is better than other Archimedean copulas and also the Gaussian copula. And there-
fore the survival Clayton copula may not fit well for our data since it has opposite
tail dependence with Clayton copula. The coal and agricultural commodities price
has lower tail dependence, when the coal price is moving down, the agricultural
commodities also moves together; this lower tail dependence can be also found in
many financial literature, which modeling by the Clayton copula. (Bartram et al.,
2006; Wu, 2012) [13, 27]

We draw the time-varying dependence of Clayton in Figure 2, which is the best
fit in our estimation. The Figure illustrates the dynamic changes of the dependence
relationship clearly. The dependence is as high as our expected: the dependence
becomes stable in recent year.

Table 5 Estimation Results of Time-Varying Copula

a b c w Loglikelihood AIC BIC

Gaussian 0.24(���) 0.95 0.00 - 0.41 5.16 11.73
Clayton 0.99 0.94 1.00 - 3.19 -0.38 6.18

Survival Clayton 0.15 0.95 -1.00 - 1.54 2.91 9.48
Mixed Clayton 0.15 0.95 -1.00 0.00 1.54 2.91 9.48

Fig. 2 The Dependence Estimates (Kendall’s tau) between Coal and Agricultural Index from
January, 2001 - October, 2006
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5 Conclusion and Policy Implication

With China’s advancement in coal reform and price control release, coal, as the
most important energy source in China gradually went to the market. Since 2001,
the government started to promote the emerging energy policy: prices of agricultural
commodity, with agricultural commodities becoming the main feedstock, started to
connect with energy price. Coal price, as well as prices of agricultural commodi-
ties, has exhibited significant co-movement. This relationship of co-movement has
enabled the coal and agricultural products to serve as useful tools in forecasting
for each other. Hence, this study is an attempt to estimate the volatility and co-
movement structures of coal price and agricultural commodities return by using
appropriate copula-based models.

However, it has been demonstrated that energy price and agricultural commodi-
ties index returns has some characteristic that very different from the financial se-
ries, say seasonal changes. With the demand and supply shocks regularly comes,
the returns also has regular pattern. To capture these characteristics, we adopted
the P-GARCH model to model the volatility. In statistical sense, these changes can
eliminate the kurtosis and skewness in the return data. Unsurprisingly, when we
filter the data by this improved GARCH model, the standard residuals show nice
property than others. Moreover, we include a government control variable to the
variance function, since the policy in our study period is always back and forth, the
results show that the variable is significant.

The dependence structure between coal price and agricultural index returns may
also exhibit an asymmetric or tail dependence structure. To overcome the short-
comings of multivariate GARCH model in elliptical world, we use more flexible
Archimedean copula to model the dependence, the results in the context of time
varying copula is promising. We find that the dependence structure between coal
and agricultural commodities returns becomes increasingly positive.

Future work on this topic could extend the data span in order to make more
accurate estimations. Since China’s coal price reform was in its final stages, and the
data set was difficult to obtain, our study could use only limited data. Trying a new
and long data set may yield better results. Another point to bear in mind would be
to improve the copula estimation. Further studies should be conducted to find better
ways of incorporating the time-varying parameters.
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Wage Determination and Compensating Wage
Differentials in the Informal Sector
A Quantile Regression with Multi-level Sample
Selection

Pisit Leeahtam, Supanika Leurcharusmee, and Peerapat Jatukannyaprateep

Abstract. This study investigates Chiang Mai informal workers’ wage determina-
tion in the equilibrium focusing on the compensating wage differential from taking
occupational hazard risks with the presence of unemployment risk. Since there is
a substantial heterogeneity among different groups within the informal sector, this
study applies the quantile regression analysis with multi-level sample selection. The
results show evidences for the compensating wage differentials in the lower and
middle quantiles, but not the higher quantiles. The introduction of the unemploy-
ment risk variable into the wage equation proves the significance of the job mobility
assumption. With unemployment risk, the workers not only are not compensated for
their occupational hazards, but also face with an inefficient job matching outcomes.
This emphasizes the significant spill-over benefit from the improvement of the job
mobility condition.

1 Introduction

This paper is a part of The Informal Worker Analysis and Survey Modelling for Effi-
cient Informal Worker Management Project with an objective to study the structure
and nature of the informal sector in Thailand. The core project collected informal
workers data in four provinces in four different regions of Thailand in 2012. This
paper only focuses on the wage determination and compensating differentials in the
informal sector in Chiang Mai Province.

The definition of informal worker varies across organizations. Therefore, it is im-
portant to first state the definition used for this study. In the context of Thai labor
law and the government-provided work benefit, the core project defines the term
informal workers as workers aged 15 or over who do not receive occupational wel-
fare benefits from the government or do not have license for professional practice
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or enterprise owners with no business registration. In particular, the informal sector
includes all workers not included in the formal sector. The formal sector includes
1) members of government organized occupational benefit fund; 2) workers with li-
cense for professional practice and; 3) enterprise owners with business registration.
Specifically, the informal sector in Thailand is predominated with self-employed
workers, freelance workers and unregistered employees such as farmers, street ven-
dors, construction workers and housemaids.

In 2012, Thailands National Statistical Office[21] reported that informal workers
were accounted for approximately 62.2 percent of the entire labor force. Despite the
large number of informal workers, the labor laws and policies are not yet well suited
for the nature of workers in this sector. Furthermore, comparing to the minimum
wage rate at the time of data collection of 251 baht per day or 31.37 baht per hour,
a little above 50 percent of informal workers from the survey data in Chiang Mai
lived on wage lower than the minimum wage. This result is not entirely surprising
because the minimum wage law cannot be applied to the majority of the informal
workers. For example, self-employed and freelance workers do not have permanent
employers and, thus, do not receive formal wages that can be bind by the minimum
wage law. Moreover, the law is violated in several other groups of informal workers.
Those employees with no employment contract are prone to face under-standard
working condition and low wages.

In addition to the low wage problem, informal workers also faced several occu-
pational hazards and many of them reported injuries from work. The data show that
53.46 percent of the informal workers in Chiang Mai believe that they are facing
occupational hazards that affect their health and 68.37 percent reported that they
had been injured from their job in the past 12 months.

Fig. 1 The informal worker wage distribution in Chiang Mai and the mean wage of 51.72
baht per hour
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In this research, we examine whether and when informal workers in Chiang Mai
receive compensation for their risk from occupational hazards. That is, the key ob-
jective is to indicate in which cases that the compensating wage differential effect
is significant. In particular, we construct an equilibrium wage determination model
with occupational hazards and unemployment risk for informal workers in different
quantiles of the wage distribution. From the model, we estimate the compensating
wage differentials and the effect of unemployment risk on compensating wage dif-
ferentials in all quantiles. The results then indicate in which wage ranges that we
can observe the compensating wage differential effect. Moreover, the results can
also indicate the effect of the labor market condition on the compensating wage
differential effect. That is, when the labor market does not exhibit perfect job mo-
bility or there exists unemployment risk, the compensating wage differential effect
becomes insignificant.

The concept of compensating wage differentials introduced by Rosen (1974[15],
1986[16]) suggests that multiple equilibrium wage levels and the wage differentials
should reflect workers willingness to accept the compensation for negative non-
wage job characteristics such as the presence of occupational hazards. That is, the
concept predicts a higher equilibrium wage for a riskier job and a lower equilib-
rium wage for a safer job. The magnitude and significance of the compensating
wage differentials is valuable because it provides policy makers with information
on potential effects of safety policies. Moreover, the presence or absence of the
compensating wage differential effect is also an indicator of labor market efficiency.

The standard compensating wage differential relies on three main assumptions
which are: (1) Workers maximize their utility (2) There is no asymmetric infor-
mation among workers and firms, and (3) There is perfect job mobility. The first
assumption implies that workers decisions also depend on other job characteristics,
not wage alone. The second assumption states that workers know about the desirable
and undesirable job characteristics before choosing the jobs, and the third assump-
tion implies that there is no unemployment risk. Violating the above assumptions
causes a bias in the compensating wage differential estimation. In our paper, how-
ever, we relax assumption (3) to capture a more realistic nature of the actual labor
market. In this case, workers face unemployment risk causing imperfect mobility
i.e. there is a cost in changing jobs. To allow the imperfection of the labor market,
we include the unemployment risk variable to the wage equation. As the unemploy-
ment risk variable in most literatures is included in the wage equation to study the
compensating wage differential due to the risk itself, it is important to clarify that the
variable is added here to control for the market condition. The unemployment risk
variable used in this study measures whether the worker believes that she can find a
new job within three months if she loses her current job. Therefore, the variable does
not directly imply the workers risk to lose her current job. It is interesting to note
that the coefficients of the unemployment risk are not statistically significant in any
models. However, the coefficients of the interaction terms between the hazard and
the unemployment risk variables are significantly negative, especially in the lower
quantiles. Consistent with the theory, the compensating wage differentials shrink in
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the presence of unemployment risk. When there is a friction in the labor market,
workers are less likely to switch jobs to gain a better wage-risk combinations.

As suggested by Viscusi and Aldy (2003)[22], the choice of the risk measures
significantly affects the compensating wage differential estimates. The standard ap-
proach to measure occupational risks is to use industry-specific or occupational-
specific risk measures. Only few papers use workers subjective perception toward
risks and no paper use firms risk perception. Viscusi and Aldy (2003)[22] also men-
tions that, from the theory of compensating wage differential, the ideal measure of
risks should reflect the perception of both workers and firms. In contrast to most pa-
pers, this study uses individual-level data with variables on each individuals percep-
tion on her occupational hazard and her unemployment risk which is an advantage
for the estimation of compensating wage differentials.

Since there is a substantial heterogeneity among different groups within the infor-
mal sector, this study applies the quantile regression analysis introduced by Koenker
and Bassett (1978)[9] to capture different structures of wage determinations for in-
formal workers in different quantiles of the conditional wage distribution. This is
crucial as the estimation at the conditional mean wage may not represent the entire
wage distribution. The results reflect the contribution of the quantile analysis as the
estimates for the compensating wage differential significantly varies across quantile.
The ordinary least squared (OLS) estimates are consistent with the quantile regres-
sion results in the middle and higher quantiles. Nonetheless, the OLS method does
not represent the estimates in the lowest quantiles very well.

In addition to the better illustration of the informal labor market, the quantile re-
gression is robust to outliers, heteroskedasticity and misspecification of the model.
However, the estimates still suffer from sample selection. In this study, the wage
equation for informal workers faces two-stage sample selection problemthe selec-
tion into the labor force and the selection into the informal sector. To handle the
selection bias, the estimation is executed in two stages. The first stage uses the pro-
bit model with sample selection to acquire the inverse Mills ratio (IMR). The second
stage follows Buchinsky (1998)[4] s quantile regression method. The results show
that the coefficient of the IMR is significant indicating the necessity for the sample
selection treatment.

2 Literature Reviews

A common approach to empirically study the compensating wage differentials is
the hedonic wage model. The model examines the equilibrium wage-risk combina-
tions without explaining the underlying labor demand and supply structure behind
the equilibrium outcomes . Empirical evidences for the compensating wage differ-
entials in the case of occupational hazards differ in many dimensions. The main
differences specified by Viscusi and Aldy (2003)[22] include the measure of risks,
the measure of wage, the estimation and the technique to control for unobserved
heterogeneities and other biases. Viscusi and Aldy (2003)[22] concludes that dif-
ferent risk measures result in different estimates for compensating differentials. In
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particular, the models that use occupational specific risk measure are more likely to
face measurement error problem. Different wage measures have a smaller effect on
the estimates. For example, Moore and Viscusi (1988)[12] and Shanmugam (1996
[17], 1997[18]) find that the Box-Cox wage specification is significantly different
from the semi-logarithmic specification. However, both specifications give approx-
imately the same results for the compensating differential estimates. Techniques to
control for unobserved heterogeneities are also an important aspect that significantly
affects the results. While an inability to control for other job characteristics biases
the estimate, the inclusion of too many job characteristics causes multicolinearity
problem.

Viscusi and Aldy (2003)[22] reviews more than 60 studies of mortality risk
premiums. The study finds that, while roughly 40 studies show the evidence of
the risk premiums, the other 20 studies did not find the effect significant. Shan-
mugam (2001)[19] estimates the return to risk under self-selection bias in India.
The results show a significant evidence for the compensating wage differentials.
They also show substantial difference in the return to risk before and after correct-
ing for the bias from self-selecting into a risky job. Leeth and Ruser (2003)[11] finds
a strong evidence of the compensating wage differentials for fatal risk in white and
Hispanic males and that for nonfatal injury risk in all groups with the largest effect
for white females. All the results suggest that the compensating wage differentials
are highly heterogeneous.

There are a limited number of empirical studies on the compensating wage dif-
ferentials in an imperfect labor market. Guo and Hammitt (2009)[6] estimates the
value of mortality risk in China using the compensating-wage-differential method.
The study finds a significantly positive correlation between wages and occupational
fatality risk and the correlation reduces with the unemployment rate. Bender and
Mridha (2011)[1] finds that a probability of job loss significantly reduces the com-
pensating wage differentials.

As for the estimation method, this study applies the quantile regression analysis
introduced by Koenker and Bassett (1978)[9] to capture different structures of wage
determinations for informal workers in different quantiles of the conditional wage
distribution. In addition, the quantile regression is considered a robust estimation in
several aspects. First, similar to median regressions, the quantile regression is ro-
bust to outliers. As long as the sign of the error term does not change, a change in
the value of the dependent variable of that observation does not change the result.
Second, with the models semi-parametric nature, it does not rely on the normal-
ity assumption of the error terms. Finally, with the pairs-bootstrap method for the
covariance estimation suggested by Buchinsky (1995)[3], the model is robust to
heteroskedasticity and misspecification of the quantile regression function.

The estimation of the model also suffers from the sample selection bias because
the wage variable is observed only for a non-random subsample of the popula-
tion. In this case, an hourly wage is observed only if the individual is working in
the informal sector. That is, the model faces two levels of sample selection. The
first level is the selection into workforce and the second level is the selection into
the informal sector. For the solution to the selection problem, this study follows
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Buchinsky (1998)[4] with a modification to support the two-stage sample selection
issue. The estimation in Buchinsky (1998)[4] applies Ichimura (1993)[8]s semipara-
metric least-squares method for the selection equation and Newey (1991)[14]s series
expansion of the inverse Mills ratio to estimate the conditional quantile regression.
For this study with the two-stage sample selection, this study uses the probit model
with sample selection to acquire the inverse Mills ratio in the first stage instead of
the semiparametric least-squares method. The second stage to estimate the wage
equation follows Buchinsky (1998)[4] entirely.

3 Data

Data used in this study is from the core project, The Informal Worker Analysis and
Survey Modelling for Efficient Informal Worker Management Project. The sam-
pling frame used in the project was from Chiang Mais Household Listing Survey
by the National Statistical Office and the sampling procedures were conducted us-
ing the method parallel to the Household Socio-Economic Survey by the National
Statistical Office. In particular, the samples were selected in two stages. In the first
stage, sub-regions are selected using the stratified sampling method. In the second
stage, households within each sampling sub-regions are selected using the system-
atic sampling method.

The questionnaire for the survey was composed of two main parts. The first part
asked fundamental household information and the informal sector screening ques-
tions. All household members were interviewed for this part. If the respondent was
an informal worker, he/she was asked the second part of the questionnaire. If the re-
spondent was not an informal worker, then he/she did not have to answer the second
part. The second part of the questionnaire asks in depth questions regarding workers
working and living conditions. Therefore, demographic variables are observed for
all individuals and the wage and working variables are only observed for informal
workers.

For the variables characterizing occupational hazard, this study uses the workers
self-report on occupational hazard where workers were asked whether they faced
at least one hazard at work and whether the hazard had a negative effect on their
health. Unemployment risk is measured by the question asking the workers whether
they would be able to find a new job within 3 months if they lose their current job.
Therefore, this variable measures the unemployment risk from the perspective of
the workers themselves.

4 Model and Methodology

Assume that the wage equation in the informal sector is linearly dependent on a set
of labor market characteristics. A traditional compensating wage differential regres-
sion in the form of hedonic wage equation is:

Wagei = x′iβ + ui (1)
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where the subscript i indexes individuals. Wagei is an hourly wage in its natural
log form. xi is a vector of labor market characteristics including the intercept and an
occupational hazard dummy variable which takes value 1 if the individual is exposed
occupational hazard and 0 otherwise. ui is the disturbance term. The compensating
wage differential from accepting occupational hazard is measured by the coefficient
of the occupational hazard variable.

In our model, an hourly wage is observed only if the individual is working in
the informal sector. However, we can observe characteristics of individuals who are
working in the formal sector and those who are not working. Therefore, the model
becomes:

Wagei|(LFi = 1, ISi = 1) = (x′iβ + ui)|(LFi = 1, ISi = 1) (2)

where LFi and ISi are binary dummy variables.

LFi =

{
1, if individual i works
0, otherwise

(3)

ISi =

{
1, if individual i works in the informal sector
0, if individual i works in the formal sector

(4)

By taking expectations over both sides of equation (2):

E(Wagei|LFi = 1, ISi = 1) = E(x′iβ + ui|xi,LFi = 1, ISi = 1) (5)

= x′iβ +E(ui|xi,LFi = 1, ISi = 1) (6)

Then, if ui is not independent of LFi and ISi i.e. E(uixi,LFi, ISi)0, the disturbance
term is biased. In our case, the bias comes from the sample selection which has
two sources; one is the unobserved wage of those who are not working (LFi = 0)
and the other is of those who are working in the formal sector (LFi = 1, ISi = 0).
In particular, the model faces two levels of sample selection problem as shown in
Figure 2. The first level is the selection into workforce and the second level is the
selection into the informal sector.

Fig. 2 Multi-level sample selection
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To deal with the bias in the disturbance term arisen from the sample selection,
we combine Heckman two-stage method (Heckman, 1979)[7] with Heckman probit
estimation method (probit with sample selection).

In the first stage of Heckman two-stage, instead of just using a typical probit
model, we start with a probit model with sample selection. In this stage, we try
to determine the probability that an individual will choose to work in an informal
sector given the individuals labor market characteristics,

Pr(ISi = 1|zi) (7)

where zi is a column vector of the labor market characteristics which affect the sector
choice of an individual including the intercept. However, we do not observe the
choice of those who are not working, i.e. the individuals whose LFi = 1. Hence, the
estimated coefficients may be biased from the sample selection process. To eliminate
the bias, we follow Heckman probit estimation method by assuming that LFi and ISi

follow the following rules:

LFi =

{
1, if LF∗i > 0
0, if LF∗i ≤ 0

(8)

ISi =

{
1, if IS∗i > 0
0, if IS∗i ≤ 0

(9)

where LF∗i and IS∗i are assumed to be linearly dependent to some relevant labor
market characteristics:

LF∗i = w′iγ+ εi (10)

IS∗i = z′iθ +ηi (11)

with
E(εi) = 0,E(ηi) = 0,E(εiηi) = ρ (12)

where wi a column vector of labor market characteristics that influence the decision
to enter the labor force, i.e. decision to work or not to work, including the intercept.
By assuming that ηi is normally distributed, we have that:

Pr(ISi = 1wi,LFi = 1) =Φ((z′i)/(ση )|εi >−w′iγ) (13)

=Φ2((z
′
iθ )/(ση),(w

′
iγ)/σε ,ρ) (14)

where Φ2(, ,ρ) is the joint cumulative distribution function of 2 standard- normally
distributed random variables with the correlation between the two variables equals
to .

Let Φ2 be a joint cumulative distribution function of 2 standard-normally dis-
tributed random variables and let E(uiηiεi) = ω .
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E(ui|xi,LFi = 1, ISi = 1) = E(ui|xi,εi >−w′iγ,ηi >−z′iθ ) (15)

= ωσu

φ2(
z′iθ
ση |εi >−w′iγ)

Φ2(
z′iθ
ση |εi >−w′iγ)

(16)

= ωσu

φ2(
z′iθ
ση ,

w′iγ
σε ,ρ)

Φ2(
z′iθ
ση ,

w′iγ
σε ,ρ)

(17)

= βλλ (
z′iθ
ση

,
w′iγ
σε

,ρ) (18)

where γ() is the inverse Mills ratio function.

Hence, equation (3) becomes
1
:

E(WageiLFi = 1, ISi = 1) = x′iβ +βγγ((z′iθ )/(ση),(w
′
iγ)/σε ,ρ)+E(vi|xi) (19)

where vi is the demeaned disturbance term i.e. E(vixi) = 0.
Re-writing equation (19) into the conventional quantile regression equation, the final
equation becomes:

Qτ(Wageixi,LF∗i = 1, IS∗i = 1)= x′iβτ+β(λτ)γ((z
′
iθ )/(ση ),(w

′
iγ)/σε ,ρ)+Qτ(vixi).

(20)

5 Results and Discussions

5.1 The Sample Selection Regression

Table 1 shows the results from the probit model with sample selection which is the
first stage of the Heckman two-stage model. Consistent with the literatures, the re-
sult in regression (1) shows that age has a positive but diminishing effect on decision
to work while the coefficients of education variables are not statistically significant
implying that education does not affect decision to work. The result also indicates
that, on average, a married male is more likely to work than a single male; on the
other hand, marriage does not affect the decision to work of female. Furthermore,
having kids also affects male and female differently. Male with kids tends to work
while female with kids tends not to. In addition, disabled individuals are less likely
to work.

Given that they are in the labor force, regression (2) shows that the effect of age
on decision to work in the informal sector is U-shape, that is, young and old in-
dividuals, as oppose to the middle age group, are more likely to be in the informal

1
Buchinsky (1998) [4] suggests that the series expansion of the inverse Mills ratio should
be included to estimate the conditional quantile regression. However, in our estimation, the
higher-order terms are not statistically significance and therefore omitted from the model.
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Table 1 Regression (1) describes the decision to work using the probit model. Regression (2)
describes the decision to work in the informal sector conditioning on being in the labor force
using the probit model with sample selection.

(1) (2)
VARIABLES Informal Labor Force

female 0.057 -0.072
(0.071) (0.062)

age -0.093** 0.258***
(0.036) (0.007)

age2 0.001*** -0.003***
(0.000) (0.000)

edu1 -0.436*** 0.068
(0.104) (0.067)

edu2 -0.783*** -0.076
(0.062) (0.054)

edu3 -0.999*** -0.012
(0.067) (0.056)

pregnant -0.332
(0.306)

handicap -1.181***
(0.151)

kids 0.026 0.062**
(0.030) (0.028)

married 0.416***
(0.070)

marriedFemale -0.420***
(0.087)

kidsFemale 0.072* -0.099***
(0.043) (0.034)

Constant 3.301*** -4.463***
(0.823) (0.162)

Observations 6,186 6,186
Standard errors in parentheses

*** p<0.01, **p<0.05, *p<0.1

sector. The education variables are negative and highly significant indicating that in-
dividuals with higher education are less likely to work in the informal sector. Lastly,
female with kids are more likely to work in the informal sector.
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5.2 The Wage Equation

The wage regressions using OLS are shown in Table 2 while the wage regressions
using quantile regression are shown in Table 3 and 4. As can be seen from Table
2, although most of the estimated coefficients have the predicted sign and are sta-
tistically significant at high level, the estimated coefficients using OLS seems to be
highly biased from sample selection.

After adjusting for the sample selection bias by including the inverse Mills ratio
term as a control variable, the estimated coefficient of the common wage regression
variables, in both regressions with and without unemployment risk, are consistent

Table 2 Wage regressions using Ordinary Least Squares (OLS)

(1) (2) (3) (4)
olsH olsHJ olsHSS olsHJSS

VARIABLES lnHW lnHW lnHW lnHW

female -0.080* -0.082* -0.172*** -0.162***
(0.046) (0.048) (0.059) (0.062)

age 0.032*** 0.027** 0.079*** 0.068***
(0.011) (0.011) (0.022) (0.022)

age2 -0.000*** -0.000** -0.001*** -0.001***
(0.000) (0.000) (0.000) (0.000)

edu1 0.061 0.046 0.245** 0.206**
(0.069) (0.074) (0.099) (0.105)

edu2 0.145** 0.147** 0.728*** 0.654***
(0.057) (0.060) (0.225) (0.234)

edu3 0.445*** 0.473*** 1.513*** 1.409***
(0.113) (0.115) (0.436) (0.452)

owner 0.143*** 0.160*** 0.139*** 0.157***
(0.048) (0.050) (0.047) (0.050)

agriculture -0.038 -0.032 -0.047 -0.042
(0.057) (0.061) (0.057) (0.061)

unempRisk3mo 0.046 0.043
(0.087) (0.087)

hazard 0.117*** 0.165*** 0.115** 0.161***
(0.045) (0.055) (0.045) (0.055)

hazardUnempRisk3mo -0.194* -0.187*
(0.112) (0.112)

IMR -1.547*** -1.348**
(0.587) (0.611)

Constant 2.489*** 2.587*** 1.788*** 1.981***
(0.246) (0.257) (0.372) (0.387)

Observations 1,723 1,557 1,723 1,557
R-squared 0.036 0.039 0.040 0.042

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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with previous literatures. That is, age has a positive effect on wage with diminishing
return and individuals with higher education tend to receive higher wage. The result
also shows that there is, to some extent, gender discrimination in the labor market,
that is, female workers on average has wage significantly lower than male workers.

Regarding to the variables related to the compensating wage differentials, the
coefficients of hazard, unemployment risk, and their interaction term indicate that
workers who face occupational hazard receive higher wage i.e. compensating wage.
However, this benefit is reduced to null if those facing occupational hazard has un-
employment risk.

Although OLS seems to be a reasonable method to estimate the condition wage,
it fails to capture the difference across quantile. As shown in Table 3 and 4, al-
though the sign of the estimated coefficients are consistent with those from OLS,
their values vary across quantile.

The two wage regressions illustrated in Table 3 and 4 show some common re-
sults. While there is no evidence for gender discrimination in the lower quantiles,
female earn significantly lower wages than male in the higher quantiles. Age has a
positive and significant effect on wage in all quantiles. However, the positive effect
is diminishing as the coefficients on the variable age squared are negative. Education
has positive effect and the effect becomes stronger in the higher quantiles. The vari-
able owner has no effect in the lower quantiles. Nevertheless, owners earn higher
income comparing to employee or other types of independent workers in the higher
quantiles. This illustrates a higher wage gap between owners and employees. Work-
ers in agricultural sector earn lower wages in the lower quantiles and higher wages
in the higher quantiles. The coefficients of inverse Mills ratio (IMR) are negative
and more significant in the higher quantiles indicating that the sample selection bias
is more severe for the estimates in the higher quantiles.

However, the two regressions give different results on the estimates for compen-
sating wage differentials. In both regressions, the compensating wage differential
effect is significant and positive in the lower and middle quantiles but not signifi-
cant in the two highest quantiles. Nevertheless, the estimates in Table 3 are smaller
and have a U-shape effect when the estimates in Table 4 are larger in the lower
quantile and decline with the quantiles. When the unemployment risk variable is
included into the model as well as its interaction term with occupational hazard, the
results indicate that individuals whose wages are in the lower quantile are penalised
heavily from having unemployment risk.

The main results in Table 4 are consistent with Guo and Hammitt (2009)[6] and
Bender and Mridha (2011)[1] where there exists the evidence for the compensating
wage differentials and the effect is weaker in the presence of the unemployment
risk. The compensating wage differential effect is strong in the lower quantiles

In addition, this study illustrates the significance of controlling for the unemploy-
ment risk. Comparing the results in Table 3 and 4, the compensating wage differen-
tials are highly underestimated in the quantiles that the unemployment risk effect is
strong.
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Optimal Combination of Energy Sources for
Electricity Generation in Thailand with Lessons
from Japan Using Maximum Entropy

Tatcha Sudtasan and Komsan Suriya

Abstract. This study uses maximum entropy method to find an optimal combi-
nation of energy sources for electricity generation in Thailand. It sets three targets
including unit cost, risk and pollution. In the optimization process, it forms three
constraints according to these three targets. It solves the system following the guide-
line of Golan, Judge and Miller (1996). It analyses six scenarios of the targets. For
the major results, it finds that hydropower, nuclear, wind and solar energy are major
sources of electricity generation. The country cannot avoid adopting nuclear energy
for its electricity generation in order to meet all the three targets that are optimal for
its electricity generation and economic development.

1 Introduction

Thailand has never generated electricity by nuclear power. It is a controversial issue
for the Thai society whether Thailand should adopt nuclear power plant. The plant
will drive the cost of electricity low and avoid the shortage of electricity. However,
its risk of explosion cannot be ignored.

Anti-nuclear people in Thailand fight for a nuclear-free country. They argue that
Thailand can survive the energy crisis without nuclear power plant. It was indeed
that this argument might be not true when the country and its people had to face
a credible threat in April 2013 after Myanmar decided to pause the transportation
of natural gas to Thailand under a maintenance reason. Thailand lost one-fourth of
its electrical capacity during the days. Many factories were advised to stop their
manufacturing.

Clean energy such as solar and wind power are new to Thailand. Even though
Thailand is located in a tropical zone, the sunshine is unstable because of rapidly
moving cloud all over the sky. Therefore, the capacity of solar energy to generate
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electricity is still low. This drives the cost of solar power high. Wind is also costly
when the wind speed in Thailand is not so fast compared to that in Europe.

Coal and oil are less costly but release more pollution. Even though, advanced
technology can capture CO2 and reduce its emission to the atmosphere, the emission
level is still higher than other kinds of energy. Moreover, the threat of running out
of coal in next 10 years makes the cost even higher.

When Thailand has to face at least three objectives in electricity generation to
trade-off; cost, risk and pollution, the country has to decide the optimal combination
of energy sources for its electricity generation. A critical issue is at nuclear power.
A major research question is whether Thailand should adopt its first nuclear power
plant. Is there any other source of power that can substitute nuclear power plant and
keep Thailand a nuclear-free zone? This study aims to find out the answers for these
questions.

2 Literature Reviews

After Golan, Judge and Miller (1996)[3] introduce the concept of maximum entropy,
we search for literatures on using the technique for the portfolio optimization. Liter-
atures using maximum entropy in portfolio optimization include several works such
as Park (2007)[10], Rodriguez (2007)[13], Bera and Park (2008)[1], Jiang, He and
Li (2008)[6], Qin, Li and Ji (2009)[11], Roeddner, Gartner and Rudolph (2009)[14],
and Gartner (2012)[2]. These studies focus on mathematical issues of using max-
imum entropy in portfolio optimization and applications on risk management in
financial sector. However, there is still no study that applies maximum entropy on
the optimization of energy sources for electricity generation.

For studies on energy portfolio optimization, there are several works such as Liu
(2007)[7] who use quadratic programming to find the solution, Rebennack, Kallrath
and Pardalos (2010)[12] which use linear programming to solve the optimization
problem, Hochreiter, Pflug and Wozabal (2005)[4] which apply stochastic program-
ming to find the optimality. These studies do not use maximum entropy in the opti-
mization.

The difference between this study and other literatures on energy optimization is
that this study uses maximum entropy to find optimal combination of energy sources
for electricity generation while other studies use mathematical programming and
focus on the combination between buying electricity from spot market and bilateral
contract between the buyer and electricity producers. The reason why this study
uses maximum entropy is at the multi-objective optimization. It tries to set three
objectives which are cost, risk and pollution. However, it has seven parameters to
optimize from seven sources of energy which are solar, wind, hydro, oil, gas, coal
and nuclear power. In this case, mathematical programming does not work when the
number of equations is less than the number of parameters. The only way to solve
this problem is to use maximum entropy.
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Another reason why this study does not minimize cost under risk and pollution
constraint is that the cost is not the only objective for the optimization. It tries to fit
the three objectives at the same time. Even though the cost minimization under con-
straints is valid, the method is hard to process under limited information. However,
this problem can be handled by maximum entropy. Therefore, the usage of maxi-
mum entropy is to serve the multi-objective optimization with limited information.

3 Methodology

This study uses maximum entropy to calculate the optimal combination of the en-
ergy sources for electricity generation for Thailand. It aims at three targets that the
country needs to trade-off. They are cost, risk and pollution. Seven sources of en-
ergy are taken to the analysis. They are solar, wind, hydro, oil, gas, coal and nuclear
power.

It forms three information equations as follows:
Information 1:

7

∑
k=1

UnitCostkEnergyk = TargetCost (1)

where

UnitCost is the cost of producing 1 MWh of electricity,

Energy is portion of each source of energy that generates electricity

which is unknown,

TargetCost is the target of unit cost of producing 1 MWh of electricity

set by policy makers.

Information 2:
7

∑
k=1

RiskIndexkEnergyk = TargetRisk (2)

where

RiskIndex is the human dead toll of producing 1 MWh of electricity,

Energy is portion of each source of energy that generates electricity

which is unknown,

TargetRisk is the target of human dead toll of producing 1 MWh of

electricity set by policy makers.
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Information 3:

7

∑
k=1

CO2EmissionkEnergyk = TargetPollution (3)

where

CO2Emission is the emission of carbon dioxide to the atmosphere

from producing 1 MWh of electricity,

Energy is portion of each source of energy that generates

electricity which is unknown,

TargetPollution is the target of the emission of carbon dioxide to the

atmosphere from producing 1 MWh of electricity set

by policy makers.

Maximum entropy equation

To solve for seven unknowns of portion of each source of energy that generates
electricity when we have only three information equations, it is impossible to do
with other techniques but maximum entropy. The maximum entropy will construct
a Lagragian function that try to maximizes the entropy function by using all the
information equations as constraints. The Lagrangian function can be written as
follows:

L =−
7

∑
k=1)

EnergyklnEnergyk +λ1(TargetCost−
7

∑
k=1

UnitCostkEnergyk)

+λ2(TargetRisk−
7

∑
k=1

RiskIndexkEnergyk)

+λ3(TargetPollution−
7

∑
k=1

CO2EmissionkEnergyk)

(4)

where

L is Lagrangian function,

Energy is portion of each source of energy that generates

electricity which is unknown,

ln is natural logarithm,

TargetCost is the target of unit cost of producing 1 MWh of

electricity set by policy makers,
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TargetRisk is the target of human dead toll of producing 1 MWh

of electricity set by policy makers,

TargetPollution is the target of the emission of carbon dioxide to the

atmosphere from producing 1 MWh of electricity set

by policy makers,

UnitCost is the cost of producing 1 MWh of electricity,

RiskIndex is the human dead toll of producing 1 MWh of electricity,

CO2Emission is the emission of carbon dioxide to the atmosphere

from producing 1 MWh of electricity,

λ is Lagrange multiplier.

The technique to estimate parameters Energy can be presents step by step as
follows:
Step 1: Use the formula of the concentrate maximum entropy of Golan, Judge and
Miller (1996)[3] as follows to find .

l(λ ) =
3

∑
t=1

λt ∗Targett + ln(Ω(λ )) (5)

where
Ω(λ ) = ∑7

k=1 exp(−λ1 ·UnitCostk−λ2 ·RiskIndexk−λ3 ·CO2Emissionk)

Step 2: Find ∂ l
∂λ1

, ∂ l
∂λ2

and ∂ l
∂λ3

and set them to zero.
The derivatives are as follows:

∂ l
∂λ1

= 0 = TargetCost +
1

Ω(λ )
·

(−e(−λ1∗UnitCost1−λ2∗RiskIndex1−λ3∗CO2Emission1) ·UnitCost1

− e(−λ1∗UnitCost2−λ2∗RiskIndex2−λ3∗CO2Emission2) ·UnitCost2

− e(−λ1∗UnitCost3−λ2∗RiskIndex3−λ3∗CO2Emission3) ·UnitCost3

− e(−λ1∗UnitCost4−λ2∗RiskIndex4−λ3∗CO2Emission4) ·UnitCost4

− e(−λ1∗UnitCost5−λ2∗RiskIndex5−λ3∗CO2Emission5) ·UnitCost5

− e(−λ1∗UnitCost6−λ2∗RiskIndex6−λ3∗CO2Emission6) ·UnitCost6

− e(−λ1∗UnitCost7−λ2∗RiskIndex7−λ3∗CO2Emission7) ·UnitCost7)

(6)
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∂ l
∂λ2

= 0 = TargetRisk+
1

Ω(λ )
·

(−e(−λ1∗UnitCost1−λ2∗RiskIndex1−λ3∗CO2Emission1) ·RiskIndex1

− e(−λ1∗UnitCost2−λ2∗RiskIndex2−λ3∗CO2Emission2) ·RiskIndex2

− e(−λ1∗UnitCost3−λ2∗RiskIndex3−λ3∗CO2Emission3) ·RiskIndex3

− e(−λ1∗UnitCost4−λ2∗RiskIndex4−λ3∗CO2Emission4) ·RiskIndex4

− e(−λ1∗UnitCost5−λ2∗RiskIndex5−λ3∗CO2Emission5) ·RiskIndex5

− e(−λ1∗UnitCost6−λ2∗RiskIndex6−λ3∗CO2Emission6) ·RiskIndex6

− e(−λ1∗UnitCost7−λ2∗RiskIndex7−λ3∗CO2Emission7) ·RiskIndex7)

(7)

∂ l
∂λ3

= 0 = TargetPollution+
1

Ω(λ )
·

(−e(−λ1∗UnitCost1−λ2∗RiskIndex1−λ3∗CO2Emission1) ·CO2Emission1

− e(−λ1∗UnitCost2−λ2∗RiskIndex2−λ3∗CO2Emission2) ·CO2Emission2

− e(−λ1∗UnitCost3−λ2∗RiskIndex3−λ3∗CO2Emission3) ·CO2Emission3

− e(−λ1∗UnitCost4−λ2∗RiskIndex4−λ3∗CO2Emission4) ·CO2Emission4

− e(−λ1∗UnitCost5−λ2∗RiskIndex5−λ3∗CO2Emission5) ·CO2Emission5

− e(−λ1∗UnitCost6−λ2∗RiskIndex6−λ3∗CO2Emission6) ·CO2Emission6

− e(−λ1∗UnitCost7−λ2∗RiskIndex7−λ3∗CO2Emission7) ·CO2Emission7)

(8)

Step 3: Use Newton method to solve for λ1,λ2 and λ3. This is done by using fsolve
function in Matlab.

Step 4: Ensure that the derivatives in step 2 are all zero. This is to check the conver-
gence of the optimization.

Step 5: Calculate the Lagragian, l(λ ).

Step 6: Use the formula of Golan, Judge and Miller (1996)[3] to find the parameter
Energy by plugging λ1,λ2 and λ3 into the formula.

Energyk =
exp(−λ1 ·UnitCostk−λ2 ·RiskIndexk−λ3 ·CO2Emissionk)

∑7
k=1 exp(−λ1 ·UnitCostk−λ2 ·RiskIndexk−λ3 ·CO2Emissionk)

(9)

or it can be written as:
λ1,λ2 and λ3 into the formula.

Energyk =
exp(−λ1 ·UnitCostk−λ2 ·RiskIndexk−λ3 ·CO2Emissionk)

Ω(λ )
(10)
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Step 7: Calculate the Entropy,−∑7
k=1 EnergyklnEnergyk

Scenarios to be analyzed includes 6 scenarios as shown in table 1.

Table 1 Scenarios to be analyzed in the study

Scenario Target cost Target risk Target pollution
(JPY per MWh) (Human dead toll (CO2 emission

per MWh per year) per MWh)
1 14 64 341
2 7 10 120
3 10 5 100
4 10 20 30
5 10 10 30
6 10 10 20

Note: JPY = Japanese Yen (Money currency of Japan).
MWh = Megawatts (Unit of electricity).

The first scenario illustrates the average value of cost, risk index and pollution
from the seven sources of energy. The second scenario drops all the targets down
enormously. The third scenario trades-off between cost and risk plus pollution com-
pared to the second scenario. The fourth scenario allows the risk rise but drives the
pollution even lower than the third case while keeps the cost unchanged. The fifth
scenario attempts to find the optimal combination by negotiates the lower risk com-
pared to the fourth scenario. The last scenario finds whether it is possible to reduce
more pollution than the fifth scenario.

4 Data

Data of unit cost are derived from Sudtasan and Suriya (2012)[16]. The unit cost is
in Japanese Yen. This is because Thailand has never used nuclear power. Therefore,
we would like to compare relative cost of nuclear power and other energy sources.
We use the data and lessons from Japan in this study because of the complete set of
data and Japan is in Asia like Thailand.

Data of risk index are collected from Inhaber (1982)[5]. The paper evaluates the
total risk per unit energy output (one megawatt-year) by the total deaths caused by
each energy system. Data of pollution are according to Sovacool (2008)[15]. The
paper measures the CO2 emission for electricity generators.
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All the data are shown in table 2 as follows:

Table 2 Data of unit cost, risk index and pollution of each energy source

Energy sources Unit cost Risk index Pollution
(JPY per MWh) (Human dead toll (CO2 emission

per MWh per year) per MWh)
Solar (Photovoltaic) 46 55 32
Wind 12 70 10
Hydropower 10.75 5.5 10
Natural gas 6.45 0.4 443
Coal without scrubbing 5.75 170 1,050
Nuclear 5.50 1.55 66
Sources: Unit cost from Sudtasan and Suriya (2012), risk index from Inhaber (1982)
and pollution from Sovacool (2008).

5 Results

Table 3 illustrates the results from the optimization process using maximum entropy.
It shows that in the first case where the targets are set at the average value of all seven
energy sources, the portions of energy sources to generate electricity are quite the
same. Each of them shares around 14% -15% of total electricity generation.

In the second scenario where the target cost is lowest among scenarios, nuclear
power plays a major role in electricity generation, accounting around 61% of total
power. However, when we trade-off the cost with the risk plus pollution in the third
scenario, hydro power replaces the major role with the portion around 68% leaving
nuclear powers portion dropped to around 11%. In this scenario, natural gas appears
to be the second largest combination in total electricity generation with the portion
of 19%.

In the fourth scenario, when we keeps the cost constant at JPY10 per MWh as
in the third scenario and trade-off between risk and pollution, the result show that
hydropower is still the most important energy source in the combination, around
42%. The second largest source is nuclear, around 32%. Wind comes to contribute
to the countrys electricity generation when its portion exceeds 23%.

Keeping the cost and pollution constant as in the fourth scenario, the negotiation
on risk in the fifth scenario to be just half of the previous one is possible. The system
can still be solved. This can be noticed by the zero derivatives that all show that the
system is converged. Now, the portion of hydropower increases to be around 57%
when nuclear remains around 34%. Wind power drops to around 7% but solar power
increases a little bit to be around 3%. Oil, gas and coal are likely to disappear from
the usage for electricity generation.

In the last scenario when we negotiate for even less pollution compared to the
fifth scenario, the system is yet possible to be solved. The significance of
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Table 3 Results from the optimization process using maximum entropy

Scenario1 Scenario2 Scenario3 Scenario4 Scenario5 Scenario6
Target
TargetCost 14 7 10 10 10 10
TargetRisk 64 10 5 20 10 10
TargetPollution 341 120 100 30 30 20

Lamda
Lamda1 0.0018 0.2909 -0.8108 0.0691 0.0332 0.0937
Lamda2 0.0001 0.0045 0.6491 0.0081 0.0317 0.0329
Lamda3 0.0000 0.0032 0.0025 0.0119 0.0146 0.0366

Derivatives
Derivative1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Derivative2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Derivative3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Lagrangian 1.9456 1.1416 0.8947 1.1620 0.9802 0.7436

Entropy 1.9456 1.1416 0.8947 1.1620 0.9802 0.7436

Combination (%)
Solar 13.53 0.00 1.84 1.91 2.65 0.24
Wind 14.37 8.07 0.00 23.02 7.01 7.88
Hydro 14.50 15.48 67.99 42.42 56.58 74.12
Oil 14.12 0.31 0.00 0.00 0.00 0.00
Gas 14.58 14.11 19.28 0.34 0.14 0.00
Coal 14.26 1.20 0.00 0.00 0.00 0.00
Nuclear 14.64 60.82 10.88 32.31 33.63 17.76
Sum (%) 100.00 100.00 100.00 100.00 100.00 100.00
Source: Calculation using Matlab.

hydropower increases dramatically from around 57% to 74%. Nuclear reduces its
role from around 34% to 17%. Wind power remains quite constant at around 8%.
Unfortunately, solar power is likely to disappear from the scene.

6 Discussions

Before Fukushima incident of the blasting nuclear power plant, the combination of
energy sources in Japan in 2009 for electricity generation combines 25% of coal,
10.7% of nuclear, 39.5% of natural gas, 14.4% of oil, 9% of hydropower and 1.4%
of other sources (Mitsubishi Corporation, 2012[9]). A question arises why this fact
is very different from the results of this paper. Hydropower that should be the largest
source of power shares only 9% when it should be 74%. Nuclear shares 10.7% in
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reality while it should be reduced to only 17%. Moreover, coal is still in active for
electricity generation in Japan when it should be eliminated away from the system.

The small portion of hydroelectric is usual in many developed countries (Mit-
subishi Corporation, 2012[9]). U.S.A. generates only 6.6% of its electricity from
hydropower in 2009. In the same year, Germany uses hydroelectric just less than
5%. Even in the natural-resource rich country as India, the portion of hydropower
is just around 12%. Therefore, hydropower is a good source of energy that satis-
fies almost every target. Unfortunately, a country may not be able to construct dams
as many as it wants. The construction of a new dam is controversial among local
people as well as NGOs.

For the lessons learnt from Japan to Thailand, it can be seen in 2011 that Thailand
depends its 71% of total electricity generation on natural gas, 21% from coal, 5%
from hydroelectric, 2% from renewable energy and 1% from oil (Ministry of En-
ergy of Thailand, 2011[8]). From the results, it can be expected that the portion of
coal will be reduced enormously in the next decades. Hydropower is still a hope to
generate cheaper and cleaner electricity but the construction of new dams will face
severe protests. The most important issue raised by the results of this study is that
Thailand needs a nuclear power plant to substitute the gradually reduced electricity
generated by coal.

7 Conclusions

It is clear but cautious from the analysis that nuclear power seems to be a must
for Thailand when no scenario shows that the portion of nuclear power should be
reduced to zero. However, the caution is that the study includes only short-term
costs and risks for nuclear power.

Dirtier sources of power such as coal, gas and oil will be faded away from elec-
tricity generation of the country. Clean energy will replace the role. Hydropower
will be the most significant energy source in keeping the cost, risk and pollution
low. Wind power will be more significant than solar power. It will become the third
largest source of energy.

In conclusion, Thailand will move toward clean energy with only 4 sources of
energy that will be included into the combination of the electricity generation. They
are hydro, nuclear, wind and solar power. The country might not be able to avoid nu-
clear power. Otherwise the country cannot meet the targets that favor all dimensions
of the economic development.

Further studies on this issue should include other long-term costs and risks such
as storing the nuclear waste and possible radiation leaks caused by accidents or
natural disasters at nuclear power plants like what happened in Fukushima incident.
After including these costs and risks, the results may reduce the likelihood to use
nuclear power. However, the trend that Thailand will move toward clean energy will
still persist.
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Valuation of Interest Rate Derivatives
under CSA Discounting

Amy R. Daniels, Coenraad C.A. Labuschagne, and Theresa M. Offwood-le Roux

Abstract. Standard pricing theory assumes that traders can borrow and lend at a
unique risk-free rate, ignoring the intricacies of the collateralization market. Since
2007, the market has adopted an advanced methodology for valuing interest rate
derivatives, based on the standard Credit Support Annex (CSA), which is a docu-
ment used to define the terms under which collateral is posed between counterpar-
ties. This change however, has not yet been implemented in South African markets
due to the difficulty created by the lack of a liquid overnight indexed swap (OIS)
market in South Africa. In this paper, we propose two proxies, which could be used
to approximate an OIS market. We compare the implied forward rates as well as the
pricing of a vanilla swap under these OIS methods to the classical case.

1 Introduction

Preceding the financial crisis that started in the second half of 2007, the common
rate used for both discounting and forecasting in derivative valuation was the 3-

month rate such as LIBOR
1
. The focus of interest rate derivative valuation was on
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the term structure of interest rates, and aspects such as credit risk, liquidity risk,
collateral agreements, and funding costs were ignored [10]. However, as the basis
between the 3-month lending rate and the overnight rate was small and relatively
stable, the impact between using a 3-month funding curve to an overnight funding
curve to discount was inconsequential [3].

In 2008, credit risk was brought to the fore and at the height of the financial
crisis the difference between 3-month LIBOR and the federal funds rate increased
from about 8 basis points to around 366 basis points (See Figure 1). The problem
is that even today, the difference between these rates is significant. Analogously,
such patterns were also found between forward rate agreements (FRA) rates and

the forward rates implied by two consecutive deposits, as well as among swaps
2

rates with different adjustable (also known as floating) leg maturities (also known
as tenors).

Thus, the market has been forced to develop a new framework and to re-evaluate
the no-arbitrage models used for derivative pricing and risk analysis. The traditional
no-arbitrage framework developed to price derivatives, originating from Black and
Scholes (1973) and Merton (1973) [2], has become out-dated, see Piterbarg (2010)
[8] and Piterbarg (2012) [9]. The concept of constructing a single risk-free yield
curve, which reflects both the present value of funding future cash flows as well as
the level of forward rates, has been rejected.

An overnight indexed swap (OIS) is a financial instrument which swaps a rolled
overnight rate for an interbank rate such as 3-month LIBOR.

The vast majority of derivative traders now agree that collateralized trades should
be discounted at the appropriate OIS rate, while non-collateralized trades should
be discounted at the interbank rate. The OIS rate eliminates the bank credit and
liquidity risk that a 3-month rate includes.

Although OIS discounting has universal approval, in South Africa this has proved
difficult to implement. It is still the case that both collateralized and uncollateralized
trades are discounted using the same curve, which is derived from the Johannesburg
Interbank Agreed Rate (JIBAR). Even the interest rate swap clearing service, Swap-
Clear, run by London-based clearing house, LCH.Clearnet uses the JIBAR curve to
value rand-currency swaps, as a result of the absence of an applicable substitute.

The main difficulty lies in the lack of a liquid, local currency OIS curve. Although
market leaders recognize the need for an OIS market in South Africa, there is no
consensus on how the initiation of such a market should be approached. Industry
participants have called attention to the fact that the financial crisis did not hit South
Africa as hard as it did the rest of the world. For example, the spread between

2
A swap is an agreement between two parties to exchange sequences of cash flows for a
set period of time. Usually, at the time the contract is initiated, at least one of these series
of cash flows is determined by a random or uncertain variable, such as an interest rate,
foreign exchange rate, equity price or commodity price. Conceptually, one may view a
swap as either a portfolio of forward contracts, or as a long position in one bond coupled
with a short position in another bond.
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Fig. 1 3-month LIBOR and the Federal Funds Rate Plots and Spreads for the Period January
2000-January 2012

3-month JIBAR and the Safex overnight rate rose from 65 basis points at the start
of 2008 to a high of 141.5 basis points on May 29 that year (see Figure 2).

So although the need for an OIS curve is not that urgent, and while the construc-
tion of an OIS market is not a high priority, is there a way to price derivatives, with-
out waiting for the conception of a formal, liquid OIS market? One possible solution
would be to use the South African Futures Exchange (Safex) rate as our overnight
rate. This rate is the average rate that Safex receives on its deposits with the banks,
weighted by the size of the investments placed at each bank. However, Safex de-
posits represent a very small portion of the overnight funding in South Africa. The
Safex overnight rate may therefore not be a good reflection, or representative of the
weighted average call rates paid on Rand deposits by all banks.

Another option would be the use of the South African benchmark overnight rate
(Sabor). Published by the South African Reserve Bank (SARB), it is the volume
weighted average of interbank funding at a rate other than the current repurchase
rate, and the twenty highest rates paid by banks on their overnight and call deposits,
plus a five percent weight for funding through foreign exchange swaps [12]. A draw-
back to using Sabor is that it is known merely as a point of reference, and cannot be
traded.
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Fig. 2 3-month JIBAR-Safex Overnight Rate Basis for the Period February 2004-August
2012

In this paper, we explore two methods to approximate an OIS market. We com-
pare the implied forward rates to the classical situation as well as the differences in
valuation of a vanilla interest rate swap.

2 Classical vs OIS Swap Pricing

In this section we make use of a numerical example to show how the use of an OIS
curve differs from using JIBAR in the discounting process. The distinction can be
shown through the implied forward curves that we derive from each method.

We show the difference between the mark-to-market (MTM) of a hypothetical
swap under both procedures. Our swap trade date is the 21st of September 2012,
and our data runs quarterly, up until the 21st of September 2027. In other words, we
have a fifteen year tenor.

We make the following assumptions:

• All transactions occur in a single currency economy.
• There are no taxes or transaction costs.
• Pricing and valuation occur on a settlement date.
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• Our day count convention is ACT
365 , and we adopt the Modified Following Rule

3

as our business day convention, in accordance with the South African market
protocol.

2.1 Classic Approach to Price and Value Interest Rate Swaps

In the past, the 3-month swap curve was used to forecast and discount cashflows.
The swap curve consists of observed market interest rates, derived from market in-
struments that represent the most liquid and dominant instruments for their respec-
tive time horizons, bootstrapped and combined using an interpolation scheme. For
more details on how curve bootstrapping works see Alexander [1] or Hull [5, 6].
Under the classical or traditional framework used to price interest rate swaps, the

movement between the JIBAR forward
4
, spot

5
and swap curves

6
, is done comfort-

ably. We can begin with the observed forward curve, and use the technique of boot-
strapping to obtain the implied spot rates and the swap fixed rates. Conversely, we
could be supplied with the observed swap curve, that is, the fixed rates on par in-
terest rate swaps, and then bootstrap the implied spot curve as well as the implied
forward curve. Note, that this ease of movement is due to the assumption that the
JIBAR-based implied spot rates can also be used to discount future cash flows. This
assumption becomes imperative in what follows - the calculation of the mark-to-
market of an existing swap.

Now consider a swap with a fixed rate of 7% swapped quarterly with 3 month
JIBAR and a notional of 50 million. We want to value this swap on 21st September
2012 which matures on 21st December 2017, i.e. it only has 63 months remaining.
Its MTM value is based on a comparison to the 5.8467% fixed rate on the 63-month
at-market swap. The annuity is the difference between the contractual and the cur-
rent market fixed rates, multiplied by the notional principal and day count factor.

(7%− 5.8467%)×R50 000 000×0.249315068= R143 767.72.

Notice that this is the explicit aspect of the valuation. The obscure aspect of this
arises in discounting the annuity. Traditionally, under the classical model, we would
utilize the sequence of implied spot rates. Then the value of the swap is R2 611
382.01.

Now observe that there are fundamental assumptions made in the computation of
this mark-to-market value:

3
Payment days that fall on holidays, Saturdays or Sundays roll forward to the next business
day. If that day falls in the next calendar month, the payment rolls back to the day that
precedes the payment date.

4
A forward rate curve represents the no-arbitrage rate today that will be earned in the future.

5
Spot is the price that is quoted for immediate settlement on a commodity, a security or a
currency. Spot settlement is normally one or two business days from trade date.

6
A swap rate curve shows the fixed-rate leg against the floating leg of 3-month JIBAR.
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• Either this is an uncollateralized swap or we do not take into account the collat-
eral in the valuation methodology, and

• the fixed rate payer is a “JIBAR-flat” borrower. This essentially, yet interestingly
indicates that the fixed rate payer, or floating rate receiver, effectively possesses
the same credit standing as the banks that are used to develop the JIBAR index.

2.2 CSA Approach to Pricing and Valuing Interest Rate Swaps

As South Africa does not have an OIS market, there are two proxies we would like
to suggest to be able to approximate the value of a derivative under OIS discounting:

• We can assume that the OIS curve is just a parallel shift from the above-mentioned
bootstrapped spot rate curve. Then we can use this curve to calculate discount
factors, forward rates and OIS fixed swap rates. The reason for taking a spread
below the ZAR spot rate curve is intuitive. We simply expect the overnight in-
dexed swap rate to be less than the 3-month JIBAR curve that this swap is derived
from, since we have decreased our exposure to credit risk through the inclusion
of collateral, and this reduction in credit risk implies a reduction of yield.

• Instead of shifting the already bootstrapped curve, we can shift the normal par
swap rates downwards in a parallel fashion to obtain the OIS par fixed rates. Then
we can bootstrap an OIS curve from these swap rates.

To decide the amount by which we do this parallel shift, we looked at the histori-
cal average spread between the proxy (Safex or Sabor) rates and the 3-month JIBAR
curve. This value comes to on average a 50 basis point difference.

Using both of these methods, we derived the implied forward curves and com-
pared them to the classical forward curve (see Figure 3). The solid black line rep-
resents the implied forward curve from the classical approach, while the dotted line
is from shifted curve - OIS approach. The implied forward rates from the shifted
fixed rates OIS method were indistinguishable from the classical case, thus we only
plotted one of them. It is clear that the differences are small. Figure 4 shows these
differences in basis points.

Comparing the implied forward curves under the classical model and under OIS
discounting, we can make the following observations: Following markets abroad
and their analysis [11], we should have the result that the implied forward curve
under the classical model, is on average higher than the implied forward under the
OIS discounting method. This expectation does not hold true in our case, indicating
that the OIS curves constructed here might not be entirely appropriate for practical
use in industry.

Lastly, we plot the discount factors calculated from the classical method as well
as both OIS proxy methods (see Figure 5).

The OIS discount factors are higher than the classical ones, as expected.
Next, we compare the mark-to-market value under OIS discounting and the mark-

to-market value under the classical model of the above mentioned swap. We get the
following values
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Fig. 3 Implied forward rates in the constructed OIS and the classical case

Fig. 4 Spread in basis points between the OIS forward curves and the classical forward curve
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Fig. 5 Comparison of the discount factors calculated using the OIS curves and the classical
curve

• R2 611 382.01 under the classical model,
• R2 640 984.89 under the shifted curve OIS method,
• R2 646 838.13 under the shifted fixed rate OIS method.

As expected, the MTM of the swap is higher under OIS discounting. This is due to
the fact that collateral posting decreases the credit risk. It is interesting to see that
the MTM under the shifted fixed rate OIS method is higher than under the shifted
curve OIS method. But this could be specific to the swap we are pricing and further
analysis is needed to determine a pattern in the swap MTM values.

3 Conclusion

The results of our proxy methods follow the behaviour we would expect from an OIS
curve. Thus, these methods might be worth considering for the purpose of getting
an approximation of the differences that OIS discounting may incur. However, the
best solution in our opinion, would be to create a liquid OIS market. South Africa
should maybe look to countries like Poland, which only recently (2004) started their
own OIS market. They faced similar problems to South Africa with ‘some market
participants not believing at all in the possibility of the market being created for the
Polish currency. It suffices to mention that the first transactions were preceded by
ca. 4 years of meetings, debates and agreements to realize how bad the situation
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was’ (as stated on the Polish Financial Markets Association website). Since the
Polish OIS market was launched, the annual turnover of the Polish market rose
from USD 330 million to 64.8 billion in 2010, according to central bank surveys
[4]. Hungary is another country which created their own OIS market from scratch.
South Africa could learn from these processes and hopefully one day there will be
a local OIS market. A comparison between the OIS market in Thailand and South
Africa could be helpful, but information about the OIS market in Thailand is difficult
to obtain. In the meantime, proxies like the ones discussed in this paper will need
to be investigated to understand the approximations that will have to be made in
derivatives pricing.
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Systemic Knowledge Synthesis for Product
Recommendation

Yoshiteru Nakamori

Abstract. This paper considers the problem of systemic knowledge synthesis for
product recommendation based on the theory of knowledge construction systems.
This theory suggests actors to collect knowledge from scientific, social, and cre-
ative dimensions and to synthesize them systemically. It is believed that the pur-
suit of systematic, or mathematical approach in the scientific dimension is the role
of a researcher. This paper mainly introduces mathematical information aggrega-
tion techniques for product recommendation, but these techniques usually give only
partial answers. Finally, the paper returns to the theory of knowledge synthesis to
suggest how to provide a better answer to the problem.

1 Introduction

Human beings have been troubled with complex decision-making problems since
the ancient times. Most academic disciplines, including econometrics, have been
developed to lighten the burden of decision making, introducing systematic problem-
solving techniques. However, in such a situation of economic game, a decisive
decision making is often made by the intuition using the experience-based knowl-
edge. A decision is always related to the future events, while models constructed in
academic disciplines usually depend on the past data, neglecting many complex
matters. Any optimal solution based on any elaborated mathematical model has
a possibility that it is born dead, as Checkland [1] stated. Thus, the mathemat-
ical model-based decision-making techniques do not always provide perfect an-
swers to those who are suffering from complex issues. This is the reason why this
paper claims the importance of knowledge synthesis rather than just information
aggregation.
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This paper first introduces a theory of knowledge construction systems [2], which
consists of three fundamental parts: a knowledge construction system (the i-System)
[3] [4] for collecting distributed knowledge, a structure-agency-action paradigm [5]
for utilizing actors’ abilities, and evolutionary-constructive objectivism [6] for jus-
tifying synthesized knowledge. The paper then tries to use this theory for product
recommendation. This paper mainly introduces mathematical information aggrega-
tion techniques for product recommendation, understanding that these techniques
give only partial answers. The paper finally returns to the theory of knowledge syn-
thesis to suggest how to provide a better answer to the problem. An example treated
in this paper is related to a traditional ceramic craft in Japan, with a hope of revital-
izing this culturally important industry.

2 Theory of Knowledge Synthesis

The theory of knowledge construction systems [2] chooses three important dimen-
sions from high-dimensional Creative Space [7], and requires actors to work well
in each dimension in collecting and organizing distributed, tacit knowledge. These
are Intelligence (scientific dimension), Involvement (social dimension), and Imagi-
nation (creative dimension). When the theory is interpreted from the viewpoint of
sociology, the Creative Space is considered as Social Structure which constrains
and enables human action, and which consists of a scientific-actual front, a social-
relational front and a cognitive-mental front corresponding respectively to the three
dimensions. The theory introduces two more dimensions: Intervention and Integra-
tion, which correspond to social action and knowledge from the sociological point
of view.

The theory aims at integrating systematic approach and systemic (holistic) think-
ing; the former is mainly used in the dimensions Intelligence, Involvement, and
Imagination, and the latter is required in the dimensions Intervention and Integra-
tion. Leading systems thinkers today often emphasize holistic thinking [8] [9], or
meta-synthesis [10]. They recommend and require systems thinking for a holistic
understanding of the emergent characteristics of a complex system, and for creating
new systemic knowledge about a difficult problem confronted. Our theory aims at
synthesizing objective knowledge and subjective knowledge, which inevitably re-
quires intuitive, holistic integration.

These five ontological elements were originally interpreted as nodes, as illus-
trated in Fig. 1. Because the i-System is intended as a synthesis of systemic ap-
proaches, Integration is, in a sense, its final dimension. In Fig. 1 all arrows converge
to Integration interpreted as a node; links without arrows denote the possibility of
impact in both directions. The beginning node is Intervention, where problems or is-
sues perceived by the individual or the group motivate their further inquiry and start
the entire creative process. The node Intelligence corresponds to various types of
knowledge, the node Involvement represents social aspects, and the creative aspects
are represented mostly in the node Imagination.
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Fig. 1 The i-System from a systems scientific viewpoint

3 Product Recommendation

The introduced knowledge construction model can be applied to any social problems
in principle. Here, let us consider the following situation. Suppose that a young
woman visits a traditional craft dealer and says her hope, “I want a ceramic cup that
is cute and smooth, quite modern, largish, but not too much expensive. It should be
the most suitable gift for my grandmother.” How could you help her?

If you have been involved in the sale of ceramics for a long time, say more than
20 years, you will immediately recommend several ceramic cups that fit her desired
attributes. This is clearly an example of systemic knowledge synthesis. Figure 2
shows an approach to systemic knowledge synthesis. In an actual situation, the shop
owner, synthesizing knowledge from the scientific dimension, the social dimension,
and the creative dimension, would recommend some cups to this customer. But in
this paper we will study how to create analytical knowledge mainly in the scientific
dimension.

This paper is intended to create complete knowledge of Intelligence and partial
knowledge of Integration as in Fig. 2. This will be done by:

• Creating knowledge of the degree of alignment between cups in the store and
respective desired attributes such as cute, smooth, largish, etc. (Intelligence);

• Creating knowledge of the overall ranking of cups in the store by aggregating
respective degrees of alignment (Integration).
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Fig. 2 An approach to systemic knowledge synthesis

Knowledge synthesis at Integration is actually done by taking into account knowl-
edge from Involvement and Imagination. Here, let us consider partial tasks at Inter-
vention, Intelligence, and Integration as shown in Fig. 3.

Fig. 3 The task flow for solving the problem

Let us first consider how to collect data and to make a model using the data.
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4 Data Collection and Modeling

To build a model of the alignment between desired attributes and products, we need
to collect a good data set. The procedure for data collection and data screening are
summarized as follows:

1. Preparation: The first task is to prepare products for evaluation by the bipo-
lar measures used in the semantic differential method [11], which is often used
in subjective evaluation experiments. Here, the most difficult task is to choose
words, mainly adjectives, to be used in the measure.

2. Experiment: The evaluation experiment should be designed carefully. Depending
on the products to be evaluated, we have to gather appropriate evaluators, and
teach them the purpose of the experiment, how to do the scoring, etc.

3. Screening: The data screening is sometimes necessary because of errors or biased
scoring. Moreover, those who are familiar with the products and those who do
not know them would make different scores in some measures. Therefore, we
need to select data as well as appropriate bipolar measures before going into the
modeling phase.

The next problem is modeling to calculate the degree of fit between requests and
products. There are mainly three approaches to data processing:

1. Statistical approach: Among many statistical approaches, factor analysis is
mostly used to obtain information about the gaps between objects, between words,
and between objects and words. But here, we introduce correspondence analysis,
which measures the gaps between objects and words directly. A fuzzy version of
correspondence analysis is given in Nakamori and Ryoke [12].

2. Probabilistic approach: To treat the degree of the requirement, such as “a little
cute” or “quite traditional” without making any models, we can use the frequen-
cies obtained from the data directly. We can convert the frequencies to probabil-
ities; for instance, the degree of “a little cute” of this cup is given by a certain
probability.

3. Fuzzy-set theoretical approach: The above approach is acceptable if we have a
plenty of data. In usual cases, we develop models that interpolate data distri-
butions. The Gaussian-type probabilistic models are often used. But here, tak-
ing into account the possibility of data, we use the triangular fuzzy (possibility)
model.

Let om denote a sample (ceramic cup) to be evaluated, and wn denote a measure
that is given by a pair of bipolar words:

wn : 〈w−n ,w+
n 〉, w−n : left word, w+

n : right word.

The evaluated value zmnk of the evaluator ek, regarding the object om, from the stand-
point of wn is given by a (2L+ 1)-level value:

zmnk ∈ {−L, · · · ,0, · · · ,L}, L : a positive integer.
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An example of bipolar words is 〈smooth,rough〉, and a scale of seven grades is given
as follows:

{very smooth, smooth, a little smooth, neutral, a little rough, rough, very rough}

4.1 Correspondence Analysis

To consider the possibility of missing values, we denote the set of evaluators who
evaluate the object om with the measure of evaluation wn by Emn. Assuming that

every Emn is not empty, we put
1

zmn =
1

|Emn| ∑k∈Emn

zmnk.

We define the average data matrix:

Z =

⎛
⎜⎜⎜⎝

z11 z12 · · · z1N

z21 z22 · · · z2N
...

...
. . .

...
zM1 zM2 · · · zMN

⎞
⎟⎟⎟⎠ . (1)

We normalize the average data {zmn} in (1) as follows. If we focus on the words
to the right, let

z′mn = (L+ 1)+ zmn ∈ [1,2L+ 1] . (2)

On the contrary, if we focus on the words to the left, let

z′mn = (L+ 1)− zmn ∈ [1,2L+ 1] . (3)

Then, letting

pmn =
z′mn

zT
, zT =

M

∑
m=1

N

∑
n=1

z′mn, (4)

we define a correlation matrix:

P =

⎛
⎜⎜⎜⎝

p11 p12 · · · p1N

p21 p22 · · · p2N
...

...
. . .

...
pM1 pM2 · · · pMN

⎞
⎟⎟⎟⎠ . (5)

Using this matrix we shall consider the handling of data using correspondence anal-
ysis [13].

1 |Emn| indicates the number of elements in the set Emn.
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Correspondence analysis is reduced to an eigenvalue problem. It is known that
the eigenvector corresponding to the maximum eigenvalue is meaningless. Let x̃i

and ỹi, which are derived from the eigenvectors corresponding to the second and
third largest eigenvalues, be

x̃i = (x̃i1, x̃i2, · · · , x̃iM)t , ỹi = (ỹi1, ỹi2, · · · , ỹiN)
t , i = 2,3. (6)

From this we plot
(x̃2m, x̃3m) , m = 1,2, · · · ,M, (7)

(ỹ2n, ỹ3n) , n = 1,2, · · · ,N, (8)

on a plane, and try to understand the relationships between objects and words.
The gap dmn between the object om and the measure wn can be calculated by

d2
mn = (x̃2m− ỹ2n)

2 +(x̃3m− ỹ3n)
2 . (9)

Then we can define the alignment smn between the object om and the word wn by

smn = exp{−dmn} . (10)

Assume that the alignment or match is calculated by a statistical method using
the words to the right w+

n ,n = 1,2, · · · ,N. Let S[w+] be the alignment matrix given
by

S[w+] =

⎛
⎜⎜⎜⎝

s11 s12 · · · s1N

s21 s22 · · · s2N
...

...
. . .

...
sM1 sM2 · · · sMN

⎞
⎟⎟⎟⎠ . (11)

The alignment of the object om with the words to the left can be defined by 1− smn.
From this we define another alignment matrix S[w−]:

S[w−] =

⎛
⎜⎜⎜⎝

1− s11 1− s12 · · · 1− s1N

1− s21 1− s22 · · · 1− s2N
...

...
. . .

...
1− sM1 1− sM2 · · · 1− sMN

⎞
⎟⎟⎟⎠ . (12)

4.2 Fuzzy-Set Theoretical Data Processing

The method presented above cannot treat a word with a quantifier, for instance, “a
little cute.” For this purpose, we consider a modeling method for alignment between
objects and words using the fuzzy-sets theory [14].
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Let us define the frequency matrices:

Yn =

⎛
⎜⎜⎜⎝

y1n(−L) y1n(−L+1) · · · y1nL

y2n(−L) y2n(−L+1) · · · y2nL
...

...
. . .

...
yMn(−L) yMn(−L+1) · · · yMnL

⎞
⎟⎟⎟⎠ , n = 1,2, · · · ,N. (13)

The elements of Yn are given by

ymnl = |{ek ∈ Emn;zmnk = l}|, l ∈ {−L, · · · ,0, · · · ,L} . (14)

That is, ymnl is the number of evaluators who gave the level l to the object om from
the standpoint wn.

From (13) we calculate

ȳmn =

L

∑
l=−L

(ymnl× l)

L

∑
l=−L

ymnl

, (15)

σ2
mn =

L

∑
l=−L

{
ymnl× (l− ȳmn)

2
}

L

∑
l=−L

ymnl

. (16)

We need to define a membership function that represents the degree of alignment of
the object om and the measure wn : 〈w−n ,w+

n 〉 as follows:

μmn(y) =

⎧⎨
⎩

1
cσmn

{y− (ȳmn− cσmn)} , y≤ ȳmn;

− 1
cσmn

{y− (ȳmn + cσmn)} , y≥ ȳmn.
(17)

Here, c (> 1) is a tuning parameter.
Now we define membership functions {μl(y) | l ∈ {−L, · · · ,0, · · · ,L}}, each of

which represents the l-level fuzzy set.

• For l =−L,

μl(y) =

{−y+ 1+ l, l ≤ y≤ l + 1;

0, otherwise.
(18)
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• For−L < l < L,

μl(y) =

⎧⎪⎪⎨
⎪⎪⎩

y+ 1− l, l− 1≤ y≤ l;

−y+ 1+ l, l ≤ y≤ l+ 1;

0, otherwise.

(19)

• For l = L,

μl(y) =

{
y+ 1− l, l− 1≤ y≤ l;

0, otherwise.
(20)

Now we can define the alignment or match between the object om and the mea-
sure wn with degrees l ∈ {−L, · · · ,0, · · · ,L}:

smnl = max
y

min{μmn(y),μl(y)} .

Then, we have the alignment matrices:

Sn =

⎛
⎜⎜⎜⎝

s1n(−L) s1n(−L+1) · · · s1nL

s2n(−L) s2n(−L+1) · · · s2nL
...

...
. . .

...
sMn(−L) sMn(−L+1) · · · sMnL

⎞
⎟⎟⎟⎠ , n = 1,2, · · · ,N. (21)

5 Information Aggregation

For information aggregation we can use the Choquet integral with non-additive mea-
sure [15] to cope with such a case where a customer expresses, “I want a ceramic
cup, which is cute and modern, but also cheap. Cheap is most important. But it is
best if it is also cute and modern.” Or, we can use the ordered weighted averaging
aggregation [16] to treat the case where a customer expresses, “I want a ceramic
cup, which is cute and modern, but also cheap. The cup should meet as many of my
desired attributes as possible.” In theses techniques, we use the alignment matrices
given in (11) and (12).

This paper briefly introduce the prioritized max-min aggregation [17] to deal with
the case that a customer expresses, “I want a ceramic cup, which is cheap, a little
cute, and quite modern. But, modern is the most important, and cute is of secondary
importance.” Here we use the alignment matrices given in (21).

Suppose that a customer’s requirements are given by a set of words:

W =
{

w′1,w
′
2, · · · ,w′J

}⊂ {
w−n or w+

n ;n = 1,2, · · · ,N}
,

and suppose that we have the alignment matrices given in (21). Each w′j ∈W has a
level l and a priority p:

l ∈ {−L, · · · ,0, · · · ,L} , p ∈ {1,2, · · · ,P = highest} .
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We write the degree of fit between the object om and this requirement by sm j(l)(p).
According to the priority, we use the following transformation:

gp(x) =

⎧⎪⎨
⎪⎩

2P− p
p x, 0≤ x≤ p

2P ;

p
2P− p(x− 1)+ 1, p

2P ≤ x≤ 1.

Using this we have
Em j(l) = gp

(
sm j(l)(p)

)
.

The comprehensive evaluation of the product om is then given by

CE(m) = min
j(l)

{
Em j(l)

}
.

Finally, the most recommended product om∗ is given by

m∗ = argmax
m
{CE(m)} .

Let us consider an example to compare two products, where the attributes have
levels and priorities as shown in Table 1.

Table 1 An example of evaluation of two objects

Cheap (w′1) A little cute (w′2) Quite modern (w′3)
(l =−2) (p = 1) (l = 1) (p = 2) (l = 3) (p = 3)

o1 s11(−2)(1) = 0.5 s12(1)(2) = 0.9 s13(3)(3) = 0.7
o2 s21(−2)(1) = 0.5 s22(1)(2) = 0.6 s23(3)(3) = 1.0

Note that p = 3 means most important in this case. The transformation functions
are:

g1(x) =

⎧⎨
⎩

5x, 0≤ x≤ 1
6 ;

1
5 x+ 4

5 ,
1
6 ≤ x≤ 1.

g2(x) =

⎧⎨
⎩

2x, 0≤ x≤ 1
3 ;

1
2 x+ 1

2 ,
1
3 ≤ x≤ 1.

g3(x) = x, 0≤ x≤ 1.

From the above we have

CE(1) = E13(3) = 0.7, CE(2) = E22(1) = 0.8,

m∗ = argmax
m
{CE(m);m = 1,2}= 2.

Thus, it is appropriate to recommend product o2 in this example.
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Figure 4 shows the transformations. Because the priority of cheap is the lowest,

its evaluation values are transformed to larger values.
2

As a result, cheap is no longer
involved in the decision.

Fig. 4 Transformations according to priorities of desires

6 Knowledge Integration

This section introduces a government project
3

to develop a recommendation system
to provide products to customers by recognizing their desires. It aims to support
sales expansion and new product development in traditional crafts in Ishikawa Pre-
fecture, Japan. In order to do this, the project is developing a technique for selecting
and providing information according to an individual person’s desires. This will be
done by creating a search engine and an information aggregation system. See Fig. 5.

This recommendation system has already been installed on several websites of
arts and crafts shops. If a user inputs his/her desired attributes, then the system will
recommend several products, but the system prepares the bipolar scales in advance,
which are different for respective stores. To deal with a large number of products,
the present system uses the direct modeling approach by the shop owner, and it
selectively uses the ordered weighted averaging operators and the prioritized max-
min operators to aggregate information.

The method described above gives a partial answer to the subject of product rec-
ommendation by knowledge integration. Actually, this corresponds to Intelligence
in Fig. 6, which shows an example of specified knowledge integration.

2
This idea was suggested by Marek Makowski, International Institute for Applied Systems
Analysis, Austria.

3
This study was supported by SCOPE 102305001 of the Ministry of Internal Affairs and
Communications, Japan.
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Fig. 5 Implemented functions of the recommendation system

Fig. 6 A designed framework of knowledge integration

• Intervention: The user inputs his/her desired attributes, and if necessary selects a
method of information aggregation.

• Intelligence: The computer system recommends several products that might fit
with the desired attributes, based on the preinstalled aggregation methods and
product information.
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• Involvement: We can use the idea of widely deployed recommendation systems;
examples given in Wikipedia [18] are:

– “When viewing a product on Amazon.com, the store will recommend addi-
tional items based on a matrix of what other shoppers bought along with the
currently selected item.”

– “Pandora Radio takes an initial input of a song or musician and plays mu-
sic with similar characteristics (based on a series of keywords attributed to
the inputted artist or piece of music). The genre stations created by Pandora
can be refined through user feedback (emphasizing or de-emphasizing certain
characteristics).”

– “Netflix offers predictions of movies that a user might like to watch based on
the user’s previous ratings and watching habits (as compared to the behavior
of other users), also taking into account the characteristics of the film (such as
the genre).”

• Imagination: The information used in Intelligence and Involvement are based on
past data. However, producers have ideas about current and future fashion trends,
and also know their products. We can use such knowledge in Imagination.

• Integration: If we could install all the necessary information in a computer, we
could recommend some products by using a certain integration rule. But usually
the integrator, the shop owner, might have information from Imagination as a
result of direct communication with the producers. So, we could invent an inte-
gration rule by taking into account information that might be regarded as tacit
knowledge.

7 Conclusion

This paper considered issues of knowledge synthesis for product recommendation
based on the theory of knowledge construction systems, which suggests actors to
collect knowledge from scientific, social, and creative dimensions and to synthe-
size them systemically. This paper mainly introduced mathematical information ag-
gregation techniques for product recommendation, but these techniques gives only
partial answers. The paper finally returned to the theory of knowledge synthesis to
suggest how to provide a better answer to the problem.

Developing knowledge synthesis methodologies, methods, and tools is most im-
portant for knowledge science, using a variety of knowledge and media. When we
face a complex problem, based on our experience-based knowledge, we make a
plan to collect knowledge from the three dimensions and then synthesize the col-
lected knowledge to obtain knowledge for problem solving. Here, it is important to
acquire a systemic view through trained intuition, and using methods of justifying
new knowledge without simply relying on the scientific method in the narrow sense.
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