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Preface

Léopold Simar became Professor of Statistics at the Université catholique de
Louvain (UCL) in 1992, after moving from the Faculté des Sciences Economiques
Sociales et Politiques (FSESP) at Facultés Universitaires Saint-Louis in Brussels
where he had served as Professor of Statistics since 1974 and as Dean of the FSESP
from 1978 to 1990. He founded the Institute of Statistics at UCL in 1992, and
chaired the Institute from its creation until 2004. During this period, the Institute
became recognized as a leading center for research in mathematical statistics. Over
his long and successful career, Léopold Simar has worked on a variety of topics
in statistics, including count-data models, Bayesian estimation and inference, and
frontier estimation. He is regarded as one of the world’s leading experts on frontier
estimation; his work in this area has found applications in a broad variety of
fields, including efficiency studies in industry, air traffic control, research output
of universities, insurance companies, etc. He has published over 100 refereed works
in academic journals and books, and has given over 100 invited talks at conferences
and universities around the world. Léopold Simar is also a gifted and inspirational
teacher. He is very well appreciated by his students at all levels, especially by his
Ph.D. students.

In May 2009, 60–70 statisticians, econometricians, students, and others gathered
in Louvain-la-Neuve to honor our friend Léopold Simar at his retirement. The
group included Léopold’s colleagues, coauthors, and students, as well as university
administrators and other academics who have over the years worked with Léopold,
served on committees, organized conferences, or otherwise participated in academic
life with Léopold. The sets of colleagues, coauthors, and students included both
current and former members, and each of the possible intersections of these three
sets are nonempty.

The celebration in Louvain-la-Neuve was organized around a small, 2-day
research conference where researchers presented results from some of their current
work. This volume contains the papers that followed from those presentations.
Between presentations, there was much discussion and learning over coffee and
other refreshments; in the evening, there was still more discussion (and still more
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learning, and no less fun) over dinner. For many at the conference, there was the
chance to see old friends; possibly for everyone except Léopold (who already knew
everyone attending), there was the chance to meet new friends. As is common at
academic gatherings such as this, the transition between organized presentations,
coffee breaks, more presentations, lunch, still more presentations, and dinner was
almost seamless. Conversations flowed smoothly, and the boundary between work
and fun was not discrete but rather blurred. In fact, for us, there remain questions
about the existence of such a boundary. We have not merely worked with our friend
Léopold, but we have also had much fun together over the years. And, we have not
finished.

To the outsider, statistics and econometrics might seem to be the same. Often
in our professions, however, there is little discussion between statisticians and
econometricians, and sometimes where there is discussion between the two, it
is not polite. This is not the tradition in Louvain-la-Neuve. The Institute of
Statistics founded by Léopold in 1992 at the Université catholique de Louvain
in Louvain-la-Neuve has always been a place for the two groups to meet and
learn from each other. Over the years in the Institute, both members and visitors,
including both econometricians and statisticians, have benefited from each other
with econometricians adopting the mathematical rigor that is more common among
statisticians, and with statisticians appreciating the subtlety of estimation problems
arising in economics.

The 11 papers in this volume are at the frontier of current research. Not
coincidentally, ten of the papers are related (at least to some extent) to estimation
of frontiers, a topic that Léopold has contributed much to over the past two
decades. The eleventh paper deals with estimation of single index models, an
area that Léopold has also contributed to. Both frontier estimation and single
index models are important topics. In particular, frontier estimation is important
in economics, management, management science, finance, and other fields for
purposes of benchmarking and making relative comparisons. Some of the ideas in
the papers collected here may also be useful for image resolution as well as other
purposes. The chapters in this volume reflect the varied interests of their authors;
some chapters are mostly theoretical, while others involve varied applications to
real data to answer important questions; we expect that everyone in a very wide
audience will find something useful in this collection.

Abdelaati Daouia, Laurent Gardes, and Stéphane Girard use extreme value theory
to extend asymptotic results for (Nadaraya 1964) kernel estimators to estimation
of extreme quantiles of univariate distributions. The results are then applied to
derive the asymptotic distribution of smooth nonparametric estimators of monotone
support curves. While estimation of efficiency in production has traditionally relied
on linear programming techniques, the research in this chapter is a nice example of
the new approaches that are currently being developed.

Alice Shiu and Valentin Zelenyuk examine the effect of ownership type on
the efficiency of heavy and light industry in China. In recent years, a number of
countries have attempted to reorganize their industry after turning away from direct
central planning and state-owned enterprises. China is currently in the middle of
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this process, and for the moment presents an opportunity to examine differences
in ownership structure as reflected in operating efficiency. The results potentially
provide guidance for future transitions in other countries.

Maik Schwarz, Sébastien Van Bellegem, and Jean-Pierre Florens consider an
additive measurement error model in which the error on measured inputs is
assumed to be normal, but with unknown variance. They study a new estimator
of the production frontier under this model and establish conditions required for
identification and the consistency of their estimator. Their estimator is a modified
version of the order-m frontier considered earlier by Cazals et al. (2002), and as
such involves estimation of a survivor function for inputs conditioned on output
variables.

Irène Gijbels and Abdelaati Daouia propose a new class of robust estimators of
the production frontier in a deterministic frontier model. The class is based on so-
called extremiles, which include the family of expected minimum-input frontiers
and parallels the class of quantile-type frontiers. The class is motivated from several
viewpoints, revealing its specific merits and strengths.

Alois Kneip and Robin Sickles revisit the (Solow 1957) residual and discuss
how it has been interpreted by both the neoclassical production literature and the
literature on productive efficiency. Kneip and Sickles argue that panel data are
needed to estimate productive efficiency and innovation, and in doing so attempt
to link the two strands of literature.

Paul Wilson extends theoretical results obtained by Kneip et al. (1998) for input-
and output-oriented distance function estimators to hyperbolic distance function
estimators. Asymptotic properties of two different hyperbolic data envelopment
analysis distance function estimators are derived, and computationally efficient
algorithms for computing the estimators are given. In addition, asymptotic results
obtained by Cazals et al. (2002) for the input- and output-oriented order-m estimator
are extended to the corresponding estimators in the hyperbolic orientation. The
hyperbolic orientation is particularly useful for making cross-period comparisons,
as in the case of estimation of changes in productivity, etc. using Malmquist or
other indices, where infeasibilities often arise when working in the input or output
directions due to shifts in the frontier over time.

Luiza Bădin and Cinzia Daraio consider the problem of estimating productive
efficiency conditionally on environmental variables, some of which may be discrete.
Bădin et al. (2010) proposed a data-driven, cross-validation technique for choosing
bandwidths when the environmental variables are continuous. In this chapter, Bădin
and Daraio describe how conditional estimation can be carried out when some
environmental variables are continuous while others are discrete. The work builds
on the work of Li and Racine (2008) which considers a similar problem in a
regression context. Here, Bădin and Daraio also propose an heterogeneous bootstrap
that allows one to make inference about the influence of environmental variables.

Cédric Heuchenne and Ingrid Van Keilegom cast the problem of regressing a
random variable Y on a covariate X in terms of a location functional (which might
be a conditional mean function, but which can also be a quantile or some other
feature of interest) by focusing on L-functionals. Censoring is a common problem
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in such problems, and Heuchenne and Van Keilegom propose a new method for
estimation that involves nonparametric imputation for the censored observations.
The approach should be useful in a variety of applications, but particularly so in
survival analysis.

Seok-Oh Jeong and Byeong Park consider the general problem of estimating
a convex set as well as the upper boundary of that convex set. Estimation of a
production set and its frontier function with multivariate covariates are examples
of such estimation tasks. The developed methodology is applied to conical hull
estimators and data envelopment analysis. In addition, Jeong and Park discuss
practical considerations for bias-correction and interval estimation in the frontier
context.

Pavlos Almanidis and Robin Sickles consider parametric frontier estimation.
Simar and Wilson (2010) examined problems for inference in the (Aigner et al.
1977) model in finite samples situations where residuals are sometimes skewed
in an unexpected direction, even if the (Aigner et al. 1977) model is the correct
specification. Almanidis and Sickles extend the (Aigner et al. 1977) model to
allow for skewness in either direction using a doubly truncated distribution for
inefficiency.

Yingcun Xia, Wolfgang Härdle, and Oliver Linton consider the problem of
estimating a single index regression model. The authors propose a refinement of
the minimum average conditional variance estimation (MAVE) method involving a
practical and easy-to-implement iterative algorithm that allows the MAVE estimator
to be readily derived. The authors also discuss the difficult problem of how to select
the bandwidth for estimating the index. In addition, they show that under appropriate
assumptions, their estimator is asymptotically normal and most efficient in a semi-
parametric sense.

We (i.e., the editors of this volume) have been partially supported by an
Inter-university Attraction Pole (IAP) research network grant from the Belgian
government and by a grant from the European Research Council. We also thank the
editor at Springer, Niels Peter Thomas, and the staff at Springer for their efficient
handling of the manuscript.

Louvain-la-Neuve Ingrid Van Keilegom
Clemson Paul W. Wilson
January 2011
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Louvain, Voie du Roman Pays 34, 1348 Louvain-la-Neuve, Belgium, sebastien.
vanbellegem@uclouvain.be

Ingrid Van Keilegom Institut de statistique, biostatistique et sciences actuarielles,
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Chapter 1
Nadaraya’s Estimates for Large Quantiles
and Free Disposal Support Curves

Abdelaati Daouia, Laurent Gardes, and Stéphane Girard

Abstract A new characterization of partial boundaries of a free disposal multivari-
ate support, lying near the true support curve, is introduced by making use of large
quantiles of a simple transformation of the underlying multivariate distribution.
Pointwise empirical and smoothed estimators of the full and partial support curves
are built as extreme sample and smoothed quantiles. The extreme-value theory holds
then automatically for the empirical frontiers and we show that some fundamental
properties of extreme order statistics carry over to Nadaraya’s estimates of upper
quantile-based frontiers. The benefits of the new class of partial boundaries are
illustrated through simulated examples and a real data set, and both empirical
and smoothed estimates are compared via Monte Carlo experiments. When the
transformed distribution is attracted to the Weibull extreme-value type distribution,
the smoothed estimator of the full frontier outperforms frankly the sample estimator
in terms of both bias and Mean-Squared Error, under optimal bandwidth. In this
domain of attraction, Nadaraya’s estimates of extreme quantiles might be superior
to the sample versions in terms of MSE although they have a higher bias. However,
smoothing seems to be useless in the heavy tailed case.
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2 A. Daouia et al.

1.1 Main Results

Let .X;Y /; .X1;Y1/; .X2;Y2/ : : : be independent random vectors from a common
probability distribution on R

p
C � RC whose support boundary is assumed to be

nondecreasing. For x 2 R
p
C such that P.X � x/ > 0, the graph of the frontier

function1

�1.x/ D inffy � 0 W P.Y � yjX � x/ D 1g

coincides with the monotone surface of the joint support ‰ of .X; Y / (Cazals et al.
2002). As a matter of fact, the graph of �1.�/ is the lowest nondecreasing curve larger
than or equal to the upper frontier of ‰. In applied econometrics for instance, the
support ‰ is interpreted as the set of all feasible production units, i.e., .x; y/ 2 ‰ in
a certain sector of technology if and only if it is possible for a given firm to produce
a quantity y of goods by making use of a quantity x of resources. The production
set ‰ is by construction free disposal. This means that its optimal frontier which
represents the set of the most efficient firms is nondecreasing. The free disposal hull
(FDH) estimator of �1.�/ is given by

�1;n.x/ D maxfYi ji W Xi � xg

(Deprins et al. 1984). The FDH frontier is clearly the lowest step and monotone
curve which envelopes all the data points .Xi ; Yi / and so it is very non-robust
to extreme observations. To reduce this vexing defect, instead of estimating the
frontier of the support ‰, Aragon et al. (2005) have suggested to estimate a partial
boundary of ‰ of order ˛ 2 .0;1/ lying near its true full boundary. The frontier
function �1.x/ being the quantile function of order one of the distribution of Y

given X � x, they rather proposed to estimate the ˛th quantile function of this non-
standard conditional distribution

q˛.x/ D inffy � 0 W P.Y � yjX � x/ � ˛g:

The resulting sample quantile function, obtained by plugging the empirical version
of the conditional distribution function may suffer from a lack of efficiency due
to the large variation of the extreme observations involved in its construction.
A smoothed variant Oq˛.x/ of this sample estimator may be then preferable as shown
in Martins-Filho and Yao (2008), where P.Y � yjX � x/ is estimated by

OFY x .y/ D
nX

iD1

11.Xi � x/H ..y � Yi/=h/ =

nX

iD1

11.Xi � x/;

1For two vectors x1 and x2 with x1 � x2 componentwise, �1.�/ satisfies �1.x1/ � �1.x2/.
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with h D hn ! 0, H.y/ D R y

�1 K.u/du and K.�/ being a density kernel. However,
no attention was devoted to the limit distribution of Oq˛.x/ WD OF �1

Y x .˛/ D inffy �
0 W OFY x .y/ � ˛g when it estimates the optimal boundary itself. Daouia et al.
(2009) have addressed this problem by specifying the asymptotic distribution of
the smoothed ˛-frontier for fixed orders ˛ 2 .0;1� as well as for sequences ˛ D ˛n

tending to one as n ! 1.
It is important to note that the distribution of Y being conditioned by X � x,

the estimation of the corresponding quantiles does not require a smoothing proce-
dure in x which would be the case if the distribution was conditioned by X D x (see
e.g. Girard and Jacob 2004). It should be also clear that although the simple nature
of the conditioning X � x, it requires more powerful techniques of proof than the
unconditional quantile setting. Our main contribution in this note is to get rid of this
conditioning by exploiting the fact that

�1.x/ D inffy � 0 W P.Zx � y/ D 1g;

where Zx D Y 11.X � x/. This simple formulation of the monotone frontier func-
tion was pointed out by Daouia et al. (2010, Appendix). Note also that the FDH
estimator coincides with the maximum of the random variables Zx

i D Yi11.Xi � x/,
i D 1; : : : ; n. Moreover, given that the interest is also the estimation of a concept
of a partial frontier well inside the sample but near the optimal boundary of ‰, a
natural idea is to define the alternative simple ˛th frontier function

�˛.x/ WD F �1
Zx .˛/ D inffy � 0 W FZx .y/ � ˛g;

where FZx .y/ D P.Zx � y/. In the context of productivity and efficiency analysis,
when the performance of firms is measured in terms of their distance from partial
frontiers rather than the full frontier, the use of the ˛th production frontier q˛.x/

as a benchmark can be criticized for its divergence from the optimal frontier as x

increases. Instead, Wheelock and Wilson (2008) favored the use of a hyperbolic
unconditional variant of q˛.x/. Our partial unconditional quantile-type frontier
�˛.x/ provides a more attractive alternative to reduce the vexing defect of the
conditional version q˛.x/ because of its construction and conceptual simplicity.
The benefits of using this new class of partial support curves are demonstrated in
Sect. 1.3.1 via two examples in the cases where FZx .�/ is attracted to the Weibull
and Fréchet extreme value type distributions.

A natural estimator of �˛.x/ is given by the sample quantile

�˛;n.x/ WD F �1
Zx;n.˛/ D inffy � 0 W FZx;n.y/ � ˛g;

where FZx ;n.y/ D n�1
Pn

iD1 11.Zx
i � y/. Therefore, the extreme-value theory

holds automatically when ˛ D 1 and when letting ˛ D ˛n " 1 as n ! 1, which
is not the case for previous concepts of partial support curves such as those of
Cazals et al. (2002), Girard and Jacob (2004), Aragon et al. (2005), Wheelock and
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Wilson (2008) and Martins-Filho and Yao (2008). Following Nadaraya (1964), an
alternative estimator to �˛;n.x/ is given by the ˛th quantile

O�˛.x/ WD OF �1
Zx .˛/ D inffy � 0 W OFZx .y/ � ˛g (1.1)

of the kernel-smoothed empirical distribution function OFZx .y/ D n�1
Pn

iD1

H
�
.y � Zx

i /=h
�

based on a sequence of bandwidths h and an integrated kernel
H.�/. In the ordinary framework where the order ˛ is a fixed constant in .0;1/,
Azzalini (1981) established a second-order approximation to the mean squared
error of the smoothed quantile O�˛.x/ under optimal h, which makes O�˛.x/ more
efficient than the sample version �˛;n.x/. The smoothed estimator may also be
preferable to the sample one for the following additional aspect: the construction of
asymptotic confidence intervals for �˛.x/ using the asymptotic normality of �˛;n.x/

requires the estimation of the derivative F 0
Zx .�˛.x//, whereas smoothing gives

a naturally derived estimator of this quantile density function. Nadaraya (1964)
has proved under mild conditions the asymptotic normality of O�˛.x/ when the
order ˛ is fixed in .0;1/. In the present chapter, we rather concentrate in Sect. 1.2
on specifying the asymptotic distributions of Nadaraya’s estimates O�˛.x/ when
˛ D ˛n ! 1 at different rates as n ! 1, and we verify whether the benefits of
smoothing are still valid when considering these extreme quantiles. This does not
seem to have been appreciated before in the literature. Theorem 1 characterizes
possible limit distributions of O�1.x/ and Theorem 2 discusses moment convergence.
When n.1�˛n/ is a constant, Theorem 3 shows that O�˛n .x/ converges with the same
centering and scaling as O�1.x/ to a different extreme value distribution. However,
when n.1 � ˛n/ ! 1, Theorem 4 establishes the asymptotic normality of O�˛n.x/

as an estimator of �˛n.x/.
As a matter of fact, in this context where the underlying distribution function

FZx .�/ has a jump at the left-endpoint of its support, we show by using simple
arguments that the smoothed maximum O�1.x/ is equal to a deterministic translation
of the sample maximum �1;n.x/ for all n � 1. Likewise, it turns out that a
smoothed quantile of the form O�.n�kC1/=n.x/ is within a fixed multiple of the
bandwidth of the sample quantile �.n�kC1/=n;n.x/ for all n large enough. As an
immediate consequence, the asymptotic theory of the sample extremes �1;n.x/ and
�.n�kC1/=n;n.x/ carries over to the smoothed variants.

Our Monte Carlo exercise, provided in Sect. 1.3.2, shows that the smoothed FDH
function O�1.x/ is a remarkable bias-corrected estimator of the frontier function
�1.x/ < 1. It outperforms frankly the sample FDH estimator �1;n.x/ in terms of
both bias and mean-squared error (MSE). Moreover, an explicit expression of the
optimal bandwidth is derived in this case by minimizing the asymptotic MSE.
Simulations seem to indicate also that, when FZx .�/ belongs to the maximum
domain of attraction of Weibull and the bandwidth is chosen appropriately, the
smoothed extreme quantile function O�.n�kC1/=n.x/ is superior to the empirical
version in terms of MSE although it has a higher positive bias. This result is
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similar to what happens in the ordinary framework. Although the naive extreme
sample quantile �.n�kC1/=n;n.x/ might not be so efficient, it has the advantage of
not requiring the choice of the bandwidth which is not addressed here. In the heavy
tailed case, it appears that O�.n�kC1/=n.x/ achieves at most the same performance
as the empirical version �.n�kC1/=n;n.x/ in terms of both bias and MSE and so,
smoothing seems to be useless in this case.

The limit theorems in Sect. 1.2 are provided in the general setting where the
distribution function of Zx , or equivalently the conditional distribution function
of Y given X � x, is attracted to the three Fisher–Tippett extreme value type
distributions, whereas the previous results of e.g. Martins-Filho and Yao (2008) and
Daouia et al. (2009) only cover the domain of attraction of a Weibull distribution.
These results and their proofs, postponed to the Appendix, are also extensions of
some results and techniques described in Daouia et al. (2010, 2009). Illustrations
on how the new class of unconditional quantile-based frontiers f�˛.�/; O�˛.�/g differs
from the class of conditional quantile-type frontiers fq˛.�/; Oq˛.�/g are provided in
Sect. 1.3 through simulated examples and a real data set.

1.2 Limit Theorems

To simplify the notation we write �˛ and O�˛ , respectively, for �˛.x/ and O�˛.x/

throughout this section. We first show that the smooth estimator O�1 of the endpoint
�1 has a similar asymptotic behaviour as the maximum Z.n/ D maxfZ1; : : : ; Zng
under the assumption that

(A1)
R c

�c K.u/du D 1 for some constant c > 0.

This is a standard condition in nonparametric estimation, which is satisfied by
commonly used density kernels such as Biweight, Triweight, Epanechnikov, etc.

Theorem 1. Assume that (A1) holds.

(i) We have O�1 D Z.n/ C hc, for all n � 1.
(ii) Suppose there exist an > 0, bn 2 R, n � 1 such that

PŒa�1
n . O�1 � bn/ � z� �! G.z/ as n ! 1; (1.2)

where G is assumed nondegenerate. Then G has one of the three forms

FréchetW G.z/ D ˆ�.z/ D
�

0 z < 0

expf�z��g z � 0
for some � > 0

WeibullW G.z/ D ‰�.z/ D
�

expf�.�z/�g z < 0

1 z � 0
for some � > 0

GumbelW G.z/ D ƒ.z/ D expf�e�zg; z 2 R:
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It is clear from Theorem 1(i) that (1.2) holds if and only if FZ belongs to the
maximum domain of attraction2 of an extreme value distribution G 2 fˆ�; ‰�; ƒg.
Then the characterization of an and bn can be easily deduced from the classical
theory of limit laws for maxima (see e.g. Resnick 1987) in conjunction with
Theorem 1(i). Putting NFZ D 1�FZ , it is well-known that FZ 2 DA.‰�/ iff �1 < 1
and3 NFZ.�1 � 1

t
/ 2 RV��, t ! 1; in this case we may set an D �1 � �1�1=n and

bn D �1 C hc. Likewise FZ 2 DA.ˆ�/ iff NFZ 2 RV��; in this case �1 D 1 and
.an; bn/ can be taken equal to .�1�1=n; hc/. Finally FZ 2 DA.ƒ/ iff there exists a
strictly positive function g on R such that NFZ.t C g.t/z/= NFZ.t/ ! e�z as t " �1;

for every z 2 R; in this case the constants .an; bn/ can be taken equal to .g.�1�1=n/;

�1�1=n C hc/.
On the other hand, by making use of Theorem 1(i), it is easy to show that

the convergence in distribution (1.2) of the smoothed maximum O�1 implies the
convergence of moments in the three cases G 2 fˆ�; ‰�; ƒg under some condition
on the left tail of FZ .

Theorem 2. Let (A1) and (1.2) hold and denote by �.k/ the kth derivative of the
gamma function � .

(i) If G D ˆ� in (1.2) with .an; bn/ D .�1�1=n; hc/ and
R 0

�1 jzjkFZ.d z/ < 1 for
some integer 0 < k < �, then

lim
n!1 Efa�1

n . O�1 � hc/gk D
Z

R

zkˆ�.d z/ D �.1 � k=�/:

(ii) If G D ‰� with .an; bn/ D .�1 � �1�1=n; �1 C hc/ and
R �1

�1 jzjkFZ.d z/ < 1
for some integer k > 0, then

lim
n!1 Efa�1

n . O�1 � �1 � hc/gk D
Z 0

�1
zk‰�.d z/ D .�1/k�.1 C k=�/:

(iii) If G D ƒ with .an; bn/ D .g.�1�1=n/; �1�1=n C hc/ and
R 0

�1 jzjkFZ.d z/ < 1
for some integer k > 0, then

lim
n!1 Efa�1

n . O�1 � bn/gk D
Z

R

zkƒ.d z/ D .�1/k�.k/.1/:

When estimating the endpoint �1 < 1 of FZ 2 DA.‰�/, an optimal value of h

can be derived by minimizing the asymptotic mean-squared error of O�1. By making
use of Theorem 2(ii), it is not hard to check that the optimal bandwidth is given by

2We write FZ 2 DA(G) if there exist normalizing constants an > 0, cn 2 R such that a�1
n .Z.n/ �

cn/
d! G.

3A measurable function ` W R
C

! R
C

is regularly varying at 1 with index � (written ` 2 RV� )
if limt!1

`.tx/=`.t/ D x� for all x > 0.
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hopt D an.c�/�1�.1=�/: (1.3)

Next we show that if O�1 converges in distribution, then O�1�k=n converges in
distribution as well, with the same centering and scaling, but a different limit
distribution.

Theorem 3. Assume that (A1) holds. If a�1
n . O�1 � bn/

d�! G and a�1
n h ! 0, then

for any integer k � 0,

a�1
n . O� n�k

n
� bn/

d�! G as n ! 1

for the distribution function G.z/ D G.z/
Pk

iD0.� log G.z//i =i Š.

For the condition a�1
n h ! 0 to be satisfied in the case G D ˆ� , one only needs

to suppose for instance that limn!1 h < 1. However, for the case G D ‰�, the
condition a�1

n h ! 0 holds if h=.�1 � �1�1=n/ ! 0. The case G D ƒ is less
flexible since the characterization of the normalization constant an D g.�1�1=n/ is
not as explicit here than in the cases G 2 fˆ�; ‰�g (see e.g. Resnick (1987, p. 38)
for more details). It should be also clear that for O�˛ to converge to the extreme-
value distribution G, it suffices to choose the sequence ˛ D ˛n " 1 such that
n.1 � ˛/ D k, with k < n being an integer, whereas for O�˛ to have an asymptotic
normal distribution, we show in the next theorem that it suffices to choose ˛ ! 1

slowly so that n.1 � ˛/ ! 1.
The three Fisher–Tippett extreme-value distributions can be defined as a one-

parameter family of types

G� .z/ D
�

expf�.1 C �z/�1=� g; � 6D 0; 1 C �z > 0

expf�e�zg � D 0; z 2 R;

where � is the so-called extreme-value index (see, e.g., Beirlant et al. 2004). The
heavy-tailed case FZ 2 DA.ˆ�/ corresponds to � > 0 and � D 1=� . For � D 0, it
is clear that G� D ƒ. The case FZ 2 DA.‰�/ corresponds to � < 0 and � D �1=� .
In either case we give in the next theorem asymptotic confidence intervals for high
quantiles �˛ by imposing the extra condition that

(A2) The derivative U 0 of U.t/ D �1�1=t exists so that it satisfies U 0 2 RV��1.

As pointed out in Dekkers and de Haan (1989), the assumption U 0 2 RV��1 on the
inverse function U.t/ D .1=.1 � FZ//�1.t/ is equivalent to F 0

Z 2 RV�1�1=� for
� > 0, F 0

Z.�1 � 1=t/ 2 RV1C1=� for � < 0 and 1=F 0
Z is �-varying for � D 0 (for

the �-Variation, see e.g. Resnick 1987, p.26).

Theorem 4. Given (A1) and (A2),

p
k
� O� n�kC1

n
� �˛n

�
=
� O� n�kC1

n
� O� n�2kC1

n

�
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is asymptotically normal with mean zero and variance 22��2=.2� � 1/2, provided
that ˛n " 1, n.1 � ˛n/ ! 1 and the integer part k of n.1 � ˛n/ satisfies
hk3=2fnU 0.n=k/g�1 ! 0 as n ! 1.

Note that in the case � D 0, the asymptotic variance is understood to be the limit
f1= log 2g2 obtained as � ! 0. This theorem enables one to construct an asymptotic
confidence interval for �˛n

by replacing the tail index � in the asymptotic variance
with a consistent estimator. One can use for example the moment’s estimator
introduced by Dekkers et al. (1989) or the recent proposal by Segers (2005). Note
also that in frontier and efficiency analysis, econometric considerations often lead
to the assumption that the joint density of the random vector .X; Y / 2 R

pC1
C has a

jump at its support boundary, which corresponds to the case where � is known and
equal to �1=.p C 1/ as established in Daouia et al. (2010).

1.3 Numerical Illustrations

We provide in this section some modest illustrations in the context of frontier
analysis, i.e., when Z D Zx and O�˛ D O�˛.x/. In this case, it is important to note
that the bandwidth h, the normalizing sequences .an; bn/, the extreme value index
� or equivalently the tail index �, the order ˛n and the sequence kn should
depend on the fixed level x 2 R

p
C. We do not enter here into the question of

how to choose in an optimal way h, ˛n and kn. Deriving asymptotically optimal
values of these parameters is a tedious matter. Using for instance (1.3) calls
for selection of subsidiary smoothing parameters (using plug-in methods requires
explicit estimation of the spacing an and the tail index �, which demands optimal
selection of the amount of extreme data involved in each estimate, etc). Such
complexity is arguably not justified. Instead, we suggest an approximate empirical
method as follows. We tune the bandwidth h involved in O�˛.x/ D OF �1

Zx .˛/ so that
approximately a reasonable percentage �% of the data points Zx

1 ; : : : ; Zx
n fall into

the support of u 7! K..z � u/=h/. In case of kernels with support Œ�1; 1�, as
Triweight and Epanechnikov kernels, we use the explicit formula

hx D �

200
. max
iD1;:::;n

Zx
i � min

iD1;:::;n
Zx

i /:

Our method itself requires selection of a smoothing parameter �, but it has the
advantage to be very simple to interpret and to implement, particularly in the
difficult context of nonparametric curve estimation. The same rule can be applied
to the estimator Oq˛.x/ D OF �1

Y x .˛/ whose computation is similar to O�˛.x/. Indeed,
similarly to OFZx .y/ we have OFY x .y/ D .1=Nx/

PNx

iD1 H
�
.y � Y x

i /=h
�
, where

Nx D Pn
iD1 11.Xi � x/ and Y x

1 ; : : : ; Y x
Nx

are the Yi ’s such that Xi � x. As a
matter of fact, Y x

1 ; : : : ; Y x
Nx

are the Nx largest statistics of the sample .Zx
1 ; : : : ; Zx

n /.
Note also that the two families of nonparametric (unconditional and conditional)
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quantile-based partial frontiers O�˛.�/ and Oq˛.�/ coincide for ˛ D 1, but they differ
from one another when ˛ < 1. This difference is illustrated through a real data set
and two simulated examples in the cases where the support boundary is finite and
infinite.

For our practical computations in Sect. 1.3.1, the smooth estimators will be
evaluated only for fixed extreme orders ˛ by using a Triweight kernel K and for a
grid of values of �. Section 1.3.2 provides a comparison between the sample extreme
frontiers and their smoothed versions via Monte Carlo experiments.

1.3.1 Illustrative Examples on One Sample

1.3.1.1 Case of a Finite Support Boundary

We choose .X; Y / uniformly distributed over the support ‰ D f.x; y/j0 � x �
1; 0 � y � xg. In this case, the true frontier function is �1.x/ D q1.x/ D x

and the class of conditional quantile-based frontiers q˛.x/ D x.1 � p
1 � ˛/ is

different from our class of unconditional quantile-type frontiers �˛.x/ D maxf0; x�p
1 � ˛g, for ˛ 2 .0;1�. Both partial order-˛ frontiers are graphed in Fig. 1.1 for

some large values of ˛ D 0:9; 0:95; 0:99.
Note that in traditional applied econometrics, the distance from the full support

frontier is used as a benchmark to measure the production performance of firms.
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Fig. 1.1 The full frontier in solid line. The frontiers q˛.�/ in thin lines and �˛.�/ in thick lines, with
˛ D :9 in dashdotted lines, ˛ D :95 in dotted lines and ˛ D :99 in dashed lines
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The economic efficiency can also be measured in terms of partial frontiers as
suggested recently in the econometric literature to avoid non-robustness of the
envelopment nonparametric frontier estimators. It is clear that the partial frontiers
f.x; q˛.x// W 0 � x � 1g of the support ‰ diverge from the support boundary
as x increases and so, measuring efficiency relative to these curves may result in
misleading efficiency measures. To reduce this defect, Wheelock and Wilson (2008)
favored the use of a hyperbolic unconditional variant of q˛.x/. The new partial
frontiers �˛.x/ parallel the full frontier �1.x/ providing thus a simple alternative
for measuring partial efficiencies without recourse to the hyperbolic framework.
However, this desirable property is valid only for input factors x ranging from the
.1 � ˛/th quantile of the marginal distribution of X to its endpoint. It is easy to
see that the value of �˛.x/ is zero whenever P.X Š x/ � ˛, but the class fq˛.x/g
does not necessarily take advantage from this drawback of f�˛.x/g. Indeed, given
that the interest is in estimating partial frontiers �˛ and q˛ lying close to the full
support boundary, the order ˛ shall be selected large enough in such a way that the
estimates of �˛ and q˛ capture the shape of the sample’s upper boundary without
enveloping all the data points4. For such a choice of ˛ " 1, the .1 � ˛/th quantile
of the distribution of X should be very small and so, the shortcoming O�˛.xi / D 0

is expected to hold only for very few observations .xi ; yi / at the left border of the
sample. For these few observations with too small inputs-usage xi , the estimates
Oq˛.xi / of q˛.xi / are expected by construction to coincide with the non-robust
envelopment FDH estimates (as illustrated below in Figs. 1.2, 1.4 and 1.5), which
goes against the concept of partial frontier modeling. Examples are also provided
below in Fig. 1.8 where only Oq˛.�/ suffers from left border defects, whereas O�˛.�/ is
clearly the winner.

Figure 1.2 (top) depicts the true ˛-frontiers q˛.x/ and �˛.x/ with estimated
smooth frontiers Oq˛.x/ and O�˛.x/ for ˛ ranging over f0:95;1g for a simulated data
set of size n D 100. The three pictures correspond to the values 5;30;60 of the
parameter �. The kernel estimator O�1 of the full frontier �1 is clearly sensible to the
choice of the smoothing parameter �. The worse behavior of this estimator for too
large and too small values of � is explained by Theorem 1(i) which states that O�1.x/

is nothing else than a shifted value of the conventional FDH estimator. The choice
of hx according to a high percentage �% generates a very large bandwidth, which
may result in over-estimations of the true frontier. On the other hand, when � # 0

we have hx # 0, and so O�1.x/ converges to the FDH estimator which underestimates
the frontier �1.x/. In contrast, O�:95 and Oq:95 are less sensible to the choice of � in this
particular case. Figure 1.2 (bottom) corresponds to the same exercise with ˛ ranging
over f0:99;1g. Again we obtain the same results as before. Reasonable values of
the smooth frontier O�1 require, via computer simulation, the choice of a moderate
parameter �, say � D 20;25;30;35.

4Once a reasonable large value of ˛ is picked out, the idea in practice is then to interpret the
observations left outside the ˛th frontier estimator as highly efficient and to assess the performance
of the points lying below the estimated partial frontier by measuring their distances from this
frontier in the output-direction.



1 Nadaraya’s Estimates for Large Quantiles and Free Disposal Support Curves 11

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Xi

Y
i

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Xi

Y
i

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Xi

Y
i

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Xi

Y
i

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Xi

Y
i

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Xi

Y
i

Fig. 1.2 In thick lines the frontiers �1 (solid), �˛ (dotted) and q˛ (dashed). In thin lines their
estimators O�1, O�˛ and Oq˛ . n D 100 and from left to right � D 5;30;60. From top to bottom
˛ D :95;:99

1.3.1.2 Case of an Infinite Support Boundary

We consider the standard case where the distribution of Y given X D x is Pareto of
parameter ˇ > 0, that is

P.Y � yjX D x/ D
�

1 � .x=y/ˇ if y � x

0 if y < x:

Here we choose X uniform on .0;1/. The two partial ˛th frontiers are then given by

q˛.x/ D maxfx; xŒ.1 � ˛/.1 C ˇ/��1=ˇg;
�˛.x/ D maxfx; x1C1=ˇŒ.1 � ˛/.1 C ˇ/��1=ˇg:

Both families of partial frontiers differ following the values of the distribution
parameter ˇ. A graphical illustration is displayed in Fig. 1.3. In each picture we
superimpose the lower support boundary, the quantile functions q˛.x/ and �˛.x/ and
the regression ˛th quantiles of Y given X D x, for a fixed ˇ 2 f1;10g and for two
large values of ˛ D 0:95;0:99. First note that �˛.�/ is overall smaller than q˛.�/ and
that q˛.�/ itself is overall smaller than the ˛th regression quantile function, for any
˛ 2 .0;1/. Second note that for small values of ˇ (e.g. ˇ D 1), the use of extreme
regression quantiles (e.g. ˛ D 0:99) to capture the most efficient firms seems in
this particular case to be less justified than the use of q˛.�/ and �˛.�/. Indeed, from
an economic point of view, it is not reasonable for optimal dominating firms to
be too far in the output direction from the set of relatively inefficient firms (lower
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Fig. 1.3 The lower support boundary in dotted line, the quantile functions q˛.�/ in dashed lines
and �˛.�/ in solid lines and the regression quantiles in dashdotted lines. On the left-hand side
ˇ D 1, on the right-hand side ˇ D 10. In thick lines ˛ D :95, in thin lines ˛ D :99
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Fig. 1.4 Here ˇ D 3. In thick lines: true lower frontier (dotted), �:95 (solid), q:95 (dashed). In thin
lines: O�1 (dotted), O�:95 (solid) and Oq:95 (dashed). n D 100 and from left to right � D 5;30;60

support boundary). The use of the three types of quantile-based frontiers seems to
be more justified from an economic viewpoint for large values of the parameter ˇ

(e.g. ˇ D 10). In particular the parabolic shape of the function �˛.�/ diminishes as
ˇ increases. The three ˛th quantile functions converge to the linear lower support
frontier as ˇ ! 1.

For a simulated data set of size n D 100 using ˇ D 3, the true frontiers q˛.x/

and �˛.x/ with the smooth estimators Oq˛.x/ and O�˛.x/ are graphed in Fig. 1.4
for ˛ 2 f0:95;1g and � D 5;30;60. We obtain the same conclusions as in the
preceding example. Here also, while Oq:95.x/ diverges from the extreme smooth
frontier O�1.x/ as x increases, the partial frontier O�:95 parallels O�1.x/ in much the
same way as the partial frontiers O�˛ do in Fig. 1.2. In this particular example, it is
clear that Oq:95 is more attracted by extreme data points with small Xi ’s. In general,
for ˛ < 1, the frontiers O�˛ are by construction more robust to extremes than Oq˛ and
are less sensible to the border effects from which the frontiers Oq˛ suffer due to the
conditioning X � x.
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Fig. 1.5 n D 4;000 French post offices. In dotted line O�1, in solid line O�˛ and in dashed line Oq˛ .
From left to right ˛ D :99;:995;:999. From top to bottom � D 25;35

1.3.1.3 Frontier Analysis of French Post Offices

To illustrate our methodology, we employ data on 4,000 post offices from France
reported in Cazals et al. (2002). These data consist of the cost variable Xi which
represents the quantity of labor and the output variable Yi defined as the volume of
delivered mail.

In Fig. 1.5, we provide in each picture a scatterplot of the data and plot the
frontiers O�1, O�˛ and Oq˛, for ˛ D 0:99, 0:995 and 0:999, from left to right. From
top to bottom, we used � D 25 and � D 35 in our computations. We first observe
that both ˛th frontiers O�˛ and Oq˛ are not influenced by the choice of the smoothing
parameter �, whereas the full extreme frontier O�1 changes slightly. We also see
that large frontiers O�˛ suggest better capability of fitting efficient post offices than
large Oq˛. It is apparent that the estimates O�˛ (solid lines) are less sensitive to the
choice of extreme orders ˛ than the frontiers Oq˛ are (dashed lines). Figure 1.6
plots the ˛th frontier estimates O�˛ (respectively, Oq˛) for the three values ˛ D
0:99;0:995;0:999 against each other: each panel indicated by ‘circles’ (respectively,
‘dots’) compares estimates f. O�˛1.Xi/; O�˛2 .Xi // W i D 1; : : : ; ng (respectively
f. Oq˛1.Xi/; Oq˛2.Xi // W i D 1; : : : ; ng) for a pair .˛1; ˛2/ of values for ˛. Unlike the
panels in ‘circles’, most points fall on or near a straight line for all ‘dotted’ panels,
confirming thus the impression from Fig. 1.5, i.e., while the frontier estimates
O�˛ obtained with the three extreme values of ˛ are somewhat similar, one sees
substantial differences for the frontiers Oq˛ .

Note that the full extreme frontier O�1.x/ in Fig. 1.5 is far from large partial
frontiers O�˛.x/ even when ˛ increases (this is not the case for Oq˛.x/). This
might suggest the heavy-tailed case FZx 2 DA.G�x / with �x > 0. However, this
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Fig. 1.6 The ‘circles’ (respectively, ‘dots’) consist of the points f.O�˛1
.Xi /; O�˛2

.Xi // W i D
1; : : : ; ng (respectively f. Oq˛1 .Xi /; Oq˛2.Xi // W i D 1; : : : ; ng). From left to right .˛1; ˛2/ D
.:99;:995/; .:995;:999/; .:999;:99/. Here � D 25

assumption can hardly be accepted by looking to the two first moments5 plots
displayed in Fig. 1.7 and consisting of the sets of points f.k; O�x.k// W 1 � k �
Nxg, for x D 1;000; 2;000 (top panels). In contrast, when the bottom graphs (for
x D 3;000; 4;000) look stable, they correspond to values O�x � 0.

The frontier O�1.x/ being by construction a shifted variant of the FDH estimator,
it is more sensitive to extreme values. This frontier is clearly determined by very
few outlying post offices. At the opposite, the partial frontier O�˛.x/ is more resistant
to these outliers than O�1.x/ and Oq˛.x/ even for too high values of ˛. This explains
the substantial difference between O�˛.x/ and O�1.x/ even when ˛ D 0:9993, 0:9995

and 0:9997 as shown in Fig. 1.8.

1.3.2 Monte Carlo Experiments

1.3.2.1 Comparison of the Full Frontier Estimators

Let us first compare the performance of both estimators O�1.�/ and �1;n.�/ of the
full frontier function �1.�/. In the particular example described above in Para-
graph 1.3.1.1 where �1.x/ D x, we have FZx 2 DA.‰�x

/ with �x D �1=�x D 2

and an.x/ D x � maxf0; x �p
1=ng. For the computation of the smoothed esti-

mator O�1.x/, we use here the true value of the optimal bandwidth hopt .x/ D
an.x/��1

x �.��1
x / derived in (1.3), as well as the plug-in values hopt;1.x/ D

Oan.x/��1
x �.��1

x / and hopt;2.x/ D Oan.x/ O��1
x �. O��1

x / obtained by replacing an.x/

and �x , respectively, with the empirical counterpart Oan.x/ D Zx
.n/ � Zx

.n�1/ and the
moment’s estimator O�x D �1= O�x. The computation of O�x depends on the sample
fraction k whose choice is difficult in practice. By definition of the moment’s

5The moment’s estimator O�x of the tail index �x is defined as O�x D H
.1/
n C 1 � 1

2
f1 �

.H
.1/
n /2=H

.2/
n g�1, with H

.j/
n D .1=k/

Pk�1
iD0.log Zx

.n�i/ � log Zx
.n�k//

j for k < n and j D 1; 2

(Dekkers et al. 1989).
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Fig. 1.7 Moments plots for x D 1;000; 2;000; 3;000; 4;000, respectively from left to right and
from top to bottom
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Fig. 1.8 As in Fig. 1.5 with � D 25 and, from left to right, ˛ D :9993; :9995; :9997

estimator, the sequence k D kn.x/ must be chosen as a function of both n and
x such that Zx

.n�k/ > 0, which is equivalent to selecting k in f1; : : : ; Nx � 1g, with
Nx D Pn

iD1 11.Xi � x/ being the number of strictly positive Zx
i ’s. Here, we only

use the values k 2 fŒN 0:5
x �; ŒN 0:7

x �; ŒN 0:9
x �g to illustrate how much the estimates O�1.x/

based on hopt;2.x/ differ from those based on hopt;1.x/ and hopt .x/.
Figure 1.9 provides the Monte Carlo estimates of the Bias and the Mean-Squared

Error (MSE) of O�1.x/ and �1;n.x/ computed over 2;000 random replications with
n D 1;000 (what is important is not the sample size n itself but the number
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Fig. 1.9 Bias (top) and MSE (bottom) of the FDH estimator �1;n (solid thick line) and of the
smoothed estimates O�1 computed with : hopt (circles), hopt;1 (solid thin line) and hopt;2 with
k D ŒN 0:5

x �; ŒN 0:7
x �; ŒN 0:9

x � (respectively in dashdotted, dashed and dotted lines). 2000 Monte-Carlo
simulations with n D 1;000
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Nx of observations Xi smaller than or equal to x). The results are displayed for
the FDH estimator �1;n.x/ in solid thick line and for the smoothed version O�1.x/

computed with the true bandwidth hopt .x/ in ‘circles’. We see clearly that the
resulting smoothed maximum O�1.x/ outperforms the sample maximum �1;n.x/ in
terms of both Bias (top picture) and MSE (bottom), for every x.

When only the tail-index �x is supposed to be known and equal to �1=2 as is
typically the case in the econometric literature on nonparametric frontier estimation,
the results for O�1.x/ obtained with the plug-in bandwidth hopt;1.x/ are displayed in
solid thin line. We observe that the smoothed maximum’s performance deteriorates
when using the naive spacing Oan.x/ in place of the theoretical scaling an.x/, but it
remains still appreciably better than the sample maximum’s performance in terms
of both Bias and MSE, say, for all x � 0:05 (for too small values of x < 0:05, O�1.x/

performs at least as good as �1;n.x/).
When �x is estimated by O�x , the results for O�1.x/ obtained by using the plug-

in bandwidth hopt;2.x/ with k D ŒN 0:5
x �; ŒN 0:7

x �; ŒN 0:9
x �, are displayed respectively

in dashdotted, dashed and dotted lines. These three lines are graphed only for the
values of x where O�1.x/ behaves better than �1;n.x/ in terms of Bias and MSE. We
see that, when Nx is large enough (x > 0:5), the three different selected values
of k used for the computation of O�x in hopt;2.x/ give very similar results to the
“benchmarked” case hopt;1.x/ (the idea is that for a properly chosen value of k, both

cases hopt;1.x/ and hopt;2.x/ should approximately yield similar values of O�1.x/). In
contrast, the results are all the more sensitive to the choice of k as Nx becomes
small : large values of k seem to be needed as Nx decreases in order to get sensible
results.

It should also be clear that the minimal value of Nx computed over the 2;000

realizations is given, for instance, by N0:3 D 60 for x D 0:3 and by N0:1 D 1 for
x D 0:1. While the estimation of �x from the sample fZx

.n�NxC1/; : : : ; Zx
.n/g of size

Nx as small as N0:3 can hardly result in a satisfactory moment’s estimate (or any
other extreme-value based estimates), it is not even feasible when Nx < 2. This is a
recurrent problem in extreme-value theory.

Apart from this vexing border defect, we could say in view of the results
described above that the smoothed estimator’s performance may be improved in
terms of Bias and MSE by deriving a more efficient estimate for an.x/ than the
naive spacing Oan.x/, and by providing an appropriate choice of the sample fraction
k D kn.x/ involved in the tail-index estimates.

1.3.2.2 Comparison of Extreme Partial Frontiers

Let us now compare the asymptotically normal estimators O�.n�kC1/=n and
�.n�kC1/=n;n D Zx

.n�kC1/ of the extreme partial frontier �.n�kC1/=n, for two values

of k D kn 2 fŒn0:5�; Œn0:75�g and two sample sizes n 2 f100; 1;000g.
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Fig. 1.10 Results for k D Œn0:5�. Bias (right panels) and MSE (left panels) of the estimates
�.n�kC1/=n;n (solid line) and O�.n�kC1/=n (dashdotted, dashed and dotted, respectively, for r D
0:5; 1; 1:5) over 2000 MC simulations, sample size n D 100 (top) and n D 1;000 (bottom)

Case of a finite frontier: In the scenario of Paragraph 1.3.1.1 above, the derivative
of the quantile tail function Ux.t/ WD �1�1=t .x/ exists for all t > x�2 and is
given by U 0

x.t/ D t �x �1=2 2 RV�x�1. Hence Condition (A2) holds in this case
and the assumption of Theorem 4 that hk3=2fnU 0

x.n=k/g�1 ! 0 reduces to the
simple condition that n1=2h ! 0. For the computation of the smoothed estimator
O�.n�kC1/=n, we use here h D n�r with three values of r 2 f0:5; 1; 1:5g : the choice
r D 0:5 (for which n1=2h 6! 0 and nh ! 1) corresponds rather to the asymptotic
normality of ordinary smoothed quantiles, whereas the cases with r > 0:5 (for
which n1=2h ! 0 and nh 6! 1) correspond to the asymptotic normality of
extreme smoothed quantiles. The Monte Carlo estimates of the Bias and MSE of
the empirical partial frontier �.n�kC1/=n;n and the resulting smoothed three variants
O�.n�kC1/=n are shown in Fig. 1.10 for k D Œn0:5� and in Fig. 1.11 for k D Œn0:75�.

It may be seen that the smoothed extreme frontier O�.n�kC1/=n achieves its best
performance in terms of MSE as h approaches n�1=2 and behaves in this case (i.e.,
for r � 0:5) better than �.n�kC1/=n;n, but not by much, as is to be expected from
their asymptotic behavior. This appears to be true uniformly in x except for too
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Fig. 1.11 As for Fig. 1.10 but with k D Œn0:75�

small values : a plausible explanation is that what is important when estimating
�.n�kC1/=n.x/ is not the sample size n itself, but the number of non-null transformed
observations Zx

i D Yi 11.Xi � x/, which becomes negligible for x too small and so,
smoothing fails in this case.

It is also interesting to note that when O�.n�kC1/=n attains its greatest gains in terms
of MSE (as h approaches n�1=2), its bias becomes however considerably larger, as
is the case for ordinary smoothed quantiles.

Case of an infinite frontier: In the scenario of Paragraph 1.3.1.2 above, where
FZx 2 DA.ˆ�x / with �x D 1=�x D ˇ, Condition (A2) holds and the assumption of
Theorem 4 that hk3=2fnU 0

x.n=k/g�1 ! 0 is equivalent to hn�1=ˇk3=2C1=ˇ�1 ! 0.
When ˇ D 3 as chosen above, this assumption reduces to n1=12h ! 0 for k D Œn0:5�

and to n7=24h ! 0 for k D Œn0:75�. Here, our Monte Carlo experiments are not in
favor of the smoothed extreme quantiles and so we do not reproduce the figures for
saving place : O�.n�kC1/=n performs at most as well as the sample version �.n�kC1/=n;n

in terms of both Bias and MSE.
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Appendix: Proofs

Proof of Theorem 1. (i) For any x < Z.n/ C hc, we have x�Z.n/

h
< c, and so

H
�

x�Z.n/

h

�
< 1 and OFZ.x/ < 1, whence Z.n/ C hc � O�1. On the other hand, for

any x � Z.n/ Chc we have x�Zi

h
� c for each i D 1; : : : ; n, whence H

�
x�Zi

h

� D 1

for each i D 1; : : : ; n. Consequently OFZ.x/ D 1 for any x � Z.n/ C hc. Thus
Z.n/ C hc � O�1.

(ii) Since PŒa�1
n . O�1 � bn/ � x� ! G.x/ and O�1 D Z.n/ C hc, we have

PŒa�1
n .Z.n/ � cn/ � x� ! G.x/ for the sequence cn WD bn � hc. As an

immediate consequence, the nondegenerate distribution function G has one of the
three forms described in Theorem 1(ii) according to the Fisher–Tippett Theorem
(see e.g. Resnick 1987, Proposition 0.3, p.9). ut
Proof of Theorem 2. By Theorem 1(i) the convergence in distribution (1.2) implies

a�1
n .Z.n/ � cn/

d! G, that is FZ 2 DA(G) with cn D bn � hc. For the first assertion
of the theorem we have G D ˆ� with an D .1=.1 � FZ//�1.n/ and cn D 0. Then
by Proposition 2.1(i) in Resnick (1987, p.77), we have

lim
n!1 Efa�1

n Z.n/gk D
Z

R

zkˆ�.d z/ D �.1 � k=�/

and the assertion (i) follows by using . O�1 � hc/ D Z.n/. Assertions (ii) and (iii)
follow in the same way by an easy application of Proposition 2.1(ii)–(iii) of Resnick
(1987). ut
Proof of Theorem 3. First note that for any fixed integer k � 0 we have k < n for
all n large enough. Denote by Z.n�k/ the .k C 1/-th largest order statistic and let us
show that

Z.n�k/ � hc < O� n�k
n

� Z.n�k/ C hc for all n large enough: (A.1)

For any x � Z.n�k/ C hc, we have
x�Z.i/

h
� c for each i � n � k. Then OFZ.x/ �

.1=n/
P

i�n�k H
�

x�Z.i/

h

�
D n�k

n
. Therefore Z.n�k/ C hc � O� n�k

n
. On the other

hand, OFZ.Z.n�k/ � hc/ D .1=n/
P

i<n�k H
�

Z.n�k/�Z.i/

h
� c

�
� n�k�1

n
< n�k

n
D

OFZ. O� n�k
n

/, which implies Z.n�k/ � hc < O� n�k
n

. Now we can turn to the desired

assertion of the theorem. If a�1
n . O�1 �bn/

d�! G we have a�1
n .Z.n/ Chc�bn/

d�! G

by Theorem 1(i). Then following Theorem 21.18 in van der Vaart (1998, p. 313),

we obtain a�1
n .Z.n�k/ C hc � bn/

d�! H . Since

a�1
n .Z.n�k/ C hc � bn/ � 2hca�1

n < a�1
n . O� n�k

n
� bn/ � a�1

n .Z.n�k/ C hc � bn/;

the desired conclusion follows immediately from the condition a�1
n h ! 0. ut
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Proof of Theorem 4 Let � D .Z.n�kC1/ � Z.n�2kC1//=
p

2k. First, we know from
Dekkers and de Haan (1989, Theorem 3.1) that ��1.Z.n�kC1/��˛/ is asymptotically
normal with mean zero and variance 22�C1�2=.2� � 1/2, provided that ˛ ! 1,
n.1 � ˛/ ! 1 and k is the integer part of n.1 � ˛/. We also know from Dekkers

and de Haan (1989, Corollary 3.1) that .Z.n�kC1/�Z.n�2kC1//=.n=2k/U 0.n=2k/
p!

.2� � 1/=� and so, it follows from the condition h.2k/3=2fnU 0.n=2k/g�1 ! 0 that

��1h
p! 0. Thus we conclude by making use of (A.1) that ��1. O� n�kC1

n
� �˛/ has the

same asymptotic distribution as ��1.Z.n�kC1/ � �˛/. We also have by (A.1) for all
n sufficiently large,

.Z.n�kC1/�Z.n�2kC1//�2hc <
� O� n�kC1

n
� O�n�2kC1

n

�
< .Z.n�kC1/�Z.n�2kC1//C2hc:

Since ��1h
p! 0, we get h=.Z.n�kC1/ � Z.n�2kC1//

p! 0. Therefore . O� n�kC1
n

�
O� n�2kC1

n
/=.Z.n�kC1/ � Z.n�2kC1//

p! 1, which completes the proof by using

Slutsky’s Lemma. ut
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Chapter 2
Production Efficiency versus Ownership:
The Case of China

Alice Shiu and Valentin Zelenyuk

Abstract In this study, we explore the pattern of efficiency among enterprises in
China’s 29 provinces across different ownership types in heavy and light industries
and across different regions (coastal, central and western). We do so by performing
a bootstrap-based analysis of group efficiencies (weighted and non-weighted),
estimating and comparing densities of efficiency distributions, and conducting
a bootstrapped truncated regression analysis. We find evidence of interesting
differences in efficiency levels among various ownership groups, especially for
foreign and local ownership, which have different patterns for light and heavy
industries.

2.1 Introduction

Extraordinary changes have taken place in China over the past three decades since
the adoption of the open door policy. These changes have been exemplified by those
seen in China’s industrial structure, especially in the radical moves toward non-state
ownership. The corporatization of the state sector, the government’s encouragement
of merger and acquisition activity among state-owned enterprises (SOEs), and the
dramatic development of the non-state sector with enormous foreign investments
have dominated both the Chinese economy and political debate for the past decade.
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The purpose of this chapter is to tackle the timeworn political debate about which
type of ownership is more efficient in the Chinese economy and whether it depends
on the industry (light or heavy) or the region (central, western or coastal). While the
literature includes many studies of productivity in China (see the citations below),
none have focused on the relative efficiency of various ownership types for both light
and heavy industry combined. This is the issue we attempt to address in our study.
Our particular focus is on foreign versus local ownership. While there is little doubt
that private ownership should outperform state ownership on average, the situation
is not so clear for foreign versus local ownership and whether it depends on the type
of industry.

To achieve our goal, we use the most recent census data constructed for Chinese
enterprises of different ownership types in 1995. Our methodological approach
exploits recent developments in the area of efficiency analysis and is implemented
in two stages. The first stage involves the estimation of efficiency scores for
individual observations (each province in each type of industry) using the data
envelopment analysis (DEA) estimator. In the next stage, we analyze the individual
efficiency scores obtained in the first stage using three different methods. The
first method is based on the analysis of densities of efficiency distributions for
different ownership groups using a kernel density estimator and testing for their
equalities using an adaptation of the Li (1996) test. The second method is based
on the aggregation method of Färe and Zelenyuk (2003) and investigates group
efficiency scores obtained as weighted averages, with the weights representing the
economic importance of each observation. Statistical inferences for these group
efficiency scores are made via bootstrapping techniques suggested by Simar and
Zelenyuk (2007). The third method assumes more of a dependency structure
and allows us to analyze the dependency of efficiency scores on hypothetical
explanatory variables. Here, we use the truncated regression proposed by Simar and
Wilson (2007) in which bootstrapping is used as a means of statistical inference
to investigate how the conditional mean of efficiency scores is influenced by
explanatory variables such as ownership and regional dummies, as well as by
size. These methods yield interesting evidence of performance variations among
ownership groups and regions. Remarkably, the pattern of performance for light
industry is found to differ from that for heavy industry.

In common with the results of other studies, our results provide robust evidence
confirming the expectation that non-state ownership is superior to state ownership
in terms of the performance levels achieved. In addition, we confirm our prediction
that foreign-owned firms in heavy industry perform distinctly better than their
counterparts with other ownership types. Somewhat surprisingly, foreign ownership
in light industry appears to be associated with lower efficiency, on average, than
the other non-state ownership types we consider. This unexpected result can
nevertheless be explained by the theory of technology diffusion/adoption, which
can be traced back at least as far as the studies of Gerschenkron (1962) and Nelson
and Phelps (1966).

Among our other findings, we present evidence of agglomeration effects that
are pronounced in light industry but are not particularly marked in heavy industry.
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Interestingly, we find no significant difference in average efficiency between light
and heavy industries. Overall, apart from confirming a number of previous findings,
our study sheds new light on the pattern of productivity in China that will be of
interest to researchers and practitioners.

The remainder of this chapter is organized as follows. Section 2.2 briefly
discusses our methodology and Sect. 2.3 provides a brief discussion of the data.
Section 2.4 reports the empirical results in detail and Sect. 2.5 concludes the chapter.

2.2 Methodology

2.2.1 Estimation of Efficiency (Stage 1)

In the first stage of our analysis, we use the data envelopment analysis (DEA)
estimator to obtain efficiency scores for each observation. This approach usually
assumes that all decision-making units (DMUs) within a sample have access to
the same technology for transforming a vector of N inputs, x, into a vector of M
outputs, y.1 We also assume that technology can be characterized by the technology
set, T, as2

T D f.x; y/ 2 R
NC � R

MC W x 2 R
NC can producey 2 R

MC g (2.1)

Note that while our approach requires that all DMUs have access to the same
technology, it also allows for any DMU to be either on or away from the frontier
of such technology. The distance from each DMU in T to the frontier of T is called
the inefficiency of each DMU caused by endogenous or exogenous factors specific
to that DMU. These endogenous factors could include internal economic incentives
influenced by motivation systems, ownership structure, management quality, etc.
Exogenous factors might include different demographic or geographic environ-
ments, regulatory policies, and so on. Our goal is to estimate such inefficiency and
analyze its dependency on the hypothesized factors.

Technical efficiency for each DMU j 2 f1; : : : ; ng is measured using the
Farrell (1957)/Debreu-type output-oriented technical efficiency measure

TEj � TE.xj ; yj / D max �f� W .xj ; �yj / 2 T g: (2.2)

1The DEA was originally designed for firm-level analysis, but it has frequently been applied to
more aggregated data; see, for example, Färe et al. (1994) and the more recent studies of Kumar and
Russell (2002), Henderson and Russell (2005), Henderson and Zelenyuk (2006), and Badunenko
et al. (2008).
2We assume that the standard regularity conditions of the neo-classical production theory hold (see
Färe and Primont (1995) for details).
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Obviously, the true T is unobserved, and so we replace it with its DEA-estimate, bT ,
obtained through the following activity analysis model

bT D f.x; y/ 2 R
NC � R

MC W
Xn

kD1 zk ykm � ym;m D 1; : : : ; M;

Xn

kD1 zk xki � xi ; i D 1; : : : ; N; zk � 0; k D 1; : : : ng; (2.3)

where fzk W k D 1; : : : ; ng are the intensity variables over which optimization
(2.2) is made. Note that such bT is the smallest convex free disposal cone (in .x; y/-
space) that contains (or ‘envelopes’) the input-output data.3 In our discussions, we
focus on the constant returns to scale (CRS) model only for several reasons. First, the
CRS model (2.2) has greater discrimination power, making it capable of identifying
more inefficiency than non-CRS models. Some of the inefficiency identified under
the CRS model will be due to the scale effect (i.e., where a DMU is too small or
too large), which will be tested at the second stage by including a proxy for scale.
Second, the CRS model compares all DMUs evenly to the same cone, whereas for
the non-CRS DEA estimator, a large proportion of DMUs are often in or near the flat
regions of the estimated technology and so obtain high or perfect efficiency scores
while being quite inefficient from an economic perspective. Third, the CRS model
is a natural choice when aggregate (country- or region-level) data are used.

We choose the Farrell efficiency measure over others for two reasons that make
it the most popular in practice. This measure has been shown to satisfy a set
of attractive mathematical properties that are desirable in an efficiency measure.4

Moreover, this estimator is fairly easy in terms of computation and allows for
straightforward interpretation.

Note that the true efficiency scores from the Farrell measure are bounded between
unity and infinity, where unity represents a perfect (technical or technological)
efficiency score of 100%. On the other hand,

�
1=TEj

�
would represent the relative

%-level of the efficiency of the j th DMU (j 2 f1; : : : ; ng/. By replacing T with
bT in (2.2), we obtain the DEA estimator of TEj under the assumptions of CRS,
additivity, and free disposability. Applying this estimator will give estimates of

the true efficiency scores, fTEj W j D 1; : : : ; ng, which we denote as fbTEj W
j D 1; : : : ; ng. These estimated efficiency scores have the same range as the true
efficiency scores and, as in many other extreme-value type estimates, are subject to

3Alternatively, if we add
Pn

kD1 zk � 1 and
Pn

kD1 zk D 1 to equation (2.3), then we can model
the non-increasing returns to scale (NIRS) or the variable returns to scale (VRS), respectively.
4These properties include various forms of continuity, (weak) monotonicity, commensurability,
homogeneity, and (weak) indication for all technologies satisfying certain regularity conditions
(see Russell (1990,1997) for details).
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small-sample bias, which nevertheless vanishes asymptotically as the estimates are
consistent with their true counterparts.5

2.2.2 Analysis of Efficiency Distributions (Method 1 of Stage 2)

The aim of the second stage of the analysis is to study the dependency of the
efficiency scores obtained in the first stage on DMU-specific factors such as
ownership structure, regional location, size, etc.

The starting point of our second-stage analysis is to explore the efficien-
cies within and between groups that might theoretically represent different sub-
populations in the population as a whole. For example, state-owned firms have
different incentives to other firms which are likely to be reflected in the efficiency
distribution of state-owned firms relative to other firms. In particular, we first
analyze the distributions of efficiency within various groups. Here, we start with
estimation and visualization of the densities of corresponding distributions using
the kernel density estimator. For this, we use the Gaussian kernel, Silverman (1986)
reflection method (around unity), to take into account the bounded support of
efficiency measure, and Sheather and Jones (1991) method for bandwidth selection.
We then apply a version of the Li (1996) test (adapted to the DEA context by Simar
and Zelenyuk (2006)) to test the equality of efficiency distributions between various
groups of interest.

2.2.3 Analysis of Aggregate Efficiency Scores (Method 2
of Stage 2)

We proceed to analyze the various groups by testing the equality of group
(aggregate) efficiencies, which is estimated using the weighted and non-weighted
averages of the individual efficiency scores for each group. Because the weights
used for averaging might be critical here, they must be chosen on the basis of
some (more-or-less) objective criterion. We use the weights derived from economic
optimization by Färe and Zelenyuk (2003) which were extended to the sub-group
case by Simar and Zelenyuk (2007). In summary, our (weighted) group efficiency
score for group l.l D 1; : : :; L/ is estimated as

cTEl D
Xnl

jD1
cTEl;j S l;j ; l D 1; : : : L: (2.4)

5See Korostelev et al. (1995) and Park et al. (2010) for proof of consistency and rates of
convergence of the DEA estimator under CRS, and other statistical properties and required
assumptions. Also see Kneip et al. (1998, 2008) for related results on VRS.
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where the weights are

Sl;j D pyl;j =p
Xnl

jD1 y
l;j ; j D 1; : : : nl : (2.5)

in which p is the vector of output prices. For convenience, we would present the
reciprocals of the estimated group efficiency scores, i.e., (and the corresponding
confidence intervals) to give them meaning in percentage terms.

To make statistical inferences based on these group efficiency scores, we use
the bootstrap-based approach suggested by Simar and Zelenyuk (2007); readers
are referred to the same study for further details of this method. In summary, the
statistic used for testing the null hypothesis that the aggregate efficiencies for any

two groups, e.g., A and Z, are equal (i.e.,H0 W TE
A D TE

Z
) is given by the relative

difference (RD) statistic:

bRDA;Z D cTE
A

=cTE
Z

(2.6)

The null hypothesis will be rejected (at certain level of confidence) in favor of H1 W
TE

A
> TE

Z
if bRDA;Z > 1 (or H2 W TE

A
< TE

Z
if bRDA;Z < 1) and the bootstrap-

estimated confidence interval of bRDA;Z does not overlap with unity.

2.2.4 Regression Analysis of Determinants of Efficiency
(Method 3 of Stage 2)

The last method used in our investigation involves the application of regression
analysis to study the dependency between efficiency scores and some expected
explanatory variables. Here, we assume and test the following specification

TEj � aCZj ı C "j ; j D 1; : : : ; n; (2.7)

where a is the constant term, "j is statistical noise, and Zj is a (row) vector
of observation-specific variables for DMU j that we expect to influence DMU
efficiency score, TEj , defined in (2.2), through the vector of parameters ı (common
for all j ) that we need to estimate.

For some time, a practice commonly adopted in the DEA literature was to
estimate model (2.7) using the Tobit-estimator. However, Simar and Wilson (2007)
illustrate that this approach would be incorrect here and instead propose an
approach based on a bootstrapped truncated regression, showing that it performs
satisfactorily in Monte Carlo experiments. We follow their approach (specifically,
their “Algorithm 2”) and instead of using the unobserved regressand in (2.7), TEj ,
use its bias-corrected estimate, cTEjbc, which is obtained using the heterogeneous
parametric bootstrap they propose. Note that because both sides of (2.7) are bounded
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by unity, the distribution of "j is restricted by the condition "j � 1 � a � Zj ı. To
simplify the estimation process, we follow Simar and Wilson (2007) by assuming
that this distribution is a truncated normal distribution with a mean of zero, unknown
variance, and a (left) truncation point determined by "j � 1 � a � Zj ı. Formally,
our econometric model is given by

cTEjbc � aCZj ı C "j ; j D 1; : : : ; n; (2.8)

where

"j � N.0; �2" /; such that "j � 1 � a �Zj ı; j D 1; : : : ; n: (2.9)

We then use our data to estimate the model shown in (2.8)–(2.9) by maximizing the
corresponding likelihood function with respect to .a; ı; �2" /. To obtain the bootstrap
confidence intervals for the estimates of parameters .a; ı; �2" /, we use the parametric
bootstrap for regression that incorporates information on the parametric structure
(2.7) and the distributional assumption (2.9). For the sake of brevity, we refer readers
to Simar and Wilson (2007) for the details of the estimation algorithm.

2.3 Data

The data used in this chapter are drawn from the Third National Industrial Census
of the People’s Republic of China conducted by the State Statistical Bureau in 1995,
which is the latest census for which statistics have been put together and published.
The data provided in the census are the only industry-level data available that are
categorized by type of ownership. Specifically, the census provides cross-sectional
data for Chinese enterprises divided into four ownership types that are aggregated
at the province level (29 provinces) for light and heavy industries in 1995. The
four types of ownership are: (a) state-owned enterprises (SOEs); (b) foreign-funded
enterprises (FFEs); (c) township-owned enterprises (TOEs); and (d) collectively-
owned enterprises (COEs). Given these data, we have 8 ‘representative’ DMUs for
each of the 29 provinces in China: SOEs, FFEs, TOEs, and COEs in the light and
heavy industries, respectively.

A brief explanation of the industry sectors is warranted here. “Light industry”
refers to the group of industries that produce consumer goods and hand tools. It
consists of two categories distinguished from each other according to the materials
used. The first category include industries that use farm products as materials while
the other category includes industries that use non-farm products as materials.6

6Some examples of the first category of light industries are food and beverage manufacturing,
tobacco processing, and textiles and clothing, and some examples of the second category are the
manufacturing of chemicals, synthetic fibers, chemical products, and glass products.



30 A. Shiu and V. Zelenyuk

“Heavy industry” refers to industries that produce capital goods and provide
materials and technical bases required by various sectors of the national economy.7

The level of competition among light-industry firms is generally more severe than
that among heavy industry participants because there are usually more firms in the
former group. Also, because most light-industry firms are non-SOEs, they face hard-
budget constraints and are fully responsible for their profits and losses. On the other
hand, because most heavy-industry firms are SOEs which are larger and fewer in
number, the level of competition between such firms is usually lower than it is
among light-industry firms.

To construct the constant returns to scale (CRS) output-oriented activity analysis
model for the DEA estimator in the first stage, we use three inputs (i.e., total wage,
the net value of fixed assets, and the value of intermediate inputs) and one output
(the gross industrial output of each type of ownership in each province). Some
descriptive statistics and a brief discussion of the data are provided in the appendix.
Further details can be found in two studies conducted by Shiu (2000, 2001).

2.4 Main Results

2.4.1 Analysis of Densities and Means for Light Industry

After obtaining the DEA estimates of efficiency scores, we use the kernel density
estimator to approximate the distributions of the individual efficiency scores for the
four ownership groups in each of the light and heavy industry sectors. Statistical
tests for the equality of distributions suggested by Li (1996) (and adapted to the
DEA context by Simar and Zelenyuk (2006)) are used to test for differences
in distributions amongst the ownership groups. Figure 2.1 shows the (estimated)
densities of the distributions of the estimated individual efficiency scores for each
ownership group in the light industry sector. The estimated densities seem to be
relatively divergent among groups. Interestingly, the only ownership group that has a
density with an estimated mode of unity is the township-owned enterprises (TOEs).
Intuitively, this means that for TOEs, the highest frequency at which the level of
efficiency is observed is where one would expect it to be for highly competitive
firms: at the 100% level of efficiency. Other groups have estimated modes that are
not at unity but are instead at some level of inefficiency, which we view as evidence
of some degree of ‘pathological’ inefficiency. The state-owned enterprises (SOE)
group has the most ‘inefficient’ mode (around 2, i.e., about 50% efficient), making

7Heavy industry consists of three branches distinguished according to the purpose of production
or how the products are used. They include (1) the mining, quarrying and logging industry that
involves the extraction of natural resources; (2) the raw materials industry, which provides raw
materials, fuel and power to various sectors of the economy; and (3) the manufacturing industry,
which processes raw materials.
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Fig. 2.1 Estimated Densities of Individual Efficiency Scores for Ownership Groups in Light
Industry. Notes: (i) Groups 1, 2, 3, and 4 refer to SOEs, FFEs, TOEs, and COEs, respectively. (ii)
Vertical axis refers to (estimated) probability density function of the distribution of the efficiency
scores and horizontal axis refers to efficiency scores

Table 2.1 Simar-Zelenyuk-adapted for DEA Li-test for equality of efficiency distributions across
different types of ownership

Null hypothesis Light industry Heavy industry Both industries
Test statistic p-value Test statistic p-value Test statistic p-value

f.effSOE/ D f.effFFE/ 10:61 0.00 5.83 0.00 16:6 0.00
f.effSOE/ D f.effTOE/ 12:24 0.00 0.47 0.47 18:2 0.00
f.effSOE/ D f.effCOE/ 12:39 0.00 0.21 0.76 13:52 0.00
f.effFFE/ D f.effTOE/ 2:32 0.01 1.24 0.07 1:01 0.08
f.effFFE/ D f.effCOE/ 1:19 0.06 4.52 0.00 �0:13 0.85
f.effTOE/ D f.effCOE/ 0:55 0.34 1.23 0.06 1:32 0.56
Notes: All calculations are done by authors in Matlab using, after adopting from programs used for
the work in Simar and Zelenyuk (2006)

it radically different from other groups and the least efficient group. Columns 2 and
3 of Table 2.1 present the results of tests for the equality of distributions between all
dyads of ownership groups in the light industry sector; we reject equality for most
of the comparisons at the 95% confidence level. The exceptions are the efficiency
distributions of foreign-funded enterprises (FFEs) and TOEs versus collectively-
owned enterprises (COEs). We also reject equality for FFEs versus COEs at the
10% level (est. p-value of 0.06).

Given the evidence of different efficiency distributions among ownership groups,
a further issue that arises is whether this divergence is due to differences in
group aggregate efficiency scores and whether these differences are statistically
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Table 2.2 The light industry: Group-wise heterogeneous sub-sampling bootstrap for aggregate
efficiencies (aggregation into 4 types of ownership)

Original Bootstrap estimate of Est. 95% Conf. Int.

Groups

Reciprocal
of DEA
estimates

Standard
deviation

Bias-corrected
efficiency score
(reciprocal)

Lower
bound

Upper
bound

Weighted (output
shares) group
efficiencies

1 0.55 0.26 0.43 0.39 0.55
2 0.71 0.13 0.62 0.57 0.74
3 0.83 0.07 0.75 0.71 0.88
4 0.79 0.09 0.71 0.67 0.83

All 0.69 0.14 0.59 0.55 0.70

Non-weighted
group
efficiencies

1 0.53 0.3 0.41 0.36 0.53
2 0.66 0.18 0.55 0.51 0.71
3 0.75 0.12 0.65 0.61 0.80
4 0.72 0.13 0.62 0.58 0.77

All 0.65 0.18 0.54 0.50 0.66
RD statistics for

comparing
groups in
terms of
weighted
average
efficiencies

1 vs. 2a 1.30 0.11 1.48 1.23 1.62
1 vs. 3a 1.50 0.18 1.80 1.38 2.00
1 vs. 4a 1.43 0.15 1.70 1.35 1.87
2 vs. 3b 1.16 0.08 1.23 1.02 1.33
2 vs. 4b 1.10 0.06 1.16 1.01 1.24
3 vs. 4 0.95 0.05 0.93 0.85 1.06

RD statistics for
comparing
groups in
terms of
non-weighted
average
efficiencies

1 vs. 2a 1.26 0.11 1.40 1.13 1.54
1 vs. 3a 1.43 0.16 1.67 1.30 1.84
1 vs. 4a 1.38 0.14 1.60 1.27 1.74
2 vs. 3c 1.14 0.08 1.21 0.98 1.31
2 vs. 4c 1.10 0.07 1.15 0.96 1.25
3 vs. 4 0.96 0.05 0.95 0.84 1.08

Notes: Groups 1, 2, 3, and 4 refer to SOEs, FFEs, TOEs, and COEs, respectively. Also, a, b and c

indicates the rejection of the null hypothesis ofH0 W TEA D TE
Z

at 1%, 5% and 10% significance
levels, respectively
For convenience, we present reciprocals of estimated efficiency scores, i.e., 1=cTEl ; l D 1; 2; 3; 4

(and the corresponding confidence intervals) so that they have percentage meaning. All calculations
are done by authors in Matlab using, after adopting from programs used for the work in Simar and
Zelenyuk (2007)

significant The upper part of Table 2.2 lists the weighted efficiency scores for
each light industry ownership group in the 29 provinces in 1995. The aggregate
efficiency scores are calculated using Färe-Zelenyuk weights, with bias corrected
and confidence intervals estimated on the basis of the Simar and Zelenyuk (2007)
group-wise-heterogeneous bootstrap-based approach. The second column indicates
the ownership groups. The numbers in the 3 and 5 columns represent the reciprocals
of the original DEA efficiency scores and of the bias-corrected efficiency scores,
respectively. (Reciprocals are taken for convenience to show the percentage meaning
of the efficiency scores.) The last two columns show the lower and upper bounds of
the 95% confidence interval.
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The results in the upper part of Table 2.2 indicate that SOE performance is
different from non-SOE performance. A relatively large estimated bias in the
aggregates of efficiency scores is found among all ownership groups, especially for
SOEs (0.55 and 0.43). This indicates that in the light industry sector, the technical
efficiency of SOEs varies widely across the provinces.

Furthermore, bootstrap-based tests of the equality of aggregate efficiencies are
employed to test for pair-wise comparisons of the aggregate efficiencies of the
various sub-groups (see the lower part of Table 2.2). The relative difference (RD)
statistics computed for the DEA and bias-corrected aggregate efficiency scores are
shown in the third and fifth columns, respectively. If the RD statistic for group A
versus group Z is greater than 1 and the confidence interval does not overlap with
1, then the null hypothesis that the aggregate efficiencies of the two groups are
equal is rejected in favor of the alternative hypothesis that the aggregate efficiency
of group A is worse than that of group Z.8 The RD statistics suggest that SOEs
are operated in a significantly (at the 1% level) less efficient manner than all the
other groups. This finding supports the results obtained in our distributional analysis
and can be explained by the fact that SOEs are often ill-equipped to meet their
business objectives as they tend to use out-of-date capital equipment and usually
have no funding available to them for technological upgrades (for more discussion,
see Groves et al. 1994; Weitzman and Xu 1994; Zheng et al. 1998; Zhang and
Zhang 2001; Dong and Tang 1995; Lin et al. 1998; Huang et al. 1999; Wu 1996,
1998).

Regarding the performance of non-SOEs, it is interesting to find that in the
light industry sector, FFEs perform significantly less efficiently than COEs and
TOEs (at the 5% level for weighted averages and at the 10% level for non-
weighted averages). One possible explanation for this result is that the network of
bureaucratic restrictions adversely affecting the competitiveness of FFEs offset the
benefits gained from the government’s preferential policies for foreign investors.
Examples include high-profile administrative intervention in the operation of FFEs,
the levying of miscellaneous fees of an ambiguous nature, and the imposition of
stringent policies. (For more discussion, see ACC 1998; Melvin 1998; Weldon and
Vanhonacker 1999; Transparency International 2001). These issues could lead to
higher transaction costs being incurred in FFE operations and thereby cancel out
certain competitive advantages enjoyed by FFEs over local firms (see, for example,
Yeung and Mok 2002). Other reasons that may account for the lower level of
efficiency in FFE operations include the large initial investment required and the
steep learning curve for foreign investors (e.g., see Wei et al. 2002).

8E.g., the RD-statistic for comparing the weighted average efficiency scores for groups 1 and 2

was estimated as bTE1=bTE2 D 1:30, meaning that group 1 is less efficient than group 2, and this
difference is significant, since 95% confidence interval is [1.23, 1.62], not overlapping with 1.
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Fig. 2.2 Estimated Densities of Individual Efficiency Scores for Ownership Groups in Heavy
Industry. Notes: (i) Groups 1, 2, 3, and 4 refer to SOEs, FFEs, TOEs, and COEs, respectively. (ii)
Vertical axis refers to (estimated) probability density function of the distribution of the efficiency
scores and horizontal axis refers to efficiency scores

2.4.2 Analysis of Densities and Means for Heavy Industry

Figure 2.2 shows the (estimated) densities of individual efficiency distributions of
the four ownership groups for the heavy industry sector. The densities appear to
be more tightly grouped in the heavy industry sector than those observed for the
light industry sector, other than in the case of FFEs, for which we see a clear
difference in the density of efficiency relative to that of the other groups. The
SOEs group again has less of its distributional mass close to unity, while the FFEs
group has more of its distribution close to unity than the other groups. Columns
4 and 5 of Table 2.1 formally support these observations via tests for the equality
of distributions between the four groups in the heavy industry sector. Note that
the overall situation in the heavy industry sector is somewhat different from what
we have seen for the light industry sector. The efficiency distributions cannot be
statistically distinguished from each other, the sole exception being the FFEs, for
which the distribution appears to be significantly different from those of all the
other groups. We also observe significance at the 10% level for TOEs versus COEs
(which are not significantly different from each other in the light industry sector).

The results reported in the upper part of Table 2.3 also show that in comparison
with the light industry ownership groups, all the ownership groups in the heavy
industry sector have relatively small aggregate inefficiency scores and an (absolutely
and relatively) lower level of estimated bias. These results suggest that performance
varies to a lesser degree among ownership types in the heavy industry sector.
This could be explained by the fact that heavy industry operations are more stable
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Table 2.3 The heavy industry: Group-wise heterogeneous sub-sampling bootstrap for aggregate
efficiencies (aggregation into 4 types of ownership)

Groups Original Bootstrap estimate of Est. 95% Conf. Int.

DEA
estimates

Standard
deviation

Bias-corrected
efficiency score
(reciprocal)

Lower
bound

Upper
bound

Weighted (output
shares) group
efficiencies

1 0.81 0.06 0.75 0.70 0.82
2 0.88 0.04 0.83 0.79 0.87
3 0.87 0.04 0.81 0.78 0.89
4 0.83 0.06 0.76 0.72 0.85

All 0.83 0.04 0.77 0.73 0.83

Non-weighted
group
efficiencies

1 0.79 0.07 0.74 0.68 0.80
2 0.86 0.04 0.81 0.78 0.86
3 0.83 0.05 0.75 0.71 0.82
4 0.79 0.07 0.71 0.67 0.81

All 0.82 0.04 0.75 0.72 0.81

RD statistics for
comparing groups
in terms of
weighted average
efficiencies

1 vs. 2 1.09 0.06 1.09 0.98 1.21
1 vs. 3 1.08 0.06 1.08 0.97 1.18
1 vs. 4 1.03 0.05 1.00 0.90 1.09
2 vs. 3 0.99 0.04 0.98 0.90 1.07
2 vs. 4 0.95 0.05 0.91 0.83 1.02
3 vs. 4 0.95 0.04 0.93 0.85 1.03

RD statistics for
comparing
groups in
terms of
non-weighted
average
efficiencies

1 vs. 2c 1.08 0.06 1.10 0.99 1.21
1 vs. 3 1.04 0.05 1.01 0.91 1.10
1 vs. 4 1.00 0.06 0.95 0.84 1.04
2 vs. 3c 0.96 0.04 0.91 0.83 1.01
2 vs. 4a 0.92 0.06 0.85 0.76 0.98
3 vs. 4 0.97 0.04 0.94 0.86 1.03

Notes: Groups 1, 2, 3, and 4 refer to SOEs, FFEs, TOEs, and COEs, respectively. Also, a, b and
c indicates the rejection of the null hypothesis of H0 W TE

A D TE
Z

at 1%, 5% and 10%
significance levels, respectively

For convenience, we present reciprocals of estimated efficiency scores, i.e., 1=bTEl; l D 1; 2; 3; 4

(and the corresponding confidence intervals) so that they have percentage meaning. All calculations
are done by authors in Matlab using, after adopting from programs used for the work in Simar and
Zelenyuk (2007)

than operations in the light industry sector, which is more dynamic and features
larger numbers of firms breaking through and firms lagging behind thereby causing
more variation in efficiency. In addition, because heavy industry is more capital-
intensive in nature and light industry is more labor-intensive, greater automation
in the production process leads to less human-driven inefficiency (such as human
mistakes and shirking on the job) in the heavy industry sector. Firms operating in
heavy industries therefore tend to operate in a relatively similar manner and are
more similar in terms of performance, both of which contribute to less variation in
efficiency estimates and, in turn, less estimated bias.
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Although it has long been held that SOEs are less efficient than their non-state
owned counterparts, our results from the analysis of densities and aggregate effi-
ciencies do not provide strong support for this view in the case of the heavy industry
sector. Specifically, a comparison of weighted aggregate efficiencies between the
heavy industry groups using RD statistics indicates no statistical difference between
them. This result could be attributed to the high level of automation in production
activities in the heavy industry sector, a factor which has been discussed in the
previous paragraph.

A similar test for the non-weighted efficiency scores confirms the insignificance
of the differences between these group efficiencies, other than for the FFEs, which
appear to be more efficient than SOEs and TOEs (at about the 10% significance
level) and COEs (at about the 1% significance level). This is consistent with our
analysis of the distributions for these groups, but contrasts with the results obtained
for the light industry sector, where we find that FFEs perform significantly less
efficiently than COEs and TOEs, while SOEs perform significantly worse than all
of the other groups. We explain this difference between the industry sectors in more
detail later in this chapter.

2.4.3 Truncated Regression Analysis

The regression analysis method we employ is not simply a generalization of the
above analysis because it imposes a particular structure on the dependency between
the efficiency of a DMU and the hypothesized explanatory variables. Moreover, the
dependent variable (i.e., the efficiency score), does not account for the economic
weight (e.g., size) of the observations. Nevertheless, this analysis complements
the methods used above in a number of very important respects. In particular,
it allows for inferences to be drawn about different factors that simultaneously
influence efficiency scores by focusing on the (marginal) effect of each variable. One
additional advantage of this approach is that it allows for the effects of continuous
variables to be investigated.

Our empirical specification shown on the right-hand side of regression equation
(2.8) includes the intercept, dummy variables and one continuous variable. The
first dummy variable is the industry indicator (1 for light industry and 0 for
heavy industry). The next three dummies – D2, D3, and D4 – represent the DMU
ownership type and take the value of 1 if the observation belongs to a group of FFEs,
TOEs, and COEs, respectively. Thus, for the sake of convenience in testing, the
group of SOEs is taken as the base and so the coefficients on D2, D3, and D4 would
estimate the difference in effects between the corresponding group (e.g., FFEs for
D2) and the group of SOEs. For example, a negative coefficient on D2 would suggest
evidence that FFEs introduce improvements relative to SOEs, on average.
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The next two dummies – D5 and D6 – represent the regions and are assigned the
value of 1 if the observation belongs to the coastal and central regions, respectively.9

That is, the coefficients on each of these dummies will estimate the difference in
effects between their region (e.g., coastal) and the western region, which is taken as
the base. The continuous variable on the right-hand side of the regression model is
used to control for the size effects (measured as the logarithm of output) of DMUs.
The size effect variable is expected to capture at least part of the agglomeration
effect of the province: the larger the gross output of a particular type of firm in a
province in a given industry, the higher we expect the efficiency level to be for this
type of ownership. The agglomeration effect is expected to have a positive influence
on efficiency for at least two reasons. First, there is a spillover effect derived from
the activities of firms that are in the same general industry sector (light or heavy) but
are not direct competitors (e.g., shoemakers versus textile producers, etc.). Second,
there is also a competition effect between firms producing the same products that is
expected to encourage firms to strive for greater efficiency. We expect both effects
(the spillover and competition effects) to be ‘proxied’ by this size control variable,
but unfortunately we cannot decompose it into its two components in our data or
results because of the aggregate nature of our data.

The results of our bootstrapped (truncated) regression analysis with DEA are
presented in Table 2.4.10 We run several specifications to test the robustness of
our conclusions. The results confirm our previous findings, but also shed some
additional light on the issue under study. We see consistently strong evidence for
the argument that at an aggregate level, non-SOEs of all types of ownership have
significantly higher efficiency levels than their SOE counterparts. This evidence is
robust in that it is confirmed by all the regression specifications we run. While this
result is also consistent with those of many studies and is therefore not surprising,
we also provide some interesting new results.

Turning to the pooled models (models 1–4) in which we consider both industries
under the same frontier, the greatest efficiency improvement over that of SOEs
comes from TOEs and is followed in turn by FFEs and COEs.

The size effect in all four models is found to be significant such that larger output
leads to a better (smaller, i.e., closer to unity) efficiency score, on average. This
finding supports the hypothesis of a positive spillover effect on efficiency. That is,

9We follow the categorization used by the State Planning Commission of China: (1) the Coastal
region, which includes Beijing, Tianjin, Heibei, Liaoning, Shandong, Shanghai, Zhejiang, Jiangsu,
Fujian, Guangdong, Hainan, and Guangxi; (2) the Central region, which includes Shanxi, Inner
Mongolia, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hunan, and Hubei; and (3) the Western
region, which includes Sichuan, Yunnan, Guizhou, Shaanxi, Gansu, Qinghai, Ningxia, Tibet, and
Xinjiang.
10The significance tests are based on bootstrapped confidence intervals using Algorithm 2 of Simar
and Wilson (2007), with 1,000 replications for the bootstrap bias correction of the DEA estimates
and 2,000 replications for the bootstrapping of the regression coefficients.
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the more activities (total output) performed by a particular type of enterprise in a
certain province, the higher the efficiency level is expected to be for that type of
enterprise. Notably, the coefficient of the industry dummy is insignificant (and near
zero) in Model 1, so we drop it from Model 2 and, as expected, observe almost no
change in the estimates. Interestingly, the coefficients on the regional dummies are
insignificant in both Model 1 and Model 2, so we drop these dummies from Model 3
and again see almost no change in the coefficients. In Model 4, we drop both the
industry dummy and the regional dummies and the coefficients remain almost the
same as in the previous three models. These results suggest that, at least on this
aggregate level, neither type of industry nor location has a real effect on the level of
efficiency. This finding is contrary to the conventional expectation, at least for the
coastal region versus the western or even the central region.11

More interesting results are revealed when we consider each industry separately.
Models 5, 6, and 9 consider light industry alone, while models 7, 8, and 10 consider
heavy industry in isolation. There is no qualitative change in most of the results. The
region dummies remain insignificant (and almost zero for heavy industry). However,
note that the size effect is much more pronounced now for light industry and is much
less pronounced in the heavy industry sector relative to what we observed in the
pooled models. This suggests that although the agglomeration effect is present in
the heavy industry sector, it is much less pronounced than it is in the light industry
environment.

Also note that in the heavy industry context, the largest improvement on state
ownership comes from FFEs, while the coefficient on the dummy representing
the efficiency difference between COEs and SOEs is barely significant. (Recall
that in the foregoing analysis, we could not confidently reject the differences
between the aggregate group efficiency scores for heavy industry.) On the other
hand, we find that in light industry, FFEs make the smallest improvement relative
to SOEs (smaller than the other types of ownership), so we use Model 9 to test
the efficiency difference between FFEs and other types of ownership in the light
industry sector. We see that while SOEs are significantly less efficient than FFEs
on average (as was also seen in models 5 and 6), the latter are significantly less
efficient than the other (non-state local) ownership groups. Although this result
might be somewhat unexpected, it is consistent with the results we obtain using other
methods and is robust in this sense. Zelenyuk and Zheka (2006) report a similar
result for foreign ownership on a disaggregated level in another transitional country
(Ukraine).

11However, Zelenyuk (2009) reports Monte Carlo evidence suggesting that the power of the test of
the significance of coefficients on dummy variables in the Simar-Wilson (2006) model is very low,
even when the true difference is quite substantial from an economic standpoint. It is therefore likely
that in some cases, we are simply unable to reject the null hypothesis of equality of efficiencies due
to a relatively small sample size, which is clearly not the same as accepting the null hypothesis.
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2.5 Concluding Remarks

Over the past three decades, the Chinese economy and its industrial structure have
experienced remarkable changes which have been rooted in the reform and open-
door policy initiated by Deng Xiaoping in 1978. Although these changes have
continued to gain pace over time, their impact has not been uniform across different
types of ownership, industries, and regions in China. Given the continued growth
of China’s economic power since the turn of the new millennium, it is imperative
to gain a better understanding of how China has achieved its economic success and
how its economy will evolve in the near future.

In this chapter, we investigate efficiency levels and their determinants for
different types of ownership, industries and regions in China. The question of the
performance of different types of ownership in general, and in China in particular,
is a very sensitive issue that often carries political connotations. It goes without
saying that great care is required in selecting reliable methods. We employ several
recently-developed efficiency analysis methods to examine efficiency variations
across different cohorts of Chinese industrial firms. In particular, we employ the
latest bootstrap-based estimation procedures involving DEA, aggregation, density
estimation and truncated regression. The results obtained in this chapter provide
robust statistical evidence that contributes to the ownership-performance debate.
While some results support the earlier work of Shiu (2000, 2001), others shed
significant new light on the ownership-performance nexus.

We confirm that in comparison with state ownership, all the other types of
ownership we consider result in an improvement in performance. This finding is
highly robust, is supported by most of the models and methods employed, and is
no great surprise. It confirms the results of many other studies that claim modern
China is no exception to the economic laws of the free market and related incentives
offered by the ‘invisible hand’ of Adam Smith.

A somewhat unexpected finding that is nevertheless robust is that foreign-owned
firms perform worse on aggregate than non-state local enterprises in the light
industry sector, but perform slightly better than firms of all other ownership types
in the heavy industry sector. To the best of our knowledge, this finding is new to the
productivity literature and therefore warrants a greater degree of attention than our
other findings.

We consider that the main explanation for this phenomenon stems from the fact
that heavy industry, on average, is more capital-intensive than light industry and
that purchasing and adopting new technology requires greater financing. As a result,
foreign investors in the heavy industry sector, most of which are huge multinational
corporations, are likely to have an advantage over local firms in introducing more
advanced capital equipment and expensive technologies, both of which lead to better
performance.

In light industries, even when foreigners have initial technological and capital
advantages, local private firms should be able to absorb, adopt and disseminate
such technology according to local specifications more easily and quickly than in
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heavy industries. On the other hand, because light industries tend to be more labor-
intensive than heavy ones, the performance of firms active in the former is more
likely to be dependent on local content (culture, traditions, habits, etc.). This is likely
to give an advantage to local firms and, given a similar level of technology adoption,
should enable them to become more efficient than their foreign counterparts – a
prediction we confirm in our study.

Our explanation of the foreign versus local ownership question in the heavy
versus light industry puzzle is not entirely new or ad hoc. One theoretical foundation
for this explanation is closely related to the technology diffusion argument that goes
back at least to the work of Gerschenkron (1962) and Nelson and Phelps (1966),
as well as the more recent studies of Grossman and Helpman (1991), Parente and
Prescott (1994), Banks (1994), and Helpman and Rangel (1999), in various areas of
economics.

2.5.1 Possible Extensions

It is worth noting that our results are based on cross-sectional data obtained from
the most recently available national census and leave to one side the empirical
estimation of changes in efficiency and productivity over time which would be
possible with a panel data set. This would be a natural extension of our study and
we hope that the work presented in this chapter provides a good foundation for such
future research when new census data become available.

Another natural extension to our work would be to use a non-parametric
truncated regression method, e.g., proposed by Park, Simar and Zelenyuk (2008),
which would be possible when more data become available. Yet another interesting
extension would be to test for the stochastic dominance of the distributions of
efficiency scores of various ownership groups and regions.12

Overall, we hope that our study spurs theoretical development of related method-
ology issues that can improve our work, as well as encourage more of empirical
investigations of the current topic using other methods.
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Appendix

All inputs and outputs used in our activity analysis model for the DEA estimator
are measured in units of one hundred million Chinese yuan. Total wage refers
to the total remuneration paid to staff and workers during a certain period. This
includes wages, salaries and other payments to staff and workers regardless of their
source, category and form (in kind or in cash). The net value of fixed assets is
calculated as the original value of fixed assets minus depreciation, in which the
original value of fixed assets owned by the enterprise is calculated as the price
paid at the time the assets were purchased, installed, reconstructed, expanded or
subject to technical innovation and transformation. These include expenses incurred
in purchasing, packaging, transportation and installation, and so on. The value of
intermediate inputs is proxied as the difference between the gross value of industrial
output and value added. These are goods that have been processed in one production
process and then sold for final processing in another production process. The gross
industrial output is the total volume of industrial products sold or available for sale
in value terms. It includes the value of finished products and the value of industrial
services.

Tables 2.5 and 2.6 show the summary statistics for each ownership type in the
heavy and light industry sectors, respectively. See Shiu (2000, 2001) for more
information and a discussion of the data set.

Table 2.5 Summary statistics for ownership types (heavy industry)

Gross industrial output Net value of fixed assets Total wage Intermediate inputs
(Hundred million yuan) (Hundred million yuan) (Hundred million yuan) (Hundred million yuan)

Ownership Mean S.D. Mean S.D. Mean S.D. Mean S.D.

SOEs 609.05 401.22 568:77 322:74 65:89 39.96 396.75 267.34

COEs 152.79 258.26 89:19 181:46 6:71 10.36 111.00 189.47

TOEs 197.71 295.94 58:73 75:45 12:69 15.65 147.86 227.69

FFEs 152.79 258.26 89:19 181:46 6:71 10.36 111.00 189.47

Table 2.6 Summary statistics for ownership types (light industry)

Panel A Panel B Panel C Panel D

Gross industrial output Net value of fixed assets Total wage Intermediate inputs
(Hundred million yuan) (Hundred million yuan) (Hundred million yuan) (Hundred million yuan)

Ownership Mean S.D. Mean S.D. Mean S.D. Mean S.D.

SOEs 283.51 206.26 167:44 110:05 22:86 15.94 209.46 157.48

COEs 278.80 354.33 86:06 93:20 22:23 21.97 206.38 273.89

TOEs 204.01 336.27 52:84 88:17 11:36 19.00 158.39 263.53

FFEs 216.65 405.08 82:45 134:91 12:22 23.89 169.26 318.28
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Chapter 3
Nonparametric Frontier Estimation
from Noisy Data

Maik Schwarz, Sébastien Van Bellegem, and Jean-Pierre Florens

Abstract A new nonparametric estimator of production frontiers is defined and
studied when the data set of production units is contaminated by measurement error.
The measurement error is assumed to be an additive normal random variable on
the input variable, but its variance is unknown. The estimator is a modification
of the m-frontier, which necessitates the computation of a consistent estimator of
the conditional survival function of the input variable given the output variable. In
this paper, the identification and the consistency of a new estimator of the survival
function is proved in the presence of additive noise with unknown variance. The
performance of the estimator is also studied using simulated data.

3.1 Introduction

The modelling and estimation of production functions have been the topic of many
research papers on economic activity. A classical formulation of this problem is to
consider production units characterized by a vector of inputs x 2 R

p
C producing a

M. Schwarz (�)
Institut de statistique, biostatistique et sciences actuarielles, Université catholique de Louvain,
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vector of outputs y 2 R
q
C. The set of production possibilities is denoted by ˆ and

is a subset of R
pCq
C on which the inputs x can produce the outputs y. Following

Shephard (1970), several assumptions are usually imposed on ˆ: convexity, free
disposability and strong disposability. Free disposability means that if .x; y/
belongs to ˆ and if x0; y0 are such that x0 > x and y0 6 y then .x0; y0/ 2 ˆ. Strong
disposability requires that one can always produce a smaller amount of outputs using
the same inputs.

The boundary of the production set is of particular interest in the efficiency
analysis of production units. The efficient frontier in the input space is defined as
follows. For all y 2 R

q
C, consider the set �.y/ D fx 2 R

p
Cj.x; y/ 2 ˆg. The radial

efficiency boundary is then given by

'.y/ D fx 2 R
p
C W x 2 �.y/; �x 62 �.y/ 80 < � < 1g

for all y. Similarly, an efficient frontier in the output space may be defined (e.g. Färe
et al. 1985).

In empirical studies, the attainable set ˆ is unknown and has to be estimated
from data. Suppose a random sample of production units Xn D f.Xi ; Yi / 2 R

pCq
C W

i D 1; : : : ; ng is observed. We assume that each unit .Xi ; Yi / is an independent
replication of .X; Y /. The joint probability distribution of .X; Y / on R

pCq
C describes

the production process. The support of this probability measure is the attainable set
ˆ, and estimating the efficiency boundary is related to the estimation of the support
of .X; Y /.

Out of the large literature on the estimation of the attainable set, nonparametric
models appeared to be appealing since they do not require restrictive assumptions
on the data generating process of Xn. Deprins et al. (1984) have introduced the Free
Disposal Hull (FDH) estimator which is defined as

Ô
fdh D f.x; y/ 2 R

pCq
C W y 6 Yi ; x > Xi ; i D 1; : : : ; ng

and which became a popular estimation method (e.g. De Borger et al. 1994; Leleu
2006). The convex hull of Ô

fdh , called the Data Envelopment Analysis (DEA),
is the smallest free disposal convex set covering the data (e.g. Seiford & Thrall
1990). Among the significant results on this subject, we would like to mention the
asymptotic results proved in Kneip et al. (1998) for the DEA and Park et al. (2000)
for the FDH.

The consistency of the FDH estimator and other data envelopment techniques is
only achieved when the production units are observed without noise, and hence
when P..Xi ; Yi / 2 ˆ/ D 1. However, FDH in particular is very sensitive to the
contamination of the data by measurement errors or by outliers (e.g. Cazals et al.
2002; Daouia et al. 2009). Measurement errors are frequently encountered in
economic data bases, and therefore there is a need for developing more robust
estimation procedures of the production frontier.
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In Cazals et al. (2002), a new nonparametric estimator has been proposed to
overcome the nonparametric frontier estimation from contaminated samples. When
p D 1 and under the free disposability assumption, the authors show that the frontier
function '.y/ can be written as

'.y/ D inffx 2 RC such that SX jY>y.x/ < 1g; (3.1)

where SX jY>y.x/ D P.X > xjY > y/ denotes the conditional survival function. If
X1; : : : ; Xm are independent replications of .X jY > y/ for some positive integer
m, then a key observation in Cazals et al. (2002) is that the expected minimum input
functions

'm.y/ WD E
�
minfX1; : : : ; XmgjY > y

�
m D 1; 2; 3; : : : (3.2)

are such that

'm.y/ WD
Z 1

0

˚
SX jY>y.u/

�m
du (3.3)

and 'm.y/ converges point-wise to the frontier '.y/ asm tends to infinity (assuming
the existence of 'm.y/ for allm). The functions 'm.y/ are estimated in Cazals et al.
(2002) from nonparametric estimators of the conditional survival function SX jY>y .
The empirical survival function is defined by OSX;Y .x; y/ D n�1P

i 11.Xi > x;

Yi > y/ and the empirical version of SX jY>y is thus given by

OSX jY>y D
OSX;Y .x; y/

OSY .y/
; (3.4)

where OSY .y/ D n�1P
i 11.Yi > y/. Cazals et al. (2002) have studied the asymptotic

properties of the frontier estimator

O'm;n.y/ WD
Z 1

0

n OSX jY>y.u/
om

du (3.5)

which is called the m-frontier estimator. They argue that this estimator is less
sensitive to extreme values or noise in the sample of production units than FDH
or DEA-type estimators.

In this chapter, we slightly amend this claim and show that when the noise level
on the data does not vanish as the sample size n grows, then the m-estimator is no
longer asymptotically consistent. When the noise level is too high, we show that
consistency may be recovered when a robust estimate of the conditional survival
function is plugged in the integral in (3.5). By “robust estimate”, we refer here to an
estimator of SX jY>y that is consistent even in the presence of a non-vanishing noise
in the sample.

In this chapter, a new robust estimator of the survival function is studied when
the inputs X are contaminated by an additive error. We show the consistency of
the estimator under the assumption that we only have partial information on the
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distribution of the error. More precisely, we assume that the additive noise is a zero-
mean Gaussian random variable with an unknown variance.

The paper is organized as follows. In Sect. 3.2, we give an overview of existing
methods to nonparametrically estimate a density from noisy observations when the
distribution of the noise is partially unknown. In Sect. 3.3, we define a new estimator
of the survival function in the univariate case, when the data are contaminated
by an additive Gaussian random noise with an unknown variance. We prove
the asymptotic consistency of our estimator. Finite sample properties are also
considered through Monte Carlo simulations. In Sect. 3.4, we define and illustrate
on data a new robustm-frontier estimator that is defined similarly to the estimator in
(3.5), except that our robust estimator of the conditional survival function is plugged
in the integral. The consistency of the robustm-frontier estimator is also established
theoretically in this section. The last section summarizes the results of this chapter
and suggests future directions of research.

3.2 Density Estimation from Noisy Observations

Estimating the distribution of a real random variable X from a noisy sample is
a standard problem in nonparametric statistics. The usual setting is to assume
independent and identically distributed (iid) observations from a random variable
Z such that Z D X C ", where " represents an additive error independent of X .
Many research papers focus on the accurate estimation of the cumulative distribution
function (cdf) of X under the assumption that the cdf of " is known. The additive
measurement error implies that the density of Z, if it exists, is the convolution
between the density of " and the one of X :

f Z.z/ D f " ? f X.z/ WD
Z 1

�1
f ".t/f X.z � t/dt :

Based on this result, most estimators of f X studied in the literature use the Fourier
transform of the densities since the Fourier coefficients of the convolution are the
product of the coefficients:

 Z.`/ D  ".`/ X.`/; ` 2 Z

where  U .`/ WD Efexp.i`U /g denotes the `-th Fourier coefficient of a density f U .
A usual estimator of  Z.`/ is (a functional of) the empirical characteristic function
of the sample .Z1; : : : ; Zn/, i.e.

O Z.`/ WD 1

n

nX

iD1
exp.i`Zi/; ` 2 Z :

From this estimator and under the condition that f` is known and nonzero, the
standard estimators are based on the inverse Fourier transform of O Z.`/= ".`/ (e.g.
Carroll & Hall 1988; Fan 1991). Alternative estimators have also been studied in the
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literature, for instance in the wavelet domain (Pensky & Vidakovic, 1999; Johnstone
et al., 2004; Bigot & Van Bellegem, 2009).

The exact knowledge of the cdf of the error is however not realistic in many
empirical studies. If we want to relax the condition that the cdf of the error is known,
one major obstacle is that the cdf of X is no longer identifiable. To circumvent this
problem, at least three research directions can be found in the literature.

A first approach assumes that an independent sample from the measurement error
" is available in addition to the sample of Z. From the independent observation
of ", the density f " is identified and so is the target density f X . In a first step,
a nonparametric estimator of f " can be constructed from the sample of "’s .
This estimator is then used in the construction of the estimator of f X (Neumann,
2007; Johannes & Schwarz, 2009; Johannes et al., 2010). If this approach may be
realistic for a set of practical situations (e.g. in some problems in biostatistics and
astrophysics), it is hardly applicable in production frontier estimation.

A second approach is to assume various sampling processes. Li & Vuong (1998)
suppose that repeated measurements for one single value ofX are available, such as
Zj D X C "j for j D 1; : : : ; m. Assuming further that X; "1, and "2 are mutually
independent, E."j / D 0, and that the characteristic functions of X and " are non-
zero everywhere, they show how the latter characteristic functions can be expressed
as functions of the joint characteristic function of .Z1;Z2/. From this representation
it follows that the cumulative distribution function (cdf) of both X and " can be
identified from the observation of the pair .Z1;Z2/. The joint characteristic function
of .Z1;Z2/ can be estimated from a sample of .Z1;Z2/ and is then used to derive
an estimator of f X . The characteristic functions of X and ", denoted by  X and
 ", can then be computed using the above-mentioned representation. Delaigle et al.
(2008) have also considered this setting and present modified kernel estimators
which, if the number of repeated measurements is large enough, can perform as
well as they would under known error distribution.

A related situation is when there are repeated measurements of X in a multilevel
model. In Neumann (2007) it is assumed thatZij D Xi C "ij for j D 1; : : : ; N and
i D 1; : : : ; n are observed (see also Meister et al. 2010). In this sampling process,
the identification of the cdf of X is ensured by a condition on the zero-sets of the
characteristic functions of X and ". Let Z D .Zi1; : : : ; ZiN /

0,  Z its characteristic
function, and O Z the empirical characteristic function of Z . A consistent estimator
of the density of X is obtained by minimizing the discrepancy
Z

Rn

ˇ̌
 X.t1 C : : :C tn/ 

".t1/ � � � ".tn/ � O Z
n .t1; : : : ; tn/

ˇ̌
h.t1; : : : ; tn/dt1 : : : dtn

over certain classes of possible characteristic functions  X and  " of X and ",
respectively.

Repeated measurements of multilevel sampling appear in some economic situa-
tions, for instance when production units are observed over time (a case considered
e.g. in Park et al. 2003; Daskovska et al. 2010).
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A third approach to recover the identification of X in spite of the noise " is
to assume that the cdf of " is only partially unknown. A realistic case for practical
purposes is to assume that " is normally distributed, but the variance of " is unknown.
Of course the cdf of X is not identified in this setting, and it is necessary to restrict
the class of cdfs of X in order to recover identification.

Several recent research papers have proposed identification restrictions on the
class of X given a partial knowledge about the cdf of the noise. Butucea & Matias
(2005) assume that the error density, is “s-exponential” meaning that its Fourier
transform,  ", satisfies

b exp.�jujs/ 6 j ".u/j 6 B exp.�jujs/

for some constants b;B; s and juj large enough. In their approach the error density
is supposed to be known up to its scale � (called “noise level”). As for the density
f X , both polynomial and exponential decay of its Fourier transform are shown
to lead to a fully identified model. To define an estimator, let  "� be the Fourier
transform of .�f "/. The key to the estimation of � is the observation that the
function jF.�; u/j D j Z.u/j=j "� .u/j diverges as u ! 1 when � > � and that
it converges to 0 otherwise. Let OF .�; un/ D j O Z.un/j=j "� .un/j. Then Butucea &
Matias (2005) show that

O�n D inff� > 0 W j OF .�; un/j > 1g

yields a consistent estimator of � for some well balanced sequence un. This
estimator is then used to deconvolve the empirical density of Z and to get an
estimator of the density of X . Some extensions are proposed in Butucea et al.
(2008), where the error density is assumed to have a stable symmetric distribution
with  ".u/ D exp.�j�ujs/ in which � represents some known scale parameter and
s is an unknown index, called the self-similarity index.

A similar setting is considered in Meister (2006). In this chapter, the error
is supposed to be normally distributed with an unknown variance parameter.
Identification is recovered by assuming that  X lies in f W c1juj�ˇ 6 j .u/j 6
c2juj�ˇ for all u � 0g for some strictly positive constants c1; c2.

In Meister (2007), it is assumed that  " is known on some arbitrarily small
interval Œ��; �� and that it belongs to some class

G	;� D ff is a density such that kf k1 6 C; j f .t/j > 	 8jt j > �g:

The target density f X is assumed to belong to

FS;C;ˇ D
�
f is a density such that

Z S

�S
f .u/du D 1 and

Z
j f .t/j2.1C t2/ˇdt 6 C

�
;
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that is to the class of densities with compact support that are uniformly bounded
in the Sobolev norm. The direct empirical access to  X via Fourier deconvolution
is restricted to the interval Œ��; ��. However, it is shown using a Taylor expansion
that  X is uniquely determined by its restriction to Œ��; ��, and therefore identified
everywhere.

Because the deconvolution of the density ofZ is solved via the Fourier transform,
most of the assumptions on X or " recalled above are expressed in terms of their
characteristic functions. They appear to be ad hoc assumptions, as they do not
have any obvious economic interpretation. In Schwarz & Van Bellegem (2010), an
identification theorem is proved on the target density under assumptions that are not
expressed in the Fourier domain. It is instead assumed that the measurement error "
is normally distributed with an unknown variance parameter, and that f X lies in the
class of densities that vanish on a set of positive Lebesgue measure. This restriction
on the class of target densities is reasonable for our purpose of frontier estimation,
in which it is structurally assumed that the density of X (or the conditional density
of .X jY > y/) is zero beyond the frontier. Since this is a natural assumption in the
setting of frontier estimation, we use this framework in the next section in order to
estimate a survival function from noisy data.

3.3 A New Estimator of the Survival Function from Noisy
Observations

3.3.1 Identification of the Survival Function

Suppose we observe a sample fZ1; : : : ; Zng of n independent replications ofZ from
the model

Z D X C " ; (3.6)

where " is a N.0; �2/ random variable, independent from X , and with an unknown
variance �2. As explained in the previous section, the probability density ofZ is the
convolution 
� ? f X , where f X is the probability density of X and 
� denotes the
Normal density with standard error � . The following theorem, quoted from Schwarz
& Van Bellegem (2010), defines a set of identified probability distributions f X for
model (3.6). The survival function SX ofX will hence be identified on that set from
the observation of Z.

Theorem 3.3.1. Define the following set of probability distributions:

P0 WD fP distribution W 9 Borel set A such that jAj > 0 and P.A/ D 0g;

where jAj denotes the Lebesgue measure of A. The model defined by (3.6) is
identifiable for the parameter space P0 � .0;1/. In other words, for any two
probability measuresP1; P 2 2 P0 and �1; �2 > 0, we have that 
�1 ?P

1 D 
�2 ?P
2

implies P1 D P2 and �1 D �2.
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3.3.2 A Consistent Estimator

From model (3.6), we also observe after a straightforward calculation that the
survival function of Z, denoted by SZ , also follows a convolution formula:

SZ.z/ D 
� ? S
X.z/

where SX is the survival function of the variable X and 
� denotes the density
function of a N.0; �2/ random variable.

Our estimator of SX is approximated in a sieve as follows. For any integers
k;D > 0, define �.k;D/ WD fı 2 R

k W 0 6 ı1 6 : : : 6 ık 6 Dg and for
ı 2 �.k;D/ define

Sı.t/ WD 1

k

kX

jD1
11.ıj > t/ : (3.7)

For any ı 2 �.k;D/, denote by Pı the probability distribution corresponding to
the survival function Sı. The choice of the approximating function is performed
minimizing the contrast function

�.S; �IT / WD
Z 1

�1

ˇ̌
.
� ? S/.t/ � T .t/ˇ̌h.t/dt;

where h is some strictly positive probability density ensuring the existence of the
integral.

We are now in position to define our estimator of the survival function. Let
.kn/n2N and .Dn/n2N be two positive, divergent sequence of integers. The estimator
.SOı.n/; O�n/ is defined by

. Oı.n/; O�n/ WD arg min
ı2�.kn;Dn/
�2Œ0;Dn�

�.Sı; � I OSZn / ; (3.8)

where OSZn WD n�1Pn
kD1 11.Zk > t/ is the empirical survival function of Z. Note

that the argmin is attained because it is taken over a compact set of parameters.
Though, it is not necessary unique. If it is not, an arbitrary value among the possible
solutions may be chosen.

Theorem 3.3.2. The estimator .SOı.n/; O�n/ is consistent in the sense that

PX
Oın

L�! PX and O�n ! �

almost surely as n ! 1, where
L�! denotes weak convergence of probability

measures.
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Table 3.1 The inputs simulated in this experiment are uniformly distributed over Œ1; 2�. For each
sample size and noise level, we compute the mean of � � O�n from B D 2;000 replications (the
standard deviation is given between parentheses)

True �

n 1 2 5

100 1.30 �1.08
(1.05) (0.51)

200 0.91 0.07 �0.38
(3.84) (0.45) (0.45)

500 0.37 0.06 0.14
(0.30) (0.44) (0.49)

The proof of this result is based on some technical lemmas and can be found in
the appendix below.

To illustrate the estimator, we now present the result of a Monte Carlo experi-
ment. The estimator of the standard deviation � of the noise is of particular interest.
In the following experiment, we consider two designs for the input X . One is
uniformly distributed over Œ1; 2�, and the other is a mixture U Œ1; 2� C Exp.1/. In
both cases the density of X is zero below 1, and in the second case the support of X
is not bounded to the right. For various true values of � , we calculate the estimators
. Oı.n/; O�n/ for sample sizes n D 100; 200 and 500. No particular optimization over
the value of k (appearing in (3.7)) is provided, except that we increase k as the
sample size increases. For the considered sample sizes, we set k D 10 n1=2. The
minimization of the contrast function is calculated using the algorithm optim in
the R software. For this algorithm, we have chosen the initial values of ıj to be
equispaced values over the interval Œ0; 3� and the initial value of � is the empirical
standard deviation of the sample Z1; : : : ; Zn.

Tables 3.1 and 3.2 show the result of the Monte Carlo simulation using B D
2; 000 replications of each design. The mean and standard deviation of � � O�n over
the B replications are displayed. Some results are not reported for very small sizes,
because a stability problem has been observed, especially in the mixture case. In
these cases, the optim algorithm did not often converge (a similar phenomenon
has been observed using the nlm algorithm). It also has to be mentioned that the
stability is very sensitive to the choice of k and to the choice of initial values for
ı and � . For larger sample sizes, or larger values of the noise, the results overall
improve with the sample size.

3.4 Robust m-Frontier Estimation in the Presence of Noise

3.4.1 Inconsistency of the m-Frontier Estimator

Let us now consider our initial problem of consistently estimating the production
frontier '.y/ from a sample of production units .Xi ; Yi /, where Xi is the input
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Table 3.2 The inputs simulated in this experiment are a mixture U Œ1; 2� C Exp.1/. For each
sample size and noise level, we compute the mean of � � O�n from B D 2; 000 replications (the
standard deviation is given between parentheses)

True �

n 1 2 5

100 2.84 �0.92
(7.80) (7.15)

200 �0.49 �0.49
(6.32) (5.92)

500 1.78 0.029 0.014
(5.90) (4.88) (6.69)

and Yi is the output. To simplify the discussion, we assume that the dimension of
the input and the output are p D q D 1.

In the introduction we have recalled the definition of the m-frontier estimator in
equation (3.5). Compared to the FDH or DEA estimator, this nonparametric frontier
estimator provides a more robust estimator of the frontier in the presence of noise.
In (Cazals et al., 2002, Theorem 3.1) it is also proved that for any interior point y in
the support of the distribution Y and for any m > 1, it holds that

O'm;n.y/ ! 'm.y/ almost surely as n ! 1 (3.9)

where 'm.y/ is the expected minimum input function of order m given in equation
(3.2).

When the input of the production units is contaminated by an additive error, the
actually observed inputs are

Zi D Xi C "i ; "i � N.0; �2/

instead of Xi , for some positive, unknown variance parameter �2. If �2 does not
vanish asymptotically, the limit appearing in (3.9) is no longer given by the expected
minimum input function (3.2). Instead we get

O'm;n.y/ ! E .minfZ1; : : : ; ZmgjY > y/ almost surely as n ! 1 :

The expectation appearing on the right hand side is not (3.2) because the support
of the variable Z is the whole real line. Therefore, the m-frontier estimator does
not converge to the desired target function, due to the non-vanishing error variance.
Note that this is in contrast with the approach of Hall & Simar (2002) or Simar
(2007). In the two latter references, the noise level is assumed to be asymptotically
negligible.

The inconsistency of the m-frontier estimator is illustrated in Figs. 3.1 and 3.2.
The true production frontier in this simulation is given by '.y/ D p

y and is
represented by the dotted line. We have simulated 200 production inputs from model
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Fig. 3.1 The gray circles are the simulated production units and the dotted line is the true
production frontier. The solid line is the Free Disposal Hull (FDH) estimator of the frontier

Xi D Y 2i C Ei , where Ei � Exp.1/. The production inputs are then contaminated
by an additive noise, so that the observed inputs are Zi D Xi C "i instead of
Xi , where "i are independently generated from a zero mean normal variable with
standard error � D 2.

The FDH estimator computed in Fig. 3.1 is known to be inconsistent in this
situation, because it is constructed under the assumption that all production units
are in the production set ˆ with probability one. Figure 3.2 shows the m-frontier of
Cazals et al. (2002) for m D 1 and 50 respectively (cf. 3.5). As discussed in Cazals
et al. (2002), an appropriate choice of m is delicate and, as far as we know, there is
no automatic procedure to select it from the data. If m is too low, the m-frontier is
not a good estimator of the production function. In the theory of Cazals et al. (2002),
m is an increasing parameter with respect to the sample size. For large values of y,
the estimator is above the true frontier.

For larger values of m, as shown in Fig. 3.2, the estimator is close to the FDH
estimator. Because the value ofm increases with n in theory, the two estimators will
be asymptotically close. This illustrates the inconsistency of the m-frontier in the
case where the noise on the data is not vanishing with increasing sample size.

3.4.2 Robust m-Frontier Estimation

In order to recover the consistency of them-frontier, we need to plug-in a consistent
estimator of the conditional survival function in (3.3). The construction of the



56 M. Schwarz et al.

0 5 10 15 20 25

0

1

2

3

4

5

Z

Y

Fig. 3.2 Using the same data as in Fig. 3.1, the two solid lines are the m-frontier estimator with
m D 1 and m D 50 respectively

estimator is easy from the above results if we assume that the additive noise to
the inputs is independent from the input X and the output Y . Let y be a point in
the output domain where the support of Y is strictly positive. Restricting the data
set to .Zi jYi > y/, we can construct the empirical conditional survival function
OSZjY>y using the usual nonparametric estimator (3.4). Note that this estimator does

not require any regularization parameter such as a bandwidth. In analogy to (3.8),
we also define

. Oı.n/; O�n/ WD arg min
ı2�.kn;Dn/
�2Œ0;Dn�

�.Sı; � I OSZjY>y/ : (3.10)

The final robustm-frontier estimator is then given by

O'robm;n.y/ D
Z 1

0

n
SOı.n/.u/

om
du : (3.11)

Note that this integral is easy to compute since SOı.n/ is a step function. The
following result establishes the consistency of this new estimator under a condition
on the parameterm.

Proposition 3.4.1. Suppose we observe production units f.Zi ; Yi /I i D 1; : : : ; ng
in which the univariate inputs are such that Zi D Xi C "i , where "i models a
measurement error that is independent from Xi and Yi , normally distributed with
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zero mean and unknown variance �2. Consider the robust m-frontier estimator
given by equations (3.10) and (3.11) and let mn be a strictly divergent sequence
of positive integers such that

fSOı.n/.'.y//gmn ! 1 (3.12)

almost surely as n ! 1. Then O'robmn;n
.y/ ! '.y/ almost surely as n ! 1.

This result illustrates well the role of the parameter m D mn, which has to tend
to infinity at an appropriate rate as n ! 1 in order to achieve consistency of the
robust frontier estimator. Indeed, ifmn is bounded by someM > 0, Fatou’s Lemma
implies that almost surely

lim
n!1 O'robmn;n

.y/ >
Z 1

0

˚
SX jY>y.u/

�M
du D '.y/C

Z 1

'.y/

˚
SX jY>y.u/

�M
du:

Except for the trivial case where the true conditional survival function is the
indicator function of the interval .�1; '.y//, the last integral on the right hand side
is strictly positive. This shows that the robust estimator asymptotically overestimates
the true frontier '.y/ if mn does not diverge to infinity.

On the other hand, ifmn increases too fast in the sense that the condition in (3.12)
does not hold, then O'robmn;n

.y/ may asymptotically underestimate the true frontier
'.y/ as one can see decomposing the integral from (3.11) into

Z 1

0

n
SOı.n/.u/

omn
du D

Z '.y/

0

n
SOı.n/.u/

omn
du C

Z 1

'.y/

n
SOı.n/.u/

omn
du:

The second integral on the right hand side tends to 0 almost surely for n ! 1
as we explain in the proof of Proposition 3.4.1. As for the first one, the integrand
converges to a non-negative monotone function S with S.'.y// < 1, and hence the
integral may tend to a limit that is smaller than the true frontier '.y/. However, this
need not be the case, and thus the condition in (3.12) is sufficient but not necessary.

Summarizing the above discussion, the sufficient condition in (3.12) implicitly
defines an appropriate rate at which mn may diverge to infinity such that the new
robust frontier estimator is consistent. This rate depends on characteristics of the
true conditional survival function, and we do not know at present how to choose it
in an adaptive way. Nevertheless, the simulations show that even for finite samples,
large choices of m do not deteriorate the performance of the robust estimator.

The estimator is computed for each possible value of y. In practice, it is not
necessary to estimate the standard deviation of the noise for each y. We can first
estimate the noise level using the marginal data set of inputs only, and use the
techniques developed in Sect. 3.4. We then use this estimated value in (3.10) even
as an initial parameter of the optim algorithm, or as a fixed, known parameter of
the noise standard deviation.
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Fig. 3.3 Using the same data as in Fig. 3.1, the two solid lines are the robust m-frontier estimator
withm D 1 and m D 50 respectively

Figure 3.3 shows the estimator on the simulated data of Fig. 3.1. As for the
standardm-frontier, the robustm-frontier withm D 1 is not a satisfactory estimator.
The interesting fact about the robust m-frontier is that it does not deteriorate the
frontier estimation for large values of m. For the sake of comparison with Figs. 3.2
and 3.3 also displays the robust m-frontier estimator with m D 50. This estimator
does not cross the true production frontier and does not converge to the FDH
estimator.

3.5 Conclusion and Further Research

One original idea in this paper is to consider stochastic frontier estimation when the
data generating process has an additive noise on the inputs. The noise is not assumed
to vanish asymptotically. In this situation, the m-frontier estimator introduced by
Cazals et al. (2002) is still a valuable tool in robust frontier estimation, but it requires
to plug-in a consistent estimator of the conditional survival function in order to be
consistent itself.

Constructing this consistent estimator is a deconvolution problem. We have
solved this problem in this chapter. An important feature of our results is that the
noise level is not known, and therefore needs to be estimated from a cross section
of production units.

Measurement errors are frequently encountered in empirical economic data, and
the new robust estimator is designed to be consistent in this setting. The rate of
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convergence of the estimator is however unknown. This study might be of interest
for future research in efficiency analysis.

As it was suggested by a referee, one might also be interested in the case where
the measurement error is in the output rather than in the input variable. We would
like to end this paper by explaining how the above methods can be transferred to
this problem and where the limitations are. In this setting, in contrast to Sect. 3.4,
the inputs Xi are directly observed, but only a contaminated version

Wi D Yi C i ; i � N.0; �2/ (3.13)

of the true output variables Yi is observed, with i independent from Xi and Yi .
Let us briefly discuss the case where both the input and the output spaces are one-
dimensional, i.e. p D q D 1. As the frontier function ' W RC ! RC given in (3.1)
is strictly increasing, its inverse function '�1 W RC ! RC exists. The efficiency
boundary can be described by either of the functions ' and '�1. Estimating '�1 is
thus equivalent to estimating ' itself. The inverse frontier function can be written as

'�1.x/ D inffy 2 RC W FY jX6x.y/ D 1g;

where FY jX6x denotes the conditional distribution function of Y given X 6 x.
To apply the robust m-frontier methodology we therefore need to estimate the
conditional distribution function FY jX6x . From the model (3.13), one can easily
show that the estimation of FY jX6x is again a deconvolution problem, and recalling
that FY jX6x D 1 � SY jX6x , we can define

. Oı.n/; O�n/ WD arg min
ı2�.kn;Dn/
�2Œ0;Dn�

�.Sı; � I OSW jX6x/ and OFn WD 1 � SOı.n/

in analogy to Sect. 3.4.2. OFn is the deconvolving estimator of the conditional distri-
bution function FY jX6x . We proceed by defining the robust m-frontier estimator of
'�1 as

O'�1
m;n.x/ WD A �

Z A

0

n OFn.u/
om

du;

where A > 0 is some constant fixed in advance. Let mn be a strictly divergent
sequence such that f OFn.'.x//gmn ! 1 almost surely as n ! 1. In analogy to
Proposition 3.4.1, it can be shown that for such a sequence, O'�1

mn;n
.x/ is consistent

if A > '�1.x/. Otherwise, O'�1
mn;n

.x/ tends to A almost surely. This suggests
the following adaptive choice of A. First, one computes the estimator with some
arbitrary initial value of A. If the result is close to A, recompute it repeatedly for
increasing values of A until a value smaller than A is obtained.

This estimator is thus robust with respect to noise in the output variable, but
note that it is not obvious how to generalize this procedure to a multi-dimensional
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setting. Moreover, it is not clear how one could cope with a situation with error in
both variables. These questions could be subject to further investigation.

Appendix: Proofs

Proof of Theorem 3.3.2

In order to show the consistency of the robust frontier estimator, we first need to
prove two lemmas.

Lemma 3.5.1. The estimator .SOı.n/; O�n/ satisfies

�.SOı.n/; O�nI OSZn / ! 0 as n ! 1:

Proof. By the triangle inequality, we have, for any .S 0; � 0/ 2 C � R
C,

�.SOı.n/; O�nI OSZn / D min
ı2�.kn;Dn/Q�2Œ0;Dn�

�.Sı; Q� I OSZn /

6 min
ı2�.kn;Dn/
�2Œ0;Dn�

�.Sı; � ISX ? 
�/C �.SX; 
� I OSZn /:
(A.1)

Let  > 0 and T > 0 be such that
R1
T
SX.x/ dx 6 =2. For n sufficiently large,

we have � 6 Dn and there is ı 2 �.kn;Dn/ with
R T
0 j.Sı � SX/.x/j dx 6 =2, such

that
R

R
j.Sı � SX/.x/j dx 6 . It follows that the first term on the right hand side

of (A.1) is a null sequence, because

�.Sı; � ISX ? 
�/ 6 k.Sı � SX/ ? 
�kL1 6 kSı � SXkL1k
�kL1 6 :

The second term is also a null sequence by virtue of Glivenko-Cantelli’s and
Lebesgue’s Theorem. �

Lemma 3.5.2. The estimator SOı.n/ defined by (3.8) satisfies

.POı.n/ ? 
 O�n/
L�! PZ

almost surely as n ! 1.

Proof. The survival function SZ is continuous everywhere as it can be written as a
convolution with some normal density. Therefore, the convergence

OSZn .x/
n!1����! SZ.x/ a.s.
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holds for every x 2 R. Hence, by Lebesgue’s theorem,

�.SX; � I OSZn /
n!1����! 0 a.s.

The triangle inequality, together with Lemma 3.5.1, implies

�.SOı.n/; O�nISZ/ 6 �.SOı.n/; O�nI OSZn /C �.SX; � I OSZn /
n!1����! 0 a.s.

A continuity argument implies

.SOı.n/ ? 
 O�n/.x/
n!1����! SZ.x/ a.s.

for every x 2 R, which is in fact weak convergence and hence concludes the
proof. ut

Our proof of consistency also needs the following two lemmas. The first one
is quoted from Schwarz & Van Bellegem (2010), the second one is an immediate
consequence of Lemma 3.4 from the same article.

Lemma 3.5.3. LetQn be a sequence of probability distributions and �n a sequence
of positive real numbers. Suppose further that .Qn?N.0; �n//n2N converges weakly
to some probability distribution. Then, there exist an increasing sequence .nk/k2N,
a probability distribution Q1, and a constant �1 > 0 such that

Qnk

L�! Q1 and �nk ! �1

as n ! 1.

Lemma 3.5.4. A weakly convergent sequence of probability distributions that have
all their mass on the positive axis has its limit in P0.

We are now in position to prove the consistency theorem.
Proof of Theorem 3.3.2. For probability distributions P;P 0 and positive real
numbers �; � 0, define the distance �.P; � IP 0; � 0/ WD d.P; P 0/C j� � � 0j; where
d.�; �/ denotes a distance that metrizes weak convergence, e.g. the Lévy distance.
The theorem is hence equivalent to

�.POı.nk/; O�nk IPX ; �/
n!1����! 0

almost surely. The proof is obtained by contradiction. Suppose that there is some
d > 0 and an increasing sequence .nk/k2N such that

�.POınk ; O�.nk/IPX; �/ > d

for all k 2 N.
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By Lemma 3.5.2, we know that the distributions given by .SOı.n/ ? 
 O�n/ converge

almost surely weakly to PZ . Lemma 3.5.3 implies that there is a distribution P1,
some �1 > 0, and a sub-sequence .n0

k/k2N such that almost surely

POı.n0

k/

L�! P1 and O�n0

k
! �1;

which implies the almost sure point-wise convergence of SOı
n0

k

to S1. Fatou’s lemma

then implies

�.S1; �1ISZ/ 6 lim inf
k!1 �.SOı.n0

k/
; O�n0

k
ISZ/ D 0 a.s.,

where the last equality holds because of Lemma 3.5.2. Hence, �.S1; �1ISZ/ D 0;

and using continuity again, we conclude that S1?
�
1

D SX ?
� :Or equivalently,
in terms of distributions, P1 ?
�

1

D PX ?N� : As all the distributions POı.n0

k/
have

their mass on the positive axis, Lemma 3.5.4 implies that P1 2 P0, and hence that
P1 D PX and �1 D � , which contradicts the assumption and thus concludes the
proof. ut

Proof of Proposition 3.4.1

We begin the proof by plugging-in the sequencemn into the robust estimator and by
splitting up the integral occurring in (3.11) into

Z 1

0

n
SOı.n/.u/

omn
du D

Z '.y/

0

n
SOı.n/.u/

omn
du C

Z 1

'.y/

n
SOı.n/.u/

omn
du DW An CBn

with obvious definitions for An and Bn. We have that Bn ! 0 almost surely as n
tends to infinity. To see this, let tn WD '.y/ _ supft 2 R W SOı.n/.t/ D 1g and
decompose Bn further into

Z 1

'.y/

fSOı.n/.u/gmn du D
Z tn

'.y/

1 du C
Z 1

tn

fSOı.n/.u/gmn du: (A.1)

Firstly, tn ! '.y/ as n ! 1 because of the consistency of SOı.n/. Therefore, the
first integral on the right hand side of (A.1) tends to 0 as n ! 1. Secondly, SOı.n/
is non-increasing and strictly smaller than 1 on .tn;1/ for every n 2 N. As the
sequence SOı.n/ is further surely point-wise convergent on R, the other integral of the
decomposition in (A.1) also tends to 0.

It remains to show that An ! '.y/ almost surely as n ! 1. Since SOı.n/ is
non-increasing and SOı.n/.0/ D 1, we have that sn 6 '.y/. On the other hand,
sn > '.y/ fSOı.n/.'.y//gmn , which proves the result by virtue of the assumption. ut
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Chapter 4
Estimating Frontier Cost Models Using
Extremiles

Abdelaati Daouia and Irène Gijbels

Abstract In the econometric literature on the estimation of production technolo-
gies, there has been considerable interest in estimating so called cost frontier models
that relate closely to models for extreme non-standard conditional quantiles (Aragon
et al. Econ Theor 21:358–389, 2005) and expected minimum input functions
(Cazals et al. J Econometrics 106:1–25, 2002). In this paper, we introduce a
class of extremile-based cost frontiers which includes the family of expected
minimum input frontiers and parallels the class of quantile-type frontiers. The class
is motivated via several angles, which reveals its specific merits and strengths.
We discuss nonparametric estimation of the extremile-based costs frontiers and
establish asymptotic normality and weak convergence of the associated process.
Empirical illustrations are provided.

4.1 Introduction

In the analysis of productivity and efficiency, for example of firms, the interest lies
in estimating a production frontier or cost function. Among the basic references
in economic theory are Koopmans (1951), Debreu (1951) and Shephard (1970).
The activity of a production unit (e.g. a firm) is characterized via a set of outputs,
y 2 R

q
C that is produced by a set of inputs x 2 R

p
C. The set of attainable points can

be characterized as
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‰ D f.y; x/ 2 R
qCp
C j y can be produced by xg:

This set can be described mathematically by its sections. In the input space one
has the input requirement sets C.y/ D fx 2 R

p
Cj.y; x/ 2 ‰g, defined for all

possible outputs y 2 R
q
C. The radial (or input-oriented) efficiency boundary is

then given by @C.y/, the boundary of the input requirement set. In the case of
univariate inputs @C.y/ D minC.y/, the input-efficiency function, also called the
frontier cost function. From an economic point of view, a monotonicity assumption
on this function is reasonable, meaning that higher outputs go along with a higher
minimal cost. Different other assumptions can be made on ‰ such as for example
free disposability, i.e. if .y; x/ 2 ‰ then .y0; x0/ 2 ‰ for any x0 � x and y0 � y (the
inequalities here have to be understood componentwise); or convexity, i.e., every
convex combination of feasible production plans is also feasible. See Shephard
(1970) for more information and economic background.

In this paper we will focus the presentation on the input orientation1, where
we want to estimate the minimal cost frontier in the case of univariate inputs. To
our disposal are observations Xn D f.Yi ; Xi /j i D 1; � � � ; ng generated by the
production process defined through for example the joint distribution of a random
vector .Y;X/ on R

q
C �RC, where the q-dimensional vector Y represents the outputs

and the second variableX is the single input. Let .�;A;P/ be the probability space
on which both Y and X are defined. In the case where the production set ‰ is equal
to the support of the joint distribution of .Y;X/, a probabilistic way for defining the
cost frontier is as follows. The cost function @C.y/ is characterized for a given set
of outputs y by the lower boundary of the support of the conditional distribution of
X given Y � y, i.e.

'.y/ WD inffx � 0j NFy.x/ < 1g � @C.y/; (4.1)

where NFy.x/ D 1 � Fy.x/; with Fy.x/ D P.X � xjY � y/ being the conditional
distribution function ofX given Y � y, for y such that P.Y � y/ > 0. The frontier
function ' is monotone nondecreasing, which corresponds to the free disposability
property of the support ‰. When the support boundary @C.�/ is not assumed to be
monotone, '.�/ is in fact the largest monotone function which is smaller than or
equal to the lower boundary @C.�/. See Cazals et al. (2002) for this formulation and
a detailed discussion on the concept of frontier cost function.

There is a vast literature on the estimation of frontier functions from a random
sample of production units Xn. There have been developments along two main
approaches: the deterministic frontier models which suppose that with probability
one, all the observations in Xn belong to‰, and the stochastic frontier models where
random noise allows some observations to be outside of ‰.

1The presentation for the output orientation, where we want to estimate the maximal production
frontier in the case of univariate outputs, is a straightforward adaptation of what is done here.
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In deterministic frontier models, two different nonparametric methods based
on envelopment techniques have been around. The free disposal hull (FDH)
technique and the data envelopment analysis (DEA) technique. Deprins et al. (1984)
introduced the FDH estimator that relies only on the free disposability assumption
on ‰. The DEA estimator initiated by Farrell (1957) and popularized as linear
programming estimator by Charnes et al. (1978), requires stronger assumptions, it
relies on the free disposability assumption and the convexity of‰. Such a convexity
assumption is widely used in economics, but it is not always valid. Because of the
additional assumption of convexity the FDH estimator is a more general estimator
than the DEA estimator. The asymptotic distribution of the FDH estimator was
derived by Park et al. (2000) in the particular case where the joint density of .Y;X/
has a jump at the frontier and by Daouia et al. (2010) in the general setting. The
asymptotic distribution of the DEA estimator was derived by Gijbels et al. (1999).
Today, most statistical theory of these estimators is available. See Simar and Wilson
(2008), among others.

In stochastic frontier models, where noise is allowed, one often imposes para-
metric restrictions on the shape of the frontier and on the data generating process to
allow identification of the noise from the cost frontier and subsequently estimation
of this frontier. These parametric methods may lack robustness if the distributional
assumptions made do not hold.

Since nonparametric deterministic frontier models rely on very few assumptions,
they are quite appealing. Moreover, the FDH estimator of the frontier cost function
can simply be viewed as a plug-in version of (4.1) obtained by just replacing the
conditional distribution function by its empirical analog bF y.x/ resulting into

O'.y/ D inffx 2 RCj OFy.x/ > 0g D min
i WYi�y

Xi ;

with OFy.x/ D Pn
iD1 11.Xi � x; Yi � y/=

Pn
iD1 11.Yi � y/.

The FDH estimator, as well as the DEA estimator, however are very sensitive
to outlying observations. In the literature two robust nonparametric estimators of
(partial) cost frontiers have been proposed to deal with this sensitivity. Cazals et al.
(2002) introduced the concept of expected minimal cost of order m 2 f1; 2; 3; :::g.
It is defined as the expected minimal cost among m firms drawn in the population
of firms exceeding a certain level of outputs. More precisely, for a given level of
outputs y, the cost function of order m is given by

'm.y/ D EŒmin.Xy
1 ; � � � ; Xy

m/� D
Z 1

0

f NFy.x/gmdx;

where .Xy
1 ; � � � ; Xy

m/ are m independent identically distributed random variables
generated from the distribution of X given Y � y. Its nonparametric estimator is
defined by

O'm;n.y/ D
Z 1

0

f1 � OFy.x/gmdx:
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The estimator O'm;n.y/ does not envelop all the data points, and so it is more robust
to extreme values than the FDH estimator O'.y/. By choosing m appropriately as a
function of the sample size n, O'm;n.y/ estimates the cost function '.y/ itself while
keeping the asymptotic properties of the FDH estimator.

A second approach to deal with the sensitivity to outlying observations was pro-
posed by Aragon et al. (2005). They consider extreme quantiles of the conditional
distribution of X given Y � y. Such non-standard conditional quantiles provide
another concept of a partial cost frontier as an alternative towards the order-m
partial cost frontier introduced by Cazals et al. (2002). The duality between expected
minimum input frontiers and quantile-type cost frontiers has been investigated by
Daouia and Gijbels (2011).

In this paper we introduce a new class of extremile-based cost frontiers which
includes the class of order-m expected minimum input frontiers. The class also
parallels the class of quantile partial cost frontiers in the sense that it is related to
the mean of a random variable rather than the median (or quantile more generally).

The chapter is organized as follows. In Sect. 4.2 we introduce the class of
extremile-based cost frontier functions, and discuss the relation with the order-m
partial cost functions and the quantile-type cost functions. Some basic properties
of the new class of frontier functions are provided. Section 4.3 is devoted to
nonparametric estimation of an extremile-based cost frontier, and studies the
asymptotic properties of the estimators. An empirical study on a simulation model
and on a real data example is provided in Sect. 4.4. Section 4.5 concludes.

4.2 The Extremile-Based Cost Function

Consider a real � 2 .0; 1/ and let K� be a measure on Œ0; 1� whose distribution
function is

K�.t/ D

8
ˆ̂<

ˆ̂:

1 � .1 � t/s.�/ if 0 < � � 1
2

t s.1��/ if 1
2

� � < 1

where

s.�/ D log.1=2/

log.1 � �/
� 1 for � 2 Œ0; 1=2�:

Define the score function J�.�/ to be the density of the measureK� on .0; 1/.

Definition 4.3. The extremile-based cost function of order � denoted by �� .y/ is
the real function defined on R

q
C as

��.y/ D E
�
XJ�

�
Fy.X/

� jY � y
�

where we assume the existence of this expectation.
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As a matter of fact, the partial cost function ��.y/ coincides with the � th
extremile (see Daouia and Gijbels 2009) of the conditional distribution of X given
Y � y. The following proposition is a basic property of extremiles.

Proposition 4.4. If E.X jY � y/ < 1, then �� .y/ exists for all � 2 .0; 1/.
Proof. Following Daouia and Gijbels (2009, Proposition 1 (ii)), the � th extremile
exists provided that the underlying distribution has a finite absolute mean which
corresponds here to E.X jY � y/ < 1. ut

From an economic point of view, the quantityX of inputs-usage is often assumed
to be bounded or at least to have a finite mean and so, in this case, the � th cost
function is well defined for any order � in .0; 1/ and all y 2 R

q
C such that P.Y �

y/ > 0.
More specifically, the extremile function �� .y/ is proportional to conditional

probability-weighted moments:

�� .y/ D

8
ˆ̂<

ˆ̂:

s.�/E
h
X
˚ NFy.X/

�s.�/�1 jY � y
i

for 0 < � � 1
2

s.1 � �/E
h
X
˚
Fy.X/

�s.1��/�1 jY � y
i

for 1
2

� � < 1:

In the special case where � � 1=2 with s.�/ being a positive integer, �� .y/
equals the expectation of the minimum of s.�/ independent random variables
.X

y
1 ; : : : ; X

y

s.�/
/ generated from the distribution of X given Y � y. Whence

�� .y/ D E

h
min

�
X
y
1 ; : : : ; X

y

s.�/

�i
D 's.�/.y/:

Thus the class of our conditional extremiles includes the family of expected
minimum input functions introduced by Cazals et al. (2002). Likewise, if � � 1=2

with s.1 � �/ D 1; 2; : : : we have �� .y/ D E

h
max

�
X
y
1 ; : : : ; X

y

s.1��/
�i

, where

X
y
1 ; : : : ; X

y

s.1��/ are independent random variables generated from the distribution
of X given Y � y.

Proposition 4.5. If the conditional distribution ofX given Y � y has a finite mean,
then it can be characterized by the subclass f�� .y/ W s.�/ D 1; 2; : : :g or f��.y/ W
s.1 � �/ D 1; 2; : : :g.

Proof. This follows from the well known result of Chan (1967) which states that a
distribution with finite absolute first moment can be uniquely defined by its expected
maxima or expected minima. ut

The non-standard conditional distribution of X given Y � y whose E.X jY �
y/ < 1 is uniquely defined by its discrete extremiles. This means that no two such
non-standard distributions with finite means have the same expected minimum input
functions.
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Of particular interest is the left tail � � 1=2 where the partial � th cost function
has the following interpretation

E

h
min

�
X
y
1 ; : : : ; X

y

Œs.�/�C1
�i

� ��.y/ � E

h
min

�
X
y
1 ; : : : ; X

y

Œs.�/�

�i

where Œs.�/� denotes the integer part of s.�/ and Xy
1 ;X

y
2 ; : : : are iid random vari-

ables of distribution function Fy . In other words, we have 'Œs.�/�C1.y/ � �� .y/ �
'Œs.�/�.y/ for � � 1=2. Hence �� .y/ benefits from a similar “benchmark” inter-
pretation as expected minimum input functions. For the manager of a production
unit working at level .x; y/, comparing its inputs-usage x with the benchmarked
value �� .y/, for a sequence of few decreasing values of � & 0, could offer a clear
indication of how efficient its firm is compared with a fixed number of .1C Œs.�/�/

potential firms producing more than y.
Yet, there is still another way of looking at �� .y/. Let X y

� be a random variable
having cumulative distribution function

FX y
�

D

8
ˆ̂<

ˆ̂:

1 � ˚ NFy
�s.�/

if 0 < � � 1
2

fFygs.1��/ if 1
2

� � < 1:

Proposition 4.6. We have �� .y/ D E.X y
� / provided this expectation exists.

Proof. Since EjX y
� j D E.X y

� / < 1, we have E.X y
� / D R 1

0
F�1
X y
�
.t/dt in view

of a general property of expectations (see Shorack 2000, p.117). On the other
hand, it is easy to check that �� .y/ D R 1

0
J� .t/F

�1
y .t/dt D R 1

0
F�1
y .t/dK�.t/ D

R 1
0
F�1
X y
�
.t/dt . ut

This allows to establish how our class of extremile-based cost functions is related
to the family of quantile-based cost functions defined by Aragon et al. (2005) as

Q�.y/ D F �1
y .�/ WD inffx 2 RCj Fy.x/ � �g for 0 < � < 1:

Indeed, while �� .y/ equals the mean of the random variable X y
� , it is easy to see that

the quantile function Q�.y/ coincides with the median of the same variable X y
� .

Consequently the � th extremile-based cost function is clearly more tail sensitive
and more efficient than the � th quantile-based cost function. The latter means that
the (asymptotic) variance for the extremile-based cost function estimator is smaller
than the (asymptotic) variance of the � th quantile-based cost function. Recall that
for many population distributions (such as e.g. a normal distribution) the sample
mean has a smaller asymptotic variance than the sample median, when both are
estimating the same quantity. See for example Serfling (1980).

One way of defining �� .y/, with 0 � � � 1, is as the following explicit quantity.
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Proposition 4.7. If E.X y
� / < 1, we have

�� .y/ D

8
ˆ̂<

ˆ̂:

'.y/C R1
'.y/

˚ NFy.x/
�s.�/

dx for 0 � � � 1
2

'.y/C R1
'.y/

�
1 � ˚

Fy.x/
�s.1��/�

dx for 1
2

� � � 1:

(4.2)

Proof. We have �� .y/ D E.X y
� / by Proposition 4.6 and E.X y

� / D R1
0

n
1 � FX y

�
.x/
o

dx D '.y/CR1
'.y/

n
1 � FX y

�
.x/
o
dx by a general property of expectations (Shorack

2000, p.117). ut
This explicit expression is very useful when it comes to proposing an estimator

for �� .y/. Obviously, the central extremile-based cost function �1=2.y/ reduces to
the regression function E.X jY � y/. The conditional extremile �� .y/ is clearly
a continuous and increasing function in � and it maps .0; 1/ onto the range fx �
0j0 < Fy.x/ < 1g. The left and right endpoints of the support of the conditional
distribution functionFy.�/ coincide respectively with the lower and upper extremiles
�0.y/ and �1.y/ since s.0/ D 1. Hence the range of �� .y/ is the entire range of X
given Y � y.

Of interest is the limiting case � # 0 which leads to access the full cost function
'.y/ D �0.y/. Although the limit frontier function '.�/ is monotone nondecreasing,
the partial cost function �� .�/ itself is not necessarily monotone. To ensure the
monotonicity of �� .y/ in y, it suffices to assume, as it can be easily seen from
Proposition 4.7, that the conditional survival function NFy.x/ is nondecreasing in y.
As pointed out by Cazals et al. (2002), this assumption is quite reasonable from an
economic point of view since the chance of spending more than a cost x does not
decrease if a firm produces more.

The next proposition provides an explicit relationship between the � th quantile
and extremile type cost functions at � # 0. Let DA.W�/ denote the minimum
domain of attraction of the Weibull extreme-value distribution

W�.x/ D 1� expf�x�g with support Œ0;1/; for some � > 0;

i.e., the set of distribution functions whose asymptotic distributions of minima are
of the type of W�. According to Daouia et al. (2010), if there exists a sequence
fan > 0g such that the normalized minima a�1

n . O'.y/ � '.y// converges to a non-
degenerate distribution, then the limit distribution function is of the type of W� for
a positive function � D �.y/ in y.

Proposition 4.8. Suppose E.X jY � y/ < 1 and Fy.�/ 2 DA.W�.y//. Then

�� .y/ � '.y/
Q�.y/� '.y/

� �.1C ��1.y//flog2g�1=�.y/ as � # 0;

where �.�/ denotes the gamma function.
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Proof. This follows immediately by applying Proposition 2 (ii) in Daouia and
Gijbels (2009) to the distribution of �X given Y � y. ut

Consequently, as � # 0, the quantile curveQ�.�/ is closer to the true cost frontier
'.�/ than is the extremile curve �� .�/ following the value of the tail index �. In
most situations described so far in the econometric literature on frontier analysis,
it is assumed that there is a jump of the joint density of .Y;X/ at the frontier:
this corresponds to the case where the tail index �.y/ equals the dimension of
data .1C q/ according to Daouia et al. (2010). It was shown in that paper that
ˇ.y/ D �.y/� .1C q/, where ˇ.y/ denotes the algebraic rate with which the joint
density decreases to 0 when x approaches the point at the frontier function. Since
a jump of the joint density at the frontier implies that ˇ.y/ D 0, it follows that
�.y/ D 1C q in that case. In such situations, Q�.�/ is asymptotically closer to '.�/
than is �� .�/ when q � 2, but �� .�/ is more spread thanQ�.�/ when q > 2.

On the other hand, the score function J� .�/ being monotone increasing for
� � 1=2 and decreasing for � � 1=2, the conditional extremile �� .y/ depends by
construction on all feasible values ofX given Y � y putting more weight to the high
values for � � 1=2 and more weight to the low values for � � 1=2. Therefore �� .y/
is sensible to the magnitude of extreme values for any order � 2 .0; 1/. In contrast,
the conditional quantile Q�.y/ is determined solely by the tail probability (relative
frequency) � , and so it may be unaffected by desirable extreme values whatever the
shape of tails of the underlying distribution. On the other hand, whenQ�.y/ breaks
down at � # 0 or � " 1, the � th conditional extremile, being an L-functional,
is more resistant to extreme values. Hence, �� .y/ steers an advantageous middle
course between the extreme behaviors (insensitivity and breakdown) of Q�.y/.

4.3 Nonparametric Estimation

Instead of estimating the full cost function, an original idea first suggested by Cazals
et al. (2002) and applied by Aragon et al. (2005) to quantiles is rather to estimate
a partial cost function lying near '.y/. Thus the interest in this section will be in
the estimation of the extremile function �� .y/ for � � 1=2. The right tail (i.e. � �
1=2) can be handled in a similar way and so is omitted. Results below are easily
derived by means of L-statistics theory applied to the dimensionless transformation
Zy D X11.Y � y/ of the random vector .Y;X/ 2 R

qC1
C . Let NFZy D 1 � FZy be

the survival function of Zy . It is easy to check that NFy.X/ D NFZy .Zy/=P.Y � y/.
Then

�� .y/ D E
�
ZyJ�

�
Fy.X/

��
=P.Y � y/ for 0 < � < 1

D s.�/

P.Y � y/
E

2

4Zy

( NFZy .Zy/

P.Y � y/

) s.�/�13

5D �Zy .�/

fP.Y � y/gs.�/ for 0 < � � 1

2

(4.3)
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where �Zy .�/ D s.�/E
h
Zy

˚ NFZy .Zy/
�s.�/�1i D R 1

0 F
�1
Zy dK� is by definition the

ordinary � th extremile of the random variable Zy . Therefore it suffices to replace
P.Y � y/ by its empirical version OP.Y � y/ D .1=n/

Pn
iD1 11.Yi � y/ and �Zy .�/

by a consistent estimator to obtain a convergent estimate of the conditional extremile
�� .y/.

As shown in Daouia and Gijbels (2009), a natural estimator of the ordinary
extremile �Zy .�/ is given by the L-statistic generated by the measure K� :

O�Zy .�/ D
nX

iD1

	
K�



i

n

�
�K�



i � 1

n

��
Z
y

.i/; (4.4)

where Zy

.1/ � Z
y

.2/ � � � � � Z
y

.n/ denote the order statistics generated by the sample

fZy
i D Xi11.Yi � y/ W i D 1; � � � ; ng. It is easy to see that the resulting estimator of

the � th cost function �� .y/, given by

O�� .y/ D O�Zy .�/=f OP.Y � y/gs.�/

coincides with the empirical conditional extremile obtained by replacing Fy.x/ in
expression (4.2) with its empirical version OFy.x/, i.e.,

O�� .y/ D
Z 1

0

n
1 � OFy.x/

os.�/
dx D O'.y/C

Z 1

O'.y/

n
1 � OFy.x/

os.�/
dx: (4.5)

This estimator converges to the FDH input efficient frontier O'.y/ as � decreases
to zero. In particular, when the power s.�/ is a positive integer m D 1; 2; : : : we
recover the estimator O'm;n.y/, of the expected minimum input function of order m
proposed by Cazals et al. (2002). See Sect. 4.1. The following theorem summarizes
the asymptotic properties of O�� .y/ for a fixed order � .

Theorem 4.10. Assume that the support of .Y;X/ is compact and let � 2
.0; 1=2�.

(i) For any point y 2 R
q
C such that P.Y � y/ > 0, O�� .y/ a:s:! �� .y/ as n!1,

and
p
n
� O�� .y/� �� .y/

�
has an asymptotic normal distribution with mean

zero and variance E
�
S� .y; Y;X/

�2
, where S� .y; Y;X/ D s.�/

fP.Y�y/gs.�/R1
0 fP.X > x; Y � y/gs.�/�111.X > x; Y � y/dx � s.�/�� .y/

P.Y�y/ 11.Y � y/.

(ii) For any subset Y 	 R
q
C such that infy2Y P.Y � y/ > 0, the processp

n
� O�� .�/� �� .�/

�
converges in distribution in the space of bounded functions

on Y to a q-dimensional zero mean Gaussian process indexed by y 2 Y with
covariance function

†k;l D E
�
S� .y

k; Y;X/ S� .y
l ; Y;X/

�
:
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Proof. Let m D s.�/. When m D 1; 2; : : : the two results (i)–(ii) are given
respectively by Theorem 3.1 and Appendix B in Cazals et al. (2002). In fact, it is not
hard to verify that the proofs of these results remain valid even when the trimming
parameterm is not an integer. ut

The conditional distribution function Fy even does not need to be continuous,
which is not the case for the empirical conditional quantiles OQ�.y/ D OF�1

y .�/

whose asymptotic normality requires at least the differentiability of Fy at Q�.y/

with a strictly positive derivative (see Aragon et al. (2002) for the pointwise
convergence and Daouia and Gijbels (2009) for the functional convergence).

Next we show that if the FDH estimator O'.y/ converges in distribution, then for
a specific choice of � as a function of n, O��.y/ estimates the true full cost function
'.y/ itself and converges in distribution as well to the same limit as O'.y/ and with
the same scaling.

Theorem 4.11. Suppose the support of .Y;X/ is compact. If a�1
n . O'.y/ � '.y//

d!
W�.y/, then a�1

n

� O��y .n/.y/ � '.y/
�

d! W�.y/ provided

�y.n/ � 1�
(
1� 1

n OP.Y � y/

) log.2/
.ˇC1/ log.Cn/

or �y.n/ � 1�exp

	
.1C o.1// log.1=2/

.ˇ C 1/n log.Cn/P.Y � y/

�
;

with ˇ > 0 such that annˇ ! 1 as n ! 1, and C being a positive constant.

Proof. We have a�1
n

� O�� .y/� '.y/
�

D a�1
n . O'.y/ � '.y//C a�1

n

� O�� .y/� O'.y/
�

.

Let Ny D Pn
iD1 11.Yi � y/ D Pn

iD1 11.Zy
i > 0/. It is easily seen from (4.5) that

� O�� .y/� O'.y/
�

D
NyX

jD1

	
Ny � j
Ny

� s.�/ �
Z
y

.n�NyCjC1/ �Zy

.n�NyCj /
�
:

The support of .Y;X/ being compact, the range of Zy is bounded and so� O�� .y/� O'.y/
�

D O



n
n
1 � 1

Ny

os.�/�
. Then, for the term a�1

n

� O��.y/ � O'.y/
�

to be op.1/ as n ! 1, it is sufficient to choose � D �y.n/ such thatn
1 � 1

Ny

os.�y.n// D O
�
n�.ˇC1/� or equivalently

n
1 � 1

Ny

os.�y.n// � .Cn/�.ˇC1/

with C > 0 being a constant and ˇ > 0 is such that a�1
n n

�ˇ D o.1/ as

n ! 1. Whence the condition s.�y.n// � .ˇC1/ log.Cn/

log
�
1� 1

Ny

�
log.1=2/

, or equivalently,

�y.n/ � 1 �
n
1 � 1

Ny

o log 2
.ˇC1/ log.Cn/

. Since log
�
1 � 1

Ny

�
� � 1

Ny
� � 1

nP.Y�y/ as n !
1, with probability 1, it suffices to assume that s.�y.n// � .ˇC1/n log.Cn/P.Y�y/

log.2/.1Co.1// , or

equivalently, �y.n/ � 1 � exp
n

.1Co.1// log.1=2/
.ˇC1/n log.Cn/P.Y�y/

o
. ut
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Note that the condition of Theorem 4.11 on the order �y.n/ is also provided in
the proof in terms of s

�
�y.n/

�
and reads as follows:

s.�y.n// � .ˇ C 1/ log.Cn/

log


1 � 1

n OP.Y�y/

�
log.1=2/

or s.�y.n// � .ˇ C 1/n log.Cn/P.Y � y/

log.2/ .1C o.1//
:

(4.6)

Note also that in the particular case considered by Cazals et al. (2002) where the
joint density of .Y;X/ is strictly positive at the upper boundary and the frontier
function '.y/ is continuously differentiable in y, the convergence rate an satisfies

a�1
n � �

n`y
�1=�.y/

with �.y/ D 1C q and `y > 0 being a constant (see Park et al.
2000). In this case, the condition annˇ ! 1 reduces to ˇ > 1=.1C q/.

It should be clear that the main results of Cazals et al. (2002) are corollaries of
our Theorems 4.10 and 4.11. Indeed, when the real parameter s.�/ 2 Œ1;1/ in our
approach is taken to be a positive integer m D 1; 2; : : :, we recover Theorems 3.1
and 3.2 of Cazals et al. (2002). However, we hope to have shown that the sufficient
condition my.n/ D O .ˇn log.n/P.Y � y// of Cazals et al. (2002, Theorem 3.2)
on the trimming parameter my.n/ � s.�y.n// is somewhat premature and should
be replaced by (4.6).

Alternative estimators of the conditional extremile ��.y/ can be constructed
from expression (4.3). Instead of the sample extremile (4.4), one may estimate the
ordinary extremile �Zy .�/ by

Q�Zy .�/ D 1

n

nX

iD1
J�



i

nC 1

�
Z
y

.i/:

This estimator which is in fact first-order equivalent with O�Zy .�/ (see Daouia and
Gijbels 2009) leads to the alternative estimator Q�� .y/ of �� .y/ defined as Q�� .y/ D
Q�Zy .�/=f OP.Y � y/gs.�/: In the particular case considered by Cazals et al. (2002)
where s.�/ is only a positive integer, the statistic

��
Zy .�/ D s.�/

n

n�s.�/C1X

iD1

0

@
s.�/�1Y

jD1

.n � i C 1 � j /
.n � j /

1

AZy

.i/

is an unbiased estimator of the ordinary extremile �Zy .�/ with the same asymptotic
normal distribution as O�Zy .�/ and Q�Zy .�/ (Daouia and Gijbels 2009). This provides
an attractive estimator ��

� .y/ D ��
Zy .�/=f OP.Y � y/gs.�/ for the order-s.�/ expected

minimum input function �� .y/ � 's.�/.y/.
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4.4 Empirical Illustration

Let Ny be the number of the Yi observations greater than or equal to y, i.e. Ny DPn
iD1 11.Yi � y/, and, for j D 1; : : : ; Ny , denote by Xy

.j / the j th order statistic

of the Xi ’s such that Yi � y. It is then clear that Xy

.j / D Z
y

.n�NyCj / for each

j D 1; : : : ; Ny , and the estimator O�� .y/ can be easily computed as

O�� .y/ D
O�Zy .�/

fn�1Nygs.�/ D X
y

.1/
C

Ny�1X

jD1



1 � j

Ny

�s.�/ n
X
y

.jC1/ � X
y

.j /

o
:

This estimator always lies above the FDH O'.y/ D X
y

.1/
and so is more robust

to extremes and outliers. Moreover, being a linear function of the data, O�� .y/
suffers less than the empirical � th quantile OQ�.y/ to sampling variability or
measurement errors in the extreme values Xy

.j /. The quantile-based frontier only
depends on the frequency of tail costs and not on their values. Consequently, it
could be too liberal (insensitive to the magnitude of extreme costs Xy

.j /) or too
conservative following the value of � . In contrast, putting more weight to high
and low observations in the input-orientation, the extremile-based frontier is always
sensible to desirable extreme costs. Nevertheless, being a linear function of all
the data points (L-statistic), it remains resistant in the sense that it could be only
attracted by outlying observations without enveloping them.

We first apply Theorem 4.11 in conjunction with these sensitivity and resistance
properties to estimate the optimal cost of the delivery activity of the postal services
in France. The data set contains information about 9,521 post offices .Yi ; Xi /
observed in 1994, with Xi being the labor cost (measured by the quantity of labor
which represents more than 80% of the total cost of the delivery activity) and the
output Yi is defined as the volume of delivered mail (in number of objects). See
Cazals et al. (2002) for more details. Here, we only use the n D 4; 000 observations
with the smallest inputs Xi to illustrate the extremile-based estimator O��y.n/.y/ of
the efficient frontier '.y/. The important question of how to pick out the order �y.n/
in practice can be addressed as follows.

We know that the condition of Theorem 4.11 provides an upper bound on the
value of �y.n/. Remember also that in most situations described so far in the
econometric literature on frontier analysis, the joint density of .Y;X/ is supposed to
be strictly positive at the frontier. In this case, the upper bound for �y.n/ is given by

�.C/ D 1 �
	
1 � 1

Ny

� .1Cq/ log.2/
.2Cq/ log.Cn/

;

where the number of outputs q equals here 1 and the positive constant C should be
selected so that log.Cn/ 6D 0, i.e., C > 1=n. The practical question now is how
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Fig. 4.1 Evolution of the percentage of observations below the frontier O��.C/ with C

to choose C > 0:00025 in such a way that O��.C / provides a reasonable estimate of
the frontier function '. This can be achieved by looking to Fig. 4.1 which indicates
how the percentage of points below the curve O��.C / decreases with the constant C .

The idea is to choose values of C for which the frontier estimator O��.C / is sensible
to the magnitude of desirable extreme post offices and, at the same time, is robust to
outliers (or at least not being drastically influenced by outliers as is the case for the
FDH estimator).

The evolution of the percentage in Fig. 4.1 has clearly an “L” structure. This
deviation should appear whatever the analyzed data set due to both sensitivity and
resistance properties of extremiles. The percentage falls rapidly until the circle, i.e.,
for C � 0:000257. This means that the observations below the frontiers f O��.C / W
C < 0:000257g are not really extreme and could be interior observations to the
cloud of data points. So it is not judicious to select C < 0:000257. In contrast,
the percentage becomes very stable from the triangle on (i.e. C � 0:000276), where
precisely 1:4% of the 4000 observations are left out. This means that these few 1:4%
observations are really very extreme in the input-direction and could be outlying or
perturbed by noise. Although the frontier O��.C / , for C � 0:000276, is resistant to
these suspicious extremes, it can be severely attracted by them due to its sensitivity.
This suggests to choose C < 0:000276. Thus, our strategy leads to the choice of
a constant C ranging over the interval Œ0:000257; 0:000276/ where the decrease of
the percentage is rather moderate.

The two extreme (lower and upper) choices of the frontier estimator O��.C / are
graphed in Fig. 4.2, where the solid line corresponds to the lower bound C` D
0:000257 and the dotted line corresponds to the upper bound Cu D 0:000276.
The frontier estimator O��.C / in dashed line corresponds to the medium value Cm D
.C` C Cu/=2. The obtained curves are quite satisfactory.
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Fig. 4.2 O��.C`/ in solid line, O��.Cu /
in dotted line and O��.Cm/ in dashed line

Let us now test this strategy on a data set of 100 observations simulated following
the model

Y D exp .�5C 10X/=.1C exp .�5C 10X// exp .�U /;

where X is uniform on .0; 1/ and U is exponential with mean 1=3. Five outliers
indicated as “*” in Fig. 4.3, right-hand side, are added to the cloud of data points
(here n D 105). The picture on the left-hand side of Fig. 4.3 provides the evolution
of the percentage of observations below the frontier O��.C / with C . This percentage
falls rapidly until the circle (i.e., for C � 0:0122) and then becomes very stable
suggesting thus the value 0:0122 for the constant C . The resulting estimator O��.:0122/
and the true frontier ' are superimposed in Fig. 4.3, right-hand side. The frontier
estimator O��.:0122/ (in solid line) has a nice behavior: it is somewhat affected by the
five outliers, but remains very resistant.

We did the same exercise without the five outliers. The results are displayed
in Fig. 4.4. The percentage of observations below the extremile-based frontiers
becomes stable from the circle on (i.e., for C � 0:0167) and so it is enough to
choose the value 0:0167 for the constant C . One can also select C in the interval
ŒC` D 0:0167; Cu D 0:0244/ which corresponds to the range of points between
the circle and the triangle. As expected, in absence of outliers, both estimators O��.C`/
(solid line) and O��.Cu /

(dashed line) are very close from the FDH frontier (i.e., the
largest step and nondecreasing curve enveloping below all observations). However,
as desired, here also O��.C`/ and O��.Cu /

capture the shape of the efficient boundary of
the cloud of data points without enveloping the most extreme observations.
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Fig. 4.3 Left-hand side, the percentage curve. Right-hand side, the frontiers ' and O��.:0122/
superimposed (in dotted and solid lines respectively). Five outliers included as “*”
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Fig. 4.4 As above without outliers. Here O��.C` / in solid line and O��.Cu /
in dashed line

4.5 Conclusions

Instead of estimating the full cost frontier we rather propose in this paper to
estimate a boundary well inside the production set ‰ but near its optimal frontier
by using extremiles of the same non-standard conditional distribution considered by
Cazals et al. (2002) and Aragon et al. (2005). The extremile cost function of order
� 2 .0; 1/ is proportional to a specific conditional probability-weighted moment.
It defines a natural concept of a partial cost frontier instead of the m-trimmed
frontier suggested by Cazals et al. (2002). The concept is attractive because the
“trimming” is continuous in terms of the transformed index s.�/, where s.�/ 2
Œ1;1/, whereas m 2 f1; 2; : : :g. In the particular case where s.�/ is discrete
(i.e. s.�/ D 1; 2; : : :), the corresponding � th extremile-based function coincides
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with the expected minimum input function of order m D s.�/. So the family of
order-m frontiers of Cazals et al. (2002) is a subclass of the order-� extremile
frontiers. As a matter of fact, the discrete orderm being replaced with the continuous
index s.�/, the general class of extremile-based cost functions can be viewed as a
fractional variant of expected minimum input functions. This new class benefits
from a similar “benchmark” interpretation as in the discrete case. Moreover, the
continuous trimming in terms of the new order � allows the partial � th extremile
boundaries to cover the attainable set ‰ entirely giving thus a clear information of
the production performance, which is not the case for the discrete order-m frontiers.

The class of extremile-type cost functions characterizes the production process
in much the same way the quantile-type cost functions introduced by Aragon et al.
(2005) do. Moreover, while the � th quantile-type function can be expressed as
the median of a specific power of the underlying conditional distribution, the � th
extremile-type function is given by its expectation. Being determined solely by
the tail probability � , the � th quantile-based cost frontier may be unaffected by
desirable extreme observations, whereas the � th extremile-based cost frontier is
always sensible to the magnitude of extremes for any order � . In contrast, when
the � -quantile frontier becomes very non-robust (breaks down) at � # 0, the � -
extremile frontier being an L-functional, is more resistant to outliers. So the class
of extremile-based cost frontiers steers an advantageous middle course between the
extreme behaviors of the quantile-based cost frontiers. We also show in the standard
situation in econometrics where the joint density of .Y;X/ has a jump at the frontier
that the � th quantile frontier is asymptotically closer (as � # 0) to the true full cost
frontier than is the � th extremile frontier when q � 2, but the latter is more spread
than the former when q > 2.

The new concept of a � th extremile-based cost frontier is motivated via several
angles, which reveals its specific merits and strength. Its various equivalent explicit
formulations result in several estimators which satisfy similar asymptotic prop-
erties as the nonparametric expected minimum input and quantile-type frontiers.
Nevertheless, the underlying conditional distribution function even does not need
to be continuous, which is not the case for the empirical conditional quantiles
whose asymptotic normality requires at least the differentiability of this distribution
function with a strictly positive derivative at the conditional quantile. On the other
hand, by choosing the order � as an appropriate function of the sample size n, we
derive an estimator of the true full cost frontier having the same limit distribution as
the conventional FDH estimator. Combining the sensitivity and resistance properties
of this frontier estimator with the theoretical conditions on the order � D �.n/,
we show how to pick out in practice reasonable values of �.n/. Our empirical
rule is illustrated through a simulated and a real data set providing remarkable
results. It should be clear that, unlike the approaches of Cazals et al. (2002) and
Daouia and Simar (2007), the conditional extremile approach is not extended here
to the full multivariate case (multi-inputs and multi-outputs). This problem is worth
investigating.
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Chapter 5
Panel Data, Factor Models, and the Solow
Residual

Alois Kneip and Robin C. Sickles

Abstract In this paper we discuss the Solow residual (Solow, Rev. Econ. Stat.
39:312–320, 1957) and how it has been interpreted and measured in the neoclassical
production literature and in the complementary literature on productive efficiency.
We point out why panel data are needed to measure productive efficiency and
innovation and thus link the two strands of literatures. We provide a discussion on
the various estimators used in the two literatures, focusing on one class of estimators
in particular, the factor model. We evaluate in finite samples the performance of
a particular factor model, the model of Kneip, Sickles, and Song (A New Panel
Data Treatment for Heterogeneity in Time Trends, Econometric Theory, 2011), in
identifying productive efficiencies. We also point out that the measurement of the
two main sources of productivity growth, technical change and technical efficiency
change, may be not be feasible in many empirical settings and that alternative survey
based approaches offer advantages that have yet to be exploited in the productivity
accounting literature.

5.1 Introduction

In this chapter we discuss the Solow residual (Solow 1957) and how it has
been interpreted and measured in the neoclassical production literature and in the
complementary literature on productive efficiency. We point out why panel data are
needed to measure productive efficiency and innovation and thus link the two strands
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of literatures. We provide a discussion on the various estimators used in the two
literatures, focusing on one class of estimators in particular, the factor model. We
evaluate in finite samples the performance of a particular factor model, the model
of Kneip et al. (2011), in identifying productive efficiencies. We also point out that
the measurement of the two main sources of productivity growth, technical change
and technical efficiency change, may be not be feasible in many empirical settings
and that alternative survey based approaches offer advantages that have yet to be
exploited in the productivity accounting literature.

The plan of the chapter is as follows. In the next section we discuss how
productivity growth has been measured and how certain aspects of its evolution
have been disregarded by classical economic modeling that abstracted from the
realities of inefficiency in the production process. We also point out how closely
linked technical change and technical efficiency change can appear and how it is
often difficult to discern their differences in productivity growth decompositions.
Section 5.3 discusses alternative survey based methods that may be implemented
to assess the contributions of technical innovation and technical efficiency change
to productivity growth through the development of a series of Blue-chip consensus
country surveys that could be collected over time and which could serve as a new
measurement data source to evaluate governmental industrial and competition poli-
cies. Section 5.4 outlines methods that have been proposed to measure productivity,
efficiency, and technical change as well as focusing on the class of factor models
which may have an advantage over other methods proposed to identify productive
efficiencies. Section 5.5 focuses on one such factor model developed by Kneip et al.
(2011) for generic stochastic process panel models and which we reparametrize
to estimated time-varying and firm-specific efficiency while allowing a common-
stochastic trend to represent technical change. Concluding remarks are provided in
Sect. 5.6.

5.2 Productivity Growth and Its Measurement

Productivity growth is the main determinant of changes in our standard of living.
Although anecdotal evidence about particular levels of wealth creation is interesting
it does not provide governments, sectors, or individual firms with an adequate
picture of whether growth in living standards is economically significant and how
the growth in living standards is distributed, both within countries and among
countries. The linkages between productivity growth and living standards is clearly
seen during different epochs for the U.S. economy in Fig. 5.1 (Koenig 2000).
Growth in GDP per capita tends to rise and fall in conjunction with growth in labor
productivity.
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Fig. 5.1 Productivity growth and living standards (Percent per year)
Sources: Department of Commerce; Department of Labor; authors’ calculations

5.2.1 Classical Residual Based Partial and Total Factor
Productivity Measurement

Measurements of productivity usually rely on a ratio of some function of outputs
(Yi ) to some function of inputs (Xi ). To account for changing input mixes, modern
index number analyses use some measure of total factor productivity (TFP ). In its
simplest form, this is a ratio of output to a weighted sum of inputs

TFP D YP
aiXi

: (5.1)

Historically, there are two common ways of assigning weights for this index.
They are to use either an arithmetic or geometric weighted average of inputs:
the arithmetic weighted average, due to Kendrick (1961), uses input prices as the
weights; the geometric weighted average of the inputs, attributable to Solow (1957),
uses input expenditure shares as the weights. some reference point to be useful.
Solow’s measure is based on the Cobb-Douglas production function with constant
returns to scale, Y D AX˛

LX
1�˛
K and leads to the TFP measure

TFP D Y

X˛
LX

1�˛
K

: (5.2)

At cost minimizing levels of inputs, the ˛ parameter describes the input
expenditure share for labor. The TFP growth rate would be described by T PFP D
dY
Y

�
h
˛ dXL
XL

C .1 � ˛/dXK
XK

i
. In applied work, both sets of weights (Kendrick’s and

Solow’s) are often inconsistent with the observed data.
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Endogenous growth models were developed to weaken the strong neoclassical
assumption that long-run productivity growth could only be explained by an
exogenously driven change in technology and that technical change was exogenous.
The classic model put forth by Romer (1986), which began the “new growth
theory,” allowed for non-diminishing returns to capital due to external effects.
For example, research and development by a firm could spill over and affect the
stock of knowledge available to all firms. In the simple Romer model firms face
constant returns to scale to all private inputs. The production function frontier is
formulated as

Y D A.R/f .K;L;R/: (5.3)

In the new growth theory, the production frontier is shifted by a factor A.R/ where
R is the stock of some privately provided input R (such as knowledge) that is
endogenously determined. What is its source? Arrow (1962) emphasized learning-
by-doing. Recently, Blazek and Sickles (2010) have pursued this as an alternative to
the stochastic frontier model. Romer (1986) modeledA as a function of the stock of
research and development. Lucas (1988) modeledA as a function of stock of human
capital.

Where multiple outputs exist, TFP can also be described as a ratio of an
index number describing aggregate output levels

�
yj
�

divided by an index number
describing aggregate input levels.xi /. As such, they derive many of their properties
based the assumptions of the underlying aggregator functions used. Fisher (1927)
laid out a number of desirable properties for these index numbers. Many of these
properties are easily achievable, while others are not. Following Jorgenson and
Griliches (1972), a (logarithmic) total factor productivity index can be constructed
as the difference between log output and log input indices, i.e.

ln TFP D lny1t � ln x1t : (5.4)

An implication of the endogenous growth model is that if a time trend is added
to the standard neoclassical production function then the trend must be stochastic.
This clearly has implications for stationarity (Reikard 2005). Recent work by Kneip
et al. (2011) has addressed the estimation issues that are associated with estimating
the endogenous technical change in the presence of technical efficiency change.

5.2.2 Technical Efficiency in Production

It is often quite difficult to separate the impacts of technical change from constraints
in the use of the existing technology, or technical efficiency. An example of the
overlay of technology (and its change) and efficiency (and its change) can be found
in the classic story of the reason behind the specifications of the solid rocket boosters
(SRB’s) for the space shuttle (see, for example, one of the many URL’s where it
is documented at http://www.astrodigital.org/space/stshorse.html). The SRBs are
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made by Morton Thiokol at a factory in Utah. Originally, the engineers who
designed the SRBs wanted to make them much fatter than they are. Unfortunately,
the SRBs had to be shipped by train from the factory to the launch site in Florida
and the railroad line runs through a tunnel in the mountains. The SRBs had to be
made to fit through that tunnel. The width of that tunnel is just a little wider than the
U.S. Standard Railroad Gauge (distance between the rails) of 4 feet, 8.5 inches. That
is an odd number and begs the question of why that gauge was used? It was used
because US railroads were designed and built by English expatriates who built them
that way in England. The English engineers do so because the first rail lines of the
19th century were built by the same craftsmen who built the pre-railroad tramways,
which used the gauge they used. The reason those craftsmen chose that gauge was
because they used the same jigs and tools that were previously used for building
wagons, and the wagons used that wheel spacing. The wagons used that odd wheel
spacing since if the wagon makers and wheelwrights of the time tried to use any
other spacing, the wheel ruts on some of the old, long distance roads would break the
wagon axles. As a result, the wheel spacing of the wagons had to match the spacing
of the wheel ruts worn into those ancient European roads. Those ancient roads were
built by Imperial Rome for their legions and the roads have been used ever since. The
initial ruts, which everyone else had to match for fear of destroying their wagons,
were first made by Roman war chariots. Since the chariots were made by Imperial
Roman chariot makers, they were all alike in the matter of wheel spacing. Why
4 feet, 8.5 inches? Because that was the width needed to accommodate the rear ends
of two Imperial Roman war horses. Therefore, the railroad tunnel through which the
late 20th century space shuttle SRBs must pass was excavated slightly wider than
two 1st century horses’ rear-ends and consequently, a major design feature of what
is arguably the world’s most advanced transportation system was specified by the
width of the read-end of a horse.

The story is a bit of folk lore whimsy and has an oral and written tradition
that is as old as the aging space shuttle fleet. Although this is just one of such
anecdotes, it illustrates how constraints to adopting the most advanced technology
may arise seemingly by a random process, in fact arise by historical precedent. We
thus turn to an alternative to the Solow type neoclassical model of productivity
and focus on a component neglected in the traditional neoclassical approach,
technical inefficiency. Since the fundamental theoretical work by Debreu (1951),
Farrell (1957), Shephard (1970) and Afriat (1972), researchers have established a
method to measure the intrinsically unobservable phenomena of efficiency. Aigner
et al. (1977), Battese and Cora (1977), and Meeusen and van den Broeck (1977)
provided the econometric methods for the applications waiting to happen. The
linear programming methodology, whose implementation was made transparent
by Charnes et al. (1978), became available at about the same time. The U.S. and
international emphasis on deregulation and the efficiencies accruing to increased
international competition due to the movement to lower trade barriers provided a
fertile research experiment for efficiency modelers and practitioners.

The efficiency score, as it is usually measured, is a residual. Parametric assump-
tions about the distribution of efficiency and its correlation structure often are made
to sharpen the interpretation of the residual. However, that efficiency measurement
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should be highly leveraged by parametric assumptions is by no means a comforting
resolution to this measurement problem. Productivity defined by the Solow residual
is a reduced form concept, not one that can be given a structural interpretation.
Different efficiency estimators differ on what identifying restrictions are imposed.
Not surprisingly, different efficiency estimators often provide us with different
cross-sectional and temporal decompositions of the Solow residual.1 Kumbhakar
and Lovell (2000) and Fried et al. (2008) have excellent treatments of this literature.
It addresses the continuing debate on how the distributional assumptions made in
Pitt and Lee (1981), Kumbhakar (1990), Battese and Coelli (1992), and others drive
the estimates of efficiency. The robust and efficient estimators have been developed
by Park et al. (1998, 2003, 2007), Adams et al. (1999), Adams and Sickles (2007).
These share a number of generic properties with the estimators proposed by Schmidt
and Sickles (1984) and Cornwell et al. (1990).

5.2.3 Difficulty in Measuring the Decomposition of Productivity
Growth into Technical Change and Technical Efficiency
Change

We point out below problems in decomposing productivity change into its innova-
tion and its efficiency change components. One conclusion from this discussion is
that it simply may not be possible from purely econometric models, no matter how
sophisticated, to model structurally the role of innovation and the role of efficiency
in determining TFP growth. We give two illustrations. The first is based on expe-
rience gleaned by Sickles as the Senior Research Coordinator for the Development
Economic Policy Reform Analysis Project (DEPRA), USAID/Egyptian Ministry
of Economy, Contract No. 263-0233-C-00-96-00001-00. A portion of this research
was the basis for Getachew and Sickles (2007). The study analyzed the impact of
regulatory and institutional distortions on the Egyptian private manufacturing sector
from the mid 1980s to the mid 1990s. We focused on the impact of economic
reforms undertaken since 1991. The second is based on work of Sickles and
Streitwieser (1992, 1998) who addressed the impact of the Natural Gas Policy Act
of 1978 on the U.S. interstate natural gas transmission industry.

5.2.3.1 How Can We Identify Specific Constraints at the Macro Level?

The Development Economic Policy Reform Analysis Project in Egypt was a
USAID/World Bank project that began in the mid-1980s and lasted through the

1Since cross-sectional data are used, the efficiencies estimated are typically conditional expecta-
tions, as it is mentioned in Simar and Wilson (2010).
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mid-1990s. The aim of the project was to transition from the planned economy left
by the Soviet Union to a private sector market economy via a structural adjustment
program. Initial efforts focused on macroeconomic stabilization which involved
a reduction of the fiscal deficit through a variety of measures. These measures
included:

1. Cuts in public investment and subsidization programs.
2. Tax reforms, particularly through the introduction of a general sales tax.
3. Improvements in collection.
4. Monetary policy tightening to fight inflation.

The structural adjustment program also involved extensive price liberalization
that affected each sector of the Egyptian economy. This involved:

1. Adjustments of relative prices.
2. Removal of all export quotas, except for tanned hide, in the trade and financial

sectors.
3. Lifting of tariffs on almost all imported capital goods.
4. Removal of constraints on nominal interest rate ceilings, administrative credit

allocation, foreign exchange controls and prohibitions against international
capital mobility.

5. Reform of labor laws, which gave employers the right to hire and lay off workers
in accordance with economic conditions.

How do we develop a model that identifies such a plethora of structural changes
in the Egyptian economy? One approach was undertaken by Getachew and Sickles
(2007) who utilized a virtual cost system and were able to identify allocative
distortions that existed before the reforms were undertaken and those that existed
after the reforms had worked their way through the Egyptian private sector after
the deregulatory reforms. Getachew and Sickles found substantial welfare benefits
accruing to the Egyptian economy due to these reforms in total. Unfortunately, the
specific determinants of the benefits of market reforms could not be ascertained
since the specific constraints could not be modeled and thus incorporated into an
estimable structural model.

5.2.3.2 How Can We Identify Specific Constraints at the Micro Level?

Another illustration is found in the regulatory change accompanying the U.S.
Interstate Natural Gas Policy Act of 1978. The regulatory history of natural gas
transmission industry is long and complicated. Figure 5.2 provides a schematic
diagram that outlines the maximum ceiling price schedules from 1978 to 1985
and the 24 different price combinations over the period for different categories of
natural gas (for details, see Sickles and Streitwieser 1992). As Fig. 5.2 points out,
the regulations and their impact on the various firms involved in the deregulatory
initiatives are enormously complex. A formal model of the constraints in an
estimable structural econometric model is simply not feasible. One can clearly see
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the difficulties inherent in any attempt to parsimoniously quantify the constraints,
not to mention the difficulties one would have in ultimately interpreting how these
constraints could impact optimal natural gas transmission decisions.

5.3 Alternatives to Measurement of Technical Change
and Technical Efficiency Change

5.3.1 Survey-Based Methods for Decomposing Total Factor
Productivity Growth into Technical Change and Technical
Efficiency Change: A New Blue Chip Indicator

Various approaches to decomposing total factor productivity into sources that are
due to efficiency change and due to technological change have been discussed. One
popular index number approach based on the decomposing the Malmquist index
(Caves et al. 1982) was introduced by Färe et al. (1992). Of course, regression based
approaches using either traditional neoclassical growth models, growth models in
which endogenous growth is allowed, or growth models in which inefficiency is
explicitly introduced via a frontier technology offer potentially richer empirical
specifications and a more structural determination of the sources of productivity
growth. However, all approaches suffer due to poor empirical proxies for the
measures of loosening constraints to business activity. One possibility to circumvent
the paucity of reliable empirical measures of the determinants of productivity
growth would be to conduct a structured survey of business leaders, political leaders
World Bank, International Monetary Fund, and Non-governmental Organizations
to identify what are the most important of an array of factors contributing to
economic growth. The results of such a survey would allow us to parse out the
contribution of efficiency change, in the form of loosening of binding constraints,
to economic growth and its relative contribution vis-à-vis technical progress.
The Blue Chip Economic Indicators each month survey America’s top business
economists and ask them to supply their forecasts of U.S. economic growth,
inflation, and interest rates, among other business indicators. The survey began
in 1976. The experts who make up the Blue-Chip panel are on the order of 50
or so economists and come from a cross section of manufacturing and financial
services firms. The Blue Chip Economic Indicators are used by business journalists
and by forecasting companies such as the Wall Street Journal, Forbes, and Reuters.
The specific information contained in the survey contains forecasts for this year
and next from each panel member as well as an average, or consensus, of their
forecasts for the following measures of economic activity: Real GDP, GDP price
index, Nominal GDP, Consumer price index, Industrial production, Real disposable
personal income, Real personal consumption expenditures, Real non-residential
fixed investment, Pre-tax corporate profits, 3-mo. Treasury bill rate, 10-yr. Treasury
note yield, Unemployment rate, Total housing starts, Auto and light truck sales,
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Real Net exports. Along with forecasts by each member of the panel is published
the consensus forecast for each variable, as well as averages of the 10 highest and
10 lowest forecasts for each variable; a median forecast to eliminate the effects of
extreme forecasts on the consensus; the number of forecasts raised, lowered, or left
unchanged from a month ago; and a diffusion index that indicates shifts in sentiment
that sometimes occur prior to changes in the consensus forecast.2 One may question
the accuracy of the Blue Chip indicators. However, in recent work by Chun (2009),
the Blue Chip indicators were found to compare favorably with forecasts from
the Diebold and Li (2006) model at short horizon forecasts of short to medium
maturity interest rates. Development of a survey-based method to decompose total
factor productivity growth in a technical change and a technical efficiency change
component is motivated not only by an interest in sharper forecasts but also on
the possibility that our econometrically based estimates may not be reliable or
meaningful. A survey-based set of indicators of such a decomposition may well
be all that we can hope for.

How might a questionnaire be constructed? What might be the best survey
methods to use in order to solicit answers to such basic questions as:

Total factor productivity growth is the percentage change in production not
attributable to changes in labor, capital, and other inputs. Historically total factor
productivity growth in the U.S. has averaged 2% per year. Assuming that all
contributions to total factor productivity growth much sum to 1 in percentage terms
please answer the following 5 questions:

1. What portion of total factor productivity growth (regress) is due to the innovation
provided by new technology?

2. What portion of total factor productivity growth (regress) is due to the better use
of existing technology?

3. What portion of total factor productivity growth (regress) is due to changes in
government regulations, business climate, or other institutional factors such as
political stability and the democratic process?

4. What portion of total factor productivity growth (regress) is due to changes in the
scale of operation?

5. What portion of total factor productivity growth (regress) is due to other factors?
(Please list them and their relative importance.)

We expect that information of this sort, collected by a set of experts in countries
of the world, will allow us to better understand the role of technology transfer,
government regulation, institutional factors such as political stability and the
democratic process, and market concentration on the engine for long term and
sustainable economic growth: Total Factor Productivity growth.

2See Wolters Kluwer’s Aspen Press website for the Blue Chip Economic Indicators publication by
Randell E. Moore:

http://www.aspenpublishers.com/product.asp?catalog name=Aspen&product id=SS01934600
&cookie%5Ftest=1.
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5.4 Measuring Technical Change and Efficiency Change
Decompositions of Productivity Growth Decompositions

5.4.1 Index Number Procedures

Either index number or regression based approaches require panel data (at a
minimum). The index number approach (Färe et al. 1992) begins by assuming a
panel of firms (or countries, etc.) with i D 1; : : : ; N firms, t D 1; : : : ; T periods,
j D 1; : : : ; J inputs and k D 1; : : : ; K outputs. Thus, xj it is the level of input
j used by firm i in period t and ykit is the level of output k produced by firm
i in period t . Assume an intertemporal production set where input and output
observations from all time periods are used. The production technology, S, is

S D f.x; y/ j x 2 R
JC; y 2 R

KC; .x; y/ is feasibleg: (5.5)

The efficiency scores are the distances from the frontier. An output-based
distance function (Shephard 1970) , OD, is defined as

OD.x; y/ D minf� j .x; y=�/ 2 Sg: (5.6)

Holding the input vector constant, this expression expands the output vector
as much as possible without exceeding the boundaries of S. An output efficient
firm has a score of 1 and it is not possible for the firm to increase its output
without increasing one or more of its inputs. Conversely, an output inefficient
firm has OD.x; y/ < 1. The productivity index requires output distance functions
calculated between periods. ODt .xtC1; ytC1/ D minf�j.xtC1; ytC1=�/ 2 Stg has the
technology of time t and scales outputs in time tC1 such that .xtC1; ytC1/ is feasible
in period t . The observed input-output combination may not have been possible in
time t ; the value of this expression can exceed one which would represent technical
change. ODtC1.xt ; yt / D minf�j.xt ; yt=�/ 2 StC1g has the technology of time tC1

and scales outputs in time t such that .xt ; yt / is feasible in period t C 1. The final
equation can be expressed as

M.xtC1; ytC1; xt ; yt / D ODtC1.xtC1; ytC1/
ODt .xt ; yt /

(5.7)

�
�

ODt .xtC1; ytC1/
ODtC1.xtC1; ytC1/

ODt .xt ; yt /

ODtC1.xt ; yt /

� 1=2
: (5.8)

D EtC1 �AtC1:

This index captures the dynamics of productivity change by incorporating data
from two adjacent periods.EtC1 reflects changes in relative efficiency.AtC1 reflects
changes in technology between t and t C 1. For the index, a value below 1 indicates



94 A. Kneip and R.C. Sickles

productivity decline while a value exceeding 1 indicates growth. For the index
components, values below 1 signify a performance decline while values above 1
signify an improvement. There may be significant shortcomings of this approach, as
noted by Førsund and Hjalmarsson (2008), due to potential vintage capital effects
or its lack of any obvious inferential theory (Jeong and Sickles 2004).

5.4.2 Regression Based Approaches

Regression based approaches to decomposing productivity growth into technical
change and efficiency change components can be explained using the following
generic model. Assume that the multiple output/multiple input technology can
be estimated parametrically using the output distance function. Since the output
distance function, OD.Y;X/ � 1, specifies the fraction of aggregated output (Y )
produced by given aggregated inputs (X ), it gives us a radial measure of technical
efficiency. For anm-output, n-input production technology, the deterministic output
distance function can be approximated by

…m
j Y

�j
j

…n
kX

ˇk
k

� 1; (5.9)

where the �j ’s and the ˇk’s are weights representing the technology of the firm.
If one simply multiplies through by the denominator, approximates the terms
using a Young Index, a geometric mean with varying weights (Balk 2009), and
adds a disturbance term vit to take account of general statistical noise, and specify
a nonnegative stochastic term uit for the firm specific level of radial technical
inefficiency, then a regression based approach to decomposing productivity growth
into technical change and efficiency change can be specified. The Cobb-Douglas
stochastic distance frontier model can be written as

0 D
X

j

�j lnyj;i t �
X

k

ˇk ln xk;i t C vi t � ui t : (5.10)

The output distance function is linearly homogeneous in outputs and if one
imposes this restriction and then normalizes with respect to one yi (the last) the
following expression (Lovell et al. 1994) can be derived

� ln.yJ / D
X

j

�j lnbyj;i t �
X

k

ˇk ln xk;i t C vi t � ui t ; (5.11)

where yJ is the normalized output and byj D yj =yJ , j D 1; : : : ; J � 1. Let
X�
i t D � ln.xk;i t /, Y �

i t D ln.byj;i t /, and Yit D � ln.yJ /: Then the stochastic distance
frontier is
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Yit D X�0
i t ˇ C Y �0

i t � C vi t � ui t ; i D 1; :::N; t D 1; :::T: (5.12)

Letting "it D vi t � ui t , X 0
i t D Œ X�0

i t ; Y
�0

i t �, � D Œ ˇ; � �, we obtain the familiar
functional form for a stochastic frontier production model under a classical panel
data setting

Yit D X 0
i t � C "it ; i D 1; :::N; t D 1; :::T: (5.13)

This is the generic model vehicle for estimating efficiency change using frontier
methods. If we assume that innovations are available to all firms and that firms’
specific idiosyncratic errors are due to relative inefficiencies then we can decompose
sources of TFP growth by adding either an exogenous or a stochastic time trend
(see also, Bai et al. 2007). The panel stochastic frontier model is quite flexible and
robust. Technical efficiency of a particular firm (observation) can be consistently
estimated. Estimation of the model and the separation of technical inefficiency
from statistical noise and from a common technical change component does not
require a set of specific assumptions about the parametric distribution of technical
inefficiency (e.g., half-normal) and statistical noise (e.g., normal) and dependency
structure. For example, it may be incorrect to assume that inefficiency is independent
of the regressors since if a firm knows its level of technical inefficiency, this should
affect its input choices. Pitt and Lee (1981) and Schmidt and Sickles (1984) have
developed random and fixed effects as well as maximum likelihood based estimators
for such panel frontier models. To allow for time varying and cross-sectional specific
efficiency change one can use a parametrization chosen in Cornwell et al. (1990).
They used a quadratic function of time ui t D W 0

i tui D �i1C�i2tC�i3t
2: Other than

a quadratic function of time, ui t has been modelled as ui t D �.t/˛i D Œ1Cexp.btC
ct2/��1˛i (Kumbhakar 1990); and ui t D �it ˛i D expŒ��.t � T /�˛i (Battese and
Coelli 1992). Both of these approaches used maximum likelihood estimation (MLE)
to estimate efficiency. We now turn to other reduced form approaches for measuring
the growth in the key components of TFP W efficiency and innovation.

5.4.3 Bayesian Treatments for Time Varying Inefficiency

Sickles and Tsionas (2008) consider a model similar to the KSS model with
common factors whose number is unknown and whose effects are firm-specific.
Bayesian inference techniques organized around MCMC are used to implement the
models. The model is

yit D x0
i tˇ C 'i .t/C vi t ; i D 1; : : : ; n; t D 1; : : : ; T; (5.14)

where xit and ˇ are k � 1, and 'i .t/ is a unit specific unknown function of time.

They assume vi t
IID� N

�
0; �2

�
. The model can be written in the form yit D x0

i tˇ C
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�itCvi t . For the i th individual we have yi D XiˇC�iCvi , i D 1; : : : ; n. Assuming
�i1 � � � � � �iT , they assume a spline prior of the form

p .ˇ; �; �/ / ��1Yn

iD1 exp

�
��

0
iQ�i

2!2

�
D ��1 exp

�
� 1

2!2
� 0 .IT ˝Q/ �

�
;

(5.15)
where Q D D0D, and D is the .T � 1/ � T matrix whose elements are Dtt D
1, Dt�1;t D �1 and zero otherwise. ! is a smoothness parameter which stands
for the degree of smoothness. This prior says that �it � �i;t�1 � N

�
0; !2

�
or

D�i
IID� N

�
0; !2IT�1

�
, that is it assumes that the first derivative of functions 'i .t/

is a smooth function of time. It is possible to allow for smooth second derivatives
by using the formulation �it � 2�i;t�1 C �i;t�2 � N

�
0; !2

�
, which can be written

as D.2/�i
IID� N

�
0; !2IT�1

�
. We can still define Q D D.2/0D.2/, and the analysis

below goes through unmodified. Since �i1 plays the role of an intercept, we can

assume ˛i
IID� N

�
0; �2˛

�
, i D 1; : : : ; n. The model generalizes Koop and Poirier

(2004) in the case of panel data with individual-specific intercepts and time effects.
Moreover, it does not rely on the conjugate prior formulation for the �its which can
be undesirable. The posterior kernel distribution is

p .ˇ; �; � jY;X; !/ / ��.nTC1/ exp

�
� .Y �Xˇ � �/0 .Y �Xˇ � �/

2�2

	

� exp

�
� 1

2!2
� 0 .IT ˝Q/ �

	
; (5.16)

where X
.nT�k/

D 

X 0
1; : : : ; X

0
n

�0
, and Y

.nT�1/
D 


y0
1; : : : ; y

0
n

�0
. Bayesian inference for

this model can be implemented using Gibbs sampling.

5.4.4 The Latent Class Model

As discussed in Greene (2008), one way to extend the normal-half normal stochastic
frontier model (or others) with respect to the distribution of vi is the finite mixture
approach suggested by Tsionas and Greene (2003). This is a class specific stochastic
frontier model. The frontier model can be formulated in terms of J ‘classes’ so that
within a particular class,

f"."i jclass D j / D 2q
2	.�2u C�2vj /

"
ˆ

 
�"i .�u=�vj /q

�2u C�2vj

!#
exp

�
�"2i

2.�2u C�2vj /

�
;

"i D yi � ˛ � ˇTxi :

(5.17)
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Indexation is over classes and involves the variance of the symmetric component
of "i , �v;j . The unconditional model is a probability weighted mixture over the J
classes, f"."i / D †j	j f"."i j class = j /, 0 < 	j < 1, †j	j = 1. Mixing proba-
bilities are additional parameters to be estimated. The model preserves symmetry of
the two-sided error component, but provides a degree of flexibility that is somewhat
greater than the simpler half normal model. The mixture of normals is, with a finite
number of classes, nonnormal. This model can be estimated by Bayesian (Tsionas
and Greene 2003) or classical (Orea and Kumbhakar 2004; Tsionas and Greene
2003; Greene 2004, 2005) estimation methods. After estimation, a conditional
(posterior) estimate of the class that applies to a particular observation can be
deduced using Bayes theorem, i.e.

ProbŒclass D j jyi � D f .yi jclass D j /ProbŒclass D j �
PJ

jD1 f .yi jclass D j /ProbŒclass D j �
D O	j ji : (5.18)

Individual observations are assigned to the most likely class. Efficiency estimation
is based on the respective class for each observation.

Orea and Kumbhakar (2004), Tsionas and Greene (2003) and Greene (2004,
2005) have extended this model in two directions. First, they allow the entire frontier
model, not just the variance of the symmetric error term, to vary across classes. This
represents a discrete change in the interpretation of the model. The mixture model is
essentially a way to generalize the distribution of one of the two error components.
For the fully mixed models, the formulation is interpreted as representing a latent
regime classification. The second extension is to allow heterogeneity in the mixing
probabilities;

	ij D exp.�T
j zi /

†JjD1 exp.�T
j zi /

; �J D 0: (5.19)

The rest of the model is a class specific stochastic frontier model

f"."i jclass D j / D 2

�j



�
"i jj
�j

��
ˆ

���j "i jj
�j

�	
; (5.20)

where "i jj D yi � ˛j � ˇT
j xi : This form of the model has all parameters varying

by class. By suitable equality restrictions, subsets of the coefficients, such as the
technology parameters, ˛ and ˇ, can be made generic.

5.4.5 The Semiparametric Model and Estimators of Technical
Efficiency: The Park, Sickles, and Simar SPE Estimators

The models for which the SPE estimators have been derived vary on how the
basic model assumptions have been modified to accommodate a particular issue
of misspecification of the underlying efficiency model. A number of SPE estimators



98 A. Kneip and R.C. Sickles

that differ on the basis of assumed orthogonality of effects and regressors, temporal
variation in the efficiency effects, and correlation structure of the population
disturbance have been considered and developed in a series of papers by Park and
Park and Simar (1994) and Park et al. (1998, 2003, 2007). For example, when one
believes that the effects and all of the regressors are dependent and are unwilling
to specify a parametric distribution for the dependency structure then one can
specify the joint distribution h.�; �/ using kernel smoothers. The Park, Sickles, and
Simar (PSS) estimators are based on the theory of semiparametric efficient bounds
estimators and utilize an orthogonalization of the scores of the likelihood function
with respect to the parameters of interest and the nuisance parameters. The PSS
estimators are also adaptive in the terminology of semi-nonparametric estimation
theory.

5.4.6 Alternatives to the Semiparametric Efficient Estimators

There are a number of panel frontier estimators that have been used widely in the
empirical efficiency literature. They differ from the SPE estimators based largely
on assumptions made about the distribution of the unobserved efficiency effects and
about the correlation of efficiency effects and regressors. In order to measure time
variant heterogeneity, ˛it can be specified as

˛it D ci1g1t C ci2g2t C � � � C ciLgLt ; (5.21)

where cir are unknown parameters, and the basis functions gir are smooth, real-
valued functions of xit :This approach is more general than fitting polynomials
and can be used to parsimoniously model virtually any temporal pattern of firm
efficiency. The firm efficiencies are obtained from the structures of the gir and from
the distribution of the effects ˛i : The fixed and random effect models are nested in
the mixed efficiency effects specification as are the CSS and SS estimators. Methods
for estimating cir ; gir ; and L can be found in Kneip et al. (2011).

5.4.7 Using Factor Models to Estimate the Solow Residual

The literature on factor models and state-space representations of latent factors
using the Kalman filter is quite lengthy and dense. First, we will give a very brief
introduction to the factor models. Next we will try to provide some overview of
the most recent papers. Then we will select a particular factor model introduced by
Kneip, Sickles, and Song to decompose the Solow residual into a technical change
and an efficiency change component. Breitung and Eickmeier (2005) provide a very
review of factor models and we relay on it in what is discussed below.
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5.4.7.1 Strict Factor Model

Strict factor models are the most simple of the factor model class and utilize the
following basic assumptions

yit D �i1f1t C � � � C �irfrt C ui t (5.22)

D �0
ift C ui t (5.23)

or

yt D ƒft C ut (5.24)

Y D Fƒ0 C U (5.25)

where ƒ D Œ�1 �2 � � ��N �0 ; Y D Œy1 y2 � � � yT �0 ; F D Œf1 f2 � � � fT �0 ; and U D
Œu1 u2 � � � uT �

0.
For the strict factor models it is usually assumed that ut are mutually uncorrelated

withE Œut � D 0 andE


utu0

t

� D † D diag.�21 ; �
2
2 ; : : : ; �

2
N /. Moreover,E Œft � D 0.

The principle components estimator, the most widely used of the various strict factor
specifications, will be inconsistent for fixed N and T ! 1 unless † D �2I as can
be seen by considering the principle components estimator as an IV estimator.

5.4.7.2 Approximate Factor Models

When we allow for N ! 1 we can avoid the restrictive assumptions of strict
factor models (Chamberlain and Rothshield 1983; Stock and Watson 2002; Bai
2003) and in this case it is possible to allow for (weak) serial correlation for the
idiosyncratic errors. However, persistent and non-ergodic processes are generally
ruled out. Idiosyncratic errors can be allowed to be (weakly) cross-correlated and
heteroscedastic and (weak) correlation among the factors and the idiosyncratic
components are possible. With these and some other technical assumptions Bai
(2003) establishes the consistency and asymptotic normality of the principle
components estimator for ƒ and ft . However, as noted by Bai and Ng (2002), the
small sample properties of this estimator may be severely affected whenever the
data is cross-correlated.

5.4.7.3 Dynamic Factor Models

The dynamic model is given by

yt D ƒ0gt Cƒ1gt�1 C � � � Cƒmgt�m C ut ; (5.26)
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whereƒj areN � r matrices and gt is a vector of q stationary factors. Idiosyncratic
components of ut are assumed to be independent (or weakly dependent) stationary
processes. Forni et al. (2000) provide a method to estimate this model. Let �t D
gt � E Œgt jgt�1; gt�2; :::�, ft D Œgt ; gt�1; : : : ; gt�m�0 (which is r D .m C 1/ � q),
and ƒ D Œƒ0;ƒ1; : : : ; ƒm�. In their first stage the usual principal components are
estimated. Note that rather than ft a rotated version of it, Qft , is estimated. The
second step estimates a vector-autoregression (VAR) model given by

Oft D A1 Oft�1 C A2 Oft�2 C � � � C Ap Oft�p C et : (5.27)

Note that the rank of the covariance matrix for the et term is q since Oft includes
estimation of lagged factors. If we let OWr be the matrix generated by the q largest
eigen values of the covariance matrix of et , O†e D 1

T

PT
tDpC1 ete0

t ;then O�t D OW 0
r Oet .

An important problem is to determine the number of factors. Forni et al. (2000)
provide an informal criterion based on the proportion of explained variances. Bai
and Ng (2007) and Stock and Watson (2005) suggest consistent selection procedures
based on principal components. Also, information criteria and tests of the number
of factors are suggested by Breitung and Kretschmer (2005). Pesaran (2006) is an
interesting paper since it has potential for productivity analysis, in particular frontier
production. His paper deals with estimation and inference in panel data models with
a general multifactor error structure. The unobserved factors and the individual-
specific errors are allowed to follow arbitrary stationary processes and the number of
unobserved factors need not be estimated. Individual-specific regressors are filtered
with cross-section averages and when the cross-section dimension (N) tends to
infinity, the differential effects of unobserved common factors are eliminated.

Carriero et al. (2008) look at the forecasting performances of factor models,
large scale Bayesian VARs, and multivariate boosting, while Marcellino and
Schumacher (2007) focus on factor models that can handle unbalanced datasets
in their analysis of the German economy. The approach followed by Doz et al.
(2006) and Kapetanios and Marcellino (2009) casts the large factor model in state-
space form. Kapetanios and Marcellino (2009) estimate the factors using subspace
algorithms, while Doz et al. (2006) exploit the Kalman filter and kernel smoothers.
We will focus below on a recent contribution by Kneip et al. (2011) who develop
the asymptotic theory for general factor models using a combination of principal
components and smoothing spines. In that model not only are methods developed
to select the number of factors but also address the potential for nonstationarity.
The nonstationarity applies here in regard to a stochastic trend in the standard
production function. Below we use the Kneip, Sickles, and Song approach to
provide a method to decompose total factor productivity change into a technical
change and a technical efficiency change component.
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5.5 The Kneip, Sickles, and Song Factor Model Estimator

The Kneip et al. (2011) model specifies the factors in the following fashion

Yit D ˇ0.t/C
pX

jD1
ˇjXitj C vi .t/C �it ; i D 1; : : : ; n; t D 1; : : : ; T; (5.28)

where denotes a general average function, and vi .t/ are non-constant individual
effects. In the context of the production decomposition we consider here think of
ˇ0.t/ as an exogenous or stochastic long term trend due to technical change in
production .Yit / and the vi .t/ as the firm technical efficiency terms in a stochastic
frontier production function. Details of the estimator are given in KSS. ˇ0.t/ can be
eliminated by using centered variables Yit� NYt ,Xijt� NXtj , where NYt D 1

n

P
i Yit and

NXtj D 1
n

P
i Xitj and can be viewed as a nuisance parameter, although in the context

of production analysis we will use it to identify the common technical change factor,
common to all firms. This is just the diffused technical change that is appropriated
by each firm in the industry. With this normalization, we can write the model as

Yit � NYt D
pX

jD1
ˇj .Xitj � NXtj /C vi .t/C �it � N�i ; i D 1; : : : ; n; t D 1; : : : ; T;

(5.29)
with N�t D 1

n

P
i �i t . Identification requires that all variables Xitj , j D 1; : : : ; p

possess a considerable variation over t . Our focus lies on analyzing vi .t/, t D
1; : : : ; T which of course is motivated by our application in the field of stochastic
frontier analysis wherein individual effects determine technical efficiencies and are
the main quantity of interest. The coefficients ˇ as well as the functions vi can
be estimated by semiparametric techniques using partial spline estimation where
the basic underlying assumption is that vi .t/ represent “smooth” time trends. KSS
generalize the usual concept of smoothness by relying on second order differences
which also allows them to deal with stochastic processes, for example, random
walks. They assume the functions vi can be represented as a weighted average of an
unknown number L 2 f1; 2; : : : g of basis functions (common factors) g1; : : : ; gL
given by

vi .t/ D
LX

rD1
�irgr .t/; (5.30)

with unknown factor loadings �ir ;in which case the centered model can be rewritten

Yit� NYt D
pX

jD1
ˇj .Xitj� NXtj /C

LX

rD1
�irgr .t/C�it�N�t ; i D 1; : : : ; n; t D 1; : : : ; T:

(5.31)
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Parametric mixed effects models of this form are widely used in applications
and assume that individual effects can be modeled by linear combinations of pre-
specified basis function (e.g. polynomials). Cornwell et al. (1990) assume that the vi
can be modeled by quadratic polynomials which in our notation corresponds to an
L D 3 and g1; g2; g3 forming a polynomial basis. Battese and Coelli (1992) propose
a model with L D 1 and g1.t/ D exp.��.t � T // for some � 2 IR. The underlying
qualitative assumption is that there exist some common structure characterizing all
v1; : : : ; vn and that (5.30) is always fulfilled if the empirical covariance matrix †n;T
of the vectors .vi .1/; : : : ; vi .T //0, i D 1; : : : ; n, possesses rank L. This is the setup
of factor models considered by Bai (2003, 2005) and Ahn et al. (2005) although
the focus of KSS is to analyze non-stationary but smooth time trends. We will
outline the basic steps in the estimation process. Estimation is based on the fact that
under the above normalization g1; g2; : : : are to be obtained as (functional) principal
components of the sample v1 D .v1.1/; : : : ; v1.T //0; : : : ; vn D .vn.1/; : : : ; vn.T //0.
If we let †n;T D 1

n

P
i vivi 0denote the empirical covariance matrix of v1; : : : ; vn

(recall that
P

i vi D 0) and use �1 � �2 � � � � � �T as well as �1; �2; : : : ; �T to
denote the resulting eigenvalues and orthonormal eigenvectors of †n;T ;then some
algebra reveals the following relationships

gr .t/ D p
T � �rt for all r D 1; : : : ; t D 1; : : : ; T; (5.32)

�ir D 1

T

X

t

vi .t/gr .t/ for all r D 1; 2; : : : ; i D 1; : : : ; n; (5.33)

and

�r D T

n

X

i

�2ir for all r D 1; 2; :::. (5.34)

Furthermore, for all l D 1; 2; : : : ;

TX

rDlC1
�r D

X

i;t

.vi .t/�
lX

rD1
�irgr .t//

2 D min
Qg1;:::;Qgl

X

i

min
#i1;:::;#il

X

t

.vi .t/�
lX

rD1
#ir Qgr.t//2

(5.35)

The estimation algorithm can be represented in five basic steps.
Step 1: Determine estimates Ǒ

1; : : : ; Ǒ
p and functional approximations

O�1; : : : ; O�n by minimizing

X

i

1

T

X

t

�
Yit � NYt �

pX

jD1
ˇj .Xitj � NXtj / � �i .t/

�2
C
X

i


1

T

Z T

1

.�
.m/
i .s//2ds

(5.36)

over all possible values of ˇ and all m-times continuously differentiable functions
�1; : : : ; �n on Œ1; T �. Here  > 0 is a preselected smoothing parameter and �.m/i

denotes the m-th derivative of �i .
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Step 2: Determine the empirical covariance matrix O†n;T of
Ov1 D .Ov1.1/; Ov1.2/; : : : ; Ov1.T //0; : : : ; Ovn D .Ovn.1/; Ovn.2/; : : : ; Ovn.T //0 by

O†n;T D 1

n

X

i

Ovi Ov0
i

and calculate its eigenvalues O�1 � O�2 � : : : O�T and the corresponding eigenvectors
O�1; O�2; : : : ; O�T .

Step 3: Set Ogr.t/ D p
T � O�rt , r D 1; 2; : : : ; L, t D 1; : : : ; T , and for all i D

1; : : : ; n determine O�1i ; : : : ; O�Li by minimizing

X

t

0

@Yit � NYt �
pX

jD1
Ǒ
j .Xitj � NXtj /�

LX

rD1
#ri Ogr .t/

1

A
2

(5.37)

with respect to #1i ; : : : ; #Li .
KSS develop the asymptotic theory underlying this particular factor model.

Their main assumption is their Assumption 5: The error terms �it are i.i.d. with
E.�it / D 0, var.�it / D �2 > 0, and E.�8it / < 1. Moreover, �it is independent
from vi .s/ and Xis;j for all t; s; j . They analyze the asymptotic behavior of the
parameters of their factor model as n; T ! 1. They do not impose any condition
on the magnitude of the quotient T=n and they allow the smoothing parameter 
remain fixed or increase with n; T .

We consider below a range of stochastic frontier productivity models in a series
of Monte Carlo experiments based on the panel data model (5.28)

Yit D ˇ0.t/C
pX

jD1
ˇjXitj C vi .t/C �it : (5.38)

Two of the existing time-varying individual effects estimators are the random
effects GLS (Cornwell et al. 1990) and MLE (Battese and Coelli 1992). We also
compare the fixed and the random effects estimators (Schmidt and Sickles 1984).
These estimators have been used extensively in the productivity literature that
interprets time varying firm effects (time trends) as technical efficiencies. The CSS
estimator allows for an arbitrary polynomial in time (usually truncated at powers
larger than two) with different parameters for each firm. The BC estimator is a
likelihood based estimator wherein the likelihood function is derived from a mixture
of normal noise and an independent one-sided efficiency error, usually specified as
a half-normal. In the BC estimator, efficiency levels are allowed to differ across
firms but the temporal pattern of efficiency is the same for all firms. We simulate
samples of size n 2 f30; 100; 300g with T 2 f12; 30g in a model with p D 2

regressors and with ˇ0.t/ D 0 and compare the finite sample performance of four
different stochastic frontier estimators. The error process �it is drawn randomly from
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i.i.d. N.0; 1/. The values of true ˇ are set equal to .0:5; 0:5/. In each Monte Carlo
sample, the regressors are generated according to a bivariate VAR model as in Park
et al. (2003, 2007)

Xit D RXi;t�1 C �it ; where �it � N.0; I2/; (5.39)

and

R D
�
0:4 0:05

0:05 0:4

�
:

To initialize the simulation, we choose Xi1 � N.0; .I2 � R2/�1/ and generate the
samples using (5.39) for t � 2. Then, the obtained values of Xit are shifted around
three different means to obtain three balanced groups of firms from small to large.
We fix each group at �1 D .5; 5/0; �2 D .7:5; 7:5/0; and �3 D .10; 10/0. The idea is
to generate a reasonable cloud of points for X .

We generate time-varying individual effects in the following ways:

DGP1 W vi t D �i0 C �i1t C �i2t
2

DGP2 W vi t D � exp.��.t � T //ui
DGP3 W vi t D �i1g1t C �i2g2t

DGP4 W vi t D �ui

where �ij .j D 0; 1; 2/ � N.0; 1/=102; � D 0:15, ui � i.i.d. jN.0; 1/j ; �ij .j D
1; 2/ � N.0; 1/; g1t D sin.	t=4/ and g2t D cos.	t=4/: DGP1 is the GLS version
but the fixed effects treatment is used in the experiments (CSS). We also consider
a limited set of simulations in which the data generating process is a random walk.
DGP2 is based on Battese and Coelli (1992). DGP3 is considered here to model
effects with large temporal variations. DGP4 is the usual constant effects model.
Thus, we may consider DGP3 and DGP4 as two extreme cases among the possible
functional forms of time-varying individual effects.

For the KSS estimator, cubic smoothing splines were used to approximate vi t in
Step 1, and the smoothing parameter  was selected by using generalized cross-
validation.3 Most simulation experiments were repeated 1,000 times except the
cases for n D 300 for which 500 replications were carried out. To measure the
performances of the effect and efficiency estimators, we used normalized mean
squared error (MSE)

R.bv; v/ D
P

i;t .bvi t � vi t /
2

P
i;t v2i t

:

3We let  D .1�p/=p and chose p among a selected grid of 9 equally spaced values between 0.1
and 0.9 so that generalized cross-validation rule is minimized.
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For the estimates of technical efficiency, we also considered the Spearman rank
order correlations of true average technical efficiency across the simulations and the
estimates of technical efficiency based on the different estimators. Before we present
the simulation results, we briefly introduce the other estimators. For the Within and
generalized least squares (GLS) estimators which treat the effects as temporally
varying, once individual effects vi t are estimated, technical efficiency is calculated
as TE D exp fvi � max.vi /g following Schmidt and Sickles (1984). Battese and
Coelli (1992) employ the maximum likelihood estimation method to estimate the
following equation

Yit D ˇ0 C
pX

jD1
ˇjXitj C �it � ui t ; (5.40)

where the time-varying effects terms are defined as ui t D �itui D fexpŒ��.t � T /�g
ui for i D 1; : : : ; n: Technical efficiency is then calculated as TEBC D exp.�ui t /:
Cornwell et al. (1990) approximate time-varying effects by a quadratic function of
time. The model can be written as

Yit D X 0
i tˇ CW 0

i t ıi C "it ; (5.41)

where Wit D Œ1; t; t2�: If W contains just a constant term then the model reduces
to the standard panel data model with heterogeneity in the intercept. If we let ıi D
ı0 C ui then the model can be rewritten as

Yit D X 0
i tˇ CW 0

i t ı0 C !it ; (5.42)

!it D W 0
i tui C "it D vi .t/C �it ; (5.43)

or

Y D Xˇ CW ı0 C !; (5.44)

! D Qu C " D v C ": (5.45)

The Within estimator for ˇ is then

b̌
cssw D .X 0MQX/

�1X 0MQY;

whereMQ D I �Q.Q0Q/�1Q0; QD diag.Wi/; i D 1; : : : ; n; . Technical efficiency
is defined as TECSS D exp fvi t � max.vi t /g : For the KSS estimator, technical
efficiency is calculated similarly as for the CSS estimator.

We now we present the simulation results. Tables 5.1–5.4 present mean squared
errors (MSE) of coefficients, effects, and efficiencies, and the Spearman rank
order correlation coefficient of efficiencies for each DGP. Also, average optimal
dimensions, L, chosen by C.l/ criterion are reported in the last column of second
panel in each table. Note first that optimal dimension, L, is correctly chosen for the
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Table 5.1 Monte carlo simulation results for DGP1
MSE of coefficients*
N T Within GLS BC CSS KSS
30 12 0:9107 0:6039 0:4933 0:8863 0:4998

30 4:5286 4:0001 1:1767 0:2329 0:1462

100 12 0:2635 0:1438 0:1454 0:2504 0:1170

30 1:2219 1:0068 1:4172 0:0726 0:0410

300 12 0:0801 0:0402 0:0360 0:0790 0:0343

30 0:3409 0:2848 0:1456 0:0258 0:0151

MSE of effects
N T Within GLS CSS KSS L

30 12 0:6159 0:5692 0:4675 0:2278 1:1200

30 0:4476 0:4455 0:0051 0:0037 1:0510

100 12 0:5940 0:5755 0:4438 0:1769 1:0620

30 0:4539 0:4531 0:0050 0:0100 1:0590

300 12 0:6068 0:5990 0:5504 0:1964 1:0341

30 0:4379 0:4376 0:0064 0:0025 1:0500

MSE of efficiencies
N T Within GLS BC CSS KSS
30 12 0:3429 0:3255 0:1485 0:3329 0:0921

30 0:6967 0:7005 0:8430 0:2069 0:0289

100 12 0:4415 0:4294 0:3817 0:3969 0:0529

30 0:8305 0:8279 1:1184 0:2790 0:0236

300 12 0:5102 0:5070 0:4574 0:4575 0:0364

30 0:9401 0:9400 1:6111 0:3470 0:0154

Spearman rank correlation of efficiencies
N T Within GLS BC CSS KSS
30 12 0:5052 0:5004 0:8085 0:7692 0:9806

30 0:4829 0:4834 0:7533 0:9841 0:9980

100 12 0:3886 0:3886 0:5656 0:7837 0:9923

30 0:3885 0:3885 0:5900 0:9871 0:9993

300 12 0:3037 0:3037 0:6267 0:7771 0:9924

30 0:2805 0:2805 0:5469 0:9878 0:9995

Note: * is multiplied by 102

KSS estimator in all DGPs4 Thus, we can verify the validity of the dimension test
C.l/ discussed in Sect. 5.2.

For DGP1, the performances of the KSS estimator are better than the other
estimators by any standards. This is true even when the data is as small as n D 30

and T D 12. In particular, the KSS estimator outperforms the other estimators
in terms of MSE of efficiency. Since the data are generated by DGP1, we may

4Although DGP1 consists of three different functions, Œ1; t; t 2�; t 2 term is dominating as T gets
large. Thus a one dimensional model is sufficient to approximate the effects generated by DGP1.
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Table 5.2 Monte carlo simulation results for DGP2
MSE of coefficients*

N T Within GLS BC CSS KSS
30 12 2.2939 1.6274 0.3427 0.8901 0.4661

30 161.0314 106.1230 9.6053 5.4253 0.1499

100 12 0.7709 0.6094 0.1149 0.2505 0.1206
30 53.4336 39.4729 8.1635 1.9065 0.0403

300 12 0.2873 0.1760 0.0339 0.0800 0.0371
30 18.4371 11.9706 1.3051 0.6689 0.0141

MSE of effects
N T Within GLS CSS KSS L

30 12 0.3892 0.3753 0.0699 0.1401 1.0720
30 0.7443 0.7351 0.0202 0.0705 1.0430

100 12 0.4678 0.4642 0.0701 0.2120 1.0350
30 0.8029 0.8007 0.0217 0.1024 1.0050

300 12 0.4475 0.4452 0.0617 0.1966 1.0260
30 0.7911 0.7902 0.0213 0.0986 1.0020

MSE of efficiencies
N T Within GLS BC CSS KSS
30 12 0.2260 0.1951 0.0321 0.2586 0.0786

30 0.7924 0.7321 0.0096 0.5236 0.0544

100 12 0.2598 0.2473 0.0400 0.2944 0.0787
30 0.7361 0.7548 0.0091 0.5788 0.0116

300 12 0.2695 0.2618 0.0338 0.3607 0.0916
30 0.7542 0.7342 0.0213 0.5568 0.0040

Spearman rank correlation of efficiencies
N T Within GLS BC CSS KSS
30 12 0.8941 0.8914 0.9950 0.9716 0.9976

30 0.6239 0.6293 0.9993 0.8871 0.9946

100 12 0.8283 0.8249 0.9981 0.9784 0.9966
30 0.5349 0.5342 0.9997 0.8917 0.9999

300 12 0.8448 0.8446 0.9982 0.9726 0.9938
30 0.5478 0.5479 0.9982 0.8820 1.0000

Note: * is multiplied by 102

expect that CSS estimator performs well. This is true for T D 30: However, if
T is small (T D 12), the CSS estimator is no better than the other estimators.
The performances of Within, GLS, and BC estimators generally get worse as T
increases. Results in Table 5.1a, generated from a random walk data generating
process, are comparable to those in Table 5.1. For DGP2, when data is generated
using the model specification of the BC estimator the performances of the KSS
estimator is comparable to or sometimes better than that of the BC estimator. The
BC estimator seems to work fine for the estimation of effects and efficiencies. In
terms of MSE of coefficients, however, it appears that the BC estimator is not
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Table 5.3 Monte carlo simulation results for DGP3
MSE of coefficients*
N T Within GLS BC CSS KSS
30 12 1:6631 0:6852 0:6986 2:7261 0:7099

30 0:5340 0:2621 0:2779 0:6766 0:1821

100 12 0:4224 0:1597 0:1649 0:6866 0:1290

30 0:1468 0:0667 0:0715 0:1853 0:0396

300 12 0:1549 0:0606 0:0638 0:2429 0:0378

30 0:0516 0:0250 0:0281 0:0649 0:0138

MSE of effects
N T Within GLS CSS KSS L

30 12 1:0897 1:0259 1:1143 0:2710 2:1609

30 1:0432 1:0240 1:0840 0:1140 2:0483

100 12 1:0602 1:0393 1:0672 0:2351 2:0585

30 1:0364 1:0294 1:0829 0:0929 2:0102

300 12 1:0424 1:0353 1:0197 0:2081 2:0061

30 1:0307 1:0285 1:0734 0:0822 2:0021

MSE of efficiencies
N T Within GLS BC CSS KSS
30 12 2:1298 2:4086 7:9252 1:4860 0:2583

30 2:2636 2:5640 5:0451 1:6066 0:1031

100 12 2:4655 2:6934 12:8728 1:4582 0:2175

30 7:1729 7:6171 18:6293 4:2421 0:1109

300 12 3:8455 3:9679 25:7966 1:9365 0:2085

30 8:9848 9:2055 26:4074 4:8352 0:1122

Spearman rank correlation of efficiencies
N T Within GLS BC CSS KSS
30 12 0:1754 0:1729 0:0408 0:2535 0:9298

30 0:0597 0:0600 �0:0181 0:0019 0:9842

100 12 0:2050 0:2051 0:1513 0:2674 0:9277

30 0:0499 0:0498 0:0477 0:0325 0:9731

300 12 0:2131 0:2130 0:0754 0:2615 0:9236

30 0:0575 0:0574 0:0136 �0:0248 0:9691

Note: * is multiplied by 102

reliable when T is large (T D 30). The Within and GLS estimators also suffer from
substantial distortions when T is large. DGP3 generates effects with large temporal
variations. Hence, simple functions of time such as used in the CSS or BC estimators
are not sufficient for this type of DGP. However, the KSS estimator does not impose
any specific forms on the temporal pattern of effects, and thus it can approximate
any shape of time varying effects. We may then expect good performances of the
KSS estimator even in this situation, and results in Table 5.3 confirm such belief. On
the other hand, the other estimators suffer from severe distortions in the estimates
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Table 5.4 Monte carlo simulation results for DGP4
MSE of coefficients*

N T Within GLS BC CSS KSS
30 12 0.5732 0.3586 0.3734 0.8634 0.6515

30 0.2023 0.1513 0.1504 0.2319 0.2292

100 12 0.1741 0.1346 0.1260 0.2529 0.1816
30 0.0571 0.0537 0.0510 0.0695 0.0596

300 12 0.0609 0.0360 0.0364 0.0910 0.0617
30 0.0218 0.0164 0.0142 0.0258 0.0221

MSE of effects
N T Within GLS CSS KSS L

30 12 0.4390 0.3500 1.2061 0.5407 1.0250
30 0.1681 0.1465 0.4526 0.2217 1.0130

100 12 0.2769 0.2631 0.8046 0.2988 1.0300
30 0.1082 0.1065 0.3145 0.1186 1.0200

300 12 0.2689 0.2614 0.7959 0.2799 1.0250
30 0.0969 0.0954 0.2871 0.1015 1.0220

MSE of efficiencies
N T Within GLS BC CSS KSS

30 12 0.1211 0.0993 0.1178 0.2600 0.1344
30 0.0488 0.0421 0.0416 0.1205 0.0595

100 12 0.1719 0.1622 0.0478 0.3488 0.1778
30 0.0798 0.0763 0.0252 0.1857 0.0829

300 12 0.2124 0.2075 0.0449 0.4120 0.2157
30 0.0914 0.0907 0.0231 0.2168 0.0938

Spearman rank correlation of efficiencies
N T Within GLS BC CSS KSS

30 12 0.9964 0.9742 0.9738 0.9481 0.9955
30 0.9982 0.9804 0.9787 0.9757 0.9977

100 12 0.9989 0.9883 0.9896 0.9106 0.9987
30 0.9997 0.9946 0.9949 0.9528 0.9996

300 12 0.9997 0.9997 0.9995 0.8946 0.9996
30 0.9997 0.9995 0.9997 0.9588 0.9997

Note: * is multiplied by 102

of effects and efficiencies, although coefficient estimates look reasonably good. In
particular, rank correlations of efficiencies are almost zero when T is large.

DGP4 represents the reverse situation so that there is no temporal variation in the
effects. Hence, the Within and GLS estimators work very well. Now, our primary
question is what are the performances of KSS estimator in this situation. As seen
in Table 5.4, its performances are fairly well and comparable to those of the Within
and GLS estimators. Therefore, the KSS estimator may be safely used even when
temporal variation is not noticeable.
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In summary, simulation experiments show that either if constant effects are
assumed when the effects are actually time-variant, or if the temporal patterns
of effects are misspecified, parameters as well as effect and efficiency estimates
become severely biased. In these cases, large T increases the bias, and large n does
not help solve the problem. On the other hand, our new estimator performs very well
regardless of the assumption on the temporal pattern of effects, and may therefore
be preferred to other existing estimators in these types of empirical settings, among
potentially many others.

5.6 Conclusion

We have discussed the Solow residual and how it has been interpreted and
measured in neoclassical production literature and in the complementary literature
on productive efficiency. We have also pointed out why panel data are needed
to measure productive efficiency and innovation and thus link the two strands of
literature. We provided a discussion on the various estimators used in the two
literatures, focusing on one in particular, the factor model and evaluated in finite
samples the performance of a particular factor model, the KSS model.

Acknowledgements This paper is based in part on keynote lectures given by Sickles at the Pre-
conference Workshop of the 2008 Asia-Pacific Productivity Conference, July 17–19, Department
of Economics, National Taiwan University, Taipei, Taiwan, 2008; Anadolu University International
Conference in Economics: Developments in Economic Theory, Modeling and Policy, Eskişehir,
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Chapter 6
Asymptotic Properties of Some Non-Parametric
Hyperbolic Efficiency Estimators

Paul W. Wilson

Abstract A hyperbolic measure of technical efficiency was proposed by Fare
et al. (The Measurement of Efficiency of Production, Kluwer-Nijhoff Publishing,
Boston, 1985) wherein efficiency is measured by the simultaneous maximum,
feasible reduction in input quantities and increase in output quantities. In cases
where returns to scale are not constant, the non-parametric data envelopment
analysis (DEA) estimator of hyperbolic efficiency cannot be written as a linear
program; consequently, the measure has not been used in empirical studies except
where returns to scale are constant, allowing the estimator to be computed by
linear programming methods. This paper develops an alternative estimator of the
hyperbolic measure proposed by Fare et al. (The Measurement of Efficiency of
Production, Kluwer-Nijhoff Publishing, Boston, 1985). Statistical consistency and
rates of convergence are established for the new estimator. A numerical procedure
allowing computation of the original estimator is provided, and this estimator is also
shown to be consistent, with the same rate of convergence as the new estimator. In
addition, an unconditional, hyperbolic order-m efficiency estimator is developed by
extending the ideas of Cazals et al. (J. Econometric. 106:1–25, 2002). Asymptotic
properties of this estimator are also given.

6.1 Introduction

The performance of firms and other decision-making units in terms of technical
efficiency, as well as allocative, cost, and other efficiencies, has received widespread
attention in the economics, statistics, management science, and related literatures.
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In the case of private firms, estimates of inefficiency have been used to explain
insolvency rates and merger activities, the effects of changes in regulatory envi-
ronments, and overall industry performance. In the case of public and non-profit
entities, estimates of inefficiency are intrinsically interesting because these entities
do not face a market test, and inefficiency estimates often provide the only objective
criteria for gauging performance. Measuring the performance of public entities may
be important for allocating scarce public resources, for deciding which to eliminate
during periods of consolidation, etc. In particular, identifying inefficient entities is a
critical first step in any attempt to improve performance.

Non-parametric approaches to estimation of technical efficiency have been
widely applied. Non-parametric methods usually involve the estimation of a pro-
duction set or some other set by either the free-disposal hull (FDH) of sample
observations, or the convex hull of the FDH. Methods based on the convex hull
of the FDH are collectively referred to as data envelopment analysis (DEA). DEA
is well known and has been applied widely: as of early 2004, DEA had been used
in more than 1,800 articles published in some 490 refereed journals (Gattoufi et al.
2004).

The overwhelming majority of these applications have involved either input-
or output-oriented measures of efficiency. In the input-orientation, one measures
the proportion by which input quantities can feasibly be reduced without reducing
output quantities, while in the output-orientation, one measures the proportion
by which output quantities can feasibly be increased without increasing input
quantities. The statistical properties of input-oriented DEA estimators have been
established, and methods are now available for making statistical inferences about
efficiency based on DEA; these results extend to output-oriented estimators after
changes in notation.1

Unfortunately, however, the choice between input- versus output-orientation
can give rather different, and perhaps misleading, indicators of inefficiency. To
illustrate, consider the situation shown in Fig. 6.1 where a single input is used to
produce a single output. Feasible combinations of input and output quantities are
bounded from above by the convex curve labeled Pı. Now consider the (technically
inefficient) firm operating at point A; this firm can attain technical efficiency by
reducing its input usage a small amount by moving to point A0 while avoiding a
decrease in output production. Alternatively, in can increase its outputs by a large
amount by moving to the efficient point A00 without increasing its input usage. In
the input-orientation, the firm operating at point A is slightly inefficient, but in the
output-orientation, the firm is perhaps grossly inefficient. Similar reasoning reveals
that, in contrast to the firm operating at pointA, a firm operating at pointB is slightly

1See Simar and Wilson (2000b) for a survey, and Kneip et al. (2008) for more recent results,
on the statistical properties of DEA estimators. See Simar and Wilson (1998, 2000a) and Kneip
et al. (2008, 2011) for details about the use of bootstrap methods to make inferences based on
DEA.
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Fig. 6.1 Input, output, and hyperbolic efficiency

inefficient in the output-orientation, but very inefficient in the input orientation (i.e.,
the distance from B to B 00 is much smaller than the distance from B to B 0).

Note that the choice between input- and output-orientation when measuring
technical efficiency is largely arbitrary, in the sense that there is no notion of
causality or endogeniety as in the case of regression models. As seen below in
Sect. 6.2, assumptions about a joint distribution for input and output quantities with
support over the production set bounded by P@ are needed, but from a statistical
viewpoint, one is free to choose either an input- or output-oriented measure of
technical efficiency.

One can also measure technical efficiency along hyperbolic paths, as proposed
by Färe et al. (1985). The firm operating at point A fig. 6.1 can become technically
inefficient by simultaneously reducing its output usage while increasing its output
production by the same factor (this is explained in detail below in Sect. 6.2.1) and
moving to pointA000 on the production frontier. Similarly, the firm operating at point
B can simultaneously reduce its input usage and expand its output usage by the same
factor to arrive at point B 000 on the production frontier. When technical efficiency is
measured along the hyperbolic paths passing through points A and A000 and through
points B an B 000, the two firms operating at points A and B are seen to have similar
levels of inefficiency. Moreover, their efficiency levels, when measured along these
hyperbolic paths, are not dependent on the slope of the production frontier P ı in the
neighborhood of the point at which either firm operates. This stands in contrast to
the input- and output-oriented measures of technical efficiency.
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I propose in this paper two different DEA-type estimators for the hyperbolic
efficiency measure proposed by Färe et al. (1985). Both estimators are easy to
compute. In addition, I derive asymptotic properties of the estimators.

Despite their popularity, DEA estimators have some obvious drawbacks.
Although these estimators avoid the need for a priori specification of functional
forms, they do impose (eventually) non-increasing returns to scale; i.e., they do not
allow increasing returns to scale everywhere. Moreover, it has long been recognized
that DEA estimates of inefficiency are sensitive to outliers in the data. Perhaps
even more problematic, at least in many applications, is that DEA estimators suffer
from the well-known curse of dimensionality that often plagues non-parametric
estimators. Not surprisingly, the DEA estimators of hyperbolic efficiency share
these limitations with their input- and output-oriented cousins. Regardless of the
orientation (i.e., input, output, or hyperbolic), the number of observations required to
obtain meaningful estimates of inefficiency increases dramatically with the number
of inputs and outputs. In many applications, including the one in this chapter,
there are simply too few observations available to obtain meaningful estimates of
inefficiency using DEA.2

Some recent approaches to efficiency estimation have focused on estimating
distances to some feature near the production frontier, as opposed to distance to the
frontier itself. Specifically, efficiency can be measured relative to some notion of a
partial frontier. This has several advantages; the estimators are robust with respect to
outliers, achieve root-n rates of convergence, and are asymptotically normal. Daouia
(2003), Aragon et al. (2005) and Daouia and Simar (2007) developed input- and
output-oriented conditional order-˛ estimators and derived their asymptotic prop-
erties. These results were subsequently extended to an unconditional, hyperbolic
order-˛ estimator by Wheelock and Wilson (2008).3 Similarly, Cazals et al. (2002)
proposed input- and output-oriented conditional order-m estimators and derived
their asymptotic properties. In addition to the hyperbolic DEA estimators developed
below, I also describe an unconditional, hyperbolic order-m estimator and derive
its asymptotic properties. The properties are analogous to those obtained by Cazals
et al. for the input- and output-oriented conditional order-m estimators.

The hyperbolic order-m estimator avoids a problem noted by Wheelock and
Wilson (2008). Both the conditional order-m efficiency measures as well as the
conditional order-˛ efficiency measures (either input- or output-oriented) measure
distance to different partial frontiers with different slopes, depending on the
orientation. This creates additional ambiguity for interpretation of inefficiency
estimates, in addition to the ambiguity surrounding the choice between input- and

2One can find numerous published applications of DEA to datasets with 50–150 observations and 5
or more dimensions in the input-output space. DEA-based inefficiency estimates from such studies
are likely meaningless in a statistical sense due to the curse of dimensionality problem (see Simar
and Wilson (2000b) for discussion).
3Wheelock and Wilson (2008) also derived asymptotic properties for a hyperbolic FDH efficiency
estimator.
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output-orientation when DEA estimators are used as described above. As will be
seen below in Sects. 6.2.2 and 6.5, and as with the unconditional hyperbolic order-˛
estimator, the unconditional hyperbolic order-m estimator developed below avoids
this problem by estimating distance to a partial frontier that does not converge to the
full frontier at some corner of the production set.

In the next section, I describe notation and a statistical model for efficiency esti-
mation, as well as various measures of technical efficiency. In Sect. 6.3, I introduce
the hyperbolic DEA estimators and their asymptotic properties. Followed by a brief
discussion of the hyperbolic FDH estimator in Sect. 6.4, I present the unconditional,
hyperbolic order-m estimator and its asymptotic properties in Sect. 6.5. Results of
some Monte Carlo experiments designed to assess bias, variance, and mean-square
error of the estimators are presented in Sect. 6.6, and conclusions are discussed in
Sect. 6.7.

6.2 A Statistical Model of Production

6.2.1 The Basic Framework

In situations where non-parametric efficiency estimators are used, researchers
typically have in mind a model of the production process, whether it is stated
explicitly or not. Let x 2 R

p
C and y 2 R

q
C denote vectors of inputs and outputs,

respectively, and denote the production possibilities set by

P D f.x;y/ j x can produce yg � R
pCq
C : (6.1)

The production possibilities set can be described in terms of its sections

X .y/ D fx 2 R
p
C j .x;y/ 2 Pg; (6.2)

and
Y.x/ D fy 2 R

q
C j .x;y/ 2 Pg; (6.3)

or input requirement sets and output correspondence sets, respectively.
The upper boundary of P , denotedP@, is sometimes referred to as the technology

or the production frontier, and is given by the intersection of P and the closure of
its compliment; i.e.,

P@ D f.x;y/ j .ı�1x; ıy/ 62 P 8 ı > 1g: (6.4)

Similarly, the efficient subset of X .y/ is given by

X @.y/ D fx 2 R
p
C j x 2 X .y/; �x 62 X .y/ 8 � 2 .0; 1/g: (6.5)



120 P.W. Wilson

The efficient subset of Y.x/ is

Y@.x/ D fy 2 R
q
C j y 2 Y.x/; �y 62 Y.x/ 8 � > 1g: (6.6)

Typical assumptions (e.g., see Färe 1988) include:

Assumption 6.2.1 The production set P is convex and compact.

Assumption 6.2.2 The production set P allows free disposability; i.e., for
ex � s,ey � y, if .x;y/ 2 P , then .ex;y/ 2 P and .x;ey/ 2 P .

Assumption 6.2.3 All production requires the use of some inputs, i.e., .x;y/ 62 P
if x D 0, y � 0, y ¤ 0.

Assumption 6.2.3 merely says that lunch is not free, while Assumption 6.2.2 is
equivalent to an assumption of (weak) monotonicity of the frontier P@. Assump-
tion 6.2.1 is needed to establish statistical consistency of the DEA estimators
discussed below in Sect. 6.3. FDH and order-m estimators, however, do not require
convexity, and remain consistent when P is not convex.

The Farrell (1957) input measure of efficiency

�.x;y/ � inf f� > 0 j .�x;y/ 2 Pg (6.7)

measures distance from an arbitrary point .x;y/ 2 R
pCq
C to the boundary P@ along

the ray .�x;y/, � > 0. For a firm operating at .x;y/ 2 P , the corresponding
efficient level of inputs, denoted x@.y/, is given by

x@.y/ � �.x;y/x: (6.8)

Similarly, the Farrell (1957) output efficiency measure

�.x;y/ � sup f� > 0 j .x; �y/ 2 Pg (6.9)

measures distance from an arbitrary point .x;y/ 2 R
pCq
C to the boundary P@ along

the ray .x; �y/, � > 0. Again, for a firm operating at .x;y/ 2 P , the corresponding
efficient level of outputs is given by

y@.x/ � �.x;y/y : (6.10)

The measures �.x;y/ and �.x;y/ provide measures of the technical efficiency of
a firm producing levels y of outputs from levels x of inputs.4 A firm operating at
a point .x;y/ in the interior of P could become technically efficient by moving to
either .x@.y/;y/, .x;y@.x//, or perhaps some other point along the frontier P@.

4The Farrell (1957) input and output distance functions defined in (6.7)–(6.9) are reciprocals of the
corresponding Shephard (1970) measures.
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Let V.P/ denote the convex cone of the set P . Then P@ is characterized by
globally constant returns to scale (CRS) if and only if P D V.P/. Otherwise, P �
V.P/, and P@ exhibits variable returns to scale (VRS).

Under CRS, �.x;y/ D �.x;y/�1. However, with VRS, the choice of orientation
(either input or output) can have a large impact on measured efficiency. As discussed
in Sect. 6.1, with VRS, a large firm could conceivably lie close to the frontier P@

in the output direction, but far from P@ in the input direction. Similarly, a small
firm might lie close to P@ in the input direction, but far from P@ in the output
direction. Such differences are related to the slope and curvature of P@. Moreover,
there seems to be no criteria telling the applied researcher whether to use the input-
or output-orientation. In the case of parametric, stochastic frontier models along the
lines of Aigner et al. (1977), one specifies a production, cost, or other relationship,
which determines how efficiency is to be measured; e.g., when a production function
is specified, efficiency is measured in the output direction. By contrast, the model
specified by Assumptions 6.2.1, 6.2.2, and 6.2.3 leaves open the question of the
direction in which efficiency might be measured.

The hyperbolic graph efficiency measure

�.x;y/ � inf
˚
� > 0 j .�x; ��1y/ 2 P� (6.11)

defined by Färe et al. (1985) provides an alternative measure of technical efficiency.
This measure gives distance from the fixed point .x;y/ to P@ along the hyperbolic
path .�x; ��1y/, � 2 R

1CC. Measuring efficiency along a hyperbolic path avoids
some of the ambiguity cited above.5

By construction, �.x;y/ � 1 for .x;y/ 2 P . While it is easy to show that under
CRS,

�.x;y/ D �.x;y/1=2 D �.x;y/�1=2; (6.12)

no such relationship exists under VRS. Just as the measures �.x;y/ and �.x;y/
provide measures of the technical efficiency of a firm operating at a point .x;y/ 2
P , so does �.x;y/, but along a hyperbolic path to the frontier P@. Using �.x;y/,
any point in the interior of P can be projected onto P@.

Definition 6.2.1 For any .x;y/ 2 P , the corresponding hyperbolic-efficient input-
output combination denoted by .x@.x;y/;y@.x;y// 2 P@ is given by

5 Alternatively, one might consider estimating the directional distance function

'.x;y/ D supf' j ..1� '/x; .1C '/y/ 2 Pg;
which is a special case of the general directional distance function proposed by Chambers et al.
(1996). While this distance function can be estimated by linear programming methods, proofs of
asymptotic properties such as consistency, rate of convergence, etc. remain elusive.
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x@.x;y/ D x�.x;y/;

y@.x;y/ D y�.x;y/�1: (6.13)

Assumptions 6.2.1–6.2.3 define an economic model, but additional assumptions
are needed to define a statistical model. First, assume independent sampling of
input/output combinations:

Assumption 6.2.4 The sample observations Sn D f.xi ;y i /gniD1 are realizations
of identically, independently distributed (iid) random variables with probability
density function f .x;y/ with support over P .

Next, along the lines of Kneip et al. (1998), assume that the probability of
observing firms in a neighborhood of the boundary of P approaches unity as the
sample size increases:

Assumption 6.2.5 At the frontier, the density f is strictly positive, i.e.,
f0 Df .x@0;y

@
0/ > 0, and sequentially Lipschitz continuous, i.e., for all sequences

.xn;yn/ 2 P converging to .x@0;y
@
0/, jf .xn;yn/ � f .x@0;y

@
0/j � c1jj.xn;yn/ �

.x@0;y
@
0/jj for some positive constant c1.

Finally, an assumption about the smoothness of the frontier is needed:

Assumption 6.2.6 For all .x;y/ in the interior of P , �.x;y/, �.x;y/, and �.x;y/
are twice continuously differentiable in both of their arguments.

The characterization of the smoothness condition in Assumption 6.2.6 is stronger
than required; e.g., Kneip et al. (1998) require only Lipschitz continuity for the dis-
tance functions, which is implied by the simpler, but stronger requirement presented
here. As noted earlier, Assumptions 6.2.1–6.2.3 are standard in microeconomic
theory of the firm, while Assumptions 6.2.4–6.2.6 complete the definition of a
statistical model.

6.2.2 Order-m Measures

Cazals et al. noted that the density f .x;y/ introduced in Assumption 6.2.4 implies
a probability function

H.x;y/ D Pr.X � x;Y � y/: (6.14)

This is a non-standard probability distribution function, given the direction of the
inequality for Y ; nonetheless, it is well-defined. This function gives the probability
of drawing an observation from f .x;y/ that weakly dominates the firm operating at
.x;y/ 2 P in the sense that an observation .ex;ey/ weakly dominates .x;y/ ifex �
x and ey � y . Clearly, H.x;y/ is monotone, nondecreasing in x and monotone,
non-increasing in y .
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Using H.x;y/, the efficiency measures defined in (6.7), (6.9), and (6.11) can be
given a probabilistic interpretation by defining the measures in terms ofH.x;y/ as
follows:

�.x;y/ D inf f� > 0 j H.�x;y/ > 0g ; (6.15)

�.x;y/ D sup f� > 0 j H.x; �y/ > 0g ; (6.16)

and
�.x;y/ D inf

˚
� > 0 j H.�x; ��1y/ > 0

�
: (6.17)

Cazals et al. used the distribution function defined in (6.14) to define a partial
frontier of order m. Using the definition of conditional probability and applying
Bayes’ theorem, (6.14) can be written as

H.x;y/ D Pr.X � x j Y � y/„ ƒ‚ …
DFxjy.x0jy0/

� Pr.Y � y/„ ƒ‚ …
DSy.y/

D Pr.Y � y j X � x/„ ƒ‚ …
DSyjx.yjx/

� Pr.X � x/„ ƒ‚ …
DFx.x/

(6.18)

(the terms on the right-hand side of (6.18) also appear in Daraio and Simar 2005).
Now for a given level of outputs y in the interior of the support of Y , consider

the set of m iid random variables fX j gmjD1, X j 2 R
p
C, drawn from the conditional

distribution Fxjy.� j y/. Define the (random) set

Pm.y/ D
8
<

:.ex;ey/ 2 R
pCq
C j

m[

jD1
ex � X j ; ey � y

9
=

; : (6.19)

Replacing P in (6.7) with Pm.y/ yields the (random) efficiency measure

�m.x;y/ � inf f� > 0 j .�x;y/ 2 Pm.y/g (6.20)

The expectation of this random efficiency measure follows trivially from Cazals
et al. (2002, Theorem 5.1); in particular, if E .�m.x;y// exists, then

�m.x;y/ � E .�m.x;y// D
Z 1

0

�
1 � Fxjy .ux j y/

�m
du: (6.21)

Cazals et al. define, for any x 2 R
p
C, the expected minimum input level of order

m (defined for all y in the interior of the support of Y ) as

x@m.y/ D xE .�m.x;y// ; (6.22)

where the expectation is assumed to exist. Cazals et al. (2002, Theorem 5.2)
establishes that for any x 2 R

p
C and for any y in the interior of the support of Y ,
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lim
m!1 �m.x;y/ D �.x;y/ (6.23)

and
lim
m!1 x@m.y0/ D x@.y0/: (6.24)

Cazals et al. (2002) define similar, output-oriented measures in Appendix A of
their paper. The output-oriented measures have properties analogous to the input-
oriented measures.

It is straightforward to extend the ideas of Cazals et al. (2002) to obtain an
unconditional, hyperbolic measure of order-m efficiency. Consider a set of m
iid random variables f.X j ;Y j /gmjD1 drawn from the density f .x;y/ defined in
Assumption 6.2.5 with bounded support over P . Define the random set

Pm �
m[

jD1

n
.x;y/ 2 R

pCq
C j x � X j ; y � Y j

o
: (6.25)

Then for any .x;y/ 2 R
pCq
C , define the random distance measure

�m.x;y/ � inff� j .�x; ��1y/ 2 Pmg: (6.26)

The next result is analogous to the result in (6.21) obtained by Cazals et al.
(2002).

Theorem 6.2.1 If E .�m.x;y// exists, then

�m.x;y/ � E .�m.x;y// D
Z 1

0

�
1 �H.ux; u�1y/

�m
du: (6.27)

Proof. The distribution function of �m.x;y/ is given by

Pr.�m.x;y/ � u/ D Pr

"
min

iD1; :::; m

 
max

jD1; :::; p
kD1; :::; q

 
X
j
i

xj
;

yk

Y k
i

!!
� u

#

D 1 � Pr

"
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yk
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i
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X
j
i
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i
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D 1 �
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max
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X
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i
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!
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!#m
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D 1 � �
1� Pr X � ux; Y � u�1y/

�m

D 1 � �
1�H.ux; u�1y/

�m
(6.28)

where xj , yk denote the j th and kth elements of x and y. Denote this distribution
function by G.u/. Then the probability density function of �m.x;y/ is dG.u/ D
g.u/ du, and

E .�m.x;y// D
Z 1

0

t dG.t/

D
Z 1

0

Z t

0

dudG.t/

D
Z 1

0

Z 1

u
dG.t/ du

D
Z 1

0

Œ1 �G.u/� du; (6.29)

establishing the result. In (6.29), the third line follows from the second line due to
the fact that the integrand is non-negative; hence, the order of the integration can be
reversed. �

Definition 6.2.2 The expected efficient frontier of order m, denoted P@
m, is defined

for all .x;y/ in the interior of P as

P@
m � ˚

.ex;ey/ j ex D xE.�m.x;y//; ey D yE.�m.x;y//
�1; .x;y/ 2 P� :

(6.30)

Definition 6.2.3 For any .x;y 2 R
pCq
C , the expected minimum input, maximum

output combination of order m, denoted by .x@m.x;y/;y
@
m.x;y/, is given by

x@m.x;y/ � xE.�m.x;y// (6.31)

and
y@m.x;y/ � yE.�m.x;y//

�1 (6.32)

where the expectation exists.

The limiting behavior of the expected minimum input, maximum output combi-
nation of order m, as m ! 1, is similar to that established by Cazals et al. (2002)
for the expected minimum input of order m (conditional on y) given in (6.23)–
(6.24), as demonstrated by the following result.

Theorem 6.2.2 Provided E.�m.x;y// exists,
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(i) lim
m!1E.�m.x;y// D �.x;y/I and (6.33)

(ii) lim
m!1

�
x@m.x;y/;y

@
m.x;y/

� D �
x@.x;y/;y@.x;y/

�
: (6.34)

Proof. From (6.27),

E.�m.x;y/ D
Z �.x;y/

0

�
1 �H.ux; u�1y

�m
du C

Z 1

�.x;y/

�
1 �H.ux; u�1y

�m
du:

(6.35)
For all u � �.x;y/, H.ux; u�1y/ D 0. For u > �.x;y/, Œ1 � H.ux; u�1y/� <
1. Hence

R �.x;y/
0

�
1 �H.ux; u�1y

�m
du D �.x;y/. In addition, by the Lebesgue

dominated convergence theorem, limm!1
R1
�.x;y/

�
1 �H.ux; u�1y

�m
du D 0.

Therefore (i) holds. The second part of the theorem follows after taking the limit
in Definition 6.2.3 and applying Definition 6.2.1. ut
Example 6.2.1 As an illustration, let p D q D 1, and consider the DGP given by

f .x; y/ D
(
4��1 8 x 2 Œ0; 1�; y 2

h
0;
�
2x � x2

�1=2i

0 otherwise.
(6.36)

The frontier P@ is the northwest quarter of a circle with radius 1 centered at .1; 0/,
shown as a solid curve in Fig. 6.2. It is straightforward to show that the marginal
distributions are given by

Fx.x/ D 4��1
�
x � 1

2

�
2x � x2

�1=2 C 1

2
sin�1 .x � 1/C �

4

�
; (6.37)

and

Fy.y/ D 4��1
�
1

2
y
�
1 � y2

�1=2 C 1

2
sin�1.y/

�
; (6.38)

while the conditional distribution functions are given by

Fxjy.x j Y � y/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

1 8 x � 1I�
1 � Fy.y/

��1
4��1

h
x�1
2
.2x � x2/1=2

C 1
2

sin�1.x � 1/� yx

� 1
2
y.1 � y2/1=2

� 1
2

sin�1 	�p1 � y2



C y
i

8 x 2
h
1 �p

1 � y2; 1
i

I
0 otherwise,

(6.39)
and



6 Asymptotic Properties of Some Non-Parametric Hyperbolic Efficiency Estimators 127

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

Fig. 6.2 Order-m frontiers (m D 50)

Fyjx.y j X � x/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

1 8 y > .2x � x2/1=2I
Fx.x/

�14��1
n
.x � 1/ y
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2

h
y
�
1 � y2

�1=2 C sin�1.y/
io

8 y 2 Œ0; .2x � x2/1=2�I
0 8 y � 0:

(6.40)
Moreover, it is clear that

H.x; y/ D Fxjy.x j y/ �1 � Fy.y/
�
: (6.41)

The input-oriented and output-oriented conditional order-m frontiers (for m D 50)
described by Cazals et al. (2002) are shown as dotted curves in Fig. 6.2; the steeper
of the two curves is the input-oriented frontier. The unconditional, hyperbolic order-
m frontier (again, for m D 50) can be found by computing �m.x; y/ defined in
(6.27) for each point on the frontier, and then computing points on the unconditional,
hyperbolic order-m frontier using Definition 6.2.3. This is shown by the dashed
curve in Fig. 6.2.

Example 6.2.1 illustrates the fact that the conditional order-m frontiers described
by Cazals et al. (2002) have different slopes, depending on the orientation. By
contrast, the unconditional, hyperbolic order-m frontier “parallels” the path of the
full frontier P@. Since in the example f .x; y/ is uniform over P , the unconditional
hyperbolic order-m frontier is equidistant from the full frontier throughout its range.
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6.3 Hyperbolic DEA Estimators

Non-parametric DEA estimators are often used in cases where the researcher is
willing to assume that the production set is convex. In such cases, P can be estimated
by the convex hull of the free-disposal hull of the observations in the sample Sn,
given by

bPDEA;n D
(
.x;y/ 2 R

pCq
C j y �

nX

iD1
ıiy i ; x �

nX

iD1
ıixi ;

nX

iD1
ıi D 1; ıi � 0 8 i D 1; : : : ; n

)
: (6.42)

This estimator has been proved consistent by Korostelev et al. (1995b) under
Assumptions 6.2.1–6.2.3 and 6.2.4–6.2.6, for the case p D 1, q � 1, with

d�

	
bPDEA;n;P



D Op

�
n�2=.qC2/� (6.43)

where d�.�; �/ denotes the Lebesgue measure of the difference between two sets.
Replacing P on the right-hand sides of (6.7), (6.9), and (6.11) with bPDEA;n gives

(VRS) DEA estimators b�DEA;n.x;y/, b�DEA;n.x;y/, and b�DEA;n.x;y/, of �.x;y/,
�.x;y/, and �.x;y/, respectively. In the case of the input- or output-oriented
measures, b�DEA;n.x;y/ and b�DEA;n.x;y/ can be computed by solving familiar
linear programs; for example, in the input-oriented case,

b�DEA;n.x;y/ D min
�

ıi ; iD1; :::; n

(
� j y �

nX

iD1
ıiy i ; �x �

nX

iD1
ıixi ;

nX

iD1
ıi D 1; ıi � 0 8 i D 1; : : : ; n

)
: (6.44)

See Simar and Wilson (2000b) for details using the output orientation. For the input-
oriented case, Kneip et al. (1998) established consistency of b�DEA;n.x;y/ under
Assumptions 6.2.1–6.2.3 and 6.2.4–6.2.6, with

b�DEA;n.x;y/ D �.x;y/COp
�
n�2=.pCqC1/� (6.45)

for p; q � 1. This result extends to the output oriented case after straightforward, if
tedious, changes in the notation of the proof given by Kneip et al. (1998).

To date, no such results have been obtained for the hyperbolic DEA efficiency
estimator b�DEA;n.x;y/. In addition, until now, computation of the estimator when
bPDEA;n is used under VRS has been problematic since linear programming methods
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cannot be used. In fact, to my knowledge, the only cases where a hyperbolic
DEA efficiency estimator has been used in empirical applications have imposed
an assumption of CRS on the efficient frontier P@, allowing the hyperbolic DEA
efficiency estimator to be computed as the square root of b�DEA;n.x;y/, analogous
to (6.12).6

Using bPDEA;n under VRS,b�DEA;n.x;y/ is the solution to the non-linear program

b�DEA;n.x;y/ D min
�

ıi ; iD1; :::; n

(
� j ��1y �

nX

iD1
ıiy i ; �x �

nX

iD1
ıixi ;

nX

iD1
ıi D 1; ıi � 0 8 i D 1; : : : ; n

)
(6.46)

(see Färe et al. 1985, p. 129). Rather than solving (6.46) directly, note that

for .ex;ey/ on the boundary of bPDEA;n, b�DEA;n.ex;ey/ D 1 and
	
b�DEA;n.ex;ey/_

b�DEA;n.ex;ey/�1



D 1. This fact makes it easy to use the bisection method to solve

forb�DEA;n.x;y/ for an arbitrary point .x;y/ 2 R
pCq
C using the following algorithm:

Algorithm #1

[1] Set �a WD 1, �b WD 1.
[2] Compute b�DEA;n.�ax; �

�1
a y/ by solving (6.44); if a solution to the linear

program does not exist, set b�DEA;n.�ax; �
�1
a y/ WD �, where � is an arbitrary

number greater than 1.
[3] Ifb�DEA;n.�ax; �

�1
a y/ > 1, then set �a WD 0:5�a.

[4] Repeat steps [2]–[3] untilb�DEA;n.�ax; �
�1
a y/ < 1.

[5] Ifb�DEA;n.�bx; �
�1
b y/ < 1, then set �a WD 2�a.

[6] Repeat step [5] untilb�DEA;n.�bx; �
�1
b y/ > 1.

[7] Set �c WD .�a C �b/=2 and computeb�DEA;n.�cx; �
�1
c y/.

[8] Ifb�DEA;n.�cx; �
�1
c y/ < 1 then set �a WD �c ; otherwise, set �b WD �c .

[9] If .�b � �a/ > 	, where 	 is a suitably small tolerance value, repeat steps
[7]–[8].

[10] Setb�DEA;n.x;y/ WD .�b C �a/=2.

The procedure can be made accurate to an arbitrary degree by choosing (a priori)
the convergence tolerance 	 to be suitably small. Setting 	 equal to 10�6 will

6 In cases where CRS is assumed, the constraint
Pn

iD1 ıi D 1 is omitted from (6.42). In such
cases, efficiency is estimated in terms of distance to the boundary of the convex cone of the sample
observations, as opposed to the convex hull (of the free-disposal hull) of the sample observations.
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result in precision to 5–6 decimal places, which is likely to exceed the number of
significant digits in most data that researchers use.

Note that the speed of Algorithm #1 can be increased by forming, after the first
computation ofb�DEA;n.�ax; �

�1
a y/ in step [2], the set S� D f.xi ;y i / j .xi ;y i / 2

Sn; bıi > 0g where thebıi are the values of the ıi in (6.44) when a minimum is
attained. Then using this set of observations, rather than the set Sn, in all future
computations ofb�DEA;n.�ax; �

�1
a y/ will result in a smaller constraint set when the

linear program in (6.44) is solved. Nonetheless, the algorithm requires a number
of iterations, and consequently its execution will require more time than a single
solution of a linear program such as (6.44).

An alternative estimator of �.x;y/ offers computational burden similar to input-
or output-oriented DEA estimators. Consider a mapping 
 from R

p
C � R

q
C to R

p
C �

R
q
C:


 W .x;y/ 7! .x;y�1/ (6.47)

where y�1 is the vector whose elements are the inverses of the corresponding
elements of y. Denote w D 
.x;y/. In addition, note that 
 is a continuous, one-
to-one transformation; hence .x;y/ D 
�1.w/. Moreover, @
.x;y/

@y
D �y�2 and

@2
.x;y/

@y@y 0

D 2diag.y�3/. Then (6.14) can be rewritten as

H.x;y/ D H�.w/ D Pr.W � w/: (6.48)

Rewriting (6.17) as

�.x;y/ D inff� > 0 j H�.�w/ > 0g; (6.49)

it is clear that �.x;y/ is equivalent to an input-oriented efficiency score similar
to that in (6.7) and (6.15) when the .x;y/-space is transformed to the w-space.
Working in the w-space, a new estimator of �.x;y/ is given by

b�DEA�;n.x;y/ D min
�

ıi ; iD1; :::; n

(
� j �w �

nX

iD1
ıiwi ;

nX

iD1
ıi D 1; ıi � 0 8 i D 1; : : : ; n

)

D min
�

ıi ; iD1; :::; n

(
� j �y�1 �

nX

iD1
ıiy

�1
i ; �x �

nX

iD1
ıixi ;

nX

iD1
ıi D 1; ıi � 0 8 i D 1; : : : ; n

)
: (6.50)

The following theorem establishes consistency and the convergence rate of the
new estimatorb�DEA�;n.x;y/, as well as its limiting distribution.

Theorem 6.3.1 Under Assumptions 6.2.1–6.2.6, for all .x;y/ in the interior of P ,
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(i/ b�DEA�;n.x;y/ D �.x;y/COp
�
n�2=.pCqC1/� I and

(i i/ lim
n!1 Pr

�
n

2
pCqC1

�b�DEA�;n.!x; !�1y/
�.!x; !�1y/

� 1
�

� ı

�
D Fw.ı/ 8 ! > 0;

where Fw.ı/ is a well-defined, continuous probability distribution function.

Proof. It is clear from (6.48) and (6.49) that in the w-space, �.x;y/ is an input-
oriented efficiency measure along the lines of (6.7) and (6.15), where there are .pC
q/ inputs and no outputs. Moreover, in the w-space, b�DEA�;n.x;y/ is an ordinary
input-oriented (VRS) DEA efficiency estimator along the lines of (6.44), again with
.pCq/ “inputs” and no outputs. Hence Theorem 1 of Kneip et al. (1998) establishes
the result in (i), while Corollary 1 of Kneip et al. (2008) establishes the result in (ii).

ut
The result in Theorem 6.3.1 can now be used to establish consistency and the

convergence rate of the estimator defined in (6.46).

Theorem 6.3.2 Under Assumptions 6.2.1–6.2.6, for all .x;y/ in the interior of P ,
b�DEA;n.x;y/ is a consistent estimator of �.x;y/, with

b�DEA;n.x;y/ D �.x;y/COp
�
n�2=.pCqC1/� :

Proof. b�DEA;n.x;y/ is computed in Algorithm #1 in terms of distance to the convex
hull of the free-disposal hull of the observations in Sn. the set bPDEA;n in the .x;y/-
space implies a set bP�

DEA;n D fw j w D .x;y�1/ 8 .x;y/ 2 bPDEA;ng in the

w-space. In the .x;y/-space, the facets ofbPDEA;n are subsets of .pCq/ dimensional
hyperplanes, whereas in the w-space, subsets of bP�

DEA;n corresponding to particular

facets of bPDEA;n are strictly convex (from the origin in w-space) due to the mapping
from .x;w/ to w. Consequently,

b�DEA�;n.x;y/ �b�DEA;n.x;y/ � �.x;y/ (6.51)

for any .x;y/ 2 bPDEA;n. Hence consistency holds due to Theorem 6.3.1 and (6.51).
Moreover,b�DEA;n.x;y/ is computed in Algorithm #1 usingb�DEA;n.x;y/ to assess
convergence of the bisection algorithm. Henceb�DEA;n.x;y/ andb�DEA;n.x;y/ must
converge at the same rate in n, and from Theorem 1 of Kneip et al. (1998), this rate
is as given above. ut

In finite samples, the two hyperbolic estimators will yield different estimates, but
they are equivalent asymptotically, as the next result indicates:

Lemma 6.3.1 Under the conditions in Theorem 6.3.1,

b�DEA�;n.x;y/�b�DEA;n.x;y/ D Op
�
n�2=.pCqC1/� : (6.52)
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Proof. The lemma follows directly from Theorems 6.3.1 and 6.3.2.

Since only asymptotic results exist for DEA estimators, the fact that the two
estimators yield different values in finite samples should be of little consequence,
apart from the fact that (6.51) in the proof of Theorem 6.3.2 indicates that the
bias of b�DEA�;n.x;y/ is larger than that of b�DEA;n.x;y/. The limiting distribution
in Theorem 6.3.1 is not directly useful for estimating confidence intervals in
applications, but is useful for establishing consistency of either a double-smooth
bootstrap or a sub-sampling bootstrap along the lines of Kneip et al. (2008). In the
case of a sub-sampling bootstrap, the methods discussed by Simar and Wilson
(2011) can be used to calibrate the sub-sample size.

As an illustration, the two hyperbolic DEA estimators were used to estimate
�.xi ;y i / for each of n D 70 observations on educational performance given by
Charnes et al. (1981). The data contain observations on p D 5 input quantities
and q D 3 output quantities. The results are shown in Table 6.1, where estimates
obtained from the three hyperbolic DEA estimators are shown along with estimates
obtained from the input- and output-oriented DEA estimators. Estimates obtained
using Algorithm #1 are given in the second column of the table (observation
numbers appear in the first column); estimates in the third column are from the
estimator based on inverting the output data, while estimates in the fourth column
are from the estimator based on the logarithmic transformation.

The results shown in Table 6.1 confirm that the hyperbolic estimators, though
equivalent asymptotically, produce different estimates in finite samples, Moreover,
the results can be seen to conform to the ordering given in (6.51). A more rigorous
examination of the estimators’ performance will be discussed later in Sect. 6.6.

6.4 The Hyperbolic FDH Estimator

For cases where the production set is not assumed to be convex, Deprins et al. (1984)
proposed estimating P by the free-disposal hull (FDH) of the observations in Sn,
i.e.,

bPFDH;n D
[

.xi ;y i /2Sn
f.x;y/ 2 R

pCq
C j y � y i ; x � xig: (6.53)

For the case with p D 1, q � 1, Korostelev et al. (1995a) proved that

d�

	
bPFDH;n;P



D Op

�
n�1=.pCq/� : (6.54)

Replacing P in (6.7), (6.9), or (6.11) gives FDH estimators b�FDH;n.x;y/,
b�FDH;n.x;y/, and b�FDH;n.x;y/ of the efficiency measures �.x;y/, �.x;y/, and
�.x;y/, respectively. Park et al. (2000) proved consistency of the input-oriented
estimator, with
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Table 6.1 DEA efficiency estimates, Charnes et al. (1981) Data (n D 70)

Obs. b�DEA;n.x;y/ b�DEA�;n.x;y/ b�DEA;n.x;y/ b�DEA;n.x;y/
�1

1 0.9827 1.0000 0.9621 0.9687
2 0.9493 0.9705 0.9011 0.9015
3 0.9672 0.9922 0.9348 0.9360
4 0.9499 0.9622 0.9016 0.9030
5 1.0000 1.0000 1.0000 1.0000
6 0.9526 0.9805 0.9099 0.9049
7 0.9447 0.9688 0.8914 0.8936
8 0.9515 1.0000 0.9050 0.9056
9 0.9274 0.9402 0.8585 0.8615

10 0.9715 1.0000 0.9407 0.9483
11 1.0000 1.0000 1.0000 1.0000
12 1.0000 1.0000 1.0000 1.0000
13 0.9294 0.9366 0.8623 0.8650
14 0.9938 1.0000 0.9897 0.9847
15 1.0000 1.0000 1.0000 1.0000
16 0.9748 1.0000 0.9501 0.9506
17 1.0000 1.0000 1.0000 1.0000
18 1.0000 1.0000 1.0000 1.0000
19 0.9762 1.0000 0.9526 0.9532
20 1.0000 1.0000 1.0000 1.0000
21 1.0000 1.0000 1.0000 1.0000
22 1.0000 1.0000 1.0000 1.0000
23 0.9875 1.0000 0.9748 0.9754
24 1.0000 1.0000 1.0000 1.0000
25 0.9894 1.0000 0.9787 0.9791
26 0.9710 0.9905 0.9425 0.9432
27 1.0000 1.0000 1.0000 1.0000
28 0.9946 1.0000 0.9903 0.9877
29 0.9243 0.9586 0.8833 0.8478
30 0.9455 0.9540 0.8934 0.8950
31 0.9152 0.9244 0.8369 0.8383
32 1.0000 1.0000 1.0000 1.0000
33 0.9760 1.0000 0.9521 0.9531
34 0.9275 0.9518 0.8590 0.8615
35 1.0000 1.0000 1.0000 1.0000
36 0.8889 0.9186 0.7930 0.7883
37 0.9155 0.9431 0.8393 0.8391
38 1.0000 1.0000 1.0000 1.0000
39 0.9689 1.0000 0.9414 0.9371
40 0.9746 1.0000 0.9498 0.9498
41 0.9762 0.9971 0.9523 0.9534
42 0.9737 1.0000 0.9531 0.9476
43 0.9297 0.9725 0.8648 0.8648
44 1.0000 1.0000 1.0000 1.0000

(continued)
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Table 6.1 (Continued)

Obs. b�DEA;n.x;y/ b�DEA�;n.x;y/ b�DEA;n.x;y/ b�DEA;n.x;y/
�1

45 1.0000 1.0000 1.0000 1.0000
46 0.9558 0.9765 0.9129 0.9143
47 1.0000 1.0000 1.0000 1.0000
48 1.0000 1.0000 1.0000 1.0000
49 1.0000 1.0000 1.0000 1.0000
50 0.9790 1.0000 0.9587 0.9583
51 0.9591 1.0000 0.9199 0.9199
52 1.0000 1.0000 1.0000 1.0000
53 0.9333 0.9543 0.8696 0.8722
54 1.0000 1.0000 1.0000 1.0000
55 0.9997 1.0000 0.9994 0.9994
56 1.0000 1.0000 1.0000 1.0000
57 0.9631 1.0000 0.9270 0.9281
58 1.0000 1.0000 1.0000 1.0000
59 1.0000 1.0000 1.0000 1.0000
60 0.9903 1.0000 0.9804 0.9809
61 0.9391 1.0000 0.8927 0.8815
62 1.0000 1.0000 1.0000 1.0000
63 0.9815 1.0000 0.9635 0.9632
64 0.9648 0.9929 0.9303 0.9314
65 0.9872 1.0000 0.9754 0.9737
66 0.9676 0.9866 0.9356 0.9368
67 0.9731 0.9957 0.9463 0.9476
68 1.0000 1.0000 1.0000 1.0000
69 1.0000 1.0000 1.0000 1.0000
70 0.9820 1.0000 0.9640 0.9647

b�FDH;n.x;y/ D �.x;y/COp
�
n�1=.pCq/� I (6.55)

this result extends to the output oriented-estimatorb�FDH;n.x;y/ after reversing the
roles of the inputs and outputs in the proof given by Park et al. Park et al. also
derived the limiting distribution of the input-oriented estimator, which is a Weibull
distribution containing an unknown parameter that depends on features of the model.

In the input-oriented case,b�FDH;n.x;y/ can be written as an integer programming
problem:

b�FDH;n.x;y/ D min
�

ıi ; iD1; :::; n

(
� j ��1y �

nX

iD1
ıiy i ;

�x �
nX

iD1
ıixi ; ıi 2 f0; 1g 8 i D 1; : : : ; n

)
(6.56)
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Table 6.2 Hyperbolic order-m and FDH efficiency estimates, Charnes et al. (1981) Data (n D 70)

Obs. b�mD35;n.x;y/ b�mD70;n.x;y/ b�mD140;n.x;y/ b�FDH;n.x;y/

1 1.1550 1.0729 1.0241 1.0000
2 1.0706 1.0269 1.0070 1.0000
3 1.1004 1.0517 1.0173 1.0000
4 1.0255 0.9962 0.9840 0.9800
5 1.2437 1.1074 1.0319 1.0000
6 1.1251 1.0449 1.0109 1.0000
7 1.0278 1.0076 1.0014 1.0000
8 1.1584 1.0801 1.0256 1.0000
9 1.0323 1.0137 1.0045 1.0000

10 1.1148 1.0549 1.0151 1.0000
11 1.1351 1.0773 1.0292 1.0000
12 1.1615 1.0829 1.0282 1.0000
13 1.0092 0.9945 0.9886 0.9866
14 1.1373 1.0481 1.0103 1.0000
15 1.4024 1.1802 1.0512 1.0000
16 1.2173 1.1151 1.0399 1.0000
17 1.3924 1.2054 1.0697 1.0000
18 1.1605 1.0820 1.0271 1.0000
19 1.1200 1.0625 1.0212 1.0000
20 1.2168 1.1198 1.0390 1.0000
21 1.1570 1.0732 1.0224 1.0000
22 1.1673 1.0833 1.0296 1.0000
23 1.1234 1.0648 1.0209 1.0000
24 1.1991 1.0960 1.0270 1.0000
25 1.1079 1.0548 1.0164 1.0000
26 1.1088 1.0544 1.0196 1.0000
27 1.1385 1.0554 1.0131 1.0000
28 1.1095 1.0372 1.0094 1.0000
29 1.1271 1.0646 1.0208 1.0000
30 1.0739 1.0260 1.0066 1.0000
31 0.9870 0.9646 0.9513 0.9454
32 1.3055 1.1372 1.0346 1.0000
33 1.1043 1.0487 1.0153 1.0000
34 1.0610 1.0283 1.0087 1.0000
35 1.1423 1.0729 1.0224 1.0000
36 1.0294 1.0062 1.0012 1.0000
37 1.0623 1.0149 1.0018 1.0000
38 1.2733 1.1220 1.0340 1.0000
39 1.1077 1.0560 1.0181 1.0000
40 1.1223 1.0604 1.0223 1.0000
41 1.0613 1.0278 1.0087 1.0000
42 1.1058 1.0356 1.0093 1.0000
43 1.0847 1.0404 1.0126 1.0000
44 1.4417 1.2562 1.0881 1.0000

(continued)



136 P.W. Wilson

Table 6.2 (Continued)

Obs. b�mD35;n.x;y/ b�mD70;n.x;y/ b�mD140;n.x;y/ b�FDH;n.x;y/

45 1.2669 1.1148 1.0320 1.0000
46 1.0553 1.0317 1.0094 1.0000
47 1.1222 1.0608 1.0196 1.0000
48 1.4043 1.1678 1.0476 1.0000
49 1.1797 1.0656 1.0190 1.0000
50 1.0799 1.0412 1.0147 1.0000
51 1.1404 1.0699 1.0237 1.0000
52 1.1767 1.0895 1.0302 1.0000
53 1.0567 1.0086 0.9908 0.9872
54 1.1628 1.0701 1.0188 1.0000
55 1.1872 1.0991 1.0342 1.0000
56 1.3111 1.1093 1.0187 1.0000
57 1.1041 1.0488 1.0155 1.0000
58 1.4047 1.2078 1.0782 1.0000
59 1.8001 1.4280 1.1304 1.0000
60 1.0967 1.0430 1.0140 1.0000
61 1.1347 1.0625 1.0199 1.0000
62 1.7145 1.3917 1.1279 1.0000
63 1.1658 1.0827 1.0271 1.0000
64 1.0546 1.0179 1.0027 1.0000
65 1.2056 1.1161 1.0384 1.0000
66 1.0248 1.0051 0.9986 0.9979
67 1.0631 1.0269 1.0074 1.0000
68 1.3750 1.2009 1.0626 1.0000
69 1.6459 1.3328 1.1162 1.0000
70 1.1017 1.0408 1.0119 1.0000

However, recalling the decomposition of H.x;y/ in (6.18), it is clear that (6.15)
can be written as

�.x;y/ D inff� > 0 j Fxjy.�x j y/ > 0g: (6.57)

The empirical analog of Fxjy .x j y/ evaluated at .x;y/ is

bF xjy .x j y/ D
Pn

iD1 I.xi � x;y i � y/Pn
iD1 I.y i � y/

: (6.58)

Substituting this for Fxjy .�x j y/ in (6.57) yields

b�FDH;n.x;y/ D inff� > 0 j bF xjy .�x j y/ > 0g; (6.59)

which can be computed (for a fixed point .x;y/) as
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b�FDH;n.x;y/ D min
i2I.y/

 
max

jD1; :::; p

 
x
j
i

xj

!!
; (6.60)

where I.y/ D fi j y i � y ; i D 1; : : : ; ng. As a practical matter, it is easier to
computeb�FDH;n.x;y/ using (6.60) instead of solving the integer program in (6.56).

Wheelock and Wilson (2008) extended the results of Park et al. (2000) to the
hyperbolic FDH efficiency estimator. In particular, Wheelock and Wilson proved
that the hyperbolic FDH estimatorb�FDH;n.x;y/ is a consistent estimator of �.x;y/,
converges at rate n�1=.pCq/, and is asymptotically Weibull distributed (see Wheelock
and Wilson 2008, Theorem 4.1 and Corollary 4.1, and corresponding proofs given
in their appendix).

Computation of the hyperbolic FDH estimator is straightforward. The empirical
analog of the distribution function defined in (6.14) based on the sample Sn is

bHn.x;y/ D n�1
nX

iD1
I.xi � x0;y i � y0/; (6.61)

where I.�/ denotes the indicator function. Then b�FDH;n.x;y/ can be written,
analogously to (6.17), as

b�FDH;n.x;y/ D inf
n
bHn.�x; ��1y/ > 0

o
: (6.62)

For a fixed point .x0;y0/, the estimator in (6.62) can be computed by solving7

b�FDH;n.x0;y0/ D min
iD1; :::; n

 
max

jD1; :::; p
kD1; :::; q

 
x
j
i

x
j
0

;
yk
0

yk
i

!!
: (6.63)

As in Sect. 6.3, the data can be transformed from .x;y/-space to w-space using
the mapping 
. Then

b�FDH;n.x;y/ D inf
n
bH�
n.�w�/ > 0

o
; (6.64)

which can be computed for a fixed point w by

b�FDH;n.x;y/ D min
iD1; :::; n

 
max

jD1; :::; .pCq/

 
wj
i

wj

!!
: (6.65)

7 Wheelock and Wilson (2008) gave a numerical algorithm for computing their unconditional,
hyperbolic order-˛ quantile efficiency estimator. When ˛ D 1, their estimator is equivalent to
(6.61) and (6.62). Typically, computing bHn.x;y/ using (6.61) will be faster than setting ˛ D 1

and applying the numerical algorithm given in Wheelock and Wilson.
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This is identical in form to the input-oriented estimatorb�.x;y/ in (6.60) in .x;y/-
space with no output dimensions.8

For the hyperbolic FDH efficiency estimator, it makes no difference whether the
estimator is computed in the .x;y/-space or the w-space; in either case, the resulting
estimate is the same. This is due to the fact that the transformation 
 preserves the
ordering of observations in Sn each of the .p C q/ dimensions, and the estimator is
computed in terms of distance to the free-disposal hull of the sample observations.
This differs from the DEA case discussed above in Sect. 6.3, where the 
 “bends”
the facets of bPDEA;n in transforming from .x;y/-space to w-space.

The last column of Table 6.2 gives hyperbolic FDH efficiency estimates for
each of the 70 observations on educational performance appearing in Charnes et al.
(1981). These estimates are analogous to the hyperbolic DEA estimates appearing
in Table 6.1. Due to relaxation of the convexity assumption, many more estimates
in the last column of Table 6.2 are equal to one than in Table 6.1.

6.5 The Hyperbolic Order-m Estimator

An estimator of the expected hyperbolic order-m efficiency defined in Theorem
6.2.1 is obtained by substituting the empirical distribution function given in (6.61)
into (6.27) to obtain

b�m;n.x;y/ D bE.�m.x;y// D
Z 1

0

h
1 � bHn.ux; u�1y/

im
du: (6.66)

There is no simple expression for this estimator due to the multivariate nature of
bHn.x;y/. Nonetheless, it can be computed using Monte Carlo methods along the
lines of Cazals et al. (2002).

Consider a Monte Carlo sample Sb;mn D f.X bi ;Y bi /gmiD1 obtained by drawing
m times, independently and with replacement, from input-output pairs in Sn. Then
compute

b�bm;n.x;y/ D min
iD1; :::; m

 
max

jD1; :::; p
kD1; :::; q

 
X
j

bi

xj
;

yk

Y k
bi

!!
: (6.67)

Repeat this exercise B times, for b D 1 : : : ; B . Then

b�m;n.x;y/ 	 B�1
BX

bD1
b�bm;n.x;y/; (6.68)

8 To see this, replace x in (6.60) with w, set q D 1, y D 0, and replace p with .p C q/. The
resulting expression is equivalent to (6.65).
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with the approximation improving as B increases.
The next theorem establishes asymptotic properties for the hyperbolic order-m

efficiency estimator defined in (6.66).

Theorem 6.5.1 Let Assumptions 6.2.2–6.2.6 hold, and assume P is compact. Then
for any .x;y/ for which there exists � such that .�x; ��1y/ 2 P , and for any
m � 1,

.i/ b�m;n.x;y/
a:s:�! �m.x;y/I and

.i i/ n1=2
	
b�m;n.x;y/� �m



d�! N

�
0; �2m.x;y/

�

where

�2m.x;y/ D E

�
m

Z 1

0

�
1 �H.ux; u�1y/

�m�1
I.wi � u/ du �m�m;n.x;y/

�2

and wi � u if wji � u for each element wji of w, j D 1; : : : ; .p C q/.

Proof. By the strong law of large numbers, bHn.xy/
a:s:�! H.x;y/. Part (i) of the

result then follows from the Lebesgue dominated convergence theorem applied to
(6.27) and (6.66).

To prove part (ii), use the transformation from .x;y/ space to w-space that was
introduced in Sect. 6.3. After applying the transformation, the proof is similar to the
proof of Theorem 3.1 in Cazals et al. (2002). In particular, after transforming to
w-space, (6.27) can be written as

�m;n.x;y/ D
Z 1

0

Œ1 �H�.uw/�m du

D
Z 1

0

ŒSc;w.u j z/�m du; (6.69)

where Sc;w.u j z/ is a conditional survivor function; the form of Sc;w.u j z/ depends
on the fixed point of interest .x;y/, or equivalently, on w. The conditioning is on
an artificial output z=0; the conditioning is in effect redundant. The conditional
survivor function has bounded support on Œ0;1/. In addition, Sc;w.u j z/ D S.u;z/

Sz.z/

where S.u; z/ is the joint survivor function and Sz.z/ is the marginal survivor
function for z.

Now define the statistical functional

T .S/ D
Z 1

0

ŒSc;w.u j z/�m du (6.70)

so that T .S/ is an operator that assigns a real value to any survivor function S .
The operator is Fréchet differentiable with respect to the sup-norm; i.e, for any two
survivor functionsR and S ,
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T .R/� T .S/ D DTS.R � S/C �.R � S/jjR � S jj1 (6.71)

where jj � jj1 denotes the sup-norm and where �.V / ! 0 when jV jj1 ! 0.
A central limit theorem result then follows from arguments in Boos and Serfling

(1980). The Fréchet derivative is

DTS.V / D m

Sz.0/m

Z 1

0

Sw.u/
m�1V .u/ du �m

�m;n.x;y/

Sz.0/
V .0/; (6.72)

noting that Sw.u/ D Sw.u; z/ since z D 0. Noting that DTS.bSn � S/ D DTS.bSn/
and using (6.72), (6.70) becomes

n1=2
h
T .bSn/� T .S/

i
D n1=2

n

nX

iD1

�
m

Sz.0/m

Z 1

0

Sw.u/
m�1I.wi � u/ du

�m�m;n.x;y/
Sz.0/

I.zi � 0/

�
C �.bSn�S/

h
n1=2jjbSn�sjj1

i
:

(6.73)

By the Doveretzky, Kiefer, and Wolfowitz inequality (see Boos and Serfling 1980,
p. 619), n1=2jjbSn � S jj1 D Op.1/. Moreover, bSn converges uniformly, implying

�.bSn � S/ p�! 0. Hence the second term on the right-hand side of (6.73) converges
to 0 in probability. Standard central limit theorem arguments lead to the asymptotic
normality result. In addition,

E

�
m

Sz.0/m

Z 1

0

Sw.u/
m�1I.wi � u/ du �m�m;n.x;y/

Sz.0/
I.zi � 0/

�

D n

�
m

Z 1

0

S.u/m�1
w Sw.u/ du �m�m;n.x;y/

�
D 0; (6.74)

establishing the zero mean in part (ii). The variance expression in part (ii) of the
theorem follows after noting that Sw.u/ D �

1 �H.ux; u�1y/
�
. ut

The root-n rate of convergence established by Theorem 6.5.1 is atypical in non-
parametric estimation, although the conditional input- and output-oriented order-m
estimators examined by Cazals et al. (2002), as well as the order-˛ efficiency estima-
tors of Daouia and Simar (2007) and Wheelock and Wilson (2008) achieve this rate.
The variance expression can be used to estimate asymptotic confidence intervals for
�m.x;y/ by replacing the unknown quantities with consistent estimates.

The limiting form of the unconditional, hyperbolic order-m estimator (asm!1)
is the hyperbolic FDH estimator, as demonstrated by the next lemma.

Lemma 6.5.1 Under Assumptions 6.2.2–6.2.6, for fixed n,

lim
m!1

b�m;n.x;y/ Db�FDH;n.x;y/:
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Proof. Re-write (6.66) as

b�m;n.x;y/ D
Z b�FDH,n.x;y/

0

h
1 � bHn.ux; u�1y/

im
du

C
Z 1

b�FDH,n.x;y/

h
1 � bHn.ux; u�1y/

im
du

D b�FDH,n.x;y/C
Z 1

b�FDH,n.x;y/

h
1 � bHn.ux; u�1y/

im
du: (6.75)

The second term on the right-hand side of (6.75) converges to 0 as m ! 1 sinceh
1 � bHn.ux; u�1y/

i
< 1 8 u >b�FDH,n.x;y/. ut

Cazals et al. (2002) discuss how m can be sensibly chosen in applications using
their input- and output-oriented conditional order-m estimators; one can use similar
criteria with the unconditional hyperbolic order-m estimator. In addition, as with
the Cazals et al. estimators, by letting m ! 1 at an appropriate rate as n ! 1,
b�m;n.x;y/ can be used to estimate �.x;y/. This is apparent when one considers the
result in Lemma 6.5.1 in conjunction with Corollary 4.1 in Wheelock and Wilson
(2008), which demonstrates thatb�FDH;n.x;y/ converges to �.x;y/ as n ! 1. As
remarked by Cazals et al., m can be viewed as a “trimming” parameter. The next
result formalizes these ideas.

Theorem 6.5.2 Under Assumptions 6.2.2–6.2.6, for m D m.n/ a sequence in n
such thatm.n/ D O .ˇn log.n/H.x;y// where ˇ > 1

pCq ,

n1=.pCq/ 	b�m.n/;n.x;y/� �.x;y/



d�! Weibull
	

pCq
H;0 ; p C q




where H;0 is a constant given in Wheelock and Wilson (2008, (A.7)).

Proof. By Corollary 4.1 appearing in Wheelock and Wilson (2008),

n1=.pCq/ .b�FDH;n.x;y/ � �.x;y// d�! Weibull
	

pCq
H;0 ; p C q



: (6.76)

Using (6.75), it is clear that

n1=.pCq/ 	b�m.n/;n.x;y/� �.x;y/



D n1=.pCq/ Œb�FDH;n.x;y/ � �.x;y/�

C
Z 1

b�FDH,n.x;y/

h
1 � bHn.ux; u�1y/

im
du: (6.77)

Hence m D m.n/ must be such that the last term on the right-hand side of
(6.77) is op.1/ as n ! 1. Let bSxy.u/ D Œ1 � bHn.ux; u�1by� so that the

integral in this term can be written as
R1
b�FDH,n.x;y/

h
bSxy.u/

im
du. Then, using the
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integral mean value theorem, this integral can be written as
�
v.n.x;y//; v1

� hbSxy.eu/
im

where eu 2 �
v1; v.n.x;y//

�
and n.x;y/ D Pn

iD1 I.xi � x;y i � y/. Since the
support of .X ;Y / is compact, the ranges of both X and Y are bounded. Also, for
eu > b�FDH,n.x;y/, bSxy.eu/ is bounded by n.x;y/�1

n.x;y/
. Hence, the integral in the last

term on the right-hand side of (6.77) is op.1/ provided
h
n.x;y/�1
n.x;y/

im.n/ D Op
�
n�ˇ�,

where ˇ > .p C q/�1. Since log
	
n.x;y/�1
n.x;y/




 � 1

n.x;y/
and n.x;y/ 
 nH.x;y/,

it follows that m.n/ log
	
n.x;y/�1
n.x;y/




 m.n/

nH.x;y/
D O .�ˇ logn/; hence m.n/ D

O .ˇn log.n/H.x;y//. ut
Example 6.5.1 Figure 6.3 shows 250 observations from the DGP introduced in
Example 6.2.1 in each of the figure’s three panels (the data are the same across
panels). In panel (a), the hyperbolic order-m (m D 50) frontier is shows as a dashed
curve, and its estimate is traced by the irregular solid curve. Similarly, in panel (b),
the conditional input order-m (m D 50) frontier is shown with its estimate, while
in panel (c), the conditional output order-m (m D 50) frontier is shown with its
estimate. Comparing the three panels in Fig. 6.3, it is apparent that the hyperbolic
order-m frontier estimate is smoother than either of the conditional order-m frontier
estimates. Conditioning on either input or output levels causes large jumps in the
frontier estimates in panels (b) and (c).

Columns 2–4 of Table 6.2 give hyperbolic order-m efficiency estimates for the
Charnes et al. (1981) data. As expected, increasingm from 35 to 70 and then to 170
reduces the value of the efficiency estimates.

6.6 Monte Carlo Results

In order to examine using Monte Carlo methods the bias, variance, and mean-square
error properties of the estimators discussed in Sects. 6.3, 6.4, and 6.5, it is first
necessary to simulate a DGP. Forp input quantities and q output quantities, consider
the unit .pCq� 1/-sphere centered at the origin in .pCq/-space.9 Let z be a draw
from the uniform distribution on the surface of the unit .pC q� 1/-sphere centered
at the origin. The vector z has length .p C q/, and can be partitioned by writing
z D �

zx zy
�

where zx has length p and zy has length q.
Now define

ex D 1 � jzxj (6.78)

and
ey D jzy j: (6.79)

9 Recall that for any natural number d , a unit d -sphere is the set of points in .d C 1/-dimensional
Euclidean space lying at distance one from a central point; the set of points comprises a d -
dimensional manifold in Euclidean .d C 1/-space.
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Fig. 6.3 Estimated order-m frontiers (m D 50, n D 250)

Then .ex � 1;ey/ represents a draw from the uniform distribution on the surface
defined by the intersection of the unit .pC q � 1/-sphere centered at the origin and
the closed orthant in R

pCq defined by the Cartesian product R
p� � R

q
C. The addition

of 1 to �jzxj on the right-hand side of (6.78) amounts to shifting this surface one unit
in the positive direction along the axes in R

p-space. In the case where p D q D 1,
.ex;ey/ represents a draw from the uniform distribution on the northwest quarter of a
circle of radius 1 centered at .1; 0/ in R

2.
A draw z from the uniform distribution on the surface of the unit .p C q �

1/-sphere can be simulated using the method of Muller (1959) and Marsaglia
(1972). First, generate a pseudo-random vector u from the .p C q/-variate normal
distribution with zero means and variance-covariance matrix equal to a .p C q/

by .p C q/ identity matrix. In order to introduce inefficiency, I first generate a
point .ex;ey/ lying on the frontier described above, and then project this point away
from the frontier randomly by drawing a pseudo-random value � � Exp.3/ and
computing x D ex.1 C �/ and y D ey.1 C �/�1 to generate a point .x;y/ lying



144 P.W. Wilson

a random (exponential) distance from the frontier, in the interior of P , along a
hyperbolic path from the frontier.10

Generating observations as described above for DGPs with p D q 2 f1; 2; 3g,
I performed a series of Monte Carlo experiments to evaluate the performance of
the hyperbolic efficiency estimators developed in earlier sections. In each case, a
fixed point of interest .x0;y0/ was defined by setting each element of z0 equal to
.p C q/�1=2 (so that z0

0z0 D 1) and then computing .ex0;ey0/ using (6.78)–(6.79).
The fixed point of interest is obtained by setting x0 D ��1

0 ex and y0 D �0ey0,
where �0 D �.x0;y0/ D 0:6 is the “true” level of efficiency defined by (6.11) to be
estimated by the DEA and FDH estimators.

Each Monte Carlo experiment consisted of 2,048 trials. On each trial, data were
generated, and efficiency for the fixed point of interest was estimated. Then Monte
Carlo estimates of bias, variance, and mean-square error (MSE) was computed using
the true value of efficiency given above. Results for the hyperbolic DEA estimators
b�DEA;n.x0;y0/ andb�DEA�;n.x0;y0/ are given in Table 6.3.

The results in shown in Table 6.3 indicate that for both of the hyperbolic DEA
estimators, bias, variance, and MSE all decrease as the sample size increases,
holding dimensionality constant. For a given sample size, bias, variance, and MSE
each increase with increasing dimensionality. Both of these patterns are consistent
with the theory developed in Sect. 6.3. In addition, the results suggest that the
estimator b�DEA;n.x0;y0/ defined by the non-linear program in (6.46) is more
efficient than the alternative estimatorb�DEA�;n.x0;y0/ defined by the linear program
in (6.50) and employing the transformation of the input-output space in (6.47). In
every case represented in Table 6.3, the alternative estimator has larger MSE than
the estimatorb�DEA;n.x0;y0/.

Table 6.4 shows similar results for the hyperbolic FDH estimator defined in
(6.62). As with the hyperbolic DEA estimators, for given dimensionality, increasing
the sample size reduces both bias and variance, and hence MSE. Holding sample
size constant, increasing the dimensionality leads to increases in both bias and
variance, and hence MSE. These results are consistent with the theoretical results in
Wheelock and Wilson (2008) that were discussed in Sect. 6.4.

Comparing results for the DEA estimators in Table 6.3 with those for the FDH
estimator in Table 6.4 reveals that in each of the 12 cases considered, both of the
DEA estimators have smaller bias, variance, and MSE than the FDH estimator. In
addition, for a given dimensionality, MSE of the FDH estimator declines less rapidly
than MSE of the DEA estimators. For example, with p D q D 3, dividing the MSE
corresponding to n D 1;000 by the MSE corresponding to n D 10 yields 0.24845
for the FDH estimator, but only 0.002396 for the DEA estimatorb�DEA;n.x0;y0/. In
other words, when the sample size increases from 10 to 1,000, the MSE of the DEA
estimator declines by about 99.76%, while the MSE of the FDH estimator declines
by only about 75.15%. This is to be expected since the FDH estimator has a slower
convergence rate than the DEA estimators.

10 The notation Exp(3) denotes an exponential distribution with parameter 3; hence E.�/ D 1=3.
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Table 6.4 Performance of hyperbolic FDH estimator

b�FDH;n.x;y/

p D q n Bias Var MSE

1 10 2.0246E�01 1.9895E�02 6.0887E�02
1 100 5.0597E�02 7.9889E�04 3.3589E�03
1 1,000 1.4683E�02 6.3263E�05 2.7886E�04
1 10,000 4.5313E�03 5.2999E�06 2.5833E�05

2 10 3.8546E�01 2.8594E�02 1.7717E�01
2 100 1.6011E�01 3.6050E�03 2.9240E�02
2 1,000 7.5936E�02 6.3692E�04 6.4032E�03
2 10,000 3.9857E�02 1.5461E�04 1.7432E�03

3 10 4.6633E�01 4.3366E�02 2.6083E�01
3 100 2.2331E�01 4.2423E�03 5.4110E�02
3 1,000 1.3022E�01 1.1161E�03 1.8075E�02
3 10,000 7.8372E�02 3.3769E�04 6.4799E�03

Performance of the hyperbolic order-m estimators discussed in Sect. 6.5 was
examined in the same experimental framework. However, for a particular order
m, it is difficult to determine analytically the “true” value �m.x0;y0/ defined in
Theorem 6.2.1 that is to be estimated byb�m;n.x0;y0/ defined in (6.66). In order to
determine �m.x0;y0/ for each value of m considered in each of the three cases
where p D q D 1, 2, or 3, initial Monte Carlo experiments were performed
with 2,048 trials and a sample size of 33,600,000. On each trial, b�m;n.x0;y0/ was
approximated using (6.68) with B D 1;000;000; the results were then averaged
over Monte Carlo trials in order to approximate �m.x0;y0/. Then, a second set
of Monte Carlo experiments were performed, identical to those in the first set
except that the sample size was set at 42,000,000 – 25% larger than in the first
set of experiments. The approximated values of �m.x0;y0/ were compared to the
corresponding approximations from the first set of experiments. For every pair of
corresponding approximations, the results were identical to at least 5 digits to the
right of the decimal point.

Using the “true” values of �m.x0;y0/ obtained from the initial Monte Carlo
experiments, I then performed a second set of experiments to evaluate the perfor-
mance of hyperbolic order-m estimator b�m.x0;y0/ defined in (6.68) with B D
2;000 to reflect the number of replications in (6.68) an applied researcher might
reasonably use. I considered four values of the order m 2 f10; 50; 100; 200g for
each of the sample sizes used in the previous experiments. Results for estimated
bias, variance, and MSE are given in Table 6.5.

The results in Table 6.5 confirm that bias, variance, and consequently MSE
decrease as n increases, in every case. The results also indicate that for the same
sample size n and the same number of dimensions, the order-m estimators have
smaller MSE than the FDH estimator for the values of m that were considered.
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Of course, Lemma 6.5.1 establishes that as m ! 1, the order-m estimator
converges to the FDH estimator; but for the particular values of m considered here,
the order-m estimators have smaller MSE than the FDH estimator.

Comparing the MSEs of the DEA and order-m estimators reveals additional
phenomena. For p D q D 1, the DEA estimatorb�DEA;n.x0;y0/ has smaller MSE
than the order-m estimators for any of the values of m that were considered. With
p D q D 2, however, the corresponding MSE estimates are more similar between
the DEA and order-m estimators, and when p D q D 3, the order-m estimators
outperform the DEA estimator in terms of MSE in many cases, particularly as
sample size increases beyond 10. This is to be expected; the DEA estimator incurs
the curse of dimensionality, while the order-m estimators do not.

6.7 Conclusions

In this paper I provide two easily-computable estimators of the hyperbolic measure
of technical efficiency proposed by Färe et al. (1985). The estimators do not
require an assumption of constant returns to scale. Asymptotic results, including
consistency, rates of convergence, and the limiting distribution are derived. In
addition, an unconditional, hyperbolic order-m estimator of technical efficiency and
its asymptotic properties are derived by extending results from Cazals et al. (2002)
for their conditional, input-oriented order-m estimator.

As discussed in the Introduction, measuring efficiency along hyperbolic paths
rather than along paths parallel either to input or output axes avoids results that
might depend on the slope of the production frontier in the neighborhood where
an inefficient observation is projected onto the frontier using either input- or
output-oriented efficiency scores. This problem has been discussed by Wheelock
and Wilson (2008, 2009). Wheelock and Wilson (2009) used the unconditional,
hyperbolic order-˛ measure of efficiency to construct Malmquist-type productivity
indices. Similar indices can be constructed using either the hyperbolic measure of
efficiency �.x;y/ defined in (6.11) or the expected unconditional, hyperbolic order-
m measure �m.x;y/ defined in (6.27).

Avoiding the choice between input- and output-orientation is potentially even
more important in dynamic settings where Malmquist indices and their components
are estimated. With cross-period comparisons needed to define such indices, the
sensitivity of results to the choice of input- or output orientation is more likely to
arise than in cross-sectional settings. Whereas a firm might lie near the middle of
the range of the data for one period, it might lie near the steeply-sloped or nearly
flat portions of the frontier prevailing in the other period, in which case estimates of
productivity or efficiency change may be highly sensitive to the choice of input- or
output-orientation.

Moreover, from a practical viewpoint, the cross-period comparisons used to
estimate changes in technology often result in infeasible solutions when input- or
output-oriented DEA or FDH estimators are used. In particular, it is sometimes the
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case that a firm’s position in one period is either above or to the left of the frontier
estimate in another period; in the former case, cross-period, input-oriented DEA
or FDH efficiency estimates cannot be computed, while in the latter case, cross-
period output-oriented estimates cannot be computed. Similar problems exist for
the input- and output-oriented conditional order-m and order-˛ estimators of Cazals
et al. (2002) and Daouia and Simar (2007). Measuring efficiency along hyperbolic
paths avoids these problems.
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Chapter 7
Explaining Efficiency in Nonparametric
Frontier Models: Recent Developments
in Statistical Inference

Luiza Bădin and Cinzia Daraio

Abstract The explanation of efficiency differentials is an essential step in any
frontier analysis study that aims to measure and compare the performance of
decision making units. The conditional efficiency measures that have been intro-
duced in recent years (Daraio and Simar, J. Prod. Anal. 24:93–121, 2005) represent
an attractive alternative to two-step approaches, to handle external environmental
factors, avoiding additional assumptions such as the separability between the input-
output space and the space of external factors. Although affected by the curse
of dimensionality, nonparametric estimation of conditional measures of efficiency
eliminates any potential specification issue associated with parametric approaches.
The nonparametric approach requires, however, estimation of a nonstandard con-
ditional distribution function which involves smoothing procedures, and therefore
the estimation of a bandwidth parameter. Recently, Bădin et al. (Eur. J. Oper. Res.
201(2):633–640, 2010) proposed a data driven procedure for selecting the optimal
bandwidth based on a general result obtained by Hall et al. (J. Am. Stat. Assoc.
99(486):1015–1026, 2004) for estimating conditional probability densities. The
method employs least squares cross-validation (LSCV) to determine the optimal
bandwidth with respect to a weighted integrated squared error (WISE) criterion.

This paper revisits some of the recent advances in the literature on handling exter-
nal factors in the nonparametric frontier framework. Following the Bădin et al. (Eur.
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J. Oper. Res. 201(2):633–640, 2010) approach, we provide a detailed description
of optimal bandwidth selection in nonparametric conditional efficiency estimation,
when mixed continuous and discrete external factors are available. We further pro-
pose an heterogeneous bootstrap which allows improving the detection of the impact
of the external factors on the production process, by computing pointwise confi-
dence intervals on the ratios of conditional to unconditional efficiency measures.

We illustrate these extensions through some simulated data and an empirical
application using the sample of U.S. mutual funds previously analyzed in Daraio and
Simar (J. Prod. Anal. 24:93–121, 2005; Eur. J. Oper. Res. 175(1):516–542, 2006;
Advanced Robust and Nonparametric Methods in Efficiency Analysis: Methodol-
ogy and Applications, Springer, New York, 2007a).

7.1 Introduction

The nonparametric envelopment estimators of frontiers and technical efficiency,
namely Data Envelopment Analysis (DEA, see Farrell 1957; Charnes et al. 1978)
and Free Disposal Hull (FDH, see Deprins et al. 1984) have been extensively
used in empirical studies aiming to estimate the efficiency scores of producers
from a wide variety of fields. The success of these nonparametric envelopment
methods is mainly due to the few assumptions required for specifying the Data
Generating Process (DGP). However, the nonparametric approach presents also
several limitations, namely the difficulty in carrying out statistical inference, the
curse of dimensionality and the influence of extreme values and outliers. Recent
advances on robust nonparametric efficiency estimation provide useful tools for
overcoming the main drawbacks of traditional nonparametric efficiency estimators,
such as FDH and DEA.

An increasing number of recent studies on efficiency and productivity include
external, environmental factors in the analysis of the performances of economic
producers. These environmental factors can be considered as exogenous variables,
which may influence the production process, but, unlike the inputs and the outputs,
are not under the control of the production unit. Including such factors in the analysis
can help not only explaining the differences in efficiency, but also improving the
management of the analyzed units.

A fully nonparametric setting which includes external variables in the frontier
model and permits use of conditional Debreu–Farrell efficiency scores and their
nonparametric estimators was developed by Daraio and Simar (2005, 2007a,
2007b), extending previous results from Cazals et al. (2002). Conditional effi-
ciency measures and their nonparametric estimators, including conditional FDH,
conditional DEA, conditional order�m and conditional order-˛ have proved to
be a useful tool for investigating the impact of external-environmental factors
on the performance of production units in a nonparametric framework. However,
nonparametric estimators require at some stage the estimation of a nonstandard
conditional distribution which depends on a smoothing parameter (bandwidth). So



7 Explaining Efficiency in Nonparametric Frontier Models 153

far, the bandwidth selection method was an open issue in this framework. Daraio
and Simar (2005) suggested to use the cross-validation or plug-in rules, but those
are based on marginal properties of the external, environmental variables and do not
consider the influence of these variables on the production process when estimating
the bandwidth.

Bădin et al. (2010) adapted the theoretical results from Hall et al. (2004) and Li
and Racine (2008) to the particular setting of conditional frontier estimation and
proposed a data-driven method for selecting the optimal bandwidth for nonparamet-
ric conditional efficiency estimation. Beside providing the optimal bandwidth, the
procedure allows detection of the components of the external variables that have no
influence on the production process.

This chapter revisits the method proposed by Bădin et al. (2010) and examines
the case where the external variables are vectors having both continuous and
discrete components, as opposed to the case considered by Bădin et al. (2010)
where all environmental variables are continuous. The paper is organized as follows.
Section 7.2 gives an overview of recent results in nonparametric frontier estimation
when external, environmental factors are included in the model, stressing advan-
tages as well as shortcomings of the different approaches. In Sect. 7.3 we present
the probabilistic formulation of the frontier model, the conditional measures of
efficiency, and their corresponding nonparametric estimators. Extending the results
of Bădin et al. (2010) we describe in detail how to handle mixed continuous and
discrete external factors in Sect. 7.4. In Sect. 7.5 we suggest a consistent bootstrap
approach to estimate pointwise confidence intervals for the ratios of conditional
to unconditional efficiency measures. We investigate the finite sample behavior of
the optimal bandwidth through simulated examples and an empirical application
using data on U.S. mutual funds. The simulation exercises, with univariate and
multivariate external factors, and with different impact of the external factors,
illustrate how to operationalize the statistical inference in this conditional frontier
setting. The chapter ends with a section discussing conclusions.

Throughout the chapter, we discuss the output orientation focusing on the
nonparametric conditional efficiency estimators. Similar results are straightforward
to derive for the input orientation case, which we leave as an exercise for the reader.

7.2 Introducing External Factors in Nonparametric Frontier
Models: An Overview on the Literature

For the most part, the literature on efficiency analysis focuses on the estimation of
production frontiers, which provide benchmarks against which economic producers
are evaluated. Recent studies have attempted to explain efficiency differentials by
including exogenous variables that cannot be controlled by the producer, but which
may influence the production process. From an economic viewpoint it is important
to identify the “particularities” of the production process or the economic conditions
that might be responsible for inefficiency, as well as to detect and analyze possible
influential factors that can determine changes in productivity patterns.
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The meaning and the economic role played by external, environmental variables
is strictly linked to the economic field firms are operating in. The choice of
environmental variables has to be done on a case-by-case basis, requiring knowledge
of the production process and its characteristics and by taking into account the
economic field of application.

In the efficiency literature, three main approaches have been proposed to explain
efficiency differentials by introducing external, environmental variables (denoted
below by Z).

First, the one-stage approach is based on including in the model the external
factorsZ as free-disposable inputs or outputs (see, for example, Banker and Morey
1986). The approach involves external variables Z as inputs or outputs in defining
the attainable set, but these are not active in the optimization for estimating the
efficiency scores. The method has several drawbacks since it requires restrictive
assumptions on the free disposability and convexity of the resulted (augmented)
attainable set and moreover the a priori specification of the favorable or unfavorable
role of the exogenous factors, since they may act either as free disposal inputs
or as undesired freely available outputs. Moreover, the linear programs involved
in defining the corresponding efficiency scores depend on the returns to scale
assumption made on the non-discretionary inputs or outputs. All these assumptions
look restrictive because quite often the analyst has not a clear view on the possible
influence of Z on the production process.

The second traditional approach is the so-called two-stage approach. Here,
the nonparametric efficiency estimates obtained in a first stage are regressed in a
second stage on covariates interpreted as environmental variables (see Färe et al.
1994, Simar and Wilson 2007, 2008 and all the references therein, as well as
the DEA’s bibliographies by Cooper et al. 2000 and Gattoufi et al. 2004). Most
studies using this approach have used either tobit regression or ordinary least squares
for estimating the second-stage parametric models. Simar and Wilson (2007) note
that “None of the studies that employ two-stage approaches have described the
underlying data-generating process. Since the DGP has not been described, there is
some doubt about what is being estimated in the two-stage approaches.” In addition,
DEA estimates are by construction biased estimators of the true efficiency scores.
Finally, a more serious problem arises from the fact that DEA efficiency estimates
are serially correlated and that the error term in the second stage is correlated
with the regressors. As stated by Simar and Wilson (2007) “consequently, standard
approaches to inference [...] are invalid.”

Simar and Wilson (2007) proposed a semi-parametric bootstrap-based approach
to overcome the problems of the traditional two-stage approaches outlined above.
In particular, Simar and Wilson (2007) proposed two bootstrap-based algorithms to
obtain valid, accurate inference in this framework. Still, the two-stage approach has
two inconveniences. First, it relies on a separability condition between the input-
output space and the space of the external factors, assuming that these factors have
no influence on the attainable set, affecting only the probability of being more or
less efficient, which may not hold in some situations. Second, the regression in
the second stage relies on strong parametric assumptions (e.g., linear model and
truncated normal error term).
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More recently, Park et al. (2008), suggested using a nonparametric model for
the second stage regression. Unfortunately, this two-stage approach also relies on
the separability condition between the input–output space and the space of external
factors that was mentioned above. It is important to note that neither Simar and
Wilson (2007) nor Park et al. (2008) advocated using the two-stage approach. The
goal of Simar and Wilson was to define a statistical model where a second-stage
regression would be meaningful, and to provide a method for valid inference in
the second-stage regression. Daraio et al. (2010) provide a test of the separability
condition that is required for the second stage regression to be meaningful, and
also remark that if this condition is not met, the first-stage estimates have no useful
meaning; see also Simar and Wilson (2010) for additional discussion.

A third, more general and appealing approach is the nonparametric conditional
approach proposed by Daraio and Simar (2005) in which conditional efficiency
measures are defined and estimated nonparametrically. The approach is based on
the extension of the probabilistic formulation of the production process proposed
by Cazals et al. (2002). Here the attainable set is interpreted as the support of some
probability measure defined on the input-output space and the traditional Debreu–
Farrell efficiency scores are defined in terms of a nonstandard conditional survival
function. The approach allows a natural extension of the model in the presence of
environmental factors, leading to conditional Debreu–Farrell efficiency measures.
The nonparametric estimators of conditional efficiency measures are then easily
defined by a plug-in rule, providing conditional FDH estimators as in Daraio and
Simar (2005) or conditional DEA estimators, as in Daraio and Simar (2007b). Since
the conditional efficiency estimators are based on a nonstandard conditional survival
function, smoothing procedures and the estimation of a bandwidth parameter are
required. Daraio and Simar (2005, 2007a) suggest using bandwidth selection meth-
ods, such as cross-validation and plug-in rules related to kernel density estimation
for the external variables Z. For estimating the density of Z, they propose the
likelihood cross-validation method based on a k-nearest neighbor technique. This
method has the merit of providing bandwidths with appropriate asymptotic rate, but
as observed by Daraio and Simar (2005), the resulting bandwidth does not possess
optimality properties in finite samples. Moreover, these methods do not take into
account the influence of the environmental variables on the production process while
determining the window size, since they are based only on marginal properties ofZ.

Regarding asymptotic properties of the nonparametric conditional estimators,
Jeong et al. (2008) proved their asymptotic consistency and derived the limiting
sampling distribution of the conditional efficiency estimators. Methods of statistical
inference in conditional frontier models continue to be developed.

Estimation of the bandwidth parameter in the nonparametric, conditional
approach was until recently an open issue. Bădin et al. (2010) proposed an adaptive
data-driven method for selecting the optimal bandwidth by extending theoretical
results obtained by Hall et al. (2004) and Li and Racine (2007, 2008) in the
context of conditional density or distribution function estimation to the frontier
framework. The approach is based on least squares cross-validation, and provides
a bandwidth which optimizes, in terms of integrated square error, the estimation
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of the conditional survival function involved, where the dependence between the
output variable and the external factorZ is implicit.

This paper provides further extensions to the nonparametric conditional approach
described above. The methodology applies to full conditional FDH as well as to
robust conditional estimators (order-m, order-˛). To improve the detection of the
impact of Z we propose an heterogenous bootstrap for constructing bootstrap con-
fidence intervals for the ratios of conditional to unconditional efficiency measures.

7.3 Conditional Efficiency: Probabilistic Model
and Nonparametric Estimation

The activity of production units is usually characterized by the feasible input-output
combinations which define the attainable set ‰, i.e.,

‰ D f.x; y/ 2 R
p
C � R

q
Cj x can produce yg; (7.1)

where x 2 R
p
C is the input vector required to produce the output vector y 2 R

q
C.

The probabilistic frontier model introduced by Cazals et al. (2002) assumes that
the set of observed production units represents a random sample of independent,
identically distributed observations from the population of input-output pairs .X; Y /
on R

p
C �R

q
C. Consequently, the production process can be fully characterized by the

joint distribution of X and Y , whose support is the production possibilities set ‰.
The support of the q-variate survivor function SY jX.yjx/ D Prob.Y � yjX � x/

can be interpreted as the attainable set of output values Y for a producer using an
input level x. For q D 1 and for any given x, the upper boundary of the support
of this conditional survivor function provides the production frontier, as defined by
Cazals et al. (2002), i.e.

'.x/ D supfy j SY jX.yjx/ > 0g: (7.2)

In the multiple output case (q � 1), it is more convenient to use radial distances

�.x; y/ D supf� j SY jX.�yjx/ > 0g (7.3)

for evaluating the efficiency level of a given point. Here �.x; y/ represents the
output-efficiency measure for a unit operating at level .x; y/ and is equivalent,
under free disposability of inputs and outputs, with the Farrell output-efficiency
score (Farrell 1957).

Daraio and Simar (2005) extended the probabilistic model by introducing
external environmental factors that are exogenous to the production process, but
which may influence the process and productivity patterns. Consider .X; Y;Z/ 2
R
p
C � R

q
C � R

t , where Z 2 R
t represents a vector of external variables and define

the following nonstandard conditional distribution:
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H.x; yjz/ D Prob.X � x; Y � yjZ D z/: (7.4)

Using the decomposition

Prob.X � x; Y � yjZ D z/ D Prob.Y � y j X � x;Z D z/ Prob.X � xjZ D z/

D SY jX;Z.yjx; z/FX jZ.xjz/;

where SY jX;Z.yjx; z/DH.x; yjz/=H.x; 0jz/ and FX jZ.xjz/DH.x; 0jz/, the con-
ditional output-efficiency measure can be defined by

�.x; yjz/ D supf�jSY jX;Z.�yjx; z/ > 0g D supf�jH.x; �yjz/ > 0g: (7.5)

The conditional order-m output efficiency measure can be introduced as follows.
For a given level of inputs x, drawm i.i.d. random variables Yi ; i D 1; : : : ; m from
SY jX;Z.yjx; z/ and define the set

‰z
m.x/ D f.u; v/ 2 RpCq

C j u � x; Yi � v; i D 1; : : : ; ng: (7.6)

This is a random set which depends on z since the Yi are generated through
SY jX;Z.yjx; z/. When the environmental variable Z takes the value z, the conditional
survivor of X and Y givenZ D z defines the data generating process which depends
on the exogenous environment represented by Z. The conditional order-m output
efficiency measure is defined as

�m.x; yjz/ D EY jX;Z. Q�z
m.x; y/ j X � x;Z D z/; (7.7)

where Q�z
m.x; y/ D supf� j .x; �y/ 2 ‰z

m.x/g. This can be computed as

�m.x; yjz/ D
Z 1

0

Œ1 � .1 � SY jX;Z.uyjx; z//m�du; (7.8)

where limm!1 �m.x; yjz/ D �.x; yjz/.
An alternative to the order-m partial frontier is the order-˛ quantile-type frontier

defined by Daouia and Simar (2007) and extended to conditional measures by the
same authors. The conditional order-˛ output efficiency measure given that Z D z
is defined as

�˛.x; yjz/ D supf� jSY jX;Z.�yjx; z/ > 1 � ˛g: (7.9)

The nonparametric conditional output-efficiency estimator is computed by sim-
ply replacing the unknown theoretical quantities in (7.5) by their empirical analogs
to obtain

b�n.x; yjz/ D supf�jbSY jX;Z.�yjx; z/ > 0g D supf�jbH.x; �yjz/ > 0g: (7.10)
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A nonparametric estimator of �m.x; yjz/ is given by

b�n;m.x; yjz/ D
Z 1

0

h
1 � .1 �bSY jX;Z.uyjx; z//m

i
du

D b�n.x; yjz/ �
Z b�n.x;yjz/

0

.1 �bSY jX;Z.uyjx; z//mdu: (7.11)

Since b�n;m.x; yjz/ ! b�n.x; yjz/ when m ! 1, the order-m conditional
efficiency score can again be viewed as a robust estimator of the conditional
efficiency score �.x; yjz/ when choosing m D m.n/ ! 1 with n ! 1. For
finite m, the corresponding frontier estimator will be more robust to outliers, since
it will not envelop all the data points.

A nonparametric estimator of �˛.x; yjz/ is provided in a similar way, by
plugging in its formula, the nonparametric estimator of SY jX;Z.yjx; z/. Formally,
it is defined as

b�n;˛.x; yjz/ D supf� jbSY jX;Z.�yjx; z/ > 1 � ˛g: (7.12)

Here also we have lim˛!1
b�n;˛.x; yjz/ Db�n.x; yjz/.

Estimation of the conditional distribution and survivor function involved in
(7.10), (7.11) and (7.12) requires smoothing procedures and consequently estima-
tion of a bandwidth parameter, which is crucial for providing a reliable estimator of
the conditional efficiency score. Daraio and Simar (2005, 2007a) propose selecting
the bandwidth by a cross-validation rule which is based on the estimation of the
marginal density of Z, using a nearest-neighbor technique. Although the resulting
bandwidth is of appropriate asymptotic order, it is not optimal for finite samples;
moreover it does not consider the influence that Z might have on the behavior of
Y given that X � x. For the conditional FDH case, with an univariate baseline
bandwidth h, we have

b�n.x; yjz/ � �.x; yjz/ D Op
�
.nht /�1=.pCq/�; (7.13)

as h ! 0 with nht ! 1 when n ! 1 (Jeong et al. 2008). For the unconditional
FDH, according to Park et al. (2000) we have

b�n.x; y/ � �.x; y/ D Op
�
n�1=.pCq/�: (7.14)

Bădin et al. (2010) proposed an adaptive, data-driven method which optimizes
the estimation of the conditional survivor function SY jX;Z.yjx; z/, where the
dependence between Y and Z for X � x is implicit. The optimal order of the
bandwidths for estimating the conditional survivor function SY jX;Z.yjx; z/ with
the kernel estimator bSY jX;Z.yjx; z/ is h � n�1=.tC4/ (see Li and Racine 2007;
for details see Bădin et al. 2010, the extension of Li and Racine’s results to the
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conditional frontier framework). Therefore, as observed by Jeong et al. (2008), the
rate of convergence of the FDH conditional efficiency estimators deteriorates to
n4=..tC4/.pCq//. Similar results are available for the order-m and order-˛ as well as
for the DEA version of the estimators.

7.4 Handling Mixed Continuous and Discrete External
Variables

In attempting to explaining efficiency differentials by analyzing the impact of
external factors, one is often confronted with situations where mixed continuous
and categorical data types are available. These may include, for example, the
type of economic environment, ownership and property rights, quality factors, or
environmental factors that might be represented by either continuous or discrete
variables. A general approach involves developing estimation procedures which
allow inclusion of both continuous and discrete exogenous variables. In the
following, we describe in detail how to handle multivariate mixed discrete and
continuous external variables when selecting the optimal bandwidth for estimating
the conditional survival function on which the conditional efficiency estimators are
based.

Denote by Z D .Zc;Zd / the vector of external variables, whereZc 2 R
r is the

r-dimensional subset of the continuous components of Z and Zd 2 Ds denotes the
subset of discrete components of Z.

Consider the conditional pdf of Y given X � x and Z D z, defined as

g.yjX � x; z/ D f .y;X � x; z/

g1.X � x; z/
D f .y;X � x; z/

gc1.X � x; zc jzd /Prob.Zd D zd /
; (7.15)

where f and g1 are respectively the joint and the marginal density in y and z and
gc1.X � x; zc jzd / denotes the density of Zc given Zd D zd .

Let X D f.Xi ; Yi ; Zi / j i D 1; : : : ; ng be the set of observed production units,
which can be viewed as a random sample of i.i.d. observations drawn from the joint
distribution of .X; Y;Z/ 2 R

p
C � R

q
C � R

t , with t D r C s. The estimate of the
conditional density in (7.15) can be written as

bg.yjX � x;Z D z/ D
bf .y;X � x; z/

bg1.X � x; z/

D n�1Pn
iD1 1I.Xi � x/Kh.Zi ; zc/K�.Zi ; zd /Lhy .Yi ; y/

n�1Pn
iD1 1I.Xi � x/Kh.Zi ; zc/K�.Zi ; zd /

;

(7.16)

where Lhy , Kh and K� are nonnegative generalized kernels, with bandwidths hy , h
and � respectively; these will be described in more detail below.
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Note that the number of observations used in the estimation above is Nx DPn
iD1 1I.Xi � x/, i.e. the number of observations in the sample where Xi � x.

Consequently, the selected bandwidths will be determined for a specific value of
x, but in order to simplify the notation, we will denote the bandwidths simply by
.hy; h; �/.

For the output variables Y we use the product kernel

Lhy .Yi ; y/ D
qY

jD1

1

hyj
L

 
Yij � yj

hyj

!
; (7.17)

where L.�/ is a traditional univariate kernel function. The kernel used for the
external factors Z is described in detail in the following section.

7.4.1 Kernel Smoothing with Mixed Continuous
and Discrete Data

Since the conditional efficiency estimators are based on the nonparametric estima-
tion of a conditional survival function and smoothing procedures for the external
variable Z, it is natural to involve methods which allow smoothing all the com-
ponents of Z, continuous or discrete. The classical nonparametric frequency-based
estimator for discrete distributions is based on splitting the data into cells according
to the distinct values taken by the categorical variables. This may result however, in
a large number of cells, sometimes exceeding the sample size, making the estimation
unfeasible. Many studies have overcome this issue by proposing kernel estimators
for categorical data. Perhaps the most desirable feature of kernel estimators for
discrete data is that there is no curse of dimensionality associated with smoothing
discrete probability functions, with the estimators achieving

p
n-consistency similar

to most parametric estimators.
The idea of kernel smoothing for discrete probability distributions can be traced

back to Aitchison and Aitken (1976), who proposed an extension of the kernel
approach from continuous to multivariate binary data as an alternative to the
classical frequency-based nonparametric estimator. The method allows extensions
for data with more than two categories, ordered or unordered, and can be further
generalized to handle mixed discrete and continuous data.

Titterington (1980) studied kernel-based density estimates for categorical data,
analyzing also several techniques for computing the smoothing parameter for
the case of multivariate, multi-category and even incomplete data. Wang and
Van Ryzin (1981) proposed a class of smooth weight function estimators for
discrete distributions, and provided a general procedure for choosing the weight
function smoothing parameter, which is the analogous to the smoothing parameter
of Aitchison and Aitken (1976). Various methods for computing the smoothing
parameter have been proposed and compared; e.g., jackknife likelihood or cross-
validation, minimizing the mean squared error and pseudo-Bayesian techniques.
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Although it is known that kernel smoothing is likely to introduce some finite
sample bias, the resulting estimators are superior to the frequency-based estimators,
significantly reducing the variance, which leads to an overall reduction in mean
square error.

Consider the probability function p.zd /D Prob.Zd D zd /, where Zd is an
unordered discrete variable assuming c distinct values f0; 1; 2; : : : ; c � 1g corre-
sponding to the possible outcomes of Zd . Aitchison and Aitken (1976) proposed
the following kernel estimator for p.zd /:

bp.zd / D 1

n

nX

iD1
l.Zd

i D zd /; (7.18)

where l.�/ is a kernel function defined by

l.Zd
i D zd / D

�
1 � � if Zd

i D zd

�=.c � 1/ otherwise,
(7.19)

with smoothing parameter � 2 Œ0; .c � 1/=c� and where fZd
1 ; : : : ; Z

d
n g is a random

sample on Zd . The range of � ensures that the kernel function is a pdf with mode
at zd D Zd . For � D 0, l.Zd

i D zd / becomes the indicator function and bp.zd /
simply estimates the probability function by the corresponding relative frequencies,
while for � assuming its upper bound, we have l.Zd

i D zd / D 1=c, thereforebp.zd /
becomes the uniform discrete distribution, whatever the data. This feature is very
appealing since for a uniform distribution, l.Zd

i D zd / is invariant with respect
to the data and seems reasonable to smooth out the corresponding component,
when detecting the irrelevant components of the conditioning variable. One possible
shortcoming of the previous kernel function could be that it depends on the support
of the data which is required to be known. This may be avoided by using the
following alternative:

Ql.Zd
i D zd / D

�
1 if Zd

i D zd

� otherwise,
(7.20)

where � 2 Œ0; 1�. We note again that the indicator function and the uniform weight
function are obtained as particular cases for � D 0 and � D 1, respectively.
However the above kernel function does not sum to 1. In order to avoid this problem,
the resulting probability estimator must be normalized accordingly. For practical
situations which also involve ordinal variables, particular weight functions able
to reflect the ordered status are needed, as for example near-neighbor weights.
Aitchison and Aitken (1976) suggested the following kernel function:

k.Zd
i D zd / D

�
c

j

�
�j .1� �/c�1;when jZd

i � zd j D j; for j 2 f0; : : : ; c � 1g:
(7.21)
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This weight function sums to 1, but for any c � 3 there is no value of � such that
the weights become constant. Wang and Van Ryzin (1981) proposed the following
ordered categorical kernel:

Qk.Zd
i D zd / D

8
<

:
1 � � if jZd

i � zd j D 0
1 � �
2

�jZdi �zd j if jZd
i � zd j � 1.

(7.22)

For alternative kernels for discrete data, or mixed continuous and discrete, see
Ouyang et al. (2006), Li and Racine (2008), and Li et al. (2009).

Using generalized product kernels, one can easily extend this approach to the
multivariate setting, allowing for mixed discrete and continuous variables, as well as
for ordered discrete variables, by replacing the kernel function with an appropriate
one. In determining the optimal bandwidths, the use of generalized kernels requires
more computational effort, but has the advantage of providing asymptotically
optimal smoothing for the relevant components of Z, while eliminating irrelevant
components by oversmoothing (the bandwidths for the continuous irrelevant com-
ponents converge to infinity and those for the discrete attain their upper extreme
values). Therefore we determine an optimal bandwidth for each component of Z
and detect in the same time irrelevant components of Z.

We develop below the kernel approach for mixed continuous and discrete
data in the conditional frontier framework. For the discrete components of the
environmental variable Z, we use the kernel proposed by Aitchison and Aitken
(1976) and defined in (7.19); our presentation follows Hall et al. (2004).

Consider the vector Zi D .Zc
i ; Z

d
i / of continuous and discrete components

of each observation, where Zc
i D .Zc

i1; : : : ; Z
c
ir / and Zd

i D .Zd
i1; : : : ; Z

d
is/, and

assume that Zd
ij takes the values 0; 1; : : : ; cj � 1. Now define the product kernel

Kh.Z
c
i ; z

c/ D
rY

jD1

1

hj
K

�
Zc
ij � zcj
hj

�
; (7.23)

where zc D .zc1; : : : ; z
c
r /, K is a traditional kernel function, and hj represents the

bandwidth for the continuous componentZc
ij with 0 < hj < 1 and i D 1; : : : ; n.

For the discrete components, consider

K�.Z
d
i ; z

d / D
sY

jD1

�
�j

cj � 1

�Nij
.1 � �j /1�Nij ; (7.24)

where zd D .zd1 ; : : : ; z
d
s /, Nij D 1I.Zd

ij ¤ zdj / and �1; : : : ; �s are the smoothing
parameters for the discrete components with 0 � �j � .cj � 1/=cj .

At the end, the kernel used for estimation will be the product of the kernels
defined in (7.23) and (7.24), i.e.,

K.Zi ; z/ D Kh.Z
c
i ; z

c/K�.Z
d
i ; z

d /: (7.25)
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7.4.2 Optimal Bandwidth Selection

The least squares cross-validation (LSCV) method is employed to find the optimal
values for hy , h and �. In terms of conditional efficiency estimates, we are mainly
interested in finding the optimal values for .h; �/ D .h1; : : : ; hr ; �1; : : : ; �s/, since
we will not use hy in estimating the conditional survival SY jX;Z.yjx; z/.

The criterion is based on a weighted integrated squared error (WISE). We have

WISE D
X

zd

Z
fbg.yjX � x;Z D z/� g.yjX � x;Z D z/g2

�g1.X � x; z/w.zc /d zcdy; (7.26)

where the integral is over .y; zc / and the sum is taken over all atoms of the
distribution ofZd . Here, w.zc/d zc has the role to avoid dividing by 0, or by numbers
close to 0, in the ratio bf .y;X � x; z/=bg1.X � x; z/ in (7.16). By straightforward
developments, it can be seen that the part ofWISE that depends on the bandwidths
.hy; h; �/ can be expressed as I1n � 2I2n, where

I1n D
X

zd

Z
bg2.yjX � x;Z D z/gc1.X � x; zc jzd /Prob.Zd D zd /w.zc/d zcdy

(7.27)
and

I2n D
X

zd

Z
bg.yjX � x;Z D z/f .y;X � x; z/w.zc /d zcdy: (7.28)

With the notation bG.x; z/D R bf 2.y;X � x; z/dy, the integrals I1n and I2n
become:

I1n D
X

zd

Z
bG.x; z/g

c
1.X � x; zc jzd /Prob.Zd D zd /

bg21.X � x; z/
w.zc/d zc (7.29)

and

I2n D
X

zd

Z
bg.yjX � x;Z D z/f .y;X � x; z/w.zc /d zc : (7.30)

Moreover, since bG.x; z/ can be expressed as

bG.x; z/ D 1

n2

nX

i1D1

nX

i2D1
Kh.Zi1 ; z

c/Kh.Zi2 ; z
c/K�.Zi1 ; z

d /K�.Zi2 ; z
d /

� 1I.Xi1 � x/1I.Xi2 � x/

Z
Lhy .Yi1 ; y/Lhy .Yi2 ; y/dy; (7.31)
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we obtain the following cross-validation approximations for I1n and I2n:

bI 1n D 1

n

nX

iD1

bG.i/.x;Zi /1I.Xi � x/w.Zc
i /

bg12.i/.X � x;Zi/
(7.32)

and

bI 2n D 1

n

nX

iD1

bf .i/.Yi ; X � x;Zi /1I.Xi � x/w.Zc
i /

bg1.i/.X � x;Zi /
; (7.33)

where by the subscript .i/ we indicate that the corresponding function of the data
was calculated by the leave-one-out rule, namely by deleting the i th observation
.Xi ; Yi ; Zi / from the sample f.X1; Y1;Z1/; : : : ; .Xn; Yn;Zn/g.

The optimal bandwidth .hy; h; �/ is then obtained by minimizing the cross-
validation criterion CV given by

CV.hy; h; �/ DbI 1n � 2bI 2n: (7.34)

In the case of two or more local minima, in order to avoid using too small
bandwidths, we select the second smallest of these resulting points, as recommended
in Hall et al. (2004).

Hall et al. (2004) and Li and Racine (2008) prove that the LSCV criterion
provides optimal bandwidths for the relevant components of Z, while for those
irrelevant, the corresponding elements of .h; �/ assume their upper extreme values,
and consequently, the respective components of Z are smoothed out. In practice,
this results in appropriate smoothing for the relevant components of Z and over-
smoothing for the potential irrelevant components.

Finally, we have to correct the resulting bandwidths by an appropriate scaling
factor, since the method provides the optimal bandwidths for estimating the
conditional pdf, while we are considering the estimation of the conditional cdf
(survivor) (for details regarding the correction, see Li and Racine 2007). The scaling
factor in our conditional frontier framework is n�q=..qCtC4/.tC4// where q is the
dimension of Y and t is the dimension of Z.

These bandwidths can be successfully used to estimate all the conditional
measures of efficiency discussed in Sect. 7.3: full, order-m and order-˛.

7.5 Improving the Detection of the Impact
of Z by Bootstrapping

Daraio and Simar (2005) proposed an effective methodology for detecting the
impact (positive, negative, neutral or variable) of the external factors on the
performance of the production units. The method is based on analyzing the shape
of a nonparametric regression curve of Qz D b�n.x; yjz/=b�n.x; y/, the ratio of the
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conditional to the unconditional efficiency scores, as a function of the conditioning
factor Z. An increasing regression in the input orientation case suggests that Z is
an unfavorable variable with negative effect on the production process, which may
be interpreted as an undesired output, while a decreasing regression suggests thatZ
is a favorable variable, having a positive effect on the production process, and may
be interpreted as a freely available input. Conversely, for the output orientation,
an increasing regression indicates that Z is a favorable variable with a positive
effect on the production process, while a decreasing regression suggests that Z
is an unfavorable variable, having a negative effect on the production process.
This approach provides satisfactory results not only for the case of univariate Z
but also for the multivariate case that needs more careful analysis in order to
recover the marginal impact of the components of Z to the production process. As
extensively explained and illustrated in Daraio and Simar (2007) the investigation
of the interaction effects may be very useful in this complex framework. The next
subsection and the following numerical examples illustrate this methodology.

7.5.1 A Heterogeneous Bootstrap on Qz

In this section we propose a bootstrap based procedure to test the impact of some
external-environmental factors on the production process, i.e., to test whether the
impact is real, or merely due to sampling variation. Our aim is to investigate the
sampling variation of the surface of Qz against Z1 and Z2. In this multivariate
setting, we propose a heterogeneous bootstrap approach which avoids the strict
assumption of the homogeneous bootstrap. Our approach allows to estimate point-
wise confidence intervals on the estimates of the smoothed nonparametric regression
of Qz against Z. It is based on the subsampling approach as suggested by Kneip
et al. (2008) and adapted to this complex framework a data driven procedure
suggested by Simar and Wilson (2009) for selecting the appropriate size of the
subsamples.

The subsampling bootstrap (drawing Qn<n observations out of the n) with
replacement or without replacement have the same behavior with Qn! 1 and Qn

n
! 0

when n ! 1. In this paper we apply the subsampling without replacement.
As smoothed nonparametric regression we use the local linear technique (Fan

and Gijbels 1996; Li and Racine 2007). We estimate the pointwise derivatives of
Qz against Z. In the case of multivariate Z we estimate the marginal derivatives
of Qz against each component of Z using the same procedure to detect interaction
effects described in Daraio and Simar (2007a). Pointwise derivatives capture the
varying response coefficients across the values of z, while the average derivatives
provide constant (fixed) response coefficients. The pointwise derivative captures the
local behavior of the shape of the regression function whereas the average derivative
gives an indication on the global behavior.

As also pointed out by Pagan and Ullah (1999, pp. 172–173), an important
statistical advantage of an average derivative estimator is its

p
n consistency
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and asymptotic normality, which is the usual rate of convergence of parametric
estimators. Moreover, the asymptotic rate of convergence is not affected neither
by the dimension t of Z, nor by the bandwidth h. On the contrary, pointwise
derivative estimators which are based on the data in the neighborhood of a point,
have less than

p
n rate of convergence and this rate depends on h, becoming worse

with an increasing t . The implication is that for statistical inference, one may need
much smaller samples with average derivative estimators compared to pointwise
estimators. Despite this disadvantage, pointwise estimates provide useful detailed
information able to characterize the behavior of variables that have a changing
behavior not normally distributed as it is usually the case e.g. for mutual funds data
that we will illustrate in the following.

We first fix a grid of values for Z1 and Z2 and study the sampling variation of
the estimator of Qz on this grid. Then we make a local linear fit on this grid. The
bootstrap is done by subsampling on X D f.Xi ; Yi ; Zi / j i D 1; : : : ; ng, keeping
the optimal bandwidth h estimated on the full sample using the method described in
the previous sections.

We compute basic bootstrap confidence intervals on the statistics of interest (the
ratiosQz and its derivatives) scaled by their appropriate scaling factors that are:

� Qn
n

� 4
.4Ct /.pCq/

� Qn
n

� 2
5

for the estimator of the ratios Qz and

� Qn
n

� 4
.4Ct /.pCq/

� Qn
n

� 1
5

for its derivatives, where Qn is the subsample size and n is the sample size. The
exponent of Qn

n
depends on the rates of convergence (see Simar and Wilson 2008 for

more details).

7.5.2 Simulated Examples with Univariate and Bivariate Z

For the simulated examples we consider the same convex model as in Simar (2007),
Daraio and Simar (2007a) and Bădin et al. (2010), with p D q D 2 and additive
output. The efficient frontier is defined by:

y.2/ D 1:0845.x.1//0:3.x.2//0:4 � y.1/ (7.35)

where y.1/, y.2/, and x.1/, x.2/ are the components of y and x, respectively. The
input and output variables are independent, X.j /

i � U.1; 2/ and QY .j /i � U.0:2; 5/

for j D 1; 2. The output efficient frontier is characterized by:
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Y
.1/
i;eff D 1:0845.X

.1/
i /

0:3.X
.2/
i /0:4

Si C 1
(7.36)

Y
.2/
i;eff D 1:0845.X

.1/
i /

0:3.X
.2/
i /0:4 � Y

.1/

i;eff : (7.37)

where Si D QY .2/i = QY .1/i represent the slopes of the random rays in the output space
for j D 1; 2.

The efficiencies are then simulated according to Ui � Exp.1=3/ in the case of
univariate Z and Ui � Exp.1=2/ in the multivariate case and the output variables
are defined by Yi D Yi;eff 	 exp.�Ui /.

7.5.2.1 Univariate Z

In this first example we introduce an environmental factor Z generated from the
Uniform distribution, Z�U.1; 4/, having a negative impact on the production
process till a value of 2:5 and with a positive impact above this value.

We simulate a sample of n D 100 observations according to the following
scenario:

Y
.1/
i D Œ1C .Z � 2:5/2� 	 Y .1/i;eff 	 exp.�Ui/ (7.38)

Y
.2/
i D .1C jZ � 2:5j/ 	 Y .2/i;eff 	 exp.�Ui /: (7.39)

Table 7.1 presents the various measures of efficiency computed on this simulated
data set for 10 randomly selected units.

The robust measures of efficiency were computed using m D 10 and ˛ D 0:95.
In practice, the values for the tuning parameters m and ˛ are controlled by their

Table 7.1 Results for 10 random units from the simulated data in the case of univariate Z. N is
the number of observations dominating the corresponding unit and NZ , the number points used for
estimation given Z D z

Units N O�n.x; y/ O�n;˛.x; y/ O�n;m.x; y/ h Nz O�n.x; yjz/ O�n;˛.x; yjz/ O�n;m.x; yjz/
42 42 3:3069 3:1244 3:1196 0:4779 20 1:7369 1:4455 1:7369

19 0 1:0000 0:7973 0:8908 0:4964 9 1:0000 1:0000 1:0000

71 1 1:6448 1:6448 1:6448 1:2452 2 1:0000 1:0000 1:0000

3 4 1:2354 1:1248 1:2001 0:5691 3 1:1243 1:1243 1:1243

32 3 1:4312 1:2282 1:3217 0:6142 12 1:0000 1:0000 1:0000

35 20 1:7801 1:5273 1:6283 0:5104 24 1:0530 1:0000 1:0530

79 11 1:6905 1:4427 1:5548 0:4825 13 1:0000 1:0000 1:0000

35 20 1:7801 1:5273 1:6283 0:5104 24 1:0530 1:0000 1:0530

53 7 1:4792 1:2710 1:3463 0:5336 16 1:0000 1:0000 1:0000

39 1 1:1691 1:0000 1:1084 0:4835 7 1:1691 1:1691 1:1691

Mean 5.5 1:4820 1:3194 1:3802 1:1327 8.8 1:1441 1:1194 1:1441
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Fig. 7.1 Simulated example
with univariate Z. Smoothed
nonparametric regression of
b�n.x; yjz/=b�n.x; y/ on
Z (top panel), of
b�n;˛.x; yjz/=b�n;˛.x; y/ on
Z (middle panel) and of
b�n;m.x; yjz/=b�n;m.x; y/ on
Z (bottom panel)
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economic interpretation: a benchmark against the best m virtual competitors or
against a level of production with a probability .1�˛/� 100% of being dominated.

For the nonparametric regression, we used a truncated gaussian kernel, but we
note that the results remain stable when other kernels with compact support are
used. The results are displayed in Fig. 7.1. The three panels (top for the FDH case,
middle for the ˛ frontier case and bottom for the m frontier) depict the ratios of
conditional to unconditional FDH, ˛ and m efficiency scores respectively, allowing
to detect the “U� shape” effect of Z on the production process, as expected.

7.5.2.2 Bivariate Z

We consider now a bivariate external factor Z D .Z1;Z2/ with two independent
components,Zj � U.1; 4/, j D 1; 2. The impact ofZ on the production process is
captured as follows:

Y
.1/
i D .1C 2 	 jZ1 � 2:5j3/ 	 Y .1/i;eff 	 exp.�Ui/
Y
.2/
i D .1C 2 	 jZ1 � 2:5j3/ 	 Y .2/i;eff 	 exp.�Ui/:
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Fig. 7.2 Simulated example with multivariate Z. Top panel: smoothed nonparametric regression

ofb�n.x; yjz/=b�n.x; y/ onZ1 forZ2’s quartiles. Bottom panel: smoothed nonparametric regression

ofb�n.x; yjz/=b�n.x; y/ on Z2 for Z1’s quartiles. The dashed line corresponds to the first quartile,
the solid line to the median and the dashdot line to the third quartile

We simulate nD 100 observations according to this scenario and we use a multi-
plicative quartic kernel with a vector of bandwidths h D .h1; : : : ; hr/ for Z and for
Y , a product gaussian kernel with hy D h0sy where h0 is an univariate bandwidth
and sy is the vector of empirical standard deviations of Y .

For a more detailed information on the impact of Z on the simulated production
process, Fig. 7.2 plots the ratios b�n.x; yjz/=b�n.x; y/ against Z1 (top panel) and
Z2 (bottom panel) at the three quartiles (first, median and third) of the other
component of Z. As we expected, we recover a cubic effect of Z1 and a neutral
effect of Z2. The same effects were obtained also for b�n;˛.x; yjz/=b�n;˛.x; y/ and
forb�n;m.x; yjz/=b�n;m.x; y/ (here we do not have outliers). Here we see that Z1 has
a cubic effect, while Z2 has no effect on the production process (Fig. 7.3).

The marginal effects can better be viewed in Fig. 7.4 which shows the surface
regression evaluated at the observations .Xi ; Yi ; Zi / but represented marginally,
as function of each component Z1 and Z2 separately. The lines in the pictures
represents local average lines of the points to stress the global effect. The cubic
effect for Z1 and the neutral effect for Z2 are again explicit.

To improve the analysis of the impact of Z we also construct basic bootstrap
confidence intervals for Qz and its derivative and plot the corresponding pointwise
intervals against Z1 and Z2. For this example we selected Qn D 84 (out of n D 100

observations) based on Simar and Wilson (2009). Looking at Fig. 7.5, bottom panel
we see that the derivative is negative up to Z1 D 2:5 and positive after this value,
suggesting (as also depicted in the upper panel) the shape of Qz (Fig. 7.6).
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Fig. 7.3 Smoothed nonparametric surface regression ofQz D b�n.x; yjz/=b�n.x; y/ onZ1 andZ2.
Adapted from Bădin et al. (2010)
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Fig. 7.4 Marginal view of the surface regression of Qz D b�n.x; yjz/=b�n.x; y/ on Z at the
observed points .Xi ; Yi ; Zi / viewed as a function ofZ1 (top panel) and relative derivatives (bottom
panel). Adapted from Bădin et al. (2010)

7.5.3 An Illustration on Mutual Funds Data

In this section we apply the heterogeneous bootstrap described in this section to the
sample of US Mutual Funds that was previously considered in several papers (see
Daraio and Simar 2005, 2006, 2007a; Bădin et al. 2010).
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Fig. 7.5 95% BB confidence intervals (dotted points) on Qz (solid line) against values of Z1 (top
panel) and 95% BB confidence intervals (dotted points) on the estimates of the derivatives of Qz

with respect to Z1 (solid line) against values of Z1 (bottom panel)
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Fig. 7.6 95% BB confidence intervals (dotted points) on Qz (solid line) against values of Z2 (top
panel) and 95% BB confidence intervals (dotted points) on the estimates of the derivatives of Qz

with respect to Z2 (solid line) against values of Z2 (bottom panel)
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Fig. 7.7 Scatterplot and smoothing nonparametric regression of Qz D b�n.x; yjz/=b�n.x; y/ on Z
(top panel) and estimates of the derivatives of Qz with respect to Z (bottom panel)

We selected the Aggressive-Growth category of Mutual Funds which seek rapid
growth of capital and may invest in emerging market growth companies. The
selection of variables is the same as in earlier studies (see Daraio and Simar 2006
for a detailed analysis), and we perform an input oriented analysis in order to
evaluate the performance of mutual funds in terms of their risk (as expressed by
standard deviation of return) and transaction costs (including expense ratio, loads
and turnover) management. The usual output in this context is given by the return
of the funds. In our illustration we use market risks as environmental variable
to investigate its effect on our data, i.e. if it is detrimental or favorable to the
performance of mutual funds in the period under consideration.

The subsample size selected for the analysis, based on the Simar and Wilson
(2009) method is Qn D 68 out of 129 observations; the bandwidths were computed
by applying the methodology described in Sect. 7.4.

The scatterplot, top of Fig. 7.7, together with the estimated derivatives, bottom
of Fig. 7.7 show that market risks do not have an impact on the mutual funds
performance.

Moreover, to assess the statistical meaning of this descriptive result we should
look at Fig. 7.8 that shows the basic bootstrap confidence intervals on the estimated
Qz (top panel) as well as the basic bootstrap confidence intervals on the estimated
derivatives of Qz (bottom panel). It appears that there is not a statistical impact of
market risks on the performance of mutual funds because the ratios Qz are flat, the
derivatives are constant and the zero is always contained in the pointwise confidence
intervals.
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Fig. 7.8 95% BB confidence intervals (dotted points) on Qz (solid line) against values of Z (top
panel) and 95% BB confidence intervals (dotted points) on the estimates of the derivatives of Qz

with respect to Z (solid line) against values of Z (bottom panel)

7.6 Conclusions

The measurement of the technical efficiency of the decision making units is indeed
informative as such for making comparisons and informing managers and policy
makers on existing differentials and potential improvements across a sample of
analyzed units. The step further in the analysis of technical efficiency is to relate
the obtained efficiency estimates to some external or environmental variables which
may affect the performance evaluation and may help explaining the obtained
efficiency differentials. The recently introduced conditional measures of efficiency
of full frontiers (FDH, DEA) and of partial frontiers (order-m and order-˛) represent
attractive fully nonparametric tools to evaluate the efficiency and explain the
influence of external factors on the production process.

In this paper we extend the results on nonparametric conditional approach on
two directions. On the one hand we focus on bandwidth selection for conditional
efficiency estimation when the external factors have both, continuous and discrete
components. Based on Bădin et al. (2010) approach for selecting the optimal
bandwidth (defined with respect to an integrated square error criterion) through
a data-driven method, we illustrate how to handle and implement the estimation
in the presence of both categorical and continuous external factors. The approach
has the appealing feature of detecting the irrelevant factors, as those conditional
components ofZ orthogonal to the dependent variable. Based on LSCV, the method
automatically detects the irrelevant components, by assigning to those irrelevant
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discrete conditioning components, smoothing parameters which assume their upper
extreme values, whereas for the continuous ones, provides large bandwidth param-
eters, smoothing out the respective components. In this setting, the partial frontiers,
conditional order-m and order-˛, have an advantage over the full conditional FDH
estimator: they capture better the effect of the discrete components of external
factors, providing more sensible information on conditional efficiency estimators.
Beside the

p
n-consistency and the robustness properties of their unconditional

counterparts, the conditional order-m and order-˛ encompass the effect, being able
to detect the influence of both continuous and discrete components of the external,
environmental factors, on the production process.

On the other hand, we improve the detection of the impact of external factors
on the production process using conditional frontier models. In order to do so
we apply a heterogeneous bootstrap approach to compute pointwise confidence
intervals on the ratios of conditional to unconditional efficiency measures and of
their derivatives. In this way, it is possible to assess whether the impact detected
with conditional measures is a real impact or is just the effect of sampling variation.
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Chapter 8
Estimation of a General Parametric Location
in Censored Regression

Cédric Heuchenne and Ingrid Van Keilegom

Abstract Consider the random vector .X; Y /, where Y represents a response
variable and X an explanatory variable. The response Y is subject to random right
censoring, whereas X is completely observed. Let m.x/ be a conditional location
function of Y given X D x. In this paper we assume that m.�/ belongs to some
parametric class M D fm� W � 2 ‚g and we propose a new method for estimating
the true unknown value �0. The method is based on nonparametric imputation for the
censored observations. The consistency and asymptotic normality of the proposed
estimator are established.

8.1 Introduction

Consider the random vector .X; Y /, where Y represents a (possible transformation
of a) response variable and X an explanatory variable. This chapter is concerned
with the estimation of a location functional of Y given X , when Y is subject to
random right censoring andX is completely observed. We suppose that this location
functional belongs to some parametric family.
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This problem has been widely studied in the literature when the location
functional is the conditional mean (see e.g. Stute (1993), Fygenson and Zhou
(1994), Van keilegom and Akritas (2000) among many others) or the conditional
median (see e.g. Buchinsky and Hahn (1998), Portnoy (2003), Yin et al. (2008),
Wang and Wang (2009) and the references therein). Here we focus attention on
L-functionals, given by

m.x/ D
Z 1

0

F �1.sjx/J.s/ds;

where F.yjx/ D P.Y � yjX D x/ is the conditional distribution of Y given
X D x, F �1.sjx/ D inffy W F.yjx/ � sg is the conditional quantile of order s, and
J.s/ is a weight function satisfying J.s/ � 0 for all 0 � s � 1 and

R 1
0
J.s/ds D 1.

This type of location functionals includes as special cases the conditional mean,
trimmed mean, or any other kind of weighted mean. The conditional median can be
regarded as a limiting special case, obtained when J.s/ puts all its mass on s D 1=2.

Another interesting special case is obtained for J.s/ D I.1 � ı < s � 1/=ı for
some 0 < ı < 1. Suppose the upper bound of the support of Y givenX D x is finite
(say equal to �x) and one is interested in the estimation of the support curve x ! �x .
The above choice of J yields a robust estimator of this curve for small values of ı,
and is an interesting alternative to the so-calledm-frontiers or ˛-frontiers, which are
based on order statistics of orderm or quantiles of order 0 < ˛ < 1 (see e.g. Cazals
et al. (2002) and Aragon et al. (2005)).

We suppose in this chapter that Y is subject to random right censoring, i.e. instead
of observing Y we only observe .Z;�/, where Z D min.Y; C / is the observed
survival time, � D I.Y � C/ is the censoring indicator, and the random variable
C represents the censoring time, which is independent of Y conditionally onX . Let
.Xi ; Zi ;�i/ (i D 1; : : : ; n) be n independent copies of .X;Z;�/.

In the context of regression with right censored responses it is well known that the
nonparametric kernel estimator of the conditional distribution F.�jx/ is inconsistent
in the right tail. The modeling of the above location functional m.x/ is therefore
especially attractive in this framework, since particular choices of J -functions
enable us to get rid of these inconsistent parts (see Sect. 8.2 for more details).

The goal of this chapter is to propose a new estimation method for m.x/, when
it is believed thatm.�/ belongs to the class

M D fm� W � 2 ‚g;

consisting of location functionals determined by a finite-dimensional parameter
vector � 2 ‚, where ‚ is a compact subset of IRd . The class M can be taken
equal to the class of polynomial functions of order d � 1, but any other parametric
class of “smooth” functions (in �) can be chosen as well.

The chapter is organized as follows. In the next section we introduce some
notation and explain in detail the proposed estimation procedure for �0, the true
unknown value of � . Section 8.3 gives the main asymptotic properties of the
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proposed estimator. In Sect. 8.4 we summarize the results of the chapter and give
ideas for future research, whereas the appendix contains the proofs of the main
asymptotic results.

8.2 Description of the Method

The estimator �n is defined as follows. First, we note that �0 can be written as

�0 D argmin� E
h� Z 1

0

F �1.sjX/J.s/ds �m�.X/
�2i

D argmin� E
h
.Y �m�.X//

2J.F.Y jX//
i

D argmin� E
h
.Z �m�.X//

2J.F.ZjX//�

C
R1
Z
.y �m�.X//

2J.F.yjX// dF.yjX/
1 � F.ZjX/ .1 ��/

i
:

The idea is now to estimate �0 by a minimizer �n of an empirical version of the
above quantity, namely

�n D argmin�2‚ n�1
nX

iD1

h
.Zi �m�.Xi //

2J. OF .Zi jXi//�i

C
R1
Zi
.y �m�.Xi //

2J. OF .yjXi// d OF .yjXi/
1 � OF .Zi jXi/

.1 ��i/
i
: (8.1)

Here, OF .yjx/ is the nonparametric kernel estimator of the conditional distribution
F.yjx/ proposed by Beran (1981):

OF .yjx/ D 1 �
Y

Zi�y;�iD1

�
1 � Wi.x; an/Pn

kD1 I.Zk � Zi /Wk.x; an/

�
; (8.2)

(when no ties are present), where

Wi.x; an/ D
K
�
x�Xi
an

�

Pn
kD1 K

�
x�Xk
an

� ;

K is a kernel function and fang is a bandwidth sequence.
Hence, the estimation procedure for �0 can be summarized as follows:

1. First, for fixed � , estimate the weighted squared error .Zi�m�.Xi//
2J.F.ZijXi//

of an uncensored observation .Xi ; Yi ;�i D 1/ by .Yi �m�.Xi//
2J. OF .Yi jXi//,
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where OF is defined in (8.2), and of a censored observation .Xi ; Ci ;�i D 0/ by a
nonparametric estimator of EŒ.Y �m�.X//

2J. OF .Y jX//jX D Xi; Y > Ci �.
2. Then, estimate �0 by minimizing the average of the weighted squared errors

obtained under the previous step.

Although the above idea of estimating �0 has never been considered in the present
context of nonlinear parametric estimation of a general location functional, similar
versions of this idea have been applied in other contexts. See e.g. Akritas (1996),
who, in the context of polynomial regression, first replaced all observations Zi
(censored and uncensored ones) by a nonparametric estimator bm.Xi/ ofm.Xi/, and
then applied a classical least squares procedure on the so-obtained ‘synthetic’ data
.Xi ;bm.Xi//. His method has the disadvantage that it is quite sensitive to the choice
of the bandwidth, as the bandwidth is playing an important role for both the censored
and the uncensored data. Another related methodology is given in Heuchenne and
Van Keilegom (2007), who consider the estimation of the conditional mean of Y
given X when the relation between Y and X is given by a nonparametric location-
scale model. They also replace the censored observations by some kind of synthetic
data estimated under the assumed location-scale model. Also see Pardo-Fernandez
et al. (2007) for a goodness-of-fit test in parametric censored regression.

For the presentation of the asymptotic results in the next section, we need to
introduce the following notation. Let H.yjx/ D P.Z � yjX D x/, Hı.yjx/ D
P.Z � y;� D ıjX D x/ (ı D 0; 1), F".yjx/ D P." � yjX D x/ and FX.x/ D
P.X � x/. The probability density functions of the above distribution functions
will be denoted by lower case letters. Also, let

��.x; z; ı; F / D
(
ı.z �m�.x//

2J.F.zjx// C .1� ı/

R
C1

z .y �m�.x//
2J.F.yjx//dF.yjx/

1� F.zjx/
)

(where EŒ��.X;Z;�; F /� D EŒ.Y � m�.X//
2J.F.Y jX//�), which implies that

the estimator �n can be written as

�n D argmin�2‚
nX

iD1
�� .Xi ; Zi ;�i ; OF /;

where OF is the Beran estimator defined in (8.2).

8.3 Asymptotic Results

We start by showing the convergence in probability of �n and of the least squares
criterion function. This will allow us to develop an asymptotic representation for
�nj � �0j (j D 1; : : : ; d ), which in turn will give rise to the asymptotic normality of
these estimators. The assumptions used in the results below, as well as the proof of
the two first results, are given in the appendix.
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Theorem 8.3.1. Assume (A1), (A2) (i), (A4) (i), (iv), (v) and (A7). Moreover, assume
that, J is continuously differentiable,

R 1
0
J.s/ds D 1; J.s/ � 0 for all 0 � s � 1,

FX is two times continuously differentiable, infx2RX fX.x/ > 0; ‚ is compact, �0 is
an interior point of ‚; andm�.x/ is continuous in .x; �/ for all x and � . Let

Sn.�/ D 1

n

nX

iD1
�� .Xi ; Zi ;�i ; OF /:

Then

�n � �0 D oP .1/;

and

Sn.�n/ D EŒ��0.X;Z;�; F /�C oP .1/:

The next result decomposes the difference �n ��0 into a sum of i.i.d. terms and a
negligible term of lower order. This decomposition will be crucial for obtaining the
asymptotic normality of �n.

Theorem 8.3.2. Assume (A1)–(A7). Then,

�n � �0 D ��1n�1
nX

iD1
�.Xi ; Zi ;�i /C

0

B@
oP .n

�1=2/
:::

oP .n
�1=2/

1

CA ;

where � D .�jk/ (j; k D 1; : : : ; d ),

�jk D E

�
@m�0.X/

@�j

@m�0.X/

@�k

�
;

� D .�1; : : : ; �d /
T , and for any j D 1; : : : ; d and i D 1; : : : ; n,

�j .Xi ; Zi ;�i / D @m�0.Xi /

@�j

n
�i.Zi �m�0.Xi//J.F.Zi jXi//

C.1 ��i/

R C1
Zi

.y �m�0.Xi//J.F.yjXi//dF.yjXi/
1 � F.Zi jXi/

)

CfX.Xi /
X

ıD0;1

Z
	j ..Xi ; z; ı/; .Zi ;�i //dHı.zjXi/;

where the function 	j is defined in the appendix.

We are now ready to state the asymptotic normality of �n.

Theorem 8.3.3. Under the assumptions of Theorem 8.3.2, n1=2.�n � �0/
d!

N.0;†/, where
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† D ��1EŒ�.X;Z;�/�T .X;Z;�/���1:

The proof of this result follows readily from Theorem 8.3.2.

8.4 Summary and Future Research

In this chapter we have proposed a new method to estimate the coefficients of a
parametric conditional location function, when the response is subject to random
right censoring. The proposed estimator is a least squares type estimator, for which
the censored observations are replaced by nonparametrically imputed values. The
consistency and asymptotic normality of the estimator are established.

In the future, it would be interesting to compare the proposed method with
other estimators that have been proposed in the literature, for instance, when the
conditional location is the conditional mean. The least squares estimators obtained
in this chapter can be introduced in a test statistic to test the validity of the assumed
parametric model, and it would be interesting to work out the asymptotic theory for
that test statistic. Finally, extensions of the current work to semiparametric models
(like the partial linear or single index model) can also be worked out based on the
results in this chapter.

Appendix

We first introduce the following functions, which are needed in the statement of the
asymptotic results given in Sect. 8.3:


.z; ı; yjx/ D .1 � F.yjx//
8
<

:�
y^zZ

�1

dH1.sjx/
.1 �H.sjx//2 C I.z � y; ı D 1/

1 �H.zjx/

9
=

; ;

	j .v
1; z2; ı2/ D @m�0.x

1/

@�j

("
ı1.z1 �m�0.x

1//J 0.F.z1jx1//

C .1�ı1/
R C1

z1 .y�m�0.x
1//J.F.yjx1//dF.yjx1/

.1 � F.z1jx1//2
#

.z2; ı2; z1jx1/

C .1 � ı1/

"R C1
z1 .y �m�0.x

1//J.F.yjx1//d
.z2; ı2; yjx1/
1 � F.z1jx1/

C
R C1

z1 .y �m�0.x
1//J 0.F.yjx1//
.z2; ı2; yjx1/dF.yjx1/

1 � F.z1jx1/

#)
;

j D 1; : : : ; d; where v1 D .x1; z1; ı1/:
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Let Tx be any value less than the upper bound of the support of H.�jx/ such that
infx2RX .1 � H.Txjx// > 0. For a (sub)distribution function L.yjx/ we will use
the notations l.yjx/ D L0.yjx/ D .@=@y/L.yjx/; PL.yjx/ D .@=@x/L.yjx/ and
similar notations will be used for higher order derivatives.

The assumptions needed for the results of Sect. 8.3 are listed below.

.A1/ .i/ na3n.logn/�3 ! 1 and na4n ! 0:

.ii/ The support RX of X is a compact interval.
.iii/ K is a density with compact support,

R
uK.u/du D 0 and K is twice

continuously differentiable.
.iv/ � is non-singular.

.A2/ .i/ There exist 0� s0 � s1 � 1 such that s1� infx F.Tx jx/; s0 � inf
fs 2 Œ0; 1�IJ.s/ ¤ 0g; s1 � supfs 2 Œ0; 1�IJ.s/ ¤ 0g and
infx2RX infs0�s�s1 f .F �1.sjx/jx/ > 0:

.ii/ J is three times continuously differentiable,
R 1
0
J.s/ds D 1 and J.s/ �

0 for all 0 � s � 1:

.A3/ FX is three times continuously differentiable and infx2RX fX.x/ > 0:

.A4/ .i/ L.yjx/ is continuous,
.ii/ L0.yjx/ D l.yjx/ exists, is continuous in .x; y/ and supx;y jyL0.yjx/j <

1;

.iii/ L00.yjx/ exists, is continuous in .x; y/ and supx;y jy2L00.yjx/j < 1;

(iv) PL.yjx/ exists, is continuous in .x; y/ and supx;y jy PL.yjx/j < 1;

.v/ RL.yjx/ exists, is continuous in .x; y/ and supx;y jy2 RL.yjx/j < 1;

.vi/ RL0.yjx/ exists, is continuous in .x; y/ and supx;y jy RL0.yjx/j < 1; for
L.yjx/ D H.yjx/ andH1.yjx/:

.A5/ For the density fX jZ;�.xjz; ı/ of X given .Z;�/, supx;z jfX jZ;�.xjz; ı/j<1,

supx;z j PfX jZ;�.xjz; ı/j < 1; supx;z j RfX jZ;�.xjz; ı/j < 1 .ı D 0; 1/.
.A6/ ‚ is compact and �0 is an interior point of‚. All partial derivatives ofm�.x/

with respect to the components of � up to order three exist and are continuous
in .x; �/ for all x and � .

.A7/ The functionEŒ.Y �m�.X//
2J.F.Y jX//� has a unique minimum in � D �0:

Proof of Theorem 8.3.1. We prove the consistency of �n by verifying the
conditions of Theorem 5.7 in van der Vaart (1998, p. 45). From the definition of
�n and condition .A7/, it follows that it suffices to show that

sup
�

jSn.�/ � S0.�/j !P 0; (8.1)

where S0.�/ D EŒ.Y � m�.X//
2J.F.Y jX//� D EŒ"2J.F"."jX//�: The second

statement of Theorem 8.3.1 then follows immediately from (8.1) together with the
consistency of �n. (8.1) is obtained by using (A2), the uniform consistency of the
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Beran (1981) estimator (given in Proposition A.3 of Van keilegom and Akritas
(1999)) and Theorem 2 of Jennrich (1969). �

Proof of Theorem 8.3.2. For some �1n between �n and �0,

�n � �0 D �
�
@2Sn.�1n/

@�@�T

��1
@Sn.�0/

@�
D �R�1

1n R2n:

First, we treat R2n:

R2nk D �2
n

nX

iD1

@m�0.Xi /

@�k

(
�i.Zi�m�0.Xi//J

0.F.Zi jXi//. OF .Zi jXi/�F.Zi jXi//

C .1��i/

"R C1
Zi

.y�m�0.Xi//J
0.F.yjXi//. OF .yjXi/�F.yjXi//dF.yjXi/

1�F.Zi jXi/

C
R C1
Zi

.y �m�0.Xi //J.F.yjXi//dF.yjXi/
.1 � F.Zi jXi//2 . OF .Zi jXi/ � F.Zi jXi//

C
R C1
Zi

.y �m�0.Xi //J.F.yjXi//d. OF .yjXi/� F.yjXi//
1 � F.Zi jXi/

#)

� 2

n

nX

iD1

@m�0.Xi /

@�k

(
�i.Zi �m�0.Xi //J.F.Zi jXi//

C .1 ��i/

R C1
Zi

.y �m�0.Xi //J.F.yjXi//dF.yjXi/
1� F.Zi jXi/

)
C oP .n

�1=2/

D R21nk CR22nk C oP .n
�1=2/;

k D 1; : : : ; d: DevelopingR21nk leads to

R21nk D � 2

n2an

X

i¤j
K
�Xi �Xj

an

�
	k.Vi ; Zj ;�j /C oP .n

�1=2/;

where Vi D .Xi ; Zi ;�i /: Next, we rewrite R21nk as

R21nk D �2
n2an

X

i¤j
fA�

k .Vi ; Vj /C EŒAk.Vi ; Vj /jVi �C EŒAk.Vi ; Vj /jVj �

� EŒAk.Vi ; Vj /�g C oP .n
�1=2/

D T n1;k C T n2;k C T n3;k C T n4;k C oP .n
�1=2/;
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where

Ak.Vi ; Vj / D K
�Xi �Xj

an

�
	k.Vi ; Zj ;�j /

and A�
k .Vi ; Vj / D Ak.Vi ; Vj / � EŒAk.Vi ; Vj /jVi � � EŒAk.Vi ; Vj /jVj � C EŒAk

.Vi ; Vj /�: Consider

EŒAk.Vi ; Vj /jVi � D
X

ıD0;1

Z Z
	k.Vi ; z; ı/K

�Xi � x

an

�
hı.zjx/fX .x/ d zdx

D an
X

ıD0;1

ZZ
	k.Vi ; z; ı/K.u/.hı.zjXi/� anu Phı.zjXi/CO.a2n//

� .fX.Xi /� anuf 0
X.Xi/CO.a2n// d zdu

D anfX.Xi /
X

ıD0;1

Z
	k.Vi ; z; ı/hı.zjXi/ d z CO.a3n/ D O.a3n/

(8.2)

for i D 1; : : : ; n; since

X

ıD0;1

Z

.z; ı; yjx/hı.zjx/d z D 0

for all x 2 RX and y � Tx: Hence, we also have EŒAk.Vi ; Vj /� D O.a3n/. In a
similar way, using three Taylor expansions of order 2, we get

EŒAk.Vi ; Vj /jVj � D anfX.Xj /
X

ıD0;1

Z
	k..Xj ; z; ı/; .Zj ;�j // dHı.zjXj /

C O.a3n/: (8.3)

Note that for T n
1;k , EŒT n1;k� D 0, resulting, by Chebyshev’s inequality, in

P.jT n1;k j > K.nan/�1/ � K�2.nan/2EŒ.T n1;k/2�

D 4K�2n�2X

j¤i

X

m¤l
EŒA�

k .Vi ; Vj /A
�
k .Vl ; Vm/�;

for any K > 0: Since EŒA�
k .Vi ; Vj /� D 0, the terms for which i; j ¤ l; m are zero.

The terms for which either i or j equals l or m and the other differs from l and m,
are also zero, because, for example when i D l and j ¤ m,

EŒA�
k .Vi ; Vj /EŒA

�
k .Vi ; Vm/jVi ; Vj �� D 0:
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Thus, only the 2n.n�1/ terms for which .i; j / equals .l;m/ or .m; l/ remain. Since
A�
k .Vi ; Vj / is bounded by CK.Xi�Xj

an
/CO.an/ for some constant C > 0; we have

(in the case .i; j / equals .l;m/) that

EŒA�2
k .Vi ; Vj /� � C 2an

Z
f 2
X.x/ dx

Z
K2.u/ du CO.a2n/ D O.an/:

The case .i; j / equals .m; l/ is treated similarly. It now follows that

T n1;k D oP .n
�1a�1

n /; (8.4)

which is oP .n�1=2/: By (8.2), (8.3), (8.4), we finally obtain

R21nk D �2
n

nX

iD1

X

ıD0;1

Z
	k..Xi ; z; ı/; .Zi ;�i //fX.Xi/dHı.zjXi/

C oP .n
�1=2/; k D 1; : : : ; d:

Finally, we treat the term R1n:

R1n D �2
n

(
nX

iD1

"
�i.Zi �m�1n.Xi //J.

OF .Zi jXi//

C .1 ��i/

R C1
Zi

.y �m�1n.Xi//J.
OF .yjXi//d OF .yjXi/

1� OF .Zi jXi/

#
@2m�1n.Xi /

@�@�T

�
nX

iD1

"
�iJ. OF .Zi jXi//C .1 ��i/

R C1
Zi

J. OF .yjXi//d OF .yjXi/
1 � OF .Zi jXi/

#

�
�@m�1n.Xi /

@�

��@m�1n.Xi/

@�T

��

D R11n.�1n; OF /CR12n.�1n; OF /:

Using the uniform consistency of the Beran (1981) estimator together with (A6), it
is clear that

R11n.�1n; OF /CR12n.�1n; OF / D R11n.�0; F /CR12n.�0; F /C oP .1/:

Since EŒR11n.�0; F /� D 0 and

EŒR12n.�0; F /� D 2E
h�@m�0.X/

@�

��@m�0.X/

@�T

�i
;
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we obtain that

R1n D 2E
h�@m�0.X/

@�

��@m�0 .X/

@�T

�i
C oP .1/:

This finishes the proof. �

Acknowledgements Financial support from IAP research network P6/03 of the Belgian
Government (Belgian Science Policy) is gratefully acknowledged (Cédric Heuchenne). Financial
support from IAP research network P6/03 of the Belgian Government (Belgian Science Policy),
and from the European Research Council under the European Community’s Seventh Framework
Programme (FP7/2007-2013)/ERC Grant agreement No. 203650 is gratefully acknowledged
(Ingrid van Keilegom).

References

Akritas, M.G. (1996). On the use of nonparametric regression techniques for fitting parametric
regression models. Biometrics, 52, 1342–1362.

Aragon, Y., Daouia, A., & Thomas-Agnan, C. (2005). Nonparametric frontier estimation: a condi-
tional quantile-based approach. Econometric Theory, 21, 358–389.

Beran, R. (1981). Nonparametric regression with randomly censored survival data. Technical
Report, University California, Berkeley.

Buchinsky, M., & Hahn, J. (1998). An alternative estimator for the censored quantile regression
model. Econometrica, 66, 653–671.

Cazals, C., Florens, J.P., & Simar, L. (2002). Nonparametric frontier estimation: a robust approach.
Journal of Econometrics, 106, 1–25.

Fygenson, M., & Zhou, M. (1994). On using stratification in the analysis of linear regression
models with right censoring. Annals of Statistics, 22, 747–762.

Heuchenne, C., & Van Keilegom, I. (2007). Nonlinear regression with censored data. Technomet-
rics, 49, 34–44.

Jennrich, R.I. (1969). Asymptotic properties of nonlinear least squares estimators. Annals of
Mathematical Statistics, 40, 633–643.

Pardo-Fernández, J.C., Van Keilegom, I., & González-Manteiga, W. (2007). Goodness-of-fit tests
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Chapter 9
On Convex Boundary Estimation

Seok-Oh Jeong and Byeong U. Park

Abstract Consider a convex set S of the form S D f.x; y/ 2 IRp
C � IRC j 0 �

y � g.x/g, where the function g stands for the upper boundary of the set S .
Suppose that one is interested in estimating the set S (or equivalently, the boundary
function g) based on a set of observations laid on S . Then one may think of building
the convex-hull of the observations to estimate the set S , and the corresponding
estimator of the boundary function g is given by the roof of the constructed convex-
hull. In this chapter we give an overview of statistical properties of the convex-hull
estimator of the boundary function g. Also, we discuss bias-correction and interval
estimation with the convex-hull estimator.

9.1 Convex-Hull Estimation

Consider a convex set S � IRp
C � IRC defined by S D f.x; y/ 2 IRp

C � IRC j 0 � y

� g.x/g, where the function g forms the upper boundary of the set S . Suppose that
one is interested in estimating the set S (or equivalently, the boundary function g)
based on a set of observations X n D f.X1; Y1/; .X2; Y2/; � � � ; .Xn; Yn/g laid on S .
A natural and popular estimator of S is the convex-hull of Xn defined by

OSD
n
.x; y/ 2 IRp

C � IRC
ˇ̌
ˇxDX>�; yD�>Y for some � � 0 such that 1>�D1

o
;
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where Y D .Y1; Y2; � � � ; Yn/>, X D ŒX 1; X2; � � � ; Xn�>, � D .�1; �2; � � � ; �n/>
and 1 D .1; 1; � � � ; 1/>. The corresponding estimator of g at x 2 IRp

C is Ogconv.x/ D
maxfy W .x; y/ 2 OSg, or equivalently

Ogconv.x/ D max
n
�>Y

ˇ̌
ˇx D X>� for some � � 0 such that 1>� D 1

o
: (9.1)

The problem arises in an area of econometrics where one is interested in evaluating
the performance of an enterprise in terms of technical efficiency, see Gattoufi et al.
(2004) for a comprehensive list of the existing literature on this problem.

By construction, the convex-hull estimator Ogconv.x/ always underestimates the
true boundary function g.x/ for all x 2 IRp. One may be interested in quantifying
the deviation Ogconv.x/ � g.x/. For this, the asymptotic properties of the deviation
have been investigated under the assumption that Xn is a set of iid copies of a random
vector .X ; Y / of which the distribution is supported on S . Kneip et al. (1998) proved
that the convex-hull estimator is a consistent estimator with rate of convergence
n�2=.pC2/. Gijbels et al. (1999), Jeong (2004), Jeong and Park (2006) and Kneip
et al. (2008) derived its sampling distribution. This chapter aims at providing an
overview of these works. Also we present a practical guide to utilizing them for
further analysis such as correcting the bias and constructing confidence intervals for
the boundary function.

9.2 Rate of Convergence

For the convergence rate of the convex-hull estimator Ogconv.x0/ at a given point
x0 2 IRp

C, we assume that

(A1) The boundary function g is twice continuously differentiable in a neighbor-
hood of x0, and its Hessian matrix r2g.x0/ is negative definite.

(A2) The density f of .X 1; Y1/ on f.x; y/ 2 S W k.x; y/ � .x0; g.x0//k � �g for
some � > 0 is bounded away from zero, where k � k is the Euclidean norm.

Theorem 1. Under the assumptions (A1) and (A2), we have

Og.x0/ � g.x0/ D OP .n�2=.pC2//: (9.2)

Proof. The proof is basically a special case of the proof of Theorem 1 in Kneip et al.
(1998). Define Bp.t; r/ D fx 2 IRp W kx � tk � rg and

Cr D B.x
.r/
0 ; h=2/ � IR; r D 1; : : : ; 2p;

where x
.2j �1/
0 D x0 � hej and x

.2j /
0 D x0 C hej for 1 � j � p, ej is the unit

p-vector with the j -th element equal to 1, and h is a positive number whose size
will be determined later. Let Ur denote the input observation X i 2 B.x

.r/
0 ; h=2/
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whose output observation Yi , denoted by Vr , takes the maximal value among those
Yi 0 such that .X i 0 ; Yi 0/ 2 Cr , i.e.,

.Ur ; Vr / D arg max fYi W .X i ; Yi / 2 Cr; i D 1; : : : ; ng ; r D 1; : : : ; 2p:

Then, we have

Ogconv.Ur / � Vr D g.Ur / C OP .n�1h�p/; r D 1; : : : ; 2p: (9.3)

In the above claim, the inequality follows from the definition of Ogconv, and the
equality from (A2) since then the number of points in Xn falling into S \ Cr is
proportional to nhp . Since the convex-hull of fUr W 1 � r � 2pg contains x0, one
may find wr � 0; 1 � r � 2p, such that x0 D P2p

rD1 wrUr and
P2p

rD1 wr D 1. This
with (A1) gives

2pX

rD1

wrg.Ur / D
2pX

rD1

wr

�
g.x0/ C g0.x0/>.Ur � x0/

�C OP .h2/

D g.x0/ C OP .h2/; r D 1; : : : ; 2p: (9.4)

The results (9.3) and (9.4) together with the concavity of the function Ogconv entail

g.x0/ � Ogconv.x0/

D Ogconv

 
2pX

rD1

wrUr

!
�

2pX

rD1

wr Ogconv.Ur /

�
2pX

rD1

wr Vr D
2pX

rD1

wrg.Ur / C OP .n�1h�p/

D g.x0/ C OP .h2/ C OP .n�1h�p/:

Taking h D n�1=.pC2/ completes the proof of the theorem. ut

9.3 Asymptotic Distribution

The asymptotic distribution of Ogconv was studied by Jeong and Park (2006). Here,
we outline their results, and discuss bias-correction and interval estimation based on
the results.

Under the assumption (A1), the matrix �r2g.x0/=2 is positive definite. Hence
we have a spectral decomposition for this matrix: �r2g.x0/=2 D PƒP T , where ƒ

is the diagonal matrix whose diagonal elements are the eigenvalues of �r2g.x0/=2
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and P is the orthonormal matrix formed by the associated orthonormal eigenvectors.
Consider a canonical transform: .X i ; Yi / 7! .X�

i ; Y �
i / with

X�
i D n1=.pC2/ƒ1=2P T .X i � x0/I

Y �
i D n2=.pC2/

˚
Yi � g.x0/ � rg.x0/T .X i � x0/

�

and write X �
n D f.X�

1 ; Y �
1 /; .X�

2 ; Y �
2 /; � � � ; .X�

n; Y �
n /g. Let Z�

conv.�/ be the roof of
the convex-hull of the transformed data X �

n :

Z�
conv.x�/ D max

n
�>Y � W x� D X�>� for some � � 0 such that 1>� D 1

o

with Y � D .Y �
1 ; Y �

2 ; � � � ; Y �
n /> and X� D ŒX�

1 ; X�
2 ; � � � ; X�

n�>. Due to Lemma 1
of Jeong and Park (2006), it follows that, with probability tending to one as n goes
to infinity,

Z�
conv.0/ D n2=.pC2/ f Ogconv.x0/ � g.x0/g : (9.5)

Under (A1), one can show that the new boundary function g�
n for .X�

i ; Y �
i / can

be locally approximated by y� D �x�>x�. Also, putting

�conv D
np

detƒ=f .x0; g.x0//
o2=.pC2/

; (9.6)

it holds that the density of .X�
i ; Y �

i / in the transformed coordinate system, denoted
by f �

n , is uniformly approximated by a constant in a neighborhood of the origin: for
any � # 0 as n ! 1,

supfnjf �
n .x�; y�/ � ��.pC2/=2

conv j W kx�k � �n1=.pC2/; �x�>x�

� �n2=.pC2/ � y� � �x�>x�g

goes to zero as n! 1. Now consider a new random sample

QX �
n D f. QX�

1 ; QY �
1 /; . QX�

2 ; QY �
2 /; � � � ; . QX�

n; QY �
n /g

from the uniform distribution on Cn;�conv where

Cn;�conv D
�

.x�; y�/ W jx�
j j � n1=.pC2/

p
�conv

2
for 1 � j � p;

�x�>x� � n2=.pC2/�conv � y� � �x�>x�
�

:

Note that the uniform density on Cn;�conv is n�1�
�.pC2/=2
conv . Let QZ�

conv be the version
of Z�

conv constructed from QX �
n . Lemma 2 of Jeong and Park (2006) asserts that the

asymptotic distributions of QZ�
conv and Z�

conv are the same.
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Theorem 2. (Jeong and Park 2006). Under (A1) and (A2), we have for z � 0:

P. QZ�
conv.0/ � z/ � P.Z�

conv.0/ � z/ �! 0

as n! 1, and hence, by (9.5), QZ�
conv.0/ and n2=.pC2/ f Ogconv.x0/ � g.x0/g have the

same limit distribution.
Below in this section we discuss bias-correction for Ogconv.x0/ and interval

estimation based on the estimator. For the moment, suppose that the constant �conv

is available. Consider U i � UniformŒ�1=2; 1=2�p and Wi D �U >
i U i � Vi , where

Vi � UniformŒ0; 1� is independent of U i . Then, we have

f. QX�
i ; QY �

i /g dD ˚�
n1=.pC2/p�conv � U i ; n2=.pC2/�conv � Wi

��
:

Let QZ��
conv.�/ be the version of QZ�

conv.�/ constructed from the .U i ; Wi /’s. Then,

QZ�
conv.0/ D max

n
�> QY � W 0 D QX�>

� for some � � 0 such that 1>� D 1
o

dD n2=.pC2/�conv � QZ��
conv.0/;

where QX� D Œ QX�
1 ; QX�

2 ; � � � ; QX�
n�>, QY � D . QY �

1 ; QY �
2 ; � � � ; QY �

n />, W D .W1; W2;

� � � ; Wn/> and U D ŒU 1; U 2; � � � ; U n�>. Thus, one may approximate the limiting
distribution of n2=.pC2/ f Ogconv.x0/ � g.x0/g by the convex-hull of .U i ; Wi /. One
can easily obtain an empirical distribution of QZ��

conv.0/ from a Monte Carlo experi-
ment as follows.

Algorithm to get an empirical distribution of QZ��
conv.0/.

I. Put b D 1.
II. Generate a random sample f.U .b/

1 ; W
.b/

1 /; : : : ; .U .b/
n ; W

.b/
n /g as follows:

U
.b/
i � Uniform Œ�1=2; 1=2�p ; V

.b/
i � Uniform Œ0; 1� ;

W
.b/

i D �U
.b/>
i U

.b/
i � V

.b/
i :

III. Compute QZ��.b/
conv .0/ using f.U .b/

1 ; W
.b/

1 /; : : : ; .U .b/
n ; W

.b/
n /g.

IV. Repeat II and III for b D 2; � � � ; B .
V. Compute the empirical distribution of QZ��.b/

conv .0/, b D 1; : : : ; B .

The constant �conv in (9.6) depends on the unknown quantities ƒ and
f .x0; g.x0//. We will discuss the estimation of �conv in Sect. 9.4. The asymptotic
bias of the convex-hull estimator Ogconv.x0/ is approximated by

EŒ Ogconv.x0/� � g.x0/ 	 n�2=.pC2/EŒ QZ�
conv.0/� D �convEŒ QZ��

conv.0/�;
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so that a bias-corrected estimator of g.x0/ is given by

Ogbc
conv.x0/ D Ogconv.x0/ � O�convEŒ QZ��

conv.0/�;

where O�conv is a consistent estimator of �conv. The expected value EŒ QZ��
conv.0/� may be

replaced by the Monte Carlo average of QZ��.b/
conv .0/ over 1 � b � B . A 100�.1�˛/%

confidence interval for g.x0/ can also be obtained. Let Q˛ denote the ˛-quantile of
the distribution of QZ��

conv.0/, i.e., P Œ QZ��
conv.0/ � Q˛� D ˛. Then, a 100 � .1 � ˛/%

confidence interval for g.x0/ is given by

� Ogconv.x0/ � O�convQ1�˛=2; Ogconv.x0/ � O�convQ˛=2

�
:

In practice, one may replace Q˛ by the corresponding empirical quantile of
f QZ��.b/

conv .0/gB
bD1.

9.4 Estimation of �conv Via Subsampling

The bias correction and the interval estimation discussed in the previous section
require a consistent estimation of the unknown constant �conv. Jeong and Park (2006)
and Park et al. (2010) discussed some methods for estimating the constant. Instead
of estimating �conv, Kneip et al. (2008) considered a subsampling technique for
approximating the asymptotic distribution of the convex-hull estimator. As noted
there and in other works, a naive bootstrap does not work in the case of boundary
estimation. Hall and Park (2002) suggested a bootstrap method based on translations
of an initial boundary estimator. Here we discuss the subsampling idea for boundary
estimation. The idea of subsampling as a way of estimating a sampling distribution
dates back to Wu (1990), and discussed further by Politis and Romano (1994),
Bickel et al. (1997), and Bickel (2003) among others. For a detailed account of
this technique and a collection of related works, see Politis et al. (1999).

Let OgSB
conv denote a version of Ogconv based on a subsample of size m drawn

randomly from the set of observations Xn. Denote by Fn the subsampling bootstrap
distribution of m2=.pC2/Œ OgSB

conv.x0/ � Ogconv.x0/� conditioning on Xn. Also, denote by
F the sampling distribution of n2=.pC2/Œ Ogconv.x0/ � g.x0/�. Finally, let dKS denote
the Kolmogorov-Smirnov metric for the space of distribution functions. Using the
technique of Kneip et al. (2008) and our Theorem 2, one can prove the following
theorem.

Theorem 3. Let m 
 m.n/ D nc for some constant 0 < c < 1. Under the
conditions of Theorem 2, it follows that dKS.Fn;F/ converges to zero in probability
as n! 1.

In the implementation of the m-out-of-n technique, the choice of m is a key issue.
This problem has been treated in a general context by Bickel (2003), and Bickel
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and Sakov (2008) for example. Here we give an alternative way of determining m,
specific to the context of convex-hull estimation, based on a regression idea. Note
that, according to Theorems 2 and 3, the conditional distribution Fn approximates
the distribution of n2=.pC2/�conv QZ��

conv.0/, denoted by F��. This implies that, asymp-
totically, the ˛-quantile Qn;˛ of Fn admits the following relation with the ˛-quantile
Q��

˛ of n2=.pC2/ QZ��
conv.0/:

Qn;˛ D �convQ
��
˛ ; 0 < ˛ < 1: (9.7)

One may obtain empirical values of Qn;˛ from repeated subsampling, and those
of Q��

˛ by simulating QZ��
conv.0/ repeatedly. For a large number B which is the

number of repetitions, one may get empirical quantiles Qn;b=B and Q��
b=B for

b D 1; : : : ; B � 1. The relation (9.7) suggests fitting a simple regression model
with f.Q��

b=B; Qn;b=B/gB�1
bD1 to estimate �conv by the fitted regression coefficient.

For each given m, one may calculate the value of a criterion that measures how
well f.Q��

b=B; Qn;b=B/gB�1
bD1 fit the regression model. As a criterion one may use the

residual sum of squares of the fit, or a measure of the prediction error. Then, one
can choose m that minimizes the criterion.

Algorithm to determine the subsample size m.

I. Choose a large number B and do II, III, IV below for a grid of c 2 .0; 1/.
II. Get QZ��.b/

conv .0/ for b D 1; : : : ; B by the algorithm in Sect. 8.3.
III. Generate B subsamples of size m D nc and compute m2=.pC2/Œ OgSB.b/

conv .x0/ �
Ogconv.x0/� for b D 1; : : : ; B .

IV. Identify the empirical quantiles Q��
b=B and Qn;b=B from the computed values of

n2=.pC2/ QZ��.b/
conv .0/ and m2=.pC2/Œ OgSB.b/

conv .x0/ � Ogconv.x0/�, respectively.
V. Find c that gives the minimal value of a goodness-of-fit measure for fitting a

straight line with the empirical quantiles Q��
b=B and Qn;b=B .

9.5 Conical-Hull Estimation

Conical-hull estimation arises when the maximal value of y for an x-value within
the support S admits the so-called “constant returns-to-scale”. The latter means that
an increase of x by a scalar factor gives an increase of y by the same scalar factor.
In other words, S is a convex cone with the boundary function g satisfying

g.ax/ D ag.x/ for all scalar a > 0: (9.8)

Park et al. (2010) developed a sound theory for the conical-hull estimator of the
boundary g that satisfies the above constant returns-to-scale property (9.8). In this
section, we briefly review their derivation of the asymptotic distribution of the
conical estimator. Here, we exclude the trivial case where g represents a hyperplane,
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i.e., g.x/ D c>x for some constant vector c. Also, we assume that, for all
x1; x2 2 IRp with x1 ¤ ax2 for any a > 0,

g.˛x1 C .1 � ˛/x2/ > ˛g.x1/ C .1 � ˛/g.x2/ for all ˛ 2 .0; 1/:

This means that g restricted to the space of x with kxk D c is strictly convex for all
c > 0.

When one knows that the underlying support S is a convex-cone, and thus the
boundary g satisfies (9.8), then one would use the conical hull of Xn defined below,
instead of the convex-hull OS as defined in Sect. 8.1:

OSconi D
n
.x; y/ 2 IRp

C � IRC W x D X>�; y D �>Y for some � � 0
o

;

where Y D .Y1; Y2; � � � ; Yn/>, X D ŒX1; X 2; � � � ; Xn�>, � D .�1; �2; � � � ; �n/>.
It can be verified that OSconi coincides with the convex-hull of the rays Ri D
f.aX i ; aYi / j a � 0g, i D 1; : : : ; n. The corresponding estimator of g is the conical-
hull estimator given by

Ogconi.x/ D max
n
�>Y

ˇ̌
ˇx D X>� for some � � 0

o
: (9.9)

To give the main idea of the derivation of the limiting distribution of Ogconi, fix
x0 2 IRp

C. Project each data point .X i ; Yi / along the ray Ri , i D 1; : : : ; n, onto
P.x0/ � IRC, where P.x0/ is the hyperplane in IRp

C which is perpendicular to x0

and passes through x0, that is, P.x0/ D fx 2 IRp
C j x>

0 .x � x0/ D 0g. Then, the
projected data point .X 0

i ; Y 0
i / is given by

.X 0
i ; Y 0

i / D kx0k2

x>
0 X i

.X i ; Yi /; i D 1; : : : ; n:

Define S0 D ŒP.x0/ � IRC� \ S , which is a section of S cut by P.x0/ � IRC. Then,
the upper boundary of S0 equals the locus of y D g.x/ for x 2 P.x0/, so that the
projected points .X 0

i ; Y 0
i / are all laid on S0. Also, the convex-hull, in P.x0/� IR, of

the projected points .X 0
i ; Y 0

i / coincides with the section of OSconi cut by P.x0/ � IR.
If we denote the convex-hull by OS0

conv, then

OS0
conv D ŒP.x0/ � IR� \ OSconi:

Thus, it follows that

g.x0/ D maxfy W .x0; y/ 2 S0g;
Ogconi.x0/ D maxfy W .x0; y/ 2 OS0

convg:
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Let Q be a p � .p � 1/ matrix of which the columns form an orthonormal basis
for x>

0 , the subspace of IRp perpendicular to x0. Then, P.x0/ is nothing else than
Œx0 C .the column space of Q/� \ IRp

C. Note that

X 0
i D x0 C Q

	 kx0k2

x>
0 X i

Q>X i



; i D 1; : : : ; n:

Consider a transform .x; y/ 2 IRp
C � IRC 7! .z; y0/ 2 IRp�1 � IRC such that

.z; y0/ D kx0k2

x>
0 x

.Q>x; y/:

In the new coordinate system .z; y0/, the projected data points .X 0
i ; Y 0

i / are
represented by .Z i ; Y 0

i /, where

Z i D kx0k2

x>
0 X i

Q>X i ; Y 0
i D kx0k2

x>
0 X i

Yi ; i D 1; : : : ; n:

Let y0 D g0.z/ represent the equation y D g.x/ in the new coordinate system
.z; y0/. It follows that g0.z/ D g.x0 C Qz/. Let Og0

conv be a version of Ogconv

constructed from .Z i ; Y 0
i /. For z 2 IRp�1,

Og0
conv.z/ D max

n
�>Y 0

ˇ̌
ˇ z D Z>� for some � � 0 such that 1>� D 1

o
;

with Y 0 D .Y 0
1 ; Y 0

2 ; � � � ; Y 0
n /> and Z D ŒZ 1; Z 2; � � � ; Zn�>. Then, since x0

corresponds to 0 in the new coordinate system, it can be shown that

g0.0/ D g.x0/; Og0
conv.0/ D Ogconi.x0/:

The above arguments imply that studying the statistical properties of the conical-
hull estimator of a p-variate boundary function that satisfies (9.8) is equivalent to
studying those of the convex-hull estimator of a .p � 1/-variate convex bound-
ary function. Hence, the convergence rate of the conical-hull estimator equals
n�2=..p�1/C1C1/ D n�2=.pC1/, and the asymptotic distribution of Ogconi.x0/ may be
derived from the results for the convex-hull estimators obtained by Jeong and Park
(2006). We refer to Park et al. (2010) for technical details.

9.6 Application to Productivity Analysis

Suppose that one is interested in measuring relative efficiencies of decision making
units (DMU’s) participating in a production activity. Let S be the set of all
technically feasible points .x; y/, called the production set, where x is the vector
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of p inputs used for the production activity and y is the produced output. Then,
the upper boundary of S , represented by the equation y D g.x/ for a function g

defined on IRp
C, forms the set of best production plans. In other words, the value of

g.x/ stands for the maximal amount of output attainable by using the input level x.
The set f.x; y/ W y D g.x/g is called the production frontier, and one may evaluate
the efficiency of a DMU by referencing it. Since each point in S corresponds to a
production activity of a specific DMU, Xn can be considered as a set of observations
on input and output levels observed from n DMU’s. In practice, since neither the
production set nor the production frontier are available, we have to estimate them
using Xn.

In economics it is often assumed that the production set S is convex and satisfies

.x; y/ 2 S ) .x0; y0/ 2 S if x0 � x and y 0 � y: (9.10)

The property (9.10) is referred to as free disposability, and (strict) convexity as
variable returns-to-scale (VRS). Convexity and free disposability of S imply that
the function g is monotone increasing and concave in x 2 IRp. In this case, the
convex-hull estimator defined in Sect. 8.1 is slightly modified to take into account
free disposability. Instead of the convex-hull OS of Xn, one uses as an estimator of S

the smallest free disposable set that contains OS , and as an estimator of g

Ogvrs
dea.x/ D max

n
�>Y W x � X>� for some � � 0 such that 1>� D 1

o
: (9.11)

The estimator at (9.11) is called the data envelopment analysis (DEA) estimator.
In addition to convexity and free disposability, it is often assumed that S satisfies

aS 
 S for all scalar a > 0;

which is referred to as constant returns-to-scale (CRS) property. The corresponding
production frontier g satisfies the identity g.ax/ D ag.x/ for all scalar a > 0. The
DEA estimator at (9.11) in this case is modified to

Ogcrs
dea.x/ D max

n
�>Y W x � X>� for some � � 0

o
: (9.12)

For some detailed discussion on the VRS and CRS assumptions from an economic
in

Cooper et al. (2000).
The free disposable version in (9.11) equals Ogconv in (9.1) with probability

tending to one in the region of x where the production frontier function g is strictly
increasing. This is Proposition 2 of Jeong and Park (2006). Also, it is easy to see that
Ogcrs

dea in (9.12) is identical to the estimator Ogconi defined at (9.9). Thus, under the free
disposability assumption, the limiting distributions of Ogvrs

dea and Ogcrs
dea are the same as

those of the estimators Ogconv and Ogconi, respectively, studied in Sects. 9.3 and 9.5.

point of view, one may refer to Chaps. 2 and 3 in Coelli et al. (2005) and Chap. 5
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As a final remark, we note that the problem of measuring the radial efficiency
in the full multivariate setup (with multiple inputs and multiple outputs) can be
translated to that of estimating a convex boundary function g with multiple inputs.
This is done by making a canonical transformation on the output space so that the
problem with multiple outputs is reduced to the case of a single output. The radial
efficiency of an input�output pair .x0; y0/ is defined by

�.x0; y0/ D supf� > 0 W .x0; �y0/ 2 Sg

for a production set S of input�output pairs .x; y/ 2 IRp
C �IRq

C. The canonical map
T on the output space introduces a new coordinate system on which the q outputs
turn into .q � 1/ inputs and one output. Specifically, one takes T .y/ D .u; w/ 2
IRq�1 � IRC where u D �>y , w D y>

0 y=ky0k, and � is q � .q � 1/ matrix whose
columns form a normalized basis for y?

0 . If one defines a function on IRpCq�1 by

gT .x; u/ D sup

�
w > 0 W

	
x; �u C w

y0

ky0k



2 S

�
;

then the production set S is transformed to ST D f.x; u; w/ W 0 � w � gT .x; u/g
and �.x0; y0/ D gT .x0; 0/=ky0k. This means that the problem of estimating the
radial efficiency �.x0; y0/ from a set of observations in S reduces to the estimation
of gT at .x0; 0/ 2 IRp � IRq�1 from the transformed observations in ST . Thus, the
statistical properties of the DEA estimators of �.x0; y0/ are readily obtained from
those of the DEA estimators of the boundary function g. This technique has been
used in several works including Jeong (2004) and Park et al. (2010).
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Chapter 10
The Skewness Issue in Stochastic Frontiers
Models: Fact or Fiction?

Pavlos Almanidis and Robin C. Sickles

Abstract Skewness plays an important role in the stochastic frontier model.
Since the model was introduced by Aigner et al. (J. Econometric 6:21–37, 1977),
Meeusen and van den Broeck (Int. Econ. Rev. 18:435–444, 1997), and Battese
and Cora (Aust. J. Agr. Econ. 21:169–179, 1977), researchers have often found
that the residuals estimated from these models displayed skewness in the wrong
direction. In such cases applied researchers were faced with two main and often
overlapping alternatives, either respecifying the model or obtaining a new sample,
neither of which are particularly appealing due to inferential problems introduced
by such data-mining approaches. Recently, Simar and Wilson (Econometric Rev.
29:62–98, 2010) developed a bootstrap procedure to address the skewness problem
in finite samples. Their findings point to the latter alternative as potentially the
more appropriate-increase the sample size. That is, the skewness problem is a
finite sample one and it often arises in finite samples from a data generating
process based on the correct skewness. Thus the researcher should first attempt to
increase the sample size instead of changing the model specification if she finds
the “wrong” skewness in her empirical analyses. In this chapter we consider an
alternative explanation to the “wrong” skewness problem and offer a new solution
in cases where this is not a mere finite sample fiction but also a fact. We utilize the
Qian and Sickles (Stochastic Frontiers with Bounded Inefficiency, Rice University,
Mimeo, 2008) model in which an upper bound to inefficiencies or a lower bound
to efficiencies is specified based on a number of alternative one-sided bounded
inefficiency distributions. We consider one of the set of specifications considered by
Qian and Sickles (Stochastic Frontiers with Bounded Inefficiency, Rice University,
Mimeo, 2008) wherein inefficiencies are assumed to be doubly-truncated normal.
This allows the least square residuals to display skewness in both directions and
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nests the standard half-normal and truncated-normal inefficiency models. We show
and formally prove that finding incorrect skewness does not necessarily indicate that
the stochastic frontier model is misspecified in general. Misspecification instead
may arise when the researcher considers the wrong distribution for the bounded
inefficiency process. Of course if the canonical stochastic frontier model is the
proper specification the residuals still may have the incorrect skew in finite samples
but this problem goes away as sample size increases. This point was originally made
in Waldman (Estimation in Economic Frontier Functions, Unpublished manuscript,
University of North Carolina, Chapel Hill, 1977) and Olson et al. (J. Econometric.
13:67–82, 1980). We also conduct a limited set of Monte Carlo experiments that
confirm our general findings. We show that “wrong” skewness can be a large sample
issue. There is nothing inherently misspecified about the model were this to be found
in large samples if one were to consider the bounded inefficiency approach. In this
way the “wrong” skewness, while problematic in standard models, can become a
property of samples drawn from distributions of bounded inefficiencies.

10.1 Introduction

The stochastic frontier model (SFM) was introduced by Aigner et al. (1977),
Meeusen and van den Broeck (1977), and Battese and Cora (1977). The SFM
assumes that a parametric functional form exists between the dependent and
independent variables, as opposed to the alternative approaches of data envelopment
analysis (DEA) proposed by Charnes et al. (1978) and the free disposal hull (FDH)
of Deprins et al. (1984). In the SFM model the error is assumed to be composed of
two parts, a one-sided term that captures the effects of inefficiencies relative to the
stochastic frontier and a two-sided term that captures random shocks, measurement
errors and other statistical noise, and allows random variation of frontiers across
firms. This formulation proved to be more realistic than, e.g., the deterministic
frontier model proposed by Aigner and Chu (1968), since it acknowledges the fact
that deviations from the frontier cannot be attributed solely to technical inefficiency
which is under firm’s control. Since the SFM was introduced a myriad of papers
have emerged in the literature discussing either methodological or practical issues,
as well as a series of applications of these models to the wide range of data sets. A
detailed discussion of up to date innovations and empirical applications in this area
can be found in Greene (2007).

Methodological developments in the SFM have been made in model specifi-
cation and estimation techniques. There are two main methods of estimation that
researchers adopt in general. One is based on traditional stochastic frontier models
as they were first formulated and uses maximum likelihood estimation techniques
(MLE) or linear regression (OLS). The other employs the Bayesian estimation
methods introduced by van de Broeck et al. (1994) and Koop (1994), and Koop
et al. (1995, 1997). These Bayesian approaches typically utilize Gibbs sampling
algorithms with data augmentation and Markov chain Monte Carlo (MCMC)
techniques to estimate the model parameters and individual or mean inefficiencies.
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Kim and Schmidt (2000) provide a review and empirical comparison of these
two methods in panel data models. Regarding model specification, researchers
attempted to relax the most restrictive assumptions of the classical stochastic frontier
model, such as nonflexible distribution specifications for inefficiencies and their
statistical independence from regressors and the random noise. In this chapter
we also pursue issues of model specification, specifically the specification of the
distribution of the one-sided inefficiency term. In their pioneering work Aigner et al.
(1977) proposed the normal distribution for the random error and a half normal
distribution for the inefficiency process, while at the same time and independently
Meeusen and van den Broeck (1977) proposed exponential distribution for the latter.
These random errors were assumed to be independent and identically distributed
across observations and statistically independent of each other. More flexible one-
sided densities for the efficiency terms such as the gamma (Greene 1980a,b;
Stevenson 1980) were also proposed. Other distributions such as the lognormal
and Weibull were considered for the prior distribution of inefficiencies by Deprins
and Simar (1989b) and Migon and Medici (2001) in Bayesian applications of the
SFM. In subsequent years researchers using both classical and Bayesian methods
have developed nonparametric approaches to relax the assumption of a specific
distribution for inefficiencies. Researchers have also introduced time varying and
firm-specific effects and have allowed for more general correlation structures for
the random errors in panel stochastic frontier models. Sickles (2005) analyzed these
latter developments in panel stochastic frontier models.

A common problem that arises in fitting stochastic frontier models is that the
residuals estimated from the SFM may display skewness in the “wrong” direction.
While the theory would predict a negative (positive) skewness in production (cost)
frontiers in the population, researchers often discover that the sample residuals are
positively (negatively) skewed. However, as Simar and Wilson (2010) point out, as
do we in this chapter, in finite samples the skewness statistic of the least squares
residuals can have the opposite sign from that the theory would predict. Indeed
this is more frequent in cases of low dominance of the inefficiency process over
the two-sided noise (see also Carree 2002). This is called “finite sample fiction”.
Nevertheless, researchers still consider the skewness statistic to be an important
indicator of the specification of the stochastic frontier model. Therefore, whenever
they find the residuals skewed in the “wrong” direction they tend to believe that
the model is misspecified or the data are inconsistent with the SFM paradigm. Two
course of actions are oftentimes taken: respecify the model or obtain a new sample
which hopefully results in the desired sign of skewness. Instead of respecifying the
model, applied researchers also often respecify their interpretation of the results by
assuming away inefficiencies and utilizing straightforward least squares regression
approaches.1 This weak point of the stochastic frontier models is emphasized in a
series of papers, some of which try to justify that this phenomenon might arise in

1This is in particular due to the results that Olson et al. (1980) and Waldman (1982) obtain for
stochastic frontier models when half-normal distribution for inefficiencies is specified.
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finite samples even for models that are correctly specified (see Greene 2007 and
Simar and Wilson 2010 for more discussion on this point).

The above discussion brings us directly to the question raised in the title: Is the
“wrong” skewness just a finite sample fiction, or it is fact? If it is a fiction, then
the bagging method proposed by Simar and Wilson (2010) should be employed to
make inference in stochastic frontier models. This method could also be generalized
to the case of the bounded inefficiencies we discuss in this chapter, since the
normal/half-normal model is a special case of the normal/doubly-truncated-normal
model considered herein. We will show via simulations later in this chapter that the
former can be recovered from the latter without imposing any a priori restrictions
on model parameters. Our main concern in this chapter, however, is the case where
this phenomenon is not a finite sample artifact but fact.

In general, this chapter intends to illustrate how the bounded inefficiency
formulation proposed by Qian and Sickles (2008) might overcome the issue of the
“wrong” skewness in the stochastic frontier model. We first show that the imposition
of an upper bound to inefficiency (lower bound to efficiency) enables the distribution
of the one-sided inefficiency process to display positive and negative signs of
skewness. This is in particular true for the truncated-normal distribution with strictly
positive mean. Imposing a bound on the truncated-normal density function apart
from the zero yields both positive or negative skewness depending on the position of
the bound in the support of inefficiency distribution, thus justifying the occurrence
of the so called “wrong” skewness.2 We show that the normal/doubly-truncated-
normal model is capable of handling and estimating the SFM model with “wrong”
skewness and we show that it is also quite reasonable to obtain such a pattern of
residuals in large samples. Our analysis can be extended to include the gamma
and the Weibull distributions as well. It is also worth noting at this point, and it
is shown later in the chapter, that the bound is not set a priori but can be estimated
along with the rest of the parameters of the stochastic frontier model via the method
of maximum likelihood. Moreover, even though the support of the distribution of
the inefficiency term depends on unknown bound the composed error term has
unbounded range and thus the regularity conditions for maximum likelihood are
not violated unless we consider the full frontier model which assumes no stochastic
term, a case not studied in current chapter. We also perform a series of Monte Carlo
experiments on a stochastic frontier production function with bounded inefficiency
and show that when we have a positively skewed distribution of errors we can still
get very reasonable MLE estimates of the disturbance and inefficiency variances
and as well as other parameters of the model. An interpretation of our results
is that although a potential misspecification may occur if the stochastic frontier
model is used and skewness is found to be “wrong” this can be avoided if the
stochastic frontier model with bounded inefficiency is specified instead. This chapter

2The “wrong” skewness is as it seen from applied researcher’s point of view. This is the reason why
we put this word in quotes. We do not perceive this to be wrong. It is either finite sample artifact as
discussed in Simar and Wilson (2010) or fact, which implies that the model itself is misspecified
in the sense that the wrong distribution for inefficiencies is considered.
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is organized as follows. In Sect. 10.2 the general problem of “wrong” skewness in
stochastic frontier models and its implications are discussed, as well as solutions
proposed in literature to solve it. Section 10.3 provides the main framework of
the stochastic frontier model with bounded inefficiency. In Sect. 10.4 we check
the validity of the bounded inefficiency model under the “wrong” skewness using
simple models and generalize Waldman’s proof to formally support the use of
stochastic frontier models under these circumstances. Monte Carlo simulation
results and concluding remarks are then discussed in Sect. 10.5.

10.2 Skewness Issue in Stochastic Frontier Analysis

10.2.1 “Wrong” Skewness and Its Importance in Frontier Models

We consider here the single cross-sectional (or potentially time-series) classical
stochastic frontier model. We will discuss extension to panel stochastic frontiers
briefly in a later section. We will also assume that the functional specification of
technology or cost is linear in parameters. In this classical setting, the stochastic
specification is "i D �i � ui for production frontiers, or "i D �i C ui for the case
of cost frontiers. The stochastic term �i represents statistical noise and is usually
assumed to be i:i:d N.0; �2�/ and ui � 0 represents technical inefficiency and
is usually assumed to be an i:i:d random variable that follows some one-sided
distribution. The error terms �i and ui are also usually assumed to be statistically
independent of each other and from the regressors. Given these assumptions, the
distribution of the composed error is asymmetric and non-normal implying that
simple least squares applied to a linear stochastic frontier model will be inefficient
and will not provide us with an estimate of the degree of technical inefficiency.
However, least squares does provide consistent estimates of all parameters except
the intercept since E."i/ D �E.ui / � 0. Moreover,

EŒ."i �EŒ"i �/3� D EŒ.�i � ui C EŒui �/
3� D �EŒ.ui � EŒui �/

3� (10.1)

which implies that the negative of the third moment of OLS residuals is a consistent
estimator of the skewness of the one-sided error.

The common distributions for inefficiencies that appear in the literature are
positively skewed, reflecting the fact that a large portion of the firms are expected
to operate relatively close to the frontier. For production frontiers whenever we
subtract the positively skewed inefficiency component from the symmetric error the
composite error should display negative skewness. We will focus on the production
function but clearly all that we say about it can be said about the cost function with
a sign change on the one-sided error in the composed error term. Thus researchers
find stochastic frontier models inappropriate to model inefficiencies if they obtain
residuals skewed in the “wrong” direction. The typical conclusion is that, either
the model is misspecified or the data are not compatible with the model. However,
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there can be a third interpretation as well based on the fact that inefficiencies might
have been drawn from a distribution which displays negative skewness. This simply
says that if the “wrong” skewness is not a finite sample artifact but fact, then any
stochastic frontier model based on inefficiencies that are drawn from positively
skewed distributions will be misspecified.

The first formal discussion on skewness problem is found in Olson et al. (1980)
in their derivation of modified ordinary least squares (MOLS) estimates as a
convenient alternative to maximum likelihood estimates. They explicitly assume
half-normal distribution for technical inefficiencies in their formulation. MOLS
method estimates the slope parameters by OLS. These are unbiased and consistent
under standard assumptions about the regressors and the error terms. On the other
hand, the OLS estimate of the constant term is shown to be biased and inconsistent.
The bias-corrected estimator of the constant term is obtained by adding

p
2=��u

term which is the expected value of the composed error term. Of course we do
not know �u. Estimates of �2� and �2u are derived by method of moments using the
second and third moments of OLS residuals. These are consistent, although not
asymptotically efficient, and are given by

O�2u D
hp
�=2

� �

� � 4
�

O�3
i2=3

(10.2)

and

O�2� D O�2 �
�
� � 2
�

�
O�2u (10.3)

where O�2 and O�3 are the estimated second and third moments of the OLS residuals,
respectively.

It is obvious from (10.2) that a serious flaw in this method occurs whenever O�3
is positive, since the estimated variance of inefficiencies becomes negative. This is
referred by Olson et al. (1980) as a “Type I” failure of MOLS estimators. A “Type II”
failure arises whenever O�2 < .��2

�
/ O�2u . Waldman (1982) proved that MLE estimate

of �2u in this case is zero and that the model parameters can be efficiently estimated
by OLS. We will outline the main steps and results of Waldman’s proof which are
necessary benchmarks and links to our further analysis.

Starting from the log-likelihood function for the normal-half-normal model

logL D n log.
p
2=�/�n log.�/C

nX

iD1
log

�
1 �ˆ

�
"i�

�

��
� 1

2�2

nX

iD1
"2i (10.4)

where "i D yi � xiˇ, � D �u
�v
; �2 D �2v C �2u , and ˆ.�/ denotes the cdf of

the standard normal distribution, Waldman notes there are two stationary points
that potentially can characterize the log-likelihood function. Defining the parameter
vector � D .ˇ0; �2; �/, the first stationary point would be the one for which the
first derivatives of the log-likelihood function are zero while the second is the OLS
solution for � wherein the parameter � is set to zero. The superiority of these two
stationary points is then compared in cases of the wrong skewness. One way to
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do this is to examine the second-order derivative matrix of log-likelihood function
evaluated at these two points. The Hessian matrix evaluated at OLS solution,
�� D .b0; s2; 0/, is

H.��/ D
2

4
�s�2Pn

iD1 xix0
i

p
2=�s�1Pn

iD1 xi 0p
2=�s�1Pn

iD1 xi �2n=� 0

0 0 �n=2s4

3

5 (10.5)

where b D �Pn
iD1 xi x

0

i

	�1Pn
iD1 xiyi , s2 D 1

n

Pn
iD1 e2i and ei is the least squares

residual.
This matrix is singular with k C 1 negative characteristic roots and one zero

root. This essentially would require the log-likelihood function to be examined in
the direction determined by the characteristic vector associated with this zero root
which is given by the vector z D .s

p
2=�; 1; 0/. Departing from the point of OLS

solution, the term of interest is then the sign of

	 logL D logL.�� C ız/� logL.��/ (10.6)

D �ı2 n
�

C
nX

iD1
logŒ2 � 2ˆ.eiıs�1 � ı2p2=�/�

where ı > 0 is an arbitrary small number. If we expand	 logL using a Taylor series
it can be shown that

	 logL D .ı3=6s3/
p
2=�Œ.� � 4/=��

nX

iD1
"3i CO.ı4/: (10.7)

Thus if the term
Pn

iD1 "3i > 0 then the maximum of the log-likelihood function is
located at the OLS solution, which is superior to MLE. This result suggests two
strategies for practitioners: apply OLS whenever the least squares residuals display
positive skewness or increase the sample size, since

plim

 
1

n

nX

iD1
"3i

!
D �3u

p
2=�Œ.� � 4/=�� < 0 (10.8)

which implies that asymptotically the sample third moment of least squares
residuals converges to its population counterpart by the law of large numbers and
thus the problem of the “wrong” skewness goes away.

Undoubtedly, this is true if the inefficiencies are indeed drawn from the half-
normal distribution which is positively skewed. What if they are not? What if they
are drawn from the distribution which displays negative skewness as well? We will
attempt to give answers to these questions.

The problem of the “wrong” skewness is also made apparent and emphasized
by the two widely-used computer packages used to estimate stochastic frontiers.
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The first package LIMDEP 9.0, which is developed by Greene (2007), calculates
and checks the skewness of the OLS residuals just before maximum likelihood
estimation begins. In case the sign of the skewness statistic is positive, significantly
or not, the message appears that warns the user about the misspecification of the
model and suggests using OLS instead of MLE. The second software FRONTIER
4.1, produced by Coelli (1996), also obtains the OLS estimates as a starting values
for the grid search of starting value of the 
 parameter.3 If the skewness is positive,
the final maximum likelihood value of this parameter is very close to zero, indicating
no inefficiencies. More detailed description and comparison of FRONTIER 4.1 and
the earlier version 7.0 of LIMDEP can be found in Sena (1999).

Related to these results, several parametric and non-parametric test statistics have
been developed to check the skewness of least squares residuals in stochastic frontier
models. Schmidt and Lin (1984) proposed the test statistic

p
b1 D m3

m
3=2
2

(10.9)

where m2 and m3 represent the second and the third moment of the empirical
distribution of the least squares residuals. The distribution of

p
b1 is not standard

and the application of this test requires special tables provided by D’Agostino and
Pearson (1973). Coelli (1995) proposed an alternative statistic for testing whether
the third moment of residuals is greater than or equal to zero

q
b�
1 D m3

.6m3
2=N /

1=2
(10.10)

where N denotes the number of observations in the sample. Under the null
hypothesis of zero skewness, the third moment of OLS residuals is asymptotically
distributed as a normal random variable with zero mean and variance 6m3

2=N . This
implies that

p
b�
1 is asymptotically distributed as a standard normal variable and

one can consult the corresponding statistical tables for making an inference. These
two tests, although easily computed and implemented, have unknown finite sample
properties. Coelli (1995) conducts Monte Carlo experimentations and shows thatp
b�
1 has correct size and good power in small samples. This is the reason why this

test statistic is commonly accepted and used in applications.

10.2.2 Solutions to the “wrong” Skewness

Nonetheless, the standard solutions considered in the case of “wrong” skewness
essentially constitute no solutions with regard to the stochastic frontier model.
Setting the variance of inefficiency process to be equal to zero based on the
skewness of OLS residuals is not a very comforting solution. This solution to the

3
 D �u
�uC��

, which is another reparametrization used in stochastic frontier models
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problem would imply that all firms in the industry are fully efficient. Moreover,
the estimated standard errors will not be correct if straightforward OLS is applied
to the data.4 Moreover, data-mining techniques will introduce inferential problems
and possibly biases in parameters and their standard errors (Leamer 1978). Carree
(2002), Greene (2007), and Simar and Wilson (2010) note that in finite samples,
even the correctly specified stochastic frontier model is capable of producing least
squares residuals with the “wrong” skewness sign with relatively high frequency.
Thus another suggested solution is to get more data. Of course the availability of
the data in economics is often rather limited and this alternative may not possible
in many empirical settings. Another solution is to argue that the inefficiencies are
drawn from an efficiency distribution with negative skewness. A major problem
with this assumption is that it implies that there is only a very small fraction of the
firms that attain a level of productivity close to the frontier. For example, Carree
(2002) considers a distribution for inefficiencies that allows for both, negative and
positive skewness.5 He proposes a binomial distribution b.n; p/ which for a range
of values of the parameter p is negatively skewed.6 This is a discrete distribution
wherein continuous inefficiencies fall into discrete “inefficiency categories”. He
employs the method-of-moments estimators as in Olson et al. (1980) and Greene
(1990) and provides an explanation for how theoretically and empirically the
“wrong” skewness issue may arise in stochastic frontier model.7 Empirically, the
use of the binomial distribution can be justified by a model in which the cycle
of innovations and imitations occurs. This would suggest that the occurrence of
positively skewed residuals would correspond to the cases where very few firms
in the industry innovate while the large proportion of firms experience large
inefficiencies. In contrast, as it will be shown later, the stochastic frontier model
with doubly-truncated normal inefficiencies does not imply such a pattern in firms’
inefficiencies, but instead it precludes the probability of occurrence of extreme
inefficiencies.

10.3 Stochastic Frontier Model with Bounded Inefficiency

10.3.1 Model

In this section we briefly introduce the stochastic frontier model with bounded
inefficiency proposed by Qian and Sickles (2008). The formulation of the model
is similar to the traditional stochastic frontier model. The key difference is that an

4We thank anonymous referee for this point.
5Carree (2002) also argues that distributions with bounded range can be negatively skewed but
further development of these is not pursued by the author.
6Other authors also considered distributions with negative skew (see Johnson et al. 1992, 1994).
7The shortcoming of this approach is that method-of-moments estimators may not be defined for
some empirical values of the higher sample moments of the least squares residuals
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upper bound to inefficiencies or a lower bound to efficiencies is specified. This
amounts to imposing a second truncation point other than zero to the distribution
of the inefficiency process. Thus, if the model is yi D xiˇC "i , the composed error
is "i D �i � ui where �i �iid N.0; �2�/ is statistical noise and �i and ui are assumed
to be statistically independent from each other and from regressors, we assume that
the ui , which represent the unobserved technical inefficiencies, are non-negative
random variables with doubly-truncated-normal distribution density f .�/ defined on
the positive domain. The doubly-truncated normal distribution nests the truncated-
normal, the truncated-half-normal and the half-normal distribution.

The initial purpose of the bounded inefficiency model was to introduce a
stochastic frontier model in which the bound can be used for gauging the tolerance
for or ruthlessness against the inefficient firms and thus to serve as an index of
competitiveness of an industry. It can be thought as naturally instituted by the
market, competitive in most of the cases, and precludes the existence of extremely
inefficient firms. Another purpose was to introduce (in a panel data setting) another
time-varying technical efficiency model in the literature. However, in this chapter
we note another useful feature of this model, which is reflected in the flexibility
of the one-sided distribution of inefficiencies. This flexibility enables the truncated-
normal distribution with strictly positive mean to display positive, negative, and
zero skewness. This potentially attractive option leads us to take a closer look at the
doubly-truncated-normal inefficiencies whose density is given by

fu.x/ D
1
�u
�.

x��
�u
/

ˆ.
B��
�u
/ �ˆ.��

�u
/
IŒ0;B�.x/; �u > 0;B > 0 (10.11)

where ˆ.�/ and �.�/ are the cdf and pdf of the standard normal distribution
respectively, and I.�/ denotes the indicator function. Under parametric restrictions,
it can be verified that this distribution generalizes the truncated-normal (B D 1),
truncated-half-normal (� D 0), and the half-normal (B D 1; � D 0) distributions.

10.3.2 Estimation

Using the parametrization of Aigner et al. (1977), the log-likelihood function for the
normal/doubly-truncated normal model composed error for the SFM is given by

log.L/ D �n log

�
ˆ

�
B � �

�u.�; �/

�
�ˆ

� ��
�u.�; �/

��
(10.12)

�n log � � n
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where �u.�; �/ D �q
1C 1

�2

, � D �u
��

, and "i D yi � xiˇ.
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This log-likelihood function can be maximized to obtain the MLE estimates
of the model parameters along with the parameter that determines the bound of
the one-sided distribution. The conditional distribution of the inefficiency term
EŒui j"i D O"i �; where O"i D yi � Xi Ǒ, can be used in the same spirit as in Jondrow
et al. (1982) to derive individual and mean technical inefficiencies. It should be
noted that, while the support of the distribution of u depends on the bound, the
support of the composite error is unbounded. Hence, this regularity condition for
MLE is not violated. However, global identifiability of this model fails (Rothenberg
1971), which is also true for the normal/truncated-normal model, and thus some
parameters are only identified locally.

10.4 Skewness Statistic Under the Bounded Inefficiencies

10.4.1 Derivation of Skewness and MOLS Estimates with
Doubly-Truncated-Normal Inefficiencies

The location parameter of the doubly-truncated-normal distribution, as a function of
the bound .B/, mean .�/, and variance of the normal distribution .�2u / is given by

 1.B;�; �
2
u / D E.u/ D �C �u� (10.13)

with

� � �.1/� �.2/

ˆ.2/�ˆ.1/
(10.14)

where 1 D ��
�u

, 2 D B��
�u

, while ˆ.�/ and �.�/ are the cdf and pdf of the standard
normal distribution, respectively. � represents the inverse Mill’s ratio and it is equal
to
p
2=� in the normal-half-normal model and 1 and 2 are the lower and upper

truncation points of the standard normal density, respectively.
The central population moments up through order four as a functions of B , �,

and �2u are given by

 2.B;�; �
2
u / D �2u

�
1 � �2 C 1� .1/ � 2�.2/

ˆ.2/�ˆ.1/

�
(10.15)

 3.B;�; �
2
u / D �3u

 
2�3 �

�
3

�
1�.1/� 2�.2/

ˆ.2/�ˆ.1/

�
C 1

�
� (10.16)

C 21�.1/ � 22�.2/
ˆ.2/ �ˆ.1/

!
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 4.B;�; �
2
u / D �4u

 
� 3�4 C 2

�
3
1�.1/� 2�.2/

ˆ.2/�ˆ.1/
� 1

�
�2 (10.17)

� 4�
�
21�.1/� 22�.2/

ˆ.2/�ˆ.1/

�
C 3

�
1�.1/� 2�.2/

ˆ.2/�ˆ.1/

�

C 31�.1/� 32�.2/

ˆ.2/�ˆ.1/
C 3

!

Three special cases immediately arise from the doubly-truncated-normal dis-
tribution. If we let 1 D �1 and 2 D 1 then � becomes zero and if we
additionally use the L’Hospital’s Rule, it can be shown that lim1!�1 1�.1/ D
lim2!1 2�.2/ D 0 and lim1!�1 21�.1/ D lim2!1 22�.2/ D 0, in which
case we obtain exactly the cumulants of the normal distribution. On the other hand,
if only the lower truncation point exists and � is non zero we obtain results for
the truncated-normal distribution. Setting � to zero we obtain the moments of the
half-normal distribution.

The skewness of the doubly-truncated-normal distribution is derived from
expressions in (10.15) and (10.16) as


1.B;�; �
2
u / D  3

 
3=2
2

D  3

 2
p
 2

D

�
2�3 �

�
3

�
1�.1/ � 2�.2/
ˆ.2/ �ˆ.1/

�
C 1

�
�C 21�.1/ � 22�.2/

ˆ.2/ �ˆ.1/
�

�
1� �2 C 1� .1/� 2�.2/

ˆ.2/ �ˆ.1/
�3=2

(10.18)

The skewness parameter describes the shape of the distribution independent of
location and scale. Although many non-symmetric distributions have either positive
or negative skewness statistic for the doubly-truncated-normal distribution the sign
of skewness is ambiguous. It is either positive, whenever B > 2�, or nonpositive
when B � 2� for � strictly positive. This follows from the fact that the bound B
is strictly positive by assumption. We provide a graphical representation of doubly-
truncated inefficiencies with � > 0 in the appendix.8

The consequences of both positive and negative skewness of the doubly-
truncated-normal distribution in the SFM are not clear. The residuals in a SFM can
be skewed in both directions while the variance of inefficiency term is nonzero.
Moreover, in finite samples the sampling variability of the skewness statistic

8It should be noted that parameter � is not restricted to be strictly positive in estimation procedure.
It takes negative values as well.
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could give rise to a positive or negative skewness statistic even if the population
skewness parameter was negative or positive. The issues for estimation of the SFM
when the inefficiencies are doubly-truncated-normal are similar to those when the
inefficiencies are truncated-normal. MOLS estimates can be used to obtain method-
of-moments estimates of � and �: The second and higher order moments of "
when it is a mixture of a normal and doubly-truncated normal distribution are
nonlinear functions of parameters. Due to the two-folded nature of the normal
distribution we cannot express the distributional parameters of the model uniquely
as a function of the moments of the least squares residuals and the data. Hence, the
global identifiability of the model fails (Rothenberg 1971), which is also the case
for the normal/truncated-normal model. Identifiability is problematic even for large
number of observations for large values of parameter �. This is because for large
� the truncated-normal distribution converges to the normal distribution resulting
in a mixture of normally distributed inefficiency and random components in the
composed error. Correspondingly, it can be shown that the second order derivative
of the log-likelihood function with respect to � converges to zero as � increases
without bound, resulting in a nearly flat log-likelihood function in the dimension
of � of course in inferential problems as well. The existence of the bound avoids
this problem. We provide a simple proof of the points we make above in the
appendix. Greene (1997), and Ritter and Simar (1997) provide more discussion on
identification issues in SFM. Local identification of both models can be shown by
examining the Fisher’s information matrix, which is nonsingular at any point of the
parameter space ‚ for which � parameter is strictly greater than zero and is not
too large. However, for � ! 0 and � ! 1, Wang and Schmidt (2008) show that
the distribution of Ou degenerates to a point mass at EŒu� or to the distribution of u,
respectively. We do not pursue these two limiting cases but rather on intermediate
cases for strictly positive and bounded �.

The second and third central moments of the SFM residuals based on OLS are

Om2 D �2v C�2u .1��2C 1�.1/�2�.2/
ˆ.2/�ˆ.1/ / and Om3 D ��3u .2�3�Œ3. 1�.1/�2�.2/ˆ.2/�ˆ.1/ /C1��C

21�.1/�22 �.2/
ˆ.2/�ˆ.1/ / respectively. Solving these two equations we can derive the MOLS

estimators of �2v and �2u . The MOLS estimators of the variances of the inefficiency
term and the random disturbance are given by

O�2u D

2
664

� Om3

2�3 �
�
3

�
1�.1/ � 2�.2/
ˆ.2/ �ˆ.1/

�
C 1

�
�C 21�.1/ � 22�.2/

ˆ.2/ �ˆ.1/

3
775

2=3

(10.19)
and

O�2v D Om2 � O�2u
�
1 � �2 C 1� .1/� 2�.2/

ˆ.2/�ˆ.1/

�
(10.20)

To illustrate how skewness is indeterminate for the normal/doubly-truncated
model we can fix the values of parameters B and � and calculate �2v and �2u from
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(10.19) and (10.20). In the normal/half-normal model these values are also fixed
(B D 1, � D 0). Since the negative of the third moment of the OLS residuals is an
unbiased and consistent estimator of the skewness of inefficiencies, one can see that
the estimate of the �2u can have positive sign even in the case of positively skewed
residuals as opposed to the standard model. Most importantly, the “type I” failure
goes away asymptotically since a positive Om3 would imply that 3 is negative, which
occurs whenever B < 2�: Thus O�2u cannot take on negative values. In cases where
we have B D 2� the ratio in (10.19) is unidentified. By applying the L’Hospital
rule and evaluating the limits it is straightforward to show that the variance of the
inefficiency term is a strictly positive number. Only in the case when B D 0 is the
variance of the inefficiency term zero.

We can test the extent to which the distribution of unobservable inefficiencies
can display negative or positive skewness using the observable residuals based on
the expression in (10.1). For this purpose we can utilize the adjusted for skewness
test statistic proposed by Bera and Premaratne (2001), since the excess kurtosis is
not zero. By using the standard test for skewness we will have either over-rejection
or under-rejection of the null hypothesis of non-negative skewness and this will
depend primarily on the sign of the excess kurtosis. In addition, since there are two
points at which the doubly-truncated-normal distribution has zero skewness, the
standard tests are not appropriate. Since the standard tests do not distinguish these
two cases, application of standard skewness tests may lead researchers to accept the
null hypothesis of zero variance when it is false at levels larger than nominal test
size would suggest. The modified likelihood ratio statistic (see Lee 1993) is still
asymptotically distributed as 1

2
�2.0/C 1

2
�2.1/ and should still be appropriate in this

case.

10.4.2 Generalization of Waldman’s Proof

We next examine the consistency and identifiability of the parameters of the
normal/doubly-truncated normal bounded inefficiency stochastic frontier model
utilizing the same approach as in Waldman (1982). To compare and contrast the
problem of the “wrong” skewness with the benchmark case of the normal/half-
normal model of Aigner et al. (1977), we set the values of the deep parameters
B and � and consider the scores of parameter vector � D . ˇ0; �2; �/ as a function
of these fixed parameters. Note that the normal/half-normal model fixes these values
at 1 and 0, respectively. We begin by examining the second-order derivative matrix
evaluated at the OLS solution point, �� D .b0; s2; 0/, given by

H.��/ D

2

664

�s�2Pn
iD1 xix0

i � 1
s4

Pn
iD1.ei � �/xi 0

� 1
s4

Pn
iD1.ei � �/xi n

2s4
� 1

s6

Pn
iD1.ei � �/2 0

0 0 0

3

775 (10.21)
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where b D .
Pn

iD1 xi x
0

i /
�1Pn

iD1 xiyi , s2 D 1
n

Pn
iD1 e2i and ei is the least squares

residual.
Obviously, H.��/ is singular with k C 1 negative characteristic roots and one

zero root. The eigenvector associated with this zero root is given by z D .00; 0; 1/.
We then need to search the sign of 	 logL D logL.�� C ız/ � logL.��/ in the
positive direction . ı > 0 /, since � is constrained to be non-negative. By expanding
the 	 logL the first term in the series is 0 since OLS is a stationary point. The
second term also vanishes since jH.��/j D 0. Thus, the only relevant point that
remains to be considered is the third derivative of the log-likelihood function with
respect to parameter � evaluated at the OLS solution,

1

6
ı3
@3 log.��/
@�3

(10.22)

Substituting for the third derivative and ignoring higher order terms, we can write

	 logL Š ı3
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where !1 D ��
s

, !2 D B��
s

, and $ D �.!1/�!�.!2/
ˆ.!2/�ˆ.!1/ .

The simple inspection of (10.23) reveals that the third order term of the least
squares residuals need not always have the opposite sign of 	 logL. This will
mainly depend on the relationship between the imposed bound B and the mean
of the normal distribution �. For B < 2�, $ is negative and the term in the curly
brackets becomes positive. Thus positive skewness would imply the existence of
inefficient firms in the sample. The implication of this is that whenever a researcher
finds positively skewed residuals it may be the case that the inefficiencies have been
drawn from a distribution that has negative skew. For B D 2� , 	 logL D 0 and
in this case MLE should be employed since it will be more efficient than OLS and
will provide us with technical inefficiency estimates. Asymptotically the third order
term of OLS residuals and the expression in curly brackets have the same sign since

plim
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C 21�.1/ � 22�.2/
ˆ.2/ �ˆ.1/

!

which implies that we can observe the “wrong” skewness even in large samples.
Thus, in our model the problem of the “wrong” skewness is not a just finite sample
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issue; positive or negative skewness of least squares residuals will always imply
a positive variance of the inefficiency process in large samples. In finite samples,
anything can happen. We can obtain negatively skewed residuals even if we sample
from a negatively skewed distribution of inefficiencies.

10.5 Further Discussion and Conclusions

We also conduct Monte Carlo experiment in the same spirit as in Simar and Wilson
(2010) wherein they note that in the finite samples even the correctly specified
stochastic frontier model is capable of generating least squares residuals with
the “wrong” skewness statistic with relatively high frequency. They calculate the
proportion of samples with positively skewed residuals which converges to zero as
the sample size grows large. We conduct the same experiment under the modified
error specification allowing for bounded inefficiency and display the results in
Table 10.1. Without loss of generality, we set the parameter � to 1 and use the
inverse CDF method to sample from a convolution of inefficiency and random
noise distributions by varying the bound parameter. We examine the three cases
of the skewness sign and compute the proportion of 1,000 samples with positive

Table 10.1 Proportion of samples with positively skewed residuals in normal/doubly-truncated-
normal model

n B D 1 B D 2 B D 5 B D 10

50 0.519 0.505 0.480 0.509
100 0.481 0.501 0.516 0.520
200 0.495 0.473 0.514 0.493
500 0.487 0.503 0.539 0.507
103 0.520 0.516 0.510 0.494
104 0.504 0.483 0.512 0.498

� D 0:1 105 0.532 0.492 0.437 0.405

50 0.517 0.485 0.503 0.510
100 0.545 0.491 0.459 0.479
200 0.551 0.490 0.486 0.466
500 0.520 0.488 0.431 0.459
103 0.564 0.514 0.453 0.435
104 0.684 0.491 0.397 0.318

� D 0:5 105 0.759 0.496 0.107 0.092

50 0.565 0.536 0.367 0.383
100 0.524 0.513 0.317 0.335
200 0.529 0.512 0.224 0.245
500 0.567 0.514 0.155 0.122
103 0.576 0.524 0.063 0.051
104 0.709 0.501 0 0

� D 1 105 0.943 0.503 0 0
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skewness. The first column shows that the proportion of the samples with the
positive (“wrong”) skewness increases as the sample size grows larger. It converges
to one as the variance of the one-sided inefficiency term becomes larger relative
to the variance of two-sided error. In the second column we have the case where
B D 2�. Under this case there is about a 50-50 chance that we generate a sample
with positive skewness. In most of the cases, the positive skewness appears to be
statistically insignificant. The third and forth columns correspond to the case where
the distribution of inefficiencies is positively skewed and as in Simar and Wilson
(2010) the proportion decreases as the sample size and parameter � increase. Our
findings again clearly indicate that the skewness issue is also a large sample issue,
since for B < 2� the proportion of the samples with positive skewness converges
to one. This simply would mean that if the true DGP is based on inefficiencies
that are drawn from a doubly-truncated-normal distribution, the researcher fails to
recognize this and finds a skewness statistic with the “wrong” sign, then she will
reject her model. Moreover, if there is the potential for increasing sample size and
researcher keeps increasing it and finds continuously positive signs of skewness then
she may erroneously conclude that all firms in her sample are super efficient. The
flexibility of the bounded inefficiency model avoids this problem. Qian and Sickles
(2008) also conduct experiments for other error specification such as truncated-
half-normal (� D 0) and truncated exponential model. It is worth mentioning
that in these cases, for certain levels of the bound, the skewness statistic becomes
statistically insignificant and thus the null hypothesis of no inefficiency cannot be
rejected, even if � is not zero, when one applies the standard tests. We also note
that if the DGP from which a sample of data is drawn has bounded inefficiency but
this is ignored, then it will sometimes mask the true skewness. It is often the case in
such settings that point estimates of skewness may have the “wrong” sign. However,
this may simply due to the weak identifiability of skewness in a stochastic frontier
with bounded inefficiency and the “wrong” sign is not “significantly wrong” in a
statistical sense.

An important question for applied researchers is, what happens in the case if the
true model is the normal/half-normal but we estimate the normal/doubly-truncated-
normal model instead and visa-versa? To answer the first question, we conduct an
additional Monte Carlo experiment to assess the validity of the model whenever
the underlying true data generating process is the one proposed in ALS, that is
wherein inefficiencies are drawn from the half-normal distribution. For this purpose,
we specify the simple Cobb-Douglas production frontier with two inputs as

yi D ˛0 C ˛1 lnx1i C ˛2 ln x2i C �i � ui

where �i �iid N.0; �2�/ and ui �iid NC.0; �2u /. �i and ui , as previously, are assumed
to be independent of each over and from regressors.

Throughout, we set ˛0 D 0:9, ˛1 D 0:6, and ˛2 D 0:5. lnxj i jjD1;2 are drawn
from N.�xj ; �

2
xj / with �x1 D 1:5, �x2 D 1:8, and �2x1 D �2x2 D 0:3. These draws

are fixed across Monte Carlo replications. We keep �u D 0:3 and vary the �� in a
way that �2 takes on values of 1, 10, and 100, while we also vary the sample size
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Table 10.2 Monte Carlo results for Half-Normal model. The number of repetitions M D 1;000

n D 100 n D 200 n D 1;000

True AVE MSE AVE MSE AVE MSE

O� 0:42 0.4307 0.0099 0.4359 0.0079 0.4250 0.0041
O
 0:5 0.5634 0.1332 0.5605 0.0025 0.5565 0.0382
O� 0:0 �0.0071 0.3069 �0.0351 0.2801 0.0082 0.2003
Ǫ0 0:9 0.9799 0.1197 0.9728 0.0728 0.9757 0.0450
Ǫ1 0:6 0.5814 0.0160 0.5997 0.0034 0.6021 0.0012

�2 D 1 Ǫ2 0:5 0.5105 0.0139 0.5043 0.0021 0.4958 0.0013

O� 0:31 0.3264 0.0076 0.3256 0.0021 0.3148 0.0011
O
 0:91 0.9404 0.0068 0.9161 0.0006 0.9107 0.0004
O� 0:0 �0.0398 0.1277 �0.0566 0.0439 �0.0115 0.0175
Ǫ0 0:9 0.9144 0.0247 0.8982 0.0043 0.9001 0.0026
Ǫ1 0:6 0.6079 0.0043 0.6033 0.0006 0.6012 0.0003

�2 D 10 Ǫ2 0:5 0.5015 0.0036 0.4973 0.0007 0.5005 0.0004

O� 0:30 0.3064 0.0049 0.3050 0.0013 0.3030 0.0006
O
 0:99 0.9958 0.0001 0.9912 0.0001 0.9905 0.0001
O� 0:0 �0.0252 0.0559 �0.0092 0.0104 �0.005 0.0050
Ǫ0 0:9 0.9102 0.0098 0.8986 0.0014 0.8951 0.0006
Ǫ1 0:6 0.5995 0.0016 0.5993 0.0108 0.6003 0.0001

�2 D 100 Ǫ2 0:5 0.4978 0.0012 0.5016 0.0125 0.5002 0.0001

by 100, 200, and 1;000, respectively. To facilitate the numerical optimization we
consider the 
 -parametrization instead of the �-parametrization in the maximum
likelihood estimation. 
 is contained in the compact set Œ0; 1� and is related to �
through 
 D �2=.1 C �2/. We set the number Monte Carlo replications to 1;000
and examine the performance of normal/doubly-truncated-normal model without
imposing any restrictions on model parameters. Table 10.2 reports the averaged
values (AVE) of the estimates over the replications and their mean squared errors
(MSE). The first case in the first column is where n D 100 and �2 D 1. In this
case about 1=3 of the samples will have least squares residuals positively skewed
according to Simar and Wilson (2010). The distributional parameters obtained from
the DTN model have relatively large mean squared errors. We presume that this is
due to the fictitious “wrong” skewness that yields large variances of the estimates
because the determinant of Fisher’s information matrix is close to zero. DTN cannot
provide a remedy in this case and the bagging technique proposed by Simar and
Wilson (2010) can be employed to make an inference. As either the sample size
or signal-to-noise ratio increase, the fictitious “wrong” skewness goes away, MSE
decreases and the ALS model is recovered from the DTN model. It would appear
from our intuition and from our simulations that in finite samples the large estimated
standard errors of the distributional parameters can serve as an indicator of the
presence of “fictitious” wrong skewness in the model.
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To answer the second part of the question we consider the conditional mean
inefficiencies conditional on the stochastic error in the same spirit as in Jondrow
et al. (1982). For the DTN model these are given by

E.ui j O"i/ D �� C ��
�.��

�

�
�

/� �.
B��

�

�
�

/

ˆ.
B��

�

�
�

/ �ˆ.��
�

�
�

/
,

where �� D ��2��"�2u
�2

and �� D �u��
�

. Ignoring the bound will yield incorrect
estimates of the inefficiencies scores.

As we have pointed out in this chapter, most of the distributions for inefficiencies
considered in the stochastic frontier models literature are positively skewed. The
half-normal distribution is commonly used in the literature and in applications. The
doubly-truncated-normal inefficiency distribution generalizes the SFM in a way that
allows for negative skewness as well. This implies that finding incorrect skewness
does not necessarily indicate that the model is misspecified. A misspecification
would arise, however, were the researcher to consider an incorrect distribution for
the inefficiency process, which has a skewness that is not properly identified by
the least squares residuals. The “wrong” skewness can be a finite sample artifact
or fact. In this chapter we have considered the latter case and have shown that the
normal/doubly-truncated-normal composed error SFM can still be valid with the
“wrong” sign of the skewness statistic using a generalization of Waldman’s (1982)
proof. Moreover, “wrong” skewness in finite samples does not necessarily preclude
its appearance in large samples under our specification. This chapter thus provides
a rationale for applied researchers to adopt an additional strategy in cases when this
perceived empirical anomaly is found.

Appendix

Truncated-Normal and Doubly-Truncated-Normal Distributions

Four distributions for inefficiencies that are discussed in this chapter. These are
the truncated-normal distribution and the doubly-truncated-normal distribution with
zero, positive, and negative skewness. The skewness statistic of truncated-normal
distribution is given by


1.B;�; �
2
u / D

.2 Q�3 � Œ3.
1�.1/

1�ˆ.1/ /C 1� Q�C 21 �.1/

1�ˆ.1/ /h
1 � Q�2 C 1�.1/

1�ˆ.1/
i3=2 (10.25)

where Q� � �.1/

1�ˆ.1/ , which has positive sign implying that 
1 is positive also.
Note that, as � grows large Q� as well as 
1 tend to zero and the truncated-normal
distribution resembles the bell-shaped normal distribution.
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Truncated-normal distribution: positively skewed inefficiencies

In the standard model the variance of the inefficiency term must be assigned a
zero value whenever the skewness of the OLS residuals is zero. This leads to the
conclusion that there are no inefficient firms in the sample. On the other hand,
in the normal/doubly-truncated-normal model we may have the variance of the
inefficiency process strictly positive even if the skewness is zero. This case is well
illustrated in the next figure where B D 2� and �u D 0:3.
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Doubly-truncated-normal distribution: symmetrically distributed inefficiencies (
1 D 0)

The graphs of positively skewed (B > 2�) and negatively skewed (B < 2�)
inefficiencies are provided in the next set of figures. Again it is clear that negative
skewness does not imply a lack of inefficiency.

The last distribution can describe a scenario where only a small fraction of firms
attain levels of productivity close to the frontier. This is described as “few stars, most
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Doubly-truncated-normal distribution: positively skewed inefficiencies (
1 D 0:69)
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Doubly-truncated-normal distribution: negatively skewed inefficiencies (
1 D �1:2)

dogs” in the business press. The standard models only describe the case where there
are “most stars, few dogs”. Note that, this is not the only case we can reproduce
negatively skewed distribution for inefficiencies. The condition that is required is
that B < 2� with strictly positive �.

Identification in Normal/Doubly-Truncated-Normal Model

The classical SFM is likelihood-based and such as requires careful examination of
the identification of parameters and measures of inefficiencies, as pointed out by
Greene (1997) and Ritter and Simar (1997). Rothenberg (1971), defines two kinds
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of parametric identifications in models based on likelihood inference: global and the
local identification.

Definition 1. Two parameter points (structures) �1 and �2 are said to be observa-
tionally equivalent if f .y; �1/ D f .y; �2/ for all y inRn. A parameter point �0 2 ‚
is said to be identifiable if there is no � 2 ‚which is observationally equivalent. For
exponential family densities, this definition is equivalent to the Fisher’s information
matrix to be nonsingular for every convex set of parameter points containing‚. For
nonexponential family densities the condition requires that every parameter can be
expressed only as a function of sample moments and the data. That is, suppose there
exist p known functions g1.Y /; ::::; gp.Y / such that for all � in ‚

�i D EŒgi .Y /� i D 1; 2; ::::::; p

Then every � in ‚ is identifiable.

Definition 2. A parameter point (structure) �0 is said to be locally identified if
there exists an open neighborhood of �0 containing no other � in ‚ which is
observationally equivalent. Equivalently, let �0 be a regular point of Fisher’s
information matrix I.�/.9 Then �0 is locally identifiable if and only if I.�0/ is
nonsingular. In other words, if I.�/ is nonsingular for �0 2 ‚, then there exists a
neighborhoodN.�0/ 	 ‚ of �0 in which no � is equivalent to �0.

Claim: Normal/truncated-normal model is not globally and locally identified as �
increases without bound and/or � ! 0.

Proof. Stochastic frontier models do not belong to exponential family and thus
the second approach outlined in definition 1 is employed to establish the global
identifiability of the standard models (See Greene(1990), Coeli (1995) among
others). We follow the same method to check the global identification of the
normal/truncated-normal model. The identification of the normal/doubly-truncated-
normal deserves special treatment and it is discussed in Almanidis et al. (2010).

Under the assumptions made for the error terms the population central moments
of the composed error term, " up to forth order are given by10

�1 D EŒ"� D �� � �u Q�

�2 D EŒ." � �1/
2� D EŒ�2�C EŒ.u � EŒu�/2� D �2� C �2u

�
1 � Q�2 C 1 Q�

�3 D EŒ." � �1/
3� D �EŒ.u �EŒu�/3� D ��3u Œ2 Q�3 � Œ31 Q�C 1� Q�C 21 Q��

9see Rothenberg 1971, pp 579 for the relevant definition of the regular point
10Note that p in the definition 1 is equal to 4.
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�4 D EŒ." � �1/
4� D EŒ�4�C 6EŒ�2�EŒ.u � EŒu�/2�C EŒ.u �EŒu�/4�

D 3�4� C 6�2��
2
u

�
1 � Q�2 C 1 Q�C �4u Œ�3 Q�4 C 61 Q�3 � 2 Q�2 � 421 Q�2

C 31 Q�C 31 Q�C 3�

where Q� and 1 are as defined above.
In addition it can be shown that

�4 � 3�22 D EŒ.u �EŒu�/4� � 3 �EŒ.u �EŒu�/2�	2

and after dividing this expression by �4=33 we get

g.1/ D �
�4=3
3 .�4 � 3�22/

which is a function of 1 only. Replacing the population moments by their sample
counterparts we can solve for 1 numerically from

h.1/ D 4 Q�2 � 3 Q�1 � 6 Q�4 C Q�31 C 12 Q�31 � 7 Q�221��Œ2 Q�3 � Œ31 Q�C 1� Q�C 21 Q��	�4=3
� O��4=3

3 . O�4 � 3 O�22/ D 0

For a range of values of 1 it is shown by implicit function theorem that function
h.�/ has no unique solution. Hence, the global identifiability fails. However, the local
identifiability of the normal/truncated normal model, which is necessary condition,
can be established according to definition 2 unless � is very large and/or � ! 0.
In this two extreme cases both global and local identification fail since the Fisher’s
information matrix I.�/ evaluated at this points is close to singular

I.�0/ !

2
6664

� 1
�2

Pn
iD1 xi x0

i � 1
�4

Pn
iD1."i C �/xi 0 � 1

�2

Pn
iD1 xi

� 1
�4

Pn
iD1."i C �/xi

n
2�4

� 1
�6

Pn
iD1."i C �/2 0 � 1

�4

Pn
iD1."i C �/

0 0 0 0

� 1
�2

Pn
iD1 xi � 1

�4

Pn
iD1."i C �/ 0 � n

�2

3
7775

The above argument can be made simpler as in Ritter and Simar (1997). The
authors note that the distribution of the composite error in the normal/gamma
stochastic frontier model tends to the normal distribution as the shape parameter
of the gamma distribution increases without bound and the scale parameter remains
relatively low. In this case the model parameters and inefficiencies cannot be iden-
tified. This is also the case for normal/truncated-normal model, where for relatively
small values of parameter � the distribution resembles the normal distribution as
parameter � becomes relatively large. Therefore, this model fails to be locally
identified in this particular case. On the other hand, the bounded inefficiency model
is still capable of identifying the model parameters even for large values of �, since
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the existence of the bound will distinguish the distribution of inefficiencies from the
normal distribution which is assumed for the noise term.

An illustration of these two cases is provided below in the two figures, where the
truncated-normal density appears like the normal density for values of parameter �
as low as 1, while keeping the variance of inefficiencies to be one third. On the other
hand, the doubly-truncated-normal distribution distinguishes itself from the normal
distribution in the sense that its right tail will be shorter than its corresponding left
tail. Thus the model will be identified even for large values of the parameter �. It
is also worth mentioning that the empirical distribution of inefficiencies may often
appear to be shaped like the normal distribution and, therefore, without imposing
the bound it is difficult to identify it from normally distributed noise term.
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Truncated-normal distribution with � D 0:5 (solid line) and � = 1 (dotted line)
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Doubly-truncated-normal distribution with � D 0 W 5, B D 1:1 (solid line) and � D 1, B D 1:6

(dotted line)
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Both the normal/doubly-truncated normal SFM and normal/truncated-normal
SFM fail to be globally identified, but are potentially locally identified. However,
if the inefficiencies have a large mean, the latter model fails to be even locally
identified. The former can still yield precise and stable estimates of parameters and
inefficiencies. It remains unclear how statistical inference can be validated in the
locally identified case. Shapiro (1986) and Dasgupta et al. (2007) discuss some cases
there valid statistical inference can be obtained. Moreover, Bayesian methods could
be utilized to identify the parameters through nonlinear constraints imposed by the
skewness condition. The Ritter and Simar (1997) argument can also be avoided
if one considers the normal/truncated-gamma stochastic frontier model. We leave
these possibilities for the future work.
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Chapter 11
Optimal Smoothing for a Computationally and
Statistically Efficient Single Index Estimator

Yingcun Xia, Wolfgang Karl Härdle, and Oliver Linton

Abstract In semiparametric models it is a common approach to under-smooth the
nonparametric functions in order that estimators of the finite dimensional parameters
can achieve root-n consistency. The requirement of under-smoothing may result,
as we show, from inefficient estimation methods or technical difficulties. Xia et al.
(J. Roy. Statist. Soc. B. 64:363–410, 2002) proposed an adaptive method for the
multiple-index model, called MAVE. In this chapter we further refine the estimation
method. Under some conditions, our estimator of the single-index is asymptotically
normal and most efficient in the semi-parametric sense. Moreover, we derive higher-
order expansions for our estimator and use them to define an optimal bandwidth for
the purposes of index estimation. As a result we obtain a practically more relevant
method and we show its superior performance in a variety of applications.

11.1 Introduction

Single index models (SIMs) are widely used in the applied quantitative sciences.
Although the context of applications for SIMs almost never prescribes the functional
or distributional form of the involved statistical error, the SIM is commonly fitted
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with (low dimensional) likelihood principles. Both from a theoretical and practical
point of view such fitting approach has been criticized and has led to semiparametric
modelling. This approach involves high dimensional parameters (nonparametric
functions) and a finite dimensional index parameter. Consider the following single-
index model,

Y D g.�>
0 X/C "; (11.1)

whereE."jX/ D 0 almost surely, g is an unknown link function, and �0 is a single-
index parameter with length one and first element positive for identification. In
this model there is a single linear combination of covariates X that can capture
most information about the relation between response variable Y and covariates
X; thereby avoiding the “curse of dimensionality”. Estimation of the single-index
model is very attractive both in theory and in practice. In the last decade a series
of papers has considered estimation of the parametric index and the nonparametric
part with focus on root-n estimability and efficiency issues, see Carroll et al. (1997)
and Delecroix et al. (2003, 2006) for an overview. There are numerous methods
proposed or can be used for the estimation of the model. Amongst them, the most
popular ones are the average derivative estimation (ADE) method investigated by
Härdle and Stoker (1989), the sliced inverse regression (SIR) method proposed by
Li (1991), the semiparametric least squares (SLS) method of Ichimura (1993) and
the simultaneous minimization method of Härdle et al. (1993).

The existing estimation methods are all subject to some or other of the following
four critiques: (1) Heavy computational burden: see, for example, Härdle et al.
(1993), Delecroix et al. (2003), Xia and Li (1999) and Xia et al. (2002). These
methods include complicated optimization techniques (iteration between bandwidth
choice and parameter estimation) for which no simple and effective algorithm is
available up to now. (2) Strong restrictions on link functions or design of covariates
X : Li (1991) required the covariate to have a symmetric distribution; Härdle and
Stoker (1989) and Hristache et al. (2001) needed a non-symmetric structure for the
link function, i.e., jEg0.�>

0 X/j is bounded away from 0. If these conditions are
violated, the corresponding methods are inconsistent. (3) Inefficiency: The ADE
method of Härdle and Stoker (1989) or the improved ADE method of Hristache
et al. (2001) is not asymptotically efficient in the semi-parametric sense, Bickel et al.
(1993). Nishiyama and Robinson (2000, 2005) considered the Edgeworth correction
to the ADE methods. Härdle and Tsybakov (1993) discussed the sensitivity of
the ADE. Since this method involves high dimensional smoothing and derivative
estimation, its higher order properties are poor. (4) Under-smoothing: Let hoptg be
the optimal bandwidth in the sense of MISE for the estimation of the link function
g and let h� be the bandwidth used for the estimation of �0. Most of the methods
mentioned above require the bandwidth h� to be much smaller than the bandwidth
h
opt
g , i.e. h�=h

opt
g ! 0 as n ! 1, in order that estimators of �0 can achieve root-

n consistency, see, Härdle and Stoker (1989), Hristache et al. (2001), Robinson
(1988), Hall (1989) and Carroll et al. (1997) among others. Due to technical
complexities, there are few investigations about how to select the bandwidth h� for
the estimation of the single-index. Thus it could be the case that even if h� D h

opt
g

allows for root-n consistent estimation of �; that hopt� =h
opt
g ! 0 or hoptg =h

opt

� ! 0;
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where hopt� is the optimal bandwidth for estimation of �: This would mean that using
a single bandwidth hoptg would result in suboptimal performance for the estimator
of �: Higher order properties of other semiparametric procedures have been studied
in Linton (1995) inter alia.

Because the estimation of �0 is based on the estimation of the link function g,
we might expect that a good bandwidth for the link function should be a good
bandwidth for the single-index, i.e., under-smoothing should be unnecessary.
Unfortunately, most of the existing estimation methods involve for technical reasons
“under-smoothing” the link function in order to obtain a root-n consistent estimator
of �0. See, for example, Härdle and Stoker (1989), Hristache et al. (2001, 2002),
Carroll et al. (1997) and Xia and Li (1999). Härdle et al. (1993) investigated this
problem for the first time and proved that the optimal bandwidth for the estimation
of the link function in the sense of MISE can be used for the estimation of the single-
index to achieve root-n consistency. As mentioned above, for its computational
complexity the method of Härdle et al. (1993) is hard to implement in practice.

This chapter refines the method in Xia et al. (2002) and Xia (2006). It avoids
undersmoothing and the computational complexity of former procedures and
achieves the semiparametric efficiency bound. It is based on the MAVE method
of Xia et al. (2002), which we outline in the next section. Using local linear
approximation and global minimization, we give a very simple iterative algorithm.
The proposed method has the following advantages: (a) the algorithm only involves
one-dimensional smoothing and is proved to converge at a geometric rate; (b) with
normal errors in the model, the estimator of �0 is asymptotically normal and efficient
in the semiparametric sense; (c) the optimal bandwidth for the estimation of the link
function in the sense of MISE can be used to estimate �0 with root-n consistency;
(d) by a second order expansion, we further show that the optimal bandwidth for the
estimation of the single-index �0; h

opt

�
; is of the same magnitude as hoptg :

Therefore, the commonly used “under-smoothing” approach is inefficient in
the sense of second order approximation. Powell and Stoker (1996) investigated
bandwidth selection for the ADE methods. We also propose an automatic bandwidth
selection method for our estimator of �:Xia (2006) has recently shown the first order
asymptotic properties of this method. Our theoretical results are proven under weak
moment conditions.

In section 3 we present our main results. We show the speed of convergence, give
the asymptotic estimation and derive a smoothing parameter selection procedure.
In the following section we investigate the proposed estimator in simulation and
application. Technical details are deferred to the appendix.

11.2 The MAVE Method

Suppose that f.Xi ; Yi / W i D 1; 2; : : : ; ng is a random sample from model (11.1).
The basic idea of our estimation method is to linearly approximate the smooth link
function g and to estimate �0 by minimizing the overall approximation errors. Xia
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et al. (2002) proposed a procedure via the so called minimum average conditional
variance estimation (MAVE). The single index model (11.1) is a special case of
what they considered, and we can estimate it as follows. Assuming function g and
parameter �0 are known, then the Taylor expansion of g.�>

0 Xi / at g.�>
0 x/ is

g.�>
0 Xi / � a C d�>

0 .Xi � x/;

where a D g.�>
0 x/ and d D g0.�>

0 x/. With fixed � , the local estimator of the
conditional variance is then

�2� .x/ D min
a;d

(
n Of�.x/g�1

nX

iD1
ŒYi � faC d�>.Xi � x/g�2Khf�>.Xi � x/

)
;

where Of�.x/ D n�1Pn
iD1 Khf�>.Xi � x/g, K is a univariate density function, h

is the bandwidth and Kh.u/ D K.u=h/=h; see Fan and Gijbels (1996). The value
�2� .x/ can also be understood as the local departure of Yi with Xi close to x from
a local linear model with given � . Obviously, the best approximation of � should
minimize the overall departure at all x D Xj ; j D 1; � � � ; n. Thus, our estimator of
�0 is to minimize

Qn.�/ D
nX

jD1
�2� .Xj / (11.2)

with respect to � W j� j D 1: This is the so-called minimum average conditional
variance estimation (MAVE) in Xia et al. (2002). In practice it is necessary to
include some trimming in covariate regions where density is low, so we weight
�2� .x/ by a sequence O��j ; where O��j D �nf Of�.Xj /g; that is discussed further below.

The corresponding algorithm can be stated as follows. Suppose �1 is an initial
estimate of �0. Set the number iteration � D 1 and bandwidth h1. We also set a final
bandwidth h. Let Xij D Xi �Xj .

Step 1: With bandwidthh� and � D �� , calculate Of� .Xj / D n�1Pn
iD1 Kh� .�

>Xij /
and the solutions of aj and dj to the inner problem in (11.2):

 
a�j
d �j h�

!
D
(

nX

iD1
Kh� .�

>Xij /
�

1

�>Xij =h�

��
1

�>Xij =h�

�>)�1

�
nX

iD1
Kh� .�

>Xij /
�

1

�>Xij =h�

�
Yi :

Step 2: Fix the weightKh� .�
>Xij /; f� .Xj /; a�j and d�j . Calculate the solution of �

to (11.2):
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� D
8
<

:

nX

i;jD1
Kh� .�

>Xij / O��j fd�.Xj /g2XijX>
ij

Of� .�>Xj /

9
=

;

�1

nX

i;jD1
Kh� .�

>Xij / O��j d� .Xj /Xij .Yi � a�j /=
Of�.�>Xj /;

where O��j D �nf Of� .Xj /g.

Step 3: Set � D � C 1, �� WD �=j� j and h� WD maxfh; h�=
p
2g, go to Step 1.

Repeat steps 1 and 2 until convergence.
The iteration can be stopped by a common rule. For example, if the calculated

�’s are stable at a certain direction, we can stop the iteration. The final vector
� WD �=j� j is the MAVE estimator of �0, denoted by O� . Note that these steps are
an explicit algorithm of the Xia et al. (2002) method for the single-index model
with some version of what they called ‘refined kernel weighting’ and boundary
trimming. Similar to the other direct estimation methods, the calculation above is
easy to implement. See Horowitz and Härdle (1996) for more discussions. After �
is estimated, the link function can then be estimated by the local linear smoother as

Og O� .v/, where

Og� .v/ D Œnfs�2 .v/s�0 .v/�.s�1 .v//2g��1

�
nX

iD1
fs�2 .v/�s�1 .v/.�>Xi�v/=h�gKh� .�

>Xi � v/Yi ; (11.3)

and s�k .v/ D n�1Pn
iD1 Kh� .�

>Xi � v/f.�>Xi � v/=h�gk for k D 0; 1; 2. Actually,

Og O� .v/ is the final value of a�j in Step 1 with �>Xj replaced by v.
In the algorithm, �n.:/ is a trimming function employed to handle the boundary

points. There are many choices for the estimator to achieve the root-n consistency;
see e.g. Härdle and Stoker (1989) and Härdle et al. (1993). However, to achieve
the efficiency bound, �n.v/ must tend to 1 for all v. In this chapter, we take �n.v/
as a bounded function with third order derivatives on R such that �n.v/ D 1 if
v > 2c0n

�& ; �n.v/ D 0 if v � c0n
�& for some constants & > 0 and c0 > 0. As an

example, we can take

�n.v/ D

8
<̂

:̂

1; if v � 2c0n
�& ,

expf.2c0n�&�v/�1g
expf.2c0n�&�v/�1gCexpf.v�c0n�& /�1g ; if 2c0n�& > v > c0n�& ,

0; if v � c0n
�& :

(11.4)

The choice of & will be given below. The trimming function is selected to be smooth
and to include all sample space as n ! 1.
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11.3 Main Results

We impose the following conditions to obtain the asymptotics of the estimators.

(C1) [Initial estimator] The initial estimator is in ‚n D f� W j� � �0j � Cn�˛g for
some C > 0 and 0 < ˛ < 1=2.

(C2) [Design] The density function f� .v/ of �>X and its derivatives up to 6th order
are bounded on R for all � 2 ‚n, EjX j6 < 1 and EjY j3 < 1. Furthermore,
supv2R;�2‚n jf�.v/� f�0.v/j � cj� � �0j for some constant c > 0.

(C3) [Link function] The conditional mean g�.v/ D E.Y j�>X D v/; E.X j�>X D
v/, E.XX>j�>X D v/ and their derivatives up to 6th order are bounded for
all � such that j� � �0j < ı for some ı > 0.

(C4) [Kernel function]K.v/ is a symmetric density function with finite moments of
all orders.

(C5) [Bandwidth and trimming parameter] The trimming parameter & is bounded
by 1/20 and the bandwidth h is proportional to n�� for some � with 1=5� � �
� � 1=5C � for some � > 0.

Assumption (C1) is feasible because such an initial estimate is obtainable using
existing methods, such as Härdle and Stoker (1989), Powell et al. (1989) and
Horowitz and Härdle (1996). Actually, Härdle et al. (1993) even assumed that
the initial value is in a root-n neighborhood of �0, f� W j� � �0j � C0n

�1=2g.
Assumption (C2) means that X may have discrete components providing that �>X
is continuous for � in a small neighborhood of �0; see also Ichimura (1993). The
moment requirement onX is not strong. Härdle et al. (1993) obtained their estimator
in a bounded area of R

p, which is equivalent to assume that X is bounded; see also
Härdle and Stoker (1989). We impose slightly higher order moment requirements
than the existence of the second moment for Y to ensure the optimal bandwidth
in (C5) can be used in applying Lemma 11.8.1 in section 6. The smoothness
requirements on the link function in (C3) can be relaxed to the existence of a
bounded second order derivative at the cost of more complicated proofs and smaller
bandwidth. Assumption (C4) includes the Gaussian kernel and the quadratic kernel.
Assumption (C5) includes the commonly used optimal bandwidth in both the
estimation of the link function and the estimation of the index �0. Actually, imposing
these constraints on the bandwidth is for ease of exposition in the proofs.

Let ��.x/DE.X j�>XD�>x/, 	�.x/D�� .x/ � x, w� .x/ D E.XX>j�>X D
�>x/, W0.x/D 	�0.x/	

>
�0
.x/. Let AC denote the Moore-Penrose inverse of a sym-

metric matrixA. Recall thatK is a symmetric density function. Thus,
R
K.v/dv D 1

and
R

vK.v/dv D 0. For ease of exposition, we further assume that �2 DR
v2K.v/dv D 1. Otherwise, we can redefineK.v/ WD �

1=2
2 K.�

1=2
2 v/.

We have the following asymptotic results for the estimators.

Theorem 11.3.1 (Speed of algorithm). Let �� be the value calculated in Step 3
after � iterations. Suppose assumptions (C1)-(C5) hold. If h� ! 0 and j�� �
�0j=h2� ! 0, we have
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��C1 � �0 D 1

2

˚
.I � �0�

>
0 /C o.1/

�
.�� � �0/C 1

2
p
n
Nn CO.n2&h4� /

almost surely, where Nn D ŒEfg0.�>
0 X/

2W0.X/g�Cn�1=2Pn
iD1 g0.�>

0 Xi /	�0.Xi /

"i D Op.n
�1=2/.

Theorem 11.3.1 indicates that the algorithm converges at a geometric rate, i.e.
after each iteration, the estimation error reduces by half approximately. By Theorem
11.3.1 and the bandwidth requirement in the algorithm, we have

j��C1 � �0j D
�
1

2
C o.1/

�
j�� � �0j CO.n�1=2 C n2&h4� /:

Starting with j�1 � �0j D Cn�˛ , in order to achieve root-n consistency, say j�k �
�0j � cn�1=2 i.e. 2�kCn�˛ � cn�1=2, the number of iterations k can be calculated
roughly by

k D
��

1

2
� ˛

�
lognC log.C=c/

��
log 2: (11.5)

Based on Theorem 11.3.1, we immediately have the following limiting distribution.

Theorem 11.3.2 (Efficiency of estimator). Under the conditions (C1)–(C5), we
have

p
n. O� � �0/ L! N.0;†0/;

where†0DŒEfg0.�>
0 X/

2W0.X/g�CEfg0.�>
0 X/

2W0.X/"
2gŒEfg0.�>

0 X/
2W0.X/g�C:

By choosing a similar trimming function, the estimators in Härdle et al. (1993)
and Ichimura (1993) have the same asymptotic covariance matrix as Theorem
11.3.2. If we further assume that the conditional distribution of Y given X belongs
to a canonical exponential family

f
Y jX
.yjx/ D expfy
.x/� B.
.x//C C.y/g

for some known functions B, C and 
, then †0 is the lower information bound in
the semiparametric sense (Bickel et al. 1993). See also the proofs in Carroll et al.
(1997) and Härdle et al. (1993). In other words, our estimator is the most efficient
one in the semiparametric sense.

For the estimation of the single-index model, it was generally believed that under-
smoothing the link function must be employed in order to allow the estimator of the
parameters to achieve root-n consistency. However, Härdle et al. (1993) established
that undersmoothing the link function is not necessary. They derived an asymptotic
expansion of the sum of squared residuals. We also derive an asymptotic expansion
but of the estimator b� itself. This allows us to measure the higher order cost of
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estimating the link function. We use the expansion to propose an automatic band-
width selection procedure for the index. Let f�0.:/ be the density function of �>

0 X .

Theorem 11.3.3 (Higher order expansion). Under conditions (C1)-(C5) and if "i
is independent of Xi , we have almost surely

O� � �0 D En C c1;n

nh
C c2;nh

4 C Hn COfn2&�3ng;

where �n D h2 C .nh= logn/�1=2,

En D .Wn/
C

nX

iD1
�nff�0.Xj /gg0.�>

0 Xi/	�0 .�
>
0 Xi /"i ;

withWnDn�1Pn
jD1 �nff�0.Xj /g.g0.�>

0 Xi //
2	�0 .Xj /	

>
�0
.Xj /, Hn D Ofn�1=2�nC

n�1h�1=2g with EfHnEng D of.nh/�2 C h8g and

c1;nD
Z
K2.v/v2dv�2.nWn/

�1
nX

jD1
�nff�.Xj /gf	0

�0
.Xj /Cf 0

0 .Xj /	�0.Xj /=f�0.Xj /g;

c2;nD1

4

�Z
K.v/v4dv � 1

�
.nWn/

�1
nX

jD1
�nff�.Xj /gg0.�>

0 Xj /g
00.�>

0 Xj /	
00
�0
.Xj /:

Because K.v/ is a density function and we constrain that
R

v2K.v/ D 1, it
follows that �4 D R

K.v/v4dv > 1. In the expansion of O� � �0, the first term
En does not depend on h. The second and third terms are the leading term among
the remainders. The higher order properties of this estimator are better than those
of the AD method, see Nishiyama and Robinson (2000), and indeed do not reflect a
curse of dimensionality.

To minimize the stochastic expansion, it is easy to see that the bandwidth
should be proportional to n�1=5. Moreover, by Theorem 11.3.2 we consider the
Mahalanobis distance

. O� � �0/
>†C

0 .
O� � �0/ D Tn C ofh8 C .nh/�2g;

where

Tn D
�
En C c1;n

nh
C c2;nh

4 C Hn

	>
†C
0

�
En C c1;n

nh
C c2;nh

4 C Hn

	

is the leading term. We have by Theorem 11.3.3 that

ETn D E.E>
n †

C
0 En/C

� c1
nh

C c2h
4
	>
†C
0

� c1
nh

C c2h
4
	

C ofh8 C .nh/�2g;
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where c1D
R
K2.v/v2dv�2W C

0 Ef	0
0.X/Cf �1.X/f 0.X/	0.X/g, W0 D Ef.g0.�>

0

X//2	�0.X/	
>
�0
.X/g and

c2 D 1

4

�Z
K.v/v4dv � 1

�
W C
0 EŒg

0.�>
0 X/g

00.�>
0 X/	

00
�0
.X/�:

Note that E.E>
n †

C
0 En/ does not depend on h. By minimizing ETn with respective

to h, the optimal bandwidth should be

h� D
�
.9r22 C 16r1/

1=2 � 3r2

8

� 1=5
n�1=5;

where r1 D c>
1 †

C
0 c1=.c

>
2 †

C
0 c2/ and r2 D c>

1 †
C
0 c2=c

>
2 †

C
0 c2. As a comparison, we

consider the optimal bandwidth for the estimation of the link function g. By Lemma
11.5.1 and Theorem 11.3.2, if f�0.v/ > 0 we have

Og.v/ D g.v/C 1

2
g00.v/2h2 C 1

nf�0.v/

nX

iD1
Kh.�

>
0 Xi � v/"i COP .n

�1=2 C h2�n/:

(11.6)
In other words, the link function can be estimated with the efficiency as if the index
parameter vector is known. A brief proof for (11.6) is given in section 5. It follows
that

j Og.v/ � g.v/j2 D Sn.v/COP f.n�1=2 C h2�n/�ng;
where the leading term is Sn.v/ D Œ 1

2
g00.v/2Cfnf�0 .v/g�1Pn

iD1 Kh.�
>
0 Xi �v/"i �2.

Suppose we are interested in a constant bandwidth in the region Œa; b� with weight
w.v/. Minimizing

R
Œa;b�

ESn.v/w.v/dv with respect to h, we have that the optimal
bandwidth for the estimation of the link function is

hg D
"R

K2.v/dv
R
Œa;b�

f �1
�0
.v/�2�0.v/w.v/dv

R
Œa;b�

g00.v/2w.v/dv

#1=5
n�1=5:

It is noticeable that the optimal bandwidth for the estimation of the parameter
vector �0 is of the same order as that for the estimation of the link function. In other
words, under-smoothing may lose efficiency for the estimation of �0 in the higher
order sense. These optimal bandwidths hopt� and hoptg can be consistently estimated
by plug-in methods; see Ruppert et al. (1995).

Although the optimal bandwidth for the estimation of � is different from that
for the link function, its estimation such as the plug-in method may be very unstable
because of the estimation of second order derivatives. Moreover, its estimation needs
another pilot parameter which is again hard to choose. In practice it is convenient
to apply hoptg for hopt� directly, and since hoptg and hopt� have the same order, the loss
of efficiency in doing so should be small. For the former, there are a number of
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estimation methods such as CV and GCV methods. If the CV method is used, in
each iteration with the latest estimator � , the bandwidth is selected by minimizing

Ohg D argmin
h

n�1
nX

jD1
fYj � Og�j .�>Xj /g2;

where Og�j .v/ is the delete-one-observation estimator of the link function, i.e. the

estimator of Og�.v/ in (11.3) using data f.Xi ; Yi /; i ¤ j g. Another advantage of this
approach is that we can also obtain the estimator for the link function.

11.4 Numerical Results

In the following calculation, the Gaussian kernel function and the trimming function
(11.4) with & D 1=20 and c0 D 0:01 are used. A MATLAB code rMAVE.m for the
calculations below is available at

http://www.stat.nus.edu.sg/%7Estaxyc

In the first example, we check the behavior of the bandwidths hg and h� .
We consider two sets of simulations to investigate the finite performance of our
estimation method, and to compare the bandwidths for the estimation of the link
function g and the single-index �0. Our models are

model A: Y D .�>
0 X/

2 C 0:2"; model B: Y D cos.�>
0 X/C 0:2";

where �0 D .3; 2; 2; 1; 0; 0;�1;�2;�2;�3/>=6, X � N10.0; I /, and " � N.0; 1/

is independent of X . The OPG method was used to choose the initial value of � .
With different sample sizes n and bandwidthsh, we estimate the model and calculate
estimation errors

err� D f1� j�>
0

O� jg1=2; errg D 1

n

nX

jD1
�nf Of O� . O�>Xj /gj Og O� . O�>Xj /� g.�>

0 Xj /j;

where Og O� . O�>Xj / is defined in (11.3). With 200 replications, we calculate the mean
errors mean.err� / and mean.errg/. The results are shown in Fig. 11.1.

With the outer product of gradients estimator as the initial value (Xia et al.
2002), we have the following observations. (1) Notice that n1=2mean.err�/ tends
to decrease as n increases, which means the estimation error err� enjoys a
root-n consistency (and slightly faster for finite sample size). (2) Notice that
the U-shape curves of err� have a wider bottom than those of errg . Thus, the
estimation of �0 is more robust to the bandwidth than the estimation of g. (3) Let
h

opt
� D arg minh mean.err� / and hopt

g D arg minh mean.errg/. Then hopt� and hopt
g
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Fig. 11.1 The wide solid lines are the values of logfn1=2mean(err� /g and the narrow lines are
the values of logfn1=2mean(errg/g (re-scaled for easier visualisation). The dotted vertical lines
correspond to the bandwidths h� and hg respectively

represent the best bandwidths respectively for the estimation of the link function
g and the single-index �0. Notice that hopt

� =h
opt
g tends to increase as n increases,

but seems to converge to a constant. Thus the under-smoothing bandwidth is not
optimal.

Next, we compare our method with some of the existing estimation methods
including ADE in Härdle and Stocker (1993), MAVE, the method in Hristache
et al. (2001), called HJS hereafter, the SIR and pHd methods in Li (1991, 1992)
and SLS in Ichimura (1993). For SLS, we use the algorithm in Friedman (1984) in
the calculation. The algorithm has best performance among those proposed for the
minimization of SLS, such as Weisberg and Welsh (1994) and Fan and Yao (2003).
We consider the following model used in Hristache et al. (2001),

Y D .�>
0 X/

2 exp.a�>
0 X/C �"; (11.7)

where X D .x1; � � � ; x10/>, �0 D .1; 2; 0; : : : ; 0/>=
p
5, x1; � � � ; x10; " are indepen-

dent and "�N.0; 1/. For the covariatesX : .xkC1/=2�Beta.�; 1/ for k D 1; � � � ; p.
The parameter a is introduced to control the shape of the function. If a D 0, the
structure is symmetric; the bigger it is, the more monotone the function is.

Following Hristache et al. (2001), we use the absolute deviation
Pp

jD1 j O�j � �j j
to measure the estimation errors. The calculation results for different � and � based
on 250 replications are shown in Table 11.1. We have the following observations
from Table 11.1. Our methods has much better performance than ADE and the
method of Hristache et al. (2001). For each simulation, the better one of SIR and
pHd is reported in Table 11.1, suggesting that these methods are not so competitive.
Actually the main application of SIR and pHd is not in the estimation of single-
index models. See Li (1991, 1992). For SLS, its performance depends much on the
data and the model. If the model is easy to estimate (such as monotone and having
big signal/noise ratio), it performs quite well. But overall SLS is still not so good
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Table 11.1 Average estimation errors
Pp

jD1 j O�j � �j j and their standard deviations (in square
bracket) for model (11.7)

a D 1 a D 0

n � � ADE� HJS� SIR/pHd SLS MAVE SIR/pHd SLS MAVE

200 0.1 1 0.6094 0.1397 0.6521 0.0645 0.0514 0.7500 0.6910 0.0936
[0.1569] [0.0258] [0.0152] [0.1524] [1.2491] [0.0255]

200 0.2 1 0.6729 0.2773 0.6976 0.1070 0.0934 0.7833 0.8937 0.1809
[0.1759] [0.0375] [0.0294] [0.1666] [1.3192] [0.0483]

400 0.1 0.75 0.7670 0.1447 0.3778 0.1151 0.0701 0.6037 0.0742 0.0562
[0.0835] [0.0410] [0.0197] [0.1134] [0.0193] [0.0146]

400 0.1 1 0.4186 0.0822 0.4868 0.0384 0.0295 0.5820 0.5056 0.0613
[0.1149] [0.0125] [0.0096] [0.1084] [1.0831] [0.0167]

400 0.1 1.5 0.2482 0.0412 0.5670 0.0208 0.0197 0.5760 0.0923 0.0669
[0.1524] [0.0063] [0.0056] [0.1215] [0.0257] [0.0175]

400 0.2 1 0.4665 0.1659 0.5249 0.0654 0.0607 0.6084 0.7467 0.1229
[0.1353] [0.0207] [0.0178] [0.1064] [1.2655] [0.0357]

400 0.4 1 0.5016 0.3287 0.6328 0.1262 0.1120 0.6994 0.9977 0.2648
[0.1386] [0.0406] [0.0339] [0.1370] [1.2991] [0.1880]

�The values are adopted from Hristache et al. (2001)

as MAVE. The proposed method has the best performance in all the simulations we
have done.

11.5 Proof of Theorems

Let f�.v/ be the density function of �>X and ƒn D fx W jxj < nc; f� .x/ >

n�2& ; � 2 ‚ng where c > 1=3 and & > 0 is defined in (C5). Suppose An is a
random matrix depending on x and � . By An D O.an/ (or An DO .an/) we mean
that all elements inAn areOa:s:.an/ (or oa:s:.an/) uniformly for � 2 ‚n and x 2 ƒn.
Let ın D .nh= logn/�1=2, �n D h2 C ın and ı� D j� � �0j. For any vector V.v/ of
functions of v, we define .V .v//0 D dV.v/=dv.

Suppose .Xi ; Zi /; i D 1; 2; : : : ; n; are i.i.d. samples from .X;Z/. Let Xix D
Xi � x,

s�k .x/ D n�1
nX

iD1
Kh.�

>Xix/f�>Xix=hgk;

t �k .x/ D n�1
nX

iD1
Kh.�

>Xix/f�>Xix=hgkXi ;

w�k.x/ D n�1
nX

iD1
Kh.�

>Xix/f�>Xix=hgkXiX>
i ;

e�k .x/ D n�1
nX

iD1
Kh.�

>Xix/f�>Xix=hgk"i ;
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��k D s�k .x/�Es�k .x/, ��k D t �k .x/�Et�k .x/,D�
n;k.x/ D s�2 .x/s

�
k .x/�s�1 .x/s�kC1.x/,

E�
n;k D s�0 .x/s

�
kC1.x/ � s�1 .x/s

�
k .x/ for k D 1; 2; : : :. For any random variable Z

and its random observationsZi ; i D 1; : : : ; n, let

T �n;k.Zjx/ D s�2 .x/n
�1

nX

iD1
K�
h .Xix/.�

>Xix=h/kZi � s�1 .x/n
�1

�
nX

iD1
K�
h .Xix/.�

>Xix=h/kC1Zi ;

S�n;k.Zjx/ D s�0 .x/n
�1

nX

iD1
K�
h .Xix/.�

>Xix=h/kC1Zi � s�1 .x/n
�1

�
nX

iD1
K�
h .Xix/.�

>Xix=h/kZi :

By the Taylor expansion of g.�>
0 Xi / at �>

0 x, we have

g.�>
0 Xi/ D g.�>

0 x/C
5X

kD1

1

kŠ
g.k/.�>

0 x/f�>Xix C .�0 � �/>Xixgk

C O.f�>Xix C .�0 � �/>Xixg6/
D g.�>

0 x/C A�.x;Xi /C B�.x;Xi /.�0 � �/

C Of.�>Xix/6 C ı3� .jXi j6 C jxj6/g; (11.8)

where A�.x;Xi / D P5
`D1.kŠ/�1g.k/.�>

0 x/.�
>Xix/k and

B�.x;Xi / D
5X

kD1

1

.k � 1/Š
g.k/.�>

0 x/.�
>Xix/k�1X>

ixC 1

2
g00.�>

0 x/.���0/>XixX>
ix :

For ease of exposition, we simplify the notation and abbreviate g for g.�>
0 x/

and g0; g00; g000 for g0.�>
0 x/; g

00.�>
0 x/; g

000.�>
0 x/ respectively. Without causing

confusion, we write f�.�>x/ as f� , f�.�>Xj / as f�.Xj / and Kh.�
>Xij / as

K�
h .Xij /. Similar notations are used for the other functions.

Lemma 11.5.1 (Link function). Let

†�n.x/ D n�1
nX

iD1
K�
h .Xix/

�
1

�>Xix=h

��
1

�>Xix=h

�>
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and �
a� .x/

d� .x/h

�
D fn†�n.x/g�1

nX

iD1
K�
h .Xix/

�
1

�>Xix=h

�
Yi :

Under assumptions (C2)–(C5), we have

a� .x/ D g.�>
0 x/CA�n.x/h

2 CB�
n .x/.�0 � �/CV �

n .x/CO.h2�2n C ı3� /.1C jxj6/;

d�.x/h D g0.�>
0 x/hC QA�n.x/h2C QB�n .x/.�0��/hC QV �

n .x/CO.h2�2nCı3� /.1Cjxj6/;
where

A�n.x/ D 1

2
g00 C 1

4

�
.�4 � 1/g00f �2

� .f�f
00
� � 2.f 0

� /
2/C 1

24
�4g

.4/

�
h2 CH�

1;n.x/;

QA�n.x/ D 1

2
g00.�4 � 1/f �1

� f 0
� hC 1

6
g.3/�4hC 1

2
g00f �1

� .��3 � ��1 /C O.h�n/;

B�n .x/ D g0	� C O.�n C ı� /; QB�n .x/ D g0.�>
0 x/f

�1
� ff�	�.x/g0 C O.�n/;

where H�
1;n.x/ D 1

2
g00.�>

0 x/ff �1
� .��2 � ��0 /C .2��4/f �2

� f 0
� h�

�
1 � f �2

� f 0
� h�

�
3 g C

1
6
f �1
� g000h��3 and V �

n .x/ D f �1
� e�0 �f �2

� f 0
� he

�
1 C�4f

�2
� f 00

� h
2e�0 =2Cf �2

� .e�0 �
�
2 �

e�1 �
�
1 /��4f �2

� f 000
� h

3e�1 Cff �2
� .f 0

� /
2�.�4C1/f �1

� f 00
� gff �1

� h2e�0 �f �2
� f 0

� h
3e�1 g�

f �1
� .��0 C ��1 /ff �1

� e�0 � f �2
� f 0

� e
�
1 g C 2f �2

� f 0
� h�

�
1f

�1
� e�0 and QV �

n .x/ D f �1
� e�1 C

f �2
� f 00

� h
2e�1 =2C f �2

� .��0 e
�
1 � ��1 e�0 / � f �2

� f 0
� he

�
0 C f �1

� ��0 Œ�.�4 C 1/f �1
� f 00

� h
2=

2 � f �1
� .��0 C ��1 /C f �2

� .f 0
� /
2h2�:

Lemma 11.5.2 (Summations). Let 
�n.x/Dn�1Pn
iD1 K�

h .Xix/Xix"i . Under
conditions (C1)–(C5), we have

A�
n

defD n�1
nX

jD1
�nfs�0 .xj /gg0.�>

0 Xj /

�
n.Xj /=s

�
0 .Xj /

D E�n C r�n;0.� � �0/CQ�
n C O.n2&�3n/;

B�n
defD .nh/�1

nX

jD1
�nfs�0 .Xj /ge�k .Xj /
�n.Xj /=s�0 .Xj / D Qck;n

nh
CR�n C O.n2&�3n/;

C�n
defD n�1

nX

jD1
�n.s

�
0 .Xj //�

�
k .Xj /


�
n.Xj /=s

�
0 .Xj / D M�

n C O.n2& �3n/;

where E�n D Pn
iD1 �nff�.Xj /gg0.�>Xi/	�.�>Xi/"i ; r�n;0 DO .1/,

E�n D Of.n= logn/�1=2g; Q�
n D Of.n= logn/�1=2�ng; R�n D Ofn�1=2ıng;

M �
n D Ofn�1=2ıng;
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with EfE�nQ�
ng D o.h8 C .nh/�2/; EfE�nR�ng D o.h8 C .nh/�2/; EfE�nM�

n g D
o.h8 C .nh/�2/; and Qck;n D R

vkC1K2.v/dvEŒ�n.f�.Xj //f �1
� .Xj /.	� .Xj /f�

.Xj //
0.Xj /� if k is odd, 0 otherwise.

Lemma 11.5.3 (Denominator). Let D�
n D n�2Pn

i;jD1 �n.s�0 .Xj //d2� .Xj /K�
h .Xij /

XijX
>
ij =s

�
0 .Xj / in the algorithm. Suppose .�; B/ W p � p is an orthogonal matrix.

Then under (C1)-(C5), we have almost surely

.D�
n/

�1 D ��>d�11h�2 � �d �12B
>h�1 � B.d�12/

>�>h�1 CBd�22B
>;

where

d�11 D .G�
n /

�1 CO.1/; d �12 D H�
n hC O.�n/; d �22 D 1

2
.B>W �

n B/
�1 C O.�n/;

with G�
n D n�1Pn

jD1 �n.f� .Xj //f �1
� .Xj /.g

0.�0Xj //2 and H�
n D 1

2
n�1Pn

jD1 �n
.f� .Xj //f

�1
� .Xj /f.f�	� /0.Xj /g> .G�

n /
�1.g0.�>

0 Xj //
2B.B>W �

n B/
�1 and W �

n D
n�1Pn

jD1 �nff� .Xj /g.g0.�>Xi//2	� .Xj /	>
� .Xj /.

11.5.1 Proof of Lemma 11.5.3

Let .�; B/ be an orthogonal matrix. It is easy to see that

n�1
nX

iD1
K�
h .Xix/�

>XixX>
ix� D s�2 .x/h

2;

n�1
nX

iD1
K�
h .Xix/�

>XixX>
ixB D ft �1 .x/ � s�1 .x/xg>Bh;

n�1
nX

iD1
K�
h .Xix/B

>XixX>
ixBDB>fw�0.x/ � t �0 .x/x> � x.t�0 .x//

>Cxx>s�0 .x/gB:

Thus

.D�
n/

�1 D .�; B/

 
D�
11h

2 .D�
12/

>Bh
B>D�

12h B>D�
22B

!�1
.�; B/>;

where

D�
11 D n�1

nX

jD1
�n.s

�
0 .Xj //fd�.Xj /g2s�2 .Xj /=s�0 .Xj /;

D�
12 D n�1

nX

jD1
�n.s

�
0 .Xj //fd�.Xj /g2ft�1 .Xj / � s�1 .Xj /Xj g>=s�0 .Xj /;
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D�
22 D n�1

nX

jD1
�n.s

�
0 .Xj //.d�.Xj //

2fw�0 .Xj /� t �0 .Xj /X
>
j �Xj t�0 .Xj /

CXjX>
j s

�
0 .Xj /g=s�0 .Xj /:

By the matrix inversion formula in blocks (Schott, 1997), we have the equation in
Lemma 11.5.3 with d11DfD�

11�.D�
12/

>BB>.D�
22/

�1BB>D�
12g�1; d12Dd�11.D�

12/
>

B.B>D�
22B/

�1; d �22 D fB>D�
22Bg�1 C d11fB>D�

22Bg�1B>D�
12.D

�
12/

>BfB>
D�
22Bg�1. By Lemma 11.8.1, we have

D�
11 D G�1

n CO.1/; D�
12 D HnhC O.�n/; D�

22 D 2Wn C O.�n/:

Thus, Lemma 11.5.3 follows. ut
Lemma 11.5.4 (Numerator). Let N �

n D n�2 nP
i;jD1

�n.s
�
0 .Xj //K

�
h .Xij /Xij fYi �

a� .Xj / � d�.Xj /�
>
0 Xij g=s�0 .Xj /. Under assumptions (C1)–(C5), we have almost

surely

N �
n D E�n C Qc1;n

nh
C Qc2;nh4 C R�

n C B�n.� � �0/C Ofn2& .�3n C ı3� /g;

whereR�
nD Ofn�1.logn=h/1=2C.logn=n/�1=2h2g, �>R�

n D Ofhn�1.logn=h/1=2

C.logn=n/�1=2h3 and EfR�
nE�0 g D Of.nh/�2 C h8g, B�n D W �

n CO.1/ with W �
n

defined in Lemma 11.5.3, Qc1;n and E�0 are defined in Lemma 11.5.2 and

Qc2;n D 1

4
.�4 � 1/

nX

jD1
�nff�.Xj /gg0.�>

0 Xj /g
00.�>

0 Xj /	
00
� .Xj /:

11.6 Proof of Theorem 11.3.1

By assumption (C2), we have

1X

nD1
P

 
n[

iD1
fXi … ƒng

!
�

1X

nD1
nP.Xi … ƒn/ �

1X

nD1
nP.jXi j > nc/

<

1X

nD1
nn�6cEjX j6 < 1

for any c > 1=3. It follows from the Borel-Cantelli lemma that

P

 1\

nD1

n[

iD1
fXi … ƒng

!
D 0: (11.9)
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Let Qƒn D fx W f� .�>x/ > 2n��g. Similarly, we have

P

 1\

nD1

n[

iD1
fXi … Qƒng

!
D 0: (11.10)

Thus, we can exchange summations over fXj W j D 1; � � � ; ng, fXj W Xj 2
ƒn; j D 1; � � � ; ng and fXj W Xj 2 Qƒn; j D 1; � � � ; ng in the sense of almost
sure consistency. On the other hand, we have by (C2)

n�1 X

jXj j<nc
.1C jXj j6/ D O.1/:

By the notation in Lemmas 11.5.3 and 11.5.4, after one iteration of Steps 1–3,
the new � is

Q� D �0 C .D�
n/

�1N �
n : (11.11)

Note that �>E�n D 0; �>c�1;n D 0, �>c�2;n D 0, �>W �
n D 0, W �

n .W
�
n /

C D I � ��>
and ı�=h2 ! 0. We have

Q� D �0 C �Œ�>d�11h�2fR�
n C B�n.� � �0/C Ofn2& .�3n C ı3� /gg � d�12B

>h�1N �
n �

� B.d�12/
>�>h�1ŒR�

n C B�n.� � �0/C Ofn2& .�3n C ı3�/g�CBd�22B
>N �

n

D .1C an/�0 C
�
1

2
.I � �0�>

0 /C bn

�
.� � �0/C 1

2
fW �

n gCE�n C O.h4/;

where an DO.1/ and bn DO.1/.
By (11.25) below, we have s�0 .x/ D f� .�

>x/C O.�n/. Thus by the smoothness
of �n.:/ and (11.10), we have

�n.s
�
0 .x// D �n.f� .�

>x//C O.n&�n/ D 1C O.n&�n/: (11.12)

Since �n.:/ is bounded, we haveEf�n. Of�.�>x//� 1g2 DO.1/. By (C3) and Lemma
11.8.1, we have

E�n D n�1
nX

iD1
g0.�>

0 Xi /	�0 .Xi /"i CO.n�1=2/:

Note that Wn D W0 CO.ı�/. It is easy to check that j Q� j D 1C an C bn C O.h4/ D
1CO.1/. Thus
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Q�=j Q� j D �0 C
�
1

2
.I � �0�

>
0 /CO.1/

�
.� � �0/C 1

2
n�1W C

0

nX

iD1
g0.�>

0 Xi /	�0 .Xi /"i

C O .h3 C n�1=2/:

Let �.k/ be the value of � after k iterations . Recall that hkC1 D maxfhk=ch; hg.
Therefore,

j�kC1 � �0j=h2kC1 ! 0;

for all k > 1. We have

�.kC1/ D �0 C
�
1

2
.I � �0�

>
0 /CO.1/

�
.�.k/ � �0/

C 1

2
n�1W C

0

nX

iD1
g0.�>

0 Xi /	�0 .Xi/"i CO.h3k C n�1=2/:

Recursing the above equation, we have

�.kC1/ D �0 C
(
1

2k
.I � �0�>

0 /CO.1/

kX

D1

1

2

)
.�.1/ � �0/

C
(

kX

D1

1

2

)
n�1W C

0

nX

iD1
g0.�>

0 Xi /	�0 .Xi /"i CO

 
kX

D1

1

2
h3k� C n�1=2

!
:

Thus as the number of iterations k ! 1, Theorem 11.3.1 follows immediately
from the above equation and the central limit theorem. ut

11.7 Proof of Theorem 11.3.3

Based on Theorem 11.3.2, we can assume ı� D .logn=n/1=2. Note that �>fE�n C
c1;n.nh/

�1 C c2;nh
4g D 0. We consider the product of each term in .D�

n/
�1 with

N �
n . We have

��>d�11h�2N �
n D ��>d�11h�2ŒR�

n C B�
n .� � �0/C Ofn2& .�3n C ı3� /g�

D a�n�0 C a�n.� � �0/;

�d �12B
>h�1N �

n D b�n�0 C b�n.� � �0/;

and hence,

.D�
n/

�1Nn D �fS>
n .� � �0/CHnE�n C O.n2& �4n/g

D �0fS>
n .� � �0/CHnE�0 C O.n2& �4n/g C cn.� � �0/;
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where Sn D O.1/ and cn D O.�n=h/. It is easy to see that cn DO.1/ provided that
j� � �0j=h2 ! 0. By Lemma 11.5.3 and 11.5.4, we have

Q� D�0f1CS>
n .� � �0/CHnE�0 CO.n2&�4n/gC

1

2
W �
n

�
E�0 Cc0

1;n

nh
Cc0

2;nh
4CR�

n C Q�
n

�

C
�
1

2
.I � ��>/C cn

�
.� � �0/C Ofn2& .�3n C h logn=n/g:

It is easy to see that j Q� j D 1C S>
n .� � �0/CHnE�0 C O.n2&�4n/. Thus

Q�=j Q� j D �0 C 1

2
W �
n

�
E�0 C c0

1;n

nh
C c0

2;nh
4 C R�

n C E�0 H>
n E�0

�

C
�
1

2
.I � ��>/C c0

n

�
.� � �0/C Ofn2& .�3n C h logn=n/g;

where c0
n DO .1/. Similar to the proof of Theorem 11.3.1, we complete the proof

with c1;n D W �1
n c0

1;n and c2;n D W �1
n c0

2;n. ut

11.8 Proofs of the Lemmas

In this section, we first give some results about the uniform consistency. Based on
these results, the Lemmas are proved.

Lemma 11.8.1. Suppose Gn;i .�/ is a martingale with respect to Fi D �fGn;`.�/;
` � ig with � 2 X and X is a compact region in a multidimensional space such
that (I) jGn;i .�/j < �i , where �i are IID and supE�2r1 < 1 for some r > 2;
(II) EG2

n;k.�/ < ans.�/ with inf s.�/ positive, and (III) jGn;i .�/ � Gn;i . Q�/j <
n˛1 j� � Q�jMi , where Mi; i D 1; 2; : : : are IID with EM2

1 < 1. If an D cn�ı with
0 � ı < 1 � 2=r , then for any ˛0

1 > 0 we have

sup
j�j�n˛0

1

ˇ̌
ˇn�1s�1=2.�/

nX

iD1
Gn;i .�/

ˇ̌
ˇ D Of.n�1an logn/1=2g

almost surely. Suppose for any fixed n and k, Gn;i;k.�/ is a martingale with respect
to Fi;k D �fGn;`;k.�/; ` � ig such that (I) jGn;i;k.�/j � �i , (II) EG2

n;i;k.�/ < an

and (III) jGn;i;k.�/ � Gn;i;k. Q�/j < n˛2 j� � Q� jMi , where �i ; an and Mi are defined
above. If Ej"kj2r < 1 and Ef"kjGn;i;j .�/; i < j; j D 1; : : : ; k � 1g D 0, then

sup
�2‚

ˇ̌
ˇn�2

nX

kD2

n k�1X

iD1
Gn;i;k.�/

o
"k

ˇ̌
ˇ D Of.an logn/1=2=ng

almost surely.
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11.8.1 Proof of Lemma 11.8.1

We give the details for the second part of the Lemma. The first part is easier and can
be proved similarly. Let �n.�/ be the expression between the absolute symbols in
the equation. By (III) and the strong law of large numbers, it is easy to see that there
are n1 D n˛3 balls centered at � W B D f� W j� � �j < n�˛4g with ˛4 > ˛2 C 2,
such that

Sn1
D1 B 	 ‚. By the strong law of large numbers, we have

max
1��n1

sup
�2B

j�n.�/ ��n.�/j � n˛2 max
1��n1

sup
�2B

j� � �jn�2
nX

kD1
j"kj

�
nX

iD1
Mi D Of.an logn/1=2=ng

almost surely. Let �n;k.�/D Pk�1
iD1 Gn;i;k.�/. Next, we show that there is a

constant c1 such that

pn
defD P

� 1\

`D1

1[

nD`
f max
1<k�n max

1<�n1
j�n;k.�/j > c1.nan logn/1=2g

	
D 0: (11.13)

Let Tn D fnan log.n/g1=2, GI
n;i;k.�/DGn;i;k.�/I.jGn;i;k.�/j �Tn/ and GO

n;i;k.�/

D Gn;i;k.�/�GI
n;i;k.�/. Write

�n;k.�/D
k�1X

iD1
fGI

n;i;k.�//�EGI
n;i;k.�/gC

k�1X

iD1
fGO

n;i;k.�/�EGO
n;i;k.�/g: (11.14)

Note that EjGO
n;i;k.�/j �T �rC1

n Ej�1jr DEj�1jrfnan log.n/g�.r�1/=2. If an D cn�ı
with 0 � ı < 1 � 2=r and k� n, we have

j
k�1X

iD1
EGO

n;i;k.�/j�Ej�1jr.k � 1/fnan log.n/g�.r�1/=2�CEj�1jrfnan log.n/g1=2:

(11.15)

Note that

nX

iD1
jGO

n;i;k..�/j �
nX

iD1
j�i jI.j�i j > Tn/ � T �rC1

n

nX

iD1
j�i jrI.j�i j > Tn/:
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For fixed T , by the strong law of large numbers, we have

n�1
nX

iD1
j�i jrI.j�i j > T / ! Efj�1jr I.j�1j > T /g

almost surely. The right hand side above is dominated by Efj�1jrg and tends to zero
as T ! 1. Note that Tn increases to 1 with n. For large n such that Tn > T , we
have

n�1
nX

iD1
j�i jrI.j�i j > Tn/ � n�1

nX

iD1
j�i jrI.j�i j > T / ! 0

almost surely as T ! 1. It follows that

nX

iD1
jGO

n;i;k.�/j D o.nT �rC1
n / D of.nan logn/1=2g (11.16)

almost surely. Thus by (11.15) and (11.16), if c0
1 > CEj�1jr we have

p0
n

defD P

 1\

`D1

1[

nD`

(
max
1<k�n

max
1<�n1

j
k�1X

iD1
fGO

n;i;k..�/�EGO
n;i;k.�/gj>c0

1.nan logn/1=2
)!

� P

 1\

`D1

1[

nD`

(
nX

iD1
j�i j.j�i j � Tn/ > c

0
1.nan logn/1=2

)!

CP
 1\

`D1

1[

nD`

(
max
1<k�n

max
1<�n1

j
k�1X

iD1
EGO

n;i;k.�/j>c0
1.nan logn/1=2

)!
D 0

(11.17)

By condition (II), if k � n we have

max
1��n1

Var
k�1X

iD1
fGI

n;i;k.�/� EGI
n;i;k.�/g � c2nan

defD N1; (11.18)

where c2 is a constant. By the condition on an and the definition of GI
n;i;k.�/, we

have constants c3 and c4 such that

max
1��n˛ jfGI

n;i;k.�/� EGI
n;i;k.�/gj � c3Tn

D c3fnan= logng1=2fa�r
n logrC1 n=nr�2g1=.2.r�1//

� c4fnan= logng1=2 defD N2: (11.19)
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LetN3 D c5fnan logng1=2 with c25 > 2.˛3C3/.c2Cc4c5/. By Bernstein’s inequality
(cf. de la Peña 1999), we have from (11.18) and (11.19) that for any k � n,

P

 
j
k�1X

iD1
fGI

n;i;k.�/ �EGI
n;i;k.�/gj > N3

!
� 2 exp

� �N2
3

2.N1 CN2N3/

�

� 2 expf�c25 logn=.2c2 C 2c4c5/g
� c6n

�˛3�3:

Let c1 > maxfc5; c0
1g. We have

1X

nD1
P

(
max
1<k�n max

1<�n1
j
k�1X

iD1
ŒGI

n;i;k.�/ �EGI
n;i;k.�/�j > c1.nan logn/1=2

)

�
1X

nD1

nX

kD2

n1X

D1
P
n
j
k�1X

iD1
ŒGI

n;i;k.�/� EGI
n;i;k.�/�j > c1.nan logn/1=2

o

�
1X

nD1
c6n

�˛3�3n1C˛3 < 1: (11.20)

By (11.14), (11.17) and (11.20) and the Borel-Cantelli lemma, we have

pn � P
n 1\

`D1

1[

nD`
max
1<k�n

max
1<�n1

j
k�1X

iD1
ŒGI

n;i;k.�/ �EGI
n;i;k.�/�j > c1.nan logn/1=2

o

C p0
n D 0:

Therefore (11.13) follows.
Let�I

n;k.�/D�n;k.�/I fj�n;k.�/j � c1.nan logn/1=2g andU`.�/D
P`

kD2 �I
n;k

.�/"k: Write

�n.�/ D Un.�/C
nX

kD2
�O
n;k.�/"k;

where �O
n;k.�/ D �n;k.�/ � �I

n;k.�/. It is easy to see from (11.13) that for the
second part on the right hand side above,

max
1<�n1

j
nX

kD2
�O
n;k.�/"k j D Ofn.an logn/1=2g (11.21)

almost surely, since for any constant c > 0,
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1X

nD1
P

(
max
1<�n1

j
nX

kD2
�O
n;k.�/"kj>cn.an logn/1=2

)
�

1X

nD1
P

�
max
1<�n1

max
1<k�n

j�O
n;k.�/j>0

�

�
1X

nD1
P f max

1<�n1
max
1<k�n j�n;k.�/j > c1.nan logn/1=2g

< 1:

Now consider the first term. Let T 01=2
n = logn,

U I
` .�/ D

X̀

kD2
�I
n;k.�/tbI"kI.j"kj � T 0

n/ �EŒ"kI.j"kj � T 0
n/�g

and UO
` .�/ D U`.�/�U I

` .�/. Similar to the proof of (11.15) and (11.16), we have
almost surely

j
X̀

kD2
�O
n;k.�/Ef"kI.j"kj > T 0

n/gj D Ofn.an logn/1=2g; (11.22)

j
X̀

kD2
�O
n;k.�/"kI.j"kj > T 0

n/j D Ofn.an logn/1=2g: (11.23)

Note that

j�I
n;k.�/f"kI.j"kj � T 0

n/ � EŒ"kI.j"kj � T 0
n/�gj < 2c1.nan logn/1=2T 0

n

D 2c1n.an= logn/1=2
defD N4

and by (II), VarfU I
` .�/g D c02

2 an
defDN5, where c0

2 is a constant. Let N6 D c0
3n

.an logn/1=2 with c0
3
2
> 2.˛3 C 3/.2c1c

0
3 C c0

2/. By Bernstein’s inequality, we have

P.jU I
n .�/j � N6/ � 2 exp

�
� N2

6

2.N6N4 CN5/

�
� 2n�˛3�3:

Therefore

nX

nD1
P

�
max
1��n1

jU I
n .�/j � N6

�
<

nX

nD1
n1P fjU I

n .�/j � N6g < 1:

By the Borel-Cantelli lemma, we have

max
1��n1

jU I
n .�/j D O.N6/ (11.24)

almost surely. Lemma 11.8.1 follows from (11.21), (11.22), (11.23) and (11.24). ut
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11.8.2 Proof of Lemma 11.5.1

Write s�k .x/ D ��k .x/C Es�k .x/. By Taylor expansion, we have

s�k .x/ D
3X

�D0
�kC�f .�/

�
.x/h� C ��k .x/C O.h4/: (11.25)

Because Varf��
k .x/g D Of.nh/�1g, it follows from Lemma 11.8.1 that ��k .x/ D

O.ın/. It is easy to check that

D�
n;0.x/ D f 2

� C1

2
.�4 C 1/f�f

00
� h

2 � .f 0
� /
2h2 C f�.�

�
0 C ��2 / � 2f 0

� h�
�
1CO.�2n/:

D�
n;2.x/ D f 2

� C �4.f�f
00
� � .f 0

� /
2/h2 C 2f��

�
2 � f 0

� h�
�
3 � �4f

0
� h�

�
1 C O.�2n/:

D�
n;3.x/ D f��

�
3 C O.h�n/; D�

n;4.x/ D �4f
2
� C O.�n/; D�

n;5.x/ D O.h/:
T �n;0.X jx/ D f 2� 	� .x/C O.�n/; S�n;0.X jx/ D O.h/; T �n;k.X jx/ D O.1/;
S�n;k.X jx/ D O.1/; for k � 1;

T �n;0.j�>Xix j6jx/ D O.h6/; S�n;0.j�>Xix j6jx/ D O.h6/; T �n;0.XX>jx/ D O.1/;
S�n;0.XX

>jx/ D O.h/;
En;2.x/ D .�4 � 1/f�f 0

� hC f� .�
�
3 � ��1 /C O.h�n/; En;3.x/ D �4f

2
� C O.�n/;

En;4.x/ D O.h/:

Note that

a�.x/ D T �n;0.Y jx/=D�
n;0.x/; d� .x/h D S�n;0.Y jx/=D�

n;0.x/:

and

A�n.x/ D
5X

kD2

1

kŠ
g.k/.�>

0 x/
D�
n;k.x/

D�
n;0.x/

hk�2;

B�
n .x/ D

4X

kD0

1

kŠ
g.kC1/.�>

0 x/
Tn;k.X jx/ �Dn;k.x/x

D�
n;0.x/

hk;

Cn.x; �/ D 1

2
g00.�>

0 x/fTn;0.XX>jx/� Tn;0.X jx/x> � xTn;0.X>jx/
C xx>D�

n;0.x/gfD�
n;0.x/g�1;

QA�n.x/ D
4X

kD2

1

kŠ
g.k/.�>

0 x/
E�
n;k.x/

D�
n;0.x/

hk�2;
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QB�
n .x/ D

4X

kD1

k

kŠ
g.k/.�>

0 x/
Sn;k.X jx/� En;k.x/x

D�
n;0.x/

hk;

QCn.x; �/ D 1

2
g00.�>

0 x/fSn;0.XX>jx/� Sn;0.X jx/x> � xSn;0.X>jx/

C xx>E�
n;0.x/gfD�

n;0.x/g�1:

Lemma 11.5.1 follows from simple calculations based on the above equations. ut

11.8.3 Proof of Lemma 11.5.2

It follows from Lemma 11.8.1 that 
�n.x/ D O.ın/.1Cjxj/ and s�0 D f� C Q��0 where
Q��0 D ��k C .Es�k � f� / D O.�n/. Because j�00

n.:/j < n2& , we have

�n.s
�
0 .Xj // D �n.f�.Xj //C �0

n.f� .Xj //Q��0 .Xj /C O.n2&�2n/: (11.26)

Thus

A�
n D QE�n CQ�

n;1 C O.n2& �3n/;

where QE�n D n�2Pn
iD1

Pn
jD1 �n.f�.Xj //f �1

� .Xj /g
0.�>Xj /K�

h .Xij /Xij "i , and

Q�
n;1 D n�1Pn

iD1 G�
n;i with

G�
n;i D n�1

nX

jD1

h1
2
f 00
� .Xj /f�0

n.f�.Xj //� �n.f� .Xj //f
�1
� .Xj /gh2

C f1� �n.f�.Xj //f
�1
� .Xj /gQ��0 .Xj /

i

� f �1
� .Xj /g

0.�>Xj /K�
h .Xij /Xij "i :

Simple calculations lead to E QE�n D 0;E. QE�n /2 DO.n�1/, E.G�
n;i /D 0 and E.G�

n;i /
2

D Ofh4 C .nh/�1g. By the first part of Lemma 11.8.1, we have

QE�n D Of.logn=n/1=2g; Q�
n;1 D Ofh2.logn=n/1=2 C n�1.logn=h/1=2g:

By Taylor expansion, g0.�>
0 x/ D g0.�>x/Cg00.v�/.�0��/>x, where v� is a value

between �>x and �>
0 x. Write

QE�n D E�n CQ�
n;2 C rn;0.� � �0/;
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where Q�
n;2Dn�2Pn

iD1
Pn

jD1f�n.f�.Xj //f �1
� .Xj /g

0.�>Xj /K�
h .Xij /Xij��n.f�

.Xi//g
0.�>Xi/	�.Xi /g"i and rn;0 D O.�n=h/. By Lemma 11.8.1 and the fact that

Var.Q�
n;2/ D Ofh4 C .nh/�1g, we have

Q�
n;2 D Of.n= logn/�1=2�ng:

Let Q�
n D Q�

n;1 C Q�
n;2. It is easy to check that EfQ�

nE�n g D o.h8 C .nh/�2/.
Therefore, the first part of Lemma 11.5.2 follows.

Similarly, we have from (11.26) that

B�n D .nh/�1
nX

jD1
f�n.f� .Xj //C �0

n.f�.Xj //Q��0 .Xj /ge�k.Xj /
�n.Xj /=f�.Xj /

C O.n2& �4n=h/:

Let QR�n be the first term on the right hand side above. Then

QR�n D n�3
nX

jD1
f�n.f� .Xj //C �0

n.f�.Xj //Q��0 .Xj /g

�
nX

iD1
K2
h.�

>Xij /.�>Xij =h/kXij "2i =f�.Xj /

C n�3
nX

jD1
f�n.f� .Xj //C �0

n.f� .Xj //Q��0 .Xj /g

�
nX

i¤`
Kh.�

>Xij /.�>Xij =h/kKh.�
>X j̀ /X j̀ "i "`=f�.Xj /

defD QR�n;1 C QR�n;2 C QR�n;3 C QR�n;4:

If " is independent of X , then

E�.x/
defD EfK2

h.�
>Xix/.�>Xij =h/kXix"2i g

D h�1
2X

`D0

1

`Š
Q�kC`ff� .x/	� .x/g.`/h`�2 CO.h2/;

where Q�k D R
K2.v/vkdv. By Lemma 11.8.1, we have

n�1
nX

iD1
K2
h.�

>Xix/.�>Xix=h/kXix"2i � E�.x/ D O.h�1ın/:
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Thus

R�n;0
defD .n2h/�1

nX

jD1
�n.f� .Xj //

"
n�1

nX

iD1
K2
h.�

>Xij /.�>Xij =h/kXij "2i�E�.Xj /
#

D Of.nh2/�1ıng: (11.27)

It is easy to check that EfE�nR�n;0g D 0. Write

.n2h/�1
nX

jD1
�n.f� .Xj //E�.Xj / D .nh/�1Ef�n.f� .Xj //E�.Xj /g CR�n;1;

where EfR�n;1E�n g D 0 and

R�n;1 D .n2h/�1
nX

jD1
Œ�n.f� .Xj //E� .Xj /� Ef�n.f� .Xj //E�.Xj /g�

D Of.nh2/�1.n= logn/�1=2g: (11.28)

Note that Ef�n.f�.X//	� .X/g D 0. We have

.nh/�1Ef�n.f� .Xj //E�.Xj /g D Qck;n
nh

CR�n;2; (11.29)

where R�n;2 D O.n�1/ and EfR�n;2E�0 g D 0. By (11.27)–(11.29) and the fact that
.n= logn/�1=2 D o.�n/, we have

QR�n;1 D Qck
nh

CR�n;1 CR�n;2: (11.30)

Similarly

QR�n;2 D Of.nh/�1�ng: (11.31)

Let G�
n;i;`Dn�1Pn

jD1 �n.f�.Xj //Kh.�
>Xij /.�>Xij =h/kKh.�

>X j̀ /X j̀ =f�.Xj /.

Write QR�n;3 as

QR�n;3 D n�2
nX

i¤`

1

2
.G�

n;i;` CG�
n;`;i /"i"` D n�2

nX

`D1

nX

i<`

1

2
.G�

n;i;` CG�
n;`;i /"i

o
"`:

By the second part of Lemma 11.8.1, we have

QR�n;3 D Ofn�1=2ıng: (11.32)
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Similarly, we have

QR�n;4 D Ofn�1=2ıng: (11.33)

Thus the second part of Lemma 11.5.2 follows from (11.30) and (11.31).
The third part of Lemma 11.5.2 can be proved similarly as the proof of the second

part. ut

11.8.4 Proof of Lemma 11.5.4

By (11.8), Lemma 11.5.1 and �0 D � C .�0 � �/, simple calculations lead to

Yi � a� .x/ � d�.x/�
>
0 Xix D "i C f QA�.x;Xi / �A�n.x/h2g C f QB�.x;Xi /

� B�n .x/g>.�0 � �/ � V �
n .x/C Ofh2�2n C ı3�g;

where QA�.x;Xi / D A�.x;Xi / � d�.x/�
>Xix and QB�.x;Xi / D B�.x;Xi / �

d�.x/Xix . It follows from the Taylor expansion that

C�
n;k.x/

defD n�1
nX

iD1
K�
h .Xix/.�

>Xix=h/kXixD
5X

`D0

1

`Š
�kC`.f�� /.`/h`CQ��kCO.h6/;

where Q��k D n�1Pn
iD1fK�

h .Xix/.�
>Xix=h/kXix � EK�

h.Xix/.�
>Xix=h/kXixg D

��k � x��k . We have

n�1
nX

iD1
K�
h .Xix/Xix

QA�.x;Xi /

D fg0.�>
0 x/ � d� .x/gCn;1.x/hC

5X

kD2

1

kŠ
g.k/.�>

0 x/C
�
n;k.x/h

k

D �1
2
g00.�4 � 1/f 0

� f
�1
� .	�f�/

0h4 C 1

2
g00.	�f� /0.��3 � ��1 /h

2

C QV �
n f.	�f�/0hC 1

6
�4.	�f�/

00h3 C Q��1 g

C 1

2
g00h2ff�	� C 1

2
�4.f�	�/

00h2g C 1

24
g.4/�4f�	�h

4 C 1

2
g00h2 Q��2

C 1

6
g000h3 Q��3 C O.h2�2n/:
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Thus

n�1
nX

iD1
K�
h .Xix/Xixf QA�.x;Xi / �A�n.x/h2g D 1

4
.�4 � 1/g00f�	00

� C B�
n;1.� � �0/

CH�
2;n C O.h2�2n/; (11.34)

where B�
n;1 D f.	�f�/0h C 1

6
�4.	�f� /

000h3 C Q��1 gB�
n .x/

> with B�
n .x/ defined in

Lemma 11.5.1, and

H�
2;n D1

2
g00.��3 � ��1 /h

2.	�f� /
0 C f �1

� e�1 .f�	� /
0hC 1

2
f �2
� f 00

� .f 	�/
0h3e�1

C f �2
� .f 	/0h.��0 e�1 � ��1 e

�
0 / � f �2f 0.f 	/0h2e�0 C f �1.f 	/0h��0

�
�1
2
.�4 C 1/f �1f 00

� h
2 � f �1.��0 C ��1 /C f �2.f 0/2h2

�

C 1

6
�4f

�1e�1 .f 	/00h3 C f �1e�1 Q��1 � f �2f 0he�0 Q��1 C 1

2
g00h2 Q��2

C 1

6
g000h3 Q��3 � 1

2
g00h2 Q��0 � 1

2
g00.�>

0 x/ff �1
� .��2 � ��0 /

C .2 � �4/f
�2
� f 0

� h�
�
1 � f �2

� f 0
� h�

�
3 g	�f�h2 � 1

6
g000��3 	�h3:

By the expansions of d� .x/ in Lemma 11.5.1, �n.s�0 .x// in (11.26), and (11.34), we
have

n�2
nX

jD1
�n.s

�
0 .Xj //d� .Xj /

nX

iD1
K�
h .Xix/Xij f QA�.Xj ;Xi /� A�n.Xj /h

2g=s�0 .Xj /

D Qc2;nh4 C .B�
n;2/

>.� � �0/C QR�n;1 C Ofn2& .h2�2n C ı2�hC ı3� /g;

whereB�
n;2 Dn�1Pn

jD1 �n.s�0 .Xj //d�.Xj /B�1;n.Xj /=s�0 .Xj / and QR�n;1 Dn�1Pn
jD1

�n.s
�
n .Xj //d�.Xj /H

�
2;n.Xj / =s

�
0 .Xj /: Again by the expansion of d� and the fact

that Q��1 DO.ın/, we have B�
n;2 DO.h C ın/. It is easy to check that H�

2;n D
O.hın C ı2n/. We have

QRn;1 D n�1
nX

jD1
Œ�n.f� .Xj //C �0

n.f�.Xj //ff�.Xj /C 1

2
f 00
� .Xj /h

2

C ��0 .Xj /g�fg0.�>
0 Xj /C 1

6
g000.�>

0 Xj /h
2
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C QV �
n .Xj /=hgH�

2;n.Xj /f
�1
� .Xj /f1 � 1

2
f �1
� .Xj /f

00
� .Xj /h

2

� f �1
� .Xj /�

�
0 .Xj /g C O.n2&�3n/

defD Rn;1 C O.n2&�3n /:

Next, we need to consider the terms in Rn;1 one by one. Write

R�n;1;1
defD n�1

nX

jD1
�n.f� .Xj //f

�1
� .Xj /.f� .Xj /	� .Xj //

0e�1 h

Dhn�2
nX

iD1

n nX

jD1
K�
h .Xij /�n.f�.Xj //f

�1
� .Xj /.f� .Xj /	� .Xj //

0o"i :

Note that Ef�n.f�.X//f �1
� .X/.f� .X/	�.X//

0j�>Xg D 0. We have by Lemma
11.8.1

R�n;1;1 D Ofhn�1.h�1 logn/�1=2g
and

EfE�0 R�n;1;1g D hn�3E
nX

iD1

n nX

jD1
K�
h .Xij /�n.f� .Xj //f

�1
� .Xj /.f� .Xj /	� .Xj //

0o

� �n.f� .Xi//g0.�>Xi/	�.Xi /"2i

D hn�3E
(

nX

jD1
K�
h .0/�n.f�.Xj //f

�1
� .Xj /.f� .Xj /	� .Xj //

0

� �n.f� .Xj //g0.�>Xj /	�.Xj /"2j

)

D O.n�2/:

Applying a similar approach to all the terms in R�n;1, we have

R�n;1 D Ofn�1.logn=h/1=2C.logn=n/1=2h2g and EfE�nR�n;1gDof.nh/�2 C h8g:
(11.35)

By Lemmas 11.5.1 and 11.8.1, we have
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B�
n;3

defD n�2
nX

jD1
�.s�0 .Xj //d�.Xj /

nX

iD1
K�
h .Xij /Xij f QB�.Xj ;Xi /

� B�
n .Xj /g>=s�0 .Xj /

D W �
n C Of.�n C ı� /=hg:

By Lemma 11.5.2, we have

n�2
nX

jD1
�.s�0 .Xj //d�.Xj /

nX

iD1
K�
h .Xij /Xij "i=s

�
0 .Xj /

D E�0 C Qc1;n
nh

C B�
n;4.�0 � �/CR�n;2 C O.n2&�3n/;

where Qc1;n is defined in the lemma, and

B�
4;n D n�1

nX

jD1
f�n.f� .Xj //C �0

n.f�.Xj //�
�
0 .Xj /g
�n.Xj /. QB�n .Xj //>=h
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nX

jD1

h1
6
�n.f� .Xj //g

000.�>
0 Xj /h

2 C �0
n.f� .Xj //�

�
0 .Xj /fg0.�>

0 Xj /

C QV �
n .Xj /=hg

i

�n.Xj /:

Noting that 
�n D O.ın/, we have B�
4;n D O.ın=h/: Similarly, we have

n�2
nX

jD1
�n.s

�
0 .Xj //d�.Xj /V

�
n .Xj /

nX

iD1
K�
h .Xij /Xij =s

�
0 .Xj / D R�n;3 C O.n2&�3n /;

where

R�n;3 D n�1
nX

jD1
�n.s

�
0 .Xj //d� .Xj /V

�
n .Xj /Œ	� .Xj /C 1

2
f �1
� f.f�	� /00

� f �1
� f 00

� 	� .Xj /gh2 C ��0 .Xj /� ��0 .Xj /�:

By the same arguments leading to (11.35), we have

R�n;2 DOfn�1.logn=h/1=2 C .logn=n/1=2h2g and EfE�nR�n;2g Dof.nh/�2 C h8g;
(11.36)
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R�n;3 DOfn�1.logn=h/1=2 C .logn=n/1=2h2g and EfE�nR�n;3g D of.nh/�2 C h8g:
(11.37)

Lemma 11.5.4 follows from the above equations with R�
n D R�n;1CR�n;2CR�n;3 and

B�n D B�
n;2 C B�

n;3 C B�
n;4 D W �

n C Ofn2& .�n C ı�/=hg: ut
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