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Chapter 1
Introduction

Abstract. Model integration is central to cancer modelling and systems biology
in general, but progress has as yet been stunted by a lack of cohesive effort and
a common ground on which such an effort could occur. With rapid development
in computational techniques, and significant advances within the systems biology
community the real power of model integration is now coming to light. Here we
describe how such a subject matter can be approached given the tremendous com-
plexity of biological systems.

1.1 Complex Biological Systems, Modelling and Model
Integration

Biology is shifting into an era of research where the use of mathematical and compu-
tational methods is becoming an integral part of the investigative cycle. Whilst tra-
ditionally engineering and computer science-oriented fields have guided biology in
this respect, keeping themselves separate as disciplines, systems biology - a growing
field in which biology, computer science and engineering meet - is quickly becom-
ing a focal point for complexity research and modelling. This has been driven by
technological innovation, e.g. microarrays and high-performance computing, enor-
mous endeavours in scientific discovery, such as the genome projects, and the sheer
necessity of disease prevention and cure. The fact is that there are no known systems
more complex than the human body and other biological systems and therefore the
opportunity for research is unique.

Currently at the core of the systems biology effort is the determination of be-
haviour at all levels of the system, from molecular to whole-organism. The benefits
of such a wide understanding, once achieved, will be immense - not only will it
yield greater understanding for the purposes of medicine, there is additionally a



2 1 Introduction

reciprocal stream by which disciplines engage ideas from biology, e.g. bio-inspired
computing1.

Modelling plays a fundamental role in this challenge. It is invariably a multi-
faceted process that starts with conceptualising the target system - often simplifying
it and dissecting it into manageable modules - upon which a set of mathematical and
computational formalisms is based. It can be said of these formalisms:

• Their structure and convention can be extremely diverse.

– For example, take as a random sample differential equations and Boolean net-
works. Not only are these fundamentally different in design, the process of
solving and executing them is completely different.

• Their components can become extremely complex.

– As will be seen, some modelling efforts encapsulate such depth of detail as
modelling formalisms for complex systems are often difficult to solve without
simplification.

• The model and its solver are sometimes difficult to separate.

– An example of a solver technology is a differential equation solver. Some
models have actually been published as complete packages wherein the model
and the solver are tightly coupled.

• The semantics of such models are often difficult to conceptualise into a precise
computable form.

– Assumptions, context, data sources, caveats and simplifications are all usu-
ally written in free text since there is no standardised way to describe such
metadata.

• Biological systems, and hence models, operate on a multitude of scales.

What is the nature of this diversity? How does this diversity relate to the real system?
What is the commonality between these diverse formalisms? Can there be any unity
in this diversity? These are crucial questions that have to be asked if modellers are
to make their simulations more representative of the real system. The reason is that
each effort focuses on different aspects of the system and they ultimately need to
be integrated. Moreover the composition of elements within the same system can
be such that they warrant different modelling approaches. Unifying principles must
therefore be found in order to harness the full potential of individual modelling
efforts, paving the way to a more complete understanding.

The most common name given to this unification is model integration. Imple-
mentation has taken different forms within the few disciplines in which it has been
tackled, however the underlying principle and aim has remained constant: model

1 This has been seen before in computer science, for example, where understanding of evo-
lutionary processes has led to a great many number of applications in the form of evolu-
tionary algorithms.
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integration in its most common conceptualisation is a solution by which disparate
models are executed in such a way that the resulting model and output(s) are con-
cordant with the original models and represent a model of a larger system of which
the individual models are constituent parts.

The difference in implementations is completely dependant on the nature of mod-
elling methodologies within those fields of research. For example, as will be dis-
cussed in Chapter 4, the Management and Operations Research sciences have de-
veloped a kind of integration strategy that is applicable to the sequential nature of
the models found there.

There does not seem to be any universal method by which one can integrate
models. The necessity for such a technology is widely recognised, and is equally
evident in the field of cancer systems biology. However, its development is some-
what stunted when compared to other areas of research. Primarily the reason for
this is the progressive complexity of models and simulations used and hence their
integration is not forthcoming.

The recent rapid development of mathematical models describing complex bio-
logical processes in cancer at all scales, encouraged by the pressing requirement for
improved therapy, makes tumour systems a compelling target for model integration
research.

For these reasons this book has aimed to meet this challenge head-on and ap-
ply it to cancer systems biology. Firstly an in-depth literature review is given in
Chapter 2. This review discusses the current state of the tumour modelling literature,
where research is heading and the benefits and shortcomings of current methods.
Not only is this a review of representative models and techniques, it serves as the
basis on which the aforementioned diversity of models is analysed in more detail.
This analysis provides the information needed to investigate the precise challenges
that model integration presents.

The types of approaches in any modelling-oriented field are parallel to the nature
of the real system itself. This is especially true in tumour systems biology where the
mathematical and computational techniques applied to tumour biology are found to
be correspondingly intricate to be able to explain its highly non-linear behaviour.
Therefore the science of complexity and systems in the context of cancer biology is
described in relevant detail in Chapter 3.

Based on the findings of the literature review and insights into complex systems, a
two-phase approach is developed, explained in Chapters 4 and 5, and is implemented
as a parallelisable application as a proof of concept. The method borrows ideas
from complex systems as agent-oriented systems and object-oriented concepts from
software engineering to tackle model complexity and semantics. The theory is tested
by integrating models from the literature and an analysis of the results is made in
Chapter 6. Finally, the theoretical basis of the method is extrapolated to include
additional technologies in Chapter 7 to show that not only is it a multi-disciplinary
approach, but also to illustrate that it is a well-rounded approach that shows promise
for cancer modelling as well as other modelling disciplines.



Chapter 2
Nature to Numbers: Complex Systems
Modelling of Cancer

Abstract. This chapter represents a survey of the literature pertaining to mathe-
matical modelling of tumour biology and techniques used to achieve tumour sim-
ulations. The purpose of this review is to (a) portray the vast array of techniques
currently in use in the field, including mathematical and computational formalisms;
(b) develop an appreciation of the enormous complexity of the problem domain,
i.e. the tumour system, and hence portray the parallel complexity of the techniques
needed to describe the system; (c) develop a detailed survey of model attributes so
that the challenges that model integration poses, as well as possible solutions, can
be defined.

2.1 Mathematical Modelling in Tumour Systems Biology

Definition 1 (Model). A model can be defined as an abstraction of a real sys-
tem [131]. The abstractions of interest here are those that are expressed in some al-
gorithmic form, be it mathematical, computational or logical. Simulation and model
are often used interchangeably in the literature, however the term simulation can be
defined as a model that is executed via a solver over a parametric variable, e.g. time.
The terms model and solver are defined formally in more detail in Chapter 4.

Mathematical techniques in cancer biology have been applied for many years and
their use has dramatically increased with the arrival of fast and accessible computa-
tion. The literature shows numerous examples of the use of mathematical modelling
techniques, many of which have been previously applied to fields such as physics
and environmental/meteorological sciences. It is evident that the application of such
techniques is now ubiquitous in cancer research reflecting a general trend in almost
all areas of biology and biomedicine. These analytical methods have been used to
assist understanding of the emergence of complex tumour behaviour, which will be
discussed in this chapter.

The types of available models focused on cancer biology range from general
models, e.g. tumour growth, angiogenesis and signalling transduction pathway mod-
els, to specific models, e.g. behaviour in response to specific stimuli. Models of
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biological processes are employed for diverse research purposes, notably, inquiries
into fundamental tumour dynamics and drug target prediction. Algorithms used by
these models range from differential equations, use of fractal theory [15], stochastic
approaches [201] and more recently artificial intelligence techniques such as clus-
tering and classification, neural networks, application of fuzzy logic [34], induc-
tive/stochastic logic programming [163], Bayesian networks [98] and many more.
Epidemiological models are also abundant in the literature, which are informative
for the clinician in terms of modelling prognoses and diagnoses given various bio-
logical data1.

The types of models presented in this report have been broadly categorised into
the following classifications: Growth Models, Angiogenesis Models, Treatment Re-
sponse Models and Dynamic Pathways Models. Of course not all of the models
presented here can be strictly classified into these types - in reality all are hybrids to
some degree but most comfortably fall into one of the categorisations, as portrayed
by Figure 2.1. As this figure suggests, there are virtually no models that incorpo-
rate all of these aspects to describe tumour behaviour. The following sections will
highlight the fact that inclusion of diverse behaviours yield richer and more pre-
cise models. Indeed this is a key point in this project - models have traditionally
dissected behaviour in such a way that it is often not obvious how to integrate them
back together again. The methods described in this project endeavour to remedy that
situation.

Fig. 2.1 Current state of the tumour modelling literature. The majority of models can be
classed as growth models; this aspect of cancer has attracted the most attention from mod-
ellers since it is one of the main clinically important behavioural features. More mechanistic
models include response to treatment, angiogenesis and pathway dynamics. Relatively few
models include a mixture of all these aspects. As will be discussed in later chapters, the core
of systems biology has always been pathway/machanistic-centric. Importantly, the issue of
model integration is central to creating more representative models.

1 This model class includes statistical models, which does not directly tackle systems be-
haviour and hence are not included in this review.
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2.1.1 Growth Models

Growth models are the most abundant types of model for solid tumours in that all
other modelling exercises must take into account the intrinsic growth functions that
exist within the system.

In many ways growth models would seem to be the obvious target of tumour
simulations as, ultimately, it is the aggressive growth behaviour of the system that
leads to symptomatic disease. Indeed it is also this type of model, and findings
related to these models, that seems to attract most attention at the media level. For
example in 2008 ABC News published findings on biomarkers to help predict timour
size2.

Chignola (2000) [44] point out two important features that characterise the
growth of tumours. Firstly, tumours are inherently made up of a heterogeneous pop-
ulation and therefore the growth dynamics can be quite complex. When modelling
overall growth one is actually trying to model the growth of several phenotypically
different populations. Secondly, growth is limited and cannot continue indefinitely.
The constraint is placed by limitations in resources and space. All models in the
literature seem to recognise these characteristics to some degree though it is not
always explicitly stated.

The majority of the tumour modelling effort seems to be in the analysis of mech-
anisms that control growth since this is one of the most important factors that affect
tumour development and response to treatment [33]. As a reflection of this one can
see a rich variety of growth models in the literature dating back to the early 20th
century. However, as yet, there is no universally accepted formalism that describes
either vascular or avascular tumour growth [76].

2.1.1.1 Generalised Formalisms

Growth models can be further subdivided by the the actual behaviour of growth that
they model. Tumours are complex systems (explained in later chapters) and hence
there are many facets on which to focus. For example, Cristini and coworkers at
the University of Houston in 2009 explain ”growth” in terms of invasiveness and
metastises3. However, for the most part the growth modelling methodologies are
concerned purely with a single body of parameterised growth.

The most simplistic formalisms include, at least in part, exponential models
within defined bounds based on given restraints and difference equations [131]. Dif-
ference equations have the form:

xt = R · xt−1 (2.1)

where xt is the next discrete state of the system; xt−1 is the current state of the system
(previous time index); R is a constant that denotes the rate of increase or decrease;

2 http://abcnews.go.com/Health/Healthday/story?id=5614404&page=1
3 http://www.nanotech-now.com/news.cgi?story id=33696
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As Mehrara (2010) and his colleagues of the University of Gothenburg explain,
such simplistic formalisations rarely yield representative models4. More evolved
models tend to have complicated functions in place of the parameter R rather than a
constant. Collectively this can be termed as the state transition function.

A closed form of Equation 2.2 can be expressed:

xt = x0 ·Rt (2.2)

which can be approximated to the following exponential when t is large:

xt = x0 · eRt (2.3)

where x0 is equivalent to the state at the first state/time index (e.g. tumour radius or
mass).

One of the first generalised functions used to describe changes in population
number, i.e. cell number in tumours, is the Gompertz function, formalised by Ben-
jamin Gompertz in 1825. It was introduced specifically for tumour growth by Win-
sor in 1932 [193]. Other well-known functions include the logistic growth function
and the von Bertalanffy growth function (these are very similar to the Gompertz
function, and have been used to describe tumour growth previously, but will not be
discussed any further here since the explanation of the Gompertz model here suit-
ably covers the extent to which these kinds of model can describe tumour dynamics;
the reader is directed to Marusic et al., 1994 [124], for a comparative review).

The Gompertz function reads as follows, although many forms of the equation
exist:

Y = A +Ce−e−B(t−M)
(2.4)

where Y represents growth, e.g. tumour volume or radius; A is the initial value, i.e.
the lower asymptote; C is the maximum asymptote; B is the growth rate; t is time;
M is the time of maximum growth rate; A, C, B and M are all constants.

The Gompertz curve is of course a gross simplification of population increase but
is used ubiquitously across many fields, from tumour biology to population studies,
ecology and psychology.

The literature suggests that this function can be used successfully to describe
tumour growth [11, 1, 59, 108]. The Gompertz function yields a curve that exhibits
an initial stage of exponential growth, which eventually levels off into a plateau
(Fig. 2.2). This type of curve suggests an intrinsic increase in growth retardation
imposed on a growing number of individuals in the population until equilibrium
such that growth and retardation, due to death or stasis, is reached.

However, the complexities of the tumour system is such that a model needs to
be able to capture the rich and highly connected functional modules that the system
exhibits, e.g. particular processes orchestrated by cellular pathways, to truly have
the capacity to qualitatively and quantitatively mimic the system or command any
clinical meaning. Hill was one of the first to realise this and investigated diffusion of
molecules through tissue and its responsibility for tumour behaviour, hence creating

4 http://www.bjhcim.co.uk/news/2010/n1003020.htm
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Fig. 2.2 A generalised Gompertz curve showing the population increase in relation to time.
The graph also shows an estimate of the size at which the tumour is detectable, i.e. a tumour
is said to be in the clinical phase when it has actually been detected and is being treated.

one of the first algorithms for growth that integrated tumour biology into mathemat-
ics. The following decades saw the emergence of growth models that focused on the
actual growth dynamics rather than deeper, analytical algorithms [11].

However not many of these algorithms at the time could actually be validated
against the real biological system due to the lack of an experimental tumour system.
This changed with the introduction of in vitro multicellular tumour spheroids.

2.1.1.2 Multicellular Tumour Spheroids and Tumour Cords

In vitro multicellular tumour spheroids (MTS) were introduced by a number of
groups, the most cited being [176], as model experimental systems and a real alter-
native to the somewhat limited monolayer techniques for the exploration of tumour
behaviour [23]. They have been successfully applied to many areas of the field in-
cluding therapy resistance, drug penetration, invasion and tumour cell metabolism
[108,59]. The familiar morphology of a necrotic centre surrounded by a layer of hy-
poxic tissue, which in turn is surrounded by a layer of normoxic tissue is observed in
these in vitro model systems (Figure 2.3). Since there is no vasculature and therefore
no additional nutrient supply (apart from that which is available from the surface)
the tumour only reaches some small maximum radius, which is termed diffusion-
limited growth [33]. In the wake of the accelerated use of this experimental system
a substantial number of mathematical models for tumour growth were developed,
which accurately describe avascular growth retardation, especially that of spheroid
growth.
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Fig. 2.3 A. Idealised representation of a MTS; normoxic cells at the periphery, hypoxic layer
and necrotic core (inner). Maximum radius 1-3mm [120]. B. Idealised representation of tu-
mour cord: vascular centre (outer) surrounded by normoxic layer, hypoxic layer and necrotic
layer (inner). Maximum radius, including vessel, is approximately 60-140 micrometres [158].

However, there are some critical issues that must be addressed before accept-
ing that MTS effectively reproduce in vivo processes. The first objection that can
be raised is the fact that many primary tumours are rarely discovered before neo-
vascularisation has occurred and therefore the clinical significance of a spheroid
mathematical model is automatically made immaterial [76]. Once a tumour begins
to exhibit neovascularisation the entire morphology and behaviour of the tumour
system changes. The supplementation of nutrients from blood vessels enables cells
that were otherwise quiescent to re-establish their mitotic paths [120] unless other
local inhibitory factors exist, e.g. cellular overcrowding [44].

It is also apparent that all too often the models are again simplified even more
by assuming the boundaries between the morphological layers are crisp, discrete
and symmetrical [161]. The genetic hetero/homogeneity of the MTS has also been
brought into question [57], i.e. the symmetry of MTS would seem to suggest genetic
homogeneity in the cell population whereas it has been shown that this is rarely
the case in tumours. However most experts agree that the microenvironment itself,
given the context, accurately mimics the in vivo system although some biological
complexity is lost, e.g. MTS generally exhibit stable chromosome number [59,108].

These limitations considered, one must wonder how much analytical insight, per-
tinent to clinical phase tumours, models of avascular growth can actually offer. Even
so the vast majority of growth models in the literature are spheroid models [11]. At
the very least, the formulation and analysis of these models, and subsequent refine-
ment, can form a basis for discovery of the factors involved in early tumour growth.
It can therefore be seen as a valuable starting point in itself, even in the light of the
known shortcomings of this approach.

As can be seen from Figure 2.3, the tumour cord is the morphological opposite
of the MTS, having the nutrient supply in the middle of the tumour and the layers of
cell state types (normoxic, hypoxic, necrotic) surrounding it. This configuration can
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be thought of as a micro-system of an in vivo vascularised tumour. The vascularised
tumour in turn can be thought of as a collection of cords. Vascular-driven growth is
discussed shortly.

2.1.1.3 Avascular Growth Modelling Formalisms

Assumptions for preliminary modelling of avascular tumour growth almost invari-
ably include a genetically homogenous cell population for each layer, spatial homo-
geneity and a whole-structure radial symmetry [33, 73]. Many of the models in the
literature stop short of vascularisation but there are some groups who have extended
their avascular models into the vascular stage.

It has already been stated that the Gompertz equation forms the basis of many
models, and indeed also forms the validation of many models, which will be shown
later. The Gompertz function itself, however, is of course purely phenomenolog-
ical and does not offer any insight to the mechanisms that actually contribute to
growth. Chignola [44] take the formalism one step further by formulating a stochas-
tic Gompertz-like growth equation that takes into account the variability in growth
dynamics of a heterogeneous population. Even so the model does not give real in-
sight into molecular or cellular mechanisms nor does it shed any light on probably
morphology.

Definition 2 (Phenomenological and Mechanistic Models). Phenomenological
models provide relatively simple constructs that can mimic a system by means of
considering (usually macroscopic) observables only. Conversely mechanistic mod-
els in this book are defined as those that take into account finer-grained behaviours
and components of the system.

Ordinary differential equations (ODE) and partial differential equations (PDE) are
by far the most popular mathematical techniques to describe avascular, and indeed
vascular, tumour growth, as well as systems biology5 in general [11, 33, 73]. The
most basic equations define tumour growth in terms of available nutrients and/or
oxygen supply. Therefore Friedman (2004) states concentration gradients to be de-
scribed as a PDE due to Ficks 2nd Law:

ε0
∂c
∂ t

= ∇2c−λ c,λ > 0 (2.5)

ε0 =
Tdi f f usion

Tgrowth
(2.6)

where: ε0 is a small positive coefficient (e.g. 1 minute/1 day); Tdi f f usion is the dif-
fusion time-scale; TGrowth is the tumour growth time-scale; c is concentration; λ is

5 The field of systems biology is discussed in more detail in the next chapter. For now, sys-
tems biology can be defined as a field of study that encompasses both system complexity
and biology.
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a molecular, e.g. nutrient, degradation/uptake coefficient (or rate); ∇ is the gradient
operator (Laplacian) given by the equation below:

c ·
(

∂
∂x

+
∂
∂y

+
∂
∂ z

)
(2.7)

where x, y, z are Cartesian directions.
Dasu (2003) [53] make extensive use of diffusion equations to model oxygen gra-

dients, incorporating static vascular structure (fixed nutrient source), and subsequent
effects on tumour growth.

Byrne (1999) [33] describes basic avascular (symmetrical) tumour growth in the
form of an ODE:

1
3

d
dt

(R3) = R2 dR
dt

=
∫ R

0
S(c)H(r−Rn)r2dr−

∫ R

0
N(c)H(Rn − r)r2dr (2.8)

where 1
3

d
dt (R

3) is rate of change of tumour volume over time;
∫ R

0 S(c)H(r−Rn)r2dr

is net rate of cell proliferation (S(c));
∫ R

0 N(c)H(Rn − r)r2dr is rate of necrotic cell
death (N(c)); RN is the necrotoc radius; R/r is overall radius and hypoxic radius
respectively; H is the Heaviside step function.

Byrne goes on to describe how one can extend Equation 2.8 into further mod-
els that account for asymmetry by vascularisation and multiple cell populations.
A more heterogeneous approach can be taken by reapplying the above equations
with different coefficient terms to reflect different growth characteristics of multiple
cells types. Friedman (2004) [73] also shows how these equations can be extended
to multiple cell populations but simultaneously recognises that mixed population
models, where different cell-type populations are continuously present everywhere
in the tumour, are more realistic than the normal segregated models where cell-type
populations are assumed to have discrete boundaries. Sherrat (2001) [161] tackle
the problem of discrete interfaces of cell populations by incorporating ODE models
that describe densities of cell populations with cellular movement along pressure
gradients.

The differential equation approaches described above suffer from some funda-
mental limitations. It is generally agreed that differential equations by themselves
do not capture enough resolution in terms of spatiotemporal behaviour of the sys-
tem. At the very least, to get more information out of the models a great number
of equations must be generated and solved [174], which might prove impossible in
some applications, as some physical data needed for parameterisation might not be
available. Modelling 3D heterogeneity becomes a computationally challenging task.
Another problem, which is apparent from the equations stated above, is that the use
of differential equations automatically assumes that the current state of the system is
a consequence of the previous global state of the system. In reality, a single cell will
behave according to its immediate locality, not according to the state of the tumour
as a whole, and local environments are differing. Indeed, as Gatenby (2003) [76]
point out, too often we are content with work that is entirely phenomenological -
curve-fitting data - without developing mechanistic models that provide real insights
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into the critical parameters that control system dynamics. However there are indica-
tions of a paradigm shift in the literature with regard to mathematical modelling of
both avascular and vascular tumours.

The literature appears to be drifting away from the traditional compartmental,
ODE and PDE approaches to mathematically simpler methods such as cellular au-
tomata (CA) and agent-based modelling (ABM). This could be due to the increase
in access and popularity of powerful computational techniques and software as well
as the surge of interest in biological systems from the computer science community.

2.1.1.4 Non-traditional Avascular Growth Models

The use of CA6 models has become more prominent in recent years. One of the
earliest CA models for tumour growth was introduced by Duchting (1981) [68]. Qi
(1993) [149] took its use further, formulating a stochastic two-dimensional CA that
took into account proliferation, nutrient supply, mechanical pressures (and thus mo-
tion of cells within the tumour) and immune surveillance rules. The model quite
plainly shows how simple rule definitions in CA can yield complex behaviour and,
in this case, qualitatively accurate simulation results. The discrete grid cells react
according to a neighbourhood of four other discrete cells (von Neumann neighbour-
hood) and can be occupied simultaneously by cancer/normal cells and macrophage
cells. The discrete cells of the CA therefore represent populations of biological cells,
or densities. Macrophages can engulf cancer cells (if they are coexisting), which is
defined by a fixed probability, and/or cancer cells can divide. Cancer cells are also
allowed to invade neighbouring discrete cells occupied by normal tissue. Both pro-
liferation and invasion have a space restriction and global growth, i.e. overall radius,
is defined as a function of the internal pressure of the tumour (which itself is a func-
tion of cellular densities and proliferation). These simple rules are formalised into
the CA and it was found that the resulting growth followed a Gompertz-like growth
law. Scalerandi and co-workers describe a discretised two-dimensional approach to
modelling cord growth dynamics considering competition for nutrients and conser-
vation of energy [157,158]. They highlight the use of locality-interaction modelling
where cells react to their local environment and consequently demonstrate good
agreement with experimental data. This is in sharp contrast with the phenomenolog-
ical models mentioned earlier where the focus is on the global state of the system.
The local interaction approach has the added benefit of incorporating heterogeneity
in a way that is clearly not possible with phenomenological or differential equation
based techniques.

Stamatakos [168,169], provide a prime example of how one can model a tumour
without using the complex mathematics of differential equations but at the same
time capture rich spatiotemporal qualities of avascular tumour growth. The structure
of the simulated tumour bears remarkable resemblance to the spheroid structure.
Simple rules and phase transitions of cellular cytokenetics were used to simulate

6 For an online demonstration of the use of CA in growth models, see
http://demonstrations.wolfram.com/TumorGrowthModel/
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avascular tumour growth. A discrete space/time formalisation was employed with
a rule base very much akin to the CA formalism. The virtual cells are made to
run simplified cell cycle phases, which is reminiscent of the multiphase approach
adopted by Please (1998) [147]. More recently the same group developed integration
between an improved version of the model, including the oxygen enhancement ratio
(OER) and linear quadratic (LQ) models (Equations 2.10, 2.11, 2.12) in the rules for
cells, and an algorithm that relates neovascularisation information from brain scan
images of glastiomas [9]. Dionysiou (2006) [60] further incorporate p53 status to
the radiosensitivity model thereby yielding a simulation that can predict the effects
of different radiotherapy regimens. These simulations have lead the group to wider
and more representative glastioma via grid technology [109].

It is important to realise the immediate difference between this approach and the
differential equation approach as described earlier - in the CA-like formalism the
local interactions form the basis of the state of the whole system, which is in fact
reflective of the real system. Even with gross simplifications in the form of local
interaction rules the simulation achieves satisfactory agreement to in vitro small cell
lung cancer MTS with relatively richer spatiotemporal dynamics compared with the
O/PDEs presented earlier.

Voitikova (1998) [189] describes a stochastic non-Markovian simulation of im-
mune response to small avascular tumour tissue having a rule-base that includes
immunity-tumour interactions, cellular random walks, growth and necrosis within
a CA framework. All rules are probabilistic, an approach that is known to reduce
computational load compared to a purely fine-grained deterministic method and
also underlines the fact that the nature of many mechanisms on the smaller scale
are not known. Results of this approach suggest that the immune-tumour interaction
may have an oscillatory effect on tumour growth, reflective of the fluctuations in
probabilities that immune cells will find a cancer cell target and kill it. Interestingly
the tumour geometry is observed to be fractal in nature. Voitikova also boldly claims
that this simple yet powerful approach exhibits tumour behaviour simulation better
than any O/PDE based model.

More recently, Dormann (2002) [65] use a two-dimensional hybrid lattice-gas
CA approach that incorporates cell migration as well as the usual nutrient flow,
proliferation and cell necrosis. The lattice-gas flavours of CA are frequently used
to model fluid dynamics and specifically contain rules that idealise conservation of
momentum and flow of particles. In this case the particles are biological cells whose
positions are in flux due to pressure and/or chemotactic gradients. Here the chemo-
taxis is mediated by a hypothetical signal emanating from near-necrotic cells, which
attracts other cells towards them - a rule that is meant to account for the experimen-
tal observation of normoxic cells moving towards the necrotic core. Dormann aptly
highlights the fact that the purpose of such spatiotemporal modelling is that it offers
insights into the mechanisms responsible for collective organisational behaviour at
the microscopic level, rather than having a purely phenomenological model that of-
fers relatively fewer insights. The model then quite elegantly shows that the familiar
ring structure (normoxic to hypoxic to necrotic) can be recreated relatively easily
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and therefore proves the point that local interaction-based modelling provides a be-
haviourally rich and realistic simulation.

Patel (2001) [140], using a similar CA hybrid approach, focus on a different tar-
get in the microenvironment for tumour growth - that of acidity levels and its effects
on invasion. The hybrid model incorporates the local interaction-centric advantages
of a CA whilst at the same time utilising the power of differential equations solved
on the discrete space/time grid to describe the diffusion of nutrients and H+ ions in
the interstitial space. The difference to other work is the fact that it is one of the very
few that actually incorporate the presence of vasculature from which nutrients can
reach tumour tissue, albeit randomly distributed in the lattice. Therefore, although
compared to and described as early tumour MTS-like growth, strictly speaking this
model actually describes vascular growth. The results show the power of the ap-
proach - the model showed that an increase in H+ ions promotes tumour growth and
invasion; leading to the prediction that the introduction of vascular density above
a certain threshold therefore may actually decrease the growth rate since the blood
flow reduces the concentration of acidity in the interstitial space.

The T-7 group of Los Alamos National Laboratory7 (LANL), in particular Jiang,
Pjesivac, Freyer and other co-workers, have also taken up these newer mathematical
techniques to model MTS dynamics. Like Patel (2001) they have used a hybridised
approach combining the powers of both CA and PDEs. Their model incorporates
the effects of mitosis, mutation, necrosis, nutrient uptake and metabolic waste whilst
being able to follow the fate of individual cells, which is not possible with differen-
tial equations. Chemical reaction-diffusion dynamics is governed primarily by three
PDEs. With this approach the group preliminarily report a strong correlation with
experimental data with respect to growth dynamics.

2.1.1.5 Other Growth Related Models

Other models for growth mostly consist of terms for metastasis, which is inherently
tied in with angiogenesis (next section) and cellular adhesion. Araujo (2004) [11]
review recent efforts in great detail, which will not be repeated here. A clear point
of interest is that there is a surge in use of computational techniques such as CA as
well as ABM, e.g. the works of dos Reis (2001) [150] who employ an agent-based
approach to simulate the effects of cellular adhesion on tumour morphology. In sum-
mary, local interaction-based models conclusively exhibit more faithful behaviour
when compared to the real system compared to traditional techniques.

However, a major issue in using agent-based simulations to study complex sys-
tems such as tumours is the fact that simulations are opaque. Methods for identifying
the interactive mechanisms between agents giving rise to global system behaviours
have been lacking. Recently, Chen and coworkers at University College London
have developed a novel formal modelling language for ABM, complex event types
(CETs), and novel computational methods which allow statistical dependencies be-
tween behaviours at different levels to be established [40, 41, 42]. This is providing

7 http://math.lanl.gov/
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a computational method for distinguishing between alternative interactive mecha-
nisms underlying a higher level behaviour. This method can, for example, be ap-
plied to simulations of tumour initiation and growth using agent-based models of
abnormal cell populations. Competition and selection events can be identified in
simulation at both the individual and clonal level, allowing us to computationally
test hypotheses about the interactive mechanisms underlying a neoplastic clones
success.

2.1.2 Angiogenesis Models

Vascularisation of tumours is the most important event preceding malignancy, pro-
viding the pipeline for metastases, and is arguably one of the most important fac-
tors that determine the overall behaviour of a clinically aggressive tumour [120].
The fact that tumours can induce nearby capillaries to undergo neovascularisation
has provided the impetus for research into molecular targets for therapy [84]. The
modelling of vascularisation is one of the most complex problems in tumour mod-
elling because of the multiple scales at which all critical events occur. Ranging from
molecular interactions to gradients and diffusion through media of differing viscos-
ity, branching and meeting of capillaries and overall tumour dynamics, as well as the
complexities of blood flow itself, angiogenesis models must incorporate an excep-
tional level of spatiotemporal dynamics. Angiogenesis is distinct from the context
of the tumour and can be classed as a complex system in its own right [113].

2.1.2.1 Basic Physiology of Angiogenesis

In angiogenesis blood vessels are formed from the scaffold vessel structure resultant
from a previous vasculogenesis process. The basic steps of tumour-induced angio-
genesis are as follows [120]:

1. Hypoxic cells, under the strain of competition for nutrients, produce and emit
growth factors generally known as Tumour Angiogenic Factors (TAFs), e.g.
VEGF. TAFs can either be angiogenic (e.g. VEGF) or anti-angiogenic (e.g. α-
interferon, endostatin) and sometimes both depending on the local state.

2. The endothelial cells (EC) of existing capillaries, which have specific receptors
for TAFs, receive the signal that diffuses through the extracellular matrix (ECM).
This sets off a chain of intracellular events that eventually leads to cell prolifera-
tion. The EC then exhibits an activated mesenchymal phenotype (rather than its
normal quiescent phenotype).

3. The ECs begin to excrete matrix metalloproteases (MMP), which break down the
basement membrane, made of pericytes, and the fibres in the surrounding ECM.

4. As the ECM is broken down it is the leading EC, chemotactically migrating up
the signal gradient, that guides a following posterior mass of proliferating ECs.
The migration is also influenced by gradients of cellular adhesiveness mediated
mostly by fibronectins and integrins. It should be noted that proliferation of ECs
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only begins to take place 36-48 hours after the initial EC response - before this
point ECs are actually recruited from the parent vessel [143].

5. Capillary tubes form once ECs begin to re-associate and align. Intracellular vac-
uoles extend to the poles, forming a hollow tube.

6. The immature vessels are said to become mature when pericytes envelope the
newly formed structure. Maturation is a critical step in vascularisation [10].

Once the above stages of vascularisation have occurred anastomosis8, the process
by which independent branches join, takes place before complete maturation [120].
Whilst it is easy to think of this process as diffusion-driven and that anastomosis
occurs as a result of following simple diffusion gradients, angiogenesis is still an
extremely difficult subsystem to model - the exact processes and mechanisms are
still not fully understood. This is illustrated, for example, by the fact that whilst
independent branches can loop they can also unexpectedly split and the reasons for
this are not known at present [7].

Angiogenesis-related molecular species form the basis of most angiogenesis
modelling implementations. In tumour-induced angiogenesis the process becomes
somewhat anomalous because of the intensity and volatility of extracellular sig-
nals resulting from extensive mutations, aneuploidy and hypoxic stress of tumour
cells [53].

One of the most well-known TAFs is the VEGF isoform family of extracellular
proteins. There exists a corresponding family of receptors (most commonly men-
tioned is the VEGFR-1 receptor) that are expressed on the membranes of endothe-
lial cells. Once VEGF has bound to its receptor the cascade is triggered, resulting in
the preliminary stages of angiogenesis. This not only prepares the cells for angio-
genesis but also increases the permeability of the vessel, which is in agreement
with experimental data suggesting that tumour-associated vessels are extremely
leaky [139, 106]. Angiopoietins are another class of extracellular signals involved
in angiogenesis. It is worth mentioning that there is a severe under-representation
in the literature with respect to models that incorporate the action of these proteins.
Angiopoietins bind to the Tie family of receptors, which can be found on the EC
membrane surface, and mediate sprout formation and branching [139]. Other major
diffusible molecular factors include TGF-β , FGF, EGF, the ephrins, PDGF, angio-
genin, angiostatin, angiotropin, the interleukins, TIMP and interferon families and
TNF-α .

The ECM is composed mainly of interstitial tissue, collagen, fibronectin, vit-
ronectin, fibrin, von Willebrand factor and other structurally important molecules
and plays a critical role in the leading ECs migration [7]. Fibronectin remains static
in the ECM, although gradients of fibronectin exist, and plays an important role in
cellular adhesion by binding to the integrin family of cell surface receptors. Cad-
herins are particularly important cell surface molecules, mediating cell-cell interac-
tions. It is therefore clear that though an important role is played by chemotaxis (i.e.
VEGF, etc.) there is also the haptotactic response to take under consideration, which
many models ignore. The frictional forces that the ECM imposes, due to dense

8 Synonymous with anastosmosis in the literature.
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content (i.e. collagen, fibronectin etc.), have a massive impact on the path the ECs
take when moving up attractive concentration gradients [120].

Finally, the mechanical forces imposed by blood flow itself, which can have a
significant influence on vessel formation and maturation, are another important fac-
tor in neovascularisation [139]. Stress in the vessels can induce transcription of
PDGF and TGF-β , which affect matrix consistency and vessel formation respec-
tively [151]. Tumour blood flow models are relatively scarce in the literature and
most of the research is conducted in light of existing models of hydrodynamics,
a well-developed domain in the field of engineering. When applied to blood flow
this is termed haemodynamics. However, the majority of the literature in this case
is still applied to cardiac physiology-related haemodynamics rather than tumour-
related haemodynamics. This type of modelling utilises complex PDEs and Lattice-
Boltzmann flavours of CA.

The brief summary of key molecular, cellular and tissue-level events in angiogen-
esis presented here highlights the complexity of the process. Furthermore, although
many of the molecular species involved have been identified it is generally accepted
that still very little is known about the biochemical interactions that are taking place
(both intra and intercellular) to satisfactorily explain the rich behaviour of angio-
genic tumour systems [120]. This restricts the modelling of angiogenesis to being
merely qualitative rather than quantitative.

2.1.2.2 Modelling Methodologies

The vast majority of evolved mathematical models that incorporate angiogenesis
terms do so by characterising diffusion gradients of TAFs and subsequent responses
of nearby capillaries. Spatiotemporal resolution is of course very important in these
models and this is exactly what is now emerging from the modelling community,
although earlier models have still lagged with the traditional differential equation
approaches. The angiogenesis modelling literature can be loosely categorised into
the stages on which they focus, though the stages are of course overlapping. Many
modelling efforts have gone into focussing on the location and time at which ECs
begin to respond to TAF signals. Other efforts have focussed on EC migration, the
dynamic structure of vasculature, blood flow and turbulence.

Mantzaris (2004) [120] further define three basic categories of models for angio-
genesis that can be found in the current literature:

1. Continuum models: Cellular populations and molecular species are treated as
continuous variables. Cells are usually described in terms of densities. This ap-
proach invariably involves the use of an O/PDE approach.

2. Mechanochemical models: This type of model takes into account the gradients of
chemical species in the ECM (e.g. fibronectin) and the migration of cells through
the ECM.

3. Discrete models: These have appeared more recently, and like their growth model
counterparts, include CA-related approaches. Typically this approach can be de-
scribed as a discrete realisation of a continuum model, as will be portrayed by
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the works of Anderson (1998) [7]. In ABM approaches individual cell fates can
be followed.

To summarise, the generalised equations given by Mantzaris (2004) [120], which
will not be repeated here, are mostly O/PDE models that describe (i) the density
of cells in one to three dimensions and (ii) the concentration gradient from source
to capillary of TAF(s) in one to three physical dimensions with appropriate bound-
ary conditions . Diffusion of particles can be modelled as random walks, multiset
rewrites [82] or simple Ficks-like PDEs.

More recently, as with growth modelling, hybrid CA and hybrids thereof have
become increasingly popular. This should come as no surprise as the CA approach
has proved to be extremely apt at capturing not only rich spatiotemporal behaviour,
which is imperative when considering vessel structure, but also heterogeneity. The
work of Patel described earlier illustrates the power of CA in vascularised tumour
growth. Note here, however, that angiogenesis models do not pertain to mere growth
models that incorporate vascular presence, as in Patel and co-workers model. Rather,
angiogenesis models include vascular dynamics - i.e. sprout formation, extension
and maturation.

Anderson (1998) [7] demonstrate quite elegantly the strengths and weaknesses
of both continuous and discrete modelling methodologies, though this was not the
specific goal, by first creating a set of differential equations to describe chemotaxis
as well as haptotaxis and EC density dynamics. The model is then solved using an
extension of the conventional finite difference method in a discrete 2-dimensional
CA setting to gain better spatiotemporal insight. The authors highlight the fact that
very few models successfully capture rich enough behaviour to be able to predict
complex observable phenomena such as the brush-border effect (the increased level
of neo-vessel branching when it approaches the TAF source). Moreover the model
also incorporates random walks of leading ECs in order to mimic sprout exten-
sion (branching, anastomosis and cell proliferation). Once the continuum model
was defined the relative effects of haptotaxis and chemotaxis were simulated in two
dimensions. It was shown that concentration gradient geometry and magnitude is
important, stressing the fact that assuming symmetrical dispersion of molecular sig-
nals in a traditional source-sink methodology does not sufficiently model reality.
Additionally the simulations show the crucial role haptotaxis, i.e. the interplay of fi-
bronectin, laminin, and other macromolecules, plays in angiogenesis, which is quite
a unique development in the angiogenesis modelling literature. The model can be
readily converted into a 3D setting, as demonstrated by Stephanou (2005) [170]. The
3D model is shown to be quite different both in terms of actual vasculature dynam-
ics and drug delivery, highlighting the fact that any serious attempt at a tumour-level
simulation must be performed in a 3D setting. The group reports that the most strik-
ing result obtained is that, when particular vascular structures are formed, only less
than 3% of the drug actually reaches the tumour - the rest bypasses it. If correct, this
of course bears important implications for therapy.

The discrete model that Anderson and Chaplain [7] then formulate incorporates
biased random walk EC behaviour under chemotactic and haptotactic conditions.
Since there is a lack of data as to what the anastomotic causal mechanisms actually
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are, the authors incorporate an age (of sprout) and space constraint rule into the CA
to model branching and looping. The individual cells in the CA represent approx-
imately 10μm, or 1-2 ECs, collated into a 200 by 200 grid. The resulting model
is shown to enable both qualitative and quantitative comparisons with in vivo ex-
periments. As with the continuum model, the effects of haptotaxis and chemotaxis
were simulated and again showed that haptotaxis is likely to play a crucial role in
neovascularisation - the simulations suggested that without it no anastomosis could
be established and only minimal branching could occur. Anderson and co-workers
recognise the importance of granular (i.e. mechanistic) approaches to tumour mod-
elling over and above traditional methods as superior models of the system, illus-
trated in a more recent paper [8].

The CA approach is found to be far simpler to manipulate, especially in the ab-
sence of precise parameterisation data compared to the PDE approach. Of course,
individual-based modelling techniques also have the distinct advantage of enabling
the modeller to track the behaviour of cells individually, which is of enormous value
in the context of angiogenesis.

The random-walk approach was also adopted by Levine (2001) [113] who also
modelled tumour-induced angiogenesis in terms of haptotaxis and chemotaxis, al-
though no formal comparison with in vivo angiogenesis is apparent. They also incor-
porate biochemical enzyme kinetics (receptor-ligand binding, etc.), making a rich
model that can be interrogated right down to the molecular dynamics scale - given
enough computational power this type of cross-scale modelling is possible without
losing the rich fine-grained behaviours of the system, which may well be the case
for differential equation DE approaches.

The work described above is a good example of how the tumour system has
been dissected mathematically into subsystems, e.g. sprout formation and elonga-
tion, and studied in a closed fashion. In other words, by investigating the effects of
chemo/haptotaxis on sprout fate for example, the focus is purely on angiogenesis,
and other parts of the system are ignored, such as growth dynamics of the tumour
itself. One must remember that the process of angiogenesis is repeated again and
again and can take days to complete. During this time hypoxic regions could be
growing or shrinking and therefore TAF signalling would be in flux. However, since
the overall growth of the tumour is assumed to be static the modelling of angio-
genesis itself has been restricted to prediction of location of sprout formation and
subsequent vessel formation with steady TAF diffusion gradients. Moreover, impor-
tant additional factors, such as the maturation stage of the new vessels would be
omitted in closed sub-system modelling. In immature vessels blood flow is rather
poor [139]. If perfusion is extremely poor or the levels of VEGF and other TAFs
falls in the vicinity of immature vessels (IV) then the vessel can regress by, for
example, mediation of Ang-2 [88].

Arakelyan (2002) [10] recognise the fact that IV and mature vessel (MV) struc-
ture stabilisations are critical in modelling angiogenesis since vasculature has been
observed to be a dynamic rather than static structure. This is in sharp contrast to
previous models where, once a leading EC has set a path for a new vessel, the ves-
sel remains static and is assumed to be instantaneously mature and perfused. This
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assumption is made in both continuum models (in the form of densities of ves-
sels) and discrete models. Arakelyan and co-workers therefore set about producing
a discrete model to describe not only the angiogenesis processes of vessel forma-
tion and maturation but also the simultaneous fluctuation of tumour growth and
TAF signalling (no account is taken for the influence of ECM macromolecules).
However it must be noted that even though the model incorporates vessel desta-
bilisation it makes the simplification that IVs and MVs actually have the same
tissue perfusion efficiency, which is known not to be true, and therefore enumer-
ate both types of vasculature generically as effective vessel density. The algorithm
employed by Arakelyan includes a fusion of abstract parameterisations and an ex-
tensive Boolean network. A Boolean network is simply a graphical model incorpo-
rating yes/no decision-making arcs and process nodes and is therefore essentially
a Heaviside-step threshold-based system. The algorithm is described as multi-scale
since it covers three organisational levels - molecular, cellular and organ-level. The
model was tested by performing in silico simulation of functional knockout exper-
iments, which would be very difficult to perform experimentally. For example, it
was shown that in the absence of vessel destabilisation and maturation tumour and
vessel volume follow exponential growth laws. Subsequent incorporation of these
behaviours results in fluctuations in IV and MV volumes, and was shown to be in
marked agreement with experimental data (although the agreement is qualitative
rather than quantitative).

In summary angiogenesis models illustrate the power of individual-based models
over traditional techniques. The geometry of vessel growth and its importance to
growth is very well suited to individual-based models. Furthermore angiogenesis
illustrates the complexity of the tumour modelling problem, consisting of a large
number of stimulants and inhibitors with complex interactions over large time and
space scales.

2.1.3 Treatment Response Models

Response behaviour is the ultimate goal of tumour modelling since it is in the
successful simulation and prediction of critical parameters of this behaviour that
will finally lead to clinical improvement. Response models, as a matter of neces-
sity, must include growth aspects of tumours and, preferably, vascularisation as-
pects. Angiogenesis-response model hybrids have become more prominent in the
literature only recently with the arrival of anti-angiogenic drugs. For example,
Ledzewicz (2010) and co-workers demonstrate the use of optimisation and Gom-
pertzian growth methods, including pharmakenetics, to determine optimal dosage
for anti-angiogenic therapy [111]. The introduction of pathway modelling (i.e. the
pharmakenetics) in this manner is slowly becoming more prevalent only very re-
cently with respect to treatment response - however one can expect that the inclu-
sion of pathway dynamics in response models will become more popular with the
continuing explosion of knowledge of cellular signalling and the concept of targeted
therapy.
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Two kinds of tumour response models can be observed in the literature:

1. Mechanistic-based respose models:

a. Chemotherapy (and subsequent immune-) response to tumours and use of
therapies to boost immune response. This includes radio-immunotherapy.

b. Tumour response to radiation therapy.
c. Dynamic pathway response to the two therapies listed above.

2. Therapy optimisation: These models focus on exactly how and when therapy
should be administered rather than focusing specifically on tumour dynamics.

The same formalisms that were discussed for tumour growth apply here - the tu-
mour volume, density, number of cells and/or tumour radius are the primary outputs
of response models although some models also go as far as including metastases.
Also, the same temporal pattern of use of formalisms appears in the literature, i.e.
first use of DE approaches for avascular tumours and later use of more descriptive
computational approaches, such as CA and ABM.

2.1.3.1 Generalised Formalisms

A basic differential equation approach can be expressed as follows9:

dn
dt

= pnt − ktnt (2.9)

where nt is the number of cells at time t; p is the proliferation rate of the tumour; kt

is the therapy effectiveness at time t and so ktnt denotes kill rate.
The variable p can be generally determined for tumour cell types and kt is

drug-dependant. This model is phenomenological and includes no spatial dynam-
ics. However, it forms the basis of most response models that use the DE approach.

Equation 2.10 can be used to estimate another term that is extensively used in
modelling - the so-called Tumour Control Probability10 (TCP), which is used mostly
in radiotherapy models:

TCP = e−∑Q
i=1 NiSiD (2.10)

where TCP is the probability that no tumour cells survive (tumour cure probability);
i and Q denote the total number of cells in the considered 3D space i; Ni is the initial
number of cells; Si(D) is the surviving fraction of cells after dose D in region i.

The LQ model is another general formalism for radiotherapy and describes the
survival probability of a cell. It reads as follows:

S(d) = e[−(αd+β d2)] (2.11)

9 http://www.ap.univie.ac.at/users/ves/cp0102/dx/node126.html
10 For an in-depth discussion on TCP, its applications and extensions the reader is directed to

Zaider (2000) [204].
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where: S(d) is the survival probability of the cell given dose d; α and β are pa-
rameters specific to the cell/tumour and reflect intrinsic radiobiological properties
pertaining to sub/lethal DNA damage due to radioactivity; d is the dose (usually in
Gy, where 1 Gy = 1 Jkg−1).

The above equation can additionally be extended to account for the sensitivity of
hypoxic tissue by taking into account the OER:

S(d) = e

[
− αd

OER + βd2

OER2

]
(2.12)

2.1.4 Modelling Methodologies

Immune response and therapy models are abundant in the literature (see [1]). The
works of de Pillis and Radunskaya (2001, 2003) demonstrate the state-of-the-art
in this kind of modelling using a combination of traditional approaches with opti-
mal control theory to develop an avascular model (homogenous, MTS-like) that can
qualitatively predict in vivo tumour dynamics. The model recognises three types of
interaction that have previously been modelled separately: (i) interaction between
tumour cells and immune system cells, (ii) interaction between normal cells and tu-
mour cells and, (iii) interaction between tumour cells and chemotherapeutic agents.
The model therefore effectively idealises competition between immune system cells
and tumour cells (and their response to therapy) and the corresponding immune re-
sponse to the presence of a tumour. Differential equations are formulated that de-
termine the number of normal, tumour and immune cells and the cell kill relation
for a therapeutic agent. The resulting model is reported to capture two interesting
behavioural characteristics that are observed in vivo. Firstly, so-called Jeffs Phe-
nomenon is observed - an asynchronous oscillation of tumour growth with respect
to chemotherapy dose time. Secondly, and perhaps clinically more interesting, is
the models ability to predict tumour dormancy - a phenomenon that occurs when
the tumour shrinks to an undetectable size only to re-emerge to grow exponentially
again. Both of these behaviours can be explained by the interactions of the tumour
and immune cells. This example alone goes to show the rich and qualitative (and
eventually, in the future, quantitative) dynamics that mathematical modelling can
actually generate which serves to better current understanding. The goal is of course
to reduce tumour cell counts whilst keeping normal cell counts within safe bounds
by finding appropriate times to administer certain amounts of dose in a given time
interval. Optimisation and control theory is applied to achieve this and is extensively
tested in more recent papers [55, 56]. A drug protocol is thence determined where
the tumour cells are eradicated whilst keeping the total normal cell count around
the tumour site above 75%, though the oscillations in tumour size observed in the
simulation would admittedly not be clinically desirable.

Arciero (2004) [12] demonstrates another interesting theoretical approach. This
example is particularly appealing because it models an immunotherapeutic strategy
that has not yet been tested extensively in vivo - so called small interfering RNA
(siRNA) immunotherapy - and so this scenario depicts a unique opportunity for



24 2 Nature to Numbers: Complex Systems Modelling of Cancer

mathematical modelling to prove itself as a viable technology with which one can
satisfactorily predict tumour dynamics. The siRNA molecules are only around 22
nucleotides long and interfere with certain transcripts such as that of TGF-β , thereby
blocking gene function. TGF-β is involved in masking the tumour from immuno-
surveillance, it is also strongly angiogenic and relatively well understood, making
it a good target. The proposed model uses a system of only five ODEs that describe
immune cell numbers, tumour cell numbers (incorporating the phenomenological
logistic function), IL-2 dynamics and the effects of TGF-β on tumour growth and
immunosurveillance and subsequent effects of siRNA that blocks TGF-β and degra-
dation of the siRNA. Administration of treatment is found to have oscillatory effects
on tumour growth dynamics, just as de Pillis and Radunskaya described earlier.

This touches upon another active area of research in cancer systems biology - that
of the effects of drugs on signalling pathways. Surprisingly the number of models
that actually incorporate pathway dynamics directly with drug action is quite lim-
ited (i.e. both aspects together - the literature in terms of the individual aspects are
actually substantial). These types of models will be discussed in more detail later,
however to make a case in point the work of Charusanti (2004) [38] is briefly ex-
plained. The model proposed in this case demonstrates the power of simulations and
makes use of traditional ODE approaches to predict the effects of STI-571 (Gleevec)
on the Crkl pathway (Figure 2.4) in Chronic Myeloid Leukaemia (CML).

Fig. 2.4 Gleevec action on the Bcr-abl oncogene. CML is probably the only type of cancer
that is associated almost exclusively with a single type of mutation, i.e. 9-22 chromosome
translocation (the Philadelphia Chromosome). Deregulated phosphorylation, due to this mu-
tation and caused by the over-active Bcr-Abl gene, causes certain signalling pathways to be
constitutively switched on (e.g. proliferation pathways, not shown) and others to be switched
off (e.g. apoptosis, bottom right of figure).

The ODEs consider the concentration differential of certain populations of molec-
ular species over time and the Gleevec pharmacokinetics (compartmental model of
intraperitoneal cavity, blood and tumour). Even though no specific attention is paid
to the spatial arrangement of tumour cells and normal cells, the model is considered
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satisfactory since cancers originating from the haematopoietic pool in the marrow,
like CML, are only quasi-solid. ODE approaches in this particular situation there-
fore are appropriate since no spatial dynamics need to be modelled (unless drug
delivery itself is the focus)11. The resulting simulation suggests an important previ-
ously unrecognised dynamic of Gleevec treatment, which was later experimentally
shown to be a real behaviour - during blast crisis the clearance of Gleevec from
cells is very rapid and therefore the effectiveness of the drug is reduced. Here is
an excellent example of in silico prediction and experimentation - the simulation
immediately suggests that mechanisms of clearance must be addressed to enable
Gleevec to function with greater efficiency.

Modelling has also established its place in therapy response with respect to angio-
genesis12, and it has already been explained why targeting of angiogenic processes
has become an important topic in oncology. Though the focus in Arakelyan’s work
is not entirely on the effects of drugs on tumour dynamics, by incorporating ODEs
for drug action (VEGF and Ang-1 production inhibitors) into the model potentially
important qualitative behaviour can be observed - their simulations suggest that, for
an aggressive tumour that has relatively low sensitivity to anti-angiogenic drugs,
monotherapy is not sufficient to eradicate the tumour. The model showed that only
combinatorial therapy successfully killed all tumour cells. Stoll (2003) [172] take a
slightly different approach by considering the contribution of endothelial progenitor
cells (EPC) from the bone marrow to angiogenesis as well as the contribution of
ECs in the vicinity of the tumour. Stoll and co-workers establish a set of ODEs that
describe vascular densities and flow of EPCs into the region and re-parameterise the
equations to account for drug action. Drug actions considered include the effects of
therapy that target EPC migration, growth factor and angiogenic factor signalling,
chemotherapy by anti-angiogenic scheduling and combined therapies. The model is
found to be in agreement with clinical data.

Whilst the works briefly described above take a semi-mechanistic approach to
modelling, there are still those models that are almost totally phenomenological
such as those presented by Ubezio (2004) [181]. In this model cell cycle features are
incorporated into a simple compartmental approach and curve fitting to cytometry
data is used to parameterise the ODEs. Drug effects are then simply modelled by
stochastically altering the behaviour of the compartments, e.g. by giving a cell a
probability of being blocked in certain stages of the cell cycle.

In the immune response modelling area CA approaches are less prominent than
traditional approaches - this could be because response models often focus on the
drug delivery aspect, dosimetry, direct effects on growth and related optimisations as
opposed to individual-based understanding, e.g. cell to cell interactions. Here again
however it can be argued that delivery and diffusion of drugs through the (dynamic)

11 Spatiotemporal modelling of these types of tumour will be very difficult compared to solid
tumour modelling and hence the next step in modelling in the years to come will involve
the consideration of quasi-solid tumour dynamics.

12 A whole host of response-to-angiogenesis targeted therapy models exist but will not be
summarised here. The reader is referred to the works of [11] for a good review and, for
specific models, [125, 146, 159].
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vasculature and heterogeneous flow through the ECM all have observable impacts
on tumour dynamics and cannot be modelled by traditional methods. Therefore one
can expect that CA or ABM models to take up a more prominent role in this area.

McDougall (2002) [125] describe an extension of the model by Anderson and
Chaplain by incorporating a perfusion function into the angiogenesis model thereby
formulating a 2D simulation for drug delivery in a vascularised tumour. Interestingly
the flow model was actually adapted from CA-like petroleum flow models, which
simulated the perfusion of petroleum through pore networks in solid rock. Though
this formalisation only models perfusion around the tumour rather than through it,
some very interesting results were procured pertaining to delivery strategy. Having
simulated two chemo-agent introduction schema (one-off bolus injection and con-
tinuous infusion) it was predicted that large one-off doses may sometimes lead to
dilution in the over-perfused regions and therefore actually never reach the tumour,
which obviously would have serious implications for therapy. One must remember,
however, that this model does not take into account maturation of vessels, i.e. ves-
sels are assumed to be immediately mature. This is of course not concordant with
the real system.

Many other chemotherapy response models exist that focus on different clinical
aspects. Pinho (2002) [145], for example, formulate a continuous model where the
interactions between normal and cancer cells are considered in the context of pri-
mary and secondary tumour sites, i.e. metastases, and interactions with a chemother-
apeutic agent. There are many different clinical strategies for optimal therapy and
therefore the optimisation problem has become very complex consisting of many
sub-problems. For example, there are those models that focus specifically on pulsed
therapy as well as drug resistance, which have become increasingly important is-
sues. Lakmeche (2001) [110] develop such a model, focussing on pulsed therapy and
chemotherapy-induced drug resistance by utilising complex sets of both ODEs and
discrete algebraic equations. Similarly Jackson (2000) [97] describe a PDE model
that accounts for vasculature as well as effects of drug resistance.

Optimisation of treatment has been discussed with respect to chemotherapy
above. However the vast majority of literature that deals with this branch of mod-
elling is devoted to radiotherapy. Often the modelling of radiotherapy seems to em-
ploy a different line of enquiry with respect to other types of models - rather than
focusing on tumour dynamics the vast majority of models are phenomenological,
which derive quick and simple solutions to treatment problems such as fraction-
ation, hence the TCP and LQ models, and extensions thereof. Barazzuel (2010)
demonstrate this with the use of an extended LQ model for the treatment of glioblas-
tomas to predict the effectiveness of conjugal radiotherapy with drug temozolomide
(TMZ) [21].

Only relatively recently have the concepts of tumour dynamics and response been
fused. Traditionally the optimisation approach always takes into account four main
tenets, the so-called Four Rs described as follows [171]:

1. Repair effects: a lethal dose of radiation causes a double-strand break in the
DNA of the recipient cell, causing the cell to die. Single strand breaks (sub-lethal
events) can also occur but these are repairable by the recipient.
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2. Reoxygenation: hypoxic cells become reoxygenated either by cell migration or
vascularisation.

3. Redistribution of cell cycle: quiescent (hypoxic) cells are relatively harder to kill.
Once these cells re-enter the cell cycle they are more susceptible to therapy.

4. Repopulation: due to the first three Rs.

Stamatakos’ research describes the utilisation of a Monte Carlo approach to mod-
elling in 3D which is very similar to that described earlier (except that the cell cycle
model is more detailed). The model is CA-like in nature and simulates avascular
growth; excellent agreement with experimental data is reported [203]. Since space
is discretised the LQ model is applied to individual voxels, which themselves repre-
sent cells - in fact the same methodology is applied by Stewart and Traub, explained
above. The radiobiological effect is modelled as a function of the cell cycle stage in
which those cells are situated. Although this paper does not allude to any formal op-
timisation approach to find the best course of treatment, apart from the declaration
of four fractionation regimes, the simulation predicts that all fractionation tests fail
to eradicate all tumour cells. The overall simulated tumour dynamics exhibit good
agreement with experimental results. A simple iterative process to this simulation
can yield a good in silico optimisation strategy.

A similar approach is also adopted by Borkenstein (2004) [28]. The model takes
into account cell cycling and response to radiation, as explained already for the
models above, but also is one of the few models that incorporates the effects of
angiogenesis and subsequent growth. This makes it one of the most powerful ra-
diobiological response simulations available currently. Since the response formulae
are applied in a discrete fashion a heterogeneous population of cells with differ-
ing sensitivities and responses to radiation according to cell state and immediate
environment can be considered. Simulations revealed interesting characteristics of
growth after fractional treatment, highlighting the importance of timing and repopu-
lation of quiescent cells. Interestingly the results were quite similar to that produced
by Stamatakos’ group - an accelerated fractionation dose was predicted to give best
chances for tumour control. Another intriguing result that the Stamatakos model
could not have simulated, however, was the effect of angiogenesis to response -
since vascularisation decreased hypoxia the tumour became more sensitive to treat-
ment but only if proliferation of normoxic cells was fast. If proliferation was slow
then the therapeutic benefit of having reduced hypoxia was eliminated and angio-
genesis led to decreased response.

2.1.5 Dynamic Pathway Models

The field of intra/intercellular molecular pathway research and associated mathe-
matical and computational methods embodies the core of the systems biology field.
This is because ultimately the behaviour of pathways that will define the behaviour
of the cell, which in turn contributes to the behaviour of the entire system [45,208].
Pathways are currently an extremely active area of research and constitute an enor-
mous body of literature.
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Generically, three types of intracellular pathways can be defined from the litera-
ture that is qualitatively different in nature:

1. Metabolic networks, which have been dealt with for many years and involve en-
zyme/substrate biochemical reactions.

2. Gene networks, which are networks that are controlled both on the proteomic
level (e.g. protein-protein repressors) and on the DNA/RNA levels (e.g. DNA-
protein repressors and self-looping RNA), and are sometimes synonymous with
the third kind of pathway in the literature.

3. Signal transduction pathways, which are dynamic in structure (especially in sys-
tems where mutation is a key factor) and in molecular flux and are involved in
signalling of extra/intracellular stimuli, ultimately resulting in gene transcription
(i.e. gene networks).

Intercellular signalling is generally considered comparatively less complex and has
already been discussed to some degree in terms of diffusion in the angiogenesis
modelling section and so will not be discussed any further here. The methodologies
discussed below will focus on signal transduction as this has been predominant in
the cancer-related modelling literature.

2.1.5.1 Modelling Methodologies

With the arrival of high-throughput technologies, such as microarrays, two types
of distinct algorithms can be observed in the literature [104]: (i) data mining of
high-throughput datasets to predict and define causal relationships between genes
and proteins to build up conceptualisations of pathways; (ii) simulations of estab-
lished conceptualisations. A vast amount of literature is devoted to the former. For
example, Wang (2010) develop a complex non-linear mathematical model to infer
genetic regulatory networks via transcription factors such as p53 [190]. These types
of models, however, will not be discussed here in any detail in light of the main
goals of this book13. Stochastic models that are derivatives or relatives of Bayes
theorem dominate this type of modelling [16, 178, 74].

Computational methods have been extensively used in pathways research, both
in terms of visualisation and simulation, which can be seen by the appearance of
computational methodologies and techniques such as Systems Biology Mark-up
Language (SBML)14. The number of databases that currently exist, e.g. Biocarta,
KEGG15, DIP16 and many others, reflects the amount of research that has gone into
representations and visualisations17. Dynamic pathway models can be very difficult

13 Usually these algorithms themselves are not mathematical models of the system. However,
often the outputs of these algorithms, e.g. possible protein networks, do represent models
of the system in a more direct way.

14 http://sbml.org/index.psp
15 http://www.genome.jp/kegg/
16 http://dip.doe-mbi.ucla.edu/
17 Visualisation methods are not discussed here - the reader is directed to Kitano (2003) for

a review.
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to compile and verify, which is possibly due to the lack of data to which models can
be fitted [45]. As will become apparent in the next few paragraphs the vast majority
of dynamic pathway models are based on ODEs, which of course need to be pa-
rameterised. Whilst microarray data, though extremely noisy, provide at least some
data there exists no such comparative technology as yet for protein measurements,
though some attempts have been made at high-throughput proteomics [133].

Cho and Wolkenhauer (2003) [45] highlight the importance of spatiotemporal
modelling of the individual cell. Not only are molecular interactions highly non-
linear, they are highly organised both in space and time, which means that serious
models must also take into account the spatial organisation of organelles within the
cell as well as the molecules themselves. Zhu (2003) [208] have responded to this
problem with a call for new methods that can tackle the transient molecular interac-
tion capacity and flexibility of gene regulatory networks and signalling pathways in
general. ODE approaches are said to be an inappropriate strategy since the network
itself is evolving in situ. They make a special distinction for metabolic networks
and claim that these are relatively static (assuming no mutation). Crucially, Zhu and
co-workers put forward a software engineering project that involves the integration
of different types of model, i.e. continuous versus discrete, stochastic versus deter-
ministic, qualitative versus quantitative, to build a hybrid platform18 on which one
can simulate the spatiotemporal evolution of dynamic networks (each integration
is programmer-defined). The so-called Grid Cellware project presents a set of opti-
misation algorithms and solvers and exploits a parallel computing infrastructure to
solve user-defined models (usually DE-based).

The Michaelis-Menten (MM) equations are a fundamental formalism for en-
zyme/substrate kinetics and essentially reduce to a simple ODE (not covered in
detail here because the role of these models is not as prominent as others in tumour
modelling).

The MM equation, which gives rate of change of product in time, can be ex-
pressed as:

d[P]
dt

= Vmax
[S]

Km +[S]
(2.13)

where [P] and [S] are the concentrations of product and substrate respectively; Vmax

is the optimum enzymatic kinetics on S; Km is the so-called MM constant and rep-
resents S at 1

2Vmax.
An interaction network can then be described as a contiguous set of MM

equations.
Signalling networks are modelled slightly differently but almost all still use the

differential equation approach to describe pathway dynamics. Tyson (2001) [180],
for example, apply different types of (mostly) differentials to certain aspects of cell
physiology - genetic regulatory circuits described as ODEs or Boolean networks;
spatially-oriented signalling by PDEs and cellular automata ; functional or integro-
differentials for time delays and spatial averaging; stochastic models when there are
small numbers of molecules. Cho and Wolkenhauer illustrate the use of differentials
18 Cellware, http://www.bii.a-star.edu.sg/research/sbg/cellware/index.asp
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with respect to a simplified version of the NF-κB signal transduction pathway. This
particular pathway plays a central role in control of proliferation and apoptosis and
is therefore sometimes found to be constitutively switched on in many tumour types.
The general rate equation used is as follows:

dm(t)
dt

= h[m(t),k(t),ξ (t)] (2.14)

where mi(t) denotes the concentration of the ith molecule in the network; ki(t)
denotes the jth rate parameterl ξ (t) denotes an uncertainty (noise) function at
time t.

Most differential based models are derivations of this basic ODE. Accordingly
Schoeberl (2002) [160] formulated an EGF signal transduction pathway model,
which is still one of the most well defined dynamic pathways for tumour biology.
Initial values are of course needed before the network can be simulated. This sort of
model has huge potential - one can predict the behaviour of the pathway given cer-
tain conditions and therefore begin to develop drug-targeting strategies. Schoeberl
and co-workers perform a number of simulations and describe molecular dynam-
ics that would lead to deregulated cell proliferation, e.g. a simple increase in the
number of EGF receptors. Similarly, Wiley (2002) [192] also describe mitogenic
activity by modelling the increase of internalisation of the EGF receptor. However,
to the best of the authors knowledge, no formal attempt has been made to extend
these particular models to describe the dynamics of the cell or host system (e.g.
tumour), which would require model integration. For example a growth model can
be developed by linking these pathway dynamics to an individual-based model of
growth, i.e. each cell implements the pathway model. However such a linking has
important implications for scalability. This angle on model integration is discussed
in Chapter 4.

Another notable effort, and extension of the EGF pathway described above, is
reported by Miller (2004) [126]. It has been argued that ionising radiation can inad-
vertently cause the over-expression of both MAPK and TGF-α signalling pathways
and therefore contribute to sustained proliferation. The authors therefore modelled
the autocrine signalling induced by radiation-exposed tumour cells. MATLAB19 is
used to simulate the network of 148 chemical reactions and 104 ODEs. The result-
ing model agreed with experimental data, at least for short-term radiation response.
Yet again however, the effects on (dynamics of) the whole tumour system are not
considered in any serious way - the pathway model is considered in isolation though
it does seem very well suited to be a component of a therapy model, such as that de-
scribed by Stamatakos group described in the previous section. Such an integration
would yield a simulation that is far more representative of a clinical case.

Stochastic methodologies are also quite popular in this area. Wolkenhauer (2004)
[199] reviews the latest methods including the popular chemical master equation,
Gillespie algorithm and τ-Leap method (all of which are used extensively in the
literature). Meng et al. (2004) strongly advocate the use of stochastic methods by

19 www.mathworks.com
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arguing the stochastic nature of natural systems such as signal transduction and
therefore the inaptness of deterministic models. A distinction in the types of stochas-
ticity is established by virtue of origin - extrinsic (randomness from outside the sys-
tem) and intrinsic (randomness generated from within the system). Meng and co-
workers then set out formalisations for these types of stochasticity. These stochastic
models however are computer-intensive and so Lok (2004) [116] complements the
stochastic modelling appraisals by reviewing parallel computing and shortcuts for
the chemical master equation-based stochastic algorithms.

It can be argued that the models explained thus far are fundamentally flawed
in that the pathways themselves exhibit static topologies. To tackle this problem
Shmulevich (2002) [162] develop a Boolean/Bayesian hybrid model that fuses the
conditional stochastic concepts of Bayesian networks with the simplicity of Boolean
networks in a so-called Probabilistic Boolean Network (PBN) formalisation. The
mathematics is quite complex and not shown here. However, simply put, a previ-
ously fixed topology of genetic regulatory networks are given a choice of reaction
functions, yielding a more dynamic network. To the best of the authors knowledge
such an implementation for signalling networks is not yet present in the literature
though the method does seem to be flexible enough to do so. However, the method
as yet remains untested against biological data.

Various other methodologies have also been suggested in recent years, many
coming from concepts in computer science. Particularly, ABM has become more
popular [70,39]. This permits spatio-temporal modelling and single molecular track-
ing akin to CA. Petri Nets are also becoming a popular method [206], as well as
knowledge-based reasoning approaches [20].

Only very recently has there been any convincing attempt at directly linking path-
way dynamics to tumour dynamics. Perhaps the first concerted effort in this respect
has been presented by Christopher (2004) [46] who employ a forward-modelling
paradigm to mine through data to first build up a pathway for proliferation (De-
scription Cell Language for representation and ODEs for dynamic description) and
then apply it in the context of a cancer cell. The proliferative potential of the cell
can then be applied to a wider context of a heterogeneous population of cells (i.e.
a tumour) for a tumour growth simulation and/or cell level drug response simula-
tion. The group use the Virtual Cell platform for simulation, which will be discussed
later. Jiang (2005) [99] alternatively use a Boolean network to model the behaviour
of the cell cycle in response to oxic conditions and hence the effects on tumour
growth. With the continuing rise in access to high power computing resources such
multiscale models are expected to become more prominent.

2.1.6 Other Models

The review given above is by no means exhaustive with many more techniques only
just emerging, e.g. the use of fractal mathematics in vascular networks [77] and
drug delivery [61]. Model focus is also diversifying with increasing attention being
given to point mutations [134] and chromosomal aberrations [75]. Finally, there is a
plethora of modelling papers that focus on classification or clustering of some kind
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of data and then deal with tumour prognosis or diagnosis in some way. None of these
models deal with the dynamics of the tumour itself and can be categorised as phe-
nomenological. In fact a huge number of models have been developed in response
to the availability of large datasets like those offered by microarray experiments and
other molecular-based techniques. For example, Catto (2003) [34] use a neuro-fuzzy
approach in which linguistic (i.e. qualitative data) could be used to classify patients
into prognosis groups. The group report an eye-opening 88-95% efficiency.

Recently David Gavaghan’s research group at Oxford University20 are tackling
the modelling challenge from a number of angles, including differential equation
approaches inspired by the Physiome Project (discussed in later chapters), agent-
based methods as well as more phenomenological methods, e.g. the use of the finite-
element method and nonlinear elasticity to build a three dimensional, anatomically
accurate models of breast tumours and surrounding tissue [142].

2.2 Summary

A whole range of models and techniques that appear in the tumour modelling lit-
erature have been discussed. The inadequacies of traditional techniques, i.e. DE
models, over computational methods such as ABM and CA have been highlighted.
The tumour modelling literature can be dissected by the target system the models at-
tempt to emulate, i.e. growth, response, angiogenesis and pathway models - though
it must be pointed out that there is significant overlap across these sets.

2.3 Conclusion

Many different aspects of tumour dynamics, with a diverse collection of methodolo-
gies, have been modelled but there is no unifying principle between these models.
There is currently little or no scope to reuse these models without extensive redesign
and development, especially when the complexity of semantics can be so varied
from model to model. To do so would require model integration technologies. The
survey made here will help to highlight the points at which such integrations can
be made, especially from the viewpoint of model behaviour, which will be further
explained in subsequent chapters.

20 http://web.comlab.ox.ac.uk/



Chapter 3
Coping with Complexity: Modelling of Complex
Systems

Abstract. This chapter will detail the most salient points regarding complex sys-
tems, their behaviour and properties, with a focus on the tumour systems, and define
related concepts. The concept of local interactivity in multi-agent systems will be
introduced as a direct explanation of behaviour of complex systems. Systems biol-
ogy will be described rom a systems-theoretic point of view and a review of the state
of the art in terms of modelling technologies will be discussed.

3.1 Preamble

Systems biology aims at describing biological processes as interactions of molecular
components structured by regulatory wirings. [5]

Systems biology is an academic field that seeks to integrate high-throughput biological
studies to understand how biological systems function1.

A systemic approach to biology ought to put the emphasis on the entire system; insofar
as it is concerned with components at all, it is to explain their roles in meeting the needs
of the system as a whole [50].

Systems biology addresses the missing links between molecules and physiology [32].

(There seems to be a consensus that) systems biology will progressively complement
the conventional mode of study by facilitating the understanding of biological net-
works and mechanisms in terms of their dynamic system behaviour on different levels
of organization [67].

Model integration strategies are the focus of this book. To formalise these strategies
a detailed understanding of the nature of the very system that is being modelled is
required. The field of systems biology, one of the fastest growing fields, strives to
do precisely this - though opinion over its direction is quite mixed, as the quotes
above show. In fact systems biology is central to the topic of model integration (in

1 www.wikipedia.org
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the application of tumour modelling given here) since it provides the basis on which
an integration strategy must be placed, i.e. what are the (sub)systems involved; how
do they interact; what are their components; what is their behaviour? A systemic
view, according to Cornish-Bowden (2006) [50] above, should strive to answer these
questions. Is this the direction in which the field is actually going? These questions
will be explored concisely in this chapter.

Accordingly, tumours will be examined as complex, adaptive and dynamic sys-
tems. Based on this, the nature of modelling methodologies will be formalised in
the next chapter, which will make the challenge of model integration clear and will
make it possible to formalise solutions.

Definition 3 (State). A state is a quantitative or qualitative variable of the system
that defines some condition of being. A state can also be defined as a specification of
a system or process at a particular instant [198]. For the purposes of explanation in
this book, the term is also applicable to abstract concepts that do not relate directly
to any physical components.

Definition 4 (Behaviour). Behaviour is a defined pattern of state changes wherein
the said state(s) may refer to both environmental and system states. A pattern of
state changes constitutes a regular configuration, which can be identified (observed)
specifically, of state changes over time (or other parameter), possibly in relation to
or in conjunction with other states, within some predefined limits. Behaviours will
often be referred to as non-linear or complex, which will be discussed further in
following sections.

Diverse aspects of biological systems, from the underlying reasons of their com-
plexity to overall behaviour, have been subject to debate and investigation in recent
years. This is embodied in the large complex systems research literature and the im-
pact of this research field and system modelling is enormous - some benefits have
already been discussed in the previous chapter. However, the formalisation of con-
cepts pertaining to the characteristics of complex systems is still an active field of
research.

Relating certain key characteristics of complex systems to how they are typically
represented in models in silico has direct implications on the engineering of model
integration strategies2:

• Complexity in behaviour: States of the system as well as individual models that
mimic the system can be highly nonlinear (non/linearity will be defined more
precisely shortly). The integration of models must preserve the behavioural com-
plexity of the original individual entities.

• Complexity of component parts: As will be explained in the following sections,
complex systems are composed of components that may well exhibit a degree
of complexity themselves. It may be necessary to make this layered complexity
explicit in a model integration platform.

2 A full definition of model integration from a formal perspective is given in Chapter 4.
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• Compartmentalisation: Modelling often involves compartmentalisation of the
system, which can be based on both real compartments and artificial ones, to
simplify the modelling process. A model integration strategy must respect any
compartmentalisation that exists within the original models since these consti-
tute implicit assumptions about what the models represent.

• Environmental context: Complex systems often interact with the environment,
which can affect overall behaviour (though the environment itself is seldom mod-
elled as seen in the previous chapter).

The following sections review these fundamental characteristics within the frame-
work of complex systems theory. They will be discussed with respect to their ap-
plications to biology and, in particular, tumour modelling and, eventually, model
integration (next chapter).

3.2 Dynamic Complex Systems

Most biological systems, including macro-systems such as those found in ecology,
are said to be dynamic complex systems [82]. Although there are a small number of
shared characteristics amongst different complex systems (CS) a succinct definition
of a complex system is difficult to articulate since there is still no general consensus.
An initial definition of a CS can be given as:

• A system that exhibits behaviour that is often non-linear due to a large number
of interacting components. The interactions between the components, e.g. cells,
may well be non-linear too.

• A system whose behaviour cannot be predicted merely by investigating the be-
haviour of the individual components in isolation.

Definition 5 (Component, of a complex system). A component is any part of a
complex system that can be reasonably compartmentalised, either by physical or ab-
stract partitions, on the basis that it forms a functional (but not necessarily function-
critical) part of the whole.

Definition 6 (Linearity and Non-linearity). Linearity, mathematically, is defined
as a behaviour that satisfies the properties:

additivity : f (x)+ f (y) = f (x + y) (3.1)

homogeneity : a · f (x) = f (ax) (3.2)

Neither of these properties is present in pure non-linearity: consider the combination
of behaviours in complex systems as mathematical functional outputs, as defined
above, which produce other observable behaviours where additivity and homogene-
ity do not hold (e.g. consider the signalling pathways of all the different molecular
species within a cell; even when taken collectively this cannot explain the overall
behaviour of cell). To define non/linearity more clearly, a linear behaviour, in terms
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of system states, can be predicted with knowledge of any previous state and then ag-
gregating a fixed (or fixed functional) amount over a parametric index (usually time)
to the desired index, whereas this is not always possible with non-linear behaviour.
In the case of complex systems non-linearity is a key property [130,18,194]. In this
book, unless otherwise stated, the term complex behaviour is used interchangeably
with non-linear behaviour.

Open complex systems invariably interact with the environment(s), which provides
a context to their behaviour through feedback mechanisms. In many cases the en-
vironment is also considered complex, e.g. the tumour in the wider context of the
surrounding tissue and body. Conversely, closed complex systems have no such in-
teraction and are therefore said to be independently complex, though the existence
of such systems is arguable. Whole organisms are often presumed closed despite the
fact that, of course, there is ample interaction with the environment. In reality closed
systems do not really exist but are in fact used in modelling scenarios to simplify
the complexity problem.

Definition 7 (Interaction). An interaction in the context of complex systems can be
defined as any communicative action between two or more entities where the entities
can be either physical objects, such as molecules or cells, or abstract concepts, such
as behaviours. The medium of communication is an abstract concept when the enti-
ties involved are not directly interacting physically, e.g. a causal interaction within
a chain of events. The three main types of interaction described in this chapter are:

1. Physical interactions, e.g. enzyme-substrate reaction.
2. Informational interactions where two entities exchange information without

physically interacting. This is an artefact of simulating physical systems where
the actual physical interactions are not specifically simulated but ”metamodelled”
such that state changes in one entity affect state changes of another purely by mu-
tual observation. Informational exchange will be used to simplify the way one
can describe complex physical interactions where minute interactions need not
be modelled specifically.

3. Causal interactions are similar to informational interactions in that state changes
of entities, which can be linked into networks (where vertices represent entities
and edges represent directed causal interactions), affect state changes in other
entities. The difference is that a causal interaction is not simultaneously bidi-
rectional, i.e. it is not an exchange via mutual observation, though feedback is
possible.

Definition 8 (Environment). If an artificial division can be drawn such that it en-
capsulates the subset of all behaviours and entities of the system of interest; the
remaining subset of behaviours and entities in the universe of discourse can be con-
sidered environmental.

Definition 9 (Universe of Discourse). The entire set of considered entities, vari-
ables, interactions, etc. in any given modelling situation.
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3.2.1 Properties of Complex Systems

A complex system in its entirety represents behavioural dynamics that are the result
of interacting components, which are sometimes referred to as agents, on many
spatiotemporal levels.

Definition 10 (Agent). Agent has a varied meaning in the computer science litera-
ture depending on the context [191]. In this book, unless otherwise stated, an agent
can be considered an entity/component of a complex system that is assumed to have
some degree of autonomy of functionality within the system (as well as across sys-
tems via the environment) [39]. Typically an agent is considered to interact locally
within the system, though in an abstracted model this need not be the case.

Besides agents, complex systems are frequently composed of, or interact closely
with, other subsystems that are often complex and dynamic in their own right3 [32].
A tumour is a complex system demonstrating highly non-linear behaviour [57],
which can be said to be a function of the interaction between many subsystems
under varying environmental conditions, e.g. cells, microvasculature angiogenesis
and ECM. Complex systems science must therefore not only encompass the scale
between the individual component (agent, subsystem) and the whole (system) but
also must capture an understanding of the dynamics of interactions within the sys-
tem and environmental feedback [30].

A distinction that must be made before further exploring properties of CS is that
of a complex system from a mere complicated one. Often one thinks of a com-
plex system as something that has many interacting components. Indeed this could
also be a qualification for complicated systems but it does not go far enough to
define complexity. Similarly, behaviour may well be observed to be non-linear in
complicated systems too albeit to a smaller degree. One of the most prominent and
observable attributes of a complex system that sets it apart from other systems is
that of emergent4 phenomena [17]. An emergent behaviour or property by defini-
tion is a phenomenon that cannot be predicted merely by examining the parts of the
system by themselves - it is in evidence where the whole really is greater than the
sum of its parts [100] and is therefore parallel to the concept of non-linearity, i.e.
non-additivity and non-homogeneity. For example, consciousness itself is consid-
ered to be an emergent phenomenon arising from non-linear neuronal activity [129].
Emergence is a difficult property to gauge quantitatively. It is also very difficult to
generalise the most favourable conditions for such a phenomenon to occur, however
it is generally agreed that a complex system whose components are many must have
the right balance of interaction between components such that interactions are not

3 However this does not need to be the case - complex systems can also be made up of many
simple components. Conversely, a simple system can be made up of components that are
themselves complex, e.g. the earth contains many complex systems but its behaviour as a
planet in the solar system is comparatively simple.

4 Emergence is an oft-abused pseudonym for complex behaviour that is not easily explain-
able. Emergence shall be treated strictly as per the definitions given in the main text to
avoid any argument about its actual relevance outside of the context given here.
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so sparse as to render the system completely disorganised and not so much that the
system becomes too orderly and rigid [47, 100].

Prior to further discussion one must note that a great deal of debate surrounding
emergence in the literature is not only due to differing philosophical viewpoints but
also the sheer variety of definitions of so-called emergent phenomena. Emergentists
Charlie D. Broad, John Stuart Mill and Samuel Alexander, as well as others over
the last century, had set down much of the philosophical foundations of this subject.
Based on these works one can tentatively define emergence in a general form.

Definition 11 (Emergence). A property is emergent if it cannot be deduced from
the behaviour of the systems components, even with the most complete knowledge
of those components, when those components are studied in isolation or in other
wholes [27]. In other words, components and their interactions must be considered
together, which make up the whole (system). Later explanations and theories of
emergence have included the notion of flows of causality in the system, as will be
explained shortly.

Note that the definition for emergence suffices for the work presented here only
and is not representative of all views. The present and most popular views are de-
rived largely from that of Alexander from which the concepts of weak and strong
emergence have come to light (discussed shortly).

Definition 12 (Causality). Causality can be defined as a concept by which physical
or abstract events occur or properties and/or states are changed as a result of other
physical/abstract events, properties and/or states (i.e. causes) [167]. In other words
there is an actual dependence of effects, or probabilities of effects, on causes. For-
mally, A is the cause of B if and only if bringing about A would be an effective way
of bringing about B [132]. This is termed agency-oriented view of causality. Note
that this is one of many views, however the agency-oriented view is most relevant
to the work here and suffices so far as (i) model integration and its implications are
concerned and (ii) its medical applications are concerned (i.e. medical reasoning).
Extending this to the context of complex systems: Any event, property or state that
is deemed a causal source (i.e. a point of origin, which may well be the endpoint
from a larger perspective) can be linked to a number of downstream (cause-to-effect
direction) events, properties and states. Note that this need not be linear, i.e. the
direction can be cyclic. This will be explained in the main text shortly.

Two types of emergence can be defined at this point, namely weak and strong [137].
Weak emergence describes the behaviour arising from micro to macrostates resul-
tant of the interactions on the microscopic level. Note that a complete knowledge
(if such a thing is possible to achieve) of component properties is not equivalent
to a complete knowledge of simultaneous and collective component interactions. In
strong emergence, however, the behaviour of the whole can influence the behaviour
of the component parts in a form of feedback, i.e. there is a top-down causal flow.

Critically, strong emergence differs from the weak form in that the causal flow
is genuinely separate from the influence of the component parts and is therefore
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said to be irreducible with respect to those components [24, 35]. In essence this ir-
reducibility is similar to Broads notion of non-deducibility - the behaviour of the
whole cannot be explained by the behaviour of the parts. In the arguments presented
below, as well as the rest of this book, it will be maintained that though unexpected
behaviours can arise, and can subsequently be labelled emergent (depending on its
definition), a depth of knowledge of component properties as well as their interac-
tions taken together, acting simultaneously, in the context of whole can lead to the
development of a framework in which such behaviour, inclusive of the top-down
variety described above, can be predicted.

Complex systems and emergent phenomena are said to arise from both bottom-
up and top-down collective behaviours [100]. The top-down perspective, or systems
view, is a globally directed phenomenon in contrast with the purely bottom-up situ-
ation, the so-called reductionist view [18]. Though behaviours arise from the short-
range interactions of the component parts, e.g. short-range communication of cells
in the tumour system, which embodies the concept of weak emergence, the concept
of strong emergence dictates that some behaviour affects the component parts from
a global perspective. The components behaviour in turn globally affects the system
by feedback. As an example of an apparent strongly emergent behaviour take tu-
mour growth (as well as normal tissue growth in this case) that can be constrained
by the global pressure exerted by its own outer cells, e.g. the viable layer of a MTS.
This pressure constraint (which is a global state, i.e. top-down, induced by the orig-
inal microscopic system state itself) will manifest itself on the local scale such that
each tumour cell is compressed into a smaller space, which in turn forces cells to
slip into the G0 (quiescent) phase of the cell cycle - applied globally, this results
in a retardation of tumour growth. Top-down control in this case has revealed itself
ultimately as a combination of local interactions (the crowding affect of cells) and
cell properties (induction of G0) - importantly the combination is a simultaneous be-
haviour across the entire system in conjunction with other system behaviours. It is
from here that one can trace the communication of behaviour through the scale and
structural hierarchy of the system, from tumour (system) level down to cell level and
eventually the molecular dynamics that initiate rest phase, and the chain of causal-
ity continues back up the hierarchy to affect the system globally again. Note that
the property of space constraint-based retardation cannot be predicted from analysis
of the state-space dynamics of the cell or molecular agents alone nor would it be
deducible if it were placed in a different whole. Additionally it cannot be predicted
solely from interactions of agents. It is only when the cell interactions and properties
are considered within the context of other cells, i.e. local interaction, in a systemic
view, i.e. in the wider context of the tumour, does this property reveal itself.

Thus one must consider the nature of communication of such behaviour, i.e.
how top-down behaviour is defined on the smaller scales of the system. From the
above example it can be argued that top-down control, if it can indeed be defined
as such, manifests itself as short-range interactions between and within components
and its effects therefore become cyclically bottom-up - both system and reductionist
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views in this case are simultaneously correct5 because causality can flow in both
directions. Non-simultaneous bidirectional causality need not be paradoxical when
viewed in the language of the microcosm - top-down behaviour, the prime symptom
of strong emergence, is merely the tail end of a causal chain, which is microscop-
ically weak (in the sense of weak emergence) in origin, and temporarily continues
via the global system and terminates back at the local level cyclically. This reduces
strong emergence to the weak form.

When viewed in such a way it can be seen that the original notion of bottom-up
system complexity (and ensuing causality) is not violated by the relatively transient
causality transposed by global-local communication. The implication here is that for
closed systems, where complex behaviour is independent of environmental states,
any apparent top-down causality of the system is indeed bottom-up in origin. In
the case of biological systems, where the systems are very much open to environ-
mental conditions, only a subset of all behaviour is attributable to the small-scale
and overall global dynamics is due to both bottom-up causality and environmental
interaction-induced top-down causality.

Definition 13 (Environment). Corollary to Definition 8. The environment itself can
be considered a system (be it complex or simple) in its own right if the function of
the system of interest is not entirely dependant on the functionality of the envi-
ronment. Of course this distinction of dependency is a matter of degree; a precise
partition between system and environment, in the case of modelling, is defined by
the perspective of the modeller. Naturally, the environment represents a system(s)
that is larger or equal (in physical space) to the system of interest. The environ-
ment therefore typically interacts with the system of interest in a top-down fashion
(whereas the reciprocation is of course bottom-up).

Take, for example, de Pillis and Radunskayas explanation of Jeffs phenomenon in
the previous chapter wherein oscillatory growth dynamics is observed as a result
of immune cell interactions in vivo. Such oscillations can affect the distribution of
nutrients, cell cycle dynamics, mutation and adaptation rates of tumour cells, oxic-
level population dynamics, etc., and can therefore even influence vascularisation
and further disease progression. One can assert that this oscillatory behaviour, and
its downstream effects on growth and tumour dynamics, possesses genuine causal
power that cannot be deduced from examination of the components, which fulfils
the basic requirements for strong emergence [24]. Such an assertion is, however,
superficial at best - the effects of the immune system is independent of the tumour
when considered as an environmental interaction. Critically, the interplay of these
environmental systems and their integration with the tumour give rise to complex
behaviours that can be considered weak emergence when their interaction is viewed
to form an integrated whole. In other words, when one considers all of these inter-
actions within the context of the larger system, in this case the human body, then the

5 Although there is no reason to suggest that reductionism and systemism are mutually ex-
clusive. Indeed, from the reducible systems point of view, systemism actually subsumes
reductionism.
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origin of all behaviour can be traced back to fundamental physical laws that govern
the components and simultaneously the rules that govern the interaction between
components - again, interaction and properties together are the key to complex be-
haviour. In this case, the components of the immune system, e.g. macrophages, and
their interactions with the tumour cells give rise to the aforementioned oscillatory
behaviour on the macroscopic scale - the immune and tumour systems as an inte-
grated whole have given rise to the behaviour and there is no genuine top-down
causality.

Definition 14 (System Independence). Systems A and B can be considered inde-
pendent iff:

1. There exists a subset of distinct functions fa and fb, independent of the superset
of functions that exist as a result of A/B interactions, where fa ∪ fb = ∅, that are
carried out by A and B respectively; Or:

2. A and B are totally functionally independent of each other - either A or B, or
both, can exist and function in the absence of the other.

Note that system independence is a matter of degree - condition 1 is a relaxed form
of condition 2 to account for the case of naturally interacting systems. Also note that
condition 1 reinforces the definition of the environment with respect to the system
of interest. Condition 2 does not enforce any stipulation on behavioural dynamics
when A and B are together or apart. This is because the behaviour of each system
may well be very different when interacting with each other, which could be the
case in the naturally occurring case, e.g. tumour and immune systems, though the
systems can theoretically be thought of as independent. In such cases one can con-
sider one system as environmental (in the case of the above example, the immune
system). Modularisation of systems by this criterion of independence, e.g. modu-
larisation of all human systems, implies that complex systems can be viewed as
networks of interconnected modules of functional and/or component interactions.
A modular approach to complex systems is in fact fundamental to understanding
complex behaviour and modelling of such systems, which will be discussed in more
detail in the next chapter. System independence also raises the issue of system and
component boundaries. In conditions 1 and 2 the boundaries are abstract (functional)
but can also include physical aspects.

Systems in general, both natural and artificial, exhibit dynamic behaviour. To de-
lineate a distinction from so-called chaotic systems where state dynamics are also
in non-linear flux, albeit in an extremely disorganised fashion, behaviour in com-
plex systems is more organised, structured and hierarchical as described above6.
To define this distinction further, complex system behaviours are relatively insensi-
tive to initial conditions and eventually stabilise, whereas chaotic system behaviours

6 Self-organisation (described later) is another behaviour that sets CS apart from chaotic
systems - organisational ability implies a reduction in entropy of the whole system. Indeed
living systems have been shown to be able to dynamically change their Gibbs free energy
potential (defined as the energy available to carry out any process, e.g. synthesis, taxis,
etc.) to push the system into decreased entropic states [27].
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vary hugely even with small initial state changes [17,194]. This convergence of be-
haviour from differing initial conditions, and indeed the resilience of CS to external
stimuli, can be viewed as a type of adaptation, e.g. the tumour system has the adap-
tive ability to dampen sensitivities to adverse conditions [13]. Tumour systems have
therefore been described as complex adaptive systems (CAS) with respect to self-
sustenance and therapy resistance [144] though the property of adaptation is far
more fundamental than this - supporting cellular systems in a dynamic environment
itself is an extremely complex adaptive behaviour. The induction of angiogenesis by
over-expression of TAFs and avoidance of apoptosis, for example, can be viewed as
adaptive behaviours in a highly dynamic environment. Most often the mechanism of
adaptation in the case of tumours is an accelerated mutation rate [134] where a selec-
tion pressure, such as application of therapy, together with a genetically diverse cell
population can give rise to therapy-resistant cells. The tumour system then replen-
ishes with the resistant cell variety and disease persists by this Darwinian process,
where one can identify individual cells as mutual competitors. There are a number
of sensitivities for which the tumour system cannot adapt too such as susceptibility
to rapid mutation leading to unviable cells and, to take an extreme example, death of
the host. Subsystem controls and microscopic dependencies are responsible for this
robust but fragile behaviour [52], which has been described for natural and artificial
systems alike.

Another property of complex systems is self-organisation [47], e.g. the organisa-
tion of the cytoskeleton and spatiotemporal organisation of molecules participating
in signal transduction cascades within a cell. Self-organisation on the macroscopic
level is defined to be the result of structural organisation on the meso/microscopic
level, which in turn is due to local interaction between agents [51]. The proper-
ties of self-organisation and adaptation due to the interactions of agents are perhaps
more evident in biological systems than any other set of complex systems. Therefore
the recent pattern, as described in the previous chapter, of some modellers moving
away from traditional mathematical techniques in favour of interaction/rule-based
techniques should not be so surprising since a concept such as self-organisation
is very difficult to describe mathematically without trivialising mechanistic be-
haviours7. In the context of tumour systems self-organisation becomes an interesting
problem since it is the very loss of normal organisational control that causes over-
proliferation - the normally robust tissue organisational behaviour, tightly controlled
at both the cellular and molecular levels, reveals its fragility to induced and/or spon-
taneous mutations that escape apoptosis and early immune detection.

In summary complex systems have been discussed in the context of their prop-
erties, the most notable being that of emergence, nonlinear behaviour and self-
organisation. Critically it has been argued that it is the interactions between agents
within the system and across the environment, as well as their properties, when
considered simultaneously in the context of whole (i.e. all of these interactions and
properties together) that are responsible for overall observable behaviour. Moreover
an explanation of systems on multiple physical and time scales is entirely conducive

7 Moreover note that biological systems can exhibit a dynamic structure of organisation, not
just a rigid one.



3.3 A Systems-Theoretic Approach in Biology: System Biology 43

to an interactions-centric understanding of complexity that goes hand-in-hand with
properties-centric understanding on the microscale. Importantly such an understand-
ing holds the key to model integration strategies, which will be explained in the next
chapter.

3.3 A Systems-Theoretic Approach in Biology: System Biology

The volume of research pertaining to simulations of biological phenomena, includ-
ing cancer, has accelerated dramatically in recent years with high performance
computing, e.g. GRID technology, and the availability of enormous amounts of
molecular data via high-throughput technologies such as microarrays [31] has gen-
erated a surge of interest in understanding biological systems quantitatively on the
minute scale. The field of systems biology embodies a sizeable portion of this re-
search. As the name suggests, the field in principle spans entire cell-, tissue-, organ-,
organism- and community-level understanding via modelling, simulations and visu-
alisations though, as will be explained below, the main focus has centred on in-
tracellular pathways. Systems biology is therefore a fusion of systems theory and
mathematics with computer science applied to biology and readily lends itself to the
inclusion of engineering principles. In addition to the systems perspective the even-
tual use of systems biology is closely linked, but not equivalent, to bioinformatics.
Systems biology is not as new a field as one might be led to think - questions as
to the relevance and application of systems theory to biology were seriously being
considered as early as the 1950s [49], though the uptake by the larger community
was still rather reductionist in spirit, e.g. elucidation of vast metabolic pathways of
mammalian and plant cells, and one could argue that it is as old as systems theory
itself (in fact Ludwig von Bertalanffy, the founder of systems science in the early
20th century, was himself a biologist by profession). Indeed systems thinking has
often gone hand-in-hand with biology though applications have not directly been
biological, e.g. John von Neumanns cellular automata theory in the 1940s was de-
scribed in the context of reproductive artificial life (hence Conways Game of Life
in 1970) and predator-prey equations developed by Lotka and Volterra in the mid
1920s which still play an important role in describing both ecology and cellular
competition in many current modelling schemes.

Currently systems biology is shifting deeper into systems thinking such that it is
paving the way to ever more complex applications of modelling and simulations to
solve biological problems, and conversely the understanding of complex biological
systems is providing a drive in computer science, mathematics and engineering to
improve on current technology and methods. These two channels embody subfields
that can be described as computational biology and biological computing respec-
tively [82].

Wolkenhauer (2003) [200] describes the key challenges for systems biology as
follows:
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• Methodologies for parameter estimation.

– As can be seen from the heavy reliance on differential equation and rule-based
approaches in the tumour modelling literature, parameterisation is an impor-
tant issue for accurate simulations. This can only be obtained from wet-lab
experimentation and data mining. As will be explained in following chapters,
the model integration process can also drive the search for parameter values.

• Modular representations and simulation of large-scale system dynamics.
• Scaling models across time-scales and description levels (genes, transcripts, pro-

teins, etc.)

– Model integration is recognised as a key technology in systems biology [69].
Here it is defined further as a technology that addresses the scale and model
semantics problem too. Simulator software integration is one of many inte-
gration problems tackled by Systems Biology Workbench8 (SBW) [156] and
SCIpath [141], as well as other middleware.

• Visualisation and fusion of information, integration of models and simulators.

– Visualisation is a critically important aspect of systems science [87, 66]. Vi-
sualisation is pivotal in turning complex data and computation into human
understanding.

Fundamentally, amongst the majority of currently active systems biologists, the
bulleted points above distil to a single purpose: to understand the mechanisms of
regulation, and therefore the dynamics, of biological systems [199] via enabling
technologies and visualisations. Ultimately this involves modelling of the interplay
between environment and microscopic local interactions of cells, molecules and
other entities of interest, and the system of interest on the mesoscopic scale. Per-
haps due to the huge efforts put into genome projects and greater understanding
of molecular structure and events via improved technologies, the original systemic
focus has reduced for many researchers to regulation of the genome. It is thus lit-
tle wonder that the central topic that has dominated systems biology for the last
eight years is molecular networks (metabolic and signal transduction), even though
the field portrays itself as a richly varied mixture of perspectives as shown by the
quotes at the beginning of this chapter. Mathematical modelling and simulations
of pathways have received a great deal of attention from a computer science per-
spective [156] whereas the topology of networks [2], modes and (de)centralisation
of control [19] and robustness [105] have been tackled from an engineering per-
spective. With a plethora of pathway modelling devices and databases, this trend of
research is set to continue.

Given the current pathways-oriented focus in systems biology it would seem that
the presumed goal is a fuller understanding of the cell, rather than a fuller under-
standing of tissue, organ or whole-organism systems (though it may well be the case
that a hierarchical understanding, starting from the cell level, is sought). The aca-
demic question in this regard is whether pathway dynamics really should embody

8 www.sbw-sbml.org



3.3 A Systems-Theoretic Approach in Biology: System Biology 45

the bulk of systems biology research. Is it not the case that aiming to understand
the component agents (pathways) to explain the behaviour of the cell system is re-
ductionism by definition? Given the previous discussion on complex systems the
answer is affirmative if pathways are considered isolated components of the whole,
i.e. taken out from the context of the system. Unless this context is considered, the
determination of pathway dynamics, whilst extremely powerful in its own right, is
essentially an attempt to describe biological systems serially9 and purely bottom-up
and is therefore contrary to the view of systems thinking (i.e. consideration of prop-
erties and interactions of components simultaneously in the system). Indeed the vast
majority of pathway analyses and models are not placed back into systemic context,
i.e. system dynamics is not considered. It is not implied here that such modelling
is invalid - indeed pathways are components of the whole (cell) and serial addi-
tions make knowledge of that subsystem of the cell more complete. However, in the
opinion of the author, whether this will complete knowledge of cellular behaviour
as a whole is an open question. The cell is considered a complex system its own
right; its behavioural dependencies in environmental conditions raises the question
of whether an isolationist view of pathway dynamics will ever really reveal cell be-
haviour to the point of tissue-, organ- or organism-level understanding (as may well
be required for cancer systems, for example). Encouragingly, developments such as
the Physiome Project (discussed shortly) seem to guiding this research into a more
systemic view.

This pathways-oriented view has been provided by the strong influence of en-
gineering principles within the field - Hiroaki Kitano (System Biology Institute,
Japan), John Doyle (Caltech, USA), Uri Alon (Weizmann Institute of Science, Is-
rael) and Douglas Kell (University of Manchester, UK) who have all come from
engineering-oriented fields, and groups such as ERATO (Japan) that produced Sys-
tems Biology Mark-up Language (SBML) with Caltech computer scientists, have
made extremely influential contributions to the field via literature and software that
have spurred on the continued research in pathways. Of course from the engineer-
ing perspective, where similar pathway principles have been drawn from artificial
systems, the understanding of pathways is systems-oriented - networks of interact-
ing individuals form the basis for overall behaviour as explained earlier but when
applied to biological systems this has been capped to the cell level.

Cell-level research is of course extremely useful in its own right, as recent de-
velopments have shown. Genome sequencing, two-hybrid and microarray experi-
mentation, all play an important role in driving pathways research to progress the
understanding of cellular circuitry [104]. However, assuming the experimental data
and thence the models and simulations are correct, to what extent will the under-
standing of these complex dynamics contribute to understanding the behaviour of
the cell as a community member of an in vivo tissue? This is as yet an open ques-
tion since the coupling of pathway dynamics with cellular behaviour is not always
clear - pathway dynamics itself (i.e. flux of molecular constituents) is the primary

9 Pathways in the real system are incredibly complex and so the intuitive way to build up a
systemic picture is to break them down into smaller pathways that are examined in isola-
tion and later joined serially by common nodes.
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output but the collective profile of that output is often difficult to relate to cellular
behaviour. The danger is that the systems biology viewpoint has focused on the cell
system as the proverbial whole and has treated either molecules as agents, wherein
molecules are linked to other molecules to form more complex pathways and net-
works, or pathways as agents, wherein pathways are linked to other pathways in
an additive fashion. The behavioural dynamics of pathways, and ultimately cells,
have therefore been reduced with the exclusion of other cell behaviours. The pre-
vious chapter presented projects modelling pathways in isolation from the rest of
the potential, but unknown, network linkages (and linkages to other stimuli such
as molecular-level changes in the membrane due to physical stress and strain), i.e.
there is a real danger of developing pseudo-networks due to incomplete knowledge.
When one thinks about as yet undetected interactions, which are omitted by ne-
cessity from the models, serious questions are raised as to how well these models
actually represent reality. In summary, though systems biology promises a solution
to understanding the complexity of life it is still a field with many serious challenges.

There is, however, a very real sense of systemic-oriented change within the field.
In fact many systems biologists have turned to the wider context of the whole with
software infrastructures, such as E-Cell and Virtual Cell10, and global ventures such
as the Physiome Project, of which their have been offshoot projects, notably the
Cardiome, Epithiliome and Beacon Projects (discussed later). One can see that the
focus is changing from a cellular perspective to a systems-wide perspective with
recognition of the fact that the cell, a complex system unto itself, is only a small
component of much larger systems and that to gain any real insight, especially for
clinical use, the mesoscopic scale (cellular focus) must be expanded towards tissue
and organ levels. Tissues and organs are of course themselves components of the
whole organism. Obviously the importance of complex agent and component func-
tions cannot be overstated - the molecular level dynamics in the cell, for example, is
vital in understanding overall behaviour and so even if the shift in focus is towards a
larger (physical and/or time) scale the smaller scale dynamics must not be ignored.
This is a very important challenge in modelling biological systems - building co-
operative models at different scales that constitute the whole, wherein the inherent
layered hierarchy of complexity of the overall system is addressed, is highly non-
trivial. The role of model integration is to play a critical part in the solution to this
problem, as will be explained in the next chapter.

3.4 Coping with Complexity: Modelling of Complex Systems

It is clear from the previous sections that an interaction-centric approach to complex
systems is key to understanding the diversity of behaviour and this is especially so
in the biological case. This raises the next question of how can any system be-
haviour be quantified formally? Systems can be viewed in terms of states and state

10 Note that though the original focus of these projects were centred on the cell level they are
moving to the tissue level with the availability of more computational power.
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dependencies, which are the prerequisite to understanding behavioural dynamics as
seen in the previous chapter. To formalise further:

• States, or observables, are described in terms of state variables (e.g. nutrient
concentrations, diffusion, proliferation rates, etc.).

• States can change over time according to a transition function. The transition
function itself is sometimes subject to change, and therefore one can obtain sev-
eral orders of transition function for a particular system11. In practice this is
sometimes difficult to conceptualise but some formalisations do exist, such as
finite state machines.

• The set of all possible states is termed the phase or state space, which is not
always possible to define explicitly.

• The transitions of states over many time indexes can be recorded as a trajectory.

There are many techniques by which one can begin to model complex systems given
basic mathematical and computational tools. Some of these are discussed below
and form the basis, either directly or indirectly, of many of the modelling efforts
summarised in the previous chapter.

When viewed as observables states are seldom elemental. This means that other
states of the system, which may not be directly measurable, collectively contribute to
the value of the state variable. In that case it is conceivable that there exists a number
of sub-state combinations that yield identical phenomenological state (observable)
values. A complex system can then be modelled abstractly as a hierarchical tree
with state and sub-state relationships (becoming more atomic as one reaches the
termini of the tree) including combinatorial identities. Wolkenhauer (2001) [198]
and Bar Yam (2004) [18] both ascribe to this phenomenological view of the system
wherein only the observables are taken into account. The rationale is that the more
atomic (given some modeller-defined cut-off) state dependencies and dynamics need
not be modelled explicitly, thereby saving on computational cost, since collective
observables can be used reasonably to explain behaviour. A simple formalisation is
as follows:

ψt : {st,1,st,2..st,x} (3.3)

yields the definition of a system given y observables of interest where: ψt is the
overall system state at time t, consisting of a set of observables; st,x is the xth state
(observable) variable at time t.

Every state undergoes change by some state transition function:

st,i
fs→ st+1,i (3.4)

The transition function, fs, can be more complex, involving multiple time steps,
states and environmental inputs. Additionally, if more detail is required, the model
can be extended by considering collectives of states that contribute to more phe-
nomenological states. When considering state variables as discrete one can view the

11 Though systems are rarely modelled with something more complex than a 3rd order
function.
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transition of states via the state function as a model of a finite state machine (by
cloning the transition function for every state-to-state transition) - in fact a state ma-
chine may well be the starting point in a simple modelling exercise. Superficially
the transition functions relation to the state(s), along with ψt as a whole, constitutes
the definition of system behaviour. Whilst this will suffice as a rudimentary model,
one can see immediately that it is no more in substance than the phenomenologi-
cal models described in the previous chapter. The mechanistic basis of behaviour is
hidden within the transition function. Whilst there are very obvious advantages to
this methodology, as will be seen in the explanation of metamodelling approaches
in the next chapter, there are also distinct disadvantages. For example, in the case of
tumour models, research questions will often revolve around the mechanistic basis
of behaviour since this knowledge can greatly benefit how therapy can be devel-
oped and improved: what are the molecular explanations of cellular behaviour (e.g.
pathway dynamics that contribute apoptotic decision-making)? What are factors that
affect the spatiotemporal development of neovasculature? Why does growth retar-
dation increase even if there are enough nutrients as the tumour grows? These are
just a few questions that can be raised. In short, if more mechanistic explanations of
behaviour are needed for detailed analysis then this phenomenological approach is
insufficient.

3.4.1 Individual-Based Modelling Methods

As can be seen from the literature review, individual-based models such as CA and
ABM have gained more popularity as viable methods to cope with the complexity of
biology. The relative simplicity and flexibility of such methods coupled with readily
available software, efficiency, amenability to parallelisation and superiority over tra-
ditional techniques as explained earlier makes individual-based modelling an attrac-
tive alternative to cope with biological complexity [4]. Individual-based techniques
shift the focus of modelling from a phenomenological to a local interaction-centric
perspective [25]. In the case of bio-simulations with ABMs, for example, the bulk
of the modelling effort is focussed on the agent, e.g. cell, and its interactions and
behaviour rather than global dynamics of the tissue or organ. The volume of related
modelling literature is enormous and only a small fraction with particular relevance
to the work presented here is explained in any detail.

CA were first developed by one of the greatest mathematicians of the 20th cen-
tury, Professor Jon von Neumann and his contemporary Stanislas Ulam [196]. Since
then CA have been used and developed in many applications that include quan-
tum mechanics, diffusion, hydrodynamics and engineering, general systems theory,
cryptography, game theory, economics and biology [17]. The concept of the cellular
automaton is extremely simple and is illustrated in Figure 3.1 in its simplest form -
a 1-dimensional CA.



3.4 Coping with Complexity: Modelling of Complex Systems 49

Fig. 3.1 a. Discrete blocks (cell, or finite state automaton) make up a single line (i.e. 1 di-
mension). This initial state is called the configuration. The table above is called the rule-base,
which explicates the rules that each cell must follow at each discrete time step. So if a cell is
Black, and the two cells to its left and right are black, then its next state is White (the first rule
in the table). This particular rule-base is defined as Rule 30 by Wolfram, which comes from
turning the logical rules into binary (not discussed any further here). The rules operate on a
neighbourhood of radius 1, i.e. they only observe the state of cells 1-cell away, however many
different types of neighbourhood have been used (the most common being the von Neumann
and Moore neighbourhoods, which are diamond- and dice-shaped respectively). The singu-
lar sequence is usually considered toroidal (i.e. left side is joined to the right side to make
a ring. A donut, or toroid, shape is made if the CA is 2D). b. Rule 30 exhibits a complex
pattern. Notice that one can observe tiny triangles emerging from the simple rules. These can
be interpreted as fractals.

The deterministic transition rules determine the next state of a cell12, which is
totally dependant on the present state of the cell itself (with some variations that
include a concept of limited cell memory) and the present states of neighbouring
cells, i.e. cells only behave according to their local neighbourhood. The direct rele-
vance to biological systems here is obvious wherein biological components such
as living cells behave according to their own states as well as the environmen-
tal state(s). The one major difference here is that the real system is continuous
in nature whereas a CA is discrete both in space and time. It is easy to see how
this can be transported into higher dimensions (of course only up to three for real-
world simulations). Stochastic approaches have been incorporated into CA, e.g. Qi
(1993) [149] use stochastic rules for cellular interactions in a growth model. Ac-
cording to the transition rules and configuration the resulting behaviour is observed
to be very complex, repetitive or pseudo-random [129], however this kind of distinc-
tion of behaviour has only ever been examined rigorously with 1D binary state CA.
Stephan Wolfram, who greatly popularised the utilisation of CA in the 1980s and
1990s, characterised the complexity of behaviour of 1D binary state CA but failed

12 Note use of terminology: the term cell is used for the individual in CA as well as the
biological type.
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to describe their dynamics with traditional mathematical methods, leading him to
propose that complex systems dynamics therefore cannot be described purely by
traditional mathematical methods [194].

Many different variations of the basic CA described in Figure 3.1 exist. Rules
can be complicated but are generally kept quite simple in most applications. Two of
the most popular CA that are used routinely in systems science and hydrodynam-
ics are the so-called Lattice Gas (LG) and Lattice Boltzmann (LB) flavours, which
incorporate important physical laws into the rules, e.g. Newtonian mechanics13.

CA cells can be considered as a type of static (in space) agent and so CA can
be viewed as a special case of agent-based systems (ABS). Table 3.1 illustrates the
fundamental similarities and differences between CA and ABS.

Definition 15 (Computational Agent). (Corollary to Definition 10) A computa-
tional agent can be defined as an autonomous, or at the very least semi-autonomous,
entity within a software system and is designed to perform some function based on
predefined logical rules [83]. Agents are often encoded with some degree of intelli-
gence to achieve local or global goals but communication with other agents is key to
agent functionality (communication with the parental system is sometimes also just
as important). States (usually discrete) can be embedded into agents, which can then
have downstream effects on behaviour via a memory or learning. They can therefore
also be viewed as state machines. Agents have been very successful in many appli-
cation areas from optimisation and mathematical solving tasks to simulation avatars
and industry-standard AI deployment [183]. Agents are logically separated from
the environment in which they operate. One can define a number of distinct features
that are discernable in most ABS: Precepts are the information flows between the
environment (e.g. other agents) and the agent; actuator/effector elements provide an
information-sending ability by which precepts can be sent to exterior agents; sensors
are the precept-sensing faculty of an agent; processing elements make up the inter-
nal anatomy of an agent and is highly dependant on the overall ABS architecture as
well as the intended functionality of the system - it may well include memory and
learning faculties for intelligence capability, for example.

ABS can be extremely varied with types focussing on differences in the way agents
behave, taking into account differences in anatomy (sensors, actuators, etc.), goals
(function) and rule base types, to the environments (contexts) that they interact in
and inhabit. In the case of this book the type of particular interest are those that exist
within simulation systems, i.e. the computational analogue of the agents discussed
earlier with reference to complex systems. These agents are different from the kind
that one, for example, might encounter in optimisation methods where the agent
is goal-oriented and perhaps communicative under a specialised architecture. The
simulation system, in the case of real-world simulations, would constitute a com-
putational representation of a limited 3D space in which components, i.e. agents,

13 The associated mathematics has in recent years become extremely well defined but quite
extensive and complex and so will not be discussed here specifically. Interested readers are
directed to Succi (2002) [174] and Vesely (2001) [186].
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Table 3.1 Similarities and differences between ABS and CA. These are only very abstract
descriptions; there exists a plethora of variants and hybrids. Above, d denotes a decision
function, i.e. intelligent selection of appropriate action, which in the special case reduces to
a matching function μ that uses a simple state-lookup to perform the appropriate action; Env
and Neighbourhood represent local interactor-capture functions (i.e. a definition of locality);
δ → 0 in the continuous case. All other symbols are as in main text (refer to the next chapter
for a more in-depth description of the significance of the symbols used here).

Property ABS CA
Interactor Agent = α Cell = χ
Continuity Discrete/Continuous Discrete

Position xyz
{

= f (Δ t) if spatial
�= f (Δ t) otherwise xyz �= f (Δ t)

Environment E = Env(α) ↔ {e1..n} E = Neighbourhood(χ) ↔{e1..n}
State S = {s1..m} S = {s1..m}
Rule Base R =

{
r1..p

}
R =

{
r1..p

}
Action : d(R,S,E) Action : μ(R,S,E)

State Transition St+δ ∧Et+δ : Actiont St+δ : Actiont

interact according to preset logical rules (note that rules do not have to be static -
they can be learned, for example) and states. Presumably most agents would repre-
sent real-world objects and would therefore need to behave in a similar way in terms
of state, space and time.

Of course there is always precedent for more complex abstractions. Take the typi-
cal case of a large tumour that can contain millions of tumour and normal cells [152],
and would be too difficult to model on a strict individual basis. A more abstract
approach will see each agent within a coarser-grained simulation representing
a number of cells acting collectively instead. Hybrid systems (mixtures of the
individual-based ideas described here) are also commonplace and provide a pow-
erful means by which the most desirable parts each particular mechanism can be
utilised. The model integration solution described in the next chapter is such a hy-
brid system where CA and ABS are combined to form a representation of the real-
world complex system of interest.

3.4.2 Simulation Software

Formalising a platform for simulations of complex systems is a nontrivial task. Sim-
ulations of complex systems provide the key to future experimentation, hypoth-
esis generation and intelligent prediction and hence such a formalisation is very
important.

The engineering field in particular has taken the modelling and simulation of
complex systems seriously and a number of platforms now exist14, many of which

14 A comprehensive list of generalised software can be found at
http://www.idsia.ch/˜andrea/simtools.html
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are focussed on one or a particular class of system [197]. Most platforms are com-
mercial. Many applications also work complimentarily to other popular packages
such as Mathematica15 and MATLAB. A number of platforms make use of paral-
lel computing, such as the Parsec system [14]. Other packages include ColSim16

and the Discrete Event Simulation (DEVS) formalism, upon which some older sim-
ulation frameworks are based [205]. None of these however has been specifically
created for the simulation of biological systems.

Two relatively new packages are Modelica17 and Ptolemy II18, which have al-
ready proved to be quite popular. Modelica is quickly gaining ground in becoming a
new standard in the open source market as a viable alternative to commercial simu-
lation and mathematical packages such as Mathworks Simulink. Modelica actually
constitutes two layered components that are continually being improved and built
on: (i) a field-independent model representation language, and (ii) a software infras-
tructure that runs models written in that language. Many applications have sprouted
from this effort including complex aeronautical simulations and other multi-physics
systems [138]. Modelica is of particular interest since it explicitly makes use of
model/sub-model relationships and facilitates model-building in this way to pro-
mote the idea of model reuse. A GUI can be used to create specific modelling com-
ponents, which can then be integrated with other models using a specifically defined
mathematical relationship. This is supported by the idea of partial model generation,
which allows the user to create modelling components with missing mathematical
relationships that can be later realised (i.e. integrated with another partial model).
As will be explained in the next chapter, this idea constitutes a simple linear inte-
gration akin to many previous model integration schemes [62, 81]. However there
are limitations: so far the software only supports model integration with a restricted
set of mathematical tools, namely differential, algebraic and discrete equations. The
creators of Ptolemy II, which works along a similar principle using an OOP-like
architecture to build and improve models, have made a concerted effort to include
a wide variety of models that can be used within the system including finite state
machines, event-driven simulations (discrete event) and a number of hybrids [26].
However, an appreciable amount of recoding is required if a new model type that
cannot be reconstructed using the basic component types in the standard library
is to be integrated into the system and represented in Ptolemys model language
(MoML). Additionally both Modelica and Ptolemy II have been specifically created
for (engineering-oriented) physical systems rather than complex systems though the
creators claim that given enough computational power the software can cope with
massive amounts of calculations efficiently (hundreds of thousands of equations in
the case of Modelica, which is in the same order of equations that was used for the
Cardiome Project described below).

Two of the most prominent efforts in complex systems simulation on the cel-
lular level are the E-Cell and Virtual Cell projects. E-Cell was one of the first

15 http://www.wolfram.com/products/mathematica/index.html
16 http://www.colsim.org/
17 http://www.modelica.org/
18 http://ptolemy.eecs.berkeley.edu/ptolemyII/
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serious efforts to materialise from systems biology in 1996 attempting to simulate
the behaviour of a single cell. Takahashi (2004) [177] describe recent efforts in the
E-Cell project, including the multiscale (time and space) integration of submodules
to build up the simulation. The group report some success with the integration of
relatively simple implementations of ODE, Gillespie and ODE/Gillespie composite
models. They are still actively working on different modules of the cellular system
- for example, a model of the mitochondrion has been recently reported by Yugi
(2004) [202] - as well as moving into microbial simulations.

The Virtual Cell project is a comparatively new venture with the same ultimate
goal of whole cell simulation. Simulations have a heavy reliance on the description
of interactions that are controlled by defined differential equations (communicated
in Virtual Cell Mathematics Description Language), and the package is equipped
with numerical solvers as well as a user-friendly interface [115]. Virtual Cell ex-
plicitly accommodates structural information (though non-spatial modelling is also
possible), which is not as apparent in E-Cell, and is based on an ontological geom-
etry framework. The framework defines the morphology of the cell upon which the
inputted mathematical models operate. The morphology throughout the simulation,
however, is restricted to being completely static whilst the spatiotemporal allocation
of molecular networks within the cell (e.g. pulse of current through a neuron) is
dynamic. Simulations can run in three dimensions and provide quantitative results
within the formalised framework. The simulation engine and database is centralised
at a high-performance server, making it available via the web, and implemented in
Java [164].

There are many other cell-based simulations including the CyberCell Project19,
which is focusing on modelling of E.Coli cells in a purely bottom-up agent-based
approach. Discrete agents, i.e. molecules, are simulated to obey biophysical laws so
as to mimic cellular pathways. Of course this method is very computationally ex-
pensive. Others include MCell20, a Monte Carlo modelling-based platform for mi-
crophysiology, and a number of efforts coordinated by the International E.Coli As-
sociation (IECA) [89], WebCell [112] and various commercial ventures, e.g. Geno-
matica21 and Physiomics Plc22, who also attempt more macroscale simulations. A
relatively recent development is that of the Silicon Cell group [166], powered by
JWS Online23, which is a data-driven approach to pathway modelling.

The Physiome Project is currently the most well known biologically related com-
plex systems simulation project with an impressive simulation of the heart, its
flagship project, already completed [92], though improvements are ongoing. This
project is an international collaborative effort that includes similar biological sim-
ulations for the lung, musculo-skeletal system, digestive system and liver. Interest-
ingly an e-Science project has started quite recently headed by David Gavaghan24 at

19 http://www.projectcybercell.com/
20 http://www.mcell.cnl.salk.edu/
21 http://www.genomatica.com/index.shtml
22 http://www.physiomics-plc.com/
23 http://www.jjj.bio.vu.nl/index.html
24 http://web.comlab.ox.ac.uk/oucl/research/areas/biocomp/tumour.html
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Oxford University. The vision of the Integrative Biology25 group is the initiation of
a Grid-based platform on which multiscale simulations can be performed, including
visualisation and data sharing on a global collaborative scale. Latest reports26 in-
dicate good infrastructure progress, however the platform itself is not yet ready for
public release.

A subsidiary of the Integrative Biology group is the Epitheliome Project27, fo-
cuses on epithelial tissue and is still ongoing. In contrast to the arguments presented
in Section 3.3 where it was stated that systems biology, with respect to pathways
modelling, has too often been capped to the cell level, the Epitheliome Project strives
to describe multi-cell behaviour and does so by crossing genetic, pathway, cell and
tissue levels28 by agent-based modelling. Interestingly, Smallwood (2006) [165] de-
scribe a hierarchy of models to cope with complexity, using a metamodelling ap-
proach to describe lower-level dynamics (metamodelling will be discussed in more
detail in the next chapter). This work has led to the development of the Flexible
Agent Modelling Environment29 (FLAME), a parallelisable software package for
modelling biological systems as well as other systems (recent developments have
included modelling of the European economy).

A recent and prominent tumour simulation effort, though not formalised into
any software platform like FLAME, Virtual Cell or E-Cell, is proposed by Alarcon
(2004) [3]. The model presented focuses on blood flow and heterogeneity of the
tumour. This paper was, until recently, the only one in the literature to the best of
the authors knowledge to describe tumour dynamics (in terms of growth) on such a
wide scale, spanning from a molecular activity (including p27, cyc, cdh for control
of cell cycle) to blood flow and response to chemotherapy. CViT30 is an emerging
community of systems biologists that aim to create a virtual tumour. However, to
the authors knowledge, this group are still in the preliminary stages of providing an
online modelling archive and have not yet reached a whole tumour simulation stage.
One of the latest modelling efforts is described by Zhang (2007) [207], which is a
cross-scale ABM. Specific software engineering details or new modelling method-
ologies have not yet been disclosed.

3.5 Summary

Complex systems have been briefly described as systems in which there are of-
ten very large numbers of interacting agents that collectively display both linear
and non-linear behaviours, as well as self-organisation. These behaviours can often
be described as emergent. At least in biological systems these behaviours, in con-
junction with environmental interactions, can be described in the context of local

25 This is in fact an offshoot of the older Physiome Project.
26 http://www.integrativebiology.ac.uk/progress06.html
27 http://www.epitheliome.com/
28 http://www.dcs.shef.ac.uk/˜rod/Integrative Systems Biology.html
29 http://www.flame.ac.uk/
30 https://www.cvit.org/
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interactions of the agents, e.g. cell-to-cell/intra-cellular space interactions, and their
internal states. In recognition of this fact several efforts have arisen in systems biol-
ogy, such as the Physiome Project, which aim to model biology at various levels of
granularity. However not all have taken this paradigm to the individual (agent) level,
favouring DE-based techniques instead. A number of simulation software projects
and modelling standards have arisen that describe biology at the level of signalling
pathways, which has driven systems biology to its current state.

3.6 Conclusion

The vast majority of software and modelling projects are working towards a system-
wide view but the extent to which such efforts have been successful is as yet
arguable. The true yardstick by which success can be measured with respect to tu-
mour modelling will be in how well models will be able to provide mechanistic
explanations to complex behaviour and thereby present a viable protocol for ther-
apy development. Many of the methodologies described above, in combination, can
conceivably be used to this end however one must bear in mind the sheer complexity
of the system in question. Additionally the agent-based nature of biological systems,
which are very difficult to model with traditional techniques, must also be consid-
ered in serious model efforts. Whilst the system can be broken down into functional
components which can often be modelled separately, these models then need to be
integrated together to form a computational whole and it is this need that is the
prime motivation for this project. The next chapter will discuss what this process is,
how it can be done and ultimately how this knowledge can aide the systems biol-
ogy field in the search for extensive, viable, systems-level in silico simulations (and
most pertinently to this project, what role model integration will play in realising
these goals).



Chapter 4
Complexity and Model Integration:
Formalisations

Abstract. In this chapter model integration will be defined and reviewed with re-
spect to the current technologies. Based on the previous literature review, models
will be redefined in terms of paradigm (formalism), what the model actually repre-
sents, its associated semantics, scale and behaviour. This will in turn help define the
core challenges of model integration.

4.1 Preamble

The previous two chapters clearly demonstrate the predictive and analytical power
of mathematical and computational techniques. Many published models have demon-
strated the ability to predict non-linear behaviour to a limited extent and to this de-
gree it can be argued that these techniques can gain ground as viable substitutes in
at least the preliminary steps of the research cycle as has been the case in the en-
gineering fields. However it is vitally important to recognise the fact that models
in the field of systems biology are as yet simplifications. Even the more complex
models among those reviewed have been simplified to focus on a select number of
processes and subsystems, limiting their use to the corresponding biological mech-
anisms and therefore restricting their clinical viability. To build more representative
and detailed simulations one must start to integrate models together wherein the
individual models represent different or overlapping components of the system.

Definition 16 (Model). (Corollary to Definition 1) An abstraction of one or more
observable system of entities, states and/or behaviours such that the artificial ab-
straction reflects reality to some predefined degree of accuracy (if such a metric is
known). Models can arise in a diverse number of forms (explained shortly). Math-
ematical, computational and logical models use mathematical, computational and
logical language respectively, or a mixture (hybrid model), to describe the system in
question. Logical varieties are often categorised under the computational category
since a set of logical arguments that compose such a model is often translatable into
a computational one. The term model is used abstractly throughout this text to mean
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any of these types unless otherwise stated. A more detailed definition of models of
these types is given in the main text.

Definition 17 (Model Integration). The process by which mathematical, compu-
tational and/or logical constructs can be incorporated into a single framework such
that the resultant model is representative, to some reasonable degree of accuracy,
of all of the original constructs. In this case representative means that the resulting
model integrates the behaviour and semantics, but not necessarily the precise for-
malisms, of the original constructs. The integrated model need not run (be solved)
within the same framework. The three different views on model integration can be
summarised as below:

1. Isolative Communication (Model Sharing): Model integration is limited to trans-
lation into a lingua franca, which can then be imported into different frame-
works [63]. The responsibility of integration (with respect to types 2 and 3) and
model solving is then shouldered by the importing application.

a. E.g. SBML (explained later in this chapter) is classified as isolative since
it only describes a model mathematically, as well as related semantics, but
passes off the responsibility of integration to the application(s) that import
and interpret it.

2. Integrative Communication: Models run independently with middleware that
communicates states so that models can coordinate globally. The software com-
ponents and languages the middleware uses become the focus of model integra-
tion research.

a. E.g. Systems Biology Workbench (SBW) enables live applications to share
objects, such as simulation states. This is different from isolative communica-
tion where the communication policy is static, such as an XML file.

3. Decomposite: Models are decomposed into component parts, or collections of
components and are converted into other runnable components, and are solved
under a single framework. This can often reduce to integrative communication on
a finer scale, i.e. model to submodel decomposition and communication. There
are various degrees of decomposition, discussed later in this chapter.

a. To the best of the authors knowledge only the integration strategy developed
in this project comes under this category (see next chapter).

4.2 The Nature of Models

An understanding of the very nature of models and their modes of use is critical in
developing a formal platform on which integration can take place. Any model inte-
gration technology would need to be robust to the diversity of modelling techniques
and so it becomes essential to develop an understanding of this diversity, from where
it originates and on what levels it occurs so that:



4.2 The Nature of Models 59

1. The complexity of the model integration problem can be stated clearly.
2. A formal methodology for model integration can be explicitly defined.
3. Software design of a model integration platform can be defined1.

4.2.1 Abstract Views of Models

It is clear that a complete low-level classification of models for the purposes of
model integration is futile due to the sheer number of model types, hybrids and
contexts in which models are used. Even if such a task is undertaken, by the time
one could finish such classification it is likely that concepts have evolved and that
new concepts and hybrids of previous methodologies would have been developed.
Therefore a more abstract approach is needed.

Giavitto (2002) [82] describe formalised models in terms of their roles:

• Pedagogical or heuristic models are used to illustrate complex relationships be-
tween system components and can be used as a teaching tool (e.g. simulation
visualisations, causal networks and illustrative diagrams).

• Normative models are reference models, which are used as comparisons be-
tween scientists or as blueprints for generic illustration of frameworks (e.g. UML
models).

• Constructive models are used to build upon pre-existing formalisms or ap-
proaches. They are sometimes termed composite models and involve a certain
level of (sub)model integration.

Such an abstraction does not inform one of any notion of model content. Ideker
(2003) [95] go further and compare the most popular formalisms in computational
cell biology (see Figure 4.1) and classify them by granularity. Epidemiological, i.e.
phenomenological, models are placed on one end of the spectrum and mechanistic
models on the other.

Definition 18 (Granularity, of a model). The level of detail that is presented in
any model. A fully fine-grained, or low-level, model is defined as the model of
which the components cannot become any more fine-grained, either because the
model incorporates a full understanding of microscopic (mechanistic) knowledge,
which is of course theoretical, or the model has reached the limit of mechanistic
knowledge. Conversely a model is termed course-grained (more phenomenological)
when mechanistic knowledge is omitted and behaviour is determined at a higher
level(s).

By itself this crude classification does not shed any light on the model integration
problem, except that different models require and contain vastly different volumes
of data and data types based on scale (discussed later).

The points made by Giavitto (2002) [82] and Ideker (2003) [95] based on role
and granularity-related information content allude to a rough abstraction of model

1 Exact implementation of the proof-of-concept software is not detailed in this book.
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Fig. 4.1 Different formalisms pertain to different fields of view. Ideally models and simu-
lations of cancer from which one can ascertain causal and emergent phenomena must come
from detailed mechanistic models.

formalisms without actually defining those formalisms (e.g. P/ODE-based, statisti-
cal, ABM, etc). There is, however, a need to describe models on a more fundamental
basis without restricting oneself to a rigid and formalised classification that cannot
be later evolved. Such a description needs to include all of the most salient points
of the model in light of the possibility of future integrations with other models: the
mathematical, computational and logical formalisms that it uses, how the model is
run within a software environment and associated issues2, what the model actually
represents and how it is to be used (i.e. its goals and limitations). The following
criteria has been developed to examine the models:

• Model paradigm: the abstract mathematical and/or computational basis (formal-
ism) of the model.

• Model focus: the real-world subsystems of interest (e.g. angiogenesis, immune
system, etc.), including physical components as well as associated behaviour (de-
fined directly or indirectly by the model).

• Model scope: the state space of the model defined by allowable variable values,
context and underlying assumptions.

• Model scale: the spatial and temporal level on which the model operates.

Analysis of models will involve determining the constitution and form of these four
points. The results of this analysis are presented in the following sections. These
points that define the nature of models, are then further defined from the perspec-
tive of model integration and refined into the core challenges that any formalised
framework should address. Plausible solutions to these challenges are given in later
sections and tested in Chapter 7.

2 This is in fact a matter of solver technology, which will be discussed in more detail later
in the chapter.
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4.2.1.1 Model Paradigms

Definition 19 (Model Paradigm and Paradigm Profile). The fundamental math-
ematical, computational and/or logical principle(s) upon which a model is based.
Models will exhibit more than one paradigm and hence a paradigm profile can be
defined. The paradigm(s) dictates not only the nature and behaviour of the model
but also the form of any solver that can be attached to it, i.e. how the model is ma-
nipulated for use. Note that solvers and models are from hereon treated separately:
paradigm, focus, scope and scale relate only to the model in this discussion, though
the same theory can be extended to solvers.

Definition 20 (Solver). The general definition of a solver in the literature is a pro-
cedure, or set of instructions, that a computer can execute to solve an instantiated
model [179]. However this does not go far enough to include abstract constructs, e.g.
ODE models that contain uninstantiated variables but can be solved by a series of
mathematical techniques that would include curve-fitting and discretisation meth-
ods. Therefore the definition is extended here to any enabling mathematical tech-
nique or software application that manipulates a model, whether it is instantiated or
not, such that the resulting representation is usable in at least partial fulfilment of its
potential. Note that not all models are designed to be solvable.

Previous work specifically on paradigms is scant; it seems that a paradigmatic angle
of understanding has not been developed though many authors have merely com-
mented on the fact that integrating models across qualitative/quantitative, stochas-
tic/deterministic and discrete/continuous paradigms (sometimes called dimensions)
is a difficult undertaking [182]. Villa (2001) [187] has been the closest to addressing
this issue albeit in the environmental modelling field with respect to model integra-
tion. The approach taken, implemented in the so-called Integrating Modelling Ar-
chitecture (IMA), makes integration of submodels explicit with respect to paradigm
(paradigm in IMA being defined quite loosely as mathematical or computational
formalisms, e.g. ABM and ODE). In close correspondence with this view CellML,
a formal and accepted standard in systems biology that addresses model exchange
standards, models are viewed as compositions of subcomponents (synonymous with
submodels) each of which must be described by some metadata3 that details three
fundamental paradigms: time, space and behaviour [114]. Whilst the explication
of time and space is quite straightforward, behaviour is more difficult to describe.
Villa takes an iterative approach in which a new integration strategy is developed as
and when a new paradigm profile is encountered. A semi-autonomous approach to
model integration can then be sought in which the IMA software generates trans-
lation functions between variables in each model component dynamically (i.e. as
they are connected together) based on that metadata. Essentially this type of model
integration can be termed linear integration, which will be discussed in more detail
in later sections. The advantage of such a decomposition is that behaviour encap-
sulated in individual models need not be lost in the integration process as subcom-
ponents remain as computing subunits within the integrated model. Additionally all

3 Grammars are expressed in XML.
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variables and models are treated as data sources, which makes the process easier to
understand for non-technical users. However it is not entirely clear how complex
semantics relating focus, assumptions, etc., can be incorporated into the integra-
tion process and, of course, the existence of a translation function is not always
guaranteed.

To redefine and interpret model paradigm more formally and clearly an in-depth
analysis of the cancer systems biology field has been carried out. The results are as
follows.

Functionality is the most abstract paradigm. Functional models are referenced
within the context of executable mathematical or computational constructs, i.e.
models that perform some kind of processing function, but can also refer to more
qualitative constructs such as executable semantic networks. Examples of functional
models include differential equation models, Bayesian networks, CA and ABM.
Though an UML diagram does not perform a specific executable task it is still con-
sidered a type of model since it characterises an abstraction of a real-world system,
e.g. the realisation of a software system. The same can be said of schemas, which
precisely and formally define, for example, the structure of XML documents. These
models are herein defined as non-functional. Note that an unsolved model, i.e. a
theoretical construct, can also be viewed as being non-functional with the given
definition. However the concept of solvability is an essential part of the goal of such
models, e.g. ODE equations in contrast to schema. One could counter that a UML
diagram similarly has solvability at the core of its goal. Essentially a clear dividing
line can only be established if one accepts all models as non-functional, whether
solvability is a part of the goal or not, and solved forms of models as functional.
This entirely supports Definition 1.

One can distinguish models further on the basis of numeric content. In other
words the model is either quantitative or qualitative. Generally qualitative mod-
els that have little or no concept of solvability exhibit the aspect non-functionality.
However, with a surge of interest in fuzzy systems wherein qualitative models can
be quantified the boundaries of this particular paradigm are becoming increasingly
blurred. Fuzzification and defuzzification processes, now commonplace in control
system models, have closed the gap between qualitative and quantitative aspects
of modelling [198]. However it must be said that such processes are dependant on
human and/or optimised input, e.g. generation of membership functions.

Models also have a continuity aspect, i.e. the model is either discrete or contin-
uous, which more specifically pertains to the actual variables used in the model. In
specific modelling paradigm cases this aspect can also pertain to actual components
used in the model, e.g. agents within ABS are considered discrete entities (which
could concurrently operate on continuous state variables). The previous chapter has
highlighted the use of these paradigms in the context of systems biology. Moreover
it has become apparent that these extremes are interchangeable when moving from
an unsolved to solved form. For example, Anderson (1998) [7] use a model that is
fundamentally continuous but solve it discretely via the Euler method. Discrete CA
and finite element/mesh methods are common solver technologies for continuous
systems [195].
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Stochasticity is another prominent paradigm, i.e. models have stochastic or non-
stochastic (deterministic) characteristics. A stochastic model implies both function-
ality and quantitative numeric content. Stochasticity is not strongly linked with
continuity even though the traditional probability scale and associated calculi are
continuous.

The centrality paradigm outlines a fundamental goal-oriented concept within the
model-building process and is best understood when considering the difference be-
tween simulations and goal-oriented approaches such as optimisation algorithms.
For example there is a clear paradigmatic difference between (i) a simulation that is
run over time and shows the drug dose effects on tumour growth; (ii) an optimisa-
tion or classification algorithm, such as a neural network, which takes the existing
tumour size and consistency as input and calculates the recommended dose require-
ments to minimise tumour size. The first algorithm runs over time whereas the sec-
ond algorithm has no notion of any simulated trajectory of target parameters. The
second algorithm can also be likened to data-mining algorithms where no simula-
tion as such is executed. Rather, an ulterior model or construct is generated, e.g. gene
expression data-mining algorithms that infer plausible genetic regulatory networks.
Therefore this paradigm is embodied by centralised and decentralised character. A
model can have a specified centralised goal, e.g. optimised therapy or establishment
of a classifier from data-mining, as opposed to a relatively decentralised goal that is
characteristic of time-continuum simulations.

Finally, there is the aspect of dimensionality to all models, i.e. spatial and
temporal dimensions. As the previous chapter has shown, models and simulations
manifest in a variety of types in terms of dimensionality, from non-dimensional to
four-dimensional models (and higher for centralised models). As with centrality, di-
mensionality is often a property of the solved form rather than the abstract model.
For example, ODE equations explicitly defining the Laplacian ∇ can describe dy-
namics in all three spatial dimensions but may well be solved and simulated in 1 or
2 dimensions for simplicity. Additionally phenomenological state models are often
non-dimensional since they describe some observable state (e.g. tumour radius, cell
number).

Note that models are characterised by the six paradigms listed above applied to
all submodels, i.e. a submodel elicits a paradigm profile. This divided component-
based architecture is common to all complex models encountered in the literature,
illustrated in Figure 2.1. Formally a model can be defined explicitly as a novel
6-tuple:

Theorem 1
M = {Pm
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where M is a model composed of n submodels, indexed by i, with respective
paradigm profiles; Pm

i is the overall paradigm description indexed over i submodels;
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[F,Q,C,S,E,D]mi is the paradigm where F , Q, C, S, E and D represent functional-
ity, numeric content, continuity, stochasticity, centrality and dimensionality respec-
tively; [ f ,q,c,s,e,d]mi is the paradigm type for the respective types4.

Definition 21 (Submodel). An unsaturated submodel is any model component that
can be considered a model in its own right as per Definition 16 and that can clearly
define each of the six paradigms without mixture (singleton membership) to form a
paradigm profile (i.e. the submodel is unsaturated in all paradigms). If the submodel
is found to exhibit multiple membership in any one or more paradigms as listed
above the submodel is termed saturated. From hereon, for clarity, the prefix sub is
dropped in the main text unless the context is unclear.

The ultimate challenge in formulating model integration strategies from this per-
spective is finding a solution, within a single formal framework, for integrating
models that exhibit very different paradigm profiles. For example, how can one in-
tegrate stochastic and non-stochastic models? The explication of these paradigms is
aimed at capturing the most elementary nature of mathematical and computational
models, thereby revealing the difficulty of model integration due to paradigmatic
differences. If model integration can be understood to be a type of communicative
ability between running models differences in paradigm imply the implementation
of a translational tool5, e.g. implementation of a (de)fuzzification algorithm to quan-
tify qualitative models. For any two models, a and b, where ∀a∧ b : Xa

j = Xb
k , and

where j and k index submodels that are to be integrated, model integration with re-
spect to paradigms is trivial (excluding the complexities of focus, scope and scale,
which are explained later) since paradigms are identical and no translation as such
needs to be implemented.

4.2.1.2 Model Focus, Scope and Assumptions

Definition 22 (Model Focus). The artificial partition of a system and its associ-
ated observable behaviour such that this partition represents subsystem(s) and be-
haviour(s) of interest and is accordingly the subject of the model. Note that this
definition is the abstract equivalent of component (Definition 5) with the extension
of including associated behaviour.

Definition 23 (Subsystem). A system that is entirely or at least in part encapsulated
by a larger system and its behaviour is subject to itself and its environment [18,197].
In effect a subsystem is a system in its own right; biological entities are made up
of many such subsystems, which can be thought of as the real-world equivalent of
submodel (the entire CS being equated to a complete model).

4 Superscripts are used to distinguish symbols from other formalisations in following
sections.

5 As will be explained in following sections, model integration need not solely take the form
of this type of chaining.
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Fig. 4.2 An entity relationship diagram of model anatomy. A submodel consists of a single
paradigm profile. In practice a submodel might not be decomposable as such (e.g. a complex
black-box), however conceptually a model can be recursively broken down into functional
components. Such submodels almost always ascribe focus and scope and in the preliminary
stages (especially so for DE models) are formulated in general forms, which then need to be
solved. In the case of DE models, for example, parameters are not instantiated until some
solver (curve fitting, integration calculus) can be applied to derive an instantiated version.
Hence there is a notion of a model class.

Fig. 4.3 A model class, or a number of classes, is usually packaged into a functional and
accessible component. This could represent a solver container, e.g. an ODE package that
can read and interpret an equation and solve given inputs, or a dedicated software package.
The interface, i.e. the mechanism of communication and interaction, for this package may
not be generic or even fully functional in practice, however it forms a critical part of how
the model can be integrated with another. Indeed this interface is key to existing model in-
tegration strategies, as will be explained later in the chapter. One can see where the model
integration types outlined above fit in this view of model anatomy: instantiated, or live mod-
els, can communicate their state or be interrogated via the interface(s) in what can be termed
integrative communication; the uninstantiated form cannot be interrogated or communicated
with in the same way - it is not solved - but, as a schematic, can itself be communicated to
importing applications via a lingua franca, i.e. isolative communication. Decomposite com-
munication should be more finely-grained in that it takes the submodels of different models
and allows them to communicate under a single framework.

Chapter 2 identified four overarching modelling foci that are prevalent in the cancer
modelling literature, namely growth, response, pathway and angiogenesis models.
Whilst it is clear that complex systems can be partitioned into subsystems, system
variables and behaviours to reduce the complexity of the modelling procedure, the
literature is unclear as to how a model would actually communicate its focus to
other models. This is critical from a model integration perspective. An integration
must take place in the context of focus, otherwise it is unclear what the integration
is actually achieving, i.e. how the integrated model relates to the actual system of
interest.
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Communication of focal, i.e. subsystem and behavioural, information can be un-
derstood to be a metadata problem and as such is coupled to model exchange and
communication languages when model integration is considered isolative and inte-
grative as per Definition 17. It is even more difficult to describe focus in the de-
composite case since its specific solution is highly dependant on focus. Indeed the
precise description of focus is essential in identifying interactors. Essentially this
challenge can be distilled down to model semantics that includes information about
how a model relates to the real-world - in fact focus amounts to an in silico de-
scription of what a model represents in the real-world. The interrelation between
foci yields a definition of how subsystems themselves integrate together in reality
(or how they are believed to be integrated) and therefore, when applied to CS, fo-
cus correspondingly becomes complex. Obviously all of these points would play an
important role in any formalisation of model integration.

Concisely, the challenges raised are:

1. How focus is communicated to a model integration environment or modeller:
if any communication mechanism, such as an exchange language, is to com-
municate model semantics between modelling and/or simulation environments
then a formalisation of focus is required to support model longevity, reuse and
extension.

2. How focus is interpreted and processed by the integration framework: Tradi-
tionally a model focus is implicitly given within the model equations or rules
(depending on formalism) and/or explained in plain text. Model integration envi-
ronments and modellers need to interpret focus so that integration can take place
within the context of the real system, i.e. integration of models is reflective of
integration of subsystems in the real system. Therefore, to ensure the validity of
any integration, the integration environment would require a computable form
of focus.

Focus is one of the first considerations when formulating a model. Secondarily the
limit within which the model is built to operate is hereon referred to as model scope.
This reduces to boundary conditions on the state space and therefore also defines
all allowable values for variables. This incorporates model assumptions, explained
below as limitations on how the model relates to reality. Within assumptions one
can identify model context, which delimits model use given defined situations. The
semantics of model scope can be very complex, even for simple models, and hence
it is very difficult to formalise it, which is probably why scope-related concepts are
generally written in natural language and rarely tackled formally.

Definition 24 (Model Scope). The operational limits of the model imposed by as-
sumptions and context.

Definition 25 (Model Assumption). The role of an assumption can abstractly be
interpreted as a proposition that is made with the expectation that it will be dis-
charged later6. Given in a modelling perspective an assumption, (set of) ς , can then

6 http://en.wikipedia.org/wiki/Assumption
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be defined as a proposition(s) relating to paradigm (e.g. assuming a system is dis-
crete), focus (i.e. what the model abstracts as well as the actual system itself) and
context (enforced restrictions) that is taken to be true pending such a time when
the model can be revised so as to discharge the said proposition(s). Note that not
all assumptions are dischargeable - most notably the ones that are related to model
formalism, i.e. paradigm.

Definition 26 (Model Context). The operational limits of the model imposed by
the real-world information with which the model is parameterised [69]. This in-
cludes the limits placed by model validations.

Scope, in conjunction with focus, covers what modellers frequently term the appli-
cation of Occams Razor, i.e. simplification of the system to make the problem more
tractable, but this can be abstracted further as follows. Let ϑ represent subsystems,
sub/system components and sub/system states:

• Assumptions on focus (ex/inclusion of ϑ of interest): ςφ

– Explicit inclusion of focus: ϑ whose behaviour is included in the model ex-
plicitly in the form of variables, constants and expressions.

– Explicit exclusion of focus: ϑ whose behaviour is explicitly excluded from the
model; usually this is written in plain text or worked into a solver.

– Implicit inclusion (encapsulation) of focus: ϑ that are represented in the model
are implicitly included to encompass finer-grained behaviours and ϑ . This is
equivalent to simplifications of ϑ , e.g. phenomenological models that implic-
itly include finer-grained dynamics.

• Assumptions due to paradigm: ςP

– Functionality, Numeric Content and Continuity: These three paradigms of-
ten embody simplifications that can be reduced to the other assumption ab-
stractions that are listed here. Functional simulations (the solved form of non-
functional construct) stack additional assumptions on the original model by
extending or limiting scope. Non-functional models often explicitly exclude
focus whilst numerically heavy models tend to be more inclusive. Continuity
impacts assumptions on scope (see below). Discrete models are in fact very
often chosen for that precise reason, i.e. reduction of state space [205].

– Stochasticity: ϑ behaviour is condensed to obey probabilistic laws. This,
again, is a simplification of ϑ and is especially made when finer-grained ϑ
cannot be simulated due to intractability (e.g. molecular interactions in a large
system) or simply because the finer-grained dynamics are not known or cannot
be explained by available data.

– Centrality: Global behaviour of ϑ is explicitly formalised and mapped to de-
fined outputs. This can often be viewed as a type of black-boxing, which is a
parallel situation to that of simplification into a phenomenological model.

– Dimensionality: Spatial restrictions in relation to focus, i.e. spatial struc-
tures, are defined and are often simplistic abstractions of structures in the real
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system. Such structures, including the concept of time, can also be interpreted
as being properties of the solver in some cases.

• Model Scope (of which model assumptions are a subset): ςα

– Boundary Conditions: Definition of operational limitations of ϑ .
– Model Context: Atomically this can reduce to the definition of behaviour of

a particular ϑ (which can be approximated to a submodel) in specific condi-
tions.
· Variables and constants: Empirically deduced or estimated (and therefore

with associated belief) variables and constants are assumed into the model
and dictate behaviour in the same way submodels dictate behaviour of the
parental.

· Initial Conditions: The initial values with which the model has been run
and subsequently validated. Again, this could be solver-dependant.

Definition 27 (Black/Grey/White-box). In the case of modelling, simulations and
software systems a black-box can be defined as a functional component wherein
calculations and/or modifications are made due to an input, which produces a cor-
responding output; aside from this, no information whatsoever regarding the func-
tional component is exposed. Similarly, a grey- and white-box allow exposure of a
certain degree or all information respectively.

The challenges model scope raises with respect to model integration are:

1. How model scope is communicated, i.e. how is scope metadata encapsulated
within a model and how is that metadata extracted and communicated to other
models in a standardised fashion?

2. How model scope, specifically model assumptions, is processed.
3. How an integration platform reconciles differences in model scope.
4. When two models of different scope are to be integrated, how differing or con-

tradictory information is reconciled.

Definition 28 (Scope Processing, in model integration). The computational ad-
ministration by which an integration platform can expose the plausibility and ratio-
nality of specific model integrations on the basis of comparative scope.

The implication here is that a model integration platform must provide mechanisms
to interpret model scope and process them such that the integrated model does not
violate either of these concepts. Concurrently, as with model focus, it is necessary
that the appropriate communication mechanism can express these constructs in a
formal manner.

4.2.1.3 Model Scale

Biological systems operate on a massive scale difference from molecular through
to whole-individual dynamics, both temporally and spatially. Modelling at different
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granularities gives rise to the concept of so-called phenomenological and mechanis-
tic models as described earlier. Models therefore inherently assume a range on the
model focus, where range can be defined as a collection of predefined connected
foci that span temporal and spatial scales. Herein lies one of the most difficult chal-
lenges for model integration strategies. The ultimate challenge is one of tractability:
How does a model integration platform integrate models of vastly different scale
without incurring a virtually impossible computational cost?

In terms of simulations the multiscale challenge is a universal one that can be
found in fields as diverse as the materials sciences [94], environmental sciences
[153] and geophysical sciences [96]. Of course the simplest solution is a brute-force
approach where the workload of small-scale models is disseminated in a distributed
computing environment. However, as illustrated in Chapter 2 by complex small-
scale models, even this approach has its limitations when the chosen mesoscopic
scale is comparatively large. So-called model abstraction methods (not to be con-
fused with the abstraction of models described earlier) are the most direct solutions
to the multiscale problem where the simulations are manipulated to procure faster
output without invalidating the model. The objective is to reduce the complexity of
the model by re-conceptualisation [71]. Often this means that sets of functional sub-
modules are amalgamated into a simple black-box that approximates the original
sets behaviour. Alternatively whole functional modules may well be deleted from
the system altogether to reduce load. Of course increasing efficiency by this process
comes at the expense of accuracy and mechanistic insight.

Model abstraction has evolved into a relatively recent technique called metamod-
elling7 [155] where, essentially, the same principles hold but more formalisation is
brought to building models of models (hence the name). Generally a set of equa-
tions is sought that transform the inputs to outputs in an efficient calculation. With
highly nonlinear systems this is often a difficult task to accomplish, especially when
considered in the context of biological complexity where the number of interacting
components is enormous and a small number of components, e.g. a small number
of gene-regulatory protein molecules, can have a substantial effect on behaviour.

Formally a simulation program or model can be simply expressed as:

z = f (x,r) (4.3)

where: x and z represent vectors of inputs and outputs respectively; r is a data (or
random number, for stochastic models) stream to drive the simulation; f is the sim-
ulation function or model.

Given the above, a metamodel can be expressed as:

z = fs(X,q)+ ξ (4.4)

7 This term is also used for other concepts in systems biology. In this book the term meta-
modelling will only apply to the multiscale solution version of the term unless otherwise
stated.
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where: fs is a vector of simpler transformation functions whose forms are gener-
ally unknown; X is the vector of independent variables, e.g. time, and explanatory
variables as defined in x; q is a vector of new and/or stochastic variables, treated as
abstract explanatory variables, that is yet to be determined; ξ is an error function
imposed by simplification and should be equivalent to fs − f .

Since there are so many unknowns various forms of evolutionary algorithms and
statistical methods have been prevalent in this area of research. The form of fs is
often chosen to be some spline, surface response methodology, radial basis func-
tion, Cartesian-like correlation model or lookup table [22]. Metamodelling at this
stage becomes a case of optimisation and curve-fitting. Essentially, if successful, a
metamodel simply presents as a phenomenological model.

With the introduction of variables that do not relate directly to the system, q,
it has been shown that metamodelling can reduce model complexity and increase
simulation efficiency with a satisfactorily small error and has already been tried and
tested in fields such as the environmental sciences [103]. However it must be said
that none of these applications have tackled natural complexity in any convincing
manner. In fact, to the best of the authors knowledge, model abstraction has never
been successfully applied to any biological system in any serious way. A strong
reason for this simply comes down to accuracy and efficacy. Indeed, Hetherington
(2006) [85] confirm that simplifications in this manner with respect to liver systems
modelling can potentially lead to quite erroneous output and therefore verification
techniques such as sensitivity analysis is key in the validation process.

Another interesting concept that shows promise in the multiscale simulation
problem is periodic simulation averaging. Patch Dynamics (PD) was first devel-
oped by Kevrekidis (2003) [102] and bridges the scale gap by averaging the effects
of pulsed simulation runs and interpolating between pulses (or patches). Note that
PD is another form metamodelling, i.e. a less intensive model has replaced a more
complex one by way of interpolation.

Cross-scale modelling has been a subject of research for some time in systems
biology, although it must be said that all too often integration of molecular data,
e.g. microarray experimental output, with macroscale models have been labelled as
multiscale models. Whilst such modelling efforts no doubt have their place, in the
opinion of the author such labelling is a misnomer.

The momentum with respect to tumour modelling has been relatively gradual.
Zhang (2007) [207] investigate the macroscale effects of a molecular-based cellular
decision mechanism, which gives rise to a migration/proliferation phenotype, with
an ABM formalism. With simple expressions for a whole range of stimulatory and
inhibitory factors, e.g. TGF, nutrients levels (including diffusion terms) and space
constraints, which are parameterised from experimental data the group achieve a
good resolution of behavioural dynamics. Fundamentally it is a bottom-up simula-
tion that bridges molecular/cell scales with application of state dynamics to lattice
sites, i.e. instead of modelling individual molecular dynamics the behaviour is mod-
elled with simple state-changing rules that simulate molecules en masse.
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4.3 Model Integration: Previous Work

In the above sections the fundamental nature of models in the tumour modelling and
systems biology literature has been discussed to show the challenge model integra-
tion really presents. Previous attempts at addressing the problem have been met with
varying degrees of success. These attempts will be discussed before an alternative
and novel solution is presented.

4.3.1 Model Integration in Management and Environmental
Sciences

Model Management Systems (MMS) and Integrated Modelling Environments (IME)
were seen as extensions to database management technology (DBMS)8, and per-
ceived as modelling parallels to the data integration problem [62]. MMS applica-
tions were required to enable the modeller to build up models from smaller compo-
nents in the same way DBMS performed data joins.

Definition 29 (Model Integration). (Corollary to Definition 17) A protocol that
outlines how mathematical or computational components, being functional systems
in their own right, are structured coherently together by a formal criterion to build a
more representative model of the focus system.

Some of the most well developed fields in this regard are operations research and
management sciences (OR/MS) and decision support systems (DSS). In his seminal
paper on integrated systems modelling and a further two publications a year later
Arthur Geoffrion outlined, to the best of the authors knowledge, the first formal the-
ory of model integration, called Structured Modelling (SM) [78, 79, 80]. Although
targeted at OR/MS in particular, and more focused on schema-like integration, the
theory of models and graph visualisation of components are to some extent trans-
ferable. Uptake had initially been slow but recently SM has received at least some
renewed attention from outside the OR/MS community, e.g. the environmental sci-
ences [118].

The formal SM theory consists of 28 definitions, pertaining to formalised compo-
nents of models and components that emerge from integrations, and 8 propositions,
pertaining to properties and rules of the said definitions, to establish a semantic
depiction of a model on three descriptive levels (elemental, generic and modular),
which is summarised in Figure 4.4. SM is based on graph theory and therefore cap-
tures mathematical modelling by means of components (nodes) interacting (arcs)
with each other. Nodes typically either represent entry points for other graphs or a
possible link to an alternate model and graphs are further associated with a calling
sequence. Model integration thus becomes a task of identification of synonymous
nodes between graphs, or possible intermediate-node conversions, and determina-
tion of subgraphs that subsequently become obsolete.

8 For a good review of the parallels between MMS and DBMS the reader is referred to [179].
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Geoffrion identifies four types of model integration, corresponding to four clas-
sifications of model entities:

• Model Consolidation or Aggregation (integration of model instances)
• Model Class integration
• Model Paradigm Integration
• Model Tradition Integration

A model class is synonymous with the abstraction made earlier wherein a model
can exist in an unsolved form. Correspondingly the solved form is defined as a
model instantiation, where the constants and variables (except for parametric and
dependant variables) are specifically instantiated. The concepts of class and instan-
tiation here have been imported from Object Oriented Programming (OOP). Model
paradigms in SM are defined as being a collection of similar model classes, e.g.
exponential growth models, and model traditions are defined to be a collection of
model paradigms that tend to be associated with one another in a particular field
of research. As would be expected, the integration process becomes progressively
more difficult as one proceeds through these layers of abstraction listed above.

Fig. 4.4 In the SM paradigm structured models can be decomposed into elemental structures.
This includes O/P/SDE models. There are 5 basic elements: primitive, compound, attribute,
function and test (see [79] for full explanations). Elements can be connected by relation via
the calling sequence, which is the sequence of calculations given inputs, and may well require
custom-made glues (grey box) or translational elements for each integration. This yields an
acyclic graph model. Critically, these individual elements in the IME must correspond to
some ontology. An intelligent IME can then begin to integrate given models by relation.
Once these elements have been defined, it is possible to view the model in three conceptual
levels of abstraction: elemental, generic and modular (progressively through these layers of
abstraction the model graph becomes simpler as nodes are collectively grouped).
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Note that the input/output connectivity of the graph conforms to the original ab-
stract definition of model integration since all four integration types listed above can
clearly be classified as either isolative or communicative integrations. In fact SM
represents a linear integration strategy, which is the most prominent form of model
integration found in the literature. Though the definitions of model integration as
listed above are useful as a rudimentary classification a cross-paradigm, focus and
scale integration is not forthcoming from the SM strategy. Indeed all subsequently
published papers on SM use, most notably restricted to the fields of management
and environmental sciences [37,62,117,118,148], fail to show SM as an integration
framework that can tackle anything more complex than linear systems. Although
SM can produce complicated mathematical models a formal theory of model inte-
gration with respect to complex, i.e. non-linear, systems remains as yet underdevel-
oped [107].

Dolk (1993) [64] identifies further integration types:

• Schema
• Solver
• Environments and modelling systems (i.e. model/simulation software)

Schema, and indeed data, integration are problems that have been extensively re-
searched by the database community and is still ongoing. The fact that solver inte-
gration has received some attention in the literature is actually very revealing. Most
of this research was conducted when affordable computing and accompanying soft-
ware was only just emerging and procedural thinking was prevalent over modular
OOP-like design. Therefore software packages that performed specific model exe-
cutions came integrated with custom-made solvers that were quite inseparable from
the original application. Good software design in OOP nowadays allows one to logi-
cally separate components, i.e. solver from model, so that a more appropriate solver
can be used for the integrated model.

IME systems take solver integration further, treating them as modelling or simu-
lation engines that can be used interchangeably within a single or multiple models,
but not necessarily at the same time [72]. Abstracting away from these practical
issues, solvers can be further defined as algorithms that address the solution of a
particular model class (defined as in SM). The third point above, integration of mod-
elling systems, will be discussed shortly in terms of software integration. Again,
note that all these integration types, as with SM, can be classified neatly into the
earlier definitions of isolative or integrative communication.

Mathematical modelling and simulations have a played a crucial role in the en-
vironmental and ecological sciences especially due to strong public, political and
economic interests in climate change and as such notable attempts have been made
at model integration. Argent (2004) reviews the impact of MMS in the environ-
mental sciences in great detail and outlines a number of desirable features that are
conducive to model integration, which amongst others include a framework that
supports component-based model building, automated service discovery, a well-
developed, intuitive GUI and a rich execution (i.e. solver) library. Metadata that
should be encapsulated with model subcomponents, as it addresses the fundamental
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problem of semantic compatibility of models as well as the technical aspect (such
metadata could, for example, include information about model focus and scope). As
a result of this research a number of IME systems have been developed specifically
for the environmental sciences, one of the most recent being COINS [153]. The
COINS methodology is quite invasive: a model or simulation is considered to be a
package of code and with an appropriate translation layer between the integration
platform and all other models and simulations COINS attempts to logically sepa-
rate mathematical equations from the running code to produce a more compact and
efficient single package. Of course such a platform requires an appreciable amount
of human guidance since complex packages may well be impossible to integrate by
this methodology.

Similarly Villa (2000) [188] propose a model integration solution based on a
server/client architecture where control of simulations and independent models are
distributed over a number of machines and coordination is handled by a common
simulation interface via a shared language (communicative integration in Definition
17). Because a common interface and language is used the integration solution is
screened from model implementation and formalism (i.e. how the model is being run
or solved in its original programming language and therefore this can be considered
a kind of cross-paradigm integration). The core of the model integration problem
then becomes one of generating bindings for every desired integration.

Environmental sciences model integration strategies therefore essentially reduce
to a software integration problem [58, 187]. In this respect a number of solutions to
model integration exist that vary in depth and automation. Multi-Simulation Inter-
face (MSI) is an open-source middleware for simulation communication (i.e. inte-
gration by synchronisation) and even message passing interface (MPI) standards can
be regarded as an integrating principle in this respect. Taking examples from sys-
tems biology, SBW is a service-oriented architecture (SOA) in which multiple ap-
plications can communicate and coordinate service requests. CellML and SBML are
established model exchange languages in systems biology, something that OR/MS
lacks, and provide a pipeline for communicative integration between live software
components.

4.3.2 Model Integration in Systems Biology

The Physiome and Integrative Biology projects, described in the previous chapter,
and various other in silico biology efforts, have yielded some encouraging results
with respect to model integration technologies. One of the challenges stated ear-
lier was that of model representation, which still poses a hindrance in fields such
as OR/MS. Fortunately the systems biology community has been eager to accept
formalisations, as seen with the success of SBML and CellML9. Although SBML

9 The CellML repository, http://www.cellml.org/examples/repository/, contains over 200
models and a number of SBML repositories, including EBIs BioModel, have been
developed.



4.3 Model Integration: Previous Work 75

can theoretically be used as a generalised exchange language it has been primar-
ily used as a representational language for pathways along with other formalisms
such as BioPAX [173], whereas use of CellML has been more macro-systems ori-
ented. CellML addresses some of the communication problems listed in previously:
model semantics in the form of RDF10 and mathematical components in the form
of MathML11 can be incorporated within it to describe mathematical relationships
between variables [114]. However the mathematical capability is thus restricted to
the MathML standard, which does not clearly delineate a definitional representa-
tion for many methodologies such as ABMs, CA, neural networks, etc., though the
creators are acutely aware of that deficiency and are working towards addressing
it (Poul Nielsen, University of Auckland, personal correspondence). It is however
well suited to representation of differential equation-based models. The hierarchi-
cal structure of CellML is modular so as to specifically expose components that are
essentially exchangeable or connectable and is thus very similar to the graph-based
SM methodology.

Finkelstein (2004) [69] take a similar approach in describing models that ad-
dresses the challenges described in this chapter. The nature of models is taken a step
further with a tentative delineation of an ontology of characteristics12. This ontology
provides the beginnings of a broad formal framework for model description embod-
ied by the development of Composite Model Description Language (CMDL) [121].
Crucially, the framework defines model integration consistency on the basis of con-
straints placed by assumptions, context, focus and interpretation. This will be dis-
cussed in more detail in Chapter 7.

Takahashi (2004) [177] provide a more mechanistic approach to model integra-
tion, packaged into a software bundle called E-Cell. A meta-algorithm for an inte-
grated model is generated by three components: a emphdata structure, which defines
informational organisation of a model; a driver algorithm, synonymous with SMs
calling sequence, defines interactions between submodules; a numerical integration
algorithm (if appropriate), which defines how state variables are updated (and as
the name suggests it is usually a differential equation solver). In the meta-model
algorithm mathematical models are defined as vectors of state variables and a set
of steppers are defined. Steppers further define processes, which can update vari-
able references via a transition function. Steppers additionally reference local and
global times steps, a step function and a vector of interruption methods, which can
interrupt step functions of other dependent steppers. A stepper is essentially a com-
putational subunit of a model; therefore an integrated model is ultimately defined as
a novel combination of dependant steppers akin to the graph structure of subcom-
ponents represented by CellML and SM. The models are executed in time-steps in
a discrete-event simulation. This implementation is elegant but falls short of some
important attributes that would define it as a framework for model integration. It is

10 Resource Description Framework, http://www.w3.org/RDF/
11 http://www.w3.org/Math/
12 The term aspect in this ontology is synonymous with the term focus in this text. Similarly

engine is synonymous with solver in this text. All other terms in the ontology are directly
mapped here.
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firstly not clear how models of different paradigms, except for discrete/continuous
models, can be integrated. Time and spatial scales are dealt with explicitly by a
brute-force method (i.e. merely increasing computational power), though some op-
timisations are possible. Importantly, the semantics imposed by model focus and
scope is not explicitly addressed.

4.4 Summary

The challenge of model integration is clearly defined by highlighting the diversity
of models. The origin of this diversity can be found in the differences in formalism,
i.e. model paradigm, the processes and behaviours that connect the model to reality
(focus) along with associated limitations (scope, context) and complex assumption
semantics. Moreover models operate on a wide range of spatial and temporal scales.

The state of the art in terms of model integration is embodied by linear strate-
gies in which the outputs of one model are fed as inputs into another. Structured
modelling goes further to classify nodes of the chaining graph so as to encourage
model growth by providing, for example, translational functions. In effect current
techniques in systems biology attempt to do the very same, however it is apparent
that there are at least two views of model integration in this regard - isolative and
integrative communications - i.e. models are either communicated by description
languages such as SBML or models are run (solved) with states communicated by a
middleware component.

4.5 Conclusion

Model paradigm can be described as a novel 6-tuple. The definitions of focus and
explication of scope, context and scale yield an indication of how difficult a model
integration exercise can become when these semantics vary from model to model.
The implication is that the model integration strategy sought in this project will need
to tackle these challenges completely. A decomposite form of model integration is
therefore described in the next chapter.



Chapter 5
Novel Strategies for Integrating Models into
Systems-Level Simulations

Abstract. In this chapter the motivation and need for model integration in the cancer
systems biology field is explained. We seek to re-formalise linear integration (in
contrast to previous formalisations in the literature) to give a context to the novel
model integration strategy developed in this project. A novel agent-based model
integration strategy, which strives to solve the cross-paradigm integration challenge,
is formalised. Furthermore, a novel knowledge-based approach, which strives to
solve the cross-focus, scope and context challenges, is formalised.

5.1 Motivation

Cancer has been dissected from molecular components to clinical phenomenology
and so there exists a wealth of data to support the development of understanding
of the system at a broad range of levels. Though this has provided the impetus to
develop more intricate and complex models in virtually all aspects of the disease
there remains a need to produce simulations that provide tangible clinical value, i.e.
models that can actually be used as regular components of clinical practice [93,185].
There are many models that can predict various subsystem behaviours, or individ-
ual processes such as signalling networks, but there is a lack of models that can
accurately predict tumour behaviour as a whole system. Crucially, whilst in the past
biologists have focussed on reductionist views of biological systems, though sub-
modules of the system are inextricably connected, a paradigm shift is occurring
such that component interactions on the microscopic scale within the context of the
entire system are becoming the focus. This shift provides the impetus for genera-
tion of technologies wherein mathematical and computational models of submodule
behaviour and properties are aggregated to function collectively, i.e. model inte-
gration. The following points outline why an integrative approach to constructing
whole-system models is useful, indeed critical, to cancer systems biology:

1. Whilst a subsystem model can predict the behaviour of its respective focus there
is currently no standard formalisation that defines how such models can be inte-
grated aside from linear integration efforts (discussed shortly).
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2. A cross-paradigm, cross-scale integrative approach could yield models that com-
bine the strengths of the individual parts, e.g. Stephanou (2005) [170] illustrate a
custom algorithm that combines the expressive power of an ODE model describ-
ing diffusion of TAF and fibronectin uptake with the autonomic advantages of an
individual-based model describing EC movement.

3. A cross-focus integrative approach will yield a far more representative model of
the system, which is needed to gain a better understanding of the system as a
whole, rather than depending solely on a reductive understanding.

4. Whilst models have traditionally been built on the wealth of empirical data avail-
able, a more representative cross-focus model will present the opportunity to
discover new mechanisms in silico, i.e. reverse engineering.

5. In the wider scope, validated integrated models could provide the predictive
power needed to eliminate, or at the very least assist, the preliminary steps of
the research cycle.

a. From a pharmaceutical perspective this means that preliminary experimen-
tation that cost time and resources can be substituted or assisted, saving on
such costs. The overwhelming advantage in this respect is the opportunity to
accurately predict, and indeed discover, possible drug targets and dosimetry
strategies and could even move therapy closer to individualised medicine.

b. From a research perspective this affords the opportunity to test theoretical
models of mechanisms. Such in silico experimentation will aid in advancing
the understanding of the system.

c. The tumour system is particularly difficult to observe in situ, i.e. in the clin-
ical case, hence much of the data comes from alternate sources, e.g. in vitro
vascular tissue [120, 10]. It has been shown that mathematical models and
simulations can provide a substitute in this kind of situation [170]. An inte-
grative approach aims at establishing models that present such a substitute to
close the gap that technological constraints have imposed.

Moreover such an integrative approach is a universal requirement to virtual physiol-
ogy. These motivations by themselves justify a very in-depth look at the feasibility
of model integration technologies.

One can see from the arguments in previous sections that the first two types of
model integration outlined in Definition 17 are prevalent over the third in all fields
of modelling, which is not a surprising finding when considering the fact that in-
tegration has been tackled from a cross-paradigm, focus, scope and scale perspec-
tive to only a limited degree (this is also very much the case for systems biology).
Isolative integration does not require one to be concerned about cross-scale or any
other solver/running-related problems since an exchange language defers this duty
to the software that will be performing specific integrations; an exchange language
does, however, need to be syntactically rich enough to cope with diversity of model
types and the complexity of focus and scope. Similarly integrative communication
strategies require a translational tool between running models to cope with this com-
plexity and are therefore not particularly concerned with how individual models are
solved; however, cross-scale problems become a pertinent issue and the integration
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platform must provide a specific mechanism to cope with this as well as focus and
scope.

Any integration scheme needs to be able to address the challenges and questions
stated previously. With respect to the three forms of model integration given in Def-
inition 17, isolative communication is tantamount to a lingua franca and to a large
extent CellML, SBML and CMDL suitably cover this and so this type of integration
will not be addressed directly in this project. Similarly integrative communication
takes model integration into a more middleware development setting and has been
suitably tackled by software infrastructures such as SBW.

A decomposite model integration strategy strives to take a truly mechanistic
stance on model integration wherein all of the challenges must be tackled directly.
The following sections detail a novel formalism called Agent-Based Integration
(ABI), which embodies such a strategy. Firstly the linear integration strategy, which
forms a major component of most if not all current model integration techniques, is
reformalised from previous efforts to provide a clear context to ABI. Both the linear
and ABI formalisms will be augmented with a novel view of focus and scope that ad-
dresses these challenges directly. Associated software engineering, validations and
simulations are described in subsequent chapters.

5.2 Novel Model Integration Formalisations

5.2.1 Linear Integration Strategy

Following an analysis of the existing integration technologies, especially those of
SM and CellML/E-Cell approaches, it becomes apparent that there is a common
integration feature between them. It can be shown that all models are composed of
smaller components that are interrelated by a calling sequence. Formally:

Theorem 2
Mφ : {m,c} (5.1)

mk = fk(x) (5.2)

φ ∈ Φ (5.3)

where Mφ is a model with focus φ ; m is a set of n submodels indexed as k. Impor-
tantly, submodels also describe subfoci, which is encapsulated by φ ; c is a calling
sequence on the submodels; when fk(x) represents a non-functional component, c
becomes redundant; x is a vector1 of v dependant and non-dependant variables and
constants in M; fk(x) is a function of x yielding an output vector z. Any f (x) need
not incorporate x entirely; Φ is an (as yet) ambiguous superset defining all foci;

This expression means that model integration as discussed so far reduces to a lin-
ear integration solution where inputs from one functional unit are provided by the

1 A vector is hereafter treated as an ordered set when appropriate in subsequent explanations.
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outputs of another, which can be represented simply as a directed graph, the arcs of
which denote the calling sequence. Note that the calling sequence need not be serial.
In fact for complex integrations the implementation will almost certainly be parallel,
e.g. see [121]). It is likely that such complex integrations, especially those that cross
large spatial and/or temporal scales, would be run on clusters of computers amongst
which whole sections of the calling sequence has been divided - linear integration
readily lends itself to this type of parallelisation. This is the mathematical counter-
part to software integration, which is the traditional solution to model integration
and remains to be so. Indeed looking to SOAs such as SBW, Mφ can be compared to
services that are chained together. Essentially the solution to the model integration
problem has distilled to one of communication between services. The applicabil-
ity of this integration has already proved to be computationally efficient [63] and
black-boxing of components in this way is conceptually very simple.

Linear integration is a partitioning of components in Φ , and subsequent recon-
nection, such that the integrated model minimises an error function ξ , which has the
relation:

Theorem 3
Mφ ± ξM 	→ ψ (5.4)

where ψ represents the real system of interest. M therefore represents an abstraction
of the real system given a defined certainty or belief as per Definition 16. For clarity
the error function will be left out in subsequent expressions.

The goal of model integration is to achieve better in silico representations of the
real system:

Theorem 4
Ξ : {MΦ ,C} (5.5)

where Ξ is a fully integrated model defined by the supersets MΦ and C; MΦ is
the superset of all subcomponents connected by C; C is the superset of all calling
sequences on MΦ ;

And ideally:

Theorem 5
φ → Φ : ξM → 0 (5.6)

Ξ 	→ ψ (5.7)

Ξ represents a model that can perfectly predict the dynamics of the real system.
Clearly this is not a practical formulation. Even if the said supersets are known
the underlying assumption is that the original models can be decomposed into
functional components and the integration of all calling sequences can connect
these subcomponents together. Whilst algebraic formulae, e.g. O/PDE, may well
be decomposable in this fashion, it is not entirely clear how other formalisms such
as CA can be decomposed. Effectively linear integration does not fully address
cross-paradigm integration. Moreover the integration is constrained by the number
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of connectable components. Though functional units can phenomenologically and
efficiently represent microscale models, multiscale integration is not specifically
addressed.

5.2.2 Agent-Based Integration

The specific requirement in tumour systems modelling is a model integration strat-
egy that does not restrict paradigm use and is able to perform cross-paradigm and
cross-scale integrations without violating the semantics of focus and scope. Addi-
tionally an ideal solution will be able to map integrations into a visualisation, such as
a 3D simulation visualisation, since analysis from a biologists perspective is not just
numerical but also very much visual. Such information can greatly aid the research
process. A 3D visualisation provides a real-world perspective of what the model
represents and predicts and therefore renders the user with a greater understanding
of the results. The Agent-Based Integration (ABI) strategy, along with other mech-
anisms described here, is designed to address these needs.

Definition 30 (Computational Common Ground, for models). A mutual shared
policy under which models can communicate. Isolative and integrative communica-
tion strategies use the communicative language, e.g. CellML or MPI, as a common
ground for models.

Thus far model integration strategies have tackled the integration problem by di-
rectly, and sometimes intrusively, interacting with various components to achieve
some level of assimilation under a formalised framework. In particular, the ex-
tent to which linear integration can be performed is largely dependant on the
model paradigm, i.e. whether the model can be compartmentalised and subsequently
linked. Here it is argued that it is not the model as much as what it represents and its
behaviour that is important and therefore integration should take place on this level.
Whilst in OR/MS, where the nature of modelling is sequential and to which linear
integration is very much suited, the cancer systems biology field presents models
that represent processes that run in parallel. In such a situation where paradigms can
be very different one must look beyond integration at the level of paradigms. Since
it is the behaviour of the models that is ultimately of value, at least in the case of
cancer research, a model integration strategy could instead look to using behaviour
as the subject of integration. Before one can do this a common ground must be es-
tablished, i.e. a formalism in which all models can interact regardless of paradigm,
focus and scope to which models can be decomposed. Zeigler (1993) [205] in his
DEVS application endorses such decompositions when models can be converted
through some standardised translation to alternate formalisms that can be interro-
gated in a discrete event simulation. However such a method presupposes that such
a translation is possible and there is a potentially substantial loss of information
when many such translations are chained together. Instead the ABI strategy takes
the common ground to the level of an in silico metaphor of the system in the form
an ABS. Individuals within an ABS can reflectively exist as their real-world coun-
terparts where the common ground is defined as their interactions. To clarify, it is
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proposed here that individual models can superimpose their behaviour in the form
of local interactions onto a single ABS simulation such that the ABS coherently
expresses the combined behaviour of the original models. Note that such a superim-
position breaks the barrier of paradigms and distils it to a discrete space-time set-
ting in addition to dealing with focus intrinsically (in the form of interactors). This
method will be explained in detail below. Also note that linear integration cannot
offer such a common ground that is blind to the nature of the model whilst sensitive
to its behaviour.

Individual-based systems provide an excellent computational and controllable
metaphor for the real system to which other formalisms can be made to adapt to
make this grounding possible. Abstractly:

Theorem 6
Λ : {A,RA,S} (5.8)

ΞA 	→ ψ (5.9)

where Λ is a local interaction-based system (e.g. ABM, CA or a hybrid); A is the set
of all local interactors, e.g. agents or CA cells, and does not have to be static; RA is
the set of all rules on A, where α ∈ A and r ⊆ R and r is an ordered set on α , hereon
denoted as rα ; S is the superset of all states (in/finite, discrete/continuous) and state
transition functions hold. ΞA is the integrated model as represented by Λ .

Λ can be considered a suitable grounding for another mathematical or computa-
tional model MΦ under formalism/paradigm λ , assuming Λ simulation behavioural
dynamics is considered over discrete time (τ ∈ t), if and only if the following is
computationally viable:

1. Theorem 7
∀τ ∈ t : Mφ ,x

υ→ Λτ (5.10)

a. Within an acceptable predefined bound of error ∀τ .
b. υ is a translational mapping function from Mφ to Λ and is ideally symmetric.

2. Theorem 8
∀τ ∈ t : λ′tau

Y→ Λτ (5.11)

a. Y is a (set of) translational mapping functions to map λ to Λ and is ideally
symmetric.

h is defined as the mapping function that enables Formalisation 7, and more gener-
ally Formalisation 2, where:

Theorem 9
At+δ =

(
∀si ∈ S : si,t

ri→ si,t+δ 	→ Λt+δ

)
(5.12)

Mφ ,t+δ = ∀mk ∈ M : xt
∂ fk(x)→ xt+δ (5.13)
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(Λt+δ ∧Mφ ,t+δ ) 	→ ψt+δ (5.14)

∂ f global
k (x) ≡ Rlocal

t+δ (S) (5.15)

Mφ ,t+δ
h→ At+δ (5.16)

This means that every incremental change in interactors with respect to state changes
(including spatial orientation), indexed as i above, is due to the rules associated with
the interactors, as per the definition of individual-based systems, and that this change
in state(s) contributes collectively to the overall behaviour of Λ (Formalisation 7).
Moreover, this state change must be reflective of the corresponding state changes
given by the original model Mφ and, more atomically, the submodels that are in-
cluded in the integration (Formalisation 2). Note that essentially this formalism is a
discrete solution. Physically this is but a natural implication since all agents within
the real system, e.g. biological cells, molecules, etc., are indeed discrete, though
discretisation need not be absolute (e.g. molecules can still be measured as volumes
or concentrations, which is stored simply as a state). Though time discretisation is
not an absolute necessity it does make the formalisation simpler. Additionally, dis-
crete simulations are known to be more efficient than continuous2 varieties since,
generally, they require less computation [182]. The global3 functions that Mφ de-
fines in discrete time (or continuous time as δ → 0) map ambiguously via h to
local interaction rules R, which in turn invoke state transitions. Indeed if Λ → ψ
and Mφ 	→ ψ (Formalisation 5.8iii), assuming the formal definition of Λ , then there
must be some Rlocal that satisfies the mapping, which is reflective of the original
system. To create grounding Λ then becomes a matter of finding h. Fundamentally
this formalisation is only legitimate if Mφ is indeed considered to be faithful to the
real-world system, i.e. it is validated. This assumption reduces the complexity of
dealing with contradictory dynamics contributed by different models, though this
issue is still resolvable to some extent (explained shortly).

Any formalism, i.e. any mathematical model or simulation that is to be integrated
within this framework, must be able to map at least approximately (i.e. within given
error bounds) in incremental time and space to Λ whether or not the original model
even includes the concepts of time or space. This in turn will inherently depend on
the formalism of λ , i.e. the model paradigm. The properties of these formalisations
with respect to (sub)model paradigms are summarised below.

Functionality: To the exclusion of those models that are specifically solvable by
some solver technology, e.g. an ODE that can be solved by the Euler method, in the
case of non-functional models ∂ f global

k becomes obsolete since there is no operation

2 In reality, however, computational representations of numbers are actually always discrete.
3 Note that though these functions are labelled global they need not necessarily be so if λ

happens to represent a local interaction system (or other mechanistic system) already, in
which case h represents a translation of rules (given spatial and temporal dimensions) from
the original system to the current framework.
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to execute that readily maps to Λ and therefore h = Ø. However non-functional
models do contain some information about the target system. For example, even a
simple hierarchical model of biological structures in the form a directed graph still
directly maps structural information about the system. Such information is indeed
translatable to Λ , if not to determine any R then at least to identify interactor types.
This kind of information is applicable to the knowledge-driven approach described
in the next section.

Numeric Content: Quantitative models obviously hold promise, assuming they are
functions, as there is likely to be some transformation function between inputs and
outputs by which h can be defined. Qualitative models would be more difficult,
especially if the purpose of the model is meant to be purely abstract. Otherwise
there may well be precedent for quantifying these models, e.g. application of fuzzy
membership functions [198].

Continuity: Assuming functionality and numeric content, a continuous model can
be considered a special case of discrete mathematics where δ → 0. A continuous
system should therefore have the capacity to be queried at distinct variable (e.g.
time) points. In the case of P/ODEs, for example, one can assume the solution given
boundary/initial conditions along a mesh (finite element method). In the decompos-
ite ABI form any intermediate values then would have to be determined by interpo-
lation if they are needed.

Stochasticity: This paradigm presents a greater difficulty than others with respect to
ABI. If stochasticity is considered mechanistically, i.e. on a fine scale, the degrees
of freedom can be intractably large. Predicting the form of local interactions from
inconsistent global behaviour presents another problem. The only way to narrow
the number of possible solutions is by constraining parameters through knowledge
of the system that does not come from the model directly. This could be achieved
by the knowledge-directed approach discussed shortly. When global behaviour is
consistent, i.e. in the deterministic case, h can be reliably tested iteratively and its
derivation reduces to that of the other paradigms.

Centrality: Assuming functionality and quantitative numeric content a centralised
method can be considered to model a defined focus at specific parametric instances,
e.g. neural network-based gene expressional diagnostic classifiers or therapy opti-
misation methods that define (sub)system states at specific time-points. Often cen-
tralised methods as such take instantiated global behaviour and map it to another,
sometimes more subtle, global behaviour or end-trajectory and therefore contain
very little information pertaining to mechanistic dynamics; one certainly would not
begin the integration process with a centralised model, but it may well be possible
to direct behaviour so that such a model is satisfied, e.g. attenuation of local rules so
that state dependencies become concordant according to a centralised model. The
derivation of h therefore requires far more knowledge than what the model readily
presents.

Dimensionality: One particular issue that must be addressed is whether any R ob-
tained from a model via h in an x-D setting is at all applicable to a y-D setting, where
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y represents the dimensionality of the target simulation Λ . The answer to that ques-
tion obviously depends on what R actually defines. When x > y the derivation of h is
conceivable without the need for other information. When y > x, however, alternate
sources of information may be needed to validate the integrated model. Derivations
of h in non-dimensional models reduce to paradigm cases listed above.

The derivation of h is not directly related to focus, scope and scale though there
are some considerations that have already been touched upon above. Firstly, the
focus of a model will define the specific interactors in Λ , whether they are abstract
or actual. This provides the basis on which models can be mapped to, i.e. where
Rlocal is applied. In relative terms this is of course associated with scale and how
Λ can be run efficiently. For example, to integrate a molecule-level model with a
tissue-level model could prove to be extremely difficult since the interactors are
defined on vastly different scales. Assumptions and scope impose themselves onto
the rules, which will be explained further in following sections where such model
semantics are incorporated into the interactors directly.

Clearly there is no generic or direct mathematical derivation for h, which is heav-
ily dependant on the paradigm. When no direct translation is feasible it seems that
an iterative process is necessary wherein local interaction rules are generated and
optimised by comparing the behaviours Λ to Mφ at each iterative step. Evolution-
ary techniques lend themselves to this approach in which an initial set of rules, Ri,
which represent educated guesses of the true rule set R, can be enriched. Genetic
algorithms (GA), pioneered by Holland (1975) [90], are a proven optimisation tech-
nology that has the ability to find global maxima/minima in large search spaces. In
fact GA have previously been applied to CA to optimise rules to achieve global be-
haviour [101]. Mitchell (1996) [127] investigate the feasibility of evolving two-state
2D automata to achieve specified global behaviour and report some success though
the sheer number of possible solutions, which exponentially increased as the size
of the CA and number of rules increased, admittedly exceeded even the capacity of
their GA implementation. This difficulty is well established in the literature how-
ever when the solution space is constrained by restricting rule numbers and forms,
neighbourhood radii and state magnitudes global behaviour optimisation is indeed
achievable. Colonna (1998) [48] demonstrate this by learning CA rules that simulate
coordinated social and vehicle movements although any CA learning on the level of
biological complexity, to the best of the authors knowledge, has not yet materialised
in the literature.

What is obvious from relating h to the paradigms listed above is that there is
an explicit need for some knowledge about focus (φ ), interactors (ι), and states
(S) to arrive at a solution as well as to limit on the number of plausible solutions.
Therefore an explicit knowledge-driven approach is now proposed, which not only
drives a search for a solution to h but simultaneously attempts to manage model
focus and scope problems that arise in model integration strategies.
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5.2.3 A Knowledge-Driven Approach (KDA) for Addressing
Model Focus and Scope

A framework in which focus can be expressed will greatly aid the modeller in both
understanding what models represent as well as how they should be integrated. Such
a method must be able to describe the relation between all foci as well as each
and every model focus itself. None of the model integration platforms described
earlier tackle focus directly even though it forms a fundamental part of the model.
In essence it is the connection the model has with reality and so development of a
method that can express Φ in a model integration strategy is highly desirable.

The ideal properties of such a method can be defined:

• High level of capture of the semantics of models (includes model focus, assump-
tions and scope).

• Direct and dynamic mapping of actual system components.

– The representation should fully reflect the original modellers knowledge of
the system, i.e. what is termed expert knowledge in the literature.

– The representation should be robust to change in or introduction of new
knowledge.

• High level of expression with a relatively simple representation to avoid error.

– Flexibility in what can actually be represented is vital as complex models of
complex systems will presumably go hand-in-hand with complex semantics.
Moreover these semantics may well incur human error when the (graphical or
exchange language) representation is difficult to understand or generate.

• Portability.

– Preferably the knowledge that Φ represents should be portable to alternate
applications, e.g. via some shared standard.

In this proof-of-concept the representation format4 itself is not as important as its
underlying theoretical basis; since focus has thus far been discussed in terms of
partitions of the system a set theoretic approach is taken here.

Given the current state of the tumour modelling literature Φ is evidently non-
existent and cannot be explicitly sought because of a lack of complete knowledge

4 There are a handful of techniques that can manage focus with the said requirements
such as semantic networks (SN) [122], sometimes called topic/concept maps in the lit-
erature, and ontologies realised as, for example, DAML-OIL (http://www.daml.org/) or
OWL (http://www.w3.org/TR/owl-features/) (and associated knowledge-base technolo-
gies). Even though the latter are technically designed for semantic web applications, they
provide a neat and well-defined, logical representational format and are widely accepted
ontological technologies albeit difficult to understand syntactically. On the other hand SN,
though far more versatile due to reduced formalisation, are not as portable via any widely
accepted format but are relatively easy to understand and build. Purely for simplicity and
versatility, as well as representing the modellers beliefs about the system, SN is the repre-
sentation of choice but for portability OWL is superior.
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(if indeed one can assume complete knowledge is even attainable). One of the major
reasons for this is technological limitations, i.e. many of the fine details of tumours
in vivo cannot be measured accurately. Moreover a realisation of Φ would ideally
require the agreement of a number of experts for a satisfactory level of accuracy as
well as acceptance by the fields wider community. To the best of the authors knowl-
edge no such organisation exists although the Integrative Biology Consortium has
recently addressed that very issue. Besides this the current situation and require-
ments suggest that realising Φ is therefore an unfeasible undertaking at present.

To make a solution to this challenge practical it is proposed that Φ be expressed
iteratively as ΦI , where ∀φ ∈ ΦI ⊂Φ . ΦI can be viewed as a theoretical partitioning
of the system based on individual expert (i.e. the user, modeller or panel) knowledge
given a set of individual models. Simply put, as one integrates a model into another
independent model (in the case of the first integration) or an existing integrated
model, ΦI iteratively develops (tending to Φ) and encapsulates all foci encountered
in an ongoing integration exercise.

For ease of expression it is noted that all complex models inherently contain
submodels and so the sub is dropped here and any reference to model can be taken
to be equally applicable to submodels in all formalisations that follow. Additionally
note here that constants and variables can be treated equivalently if and only if
the basic requirement of conceptualisation of a defined behaviour is fulfilled since,
as will be explained below, focus will be described abstractly from a behavioural
viewpoint.

Models relate content to a specific set of real-world behaviours and real-world
system components, which completes the abstract definition of focus. It then natu-
rally follows that I should be expressed in terms of real-world behaviours and how
they relate to real-world objects. The anatomy of ΦI consists of a system behaviour,
which the associated mathematical component conceptualises, and the many enti-
ties that collectively yield the entire system (or partition thereof) and contribute to
the said behaviour.

Let φ represent the focus of a model or variable, which relates a behaviour to
a real-world component κ , or a group of real-world entities that can be coherently
categorised as an individual (e.g. an organ, though made up of many components,
can be categorised as an individual when given in the context of a whole-body sim-
ulation). It follows that ΦI iteratively builds up a hitherto faithful in silico metaphor
of the system. Furthermore an interesting property of complex bottom-up systems
is that behaviours can be further dissected into a number of more fine-grained be-
haviours, which themselves will be associated with a finer-grained set κ , etc. Con-
currently, it has already been demonstrated that this is indeed an inherent assump-
tion of simulations and models that, sometimes implicitly, metamodel finer-grained
behaviour into a simple black-box. As a matter of fact this behavioural inclusion
assumption is part and parcel of the corresponding φ if φ 	→ ψ holds true. For exam-
ple, a Gompertz model (Mφ ) of tumour growth (φ ) is a phenomenological model of
a relatively macroscale behaviour (i.e. tumour growth dynamics, phi if φ 	→ ψ holds
for MTS) and as such implicitly includes finer-grained behaviours such as pathway
dynamics, cellular dynamics, molecular dynamics and so on. This can be intuitively
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visualised as a directed acyclic graph of behavioural inclusion where nodes of the
graph are specific behaviours and directed arcs denote inclusion; a node is a super-
set if there exists a tail arc that leads to another behaviour, i.e. a subset, and if not is
simply defined as a singleton (where the one member is an instantiation, explained
shortly). In essence a emphBehavioural Inclusion Tree (BIT) can be developed.

Definition 31 (Behavioural Inclusion). Consider foci to be viewed in a set-theoretic
manner; behavioural inclusion can be defined as identification of behaviours (sets
or singletons) that are wholly (crisp) or partially (crisp/fuzzy) subsets of more
macroscale behaviours that wholly or partially represent the behaviour of the sub-
sets. Presently, for clarity, only crisp sets will be considered. Note that a behaviour
(set or singleton) can be a member of a number of sets in which case it partially
accounts for those behaviours without having to consider it fuzzy.

As seen in Chapter 2 there are two important concepts of focus and associated be-
haviour that one must define: the first is that of behavioural inclusion as explained
above; secondly there exists an abstraction of behaviours, in terms of an ontological
perspective, from model to model that must be dealt with directly to wholly capture
the semantics. For example, there are various types of dynamics such as molecular
flux, EC and other cellular motility, blood flow, and even growth itself, and within
these concepts there are subtypes of dynamics that can be defined. The aim is to
enable one to distil the most abstract behaviours of a biological system, and idealise
even further to complex systems in general, so that the resulting framework need
not be recreated for new integration exercises that may involve systems other than
those thus far encountered. This facilitates the iterative building of φI as explained
earlier. Simultaneously the integration platform needs to define the most specific
behaviours as in the BIT. A set-theoretic/OOP5 approach for model focus affords
this power of abstraction so that one can deal with these two concepts concurrently.

Let Ua and Ub be partitions over the universe of discourse that represents the
behavioural class hierarchy, i.e. abstractions of behaviour, and the BIT hierarchy re-
spectively. This partition is also made to highlight the difference in semantics of the
subset property. In the case of abstraction the subset property is equivalent to inher-
itance, i.e. the usual is-a OOP relationship, whereas in BIT it denotes behavioural
inclusion. Behaviours in the abstracted sense can be considered OOP-like classes
whereas behaviours that models actually exhibit can be considered OOP-like instan-
tiations, θk. In this way both behavioural abstraction and BIT can be represented on
the same graph. Formally:

U = Ua ∪Ub (5.17)

φ : {θ0..θn}where ∀kθk ∈Ua ∧Ub (5.18)

The complete model focus (φ ) is defined in this framework as the set of all instan-
tiated behaviours that are both part of the abstraction tree and BIT. Behaviours can

5 Only the concepts of inheritance, classes and instantiations are considered here since these
concepts are proven and powerful tools to describe abstraction and are integral concepts in
the knowledge representation technologies such as SN [175] and OWL.
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be collectively defined as system concepts (most abstract φ ), which involve system
entities (most abstract κ). Systems concepts themselves are non-entities. System
concepts subsume (include, as defined above) other system concepts to create a
BIT. Additionally, to include model scope system concepts are restricted by system
constraints. These abstractions are summarised in Figure 5.1 in which the set of all
core classes, c, and related properties is shown. This is a novel construct in which
behaviour and system components can simultaneously be described, which will be
illustrated and validated in the next chapter.

Fig. 5.1 Abstraction of the real system and relational mapping of model focus (core classes).
Taking an OOP approach, focus itself is conceptualised by a SystemConcept class from which
other concepts inherit and/or form a BIT. Note that these relationships also form a type of
system ontology. All solid arrows without a label denote inheritance, in terms of abstraction,
from parent (head) to child (tail).

Core classes are defined as:

• SystemConcept: Any NonEntity concept of a real-world system that describes
some behaviour that can be conceptualised by a model, e.g. a biological process.

• SystemContraint: Any NonEntity concept of a real-world system that constrains
the behaviour of a SystemConcept. This extends the definition U = ΦI to in-
clude scope and context that can be symbolised by any derivation of SystemCon-
traint. Hence a SystemContraint can represent logical or mathematical (but not
physical) constraints. Mathematical constraints in particular are important since
these include parameterisation, e.g. curve fitting, which encapsulates assump-
tions about the model that is otherwise difficult to formalise in a computational
construct.

• Entity: Any physically observable element of the real-world.
• Non-Entity: Anything that is not an Entity.
• Component: Any Entity that is part of a real-world system.
• System: The observable real-world system composed of Components and whose

dynamics are defined by behaviours, i.e. SystemConcepts.
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Core properties6 are defined as:

• <includes> (both domain and range is SystemConcept)

– Equivalent to Definition 31.
– Transitive.

• <partOf> (domain is Component, range is System) and ¡locatedIn¿ (domain is
Entity, range is Component)

– Refers to physical composition of a system. Biological systems in particular
are dynamic and any entity may well be compartmentalised within different
structures in different contexts. Component class instantiations must therefore
exist for multiple contexts.

– Transitive.

• <conceptualisedBy> (domain is Entity, range is SystemConcept)

– Refers to a realisation of process by which a physical entity can be conceptu-
alised by a model, i.e. a SystemConcept.

– Transitive.

• <conceptualises> (domain is SystemConcept, range is Component)

– Inverse of <conceptualisedBy>.

• <constrainedBy> (domain is SystemConcept, range is SystemConstraint)

– Refers to the scope and context of a SystemConcept.
– Transitive.

Inheritance enables desirable properties when used in conjunction with other rela-
tions as listed above. For example, since a child class, child, inherits all attributes
from all parental classes, instantiations of child will also inherit all transitive (and
other) relations that parental classes possess. Due to the integration of these OOP
concepts the said properties that are defined on instantiations are enforced. In other
words, an instantiation of any of the said concepts must define the properties im-
posed by the abstract framework (Figure 5.1) with other instantiations of the correct
type. Therefore this method, herein referred to as the knowledge-driven approach
(KDA), enables description of an in silico metaphor of a real system to any level of
abstraction within the limits of (inputted) knowledge.

5.2.4 Knowledge-Driven ABI: A Novel Formal Protocol for
Model Integration

ABI and KDA have been formalised separately but these two methods can be used
together to form a specific solution to model integration. Whilst Λ , together with

6 Note that all properties are enforced on defined domains and ranges.



5.2 Novel Model Integration Formalisations 91

h, represents a framework that can tackle the cross-paradigm challenge, KDA di-
rectly addresses the model focus challenge, including any scope and context that
can be symbolised as a constraint, and model assumptions imposed by focus, ζφ .
ζσ can also be integrated into Λ in the form of rules; boundary conditions impose
themselves as limitations in rules that regulate behaviour and context is similarly
treated as explained previously. Since h incorporates behaviour due to paradigm, ζP

is also covered by Λ . A fusion of these two approaches is described in which the full
range of challenges can be addressed. As described earlier, the key to addressing the
multiscale problem is either application of the brute-force approach or some meta-
modelling scheme such as patch dynamics and is therefore a problem associated
more with the enabling software.

ABI establishes κ ≡ ι where ι ∈ {αall ∨χall} and αall and χall are supersets of all
agent/cell individuals (R equally applies to κ). Let R, representing the rules derived
via h, be partitioned into rule subsets, ρm, that individually represents the rules that
are direct derivations due to submodel m ∈ M. Simply speaking, ρm defines the
behaviour of ι , and therefore κ , as local interaction rules due to m, in the time step
t +δ to achieve a global dynamic that is consistent with (i) the original model in the
same or similar time step and (ii) the real-world component κ , to some predefined
degree of accuracy.

The d and μ functions (as given in Table 3.1) make a choice of which rules to fire
for any ι given a local and/or global situation7. d and μ can therefore be formally
extended such that:

Theorem 10
Action : d(R,S,E,G) = ρaction

m (5.19)

ς : {S,E,G} (5.20)

∴ ρaction
m = d(R,ςι ) (5.21)

where G is the set of all global states of Λ ; ςι is the context of ι (embodied by S, E
and G as per the formal definition).

Model scope, mσ , can be incorporated into this methodology by integrating
boundary knowledge of m into ρ , d, S and/or G depending on what boundaries are
defined. When applied to d or the rule set of ι , mσ restricts ρ in such a way that the
resulting dynamics in Λ will not violate the boundaries σ represents. Similar is the
case for S and G, i.e. state dynamics are restricted so as to not violate σ . In fact σ
signifies an additional behaviour for ι , and consequently Λ , that h must codify into
local interaction rules. In short, an ABM simulation can be built from a model given
enough metadata and knowledge about Mφ and ψ respectively. With each progres-
sive integration, the ρ subsets must be ordered such that they are concordant with
respect to focus (they represent different behaviours) and scope (application of d),
otherwise an integration of the rules is required, which is detailed below.

7 For clarity only d will be considered though the following formalisations are equally ap-
plicable to μ .
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For simplicity, let the formal integration be applied to submodel m1 where only a
single paradigm profile exists and κ and φ (as a full KDA specification) are known.
In the case of the first model that is to be represented in Λ , i.e. Λ is naive, h is
simply invoked to find ρm

1 = Rι . Note that though subsequent integrations yield
the sets

⋃
ρ i

m = Rι any ρ ⊆ ρ i
m can be shared, i.e. an existing rule in the rule set

attributed to a previous model integration is allowed to form any part of the solution
of a new integration so far as there is no incompatibility issue.

Let each submodel, with corresponding κ and φ (as a full KDA specification),
that is to be integrated into Λ undergo this decomposition process separately within
a defined bound of error. If one model conceptualises any SystemConcept that is
already wholly or partially conceptualised by another model, i.e. there is an overlap
(intersection in the separate KDA specifications of each model), or contributes any
ρ to an existing ι in Λ then a synergy must be reached between the models such that
there is no contradiction in behaviour of ι . In Λ this means that each ρ contributed
by each m contains rules that contribute to the same behaviour and so this overlap
in contribution must be reconciled. The four possible combinations are as follows
between two submodels, m1 and m2, hereafter defined as RC1, RC2, RC3 and RC4
(Rule Combination n):

1. Exact overlap: m1 and m2 cover the same behaviours.

a. This is a model substitution/replacement situation. Ideally, since both mod-
els are abstracting the same subsystem assuming m1,2 	→ ψ , their behaviours
should actually be the same and their respective ρ sets should not clash in
terms of behaviour of ι . However, if m1 and m2represent theoretically alterna-
tive models (e.g. two possible models of a pathway whose dynamics can only
be hypothesised into m1 and m2) some reconciliations can be made in terms
of corresponding ρ :
i. Reject ρ1 ∨ρ2 and perform two separate simulations. This strategy would

be invoked if it were determined that m1 and m2 are irreconcilable because
they each represent two very different and distinct beliefs of the subsystem
and κ .

ii. Accept ρ1 ∧ρ2 in a decision framework. This strategy would be invoked
if it were determined that m1 and m2 represent very similar beliefs of the
subsystem and κ . d must now additionally determine under what circum-
stances ρ1 and ρ2 are fired.

iii. Accept ρ1 ∧ ρ2 in a belief framework. This strategy would be invoked if
it were determined that m1 and m2 represent very similar beliefs of the
subsystem and κ . Essentially ρ1 and ρ2 are now fired under some belief
mechanism other than a crisp decision process, i.e. both rules are fired to a
certain degree. This can be viewed as a fuzzy firing mechanism.

2. Partial overlap: m1 and m2 partially cover the same behaviours.

a. Essentially this is the same as point 1 except that ρ1 and ρ2 are now partitioned
into a shared subset ρ1∧2 = ρ1 ∩ρ2 where each overlap subset ρ2

1∧2 = ρ1∧2 −
(∀r ∈ ρ2) and ρ1

1∧2 = ρ1∧2 − (∀r ∈ ρ1) can be treated as the exact overlaps
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described above so that the same reconciliation strategies listed above can be
applied.

3. Total overlap (subsumption): m1 totally subsumes the behaviour that m2 repre-
sents in addition to other behaviours not included in m2.

a. This is analogous to the situation described earlier wherein a phenomenolog-
ical behaviour totally includes, i.e. subsumes, more mechanistic behaviour,
however note that the behaviours need not be more/less mechanistic with re-
spect to each other. In the case of an iterative integration (i.e. the process in
which m2 is being integrated with m1 where m1 is already represented in Λ ),
ρ2 must perform in Λ such that it does not interfere with the behaviour elicited
by ρ1. However in the absence of the set ¬(ρ1 ∧ρ2) this is not always prac-
tical to achieve. In such a case a rule mergence may well be the best solution
wherein the behaviour of the integrated model is as close to m1 as possible.

4. Null overlap: m1 and m2 elicit behaviours that are separable.

a. If two models elicit behaviours that are separable their respective BITs do not
integrate, i.e. there are no possible connections. I1 that has been derived from
m1 and I2 that has been derived from m2, I1 �= I2 unless there exists pairs of
ι ∈ I1 ∨ I2 that interact in Λ .

Note that linear integration is also feasible in this formalism in at least three modes:

1. ∀mk ∈ Mφ are integrated into Λ as described above.
2. An entire Mφ , if its behaviour can be encapsulated into any ι in Λ associated with

a set of rules (therefore directly able to affect states S as required).
3. A parallel approach can be adopted wherein the integration is minimal: Λ runs

separately from Mφ , which simply directly affects S and/or G.

Unifying all of these concepts yields the protocol summarised in Figure 5.2. Firstly,
as with any ABM simulation, a mesoscopic scale on which ι is defined must be
identified. For different models this scale may well be slightly different, within rea-
sonable bounds, depending on the anticipated set I. The entire simulation framework
Λ is built around this mesoscopic scale wherein more global (i.e. more macro) be-
haviours are considered emergent of the small-scale subset of I and finer-grained
(i.e. more micro) behaviours are either defined explicitly within the framework
(brute-force method) or inbuilt (metamodelled) into the rules and/or states (and
therefore state transitions) of the larger-scale subset of I. This is analogous to Bren-
ners so-called middle-out approach, which is an accepted albeit informal approach
in system biology [136]. Secondly, the h function is applied to the models progres-
sively as explained in previously, which yields the respective rule sets ρm. Every
model must also be consecutively encoded by KDA to generate the BIT, which
defines the behavioural overlap between the models. When this is known the rule
integration strategies, as listed above, can be applied to give an ABM that is repre-
sentative of the original constructs.
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Fig. 5.2 Knowledge about the model itself as well as external knowledge contribute to the
model integration process by KDA, feeding into the ABI process as described in the main
text to identify key interactors and behaviours. Rules are optimised and saved for future inte-
grations or further optimisation. Critically, the process preserves the semantics and behaviour
of the inputted models. Neural and Bayesian techniques and fuzzy rules could be used in this
process as metamodelling techniques, which will be discussed more fully in Chapter 7.

5.2.5 Expected Results and Validation

An important question is how far an integrated model can be validated mathemati-
cally. The nature of the ABI method described above is such that there is bound to
cumulative error in decomposition to agent rules (though the rule enrichment pro-
cess should ensure a satisfactory margin at each stage). For individual models that
are integrated into ABI validation is straightforward: there is a direct relation with
the original model and hence an analysis can be made as to how well, both quantita-
tively and qualitatively, the ABM simulates the original model. Integrated models,
however, have no such direct relation. As explained in Chapter 3 small changes
in the rules of local interactivity can have non-linear effects globally, and hence
the effect of rule combinations in the KDA/ABI method could be unpredictable.
Therefore the results and validations can only be qualitative in nature, with compar-
isons that can be drawn from the original models and known knowledge of the real
system.

5.3 Summary

A formal methodology is proposed based on the literature review presented earlier,
wherein an analysis revealed the anatomy of models: abstractions can be made with
respect to paradigm, focus, scope, context and scale. Note that though these abstrac-
tions are made from the tumour modelling literature, they do in fact pertain to basic
mathematical principles. To address cross-paradigm integration the ABI strategy is



5.4 Conclusion 95

proposed whereas focus, scope and context are addressed by the KDA approach.
Cross-scale integration is left to the implementing software system. Together these
formalisations can be distilled into a protocol in which models can be integrated.

5.4 Conclusion

By using generic classes that include modelling concepts and their corresponding
real-world counterparts one begin to build a behavioural inclusion tree that describes
behavioural subsumption. Model integration can then begin from a behavioural per-
spective by additionally optimising agent rules, which effectively takes into account
the different types of model focus, scope, context and assumptions and is addition-
ally paradigm-free with respect to the original models. The efficacy of this approach
will be tested in the next chapter.



Chapter 6
Experiments in Model Integration

Abstract. In this chapter the application of KDA/ABI model integration strategies
is demonstrated. The design of the experiments performed including rationale is
presented and followed by results procured. Simulation experiments were carried
out to prove the efficacy of the KDA/ABI approach. The process of generating BITs
to identify system/model components and behaviours (i.e. points of integration) is
demonstrated. The process of (literature published) model decomposition is demon-
strated via a genetic algorithm and subsequent integration is performed by combin-
ing BITs and resultant behaviour analysed.

6.1 Model Integration Experiments

The aim was to validate the KDA and ABI methodologies. Note that all results and
validations described below were obtained with respect to models analysed solely
from publication1 -based information (including situations where further validations
required additional information from the original authors).

To validate the KDA approach 39 models were examined in detail, with an ex-
tra 5 that were not in the original literature review (so as to introduce a new set of
semantics that has not yet been encountered in the development of KDA) to vali-
date the KDA process. These five are detailed below, each yielding a BIT via KDA
(including concepts that could be expressed solely from the core sets described in
section 5.2.3, which are relatable with respect to each other) - later in the discussion
this process will be justified as a technology that enables expression of ΦI (the in-
tegrated whole). To keep in line with the cancer-oriented theme of this project only
tumour models2 were considered though it will be demonstrated that the method is

1 Publications in the form of CellML models, such as those presented in EBIs BioModels
database, could have been used instead, however this was decided against since (i) it would
have required an additional layer of engineering to parse into the existing integration plat-
form and, more importantly, (ii) semantics such as assumptions, etc., are often explained
in far more detail in the original publications.

2 Except for Markus (1999) [123], which is a generic vessel morphogenesis model.
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equally applicable across disciplines. To test the limits of KDA, i.e. the volume of
semantics that it can incorporate without yielding erroneous implications or creating
practical difficulties, the models are used to build a large3 ΦI .

Decomposition of models, i.e. the formal process h, was achieved by means of
coupling a custom GA and simulation software. To simultaneously show that the
ABI strategy can address the multi-paradigm problem a formal integration was per-
formed with a new set of published models as well as with models described in the
literature review. Models are selected on the basis of paradigm, focus, scope, context
and assumption diversity and self-validity (i.e. the models are shown to be validated
in their own right against the biological system).

6.2 Knowledge Driven Approach: BIT-Building

In all BIT diagrams the red components represent the base classes described pre-
viously whereas green components represent those derived from the model. BIT
diagrams can also become quite complex in terms of number of nodes, especially
so for models that incorporate (i) a range of assumptions based on focus and (ii)
many submodels, and therefore diagrams below have been condensed by categoris-
ing some concepts together. In-depth discussions follow in the next chapter.

The general heuristic used to generate the BITs from plain-text publications is as
follows:

• Disambiguation.

– For every component and system concept (i.e. behaviours and processes),
hereafter referred to as entry, a class is created that inherits from System-
Concept.

– For every new entry three checks must applied:
· Does the entry already exist? If so, reject the new entry.
· Does the new entry represent a specialisation of an existing entry? If so it

may be appropriate to let the new entry inherit from a more abstract one.
In this case one may even granulate the model further by introducing more
concepts that make the distinction between the new entry and old ones
clearer.

· If inheritance is applied, do the transitive relations break the logic as de-
scribed in section 5.2.3 or create any paradox? If affirmative there may be
a case to go back to the original core classes (such cases are discussed in
Chapter 7).

• Connection.

– As far as is possible, connect each new entry with other entities using the basic
relationships outlined in section 5.2.3.

3 Only sections of this map are shown in this book due to space constraints.
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– Further disambiguation can be applied with, for example, Components deriva-
tions that appear to be partOf multiple System derivations. In this case one
should specialise on the Component in question, i.e. make them separate en-
tries with different names but have them derive from a common parent via
inheritance.

• Explicit Assumptions.

– If guidelines are met one should see that many explicit assumptions. Disam-
biguation and connection should not violate explicit assumptions, i.e. explicit
assumptions take precedence over the BIT-builders knowledge of the system.

• Initial Conditions.

– These should not be included the BIT unless they represent specific System-
Constraints.

– Parameterisation often can be represented as SystemContraints.

6.2.1 Chen (2004)

Summary: 2D ABM model of spheroid growth with tumour, oxygen, nutrient and
inhibitor states measured on 4 different layered grids.

• Focus

– Cell growth. Oxygen, nutrient, inhibitory agents diffusion.

• Assumptions

– Cell division dependant on stimulatory (oxygen) and inhibitory (generic)
factors. No vascularisation. Probability distributions for entering quiescent/
proliferative states.

• Context

– 2D. States (cell level oxygen consumption, inhibitor sensitivity, diffusion-
related values) each with minimum/maximums values. Varying initial
conditions.

6.2.2 De Pillis (2005)

Summary: ODE model of tumour growth based on tumour-immune interactions.

• Focus

– Tumour (generic), immune (NK, CD8+) cell populations and immune cell
effectiveness.
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Fig. 6.1 All components of the model described in the original paper can be distilled into this
BIT except for logic-based assumptions that have been built into the agents (though these are
implicitly included within respective system concepts), e.g. the threshold of nutrients and
oxygen at which a cell makes a proliferation decision. Concepts are constrained by mathe-
matical elements of the model, e.g. dimensionality, open boundaries (molecules can escape
from the simulation space), capped ranges for certain states.

• Assumptions

– Growth is logistic (used as validation). Immune cell pressure (population)
affects growth. NK cells always present, even in absence of tumour cells,
whereas CD8+ cells appear only after tumour cells have invaded normal tis-
sue and immune cells die after a certain number of encounters. Immune cells
kill tumour cells. Overall effectiveness of immune cells dependant magnitude
of immune cell population, i.e. the higher the population the higher the effec-
tiveness on tumour cells (regardless of morphology).

• Context

– Logistic curve variables (curve fitting to validation data). Parameterisation of
ODEs (30 variables, see Table 1 in the original paper for details).

6.2.3 Mallet (2006)

Summary: 2D CA/PDE model of tumour growth including nutrient source (ab-
stracted blood vessel) and immune system interaction, in particular cytotoxic
T-lymphocytes (CTL) and NK cells.

• Focus

– Host (normal), tumour and immune cell population growth. Nutrient
movement.
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Fig. 6.2 Components not drawn, but taken account of by abstraction, in the diagram include
the SystemConcepts Specific/Non-Specific IC (Immune Cell) Dynamics and NK/CD8+ Life
Cycle (including recruitment and maturity). Also, some Growth Dynamics and Population
have been condensed (they equally apply to all cell types and the tumour system itself). The
conditional presence of CD8+ cells and constant presence of NK Cells can be included by
extending Population with the <includes> property.

• Assumptions

– Cell and molecular migration only in 4 directions. Probability distribution that
determines cell fate (fixed), i.e. death by necrosis or immune cell interaction,
cell division, cell migration, maximum interactions before death (for immune
cells only). Survival and mitosis-stimulating nutrients treated as two different
entities.

• Context

– Rates of consumptions and movements (diffusion coefficients) of each type
of component. Probability of cell death due to necrosis or immune-cell in-
teraction. Parameterisation of initial cell numbers and typical behaviours (see
Table 1 in original paper). Random initialisation.

6.2.4 Markus (1999)

Summary: CA model of vessel morphogenesis.

• Focus

– Diffusion of stimulatory and inhibitory substrates.

• Assumptions

– Vessel formation includes growth, branching, autocatalysis of activators, tip
death, chemotaxis and anastomosis, which are all driven by stimulatory and
inhibitory factors only (generic). Rules favour stimulatory substrate depletion.
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Fig. 6.3 Much of the immune system dynamics (e.g. action of NK cells, initiation, death
and proliferation) is the same as that of de Pillis (2005) [56] and hence condensed here
into the single node Immune Dynamics. Note that due to the transitivity of inheritance and
<conceptualisedBy> properties, subclasses of nutrient automatically inherit association to
diffusion and growth dynamics, which include cell and immune dynamics (i.e. their respec-
tive behaviours).

• Context

– Maximum/minimum values for substrates validated against various systems
including angiogenesis and plant vein growth.

Fig. 6.4 The behaviour of morphogenesis, treated synonymously to vasculogenesis in this
example only, is a function of autocatalysis, anastomosis, production, decay and diffusion of
molecules u, v and s (inhibitory, stimulatory and substrate respectively). These behaviours
are embedded as logical rules in the CA.

6.2.5 Zhang (2007)

Summary: ABM simulation of glioma growth integrated with EGFR pathway ODE
model.
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• Focus

– Tumour cells, chemotaxis and diffusion of TGF, glucose and oxygen. EGFR
pathways conceptualised by molecular dynamics (series of ODEs), which is
triggered by receptor internalisation. Main focus is the switch a tumour cell
undergoes from migratory to one of proliferative, apoptotic or quiescent state
(and back again).

• Assumptions

– Migration and proliferation dependant on EGFR pathway state. All agents
occupy grid intersections (only one cell can occupy a single grid point). Cells
can be in one of four states: proliferative, quiescent, apoptotic or migrating.
Hypoxia and availability of glucose affects the state of the cell, which in turn
affects distribution of cells within the glioma. Simple cell cycle dynamics are
included to determine whether a cell should proliferate.

• Context

– Diffusion coefficients, rate constants for ODE model.

Fig. 6.5 The EGFR pathway contains more behaviours than could be integrated into this
diagram, e.g. internalisation of EGF and autophosphorylation (not shown for clarity). Other
components can also be included that are explicitly described in the model, e.g. membrane,
cytoplasm, nucleus and many molecular species but not shown to retain diagram simplicity
(their inclusion can easily be incorporated as descendants of Component). Importantly, all
model concepts are incorporable into the BIT diagram. The main focus of the model, i.e.
proliferation/migration decision making of the cell (PM Decision above) is clearly set in
context to the rest of the behaviours that the model includes.

Cell and Tumour entities in all models described above would need to be subclassed
to the specific types of cell/tumour that the models represent (to keep the diagrams as
simple as possible without reducing their expressive power these child classes were
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left out). For example, the BIT diagram for Zhang (2007) [207] should include a
subclass of Tumour and Cell to include the glioma types that the model was specified
for:

For the most part, however, the state of the modelling literature is such that mod-
els tend to focus on generic behaviours rather than specifically on tumour types
(though it must be said this is less so for pathway models).

6.3 ABI: Model Decompositions

Model decomposition is first tested on simple and testable models. Two such models
of particular importance in tumour modelling, as highlighted in Chapter 2, were
the diffusion model and the Gompertz function. These models describe dynamics
that occur on two very different scales, i.e. molecular and macroscopic respectively,
and yield straightforward BITs. They have identical paradigm profiles and are here
employed to test same-paradigm integration (multi-paradigm ABI will be addressed
in the next section).

6.3.1 Decomposition of the Diffusion Model

Ficks 2nd Law in 3 dimensions (the so-called heat equation) was used:

1. To test the first stage of the ABI strategy, i.e. model decomposition.
2. For subsequent integration into other models.
3. As a benchmark for the GA module.

This particular model is well understood and it is relatively simple to find solutions
and hence test by a fitness function. The standard diffusion model can be used:

∂c
∂ t

= D∇2c (6.1)

where c is concentration of solute and D is the diffusion constant.
The ABI method was used to generate rules that mimic the behaviour of the

diffusion model. Figure 6.6 illustrates.
Representing molecules on an individual basis is of course not a good choice

in a model that intends to simulate diffusion over large spaces, as sought in a
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whole-tumour model, due to computational resource limits and output require-
ments4. Instead a lattice approach is adopted here wherein a discretised 3D space
contains lattice sites (all of which have identical rule sets) that represent concen-
tration(s) of solute(s) as states upon which rules operate. In effect this is a meta-
modelling approach to bridge the scale gap between molecular movement and
macroscale behaviour akin to the Lattice-Gas approach. In the first instance 100
units per unit volume of solute was introduced at the midpoint of a 3D closed
space of 10×10×10 unit dimensions and allowed to diffuse at λ =1 (denoting a
zero molecular impedance)5. A von Neumann neighbourhood was assumed on the
theoretical basis that the net movement of molecules through a lattice interface is
proportional to the area of that interface. This can equally be applied for higher-
dimensional neighbourhoods but the von Neumann variety is relatively simple to
implement (and hence relate to the said area) and is a typical and well-researched
construct in discretised simulations. However the radius of the neighbourhood for
which rules can operate on states was left to the GA to optimise on, as explained on
the next page.

Fig. 6.6 A. Introduction of a solute at a single point (or randomly distributed as a secondary
initialisation, not shown) in the middle of a 3D space is allowed to diffuse in all directions.
B. The non-dimensionalised solution of Ficks 2nd Law is used as a fitness function to enrich
an initial set of automata rules such that resulting simulation mimics the original equation.

The GA was initialised with a population of 100 individuals with rules (the first
generated manually, the rest randomly mutated) and GA operator permutations to
procure the results detailed below. The fitness function (explained shortly) was set
to eliminate 50% of poorest performing individuals from the population in each
generation. These initialisations were chosen on the basis of initialisation setups
of previous GA-based rule optimisation experiments, summarised by Bossomaier
(1999) [29] and Mitchell (1996) [128].

4 The theoretical basis of diffusion, i.e. random movement and impedance of particles, could
be encoded into an ABM, for example, as rules for individual particles of which there could
easily be billions.

5 The decomposition was later cross-validated with alternate initial conditions and diffusion
constants.
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A specialised rule was hard-coded on which the GA could operate, which is de-
tailed in pseudocode shortly. Note that the ABI strategy requires additional knowl-
edge about the system for rule initialisation. In this case diffusion is initialised into
a static rule set that operates on a state space 0≤s≤100, which is dependant on the
state space of neighbouring lattice sites - this dependency is built into the rule.

The diffusion model was separately solved to perform as a fitness function us-
ing the standard Eulers finite difference method6 (Figure 6.7). The GA took at least
18 generations7 (depending on initial rules and GA configuration, both explained
shortly) to generate a rule set that came within the preset 0.05 distance value, mea-
sured at each time and grid point8 (explanation of this threshold given shortly).
Fitness functions employed the standard Euclidean distance metric:

total distance =

√
i≤T

∑
i=0

(
vi

Observed − vi
Actual

)2
(6.2)

where v represents the observed (simulated) and actual (solved from PDE) values
of the diffusion model and T is the upper limit of both simulated and Euler solu-
tions. Unless otherwise stated this distance measure is used in all subsequent GA
experiments. The best solution is shown in Figure 6.8.

The diffusion model was secondarily used as a test of how well the GA soft-
ware component performed and functioned9. The first test runs of rule optimisation
for the diffusion model were coded as an arbitrarily expanding rule set with the
default GA configuration10. In summary, 100 individuals were initialised with a
single chromosome and mutated prior to the GA run. The aforementioned signifi-
cance threshold was first of all tested by varying between 0 and 0.1 in 0.01 intervals
- initial results showed that any threshold below 0.05 rarely yielded positive re-
sults, causing a very rapid extinction of the GA population, and a threshold greater
than 0.1 would generally lead to a hanging11 population, though these results were
not always reproducible. Though such a determination is of course dependant on
the nature of the model that is being decomposed, a significance of 0.05 (i.e. 95%

6 The solution required a 3D mesh on which finite differences were solved. The software used
to perform the simulations in this project was used to also generate this mesh and solve the
equation for various values of the diffusion constant. The result was outputted to file prior
to GA execution, which was directly accessed by the fitness function model class.

7 Best result set out of 3 repeats of various configuration changes. Full results not published
here.

8 For clarity not all grid points and time points are shown in subsequent experiments.
9 Note, however, that this is not a primary goal of this book. The software is tested in this

way purely to validate the method as a viable optimisation tool.
10 Full results not published here
11 A completed run here is defined as the full execution of a GA through any number of

generations terminating in either a positive result or population decrease to a predefined
threshold. A hanging population is reached when no discernable increase or decrease in
performance amongst individuals is observed, resulting in GA run that never terminates,
defined here as an incomplete run. Else a population becomes extinct due to removal of
bad performers and lack of good ones.
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accuracy) was chosen for all subsequent experiments on the basis that it represented
a good balance between yielding positive results in a relatively small number of gen-
erations without causing an unstable GA population (at least in the diffusion model
case) and it is traditionally the value chosen for biological statistical significance. In
two regimes, each with one of the 2 initial rule variations listed in pseudocode be-
low, individuals were initialised into the GA population. This was repeated at least
3 times to verify results.

1. If true move a fraction f of concentration in direction ±x, ±y, ±z over n sur-
rounding sites (i.e. neighbourhood).

2. If true move a fraction of concentration × previous rate for this lattice site in
direction ±x, ±y, ±z over n surrounding sites. (A variation of this rule included
the addition of a random fraction of movement).

Shared-state classes ensured the conservation principle, i.e. the total concentration
in the entire simulation space remained constant (excepting rounding error). Five
variations on f in the rules above were used as initial values: 0, 0.25, 0.5, 0.75 and
1. In the case of Rule 1 all variations eventually yielded a rule set that procured the
required 5% threshold, with 0.5 consistently producing the fastest result, the best
of which was 18 generations. Rule 2, however, never produced a result that broke
the 5% threshold. The best result was 34% after 58 generations after which there
was no improvement even when allowed to run over 150 generations (spanning a
runtime of more than 4 days). The addition of a random factor of concentration
movement did not procure a positive result either (this was actually only performed
once, producing a hanging population; results not shown).

6.3.2 Decomposition of the Gompertz Model

The same method of decomposition by GA as described above was used to translate
the Gompertz model into Λ . The fitness function employed needed an instantiation
of the model to compare against. The original experiments done for decomposition
of the Gompertz model revealed that initialising the simulation with a low cell num-
ber, e.g. 1 to 100, impacted simulation time and hence a single generation could take
in the order of hours to complete. Therefore the initial state of the simulation was
set to a realistic number of cells, based on initialisation of similar models described
by Araujo (2004) [11] and Ribba (2006) [152], described shortly. The first instanti-
ation conformed to the equation below, which yields a smooth curve very much like
those procured by some of the growth models described in Chapter 2 and stabilises
at a population of 6×105 cells, which would be approximately consistent with small
MTS growths [65]. The paradigm profile is also described as the 6-tuple:

y = 5×105 + 6×107× eβ (6.3)
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Fig. 6.7 PDE solution. Log concentration of a generic solute (10 units per cubic unit of
length) introduced at time 0 diffusing over a three dimensional space (only a single axis
shown above, from x=0 to 5) over time. The expected exponential decrease at the point of
origin is seen as the solute moves outward equally in all directions. Eventually all points
in the lattice converge on a concentration of 0.01 (not shown) as the solute is completely
dissolved in the available space of 10×10×10 closed-boundary space.

Fig. 6.8 PDE and GA solutions compared at 3 points on the x-axis. Total distance measured
as 3.69 units per unit volume.
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β = e−0.005×(t−400) (6.4)

Pm
gompertz : ( f m,qm,cm,¬sm,¬em,0dm) (6.5)

Clearly there is no direct relation between the model and any notion of 3D structure
or microscopic mechanisms. In the first instance a GA run based on a rate-dependant
rule set was performed where the chromosomes, pseudocode below, were used to
generate a population of 100 individuals:

• If true rate = rate at previous time step for this lattice site ±(0 · x)
• If true increase replicate by x± fraction of x

Note that all mathematical operators and variable names are subject to GA opera-
tions, i.e. mutation, crossover and mating (hence the introduction of the term 0 · x
in the first rule). A total of 30 separate complete runs (and 15 more incomplete)
with varying GA configurations failed to procure a result that achieved the prede-
fined 0.05 threshold. An alternative fitness function strategy was employed where
the best 25%, instead of 50%, performing individuals were progressed through each
successive generation in a further 10 runs with varying GA configurations, so as to
increase the selection pressure. The best performer was found to only achieve 59%
accuracy.

To translate the little information available (i.e. that a variable, in this case num-
ber of cells, grows according to constants in the equation, which have no direct
relation to actual system components) into Λ external knowledge about the system
needed to be added to obtain more meaningful results (none of which are directly
extractable from the original model):

• Dependent variable represents cell number (integer).
• Each cell has:

– A point of birth.
– A living period.
– A point of death.

• One cell generates one daughter cell in a single proliferative cycle.

– Single proliferative cycle defined as a varied number of steps.

• Inhibitory effect due to local population.

A more complex extrapolation can be sought wherein cell cycle phases can be in-
corporated however this straightforward model is used here for simplicity. The cor-
responding BIT is shown in Figure 6.9.

Firstly, cells were treated individually and initialised with identical rules, i.e. a
child cell has the same replication rule as its parent, creating a homogeneous pop-
ulation. However, the cluster quickly reaches its limit after 20 to 25 proliferative
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cycles12, constituting over 33 million individuals13. An approximation strategy was
therefore devised wherein lattice sites were assigned separate lattice states repre-
senting cell number, as with the diffusion model (including the state the cells are
in, i.e. living, birth/death point). Indeed this also constitutes a metamodel as de-
scribed in the previous chapter. Though this proved to be more difficult with respect
to constructing rules, it did eliminate the resource constraint problem completely.
In fact all simulations were subsequently run on only 5 nodes (1 master, 4 slaves)
satisfactorily, leaving a further two quintuplets to perform parallel GA experiments
on.

Fig. 6.9 BIT diagram for the Gompertz model, with additional assumptions as given in main
text.

As before, an appropriate approximation of the rules was initialised into a GA,
as a starting point, consisting of 100 individuals with varying chromosome number
(chromosome replication and mutation was performed prior to starting the GA to
ensure a diverse population is initialised). All GA runs were made with the rule set
listed in pseudocode below with varying GA and cell configurations:

Rule Set:

• If {on death time point} die
• If {local population ¡ x} permissible = true
• If {on birth time point and permissible} replicate

– Place new daughter cells randomly in local neighbourhood

• If {true} advance point in life and cell cycle

12 Approximate value. As computational load increased agent and simulation logging be-
came congested in the execution stack and so it was not clear exactly how time steps were
incremented.

13 Some threading and rule execution optimisations were made, however the JVM eventually
either runs out of memory (with the upper limit on the number of threads being around
900 threads) or seizes on multiple hard-disk I/O calls (used to record output).
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Configurable cell attributes:

• Length of life and cell cycle

– Point of birth and death set at beginning and end
– Number of cycles before death

• Stochastic shortening/lengthening of cell cycle and length of life
• Over-population threshold

Out of a total of 48 GA runs with the variations shown (each repeated 3 times) 3
reached the target 5% accuracy. Of those 48 experiments, 12 were run with vary-
ing GA initialisation (using GA values of Crp, Mp and Mtp as 0.75, 0.25 and 0.5
respectively), which produced a single positive result, and a further 3 sets of 12 ex-
periments were similarly generated for variations of the equation, which produced
two more positive results. The best result is shown in Figure 6.10.

Fig. 6.10 Best GA result produced a curve with a Euclidean distance of 3.3% from the actual
result. The cell cycle length was 21ts (time steps) with a life expectancy of 11 cycles and
population threshold of 1253 cells per lattice site. Although after 10000ts the GA-produced
model does not converge to the required higher asymptote the bulk of the curve fits the shape
of the original.

6.4 KDA+ABI: Formal Model Integrations

To demonstrate the formal model integration method developed in this work KDA
and ABI analysis was performed on typical tumour models to produce more infor-
mative models as per the definition of model integration.
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6.4.1 Gompertz Model Integration with ODEs and Discrete
Models

Ribba (2006) [152] describe a 2D multiscale avascular tumour model, integrating
the TGF pathway and its role in cell death and proliferation into an ABM. The
model is already multi-paradigm, incorporating a DE-approach to growth, diffusion
and therapy response with a discrete Boolean network model describing pathway
dynamics, all implemented into a discrete CA-like lattice and a parallel DE solver.
This model was chosen for model integration with the Gompertz model since (i)
it exhibits diverse system behaviours and therefore provides the opportunity to test
how well KDA can describe a promising model, and (ii) the model is well-described
in terms of modules and therefore components are relatively easy to simplify or
extract. The model is described below.

Fig. 6.11 Summary of multiscale model by Ribba (2006) [152]. A Boolean network of
the TGF pathway (Sub-cellular module), incorporating DNA damage (Therapeutic module),
apoptosis and proliferation, is coupled with cell cycle regulation on the cell level (Cellular
module), which in turn in coupled with cell population pressure and diffusion dynamics in
the macroscale (Macroscopic module). Image taken from original paper.

6.4.1.1 Model Implementation

Darcys law is very similar to the diffusion model and includes a pressure term. Since
the diffusion model has already been decomposed this module of the original Ribba
model was replaced with the diffusion model, the GA (described shortly) optimising
on the diffusion constant alongside the other variables. Though this of course does
not simulate the original model exactly, it suffices so far as to describe tissue dynam-
ics since they can both describe the biased random movement of entities. The aim of
this decomposition is to integrate the ODE and discrete parts of the original avascu-
lar model with the Gompertz function, and eventually an angiogenesis model, and
therefore the therapy module of the original model need not be extracted. Conse-
quently the Boolean network was not included in the decomposition since it formed
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Fig. 6.12 BIT diagram for Ribba (2006) [152]. Though many of the molecular and parame-
terisation components have been left out for the sake of clarity (though they are indeed incor-
porable) the main assumptions and foci the model can be expressed by this approach. Specific
instantiations are outlined black, rather than treated as classes as before. This highlights the
use of KDA to expose h as explained previously. Cell is conceptualised by Population (not
shown). Properties have been abbreviated: i (includes), cB (conceptualisedBy) and cnB (con-
strainedBy).

the therapy module (i.e. tumour growth after DNA damage)14. All other parts of the
model were replicated as explained below.

6.4.1.2 Simulation Setup

The original models simulation setup was replicated with a hybrid agent/lattice
space (except now in 3D), composed of 100×100×100 lattice sites (totalling 1cm
each side) with each discrete time step representing 1 hour. In terms of physical scale
the original model was a 2D 8×8 cm square area. This is reduced here to 1×1×1
cm 3D cube to keep computational load low for a speedup in GA optimisation and
is later scaled up to the original size.

The BIT diagram exposes states and ι as explained below.
Required lattice states:

• Oxygen level (Float).

– Hypoxia (Boolean).

• Cell population (Integer).

– Normal Cells.
– Cancer Cells.

• Cell phase population (tumour cells only).
• G1 population.

14 The possibility of further implementing the therapy module is discussed in the next chapter.
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• S population.
• G2M population.
• G0 population.
• Apoptotic population.
• Central blood vessel (constant O2 level).

– Represented by a set of lattice sites that renew their O2 status at every time
step.

Required rules:

• Oxygen diffusion.

– Diffusion constant for oxygen.

• Cell populations update.

– If oxygen level is below threshold or local population is over a threshold, all
cells jump to G0 (hypoxia is declared if oxygen level is below the threshold).
If that is the case subsequent rules are not fired.

• Ribba (2006) [152] defines overpopulation as 2000 cells aligned in the area of
a single spatial unit. The lattice site is replicated here in 3D, which translates to
approximately 13×13×13 cells.

• Take away fraction of O2 from environment according to total cell number.

– Oxygen consumption is 3.6×10−13 mlh−1cell−1.

• Update cycle phases.

– Any cells at the apoptotic phase die (no nutrients are relinquished to the envi-
ronment since this was not defined in the original model).

– Increment all cell cycle steps. Reset the newly formed population from mitosis
at beginning of cell cycle (G0).

Time scale (as from the original model):

• S = 10h.
• G2M = 3h.
• G1 = 20h.
• G0 = 5h.
• Apoptotic phase = 5h.

6.4.1.3 Rule Optimisation

To describe molecular dynamics and cell movement the diffusion model decom-
posed previously was used. This was implemented as rules that dictate the move-
ment of cell populations (integer state) amongst lattice sites instead of a floating
point concentration as before. The original k constant for Darcys Law (2×10−5cm2)
was reconstituted here as a starting point for a diffusion constant (representing me-
dia permeability) to optimise on.
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The fitness function for the GA was modified to measure the scaled increase or
decrease in cell population (so as to capture the shape of the curve rather than the
Euclidean magnitude) since:

1. Spatial dimensions of the computational domain was increased to 3D.
2. The computational domain itself was decreased from 8mm to 1mm on each side.
3. The macroscale module was changed.

Concisely, the fitness function measured the rate of change at each time step in
comparison to the previous time step and measured the Euclidean distance between
observed and expected rates:

total distance =

√
i≤T

∑
i=0

(
vi

Observed − vi
Actual

)2
where vi

x =
vi

vi−1 (6.6)

The original model was replicated, solving the diffusion model as before on a mesh
and recreating the 2D lattice with the classes described previously. As in the original
model each time step represented 1h of progression. For each initialisation the states
for all lattice sites and states were written to file and used by the fitness function to
determine fitness of individuals.

6.4.1.4 Integration and Simulation Results

The GA quickly found a solution to oxygen diffusion and cell movement, in 8 and 11
generations respectively. Initial conditions were varied and compared to the original
model to verify the rules as follows.

• Number of vessels.
• Population number of each type of cell/phase.
• Phase length.

Tumour growth according to the Ribba model is illustrated in Figure 6.13, with vari-
ations on cell number (initial conditions) and cell cycles of all cells synchronised.
An asynchronous version of the same model, where the cells are initialised into the
simulation at a random point of the cell cycle is shown. Increasing vessel number
shifts the growth curve upwards as expected.

Figure 6.15 shows the BIT integration between the Ribba et al. model and the
Gompertz derivative. Recall that BITs assert behavioural subsumption. In essence
phenomenological behaviours subsume finer-grained behaviours. Indeed the inte-
gration between the Gompertz function and the Ribba et al. model showed that
the finer-grained behaviours of the latter are subsumed by phenomenological be-
haviours of the former. Concisely:

• Component concordance.

– The system and main component (tumour and cell) are of course directly re-
latable, hence those two ι remain.
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Fig. 6.13 (Left) Log plot of cell population against time with a single vessel present. Pop-
ulation growth is exponential in the presence of ample oxygen. Cellular movement ensures
that the majority of cells, by the time they have reached the end of G2M phase, are clear of
other cells and therefore are not affected by overcrowding until approximately t=200. Note
that the original model did not specify the initialisation strategy in terms of synchronisation
of cells. The effect of synchronising cell cycles can clearly be seen on the log plot, with steps
of population increases at regular intervals equivalent to the cell cycle length. The effect is
dissolved with the passage of time as the proportion of cells that enter G0 increases because
of overcrowding. (Right). Log plot of cell population when cell cycles are unsynchronised
(starting with 500 cells). Though average population per binned number of time steps is very
close to a synchronous population (compare to red curve in a) this curve is far smoother and
the effect of overcrowding is observable earlier in the simulation.

Fig. 6.14 Effect of increasing vessel number shifts the curve upward. The periodic plateau
of the curve is concordant with the results obtained by the original the Ribba model.
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Fig. 6.15 The Gompertz model is entirely phenomenological and so, as expected, its BIT
integration with the Ribba model (grey) shows that its behaviours subsume, i.e. include, the
finer-grained behaviours (green to grey).

– The Ribba model adds finer-grained ι: oxygen and TGF molecules (not im-
plemented).

• Behavioural concordance.

– Population inhibition in the Gompertz model is directly related to the concept
of population in Ribba, which subsequently includes finer-grained behaviours
that contribute to growth retardation as well as acceleration. There is an over-
lap here with the concept of growth dynamics (from the Gompertz model).

– The Gompertz implementation defines the length of the cell cycle, as does the
Ribba et al. model.

• Constraints concordance.

– Whilst the Gompertz implementation does not explicate specific constraints
it does recognise that growth is slowed. The model by Ribba breaks this ab-
straction down into finer-grained constraints.

Those rules that have partial or complete overlap between independent models must
establish a rule synergy. The individual rules for each model as they stood indepen-
dently were as follows (for a lattice site):

• Gompertz-derived Model

1. If {life point = 241} die
2. If {population in lattice site ¡ 1253} permissible = true
3. If {at birth-point and permissible} replicate If {true} advance point in life and

cell cycle by 1
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• Ribba Model

1. If {true} diffuse oxygen
2. If {true} diffuse cell
3. If {O2 > 8.01×10−10 mlcell−1 and population in lattice site < (13×13×13)}

permissible = true
4. If {not permissible} go to G0

5. Else
a. If {true} oxygen uptake by cell
b. If {at apoptosis point} die
c. If {at end of cycle} replicate
d. If {true} advance point in life and cell cycle by 1

Using the BIT in Figure 6.15 rule integration was defined:

Relation Rule Combination
ρ3

R ⊆ ρ2
G RC2

ρ5iii
R ⊆ ρ3

G RC1
ρ5iv

R ⊆ ρ4
G RC1

ρ1
G,ρ1

R,ρ2
R,ρ5i

R RC4

where symbols G and R denote Gompertz and Ribba models respectively, integers
and Roman numerals denote the corresponding rules. Recall that, with the aim of
simultaneously achieving a BIT that tends to ΦI and attaining a synergy between
different rule sets, RC4 overlaps simply add to the integrated rule set. RC1 and RC2
overlaps must perform in Λ under a belief and/or decision framework. Since a deci-
sion framework had not yet been devised or implemented at the time of execution a
belief framework was utilised. The rules then became:

1. If {true} diffuse oxygen
2. If {true} diffuse cell
3. If {O2 > 8.01×10−10 mlcell−1 and population in lattice site < [(13×13×13) or

1253]} permissible = true
4. If {not permissible} go to G0

5. Else

a. If {true} oxygen uptake by cell
b. If {at apoptosis point or life point=241} die
c. If {at end of cycle} replicate
d. If {true} advance point in life and cell cycle by 1

Since the Gompertz model represented the most macroscopic behaviour, and due to
the implications of RC3, its value of 1253 as the population limit was taken as well
as a cell cycle length of 21ts. The results are shown in Figure 6.16.
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Fig. 6.16 As Ribba report in their original model the exponential growth of their in silico
tumour does reach a point where growth slows (yellow line; population starting at 500000;
curve terminates early as the original simulation only continued to 400ts). The introduction
of a lower population limit and, perhaps more importantly, a death term and shortening of
cell cycle length transforms the shape of the curve dramatically. The characteristic periods
of oscillatory growth can still be observed. On the log plot it does seem as if the population
is steadied, however a closer look at the raw data reveals that the number is actually falling
with periodic spikes in growth. This may well be an artefact of the metamodelling approach
(discussed in more detail in next chapter). Though the exact magnitude of the Gompertz curve
cannot be achieved the similarity in shape is encouraging.

6.4.1.5 Angiogenesis Model Integration

Chapter 2 highlighted the fact that many growth models would have benefited if
integrated with a vascular growth component, as this would no longer limit their
applicability to MTS. Therefore the integrated model described above was further
integrated with a well-known and validated angiogenesis model first described by
Anderson (1998) [7] and extended by Chaplain (2006) [36]. Briefly, the model takes
a system of PDEs to describe vascular growth, diffusion and interaction with the
ECM but solves the equations on an ABM-like platform. The BIT diagram is shown
in Figure 6.17.

The simulation required additional states to be assigned to lattice sites as follows:

• Fibronectin concentration.
• TAF concentration.
• EC concentration (agent count).

It was assumed that once an EC (individually modelled as an agent) had moved
along a lattice site the trailing vessel that was left was viable, i.e. mature, and able to
deliver oxygen. This is concordant with the discrete solution of the original model.
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Fig. 6.17 BIT diagram for [7]. The corresponding diagram for later versions would include
terms for chemotherapeutic response, which is not considered here.

In this case the translation of the model into Λ is straightforward. Anderson
(2003) described the discrete conversion of systems of PDEs describing organism
migration. That solution is adopted here:

∂n
∂ t

= Dn∇2n−∇
(

χ0k1

k1 + c
n∇c

)
−∇(ρ0n∇ f ) (6.7)

∂ f
∂ t

= ωn− μn f (6.8)

∂c
∂ t

= −λ nc (6.9)

⇒ nt+1
l,m = nt

l,mP0 + nt
l+1,mP1 +t

l,m+1 P2 + nt
l−1,mP3 + nt

l,m−1P4 (6.10)

where t is time; f and c are fibronectin and TAF concentrations; n is EC population.
χ0k1
k1+c is a chemotactic function concatenating TAF decay into TAF diffusion. ρ0 is
the haptotactic coefficient ω and μ are fibronectin production and uptake constants.
λ is the TAF uptake constant. nt

l,mPi is the probability distribution for location [l,m]
at time step t.

The PDE system on the left is converted to the discrete, stochastic agent-based
model of EC movement (right) and diffusion was solved on the lattice as described
earlier. Anderson (2003) [6] develops a discrete solution to this system of equations,
which was adapted by adding a z term of the same form to Equation 3 in that paper.
Concisely:

∂n
∂ t

= X +Y + Z (6.11)
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X =
∂
∂x

(
Dn

∂n
∂x

−n
w

∑
i=1

χi
∂mi

∂x

)
(6.12)

Y =
∂
∂y

(
Dn

∂n
∂y

−n
w

∑
i=1

χi
∂mi

∂y

)
(6.13)

Z =
∂
∂ z

(
Dn

∂n
∂ z

−n
w

∑
i=1

χi
∂mi

∂ z

)
(6.14)

where Dn is the diffusion constant for migration (in this case, EC), m is a vector
of length w of molecular stimulants (in this case, TAF and fibronectin) and χ is a
migration bias for each m. The probability equation becomes:

nt
k,l,mP0 + nt

k,l+1,mP1 + nt
k,l,m+1P2 + nt

k,l−1,mP3 + nt
k,l,m−1P4 + nt

k+1,l,mP5 + nt
k−1,l,mP6

(6.15)
In other words, P describes the probability of an EC moving in ±x/y/z directions
(denoted above as k, l and m respectively). Using the central difference method each
P has the form:

Pr =
kD
h2

− kγ
4h2 (mq

position) (6.16)

The 3D grid on which this solution operates is the same as Λ therefore translation
into the simulation is direct. The two modifications made here are to simulate to the
angiogenesis rules in hours rather than the 1.5 day time step used in the original
model and to use a 3D version of the stochastic equation given on the right in Equa-
tion 6.15. Diffusion of TAF was implemented by reusing the diffusion model solved
earlier.

In the original model it was assumed that TAF concentration gradient was con-
stant, using an initialisation that had a downward gradient from cells to vessels and
the opposite gradient for fibronectin. This setup was replicated here simply by pre-
setting the lattice site states before starting the simulation but was simplified in that
it was linear rather than sigmoidal. This was merged with the setup described for the
Ribba decomposition except that the parental vessel is moved to the top (i.e. y = 0)
and ECs allowed to migrate from there (initially 1 cell density).

The integration between the Ribba/Gompertz model and the angiogenesis yielded
the BIT shown in Figure 6.18.

Novel ι and states added to Λ were determined:

• Endothelial Cell.

– Implemented as an individual agent within a lattice site.

• Vessel.

– Implemented as a Boolean state of a lattice site where the state is set to true
if an EC traverses through it (this is an extra embedded rule for the EC agent,
not shown in pseudocode above).
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Fig. 6.18 BIT diagram of Ribba (blue), Gompertz (red), Anderson (green) integrated model.

• TAF and Fibronectin.

– Implemented as float states for each all lattice site.

In addition to the rules for Ribba/Gompertz, rules for the Anderson model were
implemented as follows (all RC4 with existing Ribba/Gompertz rules):

If {true} natural TAF decay (decay=0.6) If {random ¡ Pb} create new EC If
{true} move EC population according to probability distribution If {true} uptake
of fibronectin (μ=0.1) and TAF (γ=0.1)

Where Pb is the probability of anastomosis occurring based on local TAF concen-
tration (non-dimensionalised as per the original models implementation). For the
sake of simplicity of implementation this was adapted to be a discrete step function
where:

0 ≤ c < 0.3 → Pb = 0 (6.17)

0.3 ≤ c < 0.5 → Pb = 0.2 (6.18)

0.5 ≤ c < 0.7 → Pb = 0.3 (6.19)
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Fig. 6.19 Growth is erratic as the slower time-steps for angiogenesis progress and deliver
oxygen to cells. The shape of the curve is very similar to previous growth curves, however
since the tumour is now placed on the side of the simulation space rather than the middle
growth appears to be a little more oscillatory since the cells are not free to divide and invade
equally in all directions.

Fig. 6.20 The initial tumour seed is planted (right arrow) at the opposite end of the EC seed
(left, arrow). The linear TAF gradient plane ensures a steady directional growth of vessel
(blue lines) to tumour site, carrying oxygen with it.
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Fig. 6.21 As the tumour grows outward the vessels back up on themselves (only a small
set of separate vessel paths are shown here for clarity). Eventually EC movement becomes
entirely random as the TAF bias depletes due to degradation.

0.7 ≤ c < 0.8 → Pb = 0.4 (6.20)

0.8 ≤ c < 1 → Pb = 1 (6.21)

With these settings for EC cloning, i.e. splitting of growing vessels, growth be-
haviour is quite similar to the Ribba curve except stretched over a longer time period
(Figure 6.19). Growth is exponential as oxygen supply to cells becomes ever more
available. However growth is capped as lattice sites reach maximum capacity.

As the ECs reached the other end of the simulation space, where c > 0.8, the num-
ber of EC duplications per time step increased exponentially. Even so maximum cell
number did not reach more than 7×107. This is because despite the availability of
nutrient the population constraint and death equalise any extra growth. A larger sim-
ulation space would of course remedy this. Growth of vessels in shown in Figures
6.20 and 6.21.

The integrated model can now be used for analysis of dependencies between pa-
rameters in silico that were not possible before with the original models,
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Fig. 6.22 Fluctuations in hypoxia, i.e. total number of cells in a lattice site whose hypoxia
state is set to true, whilst vessels grow.

e.g. the distribution and flux of hypoxic cells in a vascularised tumour as illustrated
in Figure 6.22.

6.5 Summary

KDA and ABI have been demonstrated with models from the literature. KDA has
been shown to be able to cope with model concepts very well and due to the generic
nature of integrative properties BITs from different models can be interlinked whilst
maintaining the integrity of the original BITs. This was shown by performing a
KDA analysis with 5 models from the literature. ABI was first demonstrated by de-
composing the diffusion model and subsequently with the Gompertz model, Ribba
(2006) and Anderson (1998).

6.6 Conclusion

The ABI strategy is able to decompose models into interaction rules, using BITs
to reveal behaviours and components, and hence enabling model integration. Ad-
mittedly more experimentation is needed since the KDA/ABI method seems to be
capable of more, however for this proof-of-concept the simulations done here suffice
to show the methods do work. Critically, agent rules derived from different models
can be combined in such a way within an ABS framework to yield a model that is
qualitatively similar to the individual components. Since the formalisms, granularity
and semantics of the original models are so different an integration like this would
otherwise be very difficult to achieve.



Chapter 7
Discussion

7.1 KDA/ABI Performance

7.1.1 The Knowledge-Driven Approach

Concisely, KDA was developed to describe model semantics, i.e. model focus and
scope, in a way that was computable (i.e. expressible in a language that can be
interpreted computationally and operated on. For example, possibility of scope pro-
cessing) and in which the process of model integration would be made more explicit
by means of providing a computational common ground. This is parallel with the
idea of using local interactivity in ABI as the common ground. KDA recognises that
the commonality between all models, regardless of focus, scope, scale or paradigm,
is that they all relate a set of system concepts, specifically behaviours, to a set of
foci. This is indeed at least true for the cancer modelling field:

• There is always a focus, i.e. the tumour or related subsystems/components.
• A focus is always attributed with state changes, i.e. behaviour.
• Though not always explicit, there is a persistent notion of associations between

behaviours, e.g. inclusion or exclusion of known processes or black-boxing.

Hence the generic classes and properties in KDA were distilled from an in-depth
literature review. Note the great advantage of the generic nature of KDA is that its
specification is not restricted to biological systems but any system that conforms to
the structure and definition of system as described in Chapter 4.

7.1.1.1 Case Studies

The 5 models that have been successfully described in detail with KDA in the pre-
vious chapter illustrate the point that there are actually very few concepts about
a model that cannot be described by KDAs basic classes (or extensions thereof).
One case that was not tested in this book is the non-functionality1 paradigm.

1 This was due mostly to the fact that there are very few non-functional models in the cancer
modelling literature if any at all.
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However even in this case, though behaviour and hence behavioural inclusion are
not an inherent property of the model, the KDA technique still affords the possibil-
ity of describing the model on the basis of its connection with the real system, i.e.
its focus and relationship between foci. The few concepts that could not be covered
by KDA are as follows:

• Chen (2004) [43]

– Logical rules pertaining to how oxygen and nutrients are replenished at the
edge of simulation space could be interpreted as assumptions. KDA can only
take this as far as those concepts exist, i.e. Oxygen and Nutrient Production,
Consumption and Diffusion concepts. However these also can be interpreted
as a property of the solver and hence have no place in KDA. They do not add
any knowledge of the foci and how behaviours are related with each other.

• de Pillis (2005) [56]

– None

• Mallet (2006) [119]

– Assumption relating to the equivalence of diffusion constants, to keep in line
with an earlier model on which this is based. This was generically inputted
into the BIT as a Diffusion concept (for each diffusible molecule).

• Markus (1999) [123]

– None

• Zhang (2007) [207]

– None

A consistent consideration whilst building these BITs was whether initial condi-
tions should have been included. Initial conditions do indeed affect behaviour of the
model and should be in the inclusion tree on that basis. However it can be argued
that they are also part of the solver, from which KDA is supposed to be abstracting
away and so were not included. This decision was also based on the fact that the
process of model integration was not contingent on any assumptions related to ini-
tial conditions. Indeed if the process of decomposition into rules is successful the
initial condition setup should be replicable within Λ .

7.1.1.2 Evaluation

Based on more than 40 decompositions, it can be concluded that the core require-
ments have been fulfilled:

1. High level of capture of the semantics of models.

• As described above, there are very few concepts that are not immediately
translatable into a BIT. In fact, not only can this approach describe almost all
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model concepts, it often exposes relationships that are not made explicit in the
model, e.g. the chain of behavioural inclusion.

2. Direct and dynamic mapping of actual system components.

• The representation should fully reflect the original modellers knowledge of
the system, i.e. what is termed expert knowledge in the literature.
– KDA requires the user to build relationships between systems concepts

and system components. Much of this will come from the model itself.
However integration of BITs requires the users knowledge of the system to
expose behavioural inclusions and equivalence as well as disambiguating
system components.

• The representation should be robust to change in or introduction of new
knowledge.
– There was not a single case in any of the integrations of BITs that required

a change in properties or classes (i.e. the structure and therefore semantics
of the BIT).

– A single implementation is robust to change insofar as rearrangement of
elements is concerned. However an integrated BIT is hypothetically more
difficult to manage in that once a major change is needed one may need
to go back to the integration (ABI) stage. That said, however, a change
in KDA (i.e. belief in the way the system is behaving) would constitute
a change in the model and so reiteration into ABI would be necessary
anyway.

3. High level of expression with a relatively simple representation to avoid error.

• Flexibility in what can actually be represented is vital as complex models of
complex systems will presumably go hand-in-hand with complex semantics.
Moreover these semantics may well incur human error when the (graphical or
exchange language) representation is difficult to understand or generate.
– Though BITs become progressively complex and difficult to draw neatly

one must weigh this minor disadvantage against what the diagrams repre-
sent. Even for simple models there is a wealth of semantics that must be
described and the BIT diagrams manage to do this using generic compo-
nents in a relatively straightforward fashion. Moreover it would seem that
there is a point of critical mass where the proportion of concepts in the BIT
actually starts to fall as more models are added to it since the existing BIT
already contains many of the behaviours already.

4. Portability

• Preferably the knowledge that Φ represents should be portable to alternate
applications, e.g. via some shared standard.
– A BIT including all models in the review chapter was constructed si-

multaneously with a corresponding ontology in Protg 2000 (not shown
here due to space constraint). Though strictly speaking this is not an
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ontology-building exercise2 due to the fact that this is a well-structured
technique that is based on a set-theoretic approach it lends itself to a simi-
larly structured language, e.g. an XML derivative.

It can be argued that point 2 above introduces ambiguity into this technique in the
sense that association of concepts, i.e. expert knowledge, is subjective to the user
who is interpreting the semantics. This ambiguity should not manifest at the indi-
vidual model stage, i.e. developing a BIT for a single model. The BIT should only
contain the concepts that the original model represents (whether or not it is con-
gruent with the users belief of the system). This does, however, present itself when
integrating BITs together. Take, for example, the generic nature of system concepts
in a BIT from hypothetical Model 1:

And subsequent integration with Model 2, which introduces Concept C:

Concept C now implicitly includes Concepts A and B due to the transitivity of
the <includes> property. It is conceivable that conflict can occur if Concept C is
indeed a child of Growth Dynamics, i.e. it fulfils the property of inheritance and is
validated as such, but does not include Concepts A and B in reality or the association
is explicitly negated in Model 2. Though this may at first seem to be a flaw, it does
actually highlight one of strengths of the KDA technique with respect to model
integration. If such a conflict does occur it would strongly imply that the two models
that are being integrated are in fact incompatible as far as current knowledge and
belief of the system and the concepts in question are concerned. One would certainly
not want to integrate models that have any fundamental differences in belief of the
way the system works. Not only does this cause conflict on the level of KDA, such
a conflict would manifest at the ABI level in the form of conflicting rules or agents
(ι). KDA therefore can explicitly highlight conflicts in association of concepts.

2 Note that the aim is not to explicitly define what behaviours and concepts are (only to
relate them with each other using generic properties). Concepts by themselves only attain
a meaning once related to other concepts. Moreover there is a clash between the meaning
of subsumption in ontologies and the meaning of the <includes> property: OWL and
related languages are therefore not a good choice for portability.
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7.1.1.3 Novelty, Current Works and Future Developments

The idea of describing model semantics is not entirely new. From the outset there
were a handful of supporting technologies including:

• Category theory.

– Abstract and flexible, this method can describe mathematical relationships and
morphisms. However it lacks the ability to relate the meaning of the models
to the real system.

• Semantic networks (SNs).

– Shows real promise in describing the relationships between concepts. Indeed
KDA shares many ideas with these, however SN representation of concepts
and relationships is relatively loose whereas KDA presents a structured and
defined approach.

• OWL-supporting technologies (discussed shortly).

Model description has taken shape in as many varied forms as the fields in which
they appear. Indeed different fields have had different requirements and hence di-
verse forms of model representation, as explained in in Chapter 4. Almost all have
taken a software approach, e.g. MSI and simulation communication technologies
from DARPA3.

KDA in Systems Biology

In the field of systems biology there are at least four standards for model description
that are predominant or emerging:

• SBML [91]
• BioPAX [173]
• CellML [114]
• CMDL [121]

SBML was originally meant for general model representation4 but evolved into the
exchange language of choice for molecular pathways. The XML-based language
separates two useful representations: pathway components and their mathemati-
cal relationships. SBML is however limited in its mathematical representation by
MathML, as is CellML, though this does not yet pose a problem as most models
in systems biology are P/ODE based for which MathML copes well. Importantly,
the planned Level 3 version of SBML will enable submodels to be embedded within
larger contexts. This is aligned with the idea of model integration and indeed will en-
courage integration of sub-models (modules). However, note that such integrations
will always be linear. The formalisations in Chapter 4 wholly describe this. Addi-
tionally there are no plans to include any description of model semantics though it

3 Defence Advanced Research Projects Agency (http://www.darpa.mil/)
4 Andrew Finney, personal correspondence.
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can be argued that some of these are implicit, e.g. compartmentalisation of reactions
and modularisation of (sub)models. Conversely, KDA cannot describe mathemati-
cal relationships explicitly but can describe model semantics and hence these two
techniques highlight two very different angles from which model integration can be
approached:

1. The traditional approach, wherein the mathematical formalisms are dealt with
directly. The possibility of model integration is severely limited in this case by
paradigm, focus and scale differences.

2. The conceptual approach, wherein the mathematical relationships are considered
separately with respect to focus.

Like KDA, BioPAX attempts to connect models to focus. Widely promoted as the
next step in describing pathway models after SBML its complexity, in the opinion
of the author, has hampered uptake by the systems biology community. BioPAX has
gone a step further than SBML in that not only does it allow mathematical rela-
tionships to be described, i.e. pathway models, it simultaneously attempts to build
an ontology of components. This is in line with the idea of having a computable5

form of focus as KDA does. However the responsibilities of mathematical model
description and model integration have been delegated separately to KDA and ABI
respectively in the work presented here whilst the authors of BioPAX have attempted
to do this concurrently (though admittedly model integration is not the primary aim
of the BioPAX project). Moreover KDA does not enforce an ontology as such on the
modeller whereas BioPAX uses a fixed set of concepts agreed upon by a number of
experts6 and therefore enables individualised model integration exercises. However,
this highlights a disadvantage of KDA in that once a number of iterative model inte-
grations have been performed the corresponding BIT diagrams and concepts therein
may well vary when compared to other modellers representations - the advantage
of disambiguity that BioPAX enforces is lost. On the other hand, there is no rea-
son why future developments of KDA should not adopt a strict approach so that
SystemConcepts, Systems and Components in particular are standardised. Indeed,
upon closer inspection, the vast majority of concepts in BioPAX already fall neatly
under the definition of Component and so a future integration of these projects is
highly desirable. Such an integration will allow modellers to use standardised com-
ponents that can be translated into Λ and reduce the chances of conflict between
modelling groups.

Similar is the case for CellML, which can be broken down further into two lan-
guages, AnatML and FieldML, which describe anatomy and mathematical proper-
ties respectively (though it seems development in both of these has slowed of late).
Indeed AnatML seems to be a macroscopic version of what BioPAX aims to do

5 Inference engines can be used to draw relationships between components and hence math-
ematical relationships can be exposed.

6 In fact cancer systems biology is taking a leading role in ontology-building and disam-
biguation of biological knowledge. The drive for therapeutic improvement has yielded a
number of projects such as those initiated by the NCI (discussed shortly) and the CViT
project for example.
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on the molecular level, i.e. description of what is defined as Component in KDA,
whilst FieldML was originally designed to express fields such as finite elements or
splines (and hence is a good platform on which O/PDE solutions can be described).
Again, the explicit mathematical components that CellML can describe are miss-
ing in KDA and conversely the expressive power of system concepts is missing in
CellML (barring the expression of ι , which AnatML specifically aims to state).

Whilst SBML, BioPAX, CellML and KDA have all focused on the model and
system the development of model integration technology by members of the Bea-
con Project7 at UCL currently aims to conceptualise the wealth of data that is used,
e.g. experiments that yield parameterisation values for models, in the form of a well-
structured repository [154]. This is a very important point as it provides the means
to explicate where data comes from and how it was derived, and incorporating this
with the idea of a lightweight model execution environment (Margoninski et al.,
2006) affords the possibility of a full MMS/IME. The supporting language, CMDL,
conforms to the linear integration strategy8, albeit a more complex one than that
of SM and other previous works. This is because CMDL provides multiple inter-
faces for each submodel, i.e. the solver is separated from the actual model. Note
that model interfaces and connections need to be provided, as expected in any linear
integration. Though engine wrappers and connectors can be made generic enough
to deal with individual models on a paradigm-by-paradigm basis9 it seems that the
development of this book will be contingent on building a rich enough set of wrap-
pers to deal with the huge diversity of model types in systems biology. In contrast,
KDA is independent of paradigm since the point of using two steps (KDA/ABI) is
to separate the model meaning and model implementation.

Interestingly CMDLs concept of a biological phenomenon (aspect in the origi-
nal metamodel, see Figure 2 in [69]) appears to be concordant with SystemConcept
in KDA although the phenomenon element in CMDL contains textual information.
Again, this highlights the fields current stance to that which is described as focus
and scope in this work. Much of this metadata is kept in textual form and prece-
dence has been given to the mathematical properties of the model itself. In contrast
by defining simple, extendable components KDA provides a set-theoretic way to
describe aspects and hence make these computationally meaningful10. Additionally
the compartment element in CMDL bears close resemblance to the component and
<partOf > relationship in KDA. There is therefore a possible point of bridging be-
tween these methodologies here. In the opinion of the author CMDL can greatly
benefit from a straightforward implementation of KDA in addition to the aforemen-
tioned textual information in the phenomenon and compartment elements.

CMDL/KDA as a whole could therefore provide model description, and thus a
standard of model exchange as well as a platform on which ABI can be automated
(discussed shortly), at a level that is not yet present in the field of systems biology.

7 http://grid.ucl.ac.uk/biobeacon/
8 Contexts (inputs) are fed into the engine (solver), which provides an interpretation(s) (out-

puts), which can in turn provide context for another submodel(s).
9 As far as author is aware, only P/ODE have been tackled so far.

10 KDA would obviously need to be implemented into a language, e.g. based on XML.
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This does however raise the question of controlled vocabularies, i.e. consortium-
driven agreement on SystemsConcepts, as was the case with BioPAX. The rapid
expansion of controlled vocabularies such as the internationally driven open-source
EVS11 project from the National Cancer Institute (NCI) is a good start. Though this
does not address model foci it does hold promise in terms of internationally coordi-
nated efforts to ontologise cancer-related data. In fact the National Cancer Research
Institutes (NCRI12) Informatics Initiative aims to create coherent and compatible
informatics platforms enabling the deposition of a wide range of accessible cancer-
related data. This is certainly an important step forward in bringing expert medical
knowledge to systems biology, and hopefully in explicating a diverse set of System-
Concepts for use in KDA.

One of the greatest disadvantages of the KDA methodology is the fact that every
model, which is usually published either as plain text in a paper or put into a mod-
elling language such as SBML, must be re-conceptualised into SystemConcepts,
etc., manually. There is no possibility of automating this since none of the exchange
formats provide a way to describe these concepts (and hence there is no obvious
mapping) and of course it is challenging to extract this kind of information from
plain text (even assuming all the information that is needed is there). However, the
benefits of manual generation far outweigh the effort. Along with the mathemati-
cal description the connection a model has with reality is concretised into a format
that software can then begin to use intelligently. In the opinion of the author this
is one of the next great challenges for systems biology. Not only to model biolog-
ical complexity but to provide intelligent software systems that can infer knowl-
edge about the biological system, extract and present information and hence pro-
vide the means to understand the system. Ultimately in the case of cancer research
this means determination of therapeutic advantage by (i) enabling model integration
and hence a complete simulation of tumour behaviour and (ii) explicit definition of
system concepts and their relationships leading to better human understanding. An
example of why such intelligent software systems are needed has been alluded to
earlier in this section where the transitivity of the <includes> yields relationships
between SystemConcepts that were not explicitly stated in the original models. As
more and more models are expressed in KDA the associations between elements
become massive and hence a software aid becomes necessary. Indeed such an in-
ference technique would represent a truly exciting future development for this book
- as MI → ΦI one comes a step closer to possessing a computational model of the
system, not in the mathematical sense but in a way that enhances the ABI strategy
(discussed shortly). With that in mind considerable effort was put into searching
for an appropriate technology to demonstrate this. Two immediate candidates were
Protgs inbuilt inference engine (which was subsequently dropped because of irregu-
larities), KAON213 and Jena14, which are both open-source projects. There are other
packages but most are commercial or lack support.

11 http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore overview/vocabulary
12 http://www.ncri.org.uk/ and http://www.cancerinformatics.org.uk/
13 http://kaon2.semanticweb.org/
14 http://jena.sourceforge.net/inference/
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Overall KDA has successfully fulfilled all design requirements, enabling both
model (and therefore system) description and ABI; but what is especially excit-
ing is its future applications. The integration of ideas across CellML, CMDL and
BioPAX would yield an extremely rich language that not only provides the ability
to exchange models but also enables model reuse, integration and redevelopment.

7.1.2 Agent-Based Integration

7.1.2.1 Model Decomposition: Genetic Algorithm Performance

At the core of the ABI method is the optimisation algorithm that can enrich an initial
set of rules to perform in Λ . The reasons for choosing GA were as follows:

1. A large solution space was always expected, even when starting off from a good
initialisation set. This is the trademark problem for which GAs in particular have
proved to be especially good [127].

2. The structured and compartmentalised form of string-based rules made GA a
natural choice when considering how to perform mutations, crossover and mating
on rule sets, e.g. mutation on numbers and operators and hetero/homogenous
crossover between rules.

3. There is a history, albeit a brief one, of use of GA in rule optimisation for CA
(discussed shortly) and hence it was already a proven technology for such use.

4. The evolution of rules can be tracked, i.e. logging the evolution of each individual
at each generation which could indicate how best to perform optimisations of a
similar kind in future.

a. A corollary to this is that GA is not a black-boxed approach.
b. This is not yet implemented in the software produced here but represents a

very important future enhancement to the software.

5. A number of candidate solutions can theoretically be found.

a. Whether this is an advantage or disadvantage depends on how the results are
used. If candidate solutions turn out to be very similar (in terms of structure
and magnitude of variables) then there is no problem. However if there are
hugely varied rule sets then it must be up to the modeller to decide what is
biologically feasible based on current knowledge.

6. GAs are very configurable: the GA had 39 configurable attributes based on prob-
abilities for mutation, crossover, mating (and sub-attributes thereof consisting of
operator types) as well as choices based on fitness function attributes.

a. Whilst this can be a great advantage the reverse argument is that too many
choices can lead to a situation where the optimal configuration for a specific
experiment is difficult to determine. This is the reason why a benchmark was
necessary, i.e. to determine the best conditions for rule enrichment. It must be
noted, however, that though the same configuration is not expected to be op-
timal it does at least give an approximation. In other words, the configuration



136 7 Discussion

for enrichment for the diffusion model rules is unlikely to be the optimal con-
ditions for other more complex models but at the very least indicate an interval
in which one can avoid GA individual extinction or a hanging population.

7. Fault tolerance: a small number of good individuals amongst a population of bad
performers can eventually come through after a sufficient number of generations.
This is levied against the stochastic characteristics of the approach in that good
performers may well loose their advantage due to random mutation.

8. Relatively straightforward to program and integrate with the simulation software.

As with any method there are disadvantages:

1. There are potentially a massive number of simulations that must be performed to
find the optimal solution, especially since the starting population in most of the
experiments performed here consisted of 100 individuals. This can make single
run times arbitrarily long. This was combated in three ways:

a. Simultaneous application of the fitness function. The original model was run
alongside the simulation and the simulation logs were sampled periodically to
check for key states, e.g. population number. A cache of best performers at the
same time points were stored. If the current simulations state values at those
time points had an error larger than that of worst performer in the predefined
subset of best performers then it was immediately rejected and simulation
was stopped. Otherwise it is added to the best performer list, and displaces
the bottom-most individual from that list.

b. A cache of the string-based rules so far performed is stored along with the
performance of that set. If the same rule set was encountered the simulation
was not performed.

c. Parallelisation: 15 machines were used and split into 3 quintuplets to perform
3 simultaneous GA instances.

2. Too many configurable components (see earlier point).
3. The model runner embodies the traditional problem in model integration, i.e. the

need for a communicative interface.

a. This would be the case for any method.
b. Integration with SOAs would greatly reduce this problem.

4. Use of GA may well be excessive for some decompositions.

a. GAs are especially good at finding solutions when there are many variables.
b. Other methods can be used since those parts of the software were designed

generically.

Optimisation is an entire science unto itself. There is a plethora of methods that are
continuing to be developed. GA was chosen as the most natural and straightforward
choice, however there are several alternatives that could be used considering the
qualitative as well as quantitative optimisation that is sought:

1. Neural Networks, Bayesian Networks and other learning algorithms.
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a. There is a vast array of neural network and other learning methodologies cater-
ing for a multitude of problem sets. However it was not clear how a learning
algorithm could have been implemented considering the core elements in-
volved, i.e. an initial rule set, a target behaviour and a required target rule
set.

b. One way in which these could yield fruitful results is the learning of rela-
tionships between rules that have already been optimised and original model
attributes, e.g. parameters. This is desirable because the ABI strategy yields a
result (rules) for a particular model instantiation, not a model class. The more
generic rules can be the more powerful ABI is as an integration tool.

c. Another way these can be applied is reinforced learning of rules in agents
during simulations. A disadvantage of this method would be that rules would
be black-boxed. An outline of the workflow would be:
i. Initialise the agents in Λ with naive nets embedded in rules, i.e. inputs

would be states/environment, etc. and output would be next state/location
for agent.

ii. Begin simulation.
iii. Each time step is evaluated by fitness function.
iv. Good/bad performance back-propagated to nets.

d. Effort was put into implementing a GA-modifiable module for this book by
adapting Joone15, though it was never put to use.

2. Artificial immune systems show some promise in searching large state spaces.
The principles that govern the immune systems learning are, however, quite sim-
ilar to that of evolutionary techniques. They have been especially identified as
good candidates for nonlinear pattern recognition and hence may hold more
promise in recognising behaviour concordance in the fitness function rather than
an optimisation technique itself [54], as well as in a similar role as that described
above.

Other Improvements

An alternate line of investigation that should be undertaken is in the way GA actually
integrates itself with the simulation environment. A vast improvement was observed
simply by reprogramming the fitness function to simultaneously measure fitness
during the simulation process.

The idea of more efficient and smaller simulations could be taken further by bor-
rowing from Patch Dynamics theory. For example, let Λ be the simulation space
with I interactors and ιi ∈ I. Also let space and time in Λ be discretised, ∂xyz ∈ D
and τk ∈ T with both ∂xyz and τk considered intervals. The original model can be
abstractly symbolised as f (d,t,X) where X is a vector of inputs (parameters or
inner functions). One can now develop a new GA scheme wherein fitness is eval-
uated at predefined patches in the simulation, both in space and time, such that

15 http://www.jooneworld.com/
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f (∂xyz,τk,Xxyz,k) is evaluated for its micro-behaviour in Λ but not in intervals in be-
tween. This would greatly reduce simulation and evaluation time as a side effect but
more importantly this raises an exciting avenue of investigation. Decomposition of
behaviour of a model in its entirety could hinder the progress of a GA; the burden of
this complexity is lifted from the GA in this new approach and could lead to more
positive results for the most extensive and complicated models.

7.1.2.2 Case Studies and Analysis of the KDA/ABI Strategy

Case Studies

The diffusion model was chosen as the first decomposition since:

1. It is a relatively simple PDE.
2. Many models incorporate it, or variations of it, and hence it is a valuable starting

point.
3. It has a strong theoretical basis.

The movement of molecules, metamodelled by lattice state changes, drove the need
to create specialised State-implementing classes that reciprocated molecular move-
ment. This was done in response to initial experimentation where the GA could not
develop the right combination of simple rules that would ensure mutual, i.e. equal
and opposite, state changes in adjacent sites, hence conserving mass. In other words
if there is c flow from lattice l1 and l2, where the rule being executed belongs to l2,
there must be a corresponding loss of c at l1. This was an interesting result in itself in
that such an optimisation would have required a co-evolutionary strategy, i.e. a rule
for incoming and a rule for corresponding negative flow between the same lattice
sites. This is a clear indication of the criticality of three points of the optimisation
process:

1. The importance of an optimisation algorithm that can co-evolve such rules.
2. Prior knowledge is needed and embedded in initialisation of rules (in this case,

conservation of mass).
3. The dependence on software components that can aid the optimisation process: in

this case the State-implementing classes that automatically ensure conservation
of mass.

The GA traversed more than 1700 simulations16 before reaching a solution. It is
interesting to see the basic form of the resultant rules:

• If{true} move in x,y,z-direction [((D/d)× c)/a/b]

Where a and b are constants, D/d is the given diffusion constant as a ratio of d
and c is the concentration in the parental lattice site. In actuality all results were
more complex than this but could be distilled to this form. For example, due to

16 An exact number cannot be given since logging was intermittently suspended for
efficiency.
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chromosome replication and mutation, some rule sets were found in duplicate but
their mathematical effect could be distilled to the form shown above17. The best
results for a were found to be 5.698, 5.744 and 5.898; best results for b were 1.976,
2.132 and 2.134 (all values given to 3dp, actual values in 14dp). This is a very
exciting result as it closely reflects the theory on which Ficks 2nd Law is actually
based. D/d represents a resistance of molecular flux based on the interface between
lattice sites. A von Neumann neighbourhood was employed, hence the divisor that
tends to 6 (a), i.e. the number of neighbours through which there is a 2D area that
flux can pass, and correspondingly there is an equal chance of flux in the negative
direction for each pair of lattice sites based on the current concentration (c/2) and
hence b tends to 2 [135].

The significance of this result, even though this is a relatively simple model,
cannot be overstated. Not only has decomposition led to a rule set that solves the
original model the rule set actually reflects what is happening on the molecular
scale18. Yet this result should not be surprising. With the right initialisation rules
and conservation rules implicit in states it should be natural that such a simple local
interaction be evolved (even though the actual forms of the rules in the successful
result sets were more complex).

The Gompertz model, being a phenomenological model, could only be decom-
posed by KDA into a very small set of concepts. Moreover the model does not yield
any information about the mechanics of the system and hence there could never be
any determination of ι (barring population number and hence cells as agents). Such
being the case there was little for the GA to operate on and establish a successful
rule. Indeed the initial rules that were used to find a solution were based on the fact
that the curve is rate dependant (i.e. it can be expressed as an ODE). It is interesting
that none of the 18 GA runs yielded a result. In a separate 2 experiments the pop-
ulation of cells was implemented as a global variable with the same rate-dependant
rules. It would seem logical to assume that the GA would be able to find a solution
to a relatively simple model however even in the 2 runs with rate rules on the global
variables a solution could not be found. This could be a case of a GA being an ex-
cessively forceful method seeing as there are relatively few variables to operate on.
This is reminiscent of the findings of [29] where simple binary CA rules could not
be optimised.

A successful result could only be procured once finer grained concepts were
introduced. This highlights an aspect of the KDA/ABI strategy that has already
been mentioned earlier, which is that the method does require human interaction

17 An inbuilt mechanism to reduce rule complexity would be an excellent addition to the
GA software. Not only would this simplify rule interpretation by the modeller it would
greatly reduce execution time since the number of rules to be executed is potentially cut
(certainly in the diffusion case the rules were repetitive, often identical, with mathematical
components that could easily have been concatenated by simple arithmetic.

18 Note that the best results have tended to the theoretical values of 6 and 2 for a and b respec-
tively but not reached exactly. This is probably a side-effect of using the Euler difference
method, which accumulates error with each progressive step.
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and knowledge to complete integrations. This is not however a major disadvantage -
human interaction is always expected. Even with the linear integrations described by
Geoffrion (1989) [79], Dolk (2000) [62], Villa (2001) [187] and Takahashi (2004)
[177] a certain amount of human input has always been needed. In conclusion it has
to be said that inputting additional knowledge into the BIT that is not present in the
original model is not in KDAs mandate. This is perhaps a limitation of the approach
in that purely phenomenological models do not yield enough information.

All subsequent experiments were extremely encouraging. As explained in the
previous chapter, in the proof-of-concept implementation, the Ribba model was sim-
plified for ease of implementation, though note that this would not have affected
the integration process aside from computational tractability. The pathway model
was left out specifically because of the large number of components (i.e. molecular
species) that were involved, which would have had to be implemented to each cell
(agent) individually. Obviously with the limited resources available (in fact even if
there were more nodes) this would have imposed limitations on the integration. This
is probably why the original model was implemented in 2D, since the number of
possible cells in the simulation space given the population-based growth constraint
would have only been a fraction of the number observed in a 3D space. Nevertheless
it must be said the pathway model, implemented as a Boolean network, could still
have been implemented with a metamodelling approach, such as asserting same-
state mechanics within lattice sites. This is exactly what was done with population
number with this model, i.e. instead of modelling cells individually population num-
ber (separated by cell cycle stage) was implemented as a lattice state. As the results
show this actually works very well, especially since the simulation successfully im-
itates the behaviour of the original model, and is in fact a viable solution to the scale
problem.

Integration between the Ribba et al. model and the Gompertz model was
relatively straightforward seeing as the Gompertz SystemConcepts, being entirely
phenomenological, subsumed the behaviours of the Ribba et al. SystemConcepts.
Under the belief framework it must be assumed that phenomenological-derivedrules
and parameterisations must take precedence over child rules and parameterisations.
This is because in KDA the use of the <includes> property asserts total behavioural
inclusion. This idea is best illustrated graphically:
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KDA asserts the rule set relation ρ1 ¿ ρ2, i.e. there exists an unknown rule set
of unknown concepts that additionally, along with ρ2, contribute to the behaviour
elicited by ρ1; ρ2 can never fully explain phenomenological behaviour and thus in
a belief framework the parameterisation and rules of ρ2 must be superseded by ρ1.
Hence in the case of Gompertz/Ribba integration preference of population thresh-
olds and cell cycle lengths was given to the Gompertz rules.

As Figure 6.16 shows the integration has had the effect of shifting the original
Ribba curve, which was less constrained by population, towards the Gompertz curve
(although admittedly the original Ribba et al. model was almost Gompertz-like al-
ready). The tighter population constraint also explains why the maximum growth is
achieved earlier and lower. Also, the introduction of a death term ensures that cells
that fall into G0 do not simply revive and continue growth. The additional com-
plexity of rules contributed by the Ribba model maintains its original behaviour,
which is a significant finding. Had the system been chaotic in the sense described
previously one would expect erratic fluctuations due to changes in initialisation or
rules. Instead, as the original Ribba model showed when vessel number and other
characteristics were changed, the behaviour is not erratic. This is a key property that
separates random and chaotic systems from ordered and structured systems.

Note that though the Gompertz model is wholly phenomenological, and that one
should not expect its behaviour to contribute any value to a finer-grained model
that is totally subsumed by it, the integration between the Gompertz curve and the
Ribba model has yielded information about the behaviour of both. The dependence
on population constraints and cell cycle length in the Ribba model is highlighted
and it has now been shown that a more Gompertzian-like growth can be achieved by
finding the right balance between these factors, which is provided by the integration.

Evaluation Based on Case Studies

These arguments lead one to the crucial point of model integration: Does integration
actually yield a model that is of more value? Does it shed any more light on the
behaviours of the original models and the behaviour of the actual system? In this
case:

• The resulting model yields a richer behaviour than the original parts.

– Neither model show similar behaviour, aside from growth in population and
an eventual levelling in the Ribba model.

• The Gompertz model does not take into account such things as oxygen levels, but
are taken into account macroscopically as population constraint. This can now be
divided into both population constraint by neighbouring numbers and constraint
by hypoxia. In effect the Gompertzian explanation of the microsystem is richer.

• The Ribba model shows unrestrained growth. Integration has yielded a model
that is far more familiar to MTS growth since this is what the Gompertz model
was validated against.
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• The resulting simulation is now defined on the local level, which is more than
what the Gompertz model could describe.

– Variations on parameterisation, such as vessel number, oxygen diffusion, etc.,
can now be simulated with relative ease. These only require a change in the
corresponding parameter in rules and the initial setup, e.g. see Figure 7.1
below.

Fig. 7.1 The effect of decreasing oxygen diffusion coefficient (compare to Figure 6.13. Pop-
ulation number is drastically reduced (the same setup with 1 vessel was used). The growth
shape is maintained since the result of reducing the coefficient by a factor of 100 effectively
reduces the capacity of oxygen to reach its targets in a measure that is related to the coeffi-
cient and hence the hypoxia threshold is reached far faster (blue line). A reduction of a factor
of 1000 cripples growth almost completely (red line).

The integration between Ribba and the Gompertz function was a proof-of-concept,
however one can imagine a scenario wherein the Gompertz or logistic curve has
been fitted from actual data, which then needs to be integrated with a pre-generated
model. Curve fitting is a regular and necessary step where a model will be devel-
oped first and parameterised after experimental results have become available, e.g.
Chignola (2000) [44] attempted to parameterise their growth model with MTS data
so that it would behave sigmoidally. Viewing data as a model of the system, this
can also be viewed as a model integration of a kind. Chignolas model was relatively
simple and only involved the optimisation of two parameters to explain growth, i.e.
proliferation and death. In the Ribba model case the pre-defined model was a ma-
ture description of the system already and the ABI method was able to enhance its
behaviour, i.e. fit it to a known growth behaviour. It is quite conceivable that instead
of using a model at all in this methodology, one also can integrate (i.e. optimise
rules) directly from experimental data. Whilst this is possible theoretically it has not
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yet been attempted here but is certainly a line of future study. This highlights the
versatility of the ABI method.

The Ribba/Gompertz integration also draws attention to peculiarities of using this
discrete method. It was observed that the latter part of the procured curve actually
fluctuated in rate after the limit of growth had been reached. Though growth had
seemed to steady, upon closer inspection it was found that a lattice site could often
exceed its population threshold by almost double. This was in fact because of the
metamodelling methodology used to avoid modelling individual cells. Lattice site
states denoted population for that lattice (separated by cell cycle), which would halt
growth once the population or hypoxia threshold was met. However, on occasion,
when the population was below the threshold and for a single time step there was
enough oxygen for the hypoxia state to be set to false a small fraction of cells that
had migrated from neighbouring sites had the opportunity to multiply despite the
population threshold (since that logic step had already passed). If one were to as-
sume that the population threshold was purely a space constraint then of course such
an occurrence could never physically take place. However note that the explication
of KDA is advantageous in this situation. Indeed these very caveats highlight the
need to integrate knowledge together. In this case additional rules need to be set,
or a reordering of logic is necessary, that redefine proliferation and cell movement
such that space constraint is not violated. This method therefore not only enables
model integration but also encourages further integration by highlighting missing
behaviours19.

Conversely it is also possible to exclude behaviours deliberately. In this example
the pathway module was left out as well as the radiotherapy module. Note that both
can still be included if desired: the pathway model was discussed earlier; the radio-
therapy model is governed stochastically with cell death or cell recovery occurring
according to two probability distributions (simulating single and double strand hits)
based on the pathway model status. This could have been implemented as follows
within the existing rules:

• If {not in G0} Update pathway model

– See Boolean updates, Table 2 in original paper.

• If {true} generate random number.

– If {within limit [0,x]} single strand break.
– If {within limit [x,y]} double strand break.
– If {within limit [y,1]} no break.

This particular part of the model can now be excluded by simply removing the rules
that were derived for the module. Modularised models are relatively straightforward
to dissect in this manner. Of course this is also feasible in linear integration, if in-
puts/outputs can be matched up, however the difference is that now individual rules

19 Of course this is always down to interpretation and flexibility. It might be the case that the
inclusion of additional behaviours is not necessary, depending on the application.
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(i.e. behaviours for particular agents) can be dissected with more ease and within
the context of the real system.

The successful integration of the angiogenesis model was an encouraging devel-
opment since many models in the literature have fallen short of describing vascu-
larisation. In this particular case the stochastic solution, i.e. a biased random walk,
devised by Anderson was completely adaptable to the simulation software and no
GA optimisation was needed. It should be noted that a larger simulation space is
needed as this was the only limiting factor to growth. However the integration itself
was seamless since all rules represented RC4.

The growth curve is reminiscent of other vascular models in the literature (see
[120]) where growth is less-than-smooth, unlike the Gompertz curve, but nonethe-
less exponential. The exponential phase was uneven, as seen before, but this was
now additionally due to erratic oxygen supply. After that phase, however, models
tend to differ depending on the parameterisation used. For example, Zhang [207]
report a termination of growth as constraining factors limit gliomas, as seen here,
whereas Arakelyan (2002) [10] report unrestrained growth. This highlights the
fact that different models have been validated by different data and this must be
taken into account during the integration process. Indeed KDA should reflect this
information.

Correspondingly there is a general trend of growth in the number of hypoxic
cells in the simulation space. The oscillations seem to be occurring with the course-
grained rule updates of vascularisation (every 36h) causing spurts of expansion.
The point is that the integrated model now shows vascularisation as well as growth,
which would be something not possible to do without a lot of effort (or starting
afresh) from the original models. Certainly the resultant model is producing inter-
esting, biologically relevant behaviour - the hypoxia curve in particular is of inter-
est. It is a well-known fact that hypoxic cells are particularly resistant to radiother-
apy [168] since they are arrested in the cell cycle and therefore determination of
the distribution of both hypoxia and cells by cycle position in a vascularised tumour
is an extremely useful metric. This integration affords the possibility to achieve this
since the original models separately contribute oxygen distribution, cell growth, cell
cycle and vascularisation.

As always, there are improvements that can be made relating to both the inte-
grated model and the simulation software itself:

• TAF production needs to be introduced.

– The vessels grew up the TAF gradient, however once TAF had depleted EC
movement was more random.

• Fibronectin production needs to be introduced.
• Blood flow

– Blood flow itself can shape vascularisation and have a dramatic effect on over-
all topology. A number of LB models, as well as PDE models, of this kind
exist and so it is well worth investigating integration of these models.



7.1 KDA/ABI Performance 145

• Vessel maturity

– Arakelyan (2002) [10] point out the importance of vessel maturity and its
effect on oxygen distribution and tumour dynamics. Currently vessels are as-
sumed to be immediately viable, which is not correct in the biological sense.

• A finer-grained lattice is needed

– A vessel is currently defined by a Boolean state for that lattice site (i.e. the
entire lattice site is converted to a vessel). A finer grained approach could be
to have more inner lattice sites, however introduction of shaped agents that
can traverse the simulation space would be a better option.

• 3D Visualisation and analysis components

– This would greatly aid the analytical power of the ABI approach. Normoxic
and hypoxic distributions in situ with vascular distribution would mark a sig-
nificant step forward when coupled with the fact that the integration process
can add even more behaviours.

7.1.2.3 KDA and ABI as a Whole: Evaluation and Future Directions

The core aims of the envisioned integration strategy for this project were:

• To perform integrations that are model paradigm independent.

– This is ensured by the decomposition into local interaction rules.

• Non-violation of focus and scope.

– This is ensured by KDA.

• Simultaneous means to a 3D visualisation.

– Though not yet implemented this is possible to achieve.

Analysis and Comparison With Other Methods

An optimisation method that translates the model into local interaction rules ensures
paradigm independence. However one could argue that the job of paradigm integra-
tion has been offset to the optimisation algorithm. To some extent this is true - for
all integrations described in the previous chapter the implementation of the fitness
function worked in conjunction with a specialised model runner implementation
with which it was comparing results. Of course writing a specialised implementa-
tion for each and every model reduces to the same problem faced by any SOA-like
integration strategy such as SBW, i.e. interfaces for every model.

Indeed this very track was explored early in the project with the development of
SCIpath [141], formerly MicroCore, which was originally engineered for pathway
visualisation and capability for eventual model execution. The need for an inte-
gration strategy was quickly identified and a SOA-like architecture was therefore
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devised under which different types of data could be exchanged in a structured way.
The implementation involved exchange of basic data types in lists or matrices, com-
municative objects such as ODBC drivers, SOAP interfaces, model language inter-
faces such as SBML (exchanging nodes and reactions) and a GUI API (for remote
GUI invocation). Due to time constraints this could not be developed further, how-
ever with SBW and the MMS-like system devised by Saffrey [154] it is now possible
to envision a process chain, as illustrated in Figure 7.2, wherein application-level in-
tegration tools use their own solvers, or the models solver, to run/simulate the model
and the rule optimisation engine operates under the SOA by querying for data. Such
a coupling of technologies would mark a state-of-the-art in model integration for
systems biology and represents a real solution to a very complex problem.

Fig. 7.2 Desired integration between SOAs and the software produced in this project. SOAs
communicate via interfaces to models and are able to extract data based on a query (imple-
mented as, for example, SQL). This provides the information needed to optimise rules, which
are eventually stored with associated agents (”Jiva”).

The questions that are arise are: (i) What does ABI offer that these other soft-
ware (linear) integrations do not already provide by themselves? (ii) What does the
coupling of technologies described in Figure 7.2 provide to modellers that has not
already been addressed? Concisely:

• The possibility of model integration when there are few or no connecting vari-
ables.

– Linear integration is limited to those models that can be connected by common
variables, i.e. matching inputs to outputs and vice versa.

– Note that this does not negate the value of software infrastructures such as
SBW and SCIpath: the schema illustrated in Figure 7.2 identifies single model
interfaces for the optimisation algorithm.

• Understanding on the level at which the real system is actually operating, i.e.
local interactivity and agent-level understanding.

– Provides a more in-depth understanding on the system.

• Simultaneously relates output to agents.

– Experimentation can then take place outside the context of the original mod-
els, e.g. rules for a certain agent can be modified and the effects observed. This
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was demonstrated in the previous chapter when varying cell cycles lengths and
synchronisation was directly simulated.

• Readily parallelisable.
• Possibility of 3D visualisation output.

Moreover note that ABI does not counteract the freedom of using linear integra-
tion. The simulation software, with its own interface to SBW or MRM/CMDL20,
can run linearly integrated models or form part of a linear integration by expos-
ing agent/global states or run them wholly within rules just the same as any model
would do integrated into these SOAs. This is illustrated in Figure 7.3.

The most obvious advantage, and indeed the driving factor that led to ABI devel-
opment, is the fact that many integrations cannot be achieved by the linear strategy
even when paradigm, focus, scale and scope are compatible. There are two predom-
inant views of this type of integration:

1. The mathematical view wherein integration takes place focusing on the mathe-
matical properties of the models.

2. The software oriented view, which takes into account point 1 and additionally
provides the infrastructure of communication of software components.

Fig. 7.3 Linear integration is still achievable in ABI in two ways. Firstly a rule can be em-
bedded with the logic for linear integration. The input would be the local state and output
would affect those states. A corollary to this approach would be a parallel linear integration
that influences the behaviour of agents in the simulation. Secondly the global state of the sim-
ulation can be linked to linear logic to affect both global and defined local states. In both cases
note that integrating SOA-like architectures, with MPI or MSI communication, can achieve
a chain of simulation spaces. Hence a far larger scale simulation can be envisioned wherein
each component represents, for example, a single system such as an organ.

As a validation of ABI it is worth testing whether the Gompertz function, diffusion,
and various components from the models by Ribba and Anderson integrate linearly
in either view.
20 Model Run Manager that uses CMDL (a name has not yet been given to the architecture

described by [154]).
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The Anderson model already incorporates diffusion of TAF. To integrate diffu-
sion of any other molecule, an extra term would need to be put into the system of
equations. For it to have any meaning it would need to be related to at least one
component of the model. Here is the first hurdle of an unstructured linear approach.
In the absence of any obvious connections there is a need for (i) additional knowl-
edge and (ii) translations between connections (or both). Hence the introduction of
a KDA-like approach is already of great benefit since it provides a structured, share-
able and meaningful way to represent the interactivity of the models. Integration
between the Gompertz model and diffusion provides a more apparent connection,
i.e. that of concentration of nutrient and cell number and more atomically, B and C.
Again a translation component would be needed to model the connection between
growth and nutrients and it is not immediately obvious how this could be imple-
mented. Note that the modules in the Ribba model actually were integrated linearly
since there was a straightforward connection between the state of the pathway and
the decision for growth based on cell cycle (modelled as an equivalence vector of
Booleans in the network) and tissue dynamics, which was in part made possible by
the particular solver on a 2D lattice. This model is therefore relatively open to a
linear strategy in that any one of the components in the chain (molecular, cellular
and tissue models) are replaceable so long as the replacement model has the same
inputs and output. However even in this case the other models above are not readily
open for integration. Hence in the strict mathematical sense none of these models
can actually be integrated in any obvious way.

In a software-oriented view the implementation of the models, as well as asso-
ciated solvers, need to be communicable. In this case the diffusion and Gompertz
models, being relatively straightforward to implement in virtually any programming
language, should not pose a problem. Moreover they both can be translated into
a communicative language such as CellML in the form of MathML components.
Such is the case for the angiogenesis model too. These are straightforward because
CellML, and indeed most communicative languages and architectures that enable
linear integration, have been tested and validated against DE-based models (and
rightly so, seeing as most of the models in the literature until recently have been
DE-based). It is of note that none of these models have actually been translated into
CellML, SBML or CMDL as far as the author is aware (except for diffusion, which
forms part of many models).

On this analysis one can see that linear integration is more suited to model-
growing situations. A use case would start at a model or set of related models which
can be extended by virtue of existing parameters and variables. For example, one
can identify key variables that limit the current set and that can be expanded to in-
clude other sets of models, and hence the linear approach aids the growth of the
model set. One of the great advantages of this type of integration is that models can
be kept generic, i.e. in their class form rather than instantiation form. Recall that
models can exist in these two forms, e.g. the equations given above are all in class
form whereas those used in ABI were in instantiation form. This means that the lin-
ear structure along with the calling sequence will work with any instantiation of any
of the modules, whereas the ABI methodology does not have this benefit. Instead
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rules are optimised for model instantiations and hence are only applicable to that
instantiation unless a definitive relation between the rule parameterisation/logic and
the original model can be found. In the case of diffusion this was straightforward
but for more complex models one can expect to find correspondingly more complex
relations. This will perhaps be one of the greater challenges ABI faces but a solu-
tion represents a great advance in the field of model integration and therefore future
research in this particular area is definitely worthwhile.

KDA/ABI provides an abstraction of models such that the modeller can interact
with the models regardless of their original basis and implementation. The closest
work to KDA/ABI outside of systems biology is that of Vangheluwe (2002) [184]
who directly tackles multi-paradigm model integration by providing an abstraction
theory involving the iterative deprecation of components to simple ideals. In many
ways this is similar to ABI in that a common ground is sought. The theory subscribes
to a discretisation of the original model(s) by thresholding outputs into intervals and
ultimately into sets of Boolean states (i.e. binary automata). However not all models
can be decomposed this way and there is a huge loss of granularity in such a method.
As an alternative both Vangheluwe and Zeigler (1993) [205] suggest a chained ap-
proach to multi-paradigm integration in which a defined network of decompositions
from known formalisms is developed. However such a method also has the pitfalls
of loss of granularity as well as being constricted to a network that is woefully short
of translation functions (especially with the enormous number of formalisms cur-
rently in use that are constantly being redeveloped). ABI on the other hand does not
suffer from these setbacks: though also using discretisation, understood to be a nec-
essary step by the modelling community (especially in the case of multi-paradigm
modelling in complex systems), the common ground is not found through chains of
conversions and loss of granularity; the introduction of knowledge and connection
to the system by KDA/ABI ensure maintenance of granularity and behaviour.

Impact on Systems Biology

Systems biology has been a leader in terms of integrating principles, as seen with
the developments of the Physiome Project, SBML, CMDL, CellML, NCI initiatives
in ontology-building and informational resources and consortia of experts, most no-
tably CancerGrid21 and CViT in cancer systems biology, yet a fully integrated in
silico tumour is still lacking. To the best of the authors knowledge, no universal
integrating theory or implementation yet exists in the field of systems biology.

It remains a fact that different methodologies suit different problems and that
there are distinct experts for every subfield developing models independently. It
therefore seems that both linear and ABI strategies together, along with the re-
quired resources, will hold the key to making in silico experimentation a reality.
ABI by itself, purely on the merit of results described here, represents a great step
forward: results have shown that models can be decomposed, though the implemen-
tation needs extending and optimising and further tests on more complex models is

21 http://www.cancergrid.org
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necessary. Results have additionally shown that, although model implementation
and formalism are important, it is the behaviour that they represent that is the unify-
ing principle, leading to determination of local interaction rules. This presents a shift
in the way models are traditionally thought of in the systems biology community,
i.e. where conventionally models have been tackled from a mathematical perspec-
tive only the work presented here stresses the importance of both the mathematical
and behavioural perspectives. Taking a behavioural stance does not let the modeller
wander outside the realm of what the model should be demonstrating, i.e. providing
a connection and context to the real system. It also forces the integrator to think
about mathematical or computational components within each model in the context
of the whole, and therefore whether some modules even need to be explicated to
describe system behaviour ( [198], Chapter 1). The work presented here reinforces
ongoing efforts to move towards a true systems-oriented view of biology.

It is of course not claimed here that KDA/ABI is the final solution to the problem.
It is claimed, however, that it is an excellent starting point from which modellers can
begin to think about integrative measures without impeding freedom of formalism
use, as well as address scale and focal issues.

Universality of KDA/ABI

Model integration has been a universal problem and all fields have adapted their
own solutions. Note that KDA/ABI, being independent of implementation and using
generic components, are impartial to the system that they are simulating. This was
a deliberate step in the development of the theories so that their application was not
restricted.

The generic nature of KDA ensures that any system that is composed of compo-
nents and behaviours can be described by it and its properties. Take the classic ant
colony example (abstracted from [100]):

• Components
• Ants

– Types

• Surrounding objects
• Predators
• Food
• Stimulants/Inhibitions

– Molecular

• System Concepts

– Reinforced learning
– Ant movement
– Food collection and waste disposal
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It is a well-known fact that ants coordinate behaviour of the colony by simple local
interaction and hence this is completely amenable to KDA/ABI decomposition.

One could also take the example of traffic, which has received much attention
in light of its non-linear behaviour. Here also, components and behaviours can be
abstracted from models and implemented in ABI. The very fact that most traffic
models are now implemented in ABS anyway reinforces this proposition, in which
case further investigation is needed to test whether rule merging can yield plausible
integrations.

One limitation however exists where the system cannot be simulated in a closed
3D space. Even if ABI enables linear integrations as explained earlier it fundamen-
tally relies on the fact that components interact locally. There are therefore a subset
of complex systems for which KDA/ABI are not immediately suited, most notably
financial markets and intelligent social networks, though of course the software sys-
tem is adaptable. The current system is assumed to be representative of interactions
in a spatial context, however interactions between agents and lattice sites could eas-
ily be interpreted in a more abstract context.

Other Limitations

Some limitations have already been discussed with respect to the GA and KDA/ABI
methods. Judging from the literature review there is a contingent of models for
which KDA/ABI will not be able to reconcile in an integration exercise.

Firstly this is the case for stochastic models. Stochasticity is a paradigm as out-
lined previously however it need not always impede KDA/ABI as illustrated by
the solution of the Anderson model. Decomposition of rules becomes difficult for
stochastic models for two main reasons:

1. A stochastic approach yields non-replicable results, which impedes the fitness
functions ability to consistently find good/bad performers, which of course has a
direct impact on selection pressure.

a. An alternative method could be to include a fuzzy classifier that assesses fit-
ness qualitatively.

2. Equivalently, if component rules are made stochastic the results could potentially
be non-replicable.

As suggested above the best solution may be to find a different optimisation method
or fitness function method that can account for diversity in results and assess fitness
correctly.

Secondly the combination of centrality and stochasticity could similarly cause
problems. A good example is that of Bayesian networks: the simulation must per-
form such that all state combinations of the network (if that is even computable) are
concordant with simulation states.
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7.2 Conclusion

In this project the major advancements can be summarised as follows:

• The determination of the nature of models based on a review of cancer modelling
literature.

– This has led to the determination of characteristics of models that highlight
the challenges inherent to model integration. These characteristics are model
paradigm, focus, scale and scope.

• A review of model integration literature has been given to assess the extent to
which these challenges have been addressed, i.e. the state of the art. This has
been extended outside of the systems biology field since model integration is a
universal problem in all fields that make use of models and simulations.

• A set-theoretic approach has been developed to tackle the challenge of model
semantics. This takes a knowledge-oriented approach to model description.

• An integration strategy has been developed that re-implements models within
an agent-based system using local interaction as the basis on which behaviour
occurs.

• A well-developed software infrastructure has been developed to enable the above.

Model integration is a key challenge in systems biology. With such a methodology
in hand one can begin to build larger and more representative models of biological
systems. The solution presented in this book tackles all of the identified challenges
and, with the suggested improvements, provides a powerful approach to developing
an in silico tumour that can yield behaviour that has real clinical relevance. More-
over the fruitful start that has been made with software development will give these
ideas a head start in the field.

Despite millions of pounds of research cancer continues to be the UKs biggest
killer. The introduction of informatics and modelling has brought about a shift in
the way scientists understand the disease and how to combat it. Thanks to the rapid
growth in affordable computing power the goal of in silico experimentation is be-
coming ever closer. It is hoped the technology developed in this project will be of
value to that cause.
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