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Preface

Immunization is one of the great advances in public health. Figure 0.1 shows a camel
with a solar-powered refrigerator on his back carrying vaccines across a hot desert
to the far reaches of civilization. Many vaccines contain live viruses that need to
be kept cold, or the vaccine viruses will die, and the vaccines will lose their ability
to produce an immune response. Thus a continuous chain of refrigeration, the cold
chain, from the origin to delivery of some vaccines needs to be maintained. The
inspiration of the camel image is that it represents the dedication of the world to
bring vaccines to everyone.

The first major success, and the origin of the word vaccination (vacca for cow),
was Jenner’s introducing cowpox-based vaccine against smallpox in the late 18th
century. After nearly a century hiatus, at the end of the 19th century, inoculations
against cholera, typhoid, plague (caused by bacteria) and rabies (caused by a virus)
were developed. By the early 20th century, statisticians of the stature of Karl Pear-
son, Major Greenwood, and Udny Yule were heartily involved in discussions of
evaluating these vaccines in the field. In the 1920s, new vaccines included pertus-
sis, diptheria, tetanus, and bacille Calmette-Guérin against tuberculosis. The 1930s
saw development of yellow fever, influenza, and rickettsia vaccines. After World
War II, the advent of cell cultures in which viruses could grow enabled production
of polio vaccine and vaccines against measles, mumps, rubella, varicella, and ade-
novirus, among others (Plotkin et al 2008). Further new technologies allowed new
generations of vaccines to replace old ones against particular pathogens. Research
is ongoing on vaccines against malaria, HIV, and many others where the infectious
agent outwits not only the researchers but also our natural immune response. Some
vaccines are highly efficacious, and protective effects are recognizable even with-
out subtle statistics. Others are less efficacious, so that study design and statistical
analysis are more challenging.

Statistical inference made great advances in the 20th century and is continuing
into the 21st (Efron 1998). The development of statistics, clinical trial design, and
epidemiological methods in the 20th century had their counterparts in advances in
vaccine studies as well. The focus has historically been on evaluating the direct pro-
tective effects of immunization in the individuals who are immunized. Due to the
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Fig. 0.1 Camel with a refrigerator powered by solar electricity with vaccines being kept in the cold
chain. Image courtesy of Naps Systems Oy, Finland.

dependent happening nature of infectious diseases (Ross 1916), widespread immu-
nization can have many different kinds of effects in populations, including in the
unvaccinated individuals. Increasing interest is being given to the indirect effects
of vaccination in addition to the direct protective effects. The same dependent hap-
pening structure results in what seems at first glance to be a single vaccine effect
breaking into several that have an intrinsic relation to one another through the trans-
mission system. And as we look closer, even the effects of vaccines at the individual
level differentiate into a multidimensional palette. Because the effects of vaccination
generally need to be evaluated in the field, studies take place in the wild, in a man-
ner of speaking, where the dynamic population of the infectious agent of interest is
circulating with the humans as hosts.

Our aim with this book is to present a unified view of vaccine effects and vac-
cine field studies, showing their relation to one another. We present a systematic
framework of different effects of vaccination at the individual and at the population
level. Different approaches to vaccine studies have been developed by researchers
working on particular infectious diseases and particular vaccines. Our focus is on
general principles that can be applied to many infectious diseases and many vac-
cines. As an analogy, people who specialize in particular musical instruments are
pianists, clarinetists, or violinists. But then there are musicians who can play just
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about any instrument. Our view here is more from the point of view of the musician
than of the violinist. The field is growing and changing rapidly. We hope the general
framework provided here will prove useful in organizing, deepening, and refining
your view about the effects of vaccination as it has ours.

This book is intended to serve three audiences: researchers specializing in vac-
cine and infectious disease studies; scientists interested in understanding vaccine
and infectious disease studies; and students in statistics, biostatistics, epidemiology
or infectious diseases. The prerequisites for understanding much of the material in
the book are minimal. Our goal has been to explain most essential concepts in sim-
ple language. It is not necessary to understand statistical inference to understand
the key ideas and overarching framework of the book. However, the models and an-
alytic methods require comfort with equations and statistical inference, which we
do not explain here. We do not assume knowledge of infectious disease epidemiol-
ogy or immunology. We have included material on concepts of infectious disease
epidemiology and dynamic models because they are integral to our approach. We
also include a brief chapter on vaccines and the immune response to infection and
vaccination for those readers not familiar with the somewhat daunting terminology
of immunology.

Many colleagues have collaborated with us over the years on aspects of evalu-
ating vaccine efficacy under dependent happenings. Jim Koopman, Eduardo Mas-
sad, and Marie-Pierre Préziosi have been particularly close and instrumental in our
thinking. Many former graduate students contributed our research, including Cheryl
Addy, Haitao Chu, Greg Golm, and Phil Rhodes. We particularly appreciate the on-
going research with Michael Hudgens and Yang Yang, former students, now our
colleagues. Current students who contributed to this volume include Nicole Basta,
Laura Matrajt, and Jonathan Sugimoto. We thank our colleague Wasima Rida for
her dedication and thoughtful comments in reviewing most of the chapters on the
long path to completion of this book. Finally, we appreciate our editor John Kimmel,
whose (nearly infinite) patience and support saw us through.

Much of our research presented in this book was supported by the National In-
stitute of Allergy and Infectious Disease grants R01-AI32042, R29-AI31057, and
R01-40846, and by the Brazilian Reseach Council (CNPq), for which we are truly
grateful.

Seattle, Rio de Janeiro, M. Elizabeth Halloran
August 2009 Ira M. Longini, Jr.

Claudio J. Struchiner
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Chapter 1
Introduction and Examples

1.1 The Need of Vaccine Studies Framework

Vaccine efficacy and vaccine effectiveness, VE, are generally estimated as one mi-
nus some measure of relative risk, RR, in the vaccinated group compared to the
unvaccinated group:

V E = 1−RR . (1.1)

The groups being compared could be composed of individuals or of populations or
communities.

Historically, interest focused on evaluating protective effects of vaccination.
Study designs and statistical analysis played a role even with early immunizations.
In the November 5, 1904, issue of the British Medical Journal, Karl Pearson pub-
lished a criticism of the Antityphoid Committee’s report on the anti-typhoid in-
oculation statistics from the South African War and from India. The Committee’s
report had recommended continued use of anti-typhoid inoculation. Armed with the
correlation coefficient and the Theory of Correlation, Pearson reanalyzed the data
and claimed that the correlations between protection against disease and inocula-
tion ranged from 0.021 and 0.445, mostly around 0.1, with the correlations against
mortality in a similar range. He compared these values with his analysis of the rela-
tion of recovery from smallpox with smallpox vaccination, which were in the range
0.576 and 0.769. Although he demurred somewhat due to his lack of knowledge
about typhoid, he wrote that the results were such as “would justify suspension of
[anti-typhoid inoculation] as a routine method” (p. 1244). He suggested “that a more
effective serum or effective method of administration must be found before inocu-
lation ought to become a routine practice in the army” (p. 1245). The immunologist
A. E. Wright countered the following week, writing that although he did not under-
stand the correlation coefficient, the mortality was reduced four- to sixfold, so that
Pearson’s conclusion must be wrong and that the Medical Advisory Board, who
had heeded the criticism, could not “hide behind Professor Pearson’s petticoats” (p.
1345). In addition to low correlation, Pearson was also arguing about the variability
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of the data. The argument continued in the British Medical Journal weekly for a
full nine weeks until December 31, 1904, when Pearson finally gave up continu-
ing the controversy after Wright refused to deal with what he had called “statistical
minutiae” (p. 1614) and the “mathematical expression” (p. 1727).

In 1915, the statisticians Major Greenwood and Udny Yule published a trea-
tise on “The Statistics of Anti-typhoid and Anti-cholera Inoculations, and the Inter-
pretation of such Statistics in general” in the Proceedings of the Royal Society of
Medicine. The 85-page paper begins, “Hardly any subjects within the range of pre-
ventive medicine is of more immediate importance than the methods of prophylaxis
which ought to be adopted with respect to typhoid fever and cholera” (p. 113). In
addition to presenting much of the data available at that time from field studies of
anti-typhoid and anti-cholera inoculations, the paper develops a general approach to
analyzing and interpreting such data. They lay out the conditions for valid inference
and use the Pearson chi-square to calculate significance of the effect of inocula-
tion against disease and mortality. They discuss heterogeneity in susceptibility and
protection, and the role of a possible threshold immune level for protection.

Person-time analysis was not invented yet, so they discussed the problem of peo-
ple being inoculated during the course of the epidemic, thus changing their status.
Figure 1.1 shows two tables with data on anti-typhoid inoculation from the original
Greenwood and Yule (1915) paper. The problem was whether to “class as inocu-
lated those who were so at the date of the last return made or only those actually
inoculated at the time of arrival on the foreign station” (p. 120). In the former case,
shown in Table I of Figure 1.1, there may be an exaggeration of the “number of men
who were inoculated during the whole exposure to infection,” and in the latter case,
shown in Table II, one would underestimate it “because many inoculations were
done shortly after arrival”(p. 120).

In 1939, Kendrick and Eldering reported on a large pertussis vaccine field trial
in Michigan. Figure 1.2 shows data from the Kendrick and Eldering (1939) paper
on number of cases and person-time at risk in the pertussis trials. Figure 1.3 shows
data from the Kendrick and Eldering (1939) paper on number of cases and number
of exposures to pertussis in the trial. Vaccine efficacy can be computed using both
kinds of data. It is not unusual for a vaccine study to present two such analyses, one
that takes exposure to infection into account and one that does not. In this book,
we present a framework that shows how the two approaches are related through as-
sumptions about the underlying transmission. Both the Greenwood and Yule (1915)
and the Kendrick and Eldering (1939) papers pre-date formal randomized studies
and discuss in detail potential sources of bias and conditions for valid inference.

In 1954, an enormous field study of the Salk killed poliomyelitis vaccine was
undertaken with great publicity in the United States. A total of 1,829,916 children
participated in the nationwide study. The Summary Report of the trial by Thomas
Francis, Jr. of the University of Michigan and colleagues was published early in
1955 in the American Journal of Public Health. In December 1955, K. A. Brownlee,
a statistician at the University of Chicago, wrote an invited, highly critical review
article for the Journal of the American Statistical Association on the statistics of
the 1954 polio vaccine trials. The original design plan, called the Observed Control
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Fig. 1.1 Two tables from the original Greenwood and Yule (Proc R Soc Med, 8(part 2):113–194,
1915) paper containing data on anti-typhoid inoculations and attack rates in the military. The two
tables represent two differing arrangements of the data. Reprinted with permission of the Royal
Society of Medicine.

Study, was “to administer vaccine to children in the second grade of school; the cor-
responding first and third graders would not be inoculated, but would be kept under
observation for the occurrence of poliomyelitis in comparison with the inoculated
second graders” (Francis et al 1955, p. 1). This procedure was followed in 127 areas,
mostly counties, in 33 states with a population of first, second, and third graders of
1,080,680.

During implementation of the trial, someone noticed this was not a blinded study
and that other factors such as differences in age might lead to bias. So, to “have data
which could provide an accurate gauge of the effect, free of possible bias in diagno-
sis and reporting” (Francis et al 1955, p. 1), the plan was changed in mid-stream. In
the second plan, called the Placebo Control Study, “children of the first, second, and
third grades would be combined. One half would receive vaccine; the other match-
ing half, serving as strict controls, would receive a solution of similar appearance”
(Francis et al 1955, p. 1). This procedure was followed in 84 areas in 11 states with
a population of first, second, and third graders of 749,239. Fewer than half of the
children were in the second part of the study. Brownlee’s colorful judgment was
that “It is a pity that explicit credit is not given to whomever was responsible for
this change. However, only 41 percent of the trial was rescued and the remaining
59 percent blundered along its stupid and futile path” (Brownlee 1955, p. 1007).
Despite possible design flaws, the vaccine was determined to have a 72% efficacy



4 1 Introduction and Examples

Fig. 1.2 Results of a pertussis vaccine trial in Michigan, USA, in the 1930s (from Kendrick and
Eldering, Am J Hyg, Sect B, 38:133, 1939, reprinted with permission of the American Journal of
Epidemiology).

(lower 5% confidence limit 61) against paralytic polio in the Placebo Study Areas
and 62% efficacy (lower 5% confidence limit 51) in the Observed Study Areas. The
Salk killed injected polio vaccine and Sabin live oral polio vaccines transformed the
epidemiology of the disease. Transmission of the three polio virus strains has been
eliminated in most countries of the world.

In 1916, Sir Ronald Ross published his treatise on The Theory of Happenings
in the Proceedings of the Royal Society of London. Ross had already been awarded
the second Nobel prize in medicine for elucidating that malaria was transmitted
by mosquitoes. He was also an amateur mathematician who developed the early
mathematical models of malaria and interventions (Ross 1911; Ross 1915). In his
quite general 1916 treatise, Ross wrote,

Different kinds of happenings may be separated into two classes, namely (a) those in which
the frequency of the happening is independent of the number of individuals already af-
fected; and (b) those in which the frequency of the happening depends on this quantity...to
class (b) belong infectious diseases, membership of societies and sects with propagandas,
trade-unions, political parties, etc., due to propagation from within, that is, individual to
individual. (p. 211)



1.1 The Need of Vaccine Studies Framework 5

Fig. 1.3 Results of a pertussis vaccine trial in Michigan, USA, in the 1930s (from Kendrick and
Eldering, Am J Hyg, Sect B, 38:133,1939, reprinted with permission of the American Journal of
Epidemiology).

The happenings are more commonly called events or occurrences today. In infec-
tious diseases, most infection events are dependent happenings, depending on how
many people or vectors are already infected.

Due to the dependent happenings in infectious diseases, vaccination can produce
several different kinds of effects at both the individual and the population level.
In an individual, vaccination can induce a biologically protective response against
infection and/or disease, and/or reduce the degree or duration of infectiousness for
other individuals. Widespread vaccination in a population can reduce transmission
and produce indirect effects, even in individuals who were not vaccinated.

An early description of indirect and overall effects of immunization was given in
1792 by William Buchan, a Scottish physician in Edinburgh. Variolization, inocula-
tion against smallpox using live smallpox virus, had been introduced from Turkey a
half century earlier as a means to prevent severe smallpox and scarring.

We have been the more full upon this subject [of the importance of smallpox inoculation]
because the benefits of inoculation cannot be extended to society by an other means than
making the practice general. While it is confined to a few, it must prove hurtful to the whole.
By means of it the contagion is spread, and is communicated to many who otherwise never
would have had the disease. Accordingly it is found that more die of the smallpox now than
before inoculation was introduced; and this important discovery, by which alone more lives
might be saved than by all the endeavors of the Faculty [of Medicine], is in a great measure
lost by its benefits not being extended to the whole community. (p. 218)



6 1 Introduction and Examples

This is an example illustrating that not all indirect and overall effects of immuniza-
tion programs are necessarily beneficial.

During the 20th century, two for the most part distinct mathematical areas devel-
oped. One was in the fields of statistics and inference, including the development
of the randomized trial, and further developments of clinical trials and epidemio-
logical study design. The primary focus of vaccine studies was on evaluating direct
protection in vaccinated compared with unvaccinated people. Most of these methods
assumed an independent happening structure in the data. The underlying dynamics
of transmission of the infectious agent did not play an important role. Epidemic
theory made great advances in the 20th century as well. Both deterministic and
stochastic models of infectious disease dynamics and interventions were developed.
Especially with the advent of computers, models could become more complex. Epi-
demic theory and computer models could be used to study potential indirect effects
of widespread vaccination or other interventions. However, the relation of the field
studies, prospective data collection, statistical analysis and the underlying transmis-
sion dynamics remained largely unexplored.

In the latter decades of the 20th century, interest began to grow in evaluating
more than just the direct protective effects of vaccination (Fine 1993; Clemens et al
1996). During the 1980’s, hope flourished that effective malaria vaccines were im-
minent. The malaria parasite has three main stages of its life cycle in humans, one
for infection, one for disease, and one for transmission to the mosquitoes. Vaccines
were being developed to protect against each of the separate stages. The problem of
designing studies to evaluate a vaccine that blocked transmission from humans to
mosquitoes but did not confer direct protection to the immunized individual led nat-
urally to the idea of using community-randomized designs to evaluate the reduction
in overall incidence due to use of such a vaccine.

In the early 1990s the Hemophilus influenzae b (Hib) conjugate vaccines were
introduced. Young children were vaccinated with the result that incidence of inva-
sive disease in young infants nearly disappeared. This effect was apparently due to a
large reduction in carriage of the infectious agent in the nasal passages (Adegbola et
al 2005). More recently, similar phenomena are being observed with meningococ-
cal conjugate vaccines (Ramsay et al 2003) and pneumococcal conjugate vaccines
(Hennessy et al 2005). Thus, interest has grown in accurate evaluation of the changes
in transmission and incidence of invasive disease by reducing carriage in contrast to
just direct protection against invasive disease.

During a primary pneumococcal vaccine trial conducted in the 1990’s, some con-
cern developed about whether the number of events being observed in the study
would be sufficient to support licensure of the vaccine. A community-randomized
study was designed and implemented to evaluate the reduction in incidence of
widespread vaccination, especially the reduction in the vaccinated children in the
communities where vaccination was offered compared to the unvaccinated in the
control communities (Moulton et al 2001). The idea of the study was that it would
lend support to the primary study. However, the vaccine was licensed before com-
pletion of the community-randomized study, so that the latter trial was interrupted.
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In general, interest in evaluating possible indirect effects of widespread vacci-
nation either before or after licensure is growing. Currently it is generally believed
that HIV vaccines will not prevent infection, but could limit growth of the virus in
the blood and reduce infectiousness for others. Such vaccine could have potentially
important public health benefits which would be good to evaluate prospectively. In-
fluenza researchers have believed for decades that children are responsible for most
of the transmission of influenza in the community (Monto et al 1969). Vaccination
of children has been promoted as a public health measure to reduce transmission
in adults and high-risk groups who might themselves not respond well to immu-
nization. A community-based study in Texas to evaluate the effects of vaccinating
schoolchildren against influenza on adults has been ongoing in Texas, USA, since
1998 (Piedra et al 2007).

Pertussis vaccines have been in widespread use since the 1930s. Considerable
controversy raged over whether pertussis vaccination had any effect on the circula-
tion of the bacteria on the population (Fine and Clarkson 1982). Indirect evidence
based on population-dynamic arguments suggested that the circulation of the bac-
teria was not reduced, just serious disease. A study in Niakhar, Senegal, was con-
ducted in the early 1990s of pertussis vaccination, in which the primary interest
was in the protective effects of vaccination. The data had information on exposure
to infection, thus also allowed estimation of the effect of the vaccine on reducing
transmission from vaccinated breakthrough cases compared with transmission from
unvaccinated cases (Préziosi and Halloran 2003a) as well as the effect of vaccination
on the severity of disease in those who did develop pertussis (Préziosi and Halloran
2003b).

These are only a few recent examples of growing interest in evaluating more
complex effects of vaccination in populations. Our goal in this book is to provide a
systematic framework for understanding the different effects of vaccination and how
they relate to one another through the underlying transmission dynamics and depen-
dent happenings. We consider principles of study design and statistical analysis in
this context.

1.2 Scope and Outline of the Book

Different types of studies are required for different phases of vaccine development.
The statistical problems in vaccine studies range from small sample exact analy-
sis for sample sizes of two to eight animals or people, to randomized field trials
with hundreds to several thousands of people, to community trials with hundreds of
thousands of participants, and finally to surveillance in populations with hundreds of
millions of inhabitants. The early phase of vaccine development involves searching
for candidate vaccine antigens. These include in vitro studies as well as testing in
animals. More recently, designer approaches to vaccine discovery using computer
models of various parts of the infectious agent and the immune system have been
developed. Once a candidate antigen is found, then a vaccine is formulated. If ap-
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propriate animals are available for that particular infectious agent, then the vaccine
candidate will be tested for safety, immunogenicity, and possibly efficacy against
experimental challenge with the infectious agent.

Then the vaccine goes into humans for various phases of clinical testing. Phase I
is primarily safety and possibly immunogenicity. Phase II studies are further safety
and immunogenicity testing in humans. Phase III studies are generally field evalua-
tions of direct protective efficacy, with further accumulation of safety data. Recently,
there has been some discussion of integrating evaluation of indirect effects for some
vaccines into Phase III studies. The Phase III studies are the field studies that are
generally used to apply for licensure of a vaccine. Once a vaccine is licensed, then
the efficacy and safety of the vaccine in regular usage is often monitored and eval-
uated using a variety of studies. The post-licensure studies are somewhat generi-
cally referred to as Phase IV studies. Phase II studies are generally not designed to
be large enough to evaluate the protective efficacy of the vaccine. Phase IIb stud-
ies have been proposed that are something like proof-of-concept studies (Fleming
1996). They are powered possibly to estimate an effect with moderate significance.
The idea is that the trial might be expanded to be larger if there is some evidence of
an effect.

The Phases III and IV studies are the main focus of our book, in that we focus
on field studies. In defining the various effects of vaccination and their relation to
one another, we implicitly assume a randomized study, with observational studies
being departures from the randomized study (Rosenbaum 1995). Departures from
the randomized study can result in confounding and types of biases. Our general
paradigm is that of causal inference. Aspects of our book are largely conceptual,
showing the interface among study design, statistical analysis, and epidemic theory,
and implications for interpretation. After giving an overview of the book, in the
remainder of Chapter 1, we introduce some key definitions in infectious disease
research and causal inference.

Chapter 2 presents a systematic framework for thinking about many of the dif-
ferent types of vaccination effects and the study designs and estimators used to
evaluate them. This chapter is based on a paper by Halloran et al (1997) we call
the Table Paper because it lays out a two-dimensional table (Table 2.2) showing
several of the main vaccine efficacy and effectiveness estimators. Struchiner et al
(1990) and Halloran and Struchiner (1991) introduced four basic study designs for
dependent happenings for differentiating and evaluating direct effects and indirect,
total, and overall population-level effects of vaccination. Motivated by the malaria
vaccine discussions of the 1980s, Struchiner, Halloran and colleagues differentiated
the efficacies of vaccines against infection, disease, and transmission (Struchiner
et al 1989; Halloran et al 1989). Longini and Koopman (1982) proposed methods
to analyze household studies in which information on contacts between infectives
and susceptibles allow the estimation of the effect of covariates on the transmis-
sion probabilities and the probability of infection from the community. Rhodes et
al (1996) showed formally the relation among the various estimators of protective
effects of vaccination using counting process models to formulate the dependent
happening relation. The framework in Chapter 2 is a unification of these various
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ideas. Much of the book expands those aspects presented within this framework.
At the conceptual level, our emphasis is on the many different measures of vaccine
efficacy and how they relate to each other.

Chapter 3 provides a brief introduction to the immune response to infection, the
basis for the idea of prophylatic immunization, and a brief chronicle of the develop-
ment of vaccines. This is intended to help the reader who does not know immunol-
ogy and vaccines to be able to read the rest of the book. Vaccine safety is of key
importance in vaccine studies. Preclinical animal studies and Phase I and II clinical
trials are designed to evaluate immunogenicity and safety, thus are also included
in Chapter 3. The idea of herd immunity, the level of immunity to an infectious
agent in a population, in contrast to the immune response within an individual, is
presented.

Chapter 4 introduces dynamic models and assumptions about mixing patterns in
a population. The chapter focuses on the Reed–Frost model and stochastic, discrete-
time methods. The chapter demonstrates randomness and the use of stochastic mod-
els to investigate direct, indirect, total, and overall effects of vaccination programs.
The Reed–Frost model is the basis of estimation procedures in later chapters. Chap-
ter 5 focuses on the basic reproductive number R0 and the role of vaccination. A
simple deterministic differential equation is presented, but such models do not play
a large role in this book. These two chapters can be read on their own as an intro-
duction to dynamic infectious disease models.

Chapters 6 through 9 focus on studies for evaluating the direct protective effects
of vaccination. Chapter 6 presents the estimands and estimators for the measures of
protective efficacy that do not condition on exposure to infection. Specifically, these
include the most common estimators of vaccine efficacy based on the incidence
rate, hazard rate, and cumulative incidence. Cumulative incidence is often called
the attack rate in infectious diseases. Several examples of field studies are presented.
The chapter covers general considerations of designing a study, including choice of
populations and comparison populations, choice of outcomes, sample size determi-
nation, and randomized versus observational studies. Chapter 7 discusses different
distributions of protection in a population and the implications for study design. The
problems of estimating vaccine efficacy in the presence of heterogeneity in protec-
tion or exposure to infection or if efficacy wanes are considered. Chapter 8 considers
case-control studies in vaccine evaluation. The choice of outcome measures and the
use of validation sets for nonspecific outcomes are presented. Chapter 9 presents the
evaluation of the effects of vaccination on post-infection outcomes, such as whether
vaccination reduces the probability of clinical illness if a person becomes infected.

Chapters 10 through 12 present studies in households and other small transmis-
sion units and methods for their analysis. In particular, the chapters present methods
for estimating vaccine efficacy for infectiousness and direct protective effects of vac-
cination when exposure to infection information is available. Chapter 10 presents
several examples of studies in households and other small transmission units and
discusses considerations of study design. Chapter 11 presents statistical analyses
that assume the households or other transmission units are nested within a com-
munity. Chapter 12 presents methods of analysis assuming the households or trans-
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mission units are independent of each other, including the conventional secondary
attack rate analysis.

Chapter 13 focuses on estimation of the indirect, total, and overall effects of
widespread vaccination. The framework is the study designs for dependent happen-
ings. The first part presents approaches comparing incidence before and after im-
plementing a vaccination strategy in a population. The second part presents cluster-
randomized designs in which several communities are compared.

Chapter 14 discusses issues related to the limitations of randomization to con-
trol for confounding and interpretation of estimates when baseline transmission,
pre-existing immunity, and vaccine-induced protection interact to produce appar-
ently different efficacy of vaccination in different populations. Chapter 15 focuses
on evaluating immunological correlates and surrogates of protection.

Many new developments in vaccine trial design have been made possible by
advances in biological specimen collection, immunology, and genome scans and
sequencing of infectious agents. However, a future book on vaccine studies will be
the one to cover these in more detail.

1.3 Concepts in Infectious Disease Research

Each infectious agent has its own life cycle, modes of transmission, population dy-
namics, evolutionary pressures, and molecular and immunological interaction with
its host. The transmission cycle may involve a particular insect or other vector, and
consequently its ecology. Studies and interventions need to take the particular trans-
mission, dynamics, and natural history of each infectious agent into account.

However, some underlying principles of transmission and dynamics are common
to many infectious diseases. These principles are captured in a wide variety of math-
ematical and statistical models. Because for the infectious agent, the human host
population is its ecological niche, some of the principles come from general theo-
ries of populations, evolution, and ecology. (see Burnet and White 1972; McNeill
1976). Some of the principles have their origins in infectious disease epidemiology.
In this section we present some general concepts of infectious disease epidemiology.

1.3.1 Transmission

Transmission from one host to another is fundamental to the survival strategy of
most infectious agents. One measure of the success of an infectious agent is how
effectively it is transmitted. The transmission probability p is the probability that,
given a contact between an infective source and a susceptible host, successful trans-
fer of the infectious agent will occur so that the susceptible host becomes infected.
The transmission probability depends on the type and definition of a contact, the
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Fig. 1.4 Transmission from an infectious host to a susceptible host.

infectious agent of interest, characteristics of the infectious host, and characteristics
of the susceptible host (Figure 1.4).

1.3.2 Time line of infection

Once a host is infected, the natural history of infection within a host can be described
with reference to either infectiousness or disease (Figure 1.5). Both time lines begin
with the successful infection of the susceptible host by the infectious agent. The
natural history of infectiousness includes the latent period, the time interval from
infection to becoming infectious, and the infectious period, during which time the
host could infect another host or vector. Eventually the host becomes noninfectious,
either by clearing the infection, possibly developing immunity, or by death. The
host can also become noninfectious while still harboring the infectious agent. The
host may also become an infectious carrier if he recovers from disease (ie, asymp-
tomatic), but continues to carry the infection, often remaining infectious.

The natural history of disease in the infected host includes the incubation pe-
riod, the time from infection to symptomatic disease, and the symptomatic period.
The probability of developing symptomatic disease after becoming infected is the
pathogenicity of the interaction of the infectious agent with the host. Eventually the
host leaves the symptomatic state, either by recovering from the symptoms or by
death. If the infectious agent has provoked an autoimmune response in the host,
symptoms can continue even after the infectious agent is cleared. An inapparent
case or silent infection is a successful infection that does not produce symptoms in
the host. Inapparent cases can be infectious.

Although the disease process and its associated time line are important to the
infected person and to a physician, the dynamics of infectiousness are important for
propagation of the infectious agent and for public health. The relation of the two
time lines to each other is specific to each infectious agent and can have important
implications for study design, modeling, and public health.
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Fig. 1.5 General time lines of infection and disease.

HIV poses a particular problem for public health because the virus has a short
latent period and a long incubation period. A person infected with HIV could infect
many people before symptoms develop. Plasmodium falciparum, one of the par-
asites that causes human malaria, has an incubation period of about 14 days, but
the infective stages of the parasite do not appear until about 10 days after the first
symptoms. Thus, early treatment of symptoms with a drug that also kills or prevents
infective stages could have an important effect on transmission.

The role of changes in behavior relative to the development of infectiousness and
symptoms is also important. It is possible to add a third time line related to behav-
ioral aspects, such as withdrawal to the home with symptoms, going to the hospital,
or other aspects that influence how infectives expose other susceptibles, or how sus-
ceptibles alter their exposure. Figure 1.6 shows the consensus time line of infection,
disease, and behavior of smallpox infection and disease for an unmodified small-
pox, that is, the course in an infected individual who was not previously vaccinated
(Longini et al 2007a). Once again the relation between the onset of infectiousness
and symptoms is key because the symptoms influence the behavior.

Figure 1.7 shows a time line for influenza symptoms and the time course of viral
shedding of six people infected with influenza. There is considerable uncertainty
about how much of the infectiousness occurs before symptoms develop. This is im-
portant for choosing among public health interventions and for dynamic modeling.

Elveback et al (1976) developed an influenza model that distinguished between
illness and infection attack rates. The infected people become infectious, but only
a fraction of them develop overt disease. In many studies of infectious agents, it is
easier to use overt disease as the outcome, rather than infection, because infection
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Fig. 1.6 Smallpox time lines of infection, disease, and behavior (Longini et al 2007a).

may be difficult to ascertain. If many infections are inapparent, however, using overt
disease would result in underestimation of the level of exposure to infection in the
population. Estimation of the incubation and latent periods can be difficult because
the time of infection as well as the onset and end of infectiousness are often difficult
to observe. Bayesian estimation methods can be used.

1.3.3 Basic reproductive number, R0 and generation interval, Tg

Another key quantity in infectious disease epidemiology is the basic reproductive
number, R0, pronounced “are-zero” or “are-naught”. R0 is defined as the expected
number of new infectious hosts that one typical infectious host will produce during
his or her infectious period in a large population that is completely susceptible.
This definition applies for small infectious agents, such as viruses and bacteria, also
called microparasites (Anderson and May 1991) Understanding R0 is important for
public health applications and for describing the population biology of a parasite in
a population of hosts. R0 does not include the new cases produced by the secondary
cases, or cases farther down the chain. It also does not include secondary cases who
do not become infectious. R0 is a measure of the transmissibility of the strain in
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two, or three days. Some of the people remain asymptomatic. The graph shows the level of viral
shedding of six people challenged with influenza virus (data from Baccam et al 2006).

the population and largely determines the proportion of the population that will be
infected in an epidemic.

The generation time, or generation interval, Tg, is the average time between in-
fection of an index case and infection of the secondary cases produced. Serial times,
or serial intervals, are defined as the times between occurrence of observable events,
such as the onset of clinical symptoms (Svensson 2006). If the generation interval
is estimated based on the average time between the onset of symptoms or ascertain-
ment of an index case and the onset of symptoms or ascertainment of the secondary
cases produced, additional variability must be taken into account. The rate of growth
of an epidemic is determined approximately by the ratio R0/Tg (Fraser et al 2004).
Because the generation time of influenza is on the order of 2 to 3 days, and that
of smallpox is on the order of 10 to 14 days, influenza epidemics are much more
explosive than a smallpox outbreak would be. The goal of intervention is to reduce
R0 so that R0 < 1, which for simple assumptions about population mixing requires
transmission rates to be reduced by a fraction 1−1/R0.

The concept of R0 comes from general population theory and refers to the ex-
pected number of reproducing offspring that one reproducing member of the pop-
ulation will produce in the absence of overcrowding. With larger parasites such as
worms, called macroparasites, R0 is the expected number of mature female off-
spring that one female will produce in her lifetime. In macroparasitic diseases, the
parasites are often distributed in a skewed fashion among their hosts which influ-
ences the design of intervention programs. We do not consider macroparasitic dis-
eases in this book. Chapters 4 and 5 have more discussion of R0.
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1.4 Causal Inference and Vaccine Effects

In many parts of this book our approach draws on the potential outcomes approach
to causal inference (Rubin 1980, Holland 1986, Robins 1986). Causal inference is
a framework for carefully defining causal estimands, that is, the quantities that one
wants to estimate, and then articulating the conditions and assumptions under which
they can be estimated from the observed data. A potential outcome is the outcome
that a person would have if a person received a particular treatment. Receiving the
treatment does not necessarily occur. Suppose that infection, yes or no, is the out-
come of interest. One can imagine that a person would have one potential outcome
(not infected) if vaccinated and a possibly, but not necessarily, different (infected)
potential outcome if that person were not vaccinated. Generally, in this framework,
the potential outcomes are assumed to be determined before a person receives either
treatment. That is, the potential outcomes are assumed fixed before any assignment
to either vaccine or control. One can define the causal effect at the individual level.
The individual causal effect of treatment A compared to treatment B is defined as
the difference (or ratio) in the potential outcome under treatment A and the potential
outcome under treatment B.

The Fundamental Problem of Causal Inference (Holland 1986) is that generally
only one of the potential outcomes of an individual can be observed. That is, gener-
ally, if we assign a person to receive either vaccine or control, then we will observe
the outcome under that assignment, but not observe the outcome under the other
assignment. So, to define an effect that we can observe, we use a population of indi-
viduals. The population average causal effect (ACE) is the difference of the expecta-
tion of the potential outcomes if everyone received treatment A and the expectation
of the potential outcomes if everyone received treatment B. It is still not possible
to observe this. However, under two assumptions, we can estimate the population
average causal effect from the observed data.

The first assumption generally made is that the treatment assignment in one per-
son does not affect the potential outcome in another person. This was called the
assumption of no interference by Cox (1958). Rubin (1980) called it the Stable
Unit Treatment Assumption (SUTVA). Technically, SUTVA includes as well the
assumption that all treatments and their potential outcomes are represented in the
model, which we assume is true throughout. Then, if there are only two treatments,
say, vaccine and control, then the representation with just two potential outcomes is
adequate.

The second assumption required is the specification of the mechanism of assign-
ment of the treatments to the individuals. A very useful assignment mechanism is
randomization. Under the assumption of no interference between the individuals in
the study, and the assumption that treatments A and B were assigned randomly, then
the observed difference in the average outcome in individuals assigned A and the
individuals assigned B is equal to the population average causal effect.

To formalize the above ideas, we need at least three elements in the model, a pop-
ulation of units, at least two treatments (the causes), and the response variables, or
potential outcomes of interest. Suppose we have a population of individual people,
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Table 1.1 Four kinds of people and the individual causal effects based on potential outcomes

Stratum Y (Z = 1) Y (Z = 0) Causal Effect

Immune 0 0 0
Harmed 1 0 −1
Protected 0 1 1
Doomed 1 1 0

i = 1, . . . ,n. For simplicity, assume here just two levels of treatment Z, say, vaccine
and control, denoted by Z = 1 for vaccine and Z = 0 for control. The two potential
outcomes Y could be infected and not infected, represented by Y = 1 if infected and
Y = 0 if not infected. Let Yi(Z = 1) and Yi(Z = 0) represent the potential outcomes
for person i under vaccine and control. Then the individual causal effect in person
i of vaccine compared with control is Yi(0)−Yi(1). For example, if person i would
be infected if he received control (Yi(0) = 1) and he would not be infected if he
received vaccine (Yi(1) = 0), then the individual causal effect in person i is

Yi(0)−Yi(1) = 1−0 = 1. (1.2)

Because the individual causal effects are not observable, we proceed to the popula-
tion average causal effect. Assume that we randomly assign n0 = n/2 of the popula-
tion to vaccine and to control. Under the assumptions of SUTVA and randomization
(and compliance), the population average causal effect is

E{Y (0)−Y (1)} = E{Y (0)}−E{Y (1)}

= E{Y (0)|Z = 0}−E{Y (1)|Z = 1}

=
∑

n0
i=0 Yi(0)|Z = 0

n0
− ∑

n0
i=0 Yi(1)|Z = 1

n0
, (1.3)

which is identifiable from the observed data.
Four types of individuals are possible in the population defined by their pairs

of potential outcomes under vaccine and control (Table 1.1). First, they could be
uninfected whether they receive vaccine or control. These people are called im-
mune (even outside the vaccine literature). They could be infected if they receive
vaccine, but remain uninfected if they receive control. These people are considered
harmed by the vaccine. They could remain uninfected if they receive vaccine, but
become infected if they receive control, called protected by the vaccine. They could
become infected under both vaccine and control. These people are called doomed.
The causal inference framework based on potential outcomes induces an inherent
heterogeneity in the population. In some infectious disease papers, the four types of
people are called never infected, harmed, protected, and always infected.

The four different types of people are latent groups that cannot be identified
without further assumptions. For example, if a vaccinated person becomes infected,
that person could be either a person harmed by vaccination or a person doomed to
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become infected. If we make the assumption that the vaccine does not harm people,
that is, there are no individuals in the harmed stratum, then we know that the infected
vaccinated person must be in the doomed stratum. Also, under this assumption, we
know that an unvaccinated person who does not get infected must be in the immune
stratum. A vaccinated person who does not get infected, however, could belong to
either the immune or the protected stratum.

The assumption of randomization to specify estimators of the estimands of inter-
est in equation (1.3) demonstrates how randomization can serve as the point of de-
parture for estimating effects of interest. Observational studies in which the vaccine
assignment is not randomized are subject to biases, but can be viewed as departures
from the randomized experiment. By making our assumptions about how an obser-
vational study departs from a randomized study explicit, we can understand how our
estimates of the estimand of interest differ from what we might have observed in a
randomized study.

The flavor of causal inference courses through various aspects of this book.
Causal inference methods help in understanding vaccine effects on post-infection
outcomes in Chapter 9. Causal inference underlies new approaches to evaluating
immunological surrogates of protection in Chapter 15. Clearly, the assumption of no
interference contradicts the situation in dependent happenings in infectious diseases
(Halloran and Struchiner 1995). If the potential outcomes depend on the treatments
that other people receive then people have more than just two potential outcomes
(Rubin 1978). In Chapter 13, we consider relaxing the assumption of no interference
to evaluate indirect, total, and overall effects within the causal inference framework.
The potential outcome approach to causal inference is not everyone’s cup of tea.
Our goal in this book is to present many ideas related to evaluating vaccines within
populations and make them accessible to a wide audience, so only parts of the book
are expressly formulated in terms of causal inference. The simple statement of com-
paring what the outcome would be with vaccine compared to what it would have
been with control, the basis of most vaccine studies, has an implicit reference to the
framework of causal inference.

Problems

1.1. Consider the data from the pertussis vaccine trial in Figures 1.2 and 1.3.
(a) How do the attack rates in the children with definite exposure compare to the
attack rates in children with no history of exposure in Figure 1.3?
(b) How do the attack rates in children with definite exposure in Figure 1.3 compare
with the attack rates in Figure 1.2 where exposure is not taken into account?
(c) Compare the size of the denominators in different categories in the two figures.
(d) What could be possible sources of differences in estimates of vaccine efficacy
based on data from the two figures?
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1.2. Give one explanation for how widespread pertussis vaccination might substan-
tially reduce the number of clinical cases in a population but not change the circu-
lation of the bacteria.

1.3. Suppose in a population that R0 = 4 for both mumps and HIV. What else do you
need to know to be able to say something about the relative speed of the epidemics
of the two infections?

1.4. From a public health perspective, would you say that it is better the latent period
be shorter than the incubation period or vice versa? Why?

1.5. To which two strata in Table 1.1 could an unvaccinated person who becomes
infected belong?



Chapter 2
Overview of Vaccine Effects and Study Designs

2.1 Introduction

In this chapter, we present a systematic framework showing the relation among
many of the different vaccination effects and the parameters and study designs to
estimate them. This framework provides a structure for thinking about the different
vaccine effects of interest and how they are related to one another. We present dif-
ferent versions of vaccine efficacy and effectiveness as one minus some measure of
relative risk, RR:

V E = 1−RR .

We focus on the relation between the vaccine effects of interest and the choice of
comparison groups, the unit of observation, the choice of parameter, and the amount
of information about the transmission system required for estimation. The frame-
work draws on the dependent happening relation in infectious diseases. Although
the framework is not exhaustive, many designs not considered explicitly in this
overview are special cases of these general designs. Our primary concern in this
chapter is conceptual. Details of study design and methods of estimation and infer-
ence are left to following chapters.

2.2 Vaccine Effects of Interest

Table 2.1 lists several different vaccine effects. Historically, the primary focus has
been how well vaccination protects the vaccinated individual. VES, the vaccine ef-
ficacy for susceptibility, is a measure of how protective vaccination is against infec-
tion. With most infectious agents, the major interest is in preventing clinical illness.
In evaluating vaccines against such infectious agents, such as measles, influenza, or
pertussis, ascertainment is often by observing individuals clinically, who then might
have a biological test done to confirm the infectious agent under study. In this case,

M.E. Halloran et al., Design and Analysis of Vaccine Studies, Statistics for Biology
and Health, DOI 10.1007/978-0-387-68636-3 2, 19
c© Springer Science+Business Media, LLC 2010
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Table 2.1 Vaccine effects of interest

Symbol Definition

VES Vaccine efficacy for susceptibility
VESP Vaccine efficacy for susceptibility to disease
VEcol Vaccine efficacy for colonization
VEP Vaccine efficacy for progression, pathogenicity
VEI Vaccine efficacy for infectiousness
VET Total vaccine efficacy
VEIIa Indirect effects of vaccination in those not vaccinated
VEIIb Total effects of vaccination in those vaccinated
VEIII Overall population-level effects

asymptomatic infections would not be ascertained. VESP denotes vaccine efficacy
against disease. However, many times, both in this book and the literature in general,
the distinction between the two is made clear simply by the case definition used in
the study and the ascertainment method. Unless required for clarity or because the
discussion is about the distinction of the two, we use VES to represent both VES and
VESP in many places.

VEcol measures the efficacy against colonization (Auranen et al 2000, Käyhty
et al 2006). Many infectious agents, such as pneumococcal, meningococcal, and
Hemophilus influenzae b bacteria, colonize the nose and throat passages without
causing overt disease. Colonized individuals generally are asymptomatic, but they
play a central role in transmission. They can transmit to other susceptible individuals
who in their turn develop severe disease. Recent interest is growing in evaluating the
effect of vaccination on colonization. It is an aim of one of the Gates’ Grand Chal-
lenge Grants. (See www.pneumocarr.org in Finland.) Pneumococcal and meningo-
coccal carriage acquisition rates can be estimated conditional on exposure to infec-
tion or unconditionally. The rate of acquisition of pneumococcal carriage can also
be used as the outcome measure to estimate vaccine efficacy, VEacq (Rinta-Kokko
et al 2009).

VEP, vaccine efficacy for progression or pathogenicity, measures the efficacy
of vaccination in preventing a post-infection outcome (Halloran et al 1994c). De-
pending on the situation, the measure of interest can be the effect of prophylactic
vaccination on the rate or probability of progressing to disease, conditional on be-
ing infected. If ascertainment is on disease, VEP could be a measure of the effect of
vaccination on the probability of severe disease. VEP could also measure the reduc-
tion in duration of being infected, such as in pneumococcal colonization. Although
VES, VESP, and VEP are all measures of the direct protective effects of vaccination,
there is an important difference. The main distinction between VES or VESP and
in contrast to VEP is that studies to estimate VES and VESP evaluate an outcome
in participants who are susceptible to infection, whereas studies to estimate VEP
evaluate an outcome in participants who are already infected. The denominators in
the two different types of studies are different. In randomized studies, as long as
the outcome is the first outcome of interest after randomization, whether infection,
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VES, or disease, VESP, the validity of the comparison is preserved. However, the
exposure to infection needs to be taken into account.

A vaccinated person who becomes infected may be less infectious to other sus-
ceptibles or be infectious for a shorter period of time. The vaccine efficacy for infec-
tiousness, VEI , measures the reduction in the ability of a vaccinated infected person
compared to an unvaccinated infected person to transmit the infectious agent to oth-
ers. The combined effect of having both individuals in a contact being vaccinated
compared to neither being vaccinated is denoted by VET . Both VEI and VET are of
interest because a vaccine that reduces infectiousness could have important public
health consequences (Halloran et al 1994c; Farrington 2003).

Widespread vaccination can have indirect effects for unvaccinated people as well
as for vaccinated people. The indirect effects are due to the change in collective
level of immunity in the population, the herd immunity, due to vaccination. Differ-
entiation of the population-level effects in the unvaccinated and vaccinated groups
is important because they might not be the same. The former is called indirect vac-
cination effectiveness, VEIIa, the latter total vaccination effectiveness, VEIIb. The
overall effectiveness of a vaccination strategy or allocation within a particular pop-
ulation, VEIII , is the weighted average of the outcomes in the vaccinated and the
unvaccinated people

To evaluate direct protective effects of vaccination, VES, VESP, and VEP, usually
the individual is the unit of observation. To evaluate VEI , generally small transmis-
sion units, such as households or partnerships in which contacts can be defined, are
needed (Fine et al 1988; Préziosi and Halloran 2003b; Halloran et al 2003b). This
type of study in small transmission units can also be used to evaluate VES or VESP.
To evaluate the population level effects, the unit of observation becomes the popula-
tion, so that generally several populations need to be included in the study. Table 2.2
provides an overview of several different types of effects and the parameters used to
estimate the effects.

2.3 Vaccine Efficacy for Susceptibility, VES (VESP)

We first consider study designs for estimating the protective effects of vaccination,
VES (VESP). In Table 2.2, these are represented in the column labeled “susceptibil-
ity”. The estimates of VES are obtained from the relative risk of infection or disease
in the vaccinated individuals compared with the unvaccinated individuals:

VES = 1− R(vaccinated people)
R(unvaccinated people)

,

where R denotes one of the measures of risk. The measure of risk can be a form
of the transmission probability, which conditions on exposure to infection, or the
incidence rate, hazard rate, or cumulative incidence (attack rate), which do not con-
dition on exposure to infection. In Table 2.2, the amount of information about the
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transmission system required for the efficacy estimates decreases from Level I in
the top row to Level IV in the bottom row.

2.3.1 VES conditional on knowledge of exposure to infection

The top row of Table 2.2 contains measures of VE that rely on information about
exposure to infection and contacts between infectious individuals and susceptible
individuals. The first is a measure of VES based on the transmission probability,
VES,p. Let the transmission probability, denoted pi j, be the probability that, con-
ditional upon a contact between an infective source with covariate status i and a
susceptible host with covariate status j, successful transfer and establishment of the
infectious agent will occur. A related concept is the secondary attack rate (SARi j),
defined as the proportion of susceptibles with covariate status j making contact with
an infectious person of covariate status i who becomes infected. The SAR is a spe-
cial case of the transmission probability.

Let 0 and 1 denote being unvaccinated and vaccinated. Then, for example, p01 de-
notes the transmission probability per contact from an unvaccinated infective person
to a vaccinated uninfected person. Let p.0 and p.1 denote the transmission probabil-
ity to unvaccinated and vaccinated susceptibles, where the dot in the subscript can
denote any vaccine status or an average across the population.

Then VES,p based on the transmission probability or secondary attack rate (Table
2.2, top row) is estimated from

V ES,p = 1− p.1

p.0
= 1−

vaccinated infections
vaccinated contacts

unvaccinated infections
unvaccinated contacts

or

V ES,SAR = 1− SAR.1

SAR.0
= 1−

vaccinated infections
vaccinated contacts

unvaccinated infections
unvaccinated contacts

.

Estimating vaccine efficacy from the transmission probability ratios requires infor-
mation on who is infectious and when, and whom they contact and how. The concept
of a contact is very broad and must be defined in each particular study. Often it is de-
fined for individuals within a small transmission unit such as a household or sexual
partnership.
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There are two main ways to design a study to estimate the relative transmission
probabilities. The first method, called the secondary attack rate (Fox et al 1970; Fine
et al 1988), or case-contact rate method, has been used since the pertussis vaccine
trials in the 1930s (Kendrick and Eldering 1939) to estimate vaccine efficacy. An-
other method of estimating the transmission probability is based on the Bernoulli
model. In this case, we observe susceptible people, count the number of contacts
they make with infectives, count the number of these susceptible people who be-
come infected, and use a transmission model to estimate the transmission probabil-
ity and related covariate effects. These approaches are presented in more detail in
Chapters 4 and 10 through 12.

2.3.2 VES not conditional on knowledge of exposure to infection

Information on exposure to infection is often difficult or impossible to collect. More
commonly, studies are designed to estimate VES from events per person-time of
potential rather than actual exposure or simply from the proportion of people who
become infected in the vaccinated compared to the unvaccinated groups. Standard
parameters for estimating VES that do not require exposure to infection information
are incidence rates, hazard rates, or cumulative incidence (attack rate).

In estimating direct protective effects of vaccination, Greenwood and Yule (1915)
gave three conditions necessary for valid inference:

1. The persons must be, in all material respects, alike.
2. The effective exposure to the disease must be identical in the case of inoculated

and uninoculated persons.
3. The criteria of the fact of inoculation and of the fact of the disease having oc-

curred must be independent.

Double-masked randomized trials are designed to ensure that these criteria are met.
If the criteria are met, and the vaccinated and unvaccinated groups are equally ex-
posed to infection, any differences in the risk in the two groups is likely due to the
biological effects of the vaccine.

Primary vaccine efficacy studies often report VES,IR based on relative events per
person-time,

VES,IR = 1− vaccinated events/person-time
unvaccinated events/person-time

. (2.1)

The usual assumption is that the numbers of events follow a Poisson distribution.
Similarly, investigators may estimate the hazard rates in the vaccinated and unvac-
cinated, λ1(t) and λ0(t), using survival analysis methods. Then the VES is based on
the hazard rate ratio

VES,λ (t) = 1− λ1(t)
λ0(t)

. (2.2)
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When covariates such as age and gender are added, the analyses are stratified by the
covariates or Poisson regression can be used. Under the assumption that the effect
of the vaccine is multiplicative, constant, and homogeneous, the Cox proportional
hazards model can be used to estimate VES,PH . In this case, it is not necessary to
estimate the hazard rate in the unvaccinated group, but only the relative hazard rate.
This requires only the ordering of the infection times. Covariates, including time-
dependent covariates, can easily be incorporated using standard software.

In an early example of estimating VES,IR, the study by Kendrick and Eldering
(1939) of pertussis vaccine reported the number of cases per person-time (Figure
1.2). The study is described in Section 10.2.2. The vaccinated and control groups
had 1815 and 2397 children, respectively, who contributed 2268 and 2307 person-
years at risk. There were 52 cases in the vaccinated and 348 cases in the control
group, so

V̂ES,IR = 1−
52 cases

2268 person-years
348 cases

2307 person-years
= 0.85 (2.3)

More recently, Urdaneta et al. (1998) presented estimates of VES,IR as the result
of a randomized, placebo-controlled field trial of SPf66 malaria vaccine in Costa
Marques, Rondonia, Brazil. A total of 572 participants completed the three-dose
vaccine schedule and were followed for 18 months. The 287 vaccinated individu-
als contributed a total of 12,178 person-weeks at risk, and 76 first P. falciparum
malaria episodes were observed among them. In the placebo group, 285 individu-
als contributed 11,698 person-weeks at risk and 85 cases leading to an estimate of
V̂ES,IR = 0.14.

In some studies, it is possible to compute both a conditional and an unconditional
estimate of vaccine efficacy from a single study. The Kendrick and Eldering (1939)
study on pertussis vaccine also had information on children who had been exposed
to pertussis within their own households (Figure 1.3). In the vaccinated group, 29
of 83 exposed children developed pertussis, and 143 of 160 exposed children in the
unvaccinated group developed pertussis. Thus, the estimate of VES,p is

V̂ES,p = 1− 29 cases/83 vac exposed
143 cases/160 unvac exposed

= 0.61 . (2.4)

Although everyone is included in the estimate of VES,IR, only the children with pre-
sumed exposure to infection are included in the VES,p estimate. The interpretations
of the two estimates are also different, because one measures the protection con-
ferred as measured by infections per person time and the other by the probability of
an infection per potentially infectious contact.

Estimation of VES,CI(T ) based on the cumulative incidence requires only infor-
mation about whether persons are infected by the end of the study at time T , that is,
final value data:
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V ES,CI(T ) = 1− vaccinated infection events/persons–at–risk
unvaccinated infection events/persons–at–risk

= 1− CI1(T )
CI0(T )

. (2.5)

As an example, Greenwood and Yule (1915) used the cumulative incidence in
studying the efficacy of anti-typhoid inoculation in the troops in the early part of
the twentieth century (Figure 1.1). In one analysis, Greenwood and Yule assumed
that the denominators were based on the vaccinated and unvaccinated groups at the
beginning of the study. They had 56 cases of typhoid in 10,378 vaccinated soldiers,
and 272 cases in 8936 unvaccinated soldiers. The estimated efficacy based on these
numbers is

V̂ES,CI(T ) = 1− 56 cases/10,378 at-risk
272 cases/8936 at-risk

= 0.82 . (2.6)

A more recent example is from a double-blinded randomized trial of live at-
tenuated influenza vaccine compared with inactivated influenza vaccine in children
(Belshe et al 2007). In this trial, of the 3936 children who received inactivated vac-
cine, 338 developed culture-confirmed cases of influenza. Of the 3912 children who
received live-attenuated vaccine, 153 cases developed. Based on these numbers,

V̂ES,CI(T ) = 1− 153 cases/3912 at-risk
338 cases/3936 at-risk

= 0.54 .

This is called the relative efficacy of two vaccines, rather than the absolute efficacy,
because there is no control or placebo group.

Which method is used to estimate VES (VESP) in a particular study depends on
the type and duration of the study, the infectious agent and its transmission mode,
the resources available, and the assumptions of the distribution of protection within
the vaccinated group. Chapters 6 through 8 consider estimation of VES from the
unconditional parameters in detail.

2.4 Hierarchy of VES Measures

The different VES parameters require differing levels of information and make dif-
ferent demands on study design and data collection (Rhodes et al 1996). The levels
I through IV in Table 2.2 form a hierarchy, with higher levels requiring less in-
formation about the transmission system, and only Level I requiring actual contact
information. Because VES,p based on the transmission probability is defined con-
ditional on exposure to infection, it is called a conditional parameter, and the other
measures are called unconditional parameters. Incidence rates or hazard rates re-
quire the time to event and the period of potential exposure of each person under
study. The hazard rate in infectious diseases is often called the force of infection. A
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Cox proportional hazards model requires only the ordering of the event times. An
estimate of cumulative incidence requires only final value data, that is, whether an
infection occurred by the end of the study. Correspondingly, in Table 2.2, VES,IR
based on incidence rates and VES,λ are Level II parameters, VES,PH based on Cox
proportional hazards is Level III, and VES,CI based on cumulative incidence or final
value data is Level IV.

Because of the dependent happening structure of events in infectious diseases,
there is an intrinsic relation among the different parameters on which the VES esti-
mators are based. Understanding this relation helps to see the relation of the different
estimators of VES to one another. Figure 2.1 illustrates the dependent happening re-
lation of the hierarchy of parameters to one another. Section 2.9 develops the relation
formally.

Let pi j be the transmission probability as defined above. Let c denote the contact
rate in a population assuming that people are randomly mixing, and let P(t) denote
the prevalence of infectives at time t. Then the hazard rate λ (t) (or incidence rate or
force of infection) at time t can be expressed as the product of the contact rate, the
transmission probability, and the probability that a contact is infectious:

λ (t) = cpi jP(t). (2.7)

So even if the different components of the hazard rate are not measured, we can
consider the underlying process that is producing the infections we observe. Simi-
larly, the cumulative incidence, CI(T ), at some time T is a function of the hazard
rate during the follow-up period, and thus also a function of the transmission prob-
ability, contact rate, and prevalence of infection in the contacts. Even though the
cumulative incidence estimate is a sort of black-box estimator, it is useful in vaccine
studies to think about the underlying transmission system that would produce the
observed final values.

Expression (2.7) represents the fundamental dependent happening relation of
Ross (1916). The frequency of happenings in the susceptible individuals depends
on the number already affected, in this case, the prevalence of infective individuals
in the people making contact with the susceptible individuals. The different estima-
tors do not require information about the contacts or the prevalence of infectious
people necessarily. However, interpretation of the estimates can vary depending on
the assumptions about the underlying transmission system.

2.5 Vaccine Efficacy for Infectiousness, VEI

The efficacy of a vaccine in reducing infectiousness, VEI , can be estimated epidemi-
ologically by comparing the per-contact transmission probability from vaccinated
people who become infected with the transmission probability from unvaccinated
people who become infected. The relative risk comparison groups are defined ac-
cording to the vaccination status of the infectious person contacting the susceptible
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Fig. 2.1 Hierarchy of VES parameters showing the dependent happening relation among them.

person (Halloran and Struchiner 1995). In Table 2.2, the VEI estimator is shown
in the second column of the top row of conditional parameters. The third column
contains the estimate of combined effect of the vaccine in reducing the transmission
probability if both the infectious person and the susceptible person in the contact
are vaccinated (VET ). In contrast to VES, which can be estimated using either con-
ditional or unconditional parameters, the VEI and VET can generally be estimated
using only conditional measures such as the transmission probability or secondary
attack rate (Koopman and Little 1995; Longini et al 1996; Préziosi and Halloran
2003b; Halloran et al 2003b).

Studies for estimating VEI can be incorporated into those for estimating VES,p
based on the transmission probability, if the vaccination status of the infectious per-
son in a contact is known. The analysis can then simply stratify on the vaccination
status of both the infectious and susceptible persons in the contact to get estimates
of VES, VEI , and VET . In the case of the binomial model, the likelihood can be
constructed from the different contributions of each contact, where the parameters
for relative susceptibility and for relative infectiousness are built directly into the
likelihood (Longini et al 1996; Hudgens et al 2001).

In general, there are at least seven measures potentially of interest. Considering
the estimates of VE based on the relative secondary attack rates, there are three main
unstratified vaccine effects:
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V ES.1/.0 = 1− SAR.1

SAR.0
, V EI1./0. = 1− SAR1.

SAR0.
,

V ET = 1− SAR11

SAR00
. (2.8)

If one stratifies on the vaccine status of both the infective person and the susceptible
person, then there are four further stratified measures of VES and VEI :

V ES01/00 = 1− SAR01

SAR00
, V ES11/10 = 1− SAR11

SAR10
,

V EI10/00 = 1− SAR10

SAR00
, V EI11/01 = 1− SAR11

SAR01
. (2.9)

Chapters 10 through 12 consider estimation of the conditional parameters based on
transmission probabilities and SARs from studies in households and other small
transmission units in detail.

2.5.1 Estimating multiple levels of parameters

Statistical models have been developed to express both the within household trans-
mission probability and the unconditional probability of being infected from the
community at large (Longini and Koopman1982; Hudgens et al 2001; O’Neill et al
2000; Becker et al 2003). In some vaccine studies, information on contacts within
transmission units such as households or sexual partnerships may be available, but
the individuals may also be exposed to infection outside the transmission unit. Some
individuals in a study might not be members of clearly defined transmission units.
These models are considered in detail in Chapters 10 through 12.

2.6 Vaccine Efficacy for Progression or Pathogenesis, VEP

VEP measures the effect of vaccination on some outcome that occurs only in peo-
ple who get infected. It requires comparison of the post-infection outcome, for ex-
ample, morbidity or mortality, in infected vaccinated people with that in infected
unvaccinated people. The interest could be the vaccine effect on the probability of
developing disease if infected, that is, the effect on pathogenicity. The interest could
be on effect on the time from infection to development of disease, that is, the rate
of progression from infection to disease. The interest could be on the effect of vac-
cination on reducing the severity of disease or probability of death in symptomatic
cases. For binary outcomes, such as becoming symptomatic or not, developing se-
vere disease or not, or death or not, VEP would be estimated by one minus the ratio
in the vaccinated compared to the unvaccinated, including in the calculation only
those people who had become infected:
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Fig. 2.2 VEP: Death versus recovery in smallpox: Greenwood and Yule (Proc R Soc Med, 8(part
2):113–194, 1915). Cicatrix present indicates effective vaccination; cicatrix absent indicates no
effective vaccination. Reprinted with permission of the Royal Society of Medicine.

VEP = 1−
no. severe vaccinated cases

all vaccinated cases
no. severe unvaccinated cases

all unvaccinated cases
. (2.10)

Based on data in Greenwood and Yule (1915) on the effect of smallpox vaccination
to prevent death by comparing the number of cases recovering to those dying of
smallpox (Figure 2.2), the estimate of VEP of smallpox vaccination to prevent death
is

V̂EP = 1−
no. deaths in vaccinated cases

all vaccinated cases
no. deaths in unvaccinated cases

all unvaccinated cases
(2.11)

= 1− 42/1604
94/477

= 0.87 .

For such binary outcomes, a simple relation among VESP, VES, and VEP is

VESP = 1− (1−VES)(1−VEP). (2.12)

That is, the vaccine efficacy against the severe outcome is a function of the vaccine
efficacy against infection and the vaccine efficacy against the severe post-infection
outcome in those people who become infected, illustrated further in Section 5.2.3.
The relation (2.12) assumes that there is no selection bias due to vaccination in those
who become infected. Considerable recent research has been devoted to estimating
the effects of vaccination on post-infection outcomes (Préziosi and Halloran 2003a),
particularly on understanding potential selection bias (Gilbert et al 2003a; Hudgens
et al 2003; Hudgens and Halloran 2006; Jemiai et al 2007). VEP is discussed in
detail in Chapter 9.



2.8 Indirect, Total, and Overall Effectiveness 31

2.7 Contact Rates and Exposure Efficacy

Vaccinated people may alter their contact and exposure to infection patterns if they
believe the vaccine is protective. Exposure or behavior efficacy is the relative in-
crease or decrease in the relative risk of infection or disease due to the change in
exposure to the infectious agent (Halloran et al 1994b). For example, if we con-
sider the components of the hazard rate as discussed above, changes in exposure to
the infectious agent can occur in the rate of contacts, in the prevalence of infection
in the contact groups, or in the transmission probability through changing the type
of contact. In nonrandomized or observational studies, the vaccinated and unvacci-
nated groups often differ in their exposure to infection, resulting in biased estimates
of VES. Although VES estimates based on the transmission probability require more
information than those based on the unconditional parameters, they are less sensi-
tive to bias from unequal exposure to infection in the two groups. The overall effect
of biological protection and change in exposure to infection might be of interest for
understanding the public health consequences of vaccination. Study designs need to
be explicit about differentiating factors related to susceptibility, such as vaccination
status, and factors related to exposure to infection.

2.8 Indirect, Total, and Overall Effectiveness

Struchiner et al (1990) and Halloran and Struchiner (1991) define study designs for
dependent happenings that allow evaluation of the indirect, total, and overall effects
of vaccination (Figure 2.3). The population-level effects of vaccination are defined
within the context of a particular intervention program, or allocation of vaccination,
thus the unit of inference is the population. Several populations or communities
need to be included in the study to take potential variability into account. Exactly
what the intervention program of interest is will depend on the vaccine and the
target population for vaccination. The comparisons may be made between different
levels of vaccination coverage, between allocation within different age groups, or
otherwise defined subgroups (Monto et al 1969; Moulton et al 2001).

In Table 2.2 and Figure 2.3, the different type of population-level effects are con-
sidered on the simple example that no vaccination has taken place in population B,
and a proportion of people are vaccinated in population A. The control population
may be the same population that receives the vaccination, but before the vaccina-
tion program started. The direct effects of vaccination can be evaluated within the
population that receives the vaccination program, and are forms of VES, VESP, and
VEP.. The indirect effects of the vaccine given a particular allocation of vaccination
is then the comparison of the incidence or other outcome of interest in the unvac-
cinated people in community A compared to the unvaccinated people in the unvac-
cinated community B. These comparisons are called designs type IIa. The indirect
effectiveness measures are denoted VEIIa. The total effects of the combination of
being vaccinated and the allocation is the outcome in the vaccinated people in the



32 2 Overview of Vaccine Effects and Study Designs

Fig. 2.3 Study designs for dependent happenings. Types of effects of vaccination programs
and different study designs based on comparison populations for their evaluation (Halloran and
Struchiner 1991, Epidemiology, 2:331–338. Reprinted with permission).

communities A compared to that of the unvaccinated people in the unvaccinated
communities B. These comparisons are called designs type IIb, and the total effec-
tiveness measures are denoted VEIIb. The overall effectiveness of the vaccine and
allocation compare the average outcomes in the vaccinated communities with those
of the unvaccinated communities. These comparisons are called designs type III, and
the overall effectiveness measures are denoted VEIII . Table 2.2 contains examples
of the VEIIa, VEIIb, and VEIII based on the usual unconditional measures incidence
rate, hazard rate, and cumulative incidence. The proportional hazards model is not
included because the baseline hazard would presumably differ across populations.
Many other measures could be used as the outcome measure, including average age
of infection or the basic reproductive number, R0, and the reproductive number, R.

In choosing the communities or populations, it is important to ensure that they are
separated as much as possible in every way that is relevant for transmission. Trans-
mission patterns can differ greatly among communities. It is necessary to give some
thought to the likely transmission patterns and sources of exposure to infection in a
population. These transmission patterns will greatly influence the magnitude of the
indirect effects. Variability could swamp out the estimates of the effects of vaccina-
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tion. Matching by transmission characteristics might be desirable (Hayes et al 1995).
Interpretability and general applicability of quantitative results to other settings may
be limited, although qualitative trends might hold (Halloran and Struchiner 1995).

Comparisons across communities would also allow study of other biological
questions. For example, vaccines might contain only particular serotypes or strains
of an organism. Widespread vaccination could allow the expansion of non-vaccine
serotypes that had been less important before vaccination (Lipsitch 2000; Singleton
et al 2007; Peters and Poehling 2007) or put evolutionary pressure on the existing
strains.

Conducting a trial to evaluate effectiveness across several different populations
or communities does not preclude evaluating VES or VEI of vaccination within the
populations. A Phase III vaccine trial can be designed to answer several questions at
the same time. Generally, one scientific question will be designated the primary goal
of the study, and others secondary or ancillary goals. The primary analysis will be
planned to evaluate the primary scientific question. Randomization within a popu-
lation can be used to answer efficacy questions, and comparison across populations
can be used to evaluate the indirect and overall effects of vaccination. There is a
trade-off in designing studies to measure both direct and indirect effects of vaccina-
tion between vaccinating high numbers of people so that indirect effects are high,
and vaccinating too many people so that the number of events in the vaccinated
populations is too low to estimate VES or VEI well.

Randomized community trials fall into the category of cluster- or group-
randomized trials where whole social units, rather than independent individuals
are randomly assigned to treatment groups (Hayes et al 1995; Koepsell et al 1992;
Donner et al 1998; Prentice 1995; Klar et al 1995; Murray 1998, Hayes and Moulton
2009). Because vaccines are administered to individuals, randomization can occur at
two stages, namely the group level and the individual level within groups (Hudgens
and Halloran 2008).In general, assignment mechanisms other than randomization
could be in place at the two levels. That is, either allocation of the vaccination strat-
egy to populations might not be randomized or allocation of the individual vaccina-
tion within populations or both might not be randomized. The analysis and sample
size calculations need to take the clustering and possible group-randomization into
account. Methods for estimating indirect, total, and or overall effects are discussed
in more detail in Chapter 13.

2.8.1 Hypothetical example

Figure 2.4 shows a simple example of estimating the direct, indirect, total, and over-
all effects using just two populations, each with a population N = 1000. We assume
that the populations are identical. We base our estimates on the number of cases at
the end of an epidemic, the attack rate or cumulative incidence, say, at the end of
an influenza season. In population A, 700 people are randomly vaccinated and the
other 300 are unvaccinated. In population B, we consider separately the 700 people
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    III
Overall

1000 People

160 Cases

700 Vaccinated

70 Cases

300 Unvaccinated

90 Cases

1000 People

850 Cases

700 Unvaccinated*

595 Cases

300 Unvaccinated

255 Cases

    I
direct

    IIa
indirect

 IIb
total

Population A
70% vaccinated

Population B
no vaccine

Fig. 2.4 An example of estimating direct, indirect, total, and overall effects of vaccination. The
∗ represents the people who would have been vaccinated if Population B had had the vaccination
strategy.

who would have been vaccinated and the 300 who would not have been vaccinated,
if population B had received vaccine. In population B, we observe 850 cases, so the
attack rate is ARB = 0.85. Due to randomization, the attack rate is the same in those
who would have received vaccine as those who would not have received vaccine,
so 595 of the 850 cases are in the 700 people who would have received vaccine,
and 255 of the cases are in the 300 people who would not have received vaccine.
In population A, there are 70 cases in the 700 vaccinated people and 90 cases in
the 300 unvaccinated people, for a total of 160 cases, and an attack ARA = 0.16.
The ARA1 = 0.10 in the vaccinated and ARA0 = 0.30 in the unvaccinated. The VE
estimates of interest are

VEdirect = 1− 0.10
0.30

= 0.66, VEIIa = 1− 0.30
0.85

= 0.65,

VEIIb = 1− 0.10
0.85

= 0.88, VEIII = 1− 0.16
0.85

= 0.81.

The direct vaccine efficacy is a measure similar to the prevented fraction in the
exposed, where the exposure is vaccination (Greenland and Robins 1988; Robins
and Greenland 1989). The prevented number of cases in the vaccinated group can
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be computed from the prevented fraction times the number of people vaccinated.
However, the situation is different with dependent happenings than with the usual
prevented fraction in the exposed when events are independent of one another. If
we used the usual prevented fraction in the exposed, we would compute the num-
ber of cases we would have expected in the vaccinated individuals in population A
by assuming the attack rate if they had not been vaccinated would have been the
same as that observed in the unvaccinated individuals in population A. Under this
assumption, we would have expected (90/300)×700 = 210 cases in the vaccinated
individuals if they had not been vaccinated. The number of cases prevented by vac-
cination would be calculated to be 210−70 = 140. However, this does not take into
account that the number of cases in the unvaccinated group in population A is also
decreased by indirect effects. To compute the total number of cases prevented in
the vaccinated by vaccination and the vaccination program, we need to use the 595
cases in the 700 people in population B who would have been vaccinated. Then the
total number of actually prevented cases in the vaccinated people is 595−70 = 525.
Using the usual prevented fraction in the exposed underestimates the actual number
of cases prevented because it does not take the indirect effects into account. The
overall cases prevented by vaccination is 850−160 = 690.

2.8.2 Influenza example

Monto et al (1969) estimated both the protective efficacy, VES, and the overall effect,
VEIII , of an influenza vaccination program. They vaccinated 85% of the school-age
children in Tecumseh, Michigan, against Hong Kong influenza just before the epi-
demic in 1968. The 10-week epidemic period was from November 17, 1968, to
January 26, 1969. The weekly mean influenza illness rates in vaccinated and un-
vaccinated children were 0.072 and 0.090, respectively. This yields an approximate
estimate of VES,IR ≈ 1− 0.072/0.090 = 0.20, which is rather low. The overall in-
fluenza illness cumulative incidence in Tecumseh for the epidemic period was 0.14,
and the adjusted overall influenza cumulative incidence in unvaccinated, neighbor-
ing Adrian, Michigan, was 0.42 for the same period. Using the methods of study
design III, the overall effectiveness of vaccinating 85% of Tecumseh’s school chil-
dren is estimated to be VEIII,CI ≈ 1−0.14/0.42 = 0.67.

2.9 Counting Process Models for Hierarchy of Parameters

In this section, we present a part of the formal development of the hierarchy of
parameters based on counting process models found in Rhodes et al (1996). Before
that, there had been little effort to relate the different measures of vaccine efficacy to
one another formally, or their interpretation in terms of the underlying contact and
infection processes. (This section is very technical and may be skipped.)
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2.9.1 Contact, infection, susceptibility, and infectiousness
processes

2.9.1.1 Overview

Rhodes et al (1996) extended counting process models for infection rates (Becker
1982, 1985, 1989) to incorporate contact rates between individuals, infectiousness
of the infectives, and variables affecting susceptibility to infection, such as vaccina-
tion, given that such a contact had occurred. Using these counting process models,
they demonstrate that the commonly used relative risk parameters form a hierar-
chy requiring different amounts of information about the contact and infection pro-
cesses. The emphasis is on the distinction between exposure opportunity and actual
exposure, and the amount of information that we have about these. Separation of
the contact and the infection processes allows quantification of the different con-
tributions of the contact process, infectiousness, and susceptibility in the estimated
relative risk of infection in the comparison groups.

Table 2.3 contains an overview of the hierarchy levels of information that could
be known about a population of interacting hosts with an infectious agent circulat-
ing in it. The hierarchy presented in Table 2.2 is a simplified version of the formal
hierarchy, with the major difference in the interpretation of Level II. At a minimum,
we need to know those covariates that are relevant to susceptibility as well as who
is actually susceptible. The hierarchy goes from Level I to IV, or from (a) to (f), as
information is either lost or ignored. In (a), we know all contacts between individ-
uals, whereas in (b), we only know when infective individuals contact susceptibles.
Level (b) is analogous to a vaccine efficacy study using the household secondary
attack rate, studies in tuberculosis using contact tracing to estimate transmission
probabilities, or discordant partner studies to estimate the transmission probability
of HIV. Levels IIA and IIB, or (c) and (d), have information only on contacts that
lead to infection, or the times at which individuals are infectious, respectively. These
levels have important differences, but share enough similarities that they are devel-
oped in tandem. The analysis of the former has the form of a Poisson regression. At
Level III, we know just the infection times, which under certain conditions leads to
a stratified Cox regression analysis. Finally, at Level IV, we only know that a per-
son becomes infected sometime during the study period. This provides information
for an analysis based on the cumulative incidence or distribution function, such as
vaccine efficacy based on the attack rates.

2.9.1.2 Notation and definitions

All processes defined below occur in continuous time and are orderly, ie, multiple
points do not occur at any time t. Also, there are no tied jumps for pairs of processes
of the same type involving different individuals, eg, no two infections can occur at
the same time. Some pairs of processes of different types may jump at the same time
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Table 2.3 Level and amount of information for each history (Rhodes et al 1996)

Level Type of Information for Each History

I (a) All contacts between individuals and outcomes of those contacts
(whether an infection is transmitted)

(b) Only those contacts between infective and susceptible individuals and
infection outcome of those contacts

IIA (c) Only contacts leading to infections (who infects whom)
IIB (d) Infectious periods, ie, the times at which individuals become and cease

to be infectious
III (e) The times at which individuals become infected
IV (f) Whether an infection occurs to each individual in some time period (0,T ]

(eg, see Ci j and Ni j below). Consider a closed population of n individuals. Let Ci j(t)
be the counting process for person j contacting person i ( j→ i), i, j = 1, . . . ,n, i 6= j.
(Notation of the subscripts for the infectives and susceptibles is reversed in this
section from the other sections in the book.) We set Ci j(0) = 0 for all i, j, ie, we
disregard all contacts that occur before the start of the study. For a study of length
T , let ti jk represent times in (0,T ] at which j→ i, k = 1, . . . ,Ci j(T ) = ci j. For an
epidemic, T refers either to the end of the epidemic or to some preset ending time.
For an endemic situation, T is some selected time at which an analysis is to be
performed.

Let Ni j(t) be the counting process for the process j infects i, ie, dNi j(t) = 1 if
person j infects person i at time t. Let δi jk be an indicator variable for whether the
contact at ti jk results in an infection (ie, δi jk = dNi j(ti jk)). Let Ni.(t) = ∑ j Ni j(t). Let
δi = Ni.(T )−Ni.(0), ie, δi = 1 if person i becomes infected in (0,T ] and 0 if not. It
is possible that Ni.(0) = 1 which indicates that person i was infected before the start
of the current study. However, here we are interested only in counting infections
that occur after time 0. We assume that the infection can occur at most once, ie,
Ni.(t)≤ 1.

Let I j(t) = 1 if person j is infectious at time t and I j(t) = 0 otherwise. A person
is infectious immediately after becoming infected (no latent period). Let Si(t) = 1 if
person i is susceptible at time t and Si(t) = 0 otherwise. We define both sets of these
processes to be left continuous. Thus, I j and Si are predictable processes (Bremaud
1981).

2.9.1.3 Intensities for contact processes

Let the intensity of the contact process Ci j be denoted by λi j(t) (λii(t) = 0), ie,

λi j(t) = lim
∆→0

Pr((Ci j(t +∆)−Ci j(t)) = 1|Ht)
∆

, (2.13)

where Ht is some history (Bremaud 1981). Informally, by a history we mean
some observed information arising from various processes on the time interval
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(0, t]. Technically, Ht is a σ -algebra generated by these processes on (0, t]. Sev-
eral such histories may be of interest. We assume that the λi j are constants that can
be parametrized using covariates Gi and G j and a set of parameters θ = (θ1, . . . ,θR),
where R << n(n−1), the number of pairs of individuals.

More generally, the contact rates could vary over time, such as cyclically, or be
history-dependent. For example, the occurrence of an infection could cause a person
j to reduce his or her activity and thus lower the intensities λi j for all i. We do not
consider this aspect further, and drop the notation for G j.

2.9.1.4 Intensities for infection processes

Consider any Ci j contact process discussed earlier. The contact process plus the in-
fection outcomes, δi jk, constitute a marked counting process (Bremaud 1981; Arjas
1989). Consider the multivariate infection process N(t) = {N1.(t), . . . ,Nn.(t)}. The
process N..(t) = ∑

n
i=1 Ni.(t) plus the identity and covariate values of the person in-

fected at each jump is also a marked counting process. Let the function ρ(t) denote
the probability that an event occurring at time t in the original process will be re-
tained by a thinned process. If λ (t) is an intensity for the original process and ρ(t)
is predictable, the intensity for the thinned process is ρ(t)λ (t) (Bremaud 1981).

Each infection process Ni j is a thinned version of the corresponding contact pro-
cess Ci j. Let p(t;zi,z j,β ) represent the probability that a contact j → i at time t
results in an infection if person j is infectious and person i is susceptible. This is
also called the transmission probability. The zi are covariates associated with sus-
ceptible i, z j are covariates associated with infective j, and β is a vector of un-
known parameters. If either I j(t) or Si(t) is 0, a point from Ci j has probability 0
of being accepted. If both I j(t) and Si(t) are 1, the point is accepted with proba-
bility p(t;zi,z j,β )Si(t)I j(t). The time- and history-dependent probability ρi j(t) that
a point from Ci j will be accepted for Ni j is p(t;zi,z j,β ). A dependence on z j im-
plies that persons are differentially infectious. For simplicity, here we assume that
all infectives are equally infectious, and drop the dependence on z j. An intensity for
Ni j(t) may then be written as

αi j(t) = λi j(t)p(t;zi,β )Si(t)I j(t) , (2.14)

where the infection process is a thinned version of the contact process.

2.9.2 Information levels and types of statistical analyses

In most of the development here, the covariates associated with the contact param-
eters are assumed to be the same for all individuals. Zi and Gi denote covariates
associated with the susceptibility and contact parameters.



2.9 Counting Process Models for Hierarchy of Parameters 39

2.9.2.1 Level I

In the first level of information, either all contacts between individuals and outcomes
of those contacts are known, or contacts between infectives and the susceptibles
whom they contact during their infectious period:

H I
t = σ{Ci j(s), Ni j(t), I j(s), Si(s), Zi(s), Gi(s), 0≤ s≤ t}.

The analysis remains the same for evaluating covariates related to susceptibility
because only contacts between infectives and susceptibles enter into the analysis.
Estimation of the contact process will differ, however. The log-likelihood of observ-
ing contacts at the set of points {ti jk : i, j = 1, . . . ,n,k = 1, . . . ,Ci j(T )} (Fleming and
Harrington 1991) is given below in terms of stochastic integrals:

logL(C) =
n

∑
i=1

n

∑
j=1

∫ T

0
log(λi j(t))dCi j(t)−

n

∑
i=1

n

∑
j=1

∫ T

0
λi j(t)dt. (2.15)

The conditional likelihood for the infection outcome marks (the Ni j processes) given
the Ci j, Zi, Si, and I j processes is

n

∏
i=1

n

∏
j=1

ci j

∏
k=1
{I j(ti jk)Si(ti jk)p(ti jk;zi,β )}δi jk ×{1− I j(ti jk)Si(ti jk)p(ti jk;zi,β )}(1−δi jk).

We assume that the λi j are parametrized by θ = (θ1, . . . ,θR) and that p(ti jk;zi,β ) =
exp(βzi), where β has length H. 00 is defined as 1. Because p lies in the interval
[0,1], in general we would want β̂ ≤ 0. Let γi jk = I j(ti jk)Si(ti jk). Then

ICi. =
n

∑
j=1

ci j

∑
k=1

γi jk,

that is, the total contacts made on person i by infectives while person i was suscepti-
ble. Assuming sufficient regularity such that the interchange of the various integrals
and derivatives is justified, and making appropriate substitutions, the R + H score
equations for Level I can be written as

∂ logL(C,N)
∂θr

=
n

∑
i=1

n

∑
j=1

∫ T

0

1
λi j(t)

∂λi j(t)
∂θr

dCi j(t)−
n

∑
i=1

n

∑
j=1

∫ T

0

∂λi j(t)
∂θr

dt,

∂ logL(C,N)
∂βh

=
n

∑
i=1

δizhi−
n

∑
i=1

(ICi.−δi)
zhi exp(βzi)
1− exp(βzi)

. (2.16)

These equations are formally equivalent to a log-linear binomial regression where
each person i with covariate zi contributes ICi. trials with outcome δi. The score
equations for β and θ can be solved separately. The information equations for this



40 2 Overview of Vaccine Effects and Study Designs

level and the score and information equations for all other levels are given in Rhodes
et al (1994).

2.9.2.2 Level II

In Level IIA the source of each infection is known, that is, who infects whom, as
well as how long each person is infectious. Level IIA is the last level with any
direct contact information at all. On Level IIB, it is known who is infectious and
how long, but not who infects whom. The time that a person remains infectious plus
contact rates with other individuals gives a measure of the exposure opportunity that
this person provides to other individuals, after taking into account when each was
susceptible: Level IIA,

H IIA
t = σ{Ni j(s), I j(s),Si(s),Zi(s),Gi(s), 0≤ s≤ t};

Level IIB,

H IIB
t = σ{Ni.(s), I j(s),Si(s),Zi(s),Gi(s), 0≤ s≤ t}.

In most cases, information for pattern IIA will be difficult to obtain because of the
necessity of observing who infects whom. When the Ci j processes are not directly
observed, we treat the Ni j processes as thinned versions of the Ci j. Using expression
(2.14) for the intensity of Ni j, Rhodes et al (1996) give the log-likelihood for level
IIA.

Without knowledge of the contact process, we cannot estimate both the set of
parameters λi j (or the θ ) and the parameter β0 corresponding to a constant term
in zi. We must incorporate the value exp(β0) into the λi j functions and deal with a
new set of parameters λ ∗i j = λi j exp(β0). We also refer to the new set of parameters
θ ∗1 (note: θ ∗1 6= θ1 exp(β0) except in special cases). In this instance, the β and θ

∗

equations cannot be solved separately. However, the score equations for β have the
form of a Poisson regression if the terms involving one portion of the log-likelihood,

n

∑
j=1

λ
∗
i j

∫ T

0
I j(t)Si(t)dt, (2.17)

are known. Thus, estimation proceeds by alternating between solving the θ
∗ equa-

tions and the β equations. Certain choices of the parametrization for the λ ∗i j lead to
both sets of equations conforming to a Poisson regression model.

The intensities for the Ni. processes are obtained by summing the intensities of
the corresponding Ni j processes (Bremaud 1981). Level IIB has the same limitation
in terms of not being able to estimate β0 and λi j separately. The log-likelihood is
given in Rhodes et al (1996).
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2.9.2.3 Level III

We know the times at which infections occur and which individuals were susceptible
as well as the values of all covariate processes. We do not observe how long each
person remains infectious. Thus, for Level III,

H III
t = σ{Ni.(s), Si(s), Zi(s), Gi(s), 0≤ s≤ t}.

We proceed by writing a complete likelihood for the marked counting process
N..(t) = ∑

n
i=1 Ni.(t) and then decomposing it into components. The mark corre-

sponds to the identity of the person infected when the combined process jumps.
The contribution to the likelihood for the interval (td−1, td) where td is the time of
the dth event in the process N.. is broken into two parts:

(a) L(no event for N.. in (td−1, td), event for N.. at td |H III
t , td−1 ≤ t ≤ td),

(b) L(identity of person infected at td |event at td , set of individuals susceptible at
time td , H III

t , 0≤ t < td).

The first term is obtained by treating N.. as the sum of thinned point processes and
the second by considering the conditional probability of the identity of the infected
individual given the set of individuals susceptible at time td . Level III has the same
limitation in terms of not being able to estimate β0 and λi j separately. The expres-
sions for the log-likelihoods are in Rhodes et al (1996).

The conditional probabilities may depend on the contact parameters and on the I j
processes. In some instances, depending on the form of the Gi covariates, strata can
be formed in which the conditional probability does not involve either the contact
parameters or the I j processes. For example, if the λi j(t) are all equal to a constant
value λ , the conditional probability is free of both the above quantities. Also, con-
sider the case where each individual belongs to one of K mixing groups. In that
circumstance we can work with Nk.., k = 1, . . . ,K, the total infection processes in
each of the K groups. Part b is then the conditional distribution of the mark given
the actual set of individuals who were susceptible at time td in the group in which
the infection occurred.

The Cox regression model has an advantage over analyses IIA and IIB in that no
modification needs to be made for the situation where the study population consti-
tutes only a portion of the entire population. For example, if one conducts a vaccine
trial in a limited age group of the population and collects infection data only for that
age group, the Poisson-based methods could not be formulated correctly because
one would not know the total exposure potential of the children in the trial.

2.9.2.4 Level IV

For Level IV we know whether each individual has been infected in (0,T ] but not
when the infection occurred:

H IV
t = σ{Ni.(T ),Zi(0),Gi(0)}.
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Table 2.4 Estimates of β1 and estimated variances for β1 assuming homogeneous mixing†
(Rhodes et al 1996)

Level Estimator Variance Estimator

I log
(

n1IC0
n0IC1

)
1−p̂0

n0
+ 1−p̂1

n1

II log
(

n1L0
n0L1

)
1
n0

+ 1
n1

III No closed form No closed form

IV log
[

log{− log(1−p̂1)}
log{− log(1−p̂0)}

]
∑

1
i=0

p̂1
mi(1−p̂i){(1−p̂i)}2

†ICi is the number of contacts made on individuals in group i by infectives while
those individuals in group i were susceptible. ni is the number of infections
in each group during the study. Li is the total time that susceptibles in group
i were exposed to infectives. m j is the initial number of susceptibles in group i,
p̂i = ni/mi.

The analysis has the form of a binary regression, although the link is the comple-
mentary log–log link (ie, log(− log(p))). Censoring or late entry is not permitted,
nor is it possible to incorporate time-dependent covariates. Thus, we restrict atten-
tion to the values of covariates at the start of study.

Consider the probability that an individual i with covariates z would escape un-
infected over the time period (0,T ] if we were given the full history of the infec-
tiousness processes for all other individuals.

Pr(Ni.(T ) = 0|I j,Zi) = 1− pi(T ) = exp

[
−exp(βzi)

∫ T

0

n

∑
j=1

λi j(t)I j(t)dt

]
,

or

log(− log(1− pi(T ))) = βzi + log
∫ T

0

n

∑
j=1

λi j(t)I j(t)dt = βzi + γi . (2.18)

If the terms γi are unique to each individual, estimation of the parameters of inter-
est, β , is not possible, because each individual adds a new parameter to the analysis.
However, if among the n individuals there are a limited number of γ parameters, esti-
mation is possible. Thus, although the I j processes are not observable, under certain
conditions, functions of these processes are estimable. However, these functions are
not themselves of great interest. When there is a set of parameters γ = (γ1, . . .γK),
where K � n, we then fit the complementary log–log binomial regression model
incorporating covariates for these parameters.
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2.9.3 Homogeneous mixing

We consider the case of homogeneous mixing, that is, λi j(t) = λ for i 6= j, with
p(t;zi,β ) = pi = exp(β0 + β1zi) for the case where zi is a single dichotomous co-
variate. When the contact processes are not observable, the parameters λ and β0
cannot both be estimated. The composite parameter λ ∗ = λ exp(β0) is estimable
and is interpretable as the average rate per unit of time at which one infective would
tend to infect a susceptible with covariate equal to 0. The estimates for eβ1 for the
different information levels and the corresponding estimated variances are given in
Table 2.4. The estimator for Level I has the form of a log relative risk. Analyses IIA
and IIB are the same since there are no contact covariates. The estimator for β1 for
Level II is similar to that for Level I except that a measure of exposure opportunity
is substituted for a measure of actual exposure. The Cox regression estimator (Level
III) does not have a closed form. The level IV estimator uses functions of the pro-
portions infected in each group. If the probability of infection per contact is large,
such as in measles or chickenpox, analysis I might be a better choice than analysis
II (Figure 2.5). In this situation, knowledge of actual exposure, say a secondary
attack rate study, provides a large improvement in the standard error over the use of
expected exposure or exposure opportunity, say a study using Poisson regression.
Knowledge of the actual amount of exposure, measured by contacts with infectives,
leads to a large gain in efficiency when the absolute probability of transmission per
contact of an infective with a susceptible is high. Infectious diseases such as measles
and chickenpox have generally high transmission probabilities, but HIV has a low
transmission probability, except perhaps during certain periods of infectiousness.

All of the models with the exception of level IV can be extended to accommo-
date individuals who are lost to follow-up or who enter the population after the study
starts. A more complicated situation is introduced by the process letting Yj(t) = 1
if person j is present in the population at time t, and 0 otherwise. This differs from
standard usage in survival analysis where Yj(t) = 1 indicates that the person is under
observation at time t (Andersen and Gill 1982). A person who is not under obser-
vation but remains present in the population may influence the infection outcomes
of other population members. This type of dependence is not seen in noninfectious
disease studies.

Problems

2.1. In a vaccine efficacy study in which all participants are recruited at the same
time, the time of onset of illness for all vaccinated and unvaccinated cases is ob-
served. There is no loss to follow-up. No information on exposure to infection is
observed.
(a) What level information is this about the transmission system?
(b) Which of the VES, in this case actually VESP, estimators can be computed from
this study?
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Fig. 2.5 Ratio of standard errors in the analysis at Level II compared to Level I by baseline trans-
mission probability (eβ0 = p0) and the covariate effect on the transmission probability, or trans-
mission probability ratio (T PR = eβ1 ) in group 1 compared to group 0. T PR = eβ1 = 1 (—–), 0.5
(· · · · · · ), 0.25 (- - - -), and 0.1 (- · - ·). The ratios are based on the variances for β1 at Levels I
and II given in Table 2.4. The number of infections is assumed to be the same in each group, and
therefore, cancel out (Rhodes et al, J R Stat Soc B 58:751-762, 1996, reprinted with permission of
the Royal Statistical Society).

2.2. In a blinded, randomized controlled trial of an HIV vaccine, the estimated
VES,λ is 0.40. Using the dependent happening expression (2.7), compute by how
much vaccinated individuals would need to increase their sexual contact rate to nul-
lify the biological benefits of vaccination, assuming everything else remained the
same.

2.3. From the data in Figure 1.3, compute VES,p for the children with definite expo-
sure in other households.

2.4. (a) Compute VES,CI from the data in Table II of Figure 1.1.
(b) Compare the result with that in equation (2.6) and explain the difference.

2.5. Consider two populations of size N = 1000 as in Figure 2.4. In population A,
30 cases occur in the 600 vaccinated individuals, and 100 cases occur in the 400
unvaccinated individuals. In population B there are 700 cases.
(a) Compute VEdirect, VEIIa, VEIIb, and VEIII .
(b) What is the number of cases actually prevented in the vaccinated individuals
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in population A? What number of cases prevented would one compute if the com-
parison population were taken to be the unvaccinated individuals in population A?
Discuss the differences in the two results.



Chapter 3
Immunology and Early Phase Trials

The biological basis of successful vaccination is our own complex immune sys-
tem and its response to pathogens. Vaccination can induce an immune response that
mimics natural infection or tries to do even better than our response to a pathogen.
Vaccination induces an immune response in the individual vaccinated. A population
of hosts has a collective level of immunity that results from the level of immunity
in the individuals that compose it. The collective immunological status of a popula-
tion of hosts, as opposed to an individual host, with respect to a given pathogen is
called herd immunity. Maintenance of individual immunity can depend on repeated
boosting by natural infection. The level of transmission may be diminished by high
levels of immunization or natural immunity in a population to the point that natural
boosting of immunity does not occur. Thus for some infections, a complex inter-
play between individual and population level immunity is maintained through the
dependent happenings.

The immune response is also the source of many safety considerations of vac-
cination. Before a vaccine can be shown efficacious against infection or disease in
a large-scale field study, it must be shown to elicit an immune response and to be
safe in smaller studies. The design and analysis of vaccine studies requires an un-
derstanding of immunology and vaccines that goes beyond the scope of this book.
Our goal in this chapter is to present sufficient biological background and terminol-
ogy that the other chapters of the book can be read and understood. The key ideas
are the immunogenicity and safety of vaccines. Preclinical studies in animals and
Phase I and II clinical studies in humans have the primary goals of assessing the
immunogenicity and safety of vaccine candidates. Early phase studies as well as ex-
perimental challenge studies are discussed briefly in this chapter. Population-level
considerations include herd immunity and natural boosting of immunity.

The book Vaccines by Plotkin, Orenstein, and Offit (2008), now in its fifth edi-
tion, is the standard reference book on vaccines. Janeway’s Immunobiology by Mur-
phy, Travers, and Walport (2008), seventh edition, is the standard reference book on
immunology, with many sections on infectious diseases and vaccines. We recom-
mend both of these books to anyone with further interest in the topic.

M.E. Halloran et al., Design and Analysis of Vaccine Studies, Statistics for Biology
and Health, DOI 10.1007/978-0-387-68636-3 3, 47
c© Springer Science+Business Media, LLC 2010
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3.1 Immunology and Infection

3.1.1 Innate and adaptive immune systems

The immune system is composed of a complex network of cells, molecules, and tis-
sues with intricate interactions. The immune response can be divided into the innate
immune response and the adaptive immune response. The elements of the innate im-
mune system are encoded in a fixed way in our bodies. The innate immune system
does not develop a specific response to an infectious agent. It relies on a limited and
invariant repertoire of receptors to recognize microorganisms. The innate immune
response can discriminate between self and nonself, and thus is able to decide when
to launch an attack. Often the innate immune system can deal with invaders that
breach the skin, the mucosa, or the airways. When it senses a foreign pathogen that
it cannot contain, it mobilizes the adaptive immune system.

The adaptive immune system develops a specific response to a pathogen. B cells
produce specific antibodies for antigens on the pathogens. An antibody is a protein
that binds specifically to its antigen. An antigen is any substance that can be recog-
nized and responded to by the adaptive immune system. T cells develop the ability to
kill specific pathogens and to help B cells produce specific antibodies. Naive T cells
move continuously around the body and through the various lymphoid tissues. An-
tibodies and T cells both bind antigens at receptors that are specific to the antigen. A
nearly infinite range of specificities of antigen receptors of antibodies in B cells and
in T cell receptors are encoded by a small set of genes by an irreversible rearrange-
ment of segments of the genes. Each cell expresses a unique receptor specificity that
stays with its offspring. Cells of at least 108 different specificities are available in
an individual at any one time (Murphy et al 2008). The adaptive immune system
has the ability to remember its first encounter with a pathogen. When the pathogen
invades the body again, the secondary response is much more rapid and much more
intense. The adaptive immune response and its memory provide the rationale for
immunization. The general idea is to prime the body with immunization to be ready
to meet the invader with a swift and aggressive response.

The five main types of pathogens are viruses (measles, mumps, yellow fever),
bacteria (meningococcus, tuberculosis, pertussis, cholera, typhoid), uni- and multi-
cellular organisms with nuclei (malaria, sleeping sickness), fungi (Candida albi-
cans, Pneumocystis carinii), and worms (filariasis, river blindness, hookworm). All
successful vaccines in humans up until now are directed against viruses and bacte-
ria, which are also called microparasites. Different effector mechanisms are used to
clear primary infections with different pathogens and to protect against subsequent
infections. With some infectious agents, such as measles or smallpox, the immune
response to natural infection is quite protective against further disease. For such in-
fectious agents, it has been fairly easy to produce efficacious vaccines that simply
induce an immune response similar to that of natural infection. For some infections,
such as malaria, HIV, and many of the parasites, the immune response to natural in-
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fection is insufficient to protect against disease. For such infections, vaccines have
to be designed that actually do better than our own natural immune responses.

3.1.2 Immune response to infection

What happens when a person is infected by a pathogen for the first time? The in-
nate immune system begins acting immediately. Immature dendritic cells distributed
throughout the body serve as sentinels of infection. Dendritic cells have long ten-
tacles and migrate around the body and into tissues, continually ingesting large
amounts of extracellular fluid. They can distinguish self from nonself in the ma-
terial they ingest. When they encounter a foreign pathogen, several things happen
(Murphy et al 2008). The dendritic cells develop into mature dendritic cells, capable
of presenting the antigens of the pathogen to naive T cells. That is, the mature den-
dritic cell becomes an antigen-presenting cell, a link between the innate and adaptive
immune system. Macrophages, literally “big eaters”, and neutrophils are also cells
that ingest and digest pathogens that are capable of presenting antigen to cells as
part of the link between the innate and adaptive immune response. Sometimes the
dendritic cells, macrophages, and neutrophils are able to contain small invasions in
the immediate phase of the innate immune response.

Inflammation is another local response to infection of the innate immune system
that occurs after a few hours (Murphy et al 2008). This part of the innate immune re-
sponse is communicated by proteins secreted by the cells. Chemokines are proteins
secreted by cells that attract other cells with chemokine receptors into the infected
area. Cytokines are proteins secreted by cells that affect cells close by with the right
receptors. In inflammation, the chemokines released by the macrophages recruit
more cells of the innate immune system into the area. Once the antigen-specific
cells of the adaptive immune system have been created, they too will follow the
chemokines to the infected area to intensify the attack. Inflammation causes redness,
soreness, swelling, and warmth around the area of infection. Local inflammation at
the injection site is a common side effect of vaccination.

If some threshold of infection is passed and the innate immune system is not able
to clear the infection, the adaptive immune response is triggered. Triggering of the
adaptive immune response depends on the transport of the infectious agent to the
lymphoid organs, such as a lymph node, then recognition and proliferation by the
naive T and naive B cells situated there (Murphy et al 2008). The antigen-presenting
cell, such as a mature dendritic cell, grabs the antigen at the site of infection and mi-
grates with it to the local lymphoid organ that contains naive T and naive B cells.
The dendritic cell then presents the antigen to the naive T cell. The naive T-cell
turns into specific effector cells that multiply. They become either antigen-specific
CD8 cytotoxic T cells or antigen-specific helper CD4 T cells. Some of the armed
effector T cells, particularly the cytotoxic T cells, leave the lymphoid tissue fol-
lowing the chemokine trail back to the site of infection to kill the pathogens. Some
of the effector T cells, particularly the antigen-specific helper T cells, stay in the



50 3 Immunology and Early Phase Trials

lymphoid tissue to help activate B cells that are presenting the specific antigen on
their cell membranes. Antigen-specific B cells generally do not get to work until
they encounter antigen-specific helper T cells. The B cells grow exponentially for a
couple of days and become the antibody-producing plasma cells. It takes about four
days for the adaptive immune system to develop a specific response the first time an
infectious agent invades a person.

Once an infection is cleared, most of the effector cells die, and a specific im-
munological memory is retained in memory T and memory B cells (Murphy et al
2008). Memory T cells last a very long time, virtually forever, and are responsible
for the long-term protection after infection or immunization. The second time the
pathogen infects a person, the specific memory T and B cells produce a much more
rapid and stronger response. Antigen-specific memory B cells replicate and produce
antibodies with higher affinity, that is, higher binding strength for its antigen, than
the primary response.

In summary, the first encounter with an antigen produces a primary response. Af-
ter a lag phase, antigen-specific antibody is produced. Primary immunization plays
the role of the first infection with an infectious agent. If the primary immunization is
followed by a secondary or booster immunization, the secondary antibody response
occurs after a much shorter lag, much more antibody is produced, and the antibody
has a higher affinity, or strength of binding, to the antigen. It is also possible that
natural exposure to infection could serve as a booster.

3.1.3 Antibodies and epitopes

Antibodies deal with extracellular forms of pathogens and their toxic products. Anti-
bodies circulate in the fluid component of the blood called plasma. The term humors
was used for body fluids, so that antibody mediated immunity is called humoral im-
munity (Murphy et al 2008). Antibodies are Y-shaped and the ends of their two
arms are highly variable, which provides the diversity needed to recognize specific
antigens. The stem of the Y determines the class of the antibody. The antibodies are
also called immunoglobulins, a particular family of proteins. There are five major
classes. For understanding vaccine studies, the most important classes are IgG, IgM,
and IgA. The IgG is the most abundant antibody in the plasma and the longest last-
ing of the antibodies. IgM is the first immunoglobulin to be secreted by the B cells
and is a herald of early infection. IgA is the main antibody associated with mucosal
immunity. Antibodies do three main things. They bind toxins, they bind pathogens
in the blood, and they bind to pathogens in the extracellular space.

An antibody generally recognizes only a small part of a large antigenic molecule,
such as a protein, polysaccharide (large, complex sugar), or glycoprotein (a protein
with sugars attached to it), of a pathogen. An epitope or antigenic determinant is the
small structure recognized by an antibody or an antigen receptor on a cell. A large
molecule such as a protein, polysaccharide, or glycoprotein can have many different
epitopes. A T-cell epitope is a small part of the pathogen that is recognized by a T-
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cell receptor. Effector T cells only recognize epitopes of a pathogen when they are
presented to them bound to a particular type of protein on the surface of an antigen-
presenting cell, such as a dendritic cell, macrophage, neutrophil, or B cell. These
cell surface proteins that can hold the antigen while it is presented are encoded in a
cluster of a couple hundred genes known as the major histocompatibility complex
(MHC). In humans, the genes in this cluster are also called the human leukocyte
antigen (HLA) genes. There are many genetic variants (polymorphisms) in each
gene in the cluster across the human population. Thus, each person has his or her
own set of cell-surface proteins that bind antigen to be recognized by the effector
T cells. The MHC (HLA) provides a broad population-level genetic diversity as a
defense against pathogens (Murphy et al 2008).

3.2 Vaccines

3.2.1 Smallpox

Edward Jenner is generally credited with having introduced, or at least made pop-
ular, at the end of the 18th century the use of cowpox inoculation as a protection
against smallpox. The latin word for cow, vacca, and the vaccinia virus of coxpox,
gave the name to vaccination. Smallpox was a widespread and serious, often lethal,
disease. The pockmarks it left on the face could be severely disfiguring. Before vac-
cination for smallpox was introduced, smallpox virus itself was used intentionally
via the skin to produce a protective immune response against smallpox, a process
called variolization. Variolization generally, but not always, produced a milder case
of smallpox than natural infection. The virus could be obtained either from fresh
pustules or from the dried scabs from smallpox lesions. The practice was more
widespread outside Europe. In the 18th century, it was introduced into Europe, but
apparently with limited uptake (Buchan 1792).

Vaccination against smallpox with eradication of the disease nearly two centuries
after introduction of the first vaccination is a great public health success story (Fen-
ner et al 1988). Several characteristics of the disease and the vaccine, and the ded-
ication of a generation of public health workers led to the success. The disease is
only moderately transmissible, it has no animal reservoir, it causes typical skin le-
sions in nearly everyone who acquires the disease, and immunity to natural infection
is complete and apparently life-long. It has a relatively long generation time, about
two weeks, so that for a viral disease, it is pretty slow-moving. The vaccine was
independent of the cold chain and easily administered subcutaneously with a bifur-
cated needle that held just the right amount of vaccine between its two prongs that
were simply jabbed into the skin. To find the last cases towards the end of the inter-
national campaign, rewards were offered to people to turn in suspected cases. Then
people in the surrounding area were vaccinated, a strategy that came to be called
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ring vaccination. Smallpox was declared eradicated by the WHO in 1980. Routine
immunization against smallpox stopped by 1983.

3.2.2 Early development

After the introduction of the vaccine for smallpox, nearly a century passed before
the next success (Table 3.1). In the early years of vaccine development, two main
approaches were pursued (Plotkin and Plotkin 2008). One approach was based on
attenuated live organisms that can stimulate protective immunity but not cause dis-
ease. The other approach was based on killed organisms or purified components of
killed organisms. The latter have the advantage that they cannot cause disease or
revert to wild-type, but because they cannot replicate, they do not stimulate the im-
mune system in the same way as live attenuated organisms. Another consideration
is that many live attenuated virus vaccines need to be kept either cold or frozen,
making their widespread use dependent on a cold chain.

In the 19th century, scientists such as Louis Pasteur in Paris, among others, were
experimenting with using an attenuated version of infectious agents to immunize
individuals (Plotkin and Plotkin 2008). This approach was radically different from
using a different less virulent pathogen, such as cowpox against smallpox. Louis
Pasteur experimented with attenuated rabies virus vaccine. The idea of injecting a
live virus into a human being, whether the virus was attenuated or not, shocked the
public. Pasteur got into trouble for his experiments in humans with live rabies vac-
cine, but was later exonerated. Research in the latter half of the 19th century focused
on developing vaccines using killed organisms. Several groups independently devel-
oped a typhoid vaccine, including A. E. Wright, who later had the argument with
Karl Pearson (see Chapter 1.1) about efficacy of the typhoid vaccine. Killed cholera
and killed plague vaccines were also developed near the end of the 19th century.

The serious diseases associated with tetanus bacteria and diphtheria bacteria are
caused by specific protein toxins that they release. So it is sufficient for an immu-
nization to induce antibodies against the toxins. The vaccines against tetanus and
diphtheria, chemically weakened toxins, called toxoids, were available in the 1920s
(Plotkin and Plotkin 2008).

The tuberculosis vaccine bacille Calmette-Guérin was developed by Albert Cal-
mette and Camille Guérin by severe attenuation over 13 years of a bovine tubercle
bacterium and introduced in 1927. BCG vaccine is a live attenuated bacterial vac-
cine. Today it is the most widely used vaccine in the world, though its efficacy is
variable, partly due to variability of the BCG strains around the world (Plotkin and
Plotkin 2008). The live virus yellow fever vaccine was available for human use in
1935.
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Whole cell killed pertussis vaccine became available in 1926. Safety concerns
about the whole cell pertussis vaccine led to a search for an alternative. Natural im-
munity to pertussis induces antibodies to pertussis toxin, filamentous hemagglutinin,
pertactin, and fimbrial antigens (Storsaeter et al 1992). Acellular pertussis vaccines
containing pertussis toxoid and possibly one or more of the three other antigens
became available in the 1990s.

The development of a safe and easy cell culture method to grow viruses, by John
Enders, Thomas Weller, and Fred Robbins, started the golden age of vaccine devel-
opment in 1949 (Plotkin and Plotkin 2008). The live oral polio vaccine (OPV) of
Albert Sabin and the injected inactivated polio vaccine (IPV) of Jonas Salk were
both developed in the early 1950s. The live virus measles, mumps, rubella and vari-
cella vaccines followed in succession between the 1960s and the 1990s. Various
killed influenza virus vaccines were available since the 1930s, and the live cold-
adapted influenza virus (CAIV) vaccine was licensed finally in 2003 in the United
States.

3.2.3 Recent developments and beyond

Many bacteria including meningococcus, pneumococcus, and Hemophilus influen-
zae have an outer capsule composed of polysaccharides (complex sugars) (Murphy
et al 2008). The capsules are species- and type-specific. There are more than 90
serotypes of pneumococcal bacteria, a subset of which causes most of the disease.
Important meningococcal bacteria types are A, B, C, W135, and Y. Vaccines are
generally effective against only the types that they contain, although some cross-
protection can occur. The best defense against bacteria with polysaccharide capsules
is to coat them with antibody (opsonization). A bacterium, or other antigen, coated
with antibodies is recognized as foreign by certain cells (phagocytes) that eat it and
destroy it. Vaccination aims to elicit antibodies against the polysaccharide capsules.
The first vaccines for these bacteria were made from the purified polysaccharide
capsule. However, complex sugars are not as immunogenic as proteins, especially
in very young children. The newer conjugate vaccines for such bacteria link the
bacterial polysaccharide to a protein carrier to be able to elicit the innate immune
response and the T-cell-dependent antibody response and be more strongly immuno-
genic.

Reassortant vaccines are produced by coinfection of cell culture with wild-type
and attenuated virus strains so their genomes can mix. This approach can be used
with viruses with segmented genomes, such as influenza and rotavirus (Murphy et
al 2008). A modern approach to live attenuated vaccines is to use recombinant DNA
technology to put mutations into the genes responsible for virulence in a way that
makes reversion to wild-type nearly impossible.

Several new approaches to vaccines are being tried. DNA vaccination injects
small bits of the DNA encoding an immunogenic part of the virus directly into the
muscle. Surprisingly, the elicited immune response is able to protect against in-
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fection with the whole virus. Subunit vaccines contain only parts of the antigenic
material of the pathogen. They induce a response against only some proteins in the
pathogen. Vector-based vaccines integrate genes of the pathogen of interest into the
DNA of another pathogen that serves as the vector. When the vector pathogen repli-
cates in the host it expresses the genes of the pathogen of interest, inducing an im-
mune response to that pathogen. Many more vaccines are in the pipeline, including
vaccines against malaria, HIV, dengue fever, new vaccines against tuberculosis, and
new generations of vaccines against numerous infectious agents for which vaccines
already exist.

3.2.4 Adjuvants

Adjuvants are substances that enhance the ability of an antigen to induce an immune
response (Murphy et al 2008). Many of the antigens used in vaccines by themselves
do not produce a strong immune response, partly because they do not themselves
induce the innate immune response needed to activate the naive T cells. Adjuvants
are included in many vaccines to enhance the immunogenicity. Different adjuvants
promote different types of immune response. Adjuvants are often made of bits of
cell walls of bacteria, but may be too strong to be used in human vaccines. The per-
tussis toxin protein has adjuvant properties. In the combination vaccine diphtheria,
pertussis, tetanus, the components of pertussis serve as an adjuvant.

3.3 Vaccine Safety

Prophylactic vaccines are generally given to healthy people, so that safety is a pri-
mary consideration at all phases of clinical testing and after licensure. Safety con-
cerns of vaccination result partly from the immune response to foreign material in
the body, either from the pathogen antigen of interest or the adjuvant. Unwanted
reactions after vaccination are called side effects or adverse events or adverse ex-
periences (AEs). Some adverse events could immediately follow vaccination, and
others could appear over the next few days. Typical adverse events local at the in-
jection site include inflammation with swelling, redness, soreness, and/or warmth.
Systemic adverse events include fever, malaise, chills, or muscle aches. Serious ad-
verse events (SAEs) include anaphylactic shock immediately following vaccination,
serious ulceration or abscesses at the vaccination site, or death, among others.

Other safety issues arise with vaccines that contain whole attenuated or killed
pathogens. Attenuated pathogens in vaccines can be shed. Shedding is not synony-
mous with transmission, but occasional transmission might occur. One transmission
event of the cold-adapted influenza virus vaccine was documented, but without caus-
ing disease (Vesikari et al 2006). However, in some cases transmission of the vaccine
virus to contacts can result in disease, such as with the live oral polio vaccine. Some
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attenuated pathogens can revert to wild-type and cause disease. In immunocompro-
mised people, that is, people with weakened immune systems, such as people with
HIV, on cancer chemotherapy, or for other reasons, live attenuated vaccine viruses
can cause severe disease. For this reason, live attenuated vaccines are not supposed
to be given to most immunocompromised people or close contacts of immunocom-
promised people.

If whole pathogens are not completely killed before being put into the vaccine,
they could also cause disease. Shortly after the killed (Salk) polio vaccine trials in
the United States, when manufacturing of the vaccine ramped up, vaccine from Cut-
ter Laboratories contained virus that was not sufficiently inactivated. Over 200 par-
alytic polio cases were traced to vaccine from Cutter (Oshinsky 2005). The incident
resulted in much stricter manufacturing requirements, but also damaged the public
trust in being vaccinated against polio. Widespread immunization against swine in-
fluenza in the United States in 1976 caused several hundred cases of Guillain–Barré
syndrome, resulting in several deaths from pulmonary complications (Neustadt and
Fineberg 2005). A rotavirus vaccine was withdrawn shortly after introduction when
a few cases of a rare type of intestinal obstruction occurred that might have been
attributable to the vaccine (Murphy et al 2001). Perception of the safety of vaccina-
tion is also important for people to agree to be vaccinated or to have their children
vaccinated. Safety of vaccines has become increasingly important as the threat of
disease has been reduced.

3.4 Immune Assays

Measuring the immune response to vaccination is important to understand how im-
munogenic the vaccine is. For a vaccine to be licensed, evidence of its potency
must be demonstrated. Potency is the specific ability or capacity of the vaccine as
measured by a laboratory test. Increasingly, immune measures are being used as
outcomes in definitive studies leading to licensure of vaccine candidates (Chapter
15).

3.4.1 Antibody assays

The most important assays measure the antibodies circulating in the plasma, the
fluid part of the blood (Murphy et al 2008). Once blood is collected, it is allowed
to clot. Serum is the fluid component of clotted blood, and when the antibodies
in it are of interest, it is called antiserum. Assays make use of the high specificity
of the antibody for its antigen. Assays for antibodies are also called serological
assays and the use of antibodies called serology. Serial dilutions of the antiserum
are performed, usually diluting at each step by half, a process called titration. The
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titer of an antiserum is the dilution at which binding of the antibody to its antigen
falls to 50% of the maximum.

The enzyme-linked immunosorbent assay (ELISA) is one of the most common
assays. It can be used to detect antibody or to detect antigens in viral infections. The
assay relies on direct measurement of antibody binding to its antigen.

The hemagglutination assay is based on the ability of some viral surface or enve-
lope proteins to agglutinate, or stick to human or animal red blood cells and cause
them to clump. Hemagglutinin is the main surface protein of the influenza virus. Pro-
tective immunity against influenza is generally attributed to neutralizing antibodies
directed against the hemagglutinin. The antibodies against hemagglutinin are mea-
sured by the ability to inhibit the hemagglutination assay. The titer, or dilution, in
a person’s antiserum at which this is measured is called the hemagglutination assay
inihibition (HI or HAI) titer.

Immunoblots can be used to test sera for the presence of antibodies to specific
proteins (Murphy et al 2008). Immunoblots, also known as Western blots, are used
to separate proteins (antigens) of different sizes. Antibodies are then exposed to the
size-separated proteins on the blots to allow them to bind to their specific antigens.
The bound antibodies are then labeled so they can be seen. If a vaccine is composed
of just parts, or subunits, of a pathogen, then the antibody response to the vaccine
will look different from the antibody response to the whole pathogen. Thus, the
response to natural infection can be differentiated from the response to a subunit
vaccine because there will be fewer bands on the immunoblot in a person who did
not have a natural infection.

Several statistical issues related to analyzing and interpreting assays are not dis-
cussed in this book. These include interval censoring of the titer measurements and
interpretation of null results when the result may be positive but simply below the
limits of detection of the assay. Gilks et al (1993) estimated the waning of antibody
titers with a random-effects models for longitudinal data using Gibbs sampling. This
approach can be used to determine schedules for booster shots if it is known what
level of antibodies are protective.

3.4.2 T-cell assays

A number of assays can be used to characterize T cells (Murphy et al 2008). T cells
are more difficult to characterize than B cells or their antibodies because there are
different types of T cells with different functions. Also measurement of the T-cell
receptors in the cell membrane is more difficult than measuring antibodies. Cyto-
toxic T cells can be measured by seeing if they kill specific target cells. CD4 help T
cells can be measured by the amount of cytokines they release when exposed to the
specific antigen. The ELISPOT assay is a modification of the ELISA assay that al-
lows measurement of the frequency of T cells in a population of T cells that respond
to a specific antigen. The ELISPOT can also be used to detect specific antibody
secretion of B cells. T cell assays are available that allow identification of func-
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tional subsets of T cells, T-cell-receptor specificity, frequency of certain subsets of
lymphocytes, and assessment of the diversity of the T-cell repertoire, among others.
As vaccines are developed based on stimulation of cellular immunity, it would be
important to include more discussion of the assays. In addition, evaluation of cor-
relates of immunological protection are beginning to include assessment of cellular
immunity.

3.5 Herd Immunity

Herd immunity describes the collective immunological status of a population of
hosts, as opposed to an individual host, with respect to a given pathogen (Fox and
Elveback, 1975; Anderson and May, 1982). Herd immunity can be thought of as a
collective biological state of a population of hosts. Herd immunity of a population
can be high if many people have been immunized or have recovered from infection
with immunity or be low if most people are susceptible. The level of herd immu-
nity can decrease if the proportion of susceptibles increases or vaccinated protection
wanes in individuals. The term herd immunity is sometimes somewhat incorrectly
used to refer to the threshold at which circulation of an infectious agent is essentially
eliminated. We prefer the definition of herd immunity that considers it a continuum
rather than a threshold. If herd immunity is high enough, then a threshold may be
reached at which infectious hosts no longer contact enough susceptible hosts to
maintain transmission.

Herd immunity can be measured in several different ways. Seroprevalence is the
proportion of a population that has antibodies to a particular antigen. Seroprevalence
of protective antibodies against an infectious agent is a measure of herd immunity. In
Figure 3.1, the age-specific seroprevalences, that is, proportions of people with anti-
hepatitis A virus (HAV) IgG and anti-hepatitis E virus (HEV) IgG in a collection of
communities in Vietnam (Hau et al 1999) are plotted. Seroprevalence of anti-HAV
IgG rises very quickly with age essentially reaching 1.00. Seroprevalence of anti-
HEV IgG, on the other hand, is very low. The area under the bar graphs, adjusted for
the varying sizes of the age groups, can be regarded as the level of herd immunity.
The herd immunity for HAV is high and that for HEV is low. On average, 97%
versus 16% of the people have antibodies against the two diseases. There is concern
that the population is susceptible to an outbreak of HEV. Fine (1993) reviews herd
immunity. Fine and Mulholland (2008) use the term community immunity, which is
a useful alternative to herd immunity.

The indirect effects of vaccination are primarily due to herd immunity result-
ing from increased levels of protection in individuals. Recently impressive indirect
and overall effects have been observed with the conjugate pneumococcal vaccines,
meningococcal, and Hib vaccines, indicating important herd immunity (Chapter 13).

Mechanisms of immunity to the three stages of the malaria parasite can be roughly
classified as infection-blocking, disease-modifying, and transmission-blocking. Nat-
urally acquired immunity to malaria is transient and can be lost in the absence of
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Fig. 3.1 Age-specific prevalences of anti-hepatitis E virus (black bars) and anti-hepatitis A virus
(gray bars) immunoglobulin G in Vietnam. Data from Hau et al (1999).

frequent natural boosting by infective mosquito bites (Boyd 1949). The possible dy-
namic interplay of stage-specific immunity, duration of vaccine effectiveness, nat-
ural boosting, level of vaccine coverage, intensity of transmission, and the conse-
quences for incidence and prevalence of malaria has excited speculation since the
1980s (Bruce-Chwatt 1987; Molineaux et al 1985). Because immunity to malaria
decreases transmission, there is a negative feedback loop between the two. Vac-
cination programs suppressing transmission without eliminating it will alter ex-
isting host–parasite balances of both infection and disease, raising difficult public
health questions. Halloran et al (1989) showed malaria vaccination could result in
increased disease, either in the population as a whole, or in the unvaccinated portion
of the population, depending on the antigenic stage of vaccination, the level of cov-
erage, the duration of vaccine-induced immunity compared with naturally induced
immunity, and the vaccination strategy.

With many other infectious diseases, such as measles, it is not well understood
whether what appeared to be life-long immunity was dependent on continual re-
exposure to infection before widespread immunization. Thus waning of vaccine-
induced immunity could result in large portions of the adult population being sus-
ceptible to disease once again.
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3.6 Early Phase Vaccine Studies

The early phase of vaccine development involves searching for candidate vaccine
antigens. These include in vitro studies as well as testing in animals. Once a can-
didate antigen is found, then a vaccine is formulated. The decision to move from
preclinical testing to Phase I, Phase II, and finally Phase III in humans is a com-
plex process involving the immunogenicity and safety of the vaccine candidate, the
cost and potential market for the vaccine, and many other factors (Sadoff and Wittes
2007).

If appropriate animals are available for that particular infectious agent, then the
vaccine candidate will be tested in preclinical studies in animals. In preclinical vac-
cine studies in nonhuman primates, one wants to minimize the number of animals
used, and at the same time, obtain sufficient information to reach valid conclusions.
Sample sizes are small and exact inference is used. Albert (1996) considered three
approaches to computing the sample size in preclinical studies of an AIDS vaccine.
The vaccine candidate is evaluated for safety, immunogenicity, and possibly efficacy
against experimental challenge with the infectious agent. In early preclinical studies,
knowledge about the immune response may affect decisions about choice of anti-
gen, broadness of coverage, and delivery systems. The immune response to antigens
is often quite specific to the animal host, so that using animal immune responses to
make conclusions about human responses is uncertain. However, immunogenicity
in animals can give some help in making the decision to move a vaccine forward to
clinical testing in humans (Sadoff and Wittes 2007).

If the vaccine candidate looks safe with possibly good immunogenicity, then a
Phase I clinical trial in humans is conducted. In Phase I clinical trials, safety is the
primary outcome of interest, but immunogenicity is also evaluated. Phase I trials are
usually small and conducted in healthy adults generally not at risk to be naturally
exposed to infection. Phase I trials may involve different vaccine candidates, doses,
or schedules of administration (number and timing of doses).

Phase II studies are further safety and immunogenicity testing in humans. De-
cisions to move forward to the larger Phase II trials are based on the results of the
safety and immunogenicity data in the Phase I studies. Phase II studies are often
conducted in populations more similar to the target population for the final vaccine
than Phase I studies. When an immune marker is or immune markers are considered
to be a reliable measure of protection against disease, Phase II studies can be the
definitive study for licensure with immune markers as outcomes. Examples include
the meningoccal C vaccine in Great Britain (Balmer and Borrow 2004) and the cur-
rent development of meningococcal A vaccine for Africa (Jódar et al 2003). The
immune response is also used for licensing vaccines when the incidence of disease
is very low, making vaccine field studies infeasible or for vaccines against biologi-
cal threat agents. Concomitant use trials are designed to show that administration of
two or more vaccines at the same time does not interfere with the immunogenicity
of the antigens. For example, when varicella vaccine (V) was added to the measles,
mumps, rubella vaccine (MMR) to make MMRV, it had to be shown that the vari-
cella component would not interfere with the immunogenicity of the other three.
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During and after licensure, immune responses allow generalization to popula-
tions that were themselves not tested for efficacy (Sadoff and Wittes 2007). We
return to the topic of using immunological surrogates of protection as outcomes in
vaccine studies in Chapter 15. Phase IIb studies are intermediate sizes trials, still
Phase II studies, that are large enough that some information on vaccine efficacy
may be available (Rida et al 1997). The preliminary efficacy results can also be
used to expand enrollment to a full-scale Phase III field study.

During a clinical study, all adverse events and serious adverse events are recorded
for study participants. A decision must be made whether the adverse event is due
to the vaccine. For example, a person might have died in a car accident. Likely,
the conclusion would be made that this SAE (death) was not due to the vaccine.
Phase I and II trials can detect common adverse or serious adverse events. Some
Phase III trials can detect relatively infrequent serious adverse events. Because usu-
ally several adverse events are recorded, the problem of multiplicity of tests is an
issue. Sometimes serious adverse events do not become associated with a vaccine
until millions of people have been vaccinated. These events are followed in post-
licensure, or Phase IV, observational studies. Central registries have been set up in
many countries to record adverse events and serious adverse events following vac-
cination. The problem with observational studies is to decide whether there is an
increased rate of adverse events in people receiving the vaccine that is caused by
the vaccine. Statistical methods have been developed to analyze such observational
safety studies (Fine and Chen 1992; Farrington 1995). To handle the topic in depth
lies outside the scope of this book.

3.7 Human Challenge Studies

Some pathogens have characteristics that make experimental infection in humans,
called human challenge studies, to measure vaccine efficacy ethical and feasible.
The pathogen should either not generally cause lethal infection or a very effective
treatment must be available, or both. Human challenge studies have been conducted
with malaria (Patarroyo et al 1987; Webster et al 2005), influenza (Clements et al
1984, 1986, 1990; Jones et al 2009), and other vaccines. Occasionally, such as in
influenza, the challenge is with the attenuated vaccine virus (Belshe et al 2000).

Problems

3.1. What are the main differences of the innate immune response and the adaptive
immune response?

3.2. How are safety issues of vaccination related to the immune response to vacci-
nation?
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3.3. What are the advantages and disadvantages of adjuvants for human vaccines?

3.4. Why were virus vaccines not developed until the second half of the 20th cen-
tury?

3.5. Consider the role of natural boosting by exposure to infection to maintain
immune protection against a disease such as malaria or measles. Explain how
widespread immunization in childhood could result in increased disease in adults
over the long-term.

3.6. How does a seroprevalence survey provide information about the level of herd
immunity in a population?

3.7. (a) Assume a Phase II trial of a vaccine candidate provides evidence of good
immunogenicity and safety. How would you decide to take a particular candidate
forward to an expensive, large-scale Phase III vaccine field trial?
(b) How would you decide if you have similar evidence on three vaccine candidates?



Chapter 4
Binomial and Stochastic Transmission Models

4.1 Overview

How we think about the transmission dynamics of an infectious agent within a host
population influences how we design, analyze, and interpret vaccine studies. It can
influence our choice of interventions. In this chapter and the next we introduce trans-
mission models necessary for estimating and understanding the effects of vaccina-
tion. In this chapter, we present the binomial model and the chain binomial model.
These models are central to formulating statistical models for estimating transmis-
sion parameters and vaccine efficacy parameters. They form the basis of the models
in Chapters 10 through 12. The binomial model is also the basic building block of
the small- and large-scale stochastic simulation models of vaccination interventions
in populations, that can also be used to produce data for design of vaccine studies.
In a stochastic model, whether an event occurs is random, depending on a number
produced by a random number generator described later.

In Chapter 5 we present simple differential equation transmission models that are
generally deterministic. That is, every time the equations are solved, the same an-
swer is obtained. This approach is essential to understanding large complex models
of the population effects of vaccination programs, but less relevant to our purposes
in this book. Much of theoretical discussion of the effect of vaccination on the basic
reproductive number R0 stems from the solution of differential equation models, so
the chapter discusses R0 and the effects of vaccination.

Without getting too formal, all of the models in this and the following chapters
assume that people can be in discrete states, such as susceptible, infected but la-
tent, infected and infectious, or recovered. The binomial models in this chapter are
discrete event models, in that whole individuals become infected or recover. They
are particularly interesting for analyzing data because the likelihood functions for
the discrete events can be easily formulated. Binomial models can be formulated in
discrete time or in continuous time as we show. In contrast, in the differential equa-
tion models, the number of people flowing from one state to another, such as from
susceptible to infected, is continuous. That is, there can be 450.75 people in the in-
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fected compartment. We consider only differential equation models formulated in
continuous time, although discrete time versions are sometimes used.

For all transmission models, whether for estimating parameters of interest or for
simulating vaccine interventions, the underlying assumptions about how people mix
and contact each other is central. We begin this chapter with a general introduction
to mixing structures and population dynamics.

4.2 Contact Processes and Mixing Structures

Individuals make contact with other individuals before an infectious agent enters
the population. What types of contacts and contact processes are of interest can
depend on the infectious agent of interest. Contacts may be through the air or casual
touching. Some models assume that people behave like gas molecules with the rate
of contacts being determined by density. If people are pressed more closely together,
as in an urban environment, they contact each other more often than if they were
less densely distributed, as in a rural environment. Hence, for infections spread by
air, droplet, or casual touching, such as measles, influenza, or mumps, population
density plays a role in determining the value of R0. Alternatively, for diseases spread
by contacts made by choice, such as in sexual contacts or injection of intravenous
drugs, the contacts may be determined more by social behavior. In many cases, both
density and social choice will play a role in determining contact rates and mixing
patterns.

4.2.1 Random mixing

Under the assumption of random mixing, every person in the transmission unit is
assumed to make contact equally with every other person. Thus, an infective per-
son will equally expose every other person in the transmission unit. In a model of
the United States based on random mixing, every infective person in the popula-
tion will expose every susceptible. In a model with small transmission units, such
as households, schools, or day care centers, the assumption of random mixing im-
plies that each person in the transmission unit makes contact with the others equally.
We denote by c the constant contact rate that does not change over time in a ran-
domly mixing population. Most populations do not mix randomly. We consider a
few approaches to nonrandom mixing.
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Community

Fig. 4.1 Transmission units under different assumptions of their relation to one another. On the
left, individuals are assumed to mix only within their transmission units. The transmission units
are independent of one another. On the right, individuals can also mix in the community. The
transmission units are assumed embedded within a community.

4.2.2 Transmission units within populations

Given an assumption of random mixing in small transmission units such as house-
holds, one can then make assumptions about the relation of the transmission units
to one another. The transmission units can be assumed to be completely separate
and independent of one another, as on the left in Figure 4.1. Under this assumption,
an infected person in one transmission unit does not expose someone in another
transmission unit. This is the assumption that underlies the simple chain binomial
model discussed later. Alternatively, the individuals in the transmission units can be
assumed to mix in the community at large as well and either expose each other to in-
fection or be exposed to infection from some community source (right, Figure 4.1).
When we define this community structure, it allows that a susceptible individual can
become infected if exposed to an infected person within the household as well as the
possibility of being infected in the community at large during the course of an epi-
demic or over the duration of a study. The transmission units could be households,
sexual partnerships, schools, workplaces, or day care centers, for example. The as-
sumption of transmission units in a community underlies the analyses in Chapter 11.
The assumption of independent transmission units underlies the analyses in Chapter
12.

More complex mixing models can be formulated where an individual can belong
to several overlapping transmission units and mix in the community at large as well.
For example, a schoolchild can mix with family members at home, with other school
children in the schools, and with people in the neighborhoods and community at
large. People may be assumed to mix randomly within each mixing group. Network
theory is used to study the contact patterns and social networks of actual populations
and simulated populations formally (Morris and Kretzschmar 1997; Koopman et al
2000; Eubank et al 2004; Newman et al 2006; Meyers et al 2006; Kenah and Robins
2007a, b).
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4.2.3 Mutually exclusive subpopulations

Rather than small transmission units, we may think of a population as divided into
mutually exclusive subpopulations that mix with members of their own subpopu-
lations differently than with members of other subpopulations. Quite commonly,
the population is divided into mutually exclusive, nonoverlapping age groups when
modeling infectious diseases such as measles (McLean et al 1991) and chickenpox
(Halloran et al 1994a). The population could be divided into mutually exclusive
groups with different activity levels, such as in models of sexually transmitted dis-
eases (Hethcote and York 1984).

In a population composed of three mutually exclusive mixing groups, groups
1, 2, and 3, the contact pattern is described by a mixing matrix that has the same
number of rows and columns as the number of mixing groups. The entries in the
matrix represent the contact rates of individuals within and between the groups. The
contact rate of individuals of group j with individuals of group i is denoted by ci j.
The mixing pattern of three groups is represented by the matrix

C =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 .

On the diagonal are the contact rates within groups, c11, c22, and c33. The entries
off the diagonal, for example, c12 and c32, represent the contact rates between the
groups corresponding to that row and column. Simple social contact data can be
used to improve estimates of age-specific transmission parameters for infectious
respiratory spread agents (Wallinga et al 2006; Halloran 2006).

The average number of new infectives that one infective will produce, R0, will
be highest in the group with the highest within-group contact rate, assuming that
the transmission probability and infectious period are the same in all groups. If an
epidemic occurs and there is contact between the three groups, the epidemic in the
group with the highest contact rate will help drive the epidemic in the groups with
the lower rates. The group with the highest R0 would then serve as a core popula-
tion for transmission (Hethcote and York 1984) . The existence of a core group has
consequences for intervention programs. It may be easy to reduce the average R0
for the whole population below 1, while R0 in the core population remains above 1,
so that transmission will persist. In infectious diseases, the chain is only as weak as
its strongest link.

Hethcote and York (1984) examined different strategies for reducing gonorrhea
taking into account sex workers who acted as a core group and their contacts within
the general population. They found that an intervention program generally needs to
be targeted at the subpopulation with the higher R0, in this case, the core population
of sex workers, to have most effect. In general, when planning interventions in sit-
uations with heterogeneous transmission or levels of infection, targeting therapy or
prevention to the groups with the highest transmission or levels of infection is often
most effective in reducing infection in the population at large.
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4.2.4 Population dynamics

Transmission models can be formulated with open populations with vital dynamics
or with closed populations. There are two ways to enter and two ways to leave a
population. Individuals can enter a population by being born into it or immigrating.
Individuals can leave a population by dying or emigrating. Open populations may
include just birth and death with no immigration or emigration. Open populations
may also include just emigration, analogous to loss to follow-up. Open populations
are analogous to open or dynamic cohorts. In a closed population, there are no births,
immigration, deaths, or emigration. The closed population is analogous to a closed
cohort. Whether a transmission model is formulated with an open or closed pop-
ulation will depend on the circumstances and time frame of the study. Dynamic
consequences of the assumptions are considered in Section 5.4.

4.3 Probability of Discrete Infection Events

We consider the simple binomial model of transmission for discrete contacts and
discrete time and a simple model in continuous time.

4.3.1 Probability of infection in discrete time or contacts

The binomial model is often used to estimate the transmission probability as well as
effects of covariates such as vaccination status. The basic idea of the binomial model
is that exposure to infection occurs in discrete contacts, which can also be discrete
time units of exposure. Generally it is assumed that each contact is independent of
another. We have defined p as the transmission probability during a contact between
a susceptible person and an infectious person or other source of infection, such as an
infectious mosquito. The quantity q = 1− p is the probability that the susceptible
person will not be infected during the contact, called the escape probability. For
example, if the transmission probability for influenza is p = 0.30, then the escape
probability for one contact is q = 1− p = 0.70. If a susceptible person makes n
contacts with infectious people, then, assuming all contacts are equally infectious,
the probability of escaping infection from all of the n contacts is qn = (1− p)n. The
probability of being infected after n contacts with infectives is 1−qn = 1−(1− p)n.

Suppose a person has five successive contacts with someone who has influenza
(Figure 4.2a). What is the probability that the person will have become infected
by the five contacts? In this example, n = 5. The calculation proceeds by first cal-
culating the probability that the susceptible person will escape infection from all
five contacts. Then this number is subtracted from one to get the probability that
the person is infected at least once. If the probability of escaping infection from
the first exposure is q = 0.7, then the probability of escaping infection from the
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Fig. 4.2 (a) The escape probability with five consecutive contacts. (b) The escape probability with
five simultaneous independent contacts, as in the Reed–Frost model. In both cases, the probability
of infection is 1− (1− p)5.

second exposure is the probability of escaping the first one times the probability
of escaping the second: q · q = 0.7 · 0.7 = 0.49. The probability of escaping infec-
tion from the third contact is similarly the probability of escaping infection from
the first two contacts times the probability of escaping infection from the third,
q2 · q = 0.49 · 0.7 = 0.34. The probability of escaping infection from five succes-
sive contacts is 0.75 = 0.17. The probability of becoming infected at least once is
1− (1− p)n = 1− (0.7)5 = 0.83.

We have made an important assumption here. We assumed that each successive
contact was not affected by any of the previous contacts. That is, the person did not
develop immunity or become more susceptible as time went on. We also assumed
that all of the contacts had the same risk of transmission. These assumptions may not
be fulfilled. If so, the assumptions can easily be changed and a more complicated
form of the binomial model developed. Becker (1989) discusses chain binomial
models with random effects.

In a different problem, suppose a susceptible child attends school one day where
five of the children simultaneously have influenza. What is the probability of be-
coming infected (Figure 4.2b)? Assume that the probability of becoming infected
from one contact with one child with influenza is p = 0.3. Proceeding as before, the
probability of escaping infection from one child is q = 0.7. Now we can calculate
the probability of escaping infection from all five children, with 0.75 = 0.17, so the
probability of being infected on that day at school is 1−q5 = 0.83.

Although the answers for the two examples are numerically the same, the bio-
logical assumptions in the two examples are different. In the example of influenza
at school, it is assumed that each of the five simultaneous exposures to infection
are the same, and that each additional child with influenza increases the probabil-
ity of being infected independent of how many other infective children are present.
The contacts and exposures to infection are assumed to operate the same as if they
were successive and independent. The assumption of independence is commonly
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used in the binomial model, whether contacts are simultaneous or successive. This
assumption is at the heart of the Reed–Frost model discussed below.

What if, however, biologically we think that once there is one infectious child
in a classroom, then the room is saturated with infectious particles? Then adding
more infectious children to the school will not increase the probability of becoming
infected. We need to change our expression for the probability of becoming infected.
If p is the probability of becoming infected from one infected person at school, then
q = 1− p is again the escape probability from exposure to one infected. In contrast to
the previous model, however, the probability of becoming infected from exposure
to two or more infecteds at the same time is still p and the escape probability is
still q = 1− p. Under these biological assumptions, the probability of becoming
infected from one child with influenza on one day is p = 0.3, and the probability
of becoming infected from simultaneous exposure to five children with influenza on
one day is also p = 0.3. The Greenwood model (1931) makes the assumption that
the probability of infection on a given day does not change with increased number
of infectives. The assumption is, however, seldom used in practice.

4.3.2 Other transmission models

Another way to model the probability of becoming infected is simply to multiply the
number n of contacts with infectives times the transmission probability p, np. In the
above influenza example, however, np = 5 · 0.3 = 1.5. Because probabilities have
to lie between 0 and 1, this approach obviously has limits. In particular, either n or
p, or both, need to be small. Another commonly used expression for the probability
of not becoming infected is e−np, with the corresponding probability of becoming
infected being 1− e−np. In the influenza example above, then, the probability of
not becoming infected is e−5·0.3 = e−1.5 = 0.22 and for becoming infected is 1−
e−1.5 = 0.88. Comparing this with the probability of being infected calculated from
the binomial model, 0.83, we note that they are similar but not identical.

In the influenza example above, the transmission probability is high, and the
product of np is large. If the transmission probability is much smaller or the contact
rate is much smaller, or both, then the three methods for calculating the probability
of becoming infected give similar answers. Suppose again that there are five infec-
tious contacts in one day, but that the transmission probability of the infection in
question is just p = 0.001. Then using the binomial model, the probability of be-
coming infected is 1− (1− p)n = 1− (.999)5 = 0.00499. Using the exponential
expression, the probability of becoming infected is 1− exp(−5 ·0.001) = 0.00499,
and based on the simple expression, np = 5 ·0.001 = 0.005. There is little difference
in the answers. In this example, the calculated np makes sense as the probability of
becoming infected. The two simpler approaches are sometimes used as approxima-
tions for the binomial model. They are generally less time consuming to compute
than the binomial model, which can be an issue in complex models. However, as
we have just demonstrated, the approximation will not always be good. All three
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models require the same data for estimation of the parameters, namely the number
of people who become infected, the number who do not, and the number of contacts
made by each person up to when he or she becomes infected.

4.3.3 Probability of infection in continuous time

The above models assume discrete contacts or contacts within discrete units of time.
Another approach to modeling the probability of becoming infected assumes that
contacts occur in continuous time. The expression cp is the probability of being in-
fected per unit time if all the contacts are with infectious persons, or c is the rate of
infectious exposures and p is the transmission probability per exposure. Analogous
to the discrete model, the expressions exp(−cp) and 1− exp(−cp) are the proba-
bilities of escaping infection or becoming infected per unit time, respectively. If the
exposure occurs over some time period ∆ t, then the probabilities of escape or of
infection in the time interval ∆ t are exp(−cp∆ t) and 1−exp(−cp∆ t), respectively.

Another notation for the transmission rate per unit time of contact with an infec-
tive person is β = cp. Then the probabilities of escape or of infection in the time
interval ∆ t are exp(−β∆ t) and 1− exp(−β∆ t), respectively. Unless data are avail-
able on the contact rate separate from the transmission probability, in this model the
transmission rate will be estimated from data on the time interval of exposure and
infection status of each person in the study.

4.3.4 Contacts with persons of unknown infection status

Sometimes contacts are made with persons or sources of unknown infection status.
We denote the probability that an individual with whom a contact is made is infec-
tious by P. Then the probability of being infected from a contact of unknown infec-
tion status is ρ = pP. The quantity ρ is not a transmission probability in the strict
sense, but a per-contact infection probability. The probability of escaping infection
from contact with someone of unknown infection status is 1−ρ = 1− pP. Under
the binomial model, the probability of becoming infected after n such contacts is
1− (1− pP)n = 1− (1−ρ)n.

Suppose as in the influenza example above that p = 0.3 but the contacts are with
five individuals of unknown infection status. If the individuals are randomly chosen
from a population where prevalence of influenza is P = 0.4, then the probability of
being infected after five contacts is 1− (1−0.3 ·0.4)5 = 0.47.

An analogous expression can be developed for the continuous time model, be-
cause the hazard rate or incidence rate of infection as a function of the contact rate,
the transmission probability, and the prevalence is λ (t) = cpP, the dependent hap-
pening expression (2.7). The probability of escaping infection within some period
of time ∆ t is exp(−cpP∆ t), and of being infected is 1− exp(−cpP∆ t), analogous
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Fig. 4.3 Three states in the Reed–Frost chain binomial model: S, susceptible; I, infective; R, re-
moved (immune).

to the cumulative incidence in a given time period ∆ t. These examples demonstrate
some of the options and subtleties inherent in different approaches to modeling the
transmission process.

4.4 Chain Binomial Models

Chain binomial models are dynamic models developed from the simple binomial
model by assuming that infection spreads from individual to individual in popula-
tions in discrete units of time, producing chains of infection governed by the bi-
nomial probability distribution. To use the model, one needs to know the number
of susceptibles and number of infectives in each generation. The expected distribu-
tion of infections in a collection of populations after several units of time can be
calculated from the chained, that is, sequential, application of the binomial model.
The Reed–Frost and Greenwood models are examples of chain binomial models. As
mentioned above, the Reed–Frost model assumes that exposure to two or more in-
fectious people at the same time are independent exposures. The Greenwood model
assumes that exposure to two or more infectious people at the same time is equiva-
lent to exposure to one.

The models are formulated in discrete time, with the time unit being approxi-
mately the generation time of the infectious agent. The generation time is about two
weeks for measles and a few days for influenza.

In the Reed–Frost model, the assumption is made that people pass through three
states (Figure 4.3). They start out susceptible, denoted by S, then become infected
and infectious, denoted by I, after which they recover with immunity, denoted by R.
Models of this type of infection process are called SIR models for susceptible, in-
fected, recovered. Sometimes the notation XYZ is used for the three states. This sim-
ple model assumes that there is no latent period and that there are no asymptomatic
infections. This model could be a simplified representation of influenza, measles, or
chickenpox that ignores the latent period. In the simple Reed–Frost model, one as-
sumes that the population size is constant N. If there are only three possible states,
then each person in a population of N individuals is in one of these three states,
where St is the number of susceptible people, It is the number of infectives, and Rt



72 4 Binomial and Stochastic Transmission Models

Table 4.1 Chain binomial probabilities in the Reed–Frost model in households of size 3 with 1
initial infective and 2 susceptibles, S0 = 2, I0 = 1

Chain Final Number
Chain Probability At p=0.4 At p=0.7 Infected

1−→ 0 q2 0.360 0.090 1
1−→ 1−→ 0 2pq2 0.288 0.126 2
1−→ 1−→ 1 2p2q 0.192 0.294 3
1−→ 2 p2 0.160 0.490 3

Total 1 1.00 1.00

is the number of immune people at time t, where the subscript t denotes that the
model is in discrete time. In contrast, in the continuous-time differential equation
models in Chapter 5, the number of people in each state at the continuous time t is
denoted by S(t), I(t), and R(t).

As a simple example of the Reed–Frost chain binomial model, consider spread of
infection in a transmission unit, such as a household, with three individuals, where
one person is initially infected and the other two are initially susceptible (Table 4.1).
The goal is to compute the probability of any of the possible chains. The model
assumes that the initial infective is no longer infective after the first time unit. In
the first time unit, one of three things can happen. One possibility is neither of the
two susceptibles becomes infected. A second possibility is both of them become
infected. A third possibility is just one of them becomes infected. The probability
neither becomes infected is the probability both escape infection, or q2. In this case,
the chain ends, so the probability of this chain is q2. If both susceptibles become
infected in the first time unit, the chain also ends. The probability of both becoming
infected from the first exposure is p2.

The probability one person becomes infected from the first infected and the other
does not is pq. This can happen two ways, so the probability of just one of the
susceptibles being infected from the initial infective person in the first time unit is
2pq. If one susceptible is infected in the first time unit, then this person is the new
infective who exposes the last remaining susceptible. Exposure of the last remaining
susceptible can result in two possible outcomes. Either she becomes infected or she
does not, with probabilities p and q, respectively. The chained probabilities are then
2pq · p = 2p2q and 2pq ·q = 2pq2, respectively.

In Table 4.1 the chain probabilities are calculated for two different values of
p, p = 0.4 and p = 0.7. In 1000 groups of size three with one initial infective, at
p = 0.4, 360 of the groups would be expected to have just one infected, 288 to have
two infected, and 192 + 160 = 352 to have three infected at the end. Similarly, at
p = 0.7, 90 would be expected to have one infected, 126 to have two infected, and
784 to have three infected. Because there are two different chains by which all three
people become infected, if we were not able to observe the actual chains, we would
not know which path the chain had taken. That is, we may only have data on the
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number of people who get infected in each transmission unit or household. So we
would have only final value data and observe the final size distribution.

The R0 in the Reed–Frost model, assuming that the duration of infectiousness is
one time unit, or d = 1, is R0 = pN, or sometimes R = p(N − 1), if there is one
initial infective. More generally, R = p(N − I0), where I0 is the number of initial
infectives. In this example, if p = 0.4, then R0 = 0.4× 2 = 0.8. If p = 0.7, then
R0 = 0.7×2 = 1.4. In deterministic models, if R0 > 1, the epidemic will always take
off, and if R0 < 1, the epidemic will never take off. An index that makes more sense
in the probabilistic world of stochastic models is the probability that the epidemic
will not take off.

Another index in stochastic models is the probability that an epidemic will not
spread from the initially infected people, called the probability of no spread, de-
noted by Pns. It can be calculated from the transmission probability p, or escape
probability, q = 1− p, the number of initially infected people in the population I0,
and the number of initially susceptible people S0. The probability that a suscepti-
ble person escapes infection from all I0 initial infectives is qI0 . The probability that
all S0 of the initially susceptible people escape infection from all of the initial in-
fectives is Pns = (qI0)S0 . In the above example, with p = 0.4, the probability of no
spread is Pns = (0.61)2 = 0.36. With p = 0.7, Pns = (0.31)2 = 0.09. The probability
of no spread is the same as the probability that the infection chain ends with just the
initial infectives.

4.4.1 The Reed–Frost model

Based on the definition of the Reed–Frost model above, we write the transition
probability of getting It+1 = it+1 new infectives at time t + 1, given St = st and
It = it susceptibles and infectives one time period before as

Pr(It+1 = it+1|St = st , It = it) =
(

st

it+1

)(
1−qit

)it+1 qit (st−it+1), st ≥ it+1 .

(4.1)

Then, we can update the number of new susceptibles and recovered people by the
equations

St+1 = St − It+1, (4.2)

Rt+1 = Rt + It =
t

∑
r=0

Ir. (4.3)

Because the population is closed, St + It + Rt = N for all t. The epidemic process
starts with I0 > 0, and terminates at stopping time T , where

T = inf
t≥0
{t : St It = 0} . (4.4)
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Table 4.2 Chain binomial probabilities in the Reed–Frost model in households of size 4 with 1
initial infective and three susceptibles, S0 = 3, I0 = 1

Chain Final Number
Chain Probability Infected

i0→ i1→ i2→ ...→ iT RT
1−→ 0 q3 1
1−→ 1−→ 0 3pq4 2
1−→ 1−→ 1−→ 0 6p2q4 3
1−→ 2−→ 0 3p2q3 3
1−→ 1−→ 1−→ 1 6p3q3 4
1−→ 1−→ 2 3p3q2 4
1−→ 2−→ 1 3p3q(1+q) 4
1−→ 3 p3 4

Equations (4.1–4.3) form the classical Reed–Frost model. Formal mathemati-
cal treatment of the model involves formulation of the discrete, two-dimensional
Markov chain {St , It}t=0,1,.... It is the (binomial) random variable of interest, and
St is updated using (4.2). The probability of a particular chain, {i0, i1, i2, ..., iT} , is
given by the product of conditional binomial probabilities from (4.1) as

Pr(I1 = i1 | S0 = s0, I0 = i0)Pr(I2 = i2|S1 = s1, I1 = i1) · · · (4.5)
Pr(IT = iT |ST−1 = sT−1, IT−1 = IT−1)

=
T−1

∏
t=0

(
st

it+1

)(
1−qit

)it+1 qit (st−it+1).

Table 4.2 shows the possible chains for a population of size 4 with one initial infec-
tive, ie, S0 = 3, I0 = 1.

In some cases, the distribution of the total number of cases, RT , is the random
variable of interest. We let J be the random variable for the total number of cases in
addition to the initial cases, so that RT = J + I0. If we let S0 = k and I0 = i, then
the probability of interest is

Pr(J = j|S0 = k, I0 = i) = mi jk, (4.6)

where ∑
k
j=0 mi jk = 1. Then, based on probability arguments (eg, see Bailey 1975;

Becker 1989), we have the recursive expression

mi jk =
(

k
j

)
mi j jq(i+ j)(k− j), j < k, mikk = 1−

k−1

∑
j=0

mi jk. (4.7)

Data are usually in the form of observed chains, {i0, i1, ..., ir}, for one or more
populations, or final sizes, RT , for more than one population. If the data are in the
form of observed chains, suppose we have N populations and let {ik0, ik1, ..., ikr} be
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the observed chain for the kth population. Then, from (4.5), the likelihood function
for estimating p = 1−q is

L(p) =
N

∏
k=1

r−1

∏
t=0

(
skt

ikt+1

)(
1−qikt

)ikt+1 qikt (skt−ikt+1). (4.8)

Whether data are available on observed chains or just the final size distribution,
the simple Reed–Frost model assumes that transmission units are independent of
one another as in the left Figure 4.1. The initial infectives in the transmission unit
somehow get infected, then the chain of infection unfolds within the transmission
unit without any further introduction of infectives. Alternatively, one could assume
that people, whether the initial infectives or the others in the transmission unit, are
also exposed to infection outside the transmission unit in the community at large,
as in the right Figure 4.1, or in other mixing places. Longini and Koopman (1982)
modified the Reed–Frost model for the case where there is a constant source of in-
fection from outside the population that does not depend on the number of infected
persons in the population. Analysis of data assuming transmission units in a com-
munity is presented in Chapter 11. Becker (1989) gives details on different aspects
of the Reed–Frost model and estimation of the parameters of interest from data.
Bailey (1975) (Section 14.3) gives an example where (4.8) is used to estimate the
transmission probability p̂ = 0.789 ± 0.015 (estimate ±1 standard error) for the
household spread of measles among children.

4.4.1.1 History

The probabilistic form of the Reed–Frost epidemic model was introduced by the
biostatistician Lowell J. Reed and the epidemiologist Wade Hampton Frost around
1930 as a teaching tool at Johns Hopkins University. It was developed as a mechan-
ical model consisting of colored balls and wooden shoots. Although Reed and Frost
never published their results, the work is described in articles and books by others
(see Chapters 14 and 18 in Bailey (1975) and Chapters 2 and 3 in Becker (1989). The
model was first formulated and analyzed as a stochastic process by Abbey (1952)
and Maia (1952). The first published computer simulation of the Reed–Frost model
was by Elveback and Varma (1965). An excellent description of the early Reed–
Frost model is given by Fine (1977). The deterministic version of the Reed–Frost
model has been traced back to the Russian epidemiologist P. D. En’ko who used
the model to analyze epidemic data in the 1880s (Dietz 1988). The Reed–Frost ver-
sion of the chain binomial model and its extensions are used to study the dynamics
of epidemics in small populations, such as families or day care centers, and to esti-
mate transmission probabilities from epidemic data. See also Andersson and Britton
(2000).
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4.4.2 The Greenwood model

For the Greenwood model, the number of new infectives does not depend on the
number of old infectives, but just on the presence of one or more infectives. Thus,
the transition probability of getting It+1 = it+1 new infectives at time t + 1, given
St = st and It = it susceptibles and infectives one time period before is

Pr(It+1 = it+1|St = st , It = it) =
{( st

it+1

)
pit+1q(st−it+1), st ≥ it+1, it > 0

0 otherwise

}
.

(4.9)

Analysis of the Greenwood model is similar to that of the Reed–Frost model.

4.4.3 Stochastic realizations of the Reed–Frost model

Realizations of epidemics according to the Reed–Frost model in equations (4.1)–
(4.3) can be simulated using a random number generator. At each ti t, for each
susceptible person exposed to It infectives, a random number between 0 and 1 is
generated. If the random number is smaller than the infection probability 1− qIt ,
then the person becomes infected. If the random number lies between the infection
probability and 1, then the person escapes infection in that time interval. The actu-
ally realized chain then depends on the series of random numbers that are generated,
and varies from realization to realization. The probabilities in Tables 4.1 and 4.2 are
the expected probabilities of particular chains if a large number of epidemics are
simulated.

Tables 4.3 through 4.5 show realizations of stochastic epidemics in a population
with 20 people at three different values of p. Table 4.3 shows epidemics in popu-
lations of size 20 and p = 0.05. Ten epidemics were run with one initial infective,
I0 = 1, S0 = 19; the other ten epidemics were run with three initial infectives, I0 = 3,
S0 = 17. The underlying Reed–Frost model is identical for both types of run, just
the initial conditions are different. The R0 = 1.0, without taking into account the
initial infectives. Taking into account the number of initial susceptibles, the initial
reproductive numbers are 0.95 and 0.85, respectively. With one initial infective, the
probability of no spread is Pns = (0.051)19 = 0.377; with three initial infectives,
Pns = (0.053)17 = 0.073. The number of initial infectives is important to how long
the chain is, whether any further infections occur, and the average number of final
infectives. The chains in the table demonstrate the randomness of the epidemics
and how in nature, given the same conditions, many different outcomes can occur
merely by chance.

In Table 4.4, the transmission probability is increased to p = 0.06, so that
R0 = 1.2. Taking into account the one initial infective, the reproductive number
is 1.14, and the probability of no spread is Pns = (0.061)19 = 0.309. The chains are
noticeably longer than those with one initial infective and p = 0.05 in Table 4.3.
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Table 4.3 Ten stochastic epidemics with the Reed–Frost model, 20 people, p = 0.05

1 Initial Infective, I0 = 1 3 Initial Infectives, I0 = 3

Final Final
Epidemic Infected Chain Infected Chain

1 1 1→ 0 8 3→ 2→ 2→ 1→ 0
2 1 1→ 0 8 3→ 2→ 1→ 2→ 0
3 8 1→ 3→ 3→ 1→ 0 14 3→ 4→ 3→ 3→ 1→ 0
4 1 1→ 0 4 3→ 1→ 0
5 1 1→ 0 11 3→ 2→ 1→ 4→ 1→ 0
6 2 1→ 1→ 0 4 3→ 1→ 0
7 1 1→ 0 4 3→ 1→ 0
8 1 1→ 0 14 3→ 3→ 3→ 2→ 2→ 1→ 0
9 4 1→ 1→ 1→ 1→ 0 6 3→ 2→ 1→ 0
10 1 1→ 0 10 3→ 1→ 3→ 2→ 1→ 0

Table 4.4 Ten stochastic epidemics with the Reed–Frost model, 20 people, p = 0.06

1 Initial Infective, I0 = 1

Final Number
Epidemic Infected Chain

1 1 1→ 0
2 1 1→ 0
3 2 1→ 1→ 0
4 8 1→ 2→ 4→ 1→ 0
5 10 1→ 2→ 4→ 2→ 1→ 0
6 2 1→ 1→ 0
7 12 1→ 1→ 3→ 3→ 1→ 2→ 1→ 0
8 8 1→ 2→ 3→ 2→ 0
9 9 1→ 3→ 2→ 1→ 1→ 1→ 0
10 14 1→ 3→ 3→ 2→ 2→ 2→ 1→ 0

In Table 4.5, the transmission probability is increased to p = 0.1, so that R0 = 2.0.
Taking into account the one initial infective, the reproductive number is 1.9, and the
probability of no spread is Pns = (0.11)19 = 0.135. A clear bimodal distribution
has emerged at this higher transmission probability. Two of the epidemics produce
only one more infective, but in the other eight, most of the population becomes
infected. In general, there are three different shapes for the final size distribution of
the Reed–Frost epidemics depending on the R0 and the number of initial infectives
(Figure 4.4). In the illustration, there are 500 realizations at each R0 with just one
initial infective in each population of 200 people. With R0 near or less than 1, most
of the epidemics do not take off, but in a few, more than 50 people are infected. With
a moderate R0, the distribution is U-shaped or bimodal, with many of the epidemics
not taking off, but in many most of the population becomes infected. With a higher
R0, nearly all of the people are infected in most of the epidemics. The terms minor
and major epidemics distinguish situations in which there is a little spread from
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Table 4.5 Ten stochastic epidemics with the Reed–Frost model, 20 people, p = 0.1

1 Initial Infective, I0 = 1

Final Number
Epidemic Infected Chain

1 2 1→ 1→ 0
2 16 1→ 3→ 2→ 2→ 3→ 3→ 2→ 0
3 17 1→ 1→ 3→ 5→ 6→ 1→ 0
4 17 1→ 1→ 1→ 2→ 3→ 3→ 4→ 1→ 1→ 0
5 17 1→ 2→ 4→ 6→ 4→ 0
6 16 1→ 1→ 2→ 2→ 4→ 5→ 1→ 0
7 14 1→ 1→ 2→ 4→ 6→ 0
8 19 1→ 3→ 3→ 6→ 3→ 3→ 0
9 17 1→ 1→ 3→ 4→ 4→ 3→ 1→ 0
10 2 1→ 1→ 0

the initial infectives from situations in which an epidemic gains momentum and is
self-sustaining. See also Rida (1991).

Because quite often an epidemic might not take off even in the absence of an
intervention, Halloran et al (2002a) defined the epidemic prevention potential, EPP,
to be a function of the relative probability that an epidemic takes off in the absence of
intervention and that an epidemic takes off in presence of an intervention program.
The EPP of an intervention program compared to no intervention program is

EPP = 1− probability to take-off with no intervention
probability to take-off with intervention

. (4.10)

4.5 Stochastic Simulation Models

The simple Reed–Frost model is the basic building block of small- and large-scale
stochastic simulation models of infectious disease spread and studies of interven-
tions. Such models need to include (1) the natural history of the infection of inter-
est, (2) the demographics of the relevant population, (3) the contact structure and
assumptions about where and how transmission occurs, and (4) models of the inter-
ventions and assumptions about how they will affect transmission, natural history,
or the contact structure. Halloran et al (2002b) and Longini et al (2007a) examined
vaccination strategies for smallpox. Several studies of interventions for pandemic
influenza have made use of such simulation models (Longini et al 2004, 2005; Ger-
mann et al 2006; Ferguson et al 2006; Halloran et al 2008). Here we present one
example of a stochastic simulation model used to examine potential indirect, total,
and overall effects of cholera vaccination.
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Fig. 4.4 Reed–Frost chain binomial model at three values of R0. Populations of size 200 had one
initial infective. Each histogram has 500 realizations of the epidemic.

4.5.1 Endemic cholera and vaccination

In the mid 1980s, a randomized vaccine trial with oral cholera vaccine in Matlab,
Bangladesh, yielded an estimated 70% direct vaccine efficacy for up to two years
(Clemens et al 1990; Durham et al 1998). Information about Matlab, Bangladesh
was used to construct a model of the population as it was in 1985, consisting of
183,826 subjects (Longini et al 2007b). These subjects were mapped into families
and families were distributed in baris, patrilineally related household clusters. In
the model, baris are further clustered into subregions of about 6 square km in size
considered to be the geographic cholera transmission areas with local sources of
water. The model represents the number of contacts that a typical person makes
with sources of potential cholera transmission in the course of a day. The age and
bari size distributions of the population are based on data from Ali et al (2005).
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Women and children are assumed to come into contact with sources of infection in
the subregion where they live. Working males are assumed to make contact with
infective sources in the subregion where they live as well as where they work.

The model included natural history assumptions about cholera. The model was
calibrated to cholera illness incidence data from a large cholera vaccine trial in
the Matlab field area of the International Centre for Diarrhoeal Disease Research,
Bangladesh (ICDDR,B), that took place from 1985–1989 (Section 13.2.5). Oral
cholera vaccine or placebo (killed E. coli) was offered to children 2–15 years old
and women greater than 15 years old.

An infection function was defined that gives each susceptible person’s daily prob-
ability of infection from all possible sources of infection created by infected people
excreting cholera vibrios into the environment or through more direct contact similar
to that in the Reed–Frost model with environmental exposure outside the transmis-
sion units. The probability of infection is proportional to the number of vaccinated
and unvaccinated people in the subregion where contact is specified to occur. The
model of vaccine effect assumed that immunity resulted in a proportional reduction
in the probability of infection per contact with an infectious source, that is, a leaky
vaccine. Results were averaged over all the subregions within vaccination coverage
strata.

As described in Chapter 2, the indirect, total, and overall vaccine effectiveness
measures were based on the reduction in infection rates when comparing the appro-
priate groups within a subregion with no vaccination to a comparable subregion with
a fraction f > 0 of the population vaccinated (Figure 4.5). Let ri j denote the cholera
infection rate for people in subregion j with vaccination status i, where i = 0 for un-
vaccinated and i = 1 for vaccinated. The indirect effect of vaccination is measured
by comparing the infection rates between the unvaccinated in the two subregions.
Thus, the indirect vaccine effectiveness IVEF (VEIIa) when comparing subregion
1 to 2 is IVEF12 = 1− (r01/r02). The overall effect of vaccination is measured by
comparing the average (over the vaccinated and unvaccinated groups) infection rates
between the two subregions. Thus, the overall vaccine effectiveness, OVEF (VEIII),
is OVEF12 = 1− (r.1/r.2), where the · indicates averaging over the vaccinated and
unvaccinated. The total effect of vaccination is measured by comparing the infection
rate in the vaccinated in subregion 1 to the unvaccinated in subregion 2. Thus, the
total vaccine effectiveness, TVEF (VEIIb), is TVEF12 = 1− (r11/r02). The direct
effectiveness compares the vaccinated to the unvaccinated within a subregion. The
direct vaccine effectiveness, DVEF(VEdirect), is DVEF1 = 1− (r11/r01).

The vaccine coverage levels in the target population and the effective coverage
in the entire population from the trial are summarized in Table 4.6 (see also Ta-
ble 13.5). The estimated reproductive number was 5.0 with a standard deviation of
3.3. Vaccine efficacy for susceptibility was set to VES = 0.7 (Clemens et al 1990;
Durham et al 1998) and for infectiousness to VEI = 0.5. Figure 4.6 shows the num-
ber of cases over time comparing the unvaccinated to the vaccinated populations for
different levels of coverage.

For effectiveness measures, a comparison is made between the intervention sub-
regions to hypothetical subregions that receive no vaccine, where f = 0. Table 4.7
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Fig. 4.5 Schematic of effectiveness comparisons for two subregions. Subregion 1 has a fraction
f1 > 0 people vaccinated, and the comparison subregion 2 has nobody vaccinated, so that f2 = 0
(from Longini et al 2007b)

Table 4.6 Vaccination coverage, average incidence rates, and direct effectiveness (calibration runs)
(Longini et al 2007b)

Vaccination Mean Direct
Coverage (%) Mean Cases/1,000 (95% CI) Effectiveness (%)(95% CI)

Population Vaccinated Placebo Observed Simulated
Target Overall Observed Simulated Observed Simulated

14 9 2.7 (1.9 to 3.5) 2.8 (0.5 to 6.1) 7.0 (6.5 to 7.5) 7.8 (1.9 to 14.8) 62 65 (52 to 77)
31 20 2.5 (2.0 to 3.0) 1.7 (0.3 to 3.8) 5.9 ( 5.4 to 6.4) 4.7 (0.9 to 10.2) 58 65 (55 to 76)
38 25 4.7 (1.2 to 2.0) 1.3 ( 0.2 to 3.4) 4.7 (4.2 to 5.2) 3.8 (0.8 to 8.6) 67 65 (54 to 77)
46 30 2.3 (1.9 to 2.7) 1.0 (0.1 to 2.5) 4.7 (4.2 to 5.2) 2.8 (0.5 to 6.8) 52 66 (54 to 79)
58 38 1.3 (1.0 to 1.6) 0.6 (0.1 to 1.8 1.5 (1.2 to 1.8) 1.8 (0.3 to 4.8) 14 66 (51 to 50)

shows the indirect, total, and overall effectiveness results for possible coverage lev-
els when comparing coverages in the entire population, two years of age and older,
ranging from 10% to 90% compared to no vaccination. For example, the average
indirect effectiveness, comparing a population with a coverage of 30% to one with
no vaccination is 70%. This indicates that on average, the cholera incidence among
unvaccinated people in a population with 30% coverage would be reduced by 70%
compared with a completely unvaccinated population.
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Fig. 4.6 Simulated number of cholera cases/1000 over a 180-day period in the Matlab study pop-
ulation for a single stochastic realization: (A) No vaccination; (B) 14% vaccination coverage of
women and children; (C) 38% vaccination coverage; (D) 58% vaccination coverage (from Longini
et al 2007b).

Table 4.7 Average indirect, total,and overall effectiveness of vaccination, and cases prevented per
1000 two-dose regimens (Longini et al 2007b)

Vaccination Mean Effectiveness (%) (95% CI) Mean Cases Prevented per

Coverage (%) Indirect Total Overall 1000 Dose Regimens (95%)

10 30 (−39 to 83) 76 (47 to 95) 34 (−30 to 84) 40 (−34 to 97)
30 70 (31 to 93) 90 (76 to 98) 76 (44 to 95) 30 (17 to 36)
50 89 (72 to 98) 97 (91 to 99) 93 (82 to 99) 21 (19 to 23)
70 97 (91 to 99) 99 (97 to 100) 98 (95 to 100) 16 (15 to 17)
90 99 (98 to 100) 100 (99 to 100) 100 (99 to 100) 13 (12 to 14)

From Table 4.6, the simulated direct effectiveness at all coverage levels resulting
from the simulations is about 66%, and the vaccine efficacy for susceptibility, VES
,is preset at 70%. This small underestimation is due to the model assumption that the
vaccine effect is a leaky effect, a 70% reduction in the risk of infection per contact
with an infective source, but the risk ratio estimator of vaccine effectiveness over
the entire cholera epidemic is used (Chapter 7).
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4.5.2 Use in study design

In general, stochastic simulation models are useful for generating simulated data
with variability so that methods of analysis can be used and compared. Stochastic
computer simulations are especially useful in helping to design studies and to de-
velop new methods of analysis (see for example, Halloran et al 2002a; Golm et al
1999; Longini et al 1999). Deterministic models do not generally generate variabil-
ity, but can be used to understand properties of the transmission system.

Problems

4.1. Compute the average number of people infected in the four examples of 10
epidemics in Tables 4.3 through 4.5. Make histograms of the number of people
infected in each set of 10 epidemics and compare the shapes of the histograms.

4.2. (a) Compute the final size distribution from equation (4.7) for households of
size 4 with one initial infective when p = 0.4.
(b) Compare it to the final size distribution obtained using the chain probabilities in
Table 4.2.

4.3. (a) Let the transmission probability be p = 0.4, and the number of contacts
n = 6. Compute the probability of being infected and the probability of escaping
infection using the three approaches compared in Section 4.3.2.
(b) Do the same assuming that p = 0.002. Compare and explain the results of the
different calculations.

4.4. (a) Compute the probability of no spread, Pns, in a population with 3 initial
infectives and 17 initial susceptibles if p = 0.06.
(b) Compute the same assuming p = 0.01.

4.5. In a population with prevalence of infectives of 0.2, and transmission probabil-
ity p = 0.005, what is the probability that a person becomes infected after contact
with 10 randomly selected partners in the population?

4.6. Consider a child who makes contact in a day at home with four other house-
hold members and at school with 20 other classmates. Assume that the transmission
probability within the home is ph = 0.1 and at school is pc = 0.05. Assuming the
Reed–Frost model, what is the probability the child becomes infected in a day if at
home one person is infectious and at school 3 classmates are infectious?

4.7. (a) Write a stochastic computer simulation program for the Reed–Frost model
that allows for different size of the population N, number of initial infectives I0,
and transmission probability p. The output can contain the realizations of individual
chains, the realized final size distribution, the basic reproductive number R0, and the
probability of no spread Pns. Explore the behavior of the system.
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(b) Write a similar stochastic computer simulation for the Greenwood model.
(c) Compare the behavior of the two models for fixed values of N, I0, and p.



Chapter 5
R0 and Deterministic Models

5.1 Basic Reproductive Number

The basic reproductive number, R0, is defined as the expected number of new infec-
tious hosts that one typical infectious host will produce during his or her infectious
period in a large, completely susceptible population. For example, if R0 = 5 for
mumps in a human population, then one infectious person in that population would
be expected to produce five new secondary infectious cases if the population were
completely susceptible. If he produced three additional cases who were not infec-
tious, R0 would still be 5.

For microparasitic infections such as viruses and bacteria, R0 can be thought
of as the product of the contact rate c, the duration of infectiousness d, and the
transmission probability per contact with the infectious person, p:

number of transmission duration
R0 = contacts per × probability × of = cpd .

unit time per contact infectiousness

R0 summarizes many important aspects of an infectious agent in a host population
in one parameter. It allows comparison of seemingly disparate diseases from the
viewpoint of population biology. A value of R0 is not specific to an infectious agent,
but to an infectious agent population within a particular host population at a partic-
ular time. Contact rates relevant for respiratory transmission will be lower in rural
areas than in urban areas. So, for example, we expect the R0 of mumps to be lower
in rural than in urban areas. The R0 of malaria may be low during the season of low
mosquito density, but high during the season in which mosquitoes are plentiful. The
R0 of HIV in a sexually active population of single people might be much higher
than it is in a population of fairly monogamous married couples.

R0 is dimensionless. It represents the number of new infectious cases per in-
fectious case. Without further information about the magnitude of the quantities
composing R0, we cannot conclude much about the time frame of an epidemic, the
transmissibility of the infectious agent, or the contact rate. R0 is about 2 to 3 for
influenza in some populations and also about 2 to 3 for HIV in some populations.
M.E. Halloran et al., Design and Analysis of Vaccine Studies, Statistics for Biology
and Health, DOI 10.1007/978-0-387-68636-3 5, 85
c© Springer Science+Business Media, LLC 2010



86 5 R0 and Deterministic Models

Influenza has a relatively high transmission probability and short duration of infec-
tiousness. The influenza virus spreads on a different time scale than HIV, which has
a low transmission probability and longer duration of infectiousness. If we knew
only that R0 = 3 for both, then we would know that they both could easily produce
epidemics, but we would not be able to draw conclusions about the relative time
frames of the two.

The serial interval, Tg, or generation time, provides information about the time
frame of the epidemic. The serial interval is the average time from the infection
of a primary case to the new infections that result from exposure to the primary
case (Svensson 2006; Fine 2003; Cauchemez et al 2006a) The rate of growth of an
epidemic is determined approximately by the ratio R0/Tg (Fraser et al 2004). For an
infection with a given R0, the rate of growth will be much faster if the generation
time is two to three days, such as influenza, rather than two weeks, such as smallpox.

If the recovery rate ν is constant, then the duration of infectiousness equals the
reciprocal of the rate of recovery from infectiousness, so that d = 1/ν . If d = 4 days,
ν = 1/(4 day) = 0.25 day−1. The product of the contact rate times the transmission
probability, cp, can also be expressed as a transmission coefficient β that includes
both terms and can be defined as the average number of adequate contacts of a per-
son per unit time. Then, alternate expressions for R0 are R0 = cp/ν or R0 = β/ν . As
presented above, the expression assumes that everyone who gets infected becomes
infectious. A term could be included for the probability of becoming infectious after
infection or for reduced infectiousness in asymptomatic people.

Compare the expression R0 = cpd with the dependent happening expression (2.7)
λ (t) = cpP(t). The product cp of the contact rate times the transmission probability
occurs in both, representing the dynamic underlying transmission system. We might
consider that R0, the number of new infectious individuals one infective produces,
views the dynamics from the point of view of the infectious individual. On the other
hand, the hazard rate of infection views the dynamics from the point of the view of
the susceptible individuals, and it depends on what proportion of the people with
whom they make contact are infectious.

The R0 for indirectly transmitted diseases depends on the product of the two
components of transmission. Indirectly transmitted diseases are those in which a
parasite is transmitted between two different host populations. An example is the
vector-borne disease malaria, which is transmitted from humans to mosquitoes and
back to humans. Another example is heterosexual transmission of sexually trans-
mitted diseases where infection is transmitted from a man to a woman and back to
a man.

The definition of R0 assumes all contacts are with susceptibles. In real popula-
tions, however, some people might be immune to an infectious agent. Under these
circumstances, the expected number of new cases produced by an infectious person
is less than R0 and is called the effective reproductive number, denoted by R. If x is
the proportion of a randomly mixing, homogeneous population that is susceptible,
R is the product of R0 times the proportion x of the contacts made with susceptibles:

R = R0x . (5.1)
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Suppose that R0 = 3 for influenza in a population and that one-half of the population
is immune. Then, the effective reproductive number for influenza is R = 3× 0.5 =
1.5. A case of influenza would produce on average only 1.5 new secondary cases
rather than three in this population.

5.1.1 R0 and public health

Under what conditions will an epidemic occur? In general, for an epidemic to occur
in a susceptible population, R0 must be greater than one. If R0 is less than one,
an average case will not reproduce itself, so an infectious agent will not spread.
Because R0 is an average, a particular infectious person could produce more than
one infective case, even when R0 < 1, so there may be a small cluster of cases. We
would not, however, expect a self-sustaining outbreak.

Under some circumstances an infectious agent will invade and establish itself in
a susceptible host population, with an ensuing epidemic, then die out again. Some
infectious agents will invade, however, and after an initial epidemic, persist. It be-
comes endemic, with either fairly stable, possibly seasonal transmission, or other
epidemic patterns. When an infectious agent has established itself and is endemic
so that, over time, the average incidence does not change, then each infectious case
must be producing on average one infectious case, that is, replacing itself. Otherwise
the average incidence would either be increasing or decreasing. Thus, at equilibrium,
on average, R = 1.

Figure 5.1 shows the epidemic curves at four different values of R0 for a given
infectious agent. For a given generation time and host population, the higher the R0,
the faster the epidemic, the higher the peak incidence, and the higher the final attack
rates.

From the public health perspective, the role of vaccination is to reduce R, which
will slow spread, reduce peak incidence, decrease the overall attack, and increase
effectiveness of other intervention programs through synergy. Slowing spread and
reducing peak incidence is important if planning capacity to respond to a potential
epidemic. For example, in Figure 5.1, vaccination before the epidemic might change
R so that an epidemic that would have behaved as represented by the curve at R0 =
2.4 might be changed to produce the curve at R0 = 1.6, which would be a great
public health benefit. If vaccine efficacy and coverage are both high enough, it might
be possible to prevent spread of the epidemic or eliminate transmission. In the next
section, we study the effects of vaccination on R0 and R.

5.2 Vaccination and R0

How might we reduce or eliminate an infectious agent from a host population?
Viewing the components of R0, an intervention might reduce the contact rate,
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Fig. 5.1 Four epidemic curves at four different values of R0. For a given generation time and
population, the higher the R0 is, the faster the epidemic, the higher the peak incidence, and the
higher the final attack rates.

shorten the duration of effective infectiousness, or reduce the transmission probabil-
ity. Our focus is on vaccination in this book. Vaccination can reduce the transmission
probability either by reducing susceptibility or infectiousness of the two individu-
als in a contact, or reduce the potential for transmission by shortening the duration
of infectiousness. Vaccination might even have the unwanted effect of increasing
the contact rate because people feel protected by vaccination. If we want to reduce
transmission so that the infectious agent will die out, then we must keep the average
number of secondary cases produced by one infectious case below 1, R < 1.

5.2.1 The critical vaccination fraction and R0

If the fraction of susceptibles is low enough, the probability that an infective host
has contact with a susceptible host before recovering will be very low. The infec-
tious agent will not be able to persist. The fraction f ∗ required to be vaccinated to
eliminate transmission is called the critical fraction. What fraction f ∗ of the popu-
lation do we need to vaccinate to produce enough immune people that the infective
people will not be able to infect on average one other person?

Let R f (t) be the reproductive number at time t when the fraction f of the popu-
lation is vaccinated with a particular vaccine. Thus R1(t) is the reproductive number
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at time t if everyone is vaccinated. R0.75(t) is the reproductive number if 75% of
the population is vaccinated. The effect of a vaccination strategy in a population can
be measured by the relative reduction in the (basic) reproductive number after the
campaign compared with that before the vaccination campaign

V ER, f (t) = 1−
R f (t)

R0
. (5.2)

VER, f (t) is an example of an overall effect of a vaccination strategy in a population,
VEIII . In all of the following, we assume a simple homogeneously mixing popula-
tion.

First we consider simple computation of R f and the critical vaccination fraction
when the vaccine only affects becoming infected, VES. Suppose that a vaccine con-
fers complete protection against infection in everyone vaccinated, so that VES = 1.0,
and that vaccination confers long-lasting immunity. Substituting 1− f ∗ for x in ex-
pression (5.1) for R, in principle, we need to vaccinate a fraction f ∗ such that

R f = R0(1− f ∗) < 1 , (5.3)

to eliminate transmission. The fraction that needs to be immunized to eliminate
transmission is

f ∗ > 1−1/R0 . (5.4)

Assume that R0 = 3 for influenza in a population. Under the assumption of ran-
dom mixing, the fraction that needs to be immunized before the age of first infection
is f ∗ = 1−1/R0 = 1−1/3 = 0.67. A higher R0 requires immunization of a higher
fraction to eliminate transmission. If R0 = 4, then f ∗ = 1−1/4 = 0.75.

With a leaky vaccine, the vaccine might reduce the probability of being infected
if exposed, so that the probability of being infected upon exposure is just the fraction
θ of what it would be without vaccination. In this case, VES = 1−θ . Everyone is
still susceptible to being infected, but vaccinated people are less susceptible than
unvaccinated people. With leaky vaccines, the assumptions about VEI and VEP
are important, because vaccinated people can become infected. At high values of
VES, the assumptions about VEI and VEP will have less effect on transmission
effects than at low values of VES. In this example, we assume that the vaccine
affects only the susceptibility to infection, VES. Because θ multiplies the transmis-
sion probability p, then R1 = cθ pd = θR0. The fraction θ is the näive susceptible
equivalent contribution to overall transmission of a vaccinated person compared to
an unvaccinated person (Halloran et al 1994c). If a fraction f is vaccinated, then
R f = (1− f )R0 + f θR0, and

f ∗ >
1

1−θ

(
1− 1

R0

)
. (5.5)
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If in the influenza example the transmission probability per contact in the vacci-
nated people is reduced so that VES = 1− θ = 0.90, then the relative probability
of infection in the vaccinated is just the factor θ = 0.10 of that in the unvaccinated.
If R0 = 3.0 and everyone is vaccinated, then R1 = 0.10 ·R0 = 0.30. The vaccine
would likely be successful in preventing the spread of influenza. If the protective
efficacy is VES = 1− θ = 0.50, then θ = 0.50. Even if everyone is vaccinated,
R1 = 0.50 ·3.0 = 1.50. Because R1 > 1, we would not expect to eliminate transmis-
sion with this vaccine.

Suppose as in an all-or-none vaccine, that vaccination completely protects the
proportion α , and it fails in the fraction 1−α , so that VES = α . In this situation,
it does not matter what VEI and VEP are, because people who are protected by
the VES do not get infected, and the others have no protection. (See Chapter 7 for
more details.) If the fraction f of the population is vaccinated, the fraction protected
by immunization is α f , and R f = R0(1−α f ). The critical vaccination fraction to
eliminate transmission is

f ∗ >
1
α

(
1− 1

R0

)
. (5.6)

Assume as in the above influenza example that R0 = 3. If vaccination fails com-
pletely in the fraction 1−α = 0.15 while conferring complete and long-lasting pro-
tection in the other fraction α = 0.85, the critical vaccination fraction f ∗ to eliminate
transmission increases from 0.67 to

f =
1−1/R0

α
=

0.67
0.85

= 0.79 . (5.7)

If the vaccine fails in the fraction 0.40 of the vaccinated people, then the fraction that
must be vaccinated is 0.67/0.60 > 1.0. With such a vaccine at the high failure rate,
elimination of transmission would not be possible even if everyone were vaccinated.

Both the leaky and the all-or-none models in equations (5.5) and (5.6) can be
expressed as

f ∗ >
1

VES

(
1− 1

R0

)
. (5.8)

Further technical discussion of the reproductive number can be found in Diekmann
et al (1990), Hill and Longini (2002), Becker and Hall (1996), and Farrington (2003)
among many others.

5.2.2 R with VES and VEI

We now consider the effect of a vaccine that has both a VES and VEI effect. In the
simplest case, assume that VES = 1− θ and VEI = 1− φ have multiplicative and
symmetric effects on the transmission probability. If everyone is vaccinated, then
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R1 = θφR0. To eliminate transmission if everyone is vaccinated requires θφ < 1/R0.
In this case, the combined vaccine efficacy is

VEC = 1− R1

R0
= 1−θφ . (5.9)

A number of papers discuss the effects of VES and VEI on R0. Halloran et al (1994c)
called the resulting ability of the vaccinated person to contribute to R0 the naive
susceptible equivalent. Longini et al (1998) provided a formula for vaccine effec-
tiveness based on the reproductive number for homogeneously mixing populations.
Becker and Starczak (1998) extended the model for the relation between the re-
productive number when the individual response to the vaccine is described by a
bivariate random variable, one for relative susceptibility and one for relative in-
fectiousness. Farrington (2003) generalized the models to accommodate arbitrary
mixing patterns with just one level of mixing, eg, an age-dependent mixing pattern.

5.2.3 R0 and influenza vaccination

Basta et al (2008) consider the more complex example of influenza. In influenza,
a proportion k of infected persons are assumed to develop symptoms. That is,
pathogenicity is assumed to be k. The proportion (1− k) remains asymptomatic.
Asymptomatic influenza infections may be less infectious than symptomatic cases,
with relative infectiousness of the factor m. The basic reproductive number has a
more complex form even when no one is vaccinated because people who are asymp-
tomatic are less infectious. The basic reproductive number is a weighted average of
the number of new infections that a typical symptomatic infective and a typical
asymptomatic infective would produce. Let r0 be the basic reproductive number for
an unvaccinated infectious symptomatic person. Then the overall basic reproductive
number for influenza is

R0 = (1− k)mr0 + kr0 = ((1− k)m+ k)r0. (5.10)

In addition to having efficacies VES = 1−θ and VEI = 1−φ , influenza vaccination
may reduce the probability of developing symptoms. Denote the vaccine efficacy for
pathogenicity by VEP = 1−ψ .

When a fraction of the population is vaccinated, all three vaccine efficacies enter
into the new formula for the reproductive number. The reproductive number with
the fraction f vaccinated is

R f = r0 {(1− f )((1− k)m+ k)+θφ f ((1−ψk)m+ψk)} (5.11)

based on the largest eigenvalue of the next generation matrix (Basta et al 2008).
Rida and Sandberg (2009) accounted for loss of protection as well in the expression
for R f . Vaccine efficacy based on the relative reduction of R0 when the fraction f is
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Fig. 5.2 Estimates of VES, VEP, VESP, and VEI from human challenge studies of live attenuated
influenza virus vaccine (from Basta et al 2008, Am J Epidemiol, 168:1343–1352. Reprinted with
permission).

vaccinated is

VER, f = 1−
R f

R0
= 1− (1− f )((1− k)m+ k)+θφ f ((1−ψk)m+ψk)

(1− k)m+ k
.

This measure is analogous to the predicted effectiveness (Farrington 2003). If ev-
eryone in the population is vaccinated, then f = 1, and the combined efficacy, VEC,
measured by the reproductive number is

VEC = 1− R1

R0
= 1− θφ((1−ψk)m+ψk)

(1− k)m+ k
. (5.12)

VEC is a useful index because it assesses the combined effect of all three vaccine
efficacy components, VES = 1−θ , VEI = 1−φ , and VEP = 1−ψ .

Using human challenge studies, Basta et al (2008) estimated VES, VEP, VESP,
and VEI for live attenuated influenza virus vaccine. VES was computed from infec-
tion, using serology or viral shedding to determine infection in the vaccinated and
unvaccinated groups. VESP was based on the probability of developing symptoms.
VEP was based on the probability of developing influenza illness given infection.
VEI was based on the viral shedding conditional on being infected as a surrogate
for transmission. Figure 5.2 shows the estimates of VES, VEP, VESP, and VEI from
human challenge studies.

Figure 5.3 demonstrates the complete vaccine efficacy, VEC, for influenza vac-
cination in equation (5.12) as a function of VES and VEP with VEI = 20% held
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Fig. 5.3 Combined vaccine efficacy as a function of VES and VEP with VEI = 20%. The contour
lines represent values of VES and VEP where VESP is constant.

constant. The natural history parameter pathogenicity was set to k = 0.67 and rela-
tive infectiousness in asymptomatic infected people was assumed to be m = 0.50. As
discussed in Chapter 2, in this situation, VESP = 1−(1−VEP)(1−VES) = 1−ψθ .
The contour lines represent values of VES and VEP where VESP is constant. Under
this model of influenza natural history and the three assumed efficacies, the com-
bined VEC is not uniquely determined by a value of VESP, but is a function of the
VES and VEP. If VES = 100%, then VEC = 100%. However, at VEP = 100%, VEC
is between 50 and 60%, because asymptomatic people still are infectious. In both
cases, VESP is the same. That is, in both combinations of VES and VEP that yield
VESP = 100%, no clinical cases would appear. From a clinical point of view the effi-
cacy of the vaccine would seem to be 100%. However, transmission would be much
different under the two different combinations. One could imagine an extreme case
in which the vaccine has no effect on infection or infectiousness, but prevented all
clinical disease in infected individuals. In this situation, circulation of the infectious
agent would continue just as before vaccination in the community, but no clinical
illness would be observed.
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Table 5.1 Quantities for the R0 for malaria in the Ross–Macdonald model

N is the size of the human population.
M is the size of the female mosquito population.
m = M/N is the number of female mosquitoes per human host.
a is the rate of biting on humans by a single mosquito (bites per unit time).
b is the transmission probability from infective mosquito to human;
c is the transmission probability from infective human to mosquito.
r is the recovery rate for humans.
µ is the mortality rate for mosquitoes.
τ is the latent period of the malaria parasite in the mosquito.

The influenza model makes particular assumptions about the natural history and
the VEP. The VEP reduces the probability of developing symptoms, and because of
the assumption that asymptomatic people are less infectious, also reduces the infec-
tiousness separately from an explicit VEI effect. The choice of VEP depends highly
on the natural history of the infectious agent and how the vaccine is expected to
work. In an HIV model, VEP is sometimes assumed to lengthen the period between
infection and development of AIDS symptoms. In this situation, if VEI and VES
are assumed to equal 0, then a positive VEP will increase transmission, and VEC
will be negative. VEC may be further negative if people increase their risk behavior
because they think that they are protected (Halloran et al 1994b). In a TB model,
once people are infected, the model might assume that people experience one of two
possible natural histories. In the first, the people progress rapidly and have a high
probability of developing TB disease within a short period of time. In the second,
the people are slow progressors and have a low life-time probability of developing
TB. A possible model for VEP in this situation is that if a person becomes infected,
he has a higher probability of becoming a slow progressor, and thus has a much
lower probability of developing TB disease. VEC would be a complex function of
these different assumptions and pathways.

5.3 Other Aspects of R0

The basic reproductive number has many other uses. It can be used to compare the
relative strength of potential intervention programs. Historically, the concept of R0
played an important role in the choice of malaria intervention campaigns against
the anopheline mosquito vectors. Malaria is an indirectly transmitted disease in that
it is transmitted from human to human via female anopheline mosquitoes. We can
also say it is transmitted from mosquito to mosquito via the human. Thus, the R0
expression is composed of two parts, the part from mosquito to human and the part
from human back to mosquito. The variables in R0 based on the Ross–Macdonald
model of malaria (Ross 1911; Macdonald 1957; Aron and May 1982) are shown in
Table 5.1. The expression for R0 in the Ross–Macdonald model is
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R0 =
ac
r
× mabe−µτ

µ
=

ma2bce−µτ

rµ
. (5.13)

The abundance of mosquitoes enters linearly, the rate of biting in humans rather
than other hosts quadratically, and the probability of surviving through the extrinsic
incubation period of the malaria parasite in the mosquito decreases exponentially
with an increase in mosquito mortality rate in the Ross–Macdonald expression for
the R0. The malaria parasite has to mature in the mosquito before the mosquito can
infect the next person it bites. Often malaria mosquito vectors tend to bite people
indoors, then rest on the walls while they excrete some of the blood fluid. This
behavior makes spraying walls with insecticides, called residual indoor spraying, a
potentially powerful intervention.

5.3.1 Evolution and R0

R0 can be used to quantify evolutionary concepts. Virulence is a measure of the
speed with which a parasite kills an infected host. We denote the disease-dependent
death rate, or virulence, by α . If ν is the recovery rate from infectiousness, and α the
virulence, then the duration of infectiousness is d = 1/(ν +α) and R0 = cp/(ν +α).
Since R0 is a function of the time spent in the infective state, R0 could decrease as
virulence increases. If the infectious agent is highly virulent so that it kills its host
quickly, then R0 could be less than 1, and the infectious agent will die out. For
example, suppose that the infectious agent does not kill the host and that the host
usually recovers from infectiousness in about d = 10 days. Then ν = 0.1 per day. If
R0 = 3.0 for this disease, then cp = νR0 = 0.1×3.0 = 0.3. If instead the infectious
agent kills the host on average in a little over three days if the host does not recover
first, then α = 0.3 per day, and R0 = 0.3/(0.1+0.3) = 0.75. In this case R0 < 1, so
the infectious agent will not be successful. If, on the other hand, the infectious agent
kills the host only after about 10 days on average if the host does not recover first,
then R0 = 0.3/(0.1 + 0.1) = 1.5. In this case, R0 > 1. Viewed in this way, there is
evolutionary pressure on infectious agents to become less virulent and to develop a
more benign relation to the host.

In some diseases, hosts become more infectious when they become sicker, so the
transmission probability increases at the same time virulence increases. Thus, R0
could increase as virulence increases, putting evolutionary pressure on the parasite
to increase virulence. The balance depends on the particular infectious agent. In
the above example, suppose that even though the infectious agent kills the host
on average after about three days, the transmission probability p also increases by
a factor of two. Then R0 = (c2 · cp)/(ν + α) = (2 · 0.3)/(0.1 + 0.3) = 1.5. In this
case, R0 > 1, so we would expect the infectious agent to be successful. The increased
virulence was offset by the increased transmission probability to keep R0 > 1.

The case fatality ratio is the probability of dying from a disease before recovering
or dying of something else. In the notation used here, the case fatality ratio is α/(ν +
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α). If virulence is α = 0.3 per day, and the recovery rate is ν = 0.1 per day, then the
expected case fatality ratio is 0.3/(0.1 + 0.3) = 0.75. This means that 75% of the
people die before recovering. As virulence increases, the case fatality ratio increases.

5.3.2 Estimating R0 in real-time

Estimating R0 of an emerging infectious disease in real-time is important to deter-
mine the probability of epidemic or pandemic spread (Yang et al 2007a, 2007c)
and to assess the efficacy of intervention measures (Wallinga and Teunis 2004;
Cauchemez et al 2006b; White and Pagano 2008). Estimating R0 during an out-
break is an important growing area, especially since the begin of the novel H1N1
influenza pandemic early in 2009.

5.3.3 Caveats

R0 is a conceptually useful measure that provides a summary of several aspects of
an infectious disease. However, the simple relations described above usually do not
hold. Heterogeneities in the contact rates, transmission probabilities, and infectious
periods produce different values of R0 in different subgroups. If members of a group
who live near each other are not immunized, transmission could occur in that group,
even when transmission has been eliminated in other segments of the population.
Contact rates can increase locally if people move into crowded conditions, such
as into college dormitories, military barracks, or refugee camps. Especially when
transmission is tenuous or near elimination, heterogeneities and stochastic variation
(Chapter 4) play important roles in determining whether an infectious agent can or
will persist in a population. R0 is a relatively static concept. Further understanding
of infectious diseases in populations requires study of transmission dynamics.

5.4 Deterministic Transmission Models

Here we present a simple deterministic SIR model of the spread of infection in a
closed population similar to the Reed–Frost model in equations (4.1–4.3). Similar
to the Reed–Frost model, people pass through three states (Figure 4.3). They start
out susceptible, denoted by S; then become infected and infectious, denoted by I;
after which they recover with immunity, denoted by R. There are two main differ-
ences. First, the model is formulated in continuous rather than discrete time. Second,
fractions of people can move from one state to the next, rather than discrete individ-
uals. The model is based on the mass action principle, in which people all mix with
others. We briefly discuss other simple and and more complex models. One advan-
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tage of deterministic models is that they are more amenable to theoretical analysis
than stochastic models. They require less computational power than large stochastic
models. A purely deterministic model always gives the same answer. Characteris-
tics of epidemics using deterministic models were studied by Hamer (1906), Ross
(1911, 1915), Kermack and McKendrick (1927), and Soper (1929) in the early 20th
century.

5.4.1 Simple deterministic SIR model

Let S(t), I(t), and R(t) be the number of susceptible, infected, and immune people
at time t. We consider a closed population of N initially susceptible people who are
assumed to be mixing randomly with contact rate c. In this closed population, the
size of the population N is constant, and N = S(t)+ I(t)+ R(t). The population is
analogous to a closed cohort. The dynamics of the epidemic are described by three
differential equations that express the rate of change of the number of people in each
of the three states:

change in susceptibles :
dS(t)

dt
= −cp

S(t)I(t)
N

change in infectives :
dI(t)

dt
= cp

S(t)I(t)
N

−νI(t) (5.14)

change in immunes :
dR(t)

dt
= νI(t).

The expression for the basic reproductive number in model (5.14) is R0 = cp/ν .
As described in Section 5.1, one can use different parameters for essentially the
same model, such as R0 = β/ν , if β were used rather than cp, or R0 = cpd. R0 is
formally derived as the largest eigenvalue of the next generation matrix from the set
of differential equations describing a deterministic transmission model (Diekmann
et al 1990).

The rate at which people leave the susceptible compartment S and become in-
fected at time t is simply the incidence rate, the hazard rate or force of infection.
Prevalence of infectives at time t, P(t), is the number of infectious people I(t) di-
vided by the size of the population N, or I(t)/N. Thus the dependent happening
expression for the hazard rate λ (t) as a function of prevalence in equation (2.7) in
the epidemic model is

λ (t) = cpP(t) = cp
I(t)
N

. (5.15)

The change in the number of susceptibles, the population-at-risk to become infected,
per small interval of time dt at time t equals the hazard rate λ (t) times the size of the
population-at-risk, dS(t)/dt = −λ (t)S(t). The change in the number of infectives,
dI(t)/dt, is the difference between the number of new infections and the number of
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Fig. 5.4 Comparison of epidemic and endemic curves at low and high R0. The infectious agent
is introduced into a population of N susceptible people. Susceptible people become infected and
infectious, then develop immunity. In the top two figures, the population is closed, so the epidemic
dies out. In the top left figure with a low R0, fewer people become infected than in the top right
figure with a higher R0. In the bottom figures, the population is open with birth of new susceptible
people and death of people from the susceptible, infectious, and immune compartments at a con-
stant rate independent of being infected. Prevalence of susceptible, infected, and immune people
achieves a dynamic equilibrium.

infectives developing immunity. The change in the number of immunes, dR(t)/dt,
is the number of infectives recovering (developing immunity) at rate ν in the small
time interval.

5.4.2 Dynamics of an epidemic

Assume to begin that all N people are susceptible, and that an infectious agent is
introduced so that someone (possibly a fraction of a person in this model) becomes
infectious, entering state I. The top two plots in Figure 5.4 show two SIR epidemics
in a closed population at a low and higher R0, both greater than 1. If R0 > 1, the
epidemic will always take off in a deterministic model. The infection spreads from
the first infective to the average number R0 of susceptibles. In Figure 5.4, the num-
ber of infectives I(t) initially increases. As the epidemic spreads, the number of
susceptibles S(t) decreases, and the number of people with immunity in R(t) begins
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to increase. Incidence of new cases and prevalence of infection will increase until
the number of susceptibles available becomes a limiting factor. Then the number
of new cases and prevalence begin to decrease until the infectious agent dies out
and no people are left in the infective compartment I(t). An infectious agent in a
closed population where people recover with long-lasting immunity will inevitably
die out, because the key to persistence in a host population is a continuous supply of
susceptibles. The susceptibles can be produced either by births or immigration into
the population, by recovery without immunity, or by waning of immunity after it is
acquired. In this example of a closed population, however, no new susceptibles are
produced.

We can associate aspects of the epidemic process with the usual epidemiological
measures. An estimate of the incidence rate, hazard rate, or force of infection, λ (t),
provides an estimate of cpI(t)/N. A cross-sectional study to estimate prevalence
P(t) of current infection would yield an estimate of I(t)/N. The number of new in-
fections in an interval of time dt estimates [cpI(t)/N]S(t)dt = λ (t)S(t)dt. The epi-
demic process of a disease producing long-lasting immunity in a closed population
is always either increasing or decreasing, except at the turning point. An important
consequence for conducting studies in epidemics in closed populations is that there
is no stationary state of the disease process. Thus epidemiological methods, study
designs, or analytical methods that assume stationarity of the disease process are not
applicable under epidemic conditions.

The epidemic process depends on R0. The expected number of new cases per
infective host decreases from R0 to R(t) = R0x(t), where x(t) = S(t)/N, the propor-
tion still susceptible at time t. R(t) > 1 while the epidemic is increasing. The epi-
demic peaks when R(t) = 1, then decreases when R(t) < 1. The latter occurs when
S(t)/N < 1/R0, that is, the proportion of the population still susceptible becomes
less than the reciprocal of the basic reproductive number. Not all the susceptibles
need to become infected before the infectious agent dies out. The greater R0 is, the
fewer susceptibles will be left when the epidemic peaks and the fewer susceptibles
will be left at the end of the epidemic. (Compare the two top figures in Figure 5.4.)
Thus, the cumulative incidence, or attack rate, after an epidemic provides informa-
tion on R0. If an intervention reduced some aspect of R0, then the intervention would
result in the epidemic peaking when a greater proportion of the population had not
yet been infected, and fewer people would become infected before the epidemic
died out.

5.4.3 Other simple models

Other combinations of states are available for dynamic transmission models, whether
discrete event as in Chapter 4 or continuous, as discussed here. An SEIR model al-
lows people to pass through a latent period in a state denoted by E. In an SI model,
people become infectious, but never recover. Other examples include SIS models,
in which people recover without immunity to become susceptible again, and SIRS
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models, in which people acquire immunity, but lose it again to become suscepti-
ble. Hethcote (1976) gives a thorough analysis of the deterministic versions of these
models.

In a closed population, there are no births, immigration, deaths, or emigration.
An infection that confers long-lasting immunity will always die out in such a pop-
ulation. An open population can have people entering or leaving or both. In an
open population, the susceptibles form a dynamic cohort with the population-at-risk
changing over time. In an open population, if the replenishment of susceptibles is
fast enough compared with the dynamics of the infectious agent, then the infectious
agent will not necessarily die out. The infectious agent can invade the population,
establish itself, persist and become endemic. The bottom two graphs in Figure 5.4
show an SIR model with the infectious agent introduced into an open susceptible
population. The subsequent epidemic is followed by endemic persistence of the in-
fectious agent. At the higher R0, the initial epidemic and the prevalence of infected
people is higher than at the lower R0. Although the lines in the graphs look flat, this
is a dynamic equilibrium, in which people are being born and dying, and new infec-
tions and recoveries are occurring. At equilibrium, R = 1, so that on average, each
infectious individual produces one further infectious case. It is possible, however,
that the infectious agent will die out if the replenishment of susceptibles is not fast
enough in comparison to the spread of immunity to the infectious agent.

In the SIS and SIRS models, the susceptibles are replenished even in close popu-
lations, so that persistence would be possible under some circumstances. Infectious
agents can also persist by hopping from one population to another, then returning to
one where the susceptibles have had time to replenish themselves.

When an infectious agent is first introduced into a population, there will be a
period when the dynamics are not stationary, as seen in Figure 5.4. Epidemiological
methods that assume stationarity of the disease process cannot be used during the
epidemic phase. If the parasite has achieved a dynamic equilibrium, however, then
some relations might be applicable. This open population with the dynamic cohort
at risk for infection is amenable to many of the study designs standardly used in
dynamic cohorts. In choosing study designs and methods of analysis, we need to
consider whether the dynamics of transmission are at equilibrium or changing over
time.

5.4.4 Within host dynamics

The dynamics of the infectious agent within a host also can be described by dynamic
models (Antia et al 1996; Pilyugin et al 1997; Antia et al 1998). These models de-
scribe the interaction of the infectious agent with the immune cells or antibodies
that might attack it, and its target cells within the host. Similar concepts from pop-
ulation theory are used to model the within host dynamics of the infectious agent
and to model the infectious agent circulating in the human populaton. For example,
R0 for a virus within a host describes the number of new viral particles successfully
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produced by one viral particle. The various compartments of immune cells such as
T cells, B cells, and memory cells can be included in the dynamic models.

5.5 Modeling Vaccination Programs

The different concepts of vaccine efficacy translate naturally into deterministic
transmission models. The values of VES, VEI , and VEP are inputs into the mod-
els. Then the indirect, total, and overall effects expected at different vaccination
coverage levels or using different vaccination strategies can be computed. Many
questions of interest require more complex models than we can present here. What
are the age-related changes in infection and disease? Will natural immunity wane
if transmission is too low, so that boosting of immunity does not occur? If many
people are vaccinated, the incidence of infection will decrease, so that the average
age of infection in the susceptibles will increase. Some diseases, such as mumps,
chickenpox, and rubella, are more serious if acquired at older ages. Thus, the total
number of cases could decrease due to a vaccination program at the same time that
the number of serious cases would increase. For example, rubella is a mild disease
in children, but it can result in congenital defects if a pregnant woman becomes in-
fected. If many young people are vaccinated, but not all, then transmission will be
reduced. The people who were not vaccinated will acquire rubella at a later age than
if no one were vaccinated (Knox 1980; Ukkonen and von Bonsdorff 1988). Thus,
it is possible that the number of babies born with congenital defects could increase,
even though fewer people contract rubella.

In the United States, the question was raised whether varicella vaccination, espe-
cially if the fraction vaccinated was not high, could increase the number of primary
chickenpox cases in older age groups who have more severe morbidity. Halloran
et al (1994a) found that vaccination would likely not result in a greater number of
severe cases. Complex models including age (Schenzle 1984) and mixing structures
are required to study complex questions such as this one. The general rule is that
a model has to contain the characteristics related to the question you are asking or
you cannot get an answer.

Several caveats should be kept in mind in considering the results of complex
models and computer simulations. Regardless of how complex the models are, they
are always a simplification of reality. Someone made choices in choosing what
would be included in the model. These choices affect the results produced by the
model. Models are excellent at forcing us to make both our assumptions and our
ignorance explicit. Often too few data are available to estimate the parameters and
the results usually underestimate the uncertainty of the knowledge. Regardless of
these caveats, models are useful in sharpening our thinking and especially in gain-
ing qualitative understanding of complex processes. Comprehensive treatments of
deterministic transmission models are found in Anderson and May (1991), Diek-
mann and Heesterbeek (2000), and Keeling and Rohani (2008).
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Problems

5.1. Plot the critical vaccination fraction as a function of R0 from equation (5.4).

5.2. Consider a vaccine that has a multiplicative leaky effect with VES = 0.80, and a
vaccine that has an all-or-none effect with VES = 0.80. Vaccination is administered
to infants. Both confer long-lasting immunity. (a) What would the age-distribution
of vaccinated cases compared with unvaccinated cases over the long-term be with
the leaky vaccine?
(b) What would the age-distribution of vaccinated cases compared with unvacci-
nated cases over the long-term be with the all-or-none vaccine?

5.3. (a) Write out the equations for an SIR model (5.14) allowing for birth into the
S(t) at a rate b proportional to N, and death that is not disease-dependent from each
of the compartments at the rate δ .
(b) What is R0 for this model?
(c) Expand the equations from (a) to allow that the fraction f is born vaccinated
with a leaky vaccine with VES = 1−θ .
(d) Expand the equations from (a) to allow that the fraction f is born vaccinated
with an all-or-none vaccine with VES = α .
(e) Compare the two sets of equations in (c) and (d).

5.4. (a) Starting from the SIR model (5.14), derive an expression for the final attack
rate as a function of R0 and the final attack rate. That is, the final attack rate appears
on both the left and right side of the equation.
(b) Plot the final attack rate as a function of R0.

5.5. In a county in the United States, an active campaign to vaccinate school children
with live attenuated influenza vaccine resulted in high level of coverage before the
start of the influenza season. The investigators observed that the influenza season in
that county started more slowly and peaked later than in other counties in the state
and than in the United States as a whole. What is one plausible explanation for this
observation? (Hint: see Figure 5.1).

5.6. Two hypothetical investigators who conducted separate studies of gonorrhea
in a heterosexual population of men and women come to different conclusions.
The subscripts m and f denote men and women. The first investigator conducted
a study in clinics using a sound sampling scheme with good ascertainment. The
results showed that the incidence rate and number of new clinical cases of gonor-
rhea is higher in men than women, Im > I f . The investigator concluded that gonor-
rhea is a greater problem in men than women. The second investigator conducted a
population-based study that was also well designed, and found that the prevalence
of gonorrhea infection is higher in women than in men, Pf > Pm. She concluded that
the problem is greater in women. How can transmission concepts help us think about
this paradox? (Hint: Assume that duration of infectiousness is longer in women than
in men.)



Chapter 6
Evaluating Protective Effects of Vaccination

6.1 Overview

Evaluating the direct protective effects of vaccines in the individuals who were vac-
cinated has been the focus of vaccine studies over the past century. Generally, inter-
est has been in the ability of vaccination to prevent or to ameliorate disease rather
than to prevent infection (Clements-Mann 1998). Ascertainment of cases is often
done by finding suspected cases in the population under study in people who exhibit
a set of symptoms. The suspected cases are then tested for biological confirmation
of the infectious agent of interest. Alternatively, surveillance can ascertain cases re-
ported in central registries. However they are ascertained, with most vaccines, clin-
ical disease is the primary outcome of interest. When ascertainment is on clinical
cases, most asymptomatic infections may go undetected. A different situation arises
when infection is the primary outcome. To ascertain infections in asymptomatic
people, an active follow-up method of testing asymptomatic people is needed.

In this chapter we consider estimation and inference for direct protective effects
of vaccination, VES and VESP, in studies that do not condition on exposure to infec-
tion. We consider aspects of the design of such studies. Several examples of random-
ized, double-blind (double-masked) controlled vaccine trials illustrate the standard
approach to design and analysis of such studies. Our choice of studies to present
was motivated largely because of their use as illustrations in other sections of the
book. Most randomized and pivotal studies of vaccines have been based on VESP
or VES. Much has been written on studies to meet the approval of the regulatory
agencies, and the design of clinical trials generally. Our goal here is to consider how
VES and VESP relate to other measures of vaccine effects within the dependent hap-
pening context, and consider a few design considerations. Because VES and VESP
do not condition on exposure to infection, assumptions about the relative exposure
opportunity in the vaccine and control groups are important.

We have generally distinguished VES, the vaccine efficacy for susceptibility to
infection, from VESP, the vaccine efficacy for susceptibility to disease. However,
in this and the following chapters, ascertainment is most often on disease rather
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c© Springer Science+Business Media, LLC 2010



104 6 Evaluating Protective Effects of Vaccination

than infection. In both instances, the population at risk is individuals susceptible to
infection. In a sense, one can imagine a continuum after randomization that includes
infection, development of symptoms, and possibly development of severe disease.
Most of the methods apply equally well if ascertainment is on infection or clinical
disease. In this and the next two chapters, we use VES often to denote situations
where the primary outcome can be either infection or disease. Which one is meant
is clear from the context. Any outcome that is the first cut after randomization will
provide a statistically valid assessment of the effect of the vaccine on that outcome.

This is in contrast to VEP, the vaccine efficacy for progression or post-infection
outcomes. In this situation, the vaccine effect of interest is in an outcome that occurs
only in those people who become infected. The methods of analysis and potential for
biases are different for VEP. In Chapter 7, we discuss different conceptual models
of protective effects of vaccine and the consequences for choosing and interpreting
protective efficacy estimates. The chapter also discusses methods to estimate wan-
ing vaccine effects. In Chapter 8 we present further topics in evaluating protective
effects. The evaluation of the effect of vaccination on post-infection outcomes is
considered in Chapter 9.

6.2 Estimating VES

The vaccine efficacy measures of interest in this chapter are the Levels II, III, and
IV parameters in Table 2.2 that do not condition on exposure to infection. The Level
IV measure VES,CI(T ) is defined using the cumulative incidence or attack rates at
the end of the study:

V ES,CI(T ) = 1− vaccinated infection events/persons–at–risk
unvaccinated infection events/persons–at–risk

= 1− CI1(T )
CI0(T )

. (6.1)

The Level II parameters VES,IR based on the incidence rates and VES,λ based on the
hazard rates require knowledge of the infection times:

V ES,IR(T ) = 1− vaccinated events/person-time
unvaccinated events/person-time

= 1− IR1(T )
IR0(T )

. (6.2)

The VES,λ based on the hazard rate ratio is

VES,λ (t) = 1− λ1(t)
λ0(t)

. (6.3)
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The Level III parameter VEPH based on the proportional hazards model requires
only the ordering of the infection times:

VES,PH = 1− exp(β ). (6.4)

where β is the log hazard ratio. In Chapter 2 we showed the intrinsic relationship of
the parameters to one another based on the dependent happening relation (2.7). We
also showed they form a hierarchy based on the amount of information required for
their estimation.

In this chapter, we treat VES,IR(T ), VES,λ , and VES,PH somewhat interchange-
ably. The interpretation of VES,CI(T ) and VES,IR(T ) (VES,λ , VES,PH ) differ sub-
stantially. VECI(T ) is related to the number of cases saved over the period of the
study, and VEIR(T ) and the other two parameters measure a relative improvement
in incidence rate or hazard, whereby both are underestimates if dependent happen-
ings are not taken into account (Section 2.8.1). The choice between VECI(T ) and
a vaccine efficacy based on incidence or hazard ratios could be influenced by the
distribution of vaccine protection (Chapter 7).

6.2.1 Absolute versus relative efficacy

The control arm in a planned study is often another active vaccine assumed not to
have an effect on the disease of interest. In the pneumococcal conjugate vaccine
study below, a meningococcal conjugate vaccine is the control. In these studies, the
goal is to show that the active vaccine of interest is superior to the control in pre-
venting the primary outcome of interest. If a licensed (and recommended) vaccine
is available for the disease of interest, it is generally unethical to use a placebo or
vaccine against a different disease in the control arm. Then the study must com-
pare two (or more) active vaccines against the same disease. The relative rather than
the absolute efficacy can be computed. The relative efficacy is the relative reduc-
tion in disease risk or incidence by the one vaccine compared with the other. An
example is the pertussis vaccine study in Senegal presented below. The whole cell
pertussis vaccine was recommended for infants in Senegal, so the acellular pertussis
vaccine could not be compared to a placebo. In contrast, in Sweden, the whole cell
pertussis vaccine had been discontinued, so there was no licensed pertussis vaccine
in Sweden when they conducted the study of the acellular pertussis vaccine. In the
Swedish study, the control was the diphtheria–tetanus toxoid without the pertussis
component.

As new generations of vaccines are introduced, it is more common to be com-
paring a new vaccine candidate with an existing vaccine. If both vaccines are fairly
efficacious and or the outcome of interest is fairly rare, then the size of the field
study becomes prohibitively large and expensive. For example, the pneumococcal
vaccines are highly efficacious against invasive disease, so that field studies of new
pneumococcal vaccines with invasive disease as the primary outcome are not fea-
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sible. In this setting, the hunt for immunological surrogates of protection becomes
imperative. In the case of pneumococcal vaccines, there is also interest in develop-
ing pneumococcal nasopharyngeal carriage as a primary outcome for vaccine field
study (Chapter 15).

Even when individuals cannot be randomized to a placebo, there may be indi-
viduals under surveillance who do not enroll in the trial, and thus do not receive
either vaccine. The absolute efficacy of both vaccines can be computed by compar-
ison with the individuals who happened not to be in either study arm. The study is
then an observational cohort study, not a randomized study. The Senegal pertussis
vaccine study included surveillance of cases in people not in the study, so was able
to compute the absolute efficacy of both vaccines, although with the potential biases
inherent in observational studies. With two active vaccines, the trial may be planned
in a way to show that the efficacy of the new vaccine is not worse than the already
licensed vaccine (a noninferiority study) or that the new vaccine has a higher effi-
cacy than the other vaccine (a superiority trial), the usual approach in vaccine trials
that compare a vaccine to a control.

6.2.2 Types of studies

Cohort studies for evaluating vaccines follow groups of people over time, some of
whom are vaccinated, some of whom are not. Randomized vaccine studies are ex-
amples of cohort studies in which the vaccine has been randomly allocated. Cohort
studies can be used to estimate any of the unconditional VES parameters if certain
conditions are met. If all of the vaccine was administered before the beginning of
the observation period, then the cohort is a fixed cohort. If, in addition, there is no
loss to follow-up during the observation period, the cohort is a closed cohort. Then
VES,CI(T ) can be estimated by the cumulative incidence or attack rates. More gen-
erally, open or dynamic cohorts allow people to join and leave the population under
study and to change their vaccination status. From these studies in dynamic cohorts,
estimates can be based on either cases per person-time at risk, the incidence rate, or
using survival analysis methods in which the risk set can change over time. VES,IR
and VES,λ can be estimated from either closed or open cohorts. Primary vaccine ef-
ficacy studies often report VES,IR based on relative events per person-time, or Level
II information.

In a case-control study, cases are ascertained and controls selected from a source
population. The goal of the case-control study is to estimate the same unconditional
estimands of vaccine efficacy as in the cohort studies. The method of sampling the
controls and the method of analysis determine whether the case-control study will
provide good estimates for VES,IR, VES,λ , or VES,CI(T ). A case-control study can
be thought of as a sample of data from a hypothetical cohort study. The cohort can
also be thought of as a source population that gives rise to the cases (Chapter 8).
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6.2.2.1 Randomized versus observational cohort studies

Greenwood and Yule (1915) stated three conditions for valid inference in vaccine
studies:

1. The persons must be, in all material respects, alike.
2. The effective exposure to the disease must be identical in the case of inoculated

and uninoculated persons.
3. The criteria of the fact of inoculation and of the fact of the disease having oc-

curred must be independent.

The conditions for a valid comparison are essentially met under randomization. Ran-
domization is supposed to ensure that potential confounders are balanced between
the two groups. Observational studies that do not assign vaccine randomly need to
examine the three criteria carefully. The criteria can be thought of in terms of expo-
sure to infection versus susceptibility to infection. First, randomization is supposed
to ensure that the groups being compared are in all relevant aspects alike. Rele-
vant covariates can include pre-existing immune levels such as antibody titer, prior
vaccination, prior disease history, age, and gender, among others.

Second, randomization is supposed to ensure that effective exposure to infection
of the two groups is the same. The two groups having the same exposure to infection
is not the same as every person in the groups having the same exposure to infection.
Even if, on average, exposure in the two groups is comparable, there may be hetero-
geneity of exposure to infection within the groups. Some participants might not be
exposed at all to the infectious agent of interest. Because in field trials, exposure to
infection is not under control of the investigator, in studies that do not condition on
exposure to infection, the assumption of equal exposure in the two groups is a strong
one, especially if a study is not randomized. For example, children of a higher so-
cioeconomic status may be less exposed to a certain infection. If these children also
tend to get vaccinated, then a study of the effect of vaccination will overestimate
vaccine efficacy. Potential relevant covariates related to exposure to infection could
include distance from potential environmental sources of infection, number of peo-
ple living in the household, use of bednets, behavioral covariates such as number
of sexual contacts or handwashing habits, among others. Going to work rather than
working at home or attending school rather than either being too young to attend
school or remaining at home for other reasons can affect exposure to infection.

Third, the chance of being vaccinated cannot be associated with the probabil-
ity of developing disease. Some of these elements are similar to those in the first
group related to susceptibility to infection and disease. As an example, children of
a higher socioeconomic status may have better nutrition, and therefore better im-
mune systems and better resistance to infection or disease if exposed. If children of
higher socioeconomic status also tend to be vaccinated, then a study of the effect
of vaccination will overestimate the vaccine efficacy. In both of these situations,
socioeconomic status could be used as a proxy covariate for either exposure or for
susceptibility to infection.
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Table 6.1 Number of individuals, number of cases, and number of person-time at risk in vaccinated
and control groups

Number of Number of Cases Person-Time
Persons in Group of Disease at Risk

Vaccinated N1 c1 Y1
Control N0 c0 Y0

If these three criteria are met, any differences in the rate of developing disease in
the two groups is likely due to the biological effects of the vaccine. It is important
to collect information on relevant covariates and potential confounders in both ran-
domized and observational studies. Potential confounders will depend on the partic-
ular infectious agent of interest and the setting of the study. Reports of randomized
cohort and case-control studies usually include a comparison of the vaccine and
control groups on any covariates considered relevant.

Nonrandomized cohort and case-control studies need to address these potential
sources of bias. Although propensity scores (Rosenbaum 1995) and marginal struc-
tural models (Robins et al 2000a) could be used to adjust for confounding in vaccine
studies, these approaches have not found much use thus far. Further details of epi-
demiologic study design can be found in Rothman et al (2008). Interactions of pre-
existing immunity and level of exposure to infection can confound interpretation of
vaccine efficacy estimates even when the study is randomized (Chapter 14).

6.2.3 Estimation and inference

The statistical methods for analyzing the studies described in this chapter are fairly
standard. Consistent with the philosophy of this book, estimation with a measure of
uncertainty such as confidence intervals, likelihood intervals, or a Bayesian posterior
distribution is the focus rather than hypothesis testing. Our interest is in the estimate
of vaccine efficacy and the interpretation of the estimate. Consider a vaccine study
with N1 individuals in the vaccine group and N0 in the control group, and N =
N0 +N1. The cohort can be observed either at time 0 and time T or over the interval
[0,T ]. The number of cases observed in the unvaccinated group is c0 and in the
vaccinated group is c1. The total person-time at risk in each group is denoted by Y0
in the unvaccinated group and Y1 in the vaccinated group (Table 6.1).

Estimating VES,CI(T ) based on the cumulative incidence or attack rates requires
only information about whether persons are infected by the end of the study at time
T , that is, final value data:

VES,CI(T ) = 1− c1/N1

c0/N0
. (6.5)
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Estimation of VES,CI(T ) based on the simple relative proportions of cases in each
group assumes that there is no loss to follow-up, that is, no censoring.

Chick et al (2001) consider correcting for bias in risk ratio and vaccine effect
estimators, especially when the number of cases is small. The standard maximum
likelihood vaccine effect estimators are consistent, but they are biased because they
are nonlinear functions of other estimators. The bias is small when the number of
cases is relatively large, say >70 in the placebo arm. However, with small numbers
of cases, the bias can be substantial. Chick et al (2001) propose various bias cor-
rection options, including one suggested by Jewell (1986). Bias of both the VES,CI
under an all-or-none model and the VES,CI under the leaky model are explored. Of
the options considered, the best was to add one to the positive count in the con-
trol population, both to the case count and the population count. For example, they
recommend using

V̂ES,CI(T ) = 1− c1/N1

(c0 +1)/(N0 +1)
. (6.6)

This addition in the control population increases the VES,CI(T ) estimates. As they
point out, it may seem to “corrupt the data.” However, for small studies, the simu-
lations are convincing. Clearly when c0 is large, the addition of one count will have
a small effect. They also provide bias corrections for Bayesian vaccine effect esti-
mators, for VEI and VES based on the secondary attack rates, and for the vaccine
effect of the susceptibility and infectiousness effects on the reproductive number.

VES,IR(T ) based on relative incidence rates is estimated by

VES,IR(T ) = 1− c1/Y1

c0/Y0
. (6.7)

The usual assumption is that the numbers of events follow a Poisson distribution.
Similarly, from time-to-event data, to estimate VES,λ investigators may estimate the
instantaneous hazard rates in the vaccinated and unvaccinated λ1(t) and λ0(t), re-
spectively, using survival analysis methods. When covariates such as age and gender
are added, the analyses are stratified by the covariates or Poisson regression can be
used.

Under the assumption that the effect of the vaccine is multiplicative, constant, and
homogeneous, the Cox proportional hazards model can be used to estimate VES,PH .
In this case, it is not necessary to estimate the hazard rate in the unvaccinated group,
but only the relative hazard rate. Covariates including time-dependent covariates
can easily be incorporated using standard software. The proportional hazards model
with covariates can be used to investigate possible confounding factors. Because the
proportional hazards model assumes that the baseline hazard is the same in both the
vaccinated and the unvaccinated groups, for studies including different communi-
ties, it may be possible to include a covariate for each community. The model could
then assume that the incidence varies by community, but the vaccine effect is the
same in each community (Section 6.4.1).
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Several approaches are available for the confidence interval for VES,CI(T ).
O’Neill (1988) favored the method based on the log of the ratio of two binomial
random variables (Katz et al 1978) because of its simplicity of interpretation and the
symmetry of the confidence interval on the log scale. Let θ(T ) = CI1(T )/CI0(T ),
so that VES,CI(T ) = 1− θ(T ), and let β (T ) = lnθ(T ). Assume for now that the
follow-up is over the interval T , so that we can drop the T from the notation. The
estimate of θ is θ̂ = (c1/N1)/(c0/N0) and β̂ = ln θ̂ . An estimate of the variance of
β is

σ
2 =

N1− c1

N1c1
+

N0− c0

N0c0
=

1
c1

+
1

N1
+

1
c0

+
1

N0
. (6.8)

In vaccine studies, N0 and N1 are usually large, so that the variance of β is approx-
imated by a function of the number of cases in the vaccinated and unvaccinated
groups, 1/c1 + 1/c0. The 100(1−α) percent confidence interval for VES,CI(T ) =
1−θ is

[1− exp(β̂ + zσ̂),1− exp(β̂ − zσ̂ ], (6.9)

where z is the (1−α) percentage point of the standard normal distribution. One can
also use Taylor series approximations (Hightower 1988). Ewell (1996) compared
Bayesian posterior regions with frequentist exact and large sample confidence in-
tervals for intermediate (Phase IIb) trials. Koopman’s (1984) method for the ratio
of two binomials is also used. Generally two-sided intervals are recommended, and
even required by some journals. The lower confidence bound on the vaccine efficacy
estimate is sometimes of primary interest, especially in proof-of-concept studies, or
Phase IIb studies.

An approximate confidence interval for VES,IR can be obtained similarly as in
(6.9). An estimate of the approximate variance of the log of the ratio of the incidence
rate in the vaccinated group and the incidence in the unvaccinated group is again

σ̂
2 =

1
c1

+
1
c0

. (6.10)

If now θ = (c1/Y1)/(c0/Y0) and β = lnθ , then the 100(1−α) percent confidence
interval for VEIR = 1−θ is

[1− exp(β̂ + zσ̂),1− exp(β̂ − zσ̂ ], (6.11)

where z is the (1−α) percentage point of the standard normal distribution.
If there is loss to follow-up, then VES,CI(T ) also requires knowledge of the time

of onset of cases. In a hepatitis B vaccine study, Szmuness et al (1980) calculated
cumulative attack rates using a life-table method. The statistical significance of the
differences between observed numbers of trial endpoints in different groups was
calculated from the life tables by the log-rank summary chi-square test. In another
hepatitis B vaccine study, Francis et al (1982) also used a life-table approach based
on person-months of follow-up to get cumulative attack rates. Hudgens et al (2004)
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suggest using nonparametric maximum likelihood estimators of CI1 and CI0 in the
presence of censoring (Kaplan and Meier 1958; Peto 1973). Standard survival anal-
ysis methods can be used for inference for VES,λ and VES,PH :

V̂ES,PH = 1− exp(β̂ ). (6.12)

where β̂ is the partial likelihood estimate of the log hazard ratio (Cox 1972). The
methods for the above analyses in this chapter are available on most statistical anal-
ysis packages.

When the number of cases in the study is small, exact confidence intervals may be
used. Again, many approaches are available for exact confidence intervals. Random-
ized trials in this chapter used the Clopper–Pearson (1934) or Koopman’s (1984)
method. Agresti and Coull (1998) compare exact and approximate confidence inter-
vals and find that sometimes approximate intervals are better than exact. Specialized
software is available for most exact computations.

6.3 Design Considerations

In this section, we consider some of the design considerations of a vaccine study,
with the studies in the next section serving as illustrations.

6.3.1 Vaccines and vaccination schedule

The vaccine of interest and the comparison, whether active control, placebo, or noth-
ing, need to be specified. If active administration of vaccines is part of the study
design, the number of doses, and the schedule for administering the doses need to
be specified. Many vaccines require two or more doses for complete vaccination.
For example, usually complete pertussis vaccination requires three doses. It is im-
portant when possible to record the number of doses of a vaccine that a person
has received to determine if the person has complete or incomplete vaccination. In
addition, the immune response requires some time to develop. Thus, many studies
include only cases in the analysis that occur a certain time interval after the comple-
tion of vaccination. In a randomized study, participants who receive the number of
doses according to protocol are included in the per-protocol analysis. In the intent-
to-treat analysis, any person randomized to a particular arm regardless of how many
doses received is included in the analysis. Analyses can also be broken down by the
actual number of doses received.

In observational studies, the study can specify what the recommended dose
schedule is for that vaccine, then ascertain the extent to which participants are vac-
cinated according to the recommended schedule.
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6.3.2 Study population

The study needs to specify the usual person, time, and place of any field study,
whether randomized or observational. Eligibility and exclusion criteria need to be
specified.

6.3.2.1 Recruitment and vaccination

Recruitment into a vaccine study can be through a population-based study, a local
census, by attendance at clinics or physician’s offices, schools, workplaces, health
maintenance organizations or public advertisements. The method of recruitment will
depend on the societal context and the target age of vaccination. Vaccination can
take place in clinics or by teams going to the field for vaccination.

6.3.3 Case definition

The case definition is an essential element for the study. In randomized studies, there
will usually be a primary endpoint for the primary analysis. The case definition can
be defined by clinical criteria alone or require biological confirmation of evidence
of the infectious agent of interest. Several secondary endpoints may be based on
different case definitions, other clinical endpoints related to the infectious agent of
interest, or laboratory endpoints related to either the immune response or the course
of the infection. Hudgens et al (2004) reviewed endpoints in vaccine trials.

6.3.4 Ascertainment of cases

Methods for ascertaining potential clinical cases include active surveillance such
as through phone calls at specified intervals or visits to the homes. Suspect cases
may be ascertained in clinical settings, whereby only cases that seek medical atten-
tion will be ascertained. If the case definition includes biological confirmation, then
the relevant tests will be performed. Ascertainment of infected people rather than
clinical cases requires testing of all of the study participants at regular intervals.

6.3.4.1 Safety and Immunogenicity

If a study actively administers vaccine, usually study participants will be directly
observed for a period of time for short-term adverse events such as anaphylactic
reaction. Parents or adults can be given diaries to keep track of adverse events.
Investigators may make visits or phone calls to the homes of participants to register
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any adverse events. Immunogenicity of the vaccine could be measured on all or a
subset of participants. It may not be measured on anyone. In observational studies,
immunogenicity measures may not be available.

6.3.5 Sample size calculations

It happens often that vaccine studies go to the field, then suddenly there is no or little
transmission, so there are few events. Someone once said that for vaccine studies,
one should calculate the sample size then multiply by 5 or possibly 10. Here are a
few formulae for simple sample size calculations as guidelines, but most sample size
calculations for vaccine studies will need computer simulations. Careful, sometimes
lengthy, baseline studies to understand the local epidemiology and transmission of
the infection, seasonal and yearly variation in incidence, and other characteristics
may be required before sample size calculations can be considered reliable.

Hayes and Bennett (1999) provide simple formulae for individually randomized
studies which we summarize here as well as parallel design cluster randomized stud-
ies (Chapter 13). Let zα/2 and zβ be the standard normal distribution values corre-
sponding to upper tail probabilities of α/2 and β . The corresponding sample size
will give a power of 100(1−β )% of obtaining a significant difference (P < α on
a two-sided test), assuming that the true (population) rates in the vaccine and con-
trol groups are λ1 and λ0. If the outcome is based on person-time, let y denote the
person-time of follow-up in each group. Then the amount of person-time required
in each group is (Smith and Morrow 1996; Hayes and Bennett 1999)

y = (zα/2 + zβ )2 λ0 +λ1

(λ0−λ1)2 . (6.13)

If the outcome is based on proportions, let π0 and π1 be the true population
proportions in the presence and absence of the intervention. Let n be the number of
individuals in each group. Then the number of individuals required in each arm is

n = (zα/2 + zβ )2 π0(1−π0)+π1(1−π1)
(π0−π1)2 . (6.14)

If the outcome is based on a continuous response, such as malaria parasite den-
sity, then the objective is to compare the mean of that variable in the intervention
and control groups. Let µ1 and µ0 be the true population means and σ1 and σ0 be
the standard deviations of the outcome variable in the vaccine and control groups.
Let n be the number of individuals in each group. Then the number of individuals
required in each arm is

n = (zα/2 + zβ )2 σ2
0 +σ2

1
(µ0−µ1)2 . (6.15)
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Fay et al (2007) consider sample size calculations for testing differences in means
between two samples and allowing for different variances in the two groups. The ap-
proach accounts for two sources of variability. One source of variability is in param-
eter estimates that are estimated from prior data. The second source of variability is
if the vaccine fails in some of the people who are vaccinated. The sample size cal-
culation needs to take the possible failure of the vaccine into account. The research
was motivated by the design of a Phase II trial of a Plasmodium falciparum blood-
stage malaria vaccine candidate in Africa. Baseline data on malaria in children had
been gathered in a village in Mali in 1999 and 2000. Children were visited weekly
and blood smears were done monthly. Data on malaria symptoms and blood smears
were available. Several different primary endpoints for the trial were explored. The
goal of vaccination was to elicit an immune response comparable to the immune
response in older children, all of whom had had repeated exposure to malaria in-
fection. For each candidate primary endpoint, the effect measure was defined as the
difference in the malaria outcome in the older compared to the younger children.
Instead of choosing an effect size arbitrarily, the observational data were used to
estimate the standardized effect size and variances. The variability in the variance
estimate can be accounted for simply by using a slightly larger nominal power in
the usual sample size calculation, called calibrated power. Fay et al (2007) provide
a table of calibrated power by sample size.

The second problem in designing the trial was that some of the children might
not respond to the vaccine, for genetic or other reasons, An example would be an
all-or-none distribution of protection. For the second problem, the proportion ex-
pected not to respond to the vaccine could be obtained from expert opinion, as in
traditional sample size computations. Fay et al (2007) provide simple closed form
sample size calculations. In general, the sample size will be greater if a proportion
of the population does not respond to the vaccine than if all respond to the vaccine.

6.4 Examples of Randomized Trials

6.4.1 Relative efficacy of pertussis vaccines in Senegal

A randomized, double-blind trial comparing a diphtheria–tetanus–acellular pertus-
sis vaccine (DTaP) (pertussis toxoid and filamentous hemagglutinin) with a whole
cell vaccine (DTwP) was conducted in the Niakhar area of Senegal (Simondon et
al 1997). (See Section 10.2.3 for more details about the area.) The comprehensive
ongoing surveillance in the Niakhar area allowed a prospective, nested case-contact
study and a cohort study to be conducted during the trial to estimate absolute effi-
cacy of each vaccine.

Eligible infants were those born between February 1, 1990, and April 30, 1994 to
mothers residing in the Niakhar area who attended the vaccination sessions. From
1990 through 1994, 4181 children were randomized to receive one of the vaccines
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at 2, 4, and 6 months. Surveillance by weekly home visits looked for cough illness
persisting more than 7 days in all children under 15 years of age, including children
not in the study. Adverse events were screened in the first two weekly visits follow-
ing each vaccine dose using a standardized questionnaire. Any positive answer was
followed up by a physician. The physicians doing the examinations took samples
for culture and serological testing blinded to vaccination status. The primary proto-
col definition of a case of pertussis was defined as 21 or more days of cough con-
firmed by (a) positive bacterial culture from nasopharyngeal aspirates, (b) serology
(IgG against pertussis toxoid and filamentous hemagglutinin), or (c) contact with a
culture-confirmed person in the same compound and coughing had started within 28
days before or after onset of illness in the culture-confirmed child (epilink). Poly-
merase chain reaction (PCR) amplification was used to detect B. pertussis DNA in
nasopharyngeal aspirates.

The study sample size had been determined assuming that the efficacy of the
whole cell vaccine was 75% and allowed detection of the relative ratio of 1.5 in the
two arms of the study at the 0.05 significance level. The overall ratio of pertussis
incidence in the DTaP group relative to the DTwP group (RRac/wc) and confidence
interval were estimated in a proportional hazards model with calendar time as the
time scale and stratified by village. Pertussis is epidemic and the proportional haz-
ards model assumes that the baseline hazard is equal in the comparison groups. The
model allows the incidence to vary by village, but assumes that the rate ratio is the
same across villages. A multivariate proportional hazards model was used to investi-
gate confounding factors. A secondary intent-to-treat analysis included all children
receiving at least one dose of the study vaccines. After the study began, the WHO
recommended that the case definition be 21 or more days of paroxysmal cough,
not just cough. For each child, surveillance ended either at the onset of pertussis,
additional pertussis immunization, emigration, death, or refusal to continue in the
investigation. All surveillance for the study ended December 31, 1994.

Comparability between children receiving three doses was checked for age at
inclusion, gender, weight at first dose, rank of birth number, age of mother, num-
ber of persons in the compound, and the number of persons <15 years of age in
the compound. No significant differences were found. During the period of surveil-
lance, physicians confirmed at least one episode of >7 days cough in 837 of 2567
compounds reporting such episodes to field workers. The total duration of follow-
up was 3165 person-year at risk in the DTwP group and 3193 person-year at risk
in the DTaP group. Table 6.2 contains the number of cases and incidence rate ratios
for different case definitions. The primary analysis considered cases that occurred
≥28 days after the third dose. The overall ratio of pertussis incidence in the DTaP
group relative to the DTwP group (RRac/wc) using the protocol case definition was
1.54 (95% CI, 1.23–1.93). A multivariate proportional hazards analysis including
the comparability factors revealed that children in compounds with more than 30
members had a higher rate of pertussis, but the value of RRac/wc did not change.

In a cohort analysis of 229 unvaccinated children, using the same proportional
hazards model and the protocol case definition, absolute efficacy was 66% (95%
CI, 46–78) for DTwP and 48% (95% CI, 18–66) for DTaP. Using the WHO case
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Table 6.2 Incidence rate ratio of DTaP (acellular pertussis) vaccine compared with DTwP (whole
cell pertussis) vaccine for different case definitions in the Niakhar, Senegal study (Simondon et al
1997)

No. of Cases

Whole Cell Acellular Incidence Rate
Vaccine Vaccine Ratio [95% CI]

≥21 days of cough
(protocol definition)

Protocol confirmation criteria 123 197 1.54 [1.23–1.94]
Intention-to-treat 162 233 1.43 [1.16–1.74]
With PCR 65 128 1.87 [1.38–2.52]

≥21 days of paroxysmal cough
(WHO definition)

Protocol confirmation criteria 16 41 2.42 [1.35–4.34]
Intention-to-treat 23 49 2.06 [1.25–3.39]
With PCR 10 31 2.80 [1.36–5.74]

definition, the absolute efficacies were 91% (95% CI, 81–96) for DTwP and 79%
(95% CI, 58–89) for DTaP.

This study illustrates several points. First, vaccine studies sometimes report the
relative risk or rate ratios rather than the vaccine efficacies. Vaccine efficacy has the
awkward property that it ranges from 1 to −∞. The relative risk or rate ratios range
from 0 to ∞ with the value of 1 being associated with no relative effect. Second,
different case definitions can substantially alter the estimates. In the comparison of
the DTaP to DTwP, the point estimates of the rate ratios were higher with the WHO
definition, although the confidence intervals overlap. The absolute efficacy of both
vaccines in the cohort analysis was higher with the WHO definition. The choice of
case definition in pertussis is the subject of ongoing international discussion. The
pertussis study in the next section uses a slightly different definition.

6.4.2 Absolute efficacy of pertussis vaccine in Sweden

Because of its limited efficacy, the Swedish-made whole cell pertussis vaccine was
withdrawn in 1979. After that, Sweden had no licensed pertussis vaccine, so it was
possible to conduct a randomized, placebo-controlled trial (Trollfors et al 1995).
Infants were randomly assigned to receive DT toxoids or the same DT toxoids with
pertussis toxoid (DTaP toxoids). The vaccine contained only the single component
of the pertussis toxoid. About 99% of children in Sweden visit publicly financed
child health clinics, where information about the study was given to the parents of
infants. Full-term healthy infants in the Göteberg area were eligible if the family had
a telephone and at least one parent spoke Swedish. The vaccinations and follow-up
were performed at five study sites. The parents of 3450 of 5964 eligible children
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Table 6.3 Pertussis vaccine efficacy, VES,IR, of DTaP compared with DT for different case defini-
tions during the main period of follow-up (30 days after the third vaccination until the end of the
study in the Swedish study)(Trollfors et al 1995)

No. of Cases

DTaP DT Vaccine
Vaccine Vaccine Efficacy [95% CI]
(n = 1670) (n = 1665)

≥21 days of cough
WHO definition 96 245 63 [52–71]
Göteberg confirmed 77 241 69 [60–77]
Göteberg confirmed + probable 99 252 62 [52–71]

≥21 days of paroxysmal cough
WHO definition 72 240 71 [63–78]
Göteberg confirmed 58 236 77 [69–83]
Göteberg confirmed + probable 75 246 71 [62–78]

≥7 days of cough
WHO definition 121 251 54[43–63]
Göteberg confirmed 98 244 62 [51–70]
Göteberg confirmed + probable 125 258 54 [42–63]

agreed to participate. Of these 1724 and 1726 were randomly assigned to DTaP and
DT toxoids. There were 817 recipients of DTP toxoids and 850 recipients of DT
toxoids with one or more older siblings.

The three vaccine doses were administered intramuscularly at 3, 5, and 12
months. First vaccinations occurred between September 1991 and September 1992,
third vaccinations between May 1992 and July 1993. There were 52 children with-
drawn from the study for various reasons. Coughing episodes between the first vac-
cination and July 24, 1994 were included in the study analysis. The surveillance
period for each child was divided in two parts. The first part was between the first
vaccination until 29 days after the third during which time the children were consid-
ered to be incompletely vaccinated. The second part began at the end of the first part
for each child and lasted until July 24, 1994. Parents were asked to monitor adverse
events for seven days, after which they were interviewed. They were contacted once
a month by telephone for further surveillance of adverse events.

Parents were asked to contact the study nurse if anyone in the family coughed
for seven or more days. Biological confirmation was done by culture or PCR of
a nasopharyngeal sample and serology. Follow-up of each case continued for at
least 60 days or until the cough ended. PCR was able to distinguish pertussis from
parapertussis. The case definitions were similar to those of the Niakhar study, but
the Göteberg group had their own classifications in addition to the WHO criteria.
Essentially the Göteberg group allowed that household contacts for the epilink could
be confirmed either by culture or serology, whereas the WHO definition allows only
culture. The Göteberg group also distinguished two levels of biological evidence.
Confirmed cases required two confirmation criteria, and probable cases required
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only one (Trollfors et al 1995). To measure immunogenicity, serum was obtained
from 3361 children at least four weeks after the third vaccination. IgG antibodies
against pertussis toxin and toxin-neutralizing antibodies were measured.

Vaccine efficacy, VES,IR, was based on the ratio of the incidence rates in the
DTaP compared to the DT group. Confidence intervals were estimated by an exact
calculation based on the conditional binomial distribution that follows from the as-
sumption of a Poisson distribution for cases in each group (Clopper and Pearson
1934). Proportions were compared using a two-sided Fisher’s exact test.

Of the 2037 coughing episodes lasting at least seven days, 465 (160 in the DTaP-
toxoids group and 305 in the DT-toxoids group) met the criteria for confirmed or
probable pertussis, including 368 that met the WHO definition. Another 14 children
had clinical pertussis without laboratory confirmation. Thirty days after the third
vaccination, 1670 and 1665 recipients of the DTaP and DT toxoids were still at risk
for pertussis. The incidence of pertussis according to the WHO definition was 2.96
cases per 100 person-years among the DTaP toxoids recipients and 10.32 cases per
100 person-years in the DT toxoids recipients. The efficacy of the pertussis vaccine
was 71% (Table 6.3).

As in the Niakhar pertussis study, the number of cases and the vaccine efficacy
estimates vary with the case definitions. The estimates using ≥21 days of paroxys-
mal cough had the highest estimates, ≥21 days of any cough the middle estimates,
and ≥7 days of cough the lowest estimates, reflecting the differing specificity of the
case definition. Depending on the case definition used, over 15% of the children in
the DT toxoids group developed pertussis during the trial. Although not discussed
in detail in this book, the pertussis-toxin testing for defining a case had much lower
sensitivity in recipients of DTP toxoids than in recipients of DT toxoids because the
DTP-toxoid recipients already had high values for IgG antibodies against pertussis
toxin in the acute-phase serum samples. Cultures and PCR were also less sensitive
in vaccinated children. A study to estimate the indirect effects of vaccination was
nested in this trial (Sections 10.2.5 and 12.5.1)

The acellular pertussis component of the vaccine in the Trollfors et al (1995)
study had just the pertussis toxoid. Further acellular vaccine candidates were devel-
oped that contained additional antigens. Pertussis toxoid (PT) was included. Other
antigens included were filamentous hemagglutinin (FHA), pertactin (PRN), and fim-
briae types 2 and 3 (FIM). Two coordinated trials were conducted in Sweden as
part of an international effort. Trial I was conducted during the years 1992–1995
(Gustafsson et al 1996). Two acellular pertussis vaccines, one whole cell pertussis
vaccine, and one placebo were used. The placebo group (n = 2574) received diph-
theria and tetanus toxoid (DT). The second group (n = 2566) received DTaP2 with
two antigens, PT and FHA. The third group (n = 2587) received DTaP5 with PT,
FHA, PRN, and the two FIM antigens. The fourth group received DTwP. A study to
evaluate immunological surrogates of protection after household exposure to pertus-
sis was nested in the primary efficacy study Trial I (Storsaeter et al 1998) (Section
15.3.2).

Trial II was conducted during the years 1993–1996 (Olin et al 1997) with no
placebo group. The DTaP5 contained higher amounts of PT and FHA than the
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DTaP5 of Trial I. The DTaP2 had the same composition as in Trial I. The source
for DTwP in Trial II was different from that in Trial I.

6.4.3 Absolute efficacy of live attenuated influenza vaccine in
children

Belshe et al (1998) conducted a randomized, double-blind placebo-controlled mul-
ticenter study of the efficacy of live attenuated cold-adapted trivalent influenza virus
vaccine in children. Healthy children who were 15 to 71 months of age at time of
recruitment and who had no contraindication were enrolled. The vaccine contained
that year’s recommended strains of influenza A (H1N1), influenza A (H3N2), and
influenza B. Children were randomized 2:1 to receive vaccine or placebo. Vaccine
was given either as a one- or two-dose regimen, with some of the sites using one or
the other. Vaccine and placebo were administered with an intranasal spray applica-
tor.

To evaluate side effects of vaccination, parents were asked to monitor and to
record certain symptoms for 10 days after vaccination. They were given a ther-
mometer to measure the temperature. Serious adverse events were followed through-
out the trial. Strain-specific immunogenicity of the vaccine was measured in a sub-
study of 203 participants, approximately the first 21 children recruited at each site.
The serum samples were assayed for presence of hemagglutination-inhibiting anti-
bodies to the three viral strains contained in the vaccine.

The primary efficacy endpoint was the first episode of culture-confirmed in-
fluenza for subjects who became ill 28 days or more after the receipt of the first
dose of vaccine or placebo or at any time after the second dose during the influenza
season. Parents were contacted by telephone every two to three weeks until the
beginning of an influenza outbreak in their community. Then weekly contact was
made to remind the parents to report any relevant symptoms as soon as possible.
Study staff attempted to collect specimens for culture for influenza virus confirma-
tion within four days of the onset of symptoms. A case of influenza was defined as
any illness detected by active surveillance that was associated with a positive culture
for wild-type influenza virus.

The analysis was based on the VES,CI(T ), using the observed proportions of cases
in vaccine recipients and placebo recipients. Koopman’s (1984) method for the ratio
of two binomials was used to estimate 95% confidence intervals. A logistic general-
ized estimating equation (Liang and Zeger 1986) with an exchangeable covariance
matrix was used to rule out the possibility of an effect within families on the results,
because more than half the children in the study were in households with at least
two children in the household.

Enrollment began in August 1996 with 1314 children enrolled in the two-dose
cohort and 288 in the one-dose cohort. Surveillance ended April 1997 at the end of
the influenza outbreaks at the study sites. Among children in the immunogenicity
substudy, younger children were more likely to be seronegative before entering the
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Table 6.4 Efficacy, VES,CI(T ), of one or two doses of live attenuated, cold-adapted influenza virus
vaccine for the prevention of culture-confirmed influenza (Belshe et al 1998)

Influenza Assigned to Two Doses
Type Assigned to One Dose Who Received Two Doses All Participants

No. of Cases Efficacy No. of Cases Efficacy No. of Cases Efficacy

Vaccine Placebo [95% CI] Vaccine Placebo [95% CI] Vaccine Placebo [95% CI]
(n = 189) (n = 99) (n = 849) (n = 410) (n = 1070) (n = 532)

A(H3N2) 2 8 87 [47–97] 4 49 96 [90–99] 7 64 95 [88–97]
B 1 6 91 [46–99] 6 31 91 [78–96] 7 37 91 [79–96]
Any 3 14 89 [65–96] 10 74 94 [88–97] 14 95 93 [88–96]

study than older children. Only 29% of children one or two years of age had an-
tibodies to influenza A (H3N2) compared with 70% of children three years of age
or older. Pre-existing antibody to influenza in an influenza vaccine study is consid-
ered an important potential confounder. Of the 3009 illnesses in the study subjects,
71 cases of influenza A (H3N2) and 44 cases of influenza B were confirmed. No
cases of wild-type influenza A (H1N1) were identified in the study participants or
the communities at large during the 1996–1997 influenza season. Table 6.4 shows
the results. Vaccination was quite effective against culture-confirmed influenza. Al-
though the data are not presented here, the spectrum of illness in the vaccinated
children who developed influenza was milder than that in unvaccinated children.

In influenza vaccine studies for vaccines directed against annual influenza, there
is generally an attempt to get all of the participants vaccinated before the beginning
of the influenza season. Then given the short duration of the season, influenza vac-
cine studies can often use an analysis based on the simple cumulative incidence or
attack rates. The trial continued beyond the first year. Longini et al (2000) analyzed
the first and second year of the trial, allowing for site-specific attack rates. There
was some evidence that study sites with high attack rates the first year had lower
attack rates the second year and vice versa, suggesting a possible herd immunity
effect.

6.4.4 Live attenuated influenza vaccine in adults without biological
confirmation

A randomized, double-blind, placebo-controlled trial of live attenuated trivalent in-
fluenza virus vaccine in healthy adults was conducted from September 1997 through
March 1998 in 13 centers across the United States (Nichol et al 1999). Three of the
main outcome measures were episodes of febrile illness, severe febrile illness, and
febrile upper respiratory tract illness. Cultures were not performed for confirmation
of influenza illness and culture-confirmed influenza was not an outcome in contrast
to the Belshe et al (1998) study in young children. Nichol et al (1999) called this an
effectiveness study, not an efficacy study. Participants were enrolled mid-September
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Table 6.5 Efficacy (effectiveness) of live attenuated, cold-adapted influenza virus vaccine for the
prevention of some clinical outcomes (not culture-confirmed influenza) in adults (Nichol et al
1999)

Outcome Vaccine Group Placebo Group

Total Rate per Total Rate per Reduction
Episodes 1000 Persons Episodes 1000 Persons in

No. per 7-Week No. per 7-Week Rates, %
(n=2833) Outbreak (n=1420) Outbreak [95% CI] p-value

Febrile
illness 406 151.3 225 168.1 10.0 [−2.1–20.7] .10

Severe febrile
illness 298 111.0 183 136.7 18.8 [7.4–28.8] .002

Febrile upper
resp tract illness 248 92.4 162 121.0 23.6 [12.7–33.2] <.001

to mid-November 1997. Recruitment strategies varied across sites. Persons were el-
igible if they were 18 to 64 years old, worked at least 30 hours per week outside the
home, had health insurance, and were reachable by telephone. There were the usual
exclusion criteria. The vaccine contained the three viruses corresponding to those
recommended for the 1997–1998 influenza season in the United States. Vaccines
were administered intranasally between September 18 and November 15, 1997.

Participants were randomized 2:1 to receive the vaccine or placebo in the fall
of 1997. A total of 3041 adults received vaccine and 1520 received placebo. Reac-
togenicity and safety were assessed by asking each participant to keep a record of
daily symptoms on the evening of vaccination and seven days afterwards. Partici-
pants were called at day 28 to identify serious adverse events. Assessment of any
serious adverse events continued to the end of the study. Influenza virus surveillance
is conducted in many places across the United States. The surveillance identifies the
influenza season and the strains of circulating wild-type virus. Nichol et al (1999)
identified two influenza outbreak periods. The first was the site-specific peak out-
break, using the modal week at each site to begin an algorithm that identified the
weeks in which at least 80% of the positive influenza isolates for the season were
included. The total outbreak period was identified by a panel of experts from the
surveillance information from all of the sites. The motivation for choosing the site-
specific outbreak period was that the identified cases would have a higher probability
of being influenza.

Bivariate comparisons for the proportions of subjects experiencing study out-
comes were conducted using the Cochran–Mantel–Haenszel test controlling for site.
Generalized linear models were used to calculate the variance of the event rates.

At the different sites, peak outbreak periods lasted from 4 to 12 weeks. The
surveillance cultures revealed that nearly all of the isolates that year were influenza
A (H3N2), 80% of which were a drifted variant of the vaccine strain, so that the
vaccine was not well matched to a large portion of the circulating viruses.
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Table 6.5 contains the results for three of the main outcome measures. For the
most specific case definition of febrile upper respiratory tract illness, the efficacy
of the vaccine is 23.6% (95% CI, 12.7–33.2), much lower than in the Belshe et
al (1998) study the previous year in young children (Table 6.4). There are three
possible explanations for the lower efficacy. First, the circulating strain was a drifted
variant of the vaccine strain. Second, some investigators believe that adults do not
respond to the intranasal live attenuated vaccine as well as children. Third, the case
definition is not confirmed influenza, so that many of the illnesses captured in the
analysis are likely not influenza, causing the efficacy estimates to be much lower
than efficacy estimates of culture-confirmed influenza. This latter reason certainly
played an important role. In Chapter 8 we show how to estimate vaccine efficacy for
a biologically confirmed outcome when only a small subsample of the nonspecific
cases are biologically confirmed.

6.4.5 Relative efficacy of live and killed influenza vaccine in young
children

Soon after universal vaccination of children 6 to 59 months of age was recom-
mended by the U.S. advisory bodies, a double-blind randomized trial in infants
and young children to compare live attenuated influenza vaccine with inactivated
influenza vaccine was conducted (Belshe et al 2007).

The study was conducted at 249 sites in 16 countries in the United States, Eu-
rope, the middle East, and Asia. The sites were physicians’ offices and primary care
clinics. Children were randomly assigned on a 1:1 basis to receive one of the two
vaccines. Subjects were stratified in the randomization to age on receipt of the first
dose, presence or absence of previous influenza vaccination, presence or absence of
wheezing, and country of residence. The usual exclusion criteria applied. Children
with mild or moderate asthma or wheezing more than 42 days before the trial were
included. Children not previously vaccinated for influenza received two doses of the
assigned study vaccine. To preserve blinding, children assigned the intranasal live
attenuated vaccine received an intramuscular injection of salt solution, and analo-
gously for children assigned the intramuscular killed vaccine.

Parents recorded local and systemic reactions until 42 days after vaccination.
Medically significant events were collected throughout until the end of the surveil-
llance period, May 31, 2005. Study staff contacted the parents every 7 to 10 days
during the surveillance period. Nasal swabs for viral cultures were obtained either at
the child’s home or at the study site. The study was powered assuming a 3.0% attack
rate in children receiving killed vaccine and a 1.8% attack rate in the children re-
ceiving live attenuated vaccine, for a relative efficacy of 40%. Assuming that 90% of
the children would be able to be included in the per-protocol analysis, 8500 children
would be needed for 90% power to demonstrate superiority of the live attenuated to
the inactivated vaccine. The primary endpoint was the relative efficacy in preventing
culture-confirmed influenza-like illness caused by well-matched influenza strains.
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Table 6.6 Relative reduction in attack rate with live attenuated, cold-adapted influenza virus vac-
cine compared to inactivated vaccine regardless of match for the prevention of culture-confirmed
influenza in infants and young children (Belshe et al 2007)

Live Attenuated Inactivated Reduction in
Virus Vaccine (n=3916) Vaccine (n=3936) Attack Rate

Cases Attack rate Cases Attack Rate With Live Vaccine
No. % No. % % [95% CI]

All 153 3.9 338 8.6 54.9 [45.4–62.9]
A/H1N1 3 0.1 27 0.7 89.2 [67.7–97.4]
A/H3N2 37 0.9 178 4.5 79.2 [70.6–85.7]
B 115 2.9 136 3.5 16.1 [−7.7–34.7]

The definition of influenza-like illness was an oral temperature of 37.8◦C or higher
or the equivalent in the presence of cough, sore throat, or runny nose or nasal con-
gestion occurring on the same or consecutive days. Secondary endpoints included
relative efficacy against mismatched influenza viruses and all influenza viruses, as
well as several other clinical outcomes, such as otitis media.

From October 20 to October 29, 2004, a total of 8475 children were enrolled. Of
these, 7852 were included in the per-protocol analysis. Table 6.6 shows the overall
number of cases regardless of match of the vaccine with the circulating strains. The
paper presents analysis by well matched vaccine, well-matched by age group, well
matched by previous vaccination status, and not well matched. In this trial, of the
3936 children who received inactivated vaccine, 338 developed culture-confirmed
cases of influenza. Of the 3916 children who received live attenuated vaccine, 153
cases developed. Relative reduction in attack rate by the live vaccine compared to
the killed vaccine was 54.9% (95% CI 45.4–62.9).

6.4.6 Oral cholera vaccines in Bangladesh

Interest in oral cholera vaccines developed because parenteral vaccination had not
been very successful. Cholera is a disease in the intestine, so it seemed that local
mucosal immunity stimulated by an oral vaccine might be better. A randomized,
double-blind trial of two oral killed cholera vaccines and one placebo arm was con-
ducted in the Matlab field studies area of the International Centre for Diarrheal Re-
search, Bangladesh (ICDDR,B) (Clemens et al 1986). The oral vaccines consisted
of killed cholera whole cells (WC) either with or without the B subunit (BS) com-
ponent of cholera toxin. The placebo arm received a heat-inactivated E.coli K12
strain.

Potentially eligible subjects for the trial were the 124,035 persons aged 2 to 15
years and females aged over 15 years residing in the vaccine trial area at the onset of
vaccination. These are the groups at highest risk for cholera in Matlab. After exclu-
sion criteria, 89,596 persons took at least one dose of vaccine or placebo. A census
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Table 6.7 Occurrence of cholera and VES,CI(T ) during the first year of follow-up after the third
dose among participants who ingested three complete doses of the vaccine or placebo assigned
(Clemens et al 1988)

Group

Outcome BS-WC VE WC VE K12
No. % No. % No.

Cholera 41 62 52 53 110
No cholera 20,664 20,691 20,727
Total 20,705 20,743 20,837

of the vaccine trial population was conducted three months prior to vaccination. Per-
sons were randomized in the census to one of the three groups before teams went to
the field. Vaccination occurred in three six-week rounds starting in January, 1985,
with a short one-week round in May, 1985. Vaccines and placebo were delivered
by 69 vaccination teams who were assigned to particular villages and visited peo-
ple in their homes. The estimated fraction of the oral dose swallowed was recorded.
Physicians in the trial area were stationed during vaccination to manage side effects.

Surveillance for diarrhea was maintained at the three diarrheal treatment cen-
ters serving the Matlab population. Stool samples or rectal swabs were processed
to identify V cholerae 01, and to determine the biotype (El Tor or classical) and
serotype of each isolate. To be considered fully vaccinated, a person needed to have
three doses, and have swallowed all of the first dose and at least 3/4 of the sec-
ond and third doses. Later follow-up analyses focused on those participants who
had completely ingested all three doses (Clemens et al 1988; Clemens 1990). The
case definition was that the participant presented for treatment of diarrhea whose
onset was ≥14 days after receipt of the third dose, had various diarrheal symptoms
not detailed here, V. cholerae was isolated, and a field check at the person’s home
confirmed that the person had indeed sought treatment on the specified date.

The vaccine efficacy measure after one year of follow-up was based on the
proportion of vaccinees compared to the proportion of controls becoming ill with
cholera, VES,CI(T ) (Clemens et al 1988). Table 6.7 presents the analysis of one
year of follow-up. Cases were those presenting with onset between 14 and 365 days
after the third dose. In this analysis, only those who ingested three complete doses
were included. Of those initially enrolled in the study, 62,285 participants took three
complete doses of either placebo, whole cell, or B-subunit whole cell vaccine, with
20,837, 20,743, and 20,750 in each group. The group reported one-sided confidence
intervals, which are not included in Table 6.7 (see Problem 6.1 and Table 7.3). In
subsequent years of follow-up, the efficacy of the vaccines appeared to wane. In
Section 7.3 we present a method to analyze vaccine efficacy that wanes over time
using the example of the cholera vaccine trial.
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6.4.7 Pneumococcal conjugate vaccine in California

A randomized, double-blind trial of a heptavalent pneumococcal vaccine was con-
ducted at 23 medical centers within Northern California Kaiser Permanente (NCKP),
a health maintenance organization (Black et al 2000). Healthy infants were random-
ized 1:1 to receive either heptavalent pneumococcal conjugate or the meningococcus
type C conjugate vaccine at 2, 4, 6, and 12 to 15 months of age. Infants with specific
risk factors were excluded. The heptavalent vaccine contained saccharides of the
serotypes 4, 9V, 14, 18C, 19F, 23F, and 6B conjugated to a protein carrier made of
nontoxic mutant diphtheria toxin. At that time, the seven serotypes were responsi-
ble for 83% of invasive disease in children younger than 4 years of age. The control
meningococcal conjugate vaccine had the same carrier.

The primary endpoint was invasive pneumococcal disease caused by the vaccine
serotypes. Secondary endpoints included otitis media. The outcome pneumonia was
reported separately from the primary analysis. Active surveillance for cases in the
study population was conducted using automated clinical and laboratory databases
of the NCKP system. Invasive pneumococcal disease was defined as a positive cul-
ture of Streptococcus pneumoniae from a normally sterile body fluid (blood, spinal
fluid) obtained from a child presenting with an acute illness compatible with pneu-
mococcal illness.

Between October 1995 and August 1998, 37,868 children were enrolled into
the trial. Of the 18,927 children who received at least one dose of pneumococcal
conjugate, 17,174 received at least two doses, 15,565 received at least three doses,
and 10,940 received at least four doses. Of the 18,941 children who received at least
one dose of meningococcal conjugate, 17,196 received at least two doses, 15,536
received at least three doses, and 10,995 received at least four doses.

In this trial, protective efficacy was estimated by 1 minus the ratio of the num-
ber of cases of invasive disease in the pneumoccal vaccine arm compared to the
meningococcal arm. In other words, the computation does not use the denomina-
tors. Efficacy was evaluated with the binomial test of the null hypothesis that the
vaccine has no efficacy for the seven serotypes. The analysis incorporated a se-
quential design. An interim analysis had been planned when 17 cases had occurred.
The null hypothesis was to be rejected if the case split was 15:2 or more favorable,
p = 0.0023, with a final evaluation planned when 26 cases had occurred and an over-
all two-tailed p value of <0.05. Exact binomial confidence intervals were calculated
by the Clopper–Pearson (1934) method. An intent-to-treat analysis included all in-
vasive disease caused by a pneumococcal serotype regardless of number of doses
completed. Safety of the vaccine was assessed by telephone follow-up on subsets
of the study population, one receiving DTwP, one receiving DTaP. The computer-
ized utilization data of the NCKP was also used to compare rates of events in the
two groups. Immunogenicity of the conjugate vaccine was evaluated in a subset of
children receiving DTwP concurrently and in a subset given DTaP in the first year
of life. Serum IgG to the seven serotypes was measured using ELISA from samples
collected before the first vaccination and one month after the third dose.
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Table 6.8 Efficacy of heptavalent pneumococcal vaccine against invasive pneumococcal disease
results as of April 20,1999 (Black et al 2000)

Cases Split
Analysis for Serotypes Control: Pneumococcal Efficacy
Contained in the Vaccine Vaccine Groups % [95% CI] p-value

Per protocol fully vaccinated 39:1 97.4 [82.7–99.9] <0.001
Intent to treat 49:3 93.9 [79.6–98.5] <0.001
Partially vaccinated only 7:1 85.7 [0–100] 0.05
All cases regardless of serotype 55:6 89.1 [73.7–95.8] <0.001

At the interim analysis, all 17 of the cases of invasive disease in fully vacci-
nated children were in the control group. At the interim intent-to-treat analysis of
children receiving at least one dose, all 22 cases were in the control group. The
Study Advisory Group recommended termination of the trial at the interim analy-
sis because of the high efficacy. Enrollment was discontinued at the end of August
1998. Blinded follow-up and per-protocol vaccination of the two groups continued
until April 20,1999. After that, all children in the control group were offered pneu-
mococcal conjugate vaccine. The vaccine was highly efficacious against invasive
pneumococcal disease (Table 6.8). During the trial, concern grew that there would
not be enough events for the definitive analysis. This motivated the design and im-
plementation of the grouprandomized study to estimate the total effects of using the
pneumococcal vaccine (Section 13.4.2).

6.5 Report of a Study

In the preceding examples we have not included every aspect of the report of the
studies. A report should tell the type of study, whether randomized, cohort, or case-
control. The entities that reviewed the study protocol should be listed. These could
include local institutional review boards, regulatory bodies, such as the U.S. Food
and Drug Administration, medical products committees, and ethics boards. Details
of the vaccines and placebos, their manufacturers, the lots, and any other relevant
aspect such as storage should be included. Details of the route and schedule for ad-
ministering the vaccines are needed. The study description should include the usual
person, time, and place. The study population, the eligibility for inclusion, the dates
for eligibility, exclusion criteria, how cases were ascertained, the case definition(s),
the follow-up period, and where the study took place all should be included. The
surveillance for side effects or adverse events, the laboratory methods if any for
biological confirmation of cases, reasons for loss to follow-up, and immunogenic-
ity tests, should be described. The statistical analysis and possibly how the sample
size was chosen should be described. The results usually include a descriptive com-
parison of the groups on important potential confounders. Reports of randomized
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controlled trials can follow the Consolidated Standards of Reporting Trials (CON-
SORT) Statement (Moher et al 2001; Altman et al 2001).

6.6 Reduction in Burden of Illness

Most of the studies of VES presented in this chapter have a case definition that is a
0,1 dichotomous outcome. Although several different case definitions, some more
and some less severe, may be considered in separate analyses, they are all scored
0,1 in any given analysis. Chang et al (1994) suggested a measure of efficacy that
takes into account both the incidence of disease and severity. A severity score is as-
signed to each incident case, with 0 assigned to noncases. Then the total is summed
over all cases to have a burden of illness score. When the severity score for each
case is one, the burden-of-illness score reduces to the vaccine efficacy based on the
number of cases in the vaccinated compared with the unvaccinated group. When
different cases have different severity scores, the burden-of-illness score for a group
is a weighted sum of all of the cases in the group, where the severity scores serve
as the weights. The burden-of-illness score divided by the number of subjects ran-
domized to the group yields the burden-of-illness per randomized participant. The
difference between the mean burden-of-illness in the two groups, or the relative dif-
ference is a measure of the net reduction in morbidity per participant. The reduction
in burden of illness differs from the VEP measures in that the denominator is still
the susceptible people, and the first outcome post-randomization is illness, which is
given a score. A number of vaccine studies have developed severity scores (Section
9.2.1). In a rotavirus vaccine study, the severity of each case of diarrhea was given
a severity score between 0 and 20 (Ruuska and Vesikari 1990).

Let N0 and N1 be the number randomized to vaccine and control, and c0 and
c1 the number of cases in the vaccine and control arms. The severity scores for
the cases are S01, . . . ,S0n0 and S11, . . . ,S1n1 in the two groups with means µ0, µ1 and
variances σ2

0 , σ2
1 . One design option is that the trial runs for a fixed time, after which

it is stopped and analyzed. A second option is that the trial is stopped after a number
of total cases c, where c = c0 +c1. If λ0 and λ1 are the hazards of disease in the two
groups, then the expected number of cases in the two groups is λ0N0t and λ1N1t,
where t is the duration of follow-up. The number of cases in the control group,
c0, has a binomial distribution Binom(c, p0), where p0 = λ0N0t/(λ0N0t + λ1N1t),
and p1 = 1− p0. In the design with fixed time, the null hypothesis is that µ0 = µ1
and p0 = p1. In the design with fixed number of events, the null hypothesis is that
µ0 = µ1 and λ0 = λ1 . A test statistic T for both models is the difference in the mean
burden of illness scores per participant:

T =
1

N0

n0

∑
i=1

S0i−
1

N1

n1

∑
i=1

S1i. (6.16)

For both designs, under the null hypothesis, µ0 and µ1 are estimated by
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x =

(
n0

∑
i=1

S0i +
n1

∑
i=1

S1i

)
/(n0 +n1) = (n0s0 +n1s1)/(n0 +n1). (6.17)

The variances j = 0,1 are estimated by

s2
j =

(
n j

∑
i=1

(S ji−S j)2

)
/(n j−1). (6.18)

In the fixed time design, p̂ = (n0 + n1)/(N0 + N1) estimates both p0 and p1. In the
fixed number of events design, p0 is estimated by N0/(N0 +N1), and p1 by 1 minus
the estimate of p0. The observed standard test statistics are obtained from

V̂H(T ) = [x2 p̂(1− p̂)/(1/N0 +1/N1)+ p̂(s2
0/N0 + s2

1/N1)]
V̂H(T |n) = c[x2/N0N1 +(s2

0/N0 + s2
1/N1)/(N0 +N1)].

The two-sided rejection region of the null hypothesis for the fixed time design is

|T/

√
V̂H(T )|> zα/2 and for the fixed number of events design is |T/

√
V̂H(T |n)|>

zα/2. Chang et al (1994) also present a method to calculate sample size. Because the
scores combine incidence with severity per case, one might think that the burden-
of-illness scores can provide a more comprehensive measure of overall efficacy than
would a separate analysis based simply on either incident cases, VES, or the per-case
severity, VEP with a continuous outcome (Chapter 9), alone. However, because there
may be a large number of zeros in each group, the test can have poor power.

Mehrotra et al (2006) compared eight methods for a dual endpoint evaluation
of efficacy in a proof-of-concept trial, including that of Chang et al (1994). The
motivation for the comparison was the design of the first trial of an HIV vaccine
based on cell-mediated immunity. The vaccine was expected to have very low ef-
ficacy against infection, but it was hoped that it would reduce viral load as a sur-
rogate for progression to disease. The question was whether it was better to test
the composite null hypothesis of no vaccine effect on either the incidence of HIV
infection or the viral load setpoint among those who become infected relative to
the placebo using just a single composite test or using two separate tests, one for
the infection endpoint and one for viral load endpoint. They found that combining
separate tests for the infection and viral load endpoints is generally more powerful
than the unconditional burden-of-illness test of Chang et al (1994), especially at low
or zero VES. At VES = 0.60 or higher, all methods and combinations of methods
performed comparably. They recommended using either the unweighted Simes’ or
Fisher’s combination test for the trial.

One of the problems in vaccine studies is that usually most of the participants do
not become infected. Follmann et al (2009) took a different approach from that of
Chang et al (1994) by introducing chop-lump Wilcoxon and t-tests. The approach
again assigns a score S to each participant, 0 for uninfected participants, and a mea-
sure S > 0 of the post-infection outcome such as severity or parasite density in
the infected participants. When the number of participants in each group is equal,
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the chop-lump test first removes an equal number of zeros from both groups, then
performs the test on the remaining S scores, most of which are greater than 0. A per-
mutation approach then provides a null distribution. The chop-lump Wilcoxon test
is shown to be always more powerful than the usual Wilcoxon test when the true
infection rates in the vaccine and the control group are the same. The R package
choplump is available at http://cran.r-project.org/.

Problems

6.1. (a) Cholera study: compute one-sided and two-sided 95% confidence intervals
for VE in Table 6.7. (b) Compare the results. (c) Why are two-sided confidence
intervals generally recommended?

6.2. A randomized study of an influenza vaccine was conducted with 3000 children
each in the vaccine arm and the control arm. There were 350 biologically confirmed
cases in the control arm and 53 cases in the vaccine arm by the end of the influenza
season. Compute the estimate of VES,CI(T ) and the 95% confidence limits on the
estimate.

6.3. (a) In an observational study in a cohort, some of whom are vaccinated and
some not, how might the exposure to infection differ in the two groups?
(b) Would differing exposure to infection be a confounder in the study? How might
it influence the vaccine efficacy estimates using VES,CI(T ) or VES,IR? Write out
VES,CI(T ) and VES,IR using the dependent happening expression (2.7) to explain
your response.
(c) How might you ascertain differences in exposure to infection or control for it in
the analysis?
(d) How would this vary for different infectious diseases?

6.4. Discuss how and why the vaccine efficacy estimates in Table 6.3 change with
the changing case definition.

6.5. (a) Consider designing a relative efficacy trial of a live, attenuated influenza
virus vaccine with a killed influenza virus vaccine. Assume a 5.0% attack rate in
the children receiving killed vaccine and a 2.5% attack rate in the children receiving
live, attenuated influenza virus vaccine. How large a sample size would be needed in
each arm for 90% power with α = 0.5 on a two-sided test? (b) Assume now attack
rates of 1.0% and 0.05% in the two arms. What sample size would be needed in
each arm to achieve the same power and α level?

6.6. (a) Explain the main difference between the approach of Chang et al (1994) in
testing for differences in burden-of-illness in the vaccine and control groups and the
chop-lump test of Follmann et al (2009).



Chapter 7
Modes of Action and Time-Varying VES

7.1 Mode of Action and Choice of Measures

Suppose you have just been vaccinated against an infectious agent. Your physician
or health practitioner tells you that the protective efficacy of the vaccine is 90%.
You might then wonder if that means that the vaccine reduces your probability of
contracting the infection (or disease) by 0.90 at each exposure to infection. In other
words, you still might have a finite probability of contracting the infection or disease
each time you were exposed, but it would be much less than it would have been if
you had not been vaccinated. Alternatively, you might think that it means that you
have a 0.90 probability of being completely protected against the disease, but still
a 0.10 probability that you received absolutely no protection against infection or
disease compared to what it would have been had you not been vaccinated. That is,
the vaccine fails to elicit a protective immune response in 10% of the vaccinated
people. Would you behave differently if you knew which of these possibilities were
actually true? Would it make a difference if the vaccine were against a disease with
a high case fatality ratio? Would it make a difference if the efficacy were 60% rather
than 90%?

In Chapter 6, vaccine efficacy results were reported simply based on relative cu-
mulative incidence or rates without any further interpretation of the meaning of the
efficacy estimate. In 1984, Smith et al published a paper that grew out of a student
exercise that altered the discussion about interpreting and evaluating protective ef-
ficacy of vaccines. They considered two models of vaccine mechanism they called
Type I and Type II. In the Type I mechanism, vaccination is assumed to reduce
the instantaneous disease rate in all the vaccinated people by a constant proportion.
That is, Type I assumes that protection is multiplicative on the baseline hazard of
infection. The effect is homogeneous in the vaccinated population. In the Type II
mechanism, vaccination is assumed to provide a constant proportion of individuals
with complete immunity from the disease. That is, it completely protects a portion
of the vaccinated people, but completely fails to protect in the other portion. Un-
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der the Type II mechanism, the distribution of protection is heterogeneous in the
vaccinated population.

Smith et al (1984) considered how these assumed models affect the choice of
analysis in cohort studies and sampling of controls in case-control studies. Their
discussion considered two of the measures of vaccine efficacy that do not condition
on exposure to infection, in particular, vaccine efficacy measures based on Level II
and III information and vaccine efficacy based on Level IV information. The first,
which they considered as one, was based on the hazard rate or cases per person-time
at risk, VES,λ or VES,IR. The second was based on the number of cases per person
at risk, the cumulative incidence, or attack rate, VES,CI or VES,AR. Their motivation
was originally in the design of alternatives to randomized studies, but the results for
the cohort studies apply as well to randomized controlled trials.

7.1.1 Leaky and all-or-none modes of action

Before continuing the discussion of the implications of the two models of vaccine
action for choice of measures in vaccine studies, we divert to explain why we pre-
fer the use of the term leaky for Type I and all-or-none for Type II models. In the
early 1980s the possibility of developing effective malaria vaccines created a great
deal of excitement. The malaria parasite has a complex life cycle with separate anti-
genic stages. Malaria sporozoites, the stage infective for humans, are injected by
the mosquito into the human. Asexual blood stages, or merozoites, the stage re-
sponsible for malaria disease, subsequently develop. Sexual blood stage parasites,
or gametocytes, the stage infective for mosquitoes, develop from the asexual blood
stage parasites. Malaria vaccines were being developed against each of the three
main stages, so vaccine candidates were directed at blocking infection, modifying
disease once infected, and blocking transmission to the mosquito, corresponding to
VES, VEP, and VEI . A sporozoite vaccine was expected to prevent infection either
by inhibiting invasion of liver cells or by impairing effective reproduction once the
parasite was in the liver. If the inhibition were not complete, then essentially the
liver would let parasites through and be leaky. Struchiner et al (1989) and Halloran
et al (1989) developed models of malaria vaccination that separately considered its
effect on infection, disease, and transmission to mosquitoes. The mechanism of the
vaccine model’s effect on susceptibility to infection reduces the probability of in-
fection given a bite by an infected mosquito, corresponding to the expected direct
effects of a leaky sporozoite vaccine that does not provide sterile immunity. Thus
the term “leaky” for a multiplicative effect on the transmission probability comes
from the image of the malaria parasites getting through a leaky immunity in the
liver. Halloran et al (1989) and Struchiner et al (1989) also considered waning of
immunity and the role of natural boosting of infection in their dynamics models.

In a study of the use of case-control studies under complex disease transmis-
sion patterns, Struchiner et al (1990) adopted the term “leaky” rather than Model 1
as suggested by Smith et al (1984). The motivation was partly because it is more
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descriptive than the term Model 1, partly because it also was meant to take into
account the effect on the transmission probability, and partly because the approach
grew out of the malaria vaccine research. Smith et al (1984) did not discuss exposure
to infection or any biological mechanism for the different models of vaccine action.
There was considerable resistance in the early 1990s in parts of the vaccine com-
munity against the term “leaky” because of its potentially negative connotations.
However, as recognition increased that vaccines often protect more against disease
than infection, the term “leaky” has gained wide acceptance.

We also prefer the term “all-or-none” (Halloran et al 1991) to Model 2 for a
vaccine that protects a portion of the vaccinated people completely and the rest of
the vaccinated not at all because it is more descriptive. As early as 1915, Greenwood
and Yule discussed possible heterogeneities in susceptibility in the vaccinated and
unvaccinated groups. Correlation of the antibody response with the distribution of
infection rates also suggests that there is heterogeneity in protective response. For
example, in the first 17 months of follow-up in a hepatitis B vaccine trial, 10 of
the 11 infections in vaccinees accrued in the hypo- or nonresponders (Francis et al
1982). In a live virus varicella vaccine trial, incidence in the 17% of vaccinees with
low antibody titer was between 5 and 13% per year, whereas in vaccinees with high
antibody titer, incidence averaged less than 2% per year (White et al 1992).

7.1.2 Implications for choice of efficacy measures

Consider a randomized controlled trial with equal numbers of individuals in the
placebo and vaccinated groups with both groups followed for an equal period of
time. In this simple example, assume there is no loss to follow-up or deaths, that all
cases of disease are ascertained, and the time of onset of each case is known (Table
6.1). The measures of interest are based on the hazard rate or cases per person-
time at risk, VES,λ or VES,IR, and the cumulative incidence or attack rate, VES,CI
or VES,AR. If the incidence rates and the attack rates are low, then the two measures
will be approximately equal, and it makes little difference which measure is used
to compute vaccine efficacy, whereby the approach using the hazard rate or person-
time at risk does allow for different follow-up times. However, in many cases the
appropriate choice of vaccine efficacy measure may depend on whether the mode of
action is leaky or all-or-none.

For the leaky model, Smith et al (1984) considered an essentially continuous-
time model. Suppose that in a small interval of time (t, t + δ t) the probability of
an unvaccinated person contracting disease is λtδ t. Also, suppose that vaccination
reduces the probability to Rλtδ t, with R assumed constant over time. Consider also
that λt = λ for all t, although this assumption is not necessary. Figure 7.1a shows
the survival curves for the unvaccinated and vaccinated groups. The proportion of
individuals in each group who would be expected to develop disease by time T
would be 1− e−λT and 1− e−λRT . Thus the calculated VES,CI(T ) given here as a
function of T (Greenland and Frerichs 1988) is
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Fig. 7.1 Proportion of individuals without disease by time since start of trial under two models of
vaccine action: (a) leaky, (b) all-or-none (adapted from Smith et al 1984).

VES,CI(T ) = 1− 1− e−λRT

1− e−λT . (7.1)

VES,CI(T ) in equation (7.1) decreases to zero as the follow-up time T increases.
That is, this model allows everyone to get disease if the follow-up time is long
enough. However, based on VES,IR(T ) = 1− (c1/Y1)/(c0/Y0), or VES,λ , it is easy
to show (see Problem 7.1) that VES,IR(T ) does not change with time, thus

VES,IR(T ) = 1−R. (7.2)

Under the all-or-none model, the assumption is that vaccination provides a pro-
portion (1−R) of the vaccinated group with complete immunity from the disease.
The probability of an unvaccinated person contracting disease in the small time in-
terval (t, t + δ t) is still λtδ t, and once again it is simple to assume that λt = λ for
all t. In the people who were vaccinated but in whom the vaccine provides no pro-
tection, the probability of contracting disease in a short interval is the same as in
the unvaccinated people, λδ t. Figure 7.1b shows the survival curves for the vacci-
nated and unvaccinated groups under the all-or-none model. From the initiation of
the trial up to time T , the proportions in each group expected to have developed
disease would be 1− e−λT and 1− (1−R)−Re−λT = R(1− e−λT ). Thus the two
expected efficacy measures would be

VES,CI(T ) = 1−R, (7.3)

VES,IR(T ) = 1/[1+R(1− eλT )/T λ (1−R)]. (7.4)

Under the all-or-none model, the time-invariant measure of vaccine efficacy is
VES,CI(T ). The value of VES,IR(T ) or VES,λ (T ) will tend to increase to one as
the people in the vaccinated group who are still susceptible to disease are depleted,
leaving only those who are completely immune.

Smith et al (1984) showed that if in a randomized study, VES,CI(T ) decreases
with time, but VES,IR(T ) (VES,λ (T )) remains constant, the result would be sug-
gestive of a leaky multiplicative mechanism. On the other hand, if VES,CI(T ) is
constant, but VES,IR(T ) increases with time, the result would suggest an all-or-none
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mechanism. This result is the same for randomized prospective studies or observa-
tional cohort studies. Other mechanisms could explain time-varying efficacy esti-
mates. In Section 7.3, we consider the situation that the efficacy within individuals
actually does wane with time, which provides a biological mechanism for a time-
varying vaccine efficacy. Also, heterogeneities in exposure to infection could play a
role. In Chapter 8, we consider case-control studies, including the findings of Smith
et al (1984). More general distributions of protection were developed (Halloran et
al 1992). Brunet et al (1993) developed a method of estimation based on state space
models.

7.1.3 Attack rates versus transmission probabilities

Suppose that the infection process occurs as discrete exposures to infection (Hallo-
ran et al 1991) rather than in continuous time models as in Smith et al (1984). The
question then is to define a direct protective effect of vaccination given a specific
amount of exposure to infection, not just comparable exposure to infection. To be
biologically interpretable and to be robust to different transmission conditions, the
parameters of interest might need to take account of the type and amount of expo-
sure. The following argument shows how vaccine efficacy measured using the attack
rate can depend on the number of exposures to infection, and thus could vary from
population to population (Halloran et al 1991).

Let p0 be the probability of transmission to an unvaccinated person after one
exposure. Let p1 = θ p0 be the probability of transmission to a vaccinated person
after one exposure, where θ is the multiplicative leaky effect on the transmission
probability in the vaccinated person. Let AR1(n), AR0(n) and VES,AR(n) denote the
attack rates and vaccine efficacy based on the cumulative incidence or attack rates
that would be observed after everyone had n exposures to infection. Assume that
everyone in the population receives one exposure to infection, and that there are N0
and N1 individuals in the unvaccinated and vaccinated groups. Then the attack rates
in the vaccinated and unvaccinated groups are

AR1(1) =
p1N1

N1
= p1 = θ p0, AR0(1) =

p0N0

N0
= p0 ,

so that the VES,AR(1) and VES,p are the same,

V ES,AR(1) = 1− AR1(1)
AR0(1)

= 1− p1

p0
= V ES,p = 1−θ . (7.5)

Now assume that everyone in the population is exposed to infection a second
time. We assume a discrete model of infection and that each exposure is independent
of the previous exposures. The attack rates in the unvaccinated would now be given
by the probability of having been infected by the first infective plus the probability
of being infected by the second infective given that a person was not infected by the
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first infective. Then

AR1(2) = p1 +(1− p1)p1 = p1(2− p1) = θ p0(2−θ p0) (7.6)
AR0(2) = p0 +(1− p0)p0 = p0(2− p0) (7.7)

Thus, after two exposures,

V ES,AR(2) = 1− p1(2− p1)
p0(2− p0)

= 1− θ(2−θ p0)
(2− p0)

, (7.8)

so that VES,AR(2) < VES,p. In general, for n exposures to infection,

V ES,AR(n) = 1− 1− (1− p1)n

1− (1− p0)n = 1− 1− (1−θ p0)n

1− (1− p0)n . (7.9)

It can be shown by induction that for n > 1, VES,AR(n) < VES,p. Essentially, ex-
pression (7.9) is the vaccine efficacy for a leaky vaccine after n exposures using the
binomial transmission model of Section 4.3.1.

7.1.3.1 Example

Suppose a vaccine has a multiplicative leaky effect that is the same in everyone and
reduces the probability of transmission per potentially infective exposure by 80%,
VES,p = 0.80. Then the transmission probability in vaccinated people would be 20%
of that in unvaccinated people, so that p1 = 0.20p0. Suppose we want to evaluate
the efficacy of the vaccine in a study population of 2000, where 1000 individuals
are vaccinated and 1000 are not. Assume for this disease that p0 = 0.25, so that
p1 = 0.20 × 0.25 = 0.05. At the end of one month, assume that every person in the
study has had exactly five exposures to infection. What is the expected attack rate in
each group and the VES,AR(5) after one month?

In the unvaccinated group, the probability of becoming infected is 1−(1− p)5 =
1− 0.755 = 0.76, so the expected number of infections in the unvaccinated group
is 1000 people × 0.76 = 760. In the vaccinated group, the probability of becoming
infected after five exposures is 1− (1−0.05)5 = 1−0.955 = 0.23, so the expected
number of infections in that group is 1000 people × 0.23 = 230. Then VES,AR(5) =
1− (230/1000)/(760/1000) = 1− 0.30 = 0.70, which is lower than the vaccine
effect on the transmission probability, VES,p = 0.80.

Suppose that after two months, each individual has had exactly 10 exposures.
Now the expected number of infections in the unvaccinated group is (1−0.7510)×
1000 = 943, and in the vaccinated group, it is (1− 0.9510)× 1000 = 401. After
10 exposures, the VES,AR(10) = 1− (401/1000)/(943/1000) = 0.57. The vaccine
seems less efficacious after two months even though the effect of vaccination on the
transmission probability has not waned.

As the number of exposures in the two groups increases, the observed vaccine
efficacy based on the attack rate will decrease to zero. Eventually everyone in both
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groups will become infected under the multiplicative assumption if they are exposed
often enough, illustrating the meaning of a multiplicative or leaky model at the trans-
mission probability level. In principle, people can still become infected if exposed
often enough.

Suppose we use the model in continuous time (Section 4.3.3) similar to Smith et
al (1984), but take into account the number of exposures to infection. Assume that
c is the contact rate with infectives. Then λ0 = cp and λ1 = 0.20cp. In continuous
time, VES,λ = 1−λ1/λ0 = 0.80, giving the same answer as the multiplicative ef-
fect on the transmission probability. In the unvaccinated group, the probability of
being infected after five exposures in the first month is 1− exp(−5×0.25) = 0.713
and in the vaccinated group is 1−exp(−5×0.05) = 0.221, so the expected number
of infections is 713 in the unvaccinated group and 221 in the vaccinated group.
The number of expected infections is different from that calculated above from
the discrete model. The observed VES,AR(5) = 1−0.221/0.713 = 0.69, similar but
not identical to that calculated from the discrete model. After 10 exposures, the
VES,AR(10) = 1−0.393/0.918 = 0.57, the same as using the discrete model, though
the expected number infected in the vaccinated and unvaccinated groups is different
when calculated using the discrete model above.

7.2 Frailty Mixture Models for VES,λ

In this section we consider estimation and interpretation of vaccine efficacy when
the distribution of protection can include some people who are completely protected,
some who have no protection, and the rest have a continuous distribution of protec-
tion (Longini and Halloran 1996; Halloran et al 1996). A frailty model is a survival
analysis model that allows for unmeasured heterogeneity in the population. It is a
special case of a random effects model. The frailty mixing model developed here
falls into the general category of frailty models (Vaupel 1979) used in survival anal-
ysis, but like cure models (Farewell 1982), it allows for a point mass at 0.

7.2.1 Mixing models

In the following development it is important to distinguish between heterogeneity
in the distributions of the hazard rates and heterogeneity in vaccine effects. Assume
that the heterogeneity in susceptibility in the unvaccinated and vaccinated groups is
described by the nonnegative mixing random variables Z0 and Z1. Assume that the
distribution of susceptibility in each group is such that α0 and α1 are the proportion
of people in each group that are highly protected, ie, not susceptible to infection
such that Zν , ν = 0,1 has point mass αν at 0. The susceptibility in the susceptible
proportion follows a continuous distribution fν(·) with probability 1−αν . Thus,
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Fig. 7.2 Schematic distribution of susceptibility in the (a) unvaccinated and (b) vaccinated groups.
The proportion highly protected is α0 = 0.1 in the unvaccinated and α1 = 0.5 in the vaccinated.
The expectation of the random variable in the susceptible proportion of each group is equal to one.
The area under each curve of susceptibles is 1−α0 and 1−α1 in the unvaccinated and vaccinated
groups. In the vaccinated group the susceptibility is reduced by the factor θ = 0.5 (from Halloran
et al 1996, Am J Epidemiol, 144:83–97. Reprinted with permission).

P(Zν = 0) = αν , (7.10)
Zν |Zν > 0 ≡ Xν ∼ fν(·), with probability 1−αν .

The distribution fν allows flexibility to model the shape and spread of the contin-
uous part of the distribution of Zν . However, in the estimation problem here the
mean is not identifiable. Thus, let fν(·) be from a two-parameter family, but with
E(Xν) = 1. Furthermore, let var(Xν) = δν . Then E(Zν = 1−αν , and var(Zν) =
(1−αν)(δν +αν).

An example of the distribution of susceptibility in the vaccinated and unvacci-
nated groups if Xν follows a gamma distribution is shown in Figure 7.2. In this
example, α0 = 0.1 and α1 = 0.5. The expectation of the random variable in the
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susceptible proportion of each group equals one. In the vaccinated group, the sus-
ceptibility is reduced by the factor θ = 0.5 in the people still susceptible. The area
under each curve of susceptibles is α0 and α1 in the unvaccinated and vaccinated
groups. For a vaccine that highly protects some people while conferring partial pro-
tection on the rest, there are several measures of vaccine efficacy. The difference
between the proportion highly protected in each group, VEα = α1−α0, measures
the proportion of the population highly protected due to vaccination. The measure
VEθ = 1− θ is the efficacy of the vaccine in conferring partial protection condi-
tional both on a specified exposure to infection and on remaining to some degree
susceptible.

The summary measure of protective vaccine efficacy is the expected relative re-
duction in susceptibility conferred by the vaccine at the beginning of observation,

VE(0)S,SUM = 1− (1−α1)θ
1−α0

. (7.11)

If the α0 = 0, ie, no one in the unvaccinated group is completely protected, then the
summary measure of vaccine efficacy under heterogeneity is

VE(0)S,SUM = 1− (1−α)θ . (7.12)

7.2.2 Frailty model

Following the dependent happening expression (2.7), let P(t) be the infection point
prevalence at time t. Then the individual-level hazard rate to an unvaccinated and
vaccinated person at time t is

λ0(t) = Z0cpP(t) and λ1(t) = Z1cpP(t). (7.13)

To derive the survival function, let Sν(t) be the fraction of the stratum ν that is con-
sidered to be at risk of infection at time t, t ≥ 0. The assumption is made here that
the population is closed to immigration, but open to emigration (ie, right censoring),
so that Sν(t) is a survival function. In addition, the assumption is made that vaccina-
tion takes place at or before time 0, and that the effects of vaccination do not wane
over time. Then the population survival functions are

Sν(t) = E[exp{−ZνΛν(t)}] = LZν
{Λν(t)} , (7.14)

where

Λ0(t) = cp
∫ t

0
P(τ)dτ,

Λ1(t) = θΛ0(t), and LZ( ) is the Laplace transform (Aalen 1988, 1992). The Laplace
transform of Zν is
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LZν
(s) = αν +(1−αν)LXν

(s). (7.15)

If Xν follows a gamma distribution with both scale and shape parameters equal to
1/δν , then from equations (7.14) and (7.15),

Sν(t) = αν +(1−αν)
{

1
1+Λν(t)δν

}1/δν

. (7.16)

When δν = 0, then Xν is degenerate at 1, and

Sν(t) = αν +(1−αν)exp{−Λν(t)} . (7.17)

7.2.2.1 Statistical inference

This approach is for data in grouped survival form with observations made at times
t0(= 0), t1, . . . , tk. Define the time intervals as [ti−1, ti), i = 1, . . . ,k. Then let P(t)
be piecewise constant on these intervals, where P(t) = Pi in interval i. Then from
equation (7.14),

Λ0(t) = cp
∫ t

0
P(τ)dτ = cpκ

{
i

∑
j=1

(t j− t j−1)Pj +(t− ti)Pi

}
, t ∈ [ti, ti+1),

where κ is a proportionality constant related to the proportion of a time interval that
infected individuals are infectious (Halloran et al 1996). Here the Pi are treated as
observed and known quantitities and not as parameters to be estimated.

The parameters to be estimated are c, p, κ , α0, α1, δ0, δ1, and θ . Set a = cpκ , be-
cause c and p cannot be separately estimated from data with no contact information
(Rhodes et al 1996), and κ is simply a proportionality constant. To formulate the
likelihood function for observations from the population under study, let riν be the
number of people at risk in group ν at the beginning of interval i, minus half those
who are lost to follow-up during the interval i, and let miν be the number infected
during that interval. Then the likelihood function is

L(data|a,α0,α1,δ0,δ1,θ) =
k

∏
i=1

1

∏
ν=0

{
Sν(ti)

Sν(ti−1)

}riν−miν
{

Sν(ti)
1−Sν(ti−1)

}riν

(7.18)

(see Aalen 1988). The likelihood function (7.18) can be maximized using standard
methods.

Halloran et al (1996) explored the potential use of the frailty mixture model de-
scribed above for the estimation of VES,λ over the parameter space that covers the
possibilities of most vaccine studies. They showed that the parameters are iden-
tifiable under reasonable field conditions as long as there is not too much right-
censoring. Most important they showed that the conventional VES estimators based
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Fig. 7.3 (a) Diagnostic natural log minus log survival plots checking the proportional hazards
assumption for vaccine conferring homogeneous partial protection, an all-or-none vaccine, and a
mixed degenerate vaccine model compared with the unvaccinated group. (b) Plots of 1− hazard
ratios for homogeneous partial protection (θ = 0.5), the all-or-none vaccine (α1 = 0.5), and the
mixed degenerate model (θ = 0.75,α1 = 0.33). VESUM = 0.5 at time t0 = 0 in these three cases
(Halloran et al 1996, Am J Epidemiol, 144:83–97. Reprinted with permission).

on proportional hazards and cumulative incidence can be considerably biased when
unmeasured heterogeneity is present. This bias is removed when the correct frailty
mixture model is used. Violation of the proportional hazards assumption under
frailty distributions is illustrated in Figure 7.3. The model is also applicable if there
is heterogeneity in exposure to infection, although the interpretation of the estimates
is different.

7.2.3 Measles outbreak in Burundi

A measles outbreak started in Muyinga, Burundi, in April 1988. The outbreak
peaked in October 1988 and was over by December of that year (Chen et al 1994;
Longini et al 1993). Measles illness histories were compiled after the outbreak for
children aged 9 to 60 months. Only the month of onset of the measles illness was
accurately recorded for most of the children (Table 7.1). Monthly measles incidence
is given in the last column of Table 7.1. Initially 1436 children had no previous
history of measles illness and known measles vaccination status, that is, they had
childhood immunization cards. Of these 1436 children, 857 (60%) were vaccinated
against measles before the outbreak. An additional 140 children were vaccinated
during the outbreak. During the outbreak, 129 of the unvaccinated and 93 of the
vaccinated children developed measles illness.

In the analysis of the data in Table 7.1, the vaccination times of the 140 children
who were vaccinated during the outbreak were treated as right-censored times. The
measles incidence in September was aberrantly high. There were only seven months,
(k = 7), of measles incidence data, so δ0 and δ1 could not be estimated and were set
to 0, so that the survival functions (7.17) were used in the likelihood function (7.18).
In this case the summary vaccine efficacy is VESUM(0) = 1− (1−α1)θ . The values
calculated for {Pi}were taken from the study population and are shown in Table 7.1.
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Table 7.1 Numbers at risk, ill and monthly exposure for the measles epidemic Muyinga, Burundi,
April–November 1998 (from Longini and Halloran 1996)

Unvaccinated Vaccinated Exposure

i Month At Risk Ill % At Risk Ill % p×100%

1 April 579 10 1.7 857 9 1.1 1.3
2 May 551 13 2.4 848 13 1.5 1.9
3 June 517 13 1.9 835 2 0.2 0.9
4 July 483 12 2.5 833 20 2.4 2.4
5 August 451 22 4.9 813 18 2.2 3.2
6 September 408 50 12.3 795 24 3.0 6.4
7 October 337 12 3.6 771 7 0.9 1.7
8 November 317 0 0.0 764 4 0.0 0.0

Total 129 93

The maximum likelihood estimates and their standard errors are â = 1.66 ± 0.14,
α̂1 = 0.805 ± 0.060, and θ̂ = 2.76 ± 1.24. The measles vaccine completely pro-
tected an estimated α̂1 = 0.805, (95% CI, 0.687–0.924) of the vaccinated children.
The estimate of θ is greater than 1, suggesting that, assuming equal exposure, the
relative per-contact risk of contracting measles was higher in the vaccinated children
who did not receive complete protection than it was in the unvaccinated children.
The estimated summary measure of vaccine efficacy at time 0 is V̂ESUM(0) = 0.462
(95% CI, 0.318–0671).

Table 7.2 gives the observed and expected (based on the fitted model) number of
measles illness. The χ2 goodness of fit statistic is 12.8 with 11 degrees of freedom.
This yields a p-value of 0.3, so the model fits the data by this criterion. However,
the distribution is not strictly χ2 because of the correlation of the data over time. In
future analyses, one might want to fit different models, such the leaky, all-or-none,
and frailty mixture model, then use model selection tests such as likelihood ratio
tests to choose among models (Hudgens and Gilbert 2009).

7.2.4 Model selection in low-dose challenge studies

In human field studies, we generally cannot observe the actual number of poten-
tially infectious contacts that each person makes. However, in a challenge study in
macaques with an HIV vaccine candidate, repeated, low-dose challenges were made
and the infection status monitored (Ellenberger et al 2006). One of the 14 macaques
in the control arm and four of the 16 in the vaccine arm were not infected when the
study ended. Hudgens and Gilbert (2009) developed a clever method to distinguish
using statistical methods whether the protective effect of the vaccine was leaky or
all-or-none. The data are in the online supporting material of their paper. They used
a discrete-time survival model similar to equation (7.9), but also including a term for
complete protection, making it a discrete-time analogue of the summary measure of
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Table 7.2 Observed and expected frequencies for the model fitted to the data from the measles
epidemic Muyinga, Burundi, April–November 1998 (from Longini and Halloran 1996)

Unvaccinated Vaccinated

i Month Observed Expected Observed Expected

1 April 10 12.6 9 9.8
2 May 13 16.7 13 12.8
3 June 13 7.6 2 5.8
4 July 12 19.1 20 14.7
5 August 22 23.0 18 16.7
6 September 41.0 12.3 24 27.2
7 October 12 9.4 7 6.0

Total 129 93

vaccine efficacy under heterogeneity in equation (7.12):

V ES(n) = 1− (1−α){1− (1−θ p)n}
1− (1− p)n . (7.19)

They developed maximum likelihood methods to estimate the transmission proba-
bility in the unvaccinated group, the proportion with complete protection, and the
multiplicative effect on the transmission probability. They used a likelihood ratio
test and the Akaike Information Criterion (AIC) to compare the leaky model, the
all-or-none model, the summary model under heterogeneity, and the null model.
They found that the statistical evidence suggested that the vaccine candidate had a
significant leaky effect. These methods could be used for other repeated low-dose
challenge studies or studies where the exposures to infection are known. The power
for detecting an all-or-none effect was observed to be greater than the power to
detect a leaky effect.

7.3 Estimating Waning Efficacy

Unmeasured heterogeneities in susceptibility, protection, and exposure to infection
can produce time-varying estimates of VES,IR(t) or VES,λ (t) that are a result of the
underlying heterogeneities, whereas true waning of protection or boosting of pro-
tection can lead to real time-varying effects. A traditional method to look for waning
vaccine efficacy over time has been to partition the time axis into time intervals and
to assume that the efficacy is constant within each interval. Then a separate constant
VES,IR(t) is estimated for each time interval. If the efficacy estimate depends on
time, then the estimates will vary across the time intervals.
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Table 7.3 Piecewise constant RR estimates, with approximate 95% confidence intervals for the
oral whole cell and oral B-subunit whole cell vaccines, Matlab, Bangladesh, May 1, 1985 to
November 30, 1989 (Durham et al 1999)

Year Dates Whole Cell Vaccine BS Whole Cell Vaccine

RR 95% CI RR 95% CI

1 May 1985–April 1986 0.44 [0.32–0.62] 0.33 [0.23–0.48]
2 May 1986–April 1987 0.45 [0.32–0.65] 0.47 [0.33–0.67]
3 May 1987–April 1988 0.55 [0.34–0.86] 0.86 [0.57–1.29]
4 May 1988–December 1989 1.21 [0.70–2.10] 0.83 [0.45–1.52]

7.3.1 Waning efficacy in the cholera vaccine trial

This method of partitioning the time axis was used to estimate VES,IR(t) of oral
killed whole cell (WC) and oral B subunit killed whole cell (BS-WC) oral cholera
vaccines of a randomized, double-blinded vaccine trial in Matlab, Bangladesh
(Clemens 1990) (Section 6.4.6). In a longer term follow-up from May 1, 1985 to
November 30, 1989, 580 cases of cholera occurred, with 284, 150, and 146 in the
placebo, WC vaccine, and BS-WC vaccine groups. The efficacy of both vaccines
appeared to wane. The methods used to analyze waning vaccine efficacy from this
trial involved partitioning the study duration into discrete time units and compar-
ing piecewise constant incidence rate ratio estimates for successive time periods
(Clemens et al 1990; van Loon et al 1996). For example, Table 7.3 gives the piece-
wise constant incidence rate ratio estimates for the whole cell and B-subunit whole
cell vaccines. The incidence rate ratio for each year is calculated by using a ratio
of incidence rates, where the incidence among those vaccinated is compared with
the incidence among the unvaccinated. The time period called year 4 includes 19
months of follow-up, after which there were no observed cholera cases. The inci-
dence rate ratio (RR) estimates appear to increase, so the efficacy estimates decrease
across the time period.

Thus, we see a waning time trend in efficacy, with no significant protection by the
fourth year. However, because the data have been grouped into years, it is difficult
to be more precise about when and how these changes in efficacy occur. Because the
partitioning boundaries are selected at one-year intervals, it is not clear if the waning
protection is continuous or precisely at what point in time significant protection is
lost. With use of a Poisson regression including covariates, the problem still remains
of how to partition the time axis into piecewise constant components. The problem
can be solved by the use of survival analysis methods.

Figure 7.4 shows plots of the log minus log Kaplan–Meier estimates of the sur-
vival curves for the placebo and two oral cholera vaccines. The good separation
between the vaccine and placebo curves indicates that the vaccines give protection.
The BS-WC vaccine provides better protection during the first year. The curves
slowly approach one another indicating the waning of the protective effect, but this
is difficult to see with plots based on cumulative incidence.
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Fig. 7.4 Log-minus-log plots of the Kaplan–Meier estimates of the survival curves for the placebo
and two cholera vaccines, Matlab, Bangladesh, May 1, 1985, through November 31, 1989. WC,
killed whole cell; BS-WC, B subunit killed whole cell (Durham et al 1998, Am J Epidemiol,
147:948–959. Reprinted with permission).

7.3.2 Nonparametric estimation of time-varying vaccine effects

Durham et al (1999) adapted and compared two basic approaches for the nonpara-
metric estimation of smoothed curves for VES,λ (t) = 1− RR(t) = 1−λ1(t)/λ0(t).
The first is a generalized additive models approach that involves using a time-
varying coefficient, VES,λ (t) = 1− eβ (t) (Hastie and Tibshirani 1993), version of
the proportional hazards model assuming a Poisson model (Whitehead 1980). This
approach is useful for diagnostics to ascertain the shape of β (t), but it cannot pro-
vide an estimator for VES,λ (t).

The other method uses Schoenfeld residuals (Schoenfeld 1982; Grambsch and
Therneau 1994). The general idea is to fit an ordinary proportional hazards model
to the data, and then to compute the scaled differences between the actual and ex-
pected covariate values at each event time, called Schoenfeld residuals. The scaled
residuals are added to the coefficient from the proportional hazards model. The time-
varying regression coefficient β (t) is recovered by smoothing the rescaled Schoen-
feld residuals. Conceptually, we are nonparametrically estimating the instantaneous
hazard rate ratio eβ (t), thus VES,λ (t). Both methods provide a hypothesis test for the
null H0 : β (t) = β for all t, ie, for no time-varying effects. The method using the
Schoenfeld residuals is easy to use, provides an estimate of eβ (t) on the natural scale,
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Fig. 7.5 Nonparametric smoothed plots of vaccine efficacy V̂ ES,λ (t) versus time t, with 95% con-
fidence intervals, for the killed whole cell (WC) and B subunit killed whole cell (BS-WC) vaccines,
Matlab, Bangladesh, May 1, 1985, through November 31, 1989 (Durham et al 1998, Am J Epi-
demiol, 147:948–959. Reprinted with permission).

and allows easy incorporation of time-dependent covariates, so we recommend this
approach in general.

Durham et al (1998) used the method involving Schoenfeld residuals to estimate
smooth plots of the VES,λ (t) for the two oral cholera vaccines from the cholera vac-
cine trial described in Section 6.4.6. Figure 7.5 shows the plot of the VES,λ (t) esti-
mates and the 95% CIs for the two vaccines. Table 7.4 gives the efficacy estimates
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Table 7.4 Estimated vaccine efficacy over time, VES,λ (t), with 95% confidence intervals for the
the WC and BS-WC vaccines, Matlab, Bangladesh, May 1, 1985, through November 31, 1989
(Durham et al 1998)

Date Day Whole Cell Vaccine BS Whole Cell Vaccine

VE(day) 95% CI VE(day) 95% CI

May 1985 0 0.430 −0.342–0.758 0.713 0.320–0.879
November 1985 183 0.525 0.356–0.650 0.650 0.523 –0.743
May 1986 365 0.579 0.467–0.667 0.572 0.457–0.662
November 1986 548 0.583 0.478–0.667 0.476 0.344–0.582
May 1987 730 0.538 0.394–0.648 0.374 0.176–0.524
November 1987 913 0.433 0.220–0.588 0.280 0.006–0.478
May 1988 1095 0.245 −0.028–0.445 0.202 −0.089–0.416
November 1988 1278 −0.073 −0.664–0.308 0.141 −0.338–0.448
May 1989 1460 −0.590 −2.400–0.257 0.092 −0.955–0.578

and the approximate 95% confidence intervals for selected time points throughout
the study. Age group (ages 2–5 years, >5 years) was included in the model as a
covariate. The bending downward of the curves is indicative of waning. The p-
values for the hypothesis test for departures from the proportional hazards assump-
tion are 0.008 and 0.002 for the estimated model of the WC and BS-WC vaccines,
respectively. The WC vaccine gives fairly constant and significant protection, with
a VES,λ (t) of about 0.50, for the first two and one-half years of the trial, but then
protection appears to wane rapidly. After three years of the trial (May, 1988), the
point estimate of the VES,λ (t) is 0.245 and the 95% CI covers zero. Protection from
the WC-BS vaccine starts out higher than that from WC vaccine, ie, 0.713 versus
0.430, but then gradually wanes at a fairly constant rate, about two to three percent
per month. This analysis provides a more complete description of the VES(t) than
that based on yearly incidence ratios described above. Two further analyses studied
the waning by age group and by biotype of the cases. The analysis was done using
modifications of proportional hazards functions in available software. Details are in
the appendix in Durham et al (1998).

The results of this method must be interpreted carefully. Smoothed values at
the beginning and end of the observation period are uncertain, with large CIs. This
typical effect of smoothing is exacerbated when the number of events decreases near
the end of the observation period. For example, in the cholera vaccine trial, overall
cholera incidence began to drop during the last year of the trial. Thus, the VES,λ (t)
estimates during the last year become unreliable. Nonetheless, a definite waning
effect is apparent in Figure 7.5. This approach for estimating VES,λ (t) provides a
graphical interpretation of time-varying vaccine effects as well as a test for departure
from the proportional hazards assumption.

Plots of ln(− ln(S(t))) are frequently used to assess graphically whether the pro-
portional hazards assumption holds for time-to-event data. Because these are cu-
mulative hazard function plots, they can fail to give a clear picture of time-varying
effects that occur later in the study after a substantial number of events have oc-
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curred (Figure 7.4). The estimated VES,λ (t) (Figure 7.5) gives a clearer picture of
the time-varying effects. If the proportional hazards assumption is valid, then these
curves should be roughly straight lines, with zero slope rather than negative slope.
In addition, the null hypothesis of a constant effect over time was rejected for both
vaccines. This test, however, can be underpowered for small numbers of events.

7.3.3 Other approaches to estimate waning

Farrington (1992) reviewed some of the problems in estimating the occurrence and
extent of waning vaccine protection. Kanaan and Farrington (2002) developed an
approach to estimate vaccine efficacy in the presence of waning. The model is an
extension of the all-or-none and leaky model in equation (7.12) to allow for waning.
They also focus on observational data, allowing people to be vaccinated over time
and also allowing for underreporting. First, assuming that the vaccine does not wane,
they start from a version of the summary VES in equation (7.12),

VES = 1− (1−α)θ , (7.20)

where α is the proportion completely protected and θ is the leaky, or proportional
hazards effect. Let a proportion π of the population be vaccinated, all at age τ .
Then the model of waning for the all-or-none effect, assuming that θ = 1, called a
selection model, assumes that some people who were initially protected lose their
protection. If the proportion initially protected when vaccinated is α0, then one can
model the proportion protected at time t after vaccination as

α(t) = 1−α0 exp(−α1t), t ≥ 0, (7.21)

so that the age-specific vaccine efficacy at age x is

VES(x,τ) = (1−α0)exp(−α1(x− τ)). (7.22)

If α1 = 0, then the vaccine efficacy does not wane. In the deterioration model, the
people who are initially completely protected are assumed to remain protected, but
the leaky protection θ0 in the initially partially protected people wanes with time.
Under this model, age-specific vaccine efficacy is

VES(x,τ) = 1− (1−α0)θ0 exp(−θ1(x− τ)). (7.23)

When θ1 = 0, the partial protection does not wane. The parameters α0 and θ0 rep-
resent the efficacy close to the age of vaccination τ . Kanaan and Farrington (2002)
analyze two observational data sets of pertussis vaccination. The first is a cohort
study of cases of pertussis in children born in 1970–1986 done by a general prac-
titioner from 1977–1987 in children one to seven years old (Jenkinson 1988). The
second was a case report study from the notifications of pertussis in the United
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Kingdom in 1989–1990, divided into an epidemic and a nonepidemic period. The
vaccine coverage for each age group was known (Ramsay et al 1993). The data for
both studies are given in Kanaan and Farrington (2002).

Parametric survival analysis methods are used to estimate the parameters of in-
terest. Calendar time effects are taken into account by allowing for epidemic and
nonepidemic periods, Ek, and using a parametric approach to the baseline hazard.
For the cohort data, the infection hazard is modeled both as an age-independent,
time-dependent piecewise constant hazard λ (a, t) = ρk, t ∈ Ek, and as an age- and
time-dependent gamma λ (a, t) = ρkaexp(−βa), t ∈ Ek. For the case report data, the
age and time effects are confounded, so the assumption is that ρk = ρ . Parameters
are introduced that allow for complete ascertainment, equal and possibly incomplete
ascertainment in the vaccinated and unvaccinated cases, incomplete ascertainment
in the vaccinated cases only, and arbitrary differential ascertainment. The likelihood
for the cohort model is an extension of equation (7.18) from Longini and Halloran
(1996). The model for the case report data is an extension of the screening model
(Section 8.1.4).

Not too surprisingly, with this number of parameters, estimating all of the pa-
rameters and choosing the model that fits best was somewhat difficult. It was not
possible to differentiate between waning of the all-or-none protection or waning of
partial protection, but there was strong evidence of waning in the cohort data. In
the case report data, there was near-complete lack of identifiability of the vaccine
efficacy because of the negative correlation between the proportion completely pro-
tected and the ascertainment proportions. The approach to modeling the waning is
still valid, and could be used in future observational data sets where estimation of
waning of vaccine efficacy was of interest.

7.4 Summary Strategy for Estimating Protective Effects

We present a general strategy for estimating VES,λ (t) from time-to-event or inci-
dence data (Halloran et al 1999). The first step is to conduct diagnostics. Then,
with the help of the diagnostics, we find the best estimator of the VES. We begin
by constructing log-minus-log plots of the Kaplan–Meier or actuarial estimates of
the survival curves for the unvaccinated and vaccinated groups. These plots provide
information about whether the vaccine effect is leaky, all-or-none, or a mixture. In
addition, they provide some information about whether vaccine-induced protection
is waning. If the curves are parallel, then the effect is mostly leaky (multiplicative),
and we should model the vaccine effect with a proportional hazards model. Any di-
vergence from parallelism indicates time-varying effects and the presence of some
form of heterogeneity and/or waning protection. In this case, a model other than
the proportional hazards model is needed. If the curves tend to diverge, then there
is an all-or-none effect and if they tend to converge, then the model still may be
leaky, but with an unmeasured random effect (heterogeneity). Convergence could
also indicate waning protection. Although construction of log-minus-log plots is an
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important first diagnostic step, they are sometimes difficult to interpret. If there are a
sufficient number of events, a more informative plot is a smoothed hazard ratio plot
of VES,λ (t) = 1−λ1(t)/λ0(t) as described in Section 7.3.2. The possible patterns
associated with different vaccine effects are shown in Figure 7.3. A line with zero
slope indicates a purely leaky or multiplicative effect. The researcher can construct
a formal hypothesis test for zero slope (Grambsch and Therneau 1994; Durham et
al 1998).

If there is no evidence of time-varying effects from the diagnostics, then the
VES,PH = 1− eβ can be estimated by fitting a proportional hazards model. If there
is evidence of time-varying effects, then the investigator should fit the full family
of frailty mixture models. If these models provide an adequate fit to the data, then
the estimated parameters may be, but are not necessarily, the appropriate measures
of the VES. Model selection methods can be used to choose among candidate mod-
els. If there is evidence of waning or other time-varying effects not attributable to
unmeasured heterogeneity, then the nonparametric estimate of VES(t) itself will pro-
vide the best estimate. In this case, it may be possible to construct a time-dependent
parametric model of the VES(t) that would provide tighter confidence intervals than
the nonparametric approach.

7.4.1 Interpretation of measures

Which parameter to use to estimate VES in a particular study depends on the type
and duration of the study, the infectious agent and its transmission mode, the re-
sources available, and the assumptions of the distribution of protection within the
vaccinated group. Even if time-dependent effects are detected, knowledge of the
underlying biology will need to be used to interpret the effects and to help choose
between actual waning, boosting, or heterogeneities. In many contemporary vac-
cine trials, immune response data are collected that can be used to help estimate
and interpret vaccine effects. Also measuring actual or potential exposure to infec-
tion in individuals will help identify heterogeneities in exposure to infection. Some
trials of vaccines for vector-borne diseases have entomological data. These help in
quantifying potential exposure to infection.

Struchiner and Halloran (2007) show that randomization does not control for
confounding in randomized vaccine trials, particularly when exposure to infection is
an unmeasured confounder (Chapter 14). Differences in transmission intensity, pre-
vious exposure to infection, and pre-existing partial immunity and heterogeneities
across communities result in different VES estimates, even when the actual biologi-
cal action of the vaccine is the same conditional on these factors. Reviews of pertus-
sis vaccine trials in different populations using different estimators consider some of
these issues (Fine and Clarkson 1987; Fine et al 1988). Given the above discussion,
there are clear limits on the interpretability and generalizability of estimates of VES.
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Problems

7.1. (a) Show that under the leaky model (Smith et al 1984), E(c) = N(1− e−λRT ),
E(Y ) = N(

∫ T
0 e−λRT )dt = N(1− e−λRT )/λR.

(b) Show that under the all-or-none model, E(c)= N(1−e−λRT ), E(Y )= N(
∫ T

0 [(1−
R)+Re−λT ]dt) = N[T (1−R)+R(1− e−λT )/λ ].
(c) Derive the results in equations (7.1) to (7.4) from (a) and (b).

7.2. (a) Consider a cohort study with 2000 individuals each in the vaccinated and
unvaccinated groups. Suppose that the hazard rate is 0.1/person/year in the unvac-
cinated group and that the protected efficacy VES is 0.75. Under the leaky model
VES = 1−θ = 0.75. Under the all-or-none model, VES = α = 0.75. Compute the
number of cases expected, the number at risk at the beginning of each year, and
the person-years at risk each year, in the unvaccinated group for the first 8 years of
follow-up.
(b) Compute the number of cases expected, the number at risk at the beginning of
each year, and the person-years at risk during each year in the vaccinated group un-
der the leaky model and then under the all-or-none model.
(c) Use the data so generated to compute VES,CI(t) and VES,λ (t) in each year for
t = 1, . . . ,8 using the data generated under the two models. Discuss your results
(Smith et al 1984, Tables A1 and A2).

7.3. What are the advantages of estimating waning vaccine effects in continuous
time rather than estimating piecewise-constant vaccine efficacies?

7.4. Consider the summary vaccine efficacy measure VE(0)S,SUM = 1−(1−α)θ in
(7.12). Would you prefer to learn about VE(0)S,SUM or the constituent values α and
θ? What is the difference in the interpretations?

7.5. (a) Explain why the apparent efficacy would tend to increase if VES,λ (t) were
used to estimate efficacy with an all-or-none vaccine.
(b) How would you be able to distinguish such a situation from one in which the
vaccine-induced protection were being boosted and enhanced by exposure to natural
infection?



Chapter 8
Further Evaluation of Protective Effects

8.1 Case-Control Studies

Case-control studies can be used to estimate the relative risk measures in VES,CI
and VES,IR (VES,λ ). In a case-control study, cases of the disease are ascertained, and
information on various covariates collected. A covariate of particular interest here is
vaccination status. Then controls are selected in a manner discussed in more detail
below, and the same covariates collected.

A case-control study can be thought of as a sample of data from a hypothetical
cohort study. The cohort can also be thought of as a source population that gives
rise to the cases. Ideally all cases from the underlying cohort or source population
are ascertained. The controls are a sample of the underlying population drawn to
give information about the distribution of vaccination and other covariates in the
population. The ratio of the vaccinated cases (cases “exposed” to vaccine) to the un-
vaccinated cases (cases “unexposed” to vaccine) is divided by the ratio of vaccinated
(exposed) controls to unvaccinated (unexposed) controls to give the exposure odds
ratio (OR), or simply, odds ratio. A well-designed case-control study can provide
good estimates of the relative risks of interest so that

VES,CI,OR = 1−OR, or VES,IR,OR = 1−OR. (8.1)

In a case-control study, the number of individuals at risk for VES,CI or the person-
time at risk for VES,IR (VES,λ ) in the vaccinated and unvaccinated groups is not
observed. Instead, the controls are used to estimate the distribution of vaccination in
the population that is giving rise to the cases. Because controls are used to estimate
the distribution of vaccination in the source population, controls should be chosen
independent of their vaccination status.

In a seminal paper, Smith (1982) argued for the conduct of case-control studies to
assess the effect on the incidence of tuberculosis of mass BCG campaigns that had
been conducted in numerous countries in Asia and Africa beginning in the 1950s.
Previous to that, case-control studies had not been widely used for evaluating vac-
cines. Case-control studies can be more feasible than the follow-up of large cohorts.

M.E. Halloran et al., Design and Analysis of Vaccine Studies, Statistics for Biology
and Health, DOI 10.1007/978-0-387-68636-3 8, 153
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Table 8.1 Number of cases and controls by vaccination status in a simple case-control study to
evaluate a vaccine.

Vaccinated Unvaccinated Total

Cases c1 c0 c
Controls d1 d0 d

They are less expensive than cohort studies. They can often be conducted in a rel-
atively short period of time. Often a cohort study would be out of the question, so
that case-control studies are the only feasible option. Orenstein et al (1988) argue
that case-control studies allow large amounts of resources to be directed at a small
number of cases and controls to assess vaccination status and history of disease most
accurately, decreasing errors due to misclassification.

In a simple case-control study, suppose that c cases and d controls are ascer-
tained, with c1 vaccinated cases and c0 unvaccinated cases, and d1 vaccinated con-
trols and d0 unvaccinated controls. Then, vaccine efficacy estimated by the odds
ratio is

VES,OR = 1− exposure odds = 1−OR = 1− c1/c0

d1/d0
= 1− c1d0

c0d1
. (8.2)

Under some circumstances the odds ratio will equal the cumulative incidence ratio
or the incidence rate ratio, and VES,OR will equal either VES,CI , VES,IR, or VES,λ .

Observational case-control studies suffer from the same potential biases that
observational cohort studies do, and more. In particular, as in other observational
studies, unmeasured confounders can bias the estimates of interest. Potential con-
founders that are measured can be adjusted for in the analyses. How similar esti-
mates from a case-control study will be to estimates from a cohort study depends on
the method of sampling the controls with respect to the cases and on the method of
analysis. It is always important to be clear about what parameter one is estimating
with an odds ratio and what the underlying assumptions are.

Practical aspects of case-control studies including how to define the source pop-
ulation for the cases, how to ascertain the cases, how to find the controls, and how to
ascertain vaccination status or other covariates of the cases and controls will depend
on the particular disease and population under study. Such issues are not covered
here, but are discussed generally in Rothman et al (2008) and for vaccine studies in
particular in Rodrigues and Smith (1999).

Here we focus on certain methodological considerations of sampling the controls.
We begin with a discussion of estimating VES,IR (VES,λ ) from case-control studies.
We then present the results of Smith et al (1984) about different sampling schemes
for controls in a closed cohort when the vaccine has a leaky versus an all-or-none
effect. None of the discussion up to that point requires the rare disease assumption.
Finally, we present a commonly used approach to case-control studies that is a good
approximation for the risk or rate ratio only if the proportion with the disease is
relatively small.
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8.1.1 Choosing controls to estimate VES,IR (VES,λ )

Suppose that we are interested in conducting a case-control study to estimate
VES,IR = VES,λ = 1− θ . The arguments also hold for VES,PH . The goal of our
case-control study is to estimate θ , the hazard ratio or incidence rate ratio. We as-
sume that the vaccine efficacy does not wane with time and that the incidence rate
ratio is constant, or equivalently, that the proportional hazards model holds.

The underlying cohort or source population can be a dynamic open cohort in
which people can change their vaccination status over time. Controls should be cho-
sen in a way that their probability of being chosen is proportional to the time they
would contribute to the denominators of the incidence rate if a cohort study had
been done. If θ is constant, the odds ratio yields a consistent and unbiased estimate
of it under certain circumstances (Greenland and Thomas 1982). Three different
odds ratios can be calculated, depending on the method of sampling person-time
and the method of analysis. None of these odds ratios depends on the rare disease
assumption to be a consistent estimator of a constant incidence rate ratio. Other
assumptions, however, are important. Three key considerations are

1. Is the proportion vaccinated in the population changing over time?
2. Is the incidence rate ratio or hazard ratio constant?
3. Is the underlying incidence rate or hazard constant?

Risk set sampling, sometimes called matched density sampling, samples the
relative distribution of person-time in the vaccinated and the unvaccinated groups
matched on time by selecting controls from the population-at-risk at the time of on-
set of each case. The first odds ratio is the unmatched odds ratio based on risk set
sampling, denoted ORUrs and obtained using an unmatched analysis of the time-
matched cases and controls. It is a consistent estimator of a constant incidence rate
ratio if the proportion of the population at risk that is vaccinated is constant. The un-
derlying incidence rate does not need to be constant. The second odds ratio, denoted
ORMrs, is also obtained using risk set sampling, but the time-matched controls are
analyzed using a matched pair, or discordant pair, analysis. Risk set sampling with
a time-matched analysis is equivalent to a failure time analysis if the incidence rate
ratio is constant (Prentice and Breslow 1978). The matched odds ratio ORMrs is
a consistent estimator of a constant incidence rate ratio or hazard without further
assumptions about the proportion vaccinated in the population or the baseline inci-
dence.

In unmatched density sampling, controls are selected so that the expected ratio of
the vaccinated controls to the unvaccinated controls equals the expected ratio of total
person-time at risk in the vaccinated to the person-time at risk in the unvaccinated
over the entire case ascertainment period. The third odds ratio, denoted ORUds, so
obtained is a consistent estimator of a constant incidence rate ratio if either (1) the
baseline incidence rate is constant or (2) the proportion of those at risk who are
vaccinated is constant.

To show this, we follow the development in Greenland and Thomas (1982).
Struchiner et al (1990) simulated case-control studies of malaria vaccines using the
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three different odds ratio estimators to estimate direct, indirect, and overall effects
to illustrate the use of these methods under complex disease transmission patterns.
Let B1(t) and B0(t) be the proportion vaccinated and unvaccinated in the underlying
population at time t. Let the total number of people still at risk in the population at
time t be N(t). Then the numbers of vaccinated and unvaccinated people in the risk
set at time t are N1(t) = N(t)B1(t) and N0(t) = N(t)B0(t). Let λ (t)dt be the proba-
bility that an unvaccinated person still at risk becomes a case in small time interval
dt, and θλ (t)dt the corresponding probability in a vaccinated person. Then

N(t)B1(t)θλ (t)dt = expected number of vaccinated cases in dt,

N(t)B0(t)λ (t)dt = expected number of unvaccinated cases in dt,

and B1(t) and B0(t) are the probabilities of choosing a vaccinated and unvaccinated
control from the risk set at time t.

The expected number of discordant pairs of vaccinated cases and unvaccinated
controls m10(t) and unvaccinated cases and vaccinated controls m01(t) in time inter-
val dt are

m10(t)dt = [N(t)B1(t)θλ (t)dt]B0(t),
m01(t)dt = [N(t)B0(t)λ (t)dt]B1(t). (8.3)

Then

ORMrs =
discordant pairs (vaccinated case–unvaccinated control)
discordant pairs (unvaccinated case–vaccinated control)

=
∫

m10(t)dt∫
m01(t)dt

=
∫
[N(t)B1(t)θλ (t)dt]B0(t)dt∫
[N(t)B0(t)λ (t)dt]B1(t)dt

= θ . (8.4)

Thus, VES,IR = VES,λ = 1−ORMrs = 1− θ . This is similar to the discussion of
Smith et al (1984) (Section 8.1.2) except that here it is shown that the baseline
incidence or hazard can vary with time.

If the proportion in the risk set that was vaccinated were constant, it would not
be necessary to do a matched analysis. In this case B1(t) = B1 and B0(t) = B0. Then

a1(t)dt = N(t)B1θλ (t)dt = expected number of vaccinated cases in dt,

a0(t)dt = N(t)B0λ (t)dt = expected number of unvaccinated cases in dt,

b1(t)dt = [a1(t)dt +a0(t)dt]B1dt = expected number of vaccinated controls in dt,

b0(t)dt = [a1(t)dt +a0(t)dt]B0dt = expected number of unvaccinated controls in dt.

The odds ratio ORUM not using a discordant pair analysis is
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ORUrs =
no. vaccinated cases/no. vaccinated controls

no. unvaccinated cases/no. unvaccinated controls

=
∫

a1(t)dt
∫

b0(t)dt∫
a0(t)dt

∫
b1(t)dt

=
∫
[N(t)B1θλ (t)dt]

∫
[a1(t)dt +a0(t)dt]B0dt∫

[N(t)B0λ (t)dt]
∫
[a1(t)dt +a0(t)dt]B1dt

= θ . (8.5)

The proportion vaccinated in the risk set will not be constant in a closed cohort if
the vaccine protects against disease because there will be enrichment with time of
vaccinated in the risk set. Thus, the matched analysis as in (8.4) would be necessary
in a closed cohort.

If we believed that either the incidence rate or the proportion of the population
that were vaccinated were constant, then we could use the third odds ratio ORUds.

ORUds =
exposure odds in cases

exposure odds in controls

=
θ
∫

λ (t)B1(t)N(t)dt/[
∫

λ (t)B0(t)N(t)dt]∫
B1(t)N(t)dt/[

∫
B0(t)N(t)dt]

. (8.6)

In general, expression (8.6) will not equal θ unless either λ (t) or B1(t) (and B0(t))
is constant. However, if the analysis is stratified finely on time, then it would be
possible to estimate θ from the unmatched sampling design.

8.1.2 Choosing controls with leaky and all-or-none models

Now we return to consider case-control studies in a closed cohort where vaccination
has a leaky or multiplicative effect on the hazard or an all-or-none effect. Smith et al
(1984) consider designing a case-control study in a closed cohort in which all cases
of disease are ascertained and the time of onset of each case is known. They assume
that the study is randomized and that individuals are followed for an equal period
of time. The hazard λ is assumed constant, but the argument holds for nonconstant
hazard as well. Smith et al (1984) suggest that under a leaky model, controls should
be chosen at the same time that cases occur from those individuals who had not
yet developed the disease. This approach is the same as the risk set sampling in the
previous section. Under risk set sampling, the controls can later become cases, and
people can appear both in the case and control groups, but at different time points. In
the closed cohort, the time-matched analysis is required. This approach gives a good
estimate of the time-invariant VES,IR = VES,λ = θ . This is the standard approach
for sampling controls for a time-matched proportional hazards model. (Greenland
and Thomas 1982; Prentice and Breslow 1978).

Smith et al (1984) point out that this approach would not give a good estimate
of the proportion protected if the all-or-none model were in effect. Then one would
want to estimate VECI = α , the proportion completely protected based on the rela-
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Table 8.2 Vaccine efficacy under leaky and all-or-none models of vaccine action as measured
in case-control studies. f1: sampling fraction for cases; f2: sampling fraction for controls; VEk:
vaccine efficacy calculated with “not yet cases” as controls; VEr: vaccine efficacy calculated with
“total population” as controls (Smith et al1984)

Not Yet Total
Cases Cases VEk Population VEr

Leaky model
Year 3 Vaccinated 44 f1 905 f2 0.73 1000 f2 0.64

Unvaccinated 121 f1 670 f2 1000 f2

Year 6 Vaccinated 38 f1 779 f2 0.73 1000 f2 0.43
Unvaccinated 67 f1 368 f2 1000 f2

All-or-none model
Year 3 Vaccinated 31 f1 918 f2 0.81 1000 f2 0.74

Unvaccinated 121 f1 670 f2 1000 f2

Year 6 Vaccinated 17 f1 842 f2 0.89 1000 f2 0.75
Unvaccinated 67 f1 368 f2 1000 f2

tive cumulative incidence or attack rates in the vaccinated and unvaccinated groups.
Under the all-or-none model, the appropriate method of selecting controls would be
to choose the controls for each case from among other individuals in the population
whether or not they had already had the disease under study. Under the all-or-none
model, the controls are used to estimate the proportion of the total population that
had been vaccinated or unvaccinated, B1 and B0.

Table 8.2 has an illustrative example from Smith et al (1984). The results were
generated assuming that the hazard of infection was 0.2 per person per year in the
unvaccinated group. The vaccine efficacy was set to 75%, so θ = 0.25 in the leaky
model and α = 0.25 in the all-or-none model. Under the leaky model, the hazard
in the vaccinated group is 0.05 per person per year. Assume that the vaccinated and
unvaccinated group each have 1000 persons and that the allocation is randomized.
The results shown assume the controls were selected from among those who had not
developed the disease at the start of the time interval under consideration. Greenland
and Frerichs (1988) commented on a number of issues raised by Smith et al (1984).

8.1.3 Choosing controls from the nondiseased population

Case-control studies used to be commonly designed to choose controls only from
the population that remained free of the disease of interest. Rothman et al (2008) call
this design the cumulative or epidemic case-control design because it might be used
to look for etiological factors after an outbreak. In this type of study, the rare disease
assumption is needed if the odds ratio is assumed to be a close estimator for the
relative risk of interest. A retrospective case-control study that only samples controls
from the nondiseased population will yield a decent approximation of the incidence



8.2 Validation Sets for Outcomes 159

rate ratio only if less than about 20% of both the vaccinated and the unvaccinated
groups have the disease and the proportion vaccinated does not change radically
over the course of the outbreak.

8.1.4 Estimating VES using the screening method

Another approach related to a case-control approach is the screening method (Oren-
stein et al 1985). This approach expresses vaccine efficacy as a function of the pro-
portion of the cases that are vaccinated and the proportion of the population that is
vaccinated. If any two of the variables are known, the other can be estimated. Let
PCV be the proportion of cases that are vaccinated and PPV be the proportion of
the population that is vaccinated. Then vaccine efficacy can be estimated using the
screening method by the following relation,

VES = 1− PCV (1−PPV )
(1−PCV )PPV

. (8.7)

Farrington (1993) discusses the screening method and its relation to case-control
studies. An estimate of vaccine coverage in the population provides an estimate of
the proportion vaccinated. Not all cases need to be ascertained, but the cases ascer-
tained should be a random sample. Bias and precision of the method are considered.
A method for computing a confidence interval allowing for extra variability and a
method to determine sample size are provided. The screening method offers a sim-
ple, rapid, and inexpensive surveillance tool to get approximate estimates of vaccine
effectiveness. It is called a screening method because it can be used to suggest when
more accurate evaluation of a vaccine in the field might be needed.

8.2 Validation Sets for Outcomes

In vaccine field studies, often a nonspecific case definition rather than a more spe-
cific confirmatory diagnosis is used as the outcome. As seen in Chapter 6, estimates
of VES will be lower when based on less specific case definitions, particularly when
the diagnosis of the disease of interest is not biologically confirmed. Sometimes it
would be prohibitively expensive or invasive to confirm each suspected case in a
study biologically. However, if biological confirmation can be done in a small ran-
dom sample of the suspected cases, this information can be used to estimate the
expected number of cases of the true disease of interest among the suspected cases.
The added uncertainty from not confirming all of the cases is taken into account with
the statistical method, leading to a larger variance and wider confidence interval than
would be obtained if all suspected cases were biologically confirmed.
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In essence, this is a particular case of a missing data problem. The outcome of
interest may be measured on some of the study participants in a subset called a val-
idation sample, and the less specific outcome is measured on all participants. Then
the result of the biological outcome is missing in those nonspecific cases that were
not tested. Statistical missing data methods are available to use the outcomes of
interest in the validation sample to correct the low estimates of VES based on the
nonspecific case definition alone. Validation sets for exposure to infection can also
improve joint estimation of VES and VEI (Golm et al 1998, 1999). In the next sec-
tions, the use of validation sets and the improvements in estimation they can provide
is illustrated by the analysis of an observational study of trivalent, live attenuated in-
fluenza vaccine in Central Texas.

8.2.1 Influenza vaccine field study in central Texas

A field study of trivalent, live attenuated, influenza virus vaccine (LAIV-T) was
conducted in Temple-Belton, Texas, and surrounding areas during the 2000–2001
influenza season. The field study was part of a larger community-based, non-
randomized, open-label field study conducted from 1998–2001 in Temple-Belton,
Texas, as well as two other communities to evaluate the indirect effectiveness of
LAIV-T vaccination of healthy children (Gaglani et al 2004; Piedra et al 2005,
2007). Temple-Belton was the intervention community. At that time, the Temple-
Belton area had approximately 19,700 children from 18 months through 18 years
of age. In Temple-Belton, eligible healthy children and adolescents aged 18 months
through 18 years were offered LAIV-T vaccine through the Scott & White (S & W)
Clinics from 1998–2001.

Halloran et al (2003a) evaluated the protection of LAIV-T against influenza dur-
ing the influenza season of 2000–2001. They used surveillance cultures taken from
a sample of the study participants to obtain more accurate estimates of protective
efficacy against influenza than those obtained using the nonspecfic, clinical case
definition. The analysis using validation set methods includes children who were S
& W Health Plan (SWHP) members, and is concerned with the LAIV-T vaccina-
tions administered in the influenza season 2000–01. Children received a single dose
of LAIV-T each year they enrolled.

The primary clinical outcome was a non-specific case definition called medically
attended acute respiratory infection (MAARI), which included all ICD-9-CM diag-
noses codes (Codes 381–383, 460–487) for upper and lower respiratory tract infec-
tions, otitis media, and sinusitis. Any individual presenting with history of fever and
any respiratory illness at S & W Clinics was eligible to have a throat swab (or nasal
wash in young infants) for influenza virus culture. The decision to obtain specimens
was made irrespective of whether a patient had received LAIV-T. The specific case
definition is culture-confirmed influenza. Table 8.3 contains the number of children,
the number of MAARIs, the number of cultures done, and the number of cultures
positive for each group. The overall fraction of MAARI cases sampled was a little
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Table 8.3 Study data for influenza epidemic season 2000–2001 (Halloran et al 2003a)

MAARI MAARI Number Fraction
Age Vaccine MAARI Propor- Cases Positive Cultures Fraction
(Years) Status Children Cases tion Cultured Cultures Positive Cultured

1.5-4 LAIV-T 537 389 0.72 16 0 0 0.041
None 1844 1665 0.90 86 24 0.28 0.052

5-9 LAIV-T 807 316 0.39 17 2 0.12 0.054
None 2232 1156 0.52 118 53 0.45 0.102

10-18 LAIV-T 937 219 0.23 19 3 0.16 0.087
None 5249 1421 0.27 123 56 0.46 0.087

Total LAIV-T 2281 924 0.41 52 5 0.10 0.056
None 9325 4242 0.45 327 133 0.41 0.077

higher in the unvaccinated than in the vaccinated groups (p = 0.03). As expected,
the proportion of cultures that were positive was consistently higher in the unvacci-
nated than in the vaccinated groups.

The risk of developing MAARI was compared in the children receiving LAIV-T
with those children who had never received LAIV-T. The protective effectiveness
of LAIV-T against MAARI was estimated as VES,CI,a = 1−RR, where RR is the
relative risk of MAARI in vaccinated children compared to unvaccinated children.
The “a” stands for auxiliary outcome. Age-adjusted estimates were obtained using
sample size weighted averages. Confidence intervals were based on the assumption
of a normal approximation of the logarithm of the ratio of two independent binomial
random variables (Katz 1978).

8.2.2 Analysis using surveillance samples

Estimates of the protective efficacy of LAIV-T against influenza using the surveil-
lance samples, VES,CI,v, were obtained using the mean score method for auxiliary
outcomes (Pepe et al 1994), an estimating equations approach for handling missing
data. The “v” stands for validation sample. The method estimates the score contribu-
tion for main study members with only auxiliary outcome data from the mean of the
score contributions of a sample of study subjects with the same observed covariate
and auxiliary outcome values on whom the specific outcome has been measured. In
this analysis, the clinical outcome MAARI was the nonspecific auxiliary outcome,
and the actual influenza status was the specific outcome of interest. The confidence
intervals take into account the uncertainty due to culturing only a sample of the
MAARI cases.

The variable Y = outcome of interest (influenza status), A = auxiliary outcome
(MAARI, yes or no), X = set of covariates (vaccination, age group), Pβ (Y |X) =
binomial probability model, β = parameters to estimate in the probability model,
Sβ = score function, and V,V = in the validation set or not. The estimating equation
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Table 8.4 Epidemic year 2000–2001: Vaccine effectiveness (VES,CI,a) against MAARI and effi-
cacy (VES,CI,v) against combined influenza A (H1N1) and B taking missing influenza status into
account (Halloran et al 2003a)

Age VES,CI,a VES,CI,v
(Years) MAARI (95% CI) Influenza (95% CI)

1.5-4 0.20 (0.14,0.25) 0.91 (−0.34,0.99)
5-9 0.25 (0.15,0.34) 0.80 (0.26,0.95)
10-18 0.14 (0.01,0.26) 0.70 (0.13,0.90)

Total 0.18 (0.11,0.24) 0.79 (0.51,0.91)

is
∑
i∈V

Sβ (Yi|Xi)+ ∑
j∈V

Ê{Sβ (Y |X j)|A j,X j}= 0.

An unbiased estimator for a person who had no culture done is:

Ê{Sβ (Y |X j)|A j,X j}= ∑
i∈V (A j ,X j)

Sβ (Yi|Xi)/nV (A j,X j).

The variance was estimated on the adjusted log relative risk using the mean score
and multivariate delta methods (Pepe et al 1994; Agresti 1990; Chu and Halloran
2004).

The analysis assumed that all children with negative MAARI were also negative
for influenza disease. The mean score method produces valid estimates if the data
are missing at random (MAR) (Pepe et al 1994) in the sense of Little and Rubin
(2002). A continuity correction of 0.5 was added to the number of cultured samples
and the number positive in the age group 1.5–4 years because there were no positive
cultures in the vaccinated group.

The protective efficacy estimates against influenza taking missing influenza sta-
tus into account are much higher than the estimates of the protective effects of LAIV-
T against MAARI (Table 8.4). The overall vaccine effectiveness estimate based on
the nonspecific case definition was 0.18 (95% CI, 0.11–0.24). The overall efficacy
estimates incorporating the surveillance cultures using the mean score method was
0.79 (95% CI, 0.51–0.91), a fourfold increase in estimates, much closer to the effi-
cacy estimate of 0.93 (95% CI, 0.88–0.97) obtained in a double-blind randomized
controlled trial (Belshe et al 1998, Section 6.4.3). Although the point estimates are
higher, the confidence intervals are wider due to the uncertainty resulting from not
culturing all of the MAARI cases.

Table 8.4 contains the overall estimate obtained by pooling the data and avoid-
ing the continuity correction. The age-adjusted VES,CI,v obtained using sample size
weighted averages, the continuity correction in the youngest age group, and the delta
method for the variance estimate was VES,CI,v = 0.77 (95% CI, 0.48–0.90), similar
to that in Table 8.4.

In this study, selection of children with MAARI for influenza cultures was not
done randomly. Physicians might tend to choose MAARI cases that they believe
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to be influenza for culturing. If influenza disease is more moderate in the vacci-
nated group, then oversampling in the unvaccinated group might occur based on
the influenza status, which is not measured on everybody. In this case, the MAR
assumption is violated and the estimate assuming MAR could be biased.

If physicians know the vaccination status, they might oversample either the un-
vaccinated or the vaccinated children. They might tend to believe that vaccinated
children would not have influenza, and therefore oversample the unvaccinated chil-
dren. However, oversampling due to knowledge of the vaccination status alone
would not bias the estimate, because the estimation procedure stratifies on the vac-
cination status of the child. The data are missing at random in this case (Little and
Rubin 2002). In fact, in future studies, it would be desirable to oversample the vacci-
nated, non-specific cases for culturing. Oversampling in the vaccinated group would
help avoid having zero positive cultures in the vaccinated groups.

The consistently higher proportion of cultures being positive in the unvaccinated
groups could be partly due to vaccinated cases of influenza being less likely to be
culture positive than unvaccinated cases. However, this would produce exactly the
same bias that would be obtained if all of the MAARI cases had been cultured as in
many randomized, double-blinded vaccine trials.

Future vaccine field studies that utilize validation samples could be intentionally
designed so that the specific outcome would be missing at random within any given
observed stratum of the study subjects. The sample size needed in the validation
sample to correct the bias from using the nonspecific outcome is not necessarily
large. In this case the overall sampling fraction was well below 10%.

8.3 Sensitivity Analysis for Selection Bias

The analysis in Section 8.2 relies on the nonidentifiable assumption that the outcome
of interest is missing at random (MAR) (Little and Rubin 2002). If the outcome is
not MAR, the vaccine efficacy estimates could be subject to selection bias. Rot-
nitzky et al (1998, 2001), Scharfstein et al (1999), and Robins et al (2000b) devel-
oped a frequentist selection model that displays the sensitivity analysis over a plau-
sible range of selection parameters. Scharfstein et al (2003) developed a Bayesian
approach that allows the formal incorporation of prior beliefs about the degree of
the selection bias on the odds ratio scale to obtain the full posterior distribution, a
single summary of the sensitivity analysis. Scharfstein et al (2006) extended this
work to the relative risk parametrization of selection bias, discrete covariates, and
dependence of the priors for the relative risk parameters across treatment groups.
They reanalyzed the data from the Texas influenza study (Section 8.2.1) with the
methods. They relied on an influenza expert to provide informative priors for the
Bayesian analysis.
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8.3.1 Sensitivity analysis in the vaccine study

In the vaccine field study, let n be the total number of participants, and n0 and n1 the
number of unvaccinated and vaccinated participants. Let Z denote the vaccination
indicator, taking on the value 1 if a participant is vaccinated and 0 if not vaccinated.
Let A(0) and A(1) denote the indicator of MAARI (1: yes; 0: no), for a participant
if she had been, possibly contrary to fact, unvaccinated or vaccinated, respectively.
The observed MAARI outcome A = A(Z) is observed for every participant. Let
Y (0) and Y (1) denote influenza status (1: positive; 0: negative) for a participant if
she had been, possibly contrary to fact, unvaccinated and vaccinated, respectively.
Only one of these outcomes can be potentially observed. In this study, influenza
status is biologically confirmed by a culture. In the validation substudy, a possibly
nonrandom sample of the participants is biologically confirmed, so that influenza
status, Y = Y (Z) is known for a subset of the participants. Let R be the validation
indicator, where R = 1 if sampled for validation and R = 0, otherwise. Sampling for
validation only occurs for those with A = 1. Let X denote age category (0: 1.5–4
years; 1: 5–9 years; 2: 10–18 years) measured at the time of study entry.

The observed data for an individual are O = (Z,X ,A,R,Y : A = R = 1). We
assume we observe n i.i.d. copies, O = {Oi : i = 1, . . . ,n}. Throughout, proba-
bilities P, indexed by subgroup subscripts indicate restriction to the associated
subpopulation. For example, for events A and B, Pz,x[A] = P[A|Z = z,Z = x] and
Pz,x[A|B] = P[A|B,Z = z,X = x].

8.3.1.1 Vaccine Efficacy

The scientific goal is to use the observed data to estimate the causal effect of vacci-
nation on the outcome Y , within age levels as well as overall. Specifically, the goal
is to estimate age-specific vaccine efficacy

V ES,CI,x = 1− Px[Y (1) = 1]
Px[Y (0) = 1]

(8.8)

and overall vaccine efficacy

V ES,CI = 1− ∑
2
x=0 Px[Y (1) = 1]P[X = x]

∑
2
x=0 Px[Y (0) = 1]P[X = x]

. (8.9)

To identify V ES,CI,x, it is sufficient to identify Px[Y (z) = 1] for z = 0,1. For V ES,CI ,
we must identify Px[Y (z) = 1] for all z and x, and the marginal distribution of X .
Although the marginal distribution is identified from the observed data without ad-
ditional assumptions, the conditional probabilites Px[Y (z) = 1] will require noniden-
tifiable assumptions.

Two structural assumptions facilitate identification of Px[Y (z) = 1]. The first
assumption is that vaccination status is independent of the potential outcomes
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{A(0),A(1),Y (0),Y (1)}, given age (X). Although the Texas influenza study was
not randomized, the expert had no information to conclude that one group differed
substantially from another. The second assumption is that if a participant, under vac-
cination status z, does not have MAARI, then she does not have medically attended
influenza. The interest is in efficacy against medically attended, culture-confirmed
influenza, not influenza infection.

8.3.1.2 Identification of Px[Y (z) = 1]

With these assumptions, we can write

Px[Y (z) = 1] = Pz,x[Y (z) = 1] = Pz,x[Y = 1]

=
1

∑
r=0

Pz,x[Y = 1|A = 1,R = r]Pz,x[A = 1,R = r]. (8.10)

For all z, x, r, Pz,x[Y = 1|A = 1,R = 1] and Pz,x[A = 1,R = r], are identifiable but
Pz,x[Y = 1|A = 1,R = 0] are not. Thus, identification of Px[Y (z) = 1] will require
identification of these latter probabilities.

The most common assumption used to identify these probabilities is that of miss-
ing at random (MAR) (Little and Rubin 2002). MAR states that R is independent of
Y given (Z,A,X). This implies that, for all z, x, Pz,x[Y = 1|A = 1,R = 0] = Pz,x[Y =
1|A = 1,R = 1]. As a result, Px[Y (z) = 1] becomes identifiable. Because the assump-
tion of MAR is untestable and was considered questionable by the scientific expert,
it is useful to perform a sensitivity analysis to outcomes that are missing not at
random (MNAR).

8.3.2 Frequentist sensitivity analysis

Scharfstein et al (1999, 2003) and Robins et al (2000b) introduced a sensitivity
analysis methodology in which the estimands of interest are presented over a range
of posited models (including MAR), each yielding identification of Pz,x[Y = 1|A =
1,R = 0]. Scharfstein et al (2006) developed a selection model approach to sensitiv-
ity analysis. In the selection model, for subjects with Z = z,X = x and MAARI, the
selection bias parameter αz,x is interpreted as the log odds ratio of being unvalidated
for diseased versus undiseased subjects. So, αz,x positive or negative indicates that
diseased subjects have lower or higher odds of being validated, respectively.

When eliciting plausible ranges for αz,x, the expert found it easier to think about
selection bias on a relative risk as opposed to an odds ratio scale. Specifically, he
felt more comfortable expressing opinions about the relative risk of being validated
given that a MAARI participant has influenza compared with the MAARI partic-
ipant having another influenza-like illness. As a result, the selection models were
reformulated in terms of the relative risk selection bias parameters
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Fig. 8.1 Frequentist sensitivity analysis of Pz,x[Y = 1]. Shown are the estimated probabilities and
95% confidence intervals for influenza in the vaccinated and unvaccinated groups, for each age
stratum, as a function of the relative risk selection bias parameter βz,x, varied over the 90% ranges
elicited from the expert (Scharfstein et al 2006, , Biostatistics 7:615–629, reprinted with permis-
sion).

βz,x =
Pz,x[R = 1|A = 1,Y = 1]
Pz,x[R = 1|A = 1,Y = 0]

. (8.11)

Then specification of βz,x leads to identification of Px[Y (z) = 1] via the following
formula,

Px[Y (z) = 1] =
Pz,x[Y = 1|A = 1,R = 1]Pz,x[A = 1]

βz,xPz,x[Y = 0|A = 1,R = 1]+Pz,x[Y = 1|A = 1,R = 1]

=
P[Z = z,X = x,A = 1,R = 1,Y = 1]P[Z = z,X = x,A = 1]/P[Z = z,X = x]

βz,xP[Z = z,X = x,A = 1,R = 1,Y = 0]+P[Z = z,X = x,A = 1,R = 1,Y = 1]
.

(8.12)

The frequentist nonparametric estimator of Px[Y (z) = 1] can be found by replacing
the probabilities P in (8.12) by their empiricals P̃. Plugging the estimates P̂x[Y (z) =
1] into equations (8.8) and (8.9) yields the estimates V̂ ES,CI,x and V̂ ES,CI . The right-
hand side of estimated equation (8.12) reduces to the results with the mean score
method when βz,x = 1, for all z and x. Supplementary material for Scharfstein et al
(2006) give the derivation of the large sample-based confidence intervals for V ES,CI,x
and V ES,CI . The frequentist sensitivity analysis proceeds by varying the βz,x over
plausible ranges.

Figure 8.1 shows the estimated probabilities and 95% confidence intervals for in-
fluenza in the vaccinated and unvaccinated groups, for each age stratum, as a func-
tion of βz,x. Figure 8.2 shows the point estimates and lower 95% confidence bounds
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Fig. 8.2 Frequentist sensitivity analysis of point estimates and lower 95% confidence bounds for
the age-group-specific vaccine efficacy as a function of the relative risk selection bias parameters
β1,x (vaccinated) and β0,x (unvaccinated) varied over the 90% ranges elicited from the expert. Black
diamonds indicate the results at the best guess of the expert. Black lines with numbers indicate the
contours (Scharfstein et al 2006, Biostatistics 7:615–629, reprinted with permission).

for the age-group-specific efficacy. The selection bias parameters were varied over
the 90% ranges elicited from the expert. Within these ranges and within each age
group, the vaccine efficacy estimates based on the validation sets are higher than the
point estimates based on the nonspecific definition, which were 0.2, 0.25, and 0.14
for the age groups 1.5–4, 5–9, and 10–18 years, respectively. The lower confidence
bounds indicate the degree of variability. A key drawback of the frequentist sensi-
tivity analysis methodology is that it is not feasible to present parsimoniously the
overall results. This is a motivation for the Bayesian sensitivity analysis.

8.3.3 Bayesian inference

In the Bayesian analysis, we can specify prior distributions on the relative risk se-
lection bias parameters β z = (βz,0,βz,1,βz,2)′, β = (β ′0,β

′
1). Models for VES,CI,x and

VES,CI are developed analogously to (8.8) and (8.9), whereby prior distributions are
required for all model parameters.



168 8 Further Evaluation of Protective Effects

0.0 0.2 0.4 0.6 0.8 1.0
Vaccine efficacy: overall

0.0 0.2 0.4 0.6 0.8 1.0
Vaccine efficacy: 1.5−4

0.0 0.2 0.4 0.6 0.8 1.0
Vaccine efficacy: 5−9

0.0 0.2 0.4 0.6 0.8 1.0
Vaccine efficacy: 10−18

Fig. 8.3 Posterior distributions of the overall vaccine efficacy and by age group using the infor-
mative prior distributions (Scharfstein et al 2006, , Biostatistics 7:615–629, reprinted with permis-
sion).

In the prior specification for β , Scharfstein et al (2006) provided two options:
(1) Bayesian analogue of the frequentist sensitivity analysis and (2) fully Bayesian
analysis. For option (1), point-mass priors were specified on β and the posterior
distributions of the estimands of interest were estimated over a range of β . This ap-
proach is comparable to the frequentist sensitivity analysis described above, but does
not rely on large sample approximations. For option (2), a nondegenerate prior dis-
tribution on β was specified as elicited from a subject-matter expert. This approach
has the advantage of providing a single summary of the posterior inference about the
estimands, which naturally incorporates the uncertainty due to selection bias. De-
tails are in Scharfstein et al (2006). To sample from the posterior, they constructed
a Gibbs sampling algorithm with data augmentation (Tanner and Wong 1987) and
slice sampling (Damien et al 1999).

8.3.3.1 Informative priors

For Bayesian inference, informative priors are specified for the selection bias rel-
ative risk parameters, β , by age group and vaccination status. An influenza expert
was asked the following question: If a physician were doing surveillance cultures
during an influenza season, what is the probability that he would select the chil-
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Table 8.5 Best guess and 90% range for the informative prior distributions on the selection bias
parameter β and log β (Scharfstein et al 2006)

Age β (Relative Risk) Scale Log β Scale

Group Unvaccinated Vaccinated Unvaccinated Vaccinated

Best 90% Best 90% Best 90% Best 90%
(Years) Guess Range Guess Range Guess Range Guess Range

1.5–4 Elicited 2.00 1.00, 3.50 1.20 1.00, 2.50 0.69 0.00, 1.25 0.18 0.00, 0.92
Used 2.00 1.00, 4.00 1.20 0.58, 2.50 0.69 0.00, 1.39 0.18 −0.55, 0.92

5–18 Elicited 3.00 2.00, 4.50 1.60 1.00, 3.50 1.10 0.69, 1.50 0.47 0.00, 1.25
Used 3.00 2.00, 4.50 1.70 1.00, 2.89 1.10 0.69, 1.50 0.53 0.00, 1.06

dren who actually had true influenza over the children who just had nonspecific
respiratory symptoms to culture? He responded that this was very hard to answer.
One “would be more likely to be correct in the unvaccinated,” because unvaccinated
children presenting with true influenza would have more typical, severe disease than
the vaccinated children. One would be “less likely to be correct in young children
under five years,” because children under five years experience many other severe
respiratory diseases that could be mistaken for influenza, whereas older children are
already immune to such diseases. He added that the degree of selection bias would
also “depend on the rules for collection, for example, a certain number per week or
with specific symptoms.”

Another influenza expert had similar views. He provided his best guess for each
of the univariate relative risk selection bias parameters βz,x defined in (8.11) and his
belief about the interval that would likely contain 90% of the prior distribution for
each βz,x. He also provided the degree of correlation of the selection bias by age
group and vaccine status. The expert did not have different prior beliefs about the
selection bias in the 5–9 and 10–18 year age groups. Thus the prior distributions for
these two age groups are presented as one group in Table 8.5.

For the analysis, the elicitations were plugged into a multivariate Normal prior
on the log β scale as follows. The elicited best guesses for each βz,x and 90% range
were transformed to the log βz,x scale. In the unvaccinated 5–18 year olds, the elic-
itation was quite consistent with a Normal distribution. In the other three groups,
adjustments were necessary as shown in Table 8.5. The expert felt comfortable with
the changes in elicited and proposed priors in light of the uncertainty about the se-
lection bias. The expert believed that the correlation in selection bias among the
strata would be quite high, even as high as 0.90. The corresponding covariance ma-
trices for π(β ) were constructed from the marginal univariate Normal distributions
and the correlations.

Figure 8.3 shows the Bayesian posterior distribution of the age-group-specific
efficacy and overall efficacy using the informative prior distributions from Table
8.5, assuming a correlation of 0.9. The mode is 1.00 in the age group 1.5–4 years,
because there are no positive cultures in the vaccinated group in that age group. The
results assuming a zero correlation were nearly identical (not shown).
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Table 8.6 Results of Bayesian and frequentist sensitivity analyses using surveillance cultures as-
suming NMAR and MAR. For the Bayesian analyses, the posterior means (95% credible intervals)
for vaccine efficacy are reported, for the frequentist analyses, the point estimates (95% confidence
intervals). The estimates using just the nonspecific MAARI case definition are included for com-
parison (Scharfstein et al 2006)

Age Group

Analysis 1.5–4 Years 5–9 Years 10–18 Years Overall

Bayesian:
Informative π(β ) 0.80 (0.23,1.00) 0.65 (0.13,0.93) 0.51 (−0.12,0.88) 0.65 (0.35,0.86)
π(β ) fixed at best guess 0.77 (0.11,0.99) 0.63 (0.10,0.93) 0.50 (−0.12,0.86) 0.64 (0.32,0.85)
π(β ) fixed at 1 (MAR) 0.84 (0.41,0.90) 0.73 (0.40,0.94) 0.64 (0.26,0.89) 0.73 (0.53,0.88)

Frequentist:
β fixed at best guess 0.88 (−0.97,0.99) 0.74 (−0.05,0.88) 0.61 (−0.25,0.88) 0.73 (0.34,0.89)
β fixed at 1 (MAR) 0.91 (−0.34,0.99) 0.80 (0.26,0.95) 0.70 (0.13,0.90) 0.79 (0.52,0.91)

MAARI alone: 0.20 (0.14,0.25) 0.25 (0.15,0.34) 0.14 (0.01,0.26) 0.18 (0.11,0.24)

Table 8.6 compares the summaries of the Bayesian posterior distributions and
of the frequentist estimates and 95% confidence intervals. The assumption of MAR
results in an overestimate of the vaccine efficacy compared with the selection bias
relative risk assumptions elicited from the expert. The frequentist result with β fixed
at 1 (MAR) is identical to the result in Table 8.4. The Bayesian posterior means are
somewhat lower than the frequentist estimates.

8.4 Validation Sets with Time-to-Event Data

The Texas field study (Section 8.2.1) continued in the fall of 2003 (Halloran et al
2007b). Children were not vaccinated in the 2002–2003 season. In the meantime
the vaccine was licensed but not approved for children under 5 years old. In the
2003–2004 season, healthy children and adolescents aged 5–18 years were eligible
to enroll and were offered LAIV-T vaccination at public schools, the Temple Mall,
churches, and Scott & White (S & W) Clinics. In the 2003–2004 influenza season,
the predominant circulating influenza A (H3N2) virus in the United States was simi-
lar antigenically to A/Fujian/411/2002 (H3N2), a drift variant of A/Panama/2007/99
(H3N2), the vaccine strain. Comparison of the vaccinated with the unvaccinated
children within Temple-Belton allows prospective evaluation of the direct protective
effects of LAIV-T against the drift variant during the 2003–2004 influenza season.
Children who were contraindicated to receive LAIV-T, such as history of asthma,
were offered trivalent inactivated vaccine (TIV). Thus, there were three main vac-
cinated groups of interest: 1) those receiving LAIV-T in 2003, whether or not they
had received LAIV-T before, 2) those having received LAIV-T in the seasons 1998–
1999 through 2001–2002, but not in 2002–2003 or in the fall of 2003, and 3) those
receiving TIV in the fall of 2003. The distributions of chronic obstructive pulmonary



8.4 Validation Sets with Time-to-Event Data 171

diseases and other similar potential confounders were similar in the LAIV-T, the pre-
viously vaccinated, and the unvaccinated groups. The TIV group had a much higher
percentage of COPD and other diseases than the other groups, so that comparison
of the TIV group with the unvaccinated group is not valid. Age-eligible members
of the SWHP on October 10, 2003 were considered for inclusion in the analysis.
The final inclusion was restricted to children living within zip codes in the Temple-
Belton area. The definition of a case of medically attended acute respiratory illness
(MAARI) is the same as in Section 8.2.1.

Some of the children who had surveillance cultures done were in the SWHP, and
others were not. Those in the SWHP were included in the SWHP administrative
database. The non-SWHP children were not in the SWHP database, although their
culture results, age, and vaccination status were available. The primary influenza
season was defined as the weeks with the most intense influenza activity accounting
for 80–85% of all positive influenza cultures (Nichol et al 1999; Piedra et al 2005).
The primary influenza season occurred during the 10-week period from October 10
to December 20, 2003. The MAARI cases and cultures occurring within this 10-
week period were included in the analysis. The influenza season started early in
Texas, so vaccination occurred during the influenza season.

A total of 6403 age-eligible children in the SWHP database living in the zip
codes in the Temple-Belton are included in the analysis, of whom 1706 received
LAIV-T and 548 received TIV in 2003 before the end of the study period. Of the
remaining children, 983 had been previously vaccinated in 1998–2001 and 3166
had never been vaccinated by the end of the study period. About four weeks into
the period, by November 8, 2003, 50% of the vaccinees had been vaccinated with
either LAIV-T or TIV. Table 8.7 contains the number of MAARI events, child-days
at risk, and rate per 1000 by age and vaccine status used in the analysis. Table 8.8
shows the influenza surveillance data and proportion of cultures positive by age and
vaccine status at the time of culture.

8.4.1 Time-to-event analysis

The effectiveness of protection against MAARI and the efficacy of protection
against culture-confirmed influenza were computed using the basic equation
VES,IR = 1−RR, where RR is the ratio of the number of MAARI (estimated in-
fluenza) cases/ child-days in the vaccinated compared to the unvaccinated group. In
this section, we denote it simply as VE. The main interest was in the efficacy of
LAIV-T, but estimates were also obtained for the previously vaccinated in 1998–
2001 (PREV), both being compared to the unvaccinated group. Age-group specific
values were computed for the two age groups 5–9 years and 10–18 years. Over-
all efficacy was computed by weighting the contributions of the age groups by the
combined number of child-days at risk in the vaccinated and unvaccinated groups
in each age group.

A child who began the season as either unvaccinated or previously vaccinated
could be switched to the LAIV-T group or the TIV group once they got vacci-
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Table 8.7 MAARI events, child-days at risk, and rate per 1000 child-days at risk by age group
and vaccine status (Halloran et al 2007b)

Age Vaccination MAARI Child-Days Rate/1000
(Years) Status Events at Risk Child-Days at Risk

5–9
LAIV-T 105 35,886 2.93

TIV 80 10,598 7.55
PREV 143 26,902 5.32

UNVAC 261 61,522 4.24
10–18

LAIV-T 117 42,991 2.72
TIV 82 13,741 5.97

PREV 273 71,424 3.82
UNVAC 641 179,828 3.56

Combined
LAIV-T 222 78,883 2.81

TIV 162 24,383 6.64
PREV 416 98,297 4.23

UNVAC 902 241,331 3.74
Totals
5–9 589 134,908 4.37

10–18 1113 307,984 3.61
Combined 1702 442,896 3.84

nated in 2003. To take the changing vaccine status into account and to integrate
the surveillance cultures into the analysis, we grouped the data by week over the
10-week period. If vaccination occurred before the day of MAARI, the child was
counted as a vaccinated MAARI case. Otherwise, the child was counted as a previ-
ously vaccinated or unvaccinated MAARI case. We assumed that multiple visits in a
week were not independent. Only the first MAARI case in the week was included if
a child had more than one MAARI presentation in that week. Vaccine effectiveness
against MAARI was denoted as VEa.

To estimate the efficacy against culture-confirmed influenza illness, the expected
number of influenza cases in each week for each age and vaccine group was esti-
mated by multiplying the proportion of positive surveillance cultures in each age and
vaccine group by the number of MAARI cases in that group (Halloran and Longini
2001; Halloran et al 2007b). Children who had positive cultures were considered to
be no longer at risk for influenza and did not contribute further child-days at risk for
the rest of the 10-week period.

The data are grouped within one-week time intervals τ , (tτ−1, tτ ], τ = 1, . . . ,T ,
T = 10. Let k, k = 1, . . . ,K, indicate the relevant strata, in our case age groups, and
K = 2. Let nντ , ν = 0,1, be the number of participants in the unvaccinated and vac-
cinated group at risk of influenza at the beginning of each time interval, with nkντ ,
ν = 0,1, k = 1, . . . ,K, the corresponding number in each stratum. For each stratum
k, k = 1, . . . ,K, and vaccine status ν , ν = 0,1, let the number of MAARI cases as-
certained in each time interval be wkντ , the number of surveillance cultures be rkντ ,
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Table 8.8 Influenza surveillance data (number positive/number cultured (proportion)), Temple-
Belton, Texas, 2003–2004 (Halloran et al 2007b)

Age
Group SWHP Non-SWHP Combined

(Years) Unvaccinated LAIV-T Unvaccinated LAIV-T Unvaccinated LAIV-T

5–9 8/20 (0.40) 3/15 (0.20) 19/34 (0.56) 4/9 (0.44) 27/54 (0.50) 7/24 (0.29)
10–18 35/56 (0.63) 5/13 (0.38) 30/49 (0.61) 4/11 (0.36) 65/105 (0.62) 9/24 (0.38)
Total 43/76 (0.57) 8/28 (0.29) 49/83 (0.59) 8/20 (0.40) 92/159 (0.58) 16/48 (0.33)

TIV PREV TIV PREV TIV PREV

5–9 2/5 (0.40) 3/9 (0.33) 0/3 (0.33) 7/21 (0.33) 2/8 (0.25) 10/30 (0.33)
10–18 3/3 (1.0) 15/29 (0.52) 5/6 (0.83) 8/15 (0.53) 8/9 (0.89) 23/44 (0.52)
Total 5/8 (0.63) 18/38 (0.47) 5/9 (0.56) 15/36 (0.42) 10/17 (0.59) 33/74 (0.44)

and the number of positive cultures be ckντ . For each τ , estimate the proportion ρkντ

of true influenza cases among the MAARI cases in each age and vaccine group by
ρ̂kντ = ckντ/rkντ . Multiply wkντ by {ρ̂kντ} to obtain an estimate of the number of
influenza cases in each interval. Summing over the weekly estimates of the number
of true influenza cases, the total expected number of influenza cases in each age and
vaccine group during the study is estimated. The outcome of interest, the result of a
culture, is assumed to be missing at random (Little and Rubin 2002).

To compute child-days at risk, everyone is assumed to be at risk for influenza
at the beginning of the study period. For each time interval τ , the child-days at
risk in each stratum, dkντ , were computed as 7× (nkντ − 0.5ρ̂kντ wkντ ), ν = 0,1,
k = 1, . . . ,K. That is, the expected number of influenza cases times half the time
interval was subtracted from the number at risk at the beginning of the interval to
adjust the child-days at risk. Children who had positive cultures were considered to
be no longer at risk for influenza and did not contribute further child-days at risk for
the rest of the 10-week period. The incidence rate of true influenza in each vaccine
and age group was estimated based on the above, and from that, the stratum specific
vaccine efficacy, VEk,v, based on the validation set as

V̂Ek,v = 1− [∑T
τ=1 ρ̂k1τ wk1τ ]/[∑T

τ=1 dk1τ ]
[∑T

τ=1 ρ̂k0τ wk0τ ]/[∑T
τ=1 dk0τ ]

. (8.13)

Overall VEv is computed by weighting the contributions of the age groups by the
combined number of child-days at risk in the vaccinated and unvaccinated groups
in each age group.

Two different estimates using the surveillance cultures can be computed. The
first, denoted VEin, uses just the surveillance cultures from the SWHP members in
the database. The second, denoted VEex, uses the surveillance cultures from both the
SWHP members and the non-SWHP children. Confidence intervals were obtained
using 2000 bootstrap samples (Efron and Tibshirani 1993). When spread over a 10-
week period, the culture data were too sparse to obtain a separate weekly estimate of
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Table 8.9 Vaccine effectiveness of LAIV-T: VEa against MAARI (95% CI), against culture-
confirmed influenza using just SWHP surveillance cultures VEin (95% CI), and against culture-
confirmed influenza using surveillance cultures from the children in the SWHP database and chil-
dren not in the SWHP database, VEex (95% CI) (Halloran et al 2007b)

Age
Vaccine Group VEa (95% CI)‡ VEin (95% CI) VEex (95% CI)
Status (Years) MAARI Influenza Influenza

LAIV-T∗ 5–9 0.31 (0.11,0.47) 0.66 (−0.03,1.0) 0.60 (0.25,0.84)
10–18 0.24 (0.03,0.40) 0.53 (0.12,0.86) 0.54 (0.23,0.78)

All 0.26 (0.11,0.39) 0.56 (0.24,0.84) 0.56 (0.32,0.75)

PREV† 5–9 −0.25 (−0.61,0.05) −0.04 (−1.9,1.0) 0.17 (−0.50,0.61)
10–18 −0.07 (−0.28,0.10) 0.11 (−0.37,0.46) 0.09 (−0.28,0.39)

All −0.13 (−0.30,0.03) 0.08 (−0.38,0.44) 0.11 (−0.19,0.37)

∗ Vaccinated with LAIV-T in 2003, regardless whether previously vaccinated.
† Previously vaccinated in 1998-2001, but not in the 2002–2003 season or in 2003.
‡ Percentile bootstrap confidence intervals based on 2000 bootstrap samples.

ρkντ for use in equation (8.13). So the overall estimated proportion positive in Table
8.8 in each group was used as the estimate for the proportion positive in equation
(8.13).

The estimates of VEa, VEin, and VEex are given in Table 8.9. Overall effective-
ness of LAIV-T against MAARI VEa is 0.26 (95% CI 0.11–0.39). Overall efficacy
against culture-confirmed influenza using just surveillance cultures from children in
the SWHP database, VEin, is 0.56 (95% CI 0.24–0.84). The point estimates for VEin

and VEex are quite similar, but the confidence intervals using all of the surveillance
cultures are narrower than those using just the surveillance cultures from SWHP,
reflecting the higher precision conferred by the larger number of cultures.

8.5 Assessing Differential Protection Against Variants

In a series of papers, Gilbert et al (1998), Gilbert (2000), and Gilbert et al (1999)
described statistical procedures for hypothesis testing, estimation, and confidence
intervals for assessing strain variations in vaccine efficacy, called sieve analysis.
Gilbert et al (2001) demonstrated use of these methods on examples of cholera,
HIV, and hepatitis, rotavirus, and pneumococcal vaccines. Sun et al (2009) extended
these methods to a continuous competing risk model to assess efficacy based on the
distance of genetic divergence of the infecting strain and the vaccine strain.
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Problems

8.1. What is the purpose of matching on time when selecting controls in the closed
cohort?

8.2. Suppose that we do a BCG efficacy study and we choose our matched controls
from within the same household (in a similar age group). What is the purpose of this
matching?

8.3. Consider a study using a random sample of surveillance cultures for influenza as
a validation set for a nonspecific outcome influenza-like illness. The purpose is to es-
timate vaccine efficacy for influenza illness. The design called for cases vaccinated
for influenza to have a sampling fraction twice that of cases not vaccinated. Would
this result in selection bias in the estimate of vaccine efficacy using the surveillance
cultures as a validation set?



Chapter 9
Vaccine Effects on Post-Infection Outcomes

9.1 Scientific Questions of Interest

A common question of interest is whether clinical cases in infected vaccinated peo-
ple are less severe than clinical cases in infected unvaccinated people. As early as
1939, Kendrick and Eldering described less severe disease in children with pertussis
who had been inoculated with pertussis vaccine compared to children with pertussis
who had not been inoculated. Children vaccinated against chickenpox who develop
clinical symptoms have less severe disease than unvaccinated children (Vazquez
et al 2001). In evaluating malaria vaccine candidates, a question of interest might
be whether the density of malaria blood-stage parasites is lower in infected vacci-
nated children than in infected unvaccinated children. In assessing an HIV vaccine,
a scientific question of interest might be whether infected vaccinated people have a
slower progression to clinical AIDS disease than infected unvaccinated people. In
such a study, because the clinical endpoint of AIDS could take years to develop, the
post-infection outcomes viral load and CD4 count could be used as surrogates for
the clinical endpoint of interest.

Common to all of these questions is that the comparison is not between outcomes
in uninfected vaccinated and unvaccinated individuals, but in people who have either
become infected or developed clinical symptoms. We denote the vaccine effects on
post-infection or post-clinical symptom outcomes broadly as VEP.

9.1.1 Different measures of VEP

If the interest is in an outcome in infected people, then VEP is defined as one minus
the ratio of a summary measure, such as the mean, of the post-infection outcome
in the infected vaccinated people and a summary measure of the post-infection out-
come in the infected unvaccinated people:

M.E. Halloran et al., Design and Analysis of Vaccine Studies, Statistics for Biology
and Health, DOI 10.1007/978-0-387-68636-3 9, 177
c© Springer Science+Business Media, LLC 2010
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VEP = 1−
vaccinated post-infection outcome

infected vaccinated people
unvaccinated post-infection outcome

infected unvaccinated people

. (9.1)

Similarly, if a post-clinical outcome in the clinical cases is of interest, then VEP is
defined as one minus the ratio of a summary measure of the post-clinical outcome
in the vaccinated cases and a summary measure of the post-clinical outcome in the
unvaccinated cases:

VEP = 1−
vaccinated post-clinical outcome

vaccinated clinical cases
unvaccinated post-clinical outcome

unvaccinated clinical cases

. (9.2)

Throughout this chapter, the methods are applicable to post-infection outcomes
given infection as well as to post-clinical outcomes given a clinical case. We do
not repeat everywhere the result for both situations. In this chapter, if the interest is
on post-infection outcomes, then VES, VESP, and VEP denote vaccine efficacy for
susceptibility to infection, vaccine efficacy for susceptibility to the post-infection
outcome not conditional on infection, and vaccine efficacy for the post-infection
outcome conditional on being infected. If the interest is in some post-clinical out-
come in clinical cases, the vaccine efficacies are defined analogously. For example,
we use the notation VES, VESP, and VEP to denote vaccine efficacy against a clin-
ical case, vaccine efficacy against a further outcome, such as severe disease, not
conditional on being a case, and vaccine efficacy against severe disease conditional
on being a clinical case.

Just as with VES, different post-infection or post-clinical outcomes can be used to
measure VEP. Some options for outcomes in VEP are summarized in Table 9.1. In
the table, the occurrence of the infection or clinical outcome on which the post-
infection or post-clinical outcome is conditioned is assumed to be dichotomous
(0,1), but more complex forms or assumptions are possible. Depending on the sci-
entific question of interest, the post-infection outcome could be dichotomous (0,1),
continuous, as with parasite density, or time-to-event, such as the time between as-
certaining infection and developing a clinical outcome of interest. Thus, we could
differentiate VEP measures based on different outcomes by the notation as in Table
2.2, such as VEP,λ analogous to VES,λ if based on the time-to-event. If the outcome
is the time to an event after infection, an incidence rate or survival analysis that
begins with the observation at the time of infection might be appropriate. For con-
tinuous or time-to-event post-infection outcomes, the mean, median, or some other
summary measure in the two groups could be used. The exact form of the VEP
estimator depends on the choice of outcome.

Transmissibility for others is also a post-infection outcome. Thus, vaccine effi-
cacy for infectiousness, VEI , is a special case of a vaccine effect on a post-infection
outcome. If measured by level of viral shedding or some other laboratory measure,
then VEI is similar to a VEP measure, or at least a surrogate measure. If VEI is mea-
sured epidemiologically based on the transmission probability or secondary attack
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Table 9.1 Different types of post-infection and post-clinical outcomes, VEP. Ascertainment can
be on infection or on clinical disease, which determines the VES (VESP)

Postinfection
VES VEP

Outcome Outcome Examples

Infection Dichotomous Clinical case (0,1)
0,1 Clinical case within time interval (0,1)

Transmission to other (0,1)

Continuous Malaria parasite density
HIV viral load

Time-to-event Time to developing symptoms

Clinical case Dichotomous Severe disease (0,1)
0,1 Death

Transmission to other (0,1)

Continuous Malaria parasite density
Chickenpox: number of lesions

Time-to-event Time to clearing infection
Time to death

rate in others, it is more complex than simple VEP measures (Chapters 10 through
12).

9.1.2 Vaccine effects on dichotomous post-infection outcomes

If the post-infection outcome is dichotomous, we can define the post-infection attack
rate (PAR) as the number with the post-infection outcome of interest divided by the
number of infections:

PAR =
number with post-infection outcome

number infected
. (9.3)

Letting p denote the control group and v denote the vaccinated group, then VEP
using a dichotomous outcome can be defined as

V EP = 1− PAR(v)
PAR(p)

. (9.4)

As an example of VEP based on a dichotomous outcome in people with clinical
disease, Préziosi and Halloran (2003a) proposed a method to estimate the efficacy
of vaccine in reducing the probability of developing severe disease in clinical cases:

VEP = 1−
severe vaccinated cases

all vaccinated cases
severe unvaccinated cases

all unvaccinated cases
. (9.5)
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Pathogenicity is a measure of the ability of an infectious agent to cause disease
in an infected person. A measure of pathogenicity is the probability of developing
clinical disease if infected. If a vaccine decreases the probability of infected people
developing clinical disease, it decreases pathogenicity. An example of VEP based
on a dichotomous outcome in infected people is the vaccine effect on the probabil-
ity that an infected person will develop clinical symptoms, the vaccine efficacy for
pathogenicity. Asymptomatic infections have not traditionally been ascertained in
most vaccine studies, because ascertainment was generally by clinical case. How-
ever, asymptomatic infections could still be infectious. Thus for understanding the
overall public health effects of vaccination programs and for dynamic models, ascer-
taining people with asymptomatic infections and estimating the effect of vaccination
on the probability of developing symptoms is important.

9.1.2.1 Relation of VEP, VES, and VESP

For dichotomous infection outcomes and dichotomous post-infection outcomes, a
simple relation exists among VEP, VES, and VESP. Let ψ denote the relative risk
of the post-infection outcome in the infected vaccinated people compared with the
infected unvaccinated people, and θ be the relative risk of infection in the vaccinated
compared with the unvaccinated people. Then VEP is

VEP = 1−
vaccinated cases

vaccinated infections
unvaccinated cases

unvaccinated infections
= 1−ψ. (9.6)

Letting

V ES,CI = 1−
vaccinated infectious

vaccinated people
unvaccinated infections

unvaccinated people
= 1−θ , (9.7)

then

V ESP,CI = 1−
vaccinated cases

vaccinated people
unvaccinated cases

unvaccinated people

= 1−
vaccinated infections

vaccinated people
unvaccinated infections

unvaccinated people
×

vaccinated cases
vaccinated infections
unvaccinated cases

unvaccinated infections
= 1− (1−V ES)(1−V EP) = 1−θψ. (9.8)

These relations hold under the assumption that the infected people in the control
arm are comparable to the infected people in the vaccine arm. If any two of the
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three are estimated, the other can be derived from equation (9.8). In general, to use
(9.8), asymptomatic infections need to be determined. A similar relation as that in
equation (9.8) holds for VESP,CI , when the post-clinical outcome is severe cases of
the disease of interest, and VES is based on clinical cases.

9.1.3 Statistical validity and VEP

In randomized studies, approaches that use the originally randomized populations
in the denominators, such as VES and VESP, enjoy the statistical validity associ-
ated with an intent-to-treat analysis. One can think of the events after randomization
of uninfected individuals as occurring on a continuous time line. Perhaps first is
infection, followed by symptoms or not, followed by severe symptoms or not, fol-
lowed by death or not. An analysis that uses any of these outcomes, as long as it
is the first outcome post-randomization used in the analysis, enjoys the statistical
validity associated with an intent-to-treat analysis. In any particular study, vaccine
efficacy against differing definitions or severity of the symptomatic disease can be
estimated, yielding more than one estimate of VESP. The efficacy estimate may be
higher for more stringent case definitions (Chapter 6), but the statistical validity of
the comparison is not compromised.

However, VEP conditions on infection or clinical disease to estimate a net effect
of the vaccine on the post-infection or post-disease endpoint in just those people
who become infected or have clinical disease. The infected vaccinated group and
the infected control group may not be comparable, so the comparison may not be
statistically valid, and the VEP estimate may not have a causal interpretation. In the
first sections in this chapter, we assume that the comparison is valid. In Sections 9.3
and 9.4, we relax this assumption and show the implications.

9.2 Effect of Vaccination on Disease Severity

Préziosi and Halloran (2003a) analyzed a study of pertussis vaccination in the Ni-
akhar study area of Senegal to estimate the effect of vaccination on reducing the
severity of clinical pertussis cases. The study population and surveillance for per-
tussis in the Niakhar study area are described in Section 10.2.3. Briefly, the Niakhar
study area is 150 km southeast of Dakar, Senegal, and includes 30 villages. Surveil-
lance began in March 1983 with annual, and after 1987, weekly visits to residential
compounds. Pertussis was endemic, with epidemics every 3–4 years, and 1993 was a
pertussis epidemic year. Active surveillance was conducted in children <15 years of
age by weekly visits to the compounds by trained field workers. They reported cases
in children <15 years old who had potential pertussis (cough of >7 days duration).
A physician then visited to confirm clinically and collect laboratory samples.
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Table 9.2 Scale used to assess the severity of illness
among children with symptoms of pertussis (Préziosi
and Halloran 2003a)

Variable No. of Points

Severity of cough
Typical paroxysms with whoops 4
Typical paroxysms without whoops 3
Atypical paroxysms only 1

Apnea 6
Pulmonary signa 3
Mechanical complicationb 3
Facial swelling 3
Conjunctival injection 3
Post-tussive vomiting 2

Total score (severity)c

Mild disease ≤6
Severe disease >6

a Bronchitis or bronchopneumonia.
b Subjunctival hemorrhage or umbilical or inguinal hernia.
c The overall median total score was 6 in this study.

A case of pertussis was defined by confirmation of pertussis infection by pres-
ence of at least one of three laboratory criteria: (1) isolation of B. pertussis from
a nasopharyngeal aspirate (culture positive), (2) significant increase or decrease in
pertussis toxin or filamentous hemagglutinin antibodies (serology positive), or (3)
signs and symptoms of disease in an individual who lived in the same compound as
a child who had onset of culture-positive disease within 28 days (epilink).

9.2.1 Global score of disease severity

Estimating VEP requires defining the disease outcomes of interest carefully. To
compare the severe to nonsevere cases, definitions of a severe case and a nonse-
vere case, or other levels of severity, such as moderate severity, are needed. Préziosi
and Halloran (2003a) proposed a scale to assess the global clinical severity of per-
tussis cases, rather than analyzing each individual symptom. Severity of illness was
assessed according to the scale in Table 9.2. Death is not included, because there
was only one death due to pertussis in the study period. Each relevant symptom was
given a score based on the judged severity of the symptom. The global symptom
score for each child was obtained by the simple sum of the child’s scores for indi-
vidual clinical signs and symptoms. Severe disease was defined by a score greater
than a particular threshold value. The main outcome measure was defined using the
overall severity median score in the confirmed clinical cases.

Sex, age, and type of case (primary or post-infection) were included in a mul-
tivariate analysis using logistic regression and then backtransformed to the relative
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Table 9.3 Number of cases of severe pertussis, among 834 children who
had or had not received pertussis vaccine, and efficacy of the vaccine
in reducing severity, according to severity score (Préziosi and Halloran
2003a).

No. (%) of cases

In unvaccinated In vaccinated Vaccine efficacy, %
All children children VEP

Scorea (n = 837) (n = 243) (n = 594) (95% CI)

>0 738 (88) 233 (96) 505 (85) 11 (8–15)
>1 728 (87) 231 (95) 497 (84) 12 (8–16)
>2 677 (81) 227 (93) 450 (76) 19 (14–23)
>3 559 (67) 205 (84) 354 (60) 29 (23–35)
>4 529 (63) 194 (80) 335 (56) 29 (22–36)
>5 443 (53) 178 (73) 265 (45) 39 (32–46)
>6 339 (41) 149 (61) 190 (32) 48 (39–55)
>7 315 (38) 139 (57) 176 (30) 48 (39–56)
>8 268 (32) 119 (49) 149 (25) 49 (38–58)
>9 151 (18) 76 (31) 75 (13) 60 (47–70)
>10 147 (18) 75 (31) 72 (12) 61 (48–71)
>11 130 (16) 67 (28) 63 (11) 62 (48–72)
>12 31 (4) 20 (8) 11 (2) 78 (54–89)
>13 30 (4) 19 (8) 11 (2) 76 (51–89)
>14 24 (3) 17 (7) 7 (1) 83 (60–93)

a The scale used to assign the severity score is shown in Table 9.2. The overall median
score was 6. A score ≤6 indicates mild disease; a score >6 indicates severe disease.

risk scale (Halloran et al 2003b) (Chapter 12.3.2). Confidence intervals were ob-
tained using the bootstrap (Efron and Tibshirani 1993).

In 1993, 2123 individuals with potential cases of pertussis were identified in 518
of 1800 residential compounds, 98% under 15 years of age. Nearly all children un-
der 6 months or 9 years and older were unvaccinated, so these age groups could not
be included in the comparison. Cultures were done on 99% of all suspected cases,
and serological testing in 69% of unvaccinated and 83% of vaccinated suspected
cases. In all, 834 children with 837 cases of laboratory-confirmed pertussis were
identified. Details of confirmation criteria and clinical signs and symptoms are in
Préziosi and Halloran (2003a).

9.2.2 VEP for severity of pertussis disease

Based on the median threshold global severity score of 6 for mild versus severe
disease, there were 190 severe vaccinated cases in 594 vaccinated cases, and 149
severe unvaccinated cases in 243 vaccinated cases. Thus, 61% of cases in unvacci-
nated children and 32% of cases in vaccinated children had severe disease. Based
on this threshold, using equation (9.5), the estimated VEP is
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V̂EP = 1− 190/594
149/243

= 0.48 (95% CI 0.39, 0.55). (9.9)

Thus, clinical cases in unvaccinated children were twice as likely as clinical cases
in vaccinated children to have severe disease. Table 9.3 presents a sensitivity analy-
sis of the estimate of VEP to the choice of threshold for defining a severe case. The
threshold varies from 1 to >14. The estimated VEP varies from 11% to 83%, becom-
ing higher as the threshold for defining a severe case gets higher. The lower limit of
the 95% CI was greater than 0 for all thresholds. The results indicate that pertussis
vaccination substantially decreases the severity of breakthrough disease in children
who receive three doses of vaccine, compared with that in unvaccinated children.
The majority of vaccinated children who developed pertussis had mild disease.

Because this is an observational study, there is a potential for selection bias, par-
ticularly in (1) ascertainment and (2) laboratory confirmation. Both are minimal in
this case because (1) surveillance was active, and (2) most children with suspected
cases had laboratory tests done. To assess potential bias in the selection of the con-
firmed cases, Préziosi and Halloran (2003a) examined clinical illnesses among chil-
dren with a potential case of pertussis whose biological tests were negative and
among children for whom no laboratory samples were available. A comparison of
the vaccinated and unvaccinated children who had no biological test done or whose
tests were all negative yielded no appreciable vaccine effect in these groups.

In a secondary analysis, VESP was also estimated, first using all cases, and then
using just severe cases. Child-years at risk were computed for 1993 among suscepti-
ble children six months up to eight years old. Standard CIs were computed assuming
log-normality of relative risks. In the secondary analysis, the estimate of VESP for
all cases was 0.29 (95% CI, 0.19–0.39), and the estimate of VESP for severe cases
was 0.64 (95% CI, 0.55–0.71). It is typical that the estimated VESP is higher for
more severe or stringent case definitions.

9.2.3 Rotavirus vaccine in Finland

Vesikari et al (1990) analyzed a randomized, double-blinded, placebo controlled
trial of a Rhesus rotavirus candidate vaccine. The trial was conducted in children two
to five months of age from 1985–1987 in Finland with 100 children randomized to
each arm. The effect of the vaccine on the clinical course of infection was considered
by comparing severity (mild, moderate, or severe) between vaccinees and control
individuals with confirmed Rotavirus diarrhea using Fisher’s exact test. Combining
the severe and moderately severe cases, 5 of 10 cases in the vaccinated group were
severe or moderately severe, and 13 of 16 cases in the placebo group were severe or
moderately severe. Using equation (9.5) yields V̂EP = 0.38, (95% CI,−0.11–0.74).
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9.3 Causal Effects on Post-Infection Outcomes

In Sections 9.1 and 9.2 the assumption was made that the infected vaccinated group
and the infected unvaccinated group were comparable. However, conditioning on
an event, such as infection, that occurs subsequent to receipt of vaccine or control
could result in selection bias, even if the study were randomized (Struchiner et al
1994; Halloran and Struchiner 1995). Issues related to interpreting malaria vaccine
trials motivated Struchiner et al (1994) to consider the problem of vaccinated and
unvaccinated groups not being comparable after being infected even in randomized
trials. With the development of HIV vaccine candidates, the assumption about the
comparability of the infected vaccinated and infected unvaccinated groups gained
considerable attention (Hudgens et al 2003; Gilbert et al 2003a). The initial HIV
vaccine candidates were hoped to protect against infection and also slow progres-
sion to AIDS post-infection. The HIV vaccine trials were designed to draw blood
from all the participants to ascertain infection at three-month intervals. Because the
incubation period to the development of AIDS after HIV infection is usually several
years, post-infection measures in the blood such as viral load and CD4 cell count
are used as surrogates of potential future development of AIDS. Concern grew that
the infected people in the vaccinated group and infected people in the unvaccinated
group might not be comparable, leading to biased estimates of the effect of vaccina-
tion on post-infection outcomes.

9.3.1 Post-infection selection bias

For example, assume that the potential immune response to HIV has a distribution
in the population before individuals are randomized to vaccine or control. Random-
ization would assure that in large samples, the potential distribution of the immune
response to HIV would be the same in the vaccine and the control groups. It could be
that the vaccine enhances protection only in people who have the stronger immune
system, conferring some level of protection against infection if exposed. Then the
people in the vaccinated group who become infected would be the ones with weaker
immune systems, whereas the infected people in the unvaccinated group would be
those with a weaker immune system as well as those with the stronger immune
system. In this situation, if we compare a post-infection outcome in the vaccinated
group with that in the unvaccinated group, it could appear that the vaccine makes
things worse, even if vaccination has absolutely no effect on anything after infection.

For example, if people with a weaker immune system tend to have a higher viral
load after being infected than those with a stronger immune system, then the mean
viral load in the infected vaccinated group would be higher than the mean viral load
in the infected unvaccinated group (Figure 9.1). The resulting VEP estimate would
be negative. This observation could lead to the false conclusion that the vaccine
made the post-infection outcome worse, possibly resulting in rejection of a poten-
tially useful vaccine candidate (Hudgens et al 2003; Gilbert et al 2003a). However,
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Fig. 9.1 Viral load distribution for infected participants under a selection model. The normal dis-
tribution represents the viral loads of the infected controls. The shaded area represents the potential
viral loads of the vaccine efficacy × 100% that are protected by the vaccine. The unshaded area
(after appropriate scaling) represents the viral load distribution of the infected vaccinees (adapted
from Hudgens et al 2003).

.

the vaccine in this case actually does not make anything worse. The problem is that
the infected vaccinated group and infected control group are no longer comparable
because of selection bias.

Struchiner et al (1994) examined the post-infection selection bias from the point
of view of a lack of exchangeability (Greenland and Robins 1986) of the vaccinated
and unvaccinated groups, motivated by malaria vaccine trials. A similar problem
exists in principle for diseases and vaccines other than HIV and malaria, but it has
received considerably less attention. When the benefits of vaccination are clearly
positive, selection bias might not lead to discarding the vaccine, but to either an
over- or an underestimate of the public health benefits. Thus, it is important both
scientifically and for public health purposes to be able to differentiate the effects of
vaccines on infection from their effects on post-infection outcomes, and to account
for potential selection bias.
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9.3.2 Defining causal estimands for post-infection outcomes

How do we account for possible selection bias in estimating VEP if we do not
know whether it is present? Different methods have been used to adjust analyses
for post-treatment variables such as infection (Robins and Greenland 1992, 1994;
Rosenbaum 1984). The method presented here is based on the potential outcomes
approach to causal inference introduced in Section 1.4. In Table 1.1, four types of
people are defined based on their joint potential outcome under vaccine and control,
namely immune, harmed, protected, and doomed. If infection is the potential out-
come of interest, then the four types of people are defined by their joint potential
infection outcomes under vaccine and control. Because the set of individuals who
would become infected if vaccinated is likely not identical to the set of those who
would become infected if given control, comparisons that condition on infection do
not have a causal interpretation (Rosenbaum 1984; Frangakis and Rubin 2002).

Frangakis and Rubin (2002) propose a method to adjust for post-treatment
variables, called principal stratification, that stratifies on the joint potential post-
treatment variables under each of the treatments being considered. The causal effects
of one treatment compared to the other on a main outcome of interest are defined
within each of these principal strata and are called principal effects. If infection is
considered as a post-treatment variable, then the post-infection outcome is defined
under both vaccine and placebo only in the doomed stratum, in which people would
be infected under both vaccine and placebo. The post-infection outcome is not de-
fined for anyone in the immune stratum. It is defined only under placebo in the
protected stratum, and only under vaccine for the harmed stratum. The importance
of estimating quantities defined only in a subpopulation in which the outcomes are
defined was presented in the context of outcomes censored by death (Kalbfleisch
and Prentice 1980). Robins (1986, Remark 12.2,) considered inference about causal
effects in the stratum that would survive under either treatment.

Several papers have been published using this approach to assess vaccine effects
on post-infection outcomes. In studying HIV vaccines, Hudgens et al (2003) and
Gilbert et al (2003a) adopted the principal stratification approach to assess HIV
vaccine effects on the continuous post-infection outcome viral load. Hudgens et
al (2003) developed bounds. Gilbert et al (2003a) adapted methods for sensitivity
similar to that of Scharfstein et al (1999) and Robins et al (2000b). Shepherd et al
(2006a) considered sensitivity analyses comparing outcomes only existing in a sub-
set selected post-randomization, conditional on covariates, with application to HIV.
Jemiai et al (2007) developed extensions of Gilbert et al (2003a) that allow the esti-
mation of treatment effects conditional on covariates. Shepherd et al (2007) devel-
oped the methods for a time-to-event post-infection outcome, also with application
to HIV vaccine. The time-to-event postinfection outcome was the time from infec-
tion diagnosis to initiation of antiretroviral therapy. Hudgens and Halloran (2006)
developed methods for the causal vaccine effects on binary post-infection outcomes
with applications to pertussis and rotavirus vaccines. Table 9.4 summarizes litera-
ture on bounds and sensitivity analyses of causal vaccine effects for different types
of post-infection outcomes.
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Table 9.4 Bounds and sensitivity analyses of causal vaccine effects, VEP, for different types of
post-infection outcomes assuming SUTVA, randomization, and monotonocity

Infection Postinfection
Outcome Outcome

VES VEP Analysis Reference

0,1 Continuous Bounds Hudgens et al 2003

Sensitivity analysis Gilbert et al 2003a

Covariates Shepherd et al 2006a

Jemiai et al 2007

Binary Bounds and Hudgens and Halloran 2006
sensitivity analysis

Ttime-to-event Bounds and Shepherd et al 2007
sensitivity analysis

Because the development for continuous and time-to-event post-infection out-
comes involves complex integral equations, we focus on the development of meth-
ods for binary post-infection outcomes by Hudgens and Halloran (2006). The ap-
proach for continuous and time-to-event outcomes is similar. The common steps
in developing the methods regardless of the type of post-infection outcome are as
follows.

1. Assume (i) the stable unit treatment value assumption (SUTVA) and (ii) an as-
signment mechanism independent of the potential outcomes, for example, ran-
domization.

2. Define the causal VEP in the doomed (always-infected) basic principal stratum,
which is not identifiable from the observed data without further assumptions.

3. Assume that the harmed principal stratum is empty, called the monotonicity as-
sumption.

4. The monotonicity assumption implies that all infected vaccine recipients are in
the doomed stratum, so the numerator of the causal VEP is identifiable. However,
the infected placebo recipients could be in either the protected or the doomed
stratum, so the denominator of the causal VEP is not identifiable.

5. Bounds can be set on the estimates of the causal VEP by extreme assumptions
about the distribution of the post-infection outcome in the infected placebo recip-
ients in the protected stratum compared with the distribution of the post-infection
outcome in the infected placebo recipients in the the doomed stratum.

6. Sensitivity analyses can be done by varying a selection bias parameter over rea-
sonable ranges of selection bias, with the assumption of no selection bias being
a special case.

To formalize these concepts, we use an extension of the causal model introduced
in Section 1.4 and Table 1.1. Let Zi = v if the ith individual is assigned vaccine,
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and Zi = p if assigned control. Denote the potential infection outcome of the ith
individual if assigned Zi as Si(Zi), where Si(Zi) = 0 if uninfected and Si(Zi) = 1 if
infected. The focus is on evaluating the causal effect of vaccine on the outcome Y
that occurs after an individual becomes infected. Y could be a continuous random
variable, a time-to-event variable, or a binary outcome. Here we develop the notation
for a binary outcome. If Si(Zi) = 1, then Yi(Zi) = 1 if the ith individual has the worse,
or more severe post-infection outcome, and Yi(Zi) = 0 otherwise. If an individual’s
potential infection outcome for an assignment is uninfected, that is, Si(Zi) = 0, then
Yi(Zi) is undefined and denoted by ∗. Let Sobs

i denote the observed infection outcome
Si(v) or Si(p), depending on treatment assignment, and analogously Y obs

i for the
observed post-infection outcome.

In the following, we assume the potential outcomes for each individual are inde-
pendent of the treatment assignment of other individuals. That is, we assume there
is no interference between individuals (SUTVA). We further assume that the assign-
ment to vaccine or control is independent of the potential infection outcomes and
the potential post-infection outcomes. Randomization is one assignment mechanism
where the treatment assignment is independent of the potential outcomes.

A basic principal stratification P0 is defined according to the joint potential in-
fection outcomes SP0 = (S(v),S(p)) (Frangakis and Rubin 2002). Table 9.5 sum-
marizes the four basic principal strata defined by the joint potential infection out-
comes, (S(v),S(p)), and the strata defined by the joint potential post-infection out-
comes, (Y (v),Y (p)), within each principal stratum. The four basic principal strata
are composed of immune (not infected under both vaccine and placebo), harmed
(infected under vaccine but not placebo), protected (infected under placebo but not
vaccine), and doomed individuals (infected under both vaccine and placebo). Be-
cause membership in a basic principal stratum is not affected by whether an indi-
vidual is actually assigned vaccine or placebo, the strata can be used in the same
way as pre-treatment covariates, with causal post-infection vaccine effects defined
within a basic principal stratum SP0 .

In general, causal effects are defined in terms of potential outcomes. From Table
9.5, we see the doomed basic principal stratum, SP0 = (1,1), is the only stratum
in which both potential post-infection endpoints, and thus their joint distribution,
are defined. For this reason, defining individual post-infection causal vaccine effects
makes sense only in the doomed basic principal stratum, SP0 = (1,1). In other words,
we can speak of a vaccine causing an improvement or worsening of a post-infection
outcome only for an individual who would become infected whether vaccinated
or not. Thus, two population-level causal estimands can be validly defined: (1) the
effect of vaccine on infection (S) for all participants, and (2) the effect of vaccine on
the post-infection outcome (Y ) for those participants who would be infected under
both treatment assignments.

Regardless of the type of post-infection outcome, the population causal vaccine
efficacy to prevent infection S = 1 can be defined as

VES = 1− Pr(S(1) = 1)
Pr(S(0) = 1)

, (9.10)
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Table 9.5 Basic principal stratification P0 based on the potential infection outcomes (S(v),S(p))
with potential post-infection strata based on (Y (v),Y (p)) (Hudgens and Halloran 2006)

Potential Infection Strata Potential Post-infection Strata

Potential Potential
Basic Infection Post-Infection

Principal Outcomes Outcomes Post-Infection Interpretation
Stratum, SP0 (S(v),S(p)) (Y (v),Y (p))

Immune (0,0) (∗,∗) Always undefined

Harmed (1,0) (0,∗) Not severe vaccine, undefined placebo
(1,∗) Severe vaccine, undefined placebo

Protected (0,1) (∗,0) Undefined vaccine, not severe placebo
(∗,1) Undefined vaccine, severe placebo

Doomed (1,1) (0,0) Never severe
(1,0) Harmed by vaccine
(0,1) Helped by vaccine
(1,1) Always severe

the relative average causal effect (RACE) of vaccination on infection (Hudgens and
Halloran 2006). Under randomization, it follows that

VES = 1− E {S(v)|Z = v}
E {S(p)|Z = p}

= 1−
E
{

Sobs|Z = v
}

E {Sobs|Z = p}
.

Using the basic principal stratification shown in Table 9.5, Hudgens and Halloran
(2006) propose an estimand for the causal effect of vaccination on a binary post-
infection outcome. In particular, the individual causal vaccine effect on the post-
infection outcomes is defined as

VEPi = 1− Yi(v)
Yi(p)

,

for individuals within the doomed principal stratum only. Assuming SUTVA and
randomization, define the population post-infection causal vaccine effect VEP within
the doomed principal stratum as

VEP = 1− E{Y (v)|SP0 = (1,1)}
E{Y (p)|SP0 = (1,1)}

. (9.11)

All of the papers listed in Table 9.4 define an analogous causal estimand for post-
infection outcomes based on the individuals within the doomed principal stra-
tum only. The form is different for continuous and time-to-event outcomes. Like
VES, (9.11) could equivalently be given in terms of probabilities because the post-
infection random variables Y (v) and Y (p) are assumed to be binary such that VEP
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can be interpreted as the causal estimand measuring the relative reduction in the
probability of the worse post-infection outcome given vaccine compared to placebo
in those individuals who would be infected under either treatment assignment.

The problem with this approach is that it is not possible to tell to which stratum
any individual belongs, at least without further assumptions. For example, a person
who is vaccinated and becomes infected could belong to either the doomed or the
harmed stratum. A person who receives control and is infected could belong to either
the doomed or the protected stratum. Thus it is not possible to estimate the causal
VEP from the observed data without further assumptions.

One assumption that is plausible for most vaccines is helpful in this situation. If
we assume that the vaccine does not harm people with respect to infection, then we
can claim that the harmed stratum is empty. This assumption is called the mono-
tonicity assumption. Under the monotonicity assumption, a vaccinated person who
becomes infected must be in the doomed stratum. The monotonicity assumption
does not help with the people who receive control and become infected. Infected
people in the control arm can still be in either the protected or the doomed stratum.

Although it is not possible to identify who of the infected control group is in the
protected or doomed stratum, it is possible to set upper and lower bounds on the

vaccine effect on the post-infection outcome, V̂E
upper
P and V̂E

lower
P . Estimating the

causal vaccine effect under an extreme degree of selection bias is useful in bounding
the estimate of the post-infection effect above and beyond any possible selective
effects. However, the true degree of selection bias is likely less than the extreme

models, such that using V̂E
upper
P or V̂E

lower
P may be too conservative. Therefore, it

is useful to do sensitivity analyses by varying the amount of selection bias, in which
the case of no selection and extreme bounds are included as special cases.

Gilbert et al (2003a), Shepherd et al (2006a), and Shepherd et al (2007) adapted
methods for sensitivity similar to those of Scharfstein, et al (1999) and Robins et
al (2000b) for continuous outcomes. In this approach, the sensitivity analysis is
performed by varying a selection bias parameter β over a range. In particular the
odds ratio, OR = exp(β ), is varied from 0 to +∞, with no selection bias being at
OR = 1. The odds ratio is interpreted as given infection in the placebo arm, for a
one-unit increase in the Y outcome, the odds of being infected if randomized to the
vaccine arm multiplicatively increases by OR = exp(β ).

Figure 9.2 illustrates different degrees of selection bias associated with varying
the odds ratio, showing the distributions of the potential continuous Y outcome in
the infected control group in the protected stratum and the infected control group
in the doomed stratum. The shaded area represents the distribution of the potential
Y outcome in the infected control group in the doomed stratum. The area under the
clear distribution is that in the protected stratum. When the odds ratio equals 1, there
is no selection bias, and the distributions in the two strata are the same. As the odds
ratio tends to 0, the distribution of the Y outcome in the doomed stratum tends to be
lower than the Y outcome in the protected stratum. As the odds ratio tends to ∞, the
distribution of the Y outcome in the doomed stratum tends to be higher than the Y
outcome distribution in the protected stratum. The data do not provide information
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OR=0 OR= 0.001 OR= 0.01 OR= 0.02 OR= 0.05

OR= 0.1 OR= 0.2 OR= 0.333 OR= 0.5 OR= 0.667

OR= 0.8 OR= 0.909 OR= 1 OR= 1.1 OR= 1.25

OR= 1.5 OR= 2 OR= 3 OR= 5 OR= 10

OR= 20 OR= 50 OR= 100 OR= 1000 OR = !

Fig. 9.2 Distribution of the potential post-infection outcome Y in the infected control group in
the protected stratum and the infected control group in the doomed stratum for different values of
the selection bias odds ratio exp(β ). The shaded area represents the distribution of the potential Y
outcome in the infected control group in the doomed stratum. The area under the clear distribution
is that in the protected stratum (courtesy of B. Shepherd).

about the degree of selection bias. Then outside knowledge or expert opinion can be
used to choose a plausible range for the selection bias (Shepherd et al 2006b).

9.4 Causal Effects for Binary Post-Infection Outcomes

The causal vaccine efficacy for a binary post-infection outcome for those partici-
pants who would be infected under both treatment assignments, VEP, is defined in
equation (9.11). Two further estimands regarding the effect of vaccination on the
binary post-infection outcome Y can be formally defined (Hudgens and Halloran
2006).

The approach to assessing vaccine effects on post-infection endpoints based on
the observed data in Section 9.1.2 is the net vaccine effect estimand that conditions
on infection, ie,

VEnet
P = 1−

E
{

Y obs|Sobs = 1,Z = v
}

E {Y obs|Sobs = 1,Z = p}
= 1− E {Y (v)|S(v) = 1}

E {Y (p)|S(p) = 1}
,
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with the second equality following from the independence, eg, randomization as-
sumption. As discussed in Section 9.3.1, in general, VEnet

P does not have a causal
interpretation since the set of individuals with S(v) = 1 is not necessarily identical
to the set of individuals with S(p) = 1.

An estimand that defines the effect of vaccination on disease rather than infec-
tion, or severe disease rather than disease, as in Chapter 6, might be considered
intent-to-treat (ITT) because it does not condition on the post-treatment variable
Sobs. It incorporates all individuals according to their treatment assignment. VESP,CI
in equation (9.8) is an example of an ITT estimand. Formally,

VESP,CI = VEIT T
P = 1− E {Y (v)×S(v)}

E {Y (p)×S(p)}
,

where the convention sets Y (z)× S(z) = 0 if S(z) = 0, z = v, p. This is a general
form for what Préziosi and Halloran (2003a) called “VESP for severity.” The VEIT T

P
estimand has a causal interpretation, but it combines vaccine effects on susceptibility
and the post-infection outcome. Formally, equation (9.8), and equivalently equation
(2.12), can be written as

VEIT T
P = 1− (1−VES)(1−VEnet

P ).

9.4.1 Parameterization

Let the parameters θ govern the probabilities associated with the basic principal
strata (Hudgens and Halloran 2006). By the monotonicity assumption, the harmed
stratum SP0 = (1,0) is empty, so let θ = (θ00,θ01,θ11) where

Pr{SP0 = (i, j);θ}= θi j for i, j = 0,1; i≤ j. (9.12)

Next let the parameters φ = (φ00,φ01,φ10,φ11) govern the probabilities associated
with the joint potential post-infection outcomes in the doomed basic principal stra-
tum SP0 = (1,1), where

Pr{(Y (v),Y (p)) = (k,m)|SP0 = (1,1);φ}= φkm for k,m = 0,1. (9.13)

Let the parameters γ = (γ0,γ1) govern the probabilities associated with the two pos-
sible potential post-infection outcomes under placebo in the protected basic princi-
pal stratum, SP0 = (0,1), where

Pr{Y (p) = i|SP0 = (0,1);γ}= γl for l = 0,1. (9.14)

Finally, let the law of Z be given by Pr{Z = z;ϕ}= ϕz for z = v, p.
Under this parameterization, the causal estimand of vaccine efficacy for suscep-

tibility is
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VES = 1− θ11

θ01 +θ11
.

Based on the definition of the causal estimand VEP given in (9.11), we are not inter-
ested in the joint probabilities φkm (k,m = 0,1), but rather just two of the marginal
probabilities. In particular, let

Pr{Y (v) = 1|SP0 = (1,1)} = φ10 +φ11 = φ1· ,

Pr{Y (p) = 1|SP0 = (1,1)} = φ01 +φ11 = φ·1 .

Then

VEP = 1− φ1·
φ·1

, (9.15)

Under this parameterization,

VEnet
P = 1− φ1·

γ1VES +φ·1(1−VES)
, and VEIT T

P = 1− φ1·(1−VES)
γ1VES +φ·1(1−VES)

.

9.4.2 Estimation

Suppose we observe n i.i.d. realizations of (Z,Sobs,Y obs), where Y obs is undefined
or does not exist if Sobs = 0. There are six possible observed combinations of
(Z,Sobs,Y obs). Let nsy(z) be the number of each combination observed in the study
population where s = 0,1 is the observed infection outcome Sobs; y = 0,1,∗ is the
observed post-infection outcome Y obs; and z = v, p. That is,

n0∗(p) = ∑i I(Zi = p,Sobs
i = 0,Y obs

i does not exist)
n10(p) = ∑i I(Zi = p,Sobs

i = 1,Y obs
i = 0)

n11(p) = ∑i I(Zi = p,Sobs
i = 1,Y obs

i = 1)

n0∗(v) = ∑i I(Zi = v,Sobs
i = 0,Y obs

i does not exist)
n10(v) = ∑i I(Zi = v,Sobs

i = 1,Y obs
i = 0)

n11(v) = ∑i I(Zi = v,Sobs
i = 1,Y obs

i = 1)

where the summations are over i = 1, . . . ,n. The double subscripts for the ns
do not have the same meaning as for the φs and θs. Assume that each of the
six combinations is observed at least once. Let n(p) = n0∗(p) + n10(p) + n11(p)
and n(v) = n0∗(v) + n10(v) + n11(v) denote the number of individuals assigned to
placebo and vaccine. Let n1·(p) = n10(p)+n11(p) and n1·(v) = n10(v)+n11(v) de-
note the number of infected individuals assigned placebo and vaccine. Let

ARz =
n1·(z)
n(z)

for z = v, p,

ie, ARz is the observed attack rate in the group assigned treatment z. Finally, let
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PARz =
n11(z)
n1·(z)

for z = v, p,

ie, PARz is the observed post-infection attack rate in the group infected given treat-
ment z.

Maximum likelihood estimators (MLEs) of the identifiable vaccine efficacy esti-
mands can be found by maximizing the likelihood

L(θ ,γ,φ) ∝

n

∏
i=1

Pr[Y obs
i = yi,Sobs

i = si|Zi = zi;θ ,γ,φ ],

subject to constraints on θ ,γ,φ that ensure (9.12–9.14) are probability functions.
Hudgens and Halloran (2006) show that the MLE of VES is given by

V̂ES =


1− ARv

ARp
if ARv ≤ ARp,

0 otherwise.
(9.16)

This is the usual estimator of VES based on the attack rates, or cumulative incidence.
Furthermore, the MLE of VEnet

P is

V̂E
net
P = 1− PARv

PARp
, (9.17)

the same as in equations (9.1), (9.2), and (9.6). The MLE of VEIT T
I is

V̂E
IT T
P = 1− (1− V̂ES)

PARv

PARp
, (9.18)

or equivalently

V̂E
IT T
P =


V̂E

net
P if V̂ES = 0,

1− n11(v)/n(v)
n11(p)/n(p) if V̂ES > 0,

(9.19)

analogous to equation (9.8). In summary, the three MLEs V̂ES, V̂E
net
P , and V̂E

IT T
P

derived formally by the methods of causal inference correspond to the usual estima-
tors associated with these measures as in equation (9.8).

The causal estimand VEP is not identifiable because φ·1, the denominator of the
right side of (9.15), is not identifiable. On the other hand, φ1·, the numerator of
the right side of (9.15), can be identified by the observable random variables. The
corresponding MLE is given by

φ̂1· = PARv, (9.20)
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ie, the observed post-infection attack rate in the vaccine arm. Finally, although φ·1
is not identifiable, we can identify

Pr[Y (p) = 1|S(p) = 1;θ ,γ,φ ] = γ1VES +φ·1(1−VES). (9.21)

The MLE of (9.21) is PARp such that any feasible pair (γ̂1, φ̂·1) satisfying

PARp = γ̂1V̂ES + φ̂·1(1− V̂ES), (9.22)

is an MLE of (γ1,φ·1).

9.4.3 Applications

9.4.3.1 Rotavirus candidate vaccine

In the rotavirus candidate vaccine study (Vesikari et al 1990), the observed data were

n0∗(p) = 84 n0∗(v) = 90
n10(p) = 3 n10(v) = 5
n11(p) = 13 n11(v) = 5.

From (9.16), V̂ES = 1− (10/100)/(16/100) = 0.375. It then follows from (9.19)

that V̂E
IT T
P = 1− (5/100)/(13/100) = 0.62. The post-infection attack rates are

PARv = φ̂ 1· = 5/10 = 0.50 and PARp = 13/16 = 0.81 such that V̂E
net
P = 1−

(5/10)/(13/16) = 0.385, as in Section 9.2.3.
To consider estimation of the causal VEP, we examine the relation of the ob-

served data to the basic principal strata and the strata of joint potential post-infection
outcomes within each basic principal stratum. By the assumptions of SUTVA, inde-
pendence, and monotonicity, we know the following:

• All n10(v)+n11(v) = 10 belong to the doomed stratum SP0 = (1,1).
• All n0∗(p) = 84 belong to the immune stratum SP0 = (0,0).
• The n0∗(v) = 90 could belong to the immune stratum SP0 = (0,0) or the protected

stratum SP0 = (0,1).
• The n10(p) + n11(p) = 16 could belong to the protected SP0 = (0,1) or the

doomed SP0 = (1,1).

Ignoring statistical variability, by the independence assumption, because there are
10 vaccine recipients in the doomed stratum, there are 10 placebo recipients in the
doomed stratum. Because there are 84 placebo recipients in the immune stratum,
there are 84 vaccine recipients in the immune stratum. So there must be 6 from each
of the vaccinated and unvaccinated groups in the protected stratum. Thus, we can
estimate the size of the unobserved principal stratum SP0 = (0,1). However, we do
not know which 6 of the 16 infected placebo recipients are in protected stratum SP0 =
(0,1) or which 10 of the 16 are in the doomed stratum SP0 = (1,1). Why do we care?
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Because to estimate the causal VEP, we need to know the post-infection outcomes
of those in the doomed stratum. This illustrates the need for further assumptions to
identify VEP.

9.4.3.2 Pertussis vaccine

The pertussis vaccine analysis presented in Section 9.2 included exactly one year of
follow-up, the calendar year 1993, so the person-years at risk are a close approxima-
tion to the number of persons at risk. Thus, we use the person-years at risk for n(v)
and n(p). During that one calendar year, there were 3845 and 1020 person-years
at risk in the vaccinated and unvaccinated children. Using slightly different inclu-
sion criteria for cases than in Section 9.2, of 548 cases in the vaccinated group, 176
were severe, and of 206 cases in the unvaccinated group, 129 were severe. Based on
equation (9.5), V̂EP = 0.49 (95% CI, 0.40–0.56). Although vaccine status was not
randomized, there was no evidence of systematic differences between the vaccinated
and unvaccinated groups, so that the independence assumption might be reasonable.
The observed data are

n0∗(p) = 814 n0∗(v) = 3297
n10(p) = 77 n10(v) = 372
n11(p) = 129 n11(v) = 176.

From (9.16), V̂ES = 1− (548/3845)/(206/1020) = 0.29. The post-infection attack
rates are PARv = φ̂ 1· = 176/548 = 0.32 and PARp = 129/206 = 0.63 such that
V̂E

net
P = 1− (176/548)/(129/206) = 0.49, which is the same as V̂EP yielded by

using (9.5). Finally V̂E
IT T
P = 1−(176/3845)/(129/1020) = 0.64, which in Préziosi

and Halloran (2003a) was V̂ESP for severity.

9.4.4 Selection bias models

The inability to identify the causal VEP is due to φ·1 and γ1 not being separated in
the term

θ01γ1 +θ11φ·1 = Pr[Y obs = 1,Sobs = 1|Zobs = p]. (9.23)

For any fixed values of θ01, θ11, and Pr[Y obs = 1,Sobs = 1|Zobs = p] all pairs of
parameters

{(γ1,φ·1) : 0≤ γ1 ≤ 1,0≤ φ·1 ≤ 1, and (9.23) holds}, (9.24)

will yield the same distribution of (Z,Sobs,Y obs). The selection models presented in
this section place additional constraints on the parameter space such that only one
pair of parameters satisfies (9.24).
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9.4.4.1 No selection bias

The assumption of no selection implies that the probability of the post-infection
outcome conditional on infection under placebo is independent of infection status
under vaccine:

Pr
{

Y (p) = y|SP0 = (1,1);φ
}

= Pr
{

Y (p) = y|SP0 = (0,1);γ
}

for y = 0,1,

(9.25)

which implies φ·1 = γ1. Under assumption (9.25), from (9.22), the resulting MLE is

φ̂·1 = PARp. (9.26)

From (9.20), (9.26), and the definition of VEP given by (9.15), it follows that the
MLE of the causal VEP equals V̂E

net
P as given in (9.17). In other words, under the

additional assumption of no selection bias as specified by (9.25), the MLE of the
causal vaccine effect is the usual post-infection attack rate ratio estimator one ob-
tains when conditioning on infection as in equations (9.1) and (9.2).

9.4.4.2 Upper and lower bounds

The upper bound selection model yields the parameter pair (γ1,φ·1) consistent with
the observed data that has the largest φ·1, thus largest VEP. Because (9.24) is simply
the intersection of the unit square and a line with negative slope, it follows that the
pair with maximal φ·1 must be on the edge of the square, ie, when either of the
following conditions holds:

Pr[Y (p) = 1|SP0 = (1,1)] = φ·1 = 1, (9.27)
Pr[Y (p) = 1|SP0 = (0,1)] = γ1 = 0. (9.28)

In words, the upper bound selection bias model assumes either (i) all placebo re-
cipients in the doomed principal stratum have the worse post-infection outcome or
(ii) all placebo recipients in the protected principal stratum have the better post-
infection outcome. From (9.22) it follows that the unique MLE of VEP assuming
either (9.27) or (9.28) is given by:

V̂E
upper
P =



1−PARv if V̂ES > 1−PARp,

V̂E
IT T
P if 0 < V̂ES ≤ 1−PARp,

V̂E
net
P if V̂ES = 0.

(9.29)

All MLEs obtained under the three key assumptions must be less than or equal to
V̂E

upper
P .
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Similarly, the lower bound selection bias model assumes that under assignment
to placebo, the worse post-infection outcome occurs either with probability zero in
the doomed principal stratum,

Pr[Y (p) = 1|SP0 = (1,1)] = φ·1 = 0, (9.30)

or with probability one in the protected principal stratum,

Pr[Y (p) = 1|SP0 = (0,1)] = γ1 = 1. (9.31)

The resulting unique MLE of VEP is

V̂E
lower
P =



−∞ if V̂ES > PARp,

1−PARv/

{
PARp−V̂ES

1−V̂ES

}
if 0 < V̂ES ≤ PARp,

V̂E
net
P if V̂ES = 0.

(9.32)

Hudgens and Halloran (2006) derived the circumstances when the upper bound
will be negative (suggesting harm) and when the lower bound will be positive (sug-
gesting benefit). For example, V̂E

upper
P will be negative if and only if V̂ES ≤ 1−

PARp and V̂E
IT T
P < 0. Similarly, V̂E

lower
P will be positive if and only if V̂ES ≤ PARp

and PARv < (PARp− V̂ES)/(1− V̂ES). On the other hand, for V̂ES > max{PARp,1−
PARp}, V̂E

upper
P will be always positive and V̂E

lower
P will be always negative. In

other words, for large enough V̂ES the sign of VEP cannot be determined unless
further assumptions are made beyond SUTVA, independence, and monotonicity.

9.4.4.3 Sensitivity analysis for selection bias

Hudgens and Halloran (2006) present three approaches to sensitivity analysis that
allow selection models to range from no selection to the extreme maximum possible
levels.

9.4.4.4 Log odds ratio of infection

The first approach is similar to that of Scharfstein et al (1999) and Robins et al
(2000b). The sensitivity model is defined in terms of the log odds ratio of having
the severe post-infection endpoint under placebo in the doomed versus protected
principal strata:

exp(β ) =
Pr[Y (p) = 1|SP0 = (1,1)]/Pr[Y (p) = 0|SP0 = (1,1)]
Pr[Y (p) = 1|SP0 = (0,1)]/Pr[Y (p) = 0|SP0 = (0,1)]

. (9.33)
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For example, if exp(β ) = 2, then doomed individuals have twice the odds of having
the worse post-infection outcome under placebo compared to protected individuals.
In terms of this parameterization, this implies

φ·1 =
γ1 exp(β )

γ0 + γ1 exp(β )
. (9.34)

For fixed β , one can solve equations (9.22) and (9.34) for φ·1 and, in turn, VEP. The
sensitivity analysis is done by repeating this process over a range of different β s.
The bounds are given above.

9.4.4.5 Conditioning on γ1 as the sensitivity analysis parameter

The second approach to a sensitivity analysis conditions on the nuisance parameter
γ1 which governs the post-infection endpoint distribution in the protected stratum.
If γ1 is assumed known, from (9.22), the resulting MLE of VEP is

V̂EP = 1−PARv/

{
PARp− γ1V̂ES

1− V̂ES

}
, (9.35)

where γ1 varies between

max

{
0,

PARp− (1− V̂ES)

V̂ES

}
≤ γ1 ≤min

{
1,

PARp

V̂ES

}
, (9.36)

with the left side of (9.36) giving rise to V̂E
upper
P and the right side of (9.36) giving

rise to V̂E
lower
P .

9.4.4.6 Complete data model

The third approach to sensitivity analysis regards the unknown basic principal stra-
tum membership of the infected placebo recipients as missing data and formulates
the sensitivity analysis in terms of the complete data likelihood. The observed data
are n10(p) and n11(p). If we could know the basic principal stratum membership,
the complete data would be nd

10(p) and nd
11(p), the number of infected placebo re-

cipients in the doomed stratum with Y (p) = 0 and Y (p) = 1, and np
10(p) and np

11(p),
the corresponding number in the protected stratum. Given the complete data, φ·1 be-
comes identifiable. Maximizing the complete data log-likelihood for (θ ,φ ,γ) yields
the MLE

φ̂·1 =
nd

11(p)
nd

10(p)+nd
11(p)

, (9.37)
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the post-infection attack rate under placebo in the doomed stratum. The sensitiv-
ity analysis involves estimating VEP using (9.37) for all possible complete data
configurations consistent with the assumptions and the constraints implied by the
observed data. Molenberghs et al (2001) call this set of point estimates the region of
ignorance. They call the collection of confidence intervals (CIs) or other measures
of precision together with the region of ignorance the region of uncertainty.

9.4.4.7 Statistical variability

Once a particular selection model has been assumed, it becomes a finite-dimensional
parametric inference problem with a unique MLE. Conditional on a selection model,
standard methods can be used to obtain CI estimates for VEP. For example, CIs can
be computed assuming the usual χ2 limiting distribution of the profile likelihood
ratio (Barndorff-Nielsen and Cox, 1994). Alternatively, using the observed informa-
tion and the delta method, Wald-type CIs for VEP can be determined. The resulting
CIs can then be used to determine a region of uncertainty for any of the sensitiv-
ity analyses described above. A region of uncertainty that excludes zero implies a
statistically significant post-infection causal effect of the vaccine.

9.4.4.8 Applications, continued

9.4.4.9 Rotavirus candidate vaccine

For these data, V̂ES > 1−PARp, so from (9.29), V̂E
upper
P = 1−PARv = 0.50. On

the other hand, 0 < V̂ES ≤ PARp, so from (9.32),

V̂E
lower
P = 1− 5/10

{13/16−(1−(10/100)(16/100))}
(10/100)/(16/100)

= 0.29.

Figure 9.3a shows the sensitivity analysis of V̂EP as a function of the odds ratio
eβ . For this figure, profile likelihood-based CIs are presented. Wald-type CIs give
qualitatively similar results. The vertical dotted line in Figure 9.3 corresponds to the
assumption of no selection bias. The lack of statistical significance in this example
may be due simply to small sample size. If the study had had 1000 participants in
each arm with the same observed marginal distributions, then the 95% CI for VEP
under the lower bound model would have been [0.09, 0.46], indicating a significant
causal vaccine effect on rotavirus disease severity in individuals who would have
been infected under assignment to either vaccine or control.
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Fig. 9.3 Sensitivity analysis using the odds ratio of having the severe post-infection endpoint under
placebo in the doomed versus protected principal strata: (a) rotavirus; (b) pertussis. The vertical
dotted line corresponds to the assumption of no selection bias (from Hudgens and Halloran 2006,
Journal of the American Statistical Association, 101:51-64. Reprinted with permission).

9.4.4.10 Pertussis vaccine

For the pertussis vaccine data, 0 ≤ V̂ES ≤ 1− PARp, so from (9.29), V̂E
upper
P =

V̂E
IT T
P = 0.64. On the other hand, 0≤ V̂ES ≤ PARp, so from (9.32), V̂E

lower
P = 0.32.

Figure 9.3b shows the sensitivity analysis of V̂EP as a function of the odds ratio eβ .
The lower limit of the 95% CIs are well above zero over the range of the selection
model, suggesting pertussis vaccination causes significant protection against severe
disease in children who would develop pertussis regardless of vaccination status.

Problems

9.1. In a study of the effect of varicella vaccine (Vazquez et al 2001), of the 56 vac-
cinated children with chickenpox, 48 had mild disease. Of the 187 unvaccinated
children with chickenpox, 89 had mild disease. A case-control study conducted
concurrently estimated VES against clinical chickenpox to be 0.85 (95% CI 0.78
to 0.90). Compute the VEnet

P , VEIT T
P , and the upper and lower bounds on the MLE
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of the causal VEP of the varicella vaccine against combined moderate and severe
chickenpox.

9.2. In two studies of the influenza antiviral agent oseltamivir (Hayden et al 2004;
Welliver et al 2001), because asymptomatic infections, as well as symptomatic dis-
ease (Section 10.3.5), had been ascertained in all household contacts of index cases,
it was possible to estimate the influenza pathogenicity and the antiviral efficacy in re-
ducing pathogenicity, AVEP. In the contacts receiving prophylaxis, 10 symptomatic
cases occurred in 46 infected people. In the contacts not receiving prophylaxis, 33
symptomatic cases occurred in 75 infected people (Halloran et al 2007a). Compute
the pathogenicity of the influenza virus in the two groups and the efficacy of post-
exposure prophylaxis against pathogenicity, AVEP.

9.3. (a) Write out the complete data log-likehood discussed in the third approach to
sensitivity analysis in Section 9.4.4.6.
(b) How many complete-data configurations are there for the rotavirus example?
(c) What are the different values of V̂EP corresponding to those configurations?
(d) The sensitivity analysis for the pertussis vaccine data using the complete data
likelihood would proceed similarly as for the rotavirus vaccine candidate. How-
ever, there are many more possible data configurations and the unequal sizes of the
vaccinated and unvaccinated arms need to be taken into account. Sketch out the sen-
sitivity analysis using the complete data approach for the pertussis vaccine example.

9.4. (a) What is the range for γ1 in the rotavirus vaccine example? in the pertussis
vaccine example?
(b) Produce a graph of VEP over the range of γ1 for the rotavirus vaccine example
and for the pertussis vaccine example. Mark VEupper, VElower, and VEnet , and the
γ1 corresponding to the assumption of no selection bias.



Chapter 10
Household-Based Studies

10.1 Concepts of Household Studies

In Chapter 2 we introduced vaccine efficacy parameters that require conditioning
on exposure to infection. Household studies were used as the basis for defining
exposure to infection in vaccine studies as early as the 1930s in evaluating the effi-
cacy of pertussis vaccines (Kendrick and Eldering 1939). In addition to evaluating
vaccine efficacy, household studies have been used to learn about transmission and
natural history of many infections. Aspects of the natural history studied in house-
holds include the transmissibility, the incubation and latent periods, the duration of
infectiousness, and the serial interval between cases (Hope-Simpson 1952; Bailey
1957). Household studies have also been used to evaluate other interventions, such
as post-exposure prophylaxis with influenza antiviral agents (Welliver et al 2001;
Hayden et al 2004). Exposure to an infectious case within a household can be used
as a natural challenge study, for example, when studying immunological correlates
of protection (Storsaeter et al 1998). Longitudinal studies of pneumococcal carriage
in households and schools have been used to estimate the acquisition and clearance
rates for asymptomatic pneumococcal carriage.

The general idea of a transmission unit is that individuals make contact sufficient
for transmission within it. Households are the most common form of transmission
unit used in studies. It allows easy identification of contacts between a case and sus-
ceptibles, and families are convenient units of study. Many other settings are also
used as transmission units in studies and analyses that condition on exposure to
infection. These include sexual partnerships, classrooms, schools, school buses, air-
planes, day care centers, and workplaces, among others. Here we talk mostly about
household studies, but many of the study designs and analyses are applicable with
possibly slight modification to other transmission units as well. The term household
is much easier for exposition than is “transmission unit”.

Historically the use of household studies to evaluate vaccine effects focused on
evaluating the protective effects of vaccination. The relative risk of developing ill-
ness in vaccinated compared to unvaccinated susceptibles exposed to cases in their

M.E. Halloran et al., Design and Analysis of Vaccine Studies, Statistics for Biology
and Health, DOI 10.1007/978-0-387-68636-3 10, 205
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household was the basis of estimating the protective effects. In recent years, the
vaccine effect on the ability to transmit the infection in vaccinated infected people
compared to unvaccinated infected people, VEI , has gained attention. In contrast
to protective effects, VEI generally needs contact and exposure to infection infor-
mation for its evaluation. An additional measure of interest is the overall reduction
in transmission if both the infective person and the susceptible person who make
contact are vaccinated compared to if neither is vaccinated, VET . The analysis is
often based on the relative secondary attack rate (SAR), between the vaccinated and
unvaccinated individuals of interest. The SAR is a special case of the transmission
probability. The secondary attack rate is the probability that an individual infects
another person during some period of time. The secondary attack rate can be esti-
mated from the proportion of susceptibles who become infected when exposed to
an infectious person. In the secondary attack rate, the contact between the infec-
tious susceptible persons may be defined as occurring over some time period, such
as the duration of infectiousness, or over the period of the study. For example, the
household SAR is the probability that a susceptible individual living in the same
household with an infectious person during his or her period of infectiousness will
become infected (Fine et al 1988; Orenstein et al 1988).

Considering the estimates of VE based on the relative secondary attack rates,
there are three main unstratified vaccine effects:

V ES.1/.0 = 1− SAR.1

SAR.0
, V EI1./0. = 1− SAR1.

SAR0.
,

V ET = 1− SAR11

SAR00
. (10.1)

If one stratifies on the vaccine status of the infective person or the susceptible person,
then there are four further stratified measures of VES and VEI :

V ES01/00 = 1− SAR01

SAR00
, V ES11/10 = 1− SAR11

SAR10
,

V EI10/00 = 1− SAR10

SAR00
, V EI11/01 = 1− SAR11

SAR01
. (10.2)

Equations (10.1) and (10.2) give the three main unstratified and three stratified
vaccine effects conditional on exposure to infection data, conditional on exposure
to infection. The vaccine efficacies in (10.1) and (10.2) could also be defined in
terms of the relative transmission probabilities or transmission rates.

Despite being widespread for some infections such as pertussis, household stud-
ies of vaccine effects have not generally been used for primary licensure efficacy
trials. Household studies are sometimes nested within randomized controlled stud-
ies and provide secondary analyses. The primary analysis is generally based on one
of the unconditional measures of vaccine efficacy, such as VES,IR or VES,CI . When
an exposure is determined to have occurred, for instance, when a sibling of a vac-
cine study participant has a case of pertussis, then the outcomes are evaluated in a
secondary analysis. Household studies are also used in observational evaluation of
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vaccines. In observational studies, evaluating vaccine efficacy under conditions of
household exposure can help reduce bias generated by unequal exposure in vacci-
nated and unvaccinated people.

In this and the following two chapters, we consider household studies not only for
evaluating vaccine effects, but in a broader context. Some of these concepts may be
useful for future vaccine studies. The household- and school-based pneumococcal
carriage studies were conducted as a prelude to the introduction of pneumococcal
vaccines. Similar studies are now being prepared by the MenAfriCar Consortium to
anticipation of introducing the meningococcal A vaccine in the meningitis belt in
Africa. This chapter provides several examples of household studies and discusses
general design considerations. Design considerations include how the households
are ascertained, whether the cases are ascertained on infection status or symptomatic
cases, and whether the studies are randomized or observational. The data structure
and follow-up period can depend on whether the infection results in immunity that
lasts at least as long as the study period, such as in influenza, colds, or measles, or
whether a person can experience repeated episodes of infection, carriage or disease
during the study, such as pneumococcal nasopharyngeal carriage. In many analyses
of household studies, the households are assumed to be independent of one another,
so that susceptible contacts are assumed exposed only by the first case within the
household. When the statistical model assumes that the households are embedded
within a community, the analysis allows estimation of the risk of being infected
in the community as well as the risk of infection by exposure to a case within the
household and the vaccine effects at both levels. Chapters 11 and 12 cover meth-
ods of analysis in more detail. Chapter 11 presents several methods for analyzing
data assuming that households are embedded in communities. Chapter 12 presents
methods of analysis assuming that households are independent.

We introduce a few terms that are used. The index case in a household is the case
that draws attention to the household and leads to ascertainment of the household.
The index case is often, but not necessarily, temporally the first, that is, the primary
case in the household. A case that occurs too soon after the primary case to have
resulted from infection by the primary case is called a co-primary case.

10.2 Pertussis Vaccination

10.2.1 History

Household exposure studies have long been used to evaluate pertussis vaccination.
Pertussis vaccines were developed in the 1920s and the first hopeful results were
observed in the Faroe Islands in the early 1920s (Madsen 1933; Medical Research
Council 1951). Most pertussis vaccines were based on killed whole cells until the
1980s. Concern about efficacy and adverse effects of whole cell pertussis vaccines
resulted in some countries stopping to recommend their use. For example, Sweden
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completely discontinued pertussis vaccination in 1979 because the efficacy seemed
to be negligible (Trollfors and Rabo 1981). A new generation of acellular vaccines
was developed as an alternative to the killed whole cell ones. In the 1980s and
early 1990s, considerable interest in evaluating the relative efficacy of the two types
generated a number of papers on how methodological compared to biological effects
of vaccines affected the efficacy estimates. Fine and Clarkson (1987) and Fine et al
(1988) give a thoughtful review of sources of variability in pertussis vaccine efficacy
estimates. They compare estimates based on controlled trials, cohort studies, case-
control studies, and secondary attack rate studies. Efficacy estimates were often
lower in household studies, possibly due to more intense and prolonged exposure.

In countries that did not recommend pertussis vaccination, trials of the efficacy
of the new vaccines could be conducted with a placebo arm. In countries that recom-
mended use of the whole cell pertussis vaccines, it was unethical to have a placebo
arm, and the whole cell and acellular vaccines had to be compared head to head.
Children not in the study who were not vaccinated could be followed and provide
an unvaccinated study arm as part of an observational study. Pertussis vaccine is
generally combined with the diphtheria and tetanus toxoids and given three to four
times early in the first year of life. The vaccine combination without the pertussis
component is denoted DT, and with it is denoted DTP. We present several examples
of pertussis vaccine studies in households.

10.2.2 Michigan, USA

Kendrick and Eldering (1939) report on a study of pertussis immunization in chil-
dren between 8 months and <5 years (<6 years for a short time at the beginning)
in Grand Rapids, Michigan, USA, and surrounding areas from March 1, 1934 to
November 1, 1937. Although the study was not randomized, efforts were made to
create a control group comparable to the test group. Children receiving the vaccine
were self-selecting. They obtained the vaccine by presenting themselves at the city
immunization clinics. As children were immunized, comparable children were se-
lected at random from a population-based roster to match the vaccinated children
on age and district. House visits were made by nurses to all participants initially
at three- to four-month intervals, but after November 1935 at two-month intervals.
Public health and other sources of reports of whooping cough cases were followed
up as well.

The diagnoses in the study were primarily based on detailed clinical histories.
Kendrick and Eldering discuss the difficulties associated with diagnosing an attack
of pertussis with certainty, particularly one in which the usually accepted clinical
criteria are lacking or at least not prominent. The difficulty of choosing the best
case definition for pertussis persists even today.

The main analysis was based on the relative number of cases per person-years
at risk in the vaccinated group compared with the control group (Figure 1.2 and
equation (2.3)). However “from the beginning, one important objective in the study
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was to obtain as exact information as possible with regard to exposures to pertus-
sis and subsequent related attacks” (Kendrick and Eldering 1939, page 146). They
had clearly established definitions of exposures. To be considered an exposure, the
source case of the exposure had to have a written case history with diagnosis made
on the same basis as the study participants. The contact had to be recorded. Differ-
ent levels of exposure were defined. The levels of exposure were (1) definite in their
own household, (2) definite in other households, (3) indefinite, and (4) no exposure
history. To be considered definite, an exposure had to occur within 21 days of onset
of the source case. A maximum incubation period of 30 days was assumed. Definite
exposures in other households had to be of at least 30 minutes duration. Indefinite
exposures could occur under less intimate conditions, such as outdoors or after the
21st day, but no later than the 35th day of onset of the source case. The data are
shown in Figure 1.3 and the vaccine efficacy estimate based on definite household
exposure is in equation (2.4).

10.2.3 Niakhar, Senegal

Active population surveillance has been conducted since 1983 in Niakhar, Senegal, a
sub-Saharan rural community of 30 villages. The community is very homogeneous,
composed of Sereer peasant families, living in compounds, the residential unit for
extended families. As part of many research components (Garenne and Cantrelle
1998), pertussis was under prospective and active surveillance (Préziosi et al 2002).
As a result, information for each child was available not only on pertussis illnesses
and vaccination but also on contacts. Extended families were under longitudinal ob-
servation beginning in March 1983, based on annual visits, and from 1987 to 1996,
based on weekly visits to each compound. In addition, during pertussis vaccine trials
1990–1996 comparing whole cell to acellular vaccine, physicians collected biolog-
ical samples from consenting suspected cases in the entire population, defined as
having a cough lasting eight days or more. The pertussis vaccine studies were in ac-
cordance with the Helsinki Declaration (Préziosi et al 1997). The children who did
not receive vaccination in the trials were under active surveillance as well. Samples
included nasopharyngeal aspirates for isolating the bacteria and to detect DNA us-
ing PCR. Acute and convalescent blood samples were drawn to measure IgG titers
to pertussis toxin (PT) or filamentous hemagglutinin (FHA) by ELISA. Surveillance
for pertussis focused on children under age 15 years. All suspected cases and their
co-residents were followed actively by a physician. The usual demographic data, in-
cluding age, gender, hut, compound, hamlet, and village were known for each child
in the area. Pertussis vaccination status and dates of vaccination were also known.
The primary analysis of the efficacy trials was based on unconditional vaccine effi-
cacy estimators (Simondon et al 1997).

For each suspected case, the date of symptom onset, duration of cough, type of
cough, a wide range of symptoms, results of each biological diagnostic test done,
and physician diagnosis were recorded. Focusing on the year 1993, an epidemic year
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that produced a large number of cases and extensive exposure to pertussis, Prézios
and Halloran (2003b) and Halloran, et al (2003b) analyzed the data to estimate not
only VES but also VEI and VET for pertussis. Prézios and Halloran (2003b) con-
sidered a number of different case definitions and the relation to estimated VES,
VEI , and VET . Halloran et al (2003b) considered different statistical methods for
the secondary attack rate analysis (see Chapter 12.3) using just one case definition.
In the latter paper, a case of pertussis was defined as requiring clinically, at least 21
days of cough with paroxysms and biologicially, either B. pertussis isolated from a
nasopharyngeal aspirate or significant increase or decrease in PT or FHA antibod-
ies as measured by ELISA or presence of a bacteriologically confirmed case in the
same compound within 28 days. The latter criterion is called an epilink.

Préziosi and Halloran (2003b) chose the compound as the transmission unit
within which it was assumed that susceptibles were exposed to infection by the
first case in the unit. The compound is the “home”, ie, the residential unit where
individuals make privileged contacts and where random mixing is a reasonable as-
sumption. The compound is the transmission unit of choice in some African rural
settings (Garenne et al 1993; Aaby et al 1996).

A potentially infectious contact, or exposure, was defined as a susceptible living
in the same compound during the infectious period of the index case. Exposed sus-
ceptibles were children with no history of pertussis living in a compound with an
index case. Onset of pertussis symptoms was assumed to be the onset of infectious-
ness, thus the latent period equals the incubation period. Co-primaries were those
cases whose onset of cough was <7 days after that of the index case, assumed to
be too soon after the index case to have been infected by the index case. To allow
for uncertainty in duration of infectiousness, a secondary case was defined as a case
whose date of onset was≥7 days after that of the index case and less than a variable
cutoff, specifically no cutoff, 56, 42, or 28 days.

Generally, when estimating protective efficacy, VES, from SARs, co-primaries
are simply ignored in the analysis, entering as neither susceptibles nor infectives
(Orenstein, et al 1988; Fine et al 1988). However, the particular interest here was in
the effect of vaccine status on infectiousness of the index case. Because primaries
and co-primaries often had different vaccine status, compounds with co-primaries
were excluded from the analysis. Chu et al (2004) developed MCMC methods to
estimate heterogeneous transmission with multiple infectives.

A total of 518 of the 1800 compounds (29%) were detected as having potential
cases of pertussis in 1993. In 189 (36%) of those compounds, pertussis was con-
firmed. They represented 232 primary and co-primary cases and 1217 susceptibles.
Among those were excluded compounds with co-primary cases (n = 33 [17%]),
compounds with no susceptibles (n = 5 [3%]), and compounds with a partially vac-
cinated primary case (n = 42 [22%]). Thus a total of 109/189 (58%) of the qualifying
compounds were eligible for analysis. The 109 compounds represented 109 primary
cases and 790 susceptibles, of whom 152 (19%) were partially vaccinated and 638
(81%) were either unvaccinated or completely vaccinated. Table 10.1 gives the data
and SARs using different cutoffs. The result of at least one biological confirmation
criterion was available in over 97% of the suspected cases meeting the clinical def-
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Table 10.1 Number of exposed susceptibles, secondary pertussis cases, and secondary attack rates
(SAR) by pertussis vaccination status of the index case and the exposed susceptible children and
cutoff for counting secondary cases (Halloran et al 2003b)

Exposed Susceptibles and Secondary Cases

Vaccinated Unvaccinated Combined

Index Case Cases/Exposed SAR Cases/Exposed SAR Cases/Exposed SAR

Vaccinated
Cutoff: none 11/127 0.09 9/67 0.13 20/194 0.10
56 days 10/127 0.08 6/67 0.09 16/194 0.08
42 days 10/127 0.08 5/67 0.07 15/194 0.08
28 days 3/127 0.02 3/67 0.04 6/194 0.03

Unvaccinated
Cutoff: none 61/246 0.25 73/198 0.37 134/444 0.30
56 days 55/246 0.22 67/198 0.34 122/444 0.27
42 days 52/246 0.21 66/198 0.33 118/444 0.27
28 days 41/246 0.17 52/198 0.26 93/444 0.21

Combined
Cutoff: none 72/373 0.19 82/265 0.31 154/638 0.24
56 days 65/373 0.17 73/265 0.28 138/638 0.22
42 days 62/373 0.17 71/265 0.27 133/638 0.21
28 days 44/373 0.11 55/265 0.21 99/638 0.16

inition. From the same study, Préziosi and Halloran (2003a) estimated the effect of
pertussis vaccination on clinical severity, VEP (Chapter 9).

10.2.4 England

During World War II, several investigations were undertaken by the Whooping-
cough Immunization Committee of the Medical Research Council to assess the pro-
phylactic value of pertussis vaccination, with disappointing results. Between 1946
and 1950, the committee conducted an essentially randomized, controlled trial in
children between 6 and 18 months old when recruited. They tested five batches of
vaccine from three manufacturers, two from the Michigan Department of Health,
two from Glaxo Laboratories, and one from Parke Davis and Co. in 10 separate
field trials (Medical Research Council 1951). Each child in the study was visited
monthly by a nurse-investigator. Information was obtained on exposure to pertussis,
incidence of upper-respiratory track disease, other immunizations, and other child-
hood diseases. If it was found by the visit or routine report by the parent that a child
had been exposed to pertussis or had developed suspicious symptoms, repeated vis-
its were made, and the mother was asked to take notes as well.

A total of 6710 children completed the trial, with 3358 in the vaccinated and
3352 in the unvaccinated group. In the vaccine group, there were 149 cases in
102,961 child-months at risk, and in the unvaccinated group, there were 687 cases
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Table 10.2 Total number of cases of pertussis and secondary attack rates by type of exposure
according to vaccine group from the study by the Medical Research Council in England 1946–
1950

Home Exposure Other Exposure No

Vaccination No. of No. of Rate No. of No. of Rate Exposure
Status Exposures Cases (%) Exposures Cases (%) History

Vaccinated 203 37 18.2 566 47 8.3 65
Unvaccinated 173 151 87.3 561 213 38.0 323

in 102,180 child-months at risk, a risk ratio of 1 to 4.6. The results give a VES,IR =
1− 1.45/6.72 = 0.78 (95% CI, 0.74–0.82). Analysis of information on the expo-
sures of children to pertussis was divided into two categories. First, home exposures
were children exposed in their own home to one or more siblings, and second, other
exposures were children exposed in “day nurseries, in nursery schools, at parties, in
cinemas, in buses, and while playing outside the home with other children.” In this
study, the number of exposures was recorded, not the number of children exposed, as
some children were exposed more than once. Table 10.2 gives the summary data, not
broken down by the 10 areas and five vaccine batches. When analyzed by vaccine
batch, the two vaccines from the Michigan Department of Health gave a consider-
ably greater degree of protection than the other three.

After this study, England continued to monitor efficacy of pertussis vaccine. As
the controversy over the vaccine continued, a fresh assessment was made. During
an outbreak that began in 1977, from January 1978 through June 1980, England
undertook a national assessment of the efficacy of pertussis vaccination in 21 area
health authorities (PHLS Epidemiologic Research Laboratory 1982). The 21 areas
comprised about one-quarter of the total health authorities in England at that time.
Case notification rates for children with three doses of DTP or three doses of DT
were studied in that period. The vaccination status both of the population under
six years of age and of the notified cases was provided from computer records by
each area health authority (AHA). Home visits by nurses and health visitors from
the AHA were made to notified cases to assess the severity of the case, the family
circumstances, and to take perinasal swabs. Information was collected on age, sex,
history of pertussis in the distant past, and history of recent illness that could have
been pertussis. Particular attention was given to children under six years of age. A
subsequent home visit about six weeks later was also made to record symptoms in
contacts under six years. Nurses were asked to report all cases of cough whether or
not associated with typical paroxysms. A household contact who developed spas-
modic cough was considered a case. The original analysis included only two-child
households. About 90% of the notified cases were visited.

In the DTP group, a total of 2261 cases were notified in about 250,163 child-
years at risk (0.9%). In the DT group, a total of 9515 cases were notified in 187,595
child-years at risk (5.1%) over the course of the study. Efficacy, VES,IR, based on
the total number of cases for each year of birth was greater than 0.80. However,
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Table 10.3 Secondary attack rates in home contacts according to age and vaccine group, England
(from PHLS Epidemiological Research Laboratory 1982)

Age of 3 DTP 3 DT Relative
Contact No of Rate No of Rate Rate
(Years) Contacts Cases (%) Contacts Cases (%) DTP:DT

0−< 1 28 12 43 56 34 61 1:1.4
1−< 2 108 35 32 399 316 79 1:2.5
2−< 3 97 36 37 384 299 78 1:2.1
3−< 4 108 34 31 284 170 60 1:1.9
4−< 6 476 92 19 428 165 39 1:2.0

the analysis based on the secondary attack rates in households was lower in the
study. Table 10.3 shows the relative secondary attack rates in two-child families in
which symptoms in the contact began at least one week after those of the index
case. Efficacy was consistently around 0.50, except in the children less than one
year, where the number of cases is small. In this study, the co-primaries were those
within 7 days of the index case and secondary cases were those that occurred within
about 42 days of the index case and at least 7 days after the index case. The efficacy
was higher with a more severe case definition, reaching 71% in children with 10
paroxysms or more.

Fine et al (1988) reanalyzed this study and considered why estimates of pertussis
vaccine efficacy might be lower in household contact studies than when assessed
in cohort analyses in general populations. They restricted their analyses to house-
holds with at least one child under six years of age. The primary case was defined as
the first recent case in the household, which in many households was not the index
case. Co-primaries were defined as cases within one week of the primary case. In-
cidence cases were those that occurred more than one week after the primary cases.
These included more than potentially secondary cases. Incidence cases were fur-
ther divided into retrospective, prospective, and current incidence cases depending
on whether they occurred before, after, or around the time of the initial visit to the
household. The analysis included 9242 households with 10,406 contacts, of whom
6436 (61.8%) developed pertussis at the same time or after symptom onset in the
primary case. The 1520 co-primary cases were excluded from further analysis. A
surprising 94% of all incidence cases were retrospectively ascertained.

There were two key findings. First, vaccine efficacy was lower, although not sig-
nificantly, in retrospectively than in prospectively ascertained cases. The overall, age
standardized efficacy was 0.35 (95% CI 0.25–0.44) in retrospectively ascertained
cases, and 0.59 (95% CI 0.42–0.70) in prospectively ascertained cases. Secondly,
the efficacy was lower, although not significantly, in contacts exposed to vaccinated
primary cases than in contacts exposed to unvaccinated primary cases. Thus, the two
stratified VEI estimates in equation (10.2) differed. This latter finding is not consis-
tent with the biological argument that the bacterial exposure from a vaccinated case
would be lower than from an unvaccinated case (Préziosi and Halloran 2003b). They
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speculate that it could be due to household clustering of vaccine failures or false-
positive diagnoses.

10.2.5 Sweden

After pertussis vaccination was discontinued in 1979 in Sweden, pertussis became
endemic again (Romanus et al 1987). Thus it was possible to conduct randomized,
placebo-controlled trials of pertussis vaccination in Sweden. A trial of two acellular
pertussis vaccines compared with placebo was conducted in Sweden 1986–1987.
The efficacies were lower than expected, which could have been due to more sen-
sitive case ascertainment, so further efficacy trials were planned directly comparing
the acellular with whole cell vaccines. Several pertussis vaccine trials were con-
ducted in Sweden in the 1990s.

In a double-blind, placebo-controlled trial in the Göteborg area of western Swe-
den, 3450 infants were randomized to vaccination with DT or the same DT with
pertussis toxoid at 3, 5, and 12 months of age. The study children were born be-
tween June 1991 and May 1992 (Trollfors et al 1995). Trollfors et al (1998) were
interested in estimating the indirect protection of close contacts of the children in
the vaccine trial. A household study was nested within the primary efficacy study
described in Section 6.4.2. Parents and siblings in households were followed for
a median of two years starting 30 days after the third vaccination up to January
31, 1995. The numbers of older siblings of the DTP and DT were 938 and 965, of
younger siblings 514 and 523, and of parents 3237 and 3229, respectively. The vac-
cination status of parents and siblings of the study children was not recorded. This
is an example of the mini-community design (Section 10.7.5).

Later acellular pertussis vaccine candidates contained further antigens. Storsaeter
et al (1998) did a study to evaluate immunological surrogates of protection after
household exposure to pertussis. The idea was to use household exposure as a natu-
ral challenge experiment in studying surrogates of protection. The study was nested
in a primary efficacy study (Gustafsson et al 1996). The household study is reported
in Section 15.3.2. Further examples of studies of the efficacy of acellular pertus-
sis vaccination after household exposure are Trollfors et al (1997) in Sweden and
Schmitt et al (1996) in Germany.

10.3 Influenza

Prospective, longitudinal household studies have a long history in the study of trans-
mission of influenza and other acute respiratory diseases. Household studies of in-
fluenza have generally not been used for estimating vaccine efficacy, although they
have been used for evaluating the effects of post-exposure prophylaxis of influenza
antiviral agents. Household studies of influenza are particularly useful for studying
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transmissibility and the serial interval. We present a number of household-based
studies of influenza transmission for their historical significance and to promote fu-
ture prospective household-based studies of influenza and other respiratory diseases.
This sort of study of had essentially been discontinued. The novel influenza virus
(H1N1) pandemic that started in 2009 has raised the consciousness about the im-
portant role of prospective household studies in estimating the transmissibility and
the serial interval of influenza. We present the household-based studies of influenza
antivirals to illustrate further methodological issues.

10.3.1 Seattle USA

Intensive surveillance of families with school-age children for influenza virus in-
fections was conducted from 1975 to 1979 in Seattle, Washington, USA (Fox et al
1982b). The study followed the Virus Watch method that basically involves con-
tinuing virological surveillance of families. The Virus Watch in Seattle began by
recruiting families with newborn infants in 1965 to 1969 with a focus on respiratory
and enteric viruses detectable by cell culture methods and that were not well under-
stood at that time. The Virus Watch method was specifically adapted for the study
of influenza viruses to yield a better description of their behavior. Families with at
least one child were recruited in fall 1975 (Group I) or fall 1976 (Group II) and
followed for three years. In Group I, 112 families were recruited, and in Group II,
116 familes were recruited. By the 1978–1979 season, the families had dwindled to
44 and 73, yielding a total of 639 family-seasons of observation over four influenza
virus epidemic seasons.

The protocol required collection of blood samples by venipuncture at four-month
intervals, information concerning onset and manifestation of symptoms, and du-
ration of illness in any family member, using illness records kept by the mother.
Nose–throat swab specimens for virus isolations were to be collected from all fam-
ily members on a regular basis, biweekly or, during influenza outbreaks, weekly,
particularly when onset of a new case occurred. The plan was quite ambitious and
could not be fully implemented. Many illnesses were missed, although there is no
way to estimate how many. Between 9% (Group I) and 13% (Group II) of reported
illnesses had no specimens collected, and between 26% (Group I) and 32% (Group
II) of illnesses were recognized only because specimens were collected. Fox et al
(1982a) analyzed the pattern of infection in invaded households and the relation of
age and prior antibody to occurrence of infection and related illness. Susceptibility
to each type or subtype was rigorously defined so that the resulting secondary at-
tack rates would reflect virus infectivity. Susceptibles were defined on the basis of a
pre-episode hemagglutination-inhibiting antibody titer of 1:≤20 for A/H3N2 virus
and 1:≤10 for A/H1N1 and type B viruses. Of 102 contacts susceptible to A/H3N2,
53% became infected when exposed in the household. Of 147 contacts susceptible
to A/H1N1, 44% were infected when exposed. Of 55 contacts susceptible to type B,
47% became infected.
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Table 10.4 Observed distribution of influenza A(H3N2) infections in 1977–1978 and 1980–1981
combined epidemics in Tecumseh, Michigan, USA (Addy et al 1991)

No. No. of Susceptibles per Household

Infected 1 2 3 4 5

0 110 149 72 60 13
1 23 27 23 20 9
2 13 6 16 5
3 7 8 2
4 2 1
5 1

Total 133 189 108 106 31

10.3.2 Tecumseh, USA

Active community surveillance of acute respiratory illness took place in Tecumseh,
Michigan, USA, during the five-year period 1976–1981 (Monto et al 1985). Be-
ginning in October 1976, recruitment over a three-month period resulted in 1000
individuals, approximately 10% of the community, being under surveillance by the
end of December. The households were recruited in a stratified manner until the
required number was reached. Initially there were no restrictions on eligibility. Be-
cause of attrition, further recruitment was necessary. In 1978 the requirement that a
family have at least one child of school age or younger was added. Then in 1979,
families were recruited at the birth of the child until the end of the study in 1981.
Throughout the five years of the study, families on surveillance were called weekly
to identify the onset of acute illness. Specimens for virus isolation were collected
when an illness was reported within two days of symptom onset. Blood specimens
were collected from all on surveillance at six-month intervals. In addition, speci-
mens for virus isolation were collected by Tecumseh physicians from patients with
febrile respiratory illness. Table 10.4 contains a summary of the distribution of in-
fluenza A(H3N2) infections in 1977–1978 and 1980–1981 combined epidemics in
Tecumseh, Michigan given in Addy et al (1991). Addy et al (1991) give the house-
hold frequency data in Table 10.4 stratified by age group 0–17 years and 18+ years
as well. Table 10.5 contains a summary of the data stratified by age group and pre-
season antibody titer (Longini et al 1988). The criterion for classifying individuals
as susceptible is a preseason hemagglutination inhibition test detecting no antibody
in a dilution of 1 in 128 or less. People with higher titers were considered immune
and were not included in the tables. Households with more than five susceptibles
were deleted from all analyses. Longini et al (1988) give the household level fre-
quency data stratified by pre-season antibody level and age group.
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Table 10.5 Infection attack rates by pre-season antibody titer level stratified by age group: in-
fluenza A(H3N2) epidemic seasons 1977–1978 and 1980–1981 combined in Tecumseh, Michigan,
USA (Longini et al 1988)

Pre-Season Antibody Titer Infection Status

No. Not Attack
(1 : x) No. Infected Infected Total Rate

Children (0–17 years)
Low level (x < 8) 100 200 300 0.333
High level (8≤ x≤ 64) 20 180 200 0.100

Total 120 380 500 0.240
Adults (18+ years)
Low level (x < 8) 96 440 536 0.179
High level (8≤ x≤ 64) 42 402 444 0.095

Total 138 842 980 0.141

10.3.3 Cleveland, USA

A large longitudinal 10-year study of illness of families in Cleveland, Ohio, USA
was conducted from January 1, 1948 through May 31, 1957 (Dingle et al 1964).
The study had two primary objectives. The first was to answer questions such as
how much illness actually occurs, what is the etiology of the illnesses, how im-
portant is the family unit in spreading the illness, do families have a characteristic
pattern of illness, and do individuals and families vary in susceptibility to illness.
The second objective was to study specific diseases, using clinical, epidemiological,
and laboratory results. The study had four parts. First, illnesses or events occurring
in each individual and family were observed and recorded. Second, known entities
such as streptococcal infections, influenza, or noninfectious diseases were differen-
tiated and their behavior studied. Third, possible entities of unknown etiology were
investigated. Fourth, problems such as the spread of infectious agents in the popula-
tion, evaluation of therapeutic or prophylactic agents, and the occurrence of nonin-
fectious processes were studied. Stable, middle-class families with at least one child
were recruited. Extensive medical examinations were done on each family when it
entered the study and at regular intervals, either six-month or one-year in children,
and annually in adults. Records were kept by each mother, who notified the investi-
gators at the time of each illness, however minor. Each family was visited weekly by
a field worker, who obtained a throat culture from each member of the household.
The family physician was called when necessary. During the study, an epidemic of
poliomyelitis occurred in 1952, and stool specimens were collected. Some diseases,
such as chickenpox, were recognized more reliably than others.

A total of 96 families and 443 individuals were in the study at one time or another.
In May 1957, the first reports of the new antigenic variant of influenza virus A
occurred in Asia. In anticipation of the influenza pandemic, the Cleveland study
was reactivated in September 1957. Sixty of the families agreed to participate again
for collection of detailed clinical and epidemiological data (Jordan et al 1958). Table
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Table 10.6 Influenza attack rates by age during the Asian influenza pandemic of 1957 in Cleve-
land, Ohio, USA, as measured by virus isolation (Jordan et al 1958)

Respiratory Illness

Test Virus
Age Groups for Virus Isolated

(Years) No. No. No. Percent No. Percent

0–4 28 44 35 79.6 12 42.9
5–9 76 113 80 70.8 44 57.9

10–14 68 108 83 76.6 40 58.8
15+ 17 27 19 70.4 8 47.1

Adults 119 100 71 71.0 22 18.5

Totals 308 392 288 73.5 126 40.9

10.6 contains the influenza illness attack rates by age as measured by virus isolation
during the Asian influenza pandemic in the 60 families.

10.3.4 Influenza Epigrippe, France

The Epigrippe study was conducted during the 1999–2000 influenza season in
France (Carrat et al 2002). Households were recruited for follow-up by 161 gen-
eral practitioners. In total 946 households were recruited. For a household to be
included, a member of the household had to visit a general practitioner with a his-
tory of fever (≥38◦C) in the last 48 hours and respiratory signs. The household
had to have at least one other member, everyone had to give consent to participate
in the study, and the patient seeking care had to be the first case in the household
and not be hospitalized as a result of the illness. In all index cases, nasal swabs
were obtained at the first visit. Biological confirmation of influenza virus was by
immunofluorescence test and/or culture and/or PCR. Households followed up with
diaries of symptoms for 15 days after recruitment of the index case. Influenza was
defined clinically in contacts. Of the 946 index cases, 510 tested positive for in-
fluenza virus. Follow-up information was obtained on 334 (65%) of the households
with positive index cases. Cauchemez et al (2004) analyzed the data that included
the 334 confirmed index cases and households and 350 clinical influenza cases in
790 contacts. Influenza in symptomatic contacts was not confirmed biologically, nor
was there any biological confirmation of possible asymptomatic infections. A case
of influenza in the contacts was defined as having clinical influenza for at least one
day.



10.3 Influenza 219

Table 10.7 Some characteristics of the four studies as reported in the four papers (Halloran et al
2007a)

Zanamivir Oseltamivir

Zan I Zan II Osel I Osel II
Hayden et al Monto et al Hayden et al Welliver et al

2000 2002 2004 2001

Centers 15 59 multi 76
Where US, Canada, S. Africa, Europe North North

UK, Finland New Zealand, America, America,
NA, Australia Europe Europe

Study
period Oct 98–Apr. 99 June 2000–Apr. 2001 2000–01 1998–99

Predominant B (∼30% ) B (∼33%) B (∼33%) B (∼47%)
types A(H3N2) A(H1N1) (north) A(H1N1) A(H3N2)

A(H3N2) (south)
Randomized:
No. families (IC) 337 (321) 487 277 374
No. contacts 837 1291 812 962

Inf. index cases∗:
Control arm
Households (IC)† 87 (81) 153 84 79
No. contacts 215 398 228 206
Treatment arm
Households (IC) 78 (76) 129 89 84
No. contacts 195 368 248 209
∗ Includes only households with laboratory-confirmed index cases.
† IC = index case.

10.3.5 Influenza antivirals

Four randomized household-based studies of the efficacy of post-exposure prophy-
laxis in preventing clinical influenza in household contacts were conducted, two
of zanamivir (Hayden et al. 2000; Monto et al. 2002), called Zan I and Zan II, and
two of oseltamivir (Hayden et al 2004; Welliver et al 2001), called Osel I and Osel II
(Halloran et al 2007a). Table 10.7 contains a summary of some characteristics of the
four studies. All four studies were household-based, multicenter, randomized, con-
trolled trials, where treatment was randomized by household (cluster-randomized
design). Households with a suspected case of influenza illness were enrolled as a
whole in each study. Assignment of the index case to treatment or control varied
across the studies, resulting in differences in the effect measures estimated in each
study. Ages for eligibility of index cases and contacts also varied across studies.

• Zan I (Hayden et al 2000): Randomized, double-blind, placebo-controlled trial.
Households were randomized to study drug (zanamivir) or placebo. Index cases
and eligible contacts within a household all received either drug or placebo. Chil-
dren under age 5 years did not receive study drug.



220 10 Household-Based Studies

• Zan II (Monto et al 2002): Randomized, double-blind, placebo-controlled trial.
Households were randomized for eligible contacts to receive the study drug
(zanamivir) or placebo. Index cases did not receive antiviral therapy. Children
under age five years did not receive study drug.

• Osel I (Hayden et al 2004): Randomized, open-label, trial. Households were ran-
domized for eligible contacts to receive either antiviral post-exposure prophy-
laxis or antiviral treatment when illness developed (expectant treatment). All
index cases received study drug (oseltamivir) treatment for five days. Children
under one year were excluded from participating.

• Osel II (Welliver et al 2001): Randomized, double-blind, placebo-controlled trial.
Households were randomized for eligible contacts to receive study drug (os-
eltamivir) or placebo. Index cases did not receive antiviral therapy. Children
under 12 years were excluded from participating as contacts, but could be (un-
treated) index cases.

In all four studies, the primary endpoint in the household contacts was laboratory-
confirmed clinical influenza illness. A secondary endpoint was laboratory-confirmed
influenza infection, whether symptomatic or asymptomatic. All four studies did ex-
tensive laboratory testing of the enrolled index cases and their contacts. Because
contacts were tested for influenza infection regardless of whether they had symp-
toms, it is possible to estimate pathogenicity from the data (Chapter 9). Contacts
were supposed to complete diary cards once or twice daily for 14 days or more,
depending on the study, with details of symptoms and temperature. The definitions
of clinical symptomatic influenza cases essentially included fever and symptoms,
although they varied across the four studies. The period for inclusion of secondary
cases in the original analyses varied across the studies.

Analogous to the vaccine efficacies in equations (10.2), from the appropriate
SAR jks, in principle, we can estimate the stratified antiviral efficacies, AVES, AVEI ,
and AVET . Three main design issues are illustrated by these studies that are applica-
ble for vaccine studies as well. First, household randomization restricts the efficacy
parameters that can be estimated (Section 10.6.5). Second, asymptomatic infections
in contacts were ascertained, so that pathogenicity and the effect of prophylaxis on
pathogenicity, AVEP, could be estimated. Third, each of the efficacies AVES, AVEI ,
and AVET could be based on laboratory-confirmed influenza illness, AVE·d , or sim-
ply laboratory-confirmed infection, AVE·i, in the eligible contacts.

10.4 Measles Vaccination

Measles vaccines are generally much greater than 90% efficacious against clinical
disease. One of the considerations is at what age infants or children should be vac-
cinated. Maternal antibodies transferred before birth protect very young infants and
interfere with the live vaccine virus being able to induce an immune response in
the infant. If vaccinated too young when maternal antibodies are still present, vac-
cination will not be effective. On the other hand, if vaccinated too late, maternal
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antibody protection will have waned, and the child could easily contract measles
before being vaccinated. In the United States, vaccination against measles occurs
between 12 and 15 months. However, in developing countries, this is often too late
because exposure is more widespread. Considerable research has been directed at
understanding the optimal age to vaccinate infants in developing countries. In the
1990s, new vaccines with high titers of vaccine virus were tried that were thought
could induce antibodies at a younger age.

10.4.1 Niakhar, Senegal

The clinical efficacy of three measles vaccines was studied in a randomized trial in
Niakhar, Senegal, in the same population described in Section 10.2.3. Garenne et al
(1993) evaluated the efficacy of measles vaccines after controlling for the level of
exposure to infection within the compounds. They conducted two analyses of effi-
cacy, one based on the unconditional cases per person-time at risk, the other based
on the secondary attack rate within the compound. The first analysis was based on
a randomized vaccine trial conducted from August 1987 to July 1990 to compare
two high-titer vaccines, the Edmonston–Zagreb and the Schwarz, and the standard
Schwarz (Garenne et al 1991). The randomized trial covered the cohorts of children
born between February 1987 and January 1989. The children were randomized into
the three vaccine groups, with the two high-titer vaccines being administered at 5
months and the standard Schwarz at 10 months. The unvaccinated group were those
children who were not available to be vaccinated on their scheduled day. An unvac-
cinated control arm was unethical. A total of 1566 children were vaccinated, with
vaccine coverage of 81.6% of the resident target population. The analysis control-
ling for the level of exposure within the compound was nested in the randomized
study.

Three measles outbreaks occurred during the study. In the first, 27 cases oc-
curred between May and September 1988, then 161 cases between October 1988
and July 1989, and then 413 cases between August 1989 and July 1990. When a
family suspected a case of measles or a case was seen in the clinic, a specifically
trained physician went to the compound. The physician visited the compound twice
a week until the last case was cured. For serological confirmation, an initial blood
sample was obtained by fingerprick in susceptible children in the family during the
first visit, with a second sample obtained from clinical cases at least four weeks after
the onset of rash.

Exposure was defined as being susceptible (those who had never had measles)
and being present in a compound where there was a clinical case of measles. Sec-
ondary cases were defined as those occurring in the same compound 7 to 18 days
after the index case. The mean time lag between index and secondary cases was 12.2
days, similar to that found in previous analyses (Hope-Simpson 1952; Bailey 1957).
Different levels of exposure within compounds were defined using a linear score: 1
= living in a different compound; 2 = living in same compound but eating from a
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Table 10.8 Incidence and secondary attack rates of measles in a randomized trial of three measles
vaccines in 30 villages 1987–1989, Niakhar, Senegal. HT = high titer. (Garenne et al 1993)

Prospective study Compound Exposure Study
Resident Cases Incidence Cases

Group January 1, Reported/ Rate per Reported/ SAR
1990 Confirmed 1,000 p-yrs Contacts Confirmed (%)

Schwarz 740 1/0 0.80 54 1/0 1.85
HT EZ 552 5/3 4.12 53 3/2 5.66

HT Schwarz 274 5/2 6.67 24 2/1 8.33
Unvaccinated 348 54/21 40.63 46 30/13 65.22

different kitchen; 3 = eating from the same kitchen but sleeping in a different hut; 4
= sleeping in the same hut. Reported clinical cases could be either directly or indi-
rectly confirmed. Direct confirmation required fulfilling the clinical case definition
and having at least a fourfold rise in HIA to measles virus during the acute phase.
Indirect confirmation was by epilink, that is, when it occurred in a compound where
another case was directly confirmed.

10.5 Pneumococcal Carriage Studies

Pneumococcal diseases are a major health problem all over the world. The etiologic
agent is Streptococcus pneumoniae (Pnc), a bacterium surrounded by a polysaccha-
ride (sugar) capsule. There are about 90 different serotypes of Pnc differentiated
by the composition of the capsule. Pneumococcal bacteria are prevalent in popula-
tions. Generally the pneumococcal bacteria colonize the nasopharyngeal area with-
out causing symptoms. Symptomatic disease can be either invasive or noninvasive.
Invasive disease includes pneumonia, meningitis, and bacteremia with fever. Nonin-
vasive disease includes otitis media and bronchitis. Generally, the cases of disease,
especially invasive disease, are not considered infectious for others, at least not im-
portant for transmission. In contrast, the asymptomatic carriers are considered to
be the main sources of infection. People have the ability to acquire colonization in
the nasopharynx and to clear it repeatedly without developing complete immunity.
Given the numerous serotypes, a person may acquire one type of infection, clear it,
then acquire either the same type or another.

The original pneumococcal vaccines were based on the polysaccharide capsule
and contained up to 23 of the serotypes. The first to be licensed in the United States
was in 1977, with an improved version in 1983 (Plotkin and Plotkin 2008). Immuno-
genicity was not great, so a new generation of conjugate vaccines was developed
based on purified polysaccharide joined to a harmless variety of diphtheria toxin.
The conjugate pneumococcal vaccine was licensed in the United States in 2000.
These vaccines contain 7 to 11 serotypes and induce a T-cell-dependent immune
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response. They have been shown to be effective in children and a strong population
effect is being observed. In preparation for introducing the new vaccines, a series of
household-based carriage studies was conducted in a number of different countries.
The studies were to study the acquisition and clearance of the different serotypes,
their relative prevalence, and possible difference in their acquisition and clearance
rates. One question of scientific interest was whether vaccination against the vac-
cine serotypes would increase not only the relative but also absolute prevalence of
nonvaccine serotypes.

In pneumococcal carriage studies, the time of onset and the time of clearance of
carriage are not observed, so households are not generally ascertained on an index
case. Households may be ascertained on some aspect of the index person, such as
having a young infant in the household. Household members are examined at regular
intervals to determine whether they are carrying the bacteria. Follow-up is active.
The data are longitudinal, also called panel data, with repeated sampling of the same
individuals at fixed, or nearly fixed, time intervals.

10.5.1 Finland

Auranen et al (2000) analyzed data from the FinOM cohort study concerning the
epidemiology of acute otitis media with a special emphasis on Streptococcus pneu-
moniae (Pnc) bacteria (Syrjänen et al 2001). Healthy unselected babies born to
Finnish-speaking mothers and not previously immunized with a pneumococcal vac-
cine were consecutively enrolled at their first routine visit to a local well-baby clinic
in Tampere, Finland between April 1994 and August 1995. Nearly all babies in Fin-
land attend such clinics. During the enrollment period, 53% of the families with a
newborn chose to participate in the study. The infants were followed for nasopha-
ryngeal carriage of Pnc over a period of two years. Auranen et al (2000) analyzed a
subset of 97 infants and their families for which carriage information was collected
from all family members. The 97 infants were enrolled consecutively between De-
cember 1994 and May 1995.

During the follow-up, 14 younger siblings of the index children were born. All
family members (N = 370 + 14) were examined for Pnc carriage when the index
child was 2, 3, 4, 5, 6, 9, 12, 15, 18, and 24 months old, for a total of 10 time points
over the two-year follow-up period. Time is defined for each family from birth of the
index child. At each observation, the absence or presence of Pnc was identified for
the seven Pnc serotypes that were to be included in the new vaccine. The proportion
of recorded observations was 86% of the potential number, which is high for such
extensive follow-up. In 40 of the 97 families, there was no observed carriage in
anyone in the family during the follow-up period.

From September 2001 to May 2002, a further carriage study was conducted
in Finland. It was the first longitudinal study of pneumococcal carriage to record
serotype specific exposure to pneumococcal bacteria simultaneously with families
and day care centers, the two most important mixing groups (Leino et al 2008). The
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acquisition of pneumococcal carriage by day care attendees was strongly associated
with previous exposure to a homologous serotypes in the day care center. In the 36
acquisitions with known exposure within the day care center or the family, the child
had been exposed in the day care center in 35 cases and in the family in in 9 cases.
The three day care centers were much larger than families, leading to the suggestion
that the larger size and younger age of the children in the day care centers were about
to main micro-epidemics better than the small families. The authors suggest that the
day care centers serve as core populations to enhance pneumococcal transmission
within the population as a whole. A child-to-child basic reproductive number was
estimated as 1.4 (Hoti et al 2009) .

10.5.2 France

A five-month longitudinal study of three- to six-year old children in 81 schools was
conducted in France from January to May 2000 (Guillemot et al 2005). Children
were examined for Pnc carriage using oropharyngeal swabs approximately once a
month over a five-month period (Figure 10.1). The mean time between consecu-
tive swabs was 37 days (sd 15 days). During the observation period 9857 swabs
were collected for serotyping. The 4488 three- to six-year old childen attending the
schools represented 88% of the children in the area under study. Of these, 2445
(55%) gave at least one swab. The mean number of swabs was four (range: one to
five) among children providing at least one swab. All children attending the schools
were included in the analysis as a density factor, even if they had not provided a sin-
gle observation of follow-up (Cauchemez et al 2006d). The analysis was restricted
to the 16 serotypes isolated in at least 30 swabs in the selected schools. The analysis
divided the serotypes into two groups, those contained in the seven-valent vaccine
and those not. The study preceded the introduction of the vaccine into France, so
all participating children were unvaccinated. Cauchemez et al (2006d) analyzed this
study using methods similar to Auranen et al (2000).

10.5.3 United Kingdom

A study of 121 preschool children <3 years old and all household members was
conducted in the United Kingdom during the follow-up period from October 2001
to July 2002 (Hussain et al 2005). Enrollment was through primary health care reg-
isters in Hertfordshire. Families were visited once a month over a 10-month period.
All family members were examined for carriage using nasopharyngeal swabs. At
least one swab was obtained from 489 individuals in 121 families for a total of 3753
swabs, of which 932 (25%) were positive for Pnc. Melegaro et al (2004) modeled
the household transmission similarly to Auranen et al (1996). However, they used
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Fig. 10.1 Longitudinal data in a school participating in a pneumococcal carriage study. A “0”
represents a sample in which no pneumococcal serotypes was detected. The other symbols repre-
sent the pneumococcal serotype abbreviation of the detected bacteria. Similar to Cauchemez et al
(2006d).

maximum likelihood estimation to estimate the transition rates between carriage and
noncarriage (Section 11.4.1).

10.5.4 Bangladesh

A study in a community-based project in a transitional area in Savar, Bangladesh
enrolled 99 children born between May 2000 and April 2001 and their families (98
because 2 newborns were twins) (Granat et al 2007). The families were visited every
two weeks until the index child was four months old, then monthly up to one year of
age, for a total of 16 visits. The goal of the study was to describe the development of
pneumococcal carriage in a developing country setting. Swabs were taken from the
infant and from other children and family members present and consenting during
the visit. A total of 1459 samples (92% of those planned) were collected from the 99
index children and 2865 from the other family members. Approximately 50% of the
infants had acquired pneumococcal carriage by eight weeks of age. The point preva-
lence of pneumococcal carriage in the first five years was about 50% and declined
after that to between 7 and 8% in adults.
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10.6 Design Considerations

10.6.1 Transmission units and contacts

The scientific question of interest will influence the design of the study in house-
holds or other transmission units. A transmission unit is a place or social relation-
ship within which individuals are assumed to make contact sufficient for transmis-
sion. The concept of a contact sufficient for transmission is very broad and must be
defined in each particular study. The transmission mode of an infectious agent deter-
mines what types of contact are potentially infectious. Contacts can be defined be-
tween two individuals, or an individual and a vector. Contacts can be defined within
small transmission units, such as households. Within small transmission units, mix-
ing is often assumed to be random. A small transmission unit can be defined as two
individuals in a social relationship, such as a steady sexual partnership, or a house-
hold with just two susceptible people. The definition of a contact within a study
can depend on the definition of the transmission units. The individuals in a small
transmission unit exposed to an infectious case can be thought of as a mini-cohort
(Orenstein et al 1988) that has its own reference date for exposure to infection. An
advantage is that vaccination status is less likely to change over the time of follow-
up. Individuals living in the same household are likely to be more homogeneously
exposed to infection. Comparing vaccinated and unvaccinated persons matched on
household could be less prone to bias from differences in exposure to infection
(Struchiner et al 1994). A small transmission unit can also be thought of as a mini-
community if the indirect effects of vaccination of a fraction of the people in the
transmission unit are of interest.

Different definitions of a potentially infective contact and transmission unit, for
the same infectious agent, even within the same study, are possible. In a study of
chickenpox transmission, a potentially infective contact could be defined as being
in the same school on one day with someone with chickenpox. Alternatively, it could
be defined as living in the same house during the presumed infectious period of the
person with chickenpox. In the first case, the transmission unit is the school, and in
the latter, it is the household. In the first case, the contact is defined over one day, and
in the latter, it is defined over the entire infectious period. In tuberculosis, a contact
could be defined as riding on the same bus with someone with open tuberculosis, or
as living in the same household with someone with tuberculosis. In the former case,
the transmission unit is the bus, and in the latter, it is the household.

There could be different definitions of a contact for one definition of transmission
unit. In an HIV study, a potentially infective contact could be defined as each sex
act between two sexual partners in a steady relationship, one of whom is infected
with HIV. Alternatively, the partnership over its entire duration or over the duration
of the study could be defined as one potentially infective contact.

Different levels of potentially infective contacts can be defined. In the measles
vaccine study in Niakhar, Senegal, four levels of exposure within a compound were
defined and given a linear score. In another study of measles transmission in Ni-
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akhar, Senegal, the SARs estimated in schools, in homes, and in huts differed (Cisse
et al 1999). Kendrick and Eldering (1939) differentiated definite and indefinite ex-
posures.

When collecting data on households, the identities and number of the people
living in the household should be collected. Also, if there is interest in estimating
transmission parameters or the secondary attack rate, it important to ascertain for
each member of the household whether they were actually present in the household
during the period of interest.

10.6.2 Ascertainment

The method of ascertaining households for inclusion in a study is central. House-
holds can be ascertained when a case develops within the household, the case-
ascertained design (Yang et al 2006), or a group of households can be ascertained
before a case develops and followed prospectively over time. The index case of a
household can be ascertained in a number of ways. A case may appear in a clinic
for treatment, then the family is enrolled in the study. A case may be notified to the
local authorities, and the family visited for inclusion in the study.

Prospective enrollment of households can occur in several ways. Population-
based active surveillance in households at regular intervals is one method. An exam-
ple is the population-based surveillance in Niakhar, Senegal. Enrollment of families
prospectively, such as in the influenza studies in Tecumseh, Michigan, USA, and
Seattle, Washington, USA, is another approach. In the Finnish pneumococcal car-
riage study, families were enrolled when the infant attended the well-baby clinics.

Ideally one would have a random sample of households in the study, whether
ascertained on an index case or enrolled prospectively. Ascertainment of a house-
hold by the index case is prone to ascertainment bias. A household with a higher
number of potential cases has more chance of being ascertained than a household
with a smaller number. If the size of the household has an influence on the results
of the analysis, then the result will be subject to ascertainment bias. It could be that
households with two or more cases would more likely be ascertained than house-
holds with single cases, so the secondary attack rate would be estimated to be higher
than if a random sample had been observed. However, following a large number of
households prospectively could be very expensive compared to a study based on
ascertaining index cases. The potential biases need to be weighed against the effi-
ciency of the study.

In an individually randomized vaccine trial, the households of the individuals in
the vaccine study can be included in a further study, an example of the augmented
study design (Section 10.7.4). If the household is included whether or not the trial
participant or anyone in the household is infected, then the household is also ran-
domized. If the household is included in a nested household study only if a case
develops in the household, whether or not the first case is the vaccine trial partici-
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pant or a sibling, the nested study is subject to potential selection bias (Halloran and
Struchiner 1995; Becker et al 2006).

A second issue is how cases within the household are ascertained. If the index
case is the first case in the household, then it is also the primary case. Then all further
cases in contacts will be ascertained prospectively. If there are cases in a household
that preceded the index case, then these cases will be ascertained retrospectively.
In the PHLS pertussis vaccination study (Section 10.2.4), index cases were those
cases notified to the area health authority. The household was visited, and cases
within the household were ascertained both retrospectively and prospectively. Fine
et al (1988) found that vaccine efficacy based on the retrospective incidence cases
was lower, though not significantly, than that based on prospective incidence cases.
They proposed three possible reasons for the observation. First, a higher number of
cases in a household could result in a higher probability of ascertainment (ascer-
tainment bias). Second, there may have been more diagnostic errors in the retro-
spective incidence cases (misclassification bias). False-positives would reduce the
efficacy estimates. The third explanation draws on the idea of the all-or-none protec-
tive effects, or at least heterogeneous protection. If the vaccine failed in some of the
people, the cases in the vaccinated unprotected people would occur early after the
primary case. So the retrospective incidence cases would be enriched in vaccine fail-
ures. The vaccinated children observed prospectively would be enriched in highly
protected children. Fine et al (1988) question whether retrospective incidence cases
and prospective incidence cases should be lumped together in the same analysis due
to potentially different sources of bias. The pertussis analysis is somewhat extreme
in that a substantial portion of the retrospective incidence cases occurred more than
10 weeks before the initial visit to the household.

Onset of symptomatic disease is easier to ascertain than onset of infection. In
active surveillance of symptomatic disease, surveillance could be at regular inter-
vals and time of onset of disease retrospectively ascertained. Potential cases can
be ascertained prospectively by asking family members to keep symptom diaries.
When symptoms appear, they may be instructed to contact the study coordinator,
or the families may be contacted regularly to check about onset of symptoms. In
the carriage studies where symptoms do not occur, participants are tested at regular
intervals for carriage. With infection or carriage data, the infection times between
observations cannot be ascertained, but may be imputed using statistical methods
(Chapter 11).

If ascertainment of households is on an index case, then the duration of follow-
up for each household needs to be determined, depending on the natural history of
the infectious agent. Household exposure studies can be used as natural challenge
studies when trying to identify immunological surrogates of protection (Storsaeter
et al 1998). In this situation, a decision needs to be made about the choice of timing
of the immunological measurement.
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10.6.3 Case definition

The problem of case definition is similar to other types of study design. When house-
holds are ascertained on an index case, a different case definition is sometimes used
for the secondary cases than for the index case. Retrospectively ascertained cases
can often not be confirmed biologically.

10.6.4 Data structure

There are three basic data structures for outcomes of interest for household studies.
The three are time-of-onset data, final value data, and longitudinal data. In time-
of-onset data, one observes the time of onset of symptoms or infection of each of
the cases in the household. In final value data, only whether an infection or illness
occurred between the beginning and end of the study period is observed for each
person in the household. In longitudinal data, the members of households are fol-
lowed over time and observed (sampled) repeatedly at intervals. Combinations of
the types of data are possible. For example, active surveillance of households could
occur at intervals. However, if a case occurs, and shows up in a clinic, then an ob-
servation occurs outside of the usual longitudinal follow-up. Time-of-onset data can
be reduced to final value data for the analysis. Also, one can decide to ignore the
household structure in the analysis and just analyze the data using unconditional
approaches based on survival analysis or final value data.

Another important aspect of the data structure depends on the method of ascer-
tainment. If ascertainment of a household is on an index case or index infection, then
there is at least one case (infection) in each household.. If ascertainment is prospec-
tive in that households are included before developing the first case, then some of
the households may have zero cases. The statistical analysis may need to account for
the difference in the two data structures resulting from the ascertainment method.

10.6.5 Assignment mechanism

In evaluating the effect of interventions, the assignment mechanism is key. We con-
sider first that we are interested in estimating VES, VEI , and VET from a household-
based study. As is evident from equations (10.1) and (10.2), which of these efficacy
parameters will be estimable depends on which secondary attack rates or transmis-
sion probabilities can be estimated. This in turn depends on who in the households
are vaccinated and who are not. For example, to estimate the secondary attack rate
from an infected vaccinated person to a susceptible unvaccinated person, SAR10,
some of the households must have vaccinated primary cases and unvaccinated con-
tacts. To estimate SAR11, some of the households must have vaccinated primary
cases and vaccinated contacts.
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Table 10.9 Estimable antiviral efficacies from each of four household-based, household-
randomized, influenza antiviral efficacy studies. AVEI is not estimable from any of the studies
alone (Halloran et al 2007a)

Zanamivir Oseltamivir

Zan I Zan II Osel I Osel II
Hayden et al Monto et al Hayden et al Welliver et al

2002 2002 2004 2001

AVES01/00 = 1− SAR01
SAR00

– AVES01/00 – AVES01/00

AVES11/10 = 1− SAR11
SAR10

– – AVES11/10 –

AVEI11/01 = 1− SAR11
SAR01

– – – –
AVEI10/00 = 1− SAR10

SAR00
– – – –

AVET = 1− SAR11
SAR00

AVET – – –

Most household-based studies of vaccine efficacy conducted up to now have been
either observational studies or studies nested within individually randomized stud-
ies. In these studies, the allocation of vaccination within households generally is not
under the control of the investigator. Theoretical and simulation studies have shown
that to estimate VES, VEI , and VET in the same study, discordant or individual ran-
domization within households is better than randomization by household (Datta et
al 1999; Yang et al 2006). If everyone in a household is randomized either to vaccine
or control, only VET will be estimable.

Consider the four household-based influenza antiviral trials described in Section
10.3.5. The Zan II and Osel II studies both did not treat the index case, then random-
ized all contacts in the household to either drug or control. Thus, in both of these
studies the stratified AVES01/00 = 1−SAR01/SAR00 is estimable (AVE for antiviral
efficacy). In the Osel I study, the index cases were all treated, and then all house-
hold contacts randomized to either drug or control. In Osel I, the other stratified
AVES10/11 = 1−SAR11/SAR10 is estimable. In contrast, the Zan I study random-
ized everyone in a household, index cases and contacts, to either drug or control. In
Zan I, AVET = 1−SAR11/SAR00 is estimated. Without careful examination, one
might believe that all three studies were estimating the same parameter, but there are
not so subtle differences that could be important for interpreting the studies. Table
10.9 provides an overview of the efficacy estimates that can be obtained from each
study. None of the four studies alone provides information to estimate AVEI , the ef-
fect of the drug in reducing the infectivity of the infected index case. By combining
the two oseltamivir studies or the two zanamivir studies, one can obtain estimates
of AVEI , although combining separate studies with other subtle design differences
is not ideal.

In the pertussis vaccine study in Niakhar, there were sufficient numbers of discor-
dant vaccinated and unvaccinated children to estimate all of the vaccine efficacies
(Section 12.3). If it is possible to control allocation of vaccination or other interven-
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tion within households at the design phase, careful consideration should be given to
exactly what one would like to estimate. A study needs to be larger to get a good
estimate of VEI than to estimate VES. VEI is estimated based on exposure to vac-
cinated compared with exposure to unvaccinated cases. If a vaccine has a strong
protective effect, it may not be possible to get a good estimate of VEI . However, if
VES is high, VEI has less public health importance and less influence on the results
of simulation models.

10.7 Related Designs

10.7.1 Case-contact design

An alternative to ascertaining clearly defined transmission units is the case-contact
design. In the case-contact approach, an index case is identified, then the people who
have made contact with the index case are identified. For example, in tuberculosis,
SARS, HIV, or the novel influenza (H1N1) pandemic, through contact tracing, the
people who have made contact with the infective person might be identified and their
infection status ascertained. One difficulty in estimating the transmission probability
from such a study is in determining the temporal order of infection in the contacts.
Case-contact studies are studies in which individuals exposed to a case are followed
to find if they are infected or diseased. In this type of study, there is no explicit
transmission unit such as a household or a school.

10.7.2 Cluster designs

In dengue studies, ascertainment of clusters by index cases has been used for focal
mosquito control. Traditionally, a radius of 100 meters around the household of the
index cases was targeted for intensive mosquito intervention. The rationale was that
the usual mosquito vector of dengue virus Aedes aegypti has a short flight range.
More recently, index cases have been used to locate clusters of people with the
purpose to identify early infections in people to study the immunopathogenesis of
dengue infection (Beckett et al 2005). People within a short radius of the index case
are bled and followed for 14 days. The idea is that the people around an index case
would be enriched for infected people compared to the general population, so that
the cluster approach is more efficient than a cohort study to identify newly infected
people.

Secondary attack rates in neighborhood clusters can also be used to evaluate
vaccine efficacy in urban or semi-urban settings (Orenstein et al 1985). The study
can be conducted by identifying neighborhood clusters, each with at least one known
case. The study participants are those of the age of interest who live close to the
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known case. The proximity could be defined as living no more than one house away
from the front doorway of the house with a case. The cluster starts at the known
case in the neighborhood. The adjacent households are visited. If a case occurred
in a house in the period of interest, then the houses next to it are visited until no
further cases are found. Thus, all participants live within about an equal proximity
to a case. The exposure is less well defined than in a household study, but perhaps
better than in a population-based study. A second visit to the neighborhood will be
necessary to confirm suspected cases and to detect further secondary cases.

10.7.3 Susceptibles exposed to infective contacts

In contrast to studies within transmission units, another study design approach to
estimate the transmission probability or VES conditioning on potential exposure to
infection is to assemble a cohort of susceptibles. The study then follows the suscepti-
bles and collects information on their contacts with infectives or potential infectives.
One can use either information about the infection status of the actual contacts or
information about prevalence of infection and contact structure in the population
from which the contacts are drawn. This type of study could be particularly useful
for studies of sexually transmitted diseases or diseases transmitted by injecting drug
users where contacts can be fairly easily defined. Also, the transmission probabil-
ity per contact might be low. Study subjects might give information on the average
number of contacts rather than the exact number of contacts they each make per
unit time. From this, the expected number of contacts during the study period can
be estimated. The data required are infection outcome, number of potentially infec-
tive contacts, and covariate status, for example, vaccination status, for each person
in the study. Yang et al (2009a) developed a model to estimate the VES of an HIV
vaccine that used reported number of contacts and information on the prevalence of
infection in the population. One of the study populations was an cohort of injecting
drug users in Thailand. The contacts were drug injections with needles. Injections
with shared needles were potentially infectious. The second study population was
primarily men who have sex with men. The model allowed for errors in the reported
number of contacts in each time interval.

10.7.4 Augmented vaccine studies

It is possible to design studies prospectively that intentionally make use of multi-
level information in estimating vaccine efficacy. One such design is the augmented
trial design (Longini et al 1996; Datta et al 1998). In the augmented study design,
individuals are recruited and possibly randomized to intervention. Then the trial can
be augmented by including information on contacts and transmission units such as
households or partnerships of the primary trial participants. This is one method to
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preserve the individual level analysis and randomization. The primary analysis can
still focus on estimating VES, although estimation of VEI is also possible. The in-
dividual recruitment and randomization are similar to standard randomized studies
that aim to estimate relative risks based on one of the unconditional measures, such
as incidence rate. However, then individuals with whom the primary study partici-
pants make contact, such as in a household or partnership, are also recruited. That
is, the transmission unit of the participant is recruited into the study, and augments
the original primary study. The augmented participants may or may not be also ran-
domized to intervention. Studies of vaccine efficacy based on household exposure
that are nested in individually randomized clinical trials of vaccines are examples
of augmented designs in which households of trial participants are recruited once a
case develops in the household. The augmented study design can be thought as an
extension of the idea of small transmission units within a community, as in Chapter
11, or the augmenting transmission units can be thought of as independent units, as
in Chapter 12.

10.7.5 Mini-community designs

In a study design we call the mini-community design, households of individual study
participants are recruited into the study, regardless of whether a case has developed
in the household. The scientific goal of this type of study is to estimate the indi-
rect effect of vaccination of the study participants on protecting the other household
members. The goal is to estimate unconditional estimates of the type VEIIa for indi-
rect effects. In these studies, follow-up is over some defined period of calendar time.
The goal is therefore different than in studies based on the secondary attack rates or
transmission probabilities. Similar to the community-randomized trial design, one
hopes and assumes that the households are independent of one another.

If just one child in a family is in a trial, then the proportion of the family vacci-
nated may be too low to observe an indirect effect. That is, other siblings or house-
hold members might provide enough source of infection to mask any reduction in
transmission due to the vaccinated child. If the interest is in estimating indirect ef-
fects of vaccination in families, one could consider vaccinating a larger fraction
of the household. For example, in a study in South Africa, interest is on studying
whether vaccinating children in the family with pneumococcal conjugate vaccine
could protect HIV-infected household members against pneumococcal disease. In
this study, all children in some households and none in others could be vaccinated
to have the maximal contrast in indirect effects.

The mini-community design is an example of a community-randomized design
(Chapter 13), just that the communities are very small. The mini-community design
seems particularly useful for infectious agents with a high ratio of asymptomatic
infection or carriage to symptomatic disease, such as with pneumococcal bacteria.
Further methodological development of the mini-community design is an open topic
for future research.
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Problems

10.1. (a) Describe the main differences in the design of prospective versus case-
ascertained household studies.
(b) What are the advantages and disadvantages of the two approaches?
(c) What are the differences in the potential sources of bias?

10.2. (a) Consider the data in Table 10.4. Ignoring the household structure, compute
the attack rate for each different household size and the study population as a whole.
(b) Is there any trend in the attack rates by size of household? Would you expect one?
Why or why not?

10.3. (a) Consider the data in Table 10.8. Define the rate of exposure to measles as
the number of children exposed divided by the number at risk on January 1, 1990.
Compute the rate of exposure for the three vaccine groups and the unvaccinated
group. Are there any differencs in the exposure rates among the groups?

10.4. Consider designing a household-based study of a new vaccine targeted to chil-
dren under 6 years old. The study will include only households with at least two
children under 6 years old. Using a placebo as control is ethical for this vaccine.
What vaccine efficacy measures will be estimable if you randomize by household?
by individual?



Chapter 11
Analysis of Households in Communities

11.1 Overview

In this chapter, we consider analyses that assume the households or other transmis-
sion units are nested in a community. Community-acquired infection serves as a
source of initial infection within households as well as possible further cases in the
household. Infected household members can infect others in the household. To start,
we discuss general aspects of these models. All models in this chapter are variants
of the basic models presented in this section. They use different data structures, as-
sumptions, and methods of estimation, but the underlying parameters are similar.
The data can be final-value data, time-to-event data, or longitudinal (panel) data.

Each model has two general types of parameters, one for infection from the com-
munity, and the other for transmission from an infective to a susceptible within the
household. The first is an unconditional parameter, that is, it does not condition on
exposure to infection. The second is a conditional parameter. The models can be
formulated in discrete time or continuous time. For some data structures, such as
data on sexual contacts, contacts can be substituted for time. Models formulated in
discrete time have a parameter for the probability of infection from the community
per unit time and a parameter for the probability of transmission from an infective
to a susceptible within the household per unit time. Continuous-time models have
analogous rate parameters. One parameter describes the rate of community-acquired
infection, the other the rate of transmission from an infective to a susceptible within
a household. Both continuous- and discrete-time parameters can be transformed into
the probability of acquiring infection from the community over the period of time
of interest, called the community probability of infection, CPI, and the secondary
attack rate within the household, SAR.

The approaches in this chapter are not used as often as the conventional sec-
ondary attack rate (Chapter 12) for vaccine evaluation, but they could be. Standard
software is not available for most of the models in this chapter. Estimation generally
requires statistical knowledge and computer programming skills.

M.E. Halloran et al., Design and Analysis of Vaccine Studies, Statistics for Biology
and Health, DOI 10.1007/978-0-387-68636-3 11, 235
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11.1.0.1 Discrete-time model

Consider a study from time period 0 to time period T . Let a be the probability a
susceptible household member becomes infected from the community in one time
unit. Let b = 1− a be the corresponding escape probability. Then the probability
of escaping infection from the community over the T time periods is B = bT =
(1−a)T , and the community probability of infection is

CPI = 1−B = 1−bT = 1− (1−a)T . (11.1)

Let q = 1− p be the probability of escaping infectious contact in a household
within one time unit. Then if a person is infectious for TI time units, the probability
of escaping infection from an infective within a household is Q = qTI = (1− p)TI ,
and the secondary attack rate is

SAR = 1−Q = 1− (1− p)TI . (11.2)

11.1.0.2 Continuous-time model

In the continuous-time model, a parameter α denotes the instantaneous risk of in-
fection from the community and a parameter β denotes the instantaneous risk of
infection from an infective in the household. In the simplest form, if the study dura-
tion is from time 0 to time T and the duration of infectiousness is TI , then

CPI = 1− exp(−αT ),
SAR = 1− exp(−βTI). (11.3)

11.1.0.3 Vaccine effects and other covariates

Vaccination status and other covariates can be easily entered into the models. Either
separate values of each parameter can be estimated for each category or parame-
ters representing the effects of covariates can be included in the model. Typically
the parameter θ denotes the relative per-contact susceptibility of a vaccinated com-
pared to an unvaccinated person, so that VES,p = 1− θ . Similarly, the parameter
φ denotes the relative infectiousness per contact of a vaccinated compared with an
unvaccinated person, so that VEI = 1−φ . If p is the per-time unit (or per-contact)
transmission probability between two unvaccinated people in a household, then θ p
is the per-time unit (or per-contact) transmission probability to a vaccinated sus-
ceptible from an unvaccinated infective. Let unvaccinated and vaccinated status be
denoted 0,1. The secondary attack rate from an unvaccinated infective individual to
a vaccinate susceptible is SAR01 = 1− (1−θ p)TI .
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If only the infective person is vaccinated, then SAR10 = 1− (1−φ p)TI . If both
people are vaccinated, then SAR11 = 1−(1−θφ p)TI . This latter model assumes that
the vaccine effects on infectiousness and susceptibility in reducing the transmission
probability are independent and multiplicative. Alternatively, one could use another
parameter ϕ to denote the vaccine effect on the transmission probability if both
the infective and the susceptible in the contact are vaccinated, so that SAR11 =
1− (1− ϕ p)TI . The vaccine parameters enter similarly into the continuous-time
models. For example, assuming multiplicative and independent effects, SAR11 =
1− exp(−θφβTI).

The CPI involves only the susceptibles directly. One could introduce another pa-
rameter θc denoting a different effect of vaccination on reducing susceptibility to
infection from the community. However, introducing more parameters into a model
sometimes cannot be supported by the amount of data available. Often the assump-
tion is made that the effect of vaccination on protecting against infection from the
community and from an infective in a household are the same, so that just one pa-
rameter θ is estimated. This is a strong biological assumption, because exposure
within a household could be more intense (Fine et al 1988).

Other covariates such as age can be entered similarly into the model. Often, such
as in influenza or pneumococcal studies, child- and adult-specific transmission prob-
abilities or rates are estimated. Covariates such as vaccination or treatment status can
change over time in models that incorporate time. The parameters a and p, or α and
β , can also be time-dependent. Information about the prevalence of infection can
be used to estimate the community probability or rate of infection as varying over
time, so that a or α can be functions of time. Infectiousness of an infective within
a household can vary with time after being infected, so p or β can be functions of
time after being infected. If an estimate of prevalence of infection in the population
is available, then, in models based on contacts, the transmission probability in the
community at large can also be estimated (Hudgens et al 2001).

Note that if we define VES,p = 1−θ , this will not necessarily equal

V ES,SAR = 1− SAR01

SAR00
= 1− 1− (1−θ p)TI

1− (1− p)TI
. (11.4)

See Problem 11.1.

11.1.0.4 Estimation

Estimation is most often in a likelihood or Bayesian framework. The likelihood
component of the Bayesian model is sometimes exactly the same as that in the like-
lihood framework. In general, however, a Bayesian framework that uses Markov
chain Monte Carlo (MCMC) methods for estimation allows for relaxation of some
of the assumptions of a straight likelihood approach. The relaxation of the assump-
tions often comes at the expense of making other assumptions, particularly in the
form of informative priors on some of the parameters.
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In the next two sections, we consider models for final-value data and time-of-
onset data for diseases in which individuals acquire infection or disease just once
over the course of the study. These correspond to either the SEIR or SIR models.
In Section 11.4 we present models for longitudinal data for infections with repeated
acquisition and clearance of infection, such as in pneumococcal carriage studies.
These correspond to SIS models.

11.2 Final-Value Data

The data required are the number of susceptibles in each household at the begin-
ning of the observation period and the number of infections that occurred in each
household by the time the observation period is over. Household final-value data for
influenza infection are in Tables 10.4 and 11.1. Data further categorized by covari-
ates, such as vaccination, antibody titers (Table 10.5), or age, allow the estimation
of the effects of covariates.

Assume that observations are made on infections in a community, starting in time
period t = 0 and ending in time period t = T . This period could correspond to an
epidemic season or some other period of epidemiological interest. The main crite-
rion is that all, or nearly all, of the outbreaks in the sample of households should
essentially have run their course within [0,T ]. The final-value data on n house-
holds are observed, where a jk = observed number of households with k original
susceptibles of which j become infected, k = 1,2, . . . ,K and j = 0,1, . . . ,k, where
∑k ∑ j a jk = n. For example, a13 = 4 means that there are four households with three
household members in which one person became infected. This analysis requires
biological confirmation of susceptibility before and infection status after the period
of observation. Categorical covariates such as vaccination status or age could also
be observed. For example, people could be either unvaccinated or vaccinated, de-
noted 1 and 2. Then a( j1, j2)(k1,k2) = observed number of households in which ( j1, j2)
of (k1,k2) susceptibles in each household become infected.

11.2.1 Discrete-time model

Longini and Koopman (1982) present a model for the distribution of the total num-
ber of cases in households from a homogeneous community and use a maximum
likelihood approach for estimation. To derive the final-size distribution of house-
hold infections, three key assumptions are made: (1) sources of infection from the
community are distributed homogeneously; (2) household members mix at random
within the household; and (3) each household member can be infected either from
within the household or from the community.

Infection from the community is modeled by defining at as the probability a
susceptible household member becomes infected from the community in time period
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t, and bt = 1−at is the corresponding escape probability. Define B as the probability
that a susceptible individual is not infected from the community during the period
of observation. A general expression for B is

B =
T

∏
t=0

f (bt), (11.5)

where f (·) is a bounded function describing infection rates in the community. A
simple form for f (·) is f (bt) = bt .

Now consider the effect of secondary spread within a household following intro-
ductions from the community. An individual is infected in time period t0 and will
pass through a series of stages in time periods t1, t2, . . . , until becoming immune.
Define pt as the probability that an infective who was infected at time t = t0 will
make infectious contact in the household with another individual in time period t.
Then {pt} describes the pattern of infectiousness over time. The structure of {pt} is

pt = 0 when t0 ≤ t ≤ tl , the latent period,
pt > 0 when tl+1 ≤ t ≤ tm, the infectious period,
pt = 0 when tm+1 ≤ t < t∞, the immune period.

Let qt = 1− pt be the daily probability of escaping infectious contact. Then if
there is an infected individual in the household who became infected at time t = t0,
let Qtr be the probability that a susceptible individual has escaped infection within
the household at time tr, t0 ≤ tr < tm+1. The probability Q that the susceptible in-
dividual escapes infectious contact from the infective during his entire period of
infectiousness is

Q =
tm

∏
t=t0

qt = Qtm .

As described in Section 11.1, the secondary attack rate SAR = 1−Q, and the com-
munity probability of infection CPI = 1−B.

11.2.1.1 Final-size distribution

Assume all households under consideration are free of infected members at the be-
ginning and end of the period of observation. Let Pr( j|k) be the probability that
j of k initial susceptibles within a household are infected during the course of the
epidemic. Write m jk = Pr( j|k) to simplify notation.

When k = 1, it follows from the above assumptions that m01 = B and m11 =
1−B. When k = 2, m02 = B2. For m12, there are two possible ways it can occur.
Either the first susceptible individual becomes infected with probability B, and the
second susceptible escapes infection from both the community and the infective in
the household, or the first susceptible escapes infection from both sources and the
second becomes infected in the community. Thus
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m12 = 2(1−B)BQ = 2m11BQ.

For m22, similarly

m22 = 2(1−B)(1−Q)B+(1−B)2 = 1−m02−m12,

because the probabilities must sum to one. In general, there are
(k

j

)
ways to get j

infected individuals from k originally susceptible ones. The general expression for
m jk is

m jk =
(

k
j

)
m j jBk− jQ j(k− j), j < k, and mkk = 1−

k−1

∑
j=0

m jk. (11.6)

The density function (11.6) provides the final-size distribution for the modified
Reed–Frost model of Sugiyama(1960).

If it is assumed that there is spread only within the household, then B = 1. If there
are initially i infectives within the household, then equation (11.6) becomes

m jk =
(

k
j

)
m j jQi+ j(k− j), j < k,

and i + j is the final number of infectives in the household, equivalent to equation
(4.7).

When Q = 1, there is no spread in households, and the disease in question is
presumably not infectious. Then (11.6) reduces to the binomial distribution:

m jk =
(

k
j

)
(1−B) jBk− j, j ≤ k. (11.7)

This is the distribution of infection in households we would expect if the disease
were not contagious, and we would analyze final attack rate data in a community of
households. If household structure is ignored or there is no household spread, then
CPI = 1−B is the incidence proportion, or attack rate.

In some cases, the zero class a0k is not present. This occurs when households are
surveyed only after an initial infective has appeared, the case-ascertained design.
Then the zero-truncated distribution is used. The general expression for m jk is then

m jk =
(

k
j

)
m j jBk− jQ j(k− j)/(1−Bk), j < k. (11.8)

11.2.1.2 Likelihood Estimation

The parameters Q and B can be estimated by maximum likelihood (ML). The like-
lihood function is
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L(Q,B) = ∏
k

∏
j

m
a jk
jk .

The explicit form of the log-likelihood function from (11.6) is

ln L = c+∑
k

∑
j

a jk{ln m j j +(k− j)ln B+ j(k− j lnQ}). (11.9)

The ML estimates Q̂ and B̂ are solutions of the score functions that can be solved
iteratively by the method of scoring. The information matrix provides variances and
covariances. Estimates from the data provide starting values. In the truncated case,
the ML procedure can proceed, using a different approach to get initial guesses.
Becker (1989, pp. 182–193) discusses a similar model with an approximate ap-
proach for estimation. Becker (1989) and Haber et al (1988) use a generalized linear
model approach.

11.2.1.3 Analysis of data from an Asian influenza epidemic

Table 11.1 presents data from an Asian influenza epidemic from households with
three initially susceptible people. The data are the number of households that had
either 0, 1, 2, or all 3 people infected by the end of the epidemic.

Using model (11.6), B̂ = 0.856, var(B̂ = 0.0009) and Q̂ = 0.834, var(Q̂ =
0.0063). Thus, the estimated probability of a susceptible individual being infected
by an infective in his household during the course of his infectious period is
ŜAR = 1− Q̂ = 0.166. Assuming the latent period is l = 2 days and infectious pe-
riod TI = 4 days, and pt = p for t = 3,4,5,6, then the estimated daily probability of
escaping infection in the household is q̂ = Q̂1/TI = 0.8340.25 = 0.956. The estimated
daily probability of infection in a household p̂ = 1− q̂ = 0.044.

The estimated ĈPI = 1− B̂ = 0.144. The approximate percentage of cases from
the community can be calculated by setting Q = 1. Then from (11.7), if there no
spread within the household, the expected number of cases would be

nk(1− B̂) = 14.4,

but the total number of observed cases allowing spread within the household (Q̂ =
0.834) is 19. Hence, approximately 75% of total cases were due to infection from
the community.

To further illustrate the role of the mixing assumptions in this model, we can es-
timate the usual attack rate from these data by simply ignoring the household struc-
ture. Suppose we do not have information on households. There are 42 households
with three people each, so the total population is 126 people. From Table 11.1, 19
people became infected. The attack rate is AR= 19/126 = 0.151. The attack rate is
interpreted as the probability of becoming infected without any further assumptions
about the dynamics of interaction in the community or households. The estimated
AR is higher than the estimated community probability of infection, CPI. The sim-
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Table 11.1 Observed and expected distributions of Asian influenza data (Sugiyama 1960) in
households of size three as analyzed by Longini and Koopman (1982)

Number of Observed Number Expected Number
Cases of Households of Households

0 29 29.17
1 9 7.87
2 2 3.62
3 2 1.34

Total 42 42.00

Table 11.2 Comparison of CPI and SAR from the influenza A(H3N2) epidemic seasons 1977–
1978 and 1980–1981 combined, in Tecumseh, Michigan, stratified by age group and pre-season
antibody titer (Longini et al 1988)

Pre-Season Antibody Titer (1 : x)

Age Low Level (x < 8) High Level (8≤ x≤ 64)

Children ĈPI 0.231 ± 0.032 0.094 ± 0.028
(0–17 years) ŜAR 36.6 ± 6.2 3.4 ± 4.7

Adults ĈPI 0.131 ± 0.018 0.089 ± 0.015
(18+ years) ŜAR 18.2 ± 4.4 1.6 ± 3.7

ple AR is higher than the CPI because the AR includes the portion of the infected
individuals who, under the model that included the SAR, were estimated to have
been infected within households. This example illustrates the importance of con-
sidering the mixing assumptions within a population when developing models for
estimating meaningful population parameters in infectious disease epidemiology.

11.2.1.4 Extension to covariates

Longini et al (1988) extended the model to include categorical covariates such as
age group, antibody level, or vaccine status. Assuming that people are equally in-
fectious regardless of stratum, they computed the SAR and CPI for children and
adults stratified further by the level of pre-season antibody. The summary data are
in Table 10.5 and the estimates are in Table 11.2. An antibody efficacy similar to
vaccine efficacy can be computed as

Antibody efficacy = 1− Risk(high antibody titer)
Risk(low antibody titer)

, (11.10)

using the estimates of SAR and CPI in Table 11.2 and AR in Table 10.5 as the
measures of risk (See Problem 11.2).
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11.2.1.5 Using Markov chain Monte Carlo methods

O’Neill et al (2000) used Bayesian inference to estimate the probability of escape
from infection in the community and from an infective in a household. The like-
lihood part of their Bayesian model was the same as in Longini and Koopman
(1982), with a different recursive approach to obtain the final-size distribution. Us-
ing uniform prior distributions for the parameters B and Q, the posterior density
should be equivalent to the likelihood. A Metropolis–Hastings algorithm was used
for Bayesian inference. Figure 11.1 shows the joint posterior distribution of the
two parameters of interest for the Tecumseh data in Table 10.4, where in the figure
qc = B = 1−CPI, qh = Q = 1−SAR. Applying a simple numerical maximization
technique to the MCMC output yielded estimates for the Tecumseh data that were
virtually identical to those in Addy et al (1991) (Section 11.2.2, Table 11.3). Both
O’Neill et al (2000) and Addy et al (1991) obtained qc = Q = 0.8677. O’Neill et al
(2000) obtained qh = B = 0.8408 and Addy et al (1991) give qh = B = 0.8406.

11.2.2 Generalized stochastic model

A stochastic infectious disease model was developed by Ball (1986) in which the
distribution of the length of the infectious period is allowed to have any distribution
that can be described by a Laplace transformation. Addy, et al (1991) extended
this model to allow for infection from an unspecified source in the community or
transmission within a household. The model allows for discrete covariates, such as
age group or vaccine status, for heterogeneous susceptibility and infectivity. The
model for the probability of escaping infection in the community, B = 1−CPI, is
formulated in discrete time. However, the transmission parameter to be estimated is
βik, the rate at which a susceptible of type i has contact with an infective of type
k. The final size distribution is found recursively. In the special case of a constant
infectious period, the final size distribution is the same as equation (11.6).

If TI is a constant duration of infectivity and β does not vary, then exp(−βTI) is
the probability of escaping infection by an infective. Then SAR= 1− exp(−βTI).
When TI is variable, the SAR is calculated by taking the expectation, and then
SAR = 1−E{exp(−βTI)}= 1−φ(β ), where φ(·) is the Laplace transform of the
length of the infectious period. The standard error of the SAR is calculated using
the delta method on the Laplace transform, if TI is variable. Estimates were obtained
using maximum likelihood. The results of the analysis of the Tecumseh influenza
data in Table 10.4 are in Table 11.3 for constant TI assuming homogeneity and, in
the second analysis, allowing for age-group-specific transmission rates.
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Fig. 11.1 Joint posterior distribution, qc = B = 1−CPI, qh = Q = 1−SAR, analyzing Tecumseh
influenza data from Addy et al (1991). MCMC sample values (1000 values, at sampling interval
10): ——–, contour lines surrounding highest posterior density credible intervals at 50%, 90%,
99%, and 99.9% levels; - - - -, posterior probability density function values of 10%, 1%, and 0.1%
of its maximum (courtesy of P. O’Neill, from O’Neill et al 2000, Appl Stat, 49:517–542. Reprinted
with permission).

11.2.3 Other final-value analyses

Becker and Angulo (1981) use household data that includes smallpox vaccination
status from an epidemic of variola minor, a mild form of smallpox (Angulo 1976) to
estimate the protective effects of smallpox vaccination. Becker et al (2003) reana-
lyze those data and use Bayesian inference to estimate the probability that smallpox
vaccination is completely protective and the relative susceptibility and infectious-
ness in those only partially protected. Magder and Brookmeyer (1993) use a gen-
eralized linear model and EM algorithm to estimate the community probability of
transmission and transmission parameters for HIV in intravenous drug users. In a
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Table 11.3 Maximum likelihood estimates and standard errors for parameters of model of in-
fluenza A(H3N2) infections in 1977–1978 and 1980–1981 combined epidemics in Tecumseh,
Michigan assuming contant period of infectiousness TI = 4.1 days. For transmission parameters,
the first subscript refers to the susceptible, the second to the infective. SAR given in %. (Addy et
al 1991)

Estimate Transformation

Homogeneity:
β = 0.0423±0.0061 SAR= 15.9±2.1
B = 0.8677±0.0097 CPI= 0.1323±0.0097

Log-likelihood =−532.974

Child= 1, Adult= 2
β11 = 0.0805±0.0208 SAR11 = 28.1±6.1
β12 = 0.0354±0.0291 SAR12 = 13.5±10.3
β21 = 0.0268±0.0135 SAR21 = 10.4±5.0
β22 = 0.0401±0.0127 SAR22 = 15.2±4.4
B1 = 0.8184±0.0254 CPI1 = 0.1816±0.0254
B2 = 0.8897±0.0128 CPI2 = 0.1103±0.0128

Log-likelihood =−522.333

study during a dengue epidemic in Mexico, Dantes et al (1988) used model (11.6)
to estimate the SAR and CPI in three Mexican cities.

11.3 Time-of-Onset Data

The data required are the number of susceptibles in each household at the beginning
of the observation period and the time of onset of each case or infection that occurred
in each household by the time the observation period is over. For covariates that
change during the observation period, such as vaccination or treatment status, the
time of beginning and possibly end, in the case of treatment, are needed.

11.3.1 Likelihood approach

Yang et al (2006) developed likelihood methods to estimate the prophylactic ef-
fects of interventions in households using time-of-onset data. The methods were
an extension of the discrete-time data approach (Rampey et al 1992). The methods
were motivated by the influenza antiviral household studies in Table 10.7 and used
to analyze the two oseltamivir trials. They are also applicable to vaccines and other
prophylactic agents. The model assumes the distributions of the latent period and the
infectious period are known. The latent period is assumed to be of the same dura-
tion as the incubation period, so that a person is assumed infectious once symptoms
develop. The model does not take asymptomatic infection into account.
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Let the trial start on day 1 and end on day T . The simplest data for each par-
ticipant are the first date with symptoms of the disease of interest, the assigned
treatment, and the treatment period. Let p be the transmission probability per daily
contact within the household between a susceptible person and an infective person if
both have not received the treatment. Let b be the daily probability that a susceptible
untreated person is infected by a source of infection from the community.

Analogous to vaccine efficacies, the antiviral efficacies can be estimated. Let
AVES = 1−θ , where θ p is the reduced transmission probability resulting in illness
if the susceptible person is taking an antiviral agent and exposed to an untreated
infected person in the household. The model assumes that efficacy is the same for
contacts outside the household, ie, the reduced transmission probability resulting in
illness for a person taking an antiviral agent is θb. AVEI = 1−φ , where φ p is the
reduced transmission probability if the infective person is treated. AVET is the total
effect on transmission when both people in a transmission pair are treated. The anal-
ysis considered the two different assumptions of independence and multiplicativity
of θ and φ as well as that a separate parameter ϕ be estimated if both the infective
and the susceptible in a contact received treatment. Here we present just the former.

11.3.1.1 Notation and escape probabilities

Let t̃i denote the day of illness onset for an infected person i. Let ri(t) = (0 untreated,
1 treated) indicate the treatment status of person i on day t. Let the function f (t|t̃ j)
denote the probability that person j is infectious on day t given the day of illness
onset t̃ j. Assuming independence between θ and φ , the probability that a susceptible
person i escapes infection by an infective family member j on day t is given by

qi j(t) = 1−θ
ri(t)φ r j(t) p f (t|t̃ j).

Let Di denote the set of people in the same household with person i. Then

ei(t) = (1−θ
ri(t)b) ∏

j∈Di

qi j(t) and Qi(t) =
t

∏
τ=1

ei(τ)

are the escape probabilities for person i on day t and up to day t, respectively. The
probability that person i is infected on day t is given by

Zi(t) = Qi(t−1)(1− ei(t)). (11.11)

Allowance must be made that we do not observe the exact infection times, but just
the onset of illness. Assuming the duration of the latent (and incubation) period is
known, then it is possible to compute the maximum and minimum duration of the
latent period. Let t i and t i be the earliest and latest potential infection day for person
i. Let g(t̃i|t) be the probability of illness on day t̃, given infection on day t. Then the
contribution to the likelihood of person i is
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Table 11.4 Maximum likelihood estimates by age (1–17 vs 18+) for pooled oseltamivir trials
conducted in 1998–1999 and 2000–2001, North America and Europe (Yang et al 2006)

Assumption
ϕ = θφ Parameter MLE 95% C.I. SAR Estimate 95% C.I.

Yes bc
† 0.0023 (0.0015, 0.0035)

ba 0.00055 (0.0003, 0.001)
pcc 0.038 (0.023, 0.063) SARcc

‡ 0.15 (0.074, 0.21)
pca 0.012 (0.007, 0.021) SARca 0.049 (0.021, 0.075)
pac 0.018 (0.008, 0.040) SARac 0.071 (0.014, 0.13)
paa 0.022 (0.014, 0.034) SARaa 0.086 (0.047, 0.12)
AVES 0.85 (0.52, 0.95)
AVEI 0.66 (-0.10, 0.89)
AVET 0.95 (0.77, 0.99)

†,‡ Subscript c denotes child (1–17), a denotes adult (18+), and ca denotes
child-to-adult transmission.

‡ SARvu is based on the average 4.1 days of infectious period, ie,
SARvu = 1− (1− pvu)4.1.

Li(b, p,θ ,φ ,ϕ|t̃ j, j ∈ Di) =
{

Qi(T ) if i is not infected
∑

t i
t=t i

g(t̃i|t)Zi(t) otherwise.
(11.12)

MLEs can be obtained using usual methods. Results are in Table 11.4. Yang et
al (2006) compared randomization schemes and prospective versus retrospective
ascertainment designs.

11.3.2 Bayesian latent variable approach

Cauchemez et al (2004) adapted the Bayesian hierarchical model of Auranen et al
(2000) developed to analyze pneumococcal carriage studies (Section 11.4.1) to in-
fluenza household studies. The essential difference is that unlike in the pneumococ-
cal carriage studies, individuals can have only one episode of influenza. That is, the
model for influenza assumed an SIR model, rather than an SIS as in Section 11.4.1.
A main difference in this influenza model compared to that in Section 11.3.1 is that
the distribution of the duration of the infectious period for influenza is estimated
whereas in the previous model it was assumed known. An additional difference is
that it is assumed that individuals became infectious as soon as infected, that is,
there is no latent period. Similar to the likelihood model in 11.3.1, this model does
not take asymptomatic infections into account

The influenza Epigrippe study in France motivating the analysis is described in
Section 10.3.4. The data were times of ascertainment of culture-confirmed index
cases in physicians’ practices and the time of onset of clinical influenza (not biolog-
ically confirmed) in individuals within ascertained households. Similar to Auranen
et al (2000), the unobserved start and end of the infectious period for each case of in-
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fluenza were imputed using a data augmentation algorithm. Let I(t) be the collection
of infectives in a household. Let αi be the rate of transmission from the community
for individual i. Let εi measure the susceptibility to infection of individual i, and
β j measure the ability of j to infect others. Let εiβ j/n be the rate of transmission
from an infective j to a susceptible i in a household of size n. For an individual i
susceptible just before t, the rate of transmission to i is

λi(t) = αi + εi ∑
j∈I(t)

β j/n, (11.13)

similar to model (11.16). The duration of the infectious period for infective j was
assumed to follow a gamma distribution, with mean µ j, standard deviation σ j, and
density dµ j ,δ j . The distribution of the infectious period was estimated from aug-
mented data for the unobserved dates of the start and end of the infectious period.
An MCMC approach was used for estimation. The prior distribution for both µ and
σ was a gamma distribution with mean 3 and standard deviation 2. The vague prior
distribution for both α and β was the exponential distribution Exp(0.001).

The community probability of infection (CPI)f is defined as the probability that
participant i would be infected from the community during the 15-day follow-up
period of the household,

CPIi = 1− exp(−15αi).

The secondary attack rate, SAR, defined as the probability that an infective j infects
susceptible i in a household of size n is

SARi j(n) = 1−
∫ +∞

0
exp
(
−εi

β j

n

)
dµ j ,δ j(t)dt. (11.14)

The interest was in exploring the role of children in the infection process, so param-
eters were stratified by children under 15 years and adults.

The mean duration of the influenza infectious period was estimated at 3.8 days
(95% CI 3.1–4.6) with standard deviation of 2.0 days (95% CI 1.1–2.8) for a 95%
credible interval for the infectious period of (0.8,8.6) days for influenza. The overall
household SAR attack for clinical influenza (not biologically confirmed) decreased
from 0.43 (95% CI 0.39–0.48) in households of size 2 to 0.21 (95% CI 0.18–024)
in households of size 5. This result could be partly model-dependent. The overall
CPI over the 15 days of follow-up was 0.08 (95% CI 0.04–0.12). They found similar
age-specific trends in transmission parameters as other researchers.

11.3.3 Other time-of-onset analyses

A data-augmentation method was developed to analyze the two zanamivir trials
in Table 10.7 (Yang et al 2007b). Similar models were used as the basis for a
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resampling-based test to detect person-to-person transmission of an infectious dis-
ease (Yang et al 2007c) and to detect human-to-human transmission of Avian A
(H5N1) influenza (Yang et al 2007a). The software TranStat is publicly available
for this purpose. Yang et al (2009b) developed a Bayesian approach to analyze the
influenza household studies with time of onset data that takes data on asymptomatic
infection into account.

11.4 Longitudinal Data

Many bacterial infections are characterized by repeated acquisition and clearance of
infection. Asymptomatic carriage of pneumococcal bacteria, meningococcal bacte-
ria, and H. influenza b (Hib) bacteria are three examples. To estimate the acquisition
and clearance rates, one needs longitudinal data where a collection of individuals in
households is sampled over time at a number of time points. Several field studies
that gathered longitudinal data from repeated sampling within families or schools
are described in Section 10.5. The problem with longitudinal data of asymptomatic
carriage is that neither the acquisition nor clearance times are observed. Different
approaches to statistical models can deal with this problem making a variety of as-
sumptions.

Motivated by two studies of Hib carriage in Finland, Auranen et al (1996) pro-
posed the use of a susceptible–infected–susceptible (SIS) model for estimating the
acquisition and clearance parameters. At any given time, individuals can be in either
the noncarrier, susceptible state S, or the asymptomatic, infectious carrier state C.
People can make the transition between states, S→C and C→ S. The mini-epidemic
in the family is represented by an individual-based stationary Markov model that de-
scribes the dynamics of infection in the family. The approach is also appropriate for
use with pneumococcal carriage studies. Other problems with pneumococcal stud-
ies include combining multiple serotype data, missing data, competition, and errors
in diagnosis.

The key parameters in the model are the hazard rates of transitions S→ C and
C→ S. Let C(t) be the number of carriers in the family at time t. The basic model
before allowing for covariates, for the transition S→C is a combination of the ef-
fective contact rate within the family β and the rate of infection from the community
α . The rate of transition S→C for susceptible i, the acquisition rate, is

λ
(i)(t) = α

(i) +β
(i)C(i)(t). (11.15)

One can also make the transition rates age-group dependent, such as children and
adults. The constant rate of transition C→ S, the clearance rate, is denoted by µ(i).
The spread of carriage within a family is modeled by a Markov process. The state at
time t is the combined state of the individuals in the family. The possible transitions
within a family in any time interval can be described by a matrix of transition proba-
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bilities. However, the matrix is of large dimension leading to possible computational
difficulties. This approach is discussed in more detail in Section 11.4.2.

A second approach was suggested by Auranen et al (2000) that makes use of
Bayesian data augmentation. For each individual, the unobserved times of acquiring
and clearing carriage are included in the model as latent unobservable variables. If
the acquisition and clearance times of each individual were known, the conditional
likelihood of the data would be simple. Markov chain Monte Carlo methods are
used to augment the data with the acquisition and clearance times. The approach
considers histories of infection events separately for each individual.

Pneumococcal carriage studies and the models in this section fit well within the
context of a general framework of estimating vaccine effects. Vaccine parameters
for susceptibility and infectiousness, also vaccine-dependent clearance rates, could
be added to the models. The question of how to use these approaches in pivotal trials
of vaccines for licensure is open (Käyhty et al 2006).

11.4.1 Bayesian latent variable approach

Auranen et al (2000) modeled the sequences of binary observations on pneumococ-
cal (Pnc) carriage by constructing latent point processes of acquiring and clearing
carriage. The longitudinal pneumococcal carriage study motivating this analysis is
described in Section 10.5.1. The model allows for carriage of different serotypes
s. The study identified seven Pnc serotypes that were going to be included in the
planned vaccine. The analysis was confined to the three most prevalent types, 6B,
19F, and 23F. The data for children under 5 years old are summarized in Table 11.5.
The observed numbers of changes in the carriage status over the observation inter-
vals are presented. The data are stratified according to age class, 0 to 2 years and 2 to
5 years. They are also stratified by the background carriage in the family at the start
of the observation period. The table summarizes the data over the three serotypes.
Pnc carriage was almost always clustered by serotype within a family.

The hierarchical model has three stages: the observation model, the transmission
model, and the prior model. In the observation model, the augmented data need to be
consistent with the observed data. Any observation of carriage of that serotype needs
to take place during one of the augmented periods of carriage that results from the
imputed acquisition and clearance times. Figure 11.2 illustrates the data augmenta-
tion approach. The model assumes conditional independence between consecutive
observations of the same individual as well as between observations of different
family members. The transmission model allows dependence of the process within
the family.

The transmission model is of the form in model (11.15). Let α be the rate to
acquire carriage of serotype s from the community, β be the rate of transmission
from an infective in a family to a susceptible, µ be the clearance rate (no serotype
specific rates), and n be the size of the family. C(s)

i (t) is a 0,1 indicator if individual
i is a carrier of serotype s at time t, and Ci(t) indicates any of the serotypes. Let Ti
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Table 11.5 The number of observed changes in the individual pneumococcal carriage status over
the observation intervals (Auranen et al 2000)

Carriage among other Age Class 0–2 years Age Class 2–5 years
family members at start Carriage at Carriage at
of observation interval Next Observation Next Observation

Carriage No Yes Total No Yes Total

No carriage in No 562 33 595 107 10 117
in family

Yes 16 12 28 8 4 12
Total 578 45 623 115 14 129

At least one No 24 1 25 12 6 20
carrier in family

Yes 6 10 16 6 7 13
Total 30 11 41 20 13 33

denote the time of birth of individual i , so that t − Ti is the age of subject i. The
intensities of the point processes of acquiring and clearing carriage are

λ̃
(s)
i =

[
α(t−Ti)+β (t−Ti)

n

∑
k=1

C(s)
k (t)

]
×{1−Ci(t)}

µ̃i(t) = µCi(t). (11.16)

Model (11.16) makes several assumptions. The acquisition rates α and β are as-
sumed to depend on the age of the noncarrying susceptible. The acquisition rates
are assumed to be the same for all three serotypes. The model allows carriage of
only one serotype at a time. The duration of carriage is assumed to be an exponen-
tial random variable that is the same for all three serotypes. The model also requires
an initial carriage state for each individual that is related to the proportion π of Pnc
carriers, assumed to be a single parameter across all age groups and for all serotypes.
The proportion π needed to be estimated because the initial observation was missing
on some of the participants. The rate µ of clearing carriage was assumed to be µ1
for children under 2 years old and µ2 for family members 2 years and older.

The full Bayesian model, notation, and methods for computation were presented
in Auranen et al (2000). The parameters to be estimated were α , β , µ , and π from
the imputed acquisition and clearance times, the serotype data, and the initial car-
riage status data. The priors on the parameters were assumed to be independent.
Vague priors were used on all of the parameters, with means informed in part by the
data. The acquisition rates α f and β f were assumed to be same for all family mem-
bers older than 5 years, with rate ratio ϕ f = β f /α f . An age-dependent α(a) was as-
sumed for children less than 5 years old. The function was formulated as piecewise
constant over the interval 2 and 60 months of age. The rate ratio ϕ = β (a)/α(a)
was assumed to be constant.
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Fig. 11.2 Data augmentation strategy to estimate transmission parameters of Streptococcus pneu-
moniae in a longitudinal study of pneumococcal carriage. The observed data are presence or ab-
sence of pneumococcal bacteria in the nasopharynx. The data are augmented with the times of
acquisition and clearance of carriage which give the period of carriage. The figure shows two dif-
ferent possible augmentations compatible with the observed data.

The age-dependent community acquisition rate α(a) in children under 5 years
old increases up to approximately 0.3 new infections per year at age 18 months,
which corresponds to the increased prevalence of carriage. Further estimates are in
Table 11.6. The posterior mean of the ratio ϕ of the within-family (with at least one
carrier in the family) and the community rate of acquisition was 25 in children under
5 years. In family members older than 5 years, the posterior mean rate of community
acquisition was 0.037 per year and the rate ratio ϕ f was 15. The posterior mean
duration (1/µ1) of carriage was longer in children less than 2 years old than in older
family members (1/µ2). The model was assessed using a number of approaches.
A clear pattern in the data was the temporal clustering of pneumococcal carriage
within families.

Cauchemez et al (2006d) used a similar approach to Auranen et al (2000) to an-
alyze a longitudinal study in France in schools described in Section 10.5.2. The pri-
mary scientific question of the analysis was whether the seven Pnc vaccine serotypes
have a competitive advantage over the nonvaccine serotypes. The analysis proposed
to study this question by comparing the mean duration of carriage (1/µ) and within
school child-to-child transmission rate (β ) of the seven vaccine serotypes with those
of the nonvaccine serotypes, denoted by V and U, respectively. No children had yet
been vaccinated. The vaccine serotypes are 6B, 9V, 14, 18C, 19F, and 23F. Vaccine
serotype 4 was not included in the analysis because it was isolated in only 10 sam-
ples. The nonvaccine serotypes included in the analysis are 6A, 3, 19A, 11A, 15A,
23A, 17F, 10A, and 9L.
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Table 11.6 Summary of the marginal posterior distribution of the parameters estimated for the
Finnish pneumococcal carriage study in households. Parameter definitions are in the text (Auranen
et al 2000)

90% Equal-Tail
Parameter Mean Median Credible Interval

α f (per year) 0.037 0.037 0.016–0.061
ϕ 25 23 14–44
ϕ f 15 10 3-42
µ1 (per month) 0.45 0.44 0.30–0.66
µ2 (per month) 0.71 0.69 0.49–1.01
1/µ1 (months) 2.3 2.3 1.5–3.3
1/µ2 (months) 1.5 1.4 1.0–2.0
π 0.023 0.022 0.011–0.037

The model is similar to that in (11.16), except the term for transmission within
school included the term 1/n, where n is the number of children in the school re-
gardless of whether they took part in the study. The term 1/n serves as a density
factor and reduces transmission the larger the school is. Thus the individual rate to
acquire serotype s at time t was βCs(t)/n, rather than just βCs(t), where Cs(t) is the
number of children carrying serotype s at time t.

An expression for the secondary attack rate, SAR, the probability that a child
carrying the bacteria transmits to a noncarrying child during the carriage period, is
presented. Comparing the SAR for the vaccine types to that of the nonvaccine types
allows comparison of the overall fitness for transmission because it is a function
of the mean duration of carriage and the child-to-child transmission rate. Let L be
the duration of carriage with density f (L) = µ exp(−Lµ) and 1− exp(−βL/n) be
the probability that a carrying child during time period L transmits to a noncarrying
child in the school. Then

SAR =
∫

∞

0
(1− exp(−βL/n) f (L)dL,

which reduces to SAR = (1+nµβ−1)−1. The results are summarized in Table 11.7.
There was no evidence that the vaccine serotypes had different transmission charac-
teristics than the nonvaccine serotypes. Cauchemez et al (2006c) further investigated
heterogeneity among the 15 serotypes using a clustering step to select a parsimo-
nious description of the transmission characteristics.

11.4.2 Markov transition model

Another approach to estimating the acquisition parameters α and β in equation
(11.15) and the clearance rate µ is by explicit formulation of the transition matrix for
the Markov process in the households (Auranen et al 1996). The spread of carriage



254 11 Analysis of Households in Communities

Table 11.7 Summary of the marginal posterior distribution of the parameters estimated for
the study of pneumococcal carriage in schools in France. Parameter definitions are in the text
(Cauchemez et al 2006d)

Vaccine Serotype Nonvaccine Serotype Ratio

95% Credible 95% Credible 95% Credible
Mean Interval Mean Interval Mean Interval

1/µ (days) 23 21–25 22 20–24 1.06 0.94–1.28
β (% day−1) 4.6 4.2–5.0 5.1 4.5–5.6 0.91 0.80–1.05
SAR (%)
n = 30 3.4 3.2–3.7 3.6 3.3–3.8 0.97 0.88–1.06
n = 50 2.1 1.9–2.2 2.2 2.0–2.3 0.97 0.88–1.06
n = 100 1.1 1.0-1.2 1.1 1.0–1.2 0.97 0.88–1.06

within the family is modeled by the transition between states in a Markov process.
The state of the family at time t is the combined state of the individuals in the
family. The number of possible states depends on the number of individuals in the
family. In a family with three members, there are eight possible states. Letting 1
indicate a carrier and 0 a noncarrier, the possible states are 000, 001, 010, 011, 100,
101, 110, and 111. A family in which at one observation time, the second person
is a carrier, the other two noncarriers, and at the next observation time, both the
second and third are carriers, makes the transition from state 010 to state 011. The
corresponding intensity matrix Q with elements qi j is

000 001 010 011 100 101 110 111

000 q11 α(3) α(2) 0 α(1) 0 0 0

001 µ(3) q22 0 α(2) +β (2) 0 α(1) +β (1) 0 0

010 µ(2) 0 q33 α(3) +β (3) 0 0 α(1) +β (1) 0

011 0 µ(2) µ(3) q44 0 0 0 α(1) +2β (1)

100 µ(1) 0 0 0 q55 α(3) +2β (3) α(2) +β (2) 0

101 0 µ(1) 0 0 µ(3) q66 0 α(2) +2β (2)

110 0 0 µ(1) 0 µ(2) 0 q77 α(3) +2β (3)

111 0 0 0 µ(1) 0 µ(2) µ(3) q88

The elements on the diagonals represent the intensity of staying in the same state.
The qii = 1−∑ j 6=i qi j (Karlin and Taylor 1975). The element (4,8) represents the
transition from state 011 to state 111. Individual number 1 has the transition rate
α(1) + 2β (1), representing the rate of acquisition from the community and the ex-
posure by the two carriers in the household. To simplify estimation, the model only
allows one family member to make a transition during the time period of the time
step. The 0s in the matrix represent transitions that are not allowed, and thus have
0 intensity. The matrix can represent households of any size and include age- or
covariate- (vaccination status) dependent rates. For the Hib analysis, Auranen et al
(1996) had two levels of the three rate parameters, one for children under seven
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years old and one for everyone older than seven. They used a Bayesian approach to
estimate the model parameters.

Melegaro et al (2004) used a similar model to estimate the acquisition and clear-
ance rates for a household study of pneumococcal carriage in the United Kingdom
(Hussain et al 2005) presented in Section 10.5.3. A density correction factor (n−1)w

was added, where (n−1) is the number of other family members in a household size
n, and w corresponds to the level of density dependence. When w = 0, the model
represents density-independent transmission.

The population was divided into two age groups, children under 5 years and
everyone else greater than 5 years, denoted by i = 1,2. C1(t) and C2(t) are the
number of carrier children (<5 yrs) and adults in the household. Then the probability
of a transition in a short time interval δ t for an individual in age class i is

Pr
i
(S→C)δ t =

(
αi +

β1iC1(t)+β2iC2(t)
(n−1)w

)
·δ t,

Pr
i
(C→ S)δ t = µi ·δ t.

Melegaro et al (2004) use a Markov model with 1-day intervals to analyze 28-day
interval data assuming only one person can change in the household per day. The
parameters were estimated using a likelihood approach. The estimate of the density
parameter w was significantly greater than 0 (w = 1.2, 95% CI 0.2–2.2) suggesting
that transmission within households depends on density.

In a further analysis, Melegaro et al (2007) extended the model to estimate
serotype-specific transmission parameters. Five distinct data sets were constructed,
one for each of the target serotypes. The carriage status of each study participant was
recorded at each monthly visit as 0 (noncarrier), 1 (carrier of the target serotype), 2
(carrier of any other serotype), or 9 when the swab was not taken or the laboratory
result was not reported. Estimation used a likelihood approach.

Problems

11.1. VES,p and VES,SAR
(a) Consider a vaccine that reduces the per-day transmission probability to a sus-
ceptible from 0.1 in an unvaccinated person to 0.03 in a vaccinated person. What is
VES,p based on the transmission probability?
(b) Now consider that index case exposes the susceptibles on average four days. Use
equation (11.4) to compute the expected VES,SAR. Compare VES,p and VES,SAR and
consider the consequences for interpreting such estimates.

11.2. Comparing antibody efficacies
(a) Compute the antibody efficacies based on the SAR, CPI, and AR for children
and adults using equation (11.10) and the results in Tables 10.5 and 11.2.
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(b) Compare the estimates and explain why the antibody efficacy based on the SAR
is higher than those based on the CPI and AR.

11.3. Likelihood for B and Q for final value data
Write out the log-likelihood function (11.9) explicitly in terms of B and Q for a data
set with households of size k = 1,2,3, with number of infectives j = 0, . . . ,k.

11.4. Final size distribution if not contagious
(a) Assuming there is no spread within households and that CPI = 0.3, based on
equation (11.7), compute the final size distribution of infection in a community of
1000 households of size 3.
(b) Repeat for CPI = 0.4.
(c) What statistical method could be used to test whether there is within-household
spread?

11.5. Asymptomatic infections
In the analyses of time-of-onset of influenza data in Section 11.3, the asymptomatic
influenza infections are not taken into account. How might symptomatic infections
be ascertained in these studies? Presumably the time of onset of asymptomatic in-
fections would not be observed. How could this be dealt with in the analysis?

11.6. Estimating transmission parameters for longitudinal data
What are the essential similarities and differences in the assumptions of the Bayesian
latent variable approach and the Markov transition approach to modeling and es-
timating the transmission parameters for the longitudinal pneumococcal carriage
studies?



Chapter 12
Analysis of Independent Households

12.1 Introduction

In this chapter, we consider methods of analysis that assume that the households
are independent of one another. The most commonly used approach is to estimate
vaccine efficacy based on the conventional secondary attack rate. We also consider
the estimation of indirect effects of vaccination using household studies. The Reed–
Frost model in Chapter 4 is another example of a model that assumes households or
transmission units are independent.

12.2 Conventional SAR Analysis

The data structures for the conventional secondary attack rate analysis are similar to
those for the analysis using time of onset data assuming that households are within
communities in Section 11.3. Data on the time of onset of disease for each case in
the household as well as knowledge of who is susceptible are required. To estimate
the conventional household SAR, the main task is to set up the analysis. Decisions
need to be made on

1. who in the household is eligible to be a secondary case, and
2. who of the eligible household members are the secondary cases.

The first contributes to the denominator of the secondary attack rate, the second
contributes to the numerator.

One decides who is the index, or primary case in the household, and which of
the other cases in the household could reasonably have been infected by the pri-
mary case. Occasionally one differentiates the index case, the case that results in
ascertainment of the household, from the primary case, the earliest temporal case
in the household. To decide which of the subsequent cases in the household could
have been infected by the primary case, one needs estimates or assumptions about
the minimum and maximum incubation periods, the latent period and its relation
M.E. Halloran et al., Design and Analysis of Vaccine Studies, Statistics for Biology
and Health, DOI 10.1007/978-0-387-68636-3 12, 257
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to the incubation period, and the maximum time that a person remains infectious.
These values will vary according to the disease of interest. Using this information,
one then needs to define the time interval after the primary case that would include
the secondary cases. Based on the time of onset data within each household, each
case is defined as being either a secondary case or not. Co-primary cases are people
who developed disease too soon after the primary case to have been infected by the
primary case. They are not counted as secondary cases, and are generally simply
excluded from the analysis. They are not included in the denominator of the SAR.
Primary cases are also not included in the analysis. The estimated household sec-
ondary attack rate is the total number of secondary cases in all households divided
by the total number of at-risk susceptibles in all households. In some cases, tertiary
or higher generation cases may be included in the analysis by calling the secondary
cases the primary case for further chains of transmission. Tertiary cases or higher
cases are included in the denominator of exposed individuals for the secondary at-
tack rate, but not in the number of cases in the numerator. Chapter 10 contains
several examples of studies with intervals for determining the eligible susceptible
household members and the secondary cases.

Pertussis vaccination. Préziosi and Halloran (2003b) defined exposed suscep-
tibles as children with no history of pertussis living in a compound with an index
case (Section 10.2.3). Onset of pertussis symptoms was assumed to be the onset
of infectiousness, thus the latent period was assumed to equal the incubation pe-
riod. Co-primaries were those cases whose onset of cough was <7 days after that of
the index case. To allow for uncertainty in duration of infectiousness, a secondary
case was defined as a case whose date of onset was ≥7 days after that of the index
case and less than a variable cutoff, specifically no cutoff, 56, 42, or 28 days. Sim-
ilar assumptions were made by Kendrick and Eldering (1939) (Section 10.2.2). In
the PHLS Epidemiologic Research Laboratory (1982), the co-primaries were those
within 7 days of the index case and secondary cases were those that occurred within
about 42 days of the index case and at least 7 days after the index case (Section
10.2.4). In a reanalysis of this study, co-primaries were defined as cases within one
week of the primary case (Fine et al 1988). Incidence cases were those that occurred
more than one week after the primary cases. These included more than potentially
secondary cases.

Measles. For measles, Orenstein et al (1985) recommend 18 days of follow-up in
a household after the onset of rash in the primary case. Garenne et al (1993) defined
secondary cases as those occurring in the same compound 7 to 18 days after the
index case (Section 10.4.1). Exposed susceptibles were children who had never had
measles living in a compound where there was a clinical case.

Mumps. In a secondary attack rate analysis of mumps vaccine efficacy in an
outbreak investigation, Kim-Farley et al (1985) defined co-primaries as cases in
family members occurring within 10 days of the onset of disease in the index case.
Cases with onset of disease more than 30 days after the index case were considered
tertiary cases. Children with previous history of mumps disease, unknown vaccine
histories, or unknown dates of vaccination were excluded from the analysis.
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In the conventional secondary attack rate analysis, the assumption is that the
households or other small transmission units are independent of one another. There
is an asymmetric assumption that the index case and co-primaries get infected from
outside the unit, and the other susceptibles are exposed only within the unit. This
assumption is very different than the assumption in Chapter 11 in which individuals
can acquire infection from the community even if there is an infective in the house-
hold. If the transmission probability or secondary attack rate is estimated without
taking into account the opportunity to become infected outside of the transmission
unit, it will overestimate the actual probability of becoming infected per contact. In
general, ratio measures, such as the vaccine efficacy based on the ratio of secondary
attack rates, are less biased by this problem. Kemper (1980) discusses biases in con-
ventional SAR estimation. The drawback in using models such as those in Chapter
11 is that they contain strong modeling assumptions about the mixing in the commu-
nity. An advantage of the conventional SAR studies or case-contact study designs
is that they do not make assumptions about the community at large. The analysis
is also relatively simple once the biological assumptions about the time intervals
containing the secondary cases have been made.

12.2.1 Vaccine efficacy from conventional SAR

As described in Chapter 2, the secondary attack rates can be differentiated by the
vaccine status of the primary case and/or the vaccine status of the secondary cases.
In general, there are at least seven measures potentially of interest. Considering the
estimates of VE based on the relative secondary attack rates, there are three main
unstratified vaccine effects:

V ES.1/.0 = 1− SAR.1

SAR.0
, V EI1./0. = 1− SAR1.

SAR0.
,

V ET = 1− SAR11

SAR00
. (12.1)

The traditional measure of VES,SAR to estimate the protective effect of vaccination
in household studies corresponds to VES.1/.0. When not ambiguous, we use the no-
tation VES,SAR for traditional estimates. If one stratifies on the vaccine status of the
infective person or the susceptible person, then there are four further stratified mea-
sures of VES and VEI :

V ES01/00 = 1− SAR01

SAR00
, V ES11/10 = 1− SAR11

SAR10
,

V EI10/00 = 1− SAR10

SAR00
, V EI11/01 = 1− SAR11

SAR01
. (12.2)

The confidence interval for any of the VESAR measures is generally based on the
log relative risk. If a0, a1 are the number of cases and n0, n1 are the number exposed
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in the relevant comparison groups, then the relative risk is RR = a1n0/a0n1. The
standard deviation of the log relative risk is

σ =
(

1
a1
− 1

n1
+

1
a0
− 1

n0

)1/2

.

The vaccine efficacy estimate and 95% confidence interval are

V ESAR = 1− a1/n1

a0/n0
, (12.3)

95% CI [1− exp(log(RR)+1.96∗σ),1− exp(log(RR)−1.96∗σ)].

For example, in the Medical Research Council study of pertussis vaccination (Table
10.2), there were a1 = 37 pertussis cases among n1 = 203 home exposures in the
vaccinated children, and a0 = 151 cases among n0 = 173 home exposures in the
unvaccinated children. In the report, the vaccination status of the exposing children
is not included, so only the traditional unstratified VES,SAR can be computed. The
VES,SAR estimate and 95% confidence interval are 0.79 [95% CI 0.72, 0.84].

This simple approach does not take into account that several children may be
exposed to the same infective, so that there may be correlation within households.
Becker et al (2006) consider estimation of vaccine effects, in particular, VEI and
VES from pairs of individuals within households. Quite often, one infectious person
exposes several people, possibly within a transmission unit, such as a household.
Correlation within transmission units or unmeasured heterogeneity across transmis-
sion units could result, for example, from differences in infectivity, difference in
mixing within the unit, or genetic variation. This conventional method to estimate
the confidence intervals for vaccine efficacy fails to take the structure of the clus-
tered binary data into account.

12.3 SAR Analysis Taking Correlation into Account

Préziosi and Halloran (2003b) and Halloran et al (2003b) were particularly inter-
ested in estimating the effect of pertussis vaccination on reducing infectiousness of
vaccinated cases, VEI . They analyzed the pertussis vaccination study in Niakhar,
Senegal, described in Section 10.2.3. The data are summarized in Table 10.1. Many
of the compounds had several children, so correlation within compound might be
important. They developed methods for estimating the VE measures based on the
SAR that take correlation within transmission units into account. We present these
methods using the pertussis vaccination study in Niakhar, Senegal, as an example.
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12.3.1 Notation

Let n be the number of compounds with a unique index case and mi be the number
of susceptibles in the ith compound. Let yi j be the binary (0,1) pertussis outcome of
the jth susceptible exposed to the index case in the ith compound for any given case
definition. Let xi j = (xi j1, . . . ,xi jp)′ denote a p× 1 vector of explanatory variables
associated with yi j. In particular, let xi·1 denote the vaccine status of the index case in
compound i, and xi j2 the vaccine status of the jth exposed susceptible individual in
compound i. Complete pertussis vaccination requires at least three doses of vaccine.
This analysis considers only unvaccinated and fully vaccinated children, with xi·1 =
0 and xi·1 = 1 for an unvaccinated and fully vaccinated index case. Similarly, xi j2 is
0 or 1 for the unvaccinated and fully vaccinated susceptibles.

Let Nvs be the total number of susceptibles in the n compounds with vaccine
status s exposed to index cases with vaccine status v, and avs be the total number of
cases in the Nvs susceptibles. In this analysis, V,S ∈ {0,3}. The subscript 0 denotes
unvaccinated, 3 indicates three doses of vaccine. Additional levels of vaccination are
possible, such as V,S ∈ {1,2} for partially vaccinated people, but are not considered
here. The · subscript represents collapsing over strata. The number of cases and
susceptibles in each grouping of interest is

avs =
n

∑
i=1

mi

∑
j=1

IV=vIS=syi j, Nvs =
n

∑
i=1

mi

∑
j=1

IV=vIS=s ,

a.. =
n

∑
i=1

mi

∑
j=1

yi j, N.. =
n

∑
i=1

mi ,

a.s =
n

∑
i=1

mi

∑
j=1

IS=syi j, N.s =
n

∑
i=1

mi

∑
j=1

IS=s ,

av. =
n

∑
i=1

mi

∑
j=1

IV=vyi j, Nv. =
n

∑
i=1

mi

∑
j=1

IV=v .

Let SARvs denote the secondary attack rate from an index case with vaccine status v
to a susceptible with vaccine status s. Pooling across compounds, the standard two
SARs not stratified by vaccine status of the index case used in estimating protective
VES,SAR are SAR·s = a·s/N·s, s = 0,3. If not stratified by vaccine status of the sus-
ceptible, SARv· = av·/Nv·, v = 0,3. The nonparametric estimates of the four SARs
stratified by vaccine status of index cases and susceptibles are SARvs = avs/Nvs,
v,s = 0,3.

The three main unstratified nonparametric VEs in equation (12.1) and stratified
nonparametric VEs in equation (12.2) can be estimated using these SARs with the
standard confidence intervals as in equation (12.3).
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12.3.2 Vaccine efficacy based on the logistic model

To take correlation within compounds into account, a marginal model or a random-
effects model could be used. The parametric form in both cases is the logistic model,
with the SAR as the usual probability p of an event. The model-based approach al-
lows inclusion of covariates, such as age, either of the index case as compound-level
environmental variables or of the susceptibles as individual variables. In marginal
models, inference about population averages is the focus (Diggle et al 1994, pp.
131–135). If there is heterogeneity across compounds in the baseline transmis-
sion, then the estimated baseline coefficients represent an average over the hetero-
geneities. The correlation structure is some function of the marginal mean and pos-
sibly additional parameters.

In the random-effects model, a slightly different baseline transmission is esti-
mated for each compound, with the degree of heterogeneity estimated in the vari-
ance of the random effect. The vaccine effects in each compound are interpreted
in relation to that compound’s baseline transmission. In considering vaccine effi-
cacy, the primary scientific question is about the population average, or marginal,
VE measures. Thus, the marginal model is the model of choice. The coefficients for
the marginal and random-effects models are indicated by β and β

∗.

12.3.2.1 The marginal model

The marginal model for the logit of the SARi j of the jth person in the ith household
is

logit(SARi j) = β0 +β1xi·1 +β2xi j2 , (12.4)

where xi·1 denotes the vaccine status of the index case in compound i and xi j2 de-
notes the vaccine status of the jth exposed susceptible in compound i. The vaccine
status of the index case, xi·1, enters the analysis as a compound-level, environmental
variable. To obtain VE estimates on the SAR scale, we transform the parameters
from the logistic model to the probability scale. The stratified SARs from model
(12.4) are

SAR00 =
expβ0

1+ expβ0
, SAR03 =

exp(β0 +β2)
1+ exp(β0 +β2)

, (12.5)

SAR30 =
exp(β0 +β1)

1+ exp(β0 +β1)
, SAR33 =

exp(β0 +β1 +β2)
1+ exp(β0 +β1 +β2)

.

Parameter estimates from the above model provide estimates for the stratified
VES00/03 and VES30/33, the stratified VEI00/30 and VEI03/33, as well as VET . Plug-
ging the expressions for the SARs into equations (12.2), and for VET in equation
(12.1), the expressions for the VE measures are
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V ES03/00 =
1− exp(β2)

1+ exp(β0 +β2)
, V ES33/30 =

1− exp(β2)
1+ exp(β0 +β1 +β2)

,

V EI30/00 =
1− exp(β1)

1+ exp(β0 +β1)
, V EI33/03 =

1− exp(β1)
1+ exp(β0 +β1 +β2)

,

V ET =
1− exp(β1 +β2)

1+ exp(β0 +β1 +β2)
. (12.6)

To obtain estimates of the unstratified VEI3./0. and VES.3/.0, additional submodels
are fit, such as logit(SARi j) = β ′0 +β ′1xi·1 and logit(SARi j) = β ′′0 +β ′′2 xi j2 and trans-
formed back to obtain

V EI3./0. =
1− exp(β ′1)

1+ exp(β ′0 +β ′1)
, V ES.3/.0 =

1− exp(β ′′2 )
1+ exp(β ′′0 +β ′′2 )

. (12.7)

Alternatively, one could use the parameter estimates from the full model (12.4) and
substitute the respective means of xi·1 and xi j2. The marginal model taking correla-
tion of transmission within compound into account can be estimated using general-
ized estimating equations (GEE) (Liang and Zeger 1986).

Appropriate confidence intervals on the transformed scale are obtained using the
bootstrap (Efron and Tibshirani 1993). Bootstrap samples were selected using the
compound as the sampling unit. Three different bootstrap confidence intervals were
computed, namely the percentile, the bias-corrected (BC), and the bias-corrected
and accelerated (BCa) intervals. Figure 12.1 shows the point estimates and his-
tograms of 2000 bootstrap estimates of the VEI , VES, and VET parameters based on
the GEE model. Bootstrap confidence intervals sampling on compounds were also
computed for the VE estimators based on the nonparametric SARs described in the
previous section. Analytic confidence intervals for the GEE estimates of VE on the
transformed scale were obtained using the multivariate delta method (Agresti 1990).

12.3.2.2 The random-effects model

The random-effects model for the logit of the SARi j of the jth person in the ith
household is

logit(SARi j|Ui) = (β ∗0 +Ui)+β
∗
1 xi·1 +β

∗
2 xi j2 . (12.8)

The simplest model assumes the random effect Ui ∼ N(0,σ2). On the logistic scale,
the parameter β ∗0 would be interpreted as the log odds of transmission from an un-
vaccinated index case to an unvaccinated susceptible for a typical compound with
random effect Ui = 0. The parameter β ∗1 would be the log odds ratio of transmission
occurring when the index case is vaccinated compared to when it is unvaccinated
within any given compound. The parameter β ∗2 would be the log odds ratio of trans-
mission occurring when a susceptible in the compound is vaccinated compared to a
susceptible in that same compound who is unvaccinated.
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Fig. 12.1 Histograms of 2000 bootstrap estimates of (top row) VE for infectiousness, VEI stratified
and unstratified; (middle row) VE for susceptibility, VES, stratified and unstratified; and (bottom)
total VE, VET , based on the GEE logistic regression parameters. The dotted line in each histogram
indicates the estimate for the actual data set. (Halloran et al 2003b, Journal of the American Statis-
tical Association, 98:38–46. Reprinted with permission.)

The compound-specific SARi js are obtained by incorporating the random effect
into the expression. For example, the compound-specific SAR00i from an unvacci-
nated index case to an unvaccinated susceptible is

SAR00i|Ui = exp(β ∗0 +Ui)/[1+ exp(β ∗0 +Ui)].

The marginal SAR00 is the estimated expectation of the SAR00 obtained by nu-
merical integration over the estimated distribution of the random effects. The VEi
estimates for each compound i are obtained from expressions analogous to (12.6).
The marginal VE estimates are the estimated expectations obtained by numerical in-
tegration over the estimated distribution of the random effects. To obtain estimates
of the unstratified VEI3./0. and VES.3/.0, random effects submodels similar to those
described above can be fit.

Two methods were used to estimate the random effects model. The first is a
Bayesian hierarchical model (Carlin and Louis 2008), and the second is a nonlin-
ear mixed model (Davidian and Giltinan 1995). The population mean VE measures
were computed by averaging over the compounds at each iteration. The 95% poste-
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Fig. 12.2 Comparison of approaches to estimating SARs and confidence intervals. (Halloran et al
2003b, Journal of the American Statistical Association, 98:38–46. Reprinted with permission.)

rior credible intervals for the VE measures are available directly on the transformed
scale from the approximation to the posterior distribution from the MCMC chains.

12.3.3 Pertussis vacccine efficacy

Figure 12.2 shows the different point estimates and confidence intervals for VES,
VEI , and VET . Table 12.1 contains selected results. The point estimates for VEI and
VET obtained from the nonparametric SAR and from the GEE are nearly identical.
The bootstrap CIs for the nonparametric VE estimates are wider than the simple CIs
based on the log relative risk. In particular, the bootstrap CIs for VEI , and to a lesser
extent, VET are wider. For example, the BC bootstrap 95% CI of VEI3./0. is 1.94
wider than the simple 95% CI. The difference is less pronounced with CIs of VES,
with the ratio of the lengths being between 1.2 and 1.3. Thus, the conventionally
used CI substantially underrepresents the variability in the data. The greater sensi-
tivity of the variability of the VEI and VET estimators to compound-level effects
might result from the vaccine status of the index case being a compound-level envi-
ronmental variable. The nonparametric estimate of VES33/30 is unstable because the
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Table 12.1 Pertussis vaccine efficacy estimates from the Niakhar region, Senegal, 1993 (Halloran
et al 2003b)

Vaccine Efficacy (VE) × 100% (95% Confidence Interval)

VE for Susceptibility VE for Infectiousness Total VE

Estimator VES03/00 VES33/30 VES.3/.0 VEI30/00 VEI33/03 VEI3./0. VET

SAR (BC∗) 33 (8,55) 36 (−62,88) 38 (16,57) 64 (15,89) 65 (9,90) 66 (28,88) 77 (45,94)
SAR (simple) 33 (11,49) 36 (−48,72) 38 (18,53) 64 (31,81) 65 (36,81) 66 (47,78) 77 (58,87)

GEE (BC) 31 (7,52) 37 (9,60) 33 (9,53) 63 (25,85) 67 (29,87) 67 (32,86) 77 (52,92)

NLMIXED 35 (5,57) 43 (7,66) 40 (11,61) 71 (32,90) 74 (32,91) 74 (36,91) 83 (54,94)
(BC)
Bayes median 35 (10,52) 43 (13,62) 39 (15,56) 71 (42,87) 75 (46,89) 74 (47,88) 83 (61,93)
∗ BC = bias-corrected bootstrap confidence interval.

total number of secondary cases was only 20, compared with 134 cases for VES03/00,
so both the simple and the BC bootstrap CIs are quite wide.

The bootstrap CIs of the GEE estimates of VEI are also wider than those based
on the simple CI for the nonparametric VE estimates, however, not as wide as the
bootstrap CIs of the nonparametric VE estimates. For example, the GEE percentile,
BC, and BCa bootstrap 95% CIs for VEI3./0. compared to the simple SAR 95% CI
are 1.63, 1.74, and 1.83 wider, respectively. Thus, the parametric model in the GEE
helps stabilize the estimation compared to the nonparametric approach.

The multivariate delta method CIs on the GEE estimates are symmetric and sim-
ilar in length to the percentile bootstrap CIs. However, the normality assumption of
the VEI and VET estimators is clearly violated, so we do not recommend using the
multivariate delta method. Also, CIs based on the multivariate delta method could
theoretically exceed one, which could cause difficulty because vaccine efficacy is
bounded at 1.

12.3.4 Varying case definition and cutoff

Préziosi and Halloran (2003b) considered the effect of varying the case definition
and the cutoff date on the seven VE estimates. The data are summarized in Table
10.1. The primary focus of the analysis was on estimating VEI . The primary method
of analysis was the GEE approach using the bias-corrected and accelerated (BCa)
bootstrap confidence intervals described in the previous section. Based on the main
case definition and no cutoff of secondary cases, vaccine efficacy for infectiousness
VEI was estimated to be 0.85 (95% CI 0.46–95) for children vaccinated with three
doses of a whole cell (94%) or an acellular (6%) pertussis vaccine. See Problem
12.3.
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Table 12.2 Antiviral efficacies for oseltamivir (Halloran et al 2007a). Osel I is presented in Hayden
et al (2004), Osel II in Welliver et al (2001)

Based on Laboratory-Confirmed
Infection with Symptoms

Effect AVE·d 95% C.I. Drug Control
Cases/Exposed Cases/Exposed

AVES = 1−SAR11/SAR10 (Osel I alone)
1−7 Days 81 35, 94 3/237 16/241
2−7 Days 81 35, 94 3/237 16/241

AVES = 1−SAR01/SAR00 (Osel II alone)
1−7 Days 91 64, 98 2/205 22/195
2−7 Days 91 62, 98 2/205 21/194

AVEI = 1−SAR10/SAR00 (Osel I/Osel II)
1−7 Days 81 45, 93 4/180 22/190
2−7 Days 80 43, 93 4/180 21/189

AVET = 1−SAR11/SAR00 (Osel I/Osel II)
1−7 Days 91 63, 98 2/195 22/190
2−7 Days 91 61, 98 2/195 21/189

12.4 Estimating Influenza Antiviral Efficacies

Halloran et al (2007a) used the conventional secondary attack rate to estimate the in-
fluenza antiviral efficacies from the four randomized household studies of influenza
antiviral presented in Chapter 10 and analyzed by Yang et al (2006, 2007b, 2009b),
as described in Chapter 11. Each of the efficacies can be based on (1) laboratory-
confirmed influenza illness, AVE·d , or (2) laboratory-confirmed infection, AVE·i,
in the eligible household contacts. Here we present only the estimates based on
laboratory-confirmed influenza illness, AVE·d , for the two oseltamivir studies (Ta-
ble 12.2). Influenza has a very short incubation period. The interval for co-primaries
was assumed to be either one day or two days after ascertainment of the index case.
As discussed in Chapter 10, the randomization schemes in the studies restrict which
SARi js, and thus which antiviral efficacies could be estimated from the individual
studies. The estimate of AVES,d in the Hayden et al (2004) study is based on dif-
ferent SARi js from that in the Welliver et al (2001) study. The AVEI and AVET
estimates are obtained by combining the two studies.

12.5 Mini-Community Design for Indirect Effects

In the mini-community design, the household or other small transmission unit serves
as the unit in which to estimate indirect effects of vaccination, similar to studies
in larger communities to estimate indirect, total, and overall effects (Chapter 13).
The gradient from small transmission units, such as households, to compounds as
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in Niakhar, to day care centers, to schools, to towns or whole countries is fairly
continuous. Thus, this section could also have been put into Chapter 13, but here
we focus on households. Similar to many household-based vaccine efficacy stud-
ies, these mini-community studies can be nested in either randomized clinical trials
or observational studies where the primary analysis is based on unconditional mea-
sures. Unlike the other efficacy measures in this chapter, the estimates of the indirect
effects of vaccination do not condition on the index case being a case of infection or
disease. In the indirect effect measures, the analysis conditions only on the vaccina-
tion status of the index child or children in the household. The outcomes of interest
are the disease or infection status of the other members of the household. Then the
estimates of the indirect effects in the other members of the household are based on
one of the unconditional risk measures, such as attack rate or cases per person-time
in the other members of the household. If based on incidence rates per person-time,
then

VEIIa = 1−
no. of cases in household members of vaccinated children
person-time of household members of vaccinated children

no. of cases in household members of unvaccinated children
person-time of household members of unvaccinated children

.

(12.9)

12.5.1 Pertussis

Trollfors et al (1998) nested a study of the indirect effects of pertussis vaccination
in households in the Swedish study described in Section 10.2.5. They estimated
the indirect effects based on equation (12.9) using the ratio of the incidence rates
(pertussis cases divided by total time at risk) in parents and younger siblings of re-
cipients of DTaP or DT. They used four different case definitions, the first being
similar to the WHO definition, and the second based on criteria developed by them-
selves. They further divided the cases by ≥21 days of paroxysmal cough and cough
≥7 days. Other criteria were similar to those discussed in Section 12.3.4. The results
are in Table 12.3. Unfortunately, the original paper does not include the amount of
person-time computed for each group.

Problems

12.1. Computing mumps VES,SAR
(a) Table 12.4 shows the data from a family-based mumps vaccine efficacy study
after an outbreak in Ashtabula County, Ohio, in 1982. In study 1, vaccine status
was verified by the parents. In study 2, it was verified by the provider. Compute the
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Table 12.3 Number of pertussis cases in parents and younger siblings of study children and indi-
rect protection achieved by vaccination of the study child with pertussis toxoid (from Trollfors et
al 1998)

Pertussis Cases Indirect
Protection

DTaP DT (%) 95% CI

Parents
WHO definition
≥21 days of paroxysmal cough 11 26 60 16, 82
≥7 days of cough 23 35 38 −9, 65

Göteborg definition
≥21 days of paroxysmal cough 14 32 58 20, 80
≥7 days of cough 26 44 44 7, 67

Younger siblings
WHO definition
≥21 days of paroxysmal cough 10 18 43 −31, 76
≥7 days of cough 11 10 37 −40, 73

Göteborg definition
≥21 days of paroxysmal cough 10 26 61 15, 83
≥7 days of cough 11 26 56 9, 81

secondary attack rates and VES,SAR with confidence intervals for both studies.
(b) Compare the estimates.

Table 12.4 Data from family-based mumps vaccine efficacy study in families of students with
mumps illness in the sixth, seventh, and eighth grades in School A, Ashtabula County, Ohio, Febru-
ary 5 through April 23, 1982 (Kim-Farley et al 1985)

Study 1 Study 2

Case definition Parotitis ≥2 days Parotitis ≥2 days
Case finding Parents Parents
Vaccine status Parents Provider verified
Cases/exposed (vaccinated) 4/36 2/30
Cases/exposed (unvaccinated) 32/74 30/69

12.2. Computing measles VESAR
(a) Table 12.5 contains data from a measles epidemic in Senegal 1994–1995 (Cisse
et al 1999). Compute the estimates based on the SARs of the main VES, VEI , and
VET , the two stratified VESs and the two stratified VEIs. Compute their confidence
intervals using the standard approach.
(b) Compare the main and the stratified estimates.

12.3. Pertussis vaccine efficacy with different cutoffs
(a) Table 10.1 contains the number of secondary pertussis cases using four different



270 12 Analysis of Independent Households

Table 12.5 Number of exposed susceptibles, secondary cases, and secondary attack rates (SAR)
by vaccination status of the index case and the exposed susceptible children (Cisse et al 1999)

Exposed Susceptibles and Secondary Cases

Vaccinated Unvaccinated Combined

Index Case Cases/Exposed SAR Cases/Exposed SAR Cases/Exposed SAR

Vaccinated 6/83 0.07 3/17 0.18 9/100 0.09
Unvaccinated 41/374 0.11 47/124 0.38 88/498 0.18
Total 47 /457 0.10 50/141 0.35 97/598 0.16

follow-up cutoffs. Compute different VESARs using different cutoffs.
(b) Discuss how and why the SARs and the VESAR estimates change as the cutoff
period increases.

12.4. Different analyses
(a) Create a hypothetical community composed of small transmission units. Assign
to each individual a covariate status (0,1) and also an infection time and infection
status at the end of an epidemic. Consider the various approaches for estimating the
effect measures, such as the conventional secondary attack rate, the secondary attack
rate, and the community probability of infection simultaneously, and the simple
cumulative incidence (attack rate).
(b) How do the data being used for each approach differ? What parameters can be
estimated? What is the interpretation of the measures under each approach?



Chapter 13
Assessing Indirect, Total, and Overall Effects

13.1 Study Designs for Dependent Happenings

Due to the dependent happenings in infectious diseases (Ross 1916), widespread
vaccination in a population can reduce transmission and produce indirect protective
effects, even in unvaccinated individuals. The public health importance of a vaccine
is related to the direct protection of the vaccinated individuals as well as the indirect
protection conferred by increased herd immunity at the population level. In recent
years, interest in estimating the indirect, total, and overall effects of vaccination pro-
grams has increased. Most often, the effects have been evaluated using surveillance
data by comparing the incidence before and after implementation of a vaccination
strategy in a population. In some cases, dramatic effects have been observed such
as with pneumococcal vaccines (Musher 2006). Up until now, planned, prospec-
tive community-randomized studies to evaluate indirect, total, and overall effects of
vaccination strategies are rare. However, interest in implementing such studies, ei-
ther pre- or post-licensure is increasing. Although mathematical models offer useful
guidance on examining potential population effects of vaccination strategies (Chap-
ters 4 and 5), they cannot replace data from an actual study when such a study is
feasible.

Struchiner et al (1990) and Halloran and Struchiner (1991) developed a con-
ceptual framework for four classes of study designs to evaluate the direct, indirect,
total, and overall effects of interventions called the study designs for dependent
happenings. In Chapter 2 we introduced the general concepts of direct, indirect,
total, and overall effects of vaccination and the four basic study designs to evalu-
ate them (Figure 2.3). In this chapter, we present the concepts of direct, indirect,
total, and overall effects using an informal potential outcomes approach to causal
inference. Throughout this chapter we distinguish two levels of intervention, vac-
cination strategies, allocations or programs at the population level, and vaccination
of individuals within populations. We present some of the observational approaches
to assessing indirect, total, and overall effects, and their advantages and disadvan-
tages. We then present community-randomized studies as an approach to estimation

M.E. Halloran et al., Design and Analysis of Vaccine Studies, Statistics for Biology
and Health, DOI 10.1007/978-0-387-68636-3 13, 271
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and inference of indirect, total, and overall effects. We consider basic designs, ap-
proaches to randomization, sample size determination, and general considerations
of analysis. Finally we formally define causal estimands of direct, indirect, total,
and overall effects and their estimators for group-randomized studies.

13.1.1 Definitions and study designs

Following Halloran and Struchiner (1991), the direct effect of vaccination in an indi-
vidual is the difference between the outcome in the individual receiving the vaccine
and what the outcome would have been if the individual had not been vaccinated, all
other things being equal. This definition of a direct effect corresponds to the notion
of potential outcomes in causal inference in that it is defined for the unobservable
difference between the response in the observed person and what it would have been
in the same person without the intervention. An example of a direct effect is the re-
duction in the probability of becoming infected that results from being vaccinated,
given exposure to infection.

The indirect effect of a vaccination program or strategy on an individual is the
difference between what the outcome is in the individual not being vaccinated in a
community with the vaccination program and what the outcome would have been
in the individual, again not being vaccinated, but in a comparable community with
no vaccination program. It is, then, the effect of the vaccination program on an indi-
vidual who was not vaccinated. The combined total effect in an individual of being
vaccinated and the vaccination program in the community is the difference between
the outcome in the individual being vaccinated in a community with the vaccina-
tion program and what the outcome would be if the individual were not vaccinated
and the community did not have the vaccination program. The total effect, then, is
the effect of the vaccination program combined with the effect of the person hav-
ing been vaccinated. The overall effect of a vaccination program is the difference in
the outcome in an average individual in a community with the vaccination program
compared to an average individual in a comparable population with no vaccination
program.

A simple indirect effect is the reduction in the probability per unit time of be-
coming infected that results from reduced exposure to infection consequent to a
mass immunization program. Thus, an unvaccinated person in a population experi-
ences a changed hazard or incidence compared with what it would have been if the
commmunity had had no immunization program. The analogous total effect would
be the effect experienced by a vaccinated person who has both the benefits of being
vaccinated and the indirect effect of the reduced transmission. The overall effect
would be the weighted average of the reduction in incidence in the vaccinated and
unvaccinated individuals compared to if there were no immunization program.

These effects can be defined more generally, by allowing that vaccination occurs
in the comparison population as well, however, with a different level of coverage or
different allocation strategy. The definitions also apply to subpopulations of inter-
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est within comparison populations, for example, school children only. The indirect,
total, and overall effects are defined within the context of a particular intervention
program or allocation strategy. For example, one would expect that the indirect ef-
fects of vaccinating 30% of the population would differ from the indirect effects of
vaccinating 60% of the population compared to no vaccination. Common to these
effects is the need to imagine a community in which vaccination had not taken place
or a community with an alternative vaccination strategy.

The four different kinds of effects of vaccination motivated the definition of
broad categories of study designs (Struchiner et al 1990) based on different pairs
of comparison populations and subpopulations, according to whether the studies
measure direct, indirect, total, or overall effects as shown in Figure 2.3. The com-
munity with the vaccination strategy is population A, and the community with no
vaccination, or the alternative, possibly baseline vaccination strategy is population
B. In the simple case of having only two comparison populations, the study designs
for dependent happenings are analogous to studies that compare outcomes before
(population B) and after (population A) implementation of a vaccination strategy
in the population. However, because the community level effect is of interest, for
statistical inference, one generally will prefer to have several communities in which
the intervention takes place and several comparison communities. Then there would
be several A communities and several B communities. If the allocation of the vacci-
nation program to the communities is randomized, then the study becomes a group-
or cluster-randomized design as discussed in Section 13.3.

When several communities are included in the study, the indirect effects of a par-
ticular allocation of vaccination is then the comparison of the incidence or other out-
come of interest in the unvaccinated people in the A communities compared to the
comparable unvaccinated people in the control B communities. These comparisons
are called type IIa designs. The indirect vaccine effectiveness measures are desig-
nated VEIIa. The total vaccine effects of the combination of being vaccinated and the
allocation is the outcome in the vaccinated people in the A communities compared
to that of the comparable unvaccinated people in the unvaccinated B communities.
These comparisons are called type IIb designs, and the total vaccine effectiveness
measures are designated VEIIb. The overall effectiveness of the vaccine and alloca-
tion compare the average outcomes in the vaccinated communities with those of the
control communities. These comparisons are called type III designs, and the overall
effectiveness measures are designated VEIII .

These study designs for dependent happenings are quite general. They do not
specify the outcome measure, the parameter of effect, temporal aspects, sampling
methods, or methods of analysis. In addition, each of these designs makes a com-
parison between comparable populations, in that, in the absence of an effect, the
outcomes of the compared populations could be expected to be similar. In partic-
ular, in infectious diseases, one needs to emphasize the need for comparability of
exposure to infection. That is, if there were no intervention program, the individuals
in the comparison communities would be exposed comparably to infection. This is
often not the case, especially when several communities are included in the study,
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Table 13.1 Comparisons pre- and post-introduction of a vaccination strategy to estimate indirect,
total, or overall effects

Comparison

Change in incidence or attack rates in target population (overall effects), possibly stratified
by vaccination status (indirect and total effects)

Reduction in incidence in age groups that did not receive vaccination strategy (indirect)

Reduction in incidence greater than vaccine coverage (overall)

Change in age distribution of disease

Increased prevalence of colonization and disease by nonvaccine strains

in which case the design can incorporate matching or stratification as described in
Section 13.3.4.

Table 2.2 contains examples of the VEIIa, VEIIb, and VEIII based on the usual
unconditional measures incidence rate, hazard rate, and cumulative incidence. Many
other measures could be used, including average age of infection or the basic repro-
ductive number, R0. The change in the average age of infection could be in the
unvaccinated people (indirect effect), the vaccinated people (total effect), or the av-
erage of the whole population (overall effect.)

13.2 Observational Studies

13.2.1 Pre- and post-vaccination comparisons

A common approach to estimating indirect, total, and overall effects of introducing
a new vaccination program to a population is to compare the pre-vaccination with
the post-vaccination incidence. These comparisons depend on good data on cases of
the illness of interest and some method to determine the denominators. To determine
indirect or total effects, one also needs to know the vaccination status of the reported
cases. One might also want to know the level of vaccine coverage and the age-
appropriate and age-specific vaccine uptake.

Comparisons of pre- and post-vaccination outcomes include comparison of inci-
dence or attack rates before and after introduction of vaccination (overall effects),
possibly also stratified by vaccine status (indirect and total effects), reduction in
incidence greater than vaccine coverage, reduction in incidence in age groups that
did not receive vaccination, change in the age distribution of disease, and increased
prevalence of colonization and disease by nonvaccine strains (Table 13.1).

If the reduction in overall incidence, including both the vaccinated and unvacci-
nated individuals combined, is higher than the level of coverage, there is a strong
indication of indirect effects of vaccination. Thus, even with a 100% efficacious
vaccine, if coverage were 60%, one would not expect a greater than 60% reduction
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in incidence if there were no indirect effects. Thus, an observed 80% reduction in
incidence would be evidence for indirect benefits of vaccination. Another indica-
tion that herd immunity is playing a role is a reduction in incidence in age groups
that are too young or too old to be in the age group targeted by the strategy. Re-
duction of incidence in these groups is evidence of a purely indirect effect of the
vaccination program. The mean and median age of first infection will generally in-
crease as transmission is reduced, because it will take on average longer for a person
(child) to be exposed. As transmission is reduced, incidence in all age groups may
decrease, but the relative proportion of cases in the older age groups could increase.
The change in age of first infection is also an indication that the reproductive number
R is changing. In cases of infectious agents with many circulating strains, only some
of which are contained in the vaccine, such as Streptococcus pneumoniae, there is
interest in whether the prevalence of colonization and incidence of disease due to
the nonvaccine strains will increase as the prevalence of vaccine strains is reduced.

If an observed change in outcome, such as a change in incidence rate, is to
be attributed to the vaccination strategy when comparing only the pre- and post-
vaccination situation, one needs to make an assumption of minimal secular trends.
When the pre- and post-vaccination differences are small, and one is comparing
only one pre- to one post-vaccination population, one cannot be sure that some
other cause than vaccination is not responsible for any observed changes. For ex-
ample, change in sanitation or simple cyclical variation of the infection rates might
decrease incidence. Also, if the duration of observation is short, for instance, a com-
parison of influenza one year and then the following year in which a vaccination
campaign was done, one cannot be sure that a lower influenza incidence in the sec-
ond year was not simply due to a milder influenza season.

Another approach to estimating effects of widespread vaccination is to compare
data from different regions with different levels of coverage. Ali et al (2005) re-
analyzed an individually randomized trial of cholera vaccine by comparing inci-
dence in areas with different vaccine coverage levels (Section 13.2.5). However, the
level of vaccine uptake may be related to other factors correlated with the level of
incidence. Thus the estimates of indirect effects could be confounded, unless the
coverage levels were randomized.

13.2.2 Pertussis

13.2.2.1 Pertussis in Niakhar, Senegal

Préziosi et al (2002) studied pertussis in a prospective cohort of children in rural
Niakhar, Senegal over a 13-year period before and after introduction of a pertussis
vaccination program. Children under age 15 years who were residents of the Niakhar
study area were followed prospectively between January 1984 and December 1996
for the occurrence of pertussis. (See Section 10.2.3 for further details.) From 1980
to 1985, sporadic immunizations were performed, reaching fewer than 5% of the
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Fig. 13.1 Pertussis cases per month, vaccine uptake, and age-specific vaccine coverage per year,
Niakhar, Senegal, 1984–1991 (Préziosi et al 2002, Am J Epidemiol 155:891–896. Reprinted with
permission.)

children. From November 1986 to January 1987, Senegalese authorities conducted
Expanded Program of Immunization (EPI) mass immunization campaigns target-
ing children under age five years. After August 1987, infants were immunized by
monthly visits of the EPI mobile teams, with rigorous record keeping. From 1987 to
1989, children received whole cell pertussis vaccine as part of DTP-IPV at approxi-
mately 3, 5, and 10 months of age. From 1990 to 1996, clinical trials of the relative
efficacy of whole cell pertussis and acellular pertussis vaccines were conducted with
vaccination at 2, 4, and 6 months of age. A child who had received three doses of
pertussis vaccine regardless of vaccine type was considered to be fully immunized.

Vaccine uptake was measured by the number of children who received three
doses of pertussis vaccine before the end of the calendar year of their first birthday,
divided by the number of live births. Vaccine coverage was evaluated by the num-
ber of fully immunized children resident on December 31st of the year, divided by
the corresponding number of residents per age group. Pertussis incidence rates were
calculated using a person-time incidence density approach. One unit was added to
each monthly total to avoid null values and a moving average over five months was
used to smooth variations.

EPI vaccine uptake rose from 13% in 1986 to 72% in 1990, and finally reached
a level of 82 to 84% (Figure 13.1). High vaccine coverage (>80%) was achieved in
the youngest age group (6 months to 1 year) by 1991, but remained relatively low at
40% in the 5 to 14 age group even up to 1996. Pertussis was endemic, with annual
peaks and epidemics every three to four years, centered on 1986, 1990, and 1993.
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Fig. 13.2 Age-specific incidence rates of pertussis per period, Niakhar, Senegal, 1984–1996
(Préziosi et al 2002, Am J Epidemiol 155:891–896. Reprinted with permission.)

Both the number of cases between epidemics and the magnitude of the epidemic
peaks decreased. From late 1987 onward, the number of cases reported dropped
between epidemic years (Figure 13.2).

The decrease in incidence was observed in every age group, but especially in
children under age 5 years. The greatest decline was in children under age 2 years.
The declining trend was with a time lag according to age group. The overall effect of
the pertussis vaccination program as measured by the reduction in incidence in the
0 to 14 year olds between the first and third epidemic peak was VEIII = (127.3−
68.9)/127.3 = 0.46 (Table 13.2). The most dramatic decline was for the children
aged 6 to 23 months, where the reduction in incidence, or overall effectiveness of
the program was VEIII = (170.5−36.3)/170.5 = 0.79. The indirect and total effects
are not estimable from the data in Table 13.2 because the incidence rates by vaccine
status are not given. The median age of pertussis cases rose steadily from 4.1 years
in 1986 to 5.3 years in 1990 and 6.2 years in 1993 (Figure 13.2).

13.2.2.2 Pertussis in England and Wales

Miller and Gay (1997) discuss the effect of vaccination on pertussis epidemiology
in England and Wales. Vaccine uptake dropped dramatically after 1974, followed
by a resurgence of pertussis cases in 1978. Considerable discussion in the literature
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Table 13.2 Pertussis case distribution and incidence per age, during epidemic years, Niakhar,
Senegal, 1984–1996 (Préziosi et al 2002)

First Outbreak (1986) Second Outbreak (1990) Third Outbreak (1993)

Age Cases No. of Incidence/ Cases No. of Incidence/ Cases No. of Incidence/

No. % PYR 1000 PYR No. % PYR 1000 PYR No. % PYR 1000 PYR

0-5 mo 97 7 582 166.6 68 6 557 122.1 38 4 575 66.1
6-23 mo 246 18 1443 170.5 144 12 1700 84.7 58 7 1598 36.3
2-4 yr 492 35 2530 194.5 348 30 2850 122.1 241 27 2969 81.2
5-14 yr 570 40 6481 88.0 612 52 7422 82.5 555 62 7811 71.1

Total 1,405 100 11,036 127.3 1,172 100 12,529 93.5 892 100 12,953 68.9

has centered on whether pertussis vaccination actually alters the transmission of
pertussis in a population (See Chapter 12). Although there had been speculation
that the drop in cases before 1974 had been due to improved social conditions, the
steep increase in pertussis cases with decreasing uptake is evidence that the drop in
cases before 1974 was due to vaccination. Miller and Gay suggest that the decline
in incidence is greater than would be expected given the low protective efficacy
estimates of pertussis vaccination (see Chapter 10). Using other sources of evidence
as well, they argue that the results are consistent with pertussis vaccination lowering
transmission and therefore pertussis vaccination likely has indirect effects in the
population.

13.2.3 Pneumococcal vaccine in Alaska

Hennessy et al (2005) evaluated invasive pneumococcal diseases (IPD), antimicro-
bial resistance, and nasopharyngeal colonization before and after introduction of
heptavalent pneumococcal conjugate vaccine (PCV7) in Alaksa Natives. On Jan-
uary 1, 2001 PCV7 was introduced into the childhood vaccination schedule for all
Alaskan children. Population-based surveillance for IPD among persons of all races
throughout Alaska was conducted by the CDC Arctic Investigations Program. Hen-
nessy et al (2005) used the statewide surveillance for IPD to compare rates of disease
in the six years prior to routine use of PCV7 (1995–2000) with disease rates in the
three years after PCV7 use (2001–2003).

From October 1, 2001 to September 30, 2003 the proportion of 3- to 15-months-
old Alaska Native children who were age-appropriately vaccinated with PCV7 in-
creased from 51.9% to 73.2%. The proportion of 16- to 27-months-old children
with 4 or more PCV7 doses increased from 0 to 57.7%. By September 30, 2003,
95% of 19- to 35-months-old Alaska Native children had received at least one dose
of PCV7. From 1995 to 2003 a total of 1113 cases of IPD were reported in Alaska.
Isolates were available on 90% of the cases. Table 13.3 shows the before and after
rates and number of cases of IPD. The overall effectiveness against all serotypes in
Alaska Native children <2 years was VEIII = (403−142)/403 = 0.65 and in non-
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Table 13.3 Rates (per 100,000) of invasive Streptococcus pneumoniae by time period, age group,
race, and vaccine serotype, Alaska, 1995–2003 (Hennessy et al 2005)

Age Alaska Natives Non-Alaska Native

Group 1995–2000 2001–2003 p-value 1995–2000 2001–2003 p-value
(Years) Rate (Number) Rate (Number) Rate (Number) Rate (Number)

Conjugate vaccine serotypes (4, 6B, 9V, 14, 18C, 19F, 23F)
<2 275.3 (84) 24.7 (4) <.001 101.3 (86) 20.0 (9) <.001
2–4 47.0 (21) 0 (0) <.001 13.6 (17) 7.5 (5) .247
5–17 5.9 (12) 0.9 (1) .035 1.0 (6) 2.5 (8) .095
18–44 6.1 (6) 5.7 (8) .909 4.3 (52) 1.09 (7) .792
≥45 15.1 (23) 13.6 (11) .792 11.4 (102) 7.4 (35) .023

Nonconjugate vaccine serotypes
<2 95.1 (29) 105.0 (17) .738 23.6 (20) 28.8 (13) .568
2–4 13.4 (6) 8.4 (2) .610 4.0 (5) 7.5 (5) .333
5–17 7.8 (16) 5.5 (6) .484 2.6 (16) 1.5 (5) .307
18–44 16.6 (44) 17.8 (25) .779 3.6 (43) 2.8 (18) .403
≥45 32.9 (50) 54.6 (44) .016 10.4 (93) 7.0 (33) .043

All cases (including unknown serotypes)
<2 403.2 (123) 142.0 (23) <.001 133.1 (113) 51.0 (23) <.001
2–4 73.9 (33) 12.7 (3) <.001 18.4 (23) 16.6 (11) .792
5–17 15.2 (31) 8.3 (9) .103 3.9 (24) 4.6 (15) .616
18–44 25.3 (67) 24.9 (35) .947 9.2 (111) 4.7 (30) <.001
≥45 57.9 (88) 75.7 (61) .112 23.5 (210) 16.9 (80) .010

Natives was VEIII = (133−51)/133 = 0.62, both of which were found to be statisti-
cally significant, ignoring that comparison is just before and after in one population.
In children aged 2–4 years the overall effectiveness against all serotypes in Alaska
Native children was VEIII = (73.9− 12.7)/73.9 = 0.83 but was just 0.10 in non-
Natives. Most of the dramatic decline was in the vaccine serotypes. Overall effec-
tiveness against PCV7 serotypes among children <2 years for Alaska Natives was
VEIII = (275−25)/275 = 0.91 and in non-Natives VEIII = (101−20)/101 = 0.80.

Colonization studies were also conducted from 1998 to 2003 community wide in
eight rural Alaska villages and in urban clinics from 2000 to 2003 in children aged
3 to 59 months. The proportion of persons colonized with S. pneumoniae of PCV7
serotypes declined substantially after PCV7 introduction. Decreased vaccine-type
colonization and invasive disease in adults demonstrate indirect effects. Although
not all denominators are given, Hennessy et al (2005) estimated that in children ≥5
years old, who were not eligible to receive PCV7, 41 cases of vaccine type IPD
(95% CI 20–64 cases) were indirectly prevented by PCV7 introduction.
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Table 13.4 Attack rate (AR) of confirmed meningococcal serogroup C infection in unvaccinated
children before and after the launch of the vaccination campaign (Ramsay et al 2003)

July 1998–June 1999 July 2001–June 2002

AR per Est AR per Indirect
100,000 coverage Est. 100,000 effect, VEIIA

Cohort Cases Population (95% CI) Cases (%) pop (95% CI) (95% CI)

Adolescent 96 1,818,034 5.28 (4.2, 6.3) 11 66 614,110 1.79 (0.7, 2.8) 66 (37, 82)
Grades 7–10 141 2,546,938 5.54 (4.6, 6.4 ) 4 86 359,118 1.11 (0.02, 2.2) 80 (46, 93)
Grades 1–6 76 3,911,606 1.94 (1.5, 2.4) 5 87 498,068 1.00 (0.1, 0.9) 48 (−28, 79)
Preschool 81 2,055,120 3.94 (3.1, 4.8) 6 76 501,449 1.20 (0.2, 2.2) 70 (30, 87)
Toddlers 41 601,045 6.82 (4.7, 8.9) 2 84 97,369 2.05 (−0.7, 4.9) 70 (−24, 93)
Infants 24 320,562 7.49 (1.5, 10.5) 1 80 64,112 1.56 (−1.5, 4.6) 79 (−54, 97)

Total 459 11,235,305 4.08 (3.7, 4.5) 29 2,134,226 1.36 (0.86, 1.85) 67 (52, 77)

13.2.4 Meningococcal vaccine in the United Kingdom

The United Kingdom introduced routine meningococcal serogroup C vaccination
for infants in November 1999. The vaccine was also offered to all children and ado-
lescents aged <18 years in a phased catch-up program. Adolescents were vaccinated
first and the program was completed by the end of 2000. Ramsay et al (2003) com-
pared cases in unvaccinated children from each age group in the period from July 1,
2001 to June 30, 2002 with those in the same age groups for the period from July 1,
1998 to June 30, 1999. The denominator was mid-1999 population estimates from
the Office of National Statistics for the age group, adjusted for the proportion of
each cohort vaccinated. The cases were identified at the Public Health Laboratory
Service by confirmation of serogroup C disease. They investigated the vaccination
history of all such identified cases. They computed vaccination coverage from data
from immunization coordinators and departments of child health in England. They
identified a total of 37 cases in the 2001–2002 period in the cohorts targeted for
vaccination, 8 in vaccinated children and 29 in unvaccinated children.

Table 13.4 contains the number of cases in the unvaccinated children before and
after launch of the vaccination campaign. The estimated indirect effect in children
based on the attack rate over all age groups is VEIIA = (4.08− 1.36)/4.08 = 0.67
with a 95% CI (0.52–0.77) with a range of 0.48 to 0.80 in the different age groups.
Using a denominator of 9,119,078 for the eight vaccinated cases for an attack rate
of 0.09/100,0000, Ramsay et al (2003) computed the estimated direct protective
efficacy of the vaccine to be (1.36−0.09)/1.36 = 0.94 (95% CI 0.86–0.97).

13.2.5 Cholera vaccine in Bangladesh

Ali et al (2005) reanalyzed data from a large-scale, double-masked, individually
randomized field trial of killed whole cell cholera vaccines given orally, either with
or without cholera toxin B subunit in Bangladesh to ascertain whether there was
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Table 13.5 Risk of cholera in placebo and recipients of killed oral cholera vaccines, by level of
coverage of the bari during the first year of follow-up (Ali et al 2005)

Level of Vaccine Recipients Placebo Recipients Protective
Vaccine Target Risk per 1000 Risk per 1000 Efficacy

Coverage Population N Cases population N Cases Population (95% CI)

<28% 24,954 5627 15 2.67 2852 20 7.01 62 (23 to 82)
28-35% 25,059 8883 22 2.48 4429 26 5.87 58 (23 to 77)
36-40% 24,583 10772 17 1.58 5503 26 4.72 67 (36 to 83)
41-50% 24,159 11513 26 2.26 5801 27 4.65 52(14 to 73)
>51% 22,394 12541 16 1.28 6082 9 1.48 14(-111 to 64)
Total 121,149 49,336 96 1.94 24,667 108 4.37 56(41 to 67)

evidence of indirect as well as direct vaccine protection of individuals. The trial was
done in the Matlab field area of the International Centre for Diarrhoeal Disease Re-
search, Bangladesh (ICDDR,B): Centre for Health and Population Research during
the 1980s (Clemens et al 1990). All children aged 2 to 15 years and women older
than 15 years were randomized to receive either one of the cholera vaccines or Es-
cherichia coli K12 placebo. The main objective of the original trial was to assess
whether receipt of three doses of vaccine was associated with lower incidence of
cholera than that observed after receipt of three doses of placebo. At one year of
follow-up, protective efficacy was 62% for B subunit-killed whole cell oral cholera
vaccine and 53% for killed whole cell only oral cholera vaccine. The reanalysis to
assess indirect effects was motivated by the lack of enthusiasm for introducing the
vaccine in populations with endemic cholera because of the moderate direct protec-
tive effects.

A bari in Bangladesh is a patrilinearly-related household living in clusters. Ali et
al (2005) chose the bari as the unit of analysis because baris are geographically dis-
crete and because there may be transmission within these units. A total of 6423 baris
were included in the analysis, with the median number of individuals in a bari eli-
gible for the trial being 17 (interquartile range 7–26). The analysis was restricted to
the first year of follow-up to have a more stable population and minimize the effects
of migration. Level of vaccine coverage was defined as the number of vaccinated in-
dividuals divided by the number of people who were eligible for participation in the
trial by age and sex criteria. Then because the coverage of nearby baris might affect
the risk of cholera of bari residents, the vaccine coverage of the bari was defined as
the coverage of bari residents and those living within a 500 meter radius according
to a geographic information system mapping.

Table 13.5 presents a summary of the data divided into quintiles by level of cover-
age of the baris and the protective efficacy for each quintile. For the indirect and total
effects, models based on generalized estimating equations with a logit link and ex-
changeable correlation matrix including potential confounding variables were used
(see Section 13.7). The risk of cholera in recipients of two or more doses of either
vaccine or placebo is inversely related to the level of vaccine coverage of the bari.
The trend is statistically significant in placebo recipients (Spearman’s correlation
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coefficient −1.00, p = 0.02), but not in vaccine recipients (−0.90, p = 0.08). Three
analyses were done using the generalized estimating equations, one using all recipi-
ents with≥2 doses of vaccine or placebo (overall effect), one for those with vaccine
(total effect), and one for those with placebo (indirect effect). The odds ratios for
the level of cholera vaccine coverage of the bari were 0.97 (95% CI 0.96–0.98),
0.98 (95% CI 0.96–1.00), 0.96 (95% CI 0.94–0.98). respectively. Thus, there was a
significant gradient by level of coverage for the overall effect and the indirect effect,
with a borderline significant gradient for the total effect.

13.2.6 Drawbacks of nonrandomized evaluation

Evaluation of indirect, total, or overall effects based on pre- and post-vaccination
surveillance data can often provide good evidence, at least of the overall effects.
However, if the change is to be attributed to the vaccination program, one must as-
sume there are no major secular trends. A particular example of the difficulty of
using nonrandomized studies or studies based on comparing just one or two pop-
ulations is influenza (Halloran and Longini 2006). Attempts have been made be-
fore to demonstrate the community-wide effectiveness of vaccinating school chil-
dren against influenza. Just before the epidemic in 1968, Arnold Monto and col-
leagues vaccinated 85% of the school-age children in Tecumseh, Michigan, against
influenza, resulting in a 67% decrease in the influenza-like illness attack rate in
Tecumseh compared with neighboring Adrian (Monto et al 1969). In an ongoing
community vaccination study in Central Texas with LAIV, Paul Glezen and col-
leagues are attempting to demonstrate that vaccinating school children reduces in-
cidence of influenza-like illness in adults (Piedra et al 2007). Although these stud-
ies are rigorous, they each have only one or two comparison communities and use
influenza-like illness for the outcome. A study in several schools in the former So-
viet Union used a nonspecific outcome as well, so the results are difficult to inter-
pret (Monto et al 1993). The Japanese national vaccination strategy was targeted at
school children for over two decades until 1987 with the intention to reduce epi-
demic influenza. A retrospective reassessment suggesting that the Japanese strategy
reduced excess deaths among elderly adults (Reichert et al 2001) is open to criti-
cism because it is based on non-specific mortality data over time. The time trends
could result from factors not related to influenza vaccination. A review of 14 studies
concluded that further evidence is needed of the indirect effects of influenza vacci-
nation in children (Jordan 2005). King et al (2006) tried to demonstrate that school-
based influenza vaccination reduced spread of influenza in households and commu-
nites, but used an influenza-like illness outcome, not influenza. The use of a non-
specific case definition compounds the difficulty of evaluating the indirect effects
of influenza vaccination strategies. A larger scale study with numerous comparison
communities is needed to gather convincing data to counter remaining scepticism.
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13.3 Group-Randomized Studies

To evaluate indirect, total, and overall effects of a vaccination strategy, ideally one
would randomize several communities to receive the vaccination strategy of interest
and several communities to serve as controls. Then the outcomes in the interven-
tion communities would be compared with those of the control communities. Most
commonly, the luxury of conducting a prospectively designed study of a vaccination
strategy in multiple groups or populations to estimate indirect, total, and overall ef-
fects will not be an option. The more feasible approach will often be to plan well for
a comparison of the pre- and post-implementation incidence in the relevant popula-
tions as the studies described in the previous section. Despite the increasing interest
in using group-randomized studies to evaluate population-level effects of vaccina-
tion, few actual studies have been conducted up to now. However, prospectively
designed community-randomized studies may become more common in the future.

Community-, group-, or cluster-randomized studies are those in which the in-
tervention, or intervention strategy, is randomized to groups of individuals. With
vaccines, one can in principle, have two levels of randomization. The vaccination
strategy can be randomized at the group level, then individuals within the target pop-
ulations in the group can be further randomized at the individual level. There is an
extensive literature on group-randomized designs (Murray 1998; Hayes and Moul-
ton 2009). Cluster-randomized studies are often conducted because it is not feasible
to allocate the intervention individually, even though the effects on the individu-
als are of interest. Vaccination studies sometimes use a group-randomized design
even when the direct protective effects are of interest because of practical or ethical
consideration. An example was the original design of the large polio vaccine trials
in the United States in the 1950s, although the design was changed to individual
randomization midway through (Section 1.1). Group-randomized designs may be
used in household-based studies of vaccination where the parents or other house-
hold members might be unwilling to do a discordant or individual randomization.
We discuss group-randomized studies here primarily for our interest in measuring
indirect, total, or overall effects.

One often distinguishes the unit of assignment, the unit of intervention, the unit
of observation, and the unit of analysis (Murray 1998). The unit of assignment could
be the unit that is assigned the allocation strategy, say a community is randomized
to receive the vaccination strategy of interest, and another is assigned to receive
a control vaccination strategy. With vaccines, the additional unit of assignment is
the individual within the community. The assignment at the individual level within
each community may be randomized or not. For a selected target group, such as
children under two years of age, one might vaccinate whoever comes to a clinic to
be vaccinated. Then the children who are vaccinated within a group randomized to
the vaccination strategy are not a random sample, but subject to a selection mecha-
nism as in an observational study, the rule of which is unknown to the investigator.
The unit of intervention could be health clinics or physician’s practices within a
community, or the nurse practitioner’s office within a school. The unit of observa-
tion for cases is generally the individual, whether it be individual cases picked up
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Table 13.6 Design considerations in group-randomized studies to estimate indirect, total, or over-
all effects of vaccination strategies

Design Consideration

Primary and secondary questions of interest

Vaccination strategy

Clinical endpoints

Study population and subpopulations

Sources of transmission

Case ascertainment

Choice of randomization unit at the group level

Allocation mechanism at the individual level: randomization or observational

through surveillance systems or clinical studies. Individual covariates and outcomes
are ascertained. In community studies, there will likely also be community-level co-
variates, such as prevalence or incidence levels, amount of rainfall, distance from
roads, or distance from a health clinic. The community is the unit of observation for
community-level covariates. Much discussion in the literature considers the appro-
priate unit of analysis. In general, the unit of analysis is determined by the study
design. “A unit is a unit of analysis for an effect if and only if that effect is assessed
against the variation among those units” (Murray 1998, page 105). Several design
considerations in group-randomized studies to estimate the different types of effects
are summarized in Table 13.6.

13.3.1 Scientific or public health question of interest

The scientific or public health question of interest will influence the choice of al-
location strategy. There may be primary and secondary questions of interest. For
example, the primary interest may be in evaluating the total effects of vaccination
compared to no vaccination, as in the pneumococcal vaccine study designed by
Moulton et al (2001) (Figure 13.3). In this case, one would want to vaccinate as
many individuals in the target population as possible to maximize the total effects.
The secondary interest may be in evaluating the indirect effects of vaccination on
those not vaccinated.

If pure indirect effects were of primary interest, then the best approach would
depend on which subgroups were receiving the vaccines and in which subgroups
the indirect effects were to be measured. For example, if the indirect effects in the
subgroup receiving the vaccine were of primary interest, then there would be a trade-
off to consider. If too many people in the intervention communities are vaccinated,
there will be few people left unvaccinated and few events in the unvaccinated people
in the intervention community. If too few people in the intervention communities
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Fig. 13.3 Schematic of the questions of interest in the pneumococcal vaccine trial in Native Ameri-
cans. Participants in each vaccine unit receive PCV7 vaccine, and those in each control unit receive
MnCC vaccine (Moulton et al 2001, Contr Clin Trials 22:438–452. Reprinted with permission from
Elsevier.)

are vaccinated, there may be no detectable indirect effect. On the other hand, if one
were interested in estimating the indirect effects in adults of vaccinating children,
then the goal would be to vaccinate as many children as possible in the intervention
communities. Studies can be designed to evaluate direct as well as indirect, total,
and overall effects. If in addition to indirect or total effects, one is also interested in
evaluating the direct effects of vaccination, then one would want to vaccinate few
enough people that sufficient transmission remains to produce the number of events
necessary to estimate the direct effects.

13.3.2 Choice of group-level randomization unit

The choice of the group at the level of the group-randomization depends on both
practical and theoretical considerations. One wants the groups to be transmission-
dynamically separate. If communities receiving vaccine interact with communities
not receiving vaccine, the contamination across groups could dilute the indirect,
total, or overall effects of the vaccination program. Contiguity can occur through
spatial proximity or social mixing patterns among units. Contamination across units
will decrease the power of the study. The vaccination delivery system may determine
the randomization units. Vaccination delivery could be through health care clinics
or EPI vaccination team catchment areas. Political units such as towns or counties
might be natural randomization units. One can also use smaller randomization units,
such as schools (King et al 2006) or households, such as in the mini-community
design (Chapter 12).



286 13 Assessing Indirect, Total, and Overall Effects

Given a study population, a trade-off exists between the size of the cluster with
number of expected cases per cluster and the number of clusters. If incidence rates
are relatively high, and the effect to be measured is also expected to be substantial,
then one can divide the population into fewer clusters. However, there will be a loss
of efficiency as the number of individuals per randomization unit increases. Care
should be taken that the randomization units are not too small. The efficiency of
a study also depends on the intragroup correlation which could be affected by the
size of the community chosen as the unit of randomization (Hayes et al 2000). If
small communities are chosen, then the intracommunity correlation might be quite
high, whereas in large communities, the correlation might be smaller. Also, small
randomization units might have considerable mixing among the groups, resulting
in diminished indirect, total, and overall effects. In general, one would prefer to
increase the number of communities to have more randomization units with fewer
individuals if they are transmission-dynamically separate. The choice of the ran-
domization unit for any particular study will depend on the local conditions.

13.3.3 Sources of transmission

Consideration of the likely transmission patterns and sources of exposure to infec-
tion in a population is required in anticipating possible detection of indirect effects.
These transmission patterns will influence the magnitude of the indirect effects of an
intervention strategy. For example, many influenza researchers believe that school
children are the primary sources of transmission in the community. Widespread vac-
cination of school children could be expected to have considerable indirect effects
on reducing influenza in a community (Halloran and Longini 2006; Piedra et al
2007). On the other hand, in the study aimed to evaluate the total effects of vaccinat-
ing children <2 year olds with pneumococcal vaccine (Moulton et al 2001, 2006),
the contribution to transmission of school children or adults who are colonized with
the bacteria is not understood well. If the older children who are unvaccinated are
important sources of transmission, then the vaccination strategy, at least in the early
years upon introduction, will have low indirect effects, and the total effects will be
dominated by the direct protection.

13.3.4 Designs and randomization schemes

One consideration in group-randomized studies is the temporal order of randomiz-
ing to vaccination strategy or control. Another consideration is the randomization
scheme (Table 13.7). Three general group-randomized study designs are parallel de-
signs, stepped wedge designs, and crossover designs (Hughes 2003). Any of these
three study types can be used when the randomization unit is either an individual or
a group, but the focus here is the context of group-randomized studies to evaluate
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Table 13.7 Community-randomized designs and randomization schemes

Design Randomization Scheme Covariate Constraints

Parallel Completely randomized Unconstrained
Stepped wedge Stratified Constrained
Crossover Matched-pairs

indirect, total, and overall effects of vaccination. In the parallel design, the groups
are randomized to receive one or another of the interventions before the start of the
study, and the intervention assignment does not change until the end of the study. In
the stepped wedge design, the intervention is introduced in more and more groups
over time. This allows the groups in which the intervention is not yet introduced
to serve as control groups. In the crossover design, the groups are first randomized
to receive one or another of the interventions at the beginning, then at some point,
the interventions are switched. This latter design likely has no application in vac-
cine studies, because in general one cannot de-vaccinate people or populations. We
do not consider it further here. Both the parallel design and the stepped wedge de-
sign can be used to evaluate direct, indirect, total, and overall effects of vaccination.
That is, groups can be randomized to vaccination or control, then individuals within
groups may or may not be randomized to receive vaccine or not.

Once either the parallel or stepped wedge design is chosen, then a randomiza-
tion scheme is required. Three general randomization schemes are the completely
randomized study, stratified randomization, and matched-pairs randomization. In
a completely randomized parallel study, groups are randomized to intervention or
control without any consideration of variability among the groups. In a completely
randomized stepped wedge design, the order of introduction of the intervention is
randomized without any consideration of variability among the groups.

Group-randomized trials often have only a limited number of identifiable groups
to assign to the different interventions. Two key issues arise in choosing a random-
ization scheme when the number of groups is limited. First, in a completely random-
ized study, variability among communities could swamp out the estimates of the ef-
fects of the vaccination strategy. Second, generally there will not be enough groups
to ensure that the potential sources of bias among the intervention conditions will
be evenly distributed. Even if the groups or communities contain thousands of par-
ticipants, if there is important variability of characteristics between groups, a study
that is completely randomized at the group level could have imbalances in impor-
tant covariates. If these characteristics are also related to the outcome of the study,
an example would be the incidence rate of the disease of interest in the community,
then the results of the study may be difficult to interpret. Even if it is possible to do
some adjustment at the time of analysis, the results will be open to criticism. For
example, consider a study to evaluate the total effectiveness of widespread vaccina-
tion, with five communities randomized to intervention and five to control. It could
happen that the five communities with the lowest baseline incidence of the disease
in question would be randomized to receive vaccination. If that were to happen, the
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results of the study could be criticized as being biased in favor of the vaccination
strategy by the realized randomization.

Two main approaches are available to increase power and to reduce the chance of
imbalance of covariates when there is considerable variability among communities.
One is to stratify groups by pre-randomization group-level covariates of interest,
including transmission characteristics, then randomize to vaccination intervention
or control within strata. The other, an extreme version of stratification, is to match
pairs of communities on the covariates of interest, so the strata contain only two
communities, then randomize to intervention or control within the pairs. Groups
rather than individuals are stratified/matched prior to randomization. Hayes et al
(1995) matched on transmission characteristics in a community trial of the effect of
improved sexually transmitted disease treatment on the HIV epidemic in rural Tan-
zania (Grosskurth et al 1995). Pre-randomization stratification or matching requires
information on factors related to the primary endpoint used for the stratification/
matching prior to randomization.

Even in stratified or pair-matched designs, an unlucky randomization can result
in the intervention always being assigned to the lower incidence groups. An appeal-
ing approach to randomizing groups that avoids gross imbalances on known and
measured variables is covariate-based constrained randomization (Moulton 2004).
In the constrained, or restricted, randomization, certain balancing criteria are deter-
mined before randomization that still retain validity of the design. Then the final
randomization scheme is randomly chosen from among those that both satisfy the
constraining criteria and are still valid. A completely randomized design is valid
if each pair of randomization units has the same probability of being allocated the
same treatment (Bailey 1983). A design is biased, if, across the randomization units,
there is any difference in probability of assignment to a given treatment. Constrained
randomization can be used in completely randomized, stratified, or pair-matched de-
signs.

13.3.5 Other design considerations

13.3.5.1 Study population, vaccines, and vaccination strategy

The choice of study population will be determined by the vaccine and the ability to
conduct a large-scale study in the population. The ability to administer the vaccine,
keep records, and also to obtain data on the clinical outcomes is important. Exactly
what the intervention program of interest is will depend on the vaccine, the vacci-
nation schedule for that vaccine, and which subgroups suffer the greatest morbidity.
The comparisons may be made between different levels of vaccination coverage,
between allocation within different age groups, or between otherwise defined sub-
groups. In a parallel design, it might be necessary to consider using a different active
vaccine as a control. This would help preserve masking and inactive placebos are
often considered unethical for vaccine studies. The active vaccine as a control also
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provides a comparable group, in that those people who actually receive the vaccine
in the two arms might be assumed the appropriate groups for comparison in estimat-
ing total effects. For example, in the pneumococcal vaccine study of total effects, the
control vaccine was an investigational meningococcal C conjugate vacccine (Moul-
ton et al 2001). In a phased implementation design (Section 13.4), an active control
vaccine would generally not be used.

13.3.5.2 Case ascertainment and clinical endpoints

In large community studies, to evaluate indirect, total, or overall effects, whether
randomized or observational, good methods for thorough case ascertainment is im-
portant. Examples include active population surveillance as in the Niakhar study,
biological confirmation of suspected cases in reference laboratories, or general
surveillance and reporting systems. Active population surveillance can demand a lot
of resources. If considerable underreporting of cases is suspected, and two or more
sources of surveillance or case reporting are available, capture–recapture methods
can be considered to provide better estimates of the number of cases (Gjini et al
2004).

Clinical endpoints can be defined as a combination of clinical symptoms and/or
by biological confirmation of the infectious agent targeted by the vaccination. The
infectious agents can further be identified as being contained in the vaccine or not
contained in the vaccine. For example, in pneumococcal vaccine studies, the cases
can be categorized as being a vaccine serotype or a nonvaccine serotype. In influenza
vaccine studies, the infections are classified either as homologous with the vaccine
type or heterologous, indicating some degree of antigenic mismatch between the
vaccine strains and the circulating strains.

Two possibly related problems may arise in large, group-randomized studies.
First, if the disease is common, such as in influenza, the number of suspected cases
in the large study may be too many for all cases to be confirmed biologically. Sec-
ond, surveillance may not be specific for the illness of interest. For instance, in-
fluenza incidence in post-licensure vaccine studies is generally measured using non-
specific case definitions, such as influenza-like illness or medically attended acute
respiratory illness, which include many diseases in addition to influenza. A non-
specific case definition can attenuate the estimates of indirect and overall effects.
In Chapter 8 the concept of using validation sets to obtain more accurate efficacy
estimates when the main case definition is nonspecific was discussed. Especially in
studies to evaluate total or overall effects, validation sets might be helpful to improve
the ability to detect a signal above the noise.

As an illustration, Figure 13.4 shows results of 100 stochastic simulated estimates
of the indirect effects of vaccinating 50% of the children with an influenza vaccine
in one community as compared with another community without vaccination (Hal-
loran and Longini 2001). Each population has 10,000 people, half children and half
adult. The indirect effects are set to 0.25. In each pair of populations, the popula-
tion in which children were vaccinated had an influenza incidence rate reduced by a
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Fig. 13.4 Estimated indrect effects of vaccination of children among children (left) and among
adults (right) when the indirect effects are set to 0.25. Estimates were based on true influenza cases
(top), the validation set approach (middle), and all influenza-like illnesses. The expected incidence
in children varied weekly over the 12-week epidemic period as (0.014, 0.024, 0.034, 0.05, 0.06,
0.055, 0.05, 0.044, 0.038, 0.024, 0.015, 0.01). The expected incidence of influenza in adults was
half that. The expected incidence rate of noninfluenza in both children and adults was set to 0.02
per week. The baseline incidences of true influenza and background noninfluenza are multiplied by
random numbers between 0.085 and 1.15 so the baseline incidences in each comparison pair are
similar but not identical (Halloran and Longini 2001, Am J Epidemiol, 154:391–398. Reprinted
with permission).

factor of 0.25. VES is assumed to be 0.90 (leaky). The top histograms of estimates
based on ascertainment of all true influenza cases in children and adults are centered
around 0.25. However, if we use all influenza-like illnesses, the estimates are much
lower (bottom rows). The histogram is centered around 0.14 in children and 0.10 in
adults. However, by incorporating a random sample of the influenza-like illnesses
that are biologically confirmed, we can adjust the estimates based on the influenza-
like illnesses (middle row). The histograms are once again centered around 0.25,
although the histograms based on the validation set approach show more variability
than the histograms based on confirming all true influenza cases.

Although it may not be feasible to confirm biologically every clinically deter-
mined case in a large study to evaluate indirect, total, or overall effects, a small
random sample of confirmed cases could be quite useful. There are trade-offs in us-
ing a nonspecific outcome on more groups and reducing the number of groups and
using validation sets. Given the variability and background noise among commu-
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nities, schools, or other group, for a fixed budget, it is probably better to use fewer
groups in general and get more specific outcomes on some of the participants. These
potential trade-offs have yet to be studied rigorously.

13.4 Parallel and Stepped Wedge Designs

13.4.1 Parallel designs

The simplest parallel group-randomized design is one in which N groups are ran-
domized to either the vaccination strategy or the control strategy, for a total of
2N groups. It would also be possible to have an unbalanced allocation in which
N groups are randomized to the vaccination strategy, and M 6= N groups are ran-
domized to the control strategy.

13.4.2 Parallel pneumoccocal vaccine study

Moulton et al (2001) designed a group-randomized, double-masked Phase III trial
of a seven-valent Streptococcus pneumoniae conjugate vaccine (PCV7) in Ameri-
can Indian populations in the United States. The study had a parallel design. An
active control, a conjugate meningococcal group C vaccine (MnCC vaccine) was
used in groups randomized to control. The primary goal of the trial was to evaluate
the total effects of vaccination, with secondary interest in the indirect effects, and
at the same time to serve as a pivotal vaccine study. At the time of the design of
the study, another Phase III study with standard individual randomization was on-
going in northern California (Black et al 2000). However, the number of invasive
pneumococcal cases occurring in that trial was small. The group-randomized study
was designed to estimate the total efficacy, which takes the direct protective effects
on the vaccinated individuals as well as the indirect effects into account, so that the
effects could potentially be greater than the effects in the individually randomized
study. The study was the first group-randomized vaccine trial in the United States
designed to be a pivotal trial for licensure.

There were 4164 infants enrolled in the PCV7 communities and 3926 in the
MnCC communities between April 1997 and December 1999. The study had 38
geographically defined randomization groups The choice of randomization unit was
made in consultation with groups knowledgeable about the social and geographic as-
pects, including representatives from the Navajo Nation, to minimize mixing among
the social and geographic units. Half the groups were randomized to study vaccine,
PCV7, the other half to the active control, MnCC vaccine. The goal in each random-
ization group was to vaccinate as many children under two years of age as possible
to achieve the highest total effects.
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Originally the trial was designed to continue until 48 cases of invasive pneumo-
coccal disease due to vaccine serotypes had accumulated. However, on February 17,
2000, the FDA approved the licensure of the PCV7 vaccine based on the results of
the primary efficacy study in northern California (Black et al 2000). Ethically the
study could not be continued, and PCV7 vaccine was offered in the MnCC commu-
nities. Only nine cases had accrued at that time.

Later, Moulton et al (2006) estimated the indirect effects on the unvaccinated
children in the communities (Section 13.7.1). To estimate indirect effects they com-
pared the incidence rate of invasive pneumococcal disease in vaccine units among
nonenrolled children versus the incidence rate in control units in nonenrolled chil-
dren. By using the nonenrolled children in both communities, they hoped to have
comparable children in their analysis. By combining the information from the study
with information from Indian Health Service User Population data and birth logs,
they were able to obtain denominators for each of the 38 randomization units. They
were also able to interpolate the number of nonenrolled children at any day between
April 1997 and October 2000. The numerator for invasive disease was obtained
from surveillance data that had been subject to a standard protocol during the study.
There were 21 cases of invasive disease due to study vaccine serotypes among non-
study children living in MnCC randomization units, and 27 cases among those in
the PCV7 units.

13.4.3 Stepped wedge designs

Stepped wedge designs can be used when a parallel design is infeasible either for
practical or for ethical reasons. For example, if a vaccine is already licensed, then
it may be unethical to randomize some communities or individuals not to receive
vaccine during the trial. Practical considerations may delay introducing the vaccine
everywhere at once, either because insufficient vaccine is available or for logistical
reasons of not being able to administer it everywhere or to everyone at once. By
the end of a trial using a stepped wedge design, all randomization units will have
received the vaccination strategy. Thus the clusters are not randomized to receive
the vaccine intervention or not, but rather the time of the introduction of the vaccine
intervention to each cluster is randomized (Figure 13.5). The stepped wedge design
is also referred to as phased implementation (Gambia Hepatitis Study Group 1987).

The idea of the stepped wedge design is gaining in popularity (Moulton et al
2007; Hussey and Hughes 2007; Hughes 2008), although it has been slower to be
used in randomized vaccine trials to estimate indirect, total, or overall effects. Not
all outcomes of interest can be studied by a stepped wedge design. For example, if
one is interested in the change in age of first infection, then one would possibly con-
duct the study over several years. If a vaccine is unlicensed, this may be infeasible,
because one would not want to wait for years to license the vaccine on this outcome.
If a vaccine is licensed, such a long-term study would likely not be ethical. Thus,
the observational studies of pre- and post-vaccination will have to suffice (Section
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Fig. 13.5 Example of a stepped wedge design.

13.2.1) or mathematical models can be substituted as a means of experiment (Chap-
ters 4 and 5).

13.4.4 The Gambia Hepatitis Intervention Study

One of the first studies using a stepped wedge design was a hepatitis B vaccine study
in The Gambia (Gambia Hepatitis Study Group 1987). Although this study was not
designed to evaluate indirect or overall effects of vaccination, we present it here
because of its early use of the stepped wedge group-randomized design.

Chronic liver disease and liver cancer are thought to be partially caused by hep-
atitis B viral infection. In West Africa, including The Gambia, chronic liver dis-
ease and liver cancer are important public health problems. It used to be that nearly
everyone in The Gambia was infected with HBV during childhood and between
10 to 20% became chronic carriers. The goal of the hepatitis B vaccination study
was to evaluate the effect of infant vaccination on preventing chronic liver disease
and liver cancer later in life. Thus, a long-term follow-up for over 30 years was
planned. However, it was undesirable to do a parallel randomized study in which
half of the children were followed for 30 to 40 years before initiating mass vac-
cination campaigns. Thus, a phased implementation, or stepped wedge design was
proposed. Because at that time, four injections were required for full immunization,
and the vaccine was to be administered along with the routine EPI vaccines, it was
considered logistically infeasible to do an individually randomized trial, as well as
potentially ethically questionable.
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Fig. 13.6 Stepped wedge design in the Gambia hepatitis B vaccine study (adapted from the Gam-
bia Hepatitis Study Group 1987).

The choice of study designs was further influenced by the expense of the vaccine
and its limited availability prohibiting immediate universal hepatitis B vaccination.
To avoid confounding by secular trends, the stepped wedge design provided the
ability to have comparison groups available from the same time period. They also
hoped that the hepatitis B vaccine would be widely available by the end of the
study. Based on these considerations, phased introduction of hepatitis B vaccine
to the EPI schedule was planned, with injections within one month of birth, and
at 2, 4, and 9 months of age. There were 17 EPI vaccination teams each assigned
a portion of 104 delivery points that were visited at least once every two weeks.
The study plan randomized one of the teams every 10 to 12 weeks to introduce the
hepatitis B vaccine to the EPI schedule by vaccinating all newborns who reported
to the vaccination points served by the team. This was to continue for a period of
about four years, when all teams would be giving the vaccine, so that countrywide
coverage would be achieved (Figure 13.6). The alternative parallel design, in which
EPI vaccination teams would have been randomized to give HBV or not for four
years is statistically more powerful, but would have been less acceptable (Jaffar et
al 1999).

Evaluation of the protective effect of HBV vaccination against liver cancer and
chronic disease was planned through the long-term follow-up of those children born
during the four-year period over which HBV vaccine was introduced. For children
born in each three-month period, incidence of later liver cancer and chronic liver
disease would be compared among those receiving HBV vaccine and those not.
For example, those newborns entering in the first three months of the study would
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be compared later in life to those newborns reporting to the 16 other vaccination
teams. This approach to comparison controls for secular trends that might affect the
risk of developing liver cancer. Randomization of the order in which the EPI teams
introduced the HBV vaccine minimizes the bias in the comparison of the vaccinated
and unvaccinated groups. To further avoid bias, the plan was to restrict the analysis
to comparison of those who attend the vaccination clinics at all four ages at which
HBV would be given.

Considerable efforts were undertaken to enable identification of the persons en-
rolled 30 to 40 years after enrollment, which in The Gambia can be a challenge. For
follow-up, a nationwide cancer registry and active surveillance were established. A
number of studies to assess intermediate endpoints were built into the long-term
follow-up. A subset was followed for serological data on a regular basis through
childhood and adolescence. Cross-sectional studies were also performed to com-
pare acquisition of HBV markers at different ages. The findings 20 years into the
study were, among other things, that (i) protection against HBV infection was not
dependent on the number of vaccine doses received, (ii) the HBV attributable risk of
liver cancer at age >50 years was 70% to 80% lower than initially assumed, and (iii)
hepatitis B vaccine coverage was 15% higher than originally assumed (Viviani et al
2008). This is an example of the need to plan for long-term studies and follow-up in
vaccine studies.

13.5 Covariate-Constrained Randomization

13.5.1 Parallel design

We consider covariate-constrained randomization primarily in the context of a com-
pletely randomized parallel design. We then briefly consider using constrained ran-
domization in the stepped wedge design. Different constraints can be used for differ-
ent types of constraining variables (Moulton 2004). For continuous covariates such
as incidence rates of the disease of interest, one can choose some measure based on
the standard deviation or absolute mean difference. For dichotomous covariates, ±
some percentage points might be appropriate. For example, suppose there was a dif-
ference in the incidence of disease between the north and south regions of the study
area. Then one would not want all of the intervention sites in the north and control
sites in the south. One could assign a 0,1 dummy variable for north and south and
require that the difference between the intervention and control values be less than
10%. Other important aspects, such as sources of water, proportion of the popula-
tion with a certain educational level, health clinics, or roads within geographic areas
can also be balanced within some specified range. Composite scores or more than
one covariate can be used for defining the constraints that need to be satisfied. The
constraining criteria can vary among the covariates.



296 13 Assessing Indirect, Total, and Overall Effects

Once constraints are set, then one needs to identify all of the possible allocations
that satisfy the constraints. To do this, one forms a list of all the possible allocations.
For a design completely randomized at the group level, there will be

(2N
N

)
entries,

where 2N is the total number of groups. For a pair-matched design, there will be 2N

entries, where N is the number of pairs. Making a pass through all of these entries,
one selects those allocations that meet the specified criteria.

Once the allocations that meet the set of constraints have been identified, they
need to be checked to see whether the possible allocations meet the requirement of
validity of the randomization scheme (Moulton 2004). For example, some pairs of
groups may always be in the same arm of the study, and others may never be in the
same arm. To check the allocations, make a matrix whose elements are the num-
ber of times, from among those allocations satisifying the constraints, each pair is
together. Examine the list for signs of over- or underrepresented pairs. If the allo-
cations seem overly constrained, then relax one or more of the constraining criteria.
Identify the allocations that satisfy the new constraints, and check them once again.
Repeat the relaxation of the constraints until the allowable allocations seem appro-
priate. Then randomly select one of the allowable allocations. If there are too many
possible allocations to enumerate, one can construct the matrix from a large number
of acceptable designs, and choose one of them. A computational macro is available
to perform this algorithm (Chaudhary and Moulton 2006).

13.5.1.1 Hypothetical dengue vaccine study

As a simple example, suppose that we are designing a dengue vaccine study in
four communities where interest is in the overall effects of vaccination. Two of the
villages will be randomized to receive vaccine and two not. This small number of
communities is chosen only for illustrative purposes. Generally more communities
would be required. The expected annual incidence of dengue in each community is
correlated with the outcome of interest, thus there is concern about the balance of
the dengue incidence in the two vaccination strategy communities and the two con-
trol communities. With four communities, there are six possible unique allocations
of vaccination and control (Table 13.8). Baseline surveillance over the three previ-
ous years yielded estimates of average annual incidence 3, 5, 11, 13% in the four
communities. If no constraints were placed on the randomization, then one of the
six allocations would result. However, in allocation A, the two communities with
the lowest incidences receive the vaccination strategy, and in allocation F, the two
communities with the highest incidences receive the vaccination strategy. The mean
absolute difference in baseline incidence is 8%, higher than the overall average in-
cidence. There is a one in three chance of selecting one of these randomizations.
Alternatively, one could say that only those allocations are acceptable that yield ex-
act balance on the average annual incidence. In this example, allocations C and D
satisfy this constraint, although generally one could not expect that any allocation
would yield an exact balance.
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Table 13.8 Baseline average annual dengue incidence rate (percent) over the past three years in
each of four communities to be included in the dengue vaccine trial. The balance of the random-
ization is measured by the mean difference in average annual incidence between the communities
to receive vaccine and the control communities (adapted from Moulton (2004))

Communities

Allocation Vaccine Control Mean Difference

A 3 5 11 13 −8
B 3 11 5 13 −2
C 3 13 5 11 0
D 5 11 3 13 0
E 5 13 3 11 2
F 11 13 3 5 8

However, the problem now is that in allocations C and D, the two communities
with incidence rates of 3% and 13% and the two communities with 5% and 11%
are always together. This violates the validity principle stated above, because, for
example, the pair 5 and 13 do not have a chance of being randomized together.
In essence, each pair of communities in allocations C and D is acting as a single
community. To alleviate this problem, the constraint could be relaxed, so that the
mean difference in annual incidence is less than 3%. Then allocations B, C, D, and
E would satisfy the contraint. Although the communities with 3% and 5% and those
with 11% and 13% could never be together, this is the same as would happen if it
were a pair-matched design (3% and 5%, 11% and 13%) with randomization within
pairs. More details are in Moulton (2004).

13.5.1.2 Hypothetical influenza vaccine study

A hypothetical study to evaluate the indirect effects of vaccinating children against
influenza illustrates the use of a stratified randomization with constrained random-
ization. The study region is divided into 20 natural villages of varying sizes based
around community centers. The study is a parallel design with half of the units re-
ceiving killed influenza vaccine, and the other half receiving inactivated polio vac-
cine. Two of the villages contain large markets, so one stratification will be villages
with or without markets. The nonmarket villages fall into two natural regions, with
6 villages north and 12 villages south of the markets. No baseline data are avail-
able on influenza incidence, but there is no evidence suggesting that there is a high
variability in incidence among the villages. However, it seems reasonable to stratify
the randomization in the nonmarket villages by north and south. So, there are three
strata pre-randomization.

The funding agency has provided an equal number of doses of influenza and po-
lio vaccine, so it is of interest to constrain the randomization so that approximately
equal numbers of eligible children are in the influenza and the control arms of the
study. The constraint could be defined such that the relative difference in the number
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of eligible children in the two arms is less than some proportion. Different levels of
constraints could be checked for whether they meet the requirement of the random-
ization scheme. This example illustrates that the pre-randomization stratification
covariates can be different from the constraining covariates.

13.5.2 Stepped wedge design

One would also like to achieve balance in group-level covariates when randomiz-
ing the sequence of groups converting from control to vaccination intervention in
a stepped wedge design. For example, it would be undesirable for all of the low-
incidence communities to be randomized to introduce the vaccination strategy early
in the stepped wedge study. One might want to aim for a balance on group-time
spent in the control and vaccination program status with respect to the group-level
covariates of interest. Moulton et al (2007) developed a method for constrained ran-
domization in the stepped wedge design of a study introducing screening for tuber-
culosis in HIV clinics in Rio de Janeiro. The general idea in designing the stepped
wedge constrained randomization is that for each possible sequence of introduction
of the vaccination strategies, the constraints are checked to see whether they are sat-
isfied. If the number of groups is too large to enumerate all possible sequences, then
sequences are sampled randomly from all possible ones by random permutations of
the group labels. For each permutation, the constraints are checked to see whether
they are satisfied. Then when a large number of acceptable sequences have been
identified, one is randomly selected from it.

Moulton et al (2007) suggested the following ad hoc approach to check the con-
straints. For each jth covariate of the ith group, i = 1, . . . ,N, xi j, and for a given
time of entry ti of group i into the vaccination strategy, t = 1, . . . ,T , let c j be a
proportional covariate-specific tolerance. The constraint can be expressed as

1
1+ c j

<
∑

N
i=1,ti 6=T (T −1− (ti−1))xi j

∑
N
i=1,ti 6=T (ti−1)xi j

< (1+ c j). (13.1)

Then the sum of the covariate values weighted by the number of time units in the
vaccine intervention must be within c j×100% of that for the control status. A sim-
ilar approach to that described in Section 13.5 is followed. One tries to avoid con-
straints that always pair two groups to enter simultaneously, as this would effectively
reduce them to a single randomization unit.

13.6 Power and Number of Communities

In group-randomized studies, the sample size calculation needs to take into ac-
count that randomization is by group rather than by individual. In general, group-
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randomized designs are less efficient than individually randomized studies due to
the related factors of intragroup correlation and intergroup variability. That is, the
more similar the individuals within each group are to each other and the more differ-
ent the groups are from one another, the greater the group design effect on sample
size will be. For a given sample size, a stepped wedge design will generally be less
efficient than a parallel design, so further allowance needs to be made when planning
a stepped wedge design study.

Two different measures are used in calculating sample size for group-randomized
studies. One is the coefficient of variation k, the standard deviation divided by the
mean of the incidence rate, or other outcome measure of interest such as proportions
(attack rates) or mean of a continuous variable in the groups in the study. Another
approach uses the design effect D, or variance inflation factor σ . For trials with
equal numbers of individuals in each community,

D = σ = 1+(n−1)ρ, (13.2)

where n is the number of individuals per community, ρ is the intracluster correlation
coefficient, and D is the factor by which the sample size needs to be increased above
that required for an individually randomized trial to make up for randomization by
cluster (Donner and Klar 1994).

We consider sample size calculations based on incidence rates, proportions (at-
tack rates), and means of continuous outcomes. For clarity, the following discussion
is just about rates, but could apply to proportions (attack rates) and means as well.
The sample size calculations require estimates or assumptions about the baseline
incidence rate λ0, and an assumption of the effect of the vaccination intervention
strategy, or equivalently, the rate in the vaccination intervention group λ1. Exactly
what the λ0 and λ1 of interest are will depend on whether the primary interest is on
estimating indirect, total, or overall effects, or possibly even direct effects. For ex-
ample, if the total effect of a vaccination strategy is of interest, then λ0 might be the
incidence rate in the children receiving a control vaccine in the control groups, and
λ1 the incidence rate in children receiving the vaccine of interest in groups random-
ized to receive the vaccination strategy. If overall effects were of interest, λ0 and λ1
could be the incidence rates in all age-appropriate children (or all children) in the
control and the vaccination intervention groups. If the indirect effects of vaccinat-
ing schoolchildren against influenza on the incidence rates in adults were of interest,
then λ0 and λ1 could be the rates in the adults in the control and intervention groups.
If more than one effect is of interest, then sample size calculations can be made for
more than one effect.

Hayes and Bennett (1999) provide simple formulae to determine sample size
for parallel design group-randomized studies. The next section is based primarily
on their paper, where further details, references, and examples are available. Many
group-randomized studies of vaccination strategies may require more complex com-
putations than these. In some cases, stochastic simulations of the populations with
the planned intervention strategies can be used to estimate expected effects, power,
and sample sizes for the studies (Halloran et al 2002a). Sample size requirements
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under randomization tests are similar to those for model-based inference procedures
(Murray 1998, page 117).

13.6.1 Sample size for parallel design

Assuming equal numbers of groups in the vaccine intervention arm and the control
arm, let N be the number of groups in each study arm. Then the total number of
groups in the study is 2N. Let k be the coefficient of variation. Let zα/2 and zβ be
the standard normal distribution values corresponding to upper tail probabilities of
α/2 and β . The corresponding sample size will give a power of 100(1− β )% of
obtaining a significant difference (P < α on a two-sided test), assuming that the true
population rates in the intervention and control groups are λ1 and λ0. If the outcome
is based on person-time, let y denote the person-time of follow-up in each group.
Then the number of groups required in each arm is

N = 1+(zα/2 + zβ )2 (λ0 +λ1)/y+ k2(λ 2
0 +λ 2

1 )
(λ0−λ1)2 . (13.3)

If the outcome is based on proportions (attack rates), let π0 and π1 be the true
population proportions (attack rates) in the vaccine intervention and control groups.
Let n be the number of individuals in each group. Then the number of groups re-
quired in each arm is

N = 1+(zα/2 + zβ )2 π0(1−π0)/n+π1(1−π1)/n+ k2(π2
0 +π2

1 )
(π0−π1)2 . (13.4)

If the outcome is based on a continuous reponse, such as parasite density, then
the objective is to compare the mean of that variable in the vaccine intervention and
control groups. Let µ1 and µ0 be the true population means and σ1 and σ0 be the
within-group standard deviations of the outcome variable in the vaccine intervention
and control groups. Let n be the number of individuals in each group. Then the
number of groups required in each arm is

N = 1+(zα/2 + zβ )2 (σ2
0 +σ2

1 )/y+ k2(µ2
0 + µ2

1 )
(µ0−µ1)2 . (13.5)

If one is interested in direct protective effects, these equations are analogous
to those for individually randomized trials in equations (6.13)–(6.15). The design
effect on the sample size associated with the group-randomization can be estimated
by dividing the equation in this chapter by the corresponding equation in Chapter 6.

When pairs of groups are matched before randomization on the basis of factors
expected to be correlated with the main study outcomes, the hope is the matching
will minimize the degree of between-group variation within matched pairs. How-
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ever, there is a trade-off between the increase in power and precision by increasing
the comparability of the vaccine intervention and control groups and the loss of
power due to the reduced degrees of freedom that is well discussed in the litera-
ture (Martin et al 1993; Hayes et al 1995). Much has been written on characteristics
of the general size and correlation between the endpoint of interest and matching
covariates and power in cluster-randomized trials (see, for instance, Murray 1998).
Hughes (2005) more generally considers using baseline data in designing a group-
randomized trial to choose between an unmatched or pair-matched design, choice
of effect measure, and the power to be expected from the various strategies. Equa-
tions (13.3)–(13.5) can be adjusted to take account of matching with two changes.
First, to adjust for the required number of degrees of freedom, add 2 instead of 1 to
the required number of groups in each arm (Snedecor and Cochran 1967). Second,
the coefficient of variation k is replaced by km, the coefficient of variation in true
rates (or means or proportions) between groups within the matched pairs prior to
intervention.

13.6.2 Coefficient of variation

A value for the coefficient of variation k is needed for the sample size calcula-
tions, thus in the absence of any empirical data, an assumption about the value must
be made. In this case, one can compute power curves and examine the number of
clusters required for plausible values of k. Sometimes data may be available from
baseline surveillance studies. Alternatively, data may be available from a pilot study
conducted to check the implementation plan that is also used to collect data to es-
timate the intergroup variability of the main outcome of the trial. A subset of the
groups can be selected and data on a small fraction of the population of interest be
recorded. Alternatively, data might be available on similar groups in different areas
of the country. Hayes and Bennet (1999) provide formulae for estimating the coef-
ficient of variation for unmatched (k) and matched (km) studies. Generally k will be
larger than km. The coefficient of variation is for the variation in the true rates be-
tween groups, not the variation in the estimated rates which contains an element of
within-group random variation. The general idea is to compute the empirical vari-
ance of the group-specific results, then substract the component of the variance due
to sampling error. See Moulton et al (2007) for an example.

In another approach to sample size calculation for a group-randomized study,
one might compute the number of events needed under individual randomization to
achieve a certain power, possibly for the lower bound of a 95% confidence interval to
lie about a certain pre-determined efficacy if, in fact, the true efficacy is some other
higher efficacy. Then, to account for intragroup correlation, multiply the number of
events by the usual design effect in equation (13.2). One can possibly get an initial
estimate of the overdispersion σ2 directly from some baseline data from a sample
of the communities (Moulton et al 2001).
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13.6.3 Sample size for stepped wedge design

Considerations of design and power in the stepped wedge design revolve around the
timing of the individual observations, the interval at which the intervention is intro-
duced into groups, and the number of groups switched from control to intervention
at any given time. Observation of individuals could occur continuously, or somehow
be aligned with the timing of switching the groups from control to intervention. The
number of time points chosen to introduce a given number of clusters into a trial
influences the power of the study. The higher the number of time points, the higher
the power is, especially if the number of observations on individuals is correlated
with the number of time points (Hussey and Hughes 2007). However, if individuals
are observed continuously, then there is less effect on power. In vaccine studies in
which cases are reported as they occur, the effect on power would be lower.

To take account of the stepped wedge design in the sample size, Moulton et al
(2007) suggest a modification to equations (13.3)–(13.5). Essentially the standard
deviates zα/2 and zβ used in equations (13.3)–(13.5) are multiplied by a factor >1
that accounts for the lower efficiency of the stepped wedge design. In addition, if
the variability between groups is large, they suggest substituting the harmonic mean
for the simple mean.

The multiplicative factor can be computed in various ways. As an example, con-
sider a stepped wedge design study in which the analysis was based on a comparison
of the incidence in groups receiving the vaccination intervention to those not yet re-
ceiving the vaccination intervention within the time interval between converting the
next groups to intervention. This is a slight simplification of the problem compared
to the analysis based on a conditional likelihood as in equation (13.9). Following
Moulton et al (2007), one weights the hazard function within the time unit of inter-
est (week, month) by the log-rank to estimate the effect of the stepped wedge design.
Let T be the last time unit at which control groups begin the intervention. Let dTi

be the number of incident cases in the ith time unit in the vaccination intervention
groups, YTi be the number of persons at risk in those groups, and di and Yi be the
cases and persons in both vaccination intervention and control groups in the ith time
unit. The log-rank test statistic is

Z =
∑

T−1
i=1 [dTi −YTi(di/Yi)]

{∑T−1
i=1 (YTi/Yi)(1− (YTi/Yi))(Yi−di)/(Yi−1)}1/2di

(13.6)

The statistic (13.6) can be computed by generating data sets under two different
assumptions. First generate data assuming that the number of persons at risk in the
vaccination intervention and control groups is equal and constant over the course
of the study. This simulates a time-uniform equal allocation parallel design study,
yielding ZE to denote equal allocation. Second, generate data so that the persons
at risk in each month in the vaccination intervention groups increase in each time
unit according to the plan of the phased implementation to yield ZSW . In general, for
such hypothetical studies, given the same sample size, incidence, and effectiveness,
the stepped wedge study’s test statistic will be smaller than that for a parallel study
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by a factor of ZSW /ZE , where ZSW is always smaller than ZE (Moulton et al 2007).
To account for a stepped wedge allocation, multiply the standard normal deviates
in equation (13.3) by a factor of ZE/ZSW . Finally, one should vary the values of the
coefficient of variation, the assumed incidence rates, and the assumed effectiveness
of the intervention to determine the range in which one would have the desired
power and Type I error, and then examine whether these conditions are feasible
under the conditions of the proposed study.

13.7 Analysis

The key issue in analyzing group-randomized studies is to account for the cluster-
ing or group-randomization. The variability of the estimates is determined not only
by the number of individuals in the study, but the amount of intra- and intergroup
variability. There are two general approaches to analysis that account for potential
within-cluster correlation (Donner et al 1994). One approach is to reduce the data for
each cluster to a single observation and to perform a standard two-sample analysis.
Another approach is to do the analysis at the individual level but account for corre-
lation somehow. Correlation within the units could be taken into account by doing a
bootstrap (Efron and Tibshirani 1993) at the level of the entire community (Halloran
et al 2003; Moulton et al 2006) (see Section 12.3.2). One could fit a marginal model,
such as using generalized estimating equations or a random effects model. As dis-
cussed in Section 12.3.2, in marginal models, inference about population averages is
the focus. In considering vaccine effects, the primary scientific question is about the
population average, or marginal, vaccine effect measures. Thus, the marginal model
would likely be the model of choice. Another approach is to use a robust variance
estimator (Moulton et al 2006).

The stepped wedge design trials present additional complications. Each random-
ization unit spends time in both the control and intervention conditions. There could
be substantial secular trends in the incidence of the disease of interest, confounding
the treatment effect. Moulton et al (2006) take an approach that compares the out-
comes at any point in time across all groups, then combines the results over time at
the same time accounting for within-cluster correlation (see below). They accom-
plish this by conditioning on each time unit of the study and comparing incidences
in those groups that have not introduced the intervention with those that have. The
analysis is carried out by maximizing a partial likelihood function that is similar to
a Cox proportional hazards model.

13.7.1 Pneumococcal vaccine study

One approach to analysis is to use a model based on a nonhomogeneous Poisson
process in time and space (Moulton et al 2006). Let λit be the rate of disease among
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the individuals of interest in randomization unit i on day t. Let nit be the person-days
of exposure in the ith group on day t, αt be the effect of the tth day, and γ be the log
rate ratio comparing those in the vaccine intervention communities (zi = 1) to those
in the control unit (zi = 0). A simple model for λit is given by

λit = nitexp(αt + γzi). (13.7)

The parameter αt is a nuisance parameter that captures any secular trends specific
to day t, such as seasonal or weekend effects.

If living in the intervention community confers protection on the individuals of
interest, then γ will be negative. One can imagine a number of different comparisons,
depending on whether one is trying to estimate indirect, total, or overall effects.
Moulton et al (2006) were interested in estimating the protective indirect effects on
invasive pneumococcal disease for nonenrolled children under two years of age.

The problem with model (13.7) is that it does not allow for different levels of
coverage among the randomization units. One option is to group the coverage levels
or enrollment levels, and to use dummy variables in the model that are crossed with
the dummy variable for three treatment arm. Let Mnc25−49

it be one for the ith unit
on the tth day if it is a community randomized to MnCC vaccine, and if 25–49%
of the children under age two on that day have received at least one immunization,
otherwise it is zero. Moulton et al (2006) fit the model

λit = nitexp(αt +β1Mnc25−49
it +β2Mnc50+

it

+ β3Pnc0−24
it +β4Pnc25−49

it +β5Pnc50+
it ). (13.8)

Because the communities were not randomized to different coverage levels, there
may be unmeasured confounders associated with the coverage levels. So then one
can compare across treatment arms within coverage levels. For example, if the dif-
ference β4−β1 is negative, then it suggests presence of indirect effects at that level
of coverage 25–49%. The rate ratio comparing the two treatment arms at above 50%
coverage is given by exp(β5−β2).

To eliminate the nuisance parameter αt , Moulton et al (2006) suggest an ana-
lytic strategy that conditions on each day of the study. Similar to a Cox regression
model, each day delineates a risk set, similar to a stratum in a case-control study.
The characteristics of those randomization units that experienced a case on that day
are compared to those that did not have any cases on that day. The comparison is
done for each day, and then the probabilities are multiplied together to get the con-
ditional likelihood function. Let T be the number of days in the study. Let δt be one
if there is a case on the tth day and zero otherwise. Define R(t) as the set of indices
of those units at risk on day t. Let x jt be the row vector of dummy variables for the
jth unit on day t, with j = i representing the community with a case on that day.
The conditional likelihood function is

t=T

∏
t=1

[
nitexp(xitβ )/ ∑

j∈R(t)
n jtexp(x jtβ )

]δt

. (13.9)
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Table 13.9 Analysis results from fitting conditional logistic models with five dummy variables
to represent six vaccine arm/percentage vaccine coverage combinations. Conditional maximum
likelihood estimates (CMLE), standard errors (SE), robust 95% confidence intervals, and 95%
bootstrap percentile intervals. The reference category is units that received MnCC vaccine which
on a given day had less than 25% of children enrolled in the study. The CMLEs are the log rate
ratios comparing incidence in nonenrolled childrein in the given category in the reference category
(from Moulton et al (2006))

Dummy Variable Bootstrap
(Arm/ Robust Bootstrap Percentile
% Coverage) CMLE SE SE Robust CI Interval

MnCC 0–24% 0
MnCC 25–49% 1.18 0.51 0.62 0.18, 2.17 0.12, 2.74
MnCC 50+% 1.93 0.66 0.81 0.64, 3.23 0.46, 4.25
PCV7 0–24% 1.09 0.49 0.60 0.14, 2.04 −0.07, 2.58
PCV7 25–49% 0.98 0.62 0.75 −0.24, 2.19 −1.05, 2.59
PCV7 50+% 1.96 0.71 0.85 0.56, 3.37 0.68, 4.37

Estimates of β are obtained by maximizing the conditional likelihood function. Soft-
ware for conditional logistic regression can be used for computation with an offset
term of ln(nit).

Table 13.9 contains the results of fitting the conditional logistic model with a lin-
ear predictor as in equation (13.8). The analysis did not yield significant indirect ef-
fects on nonenrolled children. One can compare the units with similar coverage lev-
els. For example, at the coverage levels >50%, exp(β̂5− β̂2) = exp(1.96−193) =
1.03. Using the naive covariance matrix for the parameter estimates yields a 95%
Wald interval for the ratio 1.03 of (0.31, 3.45). The issue may be that the proportion
of the population vaccinated was quite small, and that carriage from older siblings
could have been important. The number of cases was also quite small. There were
27 cases during the PCV7 phase in communities and 21 cases during the MnCC
phase in communities. Eighteen of the 38 units had no cases at all.

13.7.2 Other approaches

Ali et al (2005) entered coverage level as a continuous variable in the cholera study.
In a community-randomized study, one would also add a variable for the treatment
arm. One could deal with a secular trend by examining rate changes for groups
and months when the treatment status is the same, then adjust for the estimated
trend. This approach might produce results that are difficult to interpret if there is
no smooth trend. The model of αt assumes that the secular trends represented by
αt are the same for all randomization units. This might not be the case if a study
such as for a meningococcal vaccine were being done on different continents. How-
ever, then a more complex model that allowed for some continent- or geographic-
specific secular trends might be possible. One might also consider a combination of
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matched-pair design and analysis, even in the case of a stepped wedge design. Cer-
tain other aspects, for example, that immunization might not begin simultaneously
in all units, can be taken into account by entering the randomization unit into the
analysis on the day of the first immunization in the unit.

13.8 Causal Inference for Indirect, Total, and Overall Effects

13.8.1 General approach

In Section 13.1.1 we informally define direct, indirect, total, and overall effects us-
ing concepts from the potential outcome approach to causal inference. In Chapters 9
and 15 we use causal inference to define estimands of interest. Defining causal esti-
mands for indirect, total, and overall effects using potential outcomes is not straight-
forward. The approach assumes that individuals could potentially receive each of the
treatments under study and that each of those treatments could be enumerated. Gen-
erally the assumption is made that the outcome in one individual is independent of
the treatment assignment in the other individuals in the study population. This is
called the assumption of no interference (Cox 1958) and is an essential aspect of the
stable unit treatment value assumption (SUTVA) (Rubin 1978). Under the assump-
tion of no interference, if there are two treatments, such as vaccine and control, then
a person has two potential outcomes, one for each treatment.

The general approach in causal inference using potential outcomes is to define
causal estimands and the conditions under which they can be identified from the
data. One has a population of individuals. The individual causal effect can be de-
fined, but it is not identifiable. An average causal effect estimand for the population
is defined that is also not identifiable. Under the assumption of no interference and a
posited assignment mechanism, such as randomization of individuals to either treat-
ment, then the average causal effect in the population is estimable from the observed
outcomes.

In the dependent happenings in infectious diseases, the assumption of no interfer-
ence does not hold and indeed is the source of the indirect, total, and overall effects
of interest in this chapter. The vaccine status of other individuals in the population
can affect the potential outcomes of an individual, so a person can have many more
than two potential outcomes, depending on the vaccine assignment to the other indi-
viduals. Rubin (1990) suggested a general notation in which the potential outcome
of a person was defined as a function of the vector of treatment assignment to the
person of interest as well as the treatment assignments to other individuals in the
population. Let Z = (Z1, . . . ,Zn) be the vector of treatment assignments in the pop-
ulation of size n, where Z = 1 denotes vaccine and Z = 0 denotes control. Then the
potential outcome of individual i if the population receives treatment assignment Z
is denoted by Yi(Z). Halloran and Struchiner (1995) defined the individual direct
causal effect of being vaccinated compared with not being vaccinated in an indi-
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vidual i when the rest of the population j 6= i receives treatment assignment Z j 6=i
as

Yi(Z j 6=i,Zi = 1)−Yi(Z j 6=i,Zi = 0). (13.10)

The direct causal effect is a family of values that depends on the treatment assign-
ment vector Z in the population.

To define the indirect, total, and overall effects of one vaccination strategy com-
pared with another, one needs to consider a second strategy, denoted Z′. They define
the individual indirect causal effect of intervention program Z compared with Z′ as

Yi(Z j 6=i,Zi = 0)−Yi(Z′j 6=i,Zi = 0), (13.11)

where now the individual of interest has not received the vaccine under either in-
tervention program. Halloran and Struchiner (1995) defined the individual total and
overall causal effects analogously. However, they found problems with taking the
usual approach in causal inference to average over the potential outcomes to arrive
at causal estimands of direct, indirect, total, and overall effects.

Hudgens and Halloran (2008) defined causal estimands of direct, indirect, total,
and overall effects in the presence of interference by positing a population of groups,
blocks, or clusters composed of individuals with interference within the groups but
not between the groups as in the study designs described in this chapter. Taking
as their point of departure the individual causal effects proposed by Halloran and
Struchiner (1995), Hudgens and Halloran (2008) define average individual, group,
and population outcomes over all possible treatment assignments for a particular
allocation strategy or strategies of interest within and across groups (Sobel 2006).
They define causal estimands of the direct, indirect, total, and overall effects that are
also averages within the groups and across the population of groups. By specifying
an assignment mechanism at two levels, that is, randomization of groups to allo-
cation strategies, and then randomization of individuals within groups to treatment
by the allocation strategy assigned to the group, the average causal direct, indirect,
total, and overall effects are estimable from the observed outcomes.

The development of the causal estimands is not specific to infectious diseases,
and the causal effects are defined based on differences, not relative risks as efficacy
measures. For example, consider the data from Ali et al (2005) in Table 13.5. Sup-
pose that the groups with >51% and <28% coverage are thought of as groups A
and B. Effects of vaccination can be estimated based on differences in the incidence
of cholera during the first year of follow-up of the trial. The direct effects are esti-
mated by comparing the incidence (risk per 1000 population) between vaccinated
individuals and unvaccinated individuals within each group. For example, the esti-
mated direct effect in group B is 7.01−2.66 = 4.35, suggesting vaccination results
in 4.35 fewer cases of cholera per 1000 individuals per year. The estimated direct
effect in group A is 1.47− 1.27 = 0.20, considerably lower than in group B. The
estimated indirect effect in the unvaccinated (B − A) is 7.01− 1.47 = 5.54. The
estimated total effect (B − A) is 7.01− 1.27 = 5.74. Note the total effect (B−A)
estimate equals the direct effect estimate in group A plus the indirect effect estimate
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in the unvaccinated (B − A). The overall effect can be estimated by the difference
in incidence between the two groups, ie, 35/8479−25/18,623 = 2.79/1000.

13.8.2 Formalization

The chapter finishes with a brief summary of the formal approach in Hudgens
and Halloran (2008) to defining causal estimands and estimators for direct, in-
direct, total, and overall effects. Suppose there are N > 1 groups of individu-
als. For i = 1, . . . ,N, let ni denote the number of individuals in group i and let
Zi ≡ (Zi1, . . . ,Zini) denote the treatments those ni individuals receive. Assume Zi j
is a dichotomous random variable having values 0 or 1 such that Zi can take on 2ni

possible values. Let Zi( j) denote the ni−1 subvector of Zi with the jth entry deleted.
The vector Zi is referred to as an intervention or treatment program, to distinguish
it from the individual treatment Zi j. Let zi and zi j denote possible values of Zi and
Zi j. Define R j to be the set of vectors of possible treatment programs of length j,
for j = 1,2, . . .; eg, R2 ≡ {(0,0),(0,1),(1,0),(1,1)}. Possible values zi of Zi are
elements of Rni . For positive integer n and k ∈ {0, . . . ,n}, define Rn

k to be the subset
of Rn wherein exactly k individuals receive treatment 1. For example, ∑

ni
j=1 zi j = k

for all zi ∈ Rni
k .

Denote the potential outcome of individual j in group i under treatment zi as
Yi j(zi). The notation Yi j(zi) allows for the possibility that the potential outcome for
individual j may depend on another individual’s treatment assignment in group i,
but the potential outcomes for individuals in group i do not depend on treatment
assignments of individuals in group i′ for i′ 6= i.

13.8.2.1 Treatment Assignment Mechanisms

Let ψ and φ denote parameterizations that govern the distribution of Zi for i =
1, . . . ,N. For example, ψ might correspond to randomly assigning half of individ-
uals in a group to treatment 1 and the other half to treatment 0, whereas φ might
correspond to assigning all individuals in a group to treatment 0. The goal is to as-
sess the causal effects of assigning groups to the individual treatment assignment
strategy ψ compared to φ .

The experimental design is a two-stage randomization procedure. In the first
stage, each of the N groups is randomly assigned to either φ or ψ . In the second
stage, individuals are randomly assigned treatment conditional on their group’s as-
signment in the first stage. For example, in the first stage half of the N groups might
be assigned to an allocation strategy φ and the other half ψ; in the second stage, 2/3
of the individuals within a group are randomly assigned treatment 1 for groups as-
signed φ , and 1/3 of the individuals within a group are randomly assigned treatment
1 for groups assigned ψ .
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Corresponding to the first stage of randomization, let S≡ (S1, . . . ,SN) denote the
group assignments with Si = 1 if the ith group is assigned to ψ and 0 otherwise. Let
ν denote the parameterization that governs the distribution of S and let C ≡ ∑i Si
denote the number of groups assigned ψ .

13.8.2.2 Average potential outcomes

Similar to Halloran and Struchiner (1995), Hudgens and Halloran (2008) begin by
writing the potential outcomes for individual j in group i under zi j = z as

Yi j(zi( j),zi j = z), (13.12)

for z = 0,1. They then proceed to define the individual average potential outcome
under treatment assignment z by

Y i j(z;ψ)≡ ∑
ω∈Rni−1

Yi j(zi( j) = ω,zi j = z)Prψ(Zi( j) = ω|Zi j = z).

In other words, the individual average potential outcome is the conditional ex-
pectation of Yi j(Zi) given Zi j = z under assignment strategy ψ . Averaging over
individuals, they define the group average potential outcome under treatment as-
signment z as Y i(z;ψ) ≡ ∑

ni
j=1 Y i j(z;ψ)/ni. Finally, averaging over groups, they

define the population average potential outcome under treatment assignment z as
Y (z;ψ)≡ ∑

N
i=1 Y i(z;ψ)/N.

The marginal individual average potential outcome is defined by Y i j(ψ) ≡
∑z∈Rni Yi j(z) Prψ(Zi = z), ie, the average potential outcome for individual j in
group i when group i is assigned ψ . Similarly, the marginal group and popu-
lation average potential outcomes are defined by Y i(ψ) ≡ ∑

ni
j=1 Y i j(ψ)/ni and

Y (ψ)≡ ∑
N
i=1 Y i(ψ)/N.

13.8.2.3 Causal estimands

Define the individual direct causal effect of treatment 0 compared to treatment 1 for
individual j in group i by

CED
i j (zi( j))≡ Yi j(zi( j),zi j = 0)−Yi j(zi( j),zi j = 1). (13.13)

The causal estimands are then defined in terms of average potential outcomes. Hud-
gens and Halloran (2008) define the individual average direct causal effect for indi-
vidual j in group i by

CED
i j(ψ)≡ Y i j(0;ψ)−Y i j(1;ψ), (13.14)
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ie, the difference in individual average potential outcomes when zi j = 0 and when
zi j = 1 under ψ . Finally, define the group average direct causal effect by CED

i (ψ)≡
Y i(0;ψ)−Y i(1;ψ) = ∑

ni
j=1 CED

i j(ψ)/ni and the population average direct causal

effect by CED(ψ)≡ Y (0;ψ)−Y (1;ψ) = ∑
N
i=1 CED

i (ψ)/N.
The individual indirect causal effect of treatment program zi compared with z′i on

individual j in group i is defined by

CEI
i j(zi( j),z

′
i( j))≡ Yi(zi( j),zi j = 0)−Yi(z′i( j),z

′
i j = 0), (13.15)

where z′i is another ni dimensional vector of individual treatment assignments. (Note
z′i does not denote the transpose of zi.)

Similar to direct effects, the individual average indirect causal effect is defined by
CEI

i j(φ ,ψ)≡Y i j(0;φ)−Y i j(0;ψ). Clearly if ψ = φ , then CEI
i j(φ ,ψ) = 0; ie, there

are no individual average indirect causal effects. Finally, define the group average
indirect causal effect as CEI

i (φ ,ψ)≡Y i(0;φ)−Y i(0;ψ) = ∑
ni
j=1 CEI

i j(φ ,ψ)/ni and

the population average indirect causal effect as CEI(φ ,ψ) ≡ Y (0;φ)−Y (0;ψ) =
∑

N
i=1 CEI

i (φ ,ψ)/N.
Define the individual total causal effects for individual j in group i as

CET
i j(zi( j),z

′
i( j))≡ Yi j(zi( j),zi j = 0)−Yi j(z′i( j),z

′
i j = 1). (13.16)

Then define the individual average, group average, and population average total
causal effect similar to the indirect causal estimands.

Hudgens and Halloran (2008) define the individual overall causal effect of treat-
ment zi compared to treatment z′i for individual j in group i by CEO

i j (zi,z′i) ≡
Yi j(zi)−Yi j(z′i). Similarly, for the comparison of φ to ψ , define the individual av-
erage overall causal effect by CEO

i j(φ ,ψ) ≡ Y i j(φ)−Y i j(ψ), the group average

overall causal effect by CEO
i (φ ,ψ) ≡ Y i(φ)−Y i(ψ), and the population average

overall causal effect by CEO(φ ,ψ)≡ Y (φ)−Y (ψ).

13.8.2.4 Estimation and inference

Assuming the randomized assignment strategies at both levels of randomization in
which the number of groups randomized to a strategy is fixed, and the number of
individuals within each group randomized to received treatment is fixed, Hudgens
and Halloran (2008) show that the observed data yield unbiased estimators of the
causal estimands. Suppose Si = 1. Let Ŷi(z;ψ) the average of observed outcomes for
individuals in group i receiving treatment z under treatment program Zi. They show
that

Ŷi(z;ψ)≡
∑

ni
j=1 Yi j(Zi)I[Zi j = z]

∑
ni
j=1 I[Zi j = z]

for z = 0,1, (13.17)
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is an unbiased estimator of Y i(z;ψ). Also ĈE
D
i (ψ)≡ Ŷi(0;ψ)− Ŷi(1;ψ) is a condi-

tionally unbiased estimator of CED
i (ψ) given Si = 1. Finally, they show Ŷ (z;ψ) ≡

∑
N
i=1 Ŷi(z;ψ)I[Si = 1]/∑

N
i=1 I[Si = 1] is an unbiased estimator of Y (z;ψ) for z = 0,1.

Thus, unbiased estimators for the population average direct, indirect, and total
causal effects are given by ĈE

D
(ψ) ≡ Ŷ (0;ψ)− Ŷ (1;ψ), ĈE

I
(φ ,ψ) ≡ Ŷ (0;φ)−

Ŷ (0;ψ), and ĈE
T
(φ ,ψ) ≡ Ŷ (0;φ)− Ŷ (1;ψ) where Ŷ (z;φ) is defined analogously

to Ŷ (z;ψ) for z = 0,1.
Let Ŷi(ψ)≡∑

ni
j=1 Yi j(Zi)/ni and Ŷ (ψ)≡∑

N
i=1 Ŷi(ψ)I[Si = 1]/ ∑

N
i=1 I[Si = 1]. The

unbiased estimator of the overall effect causal estimand CEO(φ ,ψ) is given by

ĈE
O
(φ ,ψ)≡ Ŷ (φ)− Ŷ (ψ) where Ŷ (φ) is defined analogously to Ŷ (ψ).

Under the further assumption of stratified interference, that is, that the poten-
tial outcomes depend on the number of individuals within a group that receive a
treatment, but not exactly who receives the treatment, Hudgens and Halloran (2008)
derive variance estimators. A one-to-one mapping of the causal estimands of direct,
indirect, total, and overall effects of Hudgens and Halloran (2008) to the group-
randomized studies presented in this chapter is the subject of future research.

Problems

13.1. Constrained randomization
(a) Consider designing a community-randomized trial of a cholera vaccine in eight
communities. The average annual incidence of cholera in the eight communities is
1, 3, 4, 7, 9, 10, 11, 12%. How many different allocations of the vaccine and control
are there for a pair-matched design? For a completely randomized (at the group
level) design?
(b) What would be a reasonable constraint to ensure a fairly balanced allocation
under complete randomization?

13.2. Overall effectiveness in Alaska of PCV7
Compute the overall effectiveness of PCV7 vaccination against all serotypes in the
2–4 year age group in Alaska natives and and Non-Alaska natives.

13.3. Randomization for stepped wedge design
Assume there are 24 communities that will be randomized to introduction of ro-
tavirus vaccine into the Expanded Program of Immunization in a stepped wedge
design. Two teams will introduce the vaccine every two months, so that it will take
two years to complete introduction of the vaccination strategy. How many possible
distinct orderings of the introduction of the vaccination strategy are there?

13.4. Computing sample size in stepped wedge design (Moulton et al 2007)
(a) Assume ZE/ZSW = 1.2 Suppose one wants to have power of 80% and Type I
error of 5% in a study. What values of z-score does one need to use in in expression
13.3?
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(b) By what factor would the sample size in expression 13.3 be multiplied? (see
Moulton et al 2007, p. 195)
(c) Suppose one decided to change the entry of groups into the intervention arm at
every three months instead of every two months, at the same time increasing the
duration of the study by a factor of 1.5. What would be the approximate increase in
effective sample size barring any substantial secular trends?



Chapter 14
Randomization and Baseline Transmission

14.1 Interpreting Efficacy Estimates

Vaccination could interact with population characteristics such as pre-existing im-
munity, genetic composition, intensity of transmission, or nutritional status, so that
estimates of efficacy of a given vaccine in different populations could differ consid-
erably. The biologic efficacy could be the same in the different populations, but the
composition of the population would result in the differing efficacy estimates based
on the epidemiological outcome of interest. Considerations along these lines demon-
strate the role and limitations of randomization. Randomization is one assignment
mechanism under which treatment is assigned independent of the potential outcome
of interest. The treatment assignment is also independent of other covariates under
randomization. Randomization also allows, on average, for a balanced distribution
of any covariates, observed or not, in the vaccine and placebo groups. Thus, the
treatment groups are seen as comparable. Baseline transmission, pre-existing im-
munity, and individual responsiveness are examples of possibly relevant factors. For
these reasons, randomization, in addition to double-masking, are usually proposed
as good research practices for valid clinical trials (Efron 1971).

Randomization, however, does not guarantee that the estimated effect is an un-
biased estimate of the biologic effect of interest. Statistical validity does not nec-
essarily guarantee epidemiological validity. That is, there is a distinction between
statistical bias and epidemiological confounding. The ability of randomization to
control for confounding has been challenged from at least two perspectives. Green-
land and Robins (1986), Greenland (1987), and Greenland et al (1999) state the
problem from the perspective of potential outcomes and show that effect measures
can be confounded even if the treatment assignment mechanism is random. Gail
(1986, 1988) and Gail et al. (1984, 1988) examine the effects of omitting a covariate
that has the same distribution among exposed and unexposed subjects from regres-
sion analyses of cohort data. They describe the conditions under which a balanced
covariate can be omitted without biasing the estimates.

M.E. Halloran et al., Design and Analysis of Vaccine Studies, Statistics for Biology
and Health, DOI 10.1007/978-0-387-68636-3 14, 313
c© Springer Science+Business Media, LLC 2010
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These results hold as well in randomized Phase III vaccine efficacy field trials.
A new dimension is added when the covariate being considered is the natural chal-
lenge to infection, such as an infectious mosquito bite or a sexual contact, which is
assigned by nature to the study participants. As discussed in Chapter 2, although the
efficacy estimate can be based on parameters such as the transmission probability
that condition on exposure to infection, most vaccine studies do not collect informa-
tion on the number of infectious challenges. Thus, many efficacy estimates are based
on unconditional parameters such as incidence density, hazard rates, or cumulative
incidence (Chapter 2. Measures of vaccine efficacy expressed as functions of the
cumulative incidence (Halloran et al 1991) or hazard rates (Struchiner et al 1994)
depend on the level of transmission. In this chapter, we consider the limitations of
randomization in interpreting results within and across populations. We distinguish
biologic efficacy from outcome efficacy.

14.1.1 Malaria vaccine trials

Malaria is the most important parasitic disease in humans. Four main species of
human malaria have influenced human evolution over the ages. The most lethal
species is Plasmodium falciparum which is prevalent in warm tropical climates. P.
vivax is also quite prevalent in milder climates as well. P. malariae and P. ovale are
the other two forms. A fifth species, P. knowlesi, was recognized as having made the
jump to humans in 2008.

Development of a vaccine against P. falciparum is a public health priority. In the
late 1980s, the vaccine candidate SPf66 was produced in Colombia (Patarroyo et al
1988). SPf66 is a synthetic peptide polymer malaria vaccine containing four differ-
ent peptides, one from a pre-erythrocytic stage protein and three from asexual stage
proteins. Community-based studies to evaluate the efficacy of SPf66 in Colombia
(Amador et al 1992; Valero et al 1993), Ecuador (Sempertegui et al 1994), and
Venezuela (Noya et al 1994) were suggestive of protection against clinical attacks
of malaria. Another South American study was conducted in Brazil (Urdaneta et
al 1998). In one study in Colombia (Valero et al 1993), where transmission was
relatively low, vaccine efficacy was estimated to be 34% (95% CI 19 to 46%), sug-
gesting a beneficial effect of the vaccine.

There was some concern about the design and conduct of the studies in South
America. The international community decided to conduct further studies of the
SPf66 vaccine candidate in other regions. Double-blind randomized controlled tri-
als were conducted in Tanzania (Alonso et al 1994), The Gambia (D’Alessandro et
al 1995), and finally Thailand (Ballou et al 1995; Nosten et al 1996). The estimated
efficacy against clinical malaria in the Tanzanian trial, conducted under conditions
of intense malaria transmission in children aged 1–5 years, was 31% (95% CI 0
to 52%). The estimated efficacy in the trial in The Gambia, conducted under lower
transmission conditions in infants aged 6–11 months, was 8% (95% CI -18 to 29%).
The estimated vaccine efficacy in the Thai trial, where transmission intensity was
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between that of Africa and South America conducted in children aged 2–15 years,
was −9% (95% CI −33 to 14). The report of the trial in Thailand concludes that
SPf66 does not protect against clinical falciparum malaria and that no further effi-
cacy trials should be conducted (Nosten et al 1996).

Malaria raises particularly difficult design issues. The definition of a case of
malaria varies from place to place depending on the malaria transmission condi-
tions. In some places, it would be fever with detection of any parasites. In the trial
in Tanzania, the case definition required fever and a P. falciparum parasite density
over 20,000/µL. In the Gambian trial, the primary case definition was fever and a
parasite density over 6000/µL. Due to evolutionary pressure, some populations have
a high prevalence of genetic traits that have advantages in the presence of malaria.
The genetic composition relevant for protection against malaria varies from place to
place. For example, it is difficult for P. falciparum to replicate in red blood cells in
people who have the sickle cell trait. Having one allele for sickle cell hemoglobin
and one healthy allele allows the person to survive but limits the ability of the fal-
ciparum malaria parasite to replicate, conferring some protection on the individual.
In the Gambian SPf66 study, 19.4% of the infants were heterozygous for sickle cell
trait. Studies in different sites can vary in other important aspects. In the SPf66 stud-
ies, the age-eligibility differed substantially across sites as illustrated in the previous
paragraph.

These considerations motivated Struchiner et al (1994) and Struchiner and Hal-
loran (2007) to explore the interplay of the immune mechanisms in malaria, their
implications for protection at the population level, and the disease transmission cy-
cle mediated by the mosquito vectors with the efficacy of vaccination. The interac-
tion of these factors poses challenges for interpreting the epidemiological effects of
vaccination.

New generations of malaria vaccines have been under development and field
evaluation since SPf66. The design and interpretation issues raised by these ear-
lier malaria vaccine studies remain current. Of particular interest is the problem of
interpreting efficacy estimates in different epidemiological settings even if the bi-
ologic effect would be the same. Dengue vaccine trials pose similar problems of
design and interpretation across populations with different pre-exposure to dengue
virus.

14.2 Biologic Versus Outcome Efficacy

Figure 14.1 provides a convenient framework for organizing the discussion of gen-
eral principles of validity in vaccine evaluation (Struchiner et al 1994). It merges
a very simple description of the sequence of pathogenic processes leading to the
endpoint of interest that a vaccine is supposed to prevent (represented by boxes and
arrows in continuous lines) and the relevant issues on the use of statistical mod-
els and selection of parameters (Gail 1991) descriptive of the various concepts of
vaccine efficacy (represented by boxes and arrows in dashed lines).
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In this schematic representation of various aspects of the design and analysis of
vaccine field trials, the first dashed rectangle (A) represents vaccine status (V) and
covariate levels (X) for each individual in the trial population. Vaccine status and
covariate levels can both be either constant or time-dependent. Vaccine allocation
and the role of randomization are important design considerations at this point.

Moving to the right in the diagram is the dashed rectangle (B) labeled “Exposure
to Infection (E).” In field trials, vaccinated and unvaccinated individuals are exposed
to infection, for example, bitten by infected mosquitos, by natural means. Thus, in
practice status E is not known or difficult to assess. The rates λe and λ v

e denote the
instantaneous probability of being bitten and are functions of time and other envi-
ronmental factors. Good study design practices recommend that both rates be equal
(Greenwood and Yule 1915). Lack of compliance with this is known as exposure
bias (Halloran et al 1994b).

Once exposed to infection, vaccinated and unvaccinated individuals might
progress up to the endpoint of interest at rates λv and λ0 (dashed rectangle C). Both
rates depend on time and covariates X. The main point of the trial is then to infer on
the causal response model f (endpoint of interest|V,X,E). This task can be difficult
because one does not have data on the rates λv and λ0 directly, but instead on total
or compound rates λ v

t and λt , which denote the transition from the susceptible vac-
cinated and unvaccinated states to the endpoint of interest. It would be desirable in
a valid study to be able to reconstitute the desirable comparison λv to λ0 from the
observable comparison λ v

t to λt . This is hampered by missing latent structures (lack
of knowledge of λ v

e and λe) or mismodeling of available measurements (selection
of the wrong functional form f (·)).

14.2.1 Principles of validity in vaccine studies

One of the conditions for valid inference in vaccine studies is exchangeability of
the vaccinated and unvaccinated groups. Exchangeability generally assures that it
would be possible to describe the occurrence of the outcome of interest among the
treated individuals, had they not been treated, from the observed data on the un-
treated (Greenland and Robins 1986). In Figure 14.1, comparison of rates λt and
λ v

t requires that the epidemiological compartments (susceptible unvaccinated and
susceptible vaccinated) in dashed rectangle A be exchangeable. Yet, comparison of
rates λ0 and λt require exchangeability between the vaccinated and unvaccinated
individuals who were actually exposed to infection as depicted in the dashed rect-
angle C in Figure 14.1. As shown in other parts of this book, the concept of vaccine
efficacy is not unique, but depends on many choices of outcome measures. Because
exchangeability within both pairs of comparison groups does not necessarily hold
simultaneously, field trials that yield valid measures of vaccine efficacy of one kind
can potentially lead to biased estimates of efficacy of a different kind. The lack of
exchangeability is considered in the particular example of post-infection selection
bias in Chapter 9.
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The principle of exchangeability in actual vaccine field trials involves at least
two dimensions. The first is where in the sequence of pathogenic processes com-
parisons between vaccinated and unvaccinated groups is being sought, which leads
to the concept of biologic efficacy. The second is at what level exchangeability is
of interest, whether across individuals or across populations to estimate either di-
rect effects within one population or across several populations, or indirect effects
comparing across several populations. In several other chapters, we have considered
these different levels of comparisons.

If we were interested in comparing the estimates from the SPf66 malaria vaccine
trials, then we would raise the question of the exchangeability of the various study
sites. Suppose the set of parameters (θ1, . . . ,θn) represents the vaccine efficacies of
the n SPf66 malaria vaccine sites. If no information other than the data on efficacy
is available to distinguish any of the θ js from any of the others, then in a Bayesian
hierarchical model, one would assume symmetry among the parameters in their
prior distribution. This symmetry is called exchangeability in the Bayesian context
(DeFinetti 1974). To compare the estimates from the different sites or to combine
them in a meta-analysis without accounting for the pre-existing immunity, genetic
differences, or transmission conditions, we need to assume exchangeability of the
sites. However, given what we know about the different sites, this assumption is
likely not valid.

A second condition for valid inference is that the treatment assignment is inde-
pendent of the potential outcomes of interest. Actual study populations are often
heterogeneous in biological, social, or environmental characteristics relevant to the
validity of vaccine field trials. These heterogeneities result in differences in suscep-
tibility, exposure to infection, outcome assessment, and propensity to loss to follow-
up. Sometimes a few of these factors can be identified and measured and are repre-
sented by the covariates X in Figure 14.1. Most sources of heterogeneity, however,
remain unknown. Randomization and double-blinding are two strategies designed
to distribute these unmeasured heterogeneities approximately equally across groups.
Randomization prevents statistical bias because trials conducted this way yield es-
timates that do not deviate on average from the expected probability distribution
describing possible results of the trial.

Randomization, however, does not necessarily ensure that the statistical benefits
of randomization propagate to further steps in the sequence of pathogenic processes.
Thus, if study subjects are randomly assigned to the two epidemiological compart-
ments in the dashed rectangle A of Figure 14.1, this does not necessarily imply
that the same statistical benefits will be preserved when comparing rates λ0 and λv
between the epidemiological compartments in dashed rectangle C.

More generally, consider a sequence of pathogenic processes denoted by states

S0→ S1→ ··· → Sp→ Sp+1→ ··· → Sn .

Under pathogenic processes, we might also consider transmission of infection
to mosquito vectors. Let, in addition, Iv and I0 denote the transition rates from
pathogenic state Sp to Sp+1 in the vaccinated and unvaccinated groups. Hence, the
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biologic efficacy can be defined as 1− Ir, where Ir = Iv/I0. Precise knowledge of the
states Sp and Sp+1 where the vaccine is affecting the sequence of pathogenic effects
might be unavailable either because it is impossible to measure them or because
practical considerations dictate that data be collected on other states. The overall
rate for multiple stages is less than the lowest component transition rates. Thus,
for any given biological protection, different measures of efficacy can be estimated
depending on the baseline point of departure and the outcome picked by the investi-
gator. The outcome measures could have different, possibly nonlinear, relationships
to the underlying biologic efficacy.

A third condition for valid inference is equal exposure to infection in the vacci-
nated and unvaccinated groups. Exposure to infection in the two groups is presumed
to be equal under randomization. However, the level of transmission can influence
the estimates of vaccine efficacy, as discussed in more detail in Section 14.3.

These three criteria were stated as early as 1915 by Greenwood and Yule as three
conditions necessary for valid inference:

1. The persons must be, in all material respects, alike.
2. The effective exposure to the disease must be identical in the case of inoculated

and uninoculated persons.
3. The criteria of the fact of inoculation and of the fact of the disease having oc-

curred must be independent.

The first condition corresponds to exchangeability, the third to the treatment as-
signment being independent of the potential outcome, with randomization being an
example, and the second to equal exposure to disease in the vaccinated and unvac-
cinated groups. Although these three conditions are necessary for statistically valid
inference, they do not guarantee lack of confounding or easily interpretable vaccine
efficacy estimates.

14.3 Randomization and Baseline Transmission

In this section we focus on the role and limits of randomization in studies based on
unconditional estimators of vaccine efficacy that do not explicitly take into account
the number of exposures to infection that each person has (Halloran and Struchiner
1995). Based on a simple model of the biologic efficacy of interest, Struchiner and
Halloran (2007) extended Greenland’s (1987) and Gail’s (1986, 1988) arguments
on comparability and collapsibility, respectively, to examine the limits of random-
ization to control for unmeasured covariates in vaccine field studies. They showed
that randomization does not guarantee easily interpretable estimates of vaccine ef-
ficacy within trials or across sites. A series of examples illustrates the extent of the
bias possible under a number of plausible biologic assumptions. Estimates from ran-
domized, placebo-controlled Phase III field trials that differ in baseline transmission
may not be comparable unless baseline transmission and pre-existing immunity are
taken into account.
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14.3.1 Stochastic risk model

Consider a double-blinded vaccine trial of N subjects from the study population with
vaccine randomly assigned to N1 subjects and placebo to N0 subjects. For simplicity,
we consider estimating the effect of vaccine compared to placebo on the binary
outcome of either becoming infected or not. To begin with, we set infection equal to
disease. The prevaccination covariates represent the values of variables describing
the individuals in the population, such as age, gender, genetic composition, and
pre-existing immunity. The values of any particular covariate may or may not be
measured and recorded, depending on the design of the study. For example, we
might not measure and record the antibody titer for each person before we begin the
study.

For simplicity, consider a binary covariate, C, where a portion of the population
has C = c and the rest has C = c̄. Let N1c and N0c be the number of individuals in
the vaccinated and unvaccinated groups with covariate value C = c, and N1c and N0c
be the number of individuals in the vaccinated and unvaccinated groups with C = c̄
(Table 14.1).

14.3.1.1 Individual measures

Under a stochastic risk model, let the probability of being infected per potentially
infective contact for an unvaccinated person i be p0i and the probability of not being
infected after one contact be 1− p0i. This is similar to the stochastic risk model of
Greenland (1987), except here the risk conditions on a potentially infective contact.
All individuals in whom the infection was not successful at the time of the infective
contact return to the pool of individuals at risk to become infected. Analogously, let
the probability that a vaccinated individual becomes infected after one exposure to
infection be p1i and of not being infected be 1− p1i. The unknown probabilities p0i
and p1i are called the individual transmission probabilities per potentially infectious
contact. An individual thus has two different potential transmission probabilities,
one with and one without the vaccine. Which of these potential transmission prob-
abilities determines the stochastic risk for an individual depends on whether the
individual is assigned to vaccine or placebo.

Assume that the vaccine has the effect of reducing the transmission probability
in an individual i by a multiplicative factor θi from p0i to p1i = θi p0i, where θi could
be specific to each individual. The effect of vaccination compared to no vaccination
on infection outcome given one specified exposure to infection may be measured
in terms of one minus the individual transmission probability ratio or the individual
transmission probability difference:

VES,pi = 1− p1i

p0i
= 1−θi,

Di = p0i− p1i = p0i(1−θi).
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The vaccine efficacy based on the ratio will be undefined if the transmission prob-
ability with no vaccine is zero. Under the multiplicative model, the risk difference
depends on p0i whereas V ES,pi does not. Below, we also use the notation p0i = T P0i,
p1i = T P1i, and θi = T PRi, as equivalent for the transmission probabilities in the un-
vaccinated and vaccinated individual i, and the individual transmission probability
ratio.

14.3.1.2 Special role of exposure to infection

The infection outcomes in an individual would generally depend on whether a per-
son is exposed to infection at all, the size of the inoculum, and how often the person
is challenged. The probability of not being infected after the first contact, but then
being infected after the second contact is (1− p0i)p0i, and so forth for any num-
ber of potentially infective contacts, so that the probability an individual becomes
infected during a study depends on the number of exposures during the study. We as-
sume that all exposures to infection are equivalent and independent (Section 4.3.1).
We assume that the susceptibility remains the same after being exposed to infection
post-randomization.

If infection or disease is an outcome of interest, the individual must receive an in-
fectious challenge to contribute information to the study. In controlled settings with
a curable disease, following vaccine and placebo allocation, individuals are some-
times challenged with a known amount of inoculum. In this case, treatment consists
of both the vaccine allocation and the infectious challenge. In field trials, often indi-
viduals are not exposed to infection. These individuals are recipients of incomplete
treatment and are uninformative with respect to the effect of the vaccine on infec-
tion and disease. That is, in evaluating prophylactic vaccines, there are actually two
levels of treatment. The first is to give either the vaccine or placebo, which we can
assign randomly to people. The second is the exposure to infection, which in field
trials is assigned by nature (Halloran and Struchiner 1995).

14.3.1.3 Population measures

The fundamental problem of causal inference (Holland 1986) is that we cannot ob-
serve the individual i both with the vaccine and with the placebo, not to mention at a
specified exposure to infection (Halloran and Struchiner 1995; Rubin 1978), so that
we cannot observe the effect of the vaccine compared to placebo in the individual.
What we can observe is the difference in the average observable outcomes in those
who actually received placebo and the average observable outcomes in those who
actually received the vaccine. Because we cannot estimate the θi for each person,
we do a study in a population to estimate the average effect of the vaccine compared
to the placebo. The parameter of interest is the average multiplicative effect, θ , or
the average difference in the transmission probabilities, p0(1−θ), of the vaccine in
the population if the people were vaccinated compared to if they were unvaccinated.
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Let a1 and a0 denote the expected number of cases in the vaccinated and un-
vaccinated groups, respectively, at the end of the study. The proportion expected to
develop the infection if each individual in the group receives one exposure to in-
fection is the average transmission probability, T P1 and T P0, which is the expected
number of infections divided by the number of exposures to infection:

T P1 = ∑1 p1i

N1
=

a1

N1
, T P0 = ∑0 p0i

N0
=

a0

N0
,

where ∑1 and ∑0 denote summation over the vaccinated and unvaccinated groups,
respectively. The proportion of the population expected to develop infection by the
end of the study is the attack rate or cumulative incidence, denoted CI1 and CI0,
respectively:

CI1 =
a1

N1
, CI0 =

a0

N0
.

The cumulative incidences are interpreted as the average unconditional risks in the
vaccinated and unvaccinated groups, respectively.

Vaccine efficacy estimated from the relative average transmission probability is

V̂ES,T P = 1−TPR = 1− TP1

TP0
.

Denote by a1c and b1c the number of vaccinated people with covariate value C =
c at the end of the study who develop infection or not, respectively, a1c +b1c = N1c,
and by a0c and b0c the number of unvaccinated people with covariate value C = c
who develop infection or not, respectively, a0c +b0c = N0c. The analogous notation
is used in the stratum with C = c̄ (Table 14.1). Let R = CI1/CI0. The crude measur-
able VES,CI estimated from the ratio of the cumulative incidences in the vaccinated
group compared to the unvaccinated group is (Table 14.1)

VES,CI = 1−R = 1− CI1

CI0
= 1− a1/N1

a0/N0
= 1−

(
a1c +a1c

N1
/

a0c +a0c

N0

)
.

The crude risk difference measured by the difference in the cumulative incidence in
the vaccinated group compared to the unvaccinated group is (Table 14.1)

CID =
a0

N0
− a1

N1
=

a0c +a0c

N0
− a1c +a1c

N1
.

Greenwood and Yule (1915) discuss the different interpretation of the ratio and dif-
ference measures for vaccines based on the cumulative incidence.

Vaccine efficacy based on the odds ratio, OR, in which the controls are those that
remain free of disease is

VES,OR = 1−OR = 1− (a1c +a1c̄)(b0c +b0c̄)
(a0c +a0c̄)(b1c +b1c̄)

. (14.1)
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Table 14.1 Example tables template for Tables 14.2 to 14.9: TP, transmission probability; TPR,
transmission probability ratio; C = c, c̄, binary covariate; VEc, VEc̄, vaccine efficacy in those with
c, c̄; ai j , number of cases; bi j , number of noncases; ai j +bi j = Ni j . (Struchiner and Halloran 2007)

Site TPc
C = c;

VEc = 1-TPRc
TPc̄

C = c̄;
VEc̄ = 1-TPRc̄

VES,CI CID VES,OR

A
Vac
Unv

TP1c
TP0c

a1c b1c N1c
a0c b0c N0c

TP1c̄
TP0c̄

a1c̄ b1c̄ N1c̄
a0c̄ b0c̄ N0c̄

1−
a1c+a1c̄
N1c+N1c̄
a0c+a0c̄
N0c+N0c̄

a0c+a0c̄
N0c+N0c̄

−
a1c+a1c̄
N1c+N1c̄

1−
(a1c+a1c̄)(b0c+b0c̄)
(a0c+a0c̄)(b1c+b1c̄)

This odds ratio is based on the cumulative or epidemic case-control design (Roth-
man et al 2008), and depends on the rare disease assumption to be a close approx-
imation of the relative risk based on cumulative incidence. Other odds ratios not
dependent on the rare disease assumption are discussed in Section 8.1.

The columns at the far right in Table 14.1 give the vaccine efficacy based on the
crude cumulative incidence ratio, the crude cumulative incidence difference, and the
crude odds ratios. The question of interest is to what extent, even under randomiza-
tion, does the estimated efficacy measure the effect of interest? In particular, if no
information on actual exposure to infection is gathered, to what extent does VES,CI

estimate 1−θ or CID estimate p0(1−θ)?

14.3.2 Randomization and comparability of treatment groups

Randomization is supposed to ensure that the vaccine and placebo groups are com-
parable in that the experience of the group with the vaccine would have been the
same as the group that did not receive the vaccine had the vaccinated group in fact
received the placebo, and vice versa. Randomization coupled with blinding is also
supposed to ensure that post-randomization exposure to infection is balanced.

Under randomization, it should not matter which of the groups receives the vac-
cine or placebo. Following Greenland and Robins (1986), we say there is no con-
founding due to lack of comparability if, in the absence of vaccination, the average
risk would have been the same among the people who in fact were vaccinated and
those who were not vaccinated. Under the assumption of comparability of the two
groups, we can replace the experience of the unvaccinated group with the experience
of the vaccinated group if it had not been vaccinated, so that ∑0 p0i/N0 = ∑1 p0i/N1.
Here ∑1 p0i denotes the experience that the vaccinated group would have had if they
had not been vaccinated and exposed just once to infection. By balancing the distri-
bution of observed and unobserved covariates in a study, randomization is supposed
to ensure that the vaccinated and unvaccinated groups are comparable. The expected
proportion of the unvaccinated and vaccinated groups in either level of a binary co-
variate should be the same in both groups,
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N1c

N1
=

N0c

N0
,

N1c

N1
=

N0c

N0
.

The conditions for comparability rely on the assumption that the outcome in each
individual is independent of the outcomes and treatment assignments in the other
individuals. The independence is part of the stable unit treatment value assumption
(SUTVA) (Rubin 1980). Halloran and Struchiner (1995) and Hudgens and Halloran
(2008) (Section 13.8) consider consequences of the violation of SUTVA in more
detail. If we imagine that a small proportion of the population is vaccinated in the
trial, then the violations would be minimal.

14.3.2.1 Limits of comparability with one homogeneous exposure to infection

In this section, we assume that everyone is exposed exactly once to infection during
the study. If the trial participants were each to receive a single infectious challenge
(infected mosquito bite), the expected cumulative incidence ratio would equal the
expected average transmission probability ratio:

R =
a1/N1

a0/N0
= ∑1 p1i/N1

∑0 p0i/N0
= TPR.

Following the arguments of Greenland (1987), even under the assumption of
comparability, and exactly one exposure to infection per person, the ratio of the
cumulative incidences (average transmission probabilities) is not equal to the aver-
age of the individual ratios of the transmission probabilities, θ . Formally, assuming
comparability, the expected cumulative incidence ratio (ratio of the average trans-
mission probabilities) is

R =
TP1

TP0
=

a1
N1
a0
N0

=
∑1 p1i

N1
∑0 p0i

N0

=
∑1 θi p0i

N1
∑0 p0i

N0

=
∑1 θi p0i

N1
∑1 p0i

N1

= ∑1 θi p0i

∑1 p0i
6=

∑1
p1i
p0i

N1
= ∑1 θi

N1
= θ .

The inequality is true in general, unless the p1i/p0i = θ are the same for all i in the
vaccinated group, a strong assumption. In words, the previous expressions indicate
that the population-level measure of efficacy based on either the transmission prob-
ability or the incidence proportion cannot be interpreted as the average, among the
study population, of the individual effect of the vaccine, except in the unlikely case
that θ = p1i/p0i for each individual i in the population. In general, the expected
value of R is biased for the average effect of the vaccine in the vaccinated group,
∑1 θi/N1, in randomized, double-blinded Phase III vaccine trials.

In contrast, under the assumption of comparability, the difference CID of the
cumulative incidences (or average transmission probabilities) in the unvaccinated
and vaccinated groups is equal to the average of the individual differences in the
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transmission probabilities, even when individuals have different vaccine responses
θi:

CID =
a0

N0
− a1

N1
= ∑0 p0i

N0
− ∑1 p1i

N1
= ∑1 p0i

N1
− ∑1 θi p0i

N1

= ∑1 p0i(1−θi)
N1

= p0(1−θ).

14.3.2.2 Comparability-based confounding: Homogeneous effect; two or more
exposures to infection

To illustrate confounding due to unmeasured postvaccination exposure to infection,
we assume for simplicity that the effect of the vaccine on susceptibility is the same
in everyone, that is, θi = θ for each individual i, but that everyone receives two chal-
lenges to infection (see also Halloran et al (1991)). Assume that the first contact with
the infective agent does not leave an immune memory. If everyone is challenged
twice, then the expected number of cases in the unvaccinated group is the number
of people expected to get infected from the first challenge plus the number of people
expected to get infected from the second challenge, a0 = ∑0[p0i(1− p0i)+ p0i]. The
number of cases in the vaccinated group is a1 = ∑1[p1i(1− p1i)+ p1i]. Under the
assumption of comparability of the vaccinated and unvaccinated groups:

R =
a1
N1
a0
N0

=
∑1[p1i(1−p1i)+p1i]

N1
∑0[p0i(1−p0i)+p0i]

N0

=
∑1[θ p0i(1−θ p0i)+θ p0i]

N1
∑1[p0i(1−p0i)+p0i]

N1

6= θ .

If we had information on the number of exposures to infection and knew af-
ter which exposure each person becomes infected, we could use the transmission
probability ratios to estimate the effect of the vaccine, although even the ratio
TP1/TP0 6= θ unless θi = θ .

If the investigator did not have access to information on exposure to infection, as
in field trials based on unconditional parameters such as cumulative incidence, he or
she would report vaccine efficacy as 1−(a1/N1)/(a0/N0) 6= 1−θ . Thus, exposure
to infection can be a confounder even in a double-blinded placebo-controlled trial in
which randomization ensures comparability, and in particular, when the exposure to
infection is not only comparable in the two groups, but homogeneous within groups.
This result holds even if the transmission probability is homogeneous for everyone.

As a corollary to this result, because the number of challenges to infection, as-
signed by nature in field trials, depends on the baseline transmission level, two dif-
ferent randomized, double-blinded, placebo-controlled studies taking place in sites
that differ by the level of transmission would report different estimates of vaccine
efficacy even if the level of protection conferred by the vaccine to a specified chal-
lenge to infection is the same in both studies.

The previous result is easily extended to the more realistic situation that in field
conditions, nature provides the infection challenge and, thus, some individuals are
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not challenged at all, some are challenged just once, and some are challenged two or
more times. In the general case, the inequality holds even if p0i = p0, and p1i = p1.
A similar argument could be constructed to show that the difference of CI0−CI1
does not equal the average difference in susceptibility in the vaccinated compared
to the unvaccinated, (1−θ)(∑1 p0i)/N1. In summary, the population measure of R
does not estimate θ , and there can be confounding even when

1. the study is randomized;
2. the multiplicative effect of the vaccine is the same for all individuals, ie, there is

no heterogeneity in vaccine efficacy;
3. comparability is preserved, ie, controls describe what would have happened to

the vaccinated group if they had not been vaccinated;
4. the amount of infectious challenge is the same among vaccinated and unvacci-

nated; and
5. SUTVA is not violated.

14.3.2.3 Collapsibility with balance of unmeasured covariates

Because on average, randomization achieves balance of prevaccination covariates,
under certain conditions, a covariate can be omitted from the analysis without
changing the value of the regression parameter of interest (Gail 1986, 1988; Gail
et al. 1984, 1988). In this case, the analysis is said to be collapsible with respect
to the covariates, and such covariates are called nonconfounders. The discussions
related to collapsibility and omitting a balanced covariate from regression mod-
els are concerned with statistical bias and are model-dependent (Greenland 1996).
Greenland (1989) argues against the identification of effects with regression model
coefficients, because that results in model dependence of causal concepts such as
“effect” and “confounder” which is undesirable and unnecessary. Randomized clin-
ical trials analyzed with linear or multiplicative models yield unbiased estimates of
regression coefficients which, however, are not necessarily appropriate estimates of
the individual biologic effect of a vaccine.

14.3.2.4 Collapsibility-based confounding

Suppose that the stratum-specific cumulative incidence ratio for the jth stratum is
R j = CI0 j/CI1 j, where the jth stratum is defined in terms of the number j of ex-
posures to infection, j = 0, . . . ,J, where J is the maximum number of exposures
possible in the study, and,

k = R1 = · · ·= R j = · · ·= RJ .

As already shown, this assumption cannot be true even if there is a common mul-
tiplicative effect of the vaccine, θ = p1i/p0i, for all i, because then the R j would
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differ. Thus, neither the crude measure of effect, nor the adjusted measure of effect
once baseline transmission level is controlled for, are easily interpretable.

Interpretation of a multiplicative measure of efficacy, even in the absence of con-
founding defined in terms of collapsibility (Greenland 1996), is problematic unless
one makes the very unlikely assumptions that the biologic effect is the same for all
individuals and that study participants could be challenged at most once, in which
case all people in the study would share the same value of the covariate defined by
the number of exposures to infection.

14.3.2.5 Heterogeneity of effect: Effect modification

We now consider the special case that there are strata within which the effect of the
vaccine is homogeneous, but that it varies among subgroups. This heterogeneity of
effect is called effect modification in the epidemiological literature. Of actual inter-
est would be to estimate the different efficacies in each stratum. If it is not possible
to stratify on the relevant variable, then the efficacy measure will be a summary
measure under heterogeneity (Greenland 1982; Halloran et al 1992). The estimated
crude efficacy will depend on the proportional composition of the population of each
subgroup in which the vaccine has a different effect.

14.3.3 Examples

Struchiner and Halloran (2007) present several examples of how unmeasured covari-
ates, and in particular, unmeasured pre-vaccination or post-vaccination exposure to
infection, could alter the estimates of vaccine efficacy even if the field trial were ran-
domized. In every case considered, the vaccine trial is a randomized, double-blind,
placebo-controlled trial. In developing these examples, we had in mind an infection
like malaria, although the results are quite general. For those readers who know the
malaria literature, the transmission probability, TP0, or p0, corresponds to the b in
the usual malaria models, the probability that a sporozoite-positive mosquito bite
results in successful infection.

In the examples, the covariate C can play several different roles. If C is related to
a pre-vaccination covariate that affects susceptibility, then the risk of infection per
potentially infective contact in the unvaccinated group with C = c is TP0c and in the
unvaccinated group with covariate value C = c̄ is TP0c. If the vaccine effect is the
same at both covariate levels, then θ = θc = TPRc = θc = TPRc. Table 14.1 is a
template for the examples.

If the vaccine effect is related to C, then TPRc = θc = TP1c/TP0c. The effect
of the vaccine in the stratum with C = c̄ is TPRc = θc = TP1c/TP0c. In this case,
there would be two measures of effect of interest that would be measurable if it were
possible to stratify on the covariate C. The covariate C could also be related only to
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Table 14.2 Homogeneous pre-vaccination susceptibility among sites, homogeneity of vaccine ef-
fect within sites, no boosting, and increasing Nc; infectious challenge as a confounder, one exposure
to infection in stratum C = c and 0 otherwise; V Ec =V Ec̄ = 0.5; T Pc0 = T Pc̄0; Nc 6= Nc̄. (Struchiner
and Halloran 2007)

Site TPc C = c; VEc = .5 TPc̄ C = c̄; VEc̄ = .5 VES,CI CID VES,OR

A
Vac
Unv

1/4
1/2

1 3
2 2

4
4

1/4
1/2

0 496
0 496

496
496 0.5 0.002 0.501

B
Vac
Unv

1/4
1/2

62 186
124 124

248
248

1/4
1/2

0 252
0 252

252
252 0.5 0.124 0.571

F
Vac
Unv

1/4
1/2

124 372
248 248

496
496

1/4
1/2

0 4
0 4

4
4 0.5 0.248 0.665

the number of post-vaccination exposures to infection with a homogeneous effect
of vaccination, so that TP0c = TP0c, and θc = θc.

14.3.3.1 C is post-vaccination challenge; homogeneous VE; infectious
challenge as a confounder

Consider a vaccine candidate that is being evaluated in different trials, possibly on
different continents (Table 14.2). Let the trial sites be designated by capital letters,
such as A, B, and F. In Table 14.2, we consider a situation in which the response
to the vaccine is actually homogeneous within each trial site and across each trial
site, but that not everyone gets exposed to infection. Thus, C = c denotes being
exposed to infection just once, and C = c̄ denotes not being exposed to infection. The
transmission probability in the unvaccinated susceptibles, T P0 = 0.5, and the effect
of the vaccine in reducing the transmission probability, T PR = T P1/T P0 = 0.5, are
the same for all study participants in all three sites. Thus, VEc = VEc. In Table 14.2,
the proportion receiving exactly one exposure to infection (C = c) increases from
3% in site A to 97% in site F. In Site A, V̂ES,CI = 2/500−1/500 = 0.5, and in Site
F, V̂ES,CI = 124/500− 248/500 = 0.5. The estimated efficacy based on VES,CI is
0.5 regardless of the proportion exposed to infection during the trial, so that under
this multiplicative effect model, heterogeneous exposure to infection does not act
as a confounder if the maximum number of exposures to infection is 1. The CID
increases from 0.002 at site A to 0.248 in site F, reflecting that the vaccine is more
important as a public health tool when more people are exposed to infection.

In Table 14.3, those people who are exposed to infection (C = c) are exposed
twice, compared to only once in Table 14.2. Otherwise the situations in Tables
14.2 and 14.3 are the same. This situation illustrates exposure to infection as a con-
founder, because the expected VES,CI decreases from 0.5 in Table 14.2 to 0.417 in
Table 14.3 at all sites, but allowing for the small sample size and integer infections,
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Table 14.3 Homogeneous pre-vaccination susceptibility among sites, homogeneity of vaccine ef-
fect within sites, no boosting, and increasing Nc; infectious challenge as a confounder, two ex-
posure to infection in stratum C = c and 0 otherwise; V Ec = V Ec̄ = 0.5; T Pc0 = T Pc̄0; Nc 6= Nc̄.
(Struchiner and Halloran 2007)

Site TP C = c; VE = .5 TP C = c̄; VE = .5 VES,CI CID VES,OR

A
Vac
Unv

1/4
1/2

2 2
3 1

4
4

1/4
1/2

0 496
0 496

496
496 0.333 0.002 0.335

B
Vac
Unv

1/4
1/2

109 139
186 62

248
248

1/4
1/2

0 252
0 252

252
252 0.414 0.154 0.529

F
Vac
Unv

1/4
1/2

217 279
372 124

496
496

1/4
1/2

0 4
0 4

4
4 0.417 0.310 0.736

it is 0.333 in site A. In Table 14.3, the change in CID from site A to site F is greater
than in the situation of lower transmission in Table 14.2.

14.3.3.2 C is related to heterogeneous VE; effect modification

In Table 14.4, we assume that in all sites, an immunologically naive susceptible
person has a probability of p0i = p0 = T P0 = 1.0 of becoming infected after one
exposure to infection. The vaccine effect is heterogeneous. The heterogeneous re-
sponse could be due to a covariate unrelated to history of exposure to infection,
such as genetic composition, nutritional status, or gender. One half of the popula-
tion has C = c and the vaccine reduces the transmission probability by 0.5, so that
TPRc = 0.5, and VEc = 0.5. One half of the population has C = c̄ and the vaccine
has no effect in this group, so that VEc̄ = 0. The average efficacy of the vaccine on
the transmission probability is 0.25. The average transmission probability difference
is also 0.25.

In Table 14.4, the number of exposures to infection per person increases from
top to bottom, with equal probability of being exposed in the vaccinated and un-
vaccinated groups and at the different levels of C. That is, exposure to infection is
independent of both vaccine status and C. In site A, only 1 in 125 are exposed to
infection once, and the others not at all. In site B, one-half are exposed once, and
one-half not at all. In site F, everyone is exposed once. In sites G through M, the
number of exposures to infection per person increases from two to eight. When the
number of exposures to infection is less than or equal to one (sites A, B, F), vaccine
efficacy measured by VES,CI does not change for different proportions of the pop-
ulation exposed to infection and equals the average of the effect of the vaccine in
the two strata. Efficacy measured by the CID increases until both measures based on
ratio and difference are equal when the whole population is exposed just once (site
F). Under these conditions, the expected crude cumulative incidence ratio equals the
average effect in the population, and the same for the differences of the two. Effi-
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Table 14.4 Heterogeneous pre-vaccination susceptibility among sites; heterogeneity of vaccine
effect within sites and confounding from exposure to infection; no boosting; increasing proportion
exposed to infection in trial (A: 1/125, once; B: 1/2, once; F: 1/1, once; G: 2; H: 3; I: 4; J: 5; K:
6; L: 7; M: 8); V Ec = 0.5; V Ec̄ = 0; T Pc0 = T Pc̄0 = 1; Nc = Nc̄ = 500. (Struchiner and Halloran
2007)

Site TPc C = c; VEc = 0.5 TPc̄ C = c̄; VEc̄ = 0 VES,CI CID VES,OR

A
Vac
Unv

1/2
1

1 249 250
2 248 250

1
1

2 248 250
2 248 250 0.250 0.002 0.25

B
Vac
Unv

1/2
1

62 188 250
124 126 250

1
1

124 126 250
124 126 250 0.250 0.124 0.40

F
Vac
Unv

1/2
1

125 125 250
250 0 250

1
1

250 0 250
250 0 250 0.250 0.250 1.00

G
Vac
Unv

1/2
1

188 62 250
250 0 250

1
1

250 0 250
250 0 250 0.124 0.124 1.00

H
Vac
Unv

1/2
1

219 31 250
250 0 250

1
1

250 0 250
250 0 250 0.062 0.062 1.00

I
Vac
Unv

1/2
1

235 15 250
250 0 250

1
1

250 0 250
250 0 250 0.030 0.030 1.00

J
Vac
Unv

1/2
1

243 7 250
250 0 250

1
1

250 0 250
250 0 250 0.014 0.014 1.00

K
Vac
Unv

1/2
1

247 3 250
250 0 250

1
1

250 0 250
250 0 250 0.006 0.006 1.00

L
Vac
Unv

1/2
1

249 1 250
250 0 250

1
1

250 0 250
250 0 250 0.002 0.002 1.00

M
Vac
Unv

1/2
1

250 0 250
250 0 250

1
1

250 0 250
250 0 250 0.000 0.000 —

cacy measured as 1−OR decreases as the level of exposure to an infective contact
increases. As expected, it approaches the measure based on the cumulative inci-
dence ratio when the disease is rare, because of the (not recommended) cumulative
case-control design.

Proceeding down Table 14.4, after all individuals were exposed to an infective
contact once, we mimic a second round of contacts assuming that the first round
leaves no immune memory. This is represented at site G in Table 14.4, in which from
the 125 subjects that had not yet shown the outcome of interest, half of them (to the
nearest integer) succumb to the infection. Successive rounds of contacts follow until
after eight exposures to infection (M), all study participants present the outcome of
interest. All three measures of efficacy progress towards the null when transmission
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Table 14.5 Heterogeneous pre-vaccination susceptibility among sites, heterogeneity of vaccine
effect within sites, and boosting, all modulated by infection history; everyone exposed once to
infection; V Ec = 0.5; V Ec̄ = 0; T Pc0 6= T Pc̄0; Nc = Nc̄ = 500. (Struchiner and Halloran 2007)

Site TPc C = c; VEc = .5 TPc̄ C = c̄; VEc̄ = 0 VES,CI CID VES,OR

A
Vac
Unv

1/4
1/2

62 188 250
125 125 250

1/2
1/2

125 125 250
125 125 250 0.249 0.124 0.40

B
Vac
Unv

1/8
1/4

31 219 250
62 188 250

1/2
1/2

125 125 250
125 125 250 0.166 0.062 0.24

F
Vac
Unv

1/250
1/125

1 249 250
2 248 250

1/2
1/2

125 125 250
125 125 250 0.008 0.002 0.01

increases. The decrease in estimated efficacy would also occur if the vaccine effect
were homogeneous.

If we conducted a study of the vaccine in three different sites, say in sites A, G,
and L, and estimated vaccine efficacy from VES,CI , we would expect three differ-
ent estimates of the efficacy of the vaccine, namely 0.25, 0.124, and 0.002, even
though the vaccine had exactly the same effect in each population, and the study is
randomized and balanced. The difference among sites would be due to differences
in post-vaccination exposure to infection in the three sites, not due to differences in
the immune protection conferred by the vaccine.

14.3.3.3 C related to infection history: Pre-vaccination heterogeneity,
heterogeneity of effect, boosting

In the example in Table 14.5, the covariate C is related both to pre-vaccination sus-
ceptibility and to the heterogeneous response of the vaccine. We let c and c denote
previous exposure to infection and no previous exposure to infection, respectively,
whereby we assume that half of each population has the covariate value C = c and
half has C = c̄. Suppose that in the three trial sites A, B, and F, the susceptibility
of immunologically naive unvaccinated susceptibles is the same, with TP0c = 0.5.
That is, if we took the naive susceptibles from A, B, and F and challenged them
with infection, then the transmission probability for each of the three groups would
be the same, namely 0.5.

In the people with previous exposure to infection, however, the transmission
probability ranges from 0.5 (no change over naive) in site A, to 0.25 at site B to
1/125 at site F. Now assume that the vaccine has an effect only in people who were
previously exposed to infection. That is, perhaps the vaccine boosts pre-existing im-
munity, but has no effect on naive susceptibles. The effect of the vaccine in the
previously exposed groups is assumed to be the same in each of the three trial
sites, and to have no effect in the naive susceptibles. That is, the biologic efficacy
of the vaccine in the three trial sites is identical, with T PRc̄ = p1i/p0i = 1 and
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Table 14.6 Heterogeneous pre-vaccination susceptibility among sites, heterogeneity of vaccine
effect within sites, all modulated by infection history, and no boosting; everyone exposed once to
infection; V Ec = 0.5; V Ec̄ = 0; T Pc0 6= T Pc̄0; Nc = Nc̄ = 500. (Struchiner and Halloran 2007)

Site TPc C = c; VEc = 0 TPc̄ C = c̄; VEc̄ = .5 VES,CI CID VES,OR

A
Vac
Unv

1/2
1/2

125 125 250
125 125 250

1/4
1/2

62 188 250
125 125 250 0.249 0.124 0.398

B
Vac
Unv

1/4
1/4

62 188 250
62 188 250

1/4
1/2

62 188 250
125 125 250 0.333 0.124 0.443

F
Vac
Unv

1/125
1/125

2 248 250
2 248 250

1/4
1/2

62 188 250
125 125 250 0.496 0.124 0.568

T PRc = p1i/p0i = 0.5 at each site, and the proportion with each covariate is ex-
actly half at each site. At site B, the multiplicative protection conferred by previous
exposure to infection is the same as the protection conferred by vaccine in those
people in whom it has an effect. In Table 14.5, we further assume that each person
is exposed exactly once to infection. The number of cases among the unvaccinated
individuals in the C = c stratum, that is, those with decreased susceptibility before
being vaccinated, decreases from site A to site F. Despite the effect of the vaccine
actually being the same in sites A, B, and F of Table 14.5, the exposure to infec-
tion being exactly the same, and the distribution of C being exactly the same, the
estimated efficacy of the vaccine decreases from 0.249 at site A to 0.008 at site F,
depending on how susceptible those with pre-vaccination immunity are.

14.3.3.4 C related to infection history: prevaccination heterogeneity,
heterogeneity of effect, no boosting

In Table 14.6, we find exactly the same pre-vaccination baseline situations in sites
A, B, and F as described in Table 14.5. Assume, however, that the vaccine provides
no additional protection to people who were previously exposed, C = c, but that it
has an effect in naive susceptible people. In Table 14.6, the effect of pre-existing ex-
posure to infection on VES,CI is opposite to that in Table 14.5, and VES,CI increases
from 0.249 at site A to 0.496 at site F. Once again the biologic effect of the vaccine
is the same in the different sites, but if we do not stratify on pre-existing immunity,
we get very different efficacy estimates. How the efficacy estimates vary depends on
whether the vaccine has greater or lesser effect in the people who had previous ex-
posure. Vaccine efficacy measured as the risk difference, CID, however, is constant
as long as exposure to infection is the same at all sites.
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Table 14.7 Homogeneous pre-vaccination susceptibility among sites, heterogeneity of vaccine ef-
fect within sites, boosting, and increasing Nc, all modulated by infection history; everyone exposed
once to infection; V Ec = 0.5; V Ec̄ = 0; T Pc0 6= T Pc̄0; Nc 6= Nc̄. (Struchiner and Halloran 2007)

Site TPc C = c; VEc = .5 TPc̄ C = c̄; VEc̄ = 0 VES,CI CID VES,CI

A
Vac
Unv

1/8
1/4

1 7
2 6

8
8

1/2
1/2

246 246
246 246

492
492 0.004 0.002 0.008

B
Vac
Unv

1/8
1/4

31 217
62 186

248
248

1/2
1/2

126 126
126 126

252
252 0.165 0.062 0.240

F
Vac
Unv

1/8
1/4

62 434
124 372

496
496

1/2
1/2

2 2
2 2

4
4 0.492 0.124 0.564

Table 14.8 Homogeneous pre-vaccination susceptibility among sites, heterogeneity of vaccine
effect within sites, and increasing Nc, all modulated by infection history, and no boosting; everyone
exposed once to infection; V Ec = 0; V Ec̄ = 0.5; T Pc0 6= T Pc̄0; Nc 6= Nc̄. (Struchiner and Halloran
2007)

Site TPc C = c; VEc = 0 TPc̄ C = c̄; VEc̄ = .5 VES,CI CID VES,OR

A
Vac
Unv

1/4
1/4

1 3
1 3

4
4

1/4
1/2

124 372
248 248

496
496 0.498 0.248 0.664

B
Vac
Unv

1/4
1/4

62 186
62 186

248
248

1/4
1/2

63 189
126 126

252
252 0.335 0.126 0.447

F
Vac
Unv

1/4
1/4

124 372
124 372

496
496

1/4
1/2

1 3
2 2

4
4 0.008 0.002 0.011

14.3.3.5 Varying the proportion with covariate C, boosting or no boosting

Tables 14.7 and 14.8 represent a comparison analogous to that between Tables 14.5
and 14.6, respectively. However, in Tables 14.7 and 14.8, the relative pre-vaccination
susceptibilities are the same in all three sites, but the fraction of the population with
the low prevaccination susceptibility varies among the different trial sites A, B, and
F. Again, we can imagine that the low prevaccination susceptibility in the group
with C = c comes from immunity acquired due to exposure to infection prior to
the vaccine trial. For simplicity, we assume that protection conferred by naturally
acquired immunity is the same as that conferred by the vaccine in groups where the
vaccine has an effect, so TP0c = 0.5 TP0c̄ prior to vaccination. The proportion of the
population with pre-vaccination immunity (C = c) varies from 1–2% in trial site A
to 50% in trial site B to 97–98% in trial site F.

In Table 14.7, we assume that the vaccine has no effect in the naive susceptibles,
but reduces susceptibility by 50% in those with previous immunity. In Table 14.8,
the vaccine has no additional effect in those with previous immunity, but reduces
susceptibility by 50% in the naive susceptibles. Because the distribution of the co-
variate C in the populations A, B, and F varies, the population average biologic
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Table 14.9 Homogeneous prevaccination susceptibility among sites, heterogeneity of vaccine ef-
fect within sites, boosting, and increasing Nc, all modulated by infection history; everyone exposed
once to infection; V Ec = 0.75; V Ec̄ = 0.5; T Pc0 6= T Pc̄0; Nc 6= Nc̄. (Struchiner and Halloran 2007)

Site TPc C = c; VEc = .75 TPc̄ C = c̄; VEc̄ = .5 VES,CI CID VES,OR

A
Vac
Unv

1/16
1/4

1 15
4 12

16
16

1/4
1/2

121 363
242 242

484
484 0.504 0.248 0.667

B
Vac
Unv

1/16
1/4

16 244
65 195

260
260

1/4
1/2

60 180
120 120

240
240 0.589 0.218 0.695

F
Vac
Unv

1/16
1/4

30 454
121 363

484
484

1/4
1/2

4 12
8 8

16
16 0.736 0.190 0.790

effect varies. In Table 14.7, it varies from about 0.01 at site A to 0.48 at site F, and
vice versa in Table 14.8. This is reflected in the crude VES,CI when each person is
exposed once to infection. Thus, how the estimate of the vaccine efficacy varies will
depend on the proportion with pre-existing immunity and how the vaccine interacts
with this.

14.3.3.6 Effect in naive susceptibles and boosting

In Table 14.9, we consider a different biologically plausible situation. Suppose that
the vaccine has an effect both in naive susceptibles and in people with previous ex-
posure to infection, but due to immune boosting, the efficacy in those with previous
immunity is greater. Assume that the vaccine reduces susceptibility by TPRc = 0.5
in the immunologically naive, and TPRc = 0.25 in those people with previous immu-
nity. We assume that previous exposure reduces susceptibility by 0.5, so TP0c = 0.5
TP0c̄. The proportion in each of the three trial sites with previous immunity (C = c)
varies from about 3% in site A to 50% in site B to 97% in site F. With exactly
one infectious exposure to infection, the estimated vaccine effect based on VES,CI
varies correspondingly from 0.504, close to the biologic efficacy in the immunolog-
ically naive group, to 0.736, close to the biologic efficacy in the previously exposed
group. Once again, at the individual level, the efficacy is the same in all three trial
sites given the previous immune status of the individual. If no one had had previous
exposure to infection, the biologic efficacy would have been exactly the same for
everyone. The previous exposure acts as an effect modifier of the vaccine, and the
final estimate of efficacy depends on the proportion of previously exposed people in
the population.
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14.3.3.7 Varying susceptibility, vaccine response and exposure to infection

As a final example we consider the situation described in Table 14.6 for the three
vaccine trial sites, but now let the number of exposures per person vary from 1 up
to 16 (Figure 14.2). The situation in which everyone is exposed once corresponds to
that in Table 14.6. As the number of exposures per person increases, all the estimates
of VES,CI go towards 0. Suppose that site F with a low pre-vaccination susceptibility
(pre-existing immunity) also has the higher transmission with a higher number of
exposures, say 5, during the trial compared with just one in sites A and B. The
estimated efficacy will be only 0.25 in site F, and it will be 0.25 in site A and 0.35 in
site B. Thus, the difference in transmission level will make the crude efficacy in the
three sites seem more similar than it would have been if everyone had had just one
exposure to infection. If, on the other hand, transmission is higher in sites A and B
than at site F, say 5 in A and B and 1 at F, then the difference in transmission will
accentuate the differences between the sites. The estimates of VES,CI at sites A and
B would both be less than 0.20, and at site F it would be about 0.50. Of course, none
of the expected efficacy estimates takes into account the underlying heterogeneity
or gives an estimate of the actual biologic efficacy of the vaccine in the two strata
at each site, which is exactly the same for all three sites. This could be part of the
explanation for the difference between the South American SPf66 (Noya et al 1994;
Valero et al 1993) vaccine trials and the trials in The Gambia (D’Alessandro et al
1995).

14.3.4 Interpretation

The results on the role and limits of randomization for estimates of effect in clin-
ical trials in noninfectious disease are generally applicable to vaccine field trials.
Randomization generally ensures that the treatment assignment mechanism is in-
dependent of the outcome of interest and of covariates relevant in determining this
outcome. It is a good way to prevent additional problems of interpretation being in-
troduced by the researcher and thus adding to the credibility of the study. Struchiner
and Halloran (2007) showed that randomization in vaccine field trials does not guar-
antee that the estimated parameters are biologically meaningful. Nor does random-
ization guarantee that the estimates are unbiased, unconfounded, or insensitive to
baseline transmission. The special role of exposure to infection and the availability
of the additional conditional parameters such as the transmission probability in in-
fectious diseases adds another layer of complexity to choice and interpretation of
efficacy estimates.

We have not considered here the role of randomization under Bayesian infer-
ence. Lindley and Novick (1981) argue that randomization is not necessary, be-
cause inference is conditional on the observed data. From a subjective Bayesian
standpoint, however, they add that randomization is good so that the treatment as-
signment should appear to be unconnected with any relevant factor and that other
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Fig. 14.2 Vaccine efficacy estimates based on the cumulative incidence cross over (Struchiner and
Halloran 2007, Epidemiology and Infection, 135:181–194. Reprinted with permission).

people will believe the results. Rubin (1978, 1991) argues that randomization is
good because it simplifies the analysis for Bayesian inference by making the ig-
norability of the treatment assignment mechanism explicit. However, even under
Bayesian inference, randomization does not guarantee that an estimate has a biolog-
ically meaningful interpretation.

The examples presented here assumed a very simple multiplicative model of pro-
tective effects and did not differentiate between infection and disease. The relation
between the possibly unobservable biologic efficacy of the vaccine and the efficacy
as measured by the observable outcome may be much more complex and can de-
pend on many factors (Breslow and Storer 1985; Struchiner et al 1994). Comparing
efficacy estimates across populations could be more than a methodological problem.
The differing apparent efficacy of vaccines across populations is one argument for
testing vaccines in different populations, but it does not make comparison across
populations easier.

Meaningful interpretation of vaccine efficacy estimates, even in randomized,
double-blinded, placebo-controlled field trials, remains a challenge. As Savage
(1962) wrote, “. . .whether one is a Bayesian or not, there is still a good deal to
clarify about randomization.”



Chapter 15
Surrogates of Protection

15.1 Replacing Clinical Outcomes

A holy grail of vaccine research is to identify a vaccine-induced immune response
that predicts protection from infection and disease. If a measurable immune re-
sponse to vaccination predictive of protection from infection and disease were avail-
able, it would help to avoid new large trials and facilitate getting new products and
formulations approved. An immunological surrogate of protection could reduce the
sample size or shorten the duration of a trial. If a good vaccine is already licensed
and recommended, a trial with a new vaccine compared to placebo would be uneth-
ical. When both vaccines are highly efficacious or the clinical outcome of interest
is rare, a relative efficacy trial comparing the two vaccines would be prohibitively
large. Thus, identifying a good immunological surrogate of protection could make
a trial much less expensive or indeed feasible.

If the interest is in evaluating new vaccine candidates in different populations, the
primary goal is to predict how well the vaccine will do in new situations. Another
use of immunological surrogates of protection is in designing vaccines for future
emerging pathogens such as pandemic influenza or anthrax in which clinical out-
come data are not available. These latter two types of studies are sometimes called
bridge studies.

Much of this book has considered the effects of vaccination on clinical and in-
fection outcomes and on transmission measured by clinical and infection outcomes.
The era of using clinical outcomes in most primary vaccine efficacy trials may
slowly be coming to an end, although clinical outcomes will still be useful in obser-
vational studies. In 1993, a Hib conjugate vaccine was approved for licensure in the
United States based on immunological data (Frasch 1994) following the licensure
of two others based on Phase III efficacy trials (Black et al 1992; Santosham et al
1991). Meningococcal C conjugate vaccines were licensed in England on the basis
of serological correlates of protection without Phase III efficacy data (Andrews et
al 2003). Identifying immunological correlates of protection is one of original top-
ics of the Gates Grand Challenges. In this chapter, we present methods to assess
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correlates and surrogates of vaccine protection. The main focus is on immunologi-
cal surrogates of protection, but we also briefly consider carriage as an endpoint in
pneumococcal vaccine studies, the subject of ongoing research.

The primary clinical outcome of interest could be clinical disease, infection, or
a post-infection outcome. For the discussion here we use VES to denote the clinical
vaccine efficacy measure of interest and assume it is based on a binary clinical
outcome, either infection or disease.

15.1.1 Biological versus statistical issues

In fields other than vaccine research, considerable interest developed in what were
called surrogate endpoints as replacements for a primary clinical endpoint (Prentice
1989). Over the years, much methodological discussion has revolved around what
constitutes a close relationship between the true endpoint and the potential surro-
gate endpoint. In the vaccine literature, traditionally the term correlate of protection
has been used to describe the relation of a vaccine-induced response to protection
against the clinical infection or disease outcome. Several different concepts were
covered by the term correlate of protection. In establishing immunological corre-
lates or surrogates of protection, part of the problem is biological and part of the
problem is methodological.

The biological problem has several different aspects. The main scientific prob-
lem is to identify a candidate immunological measure or several measures likely
associated with clinical protection. A statistical approach cannot validate an im-
munological measure as related to protection if a candidate has not been identified.
Identification of a candidate immunological correlate requires precise specification
of the measure of the immune response. The time of the assay after vaccination, and
in the case of multiple doses, the timing after which dose, needs to be decided. The
choice of assay can be important. Some assays are more sensitive than others, result-
ing in different response profiles. As knowledge of cell-mediated immunity grows,
T-cell responses may be identified as important determinants of protection. The type
of antibody measure can play a role. Assays can measure either the antibody con-
centration, the antibody avidity, or the concentration of functional antibodies. The
avidity measures the total strength of the binding of the antibody with the antigen.
The avidity can be high for bacteria that can have multiple identical sites. Antibodies
with higher avidity can eliminate an antigen at lower concentrations than antibodies
with low avidity. Another issue is whether an assay measures short-term protection
or long-term protection from immunological memory. Maturation of antibody avid-
ity is a sign of the presence of immunological memory. Functional antibodies may
demonstrate bactericidal activity in assays using whole blood. Assay values may be
titers or concentrations. The assays could measure antibodies, some aspect of cel-
lular immunity, or immunological memory. In this development, we refer simply to
antibody titers for simplicity.
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As an example, the serum bactericidal assay (SBA) titer was established by Gold-
schneider et al (1969) as a correlate of protection for meningococcal C disease using
a human complement assay. More recently, however, the rabbit complement assay
has been recommended. Because the two assays have different sensitivities, the pro-
tective titers needed to be re-evaluated (Andrews et al 2003). Serological correlates
of protection for meningococcal serogroup C can also be measured using avidity,
which may be indicative of successful priming of the memory responses by vacci-
nation. The SBA titer may be a correlate of short-term protection and the avidity,
as a measure of immunological memory, may be a measure of long-term protection
(Balmer and Borrow 2004). These issues are relevant for the planned licensing of
the meningococcal A vaccine using immunological measures alone.

The correlates of protection may be based on individual measurements or
population-level measures. Siber (1997) proposed that protective levels be estimated
by a population-based analysis that identifies a level of antibody achieved by most
of the protected population, such as an immunized group, and not achieved by most
of a susceptible population, such as the nonimmunized group.

The methodological problem is to validate the identified potential correlates and
surrogates of protection. There are two distinct but related problems. One is to iden-
tify immunological markers predictive of protection. The second is to identify im-
munological markers predictive of vaccine-induced protection. Most approaches to
correlates and surrogates of protection assume that the protection conferred by titers
produced by natural exposure and vaccination are equivalent.

15.1.2 Exposure to infection

One of the problems in evaluating correlates of protection is that not everyone in the
group under observation is exposed to infection. Thus, a person might not develop
disease because of not being exposed, not necessarily because of being protected.
Models can capture the observed relation between immunological assay and protec-
tion from disease at high assay values (Dunning 2006). At high assay values very
few people develop disease. However, at low assay values, whether a person de-
velops disease could be associated with whether the person is exposed. Thus the
probability of developing disease in individuals with low assay values could depend
on the prevalence of the disease through the dependent happening relation or other
factors not directly associated with the immunological measures.

A simple general approach assumes the probability of disease is a function of the
probability of disease and the probability of being protected or not:

Pr[disease] = Pr[disease|not protected]×Pr[not protected]
+ Pr[disease|protected]×Pr[protected]. (15.1)

Most of these models make an explicit assumption of an all-or-none model of vac-
cine protection. That is, a person is either completely protected or not protected,
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whether a threshold or continuous model is assumed. In the all-or-none model, the
Pr[disease|protected] = 0, so the second term in equation (15.1) is 0.

In a study, the probability of disease can be estimated by the attack rate or cu-
mulative incidence. Thus, vaccine efficacy based on the attack rate or cumulative
incidence can be written

VES,CI = 1− Pr[disease (vac)]
Pr[disease (controls)]

= 1− Pr[disease|not protected (vac)]Pr[not protected (vac)]
Pr[disease|not protected (control)]Pr[not protected (control)]

.

(15.2)

Under the assumption that exposure to infection is equal in the vaccinated and con-
trol groups, and that the probability of disease is equal in the two groups if exposed
and not protected, the terms for the probability of disease if not protected cancel,
leaving

VES,CI = 1− Pr[not protected (vac)]
Pr[not protected (control)]

. (15.3)

The probability of not being protected can be based on a threshold level of anti-
body above which everyone is protected. Then the probability of being protected in
equation (15.3) is estimated by the proportion of people with an immune response
above the threshold. Alternatively, one can estimate the probability of protection as
a continuous function of the level of antibody. In the continuous model, at a given
antibody titer, a person is either protected or not with an antibody-specific probabil-
ity. The probability of being protected increases with increasing antibody titer, but
the level of protection does not increase, as would be the case if a leaky model were
assumed. The probability of not being protected in equation (15.3) is replaced by the
population average probability of being protected over the predicted probabilities of
protection at the individual antibody titers.

A special case occurs if everyone is exposed to infection, as in challenge studies.
Household exposure to infection has been used as a natural challenge. Then the
probability of developing disease is modeled directly as a continuous function of
the antibody titers (Storsaeter et al 1998). The threshold and regression approaches
are presented in Sections 15.2 and 15.3.

15.1.3 Statistical versus principal surrogates

In a groundbreaking paper, Prentice (1989) proposed four criteria for a biomarker to
be a surrogate endpoint for the primary clinical outcome of interest. In the context
of vaccines (Kohberger et al 2008), the four can be stated as

1. Protection is significantly related to the vaccine.
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2. The surrogate is significantly related to the vaccine.
3. The surrogate is significantly related to the clinical endpoint.
4. The surrogate explains all of the clinical endpoints.

The third criterion requires a correlation between the surrogate and the clinical end-
point of interest. Fleming and DeMets (1996) wrote, however, that “a correlate does
not a surrogate make.”

The fourth condition requires that the surrogate fully capture the vaccine’s net ef-
fect on the clinical endpoint of interest. If one had the appropriate immune or other
biological markers, knowledge of the vaccine status would provide no additional
information for predicting the clinical outcome. The fourth criterion can be checked
by a statistical regression model that has both the treatment indicator and the value
or model for the surrogate in the model. Different approaches can be taken. One
could say that if the regression coefficient for the treatment indicator is not signif-
icantly different from 0, then the criterion is met. In another approach, one could
require that the regression coefficient actually be 0, which will generally not hap-
pen. The fourth condition is quite restrictive, making it difficult to validate correlates
as surrogates (Degruttola et al 1997). Kohberger et al (2008) take an alternative ap-
proach to the fourth criterion based on estimation of the proportion of the clinical
endpoint explained (PE) by the surrogate (Burzykowski, et al 2005).

Frangakis and Rubin (2002) criticized the Prentice approach because it is sub-
ject to post-randomization selection bias. In the vaccine context, under the Pren-
tice approach, the risk of the clinical endpoints is compared in individuals with the
observed values of the immunological markers. However, we observe only the im-
munological value and the clinical endpoint that the person has under the actual
vaccine assignment. We do not observe the value of the immune marker value that
the person would have had under the other vaccine assignment. However, similar
to the discussion of VEP in Chapter 9, comparisons based on the Prentice criteria
are subject to a post-randomization selection bias and do not have a causal inter-
pretation. Frangakis and Rubin (2002) call the surrogates evaluated by the Prentice
criteria statistical surrogates. Using the framework of potential outcomes in causal
inference (Section 1.4), they propose a definition of a principal surrogate based on
comparison of individuals with the same pair of potential values of the candidate sur-
rogate under the two treatment assignments. Sections 15.4 and 15.5 present levels of
confidence in the immunological markers as correlates and surrogates of protection
and how to evaluate them based on these ideas. These approaches, however, thus far
have not taken the role of exposure to infection into account.

15.2 Thresholds for Protection

In a threshold model, let C be the threshold or cutoff value level of antibody as-
sumed to be protective. Let Pr(Abv < C) and Pr(Abc < C) be the probabilities that
vaccinated and control individuals have titers less than the protective threshold or
cutoff. If VES,CI based on the clinical outcome is known, the antibody level is mea-
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sured in everyone, and exposure is assumed equal in the two groups, then using
equations (15.2) and (15.3), we can simply solve the following equations for the
level of antibody C that is protective:

VES,CI = 1− Pr[Y = 1|vaccinated]
Pr[Y = 1|control]

= 1− Pr[not protected (vac)]
Pr[not protected (control)]

= 1− Pr(Abv < C)
Pr(Abc < C)

. (15.4)

In contrast, given a threshold C, from the observed titers in the vaccinated and con-
trol individuals, Pr(Abv < C) and Pr(Abc < C) can be estimated from the observed
proportion with titers less than the protective threshold C. We can predict the vac-
cine efficacy based on the proportion of people in the vaccinated and control groups
who are above that threshold.

V̂ES,CI = 1− % of vaccinated with Abv < C
% of controls with Abc < C

. (15.5)

Andrews et al (2003) used post-licensure surveillance of meningococcal C to
validate the serological correlates of protection that were the basis to license the
conjugate vaccine in England. Starting with equation (15.2), they assumed that ex-
posure to infection was the same in the vaccinated and unvaccinated group, and that
the protection conferred by titers produced by natural exposure or by vaccination
is equivalent. They explored the efficacy predicted using equation (15.5) by differ-
ent cutoff thresholds for protection (Table 15.1). The screening method (Section
8.1.4) was used to estimate the observed post-licensure efficacy (direct effective-
ness). Cases of confirmed meningitis C infection that occurred in vaccinated and
unvaccinated individuals in England from January 2000 to the end of 2001 and cov-
erage levels of vaccination were used for the computation.

In preschool children, 27 cases occurred, all in unvaccinated children for an ob-
served efficacy estimate of 100% (95% CI, 93.3–100%). Coverage levels were not
given in the paper. From Table 15.1, in preschool children, the predicted efficacy
from titers one month after vaccination is consistent with the observed efficacy
at all of the cutoffs except 1:128. The predicted efficacy is most consistent with
the observed efficacy at the cutoffs 1:4 and 1:8. Similar results were obtained for
the infant and toddler age groups. However, using titers seven and nine months
post-vaccination, the predicted vaccine efficacy significantly underestimated the ob-
served efficacy in infants and toddlers (preschool children were not included). This
finding suggests that when the post-vaccination titers have declined, immunologic
memory and a rapid booster response may be responsible for efficacy, which would
be better measured by antibody avidity.

Jódar et al (2003) use the threshold approach in equations (15.4) and (15.5) in
the context of multivalent pneumococcal conjugate vaccines. The problem is com-
plicated because of the lack of a serological correlate of protection and multiplicity
of antigens in the pneumococcal conjugate vaccines. For several of the serotypes,
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Table 15.1 Predicted vaccine efficacy and 95% CIs estimated for unvaccinated and vaccinated
preschool children with titers below the different serum bactericidal assay (SBA) cutoffs one month
after vaccination with the meningococcal C conjugate vaccine measured by SBA (from Andrews
et al 2003)

% Individual with Titers
Below Cutoff Predicted % Vaccine

Cutoff Vaccinated Unvaccinated Efficacy (95% CI)

1:4 0.0 90.4 100 (95–100)
1:8 0.0 93.3 100 (95–100)
1:16 2.5 94.3 97 (92–99)
1:32 4.1 95.2 96 (90-98)
1:64 4.9 97.1 95 (89–98)
1:128 9.8 97.6 90 (83–94)

clinical efficacy has not been established, making type-specific thresholds difficult
to define. Antigens against particular serotypes may be added to new formulations
to take account of the serotypes responsible for invasive disease in different coun-
tries. With several antigens, comparison of antibody response of new formulations
with previous formulations are subject to additional problems associated with mul-
tiple statistical comparsions. Jódar et al (2003) assumed IgG after three doses of
vaccine predicts protection. They also assumed the relation of risk of disease and
antibody is a stepwise function, although they acknowledged that it is continuous.
Because it was unlikely that type-specific thresholds could be defined for additional
serotypes that had not undergone efficacy trials, they used aggregate antibody titers
for all serotypes rather than antibody titers for individual serotypes.

Jódar et al (2003) plotted the reverse cumulative distribution of pooled anti-
body titer above a certain level in the vaccinated and unvaccinated groups against
the pooled antibody concentration. The threshold of 0.18 antibody concentration
yielded the observed vaccine efficacy of 97.6 from the California pneumococcal
conjugate vaccine trial study (Black et al 2000). At concentration 0.18, the propor-
tion 0.979 of the vaccinated group and 0.129 of the unvaccinated group had antibody
titers above this level, yielding the estimated V̂ES,CI = 0.976 = 1−(1−0.979)/(1−
0.129). Ignoring the antibody concentration in the unvaccinated individuals, they
suggested a protective concentration of 0.20 as a preliminary threshold for protec-
tion. Several issues remain to be solved with the pneumococcal vaccine correlates,
including the use of nasopharyngeal carriage as an endpoint (Section 15.6).

15.3 Regression Models for Correlates

Several issues limit the potential of threshold models. The threshold may not dis-
criminate immune response in vaccinees and controls. Small changes in point es-
timate of efficacy may significantly change threshold antibody concentrations that
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predict efficacy. The relation between protection and antibody level is likely contin-
uous, not discrete. An alternative is the use of continuous regression models.

To be used in the regression models, the immunological measurement must have
a source of variability If the individuals in the study population have no previous
exposure to the infection, they would generally have zero or near-zero immune mea-
surements for the infectious agent of interest. Then the immunological correlate can
only be evaluated in the vaccinated people. In some diseases in which repeated expo-
sure occurs with the development of partial immunity, such as malaria, or repeated
exposure with similar strains, such as influenza, an immunological measurement
could be positive and have variability in the unvaccinated people as well as the vac-
cinated people. For such infectious diseases, the immunological correlate can be
evaluated in both the unvaccinated people and the vaccinated people. That is, the
clinical outcome of interest can be regressed on the immunological measurements
in both the unvaccinated and the vaccinated groups. However, in most vaccine stud-
ies, the correlation between immune measure and outcome can be established only
in the vaccinated group.

15.3.1 Regression models separating level of exposure

Dunning (2006) proposed a regression model that separates the effect of the as-
say values from such factors as level of exposure and disease prevalence. In fitting
the data from individual-based measurements with clinical outcome and titers, the
model estimates a parameter that represents levels of exposure to infection and other
factors not included in the measured immune responses. The initial model does not
include the vaccination status of the individuals. In the second step, when predict-
ing vaccine efficacy from the estimated regression parameters, the estimated factor
is assumed to cancel out as in equations (15.2) and (15.3).

Assume there are data from n participants, i = 1, . . . ,n. Let si be the assay value
for participant i, and yi = 1 if participant i develops disease, and yi = 0 if not. It is
assumed that s is log transformed so that it can have positive and negative values.
The model has two main components. The first is the probability α(s) that a person
with titer s is protected. The second is the probability ω that a susceptible individ-
ual develops disease. The probability ω can depend on prevalence of disease, as
in the dependent happening relation, the probability of exposure, and other aspects
specific to the particular study that are independent of the assay value. The proba-
bility α(s) is essentially an all-or-none model of protection where the probability
of being completely protected is a function of the immunological assay value. The
protected individuals are assumed completely immune from disease, and the pro-
portion (1−α(s)) of susceptible individuals with assay value s are assumed to be
homogeneously susceptible.

The probability that an individual develops disease is the product of the probabil-
ity that the individual is susceptible and the probability that a susceptible individual
will develop disease:
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Pr(Yi = 1) = ω(1−α(si)). (15.6)

If an inverse logit function is used to model a relation of S, f (S), to α(S), then the
probability of being protected is modeled

α(S) =
1

1+ exp(− f (S))
. (15.7)

The model f (S) in Dunning (2006) is the two-parameter model f (S) = a+bS. For
small assay values, the probability of being protected α(s) approaches 0, and as s
gets large, the probability of being protected α(s) approaches 1.

Combining (15.6) and (15.7) gives a model for the probability that an individual
with assay value S develops disease:

Pr(Yi = 1) =
ω

1+ exp( f (si))
. (15.8)

The parameters ω , a, and b can be estimated by standard likelihood methods.
Given estimates of â and b̂, suppose that in a trial of a new vaccine candidate in a

similar setting, the immunological assays are performed but no clinical outcomes are
measured. Let the vaccinated group be denoted by V and the control group by U . Let
ω ′ be the unknown probability of developing disease in the susceptible individuals
in the trial. From (15.8), the number of individuals expected to develop disease in
the vaccinated group is

∑
i∈V

Pr(Yi = 1) = ∑
i∈V

ω ′

1+ exp(â+ b̂si)
. (15.9)

A similar computation would yield the expected number of cases in the unvaccinated
group. In the computation of vaccine efficacy, the value of ω ′ would cancel in the
ratio of expected number of vaccinated and unvaccinated cases. The efficacy of the
new vaccine formulation would be predicted by (Dunning 2006)

VES,new = 1− 1/nv ∑i∈V 1/(1+ exp(â+ b̂si))
1/nc ∑i∈U 1/(1+ exp(â+ b̂si))

. (15.10)

This model assumes the protective effect at a given titer is the same in the vacci-
nated and the unvaccinated group. Dunning (2006) used this model to estimate the
probability of protection as a function of assay value for six pertussis assays. Forrest
et al (2008) used this model to analyze a randomized efficacy study of live attenu-
ated influenza vaccine in young children in the Philippines and Thailand. They had
both an assay for cell-mediated immunity as measured by an IFN-γ ELISPOT and
antibodies as measured by HAI.
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15.3.2 Household exposure as natural challenge

One of the problems in evaluating correlates of protection is that possibly many of
the participants in the study are not exposed to infection. Examining children with
household exposure to pertussis was proposed as a natural challenge experiment
(Storsaeter et al 1998). Under this design, the assumption is that everyone is exposed
to infection. The model does not estimate the probability of disease separately as in
equation (15.8) or assume that the probability of disease in the unprotected cancels
as in (15.3).

Let the outcome Y be 1 if diseased and 0 if not diseased. Let (S,X) represent
the values of the immunological assays S and possibly vaccination status and other
covariates X . Let g(S,X) be a function of (S,X), for example, a linear combination
of (S,X), with unknown parameters to be estimated. The probability of disease is
expressed as a function of (S,X) in the logistic model as

Pr(Y = 1|S,X) =
1

1+ exp(−g(S,X))
(15.11)

Although model (15.7) looks similar to model (15.11), the interpretation is very
different. Model (15.11) is an expression for the probability of developing disease
at certain assay and other covariate values, but model (15.7) is an expression for
the probability of being protected at a certain assay value. Storsaeter et al (1998)
used this approach to analyze a household study nested in a placebo-controlled vac-
cine efficacy trial. The trial evaluated an acellular five-component pertussis vaccine,
an acellular two-component vaccine, and a whole cell vaccine all combined with
diphtheria–tetanus toxoid compared with diptheria-tetanus toxoid alone (Gustafs-
son et al 1996). Using the method for household exposure to infection as a natural
challenge is not feasible in meningococcal vaccine studies because of the low sec-
ondary attack rate (Andrews et al 2003).

The objectives of the pertussis vaccine study were (1) to estimate absolute effi-
cacy after household exposure to B. pertussis for children with three doses of one
of the three study vaccines compared to placebo recipients; (2) to evaluate possible
serological correlates of protection by relating the clinical outcome after household
exposure to the antibody levels against pertussis toxin (PT), pertactin (PRN), fil-
amentous hemagglutinin (FHA), and fimbrial agglutinogens (FIM) at the time of
exposure; and (3) to explore the possible use of post-vaccination anti-pertussis an-
tibody levels as surrogate markers to predict protective efficacy of the whole cell or
multicomponent acellular pertussis vaccines (Storsaeter et al 1998).

Of the 329 exposed study participants, 36 had fewer than three trial doses. The re-
maining 293 children were used in computing vaccine efficacy. Of those, 59 lacked
a pre-exposure blood sample and 25 did not have a valid serum sample. Thus, 209
children fulfilled the general rules for a valid blood sample for being included in
the primary analysis of serologic correlates of protection. The guidelines were (1) a
pre-exposure sample taken within four months of exposure given that it was taken at
least six months after the third trial dose, or (2) an acute blood sample was accepted
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Table 15.2 Pertussis cases and vaccine efficacy after household exposure to culture-confirmed B.
pertussis infection. Only the DTaP5 and DT groups are shown here (from Storsaeter et al 1998)

Exposed in Exposed in
DTaP5 Group DT Group
N = 86 N = 74 Vaccine Efficacy

Clinical Definition Cases (Cult Pos) Cases (Cult Pos) (95% CI)

Cough 1 day or more 28 (13) 63 (43) 61.8 (47.4 –72.2)
and positive lab criteria

Cough 21 days or more 21 (11) 60 (43) 69.9 (55.6 – 79.6)
and positive lab criteria

Spasmodic cough 14 (10) 49 (36) 75.4 (59.2 – 85.2)
21 days or more (WHO)

if there were no antibody titer rises against either PT, FHA, PRN, or FIM compared
to earlier samples. An acute sample was chosen in 125 of the 209 children.

In the nested household study (Table 15.2), the efficacy of the five-valent DTaP5
against typical WHO pertussis was estimated at 75.4% (95% CI 59.1–85.2) and
against any pertussis at 61.8% (95% CI 47.4–72.2). In the main trial, the uncon-
ditional vaccine efficacy was estimated at 85.6% and at 77.9% for the two case
definitions. Fine et al (1988) suggest that the more intense and longer exposure in
households could result in the commonly observed lower efficacy of pertussis vac-
cines measured in household-based studies.

Storsaeter et al (1998) analyzed the data using the arbitrary units obtained in the
IgG ELISAs. They also dichotomized the IgG ELISA units in “Low” (0 to <5 units)
and “High” (≥5 units). The results in the paper focus on the dichotomized analysis.
In the analysis, “Low” was coded as 0 and “High” as 1. The logistic regression
model using the WHO definition and the dichotomized titers was

g(x) = 0.675−1.12PT−1.992FIM−1.589PRN+1.993(PT×FIM).
(15.12)

The vaccine group of the child and anti-FHA titer were not statistically significant
and not included in the final models. That the vaccine group was not statistically
significant suggests that the immunological measures in the model might be consid-
ered as fulfilling the Prentice criteria for a surrogate. Based on the WHO definition,
the model predicts an attack rate in those with all three values Low as 66.3%. For
those with all three values High, the model predicts an attack rate of 11.0%.

Kohberger et al (2008) evaluated the validity of the Storsaeter et al (1998) model
(15.12) based on the study in terms of the statistical criteria for the validity of surro-
gate endpoints. They also examined the predictive ability of the model using clinical
efficacy data from a different pertussis vaccine efficacy study conducted in Sweden
(Olin et al 1997). Using the values g(S,X) in the estimated regression model (15.12)
for the individuals in the vaccinated and unvaccinated groups, one can estimate the
probability of disease for a person with immune measure si, Pr(Y = 1|si). In a vac-
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cinated group of size nv, the probability of disease is estimated from the

probability of disease(vaccinated) = ∑ P̂r(Y = 1|si)
nv

.

Kohberger et al (2008) suggests that the probability of disease in the unvaccinated
could be estimated from historical estimates or the probability estimated when anti-
body levels are negligible. Similar to equation (15.10), for a new vaccine, then

V ES,new = 1− probability of disease(vaccinated)
probability of disease(unvaccinated)

.

15.4 Framework for Confidence in a Biomarker

In a series of papers, Gilbert and Hudgens (2008), Gilbert et al (2008), Qin et al
(2007), and Qin et al (2008) propose a framework for assessing immunological cor-
relates of protection in vaccine trials (Table 15.3). The framework is based on the
methods of Prentice (1989) and Frangakis and Rubin (2002). The framework de-
lineates different levels of confidence in immunological markers. They in particular
distinguish correlates of risk and surrogates of protection. In contrast to the ap-
proaches in the first part of this chapter, they are not concerned with taking into
account differences in exposure to infection in different settings. Rather, the ap-
proach is concerned with the problem of potential bias in using post-randomization
immunological measures to determine causally related surrogates of protection for
vaccine-induced immunity.

15.4.1 Correlates of risk

The first, and lowest, level of confidence is a correlate of risk. An immunological
measurement that predicts a clinical endpoint in a particular population is a cor-
relate of risk (CoR). To validate an immunological measurement as a correlate of
risk, an association must be observed between these measurements and the clinical
endpoint. As discussed in Section 15.3, various statistical approaches such as fitting
regression models can be used to fit the data for the clinical endpoint of interest to
the immunological measurement (Storsaeter et al 1998; Chan et al 2002; Dunning
2006). Many vaccine studies have shown that antibody titers correlate with risk of
infection or disease. In addition to those already mentioned, children with higher
immune response to varicella vaccine had lower incidence of chickenpox disease
(White et al 1992). In estimating the correlation of the immunological measure with
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the clinical endpoint, the vaccine status does not necessarily need to be taken into
account.

15.4.2 Surrogates of protection

The next two levels of confidence are called surrogates of protection. A surrogate of
protection is a correlate of risk that also predicts the level of protective efficacy of the
vaccine based on comparison of immunological measurements in the vaccinated and
unvaccinated groups. It only makes sense to evaluate an immunological correlate as
a potential surrogate of protection if in fact the vaccine is shown to have a protective
effect, that is, VES > 0. Qin et al (2007) differentiate surrogates of protection that
predict vaccine efficacy for the same setting as the source of the data from surrogates
of protection predicting efficacy for other settings. The same setting would include
a similar population, the same infectious agent, and the same vaccine product. A
new setting could be a new population, different strains of the infectious agent, or
different vaccine products. Sadoff and Wittes (2007) suggest that the two levels of
surrogates of protection be called specific and general surrogates of protection.

The specific surrogates of protection are further classified as statistical surro-
gates of protection (SoPS) and principal surrogates of protection (SoPP). The statis-
tical surrogates of protection are defined in terms of the statistical and observable
associations. They satisfy the Prentice (1989) criteria for a surrogate described in
Section 15.1.3. The data required to evaluate an immunological marker as a sta-
tistical surrogate of protection will be available in most clinical vaccine studies if
there is considerable variability of the immunological measurement in the control
participants. If there is not much variability in the control group, then it is difficult
to evaluate an immunological marker as a statistical surrogate of protection.

The principal surrogates of vaccine protection are based on the principal surro-
gates proposed by Frangakis and Rubin (2002) using the notation of potential out-
comes in causal inference (see Sections 1.4 and 9.3.2). The specific principal surro-
gates of protection are defined by fixed values of the immune response if assigned
vaccine and the immune response if assigned control. The pair of potential immune
responses under vaccine and control is assumed fixed before randomization to ei-
ther vaccine or control, thus the pair is not subject to potential post-randomization
selection bias. To begin, consider the simplest case that the potential immune re-
sponse in the control would be S(0) = 0 or some fixed constant c. Let S(1) be the
potential response that an unvaccinated subject would have if vaccinated. Let Y be
the 0,1 outcome of being infected or not, and Z be the 0,1 assignment to vaccine or
control. Assume that the trial is randomized and that there is no interference among
the units. For a specific principal surrogate of protection, one needs to estimate

VE(s1) = 1− Pr[Y = 1|Z = 1,S(1) = s1]
Pr[Y = 1|Z = 0,S(1) = s1]

. (15.13)
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Table 15.3 Definitions of three levels of an immunological correlate of protection (adapted from
Qin et al 2007 and Gilbert et al 2008)

Framework for Analytic
Term Definition Assessment Method

CoR (Correlate of An immunological measurement S that Vaccine trial (efficacy Regression
risk) correlates with the study endpoint Y or proof of concept) models

measuring vaccine efficacy in a defined or observational
population study

Specific SoP An immunological measurement
(Surrogate of that is a CoR within a defined
protection for the population of vaccine recipients
same setting) and satisfies either:

SoPS (Statistical Relation between immunological Single large Statistical
surrogate of measurement S and endpoint Y is efficacy trial surrogate
protection for the same in the vaccine and framework
the same setting) placebo groups

SoPP (Principal The immune response S satisfies two Single large Principal
surrogate of criteria: (1) VES = 0 for subjects efficacy trial surrogate
protection for the where vaccine has no effect; framework
same setting) (2) VES > 0 if vaccine has a

sufficiently large effect on S

General SoP An immunologic measurement Multiple trials Meta-
(Surrogate of predictive of vaccine efficacy in different and/or analysis
protection for new settings, such as human populations, post-licensure
setting) viral populations, vaccine lots studies

The definition in expression (15.13) implies that the vaccine efficacy at the immune
response level s1 is the relative reduction in the risk for groups of vaccinees with
immune response s1 compared with their risk if they had not been vaccinated. The
problem is that in people in the control group for whom Z = 0, the value of s1, the
surrogate value under vaccination, is not observed. The main difference between
the statistical surrogate of protection and the principal surrogate of protection is that
the former is based on what is actually observed in vaccine studies, and the latter
is based on information not usually available in any vaccine studies. The problem
with statistical surrogates of protection is that what is measured is a mixture of the
causal vaccine effects and differences between participants who are infected in the
vaccine and unvaccinated groups with values of S = s.

To assess whether an immunological measurement is a specific principal surro-
gate of protection, knowledge about S(1) is needed. That is, one needs to be able
to predict the immune response that an unvaccinated participant would have had if
vaccinated. Follmann (2006) proposed two approaches to assess what the immune
response would have been in the control participants (Section 15.5.5). An immuno-
logical measurement is a specific principal surrogate of protection if two conditions
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are met (Gilbert and Hudgens 2008). First, groups of vaccinees without responses
or with the lowest response levels have a risk equal to that had they not been vac-
cinated. Second, groups of vaccinees with sufficiently high immune response levels
have a risk lower than that had they not been vaccinated. This second condition is
analogous to assuming there is some threshold measure above which the individuals
are protected.

Although it is useful to understand the relation of immune responses to protection
against infection and disease within a particular setting, the goal of identifying sur-
rogates of vaccine protection is to replace large scale phase III trials using clinical
outcomes with immunological measurements in new settings and for new vaccines.
For example, immunological measures of hemagglutination titer are used to approve
the new influenza vaccines each year in Europe. To demonstrate that an immunolog-
ical marker is a general surrogate of protection requires more stringent data require-
ments than the specific surrogate of protection. It is actually quite difficult without
numerous, likely untestable assumptions. To show that an immunological marker
is a general surrogate of protection requires that it predict vaccine effects on risk
across different populations, for different strains, and different vaccine products.
One possible approach would be to use meta-analysis combining information from
several studies (Gail et al 1989; Daniels and Hughes 1997).

15.5 Evaluating Principal Surrogate Endpoints

Gilbert and Hudgens (2008) define statistical and principal surrogates of protection
formally. Their approach is for specific surrogates of protection and evaluates the
immunological marker for the same or similar setting as the trial. They introduce
an estimand for evaluating a principal surrogate called a causal effect predictiveness
(CEP) surface. The causal effect predictiveness surface quantifies how well vaccine
effects on the immunological marker predict causal vaccine effects on the clinical
endpoint. The CEP surface can be used to compare the surrogate value of several
immunological markers.

15.5.1 Set-up

Consider a randomized, double blind vaccine trial. Assignment is denoted Z, Z = 1
for vaccine and Z = 0 for control, the discrete or continuous immunological surro-
gate is S measured at fixed time t0 after assignment to vaccine or control, and the
binary clinical endpoint is Y (Y = 1 for disease or infection, 0 otherwise). Gilbert
and Hudgens (2008) include an indicator V = 1 to denote whether participants are
still disease-free at t0. Later they assume that for any individual, the value of V is
the same under vaccine and control. To simplify the presentation, here we assume
that everyone is disease-free at t0, and drop the notation.
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Gilbert and Hudgens (2008) consider a two-phase outcome-dependent case-
cohort sampling design (Prentice 1986). A case-cohort study is a case-control study
in which the source population is a cohort and every person in the cohort has an
equal chance of being included in the study as a control, regardless of how much
time that individual has contributed to the person-time experience of the cohort
(Rothman et al 2008). In phase one of the study, baseline covariates X are mea-
sured on everyone, and in phase two, a baseline covariate(s) W is measured for all
or most of the cases, participants with Y = 1, and for a random sample of those
participants who did not develop disease, Y = 0. The candidate immunological sur-
rogate S is measured on everyone for whom W is measured. The indicator δ denotes
whether W is measured. Of course, W and S could be measured on everyone, but it is
not necessary in the case-cohort study. For vaccine trials, S and W can be measured
after the trial using stored specimens (Nosten et al 1996, Ballou et al 1995).

15.5.2 Defining surrogates of protection

Using this notation, a statistical surrogate of protection defined by Frangakis and
Rubin (2002) is evaluated by comparing the risk distributions

risk(s|Z = 1) ≡ Pr(Y = 1|Z = 1,S = s)
risk(s|Z = 0) ≡ Pr(Y = 1|Z = 0,S = s).

If for all values of S, risk(s|Z = 1) = risk(s|Z = 0), then the immunological marker
S is a statistical surrogate of protection for the clinical endpoint.

A principal surrogate of protection is defined using potential outcomes of causal
inference (see Sections 1.4 and 9.3.2). Denote the potential clinical endpoint by
Y (Z) and the potential value of the immunological marker by S(Z) under vaccine
assignment Z. The full potential data are iid copies of

(Zi,Xi,δi,δiWi,Si(1),Si(0),Yi(1),Yi(0)), i = 1, . . . ,n,

assuming no drop-out. The two usual key assumptions of no interference between
units (SUTVA) and independence of treatment assignment from the potential out-
comes, eg randomization, are made. An immunological marker S is a principal sur-
rogate endpoint if, for all s1 = s0 the following two risks are equal:

risk(1)(s1,s0) ≡ Pr(Y (1) = 1|S(1) = s1,S(0) = s0) , (15.14)
risk(0)(s1,s0) ≡ Pr(Y (0) = 1|S(1) = s1,S(0) = s0) . (15.15)

The contrast of the two risks measures a population-level causal vaccine effect on Y
for participants with the potential immunological measures {Si(1) = s1,Si(0) = s0}.
The statement is equivalent to S being a principal surrogate of protection if in those
groups with no causal effect of vaccine on the immunological marker, the vaccine
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has no causal effect on the clinical outcome of interest (Frangakis and Rubin 2002).
Gilbert and Hudgens (2008) propose a second criterion for a principal surrogate
of protection, namely that an immunological marker value above a certain level is
sufficient to protect against the clinical outcome of interest, a causal analogue of
a correlate of protection threshold model(Section 15.2). For example, the differ-
ence s1− s0 > C, where C is some antibody titer or cell-mediated immune response
level, could be sufficient to protect against clinical disease, assuming s1 ≥ s0. Then
risk(1)(s1,s0) < risk(0)(s1,s0).

15.5.3 Causal effect predictiveness surface

The causal effect predictiveness surface is defined as a contrast, such as the differ-
ence, between the two risks in (15.14) and (15.15)

CEPrisk(s1,s0)≡ risk(0)(s1,s0)− risk(1)(s1,s0), (15.16)

where Gilbert and Hudgens (2008) also consider other contrasts.
The surrogate value of an immunological marker is defined as its capacity reli-

ably to predict the population-level causal effect of vaccination on the clinical end-
point. The surrogate value can be quantified by the nearness of the CEP value to 0
for small differences s1− s0, and by how the CEP value, that is, the difference in the
risk under vaccine and control, increases as the difference in the two potential im-
munological measures under vaccine and control, s1− s0, increases. Two different
immunological markers can have different surrogate values based on differing CEP
surfaces.

The marginal CEP curve is defined as a contrast, such as the difference, of the
two risks in (15.14) and (15.15) where the risk depends only on the potential im-
munological marker under vaccine s1, not also on s0. When in all participants in
the control group, the immunological measure has a 0 or constant value, called the
constant biomarker case, such as in equation (15.13), then the CEP surface equals
the marginal CEP surface.

As defined by Frangakis and Rubin (2002), an associative measure of a principal
surrogate of protection is how large the difference is in the potential outcomes under
vaccine and control in people whose potential measures of S are different under
vaccine and control. A dissociative measure of a principal surrogate of protection
is how large the difference is in the potential outcomes under vaccine and control
in people whose potential measures of S are the same under vaccine and control.
Intuitively, one would want a principal surrogate of protection to have more of an
associative measure than a dissociative measure.

Gilbert and Hudgens (2008) suggest functions of the CEP surface that summa-
rize the surrogate values of an immunological marker. The proportion associative
effect, PAEω , is defined by the ratio of the expected associative effect divided by
the sum of the expected associative effect and the expected dissociative measure.
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The question is to what extent the expected associative effect is outweighed by the
expected dissociative effect. If PAEω is in the range [0,0.5], then the immunological
measure may have no surrogate value. If PAEω is in the range (0.5,1.0], then it may
have some surrogate value.

15.5.4 Estimating the CEP surface

When the immunological marker has 0 or constant value in the control, it is difficult
to evaluate it as a statistical surrogate of protection, as described in Section 15.3,
although it can be evaluated as a correlate of risk. However, in this special case, an
approach can be taken to estimate the CEP surface and marginal CEP curve. The
problem in estimating the CEP surface is that we do not observe the immunological
responses S under both vaccine and control. So now we include the baseline covari-
ates X and W in the expressions for the two risks in (15.14) and (15.15). Under the
assumption of SUTVA and independent assignment mechanism,

risk(1)(s1,s0,x,w) = Pr(Y = 1|Z = 1,S = s1,S(0) = s0,X = x,W = w) ,

(15.17)
risk(0)(s1,s0,x,w) = Pr(Y = 1|Z = 0,S(1) = s1,S = s0,X = x,W = w) .

(15.18)

It would be possible to estimate the two risks if we knew the potential outcomes
Si(Z) of participants if they had been assigned the opposite treatment.

If the response to the immunological marker is 0 or constant in everyone if in
the control group, then risk(1)(s1,s0,x,w) can be estimated from the observed data.
However, the potential value Si(1) of the immunological marker if vaccinated in
those participants who received control needs to be determined to be able to estimate
the CEP surface.

Assume a baseline covariate W predictive of the immunological measure S(1) is
measured in both treatment arms (Follmann 2006) (Section 15.5.5). Then a model
predicting S(1) from X and W can be fit in the participants in the vaccine group and
used to predict the potential value of the immunological measure S(1) for partici-
pants in the control group. Details of estimation and inference as well as a test of
whether an immunological measure has any surrogate value are in Gilbert and Hud-
gens (2008). The surrogate marker value of S(1) for people in the control group is
treated as missing data. The likelihood contribution for a person in the control group
is obtained by integrating the risk over the conditional cumulative distribution func-
tion of S(1)|X ,W in the vaccinated group.
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15.5.5 Augmented designs to assess immune response

Follmann (2006) proposed two augmented vaccine trial designs to help determine
whether a particular immune response to a vaccine is actually the causal factor in
reducing the infection rate in the vaccinated compared to the unvaccinated group.
The first approach involves vaccinating everyone in both the vaccine and control
groups before baseline with an irrelevant vaccine. For example, in a pneumococcal
vaccine trial, one might vaccinate both the vaccine group and control group with a
meningococcal vaccine. Then randomization ensures that the relation between the
immune responses to the meningococcal and pneumococcal vaccines observed in
the vaccine group is the same as would have been observed in the control group.
The potential response to the pneumococcal vaccine in individuals in the control
group can be inferred from their response to the meningococcal vaccine and a pre-
diction model based on the relation of the responses to both meningococcal and
pneumococcal vaccination in the vaccine group.

In the second approach, all uninfected participants in the control group are vac-
cinated with the pneumococcal vaccine at the end of the trial and their immune
responses are recorded. Then one assumes that the immune response they have at
the end of the trial is the response they would have had if vaccinated at the beginning
of the trial. By comparing the distribution of immune responses with the full distri-
bution of immune responses in the vaccinated group, because of randomization, one
can infer what the distribution of immune responses in the infected participants in
the control group would have been. Qin et al (2008) develop details of using case-
cohort sampling and a Cox proportional hazards model to assess surrogate endpoint
candidates in vaccine trials as developed by Gilbert and Hudgens (2008) using the
two different augmented vaccine trial designs.

15.6 Carriage as an Endpoint

Nasopharyngeal carriage is being considered as a target and an endpoint for trials
of multivalent pneumococcal congugate vaccines (Käyhty et al 2006). The goal of
the PneumoCarr project, an international consortium coordinated in Finland, is to
establish reduction of colonization as part of the licensure process of new vaccines.
The vaccine efficacy measure is called VEcol . Similar to the use of immunological
surrogates rather than clinical endpoints, colonization is potentially a much more
cost-effective method to evaluate vaccine efficacy than using other clinical end-
points. A second goal of the project is to identify serological correlates of VEcol .
Information is available at the PneumoCarr website. A new endpoint in pneumo-
coccal vaccine trials is needed. Invasive pneumococcal disease is a rare event that
is difficult to study in detail. Its diagnosis is dependent on local medical practices
and requires special equipment and training. Acute otitis media as the primary out-
come is problematic. Specific diagnosis of pneumococcal bacteria as the infectious
agent causing the otitis media needs special procedures to obtain a bacteriological
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outcome. Otitis media is perceived differently in different parts of the world. Pneu-
monia as an outcome is problematic because diagnosis and definition of a case are
not specific. A lung aspirate is required, which is simply not feasible, so there is no
bacteriological endpoint.

Using nasopharyngeal carriage as an endpoint in vaccine trials makes sense for
several reasons (Käyhty et al 2006). It is the most important endpoint because pre-
venting carriage will prevent all of the other endpoints directly in the person vac-
cinated and it will prevent transmission to others, because carriage is the source
of infection to others. Nasopharyngeal carriage as a pneumococcal endpoint can
teach about other mucosal infections, such as meningococcal carriage. Comparing
the relative incidence of the various candidate outcomes, carriage is by far the most
frequent. It is also the most accessible endpoint, making it a feasible outcome. Vac-
cine efficacy for acquisition of carriage, VEacq, based on rate of acquisition been
shown to be better than based on prevalence (Rinta-Kokko et al 2009). Nasopharyn-
geal carriage is abundant both before and after introduction of vaccine. It permits
feasible follow-up of dynamics after introduction of vaccines, such as reduction in
carriage, and development of antibiotic resistance.

However, the far the known predictors for protection against invasive pneumo-
coccal disease do not predict protection against carriage, spread and mucosal infec-
tions. One caveat with nasopharyngeal carriage as an endpoint is the difference in
disease potential of different serotypes to various infection sites. Another caveat is
the uncertainty in the models used for estimating the acquisition rates and clearance
rates to be used in estimating VEacq or VEcol . Three types of predictors can be used
to measure the effect of vaccination on nasopharyngeal carriage. Prevention of new
acquisitions measures direct protection, and can be estimated analogously to VES,λ .
Prevalence of carriage is a measure of indirect protection. Density of carriage is a
measure of direct and indirect protection. Estimation of pneumococcal acquisition
and clearance rates based on longitudinal household and school studies is presented
in Chapter 11.

Problems

15.1. Estimating predicted efficacy
(a) Show that the estimated model (15.12) for the WHO definition of pertussis gives
the predicted attack rates 66.3% and 11.0%.
(b) Another case definition in Storsaeter et al (1998) was whether the study child was
laboratory-positive for pertussis and had at least one day cough during the follow-
up period. A noncase was a study child who was laboratory negative or laboratory
positive but without cough. For this definition, the fitted model was

g(x) = 2.003−0.146PT−1.548FIM−1.990PRN+1.148(PT×FIM).
(15.19)



15.6 Carriage as an Endpoint 357

What are the predicted attack rates in the Low and High groups?

15.2. Correlates of risk and surrogates of protection
(a) What are the main differences between a correlate of risk and a surrogate of pro-
tection?
(b) What is the difference between a statistical surrogate of protection and a princi-
pal surrogate of protection? Under what conditions can either of these be estimated?
(c) What is the difference between a specific surrogate of protection and a general
surrogate of protection? Under what conditions could you validate the latter? Which
is of more intrinsic interest?



Solutions

Problems of Chapter 2

2.1 (a) level II; (b) VES,IR, VES,λ , VES,PH , VES,CI .

2.2 1.67 .

2.3 (a) 0.91 .

2.4 (a) 0.64; (b) The difference is explained by the assumption of when the soldiers
were immunized.

2.5 (a) 0.80, 0.64, 0.93, 0.81; (b) 390, 120.

Problems of Chapter 5

5.6 Prevalence of infection in the women is higher than in men largely because the
duration is longer, so there are a greater number of susceptible men than women
who are at risk to become new cases, (1−Pm) > (1−Pf ). The susceptible men
make the same number of contacts and have the same transmission probability as
the women, but their contact pool, the women, has a higher prevalence of infection,
so the incidence rate is higher in the men, Im = cpPf > cpPm = I f . The combined
effect in the men of higher incidence rate and greater proportion susceptible results
in a higher number of new cases in men than in women.

Problems of Chapter 9

9.3 ÂVEP = 1− (10/46)(33/75) = 0.56 (95% CI 0.10,0.73).
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Problems of Chapter 11

11.1 (a) 0.70; (b) 0.67 .

11.2 (a) SAR: children 0.91; adults 0.91; CPI: children 0.59; adults 0.21; AR: chil-
dren 0.70; adults 0.47.

Problems of Chapter 12

12.1 (a) Study 1: SARv = 0.11, SARu = 0.43, VES,SAR = 0.74 (95% CI 0.29,0.89).
Study 2: SARv = 0.07, SARu = 0.43, VES,SAR = 0.85 (95% CI 0.39,0.94).

Problems of Chapter 13

13.3 (a)(
24
2

)(
22
2

)(
20
2

)(
18
2

)(
16
2

)(
14
2

)(
12
2

)(
10
2

)(
8
2

)(
6
2

)(
4
2

)(
2
2

)
= 1.5×1020.

13.4 (a) 80% power, instead of using 0.8416, use 0.8416× 1.2 = 1.01. For type I
error of 5%, instead of 1.96, use 2.352. (b) 1.22 = 2.44. (c) Compute the effective
sample size by multiplying the person-time y in the sample size calculation by 1.5.
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Longitudinal study on pneumococcal carriage during the first year of life in Bangladesh. Ped
Inf Dis J, 26:319–324, 2007.

169. S Greenland. Interpretation and estimation of summary ratios under heterogeneity. Stat Med,
1:217–227, 1982.

170. S Greenland. Interpretation and choice of effect measures in epidemiologic analyses. Am J
Epidemiol, 125:761–768, 1987.

171. S Greenland. Confounding in epidemiologic studies. Biometrics, 45:1309–22, 1989.
172. S Greenland. Absence of confounding does not correspond to collapsibility of the rate ratio

or rate difference. Epidemiology, 7:498–501, 1996.
173. S Greenland and RR Frerichs. On measures and models for the effectiveness of vaccines and

vaccination programs. Int J Epidemiol, 17(2):456–463, 1988.
174. S Greenland and JM Robins. Identifiability, exchangeability, and epidemiologic confound-

ing. Int J Epidemiol, 15:412–18, 1986.
175. S Greenland and JM Robins. Conceptual problems in the defintion and interpretation of

attributable fraction. Am J Epidemiol, 128:1185–1197, 1988.
176. S Greenland, JM Robins, and J Pearl. Confounding and collapsibility in causal inference.

Stat Sci, 14:29–46, 1999.
177. S Greenland and DC Thomas. On the need for the rare disease assumption in case-control

studies. Am J Epidemiol, 116(3):547–553, 1982.
178. S Greenland, DC Thomas, and H Morgenstern. The rare disease assumption revisited: A

critique of “estimators of relative risk for case-control studies”. Am J Epidemiol, 124(6):869–
876, 1986.

179. M Greenwood. On the statistical measure of infectiousness. J Hyg Camb, 31:336–351, 1931.
180. M Greenwood and UG Yule. The statistics of anti-typhoid and anti-cholera inoculations, and

the interpretation of such statistics in general. Proc R Soc Med, 8(part 2):113–194, 1915.
181. H Grosskurth, F Mosha, J Todd, J et al. Impact of improved treatment of sexually transmitted

disease on HIV infection in rural Tanzania: Randomised controlled trial. Lancet, 346:530–
536, 1995.
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338. MP Préziosi, A Yam, M Ndiaye, A Simaga, F Simondon, and SG Wassilak. Practical ex-
periences in obtaining informed consent for a vaccine trial in rural Africa. N Engl J Med,
336:370–73, 1997.
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404. Å Svensson. A note on generation times in epidemic models. Math Biosci, 208:300–311,
2006.

405. RK Syrjänen, TM Kilpi, TH Kaijalainen, EE Herva, and AK Takala. Nasopharyngeal car-
riage of Streptococcus pneumoniae in Finnish children younger than 2 years old. J Infect
Dis, 184:451–9, 2001.

406. W Szmuness, CE Stevens, EJ Harley, et al. Hepatitis B vaccine: Demonstration of efficacy in
a controlled trial in a high-risk population in the United States. N Engl J Med, 303:834–876,
1980.

407. MA Tanner and WH Wong. The calculation of the posterior distributions by data augmenta-
tion. J Am Stat Assoc, 82:528–540, 1987.

408. B Trollfors and E Rabo. Whooping cough in adults. Br Med J, 283:696–697, 1981.
409. B Trollfors, J Taranger, T Lagergard, V Sundh, DA Bryla, R Schneerson, and JB Robbins.

Immunization of children with pertussis toxoid decreases spread of pertussis within the fam-
ily. Pediatr Infect Dis J, 17:196–99, 1998.

410. B Trollfors, J Taranger, T Lagergard, et al. A placebo-controlled trial of a pertussis toxoid
vaccine. N Engl J Med, 333:1045–50, 1995.

411. B Trollfors, J Taranger, T Lagergard, et al. Efficacy of a monocomponent pertussis toxoid
vaccine after household exposure to pertussis. J Pediatr, 130:532–536, 1997.

412. P Ukkonen and C-H von Bonsdorff. Rubella immunity and morbidity: Effects of vaccination
in Finland. Scand J Infect Dis, 20:255–259, 1988.

413. M Urdaneta, A Prata, CJ Struchiner, CE Costa, P Tauil, and M Boulos. Evaluation of SPf66
malaria vaccine efficacy in Brazil. Am J Trop Med Hyg, 58:378–385, 1998.

414. MV Valero, LR Amador, C Galindo, et al. Vaccination with SPf66, a chemically synthesised
vaccine, against Plasmodium falciparum malaria in Colombia. Lancet, 341:705–710, 1993.

415. F van Loon, JD Clemens, J Chakraborty, MR Rao, BA Kay, DA Sack, M Yunus, M Ali,
A Svennerholm, and J Holmgren. Field trial of inactivated oral cholera vaccines in
Bangladesh: Results from five years of follow-up. Vaccine, 14:162–166, 1996.

416. JW Vaupel, KG Manton, and E Stallard. The impact of heterogeneity in individual frailty on
the dynamics of mortality. Demography, 16:439–454, 1979.

417. M Vazquez, PS LaRussa, AA Gershon, SP Steinberg, K Freudigman, and ED Shapiro. The
effectiveness of the varicella vaccine in clinical practice. N Engl J Med, 344:955–960, 2001.

418. T Vesikari, A Karvonen, T Korhonen, et al, and CAIV-T Transmission Study Group. A
randomized, double-blind study of the safety, transmissibility and phenotypic and genotypic
stability of cold-adapted influenza virus vaccine. Pediatr Infect Dis J, 25:590–595, 2006.

419. T Vesikari, T Rautanen, T Varis, GM Beards, and AZ Kapikian. Rhesus Rotavirus candidate
vaccine. Am J Dis Child, 144:285–289, 1990.

420. S Viviani, P Carrieri, E Bah, and AJ Hall et al. 20 years into the Gambia Hepatitis Inter-
vention Study: Assessment of initial hypotheses and prospects for evaluation of protective
effectiveness against liver cancer. Cancer Epidemiol Biomarkers Prev, 17:3216–3223, 2008.

421. J Wallinga and P Teunis. Different epidemic curves for severe acute respiratory syndrome
reveal similar impacts of control measures. Am J Epidemiol, 160:509–516, 2004.



References 379

422. J Wallinga, P Teunis, and M Kretzschmar. Using social contact data to estimate age-specific
transmission parameters for infectious respiratory spread agents. Am J Epidemiol, 164:936–
944, 2006.

423. DP Webster, S Dunachie, JM Vuola, et al. Enhanced T cell-mediated protection against
malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia
virus Ankara. Proc Natl Acad Sci, 102:4836–4841, 2005.

424. R Welliver, Monto AS, Carewicz O, et al. Effectiveness of oseltamivir in preventing influenza
in household contacts: A randomized controlled trial. J Am Med Assoc, 285:748–754, 2001.

425. CJ White, BJ Kuter, A Ngai, CS Hidelbrand, KL Isganitis, CM Patterson, A Capra,
WJ Miller, DL Krah, PJ Provost, RW Ellis, and GB Calandra. Modified cases of chick-
enpox after varicella vaccination: Correlation of protection with antibody response. Pediatr
Infect Dis J, 11:19–23, 1992.

426. FM White and M Pagano. A likelihood-based method for real-time estimation of the serial
interval and reproductive number of an epidemic. Stat Med, 16:2999–3016, 2008.

427. J Whitehead. Fitting Cox’s regression model to survival data using GLIM. Appl Stat, 29:268–
275, 1980.

428. AE Wright. Antityphoid inoculation. Br Med J, Nov 12, Nov 26, Dec 10, Dec 24:1343–
5,1489–91,1641,1727, 1904.

429. Y Yang, P Gilbert, IM Longini, and ME Halloran. A Bayesian framework for estimating
vaccine efficacy per infectious contact. Ann Appl Stat, 2(4):1409–1431, 2009a.

430. Y Yang, ME Halloran, and IM Longini. A Bayesian model for evaluating influenza antiviral
efficacy in household studies with asymptomatic infections. Biostatistics, 10(2):364–373,
2009b.

431. Y Yang, ME Halloran, J Sugimoto, and IM Longini. Detecting human-to-human transmis-
sion of Avian A(H5N1) influenza. Emerging Infect Dis, 13(9):1348–53, 2007a.

432. Y Yang, IM Longini, and ME Halloran. Design and evaluation of prophylactic interventions
using infectious disease incidence data from close contact groups. Appl Stat, 55:317–330,
2006.

433. Y Yang, IM Longini, and ME Halloran. A data-augmentation method for infectious disease
incidence data from close contact groups. Comput Stat Data Anal, 51(12):6582–95, 2007b.

434. Y Yang, IM Longini, and ME Halloran. A resampling-based test to detect person-to-person
transmission of an infectious disease. Ann Appl Stat, 1:211–228, 2007c.



Index

Adjuvant, 55
Adverse events, 55, 112, 115

serious, 55
Akaike Information Criterion, 143
Analysis

conventional secondary attack rate, 257–260
sieve, 174

Antibody, 50
avidity, 338
functional, 338

Ascertainment
household, 227–228

case-ascertained, 229
prospective, 229

Assay
ELISPOT, 57
enyzme-linked immunosorbent (ELISA),

57, 125
hemagglutination, 57
immunoblot, 57
serum bactericidal (SBA), 339
T-cell, 57–58

Assignment mechanism, 229–231
ignorable, 336
observational, 107
randomization, 15, 17, 33, 107, 189, 313,

352
limits of, 313

two-stage, 33, 271, 283, 307–309
Assumption

monotonocity, 191
no interference

violation under dependent happenings,
306

Attack rate, 21, 24, 33, 36, 135, 158, 241
household secondary, 36
post-infection, PAR, 179–180

secondary, 2, 22, 231, 235, 236, 253

Bacteria
H. influenzae b, 54
meningoccus, 54
pneumococcus, 54

Bias
ascertainment, 184, 213
exposure to infection, 226
risk ratio, 109
selection, 184

bounds, 191
post-infection, 185–186

sources of, 108
statistical, 313, 318

Carrier, 11
Case

ascertainment, 112, 228, 289
co-primary, 207, 210, 213
definition, 112, 229
inapparent, 11
index, 207
primary, 207

Case fatality ratio, 95
Case-cohort studies, 352
Case-control studies, 106, 153–159, 352

bias in, 154
controls, 106, 153, 155–159

cumulative sampling of, 158
matched density sampling of, 155
risk set sampling of, 155, 157
under all-or-none model, 157–158
under leaky model, 157
unmatched density sampling of, 155

matched analysis, 156
to estimate VES,λ , 154–157

381



382 Index

to estimate VES,CI , 154, 157
to estimate VES,IR, 154–157
unmatched analysis, 156

Causal effect
group average

direct, 310
indirect, 310
overall, 310
total, 310

individual, 15, 16
direct, 309
indirect, 310
overall, 310
total, 310

individual average
direct, 309
indirect, 310
overall, 310
total, 310

of vaccination, 164
population average, 15, 16

direct, 310
indirect, 310
overall, 310
total, 310

post-infection outcomes, 185–201
predictiveness surface, 351, 353–354

Causal estimands, 306
post-infection outcomes, 187–192

Causal inference, 8, 15–17, 271, 341, 349
fundamental problem of, 15, 321
indirect, total, overall effects, 17, 272–274,

306–311
Cell culture, 54
Chain binomial model, 63, 65, 71–78

Greenwood, 69, 71, 76
Reed–Frost, 9, 69, 71–78

probability of no spread, 73
Challenge study

animal, 60
repeated low-dose, 142

household exposure as natural, 205, 228,
340, 346–348

human, 61
influenza, 92

to control inoculum, 321
Chemokines, 49
Cluster-randomized design, 6, 33, 283–305

analysis, 303–306
case ascertainment, 289
choice of randomization unit, 285–286
choice of study population, 288
control vaccine, 289
crossover, 287

parallel, 287, 291–292
randomization scheme, 287

completely randomized, 287
covariate constrained, 288, 295–298
matched pairs, 287
stratified, 287

sources of tranmission, 286
stepped wedge, 287, 292–295

hepatitis B, The Gambia, 293–295
vaccination strategy, 288

Coefficient of variation, 301
Cohort

closed, 67, 106, 157
dynamic, 67, 100, 106
fixed, 106
open, 67, 106, 155

Cohort studies, 106–108
Cold chain, vii, 52
Collapsibility, 319, 326–327

based confounding, 326–327
Comparability, 323

limits of, 324–326
of vaccine and control groups, 323–324

Confidence intervals
bootstrap, 173, 183, 263

Confounding, 313
CONSORT Statement, 127
Contact, 10

definition, 22, 226–227
information, 22, 29
process, 64
process intensity, 37–38
random mixing, 64
rate, 27, 64, 66

behavior efficacy, 31
exposure efficacy, 31

sexual, 235
Core population, 66, 224
Correlate of risk, 133, 348–349, 354
Correlates of protection

regression models, 343–348
threshold model, 353
threshold models, 341–343

meningococcal C vaccine, 342
pneumococcal vaccine, 342–343

Critical vaccination fraction, 88–90
Cutter incident, 56
Cytokines, 49

Data
final-value, 235, 238
longitudinal, 235
panel, 235
time-to-event, 235



Index 383

Dependent happening
relation, 19, 27, 70, 97, 105, 139, 339, 344
structure, 27

Dependent happenings, 4–5, 17, 35, 271, 306
Direct effects

of vaccination, VEdirect, 31, 80, 103–129,
153–174

relation to prevented fraction in the
exposed, 34

Distribution
binomial, 240
final-size, 238–240

Dynamics
population, 67

Effect
modification, 327
proportion associative, 353

Efficacy
behavior, 31
exposure, 31

Epidemic
major, 77
minor, 77

Epidemic prevention potential (EPP), 78
Epilink, 115, 210, 222
Epitope, 50
Escape probability

definition, 67
Exchangeability, 318
Exposure to infection, 67, 135, 321, 339

assigned by nature, 321
boosting, 151
conditional on, 205, 206, 232
definition, 209, 210, 212
equal, 107
information, 22
lack of as incomplete treatment, 321
opportunity, 36, 40, 43
unconditional on, 132
unmeasured confounder, 150, 335
unmeasured post-vaccination, 327

as confounder, 328–331
unmeasured pre-vaccination, 327

as confounder, 331–334

Force of infection, 26, 27

Greenwood, Major, 2, 24, 26, 107, 319

Herd immunity, 9, 21, 47, 58, 120
Hierarchy of VES parameters, 26–27, 35–43,

105
HLA (human leukocyte antigen)

genes, 51
Household study, 205–207

influenza
antiviral agents, 219–220
Cleveland, 217–218
France Epigrippe, 218
Seattle Virus Watch, 215
Tecumseh, 216

longitudinal
influenza, 214–218
pneumococcal carriage, 222–224

measles
Niakhar, Senegal, 221–222

nested, 25, 346
pertussis

England, 211–214
Niakhar, Senegal, 209–211
Sweden, 214, 346–347
USA, 208–209

pneumococcal carriage
Bangladesh, 225
Finland, 223–224
United Kingdom, 224–225

Immune cells
antigen-specific, 49, 50
cytotoxic T cells, 49
dendritic, 49
effector T cells, 51
helper T cells, 49
macrophages, 49
memory B cells, 50
memory T cells, 50
naive B cells, 49
naive T cells, 49
neutrophils, 49

Immune response
adaptive, 48–50
innate, 48–49
potential, 349, 350, 352

Immunity
boosting, 151
partial, 150

Indirect effects, 5
cholera vaccination, 81, 280–282
HIV vaccination, 7
influenza vaccination, 7, 282
mini-community design, 226, 267–268
pertussis vaccination, 7, 278
pneumococcal vaccination, 279, 303–305

serotype replacement, 33
vaccination effectiveness, VEIIa, 21, 31, 80,

273
based on the attack rate, 280



384 Index

meningococcal C, 280
observational studies, 274
pertussis, 268

Infection
community probability of, 235, 239, 242,

243, 248
community rate of, 235
discrete events, 67–69
probability per contact, 70
process intensity, 38
silent, 11

Inference
Bayesian, 167, 237
bootstrap, 263
likelihood, 237
valid

conditions for, 24, 107, 319
Inflammation, 49
Influenza

novel influenza virus, H1N1, 96, 215
swine, 56

Inoculation
anti-typhoid, 1–2, 26

Interval
generation, 14
serial, 14

Macroparasites, 14
Malaria, 327

P. malariae, 314
P. knowlesi, 314
P. ovale, 314
P. vivax, 314
Plasmodium falciparum, 12
case definition, 315
population genetics, 315
sickle cell trait, 315

Matrix
mixing, 66

MenAfriCar Consortium, 207
Methods

data augmentation, 250
Markov chain Monte Carlo, 237, 243

MHC (major histocompatibility complex), 51
Microparasites, 13, 48
Missing at random, MAR, 165, 173
Mixing structures, 64–66
Mode of vaccine action, 131–137

all-or-none, 90, 114, 132–133, 142, 149,
157, 339, 340

immunological correlate, 344
choice of efficacy measure, 133–137
leaky, 80, 89, 132–133, 142, 149, 157, 340
Type I, 131

Type II, 131
Model

Bayesian latent variable, 247, 250, 252
binomial, 63, 67–68
continuous-time, 70, 235, 236
counting process, 35–43
discrete-time, 235–236
frailty mixture, 137–142
generalized stochastic, 243
hierarchical, 247, 250
marginal structural, 108
Markov transition, 253
Poisson regression, 36
proportional hazards, 27, 109, 150
Ross–Macdonald, 94
SEIR, 99, 238
SIR, 71, 96–99, 238
SIRS, 100
SIS, 100, 238, 249
stochastic risk, 320
stochastic simulation, 78–83
transmission, 64, 250

Mosquito
bite, sporozoite-positive, 327

Nasopharyngeal carriage
pneumococcal, 355

Natural history, 11
Niakhar, Senegal, 7, 114–116, 181–184,

209–211, 221–222, 275–277

Odds ratio, 153, 155–157
cumulative design, 322

rare disease assumption, 323
exposure, 153
matched, 155, 156
selection bias, 192
unmatched, 155, 156

Outcome
post-infection, 177–202
potential, 15, 306, 308, 318, 349
potential infection, 189
potential post-infection, 189

Overall effects, 5
based on change in age distribution, 277
cholera vaccination, 81, 280–282
vaccination effectiveness, VEIII , 21, 32, 80,

273
based on incidence rates, 277, 279
influenza, 35
observational studies, 274
pertussis, 275–277
pneumococcal, 278–279



Index 385

Pasteur, Louis, 52
Pathogenicity, 11

definition, 180
estimate, 180

Pearson, Karl, 1, 52
Period

incubation, 11, 205, 245
infectious, 11, 205
latent, 11, 205, 245
symptomatic, 11

Persistence, 99, 100
Plot

Kaplan-Meier, 149
PneumoCarr project, 355
Power

calibrated, 114
Prevented fraction

in the exposed, 34–35
under dependent happenings, 35

Principal stratification
basic, 189

Process
Markov, 249

Random number generator, 63
Recruitment, 112
Reproductive number

R, 32, 73
basic, R0, 13–14, 32, 63, 73, 77, 85–95, 97,

274
and case fatality ratio, 95
and evolution, 95–96
malaria, 94

real-time estimation, 96
Ross, Sir Ronald, 4, 27, 271

Safety, 55–56, 60, 61, 112, 121, 125
Sample size

cluster-randomized study, 299–303
coefficient of variation, k, 299
design effect, D, 299
intergroup variability, 299
intra-group correlation, 299
variance inflation factor, σ , 299
with matched pairs, 300–301

direct effects, 113–114
parallel design, 300
stepped wedge design, 302–303

Sampling
case-cohort, 355
two-phase outcome dependent, 352

Score
severity, 127, 182–184

Scores

propensity, 108
Sensitivity analysis, 191

Bayesian, 167–170
frequentist, 165–167

Smallpox, 51
Study

case-control, 132
cohort, 132
day care center

pneumococcal carriage, 223–224
Hib carriage, 249
household, see Household study
natural history, 205
observational, 17, 106
pneumococcal carriage, 249
school-based

pneumococcal carriage, 224
screening method, 149, 159, 342

Study design
dengue cluster, 231
augmented, 232–233, 355
case-contact, 231
cluster, 231
mini-cohort, 226
mini-community, 226, 233, 267–268
proof-of-concept, 8, 128
sequential, 125

Study designs
for dependent happenings, 8, 10, 31–35,

271, 273–274
Surrogate of protection, 337, 349–351

general, 351
Prentice criteria, 340, 349
principal, 341, 349, 351–354
specific principal, 349, 350
statistical, 341, 349, 350, 352

SUTVA, 15, 189, 306, 324, 352, 354

Tecumseh Study, 35, 242
Test

chop-lump, 128, 129
Fisher’s combination, 128
Fisher’s exact, 184
likelihood ratio, 142, 143
Simes’, 128

Theory
epidemic, 6
network, 65

Theory of Happenings, 4
Time line

of disease, 11
influenza, 12
of behavior, 12
of infection, 11



386 Index

smallpox, 12
Total effects

of vaccination, VEIIb
pneumococcal, 291–292

cholera vaccination, 81, 280–282
vaccination effectiveness, VEIIb, 21, 31, 80,

273
observational studies, 274

Toxoid
definition, 52
diphtheria, 52
tetanus, 52

Transmission, 10
as post-infection outcome, 178
baseline, 319
sources of, 286
units, 9, 29, 65, 205, 226–227
units, in a community, 65, 235–255
units, independent, 65

Transmission probability, 10, 22, 27, 67, 135,
235

Transmission rate, 70, 235
Treatment assignment

vector, 307

Vaccination
allocation, 273

within and across groups, 307
schedule, 111
strategy, 273

Vaccine
H. influenzae b, 337
H. influenzae b, 6
Bacille Calmette-Guérin, BCG, 52, 153
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