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multidisciplinary and dynamic. They lie at the crossroads of frontier research in
physics, biology, chemistry, and medicine. The Biological and Medical Physics,
Biomedical Engineering Series is intended to be comprehensive, covering abroad
range of topics important to the study of the physical, chemical and biological
sciences. Its goal is toprovide scientists and engineers with textbooks, mono-
graphs, and reference works to address the growingneed for information.

Books in the series emphasize established and emergent areas of science
including molecular, membrane, and mathematical biophysics; photosynthetic
energy harvesting and conversion; information processing; physical principles of
genetics; sensory communications; automata networks, neural networks, and
cellular automata. Equally important will be coverage of applied aspects of bio-
logical and medical physics and biomedical engineering such as molecular elec-
tronic components and devices, biosensors, medicine, imaging, physical principles
of renewable energy production, advanced prostheses, and environmental control
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Preface

One of the most important areas of application of laser radiation is biomedical
optics. Here, laser sources are used for diagnosis, therapy, or surgery.

Note that for the development of new methods of laser biomedical diagnostics,
a detailed study of the propagation of light in biological tissues is required, as
theoretical studies improve understanding of the optical measurements, increase
capacity, reliability, and usefulness of optical technologies.

To solve these problems in the first place the most informative indicators of the
functioning of the organism must be chosen. These indicators are the results of the
analysis of peripheral blood. Peripheral blood provides the complete information on
the status of the human organism. A comprehensive study of the characteristics of
light scattering and absorption can quickly detect intact physiological and mor-
phological changes in the cells due to thermal, chemical, antibiotic treatments, etc.

The choice of the laser beam to study the structure of biological particles is
conditioned by the fact that it does not induce gross pathological changes and
diagnostics will ensure effective use of all the coherence properties of laser
radiation, monochromatic directional.

Note that for laser processing of the biological environment it is also necessary
to perform a selective thermal influence facility located in the environment. For
these purposes it is necessary for a selection of optimal spectral, temporal, and
energy characteristics of the laser source.

The main parameter to reach selectivity (choice) is the wavelength of the
radiation. If we choose a wavelength of light which is absorbed by the object, but
not absorbed by the surrounding tissues, the selectivity is achieved.

However, such a situation is ideal and cannot always be achievable in practice.
Considerable value is also placed on the duration of treatment, the size of the
object, and the depth of its location.

After laser irradiation on biological tissues factors need to be considered such
as the movement of blood through the vessels and thermoregulation.

Blood flow can have significant impact on the result of exposure if it is
dependent on the degree of thermal damage to the tissue because blood flow may
be an additional and sufficiently effective mechanism heat removal from the site of
exposure. Note that this effect may influence both the efficiency and the safety of
the procedure, because it violates the local heating.
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Thus, the optimization of the laser emitter for selective heating of multicom-
ponent media is an ambiguous problem.

For these purposes various mathematical models have been developed, usually
designed to solve a specific task. In most cases, the problem of choice of the laser
source and its performance is decided on the basis of the absorption and relaxation
times of the objects (media). Modeling of this kind is usually designed to solve the
problem of optimizing the parameters of the laser transmitter and evaluate the
results obtained under the influence of the pre-selected laser on the biological
environment. In order to correctly construct a mathematical model that describes
the interaction of laser radiation with tissue, it is first and foremost an established
good understanding of the structure of biological tissues, their optical and thermal
properties, as well as the main effects in the propagation of radiation in biological
tissues.

The monograph discusses problems related to the study of mechanisms of
interaction of laser radiation with biological tissues, the study of effects of laser
interaction with biological tissues methods of the asymptotic theory of diffraction
and computer modeling. By virtue models, described in the monograph, on the
basis of result of influence of laser biological tissue under certain conditions, can
be consistently changed to input characteristics to produce an optimization of the
spectral and energy parameters of laser emitters to achieve the desired effect in
each case.

The book presents the original results of theoretical studies of electromagnetic
waves in media simulating biological layered structure. Concepts and methods for
studying the laser radiation interaction with multicomponent heterogeneous tissue
with a complex structure of the asymptotic theory of diffraction methods are
presented. These methods can serve as the basis for creating software for the
biomedical diagnostics.

The monograph is addressed to researchers and specialists in biomedical
physics interested in the development and application of laser and optical diag-
nostic methods in medical research.

The monograph consists of ten chapters.

In Chap. 1 we consider the structure and optical properties of biological tissues,
blood, and human skin.

In Chap. 2 we expand methods of light scattering for the quantitative study of
the optical characteristics of the tissue, and the results of theoretical and experi-
mental studies of photon transport in biological tissues.

In Chap. 3 we describe the optical characteristics, namely, dispersion and
absorption spectra of an ensemble of spherical particles randomly oriented inside
an optical cavity. The study is based on the self-consistent matching of new data
from the inhomogeneous optical cavity with data from the scattering of an
ensemble of spherical particles of different size, randomly oriented in free space.

In Chap. 4 we discuss a mathematical model for calculating the interaction of
laser radiation with a turbid medium and a model for the prediction of the optical
characteristics of blood (refractive index and absorption coefficient) and for the
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determination of the rate of blood flow in the capillary bed under irradiation of a
laser beam is proposed.

In Chap. 5 we construct electrodynamic model which makes it possible to vary
the electrophysical parameters of a biological structure in calculations with
allowance for roughness.

In Chap. 6 the mathematical model is proposed for predicting optical charac-
teristics (refractive index and absorption coefficient) of a biotissue being simu-
lated, which is probed in vivo by a laser beam. Blood corpuscles in this case are
simulated by particles of irregular shape and various sizes, which are oriented
arbitrarily in free space.

In Chap. 7 we construct a mathematical model, which allows us to vary the
electrical parameters and structure of the simulated biological tissue with fibrillar
structure for case in vivo.

In Chap. 8 we expand a mathematic model for predicting the absorption
spectrum and dispersion of a section of a biological structure consisting of epi-
dermis, upper layer of the derma, blood, and lower layer of the derma and placed
in the cavity of an optical resonator.

In Chap. 9 we discuss a mathematical model, which makes it possible to vary
the characteristic sizes of roughness, the electrophysical parameters of the bio-
logical sample under investigation, and its geometrical characteristics and to
establish the relations between these parameters and biological properties of the
biological tissue being modeled, as well as to calculate theoretically the absorption
spectra of optically thin biological samples placed into the cavity of an optical
resonator.

In Chap. 10 we propose mathematical model for calculation of the hyperthymia
of a multilayer biological structure under the action of laser radiation.

Before closing, I want to acknowledge my sincere thanks to my colleagues
Prof. Boris G. Vager, Prof. Anatoly M. Radin, and also Prof. Michael A. Narbut
for a critical reading of the manuscript, and my wife Tetiana Koshlan. My thanks
are to Springer-Verlag, in particular Dr. habil. Claus E. Ascheron and Elke Sauer,
for constant encouragement.

Saint Petersburg Kirill Kulikov
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Chapter 1
Methods Describing the Interaction of Laser
Radiation with Biological Tissues

Abstract We consider the structure and optical properties of biological tissues,
blood and thermophysical characteristics of the elements in the skin tissue.

1.1 Introduction

Scattering and absorption of electromagnetic radiation are widely used in various
fields of science and technology to study the structure and properties of heteroge-
neous environment. Theoretical models, techniques of experimental research and
methods of data interpretation were developed by specialists of various disciplines
(from astrophysics to laser ophthalmology), so there are differences in traditions
and terminology barriers that impede the efficient interaction of different schools
of thought. For example, experts in the field of atmospheric optics and astrophysics
use the ideology of natural radiation transport equation, but for interpretation of
data, small-angle X-ray and neutron scattering—more familiar language—using the
apparatus of the correlation functions and structure factor scattering.

Due to the large variety and structural complexity of the biological environment
the development of adequate models of optical scattering and absorption of light is
often the most difficult part of the study. These models cover almost all the major
sections of optical dispersion media: a simple single-scattering approximation, inco-
herent multiple scattering, which is described by the transport equation, and the mul-
tiple scattering of electromagnetic waves in condensed systems interacting lenses or
irregularities.

Before proceeding to the consideration of principles of mathematical models to
calculate the interaction of laser radiation with biological structures and objects of
different degrees of complexity and organization, consider the structure and optical
properties of biological tissues.
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2 1 Methods Describing the Interaction of Laser Radiation with Biological Tissues

1.2 The Structure and Optical Properties of Biological Tissues

From the point of view of controlling the optical parameters of tissues the fibrous
tissues (sclera eyes, dermis of skin, dura, etc.) are of the most interest makes. Fibrous
tissue make up approximately 50 % of body weight. Loose connective tissue of fatty
tissue, dens, tendons and intermuscular fascial layers, derma of skin and an intraor-
ganic stroma of parenchymatous organs, neuroglia and peritoneum are all connecting
fabrics or fibrotic thanks to the existing characteristics of fibrillar structures [1]. All
varieties of fibrous tissue in spite of their morphological differences, are built an
common, with the same principles, which mainly include the following [1]: (a) the
connective tissue contains cells, but compared to other tissues there are fewer. As a
result, the amount of intercellular substance is larger than the cellular elements;
(b) the connective tissue is characterized by the presence of fibrous (fibrous)
structures—collagen, elastin and reticular fibers, which are the main structural ele-
ments of the fibrous tissue, and surrounded by intercellular substance; (c) the connec-
tive tissue is rich with the intercellular substance when has a very difficult chemical
composition. The characteristic component of the structure in fibrous tissue (tendons,
cartilage, the dermis of the skin, eye sclera, etc.) are the collagen fibers. They carry
protective functions. For collagen, the specific amino-acid structure and a unique spa-
tial location of polypeptide chains is a characteristic. As opposed to other proteins,
large number of amino acids are contained in collagen: glycine, proline, hydroxypro-
line, lysine, oksilizin. Collagen makes up 25-30 % of the total protein in adult, or
6 % of total body weight [2]. The molecule of collagen consists of three polypeptide
chains forming structure of a threefold spiral. The length of the collagen molecule
is 280nm, the diameter of 1.4—1.5nm [3].

The Structure and Optical Properties of the Skin

Human skin is an example of a multicomponent turbid biological medium and it is
very difficult to describe the construction of the models. Optical characteristics of
such complex environment as a whole depend on many factors. To correctly build
the model of the skin and the description of optical properties one needs to get some
understanding in the biological features of the structure of skin (see Fig. 1.1).

Skin consists of two main layers [4]. The external layer is the multilayered flat
keratinized epithelium-epidermis. The average thickness of the epidermis, of which
there is relatively little change in thickness, is approximately 100 wm [5]. Epidermis
consists of two various layers of cells: an external, corneal layer of dry acaryocytes
(Stratum corneum) and inside cellular layers, i.e. actual epidermis from which, after
modification, there are superficial cells: (Living epidermis) [6]. The main type of cells
in this epitelialny continuum is the epidermalny cell, most often called keratinotsity,
so called because the family of fibrous proteins is keratins. The epidermis unites
subpopulation of migrating cells of treelike types: melanocytes and melanosomes
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Fig. 1.1 Biological structure of the human skin: / epidermic, 2 dermis, 3 hypodermic fatty tissue,
4 muscle, lifting the hair, 5 oil gland, 6 fatty secret, 7 hair , 8 capillaries, 9 oscule, /0 sweat, 11
keratin (corneal layer), /2 nerve ending, /3 nerve, /4 fat lobule, /5 sweat gland, /6 blood vessels,
17 hair sac

are pigment-producing melanin; Langerhans cells, considered as monokletki derived
from bone marrow, and Merkel cells, considered as derivatives of keratinocytes [2].

Epidermis is constantly in a state of renovation: the division of basal keratinocytes,
some daughter cells move out, and then they separate, go to the upper layers and
attach to the corneal layer. Normal human epidermis is renewed in a period which
lasts 45-75 days [2]. The leading mechanism in the difficult and multi-stage process
directed on the formation of a corneal layer of skin is the formation of a keratin:
the main protein in epidermis. In the process of cellular replacement, the epidermis
forms the pigment melanin, which is a polymer-granules which are 30—400nm in
diameter [7]. Melanin is produced in melanocytes, containing large number of struc-
tural organelles: melanosomes filled with pigment. Melanosomes have a diameter of
about 400nm [7].
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Under the epidermis is dense fiber tissue and elastinic tissue, which is called the
dermis. Dermis is the main component and volume of the skin. The average thickness
of the dermis is about 1500-2000 pwm [8]. In the dermis there are the elements of the
vascular and nervous systems, the excretory gland. Under the skin is the hypodermis.
Hypodermis is a subcutaneous tissue, which is a fatty and connective tissue of varying
thickness citebriggman.

The dermis is separated from the epidermal basal membrane and gradually goes
into the subcutaneous fatty tissue. The composition of the dense connective tissue in
the dermis includes collagen and elastin fibers with a diameter of about 60 nm, packed
in bundles of fibers with a diameter about 60nm called lamels, and an amorphous
substance (interfibrilyarny gel), of salt and water. Connective tissue contains widely
branched vascular structures of the skin, the nervous network and epithelial glands.
Derma is randomly divided into two anatomical areas: papillary (Stratum papillary
dermis) and reticular (Stratum reticulare dermis) [9]. More subtle is the so-called
papillary dermis, the outer part of the dermal connective tissue that is formed under
the epidermis.

Papillary dermis contains more free distribution of elastin and collagen fibers
than the reticular layer. Bundles of collagen fibers of papillary dermis are 0.3-3.0
pm in diameter. Papillary dermis also contains lymphatic plexus and blood vessels.
The second major part of derma, and the underlying papillary dermis, is called the
reticular dermis. Vascular structure of the skin is clearly divided into two systems: a
system of vessels that provide nourishment skin and deep, mainly subcutaneous, and
arterial and larger venous capillaries which perform the function of heat exchangers
of blood with the environment [2].

Biological tissues, such as skin, are optically inhomogeneous absorbing media
with an average refractive index greater than that of air, so the boundary between
biological object-air part of the radiation is reflected (Fresnel reflection), and the
remaining part penetrates the tissue. The skin is characterized by a significant light
scattering, i.e., it is highly scattering turbid medium, because it consists of a large
number of scattering centers randomly distributed in the volume. The degree of
scattering depends on the wavelength of the radiation and the optical properties of
biological tissues.

Absorption of light is a physical phenomenon, which characterizes the energy
loss when light passes through the biological structure (skin) [10]. The energy of the
absorbed light transfered into heat is spent on photochemical reactions or released in
the form of radiation luminescence. The absorption spectra of any tissue, including
skin, determined by the presence of all biologically important molecules involved in
double bonds (chromophores of skin), and containing water in biological tissues. In
the epidermis the role of chromophores perform various fragments comprising the
amino acids and nucleic acids, absorbing light in the ultra-violet wavelength range
[11]. In the visible spectrum one of the most prevailing chromophores of skin is
the pigment melanin [2]. The absorption spectrum of melanin has no pronounced
absorption bands; however, it effectively absorbs in all spectral regions from 300 to
1200 nm. In the near ultraviolet radiation and visible regions of the spectrum, aside
from melanin, the basic skin chromophores are bilirubin, vitamins, flavins, flavin
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ferments, carotenoids, phycobilins, phytochrome, and others, as well as elastin and
collagen fibers [12].

The dermis of the skin include blood vessels, which contain hemoglobin, the
absorption spectrum of which significantly affects the absorption spectrum of the
skin. The higher the content of blood in the dermis, the greater absorption of its
radiation at corresponding to the absorption of blood. Therefore, when calculating
the optimal parameters of the radiation blood content in the dermis and the diameter of
blood vessels should be considered. In the in vivo biological tissue hemoglobin binds
oxygen present in the blood. The absorption spectra of the two forms of hemoglobin
are slightly different from each other: oxyhemoglobin has an absorption band near
405 nm (Sore band) and the characteristic double peak absorption in the area of
545-575 nm; deoxyhemoglobin strongly absorbs near 430 nm and a weak close to
550nm [13, 14].

In the infrared region of the spectrum all biomolecules have quite intense vibra-
tional absorption bands.

Starting with A = 1500nm and above, the absorption spectrum of the skin is
largely determined by the absorption spectrum of water.

The absorption of subcutaneous fatty tissue is defined as absorption bands of
lipids, water, and S-carotene. The main absorption band of fatty tissue lies in the
ultraviolet and infrared regions of the spectrum. Skin tissue is characterized by a
significant light scattering, as it consists of a large number of randomly distributed
scattering centers in volume [15]. Light scattering happens because of fluctuations
in the density of scatterer and refractive index fluctuations in the volume of tissue.

The nature of scattering depends on the correlation of the wavelength of the
scattered radiation and the size of the light scattering particles, and the ratio of the
refractive index of the scattering particle and its environment [16]. Light scattering
in media consisting of a large number of particles is significantly different from the
scattering of light by individual particles.

This is explained by firstly the interference of the waves scattered by the individual
particles with each other and with the incident wave, and second, in many cases,
multiple scattering effects are important (reradiation), when the light is scattered by
a single particle, others are dissipated again and thirdly, the interaction between the
particles does not allow them to consider independent movement.

To account for multiple scattering and absorption of the laser the beam is broad-
ened and attenuated during propagation in the skin. Volume scattering is the cause of a
significant proportion of the radiation propagation in the reverse direction (backscat-
tering). Cell membranes, nucleus and organelles are the main scatterers in many
biological tissues. The absorbed light is converted into heat, is reradiated as fluores-
cence or phosphorescence, and spent photobiochemistry reaction.

The absorption spectrum is determined by the type of dominant absorption cen-
ters and water content in the tissue. The natural photo of laser radiation of biological
tissue is determined by its composition and the absorption coefficient at the wave-
length of radiation. The ultraviolet and infrared (A > 2 nm) spectral region dominates
the absorption and scattering, and the contribution is relatively small and shallow.
Light penetrates into the biological tissue, only to one or more cell layers in the
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short-visible and spectrum of light penetration depth for a typical tissue that is
0.5-2.5mm. In this case the main role is absorption and thus scattering, which pre-
dominates in the reflected radiation from the skin (affects approximately 15 % to
50 % of the incident beam). At wavelengths from 600 to 1500 nm scattering prevails
over absorption and penetration depth is increased to 8—10 mm.

Depending on the type of tissue the wavelength of the reflection coefficient can
vary widely. Thus, the optical properties of biological tissue are determined by its
structure, physiological condition, the level of hydration, homogeneity, specific vari-
ance, the nature of the measurements in-vivo-in-vitro and others. The attenuation
of the laser beam in biological tissue follows the exponential law. The intensity of
the collimated radiation is estimated under Bouguer law. Other important optical
parameters of the tissue is the optical depth penetration.

The significant value of the scattering anisotropy of biological tissues and multiple
scattering gets a deviation from the Bouguer law. In the description of the effects that
occur in the tissues under the influence of radiation, absorption of water is important
because it is the main component of most tissues. The human body contains from
about 55-65 % water. An adult with a body weight of 65 kg contains an average
of 40 liters of water, of which about 251 is inside cells, 151 are in the extracellular
fluids. Water is the primary medium in which many chemical reactions take place
and the physical and chemical processes (assimilation, dissimilation, osmosis, diffu-
sion, transport and others) that important for life. In the ultraviolet, visible and near
infrared wavelengths the absorption coefficient of water is very small. In these areas,
the absorption of tissue determines the absorption spectra of pigments, especially
for the skin—the absorption spectra of melanin and blood count (hemoglobin and
oxyhemoglobin). Melanin absorption is the most important component of the total
absorption of the epidermis and the corneal layer.

For the calculation of interest the optical density (OD) of the epidermis is needed,
which is the result of the following product:

OD = Welanin - h,

where Wieranin 15 the absorption coefficient of melanin, /4 is the thickness of the
epidermis.

Optical density depends on the amount of melanin in the basal layer, which
depends on many factors, the main one of which is the type of skin. Note that
the dermis is very different from the epidermis in the composition and structure.
The scattering coefficient of the dermis stronger at shorter wavelengths. Scattering
plays a major role in determining the depth of penetration of radiation at different
wavelengths in the dermis. Therefore, longer wavelengths penetrate deeper rather
than shorter. It is explained by the presence of melanin, which absorbs more shorter
wavelengths than long. According to [15] for a sample consisting of the epidermis and
dermis, the depth of which is 0.15—0.2 mm (wavelength 632.8 nm) and 0.21—0.4 nm
(wavelength 675 nm).
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1.3 Structure and Optical Properties of Blood

Blood is one of the most important biological fluids. Blood is the liquid part of
the plasma (57 % of blood volume) and suspended in its cell (enzymatic) elements
(43 %). Plasma consist from 90-91 % water; 6.5-8.0 % are protein molecules and
the remaining 2 % are low molecular substances. In addition, the blood contains
platelets 99 % of the blood cells are red blood cells, and 1 % are white blood cells
and platelets.

Red blood cells have a biconcave disk shape with a diameter of about 7 um
and a thickness varying from 1 to 2 pwm center to the edges. The cell contains
hemoglobin molecules that easily join the oxygen molecules, when they are converted
into oxyhemoglobin. Accordingly, we have different venous and arterial blood. The
hematocrit is volume percentage of red blood cells in whole blood.

The most important parameter is also the oxygen saturation (OS), defined as the
ratio of oxygenated hemoglobin to total hemoglobin. The absorption of the blood
is determined mainly by water absorption, hemoglobin and oxyhemoglobin. The
absorption spectra of these pigments is shown in Fig.1.2 [17]. If the hematocrit
increases, this means that the number of red blood cells is increasing and there is an
increase in the scattering. At higher hematocrit H > 0.5 erythrocytes stick together,
forming a homogeneous mass absorbed by hemoglobin and scattering occurs on the
plasma cavity located between the masses of red blood cells. This section contains
the optical parameters of the biological structures without their temperature depen-
dences. Note that with increasing temperature the optical characteristics of tissues
and their components will change.

Now consider the basic principles of mathematical models to calculate the inter-
action of laser radiation with a turbid medium. One example of such an environment

M, cm!
10000}

0.1 T } } } } } }
400 600 800 1000 1200 1400 A, nm

Fig. 1.2 The absorption spectra of hemoglobin and oxyhemoglobin.
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is human biological tissue. Biological tissue is a multilayer medium containing
various inclusions, such as, for example, blood vessels, in which the blood moves.
Consider the main approaches in the theory of mathematical models that describe
the interaction of laser radiation with multi-layered turbid media.
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Chapter 2
Overview of Theoretical Approaches
to the Analysis of Light Scattering

Abstract We propose methods of light scattering for the quantitative study of the
optical characteristics of the tissue, and the results of theoretical and experimental
studies of photon transport in biological tissues.

2.1 Introduction

One important aspect of the development of modern medicine is the early detection of
diseases. To solve this problem it is necessary to select the most informative indicators
of the functioning of the organism, such measurements are the results of the analysis
of peripheral blood. As we know the blood is made up of the following elements:
white blood cells, red blood cells and platelets, investigate of the optical properties
of biological objects help to solve a number of problems for the diagnosis of various
pathological processes in the body. In medical diagnostic methods are divided into
<invasive>> and «non-invasive>>. Invasive methods assume such an action on the
prototype system, such as is going through some changes (X-rays) in the organs or
tissues. Non-invasive methods are methods in which information about an object is
obtained without disturbance of the internal structure of the body. Considering that the
classification is from a physical viewpoint we can say that completely non-invasive
methods do not exist in the very nature of the measurement procedure. It is correct to
describe all methods of diagnosis to some degree as perturbation, introduced into the
prototype system, and those where a disturbance is minimal considered non-invasive
methods. As such, a new area of diagnostics was now actively developed, which
uses optical techniques. With the optical point of view of biological tissue (including
bioliquid: blood, lymph, etc.) it can be divided into two broad classes:

1. strongly scattering (skin, vascular wall, blood);
2. weakly scattering (tissue of the eye: cornea, crystalline lens) [1-7].

This chapter describes the use of light scattering techniques for a highly scattering
biological structure.
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To develop new methods of laser biomedical diagnostics one must study in detailed
the peculiarities of the process of light propagation in biological tissues, as theoretical
studies improve understanding of the optical measurements, reliability and usefulness
of optical technologies. The use of light scattering techniques for biological particles
was developed in the articles based on the Mie theory for single, two and three
particles [8].

With the help of a two-layer model of the sphere one has described light-scattering
properties of suspensions of erythrocyte [9, 10].

Note that the first articles involving the exact theory of electromagnetic waves of
a two-layer sphere considered a model of biological particles [11, 12]:

1. the refractive index of the particle and its shape;
2. parts inside the particle, i. ., antrum, small inhomogeneities [13, 14].

These studies have identified the optical properties of the typical representatives
of biological particles: angular dependence of the red blood cells, in reducing
platelets, which are associated with changes in cell shape. Effects of aggregation
and dispersion.

As also the different characteristics of the native cell were evaluated [15, 16].

However, elucidating the physical mechanisms of living systems and the devel-
opment of pathological changes requires new methods for studying living matter
and the manipulation of biological structures. Thus, in the optics of scattering media
there are three main directions.

The first direction. This direction is connected with the solution of diffraction
problems for the individual plates and the linking characteristics of the and scatter-
ing of the optical geometry and structural parameters of the particles. In this field of
research a number of new methods and algorithms has been developed to obtain quan-
titative results for a broad class of sizes, shapes, structures, and optical parameters
of the particles.

The second direction of light scattering theory is associated with the equation of
radiative transfer. This equation uses the photometric values and phenomenological
characteristics of the environment, namely, the scattering coefficient, absorption and
scattering function of volume. In the multiple scattering theory of transport phenom-
enology is taken into account and based on the law of conservation of energy and
the concept of radiation intensity.

The third direction of scattering theory, electrodynamics consideres statistically
inhomogeneous media. This approach takes into account the multiple scattering of
waves (MSW) in the discrete or continuous irregularities and the vector nature of the
electromagnetic field. The theory of multiple scattering of waves is based on simple
physical principles. First, we assume that we know the spatial configuration of all
the particles and their statistical properties. Secondly, it is assumed that we know
scattering operator of a single particle, which describes the scattered field for a given
excited field. Note that the excited field is the sum of the incident field and the field of
multiple scattering from all other particles, because we consider the electrodynamic
of system interaction with multipole oscillators. Thus, to find an excited field with all
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possible orders of scattering from all the interacting particles, is the main difficulty
of the theory.

Various versions of this theory differ primarily only in the ways of approximate
calculation of the excited field with the statistical properties of the ensemble, which
describes the spatial configuration and the optical properties of lenses If the excited
field is found, further analysis concerns the calculation from the scattered fields of
individual particles and the addition of these fields with phase shifts. Since we are
considering random fields, calculating the observed photometric is needed to use
the correlation analysis. In the theory of multiple scattering of waves the theory of
coherent radiation propagation in a medium close-packed lenses has been developed
in detail, the main result of which is the output of the dispersion equation for the
effective wave number describing the propagation of a coherent field in a medium
different from the wave number of free space. This dispersion equation takes into
account the optical properties of the scatterers and the statistical properties of their
spatial location.

A fundamental feature of the theory of MSW is that the optical properties of inter-
acting particles differ from those characteristics which are obtained by solving the
scattering problem for an isolated particle. For example, the extinction cross-section
of the particles in the cluster do not coincide with the usual calculation of the Mie
theory. Even in the simplest case of two completely identical spheres in the con-
tact cross section of each particle depends on the orientation of the bisfery in rela-
tion to the incident plane wave. Effects of this type are said to be <collective>> or
< cooperative>> effects of the scattering of interacting particles. In general, the coop-
erative effects of multiple scattering are the two components and their calculation
is rather complex. However, for biological systems the situation is simplified by the
fact that the optical properties of interacting particles are usually not much different
from those of the environment. The analysis of the conditions for the applicabil-
ity of a specific version of the theory of light scattering is a nontrivial problem,
which requires taking into account the coherence properties of the incident light, the
size, concentration, and optical properties of the particles, the time of stability of
the microstructure of the medium (i.e., the characteristic relaxation times of fluctu-
ations), the geometric parameters of the scattering sample, the characteristics of the
photodetector, etc. Note that in this paper we consider only the first two of the main
approaches in the theory of scattering for highly scattering tissue.

2.2 Optical Properties of Tissues with Multiple Scattering

In this section we consider light scattering methods for the quantitative study of the
optical characteristics of the tissue, and the results of theoretical and experimental
studies of photon transport in biological tissues. The theoretical analysis is based on
a stationary or non-stationary radiation transfer theory for strongly scattering media,
as well as numerical Monte-Carlo method, which is used to solve the problems of
scattering in multilayered biological tissues with complex boundary conditions.
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2.3 Stationary Theory of Radiative Transfer

Transport theory. The theory of radiative transfer was developed by Schuster in
1903 [17]. Transport theory does not include diffraction effects. In the classical
theory of radiative transfer, considering the wave field as a combination of incoherent
radiation beams, the basic concept is the radiation intensity (or brightness) I (r, s),
which determines the average energy flux d P through the surface element d« that
is concentrated in a solid angle d$2 near the direction s of the frequency interval
(v, v+dv):

dP = I(r,s)cosfOdadS2dv (2.1)

Stationary equation of radiative transfer theory for monochromatic light has the

form [18]:
oI (r,s)

s

=l (5 + 1 / 1, 8)p(s. s)ds2, 22)
T
47

where I (r, s) is ray intensity at the point r in the direction s, p(s, s') is phase function
of the scattering, d 2 is unit solid angle in the direction §', iy is scattering coefficient,
U = g + ps is coefficient of the total interaction, p, is coefficient of absorption.
We assume that there are no light sources inside the medium.

The boundary condition for the (2.2) is:

I(r,s)|sm<0 = Io(r,s) + RI(r,s)|sn>0,T € OT, (2.3)

where I (r, s) is boundary distribution of radiation intensity generated by external
sources, n is outward normal to the OI" at r, R is the operator of reflection.

The phase function p(s, s’) describes the scattering properties of the medium and
is the probability density function of the scattering of photons in the direction of the
s’ which move in the direction of s. The phase function p(s, s’) can be defined as a
table form, derived from measurements or represented by an analytic expression.

In many practical cases, the phase function is well approximated using the empir-
ical Henie-Greenstein function

1—g2

0) = —
P® 4 (1 + g2 —2g cos(f))3/2’

where g is the scattering anisotropy factor,

ol (r,s
—8( ) = —pe Ly (r, s), 2.4)
S

I,; is the weakened incident intensity. Note that the expression (2.4) coincides with
the Bouguer law for the scattering medium. This means that for the weak incident
intensity in the transport theory Bouguer law is valid for all optical thicknesses.
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The total intensity is determined as
I(r,s) = I (x,s) + I;(r,s), (2.5)
and satisfies the (2.2) while diffuse intensity is determined by the equation

aly(r, s !
la(r,s) _ —pla(r,s) + M_/Id(l‘, s)p(s,s)d2" + e (r, s), (2.6)
s 4

47

where ¢,; (r, s) is the function of the equivalent source.

The scalar (2.2) is used in optics to describe light in cases where polarization
effects can be ignored.

Exact solutions of the transport equation and the integral equation for the radiation
intensity are obtained only for a small number of special cases. Examples of this kind
for which solutions are found and stored in a suitable form for the calculations are
coplanar problems and problems with isotropic scattering.

We consider several approximations that are often used in optics of biosystems.

2.4 Approximate Methods for Solving the Transport Equation

First order approximation. In the case of weak scattering the scattering medium is
sparse, and the scattering volume is not large, solving the transport equation can be
obtained by iteration.

In the first approximation, the iterative solution of the radiative transfer equation
produces a result, known as a first order approximation transfer theory [19]. In this
approach it is assumed that the total intensity incident on the particles is approxi-
mately equal to the incident intensity weakened, which is known. Consequently the
solution to the first order approximation of the form [19] is:

I(r,s) =1;(r,s) + I;(r,s) 2.7
I4(r, s) z/GXP[—(T—ﬂ)] Z—S/I”'d(r, s)p(s,s)d2" | ds, (2.8)
T
0 4

where [,; is the weakened incident intensity, I; is the diffuse intensity, 7, 71 are
optical paths,

s s1

T:/pu,ds,n :/p,utds

0 0
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and p is the total number of particles per unit volume. Note that the solution to
the first order approximation is valid for optically thin and weakly scattering media
(1 < 1, A < 0.5) when the intensity of the transmitted wave (coherent component)
is described by Bouguer law. In the case of a very sharp incident beam (eg, laser
light) first order approximation is valid for more dense tissues (7 < 1, A < 0.5),
where A = /1, —is the single scattering albedo.

Diffusion approximation. This approach suggests that diffusion intensity encoun-
ters many particles and disperses them nearly uniformly in all directions, so it is the
almost isotropic angular distribution [17]. Diffused illumination components can
be represented in the form of spherical harmonics of Legendre polynomial [20]. We
consider only first two terms in the expansion in the series, then we have the diffusion
approximation, which is written as

1 3
Ls(r,s) = E/Ls(r, S)d2 + E/Ls(r, s)s' - sd$2
47 47

= Lo(r) + iF(l’) -8, (2.9)
47

where Lo(r) is the indexaverage diffuse intensity, F (r) is the indexdiffuse flux vector
oriented along the direction of the unit vector s. The first of these equations expresses
Fick law (power density is proportional to the gradient of light), which describes the
increase or decrease of the power flux density due to absorption and scattering of
collimated and diffuse components:

1 Hs8
F(r) = ——Vp,(r) + —E(r, s0) - s0, (2.10)
3p to

(o

where p, = g + (1 — g)us is transport damping factor. The second equation is
described in the following expression:

V- F(r) = —paps(r) + ps E(r, sp) 2.11)

Thus, in the stationary case, the transport equation in the diffusion approximation
can be written as [20]:

V205 (X) = 3jtajtops (1) + 3ispo E(r,80) — 3pusg - V(E(r, s0)s0) =0 (2.12)

Biological tissues scatter light mainly in the forward direction. As a result, the dif-
fusion approximation is not always a good approximation of the theory of radiation
transport near sources or boundaries. To improve the situation we include the delta
function in the definition of the phase function [20]:

1
p(s.8) == fHp'(s,s)+ fo(l —s- S’)%- (2.13)
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This representation is called the Delta-Eddington approximation.
The diffusion equation in this case can be written using the new variables:

1y = pa+ gt = (L= ), p6.8), f = g% g = —S—
g+1
These coefficients correspond to a phase function of type Henie-Greenstein approx-
imation. Transformation p — p’ (p’ is new phase function) is a mathematical trans-
formation. Changes occur in the source region and borders, and this is especially
important for a strong forward scattering.
Delta-Eddington approximate reduces the degree scattering direction (g’ < g).
The boundary condition for the solution of the transport equation can be written as:

/Lx(r, (& -n)ds2 =0, (2.14)

27

where n is the unit normal vector.
The boundary condition for solving the transport equation in the diffusion approx-
imation at the boundaries with air can be written as [20]:

1—r r
21 s (1) T Mng(l', £o)n —
L+ry 2 Ho 3ue

Vs (r)n = 0 (2.15)

where 7, is reflection coefficient at the air-biological tissue.

It is necessary to distinguish three types of boundaries with air which are as
follows: the higher boundary to which the radiation drops, the side boundaries and the
lower boundary of the tissue. For these kinds of boundaries the reflection coefficients
are different. For the upper boundary, through which radiation from the air enters the
scattering medium, this coefficient has the form [21]

()
rnp=1-—
ny

for the lower and side boundaries, through which radiation from the environment
goes into the air the factor has the following form:

cos? 6. + cos> b,
2 —cos?2 0. +cos3 6.’

1
0. = arcsin (—) .
ns

At internal borders the given condition is equality flow.

n1 =

where



16 2 Overview of Theoretical Approaches to the Analysis of Light Scattering

The diffusion theory is a good approximation in cases where the anisotropy of
scattering is small (g < 0.1) and scattering albedo is large A — 1. For many tissues
the scattering anisotropy factoris g ~ 0.6—0.9, and in some cases, for example blood,
can reach values of 0.990-0.999 [22]. This substantially restricts applicability of the
diffusion approximation. Several papers were devoted to the study of the accuracy
of the diffusion approximation [23]. Based on the comparison of solutions of the
diffusion equation with the results of the Monte-Carlo simulation [24] (see below)
one concluded that the diffusion approximation may be a solution on some orders
from the truth. In optics the tissues simpler methods have been found for solving the
transport equation, such as the two-flux Kubelka-Munk model, three-flux, four-flux
and seven-flux models [17].

Two-and multiflux approximation. This theory is based on the model of the
two light beams propagating in the forward and backward directions. The main
assumption of this theory is that the radiation intensity is diffuse. Inside the tissue
diffuse flux is divided into two parts: L the flow in the direction of incident radiation
and flux scattered back L;. For the absorption and scattering of diffuse radiation we
introduce two Kubelka-Munk coefficients: A g and Sk

We have two differential equations

dLq
- —SkmLy — Agm Ly + Skm Lo
dL,
e —SkmLy — Agm Ly + Skm Ly,

where z is the average direction of the incident radiation.

Coefficients Agys and Skps values p, and ps are written as follows [17]: Axy =
2ta, SkM = s

The Kubelka-Munk theory is a special case of multiflux theory, where the transport
equation is transformed into a matrix differential equation which takes into account
the intensity of the radiation in the direction of many of the individual solid angles.

The two-flux theory is not applicable to describe the incident on a medium colli-
mated beam. In this case, we use the four-flux theory. The four- flux theory [17] takes
into account two counter diffuse flux as the Kubelka-Munk theory, as well as two
collimated laser beams, the external incident and reflected from the back surface of
the sample The seven- flux theory is a three-dimensional representation of the inci-
dent laser beam and the scattering of radiation in a semi-infinite medium [25]. Note
that the Kubelka-Munk theory can only be applied to a one-dimensional geometry of
the system. The numerical approximation of the transport equation can be obtained
by the Monte-Carlo method.

Monte-Carlo Method
The general scheme of the Monte-Carlo method is based on the central limit theorem
of probability theory. General properties of the Monte-Carlo method:

e absolute convergence of the solution is of order %;
e independence of the error on the number of tests is of order approximate L,

«/ﬁ’
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e the main method reducing the error is the maximum variance reduction;
e the error does not affect the dimension of the problem;
e simple structure of the computational algorithm;

From the viewpoint of the solutions of the equation for radiative transfer the
Monte-Carlo method is a computer simulation of the random motion of N photons
[19]. To obtain reasonable approximation to one have consider a large number of
photons because the accuracy of the results is proportional to +/N. The main idea
of the method is the registration of effects of absorption and scattering throughout
the optical path of a photon through a non-transparent environment. The distance
between two collisions is chosen from a logarithmic distribution, using a random
number generated by a computer. To take into account absorption, each photon is
assigned a weight.

If there is scattering, a new direction propagation is chosen according to phase
function and other random number. This procedure is repeated as long as the photon
does not come out of the considered volume or the weight reaches a certain value.
The Monte-Carlo method includes five main steps: generation of the source photon
trajectory, absorption, destruction, registration [19].

1. Generation of photon source. The photons are generated on the surface of the
medium. Their spatial and angular distribution corresponds to the distribution of
the incident radiation (for example, a Gaussian beam).

2. The generation of the trajectory. After generation of a photon the distance to the
first collision is determined. We expect that the absorbing and scattering particles
are randomly distributed in opaque medium. Then, the value of free pathis 1/pox,
where p is particle number density and o, is the scattering cross-section. Random
number 0 < &) < lis generated by computer and the distance to the next collision
L(&) is calculated from the expression

1
L =28
p

O x

Since
1

/hlfldfl =-1,

0

average quantity L(&1) is 1/poy. From this we obtain a scattering point. The
scattering angle is determined by the second random number &> in accordance
with the phase functions, such as Henie-Greenstein function. The polar angle @
is determined by the expression @ = 273, where &3 is a third random number
between 0 and 1.

3. Absorption. To take into account the absorption, we assigned weight to each
photon. At the point of entry to the opaque medium, the weight of a photon is
equal to 1. The weight decreases by absorption in accordance with the expression
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exp[—uq L(&1)]. As an alternative to assigning weights a fourth random number
&4 can be added (0 < &4 < 1).
We assume that the scattering takes place only when, {4 < a is where optical

albedo,
s

a=—-:
Ha + Hs

if &4 < a photon is absorbed, which is analogous to step 4.

4. Destruction. This step is used only when assigning a weight to each photon in
step 3. When the weight reaches a certain value, the photon is eliminated. Then
a new photon emits and the program continues with step 1.

5. Registration. After repeating steps 1—4 for a sufficient number of photons, a map
of the trajectories is calculated and accumulated in the computer. Thus, it may
be obtained by a statistical report on portions of the incident photons absorbed
by the medium, and the spatial and angular distribution of the photons emerging
from it.

We consider one of the variants of the construction algorithm of the Monte-Carlo
method. The modeling medium is defined by the following parameters: L, is the
thickness, 5 is the scattering coefficient and i, is the absorption coefficient, g is
the cosine of the scattering angle, n is the relative refractive index.

The incident impulse consists of one million photons within the medium along
the z-axis perpendicular to the surface (x, y) at the point (0, 0, 0). Calculations are
made in a three-dimensional Cartesian coordinate system. After entry of the photon
the mean free path of a photon in the medium, and the scattering angles € and ¢ are
determined. The scattering angle p(#) is defined by the scattering phase function. In
the general case p(s, s”) = p(0) p(y) where s is incident direction, s’ is scattering
direction of photon. Note, particles of medium are spherically symmetrical particles,
when we have absorption and scattering. This approximation is used in similar cases,
and based on the fact that in the process of passage through a medium with strong
scattering of a photon interacts with particles from different angles. We can therefore
use the average of the scattering indicatrix.

Thus, if you use this approach, we have p(yp) = ﬁ In the case of tissue with
strong scattering as a function of the phase of the scattering phase function p(6)
Henie-Greenstein can be applied, from which we obtain an expression for the angle 6:

2
2 _ 1-g?
1 I+¢ [1+g272gRand0m

2g

0 = cos™

where Random is random number uniformly distributed in the range (0, 1). At each
step 6 angle is relative to the <old>> direction of propagation, the angle ¢ is in a
plane perpendicular to the «new>> direction of movement.

The free path of photon is:
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/
1 1.0
p(L) = [l_] -
ph

where mean free path of photon is

1
Ly =
! Ha ~+ fis
Since
o0
/p(L)dL =1.
0

For the calculation of the mean free path we take random number £ € (0, 1):

L
5=/p(l)dl.
0

The number &, which is uniformly distributed in the interval (0, 1), is given as com-
puter generated random number.
Thus, the free path of a photon is:

L =—lyInd —¢).

After that one models the interaction of a photon with a particle of the medium, which
can be either absorbing or scattering center. The probability of photon scattering on
the particle is

Lbs
Ps = — + g,
s

The probability of absorption is:

paz&'i‘l/'a:l_px'
s
If the generator produces a random number in the range (0, p), then the photon is con-
sidered to be scattered, otherwise it is absorbed. The total layer of the medium along
the z-axis virtually divided into a number of thinner layers having equal thickness
to which data arrays correspond. In each array the number of absorbed or scattered
photons is recorded. Thus, the spatial resolution of the depth of the sample is

1
Laye ’
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If the photon is scattered, its new direction and coordinates are calculated with the
following formulas:

x = x9 + Lsinfcos y,
y = yo + Lsin#sin ¢,
z =120+ Lcosé,

where xg, yo, zo are the <old>> coordinates of photon. If the photon is absorbed,
then we start the next one. Next, all the coordinates are translated in the original
coordinates. Calculation continues as long as the photon is not absorbed or leaves
the detector. At the boundaries of the medium-to-air total internal reflection is:

1
0 = sin~! (—) ,
n

where 7 is refractive index of medium. Note that the use of Monte-Carlo method is
based on the use of macroscopic optical properties of the medium which are assumed
to be homogeneous within small volumes of tissue and simulation by the Monte-Carlo
method does not account for details of the energy distribution of radiation inside an
individual cell.

2.5 The Nonstationary Theory of Radiative Transfer

Using the nonstationary transfer theory, we can analyze the response time of the scat-
tering tissue [26]. This analysis is important for justification of noninvasive optical
methods using measurement reflection or transmission of tissue with a time resolu-
tion [1, 2, 28]. The nonstationary equation of radiative transfer theory is [26]:

ol (r,s, 1) OI(r,s,t)
s 2 o

t

= —ul(r,s,t)+ Z—S/ / I(r,s', ) f@, t)dt | p(s,sHds2', (2.16)
vy

4w oo

where ¢ is time, 7, is the average time between the interactions,

, 1 t—r
S )= —exp|— ,
Al t

1

t1 is the first moment of the distribution function f (¢, t") and it means the duration of
the individual act of scattering, t — 0, f(¢,1) — §(t —t'), I (r, s, t) is ray intensity.
Equation (2.16) satisfies the boundary conditions (2.3) for (r,s) — (r,s, t). If the
direction I (r, s, t) is insignificant compared to the isotropic component, then (2.16)
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is transformed into a diffusion equation [17, 28]

(v2 —cpgD™ = D_lg) Ur,1) = —O(r, 1), (2.17)

if i, = 0 the diffusion equation is equivalent to the heat conduction equation.

The solution of the diffusion equation (2.17) for media with constrained geo-
metry requires that the source function of the boundary conditions were set as
follows [26-29]:

1. During the sensing medium directional beam radiation source of the diffuse com-
ponent is not localized on the surface of the medium, but at a certain depth.
2. Boundary condition for the classical diffusion problem can be written as

Ur, D=0 =0,

where 2 is surface bounding the region of space where the diffusion takes place.

In the case of diffusion of radiation, this condition must be modified to account
for the influence of the light reflection at the boundary.

Solution of the diffusion of radiation in bounded regions space can be obtained
using standard techniques of solving boundary-value problems, for example in the
areas in the form of a half-space [30]. Note that the important question is of the influ-
ence of absorption on the transport properties of the scattering medium. The diffusion
theory of radiation diffusion coefficient is

D= ¢ .
3(pa + (1 — g)ps)

However, in [28-30] it is written that a better match between the experiment and the
diffusion theory achieved if D is of the form

C
D=——
31 — g)ps

This allows us to analyze the statistics of the optical paths in the case of an absorbing
medium by calculating the probability density p(s) for non-absorbing medium with
the specified pg and g.

We note that there have been various attempts to modify the diffusion approx-
imation in order to obtain an analytical description of the radiative transfer near
the scattering medium, and also for cases of strong absorption and anisotropic scat-
tering. Thus, in [31] the description of the radiative transfer is examined using a
three-dimensional telegraph equation.
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2.6 Methods for Measuring Optical Parameters
of Biological Tissues

To measure optical parameters of biological tissues (absorption coefficient, scatter-
ing coefficient) different methods are used. These methods can be divided into two
classes: direct and indirect. The direct methods are the methods which are based on
the basic concepts and definitions, such as Bouguer law:

I(z) = — R)I,exp(—142), (2.18)

where R is the reflection coefficient, /,, is the intensity of the incident light, y, is the
absorption coefficient and z is depth.

The measured parameters are the scattering function or lighting inside the volume
of the medium. The advantages of these methods include the comparative simplicity
of analytical expressions that are used in data processing. The disadvantages of
direct methods are related to the need of strict implementation of the experimental
conditions, the relevant models: the single scattering for thin samples, the refraction
of light on the edges of of the cuvette.

Indirect methods involve solving the inverse scattering problem using specific
theoretical model of light propagation in the medium. Indirect methods are divided
into iterative and noniterative. Noniterative methods use the equations in which the
optical properties are determined by the parameters associated with the measured
values. Note, in case in vitro measurements of the parameters of samples of bio-
logical tissues we can use method of integrating the two spheres combined with
measurements of the collimated transmission.

It consists of consistent or simultaneous measurement of three parameters: the
collimated transmission, diffuse transmission 7; and diffuse reflection R,;. For deter-
mining the optical parameters of the tissue from these measurements one can use var-
ious theoretical equations or numerical methods (two-and multi-flux model, inverse
Monte-Carlo method), which establish the relationship between the absorption coef-
ficient, the scattering coefficient with the measured parameters. In the simplest case,
we can take a two-flux the Kubelka-Munk model [34]:

S —=1n (M); K = S(a — 1);
Ty

1—sz+R§_b_

2 1/2.
-1 :
2R, (a )

3 1
K =2u,; S = Zus(l -8 — Zﬂa;

e = pa + phss g = prs(1 = &) > pla.
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Determination y; of collimated transmission measurements on the basis of (2.18)
allows us, with the help of experimental data 7, R, to find all three of the optical
parameters of tissue: u,, (s, g The Kubelka-Munk model, three-, four-, and seven-
flux [25, 33, 34] are the basis of of indirect noniterative methods.

2.7 Methods for Solving Inverse Problems
of Scattering Theory

One method of solving the inverse scattering problem is the inversion method
of adding-doubling [33]. The inversion method of adding-doubling includes the
following steps:

1. assignment of expected optical parameters;

2. calculation of reflection and transmission using the method of adding-doubling;

3. comparison of the calculated values of the reflection and transmission with the
measured;

4. repetition of the procedure to obtain coherent data with a given precision.

The method is used with the following assumptions: the distribution of light is
independent of time, the samples have homogeneous optical properties, the geom-
etry of the samples is an infinite plane-parallel layer final thickness, tissue has a
homogeneous index of refraction, internal reflection at the boundaries is described
by Fresnel law and the light is not polarized.

2.8 Resume

This chapter describes methods for modeling the interaction of light with biological
tissue: the diffusion approximation, the theory of radiative transfer, various multi-flux
theories and the Monte-Carlo method.

Note the most significant limitations and disadvantages of these methods:

. The theory of radiative transfer is true for sufficiently distant scatterers.

. The diffusion approximation can not be applied at a wavelength A = 0.514 pum.
It also is not applicable near the surface of the object at the input of the light
beam, where single scattering is predominant.

3. A major shortcoming of the Monte-Carlo method is that in order to obtain precise

results with help program must be passed a large number of photons.

4. Modeling of Monte-Carlo does not account for the details of the distribution of

radiation inside a single cell.

These reasons have defined the development of a new approach of mathematical

modeling of the interaction of light with biological particles and biological tissue

through the application of asymptotic methods in the theory of diffraction.

N =
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This approach enabled:

1.

2.

The investigation of the optical properties of an ensemble of randomly oriented
spherical particles (red blood cells) in the cavity optical linear resonator;

The calculation of the refractive index of the blood and to determine the speed
blood of an flow in the capillary at a wavelength A = 0.63 pwm for the case in
Vivo;

The investigation of the optical characteristics of the simulated biological struc-
ture with roughness, when the characteristic size of unevenness on the surface
is much greater than the wavelength, by the classical methods of the theory of
diffraction;

The evaluation of the effect of roughness on the spectral characteristics of the
simulated biological structure;

The calculation of the preliminary parameters of the laser radiation field, to iden-
tify and study the effects of responses of laser irradiation at different levels of
organization of living matter;

The description of the quantitatively and qualitatively normalized spectra of laser
radiation on the oxy-and deoxygemoglobin and the selection of the optimal wave-
length for the effective action of laser radiation on biological structures;

The study the effectiveness of absorption not only by blood but also in biological
tissues, and the investigation of the kinetics of the denaturation of tissue in order
to develop the optimal mode of operation and technical characteristics of laser
used in biomedical research.
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Chapter 3

Modeling of Optical Characteristics
of Spherical Particles in the Optical
Resonator Cavity

Abstract We describe optical characteristics, namely, dispersion and absorption
spectra of an ensemble of spherical particles randomly oriented inside an optical
cavity. The study is based on the self-consistent matching of new data from the inho-
mogeneous optical cavity with data from the scattering of an ensemble of spherical
particles of different size, randomly oriented in free space. A specific calculation of
dispersion and absorption dependences on the wavelength shows that this method
can be used for investigation of biological media consisting of spherical particles, in
particular, erythrocyte suspension.

3.1 Introduction

Recent decades have been characterized by rapid progress in molecular biophysics,
photobiology, and optical methods for the investigation of various biological sys-
tems. Some changes occurring in biological objects after light absorption can be
analyzed by various physical and chemical methods. The most efficient techniques
for investigating processes in complicated biosystems are intracavity optical meth-
ods. However, in order to use these methods, one has to develop adequate theoretical
models. In this chapter, we describe a model for prediction of absorption and dis-
persion of physical media consisting of insulator particles, which can be used for
simulation of biological media constituted by spherical particles of different radii, for
example, erythrocyte suspension. It is noteworthy that the use of the resonator allows
more correct evaluation of the optical characteristics of the medium than common
techniques.
Chapter is based on the results of the [1, 2].

K. Kulikov, Laser Interaction with Biological Material, Biological and Medical 27
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Fig. 3.1 Linear resonator
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3.2 Vector Spherical Harmonics

Let a cell with randomly oriented particles of different diameter be placed inside the
cavity in a domain §2 near the z-axis (see Fig.3.1).

Using these particles we can model erythrocytes as red blood cells are easily
deformed and do not retain their shape biconcave disc, in particular when the cell is
in a hypotonic tincture, in this case, erythrocyte may be spherical.

We assume that the particle sizes exceed the incident radiation wavelength; i.e.,
ka’! > 1, where a/ is the radius of the jth particle.

Let a plane, linearly polarized electromagnetic wave be incident on a group of
uniform particles with radii a’ and refractive indices N/ = n©@J + Xj , where
Jj is the particle number. The wave propagates in a random direction. The particle
ensemble is considered in a three-dimensional coordinate system with the origin at
the center of the particle jy. The radius vector of any other jth particle is denoted
as rjy ;. The field in the vicinity of the jo-particle, perturbed by other particles, is
determined from the Maxwell equations

rotH = ikE, rotE = —ikH, divE=0, divH=0,

where k is the wave number.
Let us introduce a vector such I that M = V x (ry), where ¥ is a scalar function
and r is the radius vector, V - M = 0. If we use the vector identities,

Vx(AxB)=AV-B)—B(V-A)+ (B-V)A — (A-V)B,
V-A-B)=Ax (VxB)+Bx (VxA) +B(V-A) +(A-V)B,

then we obtain
VM + kM = V x (r(V2y + k29)). (3.1)

From (3.1) it follows that M satisfies the wave equation if v is a solution to the
scalar wave equation
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V3 + k2 =0 (3.2)

Then
M=-rxVy

whence it follows that M is perpendicular to r.
Let us construct from M another vector function

1
N=-VxM,
k

which also satisfies the vector wave equation
VN + kN =0.

Therefore, M and N have all the required properties of an electromagnetic field:
they satisfy the vector wave equation, they are divergence-free, the curl of M is
proportional to N, and the curl of N is proportional to M. Thus, the problem of
finding solutions to the field equations reduces to the comparatively simpler problem
of finding solutions to the scalar wave equation. We shall call the scalar function
a generating function for the vector harmonics M and N; the vector r is sometimes
called the guiding vector. The choice of generating functions is dictated by whatever
symmetry may exist in the problem. In this chapter we are interested in scattering
by a sphere; therefore, we choose functions ¢ that satisfy the wave equation in
spherical polar coordinates. Let us rewrite scalar wave equation (3.2) in the spherical
coordinate system.

13 [ ,00 19 (. 3y 1 %y,
—— = — 0— )+ —————+k*y =0
2 ar (V or ) T 0 30 (Sm 26 ) T e XY

The solution of this equation in the spherical coordinate system has the form:

Ymn = P)"(cos 9)6”""’2,{ (kr),

J

where z;,

is any of the four spherical functions:

. s T
Jn(p) = ,/5 L1 (P, yn(p) = ,/ZYH%(p), (3.3)

1D = ju(p) + iva(p), B = ju(p) = ivu(p). (3.4)
The vector spherical harmonics produced by ¥, are:

V X Mun

My =V X ®Y¥mn), Npn = A

(3.5)
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Writing expressions (3.5) component by component, we obtain:

3 .
M,{m = [um(cos 0)iey — %Pm(cos 9)e¢] z,{ (kr)e'™?, (3.6)
N/ = n(n + 1) P (cos ey 2~ k1) img 9 pieos )~ 2027 (k)
" kr 90 " kro "
% etm¢e9 + ind P, (cos 9)55 [FZ’{ (kr)e”"¢] es (3.7)

s NJ will be used when solving the problem of scattering
at a random jth particle surrounded by other scattering particles of arbitrary radii
and refractive indices. When found, this solution will be used as a constituent to
solve the more complicated problem of the epigenous of the optical cavity with an
ensemble of scattering particles inside.

The vector harmonics M7

3.3 Expressions for the Internal, Scattered, Incident Fields
at an jth Particle

Expressions for the internal field at an jth particle are written as

o n
E1(j) =~ > iEualdiuN}, + chnM), 1. (3.8)
n=1m=—n
Hi(j) = ——— Z Z EnnlchnNbyy + ML, 1. (3.9)
n=1m=—n

Since the field is limited at the origin of coordinates, we choose the functions
Jn(p) defined by expression (3.3) as the Bessel functions for the vector harmonics
inside the jth particle.

Let us write an expression for the field scattered at the jth particle. The scattered
wave at a large distance from the particle is outgoing wave. Hence, we use functions
h,(ll), where

hD ~ (—i)"explikrl/likr], kr >> n®

Then we have:

Es(j) = D > iEmnlaguNy, + binaMy,, 1. (3.10)

n=1m=-—n
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Hy(j) = Z Z Ennlbmn Ny, + ana My, 1. (3.11)

n=1 m=-—n

Writing the expansion of the wave incident on the jth particle surface in terms of
the spherical vector harmonics, we have

Ei(j) = Z Z iEmnl PrnNoy, + dinn M), 1, (3.12)

n=1m=—n

Hi(j) = ——Z Z Ennl@innNb, + My, 1, (3.13)

n 1m=—n

where

(n —m)!

Epn = |Eoli"[2n + 1](+—),

To determine the coefficients ., bimns Cmns dmn We should use the boundary
condition at the interface between the jth particle and the surrounding medium:

(Ei(j) +Es()) — Ex(j)] x er = [Hi(j) + Hs(j) — Hi(j)] x er. (3.14)

For the fixed m and n, the four unknown coefficients are found from the four equa-
tions, followed from boundary condition (3.51) for the field tangential components:

Eig(j) + Eso(j) = E16(j), (3.15)
Eig(J) + Es(j) = Erg()). (3.16)
Hio(J) + Hso(j) = Hig(j), (3.17)
Hiy(J) + Hyg (j) = Hig()). (3.18)

Using (3.15)—(3.18), we obtain a system of equations for the coefficients of the
scattered field and of the field inside the particle. The system of equations for the
expansion coefficients of the scattered field is written as

ar{m = a;{P;{am lenn = bnqmn’ (319)

where
S w(m?)2 ju(mI x ) [xd jiy (D] = wd o D) [md x7 j (mI x 7))
(1 (mI )2 j (mix )[Rl (x0) ) — b (ed ) [md xT iy (m x3)Y
i jnmd XD ju ()] = i ) mI xd iy (mI x 7))
"W jamIx ) [xT R ()] — ) (D) m xd jy(mix)]

. (320

(3.21)
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The corresponding system for the field inside the particle is

C{nn = Cléqrilna d}{m = I{prjr.ma
where
= iGN = by (D ja (DY
N ja(mIx D) [xT Ry (x))) — bl (x))[mIxT ju(mixT)]’
g ImT iDLy DY = plm Ty G jin DY
J

pm )2 jy (mixd) [} Ged)) = pd b (eF)mi xd jy (mixd))

x/ = kal, al is the radius of the jth particle, m/ = (N/)/(N), N/ is the complex
refractive index of the jth particle, and N is the refractive index of the surrounding
medium. The prime here denotes the differentiation.

The electromagnetic field incident on the jth particle surface consists of two parts:
the initial field and the field scattered by the group of other particles in the medium
with the refractive index N. Hence, we can write the expression

Ei(j) = Eo(j) + D_E(. )). (3.22)
I#]

Hi(j) = Ho(j) + D _H, (U, j), (3.23)
I#j

where Eg(I, j) and Hg(/, j) are the sums of fields scattered at the jth particle. Indices
[ and j imply the transfer from the / to j coordinate system.
The incident wave is defined in the following way:

o n
Eo() == D iEmnlpiiaNy, + ginid My, 1, (3.24)
n=1m=—n

. k o0 n . . .
Ho) = - D iEmnlgimi Ny, + piaM,,, 1. (3.25)

n=1m=—n

The incident waves are considered in respect to the center of the jth particle, i.e.,
in the jth coordinate system.
The orientation of the wave vector k at an angle « to the axis z is defined as

k = k(exsina cos B + ey sina sin 8 + e, cosa),

where f is the angle between the axis x and the vector k component in the plane xy,
and « is the angle of wave incidence in respect to the z-axis. Usually, two polarizations
of the incident wave are considered; i.e., p- and s-polarizations. For definiteness, we
consider the p polarization. In this case, coefficients pi;1, i used in the expression
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for the incident field have the form

P = explik -1, j1p%,, gl = explik - 1)y 15,

where
1 Bl m
g 2 py M |
-_——_— P _ P 7
Gmn A+ 1) [aa " (cos &) cos e n(COSa)Sulﬁ}
PO = ; J pM(cos a)cosfB —i P™ (cos ) sin B
mont ) sina " :

In order to describe the scattering at an jth particle, we use the summation theo-
rems for the vector-spherical functions [3]:

mn—z Z[AO’"”M +BOMN, 1,

v=0 pu=—v

o v
Nun = > [BOMM,, + AOMN,I.
v=0 u=—v

M,...., Niun are the basis vector-spherical wave functions defined with the center

at the point O, M/ - N;w are similar functions with the center at the point O’, M;w

and N,w have the form identical to M,,,,, N,,,,,. Here,

w41 8
AL ) = (=DM s 2L (S It D+ v+ )
p=In—v|
— p(p + Dla(m,n, =, v, p)hy,(kra )
x P (cos b, jy)e' " T, (3.26)
n—+v
BO (L, j) = (=D)MiY~ "2 o +1> Z (—z)Pb n, =, v, p, p—1]
x h, (krqj) Py~ “(cose(l, ,»))e'“" e (3.27)
bon,n, v, pep = 1) = L 10 = g+ D S

—u—Lv,p—D—=(p-m+uw(p—m+p—1)]
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2p+1
Xzp_l[a(m,n,—u+l,v,p—1)+2u(p—m+u)]
2p+1
x 2 a(m,n, —p, v, p—1),
2p—1

where

1

2p+1(p—m— )
PALP=m =08 [ oy p () P ().

2 (p+m+p)!
-1

a(m,n, u,v, p) =

In these expressions 7y, j, 6y, j, ¢, ; are the spherical coordinates at the center of
the /th particle in the jth coordinate system. From the summation theorems it follows
that

M, (D) = D" D" A0, )M, () +BOmA )N, (D] (328)
v=0 pu=—v

N>, () =" > [BOLL, )M, (j) + A0, HNL, (). (3.29)
v=0 pu=-—v

Let us derive expressions for the scattered field from (3.24) taking into account
(3.28) and (3.29); we obtain

o0 n
. . l,j L,j
Es(, ) == D iEmnlpinNy,, + @uinM,, 1, (3.30)
n=1m=—n
k oo n L L
Hy(. ) = - DD Emnl@naNy, + prinM,,, ], (3.31)

n=1m=—n

where
L o0 %
Prin == >, A, )+ b, By, )1,

v=1 u=-—v

o v
l,j . .
Guin=— Y, > lal Biv(, j)+ b, Akl )],
v=1 u=—v
o QuA DM = !

E
ARV — ZHY ppHv AOMY
T " T Qnt D —m) o+t

v QA Dm0 =,

E
Bl = —FEBONY =i :
mn mn = o D —m) v+ )

Emn
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Substituting (3.12), (3.25), (3.30) into (3.22), we obtain

L oo v
Pinn = D — D, D > lab, Al j) + b, Bl (L, )], (3.32)
1#£j v=1 p=—v

L oo v
Ginn = it — D D D Lay, Bln(l. j) + bl Al (L. )] (3.33)
1#£j v=1 p=—v

The system of algebraic equations for the coefficients a,{m, b,{m follows from
(3.32), (3.33), (3.19) and has the form

L oo v
amn = an | pon = 2 > D lap A (L )+ bl Bl DT (334
L I#£j v=1 p=—v |
. . i PR L 0 v }
binn = biv | @it = D D D Lap, Bl ) + bl Apn (4, D1 (3.35)
1#£j v=1 p=—v

n=1,2,3,45..,m=0,1,2,3,4,5...n

or in the matrix form
L

o+ 1V = pi, (3.36)
I#]

Lo (@A ) an B, )
T,]: . . k
b Biun(l, ) bpAn(l, )
pl= (@l phi blakl), @l = (@ biw).

The solution of the system of linear equations (3.36) was carried out using the
stable algorithm of biconjugate gradients (BiCGSTAB).
In order to determine the internal-field coefficients, we should use the relations

& afun — aldin = 0, chbin — b = 0. (3.37)

Once the coefficients a;l,, b}, are determined from system (3.36), the expressions
for the scattered field can be written in the basic coordinate system as

0o n
E, = Z Z iEmn[aman,m + bm"ann]’ (3.38)

n=1m=—n
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= Z Z iEmn[bmn Ny, + @nnM,,, 1, (3.39)

n=1m=—n

Vv

o0
Z > lal, ALY, jo) + by, BLL(L jo)],
=1

H=—v

Amn

||M>

I
M=
M8

[a;LVB}fnLZ(l Jjo) + bMUA%(l, Jo)l.

N
Il
_
<
I
_

==V

System (3.36) for the coefficients aj,,, bj,, can be simplified if we restrict the
consideration to the field scattered forward and backward within a small angle around
the z-axis. This domain is of the most importance since the field inside is confined
by the optical cavity if the latter is adjusted so that the z-axis coincides with part of
the cavity optical contour.

After simple calculations, we obtain the following expression for the scattered
field in the far-field zone:

Esp ~ EO —ikr Z Z (2n + 1) ; [@mnTmn + bunTmn] X elm¢ (3.40)
n=1m=—n
tkr S m)!
Esp ~ Eo —ikr Z Z (2n + 1) m)! [@mnTmn + DmnTimn] X elm¢» (3.41)
n=1lm=—n
where

Tun = 9 — P} (cos0), Tmp = iP’”(cos@)
m 20 " ging

The symbol (~) means that expressions (3.40) and (3.41) are asymptotical and
can be obtained from (3.38) at (kr > 1).

Since the scattered field is considered far from the jth particle, its electric vectors
are parallel to those of the incident field; i.e., only the & component is nonzero in the
far-field zone. After simplifying, expressions (3.40) and (3.41) take the form

etkr Z Qn+1)

Egp ~FE b ,
—ikr &4 & n(n + 1)[ mnTn + Dmn7tn ]
elkr & Qn+1)
Esp ~ Eo —ikr Z Z_: m[amnnn + biunTal, (3.42)
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where 5 |
T, = ﬁPn(cosé?),ﬂn = EPH(COSQ).

Expressions for the magnetic field H are derived in the same way.

3.4 Scattering of a Plane Electromagnetic Wave
by a Three-Layer Spherical Particle

The specific features of biological particles (blood corpuscles) require a mathematical
model that is more complex and adequate than that using simple spherical particles,
since biological particles can contain a nucleus, a cytoplasm and a plasma membrane.
Let 1 be the cell nucleus radius, 7, be the cytoplasm radius, and r3 be the plasma
membrane radius

We consider the scattering of a plane electromagnetic wave by a three-layer jth
spherical particle with concentric layers. Following the well-known scheme in [4],
we represent the field as the sum of incident and scattered fields and write the field
inside the particle separately for each layer. We then expand each field in a series in
fundamental spherical vector harmonics; use the boundary continuity conditions of
the tangential components of the electric and magnetic fields on the surface, which
separate layers with different values of permittivity and magnetic permeability; use
radiation conditions at infinity; and find the corresponding expansion coefficients
apy, and by,

In the range r| < r < ry, where both Bessel functions are finite, the internal field
is written as

o0 n
En()=—> > iEnnldin,Ny, + chn,Mb,

n=1m=—n

+ fin M2, + 8N, (3.43)
Hp(j) = ——= Z Z Ennlcin,Np, + din, M},
2 n=1m=—n
+ gmn2an + f:thmn)s (3.44)

for the range r, < r < r3, we have

o n
En())=— > > iEnnldinN}, + chnMp,

n=1m=—n

+ fins M2, + g N2, (3.45)
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H(j) = — —Z Z EnnlchnyNb, + dinns M,

a)/L3 n=1m=—n

+ G M2+ faa N2 (3.46)

In the range 0 < r < rj. i.e., near the center of the particle, we take into account
the contiguity condition of the field at the center and write the internal field as

o0 n
E () == > iEmnldimNb, + chnMp,). (3.47)

n= 1 m=—n

Hy, (j) = ——Z Z Ennlcn Nbyy + din, MJ,). (3.48)

w“’l n=1m=—n

The expression for the incident wave on the surface of the j-particles is determined
by (3.12) and the expression for the scattered field in the j-particles is determined
by (3.10).

To determine coefficients a;,, and b;,,, we use the following boundary condition
at the interface between a jth particle and the surrounding medium

[E; —E{] xe =0, [Ez—E;] xe,=0, (3.49)
[H —Hj] xe, =0, [Hz3—Hz] xe =0, (3.50)
[Ei(j) + Es(j) — E1(j)] x er = [Hi(j) + Hs(j) — Hy(j)] x er. (3.51)

We substitute the expansion of the fields in spherical vector harmonics in boundary
conditions (3.51), use the orthogonality relation for spherical harmonics, and obtain
a set of equations for the unknown expansion coefficients. Then, al, and b, is
determined expression of the form (3.19), where

miEr — psn, -
o — _Ynnox) TR Ty dd) () (3.52)
" j i 2 ’ N - i ARl .
n(n0%3) pm3 02 — win, ?E%X%; Xn(m3x3)
n (X3
J l,b,l(m xl) jvn (mle)
s m Do
A ””"(mz’ﬁ) uam Uy o] x) U2y mdxd)
1 b
Xn(mle) JM ) J xn(m2 1)
V«z Uy ] x)) 2 s mdx])
‘pn(’”zxz) —_A
0, = Yn (mzxz) Y (m)x3) p

Xn(mzxz) MJZ?) — A
Xn(mzxz)
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S i) xamix)
6, = wn(m§x3’) Y (m)x]) K x])
Xn(mix]) s
xn(méx-’>
) ()
Imle ]—” il
Ay = w”(mlxj) 3L Mz 3 (m3x3)
Xn(m3x2) m @1 _ mfm
M3 2 12%) R
. J J 1pn(”o)%)
jy 1oy — pmf L)
. npoX n(no
bl = _‘g(( 0 j)) ' ‘g((” ’“3) (3.53)
n n0x3 J I — J&n n0x3
Haltol 2 = s o))
NN 'w"(mx) IAGE
g, — Yn(maxi) Y2y mdxy T2 g ndad)
1 M i 9
Xn(mle) mJW—xl_ J /M
M Wn J ]) ! Xn(mzx]
.. 1/’ (mzxz) ﬂ
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Here, the prime means differentiation, m? = N{ /n,, N is the complex refractive
index of a jth particle for a tth concentric layer, n, is the refractive index of the
environment; x{ = kal, where j = 1...N, t = 1, 3 and a? is the radius of the jth
particle with tth concentric layers.

3.5 Numerical Study of the Algebraic Equations

To solve problems of light scattering of dielectric bodies, simulating, for example,
blood cells, it is often a problem solving ill-conditioned linear algebraic systems
equations. Numerical analysis shows that the use of iterative methods is an effec-
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Fig. 3.2 The dependence of 10°
the relative residual norm on
the number of iterations for
the predetermined method
of bioconjugate gradients for
the following parameters:
the number of particles in
the layer being simulated
was assumed to be ten, the
relative refractive index is
1.035+0.00001i, radius of
the particle is 3.5 um
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tive step to solve linear algebraic systems with an ill-conditioned matrix. The most

effective and stable method of iteration are projection methods, and particularly that

of their class, which is associated with designing the Krylov subspace [5, 6].
Algorithm of Krylov subspace methods include two steps:

1. Construct a basis in the Krylov subspace.
2. The calculation of correcting the corrective.

To calculate the correcting corrective amendments the following approaches were
used

1. The Ritz-Galerkin method. The residual construction is orthogonal to Krylov’s
subspace. This approach is used in such methods, as a method of conjugate gra-
dients and a method of a full orthogonalization.

2. The minimum residual Approach. At each iteration, minimizing the norm of
the residual. The approach used in the method of minimal residual for Krylov
subspace and generalized minimal residual method.

3. The Petrov-Galerkin approach. The methods in this class are based on the con-
struction of biorthogonal basis.

These methods have several advantages: they are stable, thanks to technology
orthogonalization allowing efficient parallelization and work with different types
of preconditioners, and these methods can be used for systems with nonsymmetric
matrices. Thus, by solving a system of linear equations (3.35) a stable algorithm
biconjugate gradient is used. This method is based on a quadratic conjugate gradient
method, but does not allow the accumulation of rounding errors and unstable behavior
of the residual [6]. The dependence of the relative residual norm on the number of
iterations for the predetermined method of bioconjugate gradients (Fig. 3.2a).

The calculations showed that the use of iterative methods without additional mod-
ification is not reasonable, because in most cases the iterative methods have shown
unsatisfactory convergence. Therefore, iterative methods have been used with pre-
conditioning, as it improves the convergence to the desired solution [7].
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We consider the following system linear algebraic equations
Ax=Db (3.54)

where b is vector of free members, x is vector of unknowns and A is matrix (N x N)
coefficients of the system.
Let M be is nonsingular matrix (N x N). Multiplying 3.54 by the matrix M !,
we obtain the system
M~ Ax = M~ b, (3.55)

The system is same exact solution x,, because M is nonsingular matrix.

The process transition from (3.54) to (3.55) for the purpose of improving the
characteristics of the matrix to accelerate the convergence of the solution is called
preconditioning, and the matrix M~ is matrix preconditioner. Methods of precondi-
tioning can be divided into two types: explicit and implicit. The preconditioning can
be introduced into the scheme of the method without the need for explicit calculation
of the matrix product.

Thus, an explicit preconditioning requires finding the matrix M~! and matrix
multiplication preconditioning on vector in each iteration. If we consider the implicit
method for solving linear algebraic equation, in this case it is necessary to solve linear
algebraic equation with the matrix M in each iteration.

The majority of methods in both types of preconditioning is based on the represen-
tation of the product of two matrices L and U,i.e. M = LU (LU is decomposition).
We solve the linear algebraic equation with the preconditioner in the form of LU -
decomposition. Figure 3.3 shows the relative residual norm of the iteration number
for preconditioned methods of bioconjugate gradients and indicates sufficient con-
vergence of the method. From the graph follows the conclusion of a sufficiently
stable convergence of the method.
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3.6 Scattering Matrix

In what follows, we will need the elements of the scattering matrix, which relates
the Stokes parameters of the incident and scattered fields

L, = SL;,

where L; is the Stokes vector of the incident field, L; is the Stokes vector of the
scattered field, and S is the 4 x 4 scattering matrix. Elements of this matrix are
expressed in terms of the elements of the 2 x 2 matrix that relates the orthogonal
components of electric vectors of the scattered (E;s, E,) and incident (Ey;, E;)
electromagnetic waves,

EHs _ E, _ plikr—ikz Sy S3 EHi (3.56)
E —Esy —ikr \Sa S1 J\EL J~ '

To write the field scattering forward (backward) in the small-angle vicinity of the
wave propagation direction, it is sufficient to use the diagonal representation of the
scattering matrix S

Si1 0 0 O
g 0 S 0 O
0 0 $33 0
0 0 0 Sy

where
_ Lo 2 _
S = 2[|S2| + 181171 = S22,

1 * *
S33 = 5[5152 + 5871 = Saa.

Here the sign (*) denotes the complex conjugation, and the expressions for the
scattering amplitudes S1 and $> of the passed (6 = 0) and reflected (8 = 7)) waves
have the form

1 o0 n
$:0) = 51(0) = 5 ;m;n(zn + Dlamn + bunl. (3.57)
1 o0 n
Sa(m) = =$1(1) = 5 > > @+ D(=D"[amn — byn]. (3.58)

n=1m=—n

Expressions (3.57) and (3.58) will be subsequently used to calculate the frequen-
cies of the eigenmodes in the optical cavity with an ensemble of spherical particles.
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3.7 Eigenmodes of the Optical Cavity Containing
a Cell of Spherical Particles

Since the eigenmodes of annular and linear resonators change differently when an
inhomogeneous medium is introduced into them, for definiteness we will consider the
simplest, linear resonator. The resonator scheme is shown in Fig. 3.1. We assume that
the plane of the resonator optical contour is the symmetry plane. This assumption is
necessary to justify both the subsequent separation of variables in the field equations
and the small degree of depolarization of the field transmitted through the layer of
spherical particles. The closed system of equations for the field E in a cross section
orthogonal to the optical contour of a two-mirror resonator can be written in the form

E* = (I + RIR)E™, (3.59)

where I is the matrix operator describing eigenmodes of the cavity without the
medium, and R, R; are the same for the cavity with the medium. After the separation
of variables in (3.59), the expanded integral equation for a coordinate cofactor of the
scalar component U of the eigenmode field at a resonator mirror has the form

UE) =5 expIikL] / exp [In[R; (e Ra(x1)]]

—00

X exp [(:I:i(Axlz + DE> 2gx1)/(23)] Ux))dxi, (3.60)

where the signs (—) and (+) correspond to the field at the left- and right-hand mirrors,
respectively, a R and R, are the scalar functions of the form

i 1x} i 1x?
Ry = S(0)exp —a—l—EZT s Ry =S(m)exp| — - 55 |- (3.61)
11

x1 = Vkx, zi1 = 21k, 220 = 22k, S(0) and S(r) are the scattering amplitudes for
the transmitted and reflected waves, respectively, A, B, C and D are the wave matrix
elements of the resonator without particles (effect of the particles is accounted for
the coefficients Ry and R» ), z11, 222 are the distances from the particle layer along
the resonator optical axis (the distances larger than these asymptotic formulas (3.42)
for the scattered field are valid).

Expressions (3.61) are obtained by the Taylor expansion of the distance » used in
(3.56) from the coordinate origin to the observation point on condition that

x?/? <<1

(small-angle assumption). The field distribution at the mirrors of the resonator with
a particle layer in the domain £2 (see Fig.3.1), is determined from the solution of
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integral equation (3.60) and has the form

4 1 X1
Unx)™ = 2"n\w Hi (5)

: 2
X exp |::|:i(n F1/2)3 + (6 — 8) +In(p1) £ ikL + In[S0)S(m)] + ”;1 }

Therewith, the resonator eigenmodes are expressed by the formula

o — c27fq +(n+1/2)g —i((e = 8) +In(p1) + In[S0)S(m)])
n — LN )

(3.62)

where c is the speed of light in vacuum, ¢ is the number of longitudinal mode, n is the
number of transverse mode ¢ >> n, L is the resonator length, N is the environment
refractive index,

sing A+ D i i
o= , & = arccos ,e=—,0=——,
B 222 211
- 1 A+ D A+ D)?
A:[A+ - ’2},—— + |- @D il amyt,
2z 2z, 4 4

p1 = pk is the dimensionless thickness of the particle layer and H,, are the Hermitian
polynomials.

Formula (3.62) implicitly defines the rather complicated relation between the
frequencies of the resonator eigenmodes and the electrical parameters of the particles,
such as the real and imaginary parts of their refractive indices, dimensions, etc. This
formula cannot be further simplified without loss of information, and, hence, the
relations between the mode frequencies and parameters of the medium and resonator
should be analyzed numerically.

3.8 Numerical Calculations for the Resonator with
a Simulated Medium Conclusions

Let us consider a layer of spherical particles inside the optical resonator shown in
Fig.3.1. The resonator has the distance L = 11 cm between the mirrors, M and
M, with radii of 100 and 46.3 cm, respectively. The wavelength is A = 0.63 um
(the center of the helium-neon laser line), z; = 6, 000 4, zp = 6, 005 A. The radii of
the particles are within the range from a = 3.5 — 4.0 um (according to [8], this is the
range of erythrocyte radii). We assume the particle layer thickness p to be equal to the
particle diameter, and the distance between the particles in the plane orthogonal to
the resonator optical axis to be 10 A. Formula (3.62) allows us to calculate the particle
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Fig. 3.4 a Dependence of the real part n? of the erythrocyte refractive index on the wavelength for
x = 0.0001; b the same for the imaginary part x at n® = 1.040
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Fig. 3.5 a Dependence of the resonator eigenmode frequency on the erythrocyte radius at n® =
1.040 and x = 0.0001; b the same at n® = 1.050 and x = 0.0001

refractive index n° 4 i x from the given resonator frequency w,, where the subscript
n is the number of the transverse mode. We assume that n = 0; thus w, corresponds
to the frequency of the main transverse mode. Dependences of the refractive index’s
real n° and imaginary x parts on the wavelength are shown in Fig.3.4a, b. These
plots show that values of n° and y are close to the experimental data on the complex
refractive index of erythrocytes, measured in [8] without using the intracavity model.

It should also be noted that the maximum values of n° are attained at the wave-
length where y is minimal and vice versa, which agrees with the general theoretical
concepts. Similar dependences can be calculated for lasers with different parameters
and used for the treatment of the dispersion and absorption experimental curves of, in
particular, spherical erythrocytes. The resonator mode frequencies are also sensitive
to the size of spherical particles.

Figure3.5a, b demonstrate dependences of the main mode on the size of ery-
throcytes at various refractive indices. These dependences may also be used in the
experiments measuring the erythrocyte size by the intracavity method. Thus, from
our point of view, the suggested model evaluating the refractive index and size of
erythrocytes in combination with the intracavity experiment can be more informative
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and accurate than the available methods which do not use resonators. A doubtless
advantage of the reported approach is the possibility of measuring the real and imag-
inary parts of the refractive index, size of particles, and other parameters in the same
setup. Finally, systematic application of the offered approach will probably help find
a correlation between the electrical parameters of erythrocytes and their biological
properties.
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Chapter 4
Mathematical Models of the Interaction
of Laser Radiation with Turbid Media

Abstract We construct the mathematical model for calculating the interaction of
laser radiation with a turbid medium and the model for the prediction of the optical
characteristics of blood (refractive index and absorption coefficient) and for the
determination of the rate of blood flow in the capillary bed under irradiation of a
laser beam is proposed.

4.1 Introduction

Now we proceed to the consideration of the principles of construction of mathemat-
ical models for calculating the interaction of laser radiation with a turbid medium.
Turbid is called medium in which there is the absorption and scattering of radiation.
One example of this is human skin tissue.

As was noted in Chap. 1, the skin is a live multi-media containing various inclu-
sions, such as, for example, blood vessels. Let’s consider the basic periods of con-
struction of the mathematical models describing the interaction of laser radiation with
immunocompetent multilayered turbid media, such as human skin. (see Fig.4.1).

First we described the object of study. After that optical and physical parameters
of all its components are defined. Next step is the calculation of the radiation in
the environment, and (on some models) the calculation of the temperature fields.
Distinctions between models become already appreciable at a period geometry con-
struction. In most cases the skin is represented in the form of sequence of layers with
various optical and thermophysical properties. The number of layers of the skin can
vary from one to seven. The simple geometry includes only derma. The simplest
geometry includes only the dermis [1]. This simplified model is used, for example,
to simulate the treatment of acne laser light with a wavelength of 1450 nm.

The greatest number of layers of model is presented in [2]. Here, seven layers
are located in skin: a cornual layer, epidermis, the upper derma, a derma with a
superficial plexus of vessels, the lower derma, a derma with a deep plexus of vessels
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Initial data: output characteristics
of the laser emmitters,
the medium parameters

A 4

Distribution
The optical calculation P intensity radiation
in the medium

A

) Volume distribution
Thermal calculation < a heat sourse

in the medium

A 4

The temperature distribution

Fig. 4.1 The scheme for the construction of models that describe the interaction laser light with
objects

AN N~

Fig. 4.2 Skin model. /- the cornual layer, 2- epidermis, 3 - the upper derma, 4 - derma with
a superficial plexus of vessels, 5 - the lower derma, 6-derma with a deep plexus of vessels,
7- hypoderm

and a hypoderm (see Fig.4.2). Each of layer has the optical characteristics. However
such detailed separation of a skin into layers is used only for optical calculation.
Some authors identify the blood as a separate layer with the characteristics of
pure blood, or as an object within the tissue. A single blood vessel is sometimes
rectangular [3], or more cylindrical [4-9] forms are usually placed in the dermis.
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Fig. 4.3 Model of the skin with the blood vessels

The example of a model of the skin to the blood vessels of cylindrical form is shown
in Fig.4.3 [10].

In most cases the vessel wall has the same properties as a surrounding tissue.
Models with vessels are located in the dermis, usually used to obtain the distribution
of light intensity and temperature inside the veins. Optical properties are generally
considered to be constant for a given wavelength and independent of temperature.

In article [11] it is assumed that the skin consists of the epidermis and dermis.
Incident light first passes through the epidermis, where the largest coefficient has
melanin, so the optical properties of the epidermis considered equal properties of
melanin. The transmitted wave gets into the dermis, where it is mostly absorbed
by hemoglobin, present in the surface layer of the dermis. The remaining radiation
diffusely reflected from the collagen present in the rest of the dermis, and then
passes through the layers of hemoglobin and melanin, partially absorbed. Such a
description of the passage of light through the skin is used to calculate the coefficients
of pigmentation and erythema.

In [3, 10] one describes another method for calculating the intensity distribution
within the vessel. With the solution of the problem of electromagnetic diffraction on
an infinite circular cylinder, the component of the electric field inside the cylindrical
vessel is searched. These results let calculate the distribution function of heat sources
inside the vessel.

4.2 An Electrodynamic Model of the Optical Characteristics
of Blood and Capillary Blood Flow Rate

Application of lasers in biomedical investigations is based on the large variety of
effects of interaction of light with biological objects. Optical methods are the most
promising and are comparatively safe methods of study, being among the so-called
noninvasive methods. However, the application of optical methods requires adequate
theoretical models, whose development presents considerable difficulties.
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It should be noted that a number of theoretical and experimental studies have been
devoted to similar questions [12, 13]. In [12], the propagation of optical radiation
through a biological medium (human skin) was modeled by the stochastic Monte
Carlo method, which combines calculation schemes of real photon paths and the
method of statistical weights. In [13], the absolute average flow rate of a biological
fluid in microcapillaries and the flow direction were determined experimentally.

In this study, we will use an electrodynamic model, which makes it possible.

1. to vary such parameters of a biological structure as the real and imaginary parts
of the refractive index of the blood, epidermis, upper dermis, and lower dermis;

2. to ascertain dependences between these parameters and the biological properties
of blood irradiated by a laser beam;

3. to determine the rate of the blood flow in the capillary bed. This allows one to
diagnose diseases whose manifestation is related with a decrease in the effective
diameter of capillaries and with changes in the biophysical properties of blood.

Chapter is based on the result of the [14].

The biological tissue is represented in the form of layers with different optical
characteristics (the epidermis, upper dermis, blood, and lower dermis), which are
irradiated by a laser beam. The system of blood vessels is located in the upper layer
of the dermis.

4.3 Reflection of a Plane Wave from a Layer with a Slowly
Varying Thickness

In this section, we will find the coefficient of reflection from a layer with a slowly
varying thickness.

We will consider the optical system shown in Fig.4.4. The system consists of
four regions with different refractive indicesthe epidermis, the upper dermis, a blood
vessel, and the lower dermis.

In order to attain the maximum possible correspondence between the structure of
our model medium and that of the real object of study, we will represent the interfaces
between the layers of the model medium in the form of curved surfaces

zi = hi(x, y), hi(x,y) = ci sin(a;x + b;y). 4.1)
In these expressions c¢;, a;, b; are arbitrary constants obeying the conditions

a < 1,b < 1,6 <1, =1,3).
Let a plane s- or p-polarized wave be incident on a layer at an angle 6.

Eine = exp(ikixx + iklyy —iki;2),

where
kix = kny sin(0) sin(¢), k1, = kny sin(0) cos(¢),
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Fig. 4.4 Schematic diagram of a model biological medium

k1; = kny cos(9). “4.2)

The reflected field must be found. We consider only the case of the p polarization.
We will write the Maxwell equations for the jth layer of the medium,

rotE = —iopop; H, rotH = iwepe; E, divE = 0, divH = 0. 4.3)

Then, the electromagnetic field in the jth layer of the medium will satisfy the fol-
lowing wave equation

AE +K*n3E =0, AH + k*n%H =0, “4)

where k2 = wzeouo, n; is the complex refractive index of the jth layer (j =1, 5),
nj =n$ +ix;. We introduce the contracted coordinates

1 =¢ex,& =¢y, & =ez. 4.5)

We will assume that the thicknesses of the layers Hy, H> and H3 are slowly varying
functions of the variables x and y. Let the ratio of the characteristic thickness of a
layer to the characteristic linear size L be denoted as ¢; then we obtain
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Hi(x,y) =hi(&, 52)|.§|=€x,§2=5y,
Hy(x,y) = ha(§1, 62) g =ex, er=cy>
Hy(x,y) = h3(61, 82)|g,=ex, 0=y~

The conditions that the tangential components of E and H should be continuous at
the interfaces between media lead to the following boundary conditions

Eilg=0 = Ezlg=0, E2lgy=ch (51,6 = E3les=ehy(&1,80) (4.6)

E3|g=chy(€1.6) = Ealgz=chs(&1.,8)

E4lgs=chs&1.6) = Eslez=ehs (61,8, 4.7
1 0E; 1 0E,
2 05, ——l&=0 2 05, = l&s=0, (4.8)

! (3 o 0 ok a) |
1 /9  9h 0 e
3 \ok 08 08 98 0 Ey=ehy (€1.62)

1 (8 oh; 0 0h 8)E| 4.9)
==|——-—— ——— 3lE3=chy (£1,6)> .
0E;  0F 0&  0& 0&,) D BTmELe)

1 (3 dhy 9 dha 9 ) |
1 (3 33 e
2\og ~ Tor s Cog 0 ) PTG

L(d 9k d ok D
=p(— PP vaie ) E4lgs=cny(&).,62) (4.10)
4

n

083 08 0§ 352 13

1 9 ah3 0 3h3 ad |
421 0&3 3%‘1 0&; 852 3&- E4lgy=chs(8.8)
— 1 ( 9 oh3 0 3/13 d

—_—— e — — Es| h “4.11)
08, | 0&, 08| 0&s aé) f=ehEe)

Since Hi, Hp, and H3 are slowly varying functions of x and y, it is natural to seek
the reflected field in the form of waves with slowly varying amplitudes and quickly
oscillating phases:

Ey = exp (—rm(sl £, 53)) +exp (’gmef(a, £, 53))

X A(81. 82,83, ex, £y), (4.12)
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Ey =exp (grzeza,,(sl, £, &)) BY (1. £2. £3. 60, 8y)

+exp (ZETBref(gl , &2, 53)) B™ (&1, 62,83, &x, &y), (4.13)

E3 = exp (’;rsemp@] £, 53)) CH (&1, 2. E3, 61, £)

+exp (’guref (1. 6, 53)) C (€1, 62, E3. €4 £y). (4.14)

E4 =exp (émelap(él, &, 53)) DY (&1, &, 83, 6x, &)

=+ exp (lg'fSref(élv &, 53)) D™ (¢1,82, 83, ex, &y), (4.15)

Es = exp (ZETSelap(glv &, 53)) E(§1,52, 83, 6x, &y)- (4.16)

Here, A, BT, C*, DT and E are the amplitudes, Tiref, T2elaps Taref s T3elaps Taref s
Tsref and Tseqp are unknown functions. By substituting the fields Ey, E», E3, E4
into (4.4), we obtain the equations for the amplitudes and eikonals:

e2AA +ieRVAVTI of + ADTirer) + Ak*n3 — Vi,er) = 0, (4.17)

e2ABT +ie(QVB T V1ouap + BT Ataeiap) + BT (K13 — Vauap)
+&*AB” +ieQVB Vtaref + BT Ataref)
+ B~ (k*n3 — V13,0) =0, (4.18)

e?ACT +ieQVCTVT3000p + CTAT1ap) + CT (k1% — VT3014p)
+&2ACT +ieRQVC ™ Vigrer + C~ ATarer)
+ C(k*ng — Varer) =0, (4.19)

e*ADT +ieQV D Vseap + D Atserap) + DT (P03 — Viaerap)
+&2AD™ +ie(2VD " Visyer + D™ ATsyef)
+ D™ (k*n2 — Vs,ep) = 0, (4.20)

e*AE +ieQVEVtseap + EATse1ap) + E(K*n% — Vseap) =0.  (4.21)
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The amplitudes A, B = C*, DT and E are sought in the form of series in powers of
small parameters ¢, and ¢,.

A1 6 83 ex.8y) = D > AijlEr, B2, E3)(eL - ), (4.22)

i=0 j=0

B(E1. &2, 63, 60.89) = D O Bl (E1, &2, 83)(] - &))

i=0 j=0

+ D" B (EnL B E3) (e - ), (4.23)
i=0 j=0

ClE1. 6283, x.8y) = D > ClilEr, 2. 83) (el - &)

i=0 j=0

+ D03 C L B E3) (e - ), (4.24)
i=0 j=0

D(E1. &2, E3.6x.8y) = D > D(E1. 2. 83)(el - £))

i=0 j=0

+ > D1 2. E3) (e - £), (4.25)

i=0 j=0

E@E.6.85.6.80) = 2. > Eij(1. £2.8)(eL - £)). (4.26)

i=0 j=0

From (4.17—4.21) we obtain the equations for the eikonals

kzn% — Ve =0, k2n% — Ve1ap =0, 4.27)
kzn% - Vr3r€f =0, kz”% - V7:3elap =0, (4.28)
Kng — Vtaer =0, k*nf — Vigerap = 0, (4.29)
K*n? — Vsyer =0, k*n? — Viserap = 0. (4.30)
and amplitudes
VA()OVT]ref = 0, ZiVAijVT]ref —+ AAi*],j*l = O7 (431)
VByVretap =0, 2iVBVtoeap +AB, ;| =0, (4.32)
VByVisrer =0, 2iVBVtyer +AB | ;| =0, (4.33)
VCooVelap =0, 2iVC}Vieap + AC | ;| =0, (4.34)

VCoVares = 0. 2VC;Vigrer + AC, ,_; =0, (4.35)
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VD()()VT4elap =0, ZZVD VT4elap + ADZ 1j—1 = =0, (4.36)
VDyVtsrer =0, 2iVD;; VTSref + AD;_, 1= =0, 4.37)
VEowVtselaqp =0, 2iVE;jVTseiqp + AE;—1j—1 =0. (4.38)

By solving (4.27-4.38) with regard to (4.22-4.26), we obtain the eikonals for the
reflected and transmitted fields and the ray amplitudes A, B, C, D, and E.

Tiref = kax&1 + koyéo + kos&3, k3, + kgy + ki = k’n3, (4.39)
Taelap = kaxb1 + koyéa — Ky 83, k3, + k3, + K5 = K*n3, (4.40)
T3ref = k3x§1 + k3yr + k.63, (4.41)
Tielap = kax€1 + kayés — k383, k3, + K3, + k5. = kPnj3, (4.42)
Tdref = kax&1 + k4y$2 + kaz%—?n (4.43)
Thelap = kax€1 + kays — ki &3, kG, + k3, + ki = kP, (4.44)
Tsref = ksx&1 + k5y$2 + k52$3, ka + kSy + k/z = k2n5’ (4.45)
Tselap = ksx&1 + ksyéa — ks:€3, k3, + k3, + k3, = K*n3, (4.46)

where

kjx = knjsin(9) sin(), kj, = kn sin(9) cos(¢), kj, = kn;jcos(0), j = 2,5
A(E1, 82, &3, 65, 8y) = Agy(to) + x [ATy(t0) + E3Aoooo(to) ]
+ &y [Ag) (t0) + &3 Aoooo(t0) ]
+exey [AT (0) + &3 40000(00) ] + O (), (4.47)

24 2.2
=& + ézki: - E3—Z, Aoooo (fo) = _%a%%(m)kk;’?
B(1.62. 83, ex0 8y) = Boy " (1) +ex [ Big " (1) + By (1163]

+ ey [ Boy T (00) + By (11)&3]
+ &xey [B1, (1) + Bl (11)E3] + Boy ™ (12)
+ex [ By~ (1) + Boggo(11)&3]
+ ey [Boy ™ (22) + Bigpo(2)3]

+exey [B; () + By (12)E3] + O(e),  (4.48)

’
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N ” 5 *n3 1 9? k*n3
Bigo (1) = % 3 2 By, (tl) k/3 ; BOOOO(Q):_Ta_zBOO (r2) 3

t1—§1+52 +§3 t2—€1+~§2 §3

k/ k’ ’ k’ k’ ’

CE1. 6,83, 60, 8y) = coz+<t3> + e [Clot ) + Coooo(t3)$3]

+ &y [Co1 (13) 4+ Cilgoo (1)3]

+ exey [C T (13) + Clyo (11)E3] + Cop ™ (14)

+ & [Cro™ (ta) 4+ Copo(14)63]

+ &y [Co1™ (12) + Cipoo(14)E3]

+ exey [C117 (1) + Copoo(ta)E3] + O (%), (4.49)

2 2 2 2.2
o) = 2 et e oy = m kP o K
0000 2 a 2 OO kgi 0000 2- a 2 =00 kii
l‘3—€1+$2 +%‘3 , t4—§1+€2 53
k3z kéz k4z k4z

D182, 85, £x. €3) = Dog " (15) + ex [ D17 (15) + Digong (1553
+ey [DgyF (15) + Cogo (15)83]
+ ex6y [DT(15) + Do (15)€3] + Dy~ (1)
+ex [ D]y (t6) + Dopoo (t6)£3]
+ &y [ Dy~ (t6) + Do (t6)83]
+ exy [D])7 (t6) + Dogoo (te)€3] + O (), (4.50)

2 n2 2 k2n2

1 n;
+ U -
Do (t5) = % 012 =5 Doo (5) 3 Do (16) = _j o2 Dy (t6) —53~ 03
4Z 5z
s =& + Sz Yt 53 e =§& + Ez 537k5x
A A

E(£1, 6. 83, ex, 8y) = Egy(t7) + &x [Efy(t7) + &3 Eooo0(17)]

+ &y [E&(m) + & Eoooo(l7)]

+ exey [ET (17) + &3 Egooo(17)] + O (&), (4.51)
1 02 Egy(t7) k23

Eoooo(t7) = % at72 k53
Z

Sy ks

, 7—514—52

The substitution of (4.12—4.16) into (4.6—4.11) with regard to (4.39-4.46) and
(4.47-4.51) gives rise to a recurrent system of equations for the successive determi-
nation of terms of series (4.22-4.26).
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1+ Ay =By + By,
Boot exp(—hiiky,) + By~ exp(hiiky,) = Coot exp(—h1ikh,) + Coy~ exp(hiiky,),
Coo " exp(—haiky,) + Coy~ exp(haik),) = Dgy* exp(—haiky,) + Doy~ exp(haiks,),
Do, exp(—hziky,) + Dy~ exp(h3iks,) = Egexp(—h3iks;),

1 ) ) —~ 1 ) —~ . o
— (—lklz + lkZono) =— (_’k§z300+ + ik3, By )
ny ny

1 . ~ . . — .
- (—lkézBOU+ exp(—hiiky,) + iky. By~ exp(hi lkéz))
2

1 . ~ . . — )
== (—zkéZCOO+ exp(—hiiks,) + iky,Cqp exp(hlzkgz)),
3

(—ikgzc@+ exp(—haik}.) + ik}, Coy~ exp(hzikgz))

S
w| —

1 — . . —~— .
== (—ikf‘ZDo(ﬁ' exp(—haiky,) + iks, Dy, exp(hzzkgz)),
4

(—ikgz Doy exp(—haikl,) + iks. Doy~ exp(hgikgz))

JEM‘ —

1 ~ )
= niz (_ik5zE00 exp(—h3zk51)) .
5

From this system, one can find the reflection coefficient in the principal approxima-
tion for the reflected field.

Now, we will pass to the derivation of the formulas for the reflection of a Gaussian
beam. This problem will be solved by expansion of counter propagating waves in
terms of plane waves in the region of medium one, their reflection by layer two, and
reverse transformation with a subsequent Huygens—Fresnel integral transformation
to obtain the field in the initial section.

4.4 Reflection of a Gaussian Beam from a Layer with a Slowly
Varying Thickness

Let a Gaussian beam with an arbitrary transverse field distribution be incident on a
layer at an angle . We will relate the coordinate system (x’, y’, z’) to the direction
of incidence of the beam. The reflected field will be sought in the coordinate system
(x”,y"”, 7). Let the incident field have the form along the straight line z’ = 0

Einc|z/=0 = ¢(E{’ Eé)lé{:gx’fé:gy“

Let the function @ runs sufficiently rapidly to zero starting from the distances of the
order of O(1/¢)-axis of z’. We will write the identity:
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8\8

D&, &) = n )2 / /exp[tk VEL kD éz]dk dk/\)/

—00 —00

x exp[—ik{\&[ — ik{\& 1P (&', §3)dE{ d&s .
Then, the incident field can be represented as

1 oo o0
e =Gz | [ kb

—00 —00

x exp[—iz \/kzn —e2x 2k2/\ 2kaZA—Hk \EL kD 52]

/ / d&{'dgp expl—ikiy &' — ik{ 6010 (& £9).

—00 —00

We note that the incident field satisfies the Helmholtz equation. By expanding the
exponent of the exponential into a series in terms of a small parameter, we obtain
the following expression for the field:

| [o,SNee)
. — A AN
Eipe = (27_[)2 / /dklxdk
—00 =00
xexp|—iz/ | 1— 0.582y2k12§ - 0.582x2k12£ - e kaZAklzyA + 0(64)
n3k? n2k2 4nk

x explik{) ex +lk1y8y]/ /dsfdgz exp[—ik{\ & — ik{\§3' 1P (51", 65).

—00 —00

If |k | <<k, [k7\ | << k, the square root in the exponential

2,2 2 2128 Q22128
\/knl sxklx sykly

can be expanded into a series in which only terms quadratic in k1, and k1, would be
retained. Then,

. 0o 00
— NPT
= e / / dky, dkj

—00 —00

058D 05823
xexp|—iz | 1— n%kz %kz —|—O(e ) +zk 8x —|—zkl ey’

Einc
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oo o0
« / / de{dgs expl—iki\&] — ik{\ &0 1D E2).
7007.00

Let us relate the coordinate systems (x’, y', z') and (x, y, z)

knix' = kix + ki2y + ki13z,
kniy = kyix + kay + ko3z,
kniz' = kaix + kazy + ka3z,

ki1 = knyay, k1o = knyain, ki3 = knais, ko1 = knpazy,

kyp = knyax, kyz = knyazs, kay = knyasy, kap = knyasz, kaz = knyass,

air = cos(gp) cos(y) — sin(g) cos(0) sin(y),

app = —sin(p) cos(¥) — cos(gp) cos(0) sin(y),

a3 = sin(0) sin(yr),

az1 = cos(e) sin(y) + sin(g) cos(0) cos(¥),

ayy = —sin(p) sin(yr) + cos(¢) cos(@) cos(ir),

azz = cos(f), axz = — sin(f) cos(y), az; = sin(¢) sin(H),
azy = cos(¢) sin(6).

In the coordinate system (x, y, z), the incident field is written as

1 oo 0
Eine = G / / dk),dif,

—00 —00

oo X
x expli (xkix + ykiy — zk1z) / / d&(des

—00 —00

x expl—ik{\&] — ik\\ES 1D (&), 65,

where
2.,21.2N 2 212A A A
= y°ky &2 x%k k ki
kix=— 1|k 1-— - e e g —e—2k
b |: 31( Zkzn% Zan% ) kn i kn 2

+ 0(eh,

|
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(4.52)
(4.53)
(4.54)
(4.55)
(4.56)
(4.57)
(4.58)
(4.59)
(4.60)

(4.61)



60 4 Mathematical Models of the Interaction of Laser Radiation

212120 2. 2727 A A
&= y“k e?x%k k k7,
kiy =— [lm (1 - DA Lx )+ e SLkzz}

2k2n? 2k2n? kn kn
+ 0(@eh), (4.62)

2.21.2A 2 212A A A
ey ky &% x%k k ki

k — k 1_ y _ 1x lxk _ yk
1z |:33( 2k2n% 2k2n% )—l—s—n 13 S_I’l] 23

+ 0(eh). (4.63)

4.5 The Reflected Field

Upon reflection, each spectral component explixkiy + iykyy — izky;] gives rise to
a reflected wave A(&1, &2, &3, kix, k1y) explixkix + iykyy + izki;], where A is the
amplitude determined by formula (4.47) and k1, k1y and k are given by formulas
(4.61-4.63). The reflected field will be written as

1
(2n)?

[o.olNe e}
Epef = / / dk{\xdkf\y exp(ixkyy +iykyy +izkiy)
—00 —O&0

oo o0
XA(§1’$2a‘§3kaX7k1}')/ /d%‘fdéff‘zXP(—ikfo]A—ikfyégA)@(ElA,SzA).

—00 —00

We note that reflected field also satisfies the Helmholtz equation. Let us pass to the
coordinate system (x”, y”, z”"), related to the reflected field:

knix = kiix" + kary” + k312",
kniy = kiox" + kany” + k322",
kniz = kizx” + kozy” + k337,

where ki1, k12, k13, ka1, k22, ko3, k31, k3, k33 are determined by relations (4.52—
4.60). In this coordinate system, the reflected field takes the form

. 00 00
Eref = exp(—i(k + 0(84))2//)W / / dkf\xdkf\z

—00 —00

221N 2. 21A
&7y kl, e“x“k
1. Y 1x 3
xexp|—z"i{ — — + O(e
p[ ( 2k2n?  2k2n? ( ))]

TN el 2 2 N A &l 2
x expliky, &7 (ay; + axnain + 913)lk1y§1 (az1a11 + a3, + axaiz)
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+ ik{\ &) (ar1a21 + adyarzans) + ik?, VvEy (a3 + anaxn
+a3)IAEL, &2, &, kix, kiy)

/ / d&{ dEy exp(—ik{,E[ — ik{\E)P(E] . E7).  (4.64)

—00 —00

In order to calculate the field of the reflected beam, one needs to reexpand the
amplitude A in terms of a small parameter, substitute this expansion into the for-
mula for the reflected field, and perform the integration. In the coordinate system
(x”,y",7"), the reflected field in the section z” = 0 related to the ray takes the form

1 o o0
Eref = sy / / dki\ dk exp[zk &/ (a}) + apain + aky)

—00 —00
+ik7\ & (az1a11 + a3, + axaiz)

+ ik7\ &) (a11a21 + a3, + arzans) + ik VvEY (a3) + anpan + a3)]

X AGE1. £2. &5, kir. k1y) / / dE( dEp exp(—ik(\E] — ik D)

—00 —00

X ®E,E) + 0(E2). (4.65)

By expanding A in terms of a small parameter ¢ at z” = 0, we have

le kl‘ AC]3 KixK1 ‘623 KlxKly
E %‘ E,.‘ e, %‘ , k s k
( Vkny 2 kny kil ( Vkny klz kil klz ) by Ix

A()o(é”w SNN kly’ klx)

et ~ ki3 - -
— &y [Alo@{/ + &7 kiy, kix) + —E{’Aoooo(rf{' + &7 kiy, klx)}
— &y |:Ao1(§”~ + &7 kiy, ki) + S 'Aoooo (6 + &), klysklx)i|
— &xEy [An(f{/N + &7 kiy, kix) + Sl”Aoooo(E”N + &7 kiy, klx)]

ka3 ~ ~
— &x&y [—gﬁ/Aoooo(S{/ + &7k, klx):|

Ao E]T + & Ky, ki) (kfykin — kpykar)
ok kn

 9Ao000 1™ 485 ki, ki) (kiikiz — kjyka)
3]{1); kn1

+ 0(&?). (4.66)
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The substitution of (4.66) into (4.65) and integration yield the following expres-
sion for the reflected field along the beam axis z” = 0:

AL ET + 87 ky ki) PE] §)

Eref = o

[ —~ ~ 1~ k13 / ~ 1~ / /
- EX[AM)@{/ +$2, aklyvklx)‘FmSl,AOOOO@{, +$2, vklyvklx)] @(Sl”gz’)

8 —~ I~ 1~ k 7/ I~ '~ /) /)
- ;y[Am@{/ +& ,kly,ku>+ﬁsz’/«oooo<s{’ +& ,kly,ku)]@(s{,sz’)

exey [ o - k13 ~ -

- = [A“(sl” + & ,kly,klx>+ms.”Aoooo(s( + & ,kly,km]axs;’,sz”)
ExE k23 ~ ~

- == [—sﬁ/Aoooo(s{/ +& ,kly,kla]axs{,s{)
o kn

[k [ A G+ & Ky ki) DAL+ & Ky ki) ] 99 )
iknjo okyy akiy &y

ek TaALGTT & ki, ki) L AGETHE k) ] 09 E &)
iknia okiy okiy G134

+ 0(&?). (4.67)

Note that the reflected field depends on the parameters of the incident beam
(the angle of incidence, the field distribution in a fixed section), the geometry of
the boundaries of the reflecting medium, the refractive index. The reflected field is
represented as the sum of the principal and the correction terms of the asymptotic of
the small parameter with precision O (g?2).

For fixed parameters of the system are two main factors that determine the distor-
tion of the field of the incident beam upon reflection. The first factor, call it geometric,
is described by the term in square brackets in (4.67). The reflected field is obtained
by multiplying the incident beam field to the local reflection coefficient of a plane
wave of unit amplitude incident on the medium at the same angle as the beam.

The second factor is called it the diffusion. It described by the term in the curly
brackets of (4.67). This term describes the distortion of the beam reflected by the
transverse to the direction of propagation of the reflected beam diffusion amplitude.
It should be noted that the reflection formulas were obtained for the field of a beam
with an arbitrary transverse distribution incident at an arbitrary angle to a certain
surface of a body with an arbitrary refractive index for the s- and p-polarization of
the incident beam. The results are represented as an asymptotic form with a small
parameter having the meaning of the ratio of the characteristic scale of variation of
the profile of the boundary of the body to the characteristic distance over which this
variation took place. The calculations were performed with an error of the order of
the quadratic terms of the asymptotic form. The resultant formulas are finite for any
values of the system parameters except the angle of incidence of the beam.
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The formulas are nonuniform on the angle of incidence. Upon an increase in the
angle of incidence, the correction terms of the asymptotic form will also increase,
which shows a growing distortion of the beam. When the angle of incidence is equal
90° then the wave beam is completely destroyed. Thus, the reflection formulas are
valid in the range 0-89°.

The expressions for the reflected H. field are derived in a similar manner. In what
follows, we consider the reflected field in the main approximation.

4.6 Calculation of the Rate of Blood Flow in a Capillary

In order to calculate the rate of the blood flow in a capillary, we will use the Galilean
transformation. For definiteness, the blood vessel is assumed to be oriented along
the Ox axis. Then

x=x"+ut,y=y. (4.68)

We will substitute the formula (4.68) into (4.69) and expand the latter expression
into Taylor series in terms of v,, retaining only linear terms. The substitution of this

expansion into (4.69) yields the dependence of the intensity on the rate of blood flow
in the capillary at the time instant 7. The intensity of radiation is determined as

I=|ELP+E (4.69)

E| =cos(@)E; +sin(0)E,,
E| =sin(0)E; — cos(0) Ey,

where E, and E, are given by the following expressions

0E. OE, 0E, 9E.

oy o = —iwpopjHy, . oax —iwpopjHy, (4.70)
0E, OE, OH, OH,

Ty —iwpop j H, o e iweoeEx, (4.71)
9H, oH, . oH, oH, |

3z ox =iwepe; Ey, ox oy = iwepe E;. 4.72)

Formulas (4.70-4.72) correspond to the system of the Maxwell equations (4.3)
in a Cartesian coordinate system. Thus, we obtained formulas allowing one to deter-
mine the explicit dependence of the intensity of laser radiation as a function of the
refractive index and absorption coefficient for the system of blood vessels located in
the upper dermis on the rate of blood flow in the capillary bed at the time instant ¢
and on the coordinate system.

The following investigation and the analysis of the dependences presented will
be performed by numerical methods.
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4.7 Numerical Calculations for a Model Medium
and Conclusions

Let us consider the model medium shown in Fig. 4.4. The parameters of the medium
are as follows. The refractive indices of the layers are equal to n§ = 1.50, n§ = 1.40,
nZ = 1.35, ng = 1.40; the characteristic thicknesses of the layers are dp = 65- 1079,
dy =565-107%ds=90-10%n) =1, x1 =0, x0 = x3 = xa = x5 = 1075,
a; = —0.0024, by = 0.020, ax = 0.021, b, = 0.030, a3 = 0.041, b3 = 0.051,
¢l =c¢2 = c3 = 1072 and the wavelength is A = 0.63um (the radiation wavelength
of a He—Ne laser).

In Fig.4.5a, b, the dependence of the intensity of radiation on the coordinate
system is shown for a multilayer absorbing and scattering medium, which models
human skin, for different values of the refractive index of blood. It should be noted
that, in comparison with the values of the refractive index of blood given in [15], our
model is rather stable and is sensitive to a change in this parameter up to the fifth
decimal place. This makes possible a more exact diagnostics of various pathological
processes related to changes in the electrophysical properties of blood.

The dependences of the intensity of the laser radiation on the refractive index
and absorption coefficient for the system of blood vessels in the upper dermis are
presented in Fig.4.6a.

In Fig.4.6b, the intensity of the laser radiation is shown as a function of the rate
of blood flow in a capillary at the time instant t in the vicinity of some point x’, y’.
These quantitative estimates allow one to determine a change in the rate of the blood
flow in the capillary bed, which makes possible the study of physiological processes
occurring in skin.

The dependences presented can be used for the prediction of changes in the optical
properties of blood and in the rate of the blood flow in the capillary bed caused by

(a) (b)

I, rel.units I, rel.units

Fig. 4.5 Dependences of the intensity of radiation of a He—Ne laser at a wavelength of 0.63 jum on
(ab), 6 = 0°, ¢ = 09, W= 09, x =107 (absorption coefficient of blood) and refractive indices
of blood n4 = 1.35 (a) and n4 = 1.35003 (b)
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(a)
I, rel.units

0.6

Fig. 4.6 a The refractive index and absorption coefficient of blood; b the rate of blood flow in the
capillary bed at an instant t in the vicinity of the point x” = 0.0001, y" = 0.0001(b)

various biophysical, biochemical, and physiological processes. Similar dependences
can be calculated for lasers with other parameters. The quantitative estimates obtained
can be applied to processing and interpreting of experimental data.

References

1.

2.

3.

10.

11.

D.Y. Paithankar, V.E. Ross, B.A. Saleh, M. A. Blair, B.S. Graham, Acne treatment with a 1450
nm wavelength laser and cryogen spray cooling. Lasers Surg. Med. 31(2), 106-114 (2002)
AYu. Seteykin, The model for calculating the temperature fields generated by the laser radiation
on multilayer biological tissue. J. Opt. Technol. 72(7), 42-47 (2005).

C.T.W. Lahaye, M.J.C. van Gemert, Optimal laser parameters for port wine stain therapy: a
theoretical approach. Phys. Med. Biol. 30(6), 573-588 (1985)

. ML.J.C. Van Gemert, A.J. Welch, P.A. Alpesh, Is there an optimal laser treatment for port wine

stains? Lasers Surg. Med. 6(1), 76-83 (1986)

. Y. Mohammed, J.F.A. Verhey, Finite element method model to simulate laser interstitial ther-

motherapy in anatomical inhomogeneous regions. BioMed. Eng. OnLine 42, (2005).

. J.W. Pickering, P.H. Butler, B.J. Ring, E.P. Walker, Computed temperature distributions around

ecstatic capillaries exposed to yellow (578 nm) laser light. Phys. Med. Biol. 34, 1247-1258
(1989)

. M.J.C. Van Gemert, A.J. Welch, J.W. Pickering, O.T. Tan, G.H.M. Gijsbers, Wavelengths for

laser treatment of port wine stains and telangiectasia. Lasers Surg. Med. 16(2), 147-155 (1995)

. G.W. Lucassen, W. Verkruysse, M. Keijzer, M.J.C. van Gemert, Light distributions in a port

wine stain model containing multiple cylindrical and curved blood vessels. Lasers Surg. Med.
18(4), 345-357 (1996)

. M.J.C. Van Gemert, D.J. Smithies, W. Verkruysse, T.E. Milner, J.S. Nelson, Wavelengths for

port wine stain laser treatment: influence of vessel radius and skin anatomy. Phys. Med. Biol.
42(1), 41-50 (1997)

L.G. Astafeva, G.I. Zheltov, Modelling of of the heating process of blood vessels by laser
radiation. Optics Spectrosc. 90(2), 287-292 (2001)

L.E. Dolotov, YuP Sinichkin, V.V. Tuchin, S.R. Utz, G.B. Altshuler, I.V. Yaroslavsky, Design
and evaluation of a novel portable erythema-melanin-meter. Lasers Surg. Med. 34, 127-135
(2004)



66

12.

13.

14.

4 Mathematical Models of the Interaction of Laser Radiation

I.V. Meglinski, Simulation of the reflectance spectra of optical radiation from a randomly inho-
mogeneous multilayer strongly scattering and absorbing light environments using the Monte
Carlo. Quantum Electron. 31(12), 1101-1107 (2001)

L. V. Fedosov, V.V. Tuchin, in the spatial-temporal correlation of the intensity of the speckle field
formed by the scattering of coherent radiation focused on the capillary flow of fluid containing
scattering particles. Optics Spectros. 93(3), 473—477 (2002)

K.G. Kulikov, A.M. Radin, An Electrodynamic Model of the Optical Characteristics of Blood
and Capillary Blood Flow Rate. Optics Spectros. 96(4), 613-625 (2004)

. AN. Korolevich, A.J. Khairullina, L.P. Shubochkin, The scattering matrix for monolayer of

soft particles when there is dense packing. Optics Spectros. 68(2), 403—-409 (1990)



Chapter 5
Study of the Optical Characteristics
of a Biotissue with Large-Scale Inhomogeneities

Abstract We construct the electrodynamic model which makes it possible to vary
the electrophysical parameters of a biological structure in calculations with allowance
for roughness (real and imaginary parts of the refractive index of the epidermis, the
upper layer of the derma, and blood) and to establish the dependences between these
parameters and the biological properties of blood under the action of laser radiation
in vivo.

5.1 Introduction

It should be noted that the study of propagation of light in randomly inhomogeneous
media is mainly based on the classical methods of the transport theory. However,
the application of the radiation transport theory is not always effective in the study
of propagation of light in randomly inhomogeneous media (in particular, biological
media). It is well known that most biological surfaces are not planar but are rather
loose randomly rough media, in which the size of roughness are larger than the
wavelength of radiation illuminating them. The roughness of the surfaces affects the
characteristics of propagation and scattering of waves. A wave incident on a rough
surface is not only reflected specularly, but is also scattered in all other directions.
The spatial parameters of the light beam interacting with a rough interface in this
case obviously change to a certain extent as compared to the case when radiation is
incident on a smooth surface. However, the classical transport theory fails to indi-
cate how the spatial parameters of the beam may change when it intersects the rough
interface between two media [ 1]. Thus, the disregard of rough boundaries in the trans-
port theory requires the application of classical methods of the theory of diffraction
of electromagnetic waves from randomly rough surfaces. In this connection, it is
important to investigate the optical characteristics of the biological structure taking
roughness (when the characteristic size of roughness on the surface is much larger
than the wavelength) with the help of the classical methods of diffraction theory.
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68 5 Study of the Optical Characteristics of a Biotissue

A number of publications in which light scattering from a rough surface was studied
[1, 2] are worth men tioning. For example, the scattering of light from a rough sur-
face with random Gaussian fluctuations of roughness was studied in [1]. The case
of coarse roughness was considered, when the parameters (standard deviation and
correlation radius) are much larger than the wavelength. In [3], light scattering from
an anisotropic rough surface was also considered. Scattering of light from a rough
cylindrical surface was studied in [4]. In [2], scattering of light from a rough dielectric
surface was analyzed (both theoretically and numerically).

Here, we construct an electrodynamic model which makes it possible to vary the
electrophysical parameters of a biological structure in calculations with allowance
for roughness (real and imaginary parts of the refractive index of the epidermis, the
upper layer of the derma, and blood) and to establish the dependences between these
parameters and the biological properties of blood under the action of laser radiation
for case in vivo. The problem consists of three consecutive stages. At the first stage,
the problem of light scattering from a rough boundary is solved and the coefficient
of reflection of a plane wave from a smoothly irregular layer simulating the given
biological medium is determined taking into account the roughness of the interface
in the case when the size of the roughness is larger than the wavelength of radiation
illuminating them.

At the second stage, we solve the problem of reflection of a Gaussian beam with
an arbitrary cross section. The problem is solved by expanding the fields of counter
propagating waves in plane waves in the domain of medium 1 and their reflection
by layer 2 and inverse transformation followed by the Huygens—Fresnel integral
transformation to obtain the field in the initial reference cross section (see Chap.4).
At the third stage, the dependence of the radiation intensity on the refractive index
is determined for a system of blood vessels in the upper layer of the dermis and the
effect of roughness on the electrophysical characteristics of the biological sample
being simulated is analyzed. The structure simulated consists of three regions with
different refractive indices (epidermis, upper layer of the dermis, and blood vessel)
illuminated by a laser beam for case in vivo.

The chapter is based on the results of the [5, 6].

5.2 Scattering of a Plane Wave from the Rough Surface

The surfaces of real bodies (in particular, in biology) are not perfectly smooth to a
certain extent. For this reason, reflection and refraction of the waves at these surfaces
are accompanied by the effects which are not observed for smooth surfaces. Rigorous
methods for solving the problem in the case of a rough surface do not exist. The
problem can be solved only approximately under certain constraints imposed on the
size and shape of roughness. For calculating the scattered field, the small-perturbation
method and the Kirchhoff (tangential plane) method are used. In this work, we will
use the Kirchhoff method for calculating the scattered field. To solve the formulated
problem, we will use the Kirchhoff approximation. To apply the Kirchhoff method
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correctly, we make the assumption concerning the smoothness of inhomogeneities.
At each point, the wave field can be represented as the sum of incident field (Ej.)
and reflected field (Eey).

Let us write the expressions for the field scattered by a certain smooth rough
surface z = H (x, y) in the Kirchhoff approximation. We select a certain region S of
this surface, whose linear size is much larger than the mean size of the roughness,
which in turn is much larger than the wavelength. We assume that there are no
elements of the surface shadowed from the incident wave or scattered wave.

Let us suppose that a plane s- or p-monochromatic wave is incident on a rough
surface; the unit wave amplitude has the form

Eipe(r) = e_iklr-

The observation will be carried out in the Fraunhofer zone of domain § and in the
direction of wave vector k. In this zone, the elementary waves of all elements of the
scattering domain can be treated as plane waves.
Fields E and H can be expressed in terms of certain scalar function (e.g., E) that
satisfies the equation
AE+KE=0 (5.1)

with boundary conditions of the form [7, 8]

Eref|z=H(x,y) = (1 + V)Einc|z=H(x,y)a (5-2)

0Eycr 0E;nc
=, — y=(1-V
on lz=H@,y = ( ) n

lz=H (x,y) (5.3)

where k? = w?sou0, V is the reflection coefficient depending on physical parameters
of the medium, and n is the unit vector of the outward normal. It should be borne in
mind that the formulas for the reflection coefficient for the s- or p-polarization are
different.

It should be noted that using the Kirchhoff method, we solve not the boundary-
value problem of diffraction, but a simpler problem that basically differs from it (i.e.,
the problem with a preset discontinuity of the field and of its normal derivative on
the surface). Thus, in contrast to the perturbation method considered in Chap.9, in
which the applicability limits of the results can be indicated for a wide class of special
cases and the next terms of the expansion can be calculated from the known small
parameters, the results obtained using the Kirchhoff method cannot be treated as the
expansion of the exact solution into a series in a small parameter (e.g., the ratio of
the wavelength to the characteristic linear size of the body at which diffraction takes
place).
3EIt is well known that the values of E inside the domain are connected with E and

5. on the surface bounding this domain by the Green formula
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E@) :f [E(r/)acér’ r) _9Ew®) o r’):| ds. (5.4)
s n on

where G(r, r’) is the Green function, which has the form

1 e*ikR
Gr,r)=—

, R=Ir—7|.
4Tt R

Taking into account expression (5.4), we obtain

G (r,1") OEyef (")
on on

f [Emc(r/)aG(r’ 0 _ 8E’“"C(r/)c(r, r/)} ds =0. (5.6)
S on on

E(r) = Eipc(r) + f |:Eref (I‘/) G(r, l'/):| ds, (55)
S

Expression (5.6) implies that all sources of the field lie within the surface. Sub-
tracting expression (5.6) from (5.5), we arrive to the formula

, . 0G(r, 1)
E(r) = Ejpc(r) +% |:(Einc(r) - Eref(r ))8—j|
S n
= [aEi””(r) _ Byl )] G(r,v)ds. (5.7)
on on

Substituting the value of the field and its derivative into this expression, we obtain

aG(r,r)  OEij.(r)
on Jn

E(r) = Einc(r) +]{ 1% [Einc(r/) G(r, r/)} dsS. (5.8)
s

We will henceforth consider only the scattered field defined as

G (r, 1) _ 8E,~nc(r/)G

Evca = Vv Einc !
scat (T) jé [ (r’) on on

(r, r/)] ds. (5.9)

Substituting into this formula the approximate expression for the derivative of
¢'*R / R with respect to n and the corresponding approximate expression for ¢/*% /R,
which are defined as [9]

9G 1 e*ikr aei(k,r) 1 e*ikr )
Py = - ——im k",
r

on 4w - on 47
IE;inc 1 e—ikr ae—i(kl,r)
an 47w 1 on
1 e—ikr eikR 1 eikr

~

=— i(n, ky)e i Ker) ek (5.10)

dr r R T r
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we obtain '
e*tkr )
Esear(r) = i q]f 1% [nel(q’r)]dS, (5.11)
dmr S
where
dxd oH 0H
q=k—ky, dS= xy’ n=(ae—,a—, —«,
o ax ay
1
a= . (5.12)
JO+ G2+ (2
This gives
oH 0H
ndS = E,E,—l dxdy, (q,r)=gq:x+qyy+qg:H(x,y), (5.13)
del@r) OHT .
¢ I:qx + qz—i| el@n), (5.14)
ax ax
ge'@r) IHT g
dy =19y +qz¥ e, (5.15)
; del@n ; del@r) ; ; dxdy
ne!@ngs — : — gt @n | — — qyel(q,r)’ —g.e'@" .
idx idy q:
(5.16)

Substituting expression (5.16) into (5.11) and taking into account relations
(5.12-5.15), we obtain

—ikr _q2 1 P 1 P )
Escar(r) =1 f Vv |: + g+ ._Qy_:| el(q’r)dXd)’v (5.17)
dmr Js, q: iq; ~dx ig; " dy

where gy = —k(sin6; cos ¢ —sin6;), gy = —ksinfgsings, g, = —k(cosf; +
cos by), 6; is the scattering angle, 6; is the angle of incidence and ¢; is the azimuthal
angle.

Note that in formula (5.17) we have passed from integration over surface S to
integration over its projection Sy onto the plane z = 0. Let us write expression (5.17)
in the form

—ikr 2

e i )
Escar(x,y) = —1i T [ }z{ v [e“’h”qw’wzf’ <X*>>>] dxdy:|
dmr q; /s,

e ikr 0H (x,
i [f e
Ty So q; 0x
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, 0H (x, ; ! '
+ 4y |:Qy + (r(;; y)ili|i| x e’(qxx+q>')’+q~’H(x’y))dxdy. (5.18)
z

It should be noted that the second part of formula (5.18) gives the edge effect.

5.3 The Scattered Field on the Fractal Surface

It should be noted that many biological tissues (in particular, dermis) exhibit optical
inhomogeneity [10, 11]; in this case, the surface of the outer dermis of the biolog-
ical structure being modeled can be described by the following 2D range-limited
Weierstrass function:

_2(D2-3)
) — o [2(1 5 )}

2(D>—3)N
Ma(1 — g7 P79y

N-1 M
(Dy—=3)n . " 2nm . 2mm
X crsin | K arx cos + by sin
nz_ng mz_:lz [ 2612[2 b Mz]

+<an] , (5.19)

where ay, by, ¢y are arbitrary constants obeying the conditions ay < 1, by < 1,
oK1

In formula (5.19) ¢ > 1 is the parameter of the spatial-frequency scaling, D>
is the fractal dimension, K> is the principal spatial wave number, N> and M> are
the numbers of harmonics, ¢y, is the arbitrary phase which is distributed uniformly
in the interval [—m, 7], and o is the standard deviation. Function H>(x, y) is self-
similar and has derivatives. The surface based on this function has many scales, and
the roughness can change depending on the scale under consideration.

To describe the rough surface numerically, parameters like the correlation interval,
the standard deviation, and spatial autocorrelation coefficient are normally used. The
possibility of using these statistical parameters for estimating the effect of the fractal
dimension and other parameters on the roughness of the surface was considered
in [12]. For this purpose, the dependence of the mean correlation interval on D for
various values of ¢ and the dependence of the mean correlation interval on g for
various values of D are investigated numerically. It is shown that inhomogeneities
of the fractal surface are mainly controlled by quantity D. Note that the fractal
surface presumes the presence of roughness of all scales relative to the wavelength
of the scattered wave. The features of scattering of waves by the fractal surface are
determined by the fact the surface is not differentiable; thus, the fractal front, which
is not differentiable, has no normal. However, the chords connecting the values of the
characteristic heights of roughness at certain distances have a finite root-mean-square
slope. In this case, the hypothesis of a fractal chaotic surface is introduced; it is equal
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to the length over which the slopes of the surface are close to unity [13]. Thus, two
scattering models have been adopted at present; the first is the model with fractal
heights, while the second is the model with fractal slopes of roughness. In the second
model, we note that it is once differentiable and has a slope that varies continuously
from point to point. This allows us to analyze our model in the geometrical optics
approximation.

Substituting expression (5.19) into (5.18), we obtain

e—tkr (Dy—3)n

q
Escar(x,y) = — — Vexp qxX +qyy + qzc z q,

i
4rr gy o

M
. 2nm

X exp Z ¢z sin Kogy [azx cos —
2

m=1

. 2mm
+ by y sin ] + @um | dxdy
My

N—-1 M Dy3
VT [1exr [qxx +ayy +gzeqy?” )"]

47tr (12 So n=0 m=1

] + (pnm] dxdy,
(5.20)

i Koo 2mm b . 2mm
X exp | ¢ sin ax cos sin
p|c2 295 | a2 My 2y My

where

2(Dy-3
ey |: 2(1_q2(2 )) }
- 2(D,-3)N\ |
Ma(1 = g3 P7)
We will use the representation of the uth-order Bessel function of the first kind in
the form of a power series

o
ek = N g (2)e?. (5.21)

U=—0o0

We substitute expression (5.21) into (5.20), which gives

N—-1 M o0

“anr 4 f [TIT > Jeuntaecas™ "

n=0 m=1u=—00

Escar(x,y) =—

. n 2rm
X exp | gxx +¢qyy +iu|c2K2q5 | axx cos T
2
| 2am
+ by sin + Oum | | |- (5.22)
M,

We can write this expression in the form
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lkr N-1 M
(Dy—3)n
E X,y) = J, c
scat( Y) 47Tr q f . Nzll_ioo nHO mHI Unm (qZ q2 )

N—1 M
2
x exp | c2i K> |:Z a5 Z Upmazx COS [ Mm]:| + Qxx:|
2

N= M 2rm
x exp | c2i K> |: q" Z Unmbry sin |: i
2

M
xexp|i Z unmgonmj| . (5.23)

If we consider scattering from a finite area element of size 2Ly x 2Ly, for —L, <
x <Lyand—Ly <y < Ly, then taking expression (5.23) into account analogously
o [13], we obtain the following expression for the scattered field:

—ikr

e 612 — . (D;—3)
—1i r — E | | | | -]unm(CIzCCIQ - n)
o0 m=1

4z UM N—-1=—

Egcar(x,y) =

N—-1 M
sin(L,¥y) sin(Lyy)
xexp{ > tnmPum 5 - 5 + ¥, (5.24)
X y

n=0 m=1

where ¥, gives the edge effect, and,

N—1 M m

Yy =gy +2K2 |:Z q3 z Uymd2X COS |: " i|j| ,
n=0 m=1
N-1 M rrm

Uy =gy + 2K |:Z;) 9 Z:l Upmbry sin [ A H .
n= m=

5.4 Reflection of a Plane Wave from a Layer with Allowance
for Surface Roughness

Having derived the expression for the field scattered by a certain smooth uneven sur-
face z = H (x, y) in the Kirchhoff approximation in the case when the characteristic
size of roughness on the surface considerably exceeds the wavelength, we consider
the problem of reflection of a plane wave from a layer with a slowly varying thickness
taking the roughness into account.

Letus consider the following optical scheme. The system consists of three domains
with difference refractive indices(epidermis, the upper layer of the dermis, blood
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vessel). To attain the best agreement between the structure and the actual object under
investigation, we represent the interfaces between the layers of the model medium in
the form of certain surfaces z; = H;(x, y),i = 1,2, where z; = Hj (x, y) is defined
by expression (4.1) and z; = H»(x, y) is defined by expression (5.19).

Let us suppose that a plane s- or p- polarized wave is incident on the layer at an
angle 6. We consider only the case of the p polarization. We must find the reflected
field.

We will seek the reflected field in the form of waves with slowly varying ampli-
tudes and rapidly oscillating phases

Ey = exp (;irl-nc<sl, &, 53)) +exp (;imef(sl, &, &)) A1 6.8, 60, )),
(5.25)
Ex = exp (érz,r(sl, b, &)) B (61, 60,65 600 6y)
+ exp (émref(éls &2, -’?3)) B (81, 62,83, ex, €y), (5.26)
Es = exp (;irseza,,(sl, 6. 53)) CHE1, 2. 83, £, £4)
+ exp (émref(f;“l» &2, §3)) C™ (61,8, 8&, 6x,8y) + Escar (61, &2, &),
(5.27)
where Esear (81, &, &) in the general form is defined by expression (5.24).
Ey = exp (émezap(a, &, E3)> E(E1, &, &3, e, 6y) (5.28)

and Tijnc,Tirefs Telap> Tarefs Telaps> Taref» Telap are defined in Chap. 4.

Amplitudes A, BT, C*, D* and E are sought in the form of power series with
small parameter &y, ¢y, the expressions for the amplitudes are defined analogously
to the method described in Chap. 4.

Substitution of expressions (5.25-5.28) into (4.6—4.11) generates a recurrence
system of equations. For the reflected field, this system leads to reflection coefficient
A taking into account the roughness at the interface with the medium being simulated
in the case when the characteristic size of roughness on the surface is much larger
then the wavelength of incident radiation.

1+ Ag = By + By~

Bootexp(—hiikh.) + By~ exp(hiikl,) = Coy" exp(—hyiky,) + Coy~ exp(hiiky,)
+ Escar (81,82, 83) g5 = ehy (51,50)
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Coo ™ exp(—haikhy,) + Cgy~ explhaikl,) + Escar (E1, &2, £3) |es=eh 1.60)
= Doy" exp(—haiky,) + Doy~ exp(haiks,),

Do, exp(—h3iky.) + Doy~ exp(h3iks,) = Egyexp(—hsiks;),

R N O A
_2 _lklz + lkzzAOO = ? _lkZZBOO =+ lk3ZBOO .

ni 2
% (—ikézB(%J’ exp(—hiiky,) + iky, By~ eXp(hlikéz))
= % (_ikgzc(;(;r exp(—hyik},) + iky,Coy~ exp(hlikgz))
+ni%8%sz($1, £2, 83)|e3=eh (1.5
ni% (_ikézc&\)Jr exp(—haiky,) + ik, Coy~ eXP(hzikz,Lz))
T %EEM(&, £, &) lesmoh 1,60
_ %(_ikg‘z Dy exp(—haik),) + ik, Dy~ exp(hzikgz)),

(—ikgz Dy, exp(—haikl,) + ik, Dy~ exp(hzikgz))

S
IS B

1 . ~ .
= (—lk5zE00 exp(—h3lk5z)) .
ns

The expression for the reflection of a Gaussian beam with an arbitrary cross section
is defined by expression (4.67). The expressions for the reflected H field are derived
in a similar manner.

The radiation intensity is defined by expression (4.69) and substitution of expres-
sions (4.67) into (4.69) and thus, at the given stage, we have derived the expressions
that make it possible to determine the explicit dependence of the intensity of laser
radiation on the refractive index and the absorption coefficient for a system of blood
vessels in the upper layer of the dermis. Further analysis of the above dependences
will be carried out using numerical methods.
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5.5 Numerical Calculations for a Model Medium
and Conclusions

Let us consider the optical system being simulated. The system consists of three
domains with different refractive indices (epidermis, the outer layer of the dermis,
and a blood vessel). The system has the following parameters. Refractive indices of
the layers are n§ = 1.33, ng = 1.35, n] = 1.35 and the characteristic thicknesses of
the layers are d; = 65 - 107%, d, = 565 - 107, nf=Lx1=002=x3=x=
1073, a; = —0.0987, b; = 0.09920, ¢; = 0.07749, a; = 0.007, by = 0.0089,
¢y = 0.0089, wavelength is A = 0.63 pm (center of the line of a He—Ne laser),
g2 =101, Ky =6, N, =2, My =3, D, = 29,0 = 1; ie., function Hy(x, y)
is normalized to 0 = 1. Note that the values of parameters a;,b; and ¢;, i = 1,2
are selected so that the shape of the surface corresponds best to the shape of the
interface with the corresponding layer in the structure of the normal human dermis.
In numerical calculations, the edge effect was not taken into account.

Figure 5.1 shows the dependence of the intensity of scattered field on fractal
dimension D. The curve in Fig. 5.1 shows that the scattering intensity increases, then
the relief of the surface becomes more complicated (fractal dimension D increases).
This effect can be explained by an increasing contribution of secondary scattering
from fine roughness as compared to that in the case of a smoother surface.

Figure 5.2 shows the radiation intensity for specific values of electrophysical para-
meters and ¢z, Ko, Dy, N2, M2, a;, bi, ci,i = 1,2fora multilayer absorbing medium
and scattering medium simulating the human dermis. It can be seen from Fig.5.2
that the Gaussian beam splits.

Figure 5.3a and b show the dependences of the laser radiation intensity on the
refractive index and absorption coefficient for a system of blood vessels in the outer
layer of the dermis for various absorption coefficients of the epidermis and dermis.

Fig. 5.1 Dependence of
the squared modulus of the 0.6
scattered field on fractal
dimension D 0.5
o 04F
§
= 0.3
021
0.1
0

1 |
1 1.2 14 16 1.8 2 22 24 20 238
D
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Fig. 5.2 Radiation intensity

for specific values of parame-
ters and for & = 00, ¢ = 00,

Y =0

Fig. 5.3 a Dependence of
the laser radiation intensity
on refractive index n4 and
absorption coefficient y4 for
a system of blood vessels in
the outer layer of the dermis
for the absorption coefficient
of the epidermis and dermis
X4 = 10~ ; b the same as in
a but for y4 = 1073
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It should be noted that the model constructed here is quite sensitive to changes in
the electrophysical parameters of the biological structure being simulated (in partic-
ular, to the absorption coefficient). The model constructed here makes it possible to
vary the inhomogeneities of a rough surface, the electrophysical parameters of the
biological samples under investigation, and the geometrical parameters and to estab-
lish the dependences between these parameters and the biological properties of the
biotissue being simulated. Thus, this model can be used for measuring the spectral
differences between the normal and pathological tissues in vivo experiments taking
into account large-scale inhomogeneities, aimed at the development of a spectral
autograph for determining pathological changes in the biological samples, which are
associated with a variation of the electrophysical properties of the epidermis, outer
dermis, and blood.

Analogous dependences can be obtained for lasers with other parameters and
can be used for processing of the experimental absorption curves of the biological
structures under investigation with regard to large-scale inhomogeneities.

The dependences given above can be used for predicting changes in the optical
properties of blood in the capillary channel, which are associated with various bio-
physical, biochemical, and physiological processes in the blood; these dependences
can also be calculated for lasers with other parameters; and the quantitative estimates
can also be applicable for experimental data processing and interpretation.
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Chapter 6
Light Scattering by Dielectric Bodies
of Irregular Shape in a Layered Medium

Abstract The mathematical model proposed for predicting optical characteristics
(refractive index and absorption coefficient) of a biotissue being simulated, which is
probed in vivo by alaser beam. Blood corpuscles in this case are simulated by particles
of irregular shape and various sizes, which are oriented arbitrarily in free space. Using
the mathematical model constructed earlier, optical characteristics (refractive index
and absorption coefficient) of the biotissue being simulated, probed in vivo by a
laser beam, are analyzed. The action spectra of the laser radiation power absorbed by
oxyhemoglobin and deoxihemoglobin of blood, which are associated with selectivity
of absorption of radiation by these hemoglobin derivatives, are calculated.

6.1 Introduction

In this chapter, we analyze optical and geometrical characteristics of particles simu-
lating erythrocytes in the upper layer of the dermis. It should be noted that hemorheo-
logical and microcirculation disorders occupy the leading place in the pathogenesis of
many diseases as well as states and complications. Functional properties of erythro-
cytes that form the major part of blood cells play the leading role in the formation of
such pathological states. The erythrocyte as a physical object is characterized by the
geometrical size, refractive index, and mechanical properties such as elasticity and
deformability. For this reason, analysis of various characteristics of erythrocytes (in
particular, their size, shape, and refractive index) in connection with various diseases
of the blood system is of certain theoretical and undoubtedly of practical importance.

The possibility of theoretical construction of optical characteristics of dielectric
particles of various shapes and structures has been studied in a number of publications
[1, 2].

We will solve the problem of scattering from bodies of an arbitrary shape by the
method of integral equations, which is known as the extended boundary conditions
method (EBCM) [3, 4]. It should be noted that this method gives the exact solution

K. Kulikov, Laser Interaction with Biological Material, Biological and Medical 81
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to the problem of light scattering by a particle of an arbitrary shape in the form
of infinite series; however, the maximal number of expansion terms required for
attaining a reasonable accuracy depends on the shape, size, and refractive index of
the scatterer. We have constructed a mathematical model that makes it possible to
vary the electrophysical and geometrical parameters (thickness of the layers) of the
biological structure being simulated and to represent the result in the form of a graph
describing the dependence of the laser radiation intensity on the electrophysical
characteristics of the model structure for each version being analyzed.

The problem consists of several steps. At the first step, it is necessary to find the
coefficient of reflection of a plane wave from a smoothly irregular layer simulating a
given biological structure which consist of two continuous layers and the third layer
containing inhomogeneous inclusions simulating blood cells with different refractive
indices.

At the second step, it is necessary to solve the problem of reflection of a Gaussian
beam with an arbitrary cross section for the above conditions (see Chap.4). The
construction of these parts is auxiliary. In this study, we precisely solve the problem
of light scattering from particles of irregular shapes, which simulate erythrocytes
oriented arbitrarily in free space, taking into account their multiple scattering, as
well as the problem of simulating the efficiency of light absorption by the main
derivatives of hemoglobin: oxyhemoglobin (HbO;) and deoxyhemoglobin (Hb) of
human blood in the upper layers of human dermis.

Chapter is based on the results of the [5-7].

6.2 Matrix Formulation of Scattering for the jth Particle
of an Arbitrary Shape

From the standpoint of biomedical optics, whole blood is a highly concentrated
turbid medium, whose scattering and absorption properties are mainly determined by
erythrocytes. For this reason, we will consider in this section erythrocytes present in
blood and their optical properties, disregarding the effect of other blood corpuscles on
light scattering; this does not affect the generality and correctness of the formulation
of the problem.

In some publications, an erythrocyte is considered as a homogeneous sphere
whose volume is the same as that of the erythrocyte [8, 9]; this can be treated as the
first approximation (see Chap. 3), and it is expedient to consider the erythrocyte as a
body of an irregular shape.

Let us suppose that a plane linearly polarized electromagnetic wave is incident on
a group of homogeneous particles simulating erythrocytes with radii @/ and refractive
indices N/, where j are the numbers of particles. The direction of the incident wave
is arbitrary. The group of particles is considered in the 3D system of coordinates with
the origin at the center of a particle with certain number jo. We denote by rj, ; the
radius vector of any other jth particle. We always assume that the surface (denoted
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by s) of a particle is quite regular and satisfies the Green theorem, and surface s
of the scatterer has a continuous single-valued normal n at each point. We consider
only the simple harmonic time dependence with circular frequency 2, omitting
factor exp(—i§2t) everywhere. We assume that the size of a particle simulating the
erythrocyte is larger than the wavelength of incident radiation; i.e., ka/ > 1, where
a’ is the radius of the jth particle simulating the erythrocyte.

We write the system of Maxwell equations for the field in the vicinity of the joth
particle, which is distorted by other particles:

VxH=—-ikéE,V xE =ikpH, divE=0, divH=0.

At the boundary of the particle with the surrounding medium, we must impose
the boundary conditions

nxE —nxE;=nxE;, nxH, —nxH; =nx Hj, (61)

where k is the wavenumber, ¢ is the permittivity of the medium, u is the permeability
of the medium, Ej is the scattered field, E; is the incident field, and E; is the internal
field. The expressions for these fields will be given below.

The total field can be written in the form E(r") = E; (") + E4(r"). According to
[10], we can write the corresponding integral equation

E/() + V x /n x E(r)G(r, r')ds + kiv X V x /n x H(r)
&

S S

x G(r,r'ds =0, (6.2)
where G(r, r’) is the Green function defined as [10]:

lk o n
Gur) = = 3 D (=) Ey [M2, (k1. 0. 9) - M, k', 6. )

n=1m=—n

+N2(kr. 6, o)N! (ki 0, (p/)] : 6.3)

forr > r’ and

ik o ~
Gur) = = 3" D (=" Ey [ML, (k1. 0. 9) - M, kr', 6. )

n=1m=—n

+NL k0, N3, (ki 0, (p/)] , (6.4)

for r’ > r, where My, Ny, M_ i, N_jpy, are vector spherical harmonics.
Note that the vector spherical harmonics should be chosen on the basis of invari-
ance (in the sense of closeness) property; namely, under the rotation of the system
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of coordinates, vector spherical harmonics M,,,;, and N,,,;, should be transformed
independently.

The required properties of invariance are satisfied by the following spherical
harmonics [10]:

M,J,m(kr) = (—1)mdn1,{(kr)cmn(9) exp(img), (6.5)

N/ (k) = (—1)"d, [Mz,{ KFYPyn (0) + =2 (k) By <0>]

kr kr
x exp(ime), (6.6)
. d o . im

Bn (6) = 5 05 (0) F g 0 6), 6.7)
Con (@) =i @) —i,-Lan (9 6.8
mn( )_lgm ()m( )_l(p@ om( )ﬂ ( . )

e ] 2n+1)
Py (0) =i,d), (0),d, = —4n(n T (6.9)

where z/ is any of four spherical functions form (3.4),

dom (0) =

(=rn—m |:(n + m)!
2"n! (n —m)!

n—m

X o—_—
(dcos(@))nr—m

1/2
:| (1 = cos?(9))™™/?
[(1 — cos®(O)"].

Let us write the expansion of the incident wave on the surface of the jth particle
in the vector spherical harmonics:

o n
E() == D iEmnlpmaNy, + dinaM,, 1. (6.10)

n=1m=—n
The expression for the internal field at the jth particle in vector spherical harmon-
ics is:
[e ) n . .
Ei(j) ==Y D iEmldiuNy, + M), 1. (6.11)

n=1m=—n

The expansion for the field scattered by the jth particle in vector spherical har-
monics has the form

o n
E(j) =D D iEmnlamNy, + biuM,, 1. (6.12)

n=1m=—n
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Following [10], we substitute expansions (6.10), (6.11) and (6.12) with allowance

for expressions (6.3), (6.4), and boundary conditions (6.1) into integral equation (6.2);
this gives

lkz/z Z( l)m [CmranMl/ ’+dr£mnXN , /:| (II\V/I’;mn )dS

n=1m=-—n —mn

&1
w2 e / Z Z (=" [cham x Nby,y + dium x M}y, |

n=1m=—n
X(?v‘é""")ds= (’)
—mn qmn
or, in matrix form,
P02 12 4m- 40N d () 6.13)
Pam-rt Pem i)\ )T \g? )" '

where m is the relative refraction index of the particle and

1
_/z Z (=DM cmnn X M}n,n, +d1nn x N o] (11\\1/[_mn)ds

n=1m=—n —mn

z ) .
‘/ ! /Z Z (= 1)m[cr]nnn X N:,,/,,/ +drjnnn X Mrln/,,/]

n=1m=-—n
X (M—mn) ds = — Cl,/,m
N*I’ﬂ}’l b}]nn
or, in matrix form,
a 1/21 + - 1/12 [1/22 + - 11/11 4 614
bi 1/22+m 1/11 1212 )\ ) (6.14)
Combining expressions (6.13) and (6.14), we obtain
al\ (1P e 1P w1 w12 2w
i) \uP+m- " i m P\ +me 12 +me !
X (qj) . (6.15)

Denoting matrices by Q(])} and QS} we can write expression (6.15) in the form
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aj j pj j 11 1 -1
( ) =Ty (q.,) T = =001k, ki) - [Q3) (k. k)] (6.16)

The elements of matrix le can be expressed in the form of surface integrals:

oy = (=D /S[M%_mn)(kr) X Mgm/n/) (k17r)IndS, (6.17)
I = @(=1)" / [M?_,y (kr) x N} (ki) IndS, 6.18)
o =a(=1" / [Ny (k1) 5 M ) (k1 7)IndS, (6.19)
Iy = (=) / [Ny (k1) 3 N0y (k17)IndS, (6.20)
I = (=D /S [M(_ (k1) X M, (ki7)IndS, (6.21)
2y =a(=D" [ [M{_ (k1) x N, (kir)IndS, (6.22)
12w = (=" [ [Ny (k) x MU, (kir)IndS, (6.23)
12 = (=" /Y [N{_ iy k7) X N,y (k17)IndS, (6.24)

where o = k% /7.

6.3 Explicit Expressions for the Integrals with Vector Products
of Vector Spherical Functions

Let us write the expression for the normal of the object in the Cartesian system of
coordinates:
n = n,i+nyj+ngk,

where i, j and k are the unit vectors of the corresponding system. According to [11],
for an arbitrarily oriented body, we have

0y.7) . d(zx). Xy }
ds = k|,
" [a(e,w” 36.9) 36, 9)

whence
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nxdS = [rr(’p sin(¢) + 12 sin’(0) cos(p) — 11, sin(6) cos(cp)] dOde,
nydS = [—rr/w cos(g) + % sin?(0) sin(p) — 11’y sin(H) sin(<p)] dOde,

n,dS = [r2 sin%(6) sin(8) cos(6) — 11’ sin2(9)] dode.

Using the formulas for transformation from the Cartesian coordinates into spherical
coordinates, we obtain

ndS = [sin(@) cos(@)ny + sin(8) sin(p)ny, + cos(@)nz] dodey = ? sin(0)dOd,
ngdS = [cos(@) cos(@)ny + cos(0) sin(p)ny — sin(@)nz] d9dp = —11'g sin(0)dOd g,
nydS = [—sin(p)ny + cos(@)ny | dbdg = —1t',dbdg.

1

Substituting the expression forndS, N}, M}, N> ~and M3, into surface integrals

(6.17)—(6.24), we obtain

’

o= (=1mEm) / i(mdly, ()b (6) + m'dl,, (B)BE,, (6))
0
2
x [ / ek @, ¢)d¢:| do, (6.25)
0

’

12 = (=t / " (R, @b (6) sin(@) + mm'd®. ©)d".. 0/ sin(@))
0

X

2 2
x [ / a—) ¢>d¢} _2@ED g 092, (6) sin(6) [ / E—) ¢>d<p]
0 0

i 2
NN [ | chum®. ¢>dw] o, (6.26)
0

, s n/(n/ + 1) , ) 2
2 = (= mm) /0 Tbgm(e)dgm,(e)sm(e) /O e (0, $)dg

Il 2

- im@d{}m ©)d™ (6)/sin(6) [ / o, ¢)d(p]
0

+ (mm'd?, (0)d™ | (6)/sin(6)

2

+ B2, (OB (O)sin(0) [ / PS—() qb)d(p] de, (6.27)
0

T 2
12 = (=) /0 i(mdp,, (0)bR ., (0) +m'd>_(0)bhy, (6)) [ /0 & @, ¢)d<p]
n—+1

+n/(n/+1) n )

2L (@B (6)

2
bR, ©)d™ (6) [ / - ¢)d¢] -
0

X

2w ) n’(n/—‘,- 1) , 2
x [ /0 cf;nm,n,(@,qb)dgo} +1degm(9)dgm,(9) [ /0 cgmnm,n,(9,¢)d¢]

n im/n(n +1)

2
dnL©)dr (6) [ / el (6, ¢)d¢] de, (6.28)
0
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11 n " ! /
o = (—pmm) /0 i(md, (02 (0) +m'd"m (9)BD(6))
2w .
x |: 0 J onmrn 0, ¢)d¢] do, (6.29)

T
Iy = (=1 ™) /0 — (b3, (O)bE, (0) sin(8) + mm'dD, (0)dD, (6)/ sin(6))

2 21
X [/() ) ¢)d¢] _ n(n;— l)dﬂm(Q)bg;n’ () sin(9) [ A 13 @, ¢)d¢]

n'(n' +1)
i
x

2
L, ©)d™ (6) sin(0) [ A, ¢)dtp] de, (6.30)
0

T (1 , o
12— (—1)mtm )/0 n(nxil_’_)bgm(e)dgm’ () sin(6) |:
0

mnm’n’

F o @, ¢>d¢>]

o'’ +1) 27
m

a2, O)A,(6)/ sin(0) [ [ @ ¢>d¢]

+ (mm'd?, (0)d™ | (6)/sin(6)
2

(¥

+ Db (0)bh (0)sin(6) [ o ¢)d¢} de, (6.31)

2w

JO
22 / i Y ’
Ir/nnm’n’ =(= 1)(m+m : /0 l(mdgm (G)bgm’(e) + m,dgm’(e)bgm ©)) |: 0 fygmm’n’ . ¢)d¢:|

n(n’ +1
n ( )

21
b2, (0)d™,(0) [ / £ .. ¢)d¢] - “(“: Dan @0
0

21 /(! 21
x [ / 5 o (0, ¢>d¢] s D @, o [ / £ o (0, ¢>d¢]
0 0

n(n—+ 1)

X

2
+im’ dtL©)dr (6) [ / flo -, ¢)d¢} de, (6.32)
0

where

crlrmm’n/ ®, ¢) = exp[iAm’m]hn (x)]n (xl)rz(e, ¢),
2o (0, ®) = expli Ay litn (X) ju ()12 (0, ),

0 o) = dr 9,¢
Cilnm/n’( ’ ) eXp[i Am/m]hn (x)jn (xl) ( )’
Cmnm’n 0,¢) = expli A h dr (@, ¢

w (0. 9) [i Am/m] n(x)jn(xl) ( )7

3 (05 ®) = expli gy 1 ()0, (X112 (0, B),
¢S (0. ) = expli Ay it (X) v (x DI (6, D),
dr (0, ¢)
dg °
dr (0, ¢)
de

cr7nnm/n/ (0, ¢) = expli Apmlun (x) ju(x1)

Cfnnm’n’ (0, @) = expli Apvm ]y (x)vp (x1)
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dr(9, ¢)
do

dr(0,

¢l (9, $) = expli Amym i (¥)n (x1) r( ¢),
mnm/n/(ev ¢) = eXp[lAm’m]]n (x)]n(xl)r (97 (/J)),

2 im0, @) = expli Apym 10s () jin (x1)12 (0, ¢),

dr(9, ¢)
do

0,
mnmn/(e @) = expli Apm1jn (x) jn (x1) ( ¢)7

mnm (0, @) = expli Apy m]]n(x)vn(xl)r (9 ¢)
mnmn (0, ¢) = expli A m]vn(x)vn(xl)r @, ),

Crgnnm’n/ (0, @) = expli Apym]un (x) jn (x1)

£3 i (0, @) = expli Agymjin (X) Jin (x1)

)

T o 0, ) = eXli Ay 02 () o (xl)dr(i)"’)
£ o (0, 8) = eXPLi A Ln (0O (x1) rfq’p"” ,
£ 0., 8) = expli Aym1vn (x) o (xl)dr(joj 24
0, 9) = expli Ay i (v () =2

where 14 1 d
up(x) = ——(xh (x)), va(x) = __(xJn(x))

d
Amm - (m _m)7 Om(e) = 9 Om(g) X _k r(@ d))

x1=m-k-r(0,¢), k =2/, A is the wavelength of incident radiation and r(6, ¢)
is the equation of the particle surface in the spherical system of coordinates.

6.4 Matrix Formulation of Scattering for the jth Bilayer
Particle of an Arbitrary Shape

Specific properties of biological particles (blood corpuscles) require a more sophisti-
cated and more adequate model due to the existence of a core and a plasma membrane
in the object under investigation.

Let r1 be the radius of the cell core and r» be the radius of the plasma membrane.
We consider scattering of a plane electromagnetic wave by the jth inhomogeneous
particle of irregular shape (see Fig. 6.1). Surface S is defined in coordinate system
O1x1y121, while surface S, is defined in coordinate system O2x2y225.

We write the system of Maxwell equations for the corresponding fields:
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Fig. 6.1 The geometry of 7,
heterogeneous particles

V x Hy = —ikeEg, V x Eg = ikuHg,

for domain D,
V x Hy = —ike1E1V x Ey = ikuHy,

for domain S;, and
V x Hy = —ikerEs, V X Ey = ikuyHs,

for domain S;.
These fields must satisfy the following boundary conditions:

n2XE1=n2XE2,n2XH1=n2XH2,
for domain S; and
n xE; —ny x Eg=n1 xEj, n; x H — ny x Hg = ny x Hj,

for domain §;, where k is the wavenumber, ¢ is the permittivity of the medium, ©
is the permeability of the medium, & is the permittivity of the cell core, &> is the
permittivity of the plasma membrane, E is the scattered field, Ej is the incident field,
Eq is the internal field, and E; will be defined below.

Let us write the following integral equations [12]:

E/(r) + V x/

52

x G(r1, r{)ds(r)) =0,

—V x / nz x Ex(r)1G (r1, ry)ds(r})
)

ny x B\ ()G (i, r)ds(r]) + k’—gv X V x / ny x Hy(r})

52

—lvxvx / nz x Ha(r))1G(r1, r})ds(ry)
k&‘z 5
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1V x / (g x E{ ("G (1, r)ds () + kl—v %V x / (g x H;("])]
S1 &1 S1
x G(r1,r{)ds(r]) =0, (6.33)

where G(r, r") and G(r, r'") are the Green functions.
The expression for the field scattered by the jth particle has the form

o0

n
E(j) =D D iEnnlamNy, + biuM,, 1. (6.34)

n=1m=—n

Let us write the expansion of the wave incident on the surface of the jth particle
in vector spherical harmonics

o n
E1() == D iEmnlpimaNy, + dimaMy, 1. (6.35)

n=1m=-—n

In view of the finiteness of the field at the center, the internal field of the particle
in the region 0 < r < r; (i.e., in the vicinity of the center of the particle) can be
written in the form

o n
Ei(j) == D iEnldiuN}, + cnaM,, 1. (6.36)

n=1m=-—n
In the region r; < r < rp, the internal field can be written as [12, 13]
o0 n . .
Ex(j) == D iEplaiuN}, + BinM),,

n=1m=-—n

Proceeding analogously to the case of scattering from a homogeneous particle
of an irregular shape, we obtain the solution to the scattering problem for a bilayer
particle of an arbitrary geometry:

()= ()
T) = —[0M(k, ko) + Q13 (k, k)] - DILQ3' (k, ka) + O (k, k2)] - D17, where
D =S T - S, T =—-0 ke, ki) - 103 ko, k)]™",

KB +ma/m-J3 1B 4my/m- LB
13) _ 2 2
(07) = (L13 mafm 1% T3 fmam- K13) (6.39)
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= (K31 +my/m - J3!

P+ my/m - L3
LB+ my/m- ! ’

I+ my/m - K3

]1): K11+m2/m Jll Ill+m2/m_Lll
2 LY+ ma/m- 1" TN 4 ma/m- K1)
) _ K3 +my/m-J> 1P 4 my/m- L3
2 L13 +m2/m 133 J33 +m2/m.K33 ’
1 = 2 tmy/my- I B2 A my/my - I
01 122 4 my/m; - 1/11 L2 4 myfmy - 12!
31) I +my/my - I12 122+m1/m2 I11
o1 122+m1/m2 1“ 112+m1/m2 121 ’

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

m is the refractive index of the core, my is the refractive index of the plasma mem-
brane, m is the refractlve index of the medium and matrix elements Qm, QOI, Q%3

03", 05!

and Q

can be expressed in the form of surface integrals:

Kr?lnm = a(=1)" /[N( iy (KT X M(lm,n,)(kzr)]ndS,
T = @(=1)" / [M] ) (kr) N, (k2r)IndS,
It = (=1 / [N_,y (k) x Nb . (kar)IndS,
L3y = a(=1)" /S[M?,mn)(kr) X Mgm/n/) (kor)IndS,
K = (=" / [Ny (kr) x M, (kor)IndS,
T = @ (=1)" / [M[_,,, (kr) x N3, (kor)IndS,
Inlnim w = a(=D" /[N%_mn) (kr) x N?m/n/)(kzr)]nds,
L = (=" /[M( yumy (k7) X M, (ko) IndS,
K = (=1 / [N{_pumy (k7) X M, (k2r) IndS,
Jnlulqm w = a(=1" /[M( mmy (K1) X N(m oy (kar)IndS,
Tty = (= 1)" / [N{_umy k7) X Ny (k2r) IndS,
Ly = @(=1)" / [M{_,,,, (kr) x M{,,,.,, (kar)IndS,

K = ¢ (=1)" / [Ny (kP) X M, (k2r)IndS,

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)

(6.50)

(6.51)

(6.52)

(6.53)

(6.54)

(6.55)

(6.56)

(6.57)
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Ty = @ (=1)" [ [M{_, (k1) x N{,0 (kor)IndS, (6.58)
I3 o = (=1 /S [Ny (k1) 5 N,y (k2r) IndS, (6.59)
L = a(=1)" / MY, (kr) x M2, (kar)IndS, (6.60)
Dy = 2(—=1)" [ (M}, (kar) x M., (kir)IndS, (6.61)
Ly = 0(—1)" / (M} (kar) x NL,.. (ki) IndS, 6.62)
Dy = (= 1) /S[N?_m,,)(kzr) X Mgm,n,) (k1r)IndS, (6.63)
Ly = (= 1) / [Ny (k27) X N,y (k17) IS, (6.64)
Bt = (=)™ /S[Mz_mn) (kar) X My, (k17)IndS, (6.65)
Iﬁlfnm/n/ =a(—1)" /S[Mz,mn) (kar) x Ngm,n/)(klr)]nds, (6.66)
I = (=" /S[Néfm,,) (kar) x M, (ki7)IndS, (6.67)
I = a(=1)" /s [Ny (ko) x N} (k1) IndS, (6.68)

where o = k2 /m, S = r“R((x, B, ), matrix Sy» connects vector spherical waves
defined in coordinate system Opx;y;z; with those defined in coordinate system
O2x2y222 (see Fig.6.1) and can be expressed in the form of the product of the
matrix of transfer from one coordinate system to the other and the rotation matrix
$21 = R(—y, —pB, —oc)r33 is the matrix that describes the inverse transformation,
where R(—y, —f8, —a) = R_l(oc, B, y) and t33, 711 are defined in [12],

R(a, B,y) = (Rmn’m’ngaa B.v) . 0 )

mn,m’n’(a’ B.v),
Rmn,m’n’(as B.y) = D;’Zm,(()l, By Y ) s
— +m’ ; ~ )
D}, (@ B,y) = (=D exp(ima)d, . (B) exp(im'y),

where D are Wigner functions, which are determined by the matrix elements of the
irreducible representation of weight n on the rotation group [14] or as the matrix

elements of the operator rotation D(«, §, y) in the J M—representation:

<JM|D(, B, Y)IJ'M'> =8; D! (B, y).
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Functions D} . («, B, y) can be represented as the product of three factors, each of
which depends on only one Euler angle [15]

D, (e, B, y) = exp(—ima)d,, . (B) exp(—im'y),

n
where d; ,(B8) are Wigner functions and satisfy the conditions of unitarity

[Dil(“’ B, V)]n =[D . 8.V,

D> D B y) Dy (s By = Z Dl (@, B y) D (e By Y) = S,

m=—n m=-—n
and orthogonality

n+1 2 2
e / da/ s1n/3d,3/ dnynm,(a,By)Dmlm (@BY) = Sun'Smy S

For function d) (), we have

T
/ 2
in BdBd" (B)d" (B) = —— 8,
/0 sin BB, (), (B) = 5=

Functions d)! (B) satisfy the following relations

m —1/28»11[n(n+1)] a =1/2m8y, [n(n+D1'/2

SHIB ()m(ﬂ)' dﬂdom(ﬂ)|ﬂ 0 I
—d" (B) = 1/2[n(n + DIV2[d} (B) +d",,,(B)],
smﬂ
dﬁ n(B) = 1/2[n(n + DIV2[a}, () — d",,,(B)],

nen nym’+n
s BVl (B) = D G ot s (B).
ni=ln—n’|

nym-+mi C"lm +m1

where Cmnn 'my nm'n'm')

are the Clebsch-Gordan coefficients

dr,,(B) = (D" "ar, (B = ()" ", ().

The product of two D-functions D m1 m (@By) D"*  (aBy) can be written as the

mamy
following sum [15]:
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ni+np

n n _ +
lm/l (aﬂV)szzmé(aﬂV) = Z C;}%g:nzr:lnzz , (@BY)C

mi +mzm +m

n3m —Q—m2
nym nzmz'
n3=|ni—na|

The formula of addition for D-functions of Wigner is [15]
n
> D@1 Biy) Dy (2faya) = Dib (@),
m~=—n

where o1, B1, y1 are Euler’s angles and characterize the rotation of the coordinate
system S — Si, a2, B2, ¥2- S1 — $2, resulting rotation angles § — S»- «, B, ¥
relative to the original (S) coordinate system.

Recurrence relation for the calculation of the Wigner functions is

nv(n+ 12 —m2/(n+1)2 — 2d;’;71(ﬁ)
+ (n+ 1)y /n? = g>V/n? —m2d), ' (B) = 2n + 1(n(n + 1) cos B — mq)d},,(B).

with initial conditions

e — (_1)(q—m+|q—m|) |: 2n,)!
" 2 (Ig —mDX(g +m]!
x (14 cos B2 n, = max(|m|, q]).

1/2
:| (1 — cos p)yla—m/2

Thus, the expansion coefficients of scattered and incident fields are connected
by the linear transformation of the 7-matrix that is invariant to the direction of
propagation of incident radiation in a fixed system of coordinates and depends on
the physical and geometrical characteristics of the scatterer (such as the refractive
index, the size relative to the wavelength of light, and morphology). The above
representation of the 7 -matrix method has certain advantages as compared to other
representations, which lie in the use of vector spherical harmonics invariant to the
rotation of the coordinate system and in the symmetric form of the representation
of the main relations. It should be noted that the method of the 7-matrix is a direct
generalization of the standard Mie theory to the case of nonspherical particles. Indeed,
if a scatterer is spherically symmetric, then the 7-matrix becomes diagonal, and the
diagonal elements are defined to within the sign by the relevant Mie coefficients a,
and b,,.

Note that the numerical calculation of the integrals with the vector products of the
vector spherical functions for an arbitrary body of revolution is problematic in the
case when the size of a scattering object is much larger than the wavelength of light.
This is due to the fact that the integrand in the formula for computing elements of
matrix Q0 1 QOI, Q Q Q Q may oscillate in very large limits, which leads
to loss of accuracy. The process of numerical inversion of matrix Q()l , Q01 , Q%z, Q%3
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is poorly substantiated and also becomes unstable. Note that this is observed for
particles with zero or a very small imaginary part of the refractive index.

It was shown in [16, 17] that effective approaches to improving the convergence
of computations, which are based on the EBCM, are as follows.

1. Computation of elements of the matrix and its inversion using fourfold accuracy.
2. Inversion of the Q matrix using the LU factorization method.

The electromagnetic field of the wave incident on the surface of the jth particle
consists of two parts: the field of the initial wave and the field of the wave scattered
by a group of other particles located in the surrounding medium. Then, we can write
the following expression

Ei(j) =E0(j)+ZEs(l,j), (6.69)
I#]

where Eg(/, j) is the sum of the fields scattered at the jth particle. Subscripts / and
J imply the transition from the / to the j coordinate system.
The incident field is defined as

oo n
Eo()) = =2 D i [P Njpy k) + giti M, (r) | (670)

n=1m=—n

Waves are incident relative to the center of each jth particle (i.e., in the jth system of
coordinates). The expansion coefficients of the incident plane electromagnetic wave
have the form [10]:

Py = 4 (—=1)"i"d, C,, Bine)Eine Kine, Ty j) eXp(—im@ine),
Qrﬁ)ﬁj = 477(_ l)minildnB::m (einc)Einc(kinm rjo,j) exp(_imﬁoinc),

where Ejj¢(Kine, I'jy, j) is the linear polarization vector, K;, is the wave vector, the
asterisk indicates complex conjugation, d,,, B,,,, and C,,,, are defined by formulas
(6.7)—(6.9). Let us write the expression for the scattered field:

o0 n
B j)=— > > iEnnlpninNhy, + qninMh, 1. (6.71)

n=1m=—n

where coefficients ph’, g/ are defined in Chap. 3.

Combining expressions (6.35), (6.69) and (6.70) and taking into account relation
(6.38), we obtain an infinite system of linear algebraic equations for the jth particle
of an arbitrary shape:


http://dx.doi.org/10.1007/978-3-319-01739-6_3
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al\ _ il (p"’ A, j) BA, )Y (a
()= () (i @) e
J

where coefficients A(l, j), B(l, j) are defined in Chap. 3. The solution of the system
of linear equation (6.72) was carried out using the stable algorithm of biconjugate gra-

dients (BiCGSTAB). Having determined coefficients ahn, b, and from this system,
we can write the expression for the scattered field in the main system of coordinates

o n
= Z Z i Epnlamn N2, 4 bun M2, 1. (6.73)

=—n

The component-wise form of the scattered field is given by

ik
(n —m)!
Ey ~Eo_lk,2 > A D)y o+ b e, (6.74)
n=1lm=-—n
c (n —m)!
Eqp ~ Eg~ T Z > @nt D it + b Taale™. (6.75)
! n=1lm=—n ( + )
where
a m
Tn = 30 P} (cos6), mmy = —P (cos ).

Symbol (~) indicates that expressions (6.74) and (6.75) following from (6.73) are
treated asymptotically for (kr >> 1). Since we consider here the scattering at large
distance from the jth particle, the electric vectors of the scattered field are parallel to
the electric vector of the incident field; i.e., only the 8 component differs from zero
in the far zone, and expressions (6.74) and (6.75) can be simplified:

z Z Gnt D ———[amn T + byunTn] (6.76)

~E
Evo ~ Eo= n(n+ 1)

—ikr

elkr & Z Qn+1)

E,y ~ E
¢ O—ikr nn+1)
n=1m=—n

[amnTtn + binnTal, (6.77)

where 3 .
T, = a_QP”(COS 0), , = mPH(cose)

Analogous expressions can also be obtained for magnetic field components Hjy and
Hgy.
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Fig. 6.2 Schematic diagram 7
of biological medium A
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6.5 Reflection of a Plane Wave from a Layer with a Slowly
Varying Thickness

Let us consider the following optical scheme. The system consists of four regions
with difference refractive indices(epidermis, the upper layer of the dermis, blood
cells,the lower layer of the dermis) (see Fig.6.2).

To attain the best agreement between the structure and the actual object under
investigation, we represent the interfaces between the layers of the model medium
in the form of certain surfaces z; = H;(x, y),i = 1, 3.

Let us suppose that a plane s- or p-polarized wave is incident on the layer at an
angle 6. We consider only the case of the p polarization. We must find the reflected
field.

We will seek the reflected field in the form of waves with slowly varying ampli-
tudes and rapidly oscillating phases

E| =exp (éfz‘nc(gls &, 53)) + exp (énref(él, &, 53)) A(&1,82, 83, 6x, &y),
(6.78)

Ey =exp (ém(&, £, &)) BY (51, &2, &3, 64, &)

+exp (émef 61, &2, &)) B™ (616283, 6x.8)). (6.79)
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E3 =exp (érmap(a, &, &)) CHE1. 62,63, 60, 8))
+exp (éuref(gl, &2, 53)) C™ (1,62, 83, &x, &y), (6.80)
E4 =exp (éf4elap($1, &2, 53)) DT (&1, 6. 8. 6x. &)

+ exp (é":Sref(gls &, %3)) D™ (¢1,82, &3, €x, €y) + Espscar (61, &2, &3),
(6.81)

Es =exp (éTSelap(Ela &, 53)) E(§1,52, 83, 6x, €y), (6.82)

where E4gscar (81, &2, §3) is defined by formula (6.76) and Tinc,Tirefs T2elaps Taref
T3elap» Tdref » Taelap are defined in Chap. 4. Amplitudes A, BE,C*, D*,E are sought
in the form of power series in small parameter &y, ¢y, the expressions for the ampli-
tudes are defined analogously to the method described in Chap. 4.

Substitution of expressions (6.78)—(6.82) into (4.6)—(4.11) generates a recurrence
system of equations. For the reflected field, this system leads to reflection coeffi-
cient A. The expression for the reflection of a Gaussian beam with an arbitrary cross
section is defined analogously to the method described in Chap. 4.

6.6 Spectrum of Action of Laser Radiation on the Hemoglobin
Derivatives

Let us consider the mathematical simulation of the spectral efficiency of light
absorption by the main blood hemoglobin derivatives: oxyhemoglobin(HbO,) and
deoxyhemoglobin(Hb) of human blood in the upper layers of the human dermis.

It should be noted that the mechanism of action of laser radiation on biological
structures are not completely clear as yet; several processes (namely, photoinduced
dissociation of oxyhemoglobin of blood, which is accompanied by the molecular
oxygen liberation and a local increase in its concentration in blood [18, 19]); as
a result of this photochemical reaction, deoxyhemoglobin is formed, and an opto-
oxygen effect is observed [18, 20], which is responsible for the liberation of singlet
oxygen from triplet oxygen dissolved in the cells. It should be noted that the above
processes depend on the efficiency of light absorption by blood and, hence, on the
radiation wavelength and the radiation power density at a given depth.

In analysis of the efficiency of photochemical and photophysical processes, we
will use the concept of action spectrum. The spectrum of light action on a tissue
component is the total power of radiation absorbed by this component in unit volume
of the medium when monochromatic light of unit power density is incident on the
surface of the medium [18]:
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Kubo,(W) =Cy - H - f -8 pla@bo,) (A)

X/4 IOux, y,mi, xi, 2)d, (6.83)
T
Kup(M) =Cy - H - f - (1 =8) - pacmp)(2)
XA I(h, x,y,ml, x], £2)ds2, (6.84)
JT
Kblood (1) = Kubo, (A) + Knp(A), (6.85)

where d$2 = sin0d0d is the solid angle, Kxpo,, KHb, Kblood are the action spec-
tra of light on oxyhemoglobin, deoxyhemoglobin, and blood, respectively, H is the
capillary hematocrit(volume concentration of erythrocytes in blood); f is the vol-
ume concentration of hemoglobin in erythrocytes, S is the degree of oxygenation
of blood (ratio of the concentration of oxyhemoglobin to the total concentration
of hemoglobin), I (x, y, mi, x!, £2) is the intensity and defined by formula (4.69),
Ha(HbO,) (1) are the absorption spectra of oxyhemoglobin, 114 Hb) (1) are the absorp-
tion spectra of deoxyhemoglobin [21], m? = N{ /n,, N is the complex refractive
index of the jth particle for the t concentric layer, n, is the refractive index of the

surrounding medium, x! = kal, Jj = 1..N,t = 1, 2, where al—is the radius of
the jth particle with concentric layer 7.

Thus, at this stage, we use formulas (6.83)—(6.85) to connect the action spectra of
oxyhemoglobin (HbO;) and deoxyhemoglobin (Hb) and blood of the biotissue under
investigation as functions of the wavelength of laser radiation taking into account
the electrophysical parameters of the biological structure being simulated such as
the real and imaginary parts of the refractive indices and sizes.

Let us consider the choice of the values for hematocrit. It was shown in [22] that
the hematocrit in capillaries can be smaller than in arteries and veins; for example,
when blood flows into capillaries from the artery through a narrow arteriole, the
hematocrit can decrease from 0.5 to 0.068. Such a decrease in the hematocrit is
known as the Fahraeus effect [23]. Such a variation of the hematocrit can apparently
be explained by the following circumstances [18]:

1. A considerable portion of blood flows from the artery to a microvessel from the
near-wall region in which the plasma concentration is elevated. Note that the
specific manifestations of the Fahraeus effect depend on various characteristics
of the blood flow and the metabolic activity of tissues [18]. It was shown in [22]
that when the blood flows through the expanded arteriole, the hematocrit in the
capillary decreases from 0.5 to 0.38. However, in [24] the inverse Fahraeus effect
was observed, when the values of the hematocrit in a capillary were higher than
in great vessels.

2. Insufficient deformation of erythrocytes prevents their flow into a narrow capil-
lary.

Thus, according to [18, 24], the value of the hematocrit can be chosen as 0.4.
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6.7 Numerical Calculations for a Model Medium
and Conclusions

Let us consider a model medium with the following characteristics. Typical layer
thicknesses are equal to d» = 65 - 1070, d3 = 565 - 1076, dy =90 - 1076, n¢ = 1,
x1 =0, x2 = x3 = x4 = x5 = 107, refractive indices of the layers are ng = 1.50,
ny = 1.40, nj = 1.35, n = 1.40 and the following values of parameters are
a; = —0.0024, by = 0.020, a; = 0.021, b, = 0.030, a3 = 0.041, b3 = 0.051,
¢1 = ¢3 = ¢3 = 1072, The values of parameters for the interfaces between the layers
are chosen so that the shape of the surface is maximally close to the shape of the
boundary of the corresponding layer in the structure of the normal human dermis,
and wavelength is A = 0.63 pm (center of the line of a He-Ne laser).

Since the erythrocyte contains no cell organelles, its cellular membrane is very thin
and does not noticeably affect the scattering of light; consequently, the erythrocyte
can be treated as a homogeneous scatterer. Thus, our computations were performed
for monolayer spherulated particles simulating erythrocytes; the number of particles
in the layer being simulated was assumed to be ten for the following parameters: the
relative refractive index for the first five spherulated erythrocytes was assumed to be
1.035 4+ 107}; for the remaining erythrocytes, it was set as 1.033 4+ 1073, for a
particle radius of 4.3 um, H = 0.4, f = 0.08, S = 0.75, C, = 0.0595 [25]. All
computations were performed up to 32 decimal places.

Figure 6.3a, b illustrates the distribution of radiation intensity for multilayer
medium absorbing and scattering light, which simulates human dermis for specific
electrophysical and geometrical characteristics of the biological structure being sim-
ulated. The dependences of the laser radiation intensity on the refractive index and
absorption coefficient of the epidermis for various electrophysical parameters of the
biotissue under investigation are shown in Fig. 6.4a, b.

It should be noted that the model constructed here is quite sensitive to varia-
tions of the refractive index of the biological structure being simulated; the model
also permits the variation of electrophysical parameters of the biological sample
under investigation, its geometrical parameters, and the establishment of the relation
between these parameters and the biological properties of the biotissue being sim-
ulated. Thus, this model can be used for measuring in vivo the spectral differences
between the normal and pathological tissues for determining pathological changes
in the biosamples under investigation, which are associated with a variation of elec-
trophysical properties of epidermis and blood corpuscles in the upper layer of the
dermis.

Figure 6.5a, b shows the normalized spectra of action of laser radiation on oxy-
and deoxyhemoglobin. The simulation of the action spectra of the laser radiation
power absorbed by oxyhemoglobin and deoxihemoglobin of blood is performed
using the theory of the 7-matrix in the spectral range from 300 to 800 nm. The
choice of this spectral interval is dictated by the fact that in most available methods,
the transparency window in the wavelength range from 650 to 1200 nm is used for
optical probing of biotissues [26]. Note that the spectral interval from 400 to 600
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Fig. 6.3 Radiation intensity (a)
distribution for a multilayer
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nm is diagnostic because the main absorption bands of blood (Sore band 420 nm ,
absorption bands « and B of oxyhemoglobin at 545 and 575 nm) lie in this spectral
interval.

The spectral dependences of the refractive indices of the dermis and epidermis
were described by the following expressions: [27]:

434.60068 1.60647-10° 1.28111-10™
n(h) = 1.30904 — + -

A2 A4 A6 ’
1.87232-10*  1.09644 - 100 8.64842 .10'4
n(x) = 1.68395 — = + - - 3 )

Note that analogous results of analysis of the action spectra of laser radiation
on oxy- and deoxihemoglobin were obtained in [18]. Certain differences between
the results given in [18] and in Fig.6.5a, b are due, first, to the use of oxy- and
deoxihemoglobin for the initial absorption spectra; second, the knowledge of the
spectral dependences of the refractive index of the epidermis, dermis, and the average
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refractive index of blood corpuscles is required for a more adequate description of
propagation of laser radiation in biological media, while in our calculations, the
averaged refractive index of the epidermis, dermis, and the averaged refractive index
of blood corpuscles were used.

Thus, the model constructed in this study makes it possible not only to select
optimal wavelengths for effective action of laser radiation on biological structures, but
also to analyze the effectiveness of absorption not only by blood, but also by biotissues
like melanin of the epidermis. The above dependences can be used for predicting
the changes in the optical properties of blood in the capillary channel, which are
associated with various biophysical, biochemical, and physiological processes, and
can be computed for lasers with other parameters; the quantitative estimates obtained
in this study can be applied for processing and interpreting experimental data.

We have described the mathematical model for calculating the optical characteris-
tics and for analyzing the biophysical processes of propagation of light in a multilayer
biotissue in the case of the interaction with noncoagulating laser radiation. The model
was implemented in the form of a software package, which makes it possible to vary
automatically the composition of biological objects, their electrophysical parameters,
characteristic thicknesses of layers, as well as characteristic sizes of various biolog-
ical structures under investigation on the same setup for recording the dependence
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(a)

Fig. 6.5 a Normalized action
spectra for laser radiation for
oxyhemoglobin, b normalized
action spectra for laser radia-
tion for deoxihemoglobin

0.7

I
=)

o
n

S
~

.O
o

o
=

Normalized action spectrum
for oxyhemoglobin, K yyo,
(=]
(98

0 : ‘ ‘ ‘ ‘
300 350 400 450 500 550 600 650 700 750 800

A, nm

(b)

0.5

0.45|
§ £ 04}
5™ 35|
8.2
;’g 0.3}
Ov—t
= 2 oa2st
s £
ho} (5] 02*
o =
N2 o01st
< O
£8 oif
= 8 005t

0
300 350 400 450 500 550 600 650 700 750 800
A, nm

between these parameters. This makes the software developed here an effective and
convenient tool for investigations in biomedical optics.
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Chapter 7
Modeling of the Optical Characteristics
Fibrillar Structure

Abstract We describe the mathematical model, which allows us to vary the electrical
parameters and structure of the simulated biological tissue with fibrillar structure for
case in vivo.

7.1 Introduction

At present optical diagnostic methods tissues occupy a leading position because of
their high information content, and also their relative simplicity and low cost.

There are numerous diagnostic techniques, such as optical coherence tomography,
confocal microscopy, fluorescence spectroscopy, diffuse optical tomography, that
require knowledge of the optical properties and the dynamics of diffusion of various
of medicinal substances in various biological tissues.

In spite of significant advances in the development of fundamental bases and
practical applications of optical methods tissues, actual problems at present are the
increasing effects and expanded functionality possibilities of existing diagnostic tech-
niques.

Note that at present the degree of development of representations about the prop-
agation of light in multiple scattering media with a fibrillar structure that consist of
partially oriented fibers are insufficient.

Such objects represent the considerable interest for biomedical applications. We
note some articles devoted to research optical anisotropy of the tissue with fibrillar
structure.

In [1] are presented the results of the theoretical analysis optical anisotropy of
multiply scattering fibrillar tissues, conducted on the basis of models of effective
anisotropic medium with experimental data on double refraction in vivo derma of
rat. The article [2] is devoted to the question of dynamics immersion blooming
different types of biological fabrics, construction models and methods to describe the
propagation light emission with different types of polarization through anisotropic
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tissue. In the article [3] one studies the problem of anisotropic scattering of light
in biological tissues, which have cylindrical structure (e.g. collagen) by the Monte-
Carlo method.

The obtained results make it possible to determine the optical properties of the
tissue, they are also useful for the diagnosis of early changes tissues.

Thus becomes important to use the mathematical modeling of physical processes
proceeding in biological samples of different types in conditions of laser irradiation.

The problem consists of several parts. In the first part, we consider the problem
of light scattering on a system of parallel dielectric cylinders, modeling collagen
fibers. In the second part we consider the problem of reflection of a Gaussian beam
with an arbitrary cross-section plane wave from a smoothly irregular layer modeling
biological tissue with fibrillar structure. In the third part of the numerical simulations
we investigate the question of electrical characteristics of the biological sample.

7.2 Scattering on a Parallel Cylinders

In this section, we consider the distribution of polarized radiation in multiple scat-
tering media the example of the dermis.

The structure of the dermis are collagen fibers, consisting of parallel beams of
an average thickness 50—100 nm, connected by glycosaminoglycans and proteogly-
cans [4], then applied to the analysis of the effect of the morphological characteris-
tics of multiple scattering in randomly inhomogeneous media with fibrillar structure
regarded in the modeled medium that consists of parallel dielectric cylinders with
identical refraction complex coefficient are n.y; and radius a.

In this case, the cylinders are distributed in an isotropic dielectric medium with
a complex refractive refraction are n,. The distance between the cylinder and the
wavelength incident radiation are comparable and we believe that the cylinders are
oriented along the z-axis.

Let the cylinders at an angle 6 be incident by the plane polarized wave in this
case, the Cartesian coordinate system OXZY is used as a fixed reference system, ¢ is
the azimuthal angle. We consider only the simple harmonic time dependence of the
angular frequency w, and the factor exp(—iwt) is omitted.

Note that cylindrical coordinates of primary field incident wave are E, H admits
a representation as superposition of electric and magnetic fields types.

Thus in solving the problem, we consider two cases of the polarization of the
incident wave. Note that the scattered on the cylinders field can be found, depending
on the polarization primary field through the magnetic U and the electric V Hertz
potential. In this case, the values potentials U, V associated with the vector E, H by
the following relations:

E:%vxvx(er)+V><(ezV)» (7.1)
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H:—novx(er)—f-évxvx(ezV) (7.2)
and satisfy the wave equations:
AU +n?k*U =
AV +n2k?V = 0.
We write the relations for longitudinal, azimuthal and radial component of the elec-

tric and magnetic fields which expressed through U, V in cylindrical coordinates
(0,9, 2):

92U 1 92U ’U 5,
Ey=——, Ey=———, E,=— +k’n.U, (7.3)
000z p 0pdz 972
U U
pz_n_o_’ H(pZnO_a HZZO (74)
p dp ap
a2v 1 9%V 9%V
Hy=——, Hy=———, H,=—5 +k®n2V, (7.5)
000z p 00z 972
v v
E,=-"2°"  E,=n,—, E.=0, (7.6)
p ¢ ap

where U, V is

1Ta[ au 1 [92U 92U
- —|+-]|— Kn2U =0,
p[ap[pap]er[awzﬂJraﬁ "

1Taf[ av] 13V P’V 5,
== |+—=-|== ||+ 75 +kn,V=0.
plip " dp] p[0g? dz2
The field incident on the surface relative to jth cylinder consists of several parts:
the initial incident waves, the primary wave scattered by the jth cylinder and wave

scattered on all other cylinders. Then we can write general expression for the scalar
field potential functions U, V:

U Utlnc(R]P) + U, Acat (RJP) + Z scat (Rkp) (7.7)
k#j
N

V - Vz{u (RJP) +V, scat (le’) + Z Vskcat (Rkp), (7.8)

k£
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where Ulsl;lc(R jP)’Vi{m(R jp) are potential incident field on the surface of the jth
cylinder, U, (R), Vs..q; (R ) are potential of primary scattered wave at jth cylin-
der, UX (Rip), Vskcm(Rkp) are potential of the scattered field at all other cylinders.

scat
Expressions of the form (7.7 and 7.8) can be written as

. , . N
(U ’,) _((Une®ip) ) o [ UstarRip) 5 (U{CG[(R@)) a9
v/ ‘/l'l;’lC(ij) Vsjcat (ij) oy Vicar (Rk[?)
The potential of the incident field for the case p- and s-polarization is presented in
the following form

Ul (Rjp) = e7hesind o =ikR)y [y (R)) =0, (7.10)

inc nc

V! (R, = e kesind=ikRiy ) (R; ) = 0. (7.11)
Using the expansion of a plane wave by a cylindrical wave functions and substituting
(7.12) for (7.10 and 7.11), we obtain

o0
eik,osin@ — Z (_i)n‘]n(kp)eine’ (712)

n=0oo

o0
U (Rjp) = e 0" (—i)" ], (kR j cos Onp)ee™ir, Vi) (R;p) =0,

nc
n=0oo

(7.13)

(0.¢]
Vine@Rip) = e 00 37 ()" Iy (kR p 005 Ono)e eV, Ug, (Rjp) = 0,

mc
n=oo

(7.14)
vjp is angle to jth cylinder (see Fig. 7.1).
Combining the expressions (7.13 and 7.14) we obtain

Uij_;zc Rjp)
V! (Rjp)

mc

o0
¢ —ikzsing 7 [7 i ip
) = (1 _ a) e ikzsin Z (_l)”Jn(kij COSQI’lO)el 9 inYip
n=oo
(7.15)
where o = 1 for the case p polarization, and « = 0 for the case s polarization.

Analogous to [5] we write the expression for the scattered field at the jth cylinder
through scalar potential functions:

&)
UfurRjp) = —e K500 " iy H2 (kR j cos On,)e ™ Py, (7.16)

n=oo
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Y

Fig. 7.1 Geometric illustration of scattering by cylinders

o0
Viar (Rjp) = —e HS0 " (i) H2 (kR ), cos On,)e ™ ir by, (7.17)

n=00
or

J ) o 0 ) J
(Uspal(R./p)) — _g—lkZ sin 6 Z (_l)nHr%(kR]p cos gno)glnyjp (Zl}l ) , (718)

Vsjcat (ij) n—00 n

j jI jH
a aa, + (1 —a)a;
j = N N/ N (719)
by ab) + (1 —a)b;
jI jI /'H /'I /'I /'II I'II . . .

ay by a, ,a, by ap , b, are scattering coefficients on the cylinder for

p-polarization and for s-polarization.
By the addition theorem for a pair of cylinders we have [6]

where

o0 o0
"V (kRyp cosfng) = > HZ (kR cos0n,))

§=—00 n=—00

X Ju (kR cos On,))eVs. (7.20)

The potential of the scattered field for all other cylinders considering expression
(7.20) is

N o0 00
k —ikzsin6 NS inyjp in(s—n)yij
Uscat(Rkp) — _p—ikzsin Z Z Z (_l)sezny_,pem(s ) Vkj

k#j s=—00n=—00

x HZ , (kR cosOn,) x J,(kR, cos On,)ak, (7.21)



112 7 Modeling of the Optical Characteristics Fibrillar Structure

N 00 00
k Siksing §° 5 s iy iy
Viear Rip) = —e ikz sin 2 (_l)vemy_/pem(y Vi)

k;é] S=—00 n=—00

2 (kR cosOn,) x Ju (kR cos On,)bk (7.22)

Sl‘l

or
i N 00 00
Ujar Rip) —ikzsin® NS inyip i
(Vficm(R ) = —eT Z Z Z (=)' e G
scat \Nkp k#j s=—00 n=—00
ak
x Jy (kR cosOn,) (b?‘ ) , (7.23)
S
where ‘ _
Gy = "M g2 | (kR jy cos Ony). (7.24)

We substitute in (7.9) expression (7.15), (7.18) and (7.23) and then obtain [7]

. [ k i
(l‘ij) 7zkzsm92 Z Z (—i)'e n¥ip |:( fa)em‘/’— (Z%)Glj(:l]

k#£j s=—00n=—00

x Ju(kRj, cosOn,) — ’k“‘“ez Z z (—i)e ”‘Vm( ".)
n

k#j s=—00n=—00

HZ2(kR;, cos On,), (7.25)

where G " defined by the formula (7.24).

To ﬁnd the unknown coefficients ak bk we must use the boundary conditions
on the surface of each cylinder. These boundary conditions require the continuity of
the tangential component of the electric and magnetic vectors on the surface of the
cylinders. The use of the boundary conditions is analogous to [5] following a system
of linear algebraic equations for finding the unknown coefficients ak bk

N oo oo
>33 [[swes + 1 =806 al ]a§+(1—ajk)c,g’ja,4 bf]

k#£j s=—00n=—00

. v A1
=" (aay +(1—aay ), (7.26)
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Z Z Z [(1—5,k)Gf”bf at +[(5Jk5m+(1—3,k)GJ”bf ]b{;]

k#j s=—00n=—00

. 1 Il
=e"(aby, + (1 —a)b; ), (7.27)

or in the matrix form

8jkdns + (1 — 8,~k)G,i;’ ,i (1—8;Gi" al (a]]:)
bk
(11— ]k)G]nb] 8jk8n.s + 1 - jk)Gjnb] s
; aa] + (1 - a)aj”
=" n.I n411 (728)
abl + 1 —a)b]

where § i, 6,5 is Kronecker symbol.

The expressions for the components of the vector E, H can be found through the
Hertz potentials U, V. The substitution of (7.18) with a glance (7.28) in (7.3-7.6)
gives the corresponding relations longitudinal, azimuthal and radial component of
electric and magnetic field.

N o0

= — n iny; '@, i @i
E(scat)Rj k cos On, ]Z;HZO:O( i)te!"viv [sm 0H, " a; + oo iR cos 0K, H b"i| i
(7.29)
= neiny _—. @, ] "(2)1.J
Fun,, =kessin, 30 30 [ b smonal 4 1.
j=1n=00
N oo ‘ .
By, = —ikeoson, 3 3 (i)' [l
j=1n=00
N o0
— _a\h inyjp (2) v (2) j
Hscany,, = kcoson, Z}nz;‘o( i)'e"Vir [ sin0H,®a + kcos6R;, Hn b"]’
j=1n=
(7.30)
H(scat)yj kCOSQnOZ Z( l)" inyjp |:—k SOR sm@H(Z) J H(z)b] i|

]]VIOO

H(scary, = —ik cos® On,, Z Z (—i)"ei™Vir [Hn(Z)erl'] '

j=1 n=00
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7.3 Reflection of a Plane Wave from a Layer
with the Fibrillar Structure

In this section, we consider the problem reflection of a plane wave from a layer with
a slowly varying thickness. Consider the optical system, which consists of several
areas with different refraction indices (the epidermis, the upper layer of the dermis
with fibrillar structure, blood cells, and the lower layer of the dermis).

It should be noted that, to better match the real structure of the object under
investigation, the interfaces between the layers are represented by wavy surface
zi = Hi(x,y),i =1,3.

Letaplane s- or p-polarized wave be incident to a layer at an angle 6. The reflected
field must be found. We consider only the case of the p polarization.

We seek the reflected field in the form of waves with slowly varying amplitudes
and quickly oscillating phases (see Chaps. 4-6):

E; =exp (éfmc(&, &2, 53)) + exp (;—Tlref(él, &2, 53)) A1, 62, 83, 6x, 8y),
(7.31)
E» = exp (’grzemp(sl &, 53)) BT (1, 6. 6, 6x. 8))
+ exp (IETSref(Sla &2, §3)) B (81, 62,83, €x, €y), (7.32)
E3 =exp (éfsezap(él, &, ‘53)) CH (&1, &, &3, 61, 8y) (7.33)
+ exp (lgmref(f;'l» &, E3)> C (51,.8.83,6x,8y) + Escar (81, 52, &3),
Ey = exp (gmm &1 6, &)) D* (€1, &2, &5, ex. 8)
+exp (IETSref(Sla &, 53)) D™ (81,82, 83, 6x, &y) + Eogear (61, 62, 83),
(7.34)
Es = exp (grsezap@l, &, &)) EE 6.8, 60, 8)), (7.35)

where Eq4: (&1, &2, &3) is scattering on the parallel cylinders which simulate fibrillar
structure and determined by the expression (7.29), Egscar (€1, &2, £3) is scattering on
the inhomogeneous particles with an irregular shape, which simulate red blood cells
and determined by expression (6.67), Tinc, Tiref»> T2elaps T3ref»> T3elaps Taref» Thelaps
T5ref > T5elap are defined in Chap. 4. Amplitudes A, BT, C*, D*, E are sought in the
form of series in powers of small parameters &y, £y, Note that the expression for the
amplitudes is determined by the method described in Chap. 4.
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Fig. 7.2 Cross-Section of the scattering field in the cylinder group with refractive index equal to
1.34 and s-polarization (a), p-polarization (b), not polarization (c¢)



116 7 Modeling of the Optical Characteristics Fibrillar Structure

The substitution of (7.31-7.35) in the boundary conditions of the type (4.6—4.11)
generates the recursive system of equations. From this system, one can find the
reflection coefficient in the principal approximation for the reflected field.

Let us briefly consider the problem of reflection of a Gaussian beam with an arbi-
trary cross section. This problem can be solved by expansion of counter propagating
waves in terms of plane waves in the region of medium 1, their reflection by layer
2, and reverse transformation with a subsequent Huygens—Fresnel integral trans-
formation to obtain the field in the initial section (see Chap.4). The laser radiation
intensity is defined by the form (4.69) of Chap.4.

Substituting the expression (4.67) in (4.69) for the condition that the simulated
layer is fibrillar structure we obtain the dependence of the laser radiation intensity
for electrical parameters of the modeled biological structure.

7.4 Numerical Calculations for a Model Medium
and Conclusions

Let us consider a model medium with the following characteristics: refractive indices
of the layers are equal to n5 = 1.50, n§ = 1.40, nj = 1.35, ng = 1.40, the
characteristic thicknesses of the layers amount to d» = 65 - 107°, d; = 565 - 1079,
dy =90-107°, nf=1Lx1=0,0=x3=x4=x5= 10> and the following
values of parameters a; = —0.0024, by = 0.020, a, = 0.021, b, = 0.030, a3 =
0.041, b3 = 0.051,¢; =2 = c3 = 1072,

The values of parameters al, bl, a2, b2, a3, b3, cl, c2, and ¢3 are chosen for
the interface of each layer so that the surface shape are as close as possible to the
interface shape of the corresponding layer in the structure of human skin, and the
wavelength is A = 0.63 pwm (center of the line of a He—Ne laser).

The calculations were performed for monolayer particle spherulated modeling
red blood cells, while the number of particles in the simulated layer is assumed to
be ten, with the following parameters: the relative refractive index for the first five
spherulated erythrocytes was assumed to be 1.035 + 107>, for others it was set as
1.033+1072; for a particle radius of 4.3ym, number of cylinders modeling collagen
fibers in the layer was assumed to be nine, the radius cylinder was assumed to be
1-1071°,1.107%,2-107%,1-107%,1-107%,3-1075,1- 107, 1-1076,2 - 107°.
Note that in the numerical calculations we was considered the normal incidence of the
electromagnetic wave and the reflected field was regarded in the main approximation.

Figure 7.2 shows the cross-section of the scattering field in the case of multiple
scattering on the group, closely spaced cylinders, different radii in the far-field.

To consider scattering in the far field in expression (7.29), we replace of the Hankel
function by its asymptotic representation for k/ > 1:

7.
H2(kI) ~ /%eﬂ(klf(zwrl)n/@’ I = Rcosbng, yjp ~ v, Vj.
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In this case, the scattering cross section is defined a

Wscat
I;

Cxcat =

where /; is incident intensity

c . .
Wiear :/ Sscat 'erdAa Sscar = _Re[EA{cm X Hijm y
A 8

. i . .
Es{cat = % VvV XV X(eZUsjcat) + v x (eZVsjcat)’
i

L VXV x(€,Vilar),

Hzcat =—NnoV X(eZUs]cat) +

Ulut» Vibae defined by the expression (7.18).
Figure 7.3 shows the distribution of intensity radiation for absorbing multilayer
and scatters light medium simulating human skin for specific electrical and geomet-
rical characteristics of the simulated biological structure with the fibrillar structure.
Dependence of the intensity laser radiation on the coefficient refraction and
absorption of the dermis with different electrical characteristics of the simulated
tissue are shown in Fig. 7.4a and b.
It implies from the graph that with increasing absorption the simulated biological
structure the intensity decreases consistent with the general theoretical concepts.
Thus, we can conclude that the model sufficiently sensitive to changes in electrical
parameters, the simulated biological structure, in particular the coefficient absorption.

1, rel.units
0.4

0.3
0.2
0.1

0
100

100

0 o

Fig. 7.3 Intensity distribution for the modeled biological structure for specific values of the para-
meters and 6 = 0%, ¢ = 00, y = 0°
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(a)
1, rel.units
0.4

(b)
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Fig. 7.4 Dependence of the intensity laser radiation on the coefficient refraction and absorption of
the dermis with the absorption coefficient other layers assumed to be equal x = 0.00001 (a) and
x = 0.01 (b)

The model constructed allows variation of the optical parameters of the stud-
ied biological sample and the geometric characteristics, installing the relationship
between them and the biological properties of the simulated tissue. Thus, by using this
mathematical model we can measure spectral differences of normal and pathological
tissue in the case of in vivo with the fibrillar structures for constructing a spectral
autograph to assess determining pathological changes in the investigated biological
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samples, related to the change of electrophysical properties of the epidermis, the
upper dermis and blood.

These dependences can be used to predict changes in the optical properties of
the dermis, caused by therein various biophysical, biochemical and physiological
processes, and they can also be calculated for lasers with different parameters, and
well as the quantitative estimates which can be applied to processing and interpreta-
tion of experimental data.

The constructed model allows to determine not only the spectral distribution
of the optical parameters of the biological environment associated with the light
absorption in the upper layers the simulated biological fibrillar structure, but also the
changes taking place under various factors that change functional and morphological
condition of tissue and gives the possibility of simultaneous receipt of one plant
aggregate results by varying the optical properties and characteristics the dimensions
of the biological structure of the various structures.
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Chapter 8
Study of Optical Properties of Biotissues
by the Intracavity Laser Spectroscopy Method

Abstract We describe a mathematic model for predicting the absorption spectrum
and dispersion of a section of a biological structure consisting of epidermis, upper
layer of the derma, blood, and lower layer of the derma and placed in the cavity of
an optical resonator. It should be noted that the biological structure was represented
by layers with different optical and geometrical parameters illuminated by a laser
beam.

8.1 Introduction

Optical methods (including traditional optical spectroscopy) based on analysis of
reflection, transmission, and fluorescence spectra of biological tissues play an impor-
tant role among modern physical methods of analysis in biology and medicine. The
most effective methods that make it possible to study processes in complex biolog-
ical systems are optical intracavity techniques. The application of intracavity laser
spectroscopy makes it possible to obtain more exact estimates of optical parameters
of the medium, which cannot be detected by conventional methods. Optical methods
make it possible to analyze processes without violating (modifying) living struc-
tures in complex biosystems. However, the application of these methods requires
the development of appropriate mathematical models for better understanding the
process of interaction of a laser beam with a biological object and for extending
potentialities, reliability, and availability of optical technologies, which would make
it possible to theoretically predict electrophysical parameters as characteristics of the
structural state of biological tissues (including human derma). The determination of
optical indices of a biological tissue is a complicated problem due to the complex
and heterogeneous structure of the tissue itself. Modern techniques for determining
optical parameters of biosystems involve the solution of the inverse scattering prob-
lem for various theoretical models such as the Monte Carlo method [1, 2], diffusion
approximation [3, 4], and Kubelka Munk method of flow models [5, 6].
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In this study, mathematical model is constructed, which makes it possible to
vary electrophysical and geometrical parameters (layer thickness) of the section of
a biological tissue being modeled and to represent the result in the form of a graph
describing the dependence of the real and imaginary parts of the refractive index of
the model structure on the wavelength (dispersion curves and absorption spectra) for
each version of calculations.

The problem includes several stages. At the first stage, the reflectance of a plane
wave from a smoothly irregular layer simulating a given biological structure must
be determined (see Chap. 4).

At the second stage, we must solve the problem of reflection of a Gaussian beam
with an arbitrary cross section from a smoothly irregular layer simulating the given
biological structure. The problem is solved by expanding the fields of counterprop-
agating waves in plane waves in region 1 of the medium and their reflection from
layer 2 and carrying out inverse transformation followed by the Huygens—Fresnel
integral transformation to obtain the field in the initial reference cross section after
the circumvention of the cavity (see Chap. 4). The constructions at these stages are
auxiliary.

We consider here natural oscillations of a linear resonator loaded with a layer mod-
eling a given biological structure. The constructions are based on solving auxiliary
problems of the first and second stages.

Chapter is based on the results of the [7-9].

8.2 Integral Equation for Natural Oscillations
of Field in a Resonator

Let a cell with a sample of a biological tissue (tissue section) be located in the vicinity
of the Z axis in domain £2 of the cavity.

Since natural oscillations in ring and linear resonators are retuned in different
ways upon the introduction of inhomogeneities in the cavity, we will consider for
definiteness the simpler case of a linear resonator. We can write the integral equation

o]

OE) =y / K1l €]V Erep (P& E)E], 8.1)

—00

where E,.r(®(&/, £))) is a linear combination of @ (&/', £)') and its derivatives and
is defined in the Chap. 4, and K| (§{, &{’) is the kernel of the integral transformation
of the field,

k

o35 (A5 + DEP-26[¢]) + ikL
27iB ’

K11, &) =
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It should be noted that a characteristic feature of (8.1) is the presence of the
derivative of function @ (£) in the integrand. We will seek @ and y in the form of
a power expansion in small parameter ¢ characterizing the smoothness of variations
in the properties of the medium over a wavelength; i.e.

@ = o + ego1 + O(e?), 8.2)
Y = V1 +egn + 0(?). (8.3)

We substitute expansions (8.2) and (8.3) into the integral (8.1). Then, in the main
approximation, we obtain

Yo (€D = /Kl(é{»5{/)500(51/’éé/)llfo(‘g{/)déi/ : (8.4)

Multiplying (8.1) by 1 Soo (&, Sé)wgt (£]), integrating with respect to £/, and tak-
ing into account the main approximation of (8.4), we obtain the following corrections
to eigenvalues:

. 00 an //7 %) +
on =i | [ vitvs s e - [ v RS
J I X 1

d%']// A_l,

A= /1#8’1#0_500(5{/75{)615{’ :

where

A&,(%i/w + gé/~7 kly's kix)
o ,

| e - k13 - ~
Sx(éf’,éﬁ’)=&[f\10(${/ + & vklyvsklx)+m§{/A0000(éi/ +& ,k1y,k1x)],

ISc (& &) | kY 8A;0(E{’“+§ﬁ’”,k1y,k1x)+8A;(§{’”+€§’”,k1y,k1x)
ok | ikna ok dkiy ’

Soo(&], &) =

(8.5)

quantities o, k13, k%, A (51" + &7, kiy, kix), AL, (™ + &7, kiy, kix) and
Aoo0o (]~ + &), kiy, ki) are defined in Chap. 4.

The solution to (8.4) was sought in the form of a power series expansion in the
eigenfunctions of an ideal resonator:
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Vo =D aEy &), (8.6)

where field E ni (&{) can be represented as the sum of counterpropagating waves

EXE]) = EFED + EFE],
VA . . //2
Ef (&) = CyH, (El wﬁ)exp(—i(n +1/2)g +ikL + il )

q+
. e
E, (§)) = CuHy (51 wﬁ)exp(i(n +1/2)g —ikL — ’jl_ )

Let us write the matrix equation for determining coefficients aj,

G = Y1 Y dpmlin, (8.7)
n
where
o0
= I (H1/2)g p=imt1/2)g / ConCe™ 0" Hyy (8] i (8]) Soo (&1 £5)dE] .

—0o0
A+ D [ 1 / 1 /si
g = arccos + , Ch=——, Cp=,/——, w= s1ng’
2 2" nlom 2"mlom B
1 A+ D

A+ D)?
= +1i 1_u
q 2 4

—AleB)7!,

A, B and D are the elements of the wave matrix of the resonator; L is the resonator
length; H,, H, are Hermitean polynomials; k = 2m/A is the wavenumber and
Soo (&', 7)) is defined by expression (8.5).

Matrix system (8.7) is a system of homogeneous linear algebraic equations, which
is used for determining the transverse modes of the resonator by formula (8.6) after
the calculation of eigenvectors, while the eigenfrequencies of these modes can be
found from the equality of the determinant of this system to zero. Thus, at this stage,
the frequencies of natural oscillations of the optical resonator loaded with the sample
of the biological tissue under investigation were connected by formula (8.7) with the
electrophysical parameters of this biological structure, such as the real and imaginary
parts of their refractive indices and sizes.

Further testing and analysis of the above dependences will be carried out using
numerical methods.
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8.3 Numerical Calculations for a Model Medium
and Conclusions

Let us consider an optical resonator with a model medium which has the following
parameters: the distance L between the mirrors is 11 cm; radii of mirrors M and M,
are 100.0 and 46.3 cm, respectively.

It should be noted that, for better matching to the real structure of the object under
investigation, the interfaces between the layers are represented by wavy surface z; =
Hi(x,y), 22 = Ha(x,y), 23 = H3(x,y), where Hi(x, y) = cisin(aix + biy),
Hy(x,y) = casin(azx + bay), Hz(x,y) = c3sin(azx + b3y), c1, a1, by, 2, az,
by, c3, a3, b3 are some arbitrary constants. The arbitrarily preset constants are:
a; = —0.0024, by = 0.020, a; = 0.021, b, = 0.030, a3 = 0.041, b3 = 0.051,
cl =c¢ =c3 = 10~2. The values of parameters ay, by, az, ba, az, b3, c1,¢2,¢3
are selected for the interfaces between the layers so that the shape of the surface
matches as close as possible to the interface between the corresponding layers in
the structure of the normal human derma. All calculations were carried out for the
principal transverse mode.

Figure 8.1a, b shows the dependence of the imaginary part of the refractive index
(absorptance) of the epidermis on the wavelength. It can be seen from the curves
that the refractive index of the epidermis in the ultraviolet range is high. This is

(a) (b)

n2 n2
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Fig. 8.1 a Dependence of the real part of the refractive index of the epidermis on wavelength
for the following parameters of the model medium: the imaginary part of the refractive index of
the epidermis is 0.00001, he refractive index of the upper derma is 1.3 4+ 0.000017, the refractive
index of blood is 1.3509 + 0.00001:, the refractive index of the lower derma is 1.3 + 0.00001i,
the thicknesses of the epidermis, upper derma, and blood are 64, 600, 80 um. b Dependence of the
real part of the refractive index of the epidermis on wavelength for the following parameters of the
model medium: the imaginary part of the refractive index of the epidermis is 0.00001, he refractive
index of the upper derma is 1.3 4+ 0.00001i, the refractive index of blood is 1.35 4+ 0.00001i, the
refractive index of the lower derma is 1.45 + 0.00001i, the thicknesses of the epidermis, upper
derma, and blood are 65, 600, 80 wm, respectively
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Fig. 8.2 aDependence of the imaginary part of the refractive index of the epidermis on wavelength
for the following parameters of the model medium: the real part of the refractive index of the
epidermis is 1.3, the refractive index of the upper derma is 1.33 4+ 0.00001i, the refractive index of
bloodis 1.35+0.00001i, the refractive index of the lower derma is 1.45+0.00001:, the thicknesses
of the epidermis, upper derma, and blood are 65, 600 and 80 um, respectively. b Dependence of the
imaginary part of the refractive index of the epidermis on wavelength for the following parameters
of the model medium: the real part of the refractive index of the epidermis is 1.3, the refractive
index of the upper derma is 1.33 + 0.00001:, the refractive index of blood is 1.3501 + 0.00001i,
the refractive index of the lower derma is 1.45 4 0.00001:, the thicknesses of the epidermis, upper
derma, and blood are 65, 600 and 80 pm, respectively

apparently due to the fact that, at a given wavelength, light in the surface layer is
strongly absorbed, mainly by melanin.

The dependence of the real part of the refractive index of the epidermis on the
wavelength is shown in Fig. 8.2a, b. It can be seen from Fig. 8.2 that the maximal
values of the real part of the refractive index of the epidermis are attained for wave-
lengths for which the values of the refractive index of the epidermis are minimal and
vice versa, which is in conformity with the general theoretical concepts. It should be
noted that the mathematical model constructed here is quite sensitive to change in
the optical parameters of the model medium and that the ranges of quantities n; (real
part of the refractive index of the epidermis) and x» (imaginary part of the refractive
index of the epidermis) are close to experimental values of the complex refractive
index for the biological structure being modeled that were obtained without using
the intracavity model [10].

The model constructed here makes it possible to determine not only the spectral
distributions of optical parameters of a biological medium, which are associated with
absorption of light in the upper layers of the biological structure being simulated,
but also their variations occurring under the action of various factors leading to a
change in the functional and morphological state of the biological tissue. The model
also makes it possible to obtain simultaneously on the same setup an aggregate of
results of variation of electrophysical parameters and characteristic sizes of various
biological structures under investigation.
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Thus, using the mathematical model constructed here, it is possible to measure

the spectral differences in normal and pathological tissues in vitro for constructing
a spectral autograph to assess pathological changes in biological samples under
investigation.

Analogous dependences can be calculated for lasers with other parameters and can

be used for processing experimental dispersion and absorption curves for biological
tissues.
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Chapter 9
Study of the Optical Characteristics of Thin
Layer of the Biological Sample

Abstract We construct the mathematical model, which makes it possible to vary
the characteristic sizes of roughness, the electrophysical parameters of the biological
sample under investigation, and its geometrical characteristics and to establish the
relations between these parameters and biological properties of the biological tissue
being modeled, as well as to calculate theoretically the absorption spectra of optically
thin biological samples placed into the cavity of an optical resonator.

9.1 Introduction

Most biological surfaces are rough to a certain extent. The roughness of the surface
affects the characteristics of wave propagation and scattering (namely, the character-
istics of a wave propagating over such a surface differ from analogous characteristics
in the case of propagation over a smooth surface). A wave incident on a rough surface
not only reflects specularly, but is also scattered in all other directions. In analysis of
scattering from a rough surface, the extent of roughness of the surface is connected
with the wavelength of incident radiation and depends on the direction of wave
propagation and scattering. In this connection, it is important to study the effect of
roughness on the spectral characteristics of the biological structure being simulated.

It should be noted that using a resonator, it is possible to obtain more exact esti-
mates of optical parameters of the medium taking into account the roughness, which
cannot be detected using conventional methods. Thus, it is expedient to consider
the problem of natural oscillations of a linear resonator loaded with an optically thin
layer simulating a certain biological structure. The biological structure is represented
by an optically thin layer with certain optical and geometrical characteristics, which
is illuminated by a laser beam.

The problem includes the following three consecutive stages. At the first stage, the
problem of scattering from the rough boundary had to be solved and the coefficient
of reflection of a plane wave from a smoothly irregular layer must be determined
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taking into account the roughness of the boundary simulating the given biological
medium. At the second stage, the problem of reflection of a Gaussian beam with
an arbitrary cross section had to be solved. The problem was solved by expanding
the fields of counterpropagating waves in plane waves in the region of medium 1
and their reflection from layer 2 using inverse transformation followed by Huygens—
Fresnel integral transformation to obtain the field in the initial reference cross section
after the circumvention of the resonator (see Chap.4). At the third stage, the effect
of roughness on the spectral characteristics of the biological sample being simulated
was investigated.
Chapter is based on the results of the Refs. [1-3].

9.2 Scattering of a Plane Wave from a Rough Surface

As noted above, the surfaces of real bodies (in particular, in biology) are not always
perfectly smooth to a certain extent; for this reason, reflection and refraction of
waves from such surfaces are accompanied by phenomena which are not observed
in the case of perfectly smooth interfaces. The form of scattering from a rough
surface is determined by the set of the following factor: the degree of smoothness
is determined by the relation between the wavelength of incident radiation and the
geometrical parameters of the surface; the polarization of the primary wave as well
as the reflecting and refracting properties of the substance also play a significant role.
Rigorous methods for solving problems in the case of a rough surface do not exist.

The problem can be solved only approximately under certain constraints imposed
on the size and shape of roughness. The scattered field is calculated using the method
of small perturbations and the Kirchhoff method. In this study, we are using the small
perturbation method for calculating the scattered field.

To apply the small perturbation method correctly, we assume that roughness of
the surface under investigation is small and gently sloping on the wavelength scale
are small and gently sloping on the wavelength scale. The slope of roughness indi-
cates [4] that the inclination of the surface is small on the average; i.e., ‘7121 / l%, <1,
where ‘71%1 = (H?) is the standard deviation from the unperturbed surface z = 0 and
g is the characteristic size of irregularities. The smallness of irregularities means
that moments (H") are small as compared to the relevant powers of the wavelength,
(H™) < A™; in particular, 0121 &« A2. As aresult, for small and gently sloping irreg-
ularities, we can use the expansion of the boundary conditions as well as the sought
solutions into a power series in small parameters H/A <« 1 and oy /ly < 1 (i.e.,
we apply the perturbation method). Let us suppose that a plane monochromatic of
unit amplitude is incident on a rough surface. We consider two media with refractive
indices n1 and ny. The equation of the surface has the form z = H (x, y); we assume

that |32 | < 1, ]%] < 1.
We denote by E1 and E» the amplitudes of the electric field in the upper and lower

media, respectively. The electric field amplitude E; in the upper medium satisfies
the equation
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92E, 0%E, N 92E;
0x2 dy? 972

+k%nE; =0 9.1)

while electric field amplitude E3 in the lower medium satisfies the equation

02E, 0%E, 9%E;

+ + +k’n3E; =0, 9.2
ax2 3y22 972 22 ©-2)

where k is the wavevector and 7 jis the complex refractive index nj = n% +iy;, j =
1, 2 with the boundary conditions in the form

Etlz=H(xy) = E2l:=H(x.y) (9.3)
1 9E; 1 9E,
ﬁa—nk:H(x,y) = n—%a—n|z:H(x,y)’ ©4

where n is the unit vector of the outward normal with the following components:

( 0H 0H ) 1
n=\(e—,o—,—a), a= .

dx " By VU + G2+ G2

We must find the reflected field taking into account the roughness of the interface

between the media. We consider only the case of the p polarization. We expand
boundary condition (9.3) into a power series in H:

(E| +H(8E‘) +H2(32E‘) +
Yo+ i (2B H?
’ dz z=0 2 822 z=0

9E, H? (3%E,
= (E3) |0+ H | —= — 9.5
(E2) |z=0 + ( 3z )Z=0+ 2 ( 32 Z=0+ 9.5)

Let us consider the boundary condition of type (9.4).

IE] 1 0E; 1 JE, IE, AE,
Wk:H(L,‘)) = EWL:H@.)) == ("*W n"rW +nz¥)
:%(“%"‘"')%(Ellz:0+H%lz:0+---) (9.6)
+i2(a8H +) i(Ellvzo+Ha£|7:0-i----)
nj dy dy ) 9z -
1 (VH)? 0E| 92E; H? 33E,
1 ( 9E dE| 0H dE; 0H
:aE (_Tzlz:O Wal;:(} a—th:O)
ras (_H h ! *°+H82E' fomo - 22 P, 0" aﬂ)
1 922 dxdz = ax - aydz -y
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1 (0E; (VH)?  H?3E, 9E,
—a— | - = lz=0 + - -

2o = T s Ton A
1 AE, 9E; 0H 9E> OH 92E, 92E, oH
=a— (_7|z=0 — =0+ —— =0 —H—5 =0+ H lz=0 - ——
nj 0z dx Jx dy dy 9z 0x0z dx
1 (0%E, OH JE> (VH)?  H? 3 E,
+a— =0 — — = — =0+ ). 9.7
o (ayazy 0 Gy T an =03 > 5 =0 ) 9.7

Then, a boundary condition of type (9.4) taking into account (9.6) and (9.7) assumes
the form

1 (3E; IE; 87H| IE; a£| N H32E1| 82E1| oH
PEANEE =07 x x0T Ty gy 0 922 =0T T xa7 0 ax
1 82E1| OH N IE; (VH)? H? 83E1|
2\ a0 Ty T 0 g
1 8E2| dE, OH IE, aH| +H3252| 3252| OH
T a2\ o 0 T ax 0T oy oy 0 922 =0T iz 0
1 82E2| oH 3E2| (VH)? H7283E2| ©.8)
I T I PR 2 93 =) :

We will seek the reflected field in medium 1 and the field transmitted to medium 2
in the form

[e¢)
Ei(x,y,2) = Eine(x,y,2) + D E (x, . 2), 9.9)
n=0
o
Ex(x,y,2) = D Ej(x,y,2), (9.10)
n=0

(we omit factor exp(—iwt for brevity), where Ej,.(x, y, z) is the primary mono-
chromatic field incident on the rough surface, E81 (x, y, z) is the amplitude of the
reflected wave, and E, 82 (x, v, z) isthe amplitude of the transmitted wave. The remain-

ing terms of series (9.9) and (9.10) are propagating and attenuating scattered modes
in the upper and lower media. Substituting relations (9.9) and (9.10) into (9.7) and
(9.8), we obtain the boundary conditions for successive approximations of the field:

Einc|z=0 + E(())| |z=0 = E(())2|z=0, (91 1)

AEinc 9EQ
Ejil=0+ H (T‘Z"") +H (az‘” )
=0 7=0

AEY
= H<3Z02) + Egplz0, 9.12)
z=0
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dE] H? (E? 92EY
E2 77 H 01 77 inc 01
rle=o + 0z =0+ 972 02 ]
IE] H? 9’E)
=Ep+H(=2) +Ehl—o+|5—22) - (9.13)
0z 2 0z
z=0 z=0
1 (3Ejn. OEQ 1 (9E)
S| ==+ e , (9.14)
ny 0z 0z o M 9z 0

1 ([ 9Eg, _((2Eine IEY, OH _((3Einc IEY, oH
n% 9z 0 ox ox 0 ax dy dy o dy
1 92ED
+—H 01 )
n? ( 972 o
- 1 a0 - 0 -
1 ((dEoz) (dEoz) 9H (BEOZ) aH)
== — 2 (e il
ny 9z =0 ax 0 dx ay o dy

250
+12(H(a ) ), 9.15)

1 ((9EE 0Eic IE}, 0H _ (9Eine AEY, dH
n3 dz o 0x dx o dx dy dy o dy
2

N % i 3% Einc N 92E}, OH 3% Einc N 92E}, OH
nj 0x0z 0x0z 0 ax dyoz dyoz o dy
9Ein. OE] VH)? H? [ 3Ej. 3E}

2 (aw+3m) (2)+7 agm+33m

1 Z Z =0 Z Ve =0
E? IE] oH dE] oH 92E]

02 o 02 ol 02 i H 02
9z ax dx dy ay 972
z=0 z=0 z=l z=l
L I2EL, OH I2EL, LoH IES, (VH)?
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z=0

We assume that the perturbation of the interface between two media is described by
a certain periodic function H(x + 2a, y + 2a) = H(x, y). In accordance with the
periodicity conditions, function H (x, y) can be expanded into a Fourier series. We
assume that the number of harmonics in this series is finite; this gives

M N
H(x,y) = D" Hpun exp(idnx) exp(iiny). (9.17)
m=0n=0
where
mn mm
An ) )\m -
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Taking into account relations (9.9) and (9.17), we will seek the field in the upper
medium in the form

M N

Ey = exp(iTine(x.y.2)) + D > By Hyun xp(idnx) exp(iy )
m=0n=0

X exp(iTref (X, ¥, 2)) (9.18)

and the field in the lower medium will be sought, taking into account relations (9.10)
and (9.17), in the form

M N
Ey= > > Bl Hun exp(idnx) exp(iimy) exp(it(x, . 2)), (9.19)

m=0n=0
where

Tine (X, Y, Z) =kixx + klyy - klzzv Tref = kixx + klyy + klzzs T = Koy X + kay - k/zzz,
kix = knysin(0) sin(¢), kiy = knysin(6) cos(¢), ki, = kny cos(0),
kox = kny sin(0) sin(¢), kay = kny sin(0) cos(¢), ko, = knj cos(9).

Substituting relations (9.18) and (9.19) into (9.1) and (9.2), we find that these equa-
tions hold under the following conditions:

K+ kD k40 +ag, =Kt kg, k5, k. 4 A+, = ki3,

We substitute expressions (9.18) and (9.19) into (9.11)—(9.16), multiply the result
by (9.11)—(9.16) exp(—iAn, x) exp(—iA,, ¥) and integrate over the period; this gives
a system of linear equations in BT and B~ . Solving the resultant system, we obtain
corrections to the amplitude transmission and reflections coefficients, which have
the form

N M
B™ = By, + H*By, = (1 + Z Z H2, ki (—2k + 206 — a,,)) By, (9.20)

n=0m=0
N M
BT = BT +H’By, =(1 +0.5kiky D D" Hy (ki = k2) + 20t — 2a,,)) By,
n=0m=0
(9.21)
where k1 = kny, ky = kny, Uref = kix —|—k1y + klZv oy = ko + kzy — kéz'
Substituting o2 for Hn2m in expressions (9.20) and (9.21), we obtain
B~ = Byy + H*Byy = (1 + 0%k (—=2ka + 20tref — o)) By, (9.22)

BT = B, + H?Byy = (1 + 0.5k1kao® (k1 — k2) + 2001 — 204,)) By, (9.23)
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where B is the amplitude of the reflected wave for the rough interface between the
two media and B~ is the amplitude of the transmitted wave for the rough interface
between the media. We define o as the standard deviation of the rough interface
profile from the unperturbed boundary.

Having determined the corrections to the amplitude transmission and reflection
coefficients, we formulate the problem of reflection of a plane wave from a layer
with a slowly varying thickness taking into account the roughness of the surface.

Let us consider an optical system. The system consists of two regions with
different refraction indices. To attain the maximal conformity with the structure
of the actual object of investigation, we represent the interface between the layer
of the model medium in the form of a undulated surface z = H(x, y), where
H(x,y) = csin(ax + by), a, b and c are certain arbitrarily defined constant, such
thata < b < 1,c K 1.

Let us suppose that a plane s- or p-polarized wave is incident on the layer at an
angle 6. We consider only the case of the p polarization. We must find the reflected
field. We will seek the reflected field in the form of waves with slowly varying
amplitudes and rapidly oscillating phases:

E| = exp (lgfmc(éh &, 53)) + exp (lgnref(éh &, -‘33))
X A(gl’ézs 5378)(78)1)1 (924)

E, =exp (lgfztr(él,éz, Ea)) Bt (&1, &2, &3, &x, &y)
+ exp (émef(éh &2, 53)) B (81, 62,83, €x, €y), (9.25)
E3 = exp (gm GRS &)) CEL 6 &3 er 6y). (9.26)

We seek amplitudes A and C in the form of power series in small parameters &y, &y
(see Chap. 4). It should be noted that the expressions for amplitudes B taking into
account relations (9.22) and (9.23) have the form

BY (1.6, 8, 60,8)) = D D Bl (61,62, 8)
i=0 j=0
x (1 + Fi)(el - &), (9.27)

B (€1, 6, 63,60,6) = > > By (€1, &2, 6)

i=0 j=0

x (1+ (! - &)), (9.28)

where F| = 0.5ki ka0 ((k1 —k2) =201 +20r), Fr = 02ki(—2ka —20tef +tr).
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Note that the expressions for amplitudes A, C, BT are defined analogously to
the method described on Chap.4. Substitution of expressions (9.24)—(9.26) into
(4.6)—(4.11) generates a recurrent system of equations. From this system for the
reflected field, we find reflection coefficient A taking into account the roughness of
the interface with the medium being simulated.

The expression for the reflection of a Gaussian beam with an arbitrary cross
section is defined analogously to the method described in Chap.4. We note that
the expression which connects the frequency of natural oscillations of the optical
resonator loaded with the sample of the biological tissue under investigation with
electrophysical parameters of this biological structure such as real and imaginary
parts of their refractive indices and sizes are described in Chap. 8.

9.3 Numerical Calculations for a Resonator with Chosen
Parameters and Conclusions

Let us consider an optical resonator with a model medium (sample of biotissue) with
the following parameters: the distance L = 11 cm between the mirrors, radii of the
mirrors are M1 = 100 cm and M> = 46.3 cm. The arbitrarily chosen constants are
a = —0.0024,b = 0.020, c = 10~2. The values of parameters a, b and c are chosen
for the interface between the layer being simulated so that the shape of the surface is
in the best conformity with the shape of the interface of the corresponding layer in the
structure of the biological sample being simulated; the thickness of the sample being
simulated was 0.3 pm. All calculations were made for the fundamental transverse
mode of a linear resonator.

Figure 9.1a, b shows the dependence of the absorption coefficient of the biological
sample being simulated on the wavelength for 0 = 0 and 0 = 0.3 nm, where o is
defined as the standard deviation of the profile of the rough boundary from the
unperturbed boundary. It follows from the graphs that the absorption coefficient of
the biological sample in the ultraviolet range is large, while the absorption coefficient
in the visible range decreases and remains almost unchanged.

Thus, the model constructed here makes it possible to analyze the biophysical
characteristics associated with absorption of light in optically thin layers on account
of small-scale inhomogeneities. This also makes it possible to vary (on the same
setup) the biological objects and their electrophysical parameters, as well as char-
acteristic thicknesses of the layers and the characteristic sizes of roughnesses of the
biological structure to determine the dependence between these parameters. Using
this approach systematically, it will probably be possible to find correlations between
electrophysical parameters of the biological structure being simulated and its bio-
logical properties.

It should be noted that by varying the absorption coefficient of the biological
tissue, one can use this model for in vitro measurements of the spectral characteristic
of the biological tissue taking into account small-scale inhomogeneities to construct
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the spectral autograph for determining pathological changes in the biological samples
under investigation.

Analogous dependences can be calculated for lasers with other parameters and
used for processing of experimental absorption curves for biological structures under
investigation taking into account small-scale inhomogeneities.
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Chapter 10
Simulation of the Thermal Processes

Abstract We propose the mathematical model for calculation of the hyperthymia
of a multilayer biological structure under the action of laser radiation. For the case in
vivo, the dependences of the temperature field on the refractive index and absorption
coefficient of the biological tissue under study (epidermis, the upper derma layer,
the lower derma layer, blood and its corpuscles) are determined. The obtained quan-
titative estimates can be used to predict the changes in the optical properties of the
biological structure that are caused by the biophysical, biochemical, and physiolog-
ical processes during the action of a nonpolarized monochromatic radiation flow on
the structure surface.

10.1 Introduction

Laser therapy belongs to promising and dynamically developing fields in modern
medicine. The therapeutic action of laser radiation is related to the hypothermia of
biological tissue, which requires a model for the calculation of the temperature field
in the tissue subjected to low-intensity (noncoagulating) laser radiation. There exist
a number of works dealing with the problems of the mathematical simulation of the
laser radiation distribution in multilayer biological tissue and with the related thermal
processes. In most works [1, 2] researchers have calculated the temperature fields
appearing during the irradiation of biological tissue by a low-intensity laser beam
at various times. For example, to find the depth profile of the absorbed energy in
irradiated tissue, researchers used various numerical methods, including the discrete
coordinate method [3], finite-difference schemes [1], the Green function method [1],
and the Monte-Carlo method [4]. The last method is effective for complex geometry
of a biological sample.

However, an analysis of the thermal effect of laser radiation should not be purely
physical, since it has to include biological (biophysical) studies of the response of the
organism. Thus, the problem of the thermal effect of laser radiation can be divided
into four problems to be solved successively [5]:
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(1) the description of the laser radiation energy distribution;

(2) the determination of the absorption characteristics of the biological material;

(3) an analysis of the temperature distribution in irradiated tissue; and

(4) the study of the biological (biochemical, physiological) changes in the tissue
caused by an increase in the temperature.

In this chapter we construct a mathematical model that can vary the electrophysical
parameters of a biological structure (the real and imaginary parts of the refractive
indices of blood and its corpuscles, epidermis, the upper derma layer, the lower derma
layer) and the characteristic sizes of blood corpuscles and can find relations between
them and the biological properties of blood by allowing for the laser-induced heating
of biological tissue. As a result, we can perform in vivo analysis of the temperature
distribution as a function of the electrophysical parameters of the biological structure
under study. In the first part of this work, we consider the problem of the scattering of
a plane electromagnetic wave by a three-layer spherical particle simulating a blood
cell (see Chap.3). In the second part, we analyze the more complex case of the
reflection of a plane wave using a biological sample consisting of two continuous
layers and one layer with heterogeneous inclusions that simulate blood cells with
different refractive indices and briefly examine the problem of the reflection of a
Gaussian beam with an arbitrary cross section under the conditions given above and
the problem of determining the dependence of the radiation intensity on the refractive
index for a system of blood vessels located in the upper derma layer (see Chaps.4
and 6). These parts have an auxiliary character. In the third part, we solve the problem
of the heating of a blood vessel under the action of a laser beam incident on the outer
surface of a biological structure.
Chapter is based on the results of the Refs. [6, 7].

10.2 Mathematical Model for Heating of Biological
Tissue by Laser Radiation

‘We propose a mathematical model for the heating of a blood vessel by laser radiation
incident on the outer skin surface. In this model, we use dimensional variables. The
laser radiation incident on the skin surface is absorbed by the biological tissue layers
(epidermis, derma) and the blood hemoglobin, increasing the temperature in the
subskin layers and inside blood vessels. In the general case, the simulation of the
thermal processes in biological tissue requires the solution of the three-dimensional
equation

S aT
(c+p)™" - div0h - gradT (r, 1) + Q(x, m, x{,0,9) = —, (10.1)

Where cis 'the specific heat, p is the density, A is the thermal conductivity, mi =
N{/n,, N{ is the complex refractive index of the jth particle for the rth concentric
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layer, n, is the refractive index of the environment, x%- = kai, j= 1..N,t=1,3,
where ag is the radius of the jth particle with tth concentric layers, 7 (r, t) is the
desired temperature distribution and Q(r, m{, x{ , 0, @) is the volume power density
distribution of the heat loads in the biological tissue that are induced by its absorption.
This distribution was found at the stage of solving the optical problem. We write

O(r,m’, x1,0, ¢) in the form [8]:
I, Eo I,
Q(rv my, Xz, 9’ go) = T_M(p(r’ my, Xz, 97 go)s
14

where

¢1(r,m}, x1,0,9)

d(e,mi, x!,6,¢) =
0

’

o1 (r,ml, xi,0, @) is a intensity at r(x, y, z), ¢ is unit power density radiation on
the surface the simulated biological structure, ¢y (r, m¢,x7,6,¢) = [, I(r,mi,

x,0,¢)ds2, where I(r,ml,x!,6,¢) determined from (4.69), d2 = sin0d6dy
is the solid angle, p is the absorption coefficient of the medium, Ej is the radiant
energy density and 7, is pulse duration.

Since the model includes a few of the skin layers, then (10.1) has been solved
for each of them separately. For areas where vessels are not anatomically, thermal
calculation was based on (10.1) . In areas in which vessels are present (in the upper
layer of the dermis) we added more heat sources, which are caused by the flow of
blood. In this layer, we have

. o aT
(c-p)~"-div(r-gradT (r, 1))+ Q(r, m/, x/, 0, 9)+ Qplooa (r, 1, T) = a5 (10.2)

where
Obiood(x,t,T) = c - p(pbiood f(t, T) - (Tpiooa — T (r, 1)),

Dblood 18 density blood, T4 1s temperature blood, f (¢, T) is the density of the flow
of blood into the tissues.

Let us write the boundary conditions. In a linearized form, the interaction of
the outer skin surface with the environment (convection) can be described by the
boundary conditions of the third kind [1]

aT
(?»— - AT — To)) l;=0 =0, (10.3)
9z

where A is the reduced heat-transfer coefficient and, Tj is the initial temperature.
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Tli=0,:=0 = 34°,  Tli=0,z=h,(x,y) = 37°. (10.4)

Expression (10.4) means that the temperature changes with the depth from 34° to
37°.

At the interface between the ith and (i 4 1)th layers (z = h; (x, y)), the following
continuity conditions of the heat flow and temperature are met:

oT; T(i+1)
()»ia—z — Ai+1) PP le=hi(x.y) = 0 (10.5)
(Ti = Tiis1)) lz=hi(xr.y) = 0, (10.6)

where h;(x, y) is determined from (4.1).
When solving (10.1-10.6), we obtain

(a) the temperature distribution over layers along the propagation direction of the
laser beam; and

(b) the dependence of the temperature on the optical properties of the biological
tissue, which can be used to study the effect of the temperature field on the
electrophysical parameters of the biological tissue for the case in vivo.

For further investigation and analysis of the dependences obtained, we will use
numerical methods.

10.3 Numerical Calculations Using a Model Medium
and Conclusions

To numerically solve (10.1-10.6), we construct an implicit iteration scheme on a
space time mesh, the boundary conditions for temperature being replaced by their
finite-difference analogs [9]. We consider the model medium that is shown in Fig. 6.1
and has the following parameters [10]: the characteristic layer thicknesses are dy =
65 - 1075, ng = 1.50,n§ = 1.40,ny = 1.35,n¢ = 1.40,n{ = 1,1 =0, x2 =
X3 = x4 = x5 = 107>, the wavelength is A = 0.63 pum (center of the line of a
He-Ne laser). The arbitrarily specified constants are a; = —0.0024, b1 = 0.020,
a» = 0.021, by = 0.030, a3 = 0.041, b3 = 0.051, ¢] = ¢ = ¢3 = 1072, The
values of parameters ay, by, az, ba, a3, b3, c1, c» and c3 are chosen for the interface
of each layer so that the surface shape are as close as possible to the interface shape
of the corresponding layer in the structure of human skin, the thermal conductivity
(W/(m - K)), the specific heat J/(kg.), and the density x 1073 (kg/m?) are 0.498, 3.2
and 1 for the first layer, 0.266, 3.7 and 1.6 for the second layer, 0.530, 3.6 and 1 for
the third layer, 0.266, 3.7 and 1.6 for the fourth layer, and the heat-transfer coefficient
is 0.009 W - cm~2 - K~!. The calculations were performed for two-layer particles
simulating red corpuscles. Each layer was taken to have ten particles, the speed of
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(b)

Fig. 10.1 Spatial temperature distribution in the incident radiation direction as a function of time
t in the vicinity of the helium—neon laser radiation line (0.63 um). At the initial time ¢ = 0, the
temperature of the medium is 34°. The medium parameters are as follows: the real value of the
refractive index of the cytoplasm of the biological particle is a 1.35 or b 1.45, the imaginary value
of the refractive index of the refractive index of the cytoplasm of the biological particle is 0.0001,
the real value of the refractive index of the plasma membrane of the biological particle is a 1.23 or
b 1.43, the imaginary value of the refractive index of the plasma membrane of the biological particle
is 0.0001, the radius of the cytoplasm of the biological particle is 3 jum, and the radius of the plasma
membrane of the biological particle is a 2 or b 2.3 pwm. b The real value of the refractive index
of the plasma membrane of the biological particle is 1.43, the imaginary value of the refractive
index of the plasma membrane of the biological particle is 0.0001, the radius of the cytoplasm of
the biological particle is 3 wm, and the radius of the plasma membrane of the biological particle is
2.3 um

blood flow in the dermis is 15 mL/(min 100 g), pulse duration is 20 c, the radiation
power density is 1 W/cm?.

Figure 10.1a, b shows the time-dependent temperature distribution in the direc-
tion of the incident radiation (z axis) for a multilayer light-absorbing and scattering
medium that simulates human skin and its components at various refractive indices.

The upper layer of the simulated biological tissue (epidermis) is seen to be sig-
nificantly heated, which is likely to be related to the fact that the light is strongly
absorbed by melanin in the surface layer at the given wavelength (see Chap. 1). We
can also conclude that the surface temperature exceeds approximately 45° at the tenth
second of the continuous action of laser radiation (Fig. 10.1b), and tissue necrosis or
thermal burn can appear. Thus, with the model, we can estimate the thermal action
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of laser radiation on biological tissue, choose the optimum action time to provide
uniform and long-term heating of the tissue by excluding negative reactions, and
determine the boundaries of destruction and tissue necrosis. It should be noted that
our mathematical model is rather sensitive to the changes in the refractive indices of
the simulated biological tissue and its components that are induced by nonpolarized
monochromatic radiation flow.

The following effect obtained in the model experiment is of interest. We got a
linear relation between the temperature field distribution of the incident radiation and
the refractive indices of the simulated biological tissue. As a result, this model can be
used to predict changes in the electrophysical properties of the biological structure
subjected to laser radiation for the case in vivo.

Our model can vary the composition, the electrophysical parameters, the thermo-
physical characteristics, and the characteristic layer thickness of biological objects,
as well as the characteristic sizes of the biological structure under study, in one appa-
ratus in order to analyze the biophysical processes related to the thermal action of
laser radiation on the upper skin layers.

Using such a simulation, we can both find the preliminary parameters of the laser
radiation field and reveal the effects of the responses to laser irradiation at various
levels of organization of living matter.

On the whole, the results of simulating the thermal fields of laser radiation can
be used to improve laser thermotherapy and biostimulation methods and can serve
as the basis for the mathematical support of the experimental determination of the
optical and thermophysical parameters.

10.4 The Mathematical Model of Thermo-Chemical
Denaturation of Biological Structure

The results of calculations of the temperature field in a simulated biological structure
can be used to assess the kinetics of denaturation of tissue. Note that the models of
thermo-chemical denaturation of biological structures such as corneal tissue and
skin was considered in Refs. [11, 12]. The correct solution to estimate the kinetics of
thermal decomposition of biological structures is difficult, because the biochemical
composition of the cells is complex. However, the necessary practical estimates
accuracy could be achieved with the introduction of a number of assumptions [13].
The basis of biochemical reactions stimulated by heat, are such processes as break
chemical bonds, the conformational transition. This class includes reactions and
thermal denaturation of proteins and lipids, enzymes, etc.

To describe such reactions we use the kinetic equation of irreversible chemical
reaction of the first order, where the temperature dependence of the reaction rate
constant K (7') is Arrhenius law:

d kT —AH —-TAS
U _kyf KT = - exp (T) :

T (10.7)



10.4 The Mathematical Model of Thermo-Chemical Denaturation of Biological Structure 145

Fig. 10.2 The threshold

: Jm’x10"
radiant exposure
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5%

where f is the relative concentration of the protein molecules, ¢ is time, AH is
enthalpy of activation, AS is entropy of activation, R is universal gas constant, / is
Planck constant, k is Boltzmann constant.

When solving (10.1)—(10.7) it is possible to determine the radiant exposure which
causes the primary disorders, simulated biological structure, in particular, the dermis.

Criterion for such a disorder is decrease in the dimensionless concentration of the
original protein of the initial value f = 1 before f = exp(—1). This value radiant
exposure is the threshold.

Figure 10.2 shows the calculated dependence of the threshold energy density of
helium—neon laser on the laser pulse duration, AH is 430,000 J/mol and AS is
940J/(mol - K) [14, 15]. As follows from the figure, with increasing duration of
exposure there is a sharp increase in the consumption of energy required for create
the threshold conditions of coagulation. This phenomenon can be explained by the
loss of selectivity effects, spreading the temperature field, and as a consequence,
increasing the heated volume. Thus, the mathematical model can be considered for
use the development of optimal regime and technical characteristics of lasers used
in biomedical research.
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