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Preface

Structures and processes studied in biology range from molecules in cells to
populations or ecosystems, or to brains consisting of billions of interacting
neurons, and the formal models employed in biology range from graphs as abstract
representations of pairwise interactions to complicated systems of partial differ-
ential equations that try to capture all details of some biological system. Therefore,
also the mathematical methods and tools employed in biology and neurobiology
are quite diverse and heterogeneous. A student wanting to learn and apply
mathematical techniques in biology might be confronted with the problem that she
or he does not possess an overview of the available mathematical tools and does
not know which method could be appropriate for a specific biological problem.
A biological structure, in fact, can be modeled at various levels of details, and it is
not necessarily the case that a more detailed and precise model yields better
quantitative predictions.

In that situation, this book presents a spectrum of mathematical methods that
are relevant and important for biology and neurobiology. Thereby, the student
should be equipped with an overview and a working knowledge of the most
important mathematical tools. These methods fall into three categories: First of all,
there are the discrete methods, from combinatorics and graph theory. Graphs can
be used to model the structure of pairwise interactions between elements in some
network, whatever their precise biological nature might be. They can also be
utilized to analyze empirical network data. A particular class of graphs, the trees,
plays a special role in biology because they model descendence relations.
The second class of models comprises the stochastic ones. Much of biology, in
fact, is modeled in stochastic terms, be it the firing of neurons in the brain or the
random forces of evolution. Therefore, I provide a systematic introduction to
stochastic processes. Finally, there are the analytical methods from the theory of
differential equations, like dynamical systems or partial differential equations, that
are used to explain the formation of biological patterns, ranging from the
molecular scale to that of interacting species. Often, such models are derived from
optimization principles, the theoretical rationale being that evolutionary compe-
tition has produced structures that best perform certain functions. Therefore, we
also devote a chapter to optimization schemes. A final chapter then deals with a
particular area of mathematical biology, population genetics. That has been the
field of biology where mathematical methods first have been applied in a very
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systematic manner. It continues to be alive today, and I present a new geometric
approach to population genetics that will, as I hope, clarify the underlying
mathematical structure.1 These last two chapters are thus both concerned with
issues of evolutionary biology, but from two different perspectives, that of
optimization versus that of random processes. For a mathematical understanding of
evolution, the combination of these two perspectives is essential.

The exercises are concerned with both the mathematical techniques developed
in this book and their application in biological modeling. While some exercises are
more of the traditional drill type that is needed to master some technique, others
are more open in order to stimulate and encourage your own thinking.

In this book, I try to explain the underlying mathematical concepts and to prove
the easier statements so that the reader can develop some feeling for the abstract
mathematical structures. Throughout the text, I also develop applications to
biology, from intracellular structures or the dynamics of neurons to those of
populations. Thus, the applications span many physical orders of magnitude, but
perhaps somewhat surprisingly, often the same mathematical structures turn out to
yield useful models at several rather different levels. In any case, the systematic
arrangement of the material is according to mathematical and not to biological
principles. This seemed the natural choice for the material to be presented here, but
in order to compensate for that, I am writing a companion volume ‘‘Biology and
Mathematics’’ [2] where I attempt a systematic presentation according to bio-
logical principles and structures. Actually, I have recently also written a book
entitled ‘‘Mathematical Concepts’’ [3] where the mathematical structures are
developed at a much more abstract level. I believe that this may be relevant for
biology because theoretical biology needs to develop more abstract and encom-
passing concepts in order to organize and understand the multitude of biological
structures and processes and the increasing wealth and heterogeneity of biological
data more deeply. This aspect, however, is not addressed in the present book which
rather concentrates on established mathematical methods and their biological
applications. In contrast to such an abstract systematic treatment, this book
emphasizes the richness and diversity of the applications of mathematics to
biology.

The literature in mathematical biology is too extensive to be adequately
covered in this book. Therefore, the references are very selective, and you should
consult the monographs and survey articles listed in the bibliography for further or
more precise references. I apologize to any authors whose work is not, or not
correctly, referenced in this book.

In any case, while this book certainly aims at teaching a range of mathe-
matical concepts and methods that are relevant for the modeling and analysis of
biological structures and processes, it also wants to stimulate your curiosity
about biological phenomena and your independent thinking about how to model
and analyze them with mathematical tools.

1 A more detailed exposition of this theory will be given in [1].

vi Preface



This book is based on graduate courses at Leipzig (in a joint program between
the Max Planck Institute for Mathematics in the Sciences and the Department of
Mathematics and Computer Science of Leipzig University, the International Max
Planck Research School ‘‘Mathematics in the Sciences,’’ directed by Stephan
Luckhaus) and at the Ecole Normale Superieure in Paris (organized by Benoît
Perthame).

Thus, a student who would like to use this book should have some basic
mathematical knowledge, including in particular calculus. Some background in
biology might help to appreciate the significance of the mathematical methods, but
is not indispensable for reading this book. In fact, the book can also be taken as a
survey over a rather wide range of mathematical structures, for any student of
mathematics or the sciences.
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with the help of Mathematica�. For several of the diagrams, I have used the latex
supplement DCpic of Pedro Quaresma.
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Chapter 1
Introduction

Abstract
Questions:

• What can mathematics contribute to biology, and which mathematical theories are
useful for that purpose?

Biology does not have the clear structure of mathematics. Nevertheless, it possesses
some fundamental concepts. The gene is the unit of coding, function, and inheritance.
It contains the information for a phenotypic trait that is realized in interaction with
contributions from the environment and transmitted to offspring. The cell is the basic
unitwithinwhichmetabolic processes can take place. The species is the dynamic pool
for genetic recombination. An organism is a carrier of genes, an organized ensemble
of cells and a member of a population or species. Mathematical methods to study
biological phenomena can be taken from algebra, analysis, stochastics, or geometry,
but should always be developed with a clear vision of the biological problems to be
addressed.

1.1 Theses About Biology

Thesis 1. Biological structures are aggregate structures. Therefore, biological laws
are not basic ones that do not admit exceptions, but rather emerging from some lower
scale.

Thesis 2. Biological entities are discrete, but biological structures are situated in
continuous space and biological processes take place in continuous time.

Thesis 3. Biological processes intertwine stochastic effects and deterministic
dynamics. Randomness can support order while deterministic processes can be
unpredictable, chaotic. The question then is at which level regularities emerge.
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2 1 Introduction

Thesis 4. Large populations of discrete units can be described by continuous models
and, conversely, invariant discrete quantities can emerge from an underlying contin-
uous substrate.

Thesis 5. Fundamental biological concepts, like fitness or information, are relative
and not absolute ones.

Thesis 6. Fundamental biological quantities do not satisfy conservation laws. Those
rather appear as external constraints.

Thesis 7. Biological systems interact with their environments and are thermody-
namically open. Biological structures sustain the processes that reproduce them and
are therefore operationally closed.

Thesis 8. Biological structures are results of historical processes. It is the task of
biological theory to distinguish the regularities from the contingencies.

Thesis 9. The abstract question posed to mathematics by biology is structure for-
mation. This needs to be understood as a process because living structures are not
at thermodynamic equilibrium.

Thesis 10. Gathering biological data without guiding concepts and theories is
useless.

1.2 Fundamental Biological Concepts

1. The gene is the unit of coding, function, and inheritance. As such, it links mole-
cular biology and evolutionary biology. The Neodarwinian Synthesis combined
Mendel and Darwin. Modern molecular biology seems to offer a more basic
perspective.

2. The cell is the unit of metabolism. It constitutes the basic operationally closed,
autopoietic system in biology. Modern biology struggles to understand cells on
the basis of theirmolecular constituents, DNA,RNA, and polypeptides (proteins).
Multicellular organisms emerge through a partial suppression of the autonomy of
the constituting cells.

3. The species represents the balance between the diverging effects of genetic muta-
tions and selection at the organismic or other levels and the convergingmechanism
of sexual recombination. It is the arena of population biology, a child of the Neo-
darwinian Synthesis and the first success of mathematical models in biology. It
is also important in ecology.

The organism, in fact, is the carrier of genes, the organization of cells, and the
member of a species. It thus links the three fundamental biological concepts. It is
also a, but not the exclusive, unit of selection.
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It seems that neurobiology has not yet identified such a fundamental concept, but
perhaps the spike can be considered as the basic event of information transmission,
and the synapse as the basic structure supporting this.

1.3 A Classification of Mathematical Methods

The following is a somewhat incomplete list, arranged partly with relevance for
biology in mind.

1. Discrete structures → Algebra
(a) Static structures

i. Algebraic concepts: Combination and composition of objects
ii. Graphs and networks, including phylogenetic trees
iii. Information
iv. Discrete invariants of continuous structures and dynamical processes

(b) Discrete processes (Cellular automata, Boolean networks, finite state
machines,...)

(c) Game theory as the formalization of competition

2. Spatial relations → Geometry

(a) Geometry of (three-dimensional) physical space
(b) Abstract notions of space for expressing relationships (discrete ones like

graphs and continuous ones like Hilbert spaces; state spaces of dynamical
systems)

(c) Symmetries and invariances

3. Continuous methods → Analysis

(a) Deterministic dynamical processes
i. Continuous states enable phase transitions and bifurcations, that is, qual-

itative structural changes resulting from small underlying variations
ii. Continuous states and time: Ordinary differential equations and other

dynamical systems
iii. Continuous spatial structures: Partial differential equations (example:

Reaction-diffusion equations)
(b) Stochastic analysis

i. Stochastic processes (while stochastic processes may also operate on
discrete quantities, the concept of probability is a continuous one)

ii. Population processes: averaging over stochastic fluctuations in lower
level dynamics

iii. Optimization schemes with stochastic ingredients: Genetic and other
evolutionary algorithms, swarm algorithms for distributed search, cer-
tain neural networks,...

iv. Statistical methods for the analysis of biological data
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4. Hybrid models
(a) Difference equations (continuous states, but discrete time)
(b) Dynamical networks (dynamical systems coupled by a graph), in particular

neural networks

5. System theory as a global unifying perspective?

According to the preceding list, not all mathematical subjects seem to be rele-
vant for biology. Classical algebraic structures occur in a cursory manner at best,
and one of the deepest branches, number theory and arithmetics, is entirely absent.
Three-dimensional physical space constitutes an important constraint for biologi-
cal organization. Organisms and their constitutive biological structures like cells
are living and interacting in space, and are defining and shaping their own spaces
like architectural structures which is constitutive for morphology. Symmetries and
invariances, the merging ground of algebra and geometry, are important issues for
the neurobiology underlying cognition, as well as for many classification purposes.
In any case, the branches of algebra, geometry and analysis are often interwoven.



Chapter 2
Discrete Structures

Abstract
Questions:

• How can the cells of an organism which all share the same genes can fulfill so
many different functions?

• Are there good mathematical tools to identify the important features in all those
networks that modern biological data collection produces?

• How long ago did the last common ancestor of two species or two individuals live?

Amodel of combinatorial gene regulation shows the power of combinatorics. Graphs
are useful tools for network analysis, and their spectral theory is developed. Phy-
logenetic relationships between species are modeled by particular types of graphs,
the trees. Descendence relations between individuals involve two parents and lead
to genealogies. Coalescents treat the question of common ancestors. Such structures
also naturally lead to the stochastic processes treated in the Chap.3.

2.1 Introductory Example: Gene Regulation and the Power
of Combinatorics

In this section, I present an example of a combinatorial scheme in molecular biology.
This is meant to show that even elementary mathematical reasoning can help us to
clearly understand a biological situation that may initially look rather complicated.
First, however, I shall sketch the most basic principles of molecular biology. More
details can be found in standard textbooks, like [1] or [93].
Metabolism and other fundamental functions of the cell are essentially carried out by
proteins. The building blocks of proteins are polypeptides, sequences of typically a
few hundred amino acids that fold into particular three-dimensional shapes accord-
ing to attractive forces between different amino acids and interactions with water
molecules in the cell. A protein consists of one or several such polypeptides, and
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6 2 Discrete Structures

its three-dimensional shape determines its function. The information for the partic-
ular sequence of each polypeptide is contained in the DNA of the cell. The DNA
is a sequence itself, consisting of nucleotides instead of amino acids, and the DNA
is inherited by the daughter cells under cell division and the germ cells in sexual
recombination. This will now be described with some more details and precision.
The fundamental process of molecular biology then is gene expression, that is, the
production of polypeptides, the building blocks of proteins, according to the genetic
information contained in the DNA of a cell. The DNA (desoxyribonucleic acid) is
a long string of base pairs, arranged in the shape of a double helix, as discovered
by Watson and Crick. There are four different nucleotide bases, labelled A, C, G,
and T (we are not concerned here with their precise chemical identity, and so, these
letters may suffice for our purposes). Thus, each of the two strands of the double
helix is a long sequence composed of these 4 “letters”. Each strand determines the
identity of the complementary strand, because C in one strand is paired with G in
the other, and A with T . Therefore, when the double helix is split apart, each strand
contains the complete information for assembling a new such double helix. This is the
principle underlying genetic inheritance. Here, however, we are not concerned with
inheritance, but rather with gene expression. The first step of gene expression, called
transcription, then consists in copying the information in a segment of one of the
strands into another macromolecule, RNA (ribonucleic acid), which is chemically
more active and flexible. It also consists of sequences composed of 4 letters, A, C, G
as in the DNA and a new letter U taking the place of T . Again, this copying works
according to the above complementarity principle. Which segments of the DNA
are thus copied under a given cellular condition is controlled by certain proteins,
the transcription factors that typically bind to locations in the DNA nearby those
to be copied and that can then trigger, enhance or block the transcription process
[26]. Of course, one and the same stretch of DNA can be repeatedly transcribed,
and the regulation of the number of such transcripts is essential, but we shall not
emphasize this aspect in the sequel. The resulting RNA is then further processed,
through interactionswith itself orwith other RNAs orwith certain proteins again. The
final mRNA (m standing for “messenger”) can then be translated into a polypeptide,
in a certain complex called the ribosome, with the help of some other auxiliary RNA,
the rRNA (r standing for “ribosomal”). The principle of the translation is that the unit
of translation in the mRNA is a triplet of nucleotides, like ACG or UAA, also called
a codon. Each such triplet is translated into a specific amino acid, and the resulting
polypeptide thus is a sequence of amino acids. Since there are 64 possible triplets, but
only 20 amino acids, several different triplets can correspond to the same amino acid.
This fact is called the degeneracy of the genetic code, although redundancy might
be the more accurate word. (Actually, the triplet UGA has a special role: It serves as
the stop codon, that is, when this triplet is encountered in the ribosomal complex, the
polypeptide is released, and a new translation can start.) In fact, the relation between
such triplets and amino acids is mediated by another type of RNA, called tRNA (t for
“transfer”). Chemically, this relation, called the genetic code, that is, which triplet is
translated into which amino acid, is arbitrary, and so the question emerges why the
translation rules are as they are, instead of being different. That is, why is for instance
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GCC translated into the amino acid alanine, instead of, say, cysteine? Is that simply
a historical accident, an arbitrary rule that all living creatures have inherited from
their common ancestor who had adopted these translation rules by chance? Or are
there some chemical or formal principles behind this, like symmetry considerations
or coding efficiency? There have been many different speculations about this issue,
but none so far has met with general approval.
One ormore polypeptides then are combined into a protein. An important point is that
a protein is not simply an amino acid sequence, but that for its molecular function, it
assumes a specific three-dimensional shape. This shape, is determined by chemical
attraction and repulsion between different pieces, but the details are very intricate,
and the problem of computing the three-dimensional shape of a protein, or better, the
process, called protein folding, by which it acquires this shape from its constituting
amino acid sequence is not yet fully solved, despite considerable attempts by many
mathematicians and physicists.
The fundamental question for a cell then is which genes to express when, under
which circumstances. The mechanism of the cell for answering this question is gene
regulation. I have already described that specific proteins, the transcription factors,
trigger or inhibit the transcription of DNA segments. In eukaryotic cells (the cells
that we are made of, those containing a nucleus, in contrast to prokaryotic cells,
without nucleus, like bacteria), the most important part of gene regulation, however,
seems to take place at the level of RNA rather than DNA. First of all, the transcribed
RNA, called pre-mRNA, is reassembled in a process called splicing into mRNA.
Here, on one hand, certain segments, the so-called introns, are cut out whereas the
remaining ones, the exons, can then be assembled possibly in different ways, so as
to produce different results from one and the same stretch of DNA [13], or pieces
of different origins can be put together or interact in other ways. The processing on
one hand is based on the spatial configuration assumed by an RNA molecule, on the
basis of bindings between complementary nucleotides (A with U or C with G), no
longer between different strands as in the DNA, but now between bases in one and
the same RNA sequence [59]. On the other hand, it results from interactions with
certain other small RNAs, the so-called miRNAs (mi for “micro”) or siRNAs (si for
“small interfering” or “silencing”) or with specific proteins. These proteins bind to
RNA molecules to form so-called RNP complexes (where P stands for “protein”)
[119]. Much of this RNA regulation works as repression, that is, preventing the
mRNA from being translated. The biological rationale for this is that on one hand,
the production of RNA is energetically cheap, and on the other hand, with mRNA
already around, it is much faster to produce the corresponding proteins than if the
process had to start anew from the DNA level. Thus, the cell can respond much
quicker to new circumstances. (For a systematic analysis, see [103, 104] and the
subsequent discussion in the journal Theory in Biosciences, see [105].)
After the genome of humans (and several other species) has been sequenced, that
is, the the identity of all the 3 billion letters in the DNA sequence has been estab-
lished [63], now the ENCODE project systematically records and catalogues all the
different RNA molecules that can be present in human (and other) cells [34, 38,
49]. The genetic sequence contains both coding information that can be potentially
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activated and utilized in a cell with the assistance of specific proteins, and important
structural elements. But we need to identify all the different RNAs and understand
their interactions with other RNAs and proteins in order to understand the regulation
of gene expression in the active cell.

Now, obviously, the scheme described offers many possibilities for combinatorial
reasoning as a formal description of the rules governing those processes. Here, as an
example I shall discuss amodel that arises frommyworkwith themolecular biologist
Klaus Scherrer, see [76]. The important point here is that the nucleotides in anmRNA
can assume two different roles simultaneously. On one hand, they are parts of coding
triplets (except for certain portions at the beginning or end of an mRNA sequence).
On the other hand, stretches of about 30 nucleotides can function as binding sites
for specific proteins which then regulate the fate of the mRNA, as explained (see
[103, 104]). We call such a regulatory stretch of nucleotides an oligomotif. In the
basic version of the model, there then is a one-to-one correspondence between such
oligomotives and mRNA binding proteins. That is, there is a second, regulatory,
code superimposed upon the first code, the genetic code governing translation. In
both cases, however, the chemical identity of the nucleotides involved is crucial.
An average mRNA may then possess about 20 such oligomotives. The ground state
then is when the corresponding proteins are attached to all those 20 oligomotives. In
this state, the mRNA is repressed and not translated. It only becomes available for
translation when at least 3 of those proteins are removed. (We shall call such a set
of 3 oligomotives, or equivalently, of 3 mRNA binding proteins, a triple, not to be
confused with the triplet of the genetic code.) That is, when a signal arrives in the
cell that causes the release of 3 such binding proteins, the corresponding mRNA gets
translated, and a specific polypeptide is produced. Now, however, in a given situation,
a cell needs not only one type of polypeptide, but a suitable combination of perhaps
hundreds of polypeptides. The preceding structure now offers an elegant scheme for
the coordinated expression of groups of genes, that is, the coordinated production
of specific combinations of polypeptides and proteins. First of all, there are then(20
3

) = 1, 140 different possibilities for such triples of oligomotives. The key point
now is that different mRNAs will share some, but not all of their oligomotives. That
is, whenever we identify 3 proteins for removal, that is, select 3 oligomotives, we
then get a specific set of mRNAs that contain those 3 oligomotives and that will then
get translated, whereas the remaining ones will stay repressed. And when we select
a different set of 3 oligomotives, we obtain a different combination of mRNAs to be
translated, hence a different combination of proteins in the cell. This set may partially
overlap with the preceding one, depending on the distribution of oligomotives across
the different RNAs. In fact, one estimates that there are about 3,000 different mRNA
binding proteins, hence also about 3,000 different oligomotives according to the
model. We thus have

(3,000
20

)
different possibilities to distribute the oligomotives

across the mRNAs (there are perhaps around 10,000 different mRNAs in a typical
mammalian cell).

Let us now look into this scheme in more numerical detail. As explained, in order
that several mRNAs participate in the same condition, they need to share at least 3
oligomotives. Andwhen somemRNAs sharem oligomotives (3 → m → 20), they can
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simultaneously participate in
(m
3

)
conditions. This number varies from 1 (for m = 3)

to 1,140 (for m = 20). However, when m = 20, that is, when the mRNAs share all
their oligomotives, they can no longer be distinguished in this scheme. Let us consider
some numerical examples, on the basis of the general scheme. For K oligomotives,
there are

(K
20

)
different possibilities to choose 20 among them. This means that we

can distinguish that many mRNAs through their different endowments with 20 out
of these K oligomotives. As explained, a condition for translation is achieved by the
selection of 3 (or more) out of these K oligomotives. Every choice of

(K
3

)
yields a

different condition. Precisely those mRNAs will participate in such a condition that
carry all those 3 oligomotives. Thus, 3 out of their 20 oligomotives are fixed, and 17
remain for free choice. That is, we have

(K−3
17

)
different possibilities. Thus, assuming

that all the above
(K
20

)
possibilities are realized, by selecting 3 oligomotives, we select

(K−3
17

)
different mRNAs. Here are simple numerical examples.

• Distribute 21 oligomotives among 21 mRNAs (20 oligomotives/mRNA) so that
each mRNA is identified by which oligo it does not contain. By specifying 3
oligomotives, any of the possible

(21
3

) = (21
18

) = 1, 330 combinations of 18mRNAs
can then be selected. Here, we have only relatively few different mRNAs.

• Distribute 23oligomotives among
(23
3

) = 1, 771mRNAs (20oligomotives/mRNA)
so that each mRNA is identified by which 3 oligomotives it does not contain. By
specifying 3 oligomotives, any of the possible

(23
3

) = (23
20

) = 1, 771 combinations

of
(20
3

) = 1, 140 mRNAS can be selected. Here, we obtain a large collection of
selected mRNAs.

• Distribute 22 oligomotives among
(22
2

) = 231 mRNAs (20 oligomotives/mRNA)
so that each mRNA is identified by which 2 oligomotives it does not contain. By
specifying 3 oligomotives, any of the possible

(22
3

) = (22
19

) = 1, 440 combinations

of
(19
2

) = 171 mRNAs can be selected. This is a biologically reasonable number.

Obviously, the number 3,000 of different mRNAbinding proteins, that is, of different
oligomotives is far larger than needed in our model. This indicates that, in reality,
gene regulation at mRNA level is more complex than captured by the model. Never-
theless, the model should describe a core principle of regulation. Moreover, there is
an interesting combinatorial problem suggested by this model: How to distribute K
labels among N units so that each unit receives k of them so that by selecting κ < k
of them (for which we have

(k
κ

)
different possibilities), we identify the maximal

number of different subsets of those N units? We may here wish to constrain those
subsets to be of some fixed size n, or to be within a certain size range, say between
n1 and n2.

In order to understand the mathematical structure of this problem better, it is
helpful to translate it into a combinatorial design problem. We consider an N × K
matrix with entries 1 or 0 where each of the N rows has precisely k 1s, and hence
K − k 0s. For κ < k, we then want to find collections of rows that have (at least) κ
1s in common. The question then is how to distribute the 1s in the rows so as to find
as many such collections as possible within a given size range.
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No full solution seems to be known for this problem. In any case, the example
is meant to show that by elementary mathematical reasoning, we can come up with
clever ways of how a cell could regulate its genes so that in one situation, in a single
stroke, it can co-activate specific groups of genes, and in another situation, again in
a single stroke, it can activate another set of genes, perhaps partly overlapping with
the first one, without having to address all these genes individually. This is the power
of combinatorics.

2.2 Graphs and Networks

2.2.1 Graphs in Biology

A graph is the mathematical structure representing binary relationships between
discrete elements. These elements are the vertices of the graph, and the relationships
are encoded as connections or edges between vertices. Such a graph can then be a
network, that is, the substrate of dynamical interactions carried by the edges between
processes located at the vertices. Biological applications abound.
In neural networks, the vertices stand for neurons, and the edges for synaptic connec-
tions between them. The interaction is the electrochemical transmission of pulsed
dynamical activity, the spikes generated in the neurons. This activity is considered
to be the carrier of information, enabling cognitive processes, but the precise identi-
fication of the information inside that dynamical activity remains unclear at present.
At smaller scales, the vertices can represent molecules like proteins, and the edges
again interactions between them. The vertices can also stand for genes, and the edges
for correlations in expression patterns indicating functional interactions.
At larger scales, the vertices can be themembers of a population, and the edges social
or other interactions, like mating. For a population with separate sexes, we then have
a bipartite graph, that is, one with two distinct classes of elements such that edges
exist only between members of opposite classes, but not inside one class.
At the still larger scale of ecosystems, the vertices can represent species, and the
edges stand for trophic interactions. The graph then encodes a food web.
Another important class of biological graphs are the phylogenetic trees that turn
genetic or other similarities between species into descendence relations from com-
mon ancestors. For individual descendence relations inside a sexually recombining
species we rather have pedigrees because each individual then has two parents which
in turn may have more than one offspring.
For detailed studies of biological networks and their properties, the reader can consult
[94] and [111] and the many references therein.
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2.2.2 Definitions and Qualitative Properties

Wenow display some formal definitions and start with the simplest situation. A graph
� is a pair (V, E) of a finite set V of vertices or nodes and a set E of unordered pairs,
called edges or links, of different elements of V (and we assume E �= ∅ to make the
graph nontrivial). Thus, when there is an edge e = (i, j) for i, j ∈ V , we say that
i and j are connected by the edge e and that they are neighbors, i ∼ j . Defining
edges as unordered pairs of vertices means that we consider (i, j) and ( j, i) as the
same pair. Thus, the neighborhood relation is symmetric. Requiring that the vertices
connected by an edge be different then means that there are no edges connecting a
vertex to itself. Thus, the neighborhood relation is not reflexive. In general, it is not
transitive either, that is, i ∼ j and j ∼ k need not imply i ∼ k. The degree ni of the
vertex i is the number of its neighbors. Also, the order |�| is the number of vertices
in �, i.e., the cardinality of the vertex set V .

A graph �of order 8, with vertex degrees indicated (2.2.1)

So far, we are assuming that the edges are undirected, that is, the edge (i, j) is the
same as ( j, i). One may, naturally, also consider directed graphs, that is, where an
edge e = (i, j) is considered to go from i to j rather than connect i and j in a
symmetric manner. For example, this is appropriate for formalize neurobiological
networks because synapses between neurons are directed, starting at the presynaptic
neuron and going to the postsynaptic one. In addition, synapses have strengths or
weights, and so, we can also consider weighted graphs where each edge e carries a
weight or label we that indicates its strength. In fact, we may then also allow that
some of the weights are negative. In a neural network, an edge with a negative weight
would represent an inhibitory synapse.

The graph � from (2.2.1) turned into a directed graph (2.2.2)
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Of course, every unweighted graph becomes a weighted one by assigning the weight
1 to every edge. An undirected graph with positive weights becomes a metric space
by identifying each edge e with the interval of length (we)

−1. In particular, an un-
weighted graph then is ametric spacewhere each edge is isometric to the unit interval.
The distance between vertices then equals the length of the shortest path joining them.
In particular, neighbors in the graph have distance 1.
We shall start with undirected and unweighted graphs as the simplest case. In the
definition, we require that our graphs � be finite, a biologically directly plausible
assumption. Moreover, we shall assume, unless stated to the contrary, that they are
connected. That means that for every pair of distinct vertices i, j in �, there exists
a path between them, that is, a sequence i = i0, i1, . . . , im = j of distinct vertices
such that iν−1 ∼ iν for ν = 1, . . . , m. Since we can decompose graphs that are
not connected into their connected components, the connectivity assumption is no
serious restriction.
An obvious way of representing a graph � with vertices i = 1, . . . , N is provided by
its adjacency matrix A = (ai j ). In the unweighted case, we put ai j = 1 when there
is an edge from i to j and = 0 else. We have aii = 0 because we exclude self-loops
of vertices, and � is undirected iff ai j = a ji for all i, j. In the weighted case, we
simply put ai j = wi j , the weight of the edge from i to j. Of course, most large
graphs arising in applications are sparse, that is, between most pairs i, j , there is no
edge. This means that most of the entries of the adjacency matrix are 0. Therefore,
that matrix does not provide a very efficient way of encoding the graph. A more
efficient way is provided by simply listing for each i those vertices that send links to
i , together with the corresponding weights in the weighted case.

An isomorphism between graphs �1 = (V1, E1) and �2 = (V2, E2) is a bijection
� : V1 → V2 that preserves neighborhood relations, that is, i ∼ j iff �(i) ∼ �( j).
In other words, i and j are connected by an edge precisely if their images under
� are. Isomorphisms preserve the degrees of vertices, that is, ni = n�(i) for every
vertex i . An automorphism of � is an isomorphism from � onto itself. The identity
map of the vertex set of � is obviously an automorphism, but there may or may
not be others, depending on the structure of �. The automorphisms of � form a
group under composition. We can then quantify the symmetry of � as the order of
its automorphism group.
The number of graphs of order k grows very fast as a function of k, and therefore, it
becomes unwieldy already for rather small k to list all graphs of order k. Therefore, it
is of interest to develop constructions for particular classes or types of graphs. There
exist deterministic and stochastic construction schemes. We shall discuss stochastic
constructions below in 3.5 in the chapter on stochastic processes. Deterministic
constructions typically produce rather regular graphs, that is oneswith highdegrees of
symmetries whereas the stochastic constructions can produce typical representatives
of larger classes of graphs. A paradigm of a symmetric graph is a complete graph,
meaning that any two different vertices are connected by an edge. For a complete
graph, every bijection of its vertices yields an automorphism, and therefore, it is
maximally symmetric.

http://dx.doi.org/10.1007/978-1-4471-6353-4_3
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A cycle in � is a closed path i0, i1, . . . , im = i0 for which all the vertices i1, . . . , im

are distinct. For m = 3, we speak of a triangle. A cycle that contains all the vertices
of � is called a Hamiltonian cycle (and such a cycle need not exist for a given graph).
A graph without cycles is called a tree. A maximal tree contained in a graph � is
called a spanning tree. A spanning tree is obtained by eliminating all cycles from a
graph, that is, by cutting an edge in each cycle.

A spanning tree for the graph of (2.2.1) (2.2.3)

A graph is called k-regular if all vertices have the same degree k. As already men-
tioned, a graph is bipartite if its vertex set can be decomposed into two disjoint com-
ponents V1, V2 such that whenever i ∼ j , then i and j are in different components.

A bipartite graph (2.2.4)

It is not hard to see that a graph is bipartite iff it does not contain cycles of odd length.
In particular, it cannot contain any triangles.
Another useful concept for analyzing graphs is the k-core. For k ∈ N, the k-core
of a graph � is the not necessarily connected maximal subgraph H of � with the
property that every vertex of H has at least k neighbors in H , that is, its degree in
H is at least k. When we exclude the trivial case of an isolated vertex, then � itself
coincides with its 1-core. When � is a tree, already its 2-core is empty. Every cycle
of � is contained in its 2-core. The core decomposition of �, that is, the successive
determination of its k-cores for increasing k, is a computationally simple way of
decomposing the graph.

of the graph of (2.2.1) (2.2.5)
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There exist other parameters that describe certain—more or less—important qual-
itative properties of graphs. One set of such parameters arises from the metric on the
graph generated by the above assignment of length 1 to every edge. The diameter of
the graph is the maximal distance between any two of its nodes. As an example how
such a parameter can distinguish between typical and non-typical, special graphs, we
record that there exists a constant c with the property that the fraction of all graphs
with N nodes having diameter exceeding c log N tends to 0 for N → ∞. Informally
expressed, most graphs of N nodes have a diameter of order log N . Thus, graphs
with large diameters, like a chain i1 ∼ i2 ∼ · · · ∼ iN with no other edges, are
rare. In the other direction, that is, considering graphs with very small diameters, of
course, a fully connected graph has diameter 1. However, one can realize a small
diameter already with much fewer edges; namely, one selects one central node to
which every other node is connected. In that manner, one obtains a graph of N nodes
with N − 1 edges and diameter 2. (This graph is called the (N − 1)-star, and it will
be discussed further below.) Of course, the central node then has a very large degree,
namely N −1. It is a big hub. Similarly, one can construct graphs with a few hubs, so
that none of them has to be quite that big, efficiently distributed so that the diameter
is still rather small. Such graphs can be realized as so-called scale free graphs to
be discussed below. Another useful quantity is the average distance between nodes
in the graph. The property of having a small diameter or average distance has been
called the small-world effect.

A rather different quantity is the clustering coefficient that measures how many
connections there exist between the neighbors of nodes. For this purpose, a triple is
a set of three connected vertices, that is, a path with three vertices. As mentioned, a
cycle of length 3 is called a triangle

Note that the triangle contains three triples, ABC, BCA and CAB.
The (global) clustering coefficient then is defined as

C := 3 × number of triangles

number of connected triples of nodes
. (2.2.6)

The normalization is that C becomes one for a fully connected graph. It vanishes for
trees and other bipartite graphs.
As already mentioned, a k-star is a graph consisting of one central vertex connected
to k peripheral vertices, with no connections between those other vertices.
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The 6-star (2.2.7)

In particular, each k-star is a tree. A k-star has
(k
2

)
connected triples of nodes, obtained

by connecting the central node with any two peripheral ones. Thus, when we want
to compute the clustering index of a graph, we count

∑
i∈V

(ni
2

)
connected triples

of vertices. Thus, the graph � of (2.2.1) has 5 triangles and 26 connected triples of
nodes, and hence its clustering coefficient is 15

26 .
A triangle is a cycle of length 3. One may then also count the number of cycles of
length k, for integers>3. A different generalization consists in considering complete
subgraphs of order k. Here, the complete k-graph Kk is the graph with k vertices and
links between all i �= j . A k-clique in a graph � is a subgraph that is a complete
k-graph. For example, for k = 4, we would have a subset of 4 nodes that are all
mutually connected.

The complete graph K4, the only 4-clique in the graph of (2.2.1) (2.2.8)

One may then associate a simplicial complex to our graph by assigning a k-simplex
to every such complete subgraph, with obvious incidence relations. For example, two
such k-simplices share a (k − 1)-dimensional face and are called adjacent when the
two corresponding complete k-subgraphs have a complete (k −1)-graph in common.
This is the basis of topological combinatorics, enabling one to apply tools from
simplicial topology to graph theory. See for instance [65].
Besides the complete graphs Kk , one also frequently encounters the complete bipar-
tite graphs Km,n consisting of two classes of m and n, resp., vertices such that every
vertex in the first class is connected with every vertex in the second class.

The complete bipartite graph K2,3 (2.2.9)
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The graph K1,n is of course simply the n-star.
A basic question in the analysis of graphs is the cluster decomposition. Thatmeans

that we try to find subgraphs, the clusters, that are densely connected inside, but only
sparsely connected to the rest of the graph. For example, one can try to disconnect
the graph by cutting as few edges as possible, to obtain two large (super) clusters,

A decomposition of the graph � from (2.2.1) (2.2.10)

and then perhaps iterate the process inside these superclusters to find a finer decom-
position. Conversely, one can try to build up the clusters from inside, for example
by identifying maximal sets of adjacent k-cliques, or, equivalently, in the simplicial
complex defined above, finding maximal sets of k-simplices that are connected by
(k −1)-dimensional faces. Here, the clusters found are typically not disjoint, in con-
trast to those obtained by the edge-cutting methods. Of course, one may then analyze
the overlap between those clusters.
Concerning the number of edges needed to disconnect a graph, some insight is
provided by the following result of Menger:

Lemma 2.2.1. Let V1 and V2 be disjoint subsets of the vertex set of a graph � =
(V, E). The minimal number of edges that need to be deleted from � in order to
disconnect it in such a manner that V1 and V2 are in different components is equal
to the maximum number of edge-disjoint paths (that is no two paths are allowed to
have an edge in common, even though they may well pass through the same vertex)
with one endpoint in V1 and the other in V2.

Another general question is to identify the most important “core” of the graph.
The k-core defined above is one useful concept for that. The idea there is that a node
is important when it is connected with other important nodes. Thus, one finds the
core by successively deleting the less important nodes. That procedure might make
some nodes that have originally been highly connected, that is, have a large degree,
less relevant, because they had only been connected to other nodes of low degrees.
Therefore, in particular, the degree of a node in general is not a good measure of its
importance. One can also quantify the importance of a vertex or an edge by counting
how many shortest connections between pairs of nodes pass through them. Again,
one should be a bit cautious here because in some cases, there exist alternatives to
shortest paths that are not substantially longer but that avoid the vertex or edge in
question. In other words, sometimes vertices or edges can easily be replaced as parts
of short connections while in other cases that may not possible. When one decides
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the importance according to such considerations, this effect should also be taken into
account.

2.2.3 The Graph Laplacian and its Spectrum

As before, � is a finite and connected graph. Probably the most powerful and com-
prehensive set of invariants comes from the spectrum of the graph Laplacian of � to
which we now turn. (In general terms, this means that, in order to analyze a graph
�, we shall study functions defined on �. These functions will then be decomposed
in terms of a particular set of basis functions, as in Fourier analysis. From those
basis functions, we shall obtain spectral values that incorporate the characteristic
properties of �.)
There are several non-equivalent definitions of the graph Laplacian employed in the
literature. In order to clarify this issue, we assign weights bi (>0) to the vertices1 and
introduce an L2-product for (complex-valued) functions on �:

(u, v) :=
∑

i∈V

bi u(i)v(i). (2.2.11)

(Since we shall only consider real operators below, it suffices to consider real valued
functions, and then the complex conjugate in (2.2.11) is not relevant.)
Themost natural choices are bi = 1 or bi = ni where ni is the degree of the vertex i .2

We may then choose an orthonormal base of that space L2(�). In order to find such
a basis that is also well adapted to dynamical aspects, we study the graph Laplacian

� : L2(�) → L2(�)

�v(i) := 1

bi
(
∑

j, j∼i

v( j) − niv(i)) (2.2.12)

where j ∼ i means that j is a neighbor of i .3

1 These vertex weights should not be confused with the edge weights discussed above; in other
words, here, we are not considering weighted graphs in the sense defined above.
2 For purposes of normalization, one might wish to put an additional factor N in front of the product
where N is the number of vertices of the graph or, equivalently, divide all the vertex weights by N ,
but we have decided to omit that factor in our conventions.
3 There are several different definitions of the graph Laplacian in the literature. Some of them are
equivalent to ours inasmuch as they yield the same spectrum, but others are not. The reason is
simply that the weights in the underlying product are chosen differently. The operator Lv(i) :=
ni v(i) − ∑

j, j∼i v( j) that is often employed in the literature corresponds to the weights bi = 1

(up to theminus sign, of course). The operatorLv(i) := v(i)−∑
j, j∼i

1√
ni

√
n j

v( j) employed in the



18 2 Discrete Structures

We, in contrast to much of the literature on graph theory (see e.g. [50]), but in
accordance with [28], prefer the weights bi = ni over bi = 1 because the former
are well adapted to random walks and conservation laws. (When we have a particle
randomly moving on a graph with step size 1 then when it is at vertex i it can choose
each of the neighbors of i with probability 1/ni for its next move, and this leads to
the corresponding factor in the Laplace operator underlying that random walk. This
process will be investigated in detail in Sect. 4.2.1.)

The idea behind the definition of � is of course that one compares the value of a
function v at a vertex i with the average of the values at the neighbors of i . When
that average is larger than the value at i , we have (�v)(i) > 0.
The important properties of � are the following ones:

1. � is selfadjoint w.r.t. (., .):

(u,�v) = (�u, v) (2.2.13)

for allu, v ∈ L2(�).4 This holds because theneighborhood relation is symmetric.
2. � is nonpositive:

(�u, u) → 0 (2.2.14)

for all u. This follows from the Cauchy-Schwarz inequality.
3. �u = 0 precisely when u is constant. This one sees by observing that, when

�u = 0, there can neither be a vertex i with u(i) ≥ u( j) for all j ∼ i with
strict inequality for at least one such j , that is, a nontrivial local maximum, nor
a nontrivial local minimum, as this would contradict the fact that �u(i) = 0
means that the value u(i) is the average of the values at the neighbors of i . Since
� is connected, u then has to be a constant (when � is not connected, a solution
of �u = 0 is constant on every connected component of �.)

The preceding properties have consequences for the eigenvalues of �:

• By 1, the eigenvalues are real.
• By 2, they are nonpositive. We write them as −λk so that the eigenvalue equation
becomes5

�uk + λkuk = 0. (2.2.15)

(Footnote 3 continued)
monograph [28], apart from the minus sign, has the same eigenvalues as � for the weights bi = ni :
if �v(i) = μv(i), then w(i) = √

ni v(i) satisfies Lw(i) = −μw(i).
4 An operator A = (Ai j ) is symmetric w.r.t. a product ≡v,w〉 := ∑

i bi v(i)w(i), that is, ≡Av,w〉 =
≡v, Aw〉 if bi Ai j = b j Ā ji for all indices i, j . The bi are often called multipliers in the literature.
5 Subsequently, we shall thus call the λk instead of the −λk the eigenvalues, in order to avoid
negative quantities. The sign problem comes from the—traditional—definition of the Laplacian
(2.2.12) as a nonpositive operator.

http://dx.doi.org/10.1007/978-1-4471-6353-4_4
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• By 3, the smallest eigenvalue is λ0 = 0. Since we assume that � is connected, this
eigenvalue is simple, that is

λk > 0 (2.2.16)

for k > 0 where we order the eigenvalues as

λ0 = 0 < λ1 → ... → λK

where we put K := N − 1.

We next consider, for neighbors i, j ,

Du(i, j) := u(i) − u( j). (2.2.17)

D can be considered as a map from functions on the vertices of � to functions on
the edges of �. In order to make the latter space also an L2-space, we introduce the
product

(Du, Dv) :=
∑

e=(i, j)

(u(i) − u( j))(v(i) − v( j)). (2.2.18)

Note that we are summing here over edges, and not over vertices. If we did the latter,
we would need to put in a factor 1/2 because each edge would then be counted twice.
We also point out that in contrast to the product of (2.2.11), (u, v) = ∑

i bi u(i)v(i),
we do not include weights here. The reason is that here the sum should be considered
as a sum of edges and not one over vertices, and since we are considering unweighted
graphs at this point, the edges do not carry any natural weights.
The product (2.2.18) encodes more information about the graph than the product
(2.2.11). The latter only depends on the weights, but not on the connection structure
of the graph. There exist many structurally quite diverse graphs with the same weight
sequence, and given a graph, one can rewire it by a cross exchange of edges without
changing the degrees of the nodes. Namely, given vertices i1 ∼ j1 and i2 ∼ j2, but
without edges between i1 and i2, nor between j1 and j2, we create a new graph by
deleting the edges between i1 and j1 and between i2 and j2 and inserting new edges
between i1 and i2 and between j1 and j2. That operation preserves the degrees of all
vertices, and therefore also the product (2.2.11) for any functions u, v on the graph.
(2.2.18), in contrast, is affected because the edge set is changed.
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We have

(Du, Dv) = 1

2

∑

i

(ni u(i)v(i) +
∑

j

n j u( j)v( j) − 2
∑

j∼i

u(i)v( j))

= −
∑

i

u(i)
∑

j∼i

(v( j) − v(i))

= −(u,�v). (2.2.19)

Thus, our product (2.2.18) is naturally related to the Laplacian �.
We may find an orthonormal basis of L2(�) consisting of eigenfunctions of �,

uk, k = 0, ..., K

(K = N − 1). This is achieved as follows. We iteratively define, with H0 := H :=
L2(�) being the Hilbert space of all real-valued functions on � with the scalar
product (., .),

Hk := {v ∈ H : (v, ui ) = 0 for i → k − 1}, (2.2.20)

starting with a constant function u0 as the eigenfunction for the eigenvalue λ0 = 0.
Also

λk := inf
u∈Hk−{0}

(Du, Du)

(u, u)
, (2.2.21)

that is, we claim that the eigenvalues can be obtained as those infima. First of all,
since Hk ⊂ Hk−1, we have

λk ≥ λk−1. (2.2.22)

Secondly, since the expression in (2.2.21) remains unchanged when a function u is
multiplied by a nonzero constant, it suffices to consider those functions that satisfy
the normalization

(u, u) = 1 (2.2.23)

whenever convenient.
We may find a function uk that realizes the infimum in (2.2.21), that is

λk = (Duk, Duk)

(uk, uk)
. (2.2.24)

Since then for every ϕ ∈ Hk, t ∈ R
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(D(uk + tϕ), D(uk + tϕ))

(uk + tϕ, uk + tϕ)
≥ λk, (2.2.25)

the derivative of that expression w.r.t. t vanishes at t = 0, and we obtain, using
(2.2.19)

0 = (Duk, Dϕ) − λk(uk,ϕ) = −(�uk,ϕ) − λk(uk,ϕ) (2.2.26)

for all ϕ ∈ Hk ; in fact, this even holds for all ϕ ∈ H , and not only for those in the
subspace Hk , since for i → k − 1

(uk, ui ) = 0 (2.2.27)

and

(Duk, Dui ) = (Dui , Duk) = −(�ui , uk) = λi (ui , uk) = 0 (2.2.28)

since uk ∈ Hk . Thus, if we also recall (2.2.19),

(�uk,ϕ) + λk(uk,ϕ) = 0 (2.2.29)

for all ϕ ∈ H whence

�uk + λkuk = 0. (2.2.30)

Since, as noted in (2.2.23), we may require

(uk, uk) = 1 (2.2.31)

for k = 0, 1, ..., K and since the uk are mutually orthogonal by construction, we
have constructed an orthonormal basis of H consisting of eigenfunctions of �. Thus
we may expand any function f on � as

f (i) =
∑

k

( f, uk)uk(i). (2.2.32)

We then also have

( f, f ) =
∑

k

( f, uk)
2 (2.2.33)

since the uk satisfy

(u j , uk) = δ jk, (2.2.34)
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the condition for being an orthonormal basis. Finally, using (2.2.33) and (2.2.19),
we obtain

(D f, D f ) =
∑

k

λk( f, uk)
2. (2.2.35)

We next state Courant’s minimax principle:
Let Pk be the collection of all k-dimensional linear subspaces of H . We have

λk = max
L∈Pk

min { (Du, Du)

(u, u)
: u �= 0, (u, v) = 0 for all v ∈ L} (2.2.36)

and dually

λk = min
L∈Pk+1

max { (Du, Du)

(u, u)
: u ∈ L\{0}}. (2.2.37)

In words: In (2.2.36), we consider theminimal Rayleigh quotient under k constraints,
and we maximize that w.r.t. the constraints. In (2.2.37), we consider the maximal
Rayleigh quotient for k + 1 degrees of freedom, and we minimize that w.r.t. those
degrees of freedom.
To verify these relations, we recall (2.2.21)

λk = min{ (Du, Du)

(u, u)
: u �= 0, (u, u j ) = 0 for j = 0, ..., k − 1}. (2.2.38)

Dually, we have

λk = max{ (Du, Du)

(u, u)
: u �= 0 linear combination of u j with j → k}. (2.2.39)

The latter maximum is realized when u is a multiple of the kth eigenfunction, and
so is the minimum in (2.2.38). If now L is any k + 1-dimensional subspace, we may
find some v in L that satisfies the k conditions

(v, u j ) = 0 for j = 0, ..., k − 1. (2.2.40)

From (2.2.33) and (2.2.35), we then obtain

(Dv, Dv)

(v, v)
=

∑
j≥k λ j (v, u j )

2

∑
j≥k(v, u j )2

≥ λk . (2.2.41)

This implies

max
v∈L\{0}

(Dv, Dv)

(v, v)
≥ λk . (2.2.42)
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We then obtain (2.2.37). Equation (2.2.36) follows in a dual manner. In particular,
for any eigenfunction u for some eigenvalue λ �= 0, we then have

λ = (Du, Du)

(u, u)
(2.2.43)

For a fully connected graph,6 when all the weights bi are equal, also all the
nontrivial eigenvalues are equal. For our preferred choice of weights, bi = ni (=
N − 1 for a fully connected graph of N vertices), we have

λ1 = ... = λK = N

N − 1
(2.2.44)

since

�v = − N

N − 1
v (2.2.45)

for any v that is orthogonal to the constants, that is

1

N

∑

i∈V

niv(i) = 0. (2.2.46)

In more detail, for a fully connected graph of N vertices, for v satisfying (2.2.46),

�v(i) = 1

ni

∑

j, j∼i

v( j) − v(i)

= 1

N − 1

∑

j �=i

v( j) − v(i)

= (− 1

N − 1
− 1)v(i) since by (2.2.46) v(i) = −

∑

j �=i

v( j)

= − N

N − 1
v(i).

We also recall that since � is connected, the trivial eigenvalue λ0 = 0 is simple.
If � had two components, then the next eigenvalue λ1 would also become 0. A
corresponding eigenfunction would be equal to a constant on each component, the
two values chosen such (2.2.46) is satisfied; in particular, one of the two would be
positive, the other onenegative.We therefore expect that for graphswith a pronounced
community structure, that is, for ones that can be broken up into two large components
by deleting only few edges as discussed above, the eigenvalue λ1 should be close to
0. Formally, this is easily seen from the variational characterization

6 A fully connected graph is a complete graph K N , possibly with vertex weights.
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λ1 = min{
∑

e=(i, j)∈E (v(i) − v( j))2
∑

i biv(i)2
:
∑

i

biv(i) = 0} (2.2.47)

(see (2.2.21) and observe that
∑

i biv(i) = 0 is equivalent to (v, u0) = 0 as the
eigenfunction u0 is constant). Namely, if two large components of � are only con-
nected by few edges, then one can make v constant on either side, with opposite
signs so as to respect the normalization (2.2.46) with only a small contribution from
the numerator.
More generally, when � consists of several clusters with only very few connections
between them, one should find several eigenvalues close to 0.
The strategy for obtaining an eigenfunction for the first eigenvalue λ1 is, according to
(2.2.47), to do the same as one’s neighbors. Because of the constraint

∑
i biv(i) = 0,

this is not globally possible, however. The first eigenfunction thus exhibits oscilla-
tionswith the lowest possible frequency . Thus, ifwe take such afirst eigenfunctionu1
and consider the connected components that remain after deleting all edges at whose
endpoints u1 has different signs, then there are precisely two such components, one
on which u1 is positive and one on which it is negative. More generally, the number
of connected components of � where an eigenfunction for the kth eigenvalue has a
fixed sign is at most k + 1 when the eigenvalues are ordered in increasing order and
appropriately when they are not simple, according to a version of Courant’s nodal
domain theorem proved by Gladwell-Davies-Leydold-Stadler [48].
We once more consider the case bi = ni . As noted, for a complete graph, we have
λ1 = N

N−1 , see (2.2.44). For any other graph, that is, for any graph that is not
complete, we have

λ1 → 1. (2.2.48)

This follows from (2.2.47), by taking two vertices i1, i2 that are not connected by an
edge and by assigning values of u to those points satisfying ni1u(i1) + ni2u(i2) = 0
and 0 to all other vertices. The quotient in (2.2.47) then becomes 1, and therefore,
the infimum characterizing λ1 has to be →1.
By way of contrast, according to (2.2.37), the highest eigenvalue is given by

λK = max
u �=0

(Du, Du)

(u, u)
. (2.2.49)

Thus, the strategy for obtaining an eigenfunction for the highest eigenvalue is to do
the opposite what one’s neighbors are doing, for example to assume the value 1 when
the neighbors have the value −1. Thus, the corresponding eigenfunction will exhibit
oscillations with the highest possible frequency. Here, the obstacle can be local.
Namely, any triangle, that is, a triple of three mutually connected nodes, presents
such an obstacle. More generally, any cycle of odd length makes an alternation of the
values 1 and −1 impossible. The optimal situation here is represented by a bipartite
graph, that is, a graph that consists of two sets �+, �− of nodes without any links



2.2 Graphs and Networks 25

between nodes in the same such subset. Thus, one can put uK = ±1 on �±. For our
choice bi = ni , which we shall now adopt for the subsequent discussion, one then
finds

λK = 2 (2.2.50)

for a bipartite graph.
In contrast, the highest eigenvalue λK becomes smallest on a fully connected graph,
namely

λK = N

N − 1
(2.2.51)

according to (2.2.46). For graphs that are neither bipartite nor fully connected, this
eigenvalue lies strictly between those two extremal possibilities.
Perhaps the following caricature can summarize the preceding: For minimizing λ1—
the minimal value being 0—one needs two subsets that can internally be arbitrarily
connected, but that do not admit any connection between each other. For maximiz-
ing λK—the maximal value being 2—one needs two subsets without any internal
connections, but allowing arbitrary connections between them. In either situation,
the worst case—that is, a maximal value for λ1 and a minimal value for λK—is
represented by a fully connected graph. In fact, in that case, λ1 and λK coincide.
Let us consider bipartite graphs in some more detail. We already noted above that on
a bipartite graph, we can determine the highest eigenfunction uK explicitly, as ±1,
being +1 on one set, −1 on the other set of vertices defining the bipartition. In fact,
it is clear from that construction that this property is equivalent to the bipartiteness
of the graph. Actually, if the graph is bipartite, then even more is true: Whenever
λk is an eigenvalue, then so is 2 − λk . Since 0 is an eigenvalue for any graph, this
criterion implies our observation that 2 is an eigenvalue. The general statement is
not difficult to see: Let G1, G2 be the two vertex sets defining the bipartition. When
uk is an eigenfunction for the eigenvalue λk , then

ũk(i) :=
{

uk(i) for i ∈ G1

−uk(i) for i ∈ G2
(2.2.52)

is an eigenfunction with eigenvalue 2 − λk as is readily verified.
We now present some results from [15] about controlling the highest eigenvalue. In
order to understand the significance of the highest eigenvalue λK better, we now
derive some general identity first, for a function u on the vertex set of �.

∑

i

1

ni

∑

j,k, j∼i,k∼i

(u( j) − u(k))2

=
∑

i

∑

k,k∼i

1

ni

∑

j, j∼i

(u( j) − u(k))2
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=
∑

i

⎛

⎝
∑

k,k∼i

⎛

⎝ 1

ni

∑

j, j∼i

u( j)2 − 2

ni

∑

j, j∼i

u( j)u(k) + u(k)2

⎞

⎠

⎞

⎠

=
∑

i

⎛

⎝2
∑

j, j∼i

u( j)2 − 2

ni
(
∑

j, j∼i

u( j))2

⎞

⎠

= 2
∑

i

∑

j, j∼i

u( j)2 −
∑

i

2ni

⎛

⎝ 1

ni

∑

j, j∼i

u( j)

⎞

⎠

2

.

We now observe that we can replace u by u − u(i) in the first and hence also in all
subsequent lines. This yields

∑

i

1

ni

∑

j,k, j∼i,k∼i

(u( j) − u(k))2

= 2
∑

i

∑

j, j∼i

(u( j) − u(i))2 −
∑

i

2ni

⎛

⎝ 1

ni

∑

j, j∼i

(u( j) − u(i))

⎞

⎠

2

= 2
∑

i

∑

j, j∼i

(u( j) − u(i))2 −
∑

i

2ni (�u(i))2.

When u now is an eigenfunction,�u + λu = 0 for some eigenvalueλ, then, recalling
(2.2.43), we obtain

∑

i

1

ni

∑

j,k, j∼i,k∼i

(u( j) − u(k))2 = 2λ(2 − λ)
∑

i

ni u(i)2. (2.2.53)

Using (2.2.43) again, we can also reformulate this as

2 − λ =
∑

i
1
ni

∑
j,k, j∼i,k∼i (u( j) − u(k))2

∑
i
∑

j, j∼i (u( j) − u(i))2
. (2.2.54)

We nowwant to employ (2.2.54) to interpret 2 − λK (λK being the largest eigenvalue
of our graph) as quantifying how much � is locally different from being bipartite,
recalling that this quantity is 0 precisely if � happens to be bipartite.
In order to develop some intuition, we start with a bipartite graph�0 with M vertices.
We consider a highest eigenfunction ū that is +1 on one class and −1 on the other
class of vertices, as described above. In particular,

1
2

∑
j∼k(ū( j) − ū(k))2

∑
i ni ū(i)2

= 2. (2.2.55)
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We add another vertex i0 and connect it to one of the edges of �0. Of course, this
new graph �1 then is again bipartite, but we extend ū by ū(i0) = 0 to �1. Thus, the
numerator and the denominator of (2.2.55) are both increased by 1. Given any small
ε > 0, by assuming that �0 is sufficiently large, that is,

∑
i ni is sufficiently large,

we can therefore achieve that, for �1,

1
2

∑
j∼k(ū( j) − ū(k))2

∑
i ni ū(i)2

> 2 − ε. (2.2.56)

Now, this is not affected when we construct a graph � by attaching another graph �2
at i0 and extend ū by 0 to all of �2. For instance, �2 could be a complete graph of
N vertices, for any N . In particular, the difference 2 − λK (where λK is the largest
eigenvalue of�) which has to be larger than 2 − ε by (2.2.51), is not very sensitive to
the shape of�2. This implies, for instance, that 2− λK cannot reflect a global quantity
like the clustering coefficient C of (2.2.6) that expresses an averaged difference from
a graph being bipartite. In fact, our construction of attaching a complete graph KN to
a bipartite graph �0 through a connecting node produces a graph with C arbitrarily
close to its maximal value 1 when N is sufficiently large. By extending this example,
we can also see that we should have many eigenvalues λ for which 2 − λ is small
when the graph possesses several relatively large bipartite or almost bipartite parts
that are only loosely connected with the rest. This is analogous to the fact that a graph
possesses several small eigenvalues when it has many relatively large components
that are only loosely connected to the rest, that is, when the graph can be easily
decomposed into several large clusters. Of course, for a nonconnected graph, that
is, one with several components without links between them, the spectrum simply is
the union of the spectra of the components. Therefore, by the continuity principle,
a graph consisting of clusters that are only loosely connected to each other has its
spectrum approximated (in a sense not made completely precise here) by the spectra
of these clusters, that is, by that of the graph resulting from deleting the few links
between the clusters.
We can use (2.2.54), however, in order to control 2 − λK by the following local
clustering measure

C0(�) := max{α : for each i ∈ �, at least αni of its edges are contained in some triangle}.
(2.2.57)

Again, C0 = 0 for a bipartite and C0 = 1 for a complete graph. Thus, let us analyze
(2.2.54) with this quantity in mind. We want to control 2− λK from below in terms
of C0. This means that we need to match any term (u(i)−u( j))2 in the denominator
by some term in the numerator of comparable magnitude. Now, given such a term,
we have two possibilities. Either we can at least find αni

2 neighbors k of i for which
(u(k)−u( j))2 ≥ 1

2 (u(i)−u( j))2. Then (u(i)−u( j))2 is matched in the numerator.
Or, for at least αni

2 neighbors k of i for which the edge e = (i, k) is contained in some
triangle (i, k, �), we have (u(i)−u(k))2 ≥ 1

12 (u(i)−u( j))2 for at leastαni neighbors
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k that are contained in some triangle (i, k, �). Therefore, taking one of those k and
one such triangle (i, k, �), for every other vertex m of �, either (u(i) − u(m))2 or
(u(k)−u(m))2 has to be sufficiently large. Since we have the choice between at least
αni such vertices k, all the edges e = (i, j) can thus be matched with a controlled
amount of duplication. Thus, 2 − λK can be controlled from below in terms of C0,
or conversely, C0 can be controlled from above in terms of 2 − λK . The control in
the other direction does not work quite, because 2 − λK can still be made relatively
large in a graph like that obtained from the complete graph KN by attaching another
node i0 with a single connection to one of the vertices of KN . Here, C0 = 0, because
the only edge from i0 is not contained in a triangle. Perhaps more a more important
example is a graph with many cycles of odd length, but all of them of length at least
5. Here, C0 = 0 as there are no triangles, but 2 − λK �= 0 because the graph is not
bipartite as bipartite graphs can only have cycles of even length.
In passing, we also observe that by a reasoning similar to that for (2.2.53), we can
also show

∑

i

∑

k,k∼i

⎛

⎝ 1

ni

∑

j, j∼i

(u( j) − u(k))

⎞

⎠

2

= λ(2 − λ)
∑

i

ni u(i)2. (2.2.58)

Again, this can be used to estimate the local difference from being bipartite in terms
of 2 − λK .
In fact, the preceding constructions can be understood and significantly extended
through the concept of a neighborhood graph, see [15].

Having looked at the smallest and largest eigenvalues, we now take a look at the
one in the middle, λ = 1 (we again fix the weights in (2.2.12) to be ni ). In order to
see that this eigenvalue is special, we rewrite the eigenvalue equation for λ = 1 as

0 = �v(i) + v(i) = 1

ni
(
∑

j, j∼i

v( j) − niv(i)) + v(i) = 1

ni

∑

j, j∼i

v( j). (2.2.59)

Thus, an eigenfunction for the eigenvalue 1 is balanced in the sense that for every
node, the average of the values of its neighbors vanishes.
There is a simple way to generate the eigenvalue 1: node duplication. That means
that we take some graph �0 and some node i0 ∈ �0 and create a new graph � by
adjoining an additional node j0 to�0 by the prescription that j0 gets connected to the
same nodes as i0. That is, whenever a node i ∈ �0 is connected to i0, then we also
connect it to j0. Note that i0 and j0 are not directly connected by this rule. The node
j0 can then be considered as the double of i0 because it shares the same neighbors
in �.
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j0 is the duplicate of i0 (2.2.60)

We now simply observe that the function

u1(i) :=

⎧
⎪⎨

⎪⎩

1 for i = i0
−1 for i = j0
0 else

(2.2.61)

satisfies the eigenvalue equation (2.2.59). By repeated node duplication, we can thus
generate a graph with an arbitrary high multiplicity of the eigenvalue 1. In particular,
a complete bipartite graph Km,n , that is, a bipartite graph consisting of one class of
size m and another of size n, such that any node in the first class is connected with
every node in the second class, can be obtained by successive node duplications from
the graph K1,1 consisting of two nodes connected by an edge.

K2,3 is generated by three vertex duplications from K1,1 (2.2.62)

Therefore, we can deduce the spectrumof any such graph Km,n : it has the eigenvalues
0 and 2 with multiplicity 1 each, and the eigenvalue 1 with multiplicity m + n − 2.
Conversely, any graph with this spectrum is a complete bipartite graph Km,n . In
particular, all the graphs Km,n with the same value of m + n of nodes have the same
spectrum, that is, they are isospectral. In particular, the spectrum of � does not
completely determine a graph. We also observe the following fact. For a complete
graph KN , for N → ∞, all the eigenvalues converge to 1, see (2.2.44), except for
λ0 = 0. Therefore, in this limit, the difference between the spectra of a complete
graph KN and a complete bipartite graph Km,n with m + n = N is only reflected by
a single eigenvalue, the highest eigenvalue λK which remains 2 for Km,n , but goes
to 1 for KN . To appreciate this phenomenon, we observe that KN is the graph with
the maximal number of 3-cycles, i.e., triangles, because every edge is contained in
N −2 triangles and every vertex is a vertex of

(N−1
2

)
triangles. Km,n does not contain

any triangles, but otherwise is the graph with the maximal number of 4-cycles, in
the sense that every vertex of the second class, that with n vertices, is a vertex of(m
2

)
(n − 1) 4-cycles, and analogously for the first class. From this observation, we
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also see that different such Km,n with the same sum m + n are distinguished by their
numbers of cycles. Therefore, this number, together with the spectrum, can uniquely
identify a graph Km,n .
These issues are further developed in [7, 8], and biological applications are given in
[6, 9].

We now return to the issue of decomposing a graph by cutting edges. There exists
an important relationship of this issue with the first eigenvalue λ1 which we shall
now describe. This is based on a quantity that is analogous to one introduced by
Cheeger in Riemannian geometry, but had already been considered earlier in graph
theory by Polya. We therefore call it the Polya-Cheeger constant. Letting |E | denote
the number of edges contained in an edge set E , the Polya-Cheeger constant is

h(�) := inf
E0

{ |E0|
min(

∑
i∈V1

bi ,
∑

i∈V2
bi )

} (2.2.63)

where removing E0 disconnects � into the components V1, V2. Thus, we try to break
the graph up into two large components by removing only few edges. We may then
repeat the process within those components to break them further up until we are no
longer able to realize a small value of h.
We now derive elementary estimates for λ1 from above and below in terms of the
constant h(�). Our reference here is [28] (that monograph also contains many other
spectral estimates for graphs, as well as the original references; the analogy between
the Cheeger estimate in Riemannian geometry and in graph theory was discovered in
[35]). We start with the estimate from above and use the variational characterization
(2.2.47). Let the edge set E0 divide the graph into the two disjoint sets V1, V2 of
nodes, and let V1 be that with the smaller vertex sum

∑
bi . We consider a function

v that is =1 on all the nodes in V1 and = −α for some positive α on V2. α is chosen
so that the normalization

∑
V biv(i) = 0 holds, that is,

∑
i∈V1

bi − ∑
i∈V2

biα = 0.
Since V2 is the subset with the larger

∑
bi , we have α → 1. Thus, for our choice of

v, the quotient in (2.2.47) becomes → (1+α)2|E0|∑
i∈V1

bi +∑
i∈V2

bi α2 = (α+1)|E0|∑
V1

bi
→ 2 |E0|∑

V1
bi
.

Since this holds for all such splittings of our graph �, we obtain from (2.2.63) and
(2.2.47)

λ1 → 2h(�). (2.2.64)

The estimate from below is slightly more subtle, and the estimate presented here
works only for the choice

bi = ni . (2.2.65)

We consider the first eigenfunction u1. Like all functions on our graph, we consider
it to be defined on the nodes. We then interpolate it linearly (or monotonically) on
the edges of �. Since u1 is orthogonal to the constants (recall

∑
i ni u(i) = 0), it

has to change sign, and the zero set of our extension then divides � into two parts
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�′ and �′′ by sign. W.l.o.g., �′ is the part with fewer nodes. The points where (the
extension of) u1 = 0 are called boundary points. We now consider any function ϕ
that is linear on the edges, 0 on the boundary, and positive elsewhere on the nodes
and edges of �′. We also put h′(�′) := infE1{ |E1|∑

i∈� ni
} where removing the edges in

E1 cuts out a subset � of the vertex set of �′ that is disjoint from the boundary. We
also use the identity

∑

e=(i, j)

|ϕ(i) − ϕ( j)| =
∫

σ
�e(ϕ = σ)dσ (2.2.66)

where �e(ϕ = σ) denotes the number of edges on which ϕ attains the value σ. This
is illustrated by the following figure for the case of a cyclic graph with 5 vertices

From (2.2.66), we proceed to

∑

e=(i, j)

|ϕ(i) − ϕ( j)| =
∫

σ

�e(ϕ = σ)
∑

i :ϕ(i)≥σ ni

∑

i :ϕ(i)≥σ

ni dσ

≥ inf
σ

�e(ϕ = σ)
∑

i :ϕ(i)≥σ ni

∫

s

∑

i :ϕ(i)≥s

ni ds



32 2 Discrete Structures

= inf
σ

�e(ϕ = σ)
∑

i :ϕ(i)≥σ ni

∑

i

ni |ϕ(i)|

≥ h′(�′)
∑

i

ni |ϕ(i)|

when the sets ϕ = σ and ϕ ≥ σ satisfy the conditions in the definition of h′(�); that
is, the infimum has to be taken over those σ < maxϕ. Applying this to ϕ = v2 for
some function v on �′ that vanishes on the boundary, we obtain

h(�′)
∑

i

ni |v(i)|2 →
∑

e=(i, j)

|v(i)2 − v( j)2|

→
∑

e=(i, j)

(|v(i)| + |v( j)|)|v(i) − v( j)|

→ √
2(

∑

i

ni |v(i)|2)1/2(
∑

e=(i, j)

|v(i) − v( j)|2)1/2

from which

1

2
h(�′)2

∑

i

ni |v(i)|2 →
∑

e=(i, j)

|v(i) − v( j)|2. (2.2.67)

We now apply this to v = u1, the first eigenfunction of our graph �. We have
h′(�′) ≥ h(�), since �′ is the component with fewer nodes. We also have7

λ1

∑

i∈�′
ni u1(i)

2 = 1

2

∑

i∈�′

∑

j∼i

(u1(i) − u1( j))2, (2.2.68)

cf. (2.2.24) (this relation holds on both �′ and �′′ because u1 vanishes on their
commonboundary).8 Equation (2.2.67) and (2.2.68) yield the desired estimate (under
the assumption (2.2.66))

λ1 ≥ 1

2
h(�)2. (2.2.69)

From (2.2.64) and (2.2.69), we also observe the inequality

h(�) → 4 (2.2.70)

7 We obtain the factor 1/2 because we are now summing over vertices so that each edge gets counted
twice.
8 To see this, one adds nodes at the points where the edges have been cut, and extends functions
by 0 on those nodes. These extended functions then satisfy the analogue of (2.2.19) on either part,
as one sees by looking at the derivation of that relation and using the fact that the functions under
consideration vanish at those new “boundary” nodes.
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for any connected graph, when the weights bi are the vertex degrees ni . In fact, we
can obtain a better estimate from (2.2.69). Since, as noted above in (2.2.44), (2.2.48),
we always have λ1 → N

N−1 , we see directly that

h(�) →
√

2N

N − 1
. (2.2.71)

Also, unless the graph is complete, we have λ1 → 1, see (2.2.48), and therefore, for
non-complete graphs, we have the estimate

h(�) → √
2. (2.2.72)

One can also think about the decomposition of a graph by removing vertices instead
of edges. This issue is amenable to a similar treatment, and one can define a quantity
analogous to h(�) that has the number of vertices whose elimination is needed to
disconnect the graph in the numerator; see [28] for details. Moreover, we can also
define a dual Cheeger constant that can be utilized to control the largest eigenvalue,
see [15].

The spectrum of the graph Laplacian is a useful tool to analyze biological net-
works, see [6, 8, 9, 10].Whereasmost computational problems on graphs areNP-hard
or even NP-complete, and hence require a number of steps that grows exponentially
with the number of vertices, the computation of the spectrum proceeds by linear alge-
bra. Therefore, there exist algorithms that grow only like a polynomial of low order
in the number of vertices. With current methods, one can determine the spectrum of
graphs with about half a million nodes, and if one exploits the particular structures
that can typically be found in empirical networks, one can handle even larger ones.

Therefore, one computes spectra of graphs in order to compare or distinguish
biological and other networks by their spectral properties. We should remark at this
point that the spectrum of its Laplacian does not always determine a graph uniquely.
For instance, all complete bipartite graphs Km,n with the same total number m + n
of vertices have the same spectrum, i.e., they are isospectral, as we have already
observed in the discussion after (2.2.61), with their spectrum consisting of 0 and 2
with multiplicity 1 each, and the eigenvalue 1 with multiplicity m + n − 2.

Nevertheless, as we have seen above, the spectrum reflects many important struc-
tural properties of a graph, like its decomposability.

Networks from specific domains, for instance protein-protein interaction networks
(see e.g. [6]) usually share specific properties that distinguish them from networks
from other domains. By investigating these specific spectral properties, one can then
gain insight about the structure of such networks. For instance, a high multiplicity of
the eigenvalue 1 in molecular networks may indicate gene duplications underlying
the evolutionary history of such networks.

Many biological networks are, in fact, directed. In metabolic networks, there is
the distinction between inputs and outputs of reactions, and one is interested in flows
through such a directed network. In neuronal networks, information is transmitted
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fromapresynaptic to a postsynaptic neuron, and onewants to understand the resulting
dynamics. In food webs, trophic interactions (“who eats whom”) are naturally un-
symmetric. Therefore, the spectral theory of directed graphs has been systematically
developed by F.Bauer, see [14]. Applications to biological networks are explored
in [11].

2.3 Descendence Relations

2.3.1 Trees and Phylogenies

Trees are the formal tool for representing ancestor-descendent relations in biology
and other fields. At first sight, the concept of a tree as defined below seems not
appropriate for that task, however, when one thinks of parent-offspring relationships
in sexually recombining species. There, the relationship graph, the so-called pedigree
is branching in the backward direction because each individual has two parents, as
well as in the forward direction because individuals on average have more than
one offspring if the population is not going extinct. When one considers asexual
reproduction, however, the situation becomes simpler because each individual then
has only one parent, and branching can occur only forward in timewhenone considers
the descendents over the generations of a single ancestor. This, perhaps, is not such an
exciting problem, and, in fact, biologists are rather interested in trees for describing
phylogenetic relationships between species instead of individuals. The endpoints of
a tree, the so-called leaves (see below for the formal definitions), then correspond to
a collection of recent species, and one tries to construct a tree in which the internal
vertices represent ancestral species that are the common ancestors of all the species
below them. Here, one usually assumes that speciation events are binary branchings,
that is, one species splits into two daughter species. (In order to make this consistent,
at least some biological taxonomists, the cladists, adopt the convention that whenever
a new species branches off from an existing one, the remaining part of the latter then is
also classified as a new species.) Traditionally, the similarities between species were
gauged on the basis of morphological features, and paleontologists tried to identify
the hypothetical ancestral species with ones documented in the fossil record. (In
practice, this encounters many problems, but that is not our concern here.) Today,
there exists a powerful alternative to that classical method, the comparison on the
basis of genetic data. The idea is obvious, to take DNA samples from members of
different species and count the differences so as to determine the genetic distances
between the species. On the basis of those distances, a hierarchical grouping should
be possible that can be represented by a tree. Of course, in practice, this is not so
simple. First of all, the genetic samples need to be comparable. For that, one needs
to identify DNA segments in the species representatives that are homologous to
each other, that is, derived from the same ancestral sequence through a process of
accumulation of mutations. Since besides point mutations in the DNA, there can
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also occur rearrangements like insertions, deletions, inversions, first the problem of
sequence alignment needs to be addressed and solved for the samples at hand. This
is usually done with the BLAST algorithm [2]. Next, one assumes that mutations
occurred at the same rate in the different lineages, the hypothesis of the molecular
clock. Otherwise, the number of genetic differences would not be a uniformmeasure
of the time since branching from a common ancestor. Moreover, one needs to find
genetic regions that have not been under selective pressure, but rather where there is
a uniform probability of the retention of any mutation. Under stabilizing selection,
most mutations are eliminated, and this would lead to an underestimate for the time
since branching. For directed selection, in contrast, adaptive pressure leads to a
more rapid accumulation of mutations and then to an overestimate of the time since
branching.
Even if one can align the sequences successfully and eliminate selection effects,
there still remain substantial problems. Often, the genetic distances vary with the
genomic regions considered. Thus, depending on the DNA region considered, one
might get a different tree. In that case, onemight try to find some kind of compromise
tree. That will depend on the criterion adopted, however, as we shall discuss a little
more below. Sometimes, the data even do not fit into a tree because distances on a
tree need to satisfy some necessary conditions discussed below. The question then is
what substitute to choose for a tree, an issue that we shall also address below. Also, a
species is not entirely homogeneous, and there are also genetic differences between
the members of the same species (otherwise, evolution could not work by differential
selection). Therefore, one needs to gauge intraspecies differences against interspecies
ones. Finally, speciation is not an event that takes place at one clearly identifiable point
in time, but rather is a gradual process of the accumulation of differences between
different populations until reproductive barriers emerge that prevent further genetic
mixing between those populations. Here, we need to invoke the species concept of
modern biology. A species is defined as a population of organisms that can sexually
produce viable and fertile offspring among them. In practice, however, sometimes
that relationship is not necessarily transitive. That is, there can exist subpopulations
A1, . . . , Ak such that individuals from Ai can reproduce with those of Ai+1 for all i ,
but those from A1 are no longer able to reproduce with those from Ak . An example
are the races of domestic dogs that range from rather large to very small ones. More
generally, for the assembly of phylogenetic trees, species are considered as static
ensembles, while in reality speciation is a temporally extended dynamic process
inside groups of indidivuals (see the discussion in [20]). (As an aside, some of those
population dynamics can be reconstructed on the basis of a statistical analysis of the
distribution of alleles in recent populations, in particular from their deviations from
equilibria defined by independence hypotheses.)
In spite of all these problems, phylogenetic tree reconstructions are a useful tool for
many biologists. There is one issue, however, that calls for a generalization of the
representation of phylogenies by trees. As L. Margulis emphasized, many genetic
changes are not caused by mutations in inherited genomes, but rather by horizontal
gene transfer through virusses and other processes [88]. That, of course, cannot be
represented in a tree. Therefore, the tree formalism has recently been extended in



36 2 Discrete Structures

[112] to allow for horizontal gene transfer. On the other hand, over the course of
evolution, organisms seem to have developed some protective mechanisms against
such horizontal gene insertions, and the relative efficiency of those provides some
justification for attempting to represent genetic data in a tree. In the light of all the
difficulties mentioned above, it is then necessary to developmethods for finding trees
that contain as few hypotheses as possible not supported by the available data.

We now start with themathematical formalism as pioneered byAndreas Dress; we
treat a particular class of graphs, the so-called trees. Our basic references are [107]
and [37]. We shall not provide the proofs of the mathematical results discussed, but
rather refer the reader to the literature.
We recall that a tree T = (V, E) is a graph without cycles.

Lemma 2.3.1. For a graph � = (V, E), the following statements are equivalent:

1. � is a tree, that is, has no cycles.
2. For any two distinct vertices i , j , there exists a unique path of distinct vertices

joining them (we shall call that path a “shortest path” even though we do not yet
have specified a metric at this point—it will, however, turn out to be a shortest
path for any metric on the tree).

3. |V | = |E | + 1.
4. The deletion of any edge disconnects �.

The proof of this lemma is an easy exercise. Since for any graph � = (V, E), we
have |V | → |E | + 1, a tree thus is a graph with the minimal number of edges needed
to connect a vertex set V .
The vertices of a tree that have degree 1 are called leaves. The other vertices are
called interior vertices. Sometimes, it is convenient to exclude vertices of degree 2.
A rooted tree is a tree with one distinguished vertex i0, the root.
Rooted trees are the formal tool to represent hierarchical relationships between indi-
vidual entities. We say that the vertex i1 is above the vertex i2, or in the phylogenetic
interpretation to follow that i1 is an ancestor of i2, and i2 a descendent of i1, when
the shortest path from i0 to i2 passes through i1.
In phylogenies, the aim is the comparison between extant species. Those species
then are represented as the leaves of some tree, and the rest of the tree then is built
with the purpose that the interior vertices represent common ancestors of all those
below some. Thus, the interior vertices may correspond to hypothetical species on
which no data need to be available. Of course, paleontologists try to identify those
interior vertices with fossil species, but the modern data usually consist of genetic
data like pieces of DNA sequences for which one rarely has fossil samples. Thus, in
paleontology, it is natural to allow for degree 2 vertices, representing ancestors of a
single extant species that are documented in the fossil record. In molecular sequence
analysis, however, one would exclude degree 2 vertices because all interior vertices
represent hypothetical reconstructions of common ancestors of several descendent
species.
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In order to proceed with this formalization, we consider X -trees where X is some
set. In applications, X of course is a or the data set. An X -tree is a tree T = (V, E)

together with a map φ : X → V whose image contains all vertices of degrees 1 and
2. (In the rooted case, we do not require that the root be in the image of φ even though
it may have degree →2.) The map need not be injective. For a phylogenetic (X -) tree,
however, we require that φ be a bijection onto the leaves of T . In particular, such a
phylogenetic tree has no vertices of degree 2. When every interior vertex has degree
3, we speak of a binary phylogenetic tree. This is a natural assumption in biology
because, in evolution, a species can split into two daughter species, and each of those
can then split again, and so on, but one does not see the emergence of three or more
daughter species at the same time. In fact, much of phylogenetic tree reconstruction is
about resolving the question in which temporal order the various splits into daughter
species took place.
An X -split A|B is a partition of X into two non-empty subsets A, B.9 Thus, in
biological applications, A might represent those members of X where a certain
feature is present, and B those where that feature is absent.—Two such splits A1|B1
and A2|B2 are called compatible when at least one of the intersections A1 ∩ A2,
A1∩ B2, B1∩ A2, B1∩ B2 is empty. If, say, A1∩ B2 = ∅ then A1 ⊂ A2 and B2 ⊂ B1,
and vice versa, and so, there is an alternativeway of expressing compatibility of splits.
When we have an X -tree (T,φ), then every edge e of T induces an X -split because it
decomposes T into two subgraphs T1, T2 (which might include the degenerate case
where one of them consists of a single vertex and no edges), and their preimages
under φ then constitute a split of X . When we assume that the tree has no vertices
of degree 2—which we shall henceforth do—different edges lead to subgraphs with
different leaf sets, and therefore different edges induce different splits of X . Those
splits then are compatible. We denote the splits of X induced by the X -tree (T,φ)

by �(T,φ), or simply by �(T ) when the map φ is implicitly understood.
The converse question of what classes of splits of X come from X -trees is answered
by the following result of Buneman

Theorem 2.3.1. Given a collection � of X-splits, there exists an X-tree (T,φ)

(which then is unique—up to isomorphism, of course) for which � = �(T,φ)

precisely if all the splits in � are pairwise compatible.

A tree carries an obvious metric, in the sense that we can quantify the distance
between vertices i1 and i2 by counting the number of edges in the shortest path
between them. More generally, we can assign positive weights w(e) to the edges
e and then take the sum of the weights of the edges in such a path as the distance
d(i1, i2).
When we consider a set X , there may already exist some distance function on X ,
and the question then emerges whether that distance is compatible with the metric on
some X -tree. The answer is pretty simple, and in fact, we can even take something
more general than a metric on X , namely a so-called dissimilarity map, that is, a
non-negative map δ : X × X → R with δ(x, x) = 0 and otherwise positive, and

9 That A and B yield a partition of X means that A ∪ B = X and A ∩ B = ∅.
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δ(x, y) = δ(y, x) for all x, y ∈ X . For example, δ(x, y) could just count in how
many characters (see below for a formal definition) the elements x and y differ.
The question then is whether we can find an X -tree (T,φ) with weights w(e) on its
edges and associated distance function d(., .) such that

δ(x, y) = d(φ(x),φ(y)) (2.3.1)

for all x, y ∈ X . In that case, we call δ a tree metric. The answer is

Theorem 2.3.2. A dissimilarity map δ on X is a tree metric precisely if it satisfies
the 4-point condition

δ(x, y) + δ(z, w) → max(δ(x, z) + δ(y, w), δ(x, w) + δ(y, z)) (2.3.2)

for all x, y, z, w ∈ X.

In the sequel, (2.3.2) will give rise to two different issues. One is whether it holds
or not for all points, and this issue is exemplified in the case where δ is the metric
coming from a quadrilateral graph where x, w, y, z are arranged in cyclic order, for
example δ(x, w) = δ(w, y) = δ(y, z) = δ(z, x) = 1 and δ(x, y) = δ(z, w) = 2.
Thus, (2.3.2) is not satisfied here. The other issue arises when (2.3.2) is satisfied for
all quadruples and consists in the question under which conditions we have even
strict inequality for certain quadruples.
Since every edge e of an X -tree corresponds to a split σ of X , we can write a tree
metric as

d =
∑

σ∈�(T )

w(eσ)δσ (2.3.3)

where eσ is the edge inducing the split σ and

δσ(i, j) =
{
1 if i, j are in different components of T − e

0 otherwise.

The point here is that the edges eσ occurring for d(x, y) in (2.3.3) with δσ(x, y) = 1
are precisely those contained in the shortest path from x to y.
This will now lead us to the decomposition theorem of Bandelt and Dress [12]. Let
δ be a dissimilarity map on X . For a split σ = A|B of X , we consider

iδ(σ) :=1

2
min

a1,a2∈A,b1,b2∈B
(max(δ(a1, b1) + δ(a2, b2), δ(a1, b2) + δ(a2, b1))

− (δ(a1, a2) + δ(b1, b2))). (2.3.4)

It is not required that the points a1 and a2 or b1 and b2 be different. For example,
this expression can become negative when δ does not satisfy the triangle inequality:
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take a1 = a2 =: a and b1, b2 with δ(b1, b2) > δ(b1, a) + δ(a, b2).—In order
to understand the significance of iδ(σ) better, we consider some examples. These
examples will be graphically displayed in the figure below. We first take a space
X = {x, y, z, w} consisting of 4 points, with the condition

δ(x, y) + δ(z, w) < max(δ(x, z) + δ(y, w), δ(x, w) + δ(y, z)). (2.3.5)

If δ(x, y) = δ(z, w) = 2, δ(x, z) = δ(x, w) = δ(y, z) = δ(y, w) = 3, the split
{x, y}|{z, w} has index iδ = 1/2 and is induced from a tree with leaves x, y, z, w
and interior nodes ξ, ζ with δ(x, ξ) = δ(y, ξ) = δ(ξ, ζ) = δ(z, ζ) = δ(w, ζ) = 1,
see the following figure

(2.3.6)

The splits {x, z}|{y, w} or {x, w}|{y, z}, however, have iδ(σ) = 0 and are not induced
by that tree metric. When we have equality in (2.3.5), say, δ(x, y) = δ(z, w) =
2, δ(x, z) = δ(z, w) = δ(y, z) = δ(y, w) = 2, the metric can still be represented
by a tree metric, this time with a single interior vertex ξ that has distance 1 from all
leaves. Thus, we have a 4-star

(2.3.7)

Here, there is no longer a natural grouping of the vertices into two pairs.—When
instead δ(x, y) = δ(z, w) = δ(x, z) = δ(y, w) = 3, and δ(x, w) = δ(y, z) = 4,
then (2.3.5) holds again. This time, we can represent the metric by a graph with 4
interior vertices ξ, η, ζ,ω that is not a tree. ξ, η, ζ,ω form a rectangle with δ(ξ, η) =
δ(ξ, ζ) = δ(ω, ζ) = δ(η,ω) = 1, the other nontrivial distances between them being
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equal to 2, and with x connected to ξ, y to η, z to ζ, w to ω, all with distance 1. Thus,
we need to insert an interior rectangle in order to represent the metric on a graph,

(2.3.8)

That rectangle then expresses the ambiguity in the dissimilarity map for a hier-
archical grouping. Of course, the rectangle is in fact a square, and so there is
some special symmetry. We therefore also consider the case where δ(x, y) =
δ(z, w) = 3, δ(x, z) = δ(y, w) = 4, δ(x, w) = δ(y, z) = 5. In that case,
we again insert 4 interior vertices ξ, η, ζ,ω that form a rectangle, this time with
δ(ξ, η) = δ(ζ,ω) = 1, δ(ξ, ζ) = δ(ω, η) = 2,

(2.3.9)

In any case, when we have such a rectangle, we produce splits by cutting pairs of
parallel edges. Cutting the edges between ξ and ζ and between η and ω, for example,
produces the split {x, y}|{z, w}. Cutting the edges between ξ and η and between ζ
and ω instead produces the split {x, z}|{y, w}. Now, in contrast to the tree case, both
these splits have iδ(σ) > 0. The split {x, w}|{y, z}, however, has iδ(σ) < 0. In the
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tree case, interchanging x with y or z with w would not have made any difference
for the distances between those 4 vertices,

(2.3.10)

but this is no longer so in the rectangle case.
After this example, let us return to the general case. When δ is a tree metric from

an X -tree (T,φ), the split σ of X is induced by that X -tree precisely if iδ(σ) > 0. In
that case, we then have iδ(σ) = w(eσ) for the weight of the edge inducing the split.
And we can rewrite (2.3.3) then as

δ =
∑

σ X -split with iδ(σ)>0

iδ(σ)δσ. (2.3.11)

The split decomposition theorem of Bandelt and Dress [12] then says that every
dissimilarity map can be written as a sum over such tree metrics plus a remainder
that has no splits with iδ(σ) > 0:

Theorem 2.3.3. Let δ be any dissimilarity map on X. We then have a decomposition

δ = δ0 +
∑

σ X-split with iδ(σ)>0

iδ(σ)δσ (2.3.12)

where δ0 admits no splits with iδ(σ) > 0.

The star in our above example (2.3.7) admits no splits into pairs of points with
iδ(σ) > 0. This is an undesirable situation in phylogenetic tree reconstruction be-
cause the grouping of the four vertices into pairs is ambiguous. However, when we
split off a single point from the remaining three, we get iδ(σ) > 0. The simplest
example of a metric space admitting no splits at all with iδ(σ) > 0 is given by 5
points x, y, z, w, v with d(x, v) = d(y, z) = d(z, w) = d(y, w) = 2 and the other
distances between different points all being one. To describe this metric space some-
what differently, we take the two sets A := {x, v}, B := {y, z, w} and connect each
point in A with every point in B by an edge of length 1. Thus, we see that the graph
constructed in this way is the bipartite graph K2,3 of (2.2.9).—For this example, then
δ0 is nontrivial, and moreover, d = δ0.
When, conversely, δ0 vanishes, the dissimilaritymap δ is called totally decomposable.
We recall that in the above example with the interior rectangle, the splits {x, y}|{z, w}
and {x, z}|{y, w} both have positive iδ(σ), and they decompose the metric. Thus, a
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totally decomposable metric need not be a tree metric. The problem of this example
for phylogenetic tree reconstruction is that there is no unique split that decomposes
the dissimilarity map, that is, on the basis of the dissimilarity map, we do not know
how to group the elements. Another, larger, example of this type, that is, of a totally
decomposable metric that is not a tree metric and where therefore the groupings of
the elements are not unique, is displayed in the next figure.

Bandelt and Dress[12] proved that a dissimilarity map δ is totally decomposable
iff for all x, y, z, v, w ∈ X ,

iδ({x, y}|{z, v}) → iδ({x, w}|{z, v}) + iδ({x, y}|{z, w}). (2.3.13)

Splits are decompositions of X into two subsets. More generally, we can consider
characters, that is, functions χ : X0 → S where ∅ �= X0 ⊂ X and S is a finite set, the
set of characters states. χ is called non-trivial if there are at least two character states
that are each assumed by more than one element of X0. We say that the character
χ factors through the X -tree (T,φ) when there exists χ′ : T → S (here, we mean
by a function on the tree T a function that is defined on the vertices of T ) with
χ = χ′ ◦ φ|X0 . Such a character χ that factors through the X -tree (T,φ) is called
convex on T if for each a ∈ S, the subgraph with vertex set (χ′)−1(a) is connected.
This is equivalent to the existence, for every pair a, b of different character states, of
an X -split A|B of T with (χ′)−1(a) ⊂ A and (χ′)−1(b) ⊂ B.
The concept of character convexity is fundamental for the phylogenetic systematics
developed by W.Hennig, the so-called cladism [58]. There, one wants to identify



2.3 Descendence Relations 43

monophyletic groups, that is rooted subtrees of phylogenetic trees that contain all
the descendents of that vertex that is declared to be the common ancestor and made
the root of the subtree. For example, in standard zoological systematics, vertebrates
constitute a monophyletic group while fish don’t because the other vertebrate groups
(amphibians, reptiles, birds, and mammals) are also descendents of fish; in fact, here
only birds and mammals are monophyletic in the sense of cladism. We consider
an ancestral species A with daughter species A1 and A2.10 Of course, this can be
represented by a tree with root A and leaves A1, A2. Suppose that a character state
a in A is preserved in A1, but changed into a′ in A2. Now suppose that that species
A2 further splits into two daughter species A21 and A22. We then get a new tree with
leaves A1, A21, A22 if there are no further splittings while A2 now is an interior node
of degree 3. We consider two cases as displayed in the following figure.

In thefirst case, A21 preserves the statea′ while in A22 it is further transformed intoa′′.
In the other case, both of them preserve a′, but in A22 the state of some other character
is transformed into the value b′ from the common value b shared by A, A1, A2, A21.
In such a situation, the ancestral states a, b are called plesiomorph, the derived
states a′, a′′, b′ apomorph. These are relative concepts because a′ is plesiomorph
compared with a′′, that is, when we only consider the subtree with root A2 and leaves
A21, A22. Two species sharing the same plesiomorph state of a character are called
symplesiomorphic w.r.t. that character, those sharing an apomorphic state are called
synapomorphic. In the last example, A1 and A21 are symplesiomorphic for b while
A21 and A22 are synapomorphic w.r.t. a′. In the preceding example, where A22 had
the character state a′′, the states a′, a′′ together constitute a synapomorphy between
A21 and A22. Only synapomorphy, but not symplesiomorphy, can be an indication of
a monophyletic group. Here then enters the convexity assumption. Namely, in order
to be able to use shared derived characters, that is, synapomorphies for identifying
monophyletic groups, we must exclude the following two possibilities:

1. Reversion: In the last example, A22, instead of assuming the new state a′′, reverts
to the ancestral state a.

10 It is a basic principle of cladism that whenever a new species splits off from some line, the
remaining part of that line is also classified as a new species. This makes the systematics amenable
to tree representations. Moreover, from the morphological approach underlying cladism that is
based on paleontological data, any two species differ in the state of at least one character.
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2. Convergence: In the same example, A1, instead of keeping the state b, assumes
the same state b′ that originated in the species A22 while A21 kept b.

Of course, there exist biological examples for either possibility. Snakes have lost the
limbs that their ancestors had gained. Birds, bats, and insects have independently de-
veloped wings. In fact, the wings of birds and bats are plesiomorph when considered
as forelimbs, but not as wings. Sometimes, the distinction between plesiomorphy and
apomorphy is not clear or needs to be reconsidered in the light of genetic sequence
data. For example, it had been thought for a long time that the eyes in arthropods,
molluscs, and vertebrates are examples of a convergent evolution. It has been dis-
covered, however, that eye formation in all these lineages is directed by the same
master control gene, called Pax6, from the class of homeotic (Hox) genes [101]. An
uncontroversial11 example of convergence is mimikry where one species imitates
the coloration or other pattern of an unrelated species that is avoided by predators.
In any case, reversion and convergence are relatively rare in biological evolution,
however. Both these possibilities are excluded by character convexity.
When one has several characters, one wants to find a single X -tree for which all of
them are convex. When such a tree exists, these characters are called compatible. As
for compatibility of splits, there exists a theorem characterizing the compatibility of
characters, but since the formulation is more complicated we refer to [107].
When working with biological data, typically not all the characters are compatible,
and one then wishes to quantify that non-compatibility and construct a tree that
comes as close as possible to rendering all the characters convex. This is the idea of
parsimony. More precisely, given a function f on the vertex set V of a graph �, the
changing number of f is the number of those edges of � on whose endpoints f as-
sumes different values, that is, the number of all edges e = (i, j) with f (i) �= f ( j).
Let now χ : X0 → S be a character that factors through the X -tree (T,φ), with
χ = χ′ ◦ φ|X0 as above. Here, we are assuming that χ′ is already defined on all
the vertices of T . Of course, it is then arbitrary how to define χ′ on those vertices
of T that are not in the image of φ(X0), in case φ is not surjective on X0. For a
character χ, we then define its parsimony score s(χ, T ) for the X -tree (T,φ) as the
minimal changing number of all those extensions χ′ on T that factor χ. Given a set of
characters, its parsimony score on an X -tree then is simply the sum of the individual
parsimony scores. A maximal parsimony X -tree for that set of characters then is one
that minimizes that parsimony score.

It is not difficult to see that the parsimony score is related to character convexity.
In fact, given a character that assumes ν different states, the so-called homeoplasy
of the character χ on T

h(χ, T ) := s(χ, T ) − ν + 1 ≥ 0 (2.3.14)

11 at least as long as one does not look at the underlying genetic mechanisms; in fact, it may well
turn out in a given example that the imitation of a pattern is produced by the same kind of genetic
regulatory mechanism as the imitated pattern, or at least the general framework of that genetic
regulation might be derived from some common ancestor
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with equality precisely if χ is convex on T . Thus, the total homeoplasy of a char-
acter set, the sum of the individual homeoplasies, is also non-negative and vanishes
precisely when the characters are compatible.
The concept of maximum parsimony trees is not without difficulties, both concep-
tually and mathematically. The conceptual difficulties arise from the arbitrariness in
the definition and choice of characters. It is a fundamental problem in paleontology
and morphology to clearly state what a character is and to decide which characters
are independent of each other. Of course, large sets of dependent characters would
bias the parsimony concept. The mathematical problems become clear when one
considers stochastic processes on trees and other graphs. One then realizes that any
method of reconstructing a structure from a data set depends on a model for the
underlying process that created the data.
A standard problem is to amalgate phylogenetic relationships between subsets of X
as expressed in trees into an encompassing tree representing all of X . Of course, the
issue of compatibility will arise again. The smallest meaningful subsets here consist
of 4 elements and are called quartets, and trees with 4 leaves are called quartet trees.
Also, if one has data about the relationships between the elements of X and wants
to construct a tree or, more generally, find out whether these relationships fit into a
tree, a natural strategy is to first construct all local quartet trees and then assemble
those into a common tree. When we have a collectionQ of quartet trees that contains
exactly one quartet tree {a, b}|{c, d} for every quartet Y = {a, b, c, d} of X , then,
as discovered by Colonius and Schulze [29], there exists a unique X -tree containing
all these quartet tree iff the following two quartet rules hold for all a, b, c, d, e ∈ X :

1.
If {a, b}|{c, d}, {a, b}|{d, e} ∈ Q, with c �= e, then {a, b}|{c, e} ∈ Q

2.
If {a, b}|{c, d}, {a, c}|{d, e} ∈ Q, then {a, b}|{c, e} ∈ Q.

In practice, of course, these rules will be violated for some quintuples of elements
of X , and one therefore cannot construct a tree.
There are other, in fact infinitely many, quartet rules. IfQ does not contain a quartet
tree for every quartet in X , that is, if we only have a subcollection of quartet trees,
then we need to invoke more of those rules to check for compatibility, see [107] for
more on this topic. For an algorithm for the (re)construction of a tree from quartets,
see [114].

2.3.2 Genealogies (Pedigrees)

While species can be considered as important biological entities in their own right,
the ancestor-descendent relationships in phylogenetic trees can also be viewed as
accumulated genealogies of the individuals constituting the populations underlying
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the species. Thus, let us consider those genealogies a little, even though they in turn
can be viewed as combinations of inheritance processes of genes passed on from
parents to offspring. The latter, in fact, will lead us back to trees below.
The genealogy or pedigree of an individual in a sexually recombining population is
a directed graph. Each individual has two incoming links from its parents while the
number of outgoing links counts its offspring. Since no individual can be a descendent
of its own offspring, or an ancestor of its own parents, the graph is acyclic (it has no
directed cycles; the underlying undirected graph may well have cycles as the result
of inbreeding in the population). The nodes without outgoing links represent those
individuals that did not produce or have not yet produced offspring.

A pedigree graph; time runs downwards (2.3.15)

In the pedigree graph (2.3.15), in the ancestral generation 1, we have two pairs
that produce two offspring each. In generation 2, one individual leaves no offspring
whereas another one contributes to five of them. In contrast, in generation 3, every
individual leaves one or two descendents in generation 4. In a bisexual population,
we can also identify two subgraphs, one corresponding to the females and the other
to the males. In those subgraphs, every node then has precisely one incoming arrow.
We shall return to this issue in Sect. 2.3.3.

When the graph represents a population history, one can essentialize it by pruning
all the vertices without outgoing links that correspond to individuals having died
without leaving offspring. This will then be an iterative process because in the next
step one would have to prune those vertices that have outgoing links only to vertices
that have been pruned in the previous step. In that manner, one iteratively eliminates
all vertices that do not have living descendents. Thus, one is left with the ancestral
relationships leading to the present population.
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Since one does not want to extend the pedigree to the infinite past, one starts
with some ancestral population. The essentialized pedigree then contains only those
members of the ancestral population that have descendents in the present generation.
If onemoves further to the next generation, then some of those ancestorsmay cease to
have descendents and therefore will get eliminated. Some of those ancestors, called
the lucky ones, however, will turn out to be ancestors of all members of the present
population, and they will therefore also leave descendents in all future generations,
until the entire population goes extinct.

A pedigree graph and its prunings (2.3.16)

In the pedigree graph of (2.3.16), there are three such lucky ancestors from whom
the current population of two individual descends.
Often, one assumes that the different generations do not overlap, as in (2.3.15),
(2.3.16). The generations can then be labelled by their distance from the ancestral
one, and links always go from generation n to generation n + 1.
Also, from the pedigree graph, one can construct another graph expressingmating re-
lationships. In that graph, there is an (undirected) edge between two individuals when
they have produced offspring together.When the species is bisexual or dioecious, that
is, has separate sexes, the mating graph is bipartite, the two classes corresponding
to the females and the males. The mating graph usually is not connected, however,
therefore, strictly speaking, violating our definition of a graph. When the population
is strictly monogamous, the graph consists of disjoint pairs only, after we have es-
sentialized it and eliminated all the bachelors and spinsters.
Of course, this is all rather simple. Later on, when we consider stochastic branching
processes, pedigrees of sexually recombining populations become rather difficult,
but for the moment we leave the subject and turn to
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2.3.3 Gene Genealogies (Coalescents)

The pedigree just considered for a dioecious population, i.e., with two different
sexes, contains two trees (more precisely, so called forests, that is, not necessarily
connected unions of trees) as subgraphs, namely those corresponding to the male
and the female individuals. Let us take one of them, say the female one. Thus, we
only consider mother-daughter relationships. For two individuals, we can then ask
when their lineages coalesce or merge back in the past, that is, howmany generations
back they had the same female ancestor. For two sisters, we need only go one gen-
eration back, as they have the same mother, while first (in the female line) cousins
share a maternal grandmother, and so on. Once the lineages coalesce, they will stay
together all the way back to the ancestral population. Of course, in principle, they
may never merge, that is the two females under consideration may be descendents
of different females in the ancestral population. When we go sufficiently many gen-
erations back into the past, however, with overwhelming probability, all presently
living females in the populations will descend from the same ancestral female, the
“Eve”. All other females in that ancestral population will then have no descendents
from an uninterrupted female line in the present populations; of course they may or
may not have descendents from some lineages that include some males. As already
described above, we can essentialize the graph by eliminating all females without
female descendents in an iterative manner so that only those remain that have an
uninterrupted line of female descendents down to the present sample. When we do
coalescence theory, that is, follow the ancestry of the present sample back in time,
then, in fact, those eliminated individuals will never occur in the consideration. This
represents an enormous simplification in practice when compared with considering
the forward branching process for the (female) descendents of an ancestral popula-
tions where all descendents will occur regardless of whether they contribute to future
generations or not.

Let us consider this scenario in more detail in a simple example that will lead us
to the Wright-Fisher model of population genetics. We consider a population with
non-overlapping generations, and we assume that the size of the population remains
constant = 2N across generations. We also assume, for simplicity, that the sex ratio
remains constant and equal so that we are dealing with a population of N females.
The assumption of the Wright-Fisher model is that, given generation n, consisting
of a population of N individuals, generation n + 1 is (mathematically) created by
choosing N times randomly and independently an individual from generation n as
mother.
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A Wright-Fisher genealogy with 8 individuals and 11 generations; (2.3.17)

note that we have arranged the order of the individuals

in each generation so as to render the scheme clearer.

The 4th individual from generation 1 is the sole ancestors of all individuals in generation 10,

and the 5th individual from generation 6 is the sole ancestors of all individuals in generation 11.

Here, it is assumed that the population is entirely homogeneous, or, in more
biological terms, that all members are equally fit, so that at each selection step, each
member has the same chance of being chosen. Also, creating daughters does not
affect the fitness, and so, the chance to be chosen at a given step does not depend on
how often one has already been chosen in previous steps. Putting it another way, each
individual in generation n + 1 picks individual j in generation n with probability
1/N as its mother, and this sampling is carried out N times with replacement. If d j

is the number of daughters of individual j , we thus have for the probability of having
ν daughters

p(d j = ν) =
(

N

ν

)
(
1

N
)ν(1 − 1

N
)N−ν . (2.3.18)
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This is a binomial distribution, Bi(N , 1
N ), and so, the number of daughters of a given

female is binomially distributed. The binomial distribution will be introduced more
systematically in Chap.3.1, see (3.1.8). The expectation value is

E(d j ) = N
1

N
= 1 (2.3.19)

which of course reflects the fact that the population size is constant, and the
variance is

V ar(d j ) = N
1

N
(1 − 1

N
) = 1 − 1

N
(2.3.20)

(see (3.1.20) below). The correlation between the numbers of daughters of different
females j, k is

Cor(d j , dk) = Cov(d j , dk)√
V ar(d j )V ar(dk)

= − 1

N − 1
. (2.3.21)

The correlation is negative, again because the population size is constant, and there-
fore, when j has many daughters, there is less room for k to have many daughters
as well (when we already know that an individual different from j has one daughter,
then the expected number of daughters of j is reduced to N−1

N in place of the value
1 of (2.3.19)). This effect is rather small in large populations.
For large N , the binomial distribution Bi(N , 1

N ) is approximated by a Poisson dis-
tribution

p(d j = ν) ≈ 1

ν!e−1 (2.3.22)

with mean and variance =1 (see (3.1.8), (3.1.9) in Chap.3.1 below). In particular, the
probability of having no daughters is

p(d j = 0) ≈ e−1 ≈ .37 (2.3.23)

while then the probability to have at least one daughter becomes

p(d j > 0) ≈ 1 − e−1 ≈ .63 (2.3.24)

Therefore, the present population descends from a fraction of about .63n females
n generations ago. Of course, this eventually goes to 0 for large n which leads to
the absurd result that the present females derive from fewer than one individual in
the ancestral generation. Of course, the puzzle is resolved by observing that these
approximations were only valid for large population sizes. For small populations, a
more refined analysis is needed. This is the subject of coalescence theory, originally
founded by J. Kingman [81].

http://dx.doi.org/10.1007/978-1-4471-6353-4_3
http://dx.doi.org/10.1007/978-1-4471-6353-4_3
http://dx.doi.org/10.1007/978-1-4471-6353-4_3
http://dx.doi.org/10.1007/978-1-4471-6353-4_3
http://dx.doi.org/10.1007/978-1-4471-6353-4_3
http://dx.doi.org/10.1007/978-1-4471-6353-4_3
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Again, we stay with our simple example and ask for the distribution of the number
T2 of generations that we need to go back in time to find a common ancestor of
two individuals from the present population. That is, we seek the time to the most
recent common ancestor (MRCA) of the two individuals. The probability that the
two individuals have the same mother, that is, that the MRCA is found already in
the first generation from the past, is 1

N because once we have identified the mother
of the first individual, the probability that the second one has the same mother is 1

N .
Thus, the two have different mothers with probability 1− 1

N . Iteratively, the chance
to find the MRCA n generations back then is

p(T2 = n) = (1 − 1

N
)n−1 1

N
(2.3.25)

because they then have different ancestors in n − 1 generations. This is a geometric
distribution, and its mean is

E(T2) = 1
1
N

= N (2.3.26)

which is equal to the population size.
In a similar manner, we can consider the time to find the MRCA for M individuals.
The probability that m individuals have all different mothers is

N − 1

N

N − 2

N
· · · N − m + 1

N
=

m−1∏

μ=1

(1 − μ

N
) = 1 −

(
m

2

)
1

N
+ O(

1

N 2 ) (2.3.27)

because when the mother of the first individual is determined, there are N − 1 pos-
sibilities for the second to have a different mother, and when that is also determined,
there remain N − 2 possibilities for the third individual to have a mother different
from the previous two, and so on. Thus, neglecting terms of order 1

N2 for a large
population size N , a coalescence event occurs in a given generation with probability(m
2

) 1
N , while no coalescence event occurs with probability 1−(m

2

) 1
N . Thus, the prob-

ability distribution for the time Tm of a coalescence event that reduces the number
of different ancestors from m to m − 1

p(Tm = n) = (1 −
(

m

2

)
1

N
)n−1

(
m

2

)
1

N
. (2.3.28)

In analogy to (2.3.26), we have

E(Tm) = 1
(m
2

) 1
N

= 2N

(m − 1)m
. (2.3.29)
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When we then want to go back from M individuals to a single ancestor, we need to
consider all the coalescent events fromm tom−1 form = 2, . . . , M . Since the times
for these events are independent of each other, the expected number of generations
back in the past for M female individuals to have a single female ancestor is

M∑

m=2

E(Tm) =
M∑

m=2

1
(m
2

) 1
N

=
M∑

m=2

2N

(m − 1)m
= 2N (1 − 1

M
). (2.3.30)

In other words, this is the expected height (measured in number of generations) of
the tree starting with a single female ancestor and leading to the present ensemble
of M females. When we compare (2.3.30) with (2.3.26), we see that the latter is less
than 2 times the former. This means that the final step of reducing the number of
ancestors from 2 to 1 typically takes at least half the time of the whole process. Thus,
the long branches of the tree arise when there are only few females in the ancestry
of the sample.
One can, of course, perform the same analysis with males in place of females. Let us
insert a small variation, however, to account for the fact that in many animal species,
like most mammals, and also in many human societies, the variance in the number
of offspring for males is considerably higher than for females while obviously the
expectation value is the same, assuming that the population is in gender equilibrium
(that issue will be treated in Sect. 5.1). This higher variance is easy to achieve in
our model. The simplest version just stipulates that in each generation only a certain
fraction 0 < q < 1 of the number of males is having offspring at all. When we
then look for the father of an individual, each of those ones is taken with probability
1/q N while the other ones are simply discarded. Thus, two individuals now stand
a chance of 1/q N of having the same father. Thus, N gets replaced by q N in all
formulae. In particular, the expectation values for the waiting times in (2.3.26),
(2.3.30) are shortened by a factor q, and we expect to find theMRCA in the male line
correspondingly fewer generations ago than that in the female line. In other words,
“Adam” lived many generations after “Eve”. (In fact, it has recently been discovered
that there is a small number of males of African origin that carry Y-chromosomes
of different origin [90]. (The Y-chromosomes determine the male gender; a female
possesses two X-chromosomes, a male one X- and one Y-chromosome; the latter are
therefore passed on only the male line.) Thus “Adam” is not the male ancestor of all
living humans, but only of the vast majority of them.)

Coalescence theory is mainly interested in describing the ancestry of genes, or
more precisely, of DNA segments, rather than of individuals. Formally, the basic sce-
nario is the same, however, and therefore, we have described the basic situation above
for the more intuitive case of individuals. The basic scenario neglects the issues of
mutation and recombination. In order to exclude recombination, there are two possi-
bilities, one of significance for biological data, the other solely formodeling purposes.
The first one consists in considering those DNA segments that do not recombine.
One class is given by non-nuclear mitochondrial DNA that is only contained in egg
cells, but not in sperm, and therefore is only passed on in the female line. This, in fact,

http://dx.doi.org/10.1007/978-1-4471-6353-4_5
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makes the above example of female lineages relevant for treating biological data. The
other example is the Y-chromosome in humans and other mammals which is only
carried by males (and determines the male gender) and therefore is only transmitted
in the male lineage. The mathematically convenient solution, in contrast, is to simply
consider the smallest DNA segments, the single nucleotides. The biological problem
here is that even though each nucleotide is derived from a unique parent, this usually
cannot be identified from genetic data because in a given species, at most positions,
most members share the same nucleotide. Nevertheless, for so-called SNPs, single
nucleotide polymorphisms, consideration of single nucleotide positions can contain
some useful population biological information. Even when we consider single nu-
cleotide positions, however, we only get rid of the problem of recombination while
absence of mutations, and of other processes of genetic rearrangement, then is still a
hypothesis imposed. For simplicity of the model, we also consider the haploid case
where each individual has only one set of genes. Thus, each such DNA segment in an
individual is derived from one of the parents. (In the diploid case, each individual has
two sets of genes. The genes corresponding to each other in those sets are selected
from different parents, that is, one is taken from the mother and the complementary
one from the father. This imposes additional restrictions when compared with the
haploid case, but typically their effect is not so prominent.) For single nucleotides
in the haploid case which we shall now consider the situation is formally the same
as that where one of the two parents of each individual is its mother. So, one might
call that individual that gives the nucleotide in question the nucleotide parent for that
particular position in the DNA. When in turn we consider only nucleotide parents,
for a fixed position, then the situation is the same as before, with the only formal
difference that two siblings can derive the nucleotide at that position from different
parents. Therefore, the size of the population that has to be taken into account is 2N
in place of N .
In any case, for each such nucleotide position, we can perform the coalescent analysis
and find the expected number of generations for having a single ancestor. Of course,
the ancestors for the different positions will in general be different individuals. We
can then also ask the following questions:

1. What is the expected number of generations for finding a single ancestor for
each position? That is, what is the expected maximal height of the coalescence
trees for a given population?

2. In the corresponding ancestral population, how many individuals are ancestors
for some position for the present sample? Those lucky ancestors then are ances-
tors of every individual in the present sample whereas the remaining members of
the ancestral population then are not genetically represented at all in that present
sample because for each position, there is only one ancestor by assumption.

3. Actually, the last issue is a little more subtle. In principle, an individual in the
ancestral population can be a genealogical ancestor of a present one without
being genetically represented in the latter. What are the chances for that? Here,
one should essentially use some tree counting arguments. The pedigree graph
contains many trees with a root in the ancestral population and leading down



54 2 Discrete Structures

to the present population, and each such root then represents a genealogical
ancestor. Not all of these trees, however, arise from the coalescence processes
just investigated.

So far, only some partial answers are known to these questions, see [57] for a brief
discussion and references. Here is an example that exhibits some of the problems.
Until relatively recently,modernman,Homo sapiens sapiens,was not the only human
species. The best known other such species are the Neanderthals who became extinct
less than 30,000 years ago. This raises the question whether these different human
species lived just alongside each other for a certain period, and perhaps violently
competed, or whether they also mixed and interbred to a certain degree. The question
is who are the ancestors of present humans, only some group of individuals that
originated in Africa and whose descendents then spread to the other continents, or
whether other human species that had lived in Africa and Eurasia prior to the spread
of this lineage also contributed to our genomes. This question has been addressed
in recent years both via the analysis of the genomes of living people from various
populations in the world and from the analysis of the DNA of the bone fossils of
Neanderthals and other human species, to the extent that this is technically feasible.
First, it was found that in the mitochondrial DNA, no evidence of an admixture
can be found. This DNA is not contained in the nucleus of a cell, but only in some
organelles. It is therefore passed on only along the female line, as male sperm does
not contain those organelles, but only female egg cells do. However, the more recent
sequencing of large parts of the Neanderthal genome [54] showed that Eurasians do
carry some percentage of DNA inherited from Neanderthals. Thus, the coalescence
trees for different parts of the human genome are significantly different.

Exercises for This Chapter

1. This exercise introduces the perhaps best known combinatorial design problem.
A Hadamard matrix is an n × n matrix whose entries are 0 or 1,12 with the
property that any two rows share precisely n/2 entries. For n = 2, an example
is

H :=
(
1 1
1 0

)
.

Here, the two rows share the first entry, but differ at the second position. For
n = 4, an example is ⎛

⎜⎜
⎝

1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1

⎞

⎟⎟
⎠.

12 In the literature, more precisely, it is required that the entries be 1 or −1, but this leads to an
equivalent problem.
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Here, any two rows agree in precisely two positions, as required. For instance, the
third and the fourth row share the first and the third entry. Construct a Hadamard
matrix for n = 2k, k ∈ N. (By understanding how the example for n = 4 is
constructed from the building block H for n = 2, you will probably rediscover a
construction first found by Sylvester, a long time before Hadamard.) Try to find
Hadamard matrices for other values of n.
It is conjectured that a Hadamard matrix exists if and only if n = 2 or n = 4m
for some m ∈ N, but this is as yet unsettled.

2. Here is an easy exercise: Consider the graph whose vertices are the members of a
population and whose edges represent matings between them (for simplicity, we
do not consider the number of matings between the same pair, but only discuss
the unweighted graph with an edge between two individuals that have mated
at least once). What qualitative properties should this graph possess? How can
you read off particular mating structures in the population, like polygamy or
monogamy, polygyny (a male individual may have several mating partners, a
female only one) or polyandry (the other way around)?

3. Another easy one: Argue that a trophic network, or put in simpler words, a
food web, whose vertices are species in an ecosystem and an edge between
two vertices expresses that one species feeds upon the other one, should be
represented by a directed graph that does not contain directed cycles. Or should
we admit exceptions?Estimate how long a directed path couldmaximally be (this
is called the number of trophic levels—you may want to check the biological
literature on this issue). Develop criteria in terms of the structure of this directed
graph for assessing the importance of a particular species for an ecosystem.

4. List all non-isomorphic connected graphs with 5 vertices.
5. What is the smallest order for which there exists a graph without any nontrivial

automorphism?
6. Determine the clustering coefficients and the k-cores of the following graphs

and estimate their Polya-Cheeger constants,

7. Let � be a k-regular graph with N vertices. Denote the eigenvalues of the adja-
cency matrix of � by μ1 → μ2 → · · · → μN . What is the relationship between
the μ j and the eigenvalues 0 = λ0 → λ1 → · · · → λN−1 of the normalized
Laplacian of �?

8. (a) The N -cycle CN is the graph of N vertices {i1, . . . , iN } where vertex ik is
connected with the vertices ik−1 and ik+1 mod N . Show that its eigenvalues
are 1 − cos 2π j

N , j = 0, . . . , N − 1.
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(b) The N -path PN is obtained from the N -cycleCN by cutting the link between
the vertices i1 and iN . Show that the eigenvalues of PN are 1−cos π j

N−1 , j =
0, . . . , N − 1.

(c) Show that the eigenvalues of the N -cube QN (which has 2N vertices) are
2 j
N , j = 0, . . . , N , with multiplicities

(N
j

)
.

(d) The m-petal graph has one central vertex i0 and 2m peripheral vertices
i1, . . . , i2m such that i0 is connected with every other vertex and in addition,
vertex i2 j−1 is connected with vertex i2 j for j = 1, . . . , m. Show that its
eigenvalues are 0, 12 with multiplicity m − 1, and 3

2 with multiplicity m + 1.
9. Determine the spectra of the following graphs,

by using symmetries and/or node duplications.
10. Here is a more difficult exercise. Show that the following two graphs have the

same spectrum, i.e., they are isospectral.

(Note: This example is taken from [118], but you need an additional step to
solve this exercise, because in that reference, the spectrum of the adjacency
matrix is studied instead of that of the Laplacian—see a preceding exercise for
the relationship between the two.)

11. Take a graph � with an edge i1 ∼ i2 and create a graph �′ by duplicating that
edge, i.e., add two vertices connected by an edge, j1 ∼ j2, to � and connect j1
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to all neighbors of i1, j2 to all neighbors of i2. What can you say about the effect
on the spectrum? Determine the spectrum of the following example.

Also, observe that the m-petal graph described in one of the preceding exercises
is obtained from the complete graph K3 by successive edge duplications. Use
this observation to explain its spectrum as computed in that preceding exercise.

12. What constraints does a pedigree graph in a bisexual population have to satisfy?



Chapter 3
Stochastic Processes

Abstract
Questions:

• How can the seemingly random firing pattern of a neuron encode any information
about the inputs received?

• What will eventually happen to a population when the number of offspring of each
individual randomly fluctuates?

We introduce the theory of stochastic processes. The coding and decoding of input
information in systems of neurons is then modeled in terms of Poisson processes.
Whereas in the last chapter we have treated descendence relations backward in time,
to trace the ancestors, here we use branching processes to predict the future of
populations.

3.1 Random Variables

A general reference for this chapter is [55].
Let(�,�, p) be a measure space, that is, a set � with a probability measure p and a
Sigma algebra � of measurable sets. A measurable function

X : � → R (3.1.1)

then is called a random variable. The possible values of X are called events. Thus,
what is random here is not the function X , but rather its argument κ ∈ � that is
considered to be drawn according to the measure p. The elements of�may represent
the possible outcomes of some experiment or observation. When tossing a coin, for
example, there are two possible outcomes, headsH and tails T , and these then are the
elements of�. When the coin is tossed twice, the appropriate� contains 4 elements,
HH,HT ,TH,TT . The random variable may be the number of heads; in the last
example, it may take the values 0, 1, and 2. In this situation, X takes only discrete
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values, and whenever that is the case, we speak of a discrete random variable. When
it takes its values in the non-negative integers N = {0, 1, 2, . . .}, we have a counting
variable. This will be the important case for us. For a discrete random variable, we
have the (probability) mass function

p(x) := p(X = x) := p({κ ∈ � : X(κ) = x}), (3.1.2)

with some abuse of notation (more precisely, we are using the symbol p both for the
probability measure in � and for the probability measure inR induced by X—when
there is a danger of confusion, we shall write pX for the latter).
Thedistribution functionof the randomvariableX is the functionf(x) := p(X ∅ x).
When Y : � → R is another random variable, we can consider the joint mass
function

p(x, y) := p(X = x,Y = y) := p({κ ∈ � : X(κ) = x,Y (κ) = y}) (3.1.3)

and the conditional one,

p(y|x) := p(Y = y|X = x) = p(X = x,Y = y)

p(X = x)
(3.1.4)

whenever p(X = x) > 0, which satisfies

p(Y = y) =
∑

x

p(Y = y|X = x)p(X = x) =
∑

x

p(X = x,Y = y). (3.1.5)

The random variables X and Y are called independent if the probabilities for all
events x of X and y of Y satisfy

p(X = x,Y = y) = p(X = x)p(Y = y). (3.1.6)

X and Y are called identically distributed if for every z ∈ R

p(X = z) = p(Y = z). (3.1.7)

The abbreviation “i.i.d”meaning independent and identically distributed is frequently
used.
In the above example, we may take X as the number of heads. When the coin is
fair, that is, when HH,HT ,TH,TT each occur with probability 1/4, we have
p(0) = 1/4, p(1) = 1/2, p(2) = 1/4. More generally, when heads turn up with
probability q, and if the results of the two tosses are independent of each other, we
have p(0) = (1 − q)2, p(1) = 2q(1 − q), p(2) = q2. More generally, if we toss the
coin n times, then

(n
k

)
points in the corresponding �, the set of the possible tossing

sequences, yield k heads, and the mass function is
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p(k) =
(

n

k

)
qk(1 − q)n−k. (3.1.8)

This is the binomial distribution Bi(n, q). When we let n → ∈, q → 0 in such a
manner thatnq → ν ∼= 0, then, using the approximations

(n
k

) ≈ nk

k! and (1−q)n−k ≈
(1 − q)n = (1 − ν

n )n ≈ e−ν, we obtain the limit

(
n

k

)
qk(1 − q)n−k → νk

k! e−ν. (3.1.9)

This is the Poisson distribution Q(ν).
The basic continuous distribution is the Gauss distribution, also called the normal
distribution

1∞
2λϕ

exp

(
− (x − μ)2

2ϕ2

)
(3.1.10)

onRwith mean μ and variance ϕ2. Similarly, onRn, we have the multinomial Gauss
distribution for a positive definite covariance matrix �

1∞
(2λ)n|�| exp

(
−1

2
(x − μ)T�−1(x − μ)

)
, (3.1.11)

for x,μ ∈ R
n.

Definition 3.1.1. The k-th moment of the discrete random variable X with mass
function p is the expectation value of Xk,

E(Xk) =
∑

x

xkp(x). (3.1.12)

whenever that sum converges absolutely.

In fact, in order to make this consistent, one verifies more generally that for
δ : R → R

E(δ(X)) =
∑

x

δ(x)p(x) (3.1.13)

whenever the sum converges absolutely.
When the random variable X is not discrete, the above sums get replaced by an
integral; for example

E(Xk) =
∫

x
xkp(x)dx. (3.1.14)
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For the moment, however, we consider discrete random variables.
The first moment E(X) is of course the mean, average, or expectation value of X ,
and the second moment then yields its variance var(X) = E(X2) − (E(X))2 =
E((X − E(X))2).

We can also consider conditional expectations and obtain the following lemma:

Lemma 3.1.1. Let X and Y be discrete random variables on �. The conditional
expectation E(Y |X) =: δ(X) satisfies

E(δ(X)) = E(Y ). (3.1.15)

Proof. By (3.1.13) and (3.1.5)

E(δ(X)) =
∑

x

δ(x)pX(x) =
∑

x

∑

y

y pY |X(y|x)pX(x)

=
∑

y

y pY (y) = E(Y ).

�

The random variables X and Y are called uncorrelated if

E(XY ) = E(X)E(Y ). (3.1.16)

Independent random variables are uncorrelated, but not necessarily conversely.
The next result is easy:

Lemma 3.1.2. For random variables X,Y and α,α ∈ R, we have

(a)
E(αX + αY ) = αE(X) + αE(Y ). (3.1.17)

(b)
var(αX) = α2var(X) (3.1.18)

(c) when X and Y are uncorrelated

var(X + Y ) = var(X) + var(Y ). (3.1.19)

�
(a) simply expresses the linearity of the expectation value. Therefore, one may per-
form arbitrary linear operations with random variables without requiring that they
be independent and have the corresponding operations on the expectation values.
We apply this lemma to the binomial distribution Bi(n, q) from (3.1.8), interpreted
as n independent tossings of a coin. Since the value of the random variable H , the
number of heads, in a single toss is 0 or 1, we have E(H2) = E(H) = q and so the
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variance E(H2) − (E(H))2 is q(1 − q). Thus, the random variable for the event H
has expectation value q and variance q(1 − q). We therefore obtain from the lemma

E(Bi(n, q)) = nq, var(Bi(n, q)) = nq(1 − q). (3.1.20)

For the Poisson distribution Q(ν) (3.1.9) obtained above as a limit of binomial
distributions, we obtain

E(Q(ν)) = var(Q(ν)) = ν. (3.1.21)

There are various notions of convergence for a sequence (Xn)n∈N of random
variables towards a random variable X . Xn converges to X almost surely if p(κ ∈
� : limn→∈ Xn(κ) = X(κ)) = 1. It converges to X in kth mean (k √ 1) if all
E(|Xn|k) < ∈ and limE(|Xn − X|k) = 0. The cases of most interest are k = 1
and k = 2. For k = 2, one speaks of convergence in mean square. (Xn) converges
to X in probability if for all σ > 0, limn→∈ p(|Xn − X| > σ) = 0 (as usual, the
expression here is shorthand for p({κ ∈ � : |Xn(κ) − X(κ)| > σ})). It converges
to X in distribution if limn→∈ p(Xn ∅ x) = p(X ∅ x) for all x ∈ R for which
the right hand side is continuous. Almost sure convergence and convergence in kth
mean (k √ 1) each imply convergence in probability, and the latter in turn implies
convergence in distribution, and convergence in kth mean implies convergence in lth
mean for k > l √ 1. There exist no other general implications between these notions
of convergence.
We now state some fundamental convergence theorems, referring to [55] for proofs.
The first is the strong law of large numbers:

Theorem 3.1.1. Let Xn,n ∈ N be i.i.d random variables with E(|X1|) < ∈. With
μ := E(X1), we then have

1

n

n∑

φ=1

Xφ → μ almost surely. (3.1.22)

If E(X2
1 ) < ∈, the convergence takes also place in mean square.

(“Strong” here refers to almost sure convergence, as opposed to the weak law of
large numbers where convergence only takes place in probability.)
The next is the central limit theorem:

Theorem 3.1.2. Let (Xn) be a sequence of i.i.d. random variables with finite mean
μ and finite variance ϕ2 ∼= 0. Then, for Sn := ∑n

φ=1 Xφ , the distribution of

Sn − nμ∞
nϕ2

converges in distribution to the Gaussian distribution
1∞
2λ

exp(−x2

2
).

(3.1.23)
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Let now

X : � → N (3.1.24)

be a discrete random variable that assumes only non-negative integer values.

Definition 3.1.2. The generating function of the random variable X is

G(s) := E(sX) =
∈∑

n=0

snp(n) (3.1.25)

(defined for those values of s ∈ R for which the sum converges).

Of course, the sequence p(n) can be recovered from the generating function by
evaluating its kth derivative at 0:

G(k)(0) = k! p(k) (3.1.26)

As we shall now see, the derivatives of G at 1 also encode important properties of
the sequence p(n), namely its moments. Thus, when letting the argument s vary
from 0 to 1, the generating function interpolates between the individual probabilities
and collective properties of the distribution, the moments. Moreover, the generating
function behaves in a very useful manner under composition of random processes
and allows for a computation of moments of composed processes from the moments
of the individual processes.

Lemma 3.1.3. (a) Let G be the generating function of X . Then

E(X) = G≥(1) and more generally E(X(X − 1) · · · (X − k + 1)) = G(k)(1)
(3.1.27)

whenever that k-th derivative of G at s = 1 exists. (Thus, the moments of X can
be computed recursively from the generating function.)

(b) If X1, . . . ,XN are independent random variables, their generating functions
satisfy

G∑N
φ=1 Xφ

(s) = GX1(s) · · · GXN (s). (3.1.28)

(c) If X1,X2, . . . are independent and identically distributed random variables
which then have the same generating function, denoted by GX , and if N : � →
N is another random variable independent of the Xφ with generating function
GN , then the random variable Y = X1 + X2 + · · · + XN (that is, the number
of random variables occuring in the sum is now a random variable itself) has
the generating function

GY (s) = GN (GX(s)). (3.1.29)
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Proof. (a) is obvious, and (b) follows from (3.1.16) applied to the independent
random variables sXφ . For (c), from Lemma 3.1.1

GY (s) = E(sY ) = E(E(sY |N)) =
∑

n

E(sY |N = n) pN (n)

=
∑

n

E(s(X1+···+Xn)) pN (n)

=
∑

n

E(sX1) · · · E(sXn) pN (n) by (b)

=
∑

n

GX(s)n pN (n) = GN (GX(s)).

�
An alternative to the above polynomial generating function is the exponential one

where we replace s in (3.1.25) by et to get

H(t) := E(etX) =
∈∑

n=0

entp(n). (3.1.30)

Here, the moments of p can directly be computed from the derivatives of H(t) at
t = 1. All the formal results that we demonstrate about G also hold for H (see
exercise 5.(a) below). In fact, for most purposes, the generating function H is more
convenient than G. In Theorem 3.4.1 below, however, we shall need a particular
property of G, and this is the main reason why are working here systematically with
G in place of H . Also, it will be useful in our discussion of random graphs below. A
variant of H is the discrete Fourier transform, the so-called characteristic function

E(eitX) =
∈∑

n=0

eintp(n) =
∑

n

∈∑

φ=0

(it)φ

φ! nφp(n), (3.1.31)

also called the moment generating function, that similarly encodes the properties of
the distribution p(n).

3.2 Random Processes

Definition 3.2.1. A random or stochastic process is a family X = (Xt) of random
variables indexed by some set T ≡ R.

Remark. More generally, one can allow for theXt to take values in somemeasurable
space other than R.
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As Xt is a random variable, for each t, we get an induced probability distribution
for the values of X by

pt(S) := p(Xt ∈ S) := p({κ ∈ � : Xt(κ) ∈ S}) for a measurable S ≡ R,

(3.2.1)
analogously to (3.1.2) (where we had only considered the case of discrete values).
The random variables Xt1 and Xt2 (say t1 < t2) are independent, see (3.1.6), if for
S1,S2 ≡ R

p(Xt1 ∈ S1,Xt2 ∈ S2) = p(Xt1 ∈ S1) p(Xt2 ∈ S2). (3.2.2)

The process is called stationary if its finite dimensional distributions are time invari-
ant, i.e.

p(Xt1+ξ ∈ S1, ...,Xtn+ξ ∈ Sn) = p(Xt1 ∈ S1, ...,Xtn ∈ Sn) (3.2.3)

for all t1 < ... < tn, S1, ...,Sn ≡ R and −∈ < ξ < ∈.
We shall now consider the case T = N.

Definition 3.2.2. The random process X is called a Markov chain if

p(Xn+1 = x|X1 = x1,X2 = x2, . . . ,Xn = xn) = p(Xn+1 = x|Xn = xn)

(3.2.4)
for all n √ 1,x,x1, . . . ,xn ∈ R.

Definition 3.2.3. The random process X is called a martingale if E(|Xn|) < ∈ for
all n and

E(Xn+1|X1,X2, ...,Xn) = Xn. (3.2.5)

We have the fundamental martingale convergence theorem

Theorem 3.2.1. A martingale X with E(X2
n) < K < ∈ for some K and all n

converges to some random variable � almost surely and in mean square.

3.3 Poisson Processes and Neural Coding

In neurobiology, one studies spikes, that is, firings of neurons. Whereas there exist
biophysical models for the generation of spikes on the basis of the electrochemical
dynamics within neurons, see the Hodgkin-Huxley model described in Sect. 4.3.1
below, in more abstract models of information processing, spikes are conceptualized
as discrete events occurring at time points, that is, events without temporal duration.
This motivates

http://dx.doi.org/10.1007/978-1-4471-6353-4_4
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Definition 3.3.1. A stochastic process (Nt)t∈T is called a point process when T is
an interval in R and the random variables Nt take only discrete values. It is called a
counting process when N0(κ) = 0 and Nt(κ) counts the number of specified events
in the interval [0, t].

Of course, these concepts also apply to events other than spikes.
Obviously, one can relax the normalizations, e.g., take some other t0 in place of 0,
without much gain of generality.
Since the realization κ ∈ � will not play a significant role in the sequel, we shall
omit it in our notation and henceforth write

N(t) in place of Nt(κ).

Onemayalso consider the probability distribution of the time interval between events.
The combination of these two points of view, that is, counting the number of events
having occured until time t vs. recording the temporal distance between subsequent
events, will prove quite insightful.—If these time intervals are independently and
identically distributed (a point to be returned to shortly), the process is called a
renewal process. That is, the nth event occurs at time t1 + t2 + ... + tn where
t1, ..., tn are independent positive random variables that are identically distributed
according to some probability density function p(t). When this distribution depends
only on the difference between time points, but not otherwise on time, the process is
called homogeneous, else inhomogeneous.We return to the counting process.

Definition 3.3.2. A counting process N(t) is called locally continuous in
probability if

lim
ζ↘0

p(N(t + ζ) − N(t) √ 1) = 0. (3.3.1)

Definition 3.3.3. A counting process N(t) is said to have independent increments
if the numbers of events in disjoint time intervals are independent.

Definition 3.3.4. A counting process N(t) is said to have stationary increments if
the number of events in a time interval depends only on the length of that time
interval.

Definition 3.3.5. A counting process N(t) that is locally continuous in probability
and has independent and stationary increments is called a (homogeneous) Poisson
process.

Theorem 3.3.1. For a Poisson process N(t)

p(N(s + t) − N(s) = n) = e−rt (rt)
n

n! (3.3.2)

for n = 0, 1, . . ., for some constant r √ 0.
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Thus, the number of events produced by a Poisson process is distributed according
to the Poisson distribution Q(rt), see (3.1.9). The parameter rt of that distribution
thus is proportional to the length t of the time interval, and the factor r is called the
rate of the process.

Proof. We put

η(t) := p(N(t) − N(0) √ 1) = p(N(s + t) − N(s) √ 1) (3.3.3)

where the last equality holds because N has stationary increments. We claim that

η(t) = 1 − e−rt (3.3.4)

for some constant r √ 0. To see this, we start by observing that, by the assumption
of independent increments, the probability λ0(t + s) that no event occurs between 0
and t+s equals the product of the probabilities that no event occurs in [0, t] and that
no event occurs in [t, t + s]. By the assumption of stationary increments, the latter
equals the probability that no event occurs in [0, s], and hence

λ0(t + s) = λ0(t)λ0(s) (3.3.5)

whence λ0(t) = λ0(0) exp(−rt) for some constant r. r √ 0 since this probability is
decreasing in t. Since λ0(0) = 1 as N(0) = 0, we obtain

λ0(t) = e−rt. (3.3.6)

Since this is the probability that no event occurs until t, the probability η(t) that the
first event occurs before t is 1 − e−rt which is (3.3.4).
Then

η(t) = rt + o(t) for t → 0. (3.3.7)

Similarly, the probability λ1(t) := p(N(t) = 1) that precisely one event occurs
between 0 and t satisfies

λ1(t + s) = λ0(t)λ1(s) + λ1(t)λ0(s) = e−rtλ1(s) + e−rsλ1(t). (3.3.8)

Using (3.3.7), we obtain

λ1(t) = rte−rt. (3.3.9)

Iteratively, we obtain

λn(t) := p(N(t) = n) = (rt)n

n! e−rt. (3.3.10)
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Recalling the assumption of stationary increments, this shows (3.3.2). �

As a consistency check, the reader should verify that a counting process N(t)
given by (3.3.2) with independent increments conversely has stationary increments
and is locally continuous in probability.
We also observe that

p(N(t) < ∈) =
∑

n√0

p(N(t) = n) = e−rt
∑

n√0

(rt)n

n! = 1, (3.3.11)

and therefore, almost surely, only finitely many events take place in the finite interval
[0, t]. Alternatively, this can also be directly deduced from the assumptions. If there
were infinitely many events in [0, t], then there would also be infinitely many events
in either [0, t/2] or [t/2, t]. By the assumption of stationary increments, then there
would be infinitely many events in both these intervals. Repeating this argument,
there would be infinitely many events in every subinterval of [0, t]. Consequently,
every point would be an accumulation point of events, contradicting the assumption
of local continuity in probability.

Theorem 3.3.2. For a Poisson process with rate r, the time of the nth event is
distributed according to

pn(t) = r(rt)n−1

(n − 1)! e
−rt. (3.3.12)

Proof. We have

p(N(t) = n) =
∫ t

0
pn(s)ds −

∫ t

0
pn+1(s)ds, (3.3.13)

the probability that the nth event occurs in [0, t] minus the probability that the
(n + 1)st event occurs in that interval. Hence

d

dt
p(N(t) = n) = pn(t) − pn+1(t). (3.3.14)

Since p0(t) = 0 for t > 0, (3.3.12) follows iteratively from (3.3.10). �

The argument of the proof can also be reversed:

∫ t

0
p1(s)ds = η(t), (3.3.15)

hence the probability of observing the first event at t is given by the derivative of
the probability for the first event occurring before t. Thus, p1(t) = ce−rt for some
constant c, and (3.3.4) gives us c = r. Thus, we obtain
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p1(t) = re−rt, (3.3.16)

and as in the proof of Theorem 3.3.1, we can iterate that argument.
We also have the consistency relation

n−1∑

φ=0

(rt)φ

φ! e−rt =
∫ ∈

t

r(rξ )n−1

(n − 1)! e−rξ dξ (3.3.17)

(which follows from integration by parts and induction inn). The lhs is the probability
that at most n − 1 events have taken place up to time t (Theorem 3.3.1), and the rhs
that the nth event occurs after that time (Theorem 3.3.2).
Assume that N(t) = n, that is, precisely n events occur in [0, t]. Since by the
assumptions of stationary and independent increments, every n-tuple (t1, . . . , tn)

of points in [0, t] has the same probability density of receiving those n events, that
probability density is given by

p(t1, ..., tn) = 1

n!r
ne−rt (3.3.18)

because this depends on the length t of the interval and yields (3.3.2) by integration
w.r.t. t1, ..., tn from 0 to t. The combinatorial factor 1

n! arises, because the n events
under consideration are indistinguishable. This also leads to the correct normaliza-
tion, because when we integrate w.r.t. t1, ..., tn and then sum over all n, we obtain
1, by the relation

∑

n

1

n! (rT )n = erT . (3.3.19)

Theorem 3.3.3. Let N1(t),N2(t) be independent Poisson processes with rates
r1, r2. Then the counting process N(t) = N1(t) + N2(t) is a Poisson process with
rate r = r1 + r2.

The proof is an obvious verification of the defining properties of a Poisson
process. �
Likewise, we can multiply the rate of a Poisson process with a constant positive
factor to obtain another Poisson process. In fact, when the factor is not constant, but
is a function of time, we still obtain a process that is not significantly different as we
shall now explore.

Definition 3.3.6. Let r(t) be a continuous positive function on R+, and put rt :=∫ t
0 r(ξ )dξ . A counting process N(t) with independent increments that satisfies

pt(n) := p(N(s + t) − N(s) = n) = e−rt
(rt)

n

n! (3.3.20)
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for n = 0, 1, . . . is called an (inhomogeneous) Poisson process with rate function
r(t).

Actually, this is not such a vast generalization (and we indicated that already by
the typographical similarity between rt and rt). Since the parametrization of time is
arbitrary, we have

Theorem 3.3.4. Any inhomogeneous Poisson process can be transformed into a
homogeneous one via a time reparametrization.

Proof. Since r(t) is assumed positive, rt is a strictly monotonically increasing,
continuous function of t with r0 = 0 and limt→∈ rt = ∈. It therefore has an
inverse function η(t) with the same properties. We put

N ≥(t) := N(η(t)). (3.3.21)

This counting process then is a homogeneous Poisson process with rate 1 since
rη(t) = t. �

The assumption that r(t) be strictly positive could be relaxed to nonpositivity. In
that case, the time transformation would simply jump over those periods where r(t)
vanishes.
An equivalent characterisation of an inhomogeneous Poisson process with rate func-
tion r(t) is that it be a counting process with independent increments, satisfying

p(N(t+ζ)−N(t) = 1) = r(ζ)+o(ζ) and p(N(t+ζ)−N(t) √ 2) = o(ζ) for ζ → 0.
(3.3.22)

The first relation is a quantitative version of the local continuity in probability.
The second relation automatically holds in the homogeneous case, but one needs
to assume this in the inhomogeneous case.
For an inhomogeneous Poisson process, the probability density for observing events
at the times t1, ..., tn is

p(t1, ..., tn) = 1

n! exp(−
∫ t

0
r(ξ )dξ )

n∏

i=1

r(ti). (3.3.23)

Using the time reparametrization of Theorem 3.3.4, this is deduced from the formula
(3.3.18) for the homogeneous case. Upon integration, it yields (3.3.20), analogously
to the homogeneous case.
From (3.3.20), the expected number of events in the interval [0, t] is

∑

n

npt(n) =
∑

n

(rt)
n

(n − 1)!e
−rt = rt =

∫ t

0
r(ξ )dξ (3.3.24)

(using (3.3.19) for the second equality).
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Inhomogeneous Poisson processes are important models in theoretical neurobi-
ology (see e.g. [33]) because the rate r(t) that represents the spiking or firing rate
of a neuron can then depend on the stimulus S, that is, on the input received by the
neuron. Thus,

r(t) = r(t;S), (3.3.25)

and this represents the coding scheme of the neuron under consideration. In other
words, when receiving the stimulus S, the neuronal firing follows a Poisson process
with rate r(t;S). For simplicity, we may assume that the stimulus is received at time
t = 0. A basic model assumes that the neuron has a preferred or optimal stimulus
S0, and that the stimulus is translated via a Gaussian tuning function into the firing
rate

r(t;S) = c exp

(
−d2(S,S0)

2ϕ2

)
. (3.3.26)

Here, d(., .) is some metric in the input space, for example a Euclidean one, that is,
d(S,S0) = ⊂S − S0⊂; c and ϕ2 (variance) are parameters. Obviously, other coding
schemes are possible.
From (3.3.23), we see that the probability distribution for observing spikes precisely
at the times t1, ..., tn in the interval [0, t], given the input S is

p(t1, ..., tn|S) = 1

n! exp
(

−
∫ t

0
r(ξ ;S)dξ

) n∏

i=1

r(ti;S). (3.3.27)

Bayes’ formula then yields the fundamental relationship for decoding the spike train
produced by the neuron, that is, an estimate for the distribution of signals contingent
upon the recorded spike train t1, . . . , tn,

p(S|t1, ..., tn) = p(t1, ..., tn|S)
p(S)

p(t1, ..., tn)
. (3.3.28)

Here, p(S) is a prior estimate for the distribution of stimuli (that may have been
obtained as the result of some learning process). p(t1, ..., tn) simply represents some
normalization factor.
Of course, (3.3.27) can also be used for other estimation schemes. For example,
maximum likelihood selects a stimulus S̄ that has caused an observed spike sequence
with the highest probability, that is, S̄ = argmax p(t1, ..., tn|S) in (3.3.27).
Clearly, a biological neuron does not operate according to a Poisson process. A
spike is not an instantaneous event, but the generation of an action potential has a
positive, although rather short, duration. Also, two spikes cannot be fired in too rapid
succession because after a spike is fired, a neuron goes through a refractory period
before it can generate the next spike. Thus, if one wants to include these aspects,
one needs a biophysical in place of a purely phenomenological model. Such models
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exist, and we shall introduce and investigate below the basic one, the Hodgkin-
Huxley model. Notwithstanding its lack of biophysical realism, however, Poisson
type models are very important in the neurosciences because, on one hand, they
relate well to the experimental practice of recording spikes, and on the other hand,
they can be the basis for models of information transmission in neural systems.

3.4 Branching Processes

References for this section are [80, 56].
We start with the simplest branching process, the Galton-Watson process. Here, each
individual lives in a fixed generation n and independently of all other individuals
produces a random number of offspring that become members of generation n + 1.
This random variable, the number of offspring, is the same for all individuals in
all generations. Thus, the numbers of offspring for the individuals are independent
and identically distributed random variables. We denote their common generating
function byG(s). We also assume that there is a positive probability for having more
than one offspring. If the probability of having m offspring is p(m), this means that
p(0) + p(1) < 1.
Let the random variable Zn denote the size of generation n. One usually assumes
that the process starts with a single individual in generation 0, that is, Z0 = 1.
Let Gn(s) = E(sZn) be the generating function of Zn.

Lemma 3.4.1. Gn is the n-th fold iterate of G,

Gn(s) = G ◦ · · · ◦ G(s), (3.4.1)

and thus also for m,n ∈ N

Gm+n(s) = Gm(Gn(s)). (3.4.2)

Proof. We shall show (3.4.2) which easily implies (3.4.1) by iteration. Let the ran-
dom variable Yi denote the number of members of the (m + n)th generation that
derive from member i of the mth one. We then have

Zm+n = Y1 + · · · + YZm . (3.4.3)

By our assumptions, the Yi are independent and identically distributed, in fact iden-
tical to Zn, the number of offspring deriving from an individual n generations ago.
Lemma 3.1.3 c) then yields the claim. �
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Corollary 3.4.1. Let μ := E(Z1) and ϕ2 := var(Z1). Then

E(Zn) = μn and var(Zn) =
{

nϕ2 if μ = 1
ϕ2(μn−1)μn−1

μ−1 if μ ∼= 1.
(3.4.4)

Proof. Differentiating Gn(s) = G(Gn−1(s)) at s = 1 yields

E(Zn) = μE(Zn−1) (3.4.5)

from which the first equation follows by iteration. Differentiating twice gives
G≥≥

n(1) = G≥≥(1)G≥
n−1(1)

2 + G≥(1)G≥≥
n−1(1) which yields the second equation. �

In view of this result, we call the process subcritical, critical, supercritical when
μ < 1,= 1,> 1, resp. In the sub- (super-)critical, we thus expect the population to
shrink (grow) while in the critical it is expected to stay the same. This might lead one
to expect that the population will continue forever, but that is not true as we shall now
find out from asking whether the population will eventually become extinct, that is

Zn = 0 for somen ∈ N, and then of course also for all m √ n. (3.4.6)

Some observations are obvious:

• If p(0) = 0, that is, if every individual always has at least one offspring, then the
population cannot become extinct. Therefore, we shall assume now

p(0) > 0. (3.4.7)

• When p(φ) = 0 for φ √ 2, then p(0) + p(1) = 1. We have excluded p(0) = 0 and
therefore cannot have the trivial case p(1) = 1, that is, that every individual has
precisely one offspring so that the population size will always remain constant.
Consequently, the population should also become extinct because every individual
then has either no or one offspring, and the former with a positive probability.
Therefore, the population will certainly decrease. Therefore, we shall assume now

p(0) + p(1) < 1. (3.4.8)

Theorem 3.4.1. The extinction probability qext of the process, that is, the probability
that for some n ∈ N we have Zn = 0, equals the smallest root of the equation
G(s) = s. For μ ∅ 1, we have qext = 1, that is, the population becomes extinct
almost surely, while for μ > 1, we have qext < 1, that is, the population has a
positive probability of surviving forever.

Proof. We observe that G(s) as a power series with non-negative coefficients p(φ)

and p(0) + p(1) < 1 by our initial assumptions is increasing and strictly convex
for s ∈ [0, 1] and satisfies G(0) = p(0),G(1) = 1. When μ = G≥(1) ∅ 1, then
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G(s) > s for s ∈ [0, 1), while for μ > 1, G(s) = s has a unique root in [0, 1).
These properties implies that G(s) = s has a smallest root which we denote by q,
and q = 1 for μ ∅ 1, but q < 1 for μ > 1. Moreover, for s ∈ [0, q), in particular
for s = 0, the iterates Gn(s) = G ◦ · · · ◦ G(s) increase monotonically towards q
while for s ∈ (q, 1) it decreases monotonically towards q for n → ∈. (In terms of
dynamical systems, this simply expresses the stability of the fixed point of G at q
under dynamical iteration of G, which always holds when the graph of a function
G intersects the diagonal from above at a fixed point.) We recall from Lemma 3.4.1
that Gn is the generating function for Zn. Thus

q = lim
n→∈ Gn(0) = lim

n→∈ p(Zn = 0) = lim
n→∈ p(Zφ = 0 for some φ ∅ n)

= p(Zφ = 0 for some φ ∈ N) = p(limZn = 0)

is the extinction probability. �

Thus, we see that due to the fluctuations in the number of offspring, a finite
population may become extinct in finite time. It will do so almost surely when the
expected number of offspring is at most 1—even when it is 1—, and it will also
go extinct with a positive probability when that number is larger than 1. One may
consider this as a finite size effect, in the sense that when we go to the limit of large
populations (under appropriate technical conditions), the random fluctuations will
average out and the population will expand or shrink deterministically at the rate μ.

A Galton-Watson branching process (Zn) is a Markov process by (3.4.5). The
normalized process Wn := Zn

E(Zn)
then is a martingale by (3.4.4),

E(Wn+1|W1, . . . ,Wn) = Wn. (3.4.9)

We now look at the situation where the expectation values μ(n) for the number of
offspring of an individual in generation n vary, i.e., μ is a random variable itself
(defined on N). This is called a branching process in a random environment. The
population then grows from time0 to timen by the sequenceμ(0),μ(1), . . . ,μ(n−1)
which is equivalent to growth by the geometric mean (μ(0) · · · μ(n − 1))1/n in one
step. In order to apply the law of large numbers, we need to convert this product into
a sum,

(μ(0) · · · μ(n − 1))1/n = exp(
1

n
(logμ(0) + · · · + logμ(n − 1)) (3.4.10)

and conclude by the law of large numbers

lim
n→∈

1

n
(logμ(0) + · · · + logμ(n − 1)) = E(logμ) (3.4.11)

with probability 1. Thus, the asymptotic population growth rate is
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lim
n→∈(μ(0) · · · μ(n − 1))1/n = exp(E(logμ)) (3.4.12)

which may be smaller than E(μ). In particular, even when the latter may be >1,
the process may still be subcritical, that is become extinct with positive probability,
because of the fluctuations in the environment. So, once more we see that when a
finite population is subjected to randomeffects its extinction probabilitymay increase
even when the expected growth rate stays the same.

The Galton-Watson process is the simplest branching process, and many gener-
alizations are possible. One of them is to allow for individuals of different types
j = 1, ...,m. For each type, the distribution of the types of its offspring may be dif-
ferent. We then consider the matrix M = (mij) where mij is the expected number
of offspring of type j of an individual of type i.1 All entries of M are non-negative.
The expectation value of the number Zj,n of individuals of type j in generation n is
then

E(Zj,n) =
m∑

i=1

E(Zi,n−1)mij (3.4.13)

by linearity. In vector notation, with E(Zn) = (E(Z1,n), . . . ,E(Zm,n))T (T denot-
ing transpose),

E(Zn)T = E(Zn−1)
T M = E(Z0)

T Mn. (3.4.14)

Of course, when as before, we specify the initial population Z0, we can drop the last
expectation E to get E(Zn)T = ZT

0 Mn.
We shall now apply the theory of Perron-Frobenius to the non-negative matrix M .
That theory is summarized in

Lemma 3.4.2. Let M be an m × m matrix with non-negative entries which is irre-
ducible in the sense that all the entries of Mφ are even positive for some φ ∈ N. Then
M has a simple eigenvalue η that is real and positive and larger than the absolute
value of any other eigenvalue. It possesses a left eigenvector u = (u1, . . . ,um)T

(that is, uT M = ηuT , or in components,
∑

j ujmji = ηui) and a right eigenvector

v = (v1, . . . , vm)t (i.e., Mv = ηv) that both have positive entries. We can normalize
them by

m∑

j=1

uj = 1,
m∑

j=1

ujvj = 1. (3.4.15)

With M0 := (viuj)i,j=1,...,m, we then have

1 Later on, we shall consider the probability pi(n1, . . . ,nm) that an individual of type i produces
nk offspring of type k. Then mij = ∑∈

n1,...,nm=1 njp
i(n1, . . . ,nm).
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Mn = ηnM0 + M̃n, (3.4.16)

with M0M̃ = M̃M0 = 0 and |M̃n| ∅ const η̃n for some η̃ < η. In particular,
for any non-trivial w with non-negative entries, the iterates wT Mn grow like ηn in
norm.

Returning to (3.4.14), we see that when E(Z0) = cu, i.e., is a multiple of the left
eigenvector u for the maximal eigenvalue η, we obtain

E(Zn)T = cuT Mn = cuT ηn. (3.4.17)

We conclude that the process is subcritical, critical or supercritical depending on
whether η < 1,= 1,> 1. In fact, there seems to be a small caveat here, namely that
for (3.4.17), we had assumed that the initial composition Z0 of the population is a
multiple of the positive eigenvector u. In order to be able to drop that assumption, we
nowassume that thematrixM is irreducible as in thePerron-Frobenius theorem.Such
a process is called indecomposable. Then the value of η determines the asymptotic
behavior of the population size for any initial configuration of the population.
We can also set up the generating function formalism as before, with the sole dif-
ference that all expressions now become vectors in place of scalars. The generating
vector is G = (G1, . . . ,Gm) with

Gj(s1, . . . , sm) =
∑

n1,...,nm

sn1
1 · · · snm

m pj(n1, . . . ,nm) (3.4.18)

where pj(n1, . . . ,nm) is the probability that an individual of type j produces ni

offspring of type i, for i = 1, . . . ,m. We also have a vector q = (q1, . . . , qm) where
qj is the extinction probability for a population starting with a single individual of
type j. Then, as in Theorem 3.4.1, the vector q is determined as the componentwise
smallest root of the vector fixed point equation

q = G(q). (3.4.19)

With some simple tricks, many different processes can be captured by multi-type
Galton-Watson processes:

1. Given a single-type Galton-Watson process, we want to know the total number
of individuals up to time n. We then simply define a second type of individual in
the original process, the dead type. Type 1 corresponds to the original one, and it
produces offspring of that type 1 according to the original rule, plus 1 individual
of type 2, that is, it dies, as already assumed in the original process. An individual
of type 2 produces one offspring of type 2, that is, it stays dead. By this token, the
individuals from previous generations remain in all future generations, simply as
corpses, i.e. as type 2 individuals. The transition matrix then is
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(
μ 1
0 1

)
,

with μ = E(Z1) as above.
2. We consider a population consisting of two sexes. Females produce offspring of

either type, with equal probabilities, while males do not reproduce. Our transition
matrix then is of the form (

μ/2 μ/2
0 0

)
.

While this process again is decomposable, here the two types still grow or shrink
at the same rate. In fact, however, this is only an incomplete model of populations
with sexual reproduction because they can become extinct not only for the reason
that the population size goes to 0, but also when one of the two sexes disappears.
That aspect needs to be modeled separately through the choice of a mating
function, that is, by a rule how the number of offspring depends on the num-
bers of the two sexes in the population.

3. One can also include dependencies between siblings. Thatmeans that the expected
numbers and types of offspring of an individual depend not only on its own type,
but also on that of its siblings. While this violates the independence hypothesis in
Cor.3.4.1, it turns out that dependencies in the same generation do not affect the
expected population size. Again, this can be seen through a simple trick, namely
by formally considering the sibship (brood, litter) as the individuals in the process.
Different such sibships then produce different sibships in the next generation.
We consider the case of altruistic siblings, for example where the eldest one may
forego its own offspring for helping his younger siblings to raise additional off-
spring. Of course, the Galton-Watson assumptions that reproduction takes place
at discrete time steps, and that each individual can reproduce only at age 1 make
the distinction between older and younger siblings impossible if taken literally,
but for the sake of the argument we assume that some litters contain an altruistic
member—which we then simply label as the “eldest” —whereas others don’t. In
other words, we have two types of litters, one with an altruistic member, and the
other onewithout. As before,mij is the expected number of progeny of type j pro-
duced by a litter of type i. By the Perron-Frobenius theorem, if M is irreducible,
it has an eigenvalue η of largest absolute value that is positive and simple. η
describes the growth rate, the corresponding normalized left eigenvector u yields
the relative asymptotic contributions of the types to future generations while the
right eigenvector v describes the asymptotic distribution of the process in case
η > 1 in the following sense: We assume that the process is regular, i.e. that the
probability for a litter producing more than one progeny is positive, and that the
second moments of progeny distribution are finite. Then by the martingale con-
vergence theorem 3.2.1, see (3.4.9), Zn/ηn converges to a vector w which (with
probability 1) is a positive (except in obvious trivial cases) multiple of v. In that
case, the process will not become extinct with positive probability while in case
η ∅ 1, it goes extinct with probability 1 as is typical for branching processes. In
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fact, in our simple situation with two types, that eigenvalue is given by

η = 1

2
(m11 + m22) +

√
1

4
(m11 − m22)2 + m12m21. (3.4.20)

Let us assume that type 1 is the altruistic, and type 2 the non-altruistic one, and
thatm21 = 0, i.e., that a non-altruistic cannot produce an altruistic one (M then is
no longer irreducible but the needed results from the Perron-Frobenius theorem
still hold here). Then, if m11 > m22, i.e. the altruistic litters reproduce more
successfully than the other ones,

η = m11, (3.4.21)

and the corresponding eigenvector is proportional to

(
m11 − m22

m12

)
. (3.4.22)

Thus, the non-altruists only survive as a nontrivial fraction of the total population2

if m12 > 0, that is if they are also produced by the altruists. Of course, this is
rather obvious.
If altruism is caused by a single gene, then one can use the methods of mathemati-
cal population genetics to compute the transmission probability of the responsible
allele in a sexually reproducing population. The point of our example is that the
altruistic allele has to be present in the sibling labeled “eldest” for being effec-
tive, but that it can only be transmitted to the next generation when also present
in his siblings for whose own behavior the allele is irrelevant. In this manner, the
coefficient m12 can be determined.

3.5 Random Graphs

Equipped with tools from stochastic analysis, we now return to graph theory and
discuss stochastic constructions of graphs. A good reference that we shall partly
follow is [94].
The idea of Erdös and Rényi [39] that started the whole field was to not specify a
graph explicitly, but rather only its generic type by selecting edges between nodes
randomly, depending on a single parameter, the edge probability p. In a random
graph, for any pair of nodes, there is thus an edge between them with probability p.
If the network has N nodes, then each node has N − 1 possible recipients for an
edge. Thus, the average degree of a node is

2 Here, we are considering the population of litters, and not of individuals. For the latter, one would
need to multiply these coefficients by the litter sizes.
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z := (N − 1)p. (3.5.1)

The case of interest is where N ∩ 1, p ∪ 1, and z is of intermediate size, that is
neither 0 nor very large. Moreover, the probability that a given node has degree k in
an Erdös-Rényi graph is

pk =
(

N − 1
k

)
pk(1 − p)N−1−k (3.5.2)

because the degree happens to be k when precisely k out of theN −1 possible edges
from the given node are chosen, and each of them is chosen with probability p and
not chosen with probability 1− p. Thus, the degree distribution is binomial, and for
N ∩ kz, this is approximated by the Poisson distribution

pk = zke−z

k! . (3.5.3)

(and so z = ◦k≈ = ∑
k kpk (cf. (3.1.9), (3.1.21) on the Poisson distribution and

(3.1.27) on the generating function).)
For an Erdös-Rényi graph, one can also compute the distribution of the number of
second neighbors of a given node, that is, the number of neighbors of its neighbors,
discarding of course the original node itself as well as all its direct neighbors that also
happen to be connected with another neighbor. However, since there is no tendency
to clustering in the construction, the probability that a second neighbor is also a first
neighbor behaves like 1/N and so becomes negligible for large N . Now, however,
the degree distribution of first order neighbors of some node is different from the
degree distribution of all the nodes in the random graph, because the probability
that an edge leads to a particular node is proportional to that node’s degree so that a
node of degree k has a k-fold increased chance of receiving an edge. Therefore, the
probability distribution of our first neighbors is proportional to kpk, that is, given by

kpk∑
l lpl

, instead of pk, the one for all the nodes in the graph. Since such a first neighbor

of degree has k − 1 edges leading away from the original node, the distribution for
having k second neighbors via one particular neighbor is then given, after shifting
the index by 1, by

qk = (k + 1)pk+1∑
l lpl

. (3.5.4)

Thus, to obtain the number of second neighbors, we need to sum over the first
neighbors, since, as argued, we can neglect clustering in this model. Thus, the mean
number of second neighbors is obtained by multiplying the expected number of
second neighbors via a particular first neighbor, that is,

∑
kqk, by the expected

number of first neighbors, z = ∑
kpk. So, we obtain for that number
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∑

l

lpl

∑

k

kqk =
∈∑

k=0

k(k + 1)pk+1 =
∈∑

k=0

(k − 1)kpk = ◦k2≈ − ◦k≈. (3.5.5)

We recall from Sect. 3.1 that such probability distributions can be encoded in proba-
bility generating functions (see (3.1.25)). If we have a probability distribution pk as
above on the non-negative integers, we have the generating function (cf. (3.1.25))

Gp(x) :=
∈∑

k=0

pkx
k. (3.5.6)

Likewise, the above distribution for the number of second neighbors then is
encoded by

Gq(x) =
∈∑

k=0

qkx
k =

∑
k(k + 1)pk+1x

k

∑
l lpl

= G≥
p(x)

z
. (3.5.7)

When we insert the Poisson distribution (3.5.3), we obtain

Gp(x) = e−z
∈∑

k=0

zk

k! x
k = ez(x−1) (3.5.8)

and from (3.5.7) then also

Gq(x) = ez(x−1) (3.5.9)

Thus, for an Erdös-Rényi graph, the two generating functions agree. This is quite
useful for deriving analytical results.
When we construct a graph by a stochastic process like that of Erdös-Rényi, the
resulting structure need not be connected, but may have several components. In
Chap.2, it was part of the definition of a graph to be connected, but we drop that now
because it will complicate our discussion of random graphs. Thus, an Erdös-Rényi
graphmay have several connected components. In order to understand this better, one
lets N tend to ∈ while keeping z = (N − 1)p ∇ Np from (3.5.1) fixed. It will then
depend on the value of that parameter z whether the graph can be expected to contain
a giant component or not. Here, a giant component is one that contains a positive
fraction of the number of all vertices in the graph. More precisely, when z is above
a critical threshold, we expect that our graph contains a component with at least ωN
vertices, for some ω > 0 that does not depend on N . Below that critical value, all
components should have an average size that stays bounded as N → ∈. This fact,
and the computation of the value of z where that phase transition occurs, are the
basic results of the theory of random graphs. Following [94], we now present a self-
consistency argument to derive those results. (For a mathematically more rigorous
treatment, we refer to [18].) We already noted that the clustering coefficients will

http://dx.doi.org/10.1007/978-1-4471-6353-4_2
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tend to 0 for N → ∈. Therefore, we expect components of bounded size not to
contain any triangles. With the same kind of heuristic reasonings, we even assume
that all our finite components do not contain cycles, that is, are trees. —Suppose we
then randomly choose an edge in our graph, take one of its ends i0 and look at all
the nodes that can be reached via other edges from i0. Let the number of those nodes
be x. We can then consider the generating function H1(x) for the distribution p(x).
When we go from i0 to any of its new neighbors, that is, other neighbors than that
from our edge that we started with, we are in the same situation as before. For any of
those neighbors we can again look at the number of nodes that can be reached from
it via edges other than that through which we arrived at it from i0. That number x
again is distributed according to the generating function H1(x). This then directly
leads to a self-consistency equation. Namely, the above number k of new neighbors
of i0 is distributed according to qk from (3.5.4). Also, we recall from (3.1.28) that
the generating function for a sum of independent processes is the product of the
individual generating functions. Thus, we need to take the product of k factors H1,
one for each new neighbor of i0 weighted with the probabilities qk and one additional
factor x to account for i0 itself,3

H1(x) = x

∈∑

k=0

qk(H1(x))k = xGq(H1(x)) (3.5.10)

by (3.5.7). From this fixed point equation, we can computeH1(x).We can then easily
determine the distribution H0(x) for the total size of a finite component. Namely,
take any vertex i1; it has k neighbors with probability pk, and from each of them, we
expect to reach a number x of further vertices distributed according to H1(x).
Therefore, by the same reasoning as before,

H0(x) = x

∈∑

k=0

pk(H1(x))k = xGp(H1(x)). (3.5.11)

All generating functions G(x) = ∑
k xkp(k) satisfy G(1) = 1, see (3.1.25); in

particular, this holds for Gp and H1. Likewise, the expectation value ◦k≈ of k is
given by G≥(1), see (3.1.27). Therefore, when all components are finite, the mean
component size is

◦x≈ = H ≥
0(1) = 1 + G≥

p(1)H
≥
1(1) = 1 + G≥

p(1)

1 − G≥
q(1)

(3.5.12)

with the help of (3.5.10). This becomes infinite when G≥
q(1) approaches 1, and this

then is the phase transition where a giant component appears. From (3.5.7), one
can then compute the phase transition value. Above that transition value, the former
analysis is no longer valid, but it can nevertheless be used to derive useful results.

3 We have the single node i0 with probability 1, and so, the generating function is simply 1 · x.
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The point is that while for a giant component we can no longer neglect clustering
effects it still applies to the finite components. When ϕ is the fraction of nodes in the
giant component, we then have, using (3.5.11)

ϕ = 1 − H0(1) = 1 − Gp(s), (3.5.13)

with s = H1(1) solving, by (3.5.10),

s = Gq(s) (3.5.14)

(as in Theorem 3.4.1).
There exist other methods to reduce this percolation analysis to phase transition

models in statistical mechanics, and we now discuss one such approach.
A random graph � is a member of an ensemble defined by the parameters N and p.
Its probability in this ensemble is given by

P� = pl(�)(1 − p)

(
N
2

)

−l(�)

= exp(−pN2

2
+ pN(

1

2
) − pN

4
+ l(�)

N
+ o(1))pl(�),

(3.5.15)
l(�) denoting the number of edges. The probability of a random graph to have m
components then is written as

Pm =
∑

�

P�ω(m,m(�)), (3.5.16)

ω(m,m(�)) being the Kronecker delta. In order to study the distribution of compo-
nents, one considers

P�(q) := 1

z(q)
P�qm(�) (3.5.17)

with the normalizing factor

z(q) :=
∑

�

P�qm(�) =
∑

m

Pmqm. (3.5.18)

This quantity is related to the properties of a model from statistical mechanics, the
Ising model with q states, also called the Potts model. In this model, one has N spin
variables ϕi that can take one of q distinct values ϕ = 0, 1, . . . , q − 1. The energy
function of this model (in the so-called mean field variant) is

E({ϕi}) := − 1

N

∑

i<j

ω(ϕi,ϕj) − h

q−1∑

ϕ=0

fϕ

∑

i

ω(ϕi,ϕ) (3.5.19)
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where fϕ is an external field in the spin direction ϕ, multiplied with the strength h.
One introduces a so-called inverse temperature α and encodes the thermodynamic
properties of the model at α in the partition function

Zα(q) :=
∑

{ϕi}
exp(−αE({ϕi})); (3.5.20)

the sum is taken over all possible spin configurations {ϕi}. The partition function can
be rewritten as

Zα(q) =
∑

{ϕi}

∏

i<j

(1 + (exp(
α

N
) − 1)ω(ϕi,ϕj)) exp(αh

q−1∑

ϕ=0

fϕ

∑

i

ω(ϕi,ϕ)).

(3.5.21)
The relationship of this expression with graphs appears when we expand the product
in this expression. Each of the 2N(N−1)/2 terms corresponds to a graph with N
vertices that has an edge between the vertices i and j precisely when they both
appear in the corresponding term and when ϕi = ϕj , that is, when the corresponding
Kronecker delta takes the value 1. This graphwill in general have several components,
but the spin values ϕi are constant on each component by our construction. We can
then write the partition function as a sum over graphs,

Zα(q) =
∑

�

(exp(
α

N
) − 1)l(�)

m(�)−1∏

n=0

(
∑

ϕ

exp(αhfϕSn)) (3.5.22)

where Sn is the size of the nth component and the product extends over the compo-
nents of �. In order to relate this to our ensemble of random graphs, we put α = pN .
Since exp( α

N )−1 = α
N +O( 1

N2 ), we can approximate this for largeN as (for h = 0)

ZpN (q) =
∑

�

pl(�)qm(�) = exp(
pN

2
)z(q) (3.5.23)

in leading order in N , by (3.5.15), (3.5.18). Now, the Potts model exhibits a phase
transition to a spontaneousmagnetization, that is, all the spins become aligned, above
a certain critical value of α. The preceding result then relates this to the appearance of
a giant component in our random graph � when pN exceeds a critical threshold. The
latter is called a percolation phenomenon, and it is thus related to a phase transition
in a statistical mechanics model. The parameter h in the latter model is useful for
deriving properties by taking derivatives at h = 0 whereas the parameter q becomes
useful when one studies large deviation properties, that is the properties of atypical
members of our ensemble.

We now generalize the construction of Erdös-Rényi by allowing for different
connection probabilities for different pairs of vertices. A generalized random graph
is characterized by its number N of vertices and real numbers 0 ∅ pij ∅ 1 (with the
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symmetry pij = pji) that assign to each pair i, j of vertices the probability for finding
an edge between them. Self-connections of the vertex i are excluded by pii = 0. The
expected degree of i then is

φi =
∑

j

pij . (3.5.24)

A special case which includes scale-free graphs is that of [16]. One starts with an
N -tupel φ = (φ1, ..., φN ) of positive numbers satisfying

max
i

φ2i ∅
∑

j

φj; (3.5.25)

when the φi are positive integers, this is the necessary and sufficient for the existence
of a graph with nodes i of degree φi, i = 1, ...,N . When putting χ := 1∑

i φi
and

pij := χφiφj , then 0 ∅ pij ∅ 1 for all i, j. We then insert an edge between the
nodes i and j with probability pij to construct the (generalized) random graph �.
By (3.5.24), the expected degree of node i in such a graph is φi. When all the φi

are equal, we obtain an Erdös-Rényi graph. For other types, the degree distribution,
i.e., the number of nodes i with φi = k will decay as a function of k, at least for
large k, for example exponentially. When that number behaves like a power k−α

instead, we obtain a so-called scale free graph. In the scale-free case, there are thus
comparatively more hubs, that is, nodes with large degrees, than in the exponential
case. For a systematic treatment of random ensembles of graphs that includes this
and other classes, we refer to [77].

Exercises for This Chapter

1. This exercise and the next are about elementary probabilities.—When repeat-
edly tossing a coin for which heads H turns up with probability q, what is the
probability that one needs at least m tosses to see the first H?

2. In this exercise, I shall tell you the first steps of the reasoning and then ask you
to continue. The exercise is presented in the guise of a tale taking place in Greek
antiquity. At the port of Rhodes, news have just arrived about the results of the
competition at Olympeia. An Athenian living at Rhodes therefore goes to the port
in order to find out whether his hero Dromeus won the running event. He therefore
asks someperson idling at the port.However, one third of those people areCretans,
and Cretans always lie. The other two thirds are native Rhodans, and they tell the
truthwith a probability of three quarters. Theydo this randomly and independently
every time they are asked. The Athenian cannot tell Cretans and Rhodans apart.
Thus, when he receives the answer “yes”, he reasons as follows. First, there is the
probability 1

3 that the person he has asked is from Crete, and therefore the answer
is wrong. In contrast, with probability 2

3 , the person is from Rhodes. In that case,
the answer is wrong with probability 1

4 . Thus, altogether, the answer is wrong
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with probability 1
3 + 2

3
1
4 = 1

2 . Thus, the answer is pretty useless (assuming that
our Athenian is not a Bayesian with some prior probability different from 1

2—we
do not treat the Bayesian approach here, but if you are so inclined, go ahead and
analyze the problem from a Bayesian perspective). However, he does not give up
and asks the same person once more, and now receives the answer “no”. Thus, he
first of all reasons that the person he had asked cannot be a Cretan, as only one of
the two answers can be false, but Cretans always give false answers. This does not
help much, however, since he cannot tell whether the first or the second answer
of the Rhodan he had asked was the correct one. When, in contrast, his second
question is again answered with “yes”, he reckons that he is either dealing with
a Cretan who lied to him twice or with a Rhodan who either told the truth twice
or also lied twice. Now the probability that a Rhodan is consistent in that sense is
3
4
3
4 + 1

4
1
4 = 5

8 . Thus, the probability for encountering such a consistent Rhodan
is 2

3
5
8 = 5

12 . Thus, the probability to encounter a consistent person is
5
12 + 1

3 = 3
4 .

Thus, the probability that he is dealing with a Rhodan who twice gave him the

correct answer is
2
3 ( 34

3
4 )

3
4

= 1
2 . Thus, the probability that Dromeus won is still 1

2 .

So, this still does not really help. Therefore, he asks the same person a third and
possibly a fourth time. Can he then infer something useful? And if so, before even
asking the first question, how many questions does he expect to have to ask in
order to learn the correct result with a probability of at least 3

4?
3. We now turn to a simple, but more abstract question. Let X,Y : � → R be

random variables. Show that Z := min(X,Y ) then also is a random variable.
4. Let the random variable Cn denote the result of the nth toss of coin. Assume that

p(C1 = H) = q, p(Cn+1 = H|Cn = H) = q1, p(Cn+1 = H|Cn = T ) = q2

with q2 < q < q1 (3.5.26)

(that is, having seen H (T ) at the nth toss increases the probability of seeing H
(T ) at the next toss again), and analyze the resulting random process (n ∈ N).

5. (a) Verify the statements made about the exponential moment generating func-
tion H(t) = E(etX) = ∑∈

n=0 entp(n) made at the end of Sect. 3.1.
(b) More generally, let X = (X1, . . . ,Xk) : � → R

k be a tuple of random
variables with joint probabilities p(x1, . . . ,xk) = P (X1 = x1, . . . ,Xk =
xk) for their values. The exponential moment generating functions then is

H(t1, . . . , tk) := E(e
∑k

i=1 tiX
i
) =

∑

x1,...,xk

p(x1, . . . ,xk)e
∑

i xiti .

(3.5.27)
Show that H encodes the moments of the distribution p in the sense that the
moments are given by
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E((X1)φ1 · · · (Xk)φk ) =
∑

x1,...,xk

k∏

i=1

(xi)φip(x1, . . . ,xk)

= π
∑

φi

(πt1)φ1 · · · (πtk)φk
H(t1, . . . , tk)|t1=0,...,tk=0.

(c) Use this to verify the formulae for the first and second moments of multino-
mial sampling in Sect. 3.1 and compute the third and fourth moments.

6. Is the distribution of individuals without descendents in (2.3.17) typical for the
statistics of the Wright-Fisher model?

7. We now come to the so-called urn models. We start with Polya’s urn. At time 0,
this urn is filled with one blue and one red ball. At every positive integer time,
one of the balls in the urn is drawn at random and put back together with another
ball of the same colour. Thus, at time n ∈ N, there are n + 2 balls in the urn. Let
Bn and Rn denote the numbers of blue and red balls at time n. Show that

E(Bn+1|Bn) = n + 3

n + 2
Bn. (3.5.28)

Conclude that Bn
n + 2 is a martingale. From this, deduce that the ratio Bn

Rn
converges

almost surely as n → ∈.
8. We now consider an urn that is filled at time 0 with B blue and R red balls. At

every integer time, we draw two balls at random.When they have the same colour,
we take them away, but if they are of different colours, we return them into the
urn. What is the expected number of steps until there is at most one ball of each
colour left in the urn?

9. We next come to a problem where I myself do not know the answer, but which
probably has either already been solved somewhere in the literature or which can
be solved by some bright graduate student. Try to get as far as you can.
At time 0, we again have an urn with B blue balls and R red balls. In each step,
we again randomly draw a pair of balls. Whenever at least one of the balls is red,
the pair, that is, both balls, are removed. When both of them are blue, they are
both put back into the urn. What is the expected number of steps until no red ball
is left in the urn? What is then the expected number of blue balls remaining in the
urn? What are the probabilities P (μ, φ) for obtaining μ unordered pairs of type
(blue, red) and φ pairs of type (red, red) until all the red balls are removed from
the urn?
This problem is inspired by the mating model treated in [106]. The problem can
be translated into a mating model as follows. There is a mating pool containing
individuals of types A and C. When two individuals of type C encounter each
other, nothing happens, and they both remain in the mating pool and go on to look

http://dx.doi.org/10.1007/978-1-4471-6353-4_2
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for new partners, whereas if at least one in a pair is of type A, they mate and are
then removed from the mating pool. In other words, individuals of type A mate
indiscriminately, whereas individuals of type C only accept partners of type A.
(For more on modelling mating systems, see [109].)



Chapter 4
Pattern Formation

Abstract
Questions:

• How will substances diffuse over time?
• How does the biophysics of a neuron work?
• How can we model reaction kinetics in a cell?
• What will happen when two or more species interact, like predators and their prey?
• How can oscillatory patterns emerge?
• How can external stimuli trigger collective behavior within a population of inde-

pendent individuals?

Understanding pattern formation requires tools from analysis. We introduce dynam-
ical systems to model changes in time and partial differential equations to model
distributions in physical or feature spaces. The combination of the two in reaction-
diffusion systems leads to mathematical models like the Turing mechanism that can
generate surprisingly rich patterns. Another example we treat is chemotaxis where
organisms can be induced to collective behavior by following gradients of chemical
substances.

We consider spatiotemporal structure formation from interactions between states
f (x, t) at points x at times t . This means that the state f (x0, t0) is a function of states
f (x, t) at some or all other points x at previous times t → t0, or at least is influenced by
some of those states. Here, space, time, and state space can be discrete or continuous.
Discreteness or continuity can lead to rather different effects and difficulties. Perhaps
that difference is smallest for space. At the appropriate level of abstraction, discrete
and continuous space can be treated in the same manner, although some technical
aspects are substantially more difficult in the continuous case. In the discrete case,
one assumes some underlying graph structure that incorporates which other points
y are the neighbors of a point x0 whose states f (y, t) then can directly affect the
state f (x0, t0) for t0 ≥ t . In the continuous case, we need a topology on our space
that gives us some notion of infinitesimal proximity for setting up partial differential
equations as an analytical framework for pattern formation. Concerning time, the
discrete case is usually more difficult than the continuous one. In the latter case, we
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can work with differential equations whereas in the former one we obtain difference
equations or functional iterations. Concerning state space, in the continuous setting
we have the possibility of incremental state updates, in particular in the case where
time is continuous as well. The discrete case, on the other hand, is more suitable for
simulations.

4.1 Partial Differential Equations

4.1.1 The Laplace and the Heat Equation

The theory described in this section and the next is essentially linear and will not
by itself have many biological applications. It is rather needed as a preparation for
the treatment of reaction-diffusion processes below. As their name indicates, those
processes combine linear diffusion processes, as discussed in the present section, with
nonlinear reaction dynamics, as treated below. Thereby, they will yield a general and
flexible class of models for biological pattern formation.

Partial differential equations, PDEs for short, constitute a field of mathematics
that is distinguished from most other mathematical fields by the fact that a definition
of its basic object, a partial differential equation, at best is useless and at worst is
severely misleading. In order to understand the essence of this field, one rather needs
to study prototypical examples, admitting that what constitutes such a prototype is
not clearly defined either. Instead of entering into any further generalities, we start
with the perhaps most fundamental one, the Laplace equation (although this equation
is not directly useful in biology). In this section, we shall only discuss the results, but
refer for the proofs to [68] or some other textbook on partial differential equations.
For a twice differentiable function u : � ∅ R on an open and connected domain
� ∈ R

d , the Laplacian at x = (x1, . . . , xd) ∼ � is defined as

�u(x) :=
d∑

i=1

κ2u

(κxi )2 (x). (4.1.1)

In the sequel, we shall often abbreviate derivatives by subscripts, i.e.,

uxi := κu

κxi
, uxi xi := κ2u

(κxi )2 and so on. (4.1.2)

Thus,

�u(x) =
d∑

i=1

uxi xi (x). (4.1.3)
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We have already introduced the Laplace operator for a function u on a graph � above,
in (3),

�u(x) := 1

bx
(

∑

y,y∼x

u(y) − nx u(x)) (4.1.4)

where the vertices y with y ∼ x are the neighbors of the vertex x , nx is the degree of
x , that is, the number of its neighbors, and bx is a positive factor which we preferred
to choose as bx = nx . In order to understand the relationship between these two
operators, we replace the domain � by its discrete approximation by a grid, as is
done for example in numerical schemes for solving PDEs. In order not to have to
worry about boundary points, we consider for simplicity the case where � is the
entire space R

d . For h > 0, we then define the discrete space

R
d
h := {(n1h, . . . , nd h)}, n1, . . . , nd ∼ Z. (4.1.5)

The second partial derivative uxi xi then is approximated by the difference

uii := 1

h2 (u(x1, . . . , xi + h, . . . , xd) + u(x1, . . . , xi − h, . . . , xd) (4.1.6)

− 2u(x1, . . . , xi , . . . , xd)),

and �u then is approximated by

�hu :=
d∑

i=1

uii . (4.1.7)

When we consider the grid R
d
h as a graph on which the neighbors of x = (x1, . . . , xd)

are the points (x1, . . . , xi ± h, . . . , xd), i = 1, . . . , d, up to a factor, this is the
same as the graph Laplacian (the factor 1

h2 has been chosen here in order that the
discrete Laplacian converges to the continuous one for h ∅ 0).

Definition 4.1.1 A function u (on a domain � or a graph �) is called harmonic if it
satisfies the Laplace equation

�u = 0. (4.1.8)

In the discrete case, from (4.1.4) it is clear that a harmonic function u satisfies the
mean value property

u(x) = 1

nx

∑

y,y∼x

u(y) (4.1.9)
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for all x . The mean value property of harmonic functions also holds in the continuous
case:

u(x) = 1

νdrd

∫

B(x,r)

u(y)dy (4.1.10)

whenever the ball B(x, r) := {y ∼ R
d : ∞y − x∞ < r} of radius r around x is

contained in �. Here, νd is the volume of the unit ball in R
d . Conversely, one can

show that the mean value property for a continuous u implies that it is harmonic.
More generally, u is called subharmonic in � if

�u(x) ≥ 0 for x ∼ �. (4.1.11)

This turns out to be equivalent to the mean value inequality

u(x) → 1

νdrd

∫

B(x,r)

u(y)dy. (4.1.12)

From the mean value property, one easily derives the maximum principle:

Lemma 4.1.1 Suppose that u is harmonic, or more generally, subharmonic in the
open and connected �. If there exists some x0 ∼ � with

u(x0) = sup
x∼�

u(x), (4.1.13)

then u is constant in �. This is the so-called strong maximum principle, and it implies
the weak maximum principle: If � is bounded and u ∼ C0(�) (meaning that u is
defined and continuous on the closure of �), then

u(x) → max
y∼κ�

u(y). (4.1.14)

Finally, if a nonconstant u assumes its maximum at the smooth boundary point y0
and if it is differentiable there, then

κ

κn
u(y0) > 0 (4.1.15)

where κ
κn denotes the derivative in the direction of the exterior normal of �.

Proof. When u(x0) = supx∼� u(x) =: M , we put

�M := {y ∼ � : u(y) = M} √= ≥.

For z ∼ �M with r > 0 such that B(z, r) ∈ �, we get
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0 = u(z) − M → 1

νdrd

∫

B(z,r)

(u(y) − M)dy → 0 (4.1.16)

since M is the supremum of u, and we see that necessarily u(y) = M for all y ∼
B(z, r). Therefore, whenever z ∼ �M and B(z, r) ∈ �, then that entire ball is also
contained in �M . Since � is connected, �M has to be all of �. This means that
u ≡ M in � which is what we wanted to prove. The weak maximum principle then
follows from the simple observation that a continuous function on the bounded and
closed, hence compact set � has to assume its supremum. When a harmonic function
does so in the interior �, it is constant by the strong maximum principle, and (4.1.14)
holds, and when the supremum is assumed on the boundary, (4.1.14) holds as well.
For the proof of the boundary point maximum result, we refer to the literature, e.g.
[68]. �

The weak maximum principle can also be expressed by saying that a non-constant
harmonic function assumes its supremum only on the boundary of � when that set
is bounded and u is continuous on the closure of �.
The strong maximum principle also holds in the discrete case, with the same kind of
proof. Since a graph is an object without a boundary, this implies that any harmonic
function on a finite graph is constant. Of course, one can also turn the situation into
a boundary value problem by declaring a subset S0 of the vertex set S of � as the
boundary and considering the problem

�u(x) = 0 for x ∼ S\S0 (4.1.17)

u(x) = g(x) for x ∼ S0

for some prescribed function g : S0 ∅ R.
By the mean value formula, harmonic functions represent equilibrium states where
the value at each point is the average of the values of its neighbors. This observa-
tion also suggests a scheme for the proof of the existence of harmonic functions,
for example for given boundary values g on κ�. One starts with any (continuous)
function u0 : � ∅ R with u0 = g on κ�. Having constructed u1, . . . , un−1 itera-
tively, one finds un(x) for x ∼ � by replacing un−1(x) by its mean value on some
ball B(x, r) ∈ �. This simple idea can be made to work, and it yields a constructive
scheme for finding a harmonic u with given boundary values. On a graph �, this
means

u(x, t + 1) := 1

nx

∑

y∼x

u(y, t) (4.1.18)

for x ∼ S − S0, t ∼ N, u(x, 0) being an arbitrary function satisfying the boundary
condition (4.1.18). For the numerical implementation (for using this for solving the
boundary value problem for harmonic functions in a continuous domain by discrete
approximation), one again replaces � by a discrete grid of some small mesh size h.
For temporal step size k, one puts
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u(x; t + k) := 1

2d

d∑

i=1

(u(x1, . . . , xi − h, . . . , xd ; t) (4.1.19)

+ u(x1, . . . , xi + h, . . . , xd ; t))

Conceptually, this is quite useful because it suggests a PDE that is defined on space
and time instead of on space only as the Laplace equation and that models the
approach to equilibrium. This is the heat equation

κ

κt
u(x, t) = �u(x, t) (=

d∑

i=1

κ2

(κxi )2 u(x, t)) (4.1.20)

or abbreviated,

ut (x, t) = �u(x, t). (4.1.21)

In fact, the straightforward discretization of (4.1.21) is

1

k
(u(x, t + k) − u(x, t)) = 1

h2

d∑

i=1

(u(x1, . . . , xi − h, . . . , xd , t) (4.1.22)

+ u(x1, . . . , xi + h, . . . , xd , t) − 2u(x1, . . . , xd , t)).

For 2dk = h2, the term u(x, t) cancels in (4.1.22), and we obtain (4.1.19).1

For the heat equation, we also have a maximum principle:

Lemma 4.1.2 Let � ∈ R
d be open, 0 < T → ∞, and let u(x, t) be continuous for

x ∼ �, 0 → t → T and satisfy

ut (x, t) = �u(x, t) for x ∼ �, 0 < t < T . (4.1.23)

Then

sup
�×[0,T ]

u = sup
(�×{0})⊂(κ�×[0,T ])

u. (4.1.24)

When T < ∞, the supremum becomes a maximum. Again, there is also a strong
version of the maximum principle, saying that a solution of (4.1.23) cannot attain
a maximum in � × (0, T ] without being constant. Also, there is an analogue of the
result for boundary maxima, that is, at a nontrivial boundary point maximum, one
obtains a positive exterior normal derivative, if the situation is sufficiently smooth.

1 The fact that the temporal step size k satisfies 2dk = h2 slows down the convergence of the
scheme for h ∅ 0 and makes this not really a good numerical scheme in practice.
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The Lemma says that the maximum of a solution of the heat equation is always
attained either at the spatial boundary κ� × [0, T ] of the cylinder � × (0, T ) or at
the initial set t = 0.
In the continuous as in the discrete case, one shows that a solution of the initial
boundary value for the heat equation

ut (x, t) = �u(x, t) for x ∼ �, 0 < t (4.1.25)

u(x, 0) = u0(x) for x ∼ � (4.1.26)

u(y, t) = g(y) for y ∼ κ� (4.1.27)

for continuous initial values u0 and boundary values g (and under certain mild tech-
nical assumptions on �) converges to a solution of the boundary value problem for
the Laplace equation, the Dirichlet problem

�u(x) = 0 for x ∼ � (4.1.28)

u(y) = g(y) for y ∼ κ�

for t ∅ ∞, that is, limt∅∞ u(x, t) = u(x).
A perhaps simpler boundary condition is the periodic boundary condition. We con-
sider a domain of the form � = (0, L1)×, . . . , ×(0, Ld) ∈ R

d and require for
u : �̄ ∅ R that

�u(x) = 0 for x ∼ � (4.1.29)

u(x1, . . . , xi−1, Li , xi+1, . . . , xd) = u(x1, . . . , xi−1, 0, xi+1, . . . , xd)

for all x = (x1, . . . , xd) ∼ �, i = 1, . . . , d. This means that u can be periodically
extended from � to all of R

d . Of course, this boundary condition for is less general
than (4.1.28) because it can be posed only on rectangular domains. In contrast to
(4.1.28), this problem is trivial, and the only solutions are the constants.
A generalization of the Laplace equation is the Poisson equation

�u(x) = f (x) for x ∼ � (4.1.30)

for some given function f : � ∅ R, or its analogues in the discrete case or for
the heat equation. Again, we can impose boundary conditions of Dirichlet type or
periodic ones. Here, the periodic boundary value problem is no longer trivial. In
contrast to the Dirichlet boundary value problem, however, the solution of the periodic
boundary value problem for the Poisson equation is not unique; it is determined only
up to an additive constant.
A basic idea for solving (4.1.30) consists in the superposition of point solutions. That
means that for each y ∼ �, we try to find some function λ(x, y) that solves (4.1.30)
at y and is harmonic elsewhere. If we then integrate w.r.t. y, we should obtain the
desired solution of (4.1.30). Let us first try to implement this in the discrete case
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where we only have to take a sum in place of an integral. Of course, instead of f (y),
we can then take 1 as the right hand side for our equation at y and multiply the result
by f (y) and then sum w.r.t y. Thus, given a graph � as before, and a node y ∼ S,
the vertex set of �, we want to solve

�x G(x, y) (= 1

nx

∑

z,z∼x

(G(z, y) − G(x, y))) = 1

nx
ϕ(x, y) (4.1.31)

with

ϕ(x, y) :=
{

1 for x = y

0 elsewhere.
(4.1.32)

(Since we are looking at functions of two variables, we indicate by a subscript w.r.t.
which variable the Laplacian � acts.) A solution of (4.1.31) is called a Green function.
If we can find such a Green function, a solution to the discrete Poisson equation

�u(x) = f (x) for x ∼ S (4.1.33)

is then simply given by

u(x) = nx

∑

y

G(x, y) f (y). (4.1.34)

There is one problem here: We cannot solve (4.1.31) because for any function g on
a graph �, we have

∑

x

nx�g(x) = 0 (4.1.35)

and therefore necessarily also

∑

x

nx�x G(x, y) = 0, (4.1.36)

but the right hand side of (4.1.31) does not fulfill that condition. In abstract terms,
the Laplacian has a kernel, consisting of the constant functions, and is therefore not
invertible. It is invertible only on the space orthogonal to the constants. That means
that we can expect to solve (4.1.33) only when f satisfies

∑

x

nx f (x) = 0. (4.1.37)

This can be easily remedied, however. We simply replace (4.1.31) by
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�x G(x, y) = 1

nx
ϕ(x, y) − 1

∑
z nz

, (4.1.38)

that is, subtract a suitable constant on the right hand side so as to achieve (4.1.36).
When (4.1.37) holds, the contribution of the constant disappears in (4.1.34), and so,
we can solve (4.1.33) for those f .
Another possibility to circumvent that problem is to impose a boundary condition,
that is, solve

�u(x) = f (x) for x ∼ S\S0 (4.1.39)

u(x) = g(x) for x ∼ S0 (4.1.40)

for some prescribed function g : S0 ∅ R. Here, we assume S0 √= ≥, but otherwise,
S0 is completely arbitrary.
In order to achieve that, we first consider the homogeneous boundary condition, that
is, g = 0. For that, we impose the homogeneous boundary condition

G(x, y) = 0 for x ∼ S0 and all y (4.1.41)

take the corresponding u from (4.1.34) (the equation now imposed for x ∼ S\S0),
which then satisfies u(x) = 0 for x ∼ S0. In order to solve the general boundary value
problem, we then simply add a solution u0(x) of (4.1.17) to get the right boundary
condition. In abstract terms, imposing a boundary condition eliminates the kernel
of the Laplacian. We can then not only solve the boundary value problem, but the
solution is also unique, because the difference of two solutions is a harmonic function
with zero boundary values, hence identically zero itself (as follows in many ways,
for example from the maximum principle).
In the continuous case, we can use the same strategy. We want to solve

�u(x) = f (x) for x ∼ � (4.1.42)

u(x) = g(x) for x ∼ κ�. (4.1.43)

Again, assuming that we can already solve the boundary value problem for the
Laplace equation, that is, find a solution for

�u(x) = 0 for x ∼ � (4.1.44)

u(x) = g(x) for x ∼ κ�, (4.1.45)

we consider homogenous boundary values, that is,

�u(x) = f (x) for x ∼ � (4.1.46)

u(x) = 0 for x ∼ κ�. (4.1.47)
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As before, we start with

�x G(x, y) = ϕ(x, y), (4.1.48)

the Dirac delta functional. This means that for every continuous δ, we have

δ(x) =
∫

�

ϕ(x, y)δ(y)dy =
∫

�

�x G(x, y)δ(y)dy. (4.1.49)

And

u(x) =
∫

�

G(x, y) f (y)dy (4.1.50)

then satisfies

�u(x) =
∫

�

�x G(x, y) f (y)dy = f (x). (4.1.51)

Once more, in order to get homogeneous boundary values, that is, u|κ� = 0, for u
in (4.1.50), we need to have G(x, y) = 0 for x ∼ κ�. This can indeed be achieved,
but we do not go into the details here. We rather display the so-called fundamental
solutions, particular solutions of (4.1.48) in the whole space R

d . These are

�(x, y) = �(|x − y|) :=
{

1
2π log |x − y| for d = 2

1
d(2−d)νd

|x − y|2−d for d > 2
(4.1.52)

where νd is the volume of the d-dimensional unit ball B(0, 1) ∈ R
d . The com-

putations that this � solves (4.1.48) are straightforward, but somewhat lengthy and
omitted here.
For the heat equation, we also have a fundamental solution from which more general
problems can be solved by superposition. For x, y ∼ R

d , t > 0, we put

K (x, y, t) := 1

(4πt)d/2 e− |x−y|2
4t . (4.1.53)

K solves the heat equation:

κ

κt
K (x, y, t) = �x K (x, y, t) for all x, y ∼ R

d , t > 0. (4.1.54)

We have the normalization
∫

Rd
K (x, y, t)dy = 1 for all x ∼ R

d , t > 0. (4.1.55)
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Also, for a bounded and continuous function f on R
d ,

u(x, t) =
∫

Rd
K (x, y, t) f (y)dy (4.1.56)

solves the heat equation

ut = �u (4.1.57)

for x ∼ R
d , t > 0 and has the initial values

lim
t∅0

u(x, t) = f (x) (4.1.58)

which is abbreviated as

u(x, 0) = f (x). (4.1.59)

4.1.2 The Eigenvalue Problem for the Laplace Operator
and Expansions of Solutions of PDEs in Terms
of Eigenfunctions

We now briefly discuss the eigenvalue problem for the Laplace operator and its
connections with the heat equation. Again, this is formally analogous to the discrete
case, already treated in Sect. 2.2.3, although the details now require a more careful
analysis and depend on some analytical result, the Rellich compactness theorem.
The eigenvalue problem for the Laplace operator consists in finding nontrivial solu-
tions of

�u(x) + αu(x) = 0 in �, (4.1.60)

for some constant α, the eigenvalue in question. Here one also imposes some bound-
ary conditions on u. It seems natural to require the Dirichlet boundary condition

u = 0 on κ�. (4.1.61)

For many applications, however, it is more natural to have the Neumann boundary
condition

κu

κn
= 0 on κ� (4.1.62)

instead, where κ
κn denotes the derivative in the direction of the exterior normal. Here,

in order to make this meaningful, one needs to impose suitable regularity of κ�. For

http://dx.doi.org/10.1007/978-1-4471-6353-4_2
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simplicity, we shall assume that � is a C∞-domain in treating Neumann boundary
conditions. For suitable domains, we can also impose periodic boundary conditions,
as discussed above, see (4.1.29). When the domain is a closed manifold (compact,
without boundary), e.g., a torus, in place of a subset with boundary of R

d , one does
not impose any further condition, as in the case of a graph.
We shall employ the L2-product

〈 f, g∩ :=
∫

�

f (x)g(x)dx (4.1.63)

for f, g ∼ L2(�), that is,
∫
�

f (x)2dx,
∫
�

g(x)2dx < ∞ and we shall also put

∞ f ∞ := ∞ f ∞L2(�) = 〈 f, f ∩ 1
2 . (4.1.64)

We note the symmetry of the Laplace operator,

〈�σ,φ∩ = −〈Dσ, Dφ∩ = 〈σ,�φ∩ (4.1.65)

for all σ,φ ∼ C∞
0 (�), as well as for σ,φ ∼ C∞(�) with κσ

κn = 0 = κφ
κn on κ�.

Here, Dσ abbreviates the vector κ
κx1 σ, . . . , κ

κxd σ.
This symmetry implies that all eigenvalues are real.

Theorem 4.1.1 Let � ∈ R
d be connected, open and bounded. Then the eigenvalue

problem

�u + αu = 0, u = 0 on κ�

has countably many eigenvalues

0 < α1 < α2 → · · · → αm → · · · (4.1.66)

with

lim
m∅∞ αm = ∞

and pairwise L2-orthonormal eigenfunctions ui and 〈Dui , Dui ∩ = αi . Any v ∼
L2(�) can be expanded in terms of these eigenfunctions,

v =
∞∑

i=1

〈v, ui ∩ui (and thus 〈v, v∩ =
∞∑

i=1

〈v, ui ∩2). (4.1.67)

Moreover, the first eigenfunction u1 does not change sign in �, that is, we may assume

u1 > 0 in �. (4.1.68)
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We should explain the inequality signs in (4.1.66). An eigenvalue can have higher
multiplicity, meaning that there may exist several linearly independent eigenfunc-
tions with the same eigenvalue. Therefore, eigenvalues are counted according to
the dimension of the eigenspaces. The inequality 0 < α1 simply says that the first
eigenvalue is positive. The inequality α1 < α2 represents the theorem that the first
eigenvalue is simple, that is, the eigenspace corresponding to α1 is one-dimensional.
This fact depends on the assumption that � is connected.
For Neumann boundary conditions, we have an analogous result:

Theorem 4.1.2 Let � ∈ R
d be bounded, open, and of class C∞. Then the eigen-

value problem

�u + αu = 0,
κui

κn
= 0 on κ�

has countably many eigenvalues

0 = α0 → α1 → · · · → αm → · · ·

with

lim
n∅∞ αm = ∞

and pairwise L2-orthonormal eigenfunctions ui . Any v ∼ L2(�) can be expanded
in terms of these eigenfunctions

v =
∞∑

i=0

〈v, ui ∩ui (and thus 〈v, v∩ =
∞∑

i=0

〈v, ui ∩2). (4.1.69)

In Theorem 4.1.2, α0 = 0 appears as an eigenvalue. In fact, any non-vanishing
constant is an eigenfunction with eigenvalue 0, and, in contrast to the Dirichlet condi-
tion, these are not excluded by the Neumann boundary condition. When � has more
than one component, we can in fact choose a different constant on each component.
When � is connected, however, a global constant is the only eigenfunction with
eigenvalue 0, and this then is a simple eigenvalue.
It is also insightful and instructive to look at the scaling behavior of the eigenvalues.
If instead of � we consider the domain ξ� := {ξx : x ∼ �} for a scaling factor
ξ > 0, then its eigenfunctions are given by ui (

y
ξ ). Since κ2

(κyi )2 u(
y
ξ ) = κ2

(κxi )2 u(x)

for yi = ξxi , the eigenvalues of �ξ then are ξ−2αi where the αi , of course, are those
of � (this argument is valid for both Dirichlet and Neumann eigenvalues). Since the
volume ∞�ξ∞ of �ξ is ξd∞�∞ for a d-dimensional domain, the eigenvalues scale like

V ol
−2
d . The Weyl type estimates state that (under some mild regularity assumptions

on �,) the eigenvalues αk of � grow proportionally to ( k
|�| )

2
d up to terms of lower

order.
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Below, we shall also need the following result. We consider the average of v on �

v̄ := 1

∞�∞
∫

�

v(x)dx (4.1.70)

where ∞�∞ is the volume of �.

Corollary 4.1.1 Let α1 be the first nontrivial Neumann eigenvalue of �.
For v ∼ H1,2(�) (that is, it not only is square integrable itself, but also has square
integrable first derivatives in the L2-sense) with κv

κζ on κ�

α1〈v − v̄, v − v̄∩ → 〈Dv, Dv∩. (4.1.71)

For v of class H2,2(�) (that is, it also has square integrable second derivatives in
the L2-sense), also

α1〈Dv, Dv∩ → 〈�v,�v∩. (4.1.72)

Proof. We observe that Dv = D(v − v̄), �v = �(v − v̄), and

〈v − v̄, v − v̄∩ =
∞∑

i=1

〈v, ui ∩2, (4.1.73)

that is, the term for i = 0 disappears from the expansion because v − v̄ is orthogonal
to the constant eigenfunction u0. Using

〈Dv, Dv∩ =
∞∑

i=1

αi 〈v, ui ∩2

〈�v,�v∩ =
∞∑

i=1

α2
i 〈v, ui ∩2

and α1 → αi then yields (4.1.71), (4.1.72). �

Remark: The following argument that assumes still more regularity of v is also
instructive:

∫

�

(�v)2 =
∫ d∑

i=1

vxi xi

d∑

j=1

vx j x j =
∫ d∑

i, j=1

vxi x j vxi x j , (4.1.74)

integrating by parts twice, without incurring a boundary term because of the Neumann
boundary condition. Therefore, applying (4.1.71) to vxi for i = 1, . . . , d yields
(4.1.72).

One can use the eigenfunctions of the Laplacian to write an expansion for the
Green function. We consider the case of the Dirichlet boundary conditions as in
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Theorem 4.1.1. Thus, the Green function has to solve

�x G(x, y) = ϕ(x, y) for x, y ∼ � (4.1.75)

G(x, y) = 0 for x ∼ κ�, y ∼ �. (4.1.76)

This Green function can then be represented in terms of the Dirichlet eigenfunctions
of Theorem 4.1.1 as

G(x, y) = −
∑

n

1

αn
un(x)un(y). (4.1.77)

To see this, recalling (4.1.50), (4.1.51), for f ∼ L2(�), we consider

u(x) = −
∫

�

∑

n

1

αn
un(x)un(y) f (y)dy (4.1.78)

and compute

�u(x) =
∑

n

un(x)

∫
un(y) f (y)dy

=
∑

n

un(x)〈un, f ∩

= f (x) by (4.1.67).

These expansions in terms of eigenfunctions of the Laplace operator are also useful
for the heat equation

ut (x, t) = �u(x, t) for x ∼ �, 0 < t. (4.1.79)

We try to find solutions with separated variables, i.e., of the form

u(x, t) = v(x)w(t). (4.1.80)

Inserting this ansatz into (4.1.79), we obtain

wt (t)

w(t)
= �v(x)

v(x)
. (4.1.81)

Since the left-hand side of (4.1.81) is a function of t only, while the right-hand side
is a function of x , each of them has to be constant. Thus

�v(x) = −αv(x), (4.1.82)

wt (t) = −αw(t), (4.1.83)
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for some constant α. We consider the case where we assume homogeneous boundary
conditions on κ� × [0,∞), i.e.,

u(x, t) = 0 for x ∼ κ� (4.1.84)

or equivalently,

v(x) = 0 for x ∼ κ�. (4.1.85)

A nontrivial solution v of (4.1.82), (4.1.85) is an eigenfunction of the Laplace oper-
ator, and α an eigenvalue. By Theorem 4.1.1, the eigenvalues constitute a discrete
sequence (αn)n∼N, αn ∅ ∞ for n ∅ ∞. Thus, a nontrivial solution of (4.1.82),
(4.1.85) exists precisely if α = αn , for some n ∼ N. The solution of (4.1.83) then is
simply given by

w(t) = w(0)e−αt .

So, if we denote an eigenfunction for the eigenvalue αn by un , we obtain the solution

u(x, t) = un(x)w(0)e−αn t

of the heat Eq. (4.1.79), with the homogeneous boundary condition

u(x, t) = 0 for x ∼ κ�

and the initial condition

u(x, 0) = un(x)w(0).

This seems to be a rather special solution. Nevertheless, in a certain sense this is the
prototype of a solution. As already noted above, we have a superposition principle.
Since (4.1.79) is a linear equation, any linear combination of solutions is a solution
itself, and so we may take sums of such solutions for different eigenvalues αn . In
fact, by Theorem 4.1.1, any L2-function on �, and thus in particular any continuous
function f on �, assuming � to be bounded, that vanishes on κ�, can be expanded as

f (x) =
∑

n∼N
ξnun(x). (4.1.86)

Here, the un(x) are the orthonormal eigenfunctions of �,

∫

�

un(x)um(x)dx = ϕnm,

and with
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ξn =
∫

�

un(x) f (x)dx .

We then have an expansion for the solution of

ut (x, t) = �u(x, t) for x ∼ �, t ≥ 0, (4.1.87)

u(x, t) = 0 for x ∼ κ�, t ≥ 0,

u(x, 0) = f (x)
⎛ =

∑

n

ξnun(x)
⎝
, for x ∼ �,

namely,

u(x, t) =
∑

n∼N
ξne−αn t un(x). (4.1.88)

Since all the αn are nonnegative, we see from this representation that all the “modes”
ξnun(x) of the initial values f are decaying in time for a solution of the heat equation.
In this sense, the heat equation regularizes or smoothes out its initial values. In
particular, since thus all factors e−αn t are less than or equal to 1 for t ≥ 0, the series
(4.1.88) converges in L2(�), because (4.1.86) does.
If we write

q(x, y, t) :=
∑

n∼N
e−αn t un(x)un(y), (4.1.89)

Theorem 4.1.1 shows convergence of this series, and we may represent the solution
u(x, t) of (4.1.87) as

u(x, t) =
∑

n∼N
e−αn t un(x)

∫

�

un(y) f (y)dy by (4.1.88) (4.1.90)

=
∫

�

q(x, y, t) f (y)dy.

Comparing this with (4.1.56), (4.1.57), we see that q(x, y, t) as in (4.1.89) yields a
heat kernel, in analogy to formula (4.1.78) for the Laplace equation.

4.2 Diffusion and Random Walks

4.2.1 Random Walks on Graphs

In this section, we want to explore the relationship between partial differential
equations and stochastic analysis. As before, we start with the discrete case. In
the classical treatment of [30], this was carried for lattices in R

d , for the purpose of
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discretizing linear partial differential equations. Here, we take a general graph � with
vertex set V . In contrast to [30], we shall have to work with two different operators,
depending on whether we vary the starting or the target point of a random walk. We
also take some subset V0 of V as the boundary. V \V0 then is the interior. The choice
of V0 is rather arbitrary. It should not be empty, at least on certain occasions, nor
should it coincide with the entire vertex set. Although we shall not indicate those
places below where such assumptions are used, we might also wish to require that
the graph obtained from � by eliminating the vertex set V0 and all edges connected
to vertices in V0 is still connected.
We now construct a diffusion process on �. We assume that we have a unit of some
substance at the point x ∼ V . That substance is diffusing in � in such manner that
the fraction s of our substance present at the vertex y at time n is equally distributed
among the neighbors of y at time n + 1, that is, each neighbor of y receives s

ny

of the substance where ny , as always, is the degree of y. Whatever amount of the
substance reaches a boundary point will stay there forever. When the initial point x
was a boundary point, the whole amount of the substance will stay there. Thus, the
boundary is absorbing for our diffusion process.—According to these rules, the total
amount of our substance present in � at any time n is always the same, that is, our
diffusion process satisfies a conservation law.
There is an alternative view of this process, and identifying those two views will be
very insightful. That latter view considers a random walk on �. This is a stochastic
process, discrete Brownian motion, with discrete time n ∼ N. A walker or a Brown-
ian particle, whatever physical interpretation one prefers, starts at x , and when it
happens to be at the interior point y at time n, it moves to one of the neighbors of y at
time n + 1, and all these neighbors have the same probability, that is 1

ny
, of receiving

the particle.
We see that the probabilities follow the above diffusion process. Let z be a boundary
point. The probability w(x, z) of reaching z by a random walk starting at x without
having previously hit any other boundary point then equals the fraction of our dif-
fusing substance that has accumulated at z in infinite time. According to our rules at
the boundary, we also have

w(z, z) = 1 for z ∼ V0 and w(z, z∪) = 0 when z √= z∪ ∼ V0. (4.2.1)

When z is the first boundary point reached by a random walk starting at x , we also call
z the exit point of that random walk. When rn(x, z) is the fraction of our substance
reaching z from x after precisely n steps, we have

w(x, z) =
∞∑

ζ=0

rζ(x, z). (4.2.2)

Likewise, the probability qn(x, y) of reaching y after n steps starting from x equals
the fraction of our substance that happens to be at time n at y, in case x and y are
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interior points. When either of them is a boundary point, that probability is put to 0.
We are also interested in the sum

v(x, y) :=
∞∑

ζ=0

qζ(x, y). (4.2.3)

When x and y are interior points, this equals the amount of substance that has passed
through y at some time. In the probabilistic interpretation, this is the expected number
of times the random walk starting at x passes through y before exiting at some
boundary point.
The sum in (4.2.2) converges because its members are nonnegative and its partial
sums cannot become larger than 1 as only some fraction of the original substance can
reach z before being absorbed at some other boundary point. This then also implies
that qn(x, y) tends to 0 for n ∅ ∞. Indeed, let qn(x, y) > η, and assume that the
boundary point z can be reached from y along some path y0 := y, y1, . . . , ym = z
that does not hit the boundary before z. Then after m steps, a fraction η

ny0 ny1 ···nym−1
of

our substance reaches z along that particular path and is absorbed at z. By convergence
of the series in (4.2.2), the fraction of substance reaching z after n steps tends to 0
for n ∅ ∞. Therefore, qn(x, y) also has to converge to 0 for n ∅ ∞. In particular,
the probability of staying in the interior for an infinite amount of time vanishes.
Consequently,

∑

z∼V0

w(x, z) = 1. (4.2.4)

We may then consider w(x, .) as a probability distribution for the exit point of the
random walk starting at x .

We now turn to proving the convergence of the series in (4.2.3). We have the
relation

qn(x, y) =
∑

y∪∼y

1

ny∪
qn−1(x, y∪) (4.2.5)

for n > 1 because whatever is reaching y at some time n has to be at some neighbor
y∪ of y at time n − 1. We recall here that qn−1(x, y∪) = 0 when y∪ happens to be a
boundary point. Also, q0(x, x) = 1 when x itself is an interior point, =0 when it is
a boundary point.
The same type of reasoning also yields a more general relation,

qn(x, y) =
∑

z∼V \V0

qn1(x, z)qn−n1(z, y) whenever n1 < n (4.2.6)

where the sum now extends over all interior vertices. This relation follows from
the simple observation that whatever reaches y from x in n steps has to be at some
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interior vertex at the time n1 < n whence it arrives at y after n − n1 further steps.
Obviously, (4.2.5) is a special case of (4.2.6), corresponding to n1 = n − 1.
Returning to (4.2.5), we see that the partial sums

vn(x, y) :=
n∑

ζ=0

qζ(x, y) (4.2.7)

satisfy

vn(x, y) =
⎞
⎠

⎧

∑
y∪∼y

1
ny∪ vn−1(x, y∪) for x √= y

1 + ∑
y∪∼y

1
ny∪ vn−1(x, y∪) for x = y

(4.2.8)

We define the operator �∪ by

�∪ f (y) :=
∑

y∪∼y

1

ny∪
f (y∪) − f (y). (4.2.9)

When our graph is regular in the sense that all vertices y have the same degree ny = k,
say, then �∪ = �. For other graphs, the two operators are obviously different.
From (4.2.5), we infer

qn+1(x, y) − qn(x, y) = �∪
yqn(x, y) (4.2.10)

and qn(x, y) = 0 when y is a boundary point. This is a discrete heat equation, with
time step 1 and �∪ in place of �.
Similarly, from (4.2.8), (4.2.7), we infer

�∪
yvn(x, y) =

{
qn+1(x, y) for x √= y

qn+1(x, y) − 1 for x = y
(4.2.11)

and vn(x, y) = 0 when y is a boundary point. Again, we can rewrite this is as a heat
type equation

�∪
yvn(x, y) =

{
vn+1(x, y) − vn(x, y) for x √= y

vn+1(x, y) − vn(x, y) − 1 for x = y
(4.2.12)

Since we already know that qn(x, y) ∅ 0 for n ∅ ∞, vn(x, y) converges to the
solution v of

�∪
yv(x, y) =

{
0 for x √= y

−1 for x = y
(4.2.13)
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with boundary values 0.
When we vary x in place of y, we come up with the Laplacian � in place of �∪.
Indeed, we have

qn(x, y) = 1

nx

∑

x ∪∼x

qn−1(x ∪, y) (4.2.14)

because any random path that goes from x to y in n steps has to pass through one of
the neighbors of x in the first step with equal probability 1

nx
. (This is again a special

case of (4.2.6), this time for n1 = 1.) Therefore, we obtain the discrete heat equation

qn+1(x, y) − qn(x, y) = �x qn(x, y). (4.2.15)

As before, from (4.2.14), we conclude

vn(x, y) =
{

1
nx

∑
x ∪∼x vn−1(x ∪, y) for x √= y

1 + 1
nx

∑
x ∪∼x vn−1(x ∪, y) for x = y

(4.2.16)

From (4.2.8), (4.2.16), we infer

�xvn(x, y) =
{

qn+1(x, y) for x √= y

qn+1(x, y) − 1 for x = y
(4.2.17)

and vn(x, y) = 0 when x is a boundary point or, equivalently,

�xvn(x, y) =
{

vn+1(x, y) − vn(x, y) for x √= y

vn+1(x, y) − vn(x, y) − 1 for x = y.
(4.2.18)

Since we already know that qn(x, y) ∅ 0 for n ∅ ∞, vn(x, y) converges to the
solution v of

�xv(x, y) =
{

0 for x √= y

−1 for x = y
(4.2.19)

with boundary values 0. Up to the normalization factor and the minus sign in (4.2.13),
this solution is the Green function as defined in (4.1.31). In particular, the solution
of the Poisson problem

�u(x) = g(x) for x ∼ V \V0 (4.2.20)

u(x) = 0 for x ∼ V0 (4.2.21)

is given by

u(x) = −
∑

y

v(x, y)g(y), (4.2.22)
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that is, the negative of the expected sum of g along the random walk starting at x
until it reaches the boundary.

Finally, w from (4.2.2) satisfies

w(x, z) = 1

nx

∑

x ∪∼x

w(x ∪, z) (4.2.23)

because any path from x to z has to pass through one of the neighbors of x . This
means

�xw(x, z) = 0. (4.2.24)

For two different boundary points z1, z2, we have w(z1, z2) = 0, and w(z, z) = 1.
Thus, w(x, z) as a function of x solves the Dirichlet problem (see (4.1.28)) with those
boundary values. In words: the probability as a function of the starting point x of the
random walk for being absorbed at the boundary point z is the harmonic function u
on the graph with boundary values u(y, z) = ϕ(y, z). For general boundary values
f (z) for z ∼ V0, the solution of the Dirichlet problem is

u(x) =
∑

z

w(x, z) f (z). (4.2.25)

According to our above interpretation of w(x, .) as the probability distribution for
the exit point of the random walk starting at x , we can express (4.2.25) as follows:
The solution u(x) at the point x of the Dirichlet problem with boundary values f is
the expected value of f at the exit point for the random walk starting at x ,

u(x) = E( f (w(x, .)). (4.2.26)

Obviously, the position Xn of the random walker on our graph constitutes a random
process in the sense of Definition 3.2.1. It also satisfies the Markov property of
Definition 3.2.2 because the probability distribution for the position Xn+1 depends
only on the location Xn = x at time n, but is independent of earlier positions when
given that position at time n.
We now briefly consider the case without boundary, that is, V0 = ≥. The transition
probabilities for Xn are independent of n and given

P(x, y) := p(Xn+1 = y|Xn = x) =
{

1
nx

for y ∼ x

0 for y � x .
(4.2.27)

In the above, we have considered the initial distribution f0(y) = ϕ(x, y) (the random
walker always started at the point x), but we can obviously consider any initial
distribution f0 with

∑
y f0(y) = 1. Given an initial distribution f0, the distribution

fn at time n then is f0 Pn where f0 is considered as a row vector, that is,
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fn(xn) =
∑

x0,x1, ..., xn−1

f0(x0)P(x0, x1), . . . , P(xn−1, xn). (4.2.28)

A distribution π is called stationary if

πP = π, that is, π(y) = π(x)P(x, y). (4.2.29)

The random walk is called ergodic if there exists a unique stationary distribution π
with

lim
n∅∞ f0 Pn = π (4.2.30)

for every initial distribution f0. The process is ergodic iff it is irreducible, i.e., for
every x, y ∼ V there exists some n with Pn(x, y) > 0, and aperiodic, i.e., the greatest
common divisor of the n with Pn(x, y) > 0 is 1. The first condition is equivalent to
the graph � being connected, or in terms of eigenvalues α1 > 0, while the second
one is equivalent to � being not bipartite, that is, the largest eigenvalue αK < 2, see
(2.2.47) and (2.2.48), resp., in 2.2.3.

4.2.2 Diffusion Processes and Partial Differential Equations

We now want to turn to the continuous case (a good reference is [55]). Our heuris-
tic strategy consists in taking a regular lattice as our graph and pass to the con-
tinuum limit. This means that we consider the lattice of points {h(n1, . . . , nd) :
n1, . . . , nd ∼ Z} for h > 0 which we want to let tend to 0. Thus, our random walker
on this lattice when at the lattice point zn at time n moves to one of its 2d lattice
neighbors with equal probability 1

2d . Then the random variable Zn = (Z1
n, . . . , Zd

n )

describing the position of the random walker at time n satisfies

Z j
n − Z j

0 =
n∑

i=1

Xi (4.2.31)

where the Xi are independent identically distributed random variables with proba-
bilities

p(Xi = h) = 1

2d
, p(Xi = −h) = 1

2d
, p(Xi = 0) = d − 1

d
(4.2.32)

where Xi = 0 corresponds to the case where the random step is taking in a direction
that is not the i th coordinate direction. The Xi all have expectation value 0 and stan-
dard deviation 1

d h2. The Z j
n−Z j

0 then also have expectation value 0, and their standard
deviation is n

d h2, by Lemma 3.1.2. By the central limit Theorem 3.1.2, for n ∅ ∞,

http://dx.doi.org/10.1007/978-1-4471-6353-4_2
http://dx.doi.org/10.1007/978-1-4471-6353-4_2
http://dx.doi.org/10.1007/978-1-4471-6353-4_2
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Z j
n − Z j

0 approaches the Gauss distribution N (0, 1
d nh2) = 1⎪

2π 1
d nh2

exp(− x2

2 1
d nh2 ).

We also want to let the size of the time step tend to 0, to compensate for the factor h2

going to 0. That is, we let the random walker move at times ω , 2ω , 3ω , . . . . Then at
time t = mω , it has jumped m times, and the corresponding position Z j (t) − Z j (0)

is distributed according to N (0, 1
d

t
ω h2). In order to have a nontrivial limit for positive

finite t , we then let h and ω tend to 0 in such a manner that h2

dω =: μ2 is a positive
constant. Thus, in the limit, Z j (t) − Z j (0) is distributed according to N (0, tμ2).
The limiting process X (t) = (X1(t), . . . , Xd(t))—whose existence one needs to
prove—is called the Wiener process or Brownian motion. The components X j (t) are
independent and identically distributed (this is a consequence of the homogeneity
of the lattice and the fact that the random walker was moving in each direction with
the same probability). X j (t + s) − X j (t) is distributed according to N (0,μ2s). In
particular, this does not depend on t . Moreover, X (t1)− X (s1) and X (t2)− X (s2) are
independent whenever s1 < t1 < s2 < t2—one says that X has independent incre-
ments (cf. the corresponding notion introduced above for point processes). Finally,
the typical path X (t), t ≥ 0 is continuous (but nowhere differentiable).
Again, when we have a bounded domain � ∈ R

d and prescribe continuous boundary
values f on κ�, the Dirichlet problem (cf. (4.1.28))

�u(x) = 0 for x ∼ � (4.2.33)

u(z) = f (z) for z ∼ κ� (4.2.34)

can be solved by Brownian motion: the (unique) solution u(x) at the point x of the
Dirichlet problem with boundary values f is the expected value of f at the exit point
for the random walk starting at x ,

u(x) = E( f (W (x, .)) (4.2.35)

where the random variable W (x, .) encodes the exit point from � for the random
walk starting at x . There is one technical issue here, namely about attaining the
boundary values, that is for which points z ∼ κ� we have

lim
x∅z,x∼�

E( f (W (x, z)) = f (z). (4.2.36)

The points in κ� satisfying this condition are called regular. They can be charac-
terized in potential theoretic terms. In particular, this does not depend on the (con-
tinuous) function f , but only on the geometry of the domain �. Not every point is
regular, however. For example, for d ≥ 2, isolated boundary points are not regular
(because they constitute removable singularities for harmonic functions). Here, we
do not intend to go into this issue in more detail.
Likewise, up to the minus sign, the Green function is given by the solution v(x, y)

of the analogue of (4.2.13) or (4.2.19). In particular, the Poisson problem
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�u(x) = g(x) for x ∼ � (4.2.37)

u(z) = 0 for z ∼ κ� (4.2.38)

is given by

u(x) = −
∫

v(x, y)g(y)dy. (4.2.39)

Here, v(x, y) is the negative of the Green function, that is, the solution of

�xv(x, y) = −ϕ(x, y) for x ∼ � (4.2.40)

v(x, y) = 0 for x ∼ κ�, (4.2.41)

in analogy to (4.2.19), (4.2.20), (4.2.22).
Similarly, the following interpretation is carried over from the discrete case: For
A ∈ �,

v(x, A) :=
∫

A
v(x, y)dy (4.2.42)

is the expected amount of time the random walk starting at x spends in A before
exiting from �. In probabilistic terminology, (4.2.39) is also expressed as

u(x) = −E(

∫ ω�

0
g(Xx (t))dt) (4.2.43)

where Xx (t) is Brownian motion starting at x and ω� is its expected exit time from
�. In words: the solution u(x) at x of the Poisson problem for g is given by the
negative of the expected integral of g over a random path starting at x until it exits
from �. In particular, we may put g = −1. Then (4.2.43) becomes

u(x) = E(ω�), (4.2.44)

the expected exit time of the random walk starting at x . Thus, this expected exit time
is the solution of

�u(x) = −1 in �, u(y) = 0 for y ∼ κ�. (4.2.45)

We return to the probability density

P(y, t |x, s) := p(X (t) = y|X (s) = x) = 1◦
2π(t − s)

exp(− (y − x)2

2(t − s)
) (4.2.46)

for t > s. This probability density satisfies
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κP

κt
= 1

2
�y P (4.2.47)

and

κP

κs
= −1

2
�x P (4.2.48)

(4.2.47) is called the forward diffusion or Kolmogorov equation, (4.2.48) the back-
ward one. Equation (4.2.47) is also called the Fokker-Planck equation. The interpre-
tation is that the probability density of a stochastic process (here the Wiener process
or Brownian motion) satisfies a deterministic differential equation.
Equation (4.2.47) is the continuous analogue of (4.2.10). We obtain the Laplace oper-
ator here because the lattice that we used for our approximation scheme was regular
as all vertices had the same degree 2d.
We also have an analogue of (4.2.6),

P(y, t |x, s) =
∫

z
P(y, t |z, s + ω )P(z, s + ω |x, s) dz for 0 < ω < t − s. (4.2.49)

Again, the reason for this relation is that whatever arrives at time t at y, origi-
nating from x at time s has to be at some point z at the intermediate time s + ω
whence it reaches y after the further time t − ω . (4.2.49) is called the Chapman-
Kolmogorov equation. Of course, (4.2.49) can also be derived by a direct computa-
tion with Gaussian kernels, on the basis of (4.2.46), but our more abstract derivation
is simpler and more insightful. In any case, we again see the ubiquity of Gaussian
kernels. By the central limit theorem, our rescaling scheme for the random walk on
a lattice produced a Gaussian transition kernel which in turn governs the standard
heat equation.
This can also be coupled with a deterministic drift. We consider a general dynamical
rule of the form

dy

dt
= F(y(t), t), for y ∼ R

d (4.2.50)

The continuity equation for the density of y then is

κ

κt
p(y, t) = −

d∑

i=1

κ

κyi
(Fi (y, t)p(y, t)). (4.2.51)

We now take the sum of Brownian motion and a deterministic dynamics of the form
(4.2.50). We write this formally as

dy

dt
= F(y(t), t) + χ, (4.2.52)
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where χ is the formal derivative of Brownian motion (which is represented by white
noise, but we do not explain this here; see e.g. [69, 87, 96]). (The Eq. (4.2.52) is
called the Langevin equation.) By linear superposition of (4.2.47) and (4.2.51), the
corresponding density satisfies the Fokker-Planck equation

κ

κt
p(y, t) = 1

2
�p(y, t) −

d∑

i=1

κ

κyi
(Fi (y, t)p(y, t)). (4.2.53)

This issue will be taken up again in 4.5 below.

4.3 Dynamical Systems

4.3.1 Systems of Ordinary Differential Equations

A general reference for this section is [69]. Let f = ( f 1, ..., f n) : R
n ∅ R

n be
of class C1. We consider the system of first order ordinary differential equations
(ODEs)2

ẋ i (t) = f i (x1(t), ..., xn(t)) for i = 1, ..., n, (4.3.1)

with ẋ i = d
dt xi . t is considered to be the time, and x(t) = (x1(t), ..., xn(t)) then is

the state of the system at time t . One usually prescribes initial values x0 = x(0) and
looks for a solution x(t), t ∼ R(t ≥ 0). {x(t) : t ≥ 0} is called the orbit of x0.
Equation (4.3.1) is a so-called autonomous system because f does not depend
explicitly on t (but implicitly through the dependence of x on t).3 The important
point about autonomous systems is that they are invariant under time shifts. This

2 Higher order systems of ODEs can be reduced to systems of first order by introducing additional
auxiliary variables.
3 One may also consider non-autonomous systems,

ẋ i (t) = δi (t, x1(t), ..., xn(t)) for i = 1, ..., n,

with an explicit dependence on t , but such systems can be converted into an autonomous form by
introducing a new dependent variable xn+1 to obtain the equation

ẋn+1(t) = f n+1(x1(t), ..., xn(t), xn+1(t)) ≡ 1.

This may turn linear (non-autonomous) equations into non-linear (autonomous) ones; e.g.

ẋ = cos(πt)

becomes

ẋ1 = cos(πx2)

ẋ2 = 1
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means that, if we consider the solution of (4.3.1)4 x1(t) with initial values x1(t1) = ξ
and the solution x2(t) with the same initial values, but starting at time t2, that is,
x2(t2) = ξ, then for all t ≥ t2, x2(t) = x1(t + t1 − t2). In other words, the behavior
of the solution (obviously) depends on the initial values, that is, where or how it
starts, but not on the starting time, that is, when it starts.

The Theorem of Picard-Lindelöf yields the short-time existence of solutions:

Theorem 4.3.1 Suppose that f is Lipschitz continuous, that is, there exists some
constant L with

| f (x1) − f (x2)| → L|x1 − x2| (4.3.2)

for all x1, x2 ∼ R
n.

For every initial state x0, the solution x(t) of the system (4.3.1) then exists on some
time interval, that is, for

−T < t < T, for some T > 0.

This solution is unique.

The solution need not exist for all times, that is, the maximal such T may be finite.
That maximal T in general depends on the initial values x0. We shall see examples
shortly.
An easy, but important consequence of the uniqueness part of the Picard-Lindelöf
theorem is that orbits of an autonomous system (4.3.1) cannot intersect or merge.
Namely, when at some point x0 two orbits came together, then there would exist two
different solutions (in forward or backward time) with initial values given by x0.

Since we are imposing no restrictions on f apart from a rather mild smoothness
assumption, the behavior of the solutions of systems of ODEs can be rather diverse,
and one cannot expect a useful classification. It is more insightful to study certain
dynamical motives, that is, qualitative types of behavior of solutions. We start with
the case n = 1 and write f in place of f 1, and likewise for x . Thus, we look at the
scalar equation

ẋ = f (x) for t ≥ 0, with initial condition x(0) = x0. (4.3.3)

Clearly, there are the simple linear equations, like

ẋ = 0 (4.3.4)

whose solution is constant, x(t) = x0, or

(Footnote 3 continued)
where the dependent variable x2 enters the r.h.s. non-linearly.
4 assuming that there exists a unique solution, see below
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ẋ = b (4.3.5)

whose solution is linear, x(t) = x0 + bt , or

ẋ = cx (4.3.6)

whose solution is x(t) = x0ect . The latter equation, for c > 0, already exhibits the
important phenomenon that solutions of ODEs can amplify differences over time,
that is, when we have two solutions x1, x2 with different initial values xi (0) = x0,i ,
then |x1(t) − x2(t)| = |x0,1 − x0,2|ect grows exponentially.
Of course, exponential growth cannot be sustained for a long time. Thus, in many
models, one introduces a carrying capacity and considers

ẋ = cx(m − x) (4.3.7)

for c, m > 0. This is equation is called the logistic, Verhulst, or Fisher equation.
Below, we shall often consider this equation as an example, usually for c = m = 1,
that is,

ẋ = x(1 − x). (4.3.8)

In (4.3.7), for initial values 0 → x(0) → m, the solution is bounded and stays in
that same interval, 0 → x(t) → m for all t ≥ 0. In that case, x(t) is monotonically
increasing, with limt∅∞ x(t) = m. When x(0) > m, the solution monotonically
decays towards the asymptotic value m. x = m and x = 0 are both fixed points, that
is, when x0 = m or 0, then ẋ(t) = 0 for all times, and the solution will stay constant.
When the initial values are negative, however, the solution diverges to −∞ in finite
time. In particular, we here see the phenomenon that a solution need not exist for all
positive times; the simplest example of this is perhaps

ẋ = x2, (4.3.9)

with the solution

x = (
1

x(0)
− t)−1 (4.3.10)

which when x(0) is positive becomes infinite in finite time. In fact, the blow-up
occurs at t = 1

x(0)
. In contrast, when x(0) < 0, the solution exists for all time, with

limt∅∞ x(t) = 0. When x(0) = 0, then x(t) = 0 for all t . Thus, the fixed point at
x = 0 separates two different qualitative regimes for the solution of our differential
equation.
In general, if f (x�) = 0 for i = 1, ..., d then x� is a fixed point for our Eq. (4.3.3),
that is, when x0 = x�, then x(t) = x� for all t .
Our differential equation (4.3.3) may have several fixed points x1 < x2 < · · · < xm .
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(We assume here for simplicity that are only finitely many fixed points. The case
of infinitely many fixed points does not lead to substantially new phenomena as the
reader will easily check.) If there is no further fixed point between xk and xk + 1,
then f (x) cannot have a zero for xk < x < xk + 1 and therefore must have a definite
sign there. When this sign is positive, then for xk < x(0) < xk + 1, the solution x(t)
of (4.3.3)—which exists for all t—satisfies limt∅∞ x(t) = xk + 1. Similarly, when
f (x) < 0 for xk < x < xk + 1, the solution with initial values in that interval satisfies
limt∅∞ x(t) = xk . In particular, the fixed point xk is attracting when f (x) > 0 for
xk−1 < x < xk and f (x) < 0 for xk < x < xk + 1. It is repelling when both signs
are reversed. The fixed point 0 for (4.3.9) is neither attracting nor repelling, because
f (x) does not change its sign there. When xm is the largest fixed point, then either
f (x) > 0 for x > xm in which case the solution could possibly blow up in finite
time, or f (x) < 0 for x > xm in which case the solution monotonically decays to xm

for initial values x(0) > xm . The analogous situation holds when the initial values
are smaller than the smallest fixed point.
We can also formulate the following easy global existence result:

Theorem 4.3.2 We consider (4.3.3),

ẋ = f (x) for t ≥ 0, with initial condition x(0) = x0 (4.3.11)

and assume that there exist numbers m < M with

f (m) > 0 and f (M) < 0 (4.3.12)

and

m → x0 → M. (4.3.13)

Then (for a Lipschitz continuous f as in (4.3.2)), the solution of (4.3.11) exists for
all t ≥ 0.

Proof. The key observation is that the solution x(t) has to stay bounded as long
as it exists. Whenever it comes near the upper bound M , then ẋ = f (x) becomes
negative by (4.3.12), and therefore x(t) decreases, and when it comes near the lower
bound m, it increases for the same reason. Therefore, we shall have m → x(t) → M
for all t for which the solution exists. By the theorem of Picard-Lindelöf, we can then
find some T > 0 such that for each t0 up to which the solution exists, the solution
of ẏ(t) = f (y(t)) with y(0) = x(t0) exists for 0 → t → T . The important point here
is that T here does not depend on x(t0) because the latter is confined in the compact
interval [m, M]. x(t) = y(t − t0) then is the solution of (4.3.11) on the interval
[t0, t0 + T ]. This implies that the solution has to exist for all time (negative times,
although not really our concern, are handled by the same argument). �

When the r.h.s. of (4.3.3) depends on some parameter α, that is, we look at
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ẋ = f (x,α) (4.3.14)

then we expect a bifurcation, that is, a qualitative change of behavior of the solutions
at those parameter values α = α0 where the number of solutions xk of

f (x,α) = 0 (4.3.15)

changes. For example, for

ẋ = x2 + α (4.3.16)

α = 0 is such a bifurcation point. For α > 0, there is no fixed point, for α = 0 there
is one, namely 0, and for α < 0, there are two, x = ±◦−α. Here, we already see the
important principle that at generic (that is, typical) bifurcations, fixed always arise
or disappear in pairs.
For

ẋ = αx − x3 (4.3.17)

α = 0 is again a bifurcation point. For α → 0, x = 0 is the only fixed point whereas
for α > 0, we have additional ones at x = ±◦

α. The latter ones are attracting
whereas 0 is repelling for α > 0, but attracting for α → 0.
The preceding already summarizes the main qualitative results about single ODEs
of first order. For n > 1, the behavior of solutions of (4.3.1) can become richer and
more interesting. When we move to dimension n = 2, two new phenomena emerge:

• saddle type fixed points in addition to attracting and repelling ones
• closed periodic orbits.

This is best understood within the context of some wider principles for the analysis
of dynamical systems:

1. identify the compact orbits (and perhaps other invariant sets) of the dynamics,
2. linearize about them and
3. investigate their stability.

We now elaborate these points. The simplest case of an invariant set is a fixed point,
that is, a point x� for which the rhs of (4.3.1) vanishes, that is,

f i (x1
� , . . . , xn

� ) = 0. (4.3.18)

Typically, the investigation of a dynamical system starts with the identification of
these fixed points. We may assume x� = 0 and study the linearized system

ẋ(t) = Lx, with L =
⎨

κ f i

κx j
(x�)

⎩

i, j=1, ..., n
. (4.3.19)
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We consider the case n = 2 because the above principles already become clear
there. The matrix L has either two real eigenvalues or two conjugate complex ones.
When it can be diagonalized with two real eigenvalues α1 and α2, then after a linear
change of coordinates, our linearized system becomes

ẋ1(t) = α1x1(t)

ẋ2(t) = α2x2(t), (4.3.20)

the solution of which obviously is

x1(t) = eα1t x1(0)

x2(t) = eα2t x2(0). (4.3.21)

If both eigenvalues are negative, then x(t) converges to the fixed point x�(= 0)

exponentially while, in the case where both are positive, x(t) exponentially expands.
In the first, attracting, case, x� = 0 is called a node or sink, and it is a stable

fixed point for t ∅ ∞, whereas in the second, repelling, case, called a source, it is
unstable for t ∅ ∞. If the two eigenvalues have different signs, say α2 < 0 < α1,
then the fixed point x� = 0 is neither stable nor unstable. In fact, any initial point on
the x2-axis converges to 0, while all other initial points diverge under the flow. This
is called a saddle. When one of the eigenvalues vanishes, the picture can get more
complicated, and the behaviour of the linearized system may be different from the
original one. Actually, this is already seen in the one-dimensional example

ẋ = x2 (4.3.22)

the linearization of which at 0 is

ẋ = 0. (4.3.23)

When, in contrast to the preceding cases, L has two complex conjugate eigenvalues
α ± iμ, then, after a linear change of coordinates again, we get the system

ẋ(t) =
⎨

α μ
−μ α

⎩
x(t), (4.3.24)

the solution of which is

x(t) = eαt
⎨

cos μt sin μt
− sin μt cos μt

⎩
x(0). (4.3.25)

For α √= 0, x(t) moves on a spiral (clockwise or counterclockwise, depending on the
sign of μ), exponentially towards 0 for α < 0, exponentially expanding for α > 0.
The case α = 0 seems intermediate as the solution then moves on a circle about 0.
This case is important for two reasons: it is the first non-trivial example of a compact
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orbit, and thus an invariant set other than a point. Secondly, this case α = 0 is
different from all previous cases, insofar as it is not structurally stable. This means
that an arbitrarily small variation of α = 0 changes the qualitative behavior of the
system. Even worse, even the qualitative behavior of the linearized system near the
fixed point 0 is no longer the same as that of the original system in case α = 0. In
a certain sense, these two phenomena are related as we shall try to explain soon.
Before doing that, we formulate a general

Definition 4.3.1 A fixed point x� of (4.3.1) is called hyperbolic if all eigenvalues of
the linearized system have nonvanishing real part.

The qualitative dynamical behaviour near a hyperbolic fixed point is structurally
stable in the sense that it is not affected by sufficiently small perturbations or para-
meter variations (like the eigenvalues of the linearized system), and that it is the same
as that of the linearized system—in fact, the difference between the original and the
linearized system is such a small perturbation that does not change the qualitative
behaviour.
We now look into a non-hyperbolic situation and consider the linear system

ẋ = y + αx (4.3.26)

ẏ = −x + αy. (4.3.27)

The eigenvalues are α± i , with imaginary part √= 0, and real part = 0 for α = 0. We
may consider α as a bifurcation parameter, and α = 0 as a bifurcation value where
the qualitative behaviour of the solution changes. Here, a pair of complex conjugate
nonzero eigenvalues crosses the imaginary axis. This is the characteristic criterion
for the so-called Hopf bifurcation as we shall now explain.
In the linear system, at α = 0 all orbits are periodic, namely circles, about (0, 0),
while for α √= 0 there is no periodic orbit at all.
Equation (4.3.26) is the linearization at (0, 0) of

ẋ = y − x (x2 + y2 − α) (4.3.28)

ẏ = −x − y (x2 + y2 − α) (4.3.29)

For this system, (0, 0) is a fixed point for all parameter values α. For α √= 0, the
situation is hyperbolic and therefore qualitatively the same as in the linearized system.
For α < 0, the fixed point is globally exponentially attracting. While this can be
deduced from general principles, we can, of course, also see it directly, and this gives
us the opportunity to introduce another useful tool, a Lyapunov function which by
definition is a function that is strictly decreasing along every flow line. Here, such a
Lyapunov function is given by log(x2 + y2) since we have

d

dt
log(x2 + y2) = 2(−x2 − y2 + α) → 2α < 0. (4.3.30)
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Thus, log(x2 + y2) decreases along every flow line, and then so does x2 + y2,
and therefore each flow line has to lead to (0, 0). As already pointed out, this is a
structurally stable situation that is invariant under small perturbations of α.

For α = 0, (0, 0) is still globally attracting, but no longer exponentially so. We
still have

d

dt
log(x2 + y2) < 0 for (x, y) √= (0, 0), (4.3.31)

but this expression is no longer bounded away from 0. Thus, we see again that the
situation at α = 0 is not structurally stable.

For α > 0, while the situation near (0, 0) is again structurally stable, an interesting
global phenomenon emerges away from (0, 0). (0, 0) is repelling, and there exists
a periodic orbit x2 + y2 = α that is attracting. To understand this, we consider our
Lyapunov function:

d

dt
log(x2 + y2)

⎞
⎠

⎧

> 0 for x2 + y2 < α

= 0 for x2 + y2 = α

< 0 for x2 + y2 > α.

(4.3.32)

Thus, when we are on the circle x2 + y2 = α, we stay there and since, ẋ and ẏ do
not vanish there, it is a nontrivial periodic orbit. When we are outside or inside that
circle, we move towards it.
We thus obtain a family, depending on α, of periodic orbits that emerge from the fixed
point at the transition from α = 0 to α > 0. This family of periodic orbits represents
a structurally stable bifurcation, that is, such a family remains under perturbations
of the above system.
In contrast to this behaviour, in the linear system, at α = 0 all orbits are periodic,
namely circles, about (0, 0), while forα √= 0 there is no periodic orbit at all. Thus, here
the whole family of periodic orbits is concentrated at a single parameter value, while
when the linear system is perturbed by a higher order term, that family gets distributed
among different parameter values. The situation at α = 0 itself is not structurally
stable while the behaviour of the whole family is, namely the emergence of a family
of periodic orbits at the transition from an attracting to a repelling fixed point.
We next consider another system with the same linearization (4.3.26), (4.3.27) as the
preceding one, (4.3.28), (4.3.29),

ẋ = y − x ((x2 + y2)2 − 2(x2 + y2) − α) (4.3.33)

ẏ = −x − y ((x2 + y2)2 − 2(x2 + y2) − α) (4.3.34)

depending on a real parameter α as before. We now have

d

dt
log(x2 + y2) = 2(−(x2 + y2)2 + 2(x2 + y2) + α). (4.3.35)

This becomes 0 when
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x2 + y2 = 1 ± ◦
1 + α.

Thus, whenever this value is real and nonnegative, we obtain that x2 + y2 remains
constant along a solution, that is, the orbit is a circle. When α is smaller than −1,
no such solution exists. For α = −1, we find precisely one solution whereas, for
−1 < α < 0, we obtain two solutions, of radii 0 < ρ1 < ρ2, say. The right-hand side
of (4.3.35) is negative for 0 < ρ := √

x2 + y2 < ρ1, but positive for ρ1 < ρ < ρ2
and negative again beyond ρ2. Thus, the orbit at ρ1 is repelling whereas that at ρ2
is attracting. When α increases to 0, the repelling periodic orbit at ρ1 moves into
the attracting fixed point at (0, 0). When α then becomes positive, both the repelling
periodic orbit and the attracting fixed point disappear, or, more precisely, the latter
turns into a repelling fixed point. Only the attracting periodic orbit at ρ2 remains.
The solution of our system of ODEs then has no option but to move away from the
no longer attracting fixed point at (0, 0) to the periodic orbit at ρ2.
The first bifurcation, that of (4.3.26), (4.3.27), where a stable fixed point continuously
changed into a stable periodic orbit was a so-called supercritical Hopf bifurcation.
In contrast to this, in a subcritical Hopf bifurcation, as exemplified by (4.3.33),
(4.3.34), an unstable periodic orbit coalesces into a stable fixed point so that the
latter becomes repelling and no stable orbit is present anymore in its vicinity when
the relevant parameter passes the bifurcation value.
The linearization at (0, 0) is the same for both examples, the supercritical and the
subcritical Hopf bifurcation. The linearization possesses a pair of complex conjugate
eigenvalues whose real parts vanish at the bifurcation point. In fact, by the theorem
of E. Hopf, this is precisely the criterion for such a bifurcation where a stable fixed
point bifurcates into a family of periodic orbits.
The preceding examples essentially cover the qualitative types of behaviour of two-
dimensional systems of ODEs. This is essentially a consequence of the principle
observed as a corollary of the Picard-Lindelöf theorem that two orbits can never
intersect or merge. In higher dimensions, however, (even though that principle is
still in force) the behaviour can get more complicated, and in fact defies a complete
classification.
In any case, however, we have an existence result of the type of Theorem 4.3.2.

Theorem 4.3.3 We consider for x = (x1, . . . , xn) and f = ( f 1, . . . , f n),

ẋ = f (x) for t ≥ 0, with initial condition x(0) = x0 (4.3.36)

and assume that there exist numbers mξ < Mξ for ξ = 1, . . . , n with

f ξ(x1, . . . , xξ−1, mξ, xξ+1, . . . , xn) > 0 and (4.3.37)

f ξ(x1, . . . , xξ−1, Mξ, xξ+1, . . . , xn) < 0

whenever mπ → xπ → Mπ for all π = 1, . . . , n, and also

mπ → xπ
0 → Mπ . (4.3.38)
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Then (for a Lipschitz continuous f ), the solution of (4.3.11) exists for all t ≥ 0.

The proof proceeds as that of Theorem 4.3.2.

We now exhibit several systems of ODEs that are important as models at various
biological scales.

(1) Biochemical kinetics:
References here are [82, 92]. The basis here is the law of mass action which states
that the reaction rate of a chemical reaction is proportional to the concentrations of
the reactants raised to the number in which they enter the reaction. That expression
is proportional to the collision probability for the reactants. For the simple reaction

S1 + S2 � 2P (4.3.39)

when k+ is the rate constant for the forward reaction that converts S1 + S2 into 2P
and k− is the rate constant for the backward reaction and if we denote the respective
concentrations by s1, s2, p, then

ṡ1 = ṡ2 = −k+s1s2 + k− p2 (4.3.40)

ṗ = 2(k+s1s2 − k− p2). (4.3.41)

Enzymatic reactions are of particular importance. The prototype is

E + S � E S ∅ E + P. (4.3.42)

Here, the substrate S and the enzyme E first form the enzyme-substrate complex E S
in a reversible manner with forward and backward rate constants k1, k−1, resp., and
then the product P is irreversibly released from the enzyme E with rate constant k2.
When we denote the concentrations of E, S, E S, P by e, s, c, p, resp., we obtain the
system of ODEs

ṡ = −k1es + k−1c (4.3.43)

ė = −k1es + (k−1 + k2)c (4.3.44)

ċ = k1es − (k−1 + k2)c (4.3.45)

ṗ = k2c. (4.3.46)

We observe that p does not appear on the r.h.s of this system. Thus, we need only
solve the first 3 equations. p then is obtained by a simple integration. Moreover, the
second and third equations are dependent, and we conclude

e(t) + c(t) ≡ e0 (4.3.47)

a constant.
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Based on the small amount of enzyme needed for such reactions, the Michaelis-
Menten theory makes the assumption of a quasi-steady state for the complex E S,

ċ = 0. (4.3.48)

This is mathematically not unproblematic and requires a singular perturbation analy-
sis, see [92], but here we simply observe the consequence

c = k1e0s

k1s + k−1 + k2
. (4.3.49)

We now move from the molecular to the cellular level and as our next example
consider the

(2) Hodgkin-Huxley model for the firing of neurons:
The main variable is the potential V of the neuron, satisfying the ODE

C
dV

dt
= Ie − Ii (4.3.50)

where C is the capacitance of the membrane and Ie and Ii are the external and internal
currents. The internal current in turn satisfies the equation

Ii = g0(V − V0) + g1m3h(V − V1) + g2n4(V − V2), (4.3.51)

where g0, g1, g2 > 0 and V0, V1, V2 are constants whereas m, n, h are gating vari-
ables corresponding to the opening of sodium (Na+) channels leading to the inflow
of positively charged Na+ ions, the opening of potassium (K+) channels leading to
the outflow of positively charged K+ ions, and the closing of Na+ channels, resp.
Normalizations are such that the gating variables always take their values between
0 and 1 so that the can be interpreted as the probabilities for the corresponding type
of channel to be open.
Equations (4.3.50) and (4.3.51) combine to become

C
dV

dt
= Ie − (g0(V − V0) + g1m3h(V − V1) + g2n4(V − V2)). (4.3.52)

Whereas Ie is treated as an external parameter, the internal dynamical regimes cru-
cially depend on the signs of the three terms in (4.3.52) contributing to Ii . Before
going into details, we then formulate a fourth principle for the investigation of sys-
tems of ODEs:

4. determine the signs of the diverse summands into which f i may be decomposed
on the right hand side of (4.3.1) and assess their contribution on the global
behaviour of the solution.

Before proceeding, however, we need to clarify the roles of the gating variables.
m, n, h satisfy differential equations of the form
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ωy(V )
dy

dt
= y∞(V ) − y (4.3.53)

with the limiting value y∞(V ) and the time constant ωy(V ) indicating the time scale
on which the corresponding gating variable varies. A simpler model would con-
sist of taking y directly as a function of V , equal to the equilibrium value, that is,
y = y∞(V ). The model of Hodgkin-Huxley instead introduces some additional tem-
poral dynamics where y relaxes to that equilibrium value on the time scale described
by ωy(V ). Thus, in particular, it does not follow changes in V instantaneously, but
needs some time to adapt.
The Hodgkin-Huxley systems then consists of 4 differential equations, namely
(4.3.52) for the voltage V and three equations of type (4.3.53) for the three gat-
ing variables.
It is important for the dynamics of the Hodgkin-Huxley model that while m∞ and
n∞ are increasing functions of V (m∞ starts to rise only at a somewhat higher value
of V (around −80 mV) than n∞), h∞ is a decreasing function. Moreover, the time
constant ωm is much smaller than the time constants ωn, ωh (which peak at values of
V between 80 and −70 mV), and so m changes much faster than n and h, in fact on
the same scale as V .
The reversal potentials in (4.3.51) are

V1 = 50 mV

V2 = −77 mV

V0 = −54.4 mV.

We now present a qualitative discussion of the dynamics of the Hodgkin-Huxley
model. Suppose the system initially is at rest near V0. Then h = h∞(V0) and n =
n∞(V0) are positive (in the order of magnitude 1/2) while m = m∞(V0) is close
to zero. The relevant term in (4.3.52) then is g0(V − V0) which stabilizes the rest
point V0. If now some positive current Ie is injected, a positive feedback dynamics
between V and m sets in, as in the range we are entering they are each increasing
functions of the other one (recall that m∞ is an increasing function of V ). Namely,
once V rises to about −50 mV, m suddenly rises to significantly positive values, and
as h is also positive, the Na+ term causes a sharp decrease in the interior current Ii

and thus a further rapid increase in V , up to the Na+ equilibrium value of 50 mV.
Thus, the potential V rises from about −50 to 50 mV within a very short time period.
This event is called a spike. However, as V rises, h decreases towards 0, and so the
Na+ current gets deactivated. In that entire sequence, from the initial rise of m until
the decrease of h, the dynamics is essentially driven by the term g1m3h(V − V1) in
(4.3.52). That term also ensures that the voltage does not exceed the peak value V1.
Moreover, n increases, and so the K+ is activated more strongly, and this causes a
decrease of V even below the resting value V0, down to about V2, a hyperpolarization.
The crucial term for the V dynamics now is g2n4(V − V2). This causes a refractory
period during which no further spike can be fired, during which (in the absence of a



4.3 Dynamical Systems 127

further external current) all variables are readjusted back to their resting values.
Let us also describe the above process in physical terms. The dynamics is caused
by the interaction of the potential with the inflow of positively charged sodium ions
and the outflow of positively charged potassium ions through the activation and
inactivation of selective channels in the cell membrane. The sodium channels react
more quickly than the potassium ones, so that first by the inflow of positive ions,
the cell is depolarized, whereas by the subsequent outflow of positive ions, it gets
hyperpolarized. Below threshold, the constant outflow of potassium ions prevents
depolarization by a small amount of inflowing sodium ions. When the potential rises
above threshold, in the present scenario by some external current, there is a positive
feedback between the depolarization (rise of V ) and the Na+ conductance (rise of
m), through the voltage triggered opening of sodium ion selective channel in the cell
membrane. This causes the rapid spike. However, through the activation of a specific
channel protein, the sodium channels close, whereas the potassium channels open,
and the cell hyperpolarizes through the outflow of positively charged potassium ions.
The details can, for instance, be found in [108]. For more details on the Hodgkin-
Huxley model, see [83, 92] and, for new mathematical aspects of it, [100]. The
Hodgkin-Huxley model is analyzed with the tools of dynamical systems in much
detail in [40, 64], and these are useful references for methods of dynamical systems
theory in the neurosciences in general.

It is important to note that already a relatively small or short external current
that is barely able to increase V by about 5 mV suffices to trigger the spiking of the
neuron, that is, an increase of V by about 100 mV. Thus, a neuron is a device that can
amplify the effect of an external input. This input is usually transmitted to a neuron
via synaptic connections from other neurons, and one can then study the spreading
of activation in a network of neurons.

The Hodgkin-Huxley model is one of the very few biophysical models that not
only captures a qualitative behavior, but allows for numerically accurate predic-
tions. It is somewhat complicated, however, in the sense that it is not easy to assess
the effects of variations of the parameters involved and that systems of connected
Hodgkin-Huxley type neurons become very difficult to analyze. Therefore, at the
expense of numerical accuracy, one may seek a simplified model that still captures
the important qualitative aspects of spiking neurons. Thus, one seeks a simpler sys-
tem with the same qualitative behavior of its solutions as the Hodgkin-Huxley model.
This starts from the observation that the 4 dependent variables of the Hodgkin-Huxley
system evolve on 2 different time scales, a fast one for the evolution of V and m
(which both return rapidly to their rest states after a spike) and a slower one for n and
h. In particular, since m changes on the same time scale as V itself, it can be taken as
a function of the latter and essentially be eliminated from the system. Therefore, one
lumps V and m together as a single variable v, and n and 1 − h (which show similar
behavior) as w. This leads to the FitzHugh-Nagumo system5 (where we abbreviate
v̇ = dv

dt etc.)

5 Here, we do not give a detailed derivation of the FitzHugh-Nagumo system from the Hodgkin-
Huxley one. See e.g. [83, 92].
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v̇ = v(a − v)(v − 1) − w + α (4.3.54)

ẇ = bv − cw (4.3.55)

with constants a ∼ R, b, c > 0. The parameter α here represents the external current
Ie, i.e. the input to the neuron.
Thus, the term with m3 in (4.3.51) translates into the cubic term in (4.3.54). Since the
leading coefficient of that cubic term is negative, the dynamics is always confined
to some bounded region in the v,w-plane. w enters the system only linearly, and in
turn its own evolution equation is linear. The rest point V = V0 in (4.3.51) becomes
the origin in (4.3.54), (4.3.55).
It is an open problem to find the explicit solution of this system. Nevertheless, the
qualitative aspects of the dynamics can be readily analyzed (see e.g. [92]). We abbre-
viate

f (v) := v(a − v)(v − 1). (4.3.56)

Following the general strategy outlined above for the qualitative analysis of a sys-
tem of ODEs, we identify the rest points; this is achieved by putting all the time
derivatives, that is, the left hand sides of (4.3.54), (4.3.55) equal to 0 and solving the
resulting algebraic equation. We start with the analysis for α = 0. In that case, the
rest points for the FitzHugh-Nagumo system are determined by the equations

0 = f (v) − w (4.3.57)

0 = bv − cw. (4.3.58)

Depending on the values of the parameters a, b, c, the behavior is described by one
of the following two figures (Fig. 4.1)

w = b
c v

w > 0

w

p1

w < 0

a
w =  f (v)

v > 0 v < 0

1 v

w = b
c v

w

p1

p

p

2

3

v
w =  f (v)

a 1

Fig. 4.1 Graphic representation of the FitzHugh-Nagumo equations
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Thus, the rest points are at the intersections of the red (w = b
c v) and the green

(w = f (v)) curves. For generic parameter values, we either find one stable fixed
point P1, or two stable ones P1, P3 and one unstable one P2. In the vicinity of the
stable fixed point, the behavior of the system is determined by the quadratic term av2

of f (v) while the negative cubic term −v3 becomes effective only for large values,
leading to a resetting of v. Thus, small perturbations of P1 asymptotically return to
P1. If at w = 0, however, v is thrown above the value a, one gets into the region
v̇ > 0, and v thus increases until returning again to the green curve. As one also is in
the region ẇ > 0, w increases as well until reaching the red curve. In the situation
captured in the second figure, one then approaches the second stable fixed point P3.
In the situation of the first figure, however, one gets into the region where v̇ and ẇ

both are negative, and v and w thus decrease. The dynamics then gets into the region
v < 0 left and above the red curve, until v̇ eventually becomes positive again, and the
dynamics returns to the starting point P1. This process then is interpreted as the firing
of the neuron when the threshold a is exceeded. In summary, we see a qualitatively
different behavior, depending on whether the initial perturbation is small or large.
In the first case, v directly decreases to its rest point. In the second case, it needs to
increase first above a certain value before it is able to return to the rest point. We
shall return to the FitzHugh-Nagumo system in Sect. 4.3.2 below where we shall be
able understand its dynamics better.
We now wish to analyze the role of the parameter α that has been left out of the
picture so far. After introducing α, the curve v̇ = 0 becomes

w = f (v) + α; (4.3.59)

thus, the green curve is shifted. If α is positive, from the situation of the first figure, we
can either get into that of the second figure (a transition representing a saddle-node
bifurcation as a stable and an unstable rest point emerge from a contact point between
the two curves), or into that of the figure below (Fig. 4.2)

w = b
c v

w

w < 0 w > 0

p

v

v < 0

v > 0 w =  f (v)+ λ

Fig. 4.2 The role of the parameter α in the FitzHugh-Nagumo equations

In that scenario, the single fixed point P is unstable, and perturbations from the
rest position lead first away from P and then turn into oscillations around that rest
position as the asymptotic behavior is dominated by the cubic term. We see a Hopf
bifurcation, as described above.
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Our next example is relevant for a much larger scale, that of ecological interactions
of populations:
(3) The Lotka-Volterra system for the sizes xi of n interacting populations (good
references being [60, 61, 92]) is

ẋ i = xi (ai +
d∑

j=1

bi j x j ) for i = 1, ..., . (4.3.60)

ai is intrinsic growth or decay rate of the i th population in the absence of the other
populations, and bi j is the strength of the effect that the j th population has on the i th
one. a1 is positive (negative) iff xi has an inherent tendency to grow (decay), and bi j

is positive (negative) iff x j enhances (inhibits) the growth of xi , e.g. if population i
feeds on (is preyed upon by) population j ; both bi j and b ji are negative if the two
corresponding populations compete. The self-effect bii is typically negative, express-
ing a limiting carrying capacity of the environment or interspecific competition for
ressources, or at least non-positive. Thus, when xi gets too large, this term takes over
and keeps the population in check.
Biological and other populations always satisfy

xi (t) ≥ 0. (4.3.61)

Thus, we only need to investigate solutions in the positive quadrant.
For a single population, we consider the logistic or Fisher equation (see (4.3.7))

ẋ(t) = x(a + bx) with a > 0, b < 0. (4.3.62)

This is about a population growing under the condition of limited or constrained
resources, so that, when it gets too large, the capacity limits take over and keep it in
balance. x = 0 is an unstable fixed point, x = −a/b a stable one.
For the case of two populations, there are three non-trivial scenarios:

1. Predator-prey or parasitism: Population 1 is the prey or host, population 2 its
predator or parasite:

b12 < 0 (the prey is fed upon by the predators)

b21 > 0 (the presence of prey leads to growth of the predator population).

In the predator-prey scenario, one also typically has

a1 > 0 (the prey population grows in the absence of predators)

a2 < 0 (the predator population decays in the absence of prey).

2. Competition

b12 < 0 and b21 < 0 (the two populations inhibit each other).
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3. Symbiosis:

b12 > 0 and b21 > 0 (the two populations support each other).

We now look at the example of the two-dimensional predator-prey model without
intraspecific competition, that is, we have a prey population of size x1 and a predator
population of size x2,

ẋ1 = x1(a1 + b12x2)

ẋ2 = x2(a2 + b21x1), (4.3.63)

with

a1 > 0, a2 < 0, b12 < 0, b21 > 0.

We first observe that (x1, x2)=(0, 0) is a fixed point. Linearization shows that this
fixed point is a saddle. On the x1-axis, the solution expands according to x1(t) =
x1(0)ea1t , x2(t) = 0, whereas it contracts along the x2-axis as a2 < 0, x1(t) =
0, x2(t) = x2(0)ea2t . In particular, since the two axes are orbits, the solution cannot
cross them, that is, when starting with non-negative values, it will never turn negative,
in accordance with (4.3.61).
Another fixed point is

x̄1 = − a2

b21
, x̄2 = − a1

b12
(4.3.64)

All the other orbits in the positive quadrant are periodic, circling this fixed point
counterclockwise. This is seen either from the local behavior of the trajectories near
(0, 0) or by looking at

V (x1, x2) := b21(x̄1 log x1 − x1) − b12(x̄2 log x2 − x2), (4.3.65)

which satisfies

d

dt
V (x1(t), x2(t)) = −a2

ẋ1

x1 − b21 ẋ1 + a1
ẋ2

x2 + b12 ẋ2 by (4.3.64)

= 0 by (4.3.63).

Thus, V (x1, x2) is a constant of motion. V attains its unique maximum at (x̄1, x̄2),
and so the curves V (x1, x2) ≡ constant are circles, that is, closed curves, around
this point. The motion on such a circle is counterclockwise because in the case
x1(t) > x̄1, x2(t) > x̄2 for example, we have ẋ1(t) < 0, ẋ2(t) > 0.
On the line x1 = x̄1, ẋ2(t) = 0, that is, x2 stays constant there, and on x2 = x̄2, x1

stays constant.
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Thus, the prey and predator populations oscillate periodically in this model.
The behaviour of the preceding system with its family of periodic orbits is not

stable under small perturbations, as we already know from our discussion of the Hopf
bifurcation above. For example when we include intraspecific competition, obtaining
the system

ẋ1 = x1(a1 + b11x1 + b12x2)

ẋ2 = x2(a2 + b21x1 + b22x2) (4.3.66)

where we now assume

b11 < 0 (the members of the prey population compete for food or other ressources)

b22 → 0,

the qualitative behaviour of the system becomes different. We find a second fixed
point on the positive x1-axis, (− a1

b11
, 0). This fixed point is always attractive for x1,

because in case x2(t) = 0, we have the logistic equation (4.3.62)

ẋ1(t) = x1(a1 + b11x1) with a1 > 0, b11 < 0. (4.3.67)

It is also attractive for x2 when

a2b11 − a1b21 > 0.

In that case, there is no other fixed point in the positive quadrant, and in fact for any
solution

lim
t∅∞ x2(t) = 0.

The predator becomes extinct. Thus, we conclude that a small intraspecific compe-
tition among the prey population may lead to the extinction of their predators.
If, however,

a2b11 − a1b21 < 0,

then

x̄1 = a2b12 − a1b22

b11b22 − b12b21
> 0

x̄2 = a1b21 − a2b11

b11b22 − b12b21
> 0

is a fixed point in the positive quadrant.
With V (x1, x2) as in (4.3.65),



4.3 Dynamical Systems 133

d

dt
V (x1(t), x2(t)) = −b11b21(x̄1 − x1(t))2 + b12b22(x̄2 − x2(t))2 > 0,

unless (x1, x2) = (x̄1, x̄2) in which case this derivative vanishes. Thus, V (x1(t),
x2(t)) increases along every orbit, and equilibrium is possible only at its maximum,
at the fixed point (x̄1, x̄2). The orbits in the positive quadrant then all spiral counter-
clockwise towards this fixed point. Thus, in this case, the two populations eventually
converge to this fixed point.
We have observed that an arbitrarily small variation of the original system, here by
introducing competition among the hosts, changes the global qualitative behavior of
the solutions. Therefore, one cannot expect that this model leads to a qualitatively
robust and structurally stable behavior, and predictions based on such a model need
to be examined with great care. Volterra originally introduced the model to explain
the periodic oscillations in two fish populations in the Adriatic, one preying upon
the other one. As it turned out, however, this periodic behavior is not caused by an
interaction of the two populations according to the model, but rather by periodic
changes in the water temperature, that is, by external periodic forcing. Although the
model therefore fails its original purpose, it has become useful at a more abstract
level, for game theoretic models of interactions inside populations, see [60, 61].

4.3.2 Different Time Scales

For a better understanding of the FitzHugh-Nagumo system (4.3.54) and its capability
for modelling the spiking of neurons, it is insightful to look more closely at the fact
that the variables v and w change on different time scales—v is fast and w is slow.
We therefore now introduce some basic principles for the analysis of dynamical
systems with two different time scales. We consider a fast variable x coupled with a
slowly changing variable y, satisfying a system of the form

εẋ = f (x, y, ε)

ẏ = g(x, y, ε). (4.3.68)

x and y could be scalar or vector valued, f and g are smooth, t is the slow time
variable,˙= d

dt , and

0 < ε ≈ 1. (4.3.69)

By transforming to the fast time variable

ω := t

ε
, (4.3.70)

with ∪ = d
dω , we obtain the fast system
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x ∪ = f (x, y, ε)

y∪ = εg(x, y, ε). (4.3.71)

The slow and the fast system differ in the effects resulting from putting ε = 0. From
(4.3.68), we obtain the reduced problem

0 = f (x, y, 0)

ẏ = g(x, y, 0), (4.3.72)

whereas (4.3.71) yields the layered problem

x ∪ = f (x, y, 0)

y∪ = 0. (4.3.73)

In order to understand the interaction between the slow and the fast time scale, we
should therefore analyze the relation and the interplay between the reduced problem
(4.3.72) and the layered problem (4.3.73). First, the critical variety S defined by

f (x, y, 0) = 0 (4.3.74)

yields a constraint for the reduced problem, but represents equilibria for the layered
problem. When the derivative κ f (x,y,0)

κx has maximal rank (i.e., is √= 0 if x is a scalar
variable), then, by the implicit function theorem (see e.g. [67]), we can locally solve
(4.3.74) for x = h(y), that is, transform it into

f (h(y), y, 0) = 0. (4.3.75)

In this case, S is called normally hyperbolic, otherwise it is non-hyperbolic. In the
case where x is scalar, κ f (x,y,0)

κx is also scalar, and its sign decides the stability of S
for (4.3.73).

If
κ f (x, y, 0)

κx
< 0, S is attracting,

if
κ f (x, y, 0)

κx
> 0, S is repelling. (4.3.76)

When x is vector valued, the negative eigenvalues of κ f (x,y,0)
κx correspond to attract-

ing, the positive ones to repelling directions.
The question then is what of this persists for ε > 0. The answer is contained in

the Theorem of Fenichel [44].

Theorem 4.3.4 Assume that S is normally hyperbolic. If ε > 0 is sufficiently small,
then there exists a function hε(y) such that the slow manifold
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Sε = {(x, y) : x = hε(y)} (4.3.77)

is invariant under (4.3.68) and O(ε) close to S.

S can loose its normal hyperbolicity due to

1. bifurcation points of S associated with an eigenvalue 0 of κ f (x,y,0)
κx (these may

lead to fold points), or
2. different branches of S coming together.

Before applying this scheme to the FitzHugh-Nagumo system (4.3.54), we treat
the van der Pol oscillator which is similar, but technically somewhat simpler. This
oscillator is described by the system

εẋ = y − 1

3
x3 + x (4.3.78)

ẏ = −x . (4.3.79)

First, this system has a fixed point at (0, 0). This fixed point is unstable as the
linearization

εξ̇ = χ − x2ξ + ξ (4.3.80)

χ̇ = −ξ (4.3.81)

at this point has eigenvalues 1
2 ± i

⎪
3
4 which have a positive real part.

The slow manifold S (4.3.74) for (4.3.78), (4.3.79) is given by

y = 1

3
x3 − x, (4.3.82)

and according to (4.3.76), it is attracting for |x | > 1, repelling for |x | < 1, and not
normally hyperbolic for x = ±1. The slow flow on S is given by

(x2 − 1)ẋ = ẏ = −x by (4.3.79), (4.3.83)

hence

ẋ = x

1 − x2 . (4.3.84)

This becomes singular at the points x = ±1 where S looses its normal hyperbolicity.
Since the solutions of the system (4.3.78), (4.3.79) cannot escape to infinity, they
then exhibit periodic oscillations about the unstable fixed point at (0, 0). For ε ≈ 1,
they are approximated by the following behavior. For x > 1, the dynamics slowly
follows the slow manifold S until it reaches the point x = 1, y = − 2

3 whence S
becomes unstable, and the dynamics leaves S and quickly moves horizontally to the
left to the other point on S with y = − 2

3 where x < −1. There, S is stable again, and
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Fig. 4.3 The phase portrait of a van der Pol oscillator for ε = .1

the dynamics therefore slowly follows S again until it reaches x = −1, y = 2
3 . Here,

S looses again its stability, and the dynamics leaves S and quickly moves horizontally
to the right until it hits S again at a value of y = 2

3 where now x > 1. The cycle then
starts again. This is displayed in Figs. 4.3 and 4.4.

Another interesting phenomenon occurs if we introduce a parameter α and con-
sider

εẋ = y − 1

3
x3 + x (4.3.85)

ẏ = α − x . (4.3.86)

This system then has a fixed point at (x = α, y = α3

3 −α). Forα = ±1, this fixed point
then is one of the singular points where S is not normally hyperbolic. The linearization

(4.3.80), (4.3.81) at this fixed point then has eigenvalues 1−α2

2 ±
⎪

(1−α2)2

4 − 1, and
their real part vanishes for α = ±1. At this point, the fixed point then undergoes a
Hopf bifurcation. Such a dynamical phenomenon, a Hopf bifurcation at a singular
point of the slow manifold, is called a canard explosion, and it leads to an interesting
dynamical phenomenon in the limit ε ∅ 0. Here, however, we do not enter this in
more detail.

We shall now apply the slow-fast analysis to the FitzHugh-Nagumo system
(4.3.54) (with the control parameter α = 0),

εv̇ = v(a − v)(v − 1) − w := f (v,w) (4.3.87)

ẇ = bv − cw := g(v,w) (4.3.88)

with constants a ∼ R and b, c > 0. That is, v is the fast variable, and w the slow
one. Here, we have
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Fig. 4.4 The temporal dynamics of a van der Pol oscillator for ε = .1. Red x(t), blue y(t)

κ f

κv
= −3v2 + 2(a + 1)v − a, (4.3.89)

and this is

> 0 for
a + 1

3
− 1

3

√
a2 − a + 1 < v <

a + 1

3
− 1

3

√
a2 − a + 1

= 0 for v = a + 1

3
± 1

3

√
a2 − a + 1

> 0 for v <
a + 1

3
− 1

3

√
a2 − a + 1 or v >

a + 1

3
− 1

3

√
a2 − a + 1.

Thus, the critical variety S given by

v(a − v)(v − 1) − w = 0 (4.3.90)

is repelling for a+1
3 − 1

3

◦
a2 − a + 1 < v < a+1

3 − 1
3

◦
a2 − a + 1, attracting for

v < a+1
3 − 1

3

◦
a2 − a + 1 and v > a+1

3 − 1
3

◦
a2 − a + 1, and it is not normally

hyperbolic at the two points v± = a+1
3 ± 1

3

◦
a2 − a + 1 where the stability properties

change. For instance, for a = 0, v− = 0, v+ = 2
3 , whereas for a = 1, v− = 1

3 , v+ =
1. More generally, we have v− < 0 iff a < 0. Thus, for a < 0, the stable fixed
point v = 0, w = 0 lies between v− and v+ on the curve (4.3.90). Therefore, in this
case, for small ε, the dynamical picture qualitatively looks as follows. the dynamics
detaches from (4.3.90) at v− before reaching v = 0, jumps to the right stable part of
(4.3.90), moves along this curve until reaching v+ where it detaches again to jump
to the left stable part of (4.3.90), moves along this curve to v−, and the cycle repeats
itself. Biologically, this is interpreted as the periodic spiking of the neuron modelled
by the system (4.3.87), (4.3.88). This behavior is displayed in Figs. 4.5, 4.6 (where
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Fig. 4.5 The FitzHugh-Nagumo system for a = −0.1, b = 0.01, c = 0.02. Red line w = b/cv.
Green line w = f (v), Blue line graph of (v(t), w(t))

Fig. 4.6 A single spike in
the FitzHugh-Nagumo system
for a = −0.1, b = 0.01, c =
0.02. Red line v(t), blue line
w(t)
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we have put ε = 1, but have chosen b and c very small, which leads to an equivalent
effect as a small ε with b, c of order 1).

In contrast, when a > 0, the dynamics may exhibit a single spike, depending on
the initial values, but will eventually move into the stable rest point v = 0, w = 0.
This shown in Figs. 4.7, 4.8, 4.9 and 4.10.

For the slow flow on S as given by (4.3.90), we have

(−3v2 + 2(a + 1)v − a)v̇ = ẇ = bv − cw, (4.3.91)

whence

v̇ = 3cv2 + (b − 2c(a + 1))v + ca)

−3v2 + 2(a + 1)v − a
. (4.3.92)
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Fig. 4.7 Same dynamics as in Fig. 4.6 for a longer time, showing the periodic spiking pattern
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Fig. 4.10 The FitzHugh-Nagumo dynamics with the parameter values of Fig. 4.9 for a longer time,
showing the relaxation to the rest point

The slow-fast analysis of dynamical systems with different time scales has found
many other applications in biology. Goldbeter has systematically investigated the
role of biochemical oscillations that can be captured in ODE models of the type
discussed here for the generation of rhythmic cellular behavior, see [52]. For instance,
glycolysis is a metabolic process that generates free energy by a chain of enzyme
reactions. The intermediates of this process often exhibit oscillatory behavior. The
Goldbeter-Lefever model [53] models this via a system of differential equations
involving two time scales. A penetrating mathematical analysis of this model along
the lines outlined here is developed in [86].

There are many powerful mathematical methods for analyzing the transitions
between different scales. While most of these methods have been developed with
applications in physics in mind, they could also offer powerful tools for biological
problems involving different scales. A good overview of those methods is given in
[97].

4.4 Reaction-Diffusion Systems

References for this section include [68, 92, 110].

4.4.1 Reaction-Diffusion Equations

Let � ∈ R
d be open and bounded. We consider the equation

ut (x, t) = �u(x, t) + f (x, t, u) for x ∼ �, 0 < t < T (4.4.1)

u(x, 0) = δ(x) for x ∼ �

u(y, t) = g(y, t) for y ∼ κ�, 0 < t < T
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for continuous and bounded initial and boundary values δ, g and a differentiable
reaction term f .
We can consider this is a generalization of

1. either the ODE

ut (t) = f (t, u), (4.4.2)

(at least in the case where the function f in (4.4.1) does not depend on x), that
is, of an equation that does not depend on the spatial variable x and therefore
describes a spatially homogeneous state,

2. or the linear heat equation

ut (x, t) = �u(x, t), (4.4.3)

that is, of an equation that describes a linear diffusion process in space.

The first equation describes a reaction process, and thus, a reaction-diffusion equation
models reaction processes taking place at all points in space simultaneously and
being diffusively coupled. It turns out that such an interplay of reaction and diffusion
processes can lead to more interesting patterns than either of these processes alone.
In order to understand the relationship between the two processes better, we can
also introduce a diffusion coefficient d and consider the more general initial value
problem

ut (x, t) = d�u(x, t) + f (x, t, u), u(x, 0) = δ(x) (4.4.4)

When d = 0, we have a system of ODEs indexed by the points x , but without any
coupling or interaction between those points. Thus, at each point x , the dynamics is
driven by the reaction term, and the result depends only on the initial condition δ(x)

at that particular x . When we let d ∅ ∞, we obtain an equation for the spatially
integrated variables, that is, a single ODE for the spatially averaged quantity, and
there will be no variation between the different points x . In general, in physical and
biological processes, conservation rules will limit growth, and growth at one point x
then is only possible at the expense of other points. In principle, a reaction-diffusion
equation can then lead to optimal resource allocation in the limit t ∅ ∞. The time
scale on which this takes place will depend on the diffusion coefficient d.
Recalling (4.3.8), let us consider

ut = �u + u(1 − u), (4.4.5)

for u = u(x, t), that is, the logistic (Verhulst, Fisher) equation with a diffusion term.
This equation is sometimes called the Kolmogorov-Fisher equation. It can serve as
a model for a population in a uniform habitat with limited capacity that reproduces
and diffuses in space. As such, we expect that the behavior of a solution u(x, t) at
a point x is not very different from the solution of the ODE yt (t) = y(t)(1 − y(t))
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with initial value y(0) = u(x, 0). In particular, we expect that a solution u(x, t)
with a positive initial value converges to 1 for t ∅ ∞, unless this prevented by the
boundary condition. However, there will be diffusion between the different x ∼ �,
and this may decrease the differences in their respective initial conditions faster
than the dynamical evolution by the reaction term alone. This effect becomes more
important when we consider the spatially inhomogeneous equation

ut (x, t) = �u(x, t) + u(x, t)(a(x) − b(x)u(x, t)) (4.4.6)

for positive functions a, b. Thus, the intrinsic growth rate and the capacity limitations
depend on x . Now, the stable equilibrium point for the reaction term, u = a(x)

b(x)
,

depends on the spatial position x . Without diffusion, at every x then in the limit
t ∅ ∞, this equilibrium would be obtained. With diffusion, however, we expect
some harmonization between the higher and lower values of that equilibrium.

In applications, the dependent variable u typically describes some density, and
therefore only non-negative solutions u will be meaningful.

Example:

ut (x, t) = �u(x, t) + u2(x, t) for x ∼ �, 0 < t (4.4.7)

u(x, 0) = δ(x) for x ∼ �

u(y, t) = 0 for y ∼ κ�, 0 < t

with

δ > 0 in �. (4.4.8)

We recall that the ODE

ut (t) = u2(t) (4.4.9)

for positive initial value u(0) did blow up in finite time (cf. (4.3.9), (4.3.10)), that is,
did not possess a solution that exists for all t > 0. We shall now show that the same
happens for (4.4.7) provided the initial values δ are sufficiently large. To make that
condition precise, we recall the first Dirichlet eigenvalue α1 and the corresponding
eigenfunction u1 from Theorem 4.1.1, solving

�u1 + α1u1 = 0, u1 = 0 on κ�,

and recall that, by (4.1.68),

u1(x) > 0 for x ∼ �; (4.4.10)

we may normalize u1 to satisfy
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∫

�

u1(x)dx = 1. (4.4.11)

By the maximum principle Lemma 4.1.2, because of (4.4.8), we have

u(x, t) > 0 for x ∼ �, 0 < t. (4.4.12)

We look at the auxiliary function

y(t) :=
∫

�

u(x, t)u1(x)dx (4.4.13)

which satisfies

ẏ(t) =
∫

�

ut (x, t)u1(x)dx =
∫

�

(�u(x, t) + u2(x, t))u1(x)dx

=
∫

�

(�u1(x) u(x, t) + u2(x, t)u1(x))dx = −α1 y(t) +
∫

�

u2(x, t)u1(x)dx

≥ −α1 y(t) + y2(t) (4.4.14)

since, by the definition (4.4.13), Hölder’s inequality,6 and (4.4.11)

y2(t) → (

∫
u2(x, t)u1(x)dx)(

∫
u1(x)dx) =

∫
u2(x, t)u1(x)dx .

When now

y(0) =
∫

�

u(x, 0)u1(x)dx > α1, (4.4.15)

then (4.4.14) easily implies that y(t) will blow up in finite time, similarly to a solution
of (4.4.9) with positive u(0). (More precisely, (4.4.15) implies that ẏ(0) > 0, and
then subsequently ẏ(t) > 0 for all t ≥ 0, and the solution will grow and the quadratic
term y2 will dominate the behavior.) This implies that, when (4.4.15) holds, (4.4.7)
cannot possess a smooth solution for all positive t .

The maximum principle will allow for a comparison of solutions of a reaction-
diffusion equation:

6 Hölder’s inequality says that for two L2 functions f, g (that is, functions with finite∫
f 2(x)dx,

∫
g2(x)dx), we have

(

∫
f (x)g(x)dx)2 →

∫
f 2(x)dx

∫
g2(x)dx .

There are also other such calculus inequalities, like the Poincaré and Sobolev ones, which are very
useful for the control of solutions of PDEs.
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Lemma 4.4.1 Let u, v be of class C2 for x ∼ �, 0 < t < T , and bounded in
� × [0, T ], and satisfy

ut − �u − f (x, t, u) ≥ vt − �v − f (x, t, v) for x ∼ �, 0 < t < T (4.4.16)

u(x, 0) ≥ v(x, 0) for x ∼ �, (4.4.17)

u(y, t) ≥ v(y, t) for y ∼ κ�, 0 < t < T, (4.4.18)

or alternatively

κu(y, t)

κn
≥ κv(y, t)

κn
for y ∼ κ�, 0 < t < T . (4.4.19)

Then

u(x, t) ≥ v(x, t) for x ∼ �, 0 → t → T . (4.4.20)

Proof.
w(x, t) := u(x, t) − v(x, t)

is non-negative for x ∼ κ�, 0 < t < T and x ∼ �, t = 0 and satisfies

wt − �w − fχ(x, t, χ)w ≥ 0 (4.4.21)

for some intermediate χ = ηu + (1 − η)v, 0 → η → 1. The function

z(x, t) := w(x, t)e−μt (4.4.22)

then satisfies

eμt (zt − �z − fχ(x, t, χ)z − μz) = wt − �w − fχ(x, t, χ)w ≥ 0 (4.4.23)

and by making μ sufficiently large, since fχ(x, t, χ) is bounded by the boundedness
assumption on u, v, therefore

zt − �z ≥ 0 (4.4.24)

as long as z ≥ 0. The strong maximum principle (Lemma 4.1.2) then implies that
when z is non-negative and positive somewhere, it cannot become 0 for some x ∼
�, t > 0. Since non-negativity of z implies non-negativity of the difference w of our
solutions, this yields the claim. �

The version of this lemma where an inequality between the exterior normal deriv-
atives of the solutions is assumed allows for a comparison of a solution of (4.4.1)
where f does not depend on x , that is,

ut = �u + f (t, u) (4.4.25)
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u(x, 0) = δ(x) (4.4.26)

κu(y, t)

κn
= 0 on κ� (4.4.27)

with a solution of the corresponding ODE

yt = f (t, y) (4.4.28)

y(0) = y0. (4.4.29)

When, for example,

y0 → δ(x) for all x ∼ �, (4.4.30)

then we conclude that

y(t) → u(x, t) for all x ∼ �. (4.4.31)

Similarly, when y0 is bigger than δ in �, then the corresponding solution y of (4.4.28)
controls the solution u of (4.4.25) from above.
For example, when

f (t, u) = −u3 (4.4.32)

then any solution y(t) of (4.4.28) goes to zero for t ∅ ∞, and when we can then
sandwich any solution u(x, t) of (4.4.25) between solutions of (4.4.28) with smaller
and larger initial values, resp., than the initial values δ of u, and therefore conclude
that such a solution u—if it exists for all time—also tends to 0 for t ∅ ∞.
In fact, the general theory of parabolic equations tells us that a solution exists for all
time when it can be shown to be bounded. The latter is precisely what can be achieved
by such comparison arguments based on the maximum principle. In particular, when
solutions of the corresponding reaction ODE stay bounded—and hence exist for all
time—for a range of initial values, then so do solutions of the reaction-diffusion
equation for the same range of initial values.
Following [27], we shall now derive such a confinement result

Theorem 4.4.1 We consider a solution u of class C2 of the initial-boundary value
problem (4.4.1)

ut (x, t) = �u(x, t) + f (x, t, u) for x ∼ �, 0 < t < T (4.4.33)

u(x, 0) = δ(x) for x ∼ �

u(y, t) = g(y, t) for y ∼ κ�, 0 < t < T

Suppose that the initial values δ and the boundary values g both satisfy

m → δ(x), g(x, t) → M (4.4.34)
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for all x, t where the numbers m, M satisfy

f (x, t, m) > 0 (4.4.35)

f (x, t, M) < 0. (4.4.36)

Then

m → u(x, t) → M (4.4.37)

for all x ∼ �, t ≥ 0. (The solution u(x, t) exists for all time in the present situation
when f is assumed to satisfy a Lipschitz bound w.r.t. u; see Sect.4.4.3 for general
statements in this regard.)

Proof. We shall treat the more general equation

ut (x, t) = �u(x, t) +
d∑

j=1

h j (x, t, u)ux j + f (x, t, u) (4.4.38)

that will occur below in Sects. 4.5, 6.2, 6.3, with bounded functions h j . (For the
purpose of the present argument, we do not need to specify regularity assumptions
on these h j . We should keep in mind, however, that our reasoning will require that the
solution u be of class C2, and in order to guarantee that, assumptions like continuity
of the h j are needed.)
We shall consider the upper bound M , the case of the lower one being analogous.
Since f is continuous, (4.4.37) continues to hold for M ∪ = M + η for small η.
Therefore, the result follows if we can show that

u(x, t) < M ∪ for all x and 0 → t < t0 and u(x0, t0) = M ∪ (4.4.39)

imply

κ

κt
u(x0, t0) < 0. (4.4.40)

Now, that is easy: Since u(x0, t0) ≥ u(x, t0) for all x , u(., t0) achieves a maximum
at x0, and therefore ux j (x0, t0) = 0 for all j , as well as �u(x0, t0) → 0. Combined
with f (x, t, M ∪) < 0, (4.4.38) implies (4.4.40), indeed. �

4.4.2 Travelling Waves

We consider the reaction-diffusion equation in one-dimensional space

ut = uxx + f (u) (4.4.41)

http://dx.doi.org/10.1007/978-1-4471-6353-4_6
http://dx.doi.org/10.1007/978-1-4471-6353-4_6
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and look for solutions of the form

u(x, t) = v(x − ct) = v(s), with s := x − ct. (4.4.42)

This travelling wave solution moves at constant speed c, assumed to be >0 w.l.o.g,
in the increasing x-direction. In particular, if we move the coordinate system with
speed c, that is, keep x − ct constant, then the solution also stays constant. We do
not expect such a solution for every wave speed c, but at most for particular values
that then need to be determined.
A travelling wave solution v(s) of (4.4.41) satisfies the ODE

v∪∪(s) + cv∪(s) + f (v) = 0, with ∪ = d

ds
. (4.4.43)

When f ≡ 0, then a solution must be of the form v(s) = c0 + c1e−cs and therefore
becomes unbounded for s ∅ −∞, that is for t ∅ ∞. In other words, for the
heat equation, there is no non-trivial bounded travelling wave. In contrast to this,
depending on the precise non-linear structure of f , such travelling waves solutions
may exist for reaction-diffusion equations. This is one of the reasons why such
equations are interesting.
Example: The Kolmogorov-Fisher equation (4.4.5)

ut = �u + u(1 − u). (4.4.44)

It models the spatial spread of a population that grows in an environment with limited
carrying capacity. Fisher used it as a model for the spread of an advantageous gene
in a population. One then is only interested in non-negative solutions u.
Here, we consider the case where space has only one dimension,

ut = uxx + u(1 − u). (4.4.45)

The fixed points of the underlying reaction equation

ut = u(1 − u) (4.4.46)

are u = 0 and u = 1. The first is unstable, the second stable. The travelling wave
equation (4.4.43) then is

v∪∪(s) + cv∪(s) + v(1 − v) = 0. (4.4.47)

With w := v∪, this is converted into the first order system

v∪ = w, w∪ = −cw − v(1 − v). (4.4.48)
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The fixed points then are (0, 0) and (1, 0). The eigenvalues of the linearization at
(0, 0) (cf. 4.3.1, in particular, the discussion following (4.3.19)) are

α± = 1

2
(−c ±

√
c2 − 4). (4.4.49)

For c2 ≥ 4, they are both real and negative, and so we obtain a stable node. For
c2 < 4, they are conjugate complex with a negative real part, and we obtain a stable
spiral. Since a stable spiral oscillates about 0, in that case, we cannot expect a non-
negative solution, and so, we do not consider this case here. Also, for symmetry
reasons, we may restrict ourselves to the case c > 0, and since we want to exclude
the spiral then to c ≥ 2.
The eigenvalues of the linearization at (1, 0) are

α± = 1

2
(−c ±

√
c2 + 4); (4.4.50)

they are real and of different signs, and we obtain a saddle. Thus, the stability prop-
erties are reversed when compared to (4.4.46) which, of course, results from the fact
that ds

dt = −c is negative.
For c ≥ 2, one finds a solution with v ≥ 0 from (1, 0) to (0, 0), that is, with
v(−∞) = 1, v(∞) = 0. v∪ → 0 for this solution. We recall that the value of a
travelling wave solution is constant when x − ct is constant. Thus, in the present
case, when time t advances, the values for large negative values of x which are close
to 1 are propagated to the whole real line, and for t ∅ ∞, the solution becomes 1
everywhere. In this sense, the behavior of the ODE (4.4.46) where a trajectory goes
from the unstable fixed point 0 to the stable fixed point 1 is translated into a travelling
wave that spreads a nucleus taking the value 1 for x = −∞ to the entire space.
The question for which initial conditions a solution of (4.4.45) evolves to such a trav-
elling wave, and what the value of c then is, has been widely studied in the literature
since the seminal work of Kolmogorov and his coworkers [84]. For example, they
showed when u(x, 0) = 1 for x → x1, 0 → u(x, 0) → 1 for x1 → x → x2, u(x, 0) = 0
for x ≥ x2, then the solution u(x, t) evolves towards a travelling wave with speed
c = 2. In general, the wave speed c depends on the asymptotic behavior of u(x, 0) for
x ∅ ±∞. Under the assumptions just mentioned, the solution thus converges to the
travelling wave with minimal wave speed. To make this more precise, we consider
the simplest case

u(x, 0) = 1 for x < 0, u(x, 0) = 0 for x ≥ 0. (4.4.51)

For each t > 0, we then find a unique θ(t) by

u(θ(t), t) = 1

2
. (4.4.52)

u(x, t) then converges to the travelling wave v(x − 2t) in the sense that
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u(x + θ(t), t) ∅ v(x) for all x ∼ R as t ∅ ∞. (4.4.53)

Since uxθ
∪(t) + ut = 0 and we have the asymptotic relationship ut

ux
∅ −2v∪

v∪ = −2
for our wave speed c = 2, we also obtain

θ∪(t) ∅ 2 for t ∅ ∞. (4.4.54)

This also yields some insights for the asymptotic analysis when we let the diffusion
speed go to 0, that is, consider instead of (4.4.45)

ut = ηuxx + u(1 − u). (4.4.55)

In this case, assuming again (4.4.51), the minimal wave speed is c = 2
◦

η. The
solution u then converges to a travelling wave vη(x − 2

◦
ηt) with that wave speed,

that is, u(x + θ(t), t) ∅ vη(x) and θ∪(t) ∅ 2
◦

η for t ∅ ∞. Thus, of course, the
wave front moves slower and slower as the diffusion speed decreases.
Alternatively, one may look at y(x, ω ) := u(x, ω

η ) which then solves

yω = yxx + 1

η
y(1 − y) (4.4.56)

leading to the minimal wave speed 2◦
η

with which the solution asymptotically moves.
Here, we have rescaled the time so that the diffusion speed stays the same, but
the reaction term then explodes in the limit, causing faster and faster wave front
propagation.

4.4.3 Reaction-Diffusion Systems

We now consider systems of reaction-diffusion equations that are coupled through
the reaction terms. These are systems of the form

uξ
t (x, t) − dξ�uξ(x, t) = Fξ(x, t, u) for x ∼ �, t > 0,ξ = 1, . . . , n.

(4.4.57)
Here, u = (u1, . . . , un) has n components, and the diffusion coefficients dξ are
non-negative constants. When some dξ = 0, the corresponding equation reduces to
an ordinary differential equation for uξ as a function of time t ; through the reaction
term, it will still be coupled to the other components of u, however, which satisfy
partial differential equations when their diffusion coefficients are positive.
For modelling structure formation by systems of reaction-diffusion equations, it
is important to allow for different diffusion coefficients dξ (one coefficient <<1,
another >>1): one variable can build spatial concentrations and adapts slowly
whereas the other, fast adapting one gets enslaved.
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We now state precise existence theorems for the initial-boundary value problem
for (4.4.57). The first one is concerned with the existence of solutions for a short time.
It is the analogue of the Picard-Lindelöf Theorem 4.3.1. The idea of the proof again is
some construction principle. In addition, the maximum principle (see Lemma 4.1.2)
plays an important role. This is the reason why now, in contrast to Theorem 4.3.1,
we get existence only in forward time.

Theorem 4.4.2 Let, as always, the diffusion constants dξ all be nonnegative. Let
� ∈ R

d be a bounded domain of class C2, and let

g ∼ C0(κ� × [0, t0], R
n), f ∼ C0(�, R

n),

with g(x, 0) = f (x) for x ∼ κ�,

and let

F ∼ C0(� × [0, t0] × R
n, R

n)

be Lipschitz continuous w.r.t. u, that is, there exists a constant L with

|F(x, t, u1(x)) − F(x, t, u2(x))| → L|u1(x) − u2(x)| (4.4.58)

for x ∼ �, t ∼ [0, t0], u1, u2 ∼ R
n.

Then there exists some 0 < t1 → t0 for which the initial boundary value problem

uξ
t (x, t) − dξ�uξ(x, t) = Fξ(x, t, u) for x ∼ �, 0 < t → t1,ξ = 1, . . . , n,

(4.4.59)

u(x, t) = g(x, t) for x ∼ κ�, 0 < t → t1,

u(x, 0) = f (x) for x ∼ �, (4.4.60)

admits a unique solution that is continuous on � × [0, t1].
The proof of this result, while not too difficult and being based on the same

principle as that of the Picard-Lindelöf Theorem, that is, a contraction argument for
an iteration, is too long to be presented here, and we refer to [68] and the references
listed there.
The next result addresses the issue of long-time existence.

Theorem 4.4.3 We assume that the preceding assumptions hold for all t0 < ∞. We
assume furthermore that the solution u(x, t) = (u1(x, t), . . . , un(x, t)) of (4.4.59)
satisfies the a-priori bound

sup
x∼�,0→ω→t

|u(x, ω )| → K (4.4.61)
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for all times t for which it exists, with some fixed constant K . Then the solution
u(x, t) exists for all times 0 → t < ∞.

This result again follows from the previous, because the boundedness assumption
on the solution makes it possible to apply local existence on time intervals of some
fixed length t1, independent of u and t , and therefore to keep extending the existence
interval by steps of length t1.
This naturally leads to the question under which assumptions such an a-priori bound
as in Theorem 4.4.3 holds. This is answered by the analogue of Theorem 4.3.3, that
is, by the extension of Theorem 4.4.1 to systems—the proof of that result extends to
the present case.7

Theorem 4.4.4 Under the above assumptions, suppose that the initial values f and
the boundary values g both satisfy

mξ → f ξ(x), gξ(x, t) → Mξ (4.4.62)

for all x, t where the numbers mξ, Mξ satisfy

Fξ(x, t, u1, . . . , uξ−1, mξ, uξ+1, . . . , un) > 0 (4.4.63)

Fξ(x, t, u1, . . . , uξ−1, Mξ, uξ+1, . . . , un) < 0 (4.4.64)

whenever mξ → uξ → Mξ for ξ = 1, . . . , n. Then we have the a-priori bounds

mξ → uξ(x, t) → Mξ (4.4.65)

for all x ∼ �, t ≥ 0. Consequently, the solution u(x, t) exists for all time.

The region {u ∼ R
n : mξ → uξ → Mξ (ξ = 1, . . . , n)} is called an invariant

region for the reaction-diffusion system because a solution that starts in it will never
leave it. The geometric idea behind this is of course that near the lower boundary
value mξ, the component uξ of the solution will increase, because of (4.4.63) and the
maximum principle Lemma 4.1.2, whereas at the upper value Mξ, it will decrease.
In other words, the properties of the reaction terms Fξ force the solution to stay
inside the region. Therefore, it has to stay bounded.
We now look at an example where Theorem 4.4.4 can be applied: The FitzHugh-
Nagumo equations with diffusion, that is (4.3.54), (4.3.55) for functions v(x, t),
w(x, t) (in place of the notation u1(x, t), u2(x, t)) that now also depend on a spatial
variable

7 Only the inclusion of derivatives of u as in (4.4.38) would require an additional assumption, to
ensure that

∑n
π=1

∑d
j=1 h j

ξπuπ

x j (this is the appropriate generalization of the corresponding term
in (4.4.38)) vanishes whenever uξ assumes a maximum value M or a minimum value m, see [27];
the natural possibility is to assume that each h j

ξπ is a diagonal matrix, that is, the only nonvanishing

entries are of the form h j
ξξ so that in the ξth equation, only derivatives of uξ appear.
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vt = �v + v(a − v)(v − 1) − w (4.4.66)

wt = η�w + bv − cw (4.4.67)

for some η ≥ 0.
We choose m1, M1, m2, M2 such that (see Fig. 4.1)

1. (m1, m2) is below the curves v(a − v)(v − 1) − w = 0 and bv − cw = 0 (in
particular, m1 and m2 are both negative)

2. (M1, m2) is above the curve v(a − v)(v − 1) − w = 0, but below the curve
bv − cw = 0, and therefore bv − cw > 0 whenever m1 → v → M1, w = m2

3. (m1, M2) is below v(a − v)(v − 1) − w = 0, but above the curve bv − cw = 0;
therefore v(a − v)(v − 1) − w > 0 for v = m1, m2 → w → M2

4. (M1, M2) is above v(a − v)(v − 1) − w = 0, and also above bv − cw = 0;
therefore v(a − v)(v − 1) − w < 0 for v = M1, m2 → w → M2 as well as
bv − cw < 0 whenever m1 → v → M1, w = M2.

We observe that in fact we can find arbitrarily large rectangles with these properties.
Thus, all assumptions of Theorem 4.4.4 are satisfied for arbitrary bounded initial
and boundary values, that is, we can always find an invariant region containing them.
We conclude the long-time existence of solutions of (4.4.66), (4.4.67) for any such
initial and boundary values.

We now turn to the question of when spatial oscillations die out as time tends
to infinity, that is, under which conditions the solution of a reaction-diffusion sys-
tem tends to a spatially homogeneous state. In order to have access to the simplest
situation, in place of the Dirichlet boundary conditions that we have used for our
existence results, we now assume homogeneous Neumann boundary conditions

κuξ(x, t)

κn
= 0 for x ∼ κ�, t > 0, ξ = 1, . . . , n. (4.4.68)

For simplicity, we only discuss the case F = F(u), that is, F is independent of x
and t .
Again, we assume that the solution u(x, t) stays bounded and consequently exists
for all time. We want to compare u(x, t) with its spatial average ū defined by

ūξ(t) := 1

∞�∞
∫

�

uξ(x, t)dx (4.4.69)

where ∞�∞ is the volume of �.
We also assume a version of (4.4.58):

sup
x,t

∞d F(u(x, t))

du
∞ → L . (4.4.70)

We let α1 > 0 be the smallest Neumann eigenvalue of � on � (see Theorem 4.1.2).
In order that diffusion can play its role of homogenizing the solution, we need to
assume that
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d := min
ξ=1, ..., n

dξ > 0 (4.4.71)

(this d should not be confused with the space dimension).

Theorem 4.4.5 Under the assumptions just stated, let u(x, t) be a bounded solution
of (4.4.57) with homogeneous Neumann boundary conditions (4.4.68). If

ϕ := dα1 − L > 0 (4.4.72)

then spatial oscillations of u decay exponentially on average,

∫

�

d∑

i=1

n∑

ξ=1

uξ
xi (x, t)uξ

xi (x, t)dx → c1e−2ϕt , (4.4.73)

and u approaches its spatial average in the L2-sense,
∫

�

|u(x, t) − ū(t)|2dx → c2e−2ϕt . (4.4.74)

Here, c1, c2 are some constants that depend on the various parameters involved.

Proof. The quantity to consider is

E(u(·, t)) = 1

2

∫

�

d∑

i=1

n∑

ξ=1

uξ
xi u

ξ
xi dx .

(In more condensed notation, E(u(·, t)) = 1
2

∫
�

|Du(x, t)|2dx .)
We compute its temporal evolution:

d

dt
E(u(·, t)) =

∫

�

d∑

i=1

n∑

ξ=1

uξ
t xi u

ξ
xi dx

=
∫

�

d∑

i=1

n∑

ξ=1

uξ
xi

κ(dξ�uξ + Fξ(u))

κxi
dx

= −
∫

�

n∑

ξ=1

dξ�uξ�uξdx

+
∫

�

d∑

i=1

n∑

ξ=1

uξ
xi

n∑

π=1

κFξ

κuπ
uπ

xi , since
κu(x, t)

κζ
= 0 for x ∼ κ�

→ (−dα1 + L)

∫

�

d∑

i=1

n∑

ξ=1

uξ
xi u

ξ
xi dx = −2ϕE(u(·, t)), (4.4.75)
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using Corollary 4.1.1 and (4.4.72). When we integrate this differential inequality we
obtain (4.4.73).
By Corollary 4.1.1, we also have

α1

∫

�

|u(x, t) − ū(t)|2dx →
∫

�

d∑

i=1

n∑

ξ=1

uξ
xi (x, t)uξ

xi (x, t)dx, (4.4.76)

and therefore, (4.4.73) yields (4.4.74). �

We can also derive a similar result for the temporal variation.

Theorem 4.4.6 Under the same assumptions stated, let u(x, t) again be a bounded
solution of (4.4.57) with homogeneous Neumann boundary conditions (4.4.68). If
again

ϕ = dα1 − L > 0 (4.4.77)

then temporal oscillations of u decay exponentially on average,

∫

�

n∑

ξ=1

uξ
t (x, t)uξ

t (x, t)dx → c3e−2ϕt , (4.4.78)

for some constant c3.

Proof. The quantity to consider is

E0(u(·, t)) = 1

2

∫

�

n∑

ξ=1

uξ
t uξ

t dx .

(In more condensed notation, E0(u(·, t)) = 1
2

∫
�

|ut (x, t)|2dx .)
We compute its temporal evolution:

d

dt
E0(u(·, t)) =

∫ n∑

ξ=1

uξ
t uξ

t t

=
∫ n∑

ξ=1

uξ
t

κ

κt
(dξ�uξ + Fξ(u))

= −dξ

∫ d∑

i=1

n∑

ξ=1

uξ
xi t u

ξ
xi t +

∫ n∑

ξ=1

uξ
t

n∑

π=1

κFξ

κuπ
uπ

t

→ (−α1d + L)

∫ n∑

ξ=1

uξ
t uξ

t

= 2(−α1d + L)E0(u(·, t)),
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using again Corollary 4.1.1, this time for ut which also satisfies a Neumann boundary
condition because u does, and (4.4.77). When we integrate this differential inequality
we obtain (4.4.78). �

When all the diffusion constants dξ are equal, one can also establish pointwise
decay estimates instead of the coarser L2-estimates of the preceding theorem.

Theorem 4.4.7 Let u(x, t) be a bounded solution of

uξ
t (x, t) − �uξ(x, t) = Fξ(x, t, u) for x ∼ �, t > 0 (4.4.79)

with homogeneous Neumann boundary conditions

κuξ(x, t)

κn
= 0 for x ∼ κ�, t > 0, ξ = 1, . . . , n. (4.4.80)

If

ϕ = α1 − L > 0 (4.4.81)

then u approaches its spatial average exponentially,

sup
x∼�

|u(x, t) − ū(t)| → c4e−2ϕt , (4.4.82)

c4 again being some constant.

For the proof, which needs a stronger analytical tools, namely the regularity theory
of parabolic partial differential equations and the Sobolev embedding theorem, to
convert integral estimates into pointwise ones, we refer to [68]. Similarly, one may
obtain a pointwise decay of ut . Thus, u will tend to a constant as t ∅ ∞, that is, the
solution of the reaction-diffusion system will tend towards a homogeneous steady
state. Of course, this is not so interesting for pattern formation, and therefore, we
now turn to a situation where something else happens.

4.4.4 The Turing Mechanism

The Turing mechanism creates instabilities w. r. t. spatial variables for temporally
stable states in a system of two coupled reaction-diffusion equations with different
diffusion constants.

The system thus is of the form

Xt = DX�X + F(X, Y ),

Yt = DY �Y + G(X, Y ). (4.4.83)
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Here, X is an activator, and Y an inhibitor, and these properties are encoded in the
derivatives of F and G, as we shall see below. A key point will be that the inhibitor
Y diffuses faster than the activator X , i.e.

DY > DX . (4.4.84)

Examples:

(1) The Schnakenberg reaction is the mechanism

X � A, B ∅ Y, 2X + Y ∅ 3X (4.4.85)

where the concentrations of A and B are kept constant and the concentrations
of X and Y are governed by the equations

F(X, Y ) = k1 − k2 X + k3 X2Y,

G(X, Y ) = k4 − k3 X2Y (4.4.86)

where k1,2,3,4 > 0 are the reaction rates in (4.4.85).
(2) The Gierer-Meinhardt system

F(X, Y ) = k1 − k2 X + k3 X2

Y ,

G(X, Y ) = k4 X2 − k5Y.
(k1, ..., 5 > 0) (4.4.87)

(3) The Thomas system

F(X, Y ) = k1 − k2 X − k5 XY
k6+k7 X+k8 X2 ,

G(X, Y ) = k3 − k4Y − k5 XY
k6+k7 X+k8 X2 .

(k1, ..., 8 > 0) (4.4.88)

After rescaling the independent and the dependent variables, the system (4.4.83)
becomes

ut = �u + λ f (u, v),

vt = d�v + λg(u, v).
(4.4.89)

where the parameter λ > 0 is kept for the subsequent analysis.

The preceding examples then become:

(1)

ut = �u + λ(a − u + u2v),

vt = d�v + λ(b − u2v).
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(2)

ut = �u + λ(a − bu + u2

v
),

vt = d�v + λ(u2 − v),

or slightly more generally

ut = �u + λ
(

a − u + u2

v(1 + ku2)

)
,

vt = d�v + λ(u2 − v).

(3)

ut = �u + λ(a − u − ρuv

1 + u + K u2 ),

vt = d�v + λ(ξ(b − v) − ρuv

1 + u + K u2 ).

Here u, v : � × R
+ ∅ R for some bounded domain � ∈ R

d , and we fix the
initial values

u(x, 0), v(x, 0) for x ∼ �,

and impose Neumann boundary conditions

κu

κn
(x, t) = 0 = κv

κn
(x, t) for all x ∼ κ�, t ≥ 0.

(We have already seen in Sect. 4.4.1 that Neumann boundary conditions are well
adapted for comparing the solutions of reaction-diffusion system with those of the
underlying reaction system. One can also study periodic boundary conditions, or,
more generally, consider u, v as functions on some compact manifold in place of the
domain �.)

The mechanism starts with a fixed point (u�, v�) of the reaction system:

f (u�, v�) = 0 = g(u�, v�)

that is linearly stable. One then investigates its stability under spatially inhomoge-
neous perturbations. According to the discussion following (4.3.20), the stability as
a solution of the reaction system means that all eigenvalues α of

A :=
⎨

fu(u�, v�) fv(u�, v�)

gu(u�, v�) gv(u�, v�)

⎩
(4.4.90)

have negative real part,
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Re(α) < 0. (4.4.91)

These eigenvalues are

α1,2 = 1

2
λ
(
( fu + gv) ±

⎪
( fu + gv)

2 − 4( fugv − fvgu)
)
. (4.4.92)

where the derivatives of f and g are evaluated at (u�, v�). We have Re(α1) < 0 and

Re(α2) < 0 if

fu + gv < 0, (4.4.93)

fugv − fvgu > 0. (4.4.94)

Since the diffusion terms are already linear, we thus obtain the linearization of
the reaction-diffusion system about (u�, v�) as

wt =
⎨

1 0
0 d

⎩
�w + λ Aw. (4.4.95)

According to Theorem 4.1.2, we let uk be an orthornormal basis of eigenfunctions
of � on � with Neumann boundary conditions and corresponding eigenvalues αk ,

�uk + αkuk = 0 in �,

κuk

κn
= 0 on κ�. (4.4.96)

We then look for solutions of (4.4.95) of the form

wkeαt =
⎨

ξuk

πuk

⎩
eαt . (4.4.97)

Inserting this into (4.4.95) yields

αwk = −
⎨

1 0
0 d

⎩
αkwk + λ Awk . (4.4.98)

This means that α thus should be an eigenvalue of

(
λ A −

⎨
1 0
0 d

⎩
αk

)
.

Written out, the eigenvalue equation is
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α2 + α(αk(1 + d) − λ( fu + gv))

+ dαk
2 − λ(d fu + gv)αk + λ2( fugv − fvgu) = 0.

(4.4.99)

As a quadratic equation, this has two solutions α(k)1,2. Since α0 = 0, (4.4.93),
(4.4.94) imply

Re α(0)1,2 < 0.

We now wish to investigate whether we can have

Re α(k) > 0 (4.4.100)

for some higher mode αk .
Applying (4.4.93) again, since αk > 0, d > 0, we have

αk(1 + d) − λ( fu + gv) > 0.

Thus for (4.4.100), we should have

dαk
2 − λ(d fu + gv)αk + λ2( fugv − fvgu) < 0. (4.4.101)

Using now (4.4.94), this can only happen if

d fu + gv > 0.

If we assume

fu > 0, gv < 0, (4.4.102)

then this is only compatible with (4.4.93) if

d > 1. (4.4.103)

We are now ready to show

Lemma 4.4.2 Let (4.4.102) and (4.4.103) hold and suppose

(d fu + gv)
2

4d
> fugv − fvgu . (4.4.104)

Then there exist μ− < μ+ such that (u�, v�) is spatially unstable w. r. t. the mode αk

whenever μ− < αk < μ+.

Proof. We need to find a solution of (4.4.98) with

Re α > 0.
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We have reduced this condition to (4.4.101). Thus, we need to find a nontrivial range
of αk for which this holds.

The value μ of αk for which the left hand side of (4.4.101) becomes minimal is

μ = λ

2d
(d fu + gv). (4.4.105)

When (4.4.104) holds, the left hand side of (4.4.101) is negative for αk = μ and
vanishes for

μ± = λ

2d

(
(d fu + gv) ±

⎪
(d fu + gv)

2 − 4d( fugv − fvgu)
)

(4.4.106)

= λ

2d

(
(d fu + gv) ±

⎪
(d fu − gv)

2 + 4d fvgu

)

Therefore, it is negative in the range

μ− < αk < μ+. (4.4.107)

�
The question now is when (4.4.104) is satisfied and when one or several of the

eigenvalues of � are contained in the range given by (4.4.107). For the first issue,
we need

d > dc = −2 fvgu − fugv

f 2
u

+ 2

f 2
u

√
fvgu( fvgu − fugv) . (4.4.108)

For the second issue, i.e., whether we can find an eigenvalue αk in the range (4.4.107),
the geometry of � comes into play. In order to understand this better, we recall the

discussion after Theorem 4.1.2. This tells us that the eigenvalues scale like ∞�∞− 2
d .

Therefore, for a small �, all nonzero eigenvalues are large. In particular, we can
make all nonzero eigenvalues are larger than μ+ if we take � sufficiently small.
Alternatively, we may keep �, and hence its smallest nonzero eigenvalue α1, fixed
and choose λ > 0 in (4.4.106) so small that

μ+ < α1.

Then, again, (4.4.107) cannot be solved. From these considerations we see that we
need a certain minimal domain size for a given reaction strength, or else a certain
minimal reaction strength for a given domain size, for a Turing instability to occur.

Let us now assume that (4.4.107) is satisfied for some eigenvalue αk . By Courant’s
nodal domain theorem, the nodal set {uk = 0} of the eigenfunction uk divides �

into at most (k + 1) regions. On any of these regions, uk then has a fixed sign, i.e. is
either positive or negative on that entire region. Since uk is the unstable mode, the
value of k therefore controls the number of oscillations of the developing instability.

We summarize our considerations in



4.4 Reaction-Diffusion Systems 161

Theorem 4.4.8 Suppose that at a solution (u�, v�) of

f (u�, v�) = 0 = g(u�, v�),

we have

fu + gv < 0, fugv − fvgu > 0. (4.4.109)

Furthermore, suppose that d > 1 satisfies

d fu + gv > 0, (d fu + gv)
2 − 4d( fugv − fvgu) > 0. (4.4.110)

By (4.4.109), on one hand (u�, v�) is linearly stable for the reaction system

ut = λ f (u, v),

vt = λg(u, v),

but by (4.4.110), on the other hand, it is linearly unstable as a solution of the reaction-
diffusion system

ut = �u + λ f (u, v),

vt = d�v+ λg(u, v)

against spatial oscillations with eigenvalue αk whenever αk is contained in the range
given by (4.4.107).

Thus, in the situation described in Theorem 4.4.8, the equilibrium state (u�, v�)

is unstable, and in the vicinity of it, perturbations grow at a rate eReα, where α solves
(4.4.99).

As we have already discussed, since the bounded domain�has a discrete sequence
of eigenvalues αk of � by Theorem 4.1.2, it depends on the geometry of � whether
we can find an eigenvalue within the range identified by (4.4.107). If so, the number
k controls the frequency of oscillations of the instability about (u�, v�), and thus
determines the shape of the resulting spatial pattern.

In any biological application, it is natural to require that the dynamics stays
bounded, and typically, it should also be nonnegative. For that purpose, we need
assumptions on f and g for u = 0 or v = 0, or for u and v large that should
ensure that a solution that starts in the positive quadrant can neither become zero
nor unbounded. In Sect. 4.4.3 we have discussed the principle that if such a confine-
ment holds for the reaction system, it also holds for the reaction-diffusion system.
Thus, even though (u�, v�) is locally unstable, and therefore small perturbations grow
exponentially, this growth has to stop eventually. In fact, in many cases of biological
interest, the corresponding solution of the reaction-diffusion system should settle at
some spatially inhomogeneous steady state. This latter point has not yet not been
settled conclusively. As far as the author knows, the existence of a spatially hetero-



162 4 Pattern Formation

geneous solution has only been shown by singular perturbation analysis near the
critical parameter dc in (4.4.108).
We should also point out that Turing structures show that what we have discussed
at the end of Sect. 4.4.3, namely that solutions of reaction-diffusion systems become
spatially homogeneous as time tends to infinity, is by no means a universal phenom-
enon, but rather depends on specific assumptions. Clearly, spatially inhomogeneous
structures as produced by the Turing mechanism are more interesting for pattern
formation than homogeneous ones. Of course, the situation becomes even richer
when the asymptotic structures are not only not spatially homogeneous, but also not
steady in time. For example, a Turing instability could get combined with a Hopf
bifurcation. See [120] for examples.

Equipped with Theorem 4.4.8, we return to the example (1), the Schnakenberg
reaction. We find a, b > 0 with

u� = a + b,

v� = b

(a + b)2 .

At these values (u�, v�)

fu = b − a

a + b
,

fv = (a + b)2,

gu = − 2b

a + b
,

gv = −(a + b)2,

fugv − fvgu = (a + b)2 > 0.

We can therefore translate the conditions of Theorem 4.4.8 into inequalities
between a, b and d. Since for the condition d fu + gv > 0, fu and gv must have
opposite signs, we stipulate

b > a.

fu + gv < 0 then requires

0 < b − a < (a + b)3, (4.4.111)

and d fu + gv > 0 needs

d(b − a) > (a + b)3. (4.4.112)

In order to satisfy (d fu + gv)
2 − 4d( fugv − fvgu) > 0, we finally need
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⎛
d(b − a) − (a + b)3⎝2

> 4d(a + b)4. (4.4.113)

These inequalities can be easily achieved, essentially by choosing d sufficiently large.
And when they hold, the conditions for the Turing phenomenon are met, and we only
need a domain � with an eigenvalue of the Laplacian in the right range as described
in Theorem 4.4.8.

The Turing mechanism is a beautiful analytical scheme for pattern formation.
This, however, does not imply that this really is the general scheme underlying the
formation of spatial patterns in biology. In fact, according to recent developments
in developmental biology, the combinatorial patterns of gene regulation constitute
the basic mechanism for the formation of spatial structures, rather than the Turing
mechanism. Nevertheless, in certain cases, Turing’s idea [117] may apply. Many
examples are discussed in [92]. A Turing type mechanism may play an important
role in cell division by organizing the Min proteins that determine the localization
of the division site [89].
The present section follows the presentation in [68] rather closely.

4.5 Diffusion and Continuity Equations

We assume that we have a variable u describing the state of a biological (or other)
system that takes values in R

n (or some other space) and that changes as a function
of time t and perhaps also of some spatial variable x , say x ∼ � ∈ R

d . The two
different types of PDE models in biology then correspond to whether we want to
investigate

1. the state as a function of space and time, that is, derive an equation for u(x, t), or
2. the distribution of states as a function of time, that is, consider some density or

other function h(u, t), so that u now is an independent variable; for instance, in
the spatial case, h(u, t) could be the density function for the points x that are in
state u at time t .

In either case, the model can start with a dynamical state equation of the form

ut (t) = f (t, u) (4.5.1)

and then add some stochastic effects leading to a diffusion. In the first case, this
leads to diffusion in physical space, that is, the state value u(x, t) is diffusing to
neighboring points, and we obtain a reaction-diffusion system as in (4.4.57)

uξ
t (x, t) − dξ�uξ(x, t) = f ξ(x, t, u) for x ∼ �, t > 0,ξ = 1, . . . , n. (4.5.2)

Here, all diffusion coefficients dξ are assumed to be nonnegative. When we assume
that all the dξ = 1, and if we suppress the index ξ, we can write the system as the
prototype
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ut (x, t) − �u(x, t) = f (x, t, u). (4.5.3)

As explained in Sects. 4.4.1, 4.4.3, the main tool for studying such systems is the
maximum principle.
Of course, one can allow for more general diffusion schemes, leading to different
diffusion constants dξ as in the Turing model, or even to diffusion operators other
than the Laplacian �.
In the second case, the object of interest then is the density h(u, t) of u. That density
h(u, t) could be a probability density, that is, for each measurable A ∈ R

n , the
probability that u(t) is contained in A is given by

∫

A
h(y, t)dy, (4.5.4)

and we have the normalization
∫

Rn
h(y, t)dy = 1 for all t ≥ 0. (4.5.5)

In order to satisfy that normalization (4.5.5), we may assume that it satisfies that
normalization initially,

∫

Rn
h(y, 0)dy = 1, (4.5.6)

and then let it evolve according to the continuity equation

κ

κt
h(u, t) =

n∑

i=1

κ

κui
(− f i (t, u)h(u, t)) (4.5.7)

(together with some suitable decay at infinity, for technical reasons).
This equation states that the change of the probability density in time is the negative
of the change of the state as a function of its value.
Equation (4.5.7) is a first order partial differential equation of hyperbolic type. When
f = 1, we obtain a so-called transport equation

κ

κt
h(u, t) + κ

κu
h(u, t) = 0 (4.5.8)

(suppressing the index i for simplicity).
As a simple biological example, we consider the case n = 1 and let u stand for
the age of individuals in a population. For purposes of idealization, we assume that
the population is infinite, so that we can have densities, and there are no birth and
death processes. h(u, t) then is the fraction of the population of age u at time t .
Equation (4.5.8) then describes the change of that density as individuals get older.
When we start with the dynamical system, the solution of (4.5.7) depends only on
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the initial values u(0), and as such, we expect h(u, t) to evolve as ϕ(u − u(t)),
where ϕ is the Dirac functional and u(t) is the solution of (4.5.1). In the dynamical
systems setting, this formalism then becomes more interesting when we consider the
simultaneous evolution of a family of initial values, instead of only a single value
u(0). If we are in the spatial situation, of course, h(u, t) can simply be the fraction
of points x that are in state u at time t , as already explained. We can consider,
however, (4.5.7) also in situations without spatial distributions, and rather consider
the dynamical evolution of a distribution of initial states. This then represents an
important paradigm shift for dynamical systems. Instead of focussing on individual
trajectories, that is, considering the evolution of a single initial value in time, we now
rather take a family of initial values and investigate how the density of states evolves.
The limiting density, if it exists, then represents a stationary state distribution.
In order to treat (4.5.7) mathematically, we describe the method of characteristics.
For that purpose, we first consider a somewhat different system,

κ

κt
h(u, t) +

n∑

i=1

f i (t, u)
κh(u, t)

κui
= 0 (4.5.9)

with prescribed initial values h(u, 0).
We then consider the characteristic equation

Yt (t, u) = f (t, Y (t, u))

Y (0, u) = u. (4.5.10)

We then have

Lemma 4.5.1 Suppose that f is of class C1, and satisfies the bounds

| f (t, u)| → c1(1 + |u|) (4.5.11)

| f (t, u) − f (t, v)| → c2|u − v| for all t ∼ R, u, v ∼ R
n . (4.5.12)

Then for initial values h(u, 0) of class C1, there exists a unique solution h(u, t) of
(4.5.9) of class C1. This solution is characterized by the property that it is constant
along characteristics, that is,

h(Y (t, u), t) = h(u, 0) for all t ∼ R, u ∼ R
n . (4.5.13)

This solution then satisfies

inf
v∼Rn

h(v, 0) → h(u, t) → sup
v∼Rn

h(v, 0) for all t, u. (4.5.14)
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Proof.

d

dt
h(Y (t, u), t) = κ

κt
h(Y (t, u), t) +

n∑

i=1

Y i
t (t, u)

κ

κui
h(Y (t, u), t)

= κ

κt
h(Y (t, u), t) +

n∑

i=1

f i (t, Y (t, u))
κ

κui
h(Y (t, u), t).

Thus, (4.5.9) is satisfied if h(Y (t, u), t) is independent of t , and the initial condition
then yields (4.5.13). The assumptions on f guarantee the existence of the solution
Y of the characteristic equation. The bound (4.5.14) is obvious. �

The solution of (4.5.9) given by (4.5.13) is no more regular than its initial values
h(u, 0). Subsequently, when we introduce diffusion, we shall obtain improved reg-
ularity, but before doing that, we return to (4.5.7). We rewrite that equation as

κ

κt
h(u, t) +

n∑

i=1

f i (t, u)
κh(u, t)

κui
+

n∑

i=1

κ f i (t, u)

κui
h(u, t) = 0, (4.5.15)

in order to treat it as an extension of (4.5.9). We let Z(u, t) be the solution of

Zt (u, t) = κ f i (t, u)

κui
Z(u, t) (4.5.16)

Z(u, 0) = 1, (4.5.17)

and easily verify that the solution of (4.5.15), that is, of (4.5.7), then is determined
by

h(Y (t, u), t)Z(u, t) = h(u, 0) for all t ∼ R, u ∼ R
n, (4.5.18)

that is, by an extension of (4.5.13). In order to get the C1 regularity of h, we now
need to assume that f is of class C2, because (4.5.15) contains first derivatives of
f . Assuming for simplicity that h(u, t) has bounded support, we see from (4.5.7)
directly that

∫
Rn h(y, t)dy does not depend on t . Thus, the normalization (4.5.5) is

preserved when we assume (4.5.6).
Transport equations in mathematical biology are systematically treated in [99].

We now also want to introduce diffusion effects into the dynamical law for the
density function. We would like to discuss two approaches, a modern and a classical
one. The reader can then decide for herself which one she prefers.

We first present the modern treatment which is based on the concept of white
noise. Thus, we assume that the evolution equation (4.5.1) is subjected to white
noise (we recall here the discussion of (4.2.53) above) of strength σ. Formally, one
writes
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ut (t) = f (t, u) + χ. (4.5.19)

In order to understand what this means, we first put f = 0 and consider

ut (t) = χ. (4.5.20)

This means that u randomly fluctuates in the sense that

u(t) =
∫ t

0
dw(ω ) + u(0) (4.5.21)

where w(t) is Brownian motion and the integral is a so-called Itô integral. Instead of
explaining, however, what that means (see e.g. [69]), we rather state the correspond-
ing equation for the probability density

κ

κt
h(u, t) = σ2

2
�h(u, t) (4.5.22)

where the Laplacian � operates on the u-variables, that is, �h(u, t) = ∑n
i=1

κ2

(κui )2

h(u, t). So, in contrast to the reaction-diffusion paradigm, here, the state variable is
not diffusing in physical space, that is, for a variable x ∼ R

d , but rather the state value
is randomly fluctuating, leading to a diffusion for its density. Of course, (4.5.22) is
the Fokker-Planck equation already studied above as a continuum limit of Brownian
motion.
We can then combine the dynamical system (4.5.1) leading to the continuity equation
(4.5.7) and the Fokker-Planck equation (4.5.22), to arrive at

κ

κt
h(u, t) = σ2

2
�h(u, t) − κ

κu
( f (t, u)h(u, t)). (4.5.23)

This is, of course, the same as (4.2.53) (except that there, we had only considered noise
of strength 1), and we recall the discussion there. Again, a solution with Neumann
boundary conditions satisfies (4.5.5) if it does so for t = 0.

The classical approach is based on the concept of a flux vector J = (J 1, . . . , J n).
The flux satisfies the conservation of mass law

κh

κt
+ divJ = 0 (4.5.24)

where the divergence is defined as

divJ (u, t) :=
∑

i

κ J i

κui
. (4.5.25)

In general, the flux incorporates two contributions, a force term and a diffusion term.
The force term is simply f i (t, u)h(u, t), as in (4.5.7). In other words, in the absence
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of diffusion, (4.5.24) reduces to (4.5.7). For the diffusion, on the other hand, we
have Fick’s law. This law says a diffusing substance moves from regions of higher to
regions of lower concentration, at a rate proportional to the concentration gradient.
That means, in the absence of an external force

J = −d∇h, (4.5.26)

for some diffusion coefficient d, with the gradient

∇h(u, t) := (
κh

κu1 , . . . ,
κh

κun
). (4.5.27)

Since the operators involved satisfy

div∇h = �h, (4.5.28)

as is readily verified, we obtain for the diffusion dynamics

κ

κt
h(u, t) = d�h(u, t). (4.5.29)

When we combine the effects of an external force and an intrinsic diffusion, the
conservation of mass law (4.5.24) leads to the equation

κ

κt
h(u, t) = d�h(u, t) −

∑

i

κ

κui
( f i (t, u)h(u, t)). (4.5.30)

For d = σ2

2 , this is the same as (4.5.23).
The class of equations of the form (4.5.30) now can be used to model a variety

of biological phenomena. An example that has also received much mathematical
treatment is chemotaxis. This means the ability of organisms to react to concentration
gradients of chemical substances by directed movement. These organisms can smell
the molecules of particular substances, created by other members of their species
and called pheromones in this context, and move up or down their concentration
gradients. That is, these chemical substances can be attractive, like sex pheromones,
or repulsive, like those used for the demarcation of territories. Here, we are not
concerned with the molecular details of the reception mechanisms for such molecules,
but rather with their effect on population densities.

We present here the Keller-Segel model for the chemotaxis of the slime mold
Dictyostelium discoideum. These are colonies of single cell amoebae which produce
the chemical substance cyclic-AMP that has an attractive effect on other amoebae
in the colony. Thus, they move in the direction of the concentration gradient of this
cyclic-AMP. The mathematical model then has to model the interplay between the
population density h of the amoebae and the concentration c of cyclic-AMP as a
function of space x and time t . A key quantity is the flux J of h. According to our
preceding discussion, it contains the diffusive part of (4.5.26)



4.5 Diffusion and Continuity Equations 169

Jdiffusion = −d∇h (4.5.31)

and a chemotactic component

Jchemotaxis = hχ(c)∇c, (4.5.32)

for some function χ(c). Often, it is assumed that χ(c) is simply a constant χ0.
Whereas diffusion causes the minus sign in (4.5.31), the attractive nature of the
pheromone leads to the positive sign in (4.5.32). With J = Jdiffusion + Jchemotaxis,
the conservation law (4.5.24) yields

κh(x, t)

κt
= d�h(x, t) − div(h(x, t)χ(c(x, t))∇c(x, t)). (4.5.33)

This now needs to be supplemented by an equation for the chemical concentration c.
c is diffusing and decaying, but also produced by the amoebae cells, and therefore,
there should be a reaction term proportional to the cell density h. Thus, the model
postulates the equation

κc(x, t)

κt
= ϕ�c(x, t) − πc(x, t) + ξh(x, t), (4.5.34)

with positive constants ϕ,π,ξ. Since the chemical is diffusing faster than the cells,
we should have ϕ > d.
This model was introduced in [78, 79]. For extensive discussions and generalizations,
see [92, 113]. For the more abstract PDE aspects, we refer to [99] and the references
therein.

Exercises for This Chapter

1. Work out the details of the proof of the strong maximum principle for the Laplace
operator on a graph.

2. Discuss the eigenvalue problem for the Laplace operator with periodic boundary
conditions. Hint: Consider this problem as a version of Fourier analysis.

3. We now present some exercises on hyperbolic equations. The prototype is the
wave equation. The wave equation in one space dimension is

utt − uxx = 0 for 0 < x < π, t > 0. (4.5.35)

We impose initial data
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u(x, 0) =
∞∑

n=1

ξn sin nx, ut (x, 0) =
∞∑

n=1

πn sin nx

and stipulate homogeneous boundary values

u(0, t) = u(π, t) = 0 for all t > 0.

Compute the coefficients λn(t) of the Fourier series representation

u(x, t) =
∞∑

n=1

λn(t) sin nx .

4. We next consider the first-order equation

vt + cvx = 0

for some function v(x, t), x, t ∼ R, where c is constant. Show that v is constant
along any line

x − ct = const = ξ.

From this observation, conclude that the general solution for initial values
v(x, 0) = f (x) is

v(x, t) = f (ξ) = f (x − ct).

5. Observe that a solution of the wave equation (4.5.35) is given by

u(x, t) = δ(x + t) + φ(x − t) (4.5.36)

for functions δ,φ of class C2. What is the connection of this observation with
the preceding exercise?

6. We now turn to dynamical systems, that is, ODEs and their generalizations. Let
f : R ∅ R be Lipschitz, and consider the ODE

ẋ(t) = f (x(t)) for t ≥ 0, with x(0) = x0. (4.5.37)

Show that if there are values m < M with f (m) = f (M) = 0, f (y) > 0 for
m < y < M , and if m < x0 < M , then the solution of (4.5.37) exists for all
t > 0, and

x0 < x(t) < M for all t > 0. (4.5.38)

Show that this need no longer be true for delay-differential equations of the form
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ẋ(t) = f (x(t − t0)) or ẋ(t) = f (x(t), x(t − t0)) for t ≥ 0, (4.5.39)

with x(ω ) = xω for − t0 → ω → 0.

Hint: Look at the linear equation

ẋ(t) = −x(t − t0) (4.5.40)

and observe that this equation admits periodic solutions.
Also, consider the delay version of the logistic equation (4.3.7),

ẋ(t) = x(t)(1 − x(t − t0)), with x(ω ) < 1 for − t0 → ω < 0, x(0) = 1.

(4.5.41)
Observe that in this case ẋ(0) > 0, and therefore x(t) > 1 for 0 < t < t1 for
some t1 > 0. When we take the maximal such t1, then x(t1) = 1 and ẋ(t1) < 0
Conclude that then x(t) < 1 for t1 < t < t2. Again, take the maximal such t2
and investigate what happens for t > t2. Conclude that solutions of (4.5.41) may
exhibit oscillatory behavior. We point out that in general, no analytical solutions
for (4.5.41) are available, and this equation needs to be solved numerically.
Try to do that, in order to get some understanding of the kind of behavior of
delay-differential equations are capable of. For the theory of delay-differential
equations, see [3], and for many biological applications, look into [92].

7. We now turn to problems with a some biological story behind them. In this exer-
cise, we consider the Lotka-Volterra type model (4.3.60) with several species.
In order to discuss a specific mathematical aspect, however, we assume that we
have k predator and k prey species, that is, there numbers are the same (formally,
of course, this can be achieved, by simply dividing up some species into differ-
ent classes, in order to inflate species numbers). The prey species numbers are
given by y1, . . . , yk , and those of the predator species by zk+1, . . . , z2k . The
dynamics are

ẏ j = y j (a j −
∑

�=k+1, ..., 2k
b j�z�) for j = 1, . . . , k

ż� = z�(a� −
∑

j=1, ..., k
b j�y j ) for � = k + 1, . . . , 2k,

where the coefficients satisfy

a j > 0 for j = 1, . . . , k, a� < 0 for � = k + 1, . . . , 2k,

b j� < 0, b�j > 0 for j = 1, . . . , k, � = k + 1, . . . 2k.

Find a nontrivial fixed point. As in the two species model, this fixed point corre-
sponds to a steady state where the population sizes all stay constant. Linearize the
dynamics about that fixed point. Observe that the matrix A appearing in that lin-
earization has trace A = 0. Conclude that therefore its eigenvalues α1, . . . ,α2k

satisfy
∑2k

i=1 αi = 0. Since A is real, the eigenvalues are either real or occur in
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complex conjugate pairs. Conclude that either all of them have vanishing real
part, in which case the steady state is neutrally stable as in the two-species case.
Or at least one eigenvalue has to have a positive real part, in which case the
steady state is unstable. Thus, any small perturbation of the coefficients of the
system that makes some of the real parts of the eigenvalues nonzero destabi-
lizes the steady state. You may want to conclude that the model is too simple to
realistically capture the population dynamics of several interacting species.

8. We next look at a Lotka-Volterra model in the case of symbiosis,

ẋ1 = x1(a1 + b12x2) (4.5.42)

ẋ2 = x2(a2 + b21x1),

with a1 >0, b12 >0, b21 >0, while a2 is arbitrary. First observe that in this model,
the population sizes will go to ∞ if they start with positive values. Therefore,
we modify the model by growth restricting terms, as in (4.3.62). After some
coefficient normalization, the model then becomes

ẋ1 = x1(1 − x1 + b12x2) (4.5.43)

ẋ2 = ax2(1 − x2 + b21x1),

with a, b12, b21 > 0. The steady states of this system are

(0, 0), (1, 0), (0, 1), (
1 + b12

1 − b12b21
,

1 + b21

1 − b12b21
). (4.5.44)

Show that the first three are unstable, while the last one is only positive if 1 −
b12b21 > 0. Show that in this case, that equilibrium is stable. Conclude that when
1 − b12b21 < 0 populations with positive initial sizes will tend to ∞ whereas
when 1 − b12b21 > 0, the population sizes will converge to the last fixed point
in (4.5.44).

9. We conclude with some exercises on the Turing mechanism. First, determine the
Turing spaces for the Gierer-Meinhardt and Thomas systems.

10. Carry out the analysis of the Turing mechanism for periodic boundary conditions.
11. This exercise discusses the Brusselator model, introduced by Lefever, Nicolis,

and Prigogine (in Brussels) as a toy model for pattern formation in reaction-
diffusion systems. The model is based on the system of chemical reactions

A ∅ X; B + X ∅ Y

2X + Y ∅ 3X; X ∅ E . (4.5.45)

Note the similarity with the Schnakenberg reactions (4.4.85). The concentrations
of A, B, and E are kept constant and therefore can be used as control parameters.
After rescaling, the concentrations of X and Y are expressed by variables u, v

satisfying the system
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ut = �u + a − (b + 1)u + u2v

vt = d�v + bu − u2v. (4.5.46)

Here, a and b are constants (corresponding to the concentrations of A and B),
and we shall use b as a bifurcation parameter. As in Sect. 4.4.4, we assume that v

diffuses faster than u, that is, d > 1. Observe that this system admits the steady
state

u0 = a, v0 = b

a
. (4.5.47)

First, carry out a linear stability in the absence of diffusion (i.e., put �u =
�v = 0 for the moment), by linearizing (4.5.46) at the steady state (4.5.47).
Observe that one of the eigenvalues of the linearization matrix changes its real
part from negative to positive values when b = bHop f = 1 + a2. Conclude that
at this parameter value, a Hopf bifurcation takes place, that is, a transition from
a uniform steady state to limit cycle oscillations.
Next, expand u and v in terms of eigenfunctions uk as in (4.4.96) and look for
solutions of the form (4.4.97) and conclude that there is a Turing instability at

b = bT uring = (1 + a◦
d

)2, (4.5.48)

with frequency

αT uring =
√

a◦
d

. (4.5.49)

(In contrast to the situation analyzed in Sect. 4.4.4, here the critical value depends
only on the kinetic parameters, but not on the underlying geometry.)
The constant solution u0, v0 that bifurcates into a limit cycle at bHop f then
corresponds to the frequency 0. For which ranges of du

dv
does the Hopf bifurcation

occur before the Turing instability, i.e., when is bHop f < bT uring , and when is
it the other way around? Note that the Turing instability is only of interest when
it occurs before the Hopf bifurcation as after the latter, the equilibrium (4.5.47)
is already unstable.
References for this exercise are [120], Sect. 14.3, and [98].
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Chapter 5
Optimization

Abstract
Questions:

• How do we best distribute our finite resources among different tasks?
• Isn’t sexual reproduction wasteful? Why are there males?
• What are the criteria for the optimality of a functional relationship?

Biological evolution is about getting an advantage by becoming better than others.
That is, optimization problems arise and should be solved. A key problem is the
best allocation of finite resources to different tasks. We develop this in a simple
setting. As an application, we can explain why sexual reproduction is prevalent
inspite of its apparent shortcomings. We also introduce the calculus of variations as
the mathematical theory for the optimization of functional relationships.

5.1 Optimization of Resource Allocation

The basic fitness function in evolutionary biology is reproductive success, that is, the
number of viable offspring, possibly counted over several generations. An individ-
ual or lineage that produces more viable offspring than others is genetically better
represented in the next generation. For a deeper discussion of this issue, which turns
out to be not as simple as it may appear, we refer to [66]. Here, we simply analyze
the optimization of reproductive strategies in an abstract setting. We try to identify
the best possible strategies, since those provide the limit for improvements. The
problems involved are often allocation problems. Organisms often have to decide
about the allocation of some limited resource among several potential uses. Evo-
lutionary competition leads to optimization pressures for allocation strategies. This
can be complicated by the fact that the rewards for each allocation decision may
depend on the allocation strategies of other individuals. Thus although evolutionary
optimization typically occurs at the level of the individual, the collective effect of
individual optimization changes rewards. This then leads to feedback effects between
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DOI: 10.1007/978-1-4471-6353-4_5, © Springer-Verlag London 2014



176 5 Optimization

individual optimization and population-level patterns. Therefore, in this section, we
develop the mathematical framework both for individual allocation optimization and
for the analysis of population feedback effects and the resulting population dynamics.

In this section, which is based on [75], we develop the mathematical framework
for such allocation problems.

5.1.1 Cost and Reward

We consider a state space that is defined by certain degrees of freedom, represented
by independent variables x1, x2, . . . , xn . xi quantifies the investment allocated to
option i . The vector x = (x1, ..., xn) thus represents a strategy, that is, a decision
about the allocation of the available resources to the possible investment options.
The state space then consists of all possible resource allocation strategies. The xi

will therefore satisfy some constraints like xi ≥ 0 for all i and some relations
like g j (x1, ..., xn) = c j for j = 1, 2, ..., for example

∑
i xi = const., that is, the

total amount of available resources is fixed. Unless explicitely stated otherwise,
these constraints and other functions occuring in the sequel will be assumed to
be sufficiently differentiable. If those relations are independent they define some
manifold M , and the independent variables then can be thought of as varying in M .
More precisely, we shall assume that the independent variables are constrained to be
nonnegative and to satisfy the cost constraint

C(x1, ..., xn) ≤ c, (5.1.1)

where C(x) is the total cost of the investment strategy x , and c is the highest total
cost an individual can spend.
The individuals are assumed to try to maximize their reward or gain (we shall use
these words equivalently) under these constraints

R(x1, ..., xn) → max. (5.1.2)

We shall also assume that both C and R are monotonically increasing functions of
their arguments. This is, of course, biologically plausible. For reward optimization,
the cost constraint thus becomes the equality

C(x1, ..., xn) = c. (5.1.3)

A maximum that is achieved at an interior point, i.e. at a point where all the xi are
positive, has to satisfy the Lagrange multiplier rule

∂R(x1, ..., xn)

∂xi
+ λ

∂C(x1, ..., xn)

∂xi
= 0 for i = 1, ..., n (5.1.4)
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for some real λ. In particular, this implies

∂i R(x1, ..., xn)

∂i C(x1, ..., xn)
= ∂ j R(x1, ..., xn)

∂ j C(x1, ..., xn)
for all i, j (5.1.5)

(using the abbreviation ∂i = ∂
∂xi

) or, expressed verbally, that the ratio

marginal gain

marginal cost
(5.1.6)

is the same for all xi at equilibrium. If the maximum is achieved at some bound-
ary point where some of the xi vanish, then (5.1.5) continues to hold for those
indices i, j for which xi > 0, x j > 0 while for the indices α with xα = 0,
we get

∂α R(x1, ..., xn)

∂αC(x1, ..., xn)
≤ ∂i R(x1, ..., xn)

∂i C(x1, ..., xn)
. (5.1.7)

Thus, the quotient of marginal gain and marginal cost in the constrained directions
cannot exceed that in the unconstrained directions. This means that by increasing xα

above 0, one cannot gain more than one looses when the cost condition necessitates
a corresponding reduction of some of the unconstrained variables xi .
Such a condition on first derivatives is a necessary condition for a maximum; for a
sufficient condition, we need a condition involving second derivatives, that is, some
kind of relative convexity or concavity of the functions C and R at the considered
point.
The optimum need not be unique, and in the sequel, we shall discuss some cases
with two stable optima.
We also observe that cost and reward are dual to each other. Instead of maximizing
the reward while keeping the costs constant, we could as well minimize the costs
while keeping the reward fixed.

The preceding can, of course, also be explained in geometric terms. We consider
the cost level C(x) = c and look for points on this level set where it touches or meets
the highest reward level set. This can happen at an interior point, i.e. where all the
xi are positive, or at a boundary point where some of them vanish. If that highest
attainable reward level set meets the cost level at more than one point, the optimum is
nonunique. The optimal reward level touches the cost level set at an interior point or
meets it at a boundary point, but cannot intersect it, because otherwise in the vicinity
of such an intersection, we would also find higher reward level sets that also intersect
the given cost level. That would mean, however, that on the cost level a higher reward
could be realized, in contrast to the assumption that we are at an optimum.
By a coordinate transformation we may, in fact, assume that the cost levels are flat
(this simply means that all quantities are expressed in units of cost). In fact, we can
measure all items in cost units normalized so that each unit of each of the independent
variables x1, ..., xn costs the same. This yields
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x1 + ... + xn = C = const (5.1.8)

We shall make this assumption for the rest of this section.
In the case of two independent variables, the cost levels are then straight lines (of
slope −1 with the indicated normalization).

5.1.2 Reward Functions and Strategy Types

With the above normalization (5.1.8) that the cost levels are flat, we shall now discuss
qualitative types of reward functions.

Definition 5.1.1. The items i = 1, . . . , n are called substitutable if the reward func-
tion is of the form

R(x1, ..., xn) = r1x1 + ... + rn xn (5.1.9)

with positive constant coefficients r1, ..., rn .
The items are called complementary if the reward function is of the form

R(x1, ..., xn) = min(s1x1, ..., sn xn), (5.1.10)

again with positive coefficients si .
The items are calledmutually enhancing ormutually conflicting if the reward function
has convex or concave resp. level sets.

An example of a reward function with mutually enhancing items is

R(x1, ..., xn) = xα1
1 ...xαn

n (5.1.11)

with positive exponents αi . A mutually conflicting example is

R(x1, ..., xn) = v1xβ1
1 + ... + vn xβn

n (5.1.12)

with positive coefficients vi and exponents βi ≤ 1.
A biological example of mutually enhancing rewards is given by the allocation of life
time to the growth period and the reproductive period. In annual insects that undergo
metamorphosis as part of the life cycle, the larval stage is the growth period whereas
in the adult stage, they concentrate on reproduction. The cost constraint here is the
fixed life span of one season.

The qualitative features of the reward function will constrain the position of the
optimum. If the items are mutually conflicting, i.e. if the reward levels are concave,
then an optimum can only be achieved at a boundary point where all but one of
the xi vanish. Such an optimum need not be unique. Below, we shall discuss a sce-
nario where population effects will make the optimum nonunique at the individual
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level. In that scenario, the items will be complementary at the population level, but
mutually conflicting at the individual one. If the items are mutually enhancing, then
an optimum can be achieved either at an interior or a boundary point. If the items are
complementary, then the unique optimum is always achieved at that interior point
where

s1x1 = s2x2 = ... = sn xn (5.1.13)

as otherwise the agent would waste resources without a reward increase. Below, we
shall interpret (5.1.13) as a balance equation. Finally, if the items are substitutable
and the largest one among the ri in (5.1.9) is unique, then the optimum is realized at
that boundary point on the cost level where only that product x j is nonzero that comes
with the largest coefficient r j . If some of the largest coefficients r j are equal, then
the optimum is degenerate in the sense that the agent can shift resources between all
the corresponding x j while keeping cost and reward the same. Although this seems
to be a very special situation, we shall encounter it below in our discussion of the
optimization of sex ratios.
Of course, the above classification of reward functions is not complete, and, for
example, many reward functions will have neither convex nor concave level sets,
but rather level sets that change type, i.e., are convex in certain regions and concave
in others. In fact, if we leave degenerate cases (e.g. complete substitutability) aside,
only for such reward functions there may exist more than one interior optimum. It is
also possible that an interior and a boundary optimum coexist.

Definition 5.1.2. A strategy is called a generalist strategy if all the xi are positive.
It is called a specialist strategy if all but one of the xi vanish.

Below, we shall encounter reward functions that are complementary at the popu-
lation level, but possibly substitutable or even mutually conflicting at the individual
level.

5.1.3 Complementarity

What we want to develop and apply the mathematical framework for is the inter-
action between individual optimization and population effects. A typical situation
is specialization in the situation of complementary productions. We shall therefore
analyze this issue and obtain an abstract version of the Fisher equilibrium condition
[45]. We shall apply this below to the issue of sexual reproduction which is a typ-
ical case of such complementarity. In that context, the units can either be gametes
(of male or female type) or (male or female) offspring. When we then speak of a
population, in the first case we shall mean a collection of gametes. The reward to be
optimized then is the number of offspring or, equivalently, of successful matings in
the case of gametes. In the case of unisexual offspring, the reward is the number of
grand offspring (we shall see below why we should consider second instead of first
generation offspring). The crucial feature is the complementarity, stemming from
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the fact that it always requires the fusion of two units of opposite types, called male
and female for concreteness, to generate a reward unit. For instance, an individual
can be female, that is, produce female gametes, but it then requires a male mating
partner.
Therefore, we assume that a balance equation holds at the population level. If the
population consists of n members, and if the reproductive success of each individual i
throughmale/female units is Rm,i and R f,i, resp., we then have the balance condition

n∑

i=1

Rm,i =
n∑

i=1

R f,i. (5.1.14)

Ifmi and fi denote the numbers of male and female units, resp., produced by individ-
ual i , and if its reward and cost are R(mi , fi ) and C(mi , fi ), resp., and if a subscript
1 or 2 denotes a partial derivative w.r.t.mi or fi , resp., then from the previous section,
we obtain the equilibrium condition

∂1R(mi, fi )

∂1C(mi, fi )
= ∂2R(mi, fi )

∂2C(mi, fi )
, (5.1.15)

at least if that equilibrium is attained at an interior point of the positive quadrant, i.e.
at a point where mi and fi are both positive.
Let us understand the meaning of such an equilibrium in our biological example of
sexual reproduction. In the gamete allocation case, an interior equilibrium point cor-
responds to hermaphroditic behavior. Thismeans that the corresponding individual is
bisexual or monoecious, that is, produces both male and female gametes. The oppo-
site strategy where only gametes of a single type are produced is called dioecious.
This would correspond to a boundary optimum. Because of the complementarity, we
then need two boundary optima, one representing a pure male and the other a pure
female strategy. Population affects will then keep these two optima in balance, as
will be discussed below. Even without requiring complementarity, we already obtain
the Eqs. (5.1.5, 5.1.6). Let us briefly the example of linear cost and reward structures.
The reward of agent i is then

R(i) = mirm(mi, fi ) + fi r f (mi, fi ), (5.1.16)

and its cost is

C(i) = cm(mi, fi )mi + c f (mi, fi ) fi . (5.1.17)

The equilibrium condition then becomes

rm + mi∂1rm + fi∂1r f

cm + mi∂1cm + fi∂1c f
= r f + mi∂2rm + fi∂2r f

c f + mi∂2cm + fi∂2c f
, (5.1.18)
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If the coefficients cm, c f , rm, r f are all constant, i.e independent of the numbers of
units produced, (5.1.18) reduces to

rm

cm
= r f

c f
(5.1.19)

i.e. that the cost of a successful unit is the same for either type. This equilibrium is
stable; if for example cm

rm
were smaller than

c f
r f

then i could increase R(i)by increasing
mi (and correspondingly decreasing fi in order to satisfy the energy constraint), and
vice versa.
In order to analyze the interplay between the individual and the population levels,
we now invoke the balance Eq. (5.1.14). The balance equation says

rm(m p, f p)m p = r f (m p, f p) f p. (5.1.20)

It is important to note that the subscript p now refers to the numbers produced by
the population as a whole. Likewise, rm, r f now denote the average success rates at
the population level.
We insert this relation into the equilibrium condition (5.1.19) (assuming constant
coefficients) and obtain

cmm p = c f f p. (5.1.21)

Thus, from the balance equation we conclude that the investments into male and into
female reproduction have to be or turn out to be equal at the population level. Thus,
the complementarity at the population level lets individual optimization lead to such
a global equilibrium. And this equilibrium is stable; if, for instance, cmm p is smaller
than c f f p, then it becomes advantageous for an individual i to increase mi at the
expense of fi .

5.1.4 Dynamical Interaction Between Individual Strategies and
Population Effects

We want to understand how the composition of the population can determine the
reward structure for its individual members. Individual agents can vary their own
behavior, thereby increasing their own award, but without causing a discernible
effect at the population level. If, however, the population is homogeneous, then all
agents share the same reward structure, and so, when the optimum is unique, then
all agents will attempt to modify their strategies towards that individual optimum.
When that optimum, however, sensitively depends on the collective behavior of the
population, then the systematic change of all individual strategies will change this
global optimum in turn. Thus, the collective action will affect each individual’s situ-
ation, and, in particular, the parameters on which the optimization is based may not
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remain constant. In many cases, there is a negative feedback between the individual
and the population level reward structure, for instance if the reward structure at the
population level is complementary. In order to understand this better, we now dis-
cuss a model where the individual and the population dynamics occur on the same
time scale. (In other situations, the population effects might show themselves more
slowly, as in many ecological scenarios.)
We consider a population of N individuals. The population level quantities are the
sums of the individual terms, i.e.,

m p =
N∑

j=1

m j, f p =
N∑

j=1

f j .

We assume that the population is homogeneous so that every agent i has the same
contribution, i.e.,

mi = 1

N

∑
m j, fi = 1

N

∑
f j . (5.1.22)

We now consider the dynamical setting where the agents find themselves in a non-
optimal situation and therefore perform a gradient ascent for the function R(i) under
their cost constraint. Let t be time, and denote a derivative w.r.t. t by a dot. We also
use the superscript T for the projection of the gradient onto the level set of the cost
function. When the reward coefficients rm, r f and the cost coefficients cm, c f are
constant, the projected gradient of R is

∂T
1 R = rm − rmcm + r f c f

c2m + c2f
cm, ∂T

2 R = r f − rmcm + r f c f

c2m + c2f
c f . (5.1.23)

The cost constrained optimization then leads to the dynamical system

ṁi = ∂T
1 R(i), ḟi = ∂T

2 R(i) (5.1.24)

The reward of i depends both on the individual strategy and on the population
level quantities,

R(i) = R(m p, f p, mi, fi ). (5.1.25)

With this, the dynamics of (5.1.24) leads to

Ṙ(i) = ∂R

∂m p
Nṁi + ∂R

∂ f p
N ḟi + ∂1R ṁi + ∂2R ḟi

= (N
∂R

∂m p
+ ∂1R)∂T

1 R + (N
∂R

∂ f p
+ ∂2R)∂T

2 R. (5.1.26)



5.1 Optimization of Resource Allocation 183

Typically, the reward of individual i will be positively correlated with her own
production, but inversely related to the competing production from the rest of the
population, and again positively correlated with the complementary production of
the rest of the population. Let us consider the following example

rm = min(
f p

m p
, 1), r f = min(

m p

f p
, 1)

and

R(i) = rmmi + r f fi, (5.1.27)

Moreover, let us assume m p ≤ f p. In this case, r f will remain constant.
The dynamics of R(i) then is

Ṙ(i) = ṙmmi + rmṁi + r f ḟi since r f is constant

= (
N

∑
f j

∂T
2 R − N

∑
m j

∂T
1 R)rmmi + rm∂T

1 R + ∂T
2 R

since all N agents follow the same dynamics (5.1.24)

= 2∂T
2 R since Nmi = ∑

m j and rm =
∑

f j∑
m j

. (5.1.28)

When ∂T
2 R ≤ 0, all agents will therefore increase their female production, leading to

a gain of∂T
2 R for each of them,while the individual loss from the decrease of themale

production is more than offset by the gain resulting from the population effect that all
other agents also increase their female production, thereby increasing everybody’s
reward from male production. If, however, ∂T

2 R < 0, for example because c f is
large, then all agents will decrease their female production, and for each agent, the
resulting increase in male production by the rest of the population also makes its
male gametes less successful so that a loss for everybody results.
In any case, the dynamics will go on until

rm

cm
= r f

c f
= rmcm + r f c f

c2m + c2f
. (5.1.29)

This is again the Fisher equilibrium condition that we have seen earlier, see e.g.
(5.1.19).

5.1.5 Generalizations

In the preceding,we have investigated situationswith only two independent variables,
the male and female units mi , fi . We now generalize this by enlarging the strategy
space of the individuals, or in biological terminology, by including other strategic
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choices thatmay enhance the reproductive success, likemating effort or parental care.
We shall assume that such factors can be varied independently of the investments
into male or female units. We can then discuss the possible effects of a trade-off
between the efforts for the production of gametes and for achieving matings or for
investments into parental care.
So, for a formal analysis we assume that in addition to mi and fi , we have another
factor yi that enters into the cost function

C(mi, fi, yi ) (5.1.30)

and the reward function

R(mi, fi, yi ). (5.1.31)

∂3 will denote a derivativew.r.t. y. At an interior equilibrium under the cost constraint

C(mi, fi, yi ) = ci, (5.1.32)

we then have

∂1R(mi, fi, yi )

∂1C(mi, fi, yi )
= ∂2R(mi, fi, yi )

∂2C(mi, fi, yi )
= ∂3R(mi, fi, yi )

∂3C(mi, fi, yi )
. (5.1.33)

The Eqs. (5.1.32, 5.1.33) can be solved w.r.t. the variables mi, fi, yi when the corre-
sponding functional determinant does not vanish.
As an example, let us assume a linear cost structure with constant coefficients

C(i) = C(mi, fi, yi ) = cmmi + c f fi + cy yi (5.1.34)

and a reward function that is linear in mi , fi

R(i) = mirm(yi ) + fi r f (yi ). (5.1.35)

We then obtain

cmmi = cy
rm

∂3rm
(5.1.36)

and if we further assume that rm is proportional to yi , we get the optimality condition

cmmi = cy yi . (5.1.37)

The individual i thus invests the same amount into male units as into the new factor.
If r f is likewise proportional to yi , these quantities then in turn would also have to
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equal c f fi . Thus, we obtain (5.1.21) without having to appeal to the balance equation
at the population level.
If rm is more sensitive to yi than r f , then mi will be more sensitive to a change in
the cost cy , and thus, an increase in cy will decrease the ratio mi

fi
.

Another biologically interesting example is that yi is complementary to mi and fi

already at the individual level. This means that for successful reproduction, any
investment into male or female units has to be matched by some investment into the
new factor. This leads to a reward function of the form

R(i) = min(rm yi, mi ) + min(r f yi, fi ). (5.1.38)

For example, the coefficients could be

rm = ρmin(
f p

m p
, 1), r f = ρmin(

m p

f p
, 1) (5.1.39)

for some constant ρ, i then reaches its optimum if under the cost constraint (5.1.32)

rm yi = mi ≥ fi or r f yi = fi ≥ mi (5.1.40)

as otherwise it would waste some of its units produced. When, for instance, the first
alternative is realized, then i’s reward is

R(i) = rm yi + fi (5.1.41)

with the cost structure

c f fi + (rmcm + cy)yi = ci . (5.1.42)

Our above equilibrium analysis (5.1.19), with yi in place ofmi , yields the equilibrium
condition

rm

rmcm + cy
= 1

c f
. (5.1.43)

Since we assume that all coefficients are constant and fixed, this condition may or
may not hold at the given levels ofm p, f p.When the left hand side of (5.1.43) is larger
than the right hand side, the agent i will shift effort from the production of fi to the
production of yi . If we have a homogeneous population of hermaphrodites, all with
the same production of mi , fi , yi , then all agents will move in the same direction,
thereby decreasing rm until equality holds in (5.1.43). This occurs for example if cm

is very small compared to the other cost coefficients, i.e. if the production of male
units is very cheap, and if cy in turn is considerably smaller than c f . Then one might
simply merge the costs for male units and for the new factor and redefine the male
costs as those for the production of male units and for y together. This changes, if,
while cm still is very small, cy now is much larger than c f . Then the right hand side
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of (5.1.43) is the larger one, and the agents will shift their efforts to the production
of fi , until

r f yi = fi . (5.1.44)

A further increase of fi then will no longer lead to any further gain. Thus, high
costs for an additional factor entering into the reward function complementary to the
others produce stable hermaphroditic behavior. The reason is that any investment
into the new expensive factor will benefit both types of units, and so increasing the
production of bothmay also increase the benefits from any investment into that factor.
The biological effect could be a more intense competition among males than among
females for matings.
The case just treated may describe a situation where the factor y stands for mating
encounters. Thus, mating costs that are higher than the production costs for gametes
may support hermaphroditism. A prominent biological are plants that depend on
insect pollination. In contrast, if the production of female gametes is most expensive,
the mating costs may be carried by the males in a dioecious, i.e., bisexual population,
because additional matings are more beneficial for males than for females.
For the biological example of parental investment, we return to the example where
the reward coefficients are proportional to the quantity of the new factor. As the
female reward might be more sensitive to parental care, and so, one might expect the
females to invest more into that factor than themales. This, in fact, is the case inmany
biological examples, but there also exist cases of higher male parental investment.
When there are more factors, then complementarity might also develop between two
of them, like e.g. betweenmating efforts and parental care. This produces a third level
of complementarity, concerning individual behavior. The Fisher equilibrium again
applies to derive an equilibrium condition for investments at the behavioral level.
A specialized strategy could, for instance, consist in the males investing exclusively
into mating efforts and the females only into parental care. Coexistence of pure
and mixed strategies is also possible in principle and realized in many mammalian
populations.
The alert reader should be able to find many more examples where such an equilib-
rium can be applied.

5.1.6 Why do We Have Sex?

The preceding can easily and naturally explain sexual reproduction. In fact, it can
explain it at two different levels, as our considerations can be applied to both individ-
uals and gametes. First of all, we can see Fisher’s answer [45] to the question why the
sex rations in natural populations are typically balanced, that is, there are about equal
numbers of males and females. One may wonder why this is so when the principle of
evolution is to simply produce asmuch viable offspring as possible. For that, it would
not matter whether that offspring is female or male. However, when we consider the
number of grand offspring, that is, second instead of first generation offspring, as



5.1 Optimization of Resource Allocation 187

the reward criterion, then we can see the effect of the above complementarity at
the population level. If for instance, the population is predominantly female, then a
male has a much higher expected number of offspring than a female, and conversely,
simply because in a sexually reproducing population every individual needs to have
both a mother and a father. Thus, in a predominantly female population, it would be
better to produce male offspring. This shows that a balanced sex ratio constitutes a
stable equilibrium.

In fact, this reasoning is somewhat of a simplification of our formal analysis.
That analysis tells us more precisely that the effort in producing offspring of the two
sexes should be balanced in terms of cost units, that is, in terms of energy spent.
For instance, let us assume that, for instance in some insect species, five times more
energy is required to produce a female than a male. Then the above analysis yields
an equilibrium sex ratio of five males for one female. In most vertebrate species,
however, there are no such drastic energy differences, and so, their sex ratios are
about equal. In particular, we here see the difference between optimization at the
individual and at the population level. At the population level, it would be best to have
as many females as possible with a number of males just sufficient to fertilize all the
females. That would yield the highest growth rate for the population because males
can potentially sire much more offspring than females. However, in such a situation
where the male reproductive chances of males would be so much higher than those
of females, for every individual couple the best strategy would be to produce only
male offspring. This would continue to hold until the sex ratio is balanced. Thus,
individual optimization is not optimal for the population as a whole.

Our analysis can also explain sexual reproduction at a more fundamental level,
that is, answer the question why there is sexual reproduction at all, instead of simple
reproduction by cell division as in bacteria or by simple cloning. There exist many
proposals in the biological literature for explaining the origin and persistence of
sexual recombination. Surveys and critical discussions can be found in [85, 46].
Some theories are based on the advantage of sexual recombination at the population
level, like the fixation of rare beneficial mutations, or conversely, the elimination
of deleterious mutations. Other theories are built upon the advantages of genetic
diversity in heterogeneous habitats or under pressure from parasites. Sometimes,
sexual reproduction is considered as a puzzle because a population consisting of
individuals that can reproduce without mating partners by self-fertilization could
produce twice as much offspring as a population where only the females can lay eggs
or bear babies. In the biological discussion, however, there often is some confusion
about the issues involved. In fact, to understand the problem of sexual reproduction,
we should clearly separate two issues. One is genetic recombination, and the other
is sexual specialiazation.

So, let us start with genetic recombination, or more basically, with biological
variation. We shall argue on the basis of a somewhat coarse summary of the theory
of evolution. Evolution is concerned with finding ever better adapted organisms as
the fitter outcompete the less fit. This is a search, however, where the answer is not
known beforehand. This means that new possibilities need to be tried out so that
by chance a better solution can be stumbled upon. The easiest possibility whereby
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such a variation can be produced is through mutations. This simply means that the
offspring is not genetically identical to its parent, but carries some genetic changes.
The problem, however, is that most mutations are disadvantageous, deleterious or
even lethal for its carrier, and so, generating too many mutations is in general not
a successful evolutionary strategy. After all, an organism that has survived to matu-
rity in general already is well adapted and difficult to improve upon through such
variations. Thus, biologically mutation rates are usually very small (with exceptions
that need not concern us at this point). There is a solution to the dilemma that on
one hand, variations are needed in order to explore new possibilities and that on the
other hand random mutations have a high probability of carrying negative in place
of positive effects. This solution is recombination. Recombination with partners that
have demonstrated their abilities by survival gives access to variations of offspring
that have already been tested. The natural candidates for such successful mutations
can be found in other individuals in the same ecological niche. Through recombi-
nation, an individual can incorporate genetic material from another individual in its
offspring in place of completely random mutations. As this is a symmetric situation
between two individuals, one solution is that two individuals exchange half of their
genomes. Thus, each individual then is only genetically represented in its offspring
with a contribution of one half, but this is compensated by the fact that she is also
represented to the same extent in the offspring of the partner. This can be a com-
pletely symmetric situation, where neither parent invests more than the other into the
offspring. So far, this is neutral at the population level, in the sense that the average
number of offspring per individual is the same as before. In particular, the reduction
of the offspring number by one half has not yet occurred. So, why does it occur, that
is, why is there an equilibrium where only one half of the population, the females,
produces offspring, whereas the other half, the males, seem to simply waste their
energy in seeking matings?

The answer is that, in this scenario, optimization through specialization can take
place. This is because the success of reproduction now depends on two different
factors that may be impossible to maximize simultaneously. On one hand, a gamete
should carry plentiful nutrients to nourish the developing offspring, and on the other
hand, high mobility of gametes is needed so that they can find and fertilize each
other. This creates the opportunity for optimization of gametes through differgent
specializations. The result of such spezialiations is anisogamy, that is, the difference
between sperm and egg. So far, this is a specialization of gamete types, but not nec-
essarily of individuals. Individuals could still be hermaphroditic, that is, carry both
types of gametes. Again, in this case, the number of offspring would not be reduced
compared with asexual reproduction, as each individual produces offspring from its
eggs. The situation is still symmetric between the mating partners. When, however,
two different types of gametes exist, with different factors increasing the success
of each, this can in turn induce another round of optimization through specializa-
tion, this time at the level of the organism. Instead of being hermaphrodites, that is,
generalists that pursue reproduction through both eggs and sperm, they may rather
specialize in reproduction exclusively through sperm or through eggs, and become
males and females. In principle, in a population, both generalists and specialized
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genders could coexist. We have developed a variational scheme to understand how
individual optimization can lead to the emergence of two different mating types,
female and male, via specialization. This specialization then is stabilized by the
dynamics at the population level. Now we have a twofold cost of sexual reproduc-
tion because if the females developed a method of self-fertilization, the males would
become superfluous, and the same number of offspring could be produced by half the
population. However, the interaction between individual optimization and dynamics
at the population level stabilizes the sex ratio.
The key point of the scenario as developed in this section is that sexual differentiation
does not arise in a single step, from parthenogenesis, that is, the production of off-
spring without a mating partner, to sexual recombination between distinct genders,
which would create the puzzle of the two-fold cost of sex, but in two or three steps,
first from parthenogenic to recombining, but sexually undifferentiated individuals,
and only then through gametic differentiation to sexual differentiation of individuals.
None of these steps poses any principal puzzle, and each can be analyzed in terms
of optimization.

5.2 Variational Methods

In this section, we shall present the mathematical theory of the optimization of
continuous variables, the calculus of variations.We shall only outline the basic ideas,
referring to [23, 74, 121], for instance, for more details and many further examples.

The theory of evolution of Darwin [32] and Wallace explains present biological
structures as the result of fitness differences in ancestral populations. Therefore,
evolutionarily stabilized structures, that is, those not presently undergoing a transition
as an adaptation to new external pressures, can be usefully analyzed as maximizing
fitness, or more concretely, as optimizing a certain property conducive to fitness. An
example of the latter is optimal foraging theory, for instance used for explaining the
behavior and traits of human ancestral hunter gatherer populations.
Speciation, that is, the emergence of a new daughter species from an existing one,
or the splitting of one ancestral species into two or more new ones, can occur when
there are different fitness peaks, that is, trait combinations that represent local fitness
maxima. These fitness peaks can be occupied by different species, each of which
represents an adaptation to a particular such peak, see [47].
Also in economics, optimization under constraints is a pervasive principle. Micro-
economic theory analyzes economic behavior in terms of the maximization of profit
or the minimization of costs, or even as the maximization of utility, even though the
latter is an empirically and theoretically somewhat problematic concept.

Formally, such problems are posed as variational problems

min
x

F(x) under the constraints Gi (x) ≤ c0, i = 1, ..., m (5.2.45)
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where F is the function to be optimized1 and Gi , i = 1, ..., m, are the functions
expressing the constrained quantities. Typically, however, the constraints are a little
flexible and not completely rigid, and one may therefore impose them by penalizing
large values of the constrained quantities, i.e. formulate the problem

min
x

(F(x) +
m∑

i=1

κi Gi (x)) (5.2.46)

where the coefficients κi , i = 1, ..., m, are the relative weights of the constraints
and are typically quite large. Formally, the variational problem (5.2.45) is the limit
of the problem (5.2.46) for κi → ∞, i = 1, ..., m, but the solutions of (5.2.46)
need not always converge to a solution of (5.2.45), for example if different spatial or
temporal scales are involved. For the relevant technical issues, we refer for example
to [31] or [74].
The mathematical field called calculus of variations is based on the variational prin-
ciple that optimality in the large implies optimality in the small. The calculus of
variations is concerned with problems where the local contributions add up to the
global objective function. These are problems of the type

F(u) =
∫

M
f (ξ, u(ξ), Du(ξ))dξ → min under constraints of the formGi (u) = γi

(5.2.47)
where Du denotes derivative of u and M is the region where the arguments of u
vary. For simplicity, we shall assume that M is some open and bounded subset of
Euclidean space Rd , although more general cases can be treated by the same type
of reasoning. u is a real-valued function on M , or more generally, it takes values in
some Euclidean space Rn or in some more general target, but we shall not consider
all possible generalizations here. In the classical case, the constraints are also of
integral type, that is

Gi (u) =
∫

M
gi (ξ, u(ξ), Du(ξ))dξ (5.2.48)

The basic result of Euler says that a necessary condition for a (sufficiently smooth)
minimizer is the differential equation

∑

j

d

dξ j
(

∂ f

∂ p j
+

∑

i

λi
∂gi

∂ p j
) − (

∂ f

∂u
+

∑

i

λi
∂gi

∂u
) = 0, (5.2.49)

1 According to the conventions observed inmathematics and physics,we consider hereminimization
as opposed to maximization problems. Of course, minimizing F is equivalent to maximizing −F ,
and therefore, this does not at all exclude biological applications where fitness is to be maximized.
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where p j is a dummy variable for ∂u
∂ξ j , that is, we consider the functions f (ξ j , u, p j ),

gi (ξ j , u, p j ).
The λi are so-called Lagrange multipliers whose determination is part of the prob-
lem. They ensure that a minimizer satisfies the constraints Gi (u) = γi . As explained
above, one can replace the rigid constraints by penalizing deviations. The equation
(5.2.49) is usually called the Euler-Lagrange equation.
Equation (5.2.49) is an infinitesimal condition that is necessary for u to satisfy the
global condition of minimizing the functional F under the constraint of prescribed
values for theGi . For the derivation of (5.2.49),we shall follow [67].Wefirst consider
the case where the Gi all vanish, that is, where we simply have a smooth minimizer
u : M → R of the functional

F(v) =
∫

M
f (ξ, v(ξ), Dv(ξ))dξ. (5.2.50)

In the sequel, we shall assume that not only f , but also all its derivatives that will
occur, as well as u and its derivatives, satisfy suitable integrability conditions so that
all integrals are well defined and we shall be able to carry out differentiations under
the integral sign (the technical details can be found in [67] ). The basic idea is the
following. We consider a smooth variation φ : M → R of u. More precisely, since
u minimizes F in (5.2.50), we have

F(u) ≤ F(u + tφ) (5.2.51)

for sufficiently small |t | (that is, we shall only utilize the fact that u is a local mini-
mizer, that is, we only use F(u) ≤ F(v) for all v that are sufficiently close to u, w.r.t.
some suitable norm that we do not specify here). We also assume that φ vanishes
near the boundary of M . From this, we derive the infinitesimal condition

d

dt
F(u + tφ)|t=0 = 0. (5.2.52)

In other words, we consider the one-dimensional problem �(t) = F(u + tφ) as a
function of the real variable t , and this then has a minimum at t = 0. We now carry
out the differentiation in (5.2.52).

0 = d

dt

∫

M
f (ξ, u(ξ) + tφ(ξ), Du(ξ) + t Dφ(ξ))dξ|t=0

=
∫

M
(
∂ f

∂u
(ξ, u(ξ) + tφ(ξ), Du(ξ) + t Dφ(ξ))φ(ξ)

+
d∑

j=1

∂ f

∂ p j
(ξ, u(ξ) + tφ(ξ), Du(ξ) + t Dφ(ξ))

∂φ(ξ)

∂ξ j
)dξ|t=0
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=
∫

M
(
∂ f

∂u
(ξ, u(ξ), Du(ξ)) −

d∑

j=1

d

dξ j

∂ f

∂ p j
(ξ, u(ξ), Du(ξ)))φ(ξ)dξ (5.2.53)

Here, in the last, the crucial, step, we have integrated by parts in order to shift
the derivative from φ to the integrand. We have been using the assumption that φ is
smooth in M and that it vanishes near the boundary of M , in order to avoid additional
boundary terms. The next step in the reasoning is that (5.2.53) has to hold for all
such φ. From an approximation argument that we skip, one then derives that

0 = ∂ f

∂u
(ξ, u(ξ), Du(ξ)) −

d∑

j=1

d

dξ j

∂ f

∂ p j
(ξ, u(ξ), Du(ξ)). (5.2.54)

This is equivalent to (5.2.49) for the case where all the gi vanish. For the general
case, we introduce Lagrange multipliers λi and consider

d

dt
(F(u + tφ) +

∑

i

λi (G
i (u + tφ) − γi ))|t=0 = 0 (5.2.55)

for all theφ as before. From this, by the same strategy, we then obtain the general case
of (5.2.49). We omit the details and refer to [67] again for the method of Lagrange
multipliers.
It should be pointed out that (5.2.49) is only a necessary, but not a sufficient condi-
tion for a minimum. In fact, we already know from basic calculus that a first order
condition like (5.2.52) only identifies a critical point. Such a critical need not even
be a local minimum. For checking whether a critical point is a local minimum, one
needs to look at second derivatives. Such a strategy also applies in the calculus of
variations, but developing this issue is beyond our present scope.
We now discuss some examples for which a detailed treatment can be found in [74].
We shall only consider the case where d = 1 so that the index j is not necessary.
In order to simplify the notation, we denote derivatives by subscripts; for instance
uξ = du

dξ .

1. For a positive function γ : [0, 1] × R → R, we consider

F(u) =
∫ 1

0

√
1 + uξ(ξ)2

γ(ξ, u(ξ))
dξ. (5.2.56)

The corresponding Euler-Lagrange equation (5.2.49) then is

0 = d

dξ

uξ(ξ)

γ(ξ, u(ξ))
√
1 + (uξ(ξ))2

+ γu

γ2

√
1 + uξ(ξ)2
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= uξξ

γ
√
1 + uξ(ξ)2

− uξ(ξ)
2uξξ(ξ)

γ(

√
1 + uξ(ξ)2)3

− γξ

γ2

uξ(ξ)√
1 + uξ(ξ)2

− γu

γ2

u2
ξ(ξ)√

1 + uξ(ξ)2
+ γu

γ2

√
1 + uξ(ξ)2,

which yields

0 = uξξ(ξ) − γξ

γ
uξ(ξ)(1 + uξ(ξ)

2) + γu

γ
(1 + uξ(ξ)

2). (5.2.57)

When γ is constant, the solutions of (5.2.57) are the straight lines uξξ(ξ) ≡ 0.
There are also other cases where (5.2.57) can be solved explicitly. For example,
for γ = √

2gu(ξ), with g a positive constant, the integrand f (u(ξ), uξ(ξ)) =√
1+uξ(ξ)2√
2gu(ξ)

satisfies

d

dξ
( f − uξ f p) = uξ( fu − d

dξ
f p) = 0 (5.2.58)

by (5.2.49). Therefore, every solution satisfies

f (u(ξ), uξ(ξ)) − uξ(ξ) f p(u(ξ), uξ(ξ)) = c (5.2.59)

for some constant c which yields

u(1 + u2
ξ) = 1

2gc2
. (5.2.60)

from which one can determine u.
2. We consider

F(u) =
∫ 1

−1
(1 − uξ(ξ)

2)2dξ (5.2.61)

with the boundary conditions

u(−1) = 1 = u(1). (5.2.62)

Obviously, F(u) ≥ 0. For u(ξ) = |ξ| (which satisfies (5.2.62)), we have
F(u) = 0.Hence, this u is aminimizer. It is Lipschitz continuous, but not differen-
tiable at 0, and therefore, the Euler-Lagrange equation (5.2.47) is not meaningful
in the classical sense. In fact, any Lipschitz function u with the boundary condi-
tions (5.2.62) and
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|uξ(ξ)| = ±1 (5.2.63)

almost everywhere is a minimizer of F . That is, for a minimizer u, the value of the
derivative can switch arbitrarily often between+1 and−1. This degeneracy could
then be remedied by penalizing such switching, but there is no smooth minimizer,
that is, no smooth function u that satisfies the boundary values (5.2.62) and realizes
the infimum F(u) = 0. Thus, the classical approach of finding a minimizer of F
by solving the Euler-Lagrange equation (5.2.49) runs into problems.

3. We consider

F(u) =
∫ 1

−1
uξ(ξ)

2ξ4dξ (5.2.64)

with the boundary conditions

u(−1) = −1, u(1) = 1. (5.2.65)

For

un(ξ) =


⎛⎝

⎛⎞

−1 for − 1 ≤ ξ < − 1
n

nξ for − 1
n ≤ ξ ≤ 1

n

1 for 1
n < ξ < 1

(5.2.66)

we have limn→∞ F(un) = 0, but for every function u satisfying (5.2.65), we have
F(u) > 0. Thus, the infimum of the functional F of (5.2.64) with the boundary
conditions (5.2.65) is not achieved. Thus, this variational problem has no solution.

4. Wenowconsider an examplewith a penalization. LetW be a nonnegative function,
withW (ξ) = 0 precisely for the two values ξ = a and ξ = b, with 0 < a < b < 1.
We look at

F(u) =
∫ 1

0
W (u(ξ))dξ (5.2.67)

with the constraint
∫ 1

0
u(ξ)dξ = c, (5.2.68)

for some given c > 0. A minimizer u then satisfies

uγ =
⎠

a in A1 ⊂ [0, 1]
b in A2 ⊂ [0, 1] (5.2.69)

with two disjoint sets A1, A2, whose union is [0, 1] and which satisfy

a meas(A1) + b meas(A2) = c. (5.2.70)
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The problem is that the sets A1 and A2 are otherwise quite arbitrary, that is, u can
switch arbitrarily between the values a and b. To remedy this, we consider the
functionals

Fn(u) =
∫ 1

0

⎧
nW (u(ξ)) + 1

n
|uξ(ξ)|2

⎪
dξ (5.2.71)

They can be minimized, and for n → ∞, the solutions un converge to minimizers
of the functional

F0(u) = 2γ(number of points of discontinuity of u) (5.2.72)

when u is a piecewise constant function; here γ = ⎨ b
a W 1/2(s)ds is an irrelevant

normalizing constant. Thus, even though the penalty disappears in the limit n →
∞, its effect is preserved in the limits of minimizers. Thus, its regularizing effect
persists.

5. We finally discuss the famous isoperimetric problem (see e.g. [25]). In its simplest
form, it requires to maximize the area A of a bounded region� in the plane whose
boundary has a prescribed length L . We have

A =
∫

�

dudv (5.2.73)

L =
∫

∂�

ds (5.2.74)

where u, v are coordinates in the plane and ds is the line element of the boundary
of �. With a Lagrange multiplier λ, we therefore consider

−
∫

�

dudv + λ

∫

∂�

ds. (5.2.75)

Assuming that everything is smooth, we parametrize the boundary ∂� as

s(ξ) = (u(ξ), v(ξ)) (5.2.76)

with smooth functions u, v : [0, 1] → R. These functions need to close up, that
is, u(0) = u(1) and v(0) = v(1) because the boundary of � is a closed curve.
The exterior unit normal vector of ∂� is then given by

n := (
v̇(ξ)

⎩
u̇(ξ)2 + v̇(ξ)2

,− u̇(ξ)
⎩

u̇(ξ)2 + v̇(ξ)2
) (5.2.77)

We recall the theorem of Gauss and Stokes,



196 5 Optimization

∫

�

divX (u, v)dudv =
∫

∂�

X · nds (5.2.78)

for a vector field X = (X1, X2) with divX (u, v) : = ∂X1

∂u + ∂X2

∂v
and the scalar

product X ·n : = X1n1 + X2n2. We can then use the vector field X = (u, v)with
divX = 2 to convert the area into a boundary integral, observing that by (5.2.76),
ds = ⎩

u̇(ξ)2 + v̇(ξ)2dξ,

A =
∫ 1

0
(u(ξ)

v̇(ξ)

2
⎩

u̇(ξ)2 + v̇(ξ)2
− v(ξ)

u̇(ξ)

2
⎩

u̇(ξ)2 + v̇(ξ)2
)
⎩

u̇(ξ)2 + v̇(ξ)2dξ.

(5.2.75) then becomes

I (u, v,λ) : =
∫ 1

0
(−u(ξ)v̇(ξ)

2
+ v(ξ)u̇(ξ)

2
)dξ + λ

∫ 1

0

⎩
u̇(ξ)2 + v̇(ξ)2dξ.

(5.2.79)
Introducing the dummy variables p for u̇ and q for v̇, we write this as

I (u, v,λ) =
∫ 1

0
(−uq

2
+ vp

2
)dξ + λ

∫ 1

0

√
p2 + q2dξ (5.2.80)

=
∫ 1

0
( f (u, v, p, q) + g(u, v, p, q))dξ.

The Euler-Lagrange equations for (5.2.80) are

d

dξ
( f p + λgp) = fu + λgu

d

dξ
( fq + λgq) = fv + λgv

p2 + q2 = L2,

that is,

q + λ
d

dξ

p
⎩

p2 + q2
= 0

p − λ
d

dξ

q
⎩

p2 + q2
= 0

p2 + q2 = L2.
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The solution is

λ = L

4π
p(ξ) = L cos 2πξ

q(ξ) = L sin 2πξ,

that is,

u(ξ) = L

2π
sin 2πξ, v(ξ) = − L

2π
cos 2πξ, (5.2.81)

that is, a circle. We do not verify here that this provides the absolute maximum of
our problem, but rather refer to the literature, e.g. [25]. The area then is A = L2

4π ,
that is, it grows quadratically as a function of the length L . Instead of maximizing
the area for a given boundary length, one can also minimize the boundary length
for a given area. This leads to an equivalent problem, as the reader should convince
herself.
Analogously, the solid body that maximizes the volume V with a given surface
area A is the solid sphere (round ball). Here, the relation between volume and
surface area is

V ∼ A3/2. (5.2.82)

As before, one can equivalently minimize the surface area for a given volume. For
instance, if for a biological organism, the temperature loss to the environment is
proportional to its surface, then, for a given volume, it should try to adopt a round
shape, of course, to the extent that this is compatible with its other requirements.
Also, the scaling law (5.2.82) tells us that such an optimization becomes better,
in the sense that it requires relatively less surface in relation to the volume, when
the organism gets bigger, that is, increases its volume. Such scaling laws can
therefore be helpful for understanding the sizes that organisms develop. Again, of
course, while according to the isoperimetric relationship (5.2.82), bigger is better,
this must be related to metabolic, structural and other requirments that affect the
fitness of an organism.
In fact, biological scaling laws seem to be quite general, but they are different from
the simple relationship (5.2.82), because they rather depend on the properties of
metabolic flows, see [21].

Exercises for This Chapter

1. It has been observed that in human populations male babies on average slightly
outnumber female ones, that is, at birth there is a sex ratio of 102:100 or so.
Evolutionary biology suggests that the reason for this lies in the slightly higher
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mortality rate ofmale infants. Develop this argument within the formal framework
provided in this chapter. In particular, find out the equilibrium sex ratio for a given
infant mortality rate ratio.

2. Find a variational problemwhoseEuler-Lagrange equation is theLaplace equation
�u = 0.

3. Formulate a variational problem that can identify the most energy efficient route
between two points for migrating birds when travelling distances and wind forces
along the route are taken into consideration.



Chapter 6
Population Genetics

Abstract
Questions:

• How does the distribution of alleles (genetic variants) change over time in a pop-
ulation when those alleles are randomly passed on to offspring?

This last chapter draws upon all the different methods discussed in the preceding,
discrete structures, stochastics, analysis, and geometry. It introduces mathematical
population genetics, the theory of the time course of the distribution of alleles in
a population in the presence of mutation, selection, and recombination. The basic
Wright-Fisher model is a discrete stochastic processes. In order to understand it
better, it is advantageous to pass to its diffusion approximation which leads to a
partial differential equation. For understanding this differential equation in turn a
geometric approach is insightful.

Population genetics is concerned with the stochastic dynamics of allele frequen-
cies in a population. Alleles are alternative values at genetic loci. Thus, at one such
locus, there are finitely many possible values that we can label by 1, . . . , k, the sim-
plest nontrivial case being k = 2 which usually already shows all the features of
interest. Different individuals in the population may have different values, and the
relative frequency of the value i (at some given time) is denoted by pi . Thus, p is a
probability measure on Sk := {1, . . . , k}, that is,

k∑

i=1

pi = 1. (6.0.1)

The population is evolving in time, and members pass on genes to their offspring,
and the allele frequencies pi then change in time because of the mechanisms of
selection, mutation and recombination. In the simplest case, one has a population
with nonoverlapping generations. That means that we have a discrete time index n,
and for the transition from n to n + 1, the population Pn produces a new population
Pn+1. More precisely, members of Pn can give birth to offspring that inherit their
alleles. This process involves potential sources of randomness. Mutation means that
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an allele may change to another value in the transition from parent to offspring.
Selection means that the chances of producing offspring vary depending on the value
of the allele in question, as some alleles may be fitter than others. Recombination
takes place in sexual reproduction, that is, when each member of the population has
two parents. It is then determined by chance which allele value she inherits when the
two parents possess different alleles at the locus in question.
Since the preceding are stochastic effects, the future frequencies become probabili-
ties, that is, instead of saying that pi N of the N individuals in the population carry
the allele i , we rather need to say that the probability of finding the allele i at the
locus in question is pi . A key point of the mathematical framework for population
genetics (and for many other fields) then is the assumption that these probabilities
(while expressing stochastic effects) change in time according to deterministic rules.
As already indicated, one typically considers a finite population with a discrete time
dynamics. It is often useful, however, to pass to the limit of an infinite population.
In order to compensate for the growing size, one then needs to make the time steps
shorter and pass to continuous time.

We start with the simplest situation where we consider only one locus; essentially,
this means that we assume that the dynamics at this locus are independent of what
happens at other loci. This is, of course, unrealistic, but it leads to the simplestmodels.
We can then try to generalize these models in subsequent steps.

6.1 Mutation, Selection and Recombination

Themodels thatwe are going to discuss allmake anumber of simplifying assumptions
of varying biological plausibility, in order to make a formal treatment possible.
We consider a population Pn that is changing in discrete time n with nonoverlapping
generations, that is, the population Pn+1 consists of the offspring of the members
of Pn . In particular, we neglect the issue of migration here. Each individual in the
population is represented by its genotype x . We assume that the genetic loci of the
different members of the population are in one-to-one correspondance with each
other. Thus, we have loci α = 1, . . . A. In the haploid case, at each locus, there can
be one of kα possible alleles. Thus, a genotype is of the form x = (x1, . . . x A), where
xα → {1, 2, . . . , kα}. In the diploid case, at each locus, there are two alleles, which
could be the same or different. We are interested in the distribution of genotypes x
in the population and how that distribution changes over time through the effects of
mutation, selection, and recombination.

The baseline situation might be that each member of Pn by itself, that is, without
recombination, produces one offspring that is identical to itself. In that case, nothing
changes in time. This baseline situation can then be varied in three respects:

1. The offspring is not necessarily identical to the parent (mutation).
2. The number of offspring an individual produces or may be expected to produce

varies with that individual’s genotype (selection).
3. Each individual has two parents, and its genotype is assembled from the genotypes

of its parents (sexual recombination).
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In fact, item 3 has two aspects:

a. Each allele is taken from one of the parents in the haploid case. In the diploid
case, each parent produces gametes, which means that she chooses one of her
two alleles at the locus in question and gives it to the offspring. Of course, this
choice is made for each offspring, so that different descendents can carry different
alleles.

b. Since each individual has many loci that are linearly arranged on chromosomes,
alleles at neighboring loci are not passed on independently.

Thus, wewant tomodel how the threemechanisms of mutation, selection and recom-
bination change the distribution of genotypes in the population over time.
Again, in the basic models, these three mechanisms are assumed to be independent
of each other. For instance, it is assumed that mutation rates do not work in favor of
selectively superior alleles.
The mechanism of selection leads to the issue of fitness. This is a difficult concept;
in particular, it is not clear what the unit of fitness is, whether it is the allele or the
genotype or the ancestor of a lineage, or in groups of interacting individuals even
some higher order unit. Some of these issues have been discussed in [66]. Also, when
discussing the concept of fitness, one needs to distinguish between the actual number
of offspring produced by a member of a past population and the expected number of
offspring of a member of the present or a future population. Moreover, in the latter
case, one needs to specify on what those expectations are conditioned. This issue
seems to be sometimes overlooked in the biological literature.
If we employ the term “fitness” loosely for the moment and speak of the fitness of an
individual as the (expected) number of offspring it produces, this fitness may depend
not only on that individual’s own genotype, but perhaps also on the distribution of
genotypes in the population. For instance, as we have seen in Sect. 5.1, if we have
a dioecious population, that is, one with different sexes so that a female has to pair
with a male individual to produce offspring, then the individuals of the minority sex
have a higher (expected) fitness than the majority representatives.
In any case, the fitness will depend on the environment that the population is situated
in. In the simplest case, this environment is uniform (that is, the same for everybody),
static (not varying in time) and independent of the population. Obviously, this is a
gross simplification. In order to dispense with the stationarity assumption, one may
consider randomenvironments, that is, ones that are stochastically fluctuating in time.
In the simplest such case again, one then assumes that the environments randomly
varies according to some static distribution of possible environments. In other cases,
one may assume a systematic trend like global warming. Also, often the crucial
aspect of the environment that the fitness will depend on is access to resources. If
those resources are limited, then the fitness will ultimately decrease with growing
population size (this effect has been included in some of the dynamical population
models treated in Sect. 4.3.1, for instance the Fisher equation (4.3.62)). A natural
concept in that situation is the carrying capacity of the environment. It becomes
more interesting when we consider two different populations that interact with each
other, thereby each contributing to the other’s environment. For each population, we

http://dx.doi.org/10.1007/978-1-4471-6353-4_5
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then have a dynamic interaction between that population and its environment (from
a different perspective, this issue was addressed by the Lotka-Volterra equations
in Sect. 4.3.1). Finally, in order to dispense with the uniformity assumption for the
environment, we may add dimensions along which the environment varies. These
dimensions may correspond to physical space, but may also reflect other differences
between the situation and the behavior of individuals.
Also, in reality, the relation between an individual’s genotype and its fitness is rather
indirect. Through a developmental process, from a genotype, and perhaps with sub-
stantial contributions from epigenetic inheritance, in intricate interaction with the
environment, an adult phenotype is produced, and that phenotype then, together
with environmental conditions, determines the fitness of an individual.
In view of all these additional layers of complexity, the situation for mathematically
tractable formal models may look hopeless, but in fact, this is not quite so. Even
the simplest models do offer some important insights, and many of the complica-
tions just described can be successfully included into formal models. Of course, the
development of models should go hand in hand with the clarification of concepts.
The most basic ones are the concepts of the gene and of the species, together with a
clarification of the issue and the unit of fitness.

Thus, to start with our models, a population is considered as a distribution of
genotypes. Since we do not yet know the composition of future populations, we
need to work with probability distributions. Thus, pn(x) is the probability that an
individual in generation n carries the genotype x . We are then interested in the
dynamics of that probability distribution pn in time n.
In order to model mutations, we assume that we have an operator represented by
a matrix M = (mxy) where x, y range over the possible genotypes and mxy is the
probability that genotype y mutates to genotype x . This mutation probability should
depend on in how many loci x and y carry different alleles. Let d(x, y) be that
number. In the simplest case, one assumes that there is a uniform rate m with which
a mutation takes place at each locus, and this is the same for all the alleles that may
be present at that locus. That is, an allele i at the locus α mutates with probability m.
It then turns with probability m

kα−1 into the allele j �= i . If we want to simplify this,
we assume that kα ∅ k is independent of α, that is, the number of possible alleles
is the same at each locus α. If we want to simplify it still further, we assume k = 2.
We then have

mxy = (
m

k − 1
)d(x,y)(1 − m

k − 1
)A−d(x,y) (6.1.2)

and

mxy = md(x,y)(1 − m)A−d(x,y) (6.1.3)

in case k = 2.
In contrast to mutation, recombination is a binary operation, that is, an operation that
takes twoparent genotypes y, z as arguments to produceoneoffspringgenotype x .We

http://dx.doi.org/10.1007/978-1-4471-6353-4_4
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consider the case of monoecious individuals with haploid genotypes for the moment.
“Monoecious” means that we do not have separate sexes, that is, any individual can
pair with each other one to produce offspring. “Haploid” means that each individual
carries one allele at each locus. An offspring is then formed through recombination
by choosing at each locus the allele that one of the parents carries there. When the
two parents carry different alleles at the locus in question, we have to decide by a
selection rule which one to choose. This selection rule is represented by a mask μ, a
binary string of length A. A 1 at positionαmeans that the allele is taken from the first
parent, say y, and a 0 signifies that the allele is taken from the second parent, say z.
For instance, for k = 2 so that we can also represent each genotype as a binary string
of length A, and for A = 5, the mask 10010 produces from the parents y = 11001
and z = 01010 the offspring x = 11000. We can then write the recombination
operator as

Rxyz =
∑

μ

pr (μ)Cxyz(μ), (6.1.4)

where Cxyz(μ) is the recombination scheme for the mask μ and pr (μ) is the proba-
bility for the mask μ. In the simplest case (still assuming k = 2), all the possible 2A

masks are equally probable, and consequently, at each locus, the offspring chooses
an allele from either parent with probability 1/2, independently of the choices at
the other loci. Another situation occurs in the so-called cross-over models where
the only possible masks are of the form μc = 11 . . . 100 . . . 0, that is, at the first
a(μc), the allele from the first parent is chosen, and at the remaining A − a(μc),
that from the second parent. We then have A + 1 possible such masks μc, and we
may wish to assume again that each of those is equally probable. Such crossover
models are employed in genetic algorithms, a biologically inspired population based
optimization scheme, see e.g. [51, 91]. The key point is that one wishes to consider
fitness functions where the fitness is not simply an additive contribution from the
allele values at the individual loci, but where it may depend on certain allele combi-
nations. For instance, it may be best for an individual to carry either 101 or 010 at
the first three loci. When an individual with 101 is paired with an individual of type
010, only the masks 111 and 000 lead to an offspring with one of the two favorable
allele combinations. If we allow only crossover masks, the probability of that event
is significantly enhanced. Thus, with such a cross-over scheme, there is much better
chance that favorable allele combinations are preserved in the population.

The preceding consideration assumed random mating, that is, individuals get
paired at random to produce offspring. As an alternative, one may also wish to
assume assortative mating, that is, the chances for two individuals to form such a
pair are higher the more genetically similar they are. Such a mechanism will then
lead to some clustering of the genotypes in the population.
In the diploid case, each individual carries two alleles at each locus, one from each
parent. When offspring is produced, it is then randomly decided which of the two
alleles of each parent is carried over. Otherwise, the scheme is the same as in the
haploid case.
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With recombination alone, some alleles may disappear from the populations, and in
fact, with probability 1, in the long term, only one allele will survive at each site,
due to random genetic drift, that is, because the parents that produce offspring are
randomly selected from the population. This is because it may happen that no carrier
of a particular allele is chosen at a given time or that none of the chosen recombination
masks preserves that allele when the mating partner carries a different allele at the
locus under consideration. That would then lead to the ultimate extinction of that
allele. However, when we also allow for mutations, an allele that is not present in
the population at time n may reappear at time n + 1.
The order in which the mutation and recombination operators are applied is not
important in most models.
So far, individuals in generation n were randomly selected as parents of individuals
in generation n + 1. Formally, for each individual in generation n + 1, we sample
the generation n to choose its one or two parents. Again, the simplest case is to
take sampling with replacements, that is, each individual in generation n may in
principle produce arbitrary many offspring. The question then emerges by what rule
the population at time n is sampled. This is the effect of selection. In the simplest case,
selection means that the probability of an individual in generation n to be chosen as
a parent is some function of its genotype. In other words, there is some probability
distribution ps(x) on the space of genotypes x . Here, we make the simplifying
assumption that this probability depends only on the individual genotype, but not
on the composition of the population. Also, we assume a static environment, that is,
ps(x) does not depend on n. All these assumptions can be abandoned, but we wish
to start with the simplest scenario.

Another issue is whether we keep the population size constant, say ∅ N , or let it
vary. In the latter case, the population might become extinct in finite time. The basic
model here is the Galton-Watson branching process discussed in Sect. 3.4, where
each individual produces some number m of offspring with probability p(m). We
have, of course,

∑
m p(m) = 1, and the expected number of offspring is E(m) =∑

m mp(m). Obviously, a necessary (but in general not sufficient) condition for
the population to survive is E(m) ∈ 1. Again, extensions of this model along the
above lines are possible andmeaningful. For instance, there may be different types of
individuals with different survival and reproduction chances, and this may depend on
the composition of the population, like the ratio betweenmale and female individuals.

6.2 The Wright-Fisher Model and its Diffusion Approximation

In population genetics, as discussed in the previous section, one considers the effects
of recombination, selection, mutation, and perhaps others like migration on the dis-
tribution of alleles in a population. References are [43, 102].
We start with the Wright-Fisher model for the effects of genetic drift and consider
a diploid population of size N . At a given locus, there could be either one of two
alleles A1, A2. Thus, an individual can be a homozygote of type A1A1 or A2A2 or a

http://dx.doi.org/10.1007/978-1-4471-6353-4_4
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heterozygote of type A1A2 or A2A1—but we consider the latter two as the same—at
the locus in question. The population reproduces in discrete time steps, and each
individual in generation t + 1 inherits one allele from each of its parents. When a
parent is a heterozygote, each allele is chosen with probability 1/2. Here, for each
individual in generation t + 1, randomly two parents in generation t are chosen, as
in Sect. 2.3.3. Thus, the alleles in generation t + 1 are chosen by random sampling
with replacement from those in generation t . The quantity of interest is the number
X (t) of alleles A1 in the population at time t . This number then varies between 0
and 2N . The transition probability then is given by the binomial distribution,

p(X (t + 1) = j |X (t) = i) =
(
2N

j

)
(

i

2N
) j (1 − i

2N
)2N− j for i, j = 0, . . . , 2N .

(6.2.1)
Whenever X (t) takes the value 0 or 2N , it will stay there for all future times. Even-
tually, this will happen almost surely.
This is the basic model. One can then derive expressions for the expected time for the
allele A1 to become either fixed, that is, X (t) = 2N or become extinct, X (t) = 0,
given its initial number X (0).
We now include selection. We thus assume selective differences between the two
alleles. More precisely, let the fitness values of

A1A1 A1A2 A2A2

be 1 + s 1 + sh 1 (6.2.2)

Here, 0 ∼ h ∼ 1, the simplest case being h = 1/2. Then (6.2.1) gets replaced by

p(X (t + 1) = j |X (t) = i) =
(
2N

j

)
(ηi )

j (1 − ηi )
2N− j for i, j = 0, . . . , 2N

(6.2.3)
with

ηi = (1 + s)i2 + (1 + sh)i(2N − i)

(1 + s)i2 + 2(1 + sh)i(2N − i) + (2N − i)2
. (6.2.4)

When instead mutation occurs, but no selection, we still get other coefficients. Let
us assume that A1 mutates to A2 with rate u, A2 to A1 with rate v. We then have

p(X (t + 1) = j |X (t) = i) =
(
2N

j

)
(ψi )

j (1 − ψi )
2N− j for i, j = 0, . . . , 2N

(6.2.5)
with

ψi = i(1 − u) + (2N − i)v

2N
. (6.2.6)

http://dx.doi.org/10.1007/978-1-4471-6353-4_2
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For the diffusion approximation, we assume that

α := 2Ns, β1 := 2Nu, β2 := 2Nv (6.2.7)

are all of order 1, and we put

δt := 1

2N
, x := i

2N
, x + δx := j

2N
. (6.2.8)

From the above model, we then obtain

E(δx |x) = αx(1 − x)(x + h(1 − 2x)) − β1x + β2(1 − x)

2N
+ o(

1

N
)

=: f (x)

2N
+ o(

1

N
) (6.2.9)

var(δx |x) = x(1 − x)

2N
+ o(

1

N
) (6.2.10)

E(δx3) = o(
1

N
). (6.2.11)

For N → ∞, we then obtain for the density h(x, t)

∂

∂t
h(x, t) = 1

2
�(x(1 − x)h(x, t)) − ∂

∂x
( f (x)h(x, t)). (6.2.12)

This has a different diffusion term than (4.5.23). We do not discuss here the detailed
analytical derivation of the diffusion approximation Eq. (6.2.12), which is also called
a Fokker-Planck or Kolmogorov forward equation. We refer to [22, 43] and the
forthcoming detailed treatment in [62]. The general mathematical theory of diffu-
sion approximations of Markov processes can be found in [41]. In the next section,
we rather present the—perhaps somewhat surprising—geometric interpretation of
(6.2.12) from which one can understand many aspects of its solutions and therefore
also of the solutions of the Wright-Fisher model.

6.3 The Geometry of Probability Distributions

Let Sk := {1, . . . , k} be the finite set of k elements. A measure π on Sk assigns to
every j → Sk a nonnegative number π j . We also require that at least some π j are
positive. The space of measures on Sk is denoted by M (dropping the subscript k
for simplicity of notation). For A √ Sk , we put π(A) := ∑

j→A π j . A probability
measure on Sk is a measure p with

http://dx.doi.org/10.1007/978-1-4471-6353-4_4
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∑

j

p j = 1. (6.3.1)

We are mostly interested in probability measures, that is, measures that satisfy the
normalization (6.3.1). We could then consider the space of probability measures as a
subspace of the space of allmeasures. There is, however, a betterway to conceptualize
it. The normalization (6.3.1) can be achieved by rescaling a given measure π, that is,
by multiplying it by some appropriate factor λ > 0, namely by λ = (

∑
j π j )

−1. The
freedom of rescaling a measure now expresses that we are not interested in absolutes
“sizes” π(A) of subsets of Sk , but rather only in relative ones, like π(A)

π(Sk)
or π(A1)

π(A2)
,

that is, in relative frequencies. Therefore, we identify the space P of probability
measures on Sk as the projective space

P
1M,

i.e., the space of all equivalence classes in M under multiplication by positive real
numbers. Of course, elements ofP can be considered as measures satisfying (6.3.1),
but more appropriately as equivalence of measures giving the same relative sizes of
subsets of Sk .

The probability measures on Sk are given by

�k−1 := {(p1, ..., pk) : p j ∈ 0 for j = 1, ..., k, and
k∑

j=1

p j = 1}.

These form a (k − 1)-dimensional simplex in the positive cone R
k+ of Rk . The

projective space

P
1
R

k+,

however, naturally is identified with the corresponding spherical sector

Sk−1+ := {(z1, ..., zk) : z j ∈ 0 for j = 1, ..., k,

k∑

j=1

z2j = 1}.

There is a natural bijection

�k−1 → Sk−1+
(p1, ..., pk) → (

≥
p1, ...,

≥
pk).

Thus, if p is a probability measure on Sk , then its square root
≥

p is an element of
the unit sphere in Rk .
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Definition 6.3.1. Let p(s) be a family of probability distributions depending on the
parameters s = (s1, ..., sn). The Fisher information metric of this family at s = 0 is
given by

E p(
∂

∂sμ
logp(s)

∂

∂sν
logp(s)) =

∑

j

∂

∂sμ
log p j (s)

∂

∂sν
log p j (s)p j (6.3.2)

where E p denotes the expectation with respect to the probability measure p = p(0)
and all derivatives are taken at s = 0.

We have

Lemma 6.3.1. The Fisher metric can be expressed as

E p(
∂

∂sμ
log p(s)

∂

∂sν
log p(s)) = −E p(

∂2

∂sμ∂sν
log p(s)), (6.3.3)

again with all derivatives taken at s = 0.

Proof. We have

∑

j

∂

∂sμ
log p j (s) p j (s) = ∂

∂sμ

∑
p j (s) = ∂

∂sμ
1 = 0, (6.3.4)

since all the p(s) are probability measures. This implies, whenwe take all derivatives
at s = 0 and put p j = p j (0),

0 = ∂

∂sν

(∑ ∂

∂sμ
log p j (s) p j (s)

)

=
∑ ∂2

∂sμ∂sν
log p j (s) p j (0) +

∑ ∂

∂sμ
log p j (s)

∂

∂sν
p j (s)

=
∑ ∂2

∂sμ∂sν
log p j (s) p j +

∑ ∂

∂sμ
log p j (s)

∂

∂sν
log p j (s) p j .

Since with p = p(0)

E p(
∂2

∂sμ∂sν
log p(s)) =

∑

j

∂2

∂sμ∂sν
log p j (s)p j ,

Equation (6.3.3) follows. �
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Lemma 6.3.2. We can also write the Fisher metric (6.3.2) as

E p(
∂

∂sμ
log p(s)

∂

∂sν
log p(s)) =

n∑

i=1

1

pi

∂

∂sμ
pi

∂

∂sν
pi , (6.3.5)

where again all derivatives have to be taken at s = 0. In particular, the Fisher metric
yields a quadratic form on the variations ∂

∂sμ
p(s)|s=0.

The proof follows directly from the definition (6.3.2).
Thus, the metric tensor in the coordinates p1, . . . , pk becomes



⎛
⎛
⎛
⎛
⎝

1
p1

0 . . . 0

0 1
p2

. . . 0
...

0 0 . . . 1
pk

⎞

⎠
⎠
⎠
⎠
⎧

. (6.3.6)

Remark: This metric is called the Shashahani metric in mathematical biology,
see [61].
This is simply the metric obtained on the simplex �k−1 when identifying it with
the spherical sector Sk−1+ via the map p = q2, q → Sk−1+ . If the second derivatives

∂2

∂sμ∂sν
p vanish, i.e., if p(s) is linear in s, then

k∑

j=1

1

p j

∂

∂sμ
p j

∂

∂sν
p j = ∂2

∂sμ∂sν

k∑

j=1

p j log p j .

An interpretation of this is that the negative of the entropy of probability measures
is a potential for the metric.
We can also apply the formal tools of Riemannian geometry (see [70]) to the Fisher
metric. (6.3.5), (6.3.6), however, is not yet the expression for a Riemannian metric
because we have k coordinates p1, . . . , pk on a (k − 1)-dimensional space. This can
be easily corrected, however, by expressing

pk = 1 −
k−1∑

j=1

p j . (6.3.7)

By the transformation behavior for a Riemannian metric,

gi j (x) =
∑

α,β

γαβ(y)
∂yα

∂xi

∂yβ

∂x j
, (6.3.8)
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when transforming between the coordinates x and y = y(x) (here we take x =
(p1, . . . , pk−1), y = (p1, . . . , pk)), and using

∂ pk

∂ p j
= −1 for j = 1, . . . , k − 1, (6.3.9)

we obtain the metric tensor gi j in the coordinates p1, . . . pk−1 as



⎛
⎛
⎛
⎛
⎝

1
p1

+ 1
pk

1
pk

. . . 1
pk

1
pk

1
p2

+ 1
pk

. . . 1
pk

...
1
pk

1
pk

. . . 1
pk−1

+ 1
pk

⎞

⎠
⎠
⎠
⎠
⎧

, (6.3.10)

with pk given by (6.3.7). For later purposes, we also need the inverse metric tensor
gi j which then becomes



⎛⎛
⎛
⎝

p1(1 − p1) −p1 p2 . . . −p1 pk−1
−p1 p2 p2(1 − p2) . . . −p2 pk−1

...

−p1 pk−1 −p2 pk−1 . . . pk−1(1 − pk−1)

⎞

⎠⎠
⎠
⎧

. (6.3.11)

6.4 Population Dynamics

We now look at dynamics. Some references for the sequel are [22, 61]. We assume
that we have a population consisting of yi individuals of type i , i = 1, . . . , k. Thus,
the relative frequency of type i is

pi := yi
∑

j y j
. (6.4.1)

Each type then may have some fitness fi (y) which depends also on the presence and
magnitude of other types in the population. This fitness is supposed to express the
growth rate of type i .1 It will thus change in time according to

ẏi = fi (y)yi , for i = 1, . . . , k. (6.4.2)

When we want to separate what is specific for the type i and what holds uniformly
for the entire population, we may also redefine the fi and write

ẏi = ( fi (y) + f0(y))yi . (6.4.3)

1 The concept of fitness is somewhat subtle, but this is not our concern here.
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The average fitness of the population then is

f̄ :=
k∑

i=1

fi pi . (6.4.4)

If we also wanted to account for the uniform growth term f0, we should put instead

f̄0 :=
k∑

i=0

fi pi = f̄ + f0. (6.4.5)

We now assume that the fi , i = 0, 1, . . . , k depend only on the relative frequencies
pi , but not on the absolute magnitudes yi . We change our notation and write fi (p)

in place of fi (y). We can then obtain differential equations for the pi , the replicator
equations,

ṗi = pi ( fi + f0 −
k∑

j=1

p j ( f j + f0))

= pi ( fi −
k∑

j=1

p j f j )

= pi ( fi − f̄ ), (6.4.6)

that is, the uniform growth term drops out when we consider the changes of the
relative frequencies in the population, and the growth rate of pi depends on the
difference of i’s own fitness to the average fitness of the population. In particular,
even if all the fi are positive, the relative frequency of type i can still decrease.
We now assume that we have some potential function V for (6.4.2), that is,

fi (p) = ∂V

∂ pi
for i = 1, . . . , k. (6.4.7)

Lemma 6.4.1. When (6.4.7) holds, then

ṗi =
∑

j

gi j ∂V

∂ p j
for i = 1, . . . , k, (6.4.8)

where (gi j ) is the inverse of the Fisher metric, see (6.3.5) or (6.3.6).

Equation (6.4.8) means that the dynamics for the pi is a gradient flow w.r.t. the
Fisher metric. In particular, −V (p) then is a Lyapunov function, since
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− d

dt
V (p(t)) =

∑

i

∂V (p)

∂ pi
ṗi (t) = −

∑

i, j

gi j ∂V (p)

∂ pi

∂V (p)

∂ p j

which is negative unless dV (p) = 0, that is, unless p is a critical of V .

Proof. For every ξ = (ξ1, . . . , ξk) with
∑

j ξ j = 0, that is, for every tangent vector

to the simplex �k−1, the space in which the dynamics of p takes place, we have

∑

i, j

gi j ṗiξ j =
∑

j

1

p j
ṗ jξ j

=
∑

j

( f j − f̄ )ξ j

=
∑

j

f jξ
j

=
∑

j

∂V

∂ p j
ξ j ,

which implies (6.4.8). �
The condition (6.4.7) is locally equivalent to the integrability condition

∂ fi

∂ p j
= ∂ f j

∂ pi
for all i, j. (6.4.9)

The more general condition that there exist some function f0(p) with

fi (p) + f0(p) = ∂V

∂ pi
for i = 1, . . . , k (6.4.10)

is locally equivalent to

∂ fi

∂ p j
+ ∂ f j

∂ pl
+ ∂ fl

∂ pi
= ∂ fi

∂ pl
+ ∂ fl

∂ p j
+ ∂ f j

∂ pi
for all i, j, l = 1, . . . , k. (6.4.11)

Because a function f0(p) drops out of the replicator dynamics (6.4.6), (6.4.10) suf-
fices for the conclusion of the Lemma. In fact,

Lemma 6.4.2. (6.4.11) is necessary and sufficient for Lemma 6.4.1 to hold on a
simply connected domain.

Proof. (See [60]). Let � be a simply connected domain in Euclidean space R
m .

Then, given two times continuously differentiable functions φ j , j = 1, . . . , m, there
exists a function V with

∂V

∂x j
= φ j for j = 1, . . . , m (6.4.12)
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iff
∂φ j

∂x�
= ∂φ�

∂x j
for all j, �, (6.4.13)

because these are the conditions for the second derivatives of V to commute,
∂2V

∂x j ∂x� = ∂2V
∂x�∂x j .

We therefore consider the functions

g j (x1, . . . , xk−1) := f j (x1, . . . , xk−1, 1 − x1 − · · · − xk−1) for j = 1, . . . , k

and φ j := g j − gk for j = 1, . . . , k − 1 =: m.

If (6.4.11) holds, these functions φ j then satisfy (6.4.13), and so, we can find a
function V with (6.4.12).
We then obtain (6.4.10) with f0 = gk . The proof of Lemma 6.4.1 then yields the
claim. �

A special case is the linear case where

fi (p) =
∑

j

ai j p j . (6.4.14)

In this case, (6.4.9) becomes the symmetry

ai j = a ji for all i, j, (6.4.15)

and (6.4.11) becomes

ai j + a jl + ali = ail + al j + a ji for all i, j, l. (6.4.16)

We next include mutations and assume that allele j mutates with probability mi j

into i . More precisely, mi j is the mutation rate from j to i , and we assume that in a
sufficiently large population, variances of the mutation rate can be neglected so that
we obtain the mutation dynamics

ṗi =
∑

j

(mi j p j − m ji pi ). (6.4.17)

The combined effects of mutation and selection then are obtained by combining
(6.4.6) and (6.4.17):

ṗi = pi ( fi − f̄ ) +
∑

j

(mi j p j − m ji pi ). (6.4.18)

In order to also represent (6.4.18) as a gradient dynamics, we need to assume that
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mi j = mi , (6.4.19)

that is, that the mutation rate depends only on the target allele. This is in fact the
condition needed to make the analogue of (6.4.11) hold for the right hand side of
(6.4.18). We then also define the total mutation rate

m :=
∑

i

mi . (6.4.20)

With

Fi := fi + mi

pi
, F̄ :=

∑

i

Fi pi = f̄ + m, (6.4.21)

Equation (6.4.18) becomes

ṗi = pi (Fi − F̄). (6.4.22)

When (6.4.7), that is, when f is a gradient, then so is F ,

Fi (p) = ∂W

∂ pi
(6.4.23)

with

W (p) := V (p) +
∑

i

mi log pi for i = 1, . . . , k. (6.4.24)

Thus, we have a gradient dynamics again. In any case, (6.4.18) is a deterministic
equation for the temporal dynamics of the probabilities (relative frequencies) pi .
This changes when we also include recombination. The basic model of Wright and
Fisher for diploid populations is based on themultinomial distribution. As before, we
assume that we have a population of size 2N . Onemight think of individuals here, but
for recombination, one should rather think of gametes. The number of gametes will
typically be much larger, perhaps by several orders of magnitude, than the number
of individuals in a population. This may serve as a justification for looking at the
limit N → ∞.
We assume that the recombination process at the single locus that we consider here,
with allele frequencies p j , can be modelled by sampling with replacement. That is,
we assume that in generation t , we have 2p j N alleles of type j , and the probabilities
for the numbers Ni of alleles of type i in generation t + 1 are given by

p(N1 = n1, . . . , Nk = nk) = 2N !
n1!n2! . . . nk ! (p1)n1(p2)n2 . . . (pk)nk . (6.4.25)
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This is, of course, the generalization of (6.2.1) to the case of more than two alleles.
The expected relative frequency of alleles of type j in that generation is then

p j , (6.4.26)

that is, the same as in the previous generation. The covariance for i, j is

pi (δi j − p j ), (6.4.27)

see Lemma3.1.2. (Note thatwe look at the relative frequencies instead of the absolute
ones so that the factor 2N drops out of (6.4.26), (6.4.27).) Thus, from (6.4.27), we
obtain the inverse Fisher metric (6.3.11).

So far, this is for discrete generation time. In order to pass to continuous time, we
need to do adiffusion approximation.This involves a rescalingof time.As inSect. 6.2,
one unit of the new—continuous—time t corresponds now to 2N generations or units
of discrete time. In general, when we have a Markov chain like (6.4.25), with

ai j (p) = pi (δi j − p j ). (6.4.28)

bi (p) = ṗi , (6.4.29)

the probability density φ(p, q, t) that the allele frequencies are p at time t , given
that they are q at time 0, is determined by the forward Kolmogorov equation

∂

∂t
φ(p, q, t) = 1

2

k−1∑

i, j=1

∂2

∂ pi∂ p j
(ai j (p)φ(p, q, t)) −

k−1∑

i=1

∂

∂ pi
(bi (p)φ(p, q, t)).

(6.4.30)
This generalizes (6.2.12). For the derivation of Kolmogorov equations within the
context of dynamical systems, we refer to [87], within the context of Markov chains
to [41]. In [62], we shall derive (6.4.30) in a direct manner within the framework
established here.
Equation (6.4.30) now is a deterministic equation for the probability density φ for
having the relative allele frequencies pi . The first order term on the right hand side
is called a drift term; it represents the dynamics of the expectation value. The second
order term is called a diffusion term. This may become a little confusing because
(6.4.25) described randomgenetic drift. Thus, in the diffusion approximation, genetic
drift causes a diffusion and not a drift term.
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Simplex, 207
Simplicial complex, 15
Single nucleotide polymorphism (SNP), 53
Sink, 120
SiRNA, 7
Slow manifold, 134
Small-world effect, 14
Sodium channel, 127
Source, 120
Spanning tree, 13
Spatial oscillations, 152
Spatially averaged, 141
Spatially inhomogeneous perturbations, 157
Specialist strategy, 179
Speciation, 35, 189
Species, 2, 10, 35
Spectrum of the graph Laplacian, 17, 33
Spike, 3, 10, 66, 72, 126
Spike train, 72
Spiral, 120
Splicing, 7
Split, 37, 38, 42
Stabilizing selection, 35
Stable, 120
Star, 14, 16
Stationary, 66
Stationary increments, 67
Stochastic process, 65
Stop codon, 6
Strategy, 176
Structurally stable, 121, 122
Subcritical branching process, 74
Subcritical Hopf bifurcation, 123
Subharmonic function, 92
Substitutable, 178
Supercritical branching process, 74
Supercritical Hopf bifurcation, 123
Superposition principle, 95, 104
Symbiosis, 172
Symplesiomorphic, 43
Synapomorphic, 43
Synapse, 3, 11
System theory, 4

T
Temporal oscillations, 154
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Theorem of Fenichel, 134
Theory of evolution, 189
Thomas system, 156, 172
Time scales, 133
Topological combinatorics, 15
Totally decomposable metric, 42
Transcription, 6
Transcription factor, 6
Transition probabilities, 110
Translation, 6
Transport equation, 164
Travelling wave, 147, 148
Tree, 13, 15, 34, 36
Tree metric, 38
Triangle, 13, 15
Triple, 8
Triplet, 6
TRNA, 6
Trophic interaction, 10
Turing mechanism, 155, 162, 163, 172, 173

U
Uncorrelated, 62
Unstable, 120

urn model, 87

V
Van der Pol oscillator, 135
Variance, 62
Verhulst equation, 117, 141
Vertex, 10, 11
Vertex degree, 11
Vertex duplication, 28

W
Wave equation, 169, 170
Weighted graph, 11
Weyl estimates, 101
White noise, 166
Wiener process, 112, 114
Wright-Fisher model, 48, 87, 204, 214

X
X-split, 37
X-tree, 37
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