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   Foreword   

 To reach Volume 100 of a scientifi c book series is certainly an occasion to celebrate. 
We thought that this might be best achieved in two ways: on the one hand to 
assemble timely overviews of present-day methodology for the structural analy-
sis of organic natural products, and on the other hand to discuss the historical 
aspects of the over 400 past contributions to the series founded in 1938 by  László 
Zechmeister . 

 The fi rst aspect is covered by contributions from pioneers and experts of the 
various analytical methods used widely in natural products characterization. Thus, 
the fi eld is introduced by “Structure Elucidation of Natural Compounds by X-ray 
Crystallography” written by  Ulrike Wagner  and  Christoph Kratky  of the University 
of Graz (Austria)—interestingly enough, the father of the latter author was an 
author in Volume 1 of our book series. This contribution is followed by “Mass 
Spectrometry in Natural Product Structure Elucidation” by  Herbert Budzikiewicz  
of the University of Cologne (Germany), “Nuclear Magnetic Resonance in the 
Structural Elucidation of Natural Products” by  William F. Reynolds  of the 
University of Toronto (Canada) and  Eugene P. Mazzola  of the University of 
Maryland (USA), and fi nally by “Vibrational Circular Dichroism Absolute 
Confi guration Determination of Natural Products” by  Pedro Joseph-Nathan  and 
the late  Bárbara Gordillo-Roman  from the Instituto Politécnico Nacional, Mexico 
City (Mexico). 

 The second aspect is covered by the contribution “The Series “Progress in the 
Chemistry of Organic Natural Products”: 75 Years of Service in the Development of 
Natural Product Chemistry” by  Rudolf Werner Soukup  and  Klara Soukup  of the 
Vienna University of Technology and St. Anna Kinderspital (Austria), and short 
descriptions of each of the past contributions of Volumes 1–99 are provided. 

 Past hallmarks of this book series have been the broad range of the subject matter 
covered and the internationally acclaimed chapter authors who have represented all 
six continents. Many thousands of natural products are presently known from 
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marine and terrestrial organisms, and their number and potential uses grow annually. 
In future years, the present Series Editors of “Progress in the Chemistry of Organic 
Natural Products” intend to build on the considerable momentum that has already 
been established by our illustrious editorial predecessors.  

  Columbus, OH     A.    D.     Kinghorn   
 Linz, Austria     H.     Falk   
 Sapporo, Japan     J.     Kobayashi     

Foreword
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1  Introduction

This contribution deals with the methodology of X-ray crystallography, which offers 
the most powerful techniques for the elucidation of the three-dimensional structure 
of molecules or molecular assemblies at atomic resolution, in particular of natural 
products. The topic was previously reviewed in this series in 1968 (1). Modern crys-
tallography can roughly be divided into two sub-disciplines, the crystallography of 
“small molecules” (i.e. of molecules with molecular masses up to few thousand 
Daltons) and “macromolecular” crystallography (dealing with molecules or molec-
ular assemblies above, say, 5 kDa). While the two sub-disciplines are based on the 
same physical phenomenon—the diffraction of X-rays by crystals—they differ dis-
tinctly with respect to the technology for each step of structure analysis, and they 
very distinctly differ with respect to the time and effort required to carry out a struc-
ture analysis. Thus, the structure analysis of a crystal of a natural product of low 
molecular mass is nowadays a routine enterprise, requiring (at least in favorable 
cases) a few hours of manpower and involving in-house equipment. In contrast, 
structure analysis of a (natural, biological) macromolecule—in spite of continuous 
improvements in automation—is still a major undertaking, involving the collection 
of diffraction data at synchrotron sources and requiring typically months of man-
power. The present contribution will attempt to describe the methodology of both 
crystallographic sub-disciplines, but a bias towards macromolecular crystallography 
will be unavoidable. This is due to a variety of reasons, among them the much larger 
complexity and diversity of techniques, the more dramatic developments  during the 
last few decades and not least the personal research interests of the authors.

Besides X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy 
is the second major method for atomic-level structure determination. While, for 
many years, the two techniques competed for being the “most relevant technique for 
structure analysis”, it is now recognized that NMR and crystallography are largely 
complementary, with each of them having specific strengths and weaknesses. Thus, 
the application of NMR techniques is still subject to limits in the size of molecules 
to be investigated. Such limits are much less severe for crystallography: the largest 
molecular assembly for which the three-dimensional structure has been deposited in 
the Protein Data Bank is the yeast 80S ribosome (2), consisting of 45 peptide chains 
with a total structural weight of more than 1.8 MDa. On the other hand, crystallog-
raphers depend on the availability of crystals in contrast to NMR spectroscopists, 
who only need a sufficiently concentrated solution for their experiments. It becomes 
more and more apparent that—at least in biological crystallography—the crystalli-
zation step is the crucial bottle neck for a crystallographic structure elucidation.

2  History

The physical foundations of crystallography have been known slightly more than a 
century. It started in 1895 with the discovery of X-rays by Conrad Wilhelm Röntgen 
(3), followed—in 1912—by the ground-breaking observation by Walter Friedrich, 
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Paul Knipping, and Max von Laue that the interaction of these—at the time quite 
mysterious—X-rays with a crystal of zincblende produces interference patterns, 
which were interpreted as being the result of a regular three-dimensional arrange-
ment of zinc and sulfur atoms (4). In fact, René-Just Haüy had already predicted in 
the eighteenth century that a crystal consists of a three-dimensional repetition of 
smaller units. After von Laue’s landmark experiment, the theoretical background for 
structure determination with X-rays was developed by William Henry Bragg and 
William Lawrence Bragg (5–7). Although the early crystal structure analyses per-
formed with this new technique were from very simple substances, such as rock salt 
(8), diamond (9), or copper (10), they had immediate implications on the discovery 
and understanding of chemical phenomena, eventually culminating in Linus 
Pauling’s seminal book on “The Nature of the Chemical Bond” (11). In those early 
days, structure determination even for small molecules was very  time- consuming, 
requiring virtually years of hard manual labor.

A landmark for the development of the crystallography of natural compounds 
was the work of Dorothy Hodgkin, who contributed to the advancement of the field 
with several seminal structure analyses. Most importantly, she confirmed the chemi-
cal structure of penicillin (12, 13) that Ernst Boris Chain had previously surmised 
(14), and subsequently elucidated the crystal structures of vitamin B12 (15–17), of 
coenzyme B12 (18) and of other B12 derivatives (19) (Fig. 1). Hodgkin’s 
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Fig. 1 (a) Chemical constitution and configuration of the B12 derivatives coenzyme B12  
(5′-deoxyadenosyl cobalamin, X = 5′-deoxyadenosyl), vitamin B12 (cyanocobalamin, X = CN) 
and B12r (cob(II)alamin, X = e). (b) The B12 moiety in the crystal structure of coenzyme B12 (18)
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crystallographic work on B12 was specifically significant for a number of reasons: 
coenzyme B12 is the most complex non-polymeric natural product, and the first one 
for which the chemical structure was elucidated by X-ray crystallography. In fact, 
the X-ray analysis revealed a feature of coenzyme B12—a cobalt-carbon bond—
which was completely unexpected and which would never have been discovered 
with any other technique available at the time. In 1964, Dorothy Hodgkin was 
awarded the Nobel Prize in chemistry “for her determinations by X-ray techniques 
of the structures of important biochemical substances”. In subsequent years, 
Hodgkin continued with substantial contributions to the analysis of the three-dimen-
sional structure of important natural products, including that of insulin (20).

Herbert Aaron Hauptman and Jerome Karle developed a statistical method to 
solve the phase problem of small molecules (21)—the direct methods—for which 
they received the Nobel Prize in 1985. It is largely due to the direct methods—com-
bined with the availability of computers—that small-molecule crystallography, in 
particular of most natural products, is a routine technique today.

The situation is quite different for the crystallography of natural macromole-
cules. Although Joseph Burton Sumner showed as early as 1926 that a protein 
 (urease) can be crystallized (22), it took more than three decades until the first 
 crystal structure (myoglobin at 6 Å resolution) was reported, and an additional 
three years for the (almost) completed structure (23) to be published. The second 
protein crystal structure—hemoglobin—was reported several years later (24, 25). 
For their pioneering work, John Kendrew and Max Perutz were awarded the Nobel 
Prize in 1962. Subsequent breakthroughs in macromolecular crystallography 
include the elucidation of the structure of the photosynthesis reaction center, the 
first membrane- protein  complex for which the structure was determined at atomic 
resolution, by Johann Deisenhofer, Hartmut Michl, and Robert Huber in 1984 (26) 
(Nobel Prize 1988). In 2009, the Nobel Prize in chemistry was awarded to 
Venkatraman Ramakrishnan, Thomas Arthur Steitz, and Ada Yonath “for studies of 
the structure and function of the ribosome”. Besides the enormous biological rele-
vance of ribosomes, for which the function can now be rationalized at atomic reso-
lution, it is the breathtaking complexity of ribosomal particles—with molecular 
masses far exceeding one  million Daltons—which make the achievements of 
Ramakrishnan, Steitz, and Yonath so  outstanding (27–30).

3  Theoretical Background

3.1  Heuristic Introduction

By its very nature, X-ray crystallography is a microscopic technique, for which the 
specifics can be rationalized with reference to a microscope (Fig. 2a): a microscopic 
object interacts with electromagnetic radiation, resulting in elastic scattering of a 
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small fraction of the incoming light. The scattered radiation passes through an opti-
cal system of lenses, that recombines the scattered light to an enlarged image of the 
original object. The resolution—defined as the minimum distance of two points 
which can still be distinguished—of such an optical imaging process is

 
dmin

max

=
l
J2sin  

(1)

Here, λ is the wavelength of the electromagnetic radiation, and ϑmax is half the 
maximum angle between incoming radiation and scattered radiation. Thus, in order 
to image objects of molecular dimensions, radiation with a wavelength in the 
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Fig. 2 (a) Concept of a microscope and (b) of a diffraction experiment
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order of minimum distances between atoms has to be employed. Hence, X-rays 
with wavelengths between 0.7 and 1.5 Å are used for crystallographic experiments. 
Since optical systems for radiation of such a wavelength do not exist,1 the experi-
ment has to be modified as shown in Fig. 2b, i.e. the system of lenses is replaced by 
a detector, which records the intensity of scattered radiation. The job of recombin-
ing scattered radiation to an image is “left to the computer”. Since a detector can 
only record the intensity of scattered radiation and not its phase, information is lost 
when the experiment is performed as shown in Fig. 2b. The process of numerically 
recombining scattered radiation to form an image therefore has to cope with a non-
trivial problem frequently referred to as the “phase problem” of crystallography.

The simplified representation of Fig. 2 overlooks yet another much more serious 
problem: in order to form an image of an object of molecular dimensions, a linear 
magnification by about eight orders of magnitude (!) is required, which has to be 
compared to the maximum linear magnification of optical microscopes by three to 
four orders of magnitude. A linear magnification by a factor of 108 corresponds to 
projecting a slide onto a screen with the size of Germany. A light source of tremen-
dous brilliance would be required for such an undertaking, for which the  unbelievably 
high energy would destroy the molecular object within picoseconds.2

The trick of crystallographers to overcome the problem of radiation intensity and 
radiation damage is to investigate crystals instead of individual molecules. Crystals 
consist of regular three-dimensional arrangements of identical objects (atoms or 
molecules). The fact that different components are related by translation symmetry 
has the consequence that the scattering of each of the components interferes con-
structively in a few directions (defined by simultaneously satisfying the three Laue 
equations (8) or the Bragg equation, see below), where the scattered intensity is then 
at least proportional to the number of components in the crystal, while the scattered 
radiation interferes essentially destructively in all other directions. This leads to dif-
fraction images characterized by sharp spots of high intensity (often referred to as 
reflections) surrounded by a comparably weak background, as shown in Fig. 3.

3.2  Scattering Theory

In the following, we give a brief summary of the theoretical basis of X-ray diffrac-
tion. More detailed descriptions of the theory of X-ray scattering from crystal scan 
be found elsewhere (31–33).

1 The refractive index for X-rays is very close to 1 for all known materials, and all materials absorb 
X-rays to some extent. However, X-ray lenses based on multilayer-systems and Fresnel zone 
plates are in the process of being developed for X-ray microscopy.
2 Such brilliant radiation sources will in fact become available in the future with the advent of free 
electron lasers, and imaging experiments on single molecules are indeed forseeable.
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The mathematical concept describing the translation symmetry of a crystal is 
called a lattice. A lattice is an infinitely large three-dimensional arrangement of 
points for which the location in space can be described by three non-coplanar trans-
lation vectors 

�
a, 

�
b, and 

�
c. These vectors are defined in such a way that—starting 

from any point within the lattice—an integer multiple of the three vectors will 
always end up on another lattice point, and that any lattice point can be reached by 
an integer linear combination of the three lattice vectors. The parallelepiped defined 
by the three vectors 

�
a, 

�
b, and 

�
c is called the unit cell, which can contain anything 

between one atom and a complicated arrangement of many macromolecules. If r �
r( ) 

is the electron density at any location 
�
r  within the crystal, then the translational 

symmetry of the crystal can also be specified as

 
r r� � � � �

r r ma nb pc( ) = + + +( )
 

(2)

With m, n, and p being integer numbers. The scalar quantities

 

a a b b c c

bc

b c

ac

a c

ab

= = =

= = =- - -

� � �
��
� �

��
� �

� �
, , ,

,cos cos , cosa b g1 1 1
�� �
a b

 

(3)

are called the cell constants. The vector 
�
r  pointing to a location within the crystal 

is usually expressed in terms of the lattice translation vectors 
�
a, 

�
b, and 

�
c:

 
� � � �
r X a Yb Zc= + +  (4)

X, Y, and Z are called fractional coordinates.

Fig. 3 (a) Diffraction pattern of an organic crystal, and (b) of a protein crystal. Both patterns were 
recorded under identical experimental conditions (λ = 1.54 Å, distance crystal-detector = 120 mm, 
radius of detector = 90 mm, 1° oscillation)
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A diffraction experiment can be described by two vectors 
�
s0 and 

�
s1, where 

�
s0 is a 

vector along the incoming X-ray beam, and 
�
s1 is a vector pointing in the direction of 

a diffracted beam. Both vectors have length 1/λ, where λ is the X-ray wavelength. 
The diffraction vector 

�
R is defined as

 
� � �
R s s= -1 0  (5)

It can be shown that the diffraction of an object described by the electron density 
r �

r( ) only depends on 
�
R (and not on the individual vectors 

�
s0  and 

�
s1 ), and it can be 

described by the complex function F R
�( ), which is the Fourier transform of r �

r( ):

 
F R F R e r e d r

i R irR
� � � �� ��( ) = ( ) = ( )( )

¥

-¥
òòò

2 2 3p prF

 
(6)

F R
�( ) is called the scattering function, which is not directly experimentally 

observable. The observable scattered intensity can be computed from F R
�( ) by

 
I R F R F R

� � �( ) = ( )´ ( )*

 
(7)

Laue was the first to define the geometric condition for constructive interference 
of scattering functions resulting from translation-equivalent objects (Fig. 4).

Fig. 4 (a) The phase shift of two translation-equivalent objects related by the vector 
�
a for diffrac-

tion in the direction 
�
R is 2π�

�
aR. (b) The diffraction of an infinite number of translationally equiva-

lent objects will only constructively interfere if the phase shift for successive objects is zero, hence 
� �
aR integer=

As illustrated in this figure, a one-dimensional array of translation-equivalent 
objects related by the translation vector 

�
a will yield maximum constructive interfer-

ence if 
� �
aR is zero or an integer number. For three-dimensional crystals, this condi-

tion has to be fulfilled simultaneously for all three translation directions, leading to 
the Laue equations:

 

� �

��

��

aR h

bR k

cR l

=

=
=  

(8)

h, k, and l are integer numbers called the Miller-indices.
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The reciprocal lattice is a useful concept to visualize the conditions for observ-
ability of a reflection. It can be shown that the three Laue equations are fulfilled when

 
� � � �
R ha kb lc= + +* * *

 (9)

h, k, and l are the Miller indices and 
�
a*, 

�
b* , and 

�
c* the reciprocal lattice vectors 

defined as follows:

 

�
� �

� � �
� � �

� � �
�

� �

� � �a
b c

a b c
b

a c

a b c
c

a b

a b c
* * *, ,=

´

× ´( )
=

´

× ´( )
=

´

× ´( ))
 

(10)

Thus, all possible integer linear combinations of ha kb lc
� � �* * *+ +  define a lattice, 

for which the grid points have to coincide with the diffraction vector in order for a 
reflection to be observable.3 This is illustrated in Fig. 5.

Thus, the translational symmetry within crystals leads to a “sampling” of the 
scattering function, which is zero everywhere except at the reciprocal lattice 
points, where

 
F NFcrystal unit cell=

 
(11)

With N being the number of unit cells in the crystal. Hence

 
I F N Icrystal crystal unit cell= =

2 2

 
(12)

3 This is equivalent to the well-known Bragg equation nλ = 2d sin ϑ, where λ is the wavelength and 
ϑ is the angle between incoming wave and the plane of lattice points with spacing d.

location of
crystal

Ewald-sphere
radius = 1/λ

origin of
reciprocal
lattice

Fig. 5 In order to observe the intensity associated with a reciprocal lattice point, the crystal has to 
be rotated in such a way that the lattice point coincides with the surface of the Ewald sphere (301)
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Since the structure factor F R
�( ) is the Fourier transform of the electron density 

r �
r( ), inverse Fourier transform will allow the computation of r �

r( ) from F R
�( ). 

Moreover, since F R
�( ) is only non-zero on reciprocal lattice points, the Fourier- 

integral can be simplified to a summation:

 
r r p pr X Y Z F R e d R F h k l eirR

h k l

i hX k( ) = ( ) = ( ) = ( )òò ååå- - +, , , ,
� ���

2 3 2 YY lZ+( )

-¥

¥

ò
 

(13)

Thus, computation of the electron density would be a straightforward summation 
if the structure factors F(h, k, l) were known, However, F(h, k, l) is a complex quantity, 
of which only the modulus | |F h k l I h k l, , , ,( ) = ( )  is experimentally accessible. 
This constitutes the crystallographic phase problem.

While computation of the electron density from observed intensities is thus non- 
trivial, the reverse—computation of structure factors for a known structure—is 
straightforward. Crystallographic structures are not described in terms of a  continuous 
electron density but rather in terms of atomic positions within the unit cell.

 
r r� � �

r r r
i

n

i i( ) = -( )
=
å

1  
(14)

Where 
�
ri  is the location of atom i, and the summation runs over all atoms in the unit 

cell. The structure factor calculation simplifies then to a summation:

 
F h k l f h k l e

i

n

i
i hX kY lZi i i, , , ,( ) = ( )

=

+ +( )å
1

2p

 
(15)

fi are the atomic scattering factors for spherically symmetric atoms, which are 
assumed to be only dependent on the scattering angle 2ϑ (see below).

3.3  Symmetry in Crystals

The most relevant type of symmetry—translational symmetry—has been dealt with 
above. Additional point-group symmetry also occurs in crystals. It can be demon-
strated that infinite periodic three-dimensional objects can have only specific point 
group symmetry elements, such as inversion centers, mirror planes and 2-, 3-, 4-, 
and 6-fold rotation axes. In addition, combinations of these point group symmetry 
elements with a translation component by a fraction of a lattice translation—leading 
to screw axes and glide planes—are possible in crystals.

Analysis of all possible combinations of the point group symmetry elements 
leads to 32 different crystallographic point groups. If one combines these 32 point 
groups with the screw axes and glide planes and includes the 14 possible lattice 
types—the so-called Bravais lattices—one ends up with a total of 230 space groups 
(34), which describe the possible combinations of symmetry elements in a crystal. 
Each crystal can be assigned to exactly one space group.
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The symmetry properties of the crystal structure ρ(X, Y, Z) has an effect on the 
symmetry of the diffraction pattern F(h, k, l). It can be shown that the point group 
symmetry of the crystal structure is reflected in the point group symmetry of the 
diffraction pattern. However, since the diffraction pattern is always centrosymmetric 
(Friedel’s law (35)),4 the 32 crystallographic point groups map on 11 possible point 
groups of the diffraction pattern, the so-called 11 Laue Classes. Occurrence of sym-
metry elements with a translation component—screw axes, glide planes, and lattice 
centering—leads to what is called systematic extinctions in the diffraction pattern. 
These systematic extinctions are sufficiently characteristic to allow  unambiguous 
identification of each symmetry element with a translation component. Finally, the 
existence or non-existence of centro-symmetry in the crystal structure—which can-
not be deduced from the symmetry of the diffraction pattern because of Friedel’s 
law—can usually be derived from a statistical analysis of the distribution of observed 
reflection intensities (32). However, the latter question may be academic whenever 
one knows from the chemical configuration that the crystal structure cannot be cen-
trosymmetric, as it is the case in macromolecular crystallography.

In summary: the deduction of the space group symmetry of a crystal from 
 properties (symmetry, systematic extinctions, intensity statistics) of the diffraction 
pattern is usually straightforward. Occasionally, these observables are compatible 
with two or three different space groups, in which case structure solution has to be 
attempted for each of the possible space groups.

An important concept related to the crystal symmetry is the asymmetric unit. 
The unit cell always contains an integer number of asymmetric units related by the 
crystallographic symmetry elements. In terms of the molecular constituents of the 
crystal, the asymmetric unit may consist of one molecule, but it may also consist of 
a fraction of a molecule (in which case a symmetry operation transforms a molecule 
into itself) or of several molecules. The latter case is quite frequent in macro-
molecular crystallography, and is referred to as non-crystallographic symmetry.

3.4  Crystallographic Resolution

Equation (1), describing the resolution of an optical system, implies that better reso-
lution (i.e. lower dmin) can be attained by either lowering the wavelength λ or by 
increasing the maximum angle of observation 2ϑmax. These are both parameters under 
the control of the experimenter. However, in the vast majority of cases it is not the 
experimental setup that limits the resolution but rather the sample, limiting in turn the 
maximum angle of observation by not showing any significant diffraction beyond a 
certain scattering angle. This is readily seen from Fig. 3, which shows that the diffrac-
tion of an organic crystal extends well to the edge of the detector (Fig. 3a), while the 
diffraction of a biological macromolecule (recorded under identical experimental 
conditions) rapidly fades away at relatively small scattering angles (Fig. 3b).

4 Friedel’s law only holds when anomalous dispersion effects are negligible. Significant anomalous 
effects allow to determine the absolute configuration of molecules (36) and form the basis for a 
powerful set of techniques to determine the phases of macromolecular crystals (see Sect. 4).

Structure Elucidation of Natural Compounds by X-Ray Crystallography



12

Figure 3 reveals a number of significant and characteristic differences between 
the diffraction patterns of protein crystals and crystals of small molecules:

 1. Small-molecule crystals typically diffract to atomic resolution (dmin < 1.3Å), 
which occurs only in exceptional cases with protein crystals. The resolution has 
dramatic effects on the interpretability of density maps (as shown in Fig. 6), and 
it has implications on structure solution and structure refinement.

 2. Diffracted intensities are much higher for small-molecule crystals compared to 
protein crystals. This is evident from the fact that the diffracted intensity is pro-
portional to N2, with N being the number of unit cells. For macromolecular crys-
tals, the cell constants are orders-of-magnitude larger than for small-molecule 
crystals, with a concomitantly smaller N for protein crystals.

Fig. 6 Two-dimensional section through the electron density map for a vitamin B12 derivative (302). 
The section passes through the dimethylbenzimidazole moiety (indicated in green). (a) Map calcu-
lated with data extending to 0.91 Å resolution; (b) map calculated with data to 2.0 Å resolution
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 3. Diffraction spots are much closer in protein crystals. This is due to the larger 
cell constants, which lead to smaller reciprocal cell constants und therefore 
many more reciprocal lattice points simultaneously coinciding with the Ewald 
sphere.

The difference in attainable resolution between small-molecule crystals and 
macromolecular crystals becomes immediately obvious when one analyzes the 
packing of individual molecules into the crystal environment. While—as shown in 
Fig. 7—small molecules pack very tightly, with many contacts between neighbor-
ing molecules and few voids, the packing of protein crystals is extremely loose—
adjacent molecules form few contacts, and there are huge spaces filled with (usually 
disordered) solvent. Up to 85% of the space of macromolecular crystals is occupied 
by solvent. Thus, macromolecular crystals are very soft and brittle—frequently 
referred to as ordered solutions.

Fig. 7 (a) The packing in a protein crystal (β2-glycoprotein I, pdb-code 1c1z, (303)) with a solvent 
content of 85%. (b) Packing of 2β-hydroxygonane (CSD code AFAAWOU (304)). Atoms are dis-
played as spheres with the following color scheme: carbon-yellow, nitrogen-blue, oxygen-red, 
hydrogen-white. Pictures were generated with the program pymol (305)

3.5  Anomalous Dispersion

In the structure factor calculation (equation 15), fi are the atomic scattering factors, 
which are assumed to be real quantities only dependent on the scattering angle. Under 
these conditions, Friedel’s law, i.e. the centrosymmetry of the diffraction pattern 
I h k l I h k l, ,( ) = ( ), , , readily emerges even for non-centrosymmetric structures, since

 
I h k l F h k l F h k l, , , , , ,( ) = ( ) ( )´ *

 
(16)

The assumption that the fi are real quantities only holds as long as all atoms 
behave as elastic scatterers, i.e. as long as the absorption edges of all atoms in the 
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unit cell are far removed from the energy of the X-rays. For a typical diffraction 
experiment (λ ~ 1Å), this is generally a good approximation for atoms in the first 
row of the periodic system. The assumption breaks down when atoms have absorp-
tion edges close to the X-ray wavelength, in which case the atomic scattering factors 
become complex quantities of the form

 
f f f ifJ l J l l,( )

¢ ²= + +0

 
(17)

Atoms with significant f″ are referred to as anomalous scatterers. It is obvious 
that their presence will lead to a breakdown of Friedel’s law for non- centrosymmetric 
structures (i.e. for all biomolecular structures). Anomalous differences, i.e. the dif-
ference between Bijvoet pairs I h k l I h k l, ,( ) - ( ), ,  carry information about the 
location of such anomalous scatterers, which can be utilized for structure solution 
as described later.

3.6  The Patterson Function

The calculation of the electron density within a crystal

 
r p j pX Y Z F h k l e e

h k l

i h k l i hX kY lZ, , , , , ,( ) = ( )ååå ( ) - + +( )2 2

 
(18)

is impeded by a lack of knowledge of the phases φ(h, k, l). However, the related 
function

 
P X Y Z F h k l e

h k l

i hX kY lZ, , , ,( ) = ( )ååå - + +( )2 2p

 
(19)

can readily be computed from observed diffraction data. This is called the Patterson 
function, and it can be shown that P(X, Y, Z) is the autocorrelation function of the 
electron density ρ(X, Y, Z), i.e.

 
P u r u r d r

� � � � �( ) = ( ) -( )òòò r r 3

 
(20)

In simple cases, it is possible to deconvolute P(X, Y, Z), i.e. to deduce the electron 
density from the Patterson function. However, as a tool for ab initio structure solu-
tion, the Patterson function has little significance because it becomes exceedingly 
complex for any non-trivial structure. Thus, for an electron density with N peaks, 
the Patterson function will show N × (N − 1) peaks. Nevertheless, P(X, Y, Z) is still 
highly relevant for a number of special applications in macromolecular crystallog-
raphy: in cases where appropriate subtraction leads to intensity contributions from 
one or few atoms (such as anomalous differences or differences between a native 
structure and an isomorphous derivative), a Patterson map will readily reveal the 
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position(s) of the contributing heavy atoms. A second application of Patterson 
maps is the computation of rotation functions.

The rotation function is used to find the correct orientation of a model in the 
crystal lattice. It is defined as follows:

 
R C P r P r dV( ) = ( ) ( )ò ¢

1 2

� �
 

(21)

P1 and P2 are the Patterson functions computed from the diffraction data and from 
the model, respectively. The matrix C defines a rotation of 

�
r  with respect to 

�
r ¢. 

Calculating the rotation function is one step in a structure solution technique called 
molecular replacement (see below). A special case of rotation function is the self 
rotation function, i.e. both P1 and P2 are computed from the diffraction data. The self 
rotation function is used to identify non-crystallographic symmetry (see below).

4  Crystal Structure Analysis

Although myriads of techniques and technologies exist for the structure elucidation 
with crystallographic methods, the process necessarily has to involve the following 
steps 1. to 5.

 1. Crystallization,
 2. Collection of Diffraction Data,
 3. Structure Solution,
 4. Refinement,
 5. Interpretation and Publication.

4.1  Crystallization

Crystallization of small-molecule organic or inorganic compounds is mostly 
straightforward and has been carried out by chemists for a long time. In fact, re- 
crystallization has always been a routine purification operation in synthesis chemis-
try. To obtain crystals useful for crystallographic purposes (i.e. with a diameter 
>0.1 mm), it is usually enough to decrease the solubility of the substance by e.g. 
slow cooling, evaporation of solvent or slow addition of a less-good solvent. Crystals 
will typically appear as a matter of a few days, at most.

In macromolecular crystallography, crystallization is much less straightforward 
(37). Many efforts have been invested to understand the process of crystallization, 
and to find ways to systematically control it (38). Cunning techniques were devised 
(39); protein solutions were even flown into space with the hope to improve the 
chance for crystal growth and the diffraction quality of crystals (40, 41). In spite of 
all these efforts, we have to admit that the growth of macromolecular crystals is still 
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a very empirical exercise, primarily requiring patience, perseverance and luck. 
In fact, crystallization is today by far the most severe bottleneck of macromolecular 
crystallography.

Recently (42), a technique was described that does away with the necessity to 
crystallize a substance prior to its structure analysis. The method involves specific 
metal complexes that form crystals with large pores. Such crystals are soaked in a 
solution of the substance to be analyzed. When done properly, target molecules bind 
specifically within the pores, and the complex can then be subjected to crystal struc-
ture analysis. The authors demonstrated that as little as 80 ng of a sample are enough 
for structure analysis. Using this method, they successfully determined the 3D struc-
ture of a marine natural product from only 5 μg of the compound. The general appli-
cability of this technique will undoubtedly be the subject of future research.

Macromolecular crystals are grown by adding precipitants to a solution of the 
substance to be crystallized. Many factors were identified that affect—or might 
affect—crystallogenesis, and a large number of precipitants were used to crystallize 
biological macromolecules (see Table 1). The problem is that conditions optimized 
for the crystallization of one system cannot be transferred to another system, even if 
the two systems are closely related. The search for crystallization conditions 
amounts to a search through a very high-dimensional phase diagram, and experi-
ence has shown that areas in this phase diagram where crystals occur tend to be 
narrow. Searching for crystallization conditions amounts to looking for the notori-
ous needle in a haystack—hundreds or even thousands of different conditions are 
often searched, without any guarantee that any set of conditions exist at all where 
the system under scrutiny will crystallize.

The general procedure adopted for any set of conditions can be illustrated with 
reference to Fig. 8, which shows a two-dimensional section through a schematic 
phase diagram of a prototypical biological macromolecule. The two dimensions are 
protein concentration and concentration of a precipitant, and we assume that the 
conditions are such that crystallogenesis is possible. Conceptually, we distinguish 
three regions in this section through a phase diagram: a “blue” region where a clear 
monodisperse solution of bio-molecule exists and a “pink” region consisting of two 
phases, solution and crystalline bio-molecule. In between, there exists a metastable 
region belonging thermodynamically to the “pink” region, however no spontaneous 

Table 1 Some factors affecting crystallizability of biological macromolecules (left column) and 
some frequently used precipitants (right column)

Concentration of Biomolecule Ammonium Sulfate
Purity of Biolomecule Polyethylene Glycol
pH and Buffer 2-Methyl-2,4-pentanediol
Ionic Strength of Solution Na- or K-Phosphate
Temperature Ethanol
Nature and Concentration of Precipitant NaCl
Biological Origin Other Salts
Additives (Ligands, Ions, etc.) Other Organic Solvents
Detergents
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phase separation occurs in this region, although crystals will be stable in this part of 
the phase diagram and will even grow.

A crystallization experiment starts at some point in the first (blue) region where 
the protein is completely dissolved, as are the precipitants. The experiment typically 
consists in slowly removing water from the solution, thus increasing the concentra-
tion of biomolecule and of precipitant(s). At some point, the border between the 
metastable region and the biphasic region will be crossed, whereupon  heterogeneous 
nucleation starts. Precipitation of the first crystals will decrease the concentration of 
the biomolecules within the solution, thus moving the system back into the meta-
stable region, where these first small crystals will hopefully increase in size. Since 
crystal formation and crystal growth is diffusion controlled, they are slow processes. 
If the transition from the metastable into the biphasic region is too rapid, a non-
crystalline precipitant will appear instead of crystals.

4.1.1  Crystallization Methodology

Thus, the problem of macromolecular crystallization is to increase the concentration 
of the macromolecule and precipitant in a slow and very controlled way, hoping that 
this change will guide the system through the relevant regions of the phase diagram, 
as described above. This experiment has to be conducted for a large number of initial 
conditions, i.e. each experiment should require only minute amounts of precious 
macromolecule. Typical modern crystallization set-ups use 1 mm3 of macromolecu-
lar solution each. Another important condition for a crystallization setup is good view 
on the protein solution through a microscope, since identification of macromolecular 
microcrystals can be non-trivial. Countless gadgets and devices were designed for 
this purpose, with the most common ones based on one of the following principles:

Vapor diffusion. Here, controlled evaporation of solvent from a crystallization setup 
will lead to the required increase in the concentration of biomolecule and precipitant. 
Typical setups comprise the classical methods of hanging and sitting drops. Drops are 
prepared by mixing the sample solution with the reservoir solution, which contains 
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but growth of crystals
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and crystal growth

Fig. 8 Schematic phase diagram of a system consisting of a solution of biomolecule plus dissolved 
precipitant
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the precipitants, buffers, and salts. They sit or hang above a reservoir solution with  
higher precipitant concentration. Water will evaporate from the less concentrated 
drops to the reservoir und thereby increase the concentration of macromolecules and 
precipitant inside the drop. The process can be slowed down—which often leads to 
better results—by overlaying oil above the reservoir solution (Fig. 9).

Reservoir with high
concentration of 
precipitant

Evaporation

Crystal in drop of 
mother liquor with
some precipitant

a b

c
d

e

Crystal in drop of 
mother liquor with
some precipitant

Reservoir with high
concentration of 
precipitant

Evaporation

Crystal in drop of
mother liquor

Body from
plexiglass

Rubber O-ring

Dialysis
membrane

Crystal in drop of
mother liquor with
precipitant

Hydrocarbon oil
covering drop

Indentation in multiwell plate

Protein
solution

Precipitant
solution

Fig. 9 Several ways to set up crystallization trials. (a) hanging drop vapor diffusion; (b) sitting 
drop vapor-diffusion; (c) dialysis button for liquid-liquid diffusion; (d) microbatch setup under oil; 
(e) three stages of free-interface diffusion in a capillary

In the liquid-liquid diffusion method a semi-permeable membrane separates sam-
ple solution from precipitant solution, which allows small reagent molecules to pass 
but prevents biological macromolecules from crossing the membrane. Dialysis will 
then slowly increase precipitant concentration inside the droplet. Dialysis  buttons 
are typically used as shown in Fig. 9. Buttons are made from transparent material.
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Batch crystallization was among the very early methods to crystallize proteins. 
Today this technique is very popular for initial screening setups in a micro-batch 
format. Very small sample droplets are covered with oil, which allows for slow 
evaporation of water. Contrary to many other techniques, no equilibrium will be 
reached, i.e. the drops will simply “dry out”.

In the free-interface diffusion technique, the protein solution and the precipitant 
are placed into contact along a microfluidic free interface and allowed to mix by 
diffusion without convective flow across the interface (43).

Although—as stated above—success in crystallization can never be guaranteed, 
there are a few parameters, which should always be carefully controlled. A first and 
very crucial parameter is sample purity. It is almost obvious that sample purity will 
enhance the rate of success. Besides the chemical purity, macromolecular samples 
should be conformationally pure, i.e. they should be homogenously folded. While 
chemical purity can be checked with the usual biochemical techniques, conforma-
tional uniformity can be characterized with dynamic light scattering and the occur-
rence of a distinct three-dimensional fold can be validated by circular dichroism.

Another very crucial factor is the concentration of biomolecules. Protein samples 
are almost always produced recombinantly, and it can be a substantial challenge to 
obtain a sufficiently concentrated solution of folded recombinant protein. For initial 
crystallization trials, one usually aims at a concentration of about 10 mg/cm3. 
Although higher concentrations—if attainable—will typically increase the chance 
of crystal formation, Fig. 10 shows that there are cases described in the crystalliza-
tion databank where substantially lower concentrations also led to success.

Temperature is another factor, which is believed to play an important role in 
crystallization. Most crystals are grown at room temperature but—as shown in 
Fig. 10—a substantial number of crystals were also grown in the cold-room, where 
biomolecular samples are less prone to degradation. Other important parameters are 
listed in Table 1.

According to entries in the Biological Macromolecule Crystallization Database 
(BMCD) (44), 2-methylpentane-2,4-diol has so far been the most successful agent 
in the crystallization of biological macromolecules (45). However, a normalized fre-
quency analysis of 55 reagents in random screening showed that poly(ethylene gly-
col) methyl ethers and poly(ethylene glycols) exhibit significantly higher 
crystallization propensity (46). This information was incorporated into commer-
cially available crystallization screens, which are available for different kinds of 
biomolecular systems, such as soluble proteins, DNAs, and membrane proteins. 
Such commercially available screens have been optimized to cover a wide range of 
different conditions (47). They are widely used, at least for initial crystallization tri-
als. Once such initial trials led to the identification of promising conditions, a tedious 
optimization process attempts to obtain parameters for well-diffracting crystals.

It frequently happens that small crystals are obtained, but it turns out to be diffi-
cult to improve their size and quality. In such cases, specialized techniques have to 
be applied, such as seeding methods. Three different techniques are commonly 
applied to improve the quality of crystals: streak-seeding (48), micro-seeding (49, 
50), and macro-seeding (51). The micro-seed screening opens a way to pick up 
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entirely new crystallization conditions (49, 50). Cross-seeding is a special form of 
micro-seeding utilizing crystals of a closely related protein (51). Another method 
with the capability to improve crystal quality is gel crystallization using either 
 agarose gel (52) or silica gel (51).

Today, protein crystallization setups are rarely done by hand. In most cases 
robots and commercially available screens are used (47, 53). This has the advantage 
of better reproducibility and shorter setup times. In many countries high-throughput 
crystallization centers were established, often in connection with structural genom-
ics centers (54).
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Fig. 10 (a) Histogram of temperatures and (b) of macromolecular concentrations (mg/cm3) for 
crystallizations described in the crystallization databank BMCD (44)
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4.1.2  Crystallization of Membrane Proteins

Proteins integrated into or closely associated with lipid membranes pose very specific 
problems for crystallographers. In fact, up to 30% of all naturally occurring proteins 
are membrane proteins (MP), and they are of concomitantly large biological signifi-
cance. Thus, approximately 50% of all approved therapeutic drugs target membrane 
proteins (55). Membrane proteins perform a wide range of biological functions 
including respiration, signal transduction and molecular transport. In spite of their 
importance, structural knowledge of membrane proteins is only a partially conquered 
area, which is due to difficulties in producing, solubilizing and crystallizing MP’s.

The obvious difficulty is the hydrophobicity of the membrane-embedded parts, which 
necessitates the use of detergents during all steps of protein purification (56) and crystal-
lization (57). Since detergents not only solubilize biomolecules but also denature them, 
the choice of detergents is absolutely critical, and their properties have a significant influ-
ence on the stability of MP’s (58). Protocols for the crystallization of membrane proteins 
can be divided into two major groups. The surfactant based method is the traditional way 
of MP crystallization: mixed micelles are produced by surfactants that incorporate the 
protein as well as a detergent and possibly residual lipids (Fig. 11). Such water-soluble 
dispersions are then used for crystallization trials in the same way as soluble proteins 
(59). Naturally, the nature and concentration of detergents adds additional degrees of 
freedom in the search for crystallization conditions, which makes the whole enterprise 
much more challenging than for water-soluble proteins. Additional problems might arise 
as a result of inherent protein flexibility and lack of conformational homogeneity.

a b

c

Fig. 11 (a) Schematic view of a solubilized membrane protein, for which the membrane-spanning 
regions are covered with detergent molecules; (b) topology of the lipid cubic phase; (c) mode of 
insertion of the membrane protein into the lipid cubic phase
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The second group of techniques comprises methods using extended bilayers con-
sisting of target protein, detergent and lipids. These are the lipid cubic phase method, 
the meso-phase method and the lipid sponge-phase method.

The lipid cubic phase method (LCP) was first described in 1996 by Landau and 
Rosenbusch (60). Lipid cubic phases are three-dimensional self-assemblies of 
 semisolid lipid bilayers with extended water channels, where the protein is stabi-
lized in a membrane-like environment and can be crystallized. The dimensions of 
these phases lie in the 6–25 nm range. Several crystal structures have been reported 
making use of the LCP method. A recent article describes the pros and cons and 
gives a survey of databases that may help for ready referral while using this 
method (61).

The lipid mesophase technique involves the production of an artificial lipid 
bilayer incorporating the protein of interest. The bilayer is formed initially in a 
highly ordered cubic mesophase and is shifted by addition of “precipitants” to a 
second mesophase from which the protein can crystallize. The difficulty lies in 
obtaining the initial cubic phase, which is difficult to work with, as it is extremely 
viscous and sticky, making it difficult to handle and to dispense accurately and 
reproducibly in nanoliter volumes. The advantage of the approach is that the target 
protein is taken out of the potentially harmful environment of a detergent micelle (in 
which the protein was solubilized), and is instead placed in a more natural environ-
ment. The method was first described in 2000 by Ai and Caffrey (62).

The lipid sponge phase (LSP) method (63) attempts to overcome the limits of the 
LCP methods concerning the size of proteins. Cubic phases are relatively rigid and 
have small pores that may cause undesired interferences between the hydrophilic 
parts of the protein and the LCP matrix. LSP is the liquid analogue of the LCP, 
which allows considerably larger sizes of the aqueous domains in membrane 
proteins.

To summarize, any of the methods used in MP crystallization are hampered by 
the immense complexity of the physical chemistry of lipid-detergent-water systems, 
which is well illustrated in Ref. (64).

4.1.3  Crystallization of Protein-DNA Complexes

In addition to the critical parameters encountered in “normal” protein crystallogra-
phy, crystallization of protein-DNA complexes adds additional complications (65).

Proteins binding DNA are often composed of several domains with different func-
tions. This may make them flexible and thus difficult to crystallize. It is common to 
restrict the structure analysis to the functional part, for which the definition is often 
unpredictable. A typical example is the lambda repressor, where the usual helix turn 
helix motif binds in the major groove (66) and a flexible arm wraps around the minor 
groove (67).

Length and sequence of the DNA-oligomer are obviously relevant for the success 
in crystallization (68). While the sequence should be specific for the protein partner 
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to enhance complex formation, it is worthwhile to try blunt ends as well as sticky 
ends for the DNA. The latter can polymerize to form a repetitive linear array, which 
potentially facilitates crystal growth (69, 70). Like for proteins, DNA- oligomers 
should always be purified to enhance the crystallization probability. The protein/
DNA ratio is crucial for the stability of the complex. Very often, a slight excess of 
DNA is necessary (typical is a 20% excess of DNA) because the  efficiency of single 
stranded oligomers annealing to DNA duplex is often less than 100%.

Once the protein-DNA complex is formed, crystallization experiments follow 
the same scheme as “normal” protein crystallization (51, 71).

4.2  Data Collection

Collection of crystallographic diffraction data is in principle a straightforward 
enterprise, but in fact it usually constitutes a measurement rather than an experi-
ment. The principle of the setup is shown in Fig. 12.

ω-rotation

primary beam
diffra

cted beam

detector

beam-
stopper

crystal mounted
on goniomerer
head

2q

Fig. 12 Setup of a crystallographic diffraction experiment

A collimated and monochromatic X-ray beam (dimension between 0.1 mm and 
0.5 mm) impinges upon the sample crystal. The diffraction produced by the crystal 
is recorded on a two-dimensional detector. During exposure to the X-rays, the crys-
tal performs an oscillatory rotation in order to move reciprocal lattice points through 
the Ewald sphere. The angle of oscillation depends on the cell constants of the 
crystal, and it is typically between less than 1° for macromolecular crystals and a 
few degrees for small-molecule crystals. Exposure times vary between a few sec-
onds and several minutes for each frame. Detector readouts are stored electronically 
for further processing (see above).
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4.2.1  X-ray Source

4.2.1.1 Laboratory Source

Traditional X-ray sources based on the emission of X-rays from metal surfaces 
upon impact of high-energy electrons have been the workhorse of crystallographers 
for many decades. These sources offer a limited choice of wavelength, which have 
depended on the anode material (copper (λKα = 1.54Å), molybdenum (λKα = 0.71Å) 
and chromium (λKα = 2.29Å). Laboratory sources use either sealed tubes, which are 
reliable, but limited in brilliance, or rotating anodes, which have roughly one order 
of magnitude higher brilliance, but at the price of reduced reliability. Today, most of 
small-molecule crystallography is still based on sealed-tube sources, whereas mac-
romolecular crystallographers collect their data mostly on synchrotrons. However, 
most laboratories still run rotating anode generators to characterize and screen crys-
tals prior to data collection at the synchrotron.

4.2.1.2 Synchrotrons

Synchrotrons were originally constructed to accelerate charged particles for high- 
energy physics experiments. Some of the energy required to keep these particles—
which fly with a speed close to the speed of light—in a circular path is emitted as 
electromagnetic radiation. While this radiation was originally considered a nuisance 
(“parasitic radiation”), crystallographers started during the 1980s to realize that 
some of its properties make synchrotron radiation an ideal source for macromolecu-
lar crystallography. Among these properties are extremely high brilliance (many 
orders of magnitude higher than from conventional sources) and tuneability across 
a large range of wavelengths. By the beginning of the 1990s, the potential of syn-
chrotron radiation for protein crystallography had been demonstrated convincingly 
(72). In fact, synchrotron radiation was one of the main drivers of the explosive 
growth of macromolecular crystallography during the last two decades.

Synchrotron radiation has revolutionized macromolecular crystallography in two 
ways: on the one hand, its stronger and much more brilliant beam has enabled the col-
lection of better data sets in less time, thus allowing to tackle much more complicated 
structures. The structure determination of the ribosome—one of the most complicated 
structures determined until now—would have been impossible without the availability 
of synchrotron sources. On the other hand, tuneability of the wavelength has enabled 
new ways for structure solution using anomalous diffraction data. Today, an increas-
ing number of macromolecular structures are solved exploiting the effect of anoma-
lous dispersion of selenomethionine, selenocysteine, metals, and even sulfur (73).

While in the early days of synchrotron crystallography, crystallographers were 
at the behest of those physicists using the synchrotron for high-energy physics 
experiments, the situation has changed during the last two decades. Synchrotrons 
dedicated and optimized for the production of X-rays were constructed worldwide 
(74), and today outnumber the instruments available for particle sciences. More 
than 30 synchrotrons hosting macromolecular beam-lines are currently in operation 
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(eight in North America, thirteen in Europe, eight in Asia), with several more under 
construction. Crystallographers are by no means the only users of synchrotron radi-
ation, modern synchrotrons have dozens of dedicated beam-lines for applications 
ranging from spectroscopy to microscopy.

Modern synchrotrons have different kinds of crystallographic beam-lines, opti-
mized for different crystallographic applications: beam-lines for micro crystals, 
beam-lines for multiple anomalous dispersion experiments, beam-lines with a 
“white” beam for time resolved Laue experiments and beam lines for the automatic 
collection of native data sets, etc. For example, the European Synchrotron Radiation 
Facility (ESRF) in Grenoble, France, hosts seven classic protein crystallographic 
beam-lines, three additional beam-lines optimized for highly automated, high- 
throughput sample evaluation and a Laue beam-line for time-resolved studies (75).

Automation can clearly be seen as the current trend in macromolecular data col-
lection. Previously, a scientist was assigned one or several days of beam time, 
whereupon he (or she) travelled with a team of collaborators and a number of crys-
tals to the synchrotron to collect data. Today, beam-lines are increasingly equipped 
with automatic sample changers. Thus, it is often sufficient to send frozen crystals 
by mail and control and watch the diffraction experiment over the Internet. This 
development dramatically increases in the number of samples that can be tested for 
diffraction quality before carrying out any full data collections, and it thereby helps 
to raise the productivity of beam-lines. For example, during the past seven years the 
number of structures elucidated using data collected at the ESRF has increased 
more than threefold (76).

4.2.1.3 Compton Source

This type of source is still under development. High repetition-rate lasers are used 
to excite oscillation in electron beams and thus generate highly directed, highly 
polarized and tuneable X-ray beams (77–80).

4.2.2  Crystal Mounting

For a small-molecule crystal, mounting is relatively straightforward: crystals—of 
0.1–0.3 mm size—are typically glued to the tip of a glass fiber and mounted on a 
goniometer head, which allows for centering. Crystals that are unstable under ambi-
ent conditions—e.g. because they react with oxygen or because solvent of crystal-
lization evaporates, which leads to crystal disintegration—are often investigated at 
cryo-temperature, typically at 100 K. Instrumentation allowing for cryo-cooling of 
a crystal during data collection by blowing a cold stream of nitrogen gas at the 
sample is standard on modern diffractometers (81).

Crystals of biological macromolecules pose special problems since they nor-
mally contain between 30 and 70% of unordered water. While this is frequently 
quoted as an argument that the crystalline state is very close to the state of the cor-
responding molecule in solution, and while it permits various soaking experiments 
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to diffuse substrates, inhibitors or heavy metals into crystals, the high water content 
makes macromolecular crystals unstable under ambient conditions. Water rapidly 
evaporates as soon as the crystal is exposed to air and the crystal will decay. The 
traditional way to overcome this problem has been to put the crystal inside a thin- 
walled capillary, next to a drop of mother liquor and hermetically sealed on both 
ends. Such an assembly is shown in Fig. 13a.

While mounting of the crystal in a capillary allows the collection of diffraction 
data under physiological conditions, it turned out that such crystals are very sensitive 
to radiation damage, particularly when exposed to an intense synchrotron beam. In 
some cases dozens of crystals were required to collect a full data set. To overcome this 
problem, techniques were developed to cool crystals of biological macromolecules to 
100 K for data collection, which dramatically reduced the problem of radiation dam-
age (82, 83). An early success of macromolecular crystallography at cryogenic tem-
peratures was the possibility of obtaining a full diffraction data set from one single 
crystal of the physically fragile and radiation-sensitive 50S ribosome particle (84).

The main problem that has to be overcome when cooling macromolecular 
 crystals to cryogenic temperatures is destruction of the crystalline order through the 
formation of ice crystals within solvent regions. To prevent this, dipping them into 

Mother liquor

Seal from wax

a b

c d

Crystal

X-ray capillary

Fig. 13 Several ways to mount macromolecular crystals. (a) Mounting inside a thin-walled capil-
lary to prevent their drying-out during data collection at ambient temperature; (b)–(d) mounting of 
macromolecular crystals for cryotemperature data collection; (b) principle of cryoloop; (c) photo-
graph of an empty cryoloop; (d) photograph of a lysozyme crystal in a cryoloop
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liquid nitrogen following a short soaking period in a cryoprotectant solution cools 
crystals very rapidly. If this is done properly, the solvent water will not crystallize 
but rather remains in a glass-like state. It turned out that frozen crystals not only 
survive longer in the X-ray beam but also frequently diffract to higher resolution 
through reduced thermal vibrations and reduced conformational disorder. Radiation 
damage still occurs even on frozen crystals, but it is reduced by orders of magni-
tude, since free radicals formed upon interaction with X-ray photons are prevented 
from diffusing through the crystal. Thus, radiation damage is reduced to the direct 
impact of X-rays, except for very special circumstances (85).

The technique of freezing crystals and collecting data at 100 K has become the 
standard methodology. Today, crystals are usually mounted in commercially avail-
able cryo-loops (Fig. 13), of which several variants exist, e.g. special loops for very 
small crystals and thin plates. A cryo-loop consists of a twisted nylon fiber, which is 
mounted to the top of a metal pin. With such a loop, a crystal is extracted from its 
mother liquor, transferred into a drop of cryo-protectant and—after a few seconds 
of soaking time—picked up again and quickly dipped into liquid nitrogen.

The conditions of flash-cooling typically have to be optimized with respect to the 
composition of cryoprotectant and the duration of soaking. Occasionally, flash cool-
ing decreases the data quality (compared to data from a room temperature data col-
lection) due to an increase in the mosaicity of the crystal. Special techniques were 
developed to deal with such situations.

One such technique is called hyperquenching, which amounts to increasing the 
rate of flash cooling. When a crystal is dipped into liquid nitrogen it has to pass 
through a zone of cold gas overlaying the liquid. The cooling process in the gas 
phase is much slower because of its lower heat transfer rate and thus prevents fast 
quenching rates. Removing the cold nitrogen gas with a stream of dry nitrogen it is 
possible to achieve super-fast quenching rates (86).

A second technique—annealing—does exactly the opposite. It consists in taking 
an already frozen crystal and subjecting it to several warming up and cooling down 
cycles. Occasionally, this procedure decreases the mosaicity and increases resolu-
tion. This effect is believed to be due to the relief of strain accumulated during 
crystal growth or during flash cooling, which improves the alignment of domains 
(87). Such a strain might also be due to a mismatch in the thermal expansion coef-
ficients of protein and solvent (88). A combination of mounting crystals with cryo- 
loops and protection with capillaries for screening and data collection at room 
temperature was described by Li et al. (89).

4.2.3  Goniometer

In order to collect the complete diffraction pattern the crystal has to be turned about 
at least one axis during data collection. This rotation is performed by a goniometer. 
In the majority of cases, it is sufficient to rotate about the axis on which the pin with 
the crystal is mounted. This means that the rotation axis will have an accidental 
relationship with the reciprocal lattice, since the orientation of the crystal within the 
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cryo-loop is arbitrary. Nevertheless, the orientation of the crystal with respect to the 
goniometer rotation axis will be irrelevant in the majority of cases, and will not 
compromise the quality or the completeness of the data set. Thus, the majority of 
beam-lines are equipped with what is called a one-circle goniometer. In very special 
cases, i.e. with very large unit cell dimensions or special macroscopic crystal shapes, 
it can be necessary to be able to define the rotation axis relative to the reciprocal lat-
tice vectors of the crystal. In such cases, it can be advantageous to have a three- or 
four-circle goniometer with κ—or Euler geometry, which allows for full control of 
the rotation axis relative to the crystal lattice vectors, thus minimizing reflection 
overlap in cases of very large cell constants or high crystal mosaicity.

4.2.4  Detectors

Detectors used in crystallography are almost exclusively two-dimensional area 
detectors, which will collect on one frame all reflections passing the Ewald-sphere 
over a small rotation range. An ideal crystallographic X-ray detector would com-
bine several properties, such as high count rates, high detective quantum efficiency, 
high dynamic range, high framing rate, small pixel size, high signal to noise ratio 
and a small point spread function. Different types of detectors are currently used, 
each of them having specific pros and cons.

4.2.4.1 Imaging Plate Detector

Imaging plate (IP) detectors (90) are based on the principle of photo-stimulated 
luminescence. They consist of a flat metal plate covered with a phosphorescent 
layer consisting of BaFBr doped with Eu2+ ions. Incoming X-rays excite electrons, 
which are trapped in the crystal lattice of the phosphor material until stimulated by 
a second illumination. Thus, IP detectors “store” the incoming X-ray photons until 
the detector is scanned with a readout-laser, which generates stimulated emission 
events. The emitted photons are amplified with a photomultiplier and stored as a 
digital image. Before reusing the detector the plate has to be erased with white light. 
Although this type of detector has a high spatial resolution and an acceptable linear 
range, the long readout time makes them less suitable for application on synchro-
trons: with exposure times in the range of seconds a readout time in the range of 
minutes is unacceptable. However, at the much weaker laboratory sources, the ratio 
between exposure time and readout time reverses, and thus IP detectors are still 
commonly used on laboratory sources.

4.2.4.2 CCD Detector

Charged coupled device (CCD) detectors (91) consist of a thin phosphor screen that 
converts the incident X-rays into photons. A tapered optical fiber system transmits 
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these photons to a CCD chip, which records them. Charged coupled device detec-
tors have been the ultimate detector type in macromolecular crystallography for 
many years. The pixel size is about 10–50 μm and will be reduced further with the 
availability of bigger CCD chips. Compared to imaging plates, their big advantage 
is the short readout times in the range of one second. Today, they are still the most 
used detector type.

4.2.4.3 Solid State Detector

This type of detector (92) consists of silicon or germanium crystals that convert the 
incident photons (ionizing radiation) directly into electric pulses. The sensitivity of 
solid state detectors increases when the random formation of charge carriers by 
thermal vibration is suppressed, which requires their operation at the temperature of 
liquid nitrogen. Solid state detectors feature many advantages such as no readout 
noise, good signal-to-noise ratio, readout times of 5 ms, and a high dynamic range.

4.3  Data Reduction

Data reduction refers to the process of converting the raw pixel intensities of the 
collected detector frames to a list of scaled intensities for all I(h, k, l) values inside 
the collected data range. This is by no means a trivial process, and has to include 
several iterations. In a first pass, the positions of a sufficiently large number of 
strong reflections are located in reciprocal space. These reflections have to be 
“indexed”, i.e. reciprocal lattice vectors a*, b*, and c* have to be identified, such 
that the position of each of the observed reflection positions are integer multiples of 
these reciprocal lattice vectors, i.e. ha* + kb* + lc* , with h, k, and l integers. In a next 
step, the intensities of all reflections within the scanned section of reciprocal space 
are integrated and the corresponding backgrounds are subtracted. Various profile- 
fitting algorithms are available for this crucial step of data reduction. Following the 
application of various corrections, the Laue class of the diffraction pattern is deter-
mined, and the observed intensities of symmetry-equivalent and multiply recorded 
reflections are averaged.

While a program for data-reduction is typically part of the data collection soft-
ware in small-molecule crystallography (where the whole process is relatively 
straightforward due to the relatively small cell constants), dedicated software pack-
ages exist for the reduction of macromolecular diffraction data. These include mos-
flm (93, 94), XDS (95, 96), XENGEN (97), d*TREK (98), and HKL2000/
denzo-scalepack (99). Since each package has is specific strengths and weaknesses, 
most crystallographic laboratories have access to several of these program packages 
in order to pick the most-suited for any given problem. Major differences exist in 
profile fitting (two versus three dimensions) and in the capability of handling data 
from different goniometers and detectors.
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Irrespective of the software used for data reduction, the result is a list (in the form 
of a computer file) of intensities and their standard deviation for each unique reflec-
tion, together with statistics about the data quality. To that end, the most frequently 
quoted indicator is the linear residual factor Rmerge
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Here, the summation over h denotes summation over all observed combinations 
of unique h, k, l, and the summation over i includes all symmetry equivalent or inde-
pendently measured reflections hi. Nh is thus the redundancy of reflection h. One 
significant drawback of Rmerge is that it does not properly take care of redundancy. 
Lower redundancy will always result in lower Rmerge, although of course higher 
redundancy will improve the accuracy of the intensities. The precision-indicating 
R-value Rpim is defined as
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and has the property that it decreases with the average redundancy. The indicator 
Rpim is particularly useful in conjunction with anomalous diffraction data.

The anomalous R-value Ranom is used to estimate anomalous differences.
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Naturally, the quality of a data set will increase with decreasing Rmerge or Rpim. 
High-quality data sets have Rmerge values in the order of a few percent. In order for 
anomalous data to be sufficiently significant for structure solution, the quotient 
Ranom/Rpim should exceed a value of 1.5 (100).

The completeness of a data set (expressed as a percentage of observed unique 
reflections to the total number of unique reflections for a given resolution) is another 
important quality indicator, since missing data may introduce noise in calculated 
density maps. The average signal/noise ratio 〈I/σ(I)〉 is an obvious indicator for the 
usefulness of data; often, the outermost shells of reflections near the resolution limit 
are discarded based on this indicator.
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Another useful check for data quality is the so-called Wilson plot. For a random 
distribution of atoms, it can be shown (101) that
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Here, 〈Ih〉 is the average reflection intensity for a small sin ϑ/λ range, and fj in 

f jj ( )å
2
 is the atomic scattering factor of atom j for that scattering angle, with the 

summation running over all atoms in the unit cell. Thus, a plot of the left side of the 
above equation against sin2 ϑ/λ2 for small resolution ranges should give a straight 
line with a slope of  − 2B, where B is called the overall temperature factor. Deviations 
from linearity in the Wilson plot are not uncommon—there is typically a depression 
at 5 Å, and low-resolution data generally do not show a linear descent—but never-
theless non-linearity outside these areas as well as a very high B-value does indicate 
inaccurate primary data.

Twinning is a frequently occurring and often very inconvenient phenomenon. 
The simplest form—macroscopic twins, i.e. two independent crystals mounted on 
the pin—is often relatively trivial to handle. It is typically detected when difficulties 
are encountered with indexing reflections, since the two lattices are rotationally 
unrelated. The most obvious solution is to repeat the data collection with a new 
crystal specimen, where one carefully tries to isolate a single-crystal specimen 
under the microscope. In favorable cases, e.g. if one crystal is much smaller than the 
other, it may be possible to index both lattices separately, and use the diffraction 
data of the bigger crystal. This is possible when the cell constants are not too large 
so that overlap of reflections from the two crystals is infrequent.

Much more difficult to deal with are forms of twinning where different domains 
have superimposable lattices. When the lattices of the different domains overlap in 
three dimensions, one speaks of merohedral twinning (102). This typically mani-
fests itself by a number of “unusual” phenomena, e.g. the rotational symmetry of the 
lattice exceeds the rotational symmetry of the crystal space group, the metric sym-
metry of the cell parameters is higher than the Laue symmetry, implausible or 
unusual systematic absences, inconsistent reflection statistics, etc.

In the special case of hemihedral twinning (102), when there are two domains, 
each observed diffraction intensity is a weighted sum of two crystallographically 
distinct, twin-related, reflections. Once the problem has been recognized, it may be 
possible to “detwin” the data. To that end, one has to determine the twin factor, i.e. 
the volume ratio of the two domains, and the “twinning law”, i.e. the transformation 
between the twin-related reflections. If the twin-factor equals one-half—a situation 
called “perfect twinning”—the observed diffraction pattern acquires the additional 
symmetry imposed by the twinning operation, and the true crystallographic intensi-
ties cannot be recovered from the observed measurements.
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Unless the statistics from data reduction are inspected carefully, twinning can 
easily be overlooked, and will manifest itself by difficulties with structure solution. 
Data reduction programs often include a test for crystal twinning and offer the 
option to de-twin data (103).

Another question, typically emerging at the data reduction stage, is the number 
of molecules per asymmetric unit. Very often more than one molecule connected by 
non-crystallographic symmetry (NCS) is present in the asymmetric unit. A first 
indication is obtained typically by a calculation of the Matthews coefficient (104, 
105), which predicts the number of molecules per asymmetric unit based on the 
average density of proteins. To calculate this quantity, only the cell constants, the 
molecular mass and the space group have to be known. More conclusive evidence is 
provided by calculation of a self rotation function (106), which will show a maxi-
mum at the rotation angle of the non-crystallographic symmetry element, e.g. at 
180° for a twofold NCS like that shown in Fig. 14.

ω

Κ=180° f

Fig. 14 Self rotation function of the sec-alkylsulfatase Pisa1 (pdb 2yhe), indicating the presence 
of a non-crystallographic two-fold rotation axis. The self rotation function denotes the overlap 
between the Patterson function and the same Patterson function rotated by an angle κ. The diagram 
shows the value of the self-rotation function for a rotation angle of 180° (κ = 180°) about an axis 
for which the orientation is described by the inclination angle ω (corresponding to the radial dis-
tance from the origin in the above diagram) and the azimuth angle φ (defined by an anticlockwise 
rotation about an axis normal to the plane of the paper)

The occurrence of non-crystallographic symmetry is generally considered an 
advantage in macromolecular crystallography, since it can help in the structure solu-
tion and refinement steps. Problems in structure solution and refinement might arise, 
however, as a consequence of special NCS, which results in pseudo symmetry (107, 
108). Translational pseudo symmetry is observed in crystals where the NCS axis is 
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nearly parallel to a crystallographic symmetry axis. Careful inspection of a native 
Patterson map can reveal pseudo symmetries. Rotational pseudo-symmetry origi-
nates from the point-group symmetry of the lattice being higher than the point group 
symmetry of the crystal. This may be caused by a NCS operator parallel to the sym-
metry operator of a lattice, which is not also a symmetry operator of the crystal (108).

4.3.1  Challenges in Data Reduction

Crystals with large unit cell dimensions (>500 Å) are still a challenge for data col-
lection and data reduction. Spots tend to overlap even with small oscillation angles, 
and indexing errors are common. Programs for overlap correction exist, mainly 
implemented in data collected using “white” beams in the Laue technique (see 
below). A common and straightforward approach in such cases is to collect data 
with very small oscillation angles (fine slicing) and use data reduction programs 
applying three dimensional profile fitting (93–96).

4.4  Solving the Structure: The Phase Problem

Structure solution refers to the process of finding an initial set of approximate 
phases φ1(h, k, l) that are close enough to the “true” phases to show most of the rel-
evant features of the crystal structure. These features should emerge from an elec-
tron density calculation of the form
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A subsequent structure factor calculation with the features observed in ρ1 will 
yield new phases φ2(h, k, l), leading to electron density ρ2 hopefully showing fea-
tures missing in ρ1. In principle, this cyclic process is repeated until all features (i.e. 
atomic positions) of the crystal structure have been identified, although in reality the 
process may be more elaborate.

The phase problem—the fact that for each observed structure factor |F(h, k, l)| a 
phase φ2(h, k, l) is unknown—seems to be unsolvable prima vista, although in a 
paradox way: the more structure factors are observed, the more phases are lacking. 
This paradox seems to be aggravated by the observation that the phases are much 
more relevant to show the correct structural features than are the structure factors. It 
is easy to demonstrate (Fig. 15) that a density calculation with random structure 
factors and correct phases will display the more or less correct structure, while the 
inverse—a summation with correct structure amplitudes and random phases—will 
invariably show nothing but noise.

This pessimistic view can be brightened up by the following consideration: for 
an average small-molecule crystal structure with say 30 non-hydrogen atoms in the 
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asymmetric unit, the electron density can be described to a first approximation by 
the atomic positions of these 30 atoms, i.e. by 90 parameters. The number of inde-
pendent intensity observations is, however, at least ten times larger when data have 
been collected to atomic resolution. Thus, the problem is—at least in small- molecule 
crystallography—heavily over-determined.

4.4.1  Direct Methods

An electron density map computed with observed structure factors and random 
phases will yield a physically unrealistic density: it will almost invariably show 
regions of negative density, and it will show peaks that are unrealistically close 
together. In other words, physically plausible densities pose restrictions on the 
phases, which can in fact be exploited to calculate phases. The methodology derived 
from such considerations—the mathematics of which is rather involved—is called 
direct methods, and it has indeed revolutionized small-molecule crystallography 
(see (109) and references therein).

For simplicity, the following brief theoretical sketch will be limited to centro-
symmetric structures, where the phase problem reduces to a problem of sign. 
Analogous equations also exist for non-centrosymmetric structures. As early as 
1952, Sayre could show that

Fig. 15 Illustration of the fact that phases are more important than amplitudes. (a) image of the 
esterase 3zyt; (b) image of the sulfatase 2yhe; (c) image generated with phases from the esterase 
and amplitudes from the sulfatase; (d) image generated with phases from the sulfatase and ampli-
tudes from the esterase

U. Wagner and Ch. Kratky



35

 
F h k l h k l F h k l F h h k k l l

h k l

, , , , , ,( ) = ( ) ( ) - - -( )
¢ ¢ ¢
ååå ¢ ¢ ¢ ¢ ¢ ¢W , ,

 
(27)

In this equation, Ω(h, k, l) is a readily computable scale factor. To compute the 
amplitude and phase of one reflection, amplitudes and phases of all reflections for 
which indices add up to (h, k, l) have to be known. However, this Sayre equation is 
useful as a check for consistency of a set of phases, and there are computer pro-
grams that generate a large number of random phase sets and check their consis-
tency using the Sayre equation (110).

While the Sayre equation is an exact equation, it is possible to derive from it a 
number of approximate equations of the form
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(28)

Where s(h, k, l) is the sign of F(h, k, l). The probability that this equation is correct is 
proportional to the magnitude of the three structure factors
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Computer programs for direct methods generate a large number of triples of 
reflections with the property that the indices of one reflection equal the sum of the 
indices of the other two reflections. The program then tries to find a consistent set of 
phases satisfying as many of the above equations with high probability as possible. 
Solutions of direct methods programs are by its very nature potential solutions of 
the phase problem, which have to be validated by electron density calculations 
showing a refineable structure.

The theoretical foundations for the direct methods were pioneered by Gerhard 
Hauptman, Jerome Karle, and his wife Isabella, for which Hauptmann and Karle 
received the Nobel Prize in Chemistry in 1984. The implementation of this method-
ology into appropriate computer software (111) has rendered the phase problem 
almost a triviality for small molecules, up to a size of 1,000 atoms in the asymmetric 
unit (112–114),  diffracting to atomic resolution (1.2 Å or better).5

In contrast to small-molecule crystallography, direct methods have so far played 
a minor role in structural biology, due to the high complexity of structures, which 
typically diffract to lower resolution. Exceptional cases include the recent structure 
solution making use of 1.95 Å data (115). Here, a combination of localizing frag-
ments with Phaser (116) and density modification with SHELXE (117) were 
employed. Nevertheless, structural biology usually has to employ different means to 
solve the phase problem. The most relevant ones involve the use of a model (molecu-
lar replacement) or additional diffraction experiments to obtain experimental phases.

5 A frequently cited criterion for atomic resolution requests that 50% of the reflections between 1.2 
and 1.1 Å have to be observed above 3σ.
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4.4.2  Molecular Replacement

If the three-dimensional structure of a molecule is known, the problem of structure 
solution reduces to finding its orientation and its location within the unit cell (118). 
This is the conceptual basis of molecular replacement, which was found to be a 
powerful tool to solve the phase problem even for search molecules, which are not 
identical but only similar to the one present in the crystal. Molecular replacement is 
a very powerful and robust technique as long as a good search model is available 
(see below). The obvious problem with this technique is to find such a model for an 
as yet “unknown” structure.

4.4.2.1 The Search Model

In many cases, the choice of the search model is easy: if the structure is already 
known and should be solved for a new crystal form, or if the structure of a homolog 
from another organism is known, the search model is obvious. A more difficult situ-
ation exists if one deals with a “new” structure, although the structure is unlikely to 
display an entirely unknown fold: Fig. 16 shows the number of new folds deposited 
in the Protein Data Bank (PDB) each year, plus the total number of different folds 
present in the data bank. It is obvious that in spite of several thousand new structures 
deposited each year, the number of distinctly different folds appears to have stag-
nated around 1,400. Thus, for any new peptide under scrutiny, it is very likely that 
it is comprised of already known folds contained in the PDB.
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Fig. 16 Number of new folds in the annually deposited structures (blue) and total number of 
 distinct folds in the data base (red). Data from RCSB Protein Data Bank
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The easiest way is to perform a BLAST (119) search for structures with high 
sequence identity to the target molecule, since high identity invariably implies a 
close structural relationship. As a rule of thumb, models with sequence identity to 
the target exceeding 35% are very likely to enable structure solution. When provided 
with a sequence alignment obtained from BLAST or FASTA (120), the program 
MODELLER (121) is frequently used to build a model for the target molecule, 
applying special restraints and loop modeling. However, it is a common experience 
that molecules with low sequence identity might as well exhibit a highly homolo-
gous three-dimensional structure. Thus, in cases where no models with high sequence 
identity are available, one has to resort to fold-recognition algorithms implemented 
in several programs (122–125) to predict models with structural similarity. Other 
programs prepare different variants of search models (126, 127) or perturb the mod-
els in the direction of one or two normal modes (128, 129). The JCSGMR pipeline 
(130) comprises model building, integrated phasing and automated refinement.

In cases where no substantial sequence identity to a known structure exists, chances 
critically depend on the state of affairs in model prediction. Available software has 
continuously improved during the past decades. The Protein Structure Prediction 
Center (131) regularly organizes Critical Assessment of Protein Structure Prediction 
(CASP) experiments “to provide the means of objective testing of these methods via 
the process of blind prediction”. The sequences of unpublished protein structures are 
used as targets for structure prediction. The outcomes are compared with the actual 
structures and thus establish the current state of the art in protein structure prediction. 
CASP-1 was held in 1994 and the most recent one, CASP-10, in 2012 (132).

4.4.2.2 The Technicalities of Molecular Replacement

Prerequisites for structure solution using MR are a good search model and data as 
complete as possible. Particularly important are low-order reflections, whose absence 
may compromise the success of structure solution.

Placing the search model into the unit cell in the right orientation and at the right 
location is in principle a six-dimensional problem (searching three rotation angles 
and three translation vectors), which would require substantial computational 
resources. Therefore, most programs use the so-called “divide-and-conquer” strat-
egy, where the six-dimensional search is broken up into a three-dimensional rota-
tion search followed by a three-dimensional translation search.

Molecular replacement programs traditionally compute rotation and translation 
functions in Patterson space. Different cutoffs are applied in order to reduce the 
noise: thus, the rotation function involves intramolecular vectors, whereas the 
translation search involves intermolecular vectors. Most programs apply the fast 
rotation function, based on an algorithm originally developed by Crowther (133) 
and later improved by Navaza (134). Although this approach usually works well, 
problems arise if more than one copy of the molecule is in the asymmetric unit. In 
such cases the relative contribution of each monomer decreases, and the signal 
might become undetectable. This situation can be improved if one succeeds in 
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finding non- crystallographic symmetry (NCS) in a self rotation function. A pre-
defined NCS axis decreases the search space and thus increases the signal to noise 
ratio. The programs MOLREP (135) and AMORE (134) use this strategy.

If the search model has internal degrees of flexibility a Patterson-correlation 
(PC) refinement may improve the initial rotation solution and hence improve the 
chances of succeeding in the subsequent step. Variable domains are considered as 
rigid bodies, which can move relative to one another. Patterson-correlation refine-
ment is implemented in the programs BRUTE (136) and CNS (137) and yielded 
admirable results (138).

Likelihood-based target functions instead of Patterson functions have become 
more popular recently. Each likelihood-based function tests whether an orientation 
for the search model is consistent with the data and tends to give better results. 
Programs like PHASER (116) and BEAST (139) are based on this method. Given a 
target sequence and experimental structure factors, the molecular replacement pipe-
line MrBUMP (140) will search for homologous structures, create a set of suitable 
search models from the template structures, do molecular replacement, and test the 
solutions with several rounds of restrained refinement. Recently, a new method 
using a combination of the molecular replacement tools of Phenix and integrated 
Rosetta structure modeling with autobuild chain tracing was presented (141), and 
shown to succeed in an example with only 18% sequence identity to the model.

Six-dimensional searches are an ultimate resort if the traditional methods fail. 
CNS (137) and BEAST (139) provide facilities for doing six-dimensional searches 
with the obvious drawback of long computing times. The program EPMR (142) 
employs a “Genetic Algorithm” that speeds up the six-dimensional search to an 
acceptable level.

The main challenge in molecular replacement continues to be the search for 
appropriate models, as well as methodological aspects, such as minimization steps 
during refinement (141, 143). The ultimate ambition would be to input a sequence 
and obtain the solved structure even in cases of low sequence similarity. This aim is 
still far away.

4.4.3  Experimental Structure Solution

In cases where molecular replacement fails, one has to resort to experimental meth-
ods to determine phases, which are necessarily more involved.

4.4.3.1 Multiple Isomorphous Replacement

For many years, multiple isomorphous replacement (MIR) has been the standard 
method to solve the crystal structure of biological macromolecules. No previous 
knowledge about the three-dimensional structure is necessary. The concept of the 
method is to insert one or several atoms into well-defined locations in the crystal 
structure of a biomolecule, without changing the remainder of the structure 
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 (isomorphous replacement). If the introduced atom(s) have a detectable effect on 
the diffraction of the crystal, i.e. if the intensities observed in the “derivative” data 
set differ detectably from the ones of the “native” data set, the observed differences 
can be used to extract phase information, as described below.

Biomolecules and natural products in general consist primarily of atoms from 
the first and—to a much lesser extent (sulfur and phosphorus)—from the second 
row of the periodic system. Since the contribution of an atom to the structure factor 
is proportional to the number of electrons (hence the contribution to the scattered 
intensity is roughly proportional to the square of the number of electrons), a heavy 
metal atom (such as mercury or gold) can make a substantial difference to the scat-
tered intensities, if the atom is well ordered and the site has high occupancy. The 
rule of Crick and Magdoff (144) helps to estimate the height of the isomorphous 
signal considering the number of electrons and the occupancy of the heavy atom in 
relation to the size of the protein.

To a first approximation, the diffraction of the macromolecule with an ordered 
heavy atom equals the sum of the native structure contribution plus the heavy atom 
contribution, i.e. FPA = FP + FA.

FP

FPA

FA

re

im

fA

fP

Fig. 17 Contribution of the heavy atom (FA) to the native structure factor (FP) to yield the structure 
factor of the derivative structure (FPA)

It is obvious from Fig. 17 that this relationship is true for the complex structure 
factors, but not for their amplitudes, i.e. |FA| ≠ |FPA| − |FP|, keeping in mind that |FP| 
and |FPA| are values obtained through data collection of the native protein and the 
isomorphous heavy atom derivative, respectively (note that |FP| and |FPA| denote the 
full datasets, encompassing all values of h, k, l). Nevertheless, the absolute differ-
ences in structure amplitudes from derivative and native datasets seem to be a suf-
ficiently good approximation to the amplitudes of the heavy-atom contribution that 
a Patterson map using |FPA| − |FP| will reveal the position of the heavy atom(s), 
which then allows computation of the complex structure factor FH. Alternatively, 
the heavy atom position(s) may also be obtained by direct methods.

Knowledge of FA, |FP|, and |FPA| opens the way to obtain phase information, as 
shown in Fig. 18. The first circle with its center at the origin has a radius with the 
length |FP|. The phase is unknown at this point, and therefore may take any value. 
The second circle with radius |FPA| has its center shifted from the origin by − FA. 
Thus, each of the intersections of the two circles fulfills the condition, FPA = FP + FA, 
i.e. the phase of FP cannot be determined unambiguously from one heavy atom 
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derivative, but it can be narrowed down to two possibilities. Therefore, at least a 
second independent heavy atom derivative is required in order to solve the phase 
problem unambiguously.

In practice, a probability mass function (145, 146) is used to calculate the highest 
probability for each phase angle. The position of the heavy atom has to be refined further 
in order to get an interpretable electron density map. General problems are lack of iso-
morphism between native and derivative crystal and low occupancy of the heavy atom.

4.4.3.2 Single Isomorphous Replacement

The starting position is the same as with MIR, but only one derivative is used. 
As shown above, each structure factor has a phase ambiguity of 2. Figure 19 shows 
that the two solutions are symmetrically ordered around the single isomorphous 
replacement (SIR) centroid phase FSIR, with FSIR collinear to FA. A map recon-
structed using SIR centroid phases will have contribution from 50% wrong phases 
and 50% right phases, with the latter ones smeared by experimental error. It is not 
possible to build a model based on this map, but density modification techniques 
(see below) may substantially improve such maps to allow correct model building.
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FPAFP

Fig. 18 Geometric construction showing that a heavy atom derivative reduces the phase ambiguity 
to two possible values
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Fig. 19 Phase determination with the Single Isomorphous Derivative method
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4.4.3.3 Anomalous Dispersion

Atoms having absorption edges close to the X-ray wavelength are called anomalous 
scatterers. As shown in equation (17), their atomic scattering factors are complex 
quantities. Figure 20 shows that the presence of such atoms in a crystal structure 
leads to a breakdown of Friedel’s law. It is easy to demonstrate—similar to the case 
of an isomorphous heavy atom—that this can be used to extract phase information, 
as shown in Fig. 21. Assuming that the position of the heavy atom is known [which 
is typically the case when the anomalous scattering stems from an isomorphous 
heavy atom (SIRAS—single isomorphous replacement with anomalous scatter-
ing)], the two structure factors FA(+) and FA(−) are known, together with the ampli-
tudes |FP|, |FPA(+)| and |FPA(−)|. The intersection of circles with radii |FPA(+)| and 
|FPA(−)| with the one with radius |FP| yields four possible values for phases, two for 
|FPA(+)| and two for |FPA(−)|. It has to be stressed at that point that the anomalous 
“signal” is much weaker than a typical signal from an isomorphous derivative, 
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Fig. 20 Anomalous scattering leads to a breakdown of Friedel’s law. Note that the anomalous 
contribution of the heavy atom is exaggerated
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Fig. 21 Phasing in a SIRAS experiment
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hence the differences between the intensity of the Bijvoet pairs have to be collected 
with high accuracy and redundancy. A modified rule by Hedrickson and Teeter 
(147) helps to estimate the strength of the anomalous signal.

Atoms used for anomalous diffraction include the usual heavy atoms (Ag, Hg, 
etc.). A particularly interesting element is selenium, which can be introduced cova-
lently into proteins by expression with selenomethionine instead of methionine 
(148). Selenium has a reasonably strong anomalous signal, and incorporation into 
proteins as selenomethionine usually does not affect the protein fold. Among the 
elements present in native proteins, sulfur is the only one suitable for anomalous 
phasing (147, 149), although its anomalous signal is very weak and long wave-
lengths have to be employed.

A particularly elegant way to solve the phase problem is the MAD (multi- 
wavelength anomalous diffraction) technique. This technique requires only a crys-
tal of the heavy-atom labeled biomolecule, e.g. of a protein expressed with 
selenomethionine. The concept of the technique is based on collecting data at dif-
ferent wavelengths, so that the wavelength-dependent contributions to the heavy-
atom atomic form factor have different magnitudes, i.e. the anomalous diffraction 
can be “switched on” and “switched off” by changing the wavelength. A “full” 
MAD experiment starts with a “fluorescence scan”, i.e. the recording of the fluores-
cence spectrum of the heavy atom within the crystal. Data are then collected at 
wavelengths corresponding to the peak of the spectrum, to the point of inflection 
and at a “remote” wavelength. In reality, one is usually satisfied with collecting 
peak and remote data.

When using only Bijvoet pairs collected at one wavelength (SAD—single anom-
alous diffraction) the same problem will arise as in the case of SIR, i.e. there are two 
possible phase values for each structure factor. Again, a map calculated with the 
centroid SAD phase will be uninterpretable, but density modification often yields 
interpretable maps. SAD phasing works best when the solvent content is high and 
good data to 2.5 Å resolution or better are available. Recently, the structure of a 
lysosomal 66.3 kDa protein from mouse was solved through sulfur de novo SAD 
phasing (149).

4.4.4  Density Modification and NCS Averaging

Once a very approximate structural model has been obtained, there are rather pow-
erful techniques available to improve phases. Thus, if the density is still largely 
uninterpretable but it is possible to see a clear distinction between solvent and the 
protein region, useful phase information can be extracted from the fact that the den-
sity is essentially flat within the solvent region. A number of techniques have been 
developed along such considerations, known as solvent flattening, histogram match-
ing, and solvent flipping (150). Application of these algorithms can indeed improve 
the phases dramatically leading to an interpretable map. Similarly, if there are sev-
eral molecules in the asymmetric unit related by non-crystallographic symmetry, 
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phases can be improved by NCS averaging. The effect of solvent flattening and/or 
NCS averaging on the map interpretability is shown in Fig. 22.

Although solving the phase problem has become a nearly automated process in 
“simple” cases, it can still be very challenging in less trivial ones, where crystallo-
graphic experience is required to prevent wasting time with false solutions. It is one of 
the puzzling features of crystallography that it is easy to recognize the correct structure 
solution once obtained, but it may be very hard to recognize a partially correct solution 
and to decide whether structure solution is progressing in the right direction.

4.5  Model Building and Refinement

In small-molecule crystallography, “model building” is mostly a trivial process: 
from the density computed with phases obtained by direct methods, atomic 

Fig. 22 The effect of solvent flattening and/or NCS averaging on the map interpretability.  
(a) COOT (155) electron density map after MAD solution with solve (146) and (b) after density 
modification with resolve (306). The chain corresponds to the final model
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positions are deduced and assembled to chemically reasonable molecules. Since 
from atomic-resolution data such atomic positions are readily identifiable, this pro-
cess is largely automatic. The researcher typically has to decide whether the struc-
ture is “complete”, or whether there are missing atoms, which have to be identified 
in a map computed with phases calculated from the incomplete molecular fragment, 
as described above. Once the structure is “complete”, it will be subjected to least- 
squares refinement, as described below.

For macromolecular crystallography, life is not so easy. Due to the inherently 
much poorer resolution—atomic resolution is exceptional, particularly at the early 
stages of structure solution—the process of fitting a molecular model into the den-
sity obtained from (still erroneous) experimental phases can be a very demanding 
undertaking. In addition to poor resolution, experimental phases suffer from errors 
as a consequence of inaccurate heavy atom position and incomplete occupancy. For 
many years, models had to be built by hand—on a graphics terminal—into a map 
obtained from experimental phases, requiring much experience to recognize sec-
ondary structure elements and find a continuous main chain. Today, sophisticated 
software exists (ARP/WARP (151), resolve (152) or buccaneer (153, 154)) to build 
initial models, reducing the need for manual intervention to problem regions. If the 
structure was solved initially by molecular replacement, a model—though probably 
wrong in places—already exists. In any case, these incomplete and/or inaccurate 
initial models are subjected to further improvement and refinement.

Structure refinement is an iterative process in macromolecular crystallography, 
where model building into the electron density (in an automatic way or “by hand”) 
alternate with restrained least-squares refinement of the model parameters. Model 
building involves the use of interactive graphics programs that allow fitting residues 
into three-dimensional calculated electron density maps. Commonly used interac-
tive graphics programs are COOT (155), O (156) and xfit (157). Two types of maps 
are used for graphical fitting: Fo – Fc and nFo – mFc where n and m comprise integers 
and n > m. The implication is shown in Fig. 23. A variety of methods exists to 
improve phases by minimizing bias, such as sigma A weighting (158), shake and 
bake (159), etc.

4.5.1  Least-Squares Refinement

Refinement refers to the process of fitting model parameters to experimental obser-
vations, usually by applying a least-squares condition. In crystallography, the com-
plexity of the model to be adopted depends on the crystallographic resolution, i.e. 
on the number of significant observations. In small-molecule crystallography, where 
data almost invariably extend to atomic resolution (<1.2 Å), the crystallographic 
model involves three positional coordinates for each atom in the asymmetric unit 
(Xi, Yi, Zi, i = 1 … N), and at least one parameter (“temperature factor”) per atom 
accounting for deviations of the atom from its mean position. This “smearing out” 
is described by convoluting the density with a Gaussian function, which can have 
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spherical symmetry (“isotropic temperature factor”, one parameter per atom) or 
ellipsoidal symmetry (“anisotropic temperature factor”, six parameters per atom). 
For such a model, a structure factor calculation has the following form
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Here, Ti(h, k, l) is the temperature factor of atom i, which has different mathematical 
expressions for the isotropic (one parameter) or the anisotropic (six parameters) case.

Least-squares refinement then involves finding “optimum” values for each 
parameter subject to the condition that

Fig. 23 Fo − Fc versus 2Fo − Fc maps. Parts of the electron density from a molybdenum binding 
protein (pdb code: 1FR3, (307)) drawn in the program COOT (155). The 2Fo   – Fc map is colored 
in blue, the red map comprises the negative and the green map the positive Fo – Fc map. (a) The 
molybdenum binding site calculated with full occupancy of the metal, while the actual occupancy 
is only 50%. (b) A tyrosine that was refined as an alanine
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Least-squares refinement is a straightforward enterprise for linear problems. 
However, the structure factor calculation is a highly non-linear equation. Therefore, 
it has to be linearized by Taylor expansion, which is only valid near the minimum. 
Accordingly, least-squares is unsuitable to find a structure solution, since it can 
only improve an already “correct” structure. Due to the approximate nature of the 
Taylor expansion, refinement has to be performed in cycles, which will converge 
if the starting point was reasonable. The result of the least-squares refinement 
affords least-squares estimators < pi > for each parameter pi, together with a stan-
dard deviation σ(pi).

It is common in crystallography to quote a quality index for the result of a refinement. 
The best-known index is the crystallographic R-value defined as follows
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Here κ is a scale factor. The correlation factor, which has the advantage of being 
independent of the scale factor, is defined as follows:
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In small-molecule crystallography, R values below 5% are quite common, with 
observables-to-parameter ratios of ten or higher.

4.5.2  Restrained Refinement

Refinement of small molecules is usually straightforward on the basis of the of 
observed reflection intensities alone, due to the large observations/parameter ratio. 
This is radically different in macromolecular crystallography, where this ratio often 
does not substantially exceed unity. Unrestrained least-squares refinement is not 
possible under such conditions. Remedies have been devised, the simplest one 
being to restrain the refinement by adding an appropriate term to equation (31), 
which punishes deviations from ideal geometry. This is then referred to as “restrained 
refinement”. The relative weights of the part of the target function based on experi-
mental data and the one based on deviations from ideal geometry is of course a 
non-trivial question, which depends very much on the quality and completeness of 
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experimental observations. An alternative—though much less popular—way to 
 prevent the structure from assuming an unreasonable geometry during least-squares 
refinement is to introduce constraints, which amounts to enforcing geometric 
parameters to exactly maintain ideal values during refinement. Evidently, the com-
plexity of the crystallographic model has to be adapted to the available data, which 
means in reality that atomic displacement parameters are limited to isotropic libra-
tional parameters, at best.

One problem in the refinement of macromolecular structures against “insuffi-
cient” data is “overfitting”, meaning that the residual R in fact decreases although 
the model gets worse. This led to the introduction of the free R value Rfree and the 
free correlation coefficient: After data reduction, about 5% of randomly chosen 
reflections are “set aside”, i.e. they are not included in refinement, but are just used 
as a cross validation tool. The residual calculated for these reflections is called Rfree. 
Compared to the residual computed from reflections included in the refinement, Rfree 
is always higher, but the difference between R and Rfree should not exceed five per-
cent at the end of refinement.

An alternative and complementary refinement algorithm is called real space 
refinement (160, 161). Here, the target function is the deviation between experimen-
tal electron density and electron density computed for a molecular model, for which 
the geometry is heavily constrained. Thus, the function minimized is of the form

 
f XYZ XYZ d V

V
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(34)

Here, ϱo(XYZ) is the “observed” density, i.e. the density calculated with the avail-
able phases, and ρc(XYZ) is the model density. More sophisticated refinement tools, 
such as maximum likelihood refinement algorithms (162, 163) have been used 
increasingly in recent years.

4.6  Structure Validation

Technically, the final step in the elucidation of a macromolecular structure con-
sists in checking the plausibility of the structural results. On the one hand, this 
consists in assessing various crystallographic figures of merit, such as the fit 
between observed and calculated data reflected through the R-factor and the cor-
relation factor, as well as visually checking the optimal fit of the structural model 
to the experimental electron density. On the other hand and more significantly, 
structure validation consists in extensive tests of the conformation of the peptide 
chain (e.g. through a Ramachandran plot (164)) and of specific sidechains (His, 
Asn, Gln, Thr, etc.). A variety of computer programs is available for this task, such 
as molprobity (165), procheck (166) and checkif (167) (Fig. 24).

ϱ
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5  Results

It is far beyond the scope of this contribution to give an overview of the results of 
crystallographic structure analyses—in fact they constitute a large fraction of the mod-
ern stereochemical knowhow. Since the rise of crystallography went in parallel with 
the advent of modern computers, and since the crystallographic model is well suited 

Fig. 24 Final result of a protein crystal structure analysis. (a) Overall structure drawn with pymol 
(305) and (b) Ramachandran output of Procheck (166) for a molybdenum binding protein  
(pdb-code: 1FR3, (307))

U. Wagner and Ch. Kratky



49

for standardization, crystallographers were among the first scientists who stored their 
experimental results in databases, which can be searched and from which structural 
data can readily be retrieved. Several such databases with excellent coverage exist for 
different groups of natural compounds. The most established ones are described below.

5.1  Cambridge Structural Database

The Cambridge structural database (CSD) (168) is a licensed database that hosts 
structural data of “organic” compounds, defined by the presence of a C-H bond.

For academic users, subscription to the database is based on a country-wide 
membership, the costs of which are calculated on the basis of the country’s wealth. 
The database is distributed together with a comprehensive package of software for 
database access, structure visualization, and data analysis. The CSD System also 
includes a knowledge base of intermolecular interactions, containing data derived 
from both the CSD and the protein data bank.

The CSD records bibliographic, chemical, and crystallographic information for 
organic molecules and metal-organic compounds (i.e. compounds containing at 
least one carbon-hydrogen bond) for which three-dimensional structures have been 
determined with X-ray or neutron diffraction. The CSD does not store biopolymers 
(polypeptides, polysaccharides, oligonucleotides), which have their own archives 
(see below). For several decades, the number of entries of the CSD database has 
been growing exponentially (see Fig. 25).

As of January 2012, the Cambridge Structural Database contained a total of 
596,810 structures of 544,565 different compounds. Of these, 254,475 are purely 
organic structures (containing only C, N, O, and H atoms), 319,188 contain an 
 additional transition metal. All in all, the CSD contains more than 45 million 
 three- dimensional atomic coordinates.

5.2  Crystallographic Open Database

The crystallographic open database (COD) database (169, 170) started in 2003 with 
the intention of providing open access to crystal data of small molecules, i.e. organic, 
inorganic, metal-organic compounds and minerals but excluding biopolymers. The 
maintenance of the database and the evaluation of uploaded structures are fully 
automated. Thus, uploaded structures are accessible almost immediately.

5.3  Protein Data Bank

In 2003, the worldwide Protein Data Bank (wwPDB) (171) was founded with the mis-
sion “to maintain a single Protein Data Bank Archive of macromolecular structural 
data from all structure determination methods that is freely and publicly available to 
the global community”. The founding members were RCSBPDB (172–175) (USA), 
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Fig. 25 (a) Number of crystal structures deposited in the CSD in each of the years 1965–2011. 
Data for 2011 are incomplete on January 1st 2012. (b) Average number of atoms per structure 
for each of the years 1965–2011, showing an increase in complexity of published structures.  
(c) R-factor statistics of the CSD. Data from (230)
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PDBe (176) (Europe) and PDBj (177) (Japan). The BMRB (Biological Magnetic 
Resonance Data Bank) joined the wwPDB in 2006. The wwPDB partners also 
 collaborate on issues of policy, formats, standards, curation procedures, and valida-
tion. Each of the four members of wwPDB can act as deposition, data processing and 
distribution centers for PDB data.

The wwPDB is a repository for the three-dimensional structural data of large bio-
logical molecules, such as proteins, carbohydrates, and nucleic acids. The data, obtained 
by X-ray crystallography, NMR spectroscopy and cryo-electron microscopy are sub-
mitted by biologists and biochemists from around the world and are then checked auto-
matically for plausibility. Most scientific journals require scientists to submit their 
structural data to the wwPDB and include the pdb-code in the publication. The number 
of depositions has been growing rapidly during the last decades, as shown in Fig. 26.
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Fig. 26 Deposition to the PDB data bank, new data in red, accumulated data in blue. Data from (308)

In recent years, the size of the proteins that were crystallized and whose structures 
were determined by crystallography has increased dramatically. Figure 27 shows a 
histogram of the number of structures deposited at the PDB against their size.

The increase in complexity of structures is particularly evident from Fig. 28, 
which compares the three-dimensional structure of lysozyme (which was the first 
enzyme structure reported) with that of the recently determined eukaryotic 
ribosome.

5.3.1  Nucleic Acid Data Bank

The Nucleic Acid Data Bank (NDB) (178) started in 1992 (179) and is a  
open access repository of three-dimensional crystal structures of nucleic acids. 
As of January 2012 it hosted more than 5,600 structures. Since nucleic acid 
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Fig. 27 Histogram of the sizes of structures below one million Daltons deposited at the PDB. Note 
the logarithmic scale on the ordinate. Data from (308)

Fig. 28 Relation in size between the first enzyme solved—lysozyme (309) (pdb entry 1lyz, 
14.3 kDa)—and the largest molecule stored in the PDB database the eukaryotic ribosome (2) (pdb 
entry 3o58, 1.8 MDa)
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structures are also contained in the PDB, structures can be deposited to the NDB 
and PDB simultaneously.

5.3.2  Membrane Proteins of Known Three-Dimensional Structure

The website of Steven White’s Laboratory at the University of California at 
Irvine (180) contains what is called a “Membrane and Protein Biophysics 
Resource”, which includes a continuously updated list of membrane protein 
structures determined by X-ray and electron diffraction with links to the Protein 
Data Bank. Currently (January 2012) it comprises coordinates of 919 membrane 
proteins, of which 310 are unique. Although absolute numbers are compara-
tively small, the number of membrane protein structures shows an impressive 
growth (Fig. 29).
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Fig. 29 Number of membrane protein structures deposited each year at the PDB (red) and the 
accumulated number of structures (green). Data from (308)

5.3.3  Protein-DNA Complexes

Like membrane proteins, protein-DNA complexes constitute special challenges 
(181). In view of their biological relevance they are intensely investigated, which 
resulted in a substantial number of crystal structures, as shown in Fig. 30.
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5.4  Other Databases

There exists a variety of other databases containing results of crystal structure analyses, 
however, these are beyond the scope of the present contribution. They concern inor-
ganic structures stored in the Inorganic Crystal Structure Database (182) as well as 
metals and alloys, which are stored in CRYSTMET® (183).

6  Special Techniques

6.1  Time-Resolved Crystallography

Crystallography has traditionally been a “slow” technique, since a large number of 
reflection intensities have to be measured. In the “old” days of data collection on 
home sources, collection of a comprehensive data set took days or even weeks. With 
the advent of synchrotron sources together with fast detectors, this process was 
speeded up substantially, making it possible to collect a fairly comprehensive data 
set within less than a second. These developments paved the way to “four- 
dimensional” crystallography (184–186), i.e. the time-dependence of structural 
change can be monitored, which allows following chemical kinetics by X-ray crys-
tallography (187–189). In extreme cases, synchrotron radiation in combination with 
the Laue technique allows experiments with nanosecond or even picosecond time 
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Fig. 30 Number of protein-DNA complex structures deposited each year at the PDB (red) and the 
accumulated number of structures (green). Data from (308)
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resolution. Myoglobin (190–200), hemoglobin (201, 202), the photoactive yellow 
protein PYP (195, 203–209), the Ha-Ras p21 protein (210), the heme-bound domain 
of the FixL protein (211), the photosynthesis reaction center complex of 
Blastochlorisviridis (212), the hammerhead ribozyme (213, 214), and bovine tryp-
sin (215) were, among others, the subjects of investigations of the time-dependence 
of their biological function.

Since a protein crystal consists of a large number of molecules, the major prob-
lem for time-dependent experiments consists in “synchronizing” constituent mole-
cules (216, 217). Kinetic experiments, which involve reactions on substrates, are 
invariably limited by substrate diffusion into protein crystals, a process that takes 
just seconds. Processes that are substantially faster are typically initiated by a short 
laser pulse, which is then synchronized with rapid data collection after a predefined 
time. With such a setup, it was possible to monitor changes in structure in the nano-
second range. Systems with a “cyclic” reaction pathway are advantageous for time- 
resolved studies since they allow reapplying stimulation and data collection on the 
same crystal specimen. To monitor a one-way reaction requires a concomitantly 
larger number of crystals.

The Laue technique (218–221) uses a “white” X-ray beam, i.e. a beam with a 
broad spectrum of energies. This brings a correspondingly larger part of the recipro-
cal lattice simultaneously into diffraction position, as shown in Fig. 31a. A single 
“shot” of X-rays can then yield diffracted intensities of a substantial fraction of the 
reciprocal lattice, as shown in Fig. 31b. The technical requirements for a Laue-
experiment are enormous, which are only met by dedicated beam-lines. Such beam- 
lines for time-resolved studies exist in only a few synchrotron sources in the world, 
such as the ESRF Grenoble (ID09B (222)) and APS, Argonne National Laboratory 
(BioCARS, ID-14 (184)).

Recently a method using “five-dimensional crystallography” (the temperature as 
the fifth dimension) with the potential to comprehensively map kinetic mechanisms 
by macromolecular crystallography was reported (223). Time series of crystallo-
graphic data from photoactive yellow protein crystals were collected at 293 as well 
as 303 K. Measurable differences for the relaxation times at both temperatures con-
firmed the feasibility of five-dimensional crystallography.

While the principal potential of time-resolved crystallography is enormous (220, 
224–227), it must be admitted that this technology still has to struggle with severe 
limitations. This is why most of the work reported so far concerned questions of 
general feasibility—using a limited number of model proteins, such as myoglobin 
or PYP—rather than pressing biological questions. While the crystallographic pos-
sibilities are indeed impressive (198) and by no means limiting, there are a number 
of practical restrictions often not met by “real life” proteins. The Laue-technique 
requires crystals with relatively small unit cell constants and low mosaicity, diffract-
ing to high resolution. Other problems concern crystal degradation (228) (many 
kinetic experiments have to be performed at ambient temperatures) and, above all, 
the “synchronization problem” (see above). All in all, time-resolved crystallography 
has so far not conformed to the high expectations of one or two decades ago.
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6.2  Neutron Crystallography

Diffraction effects cannot only be observed with electromagnetic radiation, but also 
with particle beams. According to the de Broglie equation, a particle behaves like a 
wave, with the wavelength depending on the mass of the particle and on its speed. 
Thermal neutrons, i.e. neutrons with a speed of approximately 2.2 km/s, have the 
proper wavelength (~1.8 Å) for crystallographic diffraction experiments, for which 
they have a number of interesting properties (229).

Ewald-sphere for λ(max)

Ewald-sphere for λ(min)

observable
reflexions

a

b

reciprocal
lattice

Fig. 31 (a) Principle of the Laue technique; (b) Laue image of a crystal of photoactive yellow 
protein (PYP) taken with a single pulse (5 × 109 photons in a 100 ps pulse, 18 keV). Courtesy of 
Michael Wulff, ESRF Grenoble
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Neutrons have no charge, and they consequently interact only weakly with  matter 
(in contrast to electrons and protons). Therefore, they can be used in combination 
with equipment (high-pressure cells, low temperature cryostats), which is typically 
incompatible with diffraction experiments with X-rays. Similarly, they are very 
suitable to investigate crystals that strongly absorb X-rays. In addition, due to their 
non-ionizing nature, radiation damage is much less of a problem with  neutrons than 
with X-rays.

While X-rays are diffracted by the electrons surrounding atomic nuclei, neutrons 
interact only with the atomic nuclei. The spatial extension of the electron density 
leads to a fall-off of atomic structure factors with increasing scattering angle for 
X-rays, which is not the case for neutrons due to the small size of the atomic nuclei. 
Thus, very accurate nuclear positions can be obtained by neutron diffraction in prin-
ciple, while X-ray experiments only yield the centre of gravity of the electron den-
sity surrounding the nuclei. The size of atomic scattering factors for X-rays increases 
with increased atomic number. This is not the case for neutrons, which all lie within 
a relatively narrow range, and can show marked variation for isotopes of the same 
element. For natural compounds, the difference between hydrogen and deuterium is 
particularly relevant: the scattering length of deuterium is about twice as large as 
that of hydrogen. Moreover, hydrogen is the only nucleus with a negative scattering 
length, permitting a variety of very interesting isotope-exchange experiments.

These very interesting properties are contrasted by several very serious short-
comings. First and foremost, neutron beams from available neutron sources (neu-
tron reactors and neutron spallation sources) suffer from low brilliance, many orders 
of magnitude lower than for synchrotron X-ray beams. This necessitates very long 
data collection times and very large crystal specimens, typically millimeters as 
opposed to tens of micrometers for X-ray experiments. Overall, neutrons are many 
orders of magnitude more expensive than X-rays, so neutron diffraction experi-
ments can only be performed at a small number of facilities worldwide. Therefore, 
neutron experiments have to be limited to problems that cannot be tackled by 
X-rays. For natural compounds, these are not many.

A second shortcoming of neutron crystallography as applied to the investigation 
of natural compounds is the fact that neutrons are not only scattered by elastic, but 
also by inelastic events. This inelastic and hence incoherent scattering carries no 
structural information, but increases the background and thus decreases the signal-
to- noise ratio. Unfortunately, hydrogen has a particularly large incoherent scattering 
cross section, more than ten times larger than deuterium or carbon. Thus, exchange 
of hydrogen by deuterium is highly advisable wherever possible when investigating 
proteins or other natural compounds.

For small molecules, neutron crystallography has nevertheless been used quite 
extensively to accurately determine nuclear positions. Thus, the CSD (168) contains 
more than 1,500 entries describing organic compounds for which the three- dimensional 
structure was determined by single-crystal neutron diffraction analysis (230).

In spite of the fact that the low flux of neutron sources is a particular problem 
when dealing with macromolecular crystals, neutron protein crystallography has a 
relatively long history (231, 232). Here, the growth of crystals with dimensions of 
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several millimeters in each direction is very challenging indeed (233–237), and so 
is the production of per-deuterated protein (238–240). While early data collections 
from protein crystals involving small and easily crystallizing proteins (e.g. myoglo-
bin (241)) were performed with monochromatic radiation and classical diffracto-
meters, macromolecular neutron crystallography was considerably advanced when 
equipment involving cylinder-shaped area detectors in combination with polychro-
matic neutron beams (242) became available. This has led to a renaissance of neu-
tron protein crystallography in recent years (243–247). There are now several 
neutron centers with beam-lines that allow the collection of high-resolution (typi-
cally 2 Å) diffraction data from protein crystals in the course of hours or days rather 
than weeks or months (Los Alamos Neutron Science Center (248, 249); Institut 
Laue-Langevin (250); Japan Proton Accelerator Research Complex (251)). 
Nevertheless, the number of high-resolution structure determinations with neutrons 
is still in the order of a few dozen.

Coenzyme B12 provides a good example for the power and limitations of neutron 
crystallography for a natural compound. Both from its molecular mass (about 
1,500 Da) and from the architecture of its crystals (they contain channels of partly 
disordered solvent molecules), B12 is intermediate between a small molecule and a 
macromolecular natural compound. The crystallography of a large variety of B12 
derivatives is well characterized (252). A neutron diffraction analysis (253) on a 
crystal of coenzyme B12r was carried out on a crystal with dimensions 
4.5 × 1.4 × 1.3 mm grown from a mixture of D2O and perdeuterated acetone. Thus, 
the crystal had all exchangeable protons exchanged by deuterons. Two experiments 
were performed on the same crystal specimen: collection of a comprehensive data 
set using a classical diffractometer in front of a monochromatic beam-line (data col-
lected to about 1 Å, more than four weeks data collection time), and collection of a 
second (incomplete) data set using the neutron single-crystal diffractometer LADI 
utilizing a narrow-band Laue concept and a cylindrical imaging plate (242) (data 
collected to 1.43 Å, 36 h data collection time). A third data set extending to 0.9 Å 
was collected (from a much smaller crystal specimen) on the synchrotron. Density 
maps computed with these three data sets are shown in Fig. 32.

In spite of the superior definition of H or D positions in the high-resolution neu-
tron maps, the 1.43 Å LADI maps show considerable power for the determination 
of the location of hydrogen and deuterium atoms, quite comparable to maps obtained 
from X-ray data extending beyond 1 Å. Only very few protein crystals diffract to 
such high resolutions.

In view of the various shortcomings, high-resolution neutron protein crystallog-
raphy always follows a structure determination with X-rays, in order to answer ques-
tions of states of protonation or hydration in the interior or at the surface of the 
protein (254). Such studies were performed on crambin (255), myoglobin (256), 
lysozyme (257), human transthyretin (258), gamma-chymotrypsin (259), type-III 
antifreeze protein (260), the trypsin-BPTI complex (261), hemoglobin (262–265), 
carbonic anhydrase II (266), insulin (267), ribonuclease A (268), elastase (269), HIV 
protease (270, 271), diisopropyl fluorophosphatase (272), photoactive yellow pro-
tein (PYP) (273), dihydrofolate reductase (274), d-xylose isomerase (275), human 
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aldose reductase (276), concanavalin A (277, 278), rubredoxin (279), and endothia-
pepsin (280). Preliminary reports describing the collection of neutron diffraction 
data concern endoxylanase II from Trichoderma longibrachiatum (281), human 
ABO(H) blood group A glycosyltransferase (282), porcine pancreatic elastase (270), 

Fig. 32 Difference-density omit maps for the crystal structure of cob(II)alamin (see Fig. 1a) com-
puted from synchrotron X-ray data (0.9 Å resolution, top), monochromatic neutron-diffraction 
data (1.0 Å resolution, center) and incomplete neutron Laue-diffraction data (1.43 Å resolution, 
bottom). (a) Map computed for a plane passing through the non-H atoms of the dimethylbenzimid-
azole base, after omitting its three H atoms. Contouring started at a signifcance level of ± 1σ, with 
1σ difference between subsequent contour lines. Negative contours are represented in blue and 
positive contours in red. (b) Omit maps through the atoms of water molecule W1. The two H or D 
atoms have been omitted for the phase calculation (253)
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Pyrococcus furiosus rubredoxin (283), urate oxidase (284), gamma- chymotrypsin 
(285), thaumatin (286), and sulfite reductase D (287).

The possibility of influencing the diffraction of neutrons by the exchange of one 
isotope by another allows a number of interesting experiments. Thus, low- resolution 
neutron studies combined with H2O/D2O contrast variation were used successfully 
to trace detergent regions surrounding membrane protein molecules in single crys-
tals (288) for OmpF porin from Escherichia coli (289, 290), and the Rhodobacter 
sphaeroides photochemical reaction center (291) as well as to locate detergents in a 
lipase-colipase complex (292).

Neutrons are polarized, permitting experiments that probe into magnetic proper-
ties of crystals, which is highly relevant for material sciences, but less so for natural 
compounds. In addition, neutrons permit the location of hydrogen atoms next to 
very heavy metal atoms, which is exceedingly difficult to do with X-rays. While this 
is a very appealing property for inorganic crystallographers, its relevance for the 
investigation of natural compounds is limited.

6.3  Electron Crystallography

Electron crystallography uses the electron microscope to generate diffraction pat-
terns which can be used to solve crystal structures from nano-sized crystallites 
(293). For inorganic materials, the technique is well developed and can be applied 
when other diffraction methods fail due to insufficient crystal size (294). For the 
study of biological macromolecules, electron crystallography is almost routinely 
used to analyze membrane proteins with resolutions approaching atomic resolution 
(up to 3 Å) (295–297).

7  Outlook

Crystallography of natural compounds—be they of low molecular weight or macro-
molecular—offers today a wealth of techniques and technologies. Thus, the deter-
mination of a crystal structure of a low-molecular natural compound is a routine 
operation with a guarantee of success provided crystals of the substance are avail-
able. Macromolecular crystallography is much less of a routine, although even here 
the wealth of techniques makes it very likely that a three-dimensional structure will 
sooner or later be obtained, provided well-diffracting crystals are at hand. The time 
required to perform a structure analysis has dropped dramatically in the course of 
the last few decades, thanks to excellent hardware (crystallization robots, synchro-
trons with automatic beam lines, etc.) and software.

Virtually all structural data from single-crystal crystallographic experiments 
have been deposited and are worldwide available from appropriate data bases (e.g. 
CSD, pdb). The amount of structural information contained in these data bases is 
indeed breathtaking—it constitutes a major part of the foundations of modern 
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structural chemistry and of the molecular biosciences. What are open challenges, 
what can we expect from the future and how will the discipline evolve?

The main open challenge is still the serendipitous nature of the crystallization 
process. This is less of a problem for low-molecular weight compounds, but very 
much so for macromolecular natural compounds. Particularly challenging are mem-
brane proteins and molecular assemblies, such as macromolecular machines like 
ATP synthase or bacterial ribosomes. The difficulty with such systems starts long 
before crystallography sets in, i.e. many of the difficulties are not related to crystal-
lography. For many such systems it is already very difficult to produce the substance 
in sufficient quantity, and to obtain a mono-disperse solution of sufficient concentra-
tion. Nevertheless, the crystallization problem is being alleviated by the increased 
availability of high-brilliance micro-focus beam-lines, which permit the collection of 
diffraction data sets from crystals in the micrometer-range. It is likely that the prob-
lem of radiation damage—which is currently a limiting factor for such experiments—
will be dramatically reduced with the next generation of X-ray sources (see below).

Time-resolved crystallography constitutes yet another challenge. At present, 
time-resolved diffraction experiments have been limited to a relatively small num-
ber of systems, which mostly have been used to demonstrate feasibility rather than 
to solve pressing biological questions. Again, it is possible that the advent of the 
next generation of X-ray sources might bring radically new opportunities for time- 
resolved crystallography, although optimism is somewhat reduced by past experi-
ence. So, what can we expect for the future?

It is clear that automation—both on the side of hardware and of software—will 
be developed further. Already today, there are robots available for high-throughput 
crystallization, beam-lines with automatic mounting, centering and data collection 
capabilities, and crystallographic programs solving and refining structures with 
almost no user input. Automation of all steps of the pipeline—from the gene to the 
crystal structure—will undoubtedly progress.

A second forseeable development is the increased integration of X-ray crystal-
lography with other biochemical or biophysical techniques, such as electron and 
light microscopy, small angle X-ray diffraction, NMR spectroscopy, etc. The com-
bination of different techniques will and on the one hand allow extending the range 
of accessible macromolecular systems, on the other hand allows it functional stud-
ies. Recently, a European consortium was formed to facilitate this process (298).

To date, there are several centers in the world (54) that determine crystal struc-
tures on a different scale and with a different concept than traditional protein- 
crystallographic laboratories. These so-called structural genomics centers 
systematically attempt to express all genes of an organism or even of a class of 
organisms, or genes selected by other criteria, such as potential structural novelty or 
medical or biotechnological usefulness. Proteins that are successfully expressed are 
then subjected to structure analysis, either by X-ray crystallography or by NMR 
spectroscopy. This “production line” crystallography has a number of advantages 
and simultaneously a number of shortcomings. Advantages are undoubtedly high 
efficiency, since specialized and very experienced personnel are available for each 
step in the pipeline from protein expression to structure refinement. On the other 
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hand, this approach has been criticized as unscientific, as “a fishing expedition” 
with no underlying scientific hypothesis. Irrespective of this discourse, this type of 
large-scale crystallography is likely to grow, and to produce a growing mass of 
structural data. Many of these structural genomics centers are likely to be associated 
with large-scale facilities, typically with synchrotron sources, and have the most 
advanced instrumentation and technology at their disposal. In view of the fierce 
competition in the molecular biosciences, it is quite likely that professional and 
“full time” macromolecular crystallographers will cease to exist outside a few such 
specialized centers a few decades from now.

Finally, very exciting opportunities can be expected to arise from the next gen-
eration of X-ray sources, the so-called free electron lasers (FEL) (299). The bril-
liance of these sources will exceed present synchrotrons by several orders of 
magnitude. Essentially, a short pulse of less than a nanosecond will deliver enough 
photons to the target crystal to collect a full data set, which will expand present pos-
sibilities in at least two different ways. On the one hand, FELs are expected to be a 
more powerful tool than existing synchrotrons for time-resolved crystallography. 
However, since present-day time-resolved studies do not yet fully exploit the power 
of existing synchrotron sources, it may well be that the effect of FELs on time- 
resolved macromolecular crystallography will be limited. On the other hand, it is 
quite likely that FELs will induce a quantum jump in the use of nano-crystals for 
crystallographic data collections (300). Radiation damage is a limiting factor when 
using nano-crystals for data collection, even at cryo-temperature. It is anticipated 
that with next-generation sources it will be possible to collect a comprehensive data 
set from a crystal in such a short time that crystal decay only sets in after enough 
photons have been scattered.
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1            Introduction 

 The mass spectrometric investigation of natural products started around 1960 in sev-
eral laboratories.  E. Stenhagen  and  R. Ryhage  (Karolinska Institutet, Stockholm) 
investigated fatty acid esters and related compounds with a home-made instrument 
( 1 );  R. I. Reed  (Glasgow University) obtained mass spectra of carbohydrates ( 2 ), 
followed in this fi eld closely by  N. K. Kotchetkov  and  O. S. Chizhov  ( 3 ) (Soviet 
Academy of Sciences) and by  K. Heyns  ( 4 ) (University of Hamburg);  K. Biemann  
and his group (MIT, Cambridge, MA) opened the fi eld for alkaloids ( 5 ) and amino 
acids ( 6 );  H. Budzikiewicz  and  C. Djerassi  concentrated on steroids ( 7 ), triterpenoids 
( 8 ), and alkaloids ( 9 ), strongly relying on the confi rmation of proposed fragmenta-
tion mechanisms by deuterium labeling. However, the real origin of natural products 
mass spectrometry lay somewhere else. Petroleum companies needed in the pre-gas 
chromatography days a means for the analysis of crude oils and their fractions. For 
this purpose the electron mass spectra of hydrocarbons and other constituents were 
determined under strictly standardized conditions with an accuracy never reached 
since, and with sets of simultaneous equations the qualitative and quantitative com-
positions of mixtures were determined. The API (American Institute of Petroleum) 
Catalog ( 10 ) comprising hundreds of spectra became the core of later spectra collec-
tions (see also ( 11 )). Thus, commercial mass spectrometers were available suitable 
for the analysis of other more or less volatile organic compounds. 

 The topic “Mass Spectrometry—Natural Products” has been treated twice in the 
 Progress in the Chemistry of Organic Natural Products  series. In 1966  Biemann  cov-
ered primarily alkaloids ( 12 ) and in 1985  Howe  and  Jarman  introduced the then new 
ionization techniques and their applications to various classes of natural products 
( 13 ). Encyclopedic reviews appeared in 1964 ( 14 ) and in 1972 ( 15 ) with a supple-
ment in 1980 ( 16 ), constituting together over 2,000 U.S. letter-sized pages. After this, 
only specifi c classes of natural products were treated; the amount of material to be 
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covered had become too large. Thus, as a continuation of the “ Biochemical 
Applications of Mass Spectrometry ” books ( 15 ,  16 ) the journal “ Mass Spectrometry 
Reviews ” (Wiley, New York, N.Y.) was founded in 1982. This, in addition to original 
contributions contains the series “Collected Reviews on Mass Spectrometric Topics” 
reporting the titles of review articles appearing in other publications. 

 In this contribution, several specifi c classes of natural products will be presented 
where structural information can be obtained from the fragmentation patterns beyond 
the molecular mass and elemental composition, and where enough experimental 
material is available to allow some generalization of the conclusions. It should be 
remembered, however, that for structure elucidation in most cases, it would be nec-
essary to have more information regarding the type of compound one is dealing with. 
The dictum from the early days of mass spectrometry, in that this technique is not 
able to sort out the debris of a blown-up pharmacist’s shop, is still true. Another 
criterion for the selection will be the demonstration of specifi c problems and ways 
by which they may circumvented. Historical developments will also be considered. 

 The manuscript was delivered to the Editors in December 2012. Not to let the 
time gap unused until the manuscript reaches the printer, literature references start-
ing with ( 594 ) are added to the References and an Addendum is provided. In this 
way the chapter is kept as up to date as possible, while renumberings are avoided. 

 Using the example of pentacyclic triterpenoids, it is shown how structural studies 
using electron ionization have been developed over the years. Vertebrate alkaloids 
cover a fi eld where the structural studies mainly stem from the last twenty years rely-
ing also on electron ionization but in part introducing more recent techniques. The 
sections on lipids and on carbohydrates demonstrate specifi cally how the ionization 
techniques have allowed the handling of involatile compounds and have extended the 
area of structural research step by step. The sections covering peptides and nucleo-
tides show the extension to very high masses and to three-dimensional information 
of molecules. Fast computers with almost unlimited data storage capacities have 
made possible automated structural studies and the analysis of complex mixtures. 

 The last section contains a list of mass spectra collections (mainly electron ion-
ization) from the natural products fi eld. All these collections should be used with 
due caution, especially when they are based on compilations of literature data. 
Possible sources of error may lie in the recording (thermal degradation, purity of the 
sample, calibration of the mass spectrometer), the data processing (especially older 
data digitalized from analog recordings by hand, mistakes in data transfer), and after 
all—the published structure may be wrong. Whenever possible the original litera-
ture should be consulted. 

 Most of the earlier reviews could rely on thorough investigations of the fragmen-
tation behavior of specifi c substance classes, usually accompanied by extensive 
deuterium labeling studies. Problems in updating arise because in many of the more 
recent publications only a selection of masses is reported according to the judgment 
of the authors as to what might be relevant (for an example see Sect.  3.2.7 ), so pro-
posals for fragment geneses are often based only on one example. Also systematic 
investigations have concentrated on very specifi c areas, which may be  en vogue,  
such as proteomics.  
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2       Mass Spectrometric Techniques 

 In this section a short introduction will be given into the various mass spectrometric 
techniques ( 17 ) that have gained importance in the investigation of natural products. 

2.1     Ionization Techniques 

  Electron ionization  ( EI ) is effected by interaction of the substrate molecules with an 
electron beam resulting in the formation of molecular ions lacking one electron 
(radical ions, M +· ) with surplus vibrational energy, which causes their decomposi-
tion. The fragmentation processes are well understood and in many cases offer 
structural information. EI is, however, restricted to compounds available in pure 
form (at least after chromatographic separation), which can be evaporated in a non- 
decomposed form under high vacuum. 

  Chemical ionization  ( CI ) ( 18 ). The substrate is introduced into an EI source together 
with a large excess of a reagent gas, which is ionized preferentially. Ionization of the 
substrate molecules occurs either by charge transfer yielding M +·  or by ion-molecule 
reactions resulting  e.g.  in [M + H] + . Chemical ionization with isobutane in connec-
tion with GC is commonly used to form only [M + H] +  (and no fragment) ions from 
the GC fractions. CI with NO has gained some importance for the localization of 
double or triple bonds in unsaturated aliphatic compounds. 

  Surface ionization methods . The substance to be investigated is applied to a solid 
surface in pure form or dissolved in a matrix and is subjected to a beam of high 
energy particles (FAB and related techniques as secondary ion mass spectrometry, 
SIMS), to a laser beam (MALDI), or to a strong non-homogeneous electric fi eld 
(FD). The habit of the mass spectra depends on the ionization method used and on the 
sample preparation (matrix, additives,  etc. ). Field desorption (FD) ( 19 ) and fast atom 
bombardment (FAB) ( 20 ) were used starting from about 1970,  in praxi  covering mass 
ranges up to ~1,000 Da. Today they have been superseded by spray techniques. In 
matrix assisted laser desorption/ionization (MALDI) ( 21 ) the sample together with a 
matrix absorbing at the appropriate wave length is irradiated with a pulsed laser (UV 
or IR), which causes the desorption of mainly singly charged sample ions with masses 
up to the 10 6  Da mass range. Fragmentation can be induced by collision with gas 
molecules (collision activation, CA, or collision induced decomposition, CID). 

  Spray techniques  ( 22 ). A cloud of charged droplets is accelerated towards a counter 
electrode. On their way the droplets lose solvent molecules by various mechanisms 
until  e.g.  [M + H] +  or [M–H] −  or at higher mass ranges (up to and beyond 1 MDa) mul-
tiply charged species ( e.g.  [M + nH] n+ ) remain. Fragmentation of singly or doubly 
charged ions can be induced by collision with gas molecules (CA). Here, as well as for 
the surface ionization techniques mentioned above the most convincing results with 
CA are obtained from structured substrates such as polypeptides and polysaccharides.  
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2.2       Ion Separation Techniques 

  Magnetic fi elds.  Ions are accelerated in an electric fi eld and the ion beam is defl ected 
in a magnetic fi eld. Ion separation, according to the mass-to-charge ratios of the 
ions is effected by scanning either fi eld. The speed of the (mainly used) magnetic 
scan is low compared with other ion separation methods. Defl ection in the magnetic 
fi eld can be combined with that in an electric fi eld (double focusing instruments). 
This allows exact mass measurements. 

  Time of fl ight (TOF)  ( 23 ). The accelerated ions fl ying in a drift tube reach the detec-
tor after time intervals corresponding to their mass. With modern instruments the 
ions are refl ected by an electric fi eld into a second drift tube. This increases resolu-
tion and allows specifi c detection techniques. TOF instruments operate in a pulsed 
manner (ions are formed, accelerated and separated repeatedly) and are therefore 
ideally suited for combination with ionization by pulsed lasers. 

  Quadrupoles  ( 24 ). The accelerated ion beam is subjected to AC electric fi elds, 
which allow the transmission of ions with specifi c masses at a time. Since electric 
fi elds can be altered quickly, “jumping” from one mass to another is achieved easily. 
This allows the registration of specifi c masses only in mixture analyses (see below). 
In  quadrupole ion traps  ( quistors ) ions are stored in complicated closed paths and 
those with specifi c masses are released and recorded ( 25 ). 

  Ion cyclotron resonance  ( ICR ) ( 26 ). Ions circulate in the fi eld of a supraconducting 
magnet with angular frequencies inversly proportional to their mass. The ions are 
brought into phase by a radiofrequency signal. They induce in a condenser plate a 
complex electromagnetic wave from which by  Fourier -transformation the mass 
spectrum can be calculated. The most important feature of ICR instruments is the 
ultra-high resolution obtainable (for an example see Sect.  4.3 ).  Orbitraps  ( 27 ) work-
ing on a similar principle do not need superconducting magnets. 

  Ion mobility spectrometers  ( IM ) .  The technique is a gas phase electrophoresis at 
atmospheric pressure. The ionized substrate is accelerated in a pulsed manner into a 
short drift tube to which an electric fi eld gradient is applied. The drift speed depends 
on the mass of the substrate and on the number of collisions with air molecules and 
hence on the molecular shape. Different conformers of  e.g.  proteins can thus be 
separated. The ions leaving the drift tube are introduced into a TOF mass spectrom-
eter for further analysis ( 28 ,  29 ). 

  Tandem instruments  use the sequential arrangement of two or more analyzers. 
Ions of a specifi c mass-to-charge ratio can be selected in the fi rst analyzer and be 
caused in the following one to fragment by collision with gas molecules (CA) in 
order to get structural information (see mixture analysis below). Various systems 
are in use such as an electrostatic and a magnetic analyzer, several quadrupole 
units, quadrupole and TOF,  etc.  ( 17 ).  
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2.3     Analysis of Mixtures 

 With the exception of special cases such as the petroleum analysis mentioned above 
mass spectrometric investigation requires pure compounds. Combinations with 
separation systems such as gas or liquid chromatography (GC, LC) were hampered 
in the early days by instrumental shortcomings, such as low scanning and registra-
tion speed, low sensitivity, and calibration problems. The fi rst attempts with packed 
GC columns necessitated clumsy separators to remove excess carrier gases. When 
fast- scanning quadrupole instruments and computer-assisted operation became 
available, GC with capillary columns became standard. The gas chromatogram is 
usually reconstructed from the total ion current (TIC) ( i.e.  the sum of all ions reach-
ing the detector in a given time interval). 

 For LC coupling the techniques used vary with the ionization method. In fl ow- 
FAB ( 30 ), matrix material is added to the LC eluate. The mixture is introduced into 
the ion source and spreads on the target. Flow-FAB is superseded by the spray tech-
niques where the LC eluate is introduced into the spray capillary. There are restric-
tions regarding solvents and additives. Other separation techniques such as 
electrophoresis are used also. 

  Fig. 1    GC of an extract containing trifl uoroacetylated amino acid isopropyl esters reconstructed 
from the TIC. Only the Gly (1), Ser (2), Dab (3), Phe (4) Orn (5), and Lys (6) containing fractions 
show a signal at  m/z  69 (CF 3  + ). Reproduced from ( 17 ) with kind permission of Wiley-VCH Verlag 
GmbH & Co. KGaA (© 2012)       
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  Fig. 2    GC of an extract from sausage for detection of nitrosamines. Upper trace CI with CH 4  ion-
izing all organic compounds, lower trace CI with NH 3  ionizing only N-containing compounds. 
With kind permission of Thermo Fisher Scientifi c, Bremen, Germany       

 In cases of complex mixtures in which only the presence or absence of one or 
few specifi c components is of interest, separation techniques can be combined with 
special recognition strategies such as the registration of the interesting molecular 
species only, using characteristic fragment ions (possibly after group specifi c 
derivatization, such as CF 3  +  ( m/z  69) after trifl uoroacetylation of amino acids) 
(Fig.  1 ). A less frequently applied possibility is the use of specifi c reagent gases in 
CI ( e.g.  NH 3  for nitrogen-containing substances) (Fig.  2 ).

     Tandem-mass spectrometry . Where a chromatographic separation is not possible 
one may try to produce molecular ion species only ( e.g.  [M + H] +  by CI with CH 4  
or with isobutane) from the various components of the mixture, by selecting them 
one after the other by the fi rst analyzer system and inducing fragmentation by CA 
for further characterization in a following sector of the instrument (Fig.  3 ). 
Obviously isomeric compounds having identical molecular masses cannot be sep-
arated in this way.
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2.4         High and Extremely High Masses 

 When going into a region of very high masses two peculiarities have to be consid-
ered. First, carbon consists to 98.93% of  12 C and to 1.07% of  13 C. Therefore, starting 
from C 91  the fi rst isotope peak ( 12 C 90  13 C) is more abundant than  12 C 91 , which repre-
sents the so-called nominal mass. The other common elements contribute also. For 
bovine proinsulin, as an example with the elemental composition C 381 H 586 N 107 O 114 S 6 , 
the most abundant ion occurs 9 Da above the nominal mass based on C 12 Da, H 
1 Da  etc.  The maximum of the envelope curve is still half a Da higher. In the case 
that the resolution of the instrument is not high enough, the  envelope curve squeezed 
to a line at the mass of the maximum will be recorded. As a rule of thumb the 
“molecular weight” calculated from tables based on the  elemental isotopic mixtures 
in the high mass regions will be rather close to that of the maximum of the envelope 
curve (Fig.  4 ).

  Fig. 3    CI(CH 4 ) spectrum of a fermentation broth. The left spectrum shows essentially only 
[M + H] +  ions that subsequently are fragmented by CA (examples are  m/z  89, 3-hydroxybutan- 2-
one and  m/z  91, 2,3-butanediol: right spectra). Adapted from ( 31 ) with kind permission of the 
American Chemical Society (© 1987)       
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  Fig. 4    Molecular ion region of bovine proinsulin (see text). With kind permission of Thermo 
Fisher Scientifi c, Bremen, Germany       

   Second, the exact mass of  12 C is by defi nition 12.00000, and that of  1 H 1.00783. 
128 H atoms amount to a difference of 1 Da between nominal mass and exact mass. 
N has also a positive, and O and S have negative mass increments. This should be 
kept in mind by setting mass windows  e.g.  for quadrupole instruments.   

3     Pentacyclic Triterpenes 

 The major structural types with fi ve six-membered rings are the oleanane (β-amyrin 
type,  1 , R 2  = CH 3 ) and ursane (α - amyrin type,  2 , R 1  = CH 3 ) groups differing in the 
location of one methyl group in ring E; those with a fi ve-membered ring E are 
derived from lupane ( 3 ) and hopane ( 4 ). In addition, several rearranged types such 
as the friedelane ( 5 ) derivatives have been encountered ( 728 ) (Fig.  5 ).
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  Fig. 5    Triterpene structural types       

   Common fragmentation reactions are the losses of functional groups such as H 2 O 
from hydroxy compounds both from M +·  and from fragment ions, the elimination of 
·CH 3  especially from quaternary or allylic positions, and of ·C 3 H 7  for lupane deriva-
tives and related structures. These processes will be mentioned only in special cases. 
Typical skeletal fragmentations are started by bond cleavages next to a quaternary 
center. Specifi c processes are the  retro-Diels-Alder  ( RDA ) opening of cyclohexene 
systems ( cf.  Fig.  11 ), or the  McLafferty  rearrangement (transfer of a γ-H atom to a 
carbonyl oxygen with concomitant cleavage of the α,β-C–C-bond;  cf.  Fig.  15 ) when 
the structural prerequisites are present in a molecule. These two reactions are well-
established processes. However, in the literature the geneses of many other frag-
ment ions are depicted involving multi-step bond cleavages and H-transfers. Most 
of them stem from the 1960s when it was attempted to rationalize the formation of 
almost any fragment ion. Only in rare cases did labeling studies substantiate the 
proposed fragmentation mechanisms. These will not be repeated in this chapter. 

3.1     Saturated Triterpenes 

 Compounds of the oleanane or ursane type that are substituted in rings A, B, or E 
only show, besides the obvious losses of functional groups, cleavage in ring C 
accompanied by the loss of an additional H atom giving an ion tentatively 
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formulated as  a  ( m/z  191 for the hydrocarbon skeleton) (Fig.  6 ). Substitution results 
in appropriate mass shifts and in secondary eliminations (as  e.g.  of H 2 O for 
3-hydroxy derivatives). An analogous cleavage product comprising rings D/E, 
which would coincide in mass with  a  ( m/z  191) for the parent hydrocarbon as  e.g.   a′  
from oleanane ( 32 ), is usually missing ( 33 ); see also Fig.  7  where the  a′  analog  m/z  
219 is essentially absent.

  Fig. 6    Skeletal fragments of saturated triterpenes       

  Fig. 7    EI mass spectrum of dihydromachaerinic acid lactone       

    Introduction of an oxo group at C-12 results in the loss of rings A/B without 
H-transfer ( m/z  234 for unsubstituted D/E rings, further loss of  · CH 3  gives  m/z  219) 
for in rings D/E unsubstituted representatives. Different modes of ion formation 
have been discussed ( 59 ,  64 ). 

 Gammacerane (the 17,20,20-trisnor-18 α ,22,22-trimethyl analog of  1 ) is also 
dominated by  m/z  191 ( a ) coinciding with the analogous ring D/E fragment, which 
is shifted to  m/z  207 for the 21-OH derivative tetrahymanol ( 34 ,  35 ). 

 Structural changes as in the case of friedelane ( 5 ) and its ursane analog cymbo-
pogone ( 36 ) result in a completely different fragmentation behavior (Fig.  8 ). 
Cleavages at various places of the fi ve rings result in ions of medium to large abun-
dance infl uenced also by additional substituents—even oxo groups in rings A or E 
can alter the fragmentation pattern drastically. The published data for friedelan-3- 
one (friedelin) differ substantially in their ion abundances ( 36 – 41 ). Experimental 
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conditions such as excess energy and reaction time seem to have appreciable infl u-
ence since the energy requirements for competing processes are not very different.

   The mass spectra of lupane ( 3 ) and hopane ( 4 ), except for minor differences in 
ion abundances, are identical and differ from that of oleanane ( 1 ) by the presence of 
small fragment ions due to [M–C 3 H 7 ] +  ( m/z  369) ( 32 ,  34 ); incidentally the fragments 
[M–41/42/43 Da] +  cannot be used for distinguishing between isopropyl and isopro-
penyl groups, see  e.g.  ( 43 ). All three spectra are dominated by  m/z  191 ( a  and  a′  
analogs). In contrast to oleanane and its derivatives both fragments are formed with 
comparable likeliness. For hop-22(29)-ene (with an isopropenyl group),  m/z  189 
and 191 are of almost equal abundance (91:100) ( 44 ), but a survey of geological 
samples differing in the C-21 substituent and the C-17/C-21 stereochemistry shows 
differences in the abundance ratios ( 45 ,  46 ) (see also Fig.  9 ). The masses of the two 
fragments can be used for additional characterization of the substitution pattern of 
fossil hopane derivatives,  e.g.  ( 47 ). A computer compatible program for the classi-
fi cation of triterpene hydrocarbons in geological extracts from mass spectral data 
has been developed ( 48 ). For a collection of mass spectral data, see ( 50 ).

   The introduction of oxygenated functionalities (hydroxy, acetoxy, or oxo groups, 
acid functions) in rings A and/or E results in appropriate mass shifts of  a-  and 
 a′- type fragments (additional losses of H 2 O or CH 3 COOH are possible) ( 43 ,  49 , 
 51 – 53 ). While a 7-hydroxy group yields the expected  m/z  207 and 189 (–H 2 O) ions, 
 m/z  207 is obtained also from the 7-oxo analog probably due to H-transfer to the 

  Fig. 8    EI mass spectrum of friedelane ( 5 ). Spectrum from the NIST library with kind permission 
from MasCom, Bremen, Germany       
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  Fig. 9    EI mass spectrum of lup-20(29)-en-3-one       

  Fig. 10    4 α -Hydroxyfi lican- 3-one ( 6 )       

keto group ( 54 ). The fragments induced by the presence of a 12-oxo group (see 
above) are of low to medium abundance depending on the remaining substitution 
pattern, while  a -type ions prevail ( 42 ,  53 ). Anomalies have been reported for 
27-hydroxylupane derivatives ( 55 ,  56 ). For 4 α -hydroxyfi lican-3-one ( 6 ) (Fig.  10 ), 
the ring D/E fragment ( m/z  205 due to the additional methyl group) with medium 
abundance and an unexpected ion with  m/z  191 of unknown genesis were reported 
( 57 ). Hopane derivatives with modifi ed C-21 side chains, mainly from bacterial 
origin were discussed in detail ( 58 ).

   There are other fragments that have been considered to be characteristic for 
lupane and hopane derivatives, but, in summarizing, it can be said that one should 
be careful in relying on these in the process of structure elucidation of a new com-
pound. The ions  m/z  189/191 or their substituted congeners may be missing or may 
be present when not expected ( e.g.   52 ,  57 ).  

3.2     Triterpenes with Double Bonds 

 One of the major possibilities of triterpene mass spectrometry is the localization of 
double bonds. 
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3.2.1     Δ 12 -Oleanenes and -Ursenes 

 Δ 12 -Double bonds can be recognized readily in EI mass spectra. They induce a  retro-
Diels-Alder  ( RDA ) decomposition of ring C. The positive charge is retained prefer-
entially with the diene fragment ( 8 ,  59 ,  60 ). Deuterium-labeling studies revealed 
that no hydrogen rearrangements occur during this process ( 59 ,  60 ). Substituents 
can be coordinated with the two parts of the molecule by calculating the mass differ-
ence with respect to that of  b  (Fig.  11 ,  m/z  218 for the unsubstituted hydrocarbon 

  Fig. 12    EI mass spectrum of erythrodiol diacetate       

  Fig. 11    Fragmentation of Δ 12 -oleanene ( 7 )       

species ( 7 )). This characteristic fragmentation mode has been reported for a large 
variety of compounds ( e.g.  ( 8 ,  55 ,  60 )), even for complex molecules ( e.g.  ( 61 ,  62 )). 
The diene fragment may however lose substituents and be exceeded in abundance 
by its decomposition products, depending on the location of the substituents (Fig.  12 , 

 m/z  216: loss of CH 3 COOH,  m/z  203: loss of -CH 2 OCOCH 3 );  cf . Fig.  13 ). The impor-
tance of this fragmentation reaction could be demonstrated during the structure elu-
cidation of macherinic acid lactone (a 17-carboxylic acid 21-hydroxy 
lactone)—against chemical evidence ( 63 ).

     Oxo groups in the vicinity of the 12,13-double bond change the fragmentation 
behavior. Thus, a 11-oxo group ( 8 ) induces a  McLafferty -rearrangement followed by 
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cleavage of the 7,8-bond resulting in ion  c  (Fig.  14 ) in addition to the  RDA   product 
( m/z  273 and 232, respectively, for ring D/E unsubstituted compounds). The relative 
abundance of the two species depends on the stereochemistry at C-18: for the  β  − H 
series the ion of the  RDA -fragment is much reduced in intensity ( 60 ,  64 – 66 ).

   A 15-oxo group ( 9 ) induces an analogous reaction sequence leading to ion  d  
(Fig.  15 ) ( m/z  233 for ring D/E unsubstituted compounds). For the reported example 
a  RDA -fragment is missing ( 64 ). This may be due to the 18 β -H stereochemistry. 
A 16-oxo group has no infl uence ( 64 ).

  Fig. 14    Fragmentation of  8        

  Fig. 13    EI mass spectrum of 30-hydroxy-β-amyrin diacetate       

  Fig. 15    Fragmentation of  9        
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  Fig. 17    Fragmentation of  10        

3.2.2        Δ 12 -Lupenes and -Hopenes 

 In ( 64 ) it is stated that lup-12-ene derivatives show  RDA  fragments only to a 
 negligible extent, but later ( 67 ) it was mentioned that the reported examples did 
actually not contain the C-12 double bond. In more recent publications ( 50 ,  53 , 
 68 – 70 ,  744 ) ions of appreciable abundance are reported, for which their genesis 
could well be due to this process. 

 The Δ 12,18 -dienes yield the  RDA  fragment combined with the loss of a 21- isopropyl 
group as the most abundant ion ( 68 ). For 28-acetoxylup-12-en-11-one the analog of 
ion  c  ( m/z  131, 100%) and a  RDA  ion ( m/z  290, 11%) were observed ( 53 ).  

3.2.3     Δ 5 -Triterpenes 

 Representatives containing this structural element decompose also by  RDA  with 
preferred charge retention at the ene-fragment as is typical for 4a-methyl-octalene-2 
systems for energetic reasons ( 67 ). In the spectrum (Fig.  16 ) of glutinone ( 10 ) ion  e  
( m/z  274) (Fig.  17 ) yields the base peak, which to some extent loses  · CH 3  ( m/z  259). 
References to further examples, which also give  RDA  fragments with high abun-
dance, may be found in ( 55 ); see also ( 71 ). Lupane derivatives and related systems 
with an isopropyl side chain show loss of 43 Da (·C 3 H 7 ) from the ene-fragment.

  Fig. 16    EI mass spectrum of glutinone ( 10 ). Reproduced from ( 67 ) with kind permission from 
Elsevier (© 1965)       
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3.2.4          Δ 9(11) -Triterpenes 

 For ∆ 9(11)  unsaturated compounds one would expect  RDA  fragments ( 11 , Fig.  18 ) 
with  m/z  218 (diene-) and 192 (ene-fragment) for the hydrocarbon, but the scarce 
literature data are contradictory in this respect. In ( 72 ) partial mass spectral data of 
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  Fig. 18    ( a ) ∆ 9(11) -Terpenoids. ( b ) Fragmentation of oxygenated ∆ 9(11) -terpenoids       
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3 β -hydroxyolean- 9(11)-en-28-oic acid and of its 3-oxo analog are reported. Both 
of them yield an abundant fragment  m/z  248 and not the expected ones,  m/z  234/232 
(diene-) and/or 222 (ene-part). The ion  m/z  248 could be interpreted as the C-28-
carboxyl analog of  b . This would suggest that rather the 12-ene isomer had been 
obtained. For 3 β -acetoxy-11 ξ ,12 ξ -epoxyolean-9(11)-ene  m/z  234 (100%) is 
reported, but since  m/z  234 (100%) is also given for the 9(11) saturated compound, 
the formation of this ion cannot be induced by the double bond ( 655 ).

   For the 25- nor -D:A- friedo -olean-9(11)-ene derivatives putrone ( 11a ; X = O) and 
acetylated putrol ( 11a ; X = H, OAc), abundant ene-fragments at  m/z  206 (87 and 
77% rel. int., respectively) with subsequent loss of ·CH 3  ( m/z  191, 100%) are 
reported ( 73 ). However, for the hydrocarbon ( 11a , X = H, H), ions  m/z  205 and 191 
are mentioned ( 74 ). In the spectrum (Fig.  29 ) of arborene ( 20  with a 9(11) double 
bond) neither  m/z  206 nor  m/z  191 is of any importance, as it is for several structur-
ally related compounds ( 84 ,  92 ,  93 ). The abundant even mass ions in the spectra 
( 75 ) of D:C- friedo -olean-9(11)-ene-3α,29-diol diacetate ( 11b , X = H,H) ( m/z  276, 
31% rel. int.) and of its 7-oxo derivative ( 11b , X = O) ( m/z  278, 100% rel. int. 1 ) can-
not be correlated with either  RDA  fragment. 

 Mass spectra of the 12-oxo derivatives ( e.g.  olean-9(11)-en-12-one,  11c ) show 
two characteristic fragmentation processes (Fig.  18 ),  RDA  ( f ,  m/z  232) and 
 McLafferty -rearrangement with subsequent cleavage of the 14,15-bond ( g ,  m/z  271), 
in both cases with charge retention in the ring A/B/C part ( 64 ,  72 ). The data reported 
for Δ 9(11),12 -dienes are contradictory. Two different fragmentation characteristics have 
been reported. In ( 76 ,  77 ,  741 ) a very abundant ion comprising rings D/E plus part of 
ring C is documented amounting to 218 Da for the unsubstituted hydrocarbon skel-
eton. References ( 78 – 80 ,  740 ) mention two fragments of low to medium abundance 
comprising rings A/B/C and C/D/E, respectively, with equal masses of 255 Da for 
the hydrocarbon, shifted accordingly upon substitution. For glyyunnansapogenins G 
and H (the 3 β ,21 α ,29-triol and the 29-acid), ions of low to medium abundance are 
listed attributable to both types of fragmentation, but in the same set of compounds 
the pattern is not consistent ( 80 ). The Δ 11,13(18)  double bond isomers do not exhibit a 
characteristic fragmentation pattern ( 44 ,  740 ,  742 ); see also the Addendum.  

3.2.5      Δ 14 -Taraxerenes 

 This group of compounds is characterized by two types of fragments (Figs.  19  and  20 ). 
 RDA  fragmentation leads to ion  h  ( m/z  286 for the hydrocarbon  12 ), which readily 
loses a methyl group, also in combination with the typical eliminations of ring-A 
substituents ( e.g.  CH 3 OH for  13 ). The genesis of the second species ( m/z  204 for the 
hydrocarbon) is not clear; it is usually formulated as the rearranged ion  i , which read-
ily loses the C-17 substituent ( m/z  189 for CH 3 ) ( 50 ,  56 ,  81 – 83 ). For pteron-14-ene 
( 14 , Fig.  21 ),  RDA  fragmentation is of no importance in contrast to its 17 β -methyl-19-
isopropyl isomer lactuc-14-ene;  m/z  204 yields for both the base peak. A 7-hydroxy 
group does not infl uence the fragmentation pattern for all three structural types ( 50 ).

1   McLafferty  rearrangement (transfer of the C-15 H) of the 7-oxo compound with subsequent cleav-
age of the 12,13-bond ( cf.   11c → g ) would lead to an ion  m/z  277). 
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  Fig. 20    EI mass spectrum of 3-methoxy-Δ 14 -taraxerene ( 13 ). Reproduced from ( 81 ) with kind 
permission from Elsevier (© 1969)       

  Fig. 21    Pteron-14-ene       

  Fig. 19    Fragmentation of  12        
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3.2.6          Δ 13(18) -Oleanene 

 Several fragments stemming from the C/D/E-rings part of Δ 13(18) -oleanane ( 15 ) 
(Fig.  22 ) molecules are reported ( 50 ,  84 ),  viz. m/z  218, 203–205, and a cluster 
around  m/z  191 (Fig.  23 ). Neohop-13(18)-ene (18- nor -17- α -methyl- 4 ) ( 50 ) and its 
3-oxo derivative hopanone II ( 43 ) show an analogous fragmentation behavior.

  Fig. 22    Δ 13(18) -Oleanene ( 15 )       

  Fig. 23    EI mass spectrum of Δ 13(18) -oleanene ( 15 )       

3.2.7          Δ 11 -Ursenes and -Oleanenes 

 For this group no complete EI mass spectra are available in the literature, only list-
ings of selected fragments. For 3 β -hydroxy-urs-11-ene (nudicauline A,  15a ) 
(Fig.  24 ),  m/z  364 is reported as the main fragment, but the 3 β -acetoxy derivative 
(nudicauline B) shows no analogous ions. Mentioned for both compounds are 
 a- type ions ( m/z  207 and 189) ( 85 ).

   The main fragmentation processes of 11,12-dehydroursolic acid lactone ( 15b , in 
the literature occasionally named incorrectly ursolic acid lactone) and its derivatives 
are the loss of CO 2  and to a lesser extent of CO from M +· . The fragment  m/z  169 
(15%), assumed to be formed by cleavage of the 7,8- and the 9,10-bonds under 
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transfer of one H atom (besides the complement  m/z  241 (3%) no other fragment 
ions are mentioned), was considered as characteristic ( 86 ). It is shifted in mass to 
 m/z  201 (C 11 H 21 O 3 , 30%), mentioned among the fragments listed for the 2 α ,3 β ,7 β -
trihydroxy analog ( 87 ), but corresponding ions are not reported under the scarce 
data published for the 3-formoxy derivative of  15b , camaldulin ( 88 ) and for its olea-
nolic acid isomer of  15b  ( 89 ,  90 ). Ions of type  a  are mentioned in some cases. 
Complete EI spectra of 11,12-dehydroursolic acid lactone ( 15b ) and of camaldulin 2  
gave a different picture. They showed a large number of ions of similar abundance. 
The skeletal fragments discussed above are not especially prominent and are imbed-
ded in clusters of ions. The mass spectra are dominated by [M–CO 2 ] +·  (base peak) 
and [M–CO] +· .  

3.2.8     Δ 18 -Oleanenes and -Friedelenes 

 All representatives ( e.g.   15c , Fig.  25 )) exhibit a rather pronounced loss of the C-17 
substituent due to allylic activation. Major fragments comprise rings D and E or parts 
of them with or without the C-17 substituent. Mechanisms of their formation have 
been proposed. Their relative abundance depends on the substitution pattern of the 
compound. Among these an even mass species can reach high abundance for the 
Δ 18 -oleanenes. Its mass is  m/z  204 for D/E unsubstituted compounds and it is shifted 
accordingly upon substitution, but its abundance can be reduced drastically when 
elimination processes prevail 3  ( 8 ,  50 ,  64 ,  620 – 622 ). Regarding the fragment  m/z  204, 
see also Sect.  3.2.5 .

2   Kindly provided by Prof. Dr.  Sabira Begum , University of Karachi, Pakistan. 
3   As an example for the danger possibly arising from relying on an isolated literature reference: for 
olean-18-ene-3-one ( 50 ) quotes the expected  m/z  204 with 64% rel. int. and  m/z  218 with 24%, 
while ( 91 ) quotes  m/z  218 with 100% and not  m/z  204. 

  Fig. 24    3 β -Hydroxy-urs-11-ene (nudicauline A,  15a ), and 11,12-dehydroursolic acid lactone ( 15b )       
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3.2.9        Δ 20 - and Δ 18(30) -Ursenes 

 The fragmentation pattern of ψ-taraxasterol ( 15d , Fig.  25 ) resembles that of satu-
rated compounds, with the  a -type ions  m/z  207 and 189 being the main fragments. Of 
interest is an ion of low intensity at [M–82] +· . It was ascribed to a  retro-Diels-Alder  
reaction in ring E resulting in the loss of 3-methyl-pentadiene ( 64 ). Whether the 
complementary ion  m/z  82 is formed also cannot be said; the reported mass spectra 
do not go down that far in mass. The mass spectra of ψ-taraxasterol ( 15d ) and of 
taraxasterol ( 15e ) are similar differing only in the relative intensities ( 713 ). The frag-
mentation processes occurring in ring E have been studied in detail ( 714 ). During the 
formation of [M–82] +·  a deuterium label at C-18 is retained and the labels at C-22 and 
C-30 are lost. Rearrangement to ψ-taraxasterol with subsequent  retro-Diels-Alder  
reaction was suggested, but allylic cleavage of the 18,19-bond and subsequently of 
the 17,22-bond may also be considered. Another ion of low abundance is [M–69] + , 
the genesis of which comprises the loss of the C-19–C-21 part of ring E as shown by 
D-labeling. Again, cleavage of the 18,19-bond could be the fi rst step.   

3.3     Baueranes, Multifl oranes, and Swertanes 

 The members bauerane, multifl orane, and swertane ( 16 – 18 ) of this group (Fig.  26 ) 
possess methyl groups at C-13 and C-14 for which the location infl uences the 

  Fig. 25    Δ 18 -Terpenoids ( 15c ): olean-18-en-3-one (R = CH 3 ), methyl moronate (R = COOCH 3 ) 
and the Δ 20 , Δ 20(30) -compounds, ψ-taraxasterol ( 15d ), and taraxasterol ( 15e )       
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  Fig. 26    Bauerane ( 16 ), multifl orane ( 17 ), and swertane ( 18 )       

  Fig. 27    EI mass spectrum of multifl or-7-ene. Reproduced from ( 94 ) with kind permission of 
Wiley-VCH Verlag GmbH & Co. KGaA (© 1963)       

fragmentation pattern in a characteristic manner while the position of the double 
bond (Δ 7 , Δ 8 , Δ 9(11)  for the isomeric multifl orenes) changes only the relative abun-
dance of certain fragments (Fig.  27 , Table  1 ), with the exception of  m/z  204. This ion 
yields the base peak for Δ 7  ( m/z  218 for the 3-oxo compound) comprising rings A, 
B, and part of C ( 64 ,  92 ). It is of minor importance for the other isomers ( 12 ,  64 ,  82 , 
 92 ,  712 ). Surprisingly,  m/z  204 is of secondary importance for bauer-7-ene (20%), 
which differs from the isomeric multifl or-7-ene only in the position of one methyl 
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   Table 1    EI mass spectra of the double bond isomers of multifl orene (values from ( 44 ,  93 ))   

  m/z   410  395  271  257  243  231  218  206  205  204  203  191  189 
 Δ 7   9  14  7  9  47  46  19  26  55  100  8  24  12 
 Δ 8   16  20  4  9  100  72  20  36  53  12  5  35  8 
 Δ 9(11)   18  20  5  12  50  40  100  40  38  17  28  75  17 

group in ring E ( 92 ). This behavior is confi rmed in the bauer-7-ene derivatives 
(3-one, 3-methoxy) ( 82 ,  92 ). Data for this group are compiled in ( 50 ,  92 ,  93 ). For 
suggested fragmentation pathways, see the original literature. Arborane, which was 
tentatively included in this group ( 64 ,  94 ,  95 ), was later shown to have structure  20 .

3.4          Fernane and Arborane Derivatives 

 The derivatives of fernane ( 19 ) and arborane ( 20 ) are characterized by C-13/C-14 
methyl groups (Fig.  28 ), but their fragmentation pattern differs from that of the 
bauerene group. Also for this group of triterpenoids the position of a Δ 7 , Δ 8 , or Δ 9(11)  
double bond is of no importance. Thus, the EI mass spectra of the three isomeric 
fernenes are reported to be indistinguishable ( 50 ),  cf.  also ( 44 ,  99 ). In addition, the 
orientation of the isopropyl group has no infl uence ( 84 ). The characteristic fragment 
for ring D/E unsubstituted compounds is due to the loss of 167 Da (C 12 H 23 ) from M +·  
formulated as arising from the cleavage of the 12,13-, the 13,14-, and the 15,16- 
bond accompanied by H rearrangements ( cf . wavy line b in Fig.  27 ). The [M–167] +  
ion is accompanied by ions formed by the loss of a C-3-substituent ( 82 ,  84 ,  94 ,  594 ) 
(Fig.  29 ). An ion [M–153] +  (loss of rings D/E + H) is of secondary abundance but 
becomes the most important one for Δ 7,9(11) -dienes ( 50 ,  93 ,  739 ). Pertinent literature 
has been compiled and reviewed in ( 55 ) and ( 50 ,  93 ).
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  Fig. 28    Fernane ( 19 ) and arborane ( 20 )       

    Δ 5 -Compounds show  RDA  fragments as described above. Thus, the spectrum of 
simiarenol (3-oxofern-5-ene) differs from that of glutinone ( 10 , Fig.  17 ) only by 
some loss of ·C 3 H 7  from  m/z  274 ( 96 ,  97 ). The reported fragmentation patterns of 
Δ 9(11)  compounds oxygenated at the 12 position (oxo, hydroxy, acetoxy) give no 
clear picture ( 98 ,  99 ). 
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  Fig. 31    EI mass spectrum of 22,25,29,30-tetra- nor -18 β -ferna-5,7,9-triene ( 21 ). Reproduced from 
( 100 ) with kind permission from Elsevier (© 1992)       

  Fig. 30    22,25,29,30-Tetra- nor   -18 β -ferna-5,7,9-triene ( 21 )       

 From geological material, fernane/hopane derivatives were isolated that possess 
an aromatic ring B. The type representative of 22,25,29,30-tetra- nor -18 β -ferna- 
5,7,9-triene ( 21 ) (Fig.  30 ) yields ions at  m/z  213, 225, and 239 from the left-hand 
part of the molecule (Fig.  31 ) ( 100 ).

  Fig. 29    EI mass spectrum of arbor-9(11)-ene ( 20  with a 9(11) double bond). Reproduced from 
( 94 ) with kind permission of Wiley-VCH Verlag GmbH & Co. KGaA (© 1963)       
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4          Alkaloids from Vertebrates 

 What actually are alkaloids? In 1819  Carl Wilhelm Friedrich Meissner , pharmacist 
at Halle (Germany) ( 101 ), introduced the term alkaloid for basic (“alkali-like”) 
plant constituents. 4  Several restrictive defi nitions to be found in the literature 5  (plant 
origin, heterocyclic nitrogen compounds) had to be given up over the years when 
animal alkaloids became known or when peptidic compounds ( 105 ,  106 ) and poly-
amines ( 107 ) were added to the list of alkaloids. What remains as a  criterium sine 
quo non  is besides a natural origin is the presence of nitrogen, as refl ected in a recent 
defi nition by  Hesse : “Alkaloids are nitrogen-containing organic substances of natu-
ral origin with greater or lesser degree of basic characters.” ( 108 ). Certainly pro-
teins, nucleotides, amino carbohydrates, and their constituents have to be excluded, 
but with respect to other groups of natural products such as antibiotics ( 109 ,  110 ) or 
siderophores ( 111 ) the boundaries are shifting ( cf.  Sect.  4.2 ). 

 The mass spectra of plant alkaloids have been reviewed in detail ( 112 – 114 ); for 
polyamine alkaloids, see ( 107 ), for peptide alkaloids ( 105 ), and for steroidal alka-
loids ( 115 ). A newer wide fi eld is constituted by the alkaloids extracted from the 
skins of amphibia, especially those from poisonous frogs, which the late  John 
W. Daly  pioneered ( 116 ,  117 ). In his review from 1987 ( 118 ) over 200 compounds 
are mentioned, and by 2005 the number had grown to over 800 ( 119 ), with such 
research still going on ( 120 ). Mass spectrometry plays an important role, including 
electron ionization (EI) and chemical ionization (CI) ( 121 ) for the determination of 
molecular masses, for structural work, and especially for correlating closely related 
structures. The following section will try to cover the major aspects. 

 An area where mass spectrometry could play a role in future in addition to struc-
tural work is the question of the origin of the isolated alkaloids. The β-arylethylamines 
clearly stem from amino acid metabolism, and salamander alkaloids are synthesized 
by the animal from cholesterol. Originally it was assumed that the frog alkaloids 
were synthesized by the animals and thus could be used for chemotaxonomy, but it 

4   “Ueberhaupt scheint es mir auch angemessen, die bis jetzt bekannten alkalischen Pfl anzenstoffe 
nicht mit dem Namen Alkalien, sondern Alkaloide zu belegen, da sie doch in manchen 
Eigenschaften von den Alkalien sehr abweichen.” (Actually, it seems to me as adequate to desig-
nate the alkaline plant constituents known till now not as alkalis but rather as alkaloids as they 
differ much in several aspects from the alkalis) ( 102 ). 
5   “Unter Alkaloiden im engeren Sinn verstehen wir dagegen Verbindungen mit heterocyklisch 
gebundenen Stickstoffatomen, mehr oder weniger stark ausgeprägtem basischem Charakter, aus-
gesprochener physiologischer Wirkung, kompliziertem molekularem Bau, die in Pfl anzen gefun-
den werden, …” (Under alkaloids in a more restrictive sense we understand however compounds 
with heterocyclic bound nitrogen atoms, more or less pronounced basic character, explicit physi-
ological activity, complicated molecular structure, which are found in plants, …) ( 103 ). This clas-
sical defi nition by  Winterstein  and  Trier  from 1910 was criticized by  Pelletier  in the introductory 
chapter of the fi rst volume of the series  Alkaloids: Chemical and Biological Perspectives  ( 104 ). He 
offered a rather vague new defi nition—“An alkaloid is a cyclic organic compound containing nitro-
gen in a negative oxidation state which is of limited distribution among living organisms.”—and 
justifi ed the wording as excluding compounds that should not be considered as alkaloids. 
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later turned out that many of the frogs’ toxins have been acquired in the food ( 116 , 
 737 ), with some involved in a multi-step chain from plants  via  arthropods, and some 
of them with structural modifi cations by the animals ( 123 ); and it has been suggested 
that bacteria may be involved as the ultimate source ( 122 ). GC/MS in comparison 
with published data has been used to establish the origin of frog alkaloids in ants 
( 125 – 127 ), millipedes, and beetles ( 128 ), or in mites ( 124 ,  130 ,  131 ,  133 ), although 
many of the taxa of mites found in the stomachs of frogs do not produce alkaloids 
( 132 ,  134 ). A classical fi eld of mass spectrometry would be to follow the fate of iso-
topically labeled putative precursors, and since every metabolic step results in chang-
ing of the isotope composition,  12 C/ 13 C and other isotope ratio analyses might provide 
clues for metabolic changes of sequestered alkaloids ( cf . ( 135 )). 

4.1     Amphibia 

 The skin secretions of amphibia constitute a defense system containing besides anti-
microbial peptides ( 136 ) a variety of alkaloids. 6  The largest number of amphibial 
alkaloids stems from dendrobatid poisonous frogs primarily from the Central and 
South American rain forests. The frogs use them as defense agents 7  against preda-
tors ( 139 ), warning at the same time by their bright colors ( 138 ,  595 ). Variations in 
the alkaloid contents have been reported in terms of the locality and time of the year 
( 129 ,  141 ), sex ( 130 ), and age ( 142 ) of the animals. The broad variability of alkaloid 
profi les has been demonstrated for the Argentinian toad  Melanophryniscus rubri-
ventris  ( 602 ). The subsequent discussion follows the three review articles, Refs. 
( 117 – 119 ), which should be consulted for quotations of additional original litera-
ture. For most alkaloids a listing of the major ions from EI mass spectra is available, 
which can be found in ( 118 ,  119 ) and in the original publications. 8  

 In the early days of research, trivial names were given to the alkaloids of poison-
ous frogs, but to cope with their increasing number, a simplifi ed system was intro-
duced, in which the molecular mass in bold characters is followed by a capital letter 

6   In a detailed GC/MS study it could be shown that alkaloids present in the skin of the Brazilian 
toad  Melanophryniscus simplex  were also to be found in the same relative portions in muscles, 
liver  etc.  ( 137  ). 
7   Feeding on poisonous prey with the purpose to sequester toxic compounds for their own defense 
is spread over the entire animal kingdom (for examples, see Sect.  4.2 ). It is an ongoing fi eld of 
interdisciplinary research ( 140 ) where mass spectrometry plays an important role (screening and 
identifi cation, structural transformations, labeling studies,  etc. ) . 
8   In ( 119 ) under Supporting Information, with the exception of the steroidal alkaloids, all known 
amphibian alkaloids are listed, including samples for which the structures have not been estab-
lished yet or are considered as tentative. The listing follows the shorthand designation (see above) 
and hence the molecular masses. The data comprise elemental formulas (for unknown structures 
based on high resolution MS measurements), diagnostic EI-MS fragments, GC and other charac-
teristic data, and where known, assignment to a structural class, natural origin  etc.  It should be 
mentioned that 127 complete EI mass spectra of frog alkaloids can be found in ( 602 ). 
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when several alkaloids have the same nominal mass. In numbering ring systems, the 
mode used in ( 119 ) is followed here for easier cross-reference, even if it is not 
 consistent with current IUPAC rules. 

4.1.1      Toads and Frogs ( Anura ) 

 As will be shown, today the idea prevails that most  Anura  alkaloids are not pro-
duced by the animals, but are rather acquired  via  the food and at best chemically 
modifi ed ( 120 ,  737 ,  747 ). This is certainly not true for the fi rst group. 

4.1.1.1      Biogenic Amines 

 Serotonin (5-hydroxytryptamine) and its  N -methyl derivatives ( 603 ) (as  e.g.  bufo-
tenine,  22 ) are secreted by toads together with a number of other biogenic amines 
(β-phenylethylamine derivatives as epinephrine and dopamine,  etc. ; tryptamine 
derivatives as bufotenidine,  i.e.  the  N,N,N- trimethyl betaine of  22 , bufoviridine, 
 i.e.  the  O -sulfate of bufotenidine, the cyclization product dehydrobufotenine ( 23 , 
( 143 ), for a recent synthesis see ( 144 )) and its  O -sulfate bufothionine ( 604 )  etc.  
(see  e.g.  ( 145 )); see also histamine and derivatives by various toads ( 146 ) (Fig.  32 ). 

Bufotenine 9  ( 22 ) was fi rst isolated from the skin of the common toad ( Bufo bufo ) 
and subsequently from other species such as the aga toad (Australian cane toad; 
 Bufo marinus,  new name  Rhinella marina ), and the Australian golden bell frog 
( Litoria aurea ). A comparative study of the indole alkylamine patterns of various 
Brazilian toad species based on chromatography combined with ESI-MS/MS has 
been reported ( 615 ). The main fragments are [ l  + H] +  ions.

9   A poisonous substance from toad skin glands was apparently fi rst isolated by  Phisalix  and 
 Betrand  in 1893 ( 148 ) and named  bufoténine  ( 149 ).  Jensen  and  Chen  ( 150 ) described in 1932 
several bufotenines, which they characterized as indole derivatives. The constitution of  22  was 
fi nally established 1934 by  Wieland et al . ( 151 ). 

  Fig. 32    Bufotenine ( 22 ), dehydrobufotenine ( 23 ), and the main fragments of  22        
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   In the EI spectrum (Figs.  32  and  33 ) ( 147 ) the characteristic fragmentation pro-
cess of M +·  ( m/z  204) is the cleavage of the benzylic bond yielding the fragment ions 
 j  ( m/z  146) and (preferentially)  k  ( m/z  58) ( cf . Sect.  7 ) .  The elimination of HN(CH 3 ) 2  
resulting in  l  ( m/z  159) is of minor importance but becomes the main process in the 
ESI-CA spectrum (Fig.  34 ,  m/z  160 is protonated  l ) ( 145 ,  152 ). By either method 

  Fig. 34    ESI-CA spectrum of bufotenine ( 22 ):  m/z  160 ([ l  + H] + , 205 ([M + H] + )       

   Fig. 33    EI mass spectrum of bufotenine ( 22 ):  m/z  146 ( j ), 58 ( k ), 159 ( l ), 204 (M +· )       
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related compounds can be characterized showing varying substitutions in the indole 
part and of the NH 2  group of tryptamine. Other β-arylethylamine derivatives show 
analogous fragmentation (see also the Addendum).

    The aquatic toads of the genus  Bombina  (“Unken” in German) produce secretions 
containing  inter alia  serotonin, amino acids, and small to medium-sized peptides 
( 663 ), several of them N-terminally blocked by a pyroglutamic acid unit ( 664 ). 
Structurally related characteristic members are named “bombinins” after the fi rst 
representative “bombinin” for which the primary sequence of 24 amino acids had 
been revealed ( 667 ). Some of the peptides show antimicrobial ( 665 ,  668 ) and/or 
insulinotropic ( 666 ) activities. The structure elucidation followed the methods out-
lined in Sect.  7.2  including sequencing by tandem MS ( 668 ).  

4.1.1.2    Steroidal Alkaloids: Batrachotoxin and Tauromantellic Acid 

 From a large number of the arrow poison frogs, like  Phyllobates aurotaenia  ( 153 ), 
the highly toxic batrachotoxins (BTX)  24 – 26  were obtained in suffi cient amounts 
for structural analysis by spectroscopic methods ( 154 ). The structure of batracho-
toxinin A ( 24 ), a complex steroid alkaloid, was confi rmed by X-ray analysis ( 153 ) 
and synthesis ( 155 ). 

 From a mass spectral analysis, high-resolution EI data are available ( 154 ). The 
M +·  ions of low abundance ( m/z  538 for  25 ) lose the pyrrole-3-carboxylic acid sub-
stituents (or H 2 O for  24 ; yielding  m/z  399 for  24 – 26 ) responsible for the ions  m/z  
139 for  25  and  m/z  153 for  26 . The ion  m/z  399 eliminates the C-13/C-14 bridge 
(C 4 H 9 NO) giving  m/z  312. Several losses of H 2 O follow. An important ion is the 
 retro - Diels-Alder  fragment  m/z  184 ( m ), the observation of which in the mass spec-
tra of 4 β -hydroxy derivatives of  25  and  26  (two minor alkaloids) aided the 
 localization of the additional hydroxy group ( 156 ). For the possible genesis of the 
alkaloids, see Sect.  4.4  below. 

 The Madagascar poison frogs  Mantella baroni  and  M. betsileo  could be shown 
by GC/MS analysis to sequester a series of alkaloids from food ( 129 ), but they also 
produce by themselves an alkaloid derived from a bile acid, a partially degraded 
7 α -hydroxycholestan-3-one substituted with 2-aminoethanesulfonic acid. This was 
named tauromantelic acid ( 26a , Fig.  35 ). Its structure was elucidated by NMR and 
mass spectral analysis. The molecular formula could be established by positive and 
negative ESI. CA of [M + H] +  resulted in partial degradation of the C-17 side chain, 
but the main fragments were found to be  m/z  126 (H 3 N + -CH 2 -CH 2 -SO 3 H) and  m/z  
208 (the ionized side chain) ( 157 ).
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4.1.1.3       Pyrrolidines and Piperidines 

 2,5-Dialkylpyrrolidines and 2,6-dialkylpiperidines (the latter category may have a 
C-4-hydroxy group) on EI show the loss of either alkyl substituent, preferentially 
the larger one ( 158 ). Unexpected results supplementing the EI data were obtained 
with CI(NH 3 ) after CA (Fig.  36 ). Ring opening of the protonated molecules results 
in the two fragments  m/z  128 and 114, as depicted in Fig.  37  for 2- n -heptyl-5- n  - 
hexylpyrrolidine    (alkaloid  253I  ( 27 )). Higher homologues of the two fragments 
are observed with low abundance (Fig.  36 ). A competing fragmentation sequence 
starting from [M + H–NH 3 ] +  resulting in the series of ions  m/z  81, 95, 109, … 
occurs with varying preponderance in all CI(NH 3 ) spectra discussed here and 
below ( 121 ).

  Fig. 35    Batrachotoxinin A ( 24 ), batrachotoxin ( 25 ), homobatrachotoxin ( 26 ), and tauromantelic 
acid ( 26a )       
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4.1.1.4        Histrionicotoxins 

 The spiro-piperidines are the main alkaloids of the South American  Dendrobates 
histrionicus  ( 159 ) .  They differ by the nature of R 1  and R 2 , in terms of whether there 
are saturated or (preferentially) unsaturated short alkyl groups. The main EI frag-
ments are the loss of R 1  by α-cleavage induced by the nitrogen function, and an 
abundant ion at  m/z  96, most likely  n  (Fig.  38 ) ( 118 ). CI (isobutane) yields mainly 
[M + H] +  and [M + H–H 2 O] + . An ant is probably the dietary source of the histrioni-
cotoxins ( 28 ). For a total synthesis, see ( 160 ).

  Fig. 36    CI (NH 3 ) CA mass spectrum of 2- n -heptyl-5- n -hexylpyrrolidine ( 27 ). Adapted from ( 121 ) 
with kind permission of John Wiley and Sons (© 1999)       

  Fig. 37    CI (NH 3 ) CA induced fragmentation of 2- n -heptyl- 5- n -hexylpyrrolidine ( 27 )       
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  Fig. 38    EI induced fragmentation of histrionicotoxins ( 28 )       

4.1.1.5       Decahydroquinolines 

 Many frog species were found to provide decahydroquinoline derivatives ( 29 ) as 
additional alkaloids. Residues R 1  and R 2  are short saturated or unsaturated alkyl 
chains. Various stereochemical arrangements (substituents, ring juncture 10 ) have 
been encountered. Occasionally, a ring-OH group is observed. The main EI fragment 
arises from the loss of R 2 . For a signifi cant loss of R 1 , a mechanism was  suggested 
comprising the opening of the 4a,8a-bond to yield  o  (Fig.  39 ) ( 162 ). Recently, 
 N -methyl derivatives were described also ( 125 ). In CI(NH 3 ) allyl substituents are 
lost as propene by the  McLafferty  rearrangement ( 761 ).

4.1.1.6        3,5-Disubstituted Pyrrolizidines and Indolizidines, 
4,6-Disubstituted Quinolizidines, and Lehmizidines 

 3,5-Disubstituted pyrrolizidines ( 30 ) and indolizidines ( 31 ) with varying stereo-
chemistry of the ring juncture relative to the substituents, 4,6-disubstituted quinoli-
zidines ( 32 ) and lehmizidines ( 33 ) (Fig.  40 ) are minor secondary alkaloids of various 
frogs and toads. The lehmizidines can be hydroxylated in the seven-membered ring. 
Ants are the dietary source ( 163 ). The precursors of the “izidines” are probably 
 dialkylated pyrrolodines and piperidines ( 164 ). For syntheses, see ( 163 ,  165 ).

   The substituents for all structural types are small, saturated or unsaturated, par-
tially oxygenated alkyl groups. Loss of either substituent by α-cleavage is observed 

10   For an enantioselective synthesis of the alkaloids  cis - 195A , (pumiliotoxin C) and  trans - 195A,  
see ( 161 ). 
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in their EI mass spectra, the larger one being lost preferentially. The α-cleavage 
products can lose the second substituent by  McLafferty  rearrangement, as in the 
formation of [M– · CH 3 –C 3 H 6 ] +  from alkaloid  195C  ( 32 , R 1  = CH 3 , R 2  =  n- C 3 H 7 ) ( 163 , 
 164 ,  754 ). In CI(NH 3 ), all α,α′-disubstituted “izidines” upon CA yield two charac-
teristic fragments as shown for 3-methyl-5- n -nonylpyrrolizidine ( 34 , Figs.  41  and 
 42 ). The ring with the larger substituent is lost preferentially. When the two rings 
are of different size and/or differentially substituted location of the substituents is 
possible. Thus, for 3- n -butyl-5- n -propylindolizidine the masses of the two frag-
ments coincide at  m/z  126. For the 5- n -butyl-3- n - propyl isomer an ion pair at  m/z  

  Fig. 42    CI (NH 3 ) CA induced fragmentation of 3-methyl-5-   n -nonylpyrrolizidine ( 34 )       

  Fig. 40    “Izidine” alkaloids       

  Fig. 41    CI (NH 3 ) CA spectrum of 3-methyl-5- n -nonylpyrrolizidine ( 34 ). Adapted from ( 121 ) with 
kind permission of John Wiley and Sons (© 1999)       
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  Fig. 43    Fragmentation of spiropyrrolizidines upon EI       

112 and 140 would have been expected ( cf . 3- n -butyl-5-methylindolizidine, 11  which 
yields fragments at  m/z  126 and 98) ( 121 ).

4.1.1.7        Spiropyrrolizidines 

 The alkaloids  222  and  236  are compounds substituted at C-1 with an oxime or an 
 O -methyloxime group ( 35 ) and at C-7 with a spirocyclopentane structure. They 
have been obtained from Panamanian dendrobatid frogs. The dominant fragment  p  
in the EI mass spectra arises from the loss of C-6 and C-7 ( m/z  126 for  35 ) as shown 
from the appropriate shifts upon substitution (Fig.  43 ). They apparently originate 
from millipedes ( 166 ). The precursor is nitropolyzonamine ( 35  with a  β -oriented 
nitro group at C-1) for which the main fragment is the nitro analog of  p  after the loss 
of NO 2  ( p ′,  m/z  82) ( 167 ).

4.1.1.8       5,8-Disubstituted Indolizidines and 1,4-Disubstituted Quinolizidines 

 This group of alkaloids with varying stereochemistry stems mainly from dendro-
batid frogs. 12  The EI mass spectra of  36 -type alkaloids ( 120 ) show two character-
istic fragments, loss of the C-5 substituent ( q ) and subsequent  retro-Diels-Alder  
( RDA ) decomposition yielding a fragment with  m/z  96 ( r ). An additional substitu-
ent at C-6 shifts the RDA fragment accordingly in mass. If a 6,7-double bond is 
present, the [M–R 1 ] +  ion loses subsequently H 2 , probably due to complete aroma-
tization of the six-membered ring ( s ) (Fig.  44 ). An alternative path leading to 
aromatization consists in the loss of R 1 , R 2  and H yielding an signifi cant ion with 
mass  m/z  120.

11   Dr.  H.M. Garraffo , Bethesda, MD, private communication. 
12   For syntheses of 5,8-disubstituted indolizidines, see ( 168 ,  169 ). 
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4.1.1.9       Pumiliotoxins ( 170 ) and Related Compounds 

 Alkaloids from this indolizidine-derived group have been encountered in a variety 
of frogs from South America, Madagascar, and Australia, and recently also in 
Cuban dwarf frogs ( 171 ). The major types contain the partial structure  38 , some 
with hydroxy groups at C-8 or at C-7 and C-8. The R substituents can be saturated 
or unsaturated alkyl groups, with some carrying hydroxy groups. The EI spectra 
vary with the substitution pattern, but an abundant ion at  m/z  70 (probably from 
the pyrrolidine ring) seems to be a common feature ( 120 ). 7,8-Dehydro-8- 
desmethylpumiliotoxins show an abundant [M–H] +  ion, loss of methyl, and the loss 
of R ( m/z  162) as the main fragment. The accompanying ion  m/z  160 is due to com-
plete aromatization of the six-membered ring to a pyridinium system ( 172 ). 
Homopumiliotoxins ( 39 ) are decahydroquinoline analogs yielding accordingly an 
ion at  m/z  84 (Fig.  46 ). A dietary chain from mites ( 131 ,  133 ) through ants has been 
suggested; fi nal modifi cations by the frog are possible ( 135 ), but an origin from 
bacteria symbiontic with ants also has been discussed ( 122 ).
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  Fig. 44    Fragmentation of 5,8-disubstituted indolizidines ( 36 ) upon EI       
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  Fig. 45    Fragmentation of 1,4-disubstituted quinolizidines upon EI       

   1,4-Disubstituted quinolizidines ( 37 ) show an analogous fragmentation behav-
ior, with loss of R 1  and subsequent  RDA  yielding ion  t  at  m/z  110 (Fig.  45 ) ( 120 ).

 

 

H. Budzikiewicz



113

  Fig. 46    Pumiliotoxins and homopumiliotoxins       

  Fig. 47    Tricyclic poison frog alkaloids: gephyrotoxins ( 40 ), precoccillenine ( 41 )       

4.1.1.10       Tricyclic Compounds 

 Gephyrotoxins ( 40 ) ( 170 ) with unsaturated alkyl groups as R were found in the skin 
of a Colombian frog  Dendrobates histrionicus , originating from ants. Typically loss 
of the –(CH 2 ) 2 OH group by α-cleavage represents the main fragment. 

 Precoccinelline ( 41 ) was isolated originally from ladybugs ( 173 ,  174 ). It and 
related compounds (ring systems with one or two fi ve-membered rings, with double 
bonds, variously substituted,  e.g.  alkaloid (–)- 205B  ( 175 ,  176 )) were discovered in 
various frogs. The only common mass spectral feature is an abundant [M–H] +  peak, 
and otherwise the fragmentation patterns are rather complex and vary with the par-
ticular structures being considered (Fig.  47 ).

   Cyclopentaquinolizidines ( 42 ) were obtained from a Colombian frog. R 1  can be 
CH 3 , CH 2 OH or CHO, R 2  can be H or OH, and R 3 , in turn, H or alkyl. The alkaloid 
 251F  (R 2  = CH 2 OH, R 1  = R 3  = H) was investigated by high-resolution EI and MS/MS. 
It shows an abundant [M–H] +  ion, a pronounced loss of  · CH 2 OH (78%), and a base 
peak at  m/z  111 ( u ) (Fig.  48 ). The reasons for the fairly pronounced losses of  · CH 3  
(27%) and of CH 2 O (30%) are not obvious ( 177 ).
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   In the EI mass spectra two characteristic fragments are observed, for which the 
genesis was corroborated by appropriate mass shifts in the substituted analogs and 
upon deuterium exchange. For R 1  = H and an unsubstituted benzene ring loss of the 
isoprenoid chain yields  m/z  173, while skeletal degradation results in  m/z  130 ( v ) ( 178 ).  

4.1.1.12    Epibatidine 

 From the skins of  ca.  750 Ecuadoran tree frogs,  Epipedobates tricolor  ( 179 ), in addi-
tion to pumiliotoxin (see above) the trace alkaloid (–)-epibatidine ( 44 ), somewhat 
structurally related to (–)-nicotine ( 45 , R = H), was isolated (Fig.  50 ). Its structure was 
elucidated by a combination of physical methods including high-resolution EI mass 

4.1.1.11       Pseudophrynamines 

 These alkaloids got their name from the Australian frog  Pseudophryne coriacea  
from which they are found together with pumiliotoxins (see above) .  In structure  43 , 
R 1  is H or CH 3  and R 2  can be CH 3  and any of its oxidation products (CH 2 OH, CHO, 
COOCH 3 ) (Fig.  49 ). Two molecules can be connected  via  an ester bridge between 
their R 2  residues. The benzene ring may be substituted by methoxy groups. While 
pumiliotoxins came from a dietary source (arthropods), pseudophrynamines are 
biosynthesized by the frogs (or possibly stem from symbiotic bacteria) ( 123 ).
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  Fig. 48    Fragment formation upon EI of alkaloid  251F  ( 42 )       
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  Fig. 49    Fragment formation upon EI of pseudophrynamines ( 43 )       
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  Fig. 50    Epibatidine ( 44 ), nicotine ( 45 , R = H), and the derivative, phantasmidine ( 46 )       
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  Fig. 51    The main fragments of epibatidine ( 44 )       

spectrometry ( 180 ). The main fragments are formed by cleavages of the azabicyclo-
heptane system setting free C 2 -units: [M–C 2 H 5 ] +  ( x ,  m/z  179/181), protonated 2-chloro- 
5-vinylpyridine ( y ,  m/z  140/142), C 4 H 7 N ( z ,  m/z  69) (Fig.  51 ). The structure of  44  was 
confi rmed by synthesis and its physiological effects were investigated in detail ( 179 ).

    From  Epipedobates anthonyi  a related alkaloid  46  was obtained ( 181 ) to which 
the name phantasmidine was given. The EI pattern shows the main fragments 
[M–C 3 H 5 N] +· , the complementary C 3 H 6 N +  (probably CH 2  = N + H-CH = CH 2  initiated 
by the typical 2 + 2 cleavage of cyclobutane derivatives and α-cleavage induced by 
the N-function), and  m/z  80 ( m/z  94 for the  N -methyl derivative) . 

 Three other pyridine alkaloids were obtained from dendrobatid frogs, nicotine 
( 45 , R = H), pyridylnicotine ( 45 , R = 3-pyridyl), and noranabasamine ( 45 , R = 3- pyridyl, 
piperidine instead of methylpyrrolidine ring). An ultimate plant source has been 
considered. The base peak in the EI mass spectrum is in each case  m/z  84 due to the 
loss of the pyridine part by α-cleavage ( 119 ).  

4.1.1.13    Zetekitoxin AB (Atelopidtoxin) 

 From the skin of the Panamanian golden frog  Atelopus zeteki  an alkaloid ( 182 ) was 
obtained that in earlier reviews was treated together with the tetrodotoxin group. Its 
original name atelopidtoxin was later changed to zetekitoxin. It was considered a 
mixture of related compounds, with the major component obtained by electropho-
resis possibly still comprising two components, termed AB, and the minor one C. 
A  Cf -plasma desorption mass spectrum (precursor technique of fast atom bombard-
ment, FAB) proved inconclusive regarding the molecular mass ( 183 ). It took 
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another 35 years before its structure elucidation was reported ( 184 ,  649 ) based on 
extensive mass spectrometric and NMR studies ( 47 ). It was found to be structurally 
related to saxitoxin ( 48 ) ( 185 ,  186 ) (see below) (Fig.  52 ). The minor component C 
is probably the desulfated compound.

  Fig. 52    Zetekitoxin AB ( 47 ) and saxitoxin ( 48 )       

   ESI-MS gave according to the mode (positive or negative) a [M + H] +  ion at  m/z  
553 and a [M–H] +  at  m/z  551, with the exact mass agreeing with the elemental com-
position. H/D exchange showed the presence of 11 exchangeable protons in 
[M + H] + . CA experiments resulted in the loss of SO 3  ( m/z  473) and, in addition, of 
OH(CO)NHOH ( m/z  396) from  m/z  553. 

 Regarding the additional structural units of zetekitoxin ( 47 ) compared with saxi-
toxin ( 48 ), it is worth mentioning that natural saxitoxin analogs have been found 
containing some of its constituent functionalities, such as a carbamoyl- N -hydroxy 
group ( 187 ), a -CH 2 COOH group at C-11 ( 188 ), and an -OSO 3 H group at C-11 ( 189 ). 

 Saxitoxin ( 48 ) is reported to be produced by dinofl agellates ( e.g. Alexandrium  
spp.). In being taken up during the algal bloom by various mussels, it may be 
responsible for incidences of shellfi sh poisoning. However, the ultimate source of 
saxitoxin may be from bacteria ( 190 ,  191 ) ( cf.  tetrodotoxin  49 , below Sect.  4.3 ), and 
possibly also in the case of zetekitoxin ( 47 ).  

4.1.1.14     Chiriquitoxin 

 From the Costa Rican frog  Atelopus chiriquiensis , in addition to tetrodotoxin ( 49 ) 
( cf.  below Sect.  4.3 ), a second compound  50  was isolated and given the name chiriq-
uitoxin (Fig.  53 ). Its molecular mass and elemental composition was verifi ed by 
FAB mass spectrometry and its structure was established by NMR spectroscopy 
( 192 ). For literature regarding the occurrence of tetrodotoxin and analogs in other 
frogs, see ( 183 ,  193 ,  689 ,  690 ) and Sect.  4.3 .
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  Fig. 53    Tetrodotoxin ( 49 ) R = CH 2 OH and chiriquitoxin ( 50 ) (R = ( R ) - CHOH-( S )-CHNH 2 - COOH)       

  Fig. 54    (–)-Calycanthine ( 51 ), (+)-chimonanthine ( 52 ), and (–)-morphine ( 53 )       

4.1.1.15       Alkaloids of Plant Origin Found in Amphibians 

 From the skin of  Phyllobates terribilis  two indole alkaloids were isolated and iden-
tifi ed as (–)-calycanthine ( 51 ) and (+)-chimonanthine ( 52 ). These compounds—as 
concluded from the optical rotation data—are the antipodes of the same alkaloids 
when isolated from plants ( 156 ). The EI spectrum of  51  shows M +·  at  m/z  346, loss 
of CH 3 -NH-CH 2  ·  ( m/z  302) and of one of the two bridges,  · CH 2 -CH 2 -NHCH 3  ( m/z  
288) and subsequently of CH 2 -CH 2 -NCH 3  ( m/z  231), giving the fully aromatic sys-
tem protonated 6,12-diazachrysene ( 194 ); the ESI-MS/MS of [M + H] +  results in 
partial (CH 3 NH 2 ) and complete losses of the bridges ( 195 ). The EI mass spectrum 
of  52  is dominated by an ion at  m/z  173 (cleavage in two halves) and shows  m/z  172 
and 130 peaks ( cf .  j  above) ( 196 ). A food chain from plant to arthropod to frog has 
to be considered ( 119 ). Morphine ( 53 ) (see below Sect.  4.4 ) was found in the skin 
of the aga toad ( Bufo marinus ) ( 197 ) (Fig.  54 ).
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4.1.1.16        Toad Venoms 

 Toads ( Bufo  spp.) produce (for a LC-MS analysis see ( 670 )) in their skin glands, in 
addition to biogenic amines and various peptides (Sect.  4.1.1.1 ) steroidal toxins (for 
mass spectrometric analysis see ( 724 ,  725 )), as a protection against predators. Some 
of them are linked to amino acids and considered as alkaloids. The prototype is 
bufotoxin ( 53a ) (Fig.  55 ) ( 198 ), derived from the bufodienolide bufotalin with a 

  Fig. 55    Bufotoxin ( 53a )       

3 β - O -subaroyl-arginine substituent ( 199 ). Later on, several related compounds 
were identifi ed. Variations of the steroid part include cardenolide structures with a 
γ- instead of a δ-lactone C-17 substituent, smaller linking dicarboxylic acids down 
to succinic acid ( 200 ,  605 ,  608 ,  653 ) and glutamine ( 201 ), histidine or 3-methyl- 
histidine ( 202 ,  605 ,  608 ) instead of arginine as the amino acid part. The free 
 constituents pimeloyl and suberoyl arginine were also found in the secretion ( 721 ). 
Mass spectral data are available for screening procedures (LC-ESI) ( 721 ,  722 ), deg-
radation products (EI) ( 200 ) and for metabolites (LC-ESI) ( 203 ). ESI-MS/MS data 
show the formation of protonated suberoyl arginine ( m/z  331) from [M + H] +  ( 723 ). 
For the linkers adipinic acid and succinic acid accordingly fragments with  m/z  303 
and 275, respectively, are mentioned ( 725 ), but in this study  m/z  331 is also reported 
for adipic (in one case), sebacic, and pelargonic (?) acid. No explanation is offered 
and only the one fragment ion is given for quantifi cation by the multiple reaction 
monitoring ( 17 ) method (MRM).   

4.1.2      Salamanders and Newts (Caudata) 

 From the eggs of the Californian newt  Taricha torosa  tarichatoxin was isolated, 
which was shown to be identical with tetrodotoxin (Fig.  53 ,  49 ) ( 204 ); see below 
Sect.  4.3  .  For literature regarding the occurrence of tetrodotoxin and analogs in 
other salamanders and newts, see ( 183 ,  193 ) and Sect.  4.3 . Doubts of its bacterial 
origin (see below Sect.  4.3 ) have been voiced ( 205 ). 
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 From the skin of the European species  Salamandra maculosa  and  S. atra  a series 
of steroidal alkaloids was obtained; for reviews, see ( 146 ,  183 ,  764 ). They are syn-
thesized by the animals from cholesterol ( 206 ). For all of them, ring A is enlarged 
to an azacycloheptane structure. EI mass spectral analyses are available ( 207 ,  208 ). 
Samanine ( 54a ) (Fig.  56 ) ( 753 ) shows  m/z  44 CH 3 - + NH = CH 2  (shifted to  m/z  58 for 
 N -methyl compounds) as main fragment. 1-Hydroxy compounds such as samandiol 
( 54b ) shows in addition [M–·CHO] +  by loss from C-1 (M−29 Da). Minor ions com-
prise ring A/B fragments (Fig.  57 ). The isomeric neosamandiol ( 54a  with a C-19 

  Fig. 56    Salamander alkaloids  54a  -  54d        

  Fig. 57    EI mass spectrum of samandiol ( 54b ). Reproduced from ( 207 ) with kind permission of 
Wiley-VCH Verlag GmbH & Co. KGaA (© 1967)       
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hydroxy group) yields besides  m/z  44 the loss of the angular CH 2 OH group 
(M–31 Da) as base peak. A C-19 aldehyde (cycloneosamandione) forms an equilib-
rium with a carbinolamine structure by reaction with the NH function. The only 
fragment of importance is [M–·CHO] +  ( 208 ,  209 ,  750 ). 

 In ( 752 ),  Habermehl  proposed structure  54c  (Fig.  56 ) for cycloneosamandaridine. 
A compound of this structure was synthesized subsequently ( 750 ). However its EI mass 
spectrum ( m/z  345, 15%, M +· ; 330, 32%, –CH 3  · ; 316, 100%, –CHO · ) differed from the 
one reproduced in ( 752 ) ([M–H] +  instead of M +· , also the characteristic [M–·CHO] +  ion 
is missing).  Oka  and  Hara  suggested structure  54d  (Fig.  56 ) the compound isolated by 
 Habermehl  ( cf .  208 ), but this suggestion has not been verifi ed by synthesis. Fragments 
characteristic for the C-16/C-17 lactone ring have not been observed ( 207 ).   

 Compounds with a 1,3-ether bridge such as samandarin ( 55 ) 13  fragment ( 207 , 
 656 ) to [M–CO] +·  by the loss of C-1 (M–28 Da) and show major fragments at  m/z  
56/57 and  m/z  85/86. For the lower masses the structures  aa  and  ab  were suggested 
(Fig.  58 ). For a GC/MS analysis, see ( 211 ).

13   The 17 β- hydroxy isomer of  55  allegedly ( 212 ) obtained ( cf.  ( 183 )) from the Asian salamander 
 Cryptobranchus maximus  exists only as a synthesis product ( 209 ). For a total synthesis of saman-
darone (16-oxo analog of  55 ) see ( 210 ). For additional literature, see ( 671 ). 

  Fig. 58    ( a ) EI fragments of samandarin ( 55 ), ( b ) EI mass spectrum of  55 . Reproduced from ( 207 ) 
with kind permission of Wiley-VCH Verlag GmbH & Co. KGaA (© 1967)       
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4.2             Reptiles 

 The venoms of toxic snakes 14  and of the Gila monster ( Heloderma suspectum ) and 
its relative, the Mexican Beaded Lizard ( H. horridum ) are peptidic compounds. 15  
Borderline alkaloids of some reptiles are the nucleic acid degradation products uric 
acid ( 56 , R 1  = R 2  = OH) ( 218 ) and its mono- and dihydroxy precursors, hypoxanthine 
( 57 , R 1  = R 2  = H) and xanthine ( 58 , R 1  = OH, R 2  = H) ( 219 ) (Fig.  59 ). EI mass spectra 
can be found in ( 220 ). Fragmentation occurs preferentially by degradation of the 
six-membered ring ( e.g.  [M–CONH] +·  for  58 ;  cf .  221 ,  222 ). Purine alkaloids are also 
found in birds and mammals ( cf.  Sect.  8.1 ) (Fig.  59 ).

14   Californian garter snakes ( Thamnophis  sp.) can accumulate tetrodotoxin ( 49 ) especially in the 
liver and store it for prolonged periods of time. In this way the non-venomous snake becomes 
poisonous for its mainly avian predators. Tetrodotoxin is sequestered by eating newts ( Taricha 
sirtalis ) (see Sect.  4.1.2 ) ( 140 ,  223 ), whose skin contains the toxin. The snake has become resistant 
by changing the amino acid pattern of the muscular Na +  channels ( 224 ) in the area critical for the 
binding of tetrodotoxin. 

 A second example constitutes the Asian snake  Rhabdophis tigrinus , which collects in its nuchal 
glands dietary toad venoms (see Sect.  4.1.1.16 ) ( 225 ,  226 ). 

 Another defense system of snakes consists of the ejection of an evil-smelling fl uid from anal 
glands. GC/EI-MS analysis of the volatile components of the secretions of garter snakes 
( Thamnophis  spp.) resulted in the identifi cation of small (C 2  to C 5 ) carboxylic acids, (CH 3 ) 3  N, and 
2-piperidone. The same compounds were also found in the secretions of species from other snake 
families ( 672 ). Analysis of the secretion of  Dumaril’s  ground boa ( Acrantophis dumerili ) ( 673 , 
 674 ) yielded cholesterol, fatty acids, and their amides. Among the volatile compounds small car-
boxylic acids (C 3  to C 5 ) were identifi ed by GC/EI-MS. Three compounds were tentatively classifi ed 
as amines. The ion  m/z  30 of high abundance accompanied by  m/z  44 (20% rel. int.) suggests the 
presence of a -CH 2 -CH 2 -NH 2  end group. The low abundance of all other ions would be in agreement 
with aliphatic amines ( 17 ), but the ions  m/z  172, 186, and 200 considered as molecular ions would 
have to be [M + H] +  species. In the secretion of the western diamondback rattlesnake ( Crotalus 
atrox)  1 -O- monoalkylglycerols were found ( 676 ) and identifi ed by the EI spectra of their trimethyl-
silyl and isopropylidene derivatives;  cf . Sect.  5.2.1 . 
15   For example, exendin-3 and -4 with 39 amino acids ( 213 ,  214 ), helodermin with 35 amino acids 
( 215 ), helospectin I and II with 38 and 37 amino acids, respectively ( 216 ), or helothermine con-
taining approximately 220 amino acids ( 217 ). For mass spectrometric techniques used for the 
structure elucidation, see Sect.  7.2.1 . 

  Fig. 59    Purine alkaloids  56 – 58  (see text)       
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4.3                Fishes 

4.3.1     Tetrodotoxin 

 Tetrodotoxin ( 49 ) (usually abbreviated as TTX) has become known as being respon-
sible for casualties after eating Japanese puffer fi sh (“fugu”) meals ( 227 ). In addi-
tion it has turned out that tetrodotoxin and related compounds (for a listing see 
Table  2 ) can be found in a variety of animals, included amphibians (( 690 ) and litera-
ture cited therein), an octopus, crabs, and starfi sh ( 183 ,  229 ). For a detailed listing, 
see ( 647 ,  648 ). It seems that the ultimate sources of this compound are bacteria, 
especially  Pseudomonas  sp. ( 230 ,  231 ),  Bacillus  sp. ( 232 ), and  Vibrio  sp. ( 228 , 
 233 ), although such results have been subjected to later doubt ( 205 ,  234 ,  235 ) 

    Table 2    Tetrodotoxin-type compounds (left ketal form, right lactone form). For literature 
references to the single compounds see ( 183 ,  228 ,  689 ,  690 ), for a more detailed list see ( 647 ) 
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 Name  R 1   R 2   R 3   R 4   Remarks 

 Tetrodotoxin ( 49 )  H  OH  OH  CH 2 OH 
 4- epi   OH  H  OH  CH 2 OH 
 6- epi   H  OH  CH 2 OH  OH 
 11-deoxy  H  OH  OH  CH 3   R 4  … C-11 
 6,11-dideoxy  H  OH  H  CH 3   R 4  … C-11 
 11- nor -(6 S ) - ol  H  OH  OH  H  R 4  … C-11 
 11- nor- (6 R ) - ol  H  OH  H  OH  R 4  … C-11 
 4,9-anhydro  H  OH  CH 2 OH  4,9-ether bridge 
 6- epi- 4,9-anhydro  H  CH 2 OH  OH  4,9-ether bridge 
 5-deoxy 
 5,11-dideoxy 

 H 
 H 

 OH 
 OH 

 OH 
 OH 

 CH 2 OH 
 CH 3  

 5,10-ether bridge missíng, 
 C-10 = O (7,10-lactone) 
 R 4  … C-11 
 5,10-ether bridge missíng, 
 C-10 = O (7,10-lactone) 
 also with 1- N- OH 

 5,6,11-trideoxy  H  OH  H  CH 3   R 4  … C-11 
 5,10-ether bridge missíng, 
 C-10 = O (7,10-lactone) 
 also with 1- N- OH 
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(a reason for negative results could be that symbiotic bacteria need an elicitor from 
the host organism to start the synthesis of tetrodotoxin ( 689 )). For a comprehensive 
listing of bacterial sources, see ( 648 ). The pathways by which tetrodotoxin might be 
ending up in marine animals and in amphibians have been summarized in ( 229 ). 
Attempts to establish the biogenesis of tetrodotoxin have been reviewed in ( 648 , 
 758 ); see also ( 689 ) where a biosynthetic intermediacy of 5,6,11-tridesoxy TTX 
with subsequent hydroxylation is suggested). For a review, see ( 758 ).

   A gas chromatography-mass spectrometry (GC/MS) method was developed to 
detect and quantify traces of tetrodotoxin in organic material ( 236 ,  641 ). Treatment 
with OH -  results in the formation of 2-amino-8-hydroxy-6- hydroxymethylquinazoline 
( 59 , Fig.  60 ), which is trimethylsilylated. The EI mass spectrum of the  N,O,O-tris- 
TMS  derivative shows a M +·  peak at  m/z  407, loss of  · CH 3  ( m/z  392, base peak), and 
a  m/z  376 ion of unknown structure (in ( 230 ) of low abundance). The mass spectrum 
of the alleged  O,O- bis-TMS derivative is diffi cult to understand: M +·  ( m/z  335) is 
missing and [M–·CH 3 ] +  ( m/z  320) is of low abundance. The base peak at  m/z  270, to 
judge from the reported isotope pattern, should contain Si atoms. It is followed by 
abundant peaks at  m/z  221, 165, 147, 97, and 73, with the exception of the last one 
((CH 3 ) 3 Si + ) hard to explain and highly atypical for this compound. However, the 
same spectrum has been reported again ( 228 ). 16  To make the confusion more com-
plete,  Matsumura  ( 234 ) reported that polypeptone and yeast extracts used for bacte-
rial cultures, which defi nitely contained no tetrodotoxin, gave the HPLC and GC/
MS peaks and EI fragments  m/z  407, 392, and 376, considered characteristic for the 
toxin. It should be kept in mind that not tetrodotoxin but a derivative obtained by 
drastic degradation ( 59 ) (Fig.  60 ) is being detected, which can be formed also from 
congeners ( e.g.  ( 237 ,  238 )). Therefore, reports of the presence of tetrodotoxin based 
on the mass spectrum of the bis-TMS derivative of  59  should be considered with 

care. For a general critique on earlier analysis methods for TTX, see ( 688 ).
   Modern instrumentation allows the mass spectrometric analysis of genuine 

material. Positive FAB yields [M + H] +  followed by twice loss of H 2 O ( 240 ), nega-
tive FAB [M–H] − . 

 Liquid chromatography can be combined with spray techniques and MS/MS 
( 748 ,  749 ). The CA spectra of the [M + H] +  ions of tetrodotoxin and of its congeners 

16   Ions  m/z  73, 147, and 221 have been observed in GC column bleeding ( 239 ). 

  Fig. 60    Degradation product  59  of tetrodotoxin       
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were recorded ( 193 ,  241 – 243 ,  689 ,  690 ). The main fragments besides the loss of 
one and two molecules of H 2 O comprise the 2-aminoquinazoline nucleus, as con-
fi rmed by exact mass measurements ( 689 ). However, the mass shifts observed for 
the various compounds are diffi cult to reconcile with the structures. Tetrodotoxin 
yields an ion at  m/z  162 (protonated hydroxy-2-aminoquinazoline) accompanied by 
one at  m/z  178 (the dihydroxy analog) (Fig.  61 ), which is shifted to  m/z  146/162 for 
5-deoxy compounds (see Table  2 ). The presence or absence of a C-11 substituent 
seems to play no role in the resultant mass spectra. CA spectra help to identify 
known congeners of TTX and occasionally they reveal the existence of new repre-
sentatives. Thus, from the South American frogs  Brachycephalus  spp. two com-
pounds occurred with molecular masses 28 and 10 Da, respectively, higher than 
TTX but very similar fragmentation patterns. Since the ion  m/z  256 present in the 
CA spectra of TTX and of both new compounds comprises the complete TTX struc-
ture without C-10 and some H atoms ( 689 ), some peripheral modifi cation as in the 
case of chiriquitoxin ( 50 ) (Sect.  4.1.1.14 ) seems likely.

  Fig. 61    CA spectrum of [M + H] +  ( m/z  320) obtained by ESI-CA from tetrodotoxin. Reproduced 
from ( 193 ) with kind permission from Elsevier (© 2001)       

   Chromatographic and spectroscopic methods applied to the analysis of TTX and 
of related compounds are summarized in ( 647 ).  
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4.3.2      Steroids 

 The search for antibiotic substances led to the isolation of the aminosteroid squala-
mine ( 60 - 1 ) from the stomach tissue of the dogfi sh shark  Squalus acanthias  ( 244 –
 246 ) (Fig.  62 ). It is contained also in other organs, especially in the liver. Later, a 
series of congeners ( 60 - 2 – 60 - 8 ) was identifi ed ( 247 ). Squalamine comprises a sper-
midine residue β-linked to C-3 of a cholestane skeleton. Its molecular mass was 
determined by positive and negative FAB-MS. The [M + H] +  ion shows loss of SO 3  
and of H 2 SO 4 , [M–H] −  instead cleavages of the spermidine chain next to the nitro-
gen atoms. The alkaloid  60 - 8  contains instead of a spermidine the larger spermine 
residue. Biosynthetic precursors of the alkaloids are probably the bile alcohols of 
the shark, but the observation of the C 28 -skeleton in  60 - 6  with a C-24-substituent 

  Fig. 62    Squalamine ( 60 - 1 ) and related compounds       
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suggests an ultimate plant origin of the steroid part ( cf . campesterol). In the context 
of clinical studies with squalamine lactate possible degradation by heat, acid, base 
 etc.  were investigated by LC/MS techniques (ESI, MS/MS, EI). Products formed by 
the loss of SO 3 , H 2 SO 4 , H 2 O from various  loci , and lactamide formation with the 
terminal NH 2  group could thus be identifi ed ( 650 ).

   A further member of this aminosteroid group, petromyzonamine disulfate 
(PADS,  60 - 9 ) with a degraded spermidine residue is a constituent of the pheromone 
cocktail guiding adult sea lampreys ( Petromyzon marinus ) to spawning grounds 
( 248 ). For its structure elucidation special mass spectrometric techniques were 
applied in addition to the determination of the molecular mass by negative ESI- and 
positive MALDI-MS. Loss of H 2 SO 4  plus SO 3  suggested the presence of at least two 
sulfate groups. H/D exchange of the molecular ion of the di-Na salt evidenced the 
presence of only one exchangeable hydrogen atom. Exact mass measurements 
under ultra-high resolution (180,000 FWHM 17 ) performed with a ICR instrument 
allowed investigators to establish 18  the presence of exactly two sulfur atoms ( 249 ) 
and C 34 H 60 N 2 O 9 S 2  as the elemental composition of [M–H] − . A LC/MS/MS method 
was developed to quantify PADS and its congener pheromones in river water ( 599 ).  

4.3.3      Ichthyotoxins 

 For this compound group, see the Addendum.   

4.4       Birds 

 From the New Guinea passerine bird genus,  Pitohui , homobatrachotoxin ( 26 ) 
(Sect.  4.1.1 ) was found, especially in the feathers and the skin, and to a lesser extent 
in the muscles and even less in the organs. Supposedly, this alkaloid is a protective 
means against predators. The structure was confi rmed by color tests, chromato-
graphic  R   f   values, and the EI mass spectrum ( 250 ). Later on, in a second New Guinea 
bird,  Ifrita kowaldi , a whole series of batrachotoxin-type compounds was detected 
( 251 ), with some not encountered previously in frogs. Among these are 
batrachotoxinin- A-(20 R ) -cis- crotonate and -3′-hydroxypentanoate, and a C-20 → C-16 

17   FWHM: full width half maximum ( 17 ), a term used to defi ne mass spectral resolution. 
18   [M–H] −  comprises the main ion (nominal mass 703, exact mass 703.3667 Da) consisting of  12 C, 
 1 H,  14  N,  16 O and  32 S isotopes, and it is accompanied by a series of satellites containing heavier 
isotopes. The ions 2 mass units higher (705 Da) comprise a species containing  34 S and several other 
species made up of combinations of  13 C,  2 H,  15  N,  17 O,  18 O,  33 S, all of them differing somewhat in 
their exact masses. With suffi ciently high resolution obtainable with an ICR instrument they can 
be separated. The signal representing the  34 S-containing ion can be recognized by the exact mass 
difference between  32 S and  34 S (1.9958 Da) and its high intensity (4.4% of the intensity of the  m/z  
703 signal for each S atom present in the molecule; all the other  m/z  705 signals amounting to 
about 1% or less). The observed intensity of 8.6% establishes the presence of two S atoms. 
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rearranged acetate. These structures were confi rmed by chemical and mass spectro-
metric evidence ( 251 ). 

 A burning question had been how could these complex steroidal alkaloids be 
found in such genetically and geographically widely distant animals? An original 
suggestion of an independent evolution ( 250 ) seems highly unlikely. Also acquisi-
tion with the food appears at the fi rst glance as to be neglected. Sparrow-sized birds 
do not eat frogs and appropriately toxic frogs are not reported from New Guinea to 
date. However, a possible solution came from the discovery that certain beetles of 
the genus  Choresine  found in New Guinea contain appreciable amounts of batracho-
toxins inclusive of some new structural varieties. Residues of these beetles have 
been found in the stomachs of these birds. Relatives of these beetles occur also in 
South American rain forests ( 252 ), but they have not been tested yet for 
 batrachotoxins. Beetles are not known to synthesize steroids. So, phytosterols 
acquired and modifi ed (by themselves or by symbionts) may be the ultimate source 
of the alkaloids. Thus, an active fi eld of research is still very much open ( cf . also the 
problems with tetrodotoxin above in Sect.  4.3 ) .   

4.5      Mammals and Mankind 

 For earlier reviews, see ( 253 ,  254 ). β-Arylethylamines (genuine or administered 
as drugs) can react with aldehydes giving tetrahydroisoquinolines. Thus, β-3,4- 
dihydroxyphenyl ethylamine (dopamine) with acetaldehyde ( e.g.  from ethanol) 
yields salsolinol ( 61 , R 1  = CH 3,  R 2  = H), or dopamine oxidized by monoamine oxidase 
(MAO) to the corresponding aldehyde yields, with a second molecule of dopamine, 
the benzylisoquinoline tetrahydropapaveroline  61 , R 1  = (OH) 2 C 6 H 3 -CH 2 , R 2  = OH) 
(Fig.  63 ). Under EI the main fragment is the loss of a C-1 substituent ( 255 ). In the 
same way from tryptamine, tetrahydro-β-carboline derivatives ( 62 , Fig.  63 ) can be 
obtained; dehydrogenation yields  e.g.  harmane ( 63 , Fig.  63 ). β-Arylethylamines 
may also be the precursors of endogenous morphine ( 53 ) (Fig.  54 ) ( 256 ); for its 
EI spectrum see ( 255 ). These metabolites generated in living tissue are referred 
to as leucomaines, while those formed by bacterial and other biochemical trans-
formations as autolysis  post mortem  are termed ptomaines (“cadaveric toxins or 
alkaloids”,  Leichengifte ). Many of them are simple degradation products of amino 

  Fig. 63    C-1 Substituted tetrahydroisoquinolines ( 61 ), tetrahydro-β-carbolines ( 62 ), and harmane 
( 63 )       
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acids ( e.g.  primary amines) and can be easily identifi ed and quantifi ed by GC/
EI-MS with reference to data collections ( 257 ) or by interpretation of the fragmen-
tation pattern ( 258 ). They play an important role in thanatochemistry. See also the 
Addendum.

    Several animals secrete strongly smelling substances ( 684 ) for defense, marking 
territories or alluring sexual partners. Skatole (3-methylindole, EI  m/z  131, M +· ; 
130, [M–H] + , base peak), responsible for the fecal smell of the civet ( 259 ), is a 
 borderline example. It is formed by microbial degradation of tryptophan in the 
rumen of animals ( 260 ,  261 ) together with indole (EI  m/z  117, M +· ; base peak; 
losses of HCN and H 2 CN ( 262 )). 

 Other compounds can be classifi ed as true alkaloids. Thus,  R -(+)-muscopyridine 
( 64 ) is a low percentage constituent of musk from the musk deer  Moschus moschi-
ferus , derived from muscone ((3 R )-methylcyclopentadecanone) ( 263 ). Its EI spec-
trum shows a series of ions of comparable abundance arising from the degradation 
of the hydrocarbon part of the molecule ( 264 ). Muscopyridine is accompanied by 
two hydroxy derivatives carrying the OH substituent on the methylene groups 
neighboring the pyridine ring. Their EI spectra show an [M– · OH] +  ion in addition to 
fragments formed by losses of hydrocarbon units ( 265 ) (Fig.  64 ). 

  Fig. 64    Muscopyridine ( 64 ), musk steroids (R = H,OH or =O) ( 65 ), castoramine ( 66 ), and quino-
line compounds ( 67 ) from the skunk       

 3 α -Ureido-androst-4-en-17 β -ol and the corresponding 17-one ( 65 ) are deriva-
tives of male steroids also present in musk. EI degradation of the ureido group is 
observed ([M–NHCO] +· ,  m/z  287, and [M–NH 2 CONH] + ,  m/z  271), fragmentation of 
the steroid skeleton has not been mentioned ( 266 ). For CA of [M + H] +  obtained by 
ESI, the product ions  m/z  271,  m/z  253 (–H 2 O), and  m/z  81(C 6 H 9  + , base peak) are 
reported ( 600 ). 
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 Widely used in the cosmetic industry are synthetic nitro compounds with a musk 
smell such as musk xylene (5- tert -butyl-2,4,6-trinitroxylene). These compounds 
have been found accumulated and partially degraded (–NO 2  → NH 2 ) in fresh water 
fi sh ( e.g. ,  644 ,  645 ). Negative and positive CI can be used for detection, and by posi-
tive EI the typical fragmentation of the substituents ( 17 ) is observed. EI and EI-MS/
MS spectra of amino metabolites have been reported in ( 646 ). 

 Castoramine ( 66 ) ( 267 ) is a constituent of the odoriferous secretion ( castoreum , 
 Bibergeil ) of the beaver ( Castor fi ber ,  C. canadensis ) and obviously derived from 
yellow water-lily ( Nuphar  sp.) alkaloids taken up with the food. It is accompanied 
by small amounts of related compounds varying in the substitution pattern of the 
quinolizidine part (CH 3 , OH), an indolizidine analog, and several pyrazine, qui-
noxaline and phenazine derivatives ( 268 ). 

 Fragmentation of the EI mass spectrum of  66  and its congeners occurs by 
 cleavage processes in the quinolizidine part of the molecules. The main fragments 
are found at  m/z  94, 114 and 136 shifted in mass accordingly with changes in the 
substitution pattern (Fig.  64 ) ( 269 ,  270 ).

   The defensive secretion of skunks ( Mephitis mephitis  and related species) besides 
an array of aliphatic sulfur compounds contains 2-methylquinoline ( 67 , R = H) and 
its thiol and thioacetate derivatives (R = SH and SCOCH 3 , respectively), as shown 
by GC/MS. EI mass spectra contain ions formed by degradation of the substituents 
(loss of  · H,  · SH, and of CH 2 CO from the acetate ( 271 ). 

 From urine, feces, anal and preputial glands of the African wild dog  Lycaon pictus  
over one hundred volatile compounds were identifi ed by GC/MS and comparison with 
authentic material and/or data from the NIST library. Among these were also a number 
of heterocyclic compounds (pyrrole, pyridine, pyrazine derivatives). Especially men-
tioned are 1-methyl-2,4-imidazolidinedione (1- methylhydantoin), its 5-methyl iso-
mer, and 1-methylimidazole-5- carboxyaldehyde ( 596 ), which in the same way as 
purines (Sect.  4.2 ) can be considered as borderline alkaloids. After EI ionization M +·  
of 1-methylhydantoin (Fig.  65 ,  67a : R 1  = CH 3 , R 2  = H) eliminates CO ( m/z  86, mainly 
from C-4 as shown by labeling) or NHCO ( m/z  71);  m/z  42/43 (CH 2 CO +·  (?), HNCO +· ) 
are the main fragments ( 597 ). From M +·  of 1-methylimidazole-5-carboxyaldehyde 
( 67a : R 1  = CH 3 , R 2  = CHO) losses H ·  ( m/z  109) and of  · CHO followed by HCN ( m/z  
81/54) ( 598 ) are observed. A similar set of aromatic N - heterocyclics (simple pyrrole, 
pyridine, pyrazine derivatives, 5-methylhydantoin,  etc. ) were also found in the scent 
marks of marmoset monkeys ( Callithrix jacchus ) ( 685 ). 

  Fig. 65    Hydantoin derivatives  67a  from wild dogs       
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 The short-beaked echidna ( Tachyglossus aculeatus setosus ) uses the scent 
 produced in a cloacal gland to attract mates. By GC/MS analysis of the secretion 
partially after derivatization and comparison of the EI spectra with library data 
structures of the major part of  ca . 200 components could be suggested. Among 
these are a variety of aliphatic compounds, terpenes, steroids,  etc. , but only a 
few nitrogen- containing ones ((CH 3 ) 3  N, 1-methyl-2-pyrrolidinone, methyl-2,
4- imidazolidinedione), which are probably degradation products of amino 
acids ( 683 ). 

 Venomous mammals are rare ( 657 ) and besides the monotremata species 19  and 
the slow loris ( Nycticebus  sp.) 20  so far only shrews have been encountered 21 , which 
produce in their submaxillar glands protein toxins ( 658 ). Only the lethal venom of 
the American short-tailed shrew  Blarina brevicauda , blarina toxin (BLTX), was 
investigated in detail by enzymatic degradation, MALDI-MS, and cloning studies 
(see Sects.  7.2  and  7.3 ). The active mature protein is composed of 253 amino acids 
with two glycosylated Asn residues ( 659 ). The structural prerequisites for the toxic-
ity have been investigated ( 660 ).   

5     Fatty Acids and Lipids 

 In this section it can be seen how the advent of new mass spectrometric techniques 
added further possibilities for structural work step by step. For earlier reviews, see 
( 272 – 275 ) and for a recent summary, see ( 276 ). 

19   Platypus  and  Echidna  (in German Schnabeltier and Ameisenigel) produce in crural glands con-
nected to a spur on each hind limb toxic proteins of 4–6 kDa size ( 679 – 681 ), which in part resem-
ble those of reptiles ( 682 ). 
20   The lorises when threatened raise their arms and eject the content of brachial glands together 
with saliva. GC/MS analysis of the secretion has revealed the presence of a host of compounds, and 
LC/MS a single 17.6 kDa protein component consisting of two chains (7.8 and 9.8 kDa) linked by 
two disulfi de bridges ( 720 ). 
21   “ It is a ravening beast, …, being touched it biteth deepe, and poisoneth deadly.” M.J. Dufton  
( 657 ) in a historical review quotes from an English natural history text from 1607 enlarging then 
on the evil fame the shrew had in Britain and—probably introduced from there—in the USA. In 
the “Thierbuch” by Swiss Naturalist  C. Gesner  (1606) a similar statement can be found (“Ein klein 
fräsig/räubig Thier ist die Spitzmaus/eines unbarmhertzigen/trüglichen sins:.. und dañ so sie mag/
so ertödtet sie mit ihrem giftigen biß” (A voraceous, rapaceous animal is the shrew, of a pitiless, 
deceptive mind: …and then if she wants she kills with her venomous bite) ( 662 ). In continental 
Europe, however, the fear seems to have been less pronounced: in a Swiss Natural History from 
1809 there is nothing anymore from the deadly bite: “ Es ist ein Irrthum, daß man sie für giftig hält, 
weil Hunde und Katzen sie nicht fressen, … ” (It is an error to consider her as poisonous because 
dogs and cats don’t eat her) ( 661 ). 
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5.1      Fatty Acids 

5.1.1     Saturated and Unsaturated Fatty Acids 

 Fatty acid esters were among the fi rst natural products to be investigated by mass 
spectrometry ( 1 ,  277 ,  278 ). The characteristic fragmentation reactions are (mass 
numbers for hexacosanoic acid methyl ester, Fig.  66 ):

•     Formation of R-CO +  ( m/z  379),
•     McLafferty  rearrangement in the alkyl ( m/z  74) and in the alkoxyl chain (loss of 

an alkene molecule), provided the chains are long enough (Fig.  67 ),

  Fig. 67     McLafferty- rearrangement in the alkyl and in the alkoxyl chain, respectively, of alkanoic 
acid esters       

  Fig. 66    EI mass spectrum of hexacosanoic acid methyl ester       
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•         With increasing length of the alkoxyl chain gaining in importance compared to 
the  McLafferty  rearrangement a double H-transfer resulting in R-COOH 2  + ,  

•   In particular, from long-chain acids and esters a series of ions ((CH 2 ) n COOR) +  
where the species with n = 2, 6, 10 … ( m/z  87, 143, 199, …) are more pronounced 
than their neighbors.    

 Of the mono-unsaturated methyl esters ( 279 ), only the Δ 2 -representatives show a 
characteristic fragment ion,  m/z  113, of medium to high abundance (much more 
abundant than for the double-bond isomers with the same chain length) ( 280 ,  281 ). 
For its formation, cleavage of the 5,6-bond and concomitant cyclization to a dihy-
dropyrylium ion (Fig.  68 ) is suggested. As to be expected,  m/z  113 is more abundant 
for the ( Z )-isomers ( 282 ). The Δ 2,4 -compound sorbic acid methyl ester yields the 
pyrylium ion  m/z  111.

O

O

R

O

O

  Fig. 68    Formation of the ion  m/z  113 from Δ 2 -alkenoic acid methyl esters       

   The EI mass spectra of the double bond isomeric hexenoic acid methyl esters 
( 280 ), notwithstanding the characteristic ion  m/z  113 for the Δ 2 -isomer, differ in 
relative abundances of their ions, but with increasing chain length the mass spectra 
of double-bond isomers assimilate more and more until they become practically 
indistinguishable ( 283 ). 

 Publications reporting characteristic fragments for specifi c double bond posi-
tions are rare. An example is the localization of R-CH = CH-CH 2 -CH = CH- units. 
Their EI mass spectra show enhanced abundances of R-C 6 H 7  +·  ions ( m/z  108 for 
R = C 2 H 5 ,  m/z  150 for R = C 5 H 11 , and  m/z  192 for R = C 8 H 17 ) ( 643 ). 

 From the foregoing it is obvious that rearrangement reactions of the molecular 
ions of alkenoic acid esters occur. This is also manifested by the observation of  m/z  
74 and  m/z  87 (see above), ions obtained also from Δ 2 -methyl esters. It is well estab-
lished that hydrogen migrations do take place in alkene systems ( 284 ). For a double 
bond location other approaches than the evaluation of EI spectra of esters needed to 
be found. These will be treated in some detail because they may be used for other 
unsaturated compounds as well. 

 One possibility is the derivatization of the double bond(s) by introduction of 
functional groups that initiate fragmentation in a specifi c way. Incidentally, 
derivatization is the oldest ancillary technique of mass spectrometry, both with the 
intention to increase volatility and to induce characteristic fragmentation reactions, 
especially in EI mass spectrometry ( 285 ). Both aspects have proved to be of importance 
for unsaturated fatty acids. The disadvantages of this approach are the requirements 
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in time and material, the non-quantitative yields especially from polyene com-
pounds, as well as side reactions. The methods have been reviewed in detail ( 279 , 
 286 ) and will only be summarized here (see also ( 287 ,  288 )):

•    - O -derivatives based on peracid oxidation (epoxides), reaction with OsO 4  or 
KMnO 4  (diols), or methoxy mercuriation (Hg(OCOCH 3 ) 2 /CH 3 OH). Epoxides 
can be transformed into mixtures of two hydroxy (LiAlH 4 ), hydroxy methoxy 
(CH 3 OH/BF 3 ) or hydroxy dimethylamino derivatives ((CH 3 ) 2 NH), and into 
ketones (NaI), while diols can be transformed into dimethoxy (CH 3 I), di- 
trimethylsilyl ((CH 3 ) 3 SiCl) and isopropylidene derivatives (CH 3 COCH 3 ) or 
alkylboronates (RB(OH) 2 ), methoxy mercuriation products into mixtures of two 
methoxy (NaBH 4 ) derivatives. Free hydroxy groups can be trimethylsilylated to 
increase the volatility.  

•   – N -derivatives from epoxides, see above.  
•   – S -derivatives. By reaction with (CH 3 ) 2 S/I 2   vicinal  di-CH 3 S-compounds are obtained.    

 Subsequent fragmentation under EI occurs by cleavage of the C,C-bonds neigh-
boring the functionalized atoms. Low ion abundances and secondary processes such 
as eliminations may obscure the picture. In addition, pairs of compounds obtained 
by the derivatization complicate GC separations. 

 Another approach consists in a cross-metathesis with small unsaturated com-
pounds catalyzed by Ru complexes, as  e.g.  

 R-CH = CH-R′ + CH 2  = CH-COOCH 3  →
R-CH = CH-COOCH 3  + CH 3 OOC-CH = CH-R′ 

 in addition to side products. The reaction mixture is subjected to LC-MS or GC-MS 
analysis for identifi cation of the pertinent fractions. Di- and poly- unsaturated fatty 
acids yielded only the reaction products of the double bond closest to the  carboxyl 
group ( 289 ). For a corresponding CI-MS method, see below (Fig.  69 ).

  Fig. 69    Addition of MVE to alkenoic acid methyl esters and subsequent fragmentation       
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   EI mass spectra of long-chain polyunsaturated fatty acid esters do not allow the 
localization of double bonds ( 290 ,  291 ). Methoxy and trimethylsilyloxy deriva-
tives may give useful results with EI or with CI using NH 3  or isobutane as reagent 
gases ( 292 – 295 ). 

 It was a logical step in trying to transfer the derivatization process into the mass 
spectrometer. This should be possible by CI ( 296 ,  297 ). Best results with mono- 
unsaturated fatty acid methyl esters were obtained with an ionizing gas mixture con-
sisting of 75% N 2 , 20% CS 2 , and 5% methyl vinyl ether (MVE) ( 287 ). The large 
percentage of N 2  minimizes polymerization of MVE and the low ionization energy of 
CS 2  (10.1 eV) prevents the formation of excited M +·  ions of the ester by charge trans-
fer resulting in extensive fragmentation. Thus, the characteristic processes become 
clearly recognizable: reaction of the ester double bond in a 2 + 2 cycloaddition with 
ionized MVE results in two cyclobutane species, which in a  retro -process give two 
fragments from the masses of which the position of the ester double bond can be 
calculated (Fig.  69 ). 

 Polyunsaturated fatty acids give no useful results with MEV ( 292 ). Disadvantages 
of the procedure are a severe contamination of the ion source and probable diffi cul-
ties in attempting a GC coupling. 

 NO +  as a CI reagent gas was investigated extensively in view of its reactions with 
double and triple bonds ( 296 ,  297 ). Regarding alkenoic acids, two processes have 
been described for Δ 5  to Δ 11  long-chain esters ( 298 ) 

 R-CH 2 -CH 2 -CH = CH-(CH 2 ) n COOCH 3  + NO + –CH 3 OH–R-CH = CH 2  →
HON = CH-CH + -(CH 2 ) n-1 -CH = C = O → N ≡ C-CH + -(CH 2 ) n-1 -CH = C = O + H 2 O 

 and ( 301 – 303 ). 

 R-CH 2 -CH 2 -CH = CH-(CH 2 ) n COOCH 3  + NO +  →
R-CH 2 -CH 2 -CHO +·  +  ·+ OCH-(CH 2 ) n COOCH 3  

 It could be shown that the prevalence of either process is governed drastically by 
experimental conditions ( 299 ). Within limitations, CI with NO +  can also be used for 
the analysis of homoconjugated tri- and tetraenes ( 300 ). It may be added that NO +  
is detrimental to the electron emitting fi laments of the ion source ( 304 ). 

 The location of one or more double bonds or of other irregularities (triple bonds, 
methyl branching, hydroxy groups,  etc. ) can be determined by resorting to “charge 
remote controlled fragmentation” induced by collision activation ( 305 ). In case the 
charge of the molecular ion is strictly localized ( e.g.  -COO − , -COOLi 2  + , protonated 
acid amide structures) fragmentation of an alkyl chain will occur as depicted in 
Fig.  70a  (one of the suggested mechanisms to be found in the literature ( 305 )), 
resulting in a series of ions such as CH 2  = CH-(CH 2 ) n -COO −  (Fig.  70b , top). Any 
“anomaly” in the chain will be refl ected in an interruption of the series (Fig.  70b , 
bottom; the series ends with CH 2  = CH-(CH 2 ) 6 COO − ,  m/z  155 and starts again with 
CH 2  = CH-CH = CH-(CH 2 ) 8 COO − ,  m/z  209) ( 306 – 308 ). For a recent study of elec-
trospray/CA spectra of primary fatty acid amides (saturated and unsaturated 
R-CONH 3  + ), see ( 309 ).
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  Fig. 70    ( a ) Fragmentation pattern. ( b ) Charge remote controlled fragmentation collision activation 
spectra of eicosanoate ( a ) and of the eicos-11-enoate anion ( b ). Reproduced from ( 306 ) with kind 
permission of John Wiley & Sons Ltd. (© 1986)       

5.1.2        Furan Fatty Acids 

 In 1974 a new class of fatty acids was discovered in piscine lipids containing a furan 
ring ( 701 ); for a review see ( 691 ). These furan fatty acids (“F acids”) are enzymatic 
oxidation products of homoconjugated fatty acids (such as linoleic acid) in lower and 
higher plants ( 693 ,  694 ,  698 ,  700 ), taken up by food and found incorporated in the 
lipids of fi shes ( 691 ,  692 ) and other aquatic animals ( 699 ,  704 ), mammals ( 697 ), and 
bacteria ( 775 ). The major types are R = H or CH 3 , m = 1 or 3 (propyl or pentyl), and 
n = 8, 10 or 12, but other homologs have also been encountered ( 698 ,  704 ). The ring 
methyl groups are incorporated in a subsequent step. The EI spectra of their methyl 

 

Mass Spectrometry in Natural Product Structure Elucidation



136

  Fig. 71    Formation and EI fragmentation of furan fatty acids       
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esters show a straight-forward fragmentation pattern (Fig.  71a ), benzylic cleavage of 
the two side chains ( a  and  b , the ion  b  being responsible for the base peak). The frag-
ments  a  and  b  can further lose an alkene residue by a  McLafferty-  type rearrangement 
with retention of the benzylic CH 2 -group ( cf.  below) ( 17 ) yielding  m/z  109 for the 
mono-methyl and  m/z  123 for the di-methyl representatives. Deuterium labeling in the 
2′,2″-positions results in the appropriate mass shifts ( 694 ). When n = 1 (propionic ester 
side chain) the fragment  a  loses HCOOCH 3  instead ( m/z  135) ( 704 ). Additional struc-
tural confi rmation can be obtained by hydrogenation. The tetrahydrofuran derivatives 
lose the entire side chains,  c  and  d  ( 692 ). Irregularities in the fatty acid side chain such 
as unsaturation could be detected by fragmentation induced by a suitably modifi ed 
carboxyl group. First attempts were made with pyrrolidine amides, but the pyrro-
lidine ring cannot compete with the furan ring in charge localization, hence the char-
acteristic fragments are rather weak or even absent ( 709 ). Further research also in 
view of charge remote controlled fragmentation (see above) would be worthwhile. 
The numbering of the various representatives (F 1 –F 8 ) to be found in Table 1 of ( 692 ) 
has been used in various later publications to designate the common F-acids.

   F-acids are potent radical scavengers ( 775 ) and thus valuable food ingredients 
( 707 ). Isolation from food samples, identifi cation by GC/EI-MS and quantifi cation 
has been described ( 708 ). For a synthetic analog lacking the furan methyl groups, 
see ( 706 ). The EI mass spectrum of its methyl ester follows the paths outlined above. 

 Furan fatty acids with unsaturated substituents in the C-2 or C-5 position ( 699 , 
 700 ) are considered to be artifacts formed during the work-up and separation. The 
furan ring is opened by oxidation to a diketo compound, which in turn is recyclized 
to two compounds with a double bond conjugated to the furan ring in either side 
chain (Fig.  71b ) ( 699 ,  700 ,  717 ). The fragmentation pattern shows allylic cleavage 
of the unsaturated substituent ( e ). Not obvious is the formation of an abundant ion 
 m/z  135 occurring independent from which substituent contains the double bond 
and from the size of the methyl ester substituent. Alkene elimination from the allylic 
cleavage products as mentioned above would lead to ion  m/z  149. 22  

 Enzymatic oxidation of furan fatty acids in humans leads to urofuran acids, 
which can be found in urine and other body liquids. The C-3 methyl group is oxi-
dized to a carboxyl group, and CH 2 -groups of the C-5 alkyl chain can be trans-
formed into CHOH- or CO-groups while the acid substituent is degraded. EI-mass 
spectra of the methyl esters of various oxidation products have been reported ( 695 , 
 696 ,  711 ,  715 ,  716 ). 

 In cattle and in rats oxidative catabolism leads primarily to a transformation of 
the terminal methyl group of the C-5 alkyl chain into a carboxyl group. EI mass 
spectral data of the methyl esters are given in ( 702 ,  703 ,  705 ,  717 ). 

 A further group of furan fatty acids are compounds with antifungal activity, with 
( Z )-14-(furan-2yl)-tetradeca-9-en-11,13-diynoic acid (EV-086) obtained from cell 

22   A few hints regarding the genesis of  m/z  135 are: a compound lacking 3,4-methyl groups yields 
 m/z  107, hence these methyl groups are not involved ( 710 ); compounds where both side chains 
contain double bonds conjugated with the furan ring yield the two ions arising from allylic cleav-
age ( 711 ,  717 ); small model compounds give no information ( 718 ); neither do analogous pyrrole 
compounds ( 718 ). 
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cultures of  Anarrhinum bellidifolium  (Scrophulariaceae) being the prototype ( 718 ). 
The ESI mass spectra 23  show [M + H] +  and [M–H] -  ions, respectively, upon collision 
activation, losses of H 2 O and of CO in both modes, and abundant loss of CO 2  
 followed by H 2 O and CO from [M–H] − . The formation of other ions must be pre-
ceded by rearrangement processes as is to be expected for unsaturated aliphatic 
compounds and the prolonged time of residence of low energy ions subjected to 
collision experiments. Fragments formed by charge remote processes (see above) 
from [M–H] −  are not observed.   

5.2     Glycerol Derivatives 

 For an earlier review, see ( 310 ) and literature compiled in ( 311 ), and for the analysis 
of archeological samples ( 312 ). 

5.2.1      Glycerol Ethers from Archaebacteria and Sediments 

 A short survey of these unusual compounds will be presented to show how com-
bined structure elucidation approaches including mass spectral techniques may be 
applied. From Archaebacteria, glycerol 1,2-diethers with phytol and long-chain 
alcohols have been obtained. Glycerol mono- and diethers allow the localization of 
substituents, as shown in Fig.  72  ( 313 ,  316 ).

   Limited EI data are available for derivatives. The characteristic fragment for bis- 
trimethylsilyl ethers of 1- O -alkyl compounds is  m/z  205 ([M–CH 2 OR] + ), and for the 
2- O -alkyl isomers,  m/z  218 ([M–ROH] +· . Molecular ions can be seen ( 676 ,  677 ). 
The 2,3-iopropylidene derivatives of 1- O -alkyl compounds yield [M–CH 3 ] +  and  m/z  
101 ([M–OR] + ) as characteristic fragments of varying abundance; fragmentation of 
R may prevail ( 676 ,  678 ). 

 Typical constituents of the core lipids are tetra-ethers (with symmetrical or 
unsymmetrical diols) such as  e.g.  compound  68 , Fig.  73 . One glycerol unit can be 
replaced by a branched nonitol (calditol) ( 314 ). These compounds can also be found 
in geological specimens ( 315 ).

23   Kindly provided by Dr.  P. Knechtle , Evolva SA, Reinach, Switzerland. 

  Fig. 72    Characteristic fragments of a glycerol 1,2-diether       
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  Fig. 73    Glycerol-dialkyl-glycerol-tetraether ( 68 ) from  Sulfolobus solfataricus  ( 313 )       

  Fig. 74    EI-mass spectrum of the hydrocarbon obtained by degradation of the compound depicted 
in Fig.  73 . Reproduced from ( 315 ) with kind permission from Elsevier ( ©  1998)       

   The molecular masses of the genuine or of the acetylated more complex com-
pounds (as for  68 ) can be determined by various mass spectrometric techniques. 
Structure elucidation of the diol part(s) requires  e.g.  cleavage of the ether bonds 
with HI and reduction of the di-iodides with LiAlH 4  to hydrocarbons, which can be 
subjected to EI analysis. However, structure elucidation needed subsidiary NMR 
support; the mass spectra by themselves did not offer suffi cient information (see 
Fig.  74 ), although comparison with derivatives obtained by introduction of termi-
nal D-atoms by reduction with LiAlD 4  or of SCH 3  or TMSO groups may be of 
assistance ( 313 – 315 ). For related compounds, see ( 756 ).
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5.2.2        Triglycerides 

 The EI mass spectra of triglycerides were investigated in detail and proposed frag-
mentation mechanisms were confi rmed by deuterium labeling ( 317 ,  318 ). The 
molecular mass peaks M +·  and [M–H 2 O] +·  are of low abundance. For triglycerides 
with three identical acid residues the main fragment is [M–R-COO] + , accompanied 
by [M–R-COOH] +·  of lower abundance, RCO + , [RCO + 74] +  ( ac ), and [RCO + 128] +  
( ad ) (Fig.  75 ). Triglycerides with differing acid residues show this pattern for each 
substituent. Those at the terminal positions can be recognized by [M–R-COOCH 2 ] +  
ions of relatively low abundance.

  Fig. 75    Triglyceride ions  ac  and  ad  after loss of the acid units from C-1 and C-2 of glycerol       

   Abundant quasi-molecular ions can be obtained by FAB ionization and infor-
mation regarding the mass of the acid units can be gained by CA ( 320 ), but 
Fig.  76  shows the extreme dependence from sample preparation ( 319 ). To tris 
myristyl glycerol dissolved in a mixture of CH 2 Cl 2 , CH 3 OH, and NaI the matrices 
glycerol (G), thioglycerol (T) or  m -nitrobenzylalcohol (N) were added. In the 
fi rst case (spectrum a) only clusters of G and NaI were obtained; in the second 
(spectrum b) mainly NaI clusters and [M + Na] +  can be seen. Only with  m -nitro-
benzylalcohol (spectrum c), in addition to a very abundant [M + Na] +  ion, some 
characteristic fragments are obtained such as [M + Na–RCOOH] +  ( m/z  517), 
[M + H–RCOOH] +  ( m/z  495), or RCO +  ( m/z  211). For a discussion of the matrix 
glycerol, see ( 669 ).

   Electrospray ionization (ESI) with subsequently induced decomposition of frag-
ment ions (tandem mass spectrometry) allows a detailed analysis of triglycerides 
( 311 ). Addition of LiOH to the analyte solution results in the formation of [M + Li] +  
ions, which when subjected to CA yield abundant [M + Li–RCOOH] +  fragments. 
For compounds with three different acid units the middle one is lost at a lower rate 
than the terminal ones (at least for similar chain lengths). Further decomposition of 
the [M + Li–RCOOH] +  ions allows the location of double bonds in unsaturated acyl 
groups by charge remote fragmentation (see above).  
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  Fig. 76    FAB spectra of trismyristyl glycerol (see text). Reproduced from ( 319 ) with kind 
permission of Wiley-VCH Verlag GmbH & Co. KGaA ( ©  2005)       
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5.2.3      Glycerophospholipids 

 From the glycerophospholipids, the 1,2-diacyl-glycerophosphocholines were selected 
for a more detailed discussion, since they allow one to demonstrate how the advent of 
new mass spectrometric techniques provided increasingly more  information (for an 
earlier review, see ( 321 )) (Fig.  77 ).

  Fig. 77    General structure of glycerophospholipids       

   Direct inlet EI spectra ( 322 ) of 1,2-diacyl-glycerophosphocholines (Fig.  78 ) 
show a hardly recognizable M +·  ion. By analogy to the elimination of RCOO ·  from 
triglycerides, a loss of a phosphocholine radical plus some degradation in the acyl 
part is observed. CI with NH 3  ( 323 ) results in rather weak [M + H] +  ions and loss of 
the phosphocholine residue, RCO +  and [RCO + 74] +  ( ac , Fig.  75 ). Field desorption 
( 324 ) at low anode temperatures gives mainly [M + H] +  and at higher temperatures 
some decomposition yielding choline, choline phosphate and loss of the latter, but 
also (pre-ionization?) rearrangements such as intermolecular methyl migration or 
the formation of dicholine phosphate.

  Fig. 78    1,2-Diacyl- phosphatidylcholines              

   A real breakthrough came with FAB ionization ( 325 – 329 ). The positive ion 
spectrum of 1-palmitoyl-2-stearyl-glycero-3-phosphocholine and of its 1-stearoyl-
2-palmitoyl isomer (Fig.  79 ) shows [M + H] +  (protonation of the phosphate anion, 
 m/z  762), and both partial ( m/z  550 and 578) and complete loss ( m/z  478 and 506) 
of either a RCOOH molecule or of both RCOO ·  radicals ( m/z  224). The dominating 
ion is  m/z  184 (choline phosphate), the formation of which involves H transfer 
from the α-position of the glycerol-C-2 acyl unit to the phosphate group ( 330 , 
 331 ). Intensity differences for isomeric pairs ( m/z  524/496 and 506/478 in Fig.  79 ) 
have been invoked for positional assignments ( 332 ), but a decision is easier in the 
negative mode where abundant RCOO −  ions are formed ( m/z  255 and 283 in 
Fig.  80 ), with the ion coming from cleavage at C-2 being more abundant ( 327 , 
 329 ). Diffi culties may arise with highly unsaturated acids or in case the two acyl 
groups differ much in size, but CA of [M–CH 3 ] −  gives an unambiguous result 

 

 

H. Budzikiewicz



  Fig. 79    Positive FAB spectra of 1-palmitoyl-2-stearyl-glycero-3-phosphocholine and of 1-stearyl- 
2-palmitoyl-glycero-3-phosphocholine. Reproduced from ( 329 ) with kind permission of Dr. 
 H. Münster , Bremen       

  Fig. 80    Negative FAB spectra of 1-palmitoyl-2-stearyl-glycero-3-phosphocholine and of 
1-stearyl- 2-palmitoyl-glycero-3-phosphocholine (W … molecular ion region, Y… fatty acid resi-
due region). Reproduced from ( 329 ) with kind permission of Dr.  H. Münster , Bremen       
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(Fig.  81 ). It must be pointed out that negative FAB spectra of choline derivatives 
show an [M–CH 3 ] −  ion and can thus not be distinguished from analogous dimeth-
ylaminoethanol derivatives giving [M–H] − , but switching to the positive mode 
solves this problem.

     Electrospray ionization ( 341 ) gives essentially the same results as FAB but with 
a higher sensitivity ( 333 ) and avoids some of the matrix problems. In particular, the 
choline phosphate ion  m/z  184 has been used for mixture analysis by precursor ion 
scanning with a tandem mass spectrometer yielding the molecular species ( 334 ). 
For MALDI tandem MS, see ( 335 ). 

 For the determination of double bond positions charge remote fragmentation (see 
above) may be applied. An alternative method is the use of an oxygen/ozone mix-
ture as ESI gas. The ozonide formed in the fi rst place decomposes in the presence of 
CH 3 OH yielding two fragments that are 48 Da apart (see Fig.  82 ).

   R-CH 2 -CH = CH-CH 2  ~ → R-CH 2 -CHO + R-CH 2 -C(OOH)OCH 3  

 Ozone can be produced in a standard generator or by using high ESI voltages in 
an oxygen-rich environment ( 336 ,  337 ,  769 ). See also the Addendum.   

  Fig. 81    CA spectra of [M–CH 3 ] -  from 1-palmitoyl-2-stearyl-glycero-3-phosphocholine and of 
1-stearyl-2-palmitoyl-glycero-3-phosphocholine. Reproduced from ( 329 ) with kind permission of 
Dr.  H. Münster , Bremen       
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5.3     Lipidomics 

 Fatty acids can be found attached to almost any class of natural products. 
Accordingly, the analysis of complex lipids (“lipidomics”) covers a wide fi eld 
applying mainly ionization techniques like ESI and MALDI. A detailed coverage 
would go beyond the limits of this chapter. Therefore, only some references will 
be given: references ( 338 ,  339 ) discuss the MALDI-TOF analyses of lipids (glyc-
erol derivatives, cholesterol derivatives, phospholipids, sphingo- and glycolipids), 
also in view of complex mixture analysis. References ( 340 ,  341 ) discuss the appli-
cation of ESI to the analysis of cellular phospholipids. Reference ( 342 ) reports the 
analysis of oxidized phospholipids. Reference ( 343 ) provides algorithms for auto-
matic processing of data from mass spectrometric analyses of lipids. For a recent 
review, see ( 344 ).   

  Fig. 82    ESI-MS (negative) of a methanolic solution of 1,2-di-arachidonyl- sn -glycero-3-phos-
phoserine (nebulizing gas O 2 , ESI voltage—5 kV).  Filled squares  aldehydes,  bullets  methoxyhy-
droperoxides. Reproduced from ( 336 ) with kind permission of the American Chemical Society 
( ©  2006)       
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6     Carbohydrates 

6.1     Monosaccharides 

 Carbohydrate mass spectrometry started in 1959 when  Reed  and coworkers ( 2 ) 
reported appearance energy data of the C 6 H 11 O 5  +  ion from methyl glucosides and 
disaccharides and interpreting them in view of the weaker  α - as compared with the 
 β -glycosidic bond. However, it took another few years before more detailed studies 
were presented by the Glasgow group ( 345 ) and by three other ones,  viz . from the 
Soviet Academy of Sciences ( 3 ,  346 ), from MIT ( 347 ), and from the University of 
Hamburg ( 4 ). For earlier reviews, see ( 348 – 353 ). 

 Investigations of carbohydrates with EI mass spectrometry are hampered by their 
low volatility and thermal lability. Therefore, the early investigations were concen-
trated on various derivatives, but even those suffer from thermal degradations, 
resulting in differences in the data reported from different laboratories especially in 
the abundances of certain fragments ( 352 ), although qualitatively there is a substan-
tial agreement between most of the published data. Another problem with most 
derivatives is an absence of molecular ion signals and the low abundances of upper 
mass ions. However, CI mass spectra using NH 3  as reagent gas give abundant 
[M + NH 4 ] +  ions ( 354 ,  355 ). 

 Acetyl derivatives of monosaccharides have been investigated in detail ( 4 ,  356 , 
 357 ). The mass spectra are dominated by elimination of CH 3 COOH and/or of 
CH 2  = CO from fragment ions (combinations of 60 and 42 Da). Of structural interest 
are the losses of the substituents neighboring the ether oxygen ( · OCOCH 3  and 
 · CH 2 OCOCH 3 , 59 and 73 Da,  m/z  331 and 317 for peracetylated hexoaldopyranoses 
( e.g.   69 ), and  · OCOCH 3  and  · CH(OCOCH 3 )CH 2 OCOCH 3 , 59 and 145 Da, for hexoal-
dofuranoses). It should be remembered, however, that 3- hydroxytetrahydropyran 
compounds can rearrange in a way to yield fragments characteristic for the isomeric 
2-hydroxymethyl tetrahydrofuran isomers ( 358 ). From the various ring fragments a 
sequence will be mentioned that leads to abundant fragments for  e.g. β - D- glucopyranose 
penta-acetate ( 69 ). It starts (Fig.  83 ) with the loss of CH 3 COOH ( ae ) and  retro-Diels-
Alder  ( RDA ) ring opening ( af ,  m/z  242) followed by losses of CH 2  = CO ( m/z  200), 

  Fig. 83    Ring fragmentation of  69        
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CH 3 COOH ( m/z  140), and of CH 2  = CO ( m/z  98). Another ring fragment comprising 
C-2 to C-4 is CH 3 COOCH = CH-CH + -OCOCH 3  ( ag ) ( m/z  157), which loses CH 2  = CO 
twice ( m/z  115 and 73) (Fig.  84 ). Analogous fragments are also observed for other 
carbohydrate derivatives.

  Fig. 84    EI mass spectrum of  β - D- glucopyranose penta-acetate ( 69 ). The ions  m/z  43 (CH 3 CO + ), 
103 ((CH 3 CO) 2 O + H) and 145 ((CH 3 CO) 3 O + ) are found in all mass spectra of acetylated 
carbohydrates       

  Fig. 85    EI mass spectrum of methyl tetra-2,3,4,6- O -methyl- α , D- glucopyranoside ( 70 )       

    EI mass spectra of peracetylated di- and oligosaccharides have been reported 
( 359 ,  360 ); but they offer no advantages over permethyl ethers (see below). 

 The EI mass spectra of permethylated monosaccharides suffer from the same 
problems as those of the peracetylated ones, in that molecular ions cannot be recog-
nized and ions in the upper mass range are of low abundance. Yet they are still of 
great importance for structural studies. The fragmentation patterns of various types 
of this group have been studied by extensive deuterium labeling ( 346 ,  350 ,  361 –
 365 ). Methyl tetra-2,3,4,6- O -methyl- α , D- glucopyranoside ( 70 , Fig.  85 ) will be 
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discussed in more detail. It shows losses of the two substituents neighboring the ring 
oxygen atom (– · OCH 3  and –CH 2 OCH 3 ). Subsequent elimination of CH 3 OH (–32 Da) 
is less pronounced than that of CH 3 COOH from the acetates above. A protonated 
 RDA  fragment ( cf .  af  ) occurs at  m/z  159 (1:1  ah  1  and  ah  2 ) (Fig.  86 ). Other ring frag-
ments are observed at  m/z  176, 101, 88, and 75.

  Fig. 86     RDA  fragments of  70        

    Schemes like those of Table  3  are available for various methylated monosaccha-
rides or can be constructed from labeling data ( 346 ,  361 – 365 ). They can readily be 
used for connection studies of di- and oligosaccharides. The saccharide is permethyl-
ated and hydrolyzed. The hydrolysis products are separated and their resulting free 
hydroxyl groups transformed with CD 3 I into OCD 3  derivatives. In their mass spectra 
only those fragments that according to the appropriate table contain the label, will be 

   Table 3    Fragmentation and labeling data of methyl tetra-2,3,4,6- O -methyl- α , D- glucopyranoside ( 70 )   

  m/z   Fragment 
 OCH 3  Loss 
from Carbon Atom  Contribution/% 

 219  –  · OCH 3   1  100 
 187  219—CH 3 OH  2 

 3 
 4 

 9 
 75 
 16 

 155  219—2 CH 3 OH  3 + 4, 3 + 6 
 2 + 4, 2 + 6 

 66 
 34 

 205  −  · CH 2 OCH 3   5  100 
 173  205—CH 3 OH  3  100 
 176  CH 3 OĊH-CHOCH 3 -CHOCH 3 -CH = O + CH 3   6  100 
 159   ah   1   

  ah   2   
 1 + 2 
 1 + 3 

 50 
 50 

 101  (CH) 3 (OCH 3 ) 2   1 + 2 + 3 
 1 + 3 + 6 
 2 + 4 + 6 
 1 + 4 + 6 
 3 + 4 + 6 

 9 
 60 
 2 

 26 
 3 

 88  CH 3 OĊH-CH = O + CH 3   3 + 4 + 6 
 1 + 4 + 6 
 1 + 2 + 6 

 5 
 79 
 16 

 75  CH 3 OCH = CH 2 O + H 2   1 + 3 + 4 + 6 
 1 + 2 + 4 + 6 
 1 + 2 + 3 + 6 

 15 
 72 
 13 
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  Fig. 87    Permethylated maltose ( 71 ) and its degradation products  72  and  73        

  Fig. 88    Nomenclature for glycoconjugate fragment ions after ( 382 ). R designates an aglycone       

shifted in their mass by 3 Da. Thus, from permethylated maltose ( 71 ) the labeled 
constituents  72  and  73  are obtained. Loss of  · OCD 3  from M +·  indicates for both com-
pounds the original substitution at C-1. The second OCH 3  group of  73  at C-4 can be 
localized from the shifts of [M–CH 2 OCH 3 ] +  (not at C-6) and of  ah  1  and  ah  2  (common 
substituent at C-4). Alternative methods to label the free positions of partially methyl-
ated monosaccharides are acetylation ( 366 ) or trimethylsilylation ( 367 ,  368 ) (Fig.  87 ).

    Other derivatives investigated more or less intensively are  inter alia  trifl uoroac-
etates ( 369 ), trimethylsilyl ethers ( 370 – 372 ), boronates ( 373 ,  374 ),  O -isopropylidene 
derivatives ( 375 ), or dithioacetals ( 376 ).  

6.2     Di-, Oligo-, and Polysaccharides 

 Overviews are given in ( 377 ,  378 ). The EI and CI mass spectra of derivatized oligo-
saccharides have been discussed such as peracetates ( 355 ,  360 ), permethyl ethers 
( 379 ), or per-trimethylsilyl ethers ( 360 ,  380 ,  381 ). Structurally, most important are 
the product ions obtained by cleavage at the glycosidic linkage. Ring fragmenta-
tions as described for monosaccharides give further information. For denoting frag-
ment ions of saccharides a nomenclature has been developed as depicted in Fig.  88 . 
Branched chains are distinguished by Greek letters. For further details, see the 
 original publication ( 382 ).

   The advent of fi eld desorption (FD) has allowed one to obtain abundant molecu-
lar ions of oligosaccharides and at higher anode temperatures structural information 
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due to interglycosidic cleavages (probably due to thermolytic and/or proteolytic 
processes) ( 383 ). 

 Fast atom bombardment (FAB) both in the positive and negative modes of free 
and of derivatized oligosaccharides yields quasi-molecular ions ([M + H] + , 
[M + metal ion] + ; ([M–H] − ) and bond cleavages at the glycosidic linkages ( 384 ,  385 ). 
Fragmentation can also be induced by collision activation (CA) using tandem tech-
niques (Fig.  89 ) ( 386 ).

  Fig. 89    Fragments obtained by CA of [M + H] +  formed by positive FAB of a hexasaccharide. 
Reproduced from ( 386 ) with kind permission of John Wiley & Sons Ltd. ( ©  1999)       

   The standard ionization techniques used today for carbohydrate analysis using 
CA are electrospray (ESI) ( 387 ) and MALDI ( 388 ,  389 ). Using ESI, the correct 
selection of solvents and additives is critical. For abundant molecular ions it is 
essential that the sample molecules are concentrated at the surface of the droplets, 
and MALDI matrices for the respective compound class have to be chosen. The 
resulting mass spectra can be highly complex especially for branched molecules. 
Fragmentation starts from all the termini and fragments may coincide in mass 
(Fig.  90 ). The apparent chaos can be sorted by tandem mass spectrometry selecting 
specifi c fragment ions and cause them to further decompose by CA as demonstrated 
for isomaltotetraose,  i.e.  (glucosyl( α 1 → 6)) 3  glucose. Spectrum (a) presents the ions 
obtained upon CA of [M + Li] + , (b) and (c) those obtained by CA of the selected 
product ions  C  3  ( m/z  511) and C 2  ( m/z  349) (MS 3 ), and (d) fi nally those from the  C  2  
fragment obtained from  C  3  (MS 4 ) (Fig.  91 ). Multi-step analyses either need a multi- 
quadrupole system, an ion trap ( 391 ), or an ICR analyzer ( 390 ).
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  Fig. 90    MALDI-TOF MS/MS spectrum of (Man) 5 (GlcNAc) 2 . Reproduced from ( 388 ) with kind 
permission of John Wiley & Sons Ltd. ( ©  2006)       

  Fig. 91    Sequential fragmentation steps of lithiated isomaltotreose obtained by ESI (see text). 
Solid circles indicate the precursor ions, empty circles the product ions obtained in the respective 
step. Reproduced from ( 391 ), Fig. 6, with kind permission from Springer Science + Business 
Media ( ©  1997)       
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    Additional structural information can be obtained from derivatized (permethyl-
ated or peracetylated) saccharides. They allow  e.g.  the differentiation between lin-
ear and branched isomers ( 392 ,  393 ). Reaction with hydrazine derivatives can be 
used to label the reducing terminus of a saccharide by hydrazone formation ( 687 ). 

 A different approach to linkage position determination is tandem MS after 
cationization with metal ions other than the usually used Na +  and Li + . Thus, 
 C -type ions obtained from [M + Co 2+ –H + ] +  yielded upon CA cross-ring fragments 
characteristic for 1 → 2, 1 → 3, 1 → 4, and 1 → 6 linkages ( 394 ). Ion mobility 
mass spectrometry has been suggested for the separation of cationized isomeric 
disaccharides ( 601 ). 

 Also, computer programs have been developed to cope with the mass of data 
obtained. STAT ( 395 ), after input of all available data, such as precursor ion masses, 
possible monosaccharide moieties, and product ion masses the program creates all 
possible structures that may fi t the precursor mass and the product ion pattern giving 
a rating on the likelihood. 

 From polysaccharides, molecular mass distributions can be obtained as shown 
for the MALDI spectrum of an algal laminarin (Fig.  92 ). The number of free 
hydroxy groups can be determined by permethylation ( 396 ). Even cyclic structures 
like cycloglucans that are not amenable to enzymatic degradation such as cyclodex-
trins yield structural information. Thus, from [M + Na] +  of γ-cyclodextrin losses of 
one up to fi ve glucose units were observed ( 397 ). Degradation studies were neces-
sary for the analysis of pectins ( 398 ).

  Fig. 92    MALDI-TOF mass spectrum of the laminarin from  Laminaria cichorioides.  The main 
signals stem from [M + Na] +  ions accompanied by [M + K] +  The mass differences correspond to 
C 6 H 10 O 5  units. Reproduced from ( 396 ) with kind permission from Elsevier ( ©  1998)       
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6.3        Glycosides 

 In Nature, many structural types have been found to be linked to sugar moieties for 
various reasons: increased hydrophilicity for transport in aquatic media, recognition 
of specifi c compounds at cell surfaces ( 399 ), membrane structures ( 400 ),  etc.  MALDI 
usually allows one to determine within limits molecular masses, and possibilities exist 
for structural analyses by tandem mass spectrometry, depending on the type of com-
pound investigated. For example, fl avonoid ( 401 ), steroid, or terpenoid glycosides 
yield information regarding the mass of the aglycone and to some extent regarding the 
composition of the sugar part ( 377 ). From highly complex compounds, peptide and 
protein glycosides will be selected to demonstrate how different approaches have 
been chosen to obtain maximal results: LC/MS ( 402 ), FAB, MALDI, ESI ( 403 ), PSD-
MALDI 24  ( 404 ), multi-stage MS/MS ( 405 ), and electron capture MS ( 406 ). Questions 
to be answered are the molecular mass, the sequence of the sugar components, and the 
connections between them, the type of linkage to the peptide part ( O  or  N ), and if there 
is more than one possibility for the linkage site determination. There are limits to what 
mass spectrometry can do and other techniques such chemical and enzymatic degra-
dation studies or NMR spectroscopy may be needed for assistance. 

 For simple compounds the carbohydrate sequence can be established readily 
from the CA data (Fig.  93 ). The sequence can be confi rmed by tandem experiments 

24   Post-source decay, this constitutes an ion fragmentation technique used with refl ector-TOF 
instruments ( 17 ). 

  Fig. 93    ESI-CA spectrum of [M + Na] +  of Hyp-Ara 3 ). Reproduced from ( 410 ) with kind permis-
sion of Wiley-VCH Verlag GmbH & Co. KGaA ( ©  2005)       
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(especially for branched sugar parts), and the connection sites between the sugar 
molecules by the methylation ( 407 ) and deuteromethylation technique described 
above ( 408 ,  409 ).

   Regarding complex structures two short descriptions will be given to illustrate 
the topic. The fi rst describes the determination of glycosylation sites and the char-
acterization of sugar parts of mouse cylooxygenase-2 (mCOX-2) ( 399 ). The 
enzyme mCOX-2 contains fi ve potential glycosylation sites, Asn 53, 130, 396, 
580, and 592. To determine the number of actually occupied sites the intact protein 
was subjected to nano-ESI-MS, which showed the presence of three glycoforms 
with average masses of (1) 71.4, (2) 72.7, and (3) 73.9 kDa with mass differences 
of 162 Da between the peaks of each group (hexoses, probably mannoses from 
earlier studies). For (1), an average sugar residue of Man 8 GlcNAc 2  at two sites and 
GlcNHAc at two sites, for (2), Man 7 Glc N Ac 2  at three sites and Glc NH Ac at one 
site, and for (3), Man 7 Glc N Ac 2  at four sites, were calculated (see below). There is 
a second set of peaks ca. 80 Da higher, possibly due to sulfate or phosphate deriva-
tives. Further analyses were performed using ESI and MALDI on components 
obtained after  tryptic digests, both before and after deglycosylation. The various 
Asn-containing fragments were analyzed for their glycosylation. The results are 
shown in Table  4 . The sites of linkage between the sugar molecules could not be 
determined.

   Table 4    Glycosylation sites of COX-2 and the extent of glycosylation. Adapted from Ref ( 399 ) 
with kind permission of the American Chemical Society (© 2001)   

 Glyco- 
form  

 MW 
(kDa)  Asn 53  Asn 130  Asn 396  Asn 580  Asn 592 

 1  71.4  Man 7- 9 GlcNAc 2      Man 6- 10 GlcNAc 2      GlcNAc  GlcNac  None 
 2  72.7  Man 7- 9 GlcNAc 2      Man 6- 10 GlcNAc 2      GlcNAc  Man 7 GlcNAc 2   None 
 2  72.7  Man 7- 9 GlcNAc 2      Man 6- 10 GlcNAc 2      Man 5- 7 GlcNAc 2      GlcNAc  None 
 3  73.8  Man 7- 9 GlcNAc 2      Man 6- 10 GlcNAc 2      Man 5- 7 GlcNAc 2      Man 7 GlcNAc 2   None 

   An alternative method has been developed to determine glycosylated Asn sites 
in a protein ( 411 ). Enzymatic hydrolysis in the presence of 50% H 2  18 O yields a 
product with an Asp in the peptide sequence displaying a peak doublet in its mass 
spectrum two Da apart. The product can be used for peptide sequencing by nano-
ESI. For a comparison with databases, the spectra have to be recalculated for the 
mass of Asn. 

 Recent reviews ( 412 ) discuss the isolation methods for glycoproteins laying spe-
cial emphasis on microarray techniques and factors infl uencing the peak intensities 
of molecular ions in mixture analyses (structural differences, work-up procedures, 
ionization techniques ( 675 )).   
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7      Amino Acids, Peptides, and Proteins 

7.1     Amino Acids 

 Amino acids were among the fi rst groups of natural products to be investigated by EI 
mass spectrometry ( 6 ,  413 ). Amino acids in being zwitterionic compounds are invol-
atile and hence the main emphasis centered on the search for suitable derivatives. 
Methyl and ethyl esters were scrutinized by  Stenhagen  and by  Biemann  ( 6 ,  414 , 
 415 ). They show the typical fragmentation behavior of primary aliphatic amines 
( 416 ) as can be seen for leucine ethyl ester (Fig.  94 ). α-Cleavage of aliphatic repre-
sentatives ( 414 – 417 ) results in the loss of the ester group ( ai ,  m/z  86) and to a lesser 
extent of the alkyl residue ( aj ,  m/z  102) (Fig.  95 ).

  Fig. 94    EI mass spectrum of leucine ethyl ester       

H2N+=CH-COOC2H5 ← (CH3)2CH-CH2-CHN+H2-COOC2H5 → (CH3)2 CH-CH2-CH=N+H2
aj ai

↓ ↓
CH2=N+H2 CH2=CH-N+H3

ak al

  Fig. 95    Main fragments of α-amino acid ethyl esters       

    The ion  ai  can decompose further giving  ak  ( m/z  30) and  al  ( m/z  44). They have 
the same masses as the α-cleavage products of glycine and alanine, respectively, and 
should not wrongly be taken as an indication of an admixture of these two amino 
acids. Secondary fragmentation sequences can be used to differentiate  e.g.  between 
isomeric amino acids. 
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 In methionine, the sulfur atom can compete in charge stabilization with the 
 nitrogen yielding CH 3 S +  = CH 2  as the main fragment. Similarly for aromatic amino 
acid esters Ar-CH 2 -CHNH 2 -COOC 2 H 5  (phenylalanine, tyrosine, tryptophan) the 
ions Ar-CH 2  +  are of importance. N-Acylated esters ( 418 – 421 ) bring no advantages. 
The fragmentations induced by the acyl group complicate the picture. 

 The fragmentation rules developed for peptidic amino acids have been used 
for the structure elucidation of new natural products as exemplifi ed for lysopine 
diethyl ester ( 69 ) ( 422 ). The molecular ion ( m/z  274) loses one carbethoxyl group 
( m/z  201) and subsequently NH 3  ( m/z  184) typical for lysine ethyl ester ( 6 ). 
This structural moiety is confi rmed by the base peak at  m/z  84 due to the analo-
gous loss of the substituted N α ,  i.e.  CH 3 CH(NH 2 )COOC 2 H 5  from the ion  m/z  
201. The absence of ion  aj  excludes a ~CH(NH 2 )COOC 2 H 5  terminus. The pro-
posed structure  74  (Fig.  96 ) was confi rmed by synthesis.

  Fig. 96    Lysopine ( 74 )       

   Chemical ionization (CI) (( 423 ) and below) complements the armamentarium: 
CI with methane or isobutane produces abundant [M + H] +  ions while EI suffers 
from low intensities in the molecular ion region. However, EI offers more structural 
information than CI especially for the distinction of isomers or when unexpected 
compounds are encountered. 

 New approaches regarding derivatization began with the GC ( 424 ) and espe-
cially with the GC/MS era. Trimethylsilyl derivatives are obtained by reaction with 
trimethylsilyl chloride ( 425 ). By treatment with  N- methyl -N - tert -butyldimethyl-
silyltrifl uoroacetamide all active H-atoms on N, O, and S are replaced and the 
 corresponding  tert -butyldimethylsilyl derivatives are obtained ( 426 ). [M–CH 3 ] +  or 
[M–C 4 H 9 ] +  ions allow the determination of the molecular masses. Treatment of 
amino acids with ClCOOC 2 H 5  in ethanol/water/pyridine yields  N -ethoxycarbonyl 
amino acid ethyl esters ( 427 ), which show typical α-cleavages. The advantage of 
these methods is that the derivatives can be obtained in a one-step synthesis. The 
preparation of the  N -perfl uoroacyl amino acid alkyl esters requires two steps. Both 
EI and CI spectra of trifl uoroacetyl and pentafl uoropropionyl derivatives of methyl, 
 n - and  i -propyl and  n -butyl esters were recorded ( 428 – 432 ) and allow the identifi -
cation also of unusual amino acids and of decomposition products. Characteristic 
common ions can be used for single ion detection techniques (Fig.  1 , Sect.  2 ). 
When the GC analysis is performed with a enantioselective column  D - and  L -amino 
acids can be identifi ed. With a  L -Chirasil Val capillary the  D -enantiomers are eluted 
before the  L -enantiomers. Calibration is possible with a racemic mixture of amino 
acids ( 430 ,  433 ).  
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7.2       Peptides 

 Amino acid sequence analysis has become the basis of proteomics. 

7.2.1      Linear Peptides 

 For designating fragments of a peptide chain a common nomenclature is in use ( 434 ). 
When a specifi c bond is cleaved before, in or after an amide group N-terminal frag-
ments are designated by  a ,  b , and  c , and the C-terminal ones by  x ,  y , and  z  (see Fig.  97 ). 
A subscript indicates the number of amino acids retained in a given fragment. Hyphens 
indicate the number of additional hydrogen atoms present in a fragment ( e.g.   y  1 ″ would 
be  + NH 3 -CHR 4 -COOH). In older publications, individual systems may be found (as the 
capital letters in Figs.  103 ,  104 ,  105 , and  106 , or the system used in ( 454 ).

  Fig. 97    Designation of peptide fragments       

p-HO-C6H4-CO-NH-(CH2)3-NH-(CH2)3-NH-(CH2)3-NH-(CH2)3-NH-(CH2)3-NH2

  Fig. 98    Spider venom polyamine  75        

    Biemann  ( 435 ,  436 ) proposed to reduce the peptides with LiAlH 4  to polyamino-
alcohols that give sequence-characteristic α-cleavage products. This approach is of 
no importance anymore for peptide analysis but the results are the basis for the 
structure elucidation of polyamines as found in spider venoms ( e.g. ,  75 , Fig.  98 ) 
( 437 ,  438 ,  639 ).

   The EI mass spectra of trifl uoroacetyl peptide methyl esters show a large number 
of fragments for which the genesis can be explained by cleavages along the chain 
and by side chain losses, but the sequence specifi c ones are not very prominent 
( 439 ). Nevertheless, an interpretation scheme was developed starting with the iden-
tifi cation of the [M–NH-CHR-COOCH 3 ] +  ion by trying all possible R residues and 
continuing by the search for the next ion with a mass difference of NH-CHR′-CO, 
 etc.  ( 440 ). 

 Subsequent techniques started with the identifi cation of the acylated N-terminal 
fragment and going then on as above ( 441 ). The starting point was the structure 
elucidation of a nonapeptide from  Mycobacterium fortuitum  named fortuitine ( 442 ). 
The N-terminal valine is substituted by equal amounts of C 20 - and C 22 -fatty acids 

 

 

Mass Spectrometry in Natural Product Structure Elucidation



158

resulting in pairs of fragment ions differing in mass by 28 Da (Fig.  99 ) and moving 
the N-terminal fragment out of the low mass range, which is confusing because of 
the large number of uncharacteristic secondary fragments. As a result, synthetic 
derivatives of amino acids with equimolar mixtures of homologous ( 443 ) or deuter-
ated and nondeuterated fatty acids ( 444 ) were investigated. The next step was the 
N-methylation of the peptide linkages, which not only increased the volatility, but 
also simplifi ed the mass spectra that are dominated now by cleavages of the peptide 
bonds with charge retention on the carbonyl groups (Fig.  100 ) ( 445 ,  446 ). Computer 
programs were developed for determining the amino acid sequences of derivatized 
oligopeptides ( 447 ,  448 ).

  Fig. 99    EI mass spectrum of fortuitine methyl ester CH 3 (CH 2 ) 18/20 CO-Val-MeLeu-Val-Val- 
MeLeu-Thr(Ac)-Thr(Ac)-Ala-Pro-COOCH 3 . Reproduced from ( 442 ) with kind permission from 
Elsevier ( ©  1965)       

  Fig. 100    EI mass spectrum of Z-MeAla-MeVal-MeGly-MeLeu-MeAla-MeVal-MeGly-MeLeu- 
OMe (Z = C 6 H 5 -CH 2 -OCO). Reproduced from ( 446 ) with kind permission from Elsevier ( ©  1968)       

    A further step forward was the introduction of the fi eld desorption (FD) tech-
nique. It allowed the recognition also of [M + H] +  ions for amino acids as arginine or 
cystine that could not be detected by EI or CI ( 449 ), as well as those of peptides 
( 450 ,  451 ). At increased anode currents, fragment ions are obtained that can be 
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  Fig. 101    FD mass spectrum of Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg. Reproduced from ( 451 ) 
with kind permission of John Wiley & Sons Ltd. ( ©  1975)       

  Fig. 102    FAB mass spectrum of methionine encephalin. Upper spectrum positive mode ( b  ions), 
lower spectrum negative mode ( y  −  ions). Reproduced from ( 452 ) with kind permission of Portland 
Press Ltd. ( ©  1981) by the Biochemical Society       

correlated with the amino acid sequences allowing for mass deviations of ± 2 Da 
from the calculated mass for direct cleavage. This is due to the occurrence of com-
peting thermal processes (Fig.  101 ).

   Fast atom bombardment (FAB) mass spectrometry has been used for many years 
for sequence analyses. Figure  102  gives an example.  b -Ions can be recognized in 
the positive mode with the exception of tyrosine ( m/ z 164) where the ion  a  ( m/z  
136) prevails, probably due to the better charge stabilization. In the negative mode, 
 y  -  ions can be seen. A problem is caused by the many ions formed by further 
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decomposition of the primary cleavage products or by side chain fragmentation 
( 452 ). Clearer results can be obtained by a combination of FAB with collision acti-
vation (CA) ( 453 ), which allows the recognition of unusual amino acids, such as 
>CH-OCH 3  groups containing species found in dolastatin 10, a peptide obtained 
from the sea hare ( Dolabella aurecularia ) ( 454 ). [M + H] +  ions can be obtained up 
to a mass region of several thousands ( 455 ). Therefore, information stated in Sect. 
 2.4  should be kept in mind concerning high masses with respect to mass shifts and 
isotope patterns.

   The primarily used techniques today are ESI and MALDI in conjunction with 
CA. The ESI results depend on the techniques used and the type of molecular 
species activated. [M + H] +  or [M + 2 H] 2+  give more information than  e.g.  
[M + Na] +  because the localization of a proton in an amide bond facilitates its 
cleavage ( 456 ,  457 ). Residence of a proton in the N - terminal part will result in  b  
ions, and residence in the C-terminal part in  y ″ ions. The binding of metal ions on 
amide bonds was investigated by infrared multiple-photon dissociation spectros-
copy. K +  is associated with the carbonyl oxygen, while  e.g.  Ni 2+  is bound to N 
after deprotonation ( 458 ). 

 The information that can be obtained depends on various factors. Thus, the 
 residence time of ions in an octopole unit is much shorter than in an ion trap where 
hydrogen migrations and rearrangement processes are more likely. The octopole 
CA spectrum both from [M + H] +  and from [M + 2 H] 2+  of the chromopeptide  76  
(Fig.  103 ) shows mainly fragments from the vicinity of the chromophore where 

  Fig. 103    Sequence-specifi c fragments of a pyoverdin from  Pseudomonas fl uorescens  ( 76 )       

one proton is strictly localized in the aromatic system (Fig.  104 ). The ion trap CA 
spectrum of [M + H] +  (Fig.  105 ) shows predominantly fragments in the molecular 
ion region for the same reason, but sequence specifi c (mainly  b ) fragments of low 
abundance can be seen. These (and also the  y ″ ions) are much more abundant in the 
[M + 2 H] 2+  CA spectrum (Fig.  106 ) where one proton can move freely ( 460 ). 
Repetitive CA induced fragmentation (MS n  spectra) may provide additional 
information.
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  Fig. 104    ESI octopole CA spectrum of [M + 2 H] 2+  of  76        

  Fig. 105    ESI ion trap CA spectrum of [M + H] +  of  76        
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      Fragmentation mechanisms explaining the preferred formation of  b  ions have 
been proposed ( 462 ) and more complex fragmentation sequences including rear-
rangement steps have been discussed ( 460 – 462 ). Thus, a collision induced 
 degradation of the peptide chain that can outweigh the formation of  b  ions involves 
the loss of NH = CHR + CO units starting from the C-terminus and resulting in a 
chain shortened by one amino acid. This process can occur repeatedly several times. 
A side reaction is the loss of CO + H 2 O ( 463 ) (Scheme  1 ).

  Fig. 106    ESI ion trap CA spectrum of [M + 2 H] 2+  of  76        

...NH-CHRn-2-CO-NH-CHRn-1-CO-OH + NH=CHRn + CO

NH-CHRn-2-CO-OH + NH=CHRn-1 + CO

Na+

Na+

...-N=CRn-1 + CO + H2O

-N=CRn-1 + CO + H2O

Na+

...NH-CHRn-2-CO-NH-CHRn-1-CO-NH-CHRn-CO-OH

...

Na+

...
Na+

etc.

  Scheme 1    CA induced degradation of a peptide chain with OH-rearrangement       
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7.2.2     Cyclopeptides and Cyclodepsipeptides 

 Cyclodipeptides (2,5-dioxopiperazines,  e.g.  cyclo-leucine-proline,  77  (Fig.  108 ) 
show upon EI a rather low abundant M +·  ( m/z  210) and preferred ring fragmentation 
( 468 – 471 ),  i.e.  loss of CO ( m/z  182 and (more abundant) of HNCO ( m/z  167). 
Accompanied by a hydrogen migration, ions  m/z  70 and 84 are formed. Longer 
alkyl chains are lost by a  McLafferty  rearrangement ([M–C 4 H 8 ] +·  for leucine,  m/z  
154) ( 469 ) (Fig.  109 ).

  Fig. 107    MALDI-CA spectrum of a goat collagen peptide. Reproduced from ( 466 ) with kind 
permission from Elsevier ( ©  2010)       

   As a side aspect, pyoverdins varying in their peptide part have been used for the 
classifi cation of the bacterial genus  Pseudomonas  ( 459 ,  464 ) and for characterizing 
new species ( e.g.  ( 465 )). 

 As an example of fairly large peptides analyzed by MALDI-CA, the results 
allowing a differentiation between archeological sheep and goat bones are summa-
rized (Fig.  107 ), in which sequential differences in collagen peptide samples were 
established ( 466 ); see also ( 766 ).

   For a review on spectrometric methods to distinguish between isomeric amino 
acid residues in peptides and proteins, see ( 467 ).  
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    The amino acid sequence analysis of cyclopeptides by CA by fragmentation of 
their (abundant) [M + H] +  ions poses problems for several reasons. Unless one of the 
amide nitrogen atoms is protonated preferentially (such as secondary amines like pro-
line or N-methylated amino acids) ( 472 – 474 ), ring opening by cleavage of all amide 
bonds occurs with comparable likelihood. Thus, a series of isomeric structures is 
formed that can fragment further by losses from their N -  or C-terminal sites (Fig.  110 ), 
resulting in a complex fragmentation pattern. Isomeric amino acids may be distin-
guished by secondary cleavage processes ( 475 ). Finally, sequence and  retro- sequence 
(-A-B-C- … -X- and -X- … -C-B-A-) have to be distinguished ( 476 ). The situation is 
easier for depsipeptides. Here, the ester bond is cleaved preferentially ( 473 ,  474 ,  477 ) .  
Two schemes have been developed for coping with these problems ( 476 ,  478 ) and a 
sequencing software tool is available ( 686 ), which allows also for nonribosomal 
building blocks so far encountered in fungal and bacterial metabolites.

  Fig. 108    Cyclo-leucine- proline ( 77 )       

  Fig. 109    EI mass spectrum of cyclo-leucine-proline ( 77 )       

  Fig. 110    Fragmentation paths of cylopeptides       
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7.3            Proteomics 

 Proteomics is an umbrella term for structural investigations of proteins, their post- 
translational transformations, their interactions with other substances, and their 
structures including spatial arrangements,  etc.  This topic is discussed below wherein 
mass spectrometry is in some way involved. 

 Three approaches have been described for protein analysis, and are referred to as 
Bottom Up, Top Down, and Middle Down ( 481 ). Bottom Up implies enzymatic or 
chemical digestion of the protein into small peptides, their separation ( 482 ) and 
sequencing by standard methods, and subsequently putting together the structural puz-
zle. Top-Down ( 483 ) requires a strict purifi cation of the protein, ESI or MALDI and 
tandem experiments with high-resolution instruments (FT-ICR). Modifi cations in the 
amino acid sequence can be recognized as demonstrated for swine cardiac troponin I, 

  Fig. 112    EI mass spectrum of integerine ( 78 , R =  i -C 3 H 7 , R′ = C 6 H 5 , R″ = methylindolyl): [M–R] +  
 m/z  550, R-CH = N + (CH 3 ) 2   m/z  100. Reproduced from ( 479 ), Fig. 1b, with kind permission from 
Springer Science + Business Media ( ©  1968)       

  Fig. 111    Peptide alkaloids of type  78        

   A special variety of cyclic peptides are alkaloids of type  78  (Fig.  111 ) and related 
structures ( 479 ,  480 ). In their EI mass spectra ( e.g.  Fig.  112 ) the main fragments are 
due to the loss of R and the formation of R-CH = N + (CH 3 ) 2 . Several ring fragments 
may allow the structure elucidation of new members of this group ( 479 ).
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for which some deviations from the published amino acid backbone, N-terminal acety-
lation and phosphorylation at Ser22/Ser23 were detected ( 484 ). Middle-Down analy-
sis resorts to the protein cleavage by proteases targeting less frequent amino acids and 
yielding fragments with ~3,000 Da. Algorithms have been developed to combine tan-
dem mass spectral data with database searches coping as far as possible with unusual 
amino acids and with post-translational modifi cations ( 485 – 487 ,  738 ). 

 An alternative method to determine the amino acid sequence in proteins is the 
deduction from the base sequence of the corresponding gene. However, a cross 
check by mass spectrometry  e.g.  of peptides obtained by a tryptic digest can reveal 
mistakes due to the misidentifi cation of single bases ( 488 ). 

 Sequence analysis of peptides can be assisted by comparing the original spec-
trum with those of compounds chemically modifi ed as  e.g.  by esterifi cation (indi-
cates free carboxyl groups), H/D-exchange (identifi es mobile protons ( 489 )), 
 18 O-labeling ( 767 ), or modifi cations of SH-groups ( 490 ,  491 ). 

 Analysis of phosphorylated proteins ( 492 ) is hampered by the presence of large 
quantities of unphosphorylated precursor proteins and by the lability of the phos-
phate group ( 745 ). When high-resolution is available phosphorus-containing ions 
can be recognized by the large mass defect of  31 P (30.9738) that separates them from 
the P-free ions. 25  Another possibility is the identifi cation of phosphorylated peptides 
and determination of their degree of phosphorylation by coupling capillary liquid 
chromatography with the element specifi c detection by inductively coupled plasma 
mass spectrometry ( 493 ,  494 ). A characteristic fragmentation reaction is the loss of 
H 3 PO 4  (98 Da) from phosphorylated serine or threonine and of HPO 3  (80 Da) from 
tyrosine. Tandem mass spectrometry techniques were reviewed ( 495 ) discussing 
also the problem of phosphate migrations (see also ( 496 )). 

 An intriguing topic is the analysis of protein complexes ( 497 ) as it has been 
shown that the structures characteristic for the condensed phases are retained essen-
tially when going to ionized clusters in the gas phase. The fi rst point is stoichiom-
etry. For homo-oligomers upon CA one subunit will be eliminated, so from its mass 
and that of the complex the number of subunits can be calculated. Interestingly, 
the charge distribution between monomer and “stripped complex” does not occur 
according to the stoichiometry of the fragments; the monomer carries an over- 
proportional number of charges. From hetero-complexes usually only the peripheral 
subunits are lost. Core-subunits can be identifi ed from a denaturated sample. 
Computer programs exist to calculate the number of each subunit in the complex. 
An idea of the macromolecular shape of the complex may be gained from ion mobil-
ity (IM) mass spectrometry (see Sect.  2.2 ). The drift time is proportional to the col-
lision cross section of an ion and its dimensions are derived from a scale calibrated 
with proteins with defi ned cross sections ( 498 ). Distinct conformational states can 
be recognized in this way as demonstrated for hepatitis B virus capsids ( 499 ) and in 
the analysis of the structural basis of protein misfolding diseases ( 638 ). 

 Mass spectrometric investigation by electrospray and ion mobility mass spec-
trometry ( 500 ) of the proteasome complex 20S of the archeon  Methanosarcina 

25   One must keep in mind that phosphate and sulfate residues have the same nominal mass and 
similar negative mass increments (-PO 3 H 2  … 80.974, -SO 3 H … 80.965); see also ( 775 ). 
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thermophila  may serve as an example demonstrating possibilities and limits of the 
approach and dealing also with the question as to what extent the tertiary and qua-
ternary structure of the isolated complex in the gas phase can be correlated with 
those in the condensed phase. 

 According to an X-ray analysis, the quaternary structure of the complex resem-
bles a staple of four tires (Fig.  113 ). Both the two external (α) and the two internal 
(β) tires consist of seven peptide chains (α 7 β 7 β 7 α 7 ). An ESI spectrum (Fig.  114 ) 

  Fig. 113    ESI-IM-MS data for α 7  and for the α 7 β 7 β 7 α 7  20S proteasome complex of  Methanosarcina 
thermophila . The right inlay gives the dimensions obtained by X-ray crystallography. Reproduced 
from ( 500 ), Fig. 7, with kind permission from Springer Science + Business Media ( ©  2005)       

  Fig. 114    ( a ) ESI-MS of the α 7 β 7 β 7 α 7  20S proteasome complex of  Methanosarcina thermophila . 
( b ) ESI-CA-MS. Reproduced from ( 500 ), Fig. 2, with kind permission from Springer 
Science + Business Media ( ©  2005)       
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acquired with a quadrupole TOF tandem instrument (see Sect.  2.2 ) shows a signal 
cluster at ~11,000 Da around [M + 63 H] 63+ , according to a molecular mass of 
690.6 kDa (theoretical value 689.3 kDa) as well as small clusters at ~15,000 and 
at ~12,700 Da corresponding to a dimer (1.39 MDa) and a not identifi ed aggregate 
(1.02 MDa). CA of [M + 63 H] 63+  yielded one α-unit (27.4 kDa) as well as ions 
corresponding to the loss of one (662.5 kDa) and two α-units (634.9 kDa). 
Apparently, only the outer rings are degraded (the setting free of β-units is only 
observed from denatured material). It should be remembered that each peak in 
Fig.  114  is again a cluster of isotopomers, as explained in Fig.  4 , Sect.  2 ).

    Ion mobility (IM) mass spectrometric analysis ( 500 ) (Fig.  113 ) resulted in 
molecular masses of 192 kDa for the ring α 7  (theoretically 191.9 kDa) and 693 kDa 
for α 7 β 7 β 7 α 7  as well as cross section values for α 7  and for the complex. They agree 
well with the X-ray data in the condensed phase. The smaller signals at higher val-
ues in Fig.  113  stem from singly charged dimers. 

 The results show that ESI data can be obtained from multiply protonated ions 
of molecular aggregates in the MDa region. There are obviously limitations in the 
accuracy of mass determinations. A mass deviation of ±0.1 kDa between mea-
sured and calculated mass values corresponds to about one amino acid increment 
(-NH-CHR-CO-). The observation that upon CA only elements from the outer 
rings are lost and the calculated dimensions suggest that the quaternary structures 
were not disturbed drastically during ionization and the transition to the gas 
phase. However, amino acid sequence analyses are not possible any more in this 
mass region. 

 Besides the IM-MS analysis there are other mass spectrometric techniques ( 501 ) 
giving information on conformations and conformational changes:

 –    It is well known that the accumulation of multiple charges in ESI depends on the 
structure of the substrate. Tightly folded protein molecules can accommodate 
fewer charges than the less structured ones, but there are exceptions ( 502 ). Thus, 
cytochrome c in its compact native state in an aqueous solution at  p H 6.4 forms 
mainly [M + 8 H] 8+ , while at  p H 2.3 it is completely unfolded giving a cluster of 
ions centered at [M + 17 H] 17+ . At intermediate  p H values the transition can be 
followed ( 503 ). Increasing the number of charges and thus causing partial 
unfolding can be achieved by adding a small amount of  m -nitrobenzyl alcohol 
(“supercharging reagent”) to the solution. The effect can be followed by IM 
( 504 ,  768 ).  

 –   There are differences in H/D exchange rates between freely accessible amide 
groups, with those shielded by hydrogen bonds or hidden in the center of a 
rigid structure requiring a (partial) unfolding for exchange ( 505 ). Kinetic 
studies can be performed by quenching at 0 °C or by dropping the p H  to ~2.5 
( 506 ) after different periods of time. A localization of the labels is possible by 
degradation,  e.g.  with pepsin, and analysis of the fragments ( 507 ,  508 ). 
Problems of the exchange technique (sample preparation, factors infl uencing 
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  Fig. 115    Ionization and CA degradation of cross-linked peptides (depicted is  inter  molecular 
 linking; in the case of  intra  molecular linking the two peptide residues are connected). The number 
of charges, n, is distributed between the two fragments (n = m + q). With kind permission of 
Dr. M. Schäfer, Köln       

the reproducibility of the results, identifi cation of single amino acids,  etc. ) 
were discussed ( 509 ).  

 –   Radical reactions (OH · ) ( 510 ), also with subsequent deuterium incorporation 
( 511 ) allow the identifi cation of solvent-accessible parts of the molecule.  

 –   From the interaction of a reagent with specifi c sites of a protein structural con-
clusions are possible. Thus, 18-crown-6 binds noncovalently to lysine residues. 
A lack of binding can come from inaccessibility for steric reasons or from non- 
availability due to hydrogen bonding or due to salt bridges ( 512 ).  

 –   Intra- and intermolecular distances in tertiary and quaternary structures of pro-
teins can be determined by cross-linking reactions between active sites (-NH 2 , 
-SH, -COOH) with reagents of varying length. Localization of the linked sites 
can then be determined by the Bottom-Up or the Top-Down approach ( 513 , 
 514 ). A recent approach consists of using linkers that can be degraded by 
CA. In this way, the originally linked amino acids are obtained in a derivatized 
form and can thus be identifi ed ( 515 ,  516 ,  636 ,  637 ). Degradation mechanisms 
have been studied in detail ( 517 ,  637 ). An example is depicted in Fig.  115 . 
Upon CA, the linker loses N 2  and the derivatized amino groups retain the 
cyanopentanoyl radical residues. Further CA allows the standard sequence 
determination.

 –      For more complex approaches, see ( 518 ,  519 ).    
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 A developing technique is the ESI-MS analysis of  in vitro  non-covalent asso-
ciations of proteins with other molecules (carbohydrates, lipids, DNA,  etc. ). 
Within limits it allows the determination of the stoichiometry of the associate, its 
dependence on various parameters, the analysis of competitive interactions, and 
the calculation of the association constants  K  a . However, there are sources of error 
mainly based on changes in concentration, p H , and temperature caused by the 
transition from the solution to the droplet and fi nally to the ion in the gas phase 
( 520 ). A recent example is the analysis of the interaction of an antitoxin, a 291 
amino acid glycoprotein from an immune animal (opossum) with a snake venom 
metalloproteinase ( 521 ) dealing  inter alia  with problems of stoichiometry and 
transition from the liquid to the gas phase. 

 Another step forward offers MALDI imaging mass spectrometry ( 522 ), which 
allows an analysis of thin tissue sections by determining in single measurements 
the distribution of a large number of compounds present in specifi c areas of the 
object. The tissue sample is sprayed with matrix material and the pulsed laser beam 
is applied locally, migrating along an x- and/or y-axis. The pixel size is determined 
by the diameter of the laser beam. Series of molecular ions are obtained with each 
shot. Thus  e.g.  protein profi les may be gained in cancer diagnosis ( 523 ). Instead of 
laser impact particle bombardment ionization may be used. Advantages and disad-
vantages of the methods (resolution, mass range, possible decompositions) have 
been discussed ( 524 ). 

 Limitations and pitfalls in protein identifi cation in view of sample preparation, 
mass spectrometric techniques, data processing, databases, and problems inherent 
in the protein structure have been considered ( 485 ).  Esther van Duijn  ( 525 ) slipped 
into the role of an  advocata diaboli  pointing out some cases where question marks 
are appropriate (and stating a reluctance of authors to report negative experiences). 
To these belong:

 –    Disagreements of results: ultracentrifugation of chlorite dismutase of  Azospira 
oryzae  suggested a tetrameric assembly, X-ray crystallography a hexameric and 
mass spectrometry a pentameric one;  

 –   Inhomogeneity of sample material with components that differ only slightly in 
mass resulting in overlapping signals such as human hepatitis B virus capsids, 
which incorporate varying RNA pieces;  

 –   Carrying off of a major portion of charges in CA dissociation of a protein 
 complex by the fi rst departing subunit, leaving the stripped complex with too few 
charges for further dissociation;  

 –   Problems in the calibration of the scale of protein complex cross sections for 
IM-MS due to the lack of standard material.    

 The corollary is that mass spectrometry has become an indispensable tool in 
proteomics, but—to use a term from business life— caveat emptor.    
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  Fig. 116    Fragmentation of ribonucleosides under EI       

8     Nucleosides, Nucleotides, and Nucleic Acids 

 As for proteins and their elements (see the preceding Sect.   7    ), mass spectrometry 
plays an important role for structural work in the nucleic acid fi eld. The techniques 
for sample preparation and for the various ionization modes have been reviewed in 
detail ( 526 – 532 ,  757 ). 

8.1      Nucleobases, Mono-Nucleosides, and Mono-Nucleotides 

 The nucleobases fragment under electron ionization (EI) by elimination of parts of 
the rings (CO, NHCO, NH 3  , etc. ). Such investigations started with the publications 
by  Rice  and by  Dudek  ( 533 ,  534 ), and many others ( e.g.,   221 ,  222  above) including 
related compounds followed. Detailed discussions of the fragmentation sequences 
and literature lists can be found in ( 235 ,  236 ).  Biemann  and  McCloskey  ( 537 ) pio-
neered the investigation of ribonucleosides. The main fragments are the free and 
the protonated nucleobase ([ B  + H] +·  and [ B  + 2H] + ), as well as  B  with parts of the 
ribose (+30, + 44 Da) (Fig.  116 ). The sugar part  S  is observed occasionally. Again, 
detailed discussions and lists of compounds investigated as well as investigations 
on more volatile derivatives (TMS, acetyl, trifl uoroacetyl, isopropylidene) have 
been composed, and references of pertinent literature are available ( 535 ,  536 ). For 
structural work, permethyl derivatives (preferentially CD 3  to distinguish between 
native and introduced methyl groups) are preferable; base and sugar fragments can 
easily be identifi ed ( 538 ) (Fig.  116 ). 

 Chemical ionization (CI) with CH 4  as reagent gas yields abundant [M + H] +  ions 
and as above [ B  + H] +· , [ B  + 2H] + , [ B  + 30] + , and  S  +  fragments ( 539 ), fi eld desorption 
(FD) produces [ B  + H] +· , [ B  + 2H] + , and  S  +  ions ( 540 ). Analogous results were 
obtained with positive fast atom bombardment (FAB), while negative FAB yields 
[M–H] −  and  B  -  ( 541 ). FD and FAB spectra of nucleoside antibiotics have been 
reported ( 542 ). A review on structure elucidation of modifi ed nucleosides can be 
found in ( 543 ) (Fig.  116 ).

   Free mono-nucleotides are too involatile for EI or CI investigations ( 544 ). 
Trimethylsilylated ( 545 ) and methylated ( 546 ) derivatives have proved to be 
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amenable to EI analysis. [ B  + 2H] +  ions can be seen, but the spectra are dominated 
by ions derived from the sugar part and from phosphoric acid. 3′- and 5′-Monophospates 
can be distinguished by abundance differences of the [M–base] +  ions of their TMS 
derivatives ( 547 ). FD spectra of free nucleotides were recorded ( 540 ,  548 ). At low 
emitter temperatures [M + H] +  is observed. With increasing emitter heating, [ B  + H] +·  
and its decomposition products,  S  fragments, and H 4 PO 4  +  prevail. Metastable frag-
mentation of deprotonated nucleotides yields mainly ions stemming from the sugar 
part and from phosphoric acid ( 549 ).  

8.2      Di- and Oligo-Nucleotides 

 The EI mass spectra of trimetylsilylated di-nucleotides allow one to determine the 
nature of the nucleobases present, but isomers such as ApU and UpA differ only in 
the relative abundances of pairs of ions ( 550 ). Field desorption spectra of di- 
ribonucleoside phosphates show [M + H] +  and abundant [ B  + 2H] +  ions ( 551 ). CA 
spectra exhibit intensity differences of several fragments obtained from isomeric 
pairs such as ApC and CpA ( 552 . Methylation products of ApU and UpA were 
studied by FD ( 553 ). 

 Negative FAB mass spectrometry allows the sequencing of oligodesoxyribonu-
cleotides up to ten base units. The ion of highest mass is [M–H] − . Two series of 
fragment ions are observed: cleavages of the phosphate-5′-desoxyribose bonds 
(ions  z  in Fig.  117 ) establish the sequence starting from the 3′-end, while cleavages 
of the phosphate-3′-desoxyribose bonds (ions  w ) give the reversed sequence of ions 
starting from the 5′-end of the molecule, see Fig.  118  ( 554 ,  555 ). Negative FAB 
combined with CA eliminates interferences with matrix ions, but pronounced 
 competing fragmentation reactions such as the loss of bases interfere with the 
 recognition of sequence specifi c ions ( 556 ).

  Fig. 117    Nomenclature proposal for fragment ions of oligonucleotides (after ( 557 ))       

    The current ionization method for structural studies is electrospray (ESI) 
 combined either with a quadrupole or an ICR analyzer ( 557 ). The advantage of the 
latter is the possibility of exact mass measurements, which for the molecular ions 
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  Fig. 118    Negative FAB mass spectrum (sequence relevant regions) of d(GAAGATCTTC). 
Reproduced from ( 555 ) with kind permission of John Wiley & Sons Ltd. ( ©  1985)       
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allow the determination of a unique combination of base units present or at least of 
a  limited number of combinations. It also allows the unambiguous identifi cation of 
fragment ions, especially to differentiate between U and C + H containing species 
(U and C differ in mass only by 1 Da). The main sequence-determining fragments 
are  w  and ( a –base) ions (Fig.  119 ) ( 558 ); see the Addendum.

  Fig. 119    ESI-ICR spectrum from 5′-(CGAGCTCG)-3′. Adapted from ( 558 ) with kind permission 
of the American Chemical Society ( ©  1994)       
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8.3        Polynucleotides, DNA, and RNA 

 For a review on the role of mass spectrometry in the post-genomics age, see ( 559 ). 
 The ionization methods mainly used today in nucleomics are ESI and MALDI. In 

a detailed review ( 560 ), the main aspects and problems are discussed. Typically, [M–
nH] n−  or [M + nH] n+  as well as [M + nNa/K] n+  ions are formed, for ESI preferably with 
higher charge states (for supercharging see ( 729 ) cf. Sect.  7.3 ) and for MALDI typi-
cally singly charged ions. The appearance of the mass spectra is improved when the 
ubiquitous alkali ions are replaced by NH 4  + . Additives to the ESI spray solutions and 
proper selection of the MALDI matrix and laser wavelength have been surveyed. The 
fragmentation mechanisms are reported and the two methods are compared and their 
respective limitations are described (ESI allows the access to higher mass ranges, but 
there are diffi culties in handling complex mixtures; the sensitivity towards salt 
admixtures is lower for MALDI, which in turn has problems with the stability of 
large ions). A mass error of <0.01% is stated for the analysis of oligonucleotides and 
larger nucleic acids if ESI is coupled with a quadrupole analyzer, and ~0.001% for 
coupling with ICR ( 560 ). Occasionally, better results are reported (1 ppm) ( 561 ). In 
the latter publication also the problem is addressed of correctly identifying the isoto-
pic composition of the most abundant peak in the observed cluster. 

 Mass spectrometry seems not to play the same role in nucleomics as it does in 
proteomics. The fi rst attempts to gain information using mass spectrometry were 
made with pyrolysis EI of RNA and DNA samples that allowed at least recognition 
of the bases present ( 562 ,  563 ). The next step was the determination of exact molec-
ular masses (error less than 0.01%) obtained by averaging calculations from the 
experimental values of a series of multiply charged ions ( 564 ). 

 Much effort has been put into indirect methods of sequencing that imply degra-
dation of DNA or RNA, separation and mass spectrometric analysis of the fragments—
techniques that are comparable with the Bottom Up approaches used for the analysis 
of proteins ( 528 ,  530 ). Among the degradation methods besides acid or base cleav-
ages, are the use of base-specifi c endonucleases ( 565 ), and of non- specifi c endo-
nucleases generating di- to octa-deoxynucleotides ( 566 ), and of exonucleases ( 567 ). 
Also a combination of mass spectrometric base sequencing in combination with 
 Sanger  ( 568 ) degradation ( 569 ) or reversed  Sanger  degradation ( 570 ) has been 
attempted. There are advantages compared with the standard gel electrophoresis 
approach (speed, avoiding hazardous chemicals), but there is also a number of prob-
lems in an automatized routine application ( 560 ). In relation to genome projects 
mass spectrometry seems to play no major role ( 571 ,  572 ). 

 Attempts were made to use mass spectral techniques to obtain information on 3D 
structures ( 573 ). One recent example is the reaction with spacers to establish dis-
tances between specifi c domains of the HIV-1 ψ-RNA ( 574 ). 

 A fi eld of lively research is the investigation of the molecular details of genetic 
aberrations subsumed under the term “epigenetics” ( 578 ). So far 144 modifi cations 
of nucleobases in RNA have been recorded ( 618 ). Mass spectrometry can be applied 
both on the protein ( 579 ) and on the DNA/RNA side, so as to demonstrate and 
 quantify variations in the methylation of CpG units ( 580 ), especially in cancer 
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research. The combination of a quadrupole with an ICR analyzer allows the Top-
Down analysis of modifi ed RNA, taking advantage of the need for minimal amounts 
of material, fragmentation by CA, and ultra-high resolution, possibly in combina-
tion with ancillary techniques like obtaining  13 C or  15  N labeled RNA from cultures 
grown with respective substrates. In this way modifi ed nucleobases can be identifi ed 
and located in the base sequence ( 619 ).  

8.4     Interaction with Other Compounds 

 Nucleotides can interact with many compounds and in many different ways. One 
group comprises the covalent binding to O- or N-functions ( 654 ), especially N-7 of 
guanine, such as  e.g.  with afl atoxin B 1  ( 575 ). One of the major analytical problems 
is the low concentration of modifi ed material together with large quantities of native 
material. Refi ned separation techniques are necessary ( 576 ). To cope with the enor-
mous amount of mass spectral data, computer programs have been developed ( 577 ). 

 Degradation to the level of the modifi ed base or nucleoside allows recognition of 
the nature of the modifi cation, but does not give any structural information. 
Enzymatic degradation leads to oligonucleotide fragments where the modifi ed base 
can be located ( 566 ). Under favorable circumstances, very simple mass spectra may 
be obtained, see Fig.  120  ( 581 ).

  Fig. 120    ESI-MS/MS spectrum of a hexanucleotide containing hedamycin bound to G; the charge 
state of the ions (1 −  or 2 − ) is indicated. Adapted from ( 581 ) with kind permission of the American 
Chemical Society ( ©  1997)       
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  Fig. 121    Cisplatin ( 79 ) and BBR3464 ( 81 )       

   More complicated is the analysis of non-covalently bound compounds. This type 
of binding can occur by electrostatic interaction (cationic ligands with the poly- 
anionic backbone), intercalation of planar ring systems, and hydrogen bonds to 
nucleobases, or a combination of modes. Model studies with oligonucleotidic 
assemblies have been reviewed ( 582 ). 

 A special structural type are the DNA G-quadruplexes. Nucleic acids containing 
series of adjacent guanine residues can form square G-quartets, which can be 
stacked to tower-like structures. Small cations as well as organic ligands can be 
bound. Mass spectrometry plays an important role in structural studies, stoichiom-
etry, stability, and ligand exchange kinetics ( 616 ). However, as for protein com-
plexes (see above), it may be asked whether the solution-phase structure is retained 
during the transition into the mass spectrometer ( 617 ). 

 For analysis of metal complexes high-resolution mass spectrometry is advanta-
geous in coping with the complicated isotope patterns of many metals, especially 
if several metal atoms are present. Metal ions can interact electrostatically with the 
phosphate residues, but they can also be bound covalently to the N-7 atoms of the 
purine bases as,  e.g.,  platinum. Thus, cisplatin ( 79 , Fig.  121 ) reacts with the two 
guanines of 5′-CACGTG-3′ ( 80 ). The positive CA spectrum of [ 195 Pt(NH 3 ) 2  +  80 –
H] +  ( m/z  2019) allows one to recognize [ w  3 –NH 3 ] +  ( m/z  1191) containing the two 
guanines and Pt, [ w  2 –NH 3 ] +  ( m/z  1191) and [Pt + 2G + NH 3 ] +  ( m/z  513) (Fig.  122 ). 
Further information may be obtained from CA of the ion  m/z  1191 ( 583 ). A com-
parative study of various activation/dissociation techniques (collision activation, 
CA; UV photodissociation, UVPD; IR multiphoton dissociation, IRMPD; electron 
transfer dissociation, ETD) performed with oligonucleotide cisplatin adducts 
showed that the best structural results were obtained with photodissociation (UV 
or IR) ( 635 ).

    Binding experiments of the anticancer drug BBR3464 ( 81 , Fig.  121 ) containing 
three  trans- confi gured Pt centers, with single and double stranded DNA and RNA 
pieces containing 20 bases, showed that the drug could react with one or with both Cl 
atoms, as evidenced by ESI-FTIR mass spectrometry. CA gave no further structural 
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information ( 584 ). A detailed study deals with the ESI tandem MS analysis of the 
interaction of the duplex hexamer d(5′GCATGC) with metal dications bound to sev-
eral antibiotics. The intention was to provide “a basis for the assessment of the pos-
sible binding modes between duplex oligonucleotides and metallocomplexes” ( 585 ). 

 Non-covalent protein/DNA or RNA conjugates play an important role in many 
cellular processes. Some of these are only fl eeting intermediates. Mass spectromet-
ric analysis especially with ESI has been employed to answer some questions. 
A major problem is the sample preparation because stabilization of the complex and 
requirements of ESI are not easy to be reconciled, as there are buffers, salt concen-
tration,  p H, temperature,  etc.  Experiments with essential fragments of either com-
ponent, investigations with native material and subsequent degradation, studies with 
spacers linking the two components have been performed. To determine for the latter 
the connection  loci  sequencing is possible, taking into account that for the nucleo-
tide and for the peptide part different techniques are necessary ( 586 ). On the whole, 
the matter is too complex for a detailed coverage here; two review articles should be 
consulted for further information ( 582 ,  587 ).   

9     Mass Spectra Collections 

 A systematic collecting of EI mass spectra started with the API catalog ( 10 ). The 
contributors had realized that the appearance of an EI mass spectrum depended to 
some extent on experimental parameters, and API spectra were determined under 
strictly standardized conditions with an accuracy never reached since. Recent col-
lections such as the Wiley Registry ™  draw their material from many sources and the 
quality of the spectra varies drastically. The main sources of the shortcomings are 
impure samples and incompletely separated mixtures, wrong structures, and mis-
takes in the evaluation of analog-recorded spectra. 

  Fig. 122    Positive ESI-CA spectrum of the cisplatin complex of  80 . Reproduced from ( 583 ) with 
kind permission of the Royal Society of Chemistry ( ©  2000)       
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 The majority of collections comprise EI spectra, sometimes together with 
 chromatographic data such as  Kovats  indices, or with other spectral data as in the 
NIST collection ( 220 ). Those for other ionization techniques are mainly dedicated 
to limited substance classes. Search algorithms have been developed, for EI spectra 
 e.g.  ( 592 ,  593 ); some for special areas are mentioned in the preceding sections. 

9.1     General 

 Golm Metabolome Data Base provides GC-MS data of plant metabolites ( 589 ). 
 Human Metabolome Data Base contains LC- and GC-MS data of endogenous 

metabolites ( 591 ). 
 MassBank collects mass spectra (EI, FAB, ESI-MS 2   etc.  of compounds with masses 

<3,000 Da from life sciences. A detailed description can be found in ( 588 ). 
 NIST/EPA/NIH Mass Spectral Library (NIST11) contains EI spectra of over 

200,000 compounds measured specifi cally for the library. 
 Wiley Registry ™  10th Edition/NIST 2012 Mass Spectral Library (2011). Wiley: 

Hoboken, NJ, USA. Offers spectra of over 700,000 compounds. 
 Yarkov A (2004) Mass Spectra of Organic Compounds (SpecData). Wiley: Hoboken, 

NJ, USA. Offers spectra of almost 40,000 compounds.  

9.2     Alkaloids 

 Hesse M (1974) Indolalkaloide, Teil 2: Spektren. In: Budzikiewicz H (ed) Progress 
in Mass Spectrometry, vol 1. Verlag Chemie: Weinheim, Germany. This volume 
contains spectra of 241 indole alkaloids. See also ( 113 ,  114 ).  

9.3     Drugs, Poisons, Pesticides, and Pollutants 

 Kühnle R (2006) Mass Spectra of Pharmaceuticals and Agrochemicals, Wiley- 
VCH: Weinheim, Germany. The collection includes 4,563 mass spectra. 

 Kühnle R (2009) Mass Spectra of Pesticides, Wiley-VCH: Weinheim, Germany. 
The collection includes 1,238 mass spectra. 

 Maurer HH, Pfl eger K, Weber AA (2011) Mass Spectral and GC Data of Drugs, 
Poisons, Pesticides, Pollutants and Their Metabolites, 4th Ed, 1,624 pages, 
Wiley- VCH: Weinheim, Germany. The collection comprises almost 9,000 data 
sets from potentially harmful substances. 

 Oberacher H (2012) Wiley Registry of Tandem Mass Spectral Data, MS for ID. This 
high mass-accuracy LC-MSMS library contains 10,000 positive and negative 
mode spectra of over 1,200 compounds of interest for forensics, toxicology, and 
pathology (illicit drugs, pharmaceutical compounds, pesticides, and small bioor-
ganic molecules) ( 642 ). 
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 Parr MK, Opfermann G, Schänzer W, Makin HLJ (2011) Mass Spectra of 
Physiologically Active Substances: Including Drugs, Steroid Hormones, and 
Endocrine Disruptors. Wiley-VCH: Weinheim, Germany. This contains over 
4,000 mass spectra and chemical structures. 

 Rösner P (2013) Mass Spectra of Designer Drugs, Wiley-VCH: Weinheim, 
Germany. This contains over 19,000 mass spectra of over 19,000 substances, 
mainly EI but also other types of spectra. Data on warfare agents were added in 
the 2010 edition.  

9.4     Flavors and Fragrances 

 Mondello L (2011) FFNSC 2.0 Flavors and Fragrances of Natural and Synthetic 
Compounds—Mass Spectral Data Base. Wiley: Hoboken, NJ, USA. The collec-
tion contains 3000 mass specra.  

9.5     Geo- and Petrochemicals 

 De Leew JW (2003) Mass Spectra of Geochemicals, Petrochemicals and Biomarkers. 
Wiley-VCH: Weinheim, Germany. Contains 1100 mass spectra.  

9.6     Lipids 

 For prostaglandins and related compounds, see ( 590 ).  

9.7     Steroids 

 Makin HLJ, Nolan J, Trafford DJH (1998) Mass Spectra and GC Data of Steroids: 
Androgens and Estrogens. Wiley-VCH, Weinheim, Germany. 

 Makin HLJ (2008) Mass Spectra of Androgens, Estrogens and other Steroids. 
Wiley-VCH: Weinheim, Germany. This contains 3722 mass spectra.  

9.8     Terpenes 

 Adams RP (2007) Identifi cation of Essential Oil Components by Gas 
Chromatography/Mass Spectrometry, 4th edn. Allured Publishing Corporation, 
Carol Stream, IL, USA. 

 Gaskin P, MacMillan J (1991) GC/MS of Gibberellins and Related Compounds: 
Methodology and a Library of Spectra. Cantock’s Enterprises, Bristol, UK.   
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10    Addendum 

 To Sect.  3.2.4  D9(11)-Triterpenes 

    The ion [M−167] +  of high abundance ( cf. m/z  243, ion  b  in Figs. 23 and 25) claimed 
to be characteristic for Δ 9(11) - friedo  systems ( 728 ) unsubstituted in rings C/D/E ( 726 ) 
are also observed for Δ 7,8 - ( 94 ,  712 ) and Δ 8,9 -compounds ( 727 ). Analogous loss 
([M−225] + ) from 29-acetoxy compounds (Δ 8,9  and Δ 9(11 ) is of low abundance ( 75 ). 

 To Sect.  4.1.1.1  Biogenic Amines 

 The toxic constituents of the skin of the Chinese giant toad  Bufo bufo gargarizans , 
used in Chinese traditional medicine, have been investigated in detail (for a review of 
the compounds isolated from the skin of the toad, see ( 609 )). In addition to serotonin 
and its known derivatives ( 603 ,  610 ) an  N , N- dimethyl- N - oxide   26  ( 22 -  N -oxide) was 
found ( 610 ). Further previously unincountered derivatives of serotonin are bufobuta-
noic acid, 27   i.e.  the  N -succinamide of  22 , bufopyramide  85  ( 613 ), and the bufoseroto-
nins A-C ( 640 ), serotonin with a terminal urea unit, the  N -suberamide and a compound 
where the amino group is incorporated in a 2-acetyl-4-acetamido pyrrole ring. In 
addition, a compound derived from tyrosamine ( 82 ) is reported ( 608 ), as well as 
derivatives of a strange amino acid, the latter suggesting a combination of serine or 
alanine with 4-hydroxyornithine (Fig.  123 ). These compounds were named bufogar-
garizanine B ( 83 , R = CH 2 OH), C ( 84 ) ( 606 ) and D ( 83 , R = CH 3 ) ( 607 ). 28  ,  29  From 
these compounds only FAB and/or ESI mass spectral data are given. In addition, 
imidazole, purine, and pyrazolopyridazine derivatives were found ( 777 ). From the 
skin secretion of the African frog  Phrynomantis microps , which protects against 
aggressive ants, two peptides comprising nine and eleven amino acids, respectively 
could be isolated as the main components. Their structures were established by 
LC-ESI-CID tandem mass spectrometry and confi rmed by synthesis ( 743 ).

   To Sect.  4.3.3  Ichthyotoxins 

 The term “ichthyotoxin” is ambiguous. It comprises compounds toxic to fi sh as well 
as those obtained from venomous fi shes, the latter acquired either by food as  e.g.  
from dinofl agellates or genuine, peptidic poisons such as the pardaxins ( 623 ), 

26   Reference is given to ( 611 ). There are among other data major ions of an EI mass spectrum 
reported. The ion referred to as M +·  ( m/z  204) is 16 Da too low and the fragment ions correspond 
to those obtained from  22  (see Fig.  33 ). This would mean that the true M +·  ( m/z  220) is missing 
completely and only [M–O] +·  is obtained, an unlikely proposition (generally not observed for 
 N -oxides; even the EI mass spectrum of (CH 3 ) 3 NO yields M + .  ( m/z  75) with 100% and [M−O] +·  
with 50% relative intensity. It seems more likely that the mass spectrum of  22  had been obtained. 
27   For total syntheses, see ( 614 ). 
28   In the Master’s thesis of  Li-Ping Dai  ( 612 ) bufogargarizanine D is designated as bufogargariza-
nine A. In addition to NMR data the ESI mass spectra of all three bufogargarizanines are repro-
duced, but they show besides [M + H] +  or [M–H] −  signals of low to medium abundance a large 
number of peaks not belonging to the compounds in question. 
29   Bufogargarizanines should not be confused with bufogargarizins, which are 19- nor -bufadienolides 
from the same animal ( 652 ). 
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  Fig. 123    Compounds obtained from the skin of  Bufo bufo gargarizans        

steroids such as the mosesins ( 624 ), and a few others that due to having a nitrogen 
atom can be mentioned in this contribution. 

 To these belong the  pavoninins  related to the  mosesins  above from the sole 
 Pardachirus pavoninus  ( 625 ,  626 ), cholesterol derivatives with an  O -acetyl group at 
C-26 and an  N -acetylglucosamine residue at  C -7 or  C -15. SIMS- and FD mass spec-
trometry was used to determine the molecular masses and show losses of the sugar 
residue and of ketene from the acetate unit. EI data document analogous losses. 

 From the smooth trunkfi sh  Lactophrys triqueter  the palmitic acid ester of choline 
( 86 ) was obtained accompanied by a small amount of the margarinic (C 17 ) acid ester. 
The structure of  86  was established by identifi cation of the hydrolysis products and 
by synthesis. CI mass spectrometry with NH 3  yielded [M–Cl] + , CI with CH 4  the char-
acteristic fragments of palmitic acid (see Sect.  5.1 ) ( 627 ). From the Hawaiian boxfi sh 
 Ostracion lentiginosus  stems was obtained a related compound named pahutoxin, the 
choline ester of ( S )-3-acetoxy-hexadecanoic (palmitic) acid ( 87 ) ( 628 ,  629 ). 

 ( S )-C 13 H 27 -CHR-CH 2 -COO-CH 2 -CH 2 -N + (CH 3 ) 3  Cl −  
  86 : R = H,  87 : R = CH 3 COO 

 From the mucus of the soapfi sh  Diploprion bifsciatum  the 18-membered poly-
amine lactam ( 88 ), lipogrammistin-A, could be isolated. Its absolute stereochemis-
try was established by total synthesis ( 630 ,  631 ) (confi gurations ( S ) at each of the 
three chiral centers). The EI mass spectrum of  88  shows M +·   · ( m/z  590), loss of C 4 H 9  ·  
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and of C 4 H 9 CO ·  ( m/z  533 and 505), and as the main fragment the ion  ·  m/z  437 
(α-cleavage of the C 11 H 21  chain). EI mass spectral data of the synthetic  intermediates 
are also reported ( 631 ). 

 From the roe of the northern blenny  Stichaeus grigorjewi  a mixed adenosine-
containing phospholipid named  dinogunnelin  was obtained. Based on degradation 
(adenine, ribose, aspartic acid, NH 3 , saturated and unsaturated fatty acids, glycero-
phosphoric acid) studies and rather crude IR and NMR spectra in 1976 the structure 
 89  was suggested ( 632 ,  633 ). It took another 33 years until a modifi ed structure  90  
based on FAB mass spectrometry and modern NMR techniques could be presented 
( 634 ). The data having led to  89  can be reconciled with  90  with the exception of the 
fatty acid composition (mainly C 16,  C 18 , C 20  saturated and mono-unsaturated  vs.  C 18  
and C 20  highly unsaturated) and especially of glycerophosphoric acid. The crude 
extract of the eggs should be investigated in more detail (Fig.  124 )   .  

  Fig. 124    Ichthyotoxins 90a - 90d       
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 From tissue samples modifi ed amino acids have been obtained. Among these are 
urocanic acid (see above) ( 731 ), urocanic acid substituted at  N -1 with –C(CH 3 ) 2 –
CH 2 –COCH 3  (partial EI-MS of the methyl ester) ( 732 ), cyclodipeptides (Hyp-Pro 
and Hyp-Leu;  cf.  Sect. 7.2.2) ( 733 ), and hydantoins ( 734 ), for EI-MS data, see ( 597 , 
 735 ,  736 ). 

 Painful encounters ( 770 ) with the toxic spines of the weever fi sh ( Trachinus , 
“Petermännchen” in German) are reported each summer especially from the 
European coasts. Active substances in the poison of  Trachinus vipera  are serotonin 
and a histamine-releasing protein ( 771 ,  772 ), in that of  Trachinus draco  histamine, 
epinephrine, norepinephrine ( 773 ), and a protein (dracotoxin, molecular mass about 
105 kDa) with hemolytic activity ( 774 ). The identifi cation of the biogenic amines 
( cf . Section 4.1.1.1) had been effected by chromatography and color reactions; their 
re-investigation and that of dracotoxin with modern techniques would be advisable. 

 Food poisoning by spoiled fi sh may be caused by large amounts of histamine 
resulting from bacterial degradation of peptides and enhanced by urocanic acid 
(imidazolyl-4-acrylic acid) formed by elimination of NH 3  from histidine ( 730 ); for 
an EI mass spectrum, see ( 731 ). 

 To Sect.  4.5  Mammals and Mankind 

 5 α ,6 α -Cholesterol epoxide reacts  in vitro  under enzyme catalysis with histamine to 
give dendrogenin A ( 91 , Fig.  125 ), which was also detected in mammalian cells 
showing antitumor activity ( cf.  squalamine, Sect.  4.3.2 ). ESI mass spectrometry 
yields [M + H] +  ( m/z  514), MS 2  and MS 3  result in consecutive losses of H 2 O, MS 4  in 
the degradation of the histamine chain by partially not obvious reactions. A mass 
shift of 7 Da of all these ions in the spectrum of the 25,26,26,26,27,27,27-D 7 -analog 
of  91  indicates that fragmentation cannot have occurred in the hydrocarbon side 
chain. For the mass spectra, see Supplementary Material of the manuscript ( 651 ). 
For the early history of leucomaine and ptomaine investigation, see ( 755 ). 

  Fig. 125    Dendrogenin A ( 91 )       
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 For C-1 saturated alkyl ethers CID of the [M–H–ketene] −  ion produces only low 
abundance ions due to the loss of the alcohol, but CID of the [M–ketene–ethanol–
amine] −  ion results in an abundant loss of the alcohol. Thus, an unambiguous 
 distinction between the groups of saturated and unsaturated C-1 ethers is possible. 

 This technique can also be applied to other classes of glycerophospholipids 
(Fig. 77) except for choline compounds, which do not form [M–H] −  ions. For these, 
an analogous scheme starting from [M–CH 3 ] −  has been developed ( 763 ). 

 To Sect.  5.2.3 . Glycerophospholipids 

    Isolates of glycerophospholipids from natural sources are mixtures of subclasses 
with an  O -acyl group, an  O -alkyl group or an  O- alk-1-enyl group at C-1 of glycerol 
(Fig. 77). A differentiation especially of the latter two groups is possible by multi-
stage ESI-MS in the negative mode starting from [M–H] −  as demonstrated for etha-
nol amine representatives ( 762 ). [M–H] −  upon CID yields abundant fragment ions 
corresponding to R-COO −  from the C-2 substituent and to ions due to the loss of the 
acid (R-COOH) and of the corresponding ketene. Further CID of the [M–H–ketene] −  
ion results for  O- alc-1-enyl compounds in the loss of the alcohol unit, the formation 
of the alcoholate anion, and in the loss of ethanol amine; additional CID of the latter 
ion yields again the alcoholate anion (Fig.  126 ) 

  Fig. 126    Glycerophospholipid fragmentation scheme under ESI-MS-CID       
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 For the analysis of oxidation products of glycerophospholipids by ESI-MS/MS, 
see ( 746 ,  765 ). 

 To Sect.  8.2 . Di- and Oligonocleotides 

    The collision induced fragmentation of [M+H] + , [M+2H] 2+ , and of [M−H] −  obtained 
by electrospray ionization of cyclic dinucleotides (bacterial messenger substances 
( 760 )) were compared ( 759 ). Splitting off of base units and degradations initiated by 
cleavage of phosphate bonds are the main processes. 
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1            Introduction 

 For at least the fi rst 60 years of the twentieth century, natural product structure 
elucidation was a lengthy and extremely diffi cult task, usually involving numerous 
synthetic and degradative reactions. As such, it attracted the attention of many of the 
world’s leading synthetic organic chemists. However, since then, dramatic improve-
ments in nuclear magnetic resonance (NMR) spectroscopy, along with similar 
advances in mass spectrometry, X-ray crystallography, and chromatography, have 
totally revolutionized natural product structure elucidation. For example, although 
strychnine ( 1 ) had been purifi ed from its plant source over a century earlier, it took 
more than 40 years of effort by several research groups, before its structure was 
fi nally determined by Sir  Robert Robinson  in 1946 ( 1 ) and later confi rmed by a total 
synthesis of strychnine by  R.B. Woodward  and co-workers ( 2 ). Now with modern 
NMR methods and a state-of-the-art NMR spectrometer, the total structure of 
strychnine could be determined in 24 h using less than 1 mg of sample.
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    This is partly due to dramatic improvements in spectrometers. For example, one 
of the authors ( WFR ) got his start in NMR in 1960, using a 60-MHz spectrometer 
with a guaranteed proton signal/noise ( S / N ) of 10:1 for 1.0% ethylbenzene. Now 
spectrometers are available up to 1,000 MHz, and  S / N  specifi cations on 
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cryogenically cooled probes are approaching 10,000:1 for 0.1% ethylbenzene! 
However, developments in methodology have been equally critical. Of these, the 
development of  Fourier  transform (FT) NMR by  Wes Anderson  and  Richard Ernst  
in 1966 ( 3 ) and two-dimensional (2D) NMR by  Richard Ernst  in 1976 ( 4 ) were 
particularly important, with  Ernst  receiving the 1991  Nobel  Prize in Chemistry for 
his contributions ( 5 ). 

 This chapter is written with the goal of helping natural product chemists use mod-
ern NMR methods as effectively as possible for natural product structure elucidation. 
It is assumed that the reader will have at least a basic knowledge of the use of NMR 
in organic chemistry, at the level covered in senior undergraduate or graduate courses 
in spectroscopic methods for organic structure determination and as provided by texts 
such as  Silverstein et al . ( 6 ) or  Lambert et al . ( 7 ). Therefore, topics such as typical 
values of chemical shifts and coupling constants and factors affecting these parame-
ters will not be discussed. Instead, emphasis will be placed on the rapid determination 
as to whether an isolated compound is known or new, the information content of dif-
ferent 2D and selective 1D experiments, their use in combination for structure eluci-
dation, possible pitfalls in structure determination by NMR and how these can be 
avoided or overcome, and the use of computer-assisted structure elucidation (CASE). 
Considerable space will also be devoted as to how to make the correct choices of 
acquisition parameters and data processing methods and parameters. While this topic 
has been discussed in two books ( 8, 9 ) and at least two review articles ( 10, 11 ), the 
importance of this topic seems to be underappreciated by most users of NMR. In this 
regard, it is important to recognize that the default parameters provided in the manu-
facturers’ software packages or a widely used book, which provides default parame-
ters for many NMR experiments ( 8 ), may not be ideal and that sometimes dramatic 
improvements in results can be obtained by different choices ( 12 ). 

 The references given in the various sections are intended to be representative 
rather than comprehensive and are often chosen from our own published work. 
Finally, in places the authors refer to specifi c NMR spectrometer manufacturers and 
their products. This is done so that the reader is aware of various options available 
and the different procedures that sometimes have to be followed in processing or 
interpreting the data obtained on different spectrometers due to hardware and/or 
software differences. It should not be taken as indicating a preference of one spec-
trometer over another.  

2      Dereplication: Distinguishing Between New 
and Known Natural Products 

 Much of current natural product research involves bioassay screening of crude chro-
matographic fractions, followed by separation of fractions with promising activity 
into pure compounds for further detailed testing. Both in terms of time and cost, it 
is important to be able to quickly identify any known compounds to avoid wasting 
valuable analytical instrument time on detailed characterization of known 
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compounds. However, it is also important that this identifi cation process be suffi -
ciently reliable so that there is minimal risk of mistaking an unknown compound for 
a known compound. Unfortunately, these two requirements confl ict, forcing one to 
compromise either speed or reliability to a certain extent. The advantages and dis-
advantages of the various approaches that can be used are discussed below. 

 In view of its intrinsic high sensitivity, mass spectrometry (MS) is a logical initial 
choice for dereplication, most commonly in conjunction with liquid chromatography 
(see this volume,  Budzikiewicz H  (2014) Mass Spectrometry in Natural Product 
Structure Elucidation. Progr Chem Org Nat Prod 100:77). Only a small fraction of 
the crude extract will often be suffi cient for an LC-MS investigation, using either low 
(LR) or high (HR) resolution MS. While LR-MS is quicker, it is not suffi ciently accu-
rate to determine exact molecular formulae, and there are often a large number of 
structures consistent with the parent ion. HR-MS will give the empirical formulae for 
a much smaller number of possible structures. Even in the ideal situation where only 
one empirical formula is consistent with the exact mass within acceptable error limits 
(usually 5 ppm), there can still be a number of isomeric structures consistent with this 
mass. However, MS databases (see this volume,  Budzikiewicz H  (2014) will usually 
list all known structures consistent with an empirical formula. In principle, one may 
be able to use MS fragmentation patterns to favor one structure over the others. 
However, the fragmentation pattern and/or the relative intensities of fragment ions 
can be different, depending on the ionization source and/or ionization energy. In addi-
tion, there can be ambiguities in the interpretation of fragmentation patterns. For 
example, a number of years ago, we determined the structure of a triterpene, 3-acety-
laleuritolic acid ( 2 ), by 2D NMR and discovered that three different structures (one 
of which was correct) had been proposed for the same compound, mainly based on 
different interpretations of the MS fragmentation pattern ( 13 ).
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    An alternative, intermediate sensitivity, approach is to use  1 H NMR spectroscopy 
for dereplication. While in principle this can be done by LC-NMR in fl ow mode, it 
is better to collect the samples in solid phase extraction cartridges and then transfer 
them to NMR tubes (see Sect.  11 ). Ideally, spectra should be obtained using either 
a cryogenically cooled probe or microprobe for maximum sensitivity (see Sect.  12 ), 
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but unfortunately these probes are not available to many natural product groups. 
However, even using 5-mm tubes in an ambient temperature probe, one can get 
adequate  1 H spectra in no more than one minute with 1 mg of sample. The main 
problem with  1 H NMR for dereplication purposes is that the appearance of these 
spectra can change signifi cantly with spectrometer frequency and solvent. Thus, it 
may be diffi cult to determine with certainty whether a particular spectrum is identi-
cal to one from a database, which was obtained under different experimental condi-
tions. However, several open access and commercial databases also include 
programs, that will predict the appearance of a  1 H spectrum for a given structure at 
a given frequency (NMRWiki provides a list of NMR databases ( 14 )). Thus, if one 
has a list of candidate structures from HR-MS, one can compare the calculated 
spectra for these compounds with an experimental spectrum, hopefully leading to 
the most probable structure. 

 Clearly, the most reliable identifi cation of a known compound would be provided 
by a combination of a  13 C NMR spectrum and a HR-MS spectrum. For that reason, 
journals increasingly require both a good quality  13 C spectrum and a HR-MS spec-
trum when reporting a new organic compound. Unfortunately, however, the intrinsic 
low sensitivity of  13 C NMR often makes it impractical to use a full  13 C spectrum for 
dereplication purposes unless one is fortunate enough to have access to a cryogeni-
cally cooled probe optimized for  13 C detection. However, a good compromise is to 
obtain a DEPT-135 spectrum (Sect.  14 ) or an edited HSQC spectrum (Sect.  10 ). Both 
spectra give  13 C data for all protonated compounds with CH and CH 3  peaks of oppo-
site phase to CH 2  peaks and can be obtained in similar time and signifi cantly more 
quickly than for a full  13 C spectrum ( 10 ). However, the HSQC spectrum has the addi-
tional major advantage of providing the chemical shifts of the proton(s) attached to 
each specifi c carbon. In addition, the use of non-uniform sampling along the evolution 
axis ( 15 ) has the potential to further increase the sensitivity of HSQC spectra ( 16 ). 

 Even greater time saving can be achieved by using either the SOFAST-HMQC 
sequence of  Brutscher  ( 17 ) or the ASAP-HMQC sequence of  Kupce  and  Freeman  
( 18 ). Both of these sequences allow the use of far shorter than usual relaxation 
delays, dramatically reducing the time to acquire a 2D  1 H– 13 C correlation spectrum. 
For example, it has recently been shown that one can obtain a high quality HMQC 
spectrum on a 400-MHz spectrometer in under one minute for a 5 mg sample of a 
compound of over 400 molecular weight, using the ASAP-HMQC sequence ( 19 ). 
The only disadvantages of these sequences are that they do not provide spectral edit-
ing and have poorer  13 C resolution than provided by HSQC spectra. Nevertheless, 
they have tremendous potential, particularly for rapid screening and dereplication. 

 It is unfortunate that, so far as we are aware, none of the existing  1 H/ 13 C databases 
are integrated to take advantage of the additional information provided by HSQC 
or HMQC,  i.e . they do not correlate  1 H chemical shifts with the  13 C chemical 
shifts of the carbons to which the protons are bonded. However, we understand that 
this integration is in progress and, when integrated  1 H/ 13 C databases are available, 
this in conjunction with HR-MS will provide a highly reliable approach for 
dereplication. 
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 One problem with the use of NMR databases for dereplication is that full spectral 
assignments are not available for many older known compounds. Unfortunately, 
natural product journals usually will not allow publication of assignments for known 
compounds unless one has data for a signifi cant number of related compounds. 
However, several open access databases will accept these data ( 14 ). Thus, we would 
strongly encourage natural product chemists to carry out full assignments for known 
compounds, where these are not available, and deposit the information in at least 
one of these databases, for the benefi t of all in the fi eld. Procedures for making these 
assignments, using combinations of 2D NMR spectra, are discussed in Sect.  4 . The 
same procedures can be used to identify the structures and fully assign the spectra 
of new compounds.  

3     Quantitative NMR 

 One very important advantage of  1 H NMR over all of the other types of spectros-
copy used in natural product chemistry is that it is intrinsically quantitative. To real-
ize this advantage, it is necessary to take reasonable care in the choice of acquisition 
parameters, but this is not diffi cult (see Sect.  14  for a discussion of parameter 
choices). There has been a recent signifi cant increase in interest in the use of quan-
titative NMR in the natural product fi eld ( 20, 21 ), and there is now a website devoted 
to this topic, which is an excellent source of information ( 22 ). 

 There are two ways in which quantitative  1 H NMR measurements can be carried 
out. The fi rst approach, which is particularly suitable for natural product investiga-
tions, is to use these measurements to determine the relative amounts of different 
compounds in a complex mixture ( 20 ). There are two basic requirements. First, 
there must be at least one well-resolved peak (corresponding to a known number of 
protons) for each compound so that the relative amounts can be estimated from the 
integrated areas of the resolved peaks. It may be diffi cult to meet this requirement 
for complex mixtures so the use of the highest fi eld available spectrometer is 
strongly recommended. Second, ideally one should know the identities of the differ-
ent compounds in the mixture. Unfortunately, this often is not known and may be 
diffi cult to determine for minor components. However, if the goal is to determine 
the relative purity of a single major component, then the knowledge of the exact 
structures of minor components may not be essential ( 23 ). 

 Alternatively, quantitative  1 H NMR can be used to determine the absolute con-
centration of a compound. This requires the use of a reference standard of known 
concentration. In the past, some form of internal reference has been commonly 
used. The reference compound needs to be non-volatile (so that the amount added 
to the sample can be accurately weighed), not react with the compound of interest, 
and have a peak (preferably a singlet) in a region of the spectrum otherwise free of 
peaks. It is also desirable that reference compounds not have other peaks that over-
lap with the spectrum of the compound for which the concentration is to be 
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determined. The internal reference should also be a compound that can be easily 
separated from the natural product to facilitate recycling of rare samples after NMR 
spectroscopy! 

 An alternative approach, which is increasingly being adopted, is to use an exter-
nal reference. The two major NMR spectrometer manufacturers favor different 
methods of referencing. The fi rst approach, which goes by the name, ERETIC, is 
most commonly used with Bruker spectrometers ( 24 ). This involves electronically 
adding a reference signal of known intensity. The signal is injected into an unused 
coil on the spectrometer ( e.g . the heteronuclear coil when acquiring proton spectra) 
at a clear region of the spectrum. The reference signal can be calibrated by compar-
ing its integral with that of a standard solution of known concentration. The main 
problem with this approach is that the relative areas of the reference signal and the 
sample signals (which are detected on different coils of the probe) are slightly 
dependent on the nature of the sample solution, with the biggest problems occurring 
with “lossy” samples, particularly those with high salt concentrations. Various pro-
cedures to correct this type of error have been suggested,  e.g . PULCON ( 25 ) and 
QUANTAS ( 26 ), which can reduce the uncertainties in this type of measurement to 
under 1%. This requires accurate recalibration of the 90° pulse width for each sam-
ple to ensure maximum precision. 

 The second approach, favored by Agilent ( 27 ), takes advantage of the high lin-
earity and reproducibility of modern NMR spectrometers. In this case, the reference 
standard is fi rst measured in one tube then the sample is run in the second tube. 
Ideally, the same solvent should be used for both tubes. If the reference sample is 
measured periodically, the reported precision is similar to that reported using 
PULCON or QUANTAS. However, if the reference measurement is repeated before 
each new sample, even higher precision (well under 1%) is claimed. It appears that 
environmental conditions (particularly variations in the laboratory temperature) 
provide the largest source of error with either method and this is minimized if the 
calibration is repeated for each new sample ( 27 ). 

  13 C NMR spectroscopy can, in principle, also be used for quantitative 
 measurements, with the increased resolution of  13 C spectra an attractive feature for 
complex mixtures. However, this is very diffi cult in practice. The major stumbling 
block is the far lower sensitivity of  13 C NMR relative to  1 H NMR, making it very 
diffi cult to obtain accurate integrals of peak areas. In addition, there are large differ-
ences in  T  1  relaxation times between protonated and non-protonated carbons in 
organic compounds, requiring extremely long relaxation delays in order to get com-
parable signal intensities for the two types of carbons. A related problem is that the 
nuclear  Overhauser  enhancements (N O Es) are often signifi cantly smaller for non- 
protonated than protonated carbons. In order to make the entire spectrum quantita-
tive, one must combine a long relaxation delay (ideally 5    T  1  of the slowest relaxing 
carbons) with N O E suppression. The latter is accomplished by gating the decoupler 
off during the relaxation delay, turning it on only during the acquisition period. 
Unfortunately, this aggravates the problem of low  13 C sensitivity by further reducing 
the signal/noise ( S / N ) through N O E suppression. 
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 However, if the goal is specifi cally to determine the relative amounts of two or 
more compounds in a mixture or the absolute amount of a single component relative 
to a reference compound, these problems can be minimized by solely measuring 
peak areas for one or more protonated carbons. Particularly,  T  1  values for methine 
or methylene carbons of natural products are typically less than 1 s, allowing the use 
of a relatively short relaxation delay. However, if precise quantitative data are 
required, N O E suppression should still be used because the N O E values for differ-
ent carbons may not be exactly the same. Finally, the possibility of carrying out 
quantitative  13 C NMR measurements is signifi cantly improved if one has access to 
a cryogenically cooled probe, particularly when optimized for  13 C detection.  

4      Using 2D NMR to Determine Skeletal Structures 
of Natural Products 

 By 1984, it was apparent that 2D NMR was a potentially powerful technique for 
investigating structures of natural products ( 28 ). However, the investigations up to 
that time had involved the use of  1 H– 1 H homonuclear correlation spectroscopy 
(COSY) and one-bond  1 H– 13 C heteronuclear correlation spectroscopy. These two 
types of spectra together could determine protonated carbon fragments of molecules 
but could not provide total structures. However, three publications in 1984 demon-
strated the use of long-range ( i.e . separated by two or three bonds)  1 H– 13 C hetero-
nuclear correlation spectroscopy to determine complete structures by combining 
different protonated carbon fragments together into complete structures  via  correla-
tions to quaternary carbons and/or through heteroatoms from one protonated carbon 
fragment to another ( 29–31 ). The fi rst two of these publications mainly focused on 
correlations to carbonyl groups in polypeptides, but the third applied the technique 
more broadly to assign the structure and spectra of a diterpene, kauradienoic acid ( 3 ).
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    This provided the basic combination of techniques, which is still used for natural 
product structure elucidation, and a large number of publications using long-range 
correlation soon appeared. We believe that the earliest example, which most clearly 
indicated of the power of this technique, was provided by the determination of the 
structure of guyanin ( 4 ), a tetranortriterpene of unprecedented structure, solely by 
this combination of 2D experiments ( 32 ). Guyanin ( 4 ) has 36 heavy atoms (28 car-
bons and 8 oxygens) but only 17 protonated carbons and no sequences of protonated 
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carbons greater than two. Thus, it would have been impossible to determine the full 
skeletal structure without long-range  1 H– 13 C correlation data.
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    The basic COSY sequence ( 33 ) is still in wide use to date, usually with the use of 
z-axis gradients for coherence pathway selection. This is sometimes supplemented 
by TOCSY (“total correlation”) spectra, which can provide correlations in a whole 
sequence of coupled protons ( 34 ). Early  1 H– 13 C correlation experiments involved 
 13 C (“direct”) detection. One-bond correlation spectra were mainly obtained with 
the HETCOR sequence ( 35 ) while long-range experiments were either obtained 
with the basic HETCOR sequence optimized for long-range coupling constants ( 29, 
31 ) or with one of three sequences specifi cally designed for this purpose ( 30 ,  36 ). 
However, the  1 H– 13 C correlation experiments are now almost exclusively obtained 
using  1 H (“indirect”) sequences to take advantage of their higher sensitivity. One-
bond spectra were originally mainly obtained with the HMQC sequence ( 37 ) but 
now often with the HSQC sequence (38). Long-range  1 H– 13 C correlation spectra are 
almost exclusively obtained with one of the variants of the basic HMBC sequence 
( 39 ). The relative advantages and disadvantages of some of the alternative versions 
of the various 2D sequences are discussed in the following section. 

 The basic approach to assembling a structure from the correlation data from 
 different 2D experiments is similar to putting together the pieces of a jigsaw puzzle. 
This has been illustrated in detail for T-2 toxin ( 5 ) ( 40 ). We will illustrate the same 
approach using spectra for kauradienoic acid ( 3 ) in Sect.  7 .
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    The largest obstacle until now in using this approach to determine skeletal struc-
tures of natural products and other organic compounds is the lack of any sequence 
that could clearly distinguish between 2-bond and 3-bond  1 H– 13 C correlations to 
non-protonated carbons. This can lead to ambiguities and possible alternative struc-
tures. However, it has recently been shown that the 1,1-ADEQUATE sequence ( 41 ) 
can be used to specifi cally identify all two-bond H-C correlations ( 42, 43 ). In turn, 
this can dramatically decrease the amount of time needed and the number of alterna-
tive structures generated when using computer-assisted structure elucidation 
(CASE, see Sect.  8 ) ( 43 ). The problem is that this experiment requires one-bond 
 13 C– 13 C coupling, a 0.01% probability. Consequently, this is really only feasible if 
one has access to a  1 H-optimized cryogenically cooled probe. For example, it has 
recently been shown that one can obtain an acceptable quality 1,1-ADEQUATE 
spectrum overnight with less than 1 mg of strychnine, using a 1.7-mm cryogenically 
cooled 600-MHz probe ( 44 ). These authors used covariance processing of the 
1,1-ADEQUATE spectrum and an edited HSQC spectrum to generate an improved 
quality spectrum ( 44 ). However, it should be noted that this approach still requires 
suffi cient  S / N  of the original 1,1-ADEQUATE correlations for them to appear in the 
covariance spectrum. Covariance processing mathematically combines the results 
of two different 2D spectra to produce a new spectrum, which, although it does not 
actually contain new information, may display key correlation data in a manner that 
is more obvious and easier to interpret ( 45 ). It is particularly valuable when it can 
use two high-sensitivity spectra to generate a spectrum with good  S / N  that corre-
sponds to one of much lower intrinsic sensitivity and which otherwise would take 
far longer to acquire. 

 While  14 N is a reasonably high sensitivity NMR nucleus (with almost 100% 
abundance), it is a quadrupolar nucleus, and its resultant extremely broad lines 
make it of extremely limited value for natural product investigations. However,  15 N 
NMR spectra can provide very useful structural information for nitrogen-containing 
natural products ( 46, 47 ). The low natural abundance of  15 N (0.37%) combined with 
its low frequency (~50 MHz on a 500-MHz spectrometer make it unsuitable for 
direct detection. However, indirect (proton) detection provides a tenfold enhance-
ment, and all recent applications in the natural product fi eld have used indirect 
detection methods, mainly involving HSQC, HMQC, and HMBC spectra or vari-
ants of these experiments. There are two further problems with  15 N for natural prod-
uct research in addition to sensitivity limitations ( 46 ). First, while one-bond  1 H– 15 N 
coupling constants fall in a narrow (90–100 Hz) range, two-bond and longer range 
couplings tend to show much greater variability than the corresponding  1 H– 13 C cou-
plings ( 46 ). This makes it diffi cult to detect all expected long-range  1 H– 15 N correla-
tions in an HMBC experiment with a fi xed  1 H– 15 N delay. Second,  15 N has an 
extremely large chemical shift range ( ca . 600 ppm) while most H/X and H/C/N 
probes have relatively long  15 N 90° pulse widths ( ca . 40 μs), which cannot uni-
formly excite the entire  15 N spectral window, risking failure to detect peaks near 
either end of the window. 

 Fortunately, advances in instrumentation and pulse sequence design have mini-
mized these problems. First, cryogenically cooled probes have signifi cantly reduced 
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the sample requirements. For example,  Martin et al . have shown that a recently 
developed 1.7-mm cryo-microprobe can provide useable  15 N HMBC spectra over-
night with well under 1 mg of sample ( 48 ). The same probe had a 90° pulse width 
of 25 μs, allowing 90% or more excitation over about a 500-ppm shift range for  15 N 
( 48 ). Various solutions have been proposed to minimize the problem of the varia-
tion in long-range  1 H– 15 N coupling constants ( 47 ). As an example,  Cheatham et al . 
have developed the  15 N CIGAR sequence, which uses an “accordion” delay that is 
optimized for  1 H– 15 N couplings in the 3–10 Hz range ( 49 ). There are at least two 
other time-saving approaches. First, since there are typically only a very small 
number of  15 N peaks in a nitrogen-containing natural product (often only one), 
one can usually utilize a lower  F 1 resolution by decreasing the number of time 
increments used (and correspondingly increasing the number of scans per time 
increment to improve sensitivity). 

 Second, if the natural product contains both protonated and non-protonated 
nitrogens, one does not need to acquire separate one-bond (HSQC or HMQC) spec-
tra along with an HMBC-type spectrum. Instead, one can eliminate the “ J  fi lter” 
present in HMBC sequences and simultaneously observe both one-bond and n-bond 
correlations, with the former distinguished from the latter by the observation of a 
large (90–100 Hz) doublet splitting due to the direct  1 H– 15 N coupling ( 49 ).  

5     Avoiding Getting the Wrong Skeletal Structure 

 One might assume that, with all of the modern techniques available, it would be 
unlikely that incorrect structures are reported in the chemical literature. However, 
there have been a surprisingly large number of incorrect structures reported ( 50 ). 
Many of these involve errors in stereochemistry, which often can be quite tricky to 
determine, particularly in acyclic compounds or those with conformationally mobile 
rings (see Sect.  6  for a discussion of the determination of stereochemistry). However, 
some involve incorrect skeletal structures where errors should be easier to avoid. 
One example of the latter kind of error, which attracted a lot of attention and contro-
versy, is hexacyclinol ( 6 ) ( 51 ). Fortunately, there are several precautions that one can 
take to minimize the risk of mistakes. These are discussed below.
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      1.    Do not try to fi t the data to a preconceived notion of structure but rather allow the 
data to determine possible structure(s). This problem is most likely to occur if 
there is severe overlap in at least part of the spectrum and/or marginal signal/
noise, which may cause ambiguities in assigning correlations. In this situation, 
trying to save time by collecting too few scans and/or too few data points (par-
ticularly  F 1 increments) is actually counterproductive by maximizing the risks of 
ambiguity. An old trick of aromatic solvent-induced shifts ( 52 ) can often be used 
to minimize overlap by repeating the spectrum with added increments of C 6 D 6 . 
The present authors have found this to often be valuable for natural product 
structure elucidation ( 13 ).   

   2.    Tabulate all 2D data and check carefully for unexpected peaks and missing 
expected peaks. A peak of signifi cant intensity in an HMBC spectrum, which is not 
consistent with a proposed structure, should be taken as a strong warning sign that 
the structure is probably incorrect. On the other hand, the absence of an expected 
peak may not always be as signifi cant since this may just be due to a relatively 
small 2-bond or 3-bond  1 H– 13 C coupling constant. A common case where a peak 
is either not observed or very weak is for 2-bond correlations in aromatic or ole-
fi nic groups. Another case where weak peaks often occur is for 3-bond correlations 
involving  axial  protons in cyclohexane-like rings. A general knowledge of expected 
n-bond  1 H– 13 C coupling constants for different types of structural units is helpful 
( 53 ). Some representative values for aliphatic, olefi nic, and aromatic derivatives 
are: 0–3 Hz for 2-bond olefi nic and aromatic couplings, 8 Hz for 3-bond aromatic 
and  cis -olefi nic couplings, 12 Hz for  trans -olefi nic couplings, 3–5 Hz for 2-bond 
aliphatic couplings, 2–4 Hz for 3-bond  gauche -aliphatic couplings and 6–9 Hz for 
 anti -aliphatic couplings. Longer range (4-bond and 5-bond) couplings are gener-
ally less than 2 Hz but may occasionally show up as weak HMBC correlations, 
particularly in conjugated derivatives or from methyl protons.   

   3.    Beware of deceptively appearing spectra. In our experience this may take one of 
two forms. First, due to a combination of effects, a  13 C peak may occur at a chemi-
cal shift, which seems more consistent with an entirely different type of functional 
group. For example, a conjugated lactone ( 7 ) had a  13 C peak at  δ  182.6 ppm that 
was initially assumed, based on the chemical shift, to be either a carboxylic acid 
group or a highly conjugated ketone. However, it was eventually assigned as the 
non-protonated olefi nic carbon, based on HMBC cross-peaks to all three methyl 
proton signals and the two pseudo-equatorial methylene protons ( 54 ). A second 
situation is when there is accidental equivalence between two coupled proton sig-
nals. While one learns very early in NMR that no coupling will be observed 
between equivalent protons, it is still easy to forget this in the case of accidental 
equivalence. One example of this was provided by the marine sterol gorgost-5-
ene-3 β ,9 α ,11 α -triol ( 8 ) ( 55 ). In this case, the expected H-21 methyl doublet 
appeared as a slightly broadened singlet, initially leading to the assumption of 
some type of rearrangement of the steroid side chain. However, examination of the 
HSQC spectrum showed that H-20 and H-21 had the same chemical shift while the 
HMBC spectrum showed a strong cross-peak between H-21 and C-20, confi rming 
that the methyl singlet was due to accidental equivalence of H-20 and H-21.   

   4.    Just because a structure appears to fi t the correlation data, do not assume that this 
is the only structure consistent with the data. This error, which is extremely easy 
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to make, can be best avoided by the use of computer-assisted structure elucidation 
(CASE) (see Sect.  8 ). The program Structure Elucidator ( 56 ), provided by ACD, 
is the one with we have the most experience. This will not only determine all 
possible structures consistent with the correlation data but will rank them in 
order of probability based on a comparison of observed  1 H and  13 C chemical 
shifts with those calculated by the program for the different structures. In cases 
where there is no clear distinction between two or more possible skeletal struc-
tures, examination of the structure may suggest additional experiments, which 
may allow this distinction ( 57 ). The program also alerts the user to ambiguous 
assignments due to severe spectral overlap so that these problems can be consid-
ered individually ( 57 ).    
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6          Determination of Confi guration and/or Conformation 
of Natural Products 

 The degree of diffi culty of this task is mainly determined by whether the molecule 
exists in a single, relatively rigid, conformation or is undergoing rapid interconversion 
between two or more conformations. The latter situation is particularly diffi cult to 
deal with, but even determining the confi guration and conformation of a rigid mole-
cule can still pose problems. Also note that NMR alone will rarely provide absolute 
confi gurations. We will begin by considering the investigation of rigid molecules. 
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 The two main tools to address these problems are  vicinal   1 H– 1 H coupling con-
stants ( 58 ) and nuclear  Overhauser  enhancements (N O Es) ( 59 ).  Vicinal  coupling 
constants can be used to estimate  1 H–C–C– 1 H dihedral angles, usually with the aid 
of some type of  Karplus  relationship such as the  Altona  equation ( 60 ). However, 
one must recognize that splittings in a proton multiplet are not always identical to 
coupling constants, particularly in the case of strong coupling. For example, if a pair 
of methylene protons has a near-zero chemical shift difference, they will appear to 
be equally coupled to an adjacent methine proton, regardless of the actual  vicinal  
coupling constants, a phenomenon known as “virtual coupling” ( 61 ). However, pro-
vided that the methylene protons are, in principle, diastereotopic, it may be possible 
to separate them by using solvent effects such as aromatic solvent-induced shifts 
and thus determine the  vicinal  couplings. Another problem occurs if the two  vicinal  
protons are equivalent by symmetry or by accident since one then will not observe 
a coupling between them. In either case, a coupled HSQC spectrum will allow one 
to measure the coupling since the large one-bond CH coupling within the  1 H– 13 C–
 12 C– 1 H fragment effectively makes the protons non-equivalent ( 62 ,  63 ). This is a 
modifi cation of the old idea of using  13 C satellites in a proton spectrum for this 
purpose ( 64 ). Alternatively, in the case of accidental equivalence, one could again 
try to use solvent effects to separate the two proton signals. 

 Nuclear  Overhauser  enhancements can be measured either from 2D N O ESY 
( 65 ) or R O ESY ( 66 ) spectra or by selective 1D equivalents. These have usually been 
used in a qualitative “yes–no” sense to determine whether pairs of protons are rela-
tively close or relatively far apart. However, driven by improvements in selective 1D 
pulse sequences ( 67 ) and spectrometer hardware, there has been a recent revival of 
interest in using selective 1D N O ESY or R O ESY measurements to make quantita-
tive distant measurements in organic molecules ( 68 ). Unlike, the earlier N O E- 
difference measurements which measure steady-state N O Es, the selective 1D 
experiments (and their 2D analogues) measure transient N O Es by selectively invert-
ing a chosen proton multiplet and then following the buildup of N O Es for other 
cross-relaxed protons as the inverted proton relaxes back towards its initial value 
( 59 ). The usual approach has been to plot N O E intensity  versus  mixing time and 
determine the slope from the initial linear region of the plot, the initial rate approxi-
mation (IRA) ( 59 ). However, this can be time consuming. Recently,  Butts et al.  have 
championed the alternative of using a single mixing time, which is short enough to 
fall in the regime where the IRA holds ( 68 ). By using the known distance between 
methylene protons as a calibration point, this group has not only measured the dis-
tances between other pairs of protons in strychnine with surprising accuracy (~3%) 
but also detected the presence of a previously unknown minor conformation of 
strychnine ( 68 ). The main limitation of this approach is that for higher molecular 
weight compounds and/or viscous solutions, the IRA may only be valid for short 
mixing times (<0.2 s) where the N O E peaks will be quite weak. However, the range 
of acceptable mixing times can be signifi cantly extended by applying the PANIC 
correction developed by  Macura  for 2D N O ESY measurements ( 69 ) and extended 
by  Hu  for 1D N O ESY and R O ESY measurements ( 70 ). This requires a second 
measurement for each proton with zero mixing time with a correction for the N O E 
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peaks obtained from the ratio of the areas of the inverted peak with zero and the 
chosen mixing time. 

 An alternative approach, which is being increasingly applied, is to measure 
residual dipolar  1 H– 13 C and/or  1 H– 1 H couplings for a molecule in a weakly aligning 
medium ( 71 ,  72 ). The relative magnitudes of different residual dipolar couplings are 
determined by the relative orientations of C–H or H–H bond vectors relative to the 
alignment tensor of the molecule. Unfortunately, this has a (3cos 2  θ  − 1) relationship, 
and thus one cannot determine directly whether an individual bond has an angle  θ , 
or 180° –  θ , with respect to the alignment tensor. Nevertheless, provided one can 
measure at least fi ve residual dipolar couplings, one can determine the alignment 
tensor ( 71 ). Obviously, the more values that can be determined, the better the 
molecular confi guration and conformation will be defi ned. A series of alignment 
media suitable for polar and non-polar organic solvents are available, and measure-
ments of 1-bond  1 H– 13 C and  geminal   1 H– 1 H dipolar couplings are usually carried 
out with one or more modifi ed versions of the coupled HSQC sequence ( 71 ). This 
is performed by determining the differences of these couplings in isotropic and 
partially aligning media. A number of relative confi gurations and conformations of 
rigid organic molecules have been determined in this way ( 71 ,  72 ). One recent 
intriguing example of the power of this technique was the determination of the 
structure of a reaction impurity, which could not be determined by 2D NMR tech-
niques ( 73 ). Nevertheless, this is a laborious technique, which, in our opinion, 
should be regarded as a last-resort method. 

 Any of the three approaches discussed above can be carried out in conjunction 
with calculations of molecular conformation of rigid molecules, either with classi-
cal molecular mechanics calculations or more increasingly with  ab initio  quantum 
mechanical calculations. However, calculations to determine the relative free ener-
gies and consequently the relative populations of different conformations are abso-
lutely essential if one is dealing with a fl exible molecule with two or more 
signifi cantly populated conformations. Unfortunately, even small differences in cal-
culated free energies correspond to signifi cant differences in populations. Thus, 
while there has been some progress in interpreting both N O E measurements ( 74 ) 
and residual dipolar couplings ( 71 ) for fl exible molecules, the conversion of the 
weight-averaged data from these measurements into accurately determined confor-
mations of these molecules will require increasingly accurate energy calculations to 
make this at least semi-routine. Fortunately, the increasing speed of computers may 
make this feasible in the near future. 

 Normally, one can only determine the relative confi guration of a natural product 
from NMR data. However, the conversion of secondary CH(OH)   groups into chiral 
esters by  Mosher ’s method can often determine the absolute stereochemistry of that 
carbon in a natural product ( 75 ). While this is an empirical approach based on 
induced chemical shifts by the chiral ester, it seems surprisingly reliable. One exam-
ple where we found this to be valuable was in determining the absolute stereochem-
istries of the two CH(OH) centers of the cembrane, cleospinol- A ( 9 ), which 
contained a fl exible 14-membered macrocyclic ring ( 76 ). With the knowledge of the 
absolute stereochemistry at these two centers and the confi gurations of other chiral 
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centers relative to these two, it was possible to determine the absolute stereochemistry 
of the entire molecule. Another approach is to combine NMR measurements of rela-
tive stereochemistries within a molecule with a chiral spectroscopic method such as 
vibrational circular dichroism (see this volume:  Joseph-Nathan P  and  Gordillo-
Román B  (2014) Vibrational Circular Dichroism Absolute Confi guration 
Determination of Natural Products. Progr Chem Org Nat Prod 100:311), which 
gives the absolute stereochemistry ( 77 ).
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7                An Example of a Solved Structure: Kauradienoic Acid 

 A considerable number of NMR experiments have been introduced and discussed in 
the previous section. In order to illustrate how a series of such experiments is used 
in practice, the authors will take readers through a complete structural elucidation 
exercise for the compound kauradienoic acid ( 3 ). The structure of this compound 
was originally proposed in 1971 ( 78 ), and its  1 H and  13 C NMR spectra were assigned 
completely in 1984 ( 31 ). If one had no knowledge of the compound's structure, such 
a study would begin with the determination of its infrared,  1 H, and  13 C NMR spec-
tra, and high-resolution mass spectrum. This compound is a white solid that is sol-
uble in chloroform. 

 The mass spectrum indicated a molecular weight of  ca.  300 and provided several 
pieces of information about the compound. The even molecular weight establishes 
that the unknown contains an  even  number of nitrogen atoms and probably none 
(zero, as in spectral-edited experiments, is considered to be an even number). If we 
make the preliminary, and usually justifi ed, assumption that the unknown compound 
contains only carbon, hydrogen, and oxygen, the high-resolution, mass spectrometric- 
determined molecular weight supports a molecular formula of C 20 H 28 O 2 . This for-
mula, in turn, dictates the presence of seven units of unsaturation. 
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 A strong infrared absorption centered at 1,760 cm −1  suggests the presence of a 
carbonyl group. Moreover, the occurrence of two oxygens in the molecular formula 
supports the inference that the carbonyl absorption could be due to an acid or ester 
group. 

7.1     HSQC Data 

 After initial  1 H and  13 C NMR spectra have been determined for an unknown com-
pound, it is useful to establish which hydrogens are directly attached to specifi c 
carbons by an HMQC or HSQC experiment. The latter is the experiment of choice 
because of its better resolution in the  F 1 domain (see Sect.  10 ). An edited-HSQC 
spectrum of a small sample of the unknown compound is shown in Fig.  1 . Coupling 
constants, which have been measured in the  1 H NMR spectrum for those multiplets 
that are not severely overlapped, correspond to proton cross peaks in the COSY 
spectrum (see Sect.  7.2 ) and are included in parentheses in    Table  1 .

    A cursory examination of the HSQC data in Table  1  indicates that the unknown 
compound is essentially aliphatic in nature. The highest frequency signal 
(182.74 ppm) is in the acid carbonyl range, while those carbons with chemical shifts 
from 158.56 to 105.48 ppm appear to be alkenic and require the presence of one 
methylene (105.48 ppm), one methine (114.90 ppm), and two quaternary  sp  2  

  Fig. 1    Gradient-selected HSQC spectrum for kauradienoic acid ( 3 ) with aliphatic region on the 
 right  and olefi nic region on the  left        
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carbons. Resonances of the remaining carbons are generally in the chemical shift 
range for aliphatic carbons that are not attached to oxygen. 

 The HSQC spectrum reveals the presence of two methyl, nine methylene, and 
three methine carbons. Subtracting these 14 protonated carbons from the 20-carbon 
total identifi es the remaining six quaternary carbons. In addition, summing the six 
methyl, 18 methylene, and three methine protons accounts for 27 hydrogens. Since 
the molecular formula requires 28 hydrogens, the fi nal proton must be attached to 
oxygen.  

7.2      COSY and TOCSY Data 

 The construction of proton spin-coupling networks is achieved by COSY and 
TOCSY experiments.  1 H spin systems are observed in the COSY (Fig.  2 ) and 
TOCSY (Fig.  3 ) contour plots. Two are relatively simple and comprise (i) a 6-spin 
system of three contiguous methylene groups: a terminal pair of protons (1.93 and 
1.24 ppm), an interior pair (1.88 and 1.50 ppm), and another terminal pair (2.16 and 
1.02 ppm) ( 10 ) and (ii) a 5-spin system containing an isolated proton (1.67 ppm), an 
adjacent (middle) methylene pair of protons (2.47 and 1.68 ppm) and another meth-
ylene pair (1.97 and 1.46 ppm) ( 11 ).

       Table 1    HSQC data for kauradienoic acid ( 3 )   

  δ  C  /ppm  Attached hydrogens (with selected couplings) 

 182.74  – 
 158.56  – 
 155.92  – 
 114.90  5.24 ddd (4, 2.7, <1) 
 105.48  4.91 brs  4.80 brs 
 50.32  2.62  2.20 
 46.56  1.67 d (11) 
 44.94  1.60 d (5.2)  1.50 d (2.7) 
 44.69  – 
 42.27  – 
 41.24  2.77 dddd (5.2, 4.6, 2.7, 2, <1) 
 40.75  1.93  1.24 
 38.79  – 
 38.31  2.16  1.02 
 37.93  2.43 dd (4.6, 2.7)  1.99 dd (4, 2) 
 29.66  1.97 dd (10.8, 9)  1.46 dd (9, 1) 
 28.23  1.24 s (CH 3 ) 
 23.62  1.02 s (CH 3 ) 
 20.16  1.88  1.50 
 18.48  2.47 dddd (11, 9, 8.7, 1)  1.68 ddd (11, 8.9, 8.7) 
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  Fig. 2    Gradient-selected absolute-value COSY spectrum of kauradienoic acid ( 3 ). The  spectrum 
on the right  shows correlations between aliphatic protons while that on the  left  shows correlations 
between olefi nic and aliphatic protons       

  Fig. 3    Gradient-selected TOCSY spectrum of kauradienoic acid ( 3 ). The expansions are similar 
to those in Fig.  2 . The spectrum was obtained with the original TOCSY sequence, without a zero- 
quantum fi lter, and shows some distortions of multiplet structures       
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    The third spin system is extensive and encompasses ten protons: two methines 
(5.24 and 2.77 ppm) and four methylenes (4.91 and 4.80, 2.62 and 2.20, 2.43 and 
1.99, and 1.60 and 1.50 ppm). A 1D-Z-TOCSY trace, through the alkenic proton 
(Fig.  4 ), elegantly illustrates how it is coupled to the methylene protons at 2.43 and 

  Fig. 4    1D Z-TOCSY spectra with different mixing times, obtained by selective irradiation of 
H-11 (5.24 ppm) of kauradienoic acid ( 3 ). Mixing times are listed at the  left  of each spectrum and 
proton assignments are listed at the  top . The spectra illustrate nicely how a sequence of coupled 
protons can be fully assigned by a series of 1D TOCSY spectra with incremented mixing times. 
Also note that the zero-quantum fi lter allows observation of undistorted proton multiplets       
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1.99 ppm, the methine proton at 2.77 ppm, the methylene protons at 1.60 and 
1.50 ppm, and fi nally to the alkenic protons at 4.91 and 4.80 ppm and the methylene 
protons at 2.62 and 2.20 ppm ( 12 ). The data for these spin systems are summarized 
in Tables  2  and  3 .
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    Table 2    COSY data for kauradienoic acid ( 3 )

  δ  H /ppm  Spin-coupled partners 

 5.24  2.77, 2.43, 1.99 
 4.91  4.80, 2.77, 2.62, 2.20 
 4.80  4.91, 2.77, 2.62, 2.20 
 2.77  5.24, 4.91, 4.80, 2.62, 2.43, 1.99, 1.60, 1.50 
 2.62  4.91, 4.80, 2.77, 2.20, 1.50 
 2.47  1.97, 1.68, 1.67, 1.46 
 2.43  5.24, 2.77, 1.99 
 2.20  4.91, 4.80, 2.62 
 2.16  1.88, 1.50, 1.02 
 1.99  5.24, 2.77, 2.43, 1.60 
 1.97  2.47, 1.68, 1.46 
 1.93  1.88, 1.50, 1.24 
 1.88  2.16, 1.93, 1.50, 1.24, 1.02 
 1.68  2.47, 1.97, 1.46 
 1.67  2.47 
 1.60  2.77, 1.99, 1.50 
 1.50 a   2.77, 2.62, 2.16, 1.93, 1.88, 1.60, 1.24, 1.02 
 1.50 a     
 1.46  2.47, 1.97, 1.68 
 1.24  1.93, 1.88, 1.50 
 1.24 (CH 3 )  (none) b  
 1.02  2.16, 1.88, 1.50 
 1.02 (CH 3 )  (none) c  

   a  Correlations cannot be differentiated for the pair of hydrogens 
at 1.50 ppm because of their identical chemical shift 
  b,c  Since the methyl signals are singlets, COSY correlations must 
be to the individual hydrogens at 1.24 and 1.02 ppm, respectively  
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7.3         HMBC Data 

 Since the  13 C NMR spectrum of the unknown compound is far less congested than 
its  1 H spectrum, HMBC is the experiment of choice to establish the longer range, 
C-H correlation networks. HMBC and CIGAR-HMBC spectra of the unknown 
compound were recorded, and the HMBC spectrum is shown in Fig.  5 . The HMBC 
data from these contour plots are summarized in Table  4  and will be extensively 
discussed below in Sect.  7.5 .

    Two points that can now be made are that, fi rst, methyl signals are particularly 
helpful in the interpretation of HMBC spectra. Just as their signals are almost 

    Table 3    TOCSY data for kauradienoic acid ( 3 )   

  δ  H /ppm  Spin-system members 

 5.24  2.77, 2.43, 1.99, 1.60, 1.50 
 4.91  4.80, 2.77, 2.62, 2.43, 2.20, 1.99, 1.60, 1.50 
 4.80  4.91, 2.77, 2.62, 2.43, 2.20, 1.99, 1.60, 1.50 
 2.77  5.24, 4.91, 4.80, 2.62, 2.43, 2.20, 1.99, 1.60, 1.50 
 2.62  4.91, 4.80, 2.77, 2.20, 1.99, 1.60, 1.50 
 2.47  1.97, 1.68, 1.67, 1.46 
 2.43  5.24, 2.77, 1.99, 1.60, 1.50 
 2.20  4.91, 4.80, 2.77, 2.62, 1.60, 1.50 
 2.16  1.93, 1.88, 1.50, 1.24, 1.02 
 1.99  5.24, 2.77, 2.62, 2.43, 1.60, 1.50 
 1.97  2.47, 1.68, 1.67, 1.46 
 1.93  2.16, 1.88, 1.50, 1.24, 1.02 
 1.88  2.16, 1.93, 1.50, 1.24, 1.02 
 1.68  2.47, 1.97, 1.46 
 1.67  2.47, 1.97, 1.46 
 1.60  5.24, 4.91, 4.80, 2.77, 2.62, 2.43, 2.20, 1.99, 1.50 
 1.50 a   5.24, 4.91, 4.80, 2.77, 2.62, 2.43, 2.20, 2.16, 1.99 

 1.93, 1.88, 1.60, 1.24, 1.02  1.50 a  
 1.46  2.47, 1.97, 1.68, 1.67 
 1.24 b   2.16, 1.93, 1.88, 1.50, 1.02 
 1.24 (CH 3 )  (none) 
 1.02 c   2.16, 1.93, 1.88, 1.50, 1.24 
 1.02 (CH 3 )  (none) 

   a TOCSY correlations cannot be differentiated for the pairs of 
 hydrogens at 1.50, 1.24, and 1.02 ppm because of their identical 
chemical shifts 
  b,c Since the methyl signals are singlets, TOCSY correlations must be 
to the individual hydrogens at 1.24 and 1.02 ppm, respectively  
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always the largest resonances in  1 H NMR spectra, so their cross-peaks are generally 
the strongest in HMBC spectra where they exhibit prominent 2-bond and 3-bond 
connectivities. Second, in cyclohexane chair conformers,  vicinal  C–H couplings 
due to  equatorial  protons are generally larger to ring carbons three bonds removed 
than those due to  axial  protons because of the  ca . 180° dihedral angles of the former 
compared to the  ca . 60° dihedral angles of the latter. As a result,  equatorial  protons 
generally give rise to stronger three-bond HMBC cross-peaks to ring carbons than 
their  axial  counterparts.  

  Fig. 5    Expansions of a gradient-selected absolute-value HMBC spectrum for kauradienoic acid 
( 3 ), illustrating the 2-bond and 3-bond C–H correlations for different  13 C regions       
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7.4     General Molecular Assembly Strategy 

 Of the many techniques available to the NMR spectroscopist in structural elucidations, 
none are so valuable as the indirect, chemical shift correlation experiments like 
HMBC, TOCSY (both homo- and heteronuclear varieties), and FLOCK ( 36b ). 
FLOCK is an X-nucleus detected experiment analogous to HMBC. While it is signifi -
cantly less sensitive than HMBC, it is useful in those instances where very high  13 C 
resolution is essential. Once molecular fragments have been identifi ed by the COSY 
and HSQC experiments, combination of these fragments is attempted by means of the 
above techniques. As indispensable as these methods have become to NMR spectros-
copists, they suffer a common limitation in that two-bond, C–H couplings cannot gen-
erally be directly distinguished from three-bond, C–H coupling constants. However, 
these two classes of C–H couplings can be differentiated, for adjacent protonated car-
bons, by examination of HSQC and COSY spectra ( vide infra ). 

 The process of molecular assembly can be approached in the following manner. 
If possible, a carbon atom is selected from which the remainder of the molecular 
skeleton can be built in just  one  direction. Methyl groups are, of course, excellent 
starting points. As mentioned above, adjacent protons, if any, can be identifi ed from 
a COSY contour plot and longer-range coupled protons from a TOCSY spectrum. 
Conversely, the carbons to which the just-identifi ed protons are directly attached can 
be determined from an HSQC or HMQC plot. The HMBC or FLOCK spectra can 

     Table 4       HMBC data a  for kauradienoic acid ( 3 )        

  δ  C /ppm  Correlated hydrogen chemical shifts 

 182.74  2.16, 1.67(s), 1.24, 1.02(s) 
 158.56  5.24, 2.62, 2.43, 2.20(s), 1.99, 1.60(s), 1.50, 1.02 
 155.92  2.62, 2.43, 2.20, 1.99, 1.60, 1.50 
 114.90  2.77, 2.43, 1.99 
 105.48  2.77, 2.62, 2.20 
 50.32  5.24, 4.91, 4.80, 2.77, 1.97, 1.60, 1.50 
 46.56  2.47, 2.16, 1.93, 1.46, 1.24, 1.02 
 44.94  2.62, 2.43, 1.99, 1.97, 1.46 
 44.69  2.47, 2.16, 1.68, 1.67, 1.50(s), 1.24 1.02 
 42.27  5.24, 2.77, 2.62, 2.47, 2.20, 1.97, 1.60, 1.50, 1.46 
 41.24  5.24, 4.91, 4.80, 2.62, 2.43, 1.99, 1.60, 1.50 
 40.75  2.16(s), 1.88, 1.67, 1.50, 1.02 
 38.79  5.24, 1.93, 1.88, 1.68, 1.67, 1.50(s), 1.24, 1.02 
 38.31  1.93(s), 1.88, 1.50, 1.24 
 37.93  5.24, 4.80, 2.77, 1.60, 1.50 
 29.66  2.47, 2.20, 1.68, 1.67, 1.60 
 28.23  1.67, 1.02 
 23.62  1.93, 1.67(s), 1.24(s) 
 20.16  2.16, 1.93, 1.24, 1.02 
 18.48  1.97, 1.67, 1.46 

   a From HMBC and CIGAR-HMBC experiments  
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then be scanned using either the contour plot, for uncongested spectra, or methyl-
proton or methyl-carbon traces (more commonly the latter, but the choice depends 
on which spectral axis is less congested) if spectral congestion or weak cross peaks 
are a problem. Cross-peaks may be found for (i) the adjacent carbon (if methyl-
proton traces are viewed) or protons (if methyl-carbon traces are observed, again, 
more likely), which represent two-bond couplings in either case, and (ii) any other 
carbons or protons, indicative of three-bond couplings (but always being mindful 
that one, or more, members of the latter group could possibly be due to   n   J  CH  >3). The 
fortunate redundancy of these 2D experiments is seen, whereby an adjacent carbon 
may be identifi ed by a combination of COSY ( 3  J  HH ) and HSQC/HMQC ( 1  J  CH ) con-
nectivities and also by HMBC/FLOCK ( 2  J  CH ) correlations. 

 The third carbon atom in the fragment (two carbons removed from the original 
methyl group) will likely show two-bond, C–H couplings with adjacent proton(s), if 
present, both backward to the second carbon and forward to the fourth carbon in the 
series. Carbon-atom connectivities can thus be built up using (i) two- and three- bond, 
C–H couplings to generally confi rm previously determined C–C correlations and then 
(ii) three-bond, H–H and C–H couplings to extend the developing molecular structure. 

 Even when a methyl  1 H signal is nothing more than a broadened singlet, the 
COSY spectrum (either the contour plot or the methyl trace) can be scanned for 
cross-peaks due to long-range coupling. Turning then to HMBC or FLOCK spectra, 
either the contour plot or the methyl  13 C trace (HMBC spectrum) or  1 H trace (FLOCK 
spectrum) can be examined for cross-peaks due to (i) two-bond coupling to adjacent 
(quaternary) carbons and (ii) three-bond coupling to farther-removed carbons (with 
the usual   n   J  CH  >3  caveat ). Finally, a note of caution should be mentioned. Like 
N O Es, the intensities of three-bond, C–H correlations are not necessarily symmetri-
cal,  e.g . in the four-carbon fragment pictured in Fig.  6 , a strong cross-peak may, in 
fact, be observed between H A  and C 3  while a weak one, or none at all, is seen between 
H C  and C 1 . The main reason for these weak or missing correlations is the depen-
dence of vicinal couplings on the H-A–C-1–C-2–C-3 and H-C—C-3—C-2—C-1 
dihedral angles, which are seldom identical. Since similar considerations are largely 
absent for two-bond couplings, cross-peaks should be detected between H-A and 
C-2 and also between H-B and C-1. Extensive redundancy of the type described 
above, however, is in fact observed routinely for  vicinal  C–H correlations and is 
invaluable in the construction of molecular structures.

2

31

4

HA

HB

HC

  Fig. 6    Examples of 2-bond and 3-bond C–H connectivities in a typical organic chemical fragment 
in which  3   J (H A C 3 ) can be quite different from  3   J (H C C 1 ) and results in HMBC cross-peaks of 
 differing intensities       
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   The same factors that infl uence H–H couplings,  e.g . dihedral angle dependence, 
substituent electronegativity, bond length, and bond order, apply to C–H couplings. 
As a general rule, C–H coupling constants are approximately 2/3 the value of the 
corresponding H–H couplings. In alkenes, for example, average  cis  and  trans  H–H 
couplings are  ca . 11 and 18 Hz, while the corresponding C–H coupling constants 
are  ca . 7 and 12 Hz.  

7.5       A Specifi c Molecular Assembly Procedure 

 Examination of the attached-proton data in Table  1  demonstrates the presence of two 
methyl groups, which are both singlets at 1.24 and 1.02 ppm. Inspection of the HMBC 
and CIGAR-HMBC data shows that the methyl signal at 1.24 ppm exhibits strong 
connectivities to the carbons at 182.74, 46.56, 44.69, and 38.31 ppm. Further obser-
vation reveals that the methyl signal at 1.02 ppm displays strong connectivities to the 
carbons at 158.56, 46.56, 40.75, and 38.79 ppm. In addition, both methyl groups have 
an HMBC correlation to the carbon at 46.56 ppm. Obtaining the chemical shifts of the 
protons attached to these carbons from Table  1  yields the molecular fragment  13 .

   

H

H

HH

H
1.24 1.93

Me

COOHMe

38.79

46.56

158.5640.75

182.74

1.67

1.02

1.24

1.02

2.16

44.69

38.31

13   

    At this point, an ambiguity arises because there also happen to be two methine 
protons with the same chemical shifts as the two methyl groups,  viz . 1.24 and 
1.02 ppm, and in suffi ciently close proximity to these two methyl groups that there is 
a possibility that the assignments of both the methyl groups and their adjacent methy-
lene groups could be interchanged ( 14 ), a consideration that will be further examined 
in Sect.  8.3 . The HMBC data in Table  4  show that the methyl group at 1.02 ppm in  14  
could exhibit an HMBC connectivity to the carboxyl-carbon (182.74 ppm). However, 
a problem arises with the potential reversed assignments because the methyl group at 
1.24 ppm in  14  should, likewise, display a strong HMBC connectivity to the alkenic-
carbon at 158.56 ppm, but none is observed. The absence of such an important HMBC 
correlation, subsequent N O ESY correlations, and critical HMBC traces (Sect.  7.6 ) 
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dictate that the reversed assignments given in  14  are incorrect. We will discuss this 
reversed-assignment situation later, at greater length, in this section.

   

H

H

HH

H
2.16 1.02

Me

COOHMe

38.79

46.56

158.5638.31

182.74

1.67

1.24

1.02

1.24

1.93

44.69

40.75

14   

    Note too that the chemical shift of the carbon at 182.74 ppm is appropriate for a 
carboxylic acid, and this carbon has been assigned as such. The two oxygens 
required by the molecular formula are thus accounted for. 

 Fragment  13  contains the terminal methylene groups shown in  10 , and insertion 
of the central methylene group of  10  to close the A-ring produces  15  (note that addi-
tions to an existing fragment are shown in red).
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    Both carbons at 40.75 and 38.31 ppm in  15  display HMBC connectivities to 
protons at 1.88 and 1.50 ppm. In addition, the protons at 1.93 and 1.24 ppm (on the 
carbon at 40.75 ppm) and the protons at 2.16 and 1.02 ppm (on the carbon at 
38.31 ppm) exhibit HMBC correlations to the carbon at 20.16 ppm, to which the 
protons at 1.88 and 1.50 are attached. At this point, three of the seven units of 
unsaturation have been accounted for. 
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 Continuing elucidation of the unknown compound, fragment  11  contains the same 
proton (1.67 ppm) for which the attached methine carbon (46.56 ppm) exhibited HMBC 
connectivities to both methyl groups. This fragment can then be added to the develop-
ing structure by means of HMBC correlations to produce  16 . HMBC data reveal that 
the proton at 1.68 ppm shows correlations to the carbons at 44.69 and 38.79 ppm and 
that at 2.47 ppm displays connectivities to the carbons at 46.56 and 44.69 ppm.
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    The next step in this structural determination is closure of an apparent ring. 
Protons in  16  at 2.47, 1.97, and 1.46 ppm exhibit HMBC correlations to a carbon at 
42.27 ppm and suggest that it be placed between the carbons at 158.56 and 
29.66 ppm to complete the B-ring ( 17 ). Supporting evidence comes from the 
alkenic, methine proton at 5.24 ppm, which is attached to the carbon at 114.90 ppm 
and shows HMBC connectivities to the previously identifi ed carbons at 158.56 ppm 
(two-bond) and 38.79 ppm (three-bond). It also exhibits a strong HMBC correlation 
to the above carbon at 42.27 ppm, which is consistent with this quaternary carbon 
being located in an ( E ) - alkenic position between the carbons at 158.56 and 
29.66 ppm, thus supporting structure  17 .

   

H

H

H

H

H

H

H

COOH

158.56

46.56

38.79

H H

H

H

1.68

1.97

2.47

18.48
1.46

29.66

42.27

H
5.24

114.90

17

Me

Me

BA
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    The alkenic methine proton at 5.24 ppm and its attached carbon at 114.90 ppm 
are also part of the fragment shown in  12 . Adding this large piece to structure  17  
produces  18 , which contains fi ve of the seven units of unsaturation.
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    Closure of an apparent ring again requires additional HMBC connectivities. In 
particular, (i) the B-ring methylene group (protons at 1.97 and 1.46 ppm, carbon at 
29.66 ppm) and (ii) the two newly added methylene groups (1.60 and 
1.50 ppm/44.94 ppm and 2.62 and 2.20 ppm/50.32 ppm) appear well positioned to 
complete the unknown molecular structure. First, the protons at 2.62, 2.20, 1.60, 
and 1.50 ppm show HMBC connectivities to the quaternary carbon at 42.27 ppm, 
thus closing the C- and D-rings ( 19 ).
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    Second, the proton at 1.97 ppm displays HMBC correlations to both methylene 
carbons at 44.94 and 50.32 ppm, and the proton at 1.46 ppm exhibits an HMBC 
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connectivity to the carbon at 44.94 ppm. In addition, the protons at 2.20 and 
1.60 ppm display complementary HMBC correlations to the carbon at 29.66 ppm. 

 At this point all of the carbons, hydrogens, and oxygens are accounted for. The 
complete, numbered, structure  20  of the unknown compound satisfi es the required 
seven units of unsaturation.
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7.6            Determination of Overall Stereochemistry and Proton 
Chemical Shift Assignments 

 With completion of the two-dimensional structural elucidation of the unknown 
compound, questions arise concerning its three-dimensional shape,  i.e.  the relative 
orientations of substituents ( e.g.  whether methyl-18 at C-4 is  axial  or  equatorial ) at 
various carbons. For a molecule of MW = 300, a NOESY experiment can provide a 
wealth of such stereochemical information. The N O ESY spectrum of the “unknown,” 
kauradienoic acid ( 3 ), is shown in Fig.  7 . The data from these and R O ESY contour 
plots are summarized in Table  5  and illustrated, in part, in a numbered, stereochemi-
cal drawing ( 21 ).
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  Fig. 7    N O ESY spectrum for kauradienoic acid ( 3 ) with a 0.5-s mixing time. The expansions are 
similar to those in Fig.  2        

   Table 5    N O E and R O E data for kauradienoic acid ( 3 )   

  δ  H /ppm  Dipolar-coupled partners 

 5.24  2.43, 1.99, 1.93, 1.24, 1.02 
 4.91 a   4.80, 2.77, 1.99 
 4.80 b   4.91, 2.62, 2.20 
 2.77  4.91, 2.43, 1.99, 1.60, 1.50 
 2.62  4.80, 2.20, 1.68, 1.67 
 2.47  1.97, 1.68, 1.46, 1.24, 1.02 
 2.43  5.24, 2.77, 1.99, 1.50 
 2.20  4.80, 2.62, 1.60, 1.46 
 2.16  1.88, 1.50, 1.24, 1.02 
 1.99  5.24, 4.91, 2.77, 2.43 
 1.97  2.47, 1.50, 1.46, 1.02 
 1.93  5.24, 1.50, 1.24, 1.02 
 1.88  2.16, 1.50, 1.02 
 1.68  2.62, 2.47, 1.46 
 1.67  2.62, 1.24, 1.02 
 1.60  2.77, 2.20, 1.50 
 1.50 c   2.77, 2.43, 2.16, 1.97, 1.93, 1.88, 1.60, 

 1.24, 1.02  1.50 c  
 1.46  2.47, 2.20, 1.97, 1.68 
 1.24 d   5.24, 2.47, 2.16, 1.93, 1.67, 1.50, 1.02 
 1.24 d  (CH 3 ) 
 1.02 e   5.24, 2.47, 2.16, 1.97, 1.93, 1.88, 

 1.67, 1.50, 1.24  1.02 e  (CH 3 ) 

   a  cis  to C-13 
  b  cis  to C-15 
  c,d,e Correlations cannot be differentiated for the pairs of hydrogens at 
1.50, 1.24, and 1.02 ppm because of their identical chemical shifts  
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    Since the 300 molecular weight of kauradienoic acid ( 3 ) is well outside of the 
zero-crossing limit, the N O ESY and R O ESY spectra were expected to be virtually 
identical, an expectation that was borne out, and subsequent references will be to 
“N O ESY” data only. A combination of N O ESY and HMBC spectra can permit the 
determination of substituent stereochemistry, especially for 6-membered ring sys-
tems that exist in chair conformations, in the following way: actual or quasi- 
equatorial    protons exhibit strong HMBC correlations by virtue of their ~180° 
dihedral angles while actual or quasi- axial  protons display strong N O Es with other 
 axial  protons and methyl groups because of their proximity (note that N O Es vary 
with the sixth power of the internuclear distance). 

 The following overall structural relationships were thus deduced for kauradie-
noic acid. Strong N O Es among (i) H-1 β,ax .; H-3 β,ax .; and H-5 β,ax . and (ii) between 
H-2 α,ax . and methyl-20 ax . and strong HMBC correlations between (i) H-1 α,eq . 
and C-3 and C-5; H-2 β,eq . and C-4 and C-10; H-3 α,eq . and C-1 and C-5, (ii) 
H-1 β,ax . and C-20, and (iii) H-3 β,ax . and C-19 demonstrate that the A-ring exists in 
a chair conformation in which H-1 β , H-3 β , and H-5 β  are on the “top face” of the 
molecule while H-2 α  and methyl-20 are on the “bottom face.” 

 X-ray data show that the B-ring occurs as a slightly distorted boat conformer, in 
which methyl-20 and H-7 α  are at the “fl agpole” positions. However, this conforma-
tion could have been reasonably inferred from the strong N O Es that are observed 
between these fl agpole groups and the strong HMBC connectivities (due to ~180° 
dihedral angles) that are seen between H-6 α  and C-8 and between H-7 β  and C-5. 
 Dreiding  models suggest that the B-ring might also exist partially as a quasi-half 
chair conformer, in which C-6 would be well below the C-5–C-10–C-9–C-8 plane 
and C-7 slightly below this plane. However, this conformation places methyl-20 
relatively distant from H-7 α  (1.97 ppm) and much closer to H-6 α  (2.47 ppm). The 
relatively weak N O E observed between methyl-20 and H-6 α  and strong N O E seen 
for methyl-20 and H-7 α  indicate that the distorted half-chair conformer is unimport-
ant in solution. 

 Strong HMBC correlations between H-11 and C-8 and C-13, and H-13 and C-11 
are consistent with the C-ring occurring in a rigid conformation in which carbons 8, 
9, 11, 12, and 13 are approximately coplanar and C-14 well below the plane. 
Additional strong HMBC connectivities between H-14 β  and C-9 and C-12 and 
between H-12 β  and C-14 support this inference. 

 The remaining 5-membered D-ring is situated approximately orthogonally to 
the A,B,C-ring system, and descriptions of the 15-protons as being “ α ” or “ β ” 
must, therefore, be clarifi ed (in Table  6 ,  vide infra , they are described as pointing 
“toward” or “away from” the viewer, respectively). Strong HMBC correlations 
between H-14 α  and C-15 and C-16; H-15 α  and C-9; H-15 β  and C-14; and H-12 α  
and C-16 support this conclusion. One sees then that H-14 β  is quasi- equatorial  
with respect to the C-ring while H-14 α  is quasi- equatorial  with respect to the 
D-ring.

   Proton assignments were either made or confi rmed on the basis of N O E data. 
Strong N O ESY correlations between the protons at 1.97 ppm (at C-7) and 1.50 ppm 
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(at C-14) indicate that both are similarly oriented. Since the 7- geminal  partner at 
1.46 ppm has been shown,  via  the HMBC experiments, to be  β , the H-7 at 1.97 ppm 
must, therefore, be  α . Thus, H-14 at 1.50 ppm is confi rmed to be  α  by virtue of its 
strong N O E interaction with H-7 α . N O ESY connectivities were also used to assign 
the alkenic methylene protons at C-17. H-17A (4.91 ppm) shows a strong N O E with 
H-13 (2.77 ppm) and is thus  cis  to it while H-17B (4.80 ppm) displays equally 
strong N O Es to the  cis  15-protons at 2.62 and 2.20 ppm. 

 Finally, two additional pieces of evidence support the previous assignment of 
methyl-20 at 1.02, not 1.24 ppm, and protons 1β and 3β at 1.24 and 1.02 ppm, 
respectively, both of which can be seen in  22 : (i) strong N O Es (shown as arrows) 
that can exist only between methyl-20 and H-2 ax . (1.88 ppm) and H-7 α  (1.97 ppm) 
and (ii) HMBC traces through carbons 9 (158.56 ppm) and 19 (COOH, 182.74 ppm) 
show particular emphasis on the fi ne structure of H-1 ax . (1.24 ppm) and H-3 ax . 
(1.02 ppm) (Fig.  8 ).

  Fig. 8    Cross-sections through C-9 and C-19 from an HMBC spectrum of kauradienoic acid ( 3 ). 
The observation of multiplet structures for H-1 and H-3  axial  protons allows one to clearly distin-
guish these two protons from the H-18 and H-20 methyl singlets, which overlap with these protons 
in the  1 H spectrum. The  peak  marked “x” is a minor methyl impurity peak. H-3 appears as an 
apparent quartet due to a  geminal  H–H coupling to H-3  eq ., an  anti  H–H coupling to H-2  ax. , and 
an  anti  C–H coupling to C-19. H-1 appears as an apparent triplet due to a  geminal -coupling to 
H-1  eq . and an  anti -coupling to H-2  ax . In both cases, the resolution is insuffi cient to observe 
 gauche  H–H couplings and the  gauche  C–H coupling of H-1 to C-9       
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    H-3 ax.  appears as a triple doublet (an apparent 1:3:3:1 “quartet”) by virtue of the 
magnitude of its similar  geminal -coupling to H-3  eq. ,  axial -coupling to H-2 ax. , and 
 axial  C-H coupling to 19-COOH, the third pathway shown in red in  22 . However, 
H-1 ax.  is seen as a doublet of doublets (an apparent 1:2:1 “triplet”) due to its similar 
 geminal -coupling to H-1  eq.  and  axial -coupling to H-2 ax . Its third coupling is  equa-
torial  to C-9 (also shown in red) and too small to cause observable splitting. With 
the interpretation of these fi nal HMBC and N O ESY correlations, the two- and 
three-dimensional structural elucidation of kauradienoic acid ( 3 ) is complete, and 
fi nal descriptions of the skeletal protons are given in Table  6 .   

      Table 6     1 H and  13 C NMR data for kauradienoic acid ( 3 )   

 Position   δ  C  /ppm  Attached hydrogens 

 1  40.75  1.93  α , eq .  1.24  β , ax . 
 2  20.16  1.50  β , eq .  1.88  α , ax . 
 3  38.31  2.16  α,eq .  1.02  β,ax . 
 4  44.69  – 
 5  46.56  1.67 β,  ax . 
 6  18.48  1.68  β   2.47  α  
 7  29.66  1.46  β   1.97  α  
 8  42.27  – 
 9  158.56  – 
 10  38.79  – 
 11  114.90  5.24 
 12  37.93  1.99  β   2.43  α  
 13  41.24  2.77 
 14  44.94  1.60  β   1.50  α  
 15  50.32  2.62 a   2.20 b  
 16  155.92  – 
 17  105.48  4.91 c   4.80 d  

 18  28.23  1.24  β,eq.  (CH 3 ) 
 19  182.74  – 
 20  23.62  1.02  α,ax . (CH 3 ) 

   a Pointing away from the viewer 
  b Pointing toward the viewer 
  c  cis  to C-13 
  d  cis  to C-15  
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8       Computer-Assisted Structure Elucidation 

 By the late 1950s, chemists realized that NMR spectroscopy was a powerful tool for 
identifying the structure of organic compounds. The fi rst computer-assisted struc-
ture elucidation (CASE) programs, for small organic compounds, were developed 
in the late 1960s: DENDRAL ( 79 ), CHEMICS ( 80 ), CASE ( 81 ), and StRec ( 82 ). 
However, early elucidation attempts were severely limited by a number of factors, 
not the least of which was the relatively primitive nature of computers at that time. 
In addition, chemists were essentially limited to  1 H NMR spectroscopy, as practical 
one-dimensional  13 C and two-dimensional NMR experiments were years away. 

 The situation changed dramatically with the advent of powerful personal com-
puters,  13 C NMR spectroscopy, and a variety of 2D NMR experiments to establish 
direct and long-range homo- and heteronuclear connectivities. A second generation 
of considerably more powerful structural elucidation programs appeared several 
decades later and included Structure Elucidator ( 56 ), SESAMI ( 83 ), LSD ( 84 ), 
CISOC-SES ( 85 ), LUCY ( 86 ), and COCON ( 87 ). 

 One of the greatest diffi culties in elucidating the structure of an unknown compound 
arises when spectroscopic data are consistent and  appear  to lead to one structure. This 
problem is especially acute if a chemist has isolated, or been given, similar compounds 
in the past, and the current unknown seems to be another analog in this series. The obvi-
ous advantage of CASE programs is that they do not suffer a similar bias. Some of their 
proposed structures may be highly implausible, but they can also suggest classes of 
structures that the chemist has not even considered. 

 Section  7  has illustrated a typical workfl ow for the elucidation of an unknown 
structure in the absence of a computer-assisted elucidation. Advanced Chemistry 
Development, Ltd. (ACD/Labs) markets a program, “ACD/Structure Elucidator” 
( 56 ); by comparison, their automated determination of structures occurs in the fol-
lowing general manner.

    (1)    Spectral data requirements:

    (a)     1 H NMR data: useful for peak integral information.   
   (b)     1 H/ 13 C HSQC,  1 H/ 1 H COSY, and  1 H/ 13 C HMBC.   
   (c)     1 H/ 1 H TOCSY: useful when COSY spectra indicate the presence of com-

plex spin systems.   
   (d)     13 C NMR data: very helpful for identifying quaternary carbons, if sample 

quantities permit its acquisition in a reasonable amount of time and can be 
critical for quaternary carbons that do not exhibit HMBC connectivities.   

   (e)    High-resolution MS to provide a molecular formula.   
   (f)    IR and UV/vis spectral data to furnish information on functional groups.       

   (2)    NMR data are submitted in one of the following two formats:

    (a)    As raw one- and two-dimensional spectral data (FIDs together with their 
processing parameters) in which 1D and 2D NMR cross-peaks are selected 
by the software. This is preferable because data entry is both rapid and direct.   

   (b)    As text (TXT) fi les in which the chemist/spectroscopist has analyzed the 
NMR spectra to establish various homo- and heteronuclear connectivities. 
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The latter approach is less favored because it can involve laborious data 
entry and introduces the serious possibility of transcription errors.       

   (3)    Numerous conditions can be applied to NMR data processing, but as a general 
rule, the following are applied:

    (a)    HMBC correlations are assigned as follows:

   (i)    Strong:  2  J (CH) –  3  J (CH)   
  (ii)    Weak:  2  J (CH) –  4  J (CH)       

   (b)    Direct heteroatom-to-heteroatom connectivities are disallowed   
   (c)    Triple bonds within 3-, 4-, and 5-membered rings are disallowed       

   (4)    A molecular-connectivity map is then generated, which shows all of the NMR 
data in one place and is correlated to the molecular formula. The NMR data 
include heteronuclear (HMBC) and homonuclear (COSY and, possibly, 
TOCSY) connectivities. While interesting, these maps are generally too com-
plicated to be used alone to produce possible structures.   

   (5)    Potential structures, numbering in the tens or hundreds, are generated and  13 C 
chemical shifts calculated for each candidate structure. Differences between 
predicted and experimental data are reported as a “fast-deviation” statistic, 
d F ( 13 C), and possible structures initially ranked in order of increasing d F ( 13 C).   

   (6)    More accurate  13 C chemical shifts calculations are next performed on the 
smaller of either (i) all structures with d F ( 13 C) ≤4 ppm/carbon or (ii) the fi rst 50 
ranked structures. Differences between the more accurately predicted and 
experimental data are reported as an “accurate-deviation” statistic, using “neu-
ral net” [d N ( 13 C)] values and/or “HOSE” ( H ierarchically  O rdered  S pherical 
Description of  E nvironment) [d A ( 13 C)]. The two methods give somewhat simi-
lar results, but the HOSE method yields better results when compounds, which 
are similar to the unknown, are contained in the ACD spectral library. Potential 
structures are re-ranked in order of increasing d A/N ( 13 C) numbers. Structures 
having d A/N ( 13 C) values > 4 ppm/carbon are generally discarded. ACD/Labs’ 
experience is that the correct structure is usually identifi ed at this point ( 88 ).   

   (7)    In situations where the smallest calculated d A/N ( 13 C) values are very close, a best 
structure may be arrived at by calculating d A/N ( 1 H), and, if good MS data are 
available, d(MS) can be calculated as well. In the following sections, three test 
compounds were submitted to ACD/Labs to determine how the performance of 
their ACD/Structure Elucidator program would compare to that of an experi-
enced NMR spectroscopist.    

8.1       Guyanin 

 The structure of guyanin ( 4 ) was determined in 1986 ( 32, 89 ) and represents one of 
the fi rst and most unusual structures determined solely by NMR methods. The 
structure was so unprecedented that one of the senior co-authors felt that confi rming 
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X-ray data should be obtained. The results of X-ray analysis fi nally arrived, just 
prior to submission of the manuscript, and completely supported the NMR- 
determined structure. 

 Critical 2- and 3-bond H-C connectivities were established by the XCORFE 
experiment, which preceded development of the HMBC experiment. Since the orig-
inal NMR data for guyanin ( 4 ) are no longer available, the following data tables 
were reconstructed from data in the original manuscripts and submitted to ACD/
Labs as TXT fi les: HETCOR (direct H-C chemical-shift correlation (Table  7 ), 
COSY (Table  8 ), and XCORFE (longer-range H-C chemical-shift correlation, 
Table  9 ).

   Table 7    HETCOR a  data for guyanin ( 4 )   

  δ  C  /ppm  Attached hydrogens (with coupling constants) 

 208.41  – 

 176.95  – 

 175.28  – 

 173.67  – 

 173.24  – 

 164.25  – 

 142.86  7.44 t (1.7) 

 140.25  7.56 t (1.7) 

 128.89  5.87 q (1.3) 

 120.85  – 

 117.45  5.90 s 

 108.51  6.38 dd (1.7, 0.8) 

 79.95  5.94 dd (1.7, 0.8) 

 68.95  – 

 61.45  – 

 51.98  3.68 s 

 51.25  3.60 s 

 46.57  – 

 46.30  – 

 40.91  3.26 d (10) 

 34.39  1.71 td (13, 13, 6)  1.56 dd (13, 6) 

 34.33  2.55 dd (17, 10)  2.19 d (17) 

 28.31  2.29 ddd (15, 13, 6)  2.16 dd (15, 6) 

 27.80  0.98 s 

 23.65  1.27 s 

 20.67  1.43 s 

 18.99  1.16 s 
 16.37  2.04 d (1.3) 

   a A carbon-detected, direct heteronuclear chemical shift  correlation experiment  
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     The Structure Elucidator program generated a molecular connectivity diagram 
(Fig.  9 ) and a single structure ( 23 ). As it turned out, the COSY data were not needed. 
Only one structure, the correct one, was produced with a generation time of 1 s. 
Table  10  contains  13 C and  1 H chemical shift data that are sorted by position 
number.

       

   Table 8    COSY data for guyanin ( 4 ) 

  δ  H /ppm  Spin-coupled partners 

 7.56  7.44, 5.94 

 7.44  7.56, 6.38 

 6.38  7.44, 5.94 

 5.94  7.56, 6.38 

 5.90  (none) 

 5.87  2.04 

 3.68 (CH 3 )  (none) 

 3.60 (CH 3 )  (none) 

 3.26  2.55 

 2.55  3.26, 2.19 

 2.29  2.16, 1.71, 1.56 

 2.19  2.55 

 2.16  2.29, 1.71 

 2.04 (CH 3 )  5.87 

 1.71  2.29, 2.16, 1.56 

 1.56  2.29, 1.71 

 1.43 (CH 3 )  (none) 

 1.27 (CH 3 )  (none) 

 1.16 (CH 3 )  (none) 
 0.98 (CH 3 )  (none) 

W.F. Reynolds and E.P. Mazzola



261

   Table 9    XCORFE a  data for guyanin ( 4 )

  δ  C  /ppm  Long-range correlated hydrogens 

 208.41  5.87, 3.26, 2.04, 1.27 
 176.95  3.60, 3.26, 1.43, 0.98 
 175.28  5.87, 2.29, 2.04 
 173.67  3.68, 3.26, 2.55, 2.19 
 173.24  5.94, 5.90, 2.16, 1.56, 1.16 
 164.25  5.94, 5.90 
 142.86  7.56, 6.38 
 140.25  7.44, 6.38, 5.94 
 128.89  2.04 
 120.85  7.56, 7.44, 6.38, 5.94 
 117.45  (none) 
 108.51  7.56, 7.44, 5.94 
 79.95  1.71, 1.16 
 68.95  5.90, 5.87, 3.26, 2.29, 2.16, 2.04, 1.56, 1.27 
 61.45  5.87, 3.26, 2.29, 2.19, 2.16, 1.27 
 51.98  (none) 
 51.25  (none) 
 46.57  5.94, 5.90, 2.16, 1.71, 1.56, 1.16 
 46.30  3.26, 2.55, 2.19, 1.43, 0.98 
 40.91  2.55, 2.19, 1.43, 1.27, 0.98 
 34.39  2.29, 2.16, 1.16 
 34.33  3.26 
 28.31  1.71, 1.56 
 27.80  3.26, 1.43 
 23.65  3.26 
 20.67  3.26, 0.98 
 18.99  5.94, 1.71, 1.56 
 16.37  5.87 

   a A carbon-detected, indirect heteronuclear chemical shift correlation experiment  

  Fig. 9    An ACD molecular connectivity diagram for guyanin ( 4 ) showing the various carbon–carbon 
connections       
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   Table 10     1 H and  13 C NMR data for guyanin ( 4 )   

 Position   δ  C  /ppm  Attached hydrogens 

 1  176.95  – 
 2  46.30  – 
 3  40.91  3.26 d (10) 
 4  34.33  2.55 dd (17, 10)  2.19 d (17) 
 5  173.67  – 
 6  61.45  – 
 7  208.41  – 
 8  128.89  5.87 q (1.3) 
 9  175.28  – 
 10  68.95  – 
 11  28.31  2.29 ddd (15,13,6)  2.16 dd (15, 6) 
 12  34.39  1.71 td (13,13,6)  1.56 dd (13, 6) 

 13  46.57  – 
 14  173.24  – 
 15  117.45  5.90 s 
 16  164.25  – 
 17  79.95  5.94 dd (1.7, 0.8) 
 18  120.85  – 
 19  108.51  6.38 dd (1.7, 0.8) 
 20  142.86  7.44 t (1.7) 
 21  140.25  7.56 t (1.7) 
 22  18.99  1.16 s 
 23  16.37  2.04 d (1.3) 
 24  23.65  1.27 s 
 25  27.80  0.98 s 
 26  20.67  1.43 s 
 27  51.25  3.60 s 
 28  51.98  3.68 s 

8.2         T-2 Toxin 

 The sesquiterpene T-2 toxin is a member of the trichothecene family of mycotoxins. 
Its structure ( 5 ) was determined in 1968 ( 90 ). Proton and  13 C NMR data were col-
lected at 400 and 100 MHz, as a teaching aid, to illustrate the structural elucidation 
of medium-sized organic molecules and to check the assignments, with regard to 
relative orientations, of various protons within the molecule ( 40 ). 

 In this case, raw one- and two-dimensional spectral data (FIDs and their processing 
parameters) were submitted to ACD/Labs for analysis. Summaries of these data are given 
in the following tables: HSQC (Table  11 ), COSY (Table  12 ), and HMBC (Table  13 ).

     The Structure Elucidator program generated a molecular connectivity diagram 
(Fig.  10 ) and four possible structures ( 24 ). Of these four, only the two structures 
with epoxy groups ( 25  and  26 ) passed fi ltering,  viz . their d A ( 13 C) values, used here 
because they are more discriminating than the corresponding d N ( 13 C) values, are less 
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   Table 11    HSQC data for T-2 toxin ( 5 )   

  δ  C  /ppm  Attached hydrogens (with coupling constants) 

 173.00  – 
 172.80  – 
 170.39  – 
 136.59  – 
 123.77  5.81 d (5.0) 
 84.68  5.31 d (2.4) 
 78.81  3.70 d (5.0) 
 78.48  4.16 ddd (5.0, 2.4, 2.4 a ) 
 68.13  5.29 d (5.5) 
 67.43  4.35 d (5.0) 
 64.69  4.29 d (12.6)  4.06 d (12.6) 
 64.60  – 
 48.68  – 
 47.30  3.07 d (4.0)  2.80 d (4.0) 
 43.67  2.16 d (6.3) [2H] 
 43.25  – 
 27.87  2.41 dd (14.0, 5.5)  1.91 d (14.0) 

 25.88  2.10 m [1H] 
 22.55  0.97 d (6.4) [CH 3 ] 
 22.48  0.96 d (6.4) [CH 3 ] 
 21.15  2.04 s [CH 3 ] 
 21.10  2.15 s [CH 3 ] 
 20.45  1.75 s [CH 3 ] 
 6.95  0.81 s [CH 3 ] 
 –  3.19 d (2.4 a ) [OH] 

   a Spin coupling observed between these signals in a fresh sample  

   Table 12    COSY data for T-2 toxin ( 5 )  

  δ  H /ppm  Spin-coupled partners 

 5.81  5.29, 4.35, 1.75 
 5.31  4.16 
 5.29  5.81, 2.41, 1.75 
 4.35  5.81, 4.06, 1.91, 1.75 
 4.29  4.06, 2.41 
 4.16  5.31, 3.70, 3.19 a  
 4.06  4.35, 4.29 
 3.70  4.16 
 3.19 [OH]  4.16 a  
 3.07  2.80 
 2.80  3.07 
 2.41  5.29, 4.29, 1.91 
 2.16 [2H]  2.10 
 2.15 [CH 3 ]  (none) 
 2.10  2.16, 0.97, 0.96 
 2.04 [CH 3 ]  (none) 
 1.91  4.35, 2.41 
 1.75 [CH 3 ]  5.81, 5.29, 4.35 
 0.97 [CH 3 ]  2.10 
 0.96 [CH 3 ]  2.10 
 0.81 [CH 3 ]  (none) 

   a Spin coupling is observed between these protons in a fresh sample  
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  Fig. 10    An ACD molecular connectivity diagram for T-2 toxin ( 5 ) showing the various carbon–
carbon connections       

   Table 13    HMBC data for T-2 toxin ( 5 )

  δ  C  /ppm  Longer-range correlated hydrogens 

 173.00  5.31, 2.04 
 172.80  5.29, 2.16 
 170.39  4.29, 4.06, 2.15 
 136.59  5.29, 4.35, 1.91, 1.75 
 123.77  5.29, 4.35, 1.75 
 84.68  4.16, 3.70, 0.81 
 78.81 a   5.31, 3.07, 2.80 
 78.48 a   5.31, 3.70 
 68.13  5.81, 4.35, 2.41, 1.91, 1.75 
 67.43  5.81, 4.29, 4.06, 3.70, 1.91, 1.75 
 64.69  5.31, 4.35, 2.41, 1.91 
 64.60  5.31, 4.29, 4.06, 3.70, 3.07, 2.80, 0.81 
 48.68  5.31, 4.35, 4.29, 4.06, 3.70, 3.07, 2.80, 2.41, 1.91, 0.81 
 47.30  3.70 
 43.67  2.10, 0.97, 0.96 
 43.25  5.81, 5.31, 5.29, 4.35, 4.29, 4.06, 2.41, 1.91, 0.81 
 27.87  5.29, 4.35, 4.29, 4.06 
 25.88  2.16, 0.97, 0.96 
 22.55  2.16, 2.10, 0.96 
 22.48  2.16, 2.10, 0.97 
 21.15  (none) 
 21.10  (none) 
 20.45  5.81, 5.29, 4.35 
 6.95  3.70 

   a HMBC connectivity is observed to the OH signal (δ3.19) in a fresh sample  
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than 4 ppm. These structures differ in the placement of the methylene carbon at 
27.86 ppm. However,  25  had a considerably better d A ( 13 C) value than  26  (0.816  vs.  
2.187 ppm) and proved to be correct.

      

       

Nuclear Magnetic Resonance in the Structural Elucidation of Natural Products



266

       

    It might be surprising that the incorrect structure, which involves the shift of a meth-
ylene carbon, would score as well as it did. Part of the reason is that critical HMBC 
correlations are observed in both structures, being two-bond in one and three-bond in 
the other, which cannot be distinguished. The presence of a key COSY correlation 
between the protons at 2.41 and 5.29 ppm permits identifi cation of the correct structure. 
Table  14  contains  13 C and  1 H chemical shift data that are sorted by position number.

   Table 14     1 H and  13 C data for T-2 toxin ( 5 )   

 Position   δ  C  /ppm  Attached hydrogens 

 2 a   78.81  3.70 d (5.0) 
 3  78.48  4.16 ddd (5.0, 2.4, 2.4 b ) 
 4  84.68  5.31 d (2.4) 
 5  48.68  – 
 6  43.25  – 
 7  27.87  2.41 dd (14.0, 5.5)  1.91 d (14.0) 
 8  68.13  5.29 d (5.5) 
 9  136.59  – 
 10  123.77  5.81 d (5.0) 
 11  67.43  4.35 d (5.0) 
 12  64.60  – 
 13  47.30  3.07 d (4.0)  2.80 d (4.0) 
 14  6.95  0.81 s 
 15  64.69  4.29 d (12.6)  4.06 d (12.6) 

 16  20.45  1.75 s 
 1'  172.80  – 
 2'  43.67  2.16 d (6.3) [2H] 
 3'  25.88  2.10 m 
 4'  22.55  0.97 d (6.4) 
 5'  22.48  0.96 d (6.4) 
 4-OAcCH 3   21.15  2.04 
 15-OAcCH 3   21.10  2.15 
 4-OAc  173.00  – 
 15-OAc  170.39  – 

 3.19 d (2.4 b ) [OH] 

   a Position 1 is assigned to the ether oxygen between carbons 2 and 11 
  b Spin coupling is observed between these protons in a fresh sample  
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8.3          Kauradienoic Acid 

 As mentioned in Sect.  7 , kauradienoic acid is a diterpene, for which the structure  3  
was determined in 1971 ( 78 ) and its  1 H and  13 C NMR spectra completely assigned 
in 1984 ( 31 ). This compound was used earlier in the section to illustrate how a gen-
eral structural elucidation could be achieved through the systematic analysis of  1 H, 
 13 C, HSQC, COSY, TOCSY, and HMBC spectra. The process is somewhat labori-
ous, even for a relatively small-molecular weight compound, due to the occurrence 
of many close-lying proton NMR signals. 

 Raw one- and two-dimensional spectral data (FIDs and their processing param-
eters) were again submitted to ACD/Labs for analysis. Summaries of these data are 
included in the following tables: HSQC (Table  1 ), COSY (Table  2 ), TOCSY 
(Table  3 ), and HMBC (Table  4 ), which are given in Sect.  7 . 

 The ACD/Structure Elucidator program generated a molecular connectivity dia-
gram (Fig.  11 ) and two structures,  27  and  28 . Inspection of the two structures reveals 
the same problem that was encountered in Sect.  7 ,  viz . that  1 H and  13 C assignments 
for two methyl groups and their two adjacent methylene groups are interchanged. In 
this case, use of d N ( 13 C) values gave slightly better discrimination. However, it was 
not surprising that very similar numbers, 1.17 and 1.26 ppm, were calculated for 
identical structures with three differing assignments. Again, the correct structure 
was the lower one. Assignment of the proton chemical shifts was made especially 
diffi cult due to accidental chemical shift equivalence of three sets of protons: H-3 β  
and methyl-20 (1.02 ppm), H-1 β  and methyl-18 (1.24 ppm), and H-2 β  and H-14 α  
(1.50 ppm) (Table  6 ). As a result, structures  27  and  28  both exhibit composite 
assignments in which the assignments of  1 H chemical shifts for methyl (1.02 and 
1.24 ppm) and certain methylene protons (1.50, 1.60, 1.88, 1.93, and 2.16 ppm) can 
be interchanged.
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    However, as was seen at the conclusion of Sect.  7.6 , several lines of reasoning 
based on the analysis N O ESY connectivities and HMBC traces demonstrated 
unequivocally that only the  1 H and  13 C assignments shown in  13  (in Sect.  7.5 ) and 
 27  (in this section) could be correct.  13 C and  1 H chemical shift data for kauradienoic 
acid ( 3 ), which are sorted by position number, are presented in Table  6  in Sect.  7.6 . 

 The examples, illustrated in Sects.  8.1 – 8.3 , demonstrate that the ACD/Structure 
Elucidator program is an important addition to the arsenal of chemists engaged in the 
determination of structures of organic compounds. Moreover, it is best when used in 
conjunction with a knowledgeable NMR spectrometer operator, who can distinguish 
between different structural possibilities by closer examination of the NMR spectra.   

9     The Effect of Dynamic Processes on the Appearance 
of NMR Spectra of Natural Products and Other 
Organic Compounds 

 There are a number of exchange processes (conformational interchange, tautomer-
ism, epimerization,  etc .), which can affect the appearance of an NMR spectrum. In 
considering how these processes can alter the appearance of an NMR spectrum, it is 
important to recognize that what matters is the frequency difference between a pair 
of peaks interchanged by the exchange process, compared to the frequency of 
exchange. For this reason, the present authors dislike the commonly used term 
“NMR time scale” since this implies a single time scale for a spectrum measured on 
a particular spectrometer. While the peak separations for individual pairs of peaks 
are directly proportional to the spectrometer operating frequency, different pairs of 
exchanging peaks for the same compound will generally have different peak 

  Fig. 11    An ACD molecular connectivity diagram for kauradienoic acid ( 3 ) showing the various 
carbon–carbon connections       
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separations,  i.e . there are several different “time scales” for a single compound at a 
single acquisition frequency. A further objection to this term is seen when consider-
ing  13 C and  1 H spectra run on the same spectrometer. While the acquisition fre-
quency for the  13 C spectrum is almost exactly ¼ of that for  1 H, the  13 C chemical shift 
range (in ppm) is typically  ca . 20 times that for  1 H. Consequently, peak separations 
(in frequency units) for pairs of exchanging  13 C peaks are typically signifi cantly 
larger than the peak separations for corresponding  1 H pairs. Thus, rather than having 
a longer “NMR time scale” (as would be implied by the lower frequency),  13 C spec-
tra actually usually have shorter “time scales,”  i.e . faster exchange rates are needed 
to cause full spectral averaging. 

 A number of years ago, one of the authors took advantage of this difference in  1 H 
and  13 C “time scales” to resolve a dispute in the literature concerning the site of 
protonation of amides in strong (≪pH 1) acid solutions. While it had previously 
been generally accepted that the carbonyl oxygen was the site of amide protonation 
in strong acids,  Liler  argued that, in very strong sulfuric acid solutions, there was 
switch-over to N-protonation ( 91 ). This was based on the 60-MHz  1 H spectrum of 
 N,N -dimethylformamide in these solutions. This showed two methyl  1 H peaks in 
both neutral and weakly acidic solutions, due to hindered rotation about the central 
C–N bond. However, the two methyl signals collapsed to a singlet as acidity 
increased.  Liler  believed that this indicated predominant N-protonation at high acid-
ity since this would lower the barrier to C–N rotation by minimizing C–N double 
bond character ( 91 ). Since this conclusion was doubted, the  13 C spectrum of  N,N - 
dimethylformamide  was recorded under the same conditions ( 92 ). These spectra 
showed two methyl  13 C signals at all acidities, although the signals did broaden to a 
limited extent at intermediate acidity values. This indicated predominant 
O-protonation at all acidities, but with a small proportion of N-protonation at inter-
mediate acidities and with fast exchange between the two tautomeric forms. This 
small fraction of N-protonation allowed slightly faster rotation about the C–N bond 
that was suffi cient to coalesce the slightly separated ( ca . 6 Hz at 60 MHz)  1 H methyl 
signals but not the more widely separated  13 C signals, which instead were only 
slightly broadened ( 92 ). 

 When considering exchange processes, one can defi ne three exchange regimes: 
the slow exchange regime where the frequency of exchange is signifi cantly lower 
than the peak separation, the intermediate exchange region where the two values are 
comparable in magnitude, and the fast exchange regime where the exchange rate is 
much larger than the frequency difference. In the slow exchange region, one will 
observe separate, relatively sharp, spectra for the two (or more) different forms. In 
the fast exchange regime, one will observe a single, relatively sharp, spectrum 
 corresponding to the weight average of the spectra for the different exchanging 
forms. Finally, the appearance of the spectrum of a compound in the intermediate 
exchange regime will depend strongly on the relationship between the frequency 
separations between individual pairs of exchanging peaks and the exchange rate. 
Thus, pairs of peaks with a small frequency separation may appear as a broadened 
single peak while a pair with a larger chemical shift difference may appear as two 
broadened peaks. A further complication occurs when the relative populations of the 
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exchanging forms are signifi cantly different. Consider the exchange between two 
forms, A and B, in relative proportions of 10:1. The back exchange rate B→A will 
be 10 times as great as A→B, and peaks for form B will broaden 10 times as fast as 
the corresponding A peaks with the onset of exchange. Under these circumstances, 
the minor form may not be observed, particularly if signal/noise is marginal. 

 Dynamic effects on NMR spectra can create different kinds of problems for a 
natural product chemist, depending upon which exchange regime is involved. One 
common problem is very fast interconversion of two or more conformations of a 
molecule. Provided that the exchange rate is suffi ciently fast, the researcher may not 
be aware that conformational averaging is occurring since the spectrum will not be 
different in overall appearance from that of a molecule with a fi xed conformation. 
However, both chemical shifts and  1 H– 1 H coupling constants will be the weight 
averages of the values for the different conformers. Since one often relies heavily on 
vicinal  1 H– 1 H coupling constants in determining stereochemistry, this could result 
in misleading conclusions. Furthermore, interproton distances also vary with con-
formation, so the observed N O E between a pair of protons will also be an average 
of the N O Es for the different conformations. However, since N O Es vary as  r  −6  ( 59 ), 
the observed N O E will not be a simple weight average but will be strongly biased 
towards the N O E of the conformer with the shortest interproton distance, even if 
this is a minor conformer ( 68b ). Thus, N O E data in conformationally mobile sys-
tems can be highly misleading if not interpreted with care. 

 Situations where low barriers are probable to interconversion between conforma-
tions of similar energy include molecules with fi ve-membered rings, six-membered 
rings with fused  cis -ring junctions, and larger macrocyclic molecules. Unfortunately, 
there is no easy solution to this problem. If a molecule is in the fast exchange regime 
at room temperature, the interconversion barrier must be low. Consequently, it may 
not always be possible to slow the exchange by cooling the solution to the point 
where well-resolved spectra for individual conformers can be obtained and coupling 
constants determined, even on a high-fi eld spectrometer. An alternative is to use 
either molecular mechanics or quantum mechanics calculations to estimate the 
3-dimensional structures and relative energies of different signifi cantly populated 
conformers. A relationship such as the  Altona  equation ( 60 ) can then be used to pre-
dict the vicinal  1 H– 1 H couplings in the different conformers and determine whether 
their calculated weight average values are consistent with the observed values. 

 Systems in the intermediate exchange region present entirely different problems. 
The biggest risk is that some signals may be so broad that they are not clearly 
observed. This is most likely to be a problem for  13 C spectra because the typically 
much larger  13 C chemical shift differences make extreme broadening more proba-
ble. Oddly, this is a situation where the use of a higher fi eld spectrometer can actu-
ally be a disadvantage because the larger frequency difference between exchanging 
signals makes extreme broadening more likely. A second factor is that the lower 
sensitivity of  13 C spectra makes it more likely that a broadened peak cannot be 
clearly distinguished from noise. One approach that we fi nd effective in cases where 
this problem is suspected is to reprocess the  13 C spectrum with extreme line broad-
ening ( e.g . 25 Hz). As illustrated in Fig.  12 , this aids in distinguishing broad peaks 
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from noise. In addition, due to a smaller frequency separation, the proton bonded to 
the broadened  13 C peak may be much sharper. In this case, it is sometimes possible 
to detect a correlation between a directly bonded  1 H/ 13 C pair in an HSQC spectrum, 
which will allow one to determine the  13 C chemical shift with adequate precision 
( 93 ). Similar correlations between indirectly bonded  1 H/ 13 C pairs may be observed 
in an HMBC spectrum, although the lower sensitivity of the latter spectrum may 
make this less likely. Finally, one can repeat the measurements at higher or lower 
temperatures to attempt, respectively, to move the system to the fast or slow 
exchange regime. Heating the sample will sharpen the broadened peaks and make 
them easier to detect. Cooling the sample will potentially allow one to detect and 
identify the two (or more) exchanging conformations or tautomers. However, this 
will generally require a signifi cant lowering of temperature to slow the exchange 
suffi ciently to allow sharp peaks to be observed. The choice of which approach to 
use will also be determined by the liquid range of the solvent used, relative to room 
temperature. For example, C 6 D 6  and, particularly, DMSO- d  6  are suitable for high 
temperature measurements but freeze not far below room temperature. On the other 
hand, CDCl 3  and CD 3 OD are good for low temperature measurements but of limited 
value for high temperature measurements due to relatively low boiling points.

   One compound, which nicely illustrates many of these problems (and solutions), 
is lupane-3 β -ol-30-al ( 29 ) (93). The original  13 C spectrum appeared to show only 25 
peaks, which suggested a sesterterpene or possibly a degraded steroid. However, the 

  Fig. 12    125-MHz  13 C spectrum of  cis -decalin at 25 °C: ( a ) with 1-Hz line broadening ( b ) with 
100-Hz line broadening. This illustrates how severe line broadening allows one to detect peaks that 
are severely broadened by an intermediate exchange rate       
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 1 H spectrum, which showed several methyl singlets, seemed more consistent with a 
triterpene or possibly a tetranortriterpene. Repeating the  13 C spectrum at −40 °C 
revealed four additional peaks, which were between 20 and 40 Hz wide at half- 
height. Finally, the HSQC and HMBC spectra revealed correlations to another 
 carbon for which the line was still too broad to be clearly observed even in the low 
temperature  13 C spectrum. The NMR data, in combination with molecular modeling 
calculations, revealed that the observed dynamic effects were due to slow intercon-
version of two conformations of the side chain aldehyde group ( 93 ).
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    In the slow exchange limit, it may not be clear initially whether one is dealing 
with two interconverting forms or a mixture of two compounds of relatively simi-
lar structure. Here, the best approach is to rely on an EXSY spectrum to distinguish 
between these possibilities ( 65 ). This spectrum will show symmetric off-diagonal 
peaks between the corresponding protons in two exchanging forms. An EXSY 
spectrum can be obtained with the same pulse sequence that is used for obtaining 
either a N O ESY or R O ESY spectrum ( 65 ). However, the difference is that EXSY 
peaks have the same phase as the diagonal peaks while N O ESY peaks (for small 
molecules) and R O ESY peaks (always) are of opposite phase to the diagonal 
peaks. For this reason, N O ESY and R O ESY spectra should always be obtained in 
the phase-sensitive mode so that exchange peaks can be distinguished from N O E 
peaks. Another application of EXSY correlations in the natural product area is the 
detection of OH peaks hidden beneath other proton peaks. The OH peaks often 
show EXSY peaks with residual water in the solvent and can be detected by taking 
a cross-section through the water peak in the N O ESY or R O ESY spectrum. With 
the aid of EXSY spectra in combination with other 2D spectra, we fi nd that it is 
possible to totally assign the structures and spectra of two interconverting forms of 
even complex natural products. An example is a prenylated benzophenone  30 , 
where the two tautomeric forms were fully assigned in this way ( 94 ). The main 
problem with this approach occurs when one of the forms is present in only a 
minor amount since, as noted at the beginning of this section, the minor component 
peaks may be severely broadened.
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10           The Relative Advantages and Disadvantages 
of Different Pulse Sequences 

 This topic was extensively discussed in a 2002 review article ( 10 ), and the conclu-
sions from that article will be only briefl y summarized here. Rather, we will focus 
mainly on developments since that time. Two key choices, which were previously 
discussed in the earlier review, were between HMQC and HSQC for one-bond 
 1 H– 13 C correlations and between N O ESY and R O ESY for investigating N O Es. Our 
recommendations were to use HSQC in preference to HMQC and R O ESY in pref-
erence to N O ESY. More recent improvements in pulse sequences and hardware 
support these recommendations, as discussed below. 

 The original argument for favoring HMQC over HSQC is that the latter requires 
more pulses and particularly 180°  13 C pulses. Therefore, the latter sequences would 
be prone to poor performance due to incorrect probe tuning, inhomogeneous RF 
pulses, and incomplete inversion by  13 C 180-pulses over the entire spectral window 
on high-fi eld spectrometers. However, HMQC has the disadvantage that  1 H– 1 H cou-
pling appears along both  F 1 and  F 2 axes while only along  F 2 in HSQC. This yields 
a sensitivity and  13 C resolution advantage for HSQC ( 95 ). In addition, HSQC can be 
run in a phase-sensitive, edited mode (see below) while HMQC is usually run in an 
absolute-value (magnitude) mode and cannot provide edited spectra. Furthermore, 
the availability of automatic probe tuning eliminates the fi rst concern about HSQC 
while modern probe designs now give better pulse homogeneity. Another important 
advance has been the replacement of “hard”  13 C 180-pulses by frequency-swept adi-
abatic pulses with much greater inversion effi ciency ( 96 ). Adiabatic pulses also pro-
vide more effi cient  13 C decoupling ( 96 ), allowing one to increase the acquisition time 
and the  1 H resolution without concerns about decoupler heating. This does not 
require an increased total experiment time since the relaxation delay can be corre-
spondingly decreased to keep the acquisition time constant ( 10 ). 

 A particularly useful version of HSQC is the edited version, which gives peaks of 
opposite phase for CH 2  carbons relative to CH and CH 3  carbons ( 97 ). This provides 
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the same information as an edited  13 C DEPT experiment ( 10 ) in comparable time, 
with the important added advantage of providing the chemical shifts of attached 
protons ( 10 ). However, it has the disadvantage that peaks near the outer edges of the 
spectral window may be severely attenuated due to a mismatch between the average 
value of the  1 H– 13 C coupling used to calculate delays and the actual coupling for that 
CH n  pair. A clever approach to this problem was the design of an adiabatic pulse 
(CRISIS), which took advantage of the approximate linear relationship between  13 C 
chemical shifts and  1 H– 13 C coupling constants to minimize this problem ( 98 ). A 
more recent improvement includes a modifi ed CRISIS refocusing pulse during the 
evolution period with broadband  1 H and  13 C inversion pulses during the INEPT and 
reverse-INEPT stages. The same sequence also provides further sensitivity enhance-
ment by simultaneous acquisition of the two coherence pathways ( 99 ). These 
improvements provide a much more robust version of HSQC, as can be seen in 
Fig.  13 , which shows spectra obtained with the basic gradient HSQC sequence and 

  Fig. 13    “Skyline” projection spectra for 3-furanaldehyde, using different versions of gradient- 
selected HSQC pulse sequences: ( a ) unedited spectrum with the basic gHSQC sequence, ( b ) unedited 
spectrum with an improved gHSQC (Agilent gc2hsqcse) sequence, ( c ) edited spectrum with the 
basic sequence, ( d ) edited spectrum with the improved sequence. Carbon numbers are shown at the 
 top of spectrum  ( d )       
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  Fig. 14    Absolute-value mode gHMBC spectra of kauradienoic acid ( 3 ) with summed projection 
spectra along the  top . The  left-hand spectrum  was obtained using suggested acquisition and pro-
cessing parameters from ( 8 ). The  right-hand spectrum  was obtained using recommended param-
eters from ( 12 ). The summed spectrum on the  left  is plotted at 10 times the vertical scale of the 
summed spectrum on the  right , and the two summed spectra have respective signal/noise of 22:1 
and 150:1. This clearly illustrates the importance of parameter choices in obtaining 2D spectra. 
This fi gure was taken from ( 12 ) with permission of the publishers       

one with all of the recent improvements. There are still some sensitivity losses with 
editing, but these are not nearly as great as with the original sequence.

   Recent developments of very fast HMQC sequences ( 17–19 ) make them an 
attractive alternative to HSQC, particularly for rapid screening and dereplication 
(see Sect.  2 ). However, these give poorer  13 C resolution and cannot provide edited 
spectra. 

 Since the wide  13 C spectral window is the time-incremented axis,  13 C resolution 
may still be a problem with HSQC (and even more so HMQC), even with the aid of 
linear prediction. If one is not sample-limited (or if one is fortunate to have access to a 
 13 C-optimized cryogenically cooled probe), it is worth considering acquiring a 
HETCOR spectrum ( 35 ) in cases of severe  13 C spectral crowding. As we have shown 
( 100 ), this can give resolution of close-spaced peaks, which is not possible with HSQC. 

 There have been numerous proposed modifi cations of the basic HMBC spec-
trum, and these have recently been extensively reviewed ( 101 ,  102 ). Unfortunately, 
in an attempt to improve information content, most of these involve some loss of 
sensitivity from what is already a low-sensitivity experiment. In contrast, we have 
shown that one can potentially obtain signifi cant sensitivity enhancements of 
HMBC spectra by correct choices of acquisition and processing parameters ( 12 ). 
This is illustrated in Fig.  14 , which shows a comparison of HMBC spectra of 
 strychnine ( 1 ) obtained using our recommended parameters ( 12 ) and those from a 
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widely used book, which suggests acquisition and processing parameters for numer-
ous 1D and 2D experiments ( 8 ). The improvement in  S / N , shown in Fig.  14 , is actu-
ally greater than one would obtain by switching from an ambient temperature probe 
to a cryogenically cooled probe. In addition, the basic HMBC sequence can be 
further improved to a limited degree by the incorporation of adiabatic pulses ( 103 ).

   The types of HMBC modifi cations that have potential advantages fall into three 
main categories. The fi rst is a group of sequences, which can separate 2-bond and 
3-bond C–H correlations. Of these, the most widely used is the H2BC sequence 
( 104 ). This relies on the presence of vicinal  1 H– 1 H couplings to generate only 
 1 H– 12 C– 13 C correlations. The 2D display produced is similar to that for an HMBC 
spectrum. Thus, from a side-by-side comparison of the two spectra, one can directly 
distinguish between 2-bond and 3-bond correlations since only the latter will appear 
in the HMBC spectrum. However, there are three disadvantages. First, since the cor-
relation information is relayed  via  the vicinal couplings, it does not generate any 
correlations involving non-protonated carbons, and thus 2-bond and 3-bond correla-
tions to these carbons cannot be distinguished. Second, it requires acquisition of an 
additional, relatively low-sensitivity, spectrum. Finally, it does not contain any 
information that could not be deduced from a COSY spectrum or, in case of spectral 
crowding, from the combination of COSY and HSQC spectra. This suggests an 
alternative to H2BC. Instead, since one normally would have acquired both COSY 
and HSQC spectra, covariance processing ( 45 ) could be used to generate an HSQC- 
COSY spectrum from these spectra. Alternatively, one could directly generate an 
HSQC-COSY spectrum, but this again would require acquiring an additional spec-
trum. This illustrates what we regard as the biggest advantage of covariance pro-
cessing,  i.e . the ability to use two existing high-sensitivity spectra to generate a new 
spectrum, which would otherwise require signifi cant additional spectrometer time. 

 One problem with the HMBC sequence is that it uses a fi xed delay to generate 
correlations. This typically is chosen to be optimum for 8-Hz  1 H– 13 C couplings. 
However, this may give very weak correlation peaks in cases where the actual cou-
pling is signifi cantly different from 8 Hz. The second group of modifi cations are 
those designed to sample a wider range of long-range  1 H– 13 C couplings to minimize 
this problem. One example is the ACCORD sequence ( 105 ), which uses the “accor-
dion” approach to sample couplings over a range as large as 2–25 Hz. This clearly 
generates a wider range of correlations with good sensitivity ( 105 ) but at the cost of 
introducing a new problem. HMBC spectra, like HMQC, have  1 H– 1 H coupling 
appearing along both  F 1 and  F 2, generating skewed cross-peaks. The accordion 
section in ACCORD signifi cantly increases the width of this skew pattern along  F 1, 
with resultant loss of resolution along that axis. In an attempt to maintain the advan-
tages of ACCORD, while minimizing the skewing problem,  Krishnamurthy  and 
 Martin  developed the CIGAR sequence ( 106 ). This uses a modifi ed accordion sec-
tion, which can be adjusted to totally eliminate the cross-peak skew, producing an 
HMBC spectrum with no  1 H– 1 H coupling along  F 1 (similar to HSQC). This can 
produce signifi cantly improved resolution in regions of spectral crowding ( 10 ). 
However, it also introduces extra delays, which can signifi cantly decrease  S / N , par-
ticularly for larger (>400 molecular weight) molecules with shorter relaxation 
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times. Fortunately,  F 1 spectral crowding in natural product HMBC spectra is often 
restricted to a relatively narrow region of the spectrum. While one could run a band- 
selective HMBC spectrum for this region, an alternative would be to obtain a band- 
selective CIGAR spectrum. Other approaches to sampling a wide range of couplings 
include converting HMBC to a 3D experiment with  J  CH  forming the third axis or by 
combining the data from three or four experiments with delays corresponding to 
different values of  J  CH . The advantages and problems of these approaches are dis-
cussed elsewhere ( 101 ,  102 ). 

 The third, and in our view most promising, HMBC modifi cation is the IMPACT- 
HMBC sequence, which was recently developed by  Furrer  ( 107 ). This is similar in 
design to the ASAP-HMQC sequence of  Kupce  and  Freeman  ( 18 ) in that it uses 
cross-polarization of protons to allow a far shorter ( ca . 0.2 s) relaxation delay. This 
either permits one to acquire spectra more quickly or to collect more scans per time 
increment in a given time, increasing the signal/noise. 

 We have previously argued for the use of R O ESY in place of N O ESY for N O E 
investigations ( 10 ). The main advantage of R O ESY is that cross-peak intensities 
are nearly independent of molecular weight while N O ESY cross-peaks change 
sign as molecular weight increases. Depending on solvent viscosity, the crossover 
point typically occurs somewhere in the 500–1,500 molecular-weight region. 
Consequently, particularly for larger natural products, N O ESY cross peaks may be 
very small. However, one problem with R O ESY has been that the spin-lock gener-
ates heat if it is too long. Recent improvements replace the original spin-lock, which 
used hard pulses with a lower power adiabatic pulse spin-lock that allows the use of 
longer mixing times ( 108 ). 

 Finally, one disadvantage of the original TOCSY sequence ( 34 ) was phase dis-
tortions, which altered the appearance of cross-peaks. This has been minimized by 
the more recent Z-TOCSY experiment, which incorporates a zero-quantum fi lter, 
yielding cleaner spectra and well-phased peaks ( 67 ). These can also be incorporated 
in the selective 1D TOCSY sequence. An example of this was given in Sect.  7 .  

11      Liquid-Chromatography–NMR 

 Since high-pressure liquid chromatography (HPLC) is so widely used for isolating 
pure natural products from chromatographic fractions or other complex mixtures, 
the combination of LC with NMR would seem to be a logical approach to use in 
natural product research. This approach has been investigated widely over a number 
of years ( 109 ). However, the relatively low sensitivity of NMR has been a persistent 
problem when trying to use continuous fl ow LC in combination with NMR. The 
conditions for optimum resolution of LC peaks usually leave too little sample in the 
fl ow cell of the NMR probe during acquisition to allow one to obtain anything more 
than a routine  1 H spectrum. While this problem can be partially overcome if one is 
fortunate enough to have access to a cryogenically cooled fl ow probe (see Sect.  12 ), 
the consensus seems to be that it is better to use the two techniques separately. 

Nuclear Magnetic Resonance in the Structural Elucidation of Natural Products



278

One intermediate approach would be to use stop fl ow LC for sample collection. 
However, most workers in the fi eld seem to agree that the best approach is to use 
solid phase extraction (SPE) cartridges to collect the LC fractions ( 109 ). The sam-
ples can then be dissolved off the cartridges using deuterated solvents and either 
injected into a fl ow NMR probe or placed in NMR tubes to be used in conjunction 
with a sample changer and a regular NMR probe. There are two major advantages 
to this approach. First, the LC separation can be carried out with protonated sol-
vents, minimizing costs. Second, one can use repeat injections to increase the 
amounts of samples collected, if necessary. 

 A further modifi cation of this approach is to combine LC, mass spectrometry 
(MS), and NMR ( 110 ). Liquid chromatography is used to separate a complex mix-
ture into individual components, using protonated solvents. As each component is 
detected, usually by a UV-visible detector, the fraction concerned is split, with a 
small amount sent for MS analysis, with the remainder sent to an SPE cartridge for 
collection. If the MS does not allow identifi cation of the fraction as a known com-
pound, the solvent can be removed from the SPE cartridge and the sample reconsti-
tuted in the appropriate deuterated solvent for NMR investigation. Although neither 
of the authors has extensive experience of combining LC with mass and NMR spec-
troscopic analysis, we believe that this is a promising approach since it combines 
dereplication ( i.e . distinguishing known from unknown compounds) with full struc-
ture determination, when the latter is required.  

12       Probe Choices 

 In most cases, a natural product chemist may have limited probe choices available, 
as determined by the available probes in the NMR facility. However, it is still useful 
to have a general knowledge of the relative advantages and disadvantages of differ-
ent probe types. These are discussed below. 

12.1     Essential Probe Features for Natural Product Research 

 Any probe should have H/X capabilities,  i.e . observation of both proton and hetero-
atoms (most commonly  13 C but preferably also at least  15 N). This can involve either 
an H-channel and a tunable X-channel or a three-channel (H/C/N) probe with sepa-
rate channels tuned to the three nuclei. It should also have a z-axis gradient coil for 
gradient shimming and performing gradient-selected 2D NMR sequences. Finally, 
it is highly desirable to have auto-tuning capabilities for both H and X channels. 
This is particularly important if the spectrometer is being operated with an auto- 
sampler but also for multi-pulse experiments ( e.g . 2D NMR) where having one or 
both channels out of tune can signifi cantly degrade performance and introduce 
 artifact peaks.  
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12.2     Ambient-Temperature Probes 

 The main advantages of ambient-temperature probes are their low capital and oper-
ating costs, but they are signifi cantly less sensitive than the alternative cryogeni-
cally cooled probes (see below). They most commonly have inserts for either 5-mm 
or 3-mm sample tubes. A key feature, particularly in the past, has been the geom-
etry of the two coils in an H/X probe since the inner coil was relatively more sensi-
tive than the outer coil (often by a signifi cant extent). If the H-coil is inside, this is 
commonly called an indirect-detection probe while, if the X-coil is inside, it is 
called a direct-detection probe. This odd terminology is a historical one, dating to 
the time when 2D H/X experiments almost always involved X-detection. The dif-
ference in coil sensitivities has been a problem for natural product chemists since 
one usually wished to obtain both a 1D  13 C spectrum and a series of  1 H-detected 2D 
spectra on the same sample, preferably without having to change probes. 
Fortunately, some of the latest generation of probes from both Bruker and Agilent 
have minimized this problem by providing good sensitivity on both coils. For 
example, a probe of this type, to which both authors of this chapter have access, is 
the Agilent “OneNMR” probe that gives  1 H and  13 C  S / N  specifi cations, which are, 
respectively, almost identical with the corresponding specifi cations for  1 H on an 
indirect-detection probe and  13 C on a direct-detection probe from the same 
manufacturer.  

12.3     Cryogenically Cooled Probes 

 With these probes, the coils and the preamplifi ers are cryogenically cooled, usually 
with liquid He, but with the sample at ambient temperature. The actual coil tem-
perature is usually about 20 K. This very signifi cantly reduces random thermal 
noise, leading to a dramatic increase in  S / N  compared to ambient-temperature 
probes. The enhancement factor is usually quoted as about 4:1, but the actual  S / N  
enhancement appears to be strongly solvent-dependent with larger than 4:1 
enhancements for some common organic solvents ( e.g . CDCl 3  and C 6 D 6 , in par-
ticular) and less than 4:1 for aqueous solutions, particularly “salty” solutions. 
While the sensitivity of these probes is obviously a major advantage, the disadvan-
tage is that they are not only far more costly than regular probes but also require 
expensive routine maintenance every 1–2 years. They also appear to be more prone 
to other damage and are costly and time-consuming to repair. In times of shrinking 
budgets, one must carefully balance the sensitivity advantages against the signifi -
cant maintenance costs in deciding whether to acquire this type of probe. If one 
does have suffi cient funds to include a cryogenically cooled probe in a spectrom-
eter purchase, one should also consider the alternative of extra ambient-tempera-
ture probes plus a signifi cantly extended warranty on the entire spectrometer 
package. The most common cryogenically cooled probes are indirect-detection 
H/C/N probes. While these were designed mainly for protein NMR studies, they 
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are also quite suitable for natural product investigations. Alternatively, both major 
manufacturers offer high sensitivity  13 C-optimized probes, which still give  1 H  S / N  
specifi cations well in excess of ambient-temperature indirect-detection probes. 
Arguably, these would be a better choice for natural product research since they 
can quickly provide the good quality  13 C spectra, which are required by journal 
editors for publication, while still providing excellent sensitivity for  1 H-detected 
2D experiments. 

 Cryogenically cooled probes are most commonly designed for 5-mm or 3-mm 
tubes although Bruker also offers an H/C/N 1.7-mm probe. One point to remem-
ber is that, with a 5-mm probe, there are often  S / N  advantages in using 3-mm 
tubes ( 111 ). The reason is that, with the cryogenic cooling of coils and preampli-
fi er, the main source of thermal noise is the sample. Thus, providing that solubil-
ity is not an issue, there is an advantage in reducing the sample volume with a 
3-mm tube. 

 Bruker has recently offered indirect-detection liquid N 2 -cooled H/X probes for 
400–600 MHz instruments. While the  S / N  is only about half of that of the LHe- 
cooled probes, capital costs are lower. However, they require continuous cooling 
with liquid N 2 , so operating costs will be higher than for ambient probes. 

 Finally, the ultimate cryogenically cooled probe for natural product research is 
one built specially for the National High Field Magnet Laboratory in Florida ( 112 ). 
This not only has cooling of the coils and preamplifi ers but also has coils fabricated 
from superconducting materials. It has been used to elucidate structures of marine 
natural products at the nanomole level ( 113 ). While there are rumors of a possible 
commercial version of this probe in the future, it would undoubtedly be consider-
ably more expensive than current cryogenically cooled probes.  

12.4     Microprobes 

 Microprobes represent a different approach to probe design, which is particularly 
suitable for sample-limited cases, namely, to have a very small sample volume. A 
commercial version of a probe of this type is the Protasis CapNMR probe, which is 
compatible with spectrometers from all major manufacturers. The probe requires 
about 15 mμ 3  of solution with an active volume (in the form of a fl ow cell within the 
probe) of    5 mμ 3 . This is available as an H/C probe, either with a single-fl ow cell plus 
gradient coils or with dual-fl ow cells without gradients. The latter arrangement 
allows for parallel acquisition of spectra from two samples. Samples can be loaded 
with a robot auto-sampler, allowing for high throughput operation. The main limita-
tion would appear to be sample solubility. Nevertheless, CapNMR does provide an 
intermediate cost alternative to cryogenically cooled probes and has proved useful 
in natural product research, particularly when used in combination with HPLC-SPE 
separation techniques ( 114 ).   
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13     A Fully Automated Setup of 2D NMR Experiments 
for Organic Structure Determination 

 There have been a number of advances in spectrometer operation, which minimize 
the extent of operator interaction with the spectrometer. These include robots for 
sample changing, automated locking and probe tuning, gradient shimming and 
improved software for experiment setup. However, with the increasing speed and 
power of computers, we believe there is still room for further signifi cant improve-
ment, particularly in automated setup of acquisition and processing parameters for 
2D experiments. This would allow replacing the default parameters currently 
included with the spectrometer software for different pulse sequences with param-
eters optimized for the actual sample, without requiring expert knowledge on the 
part of the operator. A possible future program to fully achieve these goals is out-
lined below. However, in the interim, some of the ideas could be quickly imple-
mented,  e.g . using a quick  1 H  T  1  measurement to choose optimum recycle times for 
different experiments. 

 The program could provide a menu of standard 2D experiments (probably at least 
COSY-45 or COSY-90, N O ESY/R O ESY, TOCSY, HSQC, and HMBC), along with 
a Help fi le indicating the information content and the relative sensitivity of different 
experiments. It could also provide the option of inputting an estimated  13 C spectrum 
(calculated with existing 3rd party software), provided that the probable structure 
was known with reasonable certainty. The fi rst step would be to specify the 2D 
experiments to be run and also whether the operator wished to obtain a DEPT- 135 or 
DEPT-Q  13 C spectrum. The spectrometer would then be instructed to acquire a pro-
ton spectrum with a default number of scans (probably 16) and with a wide spectral 
window to ensure that no peaks are missed. The spectrometer could then reacquire 
the spectrum with the spectral width narrowed to include only regions where peaks 
appeared and the number of scans adjusted to the minimum number needed to give 
good signal/noise. The next step would be to have the spectrometer measure proton 
 T  1  values by fi nding nulls in a quick inversion-recovery experiment. It could be pro-
grammed to ignore the most intense peaks (solvent peaks and methyl signals) so that 
 T  1  values were determined only from the weaker CH and CH 2  multiplets (CH 3  sig-
nals usually have longer relaxation times but are also much more intense. Thus, one 
can afford to have a shorter than optimum recycle time for these protons). 

 Based on the measured signal/noise and number of scans for the  1 H spectrum and 
the known relative  1 H and  13 C sensitivity of the probe in use, the program could then 
calculate the time needed to run a 1D  13 C spectrum or else either a DEPT-135 or a 
DEPT-Q spectrum (the former giving only peaks for protonated carbons while the 
latter includes all types of carbons but with signifi cantly reduced sensitivity for 
quaternary carbons). Next, it could optimize the acquisition parameters for the cho-
sen 2D experiments. The minimum number of data points required for the acquisi-
tion axis depends on the extent of  1 H spectral crowding. One way to estimate this 
would be to use a binning technique for the proton spectrum similar to that used in 
metabonomics investigations by NMR,  i.e . the spectrum could be divided into a 
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series of “bins” of equal frequency width (maybe 20 Hz) and integrated. The density 
of peaks could be estimated from the fraction of bins with signifi cant integrated area 
and/or the number of consecutive bins with signifi cant area. This would allow the 
computer to choose the minimum number of  F 2 data points and acquisition times 
for all 2D experiments. The recycle time (acquisition time plus relaxation delay) 
would be set at 1.3 times the average  T  1  determined above for most experiments 
except for N O ESY or R O ESY where 2.5 times  T  1  would be more appropriate. The 
minimum number of required data points determined by binning could then also be 
used as the number of  F 1 time increments for homonuclear 2D experiments (the 
number of time increments should include both acquired and linearly predicted 
increments to minimize total time). 

 If the operator wished to include heteronuclear experiments ( e.g . HSQC and 
HMBC), the program could again use the number of scans and the signal/noise for 
the initial proton spectrum plus the known relative  1 H and  13 C sensitivities for the 
installed probe to calculate the number of scans needed to acquire these experiments. 
If a calculated  13 C spectrum were available, then the HSQC and HMBC  13 C spectral 
windows could initially be chosen based on this spectrum. Alternatively, it could 
initially choose a default value of 225 ppm for HMBC and a default value for HSQC 
of 170 ppm or it could scan the initial  1 H spectrum and choose the latter spectral 
window based on the presence or absence of peaks in regions characteristic of 
 aromatic/olefi nic and aldehyde protons. If a calculated  13 C spectrum were available, 
then the program could use average peak separations to determine the minimum 
number of measured and linearly predicted time increment spectra needed to get 
adequately resolved HSQC and HMBC spectra. Otherwise, it could use the extent of 
proton spectral crowding to estimate the number of required time increments. 

 In addition, the program would then list the time for each experiment (including 
the alternative 1D  13 C options) and the total time. The operator could then choose to 
instruct the spectrometer to proceed with the full set of experiments or, if the calcu-
lated time exceeded the available time on the spectrometer, eliminate one or more 
experiments from the queue. Assuming that either a DEPT-135 spectrum and a full 
 13 C spectrum or else only a DEPT-Q spectrum were run fi rst, the ideal arrangement 
would be for the spectrometer to have on-line access to a large 1D  13 C data library 
of known compounds. If a close match to a known compound were found, then 2D 
acquisition could be automatically aborted unless the operator had indicated that it 
should proceed even if a match were found. Finally, if HSQC and HMBC spectra 
were to be acquired, the program could fi rst re-optimize the  13 C windows for these 
experiments, based on the  13 C spectra if these had been obtained. The same approach 
could be used for multiple samples in an overnight or weekend run. There could be 
a “multiple sample” option. In this case, the spectrometer would be programmed to 
sequentially run the  1 H setup experiments on each sample and then list the times for 
each sample. The operator could then choose to delete individual experiments, or 
entire samples from the queue, if the total time were too long. 

 After completion of data acquisition, the spectrometer could be programmed to 
process the spectra, based on the pre-determined best weighting function for each 
axis for each experiment, with the value of the weighting function based on the 
number of points/number of increments and the chemical shift window. While the 
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whole procedure may seem cumbersome, it actually closely mirrors the thought 
processes that a highly experienced operator would use in setting up a series of 2D 
experiments for organic structure elucidation, while avoiding the risk of operator 
error. It is also easily within the capabilities of current high-speed computers and 
would require a minimum of calculation time. Finally, the availability of an artifi cial 
intelligence software program of this type would, in combination with automated 
probe tuning and gradient shimming, allow even an inexperienced operator to 
acquire a high quality set of  1 H,  13 C, and 2D NMR spectra necessary for organic 
structure elucidation in the minimum possible time. 

 While a fully automated program of this kind would be ideal, there are also par-
tial steps that could easily be incorporated into current spectrometer software, which 
would improve the ability of an inexperienced operator to obtain good quality spec-
tra in minimum acquisition times. Software already exists that allows one to esti-
mate the times needed to obtain different 2D spectra, based on the  S / N  for a 1D 
proton spectrum. An automated program for  1 H  T  1  measurements could be added, 
with the results used to calculate optimum recycle times for 2D experiments, thus 
avoiding the common problem of wasted time due to unnecessarily long relaxation 
delays ( 10 ).  

14       Parameter Choices for Acquisition and Processing 
of 1D and 2D NMR Spectra 

 We include in this section some of the basic background, which explains the reasons 
for various parameter choices. Sections  14.1  and  14.3  are recommended reading for 
anyone who likes to understand why some parameter choices are better than others. 
For those who just want to have simple “menus” for acquiring spectra, Sects.  14.2  
and  14.4  partially satisfy this need. However, even then, it is still essential to make 
some parameter choices, depending on sample amount, molecular weight and the 
extent of spectral crowding, in order to get the best quality spectra in the shortest 
possible time. Therefore, we will give ranges of values for key parameters for each 
type of spectrum, briefl y indicating how to choose the most appropriate values. 
Simply relying on one standard data set for each type of experiment, regardless of 
the nature of the compound being, will often yield inadequate results. 

14.1      Basics of NMR Data Acquisition 

14.1.1     Sampling Rate 

 The  Nyquist  theorem tells us that to defi ne a spectral window that is N Hz wide, we 
must sample the data at a rate of 2 N data points per second. The actual number of 
data points collected will depend on the acquisition time, which is typically of the 
order of 1–5 s in 1D NMR but shorter in 2D NMR.  
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14.1.2     Analog to Digital Conversion 

 The signal detected in the NMR receiver is in continuous (analog) form and must be 
converted to a digital format for data storage and processing. This is done with an 
Analog-to-Digital Converter (ADC). The ADC has two key characteristics. The fi rst 
is the maximum speed of the ADC in Hz, which in turn determines the maximum 
spectral window that can be determined (1/2 of the maximum sampling speed). The 
second is the binary bit length, which determines the dynamic range of the ADC,  i.e . 
the ability to detect weak signals in the presence of strong signals. Until recently, 
maximum sampling rates of ADCs were typically in the range of 100–500 KHz 
while a typical ADC had 16 bits. With one bit used to determine the sign, the remain-
ing 15 bits provided a theoretical dynamic range of 32,768:1. However, since it 
takes 2–3 bits to defi ne a weak peak with reasonable precision, the effective dynamic 
range was less. In addition, it was critical to adjust the receiver gain so that the 
detected signal almost fi lled the ADC in order to achieve this dynamic range. 
However, the latest model NMR spectrometers have much faster ADCs (up to 
80 MHz). This has allowed a new approach to data acquisition, called digital overs-
ampling, which dramatically increases the effective dynamic range of the ADC.  

14.1.3     Digital Oversampling 

 With digital oversampling, instead of sampling at a rate of two times the desired 
spectral width in Hz (as stipulated by the  Nyquist  theorem), one instead samples at 
the maximum rate of the ADC. For example, consider a situation where the desired 
spectral window is 5,000 Hz, but instead of sampling at 10 KHz, one sampled at 
80 MHz,  i.e . 8,000 times faster than the nominal rate. Then, each successive block 
of 8,000 points is summed to produce a single point. The fi nal result would be a 
collected FID with the appropriate number of data points for the desired spectral 
window. With modern high-speed computers, this can be done “on the fl y” (in 32-bit 
arithmetic),  i.e.  during the actual data acquisition. In this case, information theory 
tells us that the dynamic range is increased by the square root of the extent of overs-
ampling,  i.e . by about 90:1 for oversampling by 8,000. The 80-MHz ADC on the 
authors’ latest spectrometers actually has a 14-bit ADC, but oversampling effec-
tively converts it to about a 20-bit ADC,  i.e . a dynamic range of ~500,000:1. 
However, there is one caveat to this. Since the data are processed in the ADC prior 
to the averaging process, it will still be necessary in cases of extremely strong sol-
vent signals ( e.g . H 2 O) to use some form of solvent suppression to avoid overload. 
On the other hand, in the absence of one or more very strong peaks, it is no longer 
critical to set the gain as carefully at the start of the experiment. 

 There is one additional advantage to oversampling. The ADC does not distin-
guish between a signal, which only partially fi lls a bit, from one that almost com-
pletely fi lls it. This introduces randomness, called digitization noise. The act of 
summing a large number of points almost totally eliminates this source of noise. 
This may have a minimal effect when using an ambient-temperature probe, where 
thermal noise will usually be the predominant noise source. However, it can make a 
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signifi cant difference for cryogenically cooled probes where cooling the coils and 
preamplifi er to  ca . 20 K minimizes thermal noise.  

14.1.4      Quadrature Detection 

 The receiver in an NMR spectrometer is actually a phase-sensitive detector,  i.e . it 
measures frequencies relative to the transmitter frequency rather than absolute fre-
quencies. A single phase-sensitive detector cannot distinguish between frequencies 
that are positive or negative with respect to the carrier frequency. In the early days 
of FT NMR, this problem was avoided by having the transmitter frequency at one 
end of the spectral window so that all peaks would have the same sign. However, 
this introduced two other problems. First, this required a more intense transmitter 
pulse in order to uniformly excite the entire spectral window. Second, noise would 
be detected at both positive and negative frequencies, and the noise from the other 
side of the pulse would “fold in” to the spectral window, reducing signal/noise by 
 √ 2. Both of these problems were solved by the technique of quadrature detection. 
This involves detecting two signals at right angles to each other. When performed, 
this permits distinction of positive and negative frequencies, allowing one to put the 
carrier frequency at the mid-point of the spectral window. In the past, this was nor-
mally done by splitting the signal and routing it to two phase-sensitive detectors 
with a phase shift of 90° between them (accomplished by a very slight delay in 
sending the signal to the second detector). The signals are sent to different ADCs for 
digitization and then to two separate memory blocks in the computer for storage. 
The signals are then  Fourier  transformed and added to provide the fi nal spectrum. 
Older Varian spectrometers used this approach. Newer Varian/Agilent spectrome-
ters differ in that the signal is fi rst digitized with a high speed ADC and then split 
into two signals phase-shifted by 90° for storage. This allows the use of a single 
ADC in place of two of these. A different approach is used on older Bruker spec-
trometers, which also allowed the use of a single ADC. In these cases, data were 
actually sampled at a frequency of 4 N Hz, with a 90° phase shift for each succes-
sive data point. However, newer model Bruker spectrometers use an approach, 
which we believe is similar to that used on Agilent spectrometers.  

14.1.5     Fold-in Peaks 

 The collection of digitized data introduces another problem. The RF pulse also excites 
peaks outside the chosen spectral window. Since one is sampling at fi nite intervals, it 
is impossible to distinguish between peaks, which are just outside the spectral win-
dow and those just inside it. Thus, the former peaks will also appear within the spec-
tral window. However, their exact positions depend on the form of quadrature 
detection used. With the older Varian method, peaks which are outside the right hand 
(low frequency) side of the window by x Hz will appear x Hz inside the left hand end 
of the spectral window and  vice versa . On the other hand, with the older Bruker 
method, peaks outside of either end of the spectral window will appear at an equal 
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distance inside the same end of the spectral window. It is often possible to distinguish 
fold-in peaks because they have different phases than other peaks in the spectrum. 
Fortunately, newer spectrometers from both manufacturers use fi lters, which are 
extremely effective at suppressing fold-in peaks so this is no longer a concern.  

14.1.6     Analog  Versus  Digital Filters 

 In addition to peaks folding in, noise will also fold in from outside the spectral win-
dow, degrading signal/noise. To minimize this problem, spectrometers are equipped 
with audio-frequency fi lters. Older model spectrometers applied fi ltration to the 
analog signal and are thus called analog fi lters. While they were set to cut off fre-
quencies just outside either end of the spectral window, this cut-off was not very 
sharp, with the result that intensities of peaks near either end of the spectral window 
were somewhat attenuated while some fold-in of peaks could also still be observed. 
Newer model spectrometers all employ digital fi lters, which have much sharper cut- 
offs and thus avoid the problems of analog fi lters. However, because they are so 
effi cient, one must use caution to ensure that the spectral window is wide enough to 
include all possible peaks. Otherwise, the user will not be aware that these peaks are 
actually present in the true spectrum.   

14.2      Recommended Acquisition and Processing 
Parameters for 1D Spectra 

14.2.1     Spectral Widths 

 Since one can usually acquire  1 H spectra very quickly, the authors recommend 
acquiring an initial “scan” spectrum with a very wide spectral window ( ca . −1.0 to 
+15 ppm) to ensure there are no unexpected peaks with unusual chemical shifts. 
Then, a second spectrum can be obtained using a spectral window, which is narrowed 
to include only observed peaks in order to get better resolution. However, if using an 
older spectrometer with analog fi lters, one should leave regions (of  ca . 1 ppm) with 
no peaks on both sides of the spectral window, particularly if one wants quantitative 
peak intensities. Since the lower signal/noise of  13 C spectra and longer acquisitions 
will usually make it undesirable to obtain two spectra, it is recommended using a 
spectral window wide enough ( ca . −5 to 225 ppm) to include all possible peaks when 
acquiring  13 C spectra.  

14.2.2     Number of Data Points and Acquisition Times 

 The number of data points, NP, will be given by NP = 2(SW)( AT ) where SW is the 
spectral width and  AT  is the acquisition time. One typically chooses the number of 
points to be some power of 2,  e.g . 32,768 or 65,536 (often abbreviated as 32 K or 

W.F. Reynolds and E.P. Mazzola



287

64 K), although this is not essential. For a  1 H spectral width of 5,000 Hz, these two 
values of NP would, respectively, correspond to acquisition times of  ca.  3 and 6 s. 
while for a 30,000-Hz  13 C spectral width,  AT  would respectively be  ca . 0.5 and 1 s. 
 AT  values of 3–6 s will give reasonable data point resolution for  1 H spectra (see 
Sect.  14.2.4 ) so either 32 K or 64 K would be an acceptable choice. However, the 
use of 64 K points is recommended for  13 C. Alternatively, if one is setting  AT , 4–5 s 
for  1 H and 1 s for  13 C are suggested as acceptable values.  

14.2.3     Number of Scans (Transients) 

 With earlier model spectrometers, it was recommended that the number of scans 
(NS) should be some multiple of four. This was to allow for a four-step phase cycle, 
which cancelled “quadrature image” peaks. These arose from imperfections in 
spectrometer hardware and appeared as weak mirror images of very strong peaks in 
the spectrum. However, now that quadrature detection is carried out on digitized 
data, quadrature images are non-existent on later generation spectrometers. Thus, 
 1 H spectra can be obtained with as little as one scan. The exact number of scans will 
depend on sample concentration and probe sensitivity.  13 C spectra will generally 
require many more scans. If this option is available, use of the “block size” com-
mand is strongly recommended. This is set at a value such as 1 or 40, and the data 
are stored at the end of each block. This allows one to monitor the  S / N  during acqui-
sition and terminate it when  S / N  is satisfactory.  

14.2.4        Zero Filling and Data Point Resolution 

  Fourier  transformation of a FID yields both real and imaginary spectra, with half 
of the data points used to defi ne each spectrum. Thus, the data point resolution 
(in Hz/point) is given by 2SW/NP (or 1/ AT ). However, the data point resolution 
can be improved by a factor of two, simply by adding an equal number of zeros 
to the end of the digitized FID. This method, called zero fi lling, effectively allows 
the use of all of the experimental data points to defi ne the real spectrum. In this 
case, the data point resolution becomes SW/NP (or 1/2 AT ) Hz/point. This will 
provide improved spectral resolution, particularly if the natural line widths of 
spectral peaks are less than the data point resolution. Zero fi lling by more than a 
factor of two will not further narrow spectral peaks. However, it will provide bet-
ter defi nition of peak frequencies and a cosmetic improvement in the appearance 
of complex multiplets. For that reason, we strongly recommend using extra zero 
fi lling up to at least 4NP or even higher. On Varian/Agilent spectrometers, this is 
set by the parameter “fn” while on Bruker spectrometers, the corresponding 
parameter is “si.”  
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14.2.5     Pulse Widths and Delay Times 

 For most  1 H spectra obtained using a 4–5 s acquisition time, one can obtain at least 
semi-quantitative peak areas using 90° pulses and no relaxation delays, although 
the areas of methyl groups, which typically will have the longest relaxation times, 
may be partially suppressed. However, if quantitative peak areas are important, then 
one has the choice of either using a shorter pulse or including a relaxation delay 
between scans.  Richard Ernst  investigated this problem in the early days of FT 
NMR and demonstrated that it was better to use a reduced pulse angle rather than a 
relaxation delay ( 3 ). This can be understood by a simple trigonometric argument. 
If, for example, one chooses a pulse width corresponding to a 45° rotation of the 
magnetization vector (a 45° pulse), the component of magnetization along the 
y-axis is ~71%. However, the residual component along the z-axis is also ~71% 
(sin θ  = cos θ  = 0.71). Thus, it takes signifi cantly less time for magnetization to return 
to equilibrium along the z-axis. The optimum  Ernst  angle is given by cos θ  = exp-
( AT / T  1 ) where  T  1  is the relaxation time, which decreases with molecular size. In 
practice, we fi nd that a 45° pulse plus a 4–5 s acquisition time will yield quantitative 
results for most typical natural products, other than those of very low molecular 
weight (<250 Da). In the latter case, a 30° pulse is suggested, possibly along with a 
relaxation delay. 

 The choices for  13 C spectra are more diffi cult, because the acquisition times are 
shorter, and there are typically much wider ranges of relaxation times, with quater-
nary carbons having the longest values of  T  1 . However, due to differences in N O Es 
for different carbons,  13 C spectra are rarely quantitative. Thus, the authors believe a 
pulse width of 45°, combined with a 1-s relaxation delay, will generally give satis-
factory results.  

14.2.6     Apodization (Weighting) Functions 

 With  1 H spectra, it should not usually be necessary to use any form of apodization 
function, provided that the FID has decayed below the noise level at the end of the 
acquisition time. However, for spectra with poor  S / N , a small amount ( ca . 0.1–
0.3 Hz) of exponential line broadening can be used. This will improve signal/noise 
at the cost of a small loss of resolution. On the other hand, if one wants to improve 
the resolution of a spectrum, a resolution enhancement function can be used, which 
combines a positive  Gaussian  function with a negative line broadening function. 
The right combination of these two parameters can be set by the spectrometer soft-
ware (for Varian/Agilent spectrometers the command is “resolv”). These parameters 
should be chosen based on twofold zero fi lling,  e.g.  32 K to 64 K points. However, 
after the parameters are chosen, one can further increase the amount of zero fi lling. 
This will aid in accurately determining splittings in multiplet patterns. Note, how-
ever, that resolution enhancement will degrade signal/noise and that relative peak 
areas may no longer be quantitative. In particular, if a spectrum has both well-
resolved multiplets and broad peaks, the latter will be suppressed. 
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 In the case of  13 C spectra, some extent of line broadening is usually needed to 
improve signal/noise. If there is an interactive weighting program available on a 
given spectrometer (“wti” on Varian/Agilent spectrometers), the ideal approach is to 
choose a weighting function having the same decay time as the FID (a “matched 
fi lter”). Otherwise, the authors suggest 1–3 Hz line broadening, depending on the 
signal/noise.  

14.2.7      13 C Spectral Editing 

 When assigning  13 C spectra, it is helpful to assign the type of carbon,  i.e . quaternary, 
methine, methylene or methyl, to each signal. There are two basic ways of achiev-
ing this, with neither entirely satisfactory. The fi rst is to use the APT sequence, 
which produces peaks for quaternary and methylene carbons, and are of opposite 
phase to those for methine and methyl carbons ( 115 ). This sequence has two disad-
vantages: it is less sensitive than a regular  13 C spectrum and is sensitive to variations 
in the one-bond  13 C– 1 H coupling constants, potentially giving misleading results 
( 10 ). The second is the DEPT spectrum ( 116 ). This involves polarization transfer 
from directly bonded protons to carbons and can be either used to generate a spec-
trum (DEPT-135) with methylene carbons of opposite phase to methine and methyl 
carbons) or, by combining DEPT-45, DEPT-90, and DEPT-135 spectra, to produce 
separate spectra for the three types of carbons ( 10 ). The main advantages of DEPT 
are that it has better signal/noise than a regular  13 C spectrum and is signifi cantly less 
sensitive than APT to variations in  1  J  CH . The main disadvantage is that it only gives 
peaks for protonated carbons and thus it will still be necessary to also record a stan-
dard  13 C spectrum to observe all carbons. An alternative version of DEPT, called 
DEPT-Q, has been developed that also shows quaternary carbons ( 117 ). However, 
the quaternary carbon signals are generally weaker than those observed in a stan-
dard  13 C spectrum obtained in the same time. Nevertheless, it may still be faster to 
obtain a DEPT-Q spectrum than separate DEPT and standard  13 C spectra. Finally, an 
alternative approach, which the authors favor, is to instead acquire an edited HSQC 
spectrum. This provides the same information as DEPT in comparable or less time, 
with the additional major advantage of providing assignments for the directly 
bonded hydrogen(s) associated with each carbon ( 10 ). However, it does not provide 
as accurate  13 C chemical shifts as DEPT and, again, provides no information about 
quaternary carbons. 

 The parameter choices for APT spectra will generally be the same as would be 
used for standard  13 C spectra. The suggested value of  1  J  CH  used to calculate editing 
delays is 145 Hz. However, an unusual feature of APT is that one should not 
replace the initial  13 C 90° pulse by a 45° pulse. Since there is a later  13 C 180° pulse, 
this will convert the residual z-magnetization remaining after the original pulse to 
−z-magnetization, requiring an even longer relaxation delay. Instead, the initial 
pulse should be a 135° pulse since, in this case, the initial residual z-magnetization 
will be along the −z-axis but converted to + z-magnetization, decreasing the needed 
relaxation delay. With this modifi cation, a 1-s relaxation delay should be suffi cient. 
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With DEPT, one is transferring magnetization from  1 H to  13 C, so it is the  1 H relax-
ation time that matters. Since  1 H decoupling is applied during acquisition, the relax-
ation delay must allow recovery of this magnetization. The recommended delay is 
1.3 T  1 , so a relaxation delay of 1–1.5 s should be suffi cient for typical natural prod-
ucts. Again, a value of  1  J  CH  of 145 Hz is suggested. Finally, since residual  13 C mag-
netization is cancelled by phase cycling, it is essential to include a series of 
steady-state (dummy) scans before acquiring data in order to establish steady-state 
 13 C magnetization. Otherwise a residual solvent peak will be observed which may 
obscure desired peaks. Generally, 16 dummy scans should be suffi cient.   

14.3      Basics of 2D NMR 

14.3.1     General Features of 2D NMR Sequences 

 2D NMR sequences are generally composed of three components: an initial relax-
ation delay, a variable evolution period designated as  t 1 and usually initiated by a 
90° pulse, and fi nally an acquisition period, usually labeled  t 2. A series of spectra 
are generated by incrementing the evolution time, usually in a regular fashion. The 
 F 1 spectral window is determined by the number of increments and the time between 
increments. The latter is automatically calculated by the pulse sequence program 
based on the specifi ed number of increments and  F 1 spectral width. The key differ-
ences between different sequences almost all occur during  t 1, in the form of addi-
tional fi xed delays and/or additional pulses. The FIDs acquired during  t 2 for different 
values of  t 1 are  Fourier  transformed to yield a series of  F 2 spectra. Then, the phase 
and intensity of each point in  t 2 for the different time-incremented spectra is used to 
generate a series of  t 1 interferograms, which resemble FIDs. These are then  Fourier  
transformed to produce the second frequency axis, labeled  F 1. Conventionally, 
spectra are plotted with  F 2 as the horizontal axis and  F 1 as the vertical axis.  

14.3.2     Homonuclear and Heteronuclear 2D NMR Spectra 

 Homonuclear spectra have spectral information for the same nucleus (usually  1 H) 
along both axes. The spectrum has a 1D spectrum along a diagonal from bottom-left 
to top-right and symmetric off-diagonal peaks between interacting nuclei. COSY or 
TOCSY spectra are generated when the interaction between different nuclei is due 
to scalar (“ J ”) coupling while N O ESY or R O ESY spectra are generated when the 
interaction is due to dipolar relaxation. Heteronuclear spectra provide information 
about scalar coupling between heteronuclei (mostly commonly  1 H/ 13 C but also 
 1 H/ 15 N in the natural product area). In this case, the spectrum for the acquired 
nucleus is plotted on the horizontal axis, while information about the second nucleus 
(generated by incrementation of  t 1) is along the vertical axis. The cross-peaks indi-
cate either one-bond or n-bond (n = 2 or 3)  1 H/ 13 C coupling, depending on the 
sequence used. Early  1 H/ 13 C correlation spectra were obtained by  13 C observation 
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(“direct detection”), but, with improvements in spectrometer phase and frequency 
stability, these are now almost always obtained by  1 H observation (“indirect detec-
tion,” an historical but misleading term). One common feature of heteronuclear cor-
relation sequences is a pair of 90° pulses ( 13 C pulses for  1 H-detected sequences) at 
the beginning and end of the evolution period. By monitoring the evolution of mag-
netization during  t 1, the second 90° pulse acts as the equivalent of a phase-sensitive 
detector, allowing determination of frequency information for that nucleus, even 
though the receiver is tuned to detect the acquisition nucleus.  

14.3.3     Absolute-Value  Versus  Phase-Sensitive Spectra 

 As mentioned in Sect.  14.2.4 , a pulse sequence produces both real (absorption) and 
imaginary (dispersion) spectra. With certain pulse sequences (COSY being the most 
common), it is impossible to simultaneously have all peaks with the same phase 
since the sequence produces a mixture of absorption and dispersion peaks. In this 
case, an absolute-value (or magnitude-mode) spectrum is generated by squaring the 
real and imaginary spectra, summing them, and then taking the square root of the 
sum. This arbitrarily produces an apparent absorption spectrum with all peaks with 
the same phase. However, it does so at some cost in resolution since the dispersion 
components have broad “tails,” which broaden the peaks. 

 Fortunately, most pulse sequences generate phase-sensitive (or pure-absorption) 
spectra, with better resolution. These can be generated in one of two ways. The fi rst, 
which is usually the method of choice on Varian/Agilent spectrometers, is to acquire 
two sets of spectra with a phase shift of 90° between them. This is done alternately 
to avoid one set suffering more than the other from any degradation of resolution 
over time. They are then co-processed to produce the 2D spectrum. The second, 
usually used on Bruker spectrometers, is to acquire a single set of spectra with twice 
as many time increments, but having a 90° phase shift between each successive 
spectrum. Both approaches, which effectively mimic the approaches used for 
quadrature detection on Varian/Agilent and early Bruker spectrometers, yield very 
similar results in the same time. 

 One interesting exception is provided by the HMBC sequence. In its original 
form, it was designed for “mixed-mode” processing: absolute value along  F 2 but 
phase sensitive along  F 1 ( 118 ). This gave improvements in both resolution and 
sensitivity over a full absolute-value mode spectrum. Later versions of HMBC 
using gradients (see next section) produced straight absolute-value spectra. 
However, some of the recent gradient-selected sequences again allow mixed-mode 
processing with its associated advantages, including better  13 C resolution.  

14.3.4     Phase Cycling  Versus  Gradient Selection 

 Either phase cycling or gradient selection (sometimes called gradient enhancement) 
or some combination of the two is used for two purposes in any multi-pulse NMR 
sequence. The fi rst is coherence pathway selection and the second is artifact 
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suppression. The explanation of coherence pathway selection is well beyond the 
scope of this chapter but is discussed in various texts such as that by  Keeler  ( 119 ). 
Instead we will focus on how the two techniques are carried out and their relative 
advantages and disadvantages. Phase cycling consists of varying the phase of one or 
more of the subsequent pulses and/or the receiver, relative to the phase of the initial 
pulse, in consecutive scans. The phase cycle is designed so that the desired signal 
co-adds in the different scans while other signals are cancelled. The phase of the 
initial pulse, designated x, is arbitrary, but the phases of subsequent pulses can be x, 
y, −x, or −y (respectively corresponding to 0, 90, 180, or 270 degree phase shifts, 
relative to the fi rst pulse). This is controlled by the timing circuit of the spectrome-
ter. The receiver “phase cycling” is carried out by dividing the computer memory 
block in two sections and, respectively, adding the digitized signal to the fi rst block, 
adding it to the second, subtracting it from the fi rst or subtracting it from the second 
(corresponding to x, y, −x, and −y). The minimum possible phase cycle for coher-
ence selection will be two scans, but incorporating artifact selection will require 
more scans (anywhere from 4 up to 16 or even higher). 

 In contrast, gradient selection uses a pair of magnetic fi eld gradients applied along 
the z-axis. These are designed so that the magnetization associated with one coher-
ence pathway is dephased by the fi rst gradient but brought back in phase by the sec-
ond for observation while other pathways are dephased by both gradients and not 
observed. Artifacts are eliminated in the same manner. There are two main advan-
tages to gradient selection over phase cycling. First, it can often be carried out with as 
little as one scan, substantially decreasing the time needed to acquire a high sensitiv-
ity experiment such as COSY. Second, pathway selection and artifact suppression are 
carried out during each scan while phase cycling relies on subtraction of the data from 
one scan from another for artifact suppression. The latter is more susceptible to minor 
spectrometer instabilities. This is particularly important in  1 H-detected  1 H/ 13 C shift 
correlation spectra where one is detecting the 1.1%  1 H/ 13 C magnetization while sup-
pressing the remaining  1 H magnetization. On the other hand, most gradient-selected 
sequences result in a  √ 2 loss in overall sensitivity. Nevertheless, the other advantages 
of gradient selection are so great that most 2D experiments are now carried out with 
gradient selection. However, they often also incorporate some phase cycling.  

14.3.5    Acquisition Times and Relaxation Delays 

 Two-dimensional spectra are generally carried out using much shorter acquisition 
times ( ca . 0.1–0.4 s) than used for 1D spectra, both to save time and to keep the 2D 
data set to a reasonable size. However, this requires including a relaxation delay 
( RD ) in order to allow at least partial recovery of z-magnetization before the next 
scan. In assessing a reasonable value for the relaxation delay, it is important to 
remember that, for  1 H-detected experiments in particular, relaxation will also be 
occurring during the acquisition time. Thus, the key parameter to optimize is the 
recycle time ( RT ), which is the sum of  AT  +  RD . One can then afford to increase  AT  
(and, therefore, increase  F 2 resolution) by correspondingly decreasing  RD . It has 
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been shown that the optimum compromise value of  RT  for most 2D sequences 
(other than N O ESY and R O ESY, see below) is  ca . 1.3 T  1 . Methyl groups typically 
have the longest relaxation times of all  1 H signals in a natural product, but they are 
usually by far the most intense signals. Thus, one can afford to sacrifi ce some inten-
sity for methyl protons and choose a value of  RT  based on average  T  1  values for 
methylene and methine protons ( 10 ). 

 The actual  RT  values to be used depend the molecular weight of the molecule 
since larger molecules have shorter relaxation times. For small natural products 
(200–350 Da), typical  1 H  T  1  values are  ca . 0.7–1.2 s, corresponding to  RT s of 0.9–
1.5 s. For molecules in the 350–500 Da range, we suggest  RT  values of 0.7–1.0 s 
and around 0.6 s for larger molecules. Assuming  AT  ~ 0.2 s, corresponding  RD  val-
ues would be 0.2 s less. These are all signifi cantly less than those recommended in 
a book, which suggests parameters for a wide range of 2D experiments ( 8 ), but, as 
we have pointed out elsewhere ( 10 ), the authors regard the use of such long values 
of  RT  as a waste of spectrometer time.  

14.3.6     Number of Time Increments, Forward Linear Prediction, 
and Zero Filling 

 As noted above, the acquisition time can be increased (and  F 2 resolution improved) 
without increasing the total experiment time by correspondingly reducing the relax-
ation delay. In contrast, the total experiment time is directly proportional to the 
number of time increments used. Since many natural products have very crowded 
spectra, particularly in the aliphatic region, the authors fi nd that one commonly 
needs 1,024 time increments (NI) to get satisfactory  F 1 resolution. One can use a 
smaller number of increments in an attempt to save time, but the risk is that the 
spectrum will be too poorly resolved to allow unambiguous interpretation. Thus, 
rather than saving time, one actually has wasted it. 

 Fortunately, there is a well-established method that allows one to use a signifi -
cantly smaller value of NI, thus saving time, while still getting adequate resolution. 
This is forward linear prediction (LP) ( 120 ). The idea behind LP can be likened to a 
race where different automobiles each travel at a different, but constant, speed. If 
their relative positions after 256 laps are noted, one can make a very good estimate 
of their relative positions after 512 or 1,024 laps. In NMR LP, fi nite-length inter-
ferograms are extended by using information from previous data points to predict 
additional data points. In a time sequence of data points, the value of a particular 
data point, d(m), can be estimated from a linear combination (hence the name “lin-
ear prediction”) of the data points that immediately precede it ( 120 ):

  
d m d m a d m a d m a( ) = -( ) ( ) + -( ) ( ) + -( ) ( ) +1 1 2 2 3 3 

   

where a(1), a(2), a(3) are the LP coeffi cients. The number of coeffi cients used cor-
responds to the number of data points that are used to predict the value of the next 
data point in the series. When applying this method to phase-sensitive 2D data sets, 
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we have shown that one can reliably use fourfold LP,  e.g . set NI = 256 but linearly 
predict it out to NI = 1024 ( 10, 121 ). This allows one to obtain comparable quality 
2D spectra in one quarter of the time taken to obtain the full set of  t 1 interferograms 
or to double the  S / N  in the same time by increasing NS by a factor of four. However, 
fourfold linear prediction does require a reasonable number of experimental time 
increments, with NI =128 the suggested lower limit. For smaller values of NI, only 
twofold LP is recommended. Also, the authors have found that only twofold LP 
could be reliably carried out for absolute-value ( e.g . COSY) 2D spectra, even for 
NI = 256 or larger ( 121 ). 

 The main requirement for the use of LP is that the latter parts of the experimental 
interferograms have suffi cient  S / N  that an accurate estimation of the LP coeffi cients 
can be made. However, in over 20 years of processing well over one thousand 2D 
data sets with LP, we have rarely found this to be a problem. For example, we 
obtained an HSQC spectrum of a very dilute mixture of three polysaccharides using 
16-fold linear prediction (NI = 1024 out to NI = 16384) and still obtained accurate 
data for very crowded spectra ( 122 ). For dilute solutions, due to relaxation, most of 
the signal intensity will occur in the fi rst one quarter to one third of the interfero-
gram with the signals in the later portions comparable to or even smaller than the 
random noise. Under these circumstances, the authors fi nd that it is better to reduce 
NI (usually to ¼ of the desired value) while correspondingly increasing NS by a 
factor of four. In this way,  S / N  is improved (by a factor of 2) in the region of the 
interferogram that exceeds noise, improving the chances of successful LP of the rest 
of the interferogram. By contrast, if one omits LP and instead collects the full data 
set with the smaller value of NS, the entire interferogram may be too noisy to pro-
vide a good quality spectrum. If the former approach fails, it is probable that the 
sample is too dilute to obtain acceptable results in reasonable time by either method. 

 One additional requirement is that the number of LP coeffi cients should be 
greater than the number of signals that make up each interferogram that is being 
extended. The number of signals varies with the type of sequence, being as low as 
one or two with HSQC but generally larger. How much larger the number of coef-
fi cients should be for best quality spectra is spectrometer dependent. In our experi-
ence with Varian/Agilent spectrometers, LP works best when the number of LP 
coeffi cients is no larger than twice the expected number of signals while Bruker 
recommends that it should be at least two to three times larger. Too small a value 
may yield poor quality spectra and/or missing peaks while too large risks detecting 
spurious signals. 

 While LP is very useful for extending the number of  t 1 time increments, it is of 
little value for extending NP in  t 2. First, particularly for  1 H-detected sequences, 
there are typically a very large number of  F 2 signals, and thus LP would require a 
very large number of coeffi cients, which would seriously slow the calculations. 
Also, as noted above, one can increase NP (and  AT ) without any increase in experi-
ment time by correspondingly reducing the relaxation delay. However, backward 
linear prediction can be used along  F 2. This can be used to correct any corrupted 
data points or to remove very broad background signals. 

 Finally, it should be realized that zero fi lling is not an alternative to LP but rather 
the two techniques are complementary. We recommend always using a further 
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equal amount of zero fi lling to the value of NI after LP (this is a requirement with 
Varian/Agilent LP software). This will further improve  F 1 data point resolution on 
phase- sensitive spectra by a factor of two. On the other hand, if one only used zero 
fi lling up to a factor of eight, the data point resolution would be still be four times 
worse than that if fourfold linear prediction were used in combination with twofold 
zero fi lling. In addition, one would have to use a more extreme apodization function 
to avoid artifacts due to truncation (see Sect.  14.3.8 ).  

14.3.7    Number of Scans 

 The number of scans required for an acceptable spectrum depends on the sample 
concentration, the probe sensitivity and the type of sequence (including any essen-
tial phase-cycling requirements included in the sequence). For reasonable concen-
trations, gradient-selected COSY spectra can be obtained with NS = 1, but most 
other sequences require a larger number of scans. This is particularly true for 
HMBC, which is the least sensitive of all of the pulse sequences used for organic 
structure elucidation.  

14.3.8     Apodization Functions 

 Due to the short acquisition and evolution times used in 2D NMR, both FIDs and 
interferograms have typically not decayed away to zero at the end of  t 2 or  t 1.  Fourier  
transformation of a truncated FID or interferogram will result in a spectrum with 
distorted peaks due to “truncation wiggles.” To avoid this, it is essential to use an 
apodization (weighting) function that goes to zero at the end of the time period. The 
exact shape of the apodization function is mainly determined by whether the spec-
trum is obtained in absolute-value or phase-sensitive mode. To minimize the broad 
tails characteristic of absolute-value peaks, absolute-value spectra are processed by 
using a resolution-enhancement function, which starts at zero for  t 1 or  t 2 = 0, peaks 
at the middle, and again goes to zero at  t (max). The most common forms are either 
a sine bell or a squared sine bell (or the near-equivalent pseudo-echo function). The 
squared sine bell gives slightly better resolution while the sine bell gives slightly 
better  S / N . The former is recommended for COSY spectra and the latter for other, 
lower sensitivity, spectra. For phase-sensitive spectra, a function that starts at a max-
imum at  t  = 0 and goes to zero at  t (max) is recommended. Possibilities include a 
cosine (90° shifted sine bell) function, a  Gauss ian function or an exponential (line 
broadening) function. The fi rst gives the best resolution, the last, the best  S / N , while 
the  Gauss ian function is a compromise choice and is the one we generally prefer. 
A compromise function, which could be used for both absolute-value and phase- 
sensitive spectra, is a shifted sine bell function (typical shapes of this and other 
apodization functions are illustrated in Fig.  15 ). However, the authors fi nd that it is 
less than ideal for either type of spectrum. In the case of an HMBC data set designed 
for mixed-mode processing, we recommend a sine bell along  t 2 and a  Gauss ian 
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along  t 1. Finally, if one is using linear prediction, it is important to remember that 
this effectively extends  t 1 and that the chosen apodization function should be 
adjusted to be zero at the extended value of  t 1.

14.3.9       Data Point Resolution in 2D NMR Spectra 

 In both absolute-value and phase-sensitive 2D spectra, the  F 2 data point resolution 
without zero fi lling is given by 2SW/NP, identical to the value for 1D (see 
Sect.  14.2.4 ). An equal amount of zero fi lling of phase-sensitive spectra will again 
improve digital resolution to SW/NP. However, absolute-value spectra are different. 
Since both the real and imaginary points from the FID are used to generate an 
absolute-value spectrum, zero fi lling does not improve the digital resolution. For 
that reason, it is better to use a larger number of data points in  F 2 for COSY and 
HMBC spectra in particular. 

  Fig. 15    The shapes of typical weighting functions used in processing 2D spectra. ( a ) cosine func-
tion 90° shifted sine bell function) ( b )  Gauss ian function ( c ) exponential (line broadening) function 
( d ) sine bell function ( e ) squared sine bell function. Functions ( a )–( c ) are appropriate for phase-
sensitive spectra while functions ( d ) and ( e ) are for absolute-value (magnitude-mode) spectra       
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 The situation for  F 1 data point resolution is more complex because it involves 
the way in which  F 1 quadrature detection is carried out. In the case of phase- 
sensitive spectra, the two alternative methods are closely analogous to the two meth-
ods for  F 2 quadrature detection described in Sect.  14.1.4 . In the “States” method, 
two data sets are acquired, each with NI increments, with a 90° phase shift between 
them. FT yields two phase-sensitive spectra, which include both real and imaginary 
signals, but which can be phased to produce pure absorption-mode peaks. The dif-
ference is that one is a “cosine” spectrum where peaks of the same phase (one the 
true peak and the other the quadrature image peak) are mirrored about the center of 
SW1, the  F 1 spectral window. The second is a “sine spectrum” in which peaks are 
again mirrored about the middle of SW1, but now the quadrature image peak is of 
opposite phase to the true peak. When the two spectra are added, the quadrature 
image peaks cancel while the real peaks add. This co-addition of the two spectra 
improves the  S / N  by  √ 2 but does not change the data point resolution, which is 
given by 2SW1/NI (since there are only NI/2 real peaks in each spectrum) or SW1/
NI with an equal amount of zero fi lling. In the case of the TPPI method, only a 
single data set is collected, but NI is doubled, with every second FID phase shifted 
by 90°. Although the actual processing method is different, the end result is the 
same. Effectively, one has collected the equivalent of two data sets of NI/2 incre-
ments. Thus, the digital resolution in this case is 4SW1/NI without zero fi lling or 
2SW1/NI with zero fi lling. Allowing for the fact that NI is twice as large in the TPPI 
method, the actual data point resolution is identical. 

 In the case of absolute-value spectra, the data point resolution is again 2SW1/NI 
or SW1/NI with one level of zero fi lling. However, in this case,  F 1 quadrature detec-
tion is carried out by using either phase cycling or gradient selection. This involves 
phase modulation of signals rather than amplitude modulation and produces signals 
with complex phase-twisted shapes. This is the reason that an absolute-value dis-
play is required. The need for one level of zero fi lling arises because carrying out 
quadrature detection with only a single data set results in only half of the points 
being used to generate the spectrum.  

14.3.10    Shaped Pulses and Selective 1D Analogues of 2D NMR Spectra 

 Modern NMR spectrometers are equipped with wave form generators. These can be 
used to generate frequency-selective shaped RF pulses, including both 90° and 180° 
pulses ( 123 ). These are designed to generate uniform excitation over a defi ned spec-
tral window, with ideally no excitation outside of this window. These are complex 
to design and diffi cult to implement manually. However, the software associated 
with spectrometer pulse sequence libraries usually makes this quite simple in prac-
tice, often using just two cursors to defi ne the region to be excited, with the software 
then calculating the appropriate pulse shape. 

 Often in natural product research, one needs only correlation data for a limited 
number of protons to complete structural and/or stereochemical assignments. In 
these cases, using selective pulses to generate a series of 1D analogues of 2D 
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spectra may provide a considerable time saving. The most commonly used selective 
1D sequences are 1D N O ESY, R O ESY, and TOCSY. One-dimensional TOCSY is 
particularly valuable since, by performing a series of measurements with increasing 
mixing times, one can sequentially trace out a network of coupled protons and 
potentially determining their coupling constants ( 10 ) (see Sect.  7  for an example), 
even when some of the protons overlap with other proton signals.   

14.4      Recommended Acquisition and Processing Parameters 
for Commonly Used 2D Experiments and Selective 1D 
Experiments 

 The parameters listed below are designed to be appropriate for spectrometers in the 
400–600 MHz range and equipped with either an indirect-detection probe or one of 
the newer probes with excellent sensitivity on both channels (Agilent OneNMR 
probe or Bruker SMART probe). If using an older direct-detection ( 13 C-optimized) 
probe, an increased number of scans may be necessary for dilute solutions, while 
smaller numbers of scans are needed if using a cryogenically cooled probe. In each 
case, ranges of values for two key parameters are given: the number of scans (NS) 
and the relaxation delay ( RD ). In the case of NS, the minimum value is recom-
mended when one has >5 mg of sample while the maximum is for cases with  ca . 
1 mg of sample. The minimum value of  RD  is suggested for compounds of molecu-
lar weight >750 Da while the maximum is for compounds of less than 300 Da. The 
recommended number of steady-state (dummy) scans is defi ned by SS prior to data 
acquisition. In addition, two different sets of recommendations are provided for the 
number of  F 2 points (NP) and time increments (NI), the extent of linear prediction 
(LP) and the minimum extent of zero fi lling (ZF), with the latter two, respectively, 
defi ned as the total number of points after  F 1 linear prediction and after zero fi lling. 
These are labeled “low resolution” and “high resolution” and are, respectively, suit-
able for compounds with clearly resolved  1 H spectra and spectra with one or more 
regions with signifi cant spectral crowding. Finally, the parameters for the phase-
sensitive spectra are those that are appropriate for acquisition using the “States” 
method. This is the standard choice on Varian/Agilent spectrometers and one of the 
options on Bruker spectrometers. 

14.4.1    COSY and TOCSY Experiments 

14.4.1.1    Gradient-Selected COSY (Absolute-Value Mode) 

     F 1 =  F 2 = −0.5 to 9.5 ppm, relative to TMS  
  SS = 16  
  NS = 1–4*  
   RD  = 0.5–1.0 s  
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   F 2 apodization: sine bell squared  
   F 1 apodization: sine bell squared  
  Low-resolution spectra: NP = 1024, ZF(F2) = 1024, NI = 256, LP = 512, ZF(F1) = 1024  
  High-resolution spectra: NP = 2048, ZF(F2) = 2048, NI = 512, LP = 1024, ZF(F1) = 2048    

 *   If using the non-gradient (phase-cycled) version of COSY, NS must be a multiple of 4.  

14.4.1.2    Gradient-Selected Double Quantum Filtered COSY (Phase Sensitive) 

     F 1 =  F 2 = −0.5 to 9.5 ppm  
  SS = 16  
  NS = 1–8*  
   RD  = 0.5–1.0 s  
   F 2 apodization: cosine (90° shifted sine bell)  
   F 1 apodization: cosine (90° shifted sine bell)  
  High-resolution spectra**: NP = 4096, ZF(F2) = 8192, NI = 256, LP = 1024, ZF(F1) = 2048    

 *If using the non-gradient DQCOSY sequence, NS must be a multiple of 4. 
 **Acquiring a high-resolution spectrum along  F 2 is strongly recommended since the 
main value of the experiment is its ability to measure coupling constants.  

14.4.1.3    TOCSY or Z-TOCSY* (Phase-Sensitive) 

     F 1 =  F 2 = −0.5 to 9.5 ppm  
  SS = 16  
  NS = 2–16  
   RD  = 0.5–1.0 s  
  Mixing time: 80 ms**  
   F 2 apodization:  Gauss ian  
   F 1 apodization:  Gauss ian  
  Low-resolution spectra: NP = 1024, ZF(F2) = 2048, NI = 256, LP = 1024, ZF(F1) = 2048  
  High-resolution spectra: NP = 2048, ZF(F2) = 4096, NI = 256, LP =1024, ZF(F1) = 2048    

 *If available, the use of Z-TOCSY is recommended since the zero-quantum fi lter gives 
undistorted cross-peak patterns. 
 **A shorter mixing time (25–30 ms) will give a COSY-like spectrum but with better 
resolution than an absolute-value COSY spectrum.   

14.4.2    N O ESY and R O ESY Experiments 

   14.4.2.1  N O ESY  (Phase-Sensitive) 

     F 1 =  F 2 = −0.5 to 9.5 ppm  
  SS = 16  
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  NS = 4–16  
   RD  = 1.0–1.8 s  
  Mixing time = 0.3–0.8 s*  
   F 2 apodization =  Gauss ian  
   F 1 apodization =  Gauss ian  
  Low-resolution spectra: NP = 1024, ZF(F2) = 2048, NI = 256, LP =1024, ZF(F1) = 2048  
  High-resolution spectra: NP = 2048, ZF(F2) = 4096, NI = 256, LP = 1024, ZF(F1) = 2048    

 *The choice of mixing time is critical. Small molecules need long mixing times to allow 
for reasonable N O E build-up. However, with high (>750 Da) molecules, spin-diffusion 
will occur with long mixing times, leading to erroneous results.  

   14.4.2.2  R O ESY  *(Phase-Sensitive) 

     F 1 =  F 2 = −0.5 to 9.5 ppm  
  SS = 16  
  NS = 4–16  
   RD  = 1.0–1.8 s  
  Mixing time = 0.2–0.6 s  
   F 2 apodization =  Gauss ian  
   F 1 apodization =  Gauss ian  
  Low-resolution spectra: NP = 1024, ZF(F2) = 2048, NI = 256, LP = 1024, ZF(F1) = 2048  
  High-resolution spectra: NP = 2048, ZF(F2) = 4096, NI = 256, LP = 1024 ZF(F1) = 2048    

 *The use of R O ESY in place of N O ESY is strongly recommended for molecules with 
molecular weights >600 Da since N O ESY cross-peaks approach zero intensity for mol-
ecules much above this molecular weight, eventually become negative as molecular size 
increases.   

14.4.3    HMQC, HSQC, HMBC, and H2BC Experiments 

   14.4.3.1 Gradient-Selected HMQC (Absolute-Value) 

     F 2 = −0.5 to 9.5 ppm  
   F 1 = −5 to 165 ppm  
  SS = 16  
  NS = 4–32  
   RD  = 0.5–1.0 s  
   1  J  CH  = 145 Hz  
   F 2 apodization = sine bell  
   F 1 apodization = sine bell  
  Low-resolution spectra: NP = 1024, ZF(F2) = 2048, NI = 256, LP = 512, ZF(F1) = 1024  
  High-resolution spectra: NP = 2048, ZF(F2) = 4096, NI = 512, LP = 1024, ZF(F1) = 2048     
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   14.4.3.2 Gradient-Selected HSQC* (With or Without  13 C Spectral Editing) 

     F 2 = −0.5 to 9.5 ppm  
   F 1 = −5 to 165 ppm  
  SS = 16  
  NS = 4–32  
   RD  = 0.5–1.0 s  
   1  J  CH  = 145 Hz  
   F 2 apodization =  Gauss ian  
   F 1 apodization =  Gauss ian  
  Low-resolution spectra: NP =1024, ZF(F2) = 2048, NI = 160, LP = 512, ZF(F1) = 1024  
  High-resolution spectra: NP = 2048, ZF(F2) = 4096, NI = 256, LP = 1024, ZF(F1) = 2048    

 *HSQC gives better resolution than HMQC and allows spectral editing. Therefore, the 
use of HSQC in place of HMQC is strongly recommended.  

   14.4.3.3 Gradient-Selected HMBC (Absolute-Value) 

     F 2 = −0.5 to 9.5 ppm  
   F 1 = −5 to 220 ppm*  
  SS = 16  
  NS = 16–64  
   RD  = 0.5–1.0 s  
   1  J  CH  = 145 Hz (or 130 Hz, 165 Hz)**  
   n  J  CH  = 8 Hz  
   F 2 apodization = sine bell  
   F 1 apodization = sine bell  
  Low-resolution spectra: NP = 2048***, ZF(F2) = 4096, NI = 256, LP = 512, ZF(F1) = 1024  
  High-resolution spectra: NP = 4096, ZF(F2) = 8192, NI = 512, LP = 1024, ZF(F1) = 2048    

 *A high-frequency value of 200 ppm can be substituted if one is certain that the com-
pound has no carbonyl groups. 
 **The values in parentheses are lower and upper values if a two-step  J -fi lter is used. 
 ***The use of at least a 0.2-s acquisition time is essential to avoid signifi cant sensitivity 
loss, see ( 12 ).  

   14.4.3.4 Gradient-Selected HMBC (Mixed-Mode Processing)* 

     F 2 = −0.5 to 9.5 ppm  
   F 1 = −5 to 220 ppm**  
  SS = 16  
  NS = 16–64  
   RD  = 0.5–1.0 s  
   1  J  CH  = 145 Hz (or 130 Hz, 165 Hz)***  
   n  J  CH  = 8 Hz  
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   F 2 apodization = sine bell  
   F 1 apodization =  Gauss ian  
  Low-resolution spectra: NP = 2048, ZF(F2) = 4096, NI = 160, LP = 512, ZF(F1) = 1024  
  High-resolution spectra: NP = 4096, ZF(F2) = 8192, NI = 256, LP = 1024, ZF(F1) = 2048    

 *This sequence gives better  F 1 resolution and better sensitivity than the absolute- value 
sequence. The spectra are in displayed in absolute-value mode but are processed in 
phase-sensitive mode along  F 1. 
 **A high frequency value of 200 ppm can be substituted if one is certain that the com-
pound has no carbonyl groups. 
 ***The values in parentheses are lower and upper values if a two-step  J -fi lter is used.  

   14.4.3.5 Gradient-Selected H2BC (Phase-Sensitive) 

     F 2 = −0.5 to 9.5 ppm  
   F 1 = −5 to 220 ppm  
  SS = 16  
  NS = 16–64  
   RD  = 0.5–1.0 s  
   1  J  CH  = 145 Hz (or 130 Hz, 165 Hz)  
   T (fi xed time) = 0.022 s  
   F 2 apodization =  Gauss ian  
   F 1 apodization =  Gauss ian  
  Low-resolution spectra: NP = 1024, ZF(F2) = 2048, NI = 160, LP = 512, ZF(F1) = 1024  
  High-resolution spectra: NP = 2048, ZF(F2) = 4096, NI = 256, LP = 1024, ZF(F1) = 2048      

14.4.4    Selective 1D Experiments 

   14.4.4.1 1D TOCSY* 

     F 2 = −0.5 to 9.5 ppm  
  NP = 32,768  
  FN = 65,536  
  SS = 16  
  NS = 4–64**  
  Mix = 0.00 s and 0.08 s (or array)***  
  Apodization = 0.5-Hz line broadening    

 *If available, the use of the Z-TOCSY sequence is strongly recommended. 
 **If using a relatively long mixing time, a larger number of scans will be needed since 
the initial magnetization is spread amongst several proton multiplets. 
 ***Acquisition of an initial spectrum with zero mixing time is recommended to ensure 
that one has a clean excitation of only the desired multiplet. Arraying the mixing time 
( e.g . 0.0, 0.25, 0.5, 0.75, 1.0 s) is useful since this allows one to assign sequences of 
coupled protons.  
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   14.4.4.2  1D N O ESY or R O ESY*  

     F 2 = −0.5 to 9.5 ppm  
  NP = 32,768  
  FN = 65,536  
  SS = 16  
  NS = 16–256**  
  Mix = 0.5 s  
  Apodization = 2-Hz line broadening    

 *The use of N O ESY is suggested for molecules of molecular weight <600 Da while 
R O ESY is strongly recommended for larger molecules. 
 **Both N O ESY and R O ESY measure transient N O E buildup and are relatively 
insensitive.     

15     Conclusions 

 As indicated in the Introduction, NMR spectroscopy is a very powerful tool for 
natural product structure elucidation. However, in order to obtain the best results in 
the shortest time and to avoid making errors in structure determination, it is impor-
tant to make informed choices of pulse sequences, acquisition parameters, and pro-
cessing parameters. It is also important to approach unknown structural problems 
with an open mind and let the data point you to the correct structure rather than 
trying to force the data to fi t a structure that you suspect. Hopefully, this contribu-
tion will provide a natural product chemist, who has a basic understanding of NMR 
spectroscopy, with the increased knowledge needed to apply this technique more 
effectively in his/her research. If so, we will have achieved our goal in writing this 
chapter.     
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1  Introduction

Chirality is a phenomenon born with Nature, which is inherently manifested in the 
enormous variety of natural products produced by metabolic routes in organisms 
and plants. Secondary metabolites have complex stereochemistry due to the pres-
ence of several stereogenic centers (central chirality) and of certain elements of 
symmetry as a plane, or an alternating axis. Processes such as carbon acquisition, 
energy storage and information transfer are not devoid of stereochemical control 
because they are ultimately performed by large systems of associated molecules 
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built from chiral or geometry-explicit building block precursors. Such is the case of
the stereo-defined isoprene moiety from which mono-, sesqui-, di-, sester-, tri-, ses-
quar-, and tetraterpenes are formed in plants and in other living organisms. The 
generic attributes of natural products rely not only on the group constitution but also 
on the stereochemical descriptors as the regio, diastereomer, enantiomer, and topomer 
preferences, information that is necessary for completing their biosignatures (1).

During the formation of intricate chiral molecules, a small chiral scaffold nucleus 
transfers its chirality information to the complex structure, a phenomenon that is 
known as induced chirality. Examples are found in the geometry-defined lactones
obtained from stereoselective reactions on allenes (2) or the four-membered ring 
nucleus of terpenes, cholesterol resorption inhibitors, and β-lactam antibiotics (3).

In order to assign the absolute configuration of natural products, non-direct 
or direct methods tend to be used. The non-direct methods are based on the use 
of previously known information, i.e. the relative stereochemistry of the target 
 molecules, or of a stereo-correlated analogue, and the optical rotation ([α]D) of a 
pure enantiomer, to determine its proportion in an enantiomerically enriched mix-
ture, among others. By the end of the last century the detection of the relative ste-
reochemistry of natural products was carried out commonly by nuclear magnetic 
resonance (NMR) and/or by X-ray crystallography. Anomalous scattering X-ray
crystallography is a direct, precise, and reliable method for determining absolute 
configurations. However, this is limited to crystalline compounds, so chiroptical
spectroscopic methods such as optical rotatory dispersion (ORD), electronic circu-
lar dichroism (ECD), vibrational circular dichroism (VCD), and Raman optical 
activity (ROA) have been developed as methodology to establish the absolute con-
figuration of chiral molecules in solution (4).

Even though an ECD spectrum contains the information on the absolute configu-
ration of the investigated compound, ECD was initially considered a relative method 
because the extraction of such information depended on a semi-empirical model 
based on chirality rules, or on a good empirical correlation with the spectrum of an 
analogous compound. Nevertheless, spectroscopic chiral techniques, at wavelengths 
of the UV–vis radiation, are applied successfully if the model and empirical rules to 
predict the electronic transitions bands, or so-called Cotton effects (C Es), are accu-
rate. C Es are the manifestation of the difference in refraction of linearly polarized 
light in ORD, or the manifestation of the difference in absorption of circularly
polarized light in ECD (5).

Although it is true that nowadays ECD spectra can be predicted by density func-
tional theory (DFT) calculations, these procedures do not necessarily produce con-
fident data, since calculations must be performed both in the ground state and in the 
excited states of the molecule, since UV–vis absorption of light is always associated 
with electrons in the excited state of matter.

Chirality in natural products has been analyzed experimentally using ECD (6) and 
VCD (7) spectroscopy, and chirality amplification such as that observed in the molec-
ular recognition of biomolecules has been done by induced circular dichroism (ICD) 
(8). In a number of cases VCD has been demonstrated as being superior to assess the 
absolute configuration of chiral natural products when compared with other tech-
niques such as OR or ECD. A case in point is cephalochromin (1), a natural product 
containing both axial chirality and central chirality due to an axis and two stereogenic 
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carbons, where the ECD spectrum is dominated by its axial chirality and is not able 
to distinguish the (aS,2S,2′S) or (aS,2R,2′R) diastereomers, but this can be done with 
VCD (9). Moreover, with VCD it is possible to distinguish spectral elements to deter-
mine both types of chirality, demonstrating the analytical potential of the technique 
(9). Another example is (+)-(1S,11S,12S)-verticillol (2) (10) a fundamental diterpene 
in the biosynthesis of taxanes, where the application of a wrong octant rule model had 
led to the enantiomeric structure of that suggested by VCD and anomalous dispersion 
X-ray analysis of its p-iodobenzoate derivative. While not frequent, but still a case to 
be mentioned, is the success of VCD over X-ray-diffraction in the assignment of
configuration of (–)-(S)-2-(1-hydroxyethyl)-chromen-4-one (3) (11).
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The use of theoretical models describing the correlation between optical activity 
and absolute configuration has promoted the development of methods for which the 
experimental results can be supported by quantum mechanical calculations giving 
strong support to absolute configuration assignments. The most developed ab initio 
methods for chiral spectroscopic ECD and VCD studies are those that rely on density 
functional theory (DFT). The simultaneous application of ECD and VCD techniques, 
along with optical rotation (OR) determinations, affords a robust and reliable meth-
odology frequently used in the absolute configurations detection of natural products. 
By using this combined methodology, the confident absolute configuration assess-
ments of sesquiterpenes (1R,2R,5S,8R,11R)-quadrone (4) and (1R,2R,5S,8R,11R)-
suberosanone (5) (12), and the alkaloids (+)-(2R,7S,20S,21S)-schizozygine (6) (13) 
and (–)-(2R,7R,20S,21S)-isoschizozygamine (7) (14), have been reported.
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Conformational changes in chiral molecules greatly modify their VCD spectra, 
thus theoretical conformational predictions to obtain a statistical population distri-
bution that precedes VCD calculations is a common practice, and in some cases 
combined methods such as IR, Raman, and VCD spectroscopy to obtain the most
stable conformers of natural products may be conducted (15).

Vibrational circular dichroism measurements have been extended to analyze the 
conformation in solution of complex natural products (16), and to determine the sec-
ondary structure of natural chiral polymers inclusive of oligomeric nucleic acids (17), 
peptides (18, 19), and carbohydrates (20) by targeting their chiral property. The pro-
cess of recognition by means of which the secondary structure of proteins and nucleic 
acids is formed, rests on non-covalent interactions such as H-bonding. Monitoring
H-bonding by VCD is becoming a common practice facilitated by the easy inspection
of clue vibrational bands, frequently in the mid-IR region (2,000–800 cm−1) of the 
spectra. An example is found in the VCD spectrum of the glycoprotein AGP recorded
in D2O solution that revealed through the “W” pattern observed for the bands at the 
amide region that AGP has a β-sheet structure mixed with an α-helix. It is not possi-
ble to extract this information from ECD due to interference of bands in the UV 
region of the spectrum (21). Helical chirality might be evidenced by the presence of
a positive (–,+) bisignated band (couplet) in the carbonyl region of VCD spectra (22).

The wide variety of applications of VCD is revealed by the elegant work on
studying supramolecular helical chirality in protein fibrils (23, 24) and the analysis 
of the chirality of amphiphilic constituents of cell membranes, expressed at the nano 
supramolecular scale, where the mechanism of the chiral induction by counter-ions 
involves anion–cation recognition and the induction of conformationally labile chi-
rality in cations (25).

Chiral recognition in host–guest complexation of organic natural products, like
terpenoids and steroids in γ-cyclodextrins, has been analyzed by induced circular 
dichroism and fluorescence spectra (26). Phenomena ascribed to chirality in inter-
faces are also reliably broached by VCD in materials research (27, 28). Local chiral-
ity at the molecular level on the pore wall surfaces of the mesoporous silicas 
MCM-41, chiral SBA-15, and chiral SBA-16, has served as the foundation for an
understanding of chirality transfer (29) and has stimulated work in enantioselective
chromatographic separations, wherein the interactions between enantiomeric ana-
lytes and chiral stationary phases (CSPs) revealed by VCD has provided the under-
lying mechanism governing efficient chiral separations (30). In addition, chiral 
surfaces and interfaces that have been shown to be able of distinguishing enantio-
mers play a key role as enantioselective catalysts. Thus, the conformation of polar
molecules adsorbed on optically active silver nanoclusters studied by IR and VCD
spectroscopy led to the interesting discovery that, whereas the IR spectra of polar
molecules protected nanoclusters in D2O and in CD3OD are essentially identical, 
the VCD spectra are mirror images of one another (31).

Absolute configuration detection is of extreme importance in the pharmaceutical 
industry; here the VCD technique has become a widely used tool in the drug discov-
ery processes. Due to the limited time to produce results, when the investigated 
chiral molecule is large or possesses high conformational mobility, truncations of 
the calculated molecules have facilitated successful analysis. The sensitivity of 
VCD to conformation has prompted the use of multivariate data analysis software 
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to understand structure–activity (SA) or structure–property (SP) relationships of 
potential drug leads (32).

After providing a broad idea of the capabilities of VCD, many of them beyond the 
scope of this review, the current chapter is focused on the use of VCD as an analyti-
cal tool to establish the conformation and absolute configuration of natural products. 
Brief introductions to the principles, instrumentation, and theoretical quantum chem-
istry methods for VCD spectra simulations are provided in the first sections of this 
chapter, followed by illustration of the VCD methodology in chiral mono-, sesqui-, 
di-, mero-, and triterpenoids, among other natural products, to furnish readers with 
information on those critical aspects that affect VCD performance, such as confor-
mational flexibility, H-bond rapid exchange equilibrium, solvent participation, and
theoretical methodology. Absolute configuration determination of diastereomers is 
also presented so as to show the limits of sensing chirality by the VCD technique. 
Chiral analysis of diastereomers is of importance in natural products, since fre-
quently one diastereomer possessing several chiral centers is found in Nature, but 
only one or two of those chiral centers are of unknown absolute configuration.

2  A Brief History

VCD theory was introduced in the 1970s in order to provide a sound background for
experimental investigations of optical activity in the infrared region of the electro-
magnetic spectrum, which at that time presented great technical difficulties (33, 34). 
In this early work, ORD and ECD techniques using visible and ultraviolet regions
(185–700 nm) were utilized commonly to determine absolute configuration and rela-
tive stereochemistry, functional group position, and conformation of natural products 
in solution (6). Characterized by bisignate ORD curves of positive (–,+) or negative
(+,–) chirality, or signated ECD bands (+ or – signals), these chiroptical methods 
allowed stereochemical assignment of stereogenic elements as centers, axes or planes 
of a vast number of natural products by comparison with the ORD or ECD curves of
analogous compounds of known structure and configuration. Thus, for example, the
ECD of the steroidal ketones, 5α,14α- (8) and 5α,14β-androstan- 17-one (9), mea-
sured at around 290 nm, displayed Cotton effects at the carbonyl (π–π*) absorption, 
which were used for reference to assign the relative trans configuration of the ring 
junction of a series of the structurally related metabolites 10–13. In compounds 11 
and 12, the relative stereochemistry of carbons at ring junctions provided their abso-
lute configuration, because the configuration at other chiral carbons was known.

Assignment of configuration by ECD measurements, based on comparison of 
test and reference molecules, does not always ensure a reliable comparison, because 
the sign and intensity of C Es not only depend on the correct choice of a like chro-
mophore and its vicinity, but also depend on conformation. Therefore, the imple-
mentation of semi-empirical sector and helicity rules was necessary to provide the 
more reliable interpretation of experimental ECD spectra (35).

However, the application of ECD to differentiate enantiomers spectroscopically
was not really improved until the introduction of the CD exciton chirality method, 
which is based on an exciton coupling between two chromophores immersed in the 
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molecule or introduced by chemical derivatization. Therefore, a model could be 
proposed wherein the location and direction of the electronic transition moments 
have to be correctly assigned in order to obtain unambiguous absolute configura-
tional assessments (36).
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A full calculation of ECD spectra based on quantum mechanics is a useful alter-
native to permutate detailed streochemical information and on the configuration and 
conformation from molecular electronic sensors, especially in those situations 
where ECD spectra are complicated by the overlap of exciton couplets due to the 
presence of a considerable number of chromophores or due to high molecular flex-
ibility. Computational ab initio methods for calculating ECD spectra, for example 
the Time Dependent Density Functional Theory (TDDFT), have been applied to 
assign the absolute configuration of small- and medium-sized molecules (36). The 
method is time-demanding, because of inherent difficulties in simulating electroni-
cally excited energy states.

Examples are reported in the literature that demonstrate the potential use of the 
ECD technique for the successful assignment of absolute configurations of organic 
molecules possessing natural optical activity or acquired chirality through their asym-
metric syntheses. Tropane alkaloid 14, a natural product substituted with two chromo-
phoric mobile α,β-unsaturated esters, for which the chiral communication can be 
sensed by ultraviolet circular dichroic absorption, was allotted an absolute configura-
tion as (3R,6R) by comparison of the experimental and calculated electronic Boltzmann 
weighted ECD spectra using the results of the excited states calculation of a set of 
simplified structures (37). Computational chemists demonstrating that difficulties 
associated with the simulation of complicated models to perform excited states calcu-
lations have proposed innovative methods suitable for  application to model natural 
product compounds. To show the effectiveness of the method, the polyketide phoma-
levone (15) is taken as an example (38). Here the absolute configuration of the stereo-
genic centers C-10a and C-10a′ and the axial axis (2,2′) were determined as 
(10aS,10a′S,aS) by comparison of the experimental ECD  spectrum with the TDDFT 
calculated spectra of two low-energy rotamers that  produced smoothed resemblances 
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of signated CE bands. Besides, the assigned absolute configuration was in close
 correspondence to the stereochemistry of  analogous compounds.
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The development of VCD as a tool for the absolute configuration determination 
of natural products was accompanied by the study of those compounds lacking
chromophores and/or where their analysis by ECD was complicated by the presence
of overlapping absorption bands. Characterized by an energy that is one to three 
orders of magnitude less than electronic transitions, vibrational transitions (1012–
1014 s−1) in the electronic ground state of the molecules originate vibrational optical 
activity (VOA) spectra, which constitute a sensitive practical measurements of local 
chirality. The accessible regions for VCD measurements contemplate the near- 
infrared (800–2,500 nm), the high-frequency zone (4,000–2,000 cm−1) and the mid- 
infrared (2,000–800 cm−1) region. VCD spectra are characterized by well-resolved 
bands that represent CEs due to chirotopic rapid atomic vibrational motions in the 
molecule. The differential absorption arising from the interaction of circularly 
polarized light (cpl) with chiral molecules is measured in terms of an absorption 
intensity (ΔA), which is equal to the difference absorption of the left and right cpl 
(1). The absorption can also be expressed in molar extinction coefficient (Δε) units, 
a more appropriate molecular property to report the observed intensity of anisotro-
pic absorption corresponding to each anharmonic vibration.

 DA A AL R= -  (1)

Meanwhile, IR intensities (A or ε) are determined by means of dipole strengths 
(D) (2), and VCD intensities are determined by rotational strengths (R) (3) (7, 37). 
Dipole strengths are related to atomic electric dipole moments 

m( ) and rotational 
strengths to simultaneous electric and magnetic dipole moments 



m( ) in fundamental 
transitions of normal vibrational modes at electronic ground states (39).

 
D dµ ò e n

 
(2)

 
R dµ ò De n

 
(3)

All bands in a VCD spectrum represent chirality, and the local dissymmetry or 
circular dichroism effect is measured through the anisotropic factor (g), which relates 
the intensities of VCD bands to IR bands (Δε/ε) and depends, largely, on the instru-
ment sensitivity used for measurements. Nevertheless, a higher sensitivity is nor-
mally observed for ECD (g ≈ 10−2) than for VCD (g ≈ 10−4) in consideration of mass 
differences between electrons and nuclei (34). Stereogenic centers in the molecule 
may be expected to produce VCD bands with higher anisotropy g-factors than 
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non- stereogenic centers as long as the transition between electric and magnetic vector 
moments do not cancel each other out during vibrational motion, although substitu-
ents such as a methyl group close to an heteroatom can introduce a higher degree of 
asymmetry than expected because this is in a conformational anisotropic environ-
ment (40). The g-factor might be high either because circular currents are high, as is 
found in bending C–O–H vibrational modes with large magnetic moments (rotation),
or because the linear currents are small as evident in stretching C–H vibrational
modes (translation) with small electric transition moments and absorptions.

The theory on which vibrational optical activity is based assumes harmonic 
oscillations with force constants for individual atomic displacements that are trans-
formed to force constants for normal vibrational modes (34, 39). Therefore, a cor-
rection factor is needed to match calculated harmonic frequencies with real 
anharmonic vibrational frequencies, a correction known as the anharmonicity factor
(anH) (7). Nevertheless, VCD theoretical models have continued in their develop-
ment, thus recently the first implementation and calculation of anharmonic VCD 
rotational strengths for monoterpenes was reported (41). Since dipole moments 
depend not only on bond polarization but also on molecular geometry, and consider-
ing that every flexible molecule is an ensemble of conformers, dipole moment tran-
sition bands in IR and consequently in VCD, will depend on the contribution and
composition of conformers. The time detection for vibrational transitions is less 
than picoseconds, hence conformational heterogeneous samples will display IR and
VCD absorption bands due to individual conformers where the intensity is propor-
tional to the conformational population (4).

The first measurements of vibrational circular dichroism in liquid samples (42) 
were performed in enantiomeric (+)-(S)- and (–)-(R)-2,2,2-trifluoro-1-phenylethanol 
at 2,920 cm−1, and for the primary C–H stretch band at the α-carbon atom. The cir-
cular dichroism effect observed was rather low (g = 6.5 ⋅ 10−5) but enough to distin-
guish chirality of the enantiomers, with rotational strengths of +2 ⋅ 10−44 esu2cm2 for 
the (+)-(S)- and −2 ⋅ 10−44 esu2cm2 for the (–)-(R)-enantiomer, and dipole strength of 
1.4 ⋅ 10−39 esu2cm2. Even though vibrational rotatory strengths are smaller than 
those of electronic transitions, presently high-sensitivity chiral IR instruments can
sense bands with g-values in the order of 10−3, facilitating the assessment of abso-
lute configuration by analysis of well-defined intensity and signated bands.

Years after the first VCD report, a formal and complete VCD theory was pro-
posed introducing atomic polar tensors (APTs), a concept used in absorption vibra-
tional spectroscopy, allowing the calculation of signals intensity as a change in total 
molecular dipole moment when all atomic nuclei of a molecule undergo a set of 
small displacements (43). The atomic axial polar tensors (AAPTs) model takes into
consideration the corrected Born-Oppenheimer coupling effects introducing a rapid 
and efficient way to calculate vibrational circular dichroism spectra in a concerted 
manner (44). Thus, the first application of density functional theory (DFT) using 
B3LYP functional and gauge-invariant atomic orbitals (GIAOs) to calculate vibra-
tional rotational strengths of trans-2,3-d2-oxirane was reported using a powerful 
method based on DFT harmonic force field and AAPTs (44, 45). This methodology 
was implemented within the Gaussian program suite and first used to predict the
VCD spectra of two monoterpene natural products, (+)-(1R,4R)-camphor (16) and 
(+)-(1S,4S)-fenchone (17) (Fig. 1) (46).
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VCD calculations provide signated rotational strengths with high accuracy for 
each vibrational frequency. The predicted full VCD spectrum is obtained by fitting 
these parameters to band shapes with Lorentzian functions (47, 48). Each band in a 
VCD spectrum has a corresponding band in the IR spectrum. However, because of
the signated pattern of VCD bands, the spectrum looks simpler than an isotropic IR
absorption spectrum. IR bands are prone to be broad as a result of overlap of cou-
pled vibrational modes corresponding to rapid exchange processes such as intermo-
lecular H-bonding or to heterogeneous conformational equilibria.

The transition dipole mechanism for vibrational coupling depends on conforma-
tion, so, therefore, efforts dedicated to define unambiguously the most stable con-
formation of a rigid molecule or Boltzmann average conformations of a flexible one 
are rewarded by obtaining a close-to-real calculated VCD spectrum. The absolute 
configurations of chiral molecules are thus defined by comparison of calculated to 
experimental VCD spectra using bands at equivalent frequencies. The band sign and 
band intensity are the parameters to observe for defining absolute configuration of 
dextro- or levorotatory molecules that display mirror image VCD bands, such as 
those observed for (+)-(R)-limonene (18) and (–)-(S)-limonene (19) in Fig. 2.

Early VCD applications were dedicated to the use of isotopic labeling to deter-
mine absolute configuration, and to kinetic studies of stereospecific reactions using
hydrogen and deuterium stretching modes in the 4,000–2,000 cm−1 region of the 
spectra (49). Later on, with the advent of FT-VCD methods (50), the potential of 

Fig. 1 C-H bending region of the VCD spectra of (+)-camphor (16) and (+)-fenchone (17) calcu-
lated (a) using the DFT B3PW91/6-31G(d) method and (b) experimental. (Adapted from (46))
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VCD was demonstrated by the real-time monitoring of the composition and % 
enantiomeric excess (ee) of the stereochemical processes. The experiment for the 
reduction reaction of (–)-(1S,4S)-camphor (20) to (–)-(1S,2R,4S)-endo-borneol (21) 
was simulated by periodically changing the mole fraction of camphor relative to 
borneol, starting from 100% camphor to reach 100% borneol (51). The VCD spec-
tra registered at the start and end of the experiment are shown in Fig. 3, along with 
an intermediate mixture of ca. 1:1 of both compounds, which allows identification 
of the bands that correspond to borneol associated with normal stretching (νC-O) of 
the hydroxy group in the 1,100–1,035 cm−1 region.

Fig. 2 VCD spectra of (+)-(R)-limonene (18) (from oranges, curve a) and (–)-(S)-limonene (19) 
(from lemons, curve b) in the mid-IR region

Fig. 3 Monitoring the course of the simulated chiral reaction of (–)-camphor (20) to (–)-borneol 
(21) by VCD spectroscopy. The central plot is the spectrum of a 1:1 mixture of both monoterpenes. 
(Adapted from (51))
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Fig. 4 Calculated IR absorption (bottom) and VCD spectra (top) of four low-energy conform-
ers (a–d) of (3R,6R)-6β-hydroxyhyoscyamine (22) at the B3LYP/6-31G(d) level of theory.
(Adapted from (55))

For dynamic processes such as those observed in flexible molecules where two or 
more conformers are in equilibrium, VCD has been used to give an account of the 
occurrence of conformers (15, 16, 52). In this area of research VCD and ECD coupled 
effectively to produce an insurmountable mixed method for diagnosis of the relative 
mobility of fragments inside a molecule (53) or for intermolecular hemi- intercalative 
binding (54). The information provided by both ECD and VCD provide useful details 
of the molecular structure and its relationship with optical activity, since ECD focuses 
on chirality around chromophore sensors and VCD senses chirality in each vibronic 
chiral entity. Evidently, this does not imply that ECD can provide a different configu-
rational assignment than VCD for a test molecule; on the contrary, both methods 
should reinforce assignment. Such is the case of tropane alkaloids 22 and 23 (Fig. 4) 
(55), for which the absolute configuration assessment by VCD is in agreement with 
that determined by ECD for the analogue tropane 14. Tropanes 22 and 23 are mobile 
molecules, with eight conformers found populated for each molecule by searching 
with molecular mechanics calculations. IR and VCD spectra for the four most stable
conformers of tropane 22, calculated by ab initio methods are shown in Fig. 4.
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Nowadays, VCD has become the technique of choice to determine not only the 
absolute configuration of natural products with known relative stereochemistry, but
also to determine the structure and chirality of new natural products. Such is the 
case of (+)-alternamin, isolated from the aerial parts of Murraya alternans, a dihy-
drofuranocoumarin for which the structure was determined as (+)-(S)-5,8- 
dimethoxymarmesin (24), after ruling out structures 25 and 26 that were not possible 
to distinguish by 2D-NMR techniques (56).
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3  Experimental Considerations

In chiroptical techniques a dissymmetric molecule is irradiated with polarized light, 
stimulating spectroscopic changes that can be detected in a qualitative manner (opti-
cal rotation) or as a quantitative change (differential absorption). In CD, where the 
differential absorption of the left and right cpl is detected, the cpl electric vector 
rotates in the direction of the beam propagation describing helix shapes, (M) and 
(P), which are not superposable mirror images. When a chiral molecule is irradiated 
with the cpl of UV–vis, wavelength 10−5–10−7 cm, or IR, wavelength 10−2–10−4 cm, 
interactions that are diastereomeric in character take place (Fig. 5), thereby chirality 
can be quantified instrumentally.

Fig. 5 Anisotropic absorption of circularly polarized light (cp) by a chiral (R) or (S) configured 
substrate. The symbols (P) and (M) refer to right- and left-handed helicity
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The VCD spectroscopic response is thus based on transformation of the chiral 
information contained in vibrational modes, in a measurable energy difference asso-
ciated with the rotation of cpl through a resonant IR radiation. Normal modes give
rise to fundamental vibrational states and combinations to overtones. However,
because of the absence of symmetry in chiral molecules, each normal mode con-
tains components of all internal coordinates. As a result some bands are simple 
combinations of modes but others are quite complex combinations (34). In VCD 
spectra the bands are characterized by a frequency energy given by wavenumbers, 
in cm−1, and by an absorption intensity (ΔA); a value that can be expressed as (Δε), 
according to the Lambert-Beer law (4).

 De D= A c l/ •  (4)

where c is the concentration in mol/dm3 and l the pathlength in cm.
The heart of a VCD instrument is the modulator, which produces the optical 

phase retardation needed to furnish left and right circularly polarized light before 
traversing the sample (57). Optical activity arising from vibrations of molecules in 
the liquid state were first measured by alternately sending left and right circularly 
polarized light through the sample by means of a modulator in scanning grating 
setup instruments (dispersive scanning), collecting data at one wavelength a time 
(39, 58), or in a short range of wavelengths (59). The instrumental sensitivity is 
limited by the signal-to-noise (S/N) ratio and by the presence of optical and electri-
cal artifact signals (60). The detector own-noise signal affects the S/N ratio. The 
spectra of chiral (+)- and (–)-2,2,2-trifluoro-l-phenylethanol (neat) recorded in two 
dispersive scanning instruments are shown in Fig. 6; a racemate of the chiral sam-
ples is used as reference.

Fig. 6 VCD spectra of (+)-2,2,2-trifluoro-1-phenylethanol (27) and (–)-2,2,2-trifluoro-1- 
phenylethanol (28) recorded in scanning dispersive instruments: (a) spectral bandpass of 20 cm−1, 
(b) spectral bandpass of 10 cm−1 in a higher sensitivity instrument. At the center of both groups of 
curves, a sample of a racemic mixture of 27 and 28 is taken as a reference. (Adapted from (42, 58), 
respectively)
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In experiment (a) a germanium modulator with piezo-electric disks oscillating at
about 10 kHz and a photovoltaic InSb detector were used in the optical train of the
instrument, whereas in (b) a polycrystalline ZnSe crystal photoelastic modulator 
(PEM) oscillating at about 50 kHz was used to provide phase modulation. Here the
insertion of a second ZnSe modulator after the sample increased the instrumental 
sensitivity since artifact CD signals were diminished significantly.

Incipient registers of VCD bands with good signal-to-noise ratio in the stretching 
νCH region for menthol, α- and β-pinene, camphor, 3-bromocamphor, and borneol, 
among others, were reported using dispersive instruments (59). However, a great
improvement in optics to detect chiral IR spectra was achieved by introducing a Fourier 
transform (FT) approach in the instrument design, allowing efficient VCD spectra 
determination with data collection across a wide range of IR frequencies in a simulta-
neous way and a reasonable time (60, 61). The performance of a dispersive VCD ver-
sus a FT instrument is shown for chiral (+)- (16) and (–)-camphor (20) in Fig. 7.

Fig. 7 VCD and IR transmission spectra of (+)-camphor (16) and (–)-camphor (20) in CCl4: (a) 
recorded in a scanning dispersive VCD instrument and (b) recorded in a FT IR-VCD instrument
(Adapted from (50, 59))

3.1  VCD-FT Spectrophotometer

A FT-VCD spectrophotometer is in fact an instrumental version for chiral detection 
of IR radiation, for which a schematic optical diagram is shown in Fig. 8. A poly-
chromatic IR radiation coming from a glower source is collimated and directed to a
beam splitter, the central component of an interferometer. The two beams emerging 
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from the splitter are reflected and transmitted in such a way that optical phase 
 retardation appears between them. When the retardation is varied and the data col-
lected, an interferogram is created. Each spectral point in the interferogram is 
encoded with a Fourier frequency.

After the interferometer, the radiation passes through an optical filter and then to 
a polarizer. The polarized light passes through a ZnSe PEM modulator, mechani-
cally stressed by an adjacent piezoelectric transducer, which alternates radiation 
between right and left cpl chiral beams, of the same intensity, in the frequency range 
of tens of kHz. Polarized modulated light can then cross the sample containing a
chiral molecule to produce an attenuated signal as a result of the differential absorp-
tion (AR–AL) in each spectral point of the interferogram encoded with VCD modu-
lated intensity at Fourier frequency. The light reaching the detector is time-modulated 
at the PEM frequency according to the interferometer setup. A transducer in the 
detector converts energy to an electric signal. Phase-locked amplification of the
signal provides simultaneously a DC signal (IR) and an absolute configuration sig-
nal (VCD). The lock-in amplifier demodulates the VCD spectral information.

Fig. 8 Block diagram of the optical-electronic layout of a VCD spectrophotometer
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VCD intensities are typically four to five orders of magnitude smaller than their 
parent IR intensities (62), thus the spectrophotometer requires operation with very 
sensitive components and time-averaging over relatively long intervals of time. The 
use of ZnSe photoelastic modulators and high-sensitivity detectors with low noise, as 
MCT (HgCdTe), provide spectral resolutions in the range 1–64 cm−1, and birefrin-
gence artifacts manifested as deviations of the baseline from zero are reduced by the 
adaptation of a second PEM, after the sample, in an arrangement known as dual polar-
ization modulation (DPM) that improves stabilization and adjustment to nearly zero 
baseline, allowing VCD measurements across a large spectral range with high quality. 
The comparison of VCD spectra of (–)-(S)-α-pinene with single modulation (SM) and 
DPM adaptation is shown in Fig. 9 (63). Artifact signals have also been reduced by 
using lenses to manipulate the beams after light has been circularly polarized (64, 65).

Fig. 9 Comparison of the FT-VCD spectra of (–)-(1S)-α-pinene (29) recorded under single 
modulation (SM) scanning and under dual polarization modulation (DPM). (Adapted from (63))

To settle the conditions for VCD measurements, the sample, solvent, concentra-
tion, and pathlength, are adjusted by recording the absorption spectrum. However,
due to the low VCD sensitivity, experimental measurements typically require some 
5–10 mg of sample (16), although in very favorable cases it has been possible to 
manage with as little as about 2 mg of sample. It is worth mentioning that for ECD, 
1 mg of sample or less is enough (35). Typically, for VCD measurements 0.15 cm3 
solvent are used, while a typical ECD measurement can be performed in a 1 cm3 
solution. Using the solvent as a blank reference for VCD is acceptable. Ideal sol-
vents for VCD measurements of natural products in the mid-IR region, are CDCl3, 
CCl4, and CS2 because they do not absorb in the studied region, or alternatively 
CD3CN and DMSO-d6 for polar compounds (66, 67). For those samples with very 
low solubility that cannot be measured in solution, film methods may eventually be 
adapted (68, 69). Solid-state sampling methods include mulls, pellets, and a spray 
technique that allows for the deposition of finally divided particles to create a thin film. 
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Thin solid samples are superimposed with artifacts that are large contributions of 
linear birefringence and linear dichroism; these artifacts can be eliminated by a 
theoretical approach that extracts the true VCD spectrum (70).

The optimum decadic absorbance (A), or attenuation of the transmitted IR beam,
is chosen according to the sensitivity of the detector (a value of ca. 0.4 a.u. is usual 
for a limited-noise detector) (62). Since, in practice, VCD measurements may lead 
to saturation of the detector signal, with the consequent reduction in sensitivity, a 
filter is placed before the detector. Alternatively, the use of a dual source in a four- 
port interferometer FT-IR, increases the S/N ratio by a factor of two compared to 
single source operation (71).

At the end of the experiment, collected data are stored and digitized by in silico 
software, which allows obtaining the IR and VCD spectra. Noise and reproducibil-
ity, as well as enhancing signal measurability and discrimination are carried out by 
rapid-scan VCD methods or by the digital signal processing (DSP) method. Both
methods produce high-quality VCD spectra for solution phase rigid chiral molecules 
and qualitatively reasonable good spectra for biologically related molecules (72).

The first commercially available VCD spectrophotometer was the ChiralIR 
brought to market by Bomem/BioTools, Inc. in 1997 (7). Currently, FT VCD instru-
ments from Thermo-Electron, JASCO, and Bruker (73) are also available but less 
widely distributed. Recently, a compact dispersive VCD instrument for the accurate
analysis of peptides and proteins in the mid-infrared amide I and amide II regions 
was reported (74).

In the absolute configuration assessment of natural products, an advantage of 
VCD over optical rotation determinations is that possible interferences due to an 
achiral impurity in the sample are reduced. Moreover, if the sample is not 100% 
enantiomerically pure the assignment may still be carried out (7). The experiments 
are not highly time-demanding (around 5 h collection for a 0.1–0.2 M solution sam-
ple) in an easy-to-use instrument. Besides, it has been observed that for structurally
closely related compounds, it is possible to generalize the stereochemical assign-
ments through VCD signatures, such is the case of 3α,6β-disubstituted tropane alka-
loids (55, 75–77) where the sign of the bands of vibrational modes associated with 
the 1,150–950 cm−1 region, a region of mirror-image bands corresponding to the 
N–C and O–C stretching vibrations, is highly sensible to configuration (Fig. 10) 
(75), and has been of support to determine the absolute configuration of (–)-(3R,6R)-
dibenzoyloxytropane (31) and of its antipode (+)-(3S,6S)-dibenzoyloxytropane (32) 
separated by enantioselective HPLC (76).
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The VCD method has been more fully exploited since a substantial progress in 
the theoretical prediction of VCD spectra was achieved (39, 44, 62). Spectral exten-
sion into the near-IR region as far as 10,000 cm−1 is commercially feasible (7, 78). 
Considerable levels of sophistication have been made to VCD spectrophotometers, 
so as to use an infrared femtosecond laser source synchronized to the natural fre-
quency of a photoelastic modulator, which has given rise to new techniques such as 
time-resolved vibrational spectroscopy that is employed currently in many areas of 
chemistry and biochemistry to unravel the fast kinetics and mechanisms of photo-
induced reactions (79, 80). Furthermore, innovative technology to measure 
 chiroptical properties is provided by heterodyne-detected Fourier-transform spec-
tral interferometry (81) in which a femtosecond IR pulse is used to characterize
fully the phase and amplitude of the vibrational optical activity free-induction-
decay field, providing VCD and ORD measurements altogether through the spectral
interferograms. In addition, two-dimensional correlation spectroscopy (2D-COS) 
has been applied to VCD–VCD, IR–IR, and VCD–IR spectral analysis of l-alanine, 
demonstrating that 2D-COS vibrational methodology provides enhanced chemical 
information over traditional 1D spectra (82).

Fig. 10 Regions of the experimental VCD spectra of tropanes (1R,3R,5S,6R,2′S)-22, (1S,3S,5R, 
6S,2′S)-23, and (1S,3S,5R,6S)-30. (Adapted from (75))
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4  Theoretical Calculations

VCD spectroscopy is a powerful technique not only for analyzing chiral static in 
stereochemistry, but also for studying dynamic stereochemistry in asymmetric reac-
tions and conformer landscapes. Moreover, VCD is endowed with all of the benefits 
of IR spectroscopy, being sensitive to molecular changes of intrinsic character, like
bond strength, atomic mass, and extrinsic character, such as non-covalent intermo-
lecular interactions (i.e. H-bonding) (83, 84). Ab initio quantum chemical calcula-
tions based on Hartree-Fock (HF) (85) or density functional theory (DFT) (86) 
methods have proven useful in the prediction of VCD spectroscopic properties. 
Commercially available software packages, such as Gaussian 03 and 09 (Gaussian
Inc., Wallingford, CT) include absorption and VCD dipolar and rotational strengths 
calculations from which basic relationships between chiroptical properties and 
molecular structure are properly addressed. Full VCD quantum chemical treatments 
do not require any a priori model hypothesis or approximation and are used success-
fully to assign absolute configuration of natural products without time-scale restric-
tions because of molecular size, but because of dealing with molecules having too 
many conformational degrees of freedom (87). In such a case approximated ab initio 
routines (39, 88) have been written and applied satisfactorily, as, for example in VCD 
studies of polymeric biomolecules such as DNA or proteins, maintaining a good cal-
culation cost-to-benefit ratio. The formalism of a model that explains vibrational tran-
sitions measured by CD differential absorption is based on energy transfer between 
electric and magnetic dipolar moments in the ground electronic state. A short discus-
sion on the basic principles of vibrational theory that gave rise to the quantum 
mechanical model, from the perspective of experimentalists, rather than a more rigor-
ous treatment, is presented in this section. This is intended to provide insight in order 
to decipher information from VCD spectra, and to be aware of how these critical 
aspects of molecular geometry and conformation that stimulate VCD spectroscopic 
changes may lead to entangling the chiral recognition of stereoisomers. The advanced 
treatment of VCD theory for the design of chiral computational methodology has 
been compiled in a very satisfactory manner in the literature (39, 89–92).

4.1  Fundamental Parameters

4.1.1  Dipolar and Rotational Strengths in VCD Transitions

As for electronic transitions (35), each independent vibrational transition in the 
molecule is defined by an electric 

m( ) and a magnetic 


m( ) transition dipolar moment. 
However, vibrational motions, or modes, are carried out mainly by nuclei and as a
consequence electronic redistributions during vibrational transitions may be consid-
ered independent of nuclei motions (Born-Oppenheimer approximation). Normal 
vibrational modes are related to fundamental transition bands in IR spectroscopy,
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with an example presented in Fig. 11 for a methylene group (93). The number of 
normal vibrations for a non-linear molecule with N atoms is 3N – 6. Vibrations 
are usually complex combinations of normal modes, and the most simple organic 
molecule, CH4, a spherical top molecule, has four normal modes of vibration, one 
totally symmetric, ν1(a1), one doubly degenerate, ν2(e), and two triply degenerate, 
ν3(f2) and ν4 (f2) (94). Note that all possible vibrational-mode degeneracies in achiral 
molecules vanish in chiral environments.

In each vibrational mode, atoms oscillate at the same frequency and around an 
equilibrium position during the transition. The amplitude of such oscillations is very 
small (0.01–0.1 Å). Bond electrons clouds are shifted to the most electronegative
atom giving place to a dipolar moment with two transition components, the electric 
component due to a linear charge displacement, and the magnetic component due to 
electron rotations. The time-dependence of the dipolar moment is sinusoidal.

During IR irradiation the electric field of light stimulates variation of the electric
dipolar moment of molecular vibrations with a permanent dipole moment 

m ¹( )0 . 
Each vibration is characterized by a resonant frequency and by an absorption inten-
sity. The oscillator dipolar strength (Di) is proportional to the integrated absorption 
intensity of a band in the IR spectrum, and is expressed as the square of the electric
dipole moment in a transition between the initial (m) and the final (n) vibronic 
states (5) (39).

 
Di mn»

m 2

 
(5)

When a chiral molecule is irradiated with cpl, circular dichroism will occur, 
occurring at frequencies of allowed vibrational modes, with changes in both electric 

Fig. 11 Vibrational normal IR modes of a CH2 group. Stretching: a, symmetric (νs); b, asymmet-
ric (νa). Bending: c, in-plane scissoring (δs); d, in-plane rocking (ρs); e, out-of-plane wagging; and 
f, out-of-plane twisting (τ)

P. Joseph-Nathan and B. Gordillo-Román



331

mmn( ) and magnetic 


mmn( ) transition dipoles. Simultaneous charge translation and 
rotation occur, but vibrational electric and magnetic dipole transition moments are 
promoted only if the vectors are neither zero nor orthogonal, thus the absorption 
intensity of a VCD band will be related to the rotational strength (Ri), which mea-
sures the magnitude of such dipolar transition moments. The oscillator rotational 
strength (Ri) is expressed as the imaginary part of the scalar vectors product of the 
electric and magnetic moments (6) (7).

 
R mi mn mn» ×( )Im

 m
 

(6)

In the configurational and conformational study of chiral molecules, using VCD 
quantum mechanical calculations, the goal is to evaluate the sign and intensity value 
of Ri strengths for each fundamental, combination and overtone bands belonging to 
active oscillators within the molecule.

The algorithm of quantum mechanical vibrational theory considers that the electric 
m̆( ) and magnetic m̆( ) dipolar moment operators consist of electronic (E) and nuclear 

(N) contributions applied to electronic and vibrational-harmonic wave functions, 
respectively. Thus, an axial polar tensor (APT) element (PA) (95), which accounts for 
the change in dipole moment when an atom (A) undergoes a change in rotational 
strength, is defined in terms of independent nuclear and electronic contributions (7).
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Nevertheless, considering that the electronic contribution to the magnetic transi-
tion moment vanishes under Born-Oppenheimer approximation, a complex separa-
ble wave function, for which the electronic part depends on nuclear velocities as 
well as nuclear position has to be applied in the corrected Born-Oppenheimer 
approximation giving rise to an atomic axial polar tensor (AAPT) element (MA) (44, 
96) to account for the simultaneous change of electric and magnetic transition 
moments. The dipolar (Di) and rotational (Ri) strengths are then defined in terms of 
the AP and AAP tensors as indicated in (8) and (9) (39).
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4.1.2  Computational Calculations of Dipolar and Rotational Strengths

Theoretical principles of vibrational optical theory are confined in thorough formal-
isms and approximations for the prediction of electric and magnetic dipole transition 
moments, which, in turn, determine the dipolar and rotational strengths. In the com-
putation of dipolar strengths, the dipole moment derivatives are solved by analytical 
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gradient techniques and vibrational wave functions by programmable harmonic 
oscillators (91). In the theory of vibronic coupling (43, 97), the derived expressions 
to calculate IR absorption and VCD utilize ground electronic state linear combina-
tion atomic orbital (LCAO) wave functions. However, in magnetic field perturbation
(MFP) theory, an ab-initio approximation of AAPTs corrected Born- Oppenheimer 
wave functions is employed to calculate rotational strengths (44, 90, 96). The mag-
netic dipole vibrational transition moment is considered to be a contribution of the 
overlap between wave function derivatives. Computation of those derivatives with 
respect to nuclear coordinates provides then the electronic contribution to the mag-
netic dipole vibrational transition moment; a moment that is, otherwise, very small 
because it is originated from an induced infinitesimal electronic current near the 
nuclei (91). Visualization of the flow of electron density current due to nuclear 
motion is possible through the transition current density (TCD) application imple-
mented in the AVS 5.0 program (Advanced Visual Systems, Burlington, MA) (98).

In the formalism of ab initio methods to calculate magnetic dipole transition 
moments, through polar tensors by HF and DFT methods, a condition called origin
invariance (99) must be fulfilled. This condition assures origin independence of vibra-
tional transition moments, a problem solved in the DFT calculation of rotational 
strengths by the introduction of perturbation dependent (PD) basis functions named 
gauge-invariant atomic orbitals (GIAOs) (45) which are also known as London orbit-
als (85, 100). By using analytical derivative methods (101) for the calculation of har-
monic force field (HFF) and the corresponding coupled-perturbed Hartree-Fock 
(CPHF) or Kohn-Sham (CPKS) DFT equations obtained from wave function deriva-
tives, it is possible to calculate origin invariance VCD rotational strengths. The pre-
cise form of CPHF or CPKS depends on the nature of the perturbation on chosen
atomic orbital (AO) basis set functions. In addition, velocity-gauge factors, which 
incorporate the dependence of the electronic wave function on an electron-velocity 
perturbation into the AO basis functions as a gauge  transformation, have also been 
considered in the nuclear velocity perturbation (NVP) formulism of VCD theory 
(102). In completing this concise summary on fundamentals of VCD theoretical 
methodology, comment may be made that the normally observed steep rise in the 
level of theory, for high-level electron-correlation methods is provided by coupled 
cluster theory (91, 103) and second-order Møller-Plesset perturbation theory (MP2) 
(89, 104) VCD application. Nevertheless, their use pays for the cost of consumption 
of CPU resources and time. Robust program packages for VCD measurements include
those suites in Gaussian (105), CADPAC (106), and Dalton (107), among others.

4.2  Density Functional Theory

As implemented in Gaussian 03 (105) and other programs (106, 107), DFT assignment 
of absolute configuration includes geometry optimization with frequency analysis, 
providing thermochemistry, IR and VCD spectra calculations. Numerous examples,
where DFT has calculated predicted VCD spectra or has confirmed experimental 
chiral assignments of natural products (7, 16, 52), have been reported since a 
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DFT-harmonic force fields study in 1994, demonstrating that DFT at the B3LYP/6-
31G(d) and B3LYP/TZ2P levels of theory, as applied to (R)-4-methyl-2- oxetanone 
(33) gave superior results when compared to MP2 and self-consistent- field (SCF) 
methodologies (108). DFT includes electron correlation, thereby a reliable relation-
ship of experimental to calculated data is expected to be obtained with higher accu-
racy than those methods that do not include this parameter (89, 108, 109). The first 
application of DFT to the calculation of atomic axial tensors (AATs) using analyti-
cal derivative methods and gauge-invariant atomic orbitals (GIAOs) on trans-2,3-d2-
oxirane yielded vibrational rotational strengths in better agreement with experimental 
data rather than comparable calculations at the HF level (45).

Based on an efficient algorithm in which the accent is placed on integral-direct
techniques, DFT methods are able to calculate VCD spectra of molecules with 
40–50 non-hydrogen atoms in a routine manner and at relatively low computational 
costs when compared to traditional methods. However, a rather difficult task is mani-
fested when the molecule exceeds this size and many conformations populate the 
low-lying conformers in the potential energy map. An example is found in (–)-sty-
potriol (34), a pentacyclic ichthyotoxin isolated from the brown alga Stypopodium 
zonale, which was studied as the triacetate derivative (35), a molecule with 86 atoms, 
with 40 of these being non-hydrogen atoms (C33H46O7) (110). This meroditerpenoid 
derivative has 300 electrons and is one of the largest natural products for which the 
conformation and absolute configuration were published using VCD and the DFT 
method at the B3LYP/DGDZVP level of theory. The optimization of each of six
conformers required between 20 and 40 calculation cycles of 2.6 h each, followed by 
100 h of vibrational calculations, when using a personal computer running at 3 GHz,
to account for over 1,000 h of computational time (110).
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The reason for the VCD investigation of its triacetate derivative 35, rather than 
stypotriol itself, refers to the use of a handy derivatization strategy (111, 112) pro-
posed to diminish the number of conformational arrays of a hydroxy free-rotor 
group in the molecule (10). In addition, acetyl groups are not particularly large 
groups that might complicate calculations because of an increase in the number 
of non-hydrogen atoms. Other advantages are that acetylated samples more easily 
dissolve in solvents with low dielectric constants, and that the broadening of 
VCD bands, which is linked to intermolecular H-bonding and is frequently observed
in neat or solution analysis of alcohols (112), or carboxylic acids (113), under 
experimental concentrations used, may be avoided. Similarly, to eliminate the 
intermolecular H-bonding influence, carboxylic acids are best converted to their
corresponding methyl esters (114, 115).
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In order to assure a trustworthy DFT comparison of calculated and experimental 
VCD spectra, simulated and observed molecules preferentially should be the same. 
However, in cases where the molecular size precludes obtaining the VCD spectrum
in a reasonable time, calculating a molecular fragment as a model molecule, while 
maintaining the chiral portion intact is a strategy that often works out well. Such was
the case for sargaol (36), a chromene with antioxidant properties that has in its struc-
ture a tris-isoprenyl chain linked to a 2H-benzopyranol through a stereogenic center, 
for which the absolute configuration was determined successfully by VCD methodol-
ogy using DFT with the B3LYP hybrid functional and the DGDZVP basis set. These
were applied to (+)-(R)-sargaol acetate (37) and to fragment models 38–40, where 
the chain was simulated to be an ethyl group, or one and two isoprenyl units (87).

O

RO

36, R = H
37, R = Ac

O

AcO

R

38, R = Et
39, R = CH2CH2CH=CMe2
40, R = CH2CH2CH=C(Me)CH2CH2CH=CMe2 

Like the preceding work described for sargaol, the axial chirality of the (S)-
curcuphenol dimers 41 and 42 was allotted through VCD analysis of the truncated 
model phenol atropisomer (P)-43, using the DFT B3LYP/6-31G(d) method (116).
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4.2.1  Hybrid Functionals and Basis Set

For many electron systems such as non-hydrogen atoms and molecules, the DFT 
modeling method would be precise if the exact exchange-correlation functionals 
were known. However, this part of the total-energy functional remains unknown
using in the Kohn-Sham DFT treatment and must be approximated (86, 117). 
The popular Becke-3-Lee-Yang-Parr (B3LYP) hybrid functional (118), for which 
an approximation comes from the exchange energy calculated from HF theory,
is one the most widely used and reliable functionals (108, 119, 120) for VCD 
 measurements, even though this functional has no foundation to describe the density 
transfer response, which is the fundamental property in VOA measurements (91). 
Other hybrid functionals used in VCD computational methodology are those using 
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the Perdew–Wang non-local correlation functional (PW91) derived from non-
empirical generalized gradient approximations (GGA’s) (121, 122), as the hybrid 
functional B3PW91 (46, 90, 120), and the local spin density approximation (LSDA) 
(108, 123). The power of DFT methodology to estimate the rotational strengths of 
the acetate derivatives of (+)-(R)-2-(1-hydroxyethyl)-chromen-4-one (44) and 
(+)-(R)-6-bromo-2-(1-hydroxyethyl)-chromen-4-one (45) using B3LYP and
B3PW91 functionals and the TZ2P basis set allowed the comparison of functionals,
which led to the result that B3LYP gives closer frequency values to experimental
readings than does B3PW91 (11). However, the hybrid functional B3PW91 and the
high level double polarized DGDZVP2 basis set improved visualization of the car-
bonyl stretching region of the VCD spectrum of (+)-(4R,9R,10R)-african-1(5)-ene-
2,6- dione (46) as compared to the calculated VCD spectra at the B3LYP/6-31G(d)
and the B3LYP/DGDZVP levels of theory (124). The carbonyl region of the polar-
ized vibrational spectrum is frequently obscured by the presence of artifacts (125).
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Functionals and basis sets with polarization functions and with or without diffuse 
functions are available for DFT-VCD calculations (126). The Gaussian basis sets
double zeta valence plus polarization (DZVP) does not include p functions on hydro-
gen, and are optimized for local density functionals (127), thereby assuring effi-
ciency and good level calculations. The value of the basis set in the theoretical VCD 
approaching methodology was analyzed for (–)-myrtenal (47), an oxygen- containing 
monoterpene of the pinane series (128). Since rotational strengths depend on confor-
mation, a conformationally fixed chiral molecule such as myrtenal with only two 
conformers in an equilibrium highly biased towards one side was considered ideal 
for the study conducted (Fig. 12). Moreover, myrtenal is a molecule with only 11 
non-hydrogen atoms (C10H14O) and 82 electrons, and therefore a good candidate to 

Fig. 12 Conformational equilibrium of (–)-(1R)-myrtenal (47)
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ascertain the relationship between invested computer time and spectral accuracy. 
VCD spectra were simulated with the B3LYP functional and the polarized basis sets
6-31G(d,p), 6-31G+(d,p), 6-311G+(d,p) cited in order of increased level of theory,
as well as for the DFT optimized DGDZVP and DGTZVP basis set using B3LYP
and B3PW91 functionals. Comparisons between experimental and calculated VCD
spectra were analyzed with the (S)/(R) neighborhood similarities in the CompareVOA 
program (126, 129, 130), which is based on a confidence level algorithm that pro-
vides the calculated optimized frequency scaling and shifting as an anharmonicity 
factor (anH) for each trial (Table 1). The band-to-band matching between experi-
mental and calculated spectra is assessed through the similarity indexes (SIR) for IR
and (SE) VCD spectra. The enantiomeric similarity index (ESI) leads to an unam-
biguous chirality assignment. It is worth mentioning here that there are other quanti-
tative methods to accomplish absolute configuration assignments: the linear 
regression of theoretical-to-experimental rotational strengths (90), the SimIR/VCD
method (131), in which the predetermined limits of the similarity index, SV, allow the 
investigator to verify the confidence level for a comparison, and a recently intro-
duced method that quantifies the agreement between the experimental and calculated 
VCD spectra through the so-called similarity of dissymmetry g-factor spectra (132).

Table 1 Confidence level data for (–)-(1R)-myrtenal (47)

B3LYP/Basis set (anH)a (SIR)b (SE)c (ESI)d t/h

6-31G(d,p) 0.978 84.4 83.5 79.6 4.6
6-31G+(d,p) 0.982 85.5 84.1 80.0 7.2
6-311G+(d,p) 0.984 85.2 85.2 82.1 11.5
DGDZVP 0.980 85.0 85.0 76.5 2.7
B3PW91/DGTZVP 1.007 83.3 83.3 74.5 3.4
aAnharmonicity Factor
bIR spectral similarity
cVCD spectral similarity for the correct enantiomer
dEnantiomeric similarity index

VCD spectra at the various levels of theory showed no significant differences 
(spectra are shown in the next section). However, the computer time invested using
the DGDZVP basis set was a quarter of that using 6311G+(d,p). The reliability in
the theoretical prediction of vibrational frequencies, disclosed through the closeness 
of anH values to the unit, indicates that the DGauss basis set DGTZVP is more accu-
rate than the split valences basis sets 6-31G(d,p), 6-31G+(d,p) and 6-311G+(d,p).
The SE and ESI similarity parameters confirmed that (_)-myrtenal (47) has the abso-
lute configuration (1R,5S ). The nomenclature is in agreement with the hierarchical 
digraphs application to the Cahn-Ingold-Prelog (CIP) rules (133). Considering that 
the ESI value is high and obtained in the shortest computer time using the B3LYP/
DGDZVP combination, it was concluded that this level of theory provides a supe-
rior balance between computer cost and VCD spectral accuracy. The present authors 
consider, however, that the predictive value of the DFT methodology applied to 
VCD measurements is not limited to configurational assignments; thus a careful 
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consideration of simulation purposes linked to structural features of each tested
 molecule must guide the choice of the theoretical methodology if one wishes to 
obtain meaningful results.

Within the circumstances that may affect the theoretical prediction of VCD spec-
tra is the solvent effect on polar (134) or encaged molecules (135), since it has been 
demonstrated that chirality transfer from the chiral molecule to the achiral solvent 
is likely to occur (136, 137). This is especially true when the solvent participates in 
aggregation phenomena, in many cases due to hydrogen-bonding (138, 139). In 
such a case, a possible way of tackling the problem is to make an initial molecular
dynamic search to locate solvent in the solvation shells (140). Another way is to 
calculate the VCD spectra with explicit solvation using compatible DFT models, i.e. 
polarizable continuum model (PCM) (141, 142) or the continuous surface charge 
adapted polarizable continuum model (CSC-PCM) (143). For molecules with non- 
specific intermolecular interactions, and when Fermi resonances are absent, the 
neglect of intermolecular interactions (solvent effects) in calculations does not 
appear to be serious (45, 144).

4.3  Conformational Optimization and Graphical VCD 
Methods for Absolute Configuration Assignment

In the theoretical search for configurational assignment of natural products, the 
spectra and conformation(s) of the molecule are predicted at the hybrid functions 
and basis set chosen. In our hands, the best procedure to calculate a VCD spectrum 
starts with the proposition of an initial molecular geometry and chirality for the 
studied molecule followed by a conformational rotational-circuit landscape study 
using a molecular mechanics force field program (145). For example, the Monte 
Carlo in Spartan 04 (Wavefunction. Irvine, CA) suite of programs may be used or 
Hyperchem (Hypercube Inc., Gainesville, FL), which provide the lower-lying con-
formers within a window of 40 kJ mol−1. A single-point pre-optimization of the 
selected conformers using DFT at the B3LYP/6-31G(d) level is advised before opti-
mization using Gaussian 03, Gaussian 09, or any other reliable computational soft-
ware. At this point it is necessary to lessen the motifs of the conformational 
landscape, especially for those molecules having many insignificantly populated 
conformers (less than 2%), for the sake of maintaining a satisfactory balance
between invested computing time and the spectral similarity of calculated-to- 
experimental VCD spectra, so a cut-off between 8 and 12 kJmol−1, or above 95% 
population, is carried out. After the geometry minimization process, a Boltzmann 
weighted equilibrium average of conformers, using free energies at 298 K, is due for 
all low-energy lying conformers. Rotational strengths are then calculated for each
conformer and the corresponding VCD spectrum is obtained by conversion of out-
put data to Lorentzian bands with programs like Origin from OriginLab, PeakFit
from SeaSolve Software Inc., or ViewVCDTM from BioTools Inc. (for Gaussian 09)
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using band widths of 6 cm−1 and an anharmonicity factor (anH) of around 0.97 
applied to the wavenumber values, in cm−1. The anH factor compensates theoretical 
harmonic frequencies used to simulate real anharmonic vibrations. At the final step, 
Boltzmann weighted IR and VCD spectra are obtained.

The degree of similarity between the measured and the calculated VCD spectra 
can be ascertained graphically by linear regression plots of the observed rotational 
strengths vs. the calculated ones for each enantiomer. The absolute configuration is 
then allotted according to the slope, with a positive slope (ideally equal to unity) 
expected for the correct enantiomer and a negative slope for the mirror image (7, 
14). The absolute configuration determination of (+)-frontalin (48), a pheromone 
of the beetle Dendroctonus frontalis, illustrates the VCD method neatly since 
calculated- to-experimental rotational strengths (Ri) linear regression curves of 
both enantiomers indicate through the agreement of slope +1, the configuration of 
(+)-48 to be (1R,5S) and the agreement of slope –1, the antipode (–)-(1S,5R)-49 
(Fig. 13) (146).

Fig. 13 Comparison of rotational strengths (R/10−44 esu2 cm2) for (+)-(1R,5S)-frontalin (48) and 
its antipode (–)-(1S,5R)-49. (Adapted from (146))

Alternatively, a manual peak sequential assignment of IR and VCD measured
spectra is advised preceding peak-to-peak visual comparisons of IR/IR and VCD/
VCD calculated and measured spectra. The correct enantiomer or chiral diaste-
reomer, if such is the case, gives a theoretical spectrum in agreement with the 
experimental spectrum. By following this method, the absolute configurations of
the 3α,6β-disubstituted tropane alkaloids 22, 23, and 30 (Fig. 10) were assigned 
(55, 75). Advantages in labeling IR and VCD peaks, either by sequential number-
ing or by frequency values, provides an accessible way to identify vibrational 
normal modes (11–13, 147) and the likely identification of configurational VCD
signature bands (75).

In the case of (–)-myrtenal (47) mentioned above (128), the sequential number-
ing of IR and VCD bands in the experimental spectrum (Fig. 14) allows 
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identification of regions of important CH and CC vibrations from which chiral
methine C-1–H and C-5–H fundamentals may be associated clearly to the cyclobu-
tane ring vibration region (ca. 1,000–960 cm−1) (148), the region of highest intensity 
in the VCD spectrum. VCD couplets must be allied to coupled oscillators.

The s-trans and s-cis (Fig. 12) conformers were submitted to geometry optimiza-
tion using DFT calculations at the B3LYP/6-31G(d) level of theory using Spartan
04. The atom coordinates of the optimized structures were then exported to Gaussian
03 for the free energy calculation at 25 °C. The population percentage reported in 
Fig. 12 takes into account ΔG values calculated at the B3LYP/6-31G(d,p) level of
theory. Since population of the s-trans conformer is higher than 98%, the s-cis 
conformer was not considered for VCD spectra calculations. VCD spectra compari-
son is shown in Fig. 15.

In another example, the absolute configuration of 7,9-diacetoxylongipin-2-en-1- 
one (50) was assigned by VCD using DFT at the B3LYP/DGDZVP and B3PW91/
DGDZVP levels of theory (149). This sesquiterpene is member of a very large family 
of longipinene derivatives (50–54) isolated from Stevia (Asteraceae) species.

Fig. 14 Sequential band assignment of measured vibrational spectra of (–)-(1R)-myrtenal (47). 
Bisignated bands are labeled with (–,+) signs to indicate the presence of positive VCD couplets
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A search for the stable conformations using random Monte Carlo simulations 
gave rise to only two conformers obtained in a 9:1 ratio. The Boltzmann weighted 
conformational average IR and VCD spectra were obtained by applying anH  factors 
of 0.98 and 0.97 to the B3LYP and B3PW91 vibrational frequencies. The experi-
mental VCD spectrum displays two bisignated couplets, one at around 1,250 cm−1 
of negative chirality (+,–), and the other at around 1,000 cm−1 with positive chirality 

Fig. 15 VCD spectra of (–)-(1R)-myrtenal (47) calculated using DFT with the B3LYP hybrid and
the following basis set: (a) 6-31G(d), (b) 6-31G+(d,p), (c) 6-311G+(d,p), (d) DGDZVP; (e) using 
the B3PW91/DGTZVP level of theory, and (f) experimental. (Adapted from (128))
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(–,+) (Fig. 16), which are perfectly simulated by both, B3LYP and B3PW91, hybrid
functionals in the calculated VCD spectra, and allow assignment of the absolute 
configuration of 50 as (4R,5S,7R,9R,10R,11R), in accordance with the assignment 
made by ECD (150).

Since the differences between the two calculated spectra are minimal, it was 
concluded that the B3LYP/DGDZVP method has an advantage over that using
B3PW91/DGDZVP, since it allows an increase of calculations cost-to-benefit ratio.
In addition, the chiroptical sensitivity of the VCD-DFT methodology was tested by 
means of the spectral comparison of epimeric longipinanes 55 and 56 with longipi-
nane 50 (Fig. 17).

The couplet at ca. 1,250 cm−1 is of opposite chirality in longipinanes 55 and 56, 
which are diastereomeric at the C-7 and C-9 centers. The chirality of the same cou-
plet for longipinane 50 resembles that in 55. However, the CEs of some bands in the 
1,100–950 cm−1 region are of opposite sign, thus giving a clear indication of the 
change of configuration of the C-9 center. These observations allowed the conclu-
sion to be made that theoretical VCD methodology at the B3LYP/DGDZVP level is
sensitive enough to distinguish longipinane diastereomers.

Fig. 16 VCD spectra comparison for (4R,5S,7R,9R,10R,11R)-longipinane 50: (a) experimental, 
calculated at: (b) B3LYP/DGDZVP and (c) B3PW91/DGDZVP. (Adapted from (149))

Vibrational Circular Dichroism Absolute Configuration Determination…



342

5  Studies of Natural Products and Some Chiral Structurally 
Related Molecules

Produced by plants and other organisms, terpenes are among the most important 
secondary metabolites in Nature. Terpenoids possess biological and biogenetic 
activity acting as building blocks of many other metabolites, vitamins, and more
complex natural products; their oxidized and rearranged forms are used in industry 
as flavor additives for foods and fragrances. The legacy of terpene chemistry was 
enriched by the work of Otto Wallach by the end of the nineteenth century who 
established the structural transformations observed in monoterpenes, diterpenes, 
and triterpenes (151). More than a century has passed since this time and terpenoids 
are still challenging organic chemists to unravel the mysteries of Nature hidden in 
the chirality of their splendid but complex stereo-structures. As part of this group of 

Fig. 17 Calculated VCD spectra for longipinanes (7R,9S)-55, (7R,9R)-50, and (7S,9R)-56. 
(Adapted from (149))
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modern methods to assess the absolute configuration of terpenes in solution, ECD 
(6, 15, 152–156) and VCD (7, 16, 52, 90, 155, 157) are two of the most widely used 
techniques. The most recently developed method VCD has the potential of not only 
to providing chiral stereogenic descriptors based on a larger number of diagnostic 
bands, combined with a relatively easy way of simulating a spectrum to decipher 
chiral information when compared with ECD (158). VCD relates details of three- 
dimensional structures such as conformation, a dynamic molecular property, with 
chirality, a static feature.

5.1  Fundamentals in the Interpretation of VCD Spectra

5.1.1  The Local Model

The initial local model for vibrational circular dichroism (VCD) was proposed in 
1972 and is known as a degenerate coupled oscillator (DCO) mechanism (159), a 
molecular excitation produced by interaction of local transition dipoles of a pair of 
oscillators, which are most likely, but not necessarily, related by symmetry in a
molecule (160). Hence DCO is a dynamic coupling or exciton coupling such as that
observed between two chromophores in ECD (15).

Vibrational modes of organic molecules are, quite often, displayed in the absorp-
tion spectra as a group, rather than a single vibration; thus, trying to decode molecu-
lar information from IR bands is not trivial. The DCO mechanism proposes to
unravel such information by applying a local mode approximation. Overtone spec-
tra of XH stretching transitions, where X is C, N, or O easily illustrate the point
(161). A molecule containing more than one oscillator of the same type, i.e. the C–H
bonds of a methyl group in acetaldehyde, exhibits coupled oscillators, observed as 
associated couplets, of predicted energy and intensity (162). In the spectrum 
(Fig. 18), one band corresponds to the non-equivalent in-plane C–H bond and the
other to out-of-plane C–H bonds in the most stable conformer, where bond strengths
and thereby band frequencies may be predicted by stereoelectronic theory named a 
trans effect (163), which takes into account the influence of the carbonyl π and the 
oxygen lone pair electrons on the proximate C–H bonds (164).

In the VCD spectra of symmetry-related molecules an exciton coupling results in 
a bisignated band (couplet). The couplet intensity and sign depend on the geometric 
arrangement of the oscillators in the molecule (165). DCO has been successfully 
applied to the study of steroids (166) and other natural products (167).

Recently, a method was reported to calculate near-infrared (NIR) and NIR-
vibrational circular dichroism (NIR-VCD) spectra for (S)-camphor (20) and (S)-
camphorquinone (57) in the fundamental and up to the second CH-stretching
overtone region using the local mode approximation (168). Relevant differences in
the vibrational circular dichroism (VCD) spectra (Fig. 19) were observed and pre-
dicted by a local approach through calculations of frequencies and of dipole and 
rotational strengths of isolated C–H stretching modes.
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Fig. 18 Experimental overtone spectra of acetaldehyde (Δν = 6). (Adapted from (162))

Fig. 19 Experimental IR absorption and VCD spectra of (1S)-camphor (20) and (1S)-
camphorquinone (57) in the overtone C-H stretching region (Δν = 1). (Adapted from (168))
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As observed, the bulk of vibrational C–H stretching modes broaden the IR band
for both compounds precluding simple decode analysis of local modes; however, 
since several signated bands appear in the corresponding VCD spectra, single C–H
oscillators were identified (168–170). The pertinence of coupled C–H oscillators of
methyl geminal substitution, reflecting the symmetry of the lowest-energy molecu-
lar conformation (171), is of interest for study because gem-substitution is found in 
a considerable number of terpenes (172, 173), thereby identifying its anisotropic 
g-character as an oscillator-chromophore (see definition below), and is perhaps 
 useful for absolute configuration determination of a family of related natural prod-
ucts. A simple local mode procedure inherently neglects coupling between similar 
oscillators, but, however, a coupled oscillator model takes into account in-plane and
out-of-plane C–H oscillators that in the case of chiral molecules become a “virtual
chiral plane (σω)”, such as that illustrated for the gem-dimethyl groups in α-pinene 
(58) (Fig. 20).

Fig. 20 IR and VCD spectra of (+)-(1R)-α-pinene (58) in the mid-IR region. (Adapted from (51))

In the VCD spectra of most natural products, the mid-IR region is important to
analyze since it presents fingerprint bisignated bands due to C–H bending modes, as
well as stretching and bending C–X modes (X =O, N). It is worth mentioning that
recently a method based on exciton chirality in VCD was proposed to explain the 
interaction of two carbonyl chromophores giving rise to bisignated couplets of pre-
dicted chirality. This method is suitable to be used to analyze the absolute configura-
tion of lactones and esters without having to resort to theoretical calculations (174).
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5.1.2  Normal Versus Local Mode Assignment

Prior to the development of computational methods for the calculation of full VCD 
spectra by normal coordinate analysis, theoretical models using local approaches 
aided in establishing the mechanisms for relating molecular stereo-descriptors, like
conformation and chirality, with the intensity and sign of VCD bands. Small chiral 
natural products such as monoterpenes were used mainly in the refinement and 
benchmarking of VCD theory (46, 175, 176).

Two mechanisms deserve mention: (1) The ring current mechanism applied to 
local vibrational motion within a ring closed by covalent or by intramolecular 
hydrogen bonding giving rise to monosignated VCD bands, and (2) The coupled 
oscillator mechanism due to the in-phase and out-of-phase coupled motion (see 
above) of two almost degenerate chirally oriented oscillators giving rise to bisig-
nated VCD bands. In the first case the electronic motion does not follow perfectly 
nuclear motion but in the second instance it does (177, 178).

Within the coupled oscillator mechanism and from the conceptual point of view, 
a dissymmetric chromophore oscillator is a molecular fragment for which the local 
symmetry is low to allow inherently electric and magnetic dipole associated transi-
tions to occur (179). Coupling fragmenting of local modes such as CH2–CH2–C*H
for the monoterpenes (–)-β-pinene (59), (–)-menthone (60), and (+)-isomenthone 
(61), among others, has helped to assign configuration using signated bands, in the 
fundamental C–H stretching region of VCD spectra. The comparison of the VCD
spectra of menthone (60) with isomenthone (61) allowed conformational prefer-
ences to be manifested through locally defined coupled methylenes and methine 
modes in the above-cited fragment (Fig. 21).

Fig. 21 VCD spectra of (–)-menthone (60) and (+)-isomenthone (61) in the 3,000–2,800 cm−1 
region and the corresponding conformation of their six-membered rings (Adapted from (179))
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VCD spectra in the near-IR region for (+)-limonene (18), (–)-limonene (19), 
(–)-(S)-perillyl alcohol (62), (–)-(S)-perillaldehyde (63), (+)-(R)-p-menth-1-ene 
(64), and (+)-(R,R)-p-menth-l-en-9-ol (65) showed bisignated couplets ascribed to 
overtones associated with local CH stretching vibrations, where the ordering of
signs in the couplets correlates with the known absolute configuration (180). 
However, the different behavior of a related non-natural cyclic compound prompted
the authors to conclude that bisignated couplets are associated with a coupled nor-
mal mode behavior of the CH2CH2C*H fragment (180).
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VCD spectra of a long list of enantiomeric monoterpenes were recorded in the 
10,000–800 cm−1 region, including (–)-(R)-carvone (66), (+)-(R)-pulegone (67), 
(–)-(1R,2S,5R)-menthol (68), and (–)-(R)-camphorquinone (69) (181). Normal 
mode analysis of (+)-(R)-α-pinene (58), (–)-(S)-β-pinene (59), and (–)-(S)-verbenone 
(70) in the CH stretching and fingerprint region of the VCD spectra, was carried out
to describe normal modes corresponding to identical molecular moieties or sub-
structures, i.e. the four-membered ring with gem-dimethyl substitution of each 
monoterpene (182). In general, conformers of a given compound do not present 
substantial differences in band wavenumbers for equal normal modes, according to 
the analysis of potential energy distribution matrix descriptions (183, 184), but dif-
ferences in band intensity, magnitude and sign are often considerable (182, 185–
187). The bending δCH3 normal mode at the four-membered ring appeared 
experimentally at 1,381, 1,393, and 1,386 cm−1 with (–), (+), (+) signs, for 
(+)-α-pinene, (–)-β-pinene and (–)-verbenone. Changes in the intensity and sign of 
vibrational modes in VCD spectra are also expected when the molecule contains a 
highly polar group such as the sulfonic group in (+)-(1S)-camphor-10-sulfonic acid 
(71) (188). The simulation of the IR and VCD spectra in the absence of hydration
models produced important band-to-band mismatches with the corresponding 
experimental spectra in the 1,170–1,100 cm−1 region, where the νS–O stretching 
modes appear (188).
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5.1.3  H-bonding and Solvent Effects. The Robust Mode Concept

Full DFT-VCD spectra in the 2,000–800 cm−1 region of 1-amino-2-propanol (189), 
a molecule that can be used as a model to investigate H-bonds in natural products,
has allowed the assignment of normal modes corresponding to νOH stretching and
δOH bending modes to bands at 1,272 and 1,412 cm−1. By analogy, VCD spectra of
(R)-2-(pyrrolidin-1-yl)-1-(1-naphthyl)ethanol (72) allowed assignment of a nega-
tive band at 1,425 cm−1 to the δOH bending mode compromised in intramolecular
H-bonding with the nitrogen of its pyrrolidinyl moiety. The behavior of 72 differs 
from that of cinchonidine (73), for which the VCD spectrum gave no evidence of 
intramolecular H-bonding at low concentrations in chloroform (190). Nevertheless, 
a clear demonstration of induced chirality in intermolecular H-bond [chiral:achiral]
complexes was provided by the observation of a negative VCD band at the car-
bonyl region of the (1:1) cinchonidine:trifluoroacetic-acid complex, and a positive 
 carbonyl band for its pseudo enantiomeric (1:1) cinchonine:trifluoroacetic-acid 
complex (74:CF3CO2H) (Fig. 22) (190).

Fig. 22 Carbonyl region of the VCD spectra of H-bond complexes [cinchonidine (73):CF3CO2H]
and [cinchonine (74):CF3CO2H]. (Adapted from (190))
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Intermolecular H-bond complexes between (+)-pulegone (67), or its enantio-
mer, with chloroform as solvent, were studied through the acquisition of rota-
tional strengths of the vibrational modes for the achiral solvent molecule and 
changes in rotational strength, intensity and sign of the chiral substrate (136). 
The chirality transfer process from chiral to achiral substrates (191, 192), or sol-
vents (193, 194) occurring in VCD non-robust modes, defined as those having 
electric ( )

m  and magnetic ( )


m  transition dipole moment angles (ξ) close to 90°, 
(136) lead easily to unpredictable changes in frequency and band intensity and 
sign. In contrast, robust modes (195) do not change with solvent complexation, 
and are therefore appropriate VCD anchor signals to trace the absolute configura-
tion of natural products. Calculations of ξ angles are necessary to tag vibrational 
modes as robust or non- robust modes; simulating VCD spectra in solution is not 
enough to account for explicit H-bond complexes formation since solvation mod-
els only provoke long-range dielectric effects to vibrational modes (196). To 
improve the reliability of the absolute configuration assignments, the robustness 
concept was extended using the ratio of rotational to dipole strengths, a dissym-
metry factor, as a robust criterion. Thus, if the dissymmetry factor is over 10 ppm, 
VCD bands are robust (197). The analysis of robust modes in a highly flexible 
azetidinone molecule using the dissymmetry g-factor was employed successfully 
to distinguish conformers by robustness and to assign its absolute configuration 
unambiguously (198). The dissymmetry g-factor used as a robust concept is the 
base of the quantitative absolute configuration assignment method recently intro-
duced (132).

Molecules with hydroxy groups possess at least three rotational conformers for 
which the bending δCCH and δCOH modes differ in frequency, intensity and sign,
such as in the case of verticillol (2) (Fig. 23) (10). The observed changes are likely
to be due to the formation of aggregates self-associated by means of H-bonds in
solution.

Pseudo rigid backbone structures, as those of the sesquiterpenes (6R)-cedrol 
(75) and (6S)-isocedrol (76), allowed assignment of stretching vibrations νCO and 
 in- plane bending δCOH to bands at 1,092 and 1,329 cm−1 for 75 and to bands at 
1,086 and 1,308 cm−1 for 76 (199). The zone with the highest anisotropic effect 
(g-factor) in the fingerprint region of the VCD spectra for both compounds is shown 
in Fig. 24.

The acetonitrile solvent effect observed in the VCD spectra of tetrahydroxy- 
bicyclo[3.1.0]hexane (77), a carbohydrate analog forming strong intramolecular 
(OH · · · O) and (OH · · · N) H-bonds, was important for those conformers that
change in the number of H-bonds using the implicit polarizable continuum model
(IPCM). However, the Boltzmann average simulated VCD spectrum improved 
only slightly in agreement with the experimental data obtained (200). The spectral 
VCD signatures due to intramolecular H-bonding in natural products such as the
cyclosporins have been used to deduce their supramolecular conformation 
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Fig. 23 Fingerprint region of the VCD spectra of hydroxy rotamers of verticillol 2. (Adapted 
from (10))

Fig. 24 Selected IR regions of the VCD spectra of (+)-(3R,3aS,6R,7R,8aS)-cedrol (75) and 
(–)-(3R,3aS,6S,7R,8aS)-isocedrol (76). (Adapted from (199))
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and biological activity. An example is found in the immunosuppressive drug 
cyclosporin A (78), initially isolated from the fungus Tolypocladium inflatum 
(201). This compound, which contains typical peptide secondary structures (202), 
exhibited side-chain and backbone OH · · · O = C and NH · · · O = C intramolecular
H-bonds, observed in the bending δNH (1,528–1,496 cm−1), and stretching vibra-
tions νC = O (1,678–1,618 cm−1) and νNH (3,439–3,279 cm−1) regions of its VCD 
spectrum.
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The timescale of IR and VCD techniques is short enough to detect H-bond
structures in different arrangements with distinct conformations. Broadening of
bands due to the additive superposition of individual vibrational modes is gener-
ally observed. The VCD spectra of two stereoisomers of the mutilin antibiotics, 
(R)-2- hydroxymutilin (79) and (S)-2-hydroxymutilin (80), indeed showed broad 
but mirror- image signated stretching νC = O bands at ca. 1,750 cm−1 in solutions 
diluted with DMSO-d6 (Fig. 25), which were assigned to intramolecular 
(OH · · · O = C) H-bonding (203). As observed in Fig. 25, a simplified enantiomeric 
pair of  five- membered ring cyclopentanone models, 81 and 82, reproduced the 
fundamental H-bond carbonyl features in their VCD spectra simulated in the gas
phase.

Dimethyl-l-tartrate, a dimer-like molecule presented in its lowest-energy confor-
mation (83), shows the possibility of forming two intramolecular H-bonding inter-
actions, OH · · ·O=C, giving rise to a couplet at the carbonyl region of negative (+,–)
chirality (184). Moreover, the observation of couplets associated with stretching 
νOH, νCO and bending δCOH vibrations (Fig. 26), indicates the association of 
degenerate coupled-oscillator (DCO) modes (159, 167, 204, 205).
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Fig. 26 VCD spectra of dimethyl l-tartrate (83). (Adapted from (184))

Fig. 25 Carbonyl region of the VCD spectra of (R)-2- hydroxymutilin (79), (R)-2-hydroxy-1- 
cyclopentanone (81), (S)-2-hydroxymutilin (80), and (S)-2-hydroxy-1- cyclopentanone (82). 
(Adapted from (203))
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5.1.4 Symmetry and Conformation

Conformational interconversion barriers (4) for acyclic and cyclic molecules are char-
acterized by rate constants k = 3.9 ⋅ 1010 s−1 (12 kJ/mol) and k = 2.9 ⋅ 105 s−1 (40 kJ/mol),
at 25 °C, so the VCD properties of individual chiral conformers may be detected in the 
IR timescale (1014 s−1). Conformers in symmetry point groups Cn, Cs, and Cnv have 
measurable dipole moments that are small for hydrocarbons but sizeable for molecules 
with polar groups. From this list, chiral conformers are restricted to Cn, which includes 
the trivial symmetry point group C1 to which the vast majority of natural products 
belong. Flexible molecules are an ensemble of conformers with measurable and no 
measurable dipole moments, thus a reliable theoretical search for the lowest-lying con-
formers of a test molecule must include the matching of IR spectra preceeding VCD
simulation. The VCD spectra of high symmetry nonamethoxy cyclotriveratrylene (84) 
a C3 symmetry molecule (206) and of (–)-(S)-perhydrotriphenylene (85), a D3 sym-
metry chiral molecule (207), are shown in Figs. 27 and 28.

Rectangles are intended to highlight patterns of signals that resemble the three-
fold axis symmetry element that is common to 84 and 85. Besides, C2 symmetry is 
apparent in 85 from the couplet observed at around 1450 cm−1. A couplet pattern is 
the signature of bands in the VCD spectrum of C2 symmetry related dimethyl-l-tar-
trate (83) (Fig. 26). By analogy, the 2,2′-disubstituted-1,1′-binaphthyl derivatives 
86 and 87, which are chiral dynamic conformers of C2 symmetry, give rise to cou-
plet signated VCD spectra (208). While the unsubstituted binaphthyl (88) behaves 

Fig. 27 Fingerprint region of the VCD spectrum of nonamethoxycyclotriveratrylene (84). 
(Adapted from (206))
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as a chiral chromophore, VCD couplets were not present in its VCD spectrum, with 
monosignated biased signals appearing instead, confirming the semi-free movement 
nature of the binaphthyl rings in solution.
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VCD spectra of the helical (+)-(P)- and (–)-(M)- enantiomers of gossypol (89) and 
(90), an axial chiral natural product inhibitor of human sperm maturation (209), also 
show couplet patterns due to restricted rotation about the internaphthyl bond (Fig. 29). 
The absorption and VCD features at the 1,450–1,100 cm−1 region are related to the 
isopropyl conformation. The VCD couplet produced by the in- and out-of-phase pair 
of modes, due to C2 symmetry, at around 1,050 cm−1 involves ring deformation and a 
methyl rocking motion. The prominent positive VCD feature at around 1,200 cm−1 is 
related to the COH deformation, a vibrational mode in this case linked to intermo-
lecular H-bond association when in solution.

Fig. 28 Fingerprint region of the VCD spectrum of (–)-(S)-perhydrotriphenylene (85). (Adapted 
from (207))
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According to ring current theory (178, 210, 211), a VCD monosignated band is 
the result of an enhanced magnetic transition moment in a chiral oscillator, stemmed 
from an adjacent self-generated electronic current in a ring of atoms or from the 
closeness of electron donor groups that increase the anisotropic g-factor of the band 
(212). In contrast, electron-withdrawing groups or chirally disposed coupled oscil-
lators without delocalizable electron density give rise to no net intensity VCD 
bands. VCD spectra of chiral molecules in the C1 point group with chiral local 
mirror- image νC–O oscillators, reflected by the “virtual chiral plane σω” (see above), 
such as those in longipinenes 55 and 56 (Fig. 17) are also arranged in couplets. 
Similarly, a couplet signal at the stretching carbonyl region of the VCD spectrum 
for the steroidal 3α-hydroxy-7,12-dioxo-5β-cholanic acid (91) of C1 symmetry was 
predicted by a degenerate coupled oscillator model (Fig. 30) (166).

Couplets due to conformational orientation of carbonyl groups (165), such as the 
ester groups at C-3 and C-6 of (–)-3α,6β-diacetoxytropane (30), were found in its 
VCD spectrum (Fig. 31) (75). In addition, the stereochemistry at the nitrogen atom 
(Me-ax. or Me-eq. with respect to the six-membered ring of the bicycle) is not as 
important as the dipolar orientation of the carbonyl esters groups to determine 
responses of VCD. Thus, conformers 30a and 30b, with mirror-image disposition of 

Fig. 29 Experimental VCD spectra of (+)-(P)- (89) and (–)-(M)-gossypol (90). (Adapted from (209))
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Fig. 30 Carbonyl region of the VCD spectra of 3α-hydroxy-7,12-dioxo-5β- cholanic acid (91). 
Experimental (solid line) and calculated (dotted line). Spectra were plotted using the DCO theory 
(Adapted from (166))

Fig. 31 Selected tropane 30 conformers and VCD signals in the 1,300–1,200 cm−1 region. Larger 
couplets correspond to conformers a–d, smaller to not shown minor conformers where the ester 
group at C-3 has another orientation with respect to C-6. (Adapted from (75))
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Fig. 32 Normal vibrational modes for tropane 30 calculated at the B3LYP/DGDZVP level of
theory. (Adapted from (75))

coupled carbonyl modes at C-3 and C-6 (through the “virtual chiral plane σω”), give 
a mirror-image νOC(=O) bisignated band, in the 1,300–1,200 cm−1 region, to show 
a couplet of positive chirality (–,+) for 30a and a couplet of negative chirality (+,–) 
for 30b. The same situation is evident for the 30c and 30d conformer pair. Due to 
steric interactions, the N-Me-eq. conformers 30c and 30d are more stable than the 
N-Me-ax. 30a and 30b. In contrast, in tropanes 22 and 23, the N-Me group prefers 
an axial orientation due to the (C-6–OH· · ·N) H-bonding interaction (55).

As mentioned in a previous section, mirror image bands corresponding to 
 asymmetric stretching vibrations in the 1,150–950 cm−1 region of the VCD spectra 
for 22, 23, and 30 (Fig. 10) showed little or no variation with conformation, so 
therefore, their absolute configuration was assigned confidently. Vibrational modes 
associated with this region for 30 are shown in Fig. 32.

For paclitaxel (92), a cyclic diterpenoid widely used in cancer chemotherapy, the 
bisignated bands at 1,732 cm−1 and 1,715 cm−1 corresponding to the ν(C = O) stretching 
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mode reflect strongly the conformations of its baccatin III ring core (Fig. 33) (213). A 
couplet of positive (–,+) chirality is observed for baccatin in conformation a, the con-
formation adopted in solution, favoring intramolecular H-bonding involving the
hydroxy group (D) and carbonyl of the acetoxy group (E). A couplet with no significant 
intensity is observed for conformation b and a couplet with negative chirality (+,–) is 
observed when the OH (D) and C=O (E) groups adopt the rotameric conformation c.

5.2  Assignment of Absolute Configurations of Terpenes, 
Aromatic Molecules, and other Natural Compounds

This section is dedicated to describing how chirality assignment of terpenes may be 
determined or confirmed by VCD, with the information included intended to be repre-
sentative rather than exhaustive. VCD studies of sesterterpenes, sesquiterpenes, or 
tetraterpenes (214) have not been reported so far as the authors are aware. Several 

Fig. 33 IR and VCD experimental spectra for paclitaxel (92). Calculated baccatin III ring conforma-
tions a, b, and c showing carbonyl vibration IR bands and VCD couplets. (Adapted from (213))
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Example 1
Cineole (93), a monoterpene found in many Eucalyptus oils, was derivatized to 
form a pair of enantiomerically pure 3-oxo stereoisomers (–)-94 and (+)-95 (Fig. 34) 
through chromyl acetate oxidation. The absolute configuration of the C-1 and C-4 
stereogenic centers of the enantiomeric pair was established by VCD spectroscopy 
combined with DFT calculations at the B3LYP/DGDZVP level of theory (218).

Only one conformer was located in the conformational energy landscape, so 
visual comparison of the experimental and calculated spectra was sufficient to 
assign (1S,4S)-stereochemistry to the (+)-94 enantiomer and (1R,4R) to the (+)-95 
enantiomer (Fig. 35). The ideal situation in VCD measurements is to find a mole-
cule in which the conformational equilibrium is biased towards one  conformer since 
VCD responses of fundamental oscillator modes will only depend on configuration; 
such as in the present case.

authoritative reviews (7, 16, 52, 62, 89, 90, 155, 157, 207, 215) may contain terpenoid 
VCD assignments that were inadvertently overlooked by the present authors. The
reader will find among the examples included in this chapter, absolute configuration 
assignments of natural products for which the relationships are either enantiomeric or 
diastereomeric. In most of these cases, VCD has been able to distinguish diastereo-
mers despite the closeness of their IR spectral features. Already mentioned diastereo-
mers are: the longipinanes 50 (149), 55 (149), and 56 (149), which differ in the absolute 
configuration of one or two chiral centers of a total of six; the epimeric cedrol 75 and 
isocedrol 76, differing in one chiral center of a total of five (199); and the epimers of 
2-hydroxymutilin 79 and 80, differing in one chiral center of a total of nine (203).

5.2.1 Monoterpenes

The practical ability of the VCD technique to measure and predict the absolute 
 configuration of chiral molecules in solution has been developed largely by using 
monoterpenes. The value of monoterpenes as targets for chiroptical studies resides in 
the simplicity of their chiral structural features in possessing one or only a few stereo-
genic centers. Moreover, monoterpenes are found in a wide variety of natural sources. 
Compounds of this type already mentioned in this chapter are (+)-(1R,4R)-camphor 
(16), (–)-(1S,4R)-camphor (20), (+)-(1S)-camphorquinone (57), (–)-(S)-camphor-10-
sulfonic acid (71), (+)-(1S,4S)-fenchone (17), (+)-(R)-limonene (18), (S)-(–)-limonene 
(19), (–)-(1S,2R,4S)-endo-borneol (21) (somewhat at odds the numeration of the 
 oxygen-bearing carbon atom in 21 is given either as C-1 (97) or C-2; (111) and, as a 
consequence, confusion in the assignment of absolute configuration for such a center 
remains in the literature; here (2R)- is used to designate it, as observed in Fig. 3), 
(–)-(1S)-α-pinene (29), (+)-(1R)-α-pinene (58), (–)-(1S)-β-pinene (59), (–)-(1R,5S)-
myrtenal (47), (–)-(2S,5R)-menthone (60), (+)-(2R,5R)-isomenthone (61), (–)-(1S)-
perillyl alcohol (62) (216), (–)-(1)-perillaldehyde (63), (+)-(R)-p-menth-1-ene (64), 
(+)-(R,R)-p-menth-l-en-9-ol (65), (–)-(1R,2S,5R)-menthol (68) (217), (–)-(R)-carvone 
(66), (+)-(R)-pulegone (67), and (–)-(S)-verbenone (70). In addition, five recent appli-
cations are described in the paragraphs below.

Vibrational Circular Dichroism Absolute Configuration Determination…



360

Fig. 34 Enantiomeric 3-substituted cineole derivatives

Fig. 35 Comparison of observed (a) (+)-95, (b) (–)-94, and (c) calculated VCD spectra for 
(1S,4S)-94. (Adapted from (218))
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Example 2
After being isolated from the aerial parts of Peperomia obtusifolia and separated by 
chiral HPLC, the absolute configuration of six novel bornyl and fenchyl chromane
ester derivatives (–)-(2S,1′S,2′R,4′S)-96 and its enantiomer (+)-(2R,1′R,2′S,4′R)-97, 
(–)-(2S,1′R,2′S,4′R)-98 and its enantiomer (+)-(2R,1′S,2′R,4′S)-99, (–)-(2S,1′R,2′R, 
4′S)-100 and (+)-(2R,1′R,2′R,4′S)-101 were determined using VCD measurements 
(219). The chiral mix of monoterpenes presented in this work represents the first
tethered terpenes found in Nature. The sensitivity of VCD to specify the chirality of 
one center as opposed to the other three was demonstrated unambiguously by the 
simulation of VCD spectra using DFT theory at the B3LYP/6-31G(d) level. The
VCD spectra showed fundamental modes assigned to monoterpene and chromane 
substructures, and the spectral signatures were proposed through the residual spec-
tral difference method (116) applied to the 1,300–1,000 cm−1 region. The sign of 
couplets found at the carbonyl region was more sensitive to the configuration of the 
chromyl C-2 center than to the more proximate monoterpene C-2′ center.

The corresponding enantiomers (+)-102 and (–)-103 of fenchyl chromane diaste-
reomers (_)-100 and (+)-101 were found to be mixed in a minor unresolved peak in
the chiral HPLC chromatogram (220). The (1′S,2′S,4′R)-fenchyl moiety was identi-
fied in the diastereomeric (+)-102 and (–)-103 mixture by VCD, comparing with the 
average sum of the experimental VCD spectra of (–)-100 and (+)-101. In the refer-
ence spectrum, no VCD peaks were observed for the chromane moiety since enan-
tiomers cancel out by the average sum, although peaks belonging to overlapped
normal modes remained. The fenchyl bands of the reference (–)-100 and (+)-101 
average sum spectrum were of opposite signs at 1,090, 1,040, and 975 cm−1 to those 
of the analyzed mixture (+)-102 and (–)-103 (Fig. 36), and hence confirmed the 

Fig. 36 Observed VCD spectra comparison of mixed fenchyl chromane diastereomers (+)-102 
and (–)-103 (solid line) and reference (–)-100 and (+)-101 average sum spectrum (dotted line). 
(Adapted from (220))
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 enantiomeric nature of the fenchyl group between each pair of diastereomers. It is 
noteworthy that the absolute configuration assignment of the diastereomeric mixture 
(+)-102 and (–)-103 was carried out without further DFT calculations.
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Example 3
The VCD spectrum of (–)-(R)-camphorquinone (69) was recorded in different 
phases. In CCl4 solution and in suspension conditions (Nujol and Fluorolube), simi-
lar spectra were obtained, but in film conditions a clear signature for the two car-
bonyl groups appeared as a couplet of negative chirality (+,–) (Fig. 37) (221). The 
VCD simulation at the B3LYP/cc-pVDZ level of theory along with Natural Bond
Orbital (NBO) analysis allowed the coupling between the two νC = O stretching 
normal modes to be strongly delineated. Even though the vibrational analysis of the 
fingerprint region is complicated by the mixing of normal modes, the theoretical 
simulations are improved in this region due to the lower anharmonicity of the nor-
mal modes. The description of normal modes from the Potential Energy Distribution 
Matrix allowed vibrational assignments to be made in a confident manner.

Fig. 37 Carbonyl region comparison of the IR and VCD spectra of (–)-camphorquinone (69). 
(Adapted from (221))
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Example 4
The quantitative VCD absolute configuration assignments of (+)-(S)-carvone (104) 
and (+)-(1S,2R,5S)-menthol (105) based on the similarity index, SV, and on the 
SimIR/VCD comparison method (131), was done (222). The conformational search, 
performed using the MCMM/low-mode in the Maestro 8.5 program (Schrödinger,
LLC), provided six conformers for 104 and eight for 105. The conformers of 104 
were minimized with the DFT B3PW91/6-31G(d) method, the B3LYP and PBEPBE
functionals were also used, but the statistical results of the IR and VCD spectra
comparisons were practically the same than those obtained with the B3PW91
functional.

According to the SimIR/VCD algorithm protocol, implemented in Scitegic
PipelinePilot 8.0 (Accelrys Inc.), the VCD band frequencies are optimized by taking
into account a shift calculated from the IR spectrum. A |SV| value of 0.2 or greater is
considered to be confident (95% or higher level) for absolute configuration assign-
ments. Besides, a positive SV is indicative of a matching between the weighted aver-
age simulated VCD spectrum and the experimental VCD spectrum, while a negative 
value indicates the simulated and the experimental VCD spectra belong to different 
enantiomers. A differentiation of SV with respect to conformation in the case of car-
vone 104 was observed, with those conformers having the isopropylene group in 
equatorial (eq.) orientation being more stable than those that have the group in the 
axial (ax.) orientation. The calculated SV values for the eq. conformers varied in the 
range 0.38–0.45, while for ax. conformers SV these values were negative and varied 
between −0.15 and −0.21. The conformational weighted VCD spectrum, calculated 
with the Boltzmann distribution of the eq. conformers, provided the highest SV value 
(0.63), confirming the (S) absolute configuration for (+)-carvone (104). In the case 
of menthol (105), to analyze the scope of the SimIR/VCD method, four diastereo-
mers were considered (1R,2R,5S), (1R,2S,5S), (1S,2R,5S), and (1S,2S,5S), but only 
the correct (1S,2R,5S) diastereomer presented positive SV values for its eight con-
formers. The SV value for the average weighted calculated spectrum, at the 
PBEPBE/6-31G(d) level of theory, of (1S,2R,5S)-105 was 0.71, greater than 0.55, 
which is the largest SV value for a conformer, thus confirming the absolute configura-
tion of (+)-menthol. The PBEPBE functional (223) is recommended for absolute 
configuration vibrational calculations in the fingerprint region because spectral cal-
culations are fast and the need for frequency scaling and shifting, when calculating 
SV, is removed.
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5.2.2 Sesquiterpenes

As the number of carbons in terpenoids increases, their structures grow in complexity. 
Sesquiterpenes contain acyclic and mono-, bi-, tricyclic or even polycyclic structures, 
a complex chiral natural architecture that supports their diverse biological functions 
such as possessing semiochemical activity and acting as messengers between species 
(pheromones) (226). Moreover, pheromones have attracted VCD interest to obtain 
their absolute configuration allowing them to be fully indentified and incorporated 
into insect pest management programs (227). Many sesquiterpenoids from marine 
organisms are characterized by uncommon functionalities (228). Molecules of this 

Example 5
(1R,3R,4R)- and (1S,3S,4S)-camphor derived β-diketones 106–110 were studied by 
the VCD exciton chirality method (174) for fast absolute configuration analysis and 
tautomerization equilibria predictions (224). The exciton coupling of the carbonyl 
groups is observed as a bisignate couplet of positive chirality (–,+) for the (1R,3R,4R) 
derivatives and of negative chirality (+,–) for the enantiomeric (1S,3S,4S) derivative 
in the 1,751–1,650 cm−1 region. The amplitude (A) of the couplet bands, defined as 
Δε1 (lower frequency) — Δε2 (higher frequency), was related to the position of the 
keto-enol equilibria, so that camphor derivatives with electron-donating groups
such as 109 (A = 0.140) and 110 (A = 0.056), displayed large couplets indicating the 
tautomeric equilibria is shifted towards the keto form; contrarily, camphor deriva-
tives with electron-withdrawing groups such as 108 or the parent 3-benzoylcamphor 
106 (A = 0.030), showed small couplets assuming the tautomeric equilibria favors 
the enol form as in the case of (+)-(1R,3R,4R)-3-trifluoroacetyl camphor (111) for 
which the tautomeric equilibrium, studied by VCD (225), is biased towards the 
enolic form. The calculated anisotropy g (Δε/ε) factor is greater, to some extent, for 
derivative 109 than for the other derivatives, particularly in the case of the VCD 
band at the lower frequency Δε1 of the couplet bands, which seem to possess the 
higher dissymmetry character.
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Example 1
Sesquiterpenes with conformational rigid structures such as (–)-(1R,2R,5S,8R,11R)-
quadrone (4), (–)-(1R,2R,5S,8R,11R)-suberosanone (5), and (1R,2R,4S,8R,11R)-
suberosenol A acetate (112), isolated from the gorgonian Isis hippuris, and 
(1R,2R,8R,11R)-suberosenone (113), isolated from the marine gorgonian 
Subergorgia suberosa, are compounds possessing potent cytotoxicity (12). In each 
case, only one conformer was perceived by Monte Carlo searching using MMFF94 
force field methodology. The absolute configuration as assessed by VCD spectros-
copy included a calculation of the VCD spectrum using the DFT B3PW91/TZ2P
method on the optimized structure of quadrone (4). The clear correlation between 
experimental and calculated spectra led to a conclusive absolute configuration 
assignment (12).
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type already in this chapter are (–)-(1R,2R,5S,8R,11R)-quadrone (4) (12), (–)-(1R, 
2R,5S,8R,11R)-suberosanone (5) (12), (P)-(S)-curcuphenol dimer (41) (116), (M)-
(S)-curcuphenol dimer (42) (116), (4R,5S,7R,9R,10R,11R)-7,9-diacetoxylongipin- 
2-en-1-one (50) (149), (4R,5S,7R,9S,10R,11R)-7,9-diacetoxylongipin- 2-en-1-one 
(55) (149), (4R,5S,7S,9R,10R,11R)-7,9-diacetoxylongipin-2-en-1-one (56) (149), 
(+)-(3R,3aS,6R,7R,8aS)-cedrol (75) (199), (–)-(3R,3aS,6S,7R,8aS)-isocedrol (76) 
(199), (+)-(P)-gossypol (89) (209), and (–)-(M)-gossypol (90) (209). Sixteen exam-
ples of the application of VCD to sesquiterpenes are presented below.

Example 2
Unusual carbon skeletons are also featured in terrestrial sesquiterpenes, such as those
found in the picrotoxin lactones tutin (114), coriamyrtin (115), and dihydrotutin 
(116), isolated from Coriaria ruscifolia ssp. ruscifolia, which are potent transmission 
inhibitors of the central nervous system (229). The absolute configuration of 115 
determined by VCD measurements confirmed the stereochemistry of analogues 114 
and 116 thus supporting their electrophysiological properties. Due to its rigid core, 
only four conformers were found for 115 as a result of rotational freedom of the 
hydroxy and isopropenyl groups. Boltzmann average simulated VCD spectra at the 
B3LYP/DGDZVP level featured prominent monosignated bands at νCO and δCOH
vibrations that matched neatly with the experimental VCD spectrum (229).
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Example 3
Studies on secondary metabolites from plants found in the New World were initiated 
in Mexico when crystalline perezone (117) was isolated in 1852 from the roots of 
Perezia adnata var. alamani (230). Many natural products are stable; however, 117 
can undergo intramolecular conversions on heating. Perezone (117) and dihydroper-
ezone (118) are benzoquinones with a very flexible side chain, so they provided a 
good opportunity to evaluate the versatility of VCD to study the conformation and 
chirality of both sesquiterpenes (231). Molecular mechanics conformational mapping 
followed by geometry optimization of low-lying conformers at the B3LYP/DGDZVP
level of theory led to 21 conformers for 117 and 34 for 118. Extended side chain con-
formers were highly preferred over folded conformers in both cases. Boltzmann aver-
age VCD spectra of 117 and 118 were calculated and compared to their corresponding 
experimental spectra manually and through the CompareVOA program (129, 130). 
The enantiomeric similarity index values were 77.0 for 117 and 85.4 for 118 assuring 
with 100% confidence their absolute configurations as (8R). No evidence was found 
for significant non-covalent π–π interaction between the quinone core and the side 
chain double bond as to drive preferences of 117 to folded conformations (232). 
Reference (232) also briefly reviews the main accomplishments in the chemistry of 
perezone (117) since its discovery in 1852.

VCD is a reliable technique to study conformational arrangements of these and 
other natural products (186, 187, 233, 234), since this technique is very sensitive to 
molecular conformation. Furthermore, VCD has been employed to study the con-
formation of reactive intermediates (235).

O

OH

O

117

8 O

OH

O

118

8

 

O
R

O

OH

114, R = OH

115, R = H

O
OH

O

O

OH

116

OO
1

3

5 6

O

 

Vibrational Circular Dichroism Absolute Configuration Determination…



368

Example 4
Urechitol A (119), a trinorsesquiterpenoid, was isolated from the roots of 
Pentalinon andrieuxii, a plant that has been used since the time of the Maya civi-
lization in Mesoamerica to remedy skin damage caused by infections of the genus
Leishmania. The intricate structure of 119, somewhat esthetically “offensive” as 
represented in the original work (236), was unraveled by X-ray crystallography.
VCD studies of 119 and of its oxidation product urechitin (120) allowed their 
absolute configuration determination to be made (237). Four optimized conformers 
populated the potential energy diagram of 119 and three for that of 120. The con-
formational average VCD spectra of 119 and 120 matched to a large degree with 
their corresponding observed spectra, thus allowing the absolute configuration to 
be assigned as (1R,2S,4S,5R,6S,7S,8R,10R) for 119 and (1R,4S,5R,6S,7S,8R,10R) 
for 120. The observed VCD spectrum of urechitol (119) showed the highest dis-
symmetry zone around the band of CO vibrations at 1,030 cm−1, with that in the 
VCD spectrum of the lactone derivative 120 around the band of CO vibrations at 
1,260 cm−1 (Fig. 38).

Fig. 38 Observed VCD spectra of (a) urechitol A (119), and (b) lactone derivative 120. (Adapted 
from (237))
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Example 5
The stereochemistry of (–)-(1S,4S,7R,8R,9S)-9-epipresilphiperfolan-1-ol (121), a 
triquinane sesquiterpene found as a constituent of the essential oil of Anemia tomen-
tosa var. anthriscifolia, was determined by X-ray diffraction analysis followed by
assessment of the absolute configuration by VCD spectroscopy (238). A significant 
mobility of the tricyclic skeleton in gas phase was observed giving rise to six signifi-
cant conformers. The VCD simulated spectrum matched well with the observed 
one. Some resemblance was found between the couplets at around 1,200 cm−1 and 
1,400 cm−1 (Fig. 39) and those reported for (+)-(1R,2S,5R,6S)-endo-bicyclo[3.3.0]
octane-2,6-diol (122) with C2 symmetry and derivatives that are chiral intermediates 
in the asymmetric synthesis of enantiomerically pure natural products (239). 
Presilphiperfolanes as 121 and analogous sesquiterpenes are obtained by catalyzed 
rearrangements of modhephenes, so knowing their configuration and chirality with
accuracy is important to establish their biogenetic routes of formation (240).

Fig. 39 Calculated VCD spectra of (–)-9-epipresilphiperfolan- 1-ol (121) and of the structurally 
related bicyclo[3.3.0]octane 122. (Adapted from (238, 239))
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Example 6
The VCD methodology was applied to the halogenated marine natural products 
majapolene B (123) and acetylmajapolene B (124) isolated from the red algal genus 
Laurencia collected in Malaysia (241). The conformational  analysis of (7S,10S)-
123 and (7S,10S)-124 was carried out with the MMFF94S force field in the Conflex 
program. Six low-lying conformers were found populated for both 123 and 124, 
with two remaining for 123 and all six remaining for 124 after optimization using 
DFT at the B3PW91/6-31G(d,p) level of theory. Simulated VCD spectra for the two
conformers of 123 were almost identical, with the exception of the main VCD sig-
nal around 1,400 cm−1 attributed to the δCOH bending vibration. The main differ-
ence between the VCD spectra of the six conformers of 124 was found at the 
carbonyl region (around 1,780 cm−1). The observed and calculated VCD spectra for 
123 showed excellent agreement, leading to the concluion that the absolute con-
figuration of the naturally occurring (–)-123 is (7S,10S). This assignment was con-
firmed by comparison of the VCD spectra of observed (–)-124 and calculated 
(7S,10S)-124.
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Example 7
The C-8 configuration of a benzoxepin sesquiterpenone (126) obtained in two steps 
from pacifenol (125) (Fig. 40) was determined by VCD (242). The vinyl bromide 
chamigrene intermediate obtained by reduction of 125, rearranged to 126 when 
treated with m-chloroperbenzoic acid (243).

Fig. 40 Semisynthesis route to prepare sesquiterpenone 126

The spiro-tether nature of the three rings, combined with the cis-fused 
 stereochemistry of the union of the tetrahydrofuran and cyclohexanone rings pro-
vided 126 with a rigid structure. Geometry optimization of the global minimum
conformers of the (8R)-126 and (8S)-127 diastereomers using DFT at the B3LYP/
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Example 8
Sesquiterpenes 128–132 are obtained from Mikania species, which have medicinal 
value as anti-inflammatory agents, and for the treatment of respiratory tract dis-
eases, rheumatism, and influenza. The absolute configuration of the eudesmanolide 
128 isolated from the aerial parts of Mikania campanulata was obtained from VCD 
measurements (244). Following a Monte Carlo protocol, 40 conformers were found 
for this flexible molecule, although only eight remained after geometry optimiza-
tion using DFT at the B3LYP/6-31G(d,p) level of theory. From comparison of the

Fig. 41 Comparison of the experimental VCD spectrum (center) of benzoxepin sesquiterpenone 
with the conformer average weighted plots calculated for the (8R)-epimer 126 (top) and the (8S)-
epimer 127 (bottom). (Adapted from (242))

DGDZVP level resulted in preference of the boat over the chair conformation of
the cyclohexanone ring for 126. In contrast, for 127, the chair predominates. The 
boat conformation is stabilized by the hydrogen bonding interaction between the 
hydroxy group and the carbonyl group of the cyclohexanone ring showing an 
(OH · · · · · O = C) H-bond distance of 2.5 Å. By comparison of the observed and
calculated VCD spectra at the carbonyl region (1,728 cm−1) and the CO vibrations 
(ca. 1,200 cm−1), it became immediately evident that the configuration of C-8 is 
(R) (Fig. 41).
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observed VCD spectrum with the Boltzmann weighted theoretical one, the absolute 
configuration of 128 was allotted as (1S,4S,5S,6S,7S,10R), assisting with the assign-
ments of eudesmanolides 129–132 isolated from the same plant extract.
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Example 9
The chirality of eremophilanoids 133 and 134, sesquiterpenoids isolated from Senecio 
species, was assigned by means of VCD spectroscopy (112). Absolute configurations 
of the stereogenic centers C-4, C-5, and C-6 of the euryopsin skeleton are essential for
establishing biogenetic relationships (245), hence the application of a strongly funda-
mental chiroptical method such as VCD to reassure their absolute configurations is 
perceived as worthwile. Sesquiterpenoids 133 and 134 have shown insect antifeedant 
activity. Only two significantly populated conformers resulted from a conformational 
search on each eremophilanoid due to the considerable rigidity of the euryopsin core. 
The Boltzmann average VCD spectrum of 133, calculated at the B3LYP/6-31G(d,p)
level, was found to be satisfactorily balanced between invested computing time and 
spectral similarity, assuring its configuration as (4S,5R,6S). Moreover, derivatization of 
133 to the acetyl derivative 134 was carried out to reassure assignment with confidence 
since vibrational CO bands around 1,200 cm−1 of 133 presented no net intensity, a situ-
ation attributed to intermolecular hydrogen bonding that was confirmed by visible 
defined monosignated bands in the VCD spectra of 134 in this region. With the goal of 
supporting the biogenetic relationships among eremophilanoids isolated from different 
species, the absolute configuration of 1α-angeloyloxy-eremophilolide (135) isolated 
from Psacalium paucicapitatum was also determined by VCD. The close similarity of 
its calculated and observed VCD spectra confirmed the absolute configuration of 135 
as (1S,4S,5R,8S,10S). In 135, there are intramolecular hydrogen bonds of both hydroxy 
groups (112), thus resulting in a good comparison of the calculated and experimental 
plots (Fig. 42).
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Fig. 42 Experimental (a) and calculated (b) VCD spectra of (1S,4S,5R,8S,10S)-1α- 
angeloyloxyeremophilolide (135). (Adapted from (112))

Example 10
The sesquiterpenes (+)-african-1(5)-ene-2,6-dione (46) and lippifoli-1(6)-en-5-one 
(136), isolated from Lippia integrifolia (Verbenaceae), a woody shrub with medicinal 
properties, were studied by VCD spectroscopy and modeled employing DFT calcula-
tions with the B3LYP and B3PW91 functionals at the DGDZVP and DGDZVP2
basis sets, respectively (124). Africanane 46 is related biogenetically to the lippifoli-
ane 136. By determining the absolute configuration of the C-4, C-9, and C-10 stereo-
genic centers, the relationship between these compounds was sustained and found to 
be in accordance with previous africanane derivative assignments. Africanane is a 
rigid tricyclic molecule, so only two conformers were detected in the Monte Carlo 
conformational search. In addition, the conformational map of lippifoliane, a less 
rigid molecule, was populated with four conformers. After optimization using DFT at 
the B3LYP/DGDZVP level of theory only one conformer remained populated for 46 
and two for 136. A general agreement between the observed and calculated VCD 
spectra allowed assignment of (+)-46 as the (4R,9R,10R) enantiomer and lippifoliane 
136 as the (4R,9S,10R) enantiomer. The absolute configuration of 46 is in agreement 
with that proposed on basis of its biogenetic relationship with 136. Interesting features 
of VCD spectra for both molecules at the carbonyl region revealed that, according to 
ring current theory (178), the VCD monosignated bands come from independent 
enhanced magnetic transition moments in the α,β-conjugated C = O chiral induced 
oscillators (Fig. 43). The VCD spectrum of 46, calculated at the B3PW91/DGDZVP2
level of theory, improved the similarity of the C = O stretching region when compared 
with the experimental spectrum.
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Fig. 43 Experimental VCD spectra of sesquiterpenes 46 and 136 at the α,β- conjugated carbonyl 
region. (Adapted from (124))

Example 11
The new 7β-angeloyloxy-8α-isovaleroyloxylongipin-2-en-1-one (137) along with 
the known longipinene derivatives 138 and 139 were isolated from Stevia monardi-
folia (246). Eighty-three conformers were found to inhabit the energy profile of 137 
in the initial 40 kJ/mol. Geometry optimization of these 83 structures using DFT at
the B3LYP/6-31G(d) level reorganized the conformer distribution to give 18 popu-
lated conformers in the cutoff limit of 10.3 kJ/mol. With the reoptimization of these
18 structures using the DFT B3LYP/DGDZVP method, five conformers, counting
for less than 4% of the total population, were discarded with 13 structures remain-
ing, which were used to calculate vibrational frequencies at the same level of theory. 
The Boltzmann weighted VCD spectrum showed several broad bands, apparently 
generated for the high degree of freedom of the angeloyloxy and isovaleroyloxy 
groups, complicating comparison with the experimental spectrum. To overcome this 
inconvenience, the absolute configuration of the acetylated product 140 was deter-
mined. In this case only three conformers were significantly populated after reopti-
mization using DFT B3LYP/DGDZVP calculations.
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The experimental to calculated VCD comparison of the spectra was in this case 
neatly observed (Fig. 44), supporting the assignment of the absolute configuration 
of longipinane 140, and consequently of the new longipinane 137, as (4R,5S,7S,8S,
10R,11R). The negative chirality (+,–) of the couplet around 1,200 cm−1 resembles 
that of longipinenes 55 and 50 (Fig. 17) wherein the stereochemistry of C-7 is also 
β (149).

Fig. 44 Calculated (top) and experimental (bottom) VCD spectra of (4R,5S,7S,8S,10R,11R)-7,8-
diacetoxylongipin- 2-en-1-one (140). (Adapted from (246))
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Example 12
VCD was employed to determine the absolute configuration of the sesquiterpene 
lactone 8-epiisolippidiol-3-O-β-d-glucopyranoside (141) isolated from Crepis 
conyzifolia roots (247). Deuterated methanol was used as the solvent to record the 
vibrational spectra in the 1,800–1,150 cm−1 region of this polar hydroxylated mol-
ecule. The stable conformations were found through a potential energy surface scan 
obtained by glycosidic bond rotation using semiempirical AM1 calculations. 
Optimization of the set of conformers with minimal energy at the HF/6-31G level of
theory followed by DFT B3LYP/6-31G(d) provided six final conformers. The aver-
age IR and VCD spectra, calculated at the B3LYP/6-31G(d) level of theory, repro-
duced the corresponding measured spectra with good agreement of shape, relative 
intensities, and signs, suggesting that the solvent has no significant influence in the 
geometry of 141 so as to consider a theoretical model of solvation.
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Example 13
The relative stereochemistry and absolute configuration of the guaianolide 142 iso-
lated from leaves of Hedyosmum arborescens Swartz was evaluated by a combina-
tion of 1H and 13C NMR along with IR and VCD spectroscopy (248). From the 32 
possible diastereomers, four possibilities (142, 143, and their antipodes) were con-
sidered plausible candidates according to the 1D- and 2D-NMR spectra and NOE 
experiments. IR and VCD spectra simulations of these diastereomers, using DFT at
the B3LYP/6-31+G(d,p) level of theory, which in both cases only showed one stable
conformer due to their core rigidity, permitted a confident assignment based on close 
matching between the VCD spectra of (1R,5R,7S,8S,10R)-7,10-epoxyguaia- 3,11-
dien-8,12-olide (142) and the natural product at the fingerprint region. An analysis 
of vibrational normal modes at the carbonyl region led to the conclusion that 142 is 
associated to the solvent, CDCl3, through H-bonding, although the solvent did not
modify significantly the lower spectral regions used for absolute  configuration 
assignment.
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Example 14
Endoperoxides isolated from terrestrial and marine organisms may show antitumor 
and cytotoxicity activities. Acetylmajapolene A (144) from the red algal genus 
Laurencia was isolated abundantly as a mixture with its diastereomer endoperoxide 
145 (249). Separation of these endoperoxides, successfully achieved by chiral 
HPLC, preceded elucidation of their absolute configuration using VCD measure-
ments mainly focusing on the peroxide band at around 1,050 cm−1 (Fig. 45). 
Acetylmajapolene A (144) is a conformationally flexible molecule, thus MMFF94S 
force field calculations using the CONFLEX program provided 12 low-lying con-
formers for which the geometries were optimized by DFT calculations at the 
B3PW91/6-31G(d,p) level of theory. Boltzmann population-weighted VCD spectra 
of 144 and 145 in the 1,400–1,000 cm−1 region were in excellent agreement to their 
observed counterparts (Fig. 45), hence permitting definition of their absolute con-
figuration as (1R,4R,7S,10S) and (1S,4S,7S,10S). Considering that assignment of 
endoperoxide absolute configuration normally involves a tedious chemical correla-
tion procedure, the facile manner in which the relative stereochemistry and absolute 
configuration of 144 was distinguished from 145 suggests that VCD is a premium 
alternative method for the chiral characterization of endoperoxides.

Fig. 45 Observed-to- calculated VCD spectra comparison of endoperoxides (1R,4R,7S,10S)-144 
and (1S,4S,7S,10S)-145. (Adapted from (249))
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Example 15
As a pearl within the shell of an oyster, which is formed by its abnormal nacreous 
growth around a grain of sand, the secondary metabolite epazoyucine (–)-146 
accumulated in the aerial parts of Stevia tomentosa following a remarkable bio-
chemical pathway which produced, as a gem, an unusual chiral sesquiterpene lactone 
containing a cyclopentane ring with two epoxy groups in a cis configuration and 
β-orientation (250). The enantiomer, (–)-146, was fully characterized by spectro-
scopic methods, establishing from NMR gCOSY, gHSQC, and gHMBC methods its
relative stereochemistry, and from VCD spectroscopy its absolute configuration. 
The VCD spectrum of the (1S,3S,4S,5R,7R,8R,11S)-enantiomer, calculated at the 
B3LYP/DGDZVP level of theory, was obtained in a straightforward manner, since
molecule 146 was found to be biased towards a single conformation. Figure 46 
shows a comparison of the experimental and calculated VCD spectra where 
the close match between them can be appreciated visually. Nevertheless, the 
(–)-(1S,3S,4S,5R,7R,8R,11S)-146 absolute configuration was corroborated by its 
quantitative assessment, which provided similarity indexes for the IR and VCD
spectra comparison of SIR = 87.1% and SE = 82.5%, respectively. In addition, a crys-
tal diffraction analysis of (–)-146 allowed the unambiguous confirmation of its rela-
tive stereochemistry, and absolute configuration through the Flack (251) and Hooft 
parameters (252). As far as the authors are aware, this is the first work (250), together 
with a recent report about the XRD and VCD marriage, which gave rise to the abso-
lute configuration determination of an enantiomeric pair of synthetic diazepinone 
derivatives (253), proving the complementary power of VCD and X-ray diffraction
techniques to provide the absolute configuration of chiral molecules.

Fig. 46 Comparison of the calculated and experimental VCD spectra of (–)-(1S,3S,4S,5R,7R,8R, 
11S)-1,5:3,4-diepoxyguaia-10(14)-en-12,8-olide (146). (Adapted from (250))
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Example 16
Chirality is easily observed in natural products for which the relationships are not 
limited to enantiomers but also to diastereomers. The components of a plant or other 
organism may often possess several chiral centers but only one or two of those chiral 
centers are of unknown absolute configuration, thus to search for reliable chiroptical
techniques that can accomplish discrimination of chiral diastereomers is worth-
while. In one report (254), four cedranol  acetates 147–150 of known configuration
were employed as chiral trials for VCD quantitative assessments to investigate 
whether VCD is reliable to distinguish diastereomers 147–150. Six stereogenic cen-
ters conformed to the chiral scaffold of these tricyclic sesquiterpenes, of which four 
of these centers (3R,3aR,7S,8aS) remain stereochemically fixed and two of them 
change for the diastereomers (5R,6R)-cedranol (147), (5R,6S)-neoisocedranol (148), 
(5S,6R)-neocedranol (149), and (5S,6S)-isocedranol (150). The simulation of the 
vibrational IR and VCD spectra was performed at two different levels of theory,
B3LYP/DGDZVP and B3PW91/DGDZVP, on account of the fact that the B3LYP
functional simulated the IR spectra of 147–150 with serious band frequency mis-
matching with the experimental spectra, leading to poor quantitative comparisons: 
SIR values were obtained in the range of 60–70. In contrast, experimental IR and
VCD spectra were simulated closely by the gradient-corrected B3PW91 correlation
functional: SIR values in the range of 85–95 and SE values, for the correct enantio-
mer, in the range of 77–87. The reason for the different simulation performance 
between functionals is that cedranol acetates contain five-membered rings in their 
structures and these carbocycles undergo pseudorotation phenomena provoking flat
conformational landscapes. Thus, to simulate vibrational properties of molecules 
possessing five-membered rings the B3PW91 functional is more useful than the
B3LYP functional.

The number of conformers that populated the landscape of 147–150, calculated at 
the B3PW91/DGZVP level of theory, varied in consideration to the conformational
preferences of the acetyloxy group at C-5 and the methyl groups at C-3 and C-6. 
Hence, six conformers for 147, two conformers each for 148 and 150, and four con-
formers for 149 were taken into account for the weighted average simulated vibra-
tional spectra of these diastereomers. The visual comparison of the experimental 
VCD spectra for 147–150 is shown in Fig. 47. It is interesting to note that the stretch-
ing C–O band of the ester group is shifted to different frequencies of the spectra 
depending upon the hybridization of the carbon atom, so that the C(sp2)–O band 
appears as an intense signal at around 1,250 cm−1 and C(sp3)–O as a non-intense band 
at around 1,020 cm−1. Even though C–O bands usually guide visual comparison to 
assign configurations and/or to analyze conformations, the anisotropy factors (g-val-
ues) are more appropriate to disclose regions of high dissymmetry in the spectra 
(g ~ 10−3), where the C–H vibrations of chiral centers appear. In the case of 147–150, 
these regions are allied to bands absorbing at around 1,060–1,190 cm−1.
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Fig. 47 Comparison of the experimental VCD spectra of (5R,6R)-cedranol 147, (5R,6S)-
neoisocedranol 148, (5S,6R)-neocedranol 149, and (5S,6S)-isocedranol 150. (Adapted from (254))

Regarding diastereomeric discrimination, the analysis was performed by
numerical comparisons of crossed experimental and calculated spectra, at the 
B3PW91/DGDZVP level, of 147–150, using similarity indexes SE, S-E and ESI 
values. The results demonstrated that there was no crossed comparison superior 
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5.2.3 Diterpenes and Meroterpenoids

Diterpenes are biologically important natural products known for their antimicro-
bial and anti-inflammatory activities, among others. Vitamin precursors such as 
phytol and retinol are among the most distinctive diterpenoids. Meroterpenoids are 
mixed polyketide-terpenoids biosynthesized from terpene and polyketide precur-
sors. Of particular relevance for the diterpenes is the configuration at C-10, since 
both normal and ent representatives are present in Nature. The already discussed 
diterpenoids are (+)-(1S,11S,12S)-verticillol (2) (10), (–)-stypotriol triacetate (35) 
(110), (+)-(R)-sargaol acetate (37) (87), (R)-2-hydroxymutilin (79) (203), (S)-2- 
hydroxymutilin (80) (203), and paclitaxel (92) (213), and in this section some of 
them are discussed in more detail.

Example 1
The absolute configuration of the endoperoxide diterpene 151, isolated from 
Calceolaria buchtieniana, that grows in the mountainous zone of Bolivia, was
ascertained using VCD methodology (255). As for endoperoxides 144 and 145 
(Fig. 48), the peroxide band close to 1,050 cm−1, along with the ester C–O peaks, are
the signature bands for this molecule. The simulated Boltzmann averaged VCD 
spectrum of three conformers at the B3PW91/DGDZVP level of theory, in the fin-
gerprint zone, matched clearly with the experimental VCD spectrum (Fig. 48) 
assuring the absolute configuration of 151 to be assigned unambiguously as 
(–)-(1S,5S,6R,8S,9S,10R,13S). The relative stereochemistry was independently ver-
ified by single crystal X-ray diffraction (255).

than the direct comparisons, for instance, the highest SE value for a cross- 
comparison was 69.0 and the lowest SE value for a direct comparison was 76.7. 
Therefore, it was concluded that the VCD technique is capable of distinguishing 
cedranol acetate diastereomers. IR crossed comparisons were by no means similar
to VCD, since crossed SIR values were as high as those for direct comparisons, 
indicating the IR technique by itself is not capable of discriminating 147–150. A 
similar behavior was observed for the analogous tricyclic sesquiterpenes cedrol 75 
and isocedrol 76 (199).

Vibrational Circular Dichroism Absolute Configuration Determination…



382

Example 2
The stereochemistry of (+)-aframodial (152), a labdane diterpene isolated from the 
seeds of Aframomum danielli with both antifungal and antileukemic activity, was
allotted by VCD methodology (256). The conformational flexibility of the side chain 
provided the molecule with helicity, an extra element of chirality. The eight possible 
chiral diastereomers were simulated with DFT at the B3LYP/6-31G(d) level of theory.
VCD signal intensities and the sign for the C = C and two C = O stretch modes 
allowed local absolute configuration assignment for the four stereogenic centers as 
(1R,2S,4aS,8aS), as shown in diastereomer 153. An induced VCD signal from the 
normal mode localized in the achiral dial chromophore at the side chain, was used to 
give rotational conformation of the two aldehyde groups, distinguishing the (E) diaste-
reomerism of the double bond.
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Fig. 48 Experimental (top) and simulated (bottom) VCD spectra of endoperoxide 
(1S,5S,6R,8S,9S,10R,13S)-151. (Adapted from (255))
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Example 3
Verticillane diterpenoids are fundamental key precursors in the biosynthesis of tax-
anes. The absolute configuration of (+)-verticillol (2), isolated from Bursera suntui, 
was assigned by VCD methodology (10). An initial conformational search per-
formed by molecular mechanics using the Monte Carlo method was conducted on 
six conformers, three O–H rotamers with the six-membered ring in the chair confor-
mation (Fig. 23) and the other three with the six-membered ring in the boat confor-
mation. Optimization using the DFT B3LYP/6-31G(d,p) method pointed to the
chair conformers as being more stable than the boat conformers. The observed and 
Boltzmann average VCD spectra, calculated at the same level of theory clearly 
matched, indicating that the absolute configuration of (+)-verticillol (2) to be 
(1S,11S,12S), in agreement with absolute configuration assignment reported for 
(+)-verticillol isolated from Sciadopitys verticillata, which was studied by anoma-
lous dispersion X-ray analysis of its p-iodobenzoate derivative 154, and the mirror 
image to the enantiomer suggested by application of the octant rule on nor- 
ketodiepoxide 155 isolated from Sciadopytis verticillata.
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Example 4
Two novel rearranged neoclerodane diterpenoids, salvileucalin A (156) and salvileu-
calin B (157), were isolated from the aerial parts of Salvia leucantha (Labiatae) and 
their absolute configuration determined by VCD measurements (257). The unprec-
edented rearranged skeleton structure of 157 was envisaged by a two-step biogene-
tic pathway from 156. Neoclerodane 156 is a selective κ-opioid receptor agonist 
with hallucinogenic activity. DFT-VCD calculations on 156 and 157 over the popu-
lated average conformers, three in each case, directed a clear absolute configuration 
assignment by comparison with measured spectra at the carbonyl region. The cou-
plets are shown in Fig. 49. VCD at the carbonyl region is extremely sensitive to 
stereochemistry of chiral molecules, e.g. the α and β anomers of sialic acid 
 derivatives (258).
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Example 5
The polycyclic meroditerpenoid isoepitaondiol (158) is a biologically active natural 
product isolated from Stypopodium flabelliforme with potential anti-inflammatory 
and antitumor activities. In this work the stereochemistry of 158 was revisited to 
propose a new relative configuration based on NMR studies carried out on an iso-
epitaondiol diacetate derivative (159) and confirmed by X-ray crystallography.
Moreover, the solid state structure of 158 revealed that the absolute configuration 
assignment based on the Flack parameter was considered non-conclusive, as evi-
denced by the use of Mosher esters. Thus, the absolute configuration assessment of 
159 was determined by measurement of the VCD spectrum in combination with 
DFT B3LYP/DGDZVP calculations (259).
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The meroditerpenoid derivative 159 is a rather large molecule (C31H44O5) with 36 
non-hydrogen atoms and 270 electrons. The X-ray structural data of 159 were used 
as input for a Monte Carlo guided conformational search, resulting in 13 conform-
ers in the first 41 kJ/mol. Geometry optimization at the B3LYP/DGDZVP level of
theory allowed conformers to be discarded giving rise to only two low-energy con-
formers in a ratio of ca. 3:1. All six-membered rings are chairs in both conformers 
but the acetyl group at C-5′ is rotated differently. VCD observed and calculated 
Boltzmann average spectra are shown in Fig. 50. The clear correlation between them 
supports the configuration depicted for the structures.

Fig. 49 Carbonyl region couplets of salvileucalin A (156) and salvileucalin B (157). (Adapted 
from (257))
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Fig. 50 Experimental (top) and calculated (bottom), at the DFT B3LYP/DGDZVP level of theory,
VCD spectra of isoepitaondiol diacetate (159). (Adapted from (259))

The chiral distinction of the VCD spectrum of 159 is the bisignated bands at 
around 1,200 cm−1 allied to ester νCO stretching vibration. This vibrational mode 
also distinguishes the VCD spectrum of stypotriol triacetate (35) (110) (Fig. 51), 
a large meroditerpenoid derivative with similarities in its structure.

Fig. 51 Experimental (top) and calculated Boltzmann weighted (bottom), at the DFT B3LYP/
DGDZVP level of theory, VCD spectra of stypotriol triacetate (35) shown with six superposed 
conformers. (Adapted from (110))
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Example 6
The meroditerpenoid taondiol (260) is produced by marine algae in different 
enantiomeric forms; for instance, from the alga Stypopodium flabelliforme col-
lected from Easter Island and from the alga Taonia atomaria (Dictyotaceae), the 
levorotatory form (–)-taondiol 160 was isolated, whereas from the brown alga 
Stypopodium zonale the partially racemized antipode (+)-taondiol 161 was found. 
Even though the structure of taondiol was reported more than 40 years ago (261), 
its absolute configuration was lacking confirmation, thus the VCD technique was
applied to assign the (2S,3S,6R,7R,10R,11R,14S) absolute configuration for (–)-
160, which was isolated as the diacetate  derivative (–)-162 from the alga S. flabel-
liforme, and consequently to disclose the (2R,3R,6S,7S,10S,11S,14R) absolute 
configuration for its antipode (+)-161 (260). Taondiol diacetate 162 is a C-3 
 epimer of isoepitaondiol diacetate 159 and a C-6,C-7 diastereomer of epitaondiol 
diacetate 163, another meroditerpenoid isolated from S. flabelliforme for which 
the relative stereochemistry was reassigned using 2D-NMR and NOE correlations 
(262), assuring its  absolute configuration as (+)-(2S,3S,6S,7S,10R,11R,14S)-163 
by VCD (260).

In the conformational search of the energy low-lying conformers of 162 and 163, 
it was found that only two conformers each were stable within the first 16 kJ/mol,
the differences between every pair were found in the rotameric conformation of the 
5′-OAc group but not in the polycyclic skeleton, which is presumably rigid in both
compounds. Due to the B/C ring junction stereochemistry, the B and C rings in
taondiol 162 adopt chair conformations but in epitaondiol 163, rings B and C are in
twist-boat conformations. VCD spectra calculated at the B3LYP/DGDZVP and at
the B3LYP/DGDZVP2 levels of theory for 162 and 163, matched well with their 
corresponding experimental spectra (Fig. 52). The VCD similarity index data 
SE = 82.0 for 162 and SE = 71.1 for 163 confirmed their absolute configuration 
assignments with 100% confidence.
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Fig. 52 Observed (a) and calculated (b), at the B3LYP/DGDZVP level, VCD spectra of
(–)-(2S,3S,6R,7R,10R,11R,14S)-taondiol diacetate (162). Observed (c) and calculated (d), at the 
B3LYP/DGDZVP2 level, VCD spectra of (+)-(2S,3S,6S,7S,10R,11R,14S)-epitaondiol diacetate 
(163). (Adapted from (260))

Example 7
The chiral meroditerpenoid zonaquinone acetate (+)-164 was isolated for the first 
time from the Jamaican brown alga Stypopodium zonale (263). The structural 
characterization of 164, accomplished by 1D- and 2D-NMR spectroscopy, agreed
with that reported for flabellinone (264) in so far as both molecules have the same 
skeleton. The relative stereochemistry of 164 was established from NOESY cor-
relation experiments, and its absolute configuration from VCD analysis. The 
enantiomer (2R,3R,6R,7R,10R,11R,14S)-164 was selected for VCD  calculations 
to enable its further confirmation by comparison with the experimental VCD 
spectrum of (+)-164.
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It has been seen in the previous example that the meroditerpenoids taondiol and 
epitaondiol have rigid skeletons; zonaquinone 164 is also rigid so that calculations 
predicted it is fixed in only one conformer. The IR and VCD spectra of
(2R,3R,6R,7R,10R,11R,14S)-164 were calculated at the B3LYP/DGDZVP level and
at the higher B3LYP/DGZVP2 and B3PW91/DGDZVP2 levels of theory, since the
DGDZVP basis set complicated its comparison with the experimental VCD spec-
trum due to band mismatching at the shorter frequency region (1,250–950 cm−1). 
The double polarized DGDZVP2 basis set represents a rather different situation in
that the visual and quantitative matching of the VCD spectra at the whole fingerprint 
region (1,550–950 cm−1) is good; this confirmed the (2R,3R,6R,7R,10R,11R,14S) 
absolute configuration for (+)-164. The correct enantiomer similarity index SE value 
quantified for the comparisons of the experimental and calculated VCD spectra 
using the B3LYP or B3PW91 functionals and the DGDZVP2 basis set are 73.8 and
78.0, respectively, these values are indicative of the superior B3PW91 performance
in vibrational calculations of 164. A partial display of the VCD spectra showing the 
C–O vibrations at around 1,250 cm−1, and C–H vibrations at around 1,350 and
1,050 cm−1, is shown in Fig. 53. It is noticeable that zonaquinone acetate displayed 
in vitro cytotoxic activity against breast and colon cancer cell lines, comparable in 
potency to tamoxifen and fluorouracil (263).

Fig. 53 Observed (a) and calculated (b), at the B3PW91/DGDZVP2 level of theory, VCD spectra
of (+)-(2R,3R,6R,7R,10R,11R,14S)-zonaquinone acetate (164). (Adapted from (263))
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Example 8
Sargaol (36) is a chromene meroterpenoid with antioxidant properties, for which the 
absolute configuration has been inconsistently reported as (R) or (S). Therefore, 
VCD was applied to determine unequivocally its absolute configuration through the 
derivative (+)-sargaol acetate (37) isolated from the brown alga Stypopodium flabel-
liforme (87). Sargaol is a conformationally very flexible molecule, thus a conforma-
tional search for models 38–40 and sargaol acetate using a Monte Carlo stochastic 
algorithm resulted in 12, 82, 596, and 2172 conformations for 38–40 and 37, respec-
tively. Since for the larger molecules 37 and 40 the number of conformers is imprac-
tical for calculations, a selection was carried out based on structural diversity, 
keeping only 100 conformations each.

The number of low-energy conformations taken into account in the calcula-
tions of Boltzmann-weighted VCD spectra were 14 for 37, 6 for 38, 15 for 39, and 
34 for 40. The main differences between the conformers were found in the rota-
tion of the OAc group and at the chain. Superimposed conformers in combination 
with VCD spectra for each molecule, including the experimental VCD spectrum 
of 37 are shown in Fig. 54. The positive chirality (–,+) of a couplet at around 
1,200 cm−1, corresponding to the CO vibration, could be predicted in all cases. 
Remarkably, there were no significant differences between VCD simulated spec-
tra of models 38–40 with truncated groups for the chain and the experimental 
VCD spectrum of 37. Accordingly, it was concluded that replacement of the large 
achiral fragment by a small fragment in meroterpenoid 37 could be used in sim-
plifying the calculations. The absolute configuration of 37, and consequently of 
sargaol (36), is (R). However, it has to be taken into account for conformationally
flexible  molecules that the VCD sign of some of the normal modes may be a good 
signature for conformation although not necessarily for absolute configuration 
(264) (Fig. 54).
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Fig. 54 VCD spectra comparison of sargaol acetate (37) and models 38–40. Drawings show 
superposed conformers. (Adapted from (87))

Example 9
A bioassay-guided isolation of the anti-tuberculosis active principle of a methanol 
extract of Leucophyllum frutescens (Scrophulariaceae) root bark led to the diterpene
serrulatane 165, for which the partial relative stereochemistry was established by 
very detailed 1H NMR measurements performed at 900 MHz, while the absolute
configuration was determined by VCD spectroscopy (265). Assignment of the C-1 
and C-4 configurations (1R,4S) was proposed by a non-direct method by considering 
the diterpene (–)-erogorgiaene. Therefore, DFT-VCD simulations were performed 
for the two C-11 epimers (11S)-165 and (11R)-166. Due to a high conformational 
flexibility of the  aliphatic chain, 199 conformers were found for epimer (11S) and 
193 conformers for (11R) by a Monte Carlo mapping search. After optimization 
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using the DFT B3LYP/DGDZVP method, 10 and 13 conformers remained signifi-
cantly populated for the (11S)- and (11R)-diastereomers, respectively. Comparison 
of their VCD spectra (Fig. 55) allowed assignment of the (S) configuration to C-11. 
This new serrulatane was given the trivial name “leubethanol”. The major difference 
in the VCD spectra between the compounds with the (11S) and (11R) configurations 
is found in the sign of the bands at around 1,400 cm−1, which are likely to be assigned
to δCH bending vibrations, as shown in Fig. 55.

Fig. 55 Comparison of the VCD spectra of epimeric serrulatanes 165 and 166. (Adapted from 
(265))
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Example 10
On being extracted from the aerial parts of Chromolaena pulchella, (–)-hautriwaic 
acid lactone (167) and (+)-isoabienol (168) were studied by VCD. Lactone 167 
belongs to the ent-clerodane diterpene series, which is stereo-related biogenetically 
to the ent-labdanes, but enantio-related to the labdane diterpenes, as represented by 
isoabienol (168). VCD was used to distinguishing the configuration of four stereo-
genic centers (C-5, C-8, C-9, C-10) for both diterpenes to support the proposed 
steps in the ent-clerodane and labdane biogenetic pathway (266). Due to the flexible 
side chain and the hydroxy group, the Monte Carlo conformational search resulted 
in 57 conformers for soabienol (168) and 25 for for lactone 167. After optimization 
using DFT at the B3LYP/DGDZVP level of theory, nine conformers remained in the
initial 8 kJmol−1 range for 168, with only two for 167. Boltzmann-weighted VCD 
spectra for both compounds, calculated at the same level of theory, were compared 
to the corresponding experimental VCD spectra and found to represent a good 
match in both cases. Moreover, a VCD spectral similarity value for the correct enan-
tiomer (SE = 80.8%) confirmed the (5S,8R,9S,10R) absolute configuration for 167 
and a (SE = 77.5%) confirmed the (5S,8R,9R,10S) absolute configuration for 168 
with a 100% confidence level for both. The absolute configuration assignments sup-
port the proposed biogenetic pathway (Fig. 56).

Fig. 56 Schematic representation of the biosynthetic generation of diterpenes 167 and 168
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Example 11
The stereochemistry of salvic acid (169), a constituent of the leaves of Eupatorium 
salvia, was investigated by VCD spectroscopy of its O-methyl ether methyl ester 
derivative 170 and the crystal diffraction analysis of its diol derivative 171 (267). 
The skeletal structure of 169 has been reported inconsistently as normal- or ent- 
labdane, as structures 172 and 173, respectively. VCD combined with X-ray crys-
tallography proved their potential to establish unambiguously the absolute 
configuration of (+)-169 as an ent-labdane. Simulations of the conformational com-
position of 170 with a (13R) side chain absolute configuration and of its epimer 174 
with a (13S) one, were performed at the B3LYP/DGDZVP level of theory giving
rise to three and two energy low-lying conformers. Numerical VCD analyses were 
carried out under the CompareVOA algorithm (130) for 170 and its epimer 174. The 
spectral similarity index values (SE), for the correct enantiomer, and (S−E), for the 
incorrect enantiomer, are fairly apart: 72.9 and 20.6 for 170 but closer to one 
another: 50.7 and 27.3 for 174, with the enantiomer similarity index (ESI) differ-
ence for 170 almost double that for 174: 52.3 and 23.2, leading to a 100% absolute 
configuration confidence assignment for (13R)-170 against only a 42% confidence 
assignment for (13S)-174.
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Example 12
The absolute configuration of rosmaridiphenol (175) a component of rosemary 
Rosmarinus officinalis L. (Lamiaceae), the fragrant evergreen herb with ornamental, 
culinary, and medicinal usage known since ancient times, was examined by spectro-
scopic VCD measurements of its diacetate 176 (268). A description of the 1H NMR
simulated full spin–spin assignment of 176 allowed the preferred conformation in 
solution to be disclosed. Moreover, the relative stereochemistry of 176 was confirmed 
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by its crystal X-ray diffraction study, which also provided the conformation in the
solid state. The conformational landscape theoretical study of 176 was achieved 
using the DFT B3LYP/DGDZVP method, which constituted a global minimum
conformer surrounded by four local minima conformations and together accounted 
for 99.3% of the Boltzmann distribution. The geometrical arrangement of the skel-
etal 6- and 7-membered rings is chair/chair and was observed commonly not only in
the five calculated conformers, but also in solution and solid state conformations. 
The VCD comparison of the observed and calculated spectra showed two couplets, 
one of positive chirality (–,+) at around 1275 cm−1, and the other one of negative 
(+,–) chirality at around 1215 cm−1, allied presumably to the CO ester vibrations 
(Fig. 57). Visual matching of the observed and calculated VCD spectra allowed the 
absolute configuration determination of (+)-176, and consequently that of rosmari-
diphenol (176) to be assessed as (5S,10R).
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Fig. 57 Comparison of the VCD spectra of (+)-(5S,10R)-rosmaridiphenol diacetate (176). 
(Adapted from (268))
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Example 13
The new diterpenoid (–)-(5S,7R,8R,9R,10S)-7,8-seco-7,8-oxacassa-13,15- dien-7,17-
diol (177), along with the known (–)-(5S,7R,8R,9R,10S)-7,8-seco-7,8-oxacassa-13, 
15-dien-7-ol-17-aldehyde (178) and (–)-(5S,7R,8R,9R,10S)-7,8-seco-7,8-oxacassa-
13,15-dien-7-ol (179) were isolated from the aerial parts of Acacia schaffneri, a 
genus known for the analgesic and antiseptic properties of some of its constituents
(269). The stereochemistry of these seco-oxacassanes was established by chemical 
correlation and X-ray diffraction analysis. The absolute configuration of the new
diterpenoid 177 was assessed by VCD spectroscopy of (–)-(5S,8R,9R,10S)-7,8-seco-
7,8-oxacassa-13,15-dien-7-one (180) a derivative obtained by oxidation of lactol 179 
(269). The rigid ring architecture of 180 rendered simulation of the VCD spectrum, 
at the B3PW91/DGDZVP2 level, with an average conformational equilibrium biased
towards one of two conformers (99:1), the most abundant containing the s-trans 
diene fragment. The chirality signature of 180 appeared in the 1,350–1,100 cm−1 
region of the VCD spectrum where lactone vibrations are expected. Frequency and 
intensity matching of simulated and observed bands were in agreement with the 
absolute configuration borne out by the structure drawn, and an opposite absolute 
configuration to that reported for known seco-oxacassane diterpenes.
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Example 14
The capability of Nature to biosynthesize unexpected molecules with a high degree 
of symmetry is exemplided from a further study of the aerial parts of the legume tree 
Acacia schaffneri (270). The study allowed the isolation and structural elucidation of 
schaffnerine (181) a macrocyclic dimeric diterpene with a C2 symmetry axis. The 
structure of 181 was determined from its physical and spectroscopic data, in particu-
lar 1H and 13C NMR measurements in one- and two-dimensions and its absolute
configuration and conformation followed after comparison of its VCD spectrum with 
that obtained after DFT calculations.

The atom coordinates that arose from a single crystal X-ray diffraction analysis
of 181 generated a molecular model that was subjected to a conformational search 
using a Monte Carlo approach at the MMFF level affording 14 conformers in a 
40 kJ/mol gap. Single point DFT calculations using the B3LYP/6-31(d) level of
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theory left only four conformers, in an energy window of 20 kJ/mol, which showed
variations in the C-1–C-2–C-3–C-4–C-5–C-10 and C-1′–C-2′–C-3′–C-4′–C- 
5′–C-10′ six-membered rings. Geometry optimization of these four conformers
using the DFT B3LYP/DGDZVP level of theory and calculation of the harmonic
vibrational frequencies yielded one main conformer (93.6%) and only a second 
conformer (6.4%) for 181. Figure 58 provides a comparison between the theoretical 
and experimental VCD spectra of 181. The X-ray measured dihedral angles and the
DFT calculated values of the 12-membered heterocyclic ring of 181 are in good 
agreement with the values for 1,3,7,9-tetraoxacyclododecane existing in the [3333] 
conformation (271).

Fig. 58 Comparison of the experimental (top) and calculated (bottom) VCD spectra of (–)-schaff-
nerine (181). (Adapted from (270))

Example 15
The structure and relative stereochemistry of the orthoester meroterpenoid (–)-novo-
fumigatonin (182), a novel epi-aszonalenin isolated from the pathogenic fungus 
Aspergillus fumigatus, was investigated by 2D-NMR, X-ray crystallography, and
VCD-DFT methodologies to assign its absolute configuration (272). The X-ray
structure of 182 was taken as the initial geometry for DFT calculations, the geom-
etry optimization was carried out with OPLS-2005 force-field followed by B3LYP/6-
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31-G(d,p) calculations. The DFT simulations of IR and VCD spectra were performed
at the same level of theory. The bands around the carbonyl region in the experimen-
tal IR spectrum are significantly broader than in the calculated spectrum (Fig. 59), 
suggesting that solvent molecules are in the coordination sphere of the molecule, 
however calculations using implicit solvation did not improve the matching in the 
breadth of these bands. In any event, the good agreement between the experimental 
and calculated VCD spectra of the two most prominent bands at around 1,100 and 
1,150 cm−1 corroborates the absolute configuration assignment given in structure 
182 (Fig. 59).

Fig. 59 Comparison of the calculated (a) and experimental (b) IR and VCD spectra of (–)-novo-
fumigatonin (182). (Adapted from (272))
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5.2.4 Triterpenes

Example 1
Diastereoisomers cannot easily be distinguished by dipole moment measure-
ments since each diastereomer is an ensemble of conformers, and dipolar 
moments vary with conformation. Even though simulation of conformational 
average IR spectra based on free energy calculations is quite reliable by the DFT
method (273), a clear distinction of diastereomers is not always easily achieved. 
Such is the case for the pair of sesquiterpene epimers, (6R)- and (6S)-cedrols 75 
and 76 (Fig. 24), for which the configurational assignment was determined suc-
cessfully using VCD. This same technique was used for diastereomers 75 and 76 
as an unambiguous sensor tool of chirality for one center (C-6) in the presence of 
four other chiral carbons (199). Therefore, in order to differentiate the absolute 
configuration of the 20,29- epoxylupan-3-one triterpenoids, epimeric (20R)-183 
and (20S)-184 were considered for VCD spectra calculations (274). These struc-
tures contain one different chiral center of a total of ten chiral centers. Therefore, 
in this work, the reliability of VCD as to provide chiral stressed responses leading
to the differentiation of diastereomers was tested. The lupanone triterpene skel-
eton is a conformationally rigid structure, so only four conformers out of six, 
rotameric on the epoxide side chain and with chair or boat conformation in the 
ring A of the skeleton, were found to be populated for both 183 and 184 after a 
Monte Carlo search. Boltzmann average VCD spectra were calculated on geom-
etry-optimized conformers, at the B3LYP/DGDZVP level of theory. The stable
conformers (four for 183 and two for 184), were compared visually and in silico 
with the observed VCD spectrum, allowing an absolute configuration assignment 
(S) to C-20.
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5.2.5 Aromatic Molecules

Several aromatic molecules, including (aS,2R,2′R)-cephalochromin (1) (9), (–)-(S)-
2-(1-hydroxyethyl)-chromen-4-one (3) (11), (+)-(S)-5,8-dimethoxymarmesin (24) 
(56), (+)-(R)-2-(1-hydroxyethyl)-chromen-4-one (44) (11), and (+)-(R)-6-bromo-2-
(1-hydroxyethyl)-chromen-4-one (45) (11) have been mentioned in this chapter.

Example 1
A chromone having the molecular formula C20H22O6 was isolated from Arracacia 
tolucencis. Using 1H and 13C NMR spectroscopy it was not possible to identify the
correct structure between 185 and 186. However, DFT-VCD spectra simulation on
a Boltzmann-averaged ensemble of conformers for each molecule demonstrated 
clearly, after comparison with the experimental data mainly at the νCO (ca. 
1,150 cm−1) and δCOH (ca. 1,300 cm−1) vibrations, the chromone 185 to be the cor-
rect structure for the isolated molecule. X-ray crystallographic work reinforced the
structural assignment (275).
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By close analogy, VCD studies of the linear and angular enantiomeric
α-dihydrofuranocoumarins 24–26 were conducted to determine the structure and to 
assign the absolute configuration of coumarin 24, a compound with antidote activity 
against a snake venom, isolated from Murraya alternans (56), for which the VCD 
spectrum shows bisignated bands that seem to be indicative of the association of CO 
induced coupled-oscillator (DCO) (159, 160, 166) modes (Fig 60).

Fig. 60 IR and VCD spectra of (S)-5,8-dimethoxymarmesin (24). (Adapted from (56))
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Example 2
Chromone esters 187 and 188 were isolated from the roots of Prionosciadium thap-
soides (Umbelliferae) and the absolute configuration of the structurally related 
dihydrofurochromones 155–160 were established by VCD methodology applied to 
compound 189 followed by chemical correlation (276). Thus, alkaline treatment of
a mixture of 187 and 188 led to (+)-5-O-methylvisamminol (189), among other 
products, in addition to benzofuran 190, for which the stereochemistry was assigned 
by correlation to (+)-(S)-cimifugin (191). In addition, (+)-visamminol (192), a dihy-
drofurochromone isolated from Angelica japonica (Umbelliferae), was also 
assigned the (S) configuration based on non-direct methods.
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The observed VCD spectrum of 189 was contrasted with the calculated Boltzmann 
weighted VCD spectrum, obtained for 14 conformers, which were found by search 
using the Monte Carlo method, followed by geometry optimization of each con-
former by DFT calculations at the B3LYP/DGDZVP level of theory. In all confor-
mations the hydroxyisopropyl at C-2′ is in a pseudo-equatorial orientation. VCD 
bands of the average theoretical spectra were treated with Lorentzian functions 
scaled by a factor of 0.97 and bandwidths set at 6 cm−1. Comparison of VCD 
 spectra showed good agreement assuring the absolute configuration of (+)-5-O- 
methylvisamminol (189) as (2′S) (Fig. 61), confirming as a result the absolute con-
figurations of the dihydrochromones 187, 188, and 190–192.

Bands at around 1,450 cm−1, 1,300 cm−1, and 1,100 cm−1, corresponding to CH
and CO vibrations, were found to be particularly distinctive (Fig. 61). The CO 
vibration at around 1,300 cm−1 may be assigned to the aromatic methyl ether (148), 
since it appears at about the same frequency as the bisignated bands of dimethoxy-
marmesin 24 (Fig. 60).
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Fig. 61 Experimental (left) and DFT calculated at the B3LYP/DGDZP level (right) VCD spectra 
of (+)-(S)-5-O-methylvisamminol (189). (Adapted from (276))

Example 3
Three new benzofurans 193–195 were isolated from the roots of Cyperus teneriffae. 
Some species of the genus Cyperus are used in folk medicine, i.e. in traditional Chinese 
medicine as estrogenic and anti-inflammatory agents for the treatment of menstrual 
disorders, stomachache, and bowel disorders. VCD spectroscopy was used to define 
the absolute configuration of (+)-1-[2,3-dihydro-6-hydroxy-4,7- dimethoxy-(prop-1-
en-2-yl)benzofuran-5-yl]ethanone (193) (277). Eight conformers were found popu-
lated after reoptimization, using DFT at the B3LYP/DGDZVP level, of the 20
conformers that inhabited the MM conformational energy surface initially. The con-
formers showed rotational freedom at the methoxy and isopropenyl groups. VCD fre-
quencies and rotational strengths were calculated using the same functional and basis 
set, to find, by means of comparison with the experimental VCD spectrum, that the 
absolute configuration of C-2 in 193 is (S). The calculations are clearly indicative of 
intramolecular H-bonding, a molecular arrangement that favors observation VCD cou-
plets due to mirror-image CO vibrations (Fig. 62).
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Example 4
Production of secondary metabolites from the fungus Cordyceps annullata in cul-
ture medium led to four new 2,3-dihydrobenzofurans, annullatins 196–199, and a 
new aromatic polyketide, annullatin 200 (278). The structure and relative stereo-
chemistry of the annullatins were established by two-dimensional NMR spectro-
scopic techniques and high-resolution mass spectrometry, whereas their absolute 
configurations were disclosed by VCD of 197, chemical transformations, and bio-
synthetic relationships. The MMFF Monte Carlo search of (R)-197 led to 32 con-
formers within 7 kJ/mol from the most stable conformer, and these were reduced to
14 conformers upon minimization with the DFT B3LYP/6-31G(d) method. Further
minimization at the B3LYP/6-311++G(d,p) level of theory guided to ten conformers
obtained within the first 6 kJ/mol. IR and VCD spectra of (R)-197 calculated as the 
Boltzmann weighted average of these ten conformers compared well with the 
observed IR and VCD spectra of the (–)-197 enantiomer, thus allowing the assign-
ment of the C-2 absolute configuration as (R). A segment of the calculated and 
observed VCD spectra is shown in Fig. 63. The (2R) absolute configuration of (+)-
196 was deduced from oxidation of (–)-197, and the chiral center C-9 in 198–200 
was assigned the (S) absolute configuration applying the advanced Mosher’s method.
Annullatins 196, 197, and 199 have cannabinoid receptor activities.

Fig. 62 DFT calculated VCD spectrum of (+)-(S)-benzofuran 193 at the B3LYP/DGDZVP level.
(Adapted from (277))
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Fig. 63 Experimental (bottom) and calculated (top) VCD spectra of annullatin 197. (Adapted 
from (278))

Example 5
Isolation and enantioselective HPLC resolution of (+)-gaudichaudianic acid (201) 
from Piper gaudichaudianum has been described. The absolute configuration 
assessment of the (+)-(S)-201 and (–)-(R)-202 enantiomers was achieved by means 
of a combination of ECD and VCD measurements using DFT calculations (279). 
This prenylated chromene is a potent trypanocidal compound when tested against 
the Y-strain of Trypanosoma cruzi. The (+)-enantiomer is more active than its 
antipode, but a synergistic effect makes the racemic mixture more active than any
 individual enantiomer. The Boltzmann-averaged VCD spectrum of a considered 
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eight low-energy lying conformers for the (S)-enantiomer, obtained after geometry 
optimization using DFT at the B3LYP/6-31G(d) level, was calculated as a H-bonding
dimer with formic acid to provide gas phase calculations with a better approach to 
the solution environment (280). The comparison of the observed-to-calculated VCD 
spectra matched therein clearly, mainly in fundamental vibrations at the 1,350–
1,100 cm−1 region, confirming the (2S) configuration assignment. Moreover, a VCD 
simulation with fragment model 203, calculated also as a H-bonding dimer with
formic acid, was performed and compared with the VCD simulation of (S)-201, 
allowing the prenylated signatures (encircled bands) to be uncovered, as shown in 
Fig. 64.
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Fig. 64 DFT calculated VCD spectra of H-bonded heterodimers (a) (S)-201-(HCO2H) and (b) 
(S)-203-(HCO2H) using the B3LYP/6-31G(d) level. (Adapted from (279))
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Example 6
Absolute configuration assurance for two chiral chromanes, peperobtusin A (204) 
and 3,4-dihydro-5-hydroxy-2,7-dimethyl-8-(3″-methyl-2′-butenyl)-2-(4′-methyl- 
1′,3′-pentadienyl)-2H-1-benzopyran-6-carboxylic acid (205), isolated as racemates 
from the leaves of Peperomia obtusifolia (Piperaceae), was carried out by VCD 
spectroscopy (281). Resolution was achieved by enantioselective HPLC. DFT pre-
optimized calculations at the B3LYP/6-31G(d) level of theory were performed on
fragment molecules (R)-206 and (R)-207 to efficiently share computational 
resources. An initial conformational search using MM+ and MMFF force fields led 
to 44 conformers for 206. After adding the isoprenyl groups, 53 conformers were 
found as a result of a constrained search and were geometry pre-optimized. Ten 
conformers were chosen and four of them, representing 75% of the population, 
were taken to calculate the Boltzmann-weighted VCD spectrum of 206. A similar 
procedure was applied to find the 11 conformers selected for obtaining the 
Boltzmann-weighted VCD spectrum of 207. The in silico comparison of calculated 
and experimental spectra for both chromones was used to determine the absolute 
configuration of (+)-206 and (+)-207, with both being (R). Fundamental bands in 
VCD spectra of independent conformers suggest that the isoprenyl group is in axial 
orientation, not in equatorial orientation as was assumed by the empirical ECD 
helicity rule for chromanes, by means of which the (S) configuration of (+)-206 was 
assessed incorrectly (282).
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Example 7
A series of montanine-type alkaloids (208–210) was obtained by rearrangement of 
haemanthamine-type alkaloids induced by halogenated reactants (Fig. 65) (283). The 
relative stereochemistry was established by 2D-NMR spectroscopy. The absolute
configuration of C-2, C-3, C-4a, and C-11 was allotted by VCD methodology applied 
to 208. The measured VCD spectrum was compared with the conformational average 
calculated DFT-VCD spectrum. Initially, a full minimization of the molecule, carried 
out by MMFF force field, provided the global minimum conformer. This structure 
was used as the starting point for a conformational search performed using the Monte 
Carlo method to afford four conformers in the initial 40 kJ/mol. Based on energy
contribution to population analysis, only two structures remained useful and were 
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submitted to geometry optimization using DFT at the B3LYP/6-31G(d) level, giving
rise to two O-CH3 rotamers with essentially identical skeleton conformation, which
were re-optimized using B3LYP/DGDZVP and B3PW91/DGDZVP levels of theory
before calculating their VCD spectra. Anharmonicity factors of 0.98 and 0.97 for the 
B3LYP/DGDZVP and for the B3PW91/DGDZVP methods, respectively, were
applied to the correct frequency values. The agreement between VCD calculated and 
experimental spectra confirmed the absolute configuration assignment of (+)-monta-
nine as the (2S,3S,4aS,11S)-208 enantiomer.

Fig. 65 Semi-synthesis route to montanine-type alkaloids

Example 8
The application of VCD spectroscopy to the structural analysis of naturally occur-
ring glycoconjugates is scarce. Aromatic plant glycosides such as eleutheroside B1
(211) and salicin (212) have interesting biological properties (284). The stereo-
chemistry at the anomeric carbon of aromatic glycosides α-phenyl glycoside (213), 
α-p-nitrophenyl glycoside (214), β-phenyl glycoside (215) and β-p-nitrophenyl gly-
coside (216) has been explored by a complementary VCD approach revealing that 
vibrational motion on the aglycone part provides information of structure of the 
sugar residue (284). The axial aromatic glycosides 213 and 214 exhibit a negative 
band at around 1,230 cm−1, assigned to the stretching motion of the glycosidic 
oxygen and aromatic carbon, while equatorial 215 and 216 show flat features in this 
region. The same observation has been reported for the VCD spectra of disaccha-
rides. Hence α-glycosidic-linked disaccharides give rise to a negative band around
1,145 cm−1, while no bands are observed for β-glycosidic disaccharides (285).
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Example 9
With the aim of establishing a confident chiroptical method to establish the absolute 
configuration of sulfur-containing cruciferous phytoalexins, the VCD methodology 
was applied to (+)-(R)-methyl p-toluenesulfinate (217), a model sulfinate of known
stereochemistry, and to a synthetically prepared cruciferous phytoalexin, (–)-brassica-
nal C (218), of natural origin (286). Phytoalexins are antimicrobial secondary metabo-
lites produced de novo after their exposure to physical, biological or chemical stress as 
exemplified by plants of the family Cruciferae, which include important vegetable 
crops inclusive of cabbage, broccoli, cauliflower, and mustard. DFT calculations were 
initiated with geometry optimization of 18 conformers for (R)-217 and 36 for (S)-218, 
at the B3LYP/6–31G(d) level of theory. Some of the initial conformers converged to
the same structure, thus further optimization at the DFT/B3LYP/6-311+G(2df,2p)
level of theory led to three and four stable conformers for (R)-217 and (S)-218, respec-
tively. VCD spectra were calculated at the same level, and data of independent con-
formers were averaged to a Boltzmann population, obtaining the final spectra. The 
sulfonyl S = O stretching vibration in (R)-217 appeared as a strong band around 
1,125 cm−1 in the absorption spectrum. Signated bands at around 1,140 cm−1 in the 
VCD spectrum were assigned to S = O vibration and C-7 deformation. The observed 
VCD spectrum showed good agreement with the calculated one in their frequencies 
and relative intensities, therefore confirming the (R) assignment. Furthermore, even 
though broadening was observed in the experimental VCD spectrum of (S)-218, likely
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due to intermolecular H-bonding interactions between the C-8 carbonyl of one mole-
cule and the N-1 amino group of the other molecule, the calculated VCD features 
reasonably agrees with the experimental ones, thus confirming the (S)-configuration 
assignment.
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Example 10
The indole-related phytoalexins, (S)-(–)-spirobrassinin (219) and (+)-(R)-1- 
methoxyspirobrassinin (220), isolated from plants in the family Cruciferae, 
interestingly have opposite absolute configurations at the spiro ring junction, 
suggesting that N–OCH3 has an effect on their biosynthesis pathways. The 
 absolute configuration of phytoalexin (+)-(R)-219 and (–)-(2R,3R)-1-
methoxyspirobrassinol methyl ether (220) was assured by VCD measurements 
(287). Comparison of experimental VCD spectra of (–)-(S)-219 and (+)-(R)-220 
show bands of opposite sign (Fig. 66). To determine the absolute configuration of 
(–)-221 an initial conformational analysis was conducted on (2R,3R)-221 using 
the MMFF94S force field, selecting the 11 lowest-energy conformers so as to 
achieve a cumulative Boltzmann-weighted population sum over 95%. Geometry
optimizations, and IR and VCD spectra were calculated using DFT calculations
at the B3PW91/6-31G(d,p) level. Between the observed and calculated VCD
spectra, the signs of the major VCD bands showed reasonable agreement to sug-
gest that the absolute configuration of naturally occurring (–)-221 is indeed 
(2R,3R).
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Fig. 66 Observed VCD spectra of indole-related phytoalexins: (a) (–)-(S)-spirobrassinin (219), 
(b) (+)-(R)-1-methoxyspirobrassinin (220) and (c) (–)-(2R,3R)-1-methoxyspirobrassinol methyl 
ether (221). (Adapted from (287))

Example 11
The stress-induced cruciferous phytoalexin metabolites (–)-(S)-dioxybrassinin 
(222) and (–)-(S)-3-cyanomethyl-3-hydroxyoxindole (223), first isolated from 
Pseudomonas cichorii-inoculated cabbage species (Brassica oleracea), were inves-
tigated for their absolute configuration by VCD spectroscopy (288). Conformational 
analysis was carried out using the MM2+ force field. Geometry optimizations using
the DFT B3LYP/6-31G(d,p) method resulted in conformers differing in the orienta-
tion of the OH group and the side chain. IR and VCD of Boltzmann average con-
former spectra, calculated at the same level of theory, showed three distinctive 
signated bands: one near 1,730 cm−1 (assigned to νC = O stretch contribution), 
another at 1,620 cm−1 (assigned to aromatic ring stretching), and the third at 
1,470 cm−1, for which the signs are in agreement with the observed VCD spectra, 
allowing one to conclude that naturally occurring (–)-222 and (–)-223 are both in 
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Example 12
The absolute configurations of the podophyllotoxin-related lignans 225–228, iso-
lated from an ethanol extract of Bursera fagaroides (Burseraceae), were assessed by
VCD-DFT (289). This resinous extract showed significant cytotoxic activity in a 
human colon adenocarcinoma (HT-29) screening test. The stereochemistry of the
lignans, (–)-deoxypodophyllotoxin (225), (–)-morelensin (226), (–)-yatein (227), 
and (–)-8′-desmethoxyyatein (228) was proposed according to those of the known
bioactive lignans (–)-(2R,2′R,3R,3′R)-podophyllotoxin (224) and its acetyl deriva-
tive, and corroborated by VCD curve comparison of the DFT calculated spectra of 
224 and 225 with the corresponding observed VCD spectra. Molecular modeling of 
(2R,2′R,3R,3′R)-224 and (2R,2′R,3′R)-225 started with a MMFF94 Monte Carlo 
search, from different starting geometries, to cover the conformational hypersur-
face, affording 20 conformations for 224 and 11 conformations for 225. Geometry
optimization using DFT at the B3LYP/DGDZVP level derived in 11 stable con-
formers for 224 and 9 for 225, in arrangements where dynamics is observed in the 
methoxy groups, but the molecular scaffold practically remains without conforma-
tional change. VCD spectra were calculated at the same level of theory and data 
were treated as conformational ensembles averaged by Boltzmann distribution using 
free energies. Good agreement of observed and calculated VCD spectra, along with
spectral similarity index (SE) values of 77.2% for (–)-(2R,2′R,3R,3′R)-224 and of 
86.5% for (–)-(2R,2′R,3′R)-225, confirmed the absolute configuration assignments. 
The experimental VCD spectra of related lignans (–)-226, (–)-227 and (–)-228 were 
compared to those of podophyllotoxins (–)-224 and (–)-225 (Fig. 67). The fact that 
all five spectra displayed the same phase pattern is indicative that lignans 225–228, 
isolated from Bursera fagaroides, and (–)-podophyllotoxin (224), belong to the 
same enantiomeric series. Differences in molecular flexibility between the flexible 
dibenzyl butyrolactone lignans (2R,2′R)-227 and (2R,2′R)-228, and core-rigid 
(2R,2′R,3R,3′R)-224, (2R,2′R,3′R)-225 and (2R,2′R,3′R)-226, were made evident 
by the broadening of most signals in the VCD spectra of the first pair. Indeed, a 
conformational Monte Carlo search carried out for 227 and 228 afforded 60 and 45 
conformers, respectively, a larger number of conformers than for 224 or 225.

the (S) configuration. Vibrational modes of the stereogenic center C-3 were not 
isolated. The induced chirality observed for the carbonyl and aromatic VCD bands 
come from coupled vibrational chirality transfer from C-3, a useful way to deter-
mine the absolute configuration of tertiary alcohols in phytoalexin natural products 
that cannot otherwise be determined easily.
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Fig. 67 Observed VCD spectra of podophyllotoxin-related lignans (–)-(2R,2′R,3R,3′R)-
podophyllotoxin (224), (–)-(2R,2′R,3′R)-deoxypodophyllotoxin (225), (–)-(2R,2′R,3′R)-
morelensin (226), (–)-(2R,2′R)-yatein (227) and (–)-(2R,2′R)-8′-desmethoxyyatein (228). 
(Adapted from (289))

Example 13
Optically active antipodes of the nyasol norlignans (+)-229 and (–)-230, naturally 
occurring in Asparagus africanus and Anemarrhena asphodeloides, respectively, 
were given absolute configuration assignments by VCD spectroscopy (290). The 
conformational search of (S)-nyasol using MMFF force field and two DFT meth-
ods: B3LYP/6-31G(d,p) and B3LYP/AUG-cc-pVDZ, provided eight stable con-
formers, within 2 kJ/mol, from 26 found in the initial exploration. Having many
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conformations to deal with represents a challenge in VCD studies, since the bunched 
arrangements generates several bands that are either broad signals or extinguish one 
another, increasing demands on the signal-to-noise ratio of the instrument. 
Furthermore, the presence of intermolecular H-bonding in molecules with hydroxy
groups, such as nyasol, also aggravates the broadening and promotes frequency and 
intensity signal changes. For (S)-nyasol, the strong positive signal at 1,510 cm−1, 
observed in the VCD spectrum in a DMSO-d6 solution, and both the 1,650–1,590 
and 1,000–800 cm−1 regions of a KBr pellet, were the spectral signatures used to
assign the (+)-(S)-nyasol (229) absolute configuration and consequently that of 
(–)-(R)-nyasol (230). The hinokiresinol (+)-(R)-(231), a norlignan with an antiplas-
modial effect, was correlated chemically to (+)-(S)-nyasol (229), allowing its abso-
lute configuration to be confirmed.
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Example 14
Secolignans 232 and 233, extracted from the aerial parts of the perennial herb 
Peperomia blanda, were assigned with unambiguous (+)-(2S,3S,5S)-232 and 
(–)-(2R,3S,5S)-233 absolute configurations by VCD spectroscopy (291). Secolignans 
are known constituents of certain traditional Chinese medicines used as anticancer
drugs. Their chiral architecture can be described rapidly by focusing sight at the C-5 
stereogenic center substituted with two different aromatic rings and a trans-γ- 
butyrolactone in 232, but a cis-γ-butyrolactone in 233. Two-dimensional NMR
spectroscopy along with H-2 irradiated NOE enhancements, sustained the relative 
stereochemistry proposed for the γ-butyrolactone ring in both secolignans. The cis 
and trans stereochemistry was also confidently differentiated in the 1,500–
1,000 cm−1 region of the experimental VCD spectra (Fig. 68).
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The assignment of absolute configuration for 232 and 233 was accomplished 
by comparison of the experimental with the calculated, Boltzmann average of 
eight conformers each, with the VCD spectra at the B3LYP/6-31G(d) and
B3PW91/TZVP levels of theory, respectively (Fig. 68). Secolignan 232 was 
found to have the same structure and stereochemistry reported for peperomin B,
isolated from Peperomia japonica, for which the absolute configuration was 
deduced from ECD as (+)-(2S,3S,5S). However, ECD analysis of 232 could not 
reproduce that of peperomin B, and, moreover ECD could not distinguish between
the (5R)- and (5S)-epimers of 232. In contrast, VCD neatly confirmed the 
(2S,3S,5S) absolute configuration for (+)-232, providing points of discrepancy 
between the signs and intensities of the bands at around 1,290 cm−1 in the VCD 
spectra of the C-5 epimers.

Fig. 68 Comparison of the experimental and calculated VCD spectra of (+)-(2S,3S,5S)-secolignan 
232 (bottom) and (–)-(2R,3S,5S)-secolignan 233 (top). (Adapted from (291))
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5.2.6 Other Natural Products

Alkaloids already discussed in this chapter include (+)-(2R,7S,20S,21S)-schizozygine 
(6) (13), (–)-(2R,7R,20S,21S)-isoschizozygamine (7) (14), (+)-(1R,3R,5S,6R,2′S)-
6β-hydroxyhyoscyamine (22) (55), (–)-(1S,3S,5R,6S,2′S)-6β-hydroxyhyoscyamine 
(23) (55), (–)-(1S,3S,5R,6S)-3α,6β-diacetoxytropane (30) (75), cinchonidine (73) 
(190), and cinchonine (74) (190).

Example 15
Crassipins 234–237, isolated from the rhizomes and roots of the fern Elaphoglossum 
crassipes, are terpenylated acylphloroglucinols with one or two chiral centers, at 
C-4 in 234 and 235, and at C-4 and C-2′ in 236 and 237, for which the absolute con-
figurations were analyzed from ECD and VCD studies (292). After the structures of 
the crassipins were established by 1H, 13C, and 2D-NMR experiments, along with
high-resolution mass spectrometry, the ECD spectrum of (+)-234 was compared to the 
TD-DFT spectra of the (4R) and (4S) enantiomers calculated at the B3LYP/6-31G(d)
level of theory on geometry-optimized structures. The pattern of the signated bands 
(+,–,+,+,–) in the experimental spectrum was in good agreement with the pattern 
observed for the (4R) enantiomer, thus assignment of (+)-(R)-234 and (+)-(R)-235 fol-
lowed. Regarding the absolute configuration assignment of the C-2′ chiral center in 
crassipin epimers (+)-236 and (+)-237, it was found that the experimental ECD spectrum 
of (+)-236 was identical to that of (+)-234, thus the opportunity to assign the C-2′ abso-
lute configuration by ECD was revoked by this unfortunate spectral resemblance. The
predominant dissymmetric character of C-4 over C-2′ was also evident in VCD spectros-
copy, since the experimental VCD spectrum of (+)-236 matched well with the weighted 
average simulated VCD spectra of either (4R,2′R)- or (4R,2′S)-epimers that were calcu-
lated at the B3LYP/6-31G(d) level of theory. In addition, the experimental ECD and
VCD spectra of (+)-237 were identical to those of (+)-236. In sum, the absolute configu-
ration at C-2′ could not be established either by the ECD or VCD techniques; however, 
the epimeric nature of 236 and 237 was indeed confirmed by NMR spectroscopy.
Compound 234 showed antidepressant activity in an in vivo test with mice.
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Example 1
The absolute configurations of four 3α,6β-tropanediol monoesters (238–241) iso-
lated from a Schizanthus species, were determined by VCD methodology (77). 
Since tropane alkaloids appear in their host plants as complex mixtures, the
6β-hydroxy-3α-senecioyloxytropane (238), from S. grahamii, is difficult to isolate 
as a pure sample and was obtained as a mixture (7:3) with 6β-angeloyloxy-3α- 
hydroxytropane (240). A mixture (69:31) of 3α-hydroxy-6β-tigloyloxytropane 
(239) and 3α-hydroxy-6β-senecioyloxytropane (240) was also isolated from S. 
pinnatus.

Experimental VCD spectra were recorded for tropane 238 and for the  mixtures 
mentioned above. Conformational average VCD spectra were calculated starting 
with an initial search of conformers distribution using the Monte Carlo random 
method with the MMFF94 force field, followed by optimization of the low energy 
conformers using the DFT B3LYP/6-31G(d) method. Two sets of topomers were
found, one having the N-Me group in the axial position with respect to the 
 six-membered ring, and the other in an equatorial position. As observed for analo-
gous tropanes (55, 75), hydrogen bonding between the hydroxy group at C-6 and 
the nitrogen atom for tropane 238 favors conformers with the N-Me group orien-
tated at the axial position. In the absence of H-bonding interaction, the preferred
topomers are those with the N-methyl group oriented to the equatorial position, 
such as in the case for tropanes 239 and 240. Geometry optimization using DFT at
the B3LYP/DGDZVP level of theory preceded VCD spectra calculations at the
same level. Eight conformers were found for 238, twelve for 239 and nine for 240, 
accounting for 98.5%, 96.4% and 99.4%, respectively, of the conformational map 
considering a cutoff of 10 kJ/mol. The Boltzmann-averaged VCD spectrum of 238 
matched reasonably well with the observed VCD spectrum. The signs of the signals 
in the fingerprinting region of the 3α,6β-tropanes (1,150–950 cm−1) (75) were 
(+,+,–), confirming the (1R,3R,5S,6R) absolute configuration for tropane 238 
(Fig. 68). Similarly, absolute configuration assignments of 239 and 240 were fol-
lowed by the sign and intensity of the fingerprint bands in the calculated and 
observed VCD spectra of their (7:3) mixture (Fig. 69). The pattern (+,+,–) assured 
the (1R,3R,5S,6R) configuration for these compounds. The configuration assign-
ment of tropane 241 was performed by spectral analogy, using the experimental 
VCD spectrum of the (7:3) mixture of 238 and 241, where the pattern (+,+,–) 
assured its (1R,3R,5S,6R) configuration. This has been the first case where the abso-
lute configuration of natural products is determined by VCD spectral analogy, a 
recurrent methodology used in ORD and ECD.
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Fig. 69 Comparison of the observed VCD spectra of (1R,3R,5S,6R)-6β-hydroxy- 3α-
senecioyloxytropane (238), the (7:3) mixture of (1R,3R,5S,6R)-3α-hydroxy- 6β-tigloyloxytropane 
(239) and (1R,3R,5S,6R)-3α-hydroxy- 6β- senecioyloxytropane (240) and the (7:3) mixture of 238 
and (1R,3R,5S,6R)-6β-angeloyloxy- 3α- hydroxytropane (241). (Adapted from (77))

Example 2
Indoline alkaloids 242–248, isolated from Geissospermum reticulatum leaves and 
bark, were structurally elucidated by 1D- and 2D-NMR spectroscopy and crystal
diffraction (293). The structure of these aspidospermatan-type alkaloids is complex,
but, however, the C-2, C-7, and C-15 relative stereochemistry is determined by their 
singular skeleton shape which resembles a butterfly, where the chiral centers C-7
and C-15 are the head and the tail. Epoxygeissovelline (+)-242 is the essential com-
ponent of G. reticulatum, therefore it was chosen to obtain its absolute configuration 
by VCD spectroscopy, allowing pursuit of the absolute configuration deductions for 
alkaloids 243–248 under the consideration that all aspidospermatan-type alkaloids
from G. reticulatum share a common biosynthesis pathway (294). The VCD spec-
trum of the simulated (2R,7R,15R,17S,19S) enantiomer, for which the co-ordinates 
were obtained from the (+)-242 crystal structure, was obtained as the weighted aver-
age of four conformers at the B3LYP/DGDZVP level of theory. Two conformers are
highly populated (92.4%), and differ in the rotation of the OMe group at the indoline 
moiety. The C–O stretching vibrations, allied to the epoxy and methoxy groups, may 
be expected to show absorption in the 1,270–1,230 cm−1 region. Indeed there is an 
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intense and broad band at the IR spectrum, which turned into a positive band in the
VCD spectrum appearing near 1,250 cm−1, in the experimental spectrum, and near 
1,270 cm−1 in the calculated spectrum (Fig. 70). The (+)-242 enantiomer was con-
firmed confidently to have the (2R,7R,15R,17S,19S) absolute configuration, the con-
figuration that was drawn arbitrarily from the crystal structure, by its quantitative 
assessment using CompareVOA software (130), which provided a higher similarity 
index for the correct enantiomer SE = 71.7 than for the antipode S−E = 22.2.
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Fig. 70 Comparison of the experimental and calculated VCD spectra of (+)-(2R,7R,15R,17S,19S)-
10-demethoxy-12-hydroxy-17,19-epoxygeissovelline (242). (Adapted from (294))
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Example 3
Iridoid natural products are distributed widely in higher plants and are known to
exhibit antifungal, antibacterial, and potential antitumor activity. (+)-Plumericin 
(249), and (+)-isoplumericin (251), isolated from Plumeria rubra (125), and 
(–)-prismatomerin (252), isolated from Prismatomeris tetrandra (295), were inves-
tigated structurally by VCD spectroscopy. The connectivities and relative stereo-
chemistry of 249 and 251, established previously by X-ray crystallography,
confidently contributed to their structural analysis, but prior contradictory absolute 
configuration reports prompted their confirmation by VCD.

A search for the conformations of (1R,5S,8S,9S,10S)-249 using the Monte Carlo 
MMFF94 force field identified four stable conformations, which were reoptimized 
using DFT at the B3LYP/6-31G(d), B3LYP/TZ2P, and B3PW91/TZ2P levels.
Conformational variations at the methoxycarbonyl group and rings were found. The 
harmonic vibrational frequencies, and dipole and rotational strengths, calculated at 
the B3LYP/TZ2P and B3PW91/TZ2P levels, were treated as Lorentzian bandshapes, 
and Boltzmann statistics were applied to data of the two most abundant conformers. 
The same treatment was applied to (1R,5S,8S,9S,10S)-251. The B3PW91/TZ2P
spectra were in better agreement with the experimental one, allowing the unambigu-
ous absolute configuration assignment of the naturally occurring (+)-249 as 
(1R,5S,8S,9S,10S) and not as its enantiomer (1S,5R,8R,9R,10R)-250 (Fig. 71). 
Likewise, the absolute configuration of (+)-isoplumericin (251) was confirmed to be 
(1R,5S,8S,9S,10S).
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(–)-Prismatomerin (252), a new cytotoxic iridoid showing antitumor activity by 
interfering with mitotic spindle formation (296), was allotted its absolute configura-
tion by VCD measurements of the acetate derivative (–)-253 to minimize intermo-
lecular aggregation likely affecting the parent compound at the concentrations used
typically in the experiment. Considering the four stable conformers for (1R,5S,8S,9
S,10S)-249, a conformational search for (1R,5S,8S,9S,10S)-253 was carried out by 
replacing the methyl group at the exocyclic alkene by a phenyl acetate group in each
conformer. Subsequent calculations of one-dimensional B3LYP/6-31G(d) potential
energy surface scans gave rise to 12 additional conformations. These 12 conformers 
were reoptimized at the B3LYP/TZ2P and B3PW91/TZ2P levels and their harmonic
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frequencies, dipole and rotational strengths calculated at the same level of theory. 
The qualitative agreement of experimental and B3PW91/TZ2P VCD spectra of (1R,
5S,8S,9S,10S)-253 confirmed the absolute configuration assigned to (–)-253 and 
consequently to the new iridoid (–)-252. Remarkably, the absolute configurations of
(+)-249 and (–)-252 are identical. However, they rotate the plane of polarized light
to opposite directions confirming thereby the ambiguity existing in the assignment 
of absolute configuration of structurally related compounds from the sole use of 
empirical optical rotation measurements.

Fig. 71 Comparison of the observed VCD spectrum of (+)-plumericin (249) and the calculated 
VCD spectra of enantiomers 249 and 250. (Adapted from (125))

Example 4
Taking into consideration that in a VCD spectrum the rotational strengths are sig-
nated bands that are smaller than the dipole strengths, it is advisable to choose key
vibrational modes to assign absolute configurations confidently. The steps can be 
illustrated by following absolute configuration determination of the seven- membered 
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lactone (+)-klaivanolide (254) isolated from Uvaria klaineana (Annonaceae), a natu-
ral product with potent in vitro activity against the parasite responsible for visceral 
leishmaniasis. IR and VCD determinations were performed using DFT at the
B3PW91/TZ2P level (297). A clear spectroscopic manifestation of chirality was 
observed in the 1,300–1,200 cm−1 region (Fig. 72) where two absorption bands in the 
IR, change to positive and negative bands in VCD with decreased intensities that
prove the presence of the expected Cotton effects. Thus, bands at 1,275 cm−1 and 
1,232 cm−1, corresponding to lactone C–O stretches, and the smaller negative peak at
1,198 cm−1, due to an acetate C–O stretch, were important clues to assign configura-
tion of the stereogenic C-7 center. A conformational search carried out using the 
MMFF94 force field provided 33 stable conformers. The calculated VCD spectrum 
was averaged between the most populated five conformers obtained by energy opti-
mization and frequency analysis using DFT B3LYP/6-31G(d), followed by B3PW91/
TZ2P level calculations. As observed in Fig. 72, the agreement in VCD spectral com-
parison of experimental (+)-254 and the conformationally averaged (S)-254 proved 
the (+)-(S)-254 assignment to be correct.

Fig. 72 Comparison of the observed (a) IR and (b) VCD spectra of (+)-254, and (c) the calculated 
spectrum of (S)-254. (Adapted from (297))
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Example 5
One of the concerns in the absolute configuration determination of natural products 
by VCD spectroscopy is the selection of the solvent (7, 52, 66, 157, 201). The ideal 
choice contemplates a transparent solvent in the IR region of interest and the solu-
bility of the sample; these two parameters may not always match. Examples are 
found in ginkgolides A (255), B (256), C (257), J (258), and M (259), terpene trilac-
tones isolated from the Ginkgo biloba tree (66).
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Ginkgolide B (256) has potent platelet-activating-factor receptor antagonist 
activity. Ginkgolides are core-rigid molecules with several hydroxy groups, thus
their polar nature prevents the use of solvents such as CDCl3 and CCl4, which are 
commonly employed in VCD. The fingerprint 1,300–850 cm−1 region of VCD 
spectra is complex and partially obscured in DMSO-d6, a solvent in which gink-
golides are soluble, since the spectral transparency range of DMSO-d6 is 2,100–
1,100 cm−1. Alternatively, CD3CN may be chosen to record VCD spectra of 
ginkgolides even though the samples are not completely soluble in this solvent.
The VCD spectral comparison of experimental and calculated spectra in the finger-
print region is shown in Fig. 73. Boltzmann weighted spectra were averaged by 
free  energies of the two most stable conformers calculated with DFT at the 
B3LYP/6-31G(d) level, followed by single point calculations at the B3LYP/6-
311 + G(2d,2p) level of theory. Associated with δC–O–H bending vibration, are
bands at 1,170 cm−1 and 1,134 cm−1, labeled as bands E and D in the CD3CN trace 
line. The sign and intensities of bands E and D are in clear agreement with the 
calculated spectra, as well as the signated negative (+,–) couplet at the carbonyl 
region, thereby confirming the assignment of the absolute configuration shown for 
ginkgolide B in structure 256. Frequency differences between the measured and 
the calculated VCD spectra of ginkgolide B, at the carbonyl and other wavenum-
bers, were conceived as the result of interactions with solvent, intermolecular 
ginkgolide B–ginkgolide B interactions, and the potential presence of other con-
formers in solution (298).
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Fig. 73 VCD spectra comparison for ginkgolide B (256). From bottom to top the spectra corre-
spond to: experimental in KBr, experimental in CD3CN, experimental in DMSO-d6 and DFT cal-
culated at the B3LYP/6-31G(d) level. (Adapted from (66))

Example 6
The therapeutic effect of Gingko biloba extract in patients suffering dementia, 
which is attributed to ginkgolide terpene trilactones, has been tested by searching
for intermolecular interactions between ginkgolides A (255) B (256), C (257) 
bilobalide B (260) as well as ginkgolide A monoether (261) and ginkgolide A
diether (262) with amyloid peptide Aβ(25–35), using VCD methodology (299). The 
aggregation phenomenon in peptides, as investigated by VCD, is well documented 
(300, 301).
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The protein fibril growing process is related to the detriment of neurons that 
cause Alzheimer’s and Creutzfeldt-Jakob diseases. Intermolecular recognition inter-
actions were searched at the vibrational band frequency of the carbonyl groups in 
ginkgolides and bilobalide located at around 1,790 cm−1 and the vibrational bands 
of amide I in Aβ(25–35) peptide located in the 1,640–1,610 cm−1 region, expecting 
to observe changes in bands position or intensity. The study was carried out in an 
EtOD/D2O solvent mixture and the predicted VCD spectra were calculated with 
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DFT at the B3LYP/6-31G(d) level of theory. Theoretical VCD spectra in the
carbonyl region of the gingkolides were analyzed in light of normal mode com-
positions indicating that the band intensities and signs are sensitive to the nature 
of the coupling among different groups. The effect of ginkgolides in modulating
peptide aggregation was found to be small, but, however, changes in VCD intensity 
suggest that ginkgolide A (255) reduces aggregation whereas bilobalide B (260) 
promotes it.

In a related vibrational study of aggregation phenomena, it was demonstrated 
delicately that VCD is a sensitive tool to study protein insulin fibrillation forming 
chiral streamer scaffolds in the solution phase (23). The pH dependence of the fibril
stereo-structure analyzed in the enhanced normal and opposite sign VCD bands, in 
the amide I region, represents both a normal and a reversed sense of supramolecular 
chirality (Fig. 74).

Fig. 74 The sense of chirality in insulin fibrils (a) normal (b) reversed and fragments of the VCD 
spectra in the amide I bands changing with pH. (Adapted from (23))

Example 7
The absolute configurations of hexylitaconic acids (+)-263 and (–)-264, inhibitors 
of p53-HDM2 proteins interaction, of importance in cancer therapy, were confirmed
by VCD spectroscopy (302). Enantiomer (+)-263 is found in Nature as a root growth 
stimulator of lettuce seedlings from cultivated Aspergillus niger, whereas its enan-
tiomeric form (–)-264 is isolated as a metabolite produced by the marine endophytic 
fungus Apiospora montagnei. A racemic mixture of hexylitaconic acid was pre-
pared by synthesis and separated by enantioselective HPLC. To avoid possible for-
mation of complexes by intra- or intermolecular H-bonding, the methyl ester
derivatization strategy on enantiomerically pure samples, to produce (+)-265 and 
(–)-266 independently, was employed to conduct VCD measurements. A conforma-
tionally restricted search for simulations was performed with the MMFF94S force 
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field, followed by DFT at the B3LYP/6-31++G(d,p) level of theory, on the alkyl
chain-fixed (R)-264, providing 32 low-energy lying conformers, which were 
reduced to 14 conformers (over 95% of the population) in the Boltzmann-averaged 
statistics treatment of IR and VCD data. Considering that the major VCD bands of
(–)-264 agree reasonably with the calculated enantiomer (R)-264, in particular in 
the couplet found at 1,730 cm−1 (C = O stretch), the configuration (–)-(R)/(+)-(S) 
was determined confidently. This assignment was confirmed by the absolute con-
figuration suggested by VCD measurements of the lactone derivative (+)-(R)-267 
obtained by a two-step synthesis from (–)-(R)-264. The stereochemistry of (–)-(R)-
264 is opposite to that previously reported by ECD (303).
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Example 8
The 5-substituted-2(5H)-furanones, sotolon (–)-(268) and maple furanone (+)-
(269), responsible for the sugary sweet aroma in foodstuffs and drinks such as cane
sugar, maple syrup and wine, were studied by VCD to clarify the relationship 
between their absolute configurations and odiferous properties (304). Isomeric sep-
arations were afforded by CO2 supercritical fluid chromatography using chiral sta-
tionary phase columns; the enantiomers collected were subjected to VCD 
measurements. A DFT conformational search on these rigid structures resulted in 
one conformer for (R)-268 and three low-lying conformers for (R)-269. VCD spec-
tra of enantiomers (–)-268 and (+)-269 agreed with simulated VCD spectra of (R)-
268 and (R)-269, thus confirming the (–)-(R)-268 and (+)-(R)-269 absolute 
configuration assignments. Interestingly, this pair of closely structurally related 
furanones has opposite optical rotations even though both are (R). However, the
analogous odiferous compounds (+)-(R)-270 (305, 306) and (+)-(R)-271 (307), with 
equal structural changes to the 268 and 269 pair, display the same optical rotation 
and configuration. The absolute configuration assignments of 270 and 271 were also 
determined by VCD. The positive Cotton effect of the band around 1,335 cm−1 in the 
VCD spectra of (–)-268 and (+)-269 was attributed to C-H bending vibration at the
stereogenic center (Fig. 75). Remarkably, this distinctive signal can be taken as a
reliable stereochemical marker of flavorous furanones. VCD spectral differences
between (–)-268 and (+)-269 appeared around 1,254 cm−1.
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Fig. 75 Observed VCD spectra of sotolon (268) and maple furanone (269). (Adapted from  
(304))

Example 9
The reliability of predicted DFT-VCD spectra in solvation simulated  environments, 
using Continuous Surface Charge (CSC) adapted Polarizable Continuum Model 
(PCM) (143) calculations, as implemented in the Gaussian 09 suite of programs, is
pinpointed through comparison of the solvent- simulated VCD spectrum of (+)-gar-
cinia acid dimethyl ester (274) with the observed VCD spectrum (308). The 
γ-lactone diester 274 is derived from (2S,3S)-2-hydroxycitric acid (272) present in 
the dried rind of the fruit of Garcinia cambogia (Malabar tamarind), which pos-
sesses purported antiobesity properties, among other biological activities. 
Compound 272 undergoes spontaneous lactonization during its isolation to produce 
(+)-(2S,3S)-garcinia acid (273), which exhibits antifungal activity.

HO H

CO2H

272 273, R = H
274, R = CH3

O

CO2R

OH

CO2R

3

2
CO2H

OH
HO2C

O

 

Vibrational Circular Dichroism Absolute Configuration Determination…



426

Fig. 76 VCD spectra of (+)-(2S,3S)-garcinia acid dimethyl ester (274). (Adapted from (307))

To avoid possible H-bonding interaction of the carboxylic acid units in 273 with 
polar H2O or DMSO solvents, VCD measurements were performed on the diester 
derivative 274. Eight conformations of 274 were found to be stable, and thus  subjected 
to geometry optimization using the DFT B3LYP/aug-cc-pVDZ method. Gas phase
average populations remained without significant change respect to population cal-
culated in CH2Cl2. Vibrational absorption and VCD spectra were predicted, at the 
same level of theory, for each conformer and for the population average sum. VCD 
spectra comparison of both, gas phase and solvent simulated, with the observed spec-
trum provided  improvement in solvent PCM over that in gas-phase (Fig. 76). Worthy 
of note, however, is that the adapted non-continuous surface charge PCM was not as 
efficient in simulating solvation as this current version, thus the VCD predicted spec-
trum of 6,6′-dibromo-1,1′-bi-2-naphthol in the gas phase was in better agreement 
with the VCD observed spectrum than the solvent simulated one (309).

Example 10
Dimethyl esters of (+)-(2S,3S)-garcinia acid (GADE) (274), (+)-(2S,3R)-hibiscus 
acid (HADE) (275) and of their corresponding enantiomers 276 and 277 may be 
used to demonstrate the necessity of using more than one chiroptical method to 
assign the absolute configuration of diastereomers (310). Hibiscus acid, isolated
from the calyxes/leaves of Hibiscus sabdariffa (Mathippuli-Roselle plant), is found
commonly in herbal teas. The absolute configurations of GADE (274) (308) and 
HADE (275) were determined by VCD, ECD, and ORD measurements. The PCM,
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implemented in the Gaussian 09 program, was conveniently applied to simulate a
CH2Cl2 solvation environment. An exhaustive conformational analysis method, was 
undertaken to find the stable pseudorotational conformers of HADE (275), includ-
ing manual search and Spartan and Conflex programs, leading to seven conformers 
after the optimization at the B3LYP/6-31G(d) level. Geometry optimization by DFT
using the B3LYP functional and the 6-31G(d) and aug-cc-pVDZ basis sets in the
gas phase preceded IR and VCD spectra calculations. Simulations using the PCM
solvation were carried out by DFT B3LYP/aug-cc-pVDZ. Conformer populations
dictated by free energies were employed to obtain average weighted VCD spectra. 
The experimental IR and VCD spectra for (+)-HADE and (+)-GADE in the finger-
print region were different enough to establish discrimination of these two diaste-
reomers. However, comparison of the predicted VCD spectrum of (2R,3R)-276, 
enantiomer of GADE, with the VCD spectrum of its diastereomer HADE showed
some resemblances. Similarly, the VCD spectrum of (2R,3S)-277, the enantiomer of 
HADE, resembled the VCD spectrum of its diastereomer GADE; these findings
highlight the need to resort to IR spectra to discriminate between diastereomers. By
analogy, VCD may be combined with other chiroptical techniques such as ECD or 
ORD to clarify ambiguities observed by comparison with only one technique (311, 
312), as exemplified by the VCD spectra of diastereomers in this case. The PCM 
simulated VCD spectrum for (2S,3R)-HADE (275) agreed to a larger extent with the 
observed spectrum than the gas phase simulated spectrum, thus confirming its abso-
lute configuration unambiguously.
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In a recent communication (313), it was pinpointed that aggregation phenomena 
that complicate the VCD analyses of garcinia acid (273) and hibiscus acid (278) 
may be avoided by using the corresponding disodium salts. The VCD spectra of the 
salts are clearly featured by a bisignate couplet (–,+) at around 1,624 cm−1 for the 
GADNa salt and a bisignate couplet (+,–) at around 1,616 cm−1 for HADNa salt
(Fig. 77). Alternatively, the anhydride obtained from a cis dicarboxylic acid mole-
cule, as 273, is a good alternative to avoid aggregation phenomena when performing 
chiroptical VCD, ECD, or ORD studies of these polar molecules (313).
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Fig. 77 Experimental VCD spectra of (+)-(2S,3S)-garcinia acid (GA) (273), its disodium sal 
GADNa, (+)-(2R,3S)-hibiscus acid (HA) (278), and its disodium salt HADNa, in D2O. (Adapted 
from (313))

Example 11
Filifolinol (279), isolated from the cuticle of Heliotropium filifolium, together with 
filifolinyl senecionate (280), belongs to a series of unusual spiro natural products of 
mixed biogenesis showing the 3H-spiro-1-benzofuran-2,1′-cyclohexane structures 
(281–284), which exhibit antibacterial and antiviral activities. The absolute configu-
ration of filifolinol acetate (282) was determined by VCD methodology using DFT 
at the B3LYP/DGDZVP level of theory (314). The atomic coordinates from its 
X-ray structure were used as a starting point for the conformational search using the
MMFF force field. Eight conformers were found within a 40 kJ/mol window, but
only two accounted significantly to the average population sum of 99.3%. 
Differences between them are referred only to rotameric orientations of the carbo-
methoxy group in an almost ideal chair conformation. The IR and VCD spectra
were predicted at the same level of theory. The in silico comparison of the simulated 
and the experimental VCD data using the CompareVOA software (129, 130), pro-
vided an anharmonicity factor of 0.983 applied to the frequency coordinate of the 
theoretical spectrum (Fig. 78). The visual similarity with which experimental and 
theoretical plots concurred and confidently allowed assignment of fillifolinol ace-
tate (282) as the (2S,9S,12R)-enantiomer, and consequently this same absolute con-
figuration to the whole series. The sign and intensity of the CO bands in the VCD 
experimental and calculated spectra matched clearly.
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Example 12
Chirality of the enantiomers of flavanone (285), the parent compound of citrus fruits 
flavonoids, was revisited using ECD, OR, and VCD chiroptical methods (315). 
Racemic flavanone was resolved in a HPLC system equipped with a cellulose-
derived enantioselective column coupled to an ECD detector, and to a laser polar-
imeter detector. Inasmuch as the sensitivity of the ECD detector is higher than that 
of the OR detector, a 1 μg sample was enough to observe enantiomeric resolution, 
at 310 nm, using the enantioselective HPLC-ECD arrangement, but 10 μg were 
needed to observe confident enantiomeric separation peaks using the enantioselec-
tive HPLC-OR train, at 670 nm. The first eluted enantiomer was the levorotatory
(negative peak) followed by the dextrorotatory (positive peak) appearing approxi-
mately after two minutes. The experimental ECD spectrum for the (–)-enantiomer 
was featured by three signated bands (–,–,+), which turned into a (+,+,–) trial for the 
(+)-enantiomer. To assign an absolute configuration, a systematic conformational 
search for the (S)-enantiomer was carried out, and the molecule was found to be 
conformationally fixed in one conformer (99%). A full ECD spectrum was 

Fig. 78 Experimental (top) and calculated (bottom) VCD spectra of (2S,9S,12R)-fillifolinol 
acetate (282). (Adapted from (314))
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simulated for the (S)-enantiomer using TD-DFT calculations at the B3LYP/aug-cc-
pVDZ and at the B3LYP/aug-cc-pVTZ levels of theory. The bands in the simulated
ECD spectrum showed the pattern (–,–,+), the same as that of the (–)-enantiomer. 
Thus, the (–)-enantiomer was assigned with the (S)-configuration and the (+)-enan-
tiomer, the (R)-configuration. The use of more than one chiroptical technique to 
assign absolute configuration is always beneficial, although the VCD technique pro-
vides a multiple chiral band test helping to reassure ECD absolute configuration 
predictions based on a substantially shorter number of chiral bands. Indeed, the IR
and VCD spectra of the (S)- and (R)-enantiomers, calculated at the B3LYP/
DGDZVP and B3PW91/DGDZVP levels of theory, visually matched with the (–)-
and (+)-enantiomers, confirming that the absolute configuration assignments pro-
vided by ECD spectroscopy are correct. Figure 79 displays three segments of the 
VCD spectral comparisons of both enantiomers. The quantitative matching between 
experimental and calculated IR and VCD spectra allowed one to conclude that the
B3LYP functional simulate the vibrational spectra of flavanones more accurately
than the B3PW91 functional.

Fig. 79 Comparison of experimental (b) and (c), and calculated (a) and (d), at the B3LYP/
DGDZVP level of theory, VCD spectra of flavanone (285). (Adapted from (315))
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Example 13
(S)-Naringin, obtained from immature grapefruit, is enzymatically hydrolyzed to 
(S)-naringenin (286), a 5,7,4′-trihydroxyflavanone with antioxidant and potential 
anticancer activity. A racemic mixture of flavanone 286 was separated by enantiose-
lective HPLC and the absolute configuration of the enantiomeric pair was confi-
dently assigned using VCD spectroscopy (316). Compound 286 is a polar, 
conformational flexible molecule for which its vibrational analysis had to be carried 
out in acetonitrile-d3, hence the observation spectral window was shortened to the 
1,800–1,150 cm−1 region. Some calculations were performed using the polarizable 
continuum model (141, 142) that simulates the solvent environment. A conforma-
tional search was undertaken to obtain a series of potential energy surfaces using a
combined semiempirical AM1 and DFT B3PW91/TZ2P methodology. Interestingly,
two shallow minima were found when the C-1′–C-2 bond is rotated, librating two 
close, but not identical, conformers having both the phenol ring in perpendicular 
orientation with respect to the chromane moiety. Thus, four conformers were found 
in minimal energy positions, which have as common characteristics the orientation 
of the phenol group to the equatorial chromane position, and the rotameric hydroxy 
at C5 forming an intramolecular H-bonding with the carbonyl group. The vibration
movement (316) of the C-1′–C-2 bond is closely related to the intensity and sign of 
the VCD bands that correspond to vibrations at 1,600 cm−1, the broad couplet (+,–) 
at 1,350 and 1,325 cm−1, and the band at 1,250 cm−1. The absolute configuration of 
the enantiomers of 286 was secured as (+)-(R) and (–)-(S).
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Example 14
The marine natural alkaloids citrinadin A (287) and citrinadin B (288), isolated 
from the cultured broth of fungus Penicillium citrinum N059 strain, are pentacyclic 
spiroindolinones that grow in the red alga Actinotrichia fragilis. Citrinadin B shows
moderate cytotoxic activity against murine leukemia L1210 cells (317). The struc-
ture and relative stereochemistry of 287 and 288 were established by two- 
dimensional NMR data and the absolute configuration using the ECD and VCD
techniques. In particular, VCD was applied to acquaint the absolute configuration of 
C-21 at the epoxide entity, therefore two chiral epoxides (S)-289 and (R)-290, that 
model the 2,3-epoxy-3-methyl-1-oxobutyl side chain, were synthesized and the 
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VCD spectrum of 287 compared to the VCD spectra of models 289 and 290 at 
around 1,230 cm−1, where these enantiomers show weak mirror-image Cotton 
effects. The negative band at 1,245 cm−1 for 287 matched well with the negative 
band observed for epoxide (S)-289, thus assuring the configuration at C-21 as (S). 
Considering the similarity between the ECD spectra of 287 and 288, the (S) con-
figuration was also assigned to 288 at C-21.
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Example 15
Synoxazolidinone A (291), a marine natural product with antibacterial and antifun-
gal properties, was isolated from the sub-Arctic ascidian Synoicum pulmonaria 
(318). According to a previous ECD stereochemical analysis, the C-10 and C-11 
chiral centers have the (S,S) absolute configuration, and the C-6–C-7 double bond 
(E) stereochemistry. However, NMR spectroscopy suggested the double bond has a
(Z) configuration. Therefore, a stereochemical study of the eight possible configura-
tional isomers was planned using a combination of theoretical NMR, along with the
use of ECD, ROA, and VCD methods to disclose its relative stereochemistry and
absolute configuration (318). Molecule 291 is highly flexible, thus for every studied 
isomer thirty-six conformers within the first 6.5 kJ/mol were found. Conformers
were minimized at the B3LYP/6-31+G(d,p) level of theory, and those conformers
from the (Z) isomers were further minimized with the larger 6-311++G(d,p) basis
set, using empirical dispersion and considering explicit solvation. The computed 1H
NMR chemical shifts and selected coupling constants suggested the double bond of
291 to have (Z) stereochemistry, and the relative configuration of C-10 and C-11 to 
be (S,R). The ECD spectrum of 291 was calculated at the TD-LDA/SVP/CPCM and
at the higher TD-B3LYP/6-311++G(d,p)/CPCM levels of theory. The comparison
of the experimental with the calculated ECD spectra was ambiguous, giving rise to 
four possible matching isomers (Z,10S,11R), (Z,10S,11S), (E,10R,11S), and 
(E,10R,11R). In addition, the ROA technique provided a reliable stereochemical
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analysis of 291 with differences in sign and intensity of the peaks allied to the
double bond and the C-10 chiral center, leading to assign its configuration either as 
(Z,10S,11R) or (Z,10S,11S) by comparison of the experimental and calculated spec-
tra, which were computed at the B3LYP/6-311++G(d,p)/CPCM level of theory.
From these results it is clear that vibrational spectroscopy presented advantages 
over electronic spectroscopy in the assignment of the stereochemistry of 291, an 
observation confirmed through application of the VCD technique to examine its 
absolute configuration. The experimental IR and VCD spectra were recorded in
CD3OD and DMSO-d6. In the simulated spectra, deuterium exchange of acidic pro-
tons was considered when compared to CD3OD, but no deuterium exchange was 
considered for DMSO-d6. Moreover, cluster geometries with five explicit water 
molecules were considered when comparing with the CD3OD solvent. In all cases, 
visual comparisons of the experimental and the calculated VCD spectra, at the 
B3LYP/6-311++G(d,p)/CPCM level of theory, in the 1,800–1,200 cm−1 region, sug-
gested (Z,10S) is the correct stereochemistry for 291. The (R) absolute configuration 
for C-11 is suggested although not unambiguously confirmed by VCD. Analogously, 
synoxazolidinone C (292), isolated from the same organism, was confirmed to have 
the (Z,10S,13R) stereochemistry when using the VCD technique, although the abso-
lute configuration of C-11 remained elusive due to the closeness between the exper-
imental and simulated VCD spectra found for the (Z,10S,11R,13R) and 
(Z,10S,11S,13R) isomers.
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Example 16
A series of C13-polyketides, produced by the Chaetomium mollipilium  cultivated 
fungus, were intentified structurally by spectroscopic techniques (319). Mollipilin 
293 and the spiroketal 294, which play important roles in C13-polyketide biosynthe-
sis relationships, were selected for VCD studies to analyze the C-7 and C-11 abso-
lute configuration in 293, and the C-7, C-8, and C-11 absolute configuration in 294. 
The agreement of the observed VCD spectrum of 293 with two calculated diastereo-
mers (7S,11R), and (7S,11S), allowed the absolute configuration of C-7 to be 
assigned as (S), but, however, as the calculated spectra of both diastereomers were 
practically the same, the C-11 absolute configuration could not be assessed. 
Transformation of 293 to the 2,4-dinitrophenylhydrazone 295 allowed its crystal 
structure to be obtained, revealing the relative configuration of C-11 as (R). In addi-
tion, the (7S,8S,11R) relative configuration, suggested by NMR, for the spiroketal
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294 was discarded, since the observed VCD spectrum of 294 matched well with the 
calculated VCD spectrum of the (7S,8S,11S)-diastereomer and mismatched with the 
VCD spectrum of the (7S,8S,11R)-diastereomer.
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Example 17
Chaetocin (11S,15S,11′S,15′S)-296, a 3,6-epidithio diketopiperazine fungal metab-
olite with antibacterial function and cytotoxic activity against HeLa cells, was sub-
jected to desulfurization to produce the disulfide derivative 297. ECD and VCD 
studies of 297 were performed to analyze the relative stereochemistry at the C-11, 
C-15, and C-11′, C-15′ reaction center pairs at each fused heterocyclic moiety of the 
dimeric molecule, along with its absolute configuration (320). The desulfurization 
reaction was carried out with triphenylphosphine, an efficient reactant under which 
both retention and inversion of configuration have previously been reported for ana-
log disulfide bridge molecules. Therefore, the three diastereomers (11S,15S,11′S,15
′S)-298, (11S,15S,11′R,15′R)-299, and (11R,15R,11′R,15′R)-300 were considered 
for the electronic and vibrational spectra simulations. According to the stereochemi-
cal outcome of the desulfurization reaction, diastereomer 298 comes from a reten-
tion pathway at both moieties, 299 from a mixed retention-inversion process, and 
300 from inversion pathways. The observed ECD spectrum of 297 was compared to 
the calculated spectra of 298–300 which were obtained with the TD-DFT 
ωB97XD/6-311G (d,p) method. These comparisons invalidated diastereomer 300 as 
a possible reaction product, leaving 298 and 299 as potential products. Nevertheless, 
ECD spectra calculated at the higher ωB97XD/6-311G++(d,p) level of theory
excluded not only diastereomer 300 but also diastereomer 299 as possible products 
of reaction, suggesting the desulfurization of chaetocin 296 proceeded with reten-
tion of configuration at both reactive disulfide bridges to give the chiral diastereo-
mer 298. The stereochemistry of the reaction was confirmed by the VCD technique; 
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since comparing the observed with the simulated spectra for diastereomers 298–
300, at the ωB97XD/6-311G (d,p) level of theory, showed five bands in the 1,425–
1,275 cm−1 region, which clearly matched in sign and frequency for diastereomer 
298, while none of the other diastereomers was found to be in band featured agree-
ment with the observed spectrum (Fig. 80). 

In a complementary study (321), which includes quantum mechanical  calculations 
of transition states, the universality of absolute configuration retention at the bridge-
head carbon atoms of epidithiodioxopiperazines was shown.

Fig. 80 Desulfurization reaction of (11S,15S,11′S,15′S)-3,6-epidithiodiketopiperazine (296)

6  Concluding Remarks

In the contemporary world, no pragmatic advance can be conceived without being 
linked to science. Nature has provided man with inspiring phenomena such as chi-
rality, commonly observed in our daily life, the basis of which rely on dissymmetric 
molecules and the way they interact with each other or with an anisotropic radiation. 
Light in iridescent environments impacts our sense of vision to appreciate the beau-
tiful colors of the rainbow on rainy days. Natural flavors in fruits invite our taste 
sensation to appreciate chirality information hidden within their molecular struc-
tures. Chirality is indeed implicated in most biological important processes, thus to 
find methods that accurately senses this becomes a goal to be reached in chemical 
research. In attaining this goal, solid steps were made initially using anomalous 
X-ray diffraction analysis, for which the practical use has currently been reinforced
with calculations of the Flack (251) and Hooft (252) parameters, then with the ORD
and ECD techniques, and more recently by the ROA, and VCD methods. The
authors hope this chapter will be a useful resource for readers who wish to use VCD 
to investigate chirality.

Vibrational Circular Dichroism Absolute Configuration Determination…



436

Finally, of relevance it is also to mention that a revolutionary concept, which uses 
polarized microwaves (322), was introduced as a chiral technique, and is under 
development for the direct detection of enantiomers (323).

Acknowledgements We are indebted to the editors, Professors Heinz Falk and Douglas Kinghorn, 
for all the valuable suggestions they made for the preparation of this chapter, and thank CONACYT-
Mexico for financial support through grant 152994.

References

 1. Summons RE, Albrecht P, McDonald G, Moldowan JM (2008) Molecular Biosignatures.
Space Sci Rev 135:133

 2. Ma S (2009) Electrophilic Addition and Cyclization Reactions of Allenes. Acc Chem Res
42:1679

 3. Roth HJ (2005) Four-Membered Rings. Deut Apoth Z 145:56
 4. Eliel EL, Wilen, SH, Mander LN (1994) Stereochemistry of Organic Compounds. Wiley,

New York, Chapters 4, 10, and 13
 5. Lightner D, Gurst JE (2000) Organic Conformational Analysis and Stereochemistry from

Circular Dichroism Spectroscopy. Wiley-VCH, Weinheim
 6. Scopes PM (1975) Applications of the Chiroptical Techniques to the Study of Natural 

Products. In: Herz W, Grisebach H, Kirby GW (eds) Progress in the Chemistry of Organic
Natural Products, vol 32. Springer–Verlag, New York, p 167

 7. Nafie LA (2008) Vibrational Circular Dichroism: A New Tool for the Solution-State 
Determination of the Structure and Absolute Configuration of Chiral Natural Product 
Molecules. Nat Prod Commun 3:451

 8. Allenmark S (2003) Induced Circular Dichroism by Chiral Molecular Interaction. Chirality
15:409

 9. Polavarapu PL, Jeirath N, Kurtán T, Pescitelli G, Krohn K (2009) Determination of the
Absolute Configurations at Stereogenic Centers in the Presence of Axial Chirality. Chirality 
21:E202

 10. Cerda-García-Rojas CM, García-Gutiérrez HA, Hernández-Hernández JD, Román-Marín
LU, Joseph-Nathan P (2007) Absolute Configuration of Verticillane Diterpenoids by 
Vibrational Circular Dichroism. J Nat Prod 70:1167

 11. DevlinFJ,StephensPJ,BesseP(2005)Are theAbsoluteConfigurationsof2-(1-Hydroxyethyl)-
chromen-4-one and its 6-bromo Derivative Determined by X-Ray Crystallography Correct?
A Vibrational Circular Dichroism Study of their Acetate Derivatives. Tetrahedron Asymm 
16:1557

 12. Stephens PJ, McCann DM, Devlin FJ, Smith AB, III (2006) Determination of the Absolute
Configurations of Natural Products via Density Functional Theory Calculations of Optical 
Rotation, Electronic Circular Dichroism, and Vibrational Circular Dichroism: The Cytotoxic
Sesquiterpene Natural Products Quadrone, Suberosenone, Suberosanone, and Suberosenol A 
Acetate. J Nat Prod 69:1055

 13. Stephens PJ, Pan JJ, Devlin FJ, Urbanová M, Hájíček J (2007) Determination of the Absolute
Configuration of Natural Products via Density Functional Theory Calculations of Vibrational 
Circular Dichroism, Electronic Circular Dichroism and Optical Rotation: the Schizozygane
Alkaloid Schizozygine. J Org Chem 72:2508

 14. Stephens PJ, Pan JJ, Devlin FJ, Urbanová M, Julínek O, Hájíček J (2008) Determination of
the Absolute Configurations of Natural Products via Functional Theory Calculations of 
Vibrational Circular Dichroism, Electronic Circular Dichroism, and Optical Rotation: the
Iso-Schizozygane Alkaloids Ioschizogaline and Isoschizogamine. Chirality 20:454

P. Joseph-Nathan and B. Gordillo-Román



437

 15. Avilés-Moreno JR, Partal-Ureña F, López-González JJ (2009) Conformational Landscape in
Chiral Terpenes from Vibrational Spectroscopy and Quantum Chemical Calculations: S-(+)-
Carvone. Vib Spect 51:318

 16. Petrovic AG, Navarro-Vazquez A, Alonso-Gomez JL (2010) From Relative to Absolute
Configuration of Complex Natural Products. Interplay between NMR, ECD, VCD, and ORD
Assisted by ab Initio Calculations. Curr Org Chem 14:1612

 17. Urbanová M (2009) Bioinspired Interactions Studied by Vibrational Circular Dichroism.
Chirality 21:E215

 18. Keiderling TA (2002) Protein and Peptide Secondary Structure and Conformational 
Determination with Vibrational Circular Dichroism. Curr Opin Chem Biol 6:682

 19. Weigelt Sven, Huber T, Hofmann F, Jost M, Ritzefeld M, Luy B, Freudenberger C, Majer Z,
Vass E, Greie J-C, Panella L, Kaptein B, Broxterman QB, Kessler H, Altendorf K, Hollósi M,
Sewald N (2012) Synthesis and Conformational Analysis of Efrapeptins. Chem Eur J 18:478

 20. Taniguchi T, Monde K (2007) Chiroptical Analysis of Glycoconjugates by Vibrational
Circular Dichroism. Glycotechnology 19:147

 21. Shanmugam G, Polavarapu PL (2006) Structures of Intact Glycopropteins from Vibrational
Circular Dichroism. Prot: Struct Funct Bioinf 63:768

 22. Petrovic AG, Polavarapu PL (2008) Quadruplex Structure of Polyriboinosinic Acid:
Dependence on Alkali Metal Ion Concentration, pH and Temperature. J Phys Chem B
112:2255

 23. Kurouski D, Lombardi RA, Dukor RK, Lednev IK, Nafie LA (2010) Direct Observation and
pH Control Reversed Supramolecular Chirality in Insulin Fibrils by Vibrational Circular
Dichroism. Chem Commun 46:7154

 24. Kurouski D, Dukor RK, Lu X, Nafie LA, Lednev IK (2012) Normal and Reversed
Supramolecular Chirality of Insulin Fibrils Probed by Vibrational Circular Dichroism at the 
Protofilament Level of Fibril Structure. Biophys J 103:522

 25. Berthier D, Buffeteau T, Leger JM, Oda R, Huc I (2002) From Chiral Counterions to Twisted
Membranes. J Am Chem Soc 124:13486

 26. Narita M, Tashiro E, Hamada F (2002) Synthesis of a Selective Fluorescent Sensing System
Based on γ-Cyclodextrin Modified with Pyrene and Tosyl on the Hetero Rims. J Incl Phenom
Macro Chem 42:137

 27. Bieri M, Gautier C, Buergi T (2007) Probing Chiral Interfaces by Infrared Spectroscopic
Methods. Phys Chem Chem Phys 9:671

 28. Gautier C, Burgi T (2009) Chiral Gold Nanoparticles. Chem Phys Chem 10:483
 29. Guo Z, Du Y, Chen Y, Ng S-C, Yang Y (2010) Understanding the Mechanism of Chirality

Transfer in the Formation of a Chiral MCM-41 Mesoporous Silica. J Phys Chem C 114:14353
 30. Ma S, Shen S, Lee H, Eriksson M, Zeng X, Xu J, Fandrick K, Yee N, Senanayake C, Grinberg,

N (2009) Mechanistic Studies on the Chiral Recognition of Polysaccharide-Based Chiral
Stationary Phases using Liquid Chromatography and Vibrational Circular Dichroism. 
Reversal of Elution Order of N-Substituted alpha-Methyl Phenylalanine Esters. J Chromatogr
A 1216:3784

 31. Yao H, Nishida N, Kimura K (2010) Conformational Study of Chiral Penicillamine Ligand
on Optically Active Silver Nanoclusters with IR and VCD Specroscopy. Chem Phys 368:28

 32. Kuppens T, Bultinck P, Langenaeker W (2004) Determination of Absolute Configuration via 
Vibrational Circular Dichroism. Drug Discovery Today: Technologies 1:269

 33. Deutsche CW, Moscowitz A (1968) Optical Activity of Vibrational Origin. I. A Model 
Helical Polymer. J Chem Phys 49:3257

 34. Schellman JA (1973) Vibrational Optical Activity. J Chem Phys 58:2882
 35. Berova N, Di Bari L, Pescitelli G (2007) Application of Electronic Circular Dichroism in

Configurational and Conformational Analysis of Organic Compounds. Chem Soc Rev 36:914
 36. Nakanishi K, Berova N (1994) The Exciton Chirality Method. In: Nakanishi K, Berova N,

Woody RW (eds) Circular Dichroism. Principles and Applications. VCH, New York, p 361
 37. Humam M, Christen P, Muñoz O, Hostettmann K, Jeannerat D (2008) Absolute Configuration

of Tropane Alkaloids Bearing Two α,β-Unsaturated Ester Functions Using Electronic CD 

Vibrational Circular Dichroism Absolute Configuration Determination…



438

Spectroscopy: Application to (R,R)-trans-3- Hydroxysenecioyloxy-6-Senecioyloxytropane.
Chirality 20:20

 38. Shim SH, Baltrusaitis J, Gloer JB, Wicklow DT (2011) Phomalevones A-C: Dimeric and
Pseudodimeric Polyketide Metabolites from a Fungicolous Hawaiian Isolate of Phoma sp. 
(Cucurbitariaceae). J Nat Prod 74:395

 39. Nafie LA, Freedman TB (2000) Vibrational Optical Activity Theory. In: Berova N, Nakanishi
K, Woody RW (eds) Circular Dichroism. Principles and Applications, 2nd edn. Wiley-VCH,
New York, p 97

 40. Fang HL, Meister DM, Swofford RL (1984) Overtone Spectroscopy of Nonequivalent
Methyl C-H Oscillators. Influence of Conformation on Vibrational Overtone Energies. J Phys
Chem 88:410

 41. Cappelli C, Bloino J, Lipparini F, Barone V (2012) Toward ab Initio Anharmonic Vibrational 
Circular Dichroism Spectra in the Condensed Phase. J Phys Chem Lett 3:1766

 42. Holzwarth G, Hsu EC, Mosher HS, Faulkner TR, Moscowitz A (1974) Infrared Circular
Dichroism of Carbon-Hydrogen and Carbon-Deuterium Stretching Modes Observations. J
Am Chem Soc 96:251

 43. Nafie LA, Freedman TB (1983) Vibrational Optical Activity Calculations Using Infrared and
Raman Atomic Polar Tensors. J Chem Phys 78:7108

 44. Stephens PJ (1987) Gauge Dependence of Vibrational Magnetic Dipole Transition Moments
and Rotational Strengths. J Phys Chem 91:1712

 45. Cheeseman JR, Frisch MJ, Devlin FJ, Stephens PJ (1996) Ab Initio Calculation of Atomic 
Axial Tensors and Vibrational Rotational Strengths Using Density Functional Theory. Chem
Phys Lett 252:211

 46. Devlin FJ, Stephens PJ, Cheeseman JR, Frisch MJ (1996) Prediction of Vibrational Circular
Dichroism Spectra Using Density Functional Theory: Camphor and Fenchone. J Am Chem 
Soc 118:6327

 47. Schellman JA (1975) Circular Dichroism and Optical Rotation. Chem Rev 75:323
 48. Kawiecki RW, Devlin F, Stephens PJ, Amos RD, Handy NC (1988) Vibrational Circular

Dichroism of Propylene Oxide. Chem Phys Lett 145:411
 49. Nafie LA, Diem M (1979) Optical Activity in Vibrational Transitions: Vibrational Circular 

Dichroism and Raman Optical Activity. Acc Chem Res 12:296
 50. Nafie LA, Diem M, Vidrine DW (1979) Fourier Transform Infrared Vibrational Circular 

Dichroism. J Am Chem Soc 101:496
 51. Guo C, Shah RD, Dukor RK, Xiaolin C, Freedman TB, Nafie LA (2004) Determination of

Enantiomeric Excess in Samples of Chiral Molecules Using Fourier Transform Vibrational 
Circular Dichroism Spectroscopy: Simulation of Real-Time Reaction Monitoring. Anal
Chem 76:6956

 52. Uncuta C, Ion S, Gherase D, Bartha E, Teodorescu F, Filip P (2009) Absolute Configurational
Assignment in Chiral Compounds Through Vibrational Circular Dichroism (VCD) 
Spectroscopy. Rev Chim 60:86

 53. Abbate S, Lebon F, Gangemi, R. Longhi G, Spizzichino S, Ruzziconi R (2009) Electronic
and Vibrational Circular Dichroism Spectra of Chiral 4-X-[2.2]paracyclophanes with X
Containing Fluorine Atoms. J Phys Chem A 113:14851

 54. Nový J, Urbanová M, Volka K (2007) Electronic and Vibrational Circular Dichroism
Spectroscopic Study of Non-Covalent Interactions of meso-5,10,15,20-Tetrakis(1-
methylpyridinium-4-yl)porphyrin with (dG-dC)10 and (dA-dT)10. Vib Spect 43:71

 55. Muñoz MA, Muñoz O, Joseph-Nathan P (2006) Absolute Configuration of Natural
Diastereoisomers of 6β-Hydroxyhyoscyamine by Vibrational Circular Dichroism. J Nat Prod
69:1335

 56. Min HM, Aye M, Taniguchi T, Miura N, Monde K, Ohzawa K, Nikai T, Niwa M, Takaya Y
(2007) A Structure and an Absolute Configuration of (+)-Alternamin, a New Coumarin from 
Murraya alternans Having Antidote Activity Against Snake Venom. Tetrahedron Lett
48:6155

P. Joseph-Nathan and B. Gordillo-Román



439

 57. Chabay I, Hsu EC, Holzwarth G (1972) Infrared Circular Dichroism Measurement Between
2000 and 5000 cm-1: Pr3+-Tartrate Complexes. Chem Phys Lett 15:211

 58. Nafie LA, Cheng JC, Stephens PJ (1975) Vibrational Circular Dichroism of 2,2,2-Trifluoro- 
l-phenylethanol. J Am Chem Soc 97:3842

 59. Nafie LA, Keiderling TA, Stephens PJ (1976) Vibrational Circular Dichroism. J Am Chem 
Soc 98:715

 60. Osborne GA, Cheng JC, Stephens PJ (1973) A Near-Infrared Circular Dichroism and
Magnetic Circular Dichroism Instrument. Rev Sci Instrum 44:10

 61. Lipp ED, Zimba CG, Nafie LA (1982) Vibrational Circular Dichroism in the Mid-Infrared
using Fourier Transform Spectroscopy. Chem Phys Lett 90:1

 62. Freedman TB, Cao X, Dukor RK, Nafie LA (2003) Absolute Configuration Determination of
Chiral Molecules in the Solution State Using Vibrational Circular Dichroism. Chirality 
15:743

 63. Nafie LA. (2000) Dual Polarization Modulation: A Real-Time, Spectral-Multiplex Separation
of Circular Dichroism from Linear Birefringence Spectral Intensities. Appl Spect 54:1634

 64. Polavarapu PL, He J (2004) Chiral Analysis Using Mid-IR Vibrational CD Spectroscopy.
Anal Chem 76:61A

 65. Tsankov D, Eggimann T, Wieser H (1995) Alternative Design for Improved FT-IR/VCD
Capabilities. Appl Spect 49:132

 66. Andersen NH, Christensen NJ, Lassen PR, Freedman TBN, Nafie LA, Strømgaard K,
Hemmingsen L (2010) Structure and Absolute Configuration of Ginkgolide B Characterized
by IR- and VCD Spectroscopy. Chirality 22:217

 67. Setnička V, Novy J, Bohm S, Sreenivasachary N, Urbanová M, Volka K. (2008) Molecular
Structure of Guanine-Quartet Supramolecular Assemblies in a Gel-State Based on DFT
Calculation of Infrared and Vibrational Circular Dichroism Spectra. Langmuir 24:7520

 68. Zhang P, Polavarapu PL (2006) Vibrational Circular Dichroism of Matrix-Assisted 
Aminoacids Films in the Mid-Infrared Region. Appl Spect 60:378

 69. Petrovic AG, Bose PK, Polavarapu PL (2004) Vibrational Circular Dichroism of Carbohydrate
Films Formed from Aqueous Solutions. Carbohyd Res 339:2713

 70. Merten C, Kowalik T, Hartwig A (2008) Vibrational Circular Dichroism Spectroscopy of
Solid Polymer Films: Effects of Sample Orientation. Appl Spect 62:901

 71. Nafie LA, Buijs H, Rilling A, Cao X, Dukor RK. (2004) Dual Source Fourier Transform 
Polarization Modulation Spectroscopy: An Improved Method for the Measurement of 
Circular and Linear Dichroism. Appl Spect 58:647

 72. Hilario J, Drapcho D, Curbelo R, Keiderling TA (2001) Polarization Modulation Fourier 
Transform Infrared Spectroscopy with Digital Signal Processing: Comparison of Vibrational 
Circular Dichroism Methods. Appl Spect 55:1435

 73. Urbanová M, Setnicka V, Volka K (2000) Measurements of Concentration Dependence and
Enantiomeric Purity of Terpene Solutions and a Test of a New Commercial VCD Spectrometer. 
Chirality 12:199

 74. Lakhani A, Malon P, Keiderling TA (2009) Comparison of Vibrational Circular Dichroism
Instruments: Development of a New Dispersive VCD. Appl Spect 63:775

 75. Muñoz MA, Muñoz O, Joseph-Nathan P (2010) Absolute Configuration Determination and
Conformational Analysis of (–)-(3S,6S)-3α,6β-Diacetoxytropane Using Vibrational Circular 
Dichroism and DFT Techniques. Chirality 22:234

 76. Muñoz MA, Martínez M, Joseph-Nathan P (2012) Absolute Configuration and Stereochemical
Analysis of 3α,6β-dibenzoyloxytropane. Phytochemistry Lett 5:450

 77. Reina M, Burgueño-Tapia E, Bucio MA, Joseph-Nathan P (2010) Absolute Configuration of
Tropane Alkaloids from Schizanthus Species by Vibrational Circular Dichroism. 
Phytochemistry 71:810

 78. Cao X, Shah RD, Dukor RK, Guo C, Freedman TB, Nafie LA (2004) Extension of Fourier 
Transform Vibrational Circular Dichroism into the Near-infrared Region: Continuous
Spectral Coverage from 800 to 10,000 cm−1. Appl Spect 58:1057

Vibrational Circular Dichroism Absolute Configuration Determination…



440

 79. Bonmarin M, Helbing J (2009) Polarization Control of Ultrashort Mid-IR Laser Pulses for
Transient Vibrational Circular Dichroism Measurements. Chirality 21:E298

 80. Helbing J, Bonmarin M (2009) Time-Resolved Chiral Vibrational Spectroscopy. Chimia
63:128

 81. Rhee H, June YG, Kim Z, Hwan J, Seung J, Cho M (2009) Phase Sensitive Detection of
Vibrational Optical Activity Free-Induction-Decay: Vibrational CD and ORD. J Opt Soc
Amer B. Opt Phys: 26:1008

 82. Ma S, Freedman TB, Cao X, Nafie LA (2006) Two Dimensional Vibrational Circular
Dichroism Correlation Spectroscopy: pH-Induced Spectral Changes in l-Alanine. J Mol 
Struct 799:226

 83. Jalkanen KJ, Nieminen RM, Knapp-Mohammady M, Suhai S (2003) Vibrational Analysis of
Various Isotopomers of l-Alanyl-l-Alanine in Aqueous Solution: Vibrational Absorption, 
Vibrational Circular Dichroism, Raman, and Raman Optical Activity. Int J Quant Chem
92:239

 84. Yang G, Xu Y (2011) Vibrational Circular Dichroism Spectroscopy of Chiral Molecules. Top
Curr Chem 298:189

 85. Bak KL, Jørgensen P, Helgaker T, Ruud K, Jensen HJA (1994) Basis Set Convergence of
Atomic Axial Tensors Obtained From Self-Consistent Field Calculations Using London 
Atomic Orbitals. J Chem Phys 100:6620

 86. Parr RG, Yang W (1989) Density-Functional Theory of Atoms and Molecules. Oxford
University Press, New York

 87. Muñoz MA, Areche C, Rovirosa J, San-Martín A, Joseph-Nathan P (2010) Absolute
Configuration of Sargaol Acetate Using DFT Calculations and Vibrational Circular 
Dichroism. Heterocycles 81:625

 88. Kukushkin AK, Jalkanen KJ, (2010) Role of Quantum Chemical Calculations in Molecular
Biophysics with a Historical Perspective. Theor Chem Acc 125:121

 89. Stephens PJ, Devlin FJ (2000) Determination of the Structure of Chiral Molecules Using 
ab Initio Vibrational Circular Dichroism Spectroscopy. Chirality 12:172

 90. Stephens PJ, Devlin FJ, Cheeseman JR (2012) VCD Spectroscopy for Organic Chemists.
CRC Press/Taylor & Francis Group, New York

 91. Crawford TD (2006) Ab Initio Calculation of Molecular Chiroptical Properties. Theor Chem 
Acc 115:227

 92. Magyarfalvi G, Tarczay G, Vass E (2011) Vibrational Circular Dichroism. Comput Mol Sci
1:403

 93. Vibrational modes animation: SHU.ac.uk
 94. Herranz J, Morcillo J, Gómez A (1966) The ν2 Infrared Band of CH4 and CD4. J Mol Spect 

19:266
 95. Freedman TB, Nafie LA. (1983) Vibrational Optical Activity Calculations Using Infrared and

Raman Atomic Polar Tensors. J Chem Phys 78:27
 96. Stephens PJ (1985) Theory of Vibrational Circular Dichroism. J Phys Chem 89:748
 97. Bouř P, McCann J, Wieser H (1998) Measurement and Calculation of Absolute Rotational

Strengths for Camphor, α-Pinene, and Borneol. J Phys Chem A 102:102
 98. Nafie LA (1997) Electron Transition Current Density in Molecules. 1. Non-Born- 

Oppenheimer Theory of Vibronic and Vibrational Transitions. J Phys Chem A 101:7826
 99. Helgaker T, Jørgensen P (1991) An Electronic Hamiltonian for Origin Independent

Calculations of Magnetic Properties J Chem Phys 95:2595
 100. Ditchfield R (1976) Theoretical Studies of Magnetic Shielding in H2O and (H2O)2. J Chem 

Phys 65:3123
 101. Amos RD (1987) Molecular Property Derivatives. Adv Chem Phys 67:99
 102. Nafie LA (1992) Velocity-Gauge Formalism in the Theory of Vibrational Circular Dichroism

and Infrared Absorption. J Chem Phys 96:5687
 103. Crawford TD, Schaefer HF (2000) An Introduction to Coupled Cluster Theory for

Computational Chemists, In: Lipkowitz KB, Boyd DB (eds) Reviews in Computational
Chemistry, vol 14. VCH Publishers, NewYork, Chapter 2

P. Joseph-Nathan and B. Gordillo-Román

http://www.shu.ac.uk/schools/sci/chem/tutorials/molspec/irspec1.htm


441

 104. Wiberg KB, Vaccaro PH, Cheeseman JR (2003) Conformational Effects on Optical Rotation.
3-Substituted 1-Butenes. J Am Chem Soc 125:1888

 105. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery
JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci
B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K,
Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X,
Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev
O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA,
Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O,
Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford
S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox
DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson
B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian-03. Gaussian, Inc.,
Wallingford, CT

 106. Amos RD. CADPAC 5.0 Cambridge University, Cambridge, UK
 107. Helgaker T, Rauud K. Dalton program
 108. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab Initio Calculation of 

Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force 
Fields. J Phys Chem 98:11623

 109. Stephens PJ, Ashvar CS, Devlin FJ, Cheeseman JR, Frisch MJ (1996) Ab Initio Calculation 
of Atomic Axial Tensors and Vibrational Rotational Strengths Using Density Functional
Theory. Mol Phys 89:579

 110. Muñoz MA, Areche C, San-Martín A, Rovirosa J, Joseph-Nathan P (2009) VCD
Determination of the Absolute Configuration of Stypotriol. Nat Prod Commun 4:1037

 111. Devlin FJ, Stephens PJ, Besse P (2005) Conformational Rigidification via Derivatization 
Facilitates the Determination of Absolute Configuration Using Chiroptical Spectroscopy: A 
Case Study of the Chiral Alcohol endo-Borneol. J Org Chem 70:2980

 112. Burgueño-Tapia E, Joseph-Nathan P (2008) Absolute Configuration of Eremophilanoids by
Vibrational Circular Dichroism. Phytochemistry 69:2251

 113. Losada M, Tan H, Xu Y (2008) Lactic Acid in Solution: Investigations of Lactic Acid Self-
Aggregation and Hydrogen Bonding Interactions with Water and Methanol using Vibrational
Absorption and Vibrational Circular Dichroism Spectroscopies. J Chem Phys 128:14508

 114. He J, Wang F, Polavarapu PL (2005) Absolute Configurations of Chiral Herbicides
Determined from Vibrational Circular Dichroism. Chirality 17:S1

 115. He J, Polavarapu PL (2005) Determination of the Absolute Configuration of Chiral
α-Aryloxypropanoic Acids using Vibrational Circular Dichroism Studies: 
2-(2-Chlorophenoxy)propanoic Acid and 2-(3-Chlorophenoxy)propanoic Acid. Spectrochim 
Acta A 61A:1327

 116. Cichewicz RH, Clifford LJ, Lassen PR, Cao X, Freedman TB, Nafie LA, Deschamps JD,
Kenyon VA, Flanary JR, Holman TR, Crews P (2005) Stereochemical Determination and
Bioactivity Assessment of (S)-(+)-Curcuphenol Dimers Isolated from the Marine Sponge 
Didiscus aceratus and Synthesized Through Laccase Biocatalysis. Bioorg Med Chem
13:5600

 117. Eschrig H. The Fundamentals of Density Functional Theory (Revised and Extended Version)
http://www.ifw-dresden.de/institutes/itf/members/helmut/dft.pdf

 118. Becke AD (1993) Density-Functional Thermochemistry. III. The Role of Exact Exchange. J
Chem Phys 98:5648

 119. Petrovic AG, Polavarapu PL (2007) Chiroptical Spectroscopic Determination of Molecular
Structures of Chiral Sulfinamides: t-Butanesulfinamide. J Phys Chem A 111:10938

 120. Stephens PJ, Devlin FJ, Ashvar CS, Chabalowski CF, Frisch MJ (1994) Theoretical
Calculation of Vibrational Circular Dichroism Spectra. Faraday Discuss 99:103

 121. Perdew JP, Burke K, Wang Y (1996) Generalized Gradient Approximation for the Exchange-
Correlation Hole of a Many-Electron System. Phys Rev B 54:16533

Vibrational Circular Dichroism Absolute Configuration Determination…

http://www.ifw-dresden.de/institutes/itf/members/helmut/dft.pdf


442

 122. Engel E, Vosko SH (1993) Exact Exchange-only Potentials and the Relation as Microscopic
Criteria for Generalized Gradient Approximations. Phys Rev B 47:13164

 123. Becke AD (1993) A New Mixing of Hartree-Fock and Local Density-Functional Theories. 
J. Chem Phys 98:1372

 124. Cerda-García-Rojas CM, Catalán CAN, Muro AC, Joseph-Nathan P (2008) Vibrational
Circular Dichroism of Africanane and Lippifoliane Sesquiterpenes. J Nat Prod 71:967

 125. Stephens PJ, Pan JJ, Devlin FJ, Krohn K, Kurtán T (2007) Determination of the Absolute
Configurations of Natural Products via Density Functional Theory Calculations of Vibrational 
Circular Dichroism, Electronic Circular Dichroism, and Optical Rotation: The Iridoids
Plumericin and Isoplumericin. J Org Chem 72:3521

 126. Kuppens T, Vandyck K, van der Eycken J, Herrebout W, van der Veken B, Bultinck P (2007)
A DFT Conformational Analysis and VCD Study on Methyl-tetrahydrofuran-2-carboxylate. 
Spectrochim Acta Part A 67:402

 127. Sosa C, Andzelm J, Elkin BC, Wimmer E, Dobbs KD, Dixon DA (1992) A Local Density
Functional Study of the Structure and Vibrational Frequencies of Molecular Transition-Metal 
Compounds. J Phys Chem 96:6630

 128. Burgueño-Tapia E, Zepeda LG, Joseph-Nathan P (2010) Absolute Configuration of
(–)-Myrtenal by Vibrational Circular Dichroism. Phytochemistry 71:1158

 129. Debie E, Bultinck P, Nafie LA, Dukor R (2010) CompareVOA, BioTools, Inc., Jupiter,
Florida, USA

 130. Debie E, De Gussem E, Dukor RK, Herrebout W, Nafie LA, Bultinck P (2011) A Confidence
Level Algorithm for the Determination of Absolute Configuration using Vibrational Circular 
Dichroism or Raman Optical Activity. Chem Phys Chem, Special Issue: Jacobus van′t Hoff 
12:1542

 131. Shen J, Zhu C, Reiling S, Vaz R (2010) A Novel Computational Method for Comparing
Vibrational Circular Dichroism Spectra. Spectrochim Acta Part A 76:418

 132. Covington CL, Polavarapu PL (2013) Similarity in Dissymmetry Factor Spectra: A 
Quantitative Measure of Comparison between Experimental and Predicted Vibrational 
Circular Dichroism. J Phys Chem A 117:3377

 133. Zepeda LG, Burgueño-Tapia E, Joseph-Nathan P (2011) Myrtenal, a Controversial Molecule
for the Proper Application of the CIP Sequence Rule for Multiple Bonds. Nat Prod 6:429

 134. He J, Petrovic AG, Polavarapu PL (2004) Determining the Conformer Populations of (R)-(+)-
3-Methylcyclopentanone using Vibrational Absorption, Vibrational Circular Dichroism, and 
Specific Rotation. J Phys Chem B 108:20451

 135. Brotin T, Cavagnat D, Dutasta JP, Buffeteau T (2006) Vibrational Circular Dichroism Study
of Optically Pure Cryptophane-A. J Am Chem Soc 128:5533

 136. Nicu VP, Debie E, Herrebout W, van der Veken B, Bultinck P, Baerends EJ (2010) A VCD
Robust Mode Analysis of Induced Chirality: The Case of Pulegone in Chloroform. Chirality
21:E287

 137. Debie E, Bultinck P, Herrebout, W, van der Veken B. (2008) Solvent Effects on IR and VCD
Spectra of Natural Products: An Experimental and Theoretical VCD Study of Pulegone. Phys 
Chem Chem Phys 10:3498

 138. Losada M, Xu Y (2007) Chirality Transfer through Hydrogen-Bonding: Experimental and
ab Initio Analyses of Vibrational Circular Dichroism Spectra of Methyl Lactate in Water. 
Phys Chem Chem Phys 9:3127

 139. Mazaleyrat JP, Wright K, Gaucher A, Toulemonde N, Wakselman M, Oancea S, Peggion C,
Formaggio F, Setnicka V, Keiderling TA, Toniolo C (2004) Induced Axial Chirality in the
Biphenyl Core of the Cα-Tetrasubstituted α-Amino Acid Residue Bip and Subsequent
Propagation of Chirality in (Bip)n/Val Oligopeptides J Am Chem Soc 126:12874

 140. Jalkanen KJ, Degtyarenko IM, Nieminen RM, Cao X, Nafie LA, Zhu F, Barron LD (2008)
Role of Hydration in Determining the Structure and Vibrational Spectra of l-Alanine and 

P. Joseph-Nathan and B. Gordillo-Román



443

N-Acetyl l-Alanine N′-Methylamide in Aqueous Solution: a Combined Theoretical and 
Experimental Approach. Theor Chem Acc 119:191

 141. Mennucci B, Tomasi J, Cammi R, Cheeseman JR, Frisch MJ, Devlin FJ, Gabriel S, Stephens
PJ (2002) Polarizable Continuum Model (PCM) Calculations of Solvent Effects on Optical 
Rotations of Chiral Molecules. J Phys Chem A 106:6102

 142. Tomasi J, Mennucci B, Cammi R (2005) Quantum Mechanical Continuum Solvation Models.
Chem Rev 105:2999

 143. Scalmani G, Frisch M. J (2010) Continuous Surface Charge Polarizable Continuum Models
of Solvation. I. General Formalism. J Chem Phys 132:114110

 144. Kawiecki RW, Devlin FJ, Stephens PJ, Amos RD (1991) Vibrational Circular Dichroism of
Propylene Oxide. J Phys Chem 95:9817

 145. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang
W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham III TE (2000) Calculating
Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and 
Continuum Models. Acc Chem Res 33:889

 146. Ashvar CS, Stephens PJ, Eggimann T, Wieser H (1998) Vibrational Circular Dichroism
Spectroscopy of Chiral Pheromones: Frontalin (1,5-Dimethyl-6,8-dioxabicyclo[3.2.1]
octane). Tetrahedron Asymm 9:1107

 147. Nafie LA (2011) Vibrational Optical Activity. Principles and Applications. Wiley, Chichester, 
United Kingdom

 148. Bellamy LJ (1958) The Infra-Red Spectra of Complex Molecules, 2nd Ed. Wiley, New York,
Chapter 2

 149. Cerda-García-Rojas CM, Burgueño-Tapia E, Román-Marín LU, Hernández-Hernández JD,
Agulló-Ortuño T, González-Coloma A, Joseph-Nathan P (2010) Antifeedant and Cytotoxic
Activity of Longipinane Derivatives. Planta Med 76:297

 150. Joseph-Nathan P, Cerda-García-Rojas CM, del Río RE, Román-Marín LU, Hernández JD
(1986) Conformation and Absolute Configuration of Naturally Occurring Longipinene 
Derivatives. J Nat Prod 49:1053

 151. Christmann M (2010) Otto Wallach: Founder of Terpene Chemistry and Nobel Laureate 
1910. Angew Chem Int Ed 49:9580

 152. Berova N (1997) Koji Nakanishi′s Enchanting Journey in the World of Chirality. Chirality 
9:395

 153. Bożena F, Olejniczak T, Latajka R, Białońska A, Ciunik Z, Lochyński S. (2005)
Stereochemistry of Terpene Derivatives. Part 4: Fragant Terpenoid Derivatives with an 
Unsaturated gem- Dimethylbicyclo[3.1.0]hexane System. Tetrahedron Asymm 16:3352

 154. Bringmann G, Gulder TAM, Matthias R, Gulder T (2008) The Online Assignment of the
Absolute Configuration of Natural Products: HPLC-CD in Combination with Quantum
Chemical CD Calculations. Chirality 20:628

 155. Allenmark S (2000) Chiroptical Methods in the Stereochemical Analysis of Natural Products.
Nat Prod Rep 17:145

 156. Pescitelli G, Kurtán T, Flörke U, Krohn K (2009) Absolute Structural Elucidation of Natural
Products. A Focus on Quantum-Mechanical Calculations of Solid-State CD Spectra. Chirality 
21:E181

 157. Polavarapu PL (2012) Determination of the Structures of Chiral Natural Products Using 
Vibrational Circular Dichroism. In: Berova N, Polavarapu PL, Nakanishi K, Woody RW
(eds) Comprehensive Chiroptical Spectroscopy, Vol 2: Stereochemical Analysis of Synthetic 
Compounds, Natural Products, and Biomolecules. Wiley, New York, Chapter 11, p 387

 158. Allenmark S, Gawronski J. (2008) Determination of Absolute Configuration. An Overview
Related to this Special Issue. Chirality 20:606

 159. Holzwarth G. Chabay I (1972) Optical Activity of Vibrational Transitions: A Coupled
Oscillator Model J Chem Phys 57:1632

 160. Bouř P, Keiderling TA (1992) Computational Evaluation of the Coupled Oscillator Model in 
the Vibrational Circular Dichroism of Selected Small Molecules. J Am Chem Soc 114:9100

Vibrational Circular Dichroism Absolute Configuration Determination…



444

 161. Henry BR (1987) The Local Mode Model and Overtone Spectra: A Probe of Molecular
Structure and Conformation. Acc Chem Res 20:429

 162. Findsen LA, Fang HL, Swofford RL, Birge RR (1986) Theoretical Description of the
Overtone Spectra of Acetaldehyde using the Local Mode Approach. J Chem Phys 84:16

 163. McKean DC (1978) Individual CH Bond Strengths in Simple Organic Compounds: Effects
on Conformation and Substitution. Chem Soc Rev 7:399

 164. Bellamy LJ, Mayo DW (1976) Infrared Frequency Effects of Lone Pair Interactions with
Antibonding Orbitals on Adjacent Atoms. J Phys Chem 80:1217

 165. Izumi H, Futamura S, Nafie LA, Dukor RK (2003) Determination of Molecular
Stereochemistry Using Vibrational Circular Dichroism Spectroscopy: Absolute Configuration 
and Solution Conformation of 5-Formyl-cis,cis-1,3,5-trimethyl-3-hydroxymethylcyclohexane-
1-carboxylic Acid Lactone. Chem Record 3:112

 166. Narayanan U, Keiderling TA (1983) Coupled Oscillator Interpretation of the Vibrational 
Circular Dichroism of Several Dicarbonyl-Containing Steroids. J Am Chem Soc 105:6406

 167. Keiderling TA, Stephens PJ (1977) Vibrational Circular Dichroism of Dimethyl Tartrate. 
A Coupled Oscillator. J Am Chem Soc 99:8061

 168. Gangemi F, Gangemi R, Longhi G, Abbate S (2009) Calculations of Overtone NIR and NIR-
VCD Spectra in the Local Mode Approximation: Camphor and Camphorquinone. Vib Spect 
50:257

 169. Abbate S, Longhi G, Santina C (2000) Theoretical and Experimental Studies for the
Interpretation of Vibrational Circular Dichroism Spectra in the CH-Stretching Overtone
Region. Chirality 12:180

 170. Gangemi R, Longhi G. Abbate S (2005) Calculated Absorption and Vibrational Circular
Dichroism Spectra of Fundamental and Overtone Transitions for a Chiral HCCH Molecular
Fragment in the Hypothesis of Couple Dipoles. Chirality 17:530

 171. Ringer AL, Magers DH (2007) Conventional Strain Energy in Dimethyl-Substituted
Cyclobutane and the gem-Dimethyl Effect. J Org Chem 72:2533

 172. Rezanka P, Fahnrich J (2003) Isolation of Terpenes from Norway Spruce Needles by
Distillation. Chemike Lysty 97:119

 173. Terpenes: Importance, General Structure, and Biosynthesis. http://www.wiley-vch.de/books/
sample/3527317864_c01.pdf

 174. Taniguchi T, Monde K (2012) Exciton Chirality Method in Vibrational Circular Dichroism. 
J Am Chem Soc 134:3695

 175. Singh RD, Keiderling TA (1981) Vibrational Circular Dichroism of Six-Membered-Ring
Monoterpenes. Consistent Force Field, Fixed Partial Charge Calculations. J Am Chem Soc 
103:2387

 176. Devlin FJ, Stephens PJ, Cheeseman JR Frisch MJ (1997) Ab Initio Prediction of Vibrational 
Absorption and Circular Dichroism Spectra of Chiral Natural Products Using Density 
Functional Theory: α-Pinene. J Phys Chem A 101:9912

 177. Freedman TB, Kallmerten J, Lipp ED, Young DA, Nafie LA (1988) Vibrational Circular
Dichroism in the CH Stretching Region of (+)-(3R)-Methylcyclohexanone and Chiral 
Deuteriated Isotopomers. J Am Chem Soc 110:689

 178. Freedman TB, Balukjian GA, Nafie LA (1985) Enhanced Vibrational Circular Dichroism via 
Vibrationally Generated Electronic Ring Currents. J Am Chem Soc 107:6213

 179. Laux L, Pultz V, Abbate S, Havel HA, Overend J, Moscowitz A, Lightner DA (1982)
Inherently Dissymmetric Chromophores and Vibrational Circular Dichroism. The CH2-CH2- 
C*H Fragment. J Am Chem Soc 104:4276

 180. Abbate S, Longhi G, Ricard L, Bertucci C, Rosini C, Salvadori P, Moscowitz A (1989)
Vibrational Circular Dichroism as a Criterion for Local-Mode versus Normal-Mode Behavior.
Near-Infrared Circular Dichroism Spectra of Some Monoterpenes. J Am Chem Soc 111:836

 181. Guo C, Shah RD, Dukor RK, Freedman, TB, Cao X, Nafie LA (2006) Fourier Transform
Vibrational Circular Dichroism from 800 to 10,000 cm-1: Near IR-VCD Spectral Standards
for Terpenes and Related Molecules. Vib Spect 42:254

P. Joseph-Nathan and B. Gordillo-Román

http://www.wiley-vch.de/books/sample/3527317864_c01.pdf
http://www.wiley-vch.de/books/sample/3527317864_c01.pdf


445

 182. Partal-Ureña F, Avilés-Moreno, R, López-González JJ (2010) Rotational Strength Sign and
Normal Modes Description: A Theoretical and Experimental Comparative Study in Bicyclic
Terpenes. Chirality 22:E123

 183. McCann JL, Rauk A, Wieser H (1998) A Conformational Study of (1S,2R,5S)-(+)-Menthol 
using Vibrational Circular Dichroism Spectroscopy. Can J Chem 76:274

 184. Buffeteau T, Ducasse L, Brizard A, Huc I, Oda R (2004) Density Functional Theory
Calculations of Vibrational Absorption and Circular Dichroism Spectra of Dimethyl-l- 
tartrate. J Phys Chem A 108:4080

 185. Bouř P, Navrátilová H, Setnička V, Urbanová M, Volka K (2002) (3R,4S)-4-(4-Fluorophenyl)-
3-hydoxymethyl-1-methylpiperidine: Conformation and Structure Monitoring by Vibrational 
Circular Dichroism. J Org Chem 67:161

 186. Avilés-Moreno JR Partal-Ureña F, López-González JJ (2009) Conformational Preference of
a Chiral Terpene. Vibrational Circular Dichroism (VCD), Infrared and Raman Study of S-(–)-
Limonene Oxide. Phys Chem Chem Phys 11:2459

 187. Partal-Ureña F, Avilés-Moreno JR, López-González JJ. (2008) Conformational Flexibility in
Terpenes: Vibrational Circular Dichroism (VCD), Infrared and Raman Study of S-(–)-
Perillaldehyde. J Phys Chem A 112:7887

 188. Morita HE, Kodama TS, Takanata T (2006) Chirality of Camphor Derivatives by Density
Functional Theory. Chirality 18:783

 189. Shin S, Hirakawa AY, Hamada Y (2002) Vibrational Circular Dichroism Spectra of 1-Amino-
2-propanol. Enantiomer 7:191

 190. Bürgi T, Vargas A, Baiker A (2002) VCD Spectroscopy of Chiral Cinchona Modifiers used
in Heterogeneous Enantioselective Hydrogenation: Conformation and Binding of Non-Chiral
Acids. J Chem Soc Perkin Trans 2:1596

 191. Sadlej J, Dobrowolski J Cz., Rode JE (2010) VCD Spectroscopy as a Novel Probe for
Chirality Transfer in Molecular Interactions. Chem Soc Rev 39:1478

 192. Rode JE, Jamróz MH, Dobrowolski JC, Sadlej J (2012) On Vibrational Circular Dichroism
Chirality Transfer in Electron Donor-Acceptor Complexes: A Prediction for the Quinine · · ·BF3 
System. J Phys Chem A 116:7916

 193. Debie E, Jaspers L, Bultinck P, Herrebout W, Van der Veken B (2008) Induced Solvent
Chirality: a VCD Study of Camphor in CDCl3. Chem Phys Lett 450:426

 194. Avilés-Moreno JR, Ureña-Horno, E, Partal-Ureña F, López-González JJ (2011) IR-Raman- 
VCD Study of (R)-(+)-Pulegone: Influence of the Solvent. Spectrochim Acta A79:767

 195. Nicu VP, Baerends EJ (2009) Robust Normal Modes in Vibrational Circular Dichroism
Spectra. Phys Chem Chem Phys 11:6107

 196. Nicu VP, Neugebauer J, Baerends EJ (2008) Effects of Complex Formation on Vibrational
Circular Dichroism Spectra. J Phys Chem A 112:6978

 197. Góbi S, Magyarfalvi G (2011) Reliability of Computed Signs and Intensities for Vibrational
Circular Dichroism Spectra. Phys Chem Chem Phys 13:16130

 198. De Gussem E, Bultinck P, Feledziak M, Marchand-Brynaert J, Stevens C, Herrebout W
(2012) Vibrational Circular Dichroism versus Optical Rotation Dispersion and Electronic
Circular Dichroism for Diastereomers: The Stereochemistry of 3-(1′-Hydroxyethyl)-1-(3′-
phenylpropanoyl)-azetidin-2-one. Phys Chem Chem Phys 14:8562

 199. Gordillo-Román B, Camacho-Ruiz J, Bucio MA, Joseph-Nathan P (2012) Chiral Recognition
of Diastereomeric 6-Cedrols by Vibrational Circular Dichroism. Chirality 24:147

 200. Yang G, Li J, Liu Y, Lowary TL, Xu Y (2010) Determination of the Absolute Configurations
of Bicyclo[3.1.0]hexane Derivatives via Electronic Circular Dichroism, Optical Rotation
Dispersion and Vibrational Circular Dichroism Spectroscopy and Density Functional Theory 
Calculations. Org Biomol Chem 8:3777

 201. Qu ZW, Zhu H, May V (2010) Unambiguous Assignment of Vibrational Spectra of
Cyclosporins A and H. J Phys Chem A 114:9768

 202. Brauner JW, Flach CR, Mendelsohn R (2005) A Quantitative Reconstruction of the Amide I
Contour in the IR Spectra of Globular Proteins: From Structure to Spectrum. J Am Chem Soc
127:100

Vibrational Circular Dichroism Absolute Configuration Determination…



446

 203. Vogt FG, Spoors GP, Su Q, Andemichael YW, Wang H, Potter TC, Minick DJ (2006) A
Spectroscopic and Computational Study of Stereochemistry in 2-Hydroxymutilin. J Mol
Struct 797:5

 204. Su CN, Keiderling TA (1980) Conformation of Dimethyl Tartrate in Solution. Vibrational 
Circular Dichroism Results. J Am Chem Soc 102:511

 205. Polavarapu P L, Ewig CS, Chandramouly T (1987) Conformations of Tartaric Acid and Its 
Esters. J Am Chem Soc 109:7382

 206. Freedman TB, Cao X, Luz Z, Zimmermann H, Poupko R, Nafie LA (2008) Isotopic
Difference Spectra as an Aide in Determining Absolute Configuration Using Vibrational 
Optical Activity: Vibrational Circular Dichroism of 13C- and 2H-Labelled Nonamethoxy
Cyclotriveratrylene. Chirality 20:673

 207. Stephens PJ, Devlin FJ, Pan JJ (2008) The Determination of the Absolute Configurations of 
Chiral Molecules Using Vibrational Circular Dichroism (VCD) Spectroscopy. Chirality 20:643

 208. Setnička V, Urbanová M, Bouř P, Král V, Volka K (2001) Vibrational Circular Dichroism of
1,1′-Binaphthyl Derivatives: Experimental and Theoretical Study. J Phys Chem A 105:8931

 209. Freedman TB, Cao X, Oliveira RV, Cass QB Nafie LA (2003) Determination of the Absolute
Configuration and Solution Conformation of Gossypol by Vibrational Circular Dichroism.
Chirality 15:196

 210. Nafie LA, Freedman TB (1986) Ring Current Mechanism of Vibrational Circular Dichroism.
J Phys Chem 90:763

 211. Freedman TB, Gao X, Shih ML, Nafie LA (1998) Electron Transition Current Density in
Molecules. 2. Ab Initio Calculations for Electronic Transitions in Ethylene and Formaldehyde. 
J Phys Chem A 102:3352

 212. Gigante DMP, Long F, Bodack LA, Evans JM, Kallmerten J, Nafie LA, Freedman TB (1999)
Hydrogen Stretching Vibrational Circular Dichroism in Methyl Lactate and Related
Molecules. J Phys Chem A 103:1523

 213. Izumi H, Ogata A, Nafie LA, Dukor RK (2008) Vibrational Circular Dichroism Analysis
Reveals a Conformational Change of the Baccatin III Ring of Paclitaxel: Visualization of
Conformations Using a New Code for Structure-Activity Relationships. J Org Chem 73:2367

 214. Sato T, Yoshida S, Hoshino H, Tanno M, Nakajima M, Hoshino T (2011) Sesquarterpenes
(C35 Terpenes) Biosynthesized via the Cyclization of a Linear C35 Isoprenoid by a Tetraprenyl-
β- curcumene Synthase and a Tetraprenyl-β-curcumene Cyclase: Identification of a New 
Terpene Cyclase. J Am Chem Soc 133:9734

 215. He Y, Wang B, Dukor RK, Nafie LA (2011) Determination of Absolute Configuration of
Chiral Molecules Using Vibrational Optical Activity: A Review. Appl. Spect 65:699

 216. Partal-Ureña F, Avilés-Moreno JR, López-González JJ (2012) Characterization of H-Bonding
Networks in Chiral Alcohols Using Infrared, Raman and Vibrational Circular Dichroism
Spectroscopies, and Density Functional Calculations: (S)-(–)-Perillyl Alcohol. Tetrahedron 
Asymm 23:515

 217. Avilés-Moreno JR, Partal-Ureña F, López-González JJ (2013) Hydrogen Bonding Network
in a Chiral Alcohol: (1R,2S,5R)-(–)-Menthol. Conformational Preference Studied by 
IR-Raman-VCD Spectroscopies and Quantum Chemical Calculations. Struct Chem 24:671

 218. Loandos M del H, Villecco MB, Burgueño-Tapia E, Joseph-Nathan P, Catalán CAN (2009)
Preparation and Absolute Configuration of (1R,4R)-(+)-3-Oxo-, (1S,4S)-(–)-3-Oxo- and 
(1R,3S,4R)-(+)-3-Acetyloxy-5-oxo-1,8-Cineole. J Nat Prod 4:1537

 219. Batista JM Jr., Batista ANL, Mota JS, Cass QB, Kato MJ, Bolzani VS, Freedman TB, López
SN, Furlan M, Nafie LA (2011) Structure Elucidation and Absolute Stereochemistry of 
Isomeric Monoterpene Chromane Esters. J Org Chem 76:2603

 220. Batista Jr JM, Batista ANL, Kato MJ, Bolzani VS, López SN, Nafie LA, Furlan M (2012)
Further Monoterpene Chromane Esters from Peperomia obtusifolia: VCD Determination of 
the Absolute Configuration of a New Diastereomeric Mixture. Tetrahedron Lett 53:6051

 221. Avilés-Moreno JR, Partal-Ureña F, López-González JJ (2011) Chiral Terpenes in Different
Phases: R-(2)-Camphorquinone Studied by IR–Raman–VCD Spectroscopies and Theoretical 
Calculations. Struct Chem 22:67

P. Joseph-Nathan and B. Gordillo-Román



447

 222. Shen J, Li Y, Vaz R, Izumi H (2012) Revisiting Vibrational Circular Dichroism Spectra of
(S)-(+)-Carvone and (1S,2R,5S)-(+)-Menthol Using SimIR/VCD Method. J Chem Theory
Comput 8:2762

 223. Lucotti A, Tommasini M, Fazzi D, Del Zoppo M, Chalifoux, WA, Ferguson MJ, Zerbi G,
Tykwinski RR (2009) Evidence for Solution-state Nonlinearity of sp-Carbon Chains Based
on IR and Raman Spectroscopy. J Am Chem Soc 131:4239

 224. Wu T, You X (2012) Exciton Coupling Analysis and Enolization Monitoring by Vibrational
Circular Dichroism Spectra of Camphor Diketones. J Phys Chem A 116:8959

 225. Merten C, Jalkanen KJ, Weiss VC, Hartwig A (2010) Vibrational Circular Dichroism of
3-(Trifluoroacetyl)-Camphor and its Interaction with Chiral Amines. Chirality 22:772

 226. Mori K, Tashiro T, Yoshimura T, Takita M, Tabata J, Hiradate S, Sugie, H (2008) Determination
of the Absolute Configuration of the Male Aggregation Pheromone, 2-Methyl-6-(4′-
methylenebicyclo[3.1.0]hexyl)hept-2-en-1-ol, of the Stink Bug Erysarcoris lewisi (Distant) 
as 2Z,6R,1′S,5′S by its Synthesis. Tetrahedron Lett 49:354

 227. Figadère B, Devlin FJ, Millara JG, Stephens PJ (2008) Determination of the Absolute
Configuration of the Sex Pheromone of the Obscure Mealybug by Vibrational Circular 
Dichroism Analysis. Chem Commun:1106

 228. Capon RJ (2001) Marine Bioprospecting - Trawling for Treasure and Pleasure. Eur J Org
Chem 2001:633

 229. Pérez C, Becerra J, Manríquez-Navarro P, Aguayo LG, Fuentealba J, Guzmán JL Joseph-
Nathan P, Jiménez V, Muñoz MA, Silva M (2011) Inhibitory Activities on Mammalian
Central Nervous System Receptors and Computational Studies of Three Sesquiterpene
Lactones from Coriaria ruscifolia subsp. ruscifolia. Chem Pharm Bull 59:161

 230. Río de la Loza L (1852) Discurso Pronunciado por el Catedrático de Química Médica de la
Escuela de Medicina (November 23, 1852). In: Noriega JM (compiler). Escritos de Leopoldo 
Río de la Loza, Imprenta de Ignacio Escalante: México City 1911:94

 231. Burgueño-Tapia E, Joseph-Nathan P (2012) Conformational Analysis of Perezone and
Dihydroperezone using Vibrational Circular Dichroism. Phytochemistry 74:190

 232. Zepeda LG, Burgueño-Tapia E, Pérez-Hernández N, Cuevas G, Joseph-Nathan P (2013)
NMR-Based Conformational Analysis of Perezone and Analogues. Magn Reson Chem
51:245

 233. Partal-Ureña F, Avilés-Moreno JR, López-González JJ (2009) Conformational Study of (R)-
(+)-Limonene in the Liquid Phase Using Vibrational Spectroscopy (IR, Raman, and VCD) 
and DFT Calculations. Tetrahedron Asymm 20:89

 234. Mukhopadhyay P, Wipf P, Beratan DN (2009) Optical Signatures of Molecular Dissymmetry:
Combining Theory with Experiments to Address Stereochemical Puzzles. Acc Chem Res
42:809

 235. Mori T, Izumi H, Inoue Y (2004) Chiroptical Properties of Organic Radical Cations. The
Electronic and Vibrational Circular Dichroism Spectra of α-Tocopherol Derivatives and 
Sterically Hindered Chiral Hydroquinone Ethers. J Phys Chem A 108:9540

 236. Yam-Puc A, Escalante-Erosa F, Pech-López M, Chan-Bacab MJ, Arunachalampillai A,
Wend OF, Sterner O, Peña-Rodríguez LM (2009) Trinorsesquiterpenoids from the Root
Extract of Pentalinon andrieuxii. J Nat Prod 72:745

 237. Burgueño-Tapia E, Yam-Puc JA, Peña-Rodríguez LM, Joseph-Nathan P. Absolute
Configuration of Urechitol A. Unpublished results

 238. Joseph-Nathan P, Leitão SG, Pinto SC, Leitão GG, Bizzo HR, Costa FLP, de Amorim MB,
Martinez N, Dellacassa E, Hernández-Barragán A, Pérez-Hernández N (2010) Structure
Reassignment and Absolute Configuration of 9-epi-Presilphiperfolan-1-ol. Tetrahedron Lett 
51:1963

 239. Debie E, Kuppens T, Vandyck K, Van der Eycken J, Van Der Veken B, Herrebout W, Bultinck
P (2006) Vibrational Circular Dichroism DFT Study on Bicyclo[3.3.0]octane Derivatives.
Tetrahedron Asymm 17:3203

 240. Joseph-Nathan P, Reyes-Trejo B, Morales-Rios MS (2006) Molecular Rearrangements of
(–)-Modhephene and (–)-Isocomene to a (–)-Triquinane. J Org Chem 71:4411

Vibrational Circular Dichroism Absolute Configuration Determination…



448

 241. Monde K, Taniguchi T, Miura N, Vairappan CS, Suzuki M (2006) Absolute Configurations of
Brominated Sesquiterpenes Determined by Vibrational Circular Dichroism. Chirality 18:335

 242. Muñoz MA, Chamy C, Carrasco A, Rovirosa J, San Martin A, Joseph-Nathan P (2009)
Diastereomeric Assignment in a Pacifenol Derivative using Vibrational Circular Dichroism. 
Chirality 21:E208

 243. Darias J, San-Martin A, Rovirosa J (1990) Neighbouring Group Participation in the
Biosynthesis of the Vinyl Bromide Moiety of Chamigrene Metabolites. Chem Lett 19:259

 244. Krautmann M, de Riscala EC, Burgueño-Tapia E, Mora-Pérez Y, Catalán CAN, Joseph-
Nathan P (2007) C-15-Functionalized Eudesmanolides from Mikania campanulata. J Nat 
Prod 70:1173

 245. Burgueño-Tapia E, Hernández-Carlos B, Joseph-Nathan P (2006) DFT, Solution, and Crystal
Conformation of Eremophilanolides. J Mol Struct 825:115

 246. Rojas-Pérez RE, Cedillo-Portugal E, Joseph-Nathan P, Burgueño-Tapia E (2009) A New
Longipinene Diester from Stevia monardifolia Kunth. Nat Prod Commun 4:757

 247. Michalski O, Kisiel W, Michalska K, Setnicka V, Urbanova M (2007) Absolute Configuration
and Conformational Analysis of Sesquiterpene Lactone Glycoside Studied by Vibrational
Circular Dichroism Spectroscopy. J Mol Struct 871:67

 248. Bercion S, Buffeteau T, Lespade L, Couppe de K. Martin M-A (2006) IR, VCD, 1H and 13C 
NMR Experimental and Theoretical Studies of a Natural Guaianolide: Unambiguous
Determination of its Absolute Configuration. J Mol Struct 791:186

 249. Monde K, Taniguchi T, Miura N, Vairappan CS, Suzuki M (2006) Absolute Configurations
of Endoperoxides Determined by Vibrational Circular Dichroism (VCD). Tetrahedron Lett 
47:4389

 250. Valdez-Calderón A, Torres-Valencia JM, Manríquez-Torres JJ, Velázquez-Jiménez R,
Román-Marín LU, Hernández-Hernández JD, Cerda-García-Rojas CM, Joseph-Nathan P
(2013) An Unusual Diepoxyguaianolide from Stevia tomentosa. Tetrahedron Lett 54:3286

 251. Flack HD, Bernardinelli G (2008) The Use of X-Ray Crystallography to Determine Absolute
Configuration. Chirality 20:681

 252. Hooft RWW, Straver LH, Spek AL (2008) Determination of Absolute Structure Using
Bayesian Statistics on Bijvoet Differences. J Appl Cryst 41:96

 253. Gherase D, Naubron J-V, Roussel C, Giorgi M (2012) XRD and VCD: A Marriage of Love
or Convenience? Honeymoon around a Cyclic Urea Derivative. Acta Cryst C68:247

 254. Gordillo-Román B, Camacho-Ruiz J, Bucio MA, Joseph-Nathan P. (2013) Vibrational
Circular Dichroism Discrimination of Diastereomeric Cedranol Acetates. Chirality 25:939

 255. Loayza I, Burgueño-Tapia E, Dellacassa E, Joseph-Nathan P (2013) An Endoperoxiditerpene
From Calceolaria buchtieniana Kranzi. Unpublished results

 256. Jalkanen KJ, Gale JD, Lassen PR, Hemmingsen L, Rodarte A, Degtyarenko IM, Nieminen
RM, Brøgger CS, Knapp-Mohammady M, Suhai S (2008) A Configurational and
Conformational Study of Aframodial and its Diastereomers via Experimental and Theoretical 
VA and VCD Spectroscopies. Theor Chem Acc 119:177

 257. Aoyagi Y, Yamazaki A, Nakatsugawa C, Fukaya H Takeya K, Kawauchi S, Izumi H (2008)
Salvileucalin B, A Novel Diterpenoid with an Unprecedented Rearranged Neoclerodane
Skeleton from Salvia leucantha Cav. Org Lett 10:4429

 258. Nakahashi A, Taniguchi T, Miura N, Monde K (2007) Stereochemical Studies of Sialic Acid
Derivatives by Vibrational Circular Dichroism. Org Lett 9:4741

 259. Areche C, San-Martín A, Rovirosa J, Muñoz MA, Hernández-Barragán A, Bucio MA,
Joseph-Nathan P (2010) Stereostructure Reassignment and Absolute Configuration of
Isoepitaondiol, a Meroditerpenoid from Stypopodium flabelliforme. J Nat Prod 73:79

 260. Muñoz MA, Areche C, Rovirosa J, San Martín A, Gordillo-Román B, Joseph-Nathan P
(2012) Absolute Configuration of the Meroditerpenoids Taondiol and Epitaondiol Diacetates 
by Vibrational Circular Dichroism. Heterocycles 85:1961

 261. González AG, Darías J, Martín JD (1971) Taondiol, A New Component from Taonia atom-
aria. Tetrahedron Lett 12:2729

P. Joseph-Nathan and B. Gordillo-Román



449

 262. Sánchez-Ferrando F, San-Martín A (1995) Epitaondiol: The First Polycyclic Meroditerpenoid
Containing Two Fused Six-Membered Rings Forced into the Twist-Boat Conformation. J Org
Chem 60:1475

 263. Penicooke N, Walford K, Badal S, Delgoda R, Williams LAD, Joseph-Nathan P, Gordillo-
Román B, Gallimore W (2013) Antiproliferative Activity and Absolute Configuration of
Zonaquinone Acetate from Jamaican Alga Stypopodium zonale. Phytochemistry 87:96

 264. Heshmat M, Nicu VP, Baerends EJ (2012) On the Equivalence of Conformational and
Enantiomeric Changes of Atomic Configuration for Vibrational Circular Dichroism Signs. J 
Phys Chem A 116:3454

 265. Molina-Salinas GM, Rivas-Galindo VM, Said-Fernández S, Lankin DC, Muñoz MA, Joseph-
Nathan P, Pauli GF, Waksman N (2011) Stereochemical Analysis of Leubethanol, an Anti-TB
Active Serrulatane, from Leucophyllum frutescens. J Nat Prod 74:1842

 266. Gómez-Hurtado MA, Torres-Valencia JM, Manríquez-Torres J, del Río RE, Motilva V,
García-Mauriño S, Ávila J, Talero E, Cerda-García-Rojas CM, Joseph-Nathan P (2011)
Absolute Configuration of Labdanes and ent-Clerodanes from Chromolaena pulchella by 
Vibrational Circular Dichroism. Phytochemistry 72:409

 267. Muñoz MA, Urzúa A, Echeverría J, Bucio MA, Hernández-Barragán A, Joseph-Nathan P
(2012) Determination of Absolute Configuration of Salvic Acid, an ent-Labdane from 
Eupatorium salvia, by Vibrational Circular Dichroism. Phytochemistry 80:109

 268. Muñoz MA, Perez-Hernandez N, Pertino MW, Schmeda-Hirschmann G, Joseph-Nathan P
(2012) Absolute Configuration and 1H NMR Characterization of Rosmaridiphenol Diacetate.
J Nat Prod 75:779

 269. Manríquez-Torres JJ, Torres-Valencia JM, Gómez-Hurtado MA, Motilva V, García-Mauriño
S, Ávila J, Talero E, Cerda-García-Rojas CM, Joseph-Nathan P (2011) Absolute Configuration
of 7,8-seco-7,8-Oxacassane Diterpenoids from Acacia schaffneri. J Nat Prod 74:1946

 270. Manríquez-Torres JJ, Torres-Valencia JM, Velázquez-Jiménez R, Valdez-Calderón A,
Alvarado-Rodríguez JG, Cerda-García-Rojas CM, Joseph-Nathan P (2013) A Macrocyclic
Dimeric Diterpene with a C2 Symmetry Axis. Org Lett 15:4658

 271. Borgen G, Dale J (1974) The Inherent Instability of 1,3-Dioxan and the Conformation of
1,3,7,9-Tetraoxacyclododecane. J Chem Soc Chem Commun:484

 272. Rank C, Phipps RK, Harris P, Fristrup P, Larsen TO, Gotfredsen CH (2008) Novofumigatonin,
a New Orthoester Meroterpenoid from Aspergillus novofumigatus. Org Lett 10:401

 273. Izumi H, Yamagami S, Futamura S, Nafie LA, Dukor RK (2004) Direct Observation of Odd-
Even Effect for Chiral Alkyl Alcohols in Solution Using Vibrational Circular Dichroism
Spectroscopy. J Am Chem Soc 126:194

 274. Gutiérrez-Nicolás F, Gordillo-Román B, Oberti JC, Estévez-Braun A, Ravelo AG, Joseph-
Nathan P (2012) Synthesis and Anti-HIV Activity of Lupane and Olean-18-ene Derivatives.
Absolute Configuration of 19,20-Epoxylupanes by VCD. J Nat Prod 75:669

 275. Burgueño-Tapia E, Ordaz-Pichardo C, Buendía-Trujillo AI, Chargoy-Antonio FJ,
 Joseph- Nathan P (2012) Structure and Absolute Configuration of a Visamminol Derivative 
using IR and Vibrational Circular Dichroism. Phytochem Lett 5:804

 276. Torres-Valencia JM, Chávez-Ríos OE, Cerda-García-Rojas CM, Burgueño-Tapia E, Joseph-
Nathan P (2008) Dihydrofurochromones from Prionosciadium thapsoides. J Nat Prod 
71:1956

 277. Amesty A, Burgueño-Tapia E, Joseph-Nathan P, Ravelo AG, Estévez-Braun A (2011)
Benzodihydrofurans from Cyperus teneriffae. J Nat Prod 74:1061

 278. Asai T, Luo D, Obara Y, Taniguchi T, Monde K, Yamashita K, Oshima Y (2012) 
Dihydrobenzofurans as Cannabinoid Receptor Ligands from Cordyceps annullata, an 
Entomopathogenic Fungus Cultivated in the Presence of an HDAC Inhibitor. Tetrahedron
Lett 53:2239

 279. Batista JM Jr., Batista ANL, Rinaldo D, Vilegas W, Ambrósio DL, Cicarelli RMB, Bolzani
VS, Kato MJ, Nafie LA, López SN, Furlan M (2011) Absolute Configuration and Selective 
Trypanocidal Activity of Gaudichaudianic Acid Enantiomers. J Nat Prod 74:1154

Vibrational Circular Dichroism Absolute Configuration Determination…



450

 280. Freedman TB, Cao X, Phillips LM, Cheng PTW, Dalterio R, Shu Y-Z, Zhang H, Zhao N,
Shukla RB, Tymiak A, Gozo SK, Nafie LA, Gougoutas JZ (2006) Determination of the
Absolute Configuration and Solution Conformation of a Novel Disubstituted Pyrrolidine 
Acid A by Vibrational Circular Dichroism. Chirality 18:746

 281. Batista JM Jr., Batista ANL, Rinaldo D, Vilegas W, Cass QB, Bolzani VS, Kato MJ, López
SN, Furlan M, Nafie LA (2010) Absolute Configuration Reassignment of Two Chromanes
from Peperomia obtusifolia (Piperaceae) Using VCD and DFT Calculations. Tetrahedron 
Asymm 21:2402

 282. Batista JM Jr., López SN, Mota JS, Vanzolini KL, Cass QB, Rinaldo D, Vilegas W, Bolzani
VS, Kato MJ, Furlan M (2009) Resolution and Absolute Configuration Assignment of a
Natural Racemic Chromane from Peperomia obtusifolia (Piperaceae). Chirality 21:799

 283. Cedrón JC, Estévez-Braun A, Ravelo AG, Gutiérrez D, Flores N, Bucio MA, Pérez-
Hernández N, Joseph-Nathan P (2009) Bioactive Montanine Derivatives from Halide-induced
Rearrangements of Haemanthamine-type Alkaloids. Absolute Configuration by VCD. Org
Lett 11:1491

 284. Taniguchi T, Tone I, Monde K (2008) Observation and Characterization of a Specific 
Vibrational Circular Dichroism Band in Phenyl Glycosides. Chirality 20:446

 285. Monde K, Taniguchi T, Miura N, Nishimura SI (2004) Specific Band Observed in VCD
Predicts the Anomeric Configuration of Carbohydrates. J Am Chem Soc 126:9496

 286. Taniguchi T, Monde K, Nakanishi K, Berova N (2008) Chiral Sulfinates Studied by Optical
Rotation, ECD and VCD: The Absolute Configuration of a Cruciferous Phytoalexin
Brassicanal C. Org Biomol Chem 6:4399

 287. Monde K, Taniguchi T, Miura N, Kutschy P, Čurillová Z, Pilátová M, Mojžiš J (2005) Chiral
Cruciferous Phytoalexins: Preparation, Absolute Configuration, and Biological Activity.
Bioorg Med Chem 13:5206

 288. Monde K, Taniguchi T, Miura N, Nishimura S-I, Harada N, Dukor RK, Nafie LA. (2003)
Preparation of Cruciferous Phytoalexin Related Metabolites, (–)-Dioxibrassinin and
(–)-3-Cyanomethyl-3-hydroxyoxindole, and Determination of Their Absolute Configurations 
by Vibrational Circular Dichroism (VCD). Tetrahedron Lett 44:6017

 289. Velázquez-Jiménez R, Torres-Valencia JM, Cerda-García-Rojas CM, Hernández-Hernández
JD, Román-Marín LU, Manríquez-Torres JJ, Gómez-Hurtado MA, Valdez-Calderón A,
Motilva V, García-Mauriño S, Talero E, Ávila J, Joseph-Nathan P (2011) Absolute
Configuration of Podophyllotoxin Related Lignans from Bursera fagaroides using Vibrational 
Circular Dichroism. Phytochemistry 72:2237

 290. Lassen PR, Skytte DM, Hemmingsen L, Nielsen SF, Freedman TB, Nafie LA, Christensen
SB (2005) Structure and Absolute Configuration of Nyasol and Hinokiresinol via Synthesis 
and Vibrational Circular Dichroism Spectroscopy. J Nat Prod 68:1603

 291. Felippe LG, Batista Jr. JM, Baldoqui DC, Nascimento IR, Kato MJ, He Y, Nafie LA, Furlan
M. (2012) VCD to Determine Absolute Configuration of Natural Product Molecules: 
Secolignans from Peperomia blanda. Org Biomol Chem 10:4208

 292. Socolsky C, Rates SMK, Stein AC, Asakawa Y, Bardón A (2012) Acylphloroglucinols from
Elaphoglossum crassipes: Antidepressant-like Activity of Crassipin A. J Nat Prod 75:1007

 293. Reina M, Ruiz-Mesia W, López-Rodríguez M, Ruiz-Mesia L, González-Coloma A, Martínez-
Díaz R (2012) Indole Alkaloids from Geissospermum reticulatum. J Nat Prod 75:928

 294. Gordillo-Román B, Reina M, Ruiz-Mesia L, Ruiz-Mesia W, Joseph-Nathan P (2013)
Absolute Configuration of Indoline Alkaloids from Geissospermum reticulatum. Tetrahedron 
Lett 54:1693

 295. Stephens PJ, Pan JJ, Krohn K (2007) Determination of the Absolute Configurations of 
Pharmacological Natural Products via Density Functional Theory Calculations of Vibrational 
Circular Dichroism: the New Cytotoxic Iridoid Prismatomerin. J Org Chem 72:7641

 296. Krohn K, Gehle D, Dey SK, Nahar N, Mosihuzzaman M, Sultana N, Sohrab MH, Stephens PJ,
Pan JJ, Sasse F (2007) Prismatomerin, a New Iridoid from Prismatomeris tetrandra. Structure 
Elucidation, Determination of Absolute Configuration, and Cytotoxicity. J Nat Prod 70:1339

P. Joseph-Nathan and B. Gordillo-Román



451

 297. Devlin FJ, Stephens PJ, Figadère B. (2009) Determination of the Absolute Configuration of
the Natural Product Klaivanolide via Density Functional Calculations of Vibrational Circular 
Dichroism (VCD). Chirality 21:E48

 298. Zhu WL, Puah CM, Tan X-J, Jiang HL, Chen KX, Ji RY (2000) A Density Functional Theory
Calculation of the Geometry and Vibrational Spectrum of Natural Product, Ginkgolide B.J
Mol Struct (Theochem) 528:193

 299. He J, Petrovic AG, Dzyuba SV, Berova N, Nakanishi K, Polavarapu PL (2008) Spectroscopic
Investigation of Ginkgo biloba Terpene Trilactones and Their Interaction with Amyloid 
Peptide Aβ(25-35). Spectrochim Acta Part A 69:1213

 300. Shanmugam G, Polavarapu PL (2004) Structure of Aβ(25–35) Peptide in Different 
Environments. Biophys J 87:622

 301. Ma S, Cao X, Mak M, Sadik A, Walkner C, Freedman TB, Lednev IK, Dukor RK, Nafie LA
(2007) Vibrational Circular Dichroism Shows Unusual Sensitivity to Protein Fibril Formation 
and Development in Solution. J Am Chem Soc 129:12364

 302. Nakahashi A, Miura N, Monde K, Tsukamoto S (2009) Stereochemical Studies of
Hexylitaconic Acid, an Inhibitor of p53–HDM2 Interaction. Bioorg Med Chem Lett 19:3027

 303. Isogai A, Sakuda S, Nakayama J, Washizu M, Shindou K, Watanabe S, Suzuki A (1987)
Screening Search for Plant Growth Regulators from Microbial Metabolites. Proceedings of
the Plant Growth Regulation Society of America, 14th Meeting, Honolulu, Hawaii, p 250

 304. Nakahashi A, Yaguchi Y, Miura N, Emura M, and Monde K (2011) Vibrational Circular
Dichroism Approach to the Determination of the Absolute Configurations of Flavorous 
5-Substituted-2(5H)-furanones. J Nat Prod 74:707

 305. Yaguchi Y, Nakahashi A, Miura N, Sugimoto D, Monde K, Emura M (2008) Stereochemical
Study of Chiral Tautomeric Flavorous Furanones by Vibrational Circular Dichroism. Org Lett 
10:4883

 306. Emura M, Yaguchi Y, Nakanishi A, Sugimoto D, Miura N, K Monde (2009) Stereochemical
Studies of Odorous 2-Substituted-3(2H)-furanones by Vibrational Circular Dichroism. J
Agric Food Chem 57:9909

 307. Monde K, Nakahashi A, Miura N, Yaguchi Y, Sugimoto D, Emura M (2009) Stereochemical
Study of a Novel Tautomeric Furanone, Homofuraneol. Chirality 21:E110

 308. Polavarapu PL, Scalmani G, Hawkins E K, Rizzo C, Jeirath N, Ibnusaud I, Habel D, Nair DS,
Haleema S (2011) Importance of Solvation in Understanding the Chiroptical Spectra of
Natural Products in Solution Phase: Garcinia Acid Dimethyl Ester. J Nat Prod 74:321

 309. Polavarapu PL, Jeirath N, Walia S (2009) Conformational Sensitivity of Chiroptical 
Spectroscopic Methods: 6,6′-Dibromo-1,1′-bi-2-naphthol. J Phys Chem A 113:5423

 310. Polavarapu PL, Donahue EA, Shanmugam G, Scalmani G, Hawkins EK, Rizzo C, Ibnusaud
I, Thomas G, Habel D, Sebastian D (2011) A Single Chiroptical Spectroscopic Method May
Not Be Able To Establish the Absolute Configurations of Diastereomers: Dimethylesters of
Hibiscus and Garcinia Acids. J Phys Chem A 115:5665

 311. Polavarapu PL (2008) Why it is Important to Simultaneously Use More than One Chiroptical 
Spectroscopic Method for Determining the Structures of Chiral Molecules? Chirality 20:664

 312. Polavarapu PL (2012) Molecular Structure Determination Using Chiroptical Spectroscopy: 
Where We May Go Wrong? Chirality 24:909

 313. Polavarapu PL, Donahue EA, Hammer KC, Raghavan V, Shanmugam G, Ibnusaud I, Nair
DS, Gopinath C, Habel D (2012) Chiroptical Spectroscopy of Natural Products: Avoiding the
Aggregation Effects of Chiral Carboxylic Acids. J Nat Prod 75:1441

 314. Muñoz MA, Urzúa A, Echeverría J, Modak B, Joseph-Nathan P (2011) Solid State Structure
and Absolute Configuration of Filifolinol Acetate. Nat Prod Commun 6:759

 315. Muñoz MA, Bucio MA, Joseph-Nathan P (2013) Chiroptical Studies of Flavanone. Nat Prod
Commun 8:1075

 316. Abbate S, Burgi LF, Castiglioni E, Lebon F, Longhi G, Toscano E, Caccamese S (2009)
Assessment of Configurational and Conformational Properties of Naringenin by Vibrational 
Circular Dichroism. Chirality 21:436

Vibrational Circular Dichroism Absolute Configuration Determination…



452

 317. Mugishima T, Tsuda M, Kasai Y, Ishiyama H, Fukushi E, Kawabata J, Watanabe M, Akao K,
Kobayashi J (2005) Absolute Stereochemistry of Citrinadins A and B from Marine-Derived
Fungus. J Org Chem 70:9430

 318. Hopmann KH, Šebestík J, Novotná J, Stensen W, Urbanová M, Svenson J, Svendsen JS, Bouř 
P, Ruud K (2012) Determining the Absolute Configuration of Two Marine Compounds Using
Vibrational Chiroptical Spectroscopy. J Org Chem 77:858

 319. Asai T, Morita S, Shirata N, Taniguchi T, Monde K, Sakurai H, Ozeki T, Oshima Y (2012)
Structural Diversity of New C13-Polyketides Produced by Chaetomium mollipilium Cultivated 
in the Presence of a NAD+-Dependent Histone Deacetylase Inhibitor. Org Lett 14:5456

 320. Cherblanc F, Lo Y-P, De Gussem E, Alcazar-Fuoli L, Bignell E, He Y, Chapman-Rothe N,
Bultinck P, Herrebout WA, Brown R, Rzepa HS, Fuchter MJ (2011) On the Determination of
the Stereochemistry of Semisynthetic Natural Product Analogues using Chiroptical 
Spectroscopy: Desulfurization of Epidithiodioxopiperazine Fungal Metabolites. Chem Eur J 
17:11868

 321. Cherblanc FL, Lo Y-P, Herrebout WA, Butlinck P, Rzepa HS, Fuchter MJ (2013) Mechanistic
and Chiroptical Studies on the Desulfurization of Epidihiodioxopiperazines Reveal Universal
Retention of Configuration at Bridgehead Carbon Atoms. J Org Chem 78:11646

 322. Patterson D, Schnell M, Doyle JM (2013) Enantiomer-Specific Detection of Chiral Molecules 
via Microwave Spectroscopy. Nature 497:475

 323. Nafie LA (2013) Handedness Detected by Microwaves. Nature 497:446

P. Joseph-Nathan and B. Gordillo-Román



453A.D. Kinghorn, H. Falk, J. Kobayashi (eds.), Progress in the Chemistry 
of Organic Natural Products, Vol. 100, DOI 10.1007/978-3-319-05275-5_5, 
© Springer International Publishing Switzerland 2015

      The Series “Progress in the Chemistry 
of Organic Natural Products”: 75 Years 
of Service in the Development of Natural 
Product Chemistry 

             Rudolf     Werner     Soukup      and     Klara     Soukup   

        R.  W.   Soukup      (*) 
  Institute of Chemical Technologies and Analytics ,  Vienna University of Technology , 
  1060 Vienna ,  Getreidemarkt 9 ,  Austria   
 e-mail: rudolf.werner@kabelnet.at   

    K.   Soukup    
  St. Anna Children’s Cancer Research Institute ,   Zimmermannplatz 10 , 
 1090 Vienna ,  Austria    

1 Contents

1  Introduction ........................................................................................................................  454
2  László Zechmeister: Editor from 1938 to 1969 ..................................................................  455

2.1  Previous History: Phytochemistry in Hungary .........................................................  455
2.2  A Short Biography of László Zechmeister ................................................................  456

3  Volumes One to Three: Edited in Pécs...............................................................................  460
3.1  Editorial Board ..........................................................................................................  460
3.2  Volume One: Overture ..............................................................................................  462
3.3  Volume Two: A Respectable Prolongation ...............................................................  466
3.4  Volume Three: Swan Song of an Ending Era ............................................................  469

4  Volumes 4–27: Edited in Pasadena ....................................................................................  470
4.1  Volume Four: European Research Results during World War II ..............................  470
4.2  Volume Five: Both Americas Are Gaining Ground ..................................................  472
4.3  Volume Six: A New Sign of Life from the Viennese 

School of Phytochemistry .........................................................................................       474
4.4  Volume Seven: Contributions from Great Britain, Switzerland, and the U.S. ..........  475
4.5  Volume Eight: Traditional Centers of Research on the Chemistry 

of Natural Products Back on Stage ...........................................................................    476
4.6  Volume Nine: Papers from All Over Europe and California ....................................  478
4.7  Volumes 10–27: Still Bearing Zechmeister’s Signature............................................  479

5  Since 1970: Not “Edited by” but “Founded by” L. Zechmeister .......................................  503
5.1  The Editorial Board Since 1970 ................................................................................  503
5.2  Volumes 28–38: New Centers of Research, New Fields of Research .......................  506
5.3  Volumes 39–88: A New Design ................................................................................  518
5.4  Volumes 89–100: Another Change of Appearance ...................................................  553

mailto: rudolf.werner@kabelnet.at


454

1            Introduction 

 The monograph series “Fortschritte der Chemie Organischer Naturstoffe” (from 
1945 to 2010 “Fortschritte der Chemie Organischer Naturstoffe—Progress in the 
Chemistry of Organic Natural Products” and from thereon “Progress in the 
Chemistry of Organic Natural Products”) was founded by  László Zechmeister  in 
1938. On the occasion of the 75th anniversary of the edition of Volume One as well 
as upon the publication of Volume 100, we take a retrospective look at the begin-
nings and development of “Progress” in order to answer the question of whether this 
series of contributions has been a true mirror of the rapid development of natural 
product chemistry from 1938 to the present. 

 There is no doubt that investigating the physical and material constitution of him-
self and his immediate environment has always been of major importance to man. 
The fascination of Nature and the color of blood dates back to paleolithic man. 
Traces of red chalk on the skull of a skeleton from a 28,000 years old burial site in 
Dolni Vĕstonice in Southern Moravia hint at the possibility that early man associ-
ated iron-containing compounds (hematite and also limonite) with vital blood ( 1 ). In 
his “Naturalis Historia”,  Plinius  (approx. 23–79 AD) reports that powdered hematite 
is capable of staunching the fl ow of blood from wounds ( 2 ). In 1665, the Italian 
anatomist  Marcello Malpighi  (1628–1694) described fi brin as the major component 
of the blood clot ( 3 ). In his blood analysis from 1812, the Swedish chemist  Jöns 
Jacob Berzelius  (1779–1848) separated the solid and liquid parts by  coagulation and 
examined each part separately ( 4 ). He found an iron oxide content of 50% in the clot 
( 5 ). Many years later,  Hans Fischer  (1881–1945) was able to identify hemin as a 
porphyrin ligand complexed with an iron ion as its central atom ( 6 ).  Fischer  con-
ducted his studies in Munich starting from 1912. Meanwhile, in Zurich (1913), 
 Richard Willstätter  (1872–1942) was able to obtain a compound he named “aetio-
phyllin” by introducing magnesium into hemoporphyrin ( 7 ). The same substance 
could later be obtained from chlorophyll derivatives, which proved the chemical 
similarity between the red pigment in blood and the green pigment in leaves. 

 In a nomination speech that preceded the election of  Willstätter  as a full member 
to the Berlin Academy of Sciences in November 1914,  Emil Fischer  (1852–1919), 
who had been awarded a  Nobel  Prize in 1902, underlined the signifi cance of 
 Willstätter ’s discoveries in the fi eld of physiology ( 8 ).  Willstätter  had several promi-
nent students.  László Zechmeister  was one of them. It was  Willstätter  who planted 
the interest in investigating natural compounds in him ( 9 ). In the decades to come, 
 László Zechmeister  was to become one of the most important chemists in the fi eld 
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of natural products. One of his major contributions represents the foundation of a 
publication organ dedicated to the progress in this special fi eld in 1938, which 
still exists today: “Progress in the Chemistry of Organic Natural Products”. Thus, 
100 volumes of this series of monographs, which most of the time was simply called 
“ Zechmeister ”, have now been published. Since its foundation, the publisher 
(Springer- Verlag) has remained the same, which is quite astonishing considering 
the turmoil of the twentieth century. 

 This retrospective comments on the professional background of the series’ 
founder and fi rst editor on the one hand, and on its contributions on the other, which 
impressively mirror the tremendous progress achieved in natural product research 
over the decades. They cover primarily the years of  László Zechmeister ’s editorship 
(between 1938 and 1969) and subsequently follow the progress of research on natu-
ral compound chemistry in Central Europe. An important focus lies on develop-
ments in Hungary and Austria, which, until only a few years before  Zechmeister  
was appointed to the University of Pécs, had been joined in the Austro- Hungarian 
dual monarchy. Additionally, an eye is kept on the personal circumstances and 
changes in Zurich and Berlin, where  Zechmeister  was educated as a chemist. Later 
on, during World War II, the reader will follow  Zechmeister  to a new center of 
research in the USA. Finally—as time proceeds towards the present—this overview 
will reveal how excellent research is being conducted all over the globe in the fi eld 
of natural products. 

 It goes without saying that giving a comprehensive account of all the important 
developments concerning research on natural products over the course of 75 years, 
within the frame of an anniversary edition, is simply not possible. This contribution 
is therefore meant to represent a recapitulatory chronology.  

2      László Zechmeister : Editor from 1938 to 1969 

2.1     Previous History: Phytochemistry in Hungary 

 In principle, the history of the investigation of natural products in the Austro- 
Hungarian Empire started when  Josef Redtenbacher  (1810–1870) was appointed to 
the chair of chemistry at the University of Prague in 1840.  Redtenbacher  studied 
under  Joseph Franz von Jacquin  (1766–1839) in Vienna and under  Justus von Liebig  
(1803–1873) in Gießen.  Jacquin  was professor of botany and chemistry at the medi-
cal faculty of the Alma Mater Rudolfi na—the interconnection of research on plants 
and substances in Austria at that time is obvious. With  Liebig, Redtenbacher  got to 
know the method of exact elemental analysis. The laboratory of  Redtenbacher  in 
Prague was the origin of the development of chemical teaching and research 
throughout the empire ( 10 ). In 1849,  Redtenbacher  received a call to establish a 
chair of chemistry at the philosophical faculty of the University of Vienna. 
 Redtenbacher  had many important students. 
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 Concerning the development of chemistry in Hungary,  Theodor Wertheim  
(1820–1864) is to be mentioned, who came to Prague in 1843 in order to be taught 
in organic chemistry. The work of  Wertheim  started with preliminary studies on 
plant alkaloids and he succeeded in also isolating an oil from garlic and identifying 
it as diallyl sulfi de in 1845. In 1854,  Wertheim  took a position at the University of 
Pest, where he carried out work on quinine, narcotine, coniine, and conhydrine. 

  Wertheim’s  successor in the chair was another student of  Redtenbacher. Karl von 
Than  (1834–1908) who descended from the Hungarian noble family of  Ó-Becse  and 
went to Vienna in 1855 in order to study chemistry. Following his time in Heidelberg 
where he studied under  Robert Bunsen  (1811–1899), he became  Redtenbacher ’s 
assistant in 1859.  Than  proved to be quite successful in phytochemistry. In 1859, for 
example, he was able to show that the yellow crystalline substance rumicin, extracted 
from the roots of yellow dock ( Rumex crispus ), is chrysophanic acid. In Budapest, 
 Than  became the teacher of the fi rst generation of Hungarian chemists of European 
standing ( 11 ). Of his numerous students,  Lajos Winkler  (1863–1939) should be 
mentioned, who became known for his method to determine oxygen dissolved in 
water. Furthermore,  Winkler  rendered great service to the determination of the acid 
number of fats and became  Than ’s successor at the University of Budapest. 

 In the commentary to Volume One, also  Gezá Zemplén , who studied under  Than  
and earned his doctorate in Budapest in 1904, will be mentioned. 

 This synopsis of important contributors to Hungarian phytochemistry should 
also include  Albert von Szent-Györgyi Nagyrápolt  (1893–1986), biochemist and 
Medicine  Nobel  laureate, who was born in Budapest and studied there shortly before 
World War I. In 1930—following research stays in Germany, the Netherlands, and 
England—he accepted a chair at the University of Szeged, where he succeeded in 
identifying ascorbic acid, which he had isolated from plant extracts, as vitamin C in 
1932. As we will see,  Szent-Györgyi ’s visit to the California Institute of Technology 
in June, 1939 played quite an important role in  Zechmeister ’s biography.  

2.2     A Short Biography of László Zechmeister 

  László Zechmeister  was born in the emerging Hungarian town of Györ on May 14, 
1889. He was the son of  Károly Zechmeister  (1852–1910), town mayor at the time. 
Between 1869 and 1906, he attended Győri Magyar Királyi Állami Főreáliskolában 
school, which today is called Révai Miklós Gimnázium. After serving a year in the 
military ( 12 ),  Zechmeister  began to study at the Swiss Federal Institute of Technology 
(Eidgenössische Technische Hochschule) (ETH) in Zurich in the autumn of 1907. 

 The situation in Zurich at that time must have been tremendously productive. After 
all,  Zechmeister ’s teacher at the ETH,  Richard Willstätter  (1872–1942), was awarded 
a  Nobel  Prize in 1915—based mainly on work he had performed between 1905 and 
1912.  Alfred Werner  (1866–1919), who taught at the University of Zurich at that time, 
earned a  Nobel  Prize in 1913.  Paul Karrer  (1889–1971),  Nobel  laureate of 1937, 
obtained his doctorate in Zurich in 1911 and was  Werner ’s assistant. And fi nally, in 
1912,  Leopold Ružička  (1887–1976)— Nobel  laureate of 1939—accompanied his 
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dissertation adviser  Hermann Staudinger  (1881–1965,  Nobel  Prize in 1953) to ETH 
Zurich, when  Staudinger  became professor there and started the investigation of 
 high-molecular substances such as rubber and cellulose. 

 When  Richard Willstätter  moved from Zurich to Berlin-Dahlem as director of 
the Kaiser Wilhelm Institute in 1912, he invited  Zechmeister  to join him as his assis-
tant. Following these events,  Zechmeister  earned his doctorate in Zurich in 1913. 
As of 1913,  Zechmeister  published contributions on the hydrolysis of cellulose 
together with his teacher  Willstätter  ( 13 ). In 1914,  Willstätter’ s and  Zechmeister’ s 
paper “Synthesis of Pelargonidin” (“Synthese des Pelargonidins”) was printed in the 
minutes of proceedings at the Royal Prussian Academy of Sciences in Berlin ( 14 ). 

 At the outbreak of World War I,  Zechmeister  was drafted into the Hungarian 
Army. After having been captured at the Russian front, he was kept imprisoned in 
Siberia from 1915 until 1917. During these 2 years of imprisonment, he taught him-
self English by means of a Russian-English dictionary ( 15 ). After the war, 
 Zechmeister  took over the research laboratory at “Chinoin A.-G.”—a factory of 
chemical-pharmaceutical products in Budapest-Ujpest. He rejoined  Willstätter , 
who had taken over  Adolf von Baeyer ’s chair in Munich. The results of their inves-
tigation of the anthocyanin cyanidin were submitted at a session of the Bavarian 
Academy of Sciences in 1920 ( 16 ). 

 Along with  Georg Hevesy  (1885–1966),  Zechmeister  performed experiments 
with radioactive metal ions and organic ligands at the Veterinary School of Budapest 
in 1919/1920.  Hevesy  and  Zechmeister  extended earlier investigations of exchange 
processes. They mixed radioactive tetravalent lead acetate with inactive bivalent lead 
acetate and measured how the activity of the former gradually diminished to half of 
the original value, proving that the active isotopes exchange with the inactive ones. 
They also proved that an exchange process between atoms of the same  molecules 
can only be experienced if the molecules are present in their dissociated state ( 17 ). 
This contribution extended the isotope indicator method to the organic world ( 18 ). 

 From 1921 to 1943,  Zechmeister  was a scientifi c assistant of  Niels Bjerrum  
(1879–1958) and instructor at the Danish Royal Veterinary and Agricultural 
Academy, Copenhagen. With  Bjerrum  he published a contribution on the dehydra-
tion of methanol with the help of magnesium ( 19 ). 

 In 1923,  Zechmeister  became full professor of chemistry at the faculty of medi-
cine of the University of Pécs. Regarding his own early studies,  Zechmeister  pub-
lished on various plant and animal pigments, sugar derivatives and sterols in papers 
from Pécs. Together with  Pál Szécsi , for example, he published a paper on the occur-
rence of fumaric acid and inositol in 1921 ( 20 ), and, in 1926, he worked together 
with  Vera  ( Verával )  Vrabély  on ajkait—an organic mineral found in Hungary ( 21 ). 
In 1927, a contribution on the paprika pigment was published together with his long-
term assistant  László (von) Cholnoky  (1899–1967) as co-author ( 22 ). Publications 
followed on constitutional assignments of carotene in 1928 ( 23 ), on the phytosterol 
of the stinging nettle in 1929 ( 24 ), on conversions of capsanthin ( 25 ), and on the 
pigment of orange peel with  Pállal Tuzson  in 1936 ( 26 ). In 1934,  Zechmeister ’s 
monography “Carotenoids. A Biochemical Report on Plant and Animal Polyene 
Pigments” (“Carotinoide. Ein biochemischer Bericht über pfl anzliche und tierische 
Polyenfarbstoffe”) was published by Julius Springer-Verlag in Berlin. 
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 In 1940, on board of the last ship that left Italy heading towards the USA, 
 Zechmeister  immigrated to the United States. Following an invitation by  Linus 
Pauling  (1901–1994) to work at the Gates and Crellin Laboratories,  László 
Zechmeister  arrived at the California Institute of Technology by mid-March 1940 
( 27 ). We can get to know the background of  Pauling ’s invitation from a letter by 
 Pauling  to  Warren Weaver  at the Rockefeller Foundation dated July 14, 1939 ( 28 ):

   At present we are considering very seriously the possibility of giving appointment to 
Zechmeister. Szent-Györgyi, during his visit here last month, spoke very highly of 
Zechmeister, and even remarked, perhaps jocularly, that it would be fi ne if an institute for 
him and Zechmeister could be built on the northwest corner of the campus.  

  Zechmeister  was very much worried about the political situation in Hungary. In 
a letter written on June 13, 1939 ( 28 ), he told  Pauling  that he and his wife  “are 
inclined to leave if conditions were offered which would enable me to carry on with 
my work possibly on a larger scale than in this country.”    

 At the end of the second week of March, 1940,  Zechmeister  arrived in Pasadena 
and immediately was appointed professor of organic chemistry at the California 
Institute of Technology ( 29 ). In Pasadena,  Zechmeister  worked fi rst on the isomer-
ism of carotenoids. His two fi rst assistants at CalTech were  Arthur LeRosen , who 
died much too early in 1952, and  Andor Polgár , whom he had brought along from 
Hungary. In 1941,  Walter A. Schroeder  and  William McNeely  were appointed assis-
tants to Zechmeister ( 30 ). In 1949,  Zechmeister  was awarded a  Guggenheim  fellow-
ship in order to lecture at European universities, and, in 1959, he became professor 
emeritus. In his 1956/1957 lecture “Selected Chapters of Organic Chemistry” he 
considered the following topics: chromatography, fats, steroids, sex hormones, 
alkaloids, chlorophyll, carotenoids, anthocyanins, fl avones, pterins, bile pigments; 
structure and physiological action; the chemistry of chemotherapeutics and insec-
ticides; detoxifi cation processes, nitrogen metabolism, carbohydrate metabolism, 
nucleic acids, and the history of organic chemistry ( 31 ). In addition to numerous 
articles, which  Zechmeister  published together with  Pauling, Le Rosen, Schroeder , 
 Polgar ,  Fritz Went , and others in Pasadena, he dedicated himself to the editorship 
of the book series “Fortschritte in der Chemie organischer Naturstoffe” until 1970—
many years after his retirement (Fig.  1 )   .

   In contrast to his teacher  Willstätter ,  Zechmeister  highly valued the signifi -
cance of chromatography as a chemist’s tool. As of 1937, he studied the possi-
bilities of this separation method extensively. “30 Years of Chromatography” was 
the title of  Zechmeister’ s contribution published together with his assistant and 
later successor on his chair in Hungary,  László Cholnoky , in “Monatshefte der 
Chemie” (now: “Chemistry Monthly”), in 1936 ( 34 ). One year later the mono-
graph “Die chromatographische Adsorptionsmethode: Grundlagen, Methodik, 
Anwendungen”—published by Springer-Verlag in Vienna ( 35 ) appeared. The 
English translation of this book “Principles and Practice of Chromatography” by 
 Alfred Louis Bacharach  (1891–1966) and  Frank Arnold Robinson  (1907–1988), 
which was printed for the fi rst time in 1941 ( 36 ), played an important role in 
the development of  chromatographic methods in the U.S. ( 11 ). The fact that 
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 Zechmeister  had always been interested in the historical development of this 
method is documented by his contribution on “Mikhail Tswett—the Inventor of 
Chromatography”, published in the journal  Isis  in 1946 ( 37 ). It was only in 1951 
that he took the liberty of writing and editing a contribution in his own series 
(Vol. 8) together with  Margarete Rohdewald  (1900–1994) from Bonn. This con-
tribution was oriented especially to the use of chromatography for the separation 
of enzymes (Z60). 

  Zechmeister  did not only follow the development of methods but he also focused 
on their possible applications. This becomes evident when looking at one of his 
favorite fi elds of research: carotenoids. In particular, the separation of ( Z )- and ( E )-
isomers by the use of column chromatography is wedded to the name of  Zechmeister . 
In 1958, he published his own contribution in Volume 15 of the Series: “Some  in 
vitro  Conversions of Naturally Occurring Carotenoids” (Z109). 

 In 1935,  Zechmeister  was awarded the  Pasteur  Médaille in 1937, the major prize 
of the Hungarian Academy, in 1938 an honorary membership of the Austrian 
Chemical Society (“Gesellschaft Österreichischer Chemiker”) ( 38 ), in 1949 the 
Médaille  Claude Bernard , in 1960 the  Semmelweis  Medal, and in 1962 the Labline 
Award of the American Chemical Society. In 1971, the University of Pécs Medical 
School conferred an honorary M.D. degree on him. 

  Fig. 1    Members of the CalTech chemistry faculty in 1950. From  left  to  right :  Verner Schomaker, 
Stuart Bates, László Zechmeister, Dan Campbell  (author of a contribution to Vol. 9) , Joseph 
Koepfl i, Ernest Swift, Carl G. Niemann  (see Vol. 7) , Don Yost, Howard J. Lucas, J. Holmes 
Sturdivant, Stanley M. Swingle, Robert Corey  (see Vols. 8, 11, 26) ,  and  Zechmeister’s  former assis-
tant  Walter A. Schroeder  (see Vols. 11, 17, 23). Courtesy  Ava Helen  and  Linus Pauling  Papers, 
Oregon State University Special Collections ( 32 )       
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  Zechmeister  was married twice. His fi rst wife died in Budapest in 1941. In 1947, 
he married  Elizabeth Sulzer,  a young lady born in Zurich ( 39 ). Sometimes 
 Zechmeister  referred to his second wife as his associate in editing the series 
“Progress in the Chemistry of Organic Natural Products”, because of her assistance 
in both editing and translating submitted material. He died on February 28, 1972 in 
Pasadena, California. 

 Volume 55 of the Series opens with a dedication by the editors following 
 Zechmeister  on the occasion of the 100th anniversary of his birth on May 14, 1899: 
 “Those who knew him remember him for his contributions to science, for his stimu-
lus he provided for his contemporaries and his students and, in his capacity as edi-
tor, for his meticulous attention to detail”.    

3     Volumes One to Three: Edited in Pécs 

3.1     Editorial Board 

 Besides  Zechmeister ,  Adolf Butenandt  from Berlin,  Fritz Kögl  from Utrecht, and 
 Ernst Späth  from Vienna, are listed as members of the editorial board of the fi rst 
three volumes, published between 1938 and 1939 (Fig.  2 ).  Walter Norman Haworth  
from Birmingham was responsible only for Volumes One and Two.

   At the time of publication of the fi rst volume,  Adolf Butenandt  (1903–1995) was 
director of the Kaiser Wilhelm Institute of Biochemistry in Berlin-Dahlem and had 
just been appointed honorary professor of biochemistry at the university. He was 
regarded as  the  great steroid chemist and—together with  Leopold Ružička —was 
awarded the  Nobel  Prize in chemistry in 1939 for the identifi cation of the sex hor-
mones estrogen, progesterone, and androsterone. 

  Fritz Kögl  (1897–1959) studied under  Heinrich Otto Wieland  at the TH Munich. 
From 1921 to 1926 he was a coworker of  Hans Fischer  in Munich. As of 1931 he 
became full professor of organic chemistry and biochemistry at the University of 
Utrecht. In 1931,  Kögl  isolated muscarine and in 1936, he and his doctoral student 
 Benno Tönnis  succeeded in isolating biotin in its pure form. From 1933 on,  Kögl  and 
his assistants  Arie Jan Haagen-Smit  (1900–1977) and  Hanni Erxleben  (1903–2002) 
studied extensively plant growth hormones of the auxin group. 

  Sir Walter Norman Haworth  (1883–1950),  Nobel  laureate of 1937, had been 
awarded this honor together with  Paul Karrer  (a chemist from Switzerland whom 
we will get to know in Volume 5 of the Series) for his investigations on carbohy-
drates and vitamin C. In 1925, he was appointed Mason Professor of Chemistry at 
the University of Birmingham. 

  Ernst Späth  (1886–1946), son of a Moravian farrier, started his studies of natural 
sciences in Vienna in 1906. He earned his doctorate under  Rudolf Wegscheider  at the 
I Chemical Institute at the University of Vienna in 1910. In 1924, he followed  Wilhelm 
Schlenk  as professor at the II Chemical Institute in Vienna. His fi rst independent 
studies brought him to the fi eld of isoquinoline alkaloids, of which he characterized 
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  Fig. 2    Title page of volume 1 displaying the starting editorial board       

the main alkaloid in greater celandine ( Chelidonium majus )—chelidonine—among 
others. Many of  Späth ’s later investigations were dedicated to the alkaloids of 
 cactuses, golden chain ( Laburnum anagyroides ), tobacco, and opium. His work on 
cytisine earned him the  Ignaz Lieben  Prize in 1920 ( 39 ).  
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3.2     Volume One: Overture 

 The fi rst volume of the Series represented a sublime start.  Zechmeister   succeeded in 
winning the creme de la creme of the research elite in the area of natural products at 
the time to contribute. The series of contributions commenced with a text by  László 
Zechmeister ’s colleague,  Géza Zemplén  (1883–1956), who served as the chair of 
organic chemistry of the Technical University Budapest, entitled “New Directions 
in Glycoside Synthesis” ( Z1 ). The educational background and development of 
 Zemplén  were quite similar to those of  Zechmeister . He was born in Trencsén (orig-
inally a Hungarian town, today Trenčín in Western Slovakia), attended grammar 
school in Fiume (Rijeka) and studied at the Eötvös Jószef-Kollegium in Budapest. 
In 1905, he became assistant at the chair of silvicultural chemistry of the Academy 
of Mining and Forestry in Schemnitz (today Banská Štiavnica). In 1907, he was 
sent to Berlin where he studied under  Emil Fischer  and conducted research in the 
fi eld of carbohydrate chemistry.  Zemplén  habilitated at the University of Budapest 
on “Chemistry of Carbohydrates, Proteins, and Enzymes” and became chair of tech-
nical chemistry at the Royal Joseph University of Technology in Budapest ( 40 ). 
Considering the research topics that  Zemplén  and his students were working on, one 
soon gets to realize that  Emil Fischer  played quite an important role in the develop-
ment of organic chemistry in Hungary ( 41 ). In 1923,  Zemplén  (together with  Alfons 
Kunz ) developed the  Zemplén  saponifi cation of ac(et)ylated sugars ( 42 ), which is 
still used today. The Hungarian Academy of Science elected him as a full member 
in 1927 and his work on the decomposition of reduced disaccharides earned him 
the Great Prize of the Academy in 1928. Today,  Géza Zemplén  is regarded as the 
founder of scientifi c organic chemistry in Hungary ( 43 ). 

 In his contribution ( Z1 ), following an overview of various methods of alkyl 
 glycoside syntheses,  Zemplén  described a synthesis using mercury salts, that was 
developed by himself,  Zoltan Bruckner  (1902–1958), and  Árpád Gerecs  (1903–1982) 
in 1930/1931. He reported on similar experiments in which iron trichloride and 
 alcohol containing chloroform were used. Finally, he referred to a phenol glycoside 
synthesis using zinc chloride, performed by  Burckhardt Helferich  (1887–1982). 

 For the second contribution “The Component Glycerides of Vegetable Fats” 
( Z2 ),  Zechmeister  was able to engage a specialist on fatty acids:  Thomas Percy 
Hilditch  (1886–1965), who held the Campbell Brown Chair of Industrial 
Chemistry of the University of Liverpool.  Hilditch  was born in London. Following 
a career at the Universities of London, Jena, and Geneva he was hired as research 
chemist at the soap and chemical factory of Joseph Crosfi eld and Sons in 
Warrington in 1911. There he was concerned with the process of fat hydrogena-
tion and with the constitution of some of the less common commercial fats, such 
as palmitoleic acid. In 1926, he became professor of industrial chemistry at the 
University of Liverpool. His student and colleague  Frank Denby Gunstone  (*1923) 
said about him, “ Between 1926 and 1951 no one did more than he to discern the 
patterns which run through the related areas of component acids and component 
glycerides”  ( 44 ). 
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  Hilditch  began his contribution with a historical survey drawing our attention 
back to 1860, when  Marcelin Berthelot  (1827–1907) pointed out the possibility of 
the existence of mixed triglycerides in natural fats. At that time, with chromatogra-
phy and other modern analytical methods not developed yet, such investigations 
were very time-consuming. In 1902,  Richard Fritzweiler  succeeded in isolating 6% 
oleodistearin from cocoa butter by fractional crystallization. When it came to tri-
glycerides, this method failed—except for laurel oil and nutmeg butter.  Hilditch  
subsequently reported on his own successes, which concerned solving the problem 
of glyceride structure by means of chemical methods: when fat is oxidized with 
powdered potassium permanganate in acetone solution, all glycerides containing 
one or more unsaturated acyl radicals are ultimately converted into the correspond-
ing azelaic glycerides, while the completely saturated glycerides remain intact. The 
main part of  Hilditch ’s contribution included results of his investigation of the com-
position of various natural fats regarding their content of saturated and unsaturated 
fatty acids. Finally, the author gave a detailed description of certain fats regarding 
their content of C 14 , C 16 , C 18 , and C 20  saturated acids. 

 Acknowledging the successes in the fi eld of sterol chemistry (a subgroup of the 
steroids) in the 1930s, a review by  I. M. Heilbron  and  F. S. Spring  from Manchester 
followed  Hilditch ’s overture: “Recent Advances in the Chemistry of the Sterols” 
( Z3 ). From 1933 to 1938,  Isidor  ( Ian )  Morris Heilbron  (1886–1959) was Sir Samuel 
Hall Professor of Chemistry at the University of Manchester. In 1938, he became 
Longstaff Medallist of the Chemical Society and moved to Imperial College in 
London.  Heilbron  grew up in the city of Glasgow. After studying at the Glasgow 
Royal College of Technology, he received a PhD at the University of Leipzig in 
1909 and a DSc at the University of Glasgow in 1918. In Liverpool,  Heilbron ’s 
research interests turned to the chemistry of natural products. His research on the 
relationship between sterols and vitamin D, the fi eld of vitamin A and polyene syn-
thesis earned him international renown ( 45 ). The most prominent contribution by 
 Heilbron ’s longterm co-worker  Frank Stuart Spring  (1907–1997) was the develop-
ment of mechanisms for the introduction of an oxygen atom at position 11 of the 
steroid nucleus, and the development of possibilities for the synthesis of cortisone 
from ergosterol as a more convenient starting point than the bile acids that had been 
used previously ( 46 ). In their review on steroid chemistry,  Heilbron  and  Spring  
referred to different studies—including some that had been conducted before the 
turn of the century. For example, they mentioned a paper by the Austrian chemists 
 Wilhelm Suida  (1853–1922) and  Julius Mauthner  (1852–1917) from 1896, which 
described the synthesis of 3,6-diketo-Δ 4 -cholestene ( 47 ). Numerous new syntheses 
and methods had been developed since—among other examples by  Diels  and 
 Abderhalden  in 1903 ( 48 ), by  Windaus  and  Linsert  in 1928 ( 49 ), by  Butenandt  and 
 Schramm  in 1936 ( 50 ), and by  Rosenheim  and  Starling  in 1937 ( 51 ). Already at that 
time, the two authors realized that a study by  Hans Herloff Inhoffen  (1906–1992) on 
the aromatization of the A-ring by removal of hydrogen bromine from the dibro-
mine of androstanedione ( 52 ) would infl uence the direction of future investigations 
on the sex hormones. 
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  Hans von Euler-Chelpin  (1873–1964),  Nobel  laureate of 1929, wrote a contribu-
tion on cozymase together with his assistant at the Biochemical Institute of the 
University of Stockholm,  Fritz Schlenk  (1909–1998) ( Z4 ).  Hans von Euler-Chelpin ’s 
interest in chemistry was awakened when he engaged in studying the nature of col-
ors in the course of his art studies. He fi nished his chemistry studies, which he 
started in Munich in 1893, as early as 1895 by earning a doctorate in Berlin. He then 
became an assistant of  Walter Nernst  in Göttingen and worked together with  Svante 
Arrhenius  in Stockholm. In 1899 he became adjunct professor and in 1906 full pro-
fessor at the University of Stockholm. Finally, in 1929, he was appointed director of 
the Institute of Vitamins and Biochemistry at the University of Stockholm.  Euler’ s 
assistant in Stockholm— Fritz Schlenk —was born in Munich and studied at the 
University of Berlin. His doctorate advisor was his father, the famous organic chem-
ist  Wilhelm Schlenk  (1879–1943). In 1934,  Fritz Schlenk  went fi rst to work under 
 Hans von Euler-Chelpin  in Stockholm and then immigrated to the USA in 1940 
( 53 ). From 1940 to 1943, he was a professor of biochemistry at the University of 
Texas. Afterwards, he became professor at Iowa State University and from 1954 to 
1974 he worked as a research associate in the biomedical division at Argonne 
National Laboratory. From 1965 to his retirement in 1985,  Schlenk  was a faculty 
member of the University of Illinois at Chicago ( 54 ). 

  Schlenk  and  Euler  reported on methods and results of determining the constitu-
tion of cozymase. They stated explicitly that it was not yet sure whether the pentose 
of the nicotinamide nucleotide is  D -ribose. At that time it had also not been deter-
mined which kind of phosphoric acid molecule was bound to the nicotinamide in a 
way that resembles a betaine bond.  Schlenk  and  Euler  hypothesized that cozymase 
constituted a phosphate-transferring coenzyme. 

 The following section was dedicated especially to nucleic acids occurring in the 
cell nucleus. The author engaged for that purpose was  Helmut Bredereck  (1904–
1982), who at that time was adjacent professor at the University of Leipzig. 
 Brederick  studied in Frankfurt/Main and Greifswald and worked as assistant at the 
University of Leipzig, where he habilitated in 1933. In 1941, he became full profes-
sor of organic chemistry and biochemistry at the University of Jena. As of 1947, he 
became professor of organic chemistry at the TH Stuttgart. 

 In a preliminary statement to his contribution of 1938,  Bredereck  points to the 
fact that the knowledge of nucleic acids had become a lot better understood within 
recent years ( Z5 ). He mentioned that by that time, vitamin B 2 , lactofl avin, and a 
number of cofermented products had been found to be nucleic acid derivatives. 
Even the constitution of some nucleosides and nucleotides could be determined. 
The role of cozymase and some other specifi c co-fermented products as hydrogen 
carriers could be deduced and  Brederick  stated that hydrogen transfer is linked to 
phosphate transfer in both fermentation and glycolysis. 

 The penultimate contribution to Volume One represents an extensive overview of 
the state of research on chlorophyll ( Z6 ). It was written by  Zechmeister ’s former 
colleague at ETH Zurich,  Arthur Stoll  (1887–1971) and  Stoll’ s co-worker at the 
scientifi c laboratory of the Sandoz Company in Basel,  Erwin Wiedemann . At the 
beginning of their text,  Stoll  and  Wiedemann  described the unsatisfying situation of 
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investigations on chlorophyll, prior to  Richard Willstätter ’s studies. Following this, 
they gave some of the results of  Willstätter  and his assistants that had been obtained 
before 1913; subsequently they mentioned  Hans Fischer ’s fi ndings concerning the 
constitution of hemin and fi nally they commented on successes achieved between 
1932 and 1938. Regarding methodology, it is interesting that  Stoll  and  Wiedemann  
mentioned a comment by  Alfred Winterstein , who worked in the laboratory of 
 Richard Kuhn  in Heidelberg, and his assistant  Gertrud Stein  (1905–?) ( 55 ), in which 
they stated that it was only possible to obtain pure chlorophyll components by chro-
matographic adsorption—a method described by  Michail Tswett  ( Mikhail 
Semyonovich Tsvet  1872–1919).  Stoll  started his studies at ETH Zurich and soon 
became a student of  Willstätter . In 1916, he was appointed as a professor at the 
University of Munich. From 1917,  Stoll  was active at Sandoz in Basel.  Stoll ’s co-
author  Wiedemann  studied at the TH Munich and had been working as a scientifi c 
assistant at Sandoz since 1930. 

 The fi nal contribution of Volume One was written by the Austrian chemists  Otto 
Kratky  and  Hermann Mark  ( Z7 ). Today,  Otto Kratky  (1902–1995) is known as the 
discoverer of small angle X-ray scattering and the inventor of the small angle X-ray 
camera. He was born in Vienna and studied chemistry at the Technical University of 
Vienna. In 1938, he habilitated in physical chemistry at the University of Vienna. 
In 1940, he became head of the Department of Physical Chemistry and 
Electrochemistry at the Kaiser Wilhelm Institute in Berlin-Dahlem and in 1943 he 
became full  professor and director of the Physical-Chemical Institute at the Deutsche 
Technische Hochschule in Prague. From 1946 to 1972,  Kratky  was full professor of 
theoretical and physical chemistry at the University of Graz and as of 1972 he 
served as chairman at the Institute of X-Ray Diffraction Research at the Austrian 
Academy of Sciences and the Research Center Graz. It is quite amazing to note that 
his son,  Christoph Kratky  (Karl Franzens University Graz, Institute of Molecular 
Biosciences) contributes to this very volume 100 with “Structure Elucidation of 
Natural Compounds by X-ray Crystallography”. 

  Hermann Mark  (1895–1992) is regarded as one of the founders of polymer sci-
ence.  Mark  was also born in Vienna. During a leave of absence in order to recover 
from a war injury,  Mark  started to study chemistry at the University of Vienna. In 
1921, his graduation year, he went to the University of Berlin to become an assistant 
of  Wilhelm Schlenk.  The following year,  Fritz Haber  invited  Mark  to work at the 
newly established Institute of Fibrous Materials. At the KWI in Berlin,  Mark  inves-
tigated the molecular structure of natural textile fi bers, such as cellulose, silk, and 
wool by X-ray diffractometry and was able to show that these materials consist of 
long-chain molecules. In 1926, he was offered a position as deputy research director 
of the research laboratory of the I.G. Farbenindustrie A.G. and in 1933,  Mark  went 
to Vienna where he became professor of physical chemistry at the University of 
Vienna. In his 6 years in Vienna he continued his studies in the fi eld of macromol-
ecules. Following the annexation of Austria to Germany in March 1938,  Mark  and 
his family fl ed to England  via  Switzerland and France, from where  Mark  went to 
Canada and fi nally to the United States. He began working at the   Polytechnic 
Institute of New York     in Brooklyn in 1940—fi rst as associate professor, and 
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two years later as full professor. Apart from this primary employment, he also 
worked as a consultant for DuPont. In 1944, he established the Institute of Polymer 
Research at the Polytechnic Institute in Brooklyn.  Mark  died 1992 in Austin, Texas. 

 In their contribution of 1939, entitled “Anwendung physikalischer Methoden 
zur Erforschung von Naturstoffen: Form und Größe dispergierter Moleküle. 
Röntgenographie” (“Applying Physical Methods for the Investigation of Natural 
Products: Shape and Size of Dispersed Molecules. Roentgenography”),  Kratky  and 
 Mark  described initially the osmotic method for determining the molecular weight 
of large molecules. They also acknowledged the method of ultracentrifugation—
developed by  Theodor Svedberg  (1884–1971)—as an important auxiliary tool. 
Furthermore, the authors discussed the determination of diffusion coeffi cients of 
fi lamentous molecules and gave substantial credit to roentgenographic investiga-
tions. In a preliminary statement, they mentioned that in 1935,  John Desmond 
Bernal  (1901–1971) and  Dorothy Crawfoot  (1910–1994) succeeded in correcting 
false theories on the sterol structure following spectroscopic measurements. Finally, 
 Kratky  and  Mark  turned to the X-ray investigation of proteins and describe results 
that were obtained regarding keratin and some particular viruses.  

3.3     Volume Two: A Respectable Prolongation 

 Volume Two started with an overview of lignin research ( Z8 ). The fi rst author was 
 Karl Freudenberg  from the University of Heidelberg. In 1939, when Volume Two 
was published,  Karl Freudenberg  (1886–1983) was regarded as  the  specialist in cel-
lulose and starch chemistry. He had studied under  Emil Fischer  at the University of 
Berlin and following positions in Munich, Freiburg, and Karlsruhe, was appointed 
full professor at the University of Heidelberg in 1926. In 1928,  Freudenberg  pub-
lished the structure of cellulose ( 56 ). His studies from the early 1930s were crowned 
by the publication “Stereochemie” (“Stereochemistry”) in 1932 ( 57 ), which soon 
rose to being a standard reference. In 1938, he organized the “Vierjahresplan—
Forschungsinstitut für Holz und Polysaccharide” (“Four-Year-Plan—Research 
Institute of Wood and Polysaccharides”) ( 58 ). 

 The second contribution was dedicated to lichen substances. It was written by the 
Japanese chemist  Yasuhiko Asahina  (1880–1975) of the Institute of Pharmacy at the 
University of Tokyo ( Z9 ).  Asahina  was one of very few pioneers in the identifi cation 
of chemical compounds produced by lichens.  Asahina  was born in Tokyo as a son 
of a postal administration offi cer. In 1902, he entered the Institute of Pharmacy at 
the Tokyo Imperial University. He graduated in 1905. In 1909,  Asahina  visited 
Zurich to study phytochemistry under  Richard Willstätter . He also was a colleague 
of  Zechmeister  and in 1910, he published a paper on “Untersuchungen über 
Chlorophyll” (“Investigations of Chlorophyll”) together with  Willstätter  in the 
 Annalen der Chemie  ( 59 ). In 1912, he moved to Berlin to spend some months in 
 Emil Fischer ’s laboratory. After returning to Tokyo,  Asahina  was named associate 
professor at Tokyo Imperial University. For the following ten years, he devoted 
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himself to research on some alkaloids and the chemistry of camphor. In 1925, 
 Asahina  published a paper on gyrophoric acid ( 60 ), which occurs in various lichens. 
Between 1935 and 1939, he analyzed the following lichen acids using microchemi-
cal methods: lecanoric, anzic, olivetoric, usnic, evernic, divaricatic, barbatinic, dif-
fractic, perlatolinic, imbricaric, squamatic, sekikaic, ramalinolic, boninic, collatolic, 
lobaric, physodic, thamnolic, salazinic, stictinic, norstictinic, psoromic, protoce-
traric, and fumarprotocetraric acid ( 61 ). 

 What followed next was a contribution on fl avins ( Z10 ) by  Hermann Rudy  
(1904–1966) from the chemical laboratory at the University of Erlangen—a student 
of  Heinrich Wieland  and former co-worker of  Richard Kuhn . The research of  Kuhn  
and  Rudy  from 1934 to 1936 helped show that lumifl avin ( 1 ) plays an enzymatic 
role in the hydrogenation of lactic acid, pyruvic acid, and succinic acid. In addition, 
by combining a fl avin mononucleotide with a protein moiety of  Warburg ’s yellow 
enzyme,  Kuhn  and  Rudy  performed the very fi rst partial synthesis of a fully func-
tional enzyme. This was the fi rst suggestion of a reversible relationship between 
vitamins and enzymes ( 62 ). Together with  Otto Majer ,  Rudy  produced azafl avins in 
1938 by replacing the benzene ring by a pyridine ring ( 63 ). In 1955,  Rudy  became 
an associate professor in Heidelberg.
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    The next contribution was entitled “Chemistry of the Iodine Compounds of the 
Thyroid” and was written by  Charles Robert Harington  (1897–1972) ( Z11 ), profes-
sor of chemical pathology at the University of London and director of the Graham 
Research Laboratories at University College Hospital Medical School. Thyroxine 
had been isolated by  Edward Celvin Kendall  (1886–1972) in 1914 but not in suffi -
cient quantities for accurate chemical investigations. With some collaborators, 
 Harington  devised an improved method of thyroxine isolation. He determined its 
structure, synthesized it, and resolved it into its enantiomers ( 64 ). 

  Edmund Langley Hirst  (1898–1975), who was still working at the University of 
Bristol at that time ( 65 ), was invited by  Zechmeister  to write on “The Structure and 
Synthesis of Vitamin C” ( Z12 ). Together with  Norman Haworth ,  Hirst  had synthe-
sized vitamin C for the fi rst time in 1934. 

 We are already familiar with the author of the next contribution on “Neuere 
Richtungen der Oligosaccharid-Synthese” (“New Directions in Oligosaccharide 
Synthesis”) ( Z13 ):  Géza Zemplén . 

  Zechmeister  himself, the editor of this Series, wrote a contribution entitled “Chitin 
und seine Spaltprodukte” (“Chitin and its Cleavage Products”) ( Z14 ), together with 
his assistant  Géza Tóth  (1907–1990), who had earned his doctorate in Pécs in 1929. 
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 The contribution “La Spectrochimie de Fluorescence dans l’Ėtude des Produits 
Biologiques” (“The Spectrochemistry of Fluorescence in the Investigation of 
Biological Products”) ( Z15 ), was by  Charles Dhéré  (1876–1955) of Fribourg in 
Switzerland, who was professor of physiological chemistry at Fribourg University. 
 Dhéré  had worked on the very sensitive infrared fl uorescence technique in addition 
to electrodialysis, chromatography, and absorption spectroscopy for the detection of 
minimal amounts of substance since 1937. 

  Ernst Späth  (1886–1946) and  Friedrich Kuffner  (1905–1989) were accorded the 
honor of writing the fi nal contribution of Volume Two on “Tobacco Alkaloids” ( Z16 ). 
This necessitates a short comment on the Austrian school of phytochemistry. 
Exploring plant ingredients had been the main topic of chemical research conducted 
at Austrian universities since the mid-nineteenth century. After  Redtenbacher  stepped 
down,  Friedrich Rochleder  (1819–1874) took over the chair of chemistry at the 
Charles University of Prague in 1849. During that period, the University of Prague 
was at the front line in research on plant compounds.  Rochleder , for example, devel-
oped a procedure for the extraction of pure alizarin from madder root. Among 
 Rochleder ’s assistants was  Heinrich Hlasiwetz  (1825–1875), who took over the chair 
of chemistry at the University of Innsbruck in 1851.  Hlasiwetz  also studied the chem-
istry of natural products extensively, and was especially fond of the fi eld of phyto-
chemistry. He investigated resins, tannins, phloroglucinol, and plant alkaloids. In 
1856, the hemlock alkaloid conhydrine was discovered by  Theodor Wertheim , who 
was professor at the University of Pest in Hungary at that time. The identifi cation of 
nicotinic acid as an oxidation product of nicotine by  Hugo Weidel  (1849–1899), a 
student of  Hlasiwetz , in 1873, and  Weidel ’s fi nding of the formula of berberonic acid 
in 1879, marked further milestones in Austrian alkaloid chemistry. In 1883,  Simon 
Zeisel  (1854–1933), a student of  Adolf Lieben  (1836–1914) at the II Chemical 
Institute, tried to elucidate the structure of colchicine, which is the main alkaloid in 
meadow saffron.  Zeisel  proposed a test reaction for colchicine and related compounds 
that is still used even today: the  Zeisel  reaction, which is the formation of a green iron 
tropolone complex following the hydrolysis of colchicine to colchiceine and the addi-
tion of an iron(III) salt ( 66 ). The fi rst complete determination of the constitution of 
the opium alkaloid papaverine by  Guido Goldschmiedt  (1850–1915) in 1887 evoked 
a considerable response within the international scientifi c community ( 67 ). 

 After World War I,  Ernst Späth  and his students successfully investigated tobacco 
and companion alkaloids. The synthesis of nicotine by  Späth  and  Ludwig Hermann 
Bretschneider  (1905–1985) in 1928 ( 68 ) caused a minor sensation. This work 
proved a formula, which had been proposed by  Adolf Pinner  (1842–1909) in Berlin 
in 1893 ( 69 ).  Späth  and  Friederike Kesztler  succeeded in identifying anabasine 
in certain mother liquors ( 70 ). In 1937, they synthesized this substance using a 
known procedure for nicotine synthesis. Some companion alkaloids can be under-
stood as derivatives of dipyridyl. Dipyridyl had already been synthesized from 
 m  -diaminobenzene by  Zdenko Hans Skraup  (1850–1910) in 1882, performing a 
classical  Skraup  reaction ( 71 ). In 1933,  Adolf Wenusch  (1894–1949), the later direc-
tor of the laboratory at the Austrian Tabakregie ( 72 ), had discovered an alkaloid in 
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tobacco smoke, which was called myosmine ( 73 ). In 1936,  Ernst Späth  and  Luigi 
Mamoli  (1949) fi nally synthesized myosmine ( 74 ). 

  Friedrich Kuffner  was  Späth ’s assistant from 1936 to 1941. From 1948 on, he 
headed a department at the II Chemical Institute in Vienna. For quite some time 
scientists were groping in the dark when it came to the formula of the tobacco com-
panion alkaloid nicotelline. In 1954,  Kuffner  and  Ernst Kaiser  reported that during 
the oxidation of nicotelline, apart from the well-known nicotine acid, also pyridine- 
2,4-dicarboxylic acid is formed ( 75 ).  

3.4     Volume Three: Swan Song of an Ending Era 

 The fi rst contribution to Volume Three (published also in 1939) was written by  Otto 
Diels  (1876–1954), who was awarded a  Nobel  Prize in 1950. It is entitled “Bedeutung 
der Dien-Synthese für Bildung, Aufbau und Erforschung der Naturstoffe” 
(“Signifi cance of Diene Synthesis for Investigations on Natural Products”) ( Z17 ). 
 Diels  was a student of  Emil Fischer  (1852–1919) and professor at the University of 
Kiel from 1916 on. In his introduction,  Diels  mentioned that there are only very few 
synthesis methods that have signifi cance within the whole fi eld of modern organic 
chemistry. In 1928,  Otto Diels  and  Kurt Alder  (1902–1958) added the synthesis of 
dienes to the well-known reactions of  Friedel-Crafts  and  Barbier-Grignard. Diels  
emphasized that Nature itself uses this method in order to form thousands of iso-
prenoids from isoprene—a simple diene. This knowledge thereafter enabled chem-
ists to synthesize a tremendous number of compounds.  Diels  pointed to several 
examples in the fi eld of terpenes, camphor, and some derivatives of pyrrole. 

 In the early 1940s,  Walter Siedel  (1906–1968) of the TH Munich was concerned 
with the intensive investigation of pyrroles.  Siedel , who—together with  Hans Fischer  
(1881–1945)—was engaged in the exploration of the bilirubin structure in 1933, was 
the author of a contribution about “Gallenfarbstoffe” (“Bile Pigments”) ( Z19 ). 

 A contribution by  Franz Gottwald Fischer  (1902–1960) of the University of 
Würzburg entitled “Biochemische Hydrierungen” (“Biochemical Hydrogenations”) 
( Z18 ) preceded  Siedel ’s paper.  Franz Gottwald Fischer  also was a co-worker of 
 Hans Fischer . In 1928, he succeeded in elucidating the structure of phytol.  F. G. 
Fischer ’s structural formula of this diterpene alcohol was a prerequisite for the syn-
thesis of vitamin E. In his contribution of 1945,  F. G. Fischer  discussed the hydro-
genation of C = C double bonds by yeast, bacteria, and within the animal body. 

 The topic studied, which at that time was quite unusual, rather than the results of 
 Rudolph John Anderson  (1879–1961), make his contribution on the chemistry of 
lipoids of the tubercle bacillus worth mentioning ( Z20 ).  Anderson , who was born in 
Sweden, worked in the laboratory of  Emil Fischer  in Berlin in 1909 and again in 
1914 ( 76 ). In 1927, he became a professor at Yale University in New Haven, 
Connecticut. In his contribution,  Anderson  repeatedly quoted studies on the same 
subject by  Erwin Chargaff  (1905–2002) from Vienna. 
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 Volume Three, which was published in the same year as Volume Two, concluded 
with an contribution by  Linus Pauling  (1901–1994),  Zechmeister ’s future mentor in 
the U.S. Interestingly, this text is not about protein structures but about the theory of 
the chemical bond: “Recent Work on the Confi guration and Electron Structure of 
Molecules with Some Applications to Natural Products” ( Z21 ).  Pauling ’s argument 
for such a theoretical approach to the chemistry of natural products was the following: 
structural information about simple substances may be used to develop a structural 
theory applicable to more complex substances. At fi rst  Pauling  referenced X-ray- 
diffraction, which was already described by  Kratky  and  Mark  in Volume One. This 
method enables the determination of bond lengths in molecules, he reported. From 
1929 on, interatomic distances could also be deduced successfully from the rota-
tional fi ne structure of molecular spectra,  e.g.  by  Raman  spectroscopy.  Pauling  
stressed the possibility of a correlation of interatomic distances and bond angles 
with chemical structure. This correlation is based largely on the electron theory of 
valence, originally suggested by  Gilbert N. Lewis  in 1916.  Pauling  discussed some 
conclusions of his own theory on resonance concerning molecules where an unam-
biguous assignment of a simple valence-bond structure cannot be made.  Pauling ’s 
examples were: the porphin nucleus, uric acid, anthocyanidins, β-carotene, and an 
extended polypetide chain.   

4     Volumes 4–27: Edited in Pasadena 

 Volume Four was published in Vienna in 1945—shortly after the war, when printing 
paper was scarce. The title pages of Volume Four included the following names 
listed as members of the editorial board:  A. Butenandt ,  U. Westphal  (Berlin) and 
 L. Zechmeister  (Pasadena). 

  Ulrich Westphal  was an assistant of  Butenandt.  He became known for his investi-
gations on the biosynthesis of sex hormones at the Kaiser Wilhelm Institute in Berlin 
( 77 ). He habilitated in 1941, and became professor in Tübingen seven years later. 
From 1949,  Westphal  worked at the  Field Research Laboratory  in Kentucky ( 78 ). 

 Interestingly, as of Volume Five (1958),  Zechmeister  was listed as the sole editor 
until 1969. 

4.1     Volume Four: European Research Results 
during World War II 

 Volume Four comprises contributions exclusively from Europe—it seems to be a 
volume referring to important developments during the time of war:  Rudolf 
Tschesche  from Berlin reported on “The Chemistry of Plant Cardiac Glycosides, 
Toad Venoms, Saponins and Sterol Alkaloids” ( Z22 ),  Theodor Wieland  and 
 Irmentraut Löw  from Heidelberg presented a contribution entitled “On the 
Biochemistry of the Vitamin B Group” ( Z23 ),  Robert Purrmann  from Munich 
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wrote about pterins (a group of insect pigments) ( Z24 ),  Gerhard Schramm  from 
Berlin- Dahlem gave a status report on “The Biochemistry of Viruses” ( 045 ),  Karl 
Bernhard  and  Harold Lincke  from Zurich summarized new fi ndings in the area of 
biological oxidations ( Z26 ), and fi nally,  H. J. Trurnit , from the Physiological 
Institute of the University of Heidelberg, provided a chapter entitled “On 
Monomolecular Films at Water Interfaces and Laminated Films” ( Z27 ). 

  Rudolf Tschesche  (1905–1981) had studied the chemistry of toad venoms and 
cardiac glycosides since the mid-1930s. Born in Liegnitz,  Tschesche  became a stu-
dent of  Karl Heinrich Slotta  in Breslau. In 1933, he habilitated in Göttingen but due 
to disagreements with the National Socialism regime, he was denied a university 
lectureship. During the war he served as director of the department for chemother-
apy at Schering AG in Berlin. In 1947, he became an associate professor at the 
University of Hamburg and in 1960 he followed  Burckhardt Helferich  as professor 
at the University of Bonn. 

  Theodor Wieland  (1913–1995), who worked as lecturer in Heidelberg from 1942 
and as associate professor in Mainz from 1946, was the son of  Nobel  laureate 
 Heinrich Wieland  (1877–1957). Ever since going to work with  Richard Kuhn  
(1910–1976) in Heidelberg, where he went after having earned his doctorate under 
his father, he studied pantothenic acid in particular. His co-author,  Irmentraut Löw , 
was a long-time assistant of  Richard Kuhn . 

  Gerhard Schramm  (1910–1969) studied under  Adolf Windaus  and  Heinrich 
Wieland  and is regarded as one of the pioneers in virus research.  Schramm  was a 
coworker of  Adolf Butenandt  in the course of a joint virus research project that 
started in 1937.  Schramm , who previously worked on the enzymatic modifi cation of 
steroid hormones and cholesterol, followed  Butenandt  from Danzig to Berlin and 
visited  Theodor Svedberg  in Uppsala to get acquainted with advanced techniques of 
analytical ultracentrifugation ( 79 ). 

 Another student of  Heinrich Wieland ,  Robert Purrmann  (1914–1992), succeeded 
in proving the structure of pterins by synthesizing leucopterin in 1940 ( 80 ).  Wieland  
termed the basic structure, from which pterins are derived, “pteridine” ( 2 ). In 1948, 
 Purrmann  founded the ESPE factory for pharmaceutical products in Seefeld, 
Bavaria. Today,  Purrmann ’s company forms a subsidiary of 3M.
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     Karl Bernhard  (1905–1993) was born in Winterthur. After his university educa-
tion in Zurich he was promoted in Geneva in 1932. In 1938, he habilitated in Zurich. 
The next year,  Bernhard  was appointed professor and director of the Physiological- 
Chemical Institute in Basel. Moreover, he was director of the Swiss “Vitamininstitut”. 
His major fi elds of interest were lipid metabolism and carotenoids.  Bernhard  was a 
member of the “Deutsche Akademie der Naturforscher Leopoldina”. 
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  Hans Joachim Trurnit  (1907–1980) belonged to the broader network of scientists 
involved in  Butenandt’ s virus research project at the Pathological Institute of the 
Charité in Berlin ( 79 ). Born in Essen,  Trurnit  studied in Hamburg, Kiel, and Heidelberg. 
From 1943 to 1945, he was director of a laboratory run by the “Reichsministerium für 
Wirtschaftsaufbau” at the castle of Babenhausen. He became well known for his tech-
nique of producing monomolecular protein fi lms (on glass) and the interferometric 
measurement of the layer thickness of such fi lms. Soon after the war,  Trurnit  was 
granted U.S. citizenship and subsequently worked at the Medical Division of the 
Army Chemical Center in Maryland. He died in Palo Alto, California.  

4.2     Volume Five: Both Americas Are Gaining Ground 

 When Volume Five (edited in 1948) is considered, the situation is quite different. 
No less than eight out of its eleven contributions were written by authors from the 
U.S. (of which six came from universities or research institutes in California). 
Additionally, one contribution each was submitted from Buenos Aires, Zurich, and 
Liverpool. 

 An important focus of the subjects covered was on wood research—with, in 
particular, cellulose and lignin being addressed. As  Friedrich Emil Brauns  mentions 
in a preliminary statement to his contribution, signifi cant successes in lignin research 
had been achieved within the preceding years ( Z37 ).  Brauns , born in 1890, received 
his PhD in Berlin in 1915, was awarded a Fulbright lectureship at Osaka University 
Nishinomiya (Japan) and worked at the Institute of Paper Chemistry in Appleton, 
Wisconsin. In 1956, he became professor of chemistry at the Science Research 
Institute in Oregon ( 81 ). 

 Two contributions of Volume Five were about carotenoids ( Z28 ,  Z29 ), and the 
others were on azulenes ( Z30 ), fats ( Z31 ), enzymatically synthesized polysaccha-
rides ( Z32 ), cellulose ( Z33 ), toad venoms ( Z35 ), fi sh proteins ( Z36 ), and genetics 
( Z37 ). With  Paul Karrer  (1880–1971),  Nobel  laureate of 1937, probably the out-
standing authority in the fi eld of carotenoids could be won over.  Karrer  provided a 
relatively short report on the state of research concerning carotenoid epoxides ( Z29 ). 

 Researchers from California who contributed to Volume Five were:  Denis L. Fox , 
two experts on polysaccharides,  Michael Doudoroff  and  William Zev Hassid  as well 
as  Arie Jan Haagen-Smit ,  George Wells Beadle , and  Robert S. Rasmussen. Denis 
Llewellyn Fox  (1901–1983), who was born in Udimore, Sussex, England, and who 
had worked at the Division of Marine Biology of the Scripps Institution of 
Oceanography, University of California, San Diego, La Jolla since 1931 ( 82 ), was a 
world authority in animal pigments ( 83 ). As we know from a letter by  Linus Pauling  
dated November 10, 1944,  Zechmeister  was informed about  Fox ’s research projects 
( 84 ). Furthermore, in 1952,  Zechmeister  published a paper about the marine “blood 
worm” together with  Fox et al.  ( 85 ). 

  Michael Doudoroff  (1911–1975) was born in St. Petersburg. The family left 
Russia shortly before the October revolution for Tokyo and fi nally moved to Palo 
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Alto in 1930.  Doudoroff  provided the fi rst substantial evidence that an enzyme may 
function as a glucosyl carrier. His investigations of glucose oxidation resulted in the 
discovery of a major pathway of glucose degradation in bacteria, the  Entner- 
Doudoroff   pathway ( 86 ). 

  William Zev Hassid  (1899–1974) was originally from Jaffa, Palestine, but spent 
most of his childhood in a village in the Russian Ukraine ( 87 ). In 1920, he   immi-
grated       to the United States    . He was appointed professor of plant nutrition in 1947, 
and professor of biochemistry at the University of California, Berkeley in 1950 ( 88 ). 

 At the time when he was writing his essay on “Azulenes”,  Arie Jan Haagen-Smit  
(1900–1977) was employed at the California Institute of Technology, Pasadena. 
 George Wells Beadle  (1903–1989), future  Nobel  laureate and working at CalTech as 
well, contributed to Volume Five with a contribution summarizing “Some Recent 
Developments in Chemical Genetics” ( Z37 ). 

 Regarding methodology, the contribution by  Robert S. Rasmussen  of the Shell 
Development Company in Emeryville, California, entitled “Infrared Spectroscopy 
in Structure Determination and its Application to Penicillin” ( Z38 ), is especially 
noteworthy. 

 A contribution on toad venoms by  Venancio Deulofeu  was the fi rst submitted 
for publication in “Fortschritte” from South America ( Z35 ).  Venancio Deulofeu  
(1902–1984) studied at the Facultad de Ciencias Exactas, Físicas y Naturales de la 
Universidad de Buenos Aires.  Zemplén ’s work on the degradation of acetylated aldo-
nonitriles inspired  Deulofeu  to start investigations in the fi eld of carbohydrates, which 
was virgin territory at that time in Latin America ( 89 ). From 1939 on,  Deulofeu  was 
titular professor in Buenos Aires. In the introduction of his paper,  Deulofeu  reminded 
us that  H. Wieland  and  R. Alles  had been the fi rst to isolate bufotoxin in 1922. 

 In his contribution “Recent Advances in the Study of Component Acids and 
Component Glycerides of Natural Fats” ( Z31 )  Thomas P. Hilditch  reported on 
 relevant research results obtained since the publication of his fi rst contribution in 
Volume One. 

  Eugen Pacsu  from Budapest also summarized then current research results in his 
contribution on “Recent Developments in the Structural Problem of Cellulose” 
( Z33 ).  Eugene (Jenö) Pacsu  (1891–1972) studied under  Zemplén  at the University 
of Budapest, worked for the U.S. Public Health Service at Bethesda, Maryland, 
beginning in 1929 and became professor at Princeton University in 1947. 

 Finally,  Ernest Geiger  from the Department of Pharmacology, University of 
Southern California Medical School in Los Angeles commented on the “Biochemistry 
of Fish Proteins” ( Z36 ).  Ernest Geiger  (1896–1959) received his medical degree in 
his native country of Hungary from the University of Pécs. His academic career led 
him from being an assistant instructor in pharmacology at the University of Graz to 
Pécs. For 3 years he served as Research Director of Gideon Richter Ltd. in London, 
after which he came to the United States and became a naturalized citizen. 
Subsequently, he became Director of Research at the  Van Camp  Laboratories and 
held this position for 19 years. During this period he studied and qualifi ed for the 
degree of Doctor of Philosophy at the University of Southern California, which he 
fi nally received in 1947 ( 90 ). Following this he served as professor in biochemistry 
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and nutrition in Los Angeles.  Ernest Geiger  was particularly interested in the diges-
tion, absorption, and metabolism of proteins as well as in the measurement of the 
thyroid cell height.  

4.3     Volume Six: A New Sign of Life from the Viennese 
School of Phytochemistry 

 The fi rst contribution of Volume Six, published in 1950, was by  Harry James Deuel 
Jr.  (1897–1956) and  Samuel M. Greenberg  from the Department of Biochemistry 
and Nutrition, University of Southern California, Los Angeles, and on fat chemistry 
( Z39 ).  Deuel ’s studies demonstrated the high nutritive value of vegetable fats, prov-
ing that there are no particular requirements for saturated fatty acids.  Zechmeister  
and  Deuel  were closely connected—not only due to their intense and more than 
10-year long scientifi c collaboration in the fi eld of research on vitamin A—but also 
by a personal friendship ( 91 ). 

 Volume Six also included a text by  Edgar Lederer  (1908–1988). Until 1930, 
 Lederer  had been a co-worker of  Ernst Späth  at the II Chemical Institute in Vienna. 
In 1933, he emigrated from Heidelberg to Paris. After the war, he fi rst was Maître 
de Recherche and later Directeur at the Centre National de la Recherche Scientifi que. 
His contribution to Volume Six was entitled “Odeurs et Parfums des Animaux” 
(“Odors and Smells of Animals”) ( Z40 ). 

 The fl edgling lecturer  Otto Hoffmann - Ostenhof  (1914–1992) from the I Viennese 
Chemical Institute was also a contributor in this same volume. His paper was enti-
tled “Vorkommen und biochemisches Verhalten der Chinone” (“Occurrence and 
Biochemical Behaviour of Quinones”) ( Z41 ).  Hoffmann-Ostenhof  had studied in 
Vienna and Innsbruck before he went to work with  Paul Karrer  in Zurich, where he 
investigated the syntheses of different tocopherols. After World War II, he became 
an assistant in Vienna and was appointed titular professor in 1959. 

 Like Volume Five, Volume Six also included a contribution from Argentina. In 
the introduction of his chapter on cactus alkaloids,  Ladislao Reti  (1901–1973), of 
the Compañía Nacional para la Industria Quimica “Atanor”, referred to certain 
indigenous tribes who had been using peyote for many centuries ( Z42 ). The fi rst 
time this substance was mentioned in writing dates back to the Franciscan monk 
 Bernardino de Sahagún  in 1560. The author,  Ladislao Reti , was an organic chemist 
who was born in Fiume (Rijeka, Croatia) and received a degree in chemical engi-
neering from the Technische Hochschule in Vienna. Reti moved to Argentina, where 
he founded Atanor Chemical Industries in São Paulo. Later in life,  Reti ’s interest 
turned more and more to the history of science ( 92 ,  93 ). 

 The penultimate paper of Volume Six was written by  James Frederick Bonner  
(1910–1996) from Pasadena and was given the title “Plant Proteins” ( Z43 ).  Bonner  
found out that certain proteins of the cell nucleus, called histones, are responsible 
for turning genes off ( 94 ). Volume Six concluded with an addendum to his previous 
contribution on fl uorescence spectroscopy by  Charles Dhére  ( Z44 ) .   
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4.4     Volume Seven: Contributions from Great Britain, 
Switzerland, and the U.S. 

 To this day, the conclusion of the fourth contribution of Volume Seven entitled 
“Penicillin and its Place in Science” ( Z48 ) is still worth reading. This chapter, writ-
ten by  Arthur Herbert Cook  (1911–1988), from a brewing industry laboratory at 
Nutfi eld, Surrey, England was published in 1950 and gave a remarkable impression 
of the rapid developments in this fi eld since 1940. In  Cook ’s own words it read, 
 “Stupendous as has been the impact of the penicillins on medicine, it has as well an 
importance as a milestone along so many of the roads in science. Perhaps for the 
fi rst time it has focussed attention on the natural phenomena of antibiosis, it is lead-
ing to new concepts and techniques in elucidating the metabolism of bacteria; it has 
most effectively opened up many hitherto neglected fi elds of heterocyclic organic 
chemistry, and it has been the means of bringing into existence an industry which 
even ten years ago was completely unknown.”  

 The other contributions of Volume Seven focused on the constitution of triterpenes 
( Z45 ) and aglycones ( Z46 ), on thyroxines ( Z47 ), Senna ( Z49 ), and the chemistry of anti-
bodies ( Z50 ). The contribution on triterpenes was written by  Oskar Jeger  (1917–2002) 
from ETH Zurich, who was a student of  Ružička . Also  Hans Heusser  (1917–1982), the 
author of the paper on aglycones, studied under  Ružička . He was promoted in Zurich as 
a result of work performed on this same class of compounds in 1945. 

 In their contribution on “Sennosides A and B, the Active Principles of Senna” 
( Z49 ),  Arthur Stoll  (see Volume One), at that time President of the Chemische 
Fabrik Basel (formerly Sandoz), and his co-worker  B. Becker , pointed out that the 
earliest mention of this plant dates back to the nineth century, when Senna fi rst 
appeared among medications used by certain Arabs. In 1936,  W. Straub  and 
 H. Gebhardt  demonstrated that the active principles of Senna must be anthranol 
glycosides ( 95 ). A few years later,  Stoll  and  Becker  succeeded in the isolation of 
sennosides A and B in their pure crystalline forms. They proposed the structure  3 .
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    Now to the remaining contributions to Volume Seven submitted from the USA. 
A contribution on thyroxine ( Z47 ) was written by  Zechmeister ’s colleague in 
Pasadena,  Carl G. Niemann  (1908–1964).  Niemann  came to CalTech in 1937, and 
started to study the structure of proteins together with  Pauling. Niemann  and  Pauling  
came to the conclusion that polypeptides are held together primarily by hydrogen 
bonds. In the following years,  Niemann  focused on the investigation of reactions 
induced by digestive enzymes such as chymotrypsin ( 96 ). 

 The report on “Some Recent Developments in the Chemistry of Antibodies” 
( Z50 ) was submitted by  John Warren Williams  (1898–1988) from Madison, 
Wisconsin.  Williams  was convinced that closer insights into the physical behavior 
of polymers would be useful in understanding proteins. Already during the time of 
World War II, he had used ultracentrifugation and electrophoresis to measure size 
and purity of fractionated proteins and succeeded in subfractionating an antibody- 
containing γ-globulin. He was well known to  Zechmeister  because he was a visiting 
professor in Pasadena in 1946/1947 and 1953/1954 ( 97 ).  

4.5     Volume Eight: Traditional Centers of Research 
on the Chemistry of Natural Products Back on Stage 

 In his contribution in Volume Eight,  Arthur B. Lamb  (1880–1952) from Harvard 
University stated,  “One cannot but stand in awe at the energy and virtuosity of the 
organic chemists, who with infi nite patience … have deciphered the arrangements 
of the atoms in molecules as complex as those discussed in this Volume, namely the 
nucleotides, the alkaloids of the lupins and of ipecacuanha, the Flechtenstoffe 
[lichen compounds], and the essential constituents of the aroma of the violet”  ( 98 ). 
About the fi rst chapter of Volume 8  Lamb  said,  “One cannot but be astonished at 
the remarkable cellulosic fi ne-structure of the cell walls of plants, and the power of 
the techniques that have been used in their study”  ( 98 ). The contribution mentioned 
was entitled “Fine Structure of Cellulose” and was written by  Albert Frey-Wyssling  
and  Kurt Mühlethaler  ( Z51 ).  Albert Frey-Wyssling  (1900–1988) was professor of 
general botany at ETH Zurich.  Kurt Mühlethaler  (1919–2002), a molecular biolo-
gist at ETH, became known as one of the scientists who developed the technique of 
freeze-etching, which enables excellent imaging of the ultrastructure of cellular 
objects in an electron microscope’s high vacuum. According to  Zechmeister , the 
opening contribution of Volume Eight was  “a wonderful work, which would give 
great pleasure to our readers”  ( 99 ). 

 Concerning the second contribution from the Chemistry Department at 
Birmingham University written by  M. Stacey  and  C. R. Ricketts  “Bacterial Dextrans” 
( Z52 ) , Lamb  mentioned how he was impressed by the many possibilities opening up 
due to recently acquired knowledge on dextran in the context of blood transfusion. 
 Maurice Starcey  (1907–1994) obtained BSc, PhD, and DSc degrees at Birmingham 
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University under  Norman Haworth  and  Edmunt Hirst . In 1946, he was promoted to 
Mason Professor. His main interest in the chemistry of polysaccharides covered the 
bacterial polyglucose dextran, which he helped to develop as a blood plasma substi-
tute ( 100 ). 

  Luis Federico Leloir  (1906–1977), the author of the text “Sugar Phosphates” 
( Z53 ) was originally from Paris, but immigrated to Argentina when he was a child. 
He was awarded the  Nobel  Prize in Chemistry in 1970 for the discovery of sugar 
nucleotides as an Argentinian biochemist.  Leloir  took over the chair of physiology 
at the University of Buenos Aires in 1941, but also worked at the Instituto de 
Investigaciones Biochimicas in Buenos Aires. 

 The next contribution was written by  George Wallace Kenner  (1922–1978), for-
mer postdoctoral associate of  Vladimir Prelog  at ETH Zurich in the late 1940s and 
later a professor at the University Chemical Laboratory in Cambridge ( 101 ). The title 
was “The Chemistry of Nucleotides” ( Z54 ) . Hans Schinz  (1899–1990), a student of 
 Ružička  at ETH, published the following essay, entitled “Die Veilchenriechstoffe” 
(“The Odorous Substances of Violets”) ( Z55 ) .  The essential point of this contribution 
was the synthesis of α-irone, which was performed simultaneously by  Schinz, 
Ružička, et al.  as well as by  Y. R. Naves  and co-workers in 1946/1947. 

 In Volume Eight,  Yasuhiko Asahina , the lichen specialist, received another 
chance to write on the “New Developments in the Field of Lichen Substances” 
( Z56 ) .  One could believe that around 1950 there were no other experts on lichens—
but this is actually incorrect considering the expertise of  Georg Koller  (1894–1985). 
 Koller  habilitated under  Späth  at the II Chemical Institute in Vienna in 1930.  Koller  
elucidated the structures of umbilicaric acid ( 102 ), pinastric acid ( 103 ), diploschis-
tic acid ( 104 ), and other compounds. In 1934, he received a big surprise while 
studying a substance extracted from  Evernia furfuracea : in a derivative of  para -
orsellinic acid he was able to detect organically bound chlorine for the fi rst time 
( 105 ). In fact,  Koller ’s achievement was acknowledged in Volume 68 of the Series, 
dedicated to “Naturally Occurring Organohalogen Compounds” ( Z346 ) under refer-
ence  1662 . The reason why  Koller  was not given an opportunity to write a contribu-
tion for the Series was not a scientifi c one, since  Koller  had been an exposed member 
of the NSDAP. He was removed from his university position in 1945 and, as a result, 
was unable to fi nd another position ( 106 ). 

 Nevertheless, two members of the II Chemical Institute of the University of 
Vienna contributed to Volume 8:  Friedrich Galinovsky  (1908–1957) and  Matthias 
Pailer  (1910–2011).  Galinovsky  wrote the contribution on “Lupinen-Alkaloide und 
verwandte Verbindungen” (“Lupine Alkaloids and Related Compounds”) ( Z57 ), in 
which he pointed out the tricyclic structure of cytisine, discovered by  Späth  and him-
self around 1936.  Pailer  was responsible for the paper on ipecac alkaloids.  Pailer —
like  Galinovsky —was a student of  Späth. Pailer  habilitated in organic chemistry in 
Vienna in 1949, took over the chair of food chemistry in 1969, and was appointed full 
professor of pharmaceutical chemistry in 1971. One of his most important achieve-
ments was the elucidation of the molecular constitution of emetine ( 4 ) ( 107 ).  Pailer  
described in detail structural determinations in his contribution ( Z58 ).
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    From a methodological point of view, the contribution written by  Robert 
Brainard Corey  (1897–1971) from Pasadena ( Z59 ) is important.  Corey  revealed the 
then latest results of X-ray diffraction studies on crystalline amino acids. At the end 
of his contribution,  Corey  provided a perspective on the possible structures of pep-
tides. Helices were not mentioned in this context yet, but this would be changing 
soon. 

 Finally, we owe the last contribution to Volume Eight to the editor of this Series, 
 László Zechmeister , and  Margarethe Rohdewald  from Bonn. The authors addressed 
“Some Aspects of Enzyme Chromatography” ( Z60 ).  Margarethe Rohdewald  
(1900–1994) was a former PhD student of  Richard Kuhn . Before the war, she had 
been  Richard Willstätter ’s closest co-worker for many years ( 108 ). It was  Arthur 
Stoll  who established the contact between  Margarethe Rohdewald  and  Zechmeister , 
as he emphasized in a letter to  Zechmeister  that he would be glad if this most loyal 
disciple of  Willstätter  could be supported in utilizing her enormous experience 
for scientifi c purposes ( 109 ). In 1949,  Margarethe Rohdewald  became a research 
fellow at the Gates and Crellin Laboratories under  Zechmeister  ( 110 ).  

4.6     Volume Nine: Papers from All Over Europe and California 

 In Volume Nine published in 1952, a contribution by  Hans Herloff Inhoffen  (1906–
1992) and  Harm Siemer  from TH Braunschweig, entitled “Synthetic Chemistry of 
Carotenoids” ( Z61 ) ,  is particularly worth mentioning.  Inhoffen  was deputy head of 
the main scientifi c laboratory at Schering AG in Berlin from 1936 to 1945. During 
his time in Berlin,  Inhoffen , who worked with  Walter Hohlweg  (1902–1992), a for-
mer assistant of  Eugen Steinach  (1861–1944) from Vienna, gained outstanding suc-
cess regarding the development of orally active estrogen and gestagen preparations. 
These results constituted important steps towards the development of the “pill” 
( 111 ).  Inhoffen  habilitated in 1943, became a lecturer in Marburg, and in 1946 pro-
fessor of organic chemistry at TH Braunschweig. In 1950,  Inhoffen et al.  reported 
on a total synthesis of β-carotene ( 112 ), and, on the basis of this, an industrial pro-
cess was developed subsequently ( 113 ). 
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 Regarding the other papers of Volume Nine,  James G. Baxter  (Distillation 
Products Industries, Rochester, N.Y.) was responsible for a contribution on vitamin 
A synthesis ( Z62 ). During World War II,  Baxter  undertook great efforts in separat-
ing and determining vitamin A from fi sh liver oils. 

  Paul Meunier  (1908–1954), professor at the Faculté des Sciences de Lyon, 
reported on antivitamins ( Z63 ),  Arthur Stoll  (Basel), already mentioned several 
times, on ergot alkaloids  (Z64) ,  Masao Tomita  (University of Tokyo) on alkaloids 
of the Menispermaceae ( Z65 ),  Francis Medcalf Dean  (*1925), lecturer at the 
University of Liverpool, on coumarins ( Z66 ),  Herman Moritz Kalckar  (1908–
1991) from the University of Copenhagen, the founder of bioenergetics and former 
postdoctoral research fellow at the California Institute of Technology in 1939, on 
“The Enzymes of Nucleoside Metabolism” ( Z68 ), and  W. S. McNutt  (School of 
Medicine, Nashville, Tennessee) on “Nucleosides and Nucleotides as Growth 
Substances for Microorganisms” ( Z69 ).  Walter Scott McNutt  (*1918) earned his 
PhD degree at the University of Wisconsin. From 1951 to 1953 he was a research 
fellow at CalTech. In 1959, he became professor of pharmacology at the School of 
Medicine at Tufts University. 

  Henry Borsook  (1897–1984) was working as professor of biochemistry at the 
division of biology at CalTech ( 114 ) when writing his essay on the “Biosynthesis of 
Proteins and Peptides, Including Isotopic Tracer Studies”  (Z67) . A further colleague 
of  Zechmeister  at CalTech,  Dan Hampton Campbell  (1908–1974), together with his 
assistant  Norman Bulman  provided the fi nal contribution on “Some Current 
Concepts of the Chemical Nature of Antigens and Antibodies” ( Z70 ).  Dan Hampton 
Campbell  was  the  great pioneer in immunochemistry of his time.  

4.7     Volumes 10–27: Still Bearing Zechmeister’s Signature 

 Counting all the contributions of Volumes 1–27 that were submitted by colleagues 
at  Zechmeister ’s home university—ETH Zurich—there are as many as eight. And 
no less than 24 contributions were written by scientists associated with the California 
Institute of Technology ( 33 )—so  Zechmeister ’s signature is therefore undoubtedly 
recognizable. 

4.7.1     Volume 10 

 In his review of Volume Ten in an issue of the  Journal of the American Chemical 
Society  of 1954 ( 115 ),  Carl Djerassi  (*1923)—one of the leading experts in the 
fi eld of steroid chemistry at the time—wrote about a paper by  George Rosenkranz  
(*1916) and  Franz Sondheimer  (1926–1981) entitled “Synthesis of Cortisone” 
( Z74 ):  “[it] covers a subject of great current interest as shown by the fact that 
fi ve other extensive reviews covering the same ground appeared during 1953 and 
that approximately 150 of the references apply to articles published since 1951. 
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There is little question that the present chapter is the most complete one.” Rosenkranz  
was born in Budapest. He studied under  Leopold Ružička  (1887–1976) in Zurich, 
and emigrated initially to Cuba and later to Mexico in 1945, where he started work-
ing for Syntex. Syntex was involved in the production of cortisone from plant pre-
cursor molecules.  Rosenkranz ’s research team was subsequently reinforced with the 
young chemist  Carl Djerassi  in 1949. In 1951,  Djerassi ’s research group produced 
norethisterone, a 19- nor -analogue of a compound that had been synthesized by 
 Inhoffen  some years earlier ( 116 ). 

 In the contribution that follows,  Kurt Alder  (1902–1958) and  Marianne 
Schumacher  (Institute of Chemistry, University of Cologne) discussed the progress 
that had been achieved in diene synthesis since  Otto Diel ’s contribution to the Series 
in 1939 ( Z71 ). 

 Furthermore,  Hermann Mark —who, following his emigration, was employed at 
the Polytechnic Institute of Brooklyn—gave an overview on the “Physical Chemistry 
of Rubbers” ( Z72 ). As  Carl Djerassi  noted in his review of Volume 10:  “the inclu-
sion of this chapter in the present volume [is] somewhat surprising since the other 
chapters deal with strictly organic chemical subjects”  ( 115 ). 

  Jean Asselineau  and  Edgar Lederer  (Paris) devoted their contribution to the 
“Chimie des Lipides Bactériens” (“Chemistry of Bacterial Lipids”) ( Z73 ). 
 Asselineau  and  Lederer  established that mycolic acids represent major and specifi c 
components of the cell envelope of mycobacteria, including  Mycobacterium tuber-
culosis  ( 117 ). 

  Asima Chatterjee , affi liated with the University College of Science and 
Technology in Calcutta, reported on  Rauwolfi a  alkaloids ( Z75 ).  Asima Chatterjee  
(1917–2006) was the fi rst woman to be conferred a doctorate of science by an 
Indian university, in 1944 .  In 1948/1949, she undertook a postdoctoral fellowship at 
CalTech, where she worked with  Prof. Zechmeister , and spent the following year at 
 Paul Karrer ’s institute. In 1962,  Chatterjee (née Mookerjee)  was bestowed with the 
prestigious Khaira Professorship of Chemistry at the University of Calcutta. 

  Louis Feinstein  and  Martin Jacobson  (Beltsville, Maryland) gave an insight into 
the topic “Insecticides Occurring in Higher Plants” ( Z76 ).  Martin Jacobson  received 
his PhD degree in chemistry at the City University of New York. From 1964 to 
1972,  Jacobson  worked as a Project Leader at the U.S. Department of Agriculture’s 
Entomological Research Division, Beltsville, Maryland. Later on, he became head 
of the Biologically Active Natural Products Laboratory ( 118 ).  Louis Feinstein  was 
born in 1912. He earned his PhD at the University of Georgetown and became head 
of the Seed Quality Laboratory, USDA, Beltsville, in 1967.  

4.7.2     Volume 11 

 Volume 11 was published in 1954. In its fi rst contribution,  Stanley Peat  (1902–
1969) from the University College of North Wales, stressed how enzymological 
studies had played an important role in elucidating the constitution of starch ( Z77 ). 
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  Karl Freudenberg  (University of Heidelberg, see Volume Two) reported again on 
new results in lignin research ( Z78 ). Lignin chemistry had long been struggling with 
the question of if this natural product represented nothing other than a structure-less 
pile of different substances or if it actually follows a strict organizational order. 
 Freudenberg  pointed out that a principle of organization was emerging in which 
dehydration reactions of coniferyl alcohol were to play a major role. 

  Hans Herloff Inhoffen  (see Volume Nine) and  Klaus Brückner  dedicated the third 
contribution of Volume 11 to recent progress in the fi eld of vitamin D chemistry 
( Z79 ). After  Windaus  had stipulated the basic constitution of vitamin D 2  in 1936, 
many questions concerning the fi ne structure remained unanswered. At the time this 
contribution was written, total synthesis was still beyond the then current chemical 
capabilities. It was not until 1959 that  Inhoffen et al.  reported on the partial synthe-
ses of vitamins D 2  and D 3  ( 119 ). 

 In his contribution on “Natürlich vorkommende Chromone” (Naturally Occurring 
Chromones) ( Z80 ),  Hans Eduard Schmid  (1917–1976) mentioned that by 1953, 11 
plant compounds had been identifi ed as chromones.  Schmid  himself determined the 
relatively simple structure of eugenitin and its derivative eugenone ( 5 ). In the early 
1940s,  Späth  and his students succeeded in elucidating the properties of peucenin 
and visnagin. This was well known to  Schmid , who earned his doctorate under 
 Späth  in Vienna and who returned to his home country of Switzerland in 1942.

   5 (eugenone)
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    It was only in Volume 11—published in 1954, the year that he was awarded the 
 Nobel  Prize in Chemistry—that  Pauling , together with  Robert B. Corey  from 
Pasadena, reported on groundbreaking views on the helical confi guration of poly-
petide chains ( Z81 ). In this contribution, we learn about α- and γ-helices as well as 
parallel- and antiparallel-chain pleated sheet structures.  Corey ’s biographer,  Richard 
Edward Marsh , referring to the papers published by  Pauling  and  Corey  in the early 
1950s, stated,  “The age of molecular biology had arrived”  ( 120 ). 

 The next contribution to Volume 11 was by  Walter A. Schroeder  (1917–2001), on 
“Column Chromatography in the Study of the Structure of Peptides and Proteins” 
( Z82 ). In July 1941,  “Walt” Schroeder  was recommended by  Linus Pauling  in con-
nection with being appointed assistant to  Zechmeister  ( 121 ). Indeed,  Walter 
Schroeder  became subsequently a member of the CalTech Chemistry Faculty at 
Pasadena (see Fig.  1 ). 

 Volume 11 was concluded by a paper by  Max Rudolf Lemberg  (Sydney) about 
“Porphyrins in Nature” ( Z83 ), and a contribution by  Adrien Albert  (Canberra) 
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 entitled “The Pteridines” ( Z84 ). The great biochemist  Max Rudolf Lemberg  
(1886–1975) was originally from Breslau (today known as Wrocław).  Lemberg  
found a patron at the University of Heidelberg—in  Karl Freudenberg —and later 
immigrated to Sydney in 1935.  Adrien Albert  (1907–1988) was born in Sydney and 
was a research fellow at the Wellcome Research Institute, London, before being 
appointed foundation professor of medical chemistry at the Australian National 
University in 1949.  

4.7.3     Volume 12 

 In Volume 12 (published in 1955),  George Wells Beadle  (1903–1989), who at that 
time was working at CalTech, Pasadena, like  Zechmeister , and who was to be 
awarded a  Nobel  Prize three years later, described a sensational discovery in his 
contribution “Gene Structure and Gene Action” ( Z93 ) , “In 1953, Watson and Crick 
proposed a structure of DNA that may well represent one of the most signifi cant 
advances in biology in recent years.”  A reviewer of Volume 12 was enthusiastic: 
 “This is the most exciting chapter, since it moves the frontiers of science so close to 
the very key problems of life, gene function and reproduction”  ( 122 ). 

 The same volume contained an overview of the performance capability of 
paper chromatography in the study of peptide and protein structures, by  Edward 
Owen Paul Thompson , and  Adrienne R. Thompson  ( Z90 ), of the Wool Textile 
Research Laboratories at the Commonwealth Scientifi c and Industrial Research 
Organisation, Melbourne, Australia. In 1952, the two-time  Nobel  laureate 
 Frederick Sanger  (1918–2013) and the Australian biochemist  Edward Owen Paul 
Thompson  (1925–2012) determined the sequence of the glycyl chain of insulin 
using two-dimensional paper chromatography ( 123 ). 

  Arie Jan Haagen-Smit , whom we know already from Volume Five, began his 
essay on “Sesquiterpenes and Diterpenes” with the comment that two dozen years 
after  Wallach  started categorizing the terpenes (in 1890), the structures of most of 
the more than one hundred monoterpenes then isolated were well established ( Z85 ). 
In the 1950s, when chromatographic procedures became regular experimental tools 
for the terpene chemist, a rapid expansion of knowledge took place, especially in 
sesqui- and higher terpene chemistry. 

  Ewart Ray Herbert Jones  (1911–2002) and  Thomas G. Halsall  from Manchester, 
when reporting on then recent research results in “Tetracyclic Triterpenes”, pointed 
to the fact that the discovery of a close structural relationship between triterpenes 
and steroids was of outstanding importance ( Z86 ). 

  Rudolf Tschesche,  whom we have also met before, discussed questions concern-
ing the biogenesis of steroids in his contribution on new developments in the fi eld 
of steroid biosynthesis and related natural products ( Z87 ). Tracer technology 
enabled  Tschesche  to gain deep insights, which would not have been possible by 
other means. 

 Other contributions of Volume 12 were dedicated to the following subjects: fun-
gal carotenoids, discussed by  Francis Theodore Haxo  (1921–2010) from the 
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Scripps Institution of Oceanography in La Jolla, California ( Z88 ); pyrrolizidine 
alkaloids  (Z89) , described by  Frank Louis Warren  (1925–1967) of the University of 
Natal, Pietermaritzburg, South Africa; and a fi nal paper on iodine-containing amino 
acids and iodoproteins ( Z91 ) by  Jean Roche  (1901–1992) and  Raymond Michel , 
Collège de France, Paris. 

 In his contribution on snake venoms,  Karl Heinrich Slotta  (1895–1987), São 
Paulo, Brazil, reported that in 1938, he and his brother-in-law,  Heinz Ludwig 
Fraenkel-Conrat  (1910–1999), succeeded in obtaining a snake venom component—
namely, crotoxin—in its crystalline form for the fi rst time ( Z92 ). Crotoxin shows 
strong enzymatic activity, which led to the hypothesis that the toxic effect might be 
identical to the enzymatic one. In the meantime, components of several more snake 
venoms had been isolated or even crystallized, respectively, such as hemolysin. 
 Slotta  immigrated to Brazil during the Nazi regime in Germany.  Fraenkel-Conrat,  
who had Jewish ancestors, emigrated from Breslau in Germany to Edinburgh in 
Scotland in 1936, and later to New York and fi nally to Berkeley.  

4.7.4     Volume 13 

 Recent years had seen a consolidation and critical appreciation of infrared (IR) 
spectroscopy—which was the starting point of  Andrew Reginald Howard (A. R. H.) 
Cole’ s contribution entitled “Infrared Spectra of Natural Products” ( Z94 ). As of the 
early 1940s, IR spectroscopy was used routinely. A fi rm basis for its application in 
structure determinations was established by authors such as  Robert Bowling Barnes , 
 Robert Cummins Gore,  and  Van Zandt Williams  at the Stanford Research Laboratories 
of the American Cyanamid Company, Connecticut,  Harrison McAllister Randall  at 
the University of Michigan, as well as  Harold Warris Thompson  at Oxford 
University.  Cole ’s contribution contains the following topics: IR methods, instru-
ments and sampling techniques, applications, compound comparison, and structural 
analysis.  Cole  (*1924), when writing the above-mentioned paper, was a senior lec-
turer at the University of Western Australia. He actively contributed to many 
advances in the fi eld of IR spectroscopy, both in terms of instrumental development 
and in the use of this technology to answer structural questions. 

 In his summary on “Natural Tropolones and Some Related Troponoids” ( Z97 ), 
 Tetsuo Nozoe  (1902–1996) of Tohoku University Sendai, Japan, mentioned that 
 Michael J. S. Dewar  (1918–1997) proposed a seven-membered enolone structure 
for stipitatic acid and the alkaloid colchicine and that he named the parental struc-
ture “tropolone”. As early as 1941,  Nozoe  himself expressed his conjecture that 
hinokitiol (today called 4-isopropyltropolone) might contain a seven-membered 
ring ( 124 ).  Nozoe  mentioned subsequently a study by the Austrian chemist  Simon 
Zeisel  (1854–1913), who succeeded in determining the molecular formula of the 
meadow saffron alkaloid, colchicine, in 1883 ( 66 ,  125 ). 

 Furthermore,  Otto Theodor Schmidt  (1894–1972, Heidelberg), a former student 
of  Willstätter , gave an overview entitled “Gallotannine und Ellagengerbstoffe” 
(“Gallotannins and Ellagitannins”) ( Z95 ). 
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  Christoph Tamm  reported on “Neuere Ergebnisse auf dem Gebiet der glykosi-
dischen Herzgifte: Grundlagen und Aglykone” (“Recent Results in the Field of 
Cardiac Glycosides: Principles and Aglycones”). In continuation of this contribu-
tion,  Tamm  submitted a contribution partially entitled “Zucker und Glykoside” 
(“Sugars and Glycosides”) to Volume 14 ( Z102 ). For biographical data on  Christoph 
Tamm , see Sect.  5.1 . 

  James Robert Price  (1912–1999, Melbourne) introduced his readership to 
“Alkaloids Related to Anthranilic Acid” ( Z98 ),  Asima Chatterjee  and  Satyesh 
C. Pakrashi  (Calcutta) together with  G. Werner  (São Paulo) summed up “Recent 
Developments in the Chemistry and Pharmacology of  Rauwolfi a  Alkaloids” ( Z99 ), 
and last but not least new information was provided on “Synthese von Peptiden” 
(“Synthesis of Peptides”) ( Z100 ), thanks to  Wolfgang Grassmann  (1898–1978) and 
 Erich Wünsch , from the Max Planck Institute of Protein and Leather Research in 
Regensburg. In this contribution the authors pointed out that already by 1904, 
 Theodor Curtius  (1857–1928)—a student of  Bunsen —was able to synthesize poly-
peptides ( 126 ). Nevertheless, it was not before 1949 that rapid developments came 
about in this research area.  

4.7.5     Volume 14 

 With 377 pages, Volume 14 was much shorter than its predecessor. From the fi rst 
essay by  Ferdinand Bohlmann  (1921–1991) and  Heinz-Jürgen Mannhardt  the 
reader got to know that in the years before publication of Volume 14 (1957), it was 
discovered that acetylene compounds are quite widespread within the plant king-
dom ( Z101 ). This contribution was submitted from the Organic Chemical Institute 
of the Technische Hochschule in Braunschweig. According to the authors, most 
polyynes owe their discovery to distinct UV absorption patterns whereas another 
important tool in their structure elucidation was IR spectroscopy. And fi nally—
“naturally”, quoting the authors—also chemical methods (such as ozonation) were 
still applied frequently. 

  Christoph Tamm ’s contribution “Neuere Ergebnisse auf dem Gebiet der glykosi-
dischen Herzgifte: Zucker und Glykoside” (“Recent Results on Cardiac Poisons: 
Sugars and Glycosides”) was provided as a supplement to his paper in Volume 13. 

  Hans Brockmann  (1903–1988), of Göttingen, who had become known due to 
his reagents for the detection of vitamins D 2  and D 3  as well as for his total syn-
thesis of actinomycin, described “Photodynamisch wirksame Pfl anzenfarbstoffe” 
(“Photodynamically Active Plant Dyes”) ( Z103 ).  Brockmann  earned his PhD 
in Halle, habilitated under  Adolf Windaus  in Göttingen, and was director of the 
Institute of Organic Chemistry in Göttingen from 1945 to 1972. 

 Born in Sydney,  Arthur John Birch  (1915–1995)—known worldwide for the 
 Birch  reaction named after him—held a position at the University of Manchester at 
the time when his contribution on “Biosynthetic Relations of Some Natural Phenolic 
and Enolic Compounds” ( Z104 ) was published. 
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 In their essay on “The Aminochromes”,  Harry Sobotka  (1899–1965),  Norman 
Barsel , and  Jacob David Chanley   from New York, reported that aminochromes are 
formed as intermediates during the oxidation of tyrosine, dihydroxyphenylalanine, 
epinephrine, and their congeners, and to the pigment melamine ( Z105 ). The fi rst 
author ( Sobotka ) was born in Vienna, where he also began his chemistry studies, 
and earned his doctorate under  Willstätter  in Munich in 1922 as a result of a thesis 
on enzyme chemistry. From 1928 to 1965,  Sobotka  was director of the Department 
of Chemistry at Mount Sinai Hospital in New York ( 127 ).  Chanley  became associate 
professor at the City University of New York in 1967. 

 “Visual Pigments” was the title of a contribution submitted from Liverpool by 
 Richard Alan Morton  (1899–1972) and his co-worker  G. A. J. Pitt  ( Z106 ). A turning 
point in the investigation of visual purple was reached in 1944, when  Morton  and 
his co-workers discovered that retinene is identical to vitamin A 1  aldehyde. 

 Volume 14 closed with a quite short viewpoint on “The Carbon Cycle in Nature” 
( Z107 ) by  Harrison Scott Brown  (1917–1986), a geochemist working in Pasadena 
at that time, who was famous not only for his studies regarding meteorites and the 
earth’s origin but also for his role in isolating plutonium.  

4.7.6     Volume 15 

 This volume contained only four contributions.  Hans Heinrich Schlubach  (1899–
1975) from the “Chemisches Staatsinstitut der Universität Hamburg” shared his 
fi ndings concerning the carbohydrate metabolism of grasses ( Z108 ). Already at that 
time, scientists were aware of problems arising—given large increases in population 
numbers and the threat of lack of food associated with it—even though the global 
population was less than half the size it is today. 

  Zechmeister  himself contributed to Volume 15 by writing a survey on “Some 
 in vitro  Conversions of Naturally Occurring Carotenoids” ( Z109 ).  Jonathan 
L. Hartwell  and  Anthony W. Schrecker  (Bethesda) reported on “The Chemistry of 
 Podophyllum ” ( Z110 ), and fi nally  Dorothy Crowfoot Hodgkin  (Oxford) presented 
results concerning the “X-ray Analysis and the Structure of Vitamin B 12 ” ( Z111 ). The 
 Nobel  laureate of 1964,  Dorothy C. Hodgkin  (1910–1994) concluded her paper in 
almost prophetic words:  “There is nothing about the B   12    crystal structures that now 
suggests that they represent the limit of molecular size that can be explored by X-ray 
analysis. Indeed already promising stages have been reached in the study of larger 
molecules.”   

4.7.7     Volume 16 

 Volume 16, which was published in 1958 like Volume 15, was opened by a contri-
bution on “Catechine, andere Hydroxy-fl avane und Hydroxy-fl avene” (“Catechins, 
Other Hydroxy Flavans and Hydroxy Flavenes”) by  Karl Freudenberg  (for bio-
graphical data see Volume Two) and  Klaus Weinges  from Heidelberg ( Z112 ). 
Catechins are phenolic plant metabolites and represent a group of fl avanols like  6 .
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    Two chemists from the University of New Brunswick in Fredericton, Canada, 
 Karel Wiesner  (1919–1986) and  Zdenek Valenta  (*1927), presented a contribution 
on aconite- Garrya  alkaloids ( Z113 ).  Karel Wiesner  was born in Prague. He stud-
ied under  Vladimir Prelog  at ETH Zurich and became professor at the University 
of New Brunswick in 1948.  Zdenek Valenta  has a similar  curriculum vitae , as he 
was born in the former Czechoslovakia as well.  Valenta  attended ETH from 1946 
to 1950. He commenced his studies under  Wiesner  and became full professor 
in 1963. 

 A further contribution to Volume 16 is one on the “Structural Chemistry of 
Actinomycetes Antibiotics”, written by  Eugen Earle van Tamelen  (1925–2009) 
from Wisconsin ( Z114 ).  van Tamelen  was the fi rst to identify squalene oxide as a 
precursor in cholesterol biosynthesis. 

 The next paper was on the topic “Protein Synthesis in Plants” ( Z115 ). It was 
submitted by  James Frederick Bonner  (Pasadena), whom we already know from 
Volume Six. 

 The last contribution of this volume gives the reader detailed information on 
quantum theoretical considerations concerning the explanation of organic com-
pound colors. The author who wrote on “The Electron Gas Theory of the Color of 
Natural and Artifi cial Dyes: Problems and Principles” ( Z116 ) was  Hans Werner 
Kuhn  (1919–2012), a physical chemist from Bern.  Kuhn  had been professor and 
director of the Institute of Physical Chemistry at the Philipps University of Marburg 
since 1953. He studied at ETH Zurich and worked as a postdoctoral fellow with 
 Linus Pauling  in Pasadena between 1946 and 1947 as well as with  Niels Bohr  in 
Copenhagen for several months in 1950.  

4.7.8     Volume 17 

 Volume 17 opened with a contribution on “Flavones and Isofl avones” by  Krishnasami 
Venkataraman  from the National Chemical Laboratory, Poona (Pune), in India 
( Z117 ).  Venkataraman  (1901–1981) was one of the two scientists who gave their 
name to the well-known  Baker-Venkataraman  rearrangement to obtain substituted 
fl avones ( 128 ).  Venkataraman  reminded us that the fi rst fl avone to be extracted from 
poplar buds was chrysin, which was isolated by  Jules Piccard  (1840–1933) in 1864. 
The structures of fi setin and quercetin were elucidated between 1884 and 1891 by 
the Viennese chemist  Josef Herzig  (1853–1924) ( 129 ). In 1898,  Stanislaus von 
Kostanecki  (1860–1910), who made fl avones his life work, succeeded in performing 
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the fi rst synthesis of a fl avone ( 130 ). It was  Kostanecki  who gave the names fl avone 
and fl avonol to the parental ring system and its 3-hydroxy derivative, respectively. 

  Hans Herloff Inhoffen  and  Klaus Irmscher  dedicated their contribution to Volume 
17 to the elaboration of progress made in the fi eld of vitamin D research ( Z118 ). 
They mentioned that due to the application of three-dimensional electron density 
measurements,  Dorothy Crowfoot Hodgkin  and her co-workers succeeded in gain-
ing deeper insight into the fi ne structure of vitamin D 2 .  Inhoffen  and  Irmscher  
described novel degradation products of these vitamins, and some partial syntheses 
as well as  Inhoffen ’s famous total synthesis of vitamin D 3  dating from 1958. 

  Friedhelm Korte (*1923), Hans Barkemeyer,  and  Ingeborg Korte  of the 
Chemical Institute at Bonn University addressed plant bitter principles ( Z119 ). They 
described substances that were isolated from several plant families, including those 
of Asclepiadaceae, Coriariaceae, Gentianaceae, Menispermaceae, and Urticaceae. 

  Karl Bernauer  of the University of Zurich presented a paper on “Alkaloide aus 
Calebassencurare und südamerikanischen Strychnosarten” (“Alkaloids from Calebas 
Curare and South American  Strychnos  Species”), which was also the topic of his pro-
fessorial dissertation ( Z120 ). He commenced by reminding the reader of the work of 
the German pharmacologist  Rudolf Boehm  (1840–1933), who in 1897 classifi ed the 
paralyzing arrow poisons of South American Indians as calebas, pot, and tubocurare. 
Calebas curare was packed into hollow gourds (calebas). Research on curare began 
with  H. Wieland  around 1937 and in the early 1950s, and a team working with  Paul 
Karrer  was fi nally able to separate calebas curare and succeeded in isolating several 
novel alkaloids of the same kind with the help of paper chromatography. By the time 
this contribution was written, 42 calebas curare alkaloids had already been identifi ed. 

  Bruce B. Stowe  (1928–2003), working at the Biological Laboratories at Harvard 
University, Cambridge, Massachusetts, summarized recent fi ndings concerning the 
“Occurrence and Metabolism of Simple Indoles in Plants” ( Z121 ). The application 
of new techniques not only helped to detect many naturally occurring indoles, but, 
more importantly, the hormonal nature of some of these compounds in plants and 
animals could be determined. To give an example, tryptamine,  i.e.  2-(1 H -indol-3-yl)
ethane-1-amine ( 7 ), isolated from  Acacia fl oribunda , was recognized as having an 
adrenergic effect in mammals.
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     Albert Eugen Dimond  (1914–1972) from the Connecticut Agricultural 
Experimental Station in New Haven, who did pioneering work in the chemotherapy 
of plant diseases ( 131 ), wrote on “Some Biochemical Aspects of Disease in Plants” 
( Z122 ). 
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  Walter A. Schroeder  from Pasadena wrote a contribution on “The Chemical 
Structure of the Normal Human Hemoglobins” ( Z123 ). He reminded the reader of 
an earlier point: “ The conspicuous red color of the blood has no doubt been a 
source of wonder, interest, and curiosity even since it was fi rst observed by man.” 
Schroeder  focused on the linkage between heme and globin, the sequence of amino 
acids in the vicinity of the linkage and their determination by  Hans Tuppy  (*1924) 
and  Sven Paléus  in 1955, and made reference to preliminary X-ray studies con-
ducted by  Max Perutz et al.  in 1955. Finally, the author expressed his hope,  “One 
can, then, hope to determine the amino acid sequence and the complete structure of 
hemoglobin”.  In the end, he was to be proved correct. 

 Decomposition processes of living matter were the central aspect of the text 
 following: “Paleobiochemistry and Organic Geochemistry” ( Z124 ), by  Philip 
Hauge Abelson  (1913–2004) from the Geophysical Laboratory of the Carnegie 
Institute, Washington, DC. The author, who was a key contributor to the Manhattan 
Project during World War II, stated that in spite of the enormous potential degrada-
tion activity of bacteria, most of the organic matter deposited in an anerobic envi-
ronment is not destroyed nor altered substantially. 

 Volume 17 closed with some important applications of the electron gas theory of 
dye colors presented by  Hans Kuhn  in Volume 16 .  Examples are phthalocyanins, 
benzoporphyrones, cyanins, and polyacetylenes ( Z125 ).  

4.7.9     Volume 18 

 Volume 18 (published in 1960) started with a contribution by  Hans Brockmann  
(1903–1988) from Göttingen University about research conducted by himself and 
his co-workers concerning the elucidation of the peptide and chromophore groups 
of actinomycins ( Z126 ). Actinomycins are orange-red, very toxic antibiotics pro-
duced by various  Streptomyces  species. In 1940, actinomycin A was isolated by the 
later  Nobel  laureate  Selman Abraham Waksman  (1888–1973) together with  H. Boyd 
Woodruff  ( 132 ). 

 The Austrian chemist  Matthias Pailer , whom we know from Volume Eight, 
reported particularly on his results concerning aristolochic acid in his contribution 
on “Natürlich vorkommende Nitroverbindungen” (“Naturally Occurring Nitro 
Compounds”) ( Z127 ).  Julius Pohl  (1861–1942), a pharmacologist born in Prague, was 
the fi rst to isolate the compound that he would name aristolochin (aristolochic acid) 
from  Aristolochia clematitis  and he determined its chemical formula in 1891 ( 133 ). 

  Nguyen Van Thoai  and  Jean Roche  (1901–1992), members of the College de 
France, Paris, were the authors of a paper entitled “Dérivés Guanidiques Biologiques” 
(“Biological Guanidine Derivatives”) ( Z128 ). In this contribution,  Van Thoai  and 
 Roche  addressed questions of nomenclature, compound biogenesis, and analytical 
methods as well as the preparation of guanidine derivatives. 

 The next contribution was authored by  Anders Kjaer  (*1918) from the Royal 
Veterinary and Agricultural University, Copenhagen. It was concerned with the 
chemical structure and the biological properties of “Naturally Derived Isothiocyanates 
(Mustard Oil) and Their Parent Glucosides” ( Z129 ).  Kjaer  became professor of the 
Danmarks Teknishe Højskole Byning in 1968. 
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  Kjaer ’s paper was followed by a contribution by  Otto Völker  from the Zoological 
Institute of the University of Gießen, entitled “Die Farbstoffe im Gefi eder der 
Vögel” (“Pigments in Bird Plumage”) ( Z130 ), which describes carotenoids, yellow 
and red pigments in the plumage of parrots, as well as colorful pyrrole derivatives. 

 After some historical remarks, the editor of the Series,  László Zechmeister , pre-
sented a comprehensive overview on “ cis-trans  Isomeric Carotenoid Pigments” 
including their UV spectra, preparation, and confi gurational assignments in certain 
stereoisomeric sets ( Z131 ). 

 In 1930,  Teijiro Yabuta  (1888–1977) and  T. Hayashi , from the University of 
Tokyo, were the fi rst to obtain crystalline material from the fungus  Gibberella fujiku-
roi , for which they coined the name “gibberellin” ( 134 ). In their paper, “The 
Gibberellins” ( Z132 ),  P. W. Brian, J. F. Grove,  and  J. MacMillan  reported on the 
chemistry of these substances and on plant growth in connection with this group of 
phytohormones.  Percy Wragg Brian  (1910–2003) , John Frederick Grove  (1921–
2003), and  Jake MacMillan  (1926–2014) were working at the Imperial Chemical 
Industries, Ltd., Akers Research Laboratories, Welwyn, Herfordshire, England 
( 135 ). In his autobiography “Refl ections of a Bio-organic Chemist” ( 136 ),  MacMillan  
described the years of research on gibberellins at the Akers Laboratories in detail. 

 The theory and practice of the use of ultracentrifugation for analytical purposes 
was presented in the contribution “Selected Subjects in Sedimentation Analysis, 
with Some Applications to Biochemistry”, by  John Warren Williams  (1898–1988), 
of the Department of Chemistry at the University of Wisconsin ( Z133 ). Professor 
 Williams  worked with  Theodor Svedberg  and had access to two very rare  Svedberg  
ultracentrifuges ( 96 ,  137 ). 

 The ultimate contribution of Volume 18 confronted the reader with the topic 
“Structure and Immunological Specifi city of Polysaccharides” ( Z134 ). The author 
was  Michael Heidelberger  (1888–1991), a researcher at that time at the College of 
Physicians and Surgeons at Columbia University, New York.  Heidelberger  is con-
sidered a co-founder of modern immunology ( 138 ). To him is owed basic research 
on immunochemical analytical methods such as enzyme-linked immunosorbent 
assays (ELISA).  Zechmeister  got to know  Heidelberger  in Zurich in 1911/1912, 
which we know from a signature by  Zechmeister  on a menu for  Heidelberger ’s 
farewell dinner ( 139 ). Around that time,  Heidelberger  was working in  Willstätter ’s 
laboratory for several months. In the early 1920s,  Heidelberger —by then at the 
Rockefeller Institute, New York, and strongly infl uenced by the Austrian  Karl 
Landsteiner  (1868–1943)—turned to immunological working techniques ( 140 ). 
With  Oswald Avery  (1877–1955),  Heidelberger  discovered that polysaccharides are 
powerful antigens of the highly pathogenic  Pneumococcus  ( 138 ).  

4.7.10     Volume 19 

 In his contribution “Medium-ring Terpenes”,  František Šorm  (1913–1980), member 
of the Institute of Organic Chemistry and Biochemistry at the Czechoslovak 
Academy of Sciences, Prague, referred to terpenes containing nine-membered car-
bon rings like caryophyllene, ten-membered rings like germacrone, and fi nally 
eleven-membered rings like humulene or zerumbole ( Z135 ). Since 1936, when the 
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structure of azulene was defi ned by  Alexander St. Pfau  and  Placidius A. Plattner  
( 141 ) as a bicyclic ring structure with a condensed unsaturated fi ve- and a seven- 
membered ring ( 8 ), great interest had arisen on these exceptional compounds. Taking 
account of this fact,  Tetsuo Nozoe  (1902–1996) and  Shô Itô  from Tohoku University, 
Sendai wrote a contribution on “Recent Advances in the Chemistry of Azulenes and 
Natural Hydroazulenes” ( Z136 ). For biographical notes on  Nozoe , see Volume 13.

   8 (azulene)   

    The next contribution in Volume 19 dealt with insecticides that have the advan-
tage of low mammalian toxicity. It was entitled “Chemistry of the Natural Pyrethrins” 
( Z137 ). The authors were  Leslie Crombie  (1923–1999), from King’s College, 
University of London, and  Michael Elliott  (1924–2007), who was working at the 
Rothamsted Experimental Station in Harpenden, Hertfordshire. They mentioned 
that the basic form of the pyrethrin structure was not appreciated until investiga-
tions were carried out by  Hermann Staudinger  and  Leopold Ružička  between 1910 
and 1916, which were published in 1924 ( 142 ). 

 “Conformational Analyses of Steroids and Related Natural Products” was a 
 contribution concerning the application of conformational principles in the fi eld of 
steroids and triterpenoids. Spectroscopic correlations were discussed by  Sir Derek 
Harold Richard Barton  and  G. A. Morrison , who were members of the Imperial 
College of Science and Technology at the University of London ( Z138 ). In 1969, 
 Barton  (1918–1998) shared the  Nobel  Prize in Chemistry with  Odd Hassel  for 
 contributions to the development of the concept of conformation and its application 
in chemistry. 

 Yet again the editor of “Progress” was able to convince  Eugen Earle van Tamelen  
to contribute a chapter—this time on the “Biogenetic-type Syntheses of Natural 
Products”.  van Tamelen  stated that biogenetic-type syntheses are often neater, 
shorter, and even more effi cient than normal routes, in which no attention is paid to 
natural processes ( Z139 ). Indeed,  van Tamelen  was a pioneer of what today is called 
“biomimetic synthesis”. 

 In addition,  Hans Heinrich Schlubach , the author of the next contribution, is 
already known to us. In Volume 19,  Schlubach  dedicated his text to the topic 
“Kohlenhydratstoffwechsel in Roggen und Weizen” (“Carbohydrate Metabolism in 
Rye and Wheat”) ( Z140 ). 

  Jean Émile Courtois  (1907–1989) and  Andréa Lino  from the Laboratoire de 
Chimie Biologique, Faculté de Pharmacie de Paris, chose the following title for their 
contribution: “Les Phosphatases de Végétaux Supérieurs: Répartition et Action” 
(“The Phosphatases of Higher Plants: Distribution and Action”) ( Z141 )  Courtois  
was the long-time secretary general of the “Société Française de Chimie Biologique”. 
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He was not only very active in his scientifi c life—he will be remembered for his 
work on sugars and enzymology—but also showed tremendous courage by hiding 
members of the resistance during World War II ( 143 ).  

4.7.11     Volume 20 

  John Howard Birkinshaw  and  C. E. Stickings  of the London School of Hygiene and 
Tropical Medicine, opened Volume 20 with a summary description of “Nitrogen- 
containing Metabolites of Fungi”. The nitrogen-containing fungal metabolites are 
classifi ed as acyclic nitrogen-containing compounds like amides or nitro- 
compounds, and heterocyclic compounds like pyrrole, indole, ergot or pyridine 
derivatives ( Z142 ). 

 In his report “Forschungen am Lignin” (“Research on Lignin”),  Karl Freudenberg  
gave an update of his contribution published in Volume 11. This time he described 
mainly the detection of intermediate products in lignin formation ( Z143 ). 

  Othmar Schindler  from the research institute of Dr. A. Wander A.G. in Bern pre-
sented an overview of the state of research concerning the ubiquinones ( 9 ), which 
were termed “coenzymes Q” by American scientists: “Die Ubichinone (Coenzyme 
Q)” (“The Ubiquinones (Coenzymes Q)”) ( Z144 ). Today, there is no more doubt 
about their identity—they are components of the electron transport chain and par-
ticipate in ATP production.

   9 (ubiquinones)
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     Walter Baptist Mors ,  Mauro Taveira Magalháes  and  Otto Richard Gottlieb  from 
the Ministério da Agricultura, Instituto de Químico Agricola, Rio de Janeiro, began 
their contribution on “Natural Occurring Aromatic Derivatives of Monocyclic 
α-Pyrones” ( Z145 ) by stating that alkaline degradation was the key method in the 
structural elucidation of monocyclic α-pyrones. They mentioned that  Giacomo 
Ciamician  (1857–1922) and  Paul Silber  (1851–1930) identifi ed acetopiperone and 
piperonylic acid among products of alkali treatment of paracotoin in 1893. 
 Ciamician  and  Silber  proposed a structure including a lactone ring ( 10 ).  Mors, 
Magalháes,  and  Gottlieb  took into account that α-pyrones had attracted consider-
able attention in recent years.  Walter Baptist Mors  (1920–2008), a native of São 
Paulo, founded the Centro de Pesquisas de Produtos Naturais at the University of 
Brasilia in 1962, promoting a multidisciplinary vision of plant research ( 144 ).  Otto 
Richard Gottlieb  (1920–2011) was born in Brno, emigrated to Brazil in 1939 and 
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joined the Instituto de Química Agrícola in Rio de Janeiro in 1955, where he pur-
sued his major interest in phytochemistry. In 1964, he was appointed full professor 
at the Universidade de Brasilia, and, in 1967, he moved to the Universidade de São 
Paulo ( 145 ).  Mauro Taveira Magalháes  was a long-time co-worker of  Gottlieb .

   10 (paracotoin)
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     Jeffrey Barry Harborne  (1928–2002), then from the John Innes Institute, 
Hertford, Hertfordshire, England, discussed in “Anthocyanins and their Sugar 
Components” the isolation, identifi cation, natural occurrence, and biosynthesis of 
anthocyanins ( Z146 ). 

 “Aminozucker, Synthesen und Vorkommen in Naturstoffen” (“Amino Sugars, 
Syntheses and Distribution in Natural Products”) is the title of a contribution by 
 Gerhard Baschang  ( Z147 ), who was affi liated with two institutions: the Max Planck 
Institute, Heidelberg, and the Rockefeller Institute, New York. This particular type 
of monosaccharides, in which one or more of the hydroxy groups is(are) replaced 
by amino groups, was discovered by  Georg Ledderhose  (1855–1925) in 1876, when 
he obtained crystals from boiling the claws and shell of a lobster in hydrochloric 
acid ( 146 ).  Baschang  described the syntheses of amino sugars in great detail. 

  Karel Wiesner , who has already been mentioned as the co-author of an contribu-
tion published in Volume 17, was responsible for the next paper on the “Structure 
and Stereochemistry of the  Lycopodium  Alkaloids” ( Z148 ), inclusive of the struc-
tures of lycopodine, acrifoline, annofoline, fawcettiine, clavolonine, selagine, and 
lycodine. 

 “Newer Developments in the Field of  Veratrum  Alkaloids” were discussed by 
 C. R. Narayanan , from the National Chemical Laboratory in Poona, India. 
 Narayanan  focused on the jerveratrum and cerveratrum alkaloids, including ger-
mine, zygadenine, and protoverine ( Z149 ). 

 Volume 20 again includes a methodological paper—“Equilibrium Sedimentation 
of Macromolecules and Viruses in a Density Gradient” by  Jerome Vinograd  (1913–
1976) and  John E. Hearst  (*1935), of California Institute of Technology, Pasadena 
( Z150 ).  Vinograd’s  initial major contribution was the development of density gradi-
ent ultracentrifugation in 1957 ( 147 ). He became well known for his work on the 
properties of circular DNA in 1965. 

 Another contribution that is also still worth reading today is the essay “Current 
Theories on the Origin of Life” by  Norman Harold Horowitz  (1915–2005) and 
 Stanley Lloyd Miller  (1930–2007) ( Z151 ). The authors discussed what the condi-
tions of previous atmospheres of the earth might have looked like in order for life to 
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develop on our planet.  Miller  had already performed his famous experiment as a 
student at the California University in Berkeley in 1953. At the time of publication 
of Volume 18 (1962),  Miller  had just been appointed professor at the Department of 
Chemistry of the University of California in San Diego.  

4.7.12     Volume 21 

 Volume 21 was published in Austria in 1963. Topics covered in this volume were: 
rubber, antifungal antibiotics, anthracyclinones, anthracyclines, folic acid, and natu-
ral rotenoids. Initially,  James Bonner  presented a rather short overview on “The 
Biosynthesis of Rubber” ( Z152 ). He pointed out the biosynthesis pathway of carbon 
atoms in common plant metabolites such as carbohydrates during the conversion to 
polyisoprene. Nevertheless, questions remained. As  Bonner  stated, it was not known 
how many polymerization enzymes are actually involved. Also, the mechanisms of 
chain growth quenching were unknown.  James Frederick Bonner  (1910–1996) was 
a professor of biology at CalTech, Pasadena. 

 In the introduction of their contribution “The Polyene Antifungal Antibiotics”, 
 William Oroshnik  from the Central Research Laboratory Shulton at Clifton, 
New Jersey, and  Alexander D. Mebane  (1923–2004) from the Ortho Research 
Foundation, Raritan, New Jersey, mentioned that the analysis of some very charac-
teristic multipeaked ultraviolet absorption spectra of antifungal antibiotics produced 
by Actinomycetes led to the identifi cation of straight-chain conjugated polyenes, 
comprising tetraenes, hexaenes, and heptaenes ( Z153 ). 

  Hans Muxfeldt  (1927–1974) and  R. Bangert , from the University of Wisconsin, 
turned to a completely different class of antibiotics. Their contribution was entitled 
“Die Chemie der Tetracycline” (“The Chemistry of Tetracyclines”) ( Z154 ). Thanks 
to a collaboration with  Robert B. Woodward , the structure of terramycin ( 11 )—
isolated in the laboratories of “Chas. Pfi zer and Co.” in 1950–was resolved ( 148 ).

   11 (terramycin)
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    Orange-red pigments were also isolated from  Streptomyces  species, collectively 
proposed to be named “anthracyclinones” in 1963. Their glycosides are called 
anthracyclines. These substances are of high antibiotic effi cacy but due to their 
substantial toxicity they had not been used medicinally up to that date.  Hans 
Brockmann , who contributed to Volume 18, rendered great service through the iso-
lation and elucidation of the structures of numerous anthracyclinones. In this volume, 
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he reported on “Anthracyclinone und Anthracycline” (“Anthracyclinones and 
Anthracyclines”) ( Z155 ). The parent compound of all anthracyclinones is given by 
 Brockmann  as structure  12 .

   12 (anthracyclinone parent compound)
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    Since eight years of intense research had passed since  Adrien Albert  gave a 
summary on the biochemistry of folic acid in Volume 11,  Lothar Jaenicke (*1923)  
and  Carl Kutzbach  from the University of Cologne now wrote about progress made 
in the meantime. Essential parts of their text on “Folsäure und Folat-Enzyme” 
(“Folic Acid and Folate Enzymes”) comprised the biogenesis of folic acid, the 
analysis and separation of folate compounds as well as folate-catalyzed enzymatic 
reactions ( Z156 ). 

 Some plants in the family Leguminosae, especially  Derris  species, contain rote-
none—an important insecticide and fi sh poison. Therefore, indigenous populations 
in some parts of the world used to fi sh by throwing preparations of crushed plant 
material into ponds or streams.  Leslie Crombie , then at King’s College of the 
University of London, whom we already know from Volume 19, reported on the 
“Chemistry of the Natural Rotenoids” ( Z157 ). Rotenone was isolated for the fi rst 
time by  Emmanuel Geoffroy  (1862–1894) shortly before his death. The stereochem-
istry was assigned by  George Büchi  (1921–1998) and  L. Crombie  and their collabo-
rators ( 149 ).  

4.7.13     Volume 22 

 As early as 1913,  Giacomo Ciamician  (1857–1922) enthusiastically propagated the 
developmental possibilities of organic photochemistry ( 150 ,  151 ). In Volume 22, 
 Kurt Schaffner  (*1931) from ETH Zurich gave an overview of selected chapters of 
photochemical conversions in his contribution on “Photochemische Umwandlungen 
ausgewählter Naturstoffe” (“Photochemical Conversions of Selected Natural 
Products”) ( Z158 ). 

 “Stilbene im Pfl anzenreich” (“Stilbenes in the Plant Kingdom”) were the topic of 
an essay by  Gerhard Billek  (1924–2004) from the Institute of Organic Chemistry at 
the University of Vienna ( Z159 ). In 1962,  Billek  habilitated in the fi eld of organic 
experimental chemistry with special regard to radiochemical methods at the 
University of Vienna. In his introduction,  Billek  pointed out that  G. L. Hornemann  
had isolated rhaponticin, a glucoside of rhapontigenin, from rhubarb by 1822 ( 152 ). 
In 1939,  Holger Erdtman  then determined the constitution of pinosylvin ( 13 ) ( 153 ), 
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a stilbene derivative extracted from the heartwood of pine trees, and emphasized 
that this stilbene causes inhibition of sulfi te digestion in this kind of wood. 
Resveratrol, which differs from pinosylvin only by an additional hydroxy group, 
was described by  Michio Takaoka  in 1939 ( 154 ). Resveratrol has repeatedly 
appeared in press headlines due to frequent and manifold claims of its positive 
effects on human well-being—such as in November, 2010 ( 155 ).

   13 (pinosylvin)
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    Since big steps forward were taken regarding the stereochemistry of triterpenes 
over the decades earlier,  Thomas G. Halsall  and  Robin T. Aplin , from the Dyson 
Perrins Laboratory of the University of Oxford, were invited to write a contribution 
entitled “A Pattern of Development in the Chemistry of Pentacyclic Triterpenes”. 
They focused on platanic acid, triterpenes of ferns, C-28-nor-triterpenes, ceanothic 
acid, and related compounds. A table of known pentacyclic triterpene structures 
(elucidated until 1964) listed 167 such compounds ( Z160 ). 

 Griseofulvin ( 14 ), an antifungal antibiotic, was fi rst isolated from the mycelium 
of  Penicillium griseofulvum  in 1939 by  Harold Raistrick  (1890–1971) ( 156 ).  John 
Frederick Grove  (1921–2003) from the London School of Hygiene and Tropical 
Medicine mentioned this fact in the introduction of his contribution “Griseofulvin 
and Some Analogues” ( Z161 ).
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    In the next contribution,  Paul J. Scheuer  (1915–2003) from Honolulu, explained 
“The Chemistry of Toxins Isolated from Some Marine Organisms” and described 
toxins isolated from chordates, echinoderms, mollusks, annelids, coelenterates, and 
protozoans ( Z162 ).  Scheuer  was born in Heilbronn, Germany. After he was denied 
university admission during  Hitler ’s rise to power,  Scheuer  became a tannery 
apprentice. In 1938, he immigrated to New York. Students and colleagues called 
 Paul Scheuer , professor at the University of Hawaii, the “father of marine natural 
product chemistry” ( 157 ). 
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 The last contribution of Volume 22 was entitled “Siderochrome. Natürliche 
Eisen(III)-trihydroxamat-Komplexe” (“Siderochromes. Natural Iron(III)-
trihydroxamate-Complexes”) ( Z163 ). The authors were all from ETH Zurich:  Walter 
Keller-Schierlein  (*1922), the  Nobel  laureate of 1975,  Vladimir Prelog  (1906–1998), 
and  Hans Zähner  (1929–2008). Some compounds of this group of iron complexes, 
which were isolated from microorganisms and showed antibiotic activity, were 
termed “sideromycins”. In this paper, the elucidation of their structure is described. 
 Prelog , who was born in Sarajevo, was awarded a  Nobel  Prize in particular for his 
services rendered to the investigation and description of chiral molecules.  

4.7.14     Volume 23 

 Volume 23 opened with a report by  Stanley Peat  and  James R. Turvey  on 
“Polysaccharides of Marine Algae” ( Z164 ).  Stanley Peat  (1902–1969), who was 
appointed to the chair of chemistry at the University College of North Wales at 
Bangor in 1948 ( 158 ), and his co-author commented on skeletal polysaccharides of 
the algal cell wall, food reserve polysaccharides, polysaccharides containing sulfate 
esters like fucoidin, and galactan sulfates of red algae. 

  Hans Heinrich Schlubach , well known to us as a previous author in this book 
series, informed the reader on the topic “Kohlenhydratstoffwechsel in Gerste, Hafer 
und Rispenhirse” (“Carbohydrate Metabolism in Barley, Oat and Common Millet”) 
( Z165 ). 

  Fritz Schlenk , working in 1965 at the Argonne National Laboratory, Lemont, 
Illinois and already known to us from Volume One, now reported on “The Chemistry 
of Biological Sulfonium Compounds” ( Z166 ).  Schlenk  gave an account of some 
chemical features,  in vitro  synthesis, and the metabolism of sulfonium compounds. 
A well-known example for this group of compounds is  S -methylmethionine ( 15 ), 
which has sometimes been referred to as “vitamin U”.

   15 (S-methylmethionine)
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    Since the complete hemoglobin amino acid sequence was known within three 
years after the last paper on hemoglobin was published (1959) and the  Nobel  Prize 
awarded to  Max Perutz  on this topic, certain new aspects—especially chain 
abnormalities—were discussed by  Walter A. Schroeder  and  Richard T. Jones  in 
their contribution “Some Aspects of the Chemistry and Function of Human and 
Animal Hemoglobins” ( Z167 ). 

 A contribution “Kollagen” (“Collagen”), written by a group working with 
 Wolfgang Grassmann  (1898–1978) at the  Max Planck  Institute for Protein and 
Leather Research in Munich, contained many new insights concerning collagen. 
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The amount of work required—according to the authors—was tremendous, as this 
molecule, which forms skin, tendons, cartilage, bones, and teeth, proved to be far 
more complicated than expected. It was possible to connect certain characteristics 
of collagen ( e.g.  its cross-striation pattern) to already known facts about its primary 
structure at the time the contribution was written in 1965 ( Z168 ). 

 The fi nal contribution to Volume 23 represented a synopsis of the then brand new 
technique of NMR spectroscopy, entitled “Some Applications of Nuclear Magnetic 
Resonance Spectroscopy in Natural Product Chemistry” ( Z169 ), written by  Lloyd 
Miles Jackman , who was professor of organic chemistry at the University of 
Melbourne from 1962 to 1967 ( 159 ).  

4.7.15     Volume 24 

 In Volume 24 (1966), mass spectrometry was presented for the fi rst time as a 
new method of structural analysis: “Mass Spectroscopy of Selected Natural 
Products” ( Z170 ). During the 1940s, the 1950s, and even the beginning of the 
1960s, the organic chemist had become increasingly used to being able to take 
advantage of more and more complex instrumentation for physical measure-
ments, in lieu of laborious, time-consuming, and often ambiguous chemical 
transformations. As the author  Klaus Biemann  from the Department of Chemistry 
at the Institute of Technology in Cambridge, Massachusetts, stressed, mass spec-
trometry had become the most recent addition to this fi eld.  Biemann,  who has 
been called the “father of organic mass spectrometry”, was born in Innsbruck in 
1926 ( 160 ). He studied in Innsbruck before going to the USA. On various occa-
sions,  Biemann  pointed out that  Josef Mattauch  and his student  Richard F. K. 
Herzog  from the Physics Department at the University of Vienna had developed 
in 1936 a double-focusing mass spectrograph with high resolving power ( 161 ). 
As can be inferred from recent newspaper reports,  Biemann , who has now 
retired, is still active in cosmochemistry. In September 2010, he commented on 
a controversy regarding the evaluation of data obtained during the Viking 1 mis-
sion to Mars in 1976. In this regard,  Biemann  spoke in the same manner as the 
above-mentioned  Norman Harold Horowitz  (see Volume 20) who had been in 
charge of the experiments on the possible existence of life on Mars and who—as 
soon as the data had arrived—had declared that earth was the only planet in this 
area of the galaxy to generate life. 

 We owe the second contribution in Volume 24 to  Rudolf Tschesche  from Bonn. 
The title of his contribution was “Pfl anzliche Steroide mit 21 Kohlenstoffatomen” 
(“Plant Steroids with 21 Carbon Atoms”) ( Z171 ). The fi rst C 21 -steroid was diginin, 
isolated by  Walter Karrer  ( 162 ), brother of  Paul Karrer,  in 1936. 

 In 1966, the Austrian chemist  Otto Hoffmann-Ostenhof  (1914–1992) was 
accorded the honor of writing another contribution for the Series. His co-author of 
“Cyclite: Biosynthese, Stoffwechsel und Vorkommen” (“Cyclites: Biosynthesis, 
Metabolism, and Occurrence”) was  Helmut Kindl . Some of the more abundant 
cyclites ( e.g.   L -quercite or  D -pinite) had already been known in the nineteenth 
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century.  Hoffmann-Ostenhof  and  Kindl  reported mainly on the biosynthesis, degra-
dation, and occurrence of cyclites using the example of myo-inositol ( Z172 ). As of 
1971 , Otto Hoffmann-Ostenhof  was appointed to the chair of biochemistry at the 
University of Vienna ( 163 ). Also in 1971,  Helmut Kindl  (*1936) became professor 
of biochemistry at the University of Marburg ( 164 ). 

  Holger Erdtman  (1902–1989) from the Royal Institute of Technology in 
Stockholm and  Torbjörn Norin  (*1933) from the Swedish Forest Products 
Research Laboratory in Stockholm discussed the constituents of the Cupressales, 
 i.e.  cyclitols and simple phenols, lignans, fl avonoids, leaf waxes, tropolones, and 
terpenes, in their report on “The Chemistry of the Order Cupressales” ( Z173 ). 
 Erdtman  studied at Stockholm University and was a Ramsay fellow with Professor 
 Sir Robert Robinson  in England from 1929 to 1931. He completed his practical 
thesis work in the laboratories of  Friedrich Fichter  in Basel and  Ernst Späth  in 
Vienna ( 165 ). 

 The next contribution entitled “Quinone Methides in Nature” was written by 
 Alan B. Turner  from the Department of Chemistry of the University of Aberdeen. 
Quinone methides occur as products of fungal metabolism and as plant pigments. 
Stable quinone methides comprise citrinin, pulvilloric acid, ascochitine, purpuroge-
none, fuscin, celastrol, and perinaphthenone ( Z174 ). 

 “The Pyrrolizidine Alkaloids II” by  Frank Louis Warren (Z175)  represented a 
follow-up of a contribution included in Volume 12. Volume 24 concluded with 
“Some Aspects of Virus Chemistry”, a contribution by  H. Fraenkel-Conrat  from 
the Virus Laboratory at the University of California in Berkeley ( Z176 ).  Heinz 
Ludwig Fraenkel-Conrat  (1902–1999), who was mentioned in connection with 
his participation in Volume 12, left Germany in 1936 and joined the Virus 
Laboratory at Berkeley in 1952. He was the fi rst scientist to dissemble and rebuild 
a virus out of its constituents. His most important discovery was that the nucleic 
core of each virus contains information that controls viral reproduction ( 166 ). His 
father was  Ludwig Fraenkel  (1870–1951), the discoverer of the steroid hormone 
progesterone.  

4.7.16     Volume 25 

 “Biogenetische Beziehungen der natürlichen Acetylenverbindung” (“Biogenetic 
Relations of the Natural Acetylene Compounds”) was the title of the fi rst essay of 
Volume 25. This topic was covered by  Ferdinand Bohlmann  (1921–1991) from the 
Technical University (TU) Berlin ( Z177 ). Around 1955, about 50 natural acetylene 
compounds were known. Only ten years later, this number rose to approximately 
440.  Bohlmann  earned his doctorate under  Hans Brockmann  in Göttingen in 1946, 
then moved to Braunschweig where he worked under  Hans Herloff Inhoffen,  and in 
1959 became the successor of  Friedrich Weygand  at the TU Berlin. 

 Following this essay,  Philip R. Ashurst , a graduate of the Imperial College 
London then working at the Brewing Industry Research Foundation, Nutfi eld, 
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Surrey, England described “The Chemistry of the Hop Resin”. Some functions of 
hops in brewing as well as substances present in the hop resin were covered ( Z178 ). 
Today,  Ashurst  is still working as a consulting chemist ( 167 ). 

  Jesús Romo Armería  (1922–1977) and his co-worker  Alfonso Romo de Vivar  
(*1928) from the Instituto de Quimica, Universidad National Autonoma de 
Mexico specialized in “The Pseudoguaianolides” ( Z179 ). The term “pseu-
doguaianolides” applies to sesquiterpene lactones with an abnormal guaiane skel-
eton resulting from migration of the C-4 methyl group to C-5 in the guaianolide 
system ( 16 ,  17 ) during biosynthesis.  Armería’ s most prominent achievement was 
the development of a cost-effi cient method to synthesize estradiol and progester-
one using precursors extracted from  Dioscorea.  In 1953,  Zechmeister  visited the 
Instituto de Química in Tacuba, Mexico, where  Jesús Romo  and  Romo de Vivar  
worked ( 168 ) . 

   16 (guaiane) 17 (pseudoguaiane)  

     J.K. Sutherland  from the Imperial College of Science and Technology, London, 
summarized all that was known about “The Nonadrides”, a small group of fungal 
metabolites characterized by the presence of a nine-membered ring and two fi ve- 
ring anhydride groups ( Z180 ). Glauconic acid ( 18 ), a member of the nonadride 
group, was isolated by  Nadine Wijkman  in 1931 ( 169 ).

   18 (glauconic acid)

O O

O O

OO

OH

  

    A series of contributions dealing with topics of chemical classifi cation was con-
tinued by  Loránd Farkas  (1914–1986), who was a student of  Zemplén , and  László 
Pallos  from the Technical University of Budapest, with their summary on “Natürlich 
vorkommende Auronglykoside” (“Naturally Occurring Aurone Glycosides”) 
( Z181 ). Leptosin ( 19 )—isolated from blossoms of  Coreopsis grandifl ora  Nutt. in 
1943—is given as an example 1 .

1   It should be mentioned that the name “leptosin” has been assigned later on for a second time to 
the different compound, methyl syringate 4- O - β - D -gentiobiose, from  Leptospermum  sp. 
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   19 (leptosin)
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    Next in line were  Raphael Mechoulam  (*1930) from the Laboratory of Natural 
Products, The Hebrew University, Jerusalem and  Yehiel Gaoni  from the Weizmann 
Institute of Science in Rehovot with their contribution on “Recent Advances in the 
Chemistry of Hashish” ( Z182 ).  Mechoulam  and  Gaoni  were the fi rst to isolate tetra-
hydrocannabinol in 1964 ( 170 ) .  

  Theodor Wieland  (1913–1995), son of  Nobel  laureate  Heinrich Wieland , wrote 
on the “Toxic Peptides of  Amanita phalloides ” ( Z183 ).  Heinrich Wieland  had 
already begun investigating substances from the death cap mushroom ( Amanita 
phalloides ) as early as the 1920s.  Theodor Wieland  became full professor at the 
Institute of Organic Chemistry in Frankfurt/Main in 1951. 

 In “Die Prolamine” (“The Prolamines”),  Ernst Waldschmidt-Leitz  and  Hans Kling  
from the Institute of Experimental Biology in Heiligenberg collected recent informa-
tion on these specifi c storage proteins that occur mainly in grain seeds ( Z184 ). 

  George A. Morrison  from the Department of Organic Chemistry at the University 
of Leeds, who also published a contribution in Volume 19, wrote on “Conformational 
Analysis of Some Alkaloids” ( Z185 ).  Morrison  confi ned himself to describing cer-
tain problems using only few specifi c examples, such as yohimbine, tazettine, and 
lyconine.  

4.7.17     Volume 26 

 The fi rst third of Volume 26 was dedicated to a thorough discussion of specifi c top-
ics of protein research. It commenced with a text on “X-Ray Diffraction Studies of 
Crystalline Amino Acids, Peptides and Proteins” by  Robert Brainard Corey  and 
 Richard Edward Marsh  from Pasadena, California, where the authors pointed out—
in contrast to previous fi ndings—they could then present data obtained directly 
from crystallized proteins ( Z186 ). 

  Eberhard Schröder  and  Klaus Lübke  from the Schering Main Laboratory in 
Berlin continued with a description of the “Synthese von Peptiden und 
Peptidwirkstoffen” (“Synthesis of Peptides and Peptide Agents”) ( Z187 ). Examples 
given included hypophyseal peptide hormones (such as the adrenocorticotropic 
hormone, the melanocyte-stimulating hormone, oxytocin and vasopressin), intesti-
nal peptide hormones (like gastrin or secretin) as well as tissue hormones ( e.g.  
angiotensin, the kinins, eledoisin, and physalaemin). 
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 Finally, recent fi ndings in the fi eld of “Insulin, Structure, Synthesis and 
Biosynthesis of the Hormone” were presented by  Anthony C. Trakatellis  and  Gerald 
P. Schwartz  from the Department of Biochemistry, Mount Sinai School of Medicine, 
New York ( Z188 ).  Antonios Trakatellis  was born in Thessaloniki in 1931. He lectured 
at several Greek and American universities and was rector of Aristotle University of 
Thessaloniki from 1988 to 1994.  Trakatellis  has published a large number of papers 
and books concerning insulin, nucleic acids, and vitamin B 6  defi ciency. In 2004, he 
was elected as one of 14 vice presidents of the European Parliament ( 171 ). 

  W. Keller-Schierlein  and  H. Gerlach  from the Laboratory of Organic Chemistry 
at ETH Zurich were responsible for a contribution on “Makrotetrolide” 
(“Macrotetrolides”) ( Z189 ).  Walter Keller-Schierlein  (*1922) habilitated on micro-
bial metabolic products at ETH in 1963 and  Hans Gerlach  wrote his dissertation 
under  Vladimir Prelog  and  Albert Eschenmoser  in 1962 entitled “Über die 
Konstitution und Konfi guration der Makrotetrolide Nonactin, Monactin, Dinactin 
und Trinactin” (“On the Constitution and Confi guration of the Macrotetrolides 
Nonactin, Monactin, Dinactin and Trinactin”). Macrotetrolides are a family of mac-
rocyclic compounds active as antibiotics containing four tetrahydrofuranyl- 
carboxylic acid residues linked together. 

 During the 1960s,  David L. Dreyer  (*1930) isolated a number of new citrus bitter 
principles at the Fruit and Vegetable Chemistry Laboratory, Pasadena, California 
( 172 ). “Limonoid Bitter Principles” was the title of his contribution in Volume 26 of 
the Series ( Z190 ), in which he discussed the structure of approximately 70 limonoids. 

 In “Proaporphin-Alkaloide” (“Proaporphine Alkaloids”) by  Karl Bernauer  and 
 Werner Hofheinz  (Hoffman-LaRoche, Basel), the constitution of cyclohexadienone, 
cyclohexenone, cyclohexenol, and cyclohexanol proaporphines was given ( Z191 ). 
Pronuciferine, stephanine, and linearisine were some examples. The next contribu-
tion “Chemie der Chlorine und Porphyrine” (“Chemistry of Chlorines and 
Porphyrins”) by  Hans Herloff Inhoffen, Johann Walter Buchler,  and  P. Jäger  (TH 
Braunschweig) contained information on a new porphyrin synthesis ( Z192 ). Today, 
 Buchler  is still working on the coordination chemistry of metal porphyrins as pro-
fessor emeritus at the University of Technology Darmstadt ( 173 ). 

 Volume 26 was concluded by an overview on “Methoden und Ergebnisse der 
Sequenzanalyse von Ribonucleinsäuren” (“Methods and Results of the Sequence 
Analysis of Ribonucleic Acids”) by  Dieter Dütting ,  Max Planck  Institute of Virus 
Research, Tübingen ( Z193 ).  Dütting  reported on the successful deciphering of the 
amino acid codon triplet in mRNA.  

4.7.18     Volume 27 

 The essay by  A. Frey-Wyssling  from ETH Zurich on “The Ultrastructure and 
Biogenesis of Native Cellulose” ( Z194 ) was a presentation of progress achieved in 
cellulose research at the time of writing. The discussion was based on an article 
published in Volume Eight of this Series.  Albert Frey-Wyssling  (1900–1988) was 
appointed to the chair of general botany and plant physiology at ETH Zurich in 
1938, due to his groundbreaking studies in the fi eld of the fi ne structure of cell walls. 
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 In the three decades from 1940 to 1970, gradually it became evident that ethyl-
ene is a compound generally present among living things. The metabolism and 
physiological activity of ethylene, used nowadays as a commercial ripening agent 
for different kinds of fruits, were discussed in  Mary Spencer ’s contribution 
“Ethylene in Nature” ( Z195 ). She was professor of plant science and biochemistry 
at the University of Alberta, Edmonton, Canada, and an international authority on 
ethylene, its production, and effect on the environment ( 174 ). 

 “Spectroscopic Methods for Elucidating the Structures of Carotenoids” was the 
subject of a paper by  B. C. L. Weedon , which summarized the techniques of visible, 
UV, IR, and NMR spectroscopy, and mass spectrometry as well as optical rotatory 
dispersion ( Z196 ). Using NMR spectroscopy,  Basil Charles Leicester Weedon  
(1923–2003), who was appointed to the chair of organic chemistry at Queen Mary 
College, London in 1960, was the fi rst to determine the structures of carotenoid pig-
ments, including astaxanthin, rubixanthin, and canthaxanthin ( 175 ). 

  Georgine M. Sanders, Jan Pot,  and  Egbert Havinga , from the University of 
Leiden, collected new information about the so-called “overirradiation products” in 
their contribution “Some Recent Results in the Chemistry and Stereochemistry of 
Vitamin D and Its Isomers” ( Z197 ).  Egbert Havinga  (1909–1988), a student of  Fritz 
Kögl , accepted an offer from the University of Leiden to become full professor of 
organic chemistry in 1946 ( 176 ). 

 The investigation of fl avonoid tannin chemistry had already begun in 1920 with 
the elucidation of the catechin structure by  Karl Freudenberg.  Acid-catalyzed tan-
nin formation as well as plant polyphenol formation by enzymatic dehydration were 
described in detail in the contribution “Konstitution, Entstehung und Bedeutung der 
Flavenoid-Gerbstoffe” (“Constitution, Formation and Signifi cance of Flavonoid 
Tannins”) by  Klaus Weinges, Wolfgang Bähr  (*1942),  Werner Ebert  (*1934) , Klaus 
Göritz,  and  Hans-Dieter Marx  ( Z198 ), all from the Organic Chemistry Institute of 
Heidelberg University. 

 There is no doubt about the pharmacological signifi cance of the discovery in 
1869 of muscarine in fl y agaric ( Amanita muscaria ), as described by  Oswald 
Schmiedeberg  and  Richard Koppe  ( 177 ). However, muscarine is not the only agent 
responsible for the numerous symptoms of fl y agaric poisoning, such as ataxia, 
excitation, and hallucinations. In his contribution “Chemie der Wirkstoffe aus dem 
Fliegenpilz ( Amanita muscaria )” (“Chemistry of the Active Substance in Fly 
Agaric” ( Amanita muscaria ))  (Z199) ,  Conrad Hans Eugster  (1921–2012) from the 
University of Zurich argued in favor of ibotenic acid ( 20 ) and muscimol ( 21 ) as 
being the main active constituents of fl y agaric.

   20 (ibotenic acid) 21 (muscimol)

N
O

N
O

OOC

H3N

OH

H3N

O

.H2O

  

R.W. Soukup and K. Soukup



503

    In his contribution “The Chemistry of Some Toxins Isolated from Marine 
Organisms”,  P.J. Scheuer  (Honolulu) focused on pahutoxin, ciguatoxin, holothurins, 
asterosaponins, saxitoxin, aplycin, palytoxin, and prymnesin ( Z200 ). For biographi-
cal notes on  Paul J. Scheuer , see Volume 22. 

 The fi nal essay of Volume 27, “The Chemistry of Lysozyme” was written by two 
scientists from CalTech.  Michael A. Raftery  (1936–2007) became professor of 
chemical biology in 1967.  Frederick Willis Dahlquist  was a research fellow in 
1968/1969, and is still publishing in the fi eld of biochemistry. Their paper dealt with 
studies of structure, substrate specifi city, and catalytic mechanisms of the hen egg- 
white enzyme lysozyme, which was identifi ed as a basic protein containing 129 
amino acid residues ( Z201 ).    

5     Since 1970: Not “Edited by” but “Founded by” 
L. Zechmeister 

5.1      The Editorial Board Since 1970 

 At the beginning of Volume 28, which was published in 1970, the editor gives a 
personal statement for the fi rst time,  “After the publication of Volume 27, I have 
asked the Springer-Verlag to relieve me from my duties, because of my advanced 
age, although this was not an easy decision after 32 years of editorial work. I shall 
sorely miss the scientifi c contact with a number of contributing authors and with 
those readers who have written to me concerning one and the other of the almost 
200 review articles published in this series”.  

 The then re-established editorial board consisted of  Werner Herz  from 
Tallahassee,  Hans Griesebach  from Freiburg, and  Alastair Ian Scott  from New 
Haven.  Werner Herz  (*1921) was born in Stuttgart, Germany. He was educated at 
the University of Colorado. In 1959, he became Robert O. Lawton Distinguished 
Professor at Florida State University in Tallahassee. He was also senior editor of 
 The Journal of Organic Chemistry . 

  Hans Griesebach  (1926–1990) was born in Breslau as the son of  August 
Griesebach —an art historian—and the Jewish writer and gallery owner  Hanna 
Griesebach  (née  Blumenthal ). He survived the war in Potsdam, studied in Heidelberg 
and later started working as an assistant in Heidelberg and Tübingen.  Griesebach  
habilitated in Freiburg in 1960, was appointed to the chair of biochemistry at the 
University of Freiburg in 1964 and was entrusted with the editorship of the “Progress” 
series fi ve years later. His research focus lay on the biosyntheses of phenylpropanoid 
compounds and antibiotics as well as on induction mechanisms of plant antigens. 

  Alastair Ian Scott  (1928–2007) was born in Scotland, studied at the universities 
of Glasgow and London and at Yale University, and worked with  Nobel  Prize laure-
ate  Sir Derek Barton  at Imperial College, London. In 1971, he resigned from his 
position as co-editor.  Zechmeister  was annoyed by  Scott’ s resignation. According to 
 Zechmeister ,  Scott  had “ not accepted co-editorship in the fi rst place”  ( 178 ). 
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 One year later,  Gordon William Kirby  from Loughborough took  Scott ’s place. 
This team of three was destined to defi ne the direction of the Series for many years. 
As of 1967,  Kirby  (*1934) had been professor at the University of Technology, 
Loughborough, Leicestershire, in England, before he went to the University of 
Glasgow, where he was Regius Professor of Chemistry from 1972 to 1997. 

 In Volume 28, the new editors also addressed the reader directly,  “The present 
volume of ‘Fortschritte’ is the fi rst which does not carry the familiar line ‘Edited by 
L. Zechmeister’. Zechmeister’s devotion to the success of this series and his exact-
ing editorial standards have made this line a by-word for all scientists interested in 
the chemistry of natural products.”  

  Christoph Tamm  (*1923) also served as editor from 1984 to 1999. He earned his 
doctoral degree in Basel in 1948, then became a postdoctoral researcher in the USA 
and habilitated under  Tadeusz Reichstein  in 1955.  Tamm  was appointed professor at 
the Institute of Organic Chemistry at the University of Basel in 1966. 

 Concerning further historical facts about the editorial board, there was no further 
change in 1971. For the publication of Volumes 57 and 58,  Wolfgang Steglich  was 
asked to join the board in addition to  Herz, Kirby , and  Tamm. Wolfgang Steglich  
(*1933) studied chemistry at the Technical University of Berlin and later at the 
Technical University of Munich, where he received his PhD in 1959. He became 
professor at the Technical University of Munich in 1969. In 1975, he went to Bonn. 
He succeeded  Rolf Huisgen  as head of the Organic Chemistry Department at the 
University of Munich in 1991.  Steglich  formed part of the editorial team until the 
publication of Volume 74. 

 Beginning with Volume 59 and ending with Volume 74, the editorial board con-
sisted of  W. Herz, G. W. Kirby, R. E. Moore, W. Steglich , and  Ch. Tamm. Richard 
E. Moore  was born in San Francisco on July 30, 1933, where he later also attended 
university. After earning his PhD at the University of California in Berkeley in 1962, 
he moved to Hawaii where he joined the faculty of the Department of Chemistry at 
the University of Hawaii until his retirement in 2003. Professor  Moore  was a lead-
ing authority in the fi eld of marine natural product chemistry and drug discovery. 
He died in Honolulu in December 2007. 

 In 1998,  Heinz Falk  was appointed to the editorial board.  Falk  (*1939), who was 
born in St. Pölten in Lower Austria and today is professor emeritus at the Johannes 
Kepler University in Linz, has been serving as co-editor of the series since Volume 
75.  Falk ’s main areas of research include a group of organic natural dyes derived 
from the phenanthroperylenedione chromophore found in natural pigments like 
hypericin, stentorin, fringelite, gymnochrome, and blepharismin. He was heavily 
involved in the research of open chain tetrapyrroles (bile pigments) as well as closed 
ones like hemin-analogous corrphycene derivatives thought to be possible blood 
substitutes and suppressors of heme oxygenase. Furthermore, members of his work-
ing group were focused on the natural sun blocker urocanic acid. 

  W. Herz, H. Falk, G. W. Kirby,  and  R. E. Moore  edited Volumes 79–83. The edito-
rial board for Volumes 84–88 consisted of  W. Herz, H. Falk,  and  G. W. Kirby.  Since 
Volume 89, the editors have been  A. Douglas Kinghorn, H. Falk,  and  Jun-ichi 
Kobayashi.  
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 Since 2004,  A. Douglas Kinghorn  has been Professor and Jack L. Beal chair of 
natural products chemistry and pharmacognosy at The College of Pharmacy of Ohio 
State University.  Kinghorn  earned his bachelor’s degree in pharmaceutical sciences 
from the University of Bradford, a master’s degree in forensic science from the 
University of Strathclyde, and PhD and DSc degrees from the School of Pharmacy 
at the University of London. At the University of Illinois at Chicago, he became 
professor and was assistant head of the Department of Medicinal Chemistry and 
Pharmacognosy.  Kinghorn  is an internationally renowned scholar in the area of 
natural products and molecular biodiversity in drug discovery. His research focuses 
on the isolation, characterization, and biological evaluation of natural products of 
higher plant origin. He has been senior editor of the  Journal of Natural Products  
since 1994 ( 179 ). 

  Jun-ichi Kobayashi  was born in Hirosaki, Japan, in 1949. He completed his BS 
degree in 1973, and his MS degree in 1975 at Hokkaido University, working on 
studies of nucleic acid synthesis. After receiving his PhD from Hokkaido University 
in 1979, he initiated his research program on marine natural products and worked at 
the University of Illinois with Professor  Kenneth L. Rinehart . In 1989, he was 
appointed full professor at Hokkaido University, Graduate School of Pharmaceutical 
Sciences, where he still continues his research career.  Kobayashi ’s main research 
interests focus on the search for bioactive natural products from marine organisms, 
terrestrial plants and marine/terrestrial microorganisms and their application to the 
basic research of life sciences as well as the development of new drugs ( 180 ). 

 As of Volume 89, an advisory board was established in order to ensure broader 
potential coverage of the book series.  Werner Herz , who had to resign from his 
function for reasons of health, is listed as Honorary Editor from this volume on. 
The advisory board consists of  Verena Dirsch, Simon Gibbons, Nicolas H. Oberlies , 
and  Yang Ye.  

  Verena Dirsch  studied pharmacy at the University of Munich, Germany where 
she received her PhD in 1993 in the group of  Hildebert Wagner , who also appears 
as an author in Volume 31 of the Series. As a fellow of the German Research Council 
(DFG), she joined the group of  Koji Nakanishi  as a postdoctoral at Columbia 
University for one year. From 1995 to 2004, she held several positions in the group 
of  Angelika Vollmar , fi rst at the Institute of Pharmacology, Toxicology and Pharmacy 
of the Faculty of Veterinary Medicine and later at the Department of Pharmacy, both 
at the University of Munich. Since 2004, she has been a full professor at the 
University of Vienna and since 2006 head of the Department of Pharmacognosy. 
Her main research fi elds include the molecular mechanisms of natural products 
affecting vascular smooth muscle cell growth or nitric oxide production in endothe-
lial cells as well as the identifi cation of new anti-infl ammatory compounds using 
various signaling pathways for cell-based screenings in collaboration with phyto-
chemical groups. 

  Simon Gibbons  is currently professor of medicinal phytochemistry and head of 
the Department of Pharmaceutical and Biological Chemistry at The School of 
Pharmacy, University College London.  Gibbons  received BSc and PhD degrees in 
chemistry and phytochemistry, respectively. In October 1997, he was appointed 
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assistant professor of pharmaceutical chemistry at the Faculty of Pharmacy at 
Kuwait University and in 1999 moved to the University of London to lecture in 
pharmacognosy. In 2007, he was appointed as a full professor. His research focuses 
on the isolation and structure elucidation of bioactive natural products from plants, 
particularly antibacterials and bacterial-resistance modifying agents. 

  Nicholas H. Oberlies  received his BS in chemistry from Miami University 
(Oxford, Ohio) in 1992 and his PhD from Purdue University (West Lafayette, 
Indiana) in 1997, where he studied under  Jerry L. McLaughlin . He then spent a year 
as a postdoctoral chemist at American Cyanamid (Princeton, New Jersey). In 1998, 
he joined the Natural Products Laboratory at Research Triangle Institute (RTI) in 
North Carolina. In 2009, he relocated his research group to the Department of 
Chemistry and Biochemistry at the University of North Carolina at Greensboro. 
 Oberlies  is currently leading a multidisciplinary effort to identify, isolate, and char-
acterize new drug entities from natural sources, such as plants, fungi, and bacteria. 
His laboratory also examines herbal drugs, especially for the development of refer-
ence standards. 

 Born in 1965,  Yang Ye  earned his PhD from the Shanghai Institute of Materia 
Medica, Chinese Academy of Sciences in 1992. He was an Alexander von Humboldt 
fellow and underwent postdoctoral study at the Institute of Organic Chemistry, 
University of Munich. He now is full professor and deputy director of the Shanghai 
Institute of Materia Medica, Chinese Academy of Sciences.  Ye  mainly studies sec-
ondary metabolites from traditional herbal medicinal plants. His goal is to disclose 
the chemical essence of traditional Chinese medicine, as well as to fi nd potential 
pharmaceutical lead structures.  

5.2     Volumes 28–38: New Centers of Research, 
New Fields of Research 

 Following the change of editors, the list of countries from where contributions were 
submitted became even wider. From now on we can fi nd contributions from Brazil, 
India, Korea, South Africa, Australia, Italy, the Netherlands, the former GDR, New 
Zealand, and many more countries. 

5.2.1    Volume 28 

 Volume 28, published in 1970, surprised the reader by containing the fi rst contribu-
tion submitted by a researcher from behind the Iron Curtain,  i.e.  the Institute of 
Plant Biochemistry, Halle/Saale, GDR.  Dieter Gross  presented work on “Naturstoffe 
mit Pyridinstruktur und ihre Biosynthese” (“Natural Compounds with Pyridine 
Structure and Their Biosynthesis”) ( Z204 ). The Institute of Plant Biochemistry 
(IBP) was a non-university research institute, which—as an academic institute—
formed part of the research community of the German Academy of Sciences, 
Berlin—the later Academy of Sciences of the GDR. 
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 The opening paper of Volume 28 was entitled “Structural and Biogenetic 
Relationships of Isofl avonoids” by  Edmond Wong  from the Applied Biochemistry 
Division, Department of Scientifi c and Industrial Research, Palmerston North, New 
Zealand ( Z202 ). It not only took note of complex isofl avones, but also covered 
isofl avanones, rotenoids, pterocarpans, isofl avans, 3-aryl-4-hydroxycoumarins, and 
coumestans. 

 This paper was followed by “Recent Advances in the Chemistry of Cyanogenic 
Glycosides” written by  Reynir Eyjólfsson  from The Royal Danish School of 
Pharmacy, Copenhagen ( Z203 ). Cyanogenic glycosides are widespread plant toxins 
consisting of a glycoside containing an additional nitrile group. 

 In his contribution “Peptide Alkaloids” ( Z205 ),  Edgar W. Warnhoff  from the 
University of Western Ontario in Canada described the structure and properties of 
natural compounds like pandamine, zizyphine, ceanothine-B, scutianine, inte-
gerrine, lunarine, homaline, adouétine-X, and several more. 

 In “Insektensexuallockstoffe” (“Insect Pheromones” ( Z206 ),  Karl Eiter —private 
lecturer from the Bayer, Leverkusen, Cologne-Stammheim—classifi ed these spe-
cial pheromones as olefi nic, aliphatic, terpene-like, or heterocyclic. At this point, 
also the contribution “Insect Pheromones” of Volume 37 should be mentioned. 

 A main discussion point in the paper “Arthropod Molting Hormones” by  Hiroshi 
Hikino  and  Yasuko Hikino , Tohoku University, Sendai ( Z207 ), was the structure 
determination and chemistry of substances like ecdysone, ponasterone, ino-
kosterone, and cyasterone. 

 What followed next was a report on the “Total Synthesis of Prostaglandins” by 
 John E. Pike , The Upjohn Company, Kalamazoo, Michigan ( Z208 ).  Robert Bennett 
Morin  (*1931) and  Bill G. Jackson  from the University of Wisconsin described the 
“Chemistry of Cephalosporin Antibiotics” ( Z209 ). Cephalosporins are a class of 
β-lactam antibiotics originally derived from the fungal genus  Acremonium . 

 “Oligosaccharide der Frauenmilch” (“Oligosaccharides in Breast Milk”) by 
 Herbert Wiegandt  (*1937) and  Heinz Egge , Institute of Physiological Chemistry at 
the University of Marburg ( Z210 ), dealt with the isolation, analysis and description 
of these very special sugars. Before  Wiegandt  was called to the Philipps University 
of Marburg in 1965, he had worked on gangliosides—a group of glycolipids found 
in nerve tissue—together with  Richard Kuhn  in Heidelberg. 

 The last contribution of Volume 28 was entitled “Glucagon: Chemistry and 
Action” by  William W. Bromer  (*1928), The Lilly Research Laboratories, 
Indianapolis, Indiana ( Z211 ). Glucagon is a peptide hormone and its main function 
is increasing blood sugar levels.  

5.2.2    Volume 29 

 In Volume 29, published in 1971,  Dieter Gross , who has been mentioned earlier, 
received another opportunity to report his fi ndings concerning “Struktur und 
Biosynthese natürlicher Piperidinverbindungen” (“Structure and Biosynthesis of 
Natural Piperidine Compounds”) ( Z212 ). 

 Volume 29 contained another contribution submitted from the same insti-
tute.  Siegfried Huneck  (1928–2011), recently (2010) published a book on his 
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expeditions to Mongolia in the 1970s and 1980s ( 181 ,  182 ).  Hunek  presented the 
third contribution on “Chemie und Biochemie der Flechtensäuren” (“Chemistry and 
Biochemistry of Lichen Acids”)  (Z214) . He started by providing a description of 
progress achieved in this fi eld of research. Around 1900, the structure of lecanoric 
acid was the only one known of the many substances contained in lichens. By 1954, 
74 lichen compounds had been described, and, between 1954 and 1970, 65 more 
of these compounds were isolated—mainly owing to the development of thin-layer 
chromatography. According to the author, mass spectrometry and NMR spectros-
copy were used extensively in the structure elucidation of these compounds. 

 Especially worth noting is the contribution by  David Lavie  and  Erwin Glotter , 
both from the Department of Chemistry, The Weizmann Institute of Science, 
Rehovot, Israel, which carried the title “The Cucurbitanes, a Group of Tetracyclic 
Triterpenes” ( Z216 ).  David Lavie  (1916–2003) was one of the fi rst scientists 
employed at the Weizmann Institute. He received his MSc degree from the Hebrew 
University of Jerusalem in 1939. After completing his PhD he performed postdoc-
toral studies at Harvard University. This work, performed in the group of  Moris 
Capchun , dealt with structural investigations of alkaloids. Upon returning to the 
Sieff Research Institute, he initiated pioneering research in the fi eld of natural com-
pounds for medicinal purposes. He developed methods for the isolation and identi-
fi cation of natural compounds from plants and insects and studied their biological 
activity. He isolated thebaine from the poppy  Papaver bracteatum , which grows 
wild throughout Asia Minor. Thebaine is used as a starting material for the prepara-
tion of the anti-addiction drug naloxone and the analgesic opioid codeine.  Lavie  
studied certain biogenetic pathways and factors controlling the process of 
 germination and also isolated compounds from apricot tree bark, which attract cer-
tain insects ( 183 ).  Lavie ’s co-author  Erwin Glotter , born in Bacău, Romania, 
received his Ph.D. at the Weizmann Institute in 1965 and was professor of chemistry 
at the Hebrew University of Jerusalem from 1992 until 1996. Cucurbitanes are a 
class of triterpenoid substances that can be isolated from plants of the family 
Cucurbitaceae. They are of concern on account of their high toxicity, which was 
described as  Elisha ’s Miracle in The Bible: “ Elisha and the young prophets follow-
ing him went to Gilgal, near Jericho. They were hard-pressed for a meal, and one of 
the young prophets went to gather some herbs in the fi eld. He came back with some 
wild gourds, and no one knew that they were poisonous. When they ate of the pot-
tage, they cried, “Oh, Man of God, there’s death in the pot!” ” (Kings II/4, 38–40). 

 Further contributions in Volume 29 were “The Chemistry of Glutarimide 
Antibiotics” by  Francis Johnson  from The Dow Chemical Company, Eastern 
Research Laboratory, Wayland, Massachusetts ( Z213 ), “Biogenetic-type Synthesis 
of Terpenoid Systems” by  David Goldsmith , Department of Chemistry, Emory 
University, Atlanta, Georgia  (Z215) , and “The Biosynthesis of the Diterpenes” by 
 James R. Hanson , University of Sussex  (Z217 ) . 

  Eugene Premuzic  was the author of the last contribution of Volume 29, entitled 
“Chemistry of Natural Products Derived from Marine Sources” ( Z218 ).  Eugene 
Premuzic  moved to California in 1971 to become a senior scientist with the International 
Biotechnological Centre at the Wild Life Research Institute in Colton. Later on, he 
lectured at Fordham University and became a professor at Southampton College.  
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5.2.3    Volume 30 

 For Volume 30, published in 1973,  Milton J. Cormier ,  John E. Wampler , and  Kazuo 
Hori  from the Department of Biochemistry at the University of Georgia in Athens, 
Georgia, wrote a contribution on “Bioluminiscence: Chemical Aspects”. In detail, 
the authors discussed emissions of visible radiation by enzyme-catalyzed reactions 
including  Renilla  (sea pansy), fi re fl y, cypridine, bacterial,  Latia , and earthworm 
bioluminiscence ( Z219 ). Comments on a general mechanism were given as well. 
The fi rst author of this paper,  Milton J. Cornier , was born in 1926 in a rural town in 
Northern Louisiana. He recieved a BS degree from the University of Louisiana at 
Lafayette and a MS degree from the University of Texas in Austin. He fi nished his 
PhD at the Oak Ridge National Laboratory in Tennessee.  Cornier  later became 
research professor of biochemistry at the University of Georgia. 

  Lothar Jaenicke  (*1923) and  Dieter G. Müller  (Institute of Biochemistry at the 
University of Cologne) summarized their studies on sirenin, ectocarpene, and dicty-
opterene in “Gametenlockstoffe bei niederen Pfl anzen und Tieren” (“Gamete 
Pheromones in Lower Plants and Animals”) ( Z220 ). 

  Judith Polonsky , working together with  Edgar Lederer  at the Centre National de 
la Recherche Scientifi que, Gif-sur-Yvette gave a comprehensive synopsis of a new 
area of terpenoid chemistry in her paper on “Quassinoid Bitter Principles” ( Z221 ). 
The fi rst structure determination of a bitter substance constituent yielded from the 
plant family Simaroubaceae was performed by  Zdenek S. Valenta  (*1927)  et al.  in 
1961 ( 184 ). 

 In their contribution on “Die Ergochrome” (“The Ergochromes”),  Burchard 
Franck  (*1926) and  Hubert Flasch  from the University of Münster were concerned 
with pigments contained in the permanent mycelium of  Claviceps purpurea , a fi la-
mentous fungus growing on rye ears—the so-called “ergot”  (Z222) . The fi rst pig-
ments of this kind had been isolated as early as 1877 by  G. Dragendorff  and 
 V. Podwyssotski  ( 185 ). Nevertheless, their structures could not be elucidated for 
another 100 years. 

 “The Chemistry of Bifl avonoid Compounds” was a contribution written by 
 Harry D. Locksley  from the University of Salford ( Z223 ). As the author stated, the 
interest in fl avonoids can be traced back to the times of  Robert Boyle . Nevertheless, 
the fi rst bifl avonoid, a bifl avone, was only isolated in 1929 by  S. Furukawa , who 
extracted the autumnal leaves of the maidenhair tree,  Ginkgo biloba  ( 186 ). 

 In the next essay, “Chemie der Makrolid-Antibiotica” (“Chemistry of Macrolide 
Antibiotics”),  Walter Keller-Schierlein  stressed that the structures of many mem-
bers of this class of molecules, which have a high medical impact, and can be deter-
mined through the use of NMR spectroscopy ( Z224 ).  Walter Keller-Schierlein  
(*1922) was titular professor at ETH Zurich from 1968 to 1987. 

 The last contribution to Volume 30 was submitted by  Rudolf Tschesche  and 
 Günter Wulff  from the University of Bonn.  Tschesche  and  Wulff  dealt with “Chemie 
und Biologie der Saponine” (“Chemistry and Biology of Saponins”) ( Z225 ). Their 
contribution discussed mainly the structure elucidation and a correlation between 
the structure and properties of these natural substances, which are characterized by 
their distinctive foaming potential in aqueous solution. In 1979,  Tschesche’ s student 
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 Günter Wulff  was appointed as a full professor at the Heinrich Heine University, 
Düsseldorf. His research interests have included the synthesis of polymers with 
enzyme-analogous properties through imprinting using template molecules.  

5.2.4    Volume 31 

 Volume 31 consisted of ten contributions. The fi rst—“Recent Developments in the 
Chemistry of Penicillins”—originated from the pen of  Donald N. McGregor , 
Research Division, Bristol Laboratory, Syracuse, New York. Developments in peni-
cillin chemistry during the period from 1965 through 1972 were reported, espe-
cially reactions at the β-lactam ring and at the thiazolidine ring ( Z226 ). 

 “The Antibiotic Complex of the Verrucarins and Roridins” was the title of the 
next contribution, written by  Christoph Tamm  in Basel ( Z227 ). Verrucarins and rori-
dins are secondary metabolites of the soil fungi  Myrothecium verrucaria  and  M. 
roridum , which occur parasitically on leaves of tomatoes, violets, kidney beans, and 
other common plants. The fi rst total synthesis of a member of the trichothecane fam-
ily, namely, roridin C, was reported by  Ernest W. Colvin et al.  in 1971 ( 187 ). 

 Sterigmatocystin ( 22 ) was the fi rst of the very dangerous mycotoxins to be iso-
lated and it was also the fi rst to be elucidated structurally by  Y. Hatsuda  and 
 S. Kuyama  in 1954 ( 188 ). This and more information was included in the contribu-
tion “Afl atoxins and Sterigmatocystins” by  John C. Roberts  from the University of 
Nottingham ( Z228 ).
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    In his contribution on “Flavonoid-Glykoside” (“Flavonoid Glycosides”) ( Z229 ), 
 Hildebert Wagner  (*1929) from the Institute of “Pharmazeutische Arzneimit-
tellehre” at the University of Munich, expressed his gratitude for suggested improve-
ments to Professor  Loránd Farkas  in Budapest, a former co-worker of  Gezá 
Zemplén,  who had worked earlier on the structure determination and synthesis of 
fl avonoid glycosides in the late 1960s. 

 The next essay, “Biogenetic-Type Synthesis of Polyketide Metabolites”, had 
three authors:  Thomas H. Harris ,  Constance M. Harris , and  Keith B. Hindley  
( Z230 ). All three were researchers at the Department of Chemistry, Vanderbilt 
University, in Nashville, Tennessee. After  Johann Georg Geuther  (1833–1889) had 
observed the formation of a “dehydroacetic acid” by self-condensation of ethyl 
acetoacetate in 1866 ( 189 ), the chemist and alpinist  John Norman Collie  
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(1859–1942) in 1907 proposed that in this reaction, polymers of ketenes, hence 
“polyketides”, play a key role as intermediates ( 190 ). In 1953,  Arthur John Birch  
(1915–1995) restated  Collie’s  early ideas ( 191 ). In their contribution,  Harris , 
 Harris , and  Hindley  described important preparative routes for linear β-polyketones 
and β-polyketo acids. 

  James A. Marshall  from Northwestern University, Evanston, Illinois,  Stephen 
F. Brady  from Merck Sharp and Dohme Research Laboratories, Rahway, New 
Jersey, and  Niels H. Andersen  from the University of Washington in Seattle gave an 
account of acoranes, alaskanes, and spirovetivanes in their contribution on “The 
Chemistry of Spiro[4.5]decane Sesquiterpenes” ( Z231 ). 

 The following description of the extremely poisonous croton oil was dedicated 
to his  “distinguished teacher in natural product chemistry” ,  Adolf Butenandt , on 
the occasion of his 70th birthday, by  Erich Hecker— one of the authors and the then 
director of the Biochemical Institute of the German Cancer Research Center, 
Heidelberg. The co-author of the paper “Phorbolesters—the Irritants and 
Cocarcinogens of  Croton tiglium  L.” was  Hecker ’s colleague  Rainer Schmidt  
( Z232 ). The study focused on the biologically active esters of the tetracyclic 
 diterpene phorbol ( 23 ).
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     E. Winterfeldt ’s report on the “Stereoselektive Totalsynthese von Indolal-
kaloides” (“Stereoselective Total Synthesis of Indole Alkaloids”) began on page 
469 ( Z233 ).  Ekkehard Winterfeldt  (*1932), professor at the Technical University, 
Hannover, gave an insight into the syntheses of corynantheidine, strychnine, vel-
banamine, and tabersonine. 

 “Structure, Chemistry, and Biosynthesis of the Melanins” was the title of  George 
A. Swan ’s contribution from the University of Durham, Newcastle upon Tyne. It is 
now well recognized that animal melanins can be classifi ed into two major groups: 
the brown-to-black insoluble eumelanins and the yellow-to-reddish-brown phe-
omelanins that are soluble in alkali. Studies carried out by  Swan’ s group at Newcastle 
led to the conclusion that eumelanin is a highly heterogeneous polymer consisting 
of different oxidative states of 5,6-dihydroxyindole and 5,6-dihydroxyindole-2- 
carboxylic acid units ( Z234 ). In this contribution, the reader was confronted with 
the enzymatic nature of melanogenesis, in which allomelanins, eumelanins, 
adenochrome- melanins, dopamine-melanins, and pheomelanis were described. 

 Volume 31 concluded with a contribution by  Gerhard N. Schrauzer : “Mechanisms 
of Corrin Dependent Enzymatic Reactions” ( Z235 ). The author, then a researcher at 
the University of California at San Diego, La Jolla, California, who received his 
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PhD from the University of Munich in 1956, described some of the more important 
properties and reactions of corrins and of vitamin B 12  model compounds. The mech-
anism of a corrin-dependent enzymatic reaction is discussed. The literature covered 
went up to October 1972.  

5.2.5    Volume 32 

  Wolfgang K. Seifert , Senior Research Associate at the Chevron Oil Field Research 
Company in Richmond, California reminded the reader that it was  Alfred Treibs  
(1899–1983) who discovered the occurrence of porphyrins in petroleum in 1936 
(and was the founder of the area of geological biomarkers), in his contribution on 
“Carboxylic Acids in Petroleum and Sediments”. This discovery signaled the bio-
logical origin of petroleum and represented the birth of modern organic geochemis-
try ( Z236 ).  Seifert ’s contribution summarized the progress in elucidating the 
structures of naphthenic acids isolated from petroleum and gave a biogeochemical 
interpretation of the results. 

 In 1888,  Theodor Curtius  (1857–1928) and  Franz Goebel  were the fi rst to pre-
pare 2,5-dioxopiperazine. They named it “Glycinanhydrid” ( 192 ).  Emil Fischer  
synthesized some members of the family of 2,5-dioxopiperazines in the early 1900s. 
 Peter G. Sammes  from the Department of Chemistry at the Imperial College of 
Science and Technology in London mentioned this historical information in the 
introduction of his contribution on “Naturally Occurring 2,5-Dioxopiperazines and 
Related Compounds” ( Z237 ). 

 By the 1970s, NMR investigations already formed part of the standard repertoire 
of methods for structural analysis. “Structural Investigation of Natural Products by 
Newer Methods of NMR Spectroscopy” was the title of a paper written by  Robert 
J. Highet  and  Edward A. Sokoloski  from the National Heart, Lung and Blood 
Institute, NIH, Behesda, Maryland. In their contribution,  Highet  and  Sokoloski  
emphasized that straightforward NMR techniques are the natural product chemist’s 
fi rst tools in the examination of natural materials. They described solvent effects on 
NMR signals,  in situ  reactions, lanthanide-induced shifts, computer-aided interpre-
tation of spectra, the nuclear  Overhauser  effect,  Fourier  transformation techniques, 
and  13 C NMR spectroscopy ( Z238 ).  Robert J. Highet  (1925–2002) was an organic 
chemist who specialized in nuclear magnetic resonance studies of natural products. 
 Highet  was well-known for his skills in interpreting the complex signals using at that 
time a Varian A-60 NMR instrument for a wide variety of natural products ( 193 ). 

 Other spectroscopic techniques were developed further, especially for the identi-
fi cation of optical isomers. In the same volume,  Patricia M. Scopes  from the 
Department of Chemistry at Westfi eld College in London wrote a contribution on the 
“Applications of the Chiroptical Techniques to the Study of Natural Products” ( Z239 ). 

 The penultimate contribution of Volume 32 was that by  Hans Carel van Hummel , 
working at the Katholicke Universiteit, Nijmegen: “Chemistry and Biochemistry of 
Plant Galactolipids” ( Z240 ). At the turn of the twentieth century it was  Ernst 
Winterstein  of the agricultural chemical laboratory at the Polytechnikum Zurich 
who isolated lipid fractions from various plant materials. Following acid hydrolysis 
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of this fraction,  Winterstein  obtained a variety of sugars, including galactose. The 
contribution under discussion summarized the knowledge on synthesis and degra-
dational chemistry of galactolipids as of 1975. The function of galactolipids in the 
photosynthesis of algae and higher plants was discussed. 

 The fi nal contribution of Volume 32 dealt with “Recent Advances in 
Polynucleotide Synthesis”.  Hans Kössel  (1934–1995) and  Hartmut Seliger , both 
from the University of Freiburg/Breisgau, presented a compilation of contributions 
to this fi eld of research between 1970 and 1974, in order to enhance the understand-
ing of gene function ( Z241 ).  

5.2.6    Volume 33 

 Volume 33 (1976) started with a contribution submitted from the Laboratorio per la 
Chimica di Molecole di Interesse Biologica del C.N.R. in Arco Felice, Naples, enti-
tled “Natural Products from Porifera”, which reviewed about 100 unusual compounds 
present in sponges, such as bromo- compounds, specialized terpenes, and sterols. All 
of the authors were members of the group of  Guido Cimino,  the noted Italian 
researcher in the fi eld of marine natural products, namely,  Luigi Minale, Salvatore de 
Stefano, Guido Sodano , and—of course— Guido Cimino  himself ( Z242 ). 

 The following contribution was a quite comprehensive study entitled “Biogenetic- 
type Rearrangements of Terpenes” by  Robert Mercer Coates  (*1938), of the University 
of Illinois. Up to 1970, more than 200 different carbon skeletons of naturally occur-
ring terpenes had been identifi ed  (Z243) . Today, the research group of Emeritus Prof. 
 Coates  at Urbana-Champaign is engaged in the synthesis and investigation of novel 
carbocyclic structures, isotope labeling for the elucidation of stereochemistry, and 
inhibitors of key enzymes in the isoprenoid biosynthesis pathway ( 194 ). 

 The next contribution of Volume 33 on the “Chemistry of Ansamycin Antibiotics” 
was the work of  Kenneth L. Rinehart  (1929–2005) and  Lois S. Shield , who were 
both researchers at the Roger Adams Laboratory of the University of Illinois. 
Ansamycins constitute a class of antibiotics charaterized by an aliphatic bridge link-
ing non-adjacent positions of an aromatic nucleus ( Z244 ). 

 The contribution “The Chemistry of Tryptophan in Peptides and Proteins”, writ-
ten by  Angelo Fontana  and  Claudio Toniola  (Instituto di Chimica Organica 
dell’Università Padova), covered the chemistry of the tryptophan amino acid resi-
due ( Z245 ). A section dealing with techniques used in assessing structural charac-
teristics of tryptophan (UV spectroscopy, circular dichroism, NMR- and X-Ray 
studies) was included. 

 The renowned fl avin expert,  Peter Hemmerich  (1929–1981), who at the time was 
lecturing at the University of Konstanz, provided an essay on “The Present Status of 
Flavin and Flavocoenzyme Chemistry”. As the author stated, the “heroic period” of 
enzymology ended with  Hugo Theorell ’s description of the fi rst enzyme to be split 
reversibly to yield coenzyme and apoprotein in 1934. The structure of this particular 
coenzyme was later shown to be rivofl avin-5′-phosphate. The two aims of 
 Hemmerich’ s contribution were the interpretation of the fl avoprotein manifold and 
the closure of the gap between chemistry and enzymology ( Z246 ).  
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5.2.7    Volume 34 

 Volume 34 was published in 1977.  Curt R. Enzell, Inger Wahlberg,  and  Arne 
J. Aasen , from the Swedish Tobacco Company in Stockholm, were responsible for 
its fi rst contribution on “Isoprenoids and Alkaloids of Tobacco”. The authors 
emphasized that the processing of tobacco leaves after harvest is of vital importance 
to the fi nal product. The substituents are subjected to various reactions. This was 
shown by quite different gas chromatograms of volatile fractions derived from 
mature freeze-dried tobacco on the one hand and from tobacco aged for 24 months 
on the other ( Z247 ). 

 In the contribution by  Albert Reginald Pinder , professor at Clemson University 
in South Carolina, entitled “The Chemistry of the Eremophilane and Related 
Sesquiterpenes” ( Z248 ), the reader was introduced to sesquiterpenes related to ere-
mophilane ( 24 ), which do not conform structurally to the isoprene rule fi rst pro-
posed in 1887 by  Otto Wallach  (1847–1931). The fi rst members of this group 
of compounds were discovered in 1932 by  Alan Edwin Bradfi eld  (1897–1953) , 
Arthur Ramon Penfold  (1890–1980), and  John Lionell Simonsen  (1884–1957). 
 Bradfi eld  and  Simonsen  were members of the University College of North Wales, 
Bangor ( 195 ), whereas  Penfold  was the director of the Technological Museum in 
Sydney ( 196 ).
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    The next contribution was provided by  Dieter Gross , an author we know already, 
and is entitled “Phytoalexine und verwandte Pfl anzenstoffe” (“Phytoalexins and 
Related Phytochemical Substances”). It commented on endogenous plant-derived 
substances exhibiting fungitoxic activity ( Z249 ). 

  Karl H. Overton  (1925–2009) and  Douglas J. Picken  from the Department of 
Chemistry at the University of Glasgow opened their contribution entitled “Studies 
in Secondary Metabolism with Plant Tissue Cultures” with the statement that the 
fi rst successful experiments of culturing plant cells  in vitro  were conducted in 1939 
( Z250 ).  Overton  and  Picken  gave a brief outline of the basic techniques and then 
focused on the biosyntheses of polyisoprenoids, polyketides, aromatic plant con-
stituents, and alkaloids.  Karl Overton  was born in Vienna as  Karl Oberweger  and 
came to the UK as one of thousands of Jewish child refugees in 1939—just before 
war broke out. He entered London University in 1944, where he graduated fi rst in 
pharmacy and subsequently in chemistry. In 1973, he was appointed to a personal 
chair of organic chemistry at Glasgow University ( 197 ). 

 Carbazole was discovered and identifi ed in coal tar by  Carl Graebe  (1841–1927) 
and  Carl Glaser  (1841–1935) in 1872, but was completely unknown as a plant 
product until the discovery of ulein and olivacine ( 25 ) by  J. Schmutz  and co-workers 
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in 1957 ( 198 ). In “Carbazole Alkaloids”, by  D. P. Chakraborty  from the Bose 
Institute, Calcutta, methods of structure elucidation and the synthesis of numerous 
compounds of this group were discussed in great detail ( Z251 ).
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    In the penultimate contribution of Volume 34,  Jürgen Jacob  from the Biochemical 
Institute of Environmental Carcinogens at Ahrensburg/Holstein wrote on 
“Bürzeldrüsenlipide” (“Uropygial Gland Lipids”). Thanks to the combination of 
gas chromatography and mass spectrometry (GC-MS), the structure determination 
of isomeric fatty acids and alcohol composites occurring in the uropygial glands of 
birds became possible ( Z252 ). 

  Wolfgang Voelter  (*1936) from the Eberhard-Karls-Universität, Tübingen, 
who became known mainly due to his elucidation of the structures of mistletoe 
constituents, dedicated his contribution on “Hypothalamus-Rezeptorhormone” 
(“Hypothalamus Receptor”) to the structure determination, synthesis and deriva-
tives of thyrotropin-releasing hormone (TRH) as well as luteinizing (LH) and 
follicle- stimulating hormones (FSH), which are regulated by the gonadotropin- 
releasing hormone (GRH)  (Z253) . It was  Andrzej (Andrew) Wiktor Schally  (*1926) 
in 1966, who was the fi rst to isolate a hormone belonging to this group.  

5.2.8    Volume 35 

 In his contribution entitled “Neolignans”,  Otto R. Gottlieb  from the University of 
São Paulo stated that neolignans represent a rapidly expanding domain of natural 
product chemistry with no delimitations yet in sight ( Z254 ). For  Gottlieb ’s biogra-
phy, see Volume 20. 

  Karl Herrmann , then holding the chair of food chemistry at the TU Hannover, 
gave an overview on esters of acids such as coumaric acid, caffeic acid, ferulic acid, 
salicylic acid, resorcylic acid, gallic acid and syringic acid in his contribution 
“Hydroxyzimtsäuren und Hydroxybenzoesäuren enthaltende Naturstoffe in 
Pfl anzen” (“Hydroxycinnamic and Hydroxybenzoic Acids-Containing Natural 
Plant Products”) ( Z255 ). 

 The third contribution to Volume 35 was written by  Gerald Pattenden  and uncov-
ered “Natural 4-Ylidenebutenolides and 4-Ylidenetetronic Acids” ( Z256 ). It 
refl ected, in particular, on the distribution of 4-ylidenebutenoids and 4- ylidenetetronic 
acids ( 26 ) . Gerald Pattenden  was the  Sir Jesse Boot  Professor of Organic Chemistry 
at the University of Nottingham.
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   26 (4-ylidenetetronic acids)
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     Robert D. H. Murray  from the Department of Chemistry of the University of 
Glasgow dedicated his treatment of “Naturally Occurring Plant Coumarins” to the 
nomenclature, isolation, identifi cation, synthesis and biosynthesis of about 520 cou-
marins ( Z257 ). In 1820,  Heinrich August Vogel  was the fi rst to isolate the parent 
oxygen heterocycle, coumarin ( 27 ), from  Coumarouna odorata  ( 199 ). Coumarin is 
the compound responsible for the specifi c smell of fresh hay and dried woodruff.
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    The author of the last contribution of this volume is  Günther Ohloff , of Firmenich 
Research Laboratories, Geneva. He discussed “Recent Developments in the Fields 
of Naturally Occurring Aroma Components” ( Z258 ). A short biographical informa-
tion on  G. Ohloff  can be found in the description of Volume 36 (below).  

5.2.9    Volume 36 

 In “The Use of Carbon-13 Nuclear Magnetic Resonance Spectroscopy in Natural 
Products Chemistry”,  Felix Werner Wehrli  (Varian AG, NMR Applications 
Laboratory, Zug, Switzerland) and  Toshiaki Nishida  (Swedish Tobacco Company 
Research Department, Stockholm) referred to a contribution of  Highet  and  Sokoloski  
in Volume 32 and considered more recent literature published between 1974 and 
1977 ( Z259 ). Today,  Wehrli  is professor of radiology at the Medical Center of the 
University of Pennsylvania in Philadelphia. 

 The pyranone derivative maltol ( 28 ), which is characterized by its caramel-like 
smell, was discovered in 1894 by  J. Brand  at the Chemical Laboratory of the 
Scientifi c Station for Brewery in Munich as one of the characteristic key compounds 
in malt ( 200 ). Maltol is an example of an organic compound that contains a hetero-
atom, and is distributed widely among aroma compounds. In their contribution 
“The Role of Heteroatomic Substances in the Aroma Compounds of Foodstuffs”, 
 Günther Ohloff  (1924–2005) and  Ivon Flament  restricted themselves to the descrip-
tion of aroma compounds resulting from thermal degradation of higher molecular 
weight precursors. Thus, the 310 volatile compounds identifi ed in cocoa by 1975 
comprised 60 nitrogen-containing derivatives belonging to six different heterocy-
clic systems ( Z260 ).  Ohloff  and  Flament  were working at the Firmenich SA, 
Research Laboratories, Geneva, where  Ohloff  had taken over the process research 
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group leadership in 1962. He was then one of the leading scientists in the fi eld of the 
systematic investigation of the structure and activity of odorant substances. His 
opus “ Riechstoffe und Geruchssinn. Die molekulare Welt der Düfte ” (published in 
1990; the English edition “ Scent and Fragrances: The Fascination of Odors and 
Their Chemical Perspectives”  was published in 1994) is considered the standard 
reference in odorant chemistry. His co-author  Ivon Flament  became known through 
her books on coffee fl avor chemistry ( 201 ).
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    Cembranes, a new group of diterpenes, were described for the fi rst time in 1962. 
 Alfred J. Weinheimer  and  James A. Matson  from the Department of Medicinal 
Chemistry and Pharmacognosy at the University of Houston as well as  Clifford W. J. 
Chang  from the Faculty of Chemistry at the University of West Florida (UWF), 
Pensacola, were the authors of “Naturally Occurring Cembranes” ( Z261 ).  Chang  
served at the UWF Chemistry Department from 1968 to 2003. In particular, he con-
ducted research on marine natural products.  

5.2.10    Volume 37 

 “Insect Pheromones: A Critical Review of Recent Advances in Their Chemistry, 
Biology, and Application” was the fi rst contribution of Volume 37, which was pub-
lished in 1979 ( Z262 ). The three authors involved worked at three different institu-
tions.  John M. Brand  was a member of the Biochemistry Department at the 
University of Fort Hare in Alice, South Africa,  J. Chr. Young  was employed at the 
Chemistry and Biology Research Institute of the Canadian Department of 
Agriculture in Ottawa, and  Robert M. Silverstein  was a faculty member at the 
Department of Chemistry, College of Environmental Science and Forestry, State 
University of New York, Syracuse. At the time of writing this contribution, about 
10,000 scientifi c papers had been published on insect chemistry. One area of insect 
chemistry covers molecules that serve as messenger substances, the so-called “pher-
omones”, the fi rst of which was detected by  Adolf Butenandt  in 1959 ( 202 ). In order 
to isolate bombykol, the silk moth ( Bombyx mori ) pheromone,  Butenandt  used 
about 500,000 insects. 

 “The Structural Polymers of the Primary Cell Walls of Dicots” by  Michael 
McNeil, Alan G. Darvill , and  Peter Albersheim  from the Department of Chemistry, 
University of Colorado, Boulder, was the second contribution of Volume 37 
( Z263 ). Today,  Peter Albersheim  (*1934), who earned his PhD at CalTech in 1959, 
is an internationally renowned scientist in the structure and interaction of mole-
cules involved in growth control, reproduction and disease resistance in plants. 
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 Peter Albersheim  and  Alan Darvill  co-founded the Complex Carbohydrate 
Research Center at the University of Georgia, Athens, in 1985 ( 203 ). 

 “Dehydroamino Acids, α-Hydroxy-α-amino Acids, and α-Mercapto-α-amino 
Acids”, written by  Ulrich Schmidt ,  Johannes Häusler ,  Elisabeth Öhler , and  Hans 
Poisel  from the Institute of Organic Chemistry at the University of Vienna, was the 
fi nal contribution of Volume 37 ( Z264 ).  Ulrich Schmidt  (1924–2004) was one of the 
leading peptide chemists of his time. He was born in Woldenburg in the district of 
Friedeberg (Neumark)—which is today Dobiegniew in Poland—in 1924. Following 
State Labor Service, and serving in the Wehrmacht army and then war imprison-
ment, he started his chemistry studies in Greifswald in 1946. He came to Freiburg 
 via  Halle, and was promoted from lecturer to extracurricular professor in 1964. At 
that time, his main research fi eld was the chemistry of sulfur and phosphorus com-
pounds. From the mid-1970s,  Schmidt  turned to the fi eld of amino acids, and, in 
1967, he became full professor at the University of Vienna. In 1977, he accepted the 
Chair of Organic Chemistry, Biochemistry, and Isotope Research at the University 
of Stuttgart.  Schmidt’ s development of new synthesis methods for complex cyclo-
peptides has been recognized internationally. In their contribution,  Schmidt  and his 
Austrian co-authors focused the attention of the reader to the fact that in the 1970s, 
numerous α,β-dehydroamino acids had been identifi ed as constituents of fungal 
metabolites. It was recognized that some of these, such as ostreogrycin, griseoviri-
din, telomycin, and thiostreptone, are active against  Gram -positive bacteria.  

5.2.11    Volume 38 

 Volume 38 was comprised of only two contributions. The shorter one was written 
by  Richard W. Franck  (*1936), professor at Fordham University, Bronx, New York, 
on “The Mitomycin Antibiotics” ( Z265 ). Mitomycins were obtained for the fi rst 
time in 1956 from  Streptomyces caespitosus  by  Toju Hata  and co-workers ( 204 ) 
from Kitasato University, Tokyo. 

 The other, much longer contribution, “The Biogenesis and Chemistry of 
Sesquiterpene Lactones”, was submitted by  Nikolaus H. Fischer (*1936), Errol 
Joseph Olivier,  and  H. D. Fischer  from Louisiana State University, Baton Rouge. 
The major goal of this contribution was to present all known naturally occurring 
sesquiterpene lactones and their distribution in the plant kingdom. At the end of 
1977, no less than 980 compounds of this kind were known ( Z266 ). A list of hitherto 
unidentifi ed sesquiterpene lactones at the end of the contribution proved to be a use-
ful guide for chemists facing related structural problems ( 205 ).   

5.3     Volumes 39–88: A New Design 

 Starting from Volume 39, the Series was delivered in a characteristic light green 
cover, which made it quite easy to spot in any science library. 
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5.3.1    Volume 39 

 The fi rst contribution of Volume 39 (which appeared in 1980) was entitled “Carbohydrate 
Derivatives in the Asymmetric Synthesis of Natural Products” ( Z267 ). The very fi rst 
enantioselective synthesis was described by  Willy Marckwald  (1864–1942) in 1904 
( 206 ). The 1970s saw an intensifi ed effort to develop such syntheses. The authors of 
this contribution on asymmetric synthesis were  Bertram Fraser-Reid  (*1934) and  Roy 
Clayton Anderson  (1926–2001), from the Guelph-Waterloo Centre for Graduate Work 
in Chemistry at the University of Waterloo, Ontario. 

  Howard Jones , then director of medical chemistry at the USV Pharmaceutical 
Corporation in Tuckahoe, New York and  Gary H. Rasmusson , at that time senior 
research fellow in synthesis chemical research at the Merck Sharp and Dohme 
Therapeutic Research Laboratories, Rahway, New Jersey were the authors of 
“Recent Advances in the Biology and Chemistry of Vitamin D” ( Z268 ). It was 
 Theobald Adrian Palm  (1848–1928) who in 1890 determined that sunlight is the 
critical factor determining the geographical distribution of the disease rickets 
(rachitis) ( 207 ). In 1919,  Edward Mellanby  (1884–1955) reported the presence of an 
antirachitic factor in cod liver oil. Subsequently, in 1932,  Adolf Windaus  (1879–
1959) and  Frederic Anderton Askew  isolated independently pure crystalline vitamin 
D ( 208 ). Six years later, synthesis work on vitamin D culminated in the photo-
chemical synthesis of vitamin D 3 , simultaneously by  Basil Lythgoe  in England and 
 Hans Herloff Inhoffen  in Germany. The decade from 1970 to 1980 saw a startling 
advance in understanding the biochemical mechanisms of action of vitamin D. In 
their contribution,  Jones  and  Rasmusson  focused primarily on biochemical 
aspects,  e.g.  photolytic and thermal conversions of vitamin D isomers. 

 The contribution “Stereochemistry of Naturally Occurring Carotenoids”, by 
 Synnøve Liaaen-Jensen  (*1932), of the Organic Chemistry Laboratories at the 
Norwegian Institute of Technology at the University of Trondheim was related to 
the work of  Zechmeister  in 1960 concerning geometrical diastereomerism ( Z269 ). 
From 1971 to 1980, 150 new carotenoids were described, whereas the number of 
references almost tripled. 

 The concluding contribution of Volume 39 was an account of “Chemistry and 
Biochemistry of γ-Glutamyl Derivatives from Plants Including Mushrooms 
(Basidiomycetes)” by  Takanori Kasai  from the Department of Agricultural 
Chemistry at Hokkaido University in Sapporo and  Peder Olesen Larsen  from the 
Royal Veterinary and Agricultural University, Copenhagen ( Z270 ).  

5.3.2    Volume 40 

 Volume 40 brought about an encounter with an old acquaintance:  Edgar Lederer , 
who in the interim had become professor emeritus at the Université Paris Sud. 
Together with  Pierre Lefrancier  from the Institut Choay, Montrouge,  Lederer  pro-
vided the contribution “Chemistry of Synthetic Immunomodulant Muramyl 
Peptides” ( Z271 ). 
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 What followed was a contribution by  Sukh Dev  (*1923) entitled “The Chemistry 
of Longifolene and Its Derivatives” ( Z272 ). Professor  Dev’s  research interests cov-
ered a broad range of topics in the fi eld of natural product chemistry—from non- 
benzenoid hydrocarbons, organic reactions, reagents and techniques, and drug 
development from Ayurvedic leads, to technology development ( 209 ). 

  Werner Heller’s  and  Christoph Tamm’s  next paper discussed “Homoisofl avanones 
and Biogenetically Related Compounds” ( Z273 ). Since 1986,  Werner Heller  has 
been head of a research group focusing on secondary metabolites at the Institute of 
Biochemical Plant Pathology of the Helmholtz Zentrum Munich. 

  Raymond G. Cooke’s  and  J. Michael Edwards ’ text on “Naturally Occurring 
Phenalenones and Related Compounds” ( Z274 ) was the penultimate contribution of 
Volume 40.  Michael Edwards  held a faculty position at the School of Pharmacy of 
the University of Connecticut. During sabbaticals at the Universities of Surrey, 
Cape Town and Western Australia he studied the occurrence and biosynthesis of 
unusual phenalenone pigments in the plant family Haemodoraceae ( 210 ). Nowadays, 
the substance phenalenone is considered to be a useful reference compound for the 
determination of quantum yields of singlet oxygen sensitization ( 211 ). 

 Exciting reading is guaranteed for  Charles W. Jefford’s  and  Peter A. Cadby’s  
contribution entitled “Molecular Mechanisms of Enzyme-Catalysed Dioxygenation” 
( Z275 ). The subtitle read “An Interdisciplinary Review”. In this paper, arguments of 
the MO-theory were used to understand fundamental chemical processes. From a 
thermodynamic point of view, it might seem strange that there should be a need for 
enzymes to catalyze reactions where oxygen is introduced into an organic substrate. 
As a matter of fact, most organic molecules are stable kinetically to uncatalyzed 
oxygenation. The reason lies in the spin restriction in the reaction of a ground-state 
organic molecule (normally in the singlet state) with ground-state molecular oxygen 
(in the triplet state). The authors, who worked at the University of Geneva, exam-
ined the prerequisites for oxygen activation by metal proteins.  

5.3.3    Volume 41 

 In Volume 41,  E. Haslam  set out to explain “The Metabolism of Gallic Acid and 
Hexahydroxydiphenic Acid in Higher Plants” ( Z276 ).  Edwin Haslam  (1932–2013) 
was formerly Professor, Department of Chemistry, University of Sheffi eld. Based 
on earlier proposals, he advocated a comprehensive defi nition of plant polyphe-
nols, which included specifi c structural characteristics common to all phenolics 
exhibiting tanning properties, referred to as the  White-Bate-Smith-Swain-Haslam  
(WBSSH) defi nition ( 212 ). 

 The contribution on “Streptonigrin“by  Steven J. Gould  and  Steven M. Weinreb  
covered the chemistry of an important cytotoxic antibiotic obtained from 
 Streptomyces fl occulus  ( Z277 ).  Steven J. Gould  was then a professor at Oregon State 
University, Corvallis. In 1981, his co-author  Steven M. Weinreb  (*1941) succeeded 
in performing the total synthesis of streptonigrin ( 213 ), a compound showing pro-
nounced anticancer activity.  Weinreb  became known for the  Weinreb  ketone synthe-
sis, which enables mono-addition of an organometallic reagent to an amide. 
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  David J. Robins  from the Department of Chemistry, University of Glasgow 
 published a contribution entitled “The Pyrrolizidine Alkaloids” ( Z278 ).  Robins  was 
appointed lecturer at the University of Glasgow in 1974, promoted to professor of 
bioorganic chemistry in 1990, and elected Fellow of the Royal Society of Edinburgh 
in 1994. 

 The fi nal contribution of Volume 41 is perhaps the most interesting. It informed 
the reader of the “Alkaloids of Neotropical Poison Frogs ( Dendrobatidae )”, and was 
written by  John William Daly  (1933–2008), from the Laboratory of Bioorganic 
Chemistry at the National Institute of Arthritis, Diabetes, and Digestive and Kidney 
Diseases, National Institutes of Health, Bethesda, Maryland ( Z279 ).  Daly  was con-
sidered the world authority in amphibian alkaloids ( 214 ). As a matter of fact, indig-
enous peoples of the rain forest of Western Colombia used secretions of certain 
brightly colored frogs to poison blow darts in pre-colonial times. A thorough inves-
tigation of the active principles of such poison dart frogs was not initiated until 
1961. The structures of members of the fi rst dendrobatid alkaloid class were pub-
lished in 1968.  Daly  reported on the structures, synthesis, and biological activity of 
the batrachotoxins, pumiliotoxins, histrionicotoxins, and gephyrotoxins.  

5.3.4    Volume 42 

 The fi rst contribution of Volume 42 (1982) comprised almost 300 pages.  Yoshinori 
Asakawa  (*1941), head of the Institute of Pharmacognosy at Tokushima Bunri 
University, Tokushima, Japan, reviewed “Chemical Constituents of Hepaticae” 
( Z280 ). This contribution represented a summary of research on all known terpe-
noids and aromatic compounds occurring in liverworts until 1982. As early as 1905, 
some non-polar constituents found in these lower plants had been found to be ses-
quiterpenoids, but the chemical constituents were not further investigated until 
1965. From 1978 to 1981, no less than 121 papers on the chemistry of Hepaticae 
were published.  Asakawa  focused on biologically active compounds and 
chemosystematics. 

 The second paper of Volume 42, “Cross Reactions of Plant Polysaccharides in 
Antipneumococcal and Other Antisera” ( Z281 ), by  Michael Heidelberger,  New York 
University Medical Center, School of Medicine, New York, provided an update of 
the author’s earlier contribution to Volume 18 of this book series.  

5.3.5    Volume 43 

 The fi rst contribution of Volume 43, “Naturally Occurring Isofl avonoids (1855–1981)”, 
by  John L. Ingham , from the Department of Botany at the Plant Science Laboratory of 
the University of Reading, was concerned mainly with the structures, sources, and 
biological properties of natural products containing a 1,2- diphenylpropane unit ( Z282 ). 
Their discovery dates back to 1855, when  Heinrich Hlasiwetz  (1825–1875) reported 
the extraction of formononetin (the aglycone of ononin) from roots of the thorny 
 restharrow  Onosis spinosa  ( 215 ). Ononin is regarded as the very fi rst isofl avonoid to 
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have been discovered. Although  Hlasiwetz  demonstrated elegantly the glucosidic 
nature of this substance, its structure elucidation was a task only accomplished in 
1933 by  Fritz Wessely  (1897–1967) in Vienna ( 216 ).  Gezá Zemplén  synthesized 
ononin successfully in 1944 ( 217 ).  Ingham  listed the structures, molecular weights, 
formulas, trivial names, and sources of 644 isofl avonoids that had been described 
by December, 1981. 

 Volume 43 concluded with a contribution by  Ari Koskinen  (*1956) and  Mauri 
Lounasmaa  (*1933) from the Laboratory of Organic Chemistry at the Technical 
University of Helsinki, entitled “The Sarpagine-Ajmaline Group of Indole 
Alkaloids” ( Z283 ). The fi rst indole alkaloid, strychnine, was isolated by  Pierre 
Joseph Pelletier  (1788–1842) and  Joseph Bienaimé Caventou  (1795–1877) in 1818 
from plants of the genus  Strychnos. Robert B. Woodward  (1917–1979) succeeded in 
performing the fi rst synthesis of strychnine in 1954 ( 218 ). Ajmaline was isolated for 
the fi rst time by  Salimuzzaman Siddiqui  (1897–1994) in 1931 from the roots of 
 Rauwolfi a serpentina . It was named after  Hakim Ajmal Khan  (1863–1927), an 
Indian physician. The total synthesis of ajmaline was performed by  Satoru 
Masamune  (1928–2003) and co-workers at the Massachusetts Institute of 
Technology (MIT) in 1967 ( 219 ).  

5.3.6    Volume 44 

 “Pro-Infl ammatory, Tumour-Promoting and Anti-Tumour Diterpenes of the Plant 
Families Euphorbiaceae and Thymelaeaceae” was the title of the fi rst contribution 
of Volume 44, published in 1983. In their historical introduction,  Fred J. Evans  
(1943–2007) and  S. E. Taylor  from the Department of Pharmacognosy, School of 
Pharmacy at the University of London, reminded the reader that the isolation and 
fi rst structure elucidation of the tumor-promoting phorbol-12,13-diesters occurred 
from the seed oil of  Croton tiglium  by  Erich Hecker  in 1968 ( Z284 ). These pure 
diterpene esters have been instrumental in gaining a better understanding the carci-
nogenesis and infl ammatory processes. 

 The next contribution by  Albert Mondon  (1911–1991) and  Bernd Epe  (*1950) 
from the Institute of Organic Chemistry at Kiel University dealt with “Bitter 
Principles of Cneoraceae” ( Z285 ). The Cneoraceae is a Mediterranean relict shrub 
family rich in polyphenols. 

  Mondon  and  Epe  were followed by a contribution on “Chemical and Biological 
Aspects of Marine Monoterpenes” ( Z286 ). The authors of the latter,  Steve Naylor, 
F. Joe Hanke,  and  Phillip Crews  from the Thimann Laboratories and Center of 
Coastal Marine Studies at the University of California, Santa Cruz, dedicated their 
work to Professor  Paul Scheuer  (1915–2003) from the University of Hawaii, who, 
as mentioned earlier, was a distinguished pioneer in the fi eld of marine natural prod-
ucts chemistry. Marine monoterpenes remained unobserved until 1955, when 
 Teruhisa Katayama  reported seven monoterpenes as constituents of the green alga 
 Ulva pertusa . Within a decade (1973–1983), over a hundred monoterpenes of this 
sort were published. The contribution of 1983 considered important chemical and 
biological aspects of this specifi c terpenoid class. 
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 The last contribution to Volume 44 was by  John Grant Buchanan  (1926–2012) 
from the Department of Chemistry at Heriot-Watt University, Edinburgh, entitled 
“The C-Nucleoside Antibiotics” ( Z287 ). Since 1960, a number of nucleosides in 
which a carbohydrate unit is linked to a heterocyclic base had been discovered in 
microorganisms. Some of these exhibit antibiotic properties.  Buchanan’s  contribu-
tion mentioned showdomycin, formycin, pyrazofurin, oxazinomycin, and esomycin.  

5.3.7    Volume 45 

 When it came to Volume 45 (1984), the reader was confronted initially with the 
chemistry of limonoids. Research on limonoid chemistry of the Mahogany family 
(Meliaceae) began in 1960 with the isolation of gedunin from the West African 
timber tree  Entandrophragma angolense.  As shown quite recently, the tetranortrit-
erpenoid gedunin manifests potential anticancer activity ( 220 ). In his contribution 
of 1984,  David A. H. Taylor  from the Department of Pure and Applied Chemistry at 
the University of Natal in South Africa listed 280 compounds. Several of these 
occur in esterifi ed form in different species ( Z288 ). 

 “Recent Progress in the Chemistry of Lichen Substrates” by  John Alan Elix  
(*1941), and  Andrew A. Whitton  from the University of Canberra, and  Melvyn 
V. Sargent  from the University of Western Australia, represented another contribu-
tion to lichen chemistry. The authors pointed out that thin-layer chromatography 
(TLC) and high-performance liquid chromatography (HPLC) have proven rapid 
and effi cient methods for the detection and purifi cation of lichen substances. More 
sophisticated techniques of  13 C- and  1 H-NMR spectroscopy facilitated structural 
studies tremendously. The development of lichen metabolite chemistry was dis-
cussed in detail ( Z289 ). 

 Paralytic shellfi sh may contain toxins responsible for acute and often fatal poi-
soning caused by their consumption. Saxitoxin was the fi rst toxin of this sort to be 
obtained in its pure form in 1957 by  Edward J. Schantz  (1908–2005) and co- workers 
( 221 ). In his essay on “Paralytic Shellfi sh Poisons”,  Yuzuru Shimizu  from the 
Department of Pharmacognosy and Environment Health Science at the University 
of Rhode Island in Kingston stressed that shellfi sh toxins are of particular impor-
tance as pharmacological tools because of their unique effect on sodium channels 
involved in membrane excitation ( Z290 ).  

5.3.8    Volume 46 

 The presence of saponins in ginseng was reported as early as 1854 by  Samuel 
S. Garrigues  (1828–1889) ( 222 ). Since the beginning of the twentieth century, 
a number of Japanese, European, and Korean chemists have been engaged in 
the isolation and structure elucidation of ginseng saponins, including  Yasuhiko 
Asahina  (1880–1975),  Munio Kotake  (1894–1976), and  Theodor Wagner-Jauregg  
(1903–1992), the son of  Nobel  laureate  Julius Wagner von Jauregg . However, 
even the basic skeleton of the major sapogenin was not characterized until 1960. 
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In Volume 46,  Osamu Tanaka  (1926–2002) and  Ryoji Kasai , from the Institute of 
Pharmaceutical Sciences at Hiroshima University School of Medicine summarized 
all of the relevant structural information at the time of publication in their contribu-
tion entitled “Saponins of Ginseng and Related Plants” ( Z291 ). 

 Another contribution, “Diterpenoids of  Rabdosia  Species”  (Z292) , was co- 
authored by  Eiichi Fujita  (1922–2011) and  Manabu Node  (*1945) from the Institute 
for Chemical Research of the University of Kyoto. In Japan, the leaves of  Rabdosia 
japonica  and  R. trichocarpa  have been used in traditional medicine for gastrointes-
tinal disorders for centuries. Also in China, some  Rabdosia  species growing in 
mountainous regions have folkloric use as antitumor and antiphlogistic remedies. In 
1964, research on the structure of  enmei,  one of the major  Rabdosia  constituents, 
came to a successful conclusion. By 1984, no less than 108 different diterpenoid 
constituents from from  Rabdosia  species had been isolated and characterized. 

 Volume 46 was concluded by an overview of “The Quinazoline Alkaloids” by 
 Siegfried Johne  ( Z293 ).  Johne  was then a member of the Institute of Plant 
Biochemistry at the GDR Academy of Sciences in Halle/Saale. The fi rst known 
quinazoline alkaloid was vasicine (peganine), isolated from  Adhatoda vasica  by 
 David Hooper  (1858–1947) in 1888 ( 223 ). For centuries, this plant was used in 
Indian indigenous medicine. Research on the antimalarial activity of the alkaloid 
febrifugine isolated in 1946 through 1948 and structurally characterized in 1950 
( 224 ), provided a stimulus for the synthesis and biological screening of a large num-
ber of quinazoline derivatives.  

5.3.9    Volume 47 

 In 1985, Volume 47 of the Series was published. In the introduction of their paper 
on “Naturally Occurring β-Lactams”,  Robert Southgate  and  S. Elson  from the 
Beecham Pharmaceuticals Research Division in Betchworth, Surrey, U.K. pointed 
out that from the discovery of penicillin in 1928 until 1970, β-lactam research was 
concerned mainly with the penicillin and cephalosporin compound groups ( Z294 ). 
Since then, research in this fi eld had expanded widely—with several highlights 
described such as the discovery of various new natural β-lactam structures including 
the cephamycins (1971), norcardicins (1976), carbapenems (1977), and mono-
bactams (1981). 

 In “New Techniques for the Mass Spectrometry of Natural Products”,  Ian Howe  
and  Michael Jarman  emphasized that mass spectrometry had provided a unique 
combination of selectivity and sensitivity ( Z295 ), but could be even more powerful 
when used in combination with spectroscopic (NMR, UV, IR) and chromatographic 
methods (HPLC, GC, TLC). At that time,  Howe  and  Jarman  were members of the 
Drug Metabolism Team of the Cancer Research Campaign Laboratory at the Cancer 
Research Institute in Sutton, Surrey, United Kingdom. 

 “Chemical Syntheses of the Trichothecenes” by  Patrick G. McDougal,  represent-
ing the Department of Chemistry, Georgia Institute of Technology, Atlanta and 
 Norman R. Schmuff , from the Laboratory of Chemistry at the National Heart and 
Lung Institute, NIH, Bethesda, Maryland ( Z296 ) offered a recapitulation of progress 
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achieved within a specialized branch of mycotoxin research. Trichothecenes repre-
sent a group of closely related sesquiterpenoids produced by various species of 
imperfect fungi. The fi rst compounds of this class were discovered during an exten-
sive search for new antibiotics at the laboratories of the Imperial Chemical Industries 
in 1946 ( 225 ). From 1976 to 1982,  Schmuff  and  McDougal  were both members of 
the research group of  Barry Trost  at Stanford University. 

 As the title suggests,  Judith Polonsky’ s contribution “Quassinoid Bitter Principles 
II” ( Z297 ) was an extension of her chapter on the same subject published in Volume 
30. Interest in these terpenoids had increased enormously by then—due in part to 
the fi nding in the early 1970s that some of these compounds display antileukemic 
activity.  

5.3.10    Volume 48 

 As the authors of the fi rst contribution of Volume 48,  Pieter S. Steyn  (*1940) and 
 Robert Vleggaar  (*1945), from the Council for Scientifi c and Industrial Research in 
Pretoria, South Africa, reported on “Tremorgenic Mycotoxins” ( Z298 ). Tremorgenic 
mycotoxins induce neurological symptoms ranging from mental confusion to trem-
ors, seizures, and death ( 226 ). This contribution was devoted solely to the chemistry 
and some biological properties of tremorgens produced by certain species of 
 Aspergillus, Claviceps , and  Penicillium . 

 The second contribution of Volume 48 was written by  R. E. Moore  and con-
cerned with the elucidation of the “Structure of Palytoxin” ( Z299 ). The marine 
organism producing palytoxin,  Palythoa toxica , had an ancient tradition of use as an 
arrow poison by certain indigenous people in Hawaii.  Richard Elliott Moore  (1933–
2007) and his group from the University of Hawaii performed the detailed structure 
elucidation of this complex neurotoxic compound. 

 Concluding Volume 48,  Phillip Crews  and  Steve Naylor  wrote a contribution 
entitled “Sesterterpenes: an Emerging Group of Metabolites from Marine and 
Terrestrial Organisms” ( Z300 ). Sesterterpenes are a relatively large group of C 25  
isoprenoid compounds found in plants, marine organisms, and vertebrates. Today, 
 Phillip Crews  is Distinguished Professor at the University of California, Santa Cruz. 
 Steve Naylor’s  home university is the University of Cambridge. When writing this 
very contribution, both authors were working at the Tiemann Laboratories and 
Centre for Costal Marine Studies, University of California, Santa Cruz.  

5.3.11    Volume 49 

 Isocoumarins ( 29 ) are compounds isomeric with coumarins. Some of these— e.g.  
hydrangenol, phylloducin, and chebulic acid—are found in plants ( 227 ): hydran-
genol and phylloducin in  Hydrangea macrophylla , chebulic acid in  Terminalia che-
bula .  Robert A. Hill  summarized recent fi ndings concerning this compound class in 
“Naturally Occurring Isocoumarins” ( Z301 ). Today,  Bob Hill  is head of teaching at 
the Chemistry Department of the University of Glasgow.
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    In their contribution on “Anthraquinones in the Rubiaceae” ( Z302 )  Rommert 
Wijnsma  and  Robert Verpoorte  (Centre for Bio-Pharmaceutical Sciences, Gorleus 
Laboratories, Leiden University) listed the anthraquinone content of ten  Morinda  
species that had been investigated at the time the chapter was written. About 90% of 
these compounds occur as derivatives of 9,10-anthracenedione (= 9,10-anthraquinone 
( 30 ) with several hydroxy and other functional groups, such as methyl, hydroxymethyl, 
and carboxyl residues. Between 1971 and 1978, about 50 new anthraquinones were 
isolated from Rubiaceae species.

   30 (9,10-anthracenedione)
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     Hans Christoph Krebs  from the Chemical Institute at the University of Veterinary 
Medicine in Hannover reported on “Recent Development in the Fields of Marine 
Natural Products with Emphasis on Biologically Active Compounds” ( Z303 ). For 
quite some time, the diversity of microbes in the marine environment and their 
capacity to produce interesting compounds were not fully realized by the scientifi c 
community ( 228 ). In his contribution,  Krebs  considered recent developments 
 concerning substances derived from marine invertrebrates,  e.g.  steroids from 
 Porifera , terpenes from  Octocorallia , and saponins from starfi sh.  

5.3.12    Volume 50 

 In the fi rst 26 pages of Volume 50,  Lothar Jaenicke  and  Franz-Josef Marner  from the 
University of Cologne informed the reader on “The Irones and Their Precursors” 
( Z304 ). Irones are pleasant-smelling terpenoids of orris oil—extracted from the 
rhizomes of certain sword-lily or iris species in which they accumulate during 
storage—which have proven to be important for the perfume industry ( 229 ). They 
were identifi ed as ionone homologues, cyclogeranyl acetonides easily accessible 
from the abundant natural citral, as described by  Ferdinand Tiemann  and  Paul Kruger  
in 1895 ( 230 ).  Lothar Jaenicke  contributed to this Series in Volumes 21 and 30. 

  Mauri Lounasmaa’s  and  Pekka Somersalo’s  essay on “The Condylocarpine 
Group of Indole Alkaloids” started on page 27 ( Z305 ). Twenty-four alkaloids with 
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a precondylcarpine-type pentacyclic skeleton were considered by the authors, who 
were then affi liated with the Laboratory for Organic and Bioorganic Chemistry at 
the Technical University in Helsinki. 

  Urs Séquin  (*1943), a student of  Christoph Tamm  at Basel University, habilitated 
in 1976. He is the author of the contribution “The Antibiotics of the Pluramycin 
Group (4 H -Anthra[1,2- b ]pyran Antibiotics)” ( Z306 ). The fi rst pluramycin antibiot-
ics were isolated in 1956 and found to exhibit both antimicrobial and potential anti-
cancer activity ( 231 ). 

 The next contribution was written by  Roland Maurice Wenger  (Sandoz Ltd., 
Basel): “Cyclosporine and Analogues—Isolation and Synthesis—Mechanism of 
Action and Structural Requirements for Pharmacological Activity” ( Z307 ). In 1983, 
an immunosuppressive drug of the cyclosporine family was launched onto the mar-
ket under the name Sandimmun ® . This compound, which opened up new opportuni-
ties of selective immune modulation, was isolated from fungal cultures and 
characterized as a cyclic undecapeptide containing a novel skeleton as well as sev-
eral  N -methylated amino acids ( 232 ). 

 Volume 50 concluded with a contribution by  Hiroyuki Inouye  and  Shinichi 
Uesato  from Kyoto University, Japan, entitled “Biosynthesis of Iridoids and 
Secoiridoids” ( Z308 ). Iridoids are secondary plant metabolites forming part of the 
terpenoid class. Today, more than 2,500 different iridoids are known.  

5.3.13    Volume 51 

 A special volume of around 300 pages was dedicated to an introduction to the pleth-
ora of macromycete substances by the pioneer and doyen of fungal pigments, 
 Wolfgang Steglich  ( Z309 ). In particular, their biogenesis was described in great 
detail, involving the shikimate-chorismate pathway, the acetate-malonate pathway, 
as well as the mevalonate pathway. One example of such a compound is prasinone 
( 31 )—an octaketide. From 1975 until 1991,  Wolfgang Steglich  (*1933) was head of 
the Institute of Organic Chemistry and Biochemistry at the University of Bonn, as 
the successor to  Rudolf Tschesche . From 1991 on,  Steglich  taught and worked at the 
University of Munich. The co-author of this contribution of 1987 was  Melvyn Gill , 
who today is working at the University of Melbourne.
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5.3.14        Volume 52 

 The perylene quinones, especially the dihydroxy substituted perylene quinones 
( 32 ), which are produced by phytopathogenic fungi, are still an important study 
subject today—mostly due to their photodynamic activity that can be used experi-
mentally for the topical therapy of certain cancer types.  Lucio Merlini  (*1934), the 
fi rst of three authors contributing to the chapter on “Naturally Occurring 
Perylenequinones” ( Z310 ), had previously worked at the University of Milan. His 
co-authors were  Gianluca Nasini  from the Chemical Institute, Politecnico di Milano 
and  Ulrich Weiss  from the Laboratory of Chemical Physics at the National Institutes 
of Health, Bethesda, Maryland.

   32 (dihydroxy-perylenequinone skeleton)
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    In his contribution “The Pigments of the Flexirubin Type. A Novel Class of 
Natural Products” ( Z311 ), the co-discoverer of fl exirubin-type pigments,  Hans 
Achenbach  (*1931), from the Chemical Laboratory of the University of Freiburg, 
described comprehensively the state of research on this group of pigments isolated 
from  Flexibacter  and  Cytophaga  species. These red compounds are interesting as 
they are phenolic esters of polyene carboxylic acids—see also the structure of fl exi-
rubin ( 33 )—and thus analogous to carotenoids.

   33 (flexirubin)
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       In “Structure, Stability, and Color Variation of Natural Anthocyanins” ( Z312 ), 
 Toshio Goto  (1929–1990), an anthocyanin expert who worked at the Laboratory 
of Organic Chemistry at Nagoya University, described how fl owers can be  colorful 
even though anthocyanins do not feature any chromophore structural  variants as 
such. Essentially, color formation does not only result from protonation or 
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deprotonation, as  Willstätter  hypothesized, but also occurs through complex-
ation involving cations as well as through self-association. An example underlining 
the complexity of these compounds is the blue fl ower pigment of  Commelia 
 communis —commelinin—which represents a magnesium chelate complex with 
two anthocyanin and two fl avocommelin ligands. 

 In 1977 (in Volume 34),  D. P. Chakraborty  already provided a contribution on 
carbazole alkaloids. His contribution of 1987, “Carbazole Alkaloids” ( Z313 ), gave 
an updated overview of progress and discoveries that had been accomplished in this 
active fi eld of research over a ten-year period. During this time, numerous new 
alkaloids of this type were isolated from different plant sources and characterized 
structurally. Many proved to be of interest regarding their possible pharmacological 
applications.  

5.3.15    Volume 53 

 The interdisciplinary fi eld of chemical ecology, the basis of which is formed by 
chemistry and its tremendous range of different secondary metabolite structures, 
was discussed by  Luca Fabiana Alves  in a paper entitled “Chemical Ecology and 
the Social Behavior of Animals” ( Z314 ). Future problems or challenges were 
addressed, such as the relationship between pheromones and steroid hormones or 
the possible existence of human pheromones. Today,  Luca Fabiana Alves  is at the 
Laboratory of Comparative Neurophysiology and Neuroanatomy, Department of 
Physiology, School of Medicine of Ribeirão Preto at the University of São Paulo. 

 In the second contribution of Volume 53,  Taro Nomura  (*1935), Toho University, 
Chiba, Japan introduced the reader to “Phenolic Compounds of the Mulberry Tree 
and Related Plants” ( Z315 ). The mulberry tree and related species are producers of 
many diverse compounds, mainly phenolic derivatives and isoprenoid fl avonoids, 
such as mulberranol ( 34 ), which exhibits hypotensive activity. Mulberry bark is also 
used in traditional oriental medicine.
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     Andrzej Chimiak  (*1932) and  Maria J. Milewska , from the Technical University 
of Gdańsk, Poland ( Z316 ), uncovered the chemistry of siderophores, a class of mod-
ifi ed amino acids, which had probably been discovered by  Wilhelm von Miller  
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(1848–1899) und  J. Plöchl  as early as 1893 ( 233 ). Interest in this group of 
compounds arose again due to their presence in organic natural products capable of 
coordinating metal ions. A known member of this group is the cyclic hexapeptide 
ferrichrome, which forms iron(III) complexes.  

5.3.16    Volume 54 

 The entire volume 54—comprising about 300 pages—was dedicated to the con-
stituents of ferns, and was concerned with styrenes, chromenes, xanthones, fl avo-
noids, terpenes, steroids, and lipids. The volume was written by  Takao Murakami  
and  Nobutoshi Tanaka  and was entitled “Occurrence, Structure, and Taxonomic 
Implications of Fern Constituents” ( Z317 ).  Murakami  and  Tanaka  were both work-
ing at the Faculty of Pharmaceutical Sciences and Technology, Science University 
of Tokyo, when the contribution was written.  

5.3.17    Volume 55 

 In the fi rst contribution to Volume 55,  Michael T. Davies  -  Coleman  and  Douglas 
E. A. Rivett , Department of Chemistry, Rhodes University Grahamstown, South 
Africa, discussed “Naturally Occurring 6-Substituted 5,6-Dihydro-α-pyrones” 
( Z318 ). The 6-substituted 5,6-dihydro-α-pyrones ( 35 ), which occur in many plants 
and fungi, are of signifi cance due to their various biological activities—such as 
bacteriostasis and phytopathogenicity. Possible applications as plant growth inhibi-
tors, fungistatic drugs, antifeedants or even muscle relaxants were discussed. 
 Michael Davies  -  Coleman  was professor of organic chemistry at Rhodes University 
until 2012, when he moved to the University of Western Cape. For biographical data 
on  Douglas Rivett , see the description in Volume 75.

   35 (6-substituted 5,6-dihydro-α-pyrones)
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    The next section of Volume 55 was dedicated to the principles of anthracycli-
none biosynthesis, compounds found mainly in  Streptomyces  species and already 
mentioned in Volume 21 ( Z319 ). An example of such a glycoside—of which many 
are known as antibiotics or active antitumor compounds—is daunorubicin ( 36 ). 
The author of this contribution,  Karsten Krohn  (*1944), studied in Kiel, habilitated 
in Hamburg and was professor at TU Braunschweig at the time when his contribu-
tion to the Series was published. Today,  Krohn  holds the chair of organic chemistry 
at the University of Paderborn.
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    Under certain conditions, cell suspension cultures of  Catharanthus roseus , a 
medicinal herb, accumulate antileukemic, antihypertensive, or sedative indole alka-
loids. Such an ecological production of active constituents is of high interest to the 
pharmaceutical industry and provided the basis for the contribution on “Indole 
Alkaloid Production in Cell Suspension Cultures” by  M. Lounasmaa  and 
 J. Galambos  ( Z320 ). We already know one of the authors— Mauri Lounasmaa  
(*1933) from the Laboratory of Organic and Bioorganic Chemistry, Technical 
University of Helsinki—from an earlier description of a group of indole alkaloids 
that appeared in Volume 43. 

 The fi nal essay of Volume 55 showed that the subject of renewable resources is 
not a modern phenomenon, especially in relation to its technical aspects. The con-
tribution of  Catherine E. James, Leslie Hough , and  Riaz A. Khan , entitled “Sucrose 
and its Derivatives” ( Z321 ), has not lost its topicality even today. In 1976,  Leslie 
Hough  together with the Indian chemist  Shashikant Phadnis  discovered the artifi -
cial sweetener, sucralose.  James  and  Hough  were working at Queen Elizabeth 
College, London, and  Khan  at Tate and Lyle Research and Technology, Whiteknights, 
Reading.  

5.3.18    Volume 56 

 Volume 56 commenced with the announcement that former co-editor  Hans 
Griesebach  had died in March, 1990. 

 Its fi rst contribution was provided by  Jean Asselineau  (*1921), professor of bio-
chemistry at the University of Toulouse. It was entitled “Bacterial Lipids Containing 
Amino Acids or Peptides Linked by Amide Bonds” ( Z322 ) and discussed the acyl-
ated amino acids that form part of several bacterial metabolites and are considered 
responsible for the solubility of peptides and proteins due to their lipid side chains. 

  Jacques Kagan  (*1933) from the University of Illinois at Chicago wrote the next 
contribution: “Naturally Occurring Di- and Trithiophenes” ( Z323 ). Members of this 
class of compounds ( 37 ) can be found in the plant family Asteraceae, and represent 
an interesting research fi eld due to their structural characteristics on the one hand and 
their various biological activities (nematocide, insecticide, piscicide) on the other.
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   37 (di- and trithiophenes)
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5.3.19        Volume 57 

  Pierre Metzger, Claude Largeau , and  Eliette Casadevall  from the Laboratoire de 
Chimie Bioorganique et Organique Physique, Paris wrote on the topic “Lipids and 
Macromolecular Lipids of the Hydrocarbon-rich Microalga  Botryococcus braunii . 
Chemical Structure and Biosynthesis. Geochemical and Biotechnological 
Importance” ( Z324 ). This dealt with various hydrocarbons, such as C n  botryococ-
cicenes ( 38 ) and C n  cyclobotryococcicenes ( 39 ) of the stated organisms. These com-
pounds serve, for example, as biomarkers in geomicrobiological oil prospection, 
since  Botryococcus  species have existed since Proterozoic times.

   

38 (C34 botryococcicene)

39 (C34 cyclobotryococcicene)   

    The contribution “Carbazole Alkaloids III” by  D. P. Chakraborty  ( Z325 ) repre-
sented an update of the corresponding compound class published in Volume 52. 
 Chakraborty’s  co-author of this contribution,  Shyamali Roy , is still working at the 
Institute of Natural Products, Calcutta. 

 The group of bryostatins, which are based on the bryopyran skeleton ( 40 ), exhibit 
promising antineoplastic and cytostatic activities, with some compounds shown to 
inhibit tumor promotion. Futhermore, bryostatins are characterized by immunologi-
cal, hematopoietic, and microbiological activities. Many of these compounds are 
derived from  Bugula neritina  L., a marine bryozoan species.  George R. Pettit,  from 
Arizona State University, acknowledged the importance of this compound class in 
his contribution “The Bryostatins” ( Z326 ), the last contribution of Volume 57.
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40 (bryopyran skeleton)  

5.3.20        Volume 58 

  John A. Robinson , who moved from Southampton to Zurich as full professor of 
organic chemistry in 1989, was the author of the opening contribution of Volume 
58—“Chemical and Biochemical Aspects of Polyether-Ionophore Antibiotic 
Biosynthesis” ( Z327 ). The polyketide antibiotics, such as  e.g.  monensin A ( 41 ), 
formed the basis of a whole new area of chemistry—namely, the area of crown 
ethers, cryptands or podands—which today are of paramount importance in cataly-
sis and synthesis.
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    In a comprehensive treatment entitled “Naturally Occurring Plant Coumarins” 
( Z328 ),  Robert D. H. Murray  from the University of Glasgow described many 
newly identifi ed natural products in the coumarin class, and thus documented prog-
ress made since his corresponding contribution that appeared in Volume 35.  

5.3.21    Volume 59 

 The introductory contribution of Volume 59 was presented by  Shin-ichi Hatanaka  
from the Biological Institute, College of General Education, University of Tokyo: 
“Amino Acids from Mushrooms” ( Z329 ). In regard to their abundance, quite a large 
number of essential amino acid derivatives are of major interest for mushroom taxo-
nomic and phylogenetic studies. 
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  Inger Wahlberg , who contributed to Volume 34, and  Ann-Marie Eklund , were the 
authors of “Cembranoids, Pseudopteranoids, and Cubitanoids of Natural 
Occurrence” ( Z330 ). These compound groups include the cembrane diterpenoids 
( 42 ), which are produced by plants ( e.g.  tobacco), insects, and marine invertebrates. 
Some of these compounds are important in terms of their biological effects.

   42 (cembrane skeleton)   

5.3.22        Volume 60 

 The fi rst contribution of Volume 60 was by  Inger Wahlberg  and  Ann-Marie Eklund , 
who reported on “Cyclized Cembranoids of Natural Occurrence” ( Z331 ). They 
described around 200 compounds derived from the cembrane skeleton (see Vol. 59) 
by cyclization. An example given was the basmane skeleton ( 43 ), typifi ed by certain 
substances occurring in tobacco plants. Furthermore, cyclic cembranoids can be 
found in insects and marine invertebrates.

   43 (basmane skeleton)   

     Maurice Petitou’s  and  Constant A. A. van Boeckel’s  contribution “Chemical 
Synthesis of Heparin Fragments and Analogues” ( Z332 ) was the second and last 
contribution to Volume 60. The fi eld covered by  Petitou  and  Boeckel  is of major 
importance in regard to natural and synthetic coagulants. The discovery that one 
distinct pentasaccharide domain of some heparin chains ( 44 ) activates the serine 
protease inhibitor antithrombin III, which inhibits thrombin in the coagulation cas-
cade ( 234 ), was a real breakthrough in heparin research in the early 1980s.
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5.3.23        Volume 61 

 Volume 61 was dedicated entirely to the taxane diterpenoids. On the one hand, 
the marked toxicity of  Taxus  (yew tree) substances has been known since ancient 
times, as seen in Caesar’s  De Bello Gallico ,  “Catuvolcus, … poisoned himself 
under the curse and malediction of Ambiorix …, with the juice of yew tree ber-
ries, which grow abundantly in Gaul and Germania” (De Bello Gallico VI, 31) . 
On the other hand, taxane diterpenoids are signifi cant antitumor agents—and 
their investigation may have gained steam by the publication of this particular 
progress report. Today, Taxol ®  (paclitaxel) ( 45 ) is used in the treatment of breast, 
ovarian, lung, head, and neck cancers as well as in percutaneous transluminal 
coronary angioplasty for the coating of stents against restenosis.  David G. I. 
Kingston, Anthony A. Molinero,  and  John M. Rimoldi  from the Department of 
Chemistry, Virginia Polytechnic Institute and State University, Blacksburg 
reported mainly on developments concerning total synthesis ( Z333 ). Total syn-
thesis was an urgent research objective as a consequence of the scarce availability 
of paclitaxel from natural sources, although today paclitaxel may be obtained by 
plant tissue culture.
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5.3.24        Volume 62 

 The labdane diterpenoid, forskolin ( 46 ), is isolated from powdered roots of  Coleus 
forskohlii. Sujata V. Bhat  from the Indian Institute of Technology, Bombay, sum-
marized fi ndings on forskolin and other labdane diterpenoids in the fi rst contribu-
tion of Volume 62 “Forskolin and Congeners” ( Z334 ). Six years after its publication, 
it was reported that certain labdane diterpenoids show activity at the dopamine D 2  
receptor ( 235 ).
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    The next contribution of Volume 62 was entitled “Steroidal Oligoglycosides and 
Polyhydroxysteroids from Echinoderms” ( Z335 ). This referred to saponins and 
their saccharide and steroid aglycone “building block” units, which can be found in 
almost all echinoderm species. Some of these exhibit cytotoxic, antifungal, and 
antineoplastic characteristics.  Luigi Minale  (1936–1997) , Raffaele Riccio,  and 
 Franco Zollo  (*1949) from the University of Naples contributed to this chapter.  

5.3.25    Volume 63 

  Withania somnifera  (Indian ginseng)—known from Sanskrit medicine—produces 
several biologically active withanolides ( 47 ), which are modifi ed steroids. 
Compounds of this kind are also present in solanaceous plants. The fi rst chapter in 
Volume 63, “Withasteroids, a Growing Group of Naturally Occurring Steroidal 
Lactones”—was written by  Anil B. Ray  and  Mohini Gupta  ( Z336 ) from the 
Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu 
University, Varanasi, India.

   47 (withanolide skeleton)
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    The clerodane diterpenes, of which some are characterized by a  neo -clerodane 
skeleton ( 48 ), occur widely in the plant family Labiatae and are mainly important in 
regard to chemotaxonomy.  Lydia Rodríguez-Hahn, Baldomero Esquivel , and  Jorge 
Cárdenas  from the Universidad Nacional Autónoma de México jointly wrote the 
contribution “Clerodane Diterpenes in Labiatae” ( Z337 ).

   48 (neo-clerodane skeleton)  

     Lydia Rodríguez-Hahn  (1932–1998) was born in Madrid. She and her family left 
Spain during the Civil War in 1936. After spending 9 years in the Soviet Union, she 
emigrated further to Mexico.  Rodríguez-Hahn  studied at the University of Chile in 
Santiago and at Imperial College in London. In 1962, she was appointed titular 
professor at the National University of Mexico. Her major scientifi c contributions 
include structure determinations of natural products of higher plants and their use as 
systemic biochemical markers ( 236 ).  

5.3.26    Volume 64 

 A contribution on the “Chemistry and Sources of Mono- and Bicyclic Sesquiterpenes 
from  Ferula  Species” ( Z338 ) was co-authored by  Jaime Bermejo Barrera  and 
 Antonio G. González  (1917–2002), from the Institute of Natural Products and 
Agrobiology of the Canary Islands of CSIC, University of La Laguna, Tenerife. The 
 Ferula  genus includes about 170 species of fl owering plants of the Apiaceae 
family. 

 The biogenesis and chemistry of important skin and hair pigments, originating 
from the amino acid, tyrosine, is depicted in much detail by a well-known investiga-
tor of melanin biogenesis,  Giuseppe Prota  (1938–2003), then from the University 
of Naples, in his contribution entitled “The Chemistry of Melanins and 
Melanogenesis” ( Z339 ). 

 To  H. J. M. Gijsen, Joannes B. P. A. Wijnberg , and  Aede de Groot , Wageningen 
University, The Netherlands, we owe a comprehensive overview of a large com-
pound group based on the aromadendrane skeleton ( 49 ), which is found widely in 
Nature. Their contribution was entitled “Structure, Occurrence, Biosynthesis, 
Biological Activity, and Chemistry of Aromadendrane Sesquiterpenoids” ( Z340 ), 
and concluded Volume 64.
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   49 (aromadendrane skeleton)  

5.3.27        Volume 65 

  Yoshinori Asakawa  (*1941) became associate professor in 1976 and full professor 
in 1981 at the Faculty of Pharmaceutical Sciences of Tokushima Bunri University. 
In Volume 65, he provided the reader with a detailed presentation of the “Chemical 
Constituents of the Bryophytes” ( Z341 ), in which he described a large number of 
compounds present in liverworts, mosses, and hornworts, occupying almost 600 
pages and focusing mainly on their chemosystematic signifi cance.  

5.3.28    Volume 66 

 Volume 66 opened with a contribution by  Takuo Okuda  (*1927),  Takashi Yoshida , 
and  Tsutomu Hatano  from the Faculty of Pharmaceutical Sciences, Okayama con-
cerning “Hydrolyzable Tannins and Related Polyphenols” ( Z342 ). Tannins and 
other polyphenols are of special interest due to their antioxidant, antitumor, and 
antiviral activities. In addition, the distribution of the hydrolysable tannins is also 
interesting from a taxonomic point of view. 

 The pufferfi sh toxin, tetrodotoxin—belonging to a natural compound class of sub-
stances containing a guanidine fragment—has won great notoriety. The fi rst recorded 
cases of tetrodotoxin poisoning were found in the log of  Captain   James Cook  from 7 
September 1774, on which date he recorded his crew eating pufferfi sh and feeding 
the remains to pigs kept on board ( 237 ). In 1963/1964,  Robert B. Woodward  as well 
as the research teams of  Kyosuke Tsuda  (1907–1999) and  Toshio Goto  (see Volume 
52) were fi nally able to elucidate the tetrodotoxin structure ( 50 ). 

 The author of “Some Aspects of Guanidine Secondary Metabolism” ( Z343 ), 
 Roberto Gomes de Souza Berlinck,  was working at the Instituto de Química de São 
Carlos, Universidade de São Paulo, when he wrote this contribution.
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5.3.29        Volume 67 

  A. A. Leslie Gunatilaka  is still working at the Center for Natural Products Research 
and Commercialization at the University of Arizona today. This researcher, who did 
his postdoctoral studies under  Sir Derek Barton  in the 1970s and later under  Carl 
Djerassi , published a contribution on “Triterpenoid Quinonemethides and Related 
Compounds (Celastroloids)” to Volume 67 ( Z344 ). The quinonemethides represent 
a relatively small compound class and are restricted to the plant family Celastraceae, 
from where their name “celastroloids” originates. Initially, celastroloids were of 
interest as naturally occurring insecticides—with an example being celastrol ( 51 ). 
Later on, celastrol has become of interest as a potential drug lead for the treatment 
of  Alzheimer ’s disease ( 238 ).

   51 (celastrol)
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     Staphyltrichum coccosporum , a soil-dwelling fungus, is an important producer 
of spirostaphylotrichin A ( 52 )—the substance from which spirostaphylotrichins are 
derived. Its biogenesis and derivative production are discussed in a contribution by 
 Paula Walser-Volken  and  Christoph Tamm  (Basel) entitled “The Spirostaphylo-
trichins and Related Microbial Metabolites” ( Z345 ).

   52 (spirostaphylotrichin A)

O

HO

O

O

OH

  

5.3.30        Volume 68 

 Volume 68, published in 1996, is dedicated to organohalogen compounds ( Z346 ). 
 Gordon W. Gribble  contributed a monograph on this topic: “Naturally Occurring 
Organohalogen Compounds—A Comprehensive Survey”.  Gordon W. Gribble  
(*1941) is a native of San Francisco. He completed his undergraduate education at 
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the University of California at Berkeley in 1963 and earned a PhD in organic chem-
istry at the University of Oregon in 1967. He joined the faculty of Dartmouth 
College, Hanover, in New Hampshire in 1968, where he has been full professor of 
chemistry since 1980. 

 Since the Vietnam War and even more so since the chemical spill of Seveso in 
July of 1976, chlorinated organic compounds have repeatedly made the headlines. 
Professor  Gribble  treated the “dioxin” problem with its own entry (p. 273 f . ), 
 “Dioxin—no chemical is more feared by the general public, and no chemical has 
been more scrutinized by policy regulators and environmental scientists. It is now 
recognized that dioxins and furans form during most if not all combusting processes 
such as waste incineration, coal burning, automobile exhaust, tobacco smoke, 
power plants and others. These chlorinated compounds are the product of natural 
combustion processes (e.g., forest fi res) and have been on earth for eons. …”  These 
realizations were the product of investigations that had begun in the course of the 
1970s. Prof.  Gribble  added,  “More surprising are the observations of the biogenetic 
formation. Natural enzymes like horseradish peroxidase or lactoperoxidase oxidize 
chlorophenols to PCDDs and PCDFs in the ppm range.”   

5.3.31    Volume 69 

 The fi rst contribution of Volume 69 was entitled “Non-Macrocyclic Trichothecenes, 
Part 2” ( Z347 ). Part 1 on this topic was not published in the same Series but in 
“ Natural Products Reports ” ( 239 ).  John Frederick Grove  (1921–2003), then of the 
School of Molecular Science, University of Sussex, was the author of both parts. 
The featured compounds were based on the sesquiterpenoid trichothecane skeleton 
( 53 ) and included more than 100 naturally occurring representatives produced by 
 Fusarium  species.

   53 (trichothecane skeleton)
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    Cardiac steroidal glycosides, which occur mostly in plants, but can also be found 
in animals, are still used for the treatment of heart disease. Around 370 compounds 
of this kind are described in a contribution published in Volume 69 ( Z348 ), written 
by  Desh Deepak, Soman Srivastava, Naveen K. Khare,  and  Anakshi Khare , from the 
Department of Chemistry, University of Lucknow in India. 

 Shikimic acid ( 54 ), which is formed from  D -erythrose-4-phosphate and phosphenol- 
pyruvate, is a biosynthetic precursor of many natural aromatic compounds.
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   54 (shikimic acid)
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    The third contribution of Volume 69 ( Z349 ) covered mainly the enzymatic sys-
tems involved in the shikimate pathway of biosynthesis.  Edwin Haslam , known to 
the reader from Volume 41, was the author of “Aspects of the Enzymology of the 
Shikimate Pathway”.  

5.3.32    Volume 70 

 The Indian Ocean sea hare  Dolabella auricularia  has been known for its poisonous 
effects since ancient times. The substances it contains, peptidic dolastatins—see 
dolastatin 11 as an example ( 55 )—show manifold physiological activities, espe-
cially their cytostatic and antineoplastic effects. Dolastatins extracted from the 
marine shell-less mollusk  Dolabella auricularia  were fi rst isolated by  George 
R. Pettit  and associates ( 240 ,  241 ), and were described in the contribution by  Pettit  
entitled “The Dolastatins” ( Z350 ).
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    As acetogenins ( 56 ) from the plant family Annonaceae display multiple biologi-
cal or pharmacological activities, they have attracted the attention of several 
researchers. Such activities range from cytotoxic, antitumor, antiparasitic, pesti-
cidal, and antimicrobial to immunosuppressive effects. Structurally, acetogenins are 
characterized by a long-chain fatty acid residue, one to three tetrahydrofuran rings 
and a terminal lactone. Their biogenesis, distribution, and synthesis were presented 
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by  André Cavé  (1934–2011) , Bruno Figadère, Alain Laurens,  and  Diego Cortes , of 
the Pharmacognosy Laboratory, Université Paris XI ( Z351 ).

   56 (Annonaceae acetogenins)
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5.3.33        Volume 71 

 In Volume 71,  Gerd Gäde  from the Zoology Department at the University of Cape 
Town, Rondebosch, South Africa wrote on the topic “The Explosion of Structural 
Information on Insect Neuropeptides” ( Z352 ). The explosion of information 
referred to in this title only became possible due to the availabilty of cDNA methods 
in addition to classical methods, such as MS or Edman sequencing.  Gerd Gäde  
received his academic education in biology and chemistry at the Universities of 
Münster and Kiel. In 1989, he was appointed chair of zoology at the Zoology 
Department of the University of Cape Town. 

 For centuries, preparations of  Thapsia garganica  roots were used in Arabic and 
European medicine for the treatment of lung diseases and catarrh, and also as pain 
medication for rheumatoid symptoms. An example of a sesquiterpene lactone 
 constituent of this species is thapsigargin ( 57 ), which has become used as means of 
modulating Ca 2+  homeostasis in cardiac cells in the laboratory.
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    Thapsigargin has been investigated by Danish pharmaceutical scientist  Søren 
Brøgger Christensen  (*1947) and his co-workers.  Christensen  was the fi rst author 
of “Sesquiterpenoids from  Thapsia  Species and Medicinal Chemistry of the 
Thapsigargins” ( Z353 ). His co-authors were  Annette Andersen  and  Ulla W. Smith . 

 “Pregnane Glycosides” are plant compounds that consist of a pregnane aglycone, 
which is glycosylated at one or more hydroxylated positions, where oligomeric sug-
ars up to hexasaccharides may be present. Up to the time of writing of the contribu-
tion by  Desh Deepak, Sanjay Srivastav , and  Anakshi Khare  ( Z354 ), almost 100 such 
substances had been discovered.  Desh Deepak  and  Anakshi Khare  provided an ear-
lier contribution to Volume 69.  
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5.3.34    Volume 72 

 In Volume 72,  Robert D. H. Murray  delivered a sequel to his contributions to 
Volumes 35 and 58 in “Naturally Occurring Plant Coumarins” which contained the 
description of 434 “newcomers” of this type ( Z355 ). 

 This was followed by an offering from  H. Ziffer, R. J. Highet , and  D. L. Klayman  
entitled “Artemisinin: An Endoperoxidic Antimalarial from  Artemisia annua  L.” 
( Z356 ). In Chinese medicine, decoctions of the quinhao plant ( Artemisia annua  L.) have 
been used for millenia for the treatment of fever. This antifebrile property is mediated 
through the constituent, artemisinin ( 58 ), which proved to be a highly effective sub-
stance against  Plasmodium  species. These are protozoal parasites, many of which act as 
pathogens. A structural feature of artemisinin is its endocyclic peroxide group, which is 
rather unusual for a natural product. One of the authors was  Daniel L. Klayman  (1929–
1992), an authority on antimalarial drugs.  Klayman  was head of the organic chemistry 
section at the Walter Reed Army Institute of Research in Washington. His co-authors 
were the NMR spectroscopy specialist  Robert J. Highet  (1918–1994), and an expert in 
circular dichroism at the NIDDK (National Institute of Diabetes and Digestive and 
Kidney Diseases, NIH, Bethesda, Maryland), and  Herman Ziffer  (1930–2009).
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     Ernesto Fattorusso  (1937–2012) and  Alfonso Mangoni  from the Department of 
the Chemistry of Natural Substances, Naples, reported on glycolipids, which are 
able to act like perfect haptens ( Z357 ). In the presence of a strong immunogen they 
induce an immune response resulting in an antiserum highly specifi c for the hapten 
saccharide structure, and therefore represent a valuable vehicle enabling localiza-
tion of glycolipids in cell structures. For this approach, mostly glycolipids from 
mollusks and echinoderms are used. Also, several members of this class of com-
pounds have been found to have antitumor and antiviral properties. The structural 
formula  59  shows    a representative glycoglycerolipid.

   59 (representative glycoglycerolipid)
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5.3.35        Volume 73 

 Besides saponin components such as glycyrrhizic acid ( 60 ), licorice is rich in 
phenolic compounds of fl avonoids and coumarins, which share many biological 
activities, such as antibacterial, anti-infl ammatory, antileishmanial, and cytotoxic 
properties. Volume 73 addresses primarily the distribution, structural variation and 
other characteristics of these phenolic constituents. It was written by  Taro Nomura  
and  Toshio Fukai  from the School of Pharmaceutical Sciences, Toho University, 
Chiba, Japan and entitled “Phenolic Constituents of Licorice ( Glycyrrhiza  
Species)” ( Z358 ).
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5.3.36        Volume 74 

 An overview of “Triterpenoid Saponins” by  Shashi B. Mahato  and  Saraswati Garai  
from the Indian Institute of Chemical Biology, Calcutta, ( Z359 ) focused mainly on 
the quite diverse biological activities of the members of this compound class. The 
contribution included an extensive chart of all triterpenoid saponins isolated and 
structurally determined up to the time of writing. 

 6-Deoxyamino sugars are widespread components of highly biologically active 
natural products, as exemplifi ed by heparin and a number of antibiotics like dauno-
mycin, erythromycin, and azithromycin. These sugars also occur in the enediyne 
antibiotics dynemicin, calicheamycin, and kedarcidin. Therefore, such hexoses are 
of considerable interest in terms of approaches to their total or partial synthesis. The 
authors of a contribution entitled the “Synthesis of 6-Deoxyamino Sugars” were 
 Leena A. Otsomaa  and  Ari M. P. Koskinen  ( Z360 ) from the Department of Chemistry, 
University of Oulu, Finland.  
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5.3.37    Volume 75 

 In Volume 75, a contribution was presented by  Dimitris C. Gournelis  and  Gregory 
G. Laskaris  from the Department of Pharmacy of the Aristotelian University of 
Thessaloniki, Greece and  Robert Verpoorte  (*1946) from Leiden University, The 
Netherlands, on “Cyclopeptide Alkaloids” ( Z361 ). The cyclopeptide alkaloid class 
is characterized by an  ansa  structure over a benzene ring, which is composed of a 
hyroxystyryl group and a hydroxy amino acid. To this system, one to two amino 
acids may be linked by amide bonds. Such cyclopeptide alkaloids ( 61 )—of which 
around 160 were known at the time this contribution was written—have sedative, 
antibacterial, and antifungal properties.
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    The second contribution to Volume 75—co-authored by  Lynne A. Collett, 
Michael T. Davies-Coleman , and  Douglas Eric Arthur Rivett , from the Department 
of Chemistry, Rhodes University, Grahamstown, South Africa—dealt with progress 
made in the fi eld of 6-substituted 5,6-dihydro-α-pyrones since the previous contri-
bution on this topic was published in Volume 55 ( Z362 ).  Douglas Eric Arthur Rivett  
(1921–2010) established a reputation for high quality natural product chemistry 
research at Rhodes University and has been the only South African scientist ever to 
publish chemistry research papers continually over seven decades ( 242 ).  

5.3.38    Volume 76 

 Within the last 20 years, perhaps no discovery caused more head shaking and aston-
ishment than the fi nding that—of all things—the small nitric oxide molecule (NO) 
plays a key role as a messenger molecule in signal transduction. Consistent with this 
discovery, the  Nobel  Prize in Medicine of 1998 was awarded to U.S. pharmacolo-
gists,  Robert Francis Furchgott  (1916–2009),  Louis J. Ignarro  (*1941), and  Ferid 
Murad  (*1936). The editors of “Progress” dedicated a complete volume to this 
spectacular discovery:  David R. Adams  (Department of Chemistry, Heriot-Watt 
University, Edinburgh),  Maryna Brochwicz-Lewinski  (Department of Radiology, 
The Royal Infi rmary, Edinburgh), and  Anthony R. Butler  (School of Chemistry, 
University of St. Andrews) gave in 1999 the title “Nitric Oxide: Physiological 
Roles, Biosynthesis, and Medical Uses” to Volume 76 ( Z363 ). The main topics cov-
ered were: “Discovery of NO in the Vasculature”, “Platelet Aggregation”, 
“ S -Nitrosothiols as NO-Donor Drugs”, “NO and the Immune System”, “NO and the 
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Nervous System” and “NO Activity in the Mammalian Eye”. Nitric oxide biogen-
esis takes place in the organism by oxidation of ω- N -hydroxy- L -arginine, which 
thereby is degraded to  L -citrulline.  

5.3.39    Volume 77 

 The fi rst contribution of Volume 77 by  William Alfred Ayer  (1932–2005) and 
 Latchezar S. Trifonov  from the Department of Chemistry, University of Alberta, 
Canada ( Z364 ), discussed the problem of wood discoloration in conifers and broad-
leaf trees caused by fungi. This process leads to either a blue coloration (mostly due 
to  Ophiostoma piliferum  infestation) or degradation of the wood, for which a num-
ber of organisms such as  Anisomyces odoratus  or  Armillaria ostoyae  can be held 
responsible. Mostly phenolic secondary metabolites of these organisms cause such 
effects. This contribution described possibilities to tackle these problems and also 
described the chemistry behind the processes.  William Ayer  was an early practitio-
ner of the rapidly developing fi eld of chemical ecology ( 243 ). 

 Wood constituents were also the topic of the next contribution on “Condensed 
Tannins” ( Z365 ). The tannins treated in this essay were a widespread group of phe-
nolic products, known for their positive health-related properties. Examples are pro-
anthocyanidins, present in tea, fruit juices and red wine. The fi rst author of this 
paper was  Daneel Ferreira , then from the University of the Orange Free State, 
South Africa.  Daneel Ferreira  graduated from the University of Pretoria, South 
Africa in 1964. In 1977, he worked under the supervision of a  Nobel  laureate, the 
late  Sir Derek Barton —author of a contribution published in Volume 19 of this 
Series—at Imperial College, London. In 2000,  Ferreira  was appointed chair of the 
Department of Pharmacognosy at the University of Mississippi.  Ferreira’ s co- 
authors were  Edward V. Brandt, Johan Coetzee , and  Elfranco Malan.  

  Włodzimierz M. Daniewski  from the Institute of Organic Chemistry, Polish 
Academy of Sciences, Warsaw, Poland and  Giovanni Vidari,  Universitá di Pavia, 
Italy, were responsible for “Constituents of  Lactarius  (Mushrooms)” ( Z366 ). Their 
contribution focused on the large number of sesquiterpenes occurring in fungi in 
this genus. These substances are of potential importance because of their antifeed-
ant activity against “storage pests” such as  Tribolium confusum ,  Trogoderma grana-
rium,  and  Sitophylus granarius , as well as against mammals, insects, and fi sh. 
Distinct members of this group of substances show antibacterial, antifungal, cyto-
toxic, algicidal, and even mutagenic activities.  

5.3.40    Volume 78 

 In the 1970s, a quite potent plant growth factor was isolated from rapeseed pollen 
( Brassica napus ) ( 244 ), namely, brassinolide ( 62 ) ( 245 ). At the time of publication 
of “Brassinosteroids” by  Gunter Adam, Jürgen Schmidt , and  Bernd Schneider  from 
the Institute of Plant Biochemistry, Halle, Germany ( Z367 ), around 40 members of 
this steroid family had been characterized from more than 50  Brassica  subspecies.
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     Anand Akhila  and  Kumkum Rani  from the Central Institute of Medicinal and 
Aromatic Plants in Lucknow, India, wrote a contribution entitled “Chemistry of the 
Neem Tree ( Azadirachta indica  A. Juss.)” ( Z368 ). This tree, native to India, has 
received a lot of attention due to several substances it produces, which can be used, 
for example, in agriculture, medicine, veterinary medicine, pest control, and popu-
lation control. Its extracts were found to have amebicidial, antiallergic, antidiabetic, 
antieczemic, antigingivitis, antimalarial, antimicrobial, antiscabic, antitubercular, 
cardiotonic, diuretic, immunomodulatory, insecticidal, nematicidal, piscicidal, as 
well as spermicidal properties. These activities are ascribed partly to the limonoid 
( 63 ) constituents, inclusive of several  seco -meliacins present. Biogenetically, the 
limonoids are formed from protolimonoids. An example of a  seco -meliacin from the 
neem tree is nimbin.
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5.3.41        Volume 79 

  Henrik Franzyk , a researcher at the Department of Organic Chemistry, Technical 
University of Denmark in Lyngby, expanded on “Synthetic Aspects of Iridoid 
Chemistry” in Volume 79 ( Z369 ). Since iridoid glycosides with carbocyclic and 
secoiridoid skeletons ( 64 ,  65 ) are of major interest regarding taxonomy and ecol-
ogy, their synthesis was discussed in considerable detail.
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     Jean-Claude Braekman  (*1942) at the time of writing the next contribution was 
the director of the Department of Organic Chemistry of the Faculty of Sciences at 
the Free University of Brussels. He focused his research on the study of bioactive 
secondary metabolites derived from insects, marine invertebrates and African 
plants, in particular on their isolation, structure determination, synthesis and bio-
synthesis, and the structure-activity relationships inherent of these molecules ( 246 ). 
“The Defensive Chemistry of Ants” ( Z370 ), a contribution he wrote together with 
 Sabine Leclercq, Désiré Daloze , and  Jacques M. Pasteels  for Volume 79, was 
focused on non-protein poisons derived mainly from piperidine, pyridine, pyrro-
lidine, pyrroline, and indolizine alkaloids. The fi rst to isolate an organic acid (for-
mic acid) from ants by distillation was the English natural scientist  John Ray  
(1627–1705) in 1671.  

5.3.42    Volume 80 

 In the fi rst contribution of Volume 80,  Clifford W. J. Chang  (1938–2007), then pro-
fessor at the Department of Chemistry, University of West Florida, Pensacola, 
reported on “Naturally Occurring Isocyano/Isothiocyanato and Related Compounds” 
( Z371 ). The compounds described are produced mainly by marine organisms such 
as cyanobacteria. 

 The authors of the second contribution of Volume 80 were  Otmar Hofer  (1942–
2009) and  Harald Greger  from the University of Vienna.  Otmar Hofer’s  interest in 
the structure elucidation of plant components dated back to 1980 when he started a 
close collaboration with  Prof. Dr. Harald Greger  from the Institute of Botany of the 
University of Vienna that would last for almost 30 years. The aim of this collabora-
tion was the isolation and spectroscopic characterization of natural products from 
tropical plants ( e.g.  Rutaceae ,  Meliaceae ,  Zingiberaceae) as well as the elucidation of 
their structure and investigation of their bioactivity ( 247 ).  Glycosmis  species, which 
are described in this contribution from 2001, contain noteworthy enamide thioethers 
and their derivatives ( e.g.  krabin ( 66 ), isolated from  Glycosmis mauritiana ). Both the 
distribution and taxonomic signifi cance as well as the interesting chemistry and bio-
genesis of these substances were pointed out. This group also includes sulfoxides, 
sulfones and thiocarbonic acid derivatives, which are of major interest mainly due to 
their antifungal and insecticidal properties.  Hofer  and  Greger  entitled their contribu-
tion “Sulfur-Containing Amides from  Glycosmis  Species” ( Z372 ).
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5.3.43        Volume 81 

 “New Results on the Chemistry of Lichen Substances” was the title of a contribu-
tion by  Siegfried Huneck  (1928–2011).  Huneck , from the Martin Luther Universität, 
Halle-Wittenberg, Germany, was a leading expert in the fi eld of lichen chemistry in 
the second half of the twentieth century. His contribution ( Z373 ) represented an 
overview of lichen substances. Lichen natural products are important for the pro-
duction of cosmetics and perfumes as well as dying agents. Lichens themselves are 
of high signifi cance as biomonitors. Many of the compounds synthesized by lichens 
can be used for chemotaxonomic studies and show antiviral, antibacterial and cyto-
toxic activities, among others. Structurally, they are represented mainly by aromat-
ics and terpenoids.  

5.3.44    Volume 82 

 Most naturally occurring biaryls result from oxidative coupling of phenols. Biaryls 
are widespread and except for their common aryl-aryl bond structurally quite 
diverse. They provide great insight into the phenomenon of atropisomerism—a spe-
cial case of axial chirality. Many biaryls are of biological interest. Close to 300 
pages were dedicated to this natural product class—represented in a contribution by 
 Gerhard Bringmann  (*1951),  Christian Günther, Michael Ochse, Olaf Schupp,  and 
 Stefan Tasler  from the University of Würzburg in Germany entitled “Biaryls in 
Nature: A Multi-Faceted Class of Stereochemically, Biosynthetically, and 
Pharmacologically Intriguing Secondary Metabolites” ( Z374 ).  

5.3.45    Volume 83 

  Robert D. H. Murray ’s contribution “The Naturally Occurring Coumarins” ( Z375 ), 
which occupied the whole of Volume 83, was a 670-page overview of all naturally 
occurring coumarins then known. Excluded, however, were 3,4-benzocoumarins as 
well as ellagic acid derivatives. The compounds, listed in tabular form, included 
1785 monomeric coumarins, 77 biscoumarins, four triscoumarins, as well as 17 
structurally incompletely resolved compounds.  
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5.3.46    Volume 84 

 A concise summary of the classifi cation, biogenesis and structure of cyclic tetra-
pyrrole derivatives, inclusive of the porphyrins, chlorins, bacteriochlorins, iso-
bacteriochlorins, higher saturated hydroporphyrins, and corrins was provided in 
an contribution published by two researchers from the Institute of Organic 
Chemistry at the University of Bremen in Germany: “Naturally Occurring Cyclic 
Tetrapyrroles” ( Z376 ). The fi rst author— Franz-Peter Montforts  (*1948)—became 
known for his research on hydroporphinoids, like bonellin, in the course of the 
1990s. His co- author was  Martina Glasenapp-Breiling . The extraordinary impor-
tance of the compounds described ranged from those involved in photosynthesis 
to vitamin B 12 . 

 The topic of paclitaxel (Taxol ® )—originally known as “taxol” and used widely 
today as an antitumor agent—has been discussed several times in the “Progress” 
series. One of the long-time editors of the Series,  Werner Herz , was involved in the 
success story of this plant-derived diterpenoid ( 248 ), which was fi rst discovered in 
the bark of western yew ( Taxus brevifolia ). In 1960,  Werner Herz  was asked to 
collaborate by  Jonathan L. Hartwell  (1906–1991) and  Monroe E. Wall  (1916–
2002), two of the pioneers in this fi eld of research, since  Herz  knew how phyto-
chemicals could be extracted with solvents effi ciently. In 2002, the “Bioorganic 
and Natural Products Chemistry” research group of  David G. I. Kingston  at the 
Virginia Polytechnic Institute and State University, wrote a contribution entitled 
“The Chemistry of Taxol and Related Taxoids”. In this treatment, they focused 
specifi cally on the “Synthesis of Taxol and Taxol Side Chain Analogs from 
Baccatin III” ( Z377 ).  Kingston’s  co-authors were  Prakash G. Jagtap, Haiqing 
Yuan , and  Lakshman Samala.  The tetracyclic diterpene moiety of Taxol ® , 
10-deacetylbaccatin III, which has been used as a “building block” in partial syn-
thesis, is readily available from the leaves of  Taxus baccata  (European Yew) as a 
renewable resource.  

5.3.47    Volume 85 

 The fi rst contribution to Volume 85 was made by  Karsten Krohn  and was given the 
title “Natural Products Derived from Naphthalenoid Precursors by Oxidative 
Dimerization” ( Z378 ). Spirobisnaphthalene analogues synthesized by fungi ( e.g.  
preussomerin E ( 67 ) by  Preussia isomera ) have been investigated with great interest 
owing to their antifungal, antibacterial, and cytotoxic properties.  Krohn  explained 
their biological activity, biogenesis and synthesis. For the biographical data of 
 Karsten Krohn , see the synopsis of Volume 55.

R.W. Soukup and K. Soukup



551

   67 (preussomerin E)

OO

O

OH

OH OH

O

  

    Today, peptide glycosylation is regarded as a major contributor to the pathogenic-
ity of certain pathogens, such as  Neisseria ,  Mycobacteria , and  Streptococcus  strains. 
Furthermore, such glycosylated proteins are key elements in the formation of 
S-layers by prokaryotes—structures of technical interest.  Paul Messner  and  Christina 
Schäffer  from the research group of  Uwe B. Sleytr  (*1942) at the Department of 
Nanobiotechnology of the University of Natural Resources and Life Sciences, 
Vienna, wrote a contribution entitled “Prokaryotic Glycoproteins” ( Z379 ). This 
research group established a good reputation in the fi eld of S-layer glycoproteins. 

 The fi nal contribution of Volume 85 represented an update on the state of research 
on carbazole alkaloids and was provided by  D. P. Chakraborty  (Institute of Natural 
Products, Calcutta)  (Z380) .  

5.3.48    Volume 86 

 Vertebrates, plants, fungi, and bacteria produce a myriad of monopyrrolic com-
pounds and tetramic acids of diverse biological importance. Examples of this class 
of compounds include the tetrapyrrole precursor, porphobilinogen, and batracho-
toxin ( 68 ) of the Colombian Kokoe poison dart frog  Phyllobates aurotaenia,  as well 
as the tetramic acid derivative α-lipomycin ( 69 ) produced by  Streptomyces aureofa-
ciens. Albert Gossauer  from the Department of Chemistry, University of Fribourg 
in Switzerland was responsible for a contribution entitled “Monopyrrolic Natural 
Compounds Including Tetramic Acid Derivatives” ( Z381 ).
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5.3.49        Volume 87 

 In Volume 87,  Timon Flessner, Rolf Jautelat, Ulrich Scholz,  and  Ekkehard Winterfeldt  
(*1932), from the University of Hannover, reported on “Cephalostatin Analogues—
Synthesis and Biological Activity” ( Z382 ). The marine worm,  Cephalodiscus gil-
christi , produces a number of bis-steroids ( e.g.  cephalostatin 1 ( 70 )), which possess 
extraordinarily potent antitumor activity. As mentioned in the title, primarily aspects 
of the synthesis and biological activity were described in detail.
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    There is almost no other bacterial genus that attracts so much public interest as 
does  Pseudomonas . Species such as  Pseudomonas aeruginosa , are the reason for 
some hospital infections;  Pseudomonas solanacearum  is held responsible for potato 
crop failures;  Pseudomonas syringae  helps prolong the Alpine ski season; 
 Pseudomonas putida  plays a major role in waste water treatment, and  Pseudomonas 
chlororaphis  is used for plastic waste degradation. The siderophores, produced by 
these  Gram -negative bacteria, are presented in the next contribution. Such com-
pounds are relevant in terms of their many different applications, but also in regard to 
their role in iron metabolism. The author of “Siderophores of the Pseudomonadaceae 
 sensu stricto  (Fluorescent and Non-Fluorescent  Pseudomonas  spp.)” ( Z383 ), 
 Herbert Budzikiewicz  (*1933), was born in Vienna and earned his doctorate in 
organic chemistry in this same city in 1959. In the 1960s,  Budzikiewicz , together 
with  Carl Djerassi , was responsible for building up the mass spectrometric facility 
at Stanford University. In 1970,  Budzikiewicz  was appointed full professor at the 
University of Cologne.  

5.3.50    Volume 88 

  Eberhard Reimann  (*1936), who represented the Department of Pharmacy, 
University of Munich, wrote on the “Synthesis Pathways to  Erythrina  Alkaloids 
and  Erythrina  Type Compounds” ( Z384 ). Some of these alkaloids formed by 
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approximately 50  Erythrina  species have been found to exhibit a neuromuscular 
blocking property similar to curare. The basic skeleton of all these erythrina alka-
loids is illustrated by the structure of erythraline ( 71 ). The biogenesis, synthesis and 
pharmacology of this substance class were described comprehensively.

   71 (erythraline)

N

O

O

O

  

    By early in the fi rst decade of the twenty-fi rst century, 217 trichothecenes based 
on the sesquiterpenoid trichothecene skeleton were known. Their non-macrocyclic 
members were presented in Volume 69 (when only 100 structures were known). In 
“The Trichothecenes and Their Biosynthesis”, representing a posthumous contribu-
tion by  John Frederick Grove  ( Z385 ), who passed away in 2003, the biogenesis of 
this compound group was described. 

 In addition to the progress made in the fi eld of melanin chemistry and biogenesis, 
as also discussed in Volume 64, the focus of the fi nal contribution in Volume 88 lay 
also on a consideration of vitiligo—an idiopathic skin pigmentation disorder. 
“Melanin, Melanogenesis, and Vitiligo” ( Z386 ) was written by  Shyamali Roy  from 
the Institute of Natural Products, Calcutta, India.   

5.4     Volumes 89–100: Another Change of Appearance 

 Undoubtedly, the color design and cover picture both send a clear signal: this book 
Series has its fi nger on the pulse of the time, it is of high scientifi c impact, and is 
designed attractively. Volume 89 was published in 2008. 

5.4.1    Volume 89 

 Chlorophyll degradation during leaf senescence leads to colorless non-fl uorescent 
and red fl uorescent open-chain tetrapyrroles, analogous to bile pigments. These 
were presented by  Bernhard Kräutler,  a pioneer in this particular research fi eld, in 
“Chlorophyll Catabolites” ( Z387 ), which unraveled the mystery of the green pig-
ment “disappearing” from leaves. The structures—such as  Hv -NCC-1 ( 72 ), a 
metabolite of chlorophyll a and b—as well as the biochemistry of this compound 
class were explained.
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     Bernhard Kräutler , born in Dornbirn, Austria, in 1946, has contributed remark-
able papers in three fi elds of research: vitamin B 12  chemistry, fullerenes, and chlo-
rophyll catabolites. He performed his doctoral work at ETH Zurich in the laboratory 
of  Albert Eschenmoser , where he graduated in 1976. Subsequently,  Kräutler  contin-
ued with postdoctoral studies at the University of Texas and at Columbia University, 
and then followed a call to the faculty of the University of Innsbruck in 1991. 

 Saponins are a group of naturally occurring plant glycosides, characterized by 
their foam-forming properties in aqueous solution. Steroidal glycosides are natu-
rally occurring sugar conjugates of C 27  steroidal compounds. In their contribution 
“Steroidal Saponins” ( Z388 ),  Niranjan P. Sahu, Sukdeb Banerjee, Nirup B. Mondal,  
and  Debayan Mandal  from the Indian Institute of Chemical Biology, Calcutta, 
revisited a topic presented earlier in Volume 74 by several colleagues from the same 
institute.  

5.4.2    Volume 90 

 Volume 90 (2009) of the “Progress” series was entitled “The Epothilones: An 
Outstanding Family of Anti-Tumor Agents” and guest-edited by  Johann H. Mulzer. 
Johann Hermann Mulzer  (*1944) studied in Munich and is full professor at the 
Institute of Organic Chemistry at the University of Vienna. In Volume 90,  Mulzer  
emphasized that epothilones received unusual attention over the past 10 years 
 (Z389) . They are novel antitumor drugs, which act  via  microtubule stabilization—
very much like the plant diterpenoid, paclitaxel (Taxol®). Initially, the epothilones 
such as  73  were isolated from the myxobacterium  Sorangium cellulosum , but these 
compounds can also be produced synthetically. The fi rst anticancer drug of this kind 
was brought to the market as “ixabepilone” ( 249 ).
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    The authors of this volume were  Gerhard Höfl e  ( Helmholtz  Center for Insect 
Research, Braunschweig),  Rolf Müller  (Institute of Pharmaceutical Biotechnology, 
Saarland University, Saarbrücken),  Kathrin Prantz  (Institute of Organic Chemstry, 
University of Vienna), and  Karl-Heinz Altmann  (Institute of Pharmaceutical 
Sciences, ETH Zurich).  Höfl e  contributed to “General Aspects” ( Z390 ),  Müller  
informed the reader of the “Biosynthesis and Heterologous Production of 
Epothilones” ( Z391 ),  Mulzer,  together with his co-worker  Prantz , wrote a contribu-
tion entitled “Total Synthesis of Epothilones A–F” ( Z392 ), and  K. H. Altmann  con-
tributed three chapters: “Semisynthetic Derivatives of Epothilones” ( Z393 ), 
“Preclinical Pharmacology and Structure–Activity Studies of Epothilones” ( Z394 ), 
and “Clinical Studies with Epothilones” ( Z395 ).  

5.4.3    Volume 91 

 Volume 91, “Naturally Occurring Organohalogen Compounds—A Comprehensive 
Update” was written by  Gordon Gribble  and published in 2010 ( Z396 ). This repre-
sented a comprehensive update of a subject also covered earlier in Volume 68. Since 
1996, an additional 2,500 organochlorine, organobromine, and other organohalogen 
compounds were discovered. These natural organohalogens are biosynthesized by 
bacteria, fungi, lichens, higher plants, marine organisms of all types, insects, and 
other animals including humans. In some instances, natural organohalogens are pre-
cisely the same chemicals that man synthesizes for industrial use, and some of the 
quantities of these natural chemicals by far exceed the quantities emitted by man.  

5.4.4    Volume 92 

 Different siderophore types (peptide, diamino or triamino skeleton-containing sid-
erophores based on citrate and pyochelin derivatives) occurring in microorganisms, 
which are very important in Nature’s iron metabolism, were described by  Herbert 
Budzikiewicz  in “Microbial Siderophores” ( Z397 ). This followed his contribution to 
Volume 87, where he discussed siderophores from the Pseudomonadaceae. 
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 In another contribution,  Rogelio Pereda-Miranda, Daniel Rosas-Ramírez , and 
 Jhon Castañeda-Gómez  from the Department of Pharmacy, Faculty of Chemistry, 
National Autonomous University of Mexico, presented a discussion of “Resin 
Glycosides from the Morning Glory Family” ( Z398 ). These compounds are promi-
nent secondary metabolites of the plant family Convolvulaceae and can act as dras-
tic purgatives.  

5.4.5    Volume 93 

 Oxidative coupling of phenylpropanoate units leads to the formation of lignans or 
dimeric phenylpropanoids, which are connected  via  a β-C-atom. Coumarinolignans, 
fl avonolignans, and stilbenolignans are unusual compounds and were presented for 
the fi rst time together by  Sajeli A. Begum, Mahendra Sahai  (Banaras Hindu 
University, Varanasi) and  Anil B. Ray  in their contribution “Non-conventional 
Lignans: Coumarinolignans, Flavonolignans, and Stilbenolignans” ( Z399 ). 

  Edda Gössinger  from the Institute of Organic Chemistry at the University 
of Vienna wrote a contribution on “Picrotoxanes” ( Z400 ). Picrotoxanes form a 
group of complex sesquiterpenes of mostly tetra- or pentacyclic structures, of which 
over 100 members are known today, with some containing nitrogen. An example is 
picrotoxinin ( 74 ), a potent plant toxin present in the seeds of  Menispermum cocculus  
(Indian berry) along with the less toxic picrotin, the hydrated derivative of  74 . 
Picrotoxin, which is a mixture of picrotoxinin and picrotin, was fi rst isolated by 
 Pierre F. G. Boullay  in 1812 ( 250 ).

   74 (picrotoxinin)

O

O

OHO
O

O

  

    Through metabolic engineering of suitable organisms such as  Streptomyces , the 
production of very active drugs belonging to the polyketide group can be performed 
biotechnologically with very high effi cacy. The reader became informed of this pro-
cess from a contribution by  Marta Luzhetska, Johannes Härle,  and  Andreas Bechthold  
from the Institute of Pharmaceutical Sciences, Albert-Ludwigs- University, Freiburg 
entitled “Combinatorial and Synthetic Biosynthesis in Actinomycetes” ( Z401 ).  

5.4.6    Volume 94 

 Following the isolation in 1982 of the fi rst member of a new compound class, 
namely, rocaglamide ( 75 ) from  Aglaia elliptifolia , more than 100 rocaglamide deriv-
atives have been extracted from around 30  Aglaia  species. Some of these compounds 
show insecticidal, anti-infl ammatory, cytostatic, and antineoplastic effects ( Z402 ). 
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Such properties explain the current broad interest in this group of compounds.  Sherif 
Saeed Ebada  (*1978),  Neil Lajkiewicz, John A. Porco Jr., Min Li-Weber,  and  Peter 
Proksch  (*1953) wrote a collaborative contribution on the rocaglamides. These 
authors represented either the University of Düsseldorf or Boston University.
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     Murty A. R. C. Bulusu, Karl Baumann,  and  Anton Stütz  from the Novartis 
Institutes for BioMedical Research, Vienna, wrote on the “Chemistry of the 
Immunomodulatory Macrolide Ascomycin and Related Analogues” ( Z403 ). With 
the synthesis of terbinafi ne (Lamisil ® ),  Anton Stütz  (*1947) succeeded in developing 
a completely new drug for the treatment of fungal infections in 1980. Together with 
 Karl Baumann  and other co-workers,  Stütz  also discovered the fi rst non-cortisone- 
containing therapy for neurodermatitis (atopic eczema), based on the application of 
ascomycin ( 76 ). The natural product ascomycin is a calcineurin inhibitor, produced 
by  Streptomyces hygroscopicus  var.  ascomyceticus . The chemistry of ascomycin 
derivatives is quite complex due to stereochemical relationships and isomer equilib-
ria, but much progress had been made by the authors of this contribution.
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     Rosana I. Misico, Viviana E. Nicotra, Juan Carlos Oberti, Gloria Barboza, 
Roberto R. Gil,  and  Gerardo Burton  from the Universities of Buenos Aires and 
Córdoba, Argentina, reported on the withanolides in their contribution entitled 
“Withanolides and Related Steroids” ( Z404 ), in the fi nal contribution of Volume 94. 
This group of steroids was described earlier in Volume 63. This contribution repre-
sented a comprehensive update of the chemistry, physiological properties (insecti-
cidal, phytotoxic, antiparasitic, antimicrobial, anti-infl ammatory, CNS activity, and 
cancer-related activities). Also covered were chemotaxonomic studies (Physaleae, 
Hyoscyameae, Lyceieae, Solanaceae ,  and Datureae) of this plant compound class, 
which includes about 12 other basic skeletons in addition to the original skeleton 
(see Volume 63). This group of steroids now comprises approximately 650 mem-
bers. Volume 94 was published in 2011.  

5.4.7    Volume 95 

  Yoshinori Asakawa, Agnieszka Ludwiczuk,  and  Fumihiro Nagashima  contributed 
a lengthy and thorough treatise for Volume 95, entitled “Chemical Constituents of 
Bryophytes: Bio- and Chemical Diversity, Biological Activity, and Chemosyste-
matics” ( Z405 ). For over 40 years, Professor  Asakawa  and his group at Tokushima 
Bunri University in Japan have focused their research on the chemical constituents 
of bryophytes and found that these lower plants contain large numbers of special-
ized secondary metabolites, such as terpenoids, acetogenins, and aromatic com-
pounds representative of many new skeletons, which exhibit interesting biological 
activities.  Asakawa  covered the literature on bryophytes in two earlier volumes of 
“Progress in the Chemistry of Organic Natural Products”, namely, in Volumes 42 
(1982) and 65 (1995).  

5.4.8    Volume 96 

 Besides the broad range of different transformations that can be achieved by metal 
catalysis, the use of substoichiometric amounts of small-organic molecule cata-
lysts has proved to possess enormous potential in the syntheses of biologically 
active molecules. The author of “Asymmetric Organocatalysis in Natural Product 
Syntheses” ( Z406 ),  Mario Waser  (*1977), studied at Johannes Kepler University, 
Linz. He fi nished his PhD in 2005 in the group of  Heinz Falk . Following a postdoc-
toral fellowship at the Max Planck Institute for Coal Research in Mülheim, he 
spent two years as a research and development chemist for DSM-Fine Chemicals 
in Linz. Since 2009, he has been assistant professor at his  alma mater . His contri-
bution occupied the whole of Volume 96 and provided an illustrative overview of 
successful and widely used applications of organocatalysis in the fi eld of natural 
product synthesis.  

R.W. Soukup and K. Soukup



559

5.4.9    Volume 97 

 It is estimated that well over 1,000 mycotoxins have been isolated and characterized 
so far. In Volume 97 entitled “Recent Progress in the Chemistry of Mycotoxins”, a 
summary of the most important mycotoxin classes and their chemistry is discussed 
( Z407 ). The biological activity of mycotoxins ranges from antibacterial to strongly 
mutagenic ( e.g.  afl atoxins, patulin), carcinogenic ( e.g.  afl atoxins), teratogenic, neu-
rotoxic ( e.g.  ochratoxins), nephrotoxic ( e.g.  fumonisins, citrinin), hepatotoxic, and 
immunotoxic ( e.g.  ochratoxins, diketopiperazines) properties. The authors of this 
volume were  Stefan Bräse  (*1967),  Franziska Gläser, Carsten Kramer, Stephanie 
Lindner, Anna Linsenmeier, Kye Masters, Anne Meister, Bettina M. Ruff,  and  Sabilla 
Zhong  (*1987), and are from the Karlsruhe Institute of Technology.  Stefan Bräse  
has been professor at this institution since 2003.  

5.4.10    Volume 98 

  David A. Lightner , professor emeritus at the University of Nevada, Reno, has been 
recognized for distinguished contributions to relating chiroptical properties to ste-
reochemistry and for clarifying the molecular mechanisms of phototherapy for neo-
natal jaundice. His extensive treatment entitled “Bilirubin:  Jekyll  and  Hyde  Pigment 
of Life” ( Z408 ) represents a historically structured and very detailed discussion of 
progress made in the structure elucidation of one of the most important mammalian 
metabolites, bilirubin ( 77 ).
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    Like the red color of blood and the green color of leaves, the yellow color of bile 
has been observed for millenia. In 1824,  Leopold Gmelin  (1788–1853) and  Friedrich 
Tiedemann  (1781–1861) discovered a test reaction for bilirubin ( 251 ). Efforts to 
determine the structure of this air-sensitive natural product began with the 

The Series “Progress in the Chemistry of Organic Natural Products”…



560

experimental work of  Oskar Piloty  (1866–1915) and  William Küster  (1863–1929) .  
The structure and total synthesis of bilirubin were reported by  Hans Fischer  (1881–
1945) and  Hans Plieninger  (1914–1984) in 1942 ( 252 ). Yet knowing the constitu-
tional structure is not the same as knowing its conformational or stereostructure, the 
proof of which had to wait some 34 years for the application of modern spectro-
scopic methods.  

5.4.11    Volume 99 

 In its fi rst part, volume 99 confronts us with “The Pharmacognosy of Black Cohosh: 
Phytochemical and Biological Profi le of a Major Botanical Dietary Supplement”. 
This review was written by  Guido F. Pauli  and members of his group at the College 
of Pharmacy at the University of Illinois, Chicago, namely,  Feng Qiu ,  James 
B. McAlpine ,  Elizabeth C. Krause , and  Shao-Nong Chen  ( Z409 ). Preparations from 
 Actaea racemosa  roots or rhizomes contain almost 50 cycloartane triterpenes, over 
70 alkaloids, and 11 phenolic acids. The chemistry of the relevant secondary metab-
olome was discussed in detail. 

 Indigo and Tyrian purple are two of the most ancient dyes known. Indigo has 
been known since 2500 BC and Tyrian purple was probably fi rst used by the ancient 
Phoenicians as early as 1570 BC. The aim of the contribution “The Evolution of 
Indigoids: A Colorful History” was to describe the fascinating story of indigoids 
and their evolution as important compounds from textile science to medicinal 
chemistry ( Z410 ). Indirubin, the second major metabolite of the Indigo dye, was 
discovered to be the active component of  Danggui Longhui Wan , a formula that has 
been used in Traditional Chinese Medicine for four millennia to treat symptoms of 
leukemia. The authors from the Department of Pharmacognosy and Natural Products 
Chemistry, School of Pharmacy, University of Athens and the Beckman Molecular 
Medicine Research Institute, City of Hope Comprehensive Cancer Center, Duarte, 
California— Nicolas Gaboriaud-Kolar ,  Sangkil Nam , and  Alexios-Leandros 
Skaltsounis —stressed that this discovery has propelled indirubin and its marine 
relative, 6-bromoindirubin, as major scaffolds in medicinal chemistry for the study 
of biological processes and the development of active drug candidates. 

 In the third part of Volume 99,  Masami Ishibashi —Professor of Natural Products 
Chemistry at Chiba University, Japan—reported on various screening studies per-
formed in order to identify novel bioactive compounds targeting distinct cancer- 
related signaling pathways. In their approach, which primarily focused on TRAIL, 
Wnt, and Hedgehog signaling,  Ishibashi  and his co-workers investigated bioactive 
metabolites isolated from various actinomycete strains, including aromatic hetero-
cyclic natural products, such as izumiphenazines and izuminosides as well as new 
pyranonaphthoquinones, such as (+)-deacetylgriseusin A. The latter could be shown 
to be very effective in inducing TRAIL-resistance overcoming activity resulting in 
a signifi cant reduction of cell viability. As another prominent example, they found a 
known indole alkaloid, teleocidin A-2, to act as a strong enhancer of promotor activ-
ity of the TRAIL receptor death-receptor 5 (DR5), which represents an important 
mediator of apoptosis. 
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 The fi nal contribution published in Volume 99 was written by  Markus Nett  from 
the Leibniz Institute for Natural Product Research and Infection Biology (Hans-
Knöll- Institute) in Jena and was entitled “Genome Mining—Concept and Strategies 
for Natural Product Discovery”. In his contribution,  Nett  gave a comprehensive 
overview of how recent genome sequencing projects have provided a much deeper 
understanding of metabolic pathways involved in small molecule production, spe-
cifi cally in microorganisms and plants. Novel bioinformatical tools can be utilized in 
the context of genetic approaches for the discovery of new natural products.  Nett’s  
research is focused on investigating the potential of bacteria and plant pathogens—
especially from the microbial genome perspective—for the identifi cation of new 
biosynthesis pathways and natural products for drug discovery and development.    

6     Concluding Remarks 

 In his review of Volume 10 from 1954,  Carl Djerassi  mentions an interesting point 
about the series “Progress in the Chemistry of Organic Natural Products” ( 115 ), 
 “The “Fortschritte” series is at the present time the most useful collection of review 
articles in the fi eld of natural products … This series consists largely of critical and 
exhaustive discussions in certain restricted areas. … The international character is 
demonstrated by the fact that of the six contributing groups, two come from the 
U.S.A. and one each from Germany, France, Mexico and India.” Djerassi ’s judge-
ment is valid for far more than this particular volume of the series. The register of 
authors of all volumes bears resemblance to a “Who’s Who” of the professional 
circles of their time. It is therefore not really surprising to fi nd out that the list of 
contributing authors, who were awarded a  Nobel  Prize, is quite long:  Alder ,  Barton , 
 Beadle, Crowfoot-Hodgkin ,  Diels, Euler-Chelpin ,  Karrer ,  Leloir ,  Pauling , and 
 Prelog,  with  Haworth  and  Butenandt  serving as members of the editorial board. 

 Whereas the fi rst volumes had been more European-centered, as of 1948, more 
and more authors from the U.S. contributed to the Series.  Zechmeister  was undoubt-
edly able to win over many of his colleagues—fi rst those from Zurich or Pécs, and 
later on some from Pasadena—to submit a contribution to “his” series. Between 
1948 and 1970, no less than 20 researchers from Pasadena had been convinced to 
present their fi ndings in the “Progress” series. With  Zechmeister’ s retirement as edi-
tor in 1970, the situation changed radically. From 1970 on, researchers from all 
parts of the world contributed to this series. The high percentage of contributions by 
emigrants, who mostly were forced to leave their native countries for political rea-
sons and who only got the chance to unfold their potential in their new home coun-
tries, is quite remarkable. The list of those emigrants is almost endless:  Zechmeister  
himself,  Dounderoff, Hassid, Lederer, Sondheimer, Rosenkranz, Scheuer, Biemann, 
Fraenkel-Conrat, Overton,….  

 Strikingly,  Zechmeister  always focused his attention on methodology. Volume 
One, in which  Kratky  and  Mark  describe the application of physical methods for the 
investigation of natural products, can be considered emblematic. Since  Zechmeister  
was a pioneer of chromatography himself, his editorship included in-depth 
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descriptions of various separation techniques: paper and column chromatography, 
later on thin-layer, high-performance liquid, and gas chromatography. 

 These techniques enabled chemists to deal with ever-decreasing amounts of 
materials. Therefore, in addition to previously investigated plant samples, also natu-
ral products from microbial sources could be studied. Additionally, in the 1960s and 
1970s, increasing attention was paid to marine sources and to insects. 

 The results of investigating further sources were that new and even unprece-
dented chemical structures were elucidated, which had not been encountered earlier 
from traditional terrestrial plant and animal sources. 

  Carl Djerassi , who is considered one of the most important natural product 
chemists—not only due to his excellent successes in the fi eld of steroid chemistry, 
but also due to his abiding infl uence on the development of important investigation 
methods ( e.g.  mass spectrometry and optical rotatory dispersion) ( 253 )—described 
the dramatic developments in the history of structure elucidation in the twentieth 
century in two historical refl ections ( 254 ,  255 ). Until the middle of the century, the 
chemical structure of a natural product was accomplished almost exclusively by 
degradative chemistry: alkaline, thermal and oxidative degradation, acid and base 
hydrolysis, zinc-dust distillation, isolation of degradation products and identifi cation 
by melting or boiling point. Therefore, great chemical skills, experience and chemi-
cal intuition were essential. The development and application of so far unknown 
spectroscopic and spectrometric methods changed the situation signifi cantly. From 
the beginning, “Progress in the Chemistry of Organic Natural Products” gave much 
space to the application of new fi ndings in regard to X-ray diffraction, mass spec-
trometry, nuclear magnetic resonance spectroscopy, IR-, UV-, vis-, and fl uorescence 
spectroscopy, as well as optical rotatory dispersion and circular dichroism. 

 A mere quantitative measure of the development may be seen in the numbers of 
characterized compounds,  e.g.  the halogenated organic natural products ( Z376, 
Z426 ,  256 )    (Table  1 ).

   Table 1    Halogenated organic natural 
products identifi ed between 1935 and 
1999 

 1935  1 
 1954  12 
 1968  30 
 1973  200 
 1991  1,500 
 1999  2,900 

   Upon superfi cial observation of the plot shown in Fig.  3 , one could assume that a 
rapid development started only in 1970. However, this is not quite true—at least in rela-
tion to content. The reader comes to realize quite dramatically how science progressed 
between 1955 and 1968 when comparing the contribution on genetics by  George Wells 
Beadle  in Volume 12 to the one by  Dieter Dütting  in Volume 26. What a difference! Yet 
there were only 13 years of rapid development in between these contributions.

R.W. Soukup and K. Soukup



563

   The chapters that have contributed to this book Series have had their fi nger on the 
pulse of the time. However, they did not only mirror the state of research, they also 
stimulated progress. This becomes clear when reading the comments of recent 
authors on the contributions of previous authors.     
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