System Engineering and Operations Research !

STOCHASTIC
SIMULATION
OPTIMIZATION

An Optimal Computing Budget Allocation

Chun-Hung Chen * Loo Hay Lee

STOCHASTIC
SIMULATION
OPTIMIZATION

An Optimal Computing Budget Allocation

SERIES ON SYSTEM ENGINEERING AND OPERATIONS
RESEARCH

Editor-in-Chief: Yu-Chi Ho (Harvard University, USA)

Associate Editors: Chun-Hung Chen (George Mason University, USA)
Loo Hay Lee (National University of Singapore,
Singapore)
Qianchuan Zhao (Tsinghua University, China)

About the Series

The series provides a medium for publication of new developments and advances in
high level research and education in the fields of systems engineering, industrial
engineering, and operations research. It publishes books in various engineering areas
in these fields. The focus will be on new development in these emerging areas with
utilization of the state-of-the-art technologies in addressing the critical issues.

The topics of the series include, but not limited to, simulation optimization,
simulation process and analysis, agent-based simulation, evolutionary computation/
soft computing, supply chainmanagement, risk analysis, service sciences, bioinformatics/
biotechnology, auctions/competitive bidding, data mining/machine learning, and robust
system design.

Vol. 1 Stochastic Simulation Optimization: An Optimal Computing Budget Allocation
Authors: C.-H. Chen and L. H. Lee

System Engineering and Operations Research H Vol. 1

STOCHASTIC
SIMULATION
OPTIMIZATION

An Optimal Computing Budget Allocation

Chun-Hung Chen

George Mason Univ., USA
National Taiwan Univ.

Loo Hay Lee

National Univ. of Singapore

\\:e World Scientific

NEW JERSEY - LONDON - SINGAPORE - BEIJING « SHANGHAI « HONG KONG « TAIPEI « CHENNAI

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

System Engineering and Operations Research — Vol. 1
STOCHASTIC SIMULATION OPTIMIZATION
An Optimal Computing Budget Allocation

Copyright © 2011 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN-13 978-981-4282-64-2
ISBN-10 981-4282-64-2

Typeset by Stallion Press
Email: enquiries@stallionpress.com

Printed in Singapore.

Foreword to the WSP Series
on System Engineering
and Operation Research

Advancement in science and technology often blurs traditional dis-
ciplinary boundary. Control system theory and practice, operations
research, and computational intelligence combine to contribute to
modern civilization in myriad ways. From traffic control on land, sea,
and air, to manufacturing automation, to social and communication
networks, these knowledge-based and human-made systems rely on
research results in the above disciplinary topics for their smooth and
efficient functioning.

The World Scientific Publishing Series on System Engineering and
Operations Research is launched to fill this niche for students and
scholars doing research in these areas. The first book in this series is
by two leading scientists in the area of efficent simulation and mod-
eling of complex systems. They articulate clearly the computational
burden involved in such study and device innovative methodology to
overcome the difficulties. I welcome their contribution in inaugurat-
ing this series and look forward to additional books in this genre.

Yu-Chi Ho

Editor-in-Chief

WSP Series on System Engineering
and Operations Research

January 20, 2010

This page intentionally left blank

Preface

“Simulation” and “optimization” are two very powerful tools in sys-
tems engineering and operations research. With the advance of new
computing technology, simulation-based optimization is growing in
popularity. However, computational efficiency is still a big concern
because (i) in the optimization process, many alternative designs
must be simulated; (ii) to obtain a sound statistical estimate, a large
number of simulation runs (replications) is required for each design
alternative. A user may be forced to compromise on simulation accu-
racy, modeling accuracy, and the optimality of the selected design.
There have been several approaches developed to address such an
efficiency issue. This book is intended to offer a different but ambi-
tious approach by trying to answer the question “what is an optimal
(or the most efficient) way to conduct all the simulations in order
to find a good or optimal solution (design)?” The ultimate goal is
to minimize the total simulation budget while achieving a desired
optimality level, or to maximize the probability of finding the best
design using a fixed computing budget. The primary idea is called
Optimal Computing Budget Allocation (OCBA).

This book aims at providing academic researchers and industrial
practitioners a comprehensive coverage of the OCBA approach for
stochastic simulation optimization. Chapter 1 introduces stochas-

vii

viii SSO: An Optimal Computing Budget Allocation

tic simulation optimization and the associated issue of simulation
efficiency. Chapter 2 gives an intuitive explanation of computing
budget allocation and discusses its impact on optimization perfor-
mance. Then a series of OCBA approaches developed for various
problems are presented, from selecting the best design (Chapter 3),
selecting a set of good enough designs (Chapter 5), to optimization
with multiple objectives (Chapter 6). Chapter 4 provides numeri-
cal illustrations, showing that the computation time can be reduced
significantly. Chapter 4 also offers guidelines for practical implemen-
tation of OCBA. Chapter 7 extends OCBA to large-scale simulation
optimization problems. The OCBA technique is generic enough that
it can be integrated with many optimization search algorithms to
enhance simulation optimization efficiency. Several potential search
techniques are explored. Finally, Chapter 8 gives a generalized view
of the OCBA framework, and shows several examples of how the
notion of OCBA can be extended to problems beyond simulation
and/or optimization such as data envelopment analysis, experiments
of design, and rare-event simulation. To help those readers without
much simulation background, in the appendix, we offer a short but
comprehensive presentation of stochastic simulation basics. We also
include a basic version of OCBA source code in the appendix.

OCBA has several strengths: it is effective, easy to understand,
simple to implement, and can be easily generalized or integrated with
other methods to extend its applicability. We believe that this book
is highly useful for different purposes.

1. For researchers, this book offers a series of promising approaches
for efficiency enhancement in computer simulation, stochastic
optimization, statistical sampling, and ranking and selection.
The generalized framework may lead to numerous new lines of
researches.

2. For courses, this book could serve as a textbook for advanced
stochastic simulation or simulation optimization courses. They
can cover Appendix A, Chapters 1 and 2 for introductions; Chap-
ters 3 through 4, and parts of Chapters 5 through 8 for advanced
materials.

Preface ix

3. For practioners, this book offers a simple but effective approach
to enhance the computational efficiency of simulation optimiza-
tion. Simulation practioners from industries, governments, and
the military should find this book useful and relatively easy to
read and apply because it gives numerous intuitive illustrations,
well-structured algorithms, and practical implementation guide-
lines.

This page intentionally left blank

Acknowledgments

Many individuals and organizations have made the writing of this
book possible. We are deeply grateful to our teachers for their men-
torship, inspiration, and clarity, most especially Yu-Chi Ho (Harvard
University), Peter B. Luh (University of Connecticut), and Shi-
Chung Chang (National Taiwan University). The research in this
book was supported directly and indirectly by National Science foun-
dation, NASA Ames Research Center, National Science Council of
Taiwan, George Mason University, National University of Singapore
and National Taiwan University.

Our gratitude also extends to several graduate students who
did most of the hard work. Jianwu Lin (Goldman Sachs) did the
research in Chapter 3; Christopher Bluesteen (Systems Planning and
Analysis, Inc.) is the author of Chapter 4, he ran the numerical
experiments and wrote the chapter; Donghai He (CSSI) made sig-
nificant contributions to Chapters 5 and 7. Suyan Teng (Singapore
Republic Polytechnic), Juxin Li (National University of Singapore)
and Si Zhang (National University of Singapore) has helped edit
and conduct the numerical runs in Chapter 6. Mark Brantley
(Jane’s), Y. C. Luo (Chung-Cheng Institute of Technology), Ben
Crain (George Mason University), and Wai-Peng Wong (University
Science Malaysia) have contributions to Chapter 8.

Xi

xii SSO: An Optimal Computing Budget Allocation

We are deeply indebted to several long-time collaborators
who have also been coauthors of publications related to the
research presented in this book: John Birge (University of
Chicago), Argon Chen (National Taiwan University), Ek Peng
Chew (National University of Singapore), Stephen Chick (INSEAD),
Liyi Dai (U.S. Army Research Office), Karen Donohue (Univer-
sity of Minnesota), David Goldsman (Georgia Institute of Tech-
nology), Douglas Morrice (University of Texas at Austin), Vicente
Romero (Sandia National Laboratories), Leyuan Shi (Univer-
sity of Wisconsin and Beijing University), John Shortle (George
Mason University), David Wu (Lehigh University), and Enlu
Zhou (University of Illinois at Urbana-Champaign). We especially
thank Enver Yiicesan (INSEAD) and Michael Fu (University of
Maryland), who have worked extensively with us on several OCBA
publications and should be co-authors of this book.

We are also indebted to many colleagues and researchers who
have influenced our thinking and offered support: Sigrun Andradottir
(Georgia Institute of Technology), G. Anandalingam (University of
Maryland), Russell Barton (Pennsylvania State University), Juergen
Branke (University of Warwick), Xiren Cao (Hong Kong Univer-
sity of Science and Technology), Christos Cassandras (Boston Uni-
versity), Wai Kin (Victor) Chan (Rensselaer Polytechnic Institute),
E. Jack Chen (BASF), Russell Cheng (University of Southampton),
George Donohue (George Mason University), Peter Frazier (Cornell
University), Peter Glynn (Stanford University), Wei-Bo Gong (Uni-
versity of Massachusetts), Monique Guignard-Spielberg (University
of Pennsylvania), Patrick Harker (University of Delaware), Shane
Henderson (Cornell University), Jeff Hong (Hong Kong Univer-
sity of Science and Technology), J. Q. Hu (Fudan University),
Q. S. Jia (Tsinghua University), Sheldon Jacobson (University of
Ilinois), David Kelton (University of Cincinnati), Seong-Hee Kim
(Georgia Institute of Technology), Michael E. Kuhl (Rochester
Institute of Technology), Sujin Kim and Szu Hui Ng (National Uni-
versity of Singapore), Vijay Kumar (University of Pennsylvania),
Marvin Nakayama (New Jersey Institute of Technology), Barry Nel-
son (Northwestern University), Lucy Pao (University of Colorado),

Acknowledgments xiii

Warren Powell (Princeton University), Bruce Schmeiser (Purdue
University), Lee Schruben (University of California, Berkeley),
Wheyming Tina Song (National Tsing Hua University), Roberto
Szechtman (Naval Postgraduate School), Pirooz Vakili (Boston
University), James Wilson (North Carolina State University), and
Qian-Chuan Zhao (Tsinghua University).

We especially thank Ariela Sofer (Chair of the SEOR Department
at George Mason University) for her encouragement and support at
various stages in the process of writing this book. A big portion of
the book was actually drafted in the department conference room
next to her office. Special thanks also go to our editor, Gregory Lee,
who has spent lots of effort to make the publication of this book
possible.

Finally, we would like to thank our families (Mei-Mei, Flora,
Valerie (who helped to draft the design of the book cover), Hannah
and Jeremy) for their love, support, and patience during the writing
of the book. Their contributions are just as real and important as
the others named above, and we could not completed this project
without them.

Thanks to all of you,
Chun-Hung Chen and Loo Hay Lee

This page intentionally left blank

Foreword

Preface

Contents

Acknowledgments

1. Introduction to Stochastic Simulation Optimization

1.1
1.2
1.3
1.4

Introduction
Problem Definition
Classification
Summary . .o oL ..

2. Computing Budget Allocation

2.1
2.2

2.3

24

2.5

Simulation Precision versus Computing Budget . . .
Computing Budget Allocation for Comparison

of Multiple Designs
Intuitive Explanations of Optimal Computing
Budget Allocation
Computing Budget Allocation for Large Simulation
Optimization
Roadmap

XV

vii

X1

10
13

15
15

xvi SS50: An Optimal Computing Budget Allocation

3. Selecting the Best from a Set of Alternative Designs 29
3.1 A Bayesian Framework for Simulation Output
Modeling o 30
3.2 Probability of Correct Selection 36
3.3 Maximizing the Probability of Correct Selection . . . 40
3.4 Minimizing the Total Simulation Cost 51
3.5 Non-Equal Simulation Costs 55
3.6 Minimizing Opportunity Cost 57
3.7 OCBA Derivation Based on Classical Model 64
4. Numerical Implementation and Experiments 69
4.1 Numerical Testing 69
4.2 Parameter Setting and Implementation
of the OCBA Procedure 88
5. Selecting An Optimal Subset 93
5.1 Introduction and Problem Statement 94
5.2 Approximate Asymptotically Optimal Allocation
Scheme 96
5.3 Numerical Experiments 106

6. Multi-objective Optimal Computing Budget Allocation 117

6.1 Pareto Optimality 118
6.2 Multi-objective Optimal Computing Budget
Allocation Problem 120
6.3 Asymptotic Allocation Rule 128
6.4 A Sequential Allocation Procedure 132
6.5 Numerical Results 133
7. Large-Scale Simulation and Optimization 141
7.1 A General Framework of Integration of OCBA
with Metaheuristics 144
7.2 Problems with Single Objective 147
7.3 Numerical Experiments 152
7.4 Multiple Objectives 156

7.5 Concluding Remarks 159

Contents xvii

8. Generalized OCBA Framework and Other
Related Methods 161

8.1 Optimal Computing Budget Allocation for Selecting
the Best by Utilizing Regression Analysis

(OCBA-OSD)o o 164
8.2 Optimal Computing Budget Allocation for
Extended Cross-Entropy Method (OCBA-CE) . . . 167
8.3 Optimal Computing Budget Allocation for Variance
Reduction in Rare-event Simulation 169
8.4 Optimal Data Collection Budget Allocation
(ODCBA) for Monte Carlo DEA 171
8.5 Other Related Works 173
Appendix A: Fundamentals of Simulation 175
A.1 What is Simulation? 175
A.2 Steps in Developing A Simulation Model 176
A.3 Concepts in Simulation Model Building 178
A4 Input Data Modeling 181
A.5 Random Number and Variables Generation 183
A6 Output Analysis 188
A.7 Verification and Validation 192
Appendix B: Basic Probability and Statistics 195
B.1 Probability Distribution 195
B.2 Some Important Statistical Laws 199
B.3 Goodnessof Fit Test 199
Appendix C: Some Proofs in Chapter 6 201
C.1 Proof of Lemma 6.1 201
C.2 Proof of Lemma 6.2 204
C.3 Proof of Lemma 63 204

C.4 Proof of Lemma 6.5 (Asymptotic Allocation
Rules) 206

xviii §S0: An Optimal Computing Budget Allocation

Appendix D: Some OCBA Source Codes 213
References 219

Index 225

Chapter 1

Introduction to Stochastic
Simulation Optimization

1.1. Introduction

“Stochastic simulation optimization” (often shortened as simulation
optimization) refers to stochastic optimization using simulation.
Specifically, the underlying problem is stochastic and the goal is to
find the values of controllable parameters (decision variables) to opti-
mize some performance measures of interest, which are evaluated
via stochastic simulation, such as discrete-event simulation or Monte
Carlo simulation [Fu, 2002; Chen et al., 2008; Fu et al., 2008|.

The act of obtaining the best decision under given circumstances
is known as optimization. It is one of the leading topics of study
and research. Optimization problems can be broadly classified into
several branches depending upon the nature of the problem. For
deterministic optimization problems, no randomness or uncertainty
is considered and so the solutions have been relatively simple. The
deterministic optimization approach might work well when the real
problem has no noise or the uncertainty is not critical. However,
many real-world optimization problems involve some sort of uncer-
tainties in the form of randomness. These problems are studied under
the branch “stochastic optimization” which plays a significant role
in the design, analysis, and operation of modern systems. Methods
for stochastic optimization provide a means of coping with inherent

2 SSO: An Optimal Computing Budget Allocation

system noise. They may need to deal with models or systems that
are highly nonlinear and high dimensional. The challenge is that
these problems may become too complex to solve analytically due
to complexity and stochastic relations. Attempts to use analytical
models for such systems usually require many simplifying assump-
tions. As a matter of fact, the solutions are most likely to be inferior
or inadequate for implementation. In such instances, a good alterna-
tive form of modeling and analysis available to the decision-maker is
simulation.

Stochastic simulation is a powerful modeling and software tool
for analyzing modern complex systems, because closed-form analyt-
ical solutions generally do not exist for such problems. Simulation
allows one to accurately specify a system through the use of logically
complex, and often non-algebraic, variables and constraints. Detailed
dynamics of complex, stochastic systems can therefore be modeled.
This capability complements the inherent limitations of traditional
optimization. With such modeling advantages, simulation has been
commonly used in so many different application areas, from trans-
portation to manufacturing, telecommunication, supply chain man-
agement, health care, and finance. The combination of optimization
and (stochastic) simulation is perhaps the Holy Grail of operations
research/management science (OR/MS); see Fu [2007].

Examples of stochastic simulation optimization in health care
include capacity planning of hospital beds and scheduling of sur-
gical rooms/facilities. Pharmaceutical companies wish to choose the
dosage level for a drug with the median aggregate response in pati-
ents. This dosage level is desirable because it achieves the positive
effect of the drug while minimizing side effects. Similarly, one might
wish to find the dosage level maximizing some utility function which
is increasing in positive drug response and decreasing in negative
drug response. Transportation systems that are commonly simulated
include airspace, airports (gates, runways, baggage handling, passen-
gers, taxi ways), rail networks, and roadway networks (urban, high-
way). In manufacturing, a factory simulation is commonly used for
analyzing the operations of a semiconductor fabrication (fab) facil-
ity, as well as for supply chain networks. In network management,

Introduction to Stochastic Simulation Optimization 3

the decision-maker wants to select the fastest path through a net-
work subject to traffic delays by sampling travel times through it.
This network might be a data network through which we would like
to transmit packets of data, or a network of roads through which
we would like to route vehicles. In finance, simulation is commonly
used for pricing and hedging of complex “exotic” derivatives, espe-
cially those that involve multiple underlying assets and sources of
stochasticity, e.g., volatility, interest rates, and defaults.

For illustrative purpose, we give two simple examples as follows.
Clearly, these examples could easily be extended to more realistic
systems that include many items and complicated relationships.

Example 1.1 (Worker Allocation Problem). As shown in Fig-
ure 1.1, this two-node tandem queueing system includes two stages
of service. Suppose there is a total of 31 workers who will be allo-
cated to these two stages. Customers arrive at the first node and
leave the system after finishing the services at both stages. The ser-
vice at each stage is performed by one worker. At least one worker
must be allocated to each stage. When multiple workers are avail-
able in one stage, the services for multiple customers are performed
in parallel and independently, i.e., the service of one customer will
not become faster even if there are more workers than customers
in a stage. However, customers have to wait if all workers in that
stage are all busy. Further, the workers assigned to one stage can-
not help service at the other stage due to the training and safety

requirement.
O O
Exp(1) O O
—> ° — ° e
U(1,39) . U(5,45) .
O O
C G

Figure 1.1. A two-node tandem queueing system with C1 and C> workers at
nodes 1 and 2, respectively.

4 SS0O: An Optimal Computing Budget Allocation

The time to perform the service at stage 1 by one worker is uni-
formly distributed between 1 to 39 minutes, and the service time at
stage 2 is uniformly distributed between 5 and 45 minutes. Customers
arrive independently and the interarrival times between two cus-
tomers are exponentially distributed with a rate of 1 customer per
minute. To make customers happy, the manager of this service line
wants the total time that a customer spends in the system to be
as short as possible. A design question is how we should allocate
these 11 workers so that the average total time in system (also called
system time) is minimized.

Denote C;7 and Cy as the numbers of workers allocated to nodes
1 and 2. Thus C; + Cy = 31, C; > 1, and Cy > 1. There are 30
alternative combinations of (C,C2). We want to choose the best
alternative of (C1,C2) so that the average system for the first 100
customers is minimized. Since there is no closed-form analytical solu-
tion for the estimation of the system time, stochastic simulation must
be performed.

Consider another scenario where we allocate at least 11 workers
to each stage, i.e., C1 > 11, and Cy > 11. Then the number of
alternative combinations of (C1, C2) is only 10. However we still have
the same question of finding the best design even though the number
of alternatives is smaller. #

Example 1.2 ((s, S) Inventory Control Problem).
The second example is an (s,.S) inventory policy problem based on
the example given in Section 1.5.1 of Law and Kelton [2000]. Recall
that under an (s,.S) inventory control policy, when the inventory
position (which includes inventory on hand and pipeline inventory)
falls below s at an order decision point (discrete points in time in a
periodic review setting and any point in time in a continuous review
setting), then an order is placed in the amount that would bring the
inventory position up to S.

In this example, the system involves a single item under periodic
review, full backlogging, and random lead times (uniformly distri-
buted between 0.5 and 1.0 period), with costs for ordering (including

Introduction to Stochastic Simulation Optimization 5

a fixed set-up cost of $32 per order and an incremental cost of $3 per
item), on-hand inventory ($1 per item per period), and backlogging
(fixed shortage cost of $5 per item per period). The times between
demands are i.i.d. exponential random variables with a mean of 0.1
period. The sizes of demands are i.i.d. random variables taking values
1, 2, 3, and 4, with probability 1/6, 1/3, 1/3, and 1/6, respectively.

The usual performance measure of interest involves costs assessed
for excess inventory, inventory shortages, and item ordering. Alter-
natively, the problem can be formulated with costs on excess inven-
tory and item ordering, subject to a service level constraint involving
inventory shortages. Even for a problem as simple as this one, there
is no closed-form expression to illustrate the inventory cost. Stochas-
tic simulation is performed to estimate the costs. A decision-maker
wants to find the optimal values of (s, S) in order to minimize the
inventory cost. #

In most cases, the predominant use of simulation is for perfor-
mance evaluation, where common performance measures involve
averages and probabilities of delays, cycle times, throughput, and
cost. A typical simulation optimization framework consists of three
levels of operations depicted in Figure 1.2. A simulation model is the

Optimization/Search
‘: »
Stochastic Simulator
—
Search and
Multiple compare
sampling different

alternatives

Figure 1.2. The structure of a typical simulation optimization process.

6 SSO: An Optimal Computing Budget Allocation

core of the framework and serves as the role of performance eval-
uator. For each alternative configuration of the decision variables,
multiple simulation replications (or samples) must be performed in
order to capture the property of randomness and obtain a statistical
estimate. This constitutes the stochastic simulator which consists of
a loop of multiple replications of the simulation model. The high-
est level is the optimization or search engine which may iteratively
search the design space to find the best configuration of decision vari-
ables, where the stochastic simulator is applied to evaluate different
candidate alternatives. These concepts will be further illustrated in
the next section after we define our variables and problem.

While the advance of new technology has dramatically increased
computational power, efficiency is still a big concern when using sim-
ulation for stochastic optimization problems. There are two impor-
tant issues in dealing with the efficiency concern: i) at the level of
stochastic simulator, a large number of simulation replications must
be performed in order to capture randomness and obtain a sound
statistical estimate at a specified level of confidence; and ii) at the
level of optimization, many design alternatives must be well evalu-
ated via stochastic simulation in order to determine the best design
or to iteratively converge to the optimal design. Coupling these two
issues together, the total computation cost grows very quickly. This
becomes especially pronounced when the cost of simulation is not
cheap. For example, one simulation replication of a complex semi-
conductor fab for a month of operations might take as long to run as
solving a very large linear programming problem. There could easily
be millions of random variates generated in the simulation, in which
case one simulation replication can take minutes or hours to finish. A
good evaluation of a single alternative design involving a large num-
ber of replications will then take hours or days to complete. If the
number of design alternatives is large, the total simulation cost can
be prohibitively expensive. A decision-maker is forced to compromise
on simulation accuracy, modeling accuracy, and the optimality of the
selected design. It is not surprising that in several industry applica-
tions, the stochastic nature of the problem is ignored or overlooked.
With the presence of stochastic noise, a search technique may be

Introduction to Stochastic Simulation Optimization 7

misguided so that a system that seems “best” may not be the “true
best”. Hence an effective method to run the simulation efficiently is
strongly desired.

1.2. Problem Definition

The setting is the general optimization problem which is to find a
configuration, or design that minimizes the objective function:

Ieneiél J(0), (1.1)

where 6 is a p-dimensional vector of all the decision variables, com-
monly represented by z in mathematical programming, and © is the
feasible region. If the objective function J(6) is linear in # and O can
be expressed as a set of linear equations in #, then we have a lin-
ear program, or mixed integer linear program if part of the © space
involves an integer (e.g., {0, 1} binary) constraint. Similarly, if J(6) is
convex in 6 and © is a convex set, then we have a convex optimization
problem. In general, © can be continuous, discrete, combinatorial, or
even symbolic. © may be small or arbitrarily huge, well-structured
or structureless.

If J(0) can be evaluated in closed form and the solution can be
found by solving analytically the necessary and/or sufficient condi-
tions for the optimum, then no further discussions are needed. In the
real world, unfortunately, many problems do not fall in this class. The
setting in stochastic simulation optimization, however, presumes that
we have little knowledge on the structure of J and moreover that J
cannot be obtained directly, but rather is an expectation of another
quantity L(f,w), to which we have access, i.e.,

J(0) = E[L(0,w)], (1.2)
where w comprises the randomness (or uncertainty) in the system
and L(A,w) is available only in the form of a complex calculation
via simulation. The system constraints are implicitly involved in the
simulation process, and so are not shown in Equation (1.2).

In our setting, a sample of w represents a sample path or sim-
ulation replication, and L(f,w) is a sample performance estimate
obtained from the output of the simulation replication. For example,

8 SSO: An Optimal Computing Budget Allocation

L(6,w) can be the number of customers who waited more than a
certain amount of time in a queueing system, or average costs in
an inventory control system, or the profit and loss distribution in an
investment portfolio or risk management strategy. Most performance
measures of interest can be put into this general form, including prob-
abilities by using indicator functions and variances by estimating the
second moments.

In the worker allocation problem given in Section 1.1, € is one
alternative of (C1,C2), and © 1is the set collecting all possible
(C1,Cy), 1e., {(Cy,C2)|C1 + Cy = 11, both Cy and Cy are integers
and > 1}. w comprises the randomness including customer arrivals
and services. L(f,w) is an estimation of the average system time for
the first 100 customers from one simulation run given a selection of
(C1,Cy). Our goal is to choose the best combination of (C1,C2), so
that the expected average system time for the first 100 customers,
i.e., J(#), is minimized.

Similarly, in the inventory control problem, € is one possible selec-
tion of (s,S) values, and © is the set collecting all possible (s,.5).
w comprises the demand randomness including when the demands
occur and their sizes. L(f,w) is an estimation of the inventory cost
during a designated period from one simulation run given a selection
of (s,5). Our goal is to choose the best combination of (s, S), so that
J(0), the expected inventory cost, is minimized.

Multiple simulation replications must be performed in order to
have a good estimate of E[L(f,w)]. Let N be the number of simula-
tion samples (replications) and w; be the j-th sample of the random-
ness w. Thus, L(6,w;) is the performance estimate obtained from the
output of the simulation replication j. The standard approach is to
estimate F[L(0;,w)] by the sample mean performance measure

_ 1 &
ENZ (0,w;). (1.3)

As N increases, J() becomes a better estimate of E[L(f,w)]. Under
some mild conditions, J(f) — FE[L(,w)] as N — oo. With the
notations and formulation, the stochastic simulation optimization

Introduction to Stochastic Simulation Optimization 9

Optimization/Search: min J(6)

<

¢‘ A

Stochastic Simulator: J(6)

—
Search and
Multiple compare
samples: different
@1,02,.. 0

_—

v

Figure 1.3. The structure of a typical simulation optimization process.

framework previously given in Figure 1.2 becomes clearer as shown
in Figure 1.3.

As discussed earlier, two primary efficiency concerns in stochastic
simulation optimization are: i) N must be large if we want to have
a sound estimate of E[L(f,w)], which has an ultimate impact on the
final solution that the optimization or search engine can find; and
ii) J(6) must be evaluated for many different # in order to find the
best 6.

It is a good idea to clarify some key terminologies used in the
book. In the literature, there is a wide variety of terms used in
referring to the inputs and outputs of a simulation optimization
problem. Inputs are called (controllable) parameter settings, val-
ues, (decision) variables, (proposed) solutions, candidates, designs,
alternatives, options, configurations, systems, or factors (in design of
experiments terminology). Outputs are called performance measures,
criteria, or responses (in design of experiments terminology). Some
of the outputs are used to form an objective function, and there is a
constraint set on the inputs. Following engineering design common
usage, we will use the terms “design” and “objective function” in
most of this book, with the latter comprised of performance mea-
sures estimated from simulation (consistent with discrete-event sim-
ulation common usage). A “design”, which is a particular setting of

10 SSO: An Optimal Computing Budget Allocation

the variables (6), can be interchangeably called an “alternative”. © is
called the search space or design space. In stochastic simulation, the
replications of different random realizations can also be called sam-
ples, runs, or observations. Thus, if we have generated N samples of
the randomness (i.e., w1, ws,...,wy) and conduct the corresponding
stochastic simulations to obtain N simulation outputs (i.e., L(6,w1),
L(0,w3),...,L(0,wy)), then we may call them as N replications, N
runs, or N samples.

1.3. Classification

Various methodologies have been developed for simulation opti-
mization problems according to the sizes of design space (i.e., ©).
When the size of © is small, exhaustive enumeration is possible, but
when the size is large, search algorithms need to be employed to
explore the design space. These two types of problems are further
discussed as follows.

1.3.1. Design space is small

The case of © being small implies that the design space is discrete
and finite. In this case it is possible to simulate all candidate designs.
Example 1.1 belongs to this category since it has 10 discrete designs.
Example 1.2 can belong to this category if the decision-maker has
only a small number of choices on the values of (s,S). Here is an
example of 10 alternative inventory policies which are defined by the
parameters (s1, S2, ..., s10) = (20, 20, 20, 40, 40, 40, 60, 60, 60, 80) and
(S1, 52, ...,510) = (30,40, 50, 50, 60, 70, 70, 80, 90, 90), respectively.
In this category, enumeration can be used in principle to find the
optimum. We can simply pick the best among a fixed set of designs,
after all designs are simulated. However, unlike in deterministic opti-
mization, “once” is not enough since the objective function estimate
is noisy in the stochastic simulation setting. Hence the main ques-
tion is how to conduct multiple simulation replications effectively for
all designs in order to determine the optimum. This falls into the
statistical ranking and selection literature (see, e.g., Bechhofer et al.

[1995]).

Introduction to Stochastic Simulation Optimization 11

In the context of simulation optimization, the difficulty of the
search has been removed, so the focus is on efficiently allocating
simulation replications among the alternative designs. This will be
extensively discussed in Chapter 2. Among the simulation alloca-
tion approaches, Optimal Computing Budget Allocation (OCBA)
schemes have been developed to significantly enhance the simula-
tion efficiency by smartly allocating the computing budget among
the compared designs [Chen, 1996; Chen et al., 2000, 2008]. Further
details will be presented in Chapters 3 and 4.

1.3.2. Design space is large

When © is large, enumeration becomes too expensive to conduct.
In Example 1.2, suppose we have 1000 alternative options of s, and
another 1000 alternative options of S. Then we have a total of one
million alternative inventory policies for comparison in order to find
the best design. Simulating all of the 1,000,000 alternative designs
becomes infeasible. Some sorts of search like the ones in deterministic
optimization must be applied to avoid simulating all the designs while
ensuring a high chance of finding the best or a good design. Some
approaches towards simulation optimization in this category include
the following:

Model-based approaches. Implicitly we assume there is an under-
lining response function for J(0). Iterative algorithms using statisti-
cal methods search the design space to improve upon the candidate
design. There is also a non-sequential metamodel version (cf. Barton
and Meckesheimer [2006]; Kleijnen [2008]). Some approaches utilize
the gradient of the performance measure with respect to the param-
eters to help the search. The gradient-based approaches mimic gra-
dient methods in deterministic (nonlinear) optimization to carry out
local search. Unlike the deterministic counterpart, gradient estima-
tion in stochastic simulation can be quite challenging due to the noisy
output of stochastic simulation. There are two major types of meth-
ods for gradient estimation: i) One is the finite difference approach
which estimates a derivative by simulating two different but very
close design points. The difference of their objective function esti-
mates is taken to estimate the derivative. One more efficient scheme is

12 SSO: An Optimal Computing Budget Allocation

the simultaneous perturbation stochastic approximation introduced
by Spall [1992], requiring only two points of simulations per gradi-
ent estimate, regardless of the dimension of the vector. The finite-
difference approaches could be called “black box” methods, since no
knowledge of the simulation model is used; ii) The second type of
methods is the direct approaches. In the simulation setting, more is
known about the underlying system, for example, distributions that
generate input random variables. This allows for the implementation
of more efficient direct methods to estimate the gradient. Methods
for direct stochastic gradient estimation include perturbation analy-
sis [Fu and Hu, 1997; Glasserman, 1991; Ho and Cao, 1991], the like-
lihood ratio/score function method [Rubinstein and Shapiro, 1993],
and weak derivatives [Pflug, 1996]. For a more detailed overview on
these methods, the reader is referred to Fu [2006].

Metaheuristics. Opposed to model-based approaches, this app-
roach does not need the assumption of an underlining function, and
is generally a gradient-free approach. This includes approaches such
as genetic algorithms, evolutionary algorithms, simulated annealing,
tabu search, scatter search, cross entropy, nested partition, parti-
cle swarm optimization, ant colony optimization, and other itera-
tive and population-based algorithms from deterministic (nonlinear)
optimization. Most of these metaheuristics start with an initial pop-
ulation of design(s). Then elite design(s) is(are) selected from this
population of designs in order to generate a better population from
iteration to iteration in the search process. The main differences
between these approaches lie on how the new generation of designs
are created, and how the elite designs are selected.

This book focuses on metaheuristics approaches, in which simu-
lation plays a role of performance evaluation while the design space
is explored and searched in the “optimization” phases as shown in
Figures 1.2 and 1.3. Most search methods utilize the obtained infor-
mation from the simulated designs to iteratively determine the search
direction for the next step and hopefully will converge to the opti-
mal design. The challenge is that at each iteration, many designs

Introduction to Stochastic Simulation Optimization 13

must be accurately simulated in order to obtain the guiding infor-
mation for subsequent iterations, which can be very time consuming
for stochastic problems. We will address this issue in Chapter 7.

1.4. Summary

In summary, the requirement of multiple replications for each design
alternative is a critical concern for efficiency of stochastic simulation
optimization. This concern becomes especially pronounced when the
cost of simulation or sampling is not cheap. This book tries to answer
the question “what is an optimal (or the most efficient) way to con-
duct all the simulations in order to find a good or optimal solution
(design)?” The goal is to minimize the total simulation budget while
achieving a desired optimality level.

This page intentionally left blank

Chapter 2

Computing Budget Allocation

As discussed in Chapter 1, the fact that a large number of simula-
tion replications are often required to effectively distinguish between
competing designs is a major challenge that often inhibits stochastic
simulation optimization. The computation cost that accompanies the
required simulation replications is expensive and often unacceptable.
This book poses a potential solution to this challenge by employing
analytic techniques to efficiently allocate the computing resources
to each simulation experiment via the Optimal Computing Budget
Allocation (OCBA) approach. The OCBA approach is complemen-
tary with the advance of new computational technology.

In this chapter, we introduce the premise of OCBA and give intu-
itive explanations of the most basic algorithms. We also motivate the
need of variant allocation schemes under different scenarios and dis-
cuss its impacts if different computing budget allocation strategies
are adopted.

For clarity, we will begin our examination by considering the case
of a discrete and small design space. More general cases will be dis-
cussed at the end of this chapter.

2.1. Simulation Precision versus Computing Budget

Unlike deterministic optimization, “once” is not enough for stochas-
tic simulation since the objective function estimate is noisy. As a

15

16 SSO: An Optimal Computing Budget Allocation

result, multiple simulation replications are required in order to gen-
erate an accurate estimate of the objective function, E[L(0,w)]. As
formulated in Section 1.2, E[L(6,w)] is estimated by the sample mean
performance measure

N
J(0) = % 5" L(6,wj), (2.1)
=1

which is obtained via N simulation replications. Under some mild
conditions, J(§) — E[L(f,w)] as N — oco. It is impossible to gen-
erate an infinite number of simulation replications. However, as N
increases, J(#) becomes a better estimate of E[L(f,w)]. The usual
textbook approach (e.g., Law and Kelton [2000]; Banks et al. [2004])
for estimating the accuracy of a single performance measure is to
utilize confidence intervals (e.g., a 95% confidence interval for mean
system time may be 66 minutes +5 minutes). Another measure of
precision is provided by the standard error
s
\/N,

where s is the sample standard deviation. Additionally, when the
estimated performance is not heavily skewed, an approximation of
the 95% confidence interval is constructed by taking two standard
errors on both sides of the sample mean.

Based on the above methods, greater precision can be obtained by
increasing the number of simulation replications, N. Roughly speak-
ing, the precision of simulation output enhances at the rate of v/N.
However, by increasing N, the total computation cost will also
increase.

There are various methods to counteract this increased computa-
tion cost. On one hand, one can buy a faster computer or optimize
the simulation programming to expedite execution. Alternatively,
one can apply efficient simulation algorithms. There exists a large
amount of literature on innovative methods for improving simula-
tion efficiency (see, e.g., Bratley et al. [1987]; Law and Kelton [2000]
for a nice overview). Instead of performing the required N simu-
lation replications faster, some of these approaches apply variance
reduction techniques intended to reduce the simulation variance or

Computing Budget Allocation 17

standard deviation, s. As this variance is reduced, equal simula-
tion precision can be obtained within less simulation replications.
Among them, Control Variates (e.g., Nelson [1990]) attempt to take
advantage of correlation between certain random variables to obtain
the desired variance reduction. Antithetic Variates method induces
negative correlation between pairs of simulation runs (e.g., Cheng
[1982, 1984]; L'Ecuyer [1994]; Wilson [1983]) so that the variance
of the sample mean estimator can be reduced. Glynn [1994] and
Heidelberger [1993] deal with rare event problems by developing an
importance sampling scheme. Another variance reduction approach
for rare-event problems is splitting (e.g., Glasserman et al. [1999];
Garvels et al. [2002]; L’Ecuyer et al. [2006]). The basic idea of split-
ting is to create separate copies of the simulation whenever the sim-
ulation gets closer to the rare-event of interest. It has been shown
that both splitting and importance sampling have potential to sig-
nificantly reduce the variance for rare-event problems. It is worthy
noting that the use of faster computers, optimized programming,
or most variance reduction techniques are complementary with the
development of the computing budget allocation methods presented
in this book.

2.2. Computing Budget Allocation for Comparison
of Multiple Designs

Traditionally, when using simulation to compare the performance of
multiple designs, one gradually increases the computing budget (i.e.,
the number of simulation replications) for each alternative design
until the standard error of the estimator is sufficiently small (i.e., the
confidence interval for estimation is satisfactorily narrow) to select
the most preferable design. One simple approach is to use an identical
number of replications for each design, which can be inefficient, e.g.,
if one design has very low variance, then it may only require one or
two simulation replications to estimate its performance.

Several approaches have been explored to improve the efficiency
of selecting the best design. Approaches to address this problem fall
under the well-established branch of statistics known as ranking and

18 SSO: An Optimal Computing Budget Allocation

selection or multiple comparison procedures (see Bechhofer et al.
[1995]). A useful notion defined in statistical ranking and selection
procedures is the concept of correct selection, which refers to choos-
ing a design (or configuration of the input variables) that optimizes
the objective function. Correct selection can be defined as “correctly
selecting the true best design”, where the best is determined with
respect to the smallest (or largest) mean.

Ranking and selection procedures introduce the concept of an
indifference zone which provides a measure of closeness that the
decision-maker tolerates away from absolute optimality. This is anal-
ogous to the good enough sets defined in ordinal optimization [Ho
et al., 2007]. In this case, correct selection corresponds to choosing a
design whose objective function value is within the indifference zone
of the optimal value. The usual statement of performance guarantees
for these procedures is to specify a lower bound on the probability of
correct selection. Dudewicz and Dalal [1975] developed a two-stage
procedure for selecting a design that is within the indifference zone.
In the first stage, all systems are simulated through some replica-
tions. Based on the results of the first stage, the number of addi-
tional simulation replications to be conducted for each design in the
second stage is determined in order to reach the desired probabil-
ity of correct selection. Rinott [1978] presents an alternative way to
compute the required number of simulation replications in the sec-
ond stage. Many researchers have extended this idea to more general
ranking-and-selection settings in conjunction with new development
(e.g., Bechhofer et al. [1995]; Matejcik and Nelson [1995]; Goldsman
and Nelson [1998]). However, indifference-zone procedures determine
the number of simulation replications based on a statistically con-
servative, least favorable configuration assumption. To some extent,
least favorable configuration is a worst case condition when multiple
designs are compared. Therefore, most well-known indifference-zone
procedures are very conservative.

To improve the efficiency of ranking and selection, several
approaches have been explored. Intuitively, to ensure a high prob-
ability of correct selection, a larger portion of the computing budget
should be allocated to those designs that are critical to the process

Computing Budget Allocation 19

of identifying the best design. One of the approaches is the Optimal
Computing Budget Allocation (OCBA) by Chen [1995] and Chen
et al. [1997, 2000]. The approach relies upon the usage of both the
sample means and variances in the allocation procedures, rather than
assuming the least-favorable condition, and it intends to maximize
the probability of correct selection. In the next section, we will fur-
ther explain the ideas.

2.3. Intuitive Explanations of Optimal Computing
Budget Allocation

As mentioned above, to ensure a high probability of correctly select-
ing an optimal design, a larger portion of the computing budget
should be allocated to those designs that are critical in identifying
the best design. In other words, a larger number of simulations must
be conducted for critically competitive designs in order to reduce the
estimation variance of these designs and maximize the probability
of correct selection. On the other hand, limited computational effort
should be expended on non-critical designs that have little chance
of representing the best design (even if these designs have high vari-
ances). Based on this theory, the following questions remain: What
are the “critical” designs? How should simulation time be allocated
among critical and non-critical designs? This is a crucial question in
the determination of efficient computing budget allocation. It turns
out that the answer actually depends on what the current condition
and our objective are.

We begin with the goal of maximizing the probability of correctly
selecting the best design and explain the ideas using a series of sim-
ple examples. Suppose that in the inventory control problem (Exam-
ple 1.2), five alternative values for (s, .S) are provided to us. For each
of these values we want to conduct simulation to find the one with
the minimum expected cost. Suppose we conduct some initial simu-
lation replications for all five alternative designs, and consider some
possible outcomes from the first-stage estimates, in terms of the esti-
mated inventory costs and associated 99% confidence intervals. The
question of computing budget allocation is how we should allocate

20 SSO: An Optimal Computing Budget Allocation

additional simulation replications if we want to continue more sim-
ulations to enhance the probability of correctly selecting the best
design.

Case 2.1. A trivial example

Figure 2.1 gives a hypothetical example of possible results from the
initial replications, showing the obtained 99% confidence intervals
along with the accompanying mean estimator (represented as the line
in the middle of the confidence interval). While there is uncertainty in
the estimation of the performance for each design, it is obvious that
designs 2 and 3 are much better than the other designs. As a result,
it is sensible to allocate few or no simulation replications to designs
1, 4, and 5; instead allocating the bulk of the simulation budget to
designs 2 and 3 provides more insight into the optimal solution. #

As discussed earlier, most widely used indifference-zone proce-
dures assume least-favorable conditions, and as a result, they are
extremely conservative and can be very inefficient. In addition, those
procedures essentially allocate the simulation replications to each
design proportional to the (estimated) variance, and do not con-
sider the estimated means. In Case 2.1, the three worst designs have
larger variance than the two best designs; as a result an allocation
based solely on variances may waste resources on significantly infe-
rior designs. In addition, they may not be able to distinguish which

Cost

4 5
Design

1

Figure 2.1. 99% confidence intervals for 5 alternative designs after preliminary
simulation in Case 2.1.

Computing Budget Allocation 21

of the two better designs is optimal. Thus, intuitively optimal sim-
ulation allocation would result in limited simulation of designs 1, 4,
and 5, and more extensive simulation of designs 2 and 3.

One natural question that results from this “screening” approach
is whether to always stop simulating poor performing designs or to
simulate a very low number of replications of these designs. The
answer is not necessarily always the same for all problem sets. This
question is further explored in the following example.

Case 2.2. More simulation on inferior design

Again, we conduct some initial simulation replications for all five
alternative designs. In this case, we assume the results produce the
output shown in Figure 2.2. There is a significant amount of uncer-
tainty in the performance estimation, but it appears that design 2
is better than designs 3, 4, and 5. Design 1 has the worst mean
estimation but also has very large variance that overlaps with the
performance of design 2.

For efficient simulation budget allocation, designs 3, 4, and 5 can
be stopped because they are obviously inferior to design 2. Even
though design 1 has the highest estimated inventory cost, it is a com-
petitor with design 2 due to its high variability. To ensure design 2
is the correct selection, more simulation must be conducted on both
designs 1 and 2. In this case, it is more effective to simulate design 1

Cost

1 2 3 4 5
Design

Figure 2.2. 99% confidence intervals for 5 alternative designs after preliminary
simulation in Case 2.2.

22 850: An Optimal Computing Budget Allocation

because its variance is significantly higher than design 2; as a result,
more simulation on design 1 will result in greater variance reduc-
tion and higher probability of correct selection. Thus, in this sce-
nario, design 1 should receive most of the additional simulation, even
though it is the worst design. #

Case 2.3. Most common scenario

In Cases 2.1 and 2.2, some designs dominate the others and so we
have a good idea about how the additional simulation budget should
be allocated. However, most cases are not as trivial as those shown
above. We consider a more common scenario here.

Figure 2.3 shows the output after initial simulations. In this case,
some designs seem better, but none are clearly better than all the
others, since all the confidence intervals overlap. In situations such
as this, it is not straightforward to determine which designs can
be eliminated and which designs should receive more simulation
budget. #

As shown in Case 2.3, a good computing budget allocation is not
trivial. Ideally, we would like to allocate simulation replications to
designs in a way that maximizes the simulation efficacy (i.e., the
probability of correct selection). As discussed above, this approach
is intuitively dependent upon the mean and variance of each design.
Chapters 3 and 4 will extensively discuss the specific relationship

Cost

1 2 3 4 5
Design

Figure 2.3. 99% confidence intervals for 5 alternative designs after preliminary
simulation in Case 2.3.

Computing Budget Allocation 23

between mean, variance, and the amount of simulation replications
that should be optimally allocated to each design.

Moreover, a good computing budget allocation depends on not
only the relative means and variances of all designs, but also the
specific objective that we would like to achieve. In previous cases,
our objective has been to choose the best design correctly. If we
employ different objectives, the computing budget allocation may be
entirely different. This issue is illustrated in the following two cases.

Case 2.4. Selecting a subset

In this example, instead of choosing the best design, we would like
to choose all the top-m designs (i.e., to determine which designs
are among the best top-m, where m > 2). Similarly, we need to con-
duct initial simulation replications for all five alternative designs. The
results from these preliminary simulations are shown in Figure 2.4.
In this case, the inventory cost estimations are in ascending order
and all designs have similar variance.

Design 1 seems to be the best design and design 2 is a close
competitor. All other designs have steadily decreasing performance.
If our objective is to correctly select the best design, it is reasonable
to stop simulating designs 3, 4, and 5, and only continue simulating
designs 1 and 2.

H
H
HH

4 5
Design

Figure 2.4. 99% confidence intervals for 5 alternative designs after preliminary
simulation in Case 2.4.

24 S§50: An Optimal Computing Budget Allocation

However, if the decision-maker wants to identify the top-2
designs, instead of selecting the best design, how should we continue
allocating simulation budget? Since design 1 is much better than
designs 3, 4, and 5, it is clear that design 1 is probably one of the
top-2 designs. As a result, there is minimal need to continue simulat-
ing design 1. On the other hand, designs 4 and 5 are much worse than
the other designs and so they have little chance to be ranked within
top-2. Therefore, there is not much value to simulate designs 4 and
5 either. To allocate computing budget efficiently, it is reasonable to
concentrate simulation time on designs 2 and 3 because they are the
“critical designs” in determining the top-2 designs.

Following this same idea, if we are interested in selecting the sub-
set of top-3 designs, it is best to simulate most on designs 3 and 4. If
we want to determine the worst design, an efficient simulation budget
allocation would allocate most of the simulation budget to designs 4
and 5. +#

The various scenarios in Case 2.4 demonstrate that the selection
of “critical” designs for efficient simulation depends on the objec-
tive. More information on efficient computing budget allocation for
selecting an optimal subset of top-m designs will be presented in
Chapter 5.

Case 2.5 Multiple objectives

When there is more than one objective, how to select “best” designs
will be different and so how the simulation budget should be allo-
cated will be vastly different. Consider the same inventory problem
(Example 1.2). Other than the inventory cost, we might also like
to minimize the expected number of backlogged quantity. Similar to
previous examples, suppose the results from preliminary simulation
are shown in Figures 2.5 and 2.6. Figure 2.5 represents the estimation
of inventory cost, while Figure 2.6 shows backlog quantity. Ideally,
we would like to minimize both objectives.

First, we tentatively ignore the estimation variances and focus on
the sample means. In terms of minimizing inventory cost, design 1
is the preferred option. However, design 2 has the minimum backlog
quantity. Hence designs 1 and 2 should intuitively receive the most

Computing Budget Allocation 25

H
H
HH

4 5
Design

Figure 2.5. 99% confidence intervals (inventory cost) for 5 alternative designs
after preliminary simulation in Case 2.5.

H
H H H

Figure 2.6. 99% confidence intervals (backlog quantity) for 5 alternative designs
after preliminary simulation in Case 2.5.

Des1 gn

additional simulation replications. Designs 3, 4, and 5 are worse than
design 1 and 2 for both objectives; in other words, designs 3, 4, and 5
are dominated by designs 1 and 2. Designs 3, 4, and 5 are called dom-
inated designs. In general, we aim at selecting all the non-dominated
designs, which are probably designs 1 and 2 in this example.

When the estimation variance (i.e., simulation noise) is consid-
ered, design 3 may also require more simulation because it is a
close competitor to designs 1 and 2 and its confidence interval over-
laps with the confidence interval for design 2 on inventory cost and
overlaps with the confidence interval for design 1 on the backlog

quantity. +#

26 SSO: An Optimal Computing Budget Allocation

Efficient computing budget allocation for multi-objective problem
will be extensively discussed in Chapter 6.

2.4. Computing Budget Allocation for Large
Simulation Optimization

As discussed in Section 1.3, when the design space © is large, it is too
expensive to simulate all candidate designs. Some optimization search
techniques must be used to explore and search the design space. In
this setting, simulation plays the role of a performance evaluator.
Most search methods utilize the information obtained from the sim-
ulation evaluation to iteratively determine the search direction for
the next step and hopefully converge to an optimal or good design
after some iterations. For stochastic simulation, such a search can be
challenging due to simulation noise. We give an intuitive explana-
tion using a simple local search method on a simple example which
consists of a unique optimal design as shown in Figure 2.7.

Suppose we have randomly sampled two designs points: 1 and x».
After evaluating these two designs, we can determine the search direc-
tion to generate new designs for the next iteration. If the simulation
is deterministic (i.e., there is no noise), this approach can identify a
good search direction shown as the thick arrow in Figure 2.7.

However, when simulation is stochastic, the determination of
search direction can be challenging. Figures 2.8 and 2.9 give two

Cost

* "0
“
4,y ®
LT .s®
Ssguguus®

X1 X X
Design

Figure 2.7. Determination of search direction for minimizing an objective
function in a deterministic problem.

Computing Budget Allocation 27

Cost

’0
**
.‘

Y .
...lllllll“‘

X1 X2 X
Design

Figure 2.8. Determination of search direction when simulation noise is present.

Cost

’0
‘Q
*
. o
L] .
LT T T TT L L

X1 X2 X
Design

Figure 2.9. Determination of search direction when simulation noise is present.

hypothetical examples of possible results from the initial simula-
tions, showing the obtained 99% confidence intervals along with the
accompanying mean estimator. Due to the simulation noise, one may
obtain the wrong search direction if the simulation precision is not
high enough. The concern usually becomes even more serious when
J(x1) and J(z2) are very close because very small noise can result in
a wrong search direction. Thus one would need an even higher sim-
ulation precision in order to avoid a wrong search direction, which
implies a very high simulation cost.

This is generally true for all of the search methods. On another
example, genetic algorithms (e.g., GA, Holland [1975]; Goldberg
[1989]) choose some good designs from a subset of candidate designs

28 S§S50: An Optimal Computing Budget Allocation

via simulation evaluation. These chosen good designs are then used
to generate a new subset of designs for next iteration. By generating
decedent designs from good parent designs, GA iteratively converges
to an optimal design under some conditions. With simulation noise,
if the simulation precision is not high, we may end up with select-
ing inferior designs as parent designs to make the next generation,
which may misguide the direction of search or slow down the conver-
gence rate.

From the computing budget allocation perspective, we aim to allo-
cate the computing budget in a smarter way so that the search infor-
mation can be correctly estimated in a most efficient manner. In the
example of GA, we do not have to equally simulate all designs in the
subset in order to find the good ones. Instead, we want to correctly
choose the good designs using a minimum computing budget. This is
similar with what we had explained in Case 2.4. Naturally, different
search methods require different information and so the optimal com-
puting budget allocation schemes are different. Extensive discussions
will be given in Chapters 7 and 8.

2.5. Roadmap

Starting in the next chapter, we will present a series of optimal
computing budget allocation (OCBA) methods designed for different
problems. Chapter 3 lays foundations and presents a thorough deriva-
tion for OCBA on selecting the best design. Chapter 4 demonstrates
its effectiveness using a series of numerical examples. Some advices
about numerical implementation of the OCBA approach are offered.
Instead of selecting the best design, Chapter 5 presents an OCBA
algorithm for selecting the optimal subset of top-m designs. Chap-
ter 6 deals with the computing budget allocation when a decision-
maker is facing multiple objectives. Chapter 7 presents a framework
on how to integrate the search methods (metaheuristics) with the
OCBA method and shows some examples of such integration. Chap-
ter 8 gives a generalized view of OCBA, and shows several examples
on how the notion of OCBA can be extended to problems beyond
simulation and/or optimization.

Chapter 3

Selecting the Best from a Set
of Alternative Designs

Starting from this chapter, we will develop effective methodologies
for Optimal Computing Budget Allocation (OCBA) in stochastic
simulation optimization. We start with a simple case, where © is
finite and small enough so enumeration can be used in principle to
find the optimum. Specifically,

©={6;,i=1,2,...,k}
where k is relatively small (e.g., 5 ~ 100) as compared with other
cases we will consider in later chapters. The alternative design with
particular setting 6; is called design i. L(#;,w) is a sample perfor-
mance estimate obtained from the output of one simulation repli-
cation for design ¢. After performing N; simulation replications for
design i, J; = J(6;) = E[L(0;,w)] is estimated using its sample mean

_ 1 Ni

J; = L(0;,wij),
]:1

s

where w;; is the j-th simulation sample of w for design .

Section 3.1 presents a Bayesian framework which forms the basis
of the OCBA methodology development. The rationale for the adop-
tion of the Bayesian model is the ease of derivation of the solution
approach. While the Bayesian model has some advantages in offering
intuitive explanations of the methodology development and result-
ing allocation, the classical (frequentist) model works equally well in

29

30 SSO: An Optimal Computing Budget Allocation

terms of developing the OCBA schemes. For most of this chapter, we
will develop OCBA schemes under the Bayesian setting. At the end
of this chapter (Section 3.7), we will consider one OCBA problem
and show that the classical model works equally well and actually
yields the same solution. Further details about comparison of the
Bayesian model with the classical model for the simulation output
modeling can be found elsewhere (e.g., Bernardo and Smith [1984];
Inoue and Chick [1998]; Inoue et al. [1999]).

3.1. A Bayesian Framework for Simulation
Output Modeling

Under a Bayesian model, we assume that the simulation output
L(0;,w;;) has a normal distribution with unknown mean J;. The vari-
Z»Q can be known or unknown. After the simulation is performed,
a posterior distribution of J;, p(J;|L(6;,wi;),j = 1,2,...,N;), can be
constructed based on prior knowledge on two pieces of information:

ance o

(i) prior knowledge of the system’s performance, and (ii) current
simulation output.

First, consider the case where the variance 0'12 is known. Further
assume that the unknown mean J; has the conjugate normal prior
distribution N (n;,7?). Under this assumption, the posterior distri-
bution for any simulation output still belongs to the normal family
(DeGroot [1970]). In particular, the posterior distribution of J; is

o2n; + N2 J; o}
, :
JZ-Q —i—Ni’U? JZ-Q —i—NiU?

Suppose that the performance of any design is unknown before con-
ducting the simulation, a non-informative prior can be applied and
so v; is an extremely large number. Then the posterior distribution
of J; is given by

2
p(Ji|L(0s,wij), 5 =1,2,...,N;) = N <ji, &> -

2

If the variance o; is unknown, a gamma-normal conjugate prior

can be applied. Inoue and Chick [1998] show that the posterior

Selecting the Best from a Set of Alternative Designs 31

distribution of J; has a t distribution with mean .J;, precision N;/ 01-2,
and NV; — 1 degrees of freedom. In addition, DeGroot [1970] offers
several other conjugate families of distributions for simulation sam-
ples from non-normal distributions, such as Poisson, negative bino-
mial, and exponential distributions.

For ease of presentation, in this book we assume that the variance
is known, and the simulation output samples L(6;,w;;) are normally
distributed and independent from replication to replication (with

mean J; and variance o?

K]
The normality assumption is typically satisfied in simulation, because
the output is obtained from an average performance or batch means
(cf. Bechhofer et al. [1995]), so that Central Limit Theorem effects

usually hold.

), as well as independent across designs.

Assume that the unknown mean J; has a conjugate normal prior
distribution and consider non-informative prior distributions, which
implies that no prior knowledge is available about the performance
of any design before conducting the simulations. For ease of notation,
let J;,i =1,...,k, denote the random variable whose probability dis-
tribution is the posterior distribution of design i. Thus the posterior
distribution of J; is

Ji~ N <J' 0—12> (3.1)

1 19 Nl 9 .

which implies that we are becoming more confident with the sam-
ple mean estimator when N; increases as the variance decreases.
This is consistent with the classical statistical model, in which as
N; increases, J; becomes a better approximation to the true mean
in the sense that its corresponding confidence interval becomes
narrower.

After the simulation is performed, J; can be calculated (‘712 is
approximated by the sample variance in practice). An advantage of
Bayesian model is that we can say more about the unknown mean
in a more straightforward way. For example, what is the probability
that .J; is less than some number a, i.e., P{.J; < a}? Another useful
question is “what is the probability that design 1’s mean is less than
design 2’s mean, i.e., P{jl < jg}”. With the normality assumption,
the answers to these questions can be calculated easily.

32 850: An Optimal Computing Budget Allocation

Define

1 22
o(x) = meT, standard normal probability density

function, and

O(x) = / ©(t)dt, standard normal cumulative distribution

function.

Suppose the random variable X is normally distributed with mean
p and variance 2. For a constant a,

P{X<a}:P{X;’“‘<a_“}:q><a_“>, and (3.2)

g g

P{X>a}:1—P{X<a}:1—<I>(“_“):@(“_a).

o o
(3.3)
In addition,
P{X <0l=a (_—“> , and
o
_ o
P{X>O}—<I>(—>.
o
When two designs are compared, say designs 1 and 2, since
L R B
_ ~ N _ Z1 4, 72
Jo — N (JQ Ji, N + N2>,
_ . Jo —J
P{Jy < by =P{J,—J; >0} = S (3.4)
Nt

Example 3.1. There are two designs. After conducting 4 indepen-
dent simulation replications for each design, we obtain the follow-
ing simulation output: J; = 10, J, = 20, 07 = 100, and o5 = 81.
What is P{J; < 15}, P{J, > 15}, P{J; < 15 and J, > 15} and
P {jl < j2}7

Selecting the Best from a Set of Alternative Designs 33

Solution. Based on the simulation output, the posterior distribu-
tions for the unknown means are

Ji ~ N(10,25) and .Jy ~ N(20,20.25).

Thus,
15 —-10

\/%
20 — 15
V20.25
Since J; and J are independent,

P{J; <15 and .Jy > 15} = P{J; < 15}*P{Jy > 15} = 0.729.
On the other hand,

P{J, <15} = (> —0.841, and

P{J,>15} =& () = 0.867.

10

P{h<J}=® | —r
(o< o} <\/25+20.25

> = 0.931.
m]

Example 3.2. Continue Example 3.1. Suppose the estimated vari-
ances are smaller: 0% =40, and 03 = 36. All other settings remain the
same. What are P{J; <15}, P{J > 15}, P{Ji <15 and J, > 15},
and P{J1 < JQ}?

Solution. Since .J; ~ N(10,10) and Jo ~ N(20,9), we can calculate
15— 10
V10
20— 15
Vo
P{J; <15 and J; > 15} = P{J, < 15} * P{J, > 15} = 0.898,

P{J; <15} = (> = 0.943,

P{Jy>15} =& (> = 0.952,

and
10

P{jl < jg} =0 <\/ﬁ

> = 0.989.

O

Example 3.2 shows that smaller variance results in higher
confidence on what we can infer about the unknown means which
we try to estimate using simulation. Not surprisingly, the compari-
son probability between designs 1 and 2 also becomes higher.

34 S850: An Optimal Computing Budget Allocation

To improve the simulation precision or enhance these probabil-
ities, we have to increase the number of simulation replications.
Another advantage of Bayesian framework is that we can easily esti-
mate the sensitivity information about how these probabilities would
change if we add some simulation replications before actually con-
ducting the additional simulation replications.

Let A; be a non-negative integer denoting the number of addi-
tional simulation replications we want to conduct for design i. If A;
is not too large, we can assume the sample statistics will not change
too much after the additional simulations. Before the A; simulation
replications are performed, an approximation of the predictive pos-
terior distribution for design i with A; additional is

_ o2
N(J, %) .
(J N; + Ai) (3:5)

The approximation of the predictive posterior distribution can
be used to assess the sensitivity information before additional sim-
ulations are actually performed. Example 3.3 demonstrates this
approach.

Example 3.3. Continue Example 3.1. Suppose we want to con-
duct additional 16 simulation replications. Before the simulations
are conducted, we want to estimate how those probabilities would
be changed. Consider the following three scenarios: (i) add all the 16
replications to design 1, (ii) add all the 16 replications to design 2,
and (iii) equally split the 16 replications between designs 1 and 2,
i.e., 8 replications for each. For each scenario, please use the approx-
imation of the predictive posterior distribution in Equation (3.5) to
estimate P{.J; < 15}, P{J, > 15}, P{J, < 15 and .J, > 15}, and
P{J, < J}, if the additional simulations are performed?

Solution. In scenario (i), only design 1 receives additional 16 repli-
cations. Therefore the approximate predictive posterior distribution
for design 1 becomes

. 100
~ N (10,——).
J1 (0’4—1—16)

Selecting the Best from a Set of Alternative Designs 35

Thus,

15 —-10
NG
which is higher than that before adding the 16 additional replica-
tions. Since no additional simulation budget is allocated to design 2,

P{J, > 15} remains the same as that in Example 3.1. So

P{J, <15 and Jp > 15} = 0.719,

P{J; <15} = ® () =0.987,

and
20-10
/100 | 81
It1i6 T 1
which is also higher than that in Example 3.1.
Similarly, we can calculate the probabilities for scenario (ii) and

P{Ji< b} =9 =0.977,

(iii). Specifically,

~ ~ 20 — 10
P{h<d}=0| ——c—] =0.968
100 , 8l
4 T I+i6
in scenario (i), and
~ = 20 —-10
P{h<h)=0|———o—] =099

100 , 81
1ts T 1+8
in scenario (iii), which is the highest one among these three scenarios.

Details of the results are presented in Table 3.1. -

Example 3.3 shows that the resulting probabilities are different if
we allocate the computing budget differently. As discussed later in

Table 3.1. Predictive probabilities in Example 3.3.

A Ay P{Jy <15} P{Ja>15} P{Ji<15and J,>15} P{J, < Jo}

0 0 0.841 0.867 0.729 0.931
16 0 0.987 0.867 0.855 0.977
0 16 0.841 0.994 0.836 0.968

8 8 0.958 0.973 0.932 0.995

36 SSO: An Optimal Computing Budget Allocation

the chapter, we want to allocate the simulation replications in a way
that the comparison probability is maximized. In that sense, scenario
(iii) is better than the other two scenarios in the Example 3.3 because
it results in a higher P{jl < jg}

3.2. Probability of Correct Selection

After performing V; simulation replications for design i, J; is esti-
mated using its sample mean J; based on simulation output. Since
we want to choose a design with minimum mean, it is a good idea to
choose the design with minimum sample mean, i.e.,

b = argmin J;.

Design b is usually called an observed best design. Since the sample
mean estimator has some variability, design b is not necessarily the
one with the smallest unknown mean performance even though it
has the smallest sample mean.

Define the probability of correct selection (P{CS}) as the proba-
bility that design b is actually the best design (i.e., with the smallest
mean, hence the true best design).

P{CS} = P{design b is actually the best design}
= P{Jb < Jii # b|L(9“€U),j =1,...,N,i=1,2,... ,k’}
(3.6)

Using Equation (3.1) to simplify the notation, we rewrite Equa-
tion (3.6) as

P{CS} = P{J, < J;,i # b}. (3.7)
Since J; ~ N (J;, ;'V—i), as N; increases, the variance of .J; decreases,
and so P{CS} increases. The next question is how we can estimate
P{CS}. As shown in Section 3.1, P{CS} can be estimated easily if
there are only 2 designs. When there are more than 2 designs, P{CS}
can then be estimated using a Monte Carlo simulation. However,
estimating P{CS} via Monte Carlo simulation is time-consuming.
Since the purpose of budget allocation is to improve simulation
efficiency, we need a relatively fast and inexpensive way of estimating

Selecting the Best from a Set of Alternative Designs 37

P{CS} within the budget allocation procedure. Efficiency is more
crucial than estimation accuracy in this setting. We present two
approximations which will serve as the basis for both methodological
and theoretical development of computing budget allocation schemes.
We refer to either one as the Approzximate Probability of Correct
Selection (APCS). These two different forms of APCS are devel-
oped using common approximation procedures used in simulation
and statistics literature [Brately et al., 1987; Chick, 1997; Law and
Kelton, 2000]. They are

o APCS-B refers to the approximation using the Bonferroni inequal-
ity; and
e APCS-P refers to the approximation using a product form.

Specifics and their properties are given in the following lemmas.

Lemma 3.1. The approximate probability of correct selection using
the Bonferroni inequality
k ~ ~
APCS-B=1- > P{J,>J;}
i=1,i#b

is a lower bound of P{CS}.

Proof. Let Y; be a random variable. According to the Bonferroni
inequality, P{ﬂle(Yg <0)}>1- Zle[l — P{Y; < 0}]. In our case,
Y, is replaced by (jb— jl) to provide a lower bound for the probability
of correct selection. That is,

k
P{CSy=P¢ () (Jy—Ji<0)
i=1,i#£b
k ~ ~
>1- Y [1-P{J,— Ji <0}]
i=1,i#b
k ~ ~
=1- Z P{J, > J;} = APCS-B.
i=1,i#b 0

38 SS0: An Optimal Computing Budget Allocation

APCS-Bis much simpler to estimate. Since APCS-B is a lower bound
of P{CS}, we are sure that P{CS} is sufficiently high when APCS-B
is satisfactory. Similarly, we will show that APCS-P is also a lower
bound of P{CS} in Lemma 3.2.

Lemma 3.2. The approximate probability of correct selection in a
product form

k
Apcs-P= [P{J<Ji}
i=1,i#b

is a lower bound of P{CS}.

Proof. For a complete and rigorous proof, please see Chen [1996].
Here we give a quick intuitive explanation using a simple case where
k=3 and b = 1, i.e., there are 3 designs and design 1 is selected
because it has the smallest sample mean.

P{CS} = P{jl < j2 and jl < j3} = P{jl < min(jg, jg)}
> P{jl < min(jg, jg)}*P{jl < max(jg, jg)}

~ P{jl < jz}*P{jl < j3} = APCS-P. 0

Lemma 3.3. Let N; = oT. If a; > 0 for all i, as T — oo, both
APCS-B and APCS-P are asymptotically close to P{CS}.

Proof. This lemma can be easily established. Note that

jb—ji~N<5bi,%+%).
As T — oo, N; — oo for 4. Since d; < 0,
P{J, > J;} = P{J, — J; > 0} — 0,
and
P{J, < Ji} =1—P{J,> J;} — 1.

Therefore APCS-B — 1.0 and APCS-B — 1.0. Since both APCSs are
lower bounds of P{CS} and P{CS} < 1.0, either APCS is asymp-
totically close to P{CS}. O

Selecting the Best from a Set of Alternative Designs 39

Lemma 3.4. Define P{IS} as the probability of incorrect selection
which equals 1—1~3{CS~}. Let N; = oy T If a; > 0 for alli, as T — oo,
(k — 1) max; P{Jy, > J;} > P{IS} > max; P{J, > J;}.

Proof. See Glynn and Juneja [2004]. O

Lemma 3.4 implies that the probability of missing the best design
converges to 0 as T' — oo, provided that each design receives a non-
zero proportion of computing budget. Also, the convergence rate of
P{IS} is the same as that of the slowest term of P{J, > J;}.

APCS can be computed very easily and quickly; no extra Monte
Carlo simulation is needed. Numerical tests show that the APCS
approximation can still lead to highly efficient procedures (e.g., Chen
[1996]; Inoue and Chick [1998]; Inoue et al. [1999]). Furthermore,
sensitivity information on the P{CS} with respect to the number of
simulation replications, IV;, which is central to the allocation of the
computing budget — can be easily obtained. APCS is therefore used
to approximate P{CS} within the budget allocation procedure.

Example 3.4. Suppose there are three designs and 8 simulations
replications are conducted for each design. Based on the simulation
output, the estimated sample means are 10, 20, and 22, and their
variances are 100, 81, and 144. What are APCS-B and APCS-P?

Solution. Based on the simulation output, b = 1 and the posterior
distributions for the unknown means are

~ 100
Jl ~ N <10, ?> 5

- 1
Jo~ N <20, %) , and
~ 144
Jy~ N (22, _> ,
8
Applying Equation (3.4), we have

20—-10

100 81
Vs T%

P{J, < Jy} = = 0.9822,

40 SSO: An Optimal Computing Budget Allocation

and
- ~ 22 —10
P{/h < J3} =P | ——| = 0.9851.
/100 | 144
8 8
Therefore,

APCS-P = P{J, < Jo}*P{J; < J3} = 0.9822*0.9851 = 0.9676,
and
APCS-B=1—(1—P{J, < Jo}) — (1 — P{J; < J3})
=1—0.0178 — 0.0149 = 0.9673.

3.3. Maximizing the Probability of Correct
Selection

Based on the simulation output, the sample means for all designs
that can be estimated, design b can be selected, and then an approx-
imation of the probability that design b is actually the best design
can also be estimated using an APCS. As N; increases, J; becomes
a better approximation to J; (= J(6;)) in the sense that the vari-
ance of the posterior distribution decreases, and so P{CS} increases.
As motivated in Chapter 2, instead of equally simulating all designs
(i.e., equally increasing N;), we will determine the best numbers of
simulation replications for each design. Stating this more precisely,
we wish to choose Ni, Na,..., Ny such that P{CS} is maximized,
subject to a limited computing budget 7T,

(OCBA-PCS Problem)

P
Nfr,la?}\fk {CS}
st. N+ No+---+ N, =T and N; >0. (38)

Here N7 + No + - - - + N denotes the total computational cost. This
formulation implicitly assumes that the computational cost of each
replication is constant across designs. More general cases will be pre-
sented in Section 3.5.

We first consider the simple case that k = 2, where the theoretical
optimal solution to problem (3.8) can be derived. Without loss of

Selecting the Best from a Set of Alternative Designs 41

generality, assume J; < .Jo, i.e., b = 1. The OCBA problem in (3.8)
becomes

max P{J; < Jo}

N1,Na
st. N+ Ny =T1T. (39)
As discussed in Section 3.1,
A SN (N N
2 1 2 LN, TN,)
yields
- - Jo —J
P{Jl < JQ} = 2 !
of |, o3
A
Since ® is a monotonically increasing function and J, — J; > 0, to
imize @ | —Z2=21 have to minimize 2 + 2. The opti
maximize T g) we have to minimize g~ + z7. The opti-
NNy,
mization problem in (3.9) is equivalent to
o2 o2
min — + —=
N1,N2 Nl + N2

st. N+ No=T1T.
Plugging the constraint that No =T — N7, we have
2 2
min — + 72 .
Ny N1 T — N1
The optimal solution to problem (3.10) can be obtained as follows

(3.10)

T
Ny =22
o1+ 02
Thus
T
Ny=T— N, =22
o1+ 09

The results are summarized in Theorem 3.1.

Theorem 3.1. Given a total number of simulation samples T to
be allocated to 2 competing designs whose variances are o3 and 03,
respectively, the P{CS} can be mazximized when

N o

Ny oy

42 SS0: An Optimal Computing Budget Allocation

Note that the optimal computing budget allocation for the
2-design case depends only on the standard deviations, but not on the
means. For more general cases (i.e., k£ > 2), the P{CS} formulation
quickly becomes complicated and intractable. While we can still esti-
mate P{CS} via Monte Carlo simulation, it is very time-consuming.
Since the purpose of budget allocation is to improve simulation effi-
ciency, we need a relatively fast and inexpensive way of estimating
P{CS} within the budget allocation procedure. Efficiency is more
crucial than estimation accuracy in this setting. Using the approxi-
mation given by Lemma 3.1, we consider the following approximation
OCBA problem:

k
ax 1— P{J, > J;
N, i;yéb =g
k
st. 3 N;=T and N;>0. (3.11)
=1

In the next section, an asymptotic allocation rule with respect to the
number of simulation replications, N;, will be presented.

3.3.1. Asymptotically optimal solution

Define «; as the proportion of the total computing budget allocated
to design i. Thus, N; = o;T, and Zle a; = 1. First, we assume the
variables, N;s, are continuous. Second, our strategy is to tentatively
ignore all non-negativity constraints; all N;s can therefore assume
any real value. Before the end of this section, we will show how all
a;s become positive and hence all N;s are positive. Based on this
idea, we first consider the following:

k
1— P{J, > J;
1= 2, PUR =)
1=1,i#b
k
st. > Nj=T. (3.12)
=1

Note that under normality assumption

- _ o2
ZNN ia_z .
j <J Ni)

Selecting the Best from a Set of Alternative Designs 43

For the objective function,

k _ (x 6b 7,)
> P> J} = }:/ 2hi dy
i=1,ib v 27mb i
z;éb
- z [o =
”b 7
z;éb
where a new variable is introduced,
2
2 _ Ub
O-b,l Nb + — NZ

for notation simplification. Then, let F' be the Lagrangian relaxation
of Equation (3.12):

R k
Fe1- / cat-A[SN-T]. (313
i£b .

To find the stationary point of the Lagrangian function, we set

g—ﬁ = 0 for each value of i:

Opi
8F o 8F 8(Ul;:i) 80’1)71' .)\
ON; o (_h) Oop; ON;
Ob,i
-1 521 6b 20
= - A=0, 3.14
2\/277 [20“] N2(051)3/2 (3:.14)
fori=1,2,...,k, andi;éb.
513 8p,io8
! - - A=0, 3.15
e o || e 015
27£b

We now examine the relationship between N, and N; for i =
1,2,...,k, and i # b. From Equation (3.14),

-1 —0p Ob.i N?
—exp || = \Z 3.16
2V2m o [2‘713,1‘ (Ug,i)?’/Q o}’ (310)

44 SSO: An Optimal Computing Budget Allocation

for ©+ = 1,2,...,k, and ¢ # b. Plugging Equation (3.16) into
Equation (3.15), we have

(3.17)

We further investigate the relationship between N; and N;, for
any i, j € {1,2,...,k}, and i # j # b. From Equation (3.14),

2
o —Ob,i - Opioy /N?
Pl\o(z = 2 o2\3/2
mr)) (R+%)

) o2 sz .2 2 3/2° (3.18)
~ TN E+

To reduce the total simulation time for identifying a good design,
it is worthwhile to concentrate the computational effort on good
designs. Namely, N, should be increased relative to IV;, for ¢ =
1,2,...,k, and ¢ # b. This is indeed the case in the actual simulation
experiments. And this assumption can be supported by considering
a special case in Equation (3.17): When o] = 09 = -+ - = oy,

Therefore, we assume that N, > N;, which enables us to simplify
Equation (3.18) as

—52 2 /T2 _52 2 /N2
i \ Oviof /N O | 96495 /N;

@)@ TG @)

exp

Selecting the Best from a Set of Alternative Designs 45

On rearranging terms, the above equation becomes

1/2
1 51?,3‘ 51?,1‘ N7 6y 04

J
exp | 5 | = — = .
2 ;‘V_sz ;‘V_?i Nil/2 5b,io'j
Taking the natural log on both sides, we have
62 6F 5
LIN; +1og(Ny) = N + log(N;) + 2log =227,
o'j o; o 403
or
52 52 . S0 o
b—’zjajT +log(a;T) = L’QloziT + log(oi;T) + 2log <M>,
Uj a; 5[,71‘0']'
which yields
2 62 51” ,
—a]T + log(ay) = =5 oy T + log(a;) + 2log < : > . (3.19)
UJ z 5bz 04

To further facilitate the computations, we intend to find an asymp-
totic allocation rule. Namely, we consider the case that T — oo.
While it is impossible to have an infinite computing budget in real
life, our allocation rule provides a simple means for allocating simula-
tion budget in a way that the efficiency can be significantly improved,
as we will demonstrate in numerical testing later. As T' — oo, all the
log terms become much smaller than the other terms and are negli-
gible. This implies

2 2
5b, j 5b,i o
0= 5
O'j Ui

Therefore, we obtain the ratio between o; and a; or between N; and
N; as:

N; <Ui/5bi)2 . .
— =—=(— fori=1,2,...,k, and ¢ b. (3.20
Nj o \0j/b; FIAL B20)
Now we return to the issue of non-negative constraint for NNV,
which we temporarily ignored. Note that from Equations (3.17) and
(3.20), all ;s have the same sign. Since Zle o; =1 and N; = o T,
it implies that all a;s > 0, and hence N;s > 0, where ¢t =1,2,... k.

46 SSO: An Optimal Computing Budget Allocation

In conclusion, if a solution satisfies Equations (3.17) and (3.20),
then it is a stationary point of the Lagrangian function in
Equation (3.13) and so is a local optimal solution to the OCBA
problem in Equation (3.11). We therefore have the following result:

Theorem 3.2. Given a total number of simulation samples T to
be allocated to k competing designs whose performance is depicted

by random wvariables with means Ji,Jo, ..., Ji, and finite variances
a%,a%, .. ,Uz respectively, as T — oo, the Approximate Probability

of Correct Selection (APCS) can be asymptotically mazximized when

N; (Ui/5b,z‘

N;

2
, 14,5 €41,2,...,k}, and i # j #£ b,
aj/éb,j> jeq } #3J7#

where N; is the number of simulation replications allocated to design
i, O = Jyp — Ji, and Jy < minzp J;. -
Remark 3.1. In the simple case that k = 2 and b = 1, Theorem 3.2
yields

N2
2
N1 =01 -
05
Therefore,
N o1
Ny o9

O
The evaluated results in Remark 3.1 show that the allocation using
Theorem 3.2 is identical to the theoretical optimal allocation solution
for k = 2, where the closed-form optimal allocation can be found as
shown in Theorem 3.1.

Remark 3.2. To gain better insight into this approach, consider
another case where k = 3 and b = 1, Theorem 3.2 yields

Ny o %5%,3
which is consistent with our intuition explained using a hypothetical
example depicted in Figure 3.1.

Selecting the Best from a Set of Alternative Designs 47

1 2 3 Designs

Figure 3.1. A hypothetical three-design example with some preliminary simula-
tion, where design 1 has the smallest sample mean.

We check how the number of simulation samples for design 2, No,
is affected by different factors. For a minimization problem, when J3
increases (we are more confident of the difference between design 1
and design 3) or oy increases (we are less certain about design 2),
N, increases as well. On the other hand, when Jy increases (we are
more confident of the difference between design 1 and design 2) or
o3 increases (we are less certain about design 3), Na decreases. The
above relationship between No and other factors is consistent with

our intuition.
O

Remark 3.3. Following Remark 3.2, we see that the allocated com-
puting budget is proportional to variance and inversely proportional
to the difference from the best design. In fact, we can rewrite the
relationship between Ns and N3 as follows.

Ny [51,3/03]2
N3 d12/02]

.. 5 7
Intuitively, —** can be considered as a signal to noise ratio for design i

as compared with the observed best design. High 5;—; means that

either the performance of design i is much worse than the perfor-

(3

mance of the best design or the estimation noise is small. In either
cases, it means we are more confident in differentiating the design ¢
from the best design, and so we do not need to allocate too much sim-
ulation budget to design i. Specifically, Theorem 3.2 shows that the

48 SSO: An Optimal Computing Budget Allocation

allocated computing budget is inversely proportional to the square
of the signal to noise ratio. -
Remark 3.4. The OCBA allocation given in Theorem 3.2 is derived
by taking T" — oo. While it is impossible to have an infinite comput-
ing budget in real life, our allocation rule provides a simple means
for allocating simulation budget in a way that the efficiency can be
significantly improved. Our numerical results presented in Chapter 4
indicate that the corresponding allocation in the OCBA procedure
works very efficiently for small T', as well. 5
Example 3.5. Suppose there are five alternative designs under con-
sideration. We want to simulate all the 5 designs and then find the
best design with minimum expected performance. With some pre-
liminary simulation, we found that their sample means are 1, 2, 3, 4,
and 5, and their sample variances are 1, 1, 9, 9, and 4. How should
we allocate a total simulation budget of 50 replications if we apply
OCBA given in Theorem 3.27 In addition, if we apply the notion of
traditional two-stage procedures such as Rinott [1978] in which the
number of replications is proportional to variance, how should we
allocate these 50 replications to the five designs?

Solution. In this example, b = 1 and ¢;1; = 1,2,3, and 4, for
i = 2,3,4, and 5. 07 = 1,1,9,9, and 4 for i = 1,2,...,5. Apply-
ing Theorem 3.2, we have
Ni:Noy:N3g:Ny:Ns=13:1:2.25:1:0.25.
Allocating the 50 simulation replications based on this ratio yields
Ny =11.2, Ny = 8.6, N3 = 19.4, N, = 8.6, and Nj = 2.2.
Since the simulation replication number should be an integer, those

numbers are rounded to nearest integers with a constraint that the
total must be 50, yielding the following OCBA allocation:

N1 = 11,N2 :9,N3 = 19,N4 :9, and N5 =2.

On the other hand, if the simulation budget is allocated in a way that
the simulation replication number is proportional to its variance, then

Ni:Ny:N3:Ng:N5=1:1:9:9:4.

Selecting the Best from a Set of Alternative Designs 49

Allocating the 50 simulation replications based on this ratio, we have
Ny =2.1,N; =21,N3 =18.8, Ny = 18.8, and N5 = 8.2.
Rounding them to nearest integers, we have
N1 = 2,N2 = 2,N3 = 19,N4 = 19, and N5 =38.
O

The computing budget allocation based on variances like Rinott
[1978] procedure was very popular. The OCBA allocation turns out
to be very different. In Chapter 4, we will have more extensive empir-
ical testing and comparison, where numerical results indicate that
OCBA is much more efficient than traditional approaches.

3.3.2. OCBA simulation procedure

With Theorem 3.2, we now present a cost-effective sequential
approach based on OCBA to select the best design from k alter-
natives with a given computing budget. Initially, ng simulation
replications for each of k designs are conducted to get some infor-
mation about the performance of each design during the first stage.
As simulation proceeds, the sample means and sample variances of
all designs are computed from the data already collected up to that
stage. According to this collected simulation output, an incremen-
tal computing budget, A, is allocated based on Theorem 3.2 at each
stage. Ideally, each new replication should bring us closer to the opti-
mal solution. This procedure is continued until the total budget T is
exhausted. The algorithm is summarized as follows.

OCBA Procedure (Maximizing P{CS})

INPUT k,T,A,ng (T-kng is a multiple of A and ng >
5);

INITIALIZE [+ 0;

Perform ng simulation replications for all

designs; Nl = N} = ... = N/,lc = nyg.
LOOP WHILE Y% | N! < T DO
— 1
UPDATE Calculate sample means J; = % Z;V:'I

L(0;, w;j), and sample standard deviations s; =

50 SSO: An Optimal Computing Budget Allocation

ijzl(L(eiawij)_Ji) , 0= 1,...,k,

using the new simulation output; find b = arg

ALLOCATE Increase the computing budget by A and
calculate the new budget allocation, N{H,
Né“, ce ,N,i“, according to

+1
Ni

(1) N = (Si@‘ 3))2, for all i # j # b, and
N; 55 (Jo—Ji)

2
2 Nl+1 _ k NZH—I
(2) N, = spy | Zicnim | =5)

SIMULATE Perform additional max(N/™ — N, 0) simula-
tions for design i, i =1,...,k; [«— [+ 1.

END OF LOOP

In the above algorithm, [is the iteration number. 022 is be approx-
imated by the sample variance 312. As simulation evolves, design b,
which is the design with the smallest sample mean, may change from
iteration to iteration, although it will converge to the optimal design
as the [goes to infinity. When b changes, Theorem 3.2 is still applied
in the UPDATE step. However, the older design b may not be sim-
ulated at all in this iteration because design b is the one receiving
more computing budget and the older one might have received more
than what it should have in earlier iterations.

In the procedure, we need to select the initial number of simula-
tions, ng, and the one-time increment, A. It is well understood that
ng cannot be too small as the estimates of the mean and the vari-
ance may be very poor, resulting in premature termination of the
comparison. A suitable choice for ng is between 5 and 20 (Law and
Kelton [1991]; Bechhofer et al. [1995]). Also, it is wise to avoid large
A to prevent a poor allocation before a correction can be made in the
next iteration, which is particularly important in the early stages. On
the other hand, if A is small, we need to perform the ALLOCATE
step many times. A suggested choice for A is a number bigger than
5 but smaller than 10% of the simulated designs. However, when
the simulation is relatively expensive, the computation cost of the

Selecting the Best from a Set of Alternative Designs 51

ALLOCATION step becomes negligible. In this case, A should be as
small as possible and can be set as 1. More extensive analysis and
discussion will be given in Chapter 4.

3.4. Minimizing the Total Simulation Cost

A higher simulation budget usually results in a higher P{CS}.
Instead of trying to maximize P{CS} subject to a fixed computing
budget, a decision-maker may want to minimize overall computing
cost (total number of simulation replications) in order to achieve a
desired P{CS}, such as 95%, i.e.,

(OCBA-SC Problem)

min [Ny + Ny + - -+ + Ni]
Ni,....Ny

s.t. P{CS} > P*,

N;ell, i=1,... k. (3.21)
where P* is the desired “confidence level.” While the problem
appears to be different from the OCBA—PCS problem given in Sec-
tion 3.3, we will show that their approximate solutions are identical,
so the same OCBA procedure applies to both problems [Chen and
Yiicesan, 2005]. This OCBA-SC problem can be viewed as the dual
perspective, which essentially corresponds to the traditional statisti-
cal ranking and selection approach.

Using the APCS-B approximation given by Lemma 3.1, the com-
puting budget allocation problem (3.21) becomes

in [Ny - Not oot N
Nlmlr}vk[1+ No+ -+ Ngj

k
st 1— Z P{J, > J;} > P*, and
i=1,ib
N, el',1=1,... k.
By taking a similar approach as in Section 3.3, we assume the vari-
ables, N;s, are continuous. In addition, our strategy is to tentatively

52 850: An Optimal Computing Budget Allocation

ignore all non-negativity constraints; all N;s can therefore assume
any real value. Again, we will show how all N;s are positive before
the end of this section. Based on this non-integral assumption, we
first consider the following:

min [Ny 4+ No + -+ + Ny

N17"'7Nk
k
st 1— Z/O: ‘ L —Sat>p (3.22)
Z;l) 7% s

Let F' be the Lagrangian of (3.22):

k k o 1 2
_ L _ 5 px
F=Y o Ni-a Z/m Fdt - P
=1 2;117 Tbi
To find the stationary point of the Lagrangian function, we set

g—ﬂ = (for each value of i:

or A _521' 5bz’0'i2
=1+ exp 5 - =0,
ON; 2v2m | 203, | NP(op,)%?
fori=1,2,...,k, and i # b. (3.23)
k 2
8F A _51”' 5(, Z‘Ug
_— = 1 : ’ — O 324
ONy ! ; 2v2m o [2‘75,7;] Nz?(ag,i)g/g 62
i#b
k > 1 t2
A 1-— ——e 2dt—P* | =0, and A > 0.
[t :
i#b v

We now examine the relationship between N, and N; for
i=1,2,...,k, and i # b. From Equation (3.23),

A exp _5g’i Obsi = _N_”‘?
2/ 2m 2(75@ (ag’i)3/2 o2’
fori=1,2,...,k, and i # b. (3.25)
Plugging Equation (3.25) into (3.24), we have
k
N2o?
1- b =o.
2Nk

i#b

Selecting the Best from a Set of Alternative Designs 53

Then

(3.26)

We further investigate the relationship between N; and N;, for
any i, j € {1,2,...,k}, and i # j # b. From Equation (3.23),

2
o —Obi - Opi07/N?
P) U_g + 0_1'2 o2 o? 3/2
Ny N; m + N,
2 2 2
~0h . %o /N;

= exp (3.27)

32
% 4 % 2 | o2
2<N,,+Nj> (;‘V—l;+]\;j>

Equation (3.27) is identical to Equation (3.18), from which we have
derived an asymptotic optimal solution. Specifically, we consider an
asymptotic case where P* — 1 and APCS — 1.0, and so T — oo.
Following the same derivation as in Section 3.3, as T — oo,

we have
Ni o <Uz‘/5b,i)2
Nj a /0,

for i=1,2,...,k, and i # j #b. (3.28)

Now we return to the nonnegativity constraints for N;, which
we have temporarily ignored. Note that from Equation (3.26)
and (3.28), all ;s have the same sign. Since Zle a; = 1
N; = a;n, it implies that all a;s > 0, and hence N;s > 0, for
i=1,2,... k.

In conclusion, if a solution satisfies Equation (3.26) and (3.28),
then it is a local optimal solution to the OCBA-SC problem in Equa-
tion (3.21). We therefore have the following result:

Theorem 3.3. Suppose there are k competing designs whose per-
formance is depicted by random variables with means Ji, Jo, ..., Ji,
and finite variances a%, O'%, e ,a,%, respectively. Given a desired level
of Approximate Probability of Correct Selection (APCS), P*, the

54 S§50: An Optimal Computing Budget Allocation

total number of simulation replications, N1 + No 4+ -+ 4+ N, can be
asymptotically minimized when

) o\ 2
(1) %:(““M) i ef{l,2,... k), andi#j£D,

95/0b,;

k N?
(2) Np=0vy/2 i1z R

The asymptotic allocation given in Theorem 3.3 for problem
(3.21) is actually identical to the asymptotic solution given in Sec-
tion 3.3, although these problems look different. In fact, they share
the same objective of maximizing simulation efficiency. It is nice that

O

they end up with the same solution. The simulation procedure is
similar with the one described in Section 3.3 except the stopping
criterion. Again, ng simulation replications for each of k designs are
initially conducted to get some information about the performance
of each design during the first stage. As simulation proceeds, the
sample means and sample variances of each design are computed
from the data already collected up to that stage. Then APCS can
be calculated using Lemma 3.1. If APCS is not sufficiently high, an
incremental computing budget, A, is allocated based on Theorem 3.3
at each stage. Ideally, each new replication should bring us closer to
the optimal solution. This procedure is continued until the desired
APCS level is achieved.

OCBA Procedure (Minimizing Simulation Cost)

INPUT k, P*, A,ng(ng > 5);
INITIALIZE [« 0;
Perform ng simulation replications for all designs;
Nl=Nl=...=N! =n,.
LOOP
UPDATE Calculate sample means J; = N% Zj\zl L(0;, wij),

and sample standard deviation @ s; =

N} . .
ﬁ Zj;I(L(0i7wij) — Ji)z, 1= 1, - ,k, using

the new simulation output; compute, z = 1,..., k;

Selecting the Best from a Set of Alternative Designs 55

find b = argmin; J;; calculate APCS = 1 —

k Jp—J;
Zi:l,i;ﬁb @ (752 2) .

CHECK If APCS > P*, stop; Otherwise, continue.

ALLOCATE Increase the computing budget by A and
calculate the new budget allocation, N{H,
Né‘H, - ,NH'1 according to

41
(1) xll“ = (((?; 3) for all i # j # b, and

Nl+1 2

()NIH—Sb\/Zz 117&5 o > ;

SIMULATE Perform additional max(N'™ — N} 0) simu-
lations for design i, i =1,...,k; | «— [+ 1.

END OF LOOP

In the UPDATE step, the APCS-B in Lemma 3.1 is applied. An alter-
native nice approximation is APCS-P given in Lemma 3.2. Specifi-
cally,

k 3 3 k Ji— T
APCS-P= [Plh—-Ji<0}=][@ —
i=1,i#b i=1,i#b % + Zb

The numerical testing shows that both forms of APCS provide good
approximation, particularly when N is not small. Since both are
lower bounds of P{CS}, we are sure that P{CS} is sufficiently high
when any APCS is satisfactory.

3.5. Non-Equal Simulation Costs

In deriving the OCBA solution in previous sections, we assume
that the computation costs of one simulation replication for differ-
ent designs are roughly the same. In practice, some designs may
have very different structures with different characteristics, resulting
in very different computation times. In this section, we will extend

56 SSO: An Optimal Computing Budget Allocation

the OCBA problem to cases where computation times are different
among the candidate designs.

Let the computation cost per simulation run for design ¢ be ¢;. Of
course, ¢; > 0. We wish to choose N1, No, ..., Nj such that P{CS}
is maximized, subject to a limited computing budget T, i.e.,

min P{CS}

Ni,...,Ng

st.cyN1+ Ny + -+ ¢xNpy =T and N; >0. (3.29)

When ¢; = 1 (or a constant), the computing budget allocation
problem in Equation (3.29) degenerates into the special case consid-
ered in Section 3.3. Similarly, APCS is used to approximate P{CS}
using Lemma 3.1. Let T; = ¢; N;. Thus 7; is the total computing bud-
get allocated to design i and N; = T;/c¢; is the number of simulation
replications for design i. The OCBA problem in Equation (3.29) can
be rewritten as follows.

k
[max 1- Z P{J, > J;}
i=1,i#b
k
st. » T;=T and T;>0. (3.30)
=1

Since

- _ o2
lNN 7,'7_1 y
j (J M)

replacing the variable N; with T; yields
")2
LNNCLQQQJ. (3.31)
T;
Note that the budget allocation problem in Equation (3.30) is the
same as that in Equation (3.12), except that the decision variable is

~ T)2 2
T; rather than N; and the variance of J; is @ rather than 7\,—1
Following the same derivations given in Section 3.3, an asymptotic
optimal solution to problem (3.30) with respect to 7; can be obtained

as follows.

Selecting the Best from a Set of Alternative Designs 57

and
T; Ny 2
—:<c"7/b’> fori=1,2,....k andi#j#b (3.32)
1} V/€i03j/0b,;

Therefore, the asymptotic optimal solution with respect to IV; is sum-
marized in the following theorem.

Theorem 3.4. Suppose the computation cost for one simulation
replication for design i is ¢;. Given a total simulation budget T to
be allocated to k competing designs, the Approximate Probability of
Correct Selection (APCS) can be asymptotically mazimized when

Ni ([0i/bbi
N; B

2
> , i,7e{1,2,...)k}, and i # j #Db,

/0,

O
It is interesting to note that the relationship between N; and
N; in asymptotically optimal allocation remains the same no mat-
ter whether the computation costs are equal or not. By checking
Equation (3.31), we see that increasing the simulation cost for one
replication of design ¢ by ¢ times has a same impact as increasing
the variance for design ¢ by ¢ times. In either case, the weight of
computing budget allocation for design i is ¢ times higher. However,
if design 7 is ¢ times more expensive to simulate, the ratio of V; and
N; remains the same even with the additional computing budget
allocated to design 1.

3.6. Minimizing Opportunity Cost

In previous sections, we focus on the probability of correctly selecting
the best design (P{CS}), which is the most commonly studied
measure of performance. When the selection is incorrect, i.e., the best
is not selected, it is not distinguished whether a mildly bad design or
a very bad design is chosen. A second important measure of selection
quality is the expected opportunity cost (E[OC]), which penalizes

58 S§S0: An Optimal Computing Budget Allocation

particularly bad choices more than mildly bad choices. For example,
it may be better to be wrong 99% of the time if the penalty for being
wrong is $1 (an expected opportunity cost of 0.99 x $1 = $0.99)
rather than being wrong only 1% of the time if the penalty is $1,000
(an expected opportunity cost of 0.01 x $1,000 = $10).

In this section, we turn our attention to E[OC]. The opportu-
nity cost is “the cost of any activity measured in terms of the best
alternative forgone.” (cf. [Chick and Inoue, 2001a; He et al. 2007].
In our setting, the opportunity cost is the difference between the
unknown mean of the selected design b and the unknown mean of
the actual best design (defined as i* below). From the simulation
efficiency perspective, one has the same question to ask: how should
we control the simulation so that we can select a design within the
given computing budget while the expected opportunity cost is min-
imized, instead of maximizing P{CS} as in previous sections?

Deriving an asymptotic solution for minimizing E[OC] is much
more complicated than its counterpart for P{CS}. We will present
a greedy selection procedure to reduce the E[OC] of a potentially
incorrect selection by taking a similar OCBA approach to selection.
In addition, as shown in He et al. [2007], the OCBA procedure pre-
sented earlier performs very well not only for maximizing P{CS},
but also minimizing E[OC]. Therefore, to minimize E[OC], one can
either use the greedy procedure presented in this section, or simply
continue using the earlier OCBA procedures.

Our approach is to allocate simulation runs sequentially so that an
approximation to E[OC] can be minimized when the simulations are
finished. Following the same Bayesian model presented in Section 3.1,
the expected opportunity cost (E[OC]) is defined as follows

k

EOC] =E[J, — Ju] = > P{i=i"}E[J, — Juli =], (3.33)
i=1,i#b
where i* is the true best desi;gn and the expectation is taken with
respect to the posterior distribution of the .J;, for i = 1,2,...,k,
given all simulations seen so far. According to the definition of the
conditional expectation [Whittle, 2000],
E[X -1(4)] E[X - I(4)

PR =gty Py

Selecting the Best from a Set of Alternative Designs 59

where X is a random variable, and for an event A we define the
indicator function to be

1 if A does occur.
[(4) = {O if A does not occur.

Therefore,
k

E[OC] = Y E[I(i=1)x (J—J)]. (3.34)
i=1,i#b
A convenient closed-form expression for E[OC] is unknown for all but
a few special cases. We therefore present an approximation of E[OC]
that is key for the new selection procedure.

Lemma 3.5. A good approximation to E[OC] is given by
k
EEOC = Y P(J; < J,)*E[J, — Ji|J; < J). (3.35)
i=1,i%b
We refer to this approximation as the Estimated Expected Oppor-
tunity Cost (EEOC). In fact, EEOC is an upper bound of E[OC].

Proof. Note that
P(i =i*) = P(J; < Jy)*P(J; < J; for all j ¢ {i,b}J; < J,)
< P(J; < Jy).
Therefore,
E[I(i =) % (Jy — Ji)] < E[I(J; < Jy) * (Jp — Jy)).
Thus,

k
EOC]= Y E[I(i=1)x (J—J)]
i=1,i£b
k
< Y EU < D) (=)]
i=1,ib
k
= Z P{jz < jb}*E[jb — jz|jz < jb] = FEOC.
i=1,i#b
Since design b has the best (smallest) sample mean so far, i.e., J, < J;
for all 4, the conditional probability, P{.J; < J; for all j ¢ {i,b}|

60 SSO: An Optimal Computing Budget Allocation

Ji < Ju}, will often be close to 1, so that P{J;, < J,} is often a good
approximation to P(i = i*). Similarly we hope E[I(J; < J;)(Jy — J;)]
would be a reasonable approximation to E[I(i = i*)(J, — J;)]. The
numerical tests performed by He et al. [2007] show that using EEOC
to approximate E[OC] leads to a highly efficient procedure. O

Since EEOC'is an upper bound of E[OC], we are sure that E[OC]
is sufficiently low when FEOC'is satisfactory. We therefore use FEOC
in the above equation to approximate E[OC] in our selection proce-
dure. In terms of the approximation property, the term EFEOC can be
interpreted as the sum of expected opportunity costs for each of the
k — 1 pairwise comparisons between the best and each alternative,
given all of the sampling information that is available. This term
therefore resembles the well-known Bonferroni bound for probabil-
ities, which states that the probability that the best design is not
correctly selected, is less than the sum of the probabilities that the
best is not correctly selected in the k — 1 pairwise comparisons of
the best with each alternative. The Bonferroni bound is tight when
k = 2 or when the value of each term is small, and is known to become
less tight as k increases. If only a few competing alternatives have a
similar performance or if we have conducted extensive simulation on
most competing designs, then the bound can be relatively tight.

Ideally we would choose Ni, Na,...,N; to minimize E[OC] or
EFEOC, given a limited computing budget. Even though FEOC is
much easier to compute than E[OC], it is still intractable to derive
a solution which optimizes EFOC as we did in earlier sections. Fol-
lowing the same notion of the greedy approach given in Chen et al.
[1999] and Hsieh et al. [2001], we sequentially minimize EEOC.

Specifically, we allocate a few replications at each stage of a
sequential procedure to reduce FEOC iteratively. A critical compo-
nent in the proposed procedure is to estimate how FEOC changes as
N; changes. Let A; be a non-negative integer denoting the number
of additional simulation replications allocated to design ¢ in the next
stage of sampling. We are interested in assessing how FEOC would
be affected if design ¢ were simulated for A; additional replications.
In other words, we are interested in assessing how promising it is

Selecting the Best from a Set of Alternative Designs 61

to simulate design i. This assessment must be made before actually
conducting A; simulation replications. According to the Bayesian
model presented in Section 3.1, if we conduct A; additional replica-
tions of design ¢, given a finite NV;, the posterior distribution for the
unknown mean of design ¢ is

N;+A; 0_2
0 e S
N; + A Z z,wz] N,L + A ’

where L(0;,w;;) is the j-th sample of design 1. When A; is relatively
small compared to N;, the difference between N Z 1 L(8;,w;j) and

N + A ZN i+h L(0;,w;j) will be small. A heuristic approach to the
approximation of the predictive posterior distribution yields

N
- 1 <& 2
Ji ~ N ﬁl]E:l L(H,,w”), h for design 1. (336)

We therefore approximate the distribution of the unknown mean,
given that A; is small, by a N(N% Zjvz’l L(03, wij), . +A) distribu-
tion. The FFOC can then be calculated by plugging Equation (3.36)
into the EFOC formula in Equation (3.35). In particular, if we allo-
cate A; additional samples for design i (for any 7, including design b),
then the corresponding estimated expected opportunity cost, denoted
as EEOC(i), is determined by using the original distributions for the
unknown means of designs other than ¢, and using the modified dis-
tribution in Equation (3.36) for design i, to obtain

+o0
EEOC(i Z / afy;i@)de, fori=1,... k (3.37)
J=Lj#b
where f;,,(z) is the PDF of the difference between design b and
design j, given that A; more replications are given to design i, and
none is allocated to the others, for any i and j # b. If i = b, then

fiji(x) is the PDF of a N(J, — Jj, x- 35 + &) random variable. If
0'2.

i = j, then f, () is the PDF of a N (J, — Jj, m + N]TJAj) random

variable. If ¢ is neither j nor b, then no new information is available

to distinguish designs j and b, and f;; .(z) = fp ().

62 SSO: An Optimal Computing Budget Allocation

EFEOC(i) is the estimated expected opportunity cost before addi-
tional A; replications are applied for design ¢, for any i, and EEOC(i)
can be computed easily. Our goal is to minimize the E[OC] of a poten-
tially incorrect selection. Doing so optimally and in full generality
is a challenging optimization problem with an unknown solution.
Inspired by the greedy OCBA approach [Chen et al., 1997; 1999], we
reduce E[OC] by sequentially minimizing the upper bound in Equa-
tion (3.35), EEOC, for E[OC]. At each stage, we allocate additional
samples in a manner that greedily reduces the FEOC as much as pos-
sible. That improvement is based upon, FEOC(i), which is a measure
of the improvement in FEOC at each step. The effect of running an
additional few replications on the expected opportunity cost, FEOC,
is estimated by:

D; = EEOC(i) — EEOC

+oo +oo
= / zfy;i(v)dr — / xfpi(z)dr <0, i#0b, (3.38)
0 0
and

Dy, = EEOC(b) — EEOC
k

-y {/OJrooxf;’i’b(x)dx —/Omxf,,,i(;p)dx} <0, (3.39)

i=1,i£b

where D; and D, represent the reduction of EEOC(i) and EEOC(b),
respectively, at each step. These inequalities can be verified with a
bit of algebra. They imply that more information leads to smaller
losses, on average.

Note that before conducting the simulation, neither the EEOCnor
a good way to allocate the simulation budget is known. Therefore,
all designs are initially simulated with ng replications in the first
stage. We then sequentially allocate replications to the designs that
provide the greatest reduction in the EEFOC. Note the D; and Dy are
less than zero. This is consistent with our intuition that the expected
opportunity cost will decrease as more samples are observed. With
this approximation, the A;, i = 1,..., k, should not be too large. In
summary, we have the following new selection procedure.

Selecting the Best from a Set of Alternative Designs 63

OCBA-EOC Procedure

INPUT k,T,A,7,n9 (T-kng is a multiple of A and ny > 5).
Specifically, choose a number of designs per stage to
simulate, m, and a (small) total number of simulation
replications per stage, A, such that 7 = A/m is an
integer, and a total number of replications 7" to run.

INITIALIZE l—0;
Perform mny simulation replications for all

designs; Nl = N} = ... = N,i = ny.
LOOP WHILE ¥ | N! < T DO
— l
UPDATE Calculate sample means J; = % Z;V:ll
L(0;,w;j), and sample standard deviation s; =

l —
\/ﬁ S (LGwi) — T2 i = 1.k,
using the new simulation output; compute,
i =1,...,k; find b = argmin; J;; Calculate
D;, for i = 1,...,k, using Equations (3.38)
and (3.39).

ALLOCATE Find the set S(m) = {i : D; is among the m
lowest values}. Increase the computing bud-
get by 7 for design i € S(m), i.e., NZ-lJr1 =
N!+7ifi € S(m), N = N, otherwise.

SIMULATE Perform additional max(N/™! — N 0) simu-
lations for design i, ¢ =1,...,k; [— [+ 1.

END OF LOOP

Further details about this procedure can be found in He et al. [2007].
Since this selection procedure is derived based on the notion of
OCBA, we named it OCBA-EOC to be consistent with the pre-
vious allocation procedure. The original OCBA is P{CS} oriented,
whereas the OCBA-EOC procedure in this section is focused on
reducing E[OC]. As shown in He et al. [2007], the OCBA-EOC pro-
cedure compares quite favorably with several other procedures. Fur-
thermore, it is also shown that the OCBA procedure presented in
earlier sections performs very well not only for maximizing P{CS},

64 SSO: An Optimal Computing Budget Allocation

but also minimizing E[OC]. Therefore, for the purpose of minimizing
E[OC], one can either use OCBA-EOC, or simply continue using the
OCBA procedure.

3.7. OCBA Derivation Based on Classical Model

In this chapter, we have developed several OCBA schemes based
on the Bayesian model which has some advantages in offering
intuitive explanations of the methodology development and resulting
allocation. This section presents the problem formulation and
solution derivation using a classical (frequentist) model as an alter-
native. With the same objective of maximizing the probability of
correct selection, we will show that the obtained OCBA solution
using classical statistical model is identical to the one obtained using
Bayesian model in Section 3.3.

We introduce the following notation. Some have been defined
before; but we give all the necessary definitions here for purpose
of completeness.

J;: mean of design i,
2.

o
L(0;,w;;): performance estimate obtained from the output of the
j-th simulation replication for design 1.

o variance of design i,

N;: number of simulation replications for design i,
J;: sample mean of design i, i.e., J; = N% Zjvzll L(0;, wij),
t = argmin; J;, i.e., design t is the true best design,

(51571' = Jt — Ji, and

2 2
o2 =%t 9
ti = .
Ny N;

As before, we assume that the simulation output is i.i.d. and has
normal distribution with mean .J; and variance 07;2, ie.,

L(0;,wi;) ~ N(Ji, o). (3.40)

In the classical model, the means and variances for all designs

are assumed to be known, i.e., J;, 01-2, and t are known in the

Selecting the Best from a Set of Alternative Designs 65

derivation. The objective is to find a simulation budget allocation
that maximizes the probability of correct selection (P{CS}), where
“correct selection” is defined as picking the best design based on
sample means from simulation output. Specifically, P{CS} is defined
as the probability that the true best design has the smallest sample
mean and so can be selected correctly, which is

P{CS}c = P{Jy < J;, i#t} (3.41)

In notation, a subscript “C” is added to distinguish it from the earlier
P{CS} definition based on Bayesian model. “C” stands for Classical
model.
With normality and independence assumption,
J;~N (J» U—?> (3.42)
% 2] N, . .

As N; increases, the variance of .J; decreases, and so P{CS}c
increases. The OCBA problem is how we should increase N; in a
way that P{CS}c can be maximized. More precisely, we wish to
choose Ny, Ny, ..., Nj such that P{CS}¢ is maximized, subject to a
limited computing budget T',

max. P{CS}c

st. N+ No+---+ N, =T. (3.43)

Since there is no simple close-form expression for P{CS}q, we
approximate it using the Bonferroni inequality, similar to the approx-
imation APCS-B presented in Lemma 3.1.

k
P{CS}c =P () (Ji—Ji<0)
i=1,i%#t
k

>1— Y [1—P{J;—J; <0}
i=1,i£t

k
=1- Y P{J; > Jj} = APCS-C.
i=1,i#t

66 SSO: An Optimal Computing Budget Allocation

P{CS}c is approximated by A PCS-C. We now consider the following
problem as an approximation to Equation (3.43).

k
max 1 — Z P{J; > J;}
Ni,...,Ng oLkt
k
st. > Ny=T. (3.44)
i=1
For the objective function,
k (1‘—51:,1')2
2
> P, >J}—Z/ i dy
i=1,ib ! v 27mt i

Tt,i

= 2/5“ e dy,
it

where
2 2
2 Oy g;
te —
Nt Nz

Let F be the Lagrangian relaxation of Equation (3.44):
Eoopoo 2 k
F=1- e~ Tdy — A N,—-T], 3.45
> / e P (3.45)
it i

i=1
which is identical to the Lagrangian in Equation (3.13) except that
b is replaced by t. To find the stationary point of the Lagrangian
function, we set gﬁ = 0 for each value of i. Since the Lagrangian

functions are basically identical, following the same procedure in Sec-

tion 3.3, we can obtain a similar local optimal solution summarized
in the following theorem.

Theorem 3.5. Given a total number of simulation replications T
to be allocated to k competing designs with means Ji,Jo, ..., Jg,
and finite variances a%,ag,...,oi, respectively, as T — oo, the
Approximate Probability of Correct Selection (APCS-C) can be

Selecting the Best from a Set of Alternative Designs 67

asymptotically maximized when

N; Uz‘/5m‘>2 . .
— = : , 4,5€{l,2,...,k}, and i t,
= (2] e } £

O

2
1
deriving Theorem 3.5. In practice, as means and variances are
unknown, we employ a heuristic approach to tackle these problems. A
sequential procedure is used to approximately estimate these means
and variances, and also ¢ using sample statistics. Each design is ini-
tially simulated with ng replications in the first stage, and additional
replications are allocated to individual solutions incrementally from
A replications to be allocated in each subsequent stage until the sim-
ulation budget T is exhausted. When 7" — o0, since every solution
has been allocated with simulation runs infinitely often, we can show
that the allocation rule using the sample average and sample stan-
dard deviation will converge to the rule using true means and true
variances. Even though these sample statistics and ¢ are varying over
iterations, the impact of these approximations will decay asymptoti-

We assume the means J; and variances o are known when

cally. In summary, we have the following heuristic algorithm which is
actually the same as the procedure given in Section 3.3 except that
b is replaced by t.

OCBA Procedure (Classical Model)

INPUT k,T,A,ng (T-kng is a multiple of A and ny >
5 .

INITIALIZE l)<7— 0;
Perform ng simulation replications for all
designs; N} = N{ = ... = N,i = nyp.

LOOP WHILE ¥ N/ < T DO

UPDATE Calculate sample means J; = N%Zjv;ll L(6;,

wi;j), and sample standard deviation s; =

1 M 72
W Z]:l(L(e'“wl]) - J’L) y V= 17 s 7k7

68 SSO: An Optimal Computing Budget Allocation

using the new simulation output; compute,
i=1,...,k; find t = argmin, J;.
ALLOCATE Increase the computing budget by A and

calculate the new budget allocation, N{H,

N£+1, e ,N’i+1’ according to
N (=) \ 2 . |

(1) NFT T (sj(jt—j]i)> , forall i # j # b,

and

2
(2) NI+ = g \/Z(g A (Nf+1>
t t i=1,i#t S5 >

SIMULATE Perform additional max(N/™ — N}, 0) simu-
lations for design ¢, i =1,...,k; | «— [+ 1.
END OF LOOP

In conclusion, we basically obtain the same asymptotical solution and
OCBA procedure, no matter whether Bayesian or classical models
are applied.

Chapter 4

Numerical Implementation
and Experiments

With the development of standard OCBA procedures in Chapter 3,
we turn our attention to practical implementation issues. First we will
test the OCBA procedure and compare it with several well known
procedures empirically. Numerical results show that OCBA outper-
forms all compared procedures. Secondly we will extensively discuss
how the parameters in the OCBA procedures should be determined.
Sensitivity of the simulation performance to those parameters will
be discussed. Finally, some additional implementation issues, such
as rounding the number of simulation replications into integers, will
be discussed. In Appendix D, we will provide a C/C++ code of the
OCBA algorithm.

4.1. Numerical Testing

In this section we test the OCBA algorithm and compare it with sev-
eral different allocation procedures by performing a series of numer-
ical experiments.

4.1.1. OCBA algorithm

The OCBA procedure has already been extensively discussed in
Chapter 3. We briefly summarize it as follows.

69

70 SSO: An Optimal Computing Budget Allocation

OCBA Procedure (Maximizing P{CS} or Minimizing Simulation
Cost)

INPUT k, T, A, ng (T' — kng a multiple of A and
no > 5);

INITTALIZE [0;
Perform ng simulation replications for all
designs; N{ = N} = ... = N} = ny.

LOOP WHILE ¥ | N! < T (or APCS < P*) DO

UPDATE Calculate sample means J; = % Zﬁl

L(0;,w;j), and sample standard deviation s; =

1 N} = .
\/ﬁ ijll(L(Oi,wij) — Ji)Q, 1 = 1,...,k,
using the new simulation output; find b =
argminl-ji.
ALLOCATE |Increase the computing budget by A and
calculate the new budget allocation, N{H,

NP ,N,ffl, according to
N (i))2 .
(1) NJ;+1 = (Sj(jb*j]i)> ,fOI' allz;é];é@ and

2
I k NiH
@ N =T (22)

SIMULATE Perform additional max(N'™! — N!,0) simu-
lations for design ¢, ¢ = 1,...,k; | «— [+ 1.

END OF LOOP

Note that if APCS is used as a stopping criterion, it can be esti-
mated by

k — —

Jp — J;
APCS=1- Y @ —J%—i—
i=1,i%b]Sv_z + JSV_QZ

using updated simulation output.

Numerical Implementation and Experiments 71

Remark 4.1. The resulting V; in the ALLOCATE step is a contin-
uous number that must be rounded to an integer. In the numerical
experiments in the next section, IV; is rounded to the nearest inte-
ger such that the summation of additional simulation replications
for all solutions equals A. Note that there may not always exist a
solution that satisfies all three constraints. It actually occurs when
at least one solution has been over simulated, i.e., NZ-lJr1 < Nl-l. In
this case, we have to relax the constraint. For ease of control of
the simulation experiment, we can choose to maintain the constraint
Zle NZ-“rl = T'*! and apply some heuristics to round Ni“r:L for all ¢
to nearest integers. We have found numerically that the performance
is not sensitive to how we round N;, probably due to the robustness
of a sequential procedure.

Alternative simpler OCBA procedure

When the simulation is relatively expensive, the computation cost of
the ALLOCATION step becomes negligible. In this case, A should
be as small as possible and can be set as 1. To avoid the numerical
error occurred when rounding NilJrl into an integer, we suggest a
numerically robust alternative. The ALLOCATE and SIMULATE
steps are revised as follows.

ALLOCATE Increase the computing budget by one and calculate
the new budget allocation, N{H, Né“, e Nlljl,
according to

N (siTe=Ty))2 e
(1) N = (Sj(jb_jji)> , for all i # j # b, and

2
9) NI+ — k N
(2) N,™° = spq | Zimrim | 5 ’

leave NiH'1 as a decimal number and find ¢* = arg
max; (N — NP).

SIMULATE Perform additional one simulation for design
i*; NI = NL 41, NP = NE for i # 0% 1« 1+ 1.

Intuitively, we determine which design is the most starving one
in terms of the need of additional simulation, and then simulate that

72 S850: An Optimal Computing Budget Allocation

design for one additional replication. This procedure is iteratively
continued until the total budget T is exhausted or the estimated
APCS is sufficiently high. As shown in Section 4.2, this simpler pro-
cedure performs equally well in our numerical testing.

4.1.2. Different allocation procedures for comparison

In addition to the OCBA algorithm, we test several procedures and
compare their performances. Among them, equal allocation which
simulates all design alternatives equally; the two-stage procedures of
Dudewicz and Dalal [1975] and Rinott [1977] that allocate replica-
tions proportional to the estimated variances (and which is highly
popular in simulation literature); and Proportional To Variance
(PTV) which is a sequential allocation procedure modified from the
Rinott procedure. We briefly summarize the compared allocation pro-
cedures as follows.

FEqual allocation

This is the simplest way to conduct simulation experiments and has
been widely applied. The simulation budget is equally allocated to
all designs, that is, N; = T'/k for each i. The performance of equal
allocation will serve as a benchmark for comparison.

Well-known two-stage procedures

The two-stage procedures of Dudewicz and Dalal [1975] and Rinott
[1977] and their variations have been used widely in simulation
applications. See Bechhofer et al. [1995] for a systematic discus-
sion of two-stage procedures and their recent development. In this
section, we compare the performance of these two-stage procedures
with that of the OCBA algorithm through numerical examples. We
also compare the computation effort required to achieve a same
P{CS}.

Unlike the OCBA approach, two-stage procedures are based on
the classical ranking-and-selection model. It is convenient to define
the indices such that Jjj) < Jpg < --+ < Jpg). As in OCBA, the goal
in two-stage procedures is also to select a design with the smallest

Numerical Implementation and Experiments 73

mean, Jjj). Based on the “indifference zone” idea, one may be willing
to choose design 2 if Jjj) and Jpp) are very close (i.e., Jo) — Jpy < d7,
where d* is the indifference zone parameter). By doing so, the pro-
cedure avoids conducting a large number of simulation replications
to distinguish between small differences. More specifically, we intend
to determine the number of simulation replications to ensure

P{Jyy < Jy, Vi #1} > P*

whenever Jpg — Jp < d7,

where P* is the confidence level requirement. The procedure is as
follows.

Before performing the simulation experiment, we specify three
parameters: P*, ng, and d*. Let h be the constant that solves a certain
integral equation guaranteeing the validity of Rinott or Dudewicz
and Dalal procedures given P*, ng, and k (e.g., h can be obtained
from the tables in Wilcox [1984] for Rinott’s procedure, and from the
tables in Gibbons et al. [1977] for Dudewicz and Dalal’s procedure).
In the first stage, all designs are simulated for ng replications. Based
on the sample standard deviation estimate (s;) obtained from the first
stage and given the desired correct selection probability P*, the num-
ber of additional simulation replications for each design in the second
stage is determined by:

N; = max(no, [(hs;/d*)*]), fori=1,2,... k, (4.1)

where [e] is the integer “round-up” function.

In short, the computing budget is allocated proportionally to the
estimated sample variances. The major drawback is that only the
information on variances is used when determining the simulation
allocation, while the OCBA algorithm utilizes the information on
both means and variances. Further it is assumed a least favorable
configuration when deriving the allocation, which is more like a worst
case analysis and so is very conservative. As a result, the performance
of two-stage procedures is not as good as others. We do, however,
include it in some of our testing due to its popularity in simulation
literature.

74 SS50: An Optimal Computing Budget Allocation

Proportional to variance (PTV)

This is a sequential modified version of the two-stage Rinott proce-
dure, based on the observation that Equation (4.1) implies that N;
is proportional to the estimated sample variance 822. Thus, the PTV
procedure sequentially determines {N;} based on the newly updated
sample variances by replacing the ALLOCATE step of the OCBA
algorithm by

ALLOCATE Increase the computing budget by A and calculate
the new budget allocation, Nf“, Né“,...,N,iH,
according to

+1 1+1 +1
NN N

2 - 2 - - 2

57 85 si.

Thus the number of replications for each design grows in proportion
to the sample variance. Note that the indifference-zone parameter has
been removed in this modification in order to make it comparable to
the other procedures.

While we do not claim that the P{CS} guarantee is maintained,
this approach maintains the spirit of allocating replications propor-
tional to the sample variance.

4.1.3. Numerical experiments

The numerical experiments starts with a test on the worker allocation
problem (Example 4.1) followed by a series of generic tests. In all the
numerical illustrations, we estimate P{CS} by counting the number
of times we successfully find the true best design out of 100,000
independent applications of each selection procedure. P{CS} is then
obtained by dividing this number by 100,000, representing the correct
selection frequency.

Each of the procedures simulates each of the k designs for ng = 10
replications initially. Dudewicz and Dalal’s and Rinott’s procedures
allocate additional replications in a second stage (so the total number
is not fixed a priori), whereas the other procedures allocate replica-
tions incrementally by A = 20 each time until the total budget,
T, is consumed. For each level of computing budget, we estimate

Numerical Implementation and Experiments 75

the achieved P{CS}. We anticipate that all procedures will obtain a
higher P{CS} as the computing budget increases.

Since Dudewicz and Dalal’s and Rinott’s procedures are two-
stage indifference-zone procedures, we must specify the values for
the desired probability of correct selection, P*, and the indifference
zone d to satisfy the condition that Jjg) — Jjj > d, where a smaller d
implies a higher required computation cost based on Equation (4.1).
In practice, the value of Jg or Jjj; is unknown beforehand, but for
benchmarking purposes, we set d = Jpg — Jjy}, which leads to the
minimum computational requirement (or maximum efficiency) for
these procedures. As is done for the other procedures, the resulting
P{CS} can be estimated over the 100,000 independent experiments.
Since the required computation cost varies from one experiment to
another, we will indicate the average number of total replications
based on the 100,000 independent experiments.

Ezxperiment 4.1. Worker allocation problem

This numerical test is based on the worker allocation problem pre-
sented in Chapter 1, Example 4.1. In summary, this problem repre-
sents the challenge of allocating 31 workers within a two-stage queue
where each stage of the queue can contain no less than 11 workers
as shown in Figure 4.1.

Denote C; and Cy as the numbers of workers allocated to nodes
1 and 2. Thus C7 + Cy = 31, Cy > 11, and Cy > 11. There are

O O
Exp(1) O O

—» —» —

U(1,39) U(5,45)

- QO

O

Figure 4.1. A two-stage queuing system where both C1, and C> must be greater
than 10.

76

SS0: An Optimal Computing Budget Allocation

1 7 —_

0.99 —
0.98 / =

0.97 -
/

__ 096 ;
!

n
C 095 ;

a
0.94 -

OCBA
Equal

0.93

; - - - -PTV

0.92 -
091

0.9 — T T T T

200 1200 2200 3200 4200 5200
T

Figure 4.2. P{CS} versus T using three sequential allocation procedures for
Experiment 4.1.

10 alternative combinations of (C4,C2). We want to choose the best
alternative of (Cy,C2) so that the average system time for the first
100 customers is minimized. Since there is no closed-form analytical
solution for the estimation of the system time, stochastic (discrete-
event) simulation can be performed to find the best design.

To characterize the performance of different procedures as a func-
tion of T', we vary T between 200 and 8000 for all of the sequen-
tial procedures and the estimated achieved P{CS} as a function
of T is shown in Figure 4.2. We see that all procedures obtain a
higher P{CS} as the available computing budget increases. However,
OCBA achieves a same P{CS} using the lowest amount of com-
puting budget. Table 4.1 shows the computation costs to attain
P{CS} = 0.95 and 0.99 for OCBA, Equal, and PTV, respectively.

Table 4.1. The computation costs to attain P{CS} = 0.95
or 0.99 using different sequential procedures.

P{CS} OCBA Equal PTV
0.95 470 1,450 2,270
0.99 850 2,890 5,230

Numerical Implementation and Exrperiments 77

It is worth noting that PTV (a sequential version of Rinott’s pro-
cedure) performs worse than simple equal allocation for this problem.
This performance is because PTV determines the number of simu-
lation samples for all designs using only the information of sample
variances. For this particular worker allocation problem, the best
designs have the lowest variance and the worst designs have the
largest variance. As a result, PTV generally allocates less time to
designs that perform well, thus achieving lower P{CS} for the same
T values.

Overall, both Equal and PTV are much slower than OCBA.
Figure 4.3 shows the average total number of simulation replications
allocated, N;, for all i, to achieve a P{CS} of 0.99% using OCBA,
PTV, and the Equal procedure, respectively. It is noteworthy to com-
pare the total number of simulation replications to the actual average
system times and variances (as determined by simulating each design
100,000 times) shown in Figure 4.4. Note that the budget allocation
by OCBA is quite different from that using PTV. PTV determines
the number of simulation replications for all designs using only the

800

700 -

600 T _ -

500 T B
B OCBA

400 T
Equal

OPTV

300 T B

200 | | = —

Computing Budget Allocation

100 | — —

1 2 3 4 5 6 7 8 9 10
Design

Figure 4.3. Computing budget allocation as determined by the OCBA, Equal,
and PTV procedure for the worker allocation problem to achieve a P{CS} of
0.99%.

78 SS0: An Optimal Computing Budget Allocation

120

100

80

Time

60 B Average System Time

O Variance
40 7

1 2 3 4 5 6 7 8 9 10
Design

Figure 4.4. Actual average system time and variance for each design.

information on sample variances. On the other hand, OCBA exploits
the information on both sample means and variances, achieving a
much more efficient performance. It is worthy to note that OCBA
simulates the top three designs (designs 3, 4, and 5) much more
than all of the other designs combined whereas PTV simulates these
designs less than other designs because they have smaller variance.

It is also useful to look at the confidence intervals at various T
values to better understand how OCBA allocates available comput-
ing time across the 10 designs. Figures 4.5(a) and 4.5(b) show the
Equal and OCBA 95% confidence intervals for T = 100 (after ng
replications of each design) and T = 500, respectively. Figure 4.5(b)
shows that Equal Allocation reduced the width of confidence inter-
vals for all designs, while OCBA concentrates on the critical designs.
As a result, OCBA can better determine whether the observed best
design is indeed the true best design or not.

Finally, we test Dudewicz and Dalal’s and Rinott’s procedures for
P* =0.75, P* = 0.90, and P* = 0.95. As Table 4.2 shows, both of
these approaches are extremely conservative (e.g., obtaining 96.1%
of actual P{CS} when the desired setting is only 75%) and result in
much higher computation cost to achieve a same P{CS} as compared
with OCBA.

Numerical Implementation and Experiments 79

110
105
100
95
90

85 —|— T

80
|

Time

S —
0 | .
65
60

110 7
105

100 -
"~ OCBA —'F-

o0 I R e (R — vy

Time

"] T R
: .-.:::-- I "‘Aﬁ"'
651 0 L e
60
r2 3 4 5 6 7 8 9 10
Design
(b)

Figure 4.5. (a) 95% confidence interval for T' = 100 (after ng replications of each
design). Since OCBA is simulated equally in the first stage, the OCBA and Equal
confidence intervals are the same. (b) 95% confidence intervals for T = 500 for
equal allocation and OCBA.

80 SSO: An Optimal Computing Budget Allocation

Table 4.2. Results for Dudewicz and Dalal’s and Rinott’s procedure.

Dudewicz and Dalal Rinott

Avg Total # of Avg Total # of
P Replications P{CS} Replications P{CS}
75% 2649 96.1% 3191 97.0%
90% 5042 98.7% 5264 99.1%
95% 6697 99.6% 6889 99.6%

Ezxperiment 4.2. Simple generic examples

The second experiment is a series of simple generic tests. The pur-
pose is to compare how different procedures perform under different
well controlled settings. Since the performances of Dudewicz and
Dalal’s and Rinott’s procedures basically follow that of PTV, but
their required computing budget is far beyond the range we are con-
sidering here, we exclude those two-stage procedures from the numer-
ical testing here.

Ezxperiment 4.2.1. Simulation output is normally distributed

We assume there are ten design alternatives whose simulation output
is normally distributed. Suppose L(6;,w) ~ N(i,6%),i=1,2,--- ,10.
We want to find a design with the minimum mean. It is obvious that
design 1 is the actual best design. The information of N (i, 62) is solely
used to generate simulation output, but not used in determining the
simulation budget allocation or selecting the best design.

Figure 4.6 shows the test results using OCBA, Equal, and PTV
procedures discussed in Sections 4.1.1 and 4.1.2 (only P{CS} values
greater than or equal to 0.70 are shown here). We see that all pro-
cedures obtain a higher P{CS} as the available computing budget
increases. However, OCBA achieves the same P{CS} with a lower
amount of computing budget than other procedures. In particular,
we indicate the computation costs in order to attain P{CS} = 99%
for different procedures in Table 4.3, showing that OCBA can reduce
the simulation time by about 75% (ratio of 4 to 1) for P{CS} = 99%.

Numerical Implementation and Experiments 81

1 f ___________
0.95 ——
/ ,
0.9 / -
0.85 .

Emi OCBA
A~ ” Equal

0.8 r - = =-=-PTV

r
0.75 T
]
0.7 T T T T T 1
0 1000 2000 3000 4000 5000 6000

T

Figure 4.6. P{CS} versus T using three sequential allocation procedures for
Experiment 4.2.1.

Table 4.3. Computation cost required to obtain

P{CS} = 0.99.
P{CS} OCBA Equal PTV
0.99 1,100 4,400 4,000

Ezxperiment 4.2.2. Normal distribution with larger variance

This is a variant of Experiment 4.2.1. All settings are preserved
except that the variance of each design is doubled. Namely, L(6;,w) ~
N(i,2-62),i=1,2,...,10. Figure 4.7 contains the simulation results
for different allocation procedures (for P{CS} greater than or equal
to 0.70) and Table 4.4 contains the amount of computation time
required to achieve a P{CS} = 0.99. We can see that the relative
performances of different procedures are very similar to the previ-
ous experiment, except that bigger computing budgets are needed in
order to obtain the same P{CS} (due to larger variance). We also
observe that as the design variance increases (doubles in this case) the
relative “speed-up factor” of OCBA remains about the same (about
four times in this case).

82

SS0: An Optimal Computing Budget Allocation

1 / e ———

0.95 / 7

09 / -
7 ' OCBA
8 085 :
~ / " Equal

0.8 p = ===PTV

0.75

0.7 ‘ ‘ ‘ ‘ ‘

0 2000 4000 6000 8000 10000 12000
T

Figure 4.7. P{CS} versus T using three sequential allocation procedures for

Experiment 4.2.2.

Table 4.4. Computation cost to achieve P{CS} of 0.99.
P{CS} OCBA Equal PTV
0.99 2,100 8,500 7,500

Ezxperiment 4.2.3. Simulation output is uniformly distributed

In this case, we consider a non-normal distribution for the perfor-
mance measure: L(6;,w) ~ Uniform(i—10.5,i4+10.5), 7 =1,2,...,10.
The endpoints of the uniform distribution are chosen such that the
corresponding variance is close to that in Experiment 4.2.1. Again,
we want to find a design with the minimum mean; design 1 is
therefore the actual best design. All other settings are identical to
Experiment 4.2.1. Figure 4.8 contains the simulation results for the
three allocation procedures. We can see that the relative perfor-
mances of the different procedures are very similar to previous results
(i.e., OCBA performs three-times faster than equal allocation). The
specific number of simulation iterations required to achieve a P{CS}
of 0.99 is shown in Table 4.5.

Numerical Implementation and Experiments 83

1 . = = = o= ==

L 4
0.95 <
s
/ J
0.9

-
-

8 085 - OCBA
=9 4 Equal
0.8 /' = = = PpTVy
[|
0.75]
/.
07+ — : : : ‘ |
0 1000 2000 3000 4000 5000 6000

T

Figure 4.8. P{CS} versus T using different allocation procedures for Experi-
ment 4.2.3. The computation costs in order to attain P{C'S} = 99% are indicated.

Table 4.5. Computation cost to achieve P{CS} of 0.99.

P{CS} OCBA Equal PTV

0.99 1,900 6,000 4,400

Ezperiment 4.2.4. Flat and steep case

This test is another variant of Experiment 4.2.1. We consider three
generic cases illustrated in Figure 4.9(a) (also shown in Ho et al.
1992): neutral, flat, and steep. The neutral case is already presented
in Experiment 4.2.1. In the flat case, L(6;,w) ~ N(9 — 3v/9 —4,62),
i =1,2,...,10; and in the steep case L(0;,w) ~ N(9 — (%)2,62),
i = 1,2,...,10. In the flat case, good designs are closer; a larger
computing budget is therefore needed to identify the best design
given the same simulation estimation noise. On the other hand, it is
easier to correctly select the best design in the steep case since the
good designs are further spread out. The results of these predictions
are confirmed in Figures. 4.9(b) and 4.9(c), and Table 4.6. As shown
in Tables 4.3 (neutral case) and 4.6, the OCBA “speed-up factor”
remains about the same for all the three cases.

84 S§S50: An Optimal Computing Budget Allocation

9
8 l’
7 e
6 /
I'
c 5 JA B EEEEEES Steep
[,l
% 4 e Neutral
—-—--Flat
3 //
2 -
1
e
0 1 2 3 4 5 6 7 8 9
Index
(a)
1 —
0.95 /f —E =
0.9 / —=
0.85 / .
0.8 7
3 | OCBA
% 0.75 i
1 Equal
0.7 B qua.
0.65 == ==PTV
0.6
0.55 I
05 a T T
0 5000 10000
T
(b)

Figure 4.9. (a) Ilustration of three generic cases: neutral, flat, steep. (b) P{CS}
versus T wusing three different allocation procedures for the flat case in
Experiment 4.2.4. (¢) P{CS} versus T using three different allocation procedures
for the steep case in Experiment 4.2.4.

Ezxperiment 4.3. Larger design space

This experiment is a variant of Experiment 4.1. In this case, we
study how well OCBA performs for larger numbers of design alterna-
tives. In this case, instead of providing only 31 workers, we increase
the number of workers up to 121 workers where there must be at

Numerical Implementation and Experiments 85

1 / —
0.95 / —
0.9 :

~ 0.85 ;
8 I, OCBA
~ 08 : Equal
0.75 - - - oo PIV
0.7
0,65 T T T T T 1
0 200 400 600 800 1000 1200

(c)
Figure 4.9. (Continued)

Table 4.6. Computation cost required to achieve a P{CS} of 0.99 for
the flat and steep case.

P{CS} OCBA Equal PTV
Flat Case 0.99 4,100 15,100 13,300
Steep Case 0.99 300 1,100 1,000

least 11 workers at each station. As a result, the number of possi-
ble design alternatives varies from 10 to 100. Table 4.7 lists some of
the possibilities. In addition, we change the first station service time
to U(20, 58). The second station service time remains the same. All
other parameters and constraints of the original problem also remain
the same.

In this test, we compare OCBA and equal allocation, and focus
on the “speed-up factors” under OCBA. For both procedures, we
record the minimum computation cost to reach P{CS} = 99%:
Toca and Tga. The “speed-up factor” using OCAB is given by
the ratio Tga/Tocpa- It is also useful to measure the so-called
Equivalent Number of Alternatives with a Fized Computing Budget,
ENAFCB(k), which is defined as the number of alternatives that can

86 SSO: An Optimal Computing Budget Allocation

Table 4.7. Number of maximum allowable workers to
simulate varying numbers of designs.

Number of designs Maximum number of workers
10 31
20 41
30 51
40 61
50 71
60 81
70 91
80 101
90 111

100 121

be simulated under the equal allocation procedure using the com-
puting budget that is needed for OCBA to simulate k alternatives
for reaching P{CS} = 99%. For example, in the case of 10 alterna-
tives, OCBA is 3.40 times faster than equal allocation (requires a
computation cost of 850 instead of 2890 to reach a P{CS} of 0.99).
Thus, OCBA can simulate 10 alternatives in the same time that
equal allocation can simulate only 10/3.40 = 2.94 designs. In this
case, ENAFCB(10) for OCBA is 2.94. An alternative interpretation
of this statement is that, under OCBA, we can simulate 10 alterna-
tive designs with only the equivalent effort of 2.94 designs.

Based on the approach described above, the speed-up factors and
ENAFCB factors are shown below in Table 4.8. We see that OCBA
is even more efficient as the number of designs increases. The higher
efficiency is obtained because a larger design space gives the OCBA
algorithm more flexibility in allocating the computing budget. In par-
ticular, ENAFCB(50) = 3.94 means that with an equivalent effort
of less than 4 alternatives, OCBA can simulate 50 design alterna-
tives for Experiment 4.1. This advantage demonstrates that OCBA
can provide the ability to simulate many more designs for limited
available computational time (further enhancing the probability of
identifying the correct design).

Numerical Implementation and Exrperiments 87

Table 4.8. The speed-up factor of using OCBA as compared with the use of
equal allocation for Experiment 4.3.

Number of designs, k 5 10 25 50 75 100

Speed-up factor using OCBA 2.08 3.40 7.86 12.69 16.50 20.05
ENAFCB(k) 240 294 3.18 3.94 4.55 4.99

To thoroughly examine the speed-up property of OCBA, we fur-
ther increase the number of designs in the testing. We extend the
test by increasing the number of design alternatives from 100 to
1000 using an identical approach to that described in Table 4.7 (e.g.,
letting the maximum number of servers equal 21 more than the num-
ber of desired designs). Figure 4.10 shows that the speed-up factor
initially increases almost linearly when the number of alternatives is
small. However, when the number of alternatives is large, the speed-
up converges to some maximum level. This is due to the initial sam-
pling cost for OCBA. Initial sampling is needed to gather the first
estimates for means and variances so that the optimal computing
budget allocation can be determined. Because we do not assume any
prior knowledge about the topology of the design space, this initial

40

35

=
20 //

10 /
5

0 T T T T 1
0 200 400 600 800 1000
Number of Designs

OCBA “Speed-up Factor”

Figure 4.10. Speed-up factor versus number of designs using OCBA.

88 SS0: An Optimal Computing Budget Allocation

sampling cost is proportional to the number of alternatives and will
become dominating when the number of alternatives is large.

4.2. Parameter Setting and Implementation
of the OCBA Procedure

To apply the OCBA algorithms, we need to specify appropriate val-
ues for the algorithm parameters, ng, the initial number of simulation
replications, and A, the one-time computing budget increment.
These two parameters may affect the performance of the algorithms.
In this section, we provide guidelines for selecting these two param-
eters, although a good choice might be problem-specific. In addi-
tion, we offer some discussions about the approximations made in

the OCBA procedures.

4.2.1. Initial number of simulation replications, ng

It is well understood that ng cannot be too small as the estimates
of the mean and the variance may be very poor, resulting in poor
computing budget allocation. Nevertheless, a small ng gives us added
flexibility for better allocation of the computing budget. On the other
hand, if ng is too large, we may waste computation time in simulating
non-promising designs (similar impact to having a large number of
designs such as in Figure 4.10 so that the initial simulations become
the dominant factor in algorithm efficiency). Intuitively, the effect of
ngo should be less significant when the total computing budget, T is
large.

We use the worker allocation example (Experiment 4.1) to illus-
trate the impact of different values of ng. Figure 4.11 shows the
probability of correct selection as a function of the total computing
budget, T, for different ng values. When T is very small, low ng values
achieve higher P{CS} values. However, from Figure 4.11, we observe
that the achieved P{CS} appears to be fairly insensitive to ny when
T is large. Chen et al. [2000, 2008] suggest that a good choice of ng
is somewhere between 5 and 20.

Numerical Implementation and Experiments 89

099 P e g
0.98 g

0.97
0.96 .
0.95
0.94
0.93
0.92
0.91

0.9 T T T T

600 800 1000 1200 1400
T

P{CS)

Figure 4.11. P{CS} versus the computing budget T for different no as OCBA
is applied.

4.2.2. One-time incremental computing budget, A

The selection of A is typically problem-specific. Roughly speaking,
A is more like the step size in typical optimization search algorithms.
If the step size is too large, we may overshoot. On the other hand,
it may take more steps to converge to an optimal solution if the
step size is small. When applying the OCBA procedure, there is
a similar trade-off between the required computation cost for the
OCBA part and the resulting performance, particularly at the initial
stage of simulation when the estimated means and variances are still
not very accurate. A large A may result in a poor estimate of the
predictive APCS, and OCBA may not be able to generate a good
budget allocation. Thus, we may waste some computational efforts
if A is too large. On the other hand, if A is too small, we need to
solve the budget allocation problem given in the ALLOCATION step
frequently, incurring higher computation cost for the OCBA part.

We test the OCBA approach using the worker allocation example
for different values of A. To have a fair comparison, in Table 4.9, we
report both the achieved P{CS} and the total number of times the
OCBA procedure is executed. We see that when A increases to 100,
the number of times the budget allocation problem is solved is much
smaller. However, the resulting P{CS} is slightly lower.

90 SSO: An Optimal Computing Budget Allocation

Table 4.9. The achieved P{CS} and the total number of times required
to call the OCBA procedure for ng = 10.

A=1 A=5
T P{CS} # of OCBA P{CS} # of OCBA
300 90.3% 200 90.0% 40
500 96.4% 400 96.2% 80
700 98.5% 600 98.2% 120
900 99.4% 800 99.2% 160
1100 99.8% 1,000 99.6% 200
1300 99.9% 1,200 99.8% 240
1500 99.9% 1,400 99.9% 280
A =20 A =100
300 89.8% 10 89.0% 2
500 96.0% 20 95.4% 4
700 97.9% 30 97.5% 6
900 99.0% 40 98.6% 8
1100 99.4% 50 99.1% 10
1300 99.5% 60 99.3% 12
1500 99.8% 70 99.4% 14

A suggested choice for A is a number smaller than 100 or 10% of
the simulated designs, whichever is smaller. Note that the computa-
tion time for solving the optimization problem of budget allocation in
the ALLOCATION step depends mainly on the number of designs,
k, and is independent with the complexity of the simulated system.
Many real-life problems are much more complicated than a two-node
system in our example. As a result, the computation cost for execut-
ing the simulation is usually much higher than the computation time
for solving OCBA. Therefore, it is advisable to select a smaller A
when dealing with more complicated systems. In this case, A should
be as small as possible and can even be set as 1.

4.2.3. Rounding off N; to integers

The resulting N; in the ALLOCATE step based on Chapter 3’s Equa-
tion (3.20), is a continuous number that must be rounded to an inte-
ger. There are several possible ways to do so. Ideally we want the
rounded integers as close to the continuous numbers as possible.

Numerical Implementation and Experiments 91

In the numerical experiments presented in Section 4.1, let N; be
rounded to the nearest integer such that the summation of additional
simulation replications for all designs equals A. By ensuring the total
simulation replications for each iteration remain the same, it is easier
to manage computing budget and have a fair comparison with other
allocation procedures.

In general, we have found numerically that the performance of
OCBA procedures is not sensitive to how we round N;, probably due
to the robustness of a sequential procedure.

To round off N; to nearest integers while ensuring the summation
of additional simulation replications for all designs equals A, the
following algorithm can be applied. Let I; be the integer part of N;
and D; be the decimal point of IV;.

Step 1. I; = [N;] and D; = N; — I;, for all 1.

Step 2. Calculate what the remaining computing budget (r) is if we
take only the integer part, i.e., r =A =Y I.

Step 3. Find the set S(r) = {i : D; is among the r highest values}.
Increase the computing budget by 1 for design i € S(m), i.e.,
N; =1;+ 1, if i € S(m); N; = I;, otherwise.

Intuitively, this algorithm takes the integer part of each V;, and
then allocates the remaining budget to those designs which have
higher decimal parts.

4.2.4. Variance

The allocation given in OCBA theorems assumes known variances.
The OCBA sequential algorithm estimates these quantities using the
updated sample variances. As more simulation replications are iter-
atively allocated to each design, the variance estimation improves.
As discussed earlier, to avoid poor estimation at the beginning, ng
should not be too small (we suggest ng > 5). Also, it is wise to
avoid large A to prevent a poor allocation before a correction can
be made in the next iteration, which is particularly important in the
early stages. Our numerical testing indicates that the performance
of the OCBA procedure is not sensitive to the choice of ng and A if

92 S§50: An Optimal Computing Budget Allocation

the general guidelines are followed, and the impact of approximating
variance by sample variance is not significant.

There is an alternative formula for the calculation of sample stan-
dard deviation in the UPDATE step:

N?
1 d _
i j=1

There is a small advantage to this alternative. It is not necessary to
store the value of X;; for all replications. To calculate ij and J;,
we only need to accumulate ij and X;; and can throw away X;; for
each i and j after the accumulation step.

4.2.5. Finite computing budget and normality
assumption

Although the OCBA allocation schemes are developed by taking
T — o0, the numerical results presented in this chapter indicate that
the corresponding allocation in the OCBA procedure works very effi-
ciently for small T, as well. In addition, even though the simulation
output is assumed to be normally distributed in deriving the alloca-
tion rule, the numerical testing indicates that the OCBA procedure
works equally effectively by when the normality assumption is not
valid.

Chapter 5

Selecting An Optimal Subset

Instead of selecting the best design as in previous chapters, we con-
sider a class of subset selection problems in simulation optimization
or ranking and selection. The objective is to identify the top-m out
of k designs based on simulated output. In some cases, it is more
useful to provide a set of good designs than a single best design for
the decision-maker to choose, because he/she may have other con-
cerns which are not modeled in the simulation. Such efficient subset
selection procedures are also beneficial to some recent developments
in simulation optimization that require the selection of an “elite”
subset of good candidate solutions in each iteration of the algorithm,
such as an evolutionary population-based algorithm. A subset with
good performing solutions will result in an update that leads the
search in a promising direction.

Most traditional subset selection procedures are conservative and
inefficient. Using the optimal computing budget allocation frame-
work, we formulate the problem as that of maximizing the probability
of correctly selecting all of the top-m designs subject to a constraint
on the total number of simulation replications available. For an
approximation of this correct selection probability, we present an
asymptotically optimal allocation and an easy-to-implement sequen-
tial allocation procedure. Numerical experiments indicate that the
resulting allocations are superior to other methods in the literature

93

94 S§50: An Optimal Computing Budget Allocation

that we tested, and the relative efficiency increases for larger prob-
lems. Some of the details can also be found in Chen et al. [2008].

5.1. Introduction and Problem Statement

Most of recent research development in multiple comparison or rank-
ing and selection has focused on identifying the best design. Some
traditional “subset selection” procedures aim at identifying a subset
that contains the best design, dating back to Gupta [1965], who pre-
sented a single-stage procedure for producing a subset (of random
size) containing the best design with a specified probability. Exten-
sions of this work relevant to the simulation setting include Sullivan
and Wilson [1989], who derive a two-stage subset selection proce-
dure that determines a subset of maximum size m that, with a spec-
ified probability, contains at least one design whose mean response
is within a pre-specified distance from the optimal mean response.
This indifference zone procedure approach results in a subset of ran-
dom size. The primary motivation for such procedures is screening,
whereby the selected subset can be scrutinized further to find the
single optimum.

Instead of selecting the very best design from a given set or finding
a subset that is highly likely to contain the best design, our objective
is to find all top-m designs, where m > 1. Koenig and Law [1985],
who along the lines of the procedure in Dudewicz and Dalal [1975],
developed a two-stage procedure for selecting all the m best designs
(see also Section 10.4 of Law & Kelton 2000 for an extensive presen-
tation of the problem and procedure). However, the number of addi-
tional simulation replications for the second stage is computed based
on a least favorable configuration, resulting in very conservative allo-
cations, so that the required computational cost is much higher than
actually needed. While several procedures have been developed to
enhance the efficiency of ranking and selection, most of them focus
on selecting the single best, as presented in previous chapters.

Unlike traditional frequentist approaches constrained with least
favorable configuration, Chen et al. [2008] developed an effective
OCBA approach for selecting all the m best designs. As motivated in

Selecting An Optimal Subset 95

Chapter 2, to ensure a high probability of correct selection, a larger
portion of the computing budget should be allocated to those designs
that are critical in the process of identifying the top-m designs. Ide-
ally we want to allocate the computing budget in a most efficient
way. Conservative least favorable configuration is no longer required,
so the efficiency can be dramatically enhanced.

In addition to the notation given in previous chapters, we intro-
duce the following notation:

m = number of top designs to be selected in the optimal subset,
Sm = set of m (distinct) indices indicating designs in selected subset.

The objective is to find a simulation budget allocation that max-
imizes the probability of selecting the optimal subset, defined as the
set of m (<k) best designs, for m a fixed number. Without loss of
generality, we will take as the m best designs those designs with the
m smallest means. Note that rank order within the subset is not part
of the objective.

In the selection, we will take S, to be the m designs with the
smallest sample means. Let J;, be the r-th smallest (order statistic)
of {J1,J2,..., Jg}, ie, Jiy < Jiy < --- < J;. Then, the selected
subset is given by

SmE{il,ig,...,im}. (5.1)

Since the simulation output is stochastic, the set .S, is a random
set. In terms of our notation, the correct selection event is defined
by S, containing all of the m smallest mean designs:

CSmE{ ﬂ ﬂ (JiSJj)}:{maxJig min Ji}. (5.2)

€S, Sm
1€Sm i Sm 1€Sm i¢

The optimal computing budget allocation (OCBA-m) problem is
given by
P{CS

st. Ny +No+---+ N, =T. (5.3)

96 SSO: An Optimal Computing Budget Allocation

Here N1 + No + -+ + Ni denotes the total computational cost,
assuming the simulation execution times for different designs are
roughly the same. This formulation implicitly assumes that the com-
putational cost of each replication is constant across designs. Please
note that this assumption can be relaxed easily without changing the
solution. See Section 3.5 for details.

The optimal computing budget allocation problems given in
Chapter 3 is actually a special case of (5.3) with m = 1. For nota-
tional simplification, we will drop the “m” in P{CS,,} in the remain-
ing chapter.

5.2. Approximate Asymptotically Optimal
Allocation Scheme

Our approach is developed based on the same Bayesian setting pre-
sented in Chapter 3. If one prefers classical statistical model, a sim-
ilar optimal allocation can also be derived using the same idea. An
analogy is presented in Section 3.7 for selecting the single best.

In the Bayesian framework, the mean of the simulation output
for each design, J;, is assumed unknown and treated as a random
variable. After the simulation is performed, a posterior distribution
for the unknown mean J;, p(J; | L(6;,w;j), j = 1,2,...,N;), is con-
structed based on two pieces of information: (i) prior knowledge of the
system’s performance, and (ii) current simulation output. Thus, the
probability of correct selection defined by Equation (5.2) is given by

P{CS} = P{J; < J;, foralli € S,, and j ¢ Sy}, (5.4)

where J;, i = 1,..., k, denotes the random variable whose probability
distribution is the posterior distribution of design i. As in Chapter 3,
we assume that the unknown mean J; has a conjugate normal prior
distribution and consider non-informative prior distributions, which
implies that no prior knowledge is available about the performance
of any design before conducting the simulations, in which case the
posterior distribution of J; is

- _ g2
Iy iy~] .
J N<J Ni) (5.5)

Selecting An Optimal Subset 97

After the simulation is performed, J; can be calculated, aiz can
be approximated by the sample variance, and the P{CS} given by
Equation (5.4) can then be estimated using Monte Carlo simula-
tion. However, since estimating P{CS} via Monte Carlo simulation
is time-consuming and the purpose of budget allocation is to improve
simulation efficiency, we adopt an approximation of P{CS} using a
lower bound.

For a constant c,

P{CS} = P{J; < J;, for all i € S,, and j ¢ S, }
ZP{JNigcandJNjZC, forall i € Sy, and j ¢ S, }

= [P{Ji <} [[P{Ji = ¢} = APCSm, (5.6)

where the last line is due to independence across designs. We refer
to this lower bound for P{CS}, which can be computed easily and
eliminates the need for extra Monte Carlo simulation, as the Approz-
imate Probability of Correct Selection for m best (APCSm). The
value for ¢ will be between J;, and J;,,,, and the rationale for this
will be explained in Section 5.2.1. Using the approximation given by
Equation (5.6), the OCBA-m problem (5.3) becomes

] < 7. >
Nﬁna)](vk l!;[P{J; <c} g P{J; > ¢}

S.t. N1+N2++Nk:T (57)

Now we solve OCBA problem (5.7), assuming the variables {V;}
are continuous. For notation simplification, we define the variable
Si=Ji—c,i=12,... k.

For i € S,,,
- 0 1 *(I2*5i)2
P(J; <c :/ = 20 /N) (g
(‘) —0 V 27T<0'Z'/\/Ni)
e e
= —e2 dt=¢ | ——— |,
v VAT o1/ VI;

98 SSO: An Optimal Computing Budget Allocation

and for i ¢ Sy,

B oo 1 —(902 3;) < 5)
>) = e/ Ny =& ! ,
=) /0 V27T(Ui/\/Ni)e ! oi/VN;

where ®(x) is the standard normal cumulative distribution function.
Now let F be the Lagrangian relaxation of (5.7), with Lagrange
multiplier A:

F=TJ[Plli<er- [[PlIizc} - A(ZN T)

o o
-1 () Hq’(wr) (ZN T)

(5.8)

To find the stationary point of the Lagrangian function, we set
g—]{z = 0 for each value of i.

For i € S,

II PlJi<e- I P = ¢}

JESm J¢Sm
J#i
-1 0 0 —-1/2
— N - A=0, 5.9
(70 (Uz/\/ z) (oF} ()

2
where ¢p(z) = \/%GT is the standard normal probability density
function.

For ¢ ¢ Sy,

= [Plli<er-] PlJi=¢}

JESm Jé&Sm
J#i
1 0; > 0 —-1/2
50 SN2 x =0 5.10
<Jz/\/ z' ()

Also, %—f = 0 returns the budget constraint Zle N; =T =0.

Selecting An Optimal Subset 99

To examine the relationship between N; and N; for i # j, we
consider three cases:

(1) i € Sy, and j & Sp:
Equating the expressions in Equations (5.9) and (5.10),

fo< e} AR Py N KISNASTE
II Pid <t [Pidr=c} 24p<1/\/_i> SNTE A

rESm T¢Sm
r#i

= [[Pls <t I] P{0r=¢}

r€Sm ré&Sm
r#]
1 0 0 ~1/2
—<p —N. -\
(UJ/\/) aj 7
Simplifying,
S o 8
PLJ; > ¢} - 08N ZU N2 L < oy XN SN2
ag; 04
(5.11)
Taking the log on both sides,
62N, —6; 1
log(P{J; > c}) — + log L) — = log(NV;)
2‘71 o; 2
- 52N 5. 1
= log(P{J; < c}) — -2 2J + log (—J> — —log(N;).
20j 0 2
Now, we consider the asymptotic limit T" — oo with N; = «;T,
Zle a; = 1. Substituting for N; and dividing by T yields
1 - 62 1 —6; 1
T log(P{J; > c}) — ﬁai + T log (p > ~ 57 log(a;T)
1 ~ (5]2 1 (5]' 1
=7 log (P{Ji < c}) - T‘?aj + 7 log (0_3) ~ 57 log(a;T),
and then taking T — oo yields
52 &
5 = 50

o; 5

100 SSO: An Optimal Computing Budget Allocation

Therefore, we obtain the ratio between «; and a; or between N; and
N, as:
J

Ni oy 0i/0;)2
R . 5.12
N; o <Jj/5j (512)

Since §; = J;—c, i =1,2,...,k, it is clear that the optimal allocation
depends on the value of ¢ (see Section 5.2.1 for determining a good
value), and thus the m = 1 case does not in general reduce to the
original OCBA allocation for selecting the best design.

(2) Both i,j € Sy, and i # j:
From Equation (5.9),

or oF
ON; ON; N
yields
I Pid<ct- I[PlJr=c}
r€Sm TQSm
r#£i
2 ¥ 0i/VN;) (62/N;) Nf’/Z
=[] Pls <t I Pl =¢}
rESH T%Sm
r#j
—_1(’0 5j (Sj O’j)
2 o;/v/Nj (UJZ/NJ') N;’/Q .
Then,
s s B,
P{jj < ¢} 2FND —_Z‘Ni—1/2 _ P{ji <} o 203 /N}) —_‘Nj—l/Q7
o; gj

which is the same as Equation (5.11). Following the analogous deriva-
tion that led to Equation (5.12) yields the same result

N; o 0i/6; >2
It . 5.13
N; o <Jj/5j (5:13)

Selecting An Optimal Subset 101

(3) 4, ¢ S, and i # j:
From Equation (5.10),

or _oF _
ON; _ ON;
yields
P{J;<c}- e2(0/Ni) ?T‘?Ni—lm = P{J. <c}- 23 /N) ;_‘j‘ij—l/g

Again, following the same derivation procedures as in the previous
two cases leads to the same result

voa-(a) 619

i 9y
In all of the above three cases, we obtain the same locally optimal

solution to the Lagrangian relaxation of the OCBA-m problem (5.7)
and therefore have the following result.

Theorem 5.1. Given a total number of simulation replications T
to be allocated to k competing designs whose performance is depicted

by random wvariables with means Ji,Ja, ..., Ji, and finite variances
U%,O’%, . ,0,% respectively, as T — oo, the Approximate Probabil-

ity of Correct Selection for m best (APCSm) can be asymptotically
mazximized when

v (o) o
k),

for any i,5 € {1,2,. and i # j, where 6; = J; — ¢, for c a

constant.

Remark 5.1 (Signal to Noise Ratio). Note that Equation (5.15)

can be rewritten as
N; 5i/oi\?
Nj <5z/01 ’ (5 6)

which is very similar to the signal to noise ratio equation given in
Remark 3.3 that is the result of selecting the single best.

102 SSO: An Optimal Computing Budget Allocation

Similar with Remark 3.3, == can be considered as a signal to noise
ratlo for design 4. In the problem of selecting the top-m, the higher
o the more confident we are about whether design 7 is in the optimal
subset or not. Intuitively, we should spend less computing budget on
those designs for which we are highly confident, i.e., high signal to
noise ratio. The allocated computing budget is inversely proportional
to the square of the signal to noise ratio.

It is interesting to see that the signal to noise relation for selecting
the top-m is the same as that for selecting the single best, except that
the definitions of § are different.

5.2.1. Determination of c value

The parameter ¢ impacts the quality of the approximation APCSm
to P{CS}. Since APCSm is a lower bound of P{CS}, choosing ¢ to
make APCSm as large as possible is likely to provide a better approx-
imation of APCSm to P{CS}. However, determining ¢ to maximize
APCSm can be time-consuming. We offer a simple heuristic as an
approximation in this book. This certainly can be further improved.

Figure 5.1 is provided to help explain our choice of ¢, by giving an
example of probability density functions for J;, i = 1,2, ..., k. Note
that APCSm is a product of P{.J; < ¢} for i € S, and P{J > c} for
i ¢ Sy,. Consider the equal variance case Var(.J;,) = Var(J;,) = --- =

v

il

H :

: :

Ji : Ji, i Ji,
:

Figure 5.1. Anﬁexample of probability density functions for J~¢, i =1,2,...,k,
d < Jip <c< i, <.

Selecting An Optimal Subset 103

Var(J;,), where for any value of ¢, P{J;, <c} > P{J;, <c} > -->
P{J;, <c},and P{J;, ., >c} <P{Ji, ., >c}<-<P{J, >c}
To prevent APCSm from being small, we want to choose ¢ to avoid
any of the product terms being too small, especially P{J; < ¢} and
P{Ji,.
in the product, depending on the value of c¢. Thus, a good choice of
¢ lies between J_,-m and J; because

> ¢}, because one of these two terms is usually the smallest

m+1)

(i) if e = ¢ < J;,,, then P{J;, <} < 0.5, and this term decreases
with decreasing ¢, resulting in a negative impact on A PCSm;
mi1s then P{J; . > ¢’} < 0.5, and this

term decreases with increasing c”.

(i) similarly, if ¢ = ¢ > J; .

With these considerations, one would like to maximize both
P{J, <ctand P{J;, , > c}. Chen et al. (2008) chose to maximize
the product of P{J;,, < c} and P{J;,, ., > c}. Define 6; = 0;//N;.
Then

. ~ - g
P{Ji,, < c}P{Ji, Z ¢} =@ (C e) ‘P (Fo c) .
Oim O'im+1
(5.17)

Following the same approach as used to establish Theorem 5.1, this
quantity is asymptotically maximized when
GivpirJim + Giny i
= mitTim | TImThmil (5.18)

UZm + O—im+1

We use this value of ¢ in our implementation, and the numerical
experiments show that it results in good performance.

Remark 5.2. Note that ¢ falls between designs i,, and i,,+1 and
can be considered as the border which divides the best top-m sub-
set from the remaining designs. Namely, c¢ is the border separating
good designs and non-good designs. Therefore, |§;| is equivalent to
the distance between design ¢ and the border. From the computing
budget allocation perspective, to identify which designs belong to
top-m, the “critical” designs are those which are near the border.
The further away from the border, the more we are confident that
they are either very good or very bad designs. We should spend less

104 SSO: An Optimal Computing Budget Allocation

computing budget on those with large |0;|. On the other hand, we
should spend more efforts on those designs which are near the border.
This is consistent with the discussion in Remark 5.1. The allocated
computing budget is inversely proportional to the square of “5” or,
more specifically, the signal to noise ratio.

5.2.2. Sequential allocation scheme

We present an effective sequential allocation procedure by utilizing
Theorem 5.1. The objective is to identify the top-m design using a
minimum simulation budget or to maximize the probability of select-
ing all the top-m designs using a same computing budget (7). The
allocation given by Theorem 5.1 assumes known variances and inde-
pendence of estimated sample means across designs. In practice, a
sequential algorithm is used to estimate these quantities using the
updated sample variances. Furthermore, the “constant” ¢ and sam-
ple means are also updated during each iteration. Each design is
initially simulated with ng replications in the first stage, and addi-
tional replications are allocated incrementally with A replications to
be allocated in each iteration, in which we want to maximize the
effectiveness of determining the best top-m. This procedure is con-
tinued until the total budget T is exhausted or the estimated APCSm
is sufficiently high.

OCBA-m procedure

INPUT k,m, T, A, no(T — kng a multiple of A and
ng > 5);
INITIALIZE [« O;

Perform ny simulation replications for all

designs; N = N} = ... = Nl = no.
LOOP WHILE Y% | N! < T DO
— l
UPDATE Calculate sample means J; = % Z;V:ZI

L(0;,w;j), and sample standard deviation S; =

NI—T Zj:l(L(giawij) —Ji)?, 1 = 1,...,k,

using the new simulation output; determine

Selecting An Optimal Subset 105

the subset S, using the ranking of .J;; com-
. s ;
pute &; = \/_,z = 1,...,k, and ¢ =
N!
Gipi1 Jimn +Cim jim+1 .

:update 6; = J; — ¢, i =

Gim T0ip, 41
1.k

ALLOCATE |Increase the computing budget by A and
calculate the new budget allocation, NfH,
Né‘*‘l, e ,N,i,“, according to

I+1 I+1 I+1
Nl N2 Nk:

s () (8T

51) 5o o

SIMULATE Perform additional max(N/™ — N!,0) simu-
lations for design i, i = 1,...,k; | «— [+ 1.

END OF LOOP

In the above procedure, the stopping criterion is that the total bud-
get T is exhausted. Alternatively, one may want to minimize overall
computing cost (total number of simulation replications) in order
to achieve a desired P{CS}, such as 95%. In the later case, the
“Loop While Zle Nl-l < T Do” step is replaced with “Loop While
APCSm < P* Do”, where P* is the desired correction probability.
Based on the Bayesian framework in Section 3.1 and Equations (3.2)
and (3.3),

APCSm= [[P{Ji<c} [] PlJizc}
1€Sm i¢Sm

i€Sm i¢Sm %
T

C — JZ' JZ‘ —C
=[] 2 \/7 « [] @ “— . (.19
N7

For a good choice of the parameters in the OCBA-m procedure
such as A and ng, please refer to Chapter 4.

Note that this OCBA-m procedure is designed to select all of
the top-m designs when m > 2. For the m = 1 case, the OCBA
allocation given in Chapter 3 is different from the OCBA-m due to

different approximations made. Our empirical studies show that both

106 SSO: An Optimal Computing Budget Allocation

the original OCBA procedure and OCBA-m procedure work very well
when m = 1, though the original OCBA procedure performs slightly
better.

Alternative OCBA-m procedure

As discussed in Section 4.1.1, when the simulation is relatively expen-
sive, the computation cost of the ALLOCATION step becomes neg-
ligible. In this case, A should be as small as possible and can be
set as 1. To avoid the numerical error occurred when rounding NZ.ZJrl
into an integer, we suggest a numerically robust alternative. The
ALLOCATE and SIMULATE steps are revised as follows.

ALLOCATE Increase the computing budget by A = 1 and
calculate the new budget allocation, N{'H,
Né‘H, e ,N]ljl, according to
N{-i—l B Néﬂ N,i“ '

(®) &)

01 02
leave Nl-l+1 as a decimal number and find ¢* =
arg max; (N ™' — N}).

SIMULATE Perform one additional simulation for design
i*; NIFY = NI+ 1; N = N for i # i
l—1+1.

The revision determines which design is most in need of an additional
simulation, and then simulates that design for one additional repli-
cation. This procedure is iteratively continued until the total budget
T is exhausted or the estimated APCSm is sufficiently high.

5.3. Numerical Experiments

To compare the performance of the procedures, we carry out numer-
ical experiments for several typical selection problems. Most of the
numerical setting is the same as those presented in Chapter 4. Details
of the numerical experiments can be found in Chen et al. (2008).

Selecting An Optimal Subset 107

For notational simplicity, in this section, we assume Jjj) < Jpg) <
-+ < J, so design [1] is the best, and the optimal subset containing
the top-m is {[1],[2],...,[m]} (but this is unknown a priori). It is a
correct selection if the selected subset S, = {[1],[2],...,[m]}.

5.3.1. Computing budget allocation procedures

We test the OCBA-m algorithm by comparing it on several numerical
experiments with different allocation procedures: Equal Allocation,
which simulates all design alternatives equally; the Koenig and Law
(1985) procedure denoted by KL; Proportional To Variance (PTV),
which is a modification of KL that allocates replications proportional
to the estimated variances; and the original OCBA allocation algo-
rithm for selecting only the best design. For details of Equal Alloca-
tion, PTV, and OCBA procedures, please refer to Chapters 3 and 4.
We briefly describe the KL procedure here.

The two-stage procedure of Koenig and Law (1985) selects a sub-
set of specified size m, with probability at least P*, so that the
selected subset is exactly the actual subset with the best (smallest)
expected values, provided that Jj;, 1] — Jjm is no less than an indif-
ference zone, d. As in our setting, the ordering within the selected
subset does not matter.

In the first stage, all designs are simulated for ng replications.
Based on the sample variance estimate (s?) obtained from the first
stage and given the desired correct selection probability P*, the num-
ber of additional simulation replications for each design in the second
stage is determined by:

N; = max(ng + 1, [h3s?/d?]), fori=1,2,... k, (5.20)

where [e] is the integer “round-up” function, and hs is a constant
that depends on k, m, P*, and ny.

5.3.2. Numerical results

In comparing the procedures, the measurement of effectiveness used
is the P{CS} estimated by the fraction of times the procedure suc-
cessfully finds all the true m-best designs out of 100,000 independent

108 SSO: An Optimal Computing Budget Allocation

experiments. Because this penalizes incorrect selections equally —
e.g., a subset containing the top-1, top-2,..., and top-(m—1) designs
and missing only the top-m design is treated no differently than a
subset containing not a single one of the top-m designs — in our
numerical experiments, we also include a second measure of selec-
tion quality, the so-called expected opportunity cost E[OC], where

m

0C=> " (Ji, = Jy). (5.21)

j=1
This measure penalizes particularly bad choices more than mildly
bad choices. For example, when m = 3, a selection of {top-1, top-2,
top-4} is better than {top-1, top-2, top-5}, and both are better
than {top-1, top-3, top-5}. Note that OC returns a minimum value
of 0 when all the top-m designs are correctly selected. The esti-
mated E[OC] is the average of the OC estimates over the 100,000
independent experiments.

Each of the procedures simulates each of the k designs for ng = 20
replications initially (following recommendations in Koenig and Law
1985 and Law and Kelton 2000). KL allocates additional replications
in a second stage (so the total number is not fixed a priori), whereas
the other procedures allocate replications incrementally by A = 50
each time until the total budget, T', is consumed. For each level of
computing budget, we estimate the achieved P{CS} and E[OC].

Since KL is a two-stage indifference-zone procedure, we must spec-
ify the values for the desired probability of correct selection, P*, and
the indifference zone d to satisfy the condition that Ji,41)—Jj) = d,
where a smaller d implies a higher required computation cost based
on Equation (5.21). In practice, the value of Jim41) OF Jppy) 1s unknown
beforehand, but for benchmarking purposes, we set d = Jj, 1) = J[m)s
which leads to the minimum computational requirement (or maxi-
mum efficiency) for the procedure. Since the required computation
cost varies from one experiment to another, we will indicate the
average number of total replications based on the 100,000 indepen-
dent experiments. As is done for the other procedures, the resulting
P{CS} and E[OC] can also be estimated over the 100,000 indepen-
dent experiments.

Selecting An Optimal Subset 109

Ezxperiment 5.1. Worker allocation problem

This numerical test is based on the worker allocation problem pre-
sented in Example 1.1 (also Experiment 4.1). In summary, this
problem represents the challenge of allocating 31 workers within a
two-stage queue where each stage of the queue can contain no less
than 11 workers as shown in Figure 5.2.

Denote C; and Cy as the numbers of workers allocated to nodes
1 and 2. Thus C7 + Cy = 31, C; > 11, and Cy > 11. There are
10 alternative combinations of (Cy,Cy). We want to choose the best
alternative of (C1,C9) so that the average system time for the first
100 customers is minimized. Since there is no closed-form analytical
solution for the estimation of the system time, stochastic (discrete-
event) simulation can be performed to derive a solution.

To characterize the performance of different procedures as a func-
tion of T, we vary 1" between 200 and 3000 for all of the procedures
other than KL, and the estimated achieved P{CS} and E[OC] as
a function of T is shown in Figure 5.3. For KL, we test two cases
P* =0.9 and P* = 0.95. Since the corresponding estimated P{CS}
and E[OC] versus the average total simulation replications are well
beyond the range of our figures, they are shown in Table 5.1.

We see that all procedures obtain a higher P{CS} and lower
E[OC] as the available computing budget increases. However,
OCBA-m achieves the highest P{CS} and lowest E[OC] for the same
amount of computing budget. It is interesting to observe that OCBA,
which performs significantly better than Equal Allocation and PTV

O O

Exp(1) O O
—> ° —> ° e
U(1,39) : U(5,45) :
O O
C] C2

Figure 5.2. A two-stage queuing system where both C1, and C> must be greater
than 10.

110 SSO: An Optimal Computing Budget Allocation

0.94 ;
§ Equal
R o : <-os PTV
09 ; —— 0CBA
: —*— OCBA-m
0.9 =

200 700 1200 1700 2200 2700
T

Figure 5.3(a). P{CS} versus T using four sequential allocation procedures and
KL for Experiment 5.1.

0.4

0.35 \
0.3 \
025

8 0.2 \ Equal
= | - PTV
| —— OCBA
0.15 —=— OCBA-m

0.1 \
0.05

200 700 1200 1700 2200 2700

Figure 5.3(b). E[OC] versus T using four sequential allocation procedures and
KL for Experiment 5.1.

Selecting An Optimal Subset 111

Table 5.1. Results for KL procedure.

P* Avg. total # of replications P{CS} E[OC]

90% 5388 100% 0.0
95% 7007 100% 0.0

when the objective is to find the single best design, fares worse in this
experiment than these two allocations when the objective is changed
to finding all the top-3 designs. Specifically, the computation costs
to attain P{CS} = 0.95 for OCBA-m, OCBA, Equal, and PTV are
350, 2050, 700, 900, respectively. KL achieves a substantially higher
P{CS} than the desired level (e.g., 1.0 for the target minimum of
both P* = 0.9 and P* = 0.95) by spending a much higher comput-
ing budget than actually needed, consistent with the fact that typical
two-stage indifference-zone procedures are conservative.

Ezperiment 5.2. (s,S) Inventory control problem

The second experiment is an (s,.S) inventory policy problem which
is given as Example 1.2 in Chapter 1. In summary, the system in-
volves a single item under periodic review, full backlogging, and ran-
dom lead times, with costs for ordering, on-hand inventory, and
backlogging. The times between demands and the sizes of dem-
ands are random. The (s,S) policy specifies that if the on-hand
inventory at the review point is at or below the level s, then an
order is placed of an amount that would bring the inventory up
to level S. The 10 inventory policies are defined by the param-
eters (s1,s92,...,810) = (20,20,20,40,40,40,60,60,60,80) and
(S1,52,...,510) = (30,40, 50, 50,60, 70, 70,80,90,90), respectively.
The objective is to find the top-3 (m = 3) policies with minimum
expected average inventory cost over 120 periods.

The test results shown in Figure 5.4 are similar to those in previ-
ous experiment, in that OCBA-m is clearly the top performer again;
however, this time OCBA is the runner up by a slight margin. The
computation costs to attain P{CS} = 0.95 for OCBA-m, OCBA,
Equal, and PTV are 500, 1200, 1650, 1350, respectively.

112 SS0: An Optimal Computing Budget Allocation

| = = —Equal "t PTV ——OCBA —&— OCBA-m |

0.93

0.92

0.91

0.9

® »
O P SRS RS Sy

AN N N L S
N S R R

N

Figure 5.4(a). P{CS} versus T using four sequential allocation procedures and
KL (triangle for P* = 90% and circle for P* = 95%) for Experiment 5.2.

[- - -Equal PV ——ocBA —=—o0CBAm |

0.05

0.045

0.04

0.035

0.03

ElQs]
4
8

0.02

0.015 - <
RS
o N

0.005

(O e

NN S & & S S S S S ©
S S &S @\®&\@@@¢°@@@°¢“@°¢§W@

Figure 5.4(b). E[OC] versus T using four sequential allocation procedures and
KL (triangle for P* = 90% and circle for P* = 95%) for Experiment 5.2.

Selecting An Optimal Subset 113

For KL, we also test two cases P* = 0.9 and P* = 0.95, and the
corresponding estimated P{CS} and E[OC] versus the average total
simulation replications are shown as two single points (the triangle
and circle) in Figure 5.4. Not surprisingly, the performance of KL is
along the performance curve of PTV, since KL basically allocates the
computing budget based on design variance. However, KL achieves
a substantially higher P{CS} than the desired level (e.g., about 0.99
for the target minimum of P* = 0.9) by spending a much higher
computing budget than actually needed.

Experiment 5.3. Generic case: Monotone mean and equal variance

This numerical test is based on the simple generic problem presented
in Experiment 4.2.1. There are 10 alternative designs, with distribu-
tion N(i,62) for design i = 1,2,...,10. The goal is to identify the
top-3 designs via simulation samples, i.e., m = 3 in this experiment.

Figure 5.5 depicts the simulation results. As in earlier experi-
ments, OCBA-m achieves the highest P{CS} and the lowest E[OC]

s
o —

0.94

0.93

P{CS}
Py
&
‘!i‘&
.y

0.92

F
0.91 >

0.9 TrrrrrTrrrrTTTTT JE T T T T T T T T T T e

S D O DO DD S O D S O OO O L O D O . D DD
L L E L P TP F P F L S SO S

T

Figure 5.5(a). P{CS} versus T using four sequential allocation procedures and
KL (triangle for P* = 90% and circle for P* = 95%) for Experiment 5.3.

114 SSO: An Optimal Computing Budget Allocation

I — - —Equal - PTV ———OCBA —&— OCBA-m

0.05

0.045

0.035

0.03

0.025

E[OC]

0.02

0.015

0.01

0.005

3700
3950
4200
4450
4700
4950
5200
5450
5700
5950
6200
6450
6700
6950
7200
7450
7700
7950

T

Figure 5.5(b). E[OC] versus T using four sequential allocation procedures and
KL (triangle for P* = 90% and circle for P* = 95%) for Experiment 5.3.

with the same amount of computing budget. Specifically, the com-
putation costs to attain P{CS} = 0.95 for OCBA-m, OCBA, Equal,
and PTV are 800, 3200, 1950, 2000, respectively. Again OCBA-m is
significantly faster than other methods and KL achieves a substan-
tially higher P{CS} than the desired level by spending a much higher
computing budget than actually needed.

Experiment 5.4. Larger-scale problem

This is a variant of Experiment 5.3, with the number of designs
increased to 50. The alternatives have distribution N(i,10%) for
design ¢ = 1,2,...,50, and m = 5. Since KL’s performance basi-
cally follows that of PTV, but its required computing budget is far
beyond the range we are considering here, we exclude KL from the
numerical testing.

Figure 5.6 depicts the simulation results. As in earlier exper-
iments, OCBA-m achieves the highest P{CS} and the lowest

115

Selecting An Optimal Subset

- PTV._——OCBA —&—O0CBAm |

= = =Equal

8
0L
r 0000 «~ Mwmmo
E oo0sse ! 0
E 00029 = ooozs
£ 00559 ‘M o0sso
E ooczo 8 00529
E oosze o o5z
E ooses 2 00565
E oooss = 00085
b ooocs = 00995
E oooss Q 00055
b oosee e 005€5
E oooe g 00025
E oosos 8 00505
E dooos = €] 00067
ot i 3 0052¥
" Socor = 3 0009%
E Socus £ i 005+
eodd = + 000EY
Ferid g 0051¥
E Sooor = 3 0000%
F o
E 00007 o S o
o % 0002€
eoned 5 _ 0055€
E oosse = poad
oisd < g 00sze
ot ¥ 0001€
ool cnc : 00562
E oos6z = ‘ gosez
pvd m E 00592
Pond & 00052
hoseid & | 00582
owid 2 | \ 0002z
E ooozz =1 l ooozz
/ E oos0z N — \ \ poore
E 0006l 5 oooa
// E ooszi > L \ ooss
™~ E 00091 —~ | —1 » posost
/.l/ ™~ E oogpt 0 | — L ol
e] E oooet © | - 00541
™ E —~ T

~f ~~—F oos1 Q. e 00004
"<l F o000l . L P hos
“~t oose < poost
£ 000 0 | o 005
E ooss & pood
E 000t > it 002
F 00se 10 m + oool

. = g ¢ s 8 8 § 8§ 2 5 8

g 8 & & 2 8 8 ¥ & g g z s & s 8 s g s & 3 §

[S) [S) o 5] o o [S) o = 2 foola
{sd}d o0
[SAgcal

T
E[OC] versus T using four sequential allocation procedures for

Figure 5.6(b).
Experiment 5.4.

116 SSO: An Optimal Computing Budget Allocation

E[OC] with the same amount of computing budget; however, the
performance gap between OCBA-m and other procedures is sub-
stantially greater. This is because a larger design space allows the
OCBA-m algorithm more flexibility in allocating the computing
budget, resulting in even better performance. On the other hand,
OCBA performs poorly, because it spends a lot of computing budget
on distinguishing the very top designs, a tendency that is penal-
ized even more for larger m. Again, since the variance is constant
across designs, the performances of Equal and PTV are nearly indis-
tinguishable. In this experiment, the computation costs to attain
P{CS} = 0.95 for OCBA-m, OCBA, Equal, and PTV are 4050,
31050, 27050, 27200, respectively.

Chapter 6

Multi-objective Optimal
Computing Budget Allocation

In previous chapters, we have developed various OCBA algorithms
for allocating simulation runs for identifying the best system design
from a set of competitive designs for single objective problems. In
this chapter, we will look into the problem where there is more than
one objective.

Similar to the previous chapters, we consider a finite design set
with k£ being relatively small, so that we can run simulations for all
the designs in order to find the optimal solutions.

Multi-objective optimization, also known as multi-criteria or
multi-attribute optimization, is the process of simultaneously opti-
mizing two or more conflicting objectives subject to certain
constraints. Without loss of generality, a minimization problem is
considered in this chapter. The multi-objective optimization problem
can be defined as

min(J, (6), ..., Ju (9)), (6.1)

where © is the design space and (J1(60),. .., Ju(6)) are the H objec-
tives for design 6 which are to be optimized and J;(0) = E[L;(0,w)] is
the expected value for the I-th objective which can be estimated from
simulation output L;(#,w). To simplify the discussion, we denote the
design space © = {1,...,k}, and J; as the [-th objective for design ¢,
i.e., Jil = Jl(el)

117

118 SSO: An Optimal Computing Budget Allocation

In the following sections, we will first introduce the concept of
Pareto optimality for the multi-objective optimization problem and
based on this concept, we will then present a framework for deter-
mining the computing budget allocation rule for the multi-objective
problem when performances are evaluated using simulation.

6.1. Pareto Optimality

In multi-objective optimization problems, we might not be able to
find a single best solution (or design) that simultaneously optimizes
all the objectives. In this case, we may want to find a solution for
which each objective has been optimized to the extent that if we try
to optimize it any further, then the other objective(s) will become
worse. Finding such a solution is a typical goal when setting up and
solving a multi-objective optimization problem.

To solve this problem, one of the common approaches is to con-
vert the multi-objective problem into a single objective one. The
basic idea is to combine all the objectives by using a functional
form, i.e.,

JO) = f(I(0),..., Ju(0)). (6.2)

One of the most common functional forms used is the linear func-
tion, i.e., J(f) = Zfil w;J;(6), where w; is the weight for the i-th
objective. In such a case, we need to specify the scalar weight for
each objective, and then the solution that optimizes this combined
objective can be found by using any single-objective optimizer. For
the stochastic case, the OCBA and OCBA-m approaches which are
discussed in Chapter 3 and 5 can be applied directly.

Besides the linear function, another common functional form is
multi-attribute utility function (Butler et al. 2001). Under such a
case, J(0) = Zfil wiui (J;(0)), where u;(.) is the utility function for
the i-th performance. Similarly OCBA and OCBA-m can be used
directly.

No matter which methods are used, the solution obtained will
highly depend on the values of the weights and the utility function
chosen. However, in actual application, it might not be trivial to

Multi-objective Optimal Computing Budget Allocation 119

determine weights or select a suitable function, especially if the deci-
sion analyst is not the one who is making the decision.

Hence, another approach to solve the multi-objective optimization
problem is to use the concept of Pareto optimality, where the solution
for the problem is a complete set of non-dominated solutions, which
is also known as the Pareto set.

The concept of Pareto optimality was first employed to find the
non-dominated Pareto set (Fonseca and Fleming 1995) for multi-
objective optimization problems. After that, several researchers (Deb
2001, Deb et al. 2002) contributed to and enriched the theory of this
field.

To find the Pareto set, we first need to define the dominance rela-
tionship. A design i is said to be dominated by design j, denoted
as j < i, when design j is not worse than design ¢ for all the per-
formances, and there exist at least one performance that design j
is better than design i. The dominance relationship can be defined
below.

j-<iiffVl€{1,2,...,H},le < J;; and

de{l,2,....,H}, Jy < Jy. (6.3)
The design i is not dominated by design j, denoted as j £ i, when
conditions listed in Equation (6.3) do not hold. A design i is called
a non-dominated design in the design space ©® when there are no
designs in the © dominating design i. A Pareto set consists of all the
non-dominated designs in the design space ©. Specifically, a Pareto
set S) is defined as follows.
Sy, ={ili € © and j £4,Vj € O}. (6.4)
Figure 6.1(a) illustrates the dominance relationship between solu-
tions for the problem with two objectives. Let us denote solution A as
our reference solution, and the regions highlighted in different shades
of grey in Figure 6.1(a) represent the three different dominance rela-
tions with design A. Designs located in the dark grey region are dom-
inated by design A because A is better in both objectives. For the
same reason, designs located in the white region dominate design A.
As for those designs in the light grey region, they are neither domi-
nating nor being dominated by design A. However, for those designs

120 SSO: An Optimal Computing Budget Allocation

A
N
h (O Optimal Pareto Front
O O O @)
O
Incomparable <> Stroaly Dominates Nondominated solutions
O
O Q O
§ O
————OO0—O0—O0—
. Strongly . .
.Dominated O Incomparable Infeasible Region
o0 o © o
>
fr f
(@) (b)

Figure 6.1. Illustration of the (a) Pareto dominance relationship between can-
didate designs relative to design A and (b) Non-dominated designs and Pareto
designs.

which are located at the boundaries between the dark and light grey
regions, they are dominated by A because A has one better objective
when compared to these designs.

Non-dominated designs are those solutions in which we cannot
find any feasible designs that dominate them, and they are shown
in Figure 6.1(b). These non-dominated designs will form an optimal
Pareto front. Pareto set is defined as the set which consists of all the
non-dominated designs.

6.2. Multi-objective Optimal Computing Budget
Allocation Problem

When the performance of a multi-objective optimization problem
is estimated using simulation, the problem is known as the multi-
objective simulation optimization problem. Under this case, we want
to determine the optimal allocation rule in such a way that we can
select the correct Pareto set with a high probability. The deriva-
tion of the allocation rule will be similar to OCBA for the single
objective case presented in Chapter 3, except that the concept of

Multi-objective Optimal Computing Budget Allocation 121

Pareto optimality will be incorporated into the OCBA framework.
In the following subsections, we will explain the concept and derive
the new allocation rule for multi-objective problems.

6.2.1. Performance index for measuring the
dominance relationships and the quality
of the selected Pareto set

Denote

J;: The vector of the performance measures of design ¢; i.e.,
Ji = (Ja, Jizs - Jir)

J;: A vector of random variables which have the posterior
distributions of the performance measures of design i;
J; = (Jz'l, J,;g, ceey JZH)

X;: A matrix that contains the simulation output for design i.
X, = (Xn) where Xy, is the I-th objective of design i for
simulation replication n.

To make the derivation for the allocation rule more tractable,
we assume that simulation outputs are independently distributed
across: 1) different replications; 2) different designs; and 3) dif-
ferent performance measures of the same design. Therefore Xj;,is
independent with each other. The optimal simulation allocation
rule will be derived based on the Bayesian framework presented in
Chapter 3.

For design i, the performance measures J; are unknown, and can
only be estimated using the simulation outputs X;. Assume that
the performance measure J;, for [= 1,2,..., H, has a conjugate
normal prior distribution. By considering non-informative prior dis-
tributions, and given that X, Xio2,..., Xyn, are N; independent
simulation observations for the I-th objective of design ¢, and UZZZ is
the known variance of the [-th objective of design ¢, then according to
Chapter 3, the unknown performance measure J;; can be described
by the following posterior distribution,

) _ o2
g~ N Ty, 2L :
le <Jll7 N@) ’ (6 5)

122 SS0: An Optimal Computing Budget Allocation

where J; = N% Zg;l Xiin 18 the sample mean of the simulation out-
put for the I-th objective of design i, and 0221 is assumed to be known,
but in the actual application can be approximated by the sample vari-
ance [71% = ﬁ Zg;l(Xiln — Ji1)2. (For ease of notation, we will use
0% in our derivation below.)

In addition to using the Bayesian framework to estimate the pos-
terior distribution for performance measure j,»l, we use it to estimate
the predictive posterior distribution of J; if additional replications
are allocated to design i. This is extensively discussed in Section 3.6.
Suppose we have already obtained N; independent simulation obser-
vations Xj1, X, ..., Xan,; if additional A; replications are to be
allocated to design i, we can approximate the posterior distribution
for Jy (without actually running the A; replications) by

Jy~N (j i) (6.6)
il ily Nz + Az . .
6.2.1.1. A performance index to measure the degree
of non-dominated for a design

Under the concept of Pareto optimality, the fitness of a design is
measured in terms of its dominance relationship. As there is simula-
tion noise involved in the performance measures, we need to define
the probability that design j dominates design ¢, which is denoted
by P(j < i). Equation (6.7) defines how to compute P(j < i) given
the initial simulation output X; and Xj.

H
P(j < i) = P(J; < Ji|Xi, X;) = [[P(Jju < Jul Xs, X;). (6.7)
I=1
To simplify the notations, we use P(J; < J;) and P(J;; < Ji) to
represent P(jj < ji\Xi,Xj) and P(jjl < jil]Xi,Xj), respectively,
in the remainder of this chapter.
For a set of k designs, the following performance index ; mea-
sures how non-dominated a design i is

Vi = P() (J; # ji)>7 (6.8)

jE€O
JFi

Multi-objective Optimal Computing Budget Allocation 123

where jj A J; denotes that design i is not dominated by design j.
The index 1; measures the probability that design ¢ is not domi-
nated by all the designs in the design space ©. When there is no
simulation noise (i.e., the performance measure is deterministic),
a design will be called a non-dominated design when v; = 1. As
it is difficult to accurately compute 1; for stochastic problems, we
find an upper and lower bound for it, as stated in the following
lemma.

Lemma 6.1. The performance index v¥; can be bounded as follows.

u H
11 [1 TP < ju)] < 1; < min [1 o | R0 fm] :
=1

(6.9)
Proof. See Appendix C.1. O

6.2.1.2. Construction of the observed Pareto set

We will select the non-dominated designs amongst the k designs to
form the Pareto set. As the performance measure is unknown, we
can only select the designs based on the sample means, and so we
call this selected set the observed Pareto set.

Given that .J; is the sample mean of the I-th objective of design 1,
design j dominates design i by observation, which is denoted by j<i,
if the following condition holds with at least one inequality being
strict:

Jip<Jy forl=1,2,... H. (6.10)

The observed Pareto set consists of all the designs that we cannot
find any other designs dominating them in observation. The designs
that are not in the observed Pareto set will be in the observed non-
Pareto set. According to the definition of performance index ;, at
the end of the simulation, with enough simulation budget, 1; should
approach 1 for designs in the observed Pareto set, whereas for designs
in the observed non-Pareto set, ¢; should approach 0.

124 SSO: An Optimal Computing Budget Allocation

6.2.1.3. FEwvaluation of the observed Pareto set by two types
of errors

A good observed Pareto set should have the following two prop-
erties: i) The designs in the observed Pareto set are actually the
non-dominated designs with high probability; and ii) the designs
in the observed non-Pareto set are actually dominated by some
designs with high probability. Specifically, we evaluate the quality
of an observed Pareto set by measuring its Type I and Type II
errors.

The following notations will be used in the definition of the Type
I and Type II errors:

Sp: The observed Pareto set.

S,: The observed non-Pareto set, S, = ©\S,.

FE;: The event that design 7 is non-dominated by all other designs.
Ef: The event that design 7 is dominated by at least one design.

From Equation (6.8), we know that P{E;} = v¢; and P{Ef} =
1— .
Type I error:

Type I error occurs when some designs that are actually
non-dominated are in the observed non-Pareto set. It is the prob-
ability that at least one design in the observed non-Pareto set is
non-dominated. The probability that all designs in the observed non-
Pareto set are dominated by at least one other design is:

P{ N E} (6.11)

i€Sy

Therefore, Type I error denoted by e; is:

e =1-— P{ N E} (6.12)

i€Sy
Type II error:

Type II error occurs when some designs that are actually dominated
by other designs are included in the observed Pareto set. It is the

Multi-objective Optimal Computing Budget Allocation 125

probability that at least one design in the observed Pareto set is actu-
ally dominated by another design. The probability that the designs
in the observed Pareto set are all non-dominated is:

P{ N E} (6.13)

i€Sp

So the Type II error, which is denoted by es, is:

62:1—13{ N E} (6.14)

i€S,

When both types of errors approach 0, all designs in the observed
Pareto set will be non-dominated, and all designs in the observed
non-Pareto set will be dominated by some designs. In this case, we
can say that the true Pareto set is correctly found.

The following lemma provides approximations of both types of
errors. They are Approximated Type I error ((ae;) and Approxi-
mated Type II error (aey), respectively.

Lemma 6.2. The Type I and Type II errors can be bounded from
above by the following aey and aes, respectively:

€1 S aeyp = Z Y,ZJZ', (6.15)
i€Sy

2 <aeg =Y (1—y). (6.16)
i€S,

Proof. See Appendix C.2.

ae; can be interpreted as the sum of the non-dominated proba-
bilities for all the designs in non-Pareto set. It will be zero when all
the designs in the non-Pareto set are dominated by some designs.
Similarly, aes can be interpreted as the sum of the dominated prob-
abilities for all the designs in the Pareto set. It will be equal to zero
when all the designs in the Pareto set are non-dominated.

As ; cannot be explicitly expressed, we establish other upper
bounds for both ae; and aes in the following lemma.

126 SSO: An Optimal Computing Budget Allocation

Lemma 6.3. We have the following valid upper bounds for Type I
and Type II errors:

e1 <aey <uby = H|Sp|—H Y max [min _P(J;; < jil)}, (6.17)

by S 3;2 le{1,...H}
ey < <uby = (k—1 [i PJ<J-}.
Sz Suby = (=) 3] g (P <)
ZESp];ﬁ’L

(6.18)

Proof. See Appendix C.3.

Let j; denote the design that dominates design ¢ with the highest
probability, and l;z denote the objective of j; that dominates the
corresponding objective of design ¢ with the lowest probability, i.e.,

i = P(Jj < Jy), 1
J argmaSXH (Jjt < Jan) (6.19)

l;i:arg min _ P(J;

< Jy). 6.20
1e{1,...H} ! 2 (6:20)

Then the two upper bounds can be expressed as:

e1 <aep <ubp = H|§p\ - H Z P(@Zl; < jil;_), (6.21)
iegp 1 1

ez <aeg <uby=(k—1)> P(J; < Jy). (6.22)
€Sy i

The interpretation for the bounds is as follows. Consider a design

i in the non-Pareto set, as we want to show that it is dominated

by some designs. Thus we need to find a design that dominates

it with the highest probability, and this design is design j;. After

that, we only consider the objective that j; is better than design

i by the least amount, and this objective is the l;i—th objective. If

the probability that design j; is better than design ¢ for the [} -th

objective approaches 1, then we will be sure that design ¢ belongs

to the non-Pareto set as it is dominated by at least one design, i.e.,
design j;.

Similarly, consider a design i in the Pareto set, as we want to show

that this design is non-dominated. Thus we need to find a design

Multi-objective Optimal Computing Budget Allocation 127

that dominates it the most, i.e., design j;. Then, we will consider the
objective that the design j; is worse than the design 7 the most, and
this objective is the l;i—th objective. When this probability goes to
zero, we will be sure that the design that dominates design ¢ with
the highest probability actually does not dominate design ¢ due to
the fact that for the l;-i-th objective, design ¢ is better than design
ji- Hence design ¢ is non-dominated.

6.2.2. Formulation for the multi-objective optimal
computing budget allocation problem

To determine the computing budget allocation rule, we need to
define the objectives for the overall problem. Similar to the Chap-
ter 3, we can use the probability of correct selection as the main
objective. However, we want to select a set instead of a single
design, so the probability of correct selection P{CS} is defined as
the probability that the observed Pareto set is the true Pareto set.
Specifically,

P{CS} = P{(N E) N (N E> } (6.23)

1€Sp i€eSy

It is the probability that all the designs in the Pareto set are non-
dominated, and all the designs in the non-Pareto set are dominated
by at least one design.

To maximize simulation efficiency, we want to determine the best
numbers of simulation replications for each design so as to maximize
the probability of correct selection. Specifically, we wish to choose
Nip, Na, ..., Ng such that P{CS} is maximized, subject to a limited
computing budget T, i.e.,

(MOCBA-PCS Problem)

max P{CS}

Ni,..., Ny,

st. N+ No+---+ N, =T and N; > 0. (6.24)

128 SSO: An Optimal Computing Budget Allocation

6.3. Asymptotic Allocation Rule

Similar to the single objective case, there is no explicit equation to
compute P{CS}. Monte Carlo simulation can be applied to estimate
this probability. However, as we need to derive an allocation rule
explicitly, we use the Approximate Probability of Correct Selection
APCS-M to approximate P{CS}. In fact APCS-M is a lower bound
for P{CS}.

Lemma 6.4. APCS-M is the lower bound for P{CS}, where

APCS-M=1— ’U,bl — ubQ. (625)
Proof.
P{CS} > 1—{1—P(N Ei>}—{1—P(N E)} =1—e; —es.
€Sy i€Sy
Hence,
P{CS} > 1 — ub; — uby = APCS-M. O

Using the approximation given by Lemma 6.4, we consider the
following approximate OCBA problem:

(MOCBA-APCS-M Problem)

max APCS-M
Ni,...,Ng
s.t. N1+N2++Nk:TanszZO (626)

To derive the asymptotic allocation rules, we adopt the similar
approach in Chapter 3. Specifically, we apply the Lagrange method
and assume 1" — oco. Define «; as the proportion of the total comput-
ing budget allocated to design ¢. Thus, N; = o,;T', and Zle a; = 1.
The asymptotic allocation rules obtained are given in Lemma 6.5.

Lemma 6.5. AsT — oo, the APCS-M can be asymptotically maxi-
mized when:

~2 ~2 2
(Uhl;‘lh i o-jhl?h /ph) /5hjhl?h

For designs h € Sa, B = (6.27)

(‘572;11;'; + ‘3J2'ml;r;n /pm) /572njml;';n

Multi-objective Optimal Computing Budget Allocation 129

2
o .
dli
For a design d € Sp, Bq = g o 2. (6.28)
icor il

Then the allocation quantity a; will be

>0
JjEO
where
Siji = Jj— Ja, (6.30)
H ~ ~
= o<] .
Ji arg Ijneag(HP(J]l = le)v (6 31)
i =1
I, = argle{rlr’l.i?H}P(inl < Ju), (6.32)
52 52
SA =< design h € S 2];”3 < min % , (6.33)
Uhl?h Uﬂhl;‘lh 1€EO O-i_l% ohlz
Qp, ajh Q5 ap,
Sp = 5\54, (6.34)
O ={ili € S,j; = h}, (6.35)
O} ={hlh € Sa,jn = d}, (6.36)
Pi = aji/ai. (637)
Proof. See Appendix C.4. O

Though the rule looks quite complicated, it can actually be clas-
sified into two major types of rule, depending on the role each design
is playing.

(i) For the designs which play the role of being dominated (i.e.,
they are dominated by other designs), the allocation rule will be
the ratio rule (i.e., the allocation quantity is proportional to the
noise to signal ratio).

130 SSO: An Optimal Computing Budget Allocation

(ii) For those designs which play the role of dominating, the alloca-
tion rule will be the squares root rule (i.e., the allocation quantity
for the design will be the square root for the sum of weighted
squares for those designs that it dominates).

This is quite similar to the OCBA results, where the best design
is using the square root rule, while the other designs are using the
ratio rule. However, in the multi-objective problem, as more than
one designs are playing the dominating roles, and it might also be
possible that a design is playing both roles (due to the stochas-
tic nature, a design might be dominated by one design with high
probability, but also dominating others with high probability), so we
need to have some rules to determine which roles the designs are
playing.

In general, the designs in S4 play the role of being dominated,
and designs in Sp play the role of dominating. To determine which
designs are in these sets, we need to use Equation (6.33). The left
side of the inequality for these two equations is the signal to noise
ratio for the design to play the role for being dominated, and the
right-hand side of the inequality is the signal to noise ratio when
the design plays the role of dominating. The smaller the signal to
noise ratio, the more critical a role this design plays in determining
the probability of correct selection. In order to maximize the prob-
ability of correct selection, we improve the simulation precision for
those critical designs with the smaller signal to noise ratios (more
computing budget should be allocated to them).

It is not trivial to compute the allocation quantity given in Lemma
6.5 because, to compute Equations (6.27) to (6.29), we need to know
the values from Equations (6.30) to (6.37). However, the values from
Equations (6.30) to (6.37) also depends on the value of a;. One pos-
sible numerical method is to solve this problem iteratively to search
for a;. We first assume initial values for «;, and then solve Equations
(6.30) to (6.37). After computing the new values for «;, we repeat
the process until o; converges.

For ease of computation, we offer a simplified version of allocation
rule summarized as follows.

Multi-objective Optimal Computing Budget Allocation 131

Lemma 6.6. The asymptotic rule given in Lemma 6.5 can be
approximated as follows.

2
O [Opj,in
Forhyme Sa, 2t — <“1—””h> . (6.38)

m O[O

oo
FordeSp, aj= Y —%aj, (6.39)
heo Thit
where
iji = Jj — Ja, (6.40)
li=arg min P(J; <.Jy)=arg max M (6.41)
T e, HY gb = il 1€{l,...H} 05 + a ’
H P < J z]ll ‘5sz1 ‘ (6 42)
= argma = argmin ——2——— .
.71 g]eé(jl zl g 3616 0_2” + O' 2 ’
j#i J#i I
2 2
hi lh (5 i
Sa=RhlheS 2 <omin— b % (643)
Thit T Tl 1€0n O T Tl
Sp = S\Sa, (6.44)
On={ili € S.js=h}, ©)={hlheSajn=dy. (645)

In the simplified rule, after obtaining the sample means and sam-
ple variances from the initial simulation runs, we can evaluate Equa-
tions (6.40) to (6.45) to determine the sets S4 and Sp. Then we can
compute the allocation quantity from Equations (6.38) and (6.39)
directly. Iterative search is no longer needed.

The simplification is made based on some approximations. First
we ignore the impact of the allocation quantity in determining the
role of dominating or being dominated. Also in computing the allo-
cation quantity, we use the variance associated with each design
directly.

132 SS0: An Optimal Computing Budget Allocation

6.4. A Sequential Allocation Procedure

In this section, we propose a heuristic sequential procedure to imple-
ment the MOCBA algorithm (or the simplified MOCBA algorithm)
and it is shown as follows:

MOCBA Procedure (Maximizing APCS-M)

INPUT k, Thax, 0, A, ng (Tmax — kno is a multiple of
A and ng > 5);

INITIALIZE [0;
Perform ny simulation replications for all
designs; N{ = N} = ... = N| = ny.
T; = kng

LOOP WHILE T; < Tiax DO

UPDATE Calculate sample means, and sample standard

deviation using the new simulation output;
Construct the observed Pareto set Sp;

ALLOCATE Increase the computing budget by A, i.e.,
1141 = T; + A and calculate the new budget
allocation oallH, al;rl, . ,aﬁjl, according to
Equations (6.27) to (6.37) if it is the MOCBA
algorithm, or Equations (6.38) to (6.45) if
it is the MOCBA simplified algorithm, let
N = ol T
SIMULATE Perform additional min (5, max(0, N™' —
NY)) simulations for design i, i = 1,...,k;
Tis1 =30 Nband] —1+1.
END OF LOOP

Note that ¢ (a fixed given value) is an input parameter which is the
maximum number of replications allowed to be allocated to a design
at each iteration. The setting of § can prevent the allocation of too
many replications to one design in an iteration possibly caused by
numerical approximation error.

Theorem 6.1. As the simulation budget T — oo, by following the
allocation rules as given in Lemma 6.5 and 6.6, the observed Pareto

Multi-objective Optimal Computing Budget Allocation 133

set in MOCBA approaches the true Pareto set asymptotically with
probability when all o; # 0.

Proof. The reason is obvious, because if all the designs will be
allocated with non-zero allocation, when T — oo, there will be
no simulation error and so we will be able to get the correct
Pareto set. O

6.5. Numerical Results

In this section, we compare the performance of our proposed algo-
rithms (MOCBA) and the simplified one with the equal allocation
rule, which simply allocates the same number of simulation repli-
cations to each design. The performance indicator used here is the
empirical probability of correct selection, which is the percentage of
the times that the true Pareto set is selected in observation out of
1000 independent selection experiments.

We test the allocation rules using 3 typical test problems. The
first test problem shown in Section 6.4.1 is a simple 3-design case for
purpose of easy illustration. The second test problem presented in
Section 6.4.2 is a case with designs linearly spread, and Section 6.4.3
gives the third problem which is a general one with multiple designs
in the Pareto set. Test problems 2 and 3 are also called neutral case
and steep case, respectively, where the concepts of different sets of
test problem are introduced in Zhao et al. (2005).

6.5.1. A 3-design case

In this test case, we consider a problem with 3 designs, where each
design is evaluated in 2 objectives. We consider two different sce-
narios, where scenario I is the case with the same variance for each
objective of each design, and scenario I1 is the case with different vari-
ances for individual designs. The true response values for scenario I
are listed in Table 6.1. The simulation output of each replication for
each design is generated as random numbers from the related nor-
mal distribution for each objective. In this scenario, the standard

134 SSO: An Optimal Computing Budget Allocation

Table 6.1. Response for the 3-design case I.

Index Obj.1 Standard dev.1 Obj.2 Standard dev. 2

0 1 5 2 5
1 5 1 5
2 5 5 5 5

3-design case

objective 2
(%)

objective 1

Figure 6.2. Designs spread for the 3-design case I.

deviation is assumed to be the same for each objective of all designs.
The designs spread in the design space are shown in Figure 6.2.

It is easily seen that designs 0 and 1 are in the Pareto set, whereas
design 2 is not. We conduct 1000 independent experiments for equal
allocation, MOCBA and MOCBA _simplified rules. The performance
of each allocation rule is tested under an increasing number of total
computing budgets, from 50 to 500 with a step increase of 50, and
the numerical result is shown in Figure 6.3, where the X-axis denotes
an increased number of computing budgets and the Y-axis denotes
the corresponding probability of correct selection.

We can see that all the three allocation rules obtain higher prob-
ability of correct selection when the computing budget increases.
This is intuitive since estimation of ordinal comparisons can be more

Multi-objective Optimal Computing Budget Allocation 135

PCS

1 o |

_p—

0.95 e

A,
0.85 /- //

/ >
J//

0.7 7
0.65
0.6
50 100 150 200 250 300 350 400 450 500
budget
—8—MOCBA —¢—Equal MOCBA _simplified

Figure 6.3. Comparison of P{CS} for the 3-design case 1.

accurate with more simulation replications. With the same simu-
lation budget, the probability of correct selection of MOCBA and
MOCBA _simplified are always higher than that of equal allocation,
and converge faster to 1 than equal allocation does. Moreover, the
simplified rule performs just as well as the original MOCBA, with-
out showing obvious compromise in performance due to the simpli-
fication made in this allocation rule. The comparison can also be
made in terms of the total computing budgets to achieve a certain
level of P{CS}, and the result is shown in Table 6.2. We see that

Table 6.2. Comparison of simulation
budgets for the 3-design case I.

P{CS} MOCBA EQUAL Saving

0.95 250 400 37.5%
0.96 300 450 33.3%
0.97 350 500 30.0%

136 SSO: An Optimal Computing Budget Allocation

to achieve the same level of probability of correct selection, MOCBA
always needs fewer simulation budgets than EQUAL ALLOCATION,
and the savings are quite substantial. For this specific 3-design case,
MOCBA can save as much as 37% of the computational effort com-
pared with equal allocation.

The true response values for the 3-design case with different vari-
ance are listed in Table 6.3.

The same simulation procedures are conducted as is done for sce-
nario I and the simulation outputs are illustrated in Figure 6.4 and
Table 6.4. The results are similar to that of scenario I, where MOCBA

Table 6.3. Design information for the 3-design case II.

Index Obj.1 Standard dev.1 Obj. 2 Standard dev. 2

1 1 5 2 5
4 1 4
3 5 3 5 3

0.65
0.6 T T T T T T T T 1
50 100 150 200 250 300 350 400 450 500
budget
—8—MOCBA —¢—Equal MOCBA_simplified

Figure 6.4. Comparison of P{CS} for the 3-design case II.

Multi-objective Optimal Computing Budget Allocation 137

Table 6.4. Comparison of simulation
budgets for the 3-design case II.

P{CS} MOCBA Equal Saving

0.96 260 375 30.7%
0.97 290 410 29.3%
0.98 350 500 30.0%

and MOCBA _simplified can achieve a higher P{CS} with a fixed
number of simulation budgets. To achieve the same level of P{CS},
MOCBA and MOCBA _simplified can always make substantial sav-
ings. The results also indicate that the simplified rule can perform
as well as the original MOCBA and both of their performances are
robust with the variance changes.

6.5.2. Test problem with neutral spread designs

In this test case, we consider a problem with 20 designs in total, and
they are spread in the design space as shown in Figure 6.5. Thus only
the lower left design stays in the Pareto set. The variance for each
objective of each design is set as 32.

Neutral
25
20 o
L]
o
L
L
~15 . 2
2 o
3 10 .
o
°
o
]
5 ®
L]
°
o
o
0
0 5 10 15 20 25
Objective 1

Figure 6.5. Designs with neutral spread.

138 SSO: An Optimal Computing Budget Allocation

The total simulation budget is varied from 200 to 2000 with a step
increase of 200. The test results shown in Figure 6.6 and Table 6.5 are
qualitatively similar to those in previous example. Again MOCBA
and MOCBA _simplified perform significantly better than equal allo-
cation. The time saving is higher in this example, partially due to the
fact that the best design is so unique and outstanding as compared
with other designs, the allocation rule of MOCBA and the simplified
one can gain most of allocation advantage whereas equal allocation
naively allocates equally without considering the problem structure.
The higher efficiency is also due to the larger design space which gives
the MOCBA algorithms more flexibility in allocating the computing
budget.

PCS
0.9 o 7
0.8
0.7
0.6 /

0.5 T T T T T T T 1
200 400 600 800 1000 1200 1400 1600 1800 2000
budget
—8—MOCBA —¢—Equal MOCBA_simplified

Figure 6.6. Comparison of P{CS} for the neutral case.

Table 6.5. Comparison of simulation
budgets for the neutral case.

P{CS} MOCBA Equal Saving

0.88 200 900 77.8%
0.99 400 2400 83.3%

Multi-objective Optimal Computing Budget Allocation 139

6.5.3. Test problem with steep spread designs

This is a more general case where there are multiple designs in the
Pareto set and the spread of the designs is sparser. There are 16
designs in total and the designs are spread in the design space as
illustrated in Figure 6.7. The variance of each objective of each design
is set as 22.

Simulation experiments similar to previous test cases are con-
ducted and the simulation results in terms of P{CS} and simulation
budget savings are shown in Figure 6.8 and Table 6.6, respectively.
The simulation budget savings are all compared with equal alloca-
tion. Again, all the three allocation rules obtain higher P{CS} when
the simulation budget is increased. The orginal MOCBA and the sim-
plified version always perform better than equal allocation in terms
of the obtained P{CS}, or the total simulation budget in achiev-
ing a same level of probability of correct selection. It is also noted
that in this case, MOCBA simplifed performs slightly worse than

Steep Case

10

Objective 2

Objective 1

Figure 6.7. Designs with steep spread.

140 SSO: An Optimal Computing Budget Allocation

PCS

0 — T
c oo oo
S S SSESS S
AN O 0O AT O o AN T O AN O O T XA OO Tt A0 O

Al I I B o I o BN o\ I o\ BN o BN CO TN o ORI S A TS U MR T BV BRRNoRENo AN B s s
budget
—8#—MOCBA —#—Equal MOCBA_simplified

Figure 6.8. Comparison of P{CS} for the steep case.

Table 6.6. Comparison of simulation budgets for the steep case.

P{CS} MOCBA simplified Equal Saving Saving simplified

0.90 1700 2400 5600 69.6% 57.1%
0.95 2100 3600 7200 70.8% 50.0%
0.97 2500 4200 8000 68.8% 47.5%

the original OCBA, which is attributed to the simplication or igno-
rance of some sampling information in the simulation runs. However,
the simplified rule still performs significantly better than equal allo-
cation, which implies that the simplified MOCBA can be easier to
implement in practice, while not leading to significant compromise
in performance.

Chapter 7

Large-Scale Simulation
and Optimization

We extend the idea of efficient computing budget allocation to large-
scale simulation optimization problems. The setting is the same gen-
eral optimization problem defined in Chapter 1, which is to find a
configuration or design that minimizes the objective function:

géiél J(0), (7.1)

where 0 is a p-dimensional vector of all the decision variables, and
O is the feasible region. What we meant by “large scale” is that ©
is discrete and large or continuous. In previous chapters, © is suffi-
ciently small so that enumeration is possible. When © is large, the
number of alternative designs is so high that simulating all designs
becomes very expensive or even infeasible. Some sorts of sampling
must be applied to explore the design space ©.

For these problems, if one is willing to compromise on the opti-
mality, ordinal optimization suggests that we need only to sample
and simulate a relatively small number of designs in order to find a
good one (cf. [Ho et al., 1992; Dai and Chen, 1997; Luo et al., 2001]).
Instead of finding the best design, ordinal optimization concentrates
on finding a good enough design within a significantly reduced com-
putation time. Furthermore, ordinal optimization can give a measure

141

142 SS0O: An Optimal Computing Budget Allocation

of the quality of the best design found. We denote

pE@
O]

where G is the population of good feasible designs. |O| is extremely
large. Any design in G is a “good” design. Instead of finding the best
design in O, the goal is to find a good design in G quickly. If we
randomly sample a design, then let the probability that this sample
is in G be p. If we randomly sample m designs:

: the population proportion of good feasible designs,

P{at least one of the selected designs is in G'}
= 1 — P{none of the selected m designs is in G}
=1-Q1-p™

If we want to guarantee that at least one of the selected designs is in
G with a probability at least as high as Psy¢, then

Por=1—(1-p)™. (7.2)
Solving for m in Equation (7.2), one obtains
m = [In(1 — Pet)]/In(1 — p). (7.3)

Table 7.1 shows how to interpret Equation (7.3) for different
values of Psy¢ and p. For example, if one wants the probability
of a selected best design within the top 0.1% (99.9 percentile) be
as high as 99%, i.e., Py = 0.99 and p = 0.001, one needs only
m = [In(1 — 0.99)]/In(1 — 0.001) = 4602.8 ~ 4603 sampling designs.
Note that for a given Psu:, the number of samples needed goes up
roughly by a factor of 10 in order to reduce p by a factor of 10.
Also note that this number is independent of the size of the design
space |©].

The numbers in Table 7.1 are relatively small, and at any rate
much smaller than the size of the design space for any reasonably
sized combinatorial problem. Thus ordinal optimization allows us to
quickly isolate with a high probability a good design, even with a
blind sampling scheme. For further details about ordinal optimiza-
tion, please refer to Ho et al. [2007], which offers an excellent and
comprehensive coverage.

Large-Scale Simulation and Optimization 143

Table 7.1. Required number of designs
for applying ordinal optimization.

Peat Top 1% Top 0.1% Top 0.01%

50% 69 692 6932
90% 229 2301 23025
99% 459 4603 26049
99.9% 688 6905 69075
99.99% 917 9206 92099
99.999% 1146 11508 115124

Table 7.1 provides a guide on the number of designs which we
have to sample in order to guarantee a selection of a good enough
design. However, with stochastic simulation noise, we have to sim-
ulate all the sampled designs with multiple replications in order to
find the best from these sampled designs. For example, if one wants
the probability of a selected best design within the top 0.1% to be
as high as 99%, one needs to sample only 4603 designs. However, we
still have to simulate these 4603 sampled designs and find the best
one. This is actually a standard OCBA problem. The OCBA algo-
rithms presented in previous chapters can be applied to enhance the
simulation efficiency.

Furthermore, there is room for enhancement beyond uniform ran-
dom (blind) sampling scheme. In many applications, knowledge of the
problem might be used to orient the direction of sampling/search.
The information obtained from earlier samples may also be used to
guide the search. This can be viewed as biased sampling, which can
be achieved by using expert knowledge to reduce the search space,
and using metaheuristics framework to explore the design space in
a more effective way. The goal is to obtain better results with the
same number of sampled designs. In this case, the required number of
samples given in Table 7.1 serve as a lower bound when one searches
for a good design.

Note that in some problems, the gradient search method can
be employed to search the design space when the performance of
the designs can be described using a metamodel. However, in this

144 SSO: An Optimal Computing Budget Allocation

chapter, our focus is on those problems where such a metamodel
cannot be found easily.

7.1. A General Framework of Integration
of OCBA with Metaheuristics

When the design space © is large, instead of simulating all possible
designs, some optimization search methods can be applied to search
the design space. By exploring the information in the design space,
the expensive enumeration can be avoided. Further, some prescreen-
ing can be taken before the search starts so that the problem becomes
simpler. We first illustrate the approach by considering a hypotheti-
cal simulation optimization example where there are 12 decision vari-
ables. Each decision variable has 10 alternative choices. In total, there
are 10'? designs. It is certainly too expensive to simulate all the 1012
designs to find the best design.

Among these 12 decision variables, some of them are not criti-
cal or sensitive to the objective of the optimization problem. Those
non-critical variables can be identified using some pre-screening
techniques (cf. [Goldsman and Nelson, 1998; Wan et al., 2003]) or
design of experiments (cf. [Berger and Maurer, 2002; Sanchez, 2005]).
Suppose 3 of the 12 decision variables are determined to be non-
critical variables and so can be excluded from further optimiza-
tion process. By focusing on the remaining 9 important variables,
we have 10° designs. While 10° is much smaller than 10'?, it is
still too expensive to simulate all the 10° designs in order to find
the best design. Some sort of optimization search algorithms must
be applied in order to iteratively search the design space to find the
optimum as depicted in Figure 7.1. At each iteration of the search,
several designs are selected for simulation. The simulation output
information is used to guide the search for next iteration. Such simu-
lation and search iteratively proceeds until a good or optimal design
is found.

Such a framework involves two major issues:

e How should we iteratively search the design space ©7 Metaheuris-
tics aim to address this issue.

Large-Scale Simulation and Optimization 145

[Original Problem: 10"]

[Reduced Problem: 10°]

OCBA: speed up the simulation
or explore more design points

Figure 7.1. An illustrative example of integrating OCBA with search methods
for large-scale simulation optimization problems. The box area is further
explained in Figure 7.2.

e How should we efficiently simulate those designs generated in
each iteration in order to provide the necessary information to
guide the new search? Ideally, we want to simulate the generated
designs in an intelligent way so that the total simulation cost is
minimized.

This book focuses more on the second issue. We would like to
find an intelligent way to allocate the simulation budget so that
the necessary simulation output can be obtained efficiently to guide
the search effectively given a metaheuristic. This budget allocation
scheme should consider the information needed in the metaheuristic.
OCBA can serve this purpose. The integration framework of OCBA

146 SSO: An Optimal Computing Budget Allocation

Initial
Designs

»

Performance
Evaluation

A

Fitness
Evaluation

A

Elite Designs
Selection

No v
End
Generation of
L | New setof
Designs

B e Y §

Figure 7.2. An example illustrating how OCBA helps a search method for
large-scale simulation optimization problems.

and metaheuristics is shown in Figure 7.2. Most of the metaheuris-
tics start with a population of designs, and elite designs will be
selected from this population of designs in order to generate the
better population during the search process. Evaluation via simula-
tion is critical in determining the elite designs, and OCBA is able
to help to conduct the evaluation effectively by allocating comput-
ing budget intelligently. In the remaining sections of this chapter,

Large-Scale Simulation and Optimization 147

we will provide examples of how OCBA can be integrated with the
existing metaheuristics. Section 7.2 provides examples of problems
with a single objective. The numerical testing in Section 7.3 demon-
strates that the efficiency can be enhanced using this framework.
Section 7.4 presents integration examples for problems with multiple
objectives.

7.2. Problems with Single Objective

In this section, we will give a brief introduction to several metaheuris-
tics or search methods and show how OCBA procedures can be easily
integrated with them to enhance efficiency. The metaheuristics con-
sidered in this chapter include

Neighborhood Random Search (Section 7.2.1),
Cross-Entropy Method (Section 7.2.2),

Population-based Incremental Learning (Section 7.2.3), and
Nested Partitions (Section 7.2.4).

As we will show, the integration with OCBA is straightforward
and effective. It is worth noting that the applicability of OCBA is not
limited to the methods presented here. The same idea is applicable
to many other metaheuristics or search methods.

7.2.1. Neighborhood random search (NRS)

We start with a simple random search method. This method can be
implemented very easily. The primary assumption is that the neigh-
borhood of an elite design has a higher chance of including the opti-
mal design than other neighborhoods. Therefore we want to spend
more efforts searching in neighborhoods of elite designs, and less
efforts on neighborhoods of non-elite designs.

Specifically, in each iteration, k alternative designs are simulated
and then the top-m designs are selected (m < k). For the next itera-
tion, a large proportion of candidate designs is generated by sampling
the neighborhood of the elite designs. The longer the distance, the
smaller the probability a design is sampled. The remaining (smaller)

148 SSO: An Optimal Computing Budget Allocation

portion of samples are taken from the entire design space to ensure
convergence to the global optimum. The algorithm is summarized as
follows.

Step 1. Initialization. Uniformly sample k£ candidate designs over
the design variable space.

Step 2. Termination. Stop, if the stopping criterion is met.

Step 3. Evaluation and Selection. Simulate the sampled £ alter-
natives and select a subset containing the top-m.

Step 4. Generation of New Population. Sample 80% of the new
k candidate designs in the neighborhood of the top-m elite
designs. Another 20% are taken uniformly from the entire
design space. Go back to Step 2.

In this algorithm, Step 3 is the most critical because it provides
information to guide the search for the next iteration. It is also the
most time consuming step because simulation for the k£ alternative
designs must be performed in order to correctly select the elite subset
of the top-m designs. If the simulation cost is not cheap, the compu-
tation cost for other steps is negligible, compared with that for Step
3. Then the overall efficiency depends on how efficiently we simulate
the candidate designs to correctly select the elite set. Our goal herein
is to allocate the computing budget in the most efficient manner so
that the elite top-m can be identified. The OCBA-m algorithm pre-
sented in Chapter 5 works perfectly here.

7.2.2. Cross-entropy method (CE)

The Cross-entropy (CE) method (cf. [Rubinstein and Kroese, 2004])
was originally used for finding the optimal importance sampling
measure in the context of estimating rare event probabilities. Later
it was developed into a technique for solving optimization prob-
lems. It works with a parametrized probability distribution. In
every iteration of CE, we will first generate a population of designs
from a probability density function (pdf) with a certain parame-
ter. After all the designs in this population have been evaluated
(via simulation in our case), we will select the elite designs. These

Large-Scale Simulation and Optimization 149

elite designs will then be used to update the parameters of this
pdf, which will be used to generate the population for the next
iteration.

In updating the parameters, we need to solve an optimization
model which minimizes the Kullback-Leibler divergence (or the cross
entropy) between the unknown optimal sampling distribution and the
parametrized distribution. This optimization model depends only on
the designs in the elite subset. Hence to update the parameters, we
need to identify the top-m design efficiently and correctly for each
newly generated population.

The algorithm is summarized as follows.

Step 1. Initialization. Initialize a sampling distribution with
parameter P.

Step 2. Generation of New Population. Sample k candidate
designs using the sampling distribution with parameter P.

Step 3. Evaluation and Selection. Simulate these sampled k alter-
native designs and select a subset containing the top-m.

Step 4. Parameter Updating. Update P based on the selected
top-m by solving the optimization model which minimizes
the Kullback-Leibler divergence.

Step 5. Termination. Go back to Step 2 if the stopping criterion is
not met.

Like the Neighborhood Random Search method, in this algorithm,
Step 3 is the most critical and time consuming step in which &
designs must be simulated to correctly identify the elite subset of
the top-m designs. The OCBA-m algorithm presented in Chapter 5
can be applied here.

7.2.3. Population-based incremental learning (PBIL)

The PBIL algorithm was developed for binary search problems
[Baluja, 1994] and continuous optimization problems [Rudlof and
Ko6ppen, 1996]. The PBIL updates the sampling distribution P with
a probabilistic learning technique using the estimated mean of an
“elite” subset of good candidate designs in each iteration. This

150 SSO: An Optimal Computing Budget Allocation

algorithm is almost the same as the CE algorithm, except in Step 4,
the PBIL learning principle is applied. The algorithm is summarized
as follows.

Step 1. Initialization. Initialize a sampling distribution P.

Step 2. Generation of New Population. Sample k£ candidate
designs using P.

Step 3. Evaluation and Selection. Simulate these sampled k alter-
native designs and select a subset containing the top-m.

Step 4. Parameter Updating. Update P based on the selected
top-m and the PBIL principle.

Step 5. Termination. Go back to Step 2 if the stopping criterion is
not met.

Similar to NRS and CE methods, in Step 3 of this algorithm,
k designs must be simulated so that the elite subset of the top-m
designs can be identified correctly, which takes most of the compu-
tational effort. The OCBA-m algorithm presented in Chapter 5 is
directly applied here to enhance efficiency.

7.2.4. Nested partitions

The Nested Partitions (NP) method has recently been proposed to
solve global optimization problems (see [Shi and Olafsson, 2000, 2008;
Fu et al., 2008] for more details). The method can be briefly described
as follows. In each iteration, a region considered most promising is
assumed. We then partition this region into M subregions and aggre-
gate the entire surrounding region into one. Therefore, within each
iteration, we only look at M + 1 disjoint subsets that cover the feasi-
ble space. Each of these M + 1 regions is sampled using some random
sampling scheme and the estimated performance function values at
randomly selected design points are used to approximate a so-called
promising index for each region. This index determines which region
becomes the most promising one in the next iteration. The sub-region
scoring highest on the promising index becomes the most promising
region in the next iteration. The new most promising region is thus
nested within the last. The method backtracks to a larger region, if

Large-Scale Simulation and Optimization 151

the surrounding region rather than a sub-region is found to have the
best promising index. The new most promising region is then parti-
tioned and sampled in a similar fashion. The partitioning continues
until singleton regions are obtained and no further partitioning is
possible. The partitioning strategy imposes a structure on the feasi-
ble region and is therefore important for the rate of convergence of
the algorithm. If the partitioning is such that most of the good solu-
tions tend to be clustered together in the same subregions, it is likely
that the algorithm quickly concentrates the search in these subsets
of the feasible region.

One common definition of promising index is the performance
measure of the best sampled design in that subregion. Thus, the
most promising region is the one containing the best sampled design
among all the subregions. With this choice of a common promis-
ing index, determination of the most promising region is equivalent
to the determination of the best sampled designs. The algorithm is
summarized as follows.

Step 1. Initialization. Let © be the promising region.

Step 2. Partition. Partition the current most promising region
into M sub-regions and aggregate the surrounding region
into one.

Step 3. Generation of New Population. Randomly sample ¢
designs from each of the subregions and from the aggregated
surrounding region; k = (M + 1)q.

Step 4. Evaluation and Selection of the Most Promising
Region. Simulate these k£ sampled designs and select the
best among the k£ designs. The subregion containing this best
design becomes the most promising region.

Step 5. Termination. Stop, if the stopping criterion is met.

Step 6. Determination of Further Partition or Backtracking.
If one of the M subregions becomes the most promising
region, the algorithm moves to this region for further parti-
tioning in the next iteration. If the surrounding region con-
tains the best design, the algorithm backtracks to a larger
region. If the new promising region contains more than one
design, go back to Step 2.

152 SS0: An Optimal Computing Budget Allocation

Step 4 is to simulate and select the best from the set of sam-
pled designs, comprising the union of all sampled designs from each
disjoint (sub)region. It is essentially a small and discrete simulation
optimization problem discussed in earlier chapters. This step involv-
ing many replications of simulation usually consumes most compu-
tational effort. Our goal herein is to allocate the computing budget
in a most efficient manner so that the best design can be identified.
Hence, the OCBA method presented in Chapter 3 can be applied
directly. Details about this integration of OCBA and NP can also be
found in Shi and Chen [2000].

7.3. Numerical Experiments

To illustrate improvements in efficiency, we carried out numerical
experiments for two typical optimization problems using some pro-
cedures presented in this chapter. Most of the numerical setting is
the same as those presented in Chapters 4 and 5. Further details can
also be found in Chen et al. [2008]. Three search methods are tested:

e Neighborhood Random Search (NRS),
e Cross-Entropy Method (CE),
e Population-based Incremental Learning (PBIL).

The OCBA-m procedure is integrated into each of the three search
algorithms, and the resulting performance of the algorithm is com-
pared with the same algorithm without using OCBA, in which case
we apply equal simulation of all searched candidate designs.

Experiment 7.1. Griewank function

The Griewank function is a common example in the global optimiza-
tion literature (cf. [Fu et al. 2006]), given in two-dimensional (2-D)
form by

flxy,29) = %(m% + x%) — cos(x1)cos (%) +1,

where x1 and x9 are continuous and —10 < z; < 10, —10 < z5 < 10.
The unique global minimum of this function is at (z}, %) = (0,0) and
f(z7,235) = 0. The additive noise incurred in stochastic simulation

Large-Scale Simulation and Optimization 153

Figure 7.3. 2-D Griewank function tested in Experiment 7.1.

is N(0, 1?). Figure 7.3 gives an illustration of this function without
simulation noise.

In numerical implementation, the stopping criterion for the
evaluation-and-selection problem in Step 3 is when the posterior
APCSm given by Lemma 3.2 is no less than 1 — 0.2*exp(—q/50),
where ¢ is the iteration number. We set £ = 100 and m = 5. In com-
paring the procedures, the measurement of effectiveness used is the
average error between the best design thus far and the true optimal
design over 200 independent experiments. The results are shown in
Figure 7.4. The thick lines indicate the performance with OCBA-m
for different optimization algorithms, while the thin lines show the
performances without OCBA-m. Lines with different patterns repre-
sent the use of different optimization search algorithms.

We see that the optimality gap decreases for all procedures as the
available computing budget increases. In this example, NRS performs
better than PBIL, which does better than CE. However, OCBA-m
significantly enhances the efficiency for all three search methods. For

154 SSO: An Optimal Computing Budget Allocation

PBIL OCBAM

1
018 T NRS EQUAL
N = = NRSOCBAM

016 \ — - _ . ‘ —-—-CE EQUAL
N .- ._ CEEQUAL

02 s ——PBIL EQUAL

= CE OCBAM

ENY e P

o1 « ~ TT----... NRS EQUAL

Average Error of E [f(x*)]
o o
~ ®

*
/ '
|
I
I
1
1

< -
~ \\ - e
=~. CEOCBAM T
0.08 . el S
. ~ . . e—
~
NRS OCBAM™ ~ == = = . _ PBIL OCBAM
0.06 - —

0.04 : * + - n n n n n s
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T

Figure 7.4. Performance comparison for three optimization search algorithms
with and without OCBA-m for Experiment 7.1.

example, with integration of OCBA-m, NRS can achieve an average
error of 0.1 using a computation cost of 22,800. Without OCBA-m,
NRS spends a computation cost of 68,500 to achieve the same level
of error. Similarly, the computation costs for PBIL to reduce the
average error to 0.12 with and without OCBA-m are 11,500 and
53,700, respectively. The speedup factor of using OCBA-m is even
larger if the target level of optimality is higher.

Experiment 7.2. Rosenbrock function

The Rosenbrock function is another common example in the global
optimization literature (e.g., [Fu et al., 2006]). It is a non-convex
function with a “banana-shaped” valley given in 2-D by

f(z1,22) = 100(ze — 1‘%)2 + (21 — 1)2,

where x1 and z9 are continuous and —5 < =z < 5, =5 <
x2 <5. The global minimum of this function is at (z7,z%) = (1,1)
and f(z7,x%)=0. The additive noise incured in stochastic simula-
tion is N(0,10%). Figure 7.5 gives an illustration of this function
without noise.

Large-Scale Simulation and Optimization 155

8
7 L
o
. A AT\ “
6 (@
I &\ SR
TR ‘%“‘“ RO
: N
i i
S .
\\ o \% s
IR ‘ﬂ\\“\\ o R R
3 W “\‘“ﬁ\ o (R \\\‘“\\t\\\‘\ A OSSR
\\\““ \ﬁ““ W R R RS
W \\\‘ R e R R SRS
R
2 R T T T T T T
Ty
R R RRissS=
R e S R R s
1 R TS
e
TR
s S . o
- 7 3
S -2
5 5
2-D Rosenbrock function tested in Experiment 7.2.
—PBIL EQUAL
14
PBIL OCBAM
""" NRS EQUAL
1.2
N .. = = NRS OCBAM
¥ N
; . —-—- CEEQUAL
é 1 ! CE OCBAM
w
5
8
% 0.8
o
g
g
<
0.6
2 CEOCBAM
0.4 -
- = - == = = . . NRsocBam
- ~ e =
PBIL OCBAM
0.2 ™ ™ ™ ™ ™ ™ ™ T T \
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
T
Figure 7.6. Performance comparison for three optimization search algorithms

with and without OCBA-m for Experiment 7.2.

156 SSO: An Optimal Computing Budget Allocation

The numerical setting is the same as that in Experiment 7.1. The
test results are shown in Figure 7.6. Unlike Experiment 7.1, the PBIL
method has the best performance in this example. Although the order
of optimization methods are different from that in Experiment 7.1,
the level of efficiency enhancement using OCBA-m is very similar.

While different optimization algorithms perform differently in the
preliminary numerical examples, the OCBA allocation significantly
enhances the computational efficiency for each individual search
algorithm.

7.4. Multiple Objectives

Section 7.2 deals with problems with a single objective function to
optimize. In this section, we turn our attention to cases where we
are facing multiple objectives, and we would like to find Pareto opti-
mal solutions. The search method designed for the single-objective
problem can be directly employed in this case except that we have to
redefine the fitness function. In Chapter 6, we have defined the prob-
ability of non-dominating for each design as 1, which can be used as
the fitness function to rank the designs for multiple-objective prob-
lem. However, as there is no closed-form expression for 1, we will use
its upper bound to approximate this fitness function.

In the next two sub-sections, we will show how to integrate
MOCBA presented in Chapter 6 with the metaheuristics. The meta-
heuristics considered here are

e Nested Partitions (Section 7.4.1), and
e Evolutionary Algorithm (Section 7.4.2).

7.4.1. Nested partitions

The method of NP has been introduced in Section 7.3.4. Two changes
in the integrated NP procedure must be made. First, the perfor-
mance measure for each design is changed to the probability of non-
dominating, and so, like the single-objective case, the promising index
of a subregion becomes the highest probability of non-dominating
among all the designs in that subregion. Second, we need to keep an
elite set which consists of all Pareto optimal solutions.

Large-Scale Simulation and Optimization 157

The algorithm is summarized as follows.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.
Step 6.

Initialization. Let © be the promising region, and €2 be the
elite set.

Partition. Partition the current most promising region
into M sub-regions and aggregate the surrounding region
into one.

Generation of New Population. Randomly sample ¢
designs from each of the subregions and from the aggregated
surrounding region; k = (M + 1)q.

Evaluation and Selection of the Most Promising
Region. Simulate these k sampled designs and select the
Pareto optimal designs from them. Compare the new Pareto
optimal designs with the designs in the elite set obtained in
the previous iteration, and update the elite set so that it
only consists of updated Pareto optimal solutions thus far.
The subregion containing the best sampled design (the one
with the highest probability of non-dominating) becomes the
most promising region.

Termination. Stop, if the stopping criterion is met.
Determination of Further Partition or Backtracking.
If one of the M subregions becomes the most promising
region, the algorithm moves to this region for further parti-
tioning in the next iteration. If the surrounding region con-
tains the best design, the algorithm backtracks to a larger
region. If the new promising region contains more than one
design, go back to Step 2.

Step 4 of the algorithm is to simulate all the designs in order to
identify the Pareto optimal designs. This step consumes most compu-
tational effort and the MOCBA method presented in Chapter 6 can
be applied directly here to improve the simulation efficiency. Details
about this integration of MOCBA and NP can also be found in Chew
et al. [2009].

7.4.2. Fvolutionary algorithm

Evolutionary Algorithm (EA) is an adaptive heuristic search algo-

rithm which simulates the survival of the fittest among individuals

158 SS0O: An Optimal Computing Budget Allocation

over consecutive generations for optimization problem solving. Based
on an initial population randomly generated, at each generation, EA
evaluates the chromosomes and ranks them in terms of their fit-
ness; the fitter solutions will be selected to generate new offspring by
recombination and mutation operators. This process of evolution is
repeated until the algorithm converges to a population which covers
the non-dominated solutions. EA has been successfully applied in
solving multi-objective problems [Fonseca and Fleming, 1995; Hanne
and Nickel, 2005].

To make EA work well for simulation-based problems where
stochastic noise is a main concern, MOCBA is needed mainly in
the following two aspects: fitness evaluation and elite population for-
mation. The integration algorithm is summarized as follows.

Step 1. Initialization. Randomly sample k£ designs from the design
space © to form an initial population.

Step 2. Evaluation and Selection of the Pareto Optimal
Designs. Simulate these k sampled designs and select the
Pareto optimal designs from them. Compare these Pareto
optimal designs obtained in this iteration with the designs
in the earlier elite set, and update the elite set so that it only
consists of updated Pareto optimal solutions thus far.

Step 3. Elite Set Updating. Compare the new Pareto optimal
designs obtained in this iteration with the designs in the ear-
lier elite set, and update the elite set so that it only consists
of updated Pareto optimal solutions thus far.

Step 4. Termination. Stop, if the stopping criterion is met.

Step 5. Generation of New Population by Crossover and
Mutation Operation. Randomly select two candidate
designs from the elite set to perform the crossover operation.
Repeat this until there are enough candidate designs to form
the new population. Randomly select several candidates from
this new population, and perform mutation operations. Go
back to Step 2.

Step 2 of the algorithm involves many replications of simulation
for all designs in the new population and so consumes most of the

Large-Scale Simulation and Optimization 159

computational effort. The MOCBA method presented in Chapter 6
can be applied directly here to improve simulation efficiency. Details
about this integration of MOCBA and EA can also be found in Lee
et al. [2008].

7.5. Concluding Remarks

As shown in all the previous sections, OCBA, OCBA-m, and
MOCBA can be applied directly in the search methods. This is
because these search methods need to find the best, top-m or Pareto
optimal designs in order to determine the new search direction for
the next iteration. However, some search methods may require more
information when determining the new search direction, in which case
the existing OCBA algorithms might not be sufficient, and so newer
OCBA algorithms must be developed according to what is needed in
the specific search method. In Section 8.2, we will provide such an
example to illustrate how a new OCBA algorithm is developed. This
example utilizes an extended cross-entropy method.

When the search method is chosen and its stopping criterion of
the evaluation in each iteration is determined, the quality of the
selected designs used to guide the new search is pretty much set. It
implies that the efficacy of the search is fixed. The benefit of OCBA
in this integration is the savings of computing time in evaluating the
sampled designs. This saving in time can be utilized in a few ways:

e Terminating the search earlier,

e Using the time saved to generate more sampled designs in an iter-
ation, or

e Running the search algorithm with more iterations.

Either of these should improve the search quality or efficiency, result-
ing in a better design found eventually.

In this chapter, the simulation optimization problem can be
decomposed into a search part and evaluation part because the
stopping criterion of the evaluation part is fixed. OCBA is applied
to the evaluation part to ensure the selection quality is reached

160 SSO: An Optimal Computing Budget Allocation

in a minimum time. However, there exists a trade-off between the
selection quality and search quality given a fixed total computing
budget. Overall, there are three issues.

1. How many iterations should the search algorithm run?

2. How many designs should be sampled in each iteration?

3. How much budget should be allocated to evaluate the sampled
designs?

Ideally we want to allocate the computing budget in an optimal way
by considering all three issues together. Due to the complex nature
of this problem, it remains a research topic.

Chapter 8

Generalized OCBA Framework
and Other Related Methods

The previous chapters focus on development of OCBA algorithms for
stochastic simulation optimization problems, particularly for selec-
tion of the best design, an optimal subset of designs, or Pareto
optimal designs. In fact, the notion and mathematical framework
of “Optimal Computing Budget Allocation” can also be applied
to different problems or domains beyond stochastic simulation
optimization.

A generalized view of the OCBA framework is shown in Fig-
ure 8.1. The total budget T is allocated to all the different proces-
sors (represented by rectangular boxes), where each processor will
be assigned with a budget N;. Each processor generates an output
X; whose quality depends on the budget allocated, i.e., N;. Usually
the higher the budget allocated, the better the quality of the out-
put. Then these outputs will be processed by a synthesizer which
produces an overall outcome. With a fixed total computing budget,
different budget allocation will result in different quality of the out-
puts and hence the outcome. The generalized OCBA model is an
optimization model which determines the best allocation scheme to
maximize a certain objective which is related to the quality of the
outcome.

In addition, the figure on the cover of this book offers another
intuitive illustration of the OCBA question. We want to optimally

161

162 SSO: An Optimal Computing Budget Allocation

Processors T
v
N _I:I' > X >

7 N> | > >
g D X'z Synthesizer » Outcome

N }orx—|

~_

Figure 8.1. A generic view of the OCBA framework.

determine which processor should receive each portion of the
computing budget.

For the case of simulation optimization, T is the total number of
simulation replications which can be run, the processor is a simula-
tion engine, the output from the processor is the simulation output,
the synthesizer is a selection procedure which uses the simulation
outputs to select the best design, and the outcome is the selected
design which is hopefully the true best design. The allocation quan-
tity IV; (i.e., the number of simulation replications) has impact on
the variability of the simulation output (X;), which has subsequently
impact on the quality of the selected design, usually measured by a
probability of correct selection (P{CS}). The overall goal of OCBA
is to determine the optimal simulation allocation quantity in order to
achieve the best outcome, P{CS}. Similarly, we can also view OCBA-
m and MOCBA using this generalized framework. All elements are
the same except that the synthesizer tries to identify the top-m or
Pareto optimal designs. Since the desired outcomes are different, nat-
urally, the optimal simulation allocations are different as shown in
previous chapters.

Based on this generalized view of OCBA, we can apply this
framework beyond simulation optimization problems discussed in
the previous chapters. The question is how we should allocate a
general budget so as to achieve the best outcome for a specific
problem. The first problem shown in Section 8.1 illustrates how we
can extend the OCBA notion to problems where the performance
of the simulation output follows some functional relationship, and

Generalized OCBA Framework and Other Related Methods 163

regression can be used to estimate this relationship. In this case
all elements in the framework are the same except the synthe-
sizer needs to perform a regression analysis before making the
selection.

In the second problem, we utilize the framework to develop a
new OCBA algorithm for the extended Cross Entropy (CE) method,
which requires the estimation of the coefficients to minimize the
Kullback—Leibler divergence. To view this problem using the gen-
eralized framework, it is similar to the OCBA-m except that in the
outcome, we need to not only identify the top-m designs, but also
accurately estimate their performances. The objective of the synthe-
sizer is to minimize the mean squared error for the coeflicients, which
rely on the correct estimate of the performance of the top-m designs.
As shown in Section 8.2, the budget allocation rule obtained will be
different from OCBA-m due to the different requirement.

In Section 8.3, we extend the notion of OCBA to the problem
of estimating a rare-event probability using simulation. This is not
an optimization problem. The splitting method is a popular vari-
ance reduction technique which splits the original simulation into
several levels, each of which is smaller and easier to simulate than
the original. In this case, N; is the number of simulation replications
for level ¢, the processor is actually the simulation of one level, X;
is the estimated conditional probability estimated using simulation
at level ¢ and the synthesizer is to estimate the overall rare-event
probability. The OCBA is to determine the optimal budget allocated
to each level of simulation in order to minimize the variance of the
rare-event probability estimation.

The OCBA concept and framework can also be extended to prob-
lems without simulations or optimization. Section 8.4 shows an exam-
ple on how OCBA can help determine the budget allocation for data
collection which maximizes the accuracy of an efficiency prediction
in data envelopment analysis (DEA). By viewing this problem using
the generalized OCBA framework, T' is the total budget for data
collection, N; is the number of data points allocated for unknown
variable i, processor represents the actual data collection, X; is the

164 SSO: An Optimal Computing Budget Allocation

sample average of the data collected, synthesizer is a Monte Carlo
DEA model whose outcome is the predicted efficiency, and the OCBA
objective is to minimize the mean squared error of the prediction.

Table 8.1 summarizes variant OCBA problems discussed in the
book using this generalized framework. Note that some of these prob-
lems are related to simulation and/or optimization; but some are not.
These examples are mainly for the purpose of illustration; the gen-
eralization is not limited to these examples. Readers can certainly
extend the OCBA notion and framework to many other problems
with some development.

8.1. Optimal Computing Budget Allocation
for Selecting the Best by Utilizing Regression
Analysis (OCBA-OSD)

Similar to the problem addressed in Chapter 3, in this problem, the
goal is also to identify the best design among k alternatives except
that an underlining quadratic function is assumed for the perfor-
mance of these designs.

Let z; be the location for design 4, which is a real number, y(z;) be
the performance for design i, and b be the design with the best pre-
dicted performance. The OCBA model, also known as OSD method
(Optimal Simulation Design), is as follows.

N P{CS} = P{y(zs) < y(xi) Vi }, ®.1)
S.t. N1+N2—|—+Nk:T
The model defined in Equation (8.1) is actually the same OCBA
problem defined in Chapter 3 except that a regression is performed
to estimate y(x;) before the selection of design b takes place. Due
to the addition of regression analysis, the formulation for P{CS} is
different and so the solution will be different.

By exploiting the structure of the quadratic function, Brantley
et al. [2008] show that the required number of comparisons in the
P{CS} equations expressed in Equation (8.1) can be reduced from
the k—1 comparisons to 2 comparisons (comparisons with design b—1
and b+ 1), if b is not at a boundary location. Moreover, they show

Table 8.1.

Summary of OCBA problems.

Type T N; Processor X Synthesizer Outcome Objective
OCBA Computing simulation simulation simulation selecting the selected best PCS(best)
budget replication output best
number (mean)
OCBA-m Computing simulation simulation simulation selecting top-m selected top-m PCS(top-m)
budget replication output
number (mean)
MOCBA Computing simulation simulation simulation selecting Pareto selected Pareto PCS(Pareto
budget replication outputs Optimal Optimal Set)
number (mean)
OCBA-CO Computing simulation simulation simulation selecting selected feasible PCS(feasible
budget replication outputs feasible best best best)
number (mean)
OCBA-OSD Computing simulation simulation simulation selecting the selected best PCS(best)
budget replication output best after
number (mean) regression
OCBA-CE Computing simulation simulation simulation selecting top-m Selected top-m, Mean squared
budget replication output and their error
number (mean) performance (coefficient
of KL
divergence)
OSTRE Computing simulation partial conditional Estimating Estimated Var(estimated
budget replication simulation probability rare-event rare-event rare-event
number for probability probability probability)
partial
simulation
ODCBA Data Number of data data sample Monte Carlo Estimated Mean Squared
Collection points for each collection average DEA to Efficiency Error
Budget unknown estimate the (efficiency)
variable efficiency

SPOYII Y PIDIIY LYY PUD YLOMIAWDL] V() PIZYDLIUILD)

991

166 SSO: An Optimal Computing Budget Allocation

that there are at most 3 design locations which should receive some
of the simulation budget. These three designs, also called support
points, are determined as follows.

Two of the three support points are always the first and the last
point, i.e., z1 and xy, respectively. The third support point is

3:E1+.’Ek<$M+SUb T+ T

TM+b—1, 4 ~ 9 2
= r14+xr vtz o 21+ 3k
Ts TM+b—k> 5 5 < 1

T(k—1)/2, otherwise

The optimal computing budget allocation for these three support
points (i.e., N1, Ny, and Ny) is determined as follows.
_ | Dyail

|Daia| 4 [Dans| + [Daigl”

N;

where

M = arg min {J(xl) } ,

i=b—1,b+1

Dy — {(451 —x;)(xs — ;) — (21 — 1) (5 — :Ub)}
ik — y
(g — 21) () — T5)
oot |2 Die Dinl
N, "N, "N,

d(w;) = (x:) — Gla),

and ¢(.) is the predicted performance using regression.

The details of the work and the optimal allocation for the case
when b is at the boundary location can be found in Brantley et al.
[2008], which also show that the numerical performance can be dra-
matically enhanced due to the use of regression. Further, they also
show that OSD outperforms traditional regression techniques (such
as D-Optimal in design of experiments) because of the optimal com-
puting budget allocation.

Generalized OCBA Framework and Other Related Methods 167

8.2. Optimal Computing Budget Allocation
for Extended Cross-Entropy Method
(OCBA-CE)

As discussed in Section 7.2.2, when updating the parameters
for CE method, an optimization model which minimizes the
Kullback—Leibler (KL) divergence needs to be solved. The model
is given in Equation (8.2).

k¢

Uiyl = argqrjnaxZIith Inp(X;,v), (8.2)

i=1
where ¢ is the iteration number, vy is the updated parameter at
iteration t 4+ 1, k; is the number of designs generated at iteration ¢,
I is the indicator function, {); is the elite set which consists of the
top-m designs found in iteration ¢, and p(X;,v) is the pdf of generat-
ing design X; when the parameter of the distribution is v. Equation
(8.2) can be interpreted as using the top-m designs to fit the sample
distribution for the next iteration by applying a maximum likeli-
hood estimation. Hence, it is critical for the CE method to correctly
identify what the top-m designs are in order to correctly update the
parameter v.

In some variants of CE methods, e.g., the extended CE method,
a weight function is added in the optimization model as shown in
Equation (8.3) to improve the convergence.

kt
Vir1 = arg Inaxzw(y,-)l{iegt}lnp(X,-,v), (8.3)
v =1
where w(y;) is the weight function which depends on the performance
of the design at X;, denoted as y;. One common choice for the weight
function is the exponential function.

Due to this extra weight function, we need to not only correctly
select the top-m designs but also accurately estimate their perfor-
mances. OCBA-m is not sufficient for this purpose. To solve this
problem, a new OCBA model is developed to determine the optimal
simulation allocation. The framework of this new OCBA model is
similar to the previous model except that the objective is no longer

168 SSO: An Optimal Computing Budget Allocation

P{CS}, instead it is the expected mean squared error which mea-
sures the accuracy of the coefficients in the extended CE updating
function given in Equation (8.3). The OCBA objective is to opti-
mally allocate the simulation budget so that the accuracy of these
coefficients is maximized. The new OCBA model (OCBA-CE) is as

follows.
k

Z Xi)lrieqy — w(yi)lgieay)? |
= (8.4)

ZNi =T
=1

He et al. [2010] give an asymptotically optimal solution to this

min
Ni,...,Ny,

w|>~

computing budget allocation problem when the weight function is
an exponential function as follows.

. Y,
0%:6 lJlZJEQ

J e "Vio
N, _ (oit-y)\? -
*N T (%‘(V*yjz‘)) XA
. SioNi NO<£)7
fi

2
jeQ T

where 3 is a positive constant.

This allocation rule is similar to the OCBA-m rule for those
designs which are not in the top-m set. However, the allocation ratio
for those designs belonging to the top-m set depends on the weight
function chosen. In general, the total budget allocated to the top-m
designs will be asymptotically exponentially higher than the total
budget allocated to other designs. This means when the computing
budget is very large, almost all of the effort will be spent on the
top-m designs. This is not hard to explain from ordinal optimization
[Ho et al., 1992], according to which the probability of correctly iden-
tifying the ranking of designs converges to 1 exponentially fast while
the estimation accuracy converges only at the rate of 1/4/n, where n
is the sample size. Since ranking converges much faster and we need
both ranking and estimation accuracy, more effort must be devoted
to enhancing the estimation accuracy of the top-m designs. Details
can be found at He et al. [2010].

Generalized OCBA Framework and Other Related Methods 169

8.3. Optimal Computing Budget Allocation
for Variance Reduction in Rare-event
Simulation

There are many practical problems that involve the evaluation of
rare-event probabilities. While simulation is a powerful tool that can
be used to analyze a wide variety of systems, however, in the context
of rare events, a key limitation is the computer time needed to obtain
a reasonable estimate of the rare-event probability. For example, con-
sider a rare event that occurs with probability 107°. If we simulate
the system 10° times, then we will see, on average, one occurrence of
this rare event. Even if we can simulate 10,000 runs per second, we
need about 1 day of computer time just to observe one event. Further-
more, to obtain a reasonably tight confidence interval, many more
simulations are needed. To address the computational issue, several
variance reduction techniques have been developed, such as impor-
tance sampling (cf. [Glynn, 1994; Heidelberger, 1993]) and splitting
(cf. [Glasserman et al., 1999; Garvels et al., 2002]). We will focus on
the splitting technique here.

The basic idea of level splitting is to “split” a simulation into
separate independent runs whenever it gets “near” the rare event of
interest. Effectively, this multiplies runs that are promising to reach
the rare-event and kills runs that are not promising, thus improving
the likelihood of observing the rare-event. Figure 8.2 illustrates the
idea. In the figure, the y-axis measures the proximity of the system
to the rare event set. The process is assumed to start at state 0 and
the rare event set is defined by a threshold level L. For example, the
y-axis could denote the length of a queue and L could denote the
maximum queue size before buffer overflow. The interval [0, L] is
partitioned into m stages by choosing levels 0 = Lo < L; < --- <
Ly, = L. Whenever the simulation crosses a level, it is “split” into
separate simulation runs. These runs are independently simulated
starting from the splitting point. In this way, more computer time is
spent on runs which are closer to the rare event.

Let v be the rare-event probability which is defined as the proba-
bility that the process enters the rare event set before returning to the

170 SSO: An Optimal Computing Budget Allocation

Rare

m_ ngf. Event

=

Figure 8.2. Level splitting.

starting point (level 0) after leaving it. Also, let p; fori =1,2,...,m,
be the conditional probability that the process reaches level i (before
returning to level 0) given that the process has reached level i — 1.
Thus, the rare event probability is

m

T= Hpi-

i=1
Note that p; is a conditional probability. The idea of multilevel split-
ting is to estimate each probability p; separately, by starting a large
number of simulation runs from states at level L;_q.

Let N; be the number of simulation runs for stage ¢ (from level
i—1 until either level i or level 0 is reached), and @); be the number of
runs that reach level i before returning to the initial state (level 0).
Then p; = Q;/N; is an unbiased estimator of p; and an unbiased
estimator for the rare-event probability v is

Y =p1p2- - Dm-
As N; increases, p; becomes a better estimation of p; and so 4
becomes a better estimation of 7. Intuitively, we do not need to

equally improve the estimation accuracy of p; for different 7. Instead,
we want to intelligently choose N; for all ¢ so that the overall

Generalized OCBA Framework and Other Related Methods 171

simulation efficiency is maximized, i.e., the overall variance is min-
imized. Specifically, we intend to find the most efficient number of
simulation runs for each stage (i.e., N;, for all 7) so that the variance
of the rare-event probability estimator 4 is minimized, subject to a
computing budget T. The OCBA problem also known as OSTRE
(Optimal Splitting Technique for Rare-Event simulation) is

: V:) = V. H1Do - -+ D
Ny pin ar(§) = Var(p1p2 - - - pm)

st. N1 +coNo+ -+ ey Ny =T,

where ¢; is the average one-run simulation cost for stage i. Shortle
and Chen [2008] give an asymptotically optimal solution to this com-
puting budget allocation problem as follows.

N N Np
[1p1 [1ps [Tpm
C1p1 C2p2 CmPm
Further assuming p; < 1, a simplified asymptotic solution is
Niyeipr = Nay/eapa = -+ = Nyp/CmPm-
Details can be found in Shortle et al. [2010].

8.4. Optimal Data Collection Budget Allocation
(ODCBA) for Monte Carlo DEA

Data envelopment analysis (DEA) is a mathematical programming
approach developed by Charnes et al. [1978] to measure efficiency
for decision-making units (DMUs) with multiple inputs and multiple
outputs. The idea of DEA is to compare different DMUs in terms
of how many inputs they have used in achieving the outputs. The
most efficient DMUs will be those which use minimum inputs to
achieve the maximum outputs. A main advantage of DEA is that it
does not require any prior assumptions on the underlying functional
relationship between the inputs and outputs [Cooper et al. 2006].
A typical DEA model for estimating the efficiency for a DMU (say

172 SS0O: An Optimal Computing Budget Allocation

DMU jo) is given as follows.

6(X) =min
s.t. Z)\jxsj <0Oxs,, secS
jeJ
Z)\ja:rj > Trj,, T € R
JjeJ
Aj>0, jelJ

where S is the set of inputs, R is the set of outputs, J is the set of
DMUs, X = (xy;), k € K; j € J, consists of all the inputs and out-
puts for all DMUs, 0(X) is the efficiency score for DMU jy. Note that
the \;’s are the weights (decision variables) of the inputs/outputs
that optimize the efficiency score of DMU jo. The model above
attempts to proportionally contract DMU jy’s inputs as much as pos-
sible while not decreasing its current level of outputs. The efficiency
score equals one if the DMU is efficient.

One of the requirements for applying DEA is that the values for
these input/output variables be known. However these variables are
usually unknown in real-life application. Data must be collected from
the systems to estimate the distribution of their values. To address
this issue, a Monte Carlo sampling method developed by Wong et al.
[2008] can be applied to estimate the efficiency score. The more data
collected, the more accurate these estimations will be.

Given a fixed budget for the data collection, it is important to
determine how the data should be collected so that the accuracy of
the predicted efficiency score is maximized. The OCBA notion and
framework can also be applied to this problem. The objective of this
generalized OCBA problem (called ODCBA in this extension) is to
minimize the expected mean squared error for the prediction of the
efficiency score, subject to a fixed budget for data collection, i.e.,

min E[(O(Ny, Na, ..., Ny) — 0)2],

Ni,....;Ng
k
s.t. Z Nl =1T.
=1

Generalized OCBA Framework and Other Related Methods 173

Since there is no closed-form analytical formula for the objective
function, a Monte Carlo sampling method is used to estimate the
efficiency score. Wong et al. [2009] employ a gradient search method
to find the optimal solution, i.e., the best data collection scheme.
It is shown that the optimal data collection scheme results in a much
higher estimation accuracy than the typical data collection scheme
which uniformly allocates the data collection budget.

8.5. Other Related Works

There are several other related works along the line of this research.
This section gives some examples. By no means, this is an exhaustive
list. Instead of finding the design with smallest mean, Trailovic and
Pao [2004] develop an OCBA approach for finding a design with
minimum variance. They also show a successful application to multi-
sensor target tracking problems.

It is well known that positive correlation can help the performance
of ranking and selection. Unlike the independence assumption of sim-
ulation replications required in this book, Fu et al. [2007] extend the
OCBA to problems in which the simulation outputs between designs
are correlated.

Glynn and Juneja [2004] extend the OCBA to problems in which
the simulation output is no longer normally distributed by utiliz-
ing large deviation theory. Blanchet et al. [2007] further extend
the work to heavy-tailed distributions, also utilizing large deviation
theory.

Pujowidianto et al. [2009] consider constrained optimization prob-
lem where the best feasible design is selected from a finite set of alter-
natives. Both main objective and the constraint measures need to be
estimated using simulation. Most other simulation budget allocation
approaches either handle only unconstrained problems, or decouple
the problem into two phases — first select which designs are fea-
sible and then determine efficient simulation budget allocation to
select the best one from the feasible designs. They intend to address
the simulation budget allocation problem by considering feasibility
and optimality issues at the same time. An asymptotically optimal

174 SSO: An Optimal Computing Budget Allocation

allocation rule (OCBA-CO) is derived. Numerical experiments indi-
cate that their approach is more efficient than other allocation
procedures.

Along the line of efficient simulation allocation for ranking and
selection problems, the approach by Chick and Inoue [2001ab] esti-
mates the correct selection probability with Bayesian posterior distri-
butions, and allocates further samples using decision-theory tools to
maximize the expected value of information in those samples. Chen
and Kelton [2003] made improvement on the traditional indifference-
zone selection procedures by incorporating the information of the
means for all designs. The procedure by Kim and Nelson [2006] allo-
cates samples in order to provide a guaranteed lower bound for the
frequentist probability of correct selection integrated with ideas of
early screening. Further, Branke et al. [2007] provide a nice overview
and extensive comparison for some of the aforementioned selection
procedures. They show that OCBA and the VIP approach by Chick
and Inoue [2001a] are among the top performers.

To study the impact of sequential simulation allocation, Chen
et al. [2006] investigate the efficiency gains of using dynamic simula-
tion allocation. Computational results indicate that this sequential
version of OCBA, which is based on estimated performance, can eas-
ily outperform the optimal static allocation derived using the true
sampling distribution. These results imply that the advantage of
sequential allocation often outweighs having accurate estimates of
the means and variances in determining a good simulation budget
allocation. Chick et al. [2007] provide a more fundamental discussion
about sequential simulation allocation and develop a sequential one-
step myopic allocation procedure. Frazier and Powell [2008] consider
a Bayesian ranking and selection problem with a correlated multi-
variate normal prior belief and propose a fully sequential sampling
policy called the knowledge-gradient policy.

Appendix A

Fundamentals of Simulation

The purpose of this appendix is to provide some fundamentals related
to Monte Carlo simulation and discrete-event simulation. For details,
readers can refer to other simulation text books, e.g., Bank et al.
[2010], or Law and Kelton [2000].

A.1. What is Simulation?

A simulation is an attempt to imitate the operation of a real-life
system. It generates an artificial history of the system behavior over
time so we can observe, draw inference and answer “what if” ques-
tions about the system. Simulation can be used to study the system
before it is implemented, and can also be used to understand the
current status of the existing system. It can also be used as a tool
for predicting the effect of changes in the existing system, and a tool
to predict the performance of new systems under a varying set of
circumstances.

Simulations can take many forms from spreadsheets to three-
dimensional representations of things moving in space. A simulation
model can also be continuous or discrete. In the continuous simula-
tion, the state variables changes continuously over time and are usu-
ally governed by differential equations. For discrete simulation (also
called discrete-event simulation), the state variables only change at

175

176 SSO: An Optimal Computing Budget Allocation

a countable number of points in time. These points in time are the
times when events occur. A simulation can also be deterministic or
stochastic. Stochastic simulation has some uncertain elements in the
model, and its behavior cannot be precisely predicted. Whereas in
a deterministic model, the output can be precisely predicted if its
behavior is understood perfectly.

Simulation is the most appropriate tool to be used when the prob-
lem is too complex or difficult to solve using another method. It can
be applied to many real world problems, e.g., manufacturing, com-
munication networks, business processes, hospital operations, and
container terminal operations. The main advantage of simulation is
that it can be used to explore certain behavior of the system without
causing disruption in the actual system.

A.2. Steps in Developing A Simulation Model

When we develop a model for a specific system, we need to make sure
it captures the various relationships existing in the current system.
Moreover, we need to incorporate some random-number generation
procedure so it can generate values for the probabilistic components
of the model. A bookkeeping procedure must be developed to keep
track of what is happening in the simulation process. Finally as the
simulation output is random, certain statistical procedures need to be
in place so the accuracy of the output can be guaranteed. Usually the
simulation must be conducted for many periods and repeated several
times in order to obtain credible results for the decision alternatives
or other changes in the system.

In general when we conduct a simulation study, we need the fol-
lowing steps:

1. Problem identification

It is always important to identify the right problem before building
the model. It should start with understanding the objectives and
main purposes of the study. Then based on these objectives, deter-
mine what you want to achieve from this simulation study by consid-
ering who the stake holder for the study is. This information can help

Appendix A 177

you determine how extensive you want to model the problem, and
the scope of the system that you want to model in the simulation.

2. Model conceptualization

After the problem is defined, we should determine what components
we have to include in the simulation, and also define the interaction
between these components. For discrete-event simulation, we need to
define the set of events, and how the state changes when an event
occurs. This step is also known as model conceptualization. In Sec-
tion A.2, we will provide more detailed discussion for this topic.

3. Data collection and input data modeling

When building the simulation model, we also need to collect data
from the system so that they can be used when running the sim-
ulation model. For example, when we want to model a fast food
restaurant using simulation, we have to collect data on how cus-
tomers arrive at this restaurant and how fast the customers can be
served. Then based on these data, we need to conduct some statisti-
cal analysis to choose the distribution that can fit the data the best.
This distribution will be used to run the simulation. The statistical
analysis is also known as Input Data Modeling. Details will be given
in Section A.4.

4. Model developing

After defining the conceptual model and conducting input data anal-
ysis, we need to translate the model into computer code. In the pro-
cess of translation, we can either do it using basic computer languages
like Basic, FORTRAN, C, C++, or Java, or we can use commercial
software such as Arena, Extend, Automod, etc. When coding using a
computer language, we have to code the logic of the event scheduler
so that the occurrence of the events will be arranged chronologi-
cally. Moreover, we also have to code the random number genera-
tor so that we can generate data following the certain distributions.
Details about the logic behind the event scheduling can be found in
Section A.3 while the random number generators can be found in
Section A.5. If we are using existing commercial software, we have
to code the simulation logic according to the syntax required in the
simulation software.

178 SSO: An Optimal Computing Budget Allocation

5. Output analysis

For stochastic simulation, it is never enough to only run a single
replication. In order to guarantee certain accuracy for the estimate,
we need to conduct statistical analysis on the simulation output and
then determine how many replications and how long we should run
the simulation. Under some cases, we may even need to conduct
warm-up analysis so as to make sure there is no bias in our estimate.
The details of output analysis are discussed in Section A.6.

6. Validation and verification

We need to verify if the simulation model is accurately coded, and
then validate it with the real system to see if it is close to the actual
system that we would like to study. We offer further discussions in
Section A.7.

The whole simulation studies can be described using Figure A.1.
In the following sections, we will give more detailed discussions of the
concepts in the simulation model, Input Data Modeling, Output Data
Analysis, Random Number Generator, Verification and Validation.

A.3. Concepts in Simulation Model Building

Discrete-event simulation is essentially an interaction of time,
events and states. Events are executed chronologically. When an

| Input Data Analysis |\
v Real-life

| Random Number Generator | System
v
Simulation
c > Model

!

Output Data Analysis

validate

Done

A

Figure A.1. Steps for simulation study.

Appendiz A 179

null null el e2 null &3 Time driven
l l l l l l | | | | | >
| | | | | | | | | | | e
el e2 e3

e R I 1)

Figure A.2. Events scheduling mechanisms.

event occurs (called triggering event), the states are updated. The
triggering event will also trigger the occurrence of some other future
events. To ensure the simulation proceeds correctly, we need to have
a mechanism which can control the occurrence of the events. There
are two mechanisms for advancing simulation time and guarantee-
ing that all events occur in the correct chronological order. They are
time-driven mechanism and event-driven mechanism. The main dif-
ferences between these two mechanisms are illustrated in Figure A.2.
In the time-driven mechanism, the simulation time will move at a
constant time step. At every clock tick that the time is advanced, we
check if there are any events occurring. It is possible that there are
a few events occurring at the same time or there is no event occur-
ring. If there is more than one events occurring, we will execute the
events one by one, and the states and the event list will be updated
accordingly. If no event takes place, we can treat it as a null event
which causes no state change. For the time-driven mechanism, the
state transition will be synchronized by the simulation clock.

Event-driven mechanism is a different mechanism. The simulation
clock will be advanced to the time when the next event occurs. In this
case, only one event is occurring at every time when the simulation
clock is advanced.

The event-driven mechanism in general is more efficient than the
time-driven mechanism because in the time-driven mechanism, in
order to avoid too many events happening at a time click, the time

180 SSO: An Optimal Computing Budget Allocation

step has to be small, resulting in null events at most of the time clicks.
On the other hand, animation will run more smoothly if time pro-
ceeds in a constant time-step rather than to the next event directly.

The procedure of the event-driven scheduling mechanism is sum-
marized as follows:

Step 1. Take the first event from the future event list as the trigger-
ing event.

Step 2. Advance the simulation time to the time that the event is
occurring.

Step 3. Update the state according to the event and the current
state.

Step 4. Delete the triggering event and any other infeasible events
from the future event list.

Step 5. Add necessary feasible events to the future event list, and
sort the events at the future event list according to the event
occurring time.

Step 6. Go to Step 1 until the simulation reaches the termination
condition.

Example A.1 (G/G/1 simulation). We further explain the
event-driven simulation procedure using a G/G/1 simulation exam-
ple. We first define the events and the states. There are two events in
the G/G/1 simulation: one is arrival event, and the other is depar-
ture event. The states are LS(t) which is the number of customers
at the server (equal to 1 when the server is busy) and LQ(¢) which
is the number of customers in the queue.

We also need to specify how the events update the state and the
event list. When an arrival event occurs, the customer will be sent
to the server if the server is idle, else it will join the queue. More-
over, an arrival event will generate another arrival event. Namely, the
next customer will be scheduled to arrive after a certain duration of
interarrival time. The arrival event will also generate a departure
event if the server is idle. Note that if the server is busy, the cus-
tomer will need to wait in the queue and in this case, we assume the
exiting service is not interrupted and so there is no need to change
the departure event in the future event list. All the generated events

Appendizx A 181

Arrival event occurs at
CLOCK =t

v
Set LS(t) = 1 NoYesI Ibncqease LQ(t)
y

Generate service time s*;
schedule new departure event
attimet + s*

T

vV Vv
Generate interarrival time a*; schedule next
arrival event at time t + a*

Collect statistics

Return control to time-advance routine to
continue simulation

Figure A.3. Execution of an arrival event in G/G/1 queue.

will be placed in the future event list. Figure A.3 gives a flow chart
showing how an arrival event is executed.

When a departure event occurs, the current service is done and
the server will find the next customer in the queue to serve if there
are customers in the queue. If no customer is waiting in the queue,
the server will become idle. Similarly the departure event will gen-
erate another departure event and place it in the future event list if
the server is not idle. Figure A.4 gives a flow chart showing how a
departure event is executed.

A.4. Input Data Modeling

Input data are needed when running simulations. For example, in
the G/G/1 simulation, we need to have the data for the interarrival
times and service times. One possible way is to collect data from the
actual system and then use them directly in the simulation. How-
ever, due to the limited amount of data, this might not be practical.
Another way is to generate data based on the information extracted
from the collected data. To do this, we fit the collected data using a
statistical distribution, and then generate simulation data using this

182 SS0: An Optimal Computing Budget Allocation

Departure event occurs
at CLOCK =t

v
Yes No
Reduce LQ(t) by 1 W SetLS(t) =0
|

Generate service time s*;
schedule new departure
event attime t + s*

Collect statistics

Return control to time-advance routine to
continue simulation

Figure A.4. Execution of a departure event in G/G/1 queue.

fitted distribution. The process of fitting the data with distributions
is known as Input Data Modeling.

There are three steps in doing input data modeling Data Collec-
tion, Distribution Fitting, and Goodness of Fit Test.

Data collection

Data collection from the systems is always time-consuming and not
trivial. Some important issues to consider when planning the data
collection are listed as follows.

When will be the best time to collect the data?
What data has to be collected?

Who should collect the data?

How to collect the data?

It is advisable to analyze the data while collecting them, as we
might need to recollect the data after the analysis. Moreover, be
prepared to have surprises from the data, and this can even help you
to redefine as well as enhance your model. Draw important insights
from the data that you have collected. Sometimes we need to modify
the collection plan if it becomes necessary.

Appendiz A 183

Distribution fitting

After the data are collected, we can plot the data using a histogram,
From the histogram or the problem nature, we can determine which
distribution is the most appropriate. Then we can estimate the
parameters for that distribution from the data using some princi-
ples such as maximum likelihood estimation or minimum squared
errors. Several statistical software packages are available to identify
the appropriate distribution as well as its corresponding parameters.
Examples include ExpertFit, Arena Input Analyzer, SPSS, SAS, and
Eview.

Goodness of fit test

After we have identified the distribution, we still need to check how
representative the fitted distribution is. We can do the test using
either a heuristic approach or formal statistical tests. For the heuris-
tic approach, we can use a probability plot, and from the plot, we
can visually determine if the distribution really fits well with the
data. As for statistical tests, we can use either chi-square tests or
Kolmogorov—Smirnov tests to check whether the distribution fits the
data well. The idea of the Chi-Square Test is to compare the his-
togram with the probability mass function of the fitted distribution.
The Kolmogorov—Smirnov Test focuses on the comparison of the dis-
tribution functions between the data and the fitted one.

A.5. Random Number and Variables Generation

When running simulation, we need to generate random numbers
that follow some certain distributions for capturing the system’s
stochastic behaviors, such as service times or customer inter-arrival
times. In computer simulation, we use a procedure to generate a
sequence of numbers that behave similarly to the random number,
and these numbers are called pseudo random numbers. The process
that generates these pseudo random numbers is called random num-
ber generator.

184 SSO: An Optimal Computing Budget Allocation

In order to generate numbers following a certain distribution,
we need to first generate a number following a uniform distribution
between 0 and 1, and then some random variate generation meth-
ods are used to transform the uniform random number into a random
number that follows the required distribution. Some details are given
in Section A.5.2.

To generate a number following the uniform (0, 1) distribution,
we can use the linear congruential method which is presented in
Section A.5.1.

A.5.1. The Linear congruential generators (LCG)
The linear congruential generator is shown as follows.
ZTpt1 = (az, +b) mod M, and (A1)
Upt1 = Tpt1/M. (A.2)

When a, b and M take appropriate values, u,, will follow a uniform
distribution.

Example A.2. Let a = 2,b =0, and M = 16. Using Equation (A.1)
for various xg, we can get the following sequence of numbers shown
in Table A.1. We can see from Table A.1 that no matter what the
starting value for xg is, the value eventually gets stuck at 0. This
implies that the parameters chosen are not good.

Example A.3. Consider a different set of parameter values. Let
a=11,b=0and M = 16. Again, we vary the value of the starting
point xg. As shown in Table A.2, we can see that the number stream

Table A.1. Result from a linear congruential
generator for Example A.2.

zo 1 3 5 7 9 11 13 15
1 2 6 10 14 18 6 2 14
z2 4 12 8§ 12 4 12 4 12
r3 8 8 0 8 8 8 8 8
ze O 0 0 0 0 0 0 0
ze O 0 0 0 0 0 0 0

Appendiz A 185

Table A.2. Result from a linear congruential
generator for Example A.3.

Zo 1 2 4 5 8 10
1 11 6 12 7 8 14
T2 9 2 4 13 8 10
3 6 12 15 8 14
T4 2 4 5 8 10
T6 11 6 12 7 8 14

will repeat itself. Depending on the initial values, some streams have
longer periods than the others, where the period is defined as the
number of random numbers generated before any number repeats in
the sequence.

In general, we need to choose the parameters in such a way that
the period is as long as possible because we do not want the num-
bers to repeat too soon. For the linear congruential generator, the
maximum period can be as large as M if we choose the parameters
carefully. In addition, the random numbers generated should have
the desired properties of uniform distribution. To check whether the
generated random number follows a uniform distribution, we can use
some statistical tests, for example the chi-square test or Komogorov—
Smirnov test. As for testing for independence, we can use the auto-
correlation test.

Table A.3 gives four good examples of the parameters suggested
in the literature. All of them have M = 231 — 1 = 2,147,483,647.
The first set has been well used in the C/C++ complier for Unix

Table A.3. Some good choices of
the LCG parameters.

a b M
1,103,515,245 12,345 231 1
69,069 97 281
75 = 16,807 0 231 1

630,360,016 0 231 1

186 SSO: An Optimal Computing Budget Allocation

machines. The third and fourth set have b = 0 and so the computa-
tional effort of the addition is saved.

A.5.2. Random variate generation

There are several methods used for random variate generation with
general distributions. We briefly present two most popular methods:
Inverse Transform Method and Acceptance Rejection Method.

A.5.2.1. Inverse transform method

The idea of the inverse transform method is to generate uniform
(0,1) numbers first, and then use the inverse of the distribution func-
tion to transform the uniform numbers into the random number
which follows the desired distribution. Specifically, let F'(x) denote
the desired cumulative distribution function and U is uniformly dis-
tributed between 0 and 1. Then X = F~1(U) has the distribution
function F. The idea is illustrated in Figure A.5. The algorithm is
summarized below.

Algorithm (Inverse transform method)

Step 1. Generate uniform random numbers wuq, us, . . ., Up;
Step 2. The random numbers that follow the distribution F'(z) will
be F~Y(uy), F~Y(ug), ..., F~ 1 (uy).

F(x)
A

U—>»

Y Xx=F'U

Figure A.5. Inverse transform method in generating random number which
follows distribution F'(x).

Appendix A 187

The difficulties of the inverse transform method lie in the derivation
for F~!(u). For some distributions, we might not be able to derive
the inverse function easily.

Example A.4. For an exponential random variable with rate A,
its cdf is

F(u)=1—e
Then, its inverse function is

F7l(u) = —In(1 —u)/A.

A.5.2.2. Acceptance rejection method

The ideas of the acceptance rejection method is to selectively discard
samples of the random numbers generated from a distribution (which
is usually much easier to generate) so as after the discarding process,
the remaining random numbers will follow our intended distribution.
We illustrate the idea and present the approach using the following
examples.

Example A.5 (Uniform(0.25, 1)). Suppose we want to generate
random numbers following the uniform distribution between 0.25 and
1, we can use the following the procedure.

Step 1. Generate a uniform random number u (uniform distribution
between 0 and 1),
Step 2. If u > 0.25, accept x = u; else return to Step 1.

Example A.6 (Exponential Thining). We have a stream of ran-
dom arrivals which follows the Poisson process with rate A. We can
generate a Poisson arrival with rate A\; where A\; < A, by randomly

discarding p proportion of the arrivals with p =1 — ’\—/\1

Example A.7 (Triangular distribution). Consider a random
variable X which has the following triangular probability density

188 SS0O: An Optimal Computing Budget Allocation

Reject

)

2 22
2 Accept

Figure A.6. Acceptance rejection method for a triangular distribution.

function
x 0<z<1
fla)=<2—2 1<z<2
0 otherwise

We can implement the acceptance rejection method by first gener-
ating a uniform number z between 0 and 2, and then another uniform
number u from 0 to 1. If the value u is less than or equal to f(z), we
will accept the number z, and return z = z. Otherwise, we will dis-
card that number and repeat the same procedure until a new number
z is accepted. The idea is illustrated as Figure A.6.

The efficiency of this method lies in how many of the numbers
that are accepted, i.e., the so-called acceptance rate.

A.6. Output Analysis

Output analysis aims at analyzing the data generated by simulation,
and its purpose is to estimate the performance of the system. Since
the simulation is stochastic, multiple simulation replications must be
performed in order to have a good estimate. The required number of

Appendiz A 189

simulation replications depends on the uncertainties of the simulation
output. In output analysis, we will look into ways in analyzing the
simulation output and then deciding how long we should run for each
simulation and how many times we need to replicate the simulation.

Consider the estimation of a performance parameter, J(6) of a
simulated system 6 and we would like to find the point estimate and
the interval estimate for J(6). There are two different types of output
data that we might need to use to estimate J(6). One is discrete-time
data while the other is continuous-time data. In a queueing system,
if the performance we would like to estimate is average waiting time,
then the data we use will be the discrete-time data, i.e., the waiting
time for each customer. On the other hand, if we want to estimate
the average number of customers in the systems, then the data we
use will be the continuous-time data, i.e., the number of customers
in the system over time.

There are two types of simulation depending on how the simula-
tion is run and how we want it to be terminated. One is terminating
simulation and the other is steady-state simulation. For terminating
simulation, the condition when the simulation terminates is clearly
defined. For example, in the study of customer waiting time at a
bank, we know when the simulation stops (i.e., when the bank closes).
While for the steady-state simulation, we are interested in the long-
run average of the simulation output, or the performance when the
system reaches steady state. In theory, the simulation should be run
as long as possible. However, in practice, this is not feasible, and so
we should determine the conditions under which the simulation can
stops, and yet the results obtained are still reasonably well. We will
discuss more on this issue in the later part of this section.

Point estimator

The point estimator for J(#) based on discrete-time data is the sam-
ple mean defined by

70) = = S L), (A.3)

190 SSO: An Optimal Computing Budget Allocation

where {L1(6), L2(0), ..., Ly(0)} are the n data that we have collected
from the simulation.

The point estimator is unbiased because the expected value of
J(0) is equal to J(0). It is always desirable for the estimator to be
unbiased.

The point estimator for .J(f) based on continuous-time data is
defined by

1 [Ts

J(0) = —/ L(6,t)dt, (A.4)
Te Jo

where L(0,t), 0 < t < Tg, is the output data that we have col-

lected from simulation time 0 to time T, where T is the time when

simulation terminates.

Interval estimator

A point estimator cannot tell users how accurate the estimate is.
Hence, an interval estimator is useful in many cases. The interval
estimator, also called confidence interval, for J(6) is approximately
given by
T(8) % toya.455(6)

where s7(6) is the estimated standard deviation for the point estima-
tor J(#), and d is the degree of freedom which depends on the amount
of data used . The challenge in estimating the confidence interval lies
in the estimation of the standard deviation for the point estimator
J(6). This is because to estimate standard deviation, we need to
have independent observations. In the following two subsections, we
will discuss how to estimate confidence intervals for terminating and
steady-state simulations. Moreover, given this estimator, we will dis-
cuss how to determine the required number of replications and length
of each simulation run.

A.6.1. Output analysis for terminating simulation

For terminating simulation, the termination condition of a simulation
is well defined. It is determined by the system that we want to study

Appendizx A 191

or the objective of the study. Denote N as the number of simulation
replications. The confidence interval for J(#) is given by

J(0) £ tajon-15/VN,

where s = \/ﬁ SOV (Li(8) — J(0))2 and L(6) is the simulation
output for the simulation run i. Since the simulation is replicated
using independent random number streams, and the independence
conditions for L;(6) can be met easily.

To determine how large N should be, we can look at what the
desired accuracy level is. If we want a confidence interval whose half
width is less than €, then the number of replications should be

to/oN—15\>
N> </2+1S> . (A.5)

A.6.2. Output analysis for steady-state simulation

For steady-state simulation, we want to estimate the steady-state
performance. Suppose that the simulation of a single run produces
the observations X7, Xs,.... These observations will be correlated.
For example the waiting time for a customer will be highly cor-
related with the waiting time for the customer who comes imme-
diately after this customer. The steady-state performance can be
estimated by

J(0) = lim %zn:Li(G). (A6)
=1

The estimate will be independent on the initial condition if we
have collected infinite amount of observations. However, in practice,
due to budget constraints on the computer resources, we will not
usually run the simulation very long. Hence the output analysis for
steady-state simulation concerns with how long we should run the
simulation, and how many replications we should run so that the per-
formance estimate is accurate (or the confidence interval of the esti-
mate is narrow). In general, if we do not want to run the simulation
very long, we need to deal with the initial bias. The observations are
collected after the system reaches steady state. For example, when

192 SSO: An Optimal Computing Budget Allocation

we simulate a queueing system, and if we start the simulation with
zero customers in the system, the observations that we obtain during
the initial stage might be biased (lower than normal as the queue is
empty). One approach is to let the simulation run for a while, and
only start to collect observations after the system stabilizes. Another
alternative is to intelligently set the initial conditions for the simula-
tion so that the simulation can reach the steady state faster. These
initial conditions can be estimated by either using the queueing the-
ory or data collected from the real system.

In general, when the steady-state simulation is run, we can divide
the simulation into two phases. The first phase is the transient phase
(also called warm-up period), and the second phase is the data collec-
tion phase. Only the data collected during the data collection phase
should be used in estimating the performance.

We can compute the batch means from the data, and it can be
used to detect whether the system stabilizes. Batch mean is defined
as the average performance within a time interval. For continuous-
time data, it equals to the time average of the performance for that
interval. For discrete-time data, it equals the average of the observa-
tions collected in the interval.

The ensemble average is the average of batch means across dif-
ferent replications. The ensemble average can also be used to detect
whether the system stabilizes. However due to the variability of the
data, the ensemble average might be too random to observe any
trend. Alternatively we can use a moving average or cumulative aver-
age to detect if the system stabilizes. After we have determined the
time at which the system stabilizes (the length of initial phase), the
time the simulation should end is about 10 times longer than the
initialization phase.

The formula (A.5) can also be used to determine the number of
replications.

A.7. Verification and Validation

After the simulation model is constructed, we have to verify and vali-
date it to ensure it is representative to the actual system. Verification

Appendiz A 193

refers to checking the model to see if the conceptual model is
accurately coded into a computer program while validation involves
with checking the model to see whether it sufficiently represents the
actual system so that our objectives of the simulation study can be
achieved.

For model verification, we can take the following steps.

1. Build the model in stages. It is always better to start from a
simpler model. In every stage of model building, verify if the
model is coded accurately in the computer.

2. Ask someone other than the developer to check the computer
program.

3. Check the model logic for each action and for each event type.

4. Examine the model output under a variety of settings of the
input parameters.

5. Check to see if the input parameters have changed at the end of
the simulation.

6. Document the model, and provide precise definition of the vari-
ables used.

7. Use animation to check if the simulation behaves similarly to the
real system.

8. Use a debugger.

9. Perform stress test, i.e., run the simulation model for a long time
and see if the results are reasonable.

10. For certain models, the setting can be changed in a way that
close-form solutions for some performance measures exist from
queueing theory. For example, there are close-form analytic solu-
tion for M /G/1 queues or Jackson networks. The theoretical val-
ues can be used for verification purpose.

The purpose of validation is to compare the behavior of the
simulation model to the real system. However, for validation, we
should know that although no model is ever totally representative
of the system under study, some models are useful. Hence it is
always important to know the objective of the simulation study
so that your simulation model is able to help you achieve your
objective.

194 SSO: An Optimal Computing Budget Allocation

There are two different types of tests we can use for validation.

1. Subjective test. It is also known as a qualitative test. We involve
people who are knowledgeable on one or more aspects of the sys-
tem, and let them to check if the model is reasonable.

2. Objective test. It is also known as a quantitative test. Statistical
tests are used to compare some aspects of the system data set
with the model data set. We have to validate the model assump-
tions, and then compare the model input-output relationships to
corresponding input-output relationships in the real system.

Appendix B

Basic Probability and Statistics

This appendix provides some fundamentals of probability and
statistics, which will be used in this book. There are many textbooks
which give complete coverage of this topic.

B.1. Probability Distribution

There are some distributions which are commonly used in simulation.

Uniform distribution U(a,b)

Suppose the random variable X is uniformly distributed between a
and b. We denote it as X ~ U(a,b). The probability density function
(pdf) is

fa<z<b

fla)=qb-a

0, otherwise

The cumulative distribution function (cdf) is

0, ifr<a
F(z) = g;:s, ifa<z<b.
1, ifx >0

195

196 SSO: An Optimal Computing Budget Allocation

The expected value is

b
BlX) =122,
and the variance is
PRY
Var(X) = (b—a) .
12

In simulation modeling, if a random quantity is modeled as U(a,b),
it implies that this random quantity can be any number between a
and b with equal chance but no chance for any number less than a
or larger than b.

Triangular distribution

Suppose the random variable X has a triangular distribution between
a and b with mode ¢ (the point with highest density). The probability
density function (pdf) is

2(x — a) .
m, 1fa§$§c
flay=4 _20b-2) . .
b—at-0 fe<z<b
0, otherwise

The cumulative distribution function (cdf) is

0, ifx<a
N2
B) TN
Flo) = (b—a)(c—a)
T Gk ST PPN
(b—a)(b—rc)’ -
1, ifo<uz
The expected value is
a+b+c
EFX|=——
[] 3 Y

and the variance is
Var(X) = a? + b2 + 2 1—8ab— ac — bc.

A triangular distribution implies that the modeled random quan-

tity can be any number between a and b but most likely around the

Appendiz B 197

mode c¢. Similar to U(a,b), a triangular distribution has no chance
for any number less than a or larger than b.

Exponential distribution

Suppose X is exponentially distributed with mean (3, denoted as
X ~ EXP(f3). The probability density function (pdf) is

@) %em/ﬁ, ifx>0
flz) =

0, otherwise

The cumulative distribution function (cdf) is
1—e @B ifz>0

{0, otherwise
The expected value is

E[X] =5,
and the variance is

Var[X] = 32

Exponential distribution has been well used in stochastic analysis and
queueing theory. However, please note that the exponential distribu-
tion has the property of “no memory” (or called “memoryless”), i.e.,

P{X >t+ty|X > to} = P{X > t}.
This property is usually true for modeling interarrival times between
customers, particularly for uncoordinated arrivals. But the memory-
less property could be very wrong in many other cases.
Weibull distribution
The probability density function (pdf) is

/(@) %(E) e, 220
) =

0, otherwise

198 SSO: An Optimal Computing Budget Allocation

The cumulative distribution function (cdf) is

1—e @B ifz>0

F(z)= .

0, otherwise

The expected value is
E[X]=pT(1+1/a),
and the variance is
Var[X] = 01 +2/a) —T?(1 + 1/a)),

Weibull distribution is suitable for modeling the time to failure
of a piece of equipment.

Normal distribution

The probability density function (pdf) is
1 2 /952
- —(z—p)?/20
x) = e .
f@) = —7—

The expected value is
EX] = p,
and the variance is
Var[X] = o2

By the principal of the Central Limit Theorem, the normal distri-
bution is suitable to model any performance which is an average in
nature.

Poisson distribution

The probability mass function (pmf) is

e\

p(z) = R ifare{O,...}‘

0, otherwise

Appendiz B 199

The cumulative distribution function (cdf) is
0, ifz <0
e Z iR ifz>0
=0

The expected value is

and the variance is

Var[X] = A
If the inter-arrival times follow an exponential distribution, the num-
ber of customer arrivals in a certain time interval will follow Poisson
distribution.

B.2. Some Important Statistical Laws

Law of large number

Let X4, Xo,..., and X,, be a sequence of independent identically
distributed random variables with finite means p. Their partial sum
Sn = X1 + XQ +---+ Xn satisfies

1
—Sn EZN 1.
n
Central limit theorem
Let X1, Xo,..., and X,, be a sequence of independently identically

distributed random variables with finite means p and finite non-zero
variance 02 and let S, = X7 + Xo 4+ --- + X,.
Then g
2n Z A gN(O,l) as n — oo.
no?

B.3. Goodness of Fit Test

Chi-square tests. This is an old but popular test. A chi-square test
can be considered as a formal comparison of a histogram with the
probability density or mass function of the fitted distribution.

200 SSO: An Optimal Computing Budget Allocation

The steps of doing the chi-square test are

Step 1.
Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Draw the frequency histogram of the data.

Compute the probability content of each interval, p; based
on the fitted distribution.

Compute the expected frequency in each interval fl =nXp;
where n is the total number of observations.

Let f; be the number of observations in the ith interval.
Compute the test statistic:

v=3 (fi —Afz')Z.
Determine the critical value at the level of significant «
and Xi,d with d degrees of freedom, where d = (number
of interval) — (number of estimated parameter) — 1.
Conclude that the data does not fit the distribution if the
test statistics is greater than the threshold.

Kolmogorov—Smirnov tests. Instead of grouping data in each
interval as chi-square tests, Kolmogorov—Smirnov tests intend to
compare the empirical distribution function with the fitted distri-

A

bution (F’). Kolmogorov—Smirnov tests do not require users to group

data in any way and so no information is lost. The steps of doing the

Kolmogorov—Smirnov test are

Step 1.

Step 2.

Step 3.
Step 4.
Step 5.

Rank the data from the smallest to the largest, i.e., Ry <
Ry <--- < Ry
Compute

Compute D = max(D*, D™).
Determine the critical value, D, n.
The data does not fit the distribution if D > D, .

Appendix C

Some Proofs in Chapter 6

C.1. Proof of Lemma 6.1

We first prove the right-hand side of the inequality, which follows
since

=P 0 (A) p<min[PU; A)]
i j#i

H
=min [1 - P(J; < J;)] =min |1 - [[P(J; < Ja)|. 1
IjIélél [(Jj < JZ)] Ijrélél [H (ng < le)] (C.1)
i i =1
To prove the left-hand side of the inequality, we will show that

Pon (Ji£d)p =[P £ B), i=12....k (C2

j€o ,
j#i i€o
J#i
Since then,

vi=PS 0 (4 0) = [1-P(J; <)]

s
H
=1] ll—HP(le < jzl)] . i=1,2,... .k
jeo =1

201

202 SSO: An Optimal Computing Budget Allocation

Without loss of generality, we only need to prove the result (C.2)
for i = k.
FO}‘] :~1’ .. .,Ii, let Aj = (le,. . -ijH); and let A = (Al, N ,Ak)
and J = (Jy,...,Jg). Define the indicator function
0, if Aj < Ag,
I;(A) = forj=1,...,k—1 (C.3)
1, otherwise
Then for j =1,...,k — 1, the event
{j% k} = {jj A jk} occurs if and only if I;(J) = 1. (C.4)
and

k-1

ofiom) -] e i

j=1

H|. (C5)

J
=[P 4 Jk) forT=2,... k-1

(C.6)

Then (C.2) follows immediately for . For J = 2, we make the
following observations:

I;(A) and I»(A) are both monotone nondecreasing in the single
coordinate (argument) Jj for j =1,....,k—landl=1,..., H;

(C.7)
and

I;(A) and I»(A) are both monotone nonincreasing in the single
coordinate (argument) Jy; for [=1,..., H.

(C.8)

In the terminology of Lehmann [1966], the functions I;(A) and
I5(A) are concordant in each coordinate .Jj because when all the

Appendiz C 203

other coordinates are held fixed, both functions I;(-) and I5(-) of the
single coordinate J;; are monotone in the same direction. Since the
components of J = (Jl, .. Jk) are mutually independent random
variables, it follows 1mmediately from (C.7), (C.8), and Theorem
1 of Lehmann [1966] that I;(.J) and I5(J) are positively quadrant
dependent random variables. Then from Lemma 3 of Lehmann [1966],
we have

E[I(J) ()] > E[L())|E[L(J)]. (C.9)

To complete the induction argument, we define
J
A =[]L4) forJ=2.. k-1 (C.10)

Now suppose by induction that (C.6) holds for some J satisfying
2 < J < k — 1. Using the same analysis as in (C.7) and (C.8), we
see that

I;(A) and I7j,,(A) are both monotone nondecreasing in the
single coordinate (argument) Jj for j =1,..., k-1
andl=1,....H

(C.11)

and

I3(A) and I7,,(A) are both monotone nonincreasing in the
single coordinate (argument) Jy; for Il =1,..., H.

(C.12)

It follows from Theorem 1 of Lehmann [1966] that I%(J) and
I, ,(J) are positively quadrant dependent random variables.
(C.13)

From (C.13) and Lemma 3 of Lehmann [1966], we see that

J+1

H L) | = B[()a(J)]

B[] E[Lra(D] = [[E[LG)] (C.14)

204 SSO: An Optimal Computing Budget Allocation

by the induction analysis. This establishes (C.6) and so (C.2) follows
immediately. m|

C.2. Proof of Lemma 6.2

Since S, and Sp are fixed, we apply the Bonferroni inequality to
approximate the two types of errors as follows:

61—1—P{ N E@c}
i€S,

- ({5

= P{ u E} <Y P{E} =) vi=ae, (C.15)

1€, — —
P 1€S) 1€Sp

62:1_1:{_“1}
)
:P{ U E} d P{E{} =) (1—4i) =aep. (C.16)

1€Sp i€Sp
O

C.3. Proof of Lemma 6.3

From (C.1) and (C.15), we can obtain

H
e1 < ae; = Z P < Z I]?(él(r)l [1 — HP(J jﬂ)]

i€Sp i€Sp j#i

=> 1—maxP<g(J Jl)> : (C.17)
i€Sp in@;

Appendiz C 205

By the Bonferroni inequality,

H
H J 7 = ~

P <121 (Ji1 < Jil)) > ;P(le <J))+1-H
= Hze{rfl,,i,?H}P(jjl <Ju)+1-H.

After some algebra, we see that an upper bound for Type I error
is given by:

e1 <uby = H|S)| - H > max (le{rlninH}P(jjl < jﬂ)>. (C.18)
i€Sp i

Similarly, following (C.16), we have
e2< Y (1 - P(n (j%i))). (C.19)
€S, jji?
By the Bonferroni inequality,
Pl n@=xi)|=1-P| u@y=i)|>1-) P(j<i
0.G=) U G=i) | 2 > P(j=i)

i i jeo
J#i

j€B =1 o
J#i

>1—(k— 1)maxP< A (Jj < j,-;)).

Therefore, after a little algebra, an upper bound for Type II error is

H - -
e2 < uby = (k — 1) Z max P <lgl (le < Jz‘l))

iesy °57
< (k-1 in P(J;<Jy)). (C.20
< ()gﬁg (le{q}}?ﬂ} (Jj < z)) (C.20)
1O ki

O

206 SSO: An Optimal Computing Budget Allocation

C.4. Proof of Lemma 6.5 (Asymptotic
Allocation Rules)

C.4.1. Determination of roles

To simplify the notation in the proof, we use k; = l;l instead. From
the Larangian function L of the optimization model, we have
oL 0APCSy

ON, ON, —A

=H- Z 8P(jjj;;\rf jj’%‘)

J¢Sp
—(n—1) Y A (C21)
i€Sp r
For any design h € S),
oL S OP(Jnk; < Jik;) (n_1). OP(Jiukn < i)
ONp, . ONy, N,
JEQ,
OP(Jnk, < Jir,)
—(n-1)- - L 22
R) At (C22)
€A,
where
Q, = {jlj € Sp,jj = h}, (C.23)
Ap = {ili € Sy, ji = h}. (C.24)
By expanding the derivatives, we have
oL H 6]2hkj 5jhk: aﬁk
ON, 24/ Z AP 752 2
h 2V2m oS 205, jhk N?
1 5%0 k 5hjhkh0}21k
+(n—1)' exp | — Jnkn h
2v2m 20 ’21]1 kn U’%jhkth%

1 O 5ihk J%Lk’
+(n-1)- exp | ——=2 -\
2V2m Z (201,) Tine Vi
(C.25)

Appendiz C 207

Denote

1 5}2L' k 5hjhkh Ui%k
Cir=Mn-1) —=—exp | — 2™ .
2V 2m 20’21jhkh Jh]hkhNQ

D (1) Z 52hk- 5ihkﬂ%k-
= (n — . i i
! 2\/277 20 U?hkiN}%
5jhk]~ 5jhkj0121kj
Z P 75,2 3 N2
N1 Tinky) ihk; Vi

Define Oy, = {i|i € S,j; = h}, or © = Ay U Q. It can be shown
that when the conditions

O O,
I < L Vi€ Oy (C.26)
o4, o*
hinkn thk;
hold, or equivalently when

2 2
5h3hkh < min 5zhk
Uhk Jan+o jhkh/ajh €O, Uzk i + U]hk /an

holds, we have

then (C.25) can be approximated as Cj, and when the condition
(C.26) does not hold, we have

o)
lim =L =
fm =0

then (C.25) can be approximated as D;.
So we define

2
6zhk

62
hjnkn
Sx=4h |h S Sp, < m
2 2
Tig, /Ch + 05, [, 10 o, [+ op [an

Sy = 5p,\Sx

For h € Sy,

oL 1 6}%‘ k Ohjnky Ufzzk
—— =(n-1)- exp | ———2hh X (C27)
2v2m QU%jhkh O-?LjhkhN}%

208 SSO: An Optimal Computing Budget Allocation

For h € Sy,

oL \ Gink, O
—_— = (N — ex Z 7
ON}, (2\/27r Z p(> ik, Vi

H . 5jhk U%k
_ - A C.28

JEQ,

Similarly, for any design r € Sp, we define

fS S 51%jrkr 612rk
= €S, <m
U O + 05 /5, i€6, O,/ 0+ Oy o
(C.29)
Sy = S,\Su (C.30)
and we have the following approximations:
For r € Sy,
L H 672’ 67" ke 2
oL _ o) brfrke _ (C.31)
aNr 2\/ 27T r] kr 7‘] k;,,.N
For r € Sy,
oL 1 07 1, 5irk1‘7 o
—=n-1) — ex
oy, ~ "V 5 EXA: P (202,) 03, N2
2
H]rk 5kagUrk
— — - A (C.32
v oo (i) e oo

It is observed that determlnatlon of subsets S x and Sy shares
the same condition and the two subsets can be merged, which is the
same case for Sy and Sy. Thus we redefine

62 62
Sa=<hlhesS, — hjhk’; < min thks
Uhkh/ah+0jhkh/ajfl Ze@hak/az+0]hk /ah
(C.33)
SB = S\SA7 (034)
where

O = {ili € S,ji = h}.

Appendiz C 209

C.4.2. Allocation rules
C4.2.1. he Sa,0€ Sy

There are 4 possible cases for h and o, which are

1. he Sx,o0€ Sx
2. he Sx, 0 € Sy
3. he SU, 0 € Sy
4. h e Sy, o€ Sx
For case 1, we have
2 2
oL _ (n—1)- Lexp _ Ot | Ok Thy, A
- o 2 2
ONn 2v2m 20 O hijnkn Uh]hkhN
OL 1 52 Oojoko
=Mn—-1)- ——exp oJoho = . Ok; - A
ON, 227w 200] ko Oj ko NG
Since
oL oL 0
ON,; ON,
then
2 2
eXp _ 5hjh]€h 5h]hkho-]?bkh _ eXp 50jo]€o 50joko gk‘
2 3 2 2
QUhjhkh UhjhkhNh 2 ojoko /| P0jo koN2
or
2 2 2 3 2
exp 5ojoko 5hjhkh _ %Ok O0joko O ok, (C.35)
2 2 3 2 :
205; k. 20hjhkh 0‘30'03 ko 5hjhkh0hkh
where substitution N; = alT is taken if necessary.
o2 .
Since ka, = “: J\% = %T + 2 a T, and denote
N]t aj'
;= = = — C.36
then
2 2
o2 Uiki Ok
Ok = T =+ —T. (C.37)

210 SSO: An Optimal Computing Budget Allocation

Take natural log on both sides of (C. 35)

2
o 5h]h k&

2 2 -
O-Oko + Ujoko/po O-hkh + U]hkh/ph

3

1
1 2
2 o, (0}21k:h + Ui@/Ph) BojokoC ok,
5 2
s (ngo + U?oko//%) 6hjhkho-lg,kh

when T' — oo, the limit of right hand side of (C.38) is 0. Thus

2
Qo _ 5h]hkh

O-Oko + Ujoko/po O-hkh + Ujhkh /ph

which implies
Sh _ (O%Lkh + U]zhkh/ph)/ézjhkh (C.39)
@ (05, + 05k, P) /00,

For case 2, 3 and 4, following similar derivations, it can be shown
that the above rule also holds.

C4.22. de Sp
There are 2 cases for d, which are

1. de Sy
2. de Sy

For case 1, from (C. 8), we have

oL (Z Ky \ Oidk:Oar,
I (-
ONg 2\/277 oy N3

€A,

Z 52‘dkj 5jdk ng)
2y 2r 2‘7]2'dkj i, Na

2\/ 2m hens 2Uhdk Thrakn N

H Orq, \ Ordk, T,
— exp | — - —A
N Z P < 202, | 03 N2

Appendiz C 211

where
= {h|h € Sa,jn = d}, (C.40)
Q= {r|lr € Sy, j» = d}. (C.A41)
Since
—8L =(n-1)- N exp | — 5}215”% 5hdkhaikh -
ON, 2V27m 20f2zdkh O-?Ldkth%
oL ~ H exp [— Ok, \ Ordn 00,)
ON, 2v2m 200,) Opar, N7
and
oL oL 0L 0
ONg ON, ON,
then by substitution we can get
2 2
9 dk 9 dk,
Ni= ¥ Ty 3 Z
heAy ~ hkn reQy ke
substituting N; = «o;T', we get
04?1 _ Udkh 2
cor, hkh
where
©5 = {hlh € Sy, j, = d}. (C.42)

For case 2, following a similar derivation, it can be proven that
the allocation rule above still holds.

This page intentionally left blank

Appendix D

Some OCBA Source Codes

There are several source codes for the OCBA algorithms presented
in this book, which can be downloaded from the OCBA web sites:

http: //volgenau.gmu.edu/~cchen9/ocba.html

or

http://en.wikipedia.org/wiki/Optimal _Computing Budget_
Allocation

This appendix only gives the computer code for the OCBA
method presented in Chapter 3 and 4. This OCBA algorithm is to
find the single best design using a minimum simulation budget. The
code runs on C or C++ platform.

This code is a self-contained program which contains the “ocba’”
subroutine and a main program. The main program calls the OCBA
subroutine and intends to allocate a computing budget of 100 addi-

tional simulation runs. If it runs successfully, it should output the
following;:

The additional computation budget assigned to Design 0 is 48.
The additional computation budget assigned to Design 1 is 38.
The additional computation budget assigned to Design 2 is 11.
The additional computation budget assigned to Design 3 is 2.
The additional computation budget assigned to Design 4 is 1.

213

214 SSO: An Optimal Computing Budget Allocation

C/C++ Code for Optimal Computing Budget
Allocation (OCBA)

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* please put the following definitions at the head of your
program */

/*Define parameters for simulation*/

/*the number of designs. It should be larger than 2.%/

#define ND 5

/*prototypes of functions and subroutines included in this
filex/

void ocba();

int best();

int second_best();

void main()

{

int i;

int ADD_BUDGET=100; /*the additional simulation
budget. It should be positive integer.*/

float s_mean[ND]={1.2, 2.1, 3.4, 4.87, 6.05};

float s_var[ND]= {3.3, 2.0, 4.5, 5.3, 6.9};

int n[ND]={12,6,5,5,4};

int an[ND];

ocba(s_mean, s_var, ND, n, ADD_BUDGET, an, 1);

for(i=0;i<ND;i++)
{
printf ("The additional computation budget assigned to
Design %d is %1ld.\n", i, an[il);
X
X

void ocba(s_mean,s_var,nd,n,add_budget,an,type)
float *s_mean,*s_var;

Appendiz D 215

int nd,*n,add_budget,*an,type;
/*
This subroutine determines how many additional runs each
design will should have for next iteration of simulation.
s_mean[i]: sample mean of design i, i=0,1,..,ND-1
s_var[i]: sample variance of design i, i=0,1,..,ND-1
nd: the number of designs
n[i]: number of simulation replications of design i,
i=0,1,..,ND-1
add_budget: the additional simulation budget
an[i]: additional number of simulation replications assigned
to design i, i=0,1,..,ND-1
type: type of optimazition problem. type=1, MIN problem;
type=2, MAX problem
*/
{
int 1i,j;
int b, s;
int t_budget,tl_budget;
int morerun[ND] ,more_alloc; /* 1:Yes; 0:No */
float t_s_mean[ND];
float ratio[ND]; /* Ni/Ns */
float ratio_s,temp;

if (nd>ND) printf("\n !!!!! please stop the program and
increase ND");

if (type == 1) /*MIN problem*/
{
for(i=0; i<nd; i++) t_s_mean[i] = s_mean[i];
3

else /*MAX problemx*/
{
for(i=0; i<nd; i++) t_s_mean[i]

3

(-1)*s_mean[i];

t_budget=add_budget;

for(i=0; i<nd; i++) t_budget+=n[i];

b=best (t_s_mean, nd);

s=second_best(t_s_mean, nd, b);
ratio[s]=1.0;

for(i=0;i<nd;i++)

216 SSO: An Optimal Computing Budget Allocation

if(il=s && i'!=b)
{
temp=(t_s_mean[b]-t_s_mean[s])/(t_s_mean[b]-
t_s_mean[i]);
ratio[i]=temp*temp*s_var[i]/s_var([s];
} /* calculate ratio of Ni/Nsx/
temp=0;
for(i=0;i<nd;i++) if(i!'=b) temp+=(ratio[il*ratio[il/
s_varl[i]);
ratio[b]=sqrt(s_var[b]*temp); /* calculate Nb */
for(i=0;i<nd;i++) morerunl[i]=1;
t1l_budget=t_budget;
do{
more_alloc=0;
ratio_s=0.0;
for(i=0;i<nd;i++) if (morerun[i]) ratio_s+=ratiol[i];
for(i=0;i<nd;i++) if (morerun[il])
{
an[i]=(int) (t1_budget/ratio_s*ratio[i]);
/* disable those design which have been run too much */
if(an[il<n[i])
{
an[il=n[i];
morerun[i]=0;
more_alloc=1;
}
}
if (more_alloc)
{
t1_budget=t_budget;
for(i=0;i<nd;i++) if (!morerun[i]) t1_budget-=an[i];
}
} while(more_alloc); /* end of WHILE */
/* calculate the difference */
t1_budget=an[0];
for(i=1;i<nd;i++) t1_budget+=an[i];
an[b]+=(t_budget-t1_budget); /* give the difference
to design b */
for(i=0;i<nd;i++) an[il-=n[i];

Appendix D 217

int best(t_s_mean,nd)
float *t_s_mean;
int nd;
/*This function determines the best design based on current
simulation results */
/* t_s_mean[i]: temporary array for sample mean of design i,
i=0,1,..,ND-1
nd: the number of designs */
{
int i, min_index;
min_index=0;
for(i=0;i<nd;i++)
{
if (t_s_mean[i]<t_s_mean[min_index])
{
min_index=i;
}
}
return min_index;

}

int second_best(t_s_mean,nd,b)
float *t_s_mean;
int nd;
int b;
/*This function determines the second best design based on
current simulation results*/
/* t_s_mean[i]: temporary array for sample mean of design i,
i=0,1,..,ND-1

nd: the number of designs.

b: current best design determined by function
best () */

{

int i, second_index;

if (b==0) second_index=1;
else second_index=0;
for(i=0;i<nd;i++)

218 SSO: An Optimal Computing Budget Allocation

{

if (t_s_mean[i]<t_s_mean[second_index] && i'=b)
{
second_index=i;
}

}

return second_index;

}

References

Banks, J., Carson II, J. S.; Nelson, B. L. and Nicol, D. M. [2004] Discrete-Event
System Simulation, 4th edn. (Prentice Hall).

Banks, J., Carson II, J. S., Nelson, B. L. and Nicol, D. M. [2010] Discrete Event-
System Simulation, 5th edn. (Prentice Hall).

Barton, R. R. and Meckesheimer, M. [2006] “Metamodel-based simulation opti-
mization,” in Handbooks in Operations Research and Management Science:
Simulation, eds. Henderson, S. G. and Nelson, B. L. (Elsevier) Chapter 18,
pp. 535-574.

Bechhofer, R. E., Santner, T. J. and Goldsman, D. M. [1995] Design and Analysis
of Experiments for Statistical Selection, Screening, and Multiple Comparisons
(John Wiley & Sons).

Berger, P. D. and Maurer, R. E. [2002] Ezperimental Design with Applications
in Management, Engineering, and the Sciences (Duxbury).

Bernardo, J. M. and Smith, A. F. M. [1994] Bayesian Theory (Wiley, New York).

Blanchet, J., Liu, J. and Zwart, B. [2007] “Large deviations perspective on ordinal
optimization of heavy-tailed systems,” Proc. 2007 Winter Simulation Conf.,
pp. 489-494.

Branke, J., Chick, S. E. and Schmidt, C. [2007] “Selecting a selection procedure,”
Manag. Sci. 53, 1916-1932.

Brantley, M. W., Lee, L. H., Chen, C. H. and Chen, A. [2008] “Optimal sampling
in design of experiment for simulation-based stochastic optimization,” Proc.
2008 IEEE Conf. on Automation Science and Engineering, Washington, DC,
pp. 388-393.

Bratley, P., Fox, B. L. and Schrage, L. E. [1987] A Guide to Simulation, 2nd ed.
(Springer-Verlag).

Butler, J., Morrice, D. J. and Mullarkey, P. W. [2001] “A multiple attribute utility
theory approach to ranking and selection,” Manag. Sci. 47(6), 800-816.

Chen, C. H. [1995] “An effective approach to smartly allocate computing budget
for discrete event simulation,” Proc. of the 34th IEEE Conf. on Decision and
Control, pp. 2598-2605.

219

220 SSO: An Optimal Computing Budget Allocation

Chen, C. H. [1996] “A lower bound for the correct subset-selection probability and
its application to discrete event system simulations,” IEEE Trans. Automat.
Contr. 41, 1227-1231.

Chen, H. C., Chen, C. H., Dai, L. and Yiicesan, E. [1997] “New development
of optimal computing budget allocation for discrete event simulation,” Proc.
1997 Winter Simulation Conf., pp. 334-341.

Chen, C. H., Chen, H. C., Yiicesan, E. and Dai, L. [1998] “Computing budget
allocation for simulation experiments with different system structures,” Proc.
1998 Winter Simulation Conf., pp. 735-741.

Chen, C. H., Fu, M. and Shi, L. [2008] “Simulation and Optimization,” in Tuto-
rials in Operations Research (Informs, Hanover, MD), pp. 247-260.

Chen, C. H. and He, D. [2005] “Intelligent simulation for alternatives comparison
and application to air traffic management,” J. Syst. Sci. Syst. Eng. 14(1),
37-51.

Chen, C. H., He, D. and Fu, M. [2006] “Efficient dynamic simulation allocation
in ordinal optimization,” IEEE Trans. Automat. Contr. 51(12), 2005-2009.

Chen, C. H., He, D., Fu, M. and Lee, L. H. [2008] “Efficient simulation bud-
get allocation for selecting an optimal subset,” Info. J. Comput. 20(4),
579-595.

Chen, C. H., Kumar, V. and Luo, Y. C. [1999] “Motion planning of walking robots
in environments with uncertainty,” J. Robot. Syst. 16(10), 527-545.

Chen, C. H., Lin, J., Yiicesan, E. and Chick, S. E. [2000] “Simulation budget allo-
cation for further enhancing the efficiency of ordinal optimization,” J. Discrete
Event Dynam. Syst. Theor. Appl. 10, 251-270.

Chen, C. H., Wu, S. D. and Dai, L. [1999] “Ordinal comparison of heuristic algo-
rithms using stochastic optimization,” IEEE Trans. Robot. Automat. 15(1),
44-56.

Chen, C. H. and Yiicesan, E. [2005] “An alternative simulation budget allocation
scheme for efficient simulation,” Int. J. Simulat. Process Model. 1(1/2), 49-57.

Chen, C. H., Yiicesan, E., Dai, L. and Chen, H. C. [2010] “Efficient computation
of optimal budget allocation for discrete event simulation experiment,” IIE
Trans. 42(1), 60-70.

Chen, E. J. and Kelton, W. D. [2003] “Inferences from indifference-zone selection
procedures,” Proc. 2003 Winter Simulation Conf., pp. 456-464.

Cheng, R. C. H. [1982] “Antithetic variate methods for simulation of processes
with peaks and troughs,” Fur. J. Oper. Res. 33, 229-237.

Cheng, R. C. H. [1984] “The use of antithetic variates in computer simulations,”
J. Oper. Res. Soc. 15, 227-236.

Chew, E. P., Lee, L. H., Teng, S. Y. and Koh, C. H. [2009] “Differentiated service
inventory optimization using nested partitions and MOCBA,” Comput. Oper.
Res. 36(5), 1703-1710.

Chick, S. E. [1997] “Selecting the best system: A decision-theoretic approach,”
Proc. 1997 Winter Simulation Conf., pp. 326-333.

Chick, S. E. [2003] “Expected opportunity cost guarantees and indifference-zone
selection procedures,” Proc. 2003 Winter Simulation Conf., pp. 465-473.

References 221

Chick, S. E., Branke, J. and Schmidt, C. [2007] “New greedy myopic and existing
asymptotic sequential selection procedures: Preliminary empirical results,”
Proc. 2007 Winter Simulation Conf., pp. 289-296.

Chick, S. and Inoue, K. [2001a] “New two-stage and sequential procedures for
selecting the best simulated system,” Oper. Res. 49, 1609-1624.

Chick, S. and Inoue, K. [2001b] “New procedures to select the best simulated
system using common random numbers,” Manag. Sci. 47, 1133-1149.

Chick, S. E. and Gans, N. [2006] “Simulation selection problems: Overview of an
economic analysis,” Proc. 2006 Winter Simulation Conf., pp. 279-286.

Dai, L. and Chen, C. H. [1997] “Rate of convergence for ordinal comparison of
dependent simulations in discrete event dynamic systems,” J. Optim. Theor.
Appl. 94(1), 29-54.

Dai, L., Chen, C. H. and Birge, J. R. [2000] “Large convergence properties of
two-stage stochastic programming,” J. Optim. Theor. Appl. 106(3), 489-510.

DeGroot, M. H. [1970] Optimal Statistical Decisions (McGraw-Hill, New York).

Dudewicz, E. J. and Dalal, S. R. [1975] “Allocation of observations in ranking
and selection with unequal variances,” Sankhya B37, 28-78.

Frazier, P. and Powell, W. B. [2008] “The knowledge-gradient stopping rule for
ranking and selection,” Proc. 2008 Winter Simulation Conf., pp. 305-312.
Fu, M. [2002] “Optimization for simulation: Theory vs. practice,” Info. J. Comput.

14(3), 192-215.

Fu, M. C. [2006] “Gradient estimation,” in Handbooks in Operations Research and
Management Science: Simulation, eds. Henderson, S. G. and Nelson, B. L.
(Elsevier), Chapter 19, pp. 575-616.

Fu, M. C. [2007] “Are we there yet? the marriage between simulation & optimiza-
tion,” OR/MS Today, pp. 16-17.

Fu, M. C., Hu, J. Q., Chen, C. H. and Xiong, X. [2007] “Simulation allocation
for determining the best design in the presence of correlated sampling,” Info.
J. Comput. 19(1), 101-111.

Fu, M. C., Hu, J. and Marcus, S. I. [2006] “Model-based randomized methods
for global optimization,” Proc. 17th Int. Symp. on Mathematical Theory of
Networks and Systems, 355—363.

Fu, M, Chen, C. H. and Shi, L. [2008] “Some topics for simulation optimization,”
Proc. 2008 Winter Simulation Conf., Miami, FL, pp. 27-38.

Fu, M. C. and Hu, J. Q. [1997] Conditional Monte Carlo: Gradient Estimation
and Optimization Applications (Kluwer Academic Publishers).

Fonseca, C. M. and Fleming, P. J. [1995] “An overview of evolutionary algorithms
in multiobjective optimization,” Evol. Comput. 3(1), 1-16.

Garvels, M. J. J., Kroese, D. P. and Van Ommeren, J-K. C. W. [2002] “On the
importance function in splitting simulation,” Eur. Trans. Telecommunications
13(4), 363-371.

Glasserman, P. [1991] Gradient Estimation via Perturbation Analysis (Kluwer
Academic, Boston, Massachusetts).

Glasserman, P., Heidelberger, P., Shahabuddin, P. and Zajic, T. [1999] “Multilevel
splitting for estimating rare event probabilities,” Oper. Res. 47(4), 585-600.

222 SSO: An Optimal Computing Budget Allocation

Glynn, P. W. [1994] “Efficiency improvement technique,” Annals of Operations
Research.

Glynn, P. and Juneja, S. [2004] “A large deviations perspective on ordinal opti-
mization,” Proc. 2004 Winter Simulation Conf., pp. 577-585.

Goldberg, D. E. [1989] Genetic Algorithms in Search, Optimization, and Machine
Learning (Addison-Wesley).

Goldsman, D. and Nelson, B. L. [1998] “Statistical screening, selection, and mul-
tiple comparisons in computer simulation,” Proc. Winter Simulation Conf.,
pp. 159-166.

Gupta, S. S. [1965] “On some multiple decision (selection and ranking) rules,”
Technometrics 7, 225-245.

Hanne, T. and Nickel, S. [2005] “A multiobjective evolutionary algorithm for
scheduling and inspection planning in software development projects,” Eur.
J. Oper. Res. 167, 663—678.

He, D., Chick, S. E. and Chen, C. H. [2007] “The opportunity cost and OCBA
selection procedures in ordinal optimization,” IEEE Trans. on Systems, Man,
and Cybernetics — Part C 37(5), 951-961.

He, D., Lee, L. H., Chen, C. H., Fu, M. and Wasserkrug, S. [2010] “Simulation
optimization using the cross-entropy method with optimal computing budget
allocation,” ACM Trans. on Modeling and Computer Simulation 20(1), 1-22.

Heidelberger, P. [1993] “Fast simulation of rare events in queueing and reli-
ability models,” in Performance FEwvaluation of Computer and Commu-
nication Systems, eds. Donatiello, L. and Nelson, R. (Springer Verlag),
pp. 165-202.

Ho, Y. C. and Cao, X. R. [1991] Perturbation Analysis and Discrete Event
Dynamic Systems (Kluwer Academic).

Ho, Y. C., Cassandras, C. G., Chen, C. H. and Dai, L. [2000] “Ordinal optimiza-
tion and simulation,” J. Oper. Res. Soc. 51(4), 490-500.

Ho, Y. C., Sreenivas, R. S. and Vakili, P. [1992] “Ordinal optimization of DEDS,”
J. Discrete Event Dynam. Syst. 2(2), 61-88.

Ho, Y. C., Zhao, Q. C. and Jia, Q. S. [2007] Ordinal Optimization: Soft Optimiza-
tion for Hard Problems (Springer).

Holland, J. H. [1975] Adaptation in Natural and Artificial Systems (The Univer-
sity of Michigan Press).

Homem-de-Mello, T., Shapiro, A. and Spearman, M. L. [1999] “Finding optimal
material release times using simulation-based optimization,” Manag. Sci. 45,
86-102.

Hsieh, B. W., Chen, C. H. and Chang, S. C. [2001] “Scheduling semiconduc-
tor wafer fabrication by using ordinal optimization-based simulation,” IEEE
Trans. on Robot. Automat. 17(5), 599-608.

Inoue, K. and Chick, S. E. [1998] “Comparison of Bayesian and Frequentist assess-
ments of uncertainty for selecting the best system,” Proc. 1998 Winter Sim-
ulation Conf., pp. 727-734.

Inoue, K., Chick, S. E. and Chen, C. H. [1999] “An empirical evaluation of several
methods to select the best system,” ACM Trans. on Model. Comput. Simulat.
9(4), 381-407.

References 223

Kim, S. H. and Nelson, B. L. [2003] “Selecting the best system: Theory and
methods,” Proc. 2003 Winter Simulation Conf., pp. 101-112.

Kim, S.-H. and Nelson, B. L. [2006] “Selecting the best system,” in Handbooks in
Operations Research and Management Science: Simulation, eds. Henderson,
S. G. and Nelson, B. L. (Elsevier), Chapter 18.

Kim, S. H. and Nelson, B. L. [2007] “Recent advances in ranking and selection,”
Proc. 2007 Winter Simulation Conf., pp. 162-172.

Law, A. M. and Kelton, W. D. [2000] Simulation Modeling and Analysis, 3rd ed.
(MacGraw-Hill).

Lee, L. H., Chew, E. P., Teng, S. Y. and Goldsman, D. [2004] “Optimal computing
budget allocation for multi-objective simulation models,” Proc. 2004 Winter
Simulation Conf., pp. 586-594.

Lee, L. H., Chew, E. P. and Teng, S. Y. [2007] “Finding the Pareto set for multi-
objective simulation models by minimization of expected opportunity cost,”
Proc. 2007 Winter Simulation Conf., pp. 513-521.

Lee, L. H., Chew, E. P, Teng, S. Y. and Chen, Y. K. [2008] “Multi-objective
simulation-based evolutionary algorithm for an aircraft spare parts allocation
problem”, Eur. J. Oper. Res., 189(2), 476-491.

Lee, L. H., Chew, E. P., Teng, S. Y. and Goldsman, D. [2010] “Finding the Pareto
set for multi-objective simulation models,” IIE Tran., in press.

Lehman, E. L. [1996] “Same concepts of dependence,” Ann. Math. Stat. 37(5),
1137-1153.

Kleijnen, J. P. C. [2008] Design and Analysis of Simulation Experiments (Springer,
New York).

Koenig, L. W. and Law, A. M. [1985] “A procedure for selecting a subset of size m
containing the [best of k independent normal populations,” Communication
in Statistics — Simulation and Communication 14, 719-734.

Kushner, H. J. and Yin, G. G. [2003] Stochastic Approzimation Algorithms and
Applications, 2nd ed. (Springer-Verlag).

L’Ecuyer, P. [1994] “Efficiency improvement and variance reduction,” Proc. 26th
Conf. on Winter Simulation, pp. 122-132.

L’Ecuyer, P., Demers, V. and Tuffin, B. [2006] “Splitting for rare-event simula-
tion,” Proc. 2006 Winter Simulation Conf., pp. 137-148.

Luo, Y. C., Guignard-Spielberg, M. and Chen, C. H. [2001] “A hybrid approach
for integer programming combining genetic algorithms, linear programming
and ordinal optimization,” J. Intell. Manuf. 12(5-6), 509-519.

Matejcik, F. J. and Nelson, B. L. [1995] “Two-stage multiple comparisons with
the best for computer simulation,” Oper. Res. 43, 633—640.

Nelson, B. L. [1990] “Control-variates remedies,” Oper. Res. 38.

Nelson, B. L., Swann, J., Goldsman, D. and Song, W. M. [2001] “Simple proce-
dures for selecting the best simulated system when the number of alternatives
is large,” Oper. Res. 49, 950-963.

Pflug, G. C. [1996] Optimization of Stochastic Models (Kluwer Academic).

Pritsker, A. [1986] Introduction to simulation and SLAM II (John Wiley and
Sons, New York).

224 SSO: An Optimal Computing Budget Allocation

Pujowidianto, N. A., Lee, L. H., Chen, C. H. and Yep, C. M. [2009] “Opti-
mal computing budget allocation for constrained optimization,” Proc. 2009
Winter Simulation Conf., Austin, TX.

Rinott, Y. [1978] “On two-stage selection procedures and related probability
inequalities,” Communications in Statistics 7, 799-811.

Rubinstein, R. Y. and Shapiro, A. [1993] Discrete Event Systems: Sensitivity
Analysis and Stochastic Optimization by the Score Function Method (John
Wiley & Sons).

Sanchez, S. M. [2005] “Work smarter, not harder: Guidelines for designing simu-
lation experiments,” Proc. 2005 Winter Simulation Conf., pp. 178-187.

Shortle, J. and Chen, C. H. [2008] “A preliminary study of optimal splitting
for rare-event simulation,” Proc. 2008 Winter Simulation Conf., Miami, FL,
pp- 266-272.

Shi, L. and Chen, C. H. [2000] “A new algorithm for stochastic discrete resource
allocation optimization,” J. Discrete Event Dynam. Syst. Theor. Appl. 10,
271-294.

Shi, L. and Olafsson, S. [2000] “Nested partitions method for global optimization,”
Oper. Res. 48, 390-407.

Shi, L. and Olafsson, S. [2008] Nested Partitions Optimization: Methodology and
Applications (Springer, New York).

Spall, J. C. [1992] “Multivariate stochastic approximation using simultaneous
perturbation gradient approximation,” IEEE Trans. on Automat. Contr. 37,
332-341.

Sullivan, D. W. and Wilson, J. R. [1989] “Restricted subset selection procedures
for simulation,” Oper. Res. 37, 52-71.

Swisher, J. R., Jacobson, S. H. and Yiicesan, E. [2003] “Discrete-event simulation
optimization using ranking, selection, and multiple comparison procedures:
A survey,” ACM Trans. Model. Comput. Simulat. 13(2), 134-154.

Trailovic, L. and Pao, L. Y. [2004] “Computing budget allocation for efficient
ranking and selection of variances with application to target tracking algo-
rithms,” IEEE Trans. Automat. Contr. 49, 58-67.

Wan, H., Ankenman, B. and Nelson, B. L. [2003] “Controlled sequential bifur-
cation: a new factor-screening method for discrete-event simulation,” Proc.
20038 Winter Simulation Conf., pp. 565-573.

Wilson, J. R. [1993] “Antithetic sampling with multivariate inputs,” Am. J. Math.
Manag. Sci. 3, 121-144.

Zhao, Q. C., Ho, Y. C. and Jia, Q. S. [2005] “Vector ordinal optimization,”
J. Optim. Theor. Appl. 125(2), 259-274.

Index

acceptance rejection method, 187

alternative OCBA-m procedure, 106

alternative simpler OCBA procedure,
71

APCS-B, 37

APCS-M, 128

APCS-P, 37

approximate probability of correct
(APCS), 37

approximate probability of correct
selection for m best (APCSm), 97,
105

Approximated Type I error, 125

Approximated Type II error, 125

Bayesian framework, 30
Bayesian model, 30, 61
Bonferroni inequality, 37

central limit theorem, 199
chi-square test, 199

classical model, 64

confidence interval, 191

correct selection, 18
cross-entropy method (CE), 148

D-Optimal, 166

data envelopment analysis (DEA),
171

decision-making units (DMUs), 171

distribution fitting, 183

equal allocation, 72

estimated expected opportunity cost,
59

event-driven mechanism, 179

evolutionary algorithm (EA), 157

expected opportunity cost, 57

exponential distribution, 197

extended cross-entropy method, 167

finite difference approaches, 11
frequentist model, 64

G/G/1 simulation, 180
generalized OCBA framework, 161
goodness of fit test, 183
gradient-based approaches, 11
Griewank function, 152

heavy-tailed distributions, 173

importance sampling, 169

input data modeling, 181

integration of OCBA with
metaheuristics, 144

interval estimator, 190

inventory control, 4, 111

inverse transform method, 186

knowledge-gradient policy, 174
Koenig and Law procedure, 107
Kolmogorov—Smirnov test, 200
Kullback-Leibler divergence, 149

226 SSO: An Optimal Computing Budget Allocation

large deviation theory, 173

large-scale simulation optimization,
141

law of large number, 199

level splitting, 170

linear congruential generator, 184

metaheuristics, 12, 144

minimizing opportunity cost, 57

MOCBA, 132

MOCBA procedure (maximizing
APCS-M), 132

model-based approaches, 11

multi-attribute optimization, 117

multi-attribute utility function, 118

multi-objective optimization, 117

multiple comparison procedures, 18

multiple objectives, 24

neighborhood random search (NRS),
147

nested partitions (NP), 150, 156

normal distribution, 198

OCBA, 40, 49, 95

OCBA procedure (classical model),
67

OCBA procedure (maximizing
P{CS}), 49

OCBA procedure (minimizing
simulation cost), 54

OCBA-EOC procedure, 63

OCBA-CE, 168

OCBA-CO, 174

OCBA-m procedure, 104

OCBA-OSD, 164

ODCBA, 172

opportunity cost, 57, 108

optimal computing budget allocation
(OCBA), 19

optimal data collection budget
allocation, 171

optimal simulation design, 164

ordinal optimization, 18, 141

OSTRE (optimal splitting technique
for rare-event simulation), 171

parameter setting and
implementation, 88

Pareto optimality, 119

Pareto set, 119

P{CS}, 36

point estimator, 189

Poisson distribution, 198

population-based incremental
learning (PBIL), 149

posterior distribution, 30

predictive posterior distribution, 34

prior distribution, 30

probability of correct selection, 36

processors, 161

promising index, 151

promising region, 150

proportional to variance (PTV), 74

pseudo random numbers, 183

random number generator, 183
random variate generation, 186
ranking and selection, 18
rare-event simulation, 169
regression, 164

Rosenbrock function, 154

sample mean, 29

search algorithms, 144
selecting a subset, 23

selecting the optimal subset, 95
signal to noise ratio, 47, 101
simplified MOCBA algorithm, 132
simulation precision, 15
splitting technique, 169
steady-state simulation, 189
subset selection, 93
synthesizer, 161

terminating simulation, 189
time-driven mechanism, 179
triangular distribution, 196

two-stage procedure, 18, 72
two-stage subset selection procedure,
94

uniform distribution, 195
uniform random (blind) sampling
scheme, 143

Index 227

variance reduction techniques, 16, 169
verification and validation, 192

Weibull distribution, 197
worker allocation, 3, 75, 109

	Contents
	Foreword
	Preface
	Acknowledgments
	1. Introduction to Stochastic Simulation Optimization
	1.1 Introduction
	1.2 Problem Definition
	1.3 Classification
	1.3.1. Design space is small
	1.3.2. Design space is large

	1.4 Summary

	2. Computing Budget Allocation
	2.1 Simulation Precision versus Computing Budget
	2.2 Computing Budget Allocation for Comparison of Multiple Designs
	2.3 Intuitive Explanations of Optimal Computing Budget Allocation
	2.4 Computing Budget Allocation for Large Simulation Optimization
	2.5 Roadmap

	3. Selecting the Best from a Set of Alternative Designs
	3.1 A Bayesian Framework for Simulation Output Modeling
	3.2 Probability of Correct Selection
	3.3 Maximizing the Probability of Correct Selection
	3.3.1. Asymptotically optimal solution
	3.3.2. OCBA simulation procedure

	3.4 Minimizing the Total Simulation Cost
	3.5 Non-Equal Simulation Costs
	3.6 Minimizing Opportunity Cost
	3.7 OCBA Derivation Based on Classical Model

	4. Numerical Implementation and Experiments
	4.1 Numerical Testing
	4.1.1. OCBA algorithm
	4.1.2. Different allocation procedures for comparison
	4.1.3. Numerical experiments

	4.2 Parameter Setting and Implementation of the OCBA Procedure
	4.2.1. Initial number of simulation replications, n0
	4.2.2. One-time incremental computing budget, .
	4.2.3. Rounding off Ni to integers
	4.2.4. Variance
	4.2.5. Finite computing budget and normality assumption

	5. Selecting An Optimal Subset
	5.1 Introduction and Problem Statement
	5.2 Approximate Asymptotically Optimal Allocation Scheme
	5.2.1. Determination of c value
	5.2.2. Sequential allocation scheme

	5.3 Numerical Experiments
	5.3.1. Computing budget allocation procedures
	5.3.2. Numerical results

	6. Multi-objective Optimal Computing Budget Allocation
	6.1 Pareto Optimality
	6.2 Multi-objective Optimal Computing Budget Allocation Problem
	6.2.1. Performance index for measuring the dominance relationships and the quality of the selected Pareto set
	6.2.1.1. A performance index to measure the degree of non-dominated for a design
	6.2.1.2. Construction of the observed Pareto set
	6.2.1.3. Evaluation of the observed Pareto set by two types of errors

	6.2.2. Formulation for the multi-objective optimal computing budget allocation problem

	6.3 Asymptotic Allocation Rule
	6.4 A Sequential Allocation Procedure
	6.5 Numerical Results
	6.5.1. A 3-design case
	6.5.2. Test problem with neutral spread designs
	6.5.3. Test problem with steep spread designs

	7. Large-Scale Simulation and Optimization
	7.1 A General Framework of Integration of OCBA with Metaheuristics
	7.2 Problems with Single Objective
	7.2.1. Neighborhood random search (NRS)
	7.2.2. Cross-entropy method (CE)
	7.2.3. Population-based incremental learning (PBIL)
	7.2.4. Nested partitions

	7.3 Numerical Experiments
	7.4 Multiple Objectives
	7.4.1. Nested partitions
	7.4.2. Evolutionary algorithm

	7.5 Concluding Remarks

	8. Generalized OCBA Framework and Other Related Methods
	8.1 Optimal Computing Budget Allocation for Selecting the Best by Utilizing Regression Analysis (OCBA-OSD)
	8.2 Optimal Computing Budget Allocation for Extended Cross-Entropy Method (OCBA-CE)
	8.3 Optimal Computing Budget Allocation for Variance Reduction in Rare-event Simulation
	8.4 Optimal Data Collection Budget Allocation (ODCBA) for Monte Carlo DEA
	8.5 Other Related Works

	Appendix A: Fundamentals of Simulation
	A.1 What is Simulation?
	A.2 Steps in Developing A Simulation Model
	A.3 Concepts in Simulation Model Building
	A.4 Input Data Modeling
	A.5 Random Number and Variables Generation
	A.5.1. The Linear congruential generators (LCG)
	A.5.2. Random variate generation
	A.5.2.1. Inverse transform method
	A.5.2.2. Acceptance rejection method

	A.6 Output Analysis
	A.6.1. Output analysis for terminating simulation
	A.6.2. Output analysis for steady-state simulation

	A.7 Verification and Validation

	Appendix B: Basic Probability and Statistics
	B.1 Probability Distribution
	B.2 Some Important Statistical Laws
	B.3 Goodness of Fit Test

	Appendix C: Some Proofs in Chapter 6
	C.1 Proof of Lemma 6.1
	C.2 Proof of Lemma 6.2
	C.3 Proof of Lemma 6.3
	C.4 Proof of Lemma 6.5 (Asymptotic Allocation Rules)
	C.4.1. Determination of roles
	C.4.2. Allocation rules
	C.4.2.1. h ∈ SA, o ∈ SA
	C.4.2.2. d ∈ SB

	Appendix D: Some OCBA Source Codes
	References
	Index

