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Preface to the first English edition

The book you are now reading contains arguably the world’s largest collection of
problems in quantum physics, which span just about the full scope of subjects in
quantum theory ranging from elementary single-particle quantum mechanics in one
dimension to relativistic field theory and advanced aspects of nuclear physics. There
are more than 700 problems of various difficulty, accompanied by detailed solutions.
While some problems are elementary and may be accessible to advanced undergraduate
students, some are at the research level that would be of challenge and interest to a
practicing theoretical physicist. Consequently, the book will be useful to a wide range of
readers including both students studying quantum mechanics and professors teaching
it. In fact, this problem book has a proven record of being a scientific bestseller in
other countries, notably in Russia, where its earlier versions have been used for over
thirty years as a standard text to learn and teach quantum physics at all leading
universities.

Even though this is the first English edition of the book, several editions in the
Russian, French, and Japanese languages have been available since 1981 (a much
smaller collection of elementary problems by Victor Galitski, Sr. and Vladimir Kogan
was first published in 1956 and is available in English too). Following the fine
tradition of Russian theoretical physics, this book of problems has usually been used
in conjunction with the legendary Landau and Lifshitz theoretical physics course.
However, the latter is certainly not the only option for a basic supporting text, and
many other excellent textbooks are now available. Therefore, I do not reiterate here
the strong recommendation of the first Russian edition, and suggest instead that a
choice of the supporting quantum textbook be left to the reader or professor teaching
a course. Furthermore, each chapter of this book begins with a concise summary of the
underlying physics and main equations, which makes the book almost self-contained.
Therefore, for a student or researcher, who has had even minimal exposure to quantum
mechanics, it may become a useful and rich independent resource to master the field
and develop actual problem-solving skills.

Let me also emphasize two points about the text. The first is that the level of
mathematical abstraction here is generally pretty low (with the exception of the first
chapter perhaps) not due to a lack of expertise by the original authors, but because
their target audience has been practicing physicists interested in understanding and
solving real-life problems. Consequently, if your motivation for doing or studying
quantum physics is to understand actual phenomena and explain experiments, this
book will certainly be useful. For example, the chapters on nuclear physics contain
a large number of problems that are directed to quantitative explanation of specific
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experimental data. The second warning is that the terminology may be somewhat
outdated at times, and no references to modern literature are provided. I intentionally
decided to preserve the integrity of the book (a number of new problems that are
included here compared to the earlier editions have been incorporated into the old
structure of chapters). Because I believe that the “old-school style” of the book is not
at all a downside.

Quite on the contrary, we can certainly learn a lot from people who worked in
the good old days of theoretical physics. These were people living and working in
completely different times, and they were quite different from us, today’s scientists:
with their attention spans undiminished by constant exposure to email, internet, and
television, and their minds free of petty worries about citation counts, indices, and
rankings, they were able to devote 100% of their attention to science and take the time
to focus on difficult problems that really mattered, making a difference on an absolute
scale. We are now standing on their shoulders, and in fact most quantum phenomena
that we are fascinated with today go back to their accomplishments in decades past.

With this in mind, T would like to say a few words about the rather fascinating
history of this book and the original authors, particularly about the lead author —
Victor Galitski, Sr. — who was the main driving force behind the book and who
conceived most of the problems you will find here. Even though I admittedly cannot
be completely unbiased in talking about him (he was my late grandfather), I can say
with confidence that apart from being a first-rate teacher and educator, he was also
a giant of theoretical physics and an amazingly creative scientist. His contributions
to quantum physics are manifold, and include the first use of Feynman diagrams in
solid-state physics, the first microscopic derivation of Landau’s Fermi liquid theory,
various fundamental results in nuclear physics (e.g., Galitskii-Feynman equations),
the first theory of unconventional superconductivity and many other famous results.
He co-authored papers with such luminaries as Lev Landau and Arkady Migdal, and
trained a generation of theoretical physicists (my own late adviser, the great Anatoly
Larkin, among them).

The sheer amount of work by Galitski, Sr. is very impressive in and by itself, but
it is even more so considering his very short and difficult life and his short career
as a physicist. I hope the reader will excuse my mentioning it briefly in the following
couple of pages. Victor Galitski, Sr. was born in 1924 in Moscow. In 1942, shortly after
graduating from high school, he enlisted in the army, having married my grandmother,
Tatiana, just a few days before his leaving. (They did not know if they would see each
other again. Fortunately they did, and she was his devoted wife for almost forty years.)
He was sent to the front shortly after, and eventually became a commander of an
artillery unit. In 1943 he was severely wounded during the Battle of Kursk. He hardly
survived, and spent over a year in a hospital. After being honorably discharged from
the army, he entered the Moscow Mechanical Institute of War Ammunition (which
later was renamed the Moscow Engineering Physics Institute, MEPhI, and where years
later — in 1960 — he became Head of the Theoretical Nuclear Physics Department).
While studying at MEPhI he discovered his gift and interest in theoretical physics,
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and after graduating in 1949 he joined the theory group led by Arkady Migdal at the
Institute of Atomic Energy in Moscow.

This is where his creative research finally took off, and where he, in collaboration
with Migdal, developed, among other things, the first microscopic quantum theory
of solids based on methods of quantum-field theory that brought him world-wide
recognition. I will not talk about the details of his research here, but will just mention
that this was also the time when he started putting together the first problems that
eventually led to this book. I will also mention that these times after the war were
not at all easy for him and his family. My grandmother’s brother, Vsevolod Leont’ev,
was arrested by the Stalin regime (his only “crime” being that he was being wounded
and captured during the war), and he first received the death sentence, which was
later changed to 25 years in a work camp (due to a temporary and brief moratorium
on capital punishment in the Soviet Union, which saved his life. He was released and
acquitted after Stalin’s death, and lived a long life well into his nineties, having been
among the most optimistic and fun people I knew). After this arrest, my grandparents
were given the ultimatum to either make a public statement and denounce the “enemy
of the people”, or face very serious consequences. They refused to follow orders, and
my grandmother was immediately fired from Moscow State University, where she had
been on a fast-track to becoming a young Professor of Economics (she never returned
to work after that). Galitski, Sr. was also facing similar prospects.

However, help came from Igor Kurchatov (the Russian counterpart of Robert
Oppenheimer, leading the Soviet effort to develop an atomic bomb), who had a very
high opinion of Galitski, Sr. Apparently, he was also involved in classified research
on the nuclear bomb, about which little is known apart from that (according to
my grandmother) while working on the project, my grandfather was exposed to
a significant radiation amount that resulted in health problems and might have
contributed to his developing cancer at an early age.

After being saved from the Gulag by Kurchatov, Galitski, Sr. entered the most
productive and successful part of his research career, which eventually propelled him
to the position of Head of the nuclear theory division at the Kurchatov Institute of
Atomic Energy. Let me now skip twenty or so very interesting years to 1975, when
the idea of writing this book was first conceived. Surprisingly, the venue where it
happened was very unlikely, and deserves some explanation. Physics was certainly my
grandfather’s main passion in life, but he also had many other interests beyond science.
In particular, he was a big sports fan, with ice hockey being one of his other passions.
In fact, he was a friend with many leading Soviet hockey players. Many members of the
national hockey team were frequent guests at his house. (I still remember that as a child
I was completely unimpressed with my grandfather’s physics library, which included
books signed by the authors, such as Bohr, Dirac, and Landau, but was fascinated by
his collection of hockey clubs autographed by famous hockey players, such as his good
friend Vyacheslav Starshinov — a top forward in the Soviet national hockey team who
later became an athletic director in the Moscow Engineering Physics Institute. When I
was a student there in the 1990s, Starshinov, for old time’s sake perhaps, cut me some
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slack, letting me take a tennis class instead of fulfilling some stricter requirements and
going through less desirable courses. I certainly appreciated that!)

Returning to the book, in the fall of 1975, Galitski, Sr. was hosting a reception for
the hockey team “Spartak”, which was also attended by a young physics researcher
and big hockey fan, Boris Karnakov. Apparently, it turned out during a discussion
between Galitski, Sr. and Karnakov at this reception that they both shared not only a
passion for hockey but also for creating and collecting exciting problems in quantum
physics. By that time, they both had accumulated large collections of unpublished
problems, and so they decided to combine them into a large book (on the basis of
the Kogan—Galitski short book published 20 years prior) to cover all key aspects of
quantum physics.

It took Galitski, Sr. and Karnakov five years to put together this book. Unfortu-
nately, this difficult but I am sure rewarding work was dampened by the fact that my
grandfather was diagnosed with a serious cancer, and had to have a lung removed.
The cancer returned in an incurable form shortly after the first complete manuscript
of the book was finalized — in the summer of 1980. He was battling against it for six
long months, and died in January of 1981, at the age of only 56. He never saw the book
published, as its first Russian edition appeared in print in March 1981. The current
English translation is close to that first Russian edition, but contains some additional
material added by Boris Karnakov. I have also added new problems, but have resisted
the temptation to make significant additions and structural changes at this stage.
(My own collection of problems on non-equilibrium quantum mechanics, single-particle
quantum mechanics in the presence of a random potential, coherent states, and path
integrals, might be published in a follow-up edition of this book or separately, if there is
interest.)

It was actually surprising to me at first that an English edition of this book had
not appeared earlier. However, I was surprised only until I signed up with Oxford
University Press to prepare its first expanded English edition and actually began work
on editing and translating the material, the enormity of which became frightening
to me. For as much as I wanted to do it, partly in my grandfather’s memory, I
quickly realized that the patience needed for this type of work is not among my
virtues. (Apparently, this gene that Galitski, Sr. had I was not fortunate enough to
inherit.) It would have taken me much longer to complete this work without the
help of students and postdocs in my group: Dr. Brandon Anderson, Dr. Greg Boyd,
Mr. Meng Cheng, Mr. Joe Mitchell, Dr. Andrew Robertson, Dr. So Takei, Ms. Alena
Vishina, and Mr. Justin Wilson. I would like to specifically emphasize the significant
contributions of Alena and Joe, who have reviewed a considerable part of the text,
and Justin, who helped put together a small new section on coherent-state spin path-
integrals. I am grateful to Professor Khmelnitskii of Cambridge University for his
constant encouragement during this long project, and to Ms. Anna Bogatin for putting
together a very nice and fun image for the book cover. I would also like to thank the
U.S. Army Research Office and the National Science Foundation, whose CAREER
award and support through the Physics Frontier Center allowed me to effectively share
time between my research activities and the work on the book, thereby contributing to
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the success of this project. Finally, I am grateful to Ms. Catherine Cragg, Production
Editor at Oxford University Press (OUP), for her help with finalizing the book for
publication and Dr. Sénke Adlung, Commissioning Editor at OUP, for being so patient
with me over the course of several years while this English edition of the book was in
preparation.

Washington DC Professor Victor Galitski, Jr.
September, 2011
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Symbols used in the book

x — proportionality sign

~ — order of magnitude sign

(m)| f Ny = fon = f  — matrix element of the operator f
0 ~  mean value of f

[ } = f f — commutator of the operators f and g
A <



Notations often used in the book

The following notations are often used throughout the book without additional
clarification and definitions.

Yr(q) — wave-function in ¢-representation labelled by quantum
number, f

Pose — eigenfunction of linear oscillator, see Eq. (IL.2)

e —  particle charge

c —  speed of light

H —  Hamiltonian

E, e —  energy

E and H —  electric and magnetic fields

A —  vector potential for electromagnetic field

U —  potential energy (interaction potential)

1% — perturbation operator

d, d — dipole moment

v, Ag — scalar potential for electromagnetic field

ap —  Bohr radius

0y —  phase shift

6 =(064,064,6,) — Vector of Pauli matrices

w, W — transition probability, transition probability per unit of time

Z, Ze — nucleus charge

R — radius of an interaction or scattering potential

m, M — mass or magnetic quantum number

I — reduced mass, or magnetic moment

p,. P —  momentum

k —  wave vector

A — nucleus mass number

w —  frequency

I, L, 3, J — angular moment (orbital and total)

s, S —  spin

Jy(2) —  Bessel function

H,(x) —  Hermite polynomial

Yim (0, ) —  spherical function

I'(z) —  I'-function

d(x), d(r) ~  One-dimensional and three-dimensional Dirac delta-function

Oik —  unit tensor, Kronecker §

Eikl — Levi-Civita symbol, totally antisymmetric pseudotensor,

€123 = 1, €913 = —1, etc.



Universal constants

A list of some fundamental physical constants.

Planck constant
Elementary charge
Electron mass

Speed of light

Bohr radius

Atomic unit of energy

Atomic unit of frequency

Atomic unit of electric field strength

Fine structure constant
Proton mass

Electron rest energy
1eV =1.602-10712 erg

h=1.055-10"2" erg-s

e =4.80-10"1° CGS unit
me=29.11-10"28g

c¢=3.00-10' cm/s

ap = 0.529 - 1078 cm

m,;fi =4.36-107 erg = 27.21 eV
Mef- =4.13-10'0 57!

=5.14-10° V/cm

e2 1
he — 137
m, = 1836m, = 1.673- 10724 g

mec® = 0.511 MeV

e ogw‘ ®



1

Operators in quantum mechanics

Mathematical formalism of quantum mechanics is closely connected with the theory
of linear operators. A key quantum-mechanical principle is that physical quantities
(observables) are represented by Hermitian linear operators that act on state vectors
that belong to a Hilbert vector space. A state vector (or equivalently, a wavefunction,
|1))) completely describes a state of the physical system.

For every linear operator, ﬁ, one can define its Hermitian-adjoint operator, LT, as
follows:

Walkwn) = [ws@Lurtair, = [ [Lnlo)] wi@dn, = (Lol 1)

Here and below, the variable g corresponds to a complete set of parameters char-
acterizing the system, which define a specific representation of the wavefunctions,
¥(q) = (q|v), with the states, |¢), satisfying the following resolution of identity,
[ a){q| drq = i, and 1 being the identity operator. If LT = L, then the operator is
called Hermitian or self-adjoint.[!]

A physical quantity, f, associated with the quantum mechanical operator, f , can
only take on values that belong to the spectrum of f — i.e., a measurement of f can
only result in one of the eigenvalues, f,, determined by the eigenvalue problem:

fs, = fatby, (12)

The corresponding eigenfunction, s, , describes a physical state that has a certain
value of the physical quantity, f = f,, (while in a generic state, the physical quantity
has no definite value). For an Hermitian operator, f7 its eigenvalues are all real.
Also, for a generic quantum-mechanical Hermitian operator, its linearly-independent
eigenfunctions form a complete set of states and can be chosen mutually-orthogonal.
The latter property allows to expand the wavefunction of an arbitrary state, ¥(q), in
a series of eigenfunctions: %

W) = elfn)r, (), (L3)

n

[1]  There exists a subtle distinction between the notion of Hermitian and self-adjoint operators, which is
discussed in Problems 1.28 and 1.29.

[2]  For the sake of brevity, the expansion is written as a sum (which assumes a discrete spectrum).
In general, this expression may include a sum over discrete states and/or integral over continuous
spectrum.
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where

e(fn) = (g, [0) = / 5 (@)(g)dr,. (1.4)

We assume here and below, unless noted otherwise, that eigenfunctions 1y, are
chosen to be orthonormal and normalized to unity for the discrete part of the
spectrum, (Y¢|p) = dy o and to the d-function (¢¢|tpp) = d(f — f') for the con-
tinuous spectrum. In the former case, the coefficients c(f,) directly determine the
probability, w(f,) = |c(fn)|?, that f = f, is measured in the state, ¢, (¢). In the
latter case — continuous spectrum — the coefficients determine the probability density,
dw/df = |c(f)|>. The mean value of f, f =" f,w(f,), follows from the formula
n

F =W\ flw) = / o (@) Fo(a)dr, (L5)

and can be used without reference to the individual probabilities.

If the Hermitian operator, f (M), depends on some real parameter A, then the
derivative of the eigenvalues f,,(\) with respect to this parameter satisfies the relation
(for the discrete part of the spectrum)

Ofa(r) _ < or o |22

oA

OA

lﬁfn(,\)>7 (1.6)

which has a variety of useful applications.

1.1 Basic concepts of the theory of linear operators
Problem 1.1

Consider the following operators (below: —oo < z < 00):

. The translation operator, T,: T,1)(z) = 1 (z + a).

. The inversion operator, I: [ (z) = p(—x).

. The scaling operator, M.: M (z) = /eip(cx), ¢ > 0.

. The complex-conjugation operator, K: Kw(x) = *(x).

. The permutation operator of identical particles Py plg’(/J(l‘l, x9) = (a2, 7).

T W N

a) Are these operators linear?
For the operators, 1-5, above, find:

b) The Hermitian conjugate operators.
c) The inverse operators.

Solution

a) All the operators except K are linear.
b) The operator 7,/ can be found from the following sequence of equations
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[ @@ = [ @+ as
_ / 6 (1 — @) (a)da = / [Tiw(@)] ()

(integration is performed in the infinite limits). Therefore, Tjw(x) =¢(x—a)=
TV (x) and TF = T_,.
Similarly, we find:
=i, NI =Nl Pl = P,
The operator K is non-linear, so KT does not exist.
c¢) All the operators have the inverse:

=1 T;'=1, M7'=M,, K'=K P =P,

a

Problem 1.2

A and B are Hermitian operators and L is an arbitrary linear operator.[! Prove that
the following operators are Hermitian:

1) LYL and LLY; 2) L+ Lt; 3) i(L — LT); 4) LAL'; 5) AB + BA;

S
=
o
I
®
&

Hint
Use the following relations (LT = L and (FL)t = LTFt.

Problem 1.3

Prove that an arbitrary linear operator L can be expressed in the form L=A+iB
where A and B are Hermitian operators.

Result
A=L(L+LY, B=F£(L-LY).

Problem 1.4

Express the commutators [A, BC] and [AB, C] in terms of the commutators [A, B,
[A, C], and [B, C].

Solution

(A, BC) = ABC — BCA = ABC — BAC + BAC — BOA = [A, BIC + BIA, €]. In
the same way, [AB, C] = A[B, C]+ [4, C|B

(3]  Hereafter all operators are assumed to be linear. For brevity’s sake, the term “linear” is omitted
throughout this chapter.
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Problem 1.5

Is it possible for two N x N matrices Pand Q (with a finite, V) to satisfy the canonical
commutation relation, [P, Q] = —ihl?

Solution

No, it is not possible. If we calculate the trace of both sides 9f the equation, PQ —
QP = —ihl, and use the relations, Tr (PQ)=Tr (QP), and Tr1 = N, we come to the
contradiction. [

Problem 1.6

Assume that \ is a small parameter. Derive an expansion of the operator (A — AB)~!
in the powers of .

Solution
If we multiply both sides of the equation, (A — AB)~! = S A"C,,, by (A — AB), and
equate the coefficients that contain the same power of )\,nv;e find
ACoir = BCo. Coss = A1BC, Co = A1,
Therefore, the expansion has the form

(A-AB)y ' = A 4 AATBAT 4 = AT A

Problem 1.7

If a function, F(z) has a Taylor expansion, F'(z) = Y ¢,2", then knowing an operator
f, the operator F' = F(f) is defined as follows: F' = i ¢nf™. Use this rule to determine
the explicit form of the following operators: !

1) exp(ial);

exp (ad%) ;
exp (am%) .

[\
S~—"
S
i

Here a is a real parameter and I is the inversion operator. See also Problems 1.8, 1.22,
and 1.24.

Solution

1) Taylor-expanding the exponential and using the fact that 1?2 =1, we find that
exp(ial) = cosa +i(sina)l.

[4]  In the case of N = oo there is no contradiction, since, Tr (PQ) = oo.
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2) Expanding the operator, T.,, we obtain

etz =30 O (;;) va) = 3 D @) = (e + ).

n= n=0

The operator exp (a%) is a translation operator.

3) Apply the operator
1 ( d )
= — [ ax—
o n! dx

to the term, x* (to appear in the Taylor expansion of a wavefunction, ¢ (x) =
¢t 2% on which the operator acts). Since (zd/dz)z* = kz* and (azd/dz)"2*

k=0
(ak)"z*, we have Loa* = (e“z)*. Using a Taylor expansion for 1(z), we obtain
o0 o0

k=0 k=0

E\Q
p
S

etx).

w‘k

This operator corresponds to the operator, Mc, from Problem 1.1. with ¢ = e® (up
to a numerical factor, 1/c).

Problem 1.8

Determine the explicit form of the operator T[g(z)] = exp [9(z) 4] where g(z) is a

monotonic function of . Consider two special cases: 1) g = ax, and 2) g = a®/322.

Solution
xT

Define the new variable, y = y(x), via the following relation: y = %. Then,
b

T = exp [%} Therefore, the operator considered is the translation operator along

the “y-axis” over the “distance”, Ay = 1 (see Problem 1.7) and

Flo@)}(x) = exp [jy] le() = vla(y + 1))

Here, = z(y) is an inverse function for y = y(x).

For the special cases we have:

1) y=1tIn|z|,so |z| =e™ and z(y + 1) = e®x. Therefore, T(az)y(x) = ¥(e®z) (cf.
Problem 1.7).
2) & = ay'/? and T(a®/322)y(x) = ¢ [(2* + a®)'/3].
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Problem 1.9

Prove the relation

o o . .
Tr {3)\ exp(AA + B)} =Tr {A exp(AA + B)},

where A and B are arbitrary matrices (of an equal rank). Is taking the trace crucial

in the above relation or does the latter hold more generally as an operator identity?

Hint
To prove the relation, Taylor-expand the exponential, and after differentiating it and
applying the trace, equate the coefficients containing the same powers of A. The

expression above does not generalize to the operator identity, if the operators A and
B do not commute.

Problem 1.10

Operators A and B commute to a “c-number”, which is a corollary of the following
commutation relation: [A, B] = icl, with 1 being the identity operator (which is often
omitted in the physics literature and below). Prove the equation

exp(A + B) = exp(A) exp(B) exp (—zg)

Solution

Let us introduce the following operator AA+B) and present it as

MATE) = A 2B exp <—;)\2c> G(N), (1)
where the operator function G is to be determined. Differentiating both parts of Eq. (1)
with respect to A and using the notation
AMB = (B + i)\c)e/\A,

(which is easy to establish by expanding the term, e/\"i7 and using [fl, B] =ic), we
find that %G(A) = 0: i.e. the operator G' does not depend on A. Substituting A =0
into Eq. (1), we find G = 1. This proves the relation.

Problem 1.11

Action of a linear operator, L, in a Hilbert space spanned by functions, ¥ (&), can be
represented as action of an integral operator as
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ﬂ@=ﬁM®E/L@€W@M&

where L(£,¢’) is the kernel of the operator, L (€ represents a set of variables of a
particular representation used). For such a generic linear operator (not necessarily
Hermitian), L, find the relation between its kernel and that of its Hermitian-conjugate,
LT(&,¢"). Find the kernels of the following operators I, T,, M., #=ux, p=—ih d/dx
(for a description of the operators I T, w, and M67 see Problem 1.1).

Solution

1) Li(¢,¢) = L*(€,9).
2) By writing

Mwm:¢wmwa@/am—wwwwx

we find that the kernel of M, has the form M,(z,z') = \/cd(cx — 2').
Similarly, the other kernels are as follows:

I(z,2") = §(x + 2'),
(

Problem 1.12

An operator, ﬁ, acts in the Hilbert space of wavefunctions, 1 (x), associated with single-
particle quantum mechanics in one dimension. Assuming that L commutes with both
the coordinate-operator, &, and the momentum-operator, p, find its kernel L(z,z’).
Prove that the operator L that commutates with both # and p is proportional to the
identity operator, i.e. L = Ly = const (o 1).

Solution

a) Taking into account that the kernel of an operator product, C=AB , is a convolu-
tion of the corresponding kernels

(o]

= /A(:r,m”)B(x”m')dm",

and that the kernel of & is X(z,2’) = zé(x —2'), and using the relation
Li — 2L =0, we find
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(2" — z)L(z,2") = 0 and therefore L(z,2") = f(x)d(z — 2'). (1)

Here f(x) is arbitrary function at this stage.
b) Similarly using Lp — pL = 0 and P(z, ') = fih%&x — '), we find
9 + 9 L(z,2") =0, so that L(z,2") = g(z — ') (2)
8I ax/ Y ) ) )
where g(x — ') is an arbitrary function.
c¢) Equations (1) and (2) are simultaneously valid if and only if, f(z) = Lo = const,
so that L(x,2") = Lod(x — 2’) describes a multiplication by a constant, which

commutes with all other operators acting in the corresponding Hilbert space. The
operator with such a kernel is L = Lo1.

1.2 Eigenfunctions, eigenvalues, mean values
Problem 1.13

The state of a particle is described by the following wavefunction:

por  (x —x)?
z)=C exp |i— — ————|, 1
¢( ) Xp h 2a2 ( )
where pg, xg, a are real parameters. Find the probability distribution of the par-
ticle coordinates, mean values, and the standard deviations of the coordinate and
momentum.

Solution

The normalization condition yields C? = 1/v/wa2. The corresponding probability
density is dw = |¢(z)|?dz. From Eq. (1.5) we find the mean values:

T=mx, 2=ai+—, (Azx)?2 =

As we see, \/ (Ap)? - (Az)? = h/2, so the wavefunction (1) minimizes the Heisenberg
uncertainty relation.

Problem 1.14

Find the relation between the mean values of coordinate and momentum in the
quantum states ¥1(x) and ¥9(x), related by
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) ¥2(7) = ¥1(2 +a), b) (@) = exp (i B30 ) 1 (a).

Solution
a) To =T1 — @, Py =Py, b) To =T1, Py = P; + po, where the indices 1 and 2 deter-
mine the mean values corresponding to the wavefunctions 17 ().

Problem 1.15

Prove that the mean values of Hermitian operators LL" and LTL in an arbitrary state
are non-negative.

Solution
fﬁ:/ﬁ%ﬁm#:/@%ﬂﬁwmzu

Problem 1.16

Prove that the mean value of the dipole moment of a system containing charged
particles vanishes in a state with a certain-parity: ¢ ({r,}) = I ({—r,}), with I = 1.

Solution
The mean value of the dipole moment is given by

o0

d= /w* ry,. Zearaw (r1,..., rn)Hd3rb. (1)

b

If we make the substitution of variable r/, = —r,, we obtain

a - / ql)*(frlla ) 71‘/“) Z €aI‘/a’¢J(71‘/1, e 71‘/”) H dSI‘,b. (2)

b

Since (—r1'y,. ..,

-1’y ¥(r1,..., r,) with the parity I = +1, from Eqs. (1) and
(2), we obtain d = —d

i

0.

Problem 1.17
An Hermitian operator f satisfies the operator identity:
a)f* =p*b) f? =pfio)f* = p*F,

where p is a real parameter. Find the eigenvalues of such an operator.
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Solution

The operator relation A(f) = B(f) with some arbitrary functions A(z) and B(z) 1
to the similar one A(f1) = B(/f1) for its eigenvalues. Therefore, the operator(s) f could
have only eigenvalues given by

eads

a) fi2 = =£p,
b) fl :07 f2 =P,
and

¢) f1 =0, fa,3 ==+£p. No other eigenvalues are possible.

Problem 1.18

Find the eigenfunctions and eigenvalues of the following operator: f = ap, + BT, where
Z and p, are the canonically-conjugate coordinate and momentum and « and [ are
real parameters. Prove that the eigenfunctions of this operator are orthogonal to each
other, and normalize them properly.

Solution

The equation for the eigenfunctions and eigenvalues of the operator, f , and its solution
are given by

iy () + By (@) = fuge), (1)
vr(0) = e { -5, )

where & = ha. From (2), it follows that the eigenvalues, f, can take arbitrary real
values (if the values of f are complex, the wavefunction (2) increases at large distances
and is not normalizable). Also, the parameters o and § above are real, since f is
Hermitian. The spectrum of f is continuous, and the eigenvalues are non-degenerate.
The proper normalization condition is as follows

/w?@Wv®M$=5U—f%

which gives C' = (2r&) /2. The proof of completeness of the system of eigenfunctions
(2) is left to the reader.

Problem 1.19

Solve the previous problem for the Hermitian operator,!”) F, with a kernel of the
following form: F'(x,2') = f(x) - f*(a’) (see Problem 1.11). Determine the degeneracy
of its eigenvalues.

[6]  Such operators appear in atomic and nuclear physics in the context of particles in so-called separable
potentials (see Problems 2.19, 2.34, 4.12). Also note that the operator considered could be written as

F=f){fl-
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Solution

The eigenvalue problem for F reads

This equation has the following solutions: 1) One of the eigenfunctions ¥y = C f(x)
corresponds to the non-degenerate eigenvalue fo = [ |f(z)[*dz > 0. 2) The second
eigenvalue f; =0 is inﬁnitely—degenerate. The corresponding eigenfunctions, ;(x),
have the following properties [ f*(x)i;(z)dz = 0 (i.e., these functions are orthogonal
to the eigenfunction, 1o (z), corresponding to the different eigenvalue, as it ought to
be). There are no other eigenvalues.

Problem 1.20

Find the eigenfunctions and eigenvalues of the complex-conjugation operator, K (see
Problem 1.1.)

Result

The eigenfunctions of the operator, K, are given by Yo(x) = e “g(z), where g(x) is

an arbitrary real function and « is a real number. The corresponding eigenvalues are
— 6721'&
o = .

Problem 1.21

An Hermitian operator (matrix) f has only N eigenvalues. Prove that the operator
fN can be expressed as a linear combination of the operators 1, f . fN L To
illustrate the result, consider the inversion operator, I.

Solution

Applying the operator G=(f—f)(f=f2)...(f = fn) to arbitrary state-vector |¢))

we have G|y) = 0. This state, [¢), can be decomposed into a linear combination

of the eigenfunctions of F', |1y, ) that form a complete set: 1)) = > cx|eys, ), with
%

(f = fu)libp) = 0.

Therefore, G = 0, and consequently we prove the desired statement:
al 1
AN FN—1 FN—2 N _
AEDMIARES 'k};kfifkf st oY Lr=o &

In the case of N =2, Eq. (1) gives f2 = (f1 + fg)f f1/2. Hence, for the inversion
operator with the elgenvalues +1, we have 2 =1, as expected.
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Problem 1.22

The operator f has only N different eigenvalues, f1, fa,..., fn. Find the operator
F = F(f), where F(z) is an arbitrary function. To illustrate the general result, consider
the cases of N =2 and N = 3 (in the latter case, assume that the spectrum consists
of 0 and £ f).

Solution

Using the result of the previous problem we have

) R N—-1 ) N—-1
F=F(f)=>Y cuf"s F(fi) =Y _ cnfl’,i=1,2,..., N (1)
n=0 n=0

(compare this with Problem 1.17). The second relation (1) above gives way to a linear
system of equations that determines the coefficients, c,.

If N = 2, Eq. (1) yields
2 LF(f1) = iF(f2) | F(f1) = F(f2) ;

fo—f1 N fi—fo ,. @

Similarly, for N = 3, we obtain

y FU) = F(-fo) ;| FUfo) + F(=fo) = 2F(0) 5o

F=F(0) 570 f+ 37

Problem 1.23

Prove the relation (I.6) from the introductory part of this chapter.

Solution

Differentiating both sides of Eq. (1.6) for eigenfunctions and eigenvalues with respect
to Xi fF(N)Un(q, A) = fr(MN)n(g, N), we have

(g’;) 50 + £330 = (502 a0 + g W

Multiply both sides of Eq. (1) by ¢ from the left, and integrate over ¢. Using the
relation

* p 0 o P * 0 o * 0
/Z/Jnfaﬂ)ndﬂ; = /(fwn) a#}ndﬂ; = fn/djnaiﬁndﬂ;,

which follows from the Hermiticity of f , we prove Eq. (1.6).



Operators in quantum mechanics 13

Problem 1.24

How would you define the operator, F=F ( f ), where f is a Hermitian operator and
F(z) is an arbitrary function of z, which does not necessarily have a regular Taylor
expansion in the entire parameter range of interest? How important is the assumption
of Hermiticity of f in this construction? Consider specifically the operator /—A,
where A is the Laplacian in the three-dimensional Euclidean space.

Solution

A way to define the operator F' = F ( f ) is to demand that its spectrum and eigen-
functions coincide with those of the operator, f , and the corresponding eigenvalues
are given by F,, = F(f,). Since the system of eigenfunctions ¢; is complete (the
Hermiticity of the operator f is important here), we can write

Fyy=FY el fa)tr.(0) = D> clfa) F(f2)tbr, (@). (1)

n

Using Eq. (1.4) for ¢(f) we can find that F is an integral operator with the kernell®

¢)=>_ F(fa)s, (@}, (d). (2)

N —1/2
Since (—=A)~Y2 =h (pQ) = h/|p|, we use Eq. (2) to obtain the kernel

h 1. / 1
AP !r,x') = 7/7 R N
(=2) = G | 3¢ P o —r)
To calculate the integral it is convenient to use spherical coordinates and choose the
polar axis along the vector r — r’.

Problem 1.25

Hermitian operators A, B, and Aﬁ satisty the following commutation relations:
[A, L] =0, [B, L] =0, but [A, B]# 0. Prove that the spectrum of the operator L
has degenerate eigenvalues. Give examples.

Solution

Applying the equation AL — LA =0 to the eigenfunction ¢, of the operator L (L;
are its eigenvalues), we find that the function Ay, is also the eigenfunction of L with
the same eigenvalue L; (or AwL =0). If the eigenvalue L; is non-degenerate, then
AwL = A1¢L ; @.€., Y, is the eigenfunction of the operator A too. In a similar way,
it is also an elgenfunctlon of B i.e., BwL = B,wL If all the eigenvalues L; were
non-degenerate, then the relatlon (AB BAYr, = (A;B; — B;A;)1r, = 0 would be
valid for all states. But if such a relation were valid for all eigenfunctions that form a
complete set, then it would result in AB — BA = 0, which contradicts the initial data.

[6]  The system of eigenfunctions ¢, (¢) is considered to be orthonormal.
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To illustrate this result, consider a free quantum particle in one dimension. Its
Hamiltonian H = $?/2m commutes with both the momentum p and inversion I
operators. However, these two operators do not commute with each other, [p, I ] #0,
and this fact is related to the two-fold degeneracy of the free-particle spectrum,

E(p) = E(—p).

Problem 1.26

Give examples of a quantum state, where:

a) Two physical quantities, whose operators do not commute, simultaneously have a
definite values;
b) Only one of two physical quantities, whose operators commute, has a definite value.

Solution

a) Different components of the angular momentum do not commute with each other,
but in the state with the angular momentum, L = 0, they do have the same definite
value L, , . = 0. For another example, see Problem 1.27.

b) The momentum and kinetic-energy operators commute with each other. However,
the function ¥ = C'sin(p - r/h) is an eigenfunction for the kinetic-energy operator,
but not for the momentum operator.

These examples do not contradict the general quantum mechanical statements
about the simultaneous measurability of two physical quantities, nor the uncertainty
relation (see Problem 1.30).

Problem 1.27

Consider a quantum state, 1,5, where the physical quantities A and B have certain
values. What can you say about the eigenvalues a and b of the corresponding operators,
A and B, if they anticommute with each other. To illustrate the general result, consider
the operators & (coordinate) and I (inversion).

Solution

We have the relation (AB + B/Al)wab = (ab+ ba)ap = 2abip,, = 0. Therefore, either
a or b vanishes. For example, Iz 421 = 0; but there is only one wavefunction
Yo(z) = CH(z) that is the eigenfunction of both & and I. Eigenvalues of the coordinate
operator are xy = 0. Note that anticommuting operators can not have a common eigen-
function (e.g., such is the case for the anticommuting Pauli matrices, see Chapter 7).

Problem 1.28

Find an operator corresponding to the radial component of momentum p, (using
spherical coordinates). Prove the Hermiticity of this operator. Find its eigenfunctions
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and eigenvalues. Are these eigenvalues real? Are the eigenfunctions orthogonal?
Explain the results obtained. See also Problem 1.29.

Solution

In classical mechanics we have p, = m7 = p - n, where n = ©. The Hermitian operator

R
(Pp-a+n-p)=n-p+ —divn=—--——r (1)

DN | =

Pr

is the quantum-mechanical analog of this relation.

The solution of the eigenvalue problem for this operator is given by (r) =
We 7T where C(1,¢) is an arbitrary function of the angles. Technically, the
eigenvalues p, could take on complex values p, = p; + ips, with ps > 0, and one can
show that the corresponding eigenfunctions are not orthogonal.

These conclusions about the eigenfunctions and eigenvalues of the operator p, rule
out the possibility of its direct physical interpretation, and demonstrate subtleties
behind the quantum-mechanical statement about the relation between physical quan-
tities (or observables, according to Dirac) and Hermitian (or self-adjoint) operators.
Physically, it shows that not every physical quantity from classical mechanics has
a well-defined quantum-mechanical equivalent (and vice versa, not every quantum
operator, e.g. the parity, has a classical equivalent). From the mathematical point
of view, this result demonstrates that there is a difference between the notion of an
Hermitian operator and self-adjoint operator. In this interpretation, the operator p,
is Hermitian but not self-adjoint (see also the following problem).

Problem 1.29

Use the operator —ih% that acts in the space of the functions defined on

1) the entire real axis, —oo < z < o0;
2) the finite interval, a < z < b;
3) the half-axis, 0 < z < oo;

to demonstrate the difference between the Hermitian and self-adjoint operators.
Discuss the eigenvalues and eigenfunctions of such operators.

Discussion

The Hermitian and self-adjoint operators, f = fT, are defined via the same relation:

[wsdindr = [(Froayvidr = [(Foayvnar (1)

However, the difference between them can be formulated in terms of different restric-
tions on the class of functions, ¢¥1 and 19, where the relation (1) is required to
hold.
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If relation (1) is satisfied for some class of functions, D (the same for both t;
and v9), then the operator f is called Hermitian in this particular class of functions.
We call the operator, f , self-adjoint if it is Hermitian in the class of functions, Dy,
subject to the constraints below. (Here we are not making an attempt to provide a
full mathematical theory, but simply outlining key concepts relevant to the quantum-
mechanical problem at hand).

Dy includes all functions vy (q) that satisfy

[1win@Par, < s @)

and
/ iy (@) 2dry < oo, / (@) gy (@) < o, (2)

where 1(q) is an arbitrary function from the Hilbert space. Importantly, the eigenval-
ues of a self-adjoint operator are real, and its eigenfunctions are mutually orthogonal
and form a complete system.[”)

Furthermore, Hermitian but not self-adjoint operators may be separated into the
following two groups: i) essentially self-adjoint operators that allow a self-adjoint
extension, and ii) Hermitian in some domain, but not essentially self-adjoint operators
that do not allow such an extension. More precisely, if a realization of an operator f
as Hermitian in Df has the property that the relation (1) is fulfilled by Vi1 2 € Dy,
but is not fulfilled if at least one of the functions — 11 or s — does not belong to
D ¢, then the operator is said to allow a self-adjoint extension and is called essentially
self-adjoint (the extension can usually be obtained by putting additional constraints
on the set of functions, e.g. boundary conditions). The properties of eigenvalues and
eigenfunctions of essentially self-adjoint operators are the same as those of self-adjoint
operators. Operators that are not essentially self-adjoint do not necessarily share these
nice properties (positive-definite eigenvalues and orthonormal eigenfunctions forming
a complete set of states). These subtleties are illustrated in the examples below.

Solution

1) Returning to the example in the problem, if the operator p = —ihd/dx acts in the
space of functions defined for x € (—o0, +00), we have

— 00 — 00

For the functions ;2 that belong to the definition domain of the operator,
D,, (—00,+00), the last term in (3) vanishes per Eq. (2’). Therefore, the operator,
Pa, is self-adjoint. Its eigenvalues p are real, and eigenfunctions 1, (x) are orthogonal
and form a complete set.

[7]  However, the eigenfunctions of a self-adjoint operator are not necessarily normalized to unity, i.c., the
integrals (2) for them may be divergent, and the orthogonality condition is defined with the help of
the d-function.
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For the operator p = —ih - d/dx that acts in the space of the functions defined on
a finite interval, z € (a,b), we have

b b
[ i (ingg ) vrdo = [ (ingova) vt iyt b

Here the last term is not necessarily zero, and therefore the operator is not self-
adjoint. However, it has (multiple) Hermitian realizations and allows a self-adjoint
extension.

For example, the operator is Hermitian on the class of functions that obey the
boundary conditions of the form (a) = (b) =0 . However, such conditions do
not give a self-adjoint extension. Indeed, to make the integrated term equal to zero
it would be enough for only one of the functions ¢;(x) and 1s(z) to obey this
condition. With such a choice of boundary conditions, the operator p = —ifid/dx
does not have any eigenfunctions.

Another Hermitian realization of this operator is to impose the following bound-
ary condition

Y1(b) [wz(a)} T s
= = ¢e"’ = const, 5
@) (020 8
where /3 is a real value. The choice of such a boundary condition gives the
self-adjoint extension of the operator p = —ifi-d/dx on the finite interval. The

corresponding eigenvalues and eigenfunctions are given by

A = bf (B+2mn), tn(z) = \/bl_iaexp{ng}, n=0, 1, £2,....
FEigenfunctions are mutual orthogonal and form a complete system. Notably, the
Hermitian operator I, = —i0/0¢ — the projection of angular momentum onto the
z-axis —with a = 0, b = 2w, § = 0 is an essentially self-adjoint operator of this type.
Finally, the operator p, = —ih - d/dr that acts in the space of functions defined on
the half-axis, r € (0, +00), has the following property:

/ W3 () il (r / il (Y] 1 () + s (0) 10 (0). (6)
0 0

Its unique Hermitian realization is obtained by enforcing the boundary condition
¥(0) = 0. However, it is sufficient that only one function in (6) obeys the condition,
so this does not give a self-adjoint extension. This operator does not have any eigen-
functions that obey the boundary condition 1(0) = 0. If we ignore the boundary
condition, we can find non-trivial solutions to the eigenvalue problem. However, the
eigenvalues are complex and the eigenfunctions are not orthogonal, which provides
an explanation of the puzzling result for the spectrum of the operator naively associ-
ated with the radial component of momentum, as discussed in the previous problem.

Final comments An Hermitian operator f could be classified by the deficiency
index (N4, N_), where N is the number of linearly-independent eigenfunctions
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normalized to 1 such that fi = +ifge), where fo is real. If Ny =N_=0,
the operator is self-adjoint. If Ny = N_ = N # 0, then it allows a self-adjoint
extension made by imposing N additional conditions. If N, # N_, the operator is
not essentially self-adjoint.

Note that in quantum-mechanical problems we often have to deal with a self-
adjoint extension of Hermitian operators. In such cases the additional constraints
must be chosen from physical considerations. Apart from the example of the
operator lAZ mentioned above, another example is the operator p?/2m on a finite
interval with the boundary conditions ¥ (0) = ¢(a) = 0 (these conditions appear
in the canonical problem of a particle in an infinite potential well). Furthermore,
restrictions on the wavefunction in the origin (i.e., with » = 0) often appear in
the problems dealing with bound states in and scattering off central potentials.
Note that even in the case of “good” potentials U(r), these constraints in effect
realize self-adjoint extensions of the Hamiltonian operator. In this case, a general
condition of a self-adjoint extension is given by

[ry ()]’

r(r)
and physically corresponds to inclusion of an additional interaction in the form of
a potential or the zero radius (see Problem 4.10). In the case of singular attractive
potentials such that allow “falling into the origin” — these boundary conditions do
not realize a self-adjoint extension and must be modified (see Problem 9.14).

— a with » — 0,

Problem 1.30

A commutator of operators A and B of two physical quantities has the form
[A, B] =iC, where C is an Hermitian operator. Prove (with certain restrictions on
the wavefunctions) the uncertainty relation

— — 1 _
(A= A2 (B-Bp =47,
where all mean values refer to the same state of the system.

Consider specifically the operators & and p, to find an explicit form of the
wavefunctions that minimize the uncertainty relation.

Consider also the operators [, and P.

Solution

Let us consider the integral J(a)= [ |(aA; —iBy)¢|?dr >0, where A;=A —a,

By = B —b; with a, a, and b are some real parameters. Using the Hermiticity of
the operators A; and Bj, the relation [Al, Bl] iC, and considering a normalized
wavefunction, 1, we can rewrite the integral in the form

J = /((011211 —iB1)Y)* (A —iB )pdr = /¢*(Q2A§ —ialAy, Bi] + B)pdr

= a2(A—a)2+aC + (B—b)2>0. (1)
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Set a = A and b = B. The condition of non-negativeness of the trinomial, quadratic
in «, gives the uncertainty relation as stated in the problem:

(A-A32-(B-B2 > (0) (2)

The relation (2) is realized only when (wA; —iB;)y = 0. In particular, for the
operators A=2 =z, B=p= —ihd/dzx, C = h, this condition takes the form 1’ +
[(z — 20)/d® — ipo/h] ¥ = 0 (where instead of o < 0, @ and b we have more convenient
real combinations involving xg, po, and d). So, we have

PoT (m—xO)Q},

1
V= Gy P {’ n 242

which gives the explicit form of the wavefunction that minimizes the uncertainty
relation for the coordinate and momentum (see also Problem 1.13).

One should exercise care in using Eq. (2): e.g., in the case of operators A=1, =
—id/dp and B= » = ¢ that do satisfy the canonical commutation relations, a blind
application of Eq. (2) yields (Al,)2 - (Ap)2 > 1/4. This result is physically meaning-
less, because the uncertainty in the angle can not possibly exceed 72 — (Ap)? < 72,
and there exist physical states with a well-defined projection of the angular momen-
tum, i.e., (Al,)? can be zero.

The paradox is resolved by noting that while deriving Eq. (1) we used the relations
[y o = [ dzvar, [(aoy oy = [ v aoir

which were based on the Hermiticity of all operators involved. But if we take into
account the result of the previous problem, we see that this assumption is applicable
only in the case of self-adjoint operators. For physical operators that represent a self-
adjoint extension of an Hermitian operator (l; is an example of such operator), a
more strict condition is needed: it is necessary that not only the wavefunction 1 but
also B¢ belongs to the appropriate domain, where A is Hermitian (and similarly,
At must remain in the domain of wavefunctions where B is Hermitian). If these
conditions are fulfilled, the relation (2) is valid, otherwise it is not necessarily so.
Particularly, in the case of operators [, and ¢, we must require that the states
involved in the uncertainty relation satisfy the condition (0) = ¢(27) =0 (which
ensures that the function ¥(p) = p(p) belongs to the domain of the Hermiticity
of I.). For such states the inequality (AL)2 - (Ap)2 > 1/4 is indeed valid. Otherwise,
the uncertainty relation has to be generalized as follows:

(AL)Z- (Ap)? > ?

(1 —2r[p(0)*)".

o~ =
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1.3 The projection operators
Problem 1.31

An Hermitian operator P is called a projection operator or projector if it satisfies
the relation!®] P2 = P. Consider the operator, P(f;), acting on the eigenfunctions of

another Hermitian operator, f , as follows:[?]

7/)f,-7 fl = fk?

P(fi)os, = 05 gty = {0 fi # fi.

a) Prove that this operator is a projector (since the system of eigenfunctions )y,
is complete, the relations above determine action of ]5( fi) on an arbitrary
wavefunction, ).

b) On which states does this operator project? What physical meaning does the mean

value P(f;) have for an arbitrary physical state, 1?

¢) Using the projectors P(f;), construct the projection operator, P({f}), that projects
on the states, where the physical quantity f takes some value from an array of
eigenvalues {f} = {fi,, fio»-- - fin }7 Show that P2({f}) = P({f}).

d) Find explicitly the projector, P(fi, Jk, - - -, hy), that projects on a state with definite
values of f;, gk, ..., h; of physical quantities that form a complete set of operators
(i.e., express it in terms of the operators, P(f;), P(gx), ... ).

Solution

a) Consider two arbitrary wavefunctions ¢ and ¢ and express them as follows:
v => cpy, and ¢ =) by, (for the sake of simplicity, we assume that the
k k

eigenvalues of f are non-degenerate). First, verify that the operator 15( fi) is indeed
Hermitian:

[Pt =i [ovvpar=ci; = [ [Pr)o] var = [[P1(5)9] var.

[8]  Eigenvalues of such an operator are 0 and 1. Using this operator we can “divide” the Hilbert space
into two mutually orthogonal subspaces: Ply) > and (1 — P)[¢ >. The operator P’ =1 — P is also
a projection operator, and it projects on the second of two subspaces.

[9]  The relation above belongs to the discrete part of eigenvalues spectrum. A generalization for the
continuous part of spectrum is given by the projection on some finite interval (f, f + Af) of eigenvalues
according to

N by, f< [P < fHAS,
P(f, Af)pyr :{(]f fr<f, f>f+Af

And P(f, Af) also gives the probability of the value f being included in the interval (see 1.32.).
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Here we have used the orthogonality of the eigenfunctions of the operator f . From
P2(fi)d = P(fi)(citb(fi) = civoy, = P(fi), it follows that P2(f;) = P(f;). Hence,
P(f;) is a projection operator.

b) P(f;) projects onto the state with the definite value f; of physical quantity f.
Further, we find

- /w*P(fi)iﬁdT = lail® = [e(fi)?

Here we have assumed that the wavefunctions ¢ are normalized to 1: i.e. the mean

value P( fi) gives the probability to measure f = f; in the given state.
c) According to the interpretation above, P({f}) = P(f;,). Since P(f;)P(fx) =

S P(f), then P({f})? = P({f}), as it has to be.
d) The operators from the complete set commute with each other. Therefore,

P(fiy gy t1) = P(fi) - Plgr) ... P(to).

Problem 1.32

Find the projection operator that projects onto states with the values of a particle’s
coordinate such that x¢ > a.

Solution

From the definition of the projection operator, P(xg > a), we have Py(z) = (),
if ©>a, and Piy(z) =0, if 2 < a. Hence, P(z¢ > a) = n(x — a), where n(x) is the
Heaviside step function, which is equal to 1 for z > 0 and to 0 for x < 0. It is evident
that P(zo > a) is an Hermitian operator and P2(z > a) = P(zo > a).

Problem 1.33

Find the projection operators Py that project onto states with a definite even/odd
parity with respect to coordinate inversion, r — —r. Express the projectors in terms
of the inversion operator, I.

Solution

An arbitrary function can be written as superposition of odd and even components:

1

S 10) + ()] + 3 [0(r) — ()],

v = 5

Per definition of Py, it must be that Piw 1[Y(r ):I: (—r)]. Hence, we find
P, = 11 + I). We also have P? = P, and Py +P_ =
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Problem 1.34

Prove that the Hermitian operator, F, from Problem 1.19, is proportional to a

projection operator: i.e., P = cF, where ¢ is a constant. On which state does cF
project?

Solution

An operator P with the kernel P(z,2') =c- f(z)f*(z/) where ¢ = J1f(z)*dz
is a projection operator. It projects onto the state described by the wavefunction

Yo(z) = f(2).

Problem 1.35

An Hermitian operator f has only IV different eigenvalues. Find the explicit form of the
projection operator P(f;) for the states with a given value f; of physical quantity f.

Solution

Let N = 2. From the condition P(fy)i;, = 0, it follows that P(f,) = a(f — f2) and the
relation P(f1)v, =1y, gives a = (fi1 — fa)~'. The result generalizes to an arbitrary
N, as follows:

where the prime implies that the factor with k =i is absent in the product.

1.4 Quantum-mechanical representations of operators and
wave-functions; Unitary operators

Problem 1.36

Find the properly normalized eigenfunctions of the three-dimensional coordinate,
Uy, and the three-dimensional momentum, p,, in the coordinate and momentum
representations.

Result:
wro(r) = (S(I‘ - I'()), 1/1p(,(I') = W€; : s

bry(P) = @Te
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Problem 1.37

Find the momentum-representation wavefunction of a particle in the state defined in
Problem 1.13.

Result:
a? i a?
o(p) = \/;CeXp {—h(p —Po)zo = 55 (p —P0)2}-

Problem 1.38

Given a wavefunction, ¢ (z,y, z), find the probability of finding a particle with the
z-coordinate in the interval, z; < z < 29, and the y-component of momentum in the
interval, p; < py < po.

Result
The sought probability is given by

Z2 P2 OO

w= [ [ [ 1F@p. 0P dedpaz,

Z1 p1 —Oo0

where
1 —EPyY
F(z,py,z) = (@nh)1 2 Y(2,y,z)e "PvVdy.

The wavefunction 1 (r) is assumed to be normalized to unity.

Problem 1.39

Express the operators from Problem 1.1 in the momentum representation.

Solution

In the coordinate representatlon we have y(z) = I P1(x) = 1 (—x). Multiply these
relations by 1) (x) = W exp { ¥ px} and integrate with respect to x. The result-
ing Fourier transform yields

620) = 16100) = s [0 { = e pin (-, )

where ¢12(p) = [ 1/} x)1 2(z)dx are wavefunctions in the momentum representation.

Since the 1ntegral in (1) is equal to ¢1(—p), we have Iy (p) = ¢1(—p): i.e., the operator
I in the momentum representation remains the inversion operator.
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Similarly, we find for the other operators:

p12¢(P1,P2) = ¢(P27P1)~

Problem 1.40

Find explicitly the inverse-momentum operator, p—!, in coordinate representation, and
the inverse-coordinate operator, £ !, in momentum representation (in one-dimensional

quantum mechanics).
Solution
Since pp~! = 1, we have the equation - (p~14(x)) = (i/h)y(z). By integrating this

over z from —oo to z we find the explicit form of the operator p~' in the coordinate
representation:

— )
) o) =5 [ vl 1)
On the other hand, by integrating from x to co we obtain a slightly different expression:

(5 o) = 5 [ ()i )

The contradiction is resolved by noting that for the functions contained in the
definition domain of the operator ', the two results coincide. To belong to this

domain, the functions must satisfy the equation | t(x)dz = 0, which ensures that
the function p~14(x) vanishes in the limits z — +00, as required by the condition,
J1p~ % (2)|?dz < 00.1'%) (See Problem 1.29.)

It should be noted that the eigenfunctions of the inverse-momentum operator p—
are also the eigenfunctions of the momentum operator, as we might expect.

1

The problem for the inverse-coordinate operator, £~ !, is dual to the one we just
solved, and we find

T

= > and this condition takes the form

[10] In momentum representation we have p~

oo oo
I p7Yé(p)|>dp < oo, which gives ¢(0) = 0, or equivalently, [ v (z)dz = 0.
— 00

—oo
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@0t =5 [ 9w = [ohas' [ a0,

(See also Problem 4.15, where the result above is used to solve the Schrédinger equation
for a particle in the Coulomb potential in momentum representation.)

Problem 1.41

Find the relation between the kernels L(r,r’) and L(p, p’) of the same linear operator
L in the r- and p-representations. (See also Problem 1.11.)

Result

1 i(p/-v'—p-r
L(p7p/) = 7(27Th)3 //el(p 1% )/hL(I',I'/)dVdV/

1 i(pr—p’ -1’ - B
L(r,x) = (27'('5)3//61(1) VL (p, p ) pd®y

Problem 1.42

Determine the form of the operators #~! and #72 in momentum representation.

Solution

In the coordinate representation the operator G1 =7"! has the following kernel:
Gi(r,r’) = L15(r — r’). Using the result of Problem 1.41, we find that the momentum-
representation kernel is given by

’ 1 // L i’ —p)r/n !
- P} r d =
Gi(p,p’) (27h)3 re v 27T2h(P - p/)2

Similarly, we find for the operator 7~2:

1

GQ(I‘7 I‘/) = 7(5(]:' — /), and Gg(p p) m

A useful exercise is to use the momentum-representation results above to prove that
= GGy

Problem 1.43

Given two Hermitian operators A and B, find a relation between the eigenfunctions

of the operator A in the B-representation and the eigenfunctions of the operator Bin
the A-representation. Provide examples to illustrate the result.
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Solution

Let us denote by ¥4 (¢q) and ¥p (¢q) the eigenfunctions of operators, A and B,
in the g-representation, and by (q) the wavefunction of an arbitrary state. The
wavefunctions of this state in the A- and B-representations, denoted as a(A,) and
b(B,,) correspondingly, can be determined from

vl0) = Y alA)ia, (@) a(An) = [ v, var

(@) = 3 W), (0), (B) = [ v, var

For simplicity, we only consider here the case where the spectra of the operators A
and B are discrete and non-degenerate.

(1)

Setting ¢ = ¢, in Eq. (1) above, we find its form in the A-representation as
follows:

a’Bk /Q/JA wBA( )qu (2)

The eigenfunction 14, in the B-representation is obtained from Eq. (2) by permuting
the A and B indices:

ba, (By) = / V. (. (@)dr,. (3)

From relations (2) and (3) we have ap, (A,) = b% (Bx). One possible example of this
relation is given in Problem 1.36. As a corollary to this result we obtain the following
relation between the probabilities wp, (A,) = |ap, (4.)|* = |ba, (Bi)|*> = wa, (B).
(This result is used in Problems 3.14 and 3.33.)

Problem 1.44

Which of the operators considered in 1.1 are unitary operators?

Result
The operators I , T ws MC, and Py, are unitary.

Problem 1.45

Consider a unitary operator that satisfies the equation U? = U. Find its explicit form.

Solution
From the equations U2 =0U and UUt = UTU =1 it follows that U = 1.
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Problem 1.46

An operator U is unitary. Can the operator U =cU (¢ is some complex constant) be
unitary as well; and if so, what are the conditions on the constant, ¢?

Result

lc| = 1: i.e., ¢ = €', where « is a real parameter (c an overall U(1) phase factor).

Problem 1.47
Prove that the product Ul Ug of two unitary operators is also a unitary operator.

Solution
From the equation U = U, Uy, it follows that UT = UQTUIT and UUT = U0 =1 (we
took into account the unitarity of the operators Uy ).

Problem 1.48

Is it possible that some unitary operator (matrix) is at the same time an Hermitian
one? Provide examples.

Solution

From the conditions of the unitarity UUT =1 and of the Hermiticity Ut = U of the
operator, it follows that U2 =1.An operator with only two eigenvalues 1 has such a
properties (compare with Problem 1.17). Examples: the inversion operator I and the
particle exchange operator Py, from Problem 1.1; Pauli matrices (see Chapter 5).

Problem 1.49

Prove that the Hermitian and anti-Hermitian parts of any unitary operator commute
with each other (consequently, the unitary operator can always be diagonalized). What
are the properties of its eigenvalues (compare with Problem 1.50)7

Solution

Let us write U= 3(U+U") + (U - U'). Since UU' =UTU =1 we have [(U +
uh, (U — UT)] = 0. Therefore, the Hermitian operators (U 4+ U') and (U — U1) /i and
the operator U can be diagonalized simultaneously. The eigenvalues uy, of an operator
U satisfy the equations |ug| = 1.
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Problem 1.50

Show that an operator of the form U = e)fp(iff ) is unitary, if F' is an Hermitian
operator. Express the unitary operators I, T, M, from Problem 1.1 in such a form.

Solution

Since UT = exp(—iFt) = exp(—iF), then UUT = UTU = 1. The eigenvalues uy, of an
operator U are related to the eigenvalues, fi, of the operator F as follows: uy = e'fx.

Therefore, we have:

These relations follow from Problem 1.7 (and see also Problem 1.57).

Problem 1.51

Square matrices A and A’ are of the same rank and are related by a unitary
transformation as follows: A’ = UAU'. Prove that the traces and determinants of
these matrices are the same.

Solution
From the equations UTU =1 and A’ = UAUT, it follows that

Tr A" = Te(UAUT) = Tr(fl(A]TU) =Tr A
Analogously,

det A’ = det(TAUT) = det(AUTU) = det A.

Problem 1.52

Prove the relation
det||exp Al| = exp(Tr A)
where A is an Hermitian matrix.

Solution

For any Hermitian matrix there exists a unitary transform that brings it to a diagonal

form. In the new diagonal basis, where (exp A) = (exp Ap,) Onm, the above identity
nm
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becomes obvious. Combining this with the result of the previous problem, we prove
the relation in an arbitrary representation.

Problem 1.53

What is the determinant of a unitary matrix, U? Calculate it explicitly for the matrix
U= exp(zF ), where Fis an Hermitian matrix with a known spectrum. Prove that
there always exists a transform U’ = cU that gives rise to a unimodular matrix with
detU’ = 1.

Solution

On the one hand we have det(UUT) = det 1 = 1. But at the same time, det(UUT)
det U - det UT and det Ut = (det U)*. Hence, |det U[*> = 1 or equivalently det U = e’
where « is a real number. (The same result follows from the property of elgenvalues,
ug, of the unitary matrix; see Problem 1.50.)

For the operator U = eif’ (according to Problem 1.52) we have det U = exp(iTrF').

If we consider the matrix U = e /N7, where N is its rank, then we indeed have
detU’ =1.

Problem 1.54

Find the number of independent square matrices of rank N that are: a) Hermitian,
b) unitary. How many unitary unimodular matrices (that is, matrices with the
determinant equal to +1) of rank N exist?

Solution

There are N? linearly-independent matrices of rank N. There is the same number
of independent Hermitian matrices of rank N. The number of independent unitary
matrices is also N2, since there is a relation between them and Hermitian matrices

U = eif’ (see Problem 1.50). For a unitary matrix to be unimodular, the relation,
TrF = 0, holds (see Problem 1.53). Therefore, the number of unimodular matrices, as

well as the number of the Hermitian matrices £/ = F — N~} (Tr F’) 1, with the trace

equal to zero, is N2 — 1.

Problem 1.55

Prove that the algebraic relations between operators of the form

F(fli)—co—i—ZcZA +chkAAk+ =0
ik
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are invariant under an arbitrary unitary transformation of the operators A =UAUT:
i.e., prove that F(A}) = 0.

Solution
F’ EUFUT = U CO+201A2+ZCU€A1AIC+ UT
i ik
=co+ ZCZUA U+ caUA AT + - =0. (1)

ik

Taking into account that Ui = 1, we can write an arbitrary term in the sum (1) as
follows:

Cl}gnUAlAk e AnUT = CzanAlUTUVAkUT e UAHUT = czknA;A;g e A;Z
Therefore, Eq. (1) takes the form

co + chA' + ZcmA’Ak o= F(/l;) =0,
ik

which is identical to the initial expression.

Problem 1.56

Determine the transformation law for the operators & and p under the following unitary
transforms: a) inversion operator I b) translation operator Ta7 ¢) scaling operator M...
The form of the operators is given in Problem 1.1.

Solution

The operators #/ = UzU and §' = UpUT are given by:

These relations can be proven in the coordinate representation. For U = Tj,, we
have UT =11 = T_, (see Problem 1.1), and

p(x) = UiUTw(x) = Taa}T_aw(x) = Ta[xw(x —a)] = (x4 a)Y(x) = (& + a)p(x).
Hence we have &’ = & + a. Furthermore,
0\ - 8 .0 0
(a) = 0 (i ) O16(a) = i LT ()= —in oo = a) = =i (),

so p’ = p. The other relations are obtained in a similar way.
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Problem 1.57

A family of unitary operators, U A(a), parameterized by a real continuous parameter,
a, has the following properties U(0) =1 and U(a3) = U(a1)U(ag), if a3 = a1 + as.
Assume that for an infinitesimally small da — 0, there holds U(da) =~ 1 +ZF oa,
and prove that U( )= exp(mF ). As an illustration, consider the operators T, and
M, (see Problem 1.1), and find the corresponding generators of infinitesimally small
transformations.
Solution
Set a; = a and az =da — 0 in the relation Ulay + as) = U(as)U(ay). Taking into
account U(da) ~ 1 + idaF’, we obtain

dU = U(a + da) — U(a) ~ iFU(a)da. (1)
Therefore, U(a) satisfies the differential equation, dU /da = iFU, with the initial
condition, U(0) = 1. The exponential U(a) = e**F solves this equation.

For an infinitesimal translation, we have

Tt (x) = (2 + da) ~ (1 + da5x> ().

Therefore the corresponding generator is proportional to the momentum operator
Fr, = p,/h = —i2, and the operator of finite translations is T}, = 7/,

In the case of the operator M. let us first introduce ¢ = ® and write M, = M (a).
The dependence of M(a) on a satisfies the conditions of the problem. So, we have

Aida)ote) = e ueten) = |1+ da (5 + o )| vt

and we find the generator iF = (% + w%) and the exponential expression for the
scaling operator as follows, Mc = exp {% Inc- (ix% + z'a%x)} (see Problem 1.7).
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One-dimensional motion

The time-independent Schrodinger equation

- h? d?

Hyp=|-—-—+U(x z) = EYg(x I1.1
vi = | =g+ U@)| vi(0) = Bon(o) (1)

supplemented by the appropriate boundary conditions determines the energy spectrum

and wavefunctions of the stationary states of a particle moving in the potential field,

U(x).

The energy spectrum, E,, in the domain minU(z) < E,, < U(£oo) is always
discrete, which corresponds to the finiteness of classical motion.['! These energy levels,
E,, are non-degenerate, and the corresponding eigenfunctions, v, (x), are square-
integrable (they describe localized states of the particle and correspond to finite motion
in classical theory).

For a linear oscillator, U(z) = kz?/2, w = +/k/m, the spectrum is given by
E, = hw (n + %), and the corresponding eigenfunctions are as follows:

1\ 1 x? x
(osc) _ _ —
5 () (7‘(‘&2) ST exp < 2a2> H, (a) , (I1.2)

where a=+/h/mw and H,(z) are the Hermite polynomials; for example,
Ho(z) =1, Hi(2) =2z, Hy(z) =422 — 2, etc. The non-zero matrix elements of the
coordinate operator are

Tnntl = Tntin =V (n+1)/2a, (I1.3)

and the non-zero matrix elements of the momentum operator are given by
DPnk = IMWpgTnk, where wyp = tw forn =k £ 1.

For an arbitrary potential, U (x), the spectrum with the energies E > min U(%o00) is
continuous. Such continuum states with energy E > max U(+o00) are doubly degener-
ate, which corresponds to classical motion extending to infinity in both directions:
xr — —oo and x — 4oco. In this case, the choice of independent solutions of the

[11]  We label discrete energy levels as E,, and the corresponding eigenfunctions as ¢, (the ground state is
labelled by n = 0). Note that in this enumeration convention, n also gives the number of zeros of the
eigenfunction, ¥n (x) (except, possibly, zeros at x = £00). For a particle in a spherically-symmetric
potential, the label n, is used to label the states.
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Schrodinger equation (IL.1) is usually made on physical grounds to represent particles
reflected by and transmitted through a potential, and these wavefunctions are uniquely
defined by their asymptotic form at x — £oo. For example, reflection and transmission
of quantum particles propagating from the left towards a potential can be described
by the following wavefunction:

et L A(E)e™™™T x — —o0,

i (z) ~ { (I1.4)

B(E)et2® x — +o00,

where k1o = \/2m[E — U(Fo0)]/h2. The amplitudes A(E) and B(F) determine the
transmission coefficient, D(E) = £2|B|?, and the reflection coefficient, R(E) = |A[?,
of the particles. These coefficients have the following properties:
D(E)+ R(E)=1; D,(E)=D_(E),
D(E) — 1 at E — oo; (IL5)
D(E) — 0 at E — max U(Fo0).

The second symmetry relation, D (F) = D_(F), implies independence of the trans-
mission coefficient with a certain energy E of the initial direction of particle propaga-
tion. The latter property is also discussed in Problems 2.37 and 2.39.

2.1 Stationary states in discrete spectrum
Problem 2.1

Find energy levels and normalized wavefunctions of stationary states of a particle in
the infinitely deep potential well of the width, a (i.e., U(z) =0, if 0 < 2 < a, and
U(x) = o0, if x <0 or > a). Find also the mean value and the standard deviation
of the coordinate and momentum of the particle.

In the state descried by the wavefunction, 1) = Az(x — a), for 0 < z < a, find the
probability distribution function of the particle energy and its mean value.

Solution

1) The energy levels and the eigenfunctions are as follows:

Zh? 2 1
En:W 2(71—&—1)2, wn(x):[sinw,0<x<a,
a a

2ma
where n =0, 1, ... (¢ =0 for z < 0 and for = > a).
The average coordinate and momentum in the nth state are given by
a —— 1 1
7= ApP—=g|_ =
T=g (Ao)=a {12 972 (n + 1)2} ’
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2) Normalization condition for the given wavefunction yields A = /30/a°. From
Eq. (I.4) we find coefficients ¢, in its expansion into a series in terms of the
eigenfunctions, ,,, as follows:

V60

a3
0

(¢ — a)si W(n—l—l)xd __m1+(—1)"
z(x — a)sin T =—— CESIER

Cn

These coefficients determine the probability of finding the particle in the nth
quantum state and the probability of the corresponding energy values, F,,: w(E,) =
le,|?; specifically, wo &~ 0.999. Finally, from relation (I.5) we have E = 5h%/ma? ~
1.013FE).

See also Problem 8.23.

Problem 2.2

Find the change in energy levels and wavefunctions of a charged linear oscillator in a
uniform electric field applied along the oscillation axis. Find the polarizability of the
oscillator in these eigenstates. 2!

Solution

The potential energy of the charged oscillator in the uniform electric field, £, reads
U = ka?/2 —efx.

Substitution z = — eep/k leads to the Schrodinger equation, which is identical to
that for the unperturbed linear oscillator. This determines the energy spectrum and
eigenfunctions as follows:

1 le? ,

k

m

Unl@) =6 () = ) (o - 7€) w=

(see Eq. (I1.2)). This shows that as well as in the classical case, the effect of a uniform
field on a harmonic oscillator reduces to a shift of its equilibrium point. Polarizabilities
of all stationary states of an oscillator therefore are the same and have the form,
Bo = €2 /mw?.

[12]  Recall that the polarizability, By, determines the mean dipole moment, d ~ S€, induced by the weak
external electric field. It also determines the quadratic term, AE = —B£2/2, of the energy shift in
such a field.
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Problem 2.3

Calculate the expectation value of the particle energy, E(a), in the state, ¢ (z,a) =
Vae~el#l (with o > 0), to show that there exists at least one bound state with negative
energy, Ey < 0, for any one-dimensional potential,[*3l U(z), such that U(z) — 0 for
z — too and [U(x)dz < 0.

Solution

Let us first prove that E(a) < 0 for small enough values of a. Since Ey < E where Ej
is the ground-state energy, this will automatically prove the existence of a negative-
energy state. We easily find that 7 = ;Lp2 = % xa?, and U~ a [U(z)dr
a, while o — 0, so indeed, E(a) ~ U < 0.

Problem 2.4

E, and E,, are the energies of the nth level in the potentials U(z) and Uz) =U(z)+
0U (z), correspondingly. Assuming that 60U (z) = 0, prove that E,, = E,.

Solution

Let E,(\) and v, (x, A) be the energy levels and the corresponding eigenfunctions of
the Hamiltonian, H()\) = % + U(z) + AdU(z). From Eq. (I1.6) we have

d

E = [SU@)n (e NPl 20,

Since E, = E,(\ =0) and E,, = E,(\ = 1), the statement of the problem is proven.

Problem 2.5

Consider a symmetric potential, U(x), and the same potential in the half-space, x > 0,

0 {U(a:),x>0;

oo, =<0,

as shown in Fig. 2.1. Find the relation between the energy levels of bound states and
the corresponding normalized wavefunctions for a particle in the potentials U(z) and
Ul(z).

Solution

The energy levels, F,, in the case of the symmetrical potential, U(x), have a definite
parity equal to (—1)". For the odd-parity states with = 0, the Schrédinger equation
and the boundary conditions ¢(0) = 1(c0) = 0 are satisfied for the potential, U(z), as

[13]  Compare with the results of Problems 4.21 and 4.33.
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Ux) U(x)
U=wx
Y/ X 0 / X

Fig. 2.1

well. Therefore, for odd values of n, the energy spectrum, E,,, for the two potentials
is identical, and the normalized eigenfunctions differ by a numerical normalization

constant only:
En - E2n+17
"Z)n(x) = \/§¢2n+1(l‘)7
20, n=0,1,...,

where we have taken into account that the even and odd levels alternate and the lowest

level is even (see Fig. 2.2).

U(x) U(x)
U=w
0
~ 0 o E
\ /[ !

=
N
ot oy
N

t

|
™~
It

Fig. 2.2

Problem 2.6

A potential has the form U(x)= U(z) + ad(x — x9) where §(z) is the Dirac
d—function, while U(xz) is some finite function. Find the behavior of the solution
YE(x) of the Schrodinger equation and its derivative at the point xg.

Solution
From the Schrodinger equation,
h? ~
—5—Vg(x) +[U(2) + ad(z — zo)|¥p(z) = Evp(w), (1)
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it follows that the wavefunction, ¥ g(x), is continuous everywhere, including at xg,
while its derivative has a discontinuity at x¢. The jump of ¥ () at © = ¢ must have
such a value that the d-term in the ¢} () (the derivative of the discontinuous function
is proportional to the d-function) compensates the term ad(z — o) (xo) in the left-
hand side of Eq. (1). By integrating (1) over a narrow interval zp —e <z < xg + ¢,
and taking the limit € — 0, we find:

2ma

0Yg (o) = Pp(zo +0) — Pi(xo — 0) = 2 ¥E(20), YE(20+0) =¥p(x0 —0). (2)

Problem 2.7

Find the energy level(s) of the discrete states and the corresponding normalized
wavefunction(s) of a particle in the d-potential well,['¥) U(z) = —ad(x) (see Fig.
2.3). Find the expectation values of the kinetic and potential energy in these states.
Determine the product of the uncertainties of the coordinate and momentum. Find
the wavefunction in momentum representation.

U(x)

Fig. 2.3

Solution

1) The physically-meaningful solution!'® of the Schrédinger equation with
U(xr) = —ad(x) has the form: ¢p = Ae™"* for z > 0, and ¢ = Be"”, for v < 0, where
k= (=2mE/h?)'/? > 0. Using the relations (2) from the previous problem (with
the appropriate change, @ — —a) we find that A = B and x = ma/h%. It follows
from this equation that for a < 0 (d-barrier), there are no bound states, and for
a > 0 (§-well), there is only one bound state with Ey = —’;Ta;. The corresponding
normalized wavefunction has the form:

mao

Yo(z) = \/"Toeinom; Ko = 73

[14]  An attractive d-potential in one dimension provides a faithful representation of a shallow potential
well, U(x), of an arbitrary shape; that is, the potential, U(z), with ma?Uy/h? < 1, where Uy and a
are the typical value of the potential and its range, and o = — f U(z)dz < 0. See also Problems 2.17,
2.20, and 2.23.

[15]  Solutions of the Schrodinger equation that increase exponentially as  — d-co have been omitted
here.
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2) The mean values of the coordinate and momentum are given by:

1

2
2/{(2)7 = 0 (AP)Q =h "{Oa

U:2E0, T: —Eo, f:O (A.’L‘)

3) The ground-state wavefunction in the momentum representation is:

17 2313
bo(p) = / e~ iPe My (2)da = i (3)

Vorh VT(p? + B2R3)

Compare with Problem 2.17.

Problem 2.8

Find the energy spectrum and wavefunctions of the stationary states of a particle in
the potential shown in Fig. 2.4.

U(x)
U=OO\

JORs

YIIIIVIIIININi

Fig. 2.4

Solution

By making the change of variables, z = f(z — E/Fy), with 8 = (2mF,/h*)'/3, we
transform the Schrodinger equation for x 2 0 into the form ¢”(z) — z¢(2) =0
Its solution that decreases, as z (and x) — +oo, is given by the Airy func-
tion, Ai(z). Therefore, ¥(z) = cAi[f(x — E/Fy)], and the boundary condition
¥(0) = cAi(—BE/Fy) = 0 determines the energy spectrum. Denoting by —ay, (with
k=1,2,...), the sequence of zeros for the Airy functions (they can be proven to be
all negative) in increasing order, «y, we find the energy levels as follows:

h2F2 1/3
En( 0> Qpy1, n=0,1,.... (1)

2m

In particular, a; = 2.338, and the ground-state energy is Fy ~ 1.856 (h2F02 m)l/S.
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Problem 2.9

Find the energy levels of the discrete spectrum and the corresponding wavefunctions
of a particle in the potential, U(z) = Uy(e=2%/* — be=*/%), where Uy > 0, a > 0, and
b>0.

Solution

We introduce a new variable, z = 28e~%/, and a function, w(z), defined by ) (x) =
2Fe®/2(2) with k = (—=2mE/h?)Y/? and B = (2mUya®/h?)'/2. In these variables,
the Schrodinger equation takes the form of a hypergeometric equation:

1 b
2w"” + (1 + 2Kka — 2)w' + (—ﬁa -5+ ﬁ2> w=0. (1)

Since the function ©(x) < e™"* o 2% tends to zero, as x — +oo (or z — 0), the
solution to Eq. (1) must be chosen in the form (the other solution diverges in the
limit z — 0):

w(z) = cF <ma+;—ﬁ2b,1+2ma,z>. (2)

The condition of decreasing 1)(x) as x — —o0 (or z — +00) demands that the function
F(a, B, z) in (2) reduces to a polynomial. It gives the spectrum:

1 B b 1
== n 5 a4 = b = 71)"'7 P b
o Ha—|-2 5 n, n=>0 [2 2}

2
b PR w [ (miPaUe )P ol
" 2m 2ma? 2h?2 2

The condition 1/% = (N - %) determines the parameters of the potential that

correspond to the appearance of a new Nth discrete level with increasing depth of the
potential well.

or

Problem 2.10

The same as in the previous problem, but for the potential

Uy Us
Ux) = — ; Upo >0, a>0.
({E) (1 +6I/a)2 1 +6m/a 1,2 a

Solution

A discrete spectrum exists only if Uy > Us/2 (otherwise the potential has no minimum)
and for E < min (0,U; — Us). To solve the Schrédinger equation, we make the change
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of variable, z = —e*/® and ¢ = (1 — z) =% z"w(

z). Then the Schrodinger equation takes
the form (k3 5 = 2mUy2/h?, k= (—2mE/h?)!

/2),

200+ [ 22 4 s ) u(e) + [EEDE el
e(2u + 1)z + (k2a)? B
e (0?4 42 wl) =0, 1)

If we take the parameters € and g in the form

1 1 1/2
s=—2+(4+m%a2) , uz\/<n2+mi—/f§)a2

we convert Eq. (1) into the standard hypergeometric equation:
2(1—2)w" + [2u+1— (2u — 26 + 1)2]w'—
[ + Kia® — 2ep — & — K*a*Jw =0 (2)
with the parameters
a=p—c+ra, B=p—ec—ra, v=1+2pu.

Since (), as © — —oo (z — 0), has the form 1) ox e**/® = z#, we should choose the
solution of Eq. (2) in the form w = ¢F(«, 3,7, z). Then

w=c 1F#F@ﬁwxl 3)

(1-=2

From this equation, it follows that in the limit z (and x) — —o0,

et |[FOIL(B—a) 1 F(la—-p) 1
SR { + . 4
TANG—a) (9% " T@)l(y—B) (=) W
Since z~#tH=F = ¢"% increases as = — 400, then it requires: that a = —n, with n

being an integer that labels the energy spectrum:

\/_En + \/Ul _U2 _En =

h2 \/ h? 1
_ _J P - —0, 1,....
\/Ul T Sma 2ma? <n - 2) =01 5)

U
4ch?(z/2a) "

Note also that if U; = Uy = Uy, the potential turns into U = —
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Problem 2.11

Find the energy spectrum of a particle in the potential U(z) = ad(z), a > 0 for |z] < a
and U = oo for |x| > a (see Fig. 2.5). Prove that in the limit, maa/h* > 1, the low-
energy part of the spectrum consists of a set of closely-positioned pairs of energy
levels. What is the spectrum of the highly excited states of the particle? What is the
structure of the energy levels with o < 07

U(x),E,t
r\
U=w %Um
1\ >
a X

Fig. 2.5

Solution

1) The stationary states in this symmetric potential have a definite parity. The
wavefunctions of even levels for 0 < |z| < a have the form ¢ = Asin(k(|z| — a))
(the boundary condition ¢ (a) = 0 is taken into account), where k = \/2mFE/h?.
The matching conditions at = 0 (see Eq. (2) in Problem 2.6) give the equation
that determines the energy spectrum of the even levels:

k
tan ka = f?a, &= 77;;4(1
In the limit £ > 1, the right-hand side of Eq. (1) is small for the low-lying levels
(with ka < &). Therefore, k,a = nm —e, where e < 1 and n =1, 2,.... From (1),

we have € = nr /&, so
252,2
Bra Tl (2
2ma? £

(1)

(the index “4” means that the level is even).
For the odd levels, the wavefunctions have the form ¢~ (x) = Bsinkz, and the
conditions 1~ (+a) = 0 give the energy spectrum:
w2h%n?

E,;Zw, TL:]., 2,

(a particle is not affected by the J-potential at all in an odd state).
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A comparison of E and E; confirms the properties of low-lying pairs of levels, as
stated in the problem.

2) For the energies ka > ¢ from (1), and if we put ky,a = (n —1/2)7 +¢, e < 1, it is
easy to find the spectrum of even levels:

By~ (2)

Here, the first term corresponds to the even energy levels in an infinitely deep
potential well of the width, 2a, while the second term determines their shift under
the action of the potential, U(z) = ad(z).

3) For the case of « > 0 in each pair of close levels, the lower one is even and

R (2n -1  «a
— gt

8ma?

D) —E——E+~<2h2)Ei>o (3)
n — “n n = maa n .
For the case of a < 0, we have a different situation — now the higher-energy level
is even. But in this case, the low-lying part of the spectrum also contains an
additional single even level with the energy Ef = —x3h%/2m and wavefunctions
RS \/%e*"””om, where ko = m|a|/h?. This level corresponds to a particle that is
“bound” by the d-well, U = —|a|d(z) (see Problem 2.7).

Problem 2.12

Generalize the results of the previous problem to the case of a d-barrier separating the
square well in a non-symmetrical manner.

Solution

The solution of the Schrédinger equation has the form (x) = Asink(x + a) for
—a <z < 0and ¢(x) = Bsink(z — b) for 0 < z < b, where k = \/2mE/h?. Here, the
boundary conditions 1(—a) = 1(b) = 0 have been used. The matching conditions at
x =0 (see Egs. (1 and 2) in Problem 2.6) lead to

2
Asinka = —Bsin kb, Bcoskb — Acoska = %A sin ka.
This yields an equation that determines the energy spectrum:
2
sink(a+0) = —% sin ka - sin kb. (1)

Note that if b=a, Eq. (1) becomes identical to the corresponding equation in
Problem 2.11.

Let us point out some properties of the spectrum.
1) In the energy range where ma/kh? < 1, the right-hand side of equation (1) is small

and therefore &, (a + b) = 7(n + 1), as in the case of “free” motion of a particle in
the well of width (a + b).
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2) In the opposite case, where ma/kh? > 1, the product of the sine-functions in
Eq. (1) is small, so k,, =7(n1 +1)/a or k,, = 7(ny+1)/b. In this case, the
spectrum represents a superposition of the spectra that correspond to independent
motion of a particle in the left and right wells with widths a and b.

Problem 2.13

Investigate the asymptotic behavior at © — £oo of the zero-energy solution E =0
to the Schrodinger for the potential that U(z) — 0 for £ — +o00. Show that the zero-
energy state, ¥ g—o(x), that has the property of not increasing at x — o0, exists only
for special values of the parameters of the potential (that correspond to the appearance
of a new bound state).

What is the number of discrete levels, Nyound, of a particle in

a) a rectangular potential well of the depth Uy and width a,
b) the potential, U(z) = —ad(z) — ad(z — a),

expressed in terms of the parameters of these potentials?

Solution

If the potential, U(z), decreases sufficiently rapidly,'®) then in the limit z — 400, the
Schrédinger equation and its solution take the form v¥p—o” =0, ¥ = Ay + Bix, i.e.,
the solution actually increases. In the case of an arbitrary potential there exists no
solution of Schrodinger equation that does not increase at both x — 400 and x — —o0
(also, there is no such solution with E < 0 that would decrease at x — £00). Such
solutions do exist, however, for exceptional values of the potential parameters that
correspond to the appearance of new discrete states with increasing well depth.

To prove the above statements, let us examine the highest level in the discrete
spectrum, E,. Its wavefunction has the form, t, o« e *1*| at z — 400 with s =
/2m|E,|/h?. As the well depth decreases, all the levels shift up, and for some critical
depth, the highest energy level reaches the value F, = 0. Its wavefunction tends to a
constant, ¢,, — const, as © — £00. The number of zeros of the wavefunction is equal
to the number of existing discrete spectrum states whose energy is negative, E, < 0.
As an illustration, consider a free particle. The Schrédinger equation in this case has a
bounded solution ¥ g—y =const which has no zeros. In accordance with the discussion
above, it follows that an arbitrarily shallow well binds the particle (see Problem 2.3).

a) Let us find the condition for the appearance of a new discrete state. The solution
of the Schrédinger equation with £ = 0 that does not increase at infinity has the
form, 1) = Afor x < 0, ¢ (x) = Bcos(yx + J) for 0 < 2 < a (the well domain), where

[16] Tt is necessary that the potential decreases faster than o 1/x2. In the case of an attractive potential,
which decreases faster than a power law, U(z) &~ —«a/z® for z — oo with s < 2, the solution to the
Schrodinger equation for F = 0 has a completely different asymptotic behavior (see Problems 9.9
and 9.14). If an attractive potential decreases slowly, the number of bound states diverges due to
level condensation with F,, — —0.
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v =+/2mUy/h? and ¢(z) = C for = > a. The continuity of the wavefunction and
its derivative at x = 0 and = = a points gives A = B, § = 0, ya = 7n, where n is an
integer; C' = (—1)"B. This wavefunction has n zeros (as the argument of the cosine-
function varies from 0 to 7n), and therefore the condition ya = 7n corresponds to
the appearance of the (n + 1)th level. Hence, it follows that the number of bound
states, Npound, inside the well is 2* < Npouna < L% 4 1.

b) There is one bound state if 0 < maa/h* < 1, and two bound states if maa/h* > 1.

Problem 2.14

What is the number of bound states of a particle confined in the potential, U(z),
of the form a) U = oo, for x < 0, U = —Uy, for 0 < & < a, and U = 0, for z > a (see
Fig. 2.6a) b) U = oo, for x < 0, and U = —ad(x — a), for z > 0 (see Fig. 2.6b) Express
your answer in terms of the parameters, Uy, a, and a.

a b c
(a) ( )U(x) (c) U
U(x) U
V! 1
U= U=w U,
0 a x a
0 X 0 a X
_UO
Fig. 2.6
Result
\/2mUga? v/ 2mUga?
a) 7::}10(1 _% <Nbound< :Thoa +%,

b) There is a single bound state that appears if maa/h? = 1/2, and no bound state
otherwise.

Problem 2.15

Find the condition for the existence of a bound state inside the potential well in Fig.
2.6¢. Consider also the following limiting cases: a) Uy = co and b) Uy = Us.

Solution

The bound states correspond to E < Us. The signature of the appearance of a new
bound state is the existence of a solution to the Schrodinger equation with F = U,
that does not increase at * — £oo (see Problem 2.13). The corresponding condition
has the form:
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tan 72mU2a2 = ﬂ -1
V. w2 VU, ’
where the ordinal number, IV, of the level is given by
3 2mUsa? 1
So, the condition for the appearance of a bound states becomes

M > arctan M
V h? = V Uy

In particular, it requires that Uy = 72h2? /8ma? for the limiting case, a) U; = oo, and
it shows that at least one bound state always exists for b) Uy = Us.

(17]

Problem 2.16

A particle moves in a field formed by two identical symmetrical potential wells
separated by some distance (see Fig. 2.7). Assume that the wells do not overlap,
and that U(0) = 0. Show that the average force, which the particle exerts on each of
the wells in a stationary bound state, leads to mutual attraction of the wells for the
even-parity states and mutual repulsion for the odd-parity states.

p

U(x)
N\
Fig. 2.7

Solution

The average force that the particle exerts on the right well is given by the integral

(F) = Bt (0) + o~ [, (0))" (1)

[17]  Note that the discrete states E,, < Uz shift up both with an increase in U; and a decrease in a; see
also Problem 2.4.
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For an even state we have ¢/,(0) = 0, and since E,, < 0 we obtain (F.),, < 0; for odd
levels, ¥, (0) = 0, and therefore (F).), . > 0. Note that the force acting on the left well
has the opposite sign to that in Eq. (1). This confirms the statement in the problem.

2.2 The Schrodinger equation in momentum space;
The Green function and integral form of the
Schrodinger equation

Problem 2.17

Find the form of the Schrodinger equation in momentum representation describing
a quantum particle influenced by a potential, U(x), that dies off at © — +o0; i.e.,
U(£oo) = 0. Use this equation to investigate bound state(s) in the d—potential
U = —ad(z). Compare your results with Problem 2.7.

Solution

The action of the kinetic energy operator, T= p?/2m = p?/2m, in momentum space
reduces simply to a multiplication, while the potential energy operator, U, becomes
an integral operator with the kernel U(p,p’) (see also Problem 1.41):

1

—ipx/h
s U(x)e dx. (1)

Ulp,p)=Up-7p), Ulp) =

Therefore, the Schrodinger equation in momentum space takes the form:

(o)
2 ~
f10(p) = 3-00)+ [ Tlo=9)0(0)db' = o). 2)
In the specific case of U = —ad(z), we have U = —a/(27h), which is momentum-

independent. Therefore, Eq. (2) becomes

p2
2 b(p) — 5o C = Bo(p), C = /¢ @

Hence (below, E = —|E| < 0),

mo C

oW = T Bl

From Egs. (3) and (4), we have the self-consistency equation

o0

mao dp « m
1= 22/ 5
7h / p>+2m|E| R\ 2|E] (5)
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that determines the discrete spectrum. This equation has only one solution:
Eo = —ma?/(2h?) (in the case > 0). The wavefunction (4) corresponds to that level,
and with C' = y/27wma/h it is normalized to unity. The inverse Fourier transform to
the coordinate representation recovers the results of Problem 2.7.

Problem 2.18

Use the Schrodinger equation in momentum space to analyze bound states of a particle
in the potential, U(z) = —a[d(z — a) + d(z + a)].

Solution
Here, lj'(p) =—5> (e”’a/ﬁ + e*”’“/h) and the Schrodinger equation takes the form
(see the previous problem)
2

- _ Y (gipa/n —ipa/h —

(D) = 5o (7O e ) = Bo(p), 1
where

(o)
C: = / ¥ /Mg (p)dp. (2)

Hence, denoting xk? = —2mE/h? > 0 and & = ma/h?, we find

(b(p) _ @ (eipa/hc+ + efipa/hci>

™

1
p? + h2K2’

(3)

Plugging Eq. (3) into Eq. (2) and calculating the corresponding integrals (see also
Eq. (A1.3)), we obtain

«

Cp=2(Cy+e o), 0 =2 (e 20, +C). (4)
K K
This system of equations has a non-trivial solution if one of the two conditions
k=a(l+e ) (5)

is satisfied.

Equation (5) with the “4” sign has only one root, if & > 0. Therefore, Eq. (4)
yields Cp = C_, i.e., the corresponding state is even (see Eq. (3)). The energy of this
level in the case aa < 1 is equal to ESL ~ —2ma?/h? (two closely-positioned §—wells
effectively act as a single well with a doubled value of «; see Problem 2.7). In the
opposite limit, aa > 1, we have

Ef ~—

2
oz (L+e7™). (6)
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Note that the exponential term in Eq. (5) is small, and by neglecting it we obtain
Kg = @.

Equation (5) also describes the odd levels. An odd level exists only if &a > 1/2 (see
Problem 2.13). If 0 < &a — 1/2 < 1, and its energy is given by

2 hQ
El ~ *(20[&71) m7

and for aa > 1,
2

— mao —2aa
T (1—e20%),

In the limit, a — oo, both even and odd levels merge into a single level.

Problem 2.19

Use the Schrédinger equation in momentum space to analyze bound states of a particle
in a separable potential given by a non-local integral operator, U, with the kernel,
Uz, z') = =Af(x)f* () (it is assumed |f(x)| — 0, for x — Fo0).

Solution

The kernel of the operator U in momentum space remains separable and reads

1

Ulp,p') = =Xg(p)g™(p'), g(p)=\/%

/ e~ P2/l f (z)d, (1)

and the Schrodinger equation (see Problem 2.17) takes the form

o)~ 20 [ 9000’ = Bolp). )

— 0o

Hence, it follows that

_2mAC
Cop?— omE”

) @,C=/¢@W@®~ 3)

The self-consistency condition then can be found as follows:

[ P

— 00

which determines discrete energy levels of the particle in the separable potential.
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Let us consider some consequences of this equation:

1) If E <0, the integral in Eq. (4) is a monotonous positive function of |E| that is
equal to zero as |E| — oo. Therefore, if A < 0, this equation has no roots, which
means bound states are absent. If A > 0, there are two possibilities:

la) If g(0) # 0 and the integral in Eq. (4) is equal to +o00 as E — 0. In this case there
is only one bound state. In the limiting case, A — 0, we also have Ey — 0; in this
case, small values of p play the dominant role in the integral in Eq. (4); therefore,

Eo = —2m%*mA?|g(0)[*, X — 0. (5)

In the opposite limiting case, where both A\ — oo and —Fy — oo, we have
B~ - [ o)y (6)
— 00

We should note that |Ey())| is a monotonically increasing function of the param-
eter, A.

1b) If ¢(0) =0 with [ \g|2Z—§’ = A, there also exists just one bound state if
A > (2mA)~!, and no bound states for A < (2mA)~1.

2) When E > 0, an unusual situation is possible for separable potentials, which have
g(po) = 0 for some value of py # 0, so that

® 2
7|§2J(p)| sdp = B < 0.
p° — Do
— 00

In this case, when A =\ = 1/(2mB), there appears a bound state with the
energy E = p3/2m > 0. Interestingly, this discrete level lies within the continuous
spectrum.

Problem 2.20

1) Find the Green function, Gg(x,2’), of the Schrodinger equation for a free particle
with energy, £ < 0. The Green function obeys the equation
. h? 9?

H-FE)Gg=--—-5Gg—EGg =46z —2a

( )G 2m oz ¥ B (z—2)
and is required to vanish as, |z — 2’| — co. 2) Use the Green function to formulate an
integral form of the Schrodinger equation that determines discrete levels in a short-
range potential, U(z) [U(z) — 0, as  — +o0]. 3) Use this equation to find bound
state(s) of a particle in the ¢ well, and compare your results with Problem 2.7. 4) Find
the form of the Green function in momentum space.
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Solution

1)

A general solution of the equation for the Green function, G, has the form G =
Az e =) 4 B(a")e "= =) for x < 2. Here, k = \/—2mE/h% > 0. Since G
must decrease as x — —oo, we conclude that B(z’) = 0. Similarly, we have Gg =
C(z')e "==") for x > /. G is a continuous function at the point # = 2/, and the
derivative G7; has the “jump” equal to (see Problem 2.6)

Grlx=2"+0,2") - Gz =2"-0,2") = ——-.
Hence,

m  _gle—a'

Gg(z,2') =

Using the Green function we can write the general solution of the equation

o) ~ Bb(a) = f() @)

as follows (FE < 0);
P(z) = Ae " + Be" + / Gg(z,2') f(2")dx" (3)

If we now set f(x) = —U(z)y(x), in Eq. (2), we obtain the Schrodinger equation
and its formal solution (3) in an integral form. Since for physical applications,
only solutions that do not increase at x — 400 matter, and since the integral term
in Eq. (3) decreases in this case, we set A = B =0, and the integral form of the
Schrédinger equation then reads:

oo

Vi) = —% e~ o= 1y (2 Yop (2. (4)

— 00

This formulation of the theory is equivalent to that using the differential
Schrodinger equation supplemented by the boundary conditions ¢ (z — +00) = 0
for the values of the energy E' < 0 that belong to the discrete spectrum.

For U(x) = —ad(zx), Eq. (4) becomes

mo — K|
Ye(r) = WU’E(O)e | |7
which gives the wavefunction and the energy Ey = —ma?/2h? of the single discrete

level in the d-well.
Note that the Green function may be viewed as a linear operator G defined by its

kernel, Gg(z,z"), in the coordinate representation. Consequently, from the equation
for Gg(z,2'), it follows that
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(H-E)Gp =1, 1=2". (5)

This operator equation is vahd in an arbitrary representation. Its formal solution
has the form Gp = (H E)~' In the momentum representation therefore, the
Green function is Gg = (p?/2m — E)~!, which is a multiplication operator. Using
the result of Problem 1.41, we can obtain its kernel in the coordinate representation:

ip(x—f’)/hd m ,
G N € 14 - —klz—2a'| 6
B(@,2") / 27h(p?/2m + |E)) Kh2© ’ (6)

— 00

which coincides with Eq. (1).

Problem 2.21

Use the Schrodinger equation in the integral form to investigate bound states in a
separable potential (see also Problem 2.19).

Solution

In the case of a separable potential, the integral form of the Schrédinger equation is
given by

W / / Tl () £ (2 o (2 e da. (1)

Using the notation

oo

C= / (@)p(z)de, (2)
and Eq. (1), we obtain the wavefunction
AC [ e
Ye(r) = ,:;;2 / e Hlz—= lf(l'/)dx/. (3)

Using this result and Eq. (2), we obtain

—5 [ [ e @ @dsda W

— 00 —0O0

which determines the spectrum. We now consider the limiting cases:
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a) If \ = 0+, then k — 0 as well. There is a single discrete level present, and its energy

is
/f dx

b) If A\ — oo, then K — oo as well. For the integral in Eq. (4), we find that only the
region o’ &~ x is important. Substituting f(z') = f(z) and calculating the integral
with respect to z’, we obtain

m)\2
- 2m2

(5)

~ - / \f (). (6)

For a more detailed analysis of Eq. (4), it is convenient to transform this equation
using formula (A1.3). The relation we obtained reproduces the corresponding result
of Problem 2.19.

Problem 2.22

Using the integral form of the Schrodinger equation, prove that the discrete energy
levels for a particle in an arbitrary potential U(z) < 0 [U(x) — 0, as © — %o0] satisfy
the following condition:

00 2

|E,| < 2h2 / U(z)dx

— 00

Solution

Let us consider the ground-state wavefunction, g(x), with Ey < 0 (|E,| < |Epl). This
function has no zeroes for any finite value of x, and therefore 1g(z) > 0 (the reality
condition could always be satisfied by the appropriate choice of the phase factor).
Now, we use the integral Eq. (4) from Problem 2.20. Let us set x = zy, where xg
corresponds to a maximum of ¢y (z):

oo

el =T (2! upo (2! e (1)

m
Ko h2

— 00

Yo(x) =

Function in the integral is non-negative, and the substitution of the factor
e rolzo=2"lyyg (2, en lieu 1o (o) may only increase the right-hand side of the equation.
Therefore, we obtain the following inequality:

m
< .
1< ol /|U(m)|dm
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From this equation it follows that

B, < | = 25 < I [/ U(x)dz]z. 2)

Note that the approximate equality in Eq. (2) is fulfilled for any “shallow” potential
well. See also Problem 2.23.

Problem 2.23

There is only one bound state with the approximate energy Fo ~ —g75 [ f U(:L')dx] %in
a shallow potential well for which Uy < h?/ma? (where Uy and a are the characteristic
strength of the potential and its radius). Using the integral form of the Schrédinger
equation, find the correction to this relation that is of the order of ma?U,/h?.

Solution

We use the integral form of the Schrodinger equation, as in Eq. (4) in Problem 2.20.
Multiply both its sides by U(x), and integrate in the infinite limits. The dominant
contribution to the corresponding integrals comes from the region where both x and
2’ ~ a. Since ka < 1, it is possible to expand the exponential and keep just the first
two leading terms. We get

Jv@u@de~ ~25 [ [0 sle - a0 @UE)6) dsds

From this equation, it follows that

K& —% U(x)da:{l +

2 ff|ff—$'\U ( ) (z")dwdx’
JU( '

The correction — the second one in the brackets in the above equation — contains the

wavefunction, whose variation can be neglected in the integration domain, and it can

be set to 1(0) (we restrict ourselves here to the required accuracy, and drop all higher-

order terms). Therefore, a correction to the parameter, x (and thereby to the energy,
Ey = —h%*k?/2m), reads

K~ —%/U(w)dm - (%)2//@ — &/ |U(2)U (2 )dwda’ . (1)

Note that the correction is negative, as expected from the previous problem.

Problem 2.24

Find the Green function of a free particle moving in half-space bounded by an
impenetrable wall; i.e., U(x) = 0 for z > 0 and U(z) = oo at < 0 (see also Fig. 2.8a).
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The Green function satisfies the boundary condition Gg(x = 0,2") = 0 and decreases
at |z — 2| — oo.

Using this Green function, write the integral form of the Schrodinger equation that
determines bound states (E,, < 0) of a particle in the potential: U(z) = U(x) at > 0
and U(x) = oo at < 0 (see also Fig. 2.8D)

(a) (b)

U(x) U

U=w U=w»

0 X 0/ X
/] -
2 U(x)
/
Fig. 2.8

Solution

The Green function could be obtained from the solution in free space (see Prob-
lem 2.20), using the method of mirror-image charges (well-known in electrostatics).
This method allows us to immediately “guess” the solution that satisfies the appro-
priate boundary conditions (and per the theorem of existence and uniqueness, it
represents the sought-after exact solution), as follows:

m —K -’E_fl:'/ —K|T ‘T)/
GE(x,x’):WG le=a’| _ g=rlet |). (1)

The integral form of the Schrodinger equation that automatically takes into account
the boundary conditions 1(0) = 1)(c0) = 0 is given by (compare with Problem 2.20)

o) = — / G(z, ") (') (a') o (2)

Problem 2.25

Using the integral form of the Schrodinger equation, show that the inequality

(e}

~ h?
>
/x|l}(x)|d:c 2 5

0



One-dimensional motion 55

is the necessary condition for the existence of a bound state in the potential, U(x),

shown in Fig. 2.80: U(x) = oo if 2 <0, U(z) = U(z) for x > 0 (assume here that
U<0and U(z) — 0 for  — o).

Apply the general result specifically to the following potentials: a) U = —U, for
x<a,U=0forz>a;b)U=—ad(x— a); see Figs. 2.6a,b.

Solution

We can follow here the same logic as in Problem 2.22. First, we estimate the expo-
nential terms in the integral Schrédinger equation (see the previous problem). Since
x, 2’ 20 and |z + 2’| — |z — 2’| < 22/, we obtain

0< e—ﬁ\z—m'| _ e—n|x+z/| — e—n|x—z/\[1 —x\z+x’|+/~c\z—r’|] <

—e
e‘“lr_fl‘[l — B_QME/] < 2rzx’.

From here the statement in the problem follows.

a) For the rectangular potential well, the necessary condition of existence of a
discrete spectrum becomes ma®Uy/h? = 1 (while the exact condition is ma?Uy/h% =
72/8 ~ 1.24). b) For the d-well, the necessary condition has the form 2maa/h* = 1,
which coincides with the exact result.

Problem 2.26

Find the Green function, Gg(z,z’), for a particle in an infinite potential well of the
width, a. Discuss the analytic properties of Gg as a function of the complex variable,
E. Prove that the Green function has poles in the complex E-plane, and establish a
relation between the location of the poles and the energy levels, E,,.

Solution

The equation for the Green function Gg(x,2’) and its solution have the form

and

A(x') sin kz 0<z<a

AN ) = )

Gr(w,2) = {B(m’)sink(az —a), ¥ <z <a.

Here we used the following boundary conditions: Gg(z = 0) = Gg(z = a) = 0. Match-
ing conditions for G g(x, ') at the point x = 2’ (see also Problem 2.20) allows us to find
the coefficients A and B and obtain the following expression for the Green function:

2m

Gr(w,a') = - kh?sin ka

k k
sin {Q(I +2' — |2 — x)] - sin [2(:17 + 2’ + |2 — x| — 2a)
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From here, it follows that Gg(x,2’) is an analytic function of the variable E (k =
\/2mE/h?) that has the following singular points:

a) E = oo is an essential singularity.

b) The points E,, = h?k2/2m, where k,a = (n+ 1)m, n =0, 1, ... are the poles of
Gg. The locations of these poles directly correspond to the energy levels of the
particle in the well.

Problem 2.27

Consider a class of potentials, U(x), with the following properties:

U(x) <0, U(z) >0 at z — Foo, /U(x)dx:a:const.

Find the specific form of the potentials:

a) Where the binding energy of the ground state, |Ep|, is maximal;
b) which contains the maximum possible number of discrete levels among all possible
potentials within this class.

Solution

a) The solution can be found in Problem 2.22: the deepest-lying level in the §-well,
U(z) = —ad(z — z0), with the energy Ey = —ma?/2h?%.

b) The maximum number of discrete states is infinite due to their possible condensa-
tion when E — 0. This situation is for the potentials that decrease with x — +oo
as U(z) =~ —alz|™" with @ >0 and 0 < v < 2. When 1 < v < 2, such potentials
satisfy the conditions specified, in the problem.

2.3 The continuous spectrum; Reflection from and transmission
through potential barriers

Problem 2.28

Consider a free particle in half-space (i.e., in the presence of the potential, U(x):
U(z) =0 for all z >0 and U = oo for z < 0; see Fig. 2.8a). Find the wavefunctions
of the stationary states and normalize them to the J§-function of the energy. Prove
that these functions form a complete set (for the corresponding Hilbert space in the
interval 0 < z < 00).

Solution

We have ¢g(xz) = A(E)sin(y/2mE/h?x), which satisfies the boundary condition
¥E(0) =0 at the wall. In order to normalize these functions to §(F — E’) we should
choose A(E) = (2m/m?h%E)'/*. The condition of completeness reads
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o0
/ V()Y@ )dE = 6(z — 2'),
0
and it is indeed satisfied for these functions, which can be verified explicitly using
relation (Al.1).
Problem 2.29
Find the reflection coefficient of the potential wall shown in Fig. 2.9. Examine, in

particular, the limiting cases ¥ — Uy and E — oo

U1

Fig. 2.9
Solution

The solution of the Schrodinger equation that describes the transmission and reflection
of particles with E > Uy, propagating towards the wall from the left, has the form

W () = et 4 A(k)e=** 2 <0 (k= +/2mE/h2 > 0),
kL) = B(k)eik'x7

2> 0 (k' = \/2m(E — Ug)/R2 > 0).

From continuity of the wavefunctions, 1/},1r and w,(j)’, in the point 2 = 0, it follows that

, k— &
1+ A=B, k(1-A)=kB; Ak) =

2k
= B = .
k+ k" (k) k4K
Hence, using the relations R = |A|? and D = k’|B|?/k, we find
R(E) = VE-VE-U (B) = 4\/E(E — Uy) (1)
VE+VE-T, (VE +VE —Tp)?’
where R(E) + D(FE) =1 as expected, and

a) B(E) = U,

2/(16E?%) — 0 as E — oo,
D(E)

\/E Uo/U()OC\/E Uy — 0at E— Uy.
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Problem 2.30

Find the reflection and transmission coefficients of the J-potential barrier,
U(z) = ad(x).

Discuss the analytic properties of the reflected A(F) and transmitted B(E) ampli-
tudes as functions of the complex variable, FE. Pay attention to the special points
E =0 and E = oo, which should be properly treated as the branching points of these
functions. In the complex E-plane make a branch-cut from the point £ = 0 along the
real semi-axis E > 0. Find the singularities of the functions A(E) and B(E) in the
first, physical sheet as well as in the other sheets of the Riemann surface of these
functions. (The physical sheet is defined by the condition that the complex phase of
the variable, E, is zero on the upper part of the branch-cut, £ > 0.) Find a connection
between the location of the poles and the physical energy levels.

Solution
1) The wavefunction has the form ¥;" (z) = e™** + A(k)e=** for x < 0 and ¥} (z) =
B(k)e** for z >0 (here k = \/2mE/h? > 0, which corresponds to the incident

particle moving to the right). Matching ¢} (z) and [¢;" (x)]/ in the point x = 0 (see
also Eq. (2) in Problem 2.6) gives

2ma

mao ikh?
Ak) = ———, B(k) = ———. 1
(k) ikh? — ma’ (k) ikh? — ma (1)

We see that the transmission coefficient, D(E) = |B|?, and the reflection coefficient,
R(E) = |A|?, indeed satisfy the constraint R + D = 1. Here
a) R(E) ~ma?/2Ek? — 0 as E — oo; b) D(E)~2Eh?/ma’?x E—0 as
E —0.
2) Since k = +/2mE/h?, it follows from Eq. (1) that A(F) and B(E) are analytic
functions of E, which have the following singularity points:

a) E =0 and F = oo, which are their branching points as discussed above;

b) E = Ey, where iv/2mFEy = ma/h, is a pole.
Note that A(E) and B(E) are multivalued functions (in this particular case of the
o-potential, they are double-valued). We now introduce a branch-cut in the complex
FE-plane along the real semi-axis E > 0; see Fig. 2.10a. Since on the physical sheet,
k= +/2mE/h? > 0, the values of the analytic functions, A(E) and B(E), coincide
with the values of the physical amplitudes on the upper part of the branch-cut.
The complex phase of E located on the negative semi-axis Fy < 0 of the physical
sheet is equal to 7, and therefore VE = i|vE|.

Therefore, the pole Ej of the amplitudes with oo < 0 (d-well) is located on the
physical sheet, and coincides with the energy of the only level present in the well. In
the case of a barrier, a > 0, the bound states are absent and the pole of amplitudes
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(a) (b)

1 G(E”
E, E=0 G, E=0% GO
Fig. 2.10

is on the non-physical sheet (the phase of Ey is equal to 37). Such poles correspond
to so-called wirtual levels that do not represent proper bound states.

Problem 2.31

Find the transmission coefficient of a particle for the potential barrier shown in
Fig. 2.11. How does the transmission coefficient change if the potential barrier (Uy > 0)
is “flipped over” and becomes a potential well, ([U(z) = Uy < 0 for 0 < z < a]?

U(x) A
UO
0 a X
Fig. 2.11
Solution
The transmission coefficient is given by
4E(FE — Uy) B> U,
AE(E — Up) + Ug sin® \/2m(E — Up)a? /12’ ’
ey = 4E(Uy — E W
F 027 ) , B <Uy.
4E(Uy — E) + UZ sinh* \/2m(Uy — E)a?/h2
Note that the first relation is valid for the potential well if we set Uy = —|Uy].

Note that D(E) — 1 as F — oo, which is a natural behavior. On the other
hand, D(E) x E — 0 as E — 0. This property of D(FE) is a rather general quantum-
mechanical result (see Problem 2.39). However, in the case of the potential well for
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the special cases, when

1
ﬁ\/2m|Uo|a2 =mn, n=1, 2,...,

the latter relation manifestly breaks down, and we find D(E — 0) — 1 instead. These
special values of the energy correspond to the emergence of a new level in the discrete
spectrum, upon increasing the depth of the well (see Problem 2.13).

Problem 2.32

Determine the values of the particle energy, for which the particles are not reflected
from the following potential, U(x) = «[d(z) 4+ 6(z — a)]; see Fig. 2.12.

U(x) i "

Fig. 2.12

Result

The values of E for which particles do not reflect from the barrier are the roots of the
equation

h2k 1
tanka = ———, k= —v2mFE > 0.
mao h

This equation is obtained from the asymptotic form of the solution to the Schrodinger
equation (IL.4), with the coefficient, A, set to zero: A = 0. The matching conditions
of Problem 2.6 are used for x = 0 and = = a.

Problem 2.33

Prove that the reflection coefficient, R(E), is only a function of the particle energy,
FE, and does not depend on whether the incident particles propagate towards the
scattering center from the left or from the right.
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Solution

Let us consider the case when U(x) — 0 as x — —oo and U(z) — Up as © — +o00. We
denote by 14 (z) the wavefunctions corresponding to the same energy but with the
opposite directions of motion of the incident particles (right/left, correspondingly).
These functions have the following asymptotic behaviors:

o (@) e*r + A(k)e= ™ 2 — —oco (k= /2mE/h?), O
+\Tr) =~ ) 1
B(k)ek1z, x — 400 (k1 = /2m(E — Up)/?),

and
B(k)e ik T — —00,
V() = . S
e~ T 1 A(k)e' Tz — +oo,
and they obey the Schrodinger equation, ——w U(x)py = Evg.

Multiplying the equation for ¢, by t_ and the equation for ¢_ by 1, and
subtracting them from one another, we obtain

Y_(x)¢ (x) — b4 (z)y’(x) = constant. (2)

Calculating the left-hand side of Eq. (2) at # — 400 and using the asymptotes (1),
we obtain kB = ki B. Hence, it follows that

k k  ~
Dy(E) = 2B = -|B[* = D_(B).

Problem 2.34

Find the transmission and reflection coefficients of a particle in a separable potential
(see Problem 2.19). Verify that the general properties (II.5) of these coefficients are
indeed satisfied in this case.

Solution

We use the integral form of the Schrodinger equation (see Problem 2.42), which, for a
separable potential, takes the following form (below, k = |p|/k):

7/’;(9”) _ eipz/h Z];\};”L // ik|lz—x lf f*(fl;”)’lp;(fﬂ”)dl',dl'ﬂ.

Hence, it follows that

v (o) = ol DR o, )
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where
(p) = / (@) (2)de, ¢p(z) = / ="l £ (2! da!. (2)
Using Egs. (1) and (2) we obtain
Clp)=g"(p { l,j,g// ikle=a'l £ (g (’)dxdx‘}, (3)
where

g(p) = /e*ip””/hf(:c)dx

The relations (1), (2), and (3) determine the wavefunction. Calculating its asymptotic
behavior at x — +00, we find the amplitudes of both the transmitted wave, B(p), and
the reflected wave, A(p), as follows:

iAmC (p)g(p)

B(p) =1
(p) + 2

, D(p) = |B(p)® (4)
and

Ap) = 2CPIED) i)~ A,

Now, we transform Eq. (4) using Eqs.(A1.3) and (A1.2). We first find
/7F(m)dx, :V.P./L(x)dx + i F(z),

T — Tg— 1€ Tr — X

where the symbol “V.P. [...” corresponds to the principal value of the integral and
€ > 0 is infinitely small. We can rewrite Eq. (3) in the form

Cp) = g*(p) {C;lp(? zg;(h];)} :

where
Am T K)|2dr
Ci(p) =2ph | 1- ——V.P. / i(zﬂpz , Ca(p) = Am(lg(p)1 +1g(=p)*),

and after that we have, from Eq. (4),

_ GE) + X o) ~ lo(p)Y
= CF) + C30) -

Finally, we find the following properties:

1) D(p) + R(p) =

*m?g(p)g(=p)*)

()_4/\
PP + c2p)

(6)
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2) D(p) = D(-p),
3) R(E) ~ (Am/hp)* - |g(p)g(—p)|> = 0 at E — o0,
D(E

4) )—0at E—0.
(Compare these results with Problem 2.39.)

Problem 2.35
Find the transmission coefficient, D(E), for the potential barrier shown in Fig. 2.13.

Consider various limiting cases, where D(F) can be expressed in terms of elementary
functions.

U(X) 4
UO

0 a\ x

Fig. 2.13

Solution

For z < 0, the wavefunction has the form ¢; (z) = e'** + A(k)e~"** (we assume that

the incident particles are moving from left to right, k = \/2mE/k? > 0). For = > 0,
by virtue of the substitution

E 9 9 1/3
zﬁ(zlJrU(J), where§<mha2Uo> ,

the Schrodinger equation takes the form [1/),;"(2)]” + 29 (2) = 0. Its solution (that
asymptotically takes the form of a plane-wave moving to the right, as  — +o0) should
be chosen as

GiF () = C(E)[Bi(—2) + iAi(—2)] & 2(x) = 0o C(E) i52°74ig

1
\/7721/46 ’

where Ai(z) and Bi(z) are the Airy functions. Since the wavefunction and its derivative
with respect to x are continuous at x = 0, we can determine the values of A and C.
We find
2
Bi(—20) + iAi(—z0) + i7= [Bi'(—20) + iAi'(—20)]

where zg = £(E /Uy — 1).
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Calculating the current density, j = (h/2mi)(¢Y*y" — ™), at & — o0: jiy =
¢h|C|?/(mma), and taking into account that for the incident particles, ji, = hk/m,
we obtain the transmission coefficient

D(E) = 25— Zjc()P, 2)

Egs. (1) and (2) give the solution. Let us now consider some special cases.

1) E<Uy, §(1 = E/Up)| > 1 (and € > 1)

4 E(UO - E) 4 2ma,2(U0 - E)3
D(E) ~ Y20 7 Y el el 2 S
(E) - exp{ [ < (3)
2) E> Uy, £&(E/Uy— 1) > 1 (and ka > €)
4 /E(E —
D(E) ~ —VEE-To) 4)
(VE +VE = )2
See Problem 2.29.
3) At E—0
4ka
D(E) ~ : : x VE — 0.
)~ @2 + Ar©)?
Problem 2.36
The same as in the previous problem, but for the barrier U = —Fp|z|, shown in
Fig. 2.14.
U(x)
’\ x
Fig. 2.14
Solution

The wavefunction has the form
{ [Bi(z1) — iAi(2z1)] + a(E)[Bi(z1) + iAi(z1)], = <0,
Y(z) =
b(E)[Bi(—z2) + iAi(—22)], x>0,

where 210 = &(x F E/Fy), &€= (2mFy/h?)'/3, and a(E) and b(E) are the ampli-
tudes of the reflected and transmitted waves respectively, so that R = |a(FE)|? and
D = |b(E)|?. The continuity requirement yields
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b(E) = — {x[Bi(n) + iAi(n)][BI' (n) + Al ()]},

where n = —(E/Fy (here we used the following result for the Wronskian of the Airy
functions: W{Ai(z), Bi(z)} = 1/7).

Using the known asymptotic behavior of the Airy functions, we obtain the following
asymptotic expressions for D = |b(E)|*:

1) for E <0 and {|E|/Fy > 1

D(E) %eXp{—i“ 2;2?;2'3}, (1)

2) for E >0 and EE/Fy > 1,

Problem 2.37
Consider a potential, U(z), with the following properties: U(z) — 0, as * — —o0, and
U(x) = Uy >0, as © — +00; see Fig. 2.15. Determine the energy dependence of the

transmission coefficient as ' — Uy+. Compare with the results of Problem 2.29.

U(x)

UO?

Solution
The wavefunction at x — £o0 is
e*® + A(k)e™** 2 — —oo (k = \/2mE/h?),

Yp(x) ~ { (1)
B(k)ekr, x — +oo (k1 = +/2m(E — Uy)/k?),

and the transmission coefficient is given by D(E) = (ki/k)|B(k)|?>. In the limit,
E — Up+, we have k; — 0, B(ky) — B(0) # 0 and therefore D(E)x (E — Uy)*/? — 0.
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Problem 2.38

Find the reflection and transmission coefficients of slow particles, ka < 1, in the case
of a “weak” potential with Uy < h?/ma? (Uy and a denote the typical strength and
radius of the potential). Compare your results with Problem 2.30 (é-potential).
Solution

In the region where the potential is non-zero, the wavefunction has the form

@) e* + A(k)e % 1 < —a,
z) = ,
r B(k)etk®, x> a.

(1)

If |z < a, the Schrodinger equation, ¢ (z) = [22:U(x) — k*]¢)(x), yields the approxi-
mate relation as follows: ¥;" (z) &~ Cy + Cox (since 1" ~ 1)/a® and ka < 1, the leading
approximation of the Schrédinger equation is simply ¢/ = 0). Matching this solution
with Eq. (1) gives Co ~ 0 and C; = B~ 1+ A.

Hence, it follows that Eq. (1), which ensures that the relation, ¢, (z) & const,
remains approximately valid for all values of x. Taking this into account, we integrate
the Schrédinger equation inside the interval —b < < b where b > a. This leads to

b
/ V" (x)dx = ikBe™ " + ik Ae™*?,
—b

b b 00

/U(x)i/)(x)dx ~ B/U(x)dmz B / U(x)dx,
—b —b oo
b

b 0
/1/1(x)dx ~ B / eFrde + /(e“m + Ae” Y dz,
b 0 )
1 . )
=iz {A+B-1-(4+ B)e' 4 em Y
It gives the relation

P
iK(A+B—1)~ ;anaB, o= /U(x)dx,

and since 1 + A ~ B, we obtain

imao 2k

S LS Y -
"2k + ima’ 2k + ima

~
~

This result implies that reflection properties of the shallow barrier are identical
(in the leading order) to those of the d-potential, U = ad(z), with a = [U(z)dx
(see Problem 2.30).
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Problem 2.39

Prove that the transmission coefficient of an arbitrary potential satisfying the condition
U(x) =0, for |z| > a, generally vanishes linearly as E — 0: D(E) ~ cE. Find the
special conditions where this relation breaks down.

Express the coefficient ¢ in terms of the parameters that characterize the zero-
energy solution to the Schrodinger equation. Use this result for a square potential well
and compare it with the exact solution (see Problem 2.31).

Solution
The asymptotic behavior of the wavefunction is ¢;" (z) &~ e™** + A(k)e=** (for x < 0,

|z| > a) and ¥ (z) = B(k)e’*® (for z > a). Now consider the limiting case k — 0:

o (2) = {1+A(k)+ikx[1—A(k:)},sc<0, |z| > a, "

(1+ikx)B(k), x> a,

The zero-energy solution of the Schrédinger equation satisfies the boundary condition
YE—o(+00) = 1. As & — —o0, this solution has the form ¢ g_o(z) = bx + d, where the
constants b and d depend on the details of the potential. Comparing this asymptotic
behavior of ¥ p—g to Eq. (1), we find that ik(1 — A) ~ bB and 1 + A ~ dB. Hence, it
follows A ~ —1, B ~ 2ik/b, so that!®l

D(E):|B|2Nb82%EocE for E — 0. (2)

This result breaks down in the case of b =0. In this special case the Schrodinger
equation has a zero-energy solution that does not increase as x — +o0o. It implies that

a new bound state emerges with only an infinitesimal deepening of the potential (see
Problem 2.13).

For the potential barrier from Problem 2.31, we have: ¢g—o = 1 for x > a, ¥p—g =

cosh[¢(x — a)]. for 0 < x < a (here { = \/QmazUo/h2 )s YE=0 = cosh &a — (£ sinh fa)

for z < 0. Hence, it follows b = —¢sinh £a and D(E) ~ mE as £ — 0,

accordance with the exact result (in the case of a potential well, we should replace
sinh £a with sin €a in the above results).

Problem 2.40

)

Find the transmission coefficient of “slow
—Upa'/ (2* + a2)2.

particles in the potential, U(z) =

(18]  Equation (2), as well as the asymptotic form of the wavefunction in Eq. (1), is valid for potentials
that decrease at large distances, & — 200, faster than oc 1/|z|3.



68 Exploring Quantum Mechanics

Solution

We introduce the following new variable, z = arctanz/a, and function, w = (2% +
a®)~Y/24)(x). Focusing on the zero-energy solution only with F = 0, the Schrodinger
equation becomes

w” (2) + 2w(z) = 0, where &€ = /1 + 2ma2Uy/h2.

The wavefunction, ¢g—o(x), that obeys the boundary condition ¢ p_o(+00) =1 is

(1)

Yp—o(z) = vl +a sin [5 (g — arctan %)] .

Ea

Since Yg—o(x) &~ —xsin(n€)/{a at @ — —oo, then according to the previous problem

we find that for slow particles, D(E) ~ %E E — 0. Note that this expression
does not apply if 7§ = 7N (N is an integer) or
2ma?U,

This Eq. (2) determines the parameters corresponding to the emergence of a new
(Nth) discrete state.

Problem 2.41

Use the Schrédinger equation in momentum space to find the wavefunctions of a
particle in a uniform field with U(x) = Fyz. Normalize them by the J-function of the
energy and prove the completeness of the obtained set of functions. Use these results
to determine the energy spectrum of the potential considered in Problem 2.8.

Solution

1) The Schrodinger equation in the momentum representation and its solution nor-
malized to the J-function of energy have the form

P’ — 5
%¢E(P)+Z odfp¢E(P)— r(p),
3
de(p) = ! exp{i =P

vV 2’/ThF0

2) The values of E for which the corresponding wavefunction in the coordinate
representation obeys the condition ¢ g(x = 0) =0, i.e.,

3
_ b _
Ye(r = 271- / op(p)dp = C/cos <hF0 GmHFQ) dp =0,

determine the discrete energy spectrum of the potential considered in Problem 2.8.

6mhF0 hFO
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Problem 2.42

Find the Green functions, G%(m,m’), of a free particle with the energy F > 0. Here
the indices “+” refer to the asymptotic behavior of the Green function:

2mE
GE(x,2") o exp (:l:i 7;2 >, as |z| — oo.

Use these Green functions to formulate the integral Schrodinger equation, whose solu-
tion describe the transmission and reflection processes for particles with momentum
p (—o0 < p < 400). Assume that the potential, U(x), goes to zero as x — oo. Use
the integral Schrodinger equation to describe scattering off of the d-potential.

Solution

1) Using Eq. (1) of Problem 2.20 (where the Green function, Gg(x, '), for E < 0 was
found) and the substitution,

9mE 9mE
—7;; — ik, where k = 7;;

K= >0,

we obtain G% for E > 0 as follows:

im ik|lx—x’
GE(z,2') = :I:ﬂejE klz=a'|, (1)
We should note that the Green functions, Gé, for £ >0 and E <0 could be
considered as different boundary values of a single analytic function Gg of the
complex variable, F;

é . m < _\/2mE| _ ,|
E=1 2h2Eep 7 7 r—x .

The point E =0 is its branching point. We introduce a branch-cut in the E-
plane along the real semi-axis, E > 0, see Fig. 2.10b. Note that the upper part
of the branch-cut lies on the physical sheet (see Problem 2.30.) The function, G,
coincides with G, on the lower edge of the branch-cut, while for real I <0, it
coincides with the Green function, Gg, as in Problem 2.20.
The Green functions, G§ (p,p’), in the momentum representation have the form
5(p—p')

+ A

(see Problem 2.20), here € > 0 is an infinitesimally small quantity.
2) The Schrodinger equation describing the transmission and reflection processes for
the particle with momentum, p, is

v (@) =i~ [ G UG (@) 3)
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The first term in the right-hand side of Eq. (3) describes the incident particles,

while the second, integral term describes at & — +o0o both the reflected particles

and the change of the transmitted wavefunction under the action of the potential.
Specifically for the potential, U(z) = ad(z), Eq. (3) takes the form

ipT NA
w;(x) =e? /h—lﬂe . |¢;r(0)~ (4)
Therefore,
h%k
+ —
vy (0) = h2k +ima’ (5)

and the transmission and reflection coefficient D and R follow from Egs. (4) and
(5), reproducing the results of Problem 2.20.

Problem 2.43

For the d—barrier, U(x) = ad(x) with a > 0, prove by a direct calculation the com-

pleteness of the set of functions 1/)1(;+)(33), that describe the process of reflection and
transmission of particles with momentum, p (—oo < p < +00).

Solution
oo
Let us consider the integral I(x,z') = [ *(a’)y;f (2)dp, assuming that the wave-
— 00

functions, ¢} (), are normalized to d(p — p'). (Note that they differ from those in the

previous problem — see Eq. (4) — by the factor, (27)~1/2). Therefore, the integral can
be rewritten in the form

T e _a]" exp|—i(ka’ — |ka])]
2m/e dp=or | dk k| + i

(1)

expli(kx — |ka'|)] = exp[—i([ka'| — [ka|)]  exp[—i(|ka’| — Ikxl)]}
k| — ia 2|k — ia) 2(|k| + i) ’

where & = ma/h? and p = hk. The first integral in (1) is equal to §(x — 2’). To analyze
the second term in Eq. (1) above, we perform the following transformations. Taking
into account the fact that this integral is an even function of the variables, x and x/,
we can replace them by their absolute values, || and |2'|, and divide the integration
domain into two parts: (—oo,0) and (0, 00). With this, the second integral in Eq. (1)
takes on the form

_ia [ explik(la] + |
2m / k+io dk. 2)

— 00
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Since & > 0 (for the d-barrier), we can close the integration contour in the upper half-
plane to find that the corresponding integral is equal to zero. So, I(z,z’) = §(x — '),

which proves that the system of functions w,(f)(a:) is indeed complete.

Problem 2.44

Generalize the result of the previous problem for the case of the attractive J-potential,
U(z) = —ad(x) with « > 0.

Solution

By changing o by —« in the equations of the previous problem, we have

oo o0

— 00 — 00

(& = ma/h? > 0). Taking into account the value of the integral in the right-hand
side!'® and the form of the normalized wavefunction, g (z), of the single bound state
in the 0-well, we see that the second term in the right-hand side of Eq. (1) is equal to

—daexp[—a(lz| + [a'])] = =G (2")¢bo ().
Therefore, we obtain the equation

oo

U@ o) + [ 0 @ @)y = 3o - ),

—00

which is the required completeness condition of the eigenfunctions in the case of the
o-well.

Problem 2.45

For a particle in the repulsive d—potential, U(r) = ad(z) with « > 0, find the Green

functions, Gg(z,2’) for E <0 and G'Sgi)(x,x’) for £ > 0. Discuss their analytical
properties as functions of the complex variable, E. Compare with the free-particle
case see Problem 2.42.

Solution

The Green functions of interest obey the following equation;

—— 2t ab(z) - E|Gp(z,2') =6z — ), (1)

[19]  The integral can be calculated using the residue theorem by closing the integration contour in the
upper half-plane.
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with the corresponding boundary conditions. Using the general method of their
construction, and taking into account that there is no discrete spectrum in a purely
repulsive potential, we find

2mdp

p? — 2m(F +iv) 2)

G = / @) ()

(v >0 is an infinitesimally small quantity). Here 1, () are the wavefunctions nor-
malized to 6(p — p’) that describe the reflection process. By setting their explicit form
(see Problem 2.42) we obtain

N m T exp(ik(x — z')) ima [ dk exp(—i(ka’ — |kz|))
GE(z,2') = dk — 4k2_( {

7h? k% — (k2 £ i) wh? k& £ i) |k| +i&

— 00 —

_exp(i(ks — |ka'|))  exp(—i(lka'| —|kz]))  exp(—i(lka’] — |ka))
—ia (ki) 2(|k| + i@) } (3)

where & = ma/h? > 0, ko = \/2mE/h2. The first integral here is the Green function
of a free particle (see Al.3 and Problem 2.42):

(4)

Note that +VE = /E £ 7.

The second integral in Eq. (3) (represented as a sum of four integrals) could be
simplified by taking into account that it is an even function of the variables,  and
x’. We replace these variables by their absolute values, |x| and |2’|, and then we can
divide the integration domain in two regions: (—oo,0) and (0, 00). After this, several
terms in Eq. (3) cancel each other out and we obtain

_ima 7 exp {ik(|z| + |2')} dk
wh? | 62— (k2 i) (k +id)

— 0o

()

The remaining integral can be easily calculated using the residue theorem by closing
the integration contour in the upper half-plane. In this case, there exists only one pole
inside the contour located in the point k = +ko + ¢y (if £ < 0, the pole is in the point
k = ilko|). Therefore, Eq. (5) becomes

ma exp {+iko(|z| + |2'|)}
ko ko + i ‘

As a result, the final expression for the Green function takes the form:
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N | VamE, ) maexp {Hi/2mER (x| +|a'))}
Gg =+ 555 iexp ] +i |z — 2’| p + .
2 E h +V2mh?E + ima
(6)

Just as in the free-particle case, these Green functions could be considered as different
limits of a single analytic function, Gp, of the complex variable, E, and could be
found from Eq. (6) by removing the “£” labels (see Problem 2.42). But a difference
appears due to the presence of a pole at /Ey = —iay/m/2h? (or equivalently at
Eo = —ma/2h?). Since a >0 this pole is located in the non-physical sheet and
corresponds to a virtual level.

Problem 2.46

The same as in the previous problem, but for the §-well.

Solution

The equation for the Green function supplemented by the appropriate boundary
conditions are valid for any sign of «; that is, for both a barrier and a well. In the
case of an attractive potential, the pole in Gg lies within the physical sheet and Ej
coincides with the energy of the discrete level in the §-well.

We emphasize that to properly modify Eq.(2) from the previous problem, it does
not suffice to change a — —a, but we also need to add the term, ¥g(z')vo(z)/
(E — Ey), corresponding to the bound state. However, when calculating the integral
(5) with « < 0 inside the contour, another pole appears in the point ky = i|&| and
the contribution of this pole compensates the other additional term. This justifies the
validity of Eq. (6) for any sign of a.

Problem 2.47

Find the Green function in momentum representation for a particle moving in the
d—potential, U(z) = ad(z).

Solution

The equation for Green’s function in the momentum representation has the form

2 ‘ o o0 ,
2| Gia) + 5 [ GRS =) ()

Here the form of the operator, U, is taken into account (see Problem 2.17). The
“additions” of 4iv to the energy is required to enforce the appropriate boundary
conditions (see Problem 2.45). Using the notation

«
CEW) = oo [ GEG" ) (2
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we obtain from Eq. (1),

G%(Pyp/) = (;(219/2751 (Eczi (fY)) Y

Integrating this with respect to p in the infinite limits and taking into account Eq. (2),
we find the explicit form of Cjﬂt (p') and the sought-after Green function

5(p—1p) aV2mh?E

p/2m—EFiy o (\/th“ﬁ’E + ima) (#2/2m — E F i) (p'2/2m — E F i)
(4)

We should note that G%(p, p’) could have been found from G (z, 2’) from Problem 2.45
by changing the representation according to Problem 1.41.

Gup.p') =

2.4 Systems with several degrees of freedom; Particle in a
periodic potential

Problem 2.48

Find the energy levels and the corresponding wavefunctions of a two-dimensional
isotropic oscillator. What is the degeneracy of the oscillator levels?

Solution

Since the operators

commute with each other, the eigenfunctionsA of the planar oscillator, H=H + HQ,
may be chosen as the eigenfunctions of both H; and Hs. Taking this into account and
using the Schrédinger equation for a linear oscillator (see (I1.2)), we obtain the energy
levels and the eigenfunctions of the planar oscillator in the form (see Problem 10.25)

Urima (2,9) = O (@00 (), By = hw(N+1), N=0, 1, ..., (2)

ni na

[k
w=4\/—,N=n1+n9,n=0,1,...,.na=0,1,....
m

Since there exist (N 4 1) independent eigenfunctions ,,,, with n; =0,1,..., N (in
our case, no = N — ny), the degeneracy of the level, Ey, is equal to gy = N + 1 (the
ground state, N = 0, is non-degenerate).

where
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Problem 2.49

Find the energy spectrum of a particle in the two-dimensional potential, U(x,y) =
k(2% +y?) /2 + axy, |a| <k.

Solution

Let us write the potential energy in the form U(z,y) = ki(z + y)?/4 + ka(x — y)? /4,
where kjo = k4 a > 0. Introducing new variables z; = (v +y)/V2, y1 = (—x +
y)/ V2 (this transformation corresponds to a rotation in the xzy-plane by the angle,
w/4), we cast the Hamiltonian into the form that involves two independent oscillator
Hamiltonians, as in the previous problem:

Koo 1, K9 1

o PO L e B0,
2m81’%+21m1 2m5‘y%+22y1

Therefore, the energy spectrum has the form

[k 1 k— 1
En1n2:ﬁ +a(n1—|—>—|—h a(n2—|—>,n12:O, 1,...,
m 2 m 2 ’

and the eigenfunctions that correspond to these levels could be expressed in terms of
the eigenfunctions of the linear oscillator.

Problem 2.50

Find the spectrum of the Hamiltonian

- 1 . 1 1

H= mp% + %pg + §k (23 + 23) + azi22, |of <k.
Solution
Introducing the new variables y; = x1 /7, y2 = xo with v = \/m/M, we have

. h? 02 h? 02 k
H = —-— — 2,2 2 (6% .
om0 amagg T2V Vi) e
Rotating the coordinate system in the y;ys-plane, the potential can be reduced to the
diagonal form: U = k19§ + 1 k273
In order to determine k; », we notice that for a potential of the form U = k;;y;y;/2,
k;; transforms as a tensor under rotation. In the initial coordinate system, ki1 = vk,
koo =k, k12 = ko1 = ary, and in the rotated frame of reference, ki, = k1, kby = ko,
kio = Kb = 0. Recall that the trace and determinant of matrix are invariant with
respect to rotation of the matrix components, we have

kip = ki + ko = k(1 +~2),det ||k1x|] = k1ka = (k% — )2
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Hence,

(L+92)k £ /(1 —9?)%k2 + 4oy
k12 = 5 .
In the new variables, 91,92, the Hamiltonian reduces to a sum of two independent
linear oscillator Hamiltonians, which immediately determines the energy spectrum,

[k 1 [k 1
Enlngzh 1(n1—|—>+h 2<n2+>,n12—0, ].,
m 2 m 2 ’

Problem 2.51

Two identical particles, placed in the same one-dimensional potential, U (z1 2), interact
with each other as mutually “impenetrable” points. Find the energy spectrum and the
corresponding wavefunctions, assuming that the solution of the single-particle problem
for the potential, U(z), is known. To illustrate the general results, consider two such
particles in an infinitely deep potential well.

Solution

The Schrodinger equation for z7 < x5 (we assume that the first particle is to the left
of the second particle; so, (21, x2) = 0 for 21 = x2) has the form

[H(1) + H(2) = By, where H = iﬁz + U(x).

Let us now consider the new function, @Z(zl,xz), which coincides with ¥ (1, 22)
for 1 < a9 and is equal to —(ze,x1) if 1 > xo (that is, 1/? is an antisymmetric
continuation of ¢ into the region, xy > x3). Since the resulting function and its
derivatives are continuous,?’! we conclude by inspection that t indeed satisfies the
two-particle Schrédinger equation for any values of x; and x4. The general solution is

&nl,nz - 1/Jn1 (1”1)1/)n2 (1'2)7 En1n2 = En1 + ETLQa

where E,, and ¢, (x) are the spectrum and the corresponding eigenfunctions for
the single-particle Hamiltonian. The antisymmetric character of the wavefunctions
1) makes it necessary to choose them in form

~ 1
@/}m,nz = ﬁ [@/}m (I1)¢n2 (132) — P, (xl)@/}m (152)}

and gives restrictions on nq 2: ny # na. So

¢n1,n2 = 7/}7“ ($1)¢n2 ($2) - 1/)n2 (581)77/17;1 (x2)7 ETL1'IL2 = En1 + ETL27 ny < ng

[20]  The continuity of the derivatives of 1[1 with respect to x1,2 at 1 = x2 can be explicitly verified by
differentiating the equality, ¢ (x, z) = 0.
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(r1 < x2) The energy level is two-fold degenerate, with the second independent
solution of the Schrédinger equation corresponding to the first particle moving to
the right of the second particle.

Problem 2.52

Generalize the result of the previous problem to the case of an N-particle system.

Result
The energy spectrum of the system is given by
N
Eny ny = ZE"“’ where nqy < ng < --- < ny.

a=1

Problem 2.53

&)
For a particle in the periodic potential of the form, U(z) =« . d6(z —na) (this

n=-—oo
potential can be viewed as a model of an ideal one-dimensional “crystal”; see Fig. 2.16),
find a system of independent solutions of the Schrodinger equation for an arbitrary
value of E and determine the energy spectrum.

U(x)

2a —a 0 a 2a x

Fig. 2.16

Solution

A general solution of the Schrodinger equation in the region, n < z/a < (n+ 1), can
be written in the form

1/}(%) — Aneik(z—na) +Bne—ik(z—na)’ (1)

where k = y/2mE/h?. Let us consider independent solutions that satisfy the relation
P(z + a) = pp(x). We have
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Using the matching conditions at = na (see Problem 2.6), we find

An + Bn = eikaAn—l + eiikaBn—lv

2 2i : -
(1 ‘ {'2) . <1 - ;;) By = A, —e "B, ). 3)

Using Eq. (2) we obtain a system of linear equations for the coefficients A,, and B,,.
A non-trivial solution exists only if

p? —2uf(E)+1=0, where f(E )_coska—&-hismka (4)
and
ika
H—e
B, =—-—A,.
e—tka _ i (5)

From that, it follows that

Hi12 = f(E)i fQ(E)—l- (6)

For any fixed value of the energy, E, Eq. (6) determines two values of p that corre-
spond to two independent solutions of the Schrédinger equation, and their product
is p1 - g2 = 1. In the case f?(E) > 1, both values, 19, are real. Consequently, the
corresponding two solutions of the Schrédinger equation increase at large distances
(corresponding to solutions with pq > 1, as & — +o00, and with ps < 1, as © — —o0).
Therefore, such solutions are unphysical.

The values of E for which |u| =1 (see f2(F) < 1), however, do describe physical
states. This condition gives rise to the following equation:

—1<cosk:a—|—hksmka<1 (7)
Hence the allowed values of E arrange themselves into a band structure. If we set[2!]
p = €"% where —m < ga < 7, and hq is called a quasi-momentum (not to be confused
with the “real” momentum, Ak, which is well-defined in the absence of a lattice only),
then the equation for E,(q) takes the form (here, n is a band index, with n 4+ 1 being
the ordinal number of the band; see Fig. 2.17 for o > 0):

\/ 2mkE, (q (8)

CoS qa = cos ﬁ 2mE,( +

[21]  The solutions of the Schrédinger equation that correspond to a definite quasi-momentum are called
Bloch functions.



One-dimensional motion 79

f(E)

1\. -
I | |
| Lot cosqga
| [ T
| N

0 ! T ;21'55 3 ka
" T T M- 1
B\ 1 [Ey B\ IE(9)
: . Lo !
! | | o |
| I 1 : : :

_1 | | |
L1t \ J2nd L1 3rd N
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Fig. 2.17

Let us briefly discuss properties of the spectrum following from Eq. (8), (see also
Problem 8.32, which focuses on the weak-field limit, maa/h? < 1):

1)

2)

The g-dependence of E,,(q) is even. Therefore, the states that differ only by the sign
of quasi-momentum are independent and correspond to the two-fold degeneracy of
the spectrum, E,(q).

The energy bands do not overlap. In the case a > 0, they all lie in the region
E,>0and mn < kpa < m(n+1), n=0,1,.... In the case maa/[(n + 1)h?] > 1,
the bands are narrow, but their width increases with an increase in n. In the case
maa/[(n + 1)h?] < 1, they fill almost the entire interval mentioned above. With the
change of sign of «, the lower band moves down into the negative-energy region,
E < 0 (in this case, k has a non-zero imaginary part).

Near the top or the bottom of a band (e.g., near the points ¢; = 0 and g2 = +7/a),
the g-dependence of the spectrum E,(q) has the parabolic form, i.e., E,(q) —
E.(q12) < (¢ — q1.2)? (see Problem 8.32).

In conclusion we note that eigenfunctions in this problem cannot be normalized to
unity, so the localized stationary states of a particle in periodic potential are absent;
wavefunctions (1) and (2) correspond to a particle with the quasi-momentum, fg,
moving “freely” (i.e., without reflection) through the infinite crystal.

Problem 2.54

o0
Find the energy spectrum of a particle in the potential, U(z) = a 3. §(z — na),

n=—oo

where the prime in the sum sign indicates that the term with n = 0 is omitted. This
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potential is a model of a one-dimensional crystal with a defect (a vacancy at n = 0;
see Fig. 2.18).

U(x)

Fig. 2.18

Show that apart from the allowed energy bands in the case of a perfect crystal (see
Problem 2.53), new discrete levels appear and correspond to states localized near the
lattice defect.

Solution

The allowed energy bands found in the previous problem are relevant here as well.
Indeed, an arbitrary solution of the Schrodinger equation with an allowed energy,
E,(q), correspond, for zz > 0 and x < 0, to a superposition of two independent solutions
of the perfect-lattice problem above with definite quasi-momenta, £hq, and such that
the resulting function does not increase with x — 4+co0. However, in contrast to the
case of a perfect crystal, the independent solutions in this problem do not have a
certain value of the quasi-momentum (the physical reason being that a change in
quasi-momentum is now possible due to scattering off of the lattice defect). Note,
however, that the two-fold degeneracy remains in the case under consideration.

Furthermore, new energy levels appear that correspond to states localized in the
vicinity of the defect. To find these levels, consider a solution of the Schrodinger
equation with a certain parity (with respect to inversion z — —x).

In the case of even solutions in the region |z| < a, we have ¥} (z) = C cos kz. On
the other hand, in the region x > 0, a solution of the Schrodinger equation must
coincide with that for a periodic potential and satisfy ¥ (z + a) = pp(z) for p <1
(another independent solution corresponds to p' = 1/u > 1; such a solution increases
as © — +00). This solution in the regions n < z/a < (n+ 1) has the form (below,

k=+/2mE/h?)
1 (x) = u"[Acos k(z — na) + Bsink(x — na)) (1)
Since it must coincide with ¥} (z) for 0 < 2 < a, we find that A = C and B = 0. Using

the matching conditions at the point, z = a, for the wavefunction (1) (see Problem 2.6),
we obtain the following solutions:
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2maa
coska = p, kasinka = —3 cos ka. (2)
The latter of these equations determines the required even levels. We now discuss
properties of these levels:

1) The levels are discrete.

2) These levels are positioned between the neighboring bands of the continuous
spectrum and in the case a > 0 the lower level occurs below the lowest band.

3) As the energy of the level increases — as is seen from Eq. (2) — we notice that p — 1.
In this case, localization length of the particle in vicinity of the defect expands.

4) Normalizing the wavefunction of the localized level to unity, we have

)
2ka + sin 2ka’

Note that in the case of maa/h? > 1, the wavefunctions of the low-lying levels, E
(s =0, 1,...) with s < maa/h?, are localized in the region |z| < a (in this case
1 < 1) and are close to the wavefunctions of stationary states of a particle in an
infinitely deep potential well with the width 2a. Note also that “new” odd-parity
levels do not appear in this problem.

Problem 2.55

Find the energy spectrum and degeneracy of the levels of a particle in the potential
of the form

« 3 d(z —na), x>0
U(z) = nzzzl

Up >0, z <0

as illustrated in Fig. 2.19. Compare your results with the case of an ideal infinite
crystal (see Problem 2.53). Pay special attention to the appearance of states, localized
near the boundary of the crystal. These, states you will find, are called surface or
Tamm states, and they play an important role in semiconductor physics. (I. E. Tamm
was the first to point out the existence of such states.)

Solution

For z > 0, the two independent solutions of the Schrodinger equation for any value
of E have the property 11 2(z + a) = p1 291 2(x), with pq - po = 1. For the values of
energy E,(q) that belong to the allowed energy bands of the infinite crystal (see
Problem 2.53), both of these solutions do not increase as * — +oo. However, for all
other values of E there is only one non-increasing solution with p; < 1, which decreases
as x — o0. Relying on these arguments, let us analyze the particle spectrum.
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Fig. 2.19

For E > Uy the energy spectrum is continuous. The values of energy that belong
to the allowed energy bands of the infinite crystal are two-fold degenerate (and
correspond to a particle moving “freely” through space, reflecting from the crystal
boundaries with a certain probability). The states with any other value of the
energy are non-degenerate, and their wavefunction decreases as the particle moves
deep into the crystal (a particle with such a “forbidden” energy experiences a total
reflection from the crystal).

For E < Uy, the spectrum has the same band structure as in the case of an
infinite crystal. In this case however, the levels are non-degenerate: when x > 0,
the wavefunction is given by a superposition of states with the quasi-momenta,
+hq (a particle with such the energy moves inside the crystal reflecting from its
boundaries).

Furthermore, in the case E' < Uy, isolated levels might exist that correspond to the
particle states localized near the crystal boundaries. To find these levels, consider
the solution of the Schrédinger equation that decreases as x — +oo. For x < 0, it
has the form ¢ = Ce"* where k = \/2m(Uy — E)/h?. While in the case x > 0 and
n <xz/a < (n+1) it can be written as follows

= Ap"sin[k(z —na) + 6], k= +/2mE/R?, |p| < 1. (1)
Matching the solution at x = 0 and x = a gives

Asind = 1,kAcosd = k,sin(ka + 0)

2
= psind, pk cosd — kcos(ka + 6) = ;;a,usiné
(we put C' = 1). Hence, it follows that
s an 2m(U0 — E)a2 B an
kacos ka = (sin ka) o > ) p= - —sin ka. (2)
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This equation determines the energy spectrum of the states under consideration;
the number of the levels depends on the parameters of the potential (there exist
parameter regimes, where there are no such levels at all). These levels are situated
between the allowed energy bands of the infinite crystal. If we change the potential
parameters, the location of the levels also changes. At the same time, new bound
states might appear or the existing ones might disappear, as the level moves to the
nearest band and delocalizes.

We leave the reader the further analysis of the spectrum that follows from Eq. (2),
and illustrate only one special case, where Uy > h?/ma?, o < 0 (this describes a
crystal that consists of §-wells) and m|a|/h? ~ 1. If E < Uy, it follows from Eq.
(2) that ka = nw + ¢, where n = 1, 2,... and |¢| < 1. So, we obtain € = nra/Uya.
For such states (positioned between the bands)

U 2
1L = cos ka—l—\/E—:—lsin ka%(—l)”(l—i—aﬂ%), (3)

i.e., |u| <1 (here |u| = 1), and the delocalization domain extends far inside the
crystal. In the case of o > 0, there are no bound states in this energy band (|u| > 1
for the solutions of Eq. (2)), although such states appear with increasing Uy (such
states first appear with the energy, E = Up) and then the level “merges” the band.
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Orbital angular momentum

The operator for the orbital angular momentum of a particle, hl = [t x p], obeys the
following commutation relations:(2?

s, Ik = i€irnln, M2, 1] =0, (IL.1)

as well as

(i, Zr] = i€ikndn, [li; Pr] = i€iknDn, (II1.2)

In spherical coordinates, operators l; depend only on the angular variables 9, ¢. So
the eigenfunctions and eigenvalues of the operator [, = —i% have the form (m =1,):

Dm(p) = m=0,+1,£2,.... (I11.3)

We can express the operator of the angular momentum squared, 12, in terms of the
angular terms of the Laplace operator. Its eigenvalues are [(l +1),1 =0, 1,2, .... Oper-
ators 12 and [, form a complete operator set for the angular part of the wavefunctions.
Spherical functions Y, (9, ¢) are the normalized eigenfunctions of these operators.

1 0 0 1 92
12 _ .
2y, = — 2 (sinvL) + —— L v, = 11+ 1)Yim,
: [sinﬁ oY (sm 819) * sin2193g02] : (t+ 1Y

- 0

0Yim = —i%ﬁm =mYim. (111.4)
They have the form (Jm| <1)

weiml (2041 (= [m)! }
Vim(9,0) = (=1)" 2 i : P, 9)e'™?, 1115
l ( 50) ( ) t \/ A1 (l + ‘m|)| l (COS )6 ( )
ml ] dlml
P/™(cos ) = sin ﬁWPZ(COS 9).

122] [, ly] = ilz, ete. In what follows, we assume that the angular momentum is measured in the units

of h, so the corresponding operators and their eigenvalues are dimensionless. We should stress that
relations (II1.1) or (II1.8)—(II1.10) are valid for the angular momentum of any system, irrespective
of its nature (orbital, spin, or total).
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P, and Pllm| are the Legendre polynomials and the associated Legendre polynomials,
respectively. Note that Y}, = (—=1)'""™Yy_p,, [V}, Yirm dQ = 811/ 6.

The spherical harmonics have a definite parity I = (—1)!. For them, the addition
theorem holds:

2 +1
e P(n-n) Z Yim(n)Yy, (n'), (I11.6)

m=—1
where n and n’ are unit vectors, and in this case
Yim(n) = Y (9, 0), n-n' = costcos? +sindsind’ cos(p — ¢’).

The spherical functions for the angular momenta with [ =0, 1, 2 are

1 3 5
YOO:E, i Yip=1 \/; cos? ; Yoo = 167T(173cos 9);

. 1 .
Yie1 = Fiy/ —sind e You, =+ 8—5 sind cosd e, (I11.7)
T

It may be useful to have the spherical functions in Cartesian coordinates:

+ip _

; 2 2 2
z . x £y e+ Yyt — 2z
Ylomcosﬁ:;, Y141 xsind e ,}/20’\-/7'72,
etc.

The raising and lowering operators, Ip =1, + ilAy, obey the commutation relations

([, I+] = +l+. It follows that the only matrix elements, (Im/'|l|im), that are not
equal to zero arel?3)

(1) mm-1 = 1 )m-1,m = V(I +m)(I —m+1). (I11.8)

Accordingly, the non-vanishing matrix elements for I, and iy are

1\/(ler)(l —m+1),

(lz)m,m—l == (lm)m—l,m = 9

(ly)mm—1 = —(ly)m-1,m = —%J(l +m)(l—m+1). (11L.9)

These equations determine the form of the operators in the [,-representation. Finally,
we have

[23]  To fully define the value of matrix element, we should also use 12 =1 _[y + 12 4+1,. A choice of the
phase factor in (IIL.8) fixes the relative phase of the wavefunctions with different m but equal I.
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3.1 General properties of angular momentum
Problem 3.1

Show that the relation L? = [(I + 1) could be obtained by using elementary equations
of probability theory. Assume that the only possible values of angular momentum
projection on an arbitrary axis are m = —I, —[+ 1,...,[, and that all of these values
have equal probability and all the axes are equivalent.

Solution

Since the probabilities of different L, are the same, we have[?4

l
1 I(1+1)
7_ _ L 2 _
2T 911 > m

m=—

Due to equivalence of the axes x, y, z, we have
LP=12=12+L2+L12=3L2=I(+1).

Note that the change from the discrete probability distribution, w(m) = ﬁ, to
the continuous distribution, dw = dl,/2l with —I <[, <, gives the classical result
L2 =2

Problem 3.2

Find the stationary wavefunctions and energy levels of a planar (two-dimensional)
rotor!?! with a moment of inertia 7. What is the degeneracy multiplicity?

Find the probabilities for different energy and angular momentum projection
values, as well as the mean values and fluctuations of these quantities, for the rotor
with the wavefunction ¢ = C cos? .

Solution
1) The Hamiltonian for the planar rotor is H = 5+ MZQ, where M, = p, is the pro-
jection of its angular momentum onto the ax1s z that is perpendicular to the
M2 h2f2
. Since H

plane of rotation. The Hamiltonian operator has the form H= 5P =

[24]  This sum can be calculated as follows:

l !
d d2 1_6a(l+l) 1
2 _
—_— =2|—— =-Il(l+1)2l+1).
Z m |:d mz: :| » [da2 1—ea o 3 (+1D@+1)

m=—1

[25] A rotor is a system of two rigidly connected particles that rotate around the center of inertia. The
moment of inertia for the rotor is equal to I = pa®, where p is the reduced mass of the particles
and a is a distance between them.
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commutes with /., then the eigenfunctions of H could be chosen simultaneously with
the eigenfunctions of [,. We immediately write the spectrum and eigenfunctions of
the Hamiltonian:
h?m? 1 .
By = ——, =—2"" m=0,+1,.... 1

[m| 27 w’rn \/ﬂ ( )

All levels except for the ground one are two-fold degenerate. See that it is possible
- . . + _ 1 — _ 1 . .
to choose H eigenfunctions as wlml = /7 COs mep, wlm\ = 7 sin mep. In this case,
they have a definite parity (41 or —1) with respect to reflection through the z-axis.
2) Since cosp = (e + e~%¥) /2, we have

c, .. . 1 .
=(Ccos’p=—(e%% 492+ ¢ 2%) = Cpy ——=€"""%.
Y =7l ) En T

This gives the probability distribution for different values of rotor’s angular momen-
tum, w(m) = |¢y,|?, and then the probability distribution for energies, w(E),,|) =
w(m) + w(—m) (with m # 0). We have C? = 4/371 due to normalization.

2 1

w(0) = 4dw(£2), w(Ey) =w(0) = 3 w(Fy) =2w(2) =2w(-2) = =

The probabilities of other values are equal to zero. Finally, we have

st
912"

4 —  2n2
= Am)2 = - E = AE)2 =
m=0, (Am) 3 37 ( )

Problem 3.3

Find the wavefunctions and energy levels of the stationary states of a spherical (three-
dimensional) rotor with a momentum of inertia I. What is the degeneracy multiplicity?

Let the wavefunction be 1) = C cos? 9. Find the probability distribution for energy,
angular momentum, and z-axis angular momentum. Find the mean values and fluc-
tuations of these quantities.

Solution

1) The Hamiltonian operator has the form H= Z—jP, and its eigenvalues and eigen-
functions are given by

R+ 1)

Ei or

) d]lm = Y—lm(ﬁa 80)7 (]—)
where [ =0, 1,... ; m=0, +1,..., +I; Y}, are the spherical harmonics; and 9,
are the polar and azimuth angles of the rotor axis. The energy levels are (21 + 1)-
fold degenerate and have the parity equal to (—1)".
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2) The wavefunction describing the rotor with of [, = 0 has the form

VarC 1 1 —3cos?d
= chYlo.
l

_ 2,9 _
Y(9) = Ccos” 9 = 3 T i

Taking into account the expressions for Yyo and Yao (II1.7), we find that the rotor
momentum could take only two values: [ =0 and [ = 2, with the probabilities
w(0) = 5/9 and w(2) = 4/9. Finally, E = 4h%/31, (AE)? = 2% and |C|? = 5/4.

Problem 3.4

Give a simple explanation of

a) the commutativity of different components of the momentum operator;

b) the non-commutativity of the angular momentum components;

¢) the commutativity of the momentum projection and angular momentum projection
on the same axis, and their non-commutativity for different axes, using kinematic
interpretation of these operators in terms of infinitely small translations and
rotations.

Solution

As it is known (see Ch. 1, secs. 15, 26), the linear momentum operator P and the
angular momentum operator L of the system are connected with the infinitely small
translations and rotations:

T(da) ~ 1+ %5a ‘P and R(6po) ~1+igpp - L.
Any translation commutes with any other translation and therefore the operators of
different momentum components commute with each other. The same can be said
about a translation and rotation over the same axis. On the other hand, two rotations
or a translation and rotation about two nonparallel axes do not commute, which
implies the non-commutativity of the corresponding operators.

Problem 3.5

Find the following commutators:

A 2

i

Here, ¢1, ¢y are some constants.
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Solution

For calculation of the operators we can use the results of Problem 1.4 and Eq. (IIL.2).

a) All the commutators are equal to zero due to the general equation [l;, f] = 0, where
f is a scalar quantity operator.

b) These commutators have the form [fi, fk] = ieiklfl, where fk is an operator of the
kth projection of the corresponding vector operator f.

¢) These commutators have [l;, fkl] = i(EikpOnt + Eilnékp)fpn, where fik are the cor-
responding second-rank tensor components operators.

This universal structure of the commutators of angular momentum components,
fi, with scalar, vector, and tensor operators is due to the 1 operator describing
transformation of wavefunctions with the coordinate system rotations. Commutators
involving tensors of the same rank are transformed in the same way (independently
of a specific tensor form).

Problem 3.6

Find the normalized wavefunctions ¢, that describe a particle located at a distance
ro from the origin with angular momentum [ and its projection m onto the axis z.
Solution

The desired functions have the form .1, = C(70)0(r — 79)Yim (9, ¢). From the nor-
malization condition (r(, 1, m’|ro,1,m) = 6(rg — 1)1 Smm: We get C(rg) = ry .

Problem 3.7

Find general eigenfunctions of particle momentum and angular momentum projections
on the z axis.

Solution

Vpom(r) = F2—eP=2/N. %e”’w - f(p), where f(p) is an arbitrary function of p (dis-

V2rh 2
tance to the z-axis) in a cylindrical coordinate system.

Problem 3.8

Show that the mean values of the vectors L, ¥, p for the particle state with
wavefunction 1) = exp(ipg - r/h)(r) are connected by the classical relation L = T x p.
Here, py is a real vector and ¢(r) is a real function.

Solution

Assuming that the wavefunction is normalized to unity, we find T = [r¢?(r)dV,
P = po. Since L; = g;px1P;, we have
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T =cm / o(x) {wapor + 2pr} )V, (1)
The second term can be transformed:
(D) erdio(r) = — b () + Lhos? 2)
o(r)zppro(r) = 5" o, k) + 50k

We can see that this contribution to L; is equal to zero by using Gauss’ law for the first
term and the convolution of dy; and €, for the second. From (1), we get L; = €;11Trpo
orL=r1 xp.

Problem 3.9

Find the eigenfunctions of the operators 12 and [, in the momentum representation.
Show that p = 0 for the states with definite values of [ and m.

Solution

In the momentum representation, we have p = p and f = iAV}, so that Al =t x pP=
—ihp x Vp,, which is the same as the form of vector in the position representation,
with only the replacement of r by p. It allows us to write down the eigenfunctions,
Vim (D) = Yim (U, @), of operators 12 and [, where ¥ and @ are the polar and azimuthal
angles of the p-direction in spherical coordinates (in the p-representation just as in the
r-representation, the angular momentum operator acts only on the angular values).

Since the spherical harmonics have a definite parity, all matrix elements of the form
(Im|p|lm’) are equal to zero (compare 1.16).

Problem 3.10

Prove that the functions produced by the action of operators ii =, + ify on the
eigenfunctions v, of [, are also the eigenfunctions of /., corresponding to eigenvalues
m £ 1.

Show also that for eigenfunctions of [, we have

a) ly =1, =0, b) 2=12, ¢) lly +1,l, =0.

x

Solution

From the commutation relations of the angular momentum components, it follows
that {, {4 =14(l, £1). If we apply this to 1, we get L.(ILtm) = (m = 1)(lLdm).
The functions [, are also the eigenfunctions of [, corresponding to the eigenvalues
m =+ 1 (in particular when m = %I, one of these functions is identically zero).
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We can use the orthogonality of eigenfunctions to obtain

(mll+|m) o< (m|m + 1) = 0 and (m|i%|m) = 0. (1)

It follows that E + zg =0 or [, = [, = 0. The second equation of (1) is equal to

12— 02 £ i(lyly + Uyl) =0

so that
2 =02 I, +1,i, =0. 2)
If we average the commutator [I,, I,] = il, and use (2), we get [ 1, = —lAZ,Tx =im/2.

Notice that these properties of the mean values are connected with the fact
that states with a definite value of the angular momentum [,-projection are axially
symmetric. All directions in the xy-plane are then equivalent.

Problem 3.11

In the state 1y, with definite angular momentum [ and its z-component m, find the
mean values 12, [2 as well as the mean values [ and [% of the angular momentum
projection along the Z-axis making an angle o with the z-axis.

Solution

Since 12 2= 12 — 12 =1(l +1) —m?, then using the result of the previous problem
we have 2 = 2 = L[1(1 + 1) — m?].

The angular momentum Zz-projection operator has the form
I =cosa-l. +sinacos I, + sinasing - ly, (1)

where a and (3 are the polar and azimuthal angles of the Z-axis. If we average I
over the state 1, we find that [; = mcosa. According to Problem 3.10 we have
I, = f = 0. We should note that the validity of this relation does not require [ to be

definite. We can use the results of the previous problem while now averaging l~ and
we find

4

1
=i+ — 3m?]sin® o + m?. (2)

Problem 3.12

Prove the relation

l
2+1
Vi (9,
> Yim@ 9 = pp

m=—I
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Solution

This equation follows directly from Eq. (IIL.6) with 6’ =6, ¢’ = p. In that case,
cosa =1 and P(1) = 1.

Problem 3.13

Find the form of wavefunction ¢, s—o(n) of a particle with total angular momentum
[ and projection along the Z-axis m = 0. In this state, determine the probabilities of
different values for the z-component of the angular momentum.

Solution

1) The wavefunction of a state with a given angular momentum [ and projection [, = 0
has the form 1 ;.—o(n) = ((21 + 1)/47)*/2Pj(cos ). If we note that cos? =k - n,
where k is the unit vector directed along the z-axis, and if we take into account
the equivalence of different spatial directions, we obtain ¢ ;,—g = (251—';1)1/ 2
Py(k - n) where k is a unit vector along the Z-axis.

2) We can get the expansion of this wavefunction into a series of the spherical
harmonics Y, (n) immediately from Eq. (IIL.6). The desired probability for I, = m
is given by w(m) = (47 /(20 + 1))|Y}m (k)|?. It appears to depend only on the angle
« between the axes z and 2.

Problem 3.14

Let w;(my; ma, ) be the probability to measure a particle’s projection of the angular
momentum on the Z-axis as meo, if the particle is in the state with a definite angular
momentum, mq, along the z axis, where both states have definite angular momentum
I and the angle between the axes is «. Prove that w;(mq;ma, o) = wi(ma; my, @).

Solution

We use symmetries of the space to prove. Switching axes z and Z should not change
the probabilities, so w;(my;ma, a) = w;(ma;my, —a). There cannot be any probability
dependence on the azimuthal angle, so we can rotate one axis around the other to get
wi(ma;my, —a) = wi(me; ma, ), and we have proven the relation.

Problem 3.15

For an angular momentum L, find the projection operators Pr (M) that project onto
the state with a definite value M for its z-component. The operators act in the space
of the state vectors with a given value L of the angular momentum.
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Solution
The form of projection operator is
L A
- , L, —m

PL(M) = M—-m’

m=—L

where the prime means the absence of a multiplier with m = M in the product. This
follows from the result of Problem 1.35.

Problem 3.16

Using only the commutation relations for the components of the angular momentum,
find Tr(l;), where [; is a matrix of the ith component of angular momentum /.
Solution

From the relations [;[;, — lxl; = iaiklil7 and using the equation Tr(le) = TI‘(BA)7 we

have Tr(l;) = 0. Compare with Problem 1.5.

Problem 3.17

Determine the traces of the following matrices:
a) Li, b) LiLx, <) LiLxLy, d) LiLyLiLy,
where L; is a matrix of the ith component of angular momentum L.

Solution

The matrices L; are vector (more precisely, pseudovector) operators and their products
L;Ly...L, are tensor operators. After the calculation of trace, such an operator
becomes an ordinary numerical tensor which can be expressed in terms of the universal
tensors d;; and g;5;, since there exist no other vectors or tensors in the conditions of
the problem. Thus:

a) Tr L; = 0.
b) TI"(LiLk) = A(Szk
We obtain a value of A by making a convolution over the indices i and k:
3A=TrL? = L(L+1)Tr 1 = L(L+1)(2L +1).
C) Tr(i/ii/kfjl) - Bgikl-
For determining B, we have

9B = Tv(L1Lols) — Tr(LoliLs) = iTe(L2) = %Tr(ﬁz) —iL(L +1)(2L +1)/3.

We used the relation ﬁlﬁg — ﬁgﬁl = iﬁg.
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d) Tr(LiLgLiLim) = C16:10im + C20:16km + C30im0i.
To obtain C,, we should first perform convolution over i and k and then over [ and
m, so we obtain

9C, + 3Cy 4 3Cs = Tr(L2L?) = (2L 4+ 1)L3(L + 1)2. (1)
And now we perform convolution over ¢ and m and over k and [:

3C) + 30y 4 9Cs = Tr(L2L2) = (2L 4+ 1)L3(L + 1)2. (2)

26] gver 4 and [ and then over k and m:

At last, we perform convolution!
301 +9Cy +3C3 = (2L + 1)L*(L + 1)* — L(L + 1)(2L + 1). (3)
From (1), (2), and (3), it follows that!2"]

Cl—Cy— 2L%(L+1)%(2L + 1?30+ L(L+1)(2L + 1)7 (4)

Cy— L3*(L +1)2(2L + 1)lg 2L(L+1)(2L + 1). (5)

3.2 Angular momentum, [ =1
Problem 3.18

For the case of a particle with the angular momentum [ = 1, find the wavefunction
Yi=0(V, p) of the state with a definite projection m = 0 of the angular momentum on
the zZ-axis whose polar and azimuthal angles are o and f.

Solution

The wavefunction of a state with I =1 and I, =0 is Yip(n) x cosf = n -k, with k
being the unit vector directed along the z-axis. Due to the equivalence of spatial

directions, in order to get Iz = 0 we should replace k by k, the unit vector directed
along the z-axis. Compare with Problem 3.13.

V=1 =0 = \/i (f(-n) = \/i [cos awcos B + sin acos(¢p — ) sin 6] .
’ 47 47

[26]  In this case we can put LiLy = LiLy, + iesLs and use egise;65 = 6.

[27]  There is another way of obtaining these relations. Using Tr(L;LyLiLm) = Tr(LyLyLm L;) we
have Cy = Cy. Multiplying by 6;10;m, we obtain 1201 + 3Cy = (2L + 1)L?(L + 1)2. Multiplying
by €iknEimn gives 6C1 — 6Cy = (2L + 1)L(L + 1). So we have (4) and (5).
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Problem 3.19

Find the wavefunctions ¢, (¢, ¢) and 1, (9, ¢) of a particle having a given value [ =1
of angular momentum and a definite value of its projection onto x and y axes. Use
the specific form of the spherical harmonics Y1, (9, ). See Eq. (IIL.7).

Solution

Using the relations for Y7, and the equivalence of different coordinate system orien-
tations, the wavefunctions can be obtained by a permutation of variables z, y, z. For
example:

N2, 3\ 1/2
Yi=1, l,=+1 = Fi <> yLee -i <) (singsin 6 + icosf).

81 r 81

We can find all other wavefunctions in a similar way. See also Problem 3.18.

Problem 3.20

A particle is in a state with angular momentum ! = 1 and z-projection m (m = 0, £1).
For such a state, determine the probabilities, w(m,m), of different values m of the
angular-momentum projections onto the z-axis making an angle a with z-axis.

You can use one of the following two approaches to the problem:

a) by using the result of Problem 3.11;
b) by finding the expansion coefficient ¢(m, m) of the given wavefunction into a series
of eigenfunctions of the operator I;.

Solution

We denote the angular momentum projection probabilities with m = £1 by w(=£1).
From Problem 3.11, we have

> w(m)m = w(1) —w(-1) = mcosa,

m

z

> wim)m® = w(l) + w(—1) = m* + (1 - %) sin? .

m

|
I

The solution follows:
1
w(l,m) =w(l) = Z[2m2 + 2mcosa + (2 — 3m?)sin? o],
1
w(—=1,m) =w(-1) = Z[2m2 —2mecosa + (2 — 3m?)sin” al,

w(0,m) =1—w(l) —w(-1).



96 Exploring Quantum Mechanics

Problem 3.21

Show that for a particle with angular momentum [ =1, the three functions
Yr,=0(9, ), i,—0(V, ), and ¥, —o(V,p), that correspond to the states where the
projection of the angular momentum onto the z-, y-, and z-axis correspondingly is
zero, form a complete set of functions.

What is the meaning of the expansion coefficients of an arbitrary state with [ =1
in terms of these functions?

Solution

The wavefunctions considered, ,—o(d,¢),(i=1, 2, 3), have the form
(@ =iy/3/4m) Y1.—0 = Y10 = az/r = acos?, ,—o = ax/r =asindcosy, Y;,—o=
ay/r = asin?¥sin . Their independence and completeness are obvious. We can see
that different wavefunctions 1);,—o are orthogonal:

/ U ot —0d = b

This is why coefficients C; in an expansion of an arbitrary wavefunction ¢;—; with
these functions determine the probability w(i) = |C;|? of the i—projection of angular
momentum being equal to zero. We should note that this result does not have a direct
analogy to an expansion in terms of operator eigenfunctions.

Problem 3.22

For the angular momentum [ =1, write expressions for the operators of angular
momentum components, as well as for raising l+ and lowering I_ operators, in the
l,-representation.

Find the wavefunction of a state with [, = 0 in the [,—representation from the
solution of an eigenfunction equation.

Solution
1) Using Eq. (II1.9) for I = 1 we obtain:

0 7 0 MR 10 0
L= v Y % | =] % 0 -5 | L= 8 8 01 ,
0 — 0 i -

=~
|
co o
o&o
‘Nw
I
o&o
c oo
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a
2) With ¢, —¢ = b |, we have an eigenfunction equation in the form
c
) L [0 10 a . b
Ly, —0 = — 1 0 1 b = — a—+c =0.
V2 o 1 o0 c ) V2\
Hence it follows: b = 0, a = —¢; and |a| = 1/4/2 for a wavefunction normalized to

unity.

Problem 3.23

For a state with the value of angular momentum / = 1 and its z-projection m, find the
mean values [; and [y (n is integer).

Solution

Since, when [ = 1, the eigenvalues I, and [, are equal to 0, £1, it follows that ZE’ =1,
and ZB = Zy (compare with Problem 1.17). In a state with [ = 1 and [, = m, we have

l,=1l,=0and 2= E =1—1m? (see, for example, Problem 3.11). It follows that

17 = I = 0 for the odd values of n and I} =11 =1 — im? for the even n (n > 0).

n
Y

Problem 3.24

Find an explicit form of the operator R(goo) = exp(iwo i) (a coordinate system
rotation over the angle, ¢o) that acts in the space of state vectors with angular
momentum [ = 1. Using this operator, obtain in terms of the spherical function Y,
the wavefunction, 1,7,—0(?, ¢), of a state with { = 1 and m = Iz = 0, where the Z-axis
is defined by its polar a and azimuth 3 angles. Compare with Problem 3.18.

Solution

Since the operator ¢ - 1, acting in the subspace of state vectors with [ = 1, has only
three eigenvalues equal to 0 and +¢g, then (from Problem 1.22) we have

R=el=1+isingg-(ng-1) — (1 - cosgo)(ng - 1)2, (1)

where ng = ¢/po. We choose the rotation vector ¢ so that after rotation, the z-axis
of the initial coordinate system with respect to the axes of the rotated system has the
same orientation as does the Z-axis with respect to the initial coordinate system.
Wavefunction (¥, @) = RYj, (0, ¢) will describe a state with momentum [ and
z-projection m. The operator R a rotation. It is easily seen that for this case, we
should choose ¢y = (asin 3, —acos 3,0). So

R=1+isina(l,sins — fy cos ) — (1 — cos ) (I sin 3 — Zy cos 3)2.
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For the wavefunctions ;-9 = RYZO, we obtain

1/2
W= = 1 <4?;_> (cos accos @ + sin asin 0 cos(p — ), (2)

in accordance with the result of Problem 3.18.

Problem 3.25

In the space of states with angular momentum [ = 1, find the projection operators,
P(m), to states with a definite z-component of the angular momentum, m.

Generalize the results obtained to the case of an arbitrarily directed Z-axis. By
using the operator Pm, obtain both in the [, and in the coordinate representations
the wavefunction, 9 5—o, of a state with angular momentum / = 1 and Z-projection
m = 0. Compare with Problem 3.18 and Problem 3.24.

Solution

For the P,,, we have the relations (compare with Problem 3.15):

. N 1 A

P(0)=1—12, P(+1) = 5(fg +1.) (1)
Projection operators P(1m) are obtained from (1) by the substitution of I3 for I., where
lg is

b >

I:=k-1= cosa-iz +sinacosﬁ~fw + sinasin 3 - Zy
k is the unit vector directed along the z-axis, and a and § are the polar and
azimuthal angles of the k direction. In particular, for the P(m = 0) operator in the

[,-representation, we can use Eq. (1) from Problem 3.22 to obtain

1 e 2 1 B _1,-2ifB ;2
5 sIn” o —2\/56 sin 2« 5€ sin” «
A 1 15 . 2 1 —i,B .
— — —_—— 11 2 —_— 111 2
P(m 0) 2\/56 S « cos” « 2\/§€ S «
1,208 (12 1B o 1 0.2
e sin” « —Qﬂe sin 2« 5 sin” o

Acting with this operator on an arbitrary function, for example the function

1
=1 0 |, wefind the eigenfunction, ;-9 = C’If’(rh = 0)%, of the operator [; that
0
corresponds to the eigenvalue [; = 0:
1
ﬁ S1n &
V=0 = —ecosa ; (1)

1208 o
——e“"Psina
V2



Orbital angular momentum 99

where C' = /2 /sina has been chosen to ensure proper wavefunction normalization.
In the case of @ = 7/2 and 8 = 0, function (1) reproduces the result for ¢;, = 0 from
Problem 3.22.

By taking into account the form of spherical function Y1,,(n) (see (IIL.7)), we see
that wavefunctions of state (1) in the coordinate representation, ¥ = > ¢, Y1y, differs
from the ones found earlier in Problem 3.18 and Problem 3.24 only by a phase factor.

3.3 Addition of angular momenta
Problem 3.26

Write down the total angular momentum operator of two particles as a sum of two
terms, corresponding to the angular momentum in the center of inertia system (i.e.,
the angular momentum of relative motion) and the angular momentum in the frame
of reference associated with the system’s translational motion as a whole.

Solution

An angular momentum operator for a two-particle system has the form
f1211+12:—ir1XV1—ir2XV2. (1)

Now we define new variables r and R in terms of ry and ro

m
I‘:I‘Q*I'l,I‘l:R*iQI‘,
mi + mg
R L (murt +mars), rs =R+ — 1
= ——(mqry +marsy), T = _r.
e G or2), T ——p—
Since
m m
Vi=———VRp—V,, Vo= —2 Vg +V,
my + ma my1 + my

operator (1) could be written in the form
ﬂ:—irxvr—inVR,

where the first term is the angular momentum operator for the two particles in the
center-of-inertia reference frame, while the second one corresponds to the angular
momentum operator that is connected with the overall translational motion.

Problem 3.27

Angular momenta [y and Iy of two weakly interacting systems are combined into a
resulting angular momentum with the value L. Show that in such states (with a
definite L) the products 1 - 15, 15 - L, 15 - L have definite values as well.
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Solution
From the relation L = 11 + 15 it follows that

A 1.
11.12:§[L2—l1(l1+1)—l2(l2+1)],
PO 1. PO 1.
L-L= gL+ h(h+1) =L+, l-L=gL* bl +1)+ b+ 1))

We took into account the commutativity of L and 11’2. In all states with definite values
of L2, 12, 13, the considered scalar products have definite values also.

Problem 3.28

Find the following commutators:

li?z', L '12)17 [Li, (t1-D2)], [1}1’ (Ii'l - 1)];
2) [Li, @1k, [Li, gr] where g = [l X Lo];
Li, T1x221], [Li, T1xpal,

11 and iz are the angular momentum operators of particles 1 and 2, L= il + 12 is
the operator of their total angular momentum. Note that the commutators have a
universal structure (inside each group of expressions presented above). Compare with
Problem 3.5.

Solution

The commutators considered have the same vector structure as in Problem 3.5.

Problem 3.29

Two weakly interacting systems have states characterized by quantum numbers
(l1, mq) and (I3, mg) of their angular momenta and its z-projection. Give possible
values, L, of the total angular momentum of a composite system (1 + 2) and calculate
the mean values L and L2. For the specific case where mq = Iy, me = lo — 1 find the
probabilities for the different possible values of the total angular momentum.

Solution

1) The possible values of the composite system’s total angular momentum are:
max{\ll — ZQ‘, |m1 —|—m2|} S L S ll + l2.

Taking into account the mutual commqtati\iity of fli and sz, the relation
L? = 1f +15 + 211, and the mean values [, = [, = 0 in the states with a definite
value of I, (see 3.10), we find the mean values L, = L, =0, L, = m1 + mo, and
also
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L2 = ll(ll + 1) + 12(12 + 1) + 2mimes. (1)

2) In the case where my = Iy, mas = ls — 1, the only possible values of the total angular
momentum are Ly =1y + 1y and Lo =11 +1ls — 1. We have w(Ly) =1 — w(Ly).
Using (1), we obtain

L2 =) w(L)L(L+1) = L} — Ly + 2Lyw(Ly)
L

=Ll +1)+(la+1)+20 (s —1).

Thus we have

Problem 3.30

Show that when we add two angular momenta of the same value (Iy =1y =1) to
produce a total angular momentum, L, the wavefunction ¥ (mi,me) in the l,ls,-
representation has a symmetry with respect to interchange of m; and ms. Indicate
how the nature of the symmetry depends on the value of L.

Solution

First we consider the wavefunction, s, of a state with L = 2] and M = 2I, so
that we must have m; = mqo =1[. It is obviously a symmetric function with respect
to the interchange of m; and msy. The wavefunctions with given L = 2[ but with
other values of M are also symmetric functions. This follows, for example, from the
relation ¥, p=r—n = C’ﬁ’_lwh 7. We have [_ = (le + ng) — z(fly + igy), and in the
case [; = Iy there is symmetry with respect to permutation of the momenta.

Next we consider the states with M = 2] — 1 and write down the most general
wavefunction for such states in the form of a sum of symmetric and anti-symmetric
terms:

C C
Yyr=21—1 = £(5m1,15m2,z—1 + Oy i=10ms 1) + %(57711,15@,1—1 — Oy 1—10ms.1)-

We see that the symmetric term corresponds to the total angular momentum Ly = 2,
while the anti-symmetric one corresponds to Lo =20 — 1 (if we had both angular
momenta present in the first term it would have contradicted the orthogonality of
eigenfunctions corresponding to different eigenvalues). So the wavefunction 91 91,
and any other state corresponding to L = 21 — 1 (see above), is anti-symmetric with
respect to the mutual interchange of m; and mo.

Similarly, we can consider the states with M = 2] — 2. Now the wavefunction
Ypr=o1—o includes three independent terms, and two of them (with m; and ms
equal to [ and | — 2, and also my = mg =1 — 1) are symmetric while one (with mq o
corresponding to [ and [ — 2) is anti-symmetric. The anti-symmetric state corresponds
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to the angular momentum L = 2] — 1, while the two symmetric states correspond to
the angular momenta, Ly = 2l and Lo = 2] — 2.

Therefore, we conclude that the wavefunctions symmetric with respect to the
interchange of mj; and msy correspond to the states with L =21,2] —2,2] —4,...,
while the anti-symmetric wavefunctions correspond to L =20 — 1,21 — 3,....

These symmetry considerations apply not only when the values of [ are integer
but also when they are half-integer. This circumstance is important when considering
particle spin. See Chapter 5.

Problem 3.31

A system with the z-projection of the angular momentum M is made up of two
particles with the same total angular momentum values, Iy =l5. Prove that the
probabilities of my () = m and my) = M — m are the same.

Solution

The proof follows directly from the two facts: 1) due to the symmetry of wavefunction
Yrar(my, mg) with respect to the interchange of m; and mo (see Problem 3.30), the
probabilities of the same value of m for the both angular momenta are the same,
i.e., wi(m) = wa(m) = w(m); 2) since my + mo = M we have wy(mq) = wa (M — my).
Hence it follows that wy o(m) = wq 2(M — m).

Problem 3.32

Two subsystems which have the same values of their angular momenta, {; =l =1,
are in states with definite values m; and ms of the angular momentum projections.
Determine the probabilities for different values, L, of the total angular momentum
in such states. Use the result of Problem 3.29 for the value of L~ and take into
account the symmetry of the state wavefunction with a definite value of L shown
in Problem 3.30. We should note that with arbitrary values of l; o and m; s, the
desired probability is w(L) = \C'ZLI ZZIJJZ; |2, where CEM | are the Clebsch-Gordan
coefficients. See Problem 3.38.

Solution

We will look at different cases for my, ms.

a) When m; = mg = +1, we must have L = 2.

b) If m; = £1, ma =0 (or my =0, mg = £1), then the possible values of angular
momentum are L; = 2 and Ly = 1. Their probabilities, w(2) = 1/2 and w(1) = 1/2,
follow from the results of Problems 3.29 and 3.30.

¢) In the case where m; = ms = 0, the total angular momentum may take the values
0 and 2 only; L = 1 is excluded due to the wavefunction symmetry with respect to
the interchange of m; and my (see 3.30). From the condition L2 = 6w (L = 2) = 4,
it follows that w(2) = 2/3 and w(0) = 1/3.
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d) When m; = —mg = %1, the total angular momentum may take all the three values:
0, 1 and 2. Writing the wavefunctions in the [y,ls,-representation for the case of
m1 = —ms = 1 in the form

1
:51 62z_ -~ 7§1z 52z_+5lz_52z
0= bab 1 = 5 TG B 18)
1
—"_761 62z_ —61z_62z ’ 1
5O adi l,un} 1)

we see that the probability of the value L =1 (the second, antisymmetric term
in (1) corresponds to this value) is equal to w(L = 1) = 1/2. Then we have L2 =
S L(L+ 1)w(L) = 6w(2) + 1 = 2. Hence it follows that w(2) = 1/6, w(0) = 1/3.

Problem 3.33

Illustrate the relation established in Problem 1.43 and its probabilistic interpretation
by the example of the addition of the angular momenta [; and Iy for two weakly
interacting subsystems with the total angular momentum, L.

Solution

In the statement of Problem 1.43, by A we take a set of commuting operators [, and
lgz with eigenvalues m; and ms, while by B we take a set of L2 and L = llz + lgz
Therefore we have the probability relation wyas(mi, ma) = Wy, m, (L, M), i.e., the
probability of the values m; and mo in a state with given values L and M (here
M = my + ms) is equal to the probability of the values L, M in a state with given
values m; and ms. Compare, for example, with the results of Problems 3.32 and 3.35.

Problem 3.34

For a system of two particles with equal angular momenta [; =l =1, find the
Vyavefunction of a state with L =0 in the [.ls,-representation. Use the operators
L. Find the wavefunction in the coordinate representation also.

Solution

Let us write down the desired wavefunction of the combined system in the form ¢y _g =
Z Conih's m» Where w(l 2) are the normalized wavefunctions in systems 1 and 2 with

angular momentum [ and z-projection m. It is obvious that
Lith—o = (l1x +l2x)hp—0 =0, (1)

where Ly = L, + iﬁy = I+ + lo+. Now we use the relation (see Eq. (IIL.8)) Z+¢zm =
V(= m)(+m+1)Yy 41 From (1) we obtain

Lo = Z VI=m)T+m+1)(Cop + Coni ) 102 =0
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It follows that C,, 11 = —C,,. From this, we get |C,,,| = const = (21 + 1)~'/? from the
normalization of ¥;_¢ to unity. So, in the state with L = 0 the probabilities of the
different values of the both angular momentum z-projections (and any other axis
projection) are the same and are equal to w = (20 + 1)~*

The form of the wavefunction, y—_g, in the [y.ls,-representation follows from
the fact that in this representation, w( 2 = 01(5).,m- In the coordinate representa-
tion, 12 = Yim(ny o). Using the fact that C,, = (—1)""™(2] + 1)7'/2, the relation
between the spherical functions Y;*, (n) = (—1)!="Y] _,,,(n), and the addition theorem,
Eq. (IIL.6), we find

Y m(m)Y_,, (n2) =

V2+1
47‘(‘ Pl(nl . 112).

X A

Let us note that such a view of wavefunctions, ¢ ;—g, could also be seen from the
following considerations. Due to the fact that the wavefunction is invariant under
rotation (L = 0), it is a scalar of the form ¢_o = f(n; - n2). The reason f(x) is the
Legendre polynomial Pj(z) is that the angular momenta that are being added have
the specific value, [. Compare, for example, with Problem 3.13.

Problem 3.35

The angular momenta of two particles are [; =1, = 1. For such a system, find
the wavefunctions s of states with given values L and M of the total angular
momentum and its z-projection. Use the results of Problems 3.30 and 3.34.
Solution

In the I;.l5.-representation, the expressions for wavefunctions 15, 1o are as follows

1 1 0 0
Yo, 2=1 0 0 2, 2= 0 0 . (1)
0o/, \0/, 1/, 1/,
¢l
From here on, the columns () = Co are the wavefunctions of a particle
C-1

1(2

1(2) or a subsystem with angular momentun(l )l =1 in the [,-representation. The
expressions for wavefunctions ¢y s with quantum numbers L =1 or 2, M = +1 and
also L =1, M =0 follow directly from wavefunction symmetry with respect to the
interchange of mj and ms, as established in Problem 3.30:

) 1 0 0 1
Yo (1), 1= —= 0 1 R 0 , (2)
V2 0 0 0 0

1 2 1 2
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P = L ; (1) + (1) 8 (3)
T \/ﬁ 1 1 0 2 0 1 1 2 |
1 1 0 0 1
Y1, 0= ﬁ 8 1 (1J 2 - (1) 1 8 2 . (4)

The sign + corresponds to L = 2 while the sign — corresponds to L = 1.

The form of wavefunction 1 ¢ is given by the result of the previous problem:

1 1 0 0 0 0 1
Yo, 0=—7x 0 0 -l 1 1 +1 0 0 . (5
VA
0/ N1/, 0/,\0/, L7y N0/,

The wavefunction 13 o is symmetric in the variables of m; and mo and may be written
in the form

1 0 0 1 0 0
V2,0 =Ch 0 0 +1 0 0 +Cy| 1 1] . (6)
0/ \ 1/, LN 0/, 0/,\0/,

From the condition of its orthogonality to v ¢, it follows that Cy = 2C;. We choose
Cy =1/v6, Cy=2/+/6 in (6) and obtain the normalized wavefunction 12,0. The
probabilities of different z-projections of angular momenta which are being added in
states ¢ follow directly from the determined form of wavefunctions (1)—(6).

Problem 3.36

For a system of two angular momenta, [y =1s = 1, find the wavefunction, ¥,
with L = 0 total angular momentum, using the projection operators. Compare with
Problem 3.34.

Solution

In the case l; = ly = 1, the operator, 1; - 1o, has the following values in the states
with given L: 1 for L =2, —1 for L =1 and —2 for L = 0, therefore the projection
operator for a state with L =0 has the form P(L = 0) = %((il 13)2 — 1) (compare
with Problem 1.35). Acting on an arbitrary wavefunction ¥ of a state with [y =l =1
with this operator, we obtain an (unnormalized) eigenfunction of the operator of a
squared total momentum corresponding to L =0, i.e., ¥p—g = CP(L =0)¥ (Cis a
normalization coefficient). Writing down

. 1. . F
R e A P §(l1+12— +li_loy)



106 Exploring Quantum Mechanics

(expressions for I in the case of =1 are given in Problem 3.22) and taking for

0 0
convenience the wavefunction ¥ to be equal ¥ = 1 1 in the [,1l,o-
0 0
1

representation, we obtain as a result of straightforward calculation the desired wave-
function:

A 0 0
Yp—o =CP(L=0)| 1 1
0 1 0 2
1 1 0 0 0 0 1
= 0 0 -1 1 +1 0 0
3
\[ 0 1 1 2 0 1 0 2 1 1 0 2

If we choose C' = /3, we have the normalized wavefunction of a state with L = 0,
which coincides with the result of Problem 3.34.

Problem 3.37

Classify the independent states of a system which consists of three weakly interacting
subsystems whose angular momenta are Iy =1l =1 and I3 = [, by the value of the
total angular momentum L.

Solution

There are 3-3- (20 + 1) = 9(2] + 1) independent states. Their classification by values
of the total angular momentum, L, is listed in the following table

L [+2 I+1 l -1 -2

Numbers

of states 2045 2-(243) 3-(2+1) 2-(2-1) 2-3

In order to solve the problem it is convenient to add the angular momenta of the
two subsystems that have | = 1 into their total angular momentum L5 which takes
the values equal to 0, 1, 2, and then to add Lis and I3 =1 into the total angular
momentum L of the entire system.

Problem 3.38

As is known, the problem of the addition of angular momenta of two systems [; and
l> into the total angular momentum L could be solved by the following relation

1 2
QZ}LM = Z Clngllzmzwl(lgnlqpl(y)ny M =m + ma,

mime
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where Cl1%1l2m2 are the Clebsch-Gordan coefficients. Using the “raising”
(“lowering” )-operators, Ly, determine these coefficients for the special case of

L=11+1.

Solution
In this problem, by L we shall underbtand the deﬁnlte value L =1y + 5. The cor-

responding the wavefunction is ¥ = 1/}11 llzle Using the property of the L_-

la*

operator,
L prar = (L =M+ 1)(L+m)r a1,
we obtain
L+ 17 Ly
=|— L_ . 1
2 [(L — M)!I(2L)! (B-)" " ore (1)
Since L_ = [1, + lAg, and since il, and ZAQ, commute with each other, then from (1)

it follows that

la I

brar = G(L, M) Y OF (o)™ ()2,

=G(L,M)Y_C G (I, lh —m)G ™ (Ig, M +m — W 2

m

(1) (2)
- chlmllQmQ l1 77L1wl2 meo? (2)

mi

where the following notations are used:

/
(L+M)!)]12,C?: L )

G(L, M) = [( m!(L —m)!

L — M)!(2L)!
From (2), the values of the desired Clebsch-Gordan coefficients follow:
= G(LM)G ™' (lym1) G~ (I, ma) CL 1

Cl1m1l2m2

Using (3), we find the final expression:

oM, = (21)!(20)!(L + M)!(L — M)! 1/2
limiloma — 2Dy +m)l(ly — my)! (I + ma)!(la — mo)! .

Problem 3.39

The same as for the previous problem but for the case where Iy =13, L = 0.
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Solution

The Clebsch—Gordan coeflicients for this case are given by the results of Problem 3.34.
Putting C; = (21 +1)~'/2, we find:

Cl mid,—m = Cm = (-t

Problem 3.40

For two weakly interacting systems with j; and jo for their angular momenta, average
the operators

a) 51(2)1'7 b) Jridek — Jukzi i c) Jridak + Jukd2i ; d) Jridie + Jikds

over the states characterized by a given value, J, of the total angular momentum.

Obtain an explicit expression for the magnetic moment operator of the system,
&= g1j1 + g2J2, in a state with a given total angular momentum, .J (here g; 5 are the
gyro-magnetic ratios for the subsystems considered that relates their magnetic and
mechanic angular momenta).

Solution

After averaging, these tensor operators act in the space with an angular momentum .J.
Each of them is expressed in terms of the vector operator J; and universal tensors d;;
and ;5. The condition that the tensor character of the initial and averaged operators
are the same puts strict constraints on the form of such expressions.

a) 51(2) = al(z)j (vectors of the form JJ; jk, 5zkljkj17 ete. all are reduced to J; from

the commutatlon relations for J; components). Multiplying by J;, we obtain!2®]
ajg) = (J+1) From now on, for the sake of brevity, the scalar terms (j1 2 - J) and
(j1 - j2) which have definite values simultaneously with j%,j2,J? are not written in
explicit form. See Problem 3.27.

b) Taking into account the antisymmetric nature of the tensor, we have

Jridok — Jikdai = beiri . (1)

We multiply both sides of this equation by Jy, from the right and by J; from the
left, and we find that the left-hand side of the resulting equation is equal to zero
while the right-hand side takes the form besgadididy = —iJ(J+1)b,s0b=0.

¢) Due to the symmetry property of the tensor we have

jujzk + jlkai = A6 + AZ(jijk + jka) (2)

[28]  Multiplication by J1i (or 321) is not meaningful, because the operators 3172, unlike J; ‘mix up’ states
with different values of J.
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First we perform a convolution by ¢ and k, and second we multiply this by Ji
from the left and by J; from the right. Using J;JiJ;Jyp = J2(J + 1) — J(J + 1),

we obtain two relations:

3A1 4 2J(J + 1) Ay = 2(j1 - j2),
J(J +1)Ay + J(J +1)(2J7 + 27 — 1) Ay = 2(j; - J)(j2 - J).

We get

A, - (477 +4J —2)(§1 - j2) — 401 - ) (G2 - I)
! (27 —1)(2J + 3) ’
601 - J)(G2 - J) —2J(J + 1)1 - j2)
T+ D2J —1)(27 +3)

As =
d) In a similar manner, we obtain

Jridik + Jikdri = Bk + Ba(Jidy + JiJy),
_ iU+ D)7+ 4T —2) — 43 I)° + 201 - )
2] —1)(2J +3) ’

6(1-J)* =21 (jr + 1)J(J +1) = 3(j1 - J)
T+ 1)) — 1)(2] + 3)

By

By =

For (4), we used the equation

jij1(2)k51(2)ijk = (Ji2) AJ)? - (i) - J)-
For the magnetic moment operator of the total system, we have
a(J) = 9131 + g232,
and using the result from (a) we have

(g1 4+ 92)J(J +1) + (91 — 92)[71(J1 + 1) — j2(j2 + 1)] 5
27(J + 1)

a() = g()I =

3.4 Tensor formalism in angular momentum theory
Problem 3.41
Prove that the function of the form

7/)1(11) = Cik.nNiNk « .. Ny,

J.
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where n = r/r and ;. ,, is a completely symmetric tensor(29 of the Ith rank with a
trace €., = 0, is an eigenfunction of the squared angular momentum operator of a
particle whose angular momentum is [.

Further, show that the number of independent tensor components is equal to 21 4 1,
which coincides with the number of the spherical functions, Y}, (n). This shows that
the angular dependence given above is the most general such dependence for the
particle states with the angular momentum, /.

For the special cases where [ = 1 and [ = 2, indicate explicit expressions for the cor-
responding tensor components €;(m) and tensors ;;(m) that make the wavefunction
(1) equal to the spherical function Yi,,.

Solution
Let us consider wavefunctions of the form

Yi(n) = ik nTiTg ... Ty = Eike N - - - n,rt.

Using the connection of operator 12 with the Laplace operator,

10,0

2 2 _ 2 _ _
I°=—r*Ag 4 =r°(A, — A), A, 26r o (1)

we obtain

TQAT’L/NJl = ik nMilg - . NpATL = {1+ )1/}17

o 0
Ay = 9o Or T Cikp.. LTk Ty - - Ty, = (2)
Eikp..n(OimOkmTp - - Tn + . ..) = Emmp..nTp .- Ty + - =0.

From (1) and (2) it follows that 124, = I(I + 1)¢);. We see that the function v given
in the problem statement is an eigenfunction of 12,

2) First let us find the number, (1), of independent components for any symmetric
tensor of the [th rank &, ,. We make the notations: ny is the number of tensor
component indices that are equal to 1, no is the number of indices equal to 2,
and n3 = (I —n; —ng) is the number equal to 3. Due to the tensor symmetry, its
components with the equal numbers n; and no are the same. When n; is fixed, no
could be equal to 0,1,...,l — ny so the number of non-equal components with the
given ny is (I — n1 + 1). The total number of non-equal components is

l

l
(+1)(+
g =Y (I—m+1)=(+1)? Zm-%
’I’L1:0 n10

The number of independent components g(I) of a symmetric tensor with rank [ and
zero trace comes from the relation €., = 0, and so it is given by a set of g(I — 2)

[29] Do not confuse with the antisymmetric tensor e;x;!
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linear relations between the g(I) independent components of &;x. . So g(1) = g(I) —
Gl —2) =20+ 1.
3) Comparing 9;—1, m = (e(m) - n) with Eq. (II1.7) we find

(0) = \/3/4m(0, 0, i), e(£1) = v/3/87(Fi, 1, 0). (3)

Similarly for the case | = 2, we obtain the tensor components &;,(m):
i 0

1/2 . *
en(2) =— () i -1 0 |, en(-2) =€), (4)
0 0 0
001
ein(1) = (355) 0 0 i |,en(=1)=—e1),
1 72 O
e L0000
eie(0) = (1) 01 0
0 0 -2

Problem 3.42

According to the previous problem, the most general angular dependence of a state
with the angular momentum [ = 1 has the form v¢;—; = € - n, where € is some arbitrary
complex vector. Find

a) a condition on the vector € for the wavefunction to be normalized to unity;
b) mean values of the tensor components 7;7g;

c¢) mean values of the angular momentum vector components I;

d) a condition on the vector € for being able to find such a Z-axis in space that angular

momentum Z-projection has a definite value m = 0 or m = +1.

Solution

a) Since

47
le - n\2 = g;ern;ny and /nmde = ?5%,

then for the wavefunction normalization to unity, we should choose € = \/3/47wa
with |a] = 1.

47
15

b)

TNE = €]En / N dQ) = €€y - — (8ik01n + 0indkt + 0i10kn)

1
= g(éik + ajar + aja;).
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¢) Since lih—y = — 18k 0/ 0%y (€T /1) = —i€iknenny, it follows that
l; = —isiknefnen/nmnkdfl = —1Eikn L0y,
In other words, 1 = —i[a* x a] or, writing a = a; + iay (where aj o are the real

vectors and a? + a3 = 1), we obtain I = 2[a; x ay].

d) Remember that € = \/3/4m(a; + iay). It is easily seen that if a; || ag, the angular
momentum projection along a common direction of the vectors a; » has a definite
value m =0. If a; L ay and a; = ag, then the angular momentum projection
along the a; x ay vector has a definite value m =1 (or m = —1 for the opposite
direction).

Problem 3.43

For the conditions of the previous problem, find the probabilities, w(m), of different
values of m of the angular-momentum projection on the Z-axis directed along the unit
vector k. Show that for an arbitrary state with the angular momentum [ = 1, there
exists a spatial direction that the probability of angular momentum projection m = 0
onto it is equal to zero.

Solution

Let us write the wavefunction in the form ¢ = /3/4w(a - n) with |a|> = 1. Then we
have

win =0) = |- o), w(in=+1) = gl m)s Fila-kxm)P. (1)

Here n; is some real unit vector that is perpendicular to k (the choice of n; is non-
unique but relations in (1) do not depend on it). Writing a = a; + iay shows that the
probability of the value 7 = 0 of projection onto the axis directed along vector [a; x
ay] is equal to zero. For the case of a; || as, projection onto an any axis perpendicular
to a; can not take the values m = 0.

Problem 3.44

According to Problem 3.41, the angular dependence of an arbitrary state with the
angular momentum [ = 1 has the form ¢;—; = (a - n), i.e., it is completely determined
by some complex vector a. Therefore in the case of states with the angular momentum
[ =1, we can use a representation (let us call it the vector representation) in which the
wavefunction coincides with components of the vector a, i.e., ¥(k) = ax, (k =1, 2, 3).

Determine an explicit form of the angular momentum component operators in the
vector representation.
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Solution
Acting by the operator I = —i&inxr0/0x, on a wavefunction of the form ¢ = (a - n),
we obtain
¢i = lzw = liamnnL = —1€ikmAmN) = bi,knka
which is equivalent to the relation b; ;, = fiak = —i€ikmam in the vector representation.
If in this representation we write down the wavefunction in the form of the column
ai
P = az |, then the matrices, {;, with elements (I;)gm = —i€ikm are the angular
as

momentum component operators:

It is cle{ixr tAhat the corAnmutaAtion relations for these matrices have the standard
form, i.e., [l;, lx] = —icgixl; and 12 =2 -1 (1 is the unity matrix).

Problem 3.45

For a system of two particles which have the same angular momenta [; = [y = 1,
indicate:

a) the most general angular dependence of the wavefunction;

b) the most general angular dependence of the wavefunction 1, that describes the
system states with a given value L (L =0, 1, 2) of the total angular momentum;

¢) the angular dependence of the wavefunctions ¢y for the system states with a
given value of the total angular momentum L and z-projection M.

Use the results of Problem 3.41.

Solution

a) The most general angular dependence has the form ¢ = a;pni;nok, where n; =
ri/ri,ny =ry/r9 and a; is an arbitrary tensor of the second rank, which has nine
independent components. This corresponds to the nine independent states of a
system consisting of two particles with the angular momenta l; = [ = 1.

b) If we write a;; in the form

1 1 1 2
ai, = gannéik + i(aik —ar;) + §(aik +ag; — gann(;ik), (1)
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the wavefunction becomes

1/) = C(n1 . IIQ) + (E . [Ill X ng]) + €ikN1iN2k, (2)
1 2
C= 3nn; Eik = §(aik +ag; — gann(sik); 26; = Eikikl, ik — Qki = EikIE]

ik is the symmetric tensor with a trace equal to zero. Taking into account the result
of Problem 3.41, it is easy to see that the wavefunction in (2) consists of three terms
and each of them corresponds to a definite value of total angular momentum L =
0,1,2. In particular, the expression for the function ¢;—o = C(n; - n2) coincides
with the result of Problem 3.34 for the case [ = 1.

¢) For the wavefunctions, ¥, in (2) to correspond to states with a definite value, M,
of the total angular momentum z-projection, it is necessary that components of
the vector e;(M) or tensor g;;(M) are in the form presented in Problem 3.41. In
particular, for the wavefunction 195, this gives the expression

a2 = —1/ @Slnel sin fpe’? "2 = 4/ ?Y11(91,801)Y11(927902)7

which is the sought-after (unnormalized) eigenfunction of the operators L2 and L.
It corresponds to the eigenvalues L = 2 and M = 2.

Problem 3.46

For a system of two particles, one having the angular momentum, /; = 1, find the
angular dependence of the wavefunction, 17, describing system states that corre-
spond to definite values of the total angular momentum J = 0 and 1, the z-projection
J., and angular momentum projection A onto the direction of the second particle’s
radius-vector, specifically considering A = 0. What are the parities of these states?
What are the possible angular momenta, 5, of the second particle in such states?
Generalize the result to the case of arbitrary values of Iy, J, J, (but A = 0).

Solution

The conditions I; = 1 and A = 0 uniquely determine the wavefunction dependence on
the angle variables of the first particle in the form ¢ o (n; - ny) where n; = ry/r; and
ny =ry/re. (Compare with Problem 3.16. It should be remembered that the total
angular momentum projection A along the radius-vector rs is completely determined
by the projection of the first particle, since (nj -1y) = 0). Since (n; - ny) is a scalar,
as well as the wavefunction for the state with J = 0, then oo = const(n; - nz).

For a state with J = 1, the wavefunction is some linear combination of components
of a vector which depends only on n; and ns (compare with Problem 3.41). Since [y = 1
and A = 0, the only such vector is of the form v = A(n; - ny)ns. By constructing linear
combinations of its components (which correspond to momentum projections J,), we

find that



Orbital angular momentum 115

P10 = C(ny -n2)Y1s (ng). (1)

Wavefunction (1) has a definite parity equal to —1 and describes a state where the
angular momentum of the second particle can only be equal to 0 and 2.

The generalization of (1) to arbitrary values of Iy, J, J,, with A =0 is
Y70 =CP/(n; -n2)Y;; (n2), (2)

where P;(z) is the Legendre polynomial.

Problem 3.47

For a system consisting of three particles, prove that any state with total angular
momentum L = 0 (in the center-of-mass system) has a definite, positive parity.

Solution

The wavefunction with L =0 does not change under rotations of the coordinate
system, i.e., it is a scalar (or pseudo-scalar, which depends on the parity of the state)
function. In the center-of-mass system of the three particles, only the radius-vectors
of two particles, ry 2, are independent, while r3 = —(r; +r3) (we consider all the
masses to be the same for the sake of simplicity). From the two vectors ry o it is
possible to form the following scalar quantities: r?, r2, ry - ro. These are real scalars,
not pseudo-scalars. Scalar functions that depend on vectors ry 5 could be functions only
of the scalars mentioned above. So the wavefunction is a function of the form v ;_g =
f(r3, 13,11 - ry). With an inversion of the coordinates, r1 » — —ry 2, this function does
not change: wazo = 9—o. The state with L = 0 has positive parity.[>"!

[30]  We should note that we mean here the orbital parity. Also, if the number of particles in the system
is more than three then there is a possibility of making a pseudo-scalar quantity of the form
rq - [r2 X r3]. The states of such systems with L = 0 are allowed to have an arbitrary parity.
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Motion in a spherically-symmetric
potential

We are interested in the solutions of the stationary Schrodinger equation for a
spherically-symmetric potential:

h2
{_QmA + U(T)] Yp(r) = Evg(r). (IV.1)
Due to the mutual commutativity of the operators H, 12, l;, we look for a solution in
the formPY ¢ (r) = ¥y 1 () = Ry, i (1) Yin (n), where Yy, are the spherical functions.
Eqn. (IV.1) then reduces to the one-dimensional radial Schrodinger equation:

1d>  2m R+ 1)
rar” T \Prt T T

- U(r))] Ry, i(r) = 0. (IV.2)

2mr?

The boundary condition at  — 0 has the form[??l R,, (0) = const < oo for I = 0 and
R,.1(0) =0 for [ # 0.

For a particle moving in the attractive Coulomb potential, U(r) = —a/r, the energy
levels and the radial functions for the states of a discrete spectrum are given by

2
mao
ETL = 5722 and
2h*n
l
2 n—1—1! [ 2r 2r
Ry = — ( ) “h e—r/naLil:—ll =, (IV3)
a32n2\l [(n+D!]* \na na
[31]  In this chapter we consider only the states of a discrete spectrum and denote the energy levels by
E,,; (where n,. =0, 1,... is a radial quantum number.)

[32]  We are discussing the regular potentials, for which 72U — 0 when 7 — 0. For these potentials, the
two independent solutions for short distances have the form R; o< r! and Ry o< r—!~1. We exclude
from the consideration the increasing solution for I # 0 due to its unnormalizability. At [ = 0 for the
increasing solution, Rp o 1/r and we have ARy o d(r), so it do not obey the relation (IV.1) when
r — 0. Such a solution that is square integrable for short distances is used while modeling a short-
range center by a potential of zero radius. See Problem 4.10. For a singular attractive potential,
‘falling onto the center’ appears, so the choice of boundary condition for r — 0 demands some
addition investigation. See Problem 9.14.
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where n = n, + 1+ 1 is the principle quantum number, a = h?>/ma (for a hydrogen
atom, a defines the Bohr radius) and LF(z) is the associated Laguerre polynomial,
which is connected with the hypergeometric function:

n!)?
Lh(2) = ()

mF(k—n,kJrl,z).

In particular for a few lowest states, we have

Rio(r) = \/—fSefr/“ (the ground, 1s-state),
a
1 T
- o —r/2a .
Rao(r) D (1 Qa) e (2s-state), (IV.4)
Roi(r) = re~ /20 (2p-state).

v 24a5

To solve Eq. (IV.2), it is often convenient to introduce the new radial functions x,,,; =
rRy,, 1, which satisfy the following differential equation
R d* R+ 1)
SN ST LV A 5 s ol = En 1 Xn. IV.5
[ 2m dr? + 2mer? * (T)] X! ot (1v-5)
with the boundary condition xj,;(0) = 0. This equation is similar in form to the
ordinary one-dimensional Schrédinger equation.

The following substitution is also often used: w,, ; = +/rR,.. In this case, the
equation becomes
1 1+1/2)> 2m
ittt = [ B 00 - B wa =0 ave)

r

with the boundary condition w, ;(0) = 0.

4.1 Discrete spectrum states in central fields
Problem 4.1

Relate the energy levels, E,, o, and the normalized wavefunctions, ,, oo(r), of discrete
stationary s-states of a particle in a central potential, U(r), to the levels, E,, and
normalized wavefunctions, ¥, (), of a particle in the one-dimensional potential, U (z),
of the form U(z) = U(x) for > 0 and U(z) = oo for z < 0 (see also Problem 2.5).

By using this relationsip, find:

a) the s-state levels in a spherical infinitely deep potential well, i.e.: U(r) =0 forr < a
and U(r) = oo for r > q;

b) the condition for existence of a bound state in a potential of the form: U = —Uj
for r <aand U =0 for r > a.
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Solution

The radial Schrédinger equation (IV.5) and its boundary conditions x(0) = x(c0) =0
have the same form as for the ordinary Schrodinger equation in a one-dimensional
potential, U(r). It follows that E, o = E,,. (the spectra coincide) and ¢, go(r) =
P, (1)) (V47 r) with n, =0, 1,....

These relations immediately allow us to extend some results from one-dimensional
quantum mechanics to the case of central potentials. In particular, for the case a),
we have E,, o = 72h?(n, + 1)?/2ma? (compare with Problem 2.1). In the case b), the
condition of bound s-states (and hence the bound states in general) existence is given
by Uy = 72h? /8ma? (compare with Problem 2.14).

Problem 4.2

Describe the character of the change of the energy levels, E,, ;, for a particle’s discrete
spectrum,

a) for a given value of | with increasing of n,;
b) for a given value of n, with increasing of [.

Solution

a) Since Eq. (IV.5) is similar in form to the ordinary one-dimensional Schrédinger, we
conclude that E,, ; (for a given value of [) increases with the increase in n,..

b) Considering formally [ in the Schrodinger equation (IV.5) as some continuous
parameter, from Eq. (I.6) we obtain

0 05 (@2+1)h?
EE”” n EH T o2mr2

which means that E,, ; increases with increasing /.

>0,

Problem 4.3

Let N be a number of levels in a central potential in increasing order (for the ground
state, N = 1). For the Nth level, indicate

a) the maximum value of the angular momentum;
b) the maximum level degeneracy;
¢) the maximum level degeneracy if this level has a definite parity.

Solution

a) Taking into account the increase of E, ; with the increase in [ (for a given value of
n,; see Problem 4.2), we see that independently of a specific form of the potential,
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U(r) the value of particle’s angular momentum in Nth discrete spectrum state
cannot exceed the value l,.x = NV — 1. For such an angular momentum, the value
n, = 0.

b) The maximum degree of level degeneracy appears in the case when it corresponds
to the states with 0 <[ < [,.x and is equal to

N-1
gmax(N) = Y (21 +1) = N?, (1)
1=0
Such a situation takes place for the Coulomb potential. For the states with a given [,
we have n, = N — 1 —[.
¢) Since the parity is I = (—1)!, in (1) we should sum over the values of [ with a definite
parity (even or odd). Then we have gmax(N) = £ N (N + 1) and for the degenerate

states with given | = lnax, lmax — 2, ..., 1(0), we have n, = (ljhax — 1)/2. Such a
situation takes place for a spherical oscillator. See Problems 4.4 and 4.5.

Problem 4.4

Find the energy levels and the corresponding normalized wavefunctions for a spherical
oscillator, U(r) = kr?/2. Use Cartesian coordinates to solve the Schrodinger equation.
Determine the level degeneracy and classify the states with respect to the quantum
numbers n,., [ and parity.

_ Relate the “accidental” level degeneracy and the commutativity of the operators
T = %ﬁiﬁk + kZ;2) with the oscillator Hamiltonian.
Solution

Taking into account the consideration used in Problem 2.48 (for a planar oscillator),
we obtain the solution in the form

Yninana (1) = V10 ()50 ()05 (2); ma, ma, n3 =0, 1, 2, (1)

3
En:hw(n—i—Q), n=ni+ns+n3z, n=0,1, 2 ...

The oscillator energy levels have a definite parity that is equal to I,, = (—1)™ and their
degeneracy is given by (compare with Problem 3.41)

n

o) = 3 (n—m +1) = S(n+1)(n+2)

n1=0
For a given value of ny there are n — n; + 1 degenerate states with no =0, 1,...,
n—ny and ng =n —ny — No.
Since the potential is spherically symmetric, the stationary states can be classified
with respect to the values [ of the angular momentum. As is seen from (1) and the
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expressions for the linear oscillator wavefunctions (see Eq. (I1.2)), the ground state
wavefunction, n = 0, is spherically symmetric, g9 o e~ 7°/20% with a = / h/mw, and
describes the s-state, as expected. For the first excited level, n = 1, the wavefunctions
(1) have the form 1,—1 zie™"" /29" with i =1,2,3; they describe the p-level (see
Eq. (IIL7)).

However, in the case of n 2 2 these wavefunctions do not correspond to a definite
valuel®3 of the angular momentum, [.

This fact reflects the existence of an accidental degeneracy of the spherical oscillator
energy levels (see Problems 4.3 and 4.5). Such a degeneracy can be understood if we
take into account the commutativity of the operators, Tik, specified in the problem

condition with the oscillator Hamiltonian and their non-commutativity with 12. See
Problem 1.25.

Problem 4.5

Analyze the stationary states of a spherical oscillator (see the previous problem). Use
spherical coordinates to solve the Schrédinger equation.

Solution

The Schridinger equation, (IV.2), for a spherical oscillator, U(r) = kr?/2, by intro-
ducing the new variable z = %£7? becomes (w = /k/m)

{hgk[%w_m]}%:a (1)

x
da?

By making the substitution R, ; = e~%/2z!/?w(z), we convert (1) into the hypergeo-
metric equation

3 E [ 3
17" Q0 / e 9 _
Tw —|—<Z+2 x)w+(2 3 4>w 0. (2)
Since R o r! o< 2'/2 when 7 — 0, the solution of (2) must be of the form
E [ 3 3
wcF(++ l+§, l’>7 (3)

where F(«, 8, x) is the degenerate hypergeometric function. In this case the constraints
on the wave-function to decrease for r — oo demand that function (3) reduces to a
polynomial (in the opposite case F' x e® and R e®/? diverge as x,r — 00). So we
have

[33]  The wavefunctions with a definite value of I are described by some superpositions of the func-
tions (1). For example, in the case of n = 2, the s-state wavefunction has the form ),—9 ;-0 =

%(TbZ()l) + 020 + 1002), while the five other independent combinations of (1) which are orthogonal
to it correspond to [ = 2.
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E, I 3
_%+§+Z_—nr, n.=0,1, 2,...,

which determines the energy spectrum:

3 3
En,,,l:ﬁw<2nr+l+2) EM(n+2>, (4)
n=2n,.+10=0,1, 2,....

For the level with a given n, we have states with the angular momentum [ = n,n —
2,...,1(0), so if the level has a certain parity I, = (—1)", then the degeneracy, g(n) =
>°(20 + 1), becomes equal to g(n) = 1(n+1)(n + 2), in accordance with the result of
the previous problem.

In conclusion, we indicate the value of the coefficient ¢ in (3):

2 _ o (@)3/2 L'l +n,+3/2)
c =\ n,T2(1 + 3/2)

which corresponds to the normalization condition [;° R2 ,(r)r?dr = 1.

Problem 4.6

For the ground state of a hydrogen atom, determine:

a) r™ for the electron, where n is an integer;
b)
)
)

c
d) the effective (average) potential ¢(r) created by the atom.

the mean kinetic and potential energies of the electron;
the momentum distribution for the electron;

Solution

The wavefunction has the form vy (r) = (7a®)~'/2e="/% where a = h?/me?. Hence,

a)

"= /r"lwo(r)IQdV: 2 (g)" .

2 2
b)
T = [ Slontnpav = - )

Since T+ U = Ey = —<, we obtain T = % =—3U.

2a°
¢) The wavefunction in the momentum representation,

i 22152 [, B2 —2
(m)// "%(T)dvms/z(p *) ’
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determines the momentum probability distribution for the electron: dw =
|d0(p)[d®p.

d) The desired potential, ¢(r), is an electrostatic potential, characterized by the charge
density of the form

p(r) = ed(r) — eltho(r)]?,

where the first term describes the point-like nucleus (at the origin of coordinates),
while the second describes an electron “cloud”. The Poisson equation, Ay = —4mp
for r # 0, takes the form:

d2X(T) 4ﬂe—2r/a

dr? a3 ’

where x(r) = r¢(r). By integrating this equation and using the boundary condi-
tions[®4 x(00) = 0, x/(c0) = 0, we obtain

4 0o 0o )
x(r) = —e/dr’/r"e*w Ky
T r!

Q

So it follows that

T a

o) =2 e (Lo D)o 0

In particular, as r — 0 we have (r) ~ £ — <. The first dominant term, ¢, (r) = e/r,
describes the electrostatic potential created by the proton while the second term,
¢a(0) = —£, describes the potential of the electron “cloud.” We should note that
the value of epe(0) coincides, of course, with U.

On the other hand, at the large distances, r — oo, we obtain from Eq. (4) the
exponential decrease of the potential, which corresponds to total screening of the
proton charge by the spherically symmetric electron “cloud”. We should emphasize
that this result takes place just for the averaged value of the potential. The “true”

value of the field decreases much slower. See the next problem.

Problem 4.7

For the ground state of a hydrogen atom, determine the average electric field £ and
its fluctuations (i.e., correlators of the field components) at large distances.

[34]  The condition x(co) = 0 means that the total charge of the system is equal to zero.
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Solution

Utilizing Eq. (4) of the previous problem we see that the average electric field decreases
exponentially

ER) = -Vo(R) (1)

R>a

The field £(R) created by the proton at the origin and the electron at the point r has
the form

We defined n =r/r, N = R/R, and we obtain
&E(R)E(R) =
]%i / / [0 ()24 (n; — 3Ny Ny) (ng, — 3Ny Ny )drdQy

1
= €2a2(5ik + 3NiNk)

E, R>a.

Remember that averaging is carried out over the positions of an electron in the

_ 6e2a?

hydrogen atom ground state. In particular, £2(R) = -

So the electric field fluctuations decrease according to \/£(R) oc 1/R3. This result
is reflected in that the interaction between atoms and molecules at the large distances
(for example, Van der Waals forces) decreases as a power law, not exponentially.

Problem 4.8

Find the s-levels for the following potentials:

a) U(r) = —ad(r — a);
b) U(r) = —Uge™"/%;
c) U(r)= —Uo/(e’"/“ — 1) (the Hulthén potential).

Solution
For E < 0, the spectrum is discrete. Set k = \/—2mE,, o/h?.
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a) If we take into account the boundary conditions at » = 0 and r = oo, we obtain the
solution of Eq. (IV.5) for [ =0 and U = —ad(r — a):

[ Asinhkr, r <a,
Xnr0 Be ™" r>a.

We use the matching conditions from Problem 2.6 at the point » = a to obtain the
equation
R’k
(1= 672m1
“E )
which determines the s-level spectrum.[® In the case where £ = maah=2 < 1/2,
this equation has no roots, so bound states are absent. At £ > 1/2, there exists one,
and only one, discrete s-level. The limiting value of its energy is

2@(12
_ma £ 1.

Eoz{_( Pa)(Zmee —1)2 0<£-1/2< 1 O

Pay attention to the slow quadratic dependence of the depth of the shallow s-
level, E,, 0 —(£ —&)?, with respect to making the potential well deeper. This
is because in the case of E — 0 the s-level wavefunction delocalizes: the particle
“moves” outward and has a small probability of being near the origin. Compare
with the case [ = 1 considered in the next problem.

b) After performing the substitution z = exp(—r/2a), Eq. (IV.5) takes the form of

the Bessel equation:
d? 1d 5 PP
le?+a:dm+(/\ ‘xzﬂxfw:o’ 2)

where p = 2ka, A = (8mUya?/h?)'/2. The condition of the wavefunction being zero
when r — oo (so that x = 0) demands choosing the solution of (2) in the form
Xn,0 = ¢Jp(Az). Now the condition x(r = 0) = 0 leads to the equation

Jp(A) =0, or Jaue(+/8mUpa?/h?) =0, (3)

which determines the s-level spectrum.

When the potential well has grown just enough for a level to appear, the energy
of this level is arbitrarily small. So the condition Jo(A) = 0 determines the values
of the well parameters that correspond to the appearance of new discrete spectrum
states with the deepening of the well. For the Nth level to appear we must have
a potential factor of at least Uy y = (h%x3/8ma?), where zy is Nth zero of the
function Jo(x). Since x; ~ 2.40, the condition for a discrete spectrum s-state’s
existence (and so the existence of a bound state) takes the form Uy = 0.72A% /ma?.

[35]  Taking into account the results of Problem 4.1, compare with a spectrum of the odd levels in the
Problem 2.18 condition.
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The upper s-level is “shallow” when 0 < (A — zx) < 1. In this case, we use the
formulae (J,, N, are Bessel and Neumann functions)

i) = o) and ((57) JV@))M = T No(a),

and we find the state energy according to (3) (n, = N —1):

2

o Ji(wN) (\/Sman2 . )
—rn) .

E, o~ —
0 2m2ma? N (zn) h

(4)

c) We take Eq. (IV.5) with [ = 0, and use a change of variable z = exp(—r/a) (here
U = —Upz/(1 — z)) and the substitution x,,o = 2°y where ¢ = ka. We obtain the
equation for the hypergeometric function, F(«, 8,7, ),

(1 —2)ay” + 2+ 1)(1 —2)y + Ny =0, (5)
with the parameters
a=c+Ve2+ N, f=c—Ve2+ N, y=2+1; A= (2ma2U0/h2)1/2.

The condition of the wavefunction being zero at r — oo (x — 0) requires choosing
the solution of (5) in the form y = ¢F(a, 8,7, z). The condition x(r = 0) = x(z =
1) =0 gives

L)Ly —a—p)

Fa35777x:1 = :07 6
| S OS] 8
which determines the s-level spectrum. It follows that v — a = —n,., where n, =
0, 1, ..., since I'(—n,) = co. Energies for the s-levels take the form
h2
Eno = (V= (n, +1)%)?, (7)

 8ma?(n, + 1)2

where n,, < A\ — 1. The condition A = N (here N is integer) determines the potential
parameters that correspond to emergence of the Nth level with [ = 0 with a deep-
ening of the potential well. In the case of a — co, Uy — 0, but alUy = const = a,
this potential takes the form of the Coulomb potential U = —a/r, and (7) gives
the known s-levels spectrum. See Eq. (IV.3).

Problem 4.9

Determine the levels with an arbitrary angular momentum [ in the potentials:

a) U(r) = —ad(r — a);
b) U(r) =0 for r < a and U(r) = oo for r > a.
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Solution

a) The solution of Eq. (IV.6) with kK = \/—2mE,, ;/h?, which satisfies the boundary
conditions u(0) = u(co0) = 0 is

Un,1 = Aljq)9(kr) for r < a and w,,; = BKj4/2(kr) for r > a,

where [, and K, are the Bessel functions of an imaginary argument (the modified
Bessel functions).

Matching the wavefunction at the point r = a is the same as in the case of the
one-dimensional d-potential in Problem 2.6 and gives!3¢

2

Iip1/2(ka)Kiq 2 (ka) = = (26)7, (1)

2maa
which determines the particle energy spectrum.
The left-hand side of (1) for kK — 0, when the level has an arbitrarily small energy,
takes the definite value equal to 1/(2] + 1). This means (as for the case [ = 0 seen
in Problem 4.8a) that for & = ﬁl(o) = (I 4+ 1/2) there is only one discrete level with
a given value of [. Using the asymptotic formulae for I,(z) and K,(z), we obtain
the generalization of (1) from Problem 4.8 for the case of states with [ # 0:

7,;;:22 + R21(1+1) (2)

— l 2 0 0
o~ {—%fg?’)gﬁ(&—&f ), &= ¢

2ma2 g — 0.

Note that when [ 2 1 the deepening of the shallow level corresponds to the deepen-
ing of the potential well, in contrast to the case of I = 0 (see the previous problem).
This distinction is because of the centrifugal potential, U.; = h2l(l + 1)/2mr?. A
state with [ 2 1 remains bound as E — 0. The centrifugal barrier prevents removing
a particle to infinity.

b) Eq. (IV.6) in the case considered for r < a reduces to the Bessel equation. Since
Un,1(0) = 0, the only solution must be of the form wy,, ; = c¢Jj11/2(kr). The condition
Unp,1(a) = 0 gives the particle energy levels:

272 2.2
ﬁ k o h Oénr+l,l

2ma? 2ma?

Enl

T

; (3)

where a,; is the nth zero (ignoring x = 0) of the Bessel function J; 4 /2(z).

Problem 4.10

A zero-range potential (the three-dimensional analog of a one-dimensional J-potential;
see Problem 2.7) is introduced by imposing on a wavefunction the following boundary

[36]  We used the Wronskian W = [I,(z), K, (2)] = I, (2)K} (2) — I, () Kv(2) = f%.
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condition37:

(r(r))’
rip(r)

— —ap atr—0

i.e.

wo<(1+1+...>. (1)

aor

Consider the possibility of particle bound states (depending on the sign of ag) in
such a potential. Find the wavefunction of these bound states in the momentum
representation. Determine the mean values T and U.

Solution

—RT

The solution of the Schrodinger equation for this problem with E < 0, has the form
e

s where k= +/—2mE/h? > 0, (2)

(it describes a particle with [ = 0). For r — 0
A (1

P=——[=-—r+...).

o(r) T <r )

By comparing this with the expansion (1), we have k = «ag. So for ag < 0, there are
no bound states in a zero-range potential.

@/10(7") =A

In the case of oy > 0 there is one, and only one, bound state with energy Ey =
—h%a3/2m. To normalize the wavefunction of this state, we should choose A = v/2ayg.
Then the wavefunction in the momentum representation is

vV hao 1
$o(p) = 2 522"
T p?+ hog
It follows!3® that T = p2/2m = oo and U = —oco (T 4+ U = Ej).

We should make several comments:

1) The zero-range potential has an attractive character independently of the sign
of ag. The case of ag < 0 corresponds to a shallow well that does not bind the
particle. However, two or more such wells situated close to each other may lead to
the formation of a bound state. See Problem 11.28.

2) The parameter o connected to the scattering length, ag, and for the zero-range
potential: ag = 1/ag. See Problem 13.20.

[37]  Such a “potential”, which acts only on a particle with the angular momentum ! = 0, models a
potential well U(r) with a finite radius rg, which has a shallow (possibly virtual) level with the
energy g9 < h?/ mr%“ In this case, the properties of these states with the angular momentum [ = 0
and energy E < h%/mr?2 depend weakly on the explicit form of the potential U(r). Applications of
zero-range potentials in atomic and nuclear physics are considered in Chapters 11 and 13.

[38]  The value T = oo also follows from the condition Aty(r) ~ Ar—! = —47w(r) as r — 0.
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3) The limiting case cg — £00 corresponds to “turning off” a zero-range potential.
4) Note the following property of (1) that arises for zero-range potentials: there is no
dependence on the particle energy. Compare with Problem 9.14.

Problem 4.11

Determine the energy spectrum of a particle moving in a combined field of an infinitely
deep spherical potential well with radius a and a zero-range potential (z.r.p.) at the
point » = 0. Compare your results with the spectra for the well and with the z.r.p.
separately. Note that the former spectrum may be modified under the influence of the
Z.1.D.

Solution

The energy spectrum of states with [ # 0 is the same as in a single well. See Problem
4.9 0.

For | = 0, the solution of the Schrodinger equation satisfying the boundary con-
dition t(a) =0 is of the form ¥ (r) = 2Asink(r —a). As r — 0, its asymptote is
P(r) ~ —Asinka (r~! — kcot ka). By comparing this with the relation that defines
a z.r.p., see Eq. (1) from Problem 1.40, we obtain the equation determining the s-level
spectrum:

kacot ka = aga, k = +/2mE/h?. (1)

When oy = £o00 we have ka = (n, + 1) which gives the well spectrum (see Problem
4.1). When a = oo, in the case ag > 0 we have kg = iay, i.e., Eg = —h?a?/2m, the
level in an isolated z.r.p.

Some conclusions from the equation obtained are:

1) In the case where |apal > 1 and ka < |apal (the levels are not highly excited),
well levels have only a small shift due to the z.r.p. We can write ka = (n, + 1)m + ¢

where |¢| < 1, and from (1) we get®9 E,, o ~ E(O)O(l +2/apa). If ag > 0 then the

Lz

level Ej that exists in the z.r.p. also “feels” a slight shift that is equal to
AEy = —4e 200,

2) We have a totally different situation if |apa| < 1. The energy of a level (real or
virtual) existing in z.r.p. is of the order of the lower-energy levels of the well, and
as is seen from (1), the particle spectrum for the combined action of the z.r.p.
and the well is drastically different from the spectra of either the isolated z.r.p. or
the well: a reconstruction of the spectrum takes place. of the spectrum appears.
In particular, for ag = 0 (when there is a level with zero binding energy in z.r.p.)

[39]  This result corresponds to perturbation theory with respect to the scattering length. Compare with
Problem 4.29.
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232 2
the spectrum has the form F,, ¢ = % This formula also describes the

energy spectrum of the highly excited levels for arbitrary values of ag.

Problem 4.12

Investigate the bound states of a particle in a separable potential which is defined
as an integral operator (compare with Problem 2.19) with the kernel U(r,7’) =
=Af(r)f*(r"), where f(r) — 0 at » — oo. Consider the case U(r,r’") = —%6_7(”"“,)
(Yamaguchi potential).

Solution

1) Tt is convenient to solve the Schrodinger equation using the momentum represen-
tation. Compare with Problems 2.19 and 1.41.

2

T0p) = a(p) [ 4" ()06 = Eolp). (1)

g(p) = W/f(r)efipr/hdv-

From this, we see that the potential considered acts only on a particle with [ =0
(the wavefunction is spherically symmetric). The Problem then can be solved using
the same methods as in Problem 2.19. For example, the energy spectrum of the
bound states can be used here using the substitution, |g(p)|?> — 47p2|g(p)|*n(p)
where 7(p) is the Heaviside step function. The equation for the energy spectrum
takes the form

(oo}

dmp?|g(p)Pdp _
0

2) For the Yamaguchi potential, we have f = e~ /r, g(p) = \/2h/7(p* + h%~y?)~ L.
We calculate the integral to obtain

(hy + Vam(—B) )* = T 3)

v

As is seen, a bound state exists only in the case A > \g = h?~3 /47wm, and its energy

is given by
h2 2 h2 2 Y 2
K Y /
Ey=— 0 —_ — 1] . 4
0 2m 2m [ Ao ] (4)
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The normalized wavefunctions in the momentum and coordinate representations are

V2o (Y + Ko)?

m(p? + B2RE)(p* + 12y?)

do(p) =

Koy (v + ko) e~ — e
2

Yo(r) = 27t(y — ko) r

Problem 4.13

Consider the bound s-states of a particle in a d-potential of the form U(r) =

—ad(r — a) by solving the Schrédinger equation in the momentum representation.

Solution

The Schrodinger equation in the momentum representation is

2

D i)+ / O(p — p)o(p))d*p = Ed(p),

2m
g 1 —iqr/h
U(r)e " &/"qV.

U(Q):W

Compare with Problem 2.17. For a §-potential we have

o _ __aa . raq
U(q) = 727T2h2qsm<ﬁ)’

Since for [ = 0 the wavefunction is angle-independent, (1) becomes

2m \/p + p2 — 2ppcos V)

After the integration with respect to v, we obtain

(£ o)r= (5) o 5o

It follows that

o) = el o= [in (B) ooy
0

(]92_E> ¢(p):%//sin (ar/p? + p2 —2ppcos19/h 6(5)7 sin 0didp.

(4)

The condition for the compatibility of these expressions leads to an equation for the

s-level energy spectrum (E = —h%k?/2m):
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dma 781112 (pa/h)dp maa . ¢—2ar)

—1 1
o] E—amE O T
0

= ak. (5)

The approximate solution of (5) is given in Problem 4.8 a. See also Problem 2.18.
Notice that the bound state only exists when maa/h* > 1/2.

Problem 4.14

Find the solution of the Schrédinger equation from the previous problem with the
boundary condition ¢(p) = 0 for p < pg, po > 0.

Prove that in this case and in a well of an arbitrary depth, there exists a bound
state, so that the particle is localized in a bounded region.[*?] Find the bound state
energy for a shallow well.

Solution

The solution can be obtained along the same lines as in the previous problem. But we
should take into account the following two facts: 1) Due to the condition ¢(p) = 0 for
p < po in Egs. (2)—(5) from the previous problem, the lower limit of the integration
with respect to p must be equal to pg. 2) The bound state of the particle now has the
energy F < Ey = p3/2m instead of E < 0, and satisfies the equation

dma 7sin2(pa/h)dp _q (1)
wh p2—2mE
Po

We assume that pg # nnhi/a and o > 0. Since the left-hand side of (1) increases
monotonically from zero as E — —oo, to +00 as E — Ej, then for any well parameters
there is only one bound s-state with energy F < Ej.

Let us consider two limiting cases. 1) In the case where ma/h > po, h/a (deep well),
from (1) it follows!*! that Ey ~ —ma?/2h? as in the case of a one-dimensional §-well.
See Problems 2.7 and 4.8. 2) In the opposite limiting case, maa/h* < 1 (shallow well),
the level E — Ej; the value of the integral is given by

[40]  The formation of a bound state in this problem with an arbitrary small attraction is the essence of
the Cooper pairing, which is the basis of the microscopic mechanism for superconductivity formation.

[41]  In this case, the dominant contribution to the integral in (1) comes from the region p ~ vV2mE ~
ma/h. For the approximate calculation of the integral, we replace the rapidly oscillating sine square
by its mean value equal to 1/2 and put the lower limit of the integration, pp, equal to zero; the
integral is equal to 7/4v2mE.
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/ sin®(pa/h)dp ~ sin2 (POG) / dp - sin®(poa/h) In 4Eo 2)
p? — Pt + 2me h p? — pg + 2me 2p0 e’
Po Po

Here € = Ey — E > 0 is the particle binding energy. From (1) and (2) with £ < 1, we
have

e ~ Epexp {—7;220; sin2(p0a/h)} . (3)
The exact determination of the factor Ey in (3) requires a more involved calculation
of the integral. As ¢ — 0, the binding energy goes to zero exponentially oc e=¢/%.

Problem 4.15

Determine the energy levels and the normalized wavefunctions of the discrete spectrum
in a one-dimensional potential of the form: U(z) = —a/x for x > 0 and U(x) = oo for
x < 0, by solving the Schrédinger equation in the momentum representation.

Using the results obtained, find the normalized wavefunctions of s-states in the
momentum representation for the Coulomb potential U(r) = —a/r.

Solution

1) We first write the Schrodinger equation for U(z) = —a/z for the semi-axis z = 0,
with the boundary condition ¢(0) = 0, in the form of an equation for the entire axis,
which for z 2 0 is equivalent to the initial equation and for z < 0 automatically
enforces the condition ¢ (z) = 0:

~9 o 2
(5~ 2~ ) vt) =~ g/ (04)300) 1)

This works because ¢(0—) = 1(0+) =0 and ¢'(0—) = 0 (compare with Problem
2.6) and we have ¢(x) = 0 for = < 0. Using the result of problem 1.40, (1) can be
written in the momentum representation as

hQ

mlﬁ/(‘w)- (2)

L /¢ dp' — E(p) =

We obtain an equation with separable variables by differentiating (2) with respect
to p. Its solution has the form (F < 0):

o(p) ¢ e _Zimaor arctan ——2— (3)
= X .
b= amlE “P amlE| h 3m|E|
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The condition ¥(0) = (27h)~'/2 [ ¢(p)dp = 0 determines the energy spectrum:

— 00

mmao moz2

sin ———— = 0 and En:7m7 n

\V2m|E| h

For the normalization of wavefunction (3) we should choose

C= \/z(”;:‘(m 1))3/2.

2) In order to use the one-dimensional results above for the case of the s-states in the
Coulomb potential, we use the wavefunctions in coordinate representation:

=0, 1,... (4)

Lqﬁnr(r)
Vir

See Problem 4.1. Taking this to the momentum representation, we obtain

n,00(r) =

¢nroo(p) = W /dmo()(r)e*ip-r/hdv =

—ipr/h eipr/h) dr = Z¢nr(p) B d)nr(ip) ) (5)

N / b, (1) (e T

The ¢, (p) are given by (3) and (4) with n = n,.. Using the equation
1 P
+ )
Vite?r  /1+¢2

we rewrite (5) to be (omitting the phase multiplier (—1)):

exp(iarctan @) =

V2 pi?

mao
bn,00(p) = Py

sin [2(n, + 1) arctan <p>}, P = g (6)

n,. n,+1)

For n, = 0 and « = €2, this gives the result of Problem 4.6 c.

Problem 4.16

Find the behavior of the discrete state wavefunction, ¢y, im, in the momentum
representation as p — 0.
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Solution

We have the relation

) , /2
/eilkm‘“ Yim(0)dQy = (—i)'27 k—:JHl/g(kr)Ylm(n), (1)

following from the known expansion of the plane wave as a series of the Legendre
polynomials. We use Eq. (I11.6) and the asymptotic form of the Bessel function J,(z)
for z — 0, to obtain

R v ~ Cp'y
nstn(®) = Gmgrare [ € i) = Caltntoln )

(—i)! i

_ 142
Ci= AH1/2D(1 + 3/2)hi+3/2 /T Ry, i(r)dr.
0

Compare the result obtained, ¢; o< p' as p — 0, with the known relation 1); o r! as

r — 0 in the coordinate representation.

Problem 4.17

Prove that the asymptotic form of the s-state wavefunction in the momentum repre-
sentation and for p — oo has the form

bmr00(p) = —2(2mh) iy, 00(0) Up(f’, (1)

where 1) is the state’s wavefunction in the coordinate representation and

is the Fourier component of the potential. Assume that U(p) decreases at p — oo as
a power law, U(p) o< p~ " with n > 1.

Solution

An analysis of the Schrodinger equation in the momentum representation,
p’ 3 3
Potw)+ [ Ullp—p Do) ~ Eop) )

shows that for ﬁ(p)p( p~™ as p — oo with n > 1, the wavefunction, ¢(p), decreases
more rapidly than U(p). Therefore, the main contribution to the integral in (2) is
given by the integration region |p’| < i/a, where a is the radius of the potential.



Motion in a spherically-symmetric potential 135

Therefore, by factoring U(p — p’) outside the integral sign with[*?l p’ ~ 0 and using
the relation between wavefunctions t(r) and ¢(p), we obtain asymptote (1) for the
s-states.

We illustrate this result for the Coulomb potenial, U = —a//r. According to Eq.
(6) from Problem 4.15, we have (in the Coulomb units m =h =a =1)

-1
bn,0(p) = (—1)"2%/2 (”(nr + 1)3/21?4)
while ¢ o(0) = (m(nr + 1)¥/2)=1/2 and F(p) = (272p2)~L. The relation (1) is fulfilled

up to a phase.

Problem 4.18

Show that the previous problem may be extended to describe a state with an arbitrary
angular momentum [:

G (D) ~ —2(27h) (2ih) 1 R 1(0) Vi (;’) P2

where f?nrl(r)~ is related to the wavefunction in the coordinate representation by
’(/}nrlm (I‘) = Tanrl(T)Y—lm (%)

Solution

1) We first transform U(p) to the form (h = 1)

oo

/ re?"U(|r|)dr. (2)

— 00

U(p)

= 4n2ip

Note that the function U(|r|), which is an even extension of U(r) in the region r < 0,
is an analytical function of r and has a singular point at » = 0. The singularity of
U(r) is subject to the condition U(r)r?=¢ — 0 as r — 0 where ¢ > 0. For example,
for U = a/r2, we have U = a/4mp. If we write a bound state wavefunction for such
a potential in the form

Y, im () = TlYlm (r/r)Rnrl (r),

then R, ;(0) = const # 0 and R, ;(0) < co.
2) The singularity at the point r = 0 manifests itself in the radial wavefunction
Ry.i(r). Tt is important that the singularity in R, ;(r) is weaker than that in
the potential. This comes from the Schrodinger equation. Consider for example the

singular part of U(r) in the form U®)(r) ~ ar”, with v > —2 and is not an even

[42] Tt is important that the asymptote of U (p) does not contain a rapidly oscillating factor of the form
sin(ap®) with k = 1. See the following problem.



136  Exploring Quantum Mechanics

integer. Then, the singular part of the radial function (see Problem 4.19) has the
form

~ 2mao ~
R, (r) ~ Ry, (0)rv+2
n(7) (v+2)(v+20+3) A O)r

and goes to zero when r — 0 unlike U(0).

For further transformations it is convenient to write the spherical function in the
form (see Problem 3.41)

TlYlm(n) =¢ci n(m)z;... Ty,

where ¢, ,(m) is a completely symmetric tensor of the [th rank with a trace equal
to zero, €;;..n(m) = 0. To obtain the desired asymptote, we should multiply the
both sides of the Schrodinger equation

(2@ _ E) i (1) = ~U (1), i (1)

by (21)~3/2 exp(—ip - r), and integrate with respect to coordinates. We obtain

2
p Eik.“n(m) _ip- ~
Y _E — _Sik..m\T) P _
(2m nrl) Onim (D) oL /e &g . TpU(r) Ry (r)dV =

it ) ) , _
- e . 7 —ip-r
CEE €ik..n(m) o0 Opn e U(r)Ry,.(r)dV. (3)
As p — oo, the integral in (3) is determined by the singularity in the function
U(r)R,,.(r) at the point 7 = 0 (to be more precise, in its even extension, as in (2)).
The most singular part of this function is contained in U(r). So we factor R,
outside the integral sign in (3) at the point = 0, and note that
oU(p) _, 9U(p)

Op; - op?

This relation, along with the fact that the trace of the tensor 1., is equal to zero,
give the wavefunction asymptote as in Eq. (1).
Putting everything together, we see that this result could be easily generalized to
the case where the singular points of the odd potential extension are r = +a on the
real axis. This would correspond to different potentials with distinct boundaries or
kinks. In this case, we should make a change as follows: R, ;(0) — R, (a).
However, despite the similarities of the asymptotes in these cases, there are
significant differences. For any critical point of the form r = +a # 0, the Fourier
component U (p) contains a rapidly oscillating factor of the form sin(ap). Its
existence leads to fact that all derivatives of U(p) decrease as U(p) does. And
so the wavefunctions corresponding to different values of [ for p — oo all decrease
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in the same fashion. In contrast with the critical point at » = 0, the wave functions
for states with larger angular momentum, [, decrease faster.

Problem 4.19

A particle moves in a potential which for » — 0 has the form U(r) = a/r® with s < 2.
In this case, the radial wavefunction of the state with a given value [ has the form
Ry, (r) = C, ;' Find a correction to this expression in the next order in 1/r.

Solution

Omitting the terms with U and E in Eq. (IV.2) we easily obtain the asymptote:
R,.(r) ~ Rglor)l(r) = Cnrlrl as r — 0.

To find the correction, szlr)l(r)7 we use the equation

2 ay Wl+1 2ma .
R+ 2r) - MR, - 2, i o,
Therefore,
2
Ry = 3O 1)

d

(2—9)(20+3 —s)h?

Problem 4.20

Find the Green function, Gg(r,r’), of a free particle with energy F < 0 which vanishes
as r — o0o. Using this Green function, write the Schrodinger equation for the discrete
spectrum states in a potential U(r) that vanishes as r — oo in the form of an integral
equation.

Solution
The Green function obeys the equation

HGp = %(quLnQ)GE(r, r')=6(r—1'). (1)

We use k = /—2mE/h? > 0. From the considerations of symmetry, it must be a
function of the form Gg = f(|r —r’|). We see that for r # r’, equation (1) and its
solution become

(CZZ - FR) rf(r) =0, f(r) = O (2)

An exponentially increasing term in the expression for f(r) is omitted. The relation
A(1/r) = —4mo(r) allows us to obtain the value of C' in (2) and the final expression



138 Exploring Quantum Mechanics
for Gg:

m e—n|r—r’\

27h? v —1/|

GE(I‘ — I'/) = (3)

We can use this Green function to write the Schrédinger equation for the discrete
spectrum states in the form of the integral equation. Compare with Problem 2.20.

—n|r r\
== [ Grle VOV =~ [ U @)

Problem 4.21

For the three-dimensional case of a particle in the attractive potential U(r) <
0 (U(r) — 0 as 7 — o0), bound states do not always exist. Prove that the inequality

o0

/T\U(r)ldr 2 2% (1)

0

is a necessary condition for their existence. Compare this condition with the exact
condition for existence of a discrete spectrum in a rectangular potential well (see
Problem 4.1), a d-potential, and an exponential well (see Problem 4.8). See also
Problem 4.32.

Solution

We apply Eqn. (4) from the previous problem to the ground state with Ey < 0 (we
assume that a bound state does exist). The corresponding wavefunction, g (r), is
spherically symmetric (I = 0) and, since it has no zeros, we may consider ¥o(r) = 0.
So in the equation

m e*lio‘l‘ | , , ,
wlr) = 55z | G VOV &)

r—r'|

the integrand is also non-negative.

We choose |r| = rg, where the function 1o (r) takes its maximum value, and make
the substitution g (r') — 1o(r). If we also omit the exponent (this omission cannot
decrease the value of the integral), then we obtain
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U e > B
— (r')*dY'dr’ 2 . (3)

dw | |r—1/| m

the integration over the angles (we choose the polar axis along the vector r) gives!43]

asy (4 Axw A
———— =min{ —, — » < —
|r — 1’| ror r!
and we obtain the problem statement. We can see from Problem 4.1 that the result is

analogous to the result of Problem 2.25 for a one-dimensional motion.

For the rectangular well, this necessary condition for a bound state existence takes
the form & = ma?Uy/h? = 1 while the exact condition is ¢ = 72/8 ~ 1.24. For the
0-well, this necessary condition coincides with the exact result. For the exponential
potential well the necessary condition is & = ma?Uy/h? = 1/2, while the exact result
is £ 2 0.72.

Problem 4.22

Show that the fulfilment of the following inequality

2

o /OOW) 1o (2 e ) [ ar bz (1

is a necessary condition for the existence of a particle bound state with the binding
energy £¢ in an attractive central potential U(r) < 0, where U(r) — 0 as 7 — 00. As
€p — 0, this condition corresponds to the result of the previous problem.

Solution

First we perform the integration over the angles of the vector ¥’ for Eqn. (2) from the
previous problem. We choose the direction of r as the polar axis. We obtain

dQ/ — |:e—n0|r—r’\ _ e—fco|r+r’| _
V12 412 = 2r1’ cos ¢/ Korr!

/ exp(—koVr2 4+ 172 — 277’ cos 0 2

2T —rolr—r] (1 _ e—ﬂo(|T+7‘/|—|7‘—V|)) <

KorT! -

2

Korr!

(1— e 20m),
Similarly to the previous problem (for the function ry(r)), we obtain the inequality

h2 Yo

/|U(r)|(1 — e 2Ty > ot (2)
0

[43]  Since the integral describes an electrostatic potential created by a sphere of radius r’ which is
charged with the constant surface charge density op = 1, we can obtain the value of the integral
without calculations.
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This is equivalent to Eq. (1) (with g9 = h2k2/2m).

Problem 4.23

Find the Green function, G;o(r,r’), of the radial Schrédinger Eq. (IV.5) for a free
particle with £ = 0 on the interval [a, b]. In this case, 0 < a < b < 0.

It corresponds to the equation

. o Il+1
H\G p=0 = “om [87"2 - (712)] Gro(r,r') =6(r—1') (1)

and boundary conditions G o(a,r") = Gi0(b,7") = 0.
Solution

The solution of Eq. (1) that satisfies the boundary conditions and is continuous at the
point r = 7’ has the form

1 241N (2041 2041 /
_ b —r r —a r<r
Gre—o(r,r") = C - (abrr')™" - { §a21+1 — 2L (21 pA) : - (

[\
~—

The value

2m alb!
O = Gy e T - g ®)

follows from the condition of the jump of the derivative 0Gjo/0r at the point
r=r'"10G] = —2m/h*. Compare with Problem 2.6.

Relations (2) and (3) determine the form of the Green function. For the case a = 0
or b = oo, these relations are simplified.

Problem 4.24

Prove that the fulfilment of the inequality

oo

/r|U(r)|dr > (214 1)

0

2

(1)

g —
m

is a necessary condition for there to exist n; levels of a particle with angular momentum
I in a short-range attractive potential U(r) < 0, U(r) — 0 as r — oo.

Solution

Let us consider the emergence of the n;th bound state with the angular momentum [

and denote the state by @Dfl()r)lm = %xif?lem, with energy E,, ; = 0. Here n, =n; — 1.
(0)

The radial function, x,, ;(7), has (n; + 1) zeroes, including zeroes at 7 = 0 and r = oo,

and satisfies Eq. (IV.5). Let a and b be neighboring zeroes of X(O) (r). Recalling the

Nyl
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(0)

n, Satisfies the

result of the previous problem, we see that on the interval [a,b], x
integral equation

Oy (r / Gro(r, ') [~U X)) dr 2)

On this interval, the function X ; does not change its sign, and we will consider

S,),,)z 2 0. We should note that the Green function from Problem 4.23 is positive and
takes its maximum value at r = r’. So the function under the integral sign in (2) is
non-negative. We choose in (2) the value r = r corresponding to the maximum of the
function X;O,.)l on the interval [a,b] and replace XSZ(T’ ) in the integrand by X;OT)I (ro)
(this can only increase the value of integral). We obtain

b
/Gho(ro,r’)\U(r’)\dr' > 1. (3)

Now we replace Gy by its maximum value, so that ro — ¢/ in this function. Taking
into account (2) and (3) from the previous problem, we obtain

Gro(r,r') = (21247:“14;712 (4)
Putting the result from (4) into (3), we have
b
[t 2 CLEDE, )

a

and since there are n; intervals on the semi-axis (0, c0), on which x,, () does not change
its sign, and on each of them the inequality analogous to (5) is Vahd Then by taking
the sum over all such integrals we can obtain the statement of the problem.

4.2 Low-energy states
Problem 4.25

Extend the result of Problem 2.13 to the case of particle s-states in a spherically-
symmetric field. Find the conditions of the existence and emergence of new discrete
s-levels in the following potentials:

a) U:f% for r > a and U = oo for r < a (see Fig. 4.1);
T

«
b)U=—-——— 0;
) (’I”+CL)47 a>U;
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U0a4
U=—-——F"+=;
c) (r2 +a2)2’
d) U:—% for r > a and U = oo for r < a, s > 2 (see Fig. 4.1);

e)U:—gforr<aandU:0forr>a,O<s<2(seeFig.4.2).
rb

U(r) /
Uzoo/
/)
/1 a r
0
/
/)
/)
Fig. 4.1
U(r)n
a v
0 >
Fig. 4.2

Solution

The condition for the emergence of a new Nth bound state with [ = 0 with respect to
the depth of the potential well corresponds to the existence of a zero-energy solution
to the Schrodinger equation. This solution is bounded at finite values of r and has the
asymptote ¢ =~ C/r as r — oo (more generally for a completely arbitrary potential,
Y~ A+ CJrasr — 00). We should look for solutions that satisfy these conditions.

a) Eq. (IV.2) for U = —a/r* in the case [ = 0 and E = 0 can be simplified by making
the substitution z = 1/r:
d*R 2ma

g PaR=0,a="5.

(1)
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Its solution, due to the condition r — co, should be chosen in the form R =
Bsin (\/5/7’) The condition R(a) = 0 determines the desired values of the poten-

tial parameters by v&/a = 7N, or

mo T o
R @)

o
~—

Taking into account Eq. (IV.5) and its boundary conditions, we see that for the
s-level, spectra in the potentials Uy (r) = f(r + a) and Us(r) = f(r) for r > a >0
and Us(r) = oo for r < a coincide (note that this is not so for [ # 0). Therefore, the
parameters of the potential are given by (2).

¢) Equation (IV.5) for this potential in the case [ = 0 and E = 0 can be transformed
using the substitutions w = x/vr? + a? and x = arctan(r/a). It takes the form

2
% +&w =0, £ = /1 + 2mUpa2/h2.

Due to the condition x(r = 0) = w(x = 0) = 0, the solution must be of the form
w = Csinx, or

a\'"? . r
v =C (1 + 7’2) sin (f arctan a) (3)
As r — oo we have arctan(r/a) ~ 7/2 — a/r, so

Y C [SinWE 5(1(:OS7T€], r — 00,

2 T 2
so the asymptotic condition (¢ o< 1/r) demands sin(7&/2) =0 and leads to the
relation £/2 = N. The wavefunction here, (3), has (N — 1) zeros for finite r.

For the potentials d and e, the solution of (IV.5) with [ = 0 and F = 0, according
to A.II.11, is described in terms of cylindrical functions. Below, we present only the
final results. Here x,, v is the Nth zero of the Bessel function J, (), disregarding a
zero at x = 0.

1/2
2 2ma 1
5—2 (h2a52> e )

The wavefunction at the threshold of emergence of a new level is ¢ =

e, (Br=1/2) /\/r for r > a, with 8 = v/8ma/h2.
When s =4 we have v = 1/2, and (4) coincides with (2).

e)

2moa?~* 1/2 1
2(v+1) <h2> =xuN, V= 7 (5)
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The wavefunction at the threshold of emergence of a new level emergence is ¥(r) =
ey 1 (Bri/2 Y Ja/r for r < a, and ¥(r) = cJ, 1 (Ba'/2@HD))a/r for r < a.

In the case s=1 (the “truncated” Coulomb potential), from (5) we have
maa/h? = x2 /8. Since the zero of the relevant Bessel function is g1 ~ 2.40, we
find the condition for bound-state existence in such a potential: maa/h* = 0.72.

Problem 4.26

Discuss the conditions for the existence and emergence of new bound states with non-
zero values of angular momentum by increasing the depth of the potential well. Use
the Schrodinger equation for £ = 0. What is the difference between the wavefunctions
with { = 0 and with [ # 0 at the threshold of emergence? Consider the potentials: a)
U= —ad(r—a);b) U= —5 forr>aand U= oo for r <a (see Fig. 4.1).

Solution

A new bound state with an arbitrary angular momentum ! emerges if the Schrédinger
equation with EF =0 has a solution whose radial function has an asymptote of the
form R~ Cr~'=! as r — oo (for more general states, the asymptote has the form R =~
Art + C/r'*1). Compare with Problem 4.25. Here in the case [ # 0, the wavefunction
at the threshold is normalized to unity, i.e., it corresponds to a truly bound state.

a) The radial wavefunction at the threshold of emergence of a new level (i.e.,
E = 0) according to (IV.5) has the form y = Ar!*! for r < a and y = C/r! for r >
a. Matching the solutions at r = a (see 2.6) gives us C = Aa?*! and 2maa/h? =
20 + 1, which is the condition of emergence of a unique discrete level with the
angular momentum [ as the d-well deepens. We should note that to normalize the
wavefunction to unity, it is necessary to choose

o 4o age  RI=1)20+3) o 4
7= Al = 220+ 1) ¢

b) After substituting z = 1/r, Eq. (IV.2) with U = —a/r* and E = 0 becomes

(d2 +ON{_l(lel))Rl:O? _ 2 (1)

dx? 2 h?

o)

Its solution, R = CJiy1/2 (\/5/7“) //r for r > a, gives the radial wavefunction at

the threshold of emergence. The condition R(a) = 0 leads to the relation v/a/a =
Ti41/2,N, Which determines the condition of the level’s existence. Here x;, /5 y is
the Nth root of the Bessel function J;,1/5().
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Problem 4.27

The parameters of central potentiall*l Uy(r) are chosen such that there exists a
discrete spectrum state with angular momentum [ = 0 and energy E = 0. The wave-
function, ¥y = xo(r)/V4mr, of such a state (at the moment of level emergence) is
known and normalized, for concreteness, by the condition that yo(r) — 1 as r — oc.
Show that the shift of this level, 6Ey, due to a small perturbation, éU(r) <0, is
given by

2m T
0Ey ~ 7 /(5U(T)X(2)(T‘)d7° . (1)
0

Apply this result to the potential U = —ad(r — a) and compare it with the exact
solution obtained in Problem 4.8 a.

Solution

Compare the Schréodinger Eq. (IV.5) for the potential Uy(r) with £ =0 and for the
potential Uy + U with §Ey = —h?k?/2m:

—x§ + To(r)xo = 0, =x" + (Uo(r) + 60 (r) + 5%)x = 0. (1)

We use U(r) = 2mU (r)/h2. By multiplying the first equation by x(r) and the second
by xo(r) and then substracting term by term, we obtain

L (X’ = Xox) = (6T(r) + 2o @)

Integrate (2) over r between r = 0 and r = a, where a is a radius of the potentials Uy (r)
and 6U (r). Take into account that 1) x0(0) = x(0) = 0; 2) xo(a) = 1 and x{(a) = 0; 3)
X(r) = xo(r) for < a. This last condition essentially determines the normalization of
the wavefunction x(r), while the normalization of the function xo(r) is determined by
its asymptote, xo(r) = 1 for r > a. Here x(a) ~ e "* ~ 1 and y/(a) = —ke "* = —k,
and as the result of integration we obtain

—i= [0 r)dr + 6 [ x(rixolr)ar )

0 0

For the first of the integrals in (3), we may set x ~ xo and then take a — oco. The
second integral is o k2 and can be omitted compared to . We obtain

o0

ww [ (-80G0ar

0

[44] Tt is assumed that U =0 for r > a, where a is radius of the potential. The problem statement
remains for the case of potentials that decrease as r — oo faster than oc 1/r2. See also Problem
13.49.
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This is equivalent to the expression for the level shift given in the problem statement.

For the é-potential, the level with E = 0 emerges as a = o such that maga/h? =
1/2. See, for example, Problem 4.26. Here the wavefunction at the threshold of
level emergence has the form xo=1 for »>a and xo=r/a for r <a, while
0U = —(a — )0 (r — a). Hence the level shift with small & — ap > 0 is equal to

2m 7
0y ~ 7z /5U(T)X%(T)d’r‘ = —ﬁ(a - a0)2.

This is in accordance with the exact result. See Problem 4.8 a.

Finally, we give another derivation of the equation for the level shift, this time based
on the relation (I1.6). We can write the potential in the form U(r) = Uy(r) + AU (r),
with A = 0. Here the level energy 6 E(A\) = —h%k?/2m also depends on A and § Ey(\ =
0) = 0. From Eq. (I.6) we have

—(5E0 /5U r)xa(r, \)d (4)

where xo(r; A) is a wavefunction normalized to unity. This function is related to xo(r):
Xo(r;A) = C(k)e " xo(r).

As you see, for r < a the function xo(r; \) differs from xo(r) only by a multiplicative
factor (we use e "" & 1), while for r > 0 we have xo(r;A) = C(k)e™"" (here xo(r) =
1). To normalize the wavefunction yq(r; A) we should choose C?(k) ~ 2, since the
dominant contribution in the normalization integral comes from the region r ~ 1/k >
a, where yo(r; A) = C'(k)e™"". Taking into account everything mentioned above, we
transform (4) to the form:

0 K’k 0Ok Vi 9
55]30()‘) =~ 25/5U(T)XO(T, A)dr.
0

By integrating this relation and using k(A = 0) = 0, we find
2m T 9
K(A) = _ﬁA oU (r)xg(r, A)dr.

Inserting A = 1 gives the relation for the level shift.
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Problem 4.28

Prove that the main result of the previous problem can be generalized to the case with
I # 0 is as follows

SE) ~ / su(r) (! )) dr,

(0)

where x,; is the wavefunction at the threshold of emergence of a new level

00 2
(1/,(0) = Xlo)Ylm/T) and is normalized to unity by [ (Xl(o) (r)) dr = 1.
0

Note that the dependences of the level shift on the perturbation, d E; o< U for [ # 0
and §Ey oc —(8U)? for | = 0, are different. Use the result obtained for the d-potential
and compare it with the exact solution. See Problem 4.9 a.

Solution

The problem could be solved similarly to the previous one. But now Eqn. (1) of the
latter includes terms with centrifugal energy. Relation (2) remains the same for [ # 0.
By integrating this relation over r between 0 and oo, we obtain

oo o0

/Xl (0) r)dr + K /Xz (0) dr = 0. (1)

0 0

We have x; = xl(o) in the region r ~ a which is significant to the integral. This does
not work as well for the case [ = 0 because a divergence appears in the second integral.
Here, taking into account the normalization f (0) )2dr = 1 for the wavefunction X(O),

we immediately find the value x2. Putting 60U (r ) = 2mU (r)/h? reproduces the result
for the level shift given in the problem statement.

Note the reasons for the difference in the dependence of level deepening on the
perturbation, §E o< §U for [ # 0 and §E o< —(6U)? for [ = 0 are as follows: For [ # 0
the state with F = 0 is truly a bound state and corresponds to a wavefunction that
is normalized to unity. For [ = 0, the situation is different: the wavefunction is not
normalized. The physical reason for normalization and the lack of it is connected
with the existence of a centrifugal barrier that prevents the particle from escaping to
infinity.

For the d-well at the threshold of emergence of a single level (with given 1), we
have 2maga/h* = (20 + 1) (see 4.26), and there is a normalized wavefunction at the
threshold. Here §U = —(a — ap)d(r — a) and the energy of the level for the small
(v — ap) > 0 is equal to

<o> (2 =1)(20 +3) (= ao)
5El~/5U L dr = @+ 1) 2, L#0,

which coincides with the result of the exact solution. See Problem 4.9 a.
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Note that for [ # 0, the expression for the level shift has a form like the first
term in perturbation theory in the interaction dU(r) (see Eq. (VIIL.1)). Furthermore,
since for [ # 0 the wavefunction XZ(O) (r) is normalized to unity, then for the region
r < a which gives the main contribution to the level value in the (4), we can set
Xi(r, ) & Xl(o) (r). Compare this with [ = 0 when the functions xo(r; A) and xo(r) have
different normalization. In the new case, relation (4) from Problem 4.27 immediately
gives the expression for the level shift.

Problem 4.29

Find[*®] the shift of the energy levels of a particle in a central field U(r) caused by
a zero-range potential (z.r.p., see Problem 4.10), assuming these shifts to be small
with respect to the unperturbed level spacing. Assume that the spectrum and the
eigenfunctions of the Hamiltonian for the potential U(r) are known. Determine the
condition of applicability of this result. As an illustration, consider its application to
Problem 4.11.

Solution

A zero-range potential causes only s-levels to shift. The normalized radial wavefunction
of an unperturbed state for the small 7 is RY (r) =~ R (0). Let L be the interval where
we can consider R%O) (r) to be constant. The precise value of L depends on the concrete

form of U(r) and the energy Er(LO). In the presence of the z.r.p., according to Problem
4.10, the radial function for small r has the form:[*0]

1
R,(r) =~ ROO) [ ——+1+... ). 1
() % ROO) (— 41+ 1)
This differs greatly from R;O)(r) for 7 — 0 due to the term o 1/r. But if |apL| > 1
then for r ~ L the function R, (r) differs only slightly from the RrY (r) (see Fig. 4.3).
This means that the level shift caused by the zero-range potential is small,[*” and

the wavefunctions R,, and R,(IO) hardly differ from each other for all » = L. This is so,
because after all, this region that provides the main contribution in the normalization
integral.

[45]  For the questions discussed in Problem 4.29-31, see also Problems 11.4 and 9.3.

[46]  We assume that rU(r) — 0 as » — 0. For more singular potentials, the asymptote (1) is modified
and the boundary condition from Problem 4.10 that determines the z.r.p. cannot be fulfilled. For
example, it is impossible to simulate a strong short-range potential by a zero-range potential in the
presence of Coulomb interaction at small distances, (although, perturbation theory with respect to
the scattering length remains valid).

[47]  We should note that Fig. 4.3 corresponds to the value g > 0 when in the z.r.p. there exists a discrete
at small distances level with the energy EY = —h%ad /2m, where \Eﬁm\ > |5E£?)| ~ B2 /mL2. If
the condition apL > 1 is not fulfilled, the level energy in the z.r.p. is of the same order of magnitude
as the level spacing 5E$? ) in the potential U(r). But in this case the levels shifts are as large as the
level spacings, so a reconstruction of the spectrum takes place (see Problems 4.11 and 9.3). Eqgs. (4)
in that case cannot be used.
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R R(O) A
b

)

4 '
/ L R(r)y= RV (r)
| .
1 R(r)
I

v

l/a,<r<L r

Fig. 4.3

Now, we address the level shifts. Let x = rR.

2 11(0)
EO _ 7 0) —
2

N+ (B + AB, ~U)xa =0 )

Though these equations have the same form, they differ in the boundary condition for

r — 0: without the z.r.p. we have Xglo) = RS;O)T o 7, while in the presence of the z.r.p.

we have x,, & R,r ~ const, where R, (r) is determined by (1). We multiply the first
of Egs. (2) by Xn, the second by XE,O ), and then subtract one from the other term by

term. If we then perform the integration between r = 0 and r = co, we obtain

K2 . T
o [xifo)xn —x{° )X%] = AE, / X (r)xn (r)dr. (3)
0

The left part here is equal to hQRgLO)Z(O)/2ma0. In the right part we can replace x,(r)

by X;O)(r) (such a substitution does not work for small 7, but this region does not
significantly contribute), so the integral value is close to unity. Hence, (3) gives us the
desired expression for the level shift:

h2RI(O)2(0) h2 2
AE, ~ — "~ = ox— (40 : 4

2may Tm (djﬂ ( )> “o (4)
Here ag = 1/« is the scattering length for z.r.p. See Problem 13.20.

This equation could be applied in case of non-central potentials, U(r). See Problems
4.31 and 8.61.
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Consider the application of (4) to Problem 4.11. Here we have

. 0
RO _ fw ~ \[ ),
" a r r=0

(0) _

where ky,’ = 7(n, + 1)/a (do not confuse the well radius a with the scattering length
ap) and
2,.(0)2 (0)
n 2Eﬂ
AETL ~ i = s
mac aop
which for £\ < || coincides with the result of the exact solution. The last inequality,

corresponds to the condition of (4) applicability |agL| > 1.

Problem 4.30

Show that the generalization of the result of the previous problem to the case of a
weakly bound state, wéo) (r), is given by

[V L E o]

where R;O)(r) is the radial wavefunction at the threshold of emergence of an s-level

and is normalized by the condition rRY (r) —1atr— oo.

Solution

The fact that we can use Eq. (4) from the previous problem means that the level
shift is small in comparison with the particle binding energy. But if the unperturbed
state has an anomalously small energy, then we need to make a simple generalization
for the case where the shift is comparable to the binding energy. This generalization
can be deduced from Eq. (3) of problem 4.29 if we take into account the following
circumstances.

First, the wavefunction, l?gJ)(7“)7 of an unperturbed state in the field U(r) with the

small binding energy is simply related to the wavefunction, R%O)(r), at the threshold
of level emergence (compare with Problem 4.27):

(0)
N 2mEy,
R\ 2rD RO (e, w0 =[R2 1)

Analogously, the wavefunction of the state perturbed by the z.r.p. for r = L takes the
form

r 2mE,
Ry = \V2rn RO (r)e™ ™" Kk, =4/ — o (2)
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Wavefunctions (1) and (2) are normalized to unity. Using Eq. (3) of the previous
problem, (1) and (2) give us (x = rR)

E.—EY B )2
2O T 2mag (R, (0))". (3)

To calculate the integral we should note that its value depends strongly on the region of
large r, where the function under the integral sign is o exp {—(/{510) + nn)r}. Finally,

we obtam the relation for the level energy given in the problem statement: k,, =
(0) _ p0)2
Ko (0)/exo.

For H(O) > |R$10)2(0)/a0| the level shift is small, and this result turns into Problem
4.29. As a final note, see that the state considered is truly bound only if k, > 0.
Otherwise, it is a virtual level.[48]

Problem 4.31

A particle is in a field U(r) (with rU — 0 for » — 0) and a zero-range potential located
at the point r = 0 (see Problem 4.10). The particle Green function Go(r,r’; E) for the
potential U(r) is known. Show that the spectrum of the bound states of this system
can be determined from:

maog

0
E(TGO(T,O,ER)) - = —W (1)

Obtain from this relation the level shift from problems 4.29 and 11.4:
27'f'h2 (0) 2
0B, =~ TW” (0)[* ao, (2)

where ag = 1/qp is the scattering length for the z.r.p., and 1/)720) (r) is the wavefunction
of the unperturbed level in the potential U(r). AFE, is its shift caused by the
7.T.].

Solution

We use the Green function, and the fact that it decreases as r — oo and goes as 1/r
as r — 0, and observe that the bound state wavefunction in the potential U(r) in the
presence of a zero-range potential has the form

$EE) = CoGole, 05 = Coglip (LB ] @

[48]  The virtual level in potential U(r) could become real, or the real level could become virtual under
the influence of the z.r.p., depending on the sign and value of ay.



152  Exploring Quantum Mechanics

The normalization coefficient is C),. The restriction on the potential is important:
rU — 0 for r — 0; otherwise the expansion above is not valid, and using the z.r.p.
approximation is impossible. We compare expansion (3) with the expression defining a
zero-range potential (see Problem 4.10) and obtain the equation for the level spectrum,

A(E,) = —ay, (4)

which yields Eq. (2) which was to be derived.

For a free particle, U =0, (4) takes the form x = agp. In the case oy > 0, this
describes a bound state in the zero-range potential. See Problem 4.10.

In the case of large enough ag, the roots of (4) are close to the values EY of the
Green-function poles, which corresponds to the spectrum in the isolated potential,
U(r). Using the known expression for the Green function,

W) (x')

Ge(r, v E) =
EY _E

m

; (5)

we see forr’ =0, r — 0, and F — E,(LO), that it has the form

m 1 i)

oo, G En) ™ orps 5 P9 _ g

; (6)

(0)
Therefore we have A(E,) ~ m:ni%’ and from Eq. (4) we directly obtain the

relation (2) for the level shift, AE,, = E,, — EY). See Problem 13.20.

Problem 4.32

For a monotonic attractive potential, U’(r) = 0 and U(r) — 0 as r — oo, prove that

2 oo
— [ /=2mU(r)dr 2 1
mh

0

is a necessary condition for the existence of a bound state. Compare with Problem
4.21.
Solution

Consider the potential U(r) whose wavefunction at the threshold of emergence of a
bound state, i.e., at £ =0, is

(oo}

Xo(r) = cos %/po(r)dr , where po(r) =+/—2mU(r). (2)

T
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This wavefunction corresponds to equation x§ — (2m/h*)U(r)xo =0 with the
potential

() =)~ 5 tan | [ /=2mTGar |, (3

and the condition of the emergence of a first bound state in this potential is/*°!

;]omdr:

0

(4)

R

If we write U(r) = U(r) + 6U(r), we see that 6U(r) = 0, so the potential well U(r) is

less deep than U(r). This proves the statement of the problem.

For a rectangular potential well of the depth Uy and radius a, the consid-
ered condition for the existence of a bound state takes the form Uy = 72h2/8ma?,
which coincides with the exact condition. For the exponential well, U(r) =
~Upe™"/?, we obtain ma?Uy/h? = 7%/32 ~ 0.31. Compare this with the result of
Problem 4.21.

4.3 Symmetries of the Coulomb problem
Problem 4.33

Consider an electron in the Coulomb potential of a nucleus with charge Ze (the
nucleus is assumed infinitely heavy compared to the electron), i.e., the single-electron
Hamiltonian has the form:

where m is the electron mass and K = Ze2.

Consider the following operators related to the classical Laplace-Runge-Lenz vec-
tor, M = % — K7 (here, L =r x p is the angular momentum):

1. 1\711:]:%‘371‘/7";
2. M,y = f’mf‘ — Kr/r;
S.M:ﬁ@)xﬁ—ﬁxf))—ffr/r;

Prove explicitly that the operator, M, commutes with the Hamiltonian and check
whether the operators M; and M do so as well.

[49]  This relation provides the boundary condition Xo(0) = 0; and xo(r) — 0 as r — oo. See Problem
4.25.
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Solution
To evaluate [M, H ], we use the following commutation relations:
[ri, 5] =0, [pispj] =0, [ri,b;] = ihdij, [Li, L;] = ihesn Ly,
[Li,75] = €mlrapi, 5] = —iheirrdy; = iheijnry, (1)

[Li, ;] = €ira|rip, bj] = iheiapiOn; = ihe;jiDr-

Now, using the expressions for H and M, we obtain
r p>2 K

[Mﬁ]—{z}n(pxt—ixp)—KT, o
7] - o foxi-tom ]+ L)) @

1 N
:fmg{(pXL*LXP), p
We use Egs. (1) to evaluate the components of commutators in Eq. (2):

(p x L), 132} = €iju[Pj Lk, PaPa) = €ijk€kim [DiTPm; Paba)

|

= eijkeklmﬁjﬁm([’rlaﬁa]ﬁa +ﬁa [rlvﬁa]) = 2€ijk€kl7nﬁjﬁm5laﬁa

= 2€;k€kimPiPmPL = 0,
since €gm is anti-symmetric in [,m and pp,p; is symmetric. Similarly, we can show
that [(L x p);, p?] = 0. Now for the other commutators in Eq. (2), we first need to

evaluate the following (for a general function, f(r)):
9 (f(r)\ _10f(r)
r Or;

[A 1} J(r) = =ih [a?«i’ﬂ Jr) = m{am r

Pi, —
,
——ing (1) 1) = ~in 5 1),
P ;02 o 0*
(2] s = | 5] v = {2050 - 5 () |
- 2h2%f(r).
Now, in Eq. (2),
[(f) x L);, 1] = €ijk [ﬁjﬁk, 1} = €ijkCkim [ﬁjmﬁm, 1]
T T

1 Y
= €ijk€kImTI (pj |:pm7 r} + [pj, r] pm)
. PiTm + 73D 2T ri
— *'Lheijkeklmrlw = (,Zh)Qr% = 771277;’
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where we have used €;;i€r1m = 0i10;m — 0imdj and Egs. (1). Similarly,

Hence, we get from Eq. (2):

N K r; e .
MH} - (412—17712—1 2h2i) —0.
[ 2m r3 r3 + r3

It is also clear from the above that just [f) x L, %] or {]3 X P, %] alone does not cancel

against [;, pAz} . Hence, M, and 1\7[2 do not commute with the Hamiltonian, while the

operator M does commute with H.

Problem 4.34

Consider the angular momentum operator, ﬂ, and the Laplace-Runge-Lenz operator,
M, defined in the previous problem and prove that their components satisfy the
following commutation relations:

1. [I:a, Mﬂ} = ZIFLEOZB,YMW.
2. [MQ,MQ} = — (%) iﬁeaﬁ,yf/.y.
where H is the Hamiltonian for a particle in the Coulomb potential (see, the previous

problem) and the indices «, 8, and 7 take the values z, y, and z, and the usual Einstein
rule for summing over repeated indices is used.

Solution

Using the definitions of the operators L and M, we have

[£0.305] = | B e (px - ExD) | - L0 K],

We can work it out keeping the indices general, as in the previous problem, but it is
a bit involved, so we are just going to show it for [L,, M,], and the others will follow
by cyclic permutation.

. A 1 . A 2 O Y
[Lza My] = |:(ypz - Zpy)7 %(szuL - pa:Lz - sza; + LJ,pz) - KT:l

h R R o ~ R R . z
=i (2z(pi +p§) — P (Pax + Pyy + Py + ypy)) — th;

= ihM,.
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Similarly,
~ N 1 . R o R R R T
(M, M) = | 5~ (22(92 + P2) — Pu(P2z + Dyy + 2D- + yby)) — K-,
1 9 2y A a . R . Y
5 (20(0% + P2) = Dy (b + Doz + wpy + 252)) — K-
m r
zh . ih K R
= (pm + Py + 92)(xby — Yba) — T(xpy YPba)
2H
= ZLinl..
m
Problem 4.35

Since [H,M] =0 (see definitions in the previous two problems), the operator M
can not change the energy of an eigenstate of the Hamiltonian with an energy, F,.
Restricting the action of the operator to a set of eigenstates with the same energy,

define a new operator, M/ = —%1\7{ and also the two operators, A = %(ﬁ + M’)
and B = %(f, — M), and prove that

1 [Aq. Ag] = iap Ay,
[Bm Bﬁ] ZEaB,yB

3. The operators A and B are generators of a symmetry group of the Coulomb
problem. What is this group?

Solution

From the derivation in the previous problem, we have

{ﬁa,Mé} =35 {LQ,MH] — e, M.,

m 2H

3E. m ih€apy Ly = iheapy Ly

(M, Mj) = — 2 [NE, M =

- 2E,
So,

(A Ag] = & (1 £ + (L MB) + [0, L] + (041, 045))

1 ~ ~ ~ ~
= Jilapy (Ly + N, 4+ M + Ly ) = iheap, Ay
Similarly for B.

The operators L and M’ are generators of the SO(3) group. Their direct sum gives
the operators A and B which are generators of the SO(4) group. This is the symmetry
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group of the Coulomb problem that is responsible for the “accidental degeneracy” of
the energy levels in the hydrogenic atom.

Problem 4.36

This problem focuses on the spectrum-generating group of the hydrogenic atom. Con-
sider again the Coulomb problem as defined above in Problem 4.33, but now focus on
the equation for the radial component, w(r) of the wave function, ¥ (r) = 2w(r)Y;™(n),
which satisfies the following equation:

A A
(rD2—|— - +B—|—C’r> w(r) =0,

where we defined, A = —I(l + 1), B =2me?/h?, and C' = 2mE/h?, and we also intro-
duced an operator notation for the derivative, D = %. Define the following operators:

A 1 A
I, (TD2+A+’I">,
2 r

fy =rD, and

. 1 - A
T, (TD2+—7‘>,
2 r

and prove that they satisfy a set of closed commutation relations. Derive those
commutation relations explicitly.

Solution
First we note the following commutation relations:
- A - - ~ [A . A
[rD,r] =7, [rD,rD?| = —rD? [r,rD? = —2rD, |:,7"D:| =—,
r r

which can be easily shown by operating them on a function f(r). Then we have

[ - A A A 1 A . .
TD2+T—T,TD2+T+7"} =1 ([rD{r} — {T,TDQ}) =rD=T,.

PPl A Al 1 a0 A .
[ery}:* rD*+ = +rrD| == (rD*+ = —r) =1,
2_ r 2 r
S B . 1/ ., A .
|:Fy7F2:| = 5 _TD,TDQ + ? —T‘:| = 5 (—T’D2 — ? —’l”> = —Fx,
1
4

Thus, fiyz indeed satisfy a set of closed commutation relations.
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Problem 4.37

Express the radial Schrodinger equation for the Coulomb potential through the
T-operators defined in the previous problem. Note (do not attempt to prove it) that
the operators Iy =0I,+ zf‘y act “vertically” between the energy levels with different
energies (it is in this sense that they “generate” the spectrum of the Coulomb problem),
as opposed to the operators A and B that act “horizontally” connecting different states
with the same energy.

Solution

We note that

I,+0,=rD?*+=, I,-T,=r.
T
So, the radial Schrodinger equation becomes

(fa, +fz> +B+C (FQ, —fz> w(r) = 0.

4.4 Systems with axial symmetry
Problem 4.38

Determine the discrete spectrum of a particle in a two-dimensional potential well of
the form

a) U(p) = —ad(p - a);
b) U(p) = —Uy for p < a and U(p) =0 for p > a;

with angular momentum projection m = 0. Consider the case of a shallow well.
Compare with one-dimensional motion.

Solution

The two-dimensional Schrodinger equation for states with m = 0 and energy F), o has
the form (p is the mass of the particle)

d? 1d 2u
—+-——+—= (Eno0-U n =0. 1
dp? " pdp ' h2 ( 0 (p)) Un,0(p) (1)
a) The solution of Eq. (1) for the d-potential in the case of E, o= —h?k?/2m <0,
that is finite at the origin and equal to zero at infinity, has the form ¥ (p) = ¢11o(kp)
for p < a and ¥(p) = caKo(rp) for p > a (Ip(x) and Ky(x) are the modified Bessel
functions). The matching conditions at the point p = a (the same as in Problem
2.6) give us the relation
_ 2uaa

z [Ko(@)Lo(2) = Ko()[y(2)] = ==~ Ko(2) o (2), (2)
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with 2z =ka. This determines the spectrum. Using the Wronskian
W (Ip(z), Ko(z)) = —1/x, we write (2) in the form

Ko(ka)lp(ka) = %, E= 2'[;;(1. (3)

Let us first consider the case where the level has a small energy (ka < 1). Using the

known asymptotes In(z) ~ 1 + 2%/4 and Ky(2) =~ In(2/z) as z — 0, we obtain!®]
2 1 2h?

In— = -, or Egp~——; 26_2/5. (4)
yak & v pa

See that £ < 1, i.e., this level with a small binding energy could only exist in a
shallow well. This means that in the §-well there is only one level (with m=0), just
as in the one-dimensional case.
With an increase in «, the level deepens, and for &> 1 its energy is
Eoo ~ —pua?/2h?, which is easy to obtain from (3) using the asymptotic expressions
for the functions Ky(z) and Iy(z) for z — oco.
b) For a rectangular potential well, the solution of Eq. (1) is

oop) = { ardo(kp), p < a, k=200 —[E, ol) /2, -

c2Ko(ka), p > a, k= \/—2uE, o/h?.

From the continuity of ¢,0(p) and ¢y, 4(p) at p = a, it follows that

kJo(ka)K{(ka) = kJ(ka)Ko(ka), (6)

which is the equation for the levels with m = 0.

In the case of the shallow well, £ = ua?Uy/h? < 1, the arguments of the cylin-
drical functions in (6) are small. From the x < 1 asymptotes of Jy and Ky, we can
simplify (6):

T 2 1
Jo(z) = 1, Jj(z) = 5 Ko(z) ~1n <’YZ‘>7 Kj(z) ~ -

2 2h?

1 (Uo = | En,ol) % In 1. (7)

1y2a2|Ey ol

This equation has only one root,

2512 2h? 20, 2
Fog ~ —— ) =" _Z
0 e O ( ua2U0> y2€ P ( 3 ) ®)

which is easy to find if we remember that |E, o < Uy and neglect |E, o in
comparison to Ug.

[50]  Here v =1.781... is the Euler constant.



160 Exploring Quantum Mechanics

In the shallow two-dimensional well, just as in the similar one-dimensional well,
there is always one bound state. But the depth of the level occurrence, as is seen
from (4) and (8), is exponentially small in comparison with the well depth.

Problem 4.39

Determine the energy spectrum of the bound states of a particle with an arbitrary value
m of the angular-momentum projection for the following two-dimensional potentials:

!
) V(o) = =5
b) U =0 for p < a and U(p) = oo for p > a.

What is the degree of degeneracy of the levels?

Solution
The Schrodinger equation has the form (Q/Jn,,m = Rnp‘m‘eim"o/\/ 27r)

d? 1d m?> 2u
—+————+4+ = (B, = U R, 1m(p) =0. 1
i MBI O)] ENO o
a) For U = —a/p, Eq. (1) has a form similar to Eq. (IV.6), and differs only by a change
of I +1/2 — |m|. So, taking into account the known expression for the energy
levels in the three-dimensional Coulomb potential and making the substitution
I+ 1/2 — |m|, we obtain

2

J1te"
E = — . 2
melml TR (0, + [l + 1/2)2 ®
We see that in the two-dimensional field, U = —a/p, as well as in the three-
dimensional one, U = —a/r, a degeneracy appears because the energy depends only

on the combination n, + |m| of the quantum numbers n, and m. If we introduce the
quantum number, N = n, + |m| + 1, the analog of the principal quantum number
n in the Coulomb field, then we can write expression (2) in the form

By= 2 (v 1\ o (3)
N — 2h2 2 ) Ty Sy e
This level has the degeneracy g(N) = 2N — 1.

b) The solution of Eq. (1), in the case of an infinitely deep rectangular potential well
for p < a, that is finite at the origin, has the form

2/~LEnp\m| ) 1/2

Ry, m| = ¢Jjm|(kp), where k = ( =

The condition that the wavefunction vanishes at the wall determines the energy
spectrum:
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E ‘ ‘:LQOF 1 (4)
molml = 9 g2 et lm

where oy, > 0 is the kth zero of the Bessel function J,,(«). In particular, taking
into account the values aqg = 2.40 and «aq; ~ 3.83, we obtain the ground-state
energy Foo ~ 2.88h%/pa?® (with m = 0) and the energy Eo; ~ 7.33h%/ua® of the
lowest level with |m| = 1. Finally, note that levels with m = 0 are non-degenerate,
while those with |m| # 0 are doubly degenerate.

Problem 4.40

Find the Green function of a free particle in two dimensions with the energy E < 0
and which decreases as p — oco.

Solution
The Green function obeys the equation
h2

(—A2+£*)Gr(p, p')=6d(p—p), (1)

with £ = \/—2pFE/h? > 0. From symmetry, we see that it is a function of the form
Gg = f(lp — p|). Equation (1) for p # p’ and its solution take the form

e o1d
(dp2 toa " )f(p) =0, f(p) = cKo(rp), (2)

where Ky(z) is the Macdonald function (the other independent solution, o Ip(kp),
increases exponentially as p — 00).

To determine the value of ¢, we integrate (1) over a circle of a small radius e
centered at the point p = p’. On the right side we get unity. Integration of the second
term on the left side (with x2) gives zero for ¢ — 0. We transform the integral of the
first term using the Gauss’s law:

In this two-dimensional case we obtain dV = dS, ds = dl = ndl.[°!] Since Ky(z) ~
In(2/yx) as  — 0, then VKy(kp) ~ —p/p* as p — 0. Integration gives the relation
wch? /i = 1, so the final expression for G is

Gelp.p') = 5 Kolslp — ') 3)

[51]  We should note that the unit vector n (the outer normal) is perpendicular to the integration contour.
See that

dl=ndl = Zpdp = pdp (p=|p—p'| =¢).

™™
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Problem 4.41

The same as for the previous problem, but with £ > 0. Determine the Green function
G%) that has the correct asymptotic behavior as p — oo.

Solution

Consideration similar to the previous problem gives the following form for the Green
function:

+ (1,2
G (p.p) = £33 Hy (slp — '), (1)

where k = \/2uFE/h? > 0, Hém)(z) are the Hankel functions.

Problem 4.42

Find the Green function Gg(p,¢’) for a plane rotator (see Problem 3.2). Analyzing
it as an analytic function of the complex variable E show that it has singular points
and determine a relation between the locations of the poles on the E plane and the
rotator energy levels. Compare with Problem 2.26.

Solution

The Green function obeys the equation

s =1 (L2 o) = a0 - ) 0
p=gp gzt ) Geled) =il —¢),
where k= /2IE/h?. From symmetry, Ggr is a function of the form Gg =
Ge(le —¢'|). From (1) we obtain, for ¢ # ¢’

Gg = Ccos(klp — ¢'| + ).

The value C = I/kh%sina comes from matching conditions at the point ¢ = ¢’
(compare with Problem 2.6), while the value of « comes from the continuity of the
Green function and its derivative with respect to ¢ at the points ¢ — ¢’ = £, which
correspond to the same point. This value is a = —7k.

The Green function has the form

1

/
T h2sinnk cos(kle — ¢'| = Tk). (2)

GE(% 90/) =
It has poles at the points k = +m, m = 0, 1,2, . ... These are the points E,, = h?m? /21
of the complex variable E. As expected, the positions of these poles coincide with the
rotator energy levels.
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Problem 4.43

Find the Green function Gg(n,n’) for a spherical rotator, where n is the unit vector
directed along the rotator axis (see Problem 3.3). Solve the problem in two ways:

a)
b)

by directly solving the differential equation for the Green function
by expressing it as a series of relevant eigenfunctions

Solution

a)

The Green function is the solution of the equation

. B2 .

(H - E)Gg = (2] 12 - E) Gp=4d(n—n'). (1)
and is a function of the form Gg = Ggr(n-n’); ie., it depends only on the
angle between the directions of vectors n and n’. So, choosing the direction of
the polar axis ng along n’ and introducing the notations z =n-ng = cosf and
E = h?v(v +1)/21, we rewrite (1) in the form

21
_ﬁé
For z # 1 (i.e., 8 # 0), the right part of (2) is equal to zero. The solution of such
an equation is

(1 - 23)G%(2) — 2:Gp(2) + v(v + 1)GE(2) = (n —ng). (2)

GEe(2) = a1Pu(—2) + 2Py (2), (3)

where P, (z) is a spherical Legendre function of the first kind. Since P, (1) = 1 and
P.(z) = o0 as z — —1, we should set ¢ = 0 in (3) and leave ¢; to be determined
by the d-functional term in (2). To find ¢;, consider the limit z — 1 and put z ~
1 — 6%/2. Equation (2) becomes

2 1d 21
which is the equation for the free particle Green function in the two-dimensional
casel®? (see Problem 4.40). We get[®3]

2 1
Po(—2z) = - sin(rv)Inf at z =1 — 592 — 1,

[52]

[53]

This correspondence is not accidental, since the operator —12 is the Laplace operator on the unit
sphere, and a small part of a sphere is almost indistinguishable locally from the tangent plane. The
vector n — ng is approximately perpendicular to ng, and |n — ng| & € is analogous to the variable
p.

This result can be obtained from the following9 equation

2 cos(v +1/2)p

T J v/2(cos B — cos ) 4,

if we notice that for & — 7, the integral diverges in the upper limit, and calculate the diverging part.

Pu(cosb) =
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Taking into account the result of Problem 4.40, we find ¢; = —I/2h%sin v and
obtain the final expression for the Green function:

I 1 /20E 1\Y?
GE(“'):‘MIWP"(‘“'“')’”:‘2*(nz*4) - ©

The general method of constructing the Green function as a series involving the
eigenfunctions of the corresponding operator gives rise to the following expression
in our case:

Yim(0)Yy;, (0')
AN m lm
GE(n7n)_lZ: El—E ) (6)
where E; = h2l(l + 1)/2I are the rotator energy levels, and Y;,, are the spherical
harmonics that are the eigenfunctions of the Hamiltonian. Using the spherical
harmonic addition theorem (see Eq. (II1.6)), (6) may be written as

(214 1)P(n-n')
Ge = 27rh22ll+1—1/ T1) (™

Using the relation

= 1 1 T
;(yl_V+Z+I>B(Z):sinﬂypu(_z)’ (8)

we see that (6) and (7) coincide with (5).
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Spin

1) The wavefunction of a particle with spin s has (2s+ 1) components. In the
s,-representation it is described by the column

Y(r, s)
Y(r,s —1)

= e | (V.1)

1/’(1‘7 _S)
¥(r,o) is the amplitude of a state with a given value of the spin z-projection o,
witho = s, s — 1,..., —s. Physically, spin is an intrinsic angular momentum. In this
representation the operators of spin-vector projections are the matrices 5;, 3y, 3.,
whose elements are given by the general formulae (II1.9) and (II1.10) with [ = s

and m = o. The matrix §, is diagonal and (8.)y0' = 050
For spin s = 1/2 these operators are expressed in terms of the Pauli matrices,

S=:0:
. (0 1 . (0 —i . (1 0
(D) (2 Sy nn (3 8) s

The Pauli matrices have the following property: (>4

N|—=

00k = ik, + €101, (V.3)

Herei, k =1,2,3 and 61 = 64, 62 = 6, 3 = 7. In this particular case of s = 1/2,
the notation ¥ = (o = +1/2) and ¥9 = (0 = —1/2) for the spin components is
U1
(0

(W) = ¥ = ¢1th1 + P3¢a.

often used, so that ¥ = ( . The inner product in spin space is given by

[54]  Tn particular, 62 = &12, =62 =1, 6,64 = i6 etc. From (V.3) we can see the anticommutativity of

different Pauli matrices: 6,61 + 6164 = 0 for ¢ # k.
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Note the characteristic property of spin s = 1/2 for an arbitrary spin state: it is
always possible to find a vector n along which the spin projection has a definite
value (equal to +1/2 of course). We can write down the spin function, normalized
to unity, for any state, in the form:

v = ( efoossif(/;/)m > (V-4)

0 and ¢ (0<6<m, 0<¢<2nm) determine the polar and azimuthal angles of an
axis along which the spin projection is s,, = +1/2. See Problems 5.3 and 5.9.

It is often necessary to deal with the spin density matriz p. The elements p,,+ of this
matrix are equal to an average of the bilinear combination of spin wavefunctions

(o)y*(o’). The averaging is performed over an ensemble of possible states, 5]
labelled by a parameter A,
Poor = W(a, \)* (o, \). (V.5)
The mean value of operator f in the spin space is given by
F="Tr (pf) =Tx (fp). (V.6)
A spin s = 1/2 density matrix can be written as
. 1 .
p:§(1+P-0'). (V.7)

P = 2s is known as the polarization vector. The case with P = 0 corresponds to an
entirely unpolarized collection of states. A state in the case |[P| =1 is pure and is
described by the spin function (V.4) with the choice of the corresponding axis n
along the vector P.

5.1 Spins=1/2

Problem 5.1

For a particle with the spin s = 1/2, find the eigenvalues and eigenfunctions of the
operators 5., 5,, 5.

[55]

The density matrix is normalized by the condition Trp = 1. Its diagonal elements, pso, determine the
probabilities of measuring the corresponding values of the spin z-projection, o. In the case p* = p,
the density matrix has the form p,,» = 1(0)y* (o) and characterizes a pure state that is described
by the wavefunction (o).
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Solution
The eigenfunctions ¢, = (Z) and the eigenvalues s, of the operator §, = %&T are

found from the equation §,¢s, = $29s,:

(00010 --6)

So b =2s,a, a = 2s,b. This system has non-trivial solutions when 4s§ = 1. We find
that a = b for s, = +1/2 and a = —b for s,, = —1/2. The eigenfunctions, v, , that are
normalized to unity so that (1, |1, ) = |a|* + [b]* = 1 are:

1 /1 1 1
¢s$:+1/2 = \7@ (1> ) 1/1%:—1/2 = ﬁ <_1)-

Analagously,

1 /1 1 1
1/)sy:+1/2 = E (Z) ) ’(/}sy:fl/2 = % (Z>7

¢52:+1/2 = (é) ) %2:71/2 = (?)

Problem 5.2

Determine explicitly the form of the operator §,, corresponding to the spin projection
in the direction determined by a unit vector n. For a state with a definite value of
the spin z-projection, determine the value of 5, and find the probability of the spin
+1/2 n-projection.

Solution

The spin operator § = %& is a vector (or, more precisely, pseudo-vector) operator. The

n-projection operator 5, may be expressed in terms of its components 5;, 5, 5, in
the same manner as for an ordinary (non-operator) vectors, i.e.

1 1
S,=n-s8= in o= §(Sint‘)cos<p <0y +sinfsing - 6, + cosf-6.),
where 6, ¢ are the polar and azimuthal angles of the n-direction. Using the explicit

form of the Pauli matrices, Eq. (V.2), we obtain

. 1 ( cos e~ sind >

Sy = o
n e sin 0 -cos

(1)

The value of 5, in the state ¢y _41/2 = ( é > is equal to
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A 1 cosf) e ¥sind 1) 1
sn*<¢|5n|¢>—§( 10 )( 1% sin —cos )( 0 >2c089.

Analagously, we find 3,, = —1 cos 6 for a state with s, = —1/2. Note that the relation
5, = S, cosf is analogous to the result of Problem 3.11.

Let us denote w,. for the probability of the value s, = +1/2 and w_ =1 — w for
the probability of s,, = —1/2. Taking into account that 3,, = s, cosf, we find that

1 1 1
5,080 =35, = w, - 5 4+ w_ - (—2> = 5[2w+ — 1],

1 1
wy = 5(1 +2s,cos6), w_ = 5(1 — 25, cos ). (2)

Problem 5.3

For spin s = 1/2, the normalized wavefunction of the most general spin state is!®®

e sin o
of an axis n along which spin projection has a definite value equal to +1/2.

U= < cosa >, with 0 <a < 5, 0 <3 <27 Find the polar and azimuthal angles

Solve Problem 5.1 using this result.

Solution

We first find the wavefunction ¥, _; /5 = ( of the spin n-projection operator.

a
b
Using the form of the operator §, determined in the previous problem and the
eigenvalue equation

1
7\115:“:1/27

§n\Ilsn:1/2 = 9

we obtain the equation asin(6/2) = be~ cos(/2). So if we choose (for normalization
to unity) a = cos(0/2), we find b = €'?sin(0/2). The spin function ¥, _;/, takes the
form given in the problem statement. Here § = 2a and ¢ = 3 determine the polar and
azimuth angles.

Choosing = 2a = 7/2 and ¢ = = 0, we find the eigenfunction 1, _; /5. In the
case § = /2 and ¢ = m we obtain the eigenfunction ¢, __; /5, and so on; compare
with the results of Problem 5.1.

Problem 5.4

An arbitrary rank 2 square matrix, A, may be expanded in terms of the full system
of matrices 1, 64, 0y, 0.:

A:aoi—l—%&w—i—ay&y—i—az&zan—i—a-é’. (1)

[56]  Except for phase factor 7.
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Prove that the coefficients are given by 2ag = Tr A, 2a = Tr (6 A).

Solution
If we take the trace of the both sides of (1) and use Tré; = 0, Trl = 2, we obtain

1 ~
ag = §’I‘I'A

If we multiply both sides of (1) by &) on the right and calculate the trace, then we
obtain

ag = %’I‘r (Aa—k - %T& (avk/i) .

N—

Problem 5.5

Simplify the expression (a- &)™, where a is a real numerical vector, n is an integer,
and & are the Pauli matrices.

Solution

(a-6)" = |a|"1 if n is even and (a-&)" = |a|"'(a- &) if n is odd.

Problem 5.6
Find

a) the eigenvalues and eigenfunctions of operator function f =a+b-0o;
b) the explicit form for the operator F' = F(a +b - &).
a and b are real scalar and vector parameters, and F(z) is some function.

As an illustration, (c) consider the operator R(pg) = exp(ipg - 6/2) that describes
the transformation of the spin wavefunction, ¥/ = R(d)o)\I!, under rotation of the coor-
dinate system through the angle ¢o. Find the eigenfunctions, ¥, _4;/5, of the spin
projection operator along the vector n. Compare with Problem 5.3.

Solution
a) The operator has only two eigenvalues, equal to fi, 2 = a £ b. The corresponding
eigenfunctions are given in Problem 5.3 with n = £b/b.
b) As a result of Problem 1.22, the form of the operator F' = F(f) is
1 b-o
= 3 F(a+b)+F(a—b)+(F(a+b)—F(a—b))T .
¢) In particular, R(gq) = cos(po/2) + isin(po/2) - i(ﬂpo - &). To transform the spin
functions W, _;/o into the form W, _;,5 by rotating the coordinate system,
we should choose g in the form ¢y = (¢sinp, —0cosg,0) (see Problem 3.24),
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where 6 and ¢ are the polar and azimuthal angles of the vector n. In this case,
R(¢o) = cos(0/2) +isin(0/2)(sing - 6, — cosg - 6,), so we have

e (g )= (e )

in accordance with Problem 5.3.

Problem 5.7

Using the transformation law for the spin functions ¥ = (g;) under rotation of the

coordinate system, U = R(p()V (see the previous problem), show that the quantities
§=0"W = i1 + aih

do not change, i.e., are scalars, while the quantities of the form

V=0T (orV;=> ¢.(Gi)asts
o

transform as vectors.

Solution

From the transformation of the form (ng = ¢q/¢0)
U= wé = exp igao o) U= (cos #0 4 isin @no . 6') v (1)
(& 2 2 2 ’

we have the transformation law for a complex conjugate spin function ®* = (¢, @3):

' = (p¥, @) = (cos % —isin %no . &). (2)

It follows that ®*' U’ = * .
Using (1), (2), and relation (V.3), we obtain

V' = 0*60 = cospy -V —singg - ng x V + 2sin? % -ng(ng - V), (3)

which is the vector transformation law for a coordinate system rotation by the angle
¢o. In particular for ng = (0,0, 1) (rotation about z), from (3) it follows that V] =V,
and

Vy =cospg -V, +singg - Vy, V, = —singg - Vi 4 cospg - V. (4)
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Problem 5.8

Consider the matrix element of the form!>7)

(T4 (@@ |BIwW) = 2" Aupp) 0P Bostist.

/1, B are some 2x2 matrices, and U2 &2 are spin functions. Show that it is
possible to rearrange the spin functions:

3
> Car{8@15; w0254 |2).
i,k=0

For ease of notation, we put 1 = 9. Also, determine the form of the scalar matrix
elements:

(@@ ey (@@ | wMY and (TP |g|0M) . (@)|a|wD).

Solution

We can regard the expression of the form A,3B,s as a matrix Mas(5,y) that depends
on ( and v as parameters, and write it in the form of expansion

3
s(B,7) =D Ci(¥B)(84)as
i=0

The coefficients C;(y3) are determined by the result of Problem 5.4. We can expand
C; in an analogous way. So we obtain

aBB’y5 Z Clk Uz ad Uk B> zk 4 Z 6a Jk By ozﬁB’yzS (]-)
i,k=0 afyo
Using (1) with Aag = dag, Bys = 045 and Cj, = %5%, it is easy to obtain

%{<w<2>|\p<1>><q><2>\q><1>>

<\I;(2)|<I)(1)><q)(2)|\1;(1)> —
+ (U@ 5| D) - (@D]ale)).

Using Aag = (61)as, Bys = (61)48, Coo = 3/2, Cir = —(1/2)6;;, for i, k=1, 2, 3, and
Cir = 0if i # k, we obtain

1
<\p(2)|&|q>(1)> . <q)(2)|a-‘\11(1)) = 5{3<\1;(2)|\I;(1)><q)(2)|<I)(1)>

_ <\IJ(2)\&|\I/(1)> . <q>(2)|a-|q>(1)>}.

[57]  Carefully note that the indices 1 and 2 enumerate the different spinors, not the different components
of the same spin function.
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Pay attention to the scalar nature of all the terms in these relations. Compare with
Problem 5.7.

Problem 5.9

Determine the projection operators Py .1/, that project onto states with a definite
value of the spin z-projection.

Generalize the form of ps,,:j:l /2 to a state with a definite spin projection along the
direction determined by the unit vector n. Using these projection operators, find the
spin function Wy _ 4,/ and compare with Eqn. (V.4) and Problem 5.3.

Solution

The desired projection operators follow from 1.35:

. 1 . - 1 .

Psz=i1/2 = 5(1 + JZ), and Pgn=:|:1/2 = 5(1 +n- O‘).
If we act with the operator I:’Snzl s2 on an arbitrary spin function ¥, we obtain the
eigenfunction of the operator §, that corresponds to the eigenvalue s, = 1/2. For

! ), and we find

convenience, we take ¥ = ( 0

U, 12 =CPy_1)p0 = %(1 +n-0) ( (1) ) = < ei?POSSi(ne(/02/)2) ) (1)

where 6 and ¢ are the polar and azimuth angles of the n-direction. We have choosen
C = cos™1(0/2) to normalize the spin function to unity.

Problem 5.10

For a system of two identical spins with s = 1/2, find the eigenfunctions ¥gg, of the
total spin square and its z-projection operators. Indicate the characteristic symmetry
of these functions with respect to the interchange of particles, and the symmetry’s
dependence on S.

Solution

The form of the spin functions for for S =1, S, = +1 is obvious:

e (1),(), o (D(2),

The spin functions with S, = 0 have the form

o= (), (), e (V). (), o
¢S,Sz0 S 01 12+S 11 02 ()
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From the equation SQwoo =0, it follows that S, = 0, i.e.,

S’wwOOE%(&ll +&$2){Cél)( (1) )1( (1) )2+C(()2)< (1) >1< (1) )2}
(cé”+c732>>{( ) )( ! >+( | )( 0 )2}:0'

This means that Cél) = —052)7 and from normalization we have C(gl) =1/ V2. To find
the C’{l’2) in (1) for the case of S = 1 we use the eigenfunction orthogonality condition
(oo0|th10) = 0, which gives Cfl) = sz).

The normalized eigenfunctions 1gg therefore have the form

o (GG e

Spin functions have a well-defined symmetry with respect to interchange of the
particles’ spin variables: they are symmetric in the case S =1 and antisymmetric
for S = 0. This falls in accordance with the result of Problem 3.30. Notice that we can
use this result to write expressions (2) for the functions ¥ss.—o without calculations.

Problem 5.11

A system of two spins with s = 1/2 is in a state described by the spin function of the
form ¥,5 = poxs. The multiplicative form of W,z points to the fact that there is no
correlation between particles’ spin states.

Determine the probabilities of the different possible values of S in such a state.
Find the mean value S2. Consider the case of o, = xa.

Solution

We write the spin function as a superposition of the symmetric and antisymmetric
terms:

1

1
Uop = 5(%)@ + Xats) + 5(@0&(5 — Xa8)- (1)

Taking into account the nature of the symmetry of functions ¥gg. (see the previous
problem), we can state that the first, symmetric, term in (1) corresponds to S =1,
while the second, antisymmeric, term corresponds to S = 0. Assume ¢, x5, and V.3
are normalized to unity. The normalization of each of these terms determines the
probability of the corresponding value of S, so that

1 * * * * 1
w($ =0, 1) = 7(£ux5 F Xa2h) (PaXs F Xavs) = 5 (1LF [eh)[*)-

The + sign relates to S = 1. Finally, S? = 2w(S = 1).
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Problem 5.12

For a system of two particles with spins s = 1/2 show that

a) in states with a definite value of the total spin, the operator &; - &2 also has a
definite value;

b) the operator (&7 -62)? can be reconstructed in a form that contains the Pauli
matrices & 2 in powers not higher than 1.

Solution

a) Since S? = 1(61+62)? and 57, = 2, then 61 - 62 = -3+ 252, and eigenfunctions
of §2 are simultaneous eigenfunctions of &7 - &4, corresponding to eigenvalues equal
to =3 (it S =0) and +1 (if S =1).

b) Since the Hermitian operator &1 - &2 has only two different eigenvalues, it obeys
the equation (6 - 62 — 1)(671 - 62 + 3) = 0 (compare with Problem 1.21). It follows
that (6'1 . 6’2)2 =3- 26’1 . 6’2.

Problem 5.13

For a system of two particles with spins s = 1/2, find the form of the spin exchange
operator, 6’7 which acts on the spin function W,g to give C’\Ilag =Vg,, te., it
interchanges the spin variables of the two particles. Express C in terms of the Pauli
matrices.

Solution

Let us write the spin function in the form

_ 1
Yap = V1 + 1,4, where wfﬂ = 5(1/@5 + Yga).

If we take into account the symmetry nature of spin functions ¢sg_, we notice that
the function wgﬁ corresponds to total spin S = 1, while ¥, corresponds to S=0

(see Problem 5.11). We can see that SQ@ZJQB = QLZJIB, and accordingly,
_ Lao
Vs = Yap — 55%as

According to the definition of the operator C we have é’l/}alg =Ygq = 1/13[5 — w;ﬁ. It
follows from the above that

C =

W

271:%(1+&1'&2). (2)

For the relation between S? and & - 09, see the previous problem.
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We will describe the properties of the operator C. It is an Hermitian operator. Spin
functions Wg are its eigenfunctions, with corresponding eigenvalues +1 for S =1 and
—1 for S = 0. Obviously, C? = 1.

Problem 5.14

For a system of two particles with spins s = 1/2, find the eigenvalues and eigenfunc-
tions of the following operators:

a) Vi = F(a+ b6y - ) where F(z) is some function of ;
b) ‘72 = a(&lz —|— ('3'22) —|— b&l . 6’2;

¢) Vs = ab1.62. + b6 - 62;

d) Vi = a161, + as62. + b6y - G2

a, b are some real parameters, so all the operators, V;, are Hermitian.

Solution
First, recall that 61 - 69 = -3 + 2§2, S, = %(&12 + G92).

a) Spin functions, g, are also eigenfunctions of the operator f =a+ boy - 62 that
correspond to the eigenvalues fg = a — 3b+ 2bS(S + 1). So the eigenvalues of the
operator V; are equal to (Vi)s = F(fs).

b) Spin functions, 1gs., are also eigenfunctions of the operator Vs corresponding to
the eigenvalues (V2)ss. = 2aS, —3b+ 2bS(S + 1).

¢) Since 61,62, = 253 — 1, then functions 1gg. are the eigenfunctions of the operator
Vs, and the corresponding eigenvalues are equal to (V3)ss. = —a + 2aS? — 3b +
2bS(S +1).

d) Let us find a form of the operator

N 1 . R 1 . . A
Vi = 5(661 +a2) (612 + 622) + §(G1 — a2)(012 — G2.) + bo - 62,

using S5.-representation where it is described by a matrix with matrix elements
(S'SL|Vy|SS.). Use, for the matrix elements, the following numeration of the states
defined by the quantum numbers S, S, :

(s=15,=1)—1, (1,-1)—>2, (1,0) —» 3, (0,0) =4

Take into account the explicit form of the spin functions 1gs. (see Problem 5.10).
We obtain

A0 0 O A=ay+as+b,
> 0B 0 0 B:fa17a2+b,
i=loocE| c=bD="3, @
00FE*D E:E*:al—ag
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By the unitary transformation this Hermitian matrix can be led to the diag-
onal form which defines directly its eigenvalues. From the form of the matrix
V4 it follows that two of its eigenvalues are (V4); = A and (Vi) = B, cor-
responding to the eigenfunctions s—i,5,—1 and vy 1, respectively. The uni-
tary operator that diagonalizes V,; “mixes” only the states with quantum num-
bers (1,0) and (0,0). To find the two different eigenvalues we should diag-
onalize the 2x2 matrix of the form (EC*D . We can easily find these
eigenvalues if we remember that under a unitary transformation, the trace
and determinant of the matrix are invariant (see Problem 1.51). We have
finally:

(Va)za = —b+x /(a1 — ag)? + 4b2.

Problem 5.15

Spins of N particles equal to s each are added into the total spin S = Ns. What is the
total spin of any n particles? Does the spin function have a definite symmetry with
respect to interchange of the spin variables of any two of the particles?

Solution

The total spin of any n particles has a definite value equal to ns. The spin function
is symmetric with respect to the interchange of the spin variables of any two particles
(compare with Problem 3.30). If S < Ns, then for N > 2 the spin function already
does not have a definite symmetry with respect to the interchange of any two particles
(see, for example, Problem 5.19).

Problem 5.16

A spin function of a system consisting of N spins with s = 1/2 is given by

v=(6),6).6).0),.. (),

Determine S2. For the special cases of n = 1 and n = N — 1, find also the probabilities
of the total spin S possible values.

Solution
See that
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Also, we have that 62 = 3, that in the state considered there is no correlation between
spins of particles, and that the mean values of &, give

We easily obtain S2 = 1(N? — 4nN + 2N + 4n?).

In the cases where n =1 or n = N — 1, the total spin could take only two values:
S1=N/2 and Sz = (N —2)/2 (N > 2). By taking into account the value of 52, we
can easily find their probabilities:

w(S=N/2)=1/N, w(S=N/2-1)=1-1/N

Compare with Problem 3.29.

Problem 5.17

The state of a particle with the spin s = 1/2 is characterized by the values of the

quantum numbers [, m, s,. Determine the probabilities of the possible values, j, of

the total angular momentum, j =14 s. Use the results of Problem 3.29.

Solution

We have j2 = I(I + 1) + 3/4 + 2ms.. Since only two values of total angular momen-

tum are possible, j =1+ 1/2, then the value of 32 allows us to obtain easily their

probabilities:

l+2ms, +1
20+1

[ —2ms,

w(l+1/2) = ST

Ll —1/2) =

Problem 5.18

The angular momenta of two weakly interacting subsystems, equal to 1 and 1/2, are
added into the total angular momentum, J. For the states of such a complex system,
characterized by the values J and J, find the probabilities for different possible values
of the z-projection of the added angular momenta and their mean values. For solving
the problem, use the operators J4 without using the Clebsch—Gordan coefficients.

Solution
The “spin” function of the state with J = 3/2 and J, = 3/2 has the form

L 1
Y372, 32=1 0 < 0 > ;
0 1 2
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and the projections I, and s, have values equal to 1 and 1/2. We act with operator
J_=J, - zJ =Ji,— + Jo on this function to obtain (for the form of the operator j_
for j =1, see Problem 3.22):

1 0 0 0 00
V372, 172 = CJ P32, 3/2 = % V2o 0 0 |+ ( 10 >
0 V2 0

E()G)s() () »

The multiplier C' = 37'/2 is introduced for the normalization. From (1) we have the
desired probabilities for a state with J = 3/2 and J, = 1/2:

w(lzzl)zw(s;—;):;, w(zzzo):w(szzi):g

and the mean values [, = 1/3, 5, =1/6 (J, =1, +5;).
We write the “spin” function for a state with J = 1/2 and J, = 1/2 in the form

1 0 0 1
Uyppi=C1| 0 ( 1 )+Cz 1 ( 0 )
0 0

OO =
N
O =
N—

Using its orthogonality to W3/5 1 /9, we find C1 = 1/2/3, Cy = —4/1/3. We obtain the
desired probabilities for the state with J =1/2, J, =1/2:

and the mean values I, = 2/3, 5, = —1/6.

The results for the states with J, < 0 are obtained following the same steps.

Problem 5.19

For a system of three particles with the spin s = 1/2 there are eight independent
spin states. Classify them by the values of system’s total spin. Obtain the complete
system of the spin functions, Ugg._, that describe the states with definite values of
S and S, of total spin. Discuss the symmetry of these functions with respect to the
interchange of the spin variables. Compare with the case of two particles.

Solution
The possible values of the total spin are S = 3/2 and 1/2.

Now the set of the eigenvalues with S = 1/2 is degenerate, since for S = 1/2 and
a given value of S, there are two independent spin states. Indeed, the value S = 1/2
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could be obtained by two independent (for a given S,) ways: 1) by combining the first
two particle spins into a total S5 = 0, where the system’s total spin is determined
by the spin of a third particle; 2) by combining the spins into a total Si2 = 1, then
combining the spin of the third particle into the total spin S = 1/2. Since the number
of independent spin states with a given S (without the degeneracy in S, S,) is equal
to 25 + 1, then the total number of independent spin states is equal to (2-3/2+ 1) +
2(2-1/2+1)=8.

The form of the spin functions ¢g—_3/5 g —+3/2 is obvious:

o= (2),(0),( )y o= (2),(2),(1), 0

We can also write, without any calculations, the spin functions corresponding to
S=3/2, S, =+1/2, by using their symmetry with respect to the interchange of
the spin variables of any two particles whose total angular momentum is equal to

e (DU (L)
ROYOTEN
S (L (L),

o) (VLY

If a spin function has a total spin of the first two particles equal to S12 = 0, then it
describes the state with S = 1/2. We have

(D, (D. (D), o
5L, (D, (),

We can find the second pair of the functions, 1/152/)2 4120 that are linearly independent

(&)
w

—= O
O =

with respect to (3), by considering the states with a total spin Ss; = 0 for the second
and third particles:

BB (UG L (D)) o
=25 (1) {00 ). (V). -(7).(0 ).}
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We should note that though functions (3) and (4) are linearly independent, for the
same values of S, they are not orthogonal. The most general spin function of a state
with S = 1/2 is a superposition of functions (3) and (4). The reader should consider
a state with the total spin S13 = 0 that also corresponds to S = 1/2, and ensure that
the corresponding function could be expressed in terms of the functions (3) and (4).

In conclusion, we notice that the spin functions of states with the total spin S = 1/2
do not have a definite symmetry with respect to the interchange of spin variables of
any two particles. Although the first of the functions in (3) is antisymmetric with
respect to the interchange of spin variables of the first and second particles, with
the interchange of first and third particles it becomes a completely different function

(2)
(_¢1/2,1/2)'

5.2 Spin-orbital states with spin s = 1/2; Higher spins
Problem 5.20

The states of a particle with a definite value of A\ for the spin projection along its
momentum direction are called helicall®® states. For a particle with spin s = 1 /2, find
the wavefunctions, Up, », of states with definite momentum pg and helicity A = £1/2.

Solution

It is easy to find the functions if we take into account the result of Problem 5.3 (see
also Eq. (V.4)):

eipor/h < cos(0/2) >,

U, A=t1/2 = W P Sin(§/2)
G o (0 sin(6/2)
Po, A=—1/2 (27h)3/2 \ —e"Pcos(0/2) )’

where 6 and $ are the polar and azimuthal angles of the vector py.

Problem 5.21
For a particle with spin s = 1/2, show that the most general expression for the spin-
angular dependence of a wavefunction of the p; /o-state (the state with orbital angular

momentum / = 1 and total angular momentum j = 1/2) is given by

U = (6 -n)x, or ¥y = (645 1n)x35.

[58]  Note that the helicity is a pseudoscalar quantity and changes its sign under coordinate inversion.
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We have that xy = is some spinor which does not depend on the direction of

a
b
the vector n (n =r/r or n = p/p, in accordance with the representation used).

Normalize this wavefunction to unity. Find the distribution (averaged over the
spin) of particle momenta directions in the given states.

Calculate the mean value of j. Find the way by which it depends on the definite
choice of spinor Y.

Determine the form of functions that describe p;,o-states with a given value of
j. = =£1/2.
Solution

1) If we act by the operator 72 on the given function, we encounter the expression
(1+6/2)%(6 - n)x. Using the relation!® [j;, (6 - n)] = 0 and equation 1y = 0, we
can transform this relation to (6 -n)- $6%x or 3(6 -n)y. It follows that 2 =
(3/4)¢, i.e., j has a definite value equal to 1/2. The fact that the function given
corresponds to the value [ = 1 follows from its linear dependence on the vector n
(compare with Eq. (II1.7) and Problem 3.42).

2) U*W = x*(6 -n)?y = x*x = const and does not depend on n means that the
distribution over the directions of momentum (or position) is isotropic, as the s-
state. So the normalization condition [ ¥*WdQ) =1 would be fulfilled for x*x =
la]? + |b]* = 1/4.

3) At last we have the relation

i= i) = [ (14 50 ) (@ mpin = imc G

It follows that the total angular momentum vector in the state considered is the
same as the spin vector in the state described by spin function . Therefore, if we

choose v4my of the form ( (1) ) and < (1) >, we obtain normalized functions of
p1/2-states with j, = +1/2 and j., = —1/2:

- _ 1 & -n) 1y 1 cos
i=1/21=15.=1/2 = Al 0 ) ir \ sinf-e¥ )

0, ¢ are the polar and azimuthal angles of the vector n. The spin-angular function
of the state with j, = —1/2 is similar. Compare to Problem 5.24.

Problem 5.22

A particle with the spin s = 1/2 has the spin-angular dependence of the wavefunction
in the form ¢4 = (1 £ 6 - n)x (spinor x does not depend on n). Analyze the states of

[59]  See also Problems 3.5 and 3.28 about the given commutator value.
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this particle with respect to the following quantum numbers: j, I, I (parity), and also
A (eigenvalues of the operator A = ¢ - n/2, spin projection along vector n). If n = p/p,
then A is helicity.

Find the way by which functions ¢4 are transformed with the coordinate inversion.

Solution

These wavefunctions are superpositions of the s /s-state function x, and p;/o-state
function (6 -n)x (see the previous problem). Total angular momentum has a well
defined value j = 1/2. Orbital angular momentum [ and parity I do not have definite
values. Since the wavefunctions, 14, are normalized in the same way we come to the
conclusion that [ can take the two possible values, 0 and 1, with the same probability
1/2. Then we notice that j\wi = 444 /2, so the spin n-projection has a definite value
equal to +1/2. Under coordinate inversion, ¥4 switch into each other.

Problem 5.23

For a particle with spin s = 1/2, show that the spin-angular wavefunction of the
form ¥ = {2(c-n) +i[c x n] - 6}x, describes the p;/o-state. Assume that vector c

and spinor xy = do not depend on n = r/r.

a
b

Find the concrete values of ¢ and x for which the given function describes the p3/o-
state with a definite value (j, = +1/2, £3/2) of total angular momentum z-projection.

Solution

Consider the spin-angular wavefunction of the state with { = 1: ¥;—; = (c - n)y, where
c and x do not depend on n (compare with Problem 3.42). This function does not
correspond to a definite value of j, but instead represents the superposition of states
with j = 1/2 and j = 3/2. To select the part that corresponds to j = 3/2, we use the
projection operator

1 S
Pi_3/2 = §(2+1'U).
Comparel®! with Problem 3.36. We easily find
A 1 . .
Vi—3/2 = Pj=goWi=1 = §(QC ‘n+ilec xn]-a])x (1)

in accordance with the problem statement. The reader should normalize the wave-
function and ensure that it is orthogonal to the p; /o-state wavefunction from Problem
5.21. We should note that the number of the independent functions, ¥;—,, is equal to
six (there are three independent choices of vector ¢ and two of the spinor x). There are
only four independent functions of the form (1), since they are deduced by excluding
the two independent functions corresponding to j = 1/2 from ¥;_;.

[60]  See also Problem 5.24.



Spin 183

Function ¥;—; with the choice of ¢ = (0,0,1) and x = < (1) > describes the state

with I, = 0 (see Problem 3.18), s, = 1/2 and j, = 1/2; in this case j does not have a
definite value. Function (1) for such ¢ and x has the form

v 1 2cosd
3/211/2 = 3\ _givging |-

This describes the state with j = 3/2, | = 1 and j, = 1/2. Since P; commutes with the
operators [2 and j., then the eigenfunctions of these operators remain eigenfunctions
under the action of operator P.

In the same way, we can find the wavefunctions of other p3/y-states. For example,

if we choose ¢ = (1,4,0) and x = (1) then we will obtain Ws/5 1 3/2, etc. Compare

with the result of Problem 5.24.

Problem 5.24

For a particle with spin s =1/2, find the spin-angular wavefunctions, ¥,;;_, of the
states with definite values of I, j, and j =1+ 1/2 (here [ and j are the orbital and
total angular momenta).

Solve this problem in two ways without using the Clebsch—Gordan coefficients:

a) by using the projection operators Pj;
b) by using the raising (lowering) operators Jr.

Solution

Yim(0, ¢)
0

state of a particle with definite values of I, m, s, =1/2 and j, = m + 1/2. This

function is not the eigenfunction of j2 (except when m =1 and j = [ + 1/2), but

describes some superposition of states with j =1+ 1/2 and j = [ — 1/2. Using the

projection operator!61] ﬁj for the states with given 7,

a) Consider a spin-angle function of the form ¥ = which describes the

s = s (14 5 22601),
and using the relations analogous to Eq. (II1.8):
6-1=28-1=25.0. + 8.0 +5_1,
J+tss. = VG =30 + Gz + Dy, (1)

G-, =G =g + )G+ 52)¥) 5.1,

[61]  Its form follows from Problem 1.35 if we also take into account Problem 3.27.
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we easily find the explicit form of the desired spin-angle functions:

1 < VIitm+1 Y, )

mits2 = C1P 1oV = ———
Yir1/20mi1/2 = C1liye V2I+ 1\ VI—m Y me

Yi_1/20me1/2 = 02131—1/2‘1’

1( mYzm>

V2T VT m 1 Vi

The coefficients C', o are chosen for the wavefunction normalization of unity. From
(2) we see the orthogonality of the functions considered:

(41,1, 7=142,1, j-) = 0, where j1 o =1 £ 1/2.

Yu
0
n =141/2 —j. on this function, we obtain the t;1/2;, ;.. Taking into account

that j_ =1_ +§_, §2 = 0 and therefore

b) We see that 'l/)l+1/2,l,l+1/2( Acting by the operator ;" with

gt =10 4l s,
and using relation (1), we find again the function known from (2):

Yit1/2,1 1220517”(}/”): : (mym )
+1/2,l,m+1/ - 0 \/m \/l*m)/l,m-‘rl

Problem 5.25

Show that the functions W ;;; considered in the previous problem are related by
Ui, =6 -nY,;, lio=j+1/2(n=r/rorp/p).

Determine the spin-angular dependence of the wavefunctions U,y;. (in the momen-
tum representation) of particle states with definite values of j, j., and helicity
A=+1/2.

Solution

1) We can check the problem statement by direct calculation, but it is easier to verify
it by the following argument that depends upon commutativity of operators!6? j,
and (6 - n) and upon the pseudo-scalar nature of the latter.

[62]  Compare with Problems 3.5 and 3.28.
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Let Wj;,;. be the eigenfunctions of operators 72, 2, 7., where lo = j — 1/2. This
function has a definite parity equal to Iy = (—1)"2. Consider the function

U= (6-n)Tj,;. .
For this function, we easily find
5V =56 )5 = (6 0)). W5 = 426 0) ;. = .,

U =526 - n) W, = (6 -0)72 W, = j(G+ 1)V,

IV = f<a' : n)q/jlzjz = _<& ) n)f\llﬂzjz = (_I)ZQ—H\iJ'
It follows that W is also the eigenfunction of the operators j2, j., I , and its parity is
opposite to the parity of wavefunction ¥;;,; . Because there are only two possible
values of [ for the given j, l1 0 = j £ 1/2, and the parity is equal to (—1)!, then

¥ corresponds to to the value I; = j 4 1/2. So the function W is the eigenfunction

of the operators j2, 12, J., so that U1, 5. =¥ = (6 -n)T;,;.. We should note that
after averaging over the particle spin state, the relation appears:

AL - 2
(WW) = (W15, (6 1) [ Wiy ) = (Wtg;. [ Yjtss. )
This new function expresses the same characteristics of the angle distributions (over
the directions of n) as the original.
Now it is easily seen that

1 N
Wi a=t1/2 = ﬁ(l + (6 -n))Wj ;..

Taking into account the explicit form of the functions W;;; from the previous
problem, we can find

2 0
Ui a=1/2 = (2[—1—1){vl+m+1cos< )Ylm

+ VI — msin (Z) e“"Yl,mH} x < -Cos.(g()g)>

{\/l+m+1sin (g) Yim

2
Viiea==12 =@ 1)

9 _ < A
— V1 —mcos (2> e “"Yl,mﬂ} X (_e?;ncgz)(g))'

Here m = j, — 1/2. Note that the spin part of the wavefunction is the same as in
Eq. (V.4) and Problem 5.3.
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Problem 5.26

A particle with the spin s = 1 can be described both by a symmetric spinor!%3! of the
second rank *?(r) (the spinor representation), and by a vector function, V(r) (the
vector representation).

Indicate

1) the form of the spin operator in these representations;

2) the connection of such wavefunctions with the wavefunction (r,o) in the
s.-representation;

3) the explicit form of these wavefunctions for a particle state with orbital angular
momentum [ = 1 and total angular momentum j = 0.

Solution

For s = 1, the description of a particle spin properties in the terms of the symmetric
spinor ¥*?(r) is analogous to the description of states with total spin 1 in a system
of two spins with s = 1/2 (compare with Problems 5.10 and 5.11). By analogy with
expression S = 3(61 + 63), the form of the spin component operators in the spinor
representation immediately follows:

Qo & &3 v [ 1 «@ o
su? = splut, sl =S (00, 0] + 0 af). (1)

The relation between wavefunctions ¥*? in the spinor representation and the wave-
functions in the s,-representation, 1(s,) is[64

PP = (s )pe?, (2)

where the spinor @/}?f is an eigenfunction of the operator 5,. These spinors that
correspond to different values of s, have the form (compare to Problem 5.10)

1
af — 5045[5 af —
772)5;:1 151> 11[15220 \/§

Spinor components §§ are equal to dj =5 =1, d3 = 67 = 0. From (2) and (3), it
follows that

(6005 +8567), 7| = 6345, (3)

S,=—1 7

P =(1), ¥* =9y(-1), ¥ =9 = —=4(0). (4)

Sl

[63]  To solve Problems 5.26 and 5.27 it is necessary to know the basics of the spinor algebra and the
relation between spinors and tensors. Here we should distinguish co-variant and contra-variant spinor
components. We should write the simple Pauli matrices (V.2) not in the form (oi)ag but as (0:)%;
here 7 is vector index, while a and 3 are contra-variant and co-variant spinor indexes; pay attention to
the order of such indexes in Pauli matrices. In Problems 5.26 and 5.27, vector indexes are represented
by Latin characters, and the spinor indexes by Greek characters.

[64] Pay attention to the dual meaning of the variable s, in relation (2): as an argument of the
wavefunction 1(s;) it is a variable of s.-representation, while in the case of spinor w?f it is an
eigenvalue of the operator §,.
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A description of a spin s = 1 particle in the vector representation is analogous to that
used in Problem 3.44 for [ = 1. In this representation,

5V = 8i Vi, Siki = —i€ik1- (5)
The generalization of (2) for the vector representation has the form

V=> 1(o)v,.

The vectors v,, which are the eigenfunctions of §,, have the form!69]

1 .
Vs 41 = :Fﬁ(l’ +i, 0), vs.—0 = (0, 0, 1) (6)

(compare with Problem 3.41). Due to the mutual orthogonality of these vectors it
follows that ¢(c) = vV, so we have the relation between the wavefunctions in vector
and s,-representations

Y1) = %(m FiV,), $(0) = VA, (7)
1 7
Ve = J500(-1) = v(D). Vy = = 5((0) +9(-1)

From (4) and (7) we obtain the relations between the spinor and vector wavefunctions

1 0}
V2 T2

These relations may be written more clearly with

Vo= =@ —¢"), V, (WM +9*), Vo = V2y' (8)

V =Co" ) g,5 = Co™ 3. (9)

gp~ is an antisymmetric unit spinor of rank 2, whose components are of the form
g12=—ga1 =1, g1 = gao = 0 and C = 1/v/2, while ¢ = ¢*Vgg, (and 93 =0 due
to the symmetric property of the spinor dJE‘) In this form, the relation of wavefunctions

V and ¥ with each other is immediately obvious, since 07,45 is the only vector
(up to a factor) that could be correlated to the spinor ¥#. Using the relation

o o, = 25,05 — 6500,
expression (9) can be reversed:

_ L

1
o _ a, B
\@V 0%, V=—0o5,,

V2

[65]  We should note that the choice of phase factors in the relations (3), (6) for eigenfunctions vs._, w?zﬁ
for different values of s, is a choice based on momentum theory.

Vs
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1
v = S(Ung"’ + vig") (10)
Vi =—uf =0 gy =gt e =9

Values of anti-symmetric spinor contra-variant components ¢®? coincide with those of
Jap-

Let us consider the spin-orbital eigenfunctions |t;;;_ ) for a particle with the spin
s = 1 in different representations. In the general form we have to use the relation from
the theory of angular momenta addition (the orbital /, spin s = 1 and total j):

[Vi15.) = D CiioYim(m)|1,0), (11)

where |, o) is the purely spin (i.e., it does not depend on coordinates) eigenfunction
of the operator §, corresponding to the eigenvalue s, = o; the Clebsch—Gordan coeffi-
cients in (11) are not equal to zero only for j, = m + o. From the form of the relation
(11), the coefficient written in front of |1,0) is the spin wavefunction of the state
considered in the s,-representation, i.e.,

Vjiy.(n,0) = G oYim(n),  j.=m+o. (12)

Imlo

On the other hand if we consider |1,0) in (11) to be the basis vectors v, from (6)
it would describe the spin-angular part of a particle wavefunction in vector represen-
tation. Or by replacing |1,0) by spinors from (3), we come to the wavefunctions in
spinor representation.

It is instructive, however, to consider the states with lower values of j without
using (11). We will try to consider them from the general consideration, using the
transformational properties of states wavefunctions corresponding to different values
of angular momentum (compare with the problem from sec. 4 in Chapter 3).

We determine the form of the particle state wavefunction with [ =1 and j = 0.
We see that it must depend linearly on vector n (because 1=1; see Problem 3.41).
Due to the spherical symmetry of the state with j = 0, it should not contain any
“external” vector and spinor values. So we have the form of the wavefunction in the
vector representation, %! V; = en; or V = en, where |¢| = 1/+/47 from normalization.
Of course, this result could be obtained from (11) (Clebsch-Gordan coefficients for this
case are found in Problem 3.39). And now by Eq. (10) we easily find the wavefunctions
of this state with [ = 1, j = 0 in the spinor representation

Pl = _ % eitgin 6, P12 = £ cos 6, V?? = £ ¢ sing. (13)

V2 V2 V2

[66]  The classic example of a particle with the spin s = 1 is a photon. Here, due to the specific property
of a photon that is connected with the fact that electromagnetic field is transversal, its wavefunction,
which is the vector potential A(p) (in the momentum space), must satisfy the additional condition
of the form pA(p) =0 (or divA(r) = 0, see Chapter 14). The function A = f(p)p of a state with
j = 0 does not correspond to that condition. This means that the states of a photon with j = 0 do
not exist, so it is impossible for a system to emit it if its total moment both in initial and final states
is equal to zero: “0 — 0”7 transitions are forbidden.
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Angles 6, ¢ are the polar and azimuth angles of vector n direction, and from Eqs. (4)
and (7) we find the wavefunction’s s,-representation,

= Vi), $0) = ——Z=V(w), B(-1) = —=Viu(w)

¥(1
M V3 V3
in accordance with (12).

Finally we will make a remark on the form of the spin-angular wavefunctions in the
case j # 0 by the example of a particle state with [ = 1. Now the wavefunction contains
“external” tensors that characterize the states with the angular momentum j not
equal to zero (compare with Problem 3.41). Specifically in the vector representation

the wavefunctions desired have the form

Vj=i(n) = (%)1/2 exn, Viey;(n) = (\/%)1/2 Eik Mk (14)

and from the normalization condition, €*-€ =1, €}, €;; = 1. The concrete choice of
€(jz), €ir(jz), for which vector functions (14) describe the states with the definite
value of j., is determined by the result from Problem 3.41. The form of wavefunctions
in other representations could be determined as above in the case of j = 0.

Problem 5.27

A particle with spin s = 3/2 can be described both by a symmetric spinor of the third
rank, ©*#7(r), and by a spinor-vector function V,*(r) which satisfies the additional
condition (&k)gV,f = 0. Indicate the form of the spin operator and the relations both
between the wavefunctions in these representations themselves and between these
wavefunctions and wavefunction ¢ (r, o) of the s,-representation.

Obtain the explicit form of the wavefunctions for the particle states with orbital
angular momentum [ = 1 and total angular momentum j = 1/2.

Solution

For a particle with s = 3/2, describing its spin properties in terms of the symmetric
spinor 97 is analogous to describing the states with total spin S = 3/2 in a system
consisting of three spins with s = 1/2. Compare with Problem 5.19. Similar to the
previous problem, we have:

@ 1 ey e @
S/J,l[j‘? = 5(0 w' 55 ' 57’Y + 5/1 ! Uﬁv : 57’Y + 5/1. : 55 : U’YT)’ (1)

3 1 1 1 1 3
oo (p) o= e () - () e ()

(Here we list only the independent spinor components.)
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Going to the spinor-vector representation is carried out by using the relation
between the spinor of rank 2 and the vector as mentioned in the previous problem
(Eqn. (9)):

- o . R ®)

o Va7
See that the additional condition!®”] 0% V# = 0 follows automatically. The form of
spin component operators in this representation is given by

VOC

G P

@ . @ 1 «
(si),u,kl = —Zfikz% + §5kl0¢, i (3)

Compare with the previous problem.

To determine the form of the state wavefunctions with [ = 1 and j = 1/2 we should
remember that they depend linearly on the vector n and the “external” spinor x* that
gives the state of a system with momentum j = 1/2. We pick the spinor x* so that §¢
and 0% correspond to the system states with j, = 1/2 and —1/2. The wavefunction of
a particle state with j = 1/2, [ = 1 in the spinor representation has the simplest form
for the “mixed” (with co-variant and contra-variant indexes) spinor components:

«@ « « 1 o (6%
wﬂ/*@:C{n-avx +n~a§x —S(n-aux“5§+n-aﬁx“67)}. (4)

We have used both the spinor symmetry over upper indexes and the relation 9%* = 0
for the spinor w,‘j‘ﬁ = g,y,,waﬁ Y to obtain this relation. Without detailed analysis of the
state in the s,-representation, we consider only the component

Y <0 = +§> =M =l = —2C sin ey

It is obvious from the physical considerations that this is proportional to the spherical
function Y7 _;(n) and the spinor component, x!, which corresponds to the value
J»==£1/2 since j=1/2,1=1, j. =m+ o0, and 0 = +3/2.

The spin-vector wavefunction V¢ of a state with j = 1/2, [ =1 could be found by
(2) and (4). Using the relation

affﬁaf,a = 0ik0y + i€ik10] -
(compare with Eq. (V.3)), we obtain

= La"y of 72\/5
V2 P 3
We can obtain this expression in different way. Note that the most general form of a

spin-vector that depends linearly on n and x“ is

ve C(2n — i[n x &])x°. (5)

67 To prove it we should use the equality 1&‘;’8 = 0 and the relation
[ 3

o o) = 252684 — 6367
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V& =cinx® + co[n x Ug}xﬁ.

The additional condition, o5 - V7 = 0, leads to the relation ¢; = 2ic;. We obtain (5).

Compare with Problem 5.23.

5.3 Spin density matrix; Angular distributions in decays
Problem 5.28

A system of two particles with s = 1/2 is in a state with definite values of S and S,
(S is the total spin). Find density spin matrices for each of the particles in these states
for a case when the averaging is performed over the spin state of the other particle.

Solution
The spin density matrix of particle 1, pf,lg,, is expressed in terms of spin function

Yss.(01,02) of the system from the general equation (V.5):

pao’ - Z’wSS a, 0'2)1/153 (0' 0'2)

o2

Using the known expressions for ¢¥gg. from Problem 5.10, we obtain
ps=18=1=("1 " V=la4a)., Nao=2(1 %)
oo y Mz O O — 2 z)oo’ oo’ I 2 O 1 )
W o (0 0y _ 1. ) 1/ 1 0
Poo’ (17 1) - ( 0 1 ) - 2(1 Uz)o’o”a pg‘g”(()?o) - 0 1 .

Comparing (1) with the general equation (V.7) for p, we see that in the states
with S =1, S, =0, and S = 0, the polarization vector P = 0. We have completely
unpolarized states. For the case of S, = £1 we have P = (0,0, £1), so |P| = 1. We have
completely polarized states. Here the spin state is pure and p? = p (this is connected
with multiplicative form of the spin function for S, = £1). The density matrix for the
second particle has the same form as for the first one.

[\)

Problem 5.29

A particle with spin s = 1/2 is in a state with definite values of j, [, and j,. Find the
spin density matrix describing the spin state of the particle irrespective of its position
in space.

Solution

The spin density matrix has the form p = (1 4+ P - &) where P = 25 is the polarization
vector. This can easily be found by using the result of Problem 3.40 a:
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p_os— I

J+L)—=Il+1)+s(s+1) 3
JG+1) !

sol68l p = (0,0, ilffz/z), where the signs + correspond to the values j =1+ 1/2. In

the cases j, = +j for j =1+ 1/2 we have |P| = 1 and the spin state is pure.

Problem 5.30

Indicate the restrictions on the quantum numbers,[%) the spin J and the intrinsic
parity P, of a neutral particle A°. Use the existence of the decay A — 777~ with
parity conservation. The quantum numbers of a pion are J : =0"

Determine the angular distribution in the system of a resting particle A° if before
the decay it was in a state with a definite value of J,. See also Problem 5.32.

Solution

Since the spin of a pion is J,; = 0, the total angular momentum J of two-pion system
in the center-of-mass system (which is the rest frame for the particle A®) coincides
with the orbital angular momentum L of their relative motion, i.e., J = L, and at the
same time (due to the angular momentum conservation) it is equal to spin J4 of A,
i.e., L = J4. Furthermore, the parity (in the center-of-mass system) of the two-pion
system is P, = (—1)Y PPy = (—1)74 ((—1)* is the orbital parity of the pion pair).
Under the assumption that in the decay considered, the parity is conserved, we see
that the intrinsic parity Pa of the particle A° must be equal to Pa = Por, = (—1)74.
Thus the possible quantum numbers of the particle A® are: J§ = 0%, 1=, 2+ ...

If the particle, A?, is in a state with a definite value of J,, then L, =.J, for
the decay pions. Fixing of L = J and L, = J, determines uniquely the wavefunction
angular dependence for two pions in the form Yj;_ (n), where n = p/p, p is their
relative momentum. So the angular distribution of a decay product has the form
;—éﬂn = |Y;;.(n)[%. See also Problem 5.32.

Problem 5.31

Show that an existence for the K-meson (spin Jx = 0) of two decay chanels — into two
pions, K— 27, and into three pions, K— 37 — indicates the non-conservation of parity
for its decays,!7"!

[68]  Compare j with 1 from Problem 3.10 a.

[69]  If we apply the parity conservation law for the decays, then when particles decay and form it is
necessary to account for the intrinsic parities. See Problem 10.5 for the decay A” — 270,

[70]  Before the discovery of the parity non-conservation it was believed that the two decay channels
corresponded to different particles # and 7. The solution of the 6 — T-problem stimulated the
experiments by which non-conservation of parity for the weak interaction was discovered.
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Solution

Due to the angular momentum conservation for a system of two pions from the
decay, L = 0. The two-pion system has the positive parity (compare with the previous
problem). At the same time, for a system of three pions with L = 0 (in the center-
of-mass system) the orbital parity is positive (see Problem 3.47), while the intrinsic,
and so the total, parity is negative. The phenomenon of the same particle having two
decay channels with different parities of the final states indicates its non-conservation.

Problem 5.32

A resting particle, X, with spin J decays into two spinless particles (for example, into
two pions). Determine the angle distribution of decay products if the initial particle

a) has a definite value J,;
b) is in a state described by a spin density matrix pium,s, where m is the spin z-
projection.

As an illustration, consider the angle distribution of pions from the decay of a
vector particle V— 2 (J& =17).

Solution

a) Due to the particles-decay products’ angular momentum conservation, the orbital
angular momentum of their relative motion is L = J and L, = J,, which uniquely
determines the wavefunction angular dependence in the form Yy, (n) (n=
p/p, where p is the momentum of the relative motion of the decay products),
and the angular distribution of the decay products has the form ;—& = Yy, ()]
Let ¢(m) (m = J,J —1,...,—J) be the normalized spin wavefunction of the decay-
ing particle in the J,-representation. Due to the angular momentum conservation
across the decay, it also describes the state of the angular products. The angular
part of the wavefunction has the form

() = 3 e(m)Ysm(n),

m

o
~

and their particle angle distribution for the decay is described by
2

= Z c(m)c*(m')Y m(n)Y;,, (n). (1)

mm/

dw
aQ,

> e(m)Yym(n)

m

The desired angle distribution is obtained from (1) by the substitution
e(m)c*(m') = pmms = c¢(m)c*(m’), where p is the polarization density matrix of
the decaying particle. In particular, we will consider the case of J =1 using the
form of spherical functions (II1.7). We obtain

dw 3

0. = & {(p11 +p_1,-1) sin 0 + 2poo - cos? 6 — 2Re p1,-1 - COS2¢ - sin® 0
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+2Im pq,—1 -sin2¢p - sin?  — v2Re P1,0 - cos @ - sin 260 4 V2Im p1,0 - sin g - sin 26
+V2Re p_1-cosp-sin20 +v2Im p_; o -singp - sin 20}. (2)

The polar and azimuthal angles of the vector n are 0, ¢, and p11 + poo + p—1,-1 =
1. Note that in the case of a completely unpolarized state we have p;, = d;1/3. (The
angular distribution is isotropic).

Problem 5.33

Determine the angle distribution of decay B — wN products of some unstable particle
B with spin Jg = 1/2, if

a) parity is conserved in the decay and parity of B is negative;
b) parity is conserved in the decay but parity of B is positive;
¢) the decay takes place without parity conservation.

Assume that the spin state of the nucleon produced is not detected. Remember that
the quantum numbers of nucleon and pion are J& = (1/2)*, JF =0".

Solution

Let us determine the form of wavefunction spin-angular dependence properties of
the wN-system with total angular momentum J = 1/2. Since for the pion we have
JE =0~ while for a nucleon J{ = (1/2)F, we see that for a given value of .J, the orbital
angular momentum L could take only two values: L = J £ 1/2. The parity of the
mN-system is

Pin = (1) PPy = (—1)FFL

Fixing the values Jp and Pp uniquely determines L. Taking into account everything
mentioned above, we find:

a) L =0 for Pg = —1, so the wavefunction of the mN-system does not depend on
angles, and its spin-angular dependence has the trivial form ¥,x = ™. Due to
angular momentum conservation, spinor yN) coincides with the spinor x(®) that
describes the spin state of the particle B. Since the wavefunction does not depend
on angles, the decay angular distribution is isotropic.

b) Now L =1, and the spin-angular part of the wavefunction has the form
Yax = C(6 -n)y, where n=p/p and x = x(®). See Problem 5.21. The angle
distribution of the pions is given by[™!

[71]  After the summation over the independent spin states of a nucleon. If we fix the spin state of the
nucleon in the decay, which is described by spinor X(/\N), then

d *
"% s o

I
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dw

S = () e = [P (6 - m)* ®) = [P X ®) = const.

As in case a, it is isotropic (for the same angular dependence as distributions with
L = J +1/2; see Problem 5.25).

¢) Here, due to the non-conservation of parity, parity of the mN-system does not have
a definite value. The wavefunction spin-angular dependence has the form of the
superposition of wavefunctions considered in a and b:

Van = (a+ b(6 -n))xP.
The angle distribution of the decay products is described by

dw
dQ,

o¢ (trn) Ymn = X (@ +07(6 - m))(a + b(& - 1)) P

2Re ab*
= (0 20 ) o (14 2 ol m), ()

Here as well as in case b, the summation was performed over the independent spin
states of the nuclei that appears in the decay.

The characteristic feature of this distribution is connected with its “back and forth”
asymmetry of pion escape with respect to the polarization vector P = (o)p of
decaying particle B. The existence of such a correlation between the directions of
the polar vector n and the axial vector (o) p that is not invariant with respect to
the coordinate reflection is a smoking gun for parity non-conservation in the process
considered.[7]

Problem 5.34

Consider the decay X— a + B, where X and a are spinless, while the particle B has
spin j. Find the polarization density matrix of particle B in the case of

a) fixed space quantization axis z;
b) choice of direction of such an axis along the direction of decay product motion (in
the system where particle X at rest).

In the case of a, also determine the elements of density matrix, averaged over the
directions of decay product motion.

[72]  An example of a decay of this type, which proceeds without conservation of parity, is the decay
of hyperon into nucleon and pion: for example, A — pr~. The reader should prove that for such
decays of unpolarized particles, a nucleon polarization appears which equals

2 Reab” 0
o al?+ (b
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Solution

a)

Since the total angular momentum is J = 0, the spin-angle part of the final state
wavefunction has the form

J

¢J=O = Z ngn,j7_my},—m(n)Xm = Z C(n7m)X7n~ (1)

m=—J m

The orbital angular momentum of relative motion is equal to the spin of particle
B: j. n is the unit vector directed along the momentum of relative motion.

1
5 1/?

are the Clebsch—Gordan coefficients (see Problem 3.39). x,, is the eigenfunction
component j, operator of the particle B spin.
The quantities ¢(n,m) for fixed n can be considered as the spin wavefunction of
particle B in the j,-representation, so the density matrix has the form

4

Pmm’ = NC(II, m)C* (nv m/) = 2]» +1 (_l)mim/yvj»—m(n)}/jf—m’ (I‘l) (2)

oY = (1)

J,m,j,—m

N = 47 is the normalization coefficient. We should note that for fixed n, the spin
state of particle B is pure, since in that case p? = p. If we average p,,,,/ over all the
directions, n, of the particles’ escape after the decay, then, using the spherical
functions’ orthogonality, we obtain 5,,,,, = 6m.m’//(2j + 1), which describes the
density matrix of absolutely unpolarized states.

In (2) we should consider n to be directed along the z-axis. Since

2+1\"?
Y0 = 0.0 = (1) g
7

then we find

Pm,m! = 6m,05m’,O .

This result has a simple interpretation. It means that the particle spin projection
along the n-direction has a definite value equal to zero. This immediately follows
from the angular momentum: in the problem statement we say that in any direction
the projection of J is equal to zero, and since the angular momentum n-projection
is equal to zero then the spin n-projection is also equal to zero.

Problem 5.35

The same conditions of previous problem, but now the particle B in turn decays into
two spinless particles: B— b + c¢. Determine the distribution function for values of the
angle v between vectors p, (particle a momentum in the rest frame of particle X)
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and pp, (particle b momentum in the rest frame of particle B[73]) that describes the
correlation between the particles’ escape directions.

Solution

The particle B spin z-projection directed along the vector ng = p,/pa is equal to zero.
Accordingly, particles b and ¢ have, in the rest system of the particle B, the orbital
angular momentum [ = j and its projection [, = 0, so that their angle distribution is
given by

dw
dQ,

241

=y 2
[Yio(m)|? = -

sz(ng -n).

Such a distribution also follows from the result of Problem 5.32 if for the density
matrix P we use its form given in b of the previous problem. Since |P;(cosf)| <1
and |P;(£1)| =1, then in the decay B— b + ¢, particles fly out mainly along (or
opposite to) the direction of the particle a momentum, if j # 0.

Problem 5.36

Find the relation between the spin density matrices, [’)(“’b)(n)7 of the particles a and
b that have spin 1/2 and are formed in the decay X— a + b of some spinless particle
X (the vector n is directed along the momentum of the particles’ a and b relative
motion). Consider the cases when in the decay:

a) parity is conserved,
b) parity is not conserved.

Solution

The spin density matrices have the form

pl) = %(1 +Poyp - 0).

These describe a spin state of one of the particles after averaging over the spin states of
the other particle. Due to the spherical symmetry of the system considered (J = 0), the
polarization vectors P,y = {)n may depend on the vector n only. Such a relation
between the directions of the polar vector n and axial vector P which is not invariant
with respect to coordinate inversion, could take place only if the parity is not conserved
in the decay. If the parity is conserved, then £, ;, = 0 and the spin state of each particle
is completely non-polarized.

When the parity in decay is not conserved, parameters &, # 0, though there is
a relation &, = —¢&,. Indeed, since J = 0, then the projection J over any direction
is equal to zero. Now consider the averaged value of the total angular momentum
projection,

To=s 40 +1, =0,

[73]  Carefully note that vectors p, and py, are defined with respect to the different frames of reference.
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on the direction n. Since I, = 0, then sflb) = —sﬁb), and accordingly, P, = —P}, (since

Ps=2s).

An example of such a decay without parity conservation is 7,,-decay: 7t — pt +uv.
In this decay, muon and neutrino are totally polarized, P = 1, anti-parallel to their
momenta.

5.4 Bound states of spin-orbit-coupled particles
Problem 5.37

The Hamiltonian of a spin-orbit-coupled particle with spin s = 1/2, moving freely in
two spatial dimensions, can be written as (i = 1):[74

2 2
H,, = _W&O +ia(6,Vy — 6,V2) +iB(6,V — 6,V,). (1)
Here, m is the mass of the particle, ¢ is the 2 x 2 identity matrix, ; are the Pauli
matrices, and the hats denote matrices acting in spin space of the particle. « and 3
are real constants representing the strengths of the respective spin-orbit interaction.
Consider now a system of two such spin-orbit coupled fermions which are identical
and satisfy the Pauli exclusion principle.

a) Obtain the relevant two-particle Schrédinger equation in terms of a four-component
spinor in momentum space for an arbitrary interaction between the fermions.
Express the spinor in terms of the momenta of the two fermions, k; and ks.

b) Reduce the interaction term to a simpler form by assuming that it is an attractive
d—function potential, that it is axially symmetric, and that we may ignore all higher
harmonics of the scattering potential except for the lowest s-wave component.

¢) Solve for the four-component spinor wavefunction with the potential obtained in
b). Write the final expression for the wavefunction as a function of the relative
and center-of-mass momenta of the two particles, i.e., k = (k; —ks)/2 and Q =
ki + ko.

d) Find a self-consistency equation satisfied by the wavefunction.

e) Find an approximate analytical expression for the bound state energy of the
molecule with zero center-of-mass momentum, i.e., Q = 0. Assume here that 8 > 0,
and clearly state the regime of validity of the result. During the calculation,

[74]  The Hamiltonian, Hs,, describes, for instance, the motion of an electron in a two-dimensional
electron gas in semiconductor heterostructures with structural inversion asymmetry and bulk
inversion asymmetry. In the so-called III-V (e.g. GaAs) and II-VI (e.g. ZnSe) semiconductors, bulk
inversion symmetry is broken due to the existence of two distinct atoms in the Bravais lattice. This
gives rise to Dresselhaus spin-orbit interaction, which is modeled by the term proportional to 8 in
Hso. Structural inversion asymmetry arises in the presence of an external or built-in electric field
that makes the conduction band energy profile inversion-asymmetric in the direction of the electric
field. This gives rise to so-called Rashba spin-orbit interaction modeled by the term proportional to
ain Hgo.
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an ultraviolet-divergent momentum integral may be encountered. In that case,
introduce a cutoff k. = 1/R., where R, physically corresponds to the characteristic
spatial range of the interaction.

f) Find the energy spectrum of the bound molecule for small Q, and extract the
effective mass of the molecule.

g) Repeat d), e), and f) for the case § = 0 (the ‘purely Rashba’ case).

Solution

a) We may write the Schrodinger equation for this two-fermion system in terms of a
four-component wavefunction, |®(ky, ko)), written in the basis, | 1,71), | 1,1), | {, 1),
and | J, ), where the two arrows represent the spin projections of the two particles.
In momentum space we then have

[Hso(kl) ® 60+ 60 @ Hyo(ks) + Vm} B(k1, ko)) = E|®(k;, ko).

Vi is some arbitrary interaction between the two particles, and the check denotes
4 x 4 matrices that act in the above-mentioned four-component basis. ﬁso(ki) is
the Hamiltonian (1) for particle ¢ written in momentum space.
b) In momentum space, the interaction term has the form
. A2k’ . .
Val@(la k) = [ G557 k=100 Q)

where |®(k,Q)) = |®(Q/2 + k,Q/2 — k)) = |®(ky,ks)). For an axially symmet-
ric interaction potential one can write Vi(k — k') =372 _ Vi(k, k' )etlon—ew),
where @y is the angle between k and the z-axis. Assuming a short-ranged (i.e.,
d—function) attractive interaction, keeping only the s-wave component (i.e., I = 0),
and imposing anti-symmetry of the wavefunction (since we have two fermions), we
may replace V(k — k') — VoP) | where V(0 is the s-wave attractive interaction
strength, and P*) is a projection operator which projects out the singlet component

of the wavefunction. The interaction term then reduces to
d2k/

e 12K, Q).

Via|®(ky, ko)) — Vo/
¢) The interaction potential from b) can be rewritten as

4’k -
Yo / G 1B, Q) = o, 0), )

where [0,0) = (| 1,4) — | {,1))/Vv/2 denotes the singlet state, and cq is a normaliza-
tion constant. The Schrodinger equation can then be rewritten as

G0k ka) = |G (k) ® 60 + 60 © G (ko) | [@(0cr, ko)) = —cVh[0, 0),

with G_l(ki) = 5,60 + ad - (b; x e,). Here we have defined s; = k?/2m — (E/2),
b, = (kix + Ykiy, vkiz + kiy), and v = 5/« is the ratio of the Dresselhaus to Rashba
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interaction strengths. The single-particle inverse Green function, éil, can be
diagonalized by the unitary matrix,

A (b
vi=er [ (570

(a 7/2-rotation around, b;), as U] G~1(k;)U; = ;60 + ab;6. Therefore, the two-
particle Green function, GQ, can be diagonalized by the unitary matrix, U = U ®
Uy as Gy =UDU' with D= dlag{dl, do,ds,ds} = diag{(s + ab; + abs) ™!, (s +
aby —aby) 7L (s — aby + aby) 7t (s — aby — aby) 71}, and s = 51 + so. Flnally, we
obtain the Wavefunction

|®(k1, k) = —VocG2|0,0)
e 02 (+ — +—) —ie” 1 (+ + ——)
Vocq | (++4+) — @0 (4 — —4)
42| e (- ) ()
—ie" (4 + ——) + i’ (+ — +-)

where (p1papsps) = Z?Zl pid; with p; = £1, and 6; = tan=*(b;, /b;;). After some
algebra, the wavefunction becomes

B(k.Q) =~
iv2(s%(k, Q)ab(k)e~% — a®B(Q)(B(Q) - b(k))e~i»)
—2is(k, Q)a’(b ( ) xB(Q)): ‘)
iv2(s*(k, Q)ab(k)e® — a® B(Q)(B(Q) - b(k))e!?s) |’
s(k, Q)(s*(k, Q) — o’ B*(Q))

where the four-component wavefunction is now written in the basis
of the three-triplet and one-singlet states: |[1,1),]1,0),|1,—1),]0,0). Here,
b(k) - (kw + kaafykac + ky)’ B(Q) - (Qx""_'YQy?’YQxJ"Qy)a S(k, Q) = (k2/m) +
(Q?/4m) — E(Q), and d(k, Q) = d; (k, Q)dz2(k, Q)ds3(k, Q)ds(k, Q). The angles are
given by 6, = tan~!(b,/b,) and 0p = tan=!(B,/B;).

d) Using relation (2) and noting that all components of the wavefunction (3) are odd
under k — —k except for the singlet component, we find

21,/
| el ®0<.Q) = cal0.0) @
e) Using the wavefunction (3), the self-consistency condition (4) can be rewritten as
L :/ d’k s(k, Q)[s*(k, Q)) — a®B*(Q)]
Vol (2m)? 51(k, Q) — 4a?s*(k, Q)[b* (k) — B*(Q)/4) + 4a*(B(Q) - b(K)]*’

()
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At Q = 0, the self-consistency equation (5) reduces to

d*k s(k,0) 1 6
/ (21)2 $2(k,0) — 4a2b2(k)  |Vp|’ (6)

Noticing that the threshold energy for molecular formation is Ey, = —ma?(1 +
)2, the dimensionless binding energy, § > 0, can be defined via E(0) = —ma?(1 +
7)2(1 + §). Doing the angular integration in (6), we arrive at

dn & [€+ (1 +7)°(L +9))de
ol Jo €+ T +7)2(1+0))7 — 46(1—)?
1

(7)

CET IR0 O AT

where ¢ = (k/(ma))?, and vy = Vym is the dimensionless attractive interaction
strength. &, = 1/(maR.)? is a dimensionless ultraviolet cutoff where R, is the
characteristic radius of the interaction. Assuming a small binding energy (i.e.,
§ < v ~ 1) the integrand in (7) is strongly peaked for £ = & = (1 +7)%(1 + 6) due
to the near-vanishing of the second square-root factor in the denominator. Setting
& =& in all of the other factors (since they are regular at £ = &), the integral can
be done, and we obtain the binding energy

fc _ 8wy
0~ —————e¢ Mol

i+
where we have assumed £, > 1 + . Therefore, the bound state energy is given by

€C __8TVy
E0)= —m(a+B)2 |1+ —> ¢ Tt | .
The energy spectrum of the spin-orbit coupled molecule can again be obtained from
the self-consistency condition (5) evaluated at Q # 0. The integrals can be done
analogously to part e), and we obtain

E(Q) ~ —m(a + §)2 — ATl
Q2

1
+——— [1+67+7)) = +2(1—7)

2 QaQy
41 +7) 2m 2m |’

where A = ma?&, is the ultraviolet cutoff, and we have assumed small momenta
@ < ma. Therefore, the effective mass of the molecule, m*, reads

L 1 (1+46y+79%)+(1—7)*sin26
m*  m 4(1 + )2 ’

where 6 = tan™'(Q,/Q.).
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g) The purely Rashba case can be considered by setting v = 0 in the self-consistency
condition (5). At Q = 0, analogous calculation as part e) gives the dimensionless
binding energy (keeping in mind that the threshold energy for molecular formation
for this case is Ey, = —ma?):

The bound state energy is then

E(0) ~ —ma® 1+ [vol” .
16

The spectrum of the Rashba molecule is

2 2
wl* @
E ~ —ma? — ma2|— -
Q) 16 + 8m
where we once again expanded for @@ < ma. The effective mass here is then m* =

4m.

5.5 Coherent-state spin path-integral
Problem 5.38

A useful quantity for statistical-mechanical calculations is the partition function,
which given a Hamiltonian, H, is defined as follows (for simplicity in this problem
we take the Planck constant and the Boltzmann constant i = kg = 1):

Z =tre PH
where 3 = 1/T is the inverse temperature. Sometimes the path integral representation
of quantum mechanics is used to calculate the partition function.[”® The path integral
is constructed by introducing a complete set of states parametrized by a continuous
parameter such as what are known as coherent states (see below).

Consider an ensemble of spin-s particles with the Hamiltonian H expressed in terms
of the usual operators Sz, S’w and S, satisfying the standard commutation relations,
[Si, S;] = i€ ). With this, we define the mazimal state |s) by S, |s) = s|s). Coherent
states are then defined (in one of many equivalent ways) as |n) = 195z =05, |s)
(where n is a point on a unit sphere specified by two angles, 6 and ¢).

For this problem we consider the path integral for Z = tr e‘ﬂﬁ, following these
steps:

[75]  The general applicability of the path-integral construction is an open mathematical question still
under debate, and this section illustrates both its correct usage and its limitations.
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1) Consider the resolution of identity for these coherent states

2s+1 .
g /dn |n) (n| = 1. (1)

Rewrite the trace of e=#1 (i.e., the partition function Z) using this identity.

. S\ N
2) Consider the operator identity e = limy_, o0 (1 + %) . Between each multiplica-

tive element, insert a resolution of identity. Then, recalling that 1 + x ~ e¢” when
x is small, write the partition function as

Z= lim <25411>N/h1dm exp(—S[{n;}]).

Find the explicit form of S[{n;}] (S is called the action).

3) Assume continuity by letting [n;) — |n;—1) — 0 as N — o0, and find the new form
of S in the continuum limit (é.e., N — oo and the index ¢ becomes a continuous
variable 7). With this limit, the partition function is now a path integral

z - / Di(r) =S,

where loosely, Dn(7) = limy_, o Hi]if)l 25+l dn;. What are the conditions on the
paths n(7)?
4) Find the explicit form of S[{n(r)}] for H =0 and H = S - x, where x - x = 1.

Solution

Most of the derivation does not depend on the particular form of the coherent states,
so for this derivation we will use an arbitrary set of states labeled with a continuous
variable [ and resolution of the identity

/dl 0y (] = 1.

1) With the resolution of identity we can immediately write the partition function as

z- /dl (t]e=BH)0). @)

In fact, this just a particular way to take trace.
R N
2) If we then break up the exponential with the identity e? = (1 + %) and insert a

resolution of the identity between each element (1 + % , we obtain (letting [ — Iy

and Iy =)

a
1—% Li—1).

N—-1 N
Z:A}i_rgo/l_[odlir[lﬂj
1= Jj=
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At this point we define Ar=p/N and focus on the matrix element
<lj |1 — HAT] lj,1>. Before we apply the continuity condition, we first attempt to
derive the partition function in terms of an action. Note that so far we have made
no approximations.

Our first move is to factor out <lj\lj,1> and approximate the resulting term it
multiplies as an exponential:

{4

where H(l;,1;—1) = (I;|H|lj—1)/{l;|l;—1). This move. is justified, since N is large
and the correction to the exponentlal will go as N~°. With only N exponentials
multiplying one another, (e 1/N? N e!/N — 1. Just to get the other object into
the exponential, we merely use the 1dentity x = expllog(z)]. At this point we have
our first version of a (discrete) path integral, with no continuity assumption yet
imposed:

HAT

ior) = (Iylyoa)e 1008,

N-—1
Z= A}i_r)noo/ ]}) dl; exp(=S[{l;}]),

where

N

S ==Y [~log({Lll;-1)) + H(lj,1;-1)AT]. (3)

Jj=1

3) At this point we impose the condition of continuity (which is a key assumption
in the construction of the coherent-state path-integral). This condition states that
Il;) = |lj—1) +|6l;), where [dl;) — 0 as N — occ.

We first handle the log term in the action given in (3) to obtain

log((L1li—1)) ~ —(1;10l;), (4)

where we have explicitly used continuity to obtain this expression. For the term
H(l;,1;-1)A7 we can simply set [;_1 = [;, since it already multiplies Ar. Letting
H(l;) = (I |H|lj> = H(l;,1;), we then obtain the expression for the action:

N

S = Z

(1; |6l H{L)

If we now let N — oo, the index j becomes a continuous variable 7, the term
Bl — % — 07 [I(7)), AT = dr, and we obtain the Riemann integral:

AT

SHUm)] = / dr {{(1(7)[0:11(r)) + HIU()]}
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Remember that [y = Iy, and so we have implicitly imposed [(0) = I(3) (i.e., the
paths are closed). We further define the measure:

N-1
Di(r) = lim dl;.

N —oc0
=0

This leads to the final form of our path integral:

Z= / Di(r) exp (~S[{I(7)}])

At this point we concentrate on the spin coherent-state path integral. The most
interesting term is the first one, so we evaluate it:

(n(7)|0; In(7)) = (s]e0%rei@5= 9, e~ 105: =105 )
= —i0;¢ (8] €05 G, e =105y [s)