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Preface to the first English edition

The book you are now reading contains arguably the world’s largest collection of
problems in quantum physics, which span just about the full scope of subjects in
quantum theory ranging from elementary single-particle quantum mechanics in one
dimension to relativistic field theory and advanced aspects of nuclear physics. There
are more than 700 problems of various difficulty, accompanied by detailed solutions.
While some problems are elementary and may be accessible to advanced undergraduate
students, some are at the research level that would be of challenge and interest to a
practicing theoretical physicist. Consequently, the book will be useful to a wide range of
readers including both students studying quantum mechanics and professors teaching
it. In fact, this problem book has a proven record of being a scientific bestseller in
other countries, notably in Russia, where its earlier versions have been used for over
thirty years as a standard text to learn and teach quantum physics at all leading
universities.

Even though this is the first English edition of the book, several editions in the
Russian, French, and Japanese languages have been available since 1981 (a much
smaller collection of elementary problems by Victor Galitski, Sr. and Vladimir Kogan
was first published in 1956 and is available in English too). Following the fine
tradition of Russian theoretical physics, this book of problems has usually been used
in conjunction with the legendary Landau and Lifshitz theoretical physics course.
However, the latter is certainly not the only option for a basic supporting text, and
many other excellent textbooks are now available. Therefore, I do not reiterate here
the strong recommendation of the first Russian edition, and suggest instead that a
choice of the supporting quantum textbook be left to the reader or professor teaching
a course. Furthermore, each chapter of this book begins with a concise summary of the
underlying physics and main equations, which makes the book almost self-contained.
Therefore, for a student or researcher, who has had even minimal exposure to quantum
mechanics, it may become a useful and rich independent resource to master the field
and develop actual problem-solving skills.

Let me also emphasize two points about the text. The first is that the level of
mathematical abstraction here is generally pretty low (with the exception of the first
chapter perhaps) not due to a lack of expertise by the original authors, but because
their target audience has been practicing physicists interested in understanding and
solving real-life problems. Consequently, if your motivation for doing or studying
quantum physics is to understand actual phenomena and explain experiments, this
book will certainly be useful. For example, the chapters on nuclear physics contain
a large number of problems that are directed to quantitative explanation of specific
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experimental data. The second warning is that the terminology may be somewhat
outdated at times, and no references to modern literature are provided. I intentionally
decided to preserve the integrity of the book (a number of new problems that are
included here compared to the earlier editions have been incorporated into the old
structure of chapters). Because I believe that the “old-school style” of the book is not
at all a downside.

Quite on the contrary, we can certainly learn a lot from people who worked in
the good old days of theoretical physics. These were people living and working in
completely different times, and they were quite different from us, today’s scientists:
with their attention spans undiminished by constant exposure to email, internet, and
television, and their minds free of petty worries about citation counts, indices, and
rankings, they were able to devote 100% of their attention to science and take the time
to focus on difficult problems that really mattered, making a difference on an absolute
scale. We are now standing on their shoulders, and in fact most quantum phenomena
that we are fascinated with today go back to their accomplishments in decades past.

With this in mind, I would like to say a few words about the rather fascinating
history of this book and the original authors, particularly about the lead author –
Victor Galitski, Sr. – who was the main driving force behind the book and who
conceived most of the problems you will find here. Even though I admittedly cannot
be completely unbiased in talking about him (he was my late grandfather), I can say
with confidence that apart from being a first-rate teacher and educator, he was also
a giant of theoretical physics and an amazingly creative scientist. His contributions
to quantum physics are manifold, and include the first use of Feynman diagrams in
solid-state physics, the first microscopic derivation of Landau’s Fermi liquid theory,
various fundamental results in nuclear physics (e.g., Galitskii–Feynman equations),
the first theory of unconventional superconductivity and many other famous results.
He co-authored papers with such luminaries as Lev Landau and Arkady Migdal, and
trained a generation of theoretical physicists (my own late adviser, the great Anatoly
Larkin, among them).

The sheer amount of work by Galitski, Sr. is very impressive in and by itself, but
it is even more so considering his very short and difficult life and his short career
as a physicist. I hope the reader will excuse my mentioning it briefly in the following
couple of pages. Victor Galitski, Sr. was born in 1924 in Moscow. In 1942, shortly after
graduating from high school, he enlisted in the army, having married my grandmother,
Tatiana, just a few days before his leaving. (They did not know if they would see each
other again. Fortunately they did, and she was his devoted wife for almost forty years.)
He was sent to the front shortly after, and eventually became a commander of an
artillery unit. In 1943 he was severely wounded during the Battle of Kursk. He hardly
survived, and spent over a year in a hospital. After being honorably discharged from
the army, he entered the Moscow Mechanical Institute of War Ammunition (which
later was renamed the Moscow Engineering Physics Institute, MEPhI, and where years
later – in 1960 – he became Head of the Theoretical Nuclear Physics Department).
While studying at MEPhI he discovered his gift and interest in theoretical physics,
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and after graduating in 1949 he joined the theory group led by Arkady Migdal at the
Institute of Atomic Energy in Moscow.

This is where his creative research finally took off, and where he, in collaboration
with Migdal, developed, among other things, the first microscopic quantum theory
of solids based on methods of quantum-field theory that brought him world-wide
recognition. I will not talk about the details of his research here, but will just mention
that this was also the time when he started putting together the first problems that
eventually led to this book. I will also mention that these times after the war were
not at all easy for him and his family. My grandmother’s brother, Vsevolod Leont’ev,
was arrested by the Stalin regime (his only “crime” being that he was being wounded
and captured during the war), and he first received the death sentence, which was
later changed to 25 years in a work camp (due to a temporary and brief moratorium
on capital punishment in the Soviet Union, which saved his life. He was released and
acquitted after Stalin’s death, and lived a long life well into his nineties, having been
among the most optimistic and fun people I knew). After this arrest, my grandparents
were given the ultimatum to either make a public statement and denounce the “enemy
of the people”, or face very serious consequences. They refused to follow orders, and
my grandmother was immediately fired from Moscow State University, where she had
been on a fast-track to becoming a young Professor of Economics (she never returned
to work after that). Galitski, Sr. was also facing similar prospects.

However, help came from Igor Kurchatov (the Russian counterpart of Robert
Oppenheimer, leading the Soviet effort to develop an atomic bomb), who had a very
high opinion of Galitski, Sr. Apparently, he was also involved in classified research
on the nuclear bomb, about which little is known apart from that (according to
my grandmother) while working on the project, my grandfather was exposed to
a significant radiation amount that resulted in health problems and might have
contributed to his developing cancer at an early age.

After being saved from the Gulag by Kurchatov, Galitski, Sr. entered the most
productive and successful part of his research career, which eventually propelled him
to the position of Head of the nuclear theory division at the Kurchatov Institute of
Atomic Energy. Let me now skip twenty or so very interesting years to 1975, when
the idea of writing this book was first conceived. Surprisingly, the venue where it
happened was very unlikely, and deserves some explanation. Physics was certainly my
grandfather’s main passion in life, but he also had many other interests beyond science.
In particular, he was a big sports fan, with ice hockey being one of his other passions.
In fact, he was a friend with many leading Soviet hockey players. Many members of the
national hockey team were frequent guests at his house. (I still remember that as a child
I was completely unimpressed with my grandfather’s physics library, which included
books signed by the authors, such as Bohr, Dirac, and Landau, but was fascinated by
his collection of hockey clubs autographed by famous hockey players, such as his good
friend Vyacheslav Starshinov – a top forward in the Soviet national hockey team who
later became an athletic director in the Moscow Engineering Physics Institute. When I
was a student there in the 1990s, Starshinov, for old time’s sake perhaps, cut me some
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slack, letting me take a tennis class instead of fulfilling some stricter requirements and
going through less desirable courses. I certainly appreciated that!)

Returning to the book, in the fall of 1975, Galitski, Sr. was hosting a reception for
the hockey team “Spartak”, which was also attended by a young physics researcher
and big hockey fan, Boris Karnakov. Apparently, it turned out during a discussion
between Galitski, Sr. and Karnakov at this reception that they both shared not only a
passion for hockey but also for creating and collecting exciting problems in quantum
physics. By that time, they both had accumulated large collections of unpublished
problems, and so they decided to combine them into a large book (on the basis of
the Kogan–Galitski short book published 20 years prior) to cover all key aspects of
quantum physics.

It took Galitski, Sr. and Karnakov five years to put together this book. Unfortu-
nately, this difficult but I am sure rewarding work was dampened by the fact that my
grandfather was diagnosed with a serious cancer, and had to have a lung removed.
The cancer returned in an incurable form shortly after the first complete manuscript
of the book was finalized – in the summer of 1980. He was battling against it for six
long months, and died in January of 1981, at the age of only 56. He never saw the book
published, as its first Russian edition appeared in print in March 1981. The current
English translation is close to that first Russian edition, but contains some additional
material added by Boris Karnakov. I have also added new problems, but have resisted
the temptation to make significant additions and structural changes at this stage.
(My own collection of problems on non-equilibrium quantum mechanics, single-particle
quantum mechanics in the presence of a random potential, coherent states, and path
integrals, might be published in a follow-up edition of this book or separately, if there is
interest.)

It was actually surprising to me at first that an English edition of this book had
not appeared earlier. However, I was surprised only until I signed up with Oxford
University Press to prepare its first expanded English edition and actually began work
on editing and translating the material, the enormity of which became frightening
to me. For as much as I wanted to do it, partly in my grandfather’s memory, I
quickly realized that the patience needed for this type of work is not among my
virtues. (Apparently, this gene that Galitski, Sr. had I was not fortunate enough to
inherit.) It would have taken me much longer to complete this work without the
help of students and postdocs in my group: Dr. Brandon Anderson, Dr. Greg Boyd,
Mr. Meng Cheng, Mr. Joe Mitchell, Dr. Andrew Robertson, Dr. So Takei, Ms. Alena
Vishina, and Mr. Justin Wilson. I would like to specifically emphasize the significant
contributions of Alena and Joe, who have reviewed a considerable part of the text,
and Justin, who helped put together a small new section on coherent-state spin path-
integrals. I am grateful to Professor Khmelnitskii of Cambridge University for his
constant encouragement during this long project, and to Ms. Anna Bogatin for putting
together a very nice and fun image for the book cover. I would also like to thank the
U.S. Army Research Office and the National Science Foundation, whose CAREER
award and support through the Physics Frontier Center allowed me to effectively share
time between my research activities and the work on the book, thereby contributing to
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the success of this project. Finally, I am grateful to Ms. Catherine Cragg, Production
Editor at Oxford University Press (OUP), for her help with finalizing the book for
publication and Dr. Sönke Adlung, Commissioning Editor at OUP, for being so patient
with me over the course of several years while this English edition of the book was in
preparation.

Washington DC Professor Victor Galitski, Jr.

September, 2011
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Symbols used in the book

∝ – proportionality sign
∼ – order of magnitude sign

〈m|f̂ |n〉 ≡ fmn ≡ fm
n – matrix element of the operator f̂

f , 〈f〉 – mean value of f̂[
f̂ , ĝ

]
≡ f̂ ĝ − ĝf̂ – commutator of the operators f̂ and ĝ

A summation over repeated vector or spinor indices is assumed unless noted otherwise.



Notations often used in the book

The following notations are often used throughout the book without additional
clarification and definitions.

ψf (q) – wave-function in q-representation labelled by quantum
number, f

ψosc
n – eigenfunction of linear oscillator, see Eq. (II.2)

e – particle charge
c – speed of light

Ĥ – Hamiltonian
E, ε – energy
E and H – electric and magnetic fields
A – vector potential for electromagnetic field
U – potential energy (interaction potential)

V̂ – perturbation operator
d, d – dipole moment
ϕ, A0 – scalar potential for electromagnetic field
aB – Bohr radius
δl – phase shift
σ̂ = (σ̂x, σ̂y, σ̂z) – Vector of Pauli matrices
w, W – transition probability, transition probability per unit of time
Z, Ze – nucleus charge
R – radius of an interaction or scattering potential
m, M – mass or magnetic quantum number
μ – reduced mass, or magnetic moment
p, P – momentum
k – wave vector
A – nucleus mass number
ω – frequency
l, L, j, J – angular moment (orbital and total)
s, S – spin
Jν(z) – Bessel function
Hn(x) – Hermite polynomial
Ylm(θ, ϕ) – spherical function
Γ(z) – Γ-function
δ(x), δ(r) – One-dimensional and three-dimensional Dirac delta-function
δik – unit tensor, Kronecker δ
εikl – Levi-Civita symbol, totally antisymmetric pseudotensor,

ε123 = 1, ε213 = −1, etc.



Universal constants

A list of some fundamental physical constants.

Planck constant – � = 1.055 · 10−27 erg · s
Elementary charge – e = 4.80 · 10−10 CGS unit
Electron mass – me = 9.11 · 10−28 g
Speed of light – c = 3.00 · 1010 cm/s
Bohr radius – a0 = 0.529 · 10−8 cm

Atomic unit of energy – mee
4

�2 = 4.36 · 10−11 erg = 27.21 eV

Atomic unit of frequency – mee
4

�3 = 4.13 · 1016 s−1

Atomic unit of electric field strength – e
a2
0
= 5.14 · 109 V/cm

Fine structure constant – α = e2

�c = 1
137

Proton mass – mp = 1836me = 1.673 · 10−24 g
Electron rest energy – mec

2 = 0.511 MeV
1 eV = 1.602 · 10−12 erg
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Operators in quantum mechanics

Mathematical formalism of quantum mechanics is closely connected with the theory
of linear operators. A key quantum-mechanical principle is that physical quantities
(observables) are represented by Hermitian linear operators that act on state vectors
that belong to a Hilbert vector space. A state vector (or equivalently, a wavefunction,
|ψ〉) completely describes a state of the physical system.

For every linear operator, L̂, one can define its Hermitian-adjoint operator, L̂†, as
follows:

〈ψ2|L̂ψ1〉 ≡
∫

ψ∗
2(q)L̂ψ1(q)dτq =

∫ [
L̂†ψ2(q)

]∗
ψ1(q)dτq ≡ 〈L̂†ψ2|ψ1〉. (I.1)

Here and below, the variable q corresponds to a complete set of parameters char-
acterizing the system, which define a specific representation of the wavefunctions,
ψ(q) = 〈q|ψ〉, with the states, |q〉, satisfying the following resolution of identity,∫ |q〉〈q| dτq = 1̂, and 1̂ being the identity operator. If L̂† = L̂, then the operator is
called Hermitian or self-adjoint.[1]

A physical quantity, f , associated with the quantum mechanical operator, f̂ , can
only take on values that belong to the spectrum of f̂ – i.e., a measurement of f can
only result in one of the eigenvalues, fn, determined by the eigenvalue problem:

f̂ψfn = fnψfn (I.2)

The corresponding eigenfunction, ψfn , describes a physical state that has a certain
value of the physical quantity, f = fn (while in a generic state, the physical quantity

has no definite value). For an Hermitian operator, f̂ , its eigenvalues are all real.
Also, for a generic quantum-mechanical Hermitian operator, its linearly-independent
eigenfunctions form a complete set of states and can be chosen mutually-orthogonal.
The latter property allows to expand the wavefunction of an arbitrary state, ψ(q), in
a series of eigenfunctions:[2]

ψ(q) =
∑
n

c(fn)ψfn(q), (I.3)

[1] There exists a subtle distinction between the notion of Hermitian and self-adjoint operators, which is
discussed in Problems 1.28 and 1.29.

[2] For the sake of brevity, the expansion is written as a sum (which assumes a discrete spectrum).
In general, this expression may include a sum over discrete states and/or integral over continuous
spectrum.
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where

c(fn) = 〈ψfn |ψ〉 ≡
∫

ψ∗
fn(q)ψ(q)dτq. (I.4)

We assume here and below, unless noted otherwise, that eigenfunctions ψfn are
chosen to be orthonormal and normalized to unity for the discrete part of the
spectrum, 〈ψf |ψf ′〉 = δf,f ′ and to the δ-function 〈ψf |ψf ′〉 = δ(f − f ′) for the con-
tinuous spectrum. In the former case, the coefficients c(fn) directly determine the
probability, w(fn) = |c(fn)|2, that f = fn is measured in the state, ψfn(q). In the
latter case – continuous spectrum – the coefficients determine the probability density,
dw/df = |c(f)|2. The mean value of f , f̄ =

∑
n
fnw(fn), follows from the formula

f̄ = 〈ψ∗|f̂ |ψ〉 ≡
∫

ψ∗(q)f̂ψ(q)dτq (I.5)

and can be used without reference to the individual probabilities.

If the Hermitian operator, f̂(λ), depends on some real parameter λ, then the
derivative of the eigenvalues fn(λ) with respect to this parameter satisfies the relation
(for the discrete part of the spectrum)

∂fn(λ)

∂λ
=

〈
ψfn(λ)

∣∣∣∣∣∂f̂(λ)∂λ

∣∣∣∣∣ψfn(λ)

〉
, (I.6)

which has a variety of useful applications.

1.1 Basic concepts of the theory of linear operators

Problem 1.1

Consider the following operators (below: −∞ < x < ∞):

1. The translation operator, T̂a: T̂aψ(x) ≡ ψ(x+ a).

2. The inversion operator, Î: Îψ(x) ≡ ψ(−x).

3. The scaling operator, M̂c: M̂cψ(x) ≡
√
cψ(cx), c > 0.

4. The complex-conjugation operator, K̂: K̂ψ(x) ≡ ψ∗(x).
5. The permutation operator of identical particles P̂12: P̂12ψ(x1, x2) ≡ ψ(x2, x1).

a) Are these operators linear?

For the operators, 1–5, above, find:

b) The Hermitian conjugate operators.

c) The inverse operators.

Solution

a) All the operators except K̂ are linear.

b) The operator T̂ †
a can be found from the following sequence of equations



Operators in quantum mechanics 3∫
ψ∗(x)T̂aψ(x)dx ≡

∫
ψ∗(x)ψ(x+ a)dx

=

∫
ψ∗(x− a)ψ(x)dx ≡

∫ [
T̂ †
aψ(x)

]∗
ψ(x)dx

(integration is performed in the infinite limits). Therefore, T̂ †
aψ(x) ≡ ψ(x− a) ≡

T̂ †
−aψ(x) and T̂ †

a = T̂−a.
Similarly, we find:

Î† = Î , M̂†
c = M̂1/c, P̂ †

12 = P̂12,

The operator K̂ is non-linear, so K̂† does not exist.

c) All the operators have the inverse:

Î−1 = Î , T̂−1
a = T̂−a, M̂−1

c = M̂1/c, K̂−1 = K̂, P̂−1
12 = P̂12.

Problem 1.2

Â and B̂ are Hermitian operators and L̂ is an arbitrary linear operator.[3] Prove that
the following operators are Hermitian:

1) L̂†L̂ and L̂L̂†; 2) L̂+ L̂†; 3) i(L̂− L̂†); 4) L̂ÂL̂†; 5) ÂB̂ + B̂Â; 6) i(ÂB̂ − B̂Â).

Hint

Use the following relations (L̂†)† = L̂ and (F̂ L̂)† = L̂†F̂ †.

Problem 1.3

Prove that an arbitrary linear operator L̂ can be expressed in the form L̂ = Â+ iB̂
where Â and B̂ are Hermitian operators.

Result

Â = 1
2 (L̂+ L̂†), B̂ = 1

2i (L̂− L̂†).

Problem 1.4

Express the commutators [Â, B̂Ĉ] and [ÂB̂, Ĉ] in terms of the commutators [Â, B̂],
[Â, Ĉ], and [B̂, Ĉ].

Solution

[Â, B̂Ĉ] = ÂB̂Ĉ − B̂ĈÂ = ÂB̂Ĉ − B̂ÂĈ + B̂ÂĈ − B̂ĈÂ = [Â, B̂]Ĉ + B̂[Â, Ĉ]. In
the same way, [ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂.

[3] Hereafter all operators are assumed to be linear. For brevity’s sake, the term “linear” is omitted
throughout this chapter.
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Problem 1.5

Is it possible for twoN ×N matrices P̂ and Q̂ (with a finite,N) to satisfy the canonical
commutation relation, [P̂ , Q̂] = −i�1̂?

Solution

No, it is not possible. If we calculate the trace of both sides of the equation, P̂ Q̂−
Q̂P̂ = −i�1̂, and use the relations, Tr (P̂ Q̂)=Tr (Q̂P̂ ), and Tr 1̂ = N , we come to the
contradiction.[4]

Problem 1.6

Assume that λ is a small parameter. Derive an expansion of the operator (Â− λB̂)−1

in the powers of λ.

Solution

If we multiply both sides of the equation, (Â− λB̂)−1 =
∞∑

n=0
λnĈn, by (Â− λB̂), and

equate the coefficients that contain the same power of λ, we find

ÂĈn+1 = B̂Ĉn, Ĉn+1 = Â−1B̂Ĉn, Ĉ0 = Â−1.

Therefore, the expansion has the form

(Â− λB̂)−1 = Â−1 + λÂ−1B̂Â−1 + · · · = Â−1
∑
n

λnB̂nÂ−n.

Problem 1.7

If a function, F (z) has a Taylor expansion, F (z) =
∑
n
cnz

n, then knowing an operator

f̂ , the operator F̂ ≡ F (f̂) is defined as follows: F̂ =
∑
n
cnf̂

n. Use this rule to determine

the explicit form of the following operators:

1) exp(iaÎ);

2) T̂a ≡ exp
(
a d
dx

)
;

3) L̂a ≡ exp
(
ax d

dx

)
.

Here a is a real parameter and Î is the inversion operator. See also Problems 1.8, 1.22,
and 1.24.

Solution

1) Taylor-expanding the exponential and using the fact that Î2 = 1, we find that
exp(iaÎ) = cos a+ i(sin a)Î.

[4] In the case of N = ∞ there is no contradiction, since, Tr (P̂ Q̂) = ∞.
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2) Expanding the operator, T̂a, we obtain

ea
d
dxψ(x) =

∞∑
n=0

an

n!

(
d

dx

)n

ψ(x) ≡
∞∑

n=0

an

n!
ψ(n)(x) = ψ(x+ a).

The operator exp
(
a d
dx

)
is a translation operator.

3) Apply the operator

L̂a =

∞∑
n=0

1

n!

(
ax

d

dx

)n

to the term, xk (to appear in the Taylor expansion of a wavefunction, ψ(x) =
∞∑
k=0

ck
k! x

k on which the operator acts). Since (xd/dx)xk = kxk and (axd/dx)nxk =

(ak)nxk, we have L̂ax
k = (eax)k. Using a Taylor expansion for ψ(x), we obtain

L̂aψ(x) = L̂a

∞∑
k=0

ck
k!
xk =

∞∑
k=0

ck
k!
(eax)k = ψ(eax).

This operator corresponds to the operator, M̂c, from Problem 1.1. with c = ea (up
to a numerical factor,

√
c).

Problem 1.8

Determine the explicit form of the operator T̂ [g(x)] ≡ exp
[
g(x) d

dx

]
where g(x) is a

monotonic function of x. Consider two special cases: 1) g = ax, and 2) g = a3/3x2.

Solution

Define the new variable, y = y(x), via the following relation: y =
x∫
b

dx
g(x) . Then,

T̂ = exp
[

d
dy

]
. Therefore, the operator considered is the translation operator along

the “y-axis” over the “distance”, 
y = 1 (see Problem 1.7) and

T̂ [g(x)]ψ(x) = exp

[
d

dy

]
ψ[x(y)] = ψ[x(y + 1)].

Here, x = x(y) is an inverse function for y = y(x).

For the special cases we have:

1) y = 1
a ln |x|, so |x| = eay and x(y + 1) = eax. Therefore, T̂ (ax)ψ(x) = ψ(eax) (cf.

Problem 1.7).

2) x = ay1/3 and T̂ (a3/3x2)ψ(x) = ψ
[
(x3 + a3)1/3

]
.
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Problem 1.9

Prove the relation

Tr

{
∂

∂λ
exp(λÂ+ B̂)

}
= Tr

{
Â exp(λÂ+ B̂)

}
,

where Â and B̂ are arbitrary matrices (of an equal rank). Is taking the trace crucial
in the above relation or does the latter hold more generally as an operator identity?

Hint

To prove the relation, Taylor-expand the exponential, and after differentiating it and
applying the trace, equate the coefficients containing the same powers of λ. The
expression above does not generalize to the operator identity, if the operators Â and
B̂ do not commute.

Problem 1.10

Operators Â and B̂ commute to a “c-number”, which is a corollary of the following
commutation relation: [Â, B̂] = ic1̂, with 1̂ being the identity operator (which is often
omitted in the physics literature and below). Prove the equation

exp(Â+ B̂) = exp(Â) exp(B̂) exp
(
−i

c

2

)
.

Solution

Let us introduce the following operator eλ(Â+B̂) and present it as

eλ(Â+B̂) = eλÂeλB̂ exp

(
− i

2
λ2c

)
Ĝ(λ), (1)

where the operator function Ĝ is to be determined. Differentiating both parts of Eq. (1)
with respect to λ and using the notation

eλÂB̂ = (B̂ + iλc)eλÂ,

(which is easy to establish by expanding the term, eλÂ, and using [Â, B̂] = ic), we
find that d

dλ Ĝ(λ) = 0: i.e. the operator Ĝ does not depend on λ. Substituting λ = 0

into Eq. (1), we find Ĝ = 1. This proves the relation.

Problem 1.11

Action of a linear operator, L̂, in a Hilbert space spanned by functions, ψ(ξ), can be
represented as action of an integral operator as
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ϕ(ξ) = L̂ψ(ξ) ≡
∫

L(ξ, ξ′)ψ(ξ′)dξ′,

where L(ξ, ξ′) is the kernel of the operator, L̂ (ξ represents a set of variables of a
particular representation used). For such a generic linear operator (not necessarily
Hermitian), L̂, find the relation between its kernel and that of its Hermitian-conjugate,
L†(ξ, ξ′). Find the kernels of the following operators Î , T̂a, M̂c, x̂ ≡ x, p̂ ≡ −i� d/dx
(for a description of the operators Î , T̂a, and M̂c, see Problem 1.1).

Solution

1) L†(ξ, ξ′) = L∗(ξ′, ξ).
2) By writing

M̂cψ(x) =
√
cψ(cx) =

√
c

∞∫
−∞

δ(cx− x′)ψ(x′)dx′,

we find that the kernel of M̂c has the form Mc(x, x
′) =

√
cδ(cx− x′).

Similarly, the other kernels are as follows:

I(x, x′) = δ(x+ x′),

Ta(x, x
′) = δ(x− x′ + a),

X(x, x′) = xδ(x− x′),

P (x, x′) = −i�
∂

∂x
δ(x− x′).

Problem 1.12

An operator, L̂, acts in the Hilbert space of wavefunctions, ψ(x), associated with single-
particle quantum mechanics in one dimension. Assuming that L̂ commutes with both
the coordinate-operator, x̂, and the momentum-operator, p̂, find its kernel L(x, x′).
Prove that the operator L̂ that commutates with both x̂ and p̂ is proportional to the
identity operator, i.e. L̂ ≡ L0 = const (∝ 1̂).

Solution

a) Taking into account that the kernel of an operator product, Ĉ = ÂB̂, is a convolu-
tion of the corresponding kernels

C(x, x′) =

∞∫
−∞

A(x, x′′)B(x′′, x′)dx′′,

and that the kernel of x̂ is X(x, x′) = xδ(x− x′), and using the relation
L̂x̂− x̂L̂ = 0, we find
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(x′ − x)L(x, x′) = 0 and therefore L(x, x′) = f(x)δ(x− x′). (1)

Here f(x) is arbitrary function at this stage.

b) Similarly using L̂p̂− p̂L̂ = 0 and P (x, x′) = −i� ∂
∂xδ(x− x′), we find(

∂

∂x
+

∂

∂x′

)
L(x, x′) = 0, so that L(x, x′) = g(x− x′), (2)

where g(x− x′) is an arbitrary function.

c) Equations (1) and (2) are simultaneously valid if and only if, f(x) ≡ L0 = const,
so that L(x, x′) = L0δ(x− x′) describes a multiplication by a constant, which
commutes with all other operators acting in the corresponding Hilbert space. The
operator with such a kernel is L̂ = L01̂.

1.2 Eigenfunctions, eigenvalues, mean values

Problem 1.13

The state of a particle is described by the following wavefunction:

ψ(x) = C exp

[
i
p0x

�
− (x− x0)

2

2a2

]
, (1)

where p0, x0, a are real parameters. Find the probability distribution of the par-
ticle coordinates, mean values, and the standard deviations of the coordinate and
momentum.

Solution

The normalization condition yields C2 = 1/
√
πa2. The corresponding probability

density is dw = |ψ(x)|2dx. From Eq. (I.5) we find the mean values:

x = x0, x2 = x2
0 +

a2

2
, (
x)2 =

a2

2
,

p = p0, p2 = p20 +
�
2

2a2
, (
p)2 =

�
2

2a2
.

As we see,

√
(Δp)2 · (Δx)2 = �/2, so the wavefunction (1) minimizes the Heisenberg

uncertainty relation.

Problem 1.14

Find the relation between the mean values of coordinate and momentum in the
quantum states ψ1(x) and ψ2(x), related by
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a) ψ2(x) = ψ1(x+ a), b) ψ2(x) = exp
(
i
p0x

�

)
ψ1(x).

Solution

a) x2 = x1 − a, p2 = p1, b) x2 = x1, p2 = p1 + p0, where the indices 1 and 2 deter-
mine the mean values corresponding to the wavefunctions ψ1,2(x).

Problem 1.15

Prove that the mean values of Hermitian operators L̂L̂† and L̂†L̂ in an arbitrary state
are non-negative.

Solution

L̂L̂† =
∫

ψ∗L̂L̂†ψdτ =

∫
(L̂†ψ)∗(L̂†ψ)dτ ≥ 0.

Problem 1.16

Prove that the mean value of the dipole moment of a system containing charged
particles vanishes in a state with a certain-parity: ψ ({ra}) = Iψ ({−ra}), with I = ±1.

Solution

The mean value of the dipole moment is given by

d =

∞∫
−∞

ψ∗(r1, . . . , rn)
∑
a

earaψ(r1, . . . , rn)
∏
b

d3rb. (1)

If we make the substitution of variable r′a = −ra, we obtain

d = −
∞∫

−∞
ψ∗(−r′1, . . . , −r′n)

∑
a

ear
′
aψ(−r′1, . . . , −r′n)

∏
b

d3r′b. (2)

Since ψ(−r′1, . . . , −r′n) = Iψ(r1, . . . , rn) with the parity I = ±1, from Eqs. (1) and
(2), we obtain d = −d = 0.

Problem 1.17

An Hermitian operator f̂ satisfies the operator identity:

a)f̂2 = p2; b)f̂2 = pf̂ ; c)f̂3 = p2f̂ ,

where p is a real parameter. Find the eigenvalues of such an operator.
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Solution

The operator relation A(f̂) = B(f̂) with some arbitrary functions A(z) and B(z) leads

to the similar one A(f1) = B(f1) for its eigenvalues. Therefore, the operator(s) f̂ could
have only eigenvalues given by

a) f1,2 = ±p,

b) f1 = 0, f2 = p,

and

c) f1 = 0, f2,3 = ±p. No other eigenvalues are possible.

Problem 1.18

Find the eigenfunctions and eigenvalues of the following operator: f̂ = αp̂x + βx̂, where
x̂ and p̂x are the canonically-conjugate coordinate and momentum and α and β are
real parameters. Prove that the eigenfunctions of this operator are orthogonal to each
other, and normalize them properly.

Solution

The equation for the eigenfunctions and eigenvalues of the operator, f̂ , and its solution
are given by

−iα̃
d

dx
ψf (x) + βxψf (x) = fψf (x), (1)

ψf (x) = Cf exp

{
−i

(βx− f)2

2α̃β

}
, (2)

where α̃ = �α. From (2), it follows that the eigenvalues, f , can take arbitrary real
values (if the values of f are complex, the wavefunction (2) increases at large distances

and is not normalizable). Also, the parameters α and β above are real, since f̂ is

Hermitian. The spectrum of f̂ is continuous, and the eigenvalues are non-degenerate.
The proper normalization condition is as follows∫

ψ∗
f ′(x)ψf (x)dx = δ(f − f ′),

which gives C = (2πα̃)−1/2. The proof of completeness of the system of eigenfunctions
(2) is left to the reader.

Problem 1.19

Solve the previous problem for the Hermitian operator,[5] F̂ , with a kernel of the
following form: F (x, x′) = f(x) · f∗(x′) (see Problem 1.11). Determine the degeneracy
of its eigenvalues.

[5] Such operators appear in atomic and nuclear physics in the context of particles in so-called separable
potentials (see Problems 2.19, 2.34, 4.12). Also note that the operator considered could be written as

F̂ = |f〉〈f |.
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Solution

The eigenvalue problem for F̂ reads

F̂ψn(x) ≡ f(x)

∫
f∗(x′)ψn(x

′)dx′ = fnψn(x).

This equation has the following solutions: 1) One of the eigenfunctions ψ0 = Cf(x)
corresponds to the non-degenerate eigenvalue f0 =

∫ |f(x)|2dx > 0. 2) The second
eigenvalue f1 = 0 is infinitely-degenerate. The corresponding eigenfunctions, ψi(x),
have the following properties

∫
f∗(x)ψi(x)dx = 0 (i.e., these functions are orthogonal

to the eigenfunction, ψ0(x), corresponding to the different eigenvalue, as it ought to
be). There are no other eigenvalues.

Problem 1.20

Find the eigenfunctions and eigenvalues of the complex-conjugation operator, K̂ (see
Problem 1.1.)

Result

The eigenfunctions of the operator, K̂, are given by ψα(x) = eiαg(x), where g(x) is
an arbitrary real function and α is a real number. The corresponding eigenvalues are
kα = e−2iα.

Problem 1.21

An Hermitian operator (matrix) f̂ has only N eigenvalues. Prove that the operator

f̂N can be expressed as a linear combination of the operators 1̂, f̂ , . . . , f̂N−1. To
illustrate the result, consider the inversion operator, Î.

Solution

Applying the operator Ĝ ≡ (f̂ − f1)(f̂ − f2) . . . (f̂ − fN ) to arbitrary state-vector |ψ〉
we have Ĝ|ψ〉 = 0. This state, |ψ〉, can be decomposed into a linear combination
of the eigenfunctions of F̂ , |ψfk〉 that form a complete set: |ψ〉 = ∑

k

ck|ψfk〉, with

(f̂ − fk)|ψfk〉 = 0.

Therefore, Ĝ ≡ 0, and consequently we prove the desired statement:

f̂N −
N∑
i=1

fif̂
N−1 +

1

2

∑
i,k;i�=k

fifkf̂
N−2 + · · ·+ (−1)N

N∏
i=1

fi = 0. (1)

In the case of N = 2, Eq. (1) gives f̂2 = (f1 + f2)f̂ − f1f2. Hence, for the inversion
operator with the eigenvalues ±1, we have Î2 = 1, as expected.
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Problem 1.22

The operator f̂ has only N different eigenvalues, f1, f2, . . . , fN . Find the operator
F̂ = F (f̂), where F (z) is an arbitrary function. To illustrate the general result, consider
the cases of N = 2 and N = 3 (in the latter case, assume that the spectrum consists
of 0 and ±f0).

Solution

Using the result of the previous problem we have

F̂ = F (f̂) =

N−1∑
n=0

cnf̂
n; F (fi) =

N−1∑
n=0

cnf
n
i , i = 1, 2, . . . , N (1)

(compare this with Problem 1.17). The second relation (1) above gives way to a linear
system of equations that determines the coefficients, cn.

If N = 2, Eq. (1) yields

F̂ =
f2F (f1)− f1F (f2)

f2 − f1
+

F (f1)− F (f2)

f1 − f2
f̂ . (2)

Similarly, for N = 3, we obtain

F̂ = F (0) +
F (f0)− F (−f0)

2f0
f̂ +

F (f0) + F (−f0)− 2F (0)

2f2
0

f̂2. (3)

Problem 1.23

Prove the relation (I.6) from the introductory part of this chapter.

Solution

Differentiating both sides of Eq. (1.6) for eigenfunctions and eigenvalues with respect

to λ: f̂(λ)ψn(q, λ) = fn(λ)ψn(q, λ), we have(
∂f̂

∂λ

)
ψn(λ) + f̂

∂

∂λ
ψn(λ) =

(
∂fn
∂λ

)
ψn(λ) + fn

∂

∂λ
ψn(λ). (1)

Multiply both sides of Eq. (1) by ψ∗
n from the left, and integrate over q. Using the

relation ∫
ψ∗
nf̂

∂

∂λ
ψndτq =

∫
(f̂ψn)

∗ ∂

∂λ
ψndτq = fn

∫
ψ∗
n

∂

∂λ
ψndτq,

which follows from the Hermiticity of f̂ , we prove Eq. (I.6).
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Problem 1.24

How would you define the operator, F̂ = F (f̂), where f̂ is a Hermitian operator and
F (z) is an arbitrary function of z, which does not necessarily have a regular Taylor
expansion in the entire parameter range of interest? How important is the assumption
of Hermiticity of f̂ in this construction? Consider specifically the operator

√−
,
where 
 is the Laplacian in the three-dimensional Euclidean space.

Solution

A way to define the operator F̂ = F (f̂) is to demand that its spectrum and eigen-

functions coincide with those of the operator, f̂ , and the corresponding eigenvalues
are given by Fn = F (fn). Since the system of eigenfunctions ψf is complete (the

Hermiticity of the operator f̂ is important here), we can write

F̂ψ = F̂
∑
n

c(fn)ψfn(q) ≡
∑
n

c(fn)F (fn)ψfn(q). (1)

Using Eq. (I.4) for c(f) we can find that F̂ is an integral operator with the kernel[6]

F (q, q′) =
∑
n

F (fn)ψfn(q)ψ
∗
fn(q

′). (2)

Since (−
)−1/2 = �

(
p̂2
)−1/2

≡ �/|p̂|, we use Eq. (2) to obtain the kernel

�P−1(r, r′) =
�

(2π�)3

∫
1

p
eip·(r−r′)/�d3p =

1

2π2(r− r′)2
.

To calculate the integral it is convenient to use spherical coordinates and choose the
polar axis along the vector r− r′.

Problem 1.25

Hermitian operators Â, B̂, and L̂ satisfy the following commutation relations:
[Â, L̂] = 0, [B̂, L̂] = 0, but [Â, B̂] �= 0. Prove that the spectrum of the operator L̂
has degenerate eigenvalues. Give examples.

Solution

Applying the equation ÂL̂− L̂Â = 0 to the eigenfunction ψL of the operator L̂ (Li

are its eigenvalues), we find that the function ÂψL is also the eigenfunction of L̂ with
the same eigenvalue Li (or ÂψLi

= 0). If the eigenvalue Li is non-degenerate, then
ÂψLi

= ÂiψLi
, i.e., ψLi

is the eigenfunction of the operator Â too. In a similar way,
it is also an eigenfunction of B̂, i.e., B̂ψLi

= B̂iψLi
. If all the eigenvalues Li were

non-degenerate, then the relation (ÂB̂ − B̂Â)ψLi
= (AiBi −BiAi)ψLi

= 0 would be
valid for all states. But if such a relation were valid for all eigenfunctions that form a
complete set, then it would result in ÂB̂ − B̂Â = 0, which contradicts the initial data.

[6] The system of eigenfunctions ψfn (q) is considered to be orthonormal.
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To illustrate this result, consider a free quantum particle in one dimension. Its
Hamiltonian Ĥ = p̂2/2m commutes with both the momentum p̂ and inversion Î
operators. However, these two operators do not commute with each other, [p̂, Î] �= 0,
and this fact is related to the two-fold degeneracy of the free-particle spectrum,
E(p) = E(−p).

Problem 1.26

Give examples of a quantum state, where:

a) Two physical quantities, whose operators do not commute, simultaneously have a
definite values;

b) Only one of two physical quantities, whose operators commute, has a definite value.

Solution

a) Different components of the angular momentum do not commute with each other,
but in the state with the angular momentum, L = 0, they do have the same definite
value Lx,y,z = 0. For another example, see Problem 1.27.

b) The momentum and kinetic-energy operators commute with each other. However,
the function ψ = C sin(p · r/�) is an eigenfunction for the kinetic-energy operator,
but not for the momentum operator.
These examples do not contradict the general quantum mechanical statements

about the simultaneous measurability of two physical quantities, nor the uncertainty
relation (see Problem 1.30).

Problem 1.27

Consider a quantum state, ψab, where the physical quantities A and B have certain
values. What can you say about the eigenvalues a and b of the corresponding operators,
Â and B̂, if they anticommute with each other. To illustrate the general result, consider
the operators x̂ (coordinate) and Î (inversion).

Solution

We have the relation (ÂB̂ + B̂Â)ψab = (ab+ ba)ψab = 2abψab = 0. Therefore, either
a or b vanishes. For example, Î x̂+ x̂Î = 0; but there is only one wavefunction
ψ0(x) = Cδ(x) that is the eigenfunction of both x̂ and Î. Eigenvalues of the coordinate
operator are x0 = 0. Note that anticommuting operators can not have a common eigen-
function (e.g., such is the case for the anticommuting Pauli matrices, see Chapter 7).

Problem 1.28

Find an operator corresponding to the radial component of momentum p̂r (using
spherical coordinates). Prove the Hermiticity of this operator. Find its eigenfunctions
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and eigenvalues. Are these eigenvalues real? Are the eigenfunctions orthogonal?
Explain the results obtained. See also Problem 1.29.

Solution

In classical mechanics we have pr = mṙ = p · n, where n = r
r . The Hermitian operator

p̂r ≡ 1

2
(p̂ · n̂+ n̂ · p̂) = n · p̂+

�

2i
div n =

�

i

1

r

∂

∂r
r (1)

is the quantum-mechanical analog of this relation.

The solution of the eigenvalue problem for this operator is given by ψ(r) =
C(ϑ,ϕ)

r e
i
�
prr, where C(ϑ, ϕ) is an arbitrary function of the angles. Technically, the

eigenvalues pr could take on complex values pr = p1 + ip2, with p2 ≥ 0, and one can
show that the corresponding eigenfunctions are not orthogonal.

These conclusions about the eigenfunctions and eigenvalues of the operator p̂r rule
out the possibility of its direct physical interpretation, and demonstrate subtleties
behind the quantum-mechanical statement about the relation between physical quan-
tities (or observables, according to Dirac) and Hermitian (or self-adjoint) operators.
Physically, it shows that not every physical quantity from classical mechanics has
a well-defined quantum-mechanical equivalent (and vice versa, not every quantum
operator, e.g. the parity, has a classical equivalent). From the mathematical point
of view, this result demonstrates that there is a difference between the notion of an
Hermitian operator and self-adjoint operator. In this interpretation, the operator p̂r
is Hermitian but not self-adjoint (see also the following problem).

Problem 1.29

Use the operator −i� d
dx that acts in the space of the functions defined on

1) the entire real axis, −∞ < x < ∞;

2) the finite interval, a ≤ x ≤ b;

3) the half-axis, 0 ≤ x < ∞;

to demonstrate the difference between the Hermitian and self-adjoint operators.
Discuss the eigenvalues and eigenfunctions of such operators.

Discussion

The Hermitian and self-adjoint operators, f̂ = f̂†, are defined via the same relation:∫
ψ∗
2 f̂ψ1dτ =

∫
(f̂†ψ2)

∗ψ1dτ =

∫
(f̂ψ2)

∗ψ1dτ. (1)

However, the difference between them can be formulated in terms of different restric-
tions on the class of functions, ψ1 and ψ2, where the relation (1) is required to
hold.
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If relation (1) is satisfied for some class of functions, D̃f (the same for both ψ1

and ψ2), then the operator f̂ is called Hermitian in this particular class of functions.

We call the operator, f̂ , self-adjoint if it is Hermitian in the class of functions, Df ,
subject to the constraints below. (Here we are not making an attempt to provide a
full mathematical theory, but simply outlining key concepts relevant to the quantum-
mechanical problem at hand).

Df includes all functions ψ{f}(q) that satisfy∫
|ψ{f}(q)|2dτq < ∞ (2′)

and ∫
|f̂ψ{f}(q)|2dτq < ∞,

∫
ψ∗(q)f̂ψ{f}(q)dτ < ∞, (2′′)

where ψ(q) is an arbitrary function from the Hilbert space. Importantly, the eigenval-
ues of a self-adjoint operator are real, and its eigenfunctions are mutually orthogonal
and form a complete system.[7]

Furthermore, Hermitian but not self-adjoint operators may be separated into the
following two groups: i) essentially self-adjoint operators that allow a self-adjoint
extension, and ii) Hermitian in some domain, but not essentially self-adjoint operators

that do not allow such an extension. More precisely, if a realization of an operator f̂
as Hermitian in D̃f has the property that the relation (1) is fulfilled by ∀ψ1,2 ∈ Df ,
but is not fulfilled if at least one of the functions – ψ1 or ψ2 – does not belong to
D̃f , then the operator is said to allow a self-adjoint extension and is called essentially
self-adjoint (the extension can usually be obtained by putting additional constraints
on the set of functions, e.g. boundary conditions). The properties of eigenvalues and
eigenfunctions of essentially self-adjoint operators are the same as those of self-adjoint
operators. Operators that are not essentially self-adjoint do not necessarily share these
nice properties (positive-definite eigenvalues and orthonormal eigenfunctions forming
a complete set of states). These subtleties are illustrated in the examples below.

Solution

1) Returning to the example in the problem, if the operator p̂ = −i�d/dx acts in the
space of functions defined for x ∈ (−∞,+∞), we have

∞∫
−∞

ψ∗
2

(
−i�

d

dx

)
ψ1dx =

∞∫
−∞

(
−i�

d

dx
ψ2

)∗
ψ1dx− i�ψ∗

2ψ1

∣∣∞−∞ . (3)

For the functions ψ1,2 that belong to the definition domain of the operator,
Dp (−∞,+∞), the last term in (3) vanishes per Eq. (2’). Therefore, the operator,
p̂x, is self-adjoint. Its eigenvalues p are real, and eigenfunctions ψp(x) are orthogonal
and form a complete set.

[7] However, the eigenfunctions of a self-adjoint operator are not necessarily normalized to unity, i.e., the
integrals (2) for them may be divergent, and the orthogonality condition is defined with the help of
the δ-function.
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2) For the operator p̂ = −i� · d/dx that acts in the space of the functions defined on
a finite interval, x ∈ (a, b), we have

b∫
a

ψ∗
2

(
−i�

d

dx

)
ψ1dx =

b∫
a

(
−i�

d

dx
ψ2

)∗
ψ1dx− i�ψ2(x)

∗ψ1(x)
∣∣b
a . (4)

Here the last term is not necessarily zero, and therefore the operator is not self-
adjoint. However, it has (multiple) Hermitian realizations and allows a self-adjoint
extension.
For example, the operator is Hermitian on the class of functions that obey the

boundary conditions of the form ψ(a) = ψ(b) = 0 . However, such conditions do
not give a self-adjoint extension. Indeed, to make the integrated term equal to zero
it would be enough for only one of the functions ψ1(x) and ψ2(x) to obey this
condition. With such a choice of boundary conditions, the operator p̂ = −i�d/dx
does not have any eigenfunctions.
Another Hermitian realization of this operator is to impose the following bound-

ary condition

ψ1(b)

ψ1(a)
=

[
ψ2(a)

ψ2(b)

]∗
= eiβ = const, (5)

where β is a real value. The choice of such a boundary condition gives the
self-adjoint extension of the operator p̂ = −i� · d/dx on the finite interval. The
corresponding eigenvalues and eigenfunctions are given by

λn =
�

b− a
(β + 2πn), ψn(x) =

1√
b− a

exp

{
ipnx

�

}
, n = 0, ±1, ±2, . . . .

Eigenfunctions are mutual orthogonal and form a complete system. Notably, the
Hermitian operator l̂z = −i∂/∂ϕ – the projection of angular momentum onto the
z-axis – with a = 0, b = 2π, β = 0 is an essentially self-adjoint operator of this type.

3) Finally, the operator p̂r = −i� · d/dr that acts in the space of functions defined on
the half-axis, r ∈ (0,+∞), has the following property:

∞∫
0

ψ∗
2(r)[−i�ψ′

1(r)]dr =

∞∫
0

[−i�ψ′
2(r)]

∗ψ1(r)dr + i�ψ2(0)
∗ψ1(0). (6)

Its unique Hermitian realization is obtained by enforcing the boundary condition
ψ(0) = 0. However, it is sufficient that only one function in (6) obeys the condition,
so this does not give a self-adjoint extension. This operator does not have any eigen-
functions that obey the boundary condition ψ(0) = 0. If we ignore the boundary
condition, we can find non-trivial solutions to the eigenvalue problem. However, the
eigenvalues are complex and the eigenfunctions are not orthogonal, which provides
an explanation of the puzzling result for the spectrum of the operator näıvely associ-
ated with the radial component of momentum, as discussed in the previous problem.
Final comments An Hermitian operator f̂ could be classified by the deficiency

index (N+, N−), where N± is the number of linearly-independent eigenfunctions
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normalized to 1 such that f̂ψ = ±if0ψ, where f0 is real. If N+ = N− = 0,
the operator is self-adjoint. If N+ = N− = N �= 0, then it allows a self-adjoint
extension made by imposing N additional conditions. If N+ �= N−, the operator is
not essentially self-adjoint.
Note that in quantum-mechanical problems we often have to deal with a self-

adjoint extension of Hermitian operators. In such cases the additional constraints
must be chosen from physical considerations. Apart from the example of the
operator l̂z mentioned above, another example is the operator p̂2/2m on a finite
interval with the boundary conditions ψ(0) = ψ(a) = 0 (these conditions appear
in the canonical problem of a particle in an infinite potential well). Furthermore,
restrictions on the wavefunction in the origin (i.e., with r = 0) often appear in
the problems dealing with bound states in and scattering off central potentials.
Note that even in the case of “good” potentials U(r), these constraints in effect
realize self-adjoint extensions of the Hamiltonian operator. In this case, a general
condition of a self-adjoint extension is given by

[rψ(r)]′

rψ(r)
→ α with r → 0,

and physically corresponds to inclusion of an additional interaction in the form of
a potential or the zero radius (see Problem 4.10). In the case of singular attractive
potentials such that allow “falling into the origin” – these boundary conditions do
not realize a self-adjoint extension and must be modified (see Problem 9.14).

Problem 1.30

A commutator of operators Â and B̂ of two physical quantities has the form
[Â, B̂] = iĈ, where Ĉ is an Hermitian operator. Prove (with certain restrictions on
the wavefunctions) the uncertainty relation

(Â− Ā)2 · (B̂ − B̄)2 ≥ 1

4
(C̄)2,

where all mean values refer to the same state of the system.

Consider specifically the operators x̂ and p̂x to find an explicit form of the
wavefunctions that minimize the uncertainty relation.

Consider also the operators l̂z and ϕ̂.

Solution

Let us consider the integral J(α) =
∫ |(αÂ1 − iB̂1)ψ|2dτ ≥ 0, where Â1=Â− a,

B̂1 = B̂ − b; with α, a, and b are some real parameters. Using the Hermiticity of
the operators Â1 and B̂1, the relation [Â1, B̂1] = iĈ, and considering a normalized
wavefunction, ψ, we can rewrite the integral in the form

J =

∫
((αÂ1 − iB̂1)ψ)

∗(αÂ1 − iB̂1)ψdτ =

∫
ψ∗(α2Â2

1 − iα[Â1, B̂1] + B̂2
1)ψdτ

= α2(Â− a)2 + αĈ + (B̂ − b)2 ≥ 0. (1)
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Set a = A and b = B. The condition of non-negativeness of the trinomial, quadratic
in α, gives the uncertainty relation as stated in the problem:

(Â−A)2 · (B̂ −B)2 ≥ 1

4

(
C
)2
. (2)

The relation (2) is realized only when (αÂ1 − iB̂1)ψ = 0. In particular, for the
operators Â = x̂ = x, B̂ = p̂ = −i�d/dx, Ĉ = �, this condition takes the form ψ′ +[
(x− x0)/d

2 − ip0/�
]
ψ = 0 (where instead of α < 0, a and b we have more convenient

real combinations involving x0, p0, and d). So, we have

ψ =
1

(πd2)1/4
exp

{
i
p0x

�
− (x− x0)

2

2d2

}
,

which gives the explicit form of the wavefunction that minimizes the uncertainty
relation for the coordinate and momentum (see also Problem 1.13).

One should exercise care in using Eq. (2): e.g., in the case of operators Â = l̂z =
−id/dϕ and B̂ = ϕ̂ = ϕ that do satisfy the canonical commutation relations, a blind
application of Eq. (2) yields (Δlz)2 · (Δϕ)2 ≥ 1/4. This result is physically meaning-
less, because the uncertainty in the angle can not possibly exceed π2 – (Δϕ)2 < π2,
and there exist physical states with a well-defined projection of the angular momen-
tum, i.e., (Δlz)2 can be zero.

The paradox is resolved by noting that while deriving Eq. (1) we used the relations∫
(Âψ)∗(Âψ)dτ =

∫
ψ∗Â2ψdτ,

∫
(Âψ)∗(B̂ψ)dτ =

∫
ψ∗ÂB̂ψdτ

which were based on the Hermiticity of all operators involved. But if we take into
account the result of the previous problem, we see that this assumption is applicable
only in the case of self-adjoint operators. For physical operators that represent a self-
adjoint extension of an Hermitian operator (l̂z is an example of such operator), a
more strict condition is needed: it is necessary that not only the wavefunction ψ but
also B̂ψ belongs to the appropriate domain, where Â is Hermitian (and similarly,
Âψ must remain in the domain of wavefunctions where B̂ is Hermitian). If these
conditions are fulfilled, the relation (2) is valid, otherwise it is not necessarily so.

Particularly, in the case of operators l̂z and ϕ̂, we must require that the states
involved in the uncertainty relation satisfy the condition ψ(0) = ψ(2π) = 0 (which
ensures that the function ψ̃(ϕ) = ϕψ(ϕ) belongs to the domain of the Hermiticity

of l̂z). For such states the inequality (Δlz)2 · (Δϕ)2 ≥ 1/4 is indeed valid. Otherwise,
the uncertainty relation has to be generalized as follows:

(Δlz)2 · (Δϕ)2 ≥ 1

4

(
1− 2π|ψ(0)|2)2.
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1.3 The projection operators

Problem 1.31

An Hermitian operator P̂ is called a projection operator or projector if it satisfies
the relation[8] P̂ 2 = P̂ . Consider the operator, P̂ (fi), acting on the eigenfunctions of

another Hermitian operator, f̂ , as follows:[9]

P̂ (fi)ψfk = δfi,fkψfi =

{
ψfi , fi = fk,

0, fi �= fk.

a) Prove that this operator is a projector (since the system of eigenfunctions ψfi

is complete, the relations above determine action of P̂ (fi) on an arbitrary
wavefunction, ψ).

b) On which states does this operator project? What physical meaning does the mean

value P̂ (fi) have for an arbitrary physical state, ψ?

c) Using the projectors P̂ (fi), construct the projection operator, P̂ ({f}), that projects
on the states, where the physical quantity f takes some value from an array of
eigenvalues {f} = {fi1 , fi2 , . . . , fiN }? Show that P̂ 2({f}) = P̂ ({f}).

d) Find explicitly the projector, P̂ (fi, gk, . . . , hl), that projects on a state with definite
values of fi, gk, . . . , hl of physical quantities that form a complete set of operators
(i.e., express it in terms of the operators, P̂ (fi), P̂ (gk), . . . ).

Solution

a) Consider two arbitrary wavefunctions ψ and φ and express them as follows:
ψ =

∑
k

ckψfk and φ =
∑
k

bkφfk (for the sake of simplicity, we assume that the

eigenvalues of f̂ are non-degenerate). First, verify that the operator P̂ (fi) is indeed
Hermitian:∫

φ∗P̂ (fi)ψdτ = ci

∫
φ ∗ ψfidτ = cib

∗
i =

∫ [
P̂ (fi)φ

]∗
ψdτ ≡

∫ [
P̂ †(fi)φ

]∗
ψdτ.

[8] Eigenvalues of such an operator are 0 and 1. Using this operator we can “divide” the Hilbert space

into two mutually orthogonal subspaces: P̂ |ψ > and (1− P̂ )|ψ >. The operator P̂ ′ = 1− P̂ is also
a projection operator, and it projects on the second of two subspaces.

[9] The relation above belongs to the discrete part of eigenvalues spectrum. A generalization for the
continuous part of spectrum is given by the projection on some finite interval (f, f +Δf) of eigenvalues
according to

P̂ (f,Δf)ψf ′ =

{
ψf ′ , f < f ′ < f +Δf,
0, f ′ < f, f ′ > f +Δf.

And P̂ (f,Δf) also gives the probability of the value f being included in the interval (see 1.32.).
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Here we have used the orthogonality of the eigenfunctions of the operator f̂ . From
P̂ 2(fi)ψ = P̂ (fi)(ciψ(fi)) = ciψfi = P̂ (fi)ψ, it follows that P̂

2(fi) = P̂ (fi). Hence,

P̂ (fi) is a projection operator.

b) P̂ (fi) projects onto the state with the definite value fi of physical quantity f .
Further, we find

P̂ (fi) =

∫
ψ∗P̂ (fi)ψdτ = |ci|2 ≡ |c(fi)|2

Here we have assumed that the wavefunctions ψ are normalized to 1: i.e. the mean

value P̂ (fi) gives the probability to measure f = fi in the given state.

c) According to the interpretation above, P̂ ({f}) = ∑
a
P̂ (fia). Since P̂ (fi)P̂ (fk) =

δikP̂ (fi), then P̂ ({f})2 = P̂ ({f}), as it has to be.

d) The operators from the complete set commute with each other. Therefore,

P̂ (fi, gk, . . . , tl) = P̂ (fi) · P̂ (gk) . . . P̂ (tl).

Problem 1.32

Find the projection operator that projects onto states with the values of a particle’s
coordinate such that x0 ≥ a.

Solution

From the definition of the projection operator, P̂ (x0 ≥ a), we have P̂ψ(x) = ψ(x),
if x ≥ a, and P̂ψ(x) = 0, if x < a. Hence, P̂ (x0 ≥ a) = η(x− a), where η(x) is the
Heaviside step function, which is equal to 1 for x > 0 and to 0 for x < 0. It is evident
that P̂ (x0 ≥ a) is an Hermitian operator and P̂ 2(x0 ≥ a) = P̂ (x0 ≥ a).

Problem 1.33

Find the projection operators P̂± that project onto states with a definite even/odd
parity with respect to coordinate inversion, r → −r. Express the projectors in terms
of the inversion operator, Î.

Solution

An arbitrary function can be written as superposition of odd and even components:

ψ(r) =
1

2
[ψ(r) + ψ(−r)] +

1

2
[ψ(r)− ψ(−r)] .

Per definition of P̂±, it must be that P̂±ψ = 1
2 [ψ(r)± ψ(−r)]. Hence, we find

P̂± = 1
2 (1± Î). We also have P̂ 2

± = P̂± and P̂+ + P̂− = 1.
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Problem 1.34

Prove that the Hermitian operator, F̂ , from Problem 1.19, is proportional to a
projection operator: i.e., P̂ = cF̂ , where c is a constant. On which state does cF̂
project?

Solution

An operator P̂ with the kernel P (x, x′) = c · f(x)f∗(x′) where c−1 =
∫ |f(x)|2dx

is a projection operator. It projects onto the state described by the wavefunction
ψ0(x) ≡ f(x).

Problem 1.35

An Hermitian operator f̂ has only N different eigenvalues. Find the explicit form of the
projection operator P̂ (fi) for the states with a given value fi of physical quantity f .

Solution

LetN = 2. From the condition P̂ (f1)ψf2 = 0, it follows that P̂ (f1) = a(f̂ − f2) and the

relation P̂ (f1)ψf1 = ψf1 gives a = (f1 − f2)
−1. The result generalizes to an arbitrary

N , as follows:

P̂ (fi) =

N∏
k=1

′ 1

fi − fk
(f̂ − fk),

where the prime implies that the factor with k = i is absent in the product.

1.4 Quantum-mechanical representations of operators and
wave-functions; Unitary operators

Problem 1.36

Find the properly normalized eigenfunctions of the three-dimensional coordinate,
ψr0 , and the three-dimensional momentum, ψp0 , in the coordinate and momentum
representations.

Result:

ψr0(r) = δ(r− r0), ψp0(r) =
1

(2π�)3/2
e

i
�
p0·r,

φr0(p) =
1

(2π�)3/2
e−

i
�
r0·p, φp0(p) = δ(p− p0).
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Problem 1.37

Find the momentum-representation wavefunction of a particle in the state defined in
Problem 1.13.

Result:

φ(p) =

√
a2

�
C exp

{
− i

�
(p− p0)x0 − a2

2�2
(p− p0)

2

}
.

Problem 1.38

Given a wavefunction, ψ(x, y, z), find the probability of finding a particle with the
z-coordinate in the interval, z1 < z < z2, and the y-component of momentum in the
interval, p1 < py < p2.

Result

The sought probability is given by

w =

z2∫
z1

p2∫
p1

∞∫
−∞

|F (x, py, z)|2dxdpydz,

where

F (x, py, z) =
1

(2π�)1/2

∞∫
−∞

ψ(x, y, z)e−
i
�
pyydy.

The wavefunction ψ(r) is assumed to be normalized to unity.

Problem 1.39

Express the operators from Problem 1.1 in the momentum representation.

Solution

In the coordinate representation we have ψ2(x) = Îψ1(x) ≡ ψ1(−x). Multiply these
relations by ψ∗

p(x) =
1

(2π�)1/2
exp

{− i
�
px
}
, and integrate with respect to x. The result-

ing Fourier transform yields

φ2(p) = Îφ1(p) =
1

(2π�)1/2

∫
exp

{
− i

�
px

}
ψ1(−x)dx, (1)

where φ1,2(p) =
∫
ψ∗
p(x)ψ1,2(x)dx are wavefunctions in the momentum representation.

Since the integral in (1) is equal to φ1(−p), we have Îφ1(p) ≡ φ1(−p): i.e., the operator
Î in the momentum representation remains the inversion operator.
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Similarly, we find for the other operators:

T̂aφ(p) = exp

{
i

�
pa

}
φ(p),

M̂cφ(p) =
1√
c
φ (φ(p/c)),

K̂φ(p) = φ∗(−p),

P̂12φ(p1, p2) = φ(p2, p1).

Problem 1.40

Find explicitly the inverse-momentum operator, p̂−1, in coordinate representation, and
the inverse-coordinate operator, x̂−1, in momentum representation (in one-dimensional
quantum mechanics).

Solution

Since p̂p̂−1 = 1, we have the equation d
dx

(
p̂−1ψ(x)

)
= (i/�)ψ(x). By integrating this

over x from −∞ to x we find the explicit form of the operator p̂−1 in the coordinate
representation:

(p̂)−1ψ(x) =
i

�

x∫
−∞

ψ(x′)dx′. (1)

On the other hand, by integrating from x to∞ we obtain a slightly different expression:

(p̂)−1ψ(x) =
i

�

∞∫
x

ψ(x′)dx′. (2)

The contradiction is resolved by noting that for the functions contained in the
definition domain of the operator p̂−1, the two results coincide. To belong to this

domain, the functions must satisfy the equation
∞∫

−∞
ψ(x)dx = 0, which ensures that

the function p̂−1ψ(x) vanishes in the limits x → ±∞, as required by the condition,∫ |p̂−1ψ(x)|2dx < ∞.[10] (See Problem 1.29.)

It should be noted that the eigenfunctions of the inverse-momentum operator p̂−1

are also the eigenfunctions of the momentum operator, as we might expect.

The problem for the inverse-coordinate operator, x̂−1, is dual to the one we just
solved, and we find

[10] In momentum representation we have p̂−1 ≡ 1̂
p
, and this condition takes the form

∞∫
−∞

p−1|φ(p)|2dp < ∞, which gives φ(0) = 0, or equivalently,
∞∫

−∞
ψ(x)dx = 0.
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(x̂)−1φ(p) = − i

�

p∫
−∞

φ(p′)dp′ =
i

�

∞∫
p

φ(p′)dp′,

∞∫
−∞

φ(p)dp = 0.

(See also Problem 4.15, where the result above is used to solve the Schrödinger equation
for a particle in the Coulomb potential in momentum representation.)

Problem 1.41

Find the relation between the kernels L(r, r′) and L(p,p′) of the same linear operator
L̂ in the r- and p-representations. (See also Problem 1.11.)

Result

L(p,p′) =
1

(2π�)3

∫ ∫
ei(p

′·r′−p·r)/�L(r, r′)dV dV ′

L(r, r′) =
1

(2π�)3

∫ ∫
ei(p·r−p′·r′)/�L(p,p′)d3pd3p′

Problem 1.42

Determine the form of the operators r̂−1 and r̂−2 in momentum representation.

Solution

In the coordinate representation the operator Ĝ1 ≡ r̂−1 has the following kernel:
G1(r, r

′) = 1
r δ(r− r′). Using the result of Problem 1.41, we find that the momentum-

representation kernel is given by

G1(p,p
′) =

1

(2π�)3

∫ ∫
1

r
ei(p

′−p)·r/�dV =
1

2π2�(p− p′)2
.

Similarly, we find for the operator r̂−2:

G2(r, r
′) =

1

r2
δ(r− r′), and G2(p,p

′) =
1

4π�2|p− p′| .

A useful exercise is to use the momentum-representation results above to prove that
Ĝ2 = Ĝ1Ĝ1.

Problem 1.43

Given two Hermitian operators Â and B̂, find a relation between the eigenfunctions
of the operator Â in the B-representation and the eigenfunctions of the operator B̂ in
the A-representation. Provide examples to illustrate the result.



26 Exploring Quantum Mechanics

Solution

Let us denote by ψAn
(q) and ψBn

(q) the eigenfunctions of operators, Â and B̂,
in the q-representation, and by ψ(q) the wavefunction of an arbitrary state. The
wavefunctions of this state in the A- and B-representations, denoted as a(An) and
b(Bn) correspondingly, can be determined from

ψ(q) =
∑
n

a(An)ψAn
(q), a(An) =

∫
ψ∗
An

ψdτ,

ψ(q) =
∑
m

b(Bm)ψBm
(q), b(Bm) =

∫
ψ∗
Bm

ψdτ.

(1)

For simplicity, we only consider here the case where the spectra of the operators Â
and B̂ are discrete and non-degenerate.

Setting ψ = ψBk
in Eq. (1) above, we find its form in the A-representation as

follows:

aBk
(An) =

∫
ψ∗
An

(q)ψBk
(q)dτq. (2)

The eigenfunction ψAn
in the B-representation is obtained from Eq. (2) by permuting

the A and B indices:

bAn
(Bk) =

∫
ψ∗
Bk

(q)ψAn
(q)dτq. (3)

From relations (2) and (3) we have aBk
(An) = b∗An

(Bk). One possible example of this
relation is given in Problem 1.36. As a corollary to this result we obtain the following
relation between the probabilities wBk

(An) = |aBk
(An)|2 = |bAn

(Bk)|2 = wAn
(Bk).

(This result is used in Problems 3.14 and 3.33.)

Problem 1.44

Which of the operators considered in 1.1 are unitary operators?

Result

The operators Î , T̂a, M̂c, and P̂12 are unitary.

Problem 1.45

Consider a unitary operator that satisfies the equation Û2 = Û . Find its explicit form.

Solution

From the equations Û2 = Û and Û Û † = Û †Û = 1 it follows that Û = 1.
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Problem 1.46

An operator Û is unitary. Can the operator Û ′ = cÛ (c is some complex constant) be
unitary as well; and if so, what are the conditions on the constant, c?

Result

|c| = 1: i.e., c = eiα, where α is a real parameter (c an overall U(1) phase factor).

Problem 1.47

Prove that the product Û1Û2 of two unitary operators is also a unitary operator.

Solution

From the equation Û = Û1Û2, it follows that Û † = Û †
2 Û

†
1 and Û Û † = Û †Û = 1 (we

took into account the unitarity of the operators Û1,2).

Problem 1.48

Is it possible that some unitary operator (matrix) is at the same time an Hermitian
one? Provide examples.

Solution

From the conditions of the unitarity Û Û † = 1 and of the Hermiticity Û † = Û of the
operator, it follows that Û2 = 1. An operator with only two eigenvalues ±1 has such a
properties (compare with Problem 1.17). Examples: the inversion operator Î and the
particle exchange operator P̂12, from Problem 1.1; Pauli matrices (see Chapter 5).

Problem 1.49

Prove that the Hermitian and anti-Hermitian parts of any unitary operator commute
with each other (consequently, the unitary operator can always be diagonalized). What
are the properties of its eigenvalues (compare with Problem 1.50)?

Solution

Let us write Û = 1
2 (Û + Û †) + 1

2 (Û − Û †). Since Û Û † = Û †Û = 1 we have [(Û +

Û †), (Û − Û †)] = 0. Therefore, the Hermitian operators (Û + Û †) and (Û − Û †)/i and
the operator Û can be diagonalized simultaneously. The eigenvalues uk of an operator
Û satisfy the equations |uk| = 1.
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Problem 1.50

Show that an operator of the form Û = exp(iF̂ ) is unitary, if F̂ is an Hermitian
operator. Express the unitary operators Î , T̂a, M̂c from Problem 1.1 in such a form.

Solution

Since Û † = exp(−iF̂ †) = exp(−iF̂ ), then Û Û † = Û †Û = 1. The eigenvalues uk of an
operator Û are related to the eigenvalues, fk, of the operator F̂ as follows: uk = eifk .

Therefore, we have:

Î = exp
{
i
π

2
(Î − 1)

}
,

T̂a = exp
{
i
a

�
p̂
}
,

M̂c = exp

{
i
ln c

2�
(x̂p̂+ p̂x̂)

}
.

These relations follow from Problem 1.7 (and see also Problem 1.57).

Problem 1.51

Square matrices Â and Â′ are of the same rank and are related by a unitary
transformation as follows: Â′ = Û ÂÛ †. Prove that the traces and determinants of
these matrices are the same.

Solution

From the equations Û †Û = 1 and Â′ = Û ÂÛ †, it follows that

Tr Â′ = Tr(Û ÂÛ †) = Tr(ÂÛ †Û) = Tr Â.

Analogously,

det Â′ = det(Û ÂÛ †) = det(ÂÛ †Û) = det Â.

Problem 1.52

Prove the relation

det|| exp Â|| = exp(Tr Â)

where Â is an Hermitian matrix.

Solution

For any Hermitian matrix there exists a unitary transform that brings it to a diagonal

form. In the new diagonal basis, where
(
exp Â

)
nm

= (expAn) δnm, the above identity
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becomes obvious. Combining this with the result of the previous problem, we prove
the relation in an arbitrary representation.

Problem 1.53

What is the determinant of a unitary matrix, Û? Calculate it explicitly for the matrix
Û = exp(iF̂ ), where F̂ is an Hermitian matrix with a known spectrum. Prove that
there always exists a transform Û ′ = cÛ that gives rise to a unimodular matrix with
det Û ′ = 1.

Solution

On the one hand we have det(Û Û †) = det 1̂ = 1. But at the same time, det(Û Û †) =
det Û · det Û † and det Û † = (det Û)∗. Hence, | det Û |2 = 1 or equivalently det Û = eiα,
where α is a real number. (The same result follows from the property of eigenvalues,
uk, of the unitary matrix; see Problem 1.50.)

For the operator Û = eiF̂ (according to Problem 1.52) we have det Û = exp(iTrF̂ ).

If we consider the matrix Û ′ = e−iα/N Û , where N is its rank, then we indeed have
det Û ′ = 1.

Problem 1.54

Find the number of independent square matrices of rank N that are: a) Hermitian,
b) unitary. How many unitary unimodular matrices (that is, matrices with the
determinant equal to +1) of rank N exist?

Solution

There are N2 linearly-independent matrices of rank N . There is the same number
of independent Hermitian matrices of rank N . The number of independent unitary
matrices is also N2, since there is a relation between them and Hermitian matrices

Û = eiF̂ (see Problem 1.50). For a unitary matrix to be unimodular, the relation,
TrF̂ = 0, holds (see Problem 1.53). Therefore, the number of unimodular matrices, as

well as the number of the Hermitian matrices F̂ ′ = F̂ −N−1
(
Tr F̂

)
1̂, with the trace

equal to zero, is N2 − 1.

Problem 1.55

Prove that the algebraic relations between operators of the form

F (Âi) ≡ c0 +
∑
i

ciÂi +
∑
i,k

cikÂiÂk + · · · = 0
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are invariant under an arbitrary unitary transformation of the operators Â′ = Û ÂÛ †:
i.e., prove that F (Â′

i) = 0.

Solution

F̂ ′ ≡ Û F̂ Û † = Û

[
c0 +

∑
i

ciÂi +
∑
ik

cikÂiÂk + . . .

]
Û †

= c0 +
∑
i

ciÛ ÂiÛ
† +

∑
ik

cikÛ ÂiÂkÛ
† + · · · = 0. (1)

Taking into account that Û †Û = 1, we can write an arbitrary term in the sum (1) as
follows:

cik...nÛ ÂiÂk . . . ÂnÛ
† = cik...nÛ ÂiÛ

†Û ÂkÛ
† . . . Û ÂnÛ

† = cik...nÂ
′
iÂ

′
k . . . Â

′
n.

Therefore, Eq. (1) takes the form

c0 +
∑
i

ciÂ
′
i +

∑
ik

cikÂ
′
iÂ

′
k + · · · ≡ F (Â′

i) = 0,

which is identical to the initial expression.

Problem 1.56

Determine the transformation law for the operators x̂ and p̂ under the following unitary
transforms: a) inversion operator Î, b) translation operator T̂a, c) scaling operator M̂c.
The form of the operators is given in Problem 1.1.

Solution

The operators x̂′ = Û x̂Û † and p̂′ = Û p̂Û † are given by:

a) x̂′ = −x̂, p̂′ = −p̂;

b) x̂′ = x̂+ a, p̂′ = p̂;

c) x̂′ = cx̂, p̂′ = 1
c p̂.

These relations can be proven in the coordinate representation. For Û = T̂a, we
have Û† = T̂ †

a = T̂−a (see Problem 1.1), and

x̂′ψ(x) = Û x̂Û †ψ(x) = T̂ax̂T̂−aψ(x) = T̂a[xψ(x− a)] = (x+ a)ψ(x) = (x̂+ a)ψ(x).

Hence we have x̂′ = x̂+ a. Furthermore,

p̂′ψ(x)= Û

(
−i�

∂

∂x

)
Û †ψ(x)= −i�T̂a

∂

∂x
T̂−aψ(x)= −i�T̂a

∂

∂x
ψ(x− a) = −i�

∂

∂x
ψ(x),

so p̂′ = p̂. The other relations are obtained in a similar way.
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Problem 1.57

A family of unitary operators, Û(a), parameterized by a real continuous parameter,
a, has the following properties Û(0) = 1̂ and Û(a3) = Û(a1)Û(a2), if a3 = a1 + a2.
Assume that for an infinitesimally small δa → 0, there holds Û(δa) ≈ 1 + iF̂ δa,
and prove that Û(a) = exp(iaF̂ ). As an illustration, consider the operators T̂a and
M̂c (see Problem 1.1), and find the corresponding generators of infinitesimally small
transformations.

Solution

Set a1 = a and a2 = da → 0 in the relation Û(a1 + a2) = Û(a2)Û(a1). Taking into
account Û(da) ≈ 1 + idaF̂ , we obtain

dÛ = Û(a+ da)− Û(a) ≈ iF̂ Û(a)da. (1)

Therefore, Û(a) satisfies the differential equation, dÛ/da = iF̂ Û , with the initial

condition, Û(0) = 1̂. The exponential Û(a) = eiaF̂ solves this equation.

For an infinitesimal translation, we have

T̂daψ(x) = ψ(x+ da) ≈
(
1 + da

∂

∂x

)
ψ(x).

Therefore, the corresponding generator is proportional to the momentum operator
F̂Ta

≡ p̂x/� = −i ∂
∂x , and the operator of finite translations is T̂a = ea∂/∂x.

In the case of the operator M̂c let us first introduce c = ea and write M̂c ≡ M̂(a).
The dependence of M̂(a) on a satisfies the conditions of the problem. So, we have

M̂(da)ψ(x) ≡ eda/2ψ(edax) ≈
[
1 + da

(
1

2
+ x

∂

∂x

)]
ψ(x),

and we find the generator iF̂ =
(
1
2 + x ∂

∂x

)
and the exponential expression for the

scaling operator as follows, M̂c = exp
{−i

2 ln c · (ix ∂
∂x + i ∂

∂xx
)}

(see Problem 1.7).
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One-dimensional motion

The time-independent Schrödinger equation

ĤψE ≡
[
− �

2

2m

d2

dx2
+ U(x)

]
ψE(x) = EψE(x) (II.1)

supplemented by the appropriate boundary conditions determines the energy spectrum
and wavefunctions of the stationary states of a particle moving in the potential field,
U(x).

The energy spectrum, En, in the domain minU(x) < En < U(±∞) is always
discrete, which corresponds to the finiteness of classical motion.[11] These energy levels,
En, are non-degenerate, and the corresponding eigenfunctions, ψn(x), are square-
integrable (they describe localized states of the particle and correspond to finite motion
in classical theory).

For a linear oscillator, U(x) = kx2/2, ω =
√
k/m, the spectrum is given by

En = �ω
(
n+ 1

2

)
, and the corresponding eigenfunctions are as follows:

ψ(osc)
n (x) =

(
1

πa2

)1/4
1√
2nn!

exp

(
− x2

2a2

)
Hn

(x
a

)
, (II.2)

where a =
√
�/mω and Hn(z) are the Hermite polynomials; for example,

H0(z) = 1, H1(z) = 2z, H2(z) = 4z2 − 2, etc. The non-zero matrix elements of the
coordinate operator are

xn,n+1 = xn+1,n =
√

(n+ 1)/2a, (II.3)

and the non-zero matrix elements of the momentum operator are given by
pnk = imωnkxnk, where ωnk = ±ω for n = k ± 1.

For an arbitrary potential, U(x), the spectrum with the energies E > min U(±∞) is
continuous. Such continuum states with energy E > max U(±∞) are doubly degener-
ate, which corresponds to classical motion extending to infinity in both directions:
x → −∞ and x → +∞. In this case, the choice of independent solutions of the

[11] We label discrete energy levels as En and the corresponding eigenfunctions as ψn (the ground state is
labelled by n = 0). Note that in this enumeration convention, n also gives the number of zeros of the
eigenfunction, ψn(x) (except, possibly, zeros at x = ±∞). For a particle in a spherically-symmetric
potential, the label nr is used to label the states.
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Schrödinger equation (II.1) is usually made on physical grounds to represent particles
reflected by and transmitted through a potential, and these wavefunctions are uniquely
defined by their asymptotic form at x → ±∞. For example, reflection and transmission
of quantum particles propagating from the left towards a potential can be described
by the following wavefunction:

ψ+
k1
(x) ≈

{
eik1x +A(E)e−ik1x, x → −∞,

B(E)eik2x, x → +∞,
(II.4)

where k1,2 =
√

2m[E − U(∓∞)]/�2. The amplitudes A(E) and B(E) determine the

transmission coefficient, D(E) = k2

k1
|B|2, and the reflection coefficient, R(E) = |A|2,

of the particles. These coefficients have the following properties:

D(E) +R(E) = 1; D+(E) = D−(E);

D(E) → 1 at E → ∞; (II.5)

D(E) → 0 at E → max U(∓∞).

The second symmetry relation, D+(E) = D−(E), implies independence of the trans-
mission coefficient with a certain energy E of the initial direction of particle propaga-
tion. The latter property is also discussed in Problems 2.37 and 2.39.

2.1 Stationary states in discrete spectrum

Problem 2.1

Find energy levels and normalized wavefunctions of stationary states of a particle in
the infinitely deep potential well of the width, a (i.e., U(x) = 0, if 0 < x < a, and
U(x) = ∞, if x < 0 or x > a). Find also the mean value and the standard deviation
of the coordinate and momentum of the particle.

In the state descried by the wavefunction, ψ = Ax(x− a), for 0 < x < a, find the
probability distribution function of the particle energy and its mean value.

Solution

1) The energy levels and the eigenfunctions are as follows:

En =
π2

�
2

2ma2
(n+ 1)2, ψn(x) =

√
2

a
sin

π(n+ 1)x

a
, 0 < x < a,

where n = 0, 1, . . . (ψ ≡ 0 for x < 0 and for x > a).
The average coordinate and momentum in the nth state are given by

x =
a

2
, (Δx)2 = a2

[
1

12
− 1

2π2(n+ 1)2

]
,

p = 0, (Δp)2 =
�
2π2(n+ 1)2

a2
.



34 Exploring Quantum Mechanics

2) Normalization condition for the given wavefunction yields A =
√

30/a5. From
Eq. (I.4) we find coefficients cn in its expansion into a series in terms of the
eigenfunctions, ψn, as follows:

cn =

√
60

a3

a∫
0

x(x− a) sin
π(n+ 1)x

a
dx = −

√
240

π3

1 + (−1)n

(n+ 1)3
.

These coefficients determine the probability of finding the particle in the nth
quantum state and the probability of the corresponding energy values, En: ω(En) =
|cn|2; specifically, w0 ≈ 0.999. Finally, from relation (I.5) we have E = 5�2/ma2 ≈
1.013E0.
See also Problem 8.23.

Problem 2.2

Find the change in energy levels and wavefunctions of a charged linear oscillator in a
uniform electric field applied along the oscillation axis. Find the polarizability of the
oscillator in these eigenstates.[12]

Solution

The potential energy of the charged oscillator in the uniform electric field, E , reads
U = kx2/2− eEx.

Substitution z = x− eε0/k leads to the Schrödinger equation, which is identical to
that for the unperturbed linear oscillator. This determines the energy spectrum and
eigenfunctions as follows:

En = �ω

(
n+

1

2

)
− 1

2

e2

k
E2, n = 0, 1, . . .

ψn(x) = ψ(osc)
n (z) = ψ(osc)

n

(
x− e

k
E
)
, ω =

√
k

m

(see Eq. (II.2)). This shows that as well as in the classical case, the effect of a uniform
field on a harmonic oscillator reduces to a shift of its equilibrium point. Polarizabilities
of all stationary states of an oscillator therefore are the same and have the form,
β0 = e2/mω2.

[12] Recall that the polarizability, β0, determines the mean dipole moment, d ≈ βE , induced by the weak
external electric field. It also determines the quadratic term, �E = −β0E2/2, of the energy shift in
such a field.
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Problem 2.3

Calculate the expectation value of the particle energy, E(α), in the state, ψ(x, α) =√
αe−α|x| (with α > 0), to show that there exists at least one bound state with negative

energy, E0 < 0, for any one-dimensional potential,[13] U(x), such that U(x) → 0 for
x → ±∞ and

∫
U(x)dx < 0.

Solution

Let us first prove that E(α) < 0 for small enough values of α. Since E0 ≤ E where E0

is the ground-state energy, this will automatically prove the existence of a negative-

energy state. We easily find that T = 1
2mp2 = �

2α2

2m ∝ α2, and U ≈ α
∫
U(x)dx ∝

α, while α → 0, so indeed, E(α) ≈ U < 0.

Problem 2.4

En and Ẽn are the energies of the nth level in the potentials U(x) and Ũ(x) = U(x) +
δU(x), correspondingly. Assuming that δU(x) � 0, prove that Ẽn � En.

Solution

Let En(λ) and ψn(x, λ) be the energy levels and the corresponding eigenfunctions of

the Hamiltonian, Ĥ(λ) = p̂2

2m + U(x) + λδU(x). From Eq. (I.6) we have

d

dλ
En(λ) =

∫
δU(x)|ψn(x, λ)|2dx � 0.

Since En = En(λ = 0) and Ẽn = En(λ = 1), the statement of the problem is proven.

Problem 2.5

Consider a symmetric potential, U(x), and the same potential in the half-space, x > 0,

Ũ(x) =

{
U(x), x > 0;

∞, x < 0,

as shown in Fig. 2.1. Find the relation between the energy levels of bound states and
the corresponding normalized wavefunctions for a particle in the potentials U(x) and
Ũ(x).

Solution

The energy levels, En, in the case of the symmetrical potential, U(x), have a definite
parity equal to (−1)n. For the odd-parity states with x � 0, the Schrödinger equation
and the boundary conditions ψ(0) = ψ(∞) = 0 are satisfied for the potential, Ũ(x), as

[13] Compare with the results of Problems 4.21 and 4.33.
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Fig. 2.1

well. Therefore, for odd values of n, the energy spectrum, Ẽn, for the two potentials
is identical, and the normalized eigenfunctions differ by a numerical normalization
constant only:

Ẽn = E2n+1,

ψ̃n(x) =
√
2ψ2n+1(x),

x � 0, n = 0, 1, . . . ,

where we have taken into account that the even and odd levels alternate and the lowest
level is even (see Fig. 2.2).

Fig. 2.2

Problem 2.6

A potential has the form U(x) = Ũ(x) + αδ(x− x0) where δ(x) is the Dirac
δ−function, while Ũ(x) is some finite function. Find the behavior of the solution
ψE(x) of the Schrödinger equation and its derivative at the point x0.

Solution

From the Schrödinger equation,

− �
2

2m
ψ′′
E(x) + [Ũ(x) + αδ(x− x0)]ψE(x) = EψE(x), (1)



One-dimensional motion 37

it follows that the wavefunction, ψE(x), is continuous everywhere, including at x0,
while its derivative has a discontinuity at x0. The jump of ψ′

E(x) at x = x0 must have
such a value that the δ-term in the ψ′′

E(x) (the derivative of the discontinuous function
is proportional to the δ-function) compensates the term αδ(x− x0)ψE(x0) in the left-
hand side of Eq. (1). By integrating (1) over a narrow interval x0 − ε ≤ x ≤ x0 + ε,
and taking the limit ε → 0, we find:

δψ′
E(x0) ≡ ψ′

E(x0 + 0)− ψ′
E(x0 − 0) =

2mα

�2
ψE(x0), ψE(x0 + 0) = ψE(x0 − 0). (2)

Problem 2.7

Find the energy level(s) of the discrete states and the corresponding normalized
wavefunction(s) of a particle in the δ-potential well,[14] U(x) = −αδ(x) (see Fig.
2.3). Find the expectation values of the kinetic and potential energy in these states.
Determine the product of the uncertainties of the coordinate and momentum. Find
the wavefunction in momentum representation.

Fig. 2.3

Solution

1) The physically-meaningful solution[15] of the Schrödinger equation with
U(x) = −αδ(x) has the form: ψ = Ae−κx, for x > 0, and ψ = Beκx, for x < 0, where
κ = (−2mE/�2)1/2 > 0. Using the relations (2) from the previous problem (with
the appropriate change, α → −α) we find that A = B and κ = mα/�2. It follows
from this equation that for α < 0 (δ-barrier), there are no bound states, and for

α > 0 (δ-well), there is only one bound state with E0 = −mα2

2�2 . The corresponding
normalized wavefunction has the form:

ψ0(x) =
√
κ0e

−κ0|x|, κ0 =
mα

�2
.

[14] An attractive δ-potential in one dimension provides a faithful representation of a shallow potential
well, U(x), of an arbitrary shape; that is, the potential, U(x), with ma2U0/�2 � 1, where U0 and a
are the typical value of the potential and its range, and α = − ∫

U(x)dx < 0. See also Problems 2.17,
2.20, and 2.23.

[15] Solutions of the Schrödinger equation that increase exponentially as x → ±∞ have been omitted
here.
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2) The mean values of the coordinate and momentum are given by:

U = 2E0, T = −E0, x = 0, (
x)2 =
1

2κ2
0

, p = 0, (
p)2 = �
2κ2

0,

3) The ground-state wavefunction in the momentum representation is:

φ0(p) =
1√
2π�

∞∫
−∞

e−ipx/�ψ0(x)dx =

√
2κ3

0�
3

√
π(p2 + �2κ2

0)
. (3)

Compare with Problem 2.17.

Problem 2.8

Find the energy spectrum and wavefunctions of the stationary states of a particle in
the potential shown in Fig. 2.4.

Fig. 2.4

Solution

By making the change of variables, z = β(x− E/F0), with β = (2mF0/�
2)1/3, we

transform the Schrödinger equation for x � 0 into the form ψ′′(z)− zψ(z) = 0.
Its solution that decreases, as z (and x) → +∞, is given by the Airy func-
tion, Ai(z). Therefore, ψ(x) = cAi[β(x− E/F0)], and the boundary condition
ψ(0) = cAi(−βE/F0) = 0 determines the energy spectrum. Denoting by −αk (with
k = 1, 2, . . . ), the sequence of zeros for the Airy functions (they can be proven to be
all negative) in increasing order, αk, we find the energy levels as follows:

En =

(
�
2F 2

0

2m

)1/3

αn+1, n = 0, 1, . . . . (1)

In particular, α1 ≈ 2.338, and the ground-state energy is E0 ≈ 1.856
(
�
2F 2

0 /m
)1/3

.
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Problem 2.9

Find the energy levels of the discrete spectrum and the corresponding wavefunctions
of a particle in the potential, U(x) = U0(e

−2x/a − be−x/a), where U0 > 0, a > 0, and
b > 0.

Solution

We introduce a new variable, z = 2βe−x/a, and a function, w(z), defined by ψ(x) =
zκae−x/2w(z) with κ = (−2mE/�2)1/2 and β = (2mU0a

2/�2)1/2. In these variables,
the Schrödinger equation takes the form of a hypergeometric equation:

zw′′ + (1 + 2κa− z)w′ +
(
−κa− 1

2
+

βb

2

)
w = 0. (1)

Since the function ψ(x) ∝ e−κx ∝ zκa tends to zero, as x → +∞ (or z → 0), the
solution to Eq. (1) must be chosen in the form (the other solution diverges in the
limit z → 0):

w(z) = cF

(
κa+

1

2
− βb

2
, 1 + 2κa, z

)
. (2)

The condition of decreasing ψ(x) as x → −∞ (or z → +∞) demands that the function
F (α, β, z) in (2) reduces to a polynomial. It gives the spectrum:

α ≡ κna+
1

2
− βb

2
= −n, n = 0, 1, . . . ,

[
bβ

2
− 1

2

]
,

or

En = −�
2κ2

n

2m
= − �

2

2ma2

[(
mb2a2U0

2�2

)1/2

−
(
n+

1

2

)]2

.

The condition
√

mb2a2U0

2�2 =
(
N − 1

2

)
determines the parameters of the potential that

correspond to the appearance of a new Nth discrete level with increasing depth of the
potential well.

Problem 2.10

The same as in the previous problem, but for the potential

U(x) =
U1

(1 + ex/a)2
− U2

1 + ex/a
; U1,2 > 0, a > 0.

Solution

A discrete spectrum exists only if U1 > U2/2 (otherwise the potential has no minimum)
and for E < min (0, U1 − U2). To solve the Schrödinger equation, we make the change
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of variable, z = −ex/a and ψ = (1− z)−εzμw(z). Then the Schrödinger equation takes
the form (κ2

1,2 = 2mU1,2/�
2, κ = (−2mE/�2)1/2):

z2w′′(z) +
[
2εz2

1− z
+ (2μ+ 1)z

]
w′(z) +

[
ε(ε+ 1)z2 − (κ1a)

2

(1− z)2
+

ε(2μ+ 1)z + (κ2a)
2

1− z
− (κa)2 + μ2

]
w(z) = 0. (1)

If we take the parameters ε and μ in the form

ε = −1

2
+

(
1

4
+ κ2

1a
2

)1/2

, μ =
√

(κ2 + κ2
1 − κ2

2)a
2

we convert Eq. (1) into the standard hypergeometric equation:

z(1− z)w′′ + [2μ+ 1− (2μ− 2ε+ 1)z]w′−
[μ2 + κ2

1a
2 − 2εμ− ε− κ2a2]w = 0 (2)

with the parameters

α = μ− ε+ κa, β = μ− ε− κa, γ = 1 + 2μ.

Since ψ(x), as x → −∞ (z → 0), has the form ψ ∝ eμx/a = zμ, we should choose the
solution of Eq. (2) in the form w = cF (α, β, γ, z). Then

ψ = c
1

(1− z)ε
zμF (α, β, γ, z). (3)

From this equation, it follows that in the limit z (and x) → −∞,

ψ ≈ cz−ε+μ

[
Γ(γ)Γ(β − α)

Γ(β)Γ(γ − α)

1

(−z)α
+

Γ(γ)Γ(α− β)

Γ(α)Γ(γ − β)

1

(−z)β

]
. (4)

Since z−ε+μ−β = eκx increases as x → +∞, then it requires: that α = −n, with n
being an integer that labels the energy spectrum:√

−En +
√
U1 − U2 − En =

=

√
U1 +

�2

8ma2
−
√

�2

2ma2

(
n+

1

2

)
, n = 0, 1, . . . . (5)

Note also that if U1 = U2 ≡ U0, the potential turns into U = − U0

4ch2 (x/2a)
.
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Problem 2.11

Find the energy spectrum of a particle in the potential U(x) = αδ(x), α > 0 for |x| < a
and U = ∞ for |x| > a (see Fig. 2.5). Prove that in the limit, mαa/�2 � 1, the low-
energy part of the spectrum consists of a set of closely-positioned pairs of energy
levels. What is the spectrum of the highly excited states of the particle? What is the
structure of the energy levels with α < 0?

Fig. 2.5

Solution

1) The stationary states in this symmetric potential have a definite parity. The
wavefunctions of even levels for 0 < |x| ≤ a have the form ψ+ = A sin(k(|x| − a))
(the boundary condition ψ(a) = 0 is taken into account), where k =

√
2mE/�2.

The matching conditions at x = 0 (see Eq. (2) in Problem 2.6) give the equation
that determines the energy spectrum of the even levels:

tan ka = −ka

ξ
, ξ =

mαa

�2
. (1)

In the limit ξ � 1, the right-hand side of Eq. (1) is small for the low-lying levels
(with ka � ξ). Therefore, kna = nπ − ε, where ε � 1 and n = 1, 2, . . . . From (1),
we have ε ≈ nπ/ξ, so

E+
n ≈ π2

�
2n2

2ma2

(
1− 2

ξ

)
(the index “+” means that the level is even).
For the odd levels, the wavefunctions have the form ψ−(x) = B sin kx, and the

conditions ψ−(±a) = 0 give the energy spectrum:

E−
n =

π2
�
2n2

2ma2
, n = 1, 2, . . .

(a particle is not affected by the δ-potential at all in an odd state).
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A comparison of E+
n and E−

n confirms the properties of low-lying pairs of levels, as
stated in the problem.

2) For the energies ka � ξ from (1), and if we put kna = (n− 1/2)π + ε, ε � 1, it is
easy to find the spectrum of even levels:

E+
n ≈ π2

�
2(2n− 1)2

8ma2
+

α

a
. (2)

Here, the first term corresponds to the even energy levels in an infinitely deep
potential well of the width, 2a, while the second term determines their shift under
the action of the potential, U(x) = αδ(x).

3) For the case of α > 0 in each pair of close levels, the lower one is even and

δEn = E−
n − E+

n ≈
(

2�2

mαa

)
E±

n > 0. (3)

For the case of α < 0, we have a different situation – now the higher-energy level
is even. But in this case, the low-lying part of the spectrum also contains an
additional single even level with the energy E+

0 = −κ2
0�

2/2m and wavefunctions
ψ+
0 ≈ √

κ0e
−κ0|x|, where κ0 = m|α|/�2. This level corresponds to a particle that is

“bound” by the δ-well, U = −|α|δ(x) (see Problem 2.7).

Problem 2.12

Generalize the results of the previous problem to the case of a δ-barrier separating the
square well in a non-symmetrical manner.

Solution

The solution of the Schrödinger equation has the form ψ(x) = A sin k(x+ a) for
−a ≤ x < 0 and ψ(x) = B sin k(x− b) for 0 < x < b, where k =

√
2mE/�2. Here, the

boundary conditions ψ(−a) = ψ(b) = 0 have been used. The matching conditions at
x = 0 (see Eqs. (1 and 2) in Problem 2.6) lead to

A sin ka = −B sin kb,B cos kb−A cos ka =
2mα

k�2
A sin ka.

This yields an equation that determines the energy spectrum:

sin k(a+ b) = −2mα

k�2
sin ka · sin kb. (1)

Note that if b = a, Eq. (1) becomes identical to the corresponding equation in
Problem 2.11.

Let us point out some properties of the spectrum.

1) In the energy range where mα/k�2 � 1, the right-hand side of equation (1) is small
and therefore kn(a+ b) ≈ π(n+ 1), as in the case of “free” motion of a particle in
the well of width (a+ b).
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2) In the opposite case, where mα/k�2 � 1, the product of the sine-functions in
Eq. (1) is small, so kn1

≈ π(n1 + 1)/a or kn2
≈ π(n2 + 1)/b. In this case, the

spectrum represents a superposition of the spectra that correspond to independent
motion of a particle in the left and right wells with widths a and b.

Problem 2.13

Investigate the asymptotic behavior at x → ±∞ of the zero-energy solution E = 0
to the Schrödinger for the potential that U(x) → 0 for x → ±∞. Show that the zero-
energy state, ψE=0(x), that has the property of not increasing at x → ±∞, exists only
for special values of the parameters of the potential (that correspond to the appearance
of a new bound state).

What is the number of discrete levels, Nbound, of a particle in

a) a rectangular potential well of the depth U0 and width a,

b) the potential, U(x) = −αδ(x)− αδ(x− a),

expressed in terms of the parameters of these potentials?

Solution

If the potential, U(x), decreases sufficiently rapidly,[16] then in the limit x → ±∞, the
Schrödinger equation and its solution take the form ψE=0

′′ = 0, ψ = A± +B±x, i.e.,
the solution actually increases. In the case of an arbitrary potential there exists no
solution of Schrödinger equation that does not increase at both x → +∞ and x → −∞
(also, there is no such solution with E < 0 that would decrease at x → ±∞). Such
solutions do exist, however, for exceptional values of the potential parameters that
correspond to the appearance of new discrete states with increasing well depth.

To prove the above statements, let us examine the highest level in the discrete
spectrum, En. Its wavefunction has the form, ψn ∝ e−κ|x|, at x → ±∞ with κ =√
2m|En|/�2. As the well depth decreases, all the levels shift up, and for some critical

depth, the highest energy level reaches the value En = 0. Its wavefunction tends to a
constant, ψn → const, as x → ±∞. The number of zeros of the wavefunction is equal
to the number of existing discrete spectrum states whose energy is negative, En < 0.
As an illustration, consider a free particle. The Schrödinger equation in this case has a
bounded solution ψE=0 =const which has no zeros. In accordance with the discussion
above, it follows that an arbitrarily shallow well binds the particle (see Problem 2.3).

a) Let us find the condition for the appearance of a new discrete state. The solution
of the Schrödinger equation with E = 0 that does not increase at infinity has the
form, ψ = A for x < 0, ψ(x) = B cos(γx+ δ) for 0 < x < a (the well domain), where

[16] It is necessary that the potential decreases faster than ∝ 1/x2. In the case of an attractive potential,
which decreases faster than a power law, U(x) ≈ −α/xs for x → ∞ with s ≤ 2, the solution to the
Schrödinger equation for E = 0 has a completely different asymptotic behavior (see Problems 9.9
and 9.14). If an attractive potential decreases slowly, the number of bound states diverges due to
level condensation with En → −0.
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γ =
√

2mU0/�2 and ψ(x) = C for x > a. The continuity of the wavefunction and
its derivative at x = 0 and x = a points gives A = B, δ = 0, γa = πn, where n is an
integer; C = (−1)nB. This wavefunction has n zeros (as the argument of the cosine-
function varies from 0 to πn), and therefore the condition γa = πn corresponds to
the appearance of the (n+ 1)th level. Hence, it follows that the number of bound
states, Nbound, inside the well is γa

π < Nbound < γa
π + 1.

b) There is one bound state if 0 < mαa/�2 < 1, and two bound states if mαa/�2 > 1.

Problem 2.14

What is the number of bound states of a particle confined in the potential, U(x),
of the form a) U = ∞, for x < 0, U = −U0, for 0 < x < a, and U = 0, for x > a (see
Fig. 2.6a) b) U = ∞, for x < 0, and U = −αδ(x− a), for x > 0 (see Fig. 2.6b) Express
your answer in terms of the parameters, U0, a, and α.

(a) (b) (c)

Fig. 2.6

Result

a)

√
2mU0a2

π� − 1
2 < Nbound <

√
2mU0a2

π� + 1
2 ;

b) There is a single bound state that appears if mαa/�2 � 1/2, and no bound state
otherwise.

Problem 2.15

Find the condition for the existence of a bound state inside the potential well in Fig.
2.6c. Consider also the following limiting cases: a) U1 = ∞ and b) U1 = U2.

Solution

The bound states correspond to E ≤ U2. The signature of the appearance of a new
bound state is the existence of a solution to the Schrödinger equation with E = U2

that does not increase at x → ±∞ (see Problem 2.13). The corresponding condition
has the form:
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tan

√
2mU2a2

�2
=

√
U1

U2
− 1,

where the ordinal number, N , of the level is given by(
N − 3

2

)
π <

√
2mU2a2

�2
<

(
N − 1

2

)
π.

So, the condition for the appearance of a bound states becomes[17]√
2mU2a2

�2
� arctan

√
U1 − U2

U2
.

In particular, it requires that U2 � π2
�
2/8ma2 for the limiting case, a) U1 = ∞, and

it shows that at least one bound state always exists for b) U1 = U2.

Problem 2.16

A particle moves in a field formed by two identical symmetrical potential wells
separated by some distance (see Fig. 2.7). Assume that the wells do not overlap,
and that U(0) = 0. Show that the average force, which the particle exerts on each of
the wells in a stationary bound state, leads to mutual attraction of the wells for the
even-parity states and mutual repulsion for the odd-parity states.

Fig. 2.7

Solution

The average force that the particle exerts on the right well is given by the integral

(Fr)nn =

∞∫
0

ψ2
n(x)

dU

dx
dx.

Integrating by parts and using the Schrödinger equation, we obtain

(Fr)nn = Enψ
2
n(0) +

�
2

2m
[ψ′

n(0)]
2
. (1)

[17] Note that the discrete states En ≤ U2 shift up both with an increase in U1 and a decrease in a; see
also Problem 2.4.
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For an even state we have ψ′
n(0) = 0, and since En < 0 we obtain (Fr)nn < 0; for odd

levels, ψn(0) = 0, and therefore (Fr)nn > 0. Note that the force acting on the left well
has the opposite sign to that in Eq. (1). This confirms the statement in the problem.

2.2 The Schrödinger equation in momentum space;
The Green function and integral form of the
Schrödinger equation

Problem 2.17

Find the form of the Schrödinger equation in momentum representation describing
a quantum particle influenced by a potential, U(x), that dies off at x → ±∞; i.e.,
U(±∞) = 0. Use this equation to investigate bound state(s) in the δ−potential
U = −αδ(x). Compare your results with Problem 2.7.

Solution

The action of the kinetic energy operator, T̂ = p̂2/2m ≡ p2/2m, in momentum space
reduces simply to a multiplication, while the potential energy operator, Û , becomes
an integral operator with the kernel U(p, p′) (see also Problem 1.41):

U(p, p′) ∼= Ũ(p− p′), Ũ(p) =
1

2π�

∫
U(x)e−ipx/�dx. (1)

Therefore, the Schrödinger equation in momentum space takes the form:

Ĥφ(p) ≡ p2

2m
φ(p) +

∞∫
−∞

Ũ(p− p′)φ(p′)dp′ = Eφ(p). (2)

In the specific case of U = −αδ(x), we have Ũ = −α/(2π�), which is momentum-
independent. Therefore, Eq. (2) becomes

p2

2m
φ(p)− α

2π�
C = Eφ(p), C =

+∞∫
−∞

φ(p)dp. (3)

Hence (below, E = −|E| < 0),

φ(p) =
mα

π�

C

p2 + 2m|E| . (4)

From Eqs. (3) and (4), we have the self-consistency equation

1 =
mα

π�

∞∫
−∞

dp

p2 + 2m|E| =
α

�

√
m

2|E| (5)
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that determines the discrete spectrum. This equation has only one solution:
E0 = −mα2/(2�2) (in the case α > 0). The wavefunction (4) corresponds to that level,
and with C =

√
2πmα/� it is normalized to unity. The inverse Fourier transform to

the coordinate representation recovers the results of Problem 2.7.

Problem 2.18

Use the Schrödinger equation in momentum space to analyze bound states of a particle
in the potential, U(x) = −α[δ(x− a) + δ(x+ a)].

Solution

Here, Ũ(p) = − α
2π�

(
eipa/� + e−ipa/�

)
and the Schrödinger equation takes the form

(see the previous problem)

p2

2m
φ(p)− α

2π�

(
eipa/�C+ + e−ipa/�C−

)
= Eφ(p), (1)

where

C± =

∞∫
−∞

e∓ipa/�φ(p)dp. (2)

Hence, denoting κ2 = −2mE/�2 > 0 and α̃ = mα/�2, we find

φ(p) =
α̃�

π

(
eipa/�C+ + e−ipa/�C−

) 1

p2 + �2κ2
, (3)

Plugging Eq. (3) into Eq. (2) and calculating the corresponding integrals (see also
Eq. (A1.3)), we obtain

C+ =
α̃

κ

(
C+ + e−2κaC−

)
, C− =

α̃

κ

(
e−2κaC+ + C−

)
. (4)

This system of equations has a non-trivial solution if one of the two conditions

κ = α̃
(
1± e−2κa

)
(5)

is satisfied.

Equation (5) with the “+” sign has only one root, if α̃ > 0. Therefore, Eq. (4)
yields C+ = C−, i.e., the corresponding state is even (see Eq. (3)). The energy of this
level in the case α̃a � 1 is equal to E+

0 ≈ −2mα2/�2 (two closely-positioned δ−wells
effectively act as a single well with a doubled value of α; see Problem 2.7). In the
opposite limit, α̃a � 1, we have

E+
0 ≈ −mα2

2�2
(
1 + e−2α̃a

)
. (6)
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Note that the exponential term in Eq. (5) is small, and by neglecting it we obtain
κ+
0 ≈ α̃.

Equation (5) also describes the odd levels. An odd level exists only if α̃a > 1/2 (see
Problem 2.13). If 0 < α̃a− 1/2 � 1, and its energy is given by

E−
1 ≈ −(2α̃a− 1)2

�
2

2ma2
,

and for α̃a � 1,

E−
1 ≈ −mα2

2�2
(
1− e−2α̃a

)
.

In the limit, a → ∞, both even and odd levels merge into a single level.

Problem 2.19

Use the Schrödinger equation in momentum space to analyze bound states of a particle
in a separable potential given by a non-local integral operator, Û , with the kernel,
U(x, x′) = −λf(x)f∗(x′) (it is assumed |f(x)| → 0, for x → ±∞).

Solution

The kernel of the operator Û in momentum space remains separable and reads

U(p, p′) = −λg(p)g∗(p′), g(p) =
1√
2π�

∞∫
−∞

e−ipx/�f(x)dx, (1)

and the Schrödinger equation (see Problem 2.17) takes the form

p2

2m
φ(p)− λg(p)

∞∫
−∞

g∗(p′)φ(p′)dp′ = Eφ(p). (2)

Hence, it follows that

φ(p) =
2mλC

p2 − 2mE
g(p), C =

∞∫
−∞

g∗(p)φ(p)dp. (3)

The self-consistency condition then can be found as follows:

2mλ

∞∫
−∞

|g(p)|2
p2 − 2mE

dp = 1, (4)

which determines discrete energy levels of the particle in the separable potential.
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Let us consider some consequences of this equation:

1) If E < 0, the integral in Eq. (4) is a monotonous positive function of |E| that is
equal to zero as |E| → ∞. Therefore, if λ < 0, this equation has no roots, which
means bound states are absent. If λ > 0, there are two possibilities:

1a) If g(0) �= 0 and the integral in Eq. (4) is equal to +∞ as E → 0. In this case there
is only one bound state. In the limiting case, λ → 0, we also have E0 → 0; in this
case, small values of p play the dominant role in the integral in Eq. (4); therefore,

E0 ≈ −2π2mλ2|g(0)|4, λ → 0. (5)

In the opposite limiting case, where both λ → ∞ and −E0 → ∞, we have

E0 ≈ −λ

∞∫
−∞

|g(p)|2dp. (6)

We should note that |E0(λ)| is a monotonically increasing function of the param-
eter, λ.

1b) If g(0) = 0 with
∞∫

−∞
|g|2 dp

p2 ≡ A, there also exists just one bound state if

λ > (2mA)−1, and no bound states for λ < (2mA)−1.

2) When E > 0, an unusual situation is possible for separable potentials, which have
g(p0) = 0 for some value of p0 �= 0, so that

∞∫
−∞

|g(p)|2
p2 − p20

dp ≡ B < ∞.

In this case, when λ = λ0 = 1/(2mB), there appears a bound state with the
energy Ẽ = p20/2m > 0. Interestingly, this discrete level lies within the continuous
spectrum.

Problem 2.20

1) Find the Green function, GE(x, x
′), of the Schrödinger equation for a free particle

with energy, E < 0. The Green function obeys the equation

(Ĥ − E)GE ≡ − �
2

2m

∂2

∂x2
GE − EGE = δ(x− x′)

and is required to vanish as, |x− x′| → ∞. 2) Use the Green function to formulate an
integral form of the Schrödinger equation that determines discrete levels in a short-
range potential, U(x) [U(x) → 0, as x → ±∞]. 3) Use this equation to find bound
state(s) of a particle in the δ well, and compare your results with Problem 2.7. 4) Find
the form of the Green function in momentum space.
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Solution

1) A general solution of the equation for the Green function, GE , has the form GE =
A(x′)eκ(x−x′) +B(x′)e−κ(x−x′) for x < x′. Here, κ =

√−2mE/�2 > 0. Since GE

must decrease as x → −∞, we conclude that B(x′) = 0. Similarly, we have GE =
C(x′)e−κ(x−x′) for x > x′. GE is a continuous function at the point x = x′, and the
derivative G′

E has the “jump” equal to (see Problem 2.6)

G′
E(x = x′ + 0, x′)−G′

E(x = x′ − 0, x′) = −2m

�2
.

Hence,

GE(x, x
′) =

m

κ�2
e−κ|x−x′|. (1)

Using the Green function we can write the general solution of the equation

− �
2

2m
ψ′′(x)− Eψ(x) = f(x) (2)

as follows (E < 0);

ψ(x) = Ae−κx +Beκx +

∞∫
−∞

GE(x, x
′)f(x′)dx′. (3)

2) If we now set f(x) = −U(x)ψ(x), in Eq. (2), we obtain the Schrödinger equation
and its formal solution (3) in an integral form. Since for physical applications,
only solutions that do not increase at x → ±∞ matter, and since the integral term
in Eq. (3) decreases in this case, we set A = B = 0, and the integral form of the
Schrödinger equation then reads:

ψE(x) = − m

κ�2

∞∫
−∞

e−κ|x−x′|U(x′)ψE(x
′)dx′. (4)

This formulation of the theory is equivalent to that using the differential
Schrödinger equation supplemented by the boundary conditions ψ(x → ±∞) = 0
for the values of the energy E < 0 that belong to the discrete spectrum.

3) For U(x) = −αδ(x), Eq. (4) becomes

ψE(x) =
mα

κ�2
ψE(0)e

−κ|x|,

which gives the wavefunction and the energy E0 = −mα2/2�2 of the single discrete
level in the δ-well.

4) Note that the Green function may be viewed as a linear operator ĜE defined by its
kernel, GE(x, x

′), in the coordinate representation. Consequently, from the equation
for GE(x, x

′), it follows that
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(Ĥ − E)ĜE = 1̂, Ĥ =
p̂2

2m
. (5)

This operator equation is valid in an arbitrary representation. Its formal solution
has the form ĜE = (Ĥ − E)−1. In the momentum representation therefore, the
Green function is GE = (p2/2m− E)−1, which is a multiplication operator. Using
the result of Problem 1.41, we can obtain its kernel in the coordinate representation:

GE(x, x
′) =

∞∫
−∞

eip(x−x′)/�dp

2π�(p2/2m+ |E|) =
m

κ�2
e−κ|x−x′|, (6)

which coincides with Eq. (1).

Problem 2.21

Use the Schrödinger equation in the integral form to investigate bound states in a
separable potential (see also Problem 2.19).

Solution

In the case of a separable potential, the integral form of the Schrödinger equation is
given by

ψE(x) =
λm

κ�2

∫ ∫
e−κ|x−x′|f(x′)f∗(x′′)ψE(x

′′)dx′dx′′. (1)

Using the notation

C =

∞∫
−∞

f∗(x)ψE(x)dx, (2)

and Eq. (1), we obtain the wavefunction

ψE(x) =
λmC

κ�2

∞∫
−∞

e−κ|x−x′|f(x′)dx′. (3)

Using this result and Eq. (2), we obtain

κ =
λm

�2

∞∫
−∞

∞∫
−∞

e−κ|x−x′|f(x′)f∗(x)dxdx′, (4)

which determines the spectrum. We now consider the limiting cases:
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a) If λ → 0+, then κ → 0 as well. There is a single discrete level present, and its energy
is

E0 ≈ −mλ2

2�2

∣∣∣∣∫ f(x)dx

∣∣∣∣4. (5)

b) If λ → ∞, then κ → ∞ as well. For the integral in Eq. (4), we find that only the
region x′ ≈ x is important. Substituting f(x′) ≈ f(x) and calculating the integral
with respect to x′, we obtain

E0 ≈ −λ

∫
|f(x)|2dx. (6)

For a more detailed analysis of Eq. (4), it is convenient to transform this equation
using formula (A1.3). The relation we obtained reproduces the corresponding result
of Problem 2.19.

Problem 2.22

Using the integral form of the Schrödinger equation, prove that the discrete energy
levels for a particle in an arbitrary potential U(x) ≤ 0 [U(x) → 0, as x → ±∞] satisfy
the following condition:

|En| ≤ m

2�2

⎡⎣ ∞∫
−∞

U(x)dx

⎤⎦2

.

Solution

Let us consider the ground-state wavefunction, ψ0(x), with E0 < 0 (|En| ≤ |E0|). This
function has no zeroes for any finite value of x, and therefore ψ0(x) > 0 (the reality
condition could always be satisfied by the appropriate choice of the phase factor).
Now, we use the integral Eq. (4) from Problem 2.20. Let us set x = x0, where x0

corresponds to a maximum of ψ0(x):

ψ0(x) =
m

κ0�
2

∞∫
−∞

e−κ0|x−x′||U(x′)|ψ0(x
′)dx′. (1)

Function in the integral is non-negative, and the substitution of the factor
e−κ0|x0−x′|ψ0(x

′), en lieu ψ0(x0) may only increase the right-hand side of the equation.
Therefore, we obtain the following inequality:

1 ≤ m

κ0�
2

∫
|U(x)|dx.
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From this equation it follows that

|En| ≤ |E0| = �
2κ2

0

2m
≤ m

2�2

[∫
U(x)dx

]2
. (2)

Note that the approximate equality in Eq. (2) is fulfilled for any “shallow” potential
well. See also Problem 2.23.

Problem 2.23

There is only one bound state with the approximate energy E0 ≈ − m
2�2

[∫
U(x)dx

]2
in

a shallow potential well for which U0 � �
2/ma2 (where U0 and a are the characteristic

strength of the potential and its radius). Using the integral form of the Schrödinger
equation, find the correction to this relation that is of the order of ma2U0/�

2.

Solution

We use the integral form of the Schrödinger equation, as in Eq. (4) in Problem 2.20.
Multiply both its sides by U(x), and integrate in the infinite limits. The dominant
contribution to the corresponding integrals comes from the region where both x and
x′ ∼ a. Since κa � 1, it is possible to expand the exponential and keep just the first
two leading terms. We get∫

U(x)ψ(x)dx ≈ − m

κ�2

∫ ∫
(1− κ|x− x′|)U(x)U(x′)ψ(x′)dxdx′.

From this equation, it follows that

κ ≈ −m

�2

∫
U(x)dx

{
1 +

m
�2

∫ ∫ |x− x′|U(x)U(x′)ψ(x′)dxdx′∫
U(x)ψ(x)dx

}
.

The correction – the second one in the brackets in the above equation – contains the
wavefunction, whose variation can be neglected in the integration domain, and it can
be set to ψ(0) (we restrict ourselves here to the required accuracy, and drop all higher-
order terms). Therefore, a correction to the parameter, κ (and thereby to the energy,
E0 = −�

2κ2/2m), reads

κ ≈ −m

�2

∫
U(x)dx−

(m

�2

)2
∫ ∫

|x− x′|U(x)U(x′)dxdx′. (1)

Note that the correction is negative, as expected from the previous problem.

Problem 2.24

Find the Green function of a free particle moving in half-space bounded by an
impenetrable wall; i.e., U(x) = 0 for x > 0 and U(x) = ∞ at x < 0 (see also Fig. 2.8a).
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The Green function satisfies the boundary condition GE(x = 0, x′) = 0 and decreases
at |x− x′| → ∞.

Using this Green function, write the integral form of the Schrödinger equation that
determines bound states (En < 0) of a particle in the potential: U(x) = Ũ(x) at x > 0
and U(x) = ∞ at x < 0 (see also Fig. 2.8b)

(a) (b)

Fig. 2.8

Solution

The Green function could be obtained from the solution in free space (see Prob-
lem 2.20), using the method of mirror-image charges (well-known in electrostatics).
This method allows us to immediately “guess” the solution that satisfies the appro-
priate boundary conditions (and per the theorem of existence and uniqueness, it
represents the sought-after exact solution), as follows:

GE(x, x
′) =

m

κ�2

(
e−κ|x−x′| − e−κ|x+x′|

)
. (1)

The integral form of the Schrödinger equation that automatically takes into account
the boundary conditions ψ(0) = ψ(∞) = 0 is given by (compare with Problem 2.20)

ψ(x) = −
∞∫
0

GE(x, x
′)Ũ(x′)ψ(x′)dx′. (2)

Problem 2.25

Using the integral form of the Schrödinger equation, show that the inequality

∞∫
0

x|Ũ(x)|dx � �
2

2m
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is the necessary condition for the existence of a bound state in the potential, U(x),
shown in Fig. 2.8b: U(x) = ∞ if x < 0 , U(x) = Ũ(x) for x > 0 (assume here that
Ũ ≤ 0 and Ũ(x) → 0 for x → ∞).

Apply the general result specifically to the following potentials: a) Ũ = −U0 for
x < a, Ũ = 0 for x > a; b) Ũ = −αδ(x− a); see Figs. 2.6a, b.

Solution

We can follow here the same logic as in Problem 2.22. First, we estimate the expo-
nential terms in the integral Schrödinger equation (see the previous problem). Since
x, x′ � 0 and |x+ x′| − |x− x′| ≤ 2x′, we obtain

0 ≤ e−κ|x−x′| − e−κ|x+x′| = e−κ|x−x′|[1− e−κ|x+x′|+κ|x−x′|] ≤
e−κ|x−x′|[1− e−2κx′

] ≤ 2κx′.

From here the statement in the problem follows.

a) For the rectangular potential well, the necessary condition of existence of a
discrete spectrum becomes ma2U0/�

2 � 1 (while the exact condition is ma2U0/�
2 �

π2/8 ≈ 1.24). b) For the δ-well, the necessary condition has the form 2mαa/�2 � 1,
which coincides with the exact result.

Problem 2.26

Find the Green function, GE(x, x
′), for a particle in an infinite potential well of the

width, a. Discuss the analytic properties of GE as a function of the complex variable,
E. Prove that the Green function has poles in the complex E-plane, and establish a
relation between the location of the poles and the energy levels, En.

Solution

The equation for the Green function GE(x, x
′) and its solution have the form

− �
2

2m

d2

dx2
GE(x, x

′)− EGE(x, x
′) = δ(x− x′)

and

GE(x, x
′) =

{
A(x′) sin kx, 0 ≤ x < x′,
B(x′) sin k(x− a), x′ < x ≤ a.

Here we used the following boundary conditions: GE(x = 0) = GE(x = a) = 0. Match-
ing conditions forGE(x, x

′) at the point x = x′ (see also Problem 2.20) allows us to find
the coefficients A and B and obtain the following expression for the Green function:

GE(x, x
′) = − 2m

k�2 sin ka
sin

[
k

2
(x+ x′ − |x′ − x|)

]
· sin

[
k

2
(x+ x′ + |x′ − x| − 2a)

]
.



56 Exploring Quantum Mechanics

From here, it follows that GE(x, x
′) is an analytic function of the variable E (k =√

2mE/�2) that has the following singular points:

a) E = ∞ is an essential singularity.

b) The points En = �
2k2n/2m, where kna = (n+ 1)π, n = 0, 1, . . . are the poles of

GE . The locations of these poles directly correspond to the energy levels of the
particle in the well.

Problem 2.27

Consider a class of potentials, U(x), with the following properties:

U(x) ≤ 0, U(x) → 0 at x → ±∞,

∫
U(x)dx = α = const.

Find the specific form of the potentials:

a) Where the binding energy of the ground state, |E0|, is maximal;

b) which contains the maximum possible number of discrete levels among all possible
potentials within this class.

Solution

a) The solution can be found in Problem 2.22: the deepest-lying level in the δ-well,
U(x) = −αδ(x− x0), with the energy E0 = −mα2/2�2.

b) The maximum number of discrete states is infinite due to their possible condensa-
tion when E → 0. This situation is for the potentials that decrease with x → ±∞
as U(x) ≈ −α̃|x|−ν with α̃ > 0 and 0 < ν < 2. When 1 < ν < 2, such potentials
satisfy the conditions specified, in the problem.

2.3 The continuous spectrum; Reflection from and transmission
through potential barriers

Problem 2.28

Consider a free particle in half-space (i.e., in the presence of the potential, U(x):
U(x) = 0 for all x > 0 and U = ∞ for x < 0; see Fig. 2.8a). Find the wavefunctions
of the stationary states and normalize them to the δ-function of the energy. Prove
that these functions form a complete set (for the corresponding Hilbert space in the
interval 0 < x < ∞).

Solution

We have ψE(x) = A(E) sin(
√
2mE/�2x), which satisfies the boundary condition

ψE(0) = 0 at the wall. In order to normalize these functions to δ(E − E′) we should
choose A(E) = (2m/π2

�
2E)1/4. The condition of completeness reads



One-dimensional motion 57∫ ∞

0

ψ∗
E(x)ψE(x

′)dE = δ(x− x′),

and it is indeed satisfied for these functions, which can be verified explicitly using
relation (A1.1).

Problem 2.29

Find the reflection coefficient of the potential wall shown in Fig. 2.9. Examine, in
particular, the limiting cases E → U0 and E → ∞.

Fig. 2.9

Solution

The solution of the Schrödinger equation that describes the transmission and reflection
of particles with E > U0, propagating towards the wall from the left, has the form

ψ+
k (x) =

{
eikx +A(k)e−ikx, x < 0 (k =

√
2mE/�2 > 0),

B(k)eik
′x, x > 0 (k′ =

√
2m(E − U0)/�2 > 0).

From continuity of the wavefunctions, ψ+
k and ψ

(+)′

k , in the point x = 0, it follows that

1 +A = B, k(1−A) = k′B; A(k) =
k − k′

k + k′
, B(k) =

2k

k + k′
.

Hence, using the relations R = |A|2 and D = k′|B|2/k, we find

R(E) =

(√
E −√

E − U0√
E +

√
E − U0

)2

, D(E) =
4
√

E(E − U0)

(
√
E +

√
E − U0)2

, (1)

where R(E) +D(E) = 1 as expected, and

a) R(E) ≈ U2
0 /(16E

2) → 0 as E → ∞,

b) D(E) ≈ 4
√
(E − U0)/U0 ∝ √

E − U0 → 0 at E → U0.
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Problem 2.30

Find the reflection and transmission coefficients of the δ-potential barrier,
U(x) = αδ(x).

Discuss the analytic properties of the reflected A(E) and transmitted B(E) ampli-
tudes as functions of the complex variable, E. Pay attention to the special points
E = 0 and E = ∞, which should be properly treated as the branching points of these
functions. In the complex E-plane make a branch-cut from the point E = 0 along the
real semi-axis E > 0. Find the singularities of the functions A(E) and B(E) in the
first, physical sheet as well as in the other sheets of the Riemann surface of these
functions. (The physical sheet is defined by the condition that the complex phase of
the variable, E, is zero on the upper part of the branch-cut, E > 0.) Find a connection
between the location of the poles and the physical energy levels.

Solution

1) The wavefunction has the form ψ+
k (x) = eikx +A(k)e−ikx for x < 0 and ψ+

k (x) =

B(k)eikx for x > 0 (here k =
√

2mE/�2 > 0, which corresponds to the incident

particle moving to the right). Matching ψ+
k (x) and

[
ψ+
k (x)

]′
in the point x = 0 (see

also Eq. (2) in Problem 2.6) gives

1 +A = B, ik(B − 1 +A) =
2mα

�2
B,

A(k) =
mα

ik�2 −mα
, B(k) =

ik�2

ik�2 −mα
. (1)

We see that the transmission coefficient, D(E) = |B|2, and the reflection coefficient,
R(E) = |A|2, indeed satisfy the constraint R+D = 1. Here

a) R(E) ≈ mα2/2E�
2 → 0 as E → ∞; b) D(E) ≈ 2E�

2/mα2 ∝ E → 0 as
E → 0.

2) Since k =
√
2mE/�2, it follows from Eq. (1) that A(E) and B(E) are analytic

functions of E, which have the following singularity points:

a) E = 0 and E = ∞, which are their branching points as discussed above;
b) E = E0, where i

√
2mE0 = mα/�, is a pole.

Note that A(E) and B(E) are multivalued functions (in this particular case of the
δ-potential, they are double-valued). We now introduce a branch-cut in the complex
E-plane along the real semi-axis E > 0; see Fig. 2.10a. Since on the physical sheet,
k =

√
2mE/�2 > 0, the values of the analytic functions, A(E) and B(E), coincide

with the values of the physical amplitudes on the upper part of the branch-cut.
The complex phase of E located on the negative semi-axis E0 < 0 of the physical
sheet is equal to π, and therefore

√
E = i|√E|.

Therefore, the pole E0 of the amplitudes with α < 0 (δ-well) is located on the
physical sheet, and coincides with the energy of the only level present in the well. In
the case of a barrier, α > 0, the bound states are absent and the pole of amplitudes
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(a) (b)

Fig. 2.10

is on the non-physical sheet (the phase of E0 is equal to 3π). Such poles correspond
to so-called virtual levels that do not represent proper bound states.

Problem 2.31

Find the transmission coefficient of a particle for the potential barrier shown in
Fig. 2.11. How does the transmission coefficient change if the potential barrier (U0 > 0)
is “flipped over” and becomes a potential well, ([U(x) = U0 < 0 for 0 < x < a]?

Fig. 2.11

Solution

The transmission coefficient is given by

D(E) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4E(E − U0)

4E(E − U0) + U2
0 sin2

√
2m(E − U0)a2/�2

, E > U0,

4E(U0 − E)

4E(U0 − E) + U2
0 sinh2

√
2m(U0 − E)a2/�2

, E < U0.

(1)

Note that the first relation is valid for the potential well if we set U0 = −|U0|.
Note that D(E) → 1 as E → ∞, which is a natural behavior. On the other

hand, D(E) ∝ E → 0 as E → 0. This property of D(E) is a rather general quantum-
mechanical result (see Problem 2.39). However, in the case of the potential well for
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the special cases, when

1

�

√
2m|U0|a2 = πn, n = 1, 2, . . . ,

the latter relation manifestly breaks down, and we find D(E → 0) → 1 instead. These
special values of the energy correspond to the emergence of a new level in the discrete
spectrum, upon increasing the depth of the well (see Problem 2.13).

Problem 2.32

Determine the values of the particle energy, for which the particles are not reflected
from the following potential, U(x) = α[δ(x) + δ(x− a)]; see Fig. 2.12.

Fig. 2.12

Result

The values of E for which particles do not reflect from the barrier are the roots of the
equation

tan ka = −�
2k

mα
, k =

1

�

√
2mE > 0.

This equation is obtained from the asymptotic form of the solution to the Schrödinger
equation (II.4), with the coefficient, A, set to zero: A = 0. The matching conditions
of Problem 2.6 are used for x = 0 and x = a.

Problem 2.33

Prove that the reflection coefficient, R(E), is only a function of the particle energy,
E, and does not depend on whether the incident particles propagate towards the
scattering center from the left or from the right.
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Solution

Let us consider the case when U(x) → 0 as x → −∞ and U(x) → U0 as x → +∞. We
denote by ψ±(x) the wavefunctions corresponding to the same energy but with the
opposite directions of motion of the incident particles (right/left, correspondingly).
These functions have the following asymptotic behaviors:

ψ+(x) ≈
{
eikx +A(k)e−ikx, x → −∞ (k =

√
2mE/�2),

B(k)eik1x, x → +∞ (k1 =
√

2m(E − U0)/�2),
(1)

and

ψ−(x) ≈
{
B̃(k)e−ikx, x → −∞,

e−ik1x + Ã(k)eik1x, x → +∞,

and they obey the Schrödinger equation, − �
2

2mψ′′
± + U(x)ψ± = Eψ±.

Multiplying the equation for ψ+ by ψ− and the equation for ψ− by ψ+, and
subtracting them from one another, we obtain

ψ−(x)ψ′
+(x)− ψ+(x)ψ

′
−(x) = constant. (2)

Calculating the left-hand side of Eq. (2) at x → ±∞ and using the asymptotes (1),
we obtain kB̃ = k1B. Hence, it follows that

D+(E) =
k1
k
|B|2 =

k

k1
|B̃|2 = D−(E).

Problem 2.34

Find the transmission and reflection coefficients of a particle in a separable potential
(see Problem 2.19). Verify that the general properties (II.5) of these coefficients are
indeed satisfied in this case.

Solution

We use the integral form of the Schrödinger equation (see Problem 2.42), which, for a
separable potential, takes the following form (below, k = |p|/�):

ψ+
p (x) = eipx/� +

iλm

k�2

∫ ∫
eik|x−x′|f(x′)f∗(x′′)ψ+

p (x
′′)dx′dx′′.

Hence, it follows that

ψ+
p (x) = eipx/� +

iλmC(p)

k�2
ϕk(x), (1)
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where

C(p) =

∫
f∗(x)ψ+

p (x)dx, ϕk(x) =

∫
eik|x−x′|f(x′)dx′. (2)

Using Eqs. (1) and (2) we obtain

C(p) = g∗(p)
[
1− iλm

k�2

∫ ∫
eik|x−x′|f∗(x)f(x′)dxdx′

]−1

, (3)

where

g(p) =

∫
e−ipx/�f(x)dx.

The relations (1), (2), and (3) determine the wavefunction. Calculating its asymptotic
behavior at x → ±∞, we find the amplitudes of both the transmitted wave, B(p), and
the reflected wave, A(p), as follows:

B(p) = 1 +
iλmC(p)g(p)

k�2
, D(p) = |B(p)|2 (4)

and

A(p) =
iλmC(p)g(−p)

k�2
, R(p) = |A(p)|2.

Now, we transform Eq. (4) using Eqs.(A1.3) and (A1.2). We first find∫
F (x)dx

x− x0 − iε
= V.P.

∫
F (x)dx

x− x0
+ iπF (x0),

where the symbol “V.P.
∫
. . . ” corresponds to the principal value of the integral and

ε > 0 is infinitely small. We can rewrite Eq. (3) in the form

C(p) = g∗(p)
[
C1(p)

2p�
− i

C2(p)

2k�2

]−1

,

where

C1(p) = 2p�

⎛⎝1− λm

π�
V.P.

∞∫
−∞

|g(κ)|2dκ
κ2 − p2

⎞⎠, C2(p) = λm(|g(p)|2 + |g(−p)|2),

and after that we have, from Eq. (4),

D(p) =
C2

1 (p) + λ2m2(|g(p)|2 − |g(−p)|2)2
C2

1 (p) + C2
2 (p)

, R(p) =
4λ2m2|g(p)g(−p)|2)

C2
1 (p) + C2

2 (p)
. (6)

Finally, we find the following properties:

1) D(p) +R(p) = 1,
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2) D(p) = D(−p),

3) R(E) ≈ (λm/�p)2 · |g(p)g(−p)|2 → 0 at E → ∞,

4) D(E) → 0 at E → 0.
(Compare these results with Problem 2.39.)

Problem 2.35

Find the transmission coefficient, D(E), for the potential barrier shown in Fig. 2.13.
Consider various limiting cases, where D(E) can be expressed in terms of elementary
functions.

Fig. 2.13

Solution

For x < 0, the wavefunction has the form ψ+
k (x) = eikx +A(k)e−ikx (we assume that

the incident particles are moving from left to right, k =
√
2mE/�2 > 0). For x > 0,

by virtue of the substitution

z = ξ

(
x

a
− 1 +

E

U0

)
, where ξ =

(
2ma2U0

�2

)1/3

,

the Schrödinger equation takes the form [ψ+
k (z)]

′′
+ zψ+

k (z) = 0. Its solution (that
asymptotically takes the form of a plane-wave moving to the right, as x → +∞) should
be chosen as

ψ+
k (x) = C(E)[Bi(−z) + iAi(−z)] ≈ z(x) → ∞C(E)

1√
πz1/4

ei
2
3 z

3/2+iπ
4 ,

where Ai(z) and Bi(z) are the Airy functions. Since the wavefunction and its derivative
with respect to x are continuous at x = 0, we can determine the values of A and C.
We find

C(E) =
2

Bi(−z0) + iAi(−z0) + i ξ
ka

[
Bi′(−z0) + iAi′(−z0)

] , (1)

where z0 = ξ(E/U0 − 1).
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Calculating the current density, j = (�/2mi)(ψ∗ψ′ − ψψ∗′), at x → ∞: jtr =
ξ�|C|2/(πma), and taking into account that for the incident particles, jin = �k/m,
we obtain the transmission coefficient

D(E) =
jtr
jin

=
ξ

πka
|C(E)|2. (2)

Eqs. (1) and (2) give the solution. Let us now consider some special cases.

1) E < U0, ξ(1− E/U0)| � 1 (and ξ � 1)

D(E) ≈ 4
√
E(U0 − E)

U0
exp

{
−4

3

√
2ma2(U0 − E)3

�2U2
0

}
� 1. (3)

2) E > U0, ξ(E/U0 − 1)| � 1 (and ka � ξ)

D(E) ≈ 4
√
E(E − U0)

(
√
E +

√
E − U0)2

. (4)

See Problem 2.29.

3) At E → 0

D(E) ≈ 4ka

πξ[(Bi′(ξ))2 + (Ai′(ξ))2]
∝

√
E → 0.

Problem 2.36

The same as in the previous problem, but for the barrier U = −F0|x|, shown in
Fig. 2.14.

Fig. 2.14

Solution

The wavefunction has the form

ψ+(x) =

{
[Bi(z1)− iAi(z1)] + a(E)[Bi(z1) + iAi(z1)], x < 0,

b(E)[Bi(−z2) + iAi(−z2)], x > 0,

where z1,2 = ξ(x∓ E/F0), ξ = (2mF0/�
2)1/3, and a(E) and b(E) are the ampli-

tudes of the reflected and transmitted waves respectively, so that R = |a(E)|2 and
D = |b(E)|2. The continuity requirement yields
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b(E) = −{
π[Bi(η) + iAi(η)][Bi′(η) + iAi′(η)]

}−1
,

where η = −ξE/F0 (here we used the following result for the Wronskian of the Airy
functions: W{Ai(z), Bi(z)} = 1/π).

Using the known asymptotic behavior of the Airy functions, we obtain the following
asymptotic expressions for D = |b(E)|2:

1) for E < 0 and ξ|E|/F0 � 1

D(E) ≈ exp

{
−8

3

√
2m|E|3
�2F 2

0

}
, (1)

2) for E > 0 and ξE/F0 � 1,

D(E) ≈ 1− �
2F 2

0

32mE3
, (2)

3) D(E = 0) = 3
4 , R(E = 0) = 1

4 .

Problem 2.37

Consider a potential, U(x), with the following properties: U(x) → 0, as x → −∞, and
U(x) → U0 > 0, as x → +∞; see Fig. 2.15. Determine the energy dependence of the
transmission coefficient as E → U0+. Compare with the results of Problem 2.29.

Fig. 2.15

Solution

The wavefunction at x → ±∞ is

ψ+
E(x) ≈

{
eikx +A(k)e−ikx, x → −∞ (k =

√
2mE/�2),

B(k)eik1x, x → +∞ (k1 =
√

2m(E − U0)/�2),
(1)

and the transmission coefficient is given by D(E) = (k1/k)|B(k)|2. In the limit,
E → U0+, we have k1 → 0, B(k1) → B(0) �= 0 and therefore D(E)∝(E − U0)

1/2 → 0.
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Problem 2.38

Find the reflection and transmission coefficients of slow particles, ka � 1, in the case
of a “weak” potential with U0 � �

2/ma2 (U0 and a denote the typical strength and
radius of the potential). Compare your results with Problem 2.30 (δ-potential).

Solution

In the region where the potential is non-zero, the wavefunction has the form

ψ+
k (x) =

{
eikx +A(k)e−ikx, x < −a,

B(k)eikx, x > a.
(1)

If |x| ≤ a, the Schrödinger equation, ψ′′(x) = [ 2m
�2 U(x)− k2]ψ(x), yields the approxi-

mate relation as follows: ψ+
k (x) ≈ C1 + C2x (since ψ′′ ∼ ψ/a2 and ka � 1, the leading

approximation of the Schrödinger equation is simply ψ′′ = 0). Matching this solution
with Eq. (1) gives C2 ≈ 0 and C1 ≈ B ≈ 1 +A.

Hence, it follows that Eq. (1), which ensures that the relation, ψ+
k (x) ≈ const,

remains approximately valid for all values of x. Taking this into account, we integrate
the Schrödinger equation inside the interval −b < x < b where b > a. This leads to

b∫
−b

ψ′′(x)dx = ikBe−ikb + ikAeikb,

b∫
−b

U(x)ψ(x)dx ≈ B

b∫
−b

U(x)dx ≈ B

∞∫
−∞

U(x)dx,

b∫
−b

ψ(x)dx ≈ B

b∫
0

eikxdx+

0∫
−b

(eikx +Ae−ikx)dx,

= i
1

k

{
A+B − 1− (A+B)eikb + e−ikb

}
.

It gives the relation

ik(A+B − 1) ≈ 2mα

�2
B, α =

∫
U(x)dx,

and since 1 +A ≈ B, we obtain

A ≈ − imα

�2k + imα
, B ≈ �

2k

�2k + imα
.

This result implies that reflection properties of the shallow barrier are identical
(in the leading order) to those of the δ-potential, Ũ = αδ(x), with α =

∫
U(x)dx

(see Problem 2.30).
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Problem 2.39

Prove that the transmission coefficient of an arbitrary potential satisfying the condition
U(x) = 0, for |x| > a, generally vanishes linearly as E → 0: D(E) ≈ cE. Find the
special conditions where this relation breaks down.

Express the coefficient c in terms of the parameters that characterize the zero-
energy solution to the Schrödinger equation. Use this result for a square potential well
and compare it with the exact solution (see Problem 2.31).

Solution

The asymptotic behavior of the wavefunction is ψ+
k (x) ≈ eikx +A(k)e−ikx (for x < 0,

|x| � a) and ψ+
k (x) = B(k)eikx (for x � a). Now consider the limiting case k → 0:

ψ+(x) =

{
1 +A(k) + ikx[1−A(k)], x < 0, |x| � a,

(1 + ikx)B(k), x � a,
(1)

The zero-energy solution of the Schrödinger equation satisfies the boundary condition
ψE=0(+∞) = 1. As x → −∞, this solution has the form ψE=0(x) = bx+ d, where the
constants b and d depend on the details of the potential. Comparing this asymptotic
behavior of ψE=0 to Eq. (1), we find that ik(1−A) ≈ bB and 1 +A ≈ dB. Hence, it
follows A ≈ −1, B ≈ 2ik/b, so that[18]

D(E) = |B|2 ≈ 8m

b2�2
E ∝ E, for E → 0. (2)

This result breaks down in the case of b = 0. In this special case the Schrödinger
equation has a zero-energy solution that does not increase as x → ±∞. It implies that
a new bound state emerges with only an infinitesimal deepening of the potential (see
Problem 2.13).

For the potential barrier from Problem 2.31, we have: ψE=0 = 1 for x > a, ψE=0 =
cosh[ξ(x− a)]. for 0 < x < a (here ξ =

√
2ma2U0/�2), ψE=0 = cosh ξa− (ξ sinh ξa)x

for x < 0. Hence, it follows b = −ξ sinh ξa and D(E) ≈ 4
U0 sinh2 ξa

E as E → 0, in

accordance with the exact result (in the case of a potential well, we should replace
sinh ξa with sin ξa in the above results).

Problem 2.40

Find the transmission coefficient of “slow” particles in the potential, U(x) =

−U0a
4/
(
x2 + a2

)2
.

[18] Equation (2), as well as the asymptotic form of the wavefunction in Eq. (1), is valid for potentials
that decrease at large distances, x → ±∞, faster than ∝ 1/|x|3.
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Solution

We introduce the following new variable, z = arctanx/a, and function, w = (x2 +
a2)−1/2ψ(x). Focusing on the zero-energy solution only with E = 0, the Schrödinger
equation becomes

w′′(z) + ξ2w(z) = 0, where ξ =
√

1 + 2ma2U0/�2.

The wavefunction, ψE=0(x), that obeys the boundary condition ψE=0(+∞) = 1 is

ψE=0(x) =

√
x2 + a2

ξa
sin

[
ξ
(π
2
− arctan

x

a

)]
. (1)

Since ψE=0(x) ≈ −x sin(πξ)/ξa at x → −∞, then according to the previous problem

we find that for slow particles, D(E) ≈ 8m(ξa)2

�2 sin2 (πξ)
E, E → 0. Note that this expression

does not apply if πξ = πN (N is an integer) or

2ma2U0

�2
= N2 − 1. (2)

This Eq. (2) determines the parameters corresponding to the emergence of a new
(Nth) discrete state.

Problem 2.41

Use the Schrödinger equation in momentum space to find the wavefunctions of a
particle in a uniform field with U(x) = F0x. Normalize them by the δ-function of the
energy and prove the completeness of the obtained set of functions. Use these results
to determine the energy spectrum of the potential considered in Problem 2.8.

Solution

1) The Schrödinger equation in the momentum representation and its solution nor-
malized to the δ-function of energy have the form

p2

2m
φE(p) + iF0

d

dp
φE(p) = EφE(p),

φE(p) =
1√

2π�F0

exp{i p3

6m�F0
− i

Ep

�F0
}.

2) The values of E for which the corresponding wavefunction in the coordinate
representation obeys the condition ψE(x = 0) = 0, i.e.,

ψE(x = 0) =
1√
2π�

∞∫
−∞

φE(p)dp ≡ C

∞∫
0

cos

(
Ep

�F0
− p3

6m�F0

)
dp = 0,

determine the discrete energy spectrum of the potential considered in Problem 2.8.
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Problem 2.42

Find the Green functions, G±
E(x, x

′), of a free particle with the energy E > 0. Here
the indices “±” refer to the asymptotic behavior of the Green function:

G±
E(x, x

′) ∝ exp

(
±i

√
2mE

�2

)
, as |x| → ∞.

Use these Green functions to formulate the integral Schrödinger equation, whose solu-
tion describe the transmission and reflection processes for particles with momentum
p (−∞ < p < +∞). Assume that the potential, U(x), goes to zero as x → ±∞. Use
the integral Schrödinger equation to describe scattering off of the δ-potential.

Solution

1) Using Eq. (1) of Problem 2.20 (where the Green function, GE(x, x
′), for E < 0 was

found) and the substitution,

κ =

√
−2mE

�2
= ∓ik, where k =

√
2mE

�2
> 0,

we obtain G±
E for E > 0 as follows:

G±
E(x, x

′) = ± im

�2k
e±ik|x−x′|. (1)

We should note that the Green functions, G±
E , for E > 0 and E < 0 could be

considered as different boundary values of a single analytic function G̃E of the
complex variable, E;

G̃E = i

√
m

2�2E
exp

{
i

√
2mE

�
|x− x′|

}
.

The point E = 0 is its branching point. We introduce a branch-cut in the E-
plane along the real semi-axis, E > 0, see Fig. 2.10b. Note that the upper part
of the branch-cut lies on the physical sheet (see Problem 2.30.) The function, G̃E ,
coincides with G−

E on the lower edge of the branch-cut, while for real E < 0, it
coincides with the Green function, GE , as in Problem 2.20.
The Green functions, G±

E(p, p
′), in the momentum representation have the form

G±
E(p, p

′) =
δ(p− p′)

p2/2m− E ∓ iε
, (2)

(see Problem 2.20), here ε > 0 is an infinitesimally small quantity.

2) The Schrödinger equation describing the transmission and reflection processes for
the particle with momentum, p, is

ψ+
p (x) = eipx/� −

∫
G+

E(x, x
′)U(x′)ψ+

p (x
′)dx′. (3)
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The first term in the right-hand side of Eq. (3) describes the incident particles,
while the second, integral term describes at x → ±∞ both the reflected particles
and the change of the transmitted wavefunction under the action of the potential.
Specifically for the potential, U(x) = αδ(x), Eq. (3) takes the form

ψ+
p (x) = eipx/� − i

mα

�2k
eik|x|ψ+

p (0). (4)

Therefore,

ψ+
p (0) =

�
2k

�2k + imα
, (5)

and the transmission and reflection coefficient D and R follow from Eqs. (4) and
(5), reproducing the results of Problem 2.20.

Problem 2.43

For the δ−barrier, U(x) = αδ(x) with α > 0, prove by a direct calculation the com-

pleteness of the set of functions ψ
(+)
p (x), that describe the process of reflection and

transmission of particles with momentum, p (−∞ < p < +∞).

Solution

Let us consider the integral I(x, x′) =
∞∫

−∞
ψ+∗
p (x′)ψ+

p (x)dp, assuming that the wave-

functions, ψ+
p (x), are normalized to δ(p− p′). (Note that they differ from those in the

previous problem – see Eq. (4) – by the factor, (2π�)−1/2). Therefore, the integral can
be rewritten in the form

1

2π�

∞∫
−∞

eik(x−x′)/�dp− iα̃

2π

∞∫
−∞

dk

{
exp[−i(kx′ − |kx|)]

|k|+ iα̃
−

exp[i(kx− |kx′|)]
|k| − iα̃

+
exp[−i(|kx′| − |kx|)]

2(|k| − iα̃)
− exp[−i(|kx′| − |kx|)]

2(|k|+ iα̃)

}
, (1)

where α̃ = mα/�2 and p = �k. The first integral in (1) is equal to δ(x− x′). To analyze
the second term in Eq. (1) above, we perform the following transformations. Taking
into account the fact that this integral is an even function of the variables, x and x′,
we can replace them by their absolute values, |x| and |x′|, and divide the integration
domain into two parts: (−∞, 0) and (0,∞). With this, the second integral in Eq. (1)
takes on the form

− iα̃

2π

∞∫
−∞

exp[ik(|x|+ |x′|)]
k + iα̃

dk. (2)
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Since α̃ > 0 (for the δ-barrier), we can close the integration contour in the upper half-
plane to find that the corresponding integral is equal to zero. So, I(x, x′) = δ(x− x′),
which proves that the system of functions ψ

(+)
p (x) is indeed complete.

Problem 2.44

Generalize the result of the previous problem for the case of the attractive δ-potential,
U(x) = −αδ(x) with α > 0.

Solution

By changing α by −α in the equations of the previous problem, we have

∞∫
−∞

ψ+∗
p (x′)ψ+

p (x)dp = δ(x− x′)− iα̃

2π

∞∫
−∞

exp[ik(|x|+ |x′|)]
k + iα̃

dk, (1)

(α̃ = mα/�2 > 0). Taking into account the value of the integral in the right-hand
side[19] and the form of the normalized wavefunction, ψ0(x), of the single bound state
in the δ-well, we see that the second term in the right-hand side of Eq. (1) is equal to

−α̃ exp[−α̃(|x|+ |x′|)] = −ψ∗
0(x

′)ψ0(x).

Therefore, we obtain the equation

ψ∗
0(x

′)ψ0(x) +

∞∫
−∞

ψ+∗
p (x′)ψ+

p (x)dp = δ(x− x′),

which is the required completeness condition of the eigenfunctions in the case of the
δ-well.

Problem 2.45

For a particle in the repulsive δ−potential, U(r) = αδ(x) with α > 0, find the Green

functions, GE(x, x
′) for E < 0 and G

(±)
E (x, x′) for E > 0. Discuss their analytical

properties as functions of the complex variable, E. Compare with the free-particle
case see Problem 2.42.

Solution

The Green functions of interest obey the following equation;[
− �

2

2m

d2

dx2
+ αδ(x)− E

]
GE(x, x

′) = δ(x− x′), (1)

[19] The integral can be calculated using the residue theorem by closing the integration contour in the
upper half-plane.
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with the corresponding boundary conditions. Using the general method of their
construction, and taking into account that there is no discrete spectrum in a purely
repulsive potential, we find

G±
E =

∞∫
−∞

ψ+∗
p (x′)ψ+

p (x)
2mdp

p2 − 2m(E ± iγ)
(2)

(γ > 0 is an infinitesimally small quantity). Here ψ+
p (x) are the wavefunctions nor-

malized to δ(p− p′) that describe the reflection process. By setting their explicit form
(see Problem 2.42) we obtain

G±
E(x, x

′) =
m

π�2

∞∫
−∞

exp(ik(x− x′))
k2 − (k20 ± iγ)

dk − imα̃

π�2

∞∫
−∞

dk

k2 − (k20 ± iγ)

{
exp(−i(kx′ − |kx|))

|k|+ iα̃

−exp(i(kx− |kx′|))
|k| − iα̃

+
exp(−i(|kx′| − |kx|))

2(|k| − iα̃)
− exp(−i(|kx′| − |kx|))

2(|k|+ iα̃)

}
, (3)

where α̃ = mα/�2 > 0, k0 =
√

2mE/�2. The first integral here is the Green function
of a free particle (see A1.3 and Problem 2.42):

G̃E(x, x
′) = ±i

√
m

2�2E
exp

{
±i

√
2mE

�
|x− x′|

}
. (4)

Note that ±√
E =

√
E ± iγ.

The second integral in Eq. (3) (represented as a sum of four integrals) could be
simplified by taking into account that it is an even function of the variables, x and
x′. We replace these variables by their absolute values, |x| and |x′|, and then we can
divide the integration domain in two regions: (−∞, 0) and (0,∞). After this, several
terms in Eq. (3) cancel each other out and we obtain

− imα̃

π�2

∞∫
−∞

exp {ik(|x|+ |x′|)} dk
[k2 − (k20 ± iγ)](k + iα̃)

. (5)

The remaining integral can be easily calculated using the residue theorem by closing
the integration contour in the upper half-plane. In this case, there exists only one pole
inside the contour located in the point k = ±k0 + iγ (if E < 0, the pole is in the point
k = i|k0|). Therefore, Eq. (5) becomes

± mα̃

�2k0

exp {±ik0(|x|+ |x′|)}
±k0 + iα̃

.

As a result, the final expression for the Green function takes the form:
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G±
E = ±

√
m

2�2E

⎧⎨⎩i exp

{
±i

√
2mE

�
|x− x′|

}
+

mα exp
{
±i
√

2mE/�2(|x|+ |x′|)
}

±
√
2m�2E + imα

⎫⎬⎭.

(6)
Just as in the free-particle case, these Green functions could be considered as different
limits of a single analytic function, G̃E , of the complex variable, E, and could be
found from Eq. (6) by removing the “±” labels (see Problem 2.42). But a difference
appears due to the presence of a pole at

√
E0 = −iα

√
m/2�2 (or equivalently at

E0 = −mα/2�2). Since α > 0 this pole is located in the non-physical sheet and
corresponds to a virtual level.

Problem 2.46

The same as in the previous problem, but for the δ-well.

Solution

The equation for the Green function supplemented by the appropriate boundary
conditions are valid for any sign of α; that is, for both a barrier and a well. In the
case of an attractive potential, the pole in G̃E lies within the physical sheet and E0

coincides with the energy of the discrete level in the δ-well.

We emphasize that to properly modify Eq.(2) from the previous problem, it does
not suffice to change α → −α, but we also need to add the term, ψ∗

0(x
′)ψ0(x)/

(E − E0), corresponding to the bound state. However, when calculating the integral
(5) with α < 0 inside the contour, another pole appears in the point k1 = i|α̃| and
the contribution of this pole compensates the other additional term. This justifies the
validity of Eq. (6) for any sign of α.

Problem 2.47

Find the Green function in momentum representation for a particle moving in the
δ−potential, U(x) = αδ(x).

Solution

The equation for Green’s function in the momentum representation has the form[
p2

2m
− (E ± iγ)

]
G±

E(p, p
′) +

α

2π�

∞∫
−∞

G±
E(p

′′, p′)dp′′ = δ(p− p′). (1)

Here the form of the operator, Û , is taken into account (see Problem 2.17). The
“additions” of ±iγ to the energy is required to enforce the appropriate boundary
conditions (see Problem 2.45). Using the notation

C±
E (p′) =

α

2π�

∫
G±

E(p
′′, p′)dp′′, (2)



74 Exploring Quantum Mechanics

we obtain from Eq. (1),

G±
E(p, p

′) =
δ(p− p′)− C±

E (p′)
p2/2m− (E ± iγ)

. (3)

Integrating this with respect to p in the infinite limits and taking into account Eq. (2),
we find the explicit form of C±

E (p′) and the sought-after Green function

G±
E(p, p

′) =
δ(p− p′)

p2/2m− E ∓ iγ
− α

√
2m�2E

2π
(√

2m�2E ± imα
)
(p2/2m− E ∓ iγ)(p′2/2m− E ∓ iγ)

.

(4)

We should note thatG±
E(p, p

′) could have been found fromG±
E(x, x

′) from Problem 2.45
by changing the representation according to Problem 1.41.

2.4 Systems with several degrees of freedom; Particle in a
periodic potential

Problem 2.48

Find the energy levels and the corresponding wavefunctions of a two-dimensional
isotropic oscillator. What is the degeneracy of the oscillator levels?

Solution

Since the operators

Ĥ1 = − �
2

2m

∂2

∂x2
+

kx2

2
and Ĥ2 = − �

2

2m

∂2

∂y2
+

ky2

2

commute with each other, the eigenfunctions of the planar oscillator, Ĥ = Ĥ1 + Ĥ2,
may be chosen as the eigenfunctions of both Ĥ1 and Ĥ2. Taking this into account and
using the Schrödinger equation for a linear oscillator (see (II.2)), we obtain the energy
levels and the eigenfunctions of the planar oscillator in the form (see Problem 10.25)

ψn1n2
(x, y) = ψ(osc)

n1
(x)ψ(osc)

n2
(y), EN = �ω(N + 1), N = 0, 1, . . . , (2)

where

ω =

√
k

m
,N = n1 + n2, n1 = 0, 1, . . . , n2 = 0, 1, . . . .

Since there exist (N + 1) independent eigenfunctions ψn1n2
with n1 = 0, 1, . . . , N (in

our case, n2 = N − n1), the degeneracy of the level, EN , is equal to gN = N + 1 (the
ground state, N = 0, is non-degenerate).



One-dimensional motion 75

Problem 2.49

Find the energy spectrum of a particle in the two-dimensional potential, U(x, y) =
k
(
x2 + y2

)
/2 + αxy, |α| < k.

Solution

Let us write the potential energy in the form U(x, y) = k1(x+ y)2/4 + k2(x− y)2/4,
where k1,2 = k ± α > 0. Introducing new variables x1 = (x+ y)/

√
2, y1 = (−x+

y)/
√
2 (this transformation corresponds to a rotation in the xy-plane by the angle,

π/4), we cast the Hamiltonian into the form that involves two independent oscillator
Hamiltonians, as in the previous problem:

Ĥ = − �
2

2m

∂2

∂x2
1

+
1

2
k1x

2
1 −

�
2

2m

∂2

∂y21
+

1

2
k2y

2
1 .

Therefore, the energy spectrum has the form

En1n2
= �

√
k + α

m

(
n1 +

1

2

)
+ �

√
k − α

m

(
n2 +

1

2

)
, n1,2 = 0, 1, . . . ,

and the eigenfunctions that correspond to these levels could be expressed in terms of
the eigenfunctions of the linear oscillator.

Problem 2.50

Find the spectrum of the Hamiltonian

Ĥ =
1

2M
p̂21 +

1

2m
p̂22 +

1

2
k
(
x2
1 + x2

2

)
+ αx1x2, |α| < k.

Solution

Introducing the new variables y1 = x1/γ, y2 = x2 with γ =
√

m/M , we have

Ĥ = − �
2

2m

∂2

∂y21
− �

2

2m

∂2

∂y22
+

k

2
(γ2y21 + y22) + αγy1y2.

Rotating the coordinate system in the y1y2-plane, the potential can be reduced to the
diagonal form: U = 1

2k1ỹ
2
1 +

1
2k2ỹ

2
2 .

In order to determine k1,2, we notice that for a potential of the form U = kijyiyj/2,
kij transforms as a tensor under rotation. In the initial coordinate system, k11 = γ2k,
k22 = k, k12 = k21 = αγ, and in the rotated frame of reference, k′11 = k1, k

′
22 = k2,

k′12 = k′21 = 0. Recall that the trace and determinant of matrix are invariant with
respect to rotation of the matrix components, we have

k11 = k1 + k2 = k(1 + γ2), det ||k1k|| = k1k2 = (k2 − α2)γ2.
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Hence,

k1,2 =
(1 + γ2)k ±√

(1− γ2)2k2 + 4α2γ2

2
.

In the new variables, ỹ1, ỹ2, the Hamiltonian reduces to a sum of two independent
linear oscillator Hamiltonians, which immediately determines the energy spectrum,

En1n2
= �

√
k1
m

(
n1 +

1

2

)
+ �

√
k2
m

(
n2 +

1

2

)
, n1,2 = 0, 1, . . . .

Problem 2.51

Two identical particles, placed in the same one-dimensional potential, U(x1,2), interact
with each other as mutually “impenetrable” points. Find the energy spectrum and the
corresponding wavefunctions, assuming that the solution of the single-particle problem
for the potential, U(x), is known. To illustrate the general results, consider two such
particles in an infinitely deep potential well.

Solution

The Schrödinger equation for x1 ≤ x2 (we assume that the first particle is to the left
of the second particle; so, ψ(x1, x2) = 0 for x1 � x2) has the form

[Ĥ(1) + Ĥ(2)]ψ = Eψ, where Ĥ =
1

2m
p̂2 + U(x).

Let us now consider the new function, ψ̃(x1, x2), which coincides with ψ(x1, x2)
for x1 ≤ x2 and is equal to −ψ(x2, x1) if x1 > x2 (that is, ψ̃ is an antisymmetric
continuation of ψ into the region, x1 > x2). Since the resulting function and its
derivatives are continuous,[20] we conclude by inspection that ψ̃ indeed satisfies the
two-particle Schrödinger equation for any values of x1 and x2. The general solution is

ψ̃n1,n2
= ψn1

(x1)ψn2
(x2), En1n2

= En1
+ En2

,

where En and ψn(x) are the spectrum and the corresponding eigenfunctions for
the single-particle Hamiltonian. The antisymmetric character of the wavefunctions
ψ̃ makes it necessary to choose them in form

ψ̃n1,n2
=

1√
2
[ψn1

(x1)ψn2
(x2)− ψn2

(x1)ψn1
(x2)]

and gives restrictions on n1,2: n1 �= n2. So

ψn1,n2
= ψn1

(x1)ψn2
(x2)− ψn2

(x1)ψn1
(x2), En1n2

= En1
+ En2

, n1 < n2

[20] The continuity of the derivatives of ψ̃ with respect to x1,2 at x1 = x2 can be explicitly verified by

differentiating the equality, ψ̃(x, x) = 0.
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(x1 ≤ x2) The energy level is two-fold degenerate, with the second independent
solution of the Schrödinger equation corresponding to the first particle moving to
the right of the second particle.

Problem 2.52

Generalize the result of the previous problem to the case of an N -particle system.

Result

The energy spectrum of the system is given by

En1...nN
=

N∑
a=1

Ena
, where n1 < n2 < · · · < nN .

Problem 2.53

For a particle in the periodic potential of the form, U(x) = α
∞∑

n=−∞
δ(x− na) (this

potential can be viewed as a model of an ideal one-dimensional “crystal”; see Fig. 2.16),
find a system of independent solutions of the Schrödinger equation for an arbitrary
value of E and determine the energy spectrum.

Fig. 2.16

Solution

A general solution of the Schrödinger equation in the region, n < x/a < (n+ 1), can
be written in the form

ψ(x) = Ane
ik(x−na) +Bne

−ik(x−na), (1)

where k =
√
2mE/�2. Let us consider independent solutions that satisfy the relation

ψ(x+ a) = μψ(x). We have
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An−1 =
An

μ
, Bn−1 =

Bn

μ
, (2)

Using the matching conditions at x = na (see Problem 2.6), we find

An +Bn = eikaAn−1 + e−ikaBn−1,(
1 +

2imα

�2k

)
An −

(
1− 2imα

�2k

)
Bn = eikaAn−1 − e−ikaBn−1. (3)

Using Eq. (2) we obtain a system of linear equations for the coefficients An and Bn.
A non-trivial solution exists only if

μ2 − 2μf(E) + 1 = 0, where f(E) ≡ cos ka+
mα

�2k
sin ka (4)

and

Bn =
μ− eika

e−ika − μ
An. (5)

From that, it follows that

μ1,2 = f(E)±
√
f2(E)− 1. (6)

For any fixed value of the energy, E, Eq. (6) determines two values of μ that corre-
spond to two independent solutions of the Schrödinger equation, and their product
is μ1 · μ2 = 1. In the case f2(E) > 1, both values, μ1,2, are real. Consequently, the
corresponding two solutions of the Schrödinger equation increase at large distances
(corresponding to solutions with μ1 > 1, as x → +∞, and with μ2 < 1, as x → −∞).
Therefore, such solutions are unphysical.

The values of E for which |μ| = 1 (see f2(E) ≤ 1), however, do describe physical
states. This condition gives rise to the following equation:

−1 ≤ cos ka+
mα

�2k
sin ka ≤ 1. (7)

Hence the allowed values of E arrange themselves into a band structure. If we set[21]

μ ≡ eiqa, where −π ≤ qa ≤ π, and �q is called a quasi-momentum (not to be confused
with the “real” momentum, �k, which is well-defined in the absence of a lattice only),
then the equation for En(q) takes the form (here, n is a band index, with n+ 1 being
the ordinal number of the band; see Fig. 2.17 for α > 0):

cos qa = cos
a

�

√
2mEn(q) +

α

�

√
m

2En(q)
sin

a

�

√
2mEn(q). (8)

[21] The solutions of the Schrödinger equation that correspond to a definite quasi-momentum are called
Bloch functions.
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Fig. 2.17

Let us briefly discuss properties of the spectrum following from Eq. (8), (see also
Problem 8.32, which focuses on the weak-field limit, mαa/�2 � 1):

1) The q-dependence of En(q) is even. Therefore, the states that differ only by the sign
of quasi-momentum are independent and correspond to the two-fold degeneracy of
the spectrum, En(q).

2) The energy bands do not overlap. In the case α > 0, they all lie in the region
En > 0 and πn < kna < π(n+ 1), n = 0, 1, . . . . In the case mαa/[(n+ 1)�2] � 1,
the bands are narrow, but their width increases with an increase in n. In the case
mαa/[(n+ 1)�2] � 1, they fill almost the entire interval mentioned above. With the
change of sign of α, the lower band moves down into the negative-energy region,
E < 0 (in this case, k has a non-zero imaginary part).

3) Near the top or the bottom of a band (e.g., near the points q1 = 0 and q2 = ±π/a),
the q-dependence of the spectrum En(q) has the parabolic form, i.e., En(q)−
En(q1,2) ∝ (q − q1,2)

2 (see Problem 8.32).
In conclusion we note that eigenfunctions in this problem cannot be normalized to

unity, so the localized stationary states of a particle in periodic potential are absent;
wavefunctions (1) and (2) correspond to a particle with the quasi-momentum, �q,
moving“freely” (i.e., without reflection) through the infinite crystal.

Problem 2.54

Find the energy spectrum of a particle in the potential, U(x) = α
∞∑′

n=−∞
δ(x− na),

where the prime in the sum sign indicates that the term with n = 0 is omitted. This
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potential is a model of a one-dimensional crystal with a defect (a vacancy at n = 0;
see Fig. 2.18).

Fig. 2.18

Show that apart from the allowed energy bands in the case of a perfect crystal (see
Problem 2.53), new discrete levels appear and correspond to states localized near the
lattice defect.

Solution

The allowed energy bands found in the previous problem are relevant here as well.
Indeed, an arbitrary solution of the Schrödinger equation with an allowed energy,
En(q), correspond, for x > 0 and x < 0, to a superposition of two independent solutions
of the perfect-lattice problem above with definite quasi-momenta, ±�q, and such that
the resulting function does not increase with x → ±∞. However, in contrast to the
case of a perfect crystal, the independent solutions in this problem do not have a
certain value of the quasi-momentum (the physical reason being that a change in
quasi-momentum is now possible due to scattering off of the lattice defect). Note,
however, that the two-fold degeneracy remains in the case under consideration.

Furthermore, new energy levels appear that correspond to states localized in the
vicinity of the defect. To find these levels, consider a solution of the Schrödinger
equation with a certain parity (with respect to inversion x → −x).

In the case of even solutions in the region |x| < a, we have ψ+
E(x) = C cos kx. On

the other hand, in the region x > 0, a solution of the Schrödinger equation must
coincide with that for a periodic potential and satisfy ψ(x+ a) = μψ(x) for μ < 1
(another independent solution corresponds to μ′ = 1/μ > 1; such a solution increases
as x → +∞). This solution in the regions n < x/a < (n+ 1) has the form (below,
k =

√
2mE/�2)

ψ+(x) = μn[A cos k(x− na) +B sin k(x− na)] (1)

Since it must coincide with ψ+
E(x) for 0 ≤ x < a, we find that A = C and B = 0. Using

the matching conditions at the point, x = a, for the wavefunction (1) (see Problem 2.6),
we obtain the following solutions:
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cos ka = μ, ka sin ka =
2mαa

�2
cos ka. (2)

The latter of these equations determines the required even levels. We now discuss
properties of these levels:

1) The levels are discrete.

2) These levels are positioned between the neighboring bands of the continuous
spectrum and in the case α > 0 the lower level occurs below the lowest band.

3) As the energy of the level increases – as is seen from Eq. (2) – we notice that μ → 1.
In this case, localization length of the particle in vicinity of the defect expands.

4) Normalizing the wavefunction of the localized level to unity, we have

C2 =
2(1− μ2)k

2ka+ sin 2ka
.

Note that in the case of mαa/�2 � 1, the wavefunctions of the low-lying levels, Es

(s = 0, 1, . . . ) with s � mαa/�2, are localized in the region |x| ≤ a (in this case
μ � 1) and are close to the wavefunctions of stationary states of a particle in an
infinitely deep potential well with the width 2a. Note also that “new” odd-parity
levels do not appear in this problem.

Problem 2.55

Find the energy spectrum and degeneracy of the levels of a particle in the potential
of the form

U(x) =

⎧⎪⎨⎪⎩
α

∞∑
n=1

δ(x− na), x > 0

U0 > 0, x ≤ 0

as illustrated in Fig. 2.19. Compare your results with the case of an ideal infinite
crystal (see Problem 2.53). Pay special attention to the appearance of states, localized
near the boundary of the crystal. These, states you will find, are called surface or
Tamm states, and they play an important role in semiconductor physics. (I. E. Tamm
was the first to point out the existence of such states.)

Solution

For x > 0, the two independent solutions of the Schrödinger equation for any value
of E have the property ψ1,2(x+ a) = μ1,2ψ1,2(x), with μ1 · μ2 = 1. For the values of
energy En(q) that belong to the allowed energy bands of the infinite crystal (see
Problem 2.53), both of these solutions do not increase as x → +∞. However, for all
other values of E there is only one non-increasing solution with μ1 < 1, which decreases
as x → ∞. Relying on these arguments, let us analyze the particle spectrum.
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Fig. 2.19

1) For E > U0 the energy spectrum is continuous. The values of energy that belong
to the allowed energy bands of the infinite crystal are two-fold degenerate (and
correspond to a particle moving “freely” through space, reflecting from the crystal
boundaries with a certain probability). The states with any other value of the
energy are non-degenerate, and their wavefunction decreases as the particle moves
deep into the crystal (a particle with such a “forbidden” energy experiences a total
reflection from the crystal).

2) For E < U0, the spectrum has the same band structure as in the case of an
infinite crystal. In this case however, the levels are non-degenerate: when x > 0,
the wavefunction is given by a superposition of states with the quasi-momenta,
±�q (a particle with such the energy moves inside the crystal reflecting from its
boundaries).

3) Furthermore, in the case E < U0, isolated levels might exist that correspond to the
particle states localized near the crystal boundaries. To find these levels, consider
the solution of the Schrödinger equation that decreases as x → ±∞. For x < 0, it
has the form ψ = Ceκx, where κ =

√
2m(U0 − E)/�2. While in the case x > 0 and

n < x/a < (n+ 1) it can be written as follows

ψ = Aμn sin[k(x− na) + δ], k =
√

2mE/�2, |μ| < 1. (1)

Matching the solution at x = 0 and x = a gives

A sin δ = 1, kA cos δ = κ, sin(ka+ δ)

= μ sin δ, μk cos δ − k cos(ka+ δ) =
2mα

�2
μ sin δ

(we put C = 1). Hence, it follows that

ka cos ka = (sin ka)

[
U0a

α
−
√

2m(U0 − E)a2

�

]
, μ =

U0a

kaα
sin ka. (2)
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This equation determines the energy spectrum of the states under consideration;
the number of the levels depends on the parameters of the potential (there exist
parameter regimes, where there are no such levels at all). These levels are situated
between the allowed energy bands of the infinite crystal. If we change the potential
parameters, the location of the levels also changes. At the same time, new bound
states might appear or the existing ones might disappear, as the level moves to the
nearest band and delocalizes.
We leave the reader the further analysis of the spectrum that follows from Eq. (2),

and illustrate only one special case, where U0 � �
2/ma2, α < 0 (this describes a

crystal that consists of δ-wells) and m|α|/�2 ∼ 1. If E � U0, it follows from Eq.
(2) that ka = nπ + ε, where n = 1, 2, . . . and |ε| � 1. So, we obtain ε ≈ nπα/U0a.
For such states (positioned between the bands)

μ = cos ka+

√
U0

En
− 1 sin ka ≈ (−1)n

(
1 + α

√
2m

�2U0

)
, (3)

i.e., |μ| < 1 (here |μ| ≈ 1), and the delocalization domain extends far inside the
crystal. In the case of α > 0, there are no bound states in this energy band (|μ| > 1
for the solutions of Eq. (2)), although such states appear with increasing U0 (such
states first appear with the energy, E = U0) and then the level “merges” the band.
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Orbital angular momentum

The operator for the orbital angular momentum of a particle, �̂l = [r̂× p̂], obeys the
following commutation relations:[22]

[l̂i, l̂k] = iεikn l̂n, [̂l2, l̂i] = 0, (III.1)

as well as

[l̂i, x̂k] = iεiknx̂n, [l̂i, p̂k] = iεiknp̂n, (III.2)

In spherical coordinates, operators l̂i depend only on the angular variables ϑ, ϕ. So
the eigenfunctions and eigenvalues of the operator l̂z = −i ∂

∂ϕ have the form (m ≡ lz):

φm(ϕ) =
eimϕ

√
2π

, m = 0,±1,±2, . . . . (III.3)

We can express the operator of the angular momentum squared, l̂2, in terms of the
angular terms of the Laplace operator. Its eigenvalues are l(l + 1), l = 0, 1, 2, . . . . Oper-

ators l̂2 and l̂z form a complete operator set for the angular part of the wavefunctions.
Spherical functions Ylm(ϑ, ϕ) are the normalized eigenfunctions of these operators.

l̂2Ylm ≡ −
[

1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1

sin2 ϑ

∂2

∂ϕ2

]
Ylm = l(l + 1)Ylm,

l̂zYlm ≡ −i
∂

∂ϕ
Ylm = mYlm. (III.4)

They have the form (|m| ≤ l)

Ylm(ϑ, ϕ) = (−1)
m+|m|

2 il

√
2l + 1

4π
· (l − |m|)!
(l + |m|)!P

|m|
l (cosϑ)eimϕ, (III.5)

P
|m|
l (cosϑ) = sin|m| ϑ

d|m|

d(cosϑ)|m|Pl(cosϑ).

[22] [l̂x, l̂y ] = il̂z , etc. In what follows, we assume that the angular momentum is measured in the units
of �, so the corresponding operators and their eigenvalues are dimensionless. We should stress that
relations (III.1) or (III.8)–(III.10) are valid for the angular momentum of any system, irrespective
of its nature (orbital, spin, or total).
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Pl and P
|m|
l are the Legendre polynomials and the associated Legendre polynomials,

respectively. Note that Y ∗
lm = (−1)l−mYl′−m,

∫
Y ∗
lmYl′m′dΩ = δll′δmm′.

The spherical harmonics have a definite parity I = (−1)l. For them, the addition
theorem holds:

2l + 1

4π
Pl(n · n′) =

l∑
m=−l

Ylm(n)Y ∗
lm(n′), (III.6)

where n and n′ are unit vectors, and in this case

Ylm(n) ≡ Ylm(ϑ, ϕ), n · n′ = cosϑ cosϑ′ + sinϑ sinϑ′ cos(ϕ− ϕ′).

The spherical functions for the angular momenta with l = 0, 1, 2 are

Y00 =
1√
4π

; Y10 = i

√
3

4π
cosϑ ; Y20 =

√
5

16π
(1− 3 cos2 ϑ);

Y1±1 = ∓i

√
3

8π
sinϑ e±iϕ; Y2±1 = ±

√
15

8π
sinϑ cosϑ e±iϕ; (III.7)

Y2±2 = −
√

15

32π
sin2 ϑ e±2iϕ.

It may be useful to have the spherical functions in Cartesian coordinates:

Y10 ∝ cosϑ =
z

r
, Y1±1 ∝ sinϑ e±iϕ =

x± iy

r
, Y20 ∼ x2 + y2 − 2z2

r2
,

etc.

The raising and lowering operators, l̂± = l̂x ± il̂y, obey the commutation relations

[l̂z, l̂±] = ±l̂±. It follows that the only matrix elements, 〈lm′|l̂±|lm〉, that are not
equal to zero are[23]

(l+)m,m−1 = (l−)m−1,m =
√

(l +m)(l −m+ 1). (III.8)

Accordingly, the non-vanishing matrix elements for l̂x and l̂y are

(lx)m,m−1 = (lx)m−1,m =
1

2

√
(l +m)(l −m+ 1),

(ly)m,m−1 = −(ly)m−1,m = − i

2

√
(l +m)(l −m+ 1). (III.9)

These equations determine the form of the operators in the lz-representation. Finally,
we have

(lz)mm′ = mδmm′. (III.10)

[23] To fully define the value of matrix element, we should also use l̂2 = l̂− l̂+ + l̂2z + l̂z . A choice of the
phase factor in (III.8) fixes the relative phase of the wavefunctions with different m but equal l.
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3.1 General properties of angular momentum

Problem 3.1

Show that the relation L2 = l(l + 1) could be obtained by using elementary equations
of probability theory. Assume that the only possible values of angular momentum
projection on an arbitrary axis are m = −l, −l + 1, . . . , l, and that all of these values
have equal probability and all the axes are equivalent.

Solution

Since the probabilities of different Lz are the same, we have[24]

L2
z =

1

2l + 1

l∑
m=−l

m2 =
l(l + 1)

3

Due to equivalence of the axes x, y, z, we have

L2 ≡ L2 = L2
x + L2

y + L2
z = 3L2

z = l(l + 1).

Note that the change from the discrete probability distribution, w(m) = 1
2l+1 , to

the continuous distribution, dw = dlz/2l with −l ≤ lz ≤ l, gives the classical result
L2 = l2.

Problem 3.2

Find the stationary wavefunctions and energy levels of a planar (two-dimensional)
rotor[25] with a moment of inertia I. What is the degeneracy multiplicity?

Find the probabilities for different energy and angular momentum projection
values, as well as the mean values and fluctuations of these quantities, for the rotor
with the wavefunction ψ = C cos2 ϕ.

Solution

1) The Hamiltonian for the planar rotor is H = 1
2IM

2
z , where Mz ≡ pϕ is the pro-

jection of its angular momentum onto the axis z that is perpendicular to the

plane of rotation. The Hamiltonian operator has the form Ĥ =
M̂2

z

2I ≡ �
2 l̂2z
2I . Since Ĥ

[24] This sum can be calculated as follows:

l∑
m=−l

m2 = 2

[
d2

da2

l∑
m=0

eam

]
a=0

= 2

[
d2

da2
1− ea(l+1)

1− ea

]
a=0

=
1

3
l(l + 1)(2l + 1).

[25] A rotor is a system of two rigidly connected particles that rotate around the center of inertia. The
moment of inertia for the rotor is equal to I = μa2, where μ is the reduced mass of the particles
and a is a distance between them.
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commutes with l̂z, then the eigenfunctions of Ĥ could be chosen simultaneously with
the eigenfunctions of l̂z. We immediately write the spectrum and eigenfunctions of
the Hamiltonian:

E|m| =
�
2m2

2I
, ψm =

1√
2π

eimϕ, m = 0,±1, . . . . (1)

All levels except for the ground one are two-fold degenerate. See that it is possible
to choose Ĥ eigenfunctions as ψ+

|m| =
1√
π
cos mϕ, ψ−

|m| =
1√
π
sin mϕ. In this case,

they have a definite parity (+1 or −1) with respect to reflection through the x-axis.

2) Since cosϕ = (eiϕ + e−iϕ)/2, we have

ψ = C cos2 ϕ =
C

4
(e2iϕ + 2 + e−2iϕ) ≡

∑
m

cm
1√
2π

eimϕ.

This gives the probability distribution for different values of rotor’s angular momen-
tum, w(m) = |cm|2, and then the probability distribution for energies, w(E|m|) =
w(m) + w(−m) (with m �= 0). We have C2 = 4/3π due to normalization.

w(0) = 4w(±2), w(E0) = w(0) =
2

3
, w(E2) = 2w(2) = 2w(−2) =

1

3
,

The probabilities of other values are equal to zero. Finally, we have

m = 0, (Δm)2 =
4

3
, E =

2�2

3I
, (ΔE)2 =

8�4

9I2
.

Problem 3.3

Find the wavefunctions and energy levels of the stationary states of a spherical (three-
dimensional) rotor with a momentum of inertia I. What is the degeneracy multiplicity?

Let the wavefunction be ψ = C cos2 ϑ. Find the probability distribution for energy,
angular momentum, and z-axis angular momentum. Find the mean values and fluc-
tuations of these quantities.

Solution

1) The Hamiltonian operator has the form Ĥ = �
2

2I l̂
2, and its eigenvalues and eigen-

functions are given by

El =
�
2l(l + 1)

2I
, ψlm = Ylm(ϑ, ϕ), (1)

where l = 0, 1, . . . ; m = 0, ±1, . . . , ±l; Ylm are the spherical harmonics; and ϑ, ϕ
are the polar and azimuth angles of the rotor axis. The energy levels are (2l + 1)-
fold degenerate and have the parity equal to (−1)l.
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2) The wavefunction describing the rotor with of lz = 0 has the form

ψ(ϑ) = C cos2 ϑ =

√
4πC

3

[
1√
4π

− 1− 3 cos2 ϑ√
4π

]
≡
∑
l

clYl0.

Taking into account the expressions for Y00 and Y20 (III.7), we find that the rotor
momentum could take only two values: l = 0 and l = 2, with the probabilities

w(0) = 5/9 and w(2) = 4/9. Finally, E = 4�2/3I, (ΔE)2 = 20�4

9I2 , and |C|2 = 5/4π.

Problem 3.4

Give a simple explanation of

a) the commutativity of different components of the momentum operator;

b) the non-commutativity of the angular momentum components;

c) the commutativity of the momentum projection and angular momentum projection
on the same axis, and their non-commutativity for different axes, using kinematic
interpretation of these operators in terms of infinitely small translations and
rotations.

Solution

As it is known (see Ch. 1, secs. 15, 26), the linear momentum operator P̂ and the

angular momentum operator L̂ of the system are connected with the infinitely small
translations and rotations:

T̂ (δa) ≈ 1 +
i

�
δa · P̂ and R̂(δϕ0) ≈ 1 + iϕ0 · L̂.

Any translation commutes with any other translation and therefore the operators of
different momentum components commute with each other. The same can be said
about a translation and rotation over the same axis. On the other hand, two rotations
or a translation and rotation about two nonparallel axes do not commute, which
implies the non-commutativity of the corresponding operators.

Problem 3.5

Find the following commutators:

a) [l̂i, r̂2], [l̂i, p̂2], [l̂i, p̂ · r̂], [l̂i, (p̂ · r̂)2];
b) [l̂i, (p̂ · r̂)p̂k], [l̂i, (p̂ · r̂)x̂k], [l̂i, (c1x̂k + c2p̂k)];

c) [l̂i, x̂kx̂l], [l̂i, p̂kp̂l], [l̂i, x̂kp̂l].

Here, c1, c2 are some constants.
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Solution

For calculation of the operators we can use the results of Problem 1.4 and Eq. (III.2).

a) All the commutators are equal to zero due to the general equation [l̂i, f̂ ] = 0, where

f̂ is a scalar quantity operator.

b) These commutators have the form [l̂i, f̂k] = iεiklf̂l, where f̂k is an operator of the

kth projection of the corresponding vector operator f̂ .

c) These commutators have [l̂i, f̂kl] = i(εikpδnl + εilnδkp)f̂pn, where f̂ik are the cor-
responding second-rank tensor components operators.

This universal structure of the commutators of angular momentum components,
l̂i, with scalar, vector, and tensor operators is due to the l̂ operator describing
transformation of wavefunctions with the coordinate system rotations. Commutators
involving tensors of the same rank are transformed in the same way (independently
of a specific tensor form).

Problem 3.6

Find the normalized wavefunctions ψr0lm that describe a particle located at a distance
r0 from the origin with angular momentum l and its projection m onto the axis z.

Solution

The desired functions have the form ψr0lm = C(r0)δ(r − r0)Ylm(ϑ, ϕ). From the nor-
malization condition 〈r′0, l′,m′|r0, l,m〉 = δ(r0 − r′0)δll′δmm′ we get C(r0) = r−1

0 .

Problem 3.7

Find general eigenfunctions of particle momentum and angular momentum projections
on the z axis.

Solution

ψpzm(r) = 1√
2π�

eipzz/� · 1√
2π

eimϕ · f(ρ), where f(ρ) is an arbitrary function of ρ (dis-

tance to the z-axis) in a cylindrical coordinate system.

Problem 3.8

Show that the mean values of the vectors L, r, p for the particle state with
wavefunction ψ = exp(ip0 · r/�)ϕ(r) are connected by the classical relation L̄ = r̄× p̄.
Here, p0 is a real vector and ϕ(r) is a real function.

Solution

Assuming that the wavefunction is normalized to unity, we find r =
∫
rφ2(r)dV,

p = p0. Since L̂i = εiklxkp̂l, we have
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Li = εikl

∫
φ(r) {xkp0l + xkp̂l}φ(r)dV. (1)

The second term can be transformed:

φ(r)xkp̂lφ(r) = − i

2
�

∂

∂xl
(φ2xk) +

i

2
�δklφ

2. (2)

We can see that this contribution to Li is equal to zero by using Gauss’ law for the first
term and the convolution of δkl and εikl for the second. From (1), we get Li = εiklxkp0l
or L̄ = r̄× p̄.

Problem 3.9

Find the eigenfunctions of the operators l̂2 and l̂z in the momentum representation.
Show that p̄ = 0 for the states with definite values of l and m.

Solution

In the momentum representation, we have p̂ = p and r̂ = i�∇p so that �̂l = r̂× p̂ =
−i�p×∇p, which is the same as the form of vector in the position representation,
with only the replacement of r by p. It allows us to write down the eigenfunctions,
ψlm(p) = Ylm(ϑ̃, ϕ̃), of operators l̂2 and l̂z, where ϑ̃ and ϕ̃ are the polar and azimuthal
angles of the p-direction in spherical coordinates (in the p-representation just as in the
r-representation, the angular momentum operator acts only on the angular values).

Since the spherical harmonics have a definite parity, all matrix elements of the form
〈lm|p|lm′〉 are equal to zero (compare 1.16).

Problem 3.10

Prove that the functions produced by the action of operators l̂± = l̂x ± il̂y on the

eigenfunctions ψm of l̂z, are also the eigenfunctions of l̂z, corresponding to eigenvalues
m± 1.

Show also that for eigenfunctions of l̂z, we have

a) l̂x = l̂y = 0, b) l̂2x = l̂2y, c) l̂x l̂y + l̂y l̂x = 0.

Solution

From the commutation relations of the angular momentum components, it follows
that l̂z l̂± = l̂±(l̂z ± 1). If we apply this to ψm, we get l̂z(l̂±ψm) = (m± 1)(l̂±ψm).

The functions l̂±ψm are also the eigenfunctions of l̂z corresponding to the eigenvalues
m± 1 (in particular when m = ±l, one of these functions is identically zero).
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We can use the orthogonality of eigenfunctions to obtain

〈m|l̂±|m〉 ∝ 〈m|m± 1〉 = 0 and 〈m|l̂2±|m〉 = 0. (1)

It follows that l̂x ± il̂y = 0 or l̂x = l̂y = 0. The second equation of (1) is equal to

l̂2x − l̂2y ± i(l̂x l̂y + l̂y l̂x) = 0

so that

l̂2x = l̂2y, l̂x l̂y + l̂y l̂x = 0. (2)

If we average the commutator [l̂x, l̂y] = il̂z and use (2), we get l̂x l̂y = −l̂y l̂x = im/2.

Notice that these properties of the mean values are connected with the fact
that states with a definite value of the angular momentum lz-projection are axially
symmetric. All directions in the xy-plane are then equivalent.

Problem 3.11

In the state ψlm with definite angular momentum l and its z-component m, find the
mean values l2x, l2y as well as the mean values lz̃ and l2z̃ of the angular momentum
projection along the z̃-axis making an angle α with the z-axis.

Solution

Since l̂2x + l̂2y ≡ l̂2 − l̂2z = l(l + 1)−m2, then using the result of the previous problem

we have l̂2x = l̂2y = 1
2 [l(l + 1)−m2].

The angular momentum z̃-projection operator has the form

l̂z̃ = cosα · l̂z + sinα cosβ · l̂x + sinα sinβ · l̂y, (1)

where α and β are the polar and azimuthal angles of the z̃-axis. If we average l̂z̃
over the state ψlm, we find that l̂z̃ = m cosα. According to Problem 3.10 we have

l̂x = l̂y = 0. We should note that the validity of this relation does not require l to be

definite. We can use the results of the previous problem while now averaging l̂2z̃ , and
we find

l̂2z̃ =
1

2
[l(l + 1)− 3m2] sin2 α+m2. (2)

Problem 3.12

Prove the relation

l∑
m=−l

|Ylm(ϑ, ϕ)|2 =
2l + 1

4π
.
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Solution

This equation follows directly from Eq. (III.6) with θ′ = θ, ϕ′ = ϕ. In that case,
cosα = 1 and Pl(1) = 1.

Problem 3.13

Find the form of wavefunction ψl,m̃=0(n) of a particle with total angular momentum
l and projection along the z̃-axis m̃ = 0. In this state, determine the probabilities of
different values for the z-component of the angular momentum.

Solution

1) The wavefunction of a state with a given angular momentum l and projection lz = 0
has the form ψl, lz=0(n) = ((2l + 1)/4π)1/2Pl(cosϑ). If we note that cosϑ = k · n,
where k is the unit vector directed along the z-axis, and if we take into account
the equivalence of different spatial directions, we obtain ψl, lz̃=0 = ( 2l+1

4π )1/2

Pl(k̃ · n) where k̃ is a unit vector along the z̃-axis.

2) We can get the expansion of this wavefunction into a series of the spherical
harmonics Ylm(n) immediately from Eq. (III.6). The desired probability for lz = m
is given by w(m) = (4π/(2l + 1))|Ylm(k̃)|2. It appears to depend only on the angle
α between the axes z and z̃.

Problem 3.14

Let wl(m1;m2, α) be the probability to measure a particle’s projection of the angular
momentum on the z̃-axis as m2, if the particle is in the state with a definite angular
momentum, m1, along the z axis, where both states have definite angular momentum
l and the angle between the axes is α. Prove that wl(m1;m2, α) = wl(m2;m1, α).

Solution

We use symmetries of the space to prove. Switching axes z and z̃ should not change
the probabilities, so wl(m1;m2, α) = wl(m2;m1,−α). There cannot be any probability
dependence on the azimuthal angle, so we can rotate one axis around the other to get
wl(m2;m1,−α) = wl(m2;m2, α), and we have proven the relation.

Problem 3.15

For an angular momentum L, find the projection operators P̂L(M) that project onto
the state with a definite value M for its z-component. The operators act in the space
of the state vectors with a given value L of the angular momentum.
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Solution

The form of projection operator is

P̂L(M) =
L∏

m=−L

′ L̂z −m

M −m
,

where the prime means the absence of a multiplier with m = M in the product. This
follows from the result of Problem 1.35.

Problem 3.16

Using only the commutation relations for the components of the angular momentum,
find Tr(l̂i), where l̂i is a matrix of the ith component of angular momentum l.

Solution

From the relations l̂i l̂k − l̂k l̂i = iεikl l̂l, and using the equation Tr(ÂB̂) = Tr(B̂Â), we

have Tr(l̂i) = 0. Compare with Problem 1.5.

Problem 3.17

Determine the traces of the following matrices:

a) L̂i, b) L̂iL̂k, c) L̂iL̂kL̂l, d) L̂iL̂kL̂lL̂m,

where L̂i is a matrix of the ith component of angular momentum L.

Solution

The matrices L̂i are vector (more precisely, pseudovector) operators and their products
L̂iL̂k . . . L̂n are tensor operators. After the calculation of trace, such an operator
becomes an ordinary numerical tensor which can be expressed in terms of the universal
tensors δik and εikl, since there exist no other vectors or tensors in the conditions of
the problem. Thus:

a) Tr L̂i = 0.

b) Tr(L̂iL̂k) = Aδik.
We obtain a value of A by making a convolution over the indices i and k:

3A = Tr L̂2 = L(L+ 1)Tr 1̂ = L(L+ 1)(2L+ 1).

c) Tr(L̂iL̂kL̂l) = Bεikl.
For determining B, we have

2B = Tr(L̂1L̂2L̂3)− Tr(L̂2L̂1L̂3) = iTr(L̂2
3) =

i

3
Tr(L̂2) = iL(L+ 1)(2L+ 1)/3.

We used the relation L̂1L̂2 − L̂2L̂1 = iL̂3.
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d) Tr(L̂iL̂kL̂lL̂m) = C1δikδlm + C2δilδkm + C3δimδkl.
To obtain Cn, we should first perform convolution over i and k and then over l and
m, so we obtain

9C1 + 3C2 + 3C3 = Tr(L̂2L̂2) = (2L+ 1)L2(L+ 1)2. (1)

And now we perform convolution over i and m and over k and l:

3C1 + 3C2 + 9C3 = Tr(L̂2L̂2) = (2L+ 1)L2(L+ 1)2. (2)

At last, we perform convolution[26] over i and l and then over k and m:

3C1 + 9C2 + 3C3 = (2L+ 1)L2(L+ 1)2 − L(L+ 1)(2L+ 1). (3)

From (1), (2), and (3), it follows that[27]

C1 = C3 =
2L2(L+ 1)2(2L+ 1) + L(L+ 1)(2L+ 1)

30
, (4)

C2 =
L2(L+ 1)2(2L+ 1)− 2L(L+ 1)(2L+ 1)

15
. (5)

3.2 Angular momentum, l = 1

Problem 3.18

For the case of a particle with the angular momentum l = 1, find the wavefunction
ψm̃=0(ϑ, ϕ) of the state with a definite projection m̃ = 0 of the angular momentum on
the z̃-axis whose polar and azimuthal angles are α and β.

Solution

The wavefunction of a state with l = 1 and lz = 0 is Y10(n) ∝ cos θ ≡ n · k, with k
being the unit vector directed along the z-axis. Due to the equivalence of spatial
directions, in order to get lz̃ = 0 we should replace k by k̃, the unit vector directed
along the z̃-axis. Compare with Problem 3.13.

ψl=1,m̃=0 =

√
3

4π

(
k̃ · n

)
=

√
3

4π
[cosα cos θ + sinα cos(φ− β) sin θ] .

[26] In this case we can put L̂kL̂l = L̂lL̂k + iεklsL̂s and use εklsεlsk = 6.

[27] There is another way of obtaining these relations. Using Tr(L̂iL̂kL̂lL̂m) = Tr(L̂kL̂lL̂mL̂i) we
have C1 = C2. Multiplying by δikδlm, we obtain 12C1 + 3C2 = (2L + 1)L2(L + 1)2. Multiplying
by εiknεlmn gives 6C1 − 6C2 = (2L + 1)L(L + 1). So we have (4) and (5).
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Problem 3.19

Find the wavefunctions ψlx(ϑ, ϕ) and ψly(ϑ, ϕ) of a particle having a given value l = 1
of angular momentum and a definite value of its projection onto x and y axes. Use
the specific form of the spherical harmonics Y1m(ϑ, ϕ). See Eq. (III.7).

Solution

Using the relations for Y1m and the equivalence of different coordinate system orien-
tations, the wavefunctions can be obtained by a permutation of variables x, y, z. For
example:

ψl=1, lx=±1 = ∓i

(
3

8π

)1/2
y ± iz

r
= ∓i

(
3

8π

)1/2

(sinφ sin θ ± i cos θ).

We can find all other wavefunctions in a similar way. See also Problem 3.18.

Problem 3.20

A particle is in a state with angular momentum l = 1 and z-projection m (m = 0, ±1).
For such a state, determine the probabilities, w(m̃,m), of different values m̃ of the
angular-momentum projections onto the z̃-axis making an angle α with z-axis.

You can use one of the following two approaches to the problem:

a) by using the result of Problem 3.11;

b) by finding the expansion coefficient c(m̃,m) of the given wavefunction into a series

of eigenfunctions of the operator l̂z̃.

Solution

We denote the angular momentum projection probabilities with m̃ = ±1 by w(±1).
From Problem 3.11, we have

lz̃ =
∑
m̃

w(m̃)m̃ = w(1)− w(−1) = m cosα,

l2z̃ =
∑
m̃

w(m̃)m̃2 = w(1) + w(−1) = m2 + (1− 3m2

2
) sin2 α.

The solution follows:

w(1,m) ≡ w(1) =
1

4
[2m2 + 2m cosα+ (2− 3m2) sin2 α],

w(−1,m) ≡ w(−1) =
1

4
[2m2 − 2m cosα+ (2− 3m2) sin2 α],

w(0,m) = 1− w(1)− w(−1).
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Problem 3.21

Show that for a particle with angular momentum l = 1, the three functions
ψlx=0(ϑ, ϕ), ψly=0(ϑ, ϕ), and ψlz=0(ϑ, ϕ), that correspond to the states where the
projection of the angular momentum onto the x-, y-, and z-axis correspondingly is
zero, form a complete set of functions.

What is the meaning of the expansion coefficients of an arbitrary state with l = 1
in terms of these functions?

Solution

The wavefunctions considered, ψli=0(ϑ, ϕ), (i = 1, 2, 3), have the form
(a = i

√
3/4π) ψlz=0 = Y10 = az/r = a cosϑ, ψlx=0 = ax/r = a sinϑ cosϕ, ψly=0 =

ay/r = a sinϑ sinϕ. Their independence and completeness are obvious. We can see
that different wavefunctions ψli=0 are orthogonal:∫

ψ∗
li=0ψlk=0dΩ = δik.

This is why coefficients Ci in an expansion of an arbitrary wavefunction ψl=1 with
these functions determine the probability w(i) = |Ci|2 of the i−projection of angular
momentum being equal to zero. We should note that this result does not have a direct
analogy to an expansion in terms of operator eigenfunctions.

Problem 3.22

For the angular momentum l = 1, write expressions for the operators of angular
momentum components, as well as for raising l̂+ and lowering l̂− operators, in the
lz-representation.

Find the wavefunction of a state with lx = 0 in the lz−representation from the
solution of an eigenfunction equation.

Solution

1) Using Eq. (III.9) for l = 1 we obtain:

l̂x =

⎛⎜⎝ 0 1√
2

0
1√
2

0 1√
2

0 1√
2

0

⎞⎟⎠ , l̂y =

⎛⎜⎜⎝
0 - i√

2
0

i√
2

0 - i√
2

0 i√
2

0

⎞⎟⎟⎠, l̂z =

⎛⎝ 1 0 0
0 0 0
0 0 -1

⎞⎠,

(1)

l̂+ =

⎛⎝ 0
√
2 0

0 0
√
2

0 0 0

⎞⎠, l̂− =

⎛⎝ 0 0 0√
2 0 0

0
√
2 0

⎞⎠.
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2) With ψlx=0 =

⎛⎝ a
b
c

⎞⎠, we have an eigenfunction equation in the form

l̂xψlx=0 ≡ 1√
2

⎛⎝ 0 1 0
1 0 1
0 1 0

⎞⎠⎛⎝ a
b
c

⎞⎠ =
1√
2

⎛⎝ b
a+ c
b

⎞⎠ = 0.

Hence it follows: b = 0, a = −c; and |a| = 1/
√
2 for a wavefunction normalized to

unity.

Problem 3.23

For a state with the value of angular momentum l = 1 and its z-projection m, find the
mean values l̄nx and l̄ny (n is integer).

Solution

Since, when l = 1, the eigenvalues lx and ly are equal to 0, ±1, it follows that l̂3x = l̂x
and l̂3y = l̂y (compare with Problem 1.17). In a state with l = 1 and lz = m, we have

lx = ly = 0 and l2x = l2y = 1− 1
2m

2 (see, for example, Problem 3.11). It follows that

lnx = lny = 0 for the odd values of n and lnx = lny = 1− 1
2m

2 for the even n (n > 0).

Problem 3.24

Find an explicit form of the operator R̂(ϕ0) = exp(iϕ0 · l̂) (a coordinate system
rotation over the angle, φ0) that acts in the space of state vectors with angular
momentum l = 1. Using this operator, obtain in terms of the spherical function Y10,
the wavefunction, ψm̃=0(ϑ, ϕ), of a state with l = 1 and m̃ ≡ lz̃ = 0, where the z̃-axis
is defined by its polar α and azimuth β angles. Compare with Problem 3.18.

Solution

Since the operator ϕ0 · l̂, acting in the subspace of state vectors with l = 1, has only
three eigenvalues equal to 0 and ±ϕ0, then (from Problem 1.22) we have

R̂ ≡ eiϕ0 ·̂l = 1 + i sinϕ0 · (n0 · l̂)− (1− cosϕ0)(n0 · l̂)2, (1)

where n0 = ϕ0/ϕ0. We choose the rotation vector ϕ0 so that after rotation, the z-axis
of the initial coordinate system with respect to the axes of the rotated system has the
same orientation as does the z̃-axis with respect to the initial coordinate system.
Wavefunction ψm̃(ϑ, ϕ) = R̃Ylm(ϑ, ϕ) will describe a state with momentum l and
z̃-projection m. The operator R̂ a rotation. It is easily seen that for this case, we
should choose ϕ0 = (α sinβ,−α cosβ, 0). So

R̂ = 1 + i sinα(l̂x sinβ − l̂y cosβ)− (1− cosα)(l̂x sinβ − l̂y cosβ)
2.
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For the wavefunctions ψm̃=0 = R̂Yl0, we obtain

ψm̃=0 = i

(
3

4π

)1/2

(cosα cos θ + sinα sin θ cos(ϕ− β)), (2)

in accordance with the result of Problem 3.18.

Problem 3.25

In the space of states with angular momentum l = 1, find the projection operators,
P̂ (m), to states with a definite z-component of the angular momentum, m.

Generalize the results obtained to the case of an arbitrarily directed z̃-axis. By
using the operator P̂m̃, obtain both in the lz and in the coordinate representations
the wavefunction, ψ1,m̃=0, of a state with angular momentum l = 1 and z̃-projection
m̃ = 0. Compare with Problem 3.18 and Problem 3.24.

Solution

For the P̂m, we have the relations (compare with Problem 3.15):

P̂ (0) = 1− l̂2z , P̂ (±1) =
1

2
(l̂2z ± l̂z) (1)

Projection operators P̂ (m̃) are obtained from (1) by the substitution of l̂z̃ for l̂z, where

l̂z̃ is

l̂z̃ = k̃ · l̂ = cosα · l̂z + sinα cosβ · l̂x + sinα sinβ · l̂y.

k̃ is the unit vector directed along the z̃-axis, and α and β are the polar and
azimuthal angles of the k̃ direction. In particular, for the P̂ (m̃ = 0) operator in the

l̂z-representation, we can use Eq. (1) from Problem 3.22 to obtain

P̂ (m̃ = 0) =

⎛⎜⎜⎝
1
2 sin

2 α − 1
2
√
2
e−iβ sin 2α − 1

2e
−2iβ sin2 α

− 1
2
√
2
eiβ sin 2α cos2 α 1

2
√
2
e−iβ sin 2α

− 1
2e

2iβ sin2 α 1
2
√
2
eiβ sin 2α 1

2 sin
2 α

⎞⎟⎟⎠.

Acting with this operator on an arbitrary function, for example the function

ψ =

⎛⎝ 1
0
0

⎞⎠, we find the eigenfunction, ψm̃=0 = CP̂ (m̃ = 0)ψ, of the operator l̂z̃ that

corresponds to the eigenvalue lz̃ = 0:

ψm̃=0 =

⎛⎜⎜⎝
1√
2
sinα

−eiβ cosα

− 1√
2
e2iβ sinα

⎞⎟⎟⎠, (1)
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where C =
√
2/ sinα has been chosen to ensure proper wavefunction normalization.

In the case of α = π/2 and β = 0, function (1) reproduces the result for ψlx = 0 from
Problem 3.22.

By taking into account the form of spherical function Y1m(n) (see (III.7)), we see
that wavefunctions of state (1) in the coordinate representation, ψ =

∑
cmY1m, differs

from the ones found earlier in Problem 3.18 and Problem 3.24 only by a phase factor.

3.3 Addition of angular momenta

Problem 3.26

Write down the total angular momentum operator of two particles as a sum of two
terms, corresponding to the angular momentum in the center of inertia system (i.e.,
the angular momentum of relative motion) and the angular momentum in the frame
of reference associated with the system’s translational motion as a whole.

Solution

An angular momentum operator for a two-particle system has the form

L̂ = l̂1 + l̂2 = −ir1 ×∇1 − ir2 ×∇2. (1)

Now we define new variables r and R in terms of r1 and r2

r = r2 − r1, r1 = R− m2

m1 +m2
r,

R =
1

m1 +m2
(m1r1 +m2r2), r2 = R+

m1

m1 +m2
r.

Since

∇1 =
m1

m1 +m2
∇R −∇r, ∇2 =

m2

m1 +m2
∇R +∇r,

operator (1) could be written in the form

L̂ = −ir×∇r − iR×∇R,

where the first term is the angular momentum operator for the two particles in the
center-of-inertia reference frame, while the second one corresponds to the angular
momentum operator that is connected with the overall translational motion.

Problem 3.27

Angular momenta l1 and l2 of two weakly interacting systems are combined into a
resulting angular momentum with the value L. Show that in such states (with a

definite L) the products l̂1 · l̂2, l̂1 · L̂, l̂2 · L̂ have definite values as well.
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Solution

From the relation L̂ = l̂1 + l2 it follows that

l̂1 · l̂2 =
1

2
[L̂2 − l1(l1 + 1)− l2(l2 + 1)],

l̂1 · L̂ =
1

2
[L̂2 + l1(l1 + 1)− l2(l2 + 1)], l̂2 · L̂ =

1

2
[L̂2 − l1(l1 + 1) + l2(l2 + 1)].

We took into account the commutativity of L̂ and l̂1,2. In all states with definite values
of L2, l21, l

2
2, the considered scalar products have definite values also.

Problem 3.28

Find the following commutators:

1) [L̂i, (̂l1 · l̂2)], [L̂i, (r̂1 · p̂2)], [L̂i, (r̂1 · r̂2)];
2) [L̂i, x̂1k], [L̂i, ĝk] where ĝ = [̂l1 × l̂2];

3) [L̂i, x̂1kx̂2l], [L̂i, x̂1kp̂2l],

l̂1 and l̂2 are the angular momentum operators of particles 1 and 2, L̂ = l̂1 + l̂2 is
the operator of their total angular momentum. Note that the commutators have a
universal structure (inside each group of expressions presented above). Compare with
Problem 3.5.

Solution

The commutators considered have the same vector structure as in Problem 3.5.

Problem 3.29

Two weakly interacting systems have states characterized by quantum numbers
(l1, m1) and (l2, m2) of their angular momenta and its z-projection. Give possible
values, L, of the total angular momentum of a composite system (1 + 2) and calculate
the mean values L̄ and L2. For the specific case where m1 = l1, m2 = l2 − 1 find the
probabilities for the different possible values of the total angular momentum.

Solution

1) The possible values of the composite system’s total angular momentum are:

max{|l1 − l2|, |m1 +m2|} ≤ L ≤ l1 + l2.

Taking into account the mutual commutativity of l̂1i and l̂2k, the relation
L̂2 = l̂21 + l22 + 2̂l1 l̂2, and the mean values l̂x = l̂y = 0 in the states with a definite
value of lz (see 3.10), we find the mean values Lx = Ly = 0, Lz = m1 +m2, and
also



Orbital angular momentum 101

L̂2 = l1(l1 + 1) + l2(l2 + 1) + 2m1m2. (1)

2) In the case wherem1 = l1, m2 = l2 − 1, the only possible values of the total angular
momentum are L1 = l1 + l2 and L2 = l1 + l2 − 1. We have w(L2) = 1− w(L1).
Using (1), we obtain

L2 =
∑
L

w(L)L(L+ 1) = L2
1 − L1 + 2L1w(L1)

= l1(l1 + 1) + l2(l2 + 1) + 2l1(l2 − 1).

Thus we have

w(L1) =
l2

l1 + l2
, w(L2) =

l1
l1 + l2

.

Problem 3.30

Show that when we add two angular momenta of the same value (l1 = l2 = l) to
produce a total angular momentum, L, the wavefunction ψL(m1,m2) in the l1zl2z-
representation has a symmetry with respect to interchange of m1 and m2. Indicate
how the nature of the symmetry depends on the value of L.

Solution

First we consider the wavefunction, ψLM , of a state with L = 2l and M = 2l, so
that we must have m1 = m2 = l. It is obviously a symmetric function with respect
to the interchange of m1 and m2. The wavefunctions with given L = 2l but with
other values of M are also symmetric functions. This follows, for example, from the
relation ψL,M=L−n = CL̂n

−ψL, L. We have L̂− = (l̂1x + l̂2x)− i(l̂1y + l̂2y), and in the
case l1 = l2 there is symmetry with respect to permutation of the momenta.

Next we consider the states with M = 2l − 1 and write down the most general
wavefunction for such states in the form of a sum of symmetric and anti-symmetric
terms:

ψM=2l−1 =
c1√
2
(δm1,lδm2,l−1 + δm1,l−1δm2,l) +

c2√
2
(δm1,lδm2,l−1 − δm1,l−1δm2,l).

We see that the symmetric term corresponds to the total angular momentum L1 = 2l,
while the anti-symmetric one corresponds to L2 = 2l − 1 (if we had both angular
momenta present in the first term it would have contradicted the orthogonality of
eigenfunctions corresponding to different eigenvalues). So the wavefunction ψ2l−1,2l−1,
and any other state corresponding to L = 2l − 1 (see above), is anti-symmetric with
respect to the mutual interchange of m1 and m2.

Similarly, we can consider the states with M = 2l − 2. Now the wavefunction
ψM=2l−2 includes three independent terms, and two of them (with m1 and m2

equal to l and l − 2, and also m1 = m2 = l − 1) are symmetric while one (with m1,2

corresponding to l and l − 2) is anti-symmetric. The anti-symmetric state corresponds
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to the angular momentum L = 2l − 1, while the two symmetric states correspond to
the angular momenta, L1 = 2l and L2 = 2l − 2.

Therefore, we conclude that the wavefunctions symmetric with respect to the
interchange of m1 and m2 correspond to the states with L = 2l, 2l − 2, 2l − 4, . . . ,
while the anti-symmetric wavefunctions correspond to L = 2l − 1, 2l − 3, . . . .

These symmetry considerations apply not only when the values of l are integer
but also when they are half-integer. This circumstance is important when considering
particle spin. See Chapter 5.

Problem 3.31

A system with the z-projection of the angular momentum M is made up of two
particles with the same total angular momentum values, l1 = l2. Prove that the
probabilities of m1(2) = m and m1(2) = M −m are the same.

Solution

The proof follows directly from the two facts: 1) due to the symmetry of wavefunction
ψLM (m1,m2) with respect to the interchange of m1 and m2 (see Problem 3.30), the
probabilities of the same value of m for the both angular momenta are the same,
i.e., w1(m) = w2(m) ≡ w(m); 2) sincem1 +m2 = M we have w1(m1) = w2(M −m1).
Hence it follows that w1,2(m) = w1,2(M −m).

Problem 3.32

Two subsystems which have the same values of their angular momenta, l1 = l2 = 1,
are in states with definite values m1 and m2 of the angular momentum projections.
Determine the probabilities for different values, L, of the total angular momentum

in such states. Use the result of Problem 3.29 for the value of L
2
and take into

account the symmetry of the state wavefunction with a definite value of L shown
in Problem 3.30. We should note that with arbitrary values of l1,2 and m1,2, the

desired probability is w(L) = |CL,m1+m2

l1m1l2m2
|2, where CLM

l1m1l2m2
are the Clebsch–Gordan

coefficients. See Problem 3.38.

Solution

We will look at different cases for m1, m2.

a) When m1 = m2 = ±1, we must have L = 2.

b) If m1 = ±1, m2 = 0 (or m1 = 0, m2 = ±1), then the possible values of angular
momentum are L1 = 2 and L2 = 1. Their probabilities, w(2) = 1/2 and w(1) = 1/2,
follow from the results of Problems 3.29 and 3.30.

c) In the case where m1 = m2 = 0, the total angular momentum may take the values
0 and 2 only; L = 1 is excluded due to the wavefunction symmetry with respect to
the interchange of m1 and m2 (see 3.30). From the condition L2 = 6w(L = 2) = 4,
it follows that w(2) = 2/3 and w(0) = 1/3.



Orbital angular momentum 103

d) Whenm1 = −m2 = ±1, the total angular momentum may take all the three values:
0, 1 and 2. Writing the wavefunctions in the l1xl2x-representation for the case of
m1 = −m2 = 1 in the form

ψ = δl1z,1δl2z,−1 =
1√
2

{
1√
2
(δl1z,1δl2z,−1 + δl1z,−1δl2z,1)

+
1√
2
(δl1z,1δl2z,−1 − δl1z,−1δl2z,1)

}
, (1)

we see that the probability of the value L = 1 (the second, antisymmetric term
in (1) corresponds to this value) is equal to w(L = 1) = 1/2. Then we have L2 =∑

L(L+ 1)w(L) = 6w(2) + 1 = 2. Hence it follows that w(2) = 1/6, w(0) = 1/3.

Problem 3.33

Illustrate the relation established in Problem 1.43 and its probabilistic interpretation
by the example of the addition of the angular momenta l1 and l2 for two weakly
interacting subsystems with the total angular momentum, L.

Solution

In the statement of Problem 1.43, by Â we take a set of commuting operators l̂1z and
l̂2z with eigenvalues m1 and m2, while by B̂ we take a set of L̂2 and L̂z = l̂1z + l̂2z.
Therefore we have the probability relation wLM (m1,m2) = wm1, m2

(L,M), i.e., the
probability of the values m1 and m2 in a state with given values L and M (here
M = m1 +m2) is equal to the probability of the values L, M in a state with given
values m1 and m2. Compare, for example, with the results of Problems 3.32 and 3.35.

Problem 3.34

For a system of two particles with equal angular momenta l1 = l2 = l, find the
wavefunction of a state with L = 0 in the l1zl2z-representation. Use the operators
L̂±. Find the wavefunction in the coordinate representation also.

Solution

Let us write down the desired wavefunction of the combined system in the form ψL=0 =∑
m

Cmψ
(1)
m ψ

(2)
−m, where ψ

(1,2)
m are the normalized wavefunctions in systems 1 and 2 with

angular momentum l and z-projection m. It is obvious that

L̂±ψl=0 ≡ (l̂1± + l̂2±)ψL=0 = 0, (1)

where L̂± = L̂x ± iL̂y = l̂1± + l̂2±. Now we use the relation (see Eq. (III.8)) l̂+ψlm =√
(l −m)(l +m+ 1)ψl,m+1. From (1) we obtain

L̂+ψL=0 =
∑
m

√
(l −m)(l +m+ 1)(Cm + Cm+1)ψ

(1)
m+1ψ

(2)
−m = 0.
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It follows that Cm+1 = −Cm. From this, we get |Cm| = const = (2l + 1)−1/2 from the
normalization of ψL=0 to unity. So, in the state with L = 0 the probabilities of the
different values of the both angular momentum z-projections (and any other axis
projection) are the same and are equal to w = (2l + 1)−1.

The form of the wavefunction, ψL=0, in the l1zl2z-representation follows from

the fact that in this representation, ψ
(1,2)
m = δl1(2)z,m. In the coordinate representa-

tion, ψ
(1,2)
m = Ylm(n1,2). Using the fact that Cm = (−1)l−m(2l + 1)−1/2, the relation

between the spherical functions Y ∗
lm(n) = (−1)l−mYl,−m(n), and the addition theorem,

Eq. (III.6), we find

ψL=0 =
∑
m

1√
2l + 1

Yl,m(n1)Y
∗
l,−m(n2) =

√
2l + 1

4π
Pl(n1 · n2).

Let us note that such a view of wavefunctions, ψL=0, could also be seen from the
following considerations. Due to the fact that the wavefunction is invariant under
rotation (L = 0), it is a scalar of the form ψL=0 = f(n1 · n2). The reason f(x) is the
Legendre polynomial Pl(x) is that the angular momenta that are being added have
the specific value, l. Compare, for example, with Problem 3.13.

Problem 3.35

The angular momenta of two particles are l1 = l2 = 1. For such a system, find
the wavefunctions ψLM of states with given values L and M of the total angular
momentum and its z-projection. Use the results of Problems 3.30 and 3.34.

Solution

In the l1zl2z-representation, the expressions for wavefunctions ψ2, ±2 are as follows

ψ2, 2 =

⎛⎝ 1
0
0

⎞⎠
1

⎛⎝ 1
0
0

⎞⎠
2

, ψ2, −2 =

⎛⎝ 0
0
1

⎞⎠
1

⎛⎝ 0
0
1

⎞⎠
2

. (1)

From here on, the columns ψ1(2) =

⎛⎝ c1
c0
c−1

⎞⎠
1(2)

are the wavefunctions of a particle

1(2) or a subsystem with angular momentum l = 1 in the lz-representation. The
expressions for wavefunctions ψLM with quantum numbers L = 1 or 2, M = ±1 and
also L = 1,M = 0 follow directly from wavefunction symmetry with respect to the
interchange of m1 and m2, as established in Problem 3.30:

ψ2 (1), 1 =
1√
2

⎧⎨⎩
⎛⎝ 1

0
0

⎞⎠
1

⎛⎝ 0
1
0

⎞⎠
2

±
⎛⎝ 0

1
0

⎞⎠
1

⎛⎝ 1
0
0

⎞⎠
2

⎫⎬⎭, (2)
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ψ2 (1), −1 =
1√
2

⎧⎨⎩
⎛⎝ 0

0
1

⎞⎠
1

⎛⎝ 0
1
0

⎞⎠
2

±
⎛⎝ 0

1
0

⎞⎠
1

⎛⎝ 0
0
1

⎞⎠
2

⎫⎬⎭, (3)

ψ1, 0 =
1√
2

⎧⎨⎩
⎛⎝ 1

0
0

⎞⎠
1

⎛⎝ 0
0
1

⎞⎠
2

−
⎛⎝ 0

0
1

⎞⎠
1

⎛⎝ 1
0
0

⎞⎠
2

⎫⎬⎭ . (4)

The sign + corresponds to L = 2 while the sign − corresponds to L = 1.

The form of wavefunction ψ0,0 is given by the result of the previous problem:

ψ0, 0 =
1√
3

⎧⎨⎩
⎛⎝ 1

0
0

⎞⎠
1

⎛⎝ 0
0
1

⎞⎠
2

−
⎛⎝ 0

1
0

⎞⎠
1

⎛⎝ 0
1
0

⎞⎠
2

+

⎛⎝ 0
0
1

⎞⎠
1

⎛⎝ 1
0
0

⎞⎠
2

⎫⎬⎭ . (5)

The wavefunction ψ2,0 is symmetric in the variables of m1 and m2 and may be written
in the form

ψ2, 0 = C1

⎧⎨⎩
⎛⎝ 1

0
0

⎞⎠
1

⎛⎝ 0
0
1

⎞⎠
2

+

⎛⎝ 0
0
1

⎞⎠
1

⎛⎝ 1
0
0

⎞⎠
2

⎫⎬⎭+ C2

⎛⎝ 0
1
0

⎞⎠
1

⎛⎝ 0
1
0

⎞⎠
2

. (6)

From the condition of its orthogonality to ψ0,0, it follows that C2 = 2C1. We choose
C1 = 1/

√
6, C2 = 2/

√
6 in (6) and obtain the normalized wavefunction ψ2,0. The

probabilities of different z-projections of angular momenta which are being added in
states ψLM follow directly from the determined form of wavefunctions (1)–(6).

Problem 3.36

For a system of two angular momenta, l1 = l2 = 1, find the wavefunction, ψL=0,
with L = 0 total angular momentum, using the projection operators. Compare with
Problem 3.34.

Solution

In the case l1 = l2 = 1, the operator, l̂1 · l̂2, has the following values in the states
with given L: 1 for L = 2, −1 for L = 1 and −2 for L = 0, therefore the projection
operator for a state with L = 0 has the form P̂ (L = 0) = 1

3 ((̂l1 · l̂2)2 − 1) (compare
with Problem 1.35). Acting on an arbitrary wavefunction Ψ of a state with l1 = l2 = 1
with this operator, we obtain an (unnormalized) eigenfunction of the operator of a
squared total momentum corresponding to L = 0, i.e., ψL=0 = CP̂ (L = 0)Ψ (C is a
normalization coefficient). Writing down

l̂1 · l̂2 = l̂1z l̂2z +
1

2
(l̂1+ l̂2− + l̂1− l̂2+)
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(expressions for l̂± in the case of l = 1 are given in Problem 3.22) and taking for

convenience the wavefunction Ψ to be equal Ψ =

⎛⎝ 0
1
0

⎞⎠
1

⎛⎝ 0
1
0

⎞⎠
2

in the lz1lz2-

representation, we obtain as a result of straightforward calculation the desired wave-
function:

ψL=0 = CP̂ (L = 0)

⎛⎝ 0
1
0

⎞⎠
1

⎛⎝ 0
1
0

⎞⎠
2

=
1√
3

⎧⎨⎩
⎛⎝ 1

0
0

⎞⎠
1

⎛⎝ 0
0
1

⎞⎠
2

−
⎛⎝ 0

1
0

⎞⎠
1

⎛⎝ 0
1
0

⎞⎠
2

+

⎛⎝ 0
0
1

⎞⎠
1

⎛⎝ 1
0
0

⎞⎠
2

⎫⎬⎭.

If we choose C =
√
3, we have the normalized wavefunction of a state with L = 0,

which coincides with the result of Problem 3.34.

Problem 3.37

Classify the independent states of a system which consists of three weakly interacting
subsystems whose angular momenta are l1 = l2 = 1 and l3 = l, by the value of the
total angular momentum L.

Solution

There are 3 · 3 · (2l + 1) = 9(2l + 1) independent states. Their classification by values
of the total angular momentum, L, is listed in the following table

L l + 2 l + 1 l l − 1 l − 2

Numbers
of states

2l + 5 2 · (2l + 3) 3 · (2l + 1) 2 · (2l − 1) 2l − 3

In order to solve the problem it is convenient to add the angular momenta of the
two subsystems that have l = 1 into their total angular momentum L12 which takes
the values equal to 0, 1, 2, and then to add L12 and l3 = l into the total angular
momentum L of the entire system.

Problem 3.38

As is known, the problem of the addition of angular momenta of two systems l1 and
l2 into the total angular momentum L could be solved by the following relation

ψLM =
∑

m1m2

CLM
l1m1l2m2

ψ
(1)
l1m1

ψ
(2)
l2m2

, M = m1 +m2,
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where CLM
l1m1l2m2

are the Clebsch–Gordan coefficients. Using the “raising”

(“lowering”)-operators, L̂±, determine these coefficients for the special case of
L = l1 + l2.

Solution

In this problem, by L we shall understand the definite value L = l1 + l2. The cor-

responding the wavefunction is ψLL = ψ
(1)
l1 l1

ψ
(2)
l2 l2

. Using the property of the L̂−-
operator,

L̂−ψLM =
√
(L−M + 1)(L+m)ψL, M−1,

we obtain

ψLM =

[
(L+M)!

(L−M)!(2L)!

]1/2
(L̂−)L−MψLL. (1)

Since L̂− = l̂1− + l̂2− and since l̂1− and l̂2− commute with each other, then from (1)
it follows that

ψLM = G(L,M)
∑
m

Cm
L−M (l̂1−)m(l̂2−)L−M−mψ

(1)
l1 l1

ψ
(2)
l2 l2

= G(L,M)
∑
m

Cm
L−MG−1(l1, l1 −m)G−1(l2,M +m− l1)ψ

(1)
l1 l1−mψ

(2)
l2 l2−L+M+m

≡
∑
m1

CLM
l1m1l2m2

ψ
(1)
l1 m1

ψ
(2)
l2 m2

, (2)

where the following notations are used:

G(L,M) =

[
(L+M)!

(L−M)!(2L)!

]1/2
, Cm

L =
L!

m!(L−m)!
. (3)

From (2), the values of the desired Clebsch–Gordan coefficients follow:

CLM
l1m1l2m2

= G(LM)G−1(l1m1)G
−1(l2,m2)C

l1−m1

L−M .

Using (3), we find the final expression:

CLM
l1m1l2m2

=

[
(2l1)!(2l2)!(L+M)!(L−M)!

(2L)!(l1 +m1)!(l1 −m1)!(l2 +m2)!(l2 −m2)!

]1/2
.

Problem 3.39

The same as for the previous problem but for the case where l1 = l2, L = 0.
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Solution

The Clebsch–Gordan coefficients for this case are given by the results of Problem 3.34.
Putting C1 = (2l + 1)−1/2, we find:

C00
l,m,l,−m = Cm = (−1)l−m 1√

2l + 1
.

Problem 3.40

For two weakly interacting systems with j1 and j2 for their angular momenta, average
the operators

a) ĵ1(2)i, b) ĵ1iĵ2k − ĵ1k ĵ2i ; c) ĵ1iĵ2k + ĵ1k ĵ2i ; d) ĵ1iĵ1k + ĵ1k ĵ1i

over the states characterized by a given value, J , of the total angular momentum.

Obtain an explicit expression for the magnetic moment operator of the system,
μ̂ = g1ĵ1 + g2ĵ2, in a state with a given total angular momentum, J (here g1,2 are the
gyro-magnetic ratios for the subsystems considered that relates their magnetic and
mechanic angular momenta).

Solution

After averaging, these tensor operators act in the space with an angular momentum J .
Each of them is expressed in terms of the vector operator Ĵi and universal tensors δik
and εikl. The condition that the tensor character of the initial and averaged operators
are the same puts strict constraints on the form of such expressions.

a) ĵ1(2)i = a1(2)Ĵi (vectors of the form ĴkĴiĴk, εiklĴkĴl, etc. all are reduced to Ĵi from

the commutation relations for Ĵi components). Multiplying by Ĵi, we obtain[28]

a1(2) =
j1(2)·J
J(J+1) . From now on, for the sake of brevity, the scalar terms (j1,2 · J) and

(j1 · j2) which have definite values simultaneously with j21, j
2
2,J

2 are not written in
explicit form. See Problem 3.27.

b) Taking into account the antisymmetric nature of the tensor, we have

ĵ1iĵ2k − ĵ1k ĵ2i = bεiklĴl. (1)

We multiply both sides of this equation by Ĵk from the right and by Ĵi from the
left, and we find that the left-hand side of the resulting equation is equal to zero
while the right-hand side takes the form bεiklĴiĴlĴk = −iJ(J + 1)b, so b = 0.

c) Due to the symmetry property of the tensor we have

ĵ1iĵ2k + ĵ1k ĵ2i = A1δik +A2(ĴiĴk + ĴkĴi). (2)

[28] Multiplication by ĵ1i (or ĵ2i) is not meaningful, because the operators ĵ1,2, unlike Ĵi ‘mix up’ states
with different values of J .
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First we perform a convolution by i and k, and second we multiply this by Ĵk
from the left and by Ĵi from the right. Using ĴiĴkĴiĴk = J2(J + 1)2 − J(J + 1),
we obtain two relations:

3A1 + 2J(J + 1)A2 = 2(j1 · j2),
J(J + 1)A1 + J(J + 1)(2J2 + 2J − 1)A2 = 2(j1 · J)(j2 · J).

We get

A1 =
(4J2 + 4J − 2)(j1 · j2)− 4(j1 · J)(j2 · J)

(2J − 1)(2J + 3)
,

A2 =
6(j1 · J)(j2 · J)− 2J(J + 1)(j1 · j2)

J(J + 1)(2J − 1)(2J + 3)
. (3)

d) In a similar manner, we obtain

ĵ1iĵ1k + ĵ1k ĵ1i = B1δik +B2(ĴiĴk + ĴkĴi),

B1 =
j1(j1 + 1)(4J2 + 4J − 2)− 4(j1 · J)2 + 2(j1 · J)

(2J − 1)(2J + 3)
, (4)

B2 =
6(j1 · J)2 − 2j1(j1 + 1)J(J + 1)− 3(j1 · J)

J(J + 1)(2J − 1)(2J + 3)
.

For (4), we used the equation

Ĵiĵ1(2)k ĵ1(2)iĴk = (̂j1(2) · Ĵ)2 − (̂j1(2) · Ĵ).

For the magnetic moment operator of the total system, we have

μ̂(J) = g1Ĵ1 + g2Ĵ2,

and using the result from (a) we have

μ̂(J) ≡ g(J)Ĵ =
(g1 + g2)J(J + 1) + (g1 − g2)[j1(j1 + 1)− j2(j2 + 1)]

2J(J + 1)
Ĵ. (5)

3.4 Tensor formalism in angular momentum theory

Problem 3.41

Prove that the function of the form

ψl(n) = εik...nnink . . . nn,
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where n = r/r and εik...n is a completely symmetric tensor[29] of the lth rank with a
trace εiik...n = 0, is an eigenfunction of the squared angular momentum operator of a
particle whose angular momentum is l.

Further, show that the number of independent tensor components is equal to 2l + 1,
which coincides with the number of the spherical functions, Ylm(n). This shows that
the angular dependence given above is the most general such dependence for the
particle states with the angular momentum, l.

For the special cases where l = 1 and l = 2, indicate explicit expressions for the cor-
responding tensor components εi(m) and tensors εik(m) that make the wavefunction
(1) equal to the spherical function Ylm.

Solution

Let us consider wavefunctions of the form

ψ̃l(n) = εik...nxixk . . . xn ≡ εik...nnink . . . nnr
l.

Using the connection of operator l̂2 with the Laplace operator,

l̂2 = −r2
θ, φ = r2(
r −
), 
r =
1

r2
∂

∂r
r2

∂

∂r
, (1)

we obtain

r2
rψ̃l = εik...nnink . . . nn
rl = l(l + 1)ψ̃l,


ψ̃l =
∂

∂xm

∂

∂xm
εikp...nxixkxp . . . xn = (2)

εikp...n(δimδkmxp . . . xn + . . . ) = εmmp...nxp . . . xn + · · · = 0.

From (1) and (2) it follows that l̂2ψ̃l = l(l + 1)ψ̃l. We see that the function ψl given

in the problem statement is an eigenfunction of l̂2.

2) First let us find the number, g̃(l), of independent components for any symmetric
tensor of the lth rank ε̃ik...n. We make the notations: n1 is the number of tensor
component indices that are equal to 1, n2 is the number of indices equal to 2,
and n3 = (l − n1 − n2) is the number equal to 3. Due to the tensor symmetry, its
components with the equal numbers n1 and n2 are the same. When n1 is fixed, n2

could be equal to 0, 1, . . . , l − n1 so the number of non-equal components with the
given n1 is (l − n1 + 1). The total number of non-equal components is

g̃(l) =

l∑
n1=0

(l − n1 + 1) = (l + 1)2 −
l∑

n1=0

n1 =
(l + 1)(l + 2)

2
.

The number of independent components g(l) of a symmetric tensor with rank l and
zero trace comes from the relation ε̃iik...n = 0, and so it is given by a set of g̃(l − 2)

[29] Do not confuse with the antisymmetric tensor εikl!
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linear relations between the g̃(l) independent components of ε̃ik...n. So g(l) = g̃(l)−
g̃(l − 2) = 2l + 1.

3) Comparing ψl=1, m = (ε(m) · n) with Eq. (III.7) we find

ε(0) =
√
3/4π(0, 0, i), ε(±1) =

√
3/8π(∓i, 1, 0). (3)

Similarly for the case l = 2, we obtain the tensor components εik(m):

εik(2) = − (
15
32π

)1/2⎛⎝ 1 i 0
i −1 0
0 0 0

⎞⎠, εik(−2) = e∗ik(2), (4)

εik(1) =
(

15
32π

)1/2⎛⎝ 0 0 1
0 0 i
1 i 0

⎞⎠, εik(−1) = −ε∗ik(1),

εik(0) =
(

15
16π

)1/2⎛⎝ 1 0 0
0 1 0
0 0 -2

⎞⎠.

Problem 3.42

According to the previous problem, the most general angular dependence of a state
with the angular momentum l = 1 has the form ψl=1 = ε · n, where ε is some arbitrary
complex vector. Find

a) a condition on the vector ε for the wavefunction to be normalized to unity;

b) mean values of the tensor components nink;

c) mean values of the angular momentum vector components l̄;

d) a condition on the vector ε for being able to find such a z̃-axis in space that angular
momentum z̃-projection has a definite value m̃ = 0 or m̃ = ±1.

Solution

a) Since

|ε · n|2 = εiε
∗
knink and

∫
ninkdΩ =

4π

3
δik,

then for the wavefunction normalization to unity, we should choose ε =
√

3/4πa
with |a| = 1.

b)
nink = ε∗l εn

∫
nlninknndΩ = ε∗l εn · 4π

15
(δikδln + δinδkl + δilδkn)

=
1

5
(δik + a∗i ak + a∗kai).
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c) Since l̂iψl=1 ≡ −iεiknxk∂/∂xn(emxm/r) = −iεiknennk, it follows that

li = −iεikne
∗
men

∫
nmnkdΩ = −iεikna

∗
kan.

In other words, l = −i[a∗ × a] or, writing a = a1 + ia2 (where a1,2 are the real
vectors and a21 + a22 = 1), we obtain l = 2[a1 × a2].

d) Remember that ε =
√
3/4π(a1 + ia2). It is easily seen that if a1 ‖ a2, the angular

momentum projection along a common direction of the vectors a1,2 has a definite
value m̃ = 0. If a1 ⊥ a2 and a1 = a2, then the angular momentum projection
along the a1 × a2 vector has a definite value m̃ = 1 (or m̃ = −1 for the opposite
direction).

Problem 3.43

For the conditions of the previous problem, find the probabilities, w(m̃), of different
values of m̃ of the angular-momentum projection on the z̃-axis directed along the unit
vector k̃. Show that for an arbitrary state with the angular momentum l = 1, there
exists a spatial direction that the probability of angular momentum projection m̃ = 0
onto it is equal to zero.

Solution

Let us write the wavefunction in the form ψ =
√

3/4π(a · n) with |a|2 = 1. Then we
have

w(m̃ = 0) = |(a · n0)|2, w(m̃ = ±1) =
1

2
|(a · n)1 ∓ i(a · [k̃× n1])|2. (1)

Here n1 is some real unit vector that is perpendicular to k̃ (the choice of n1 is non-
unique but relations in (1) do not depend on it). Writing a = a1 + ia2 shows that the
probability of the value m̃ = 0 of projection onto the axis directed along vector [a1 ×
a2] is equal to zero. For the case of a1 ‖ a2, projection onto an any axis perpendicular
to a1 can not take the values m̃ = 0.

Problem 3.44

According to Problem 3.41, the angular dependence of an arbitrary state with the
angular momentum l = 1 has the form ψl=1 = (a · n), i.e., it is completely determined
by some complex vector a. Therefore in the case of states with the angular momentum
l = 1, we can use a representation (let us call it the vector representation) in which the
wavefunction coincides with components of the vector a, i.e., ψ(k) ≡ ak, (k = 1, 2, 3).

Determine an explicit form of the angular momentum component operators in the
vector representation.
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Solution

Acting by the operator l̂i = −iεiknxk∂/∂xn on a wavefunction of the form ψ = (a · n),
we obtain

φi = l̂iψ = l̂iamnm = −iεikmamnk ≡ bi,knk,

which is equivalent to the relation bi,k = l̂iak ≡ −iεikmam in the vector representation.
If in this representation we write down the wavefunction in the form of the column

ψ =

⎛⎝ a1
a2
a3

⎞⎠, then the matrices, l̂i, with elements (l̂i)km = −iεikm are the angular

momentum component operators:

l̂x =

⎛⎝ 0 0 0
0 0 −i
0 i 0

⎞⎠ , l̂y =

⎛⎝ 0 0 i
0 0 0
−i 0 0

⎞⎠ , l̂z =

⎛⎝ 0 −i 0
i 0 0
0 0 0

⎞⎠ . (1)

It is clear that the commutation relations for these matrices have the standard
form, i.e., [l̂i, l̂k] = −iεikl l̂l and l̂2 = 2 · 1̂ (1̂ is the unity matrix).

Problem 3.45

For a system of two particles which have the same angular momenta l1 = l2 = 1,
indicate:

a) the most general angular dependence of the wavefunction;

b) the most general angular dependence of the wavefunction ψL that describes the
system states with a given value L (L = 0, 1, 2) of the total angular momentum;

c) the angular dependence of the wavefunctions ψLM for the system states with a
given value of the total angular momentum L and z-projection M .

Use the results of Problem 3.41.

Solution

a) The most general angular dependence has the form ψ = aikn1in2k, where n1 =
r1/r1,n2 = r2/r2 and aik is an arbitrary tensor of the second rank, which has nine
independent components. This corresponds to the nine independent states of a
system consisting of two particles with the angular momenta l1 = l2 = 1.

b) If we write aik in the form

aik ≡ 1

3
annδik +

1

2
(aik − aki) +

1

2
(aik + aki − 2

3
annδik), (1)
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the wavefunction becomes

ψ = C(n1 · n2) + (ε · [n1 × n2]) + εikn1in2k, (2)

C =
1

3
ann, εik =

1

2
(aik + aki − 2

3
annδik), 2εi = εiklakl, aik − aki = εiklεl

εik is the symmetric tensor with a trace equal to zero. Taking into account the result
of Problem 3.41, it is easy to see that the wavefunction in (2) consists of three terms
and each of them corresponds to a definite value of total angular momentum L =
0, 1, 2. In particular, the expression for the function ψL=0 = C(n1 · n2) coincides
with the result of Problem 3.34 for the case l = 1.

c) For the wavefunctions, ψL, in (2) to correspond to states with a definite value, M ,
of the total angular momentum z-projection, it is necessary that components of
the vector εi(M) or tensor εik(M) are in the form presented in Problem 3.41. In
particular, for the wavefunction ψ22, this gives the expression

ψ22 = −
√

15

32π
sin θ1 sin θ2e

iϕ1eiϕ2 =

√
10π

3
Y11(θ1, ϕ1)Y11(θ2, ϕ2),

which is the sought-after (unnormalized) eigenfunction of the operators L̂2 and Lz.
It corresponds to the eigenvalues L = 2 and M = 2.

Problem 3.46

For a system of two particles, one having the angular momentum, l1 = 1, find the
angular dependence of the wavefunction, ψJJ,Λ, describing system states that corre-
spond to definite values of the total angular momentum J = 0 and 1, the z-projection
Jz, and angular momentum projection Λ onto the direction of the second particle’s
radius-vector, specifically considering Λ = 0. What are the parities of these states?
What are the possible angular momenta, l2, of the second particle in such states?
Generalize the result to the case of arbitrary values of l1, J, Jz (but Λ = 0).

Solution

The conditions l1 = 1 and Λ = 0 uniquely determine the wavefunction dependence on
the angle variables of the first particle in the form ψ ∝ (n1 · n2) where n1 = r1/r1 and
n2 = r2/r2. (Compare with Problem 3.16. It should be remembered that the total
angular momentum projection Λ along the radius-vector r2 is completely determined
by the projection of the first particle, since (n2 · l̂2) ≡ 0). Since (n1 · n2) is a scalar,
as well as the wavefunction for the state with J = 0, then ψ000 = const(n1 · n2).

For a state with J = 1, the wavefunction is some linear combination of components
of a vector which depends only on n1 and n2 (compare with Problem 3.41). Since l1 = 1
and Λ = 0, the only such vector is of the form v = A(n1 · n2)n2. By constructing linear
combinations of its components (which correspond to momentum projections Jz), we
find that
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ψ1Jz0 = C(n1 · n2)Y1Jz
(n2). (1)

Wavefunction (1) has a definite parity equal to −1 and describes a state where the
angular momentum of the second particle can only be equal to 0 and 2.

The generalization of (1) to arbitrary values of l1, J, Jz, with Λ = 0 is

ψJJz0 = CPl(n1 · n2)YJJz
(n2), (2)

where Pl(z) is the Legendre polynomial.

Problem 3.47

For a system consisting of three particles, prove that any state with total angular
momentum L = 0 (in the center-of-mass system) has a definite, positive parity.

Solution

The wavefunction with L = 0 does not change under rotations of the coordinate
system, i.e., it is a scalar (or pseudo-scalar, which depends on the parity of the state)
function. In the center-of-mass system of the three particles, only the radius-vectors
of two particles, r1,2, are independent, while r3 = −(r1 + r2) (we consider all the
masses to be the same for the sake of simplicity). From the two vectors r1,2 it is
possible to form the following scalar quantities: r21, r

2
2, r1 · r2. These are real scalars,

not pseudo-scalars. Scalar functions that depend on vectors r1,2 could be functions only
of the scalars mentioned above. So the wavefunction is a function of the form ψL=0 =
f(r21, r

2
2, r1 · r2). With an inversion of the coordinates, r1,2 → −r1,2, this function does

not change: ÎψL=0 = ψL=0. The state with L = 0 has positive parity.[30]

[30] We should note that we mean here the orbital parity. Also, if the number of particles in the system
is more than three then there is a possibility of making a pseudo-scalar quantity of the form
r1 · [r2 × r3]. The states of such systems with L = 0 are allowed to have an arbitrary parity.
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Motion in a spherically-symmetric
potential

We are interested in the solutions of the stationary Schrödinger equation for a
spherically-symmetric potential:[

− �
2

2m

+ U(r)

]
ψE(r) = EψE(r). (IV.1)

Due to the mutual commutativity of the operators Ĥ, l̂2, l̂z, we look for a solution in
the form[31] ψE(r) ≡ ψnrlm(r) = Rnrl(r)Ylm(n), where Ylm are the spherical functions.
Eqn. (IV.1) then reduces to the one-dimensional radial Schrödinger equation:[

1

r

d2

dr2
r +

2m

�2

(
Enrl −

�
2l(l + 1)

2mr2
− U(r)

)]
Rnrl(r) = 0. (IV.2)

The boundary condition at r → 0 has the form[32] Rnr0(0) = const < ∞ for l = 0 and
Rnrl(0) = 0 for l �= 0.

For a particle moving in the attractive Coulomb potential, U(r) = −α/r, the energy
levels and the radial functions for the states of a discrete spectrum are given by

En = − mα2

2�2n2
and

Rnl = − 2

a3/2n2

√
(n− l − 1)!

[(n+ l)!]3

(
2r

na

)l

e−r/naL2l+1
n+l

(
2r

na

)
, (IV.3)

[31] In this chapter we consider only the states of a discrete spectrum and denote the energy levels by
Enrl (where nr = 0, 1, . . . is a radial quantum number.)

[32] We are discussing the regular potentials, for which r2U → 0 when r → 0. For these potentials, the
two independent solutions for short distances have the form R1 ∝ rl and R2 ∝ r−l−1. We exclude
from the consideration the increasing solution for l �= 0 due to its unnormalizability. At l = 0 for the
increasing solution, R2 ∝ 1/r and we have �R2 ∝ δ(r), so it do not obey the relation (IV.1) when
r → 0. Such a solution that is square integrable for short distances is used while modeling a short-
range center by a potential of zero radius. See Problem 4.10. For a singular attractive potential,
‘falling onto the center’ appears, so the choice of boundary condition for r → 0 demands some
addition investigation. See Problem 9.14.
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where n = nr + l + 1 is the principle quantum number, a = �
2/mα (for a hydrogen

atom, a defines the Bohr radius) and Lk
n(z) is the associated Laguerre polynomial,

which is connected with the hypergeometric function:

Lk
n(z) = (−1)k

(n!)2

k!(n− k)!
F (k − n, k + 1, z).

In particular for a few lowest states, we have

R10(r) =
2√
a3

e−r/a (the ground, 1s-state),

R20(r) =
1√
(2a3)

(
1− r

2a

)
e−r/2a (2s-state),

R21(r) =
1√
24a5

re−r/2a (2p-state).

(IV.4)

To solve Eq. (IV.2), it is often convenient to introduce the new radial functions χnrl =
rRnrl, which satisfy the following differential equation[

− �
2

2m

d2

dr2
+

�
2l(l + 1)

2mr2
+ U(r)

]
χnrl = Enrlχnrl (IV.5)

with the boundary condition χnrl(0) = 0. This equation is similar in form to the
ordinary one-dimensional Schrödinger equation.

The following substitution is also often used: unrl =
√
rRnrl. In this case, the

equation becomes

u′′
nrl +

1

r
u′
nrl −

[
(l + 1/2)2

r2
+

2m

�2
(U(r)− Enrl)

]
unrl = 0 (IV.6)

with the boundary condition unrl(0) = 0.

4.1 Discrete spectrum states in central fields

Problem 4.1

Relate the energy levels, Enr0, and the normalized wavefunctions, ψnr00(r), of discrete
stationary s-states of a particle in a central potential, U(r), to the levels, En, and
normalized wavefunctions, ψn(x), of a particle in the one-dimensional potential, Ũ(x),
of the form Ũ(x) = U(x) for x > 0 and Ũ(x) = ∞ for x < 0 (see also Problem 2.5).

By using this relationsip, find:

a) the s-state levels in a spherical infinitely deep potential well, i.e.: U(r) = 0 for r < a
and U(r) = ∞ for r > a;

b) the condition for existence of a bound state in a potential of the form: U = −U0

for r < a and U = 0 for r > a.
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Solution

The radial Schrödinger equation (IV.5) and its boundary conditions χ(0) = χ(∞) = 0
have the same form as for the ordinary Schrödinger equation in a one-dimensional
potential, U(r). It follows that Enr0 = Enr

(the spectra coincide) and ψnr00(r) =
ψnr

(r)/(
√
4π r) with nr = 0, 1, . . . .

These relations immediately allow us to extend some results from one-dimensional
quantum mechanics to the case of central potentials. In particular, for the case a),
we have Enr0 = π2

�
2(nr + 1)2/2ma2 (compare with Problem 2.1). In the case b), the

condition of bound s-states (and hence the bound states in general) existence is given
by U0 � π2

�
2/8ma2 (compare with Problem 2.14).

Problem 4.2

Describe the character of the change of the energy levels, Enrl, for a particle’s discrete
spectrum,

a) for a given value of l with increasing of nr;

b) for a given value of nr with increasing of l.

Solution

a) Since Eq. (IV.5) is similar in form to the ordinary one-dimensional Schrödinger, we
conclude that Enrl (for a given value of l) increases with the increase in nr.

b) Considering formally l in the Schrödinger equation (IV.5) as some continuous
parameter, from Eq. (I.6) we obtain

∂

∂l
Enrl =

∂

∂l
Ĥ =

(2l + 1)�2

2mr2
> 0,

which means that Enrl increases with increasing l.

Problem 4.3

Let N be a number of levels in a central potential in increasing order (for the ground
state, N = 1). For the Nth level, indicate

a) the maximum value of the angular momentum;

b) the maximum level degeneracy;

c) the maximum level degeneracy if this level has a definite parity.

Solution

a) Taking into account the increase of Enrl with the increase in l (for a given value of
nr; see Problem 4.2), we see that independently of a specific form of the potential,
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U(r) the value of particle’s angular momentum in Nth discrete spectrum state
cannot exceed the value lmax = N − 1. For such an angular momentum, the value
nr = 0.

b) The maximum degree of level degeneracy appears in the case when it corresponds
to the states with 0 ≤ l ≤ lmax and is equal to

gmax(N) =

N−1∑
l=0

(2l + 1) = N2. (1)

Such a situation takes place for the Coulomb potential. For the states with a given l,
we have nr = N − 1− l.

c) Since the parity is I = (−1)l, in (1) we should sum over the values of l with a definite
parity (even or odd). Then we have g̃max(N) = 1

2N(N + 1) and for the degenerate
states with given l = lmax, lmax − 2, . . . , 1(0), we have nr = (lmax − l)/2. Such a
situation takes place for a spherical oscillator. See Problems 4.4 and 4.5.

Problem 4.4

Find the energy levels and the corresponding normalized wavefunctions for a spherical
oscillator, U(r) = kr2/2. Use Cartesian coordinates to solve the Schrodinger equation.
Determine the level degeneracy and classify the states with respect to the quantum
numbers nr, l and parity.

Relate the “accidental” level degeneracy and the commutativity of the operators
T̂ik = 1

m p̂ip̂k + kx̂ix̂k with the oscillator Hamiltonian.

Solution

Taking into account the consideration used in Problem 2.48 (for a planar oscillator),
we obtain the solution in the form

ψn1n2n3
(r) = ψ(osc)

n1
(x)ψ(osc)

n2
(y)ψ(osc)

n3
(z); n1, n2, n3 = 0, 1, 2, . . . , (1)

En = �ω

(
n+

3

2

)
, n = n1 + n2 + n3, n = 0, 1, 2, . . . .

The oscillator energy levels have a definite parity that is equal to In = (−1)n and their
degeneracy is given by (compare with Problem 3.41)

g(n) =

n∑
n1=0

(n− n1 + 1) =
1

2
(n+ 1)(n+ 2).

For a given value of n1 there are n− n1 + 1 degenerate states with n2 = 0, 1, . . . ,
n− n1 and n3 = n− n1 − n2.

Since the potential is spherically symmetric, the stationary states can be classified
with respect to the values l of the angular momentum. As is seen from (1) and the
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expressions for the linear oscillator wavefunctions (see Eq. (II.2)), the ground state

wavefunction, n = 0, is spherically symmetric, ψ000 ∝ e−r2/2a2

with a =
√

�/mω, and
describes the s-state, as expected. For the first excited level, n = 1, the wavefunctions
(1) have the form ψn=1 ∝ xie

−r2/2a2

with i = 1, 2, 3; they describe the p-level (see
Eq. (III.7)).

However, in the case of n � 2 these wavefunctions do not correspond to a definite
value[33] of the angular momentum, l.

This fact reflects the existence of an accidental degeneracy of the spherical oscillator
energy levels (see Problems 4.3 and 4.5). Such a degeneracy can be understood if we
take into account the commutativity of the operators, T̂ik, specified in the problem
condition with the oscillator Hamiltonian and their non-commutativity with l̂2. See
Problem 1.25.

Problem 4.5

Analyze the stationary states of a spherical oscillator (see the previous problem). Use
spherical coordinates to solve the Schrödinger equation.

Solution

The Schrödinger equation, (IV.2), for a spherical oscillator, U(r) = kr2/2, by intro-
ducing the new variable x = mω

�
r2 becomes (ω =

√
k/m){

x
d2

dx2
+

3

2

d

dx
+

[
E

2�ω
− l(l + 1)

4x
− x

4

]}
Rnrl = 0. (1)

By making the substitution Rnrl = e−x/2xl/2w(x), we convert (1) into the hypergeo-
metric equation

xw′′ +
(
l +

3

2
− x

)
w′ +

(
E

2�ω
− l

2
− 3

4

)
w = 0. (2)

Since R ∝ rl ∝ x1/2 when r → 0, the solution of (2) must be of the form

w = cF

(
− E

2�ω
+

l

2
+

3

4
, l +

3

2
, x

)
, (3)

where F (α, β, x) is the degenerate hypergeometric function. In this case the constraints
on the wave-function to decrease for r → ∞ demand that function (3) reduces to a
polynomial (in the opposite case F ∝ ex and R ∝ ex/2 diverge as x, r → ∞). So we
have

[33] The wavefunctions with a definite value of l are described by some superpositions of the func-
tions (1). For example, in the case of n = 2, the s-state wavefunction has the form ψn=2,l=0 =
1√
3
(ψ200 + ψ020 + ψ002), while the five other independent combinations of (1) which are orthogonal

to it correspond to l = 2.
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− En

2�ω
+

l

2
+

3

4
= −nr, nr = 0, 1, 2, . . . ,

which determines the energy spectrum:

Enrl = �ω

(
2nr + l +

3

2

)
≡ �ω

(
n+

3

2

)
, (4)

n = 2nr + l = 0, 1, 2, . . . .

For the level with a given n, we have states with the angular momentum l = n, n−
2, . . . , 1(0), so if the level has a certain parity In = (−1)n, then the degeneracy, g(n) =∑

(2l + 1), becomes equal to g(n) = 1
2 (n+ 1)(n+ 2), in accordance with the result of

the previous problem.

In conclusion, we indicate the value of the coefficient c in (3):

c2 = 2
(mω

�

)3/2 Γ(l + nr + 3/2)

nr!Γ2(l + 3/2)
, (5)

which corresponds to the normalization condition
∫∞
0

R2
nrl

(r)r2dr = 1.

Problem 4.6

For the ground state of a hydrogen atom, determine:

a) rn for the electron, where n is an integer;

b) the mean kinetic and potential energies of the electron;

c) the momentum distribution for the electron;

d) the effective (average) potential ϕ(r) created by the atom.

Solution

The wavefunction has the form ψ0(r) = (πa3)−1/2e−r/a, where a = �
2/me2. Hence,

a)

rn =

∫
rn|ψ0(r)|2dV =

(n+ 2)!

2

(a
2

)n

. (1)

b)

U(r) = −
∫

e2

r
|ψ0(r)|2dV = −e2

a
. (2)

Since T + U = E0 = − e2

2a , we obtain T = e2

2a = − 1
2U .

c) The wavefunction in the momentum representation,

φ0(p) =
1

(2π�)3/2

∫
e−i pr

� ψ0(r)dV =
2
√
2�5/2

πa5/2

(
p2 +

�
2

a2

)−2

, (3)
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determines the momentum probability distribution for the electron: dw =
|φ0(p)|2d3p.

d) The desired potential, ϕ(r), is an electrostatic potential, characterized by the charge
density of the form

ρ(r) = eδ(r)− e|ψ0(r)|2,

where the first term describes the point-like nucleus (at the origin of coordinates),
while the second describes an electron “cloud”. The Poisson equation, 
ϕ = −4πρ
for r �= 0, takes the form:

d2χ(r)

dr2
=

4er

a3
e−2r/a,

where χ(r) = rϕ(r). By integrating this equation and using the boundary condi-
tions[34] χ(∞) = 0, χ′(∞) = 0, we obtain

χ(r) =
4e

a3

∞∫
r

dr′
∞∫

r′

r′′e−2r′′/adr′′.

So it follows that

ϕ(r) =
χ(r)

r
= e

(
1

r
+

1

a

)
e−2r/a. (4)

In particular, as r → 0 we have ϕ(r) ≈ e
r − e

a . The first dominant term, ϕp(r) = e/r,
describes the electrostatic potential created by the proton while the second term,
ϕel(0) ≡ − e

a , describes the potential of the electron “cloud.” We should note that

the value of eϕel(0) coincides, of course, with U .
On the other hand, at the large distances, r → ∞, we obtain from Eq. (4) the

exponential decrease of the potential, which corresponds to total screening of the
proton charge by the spherically symmetric electron “cloud”. We should emphasize
that this result takes place just for the averaged value of the potential. The “true”
value of the field decreases much slower. See the next problem.

Problem 4.7

For the ground state of a hydrogen atom, determine the average electric field E and
its fluctuations (i.e., correlators of the field components) at large distances.

[34] The condition χ(∞) = 0 means that the total charge of the system is equal to zero.
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Solution

Utilizing Eq. (4) of the previous problem we see that the average electric field decreases
exponentially

E(R) = −∇ϕ(R) ≈
R � a

2eR

a2R
e−2R/a. (1)

The field E(R) created by the proton at the origin and the electron at the point r has
the form

E(R) =
eR

R3
− e(R− r)

|R− r|3 ≈
R � r

er(n− 3N(n ·N))

R3
.

We defined n = r/r, N = R/R, and we obtain

Ei(R)Ek(R) =

e2

R6

∫ ∫
|ψ0(r)|2r4(ni − 3NinlNl)(nk − 3NknmNm)drdΩn

= e2a2(δik + 3NiNk)
1

R6
, R � a.

Remember that averaging is carried out over the positions of an electron in the

hydrogen atom ground state. In particular, E2(R) = 6e2a2

R6 .

So the electric field fluctuations decrease according to

√
E2(R) ∝ 1/R3. This result

is reflected in that the interaction between atoms and molecules at the large distances
(for example, Van der Waals forces) decreases as a power law, not exponentially.

Problem 4.8

Find the s-levels for the following potentials:

a) U(r) = −αδ(r − a);

b) U(r) = −U0e
−r/a;

c) U(r) = −U0/(e
r/a − 1) (the Hulthén potential).

Solution

For E < 0, the spectrum is discrete. Set κ =
√−2mEnr0/�

2.
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a) If we take into account the boundary conditions at r = 0 and r = ∞, we obtain the
solution of Eq. (IV.5) for l = 0 and U = −αδ(r − a):

χnr0 =

{
A sinhκr, r < a,
Be−κr, r > a.

We use the matching conditions from Problem 2.6 at the point r = a to obtain the
equation

�
2κ

mα
= (1− e−2κa),

which determines the s-level spectrum.[35] In the case where ξ ≡ mαa�−2 < 1/2,
this equation has no roots, so bound states are absent. At ξ > 1/2, there exists one,
and only one, discrete s-level. The limiting value of its energy is

E0 ≈
{
−( �

2

2ma2 )(
2mαa
�2 − 1)2, 0 < ξ − 1/2 � 1

−mα2

2�2 , ξ � 1.
(1)

Pay attention to the slow quadratic dependence of the depth of the shallow s-
level, Enr0 ∝ −(ξ − ξ0)

2, with respect to making the potential well deeper. This
is because in the case of E → 0 the s-level wavefunction delocalizes: the particle
“moves” outward and has a small probability of being near the origin. Compare
with the case l � 1 considered in the next problem.

b) After performing the substitution x = exp(−r/2a), Eq. (IV.5) takes the form of
the Bessel equation: [

d2

dx2
+

1

x

d

dx
+

(
λ2 − p2

x2

)]
χnr0 = 0, (2)

where p = 2κa, λ = (8mU0a
2/�2)1/2. The condition of the wavefunction being zero

when r → ∞ (so that x = 0) demands choosing the solution of (2) in the form
χnr0 = cJp(λx). Now the condition χ(r = 0) = 0 leads to the equation

Jp(λ) = 0, or J2κa(
√
8mU0a2/�2) = 0, (3)

which determines the s-level spectrum.
When the potential well has grown just enough for a level to appear, the energy

of this level is arbitrarily small. So the condition J0(λ) = 0 determines the values
of the well parameters that correspond to the appearance of new discrete spectrum
states with the deepening of the well. For the Nth level to appear we must have
a potential factor of at least U0,N = (�2x2

N/8ma2), where xN is Nth zero of the
function J0(x). Since x1 ≈ 2.40, the condition for a discrete spectrum s-state’s
existence (and so the existence of a bound state) takes the form U0 � 0.72�2/ma2.

[35] Taking into account the results of Problem 4.1, compare with a spectrum of the odd levels in the
Problem 2.18 condition.
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The upper s-level is “shallow” when 0 < (λ− xN ) � 1. In this case, we use the
formulae (Jν , Nν are Bessel and Neumann functions)

J ′
0(x) = −J1(x) and

((
∂

∂ν

)
Jν(x)

)
ν=0

=
π

2
N0(x),

and we find the state energy according to (3) (nr = N − 1):

Enr0 ≈ − �
2

2π2ma2
J2
1 (xN )

N2
0 (xN )

(√
8mU0a2

�
− xN

)2

. (4)

c) We take Eq. (IV.5) with l = 0, and use a change of variable x = exp(−r/a) (here
U = −U0x/(1− x)) and the substitution χnr0 = xεy where ε = κa. We obtain the
equation for the hypergeometric function, F (α, β, γ, x),

(1− x)xy′′ + (2ε+ 1)(1− x)y′ + λ2y = 0, (5)

with the parameters

α = ε+
√
ε2 + λ2, β = ε−

√
ε2 + λ2, γ = 2ε+ 1; λ = (2ma2U0/�

2)1/2.

The condition of the wavefunction being zero at r → ∞ (x → 0) requires choosing
the solution of (5) in the form y = cF (α, β, γ, x). The condition χ(r = 0) = χ(x =
1) = 0 gives

F (α, β, γ, x = 1) ≡ Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
= 0, (6)

which determines the s-level spectrum. It follows that γ − α = −nr, where nr =
0, 1, . . . , since Γ(−nr) = ∞. Energies for the s-levels take the form

Enr0 = − �
2

8ma2(nr + 1)2
(λ2 − (nr + 1)2)2, (7)

where nr ≤ λ− 1. The condition λ = N (hereN is integer) determines the potential
parameters that correspond to emergence of the Nth level with l = 0 with a deep-
ening of the potential well. In the case of a → ∞, U0 → 0, but aU0 = const ≡ α,
this potential takes the form of the Coulomb potential U = −α/r, and (7) gives
the known s-levels spectrum. See Eq. (IV.3).

Problem 4.9

Determine the levels with an arbitrary angular momentum l in the potentials:

a) U(r) = −αδ(r − a);

b) U(r) = 0 for r < a and U(r) = ∞ for r > a.
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Solution

a) The solution of Eq. (IV.6) with κ =
√−2mEnrl/�

2, which satisfies the boundary
conditions u(0) = u(∞) = 0 is

unrl = AIl+1/2(κr) for r < a and unrl = BKl+1/2(κr) for r > a,

where Iν and Kν are the Bessel functions of an imaginary argument (the modified
Bessel functions).
Matching the wavefunction at the point r = a is the same as in the case of the

one-dimensional δ-potential in Problem 2.6 and gives[36]

Il+1/2(κa)Kl+1/2(κa) =
�
2

2mαa
≡ (2ξ)−1, (1)

which determines the particle energy spectrum.
The left-hand side of (1) for κ → 0, when the level has an arbitrarily small energy,
takes the definite value equal to 1/(2l + 1). This means (as for the case l = 0 seen

in Problem 4.8a) that for ξ � ξ
(0)
l = (l + 1/2) there is only one discrete level with

a given value of l. Using the asymptotic formulae for Iν(z) and Kν(z), we obtain
the generalization of (1) from Problem 4.8 for the case of states with l �= 0:

E0l ≈
{
− (2l−1)(2l+3)

2(2l+1)
�
2

ma2 (ξ − ξ
(0)
l ), ξ → ξ

(0)
l

−mα2

2�2 + �
2l(l+1)
2ma2 , ξ → ∞.

(2)

Note that when l � 1 the deepening of the shallow level corresponds to the deepen-
ing of the potential well, in contrast to the case of l = 0 (see the previous problem).
This distinction is because of the centrifugal potential, Ucf = �

2l(l + 1)/2mr2. A
state with l � 1 remains bound as E → 0. The centrifugal barrier prevents removing
a particle to infinity.

b) Eq. (IV.6) in the case considered for r < a reduces to the Bessel equation. Since
unrl(0) = 0, the only solution must be of the form unrl = cJl+1/2(kr). The condition
unrl(a) = 0 gives the particle energy levels:

Enrl =
�
2k2

2ma2
=

�
2α2

nr+1,l

2ma2
, (3)

where αnl is the nth zero (ignoring x = 0) of the Bessel function Jl+1/2(x).

Problem 4.10

A zero-range potential (the three-dimensional analog of a one-dimensional δ-potential;
see Problem 2.7) is introduced by imposing on a wavefunction the following boundary

[36] We used the Wronskian W = [Iν(z), Kν(z)] = Iν(z)K′
ν(z)− I′ν(z)Kν(z) = − 1

z
.
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condition[37]:

(rψ(r))′

rψ(r)
→ −α0 at r → 0

i.e.

ψ ∝
(
− 1

α0r
+ 1 + . . .

)
. (1)

Consider the possibility of particle bound states (depending on the sign of α0) in
such a potential. Find the wavefunction of these bound states in the momentum
representation. Determine the mean values T and U .

Solution

The solution of the Schrödinger equation for this problem with E < 0, has the form

ψ0(r) = A
e−κr

√
4πr

, where κ =
√
−2mE/�2 > 0, (2)

(it describes a particle with l = 0). For r → 0

ψ0(r) =
A√
4π

(
1

r
− κ+ . . .

)
.

By comparing this with the expansion (1), we have κ = α0. So for α0 < 0, there are
no bound states in a zero-range potential.

In the case of α0 > 0 there is one, and only one, bound state with energy E0 =
−�

2α2
0/2m. To normalize the wavefunction of this state, we should choose A =

√
2α0.

Then the wavefunction in the momentum representation is

φ0(p) =

√
�α0

π

1

p2 + �2α2
0

.

It follows[38] that T̄ = p2/2m = ∞ and Ū = −∞ (T̄ + Ū = E0).

We should make several comments:

1) The zero-range potential has an attractive character independently of the sign
of α0. The case of α0 < 0 corresponds to a shallow well that does not bind the
particle. However, two or more such wells situated close to each other may lead to
the formation of a bound state. See Problem 11.28.

2) The parameter α0 connected to the scattering length, a0, and for the zero-range
potential: a0 = 1/α0. See Problem 13.20.

[37] Such a “potential”, which acts only on a particle with the angular momentum l = 0, models a
potential well U(r) with a finite radius rS , which has a shallow (possibly virtual) level with the
energy ε0 � �2/mr2S . In this case, the properties of these states with the angular momentum l = 0

and energy E � �2/mr2s depend weakly on the explicit form of the potential U(r). Applications of
zero-range potentials in atomic and nuclear physics are considered in Chapters 11 and 13.

[38] The value T̄ = ∞ also follows from the condition �ψ0(r) ∼ �r−1 = −4πδ(r) as r → 0.
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3) The limiting case α0 → ±∞ corresponds to “turning off” a zero-range potential.

4) Note the following property of (1) that arises for zero-range potentials: there is no
dependence on the particle energy. Compare with Problem 9.14.

Problem 4.11

Determine the energy spectrum of a particle moving in a combined field of an infinitely
deep spherical potential well with radius a and a zero-range potential (z.r.p.) at the
point r = 0. Compare your results with the spectra for the well and with the z.r.p.
separately. Note that the former spectrum may be modified under the influence of the
z.r.p.

Solution

The energy spectrum of states with l �= 0 is the same as in a single well. See Problem
4.9 b.

For l = 0, the solution of the Schrödinger equation satisfying the boundary con-
dition ψ(a) = 0 is of the form ψ(r) = 1

rA sin k(r − a). As r → 0, its asymptote is
ψ(r) ≈ −A sin ka (r−1 − k cot ka). By comparing this with the relation that defines
a z.r.p., see Eq. (1) from Problem 1.40, we obtain the equation determining the s-level
spectrum:

ka cot ka = α0a, k =
√

2mE/�2. (1)

When α0 = ±∞ we have ka = (nr + 1)π which gives the well spectrum (see Problem
4.1). When a = ∞, in the case α0 > 0 we have k0 = iα0, i.e., E0 = −�

2α2
0/2m, the

level in an isolated z.r.p.

Some conclusions from the equation obtained are:

1) In the case where |α0a| � 1 and ka � |α0a| (the levels are not highly excited),
well levels have only a small shift due to the z.r.p. We can write ka = (nr + 1)π + ε

where |ε| � 1, and from (1) we get[39] Enr0 ≈ E
(0)
nr0

(1 + 2/α0a). If α0 > 0 then the
level E0 that exists in the z.r.p. also “feels” a slight shift that is equal to

ΔE0 ≈ −4e−2α0aE0.

2) We have a totally different situation if |α0a| ≤ 1. The energy of a level (real or
virtual) existing in z.r.p. is of the order of the lower-energy levels of the well, and
as is seen from (1), the particle spectrum for the combined action of the z.r.p.
and the well is drastically different from the spectra of either the isolated z.r.p. or
the well: a reconstruction of the spectrum takes place. of the spectrum appears.
In particular, for α0 = 0 (when there is a level with zero binding energy in z.r.p.)

[39] This result corresponds to perturbation theory with respect to the scattering length. Compare with
Problem 4.29.
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the spectrum has the form Enr0 = π2
�
2(nr+1/2)2

2ma2 . This formula also describes the
energy spectrum of the highly excited levels for arbitrary values of α0.

Problem 4.12

Investigate the bound states of a particle in a separable potential which is defined
as an integral operator (compare with Problem 2.19) with the kernel U(r, r′) =
−λf(r)f∗(r′), where f(r) → 0 at r → ∞. Consider the case U(r, r′) = − λ

rr′ e
−γ(r+r′)

(Yamaguchi potential).

Solution

1) It is convenient to solve the Schrödinger equation using the momentum represen-
tation. Compare with Problems 2.19 and 1.41.

p2

2m
φ(p)− λg(p)

∫
g∗(p′)φ(p′)d3p′ = Eφ(p), (1)

g(p) =
1

(2π�)3/2

∫
f(r)e−ipr/�dV.

From this, we see that the potential considered acts only on a particle with l = 0
(the wavefunction is spherically symmetric). The Problem then can be solved using
the same methods as in Problem 2.19. For example, the energy spectrum of the
bound states can be used here using the substitution, |g(p)|2 → 4πp2|g(p)|2η(p)
where η(p) is the Heaviside step function. The equation for the energy spectrum
takes the form

2mλ

∞∫
0

4πp2|g(p)|2dp
p2 − 2mE

= 1. (2)

2) For the Yamaguchi potential, we have f = e−γr/r, g(p) =
√
2�/π(p2 + �

2γ2)−1.
We calculate the integral to obtain

(�γ +
√
2m(−E) )2 =

4πmλ

γ
. (3)

As is seen, a bound state exists only in the case λ > λ0 ≡ �
2γ3/4πm, and its energy

is given by

E0 ≡ −�
2κ2

0

2m
= −�

2γ2

2m

[√
λ

λ0
− 1

]2

. (4)
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The normalized wavefunctions in the momentum and coordinate representations are

φ0(p) =

√
�2κ0γ(γ + κ0)3

π(p2 + �2κ2
0)(p

2 + �2γ2)
,

ψ0(r) =

√
κ0γ(γ + κ0)

2π(γ − κ0)2
e−κ0r − e−γr

r
.

Problem 4.13

Consider the bound s-states of a particle in a δ-potential of the form U(r) =
−αδ(r − a) by solving the Schrödinger equation in the momentum representation.

Solution

The Schrödinger equation in the momentum representation is

p2

2m
φ(p) +

∫
Ũ(p− p′)φ(p′)d3p′ = Eφ(p), (1)

Ũ(q) =
1

(2π�)3

∫
U(r)e−iqr/�dV.

Compare with Problem 2.17. For a δ-potential we have

Ũ(q) = − αa

2π2�2q
sin

(aq
�

)
.

Since for l = 0 the wavefunction is angle-independent, (1) becomes(
p2

2m
− E

)
φ(p) =

αa

π�2

∫ ∫
sin(a

√
p2 + p̃2 − 2pp̃ cosϑ/�√

p2 + p̃2 − 2pp̃ cosϑ
φ(p̃)p̃2 sinϑdϑdp̃. (2)

After the integration with respect to ϑ, we obtain

(
p2

2m
− E

)
φ(p) =

2α

π�p
sin

(pa
�

) ∞∫
0

sin

(
p̃a

�

)
φ(p̃)p̃dp̃. (3)

It follows that

φ(p) =
4mαC sin(pa/�)

π�p(p2 − 2mE)
, C =

∞∫
0

sin
(pa
�

)
φ(p)pdp. (4)

The condition for the compatibility of these expressions leads to an equation for the
s-level energy spectrum (E = −�

2κ2/2m):
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4mα

π�

∞∫
0

sin2(pa/�)dp

p2 − 2mE
= 1, or

mαa

�2
(1− e−2aκ) = aκ. (5)

The approximate solution of (5) is given in Problem 4.8 a. See also Problem 2.18.
Notice that the bound state only exists when mαa/�2 > 1/2.

Problem 4.14

Find the solution of the Schrödinger equation from the previous problem with the
boundary condition φ(p) = 0 for p ≤ p0, p0 > 0.

Prove that in this case and in a well of an arbitrary depth, there exists a bound
state, so that the particle is localized in a bounded region.[40] Find the bound state
energy for a shallow well.

Solution

The solution can be obtained along the same lines as in the previous problem. But we
should take into account the following two facts: 1) Due to the condition φ(p) = 0 for
p ≤ p0 in Eqs. (2)–(5) from the previous problem, the lower limit of the integration
with respect to p must be equal to p0. 2) The bound state of the particle now has the
energy E < E0 = p20/2m instead of E < 0, and satisfies the equation

4mα

π�

∞∫
p0

sin2(pa/�)dp

p2 − 2mE
= 1. (1)

We assume that p0 �= nπ�/a and α > 0. Since the left-hand side of (1) increases
monotonically from zero as E → −∞, to +∞ as E → E0, then for any well parameters
there is only one bound s-state with energy E < E0.

Let us consider two limiting cases. 1) In the case wheremα/� � p0, �/a (deep well),
from (1) it follows[41] that E0 ≈ −mα2/2�2 as in the case of a one-dimensional δ-well.
See Problems 2.7 and 4.8. 2) In the opposite limiting case, mαa/�2 � 1 (shallow well),
the level E → E0; the value of the integral is given by

[40] The formation of a bound state in this problem with an arbitrary small attraction is the essence of
the Cooper pairing, which is the basis of the microscopic mechanism for superconductivity formation.

[41] In this case, the dominant contribution to the integral in (1) comes from the region p ∼ √
2mE ∼

mα/�. For the approximate calculation of the integral, we replace the rapidly oscillating sine square
by its mean value equal to 1/2 and put the lower limit of the integration, p0, equal to zero; the

integral is equal to π/4
√
2mE.
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∞∫
p0

sin2(pa/�)dp

p2 − p20 + 2mε
≈ sin2

(p0a
�

) ∞∫
p0

dp

p2 − p20 + 2mε
≈ sin2(p0a/�)

2p0
ln

4E0

ε
. (2)

Here ε = E0 − E > 0 is the particle binding energy. From (1) and (2) with ξ � 1, we
have

ε ∼ E0 exp

{
−πp0a

2ξ�
sin2(p0a/�)

}
. (3)

The exact determination of the factor E0 in (3) requires a more involved calculation
of the integral. As ξ → 0, the binding energy goes to zero exponentially ∝ e−c/ξ.

Problem 4.15

Determine the energy levels and the normalized wavefunctions of the discrete spectrum
in a one-dimensional potential of the form: U(x) = −α/x for x > 0 and U(x) = ∞ for
x < 0, by solving the Schrödinger equation in the momentum representation.

Using the results obtained, find the normalized wavefunctions of s-states in the
momentum representation for the Coulomb potential U(r) = −α/r.

Solution

1) We first write the Schrödinger equation for U(x) = −α/x for the semi-axis x � 0,
with the boundary condition ψ(0) = 0, in the form of an equation for the entire axis,
which for x � 0 is equivalent to the initial equation and for x < 0 automatically
enforces the condition ψ(x) ≡ 0:(

p̂2

2m
− α

x
− E

)
ψ(x) = − �

2

2m
ψ′(0+)δ(x). (1)

This works because ψ(0−) = ψ(0+) = 0 and ψ′(0−) = 0 (compare with Problem
2.6) and we have ψ(x) ≡ 0 for x ≤ 0. Using the result of problem 1.40, (1) can be
written in the momentum representation as

p2

2m
φ(p)− iα

�

∞∫
p

φ(p′)dp′ − Eφ(p) = − �
2

2
√
2π� m

ψ′(+0). (2)

We obtain an equation with separable variables by differentiating (2) with respect
to p. Its solution has the form (E < 0):

φ(p) =
C

p2 + 2m|E| exp
{

−2imα√
2m|E| � arctan

p√
2m|E|

}
. (3)
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The condition ψ(0) = (2π�)−1/2
∞∫

−∞
φ(p)dp = 0 determines the energy spectrum:

sin
πmα√
2m|E| � = 0 and En = − mα2

2�2(n+ 1)2
, n = 0, 1, . . . (4)

For the normalization of wavefunction (3) we should choose

C =

√
2

π

(mα

�
(n+ 1)

)3/2

.

2) In order to use the one-dimensional results above for the case of the s-states in the
Coulomb potential, we use the wavefunctions in coordinate representation:

ψnr00(r) =
1√
4π

ψnr
(r)

r
.

See Problem 4.1. Taking this to the momentum representation, we obtain

φnr00(p) =
1

(2π�)3/2

∫
ψn00(r)e

−ip·r/�dV =

i√
8π2� p

∞∫
0

ψnr
(r)

(
e−ipr/� − eipr/�

)
dr = i

φnr
(p)− φnr

(−p)√
4π p

. (5)

The φnr
(p) are given by (3) and (4) with n ≡ nr. Using the equation

exp(i arctanϕ) =
1√

1 + ϕ2
+ i

ϕ√
1 + ϕ2

,

we rewrite (5) to be (omitting the phase multiplier (−1)):

φnr00(p) =

√
2

πp

p
3/2
nr

p2 + p2nr

sin

[
2(nr + 1) arctan

(
p

pnr

)]
, pnr

=
mα

�(nr + 1)
. (6)

For nr = 0 and α = e2, this gives the result of Problem 4.6 c.

Problem 4.16

Find the behavior of the discrete state wavefunction, φnrlm, in the momentum
representation as p → 0.



134 Exploring Quantum Mechanics

Solution

We have the relation∫
e−ikrn·n′

Ylm(n′)dΩn′ = (−i)l2π

√
2π

kr
Jl+1/2(kr)Ylm(n), (1)

following from the known expansion of the plane wave as a series of the Legendre
polynomials. We use Eq. (III.6) and the asymptotic form of the Bessel function Jν(z)
for z → 0, to obtain

φnrlm(p) =
1

(2π�)3/2

∫
e−ip·r/�ψnrlm(r)dV ≈

p → 0
Clp

lYlm(p/p), (2)

Cl =
(−i)l

2l+1/2Γ(l + 3/2)�l+3/2

∞∫
0

rl+2Rnrl(r)dr.

Compare the result obtained, φl ∝ pl as p → 0, with the known relation ψl ∝ rl as
r → 0 in the coordinate representation.

Problem 4.17

Prove that the asymptotic form of the s-state wavefunction in the momentum repre-
sentation and for p → ∞ has the form

φnr00(p) ≈ −2(2π�)3/2mψnr00(0)
Ũ(p)

p2
, (1)

where ψ is the state’s wavefunction in the coordinate representation and

Ũ(p) =
1

(2π�)3

∫
e−ipr/�U(r)dV

is the Fourier component of the potential. Assume that Ũ(p) decreases at p → ∞ as
a power law, Ũ(p) ∝ p−n with n > 1.

Solution

An analysis of the Schrödinger equation in the momentum representation,

p2

2m
φ(p) +

∫
Ũ(|p− p′|)φ(p′)d3p′ = Eφ(p), (2)

shows that for Ũ(p) ∝ p−n as p → ∞ with n > 1, the wavefunction, φ(p), decreases
more rapidly than Ũ(p). Therefore, the main contribution to the integral in (2) is
given by the integration region |p′| ≤ �/a, where a is the radius of the potential.
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Therefore, by factoring Ũ(p− p′) outside the integral sign with[42] p′ ≈ 0 and using
the relation between wavefunctions ψ(r) and φ(p), we obtain asymptote (1) for the
s-states.

We illustrate this result for the Coulomb potenial, U = −α/r. According to Eq.
(6) from Problem 4.15, we have (in the Coulomb units m = � = α = 1)

φnr0(p) ≈ (−1)nr23/2
(
π(nr + 1)3/2p4

)−1

while ψnrs(0) = (π(nr + 1)3/2)−1/2 and Ũ(p) = (2π2p2)−1. The relation (1) is fulfilled
up to a phase.

Problem 4.18

Show that the previous problem may be extended to describe a state with an arbitrary
angular momentum l:

φnrlm(p) ≈ −2(2π�)3/2(2i�)lmR̃nrl(0)Ylm

(
p

p

)
pl−2 ∂l

∂(p2)l
Ũ(p), (1)

where R̃nrl(r) is related to the wavefunction in the coordinate representation by
ψnrlm(r) = rlR̃nrl(r)Ylm

(
r
r

)
.

Solution

1) We first transform Ũ(p) to the form (� = 1)

Ũ(p) =
1

4π2ip

∞∫
−∞

reiprU(|r|)dr. (2)

Note that the function U(|r|), which is an even extension of U(r) in the region r < 0,
is an analytical function of r and has a singular point at r = 0. The singularity of
U(r) is subject to the condition U(r)r2−ε → 0 as r → 0 where ε > 0. For example,
for U = α/r2, we have Ũ = α/4πp. If we write a bound state wavefunction for such
a potential in the form

ψnrlm(r) = rlYlm(r/r)R̃nrl(r),

then R̃nrl(0) = const �= 0 and R̃nrl(0) < ∞.

2) The singularity at the point r = 0 manifests itself in the radial wavefunction
R̃nrl(r). It is important that the singularity in R̃nrl(r) is weaker than that in
the potential. This comes from the Schrödinger equation. Consider for example the
singular part of U(r) in the form U (s)(r) ≈ αrν , with ν > −2 and is not an even

[42] It is important that the asymptote of Ũ(p) does not contain a rapidly oscillating factor of the form
sin(αpk) with k � 1. See the following problem.
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integer. Then, the singular part of the radial function (see Problem 4.19) has the
form

R̃
(s)
nrl

(r) ≈ 2mα

(ν + 2)(ν + 2l + 3)
R̃nrl(0)r

ν+2

and goes to zero when r → 0 unlike U(0).

3) For further transformations it is convenient to write the spherical function in the
form (see Problem 3.41)

rlYlm(n) = εi...n(m)xi . . . xn,

where εi...n(m) is a completely symmetric tensor of the lth rank with a trace equal
to zero, εii...n(m) = 0. To obtain the desired asymptote, we should multiply the
both sides of the Schrödinger equation(

− 

2m

− Enrl

)
ψnrlm(r) = −U(r)ψnrlm(r)

by (2π)−3/2 exp(−ip · r), and integrate with respect to coordinates. We obtain(
p2

2m
− Enrl

)
φnrlm(p) = −εik...n(m)

(2π)3/2

∫
e−ip·rxixk . . . xnU(r)R̃nrl(r)dV =

− il

(2π)3/2
εik...n(m)

∂

∂pi
. . .

∂

∂pn

∫
e−ip·rU(r)R̃nrl(r)dV. (3)

As p → ∞, the integral in (3) is determined by the singularity in the function
U(r)R̃nrl(r) at the point r = 0 (to be more precise, in its even extension, as in (2)).
The most singular part of this function is contained in U(r). So we factor R̃nrl

outside the integral sign in (3) at the point r = 0, and note that

∂Ũ(p)

∂pi
= 2pi

∂Ũ(p)

∂p2
.

This relation, along with the fact that the trace of the tensor ε1...n is equal to zero,
give the wavefunction asymptote as in Eq. (1).

4) Putting everything together, we see that this result could be easily generalized to
the case where the singular points of the odd potential extension are r = ±a on the
real axis. This would correspond to different potentials with distinct boundaries or
kinks. In this case, we should make a change as follows: R̃nrl(0) → R̃nrl(a).

However, despite the similarities of the asymptotes in these cases, there are
significant differences. For any critical point of the form r = ±a �= 0, the Fourier
component Ũ(p) contains a rapidly oscillating factor of the form sin(αp). Its
existence leads to fact that all derivatives of Ũ(p) decrease as Ũ(p) does. And
so the wavefunctions corresponding to different values of l for p → ∞ all decrease
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in the same fashion. In contrast with the critical point at r = 0, the wave functions
for states with larger angular momentum, l, decrease faster.

Problem 4.19

A particle moves in a potential which for r → 0 has the form U(r) ≈ α/rs with s < 2.
In this case, the radial wavefunction of the state with a given value l has the form
Rnrl(r) ≈ Cnrlr

l. Find a correction to this expression in the next order in 1/r.

Solution

Omitting the terms with U and E in Eq. (IV.2) we easily obtain the asymptote:

Rnrl(r) ≈ R
(0)
nrl

(r) = Cnrlr
l as r → 0.

To find the correction, R
(1)
nrl

(r), we use the equation

R
(1)
nrl

′′ +
2

r
R

(1)′

nrl
− l(l + 1)

r2
R

(1)
nrl

− 2mα

�2
Cnrlr

l−s = 0.

Therefore,

R
(1)
nrl

=
2mα

(2− s)(2l + 3− s)�2
Cnrlr

l+2−s. (1)

Problem 4.20

Find the Green function, GE(r, r
′), of a free particle with energy E < 0 which vanishes

as r → ∞. Using this Green function, write the Schrödinger equation for the discrete
spectrum states in a potential U(r) that vanishes as r → ∞ in the form of an integral
equation.

Solution

The Green function obeys the equation

ĤGE ≡ �
2

2m
(−
+ κ2)GE(r, r′) = δ(r− r′). (1)

We use κ =
√−2mE/�2 > 0. From the considerations of symmetry, it must be a

function of the form GE = f(|r− r′|). We see that for r �= r′, equation (1) and its
solution become (

d2

dr2
− κ2

)
rf(r) = 0, f(r) = C

e−κr

r
. (2)

An exponentially increasing term in the expression for f(r) is omitted. The relation

(1/r) = −4πδ(r) allows us to obtain the value of C in (2) and the final expression



138 Exploring Quantum Mechanics

for GE :

GE(r− r′) =
m

2π�2
e−κ|r−r′|

|r− r′| . (3)

We can use this Green function to write the Schrödinger equation for the discrete
spectrum states in the form of the integral equation. Compare with Problem 2.20.

ψE(r) = −
∫

GE(r, r)U(r′)ψE(r
′)dV ′ = − m

2π�2

∫
e−κ|r−r′|

|r− r′| U(r′)ψE(r
′)dV ′. (4)

Problem 4.21

For the three-dimensional case of a particle in the attractive potential U(r) ≤
0 (U(r) → 0 as r → ∞), bound states do not always exist. Prove that the inequality

∞∫
0

r|U(r)|dr � �
2

2m
(1)

is a necessary condition for their existence. Compare this condition with the exact
condition for existence of a discrete spectrum in a rectangular potential well (see
Problem 4.1), a δ-potential, and an exponential well (see Problem 4.8). See also
Problem 4.32.

Solution

We apply Eqn. (4) from the previous problem to the ground state with E0 < 0 (we
assume that a bound state does exist). The corresponding wavefunction, ψ0(r), is
spherically symmetric (l = 0) and, since it has no zeros, we may consider ψ0(r) � 0.
So in the equation

ψ0(r) =
m

2π�2

∫
e−κ0|r−r′|

|r− r′| [−U(r′)]ψ0(r
′)dV ′, (2)

the integrand is also non-negative.

We choose |r| = r0, where the function ψ0(r) takes its maximum value, and make
the substitution ψ0(r

′) → ψ0(r). If we also omit the exponent (this omission cannot
decrease the value of the integral), then we obtain
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1

4π

∫ |U(r′)|
|r− r′| (r

′)2dΩ′dr′ � �
2

2m
. (3)

the integration over the angles (we choose the polar axis along the vector r) gives[43]∫
dΩ′

|r− r′| = min

{
4π

r
,
4π

r′

}
≤ 4π

r′

and we obtain the problem statement. We can see from Problem 4.1 that the result is
analogous to the result of Problem 2.25 for a one-dimensional motion.

For the rectangular well, this necessary condition for a bound state existence takes
the form ξ ≡ ma2U0/�

2 � 1 while the exact condition is ξ � π2/8 ≈ 1.24. For the
δ-well, this necessary condition coincides with the exact result. For the exponential
potential well the necessary condition is ξ ≡ mα2U0/�

2 � 1/2, while the exact result
is ξ � 0.72.

Problem 4.22

Show that the fulfilment of the following inequality

m

2�2

⎧⎨⎩
∞∫
0

U(r)

[
1− exp

(
−2

�

√
2mε0r

)]
dr

⎫⎬⎭
2

� ε0 (1)

is a necessary condition for the existence of a particle bound state with the binding
energy ε0 in an attractive central potential U(r) ≤ 0, where U(r) → 0 as r → ∞. As
ε0 → 0, this condition corresponds to the result of the previous problem.

Solution

First we perform the integration over the angles of the vector r′ for Eqn. (2) from the
previous problem. We choose the direction of r as the polar axis. We obtain∫

exp(−κ0

√
r2 + r′2 − 2rr′ cos θ′√

r2 + r′2 − 2rr′ cos θ′
dΩ′ =

2π

κ0rr′
[
e−κ0|r−r′| − e−κ0|r+r′|

]
=

2π

κ0rr′
e−κ0|r−r′|

(
1− e−κ0(|r+r′|−|r−r′|)

)
≤ 2π

κ0rr′
(1− e−2κ0r

′
).

Similarly to the previous problem (for the function rψ0(r)), we obtain the inequality

∞∫
0

|U(r)|(1− e−2κ0r)dr � �
2κ0

m
. (2)

[43] Since the integral describes an electrostatic potential created by a sphere of radius r′ which is
charged with the constant surface charge density σ0 = 1, we can obtain the value of the integral
without calculations.
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This is equivalent to Eq. (1) (with ε0 = �
2κ2

0/2m).

Problem 4.23

Find the Green function, Gl,0(r, r
′), of the radial Schrödinger Eq. (IV.5) for a free

particle with E = 0 on the interval [a, b]. In this case, 0 ≤ a < b ≤ ∞.

It corresponds to the equation

ĤlGl,E=0 ≡ − �
2

2m

[
∂2

∂r2
− l(l + 1)

r2

]
Gl,0(r, r

′) = δ(r − r′) (1)

and boundary conditions Gl,0(a, r
′) = Gl,0(b, r

′) = 0.

Solution

The solution of Eq. (1) that satisfies the boundary conditions and is continuous at the
point r = r′ has the form

Gl,E=0(r, r
′) = C · (abrr′)−l ·

{(
b2l+1 − r′2l+1

) (
r2l+1 − a2l+1

)
, r < r′(

a2l+1 − r′2l+1
) (

r2l+1 − b2l+1
)
, r > r′ (2)

The value

C =
2m

(2l + 1)�2
albl

b2l+1 − a2l+1
(3)

follows from the condition of the jump of the derivative ∂Gl,0/∂r at the point
r = r′: δG′

l,0 = −2m/�2. Compare with Problem 2.6.

Relations (2) and (3) determine the form of the Green function. For the case a = 0
or b = ∞, these relations are simplified.

Problem 4.24

Prove that the fulfilment of the inequality

∞∫
0

r|U(r)|dr � (2l + 1)nl
�
2

2m
(1)

is a necessary condition for there to exist nl levels of a particle with angular momentum
l in a short-range attractive potential U(r) ≤ 0, U(r) → 0 as r → ∞.

Solution

Let us consider the emergence of the nlth bound state with the angular momentum l

and denote the state by ψ
(0)
nrlm

= 1
rχ

(0)
nrl

Ylm, with energy Enrl = 0. Here nr = nl − 1.

The radial function, χ
(0)
nrl

(r), has (nl + 1) zeroes, including zeroes at r = 0 and r = ∞,

and satisfies Eq. (IV.5). Let a and b be neighboring zeroes of χ
(0)
nrl

(r). Recalling the
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result of the previous problem, we see that on the interval [a, b], χ
(0)
nrl

satisfies the
integral equation

χ
(0)
nrl

(r) =

b∫
a

Gl,0(r, r
′)
[
−U(r′)χ(0)

nrl
(r′)

]
dr′. (2)

On this interval, the function χ
(0)
nrl

does not change its sign, and we will consider

χ
(0)
nrl

� 0. We should note that the Green function from Problem 4.23 is positive and
takes its maximum value at r = r′. So the function under the integral sign in (2) is
non-negative. We choose in (2) the value r = r0 corresponding to the maximum of the

function χ
(0)
nrl

on the interval [a, b] and replace χ
(0)
nrl

(r′) in the integrand by χ
(0)
nrl

(r0)
(this can only increase the value of integral). We obtain

b∫
a

Gl,0(r0, r
′)|U(r′)|dr′ � 1. (3)

Now we replace Gl,0 by its maximum value, so that r0 → r′ in this function. Taking
into account (2) and (3) from the previous problem, we obtain

Gl,0(r
′, r′) � 2mr′

(2l + 1)�2
. (4)

Putting the result from (4) into (3), we have

b∫
a

r(−U(r))dr � (2l + 1)�2

2m
, (5)

and since there are nl intervals on the semi-axis (0,∞), on which χ
(0)
nrl

does not change
its sign, and on each of them the inequality analogous to (5) is valid. Then by taking
the sum over all such integrals we can obtain the statement of the problem.

4.2 Low-energy states

Problem 4.25

Extend the result of Problem 2.13 to the case of particle s-states in a spherically-
symmetric field. Find the conditions of the existence and emergence of new discrete
s-levels in the following potentials:

a) U = − α

r4
for r > a and U = ∞ for r < a (see Fig. 4.1);

b) U = − α

(r + a)4
, a > 0;
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c) U = − U0a
4

(r2 + a2)2
;

d) U = − α

rs
for r > a and U = ∞ for r < a, s > 2 (see Fig. 4.1);

e) U = − α

rs
for r < a and U = 0 for r > a, 0 < s < 2 (see Fig. 4.2).

Fig. 4.1

Fig. 4.2
Solution

The condition for the emergence of a new Nth bound state with l = 0 with respect to
the depth of the potential well corresponds to the existence of a zero-energy solution
to the Schrodinger equation. This solution is bounded at finite values of r and has the
asymptote ψ ≈ C/r as r → ∞ (more generally for a completely arbitrary potential,
ψ ≈ A+ C/r as r → ∞). We should look for solutions that satisfy these conditions.

a) Eq. (IV.2) for U = −α/r4 in the case l = 0 and E = 0 can be simplified by making
the substitution x = 1/r:

d2R

dx2
+ α̃R = 0, α̃ =

2mα

�2
. (1)
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Its solution, due to the condition r → ∞, should be chosen in the form R =

B sin
(√

α̃/r
)
. The condition R(a) = 0 determines the desired values of the poten-

tial parameters by
√
α̃/a = πN , or

mα

�2a2
=

π2

2
N2. (2)

b) Taking into account Eq. (IV.5) and its boundary conditions, we see that for the
s-level, spectra in the potentials U1(r) = f(r + a) and U2(r) = f(r) for r > a > 0
and U2(r) = ∞ for r < a coincide (note that this is not so for l �= 0). Therefore, the
parameters of the potential are given by (2).

c) Equation (IV.5) for this potential in the case l = 0 and E = 0 can be transformed
using the substitutions w = χ/

√
r2 + a2 and x = arctan(r/a). It takes the form

d2w

dx2
+ ξ2w = 0, ξ =

√
1 + 2mU0a2/�2.

Due to the condition χ(r = 0) = w(x = 0) = 0, the solution must be of the form
w = C sin ξx, or

ψ = C

(
1 +

a2

r2

)1/2

sin
(
ξ arctan

r

a

)
. (3)

As r → ∞ we have arctan(r/a) ≈ π/2− a/r, so

ψ ≈ C

[
sin

πξ

2
− ξa

r
cos

πξ

2

]
, r → ∞,

so the asymptotic condition (ψ ∝ 1/r) demands sin(πξ/2) = 0 and leads to the
relation ξ/2 = N . The wavefunction here, (3), has (N − 1) zeros for finite r.

For the potentials d and e, the solution of (IV.5) with l = 0 and E = 0, according
to A.II.11, is described in terms of cylindrical functions. Below, we present only the
final results. Here xν,N is the Nth zero of the Bessel function Jν(x), disregarding a
zero at x = 0.

d)

2

s− 2

(
2mα

�2as−2

)1/2

= xνN , ν =
1

s− 2
(4)

The wavefunction at the threshold of emergence of a new level is ψ =
cJν(βr

−1/2ν)/
√
r for r > a, with β = ν

√
8mα/�2.

When s = 4 we have ν = 1/2, and (4) coincides with (2).

e)

2(ν + 1)

(
2mαa2−s

�2

)1/2

= xνN , ν =
1

2− s
(5)
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The wavefunction at the threshold of emergence of a new level emergence is ψ(r) =
cJν+1(βr

1/2(ν+1))
√
a/r for r < a, and ψ(r) = cJν+1(βa

1/2(ν+1))a/r for r < a.
In the case s = 1 (the “truncated” Coulomb potential), from (5) we have

mαa/�2 = x2
0N/8. Since the zero of the relevant Bessel function is x01 ≈ 2.40, we

find the condition for bound-state existence in such a potential: mαa/�2 � 0.72.

Problem 4.26

Discuss the conditions for the existence and emergence of new bound states with non-
zero values of angular momentum by increasing the depth of the potential well. Use
the Schrödinger equation for E = 0. What is the difference between the wavefunctions
with l = 0 and with l �= 0 at the threshold of emergence? Consider the potentials: a)
U = −αδ(r − a); b) U = − α

r4 for r > a and U = ∞ for r < a (see Fig. 4.1).

Solution

A new bound state with an arbitrary angular momentum l emerges if the Schrödinger
equation with E = 0 has a solution whose radial function has an asymptote of the
form R ≈ Cr−l−1 as r → ∞ (for more general states, the asymptote has the form R ≈
Arl + C/rl+1). Compare with Problem 4.25. Here in the case l �= 0, the wavefunction
at the threshold is normalized to unity, i.e., it corresponds to a truly bound state.

a) The radial wavefunction at the threshold of emergence of a new level (i.e.,
E = 0) according to (IV.5) has the form χ = Arl+1 for r < a and χ = C/rl for r >
a. Matching the solutions at r = a (see 2.6) gives us C = Aa2l+1 and 2mαa/�2 =
2l + 1, which is the condition of emergence of a unique discrete level with the
angular momentum l as the δ-well deepens. We should note that to normalize the
wavefunction to unity, it is necessary to choose

C2 = A2a4l+2 =
(2l − 1)(2l + 3)

2(2l + 1)
a2l−1.

b) After substituting x = 1/r, Eq. (IV.2) with U = −α/r4 and E = 0 becomes(
d2

dx2
+ α̃− l(l + 1)

x2

)
Rl = 0, α̃ =

2mα

�2
. (1)

Its solution, R = CJl+1/2

(√
α̃/r

)
/
√
r for r > a, gives the radial wavefunction at

the threshold of emergence. The condition R(a) = 0 leads to the relation
√
α̃/a =

xl+1/2,N , which determines the condition of the level’s existence. Here xl+1/2,N is
the Nth root of the Bessel function Jl+1/2(x).
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Problem 4.27

The parameters of central potential[44] U0(r) are chosen such that there exists a
discrete spectrum state with angular momentum l = 0 and energy E = 0. The wave-
function, ψ0 = χ0(r)/

√
4πr, of such a state (at the moment of level emergence) is

known and normalized, for concreteness, by the condition that χ0(r) → 1 as r → ∞.
Show that the shift of this level, δE0, due to a small perturbation, δU(r) ≤ 0, is
given by

δE0 ≈ −2m

�2

⎡⎣ ∞∫
0

δU(r)χ2
0(r)dr

⎤⎦2

. (1)

Apply this result to the potential U = −αδ(r − a) and compare it with the exact
solution obtained in Problem 4.8 a.

Solution

Compare the Schrödinger Eq. (IV.5) for the potential U0(r) with E = 0 and for the
potential U0 + δU with δE0 = −�

2κ2/2m:

−χ′′
0 + Ũ0(r)χ0 = 0, −χ′′ + (Ũ0(r) + δŨ(r) + κ2)χ = 0. (1)

We use Ũ(r) ≡ 2mU(r)/�2. By multiplying the first equation by χ(r) and the second
by χ0(r) and then substracting term by term, we obtain

d

dr
(χ0χ

′ − χ′
0χ) = (δŨ(r) + κ2)χχ0. (2)

Integrate (2) over r between r = 0 and r = a, where a is a radius of the potentials U0(r)
and δU(r). Take into account that 1) χ0(0) = χ(0) = 0; 2) χ0(a) = 1 and χ′

0(a) = 0; 3)
χ(r) ≈ χ0(r) for r ≤ a. This last condition essentially determines the normalization of
the wavefunction χ(r), while the normalization of the function χ0(r) is determined by
its asymptote, χ0(r) = 1 for r > a. Here χ(a) ≈ e−κa ≈ 1 and χ′(a) ≈ −κe−κa ≈ −κ,
and as the result of integration we obtain

−κ =

a∫
0

χ(r)χ0(r)δŨ(r)dr + κ2

a∫
0

χ(r)χ0(r)dr. (3)

For the first of the integrals in (3), we may set χ ≈ χ0 and then take a → ∞. The
second integral is ∝ κ2 and can be omitted compared to κ. We obtain

κ ≈
∞∫
0

(−δŨ(r))χ2
0(r)dr.

[44] It is assumed that U ≡ 0 for r > a, where a is radius of the potential. The problem statement
remains for the case of potentials that decrease as r → ∞ faster than ∝ 1/r2. See also Problem
13.49.
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This is equivalent to the expression for the level shift given in the problem statement.

For the δ-potential, the level with E = 0 emerges as α = α0 such that mα0a/�
2 =

1/2. See, for example, Problem 4.26. Here the wavefunction at the threshold of
level emergence has the form χ0 = 1 for r > a and χ0 = r/a for r < a, while
δU = −(α− α0)δ(r − a). Hence the level shift with small α− α0 > 0 is equal to

δE0 ≈ −2m

�2

⎧⎨⎩
∞∫
0

δU(r)χ2
0(r)dr

⎫⎬⎭ = −2m

�2
(α− α0)

2.

This is in accordance with the exact result. See Problem 4.8 a.

Finally, we give another derivation of the equation for the level shift, this time based
on the relation (I.6). We can write the potential in the form U(r) = U0(r) + λδU(r),
with λ � 0. Here the level energy δE0(λ) ≡ −�

2κ2/2m also depends on λ and δE0(λ =
0) = 0. From Eq. (I.6) we have

∂

∂λ
δE0(λ) =

∞∫
0

δU(r)χ2
0(r, λ)dr, (4)

where χ0(r;λ) is a wavefunction normalized to unity. This function is related to χ0(r):

χ0(r;λ) ≈ C(κ)e−κrχ0(r).

As you see, for r ≤ a the function χ0(r;λ) differs from χ0(r) only by a multiplicative
factor (we use e−κr ≈ 1), while for r > 0 we have χ0(r;λ) = C(κ)e−κr (here χ0(r) =
1). To normalize the wavefunction χ0(r;λ) we should choose C2(κ) ≈ 2κ, since the
dominant contribution in the normalization integral comes from the region r ∼ 1/κ �
a, where χ0(r;λ) = C(κ)e−κr. Taking into account everything mentioned above, we
transform (4) to the form:

∂

∂λ
δE0(λ) ≡ −�

2κ

m

∂κ

∂λ
≈ 2κ

∞∫
0

δU(r)χ2
0(r, λ)dr.

By integrating this relation and using κ(λ = 0) = 0, we find

κ(λ) = −2m

�2
λ

∞∫
0

δU(r)χ2
0(r, λ)dr.

Inserting λ = 1 gives the relation for the level shift.
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Problem 4.28

Prove that the main result of the previous problem can be generalized to the case with
l �= 0 is as follows

δEl ≈
∞∫
0

δU(r)
(
χ
(0)
l (r)

)2

dr,

where χ
(0)
l is the wavefunction at the threshold of emergence of a new level(

ψ(0) = χ
(0)
l Ylm/r

)
and is normalized to unity by

∞∫
0

(
χ
(0)
l (r)

)2

dr = 1.

Note that the dependences of the level shift on the perturbation, δEl ∝ δU for l �= 0
and δE0 ∝ −(δU)2 for l = 0, are different. Use the result obtained for the δ-potential
and compare it with the exact solution. See Problem 4.9 a.

Solution

The problem could be solved similarly to the previous one. But now Eqn. (1) of the
latter includes terms with centrifugal energy. Relation (2) remains the same for l �= 0.
By integrating this relation over r between 0 and ∞, we obtain

∞∫
0

χl(r)χ
(0)
l (r)δŨ(r)dr + κ2

∞∫
0

χl(r)χ
(0)
l (r)dr = 0. (1)

We have χl ≈ χ
(0)
l in the region r ∼ a which is significant to the integral. This does

not work as well for the case l = 0 because a divergence appears in the second integral.

Here, taking into account the normalization
∫
(χ

(0)
l )2dr = 1 for the wavefunction χ

(0)
l ,

we immediately find the value κ2. Putting δŨ(r) = 2mU(r)/�2 reproduces the result
for the level shift given in the problem statement.

Note the reasons for the difference in the dependence of level deepening on the
perturbation, δE ∝ δU for l �= 0 and δE ∝ −(δU)2 for l = 0 are as follows: For l �= 0
the state with E = 0 is truly a bound state and corresponds to a wavefunction that
is normalized to unity. For l = 0, the situation is different: the wavefunction is not
normalized. The physical reason for normalization and the lack of it is connected
with the existence of a centrifugal barrier that prevents the particle from escaping to
infinity.

For the δ-well at the threshold of emergence of a single level (with given l), we
have 2mα0a/�

2 = (2l + 1) (see 4.26), and there is a normalized wavefunction at the
threshold. Here δU = −(α− α0)δ(r − a) and the energy of the level for the small
(α− α0) > 0 is equal to

δEl ≈
∞∫
0

δU
(
χ
(0)
l

)2

dr = − (2l − 1)(2l + 3)

2(2l + 1)

(α− α0)

a
, l �= 0,

which coincides with the result of the exact solution. See Problem 4.9 a.
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Note that for l �= 0, the expression for the level shift has a form like the first
term in perturbation theory in the interaction δU(r) (see Eq. (VIII.1)). Furthermore,

since for l �= 0 the wavefunction χ
(0)
l (r) is normalized to unity, then for the region

r ≤ a which gives the main contribution to the level value in the (4), we can set

χl(r, λ) ≈ χ
(0)
l (r). Compare this with l = 0 when the functions χ0(r;λ) and χ0(r) have

different normalization. In the new case, relation (4) from Problem 4.27 immediately
gives the expression for the level shift.

Problem 4.29

Find[45] the shift of the energy levels of a particle in a central field U(r) caused by
a zero-range potential (z.r.p., see Problem 4.10), assuming these shifts to be small
with respect to the unperturbed level spacing. Assume that the spectrum and the
eigenfunctions of the Hamiltonian for the potential U(r) are known. Determine the
condition of applicability of this result. As an illustration, consider its application to
Problem 4.11.

Solution

A zero-range potential causes only s-levels to shift. The normalized radial wavefunction

of an unperturbed state for the small r is R
(0)
n (r) ≈ R

(0)
n (0). Let L be the interval where

we can consider R
(0)
n (r) to be constant. The precise value of L depends on the concrete

form of U(r) and the energy E
(0)
n . In the presence of the z.r.p., according to Problem

4.10, the radial function for small r has the form:[46]

Rn(r) ≈ R(0)
n (0)

(
− 1

α0r
+ 1 + . . .

)
. (1)

This differs greatly from R
(0)
n (r) for r → 0 due to the term ∝ 1/r. But if |α0L| � 1

then for r ∼ L the function Rn(r) differs only slightly from the R
(0)
n (r) (see Fig. 4.3).

This means that the level shift caused by the zero-range potential is small,[47] and

the wavefunctions Rn and R
(0)
n hardly differ from each other for all r � L. This is so,

because after all, this region that provides the main contribution in the normalization
integral.

[45] For the questions discussed in Problem 4.29–31, see also Problems 11.4 and 9.3.

[46] We assume that rU(r) → 0 as r → 0. For more singular potentials, the asymptote (1) is modified
and the boundary condition from Problem 4.10 that determines the z.r.p. cannot be fulfilled. For
example, it is impossible to simulate a strong short-range potential by a zero-range potential in the
presence of Coulomb interaction at small distances, (although, perturbation theory with respect to
the scattering length remains valid).

[47] We should note that Fig. 4.3 corresponds to the value α0 > 0 when in the z.r.p. there exists a discrete

at small distances level with the energy E
(0)
s = −�2α2

0/2m, where |E(0)
s | � |δE(0)

n | ∼ �2/mL2. If
the condition α0L � 1 is not fulfilled, the level energy in the z.r.p. is of the same order of magnitude

as the level spacing δE
(0)
n in the potential U(r). But in this case the levels shifts are as large as the

level spacings, so a reconstruction of the spectrum takes place (see Problems 4.11 and 9.3). Eqs. (4)
in that case cannot be used.
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Fig. 4.3

Now, we address the level shifts. Let χ = rR.

�
2

2m
χ′′(0)
n + (E(0)

n − U(r))χ(0)
n = 0,

�
2

2m
χ′′
n + (E(0)

n +
En − U(r))χn = 0. (2)

Though these equations have the same form, they differ in the boundary condition for

r → 0: without the z.r.p. we have χ
(0)
n ≈ R

(0)
n r ∝ r, while in the presence of the z.r.p.

we have χn ≈ Rnr ≈ const, where Rn(r) is determined by (1). We multiply the first

of Eqs. (2) by χn, the second by χ
(0)
n , and then subtract one from the other term by

term. If we then perform the integration between r = 0 and r = ∞, we obtain

�
2

2m

[
χ′(0)
n χn − χ(0)

n χ′
n

]
|∞0 = 
En

∞∫
0

χ(0)
n (r)χn(r)dr. (3)

The left part here is equal to �
2R

(0)2
n (0)/2mα0. In the right part we can replace χn(r)

by χ
(0)
n (r) (such a substitution does not work for small r, but this region does not

significantly contribute), so the integral value is close to unity. Hence, (3) gives us the
desired expression for the level shift:


En ≈ �
2R

(0)2
n (0)

2mα0
≡ 2π

�
2

m

(
ψ(0)
n (0)

)2

a0. (4)

Here a0 ≡ 1/α0 is the scattering length for z.r.p. See Problem 13.20.

This equation could be applied in case of non-central potentials, U(r). See Problems
4.31 and 8.61.
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Consider the application of (4) to Problem 4.11. Here we have

R(0)
n =

√
2

a

sinκ
(0)
n r

r
≈
r→0

√
2

a
κ(0)
n ,

where κ
(0)
n = π(nr + 1)/a (do not confuse the well radius a with the scattering length

a0) and


En ≈ �
2κ

(0)2
n

maα0
=

2E
(0)
n

aα0
,

which for κ
(0)
n � |α0| coincides with the result of the exact solution. The last inequality,

corresponds to the condition of (4) applicability |α0L| � 1.

Problem 4.30

Show that the generalization of the result of the previous problem to the case of a

weakly bound state, ψ
(0)
n (r), is given by

En ≈ −
[√

−E
(0)
n − 1

α0

√
�2

2m

(
R̃(0)

n (0)
)2
]2

,

where R̃
(0)
n (r) is the radial wavefunction at the threshold of emergence of an s-level

and is normalized by the condition rR̃
(0)
n (r) → 1 at r → ∞.

Solution

The fact that we can use Eq. (4) from the previous problem means that the level
shift is small in comparison with the particle binding energy. But if the unperturbed
state has an anomalously small energy, then we need to make a simple generalization
for the case where the shift is comparable to the binding energy. This generalization
can be deduced from Eq. (3) of problem 4.29 if we take into account the following
circumstances.

First, the wavefunction, R
(0)
n (r), of an unperturbed state in the field U(r) with the

small binding energy is simply related to the wavefunction, R̃
(0)
n (r), at the threshold

of level emergence (compare with Problem 4.27):

R(0)
n ≈

√
2κ

(0)
n R̃(0)

n (r)e−κ(0)
n r, κ(0)

n =

√
−2mE

(0)
n

�2
. (1)

Analogously, the wavefunction of the state perturbed by the z.r.p. for r � L takes the
form

Rn ≈ √
2κnR̃

(0)
n (r)e−κnr, κn =

√
−2mEn

�2
. (2)
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Wavefunctions (1) and (2) are normalized to unity. Using Eq. (3) of the previous
problem, (1) and (2) give us (χ = rR)

En − E
(0)
n

κ
(0)
n + κn

=
�
2

2mα0
(R̃(0)

n (0))2. (3)

To calculate the integral we should note that its value depends strongly on the region of

large r, where the function under the integral sign is ∝ exp
{
−(κ

(0)
n + κn)r

}
. Finally,

we obtain the relation for the level energy given in the problem statement: κn =

κ
(0)
n − R̃

(0)2
n (0)/α0.

For κ
(0)
n � |R̃(0)2

n (0)/α0| the level shift is small, and this result turns into Problem
4.29. As a final note, see that the state considered is truly bound only if κn > 0.
Otherwise, it is a virtual level.[48]

Problem 4.31

A particle is in a field U(r) (with rU → 0 for r → 0) and a zero-range potential located
at the point r = 0 (see Problem 4.10). The particle Green function G0(r, r

′;E) for the
potential U(r) is known. Show that the spectrum of the bound states of this system
can be determined from: [

∂

∂r
(rG0(r, 0;En))

]
r=0

= −mα0

2π�2
. (1)

Obtain from this relation the level shift from problems 4.29 and 11.4:

δEn ≈ 2π�2

m
|ψ(0)

n (0)|2 a0, (2)

where a0 ≡ 1/α0 is the scattering length for the z.r.p., and ψ
(0)
n (r) is the wavefunction

of the unperturbed level in the potential U(r). 
En is its shift caused by the
z.r.p.

Solution

We use the Green function, and the fact that it decreases as r → ∞ and goes as 1/r
as r → 0, and observe that the bound state wavefunction in the potential U(r) in the
presence of a zero-range potential has the form

ψ(r, En) = CnG0(r, 0;En) =
r → 0

Cn
m

2π�2

{
1

r
+A(En) + . . .

}
, (3)

[48] The virtual level in potential U(r) could become real, or the real level could become virtual under
the influence of the z.r.p., depending on the sign and value of α0.
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The normalization coefficient is Cn. The restriction on the potential is important:
rU → 0 for r → 0; otherwise the expansion above is not valid, and using the z.r.p.
approximation is impossible. We compare expansion (3) with the expression defining a
zero-range potential (see Problem 4.10) and obtain the equation for the level spectrum,

A(En) = −α0, (4)

which yields Eq. (2) which was to be derived.

For a free particle, U ≡ 0, (4) takes the form κ = α0. In the case α0 > 0, this
describes a bound state in the zero-range potential. See Problem 4.10.

In the case of large enough α0, the roots of (4) are close to the values E
(0)
n of the

Green-function poles, which corresponds to the spectrum in the isolated potential,
U(r). Using the known expression for the Green function,

GE(r, r′, E) =
∑
m

ψ
(0)
m (r)ψ

(0)∗
m (r′)

E
(0)
m − E

, (5)

we see for r′ = 0, r → 0, and E → E
(0)
n , that it has the form

GEn
(r, 0;En) ≈ m

2π�2
· 1
r
+

|ψ(0)
n (0)|2

E
(0)
n − En

, (6)

Therefore we have A(En) ≈ 2π�2

m
|ψ(0)

n (0)|2
E

(0)
n −En

, and from Eq. (4) we directly obtain the

relation (2) for the level shift, 
En = En − E
(0)
n . See Problem 13.20.

Problem 4.32

For a monotonic attractive potential, U ′(r) � 0 and U(r) → 0 as r → ∞, prove that

2

π�

∞∫
0

√
−2mU(r)dr � 1

is a necessary condition for the existence of a bound state. Compare with Problem
4.21.

Solution

Consider the potential Ũ(r) whose wavefunction at the threshold of emergence of a
bound state, i.e., at E = 0, is

χ0(r) = cos

⎛⎝1

�

∞∫
r

p0(r)dr

⎞⎠ , where p0(r) =
√

−2mU(r). (2)
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This wavefunction corresponds to equation χ′′
0 − (2m/�2)Ũ(r)χ0 = 0 with the

potential

Ũ(r) = U(r)− �U ′(r)
2
√−2mU(r)

tan

⎛⎝1

�

∞∫
r

√
−2mU(r)dr

⎞⎠, (3)

and the condition of the emergence of a first bound state in this potential is[49]

1

�

∞∫
0

√
−2mU(r)dr =

π

2
. (4)

If we write U(r) = Ũ(r) + δU(r), we see that δU(r) � 0, so the potential well U(r) is
less deep than Ũ(r). This proves the statement of the problem.

For a rectangular potential well of the depth U0 and radius a, the consid-
ered condition for the existence of a bound state takes the form U0 � π2

�
2/8ma2,

which coincides with the exact condition. For the exponential well, U(r) =
−U0e

−r/a, we obtain ma2U0/�
2 � π2/32 ≈ 0.31. Compare this with the result of

Problem 4.21.

4.3 Symmetries of the Coulomb problem

Problem 4.33

Consider an electron in the Coulomb potential of a nucleus with charge Ze (the
nucleus is assumed infinitely heavy compared to the electron), i.e., the single-electron
Hamiltonian has the form:

Ĥ =
p̂2

2m
− K

r
,

where m is the electron mass and K = Ze2.

Consider the following operators related to the classical Laplace-Runge-Lenz vec-
tor, M = p×L

m −K r
r (here, L = r× p is the angular momentum):

1. M̂1 = L̂×p̂
m − r/r;

2. M̂2 = p̂×L̂
m −Kr/r;

3. M̂ = 1
2m

(
p̂× L̂− L̂× p̂

)
−Kr/r;

Prove explicitly that the operator, M̂, commutes with the Hamiltonian and check
whether the operators M̂1 and M̂2 do so as well.

[49] This relation provides the boundary condition χ̃0(0) = 0; and χ0(r) → 0 as r → ∞. See Problem
4.25.
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Solution

To evaluate [M̂, Ĥ], we use the following commutation relations:

[ri, rj ] = 0, [p̂i, p̂j ] = 0, [ri, p̂j ] = i�δij , [L̂i, L̂j ] = i�εijkL̂k,

[L̂i, rj ] = εikl[rkp̂l, rj ] = −i�εiklrkδlj = i�εijkrk, (1)

[L̂i, p̂j ] = εikl[rkp̂l, p̂j ] = i�εiklp̂lδkj = i�εijkp̂k.

Now, using the expressions for Ĥ and M̂, we obtain

[M̂, Ĥ] =

[
1

2m
(p̂× L̂− L̂× p̂)−K

r

r
,

p̂2

2m
− K

r

]
.

=
1

4m2

[
(p̂× L̂− L̂× p̂), p̂2

]
− K

2m

{[
(p̂× L̂− L̂× p̂),

1

r

]
+
[r
r
, p̂2

]}
. (2)

We use Eqs. (1) to evaluate the components of commutators in Eq. (2):[
(p̂× L̂)i, p̂

2
]
= εijk[p̂jL̂k, p̂ap̂a] = εijkεklm[p̂jrlp̂m, p̂ap̂a]

= εijkεklmp̂j p̂m([rl, p̂a]p̂a + p̂a[rl, p̂a]) = 2εijkεklmp̂j p̂mδlap̂a

= 2εijkεklmp̂j p̂mp̂l = 0,

since εklm is anti-symmetric in l,m and p̂mp̂l is symmetric. Similarly, we can show
that [(L̂× p̂)i, p̂

2] = 0. Now for the other commutators in Eq. (2), we first need to
evaluate the following (for a general function, f(r)):[

p̂i,
1

r

]
f(r) = −i�

[
∂

∂ri
,
1

r

]
f(r) = −i�

{
∂

∂ri

(
f(r)

r

)
− 1

r

∂f(r)

∂ri

}
= −i�

∂

∂ri

(
1

r

)
f(r) = −i�

ri
r3

f(r),

[ri
r
, p̂2

]
f(r) = −�

2

[
ri
r
,
∂2

∂r2

]
f(r) = −�

2

{
ri
r

∂2f(r)

∂r2
− ∂2

∂r2

(ri
r
f(r)

)}
= 2�2

ri
r3

f(r).

Now, in Eq. (2),[
(p̂× L̂)i,

1

r

]
= εijk

[
p̂jL̂k,

1

r

]
= εijkεklm

[
p̂jrlp̂m,

1

r

]
= εijkεklmrl

(
p̂j

[
p̂m,

1

r

]
+

[
p̂j ,

1

r

]
p̂m

)
= −i�εijkεklmrl

p̂jrm + rj p̂m
r3

= (−i�)2
ri
r3

= −�
2 ri
r3

,
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where we have used εijkεklm = δilδjm − δimδjl and Eqs. (1). Similarly,[
(L̂× p̂)i,

1

r

]
= −(−i�)2

ri
r3

= �
2 ri
r3

.

Hence, we get from Eq. (2):[
M̂i, Ĥ

]
= − K

2m

(
−�

2 ri
r3

− �
2 ri
r3

+ 2�2
ri
r3

)
= 0.

It is also clear from the above that just
[
p̂× L̂, 1

r

]
or

[
L̂× p̂, 1

r

]
alone does not cancel

against
[
r
r , p̂

2
]
. Hence, M̂1 and M̂2 do not commute with the Hamiltonian, while the

operator M̂ does commute with Ĥ.

Problem 4.34

Consider the angular momentum operator, L̂, and the Laplace-Runge-Lenz operator,
M̂, defined in the previous problem and prove that their components satisfy the
following commutation relations:

1. [L̂α, M̂β ] = i�εαβγM̂γ .

2. [M̂α, M̂β ] = −
(

2Ĥ
m

)
i�εαβγL̂γ .

where Ĥ is the Hamiltonian for a particle in the Coulomb potential (see, the previous
problem) and the indices α, β, and γ take the values x, y, and z, and the usual Einstein
rule for summing over repeated indices is used.

Solution

Using the definitions of the operators L̂ and M̂, we have[
L̂α, M̂β

]
=

[
L̂α,

1

2m

(
p̂× L̂− L̂× p̂

)
β

]
−
[
L̂α,K

rβ
r

]
.

We can work it out keeping the indices general, as in the previous problem, but it is
a bit involved, so we are just going to show it for [L̂x, M̂y], and the others will follow
by cyclic permutation.

[L̂x, M̂y] =

[
(yp̂z − zp̂y),

1

2m
(p̂zL̂x − p̂xL̂z − L̂z p̂x + L̂xp̂z)−K

y

r

]
= i

�

2m

(
2z(p̂2x + p̂2y)− p̂z(p̂xx+ p̂yy + xp̂x + yp̂y)

)− i�K
z

r

= i�M̂z.
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Similarly,

[M̂x, M̂y] =

[
1

2m

(
2x(p̂2y + p̂2z)− p̂x(p̂zz + p̂yy + zp̂z + yp̂y)

)−K
x

r
,

1

2m

(
2y(p̂2x + p̂2z)− p̂y(p̂xx+ p̂zz + xp̂x + zp̂z)

)−K
y

r

]
= − i�

m2
(p̂2x + p̂2y + p̂2z)(xp̂y − yp̂x)− i�K

r
(xp̂y − yp̂x)

= −2H

m
i�L̂z.

Problem 4.35

Since [Ĥ, M̂] = 0 (see definitions in the previous two problems), the operator M̂
can not change the energy of an eigenstate of the Hamiltonian with an energy, En.
Restricting the action of the operator to a set of eigenstates with the same energy,

define a new operator, M̂′ =
√

− m
2En

M̂ and also the two operators, Â = 1
2 (L̂+ M̂′)

and B̂ = 1
2 (L̂− M̂′), and prove that

1. [Âα, Âβ ] = iεαβγÂγ .

2. [B̂α, B̂β ] = iεαβγB̂γ .

3. The operators Â and B̂ are generators of a symmetry group of the Coulomb
problem. What is this group?

Solution

From the derivation in the previous problem, we have[
L̂α,M

′
β

]
=

√
− m

2En

[
L̂α, M̂β

]
= i�εαβγM

′
γ ,

[
M ′

α,M
′
β

]
= − m

2En

[
M̂α, M̂β

]
=

m

2En

2H

m
i�εαβγL̂γ = i�εαβγL̂γ .

So, [
Âα, Âβ

]
=

1

4

(
[L̂α, L̂β ] + [L̂α,M

′
β ] + [M ′

α, L̂β ] + [M ′
α,M

′
β ]
)

=
1

4
i�εαβγ

(
L̂γ + M̂ ′

γ +M ′
γ + L̂γ

)
= i�εαβγÂγ .

Similarly for B̂.

The operators L̂ and M̂′ are generators of the SO(3) group. Their direct sum gives

the operators Â and B̂ which are generators of the SO(4) group. This is the symmetry
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group of the Coulomb problem that is responsible for the “accidental degeneracy” of
the energy levels in the hydrogenic atom.

Problem 4.36

This problem focuses on the spectrum-generating group of the hydrogenic atom. Con-
sider again the Coulomb problem as defined above in Problem 4.33, but now focus on
the equation for the radial component, w(r) of the wave function, ψ(r) = 1

rw(r)Y
m
l (n),

which satisfies the following equation:(
rD̂2 +

A

r
+B + Cr

)
w(r) = 0,

where we defined, A = −l(l + 1), B = 2me2/�2, and C = 2mE/�2, and we also intro-
duced an operator notation for the derivative, D̂ ≡ d

dr . Define the following operators:

Γ̂x =
1

2

(
rD̂2 +

A

r
+ r

)
,

Γ̂y = rD̂, and

Γ̂z =
1

2

(
rD̂2 +

A

r
− r

)
,

and prove that they satisfy a set of closed commutation relations. Derive those
commutation relations explicitly.

Solution

First we note the following commutation relations:

[rD̂, r] = r, [rD̂, rD̂2] = −rD̂2, [r, rD̂2] = −2rD̂,

[
A

r
, rD̂

]
=

A

r
,

which can be easily shown by operating them on a function f(r). Then we have[
Γ̂x, Γ̂y

]
=

1

2

[
rD̂2 +

A

r
+ r, rD̂

]
=

1

2

(
rD̂2 +

A

r
− r

)
= Γ̂z,[

Γ̂y, Γ̂z

]
=

1

2

[
rD̂, rD̂2 +

A

r
− r

]
=

1

2

(
−rD̂2 − A

r
− r

)
= −Γ̂x,[

Γ̂z, Γ̂x

]
=

1

4

[
rD̂2 +

A

r
− r, rD̂2 +

A

r
+ r

]
=

1

4

([
rD̂2, r

]
−
[
r, rD̂2

])
= rD̂ = Γ̂y.

Thus, Γ̂x,y,z indeed satisfy a set of closed commutation relations.
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Problem 4.37

Express the radial Schrödinger equation for the Coulomb potential through the
Γ-operators defined in the previous problem. Note (do not attempt to prove it) that
the operators Γ̂± = Γ̂x ± iΓ̂y act “vertically” between the energy levels with different
energies (it is in this sense that they “generate” the spectrum of the Coulomb problem),

as opposed to the operators Â and B̂ that act “horizontally” connecting different states
with the same energy.

Solution

We note that

Γ̂x + Γ̂z = rD̂2 +
A

r
, Γ̂x − Γ̂z = r.

So, the radial Schrödinger equation becomes(
Γ̂x + Γ̂z

)
+B + C

(
Γ̂x − Γ̂z

)
w(r) = 0.

4.4 Systems with axial symmetry

Problem 4.38

Determine the discrete spectrum of a particle in a two-dimensional potential well of
the form

a) U(ρ) = −αδ(ρ− a);

b) U(ρ) = −U0 for ρ < a and U(ρ) = 0 for ρ > a;

with angular momentum projection m = 0. Consider the case of a shallow well.
Compare with one-dimensional motion.

Solution

The two-dimensional Schrödinger equation for states with m = 0 and energy Enρ0 has
the form (μ is the mass of the particle)[

d2

dρ2
+

1

ρ

d

dρ
+

2μ

�2

(
Enρ0 − U(ρ)

)]
ψnρ0(ρ) = 0. (1)

a) The solution of Eq. (1) for the δ-potential in the case of Enρ0 = −�
2κ2/2m < 0,

that is finite at the origin and equal to zero at infinity, has the form ψ(ρ) = c1I0(κρ)
for ρ < a and ψ(ρ) = c2K0(κρ) for ρ > a (I0(x) and K0(x) are the modified Bessel
functions). The matching conditions at the point ρ = a (the same as in Problem
2.6) give us the relation

x [K ′
0(x)I0(x)−K0(x)I

′
0(x)] = −2μαa

�2
K0(x)I0(x), (2)
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with x = κa. This determines the spectrum. Using the Wronskian
W (I0(x), K0(x)) = −1/x, we write (2) in the form

K0(κa)I0(κa) =
1

ξ
, ξ ≡ 2μαa

�2
. (3)

Let us first consider the case where the level has a small energy (κa � 1). Using the
known asymptotes I0(z) ≈ 1 + z2/4 and K0(z) ≈ ln(2/γz) as z → 0, we obtain[50]

ln
2

γaκ
≈ 1

ξ
, or E00 ∼ − 2�2

γ2μa2
e−2/ξ. (4)

See that ξ � 1, i.e., this level with a small binding energy could only exist in a
shallow well. This means that in the δ-well there is only one level (with m=0), just
as in the one-dimensional case.
With an increase in α, the level deepens, and for ξ � 1 its energy is

E00 ≈ −μα2/2�2, which is easy to obtain from (3) using the asymptotic expressions
for the functions K0(z) and I0(z) for z → ∞.

b) For a rectangular potential well, the solution of Eq. (1) is

ψnρ0(ρ) =

{
c1J0(kρ), ρ < a, k =

√
2μ(U0 − |Enρ0|)/�2,

c2K0(κa), ρ > a, κ =
√−2μEnρ0/�

2.
(5)

From the continuity of ψnρ0(ρ) and ψ′
nρ0(ρ) at ρ = a, it follows that

κJ0(ka)K
′
0(κa) = kJ ′

0(ka)K0(κa), (6)

which is the equation for the levels with m = 0.
In the case of the shallow well, ξ = μα2U0/�

2 � 1, the arguments of the cylin-
drical functions in (6) are small. From the x � 1 asymptotes of J0 and K0, we can
simplify (6):

J0(x) ≈ 1, J ′
0(x) = −x

2
, K0(x) ≈ ln

(
2

γx

)
, K ′

0(x) ≈ − 1

x

μ
(
U0 − |Enρ0|

) a2
�2

ln

√
2�2

μγ2a2|Enρ0|
≈ 1. (7)

This equation has only one root,

E00 ∼ − 2�2

γ2μa2
exp

(
− 2�2

μa2U0

)
= −2U0

γ2ξ
exp

(
−2

ξ

)
, (8)

which is easy to find if we remember that |Enρ0| � U0 and neglect |Enρ0| in
comparison to U0.

[50] Here γ = 1.781 . . . is the Euler constant.
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In the shallow two-dimensional well, just as in the similar one-dimensional well,
there is always one bound state. But the depth of the level occurrence, as is seen
from (4) and (8), is exponentially small in comparison with the well depth.

Problem 4.39

Determine the energy spectrum of the bound states of a particle with an arbitrary value
m of the angular-momentum projection for the following two-dimensional potentials:

a) U(ρ) = −α

ρ
;

b) U = 0 for ρ < a and U(ρ) = ∞ for ρ > a.

What is the degree of degeneracy of the levels?

Solution

The Schrödinger equation has the form
(
ψnρm = Rnρ|m|eimϕ/

√
2π
)

[
d2

dρ2
+

1

ρ

d

dρ
− m2

ρ2
+

2μ

�2

(
Enρ|m| − U(ρ)

)]
Rnρ|m|(ρ) = 0. (1)

a) For U = −α/ρ, Eq. (1) has a form similar to Eq. (IV.6), and differs only by a change
of l + 1/2 → |m|. So, taking into account the known expression for the energy
levels in the three-dimensional Coulomb potential and making the substitution
l + 1/2 → |m|, we obtain

Enρ|m| = − μα2

2�2(nρ + |m|+ 1/2)2
. (2)

We see that in the two-dimensional field, U = −α/ρ, as well as in the three-
dimensional one, U = −α/r, a degeneracy appears because the energy depends only
on the combination nρ + |m| of the quantum numbers nρ andm. If we introduce the
quantum number, N = nρ + |m|+ 1, the analog of the principal quantum number
n in the Coulomb field, then we can write expression (2) in the form

EN = −μα2

2�2

(
N − 1

2

)−2

; N = 1, 2, . . . . (3)

This level has the degeneracy g(N) = 2N − 1.

b) The solution of Eq. (1), in the case of an infinitely deep rectangular potential well
for ρ < a, that is finite at the origin, has the form

Rnρ|m| = cJ|m|(κρ), where κ =

(
2μEnρ|m|

�2

)1/2

.

The condition that the wavefunction vanishes at the wall determines the energy
spectrum:
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Enρ|m| =
�
2

2μa2
α2
nρ+1,m, (4)

where αk,m > 0 is the kth zero of the Bessel function Jm(α). In particular, taking
into account the values α10 ≈ 2.40 and α11 ≈ 3.83, we obtain the ground-state
energy E00 ≈ 2.88�2/μa2 (with m = 0) and the energy E01 ≈ 7.33�2/μa2 of the
lowest level with |m| = 1. Finally, note that levels with m = 0 are non-degenerate,
while those with |m| �= 0 are doubly degenerate.

Problem 4.40

Find the Green function of a free particle in two dimensions with the energy E < 0
and which decreases as ρ → ∞.

Solution

The Green function obeys the equation

(Ĥ − E)GE ≡ �
2

2μ
(−Δ2 + κ2)GE(ρ, ρ′) = δ(ρ− ρ′), (1)

with κ =
√−2μE/�2 > 0. From symmetry, we see that it is a function of the form

GE = f(|ρ− ρ′|). Equation (1) for ρ �= ρ′ and its solution take the form(
d2

dρ2
+

1

ρ

d

dρ
− κ2

)
f(ρ) = 0, f(ρ) = cK0(κρ), (2)

where K0(z) is the Macdonald function (the other independent solution, ∝ I0(κρ),
increases exponentially as ρ → ∞).

To determine the value of c, we integrate (1) over a circle of a small radius ε
centered at the point ρ = ρ′. On the right side we get unity. Integration of the second
term on the left side (with κ2) gives zero for ε → 0. We transform the integral of the
first term using the Gauss’s law:∫


GEdV =

∮
∇GEds.

In this two-dimensional case we obtain dV ≡ dS, ds ≡ dl = ndl.[51] Since K0(x) ≈
ln(2/γx) as x → 0, then ∇K0(κρ) ≈ −ρ/ρ2 as ρ → 0. Integration gives the relation
πc�2/μ = 1, so the final expression for GE is

GE(ρ,ρ
′) =

μ

π�2
K0(κ|ρ− ρ′|). (3)

[51] We should note that the unit vector n (the outer normal) is perpendicular to the integration contour.
See that

dl = ndl =
ρ̃

ρ̃
ρ̃dϕ = ρ̃dϕ (ρ̃ = |ρ− ρ′| = ε).
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Problem 4.41

The same as for the previous problem, but with E > 0. Determine the Green function

G
(±)
E that has the correct asymptotic behavior as ρ → ∞.

Solution

Consideration similar to the previous problem gives the following form for the Green
function:

G
(±)
E (ρ,ρ′) = ± iμ

2�2
H

(1,2)
0 (κ|ρ− ρ′|), (1)

where κ =
√
2μE/�2 > 0, H

(1,2)
0 (z) are the Hankel functions.

Problem 4.42

Find the Green function GE(ϕ,ϕ
′) for a plane rotator (see Problem 3.2). Analyzing

it as an analytic function of the complex variable E show that it has singular points
and determine a relation between the locations of the poles on the E plane and the
rotator energy levels. Compare with Problem 2.26.

Solution

The Green function obeys the equation

ĤGE ≡ −�
2

2I

(
d2

dϕ2
+ κ2

)
GE(ϕ,ϕ

′) = δ(ϕ− ϕ′), (1)

where κ =
√
2IE/�2. From symmetry, GE is a function of the form GE =

GE(|ϕ− ϕ′|). From (1) we obtain, for ϕ �= ϕ′:

GE = C cos(κ|ϕ− ϕ′|+ α).

The value C = I/κ�2 sinα comes from matching conditions at the point ϕ = ϕ′

(compare with Problem 2.6), while the value of α comes from the continuity of the
Green function and its derivative with respect to ϕ at the points ϕ− ϕ′ = ±π, which
correspond to the same point. This value is α = −πκ.

The Green function has the form

GE(ϕ,ϕ
′) = − I

κ�2 sinπκ
cos(κ|ϕ− ϕ′| − πκ). (2)

It has poles at the points κ = ±m,m = 0, 1, 2, . . . . These are the points Em = �
2m2/2I

of the complex variable E. As expected, the positions of these poles coincide with the
rotator energy levels.
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Problem 4.43

Find the Green function GE(n,n
′) for a spherical rotator, where n is the unit vector

directed along the rotator axis (see Problem 3.3). Solve the problem in two ways:

a) by directly solving the differential equation for the Green function

b) by expressing it as a series of relevant eigenfunctions

Solution

a) The Green function is the solution of the equation

(Ĥ − E)GE ≡
(
�
2

2I
l̂2 − E

)
GE = δ(n− n′). (1)

and is a function of the form GE ≡ GE(n · n′); i.e., it depends only on the
angle between the directions of vectors n and n′. So, choosing the direction of
the polar axis n0 along n′ and introducing the notations z = n · n0 = cos θ and
E ≡ �

2ν(ν + 1)/2I, we rewrite (1) in the form

(1− z2)G′′
E(z)− 2zG′

E(z) + ν(ν + 1)GE(z) = −2I

�2
δ(n− n0). (2)

For z �= 1 (i.e., θ �= 0), the right part of (2) is equal to zero. The solution of such
an equation is

GE(z) = c1Pν(−z) + c2Pν(z), (3)

where Pν(z) is a spherical Legendre function of the first kind. Since Pν(1) = 1 and
Pν(z) → ∞ as z → −1, we should set c2 = 0 in (3) and leave c1 to be determined
by the δ-functional term in (2). To find c1, consider the limit z → 1 and put z ≈
1− θ2/2. Equation (2) becomes[

d2

dθ2
+

1

θ

d

dθ
+ ν(ν + 1)

]
GE = −2I

�2
δ(n− n0), (4)

which is the equation for the free particle Green function in the two-dimensional
case[52] (see Problem 4.40). We get[53]

Pν(−z) ≈ 2

π
sin(πν) ln θ at z = 1− 1

2
θ2 → 1,

[52] This correspondence is not accidental, since the operator −̂l2 is the Laplace operator on the unit
sphere, and a small part of a sphere is almost indistinguishable locally from the tangent plane. The
vector n− n0 is approximately perpendicular to n0, and |n− n0| ≈ θ is analogous to the variable
ρ.

[53] This result can be obtained from the following equation

Pν(cos θ) =
2

π

θ∫
0

cos(ν + 1/2)β√
2(cosβ − cos θ)

dβ,

if we notice that for θ → π, the integral diverges in the upper limit, and calculate the diverging part.
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Taking into account the result of Problem 4.40, we find c1 = −I/2�2 sinπν and
obtain the final expression for the Green function:

GE(n,n
′) = − I

2�2 sin πν
Pν(−n · n′), ν = −1

2
+

(
2IE

�2
+

1

4

)1/2

. (5)

b) The general method of constructing the Green function as a series involving the
eigenfunctions of the corresponding operator gives rise to the following expression
in our case:

GE(n,n
′) =

∑
l,m

Ylm(n)Y ∗
lm(n′)

El − E
, (6)

where El = �
2l(l + 1)/2I are the rotator energy levels, and Ylm are the spherical

harmonics that are the eigenfunctions of the Hamiltonian. Using the spherical
harmonic addition theorem (see Eq. (III.6)), (6) may be written as

GE =
I

2π�2

∑
l

(2l + 1)Pl(n · n′)
l(l + 1)− ν(ν + 1)

. (7)

Using the relation

∞∑
l=0

(
1

ν − l
− 1

ν + l + 1

)
Pl(z) =

π

sinπν
Pν(−z), (8)

we see that (6) and (7) coincide with (5).
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Spin

1) The wavefunction of a particle with spin s has (2s+ 1) components. In the
sz-representation it is described by the column

Ψ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ(r, s)

ψ(r, s− 1)

. . .

ψ(r, σ)

. . .

ψ(r,−s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (V.1)

ψ(r, σ) is the amplitude of a state with a given value of the spin z-projection σ,
with σ = s, s− 1, . . . ,−s. Physically, spin is an intrinsic angular momentum. In this
representation the operators of spin-vector projections are the matrices ŝx, ŝy, ŝz,
whose elements are given by the general formulae (III.9) and (III.10) with l = s
and m = σ. The matrix ŝz is diagonal and (ŝz)σσ′ = σδσσ′ .

For spin s = 1/2 these operators are expressed in terms of the Pauli matrices,
ŝ = 1

2 σ̂:

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (V.2)

The Pauli matrices have the following property:[54]

σ̂iσ̂k = δik + iεiklσ̂l, (V.3)

Here i, k = 1, 2, 3 and σ̂1 ≡ σ̂x, σ̂2 ≡ σ̂y, σ̂3 ≡ σ̂z. In this particular case of s = 1/2,
the notation ψ1 ≡ ψ(σ = +1/2) and ψ2 ≡ ψ(σ = −1/2) for the spin components is

often used, so that Ψ =

(
ψ1

ψ2

)
. The inner product in spin space is given by

〈Φ|Ψ〉 ≡ Φ∗Ψ = φ∗
1ψ1 + φ∗

2ψ2.

[54] In particular, σ̂2
x = σ̂2

y = σ̂2
z = 1, σ̂xσ̂y = iσ̂z etc. From (V.3) we can see the anticommutativity of

different Pauli matrices: σ̂iσ̂k + σ̂kσ̂i = 0 for i �= k.
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Note the characteristic property of spin s = 1/2 for an arbitrary spin state: it is
always possible to find a vector n along which the spin projection has a definite
value (equal to ±1/2 of course). We can write down the spin function, normalized
to unity, for any state, in the form:

Ψ =

(
cos(θ/2)

eiϕ sin(θ/2)

)
. (V.4)

θ and ϕ (0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π) determine the polar and azimuthal angles of an
axis along which the spin projection is sn = +1/2. See Problems 5.3 and 5.9.

2) It is often necessary to deal with the spin density matrix ρ̂. The elements ρσσ′ of this
matrix are equal to an average of the bilinear combination of spin wavefunctions
ψ(σ)ψ∗(σ′). The averaging is performed over an ensemble of possible states,[55]

labelled by a parameter λ,

ρσσ′ = ψ(σ, λ)ψ∗(σ′, λ). (V.5)

The mean value of operator f̂ in the spin space is given by

f̄ = Tr (ρ̂f̂) = Tr (f̂ ρ̂). (V.6)

A spin s = 1/2 density matrix can be written as

ρ̂ =
1

2
(1 +P · σ̂). (V.7)

P = 2s̄ is known as the polarization vector. The case with P = 0 corresponds to an
entirely unpolarized collection of states. A state in the case |P| = 1 is pure and is
described by the spin function (V.4) with the choice of the corresponding axis n
along the vector P.

5.1 Spin s = 1/2

Problem 5.1

For a particle with the spin s = 1/2, find the eigenvalues and eigenfunctions of the
operators ŝx, ŝy, ŝz.

[55] The density matrix is normalized by the condition Trρ̂ = 1. Its diagonal elements, ρσσ , determine the
probabilities of measuring the corresponding values of the spin z-projection, σ. In the case ρ̂2 = ρ̂,
the density matrix has the form ρσσ′ = ψ(σ)ψ∗(σ′) and characterizes a pure state that is described
by the wavefunction ψ(σ).
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Solution

The eigenfunctions ψsx =

(
a
b

)
and the eigenvalues sx of the operator ŝx = 1

2 σ̂x are

found from the equation ŝxψsx = sxψsx :

1

2

(
0 1
1 0

)(
a
b

)
≡ 1

2

(
b
a

)
= sx

(
a
b

)
.

So b = 2sxa, a = 2sxb. This system has non-trivial solutions when 4s2x = 1. We find
that a = b for sx = +1/2 and a = −b for sx = −1/2. The eigenfunctions, ψsx , that are
normalized to unity so that 〈ψsx |ψsx〉 = |a|2 + |b|2 = 1 are:

ψsx=+1/2 =
1√
2

(
1
1

)
, ψsx=−1/2 =

1√
2

(
1

−1

)
.

Analagously,

ψsy=+1/2 =
1√
2

(
1
i

)
, ψsy=−1/2 =

1√
2

(
1

−i

)
,

ψsz=+1/2 =

(
1
0

)
, ψsz=−1/2 =

(
0
1

)
.

Problem 5.2

Determine explicitly the form of the operator ŝn, corresponding to the spin projection
in the direction determined by a unit vector n. For a state with a definite value of
the spin z-projection, determine the value of sn and find the probability of the spin
±1/2 n-projection.

Solution

The spin operator ŝ = 1
2 σ̂ is a vector (or, more precisely, pseudo-vector) operator. The

n-projection operator ŝn may be expressed in terms of its components ŝx, ŝy, ŝz in
the same manner as for an ordinary (non-operator) vectors, i.e.

ŝn = n · ŝ = 1

2
n · σ̂ =

1

2
(sin θ cosϕ · σ̂x + sin θ sinϕ · σ̂y + cos θ · σ̂z),

where θ, ϕ are the polar and azimuthal angles of the n-direction. Using the explicit
form of the Pauli matrices, Eq. (V.2), we obtain

ŝn =
1

2

(
cos θ e−iϕ sin θ

eiϕ sin θ -cos θ

)
. (1)

The value of sn in the state ψsz=+1/2 =

(
1
0

)
is equal to



168 Exploring Quantum Mechanics

sn = 〈ψ|ŝn|ψ〉 = 1

2

(
1 0

)( cos θ e−iϕ sin θ
eiϕ sin θ -cos θ

)(
1
0

)
=

1

2
cos θ.

Analagously, we find sn = − 1
2 cos θ for a state with sz = −1/2. Note that the relation

sn = sz cos θ is analogous to the result of Problem 3.11.

Let us denote w+ for the probability of the value sn = +1/2 and w− = 1− w+ for
the probability of sn = −1/2. Taking into account that sn = sz cos θ, we find that

sz cos θ = sn = w+ · 1
2
+ w− ·

(
−1

2

)
=

1

2
[2w+ − 1],

w+ =
1

2
(1 + 2sz cos θ), w− =

1

2
(1− 2sz cos θ). (2)

Problem 5.3

For spin s = 1/2, the normalized wavefunction of the most general spin state is[56]

Ψ =

(
cosα

eiβ sinα

)
, with 0 ≤ α ≤ π

2 , 0 ≤ β ≤ 2π. Find the polar and azimuthal angles

of an axis n along which spin projection has a definite value equal to +1/2.

Solve Problem 5.1 using this result.

Solution

We first find the wavefunction Ψsn=1/2 =

(
a
b

)
of the spin n-projection operator.

Using the form of the operator ŝn determined in the previous problem and the
eigenvalue equation

ŝnΨsn=1/2 =
1

2
Ψsn=1/2,

we obtain the equation a sin(θ/2) = be−iϕ cos(θ/2). So if we choose (for normalization
to unity) a = cos(θ/2), we find b = eiϕ sin(θ/2). The spin function Ψsn=1/2 takes the
form given in the problem statement. Here θ = 2α and ϕ = β determine the polar and
azimuth angles.

Choosing θ = 2α = π/2 and ϕ = β = 0, we find the eigenfunction ψsx=1/2. In the
case θ = π/2 and ϕ = π we obtain the eigenfunction ψsx=−1/2, and so on; compare
with the results of Problem 5.1.

Problem 5.4

An arbitrary rank 2 square matrix, Â, may be expanded in terms of the full system
of matrices 1̂, σ̂x, σ̂y, σ̂z:

Â = a01̂ + axσ̂x + ayσ̂y + azσ̂z ≡ a0 + a · σ̂. (1)

[56] Except for phase factor eiγ .
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Prove that the coefficients are given by 2a0 = Tr Â, 2a = Tr (σ̂Â).

Solution

If we take the trace of the both sides of (1) and use Trσ̂i = 0, Tr1̂ = 2, we obtain

a0 =
1

2
TrÂ.

If we multiply both sides of (1) by σ̂k on the right and calculate the trace, then we
obtain

ak =
1

2
Tr

(
Âσ̂k

)
=

1

2
Tr

(
σ̂kÂ

)
.

Problem 5.5

Simplify the expression (a · σ̂)n, where a is a real numerical vector, n is an integer,
and σ̂ are the Pauli matrices.

Solution

(a · σ̂)n = |a|n1̂ if n is even and (a · σ̂)n = |a|n−1(a · σ̂) if n is odd.

Problem 5.6

Find

a) the eigenvalues and eigenfunctions of operator function f̂ = a+ b · σ̂;
b) the explicit form for the operator F̂ = F (a+ b · σ̂).

a and b are real scalar and vector parameters, and F (z) is some function.

As an illustration, (c) consider the operator R̂(ϕ0) = exp(iϕ0 · σ̂/2) that describes
the transformation of the spin wavefunction, Ψ′ = R̂(φ0)Ψ, under rotation of the coor-
dinate system through the angle φ0. Find the eigenfunctions, Ψsn=±1/2, of the spin
projection operator along the vector n. Compare with Problem 5.3.

Solution

a) The operator has only two eigenvalues, equal to f1, 2 = a± b. The corresponding
eigenfunctions are given in Problem 5.3 with n = ±b/b.

b) As a result of Problem 1.22, the form of the operator F̂ = F (f̂) is

F̂ =
1

2

[
F (a+ b) + F (a− b) + (F (a+ b)− F (a− b))

b · σ̂
b

]
.

c) In particular, R̂(ϕ0) = cos(ϕ0/2) + i sin(ϕ0/2) · 1
ϕ0

(ϕ0 · σ̂). To transform the spin
functions Ψsz=1/2 into the form Ψsn=1/2 by rotating the coordinate system,
we should choose ϕ0 in the form ϕ0 = (θ sinϕ,−θ cosϕ, 0) (see Problem 3.24),
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where θ and ϕ are the polar and azimuthal angles of the vector n. In this case,
R̂(φ0) = cos(θ/2) + i sin(θ/2)(sinϕ · σ̂x − cosϕ · σ̂y), so we have

Ψsn=+1/2 = R̂

(
1
0

)
=

(
cos(θ/2)

eiϕ sin(θ/2)

)
,

in accordance with Problem 5.3.

Problem 5.7

Using the transformation law for the spin functions Ψ =
(
ψ1

ψ2

)
under rotation of the

coordinate system, Ψ′ = R̂(ϕ0)Ψ (see the previous problem), show that the quantities

S = Φ∗Ψ = ϕ∗
1ψ1 + ϕ∗

2ψ2

do not change, i.e., are scalars, while the quantities of the form

V = Φ∗σ̂Ψ

⎛⎝or Vi =
∑
α,β

φ∗
α(σ̂i)αβψβ

⎞⎠
transform as vectors.

Solution

From the transformation of the form (n0 = ϕ0/ϕ0)

Ψ′ ≡
(

ψ′
1

ψ′
2

)
= exp

(
i

2
ϕ0 · σ̂

)
Ψ =

(
cos

ϕ0

2
+ i sin

ϕ0

2
n0 · σ̂

)
Ψ, (1)

we have the transformation law for a complex conjugate spin function Φ∗ = (ϕ∗
1, ϕ

∗
2):

Φ∗′ ≡ (ϕ∗
1
′, ϕ∗

2
′) = Φ∗

(
cos

ϕ0

2
− i sin

ϕ0

2
n0 · σ̂

)
. (2)

It follows that Φ∗′Ψ′ = Φ∗Ψ.

Using (1), (2), and relation (V.3), we obtain

V′ ≡ Φ∗′σ̂Ψ′ = cosϕ0 ·V − sinϕ0 · n0 ×V + 2 sin2
ϕ0

2
· n0(n0 ·V), (3)

which is the vector transformation law for a coordinate system rotation by the angle
φ0. In particular for n0 = (0, 0, 1) (rotation about z), from (3) it follows that V ′

z = Vz

and

V ′
x = cosϕ0 · Vx + sinϕ0 · Vy, V ′

y = − sinϕ0 · Vx + cosϕ0 · Vy. (4)
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Problem 5.8

Consider the matrix element of the form[57]

〈Ψ(2)|Â|Φ(1)〉〈Φ(2)|B̂|Ψ(1)〉 ≡ ψ(2)∗
α Aαβϕ

(1)
β ϕ(2)∗

γ Bγδψ
(1)
δ .

Â, B̂ are some 2×2 matrices, and Ψ(1,2), Φ(1,2) are spin functions. Show that it is
possible to rearrange the spin functions:

3∑
i,k=0

Cik〈Ψ(2)|σ̂i|Ψ(1)〉〈Φ(2)|σ̂k|Φ(1)〉.

For ease of notation, we put 1̂ ≡ σ̂0. Also, determine the form of the scalar matrix
elements:

〈Ψ(2)|Φ(1)〉〈Φ(2)|Ψ(1)〉 and 〈Ψ(2)|σ̂|Φ(1)〉 · 〈Φ(2)|σ̂|Ψ(1)〉.

Solution

We can regard the expression of the form AαβBγδ as a matrix Mαδ(β, γ) that depends
on β and γ as parameters, and write it in the form of expansion

Mαδ(β, γ) =

3∑
i=0

Ci(γβ)(σ̂i)αδ.

The coefficients Ci(γβ) are determined by the result of Problem 5.4. We can expand
Ci in an analogous way. So we obtain

AαβBγδ =
3∑

i,k=0

Cik(σ̂i)αδ(σ̂k)γβ , Cik =
1

4

∑
αβγδ

(σ̂i)δα(σ̂k)βγAαβBγδ. (1)

Using (1) with Aαβ = δαβ , Bγδ = δγδ and Cik = 1
2δik, it is easy to obtain

〈Ψ(2)|Φ(1)〉〈Φ(2)|Ψ(1)〉 = 1

2
{〈Ψ(2)|Ψ(1)〉〈Φ(2)|Φ(1)〉

+ 〈Ψ(2)|σ̂|Ψ(1)〉 · 〈Φ(2)|σ̂|Φ(1)〉}.
Using Aαβ = (σ̂l)αβ , Bγδ = (σ̂l)γβ , C00 = 3/2, Cik = −(1/2)δik for i, k = 1, 2, 3, and
Cik = 0 if i �= k, we obtain

〈Ψ(2)|σ̂|Φ(1)〉 · 〈Φ(2)|σ̂|Ψ(1)〉 = 1

2
{3〈Ψ(2)|Ψ(1)〉〈Φ(2)|Φ(1)〉

− 〈Ψ(2)|σ̂|Ψ(1)〉 · 〈Φ(2)|σ̂|Φ(1)〉}.

[57] Carefully note that the indices 1 and 2 enumerate the different spinors, not the different components
of the same spin function.
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Pay attention to the scalar nature of all the terms in these relations. Compare with
Problem 5.7.

Problem 5.9

Determine the projection operators P̂sz=±1/2 that project onto states with a definite
value of the spin z-projection.

Generalize the form of P̂sn=±1/2 to a state with a definite spin projection along the
direction determined by the unit vector n. Using these projection operators, find the
spin function Ψsn=±1/2 and compare with Eqn. (V.4) and Problem 5.3.

Solution

The desired projection operators follow from 1.35:

P̂sz=±1/2 =
1

2
(1± σ̂z), and P̂sn=±1/2 =

1

2
(1± n · σ̂).

If we act with the operator P̂sn=1/2 on an arbitrary spin function Ψ, we obtain the
eigenfunction of the operator ŝn that corresponds to the eigenvalue sn = 1/2. For

convenience, we take Ψ =

(
1
0

)
, and we find

Ψsn=1/2 = CP̂sn=1/2Ψ =
C

2
(1 + n · σ̂)

(
1
0

)
=

(
cos(θ/2)

eiϕ sin(θ/2)

)
(1)

where θ and ϕ are the polar and azimuth angles of the n-direction. We have choosen
C = cos−1(θ/2) to normalize the spin function to unity.

Problem 5.10

For a system of two identical spins with s = 1/2, find the eigenfunctions ΨSSz
of the

total spin square and its z-projection operators. Indicate the characteristic symmetry
of these functions with respect to the interchange of particles, and the symmetry’s
dependence on S.

Solution

The form of the spin functions for for S = 1, Sz = ±1 is obvious:

ψ11 =

(
1
0

)
1

(
1
0

)
2

and ψ1,−1 =

(
0
1

)
1

(
0
1

)
2

.

The spin functions with Sz = 0 have the form

ψS,Sz=0 = C
(1)
S

(
1
0

)
1

(
0
1

)
2

+ C
(2)
S

(
0
1

)
1

(
1
0

)
2

. (1)
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From the equation Ŝ2ψ00 = 0, it follows that Ŝxψ00 = 0, i.e.,

Ŝxψ00 ≡ 1

2
(σ̂x1 + σ̂x2)

{
C

(1)
0

(
1
0

)
1

(
0
1

)
2

+ C
(2)
0

(
0
1

)
1

(
1
0

)
2

}
= (C

(1)
0 + C

(2)
0 )

{(
1
0

)
1

(
0
1

)
2

+

(
0
1

)
1

(
1
0

)
2

}
= 0.

This means that C
(1)
0 = −C

(2)
0 , and from normalization we have C

(1)
0 = 1/

√
2. To find

the C
(1,2)
1 in (1) for the case of S = 1 we use the eigenfunction orthogonality condition

〈ψ00|ψ10〉 = 0, which gives C
(1)
1 = C

(2)
1 .

The normalized eigenfunctions ψS0 therefore have the form

ψ1(0),0 =
1√
2

{(
1
0

)
1

(
0
1

)
2

±
(

0
1

)
1

(
1
0

)
2

}
. (2)

Spin functions have a well-defined symmetry with respect to interchange of the
particles’ spin variables: they are symmetric in the case S = 1 and antisymmetric
for S = 0. This falls in accordance with the result of Problem 3.30. Notice that we can
use this result to write expressions (2) for the functions ψSSz=0 without calculations.

Problem 5.11

A system of two spins with s = 1/2 is in a state described by the spin function of the
form Ψαβ = ϕαχβ . The multiplicative form of Ψαβ points to the fact that there is no
correlation between particles’ spin states.

Determine the probabilities of the different possible values of S in such a state.
Find the mean value S2. Consider the case of ϕα = χα.

Solution

We write the spin function as a superposition of the symmetric and antisymmetric
terms:

Ψαβ =
1

2
(ϕαχβ + χαϕβ) +

1

2
(ϕαχβ − χαϕβ). (1)

Taking into account the nature of the symmetry of functions ψSSz
(see the previous

problem), we can state that the first, symmetric, term in (1) corresponds to S = 1,
while the second, antisymmeric, term corresponds to S = 0. Assume ϕα, χβ , and Ψαβ

are normalized to unity. The normalization of each of these terms determines the
probability of the corresponding value of S, so that

w(S = 0, 1) =
1

4
(ϕ∗

αχ
∗
β ∓ χ∗

αϕ
∗
β)(ϕαχβ ∓ χαϕβ) =

1

2
(1∓ |〈ϕ|χ〉|2).

The + sign relates to S = 1. Finally, S2 = 2w(S = 1).
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Problem 5.12

For a system of two particles with spins s = 1/2 show that

a) in states with a definite value of the total spin, the operator σ̂1 · σ̂2 also has a
definite value;

b) the operator (σ̂1 · σ̂2)
2 can be reconstructed in a form that contains the Pauli

matrices σ̂1,2 in powers not higher than 1.

Solution

a) Since Ŝ2 = 1
4 (σ̂1 + σ̂2)

2 and S2
1,2 = 3

4 , then σ̂1 · σ̂2 = −3 + 2Ŝ2, and eigenfunctions

of Ŝ2 are simultaneous eigenfunctions of σ̂1 · σ̂2, corresponding to eigenvalues equal
to −3 (if S = 0) and +1 (if S = 1).

b) Since the Hermitian operator σ̂1 · σ̂2 has only two different eigenvalues, it obeys
the equation (σ̂1 · σ̂2 − 1)(σ̂1 · σ̂2 + 3) = 0 (compare with Problem 1.21). It follows
that (σ̂1 · σ̂2)

2 = 3− 2σ̂1 · σ̂2.

Problem 5.13

For a system of two particles with spins s = 1/2, find the form of the spin exchange
operator, Ĉ, which acts on the spin function Ψαβ to give ĈΨαβ ≡ Ψβα, i.e., it

interchanges the spin variables of the two particles. Express Ĉ in terms of the Pauli
matrices.

Solution

Let us write the spin function in the form

ψαβ = ψ+
αβ + ψ−

αβ , where ψ±
αβ =

1

2
(ψαβ ± ψβα).

If we take into account the symmetry nature of spin functions ψSSz
, we notice that

the function ψ+
αβ corresponds to total spin S = 1, while ψ−

αβ corresponds to S = 0

(see Problem 5.11). We can see that Ŝ2ψαβ = 2ψ+
αβ , and accordingly,

ψ−
αβ = ψαβ − 1

2
Ŝ2ψαβ .

According to the definition of the operator Ĉ we have Ĉψαβ ≡ ψβα = ψ+
αβ − ψ−

αβ . It
follows from the above that

Ĉ = Ŝ2 − 1 =
1

2
(1 + σ̂1 · σ̂2). (2)

For the relation between Ŝ2 and σ̂1 · σ̂2, see the previous problem.
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We will describe the properties of the operator Ĉ. It is an Hermitian operator. Spin
functions ΨS are its eigenfunctions, with corresponding eigenvalues +1 for S = 1 and
−1 for S = 0. Obviously, Ĉ2 = 1.

Problem 5.14

For a system of two particles with spins s = 1/2, find the eigenvalues and eigenfunc-
tions of the following operators:

a) V̂1 = F (a+ bσ̂1 · σ̂2) where F (x) is some function of x;

b) V̂2 = a(σ̂1z + σ̂2z) + bσ̂1 · σ̂2;

c) V̂3 = aσ̂1zσ̂2z + bσ̂1 · σ̂2;

d) V̂4 = a1σ̂1z + a2σ̂2z + bσ̂1 · σ̂2

a, b are some real parameters, so all the operators, V̂i, are Hermitian.

Solution

First, recall that σ̂1 · σ̂2 = −3 + 2Ŝ2, Ŝz = 1
2 (σ̂1z + σ̂2z).

a) Spin functions, ψS , are also eigenfunctions of the operator f̂ = a+ bσ̂1 · σ̂2 that
correspond to the eigenvalues fS = a− 3b+ 2bS(S + 1). So the eigenvalues of the
operator V̂1 are equal to (V1)S = F (fS).

b) Spin functions, ψSSz
, are also eigenfunctions of the operator V̂2 corresponding to

the eigenvalues (V2)SSz
= 2aSz − 3b+ 2bS(S + 1).

c) Since σ̂1zσ̂2z = 2Ŝ2
z − 1, then functions ψSSz

are the eigenfunctions of the operator
V̂3, and the corresponding eigenvalues are equal to (V3)SSz

= −a+ 2aS2
z − 3b+

2bS(S + 1).

d) Let us find a form of the operator

V̂4 =
1

2
(a1 + a2)(σ̂1z + σ̂2z) +

1

2
(a1 − a2)(σ̂1z − σ̂2z) + bσ̂ · σ̂2,

using SSz-representation where it is described by a matrix with matrix elements
〈S′S′

z|V̂4|SSz〉. Use, for the matrix elements, the following numeration of the states
defined by the quantum numbers S, Sz:

(S = 1, Sz = 1) → 1, (1,−1) → 2, (1, 0) → 3, (0, 0) → 4

Take into account the explicit form of the spin functions ψSSz
(see Problem 5.10).

We obtain

V̂4 =

⎛⎜⎜⎝
A 0 0 0
0 B 0 0
0 0 C E
0 0 E∗ D

⎞⎟⎟⎠,

A = a1 + a2 + b,
B = −a1 − a2 + b,
C = b, D = −3b,
E = E∗ = a1 − a2.

(1)
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By the unitary transformation this Hermitian matrix can be led to the diag-
onal form which defines directly its eigenvalues. From the form of the matrix
V̂4 it follows that two of its eigenvalues are (V4)1 = A and (V4)2 = B, cor-
responding to the eigenfunctions ψS=1,Sz=1 and ψ1,−1, respectively. The uni-

tary operator that diagonalizes V̂4 “mixes” only the states with quantum num-
bers (1, 0) and (0, 0). To find the two different eigenvalues we should diag-

onalize the 2×2 matrix of the form

(
C E
E∗ D

)
. We can easily find these

eigenvalues if we remember that under a unitary transformation, the trace
and determinant of the matrix are invariant (see Problem 1.51). We have
finally:

(V4)3,4 = −b±
√

(a1 − a2)2 + 4b2.

Problem 5.15

Spins of N particles equal to s each are added into the total spin S = Ns. What is the
total spin of any n particles? Does the spin function have a definite symmetry with
respect to interchange of the spin variables of any two of the particles?

Solution

The total spin of any n particles has a definite value equal to ns. The spin function
is symmetric with respect to the interchange of the spin variables of any two particles
(compare with Problem 3.30). If S < Ns, then for N > 2 the spin function already
does not have a definite symmetry with respect to the interchange of any two particles
(see, for example, Problem 5.19).

Problem 5.16

A spin function of a system consisting of N spins with s = 1/2 is given by

Ψ =

(
1

0

)
1

(
1

0

)
2

· · ·
(
1

0

)
n

(
0

1

)
n+1

· · ·
(
0

1

)
N

.

Determine Ŝ2. For the special cases of n = 1 and n = N − 1, find also the probabilities
of the total spin S possible values.

Solution

See that

Ŝ2 =
1

4

(
N∑

a=1

σ̂a

)2

=
1

4

⎛⎝∑
a

σ̂2
a +

∑
a �=b

σ̂a · σ̂b

⎞⎠.
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Also, we have that σ̂2
a = 3, that in the state considered there is no correlation between

spins of particles, and that the mean values of σ̂a give

(σ̂a)i =

⎧⎨⎩
0, i = 1, 2,
1, i = 3, a ≤ n,

−1, i = 3, a � n+ 1.

We easily obtain S2 = 1
4 (N

2 − 4nN + 2N + 4n2).

In the cases where n = 1 or n = N − 1, the total spin could take only two values:
S1 = N/2 and S2 = (N − 2)/2 (N ≥ 2). By taking into account the value of S2, we
can easily find their probabilities:

w(S = N/2) = 1/N, w(S = N/2− 1) = 1− 1/N

Compare with Problem 3.29.

Problem 5.17

The state of a particle with the spin s = 1/2 is characterized by the values of the
quantum numbers l, m, sz. Determine the probabilities of the possible values, j, of
the total angular momentum, j = l+ s. Use the results of Problem 3.29.

Solution

We have ĵ2 = l(l + 1) + 3/4 + 2msz. Since only two values of total angular momen-

tum are possible, j = l ± 1/2, then the value of ĵ2 allows us to obtain easily their
probabilities:

w(l + 1/2) =
l + 2msz + 1

2l + 1
, w(l − 1/2) =

l − 2msz
2l + 1

.

Problem 5.18

The angular momenta of two weakly interacting subsystems, equal to 1 and 1/2, are
added into the total angular momentum, J . For the states of such a complex system,
characterized by the values J and Jz, find the probabilities for different possible values
of the z-projection of the added angular momenta and their mean values. For solving
the problem, use the operators Ĵ± without using the Clebsch–Gordan coefficients.

Solution

The “spin” function of the state with J = 3/2 and Jz = 3/2 has the form

ψ3/2, 3/2 =

⎛⎝ 1
0
0

⎞⎠
1

(
1
0

)
2

,
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and the projections lz and sz have values equal to 1 and 1/2. We act with operator
Ĵ− ≡ Ĵx − iĴy = ĵ1,− + ĵ2 on this function to obtain (for the form of the operator ĵ−
for j = 1, see Problem 3.22):

ψ3/2, 1/2 = CĴ−ψ3/2, 3/2 =
1√
3

⎧⎨⎩
⎛⎝ 0 0 0√

2 0 0

0
√
2 0

⎞⎠+

(
0 0
1 0

)⎫⎬⎭
⎛⎝ 1

0
0

⎞⎠(
1
0

)

=

√
2

3

⎛⎝ 0
1
0

⎞⎠(
1
0

)
+

1√
3

⎛⎝ 1
0
0

⎞⎠(
0
1

)
. (1)

The multiplier C = 3−1/2 is introduced for the normalization. From (1) we have the
desired probabilities for a state with J = 3/2 and Jz = 1/2:

w(lz = 1) = w

(
sz = −1

2

)
=

1

3
, w(lz = 0) = w

(
sz =

1

2

)
=

2

3

and the mean values lz = 1/3, sz = 1/6 (Jz = lz + sz).

We write the “spin” function for a state with J = 1/2 and Jz = 1/2 in the form

Ψ1/2,1/2 = C1

⎛⎝ 1
0
0

⎞⎠(
0
1

)
+ C2

⎛⎝ 0
1
0

⎞⎠(
1
0

)
.

Using its orthogonality to Ψ3/2,1/2, we find C1 =
√

2/3, C2 = −√1/3. We obtain the
desired probabilities for the state with J = 1/2, Jz = 1/2:

w(lz = 1) = w

(
sz = −1

2

)
=

2

3
, w(lz = 0) = w

(
sz =

1

2

)
=

1

3
,

and the mean values lz = 2/3, sz = −1/6.

The results for the states with Jz < 0 are obtained following the same steps.

Problem 5.19

For a system of three particles with the spin s = 1/2 there are eight independent
spin states. Classify them by the values of system’s total spin. Obtain the complete
system of the spin functions, ΨSSz

, that describe the states with definite values of
S and Sz of total spin. Discuss the symmetry of these functions with respect to the
interchange of the spin variables. Compare with the case of two particles.

Solution

The possible values of the total spin are S = 3/2 and 1/2.

Now the set of the eigenvalues with S = 1/2 is degenerate, since for S = 1/2 and
a given value of Sz there are two independent spin states. Indeed, the value S = 1/2
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could be obtained by two independent (for a given Sz) ways: 1) by combining the first
two particle spins into a total S12 = 0, where the system’s total spin is determined
by the spin of a third particle; 2) by combining the spins into a total S12 = 1, then
combining the spin of the third particle into the total spin S = 1/2. Since the number
of independent spin states with a given S (without the degeneracy in S, Sz) is equal
to 2S + 1, then the total number of independent spin states is equal to (2 · 3/2 + 1) +
2(2 · 1/2 + 1) = 8.

The form of the spin functions ψS=3/2, Sz=±3/2 is obvious:

ψ3/2,3/2 =

(
1
0

)
1

(
1
0

)
2

(
1
0

)
3

, ψ3/2, −3/2 =

(
0
1

)
1

(
0
1

)
2

(
0
1

)
3

. (1)

We can also write, without any calculations, the spin functions corresponding to
S = 3/2, Sz = ±1/2, by using their symmetry with respect to the interchange of
the spin variables of any two particles, whose total angular momentum is equal to
1 (compare with problem 5.10):

ψ3/2,1/2 =
1√
3

{(
1
0

)
1

(
1
0

)
2

(
0
1

)
3

+

(
1
0

)
1

(
0
1

)
2

(
1
0

)
3

+

(
0
1

)
1

(
1
0

)
2

(
1
0

)
3

}
ψ3/2,−1/2 =

1√
3

{(
0
1

)
1

(
0
1

)
2

(
1
0

)
3

+

(
0
1

)
1

(
1
0

)
2

(
0
1

)
3

+

(
1
0

)
1

(
0
1

)
2

(
0
1

)
3

}
.

If a spin function has a total spin of the first two particles equal to S12 = 0, then it
describes the state with S = 1/2. We have

ψ
(1)
1/2,1/2 =

1√
2

{(
1
0

)
1

(
0
1

)
2

−
(

0
1

)
1

(
1
0

)
2

}(
1
0

)
3

, (3)

ψ
(1)
1/2,−1/2 =

1√
2

{(
1
0

)
1

(
0
1

)
2

−
(

0
1

)
1

(
1
0

)
2

}(
0
1

)
3

.

We can find the second pair of the functions, ψ
(2)
1/2,±1/2, that are linearly independent

with respect to (3), by considering the states with a total spin S23 = 0 for the second
and third particles:

ψ
(2)
1/2,1/2 =

1√
2

(
1
0

)
1

{(
1
0

)
2

(
0
1

)
3

−
(

0
1

)
2

(
1
0

)
3

}
, (4)

ψ
(2)
1/2,−1/2 =

1√
2

(
0
1

)
1

{(
1
0

)
2

(
0
1

)
3

−
(

0
1

)
2

(
1
0

)
3

}
.
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We should note that though functions (3) and (4) are linearly independent, for the
same values of Sz they are not orthogonal. The most general spin function of a state
with S = 1/2 is a superposition of functions (3) and (4). The reader should consider
a state with the total spin S13 = 0 that also corresponds to S = 1/2, and ensure that
the corresponding function could be expressed in terms of the functions (3) and (4).

In conclusion, we notice that the spin functions of states with the total spin S = 1/2
do not have a definite symmetry with respect to the interchange of spin variables of
any two particles. Although the first of the functions in (3) is antisymmetric with
respect to the interchange of spin variables of the first and second particles, with
the interchange of first and third particles it becomes a completely different function

(−ψ
(2)
1/2,1/2).

5.2 Spin-orbital states with spin s = 1/2; Higher spins

Problem 5.20

The states of a particle with a definite value of λ for the spin projection along its
momentum direction are called helical[58] states. For a particle with spin s = 1/2, find
the wavefunctions, Ψp0λ, of states with definite momentum p0 and helicity λ = ±1/2.

Solution

It is easy to find the functions if we take into account the result of Problem 5.3 (see
also Eq. (V.4)):

ψp0, λ=+1/2 =
eip0r/�

(2π�)3/2

(
cos(θ̃/2)

eiϕ̃ sin(θ̃/2)

)
,

ψp0, λ=−1/2 =
eip0r/�

(2π�)3/2

(
sin(θ̃/2)

−eiϕ̃ cos(θ̃/2)

)
,

where θ̃ and ϕ̃ are the polar and azimuthal angles of the vector p0.

Problem 5.21

For a particle with spin s = 1/2, show that the most general expression for the spin-
angular dependence of a wavefunction of the p1/2-state (the state with orbital angular
momentum l = 1 and total angular momentum j = 1/2) is given by

Ψ = (σ̂ · n)χ, or Ψα = (σ̂αβ · n)χβ .

[58] Note that the helicity is a pseudoscalar quantity and changes its sign under coordinate inversion.
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We have that χ =

(
a
b

)
is some spinor which does not depend on the direction of

the vector n (n = r/r or n = p/p, in accordance with the representation used).

Normalize this wavefunction to unity. Find the distribution (averaged over the
spin) of particle momenta directions in the given states.

Calculate the mean value of j. Find the way by which it depends on the definite
choice of spinor χ.

Determine the form of functions that describe p1/2-states with a given value of
jz = ±1/2.

Solution

1) If we act by the operator ĵ2 on the given function, we encounter the expression

(̂l+ σ̂/2)2(σ̂ · n)χ. Using the relation[59] [ĵi, (σ̂ · n)] = 0 and equation l̂χ = 0, we

can transform this relation to (σ̂ · n) · 1
4 σ̂

2χ or 3
4 (σ̂ · n)χ. It follows that ĵ2ψ =

(3/4)ψ, i.e., j has a definite value equal to 1/2. The fact that the function given
corresponds to the value l = 1 follows from its linear dependence on the vector n
(compare with Eq. (III.7) and Problem 3.42).

2) Ψ∗Ψ = χ∗(σ̂ · n)2χ = χ∗χ = const and does not depend on n means that the
distribution over the directions of momentum (or position) is isotropic, as the s-
state. So the normalization condition

∫
Ψ∗ΨdΩ = 1 would be fulfilled for χ∗χ =

|a|2 + |b|2 = 1/4π.

3) At last we have the relation

j̄ = 〈Ψ|̂j|Ψ〉 =
∫

χ∗(σ̂ · n)
(
l̂+

1

2
σ̂

)
(σ̂ · n)χdΩ = 4πχ∗ σ̂

2
χ.

It follows that the total angular momentum vector in the state considered is the
same as the spin vector in the state described by spin function χ. Therefore, if we

choose
√
4πχ of the form

(
1
0

)
and

(
0
1

)
, we obtain normalized functions of

p1/2-states with jz = +1/2 and jz = −1/2:

Ψj=1/2,l=1,jz=1/2 =
1√
4π

(σ̂ · n)
(

1
0

)
=

1√
4π

(
cos θ

sin θ · eiϕ
)
.

θ, ϕ are the polar and azimuthal angles of the vector n. The spin-angular function
of the state with jz = −1/2 is similar. Compare to Problem 5.24.

Problem 5.22

A particle with the spin s = 1/2 has the spin-angular dependence of the wavefunction
in the form ψ± = (1± σ̂ · n)χ (spinor χ does not depend on n). Analyze the states of

[59] See also Problems 3.5 and 3.28 about the given commutator value.



182 Exploring Quantum Mechanics

this particle with respect to the following quantum numbers: j, l, I (parity), and also

λ (eigenvalues of the operator λ̂ = σ̂ · n/2, spin projection along vector n). If n = p/p,
then λ is helicity.

Find the way by which functions ψ± are transformed with the coordinate inversion.

Solution

These wavefunctions are superpositions of the s1/2-state function χ, and p1/2-state
function (σ̂ · n)χ (see the previous problem). Total angular momentum has a well
defined value j = 1/2. Orbital angular momentum l and parity I do not have definite
values. Since the wavefunctions, ψ±, are normalized in the same way we come to the
conclusion that l can take the two possible values, 0 and 1, with the same probability
1/2. Then we notice that λ̂ψ± = ±ψ±/2, so the spin n-projection has a definite value
equal to ±1/2. Under coordinate inversion, ψ± switch into each other.

Problem 5.23

For a particle with spin s = 1/2, show that the spin-angular wavefunction of the
form Ψ = {2(c · n) + i[c× n] · σ̂}χ, describes the p3/2-state. Assume that vector c

and spinor χ =

(
a
b

)
do not depend on n = r/r.

Find the concrete values of c and χ for which the given function describes the p3/2-
state with a definite value (jz = ±1/2,±3/2) of total angular momentum z-projection.

Solution

Consider the spin-angular wavefunction of the state with l = 1: Ψl=1 = (c · n)χ, where
c and χ do not depend on n (compare with Problem 3.42). This function does not
correspond to a definite value of j, but instead represents the superposition of states
with j = 1/2 and j = 3/2. To select the part that corresponds to j = 3/2, we use the
projection operator

P̂j=3/2 =
1

3
(2 + l̂ · σ̂).

Compare[60] with Problem 3.36. We easily find

Ψj=3/2 = P̂j=3/2Ψl=1 =
1

3
(2c · n+ i[c× n] · σ̂])χ (1)

in accordance with the problem statement. The reader should normalize the wave-
function and ensure that it is orthogonal to the p1/2-state wavefunction from Problem
5.21. We should note that the number of the independent functions, Ψl=1, is equal to
six (there are three independent choices of vector c and two of the spinor χ). There are
only four independent functions of the form (1), since they are deduced by excluding
the two independent functions corresponding to j = 1/2 from Ψl=1.

[60] See also Problem 5.24.
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Function Ψl=1 with the choice of c = (0, 0, 1) and χ =

(
1
0

)
describes the state

with lz = 0 (see Problem 3.18), sz = 1/2 and jz = 1/2; in this case j does not have a
definite value. Function (1) for such c and χ has the form

Ψ3/2,1,1/2 =
1

3

(
2 cos θ

−eiϕ sin θ

)
.

This describes the state with j = 3/2, l = 1 and jz = 1/2. Since P̂j commutes with the

operators l̂2 and ĵz, then the eigenfunctions of these operators remain eigenfunctions
under the action of operator P̂l.

In the same way, we can find the wavefunctions of other p3/2-states. For example,

if we choose c = (1, i, 0) and χ =

(
1
0

)
then we will obtain Ψ3/2,1,3/2, etc. Compare

with the result of Problem 5.24.

Problem 5.24

For a particle with spin s = 1/2, find the spin-angular wavefunctions, Ψjljz , of the
states with definite values of l, jz and j = l ± 1/2 (here l and j are the orbital and
total angular momenta).

Solve this problem in two ways without using the Clebsch–Gordan coefficients:

a) by using the projection operators P̂j ;

b) by using the raising (lowering) operators ĵ±.

Solution

a) Consider a spin-angle function of the form Ψ =

(
Ylm(θ, ϕ)

0

)
which describes the

state of a particle with definite values of l, m, sz = 1/2 and jz = m+ 1/2. This

function is not the eigenfunction of ĵ2 (except when m = l and j = l + 1/2), but
describes some superposition of states with j = l + 1/2 and j = l − 1/2. Using the
projection operator[61] P̂j for the states with given j,

P̂j=l±1/2 =
1

2l + 1

(
l +

1

2
± 1

2
± σ̂ · l̂

)
,

and using the relations analogous to Eq. (III.8):

σ̂ · l̂ = 2ŝ · l̂ = 2ŝz l̂z + ŝ+ l̂− + ŝ− l̂+,

ĵ+ψjjz =
√

(j − jz)(j + jz + 1)ψj,jz+1, (1)

ĵ−ψjjz =
√

(j − jz + 1)(j + jz)ψj,jz−1,

[61] Its form follows from Problem 1.35 if we also take into account Problem 3.27.
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we easily find the explicit form of the desired spin-angle functions:

ψl+1/2,l,m+1/2 = C1P̂l+1/2Ψ =
1√

2l + 1

( √
l +m+ 1 Ylm√
l −m Yl,m+1

)
, (2)

ψl−1/2,l,m+1/2 = C2P̂l−1/2Ψ =
1√

2l + 1

( √
l −m Ylm

−√
l +m+ 1 Yl,m+1

)
.

The coefficients C1, 2 are chosen for the wavefunction normalization of unity. From
(2) we see the orthogonality of the functions considered:

〈j1, l, jz|j2, l, jz〉 = 0,where j1,2 = l ± 1/2.

b) We see that ψl+1/2,l,l+1/2 =

(
Yll

0

)
. Acting by the operator ĵn− with

n = l + 1/2− jz on this function, we obtain the ψl+1/2,l,jz . Taking into account

that ĵ− = l̂− + ŝ−, ŝ2− = 0 and therefore

ĵn− = l̂n− + nl̂n−1
− ŝ−,

and using relation (1), we find again the function known from (2):

ψl+1/2,l,m+1/2 = Cĵl−m
−

(
Yll

0

)
=

1√
2l + 1

( √
l +m+ 1 Ylm√
l −m Yl,m+1

)
.

Problem 5.25

Show that the functions Ψjljz considered in the previous problem are related by

Ψjl1jz = σ̂ · nΨjl2jz, l1,2 = j ± 1/2 (n = r/r or p/p).

Determine the spin-angular dependence of the wavefunctions Ψjλjz (in the momen-
tum representation) of particle states with definite values of j, jz, and helicity
λ = ±1/2.

Solution

1) We can check the problem statement by direct calculation, but it is easier to verify
it by the following argument that depends upon commutativity of operators[62] ĵz
and (σ̂ · n) and upon the pseudo-scalar nature of the latter.

[62] Compare with Problems 3.5 and 3.28.
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Let Ψjl2jz be the eigenfunctions of operators ĵ2, l̂2, ĵz, where l2 = j − 1/2. This
function has a definite parity equal to I2 = (−1)l2 . Consider the function

Ψ̃ = (σ̂ · n)Ψjl2jz .

For this function, we easily find

ĵzΨ̃ = ĵz(σ̂ · n)Ψjl2jz = (σ̂ · n)ĵzΨjl2jz = jz(σ̂ · n)Ψjl2jz = jzΨ̃,

ĵ2Ψ̃ = ĵ2(σ̂ · n)Ψjl2jz = (σ̂ · n)ĵ2Ψjl2jz = j(j + 1)Ψ̃,

ÎΨ̃ = Î(σ̂ · n)Ψjl2jz = −(σ̂ · n)ÎΨjl2jz = (−1)l2+1Ψ̃.

It follows that Ψ̃ is also the eigenfunction of the operators ĵ2, ĵz, Î, and its parity is
opposite to the parity of wavefunction Ψjl2jz . Because there are only two possible
values of l for the given j, l1,2 = j ± 1/2, and the parity is equal to (−1)l, then

Ψ̃ corresponds to to the value l1 = j + 1/2. So the function Ψ̃ is the eigenfunction

of the operators ĵ2, l̂2, ĵz, so that Ψjl1jz ≡ Ψ̃ = (σ̂ · n)Ψjl2jz . We should note that
after averaging over the particle spin state, the relation appears:

〈Ψ̃|Ψ̃〉 = 〈Ψjl2jz |(σ̂ · n)2|Ψjl2jz 〉 = 〈Ψjl2jz |Ψjl2jz 〉.

This new function expresses the same characteristics of the angle distributions (over
the directions of n) as the original.

2) Now it is easily seen that

Ψjjz,λ=±1/2 =
1√
2
(1± (σ̂ · n))Ψjljz .

Taking into account the explicit form of the functions Ψjljz from the previous
problem, we can find

Ψjjz,λ=1/2 =

√
2

(2l + 1)

{√
l +m+ 1 cos

(
θ

2

)
Ylm

+
√
l −m sin

(
θ

2

)
e−iϕYl,m+1

}
×
(

cos
(
θ
2

)
eiϕ sin

(
θ
2

))

Ψjjz,λ=−1/2 =

√
2

(2l + 1)

{√
l +m+ 1 sin

(
θ

2

)
Ylm

−√
l −m cos

(
θ

2

)
e−iϕYl,m+1

}
×
(

sin
(
θ
2

)
−eiϕ cos

(
θ
2

)).
Here m = jz − 1/2. Note that the spin part of the wavefunction is the same as in
Eq. (V.4) and Problem 5.3.
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Problem 5.26

A particle with the spin s = 1 can be described both by a symmetric spinor[63] of the
second rank ψαβ(r) (the spinor representation), and by a vector function, V(r) (the
vector representation).

Indicate

1) the form of the spin operator in these representations;

2) the connection of such wavefunctions with the wavefunction ψ(r, σ) in the
sz-representation;

3) the explicit form of these wavefunctions for a particle state with orbital angular
momentum l = 1 and total angular momentum j = 0.

Solution

For s = 1, the description of a particle spin properties in the terms of the symmetric
spinor ψαβ(r) is analogous to the description of states with total spin 1 in a system
of two spins with s = 1/2 (compare with Problems 5.10 and 5.11). By analogy with

expression Ŝ = 1
2 (σ̂1 + σ̂2), the form of the spin component operators in the spinor

representation immediately follows:

ŝψαβ ≡ sαβμνψ
μν , sαβμν =

1

2
(σα

μ · δβν + δαμ · σβ
ν). (1)

The relation between wavefunctions ψαβ in the spinor representation and the wave-
functions in the sz-representation, ψ(sz) is

[64]

ψαβ =
∑
sz

ψ(sz)ψ
αβ
sz , (2)

where the spinor ψαβ
sz is an eigenfunction of the operator ŝz. These spinors that

correspond to different values of sz have the form (compare to Problem 5.10)

ψαβ
sz=1 = δα1 δ

β
1 , ψαβ

sz=0 =
1√
2
(δα1 δ

β
2 + δα2 δ

β
1 ), ψαβ

sz=−1 = δα2 δ
β
2 . (3)

Spinor components δαβ are equal to δ11 = δ22 = 1, δ12 = δ21 = 0. From (2) and (3), it
follows that

ψ11 = ψ(1), ψ22 = ψ(−1), ψ12 = ψ21 =
1√
2
ψ(0). (4)

[63] To solve Problems 5.26 and 5.27 it is necessary to know the basics of the spinor algebra and the
relation between spinors and tensors. Here we should distinguish co-variant and contra-variant spinor
components. We should write the simple Pauli matrices (V.2) not in the form (σi)αβ but as (σi)

α
β ;

here i is vector index, while α and β are contra-variant and co-variant spinor indexes; pay attention to
the order of such indexes in Pauli matrices. In Problems 5.26 and 5.27, vector indexes are represented
by Latin characters, and the spinor indexes by Greek characters.

[64] Pay attention to the dual meaning of the variable sz in relation (2): as an argument of the

wavefunction ψ(sz) it is a variable of sz-representation, while in the case of spinor ψαβ
sz it is an

eigenvalue of the operator ŝz .
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A description of a spin s = 1 particle in the vector representation is analogous to that
used in Problem 3.44 for l = 1. In this representation,

ŝiVk ≡ si,klVl, si,kl = −iεikl. (5)

The generalization of (2) for the vector representation has the form

V =
∑
σ

ψ(σ)vσ.

The vectors vσ, which are the eigenfunctions of ŝz, have the form[65]

vsz=±1 = ∓ 1√
2
(1, ±i, 0), vsz=0 = (0, 0, 1) (6)

(compare with Problem 3.41). Due to the mutual orthogonality of these vectors it
follows that ψ(σ) = v∗

σV, so we have the relation between the wavefunctions in vector
and sz-representations

ψ(±1) =
1√
2
(∓Vx + iVy), ψ(0) = Vz, (7)

Vx =
1√
2
(ψ(−1)− ψ(1)), Vy = − i√

2
(ψ(1) + ψ(−1)).

From (4) and (7) we obtain the relations between the spinor and vector wavefunctions

Vx =
1√
2
(ψ22 − ψ11), Vy = − i√

2
(ψ11 + ψ22), Vz =

√
2ψ12. (8)

These relations may be written more clearly with

V = Cσγ
αψ

αβgγβ ≡ Cσγ
αψ

α
γ . (9)

gβγ is an antisymmetric unit spinor of rank 2, whose components are of the form
g12 = −g21 = 1, g11 = g22 = 0 and C = 1/

√
2, while ψα

β = ψαγgβγ (and ψα
α = 0 due

to the symmetric property of the spinor ψα
β ). In this form, the relation of wavefunctions

V and ψαβ with each other is immediately obvious, since σγ
αψ

α
γ is the only vector

(up to a factor) that could be correlated to the spinor ψαβ . Using the relation

σα
β · σμ

ν = 2δαν δ
μ
β − δαβ δ

μ
ν ,

expression (9) can be reversed:

ψα
β =

1√
2
V · σα

β , V =
1√
2
σα
βψ

β
α,

[65] We should note that the choice of phase factors in the relations (3), (6) for eigenfunctions vsz , ψ
αβ
sz

for different values of sz is a choice based on momentum theory.
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ψαβ =
1

2
(ψα

μg
μβ + ψβ

μg
μα) (10)

ψ1
1 = −ψ2

2 = ψ12, ψ1
2 = ψ11, ψ2

1 = ψ22.

Values of anti-symmetric spinor contra-variant components gαβ coincide with those of
gαβ .

Let us consider the spin-orbital eigenfunctions |ψjljz 〉 for a particle with the spin
s = 1 in different representations. In the general form we have to use the relation from
the theory of angular momenta addition (the orbital l, spin s = 1 and total j):

|ψjljz 〉 =
∑
σ

Cjjz
lm1σYlm(n)|1, σ〉, (11)

where |l, σ〉 is the purely spin (i.e., it does not depend on coordinates) eigenfunction
of the operator ŝz corresponding to the eigenvalue sz ≡ σ; the Clebsch–Gordan coeffi-
cients in (11) are not equal to zero only for jz = m+ σ. From the form of the relation
(11), the coefficient written in front of |1, σ〉 is the spin wavefunction of the state
considered in the sz-representation, i.e.,

ψjljz (n, σ) = Cjjz
lm1σYlm(n), jz = m+ σ. (12)

On the other hand if we consider |1, σ〉 in (11) to be the basis vectors vσ from (6)
it would describe the spin-angular part of a particle wavefunction in vector represen-
tation. Or by replacing |1, σ〉 by spinors from (3), we come to the wavefunctions in
spinor representation.

It is instructive, however, to consider the states with lower values of j without
using (11). We will try to consider them from the general consideration, using the
transformational properties of states wavefunctions corresponding to different values
of angular momentum (compare with the problem from sec. 4 in Chapter 3).

We determine the form of the particle state wavefunction with l = 1 and j = 0.
We see that it must depend linearly on vector n (because l=1; see Problem 3.41).
Due to the spherical symmetry of the state with j = 0, it should not contain any
“external” vector and spinor values. So we have the form of the wavefunction in the
vector representation,[66] Vi = cni or V = cn, where |c| = 1/

√
4π from normalization.

Of course, this result could be obtained from (11) (Clebsch–Gordan coefficients for this
case are found in Problem 3.39). And now by Eq. (10) we easily find the wavefunctions
of this state with l = 1, j = 0 in the spinor representation

ψ11 = − c√
2
e−iφ sin θ, ψ12 =

c√
2
cos θ, ψ22 =

c√
2
eiφ sin θ. (13)

[66] The classic example of a particle with the spin s = 1 is a photon. Here, due to the specific property
of a photon that is connected with the fact that electromagnetic field is transversal, its wavefunction,
which is the vector potential A(p) (in the momentum space), must satisfy the additional condition
of the form pA(p) = 0 (or divA(r) = 0, see Chapter 14). The function A = f(p)p of a state with
j = 0 does not correspond to that condition. This means that the states of a photon with j = 0 do
not exist, so it is impossible for a system to emit it if its total moment both in initial and final states
is equal to zero: “0− 0” transitions are forbidden.
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Angles θ, ϕ are the polar and azimuth angles of vector n direction, and from Eqs. (4)
and (7) we find the wavefunction’s sz-representation,

ψ(1) =
1√
3
Y1,−1(n), ψ(0) = − 1√

3
Y10(n), ψ(−1) =

1√
3
Y11(n)

in accordance with (12).

Finally we will make a remark on the form of the spin-angular wavefunctions in the
case j �= 0 by the example of a particle state with l = 1. Now the wavefunction contains
“external” tensors that characterize the states with the angular momentum j not
equal to zero (compare with Problem 3.41). Specifically in the vector representation
the wavefunctions desired have the form

Vj=1(n) =

(
3√
8π

)1/2

ε× n, Vj=2,i(n) =

(
3√
4π

)1/2

εiknk, (14)

and from the normalization condition, ε∗ · ε = 1, ε∗ikεik = 1. The concrete choice of
ε(jz), εik(jz), for which vector functions (14) describe the states with the definite
value of jz, is determined by the result from Problem 3.41. The form of wavefunctions
in other representations could be determined as above in the case of j = 0.

Problem 5.27

A particle with spin s = 3/2 can be described both by a symmetric spinor of the third
rank, ψαβγ(r), and by a spinor-vector function V α

k (r) which satisfies the additional

condition (σ̂k)
α
βV

β
k = 0. Indicate the form of the spin operator and the relations both

between the wavefunctions in these representations themselves and between these
wavefunctions and wavefunction ψ(r, σ) of the sz-representation.

Obtain the explicit form of the wavefunctions for the particle states with orbital
angular momentum l = 1 and total angular momentum j = 1/2.

Solution

For a particle with s = 3/2, describing its spin properties in terms of the symmetric
spinor ψαβγ is analogous to describing the states with total spin S = 3/2 in a system
consisting of three spins with s = 1/2. Compare with Problem 5.19. Similar to the
previous problem, we have:

sαβγμντ =
1

2
(σα

μ · δβν · δγτ + δαμ · σβ
ν · δγτ + δαμ · δβν · σγ

τ ), (1)

ψ111 = ψ

(
3

2

)
, ψ112 =

1√
3
ψ

(
1

2

)
, ψ122 =

1√
3
ψ

(
−1

2

)
, ψ222 = ψ

(
−3

2

)
.

(Here we list only the independent spinor components.)
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Going to the spinor-vector representation is carried out by using the relation
between the spinor of rank 2 and the vector as mentioned in the previous problem
(Eqn. (9)):

Vα =
1√
2
σν

βgνγψ
αβγ ≡ 1√

2
σν

βψ
αβ
ν . (2)

See that the additional condition[67] σα
β ·Vβ = 0 follows automatically. The form of

spin component operators in this representation is given by

(si)
α
μ,kl = −iεiklδ

α
μ +

1

2
δklσ

α
i, μ. (3)

Compare with the previous problem.

To determine the form of the state wavefunctions with l = 1 and j = 1/2 we should
remember that they depend linearly on the vector n and the “external” spinor χα that
gives the state of a system with momentum j = 1/2. We pick the spinor χα so that δα1
and δα2 correspond to the system states with jz = 1/2 and −1/2. The wavefunction of
a particle state with j = 1/2, l = 1 in the spinor representation has the simplest form
for the “mixed” (with co-variant and contra-variant indexes) spinor components:

ψαβ
γ = C

{
n · σα

γχ
β + n · σβ

γχ
α − 1

3
(n · σα

μχ
μδβγ + n · σβ

μχ
μδαγ )

}
. (4)

We have used both the spinor symmetry over upper indexes and the relation ψαβ
α = 0

for the spinor ψαβ
γ = gγνψ

αβν to obtain this relation. Without detailed analysis of the
state in the sz-representation, we consider only the component

ψ

(
σ = +

3

2

)
= ψ111 = −ψ11

2 = −2C sin θe−iϕχl.

It is obvious from the physical considerations that this is proportional to the spherical
function Y1,−l(n) and the spinor component, χ1, which corresponds to the value
jz = ±1/2, since j = 1/2, l = 1, jz = m+ σ, and σ = +3/2.

The spin-vector wavefunction V α of a state with j = 1/2, l = 1 could be found by
(2) and (4). Using the relation

σα
i,βσ

β
i,α = δikδ

α
γ + iεiklσ

α
l,γ

(compare with Eq. (V.3)), we obtain

Vα =
1√
2
σγ
βψ

αβ
γ =

2
√
2

3
C(2n− i[n× σ̂])χα. (5)

We can obtain this expression in different way. Note that the most general form of a
spin-vector that depends linearly on n and χα is

[67] To prove it we should use the equality ψαβ
α = 0 and the relation

σα
β · σγ

ν = 2δαν δ
ν
β − δαβ δ

γ
ν .
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Vα = c1nχ
α + c2[n× σα

β ]χ
β .

The additional condition, σα
γ ·Vγ = 0, leads to the relation c1 = 2ic2. We obtain (5).

Compare with Problem 5.23.

5.3 Spin density matrix; Angular distributions in decays

Problem 5.28

A system of two particles with s = 1/2 is in a state with definite values of S and Sz

(S is the total spin). Find density spin matrices for each of the particles in these states
for a case when the averaging is performed over the spin state of the other particle.

Solution

The spin density matrix of particle 1, ρ
(1)
σσ′ , is expressed in terms of spin function

ψSSz
(σ1, σ2) of the system from the general equation (V.5):

ρ
(1)
σσ′ =

∑
σ2

ψSSz
(σ, σ2)ψ

∗
SSz

(σ′, σ2).

Using the known expressions for ψSSz
from Problem 5.10, we obtain

ρ
(1)
σσ′(S = 1, Sz = 1) =

(
1 0
0 0

)
≡ 1

2
(1 + σ̂z)σσ′ , ρ

(1)
σσ′(1, 0) =

1

2

(
1 0
0 1

)
, (1)

ρ
(1)
σσ′(1,−1) =

(
0 0
0 1

)
=

1

2
(1− σ̂z)σσ′ , ρ

(1)
σσ′(0, 0) =

1

2

(
1 0
0 1

)
.

Comparing (1) with the general equation (V.7) for ρ̂, we see that in the states
with S = 1, Sz = 0, and S = 0, the polarization vector P = 0. We have completely
unpolarized states. For the case of Sz = ±1 we haveP = (0, 0,±1), so |P| = 1. We have
completely polarized states. Here the spin state is pure and ρ̂2 = ρ̂ (this is connected
with multiplicative form of the spin function for Sz = ±1). The density matrix for the
second particle has the same form as for the first one.

Problem 5.29

A particle with spin s = 1/2 is in a state with definite values of j, l, and jz. Find the
spin density matrix describing the spin state of the particle irrespective of its position
in space.

Solution

The spin density matrix has the form ρ̂ = 1
2 (1 +P · σ̂) whereP = 2s is the polarization

vector. This can easily be found by using the result of Problem 3.40 a:
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P = 2s =
j(j + 1)− l(l + 1) + s(s+ 1)

j(j + 1)
ĵ

so[68] P = (0, 0,± jz
l+1/2 ), where the signs ± correspond to the values j = l ± 1/2. In

the cases jz = ±j for j = l + 1/2 we have |P| = 1 and the spin state is pure.

Problem 5.30

Indicate the restrictions on the quantum numbers,[69] the spin J and the intrinsic
parity P , of a neutral particle A0. Use the existence of the decay A0 → π+π− with
parity conservation. The quantum numbers of a pion are JP

π± = 0−.
Determine the angular distribution in the system of a resting particle A0 if before

the decay it was in a state with a definite value of Jz. See also Problem 5.32.

Solution

Since the spin of a pion is Jπ = 0, the total angular momentum J of two-pion system
in the center-of-mass system (which is the rest frame for the particle A0) coincides
with the orbital angular momentum L of their relative motion, i.e., J = L, and at the
same time (due to the angular momentum conservation) it is equal to spin JA of A0,
i.e., L = JA. Furthermore, the parity (in the center-of-mass system) of the two-pion
system is P2π = (−1)LPπPπ = (−1)JA ((−1)L is the orbital parity of the pion pair).
Under the assumption that in the decay considered, the parity is conserved, we see
that the intrinsic parity PA of the particle A0 must be equal to PA = P2π = (−1)JA .
Thus the possible quantum numbers of the particle A0 are: JP

A = 0+, 1−, 2+, . . . .

If the particle, A0, is in a state with a definite value of Jz, then Lz = Jz for
the decay pions. Fixing of L = J and Lz = Jz determines uniquely the wavefunction
angular dependence for two pions in the form YJJz

(n), where n = p/p, p is their
relative momentum. So the angular distribution of a decay product has the form
dw
dΩn

= |YJJz
(n)|2. See also Problem 5.32.

Problem 5.31

Show that an existence for the K-meson (spin JK = 0) of two decay chanels – into two
pions, K→ 2π, and into three pions, K→ 3π – indicates the non-conservation of parity
for its decays,[70]

[68] Compare ĵ with l̂ from Problem 3.10 a.

[69] If we apply the parity conservation law for the decays, then when particles decay and form it is
necessary to account for the intrinsic parities. See Problem 10.5 for the decay A0 → 2π0.

[70] Before the discovery of the parity non-conservation it was believed that the two decay channels
corresponded to different particles θ and τ . The solution of the θ − τ -problem stimulated the
experiments by which non-conservation of parity for the weak interaction was discovered.
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Solution

Due to the angular momentum conservation for a system of two pions from the
decay, L = 0. The two-pion system has the positive parity (compare with the previous
problem). At the same time, for a system of three pions with L = 0 (in the center-
of-mass system) the orbital parity is positive (see Problem 3.47), while the intrinsic,
and so the total, parity is negative. The phenomenon of the same particle having two
decay channels with different parities of the final states indicates its non-conservation.

Problem 5.32

A resting particle, X, with spin J decays into two spinless particles (for example, into
two pions). Determine the angle distribution of decay products if the initial particle

a) has a definite value Jz;

b) is in a state described by a spin density matrix ρmm′ , where m is the spin z-
projection.

As an illustration, consider the angle distribution of pions from the decay of a
vector particle V→ 2π (JP

V = 1−).

Solution

a) Due to the particles-decay products’ angular momentum conservation, the orbital
angular momentum of their relative motion is L = J and Lz = Jz, which uniquely
determines the wavefunction angular dependence in the form YJJz

(n) (n =
p/p, where p is the momentum of the relative motion of the decay products),

and the angular distribution of the decay products has the form dw
dΩn

= |YJJz
(n)|2.

b) Let c(m) (m = J, J − 1, . . . ,−J) be the normalized spin wavefunction of the decay-
ing particle in the Jz-representation. Due to the angular momentum conservation
across the decay, it also describes the state of the angular products. The angular
part of the wavefunction has the form

ψ(n) =
∑
m

c(m)YJm(n),

and their particle angle distribution for the decay is described by

dw

dΩn
=

∣∣∣∣∣∑
m

c(m)YJm(n)

∣∣∣∣∣
2

=
∑
mm′

c(m)c∗(m′)YJm(n)Y ∗
Jm′(n). (1)

The desired angle distribution is obtained from (1) by the substitution
c(m)c∗(m′) → ρmm′ = c(m)c∗(m′), where ρ̂ is the polarization density matrix of
the decaying particle. In particular, we will consider the case of J = 1 using the
form of spherical functions (III.7). We obtain

dw

dΩn
=

3

8π

{
(ρ11 + ρ−1,−1) sin

2 θ + 2ρ00 · cos2 θ − 2Re ρ1,−1 · cos 2ϕ · sin2 θ
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+2Im ρ1,−1 · sin 2ϕ · sin2 θ −
√
2Re ρ1,0 · cosϕ · sin 2θ +

√
2Im ρ1,0 · sinϕ · sin 2θ

+
√
2Re ρ−1,0 · cosϕ · sin 2θ +

√
2Im ρ−1,0 · sinϕ · sin 2θ

}
. (2)

The polar and azimuthal angles of the vector n are θ, ϕ, and ρ11 + ρ00 + ρ−1,−1 =
1. Note that in the case of a completely unpolarized state we have ρik = δik/3. (The
angular distribution is isotropic).

Problem 5.33

Determine the angle distribution of decay B → πN products of some unstable particle
B with spin JB = 1/2, if

a) parity is conserved in the decay and parity of B is negative;

b) parity is conserved in the decay but parity of B is positive;

c) the decay takes place without parity conservation.

Assume that the spin state of the nucleon produced is not detected. Remember that
the quantum numbers of nucleon and pion are JP

N = (1/2)+, JP
π = 0−.

Solution

Let us determine the form of wavefunction spin-angular dependence properties of
the πN-system with total angular momentum J = 1/2. Since for the pion we have
JP
π = 0− while for a nucleon JP

N = (1/2)+, we see that for a given value of J , the orbital
angular momentum L could take only two values: L = J ± 1/2. The parity of the
πN-system is

PπN = (−1)LPπPN = (−1)L+1.

Fixing the values JB and PB uniquely determines L. Taking into account everything
mentioned above, we find:

a) L = 0 for PB = −1, so the wavefunction of the πN-system does not depend on
angles, and its spin-angular dependence has the trivial form ψπN = χ(N). Due to
angular momentum conservation, spinor χ(N) coincides with the spinor χ(B) that
describes the spin state of the particle B. Since the wavefunction does not depend
on angles, the decay angular distribution is isotropic.

b) Now L = 1, and the spin-angular part of the wavefunction has the form
ψπN = C(σ̂ · n)χ, where n = p/p and χ = χ(B). See Problem 5.21. The angle
distribution of the pions is given by[71]

[71] After the summation over the independent spin states of a nucleon. If we fix the spin state of the

nucleon in the decay, which is described by spinor χ
(N)
λ , then

dwλ

dΩn
∝

∣∣∣χ(N)∗
λ (σ̂ · n)χ(B)

∣∣∣2.
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dw

dΩn
= (ψπN)

∗ψπN = |C|2χ(B)∗(σ̂ · n)2χ(B) = |C|2χ(B)∗χ(B) = const.

As in case a, it is isotropic (for the same angular dependence as distributions with
L = J ± 1/2; see Problem 5.25).

c) Here, due to the non-conservation of parity, parity of the πN-system does not have
a definite value. The wavefunction spin-angular dependence has the form of the
superposition of wavefunctions considered in a and b:

ψπN = (a+ b(σ̂ · n))χ(B).

The angle distribution of the decay products is described by

dw

dΩn
∝ (ψπN)

∗ψπN = χ(B)∗(a∗ + b∗(σ̂ · n))(a+ b(σ̂ · n))χ(B)

= χ(B)∗(|a|2 + |b|2 + 2(Re ab∗)(σ̂ · n))χ(B) ∝
(
1 +

2Re ab∗

|a|2 + |b|2 〈σ〉B · n
)
, (1)

Here as well as in case b, the summation was performed over the independent spin
states of the nuclei that appears in the decay.
The characteristic feature of this distribution is connected with its “back and forth”
asymmetry of pion escape with respect to the polarization vector P ≡ 〈σ〉B of
decaying particle B. The existence of such a correlation between the directions of
the polar vector n and the axial vector 〈σ〉B that is not invariant with respect to
the coordinate reflection is a smoking gun for parity non-conservation in the process
considered.[72]

Problem 5.34

Consider the decay X→ a + B, where X and a are spinless, while the particle B has
spin j. Find the polarization density matrix of particle B in the case of

a) fixed space quantization axis z;

b) choice of direction of such an axis along the direction of decay product motion (in
the system where particle X at rest).

In the case of a, also determine the elements of density matrix, averaged over the
directions of decay product motion.

[72] An example of a decay of this type, which proceeds without conservation of parity, is the decay
of hyperon into nucleon and pion: for example, Λ0 → pπ−. The reader should prove that for such
decays of unpolarized particles, a nucleon polarization appears which equals

P =
2 Re ab∗

|a|2 + |b|2 n.
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Solution

a) Since the total angular momentum is J = 0, the spin-angle part of the final state
wavefunction has the form

ψJ=0 =
J∑

m=−J

C00
j,m,j,−mYj,−m(n)χm ≡

∑
m

c(n,m)χm. (1)

The orbital angular momentum of relative motion is equal to the spin of particle
B: j. n is the unit vector directed along the momentum of relative motion.

C00
j,m,j,−m = (−1)j−m 1

√
2j + 1

1/2

are the Clebsch–Gordan coefficients (see Problem 3.39). χm is the eigenfunction
component jz operator of the particle B spin.
The quantities c(n,m) for fixed n can be considered as the spin wavefunction of
particle B in the jz-representation, so the density matrix has the form

ρmm′ = Nc(n,m)c∗(n,m′) =
4π

2j + 1
(−1)m−m′

Yj,−m(n)Y ∗
j,−m′(n). (2)

N = 4π is the normalization coefficient. We should note that for fixed n, the spin
state of particle B is pure, since in that case ρ̂2 = ρ̂. If we average ρmm′ over all the
directions, n, of the particles’ escape after the decay, then, using the spherical
functions’ orthogonality, we obtain ρmm′ = δm,m′/(2j + 1), which describes the
density matrix of absolutely unpolarized states.

b) In (2) we should consider n to be directed along the z-axis. Since

|Ylm(θ = 0, ϕ)| =
(
2l + 1

4π

)1/2

δm,0

then we find

ρm,m′ = δm,0δm′,0.

This result has a simple interpretation. It means that the particle spin projection
along the n-direction has a definite value equal to zero. This immediately follows
from the angular momentum: in the problem statement we say that in any direction
the projection of J is equal to zero, and since the angular momentum n-projection
is equal to zero then the spin n-projection is also equal to zero.

Problem 5.35

The same conditions of previous problem, but now the particle B in turn decays into
two spinless particles: B→ b + c. Determine the distribution function for values of the
angle γ between vectors pa (particle a momentum in the rest frame of particle X)



Spin 197

and pb (particle b momentum in the rest frame of particle B[73]) that describes the
correlation between the particles’ escape directions.

Solution

The particle B spin z-projection directed along the vector n0 = pa/pa is equal to zero.
Accordingly, particles b and c have, in the rest system of the particle B, the orbital
angular momentum l = j and its projection lz = 0, so that their angle distribution is
given by

dw

dΩn
= |Yl0(n)|2 =

2j + 1

4π
P 2
j (n0 · n).

Such a distribution also follows from the result of Problem 5.32 if for the density
matrix ρmm′ we use its form given in b of the previous problem. Since |Pl(cos θ)| ≤ 1
and |Pl(±1)| = 1, then in the decay B→ b + c, particles fly out mainly along (or
opposite to) the direction of the particle a momentum, if j �= 0.

Problem 5.36

Find the relation between the spin density matrices, ρ̂(a,b)(n), of the particles a and
b that have spin 1/2 and are formed in the decay X→ a + b of some spinless particle
X (the vector n is directed along the momentum of the particles’ a and b relative
motion). Consider the cases when in the decay:

a) parity is conserved,

b) parity is not conserved.

Solution

The spin density matrices have the form

ρ̂(a,b) =
1

2
(1 +Pa,b · σ̂).

These describe a spin state of one of the particles after averaging over the spin states of
the other particle. Due to the spherical symmetry of the system considered (J = 0), the
polarization vectors Pa(b) = ξa(b)n may depend on the vector n only. Such a relation
between the directions of the polar vector n and axial vector P which is not invariant
with respect to coordinate inversion, could take place only if the parity is not conserved
in the decay. If the parity is conserved, then ξa,b = 0 and the spin state of each particle
is completely non-polarized.

When the parity in decay is not conserved, parameters ξa,b �= 0, though there is
a relation ξa = −ξb. Indeed, since J = 0, then the projection J over any direction
is equal to zero. Now consider the averaged value of the total angular momentum
projection,

Jn = s
(a)
n + s

(b)
n + ln = 0,

[73] Carefully note that vectors pa and pb are defined with respect to the different frames of reference.
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on the direction n. Since ln ≡ 0, then s
(b)
n = −s

(b)
n , and accordingly, Pa = −Pb (since

Ps = 2s).

An example of such a decay without parity conservation is πμ2
-decay: π+→μ++ν.

In this decay, muon and neutrino are totally polarized, P = 1, anti-parallel to their
momenta.

5.4 Bound states of spin-orbit-coupled particles

Problem 5.37

The Hamiltonian of a spin-orbit-coupled particle with spin s = 1/2, moving freely in
two spatial dimensions, can be written as (� = 1):[74]

Ĥso = − (∇2
x +∇2

y)

2m
σ̂0 + iα(σ̂x∇y − σ̂y∇x) + iβ(σ̂x∇x − σ̂y∇y). (1)

Here, m is the mass of the particle, σ̂0 is the 2× 2 identity matrix, σ̂i are the Pauli
matrices, and the hats denote matrices acting in spin space of the particle. α and β
are real constants representing the strengths of the respective spin-orbit interaction.
Consider now a system of two such spin-orbit coupled fermions which are identical
and satisfy the Pauli exclusion principle.

a) Obtain the relevant two-particle Schrödinger equation in terms of a four-component
spinor in momentum space for an arbitrary interaction between the fermions.
Express the spinor in terms of the momenta of the two fermions, k1 and k2.

b) Reduce the interaction term to a simpler form by assuming that it is an attractive
δ−function potential, that it is axially symmetric, and that we may ignore all higher
harmonics of the scattering potential except for the lowest s-wave component.

c) Solve for the four-component spinor wavefunction with the potential obtained in
b). Write the final expression for the wavefunction as a function of the relative
and center-of-mass momenta of the two particles, i.e., k = (k1 − k2)/2 and Q =
k1 + k2.

d) Find a self-consistency equation satisfied by the wavefunction.

e) Find an approximate analytical expression for the bound state energy of the
molecule with zero center-of-mass momentum, i.e.,Q = 0. Assume here that β > 0,
and clearly state the regime of validity of the result. During the calculation,

[74] The Hamiltonian, Hso, describes, for instance, the motion of an electron in a two-dimensional
electron gas in semiconductor heterostructures with structural inversion asymmetry and bulk
inversion asymmetry. In the so-called III-V (e.g. GaAs) and II-VI (e.g. ZnSe) semiconductors, bulk
inversion symmetry is broken due to the existence of two distinct atoms in the Bravais lattice. This
gives rise to Dresselhaus spin-orbit interaction, which is modeled by the term proportional to β in
Hso. Structural inversion asymmetry arises in the presence of an external or built-in electric field
that makes the conduction band energy profile inversion-asymmetric in the direction of the electric
field. This gives rise to so-called Rashba spin-orbit interaction modeled by the term proportional to
α in Hso.
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an ultraviolet-divergent momentum integral may be encountered. In that case,
introduce a cutoff kc = 1/Re, where Re physically corresponds to the characteristic
spatial range of the interaction.

f) Find the energy spectrum of the bound molecule for small Q, and extract the
effective mass of the molecule.

g) Repeat d), e), and f) for the case β = 0 (the ‘purely Rashba’ case).

Solution

a) We may write the Schrödinger equation for this two-fermion system in terms of a
four-component wavefunction, |Φ(k1,k2)〉, written in the basis, | ↑, ↑〉, | ↑, ↓〉, | ↓, ↑〉,
and | ↓, ↓〉, where the two arrows represent the spin projections of the two particles.
In momentum space we then have[

Ĥso(k1)⊗ σ̂0 + σ̂0 ⊗ Ĥso(k2) + V̌12

]
|Φ(k1,k2)〉 = E|Φ(k1,k2)〉.

V̌12 is some arbitrary interaction between the two particles, and the check denotes
4× 4 matrices that act in the above-mentioned four-component basis. Ĥso(ki) is
the Hamiltonian (1) for particle i written in momentum space.

b) In momentum space, the interaction term has the form

V̌12|Φ(k1,k2)〉 =
∫

d2k′

(2π)2
V̌ (k− k′)|Φ̃(k,Q)〉,

where |Φ̃(k,Q)〉 ≡ |Φ(Q/2 + k,Q/2− k)〉 = |Φ(k1,k2)〉. For an axially symmet-
ric interaction potential one can write V̌ (k− k′) =

∑∞
l=−∞ V̌l(k, k

′)eil(ϕk−ϕk′ ),
where ϕk is the angle between k and the x-axis. Assuming a short-ranged (i.e.,
δ−function) attractive interaction, keeping only the s-wave component (i.e., l = 0),
and imposing anti-symmetry of the wavefunction (since we have two fermions), we
may replace V̌ (k− k′) → V0P(s), where V0〈0 is the s-wave attractive interaction
strength, and P(s) is a projection operator which projects out the singlet component
of the wavefunction. The interaction term then reduces to

V̌12|Φ(k1,k2)〉 → V0

∫
d2k′

(2π)2
P(s)|Φ̃(k′,Q)〉.

c) The interaction potential from b) can be rewritten as

V0

∫
d2k′

(2π)2
P(s)|Φ̃(k′,Q)〉 = cQV0|0, 0〉, (2)

where |0, 0〉 ≡ (| ↑, ↓〉 − | ↓, ↑〉)/√2 denotes the singlet state, and cQ is a normaliza-
tion constant. The Schrödinger equation can then be rewritten as

Ǧ−1
2 |Φ(k1,k2)〉 ≡

[
Ĝ−1(k1)⊗ σ̂0 + σ̂0 ⊗ Ĝ−1(k2)

]
|Φ(k1,k2)〉 = −cQV0|0, 0〉,

with Ĝ−1(ki) = siσ̂0 + ασ̂ · (bi × ez). Here we have defined si = k2i /2m− (E/2),
bi = (kix + γkiy, γkix + kiy), and γ = β/α is the ratio of the Dresselhaus to Rashba
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interaction strengths. The single-particle inverse Green function, Ĝ−1, can be
diagonalized by the unitary matrix,

Ûi = exp

[
−i

π

4

(
bi

|bi| · σ̂
)]

(a π/2-rotation around, bi), as Û †
i Ĝ

−1(ki)Ûi = siσ̂0 + αbiσ̂z. Therefore, the two-

particle Green function, Ǧ2, can be diagonalized by the unitary matrix, Ǔ = Û1 ⊗
Û2 as Ǧ2 = ǓĎǓ † with Ď = diag{d1, d2, d3, d4} ≡ diag{(s+ αb1 + αb2)

−1, (s+
αb1 − αb2)

−1, (s− αb1 + αb2)
−1, (s− αb1 − αb2)

−1}, and s = s1 + s2. Finally, we
obtain the wavefunction

|Φ(k1,k2)〉 = −V0cQǦ2|0, 0〉

= −V0cQ

4
√
2

⎛⎜⎜⎜⎝
ie−iθ2(+−+−)− ie−iθ1(+ +−−)

(+ + ++)− ei(θ2−θ1)(+−−+)

e−i(θ2−θ1)(+−−+)− (+ + ++)

−ieiθ1(+ +−−) + ieiθ2(+−+−)

⎞⎟⎟⎟⎠,

where (p1p2p3p4) =
∑4

i=1 pidi with pi = ±1, and θi = tan−1(biy/bix). After some
algebra, the wavefunction becomes

|Φ̃(k,Q)〉 = − cQV0

d(k,Q)

×

⎛⎜⎜⎜⎝
i
√
2(s2(k,Q)αb(k)e−iθb − α3B(Q)(B(Q) · b(k))e−iθB )

−2is(k,Q)α2(b(k)×B(Q))z

i
√
2(s2(k,Q)αb(k)eiθb − α3B(Q)(B(Q) · b(k))eiθB )

s(k,Q)(s2(k,Q)− α2B2(Q))

⎞⎟⎟⎟⎠, (3)

where the four-component wavefunction is now written in the basis
of the three-triplet and one-singlet states: |1, 1〉, |1, 0〉, |1,−1〉, |0, 0〉. Here,
b(k) = (kx + γky, γkx + ky), B(Q) = (Qx+γQy, γQx+Qy), s(k,Q) = (k2/m) +
(Q2/4m)− E(Q), and d(k,Q) = d1(k,Q)d2(k,Q)d3(k,Q)d4(k,Q). The angles are
given by θb = tan−1(by/bx) and θB = tan−1(By/Bx).

d) Using relation (2) and noting that all components of the wavefunction (3) are odd
under k → −k except for the singlet component, we find∫

d2k′

(2π)2
|Φ̃(k′,Q)〉 = cQ|0, 0〉. (4)

e) Using the wavefunction (3), the self-consistency condition (4) can be rewritten as

1

|V0| =
∫

d2k

(2π)2
s(k,Q)[s2(k,Q))− α2B2(Q)]

s4(k,Q)− 4α2s2(k,Q)[b2(k)−B2(Q)/4) + 4α4(B(Q) · b(k)]2 .
(5)
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At Q = 0, the self-consistency equation (5) reduces to∫
d2k

(2π)2
s(k,0)

s2(k,0)− 4α2b2(k)
=

1

|V0| , (6)

Noticing that the threshold energy for molecular formation is Eth = −mα2(1 +
γ)2, the dimensionless binding energy, δ > 0, can be defined via E(0) = −mα2(1 +
γ)2(1 + δ). Doing the angular integration in (6), we arrive at

4π

|v0| =
∫ ξc

0

[ξ + (1 + γ)2(1 + δ)]dξ√
(ξ + (1 + γ)2(1 + δ))2 − 4ξ(1− γ)2

× 1√
(ξ + [1 + γ)2(1 + δ)]2 − 4ξ(1 + γ)2

, (7)

where ξ = (k/(mα))2, and v0 = V0m is the dimensionless attractive interaction
strength. ξc = 1/(mαRe)

2 is a dimensionless ultraviolet cutoff where Re is the
characteristic radius of the interaction. Assuming a small binding energy (i.e.,
δ � γ ∼ 1) the integrand in (7) is strongly peaked for ξ = ξ0 ≡ (1 + γ)2(1 + δ) due
to the near-vanishing of the second square-root factor in the denominator. Setting
ξ = ξ0 in all of the other factors (since they are regular at ξ = ξ0), the integral can
be done, and we obtain the binding energy

δ ≈ ξc
(1 + γ)2

e
− 8π

√
γ

|v0|(1+γ) ,

where we have assumed ξc � 1 + γ. Therefore, the bound state energy is given by

E(0) = −m(α+ β)2
[
1 +

ξc
(1 + γ)2

e
− 8π

√
γ

|v0|(1+γ)

]
.

f) The energy spectrum of the spin-orbit coupled molecule can again be obtained from
the self-consistency condition (5) evaluated at Q �= 0. The integrals can be done
analogously to part e), and we obtain

E(Q) ≈ −m(α+ β)2 − Λe
− 8π

√
γ

|v0|(1+γ)

+
1

4(1 + γ)2

[
(1 + 6γ + γ2)

Q2

2m
+ 2(1− γ)2

QxQy

2m

]
,

where Λ = mα2ξc is the ultraviolet cutoff, and we have assumed small momenta
Q � mα. Therefore, the effective mass of the molecule, m∗, reads

1

m∗ =
1

m

(1 + 6γ + γ2) + (1− γ)2 sin 2θ

4(1 + γ)2
,

where θ = tan−1(Qy/Qx).
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g) The purely Rashba case can be considered by setting γ = 0 in the self-consistency
condition (5). At Q = 0, analogous calculation as part e) gives the dimensionless
binding energy (keeping in mind that the threshold energy for molecular formation
for this case is Eth = −mα2):

δ ≈ |v0|2
16

.

The bound state energy is then

E(0) ≈ −mα2

(
1 +

|v0|2
16

)
.

The spectrum of the Rashba molecule is

E(Q) ≈ −mα2 −mα2 |v0|2
16

+
Q2

8m
,

where we once again expanded for Q � mα. The effective mass here is then m∗ =
4m.

5.5 Coherent-state spin path-integral

Problem 5.38

A useful quantity for statistical–mechanical calculations is the partition function,
which given a Hamiltonian, Ĥ, is defined as follows (for simplicity in this problem
we take the Planck constant and the Boltzmann constant � = kB = 1):

Z = tr e−βĤ,

where β = 1/T is the inverse temperature. Sometimes the path integral representation
of quantum mechanics is used to calculate the partition function.[75] The path integral
is constructed by introducing a complete set of states parametrized by a continuous
parameter such as what are known as coherent states (see below).

Consider an ensemble of spin-s particles with the Hamiltonian Ĥ expressed in terms
of the usual operators Ŝx, Ŝy, and Ŝz satisfying the standard commutation relations,

[Ŝi, Ŝj ] = iεijkŜk. With this, we define themaximal state |s〉 by Ŝz |s〉 = s |s〉. Coherent
states are then defined (in one of many equivalent ways) as |n〉 = e−iφŜze−iθŜy |s〉
(where n is a point on a unit sphere specified by two angles, θ and φ).

For this problem we consider the path integral for Z = tr e−βĤ, following these
steps:

[75] The general applicability of the path-integral construction is an open mathematical question still
under debate, and this section illustrates both its correct usage and its limitations.
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1) Consider the resolution of identity for these coherent states

2s+ 1

4π

∫
dn |n〉 〈n| = 1̂. (1)

Rewrite the trace of e−βĤ (i.e., the partition function Z) using this identity.

2) Consider the operator identity eÂ = limN→∞
(
1 + Â

N

)N

. Between each multiplica-

tive element, insert a resolution of identity. Then, recalling that 1 + x ≈ ex when
x is small, write the partition function as

Z = lim
N→∞

(
2s+ 1

4π

)N ∫ N−1∏
i=0

dni exp(−S[{ni}]).

Find the explicit form of S[{ni}] (S is called the action).

3) Assume continuity by letting |ni〉 − |ni−1〉 → 0 as N → ∞, and find the new form
of S in the continuum limit (i.e., N → ∞ and the index i becomes a continuous
variable τ). With this limit, the partition function is now a path integral

Z =

∫
Dn(τ) e−S[{n(τ)}],

where loosely, Dn(τ) ≡ limN→∞
∏N−1

i=0
2s+1
4π dni. What are the conditions on the

paths n(τ)?

4) Find the explicit form of S[{n(τ)}] for Ĥ = 0 and Ĥ = Ŝ · x, where x · x = 1.

Solution

Most of the derivation does not depend on the particular form of the coherent states,
so for this derivation we will use an arbitrary set of states labeled with a continuous
variable l and resolution of the identity∫

dl |l〉 〈l| = 1̂.

1) With the resolution of identity we can immediately write the partition function as

Z =

∫
dl 〈l|e−βĤ |l〉. (2)

In fact, this just a particular way to take trace.

2) If we then break up the exponential with the identity eÂ =
(
1 + Â

N

)N

and insert a

resolution of the identity between each element
(
1 + Â

N

)
, we obtain (letting l → l0

and lN ≡ l0)

Z = lim
N→∞

∫ N−1∏
i=0

dli

N∏
j=1

〈
lj

∣∣∣∣∣1− βĤ

N

∣∣∣∣∣ lj−1

〉
.
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At this point we define Δτ ≡ β/N and focus on the matrix element〈
lj |1−HΔτ | lj−1

〉
. Before we apply the continuity condition, we first attempt to

derive the partition function in terms of an action. Note that so far we have made
no approximations.
Our first move is to factor out

〈
lj |lj−1

〉
and approximate the resulting term it

multiplies as an exponential:〈
lj

∣∣∣1− ĤΔτ
∣∣∣ lj−1

〉 ≈ 〈
lj |lj−1

〉
e−H(lj ,lj−1)Δτ ,

where H(lj , lj−1) ≡
〈
lj |H|lj−1

〉
/
〈
lj |lj−1

〉
. This move is justified, since N is large

and the correction to the exponential will go as N−2. With only N exponentials
multiplying one another, (e1/N

2

)N = e1/N → 1. Just to get the other object into
the exponential, we merely use the identity x = exp[log(x)]. At this point we have
our first version of a (discrete) path integral, with no continuity assumption yet
imposed:

Z = lim
N→∞

∫ N−1∏
i=0

dli exp(−S[{lj}]),

where

S[{lj}] = −
N∑
j=1

[− log(
〈
lj |lj−1

〉
) +H(lj , lj−1)Δτ

]
. (3)

3) At this point we impose the condition of continuity (which is a key assumption
in the construction of the coherent-state path-integral). This condition states that
|lj〉 = |lj−1〉+ |δlj〉, where |δlj〉 → 0 as N → ∞.
We first handle the log term in the action given in (3) to obtain

log(
〈
lj |lj−1

〉
) ≈ −〈lj |δlj〉, (4)

where we have explicitly used continuity to obtain this expression. For the term
H(lj , lj−1)Δτ we can simply set lj−1 = lj , since it already multiplies Δτ . Letting

H(lj) =
〈
lj |Ĥ|lj

〉
= H(lj , lj), we then obtain the expression for the action:

S[{lj}] =
N∑
j=1

[〈
lj |δlj

〉
Δτ

+H(lj)

]
Δτ.

If we now let N → ∞, the index j becomes a continuous variable τ , the term
|δlj〉
Δτ =

|lj〉−|lj−1〉
Δτ → ∂τ |l(τ)〉, Δτ = dτ , and we obtain the Riemann integral:

S[{l(τ)}] =
∫ β

0

dτ
{〈

l(τ)|∂τ |l(τ)
〉
+H[l(τ)]

}
.
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Remember that lN = l0, and so we have implicitly imposed l(0) = l(β) (i.e., the
paths are closed). We further define the measure:

Dl(τ) = lim
N→∞

N−1∏
i=0

dli.

This leads to the final form of our path integral:

Z =

∫
Dl(τ) exp (−S[{l(τ)}]) .

At this point we concentrate on the spin coherent-state path integral. The most
interesting term is the first one, so we evaluate it:

〈n(τ)|∂τ |n(τ)〉 = 〈s|eiθŜyeiφŜz∂τe
−iφŜze−iθŜy |s〉

= −i∂τφ 〈s| eiθŜy Ŝze
−iθŜy |s〉 .

For clarity, we have dropped θ and φ’s dependence on τ . There are a number of
ways to solve the matrix element remaining, but we will solve it by noting that
Ŝy rotates our spherical coordinates and that state |s〉 is at the top of a sphere

of radius s. Ŝz measures the new z-component of the rotated state, so the matrix
element will be given by s cos θ. Our action is thus given by

S[{n(τ)}] =
∫ β

0

dτ {−is cos θ ∂τφ+H(θ, φ)}. (5)

Sometimes, different derivations give the first term as is(1− cos θ)∂τφ, which is only
different from ours by a total derivative (something that is usually inconsequential).
This term, is sometimes called the Berry phase term, since it has a strong connection
to what is known as the Berry phase. The next problem discusses this term in more
detail (see also Problem 6.45).

4) If Ĥ = 0, then H(θ, φ) = 0, and by (5) we can easily get our action. Note that it is
not zero. There is still a term in the action.

If Ĥ = Ŝ · x, then after a bit of work we have that H(n(τ)) = n(τ) · x. Note
that we can rotate our z-axis onto x to make the action simple when we turn to
coordinates θ, φ. In fact, this rotation is one way to easily solve this problem. (See
the following problem for how changing this axis affects or does not affect the first
term in the action).

Problem 5.39

Consider the Berry action for a free spin-s system given by

SB = is

∫ β

0

dτ [1− cos θ(τ)]∂τφ(τ), (1)
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which shows up in physical applications as e−SB . The integrand is derived from
the form

〈
n(τ)|∂τ |n(τ)

〉
, where |n(τ)〉 is defined the previous problem. In addition,

assume a closed path such that n(β) = n(0). Show that this action has a geometric
interpretation in terms of areas on the sphere, and further show its invariance with
respect to the axis of quantization in the context of physical applications. (In the
above case we quantized on the positive z axis, and a coordinate transformation can
move this axis around the sphere.)

Solution

First we show that SB is calculating a physical quantity that by its very nature is
coordinate-invariant – the area on a sphere enclosed by a curve given by n(τ). If we
write (1) in terms of ∂τn, then we obtain

SB = is

∫ β

0

dτ ∂τn ·A,

where we have defined A = 1−cos θ
sin θ φ̂ and φ̂ is in the direction of the coordinate φ. This

integral is actually a line integral of the vector potential A about the closed curve
n(τ). By Stokes’ theorem we can the write expression in terms of a surface integral of
the curl of A,

SB = is

∫
Ω+

dS r · (∇×A) = is

∫
Ω+

dS,

where r is the radial direction away from the center of the sphere, and Ω+ is the region
enclosed by the curve n(τ) that includes the north pole.

Note the ambiguity when calculating the area enclosed by a curve on a sphere.
Do we take the area that includes the north pole or the south pole? In this case, our
choice of coordinates forced the north pole upon us – A is singular at the south pole,
so many equations we have written six could not apply if we enclosed it. In fact, this
is related to the so-called Dirac string. The singularity in ∇×A causes a flux at the
south pole (one point!) that will balance the flux through the rest of the sphere. So
our coordinate-choice problem boils down to the choice to include the north or south
pole in our calculation of the area.

However, we could have equally chosen the north pole to carry the string. This
would correspond to a change of coordines cos θ → − cos θ and ∂φ → −∂φ. And our
new vector potential is A′ = − 1+cos θ

sin θ φ̂ = A− 2∇φ. This new vector potential differs
from the old only by a gauge transformation, and is singular at the north pole. So when
we perform a similar analysis to the above, we obtain for this transformed action

S′
B = −is

∫
Ω−

dS,

where Ω− is the enclosed region including the south pole. A minus sign is picked
up because if we assume the same orientation of our enclosing curve n(τ), then the
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outward normal to our surface is actual in the negative orientation (recall that Stokes’
theorem is sensitive to orientation).

If we remember that Ω− = S2 − Ω+ (S2 is the sphere), we can write

S′
B = −is

∫
S2

dS + is

∫
Ω+

dS = −4πis+ SB

and we see that the transformed S′
B differs from SB by −4πis. This difference is

crucial, since recall that s is a half integer and only terms like e−SB are physically
relevant. Thus, this difference in the actions actually goes away when calculating
physical quantities (e2πin = 1 for integers n), and hence SB is invariant with choice of
quantization axis.

This procedure can also be used to produce the result that s must be a half integer,
for otherwise the action ceases to make sense physically (it would depend on the choice
of “gauge” which is related to the quantization axis).

Problem 5.40

Consider the resolution of the identity (Eq. (1) in Problem 5.38) for spin-1 coherent
states (s = 1). Relating states and operators to the appropriate matrix representation
(3× 3 matrices acting on three element vectors), prove the resolution of the identity
for this particular case.

Solution

To build coherent states for a spin-1 particle, we consider the standard matrices which
make up the SU(2) (spin) algebra:

Sx =
1√
2

⎛⎝0 1 0
1 0 1
0 1 0

⎞⎠, Sy =
1√
2

⎛⎝0 −i 0
i 0 −i
0 i 0

⎞⎠, Sz =

⎛⎝1 0 0
0 0 0
0 0 −1

⎞⎠.

These matrices satisfy the commutation relations [Si, Sj ] = iεijkSk. To construct
the coherent states, we need to figure out how to evaluate the following (which is a
coherent state as defined in the previously):

|n〉 := e−iφSze−iθSy |1〉 ,

where |1〉 is the eigenstate of Sz with eigenvalue 1. The exponential of Sz is rather
easy – as a diagonal matrix. For Sy it is rather more complicated, and we will use
these facts (easily calculated):

S2
y =

1

2

⎛⎝ 1 0 −1
0 2 0
−1 0 1

⎞⎠, S3
y = Sy.
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Using these facts, we can evaluate the exponential of Sy (odd exponents are Sy, even
are S2

y):

e−iθSy =

∞∑
n=0

(−iθ)n

n!
Sn
y = 1− S2

y +

∞∑
n=0

(−iθ)2n+1

(2n+ 1)!
Sy +

∞∑
n=0

(−iθ)2n

(2n)!
S2
y

= 1− S2
y − i sin θSy + cos θS2

y

=

⎛⎜⎜⎝
1
2 (1 + cos θ) − 1√

2
sin θ 1

2 (1− cos θ)

1√
2
sin θ cos θ − 1√

2
sin θ

1
2 (1− cos θ) 1√

2
sin θ 1

2 (1 + cos θ)

⎞⎟⎟⎠.

For completeness we write down the other exponential:

e−iφSz =

⎛⎜⎝e−iφ 0 0

0 1 0

0 0 eiφ

⎞⎟⎠.

Taking these together it is clear that the coherent states take the form

|n〉 = 1
2 (1 + cos θ)e−iφ |1〉+ 1√

2
sin θ |0〉+ 1

2 (1− cos θ)eiφ |−1〉. (1)

Now that we have derived the coherent states as defined, we move to calculating
the resolution of the identity (also known as overcompleteness in this case).

All we need to do is show that we get a resolution of the identity from integrating
over the outerproduct of these coherent states as so:

1 =
3

4π

∫
S2

dn |n〉 〈n| .

Recall that the measure on a sphere is dn = dφd(cos θ). The matrix to be intregrated
is

|n〉 〈n| =

⎛⎜⎜⎝
1
4 (1 + cos θ)2 1

2
√
2
(1 + cos θ) sin θe−iφ 1

4 (1− cos2 θ)e−2iφ

1
2
√
2
(1 + cos θ) sin θeiφ 1

2 sin
2 θ 1

2
√
2
(1− cos θ) sin θe−iφ

1
4 (1− cos2 θ)e2iφ 1

2
√
2
(1− cos θ) sin θeiφ 1

4 (1− cos θ)2

⎞⎟⎟⎠.

Clearly, upon integration over φ, the off-diagonal terms drop out due to their periodic
dependence on φ. The other terms are independent of φ, so they become multiplied
by 2π upon integration. All that is left is the integral over cos θ for which we make
the assignment x ≡ cos θ:
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3

4π

∫
S2

d(cos θ)dφ |n〉 〈n| = 3

2

⎛⎜⎝
1
4

∫ 1

−1
(1 + x)2dx 0 0

0 1
2

∫ 1

−1
(1− x2)dx 0

0 0 1
4

∫ 1

−1
(1− x)2dx

⎞⎟⎠
= 1.

Thus, we have proven the resolution of identity for this case.

This allows us to decompose any state into a sum of coherent states by just inserting
the identity

|ψ〉 = 1 |ψ〉 = 3

4π

∫
S2

dn
〈
n|ψ〉 |n〉.

Problem 5.41

Consider a spin-s system and the following (alternative, yet equivalent) definition of
the coherent states:

|n〉 = e
1
2 θ[S−eiφ−S+e−iφ] |s〉

with |s〉 still being the maximal state for Sz, and S± = Sx ± iSy. Using this form
of the state, derive an expansion of |n〉 in terms of eigenstates of Sz so that |n〉 =∑s

m=−s Am(n) |m〉.
Solution

The answer is

|n〉 =
s∑

m=−s

(
2s

m+ s

)
[cos(θ/2)]s+m[sin(θ/2)]s−mei(s−m)φ |m〉.

Problem 5.42

For every operator Â, there are two ways of representing the function with coherent
states.[76] One way is given by a function

a(n) = 〈n|Â|n〉,
and the other is by a function A(n) defined by the property

Â =
2s+ 1

4π

∫
dnA(n) |n〉 〈n|.

[76] See E. Lieb, Commun. Math. Phys. 31, 327–340 (1973), for a detailed discussion of the mathematical
aspects of this construction.
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In general, these two quantities differ. Calculate these two functions for the
following operators: Ŝx, Ŝy, Ŝz, Ŝ

2
x, Ŝ

2
y , Ŝ

2
z .

In general, there is an infinite set of functions A(n), so to find a particular A(n)
calculate a(n), then assume that A(n) has a functional form similar to a(n).

Solution

Symmetries are useful in constructing these, since Ŝz can be rotated into the other
two operators. The result of this yields the following:

Operator a(n) A(n)

Ŝx s cos θ (s+ 1) cos θ

Ŝy s sin θ cosφ (s+ 1) sin θ cosφ

Ŝz s sin θ sinφ (s+ 1) sin θ sinφ

Ŝ2
x s(s− 1

2 ) sin
2 θ cos2 φ+ s/2 (s+ 1)(s+ 3/2) sin2 θ cos2 φ− 1

2 (s+ 1)

Ŝ2
y s(s− 1

2 ) sin
2 θ sin2 φ+ s/2 (s+ 1)(s+ 3/2) sin2 θ sin2 φ− 1

2 (s+ 1)

Ŝ2
z s(s− 1

2 ) cos
2 θ + s/2 (s+ 1)(s+ 3/2) cos2 θ − 1

2 (s+ 1)

Note how the two columns are quite different from each other.

Problem 5.43

Consider a spin-1 system with the following two Hamiltonians:

a) Ĥ = Ŝz;

b) Ĥ = Ŝ2
z .

For both Hamiltonians, calculate the partition function using the usual states and
operators for a spin-1 system, and compare that with the result from calculating the
path integral derived in the first problem of this section:

Z =

∫
Dn(τ) exp

{
−
∫ β

0

[
−〈n(τ)|∂τ |n(τ)〉+ 〈n(τ)| Ĥ |n(τ)〉

]
dτ

}
. (1)

The path integral itself, represented by the
∫ Dn(τ) in (1), is over all closed paths

(i.e., n(0) = n(β)).

To evaluate this path integral it is useful to note a couple of facts for path integrals:

1) The condition that a path is closed means that certain angles can be increased by
an integer multiple of 2π. For instance, ϕ(β) = ϕ(0) + 2πn where n is an integer
still represents a closed path on the sphere. In fact, n is a winding number and
can be used to separate topologically distinct paths by introducing a sum over their
winding numbers, n.
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2) By analogy with regular integrals,
∫ Dx(τ) e

−i
∫ β

0
f(τ)x(τ)dτ

= δ(f).
Note The results for the path integral representation and the operator represen-

tation may not agree. Speculate on why each case may or may not agree.

Solution

First, it is a straightforward excercise to evaluate Z = tr e−βĤ in the operator/matrix
representation of quantum mechanics, and that results in the following (the subscripts
a and b represent the two Hamiltonians):

Za = e−β + 1 + eβ (2a)

Zb = 2e−β + 1 (2b)

The path integral is rather more difficult to calculate, and we will complete both a)
and b) at the same time by noting that in both cases 〈n(τ)| Ĥ |n(τ)〉 = H(cos θ(τ)), a
function of cos θ(τ). Also, it can shown that 〈n(τ)| ∂τ |n(τ)〉 = −i(1− cos θ(τ))∂τϕ(τ).
If we write Z =

∫ Dn(τ)e−S[n], then we note that after performing an integration by
parts, we obtain

S[n] = −i(1− cos θ(0))(ϕ(β)− ϕ(0)) + i

∫ β

0

ϕ(τ)∂τ cos θ(τ) dτ

+

∫ β

0

H(cos θ(τ)) dτ.

At this point we can separate the paths by their winding numbers with ϕ(β)− ϕ(0) =
2πn, for winding number n. If we do this, and call x(τ) ≡ cos θ(τ), then we can say
that Dn(τ) = Dx(τ)Dϕ(τ), and

Z =
∑
n

∫
Dx(τ)Dϕ(τ) e−2πin(1−x(0))e

i
∫ β

0
ϕ(τ)∂τx(τ) dτ−

∫ β

0
H(x(τ)) dτ

.

Using the path integral fact given in the problem statement, do the integral over ϕ to
obtain δ(∂τx(τ)), and then do the integral over; x(τ) up to a constant that we call x0

(which still must be integrated over; and recall that x0 can only range from −1 to +1,
due to its being the cosine of an angle). This considerably simplifies the path integral
to just the expression

Z =
∑
n

∫ 1

−1

dx0 e
−2πin(1−x0)e−βH(x0).

The sum over n can be evaluated to a sum of δ-functions

Z =
∑
k

∫ 1

−1

dx0 δ(1− x0 − k)e−βH(x0),
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where the sum over k is over all integers. Now the sum over x0 will pick up only
integers of x0 in the interval [−1,+1], so that the sum over k will only be non-zero for
x0 = −1, 0,+1, and we obtain

Z = e−βH(−1) + e−βH(0) + e−βH(1). (3)

We can now apply (3) to a) and b) to obtain new expressions for Za and Zb. For this,
we note that for a), H(cos θ) = cos θ, and for b), H(cos θ) = 1

2 (1 + cos2 θ). Using these
appropriately, we obtain

Za = e−β + 1 + eβ , (4a)

Zb = 2e−β + e−β/2. (4b)

If we compare these results with (2a) and (2b), we first see that (4a) agrees with
(2a), but then we notice that (4a) does not agree with (4b). In fact, they are different
expressions. This is currently (as of 2011) an unresolved problem with evaluating the
path integral.

Interestingly, part a) does actually have agreement between the two methods, and it
is a linear sum of what are called generators of the Lie group SU(2) (whose generators
are Ŝx, Ŝy, and Ŝz). In fact, the path integral gives the correct result when the
Hamiltonian is a linear sum of generators, and the coherent states are constructed
using those generators. On the other hand, the Hamiltonian for part b) is quadratic in
a generator, and it fails to produce correct results. This observation can be generalized
to a number of other cases.



6

Time-dependent quantum mechanics

There are several ways (representations) that are used to describe time-dependent
phenomena in quantum mechanics.

In the Schrödinger representation a wavefunction (a state vector) changes in time
according to the Schrödinger equation

i�
∂

∂t
ψ(q, t) = Ĥψ(q, t), (VI.1)

while operators of dynamic variables – e.g. coordinates q̂i, momenta p̂i and spin
ŝi – do not depend on time.

For a time-independent Hamiltonian of a system, the wavefunction can be written
in the form of an expansion:

ψ(q, t) =
∑
n

c(En)e
−iEnt/�ψEn

(q), (VI.2)

where ψEn
(q) are a complete set of eigenfunctions for the Hamiltonian (that describe

the stationary states). The coefficients in this expansion are uniquely defined by the
initial value of the wavefunction:

c(En) =

∫
ψ∗
En

(q)ψ(q, t = 0)dτq. (VI.3)

If a quantum-mechanical operator f̂ ≡ f(p̂, q̂, t) is correlated with some physical
quantity f , then the operator that corresponds to the physical quantity ḟ ≡ df/dt
(a time derivative) is defined by

ˆ̇
f ≡ ˙̂

f =
∂f̂

∂t
+

i

�
[Ĥ, f̂ ]. (VI.4)

Physical quantities for which
˙̂
f = 0 are called constants of motion.[77]

The time-dependent Green function G(q, t; q′, t′) obeying the Schrödinger equation
with respect to the variables q, t, and an initial condition of the form G(q, t′; q′, t′) =
δ(q − q′), allows one to write the general solution to Eq. (VI.1) in the form

[77] For such quantities, the spectrum of eigenvalues and probability distribution for an arbitrary state
do not depend on time.
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ψ(q, t) =

∫
G(q, t; q′, 0)ψ0(q

′)dτq′ , (VI.5)

where ψ0(q) ≡ ψ(q, t = 0). In particular, for a time-independent Hamiltonian, the
Green function is

G(q, t; q′, t′) =
∑
n

e−iEn(t−t′)/�ψEn
(q)ψ∗

En
(q′). (VI.6)

For a free particle, whose Hamiltonian is Ĥ = 1
2m p̂2, the Green function has the

form

G(r, t; r′, t′) =
(
− im

2π�(t− t′)

)3/2

exp

[
im(r− r′)2

2�(t− t′)

]
. (VI.7)

In the Heisenberg representation, unlike the Schrödinger representation, the wave-
function of a system does not depend on time, while the time-dependence of the
operators obeys the equations[78]

d

dt
q̂i(t) =

i

�
[ Ĥ(t), q̂i(t)],

d

dt
p̂i(t) =

i

�
[ Ĥ(t), p̂i(t)], (VI.8)

where the Hamiltonian, Ĥ(p̂i(t), q̂i(t), t), is expressed in terms of the Heisenberg opera-
tors q̂(t), p̂(t) that satisfy the canonical commutation relations [ p̂i(t), q̂k(t)] = −i� δik.

In this representation, the relation (VI.4) is not a definition of
˙̂
f but a derived relation

from (VI.8).

The Schrödinger and Heisenberg representations are connected with a unitary
transformation: ψ(q, t) = Û(t)ψ0(q). If the Hamiltonian is not explicitly dependent
on time, then Û(t) = exp{−iĤt/�} and the relation between the operators in these
representations has the form

f̂H = eiĤt/�f̂Se
−iĤt/�. (VI.9)

There exists another frequently-used representation: the interaction representation; it
is considered in Problem 6.30.

6.1 The Schrödinger representation; The motion of wave packets

Problem 6.1

Consider the following systems and their wavefunctions ψ0 at an initial time (t = 0):

[78] In order to distinguish between represenations: in the Heisenberg representation we indicate explicitly
the time-dependence of the operators as: q̂(t), p̂(t). We keep q̂, p̂ for the corresponding operators
in the Schrödinger representation. These representations of wavefunctions and operators coincinde
at t = 0; compare with Eq. (VI.9).
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1) a particle in an infinitely deep potential well of width a with ψ0(x) = A sin3
(
πx
a

)
for 0 ≤ x ≤ a;

2) a plane rotator with ψ0(ϕ) = A sin2 ϕ;

3) a spherical rotator with ψ0(ϑ, ϕ) = A cos2 ϑ

Find the wavefunctions for these systems at an arbitrary moment of time. Prove that
after a time T the systems return to the initial state.

Solution

The stationary states of these systems were considered in Problems 2.1, 3.2, and 3.3.
By using Eq. (VI.2) we easily obtain:

1)

ψ(x, t) =
A

4
e−iωt

(
3 sin

πx

a
− e−8iωt sin

3πx

a

)
, ω =

π2
�

2ma2
,

2)

ψ(ϕ, t) =
A

2

[
1− e−2i�t/I cos 2ϕ

]
,

3)

ψ(ϑ, t) =
A

3

[
1 + e−3i�t/I(3 cos2 ϑ− 1)

]
.

(To determine the expansion of the wavefunction ψ0 in terms of the Hamiltonian’s
eigenfunctions it is convenient to use known trigonometric equations without using
Eq. (VI.3).)
After time T equal to 1) ma2/2π�, 2) πI/�, 3) 2πI/3�, the systems return to

their initial states.

Problem 6.2

The state of a free particle at t = 0 is described by the wavefunction

ψ0(x) = A exp

[
i
p0x

�
− x2

2a2

]
.

Determine the time dependence of the state and the following mean values:
x(t), p(t), (Δx(t))2, (Δp(t))2. (See also Problem 6.21.)

Show that the width of the wave packet,

√
(Δx(t))2, independently of the param-

eters that determine the wavefunction ψ0(x), cannot be arbitrarily small.
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Solution

Let us expand the wavefunction ψ0(x) in the momentum eigenfunctions, which are
also the eigenfunctions of the free particle Hamiltonian:[79]

ψ0(x) =

∫
c(p)ψp(x)dp, ψp(x) =

1√
2π�

eipx/�.

Evaluating the resulting Gaussian integral, we find

c(p) =

∫
ψ0(x)ψ

∗
p(x)dx =

aA√
�
exp

{
− (p− p0)

2a2

2�2

}
. (1)

Now, by using Eq. (VI.2) we obtain

ψ(x, t) =

∫
c(p) exp

(
−i

p2t

2m�

)
ψp(x)dp =

A

(
1 +

i�t

ma2

)−1/2

exp

{
i�3x2t+ i�m2a4v0(2x− v0t)− �

2ma2(x− v0t)
2

2m(�2a4 + �4t2/m2)

}
, (2)

where v0 = p0/m. Hence it follows that

|ψ(x, t)|2 = |A|2 a

a(t)
exp

{
− (x− v0t)

2

a(t)

}
, (3)

a2(t) = a2(1 + �
2t2/(m2a4)).

Choosing |A|2 = (πa2)−1/2 to normalize the wavefunction to unity, we find

x(t) =

∫
x|ψ(x, t)|2dx = v0t, (Δx(t))2 =

1

2
a2(1 + �

2t2/(m2a4)). (4)

Since c(p, t) = exp
(−ip2t/2m�

)
c(p) is the wavefunction in the momentum represen-

tation, then using (1) we obtain

p(t) =

∫
p|c(p, t)|2dp = p0, (Δp(t))2 =

�
2

2a2
. (5)

(independence of momentum on time reflects the fact that for a free particle momen-
tum is the constant of motion.)

The results (3)–(5) have a simple meaning: the coordinate distribution (3) is the
Gaussian wave packet, the center of which, x(t), moves with the constant velocity v0

(equal to p/m = v); the width of the packet here ∼
√

(
x(t))2, increases (i.e., the

packet spreads out). The spreading out of the packet is connected with the fact that
the momentum (and velocity) of the particle has no definite value.

[79] All of the integrals in this problem are calculated within infinite limits.
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The width of the packet doubles within a time t0 =
√
3ma2/�. We evaluate this

“spreading-out” time for two cases. 1) For a microscopic particle with the mass (m =
10−27 g) (electron) and a = 10−8 cm (atomic dimensions), we have t0 ∼ 10−16 sec.
2) For a small but macroscopic particle with m = 10−6 g and a = 10−2 cm, we have
t0 ∼ 1017 sec, or ∼ 1010 years. We should note that when a packet is “tightly” localized
with a small 
x(0), the spreading of the wave packet is fast; this is connected with
the uncertainty relation 
p
x ≥ � (and since the spreading is determined by the
uncertainty 
v of velocity, then it especially clearly seen with the decrease of particle
mass). As we see from (4) the width of the packet satisfies the relations (
x(t))2 ≥
(a2/2, �t/m, �

2t2/2ma2).

Problem 6.3

Let us consider a normalized wave packet at t = 0:

ψ(x, t = 0) =

∫
c(E)ψE(x)dE,

∫
|ψ|2dx = 1,

which is some superposition of the eigenfunctions of the Hamiltonian corresponding
to the continuous part of energy spectrum. Show that the probability density at any
point tends to zero as t → ∞. Explain why this fact does not contradict conservation
of wavefunction normalization.

Solution

At an arbitrary moment in time,

ψ(x, t) =

∫
c(E) exp

(
−i

Et

�

)
ψE(x)dE. (1)

The decrease of |ψ(x, t)|2 with t → ∞ occurs due to the rapid oscillations of the
expression under the integral sign (its real and imaginary parts), neighboring domains
of integration cancel each other. The decrease in |ψ(x, t)|2 means that the particle
moves to infinity as t → ∞. This corresponds to the notion in classical mechanics that
a particle in motion will continue the motion indefinitely, moving to infinity. We should
note that when the probability density of the wave packet decreases, the width of the
packet increases – it spreads out and keeps the wavefunction normalized to unity. (As
an illustration, see (3) from Problem 6.2).

Problem 6.4

The state of a particle in a δ-potential (see Problem 2.7) at t = 0 is described by
the wavefunction ψ̃0(x) = A exp(−β|x|), β > 0. are the probability W (x)dx to find
the particle inside the coordinate interval (x, x+ dx) as t → ∞. Find the value of the
integral

∫
W (x)dx and compare with its initial value. Explain the result obtained.
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Solution

Expanding the wavefunction ψ̃0(x) in the eigenfunctions of the Hamiltonian, we have

ψ(x, t) = c0 exp

(
−i

E0t

�

)
ψ0(x) +

∞∫
0

c(E) exp

(
−i

Et

�

)
ψE(x)dE, (1)

where

ψ0(x) =
√
κe−κ|x|, E0 = −�

2κ2

2m
, κ =

mα

�2

Are the wavefunction and the energy of the unique discrete spectrum state in the
δ-potential, see Problem 2.7.

The second term in (1) describes a contribution of continuous spectrum and
vanishes as t → ∞, so

|ψ(x, t = ∞)|2 = |c0ψ0(x)|2 = κ|c0|2e−2κ|x|. (2)

Choosing A =
√
β to normalize the wavefunction ψ̃0(x) to unity, we then calculate

c0 =

∫
ψ̃0(x)ψ

∗
0(x)dx =

2
√
κβ

κ+ β
,

and can rewrite (2) in the form

W (x) ≡ |ψ(x, t = ∞)|2 =
4κ2β

(κ+ β)2
e−2κ|x|, (3)

which determines the distribution over the coordinates of the particle as t → ∞. It is
normalized to the value

w ≡
∞∫

−∞
W (x)dx =

4κβ

(κ+ β)2
≤ 1, (4)

whose difference from unity means that the particle propagates to infinity with the
probability equal to (1− w). To explain the result obtained, we should note that in
general, ∫

lim
t→∞ |ψ(x, t)|2dx �= lim

t→∞

∫
|ψ(x, t)|2dx = 1.

Problem 6.5

At t = 0, the state of a free particle is determined by its wavefunction φ0(p) normal-
ized to unity in the momentum representation. Find the asymptotic behavior of its
wavefunction ψ(x, t) as t → ∞. Verify that the normalization of the wavefunctions is
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preserved under time evolution. As an illustration of the result obtained, consider the
wave packet from Problem 6.2.

Solution

The wavefunction has the form

ψ(x, t) =
1√
2π�

∫
exp

[
− i

�

(
p2t

2m
− px

)]
φ0(p)dp. (1)

As t → ∞ (and x → ±∞) the phase factor in the exponential changes considerably,
even in the case of small p which leads to rapid oscillations and therefore canceling of
the contributions of neighboring integration domains. Here the dominant contribution
is given by those integration domains whose phase as a function of p is an extremum,
and changes slowly. In our case, the only extremum point is p0 = mx/t. Approximating
the value of “shallow” function φ0 by its value at p0, we can factor it out of the integral,
and we find the desired asymptotic form of the wavefunction as t → ∞:

ψ(x, t) ≈ φ0(mx/t)√
2π�

∞∫
−∞

exp

[
− i

�

(
p2t

2m
− px

)]
dp

=

√
m

it
φ0

(mx

t

)
exp

(
imx2

2�t

)
. (2)

(Note that this function is normalized to unity since φ0(p) is normalized.) Let us note
the meaning of (2): it is the value of the wavefunction as t → ∞ at the point x → ±∞
(so that x/t = const ≡ v0 = p0/m), and it is given by the wavefunction φ0(p) at p = p0,
i.e., with a momentum that the free particle in classical mechanics must have in order
to cover the distance x in time t. Actually, the exponent of (2) is iS(x, t)/�, where S
is the classical “action” of such a particle.

Problem 6.6

Consider a wave packet reflecting off of an impenetrable potential wall, i.e., a wave
packet in the potential U(x) = 0 for x < 0 and U(x) = ∞ for x > 0. Initially,

ψ0(x, t = 0) = A exp

[
i
p0x

�
− (x+ x0)

2

2a2

]
,

where p0 > 0, x0 > 0 and it is assumed that x0 � a, since we need ψ(x, 0) = 0 for
x ≥ 0.

Solution

To calculate ψ(x, t) we use the Green function G(x, t, x′, t′) which obeys the
Schrödinger equation for a free particle and the boundary conditionG(x = 0, t;x,′ t′) =
0. Taking into account Eq. (VI.7) we see (in analogy with the “method of images” in
the electrostatics) that
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G(x, t;x′, t′) =

√
im

2π�(t− t′)

{
exp

im(x− x′)2

2�(t− t′)
− exp

im(x+ x′)2

2�(t− t′)

}
.

Substituting this expression and ψ0 from the problem statement into, Eq. (VI.5), and
calculating the integral, we obtain

ψ(x, t) = A

√
ma2

ma2 + i�t

{
exp

{
1

2(1 + �2t2/m2a4)a2

(
−
(
x+ x0 − p0t

m

)2

+
i�t(x+ x0)

2

ma2
+

2ip0a
2(x+ x0)

�
− ip0a

2t

m�
− 2ip0x0(a

2 + �
2t2/m2a2)

�

)}
− exp{(x → −x)}}, (1)

where exp{(x → −x)} denotes the same expression from the first exponential, but
with the change x → −x.

The wavefunction (1) is a superposition of two wave packets, the first of which
describes the wave packet moving towards the wall, while the second corresponds to
the reflected wave packet. At t = 0, the first term predominates in (1), while the second
term predominates for t > mx0/p0 when p0 � �/a.[80]

Problem 6.7

Discuss the reflection of a wave packet on a potential step of the form: U(x) = 0 for x <
0 and U(x) = U0 > 0 for x > 0 (Fig. 2.9). The incident wave packet includes momenta
with similar amplitudes from the interval p0 ±Δp where Δp � p0 and E0 < U0. Find
the reflection delay time at the barrier in comparison with the case of the classical
particle.

Solution

Let us first consider a free particle wave packet normalized to unity and summed over
momenta p = �k from the interval (k0 − κ0, k0 + κ0), with the amplitudes distributed
by a Gaussian:

[80] Let us emphasize that for the case p0 � �/a, we may interpret the initial wave packet as describing
the particle falling towards the wall. Otherwise (for p0 ≤ �/a), even in the initial state, the particle
has, with noticeable probability (∼ 1), the negative sign of momentum (compare with Problem 1.37),
as compared with the reflected particle; therefore, it does not make sense to characterize the first
term in (1) as corresponding to the particles falling onto the wall. The distinction between these
cases makes itself evident in the fact that in the case p0 ≤ �/a the first term in (1) is not negligibly
small in comparison with the second one, even as t → ∞.
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ψfree(x, t) =
1√
2π

κ0∫
−κ0

exp

{
i(k0 + κ)x− i

�t

2m
(k0 + κ)2

}
dκ√
2κ0

. (1)

For κ0 � k0 and for |t| � T = m/�κ2
0, we can omit the terms ∝ κ2 in the exponent

(i.e., all contributing momenta have the same amplitude) and obtain

ψfree(x, t) ≈
√

a

π
exp

{
ik0x− i

�k20t

2m

}
sin[(x− v0t)/a]

x− v0t
, (2)

where v0 = �k0/m and a = 1/κ0. According to (2), |ψfree(x, t)|2 describes the wave
packet whose center moves with constant velocity v0 (being at the point x = 0 at the
moment t = 0); the packet width is 
x = |x− v0t| ∼ a and it does not spread out
(but only during the time-interval considered.)

Now we consider the reflection of the initial wave packet at the potential step, and
the eigenfunction for the Hamiltonian at the energy E = �

2k2/2m is

ψ+
k (x) =

1√
2π

(
eikx − eiϕ(k)e−ikx

)
, for x < 0, (3)

where

ϕ(k) = 2 arctan

√
E

U0 − E
.

(It follows from the matching of function (3) with the wave-function ψ+
k (x) =

A exp{−√2m(U0 − E)x/�).) Let us construct the wave packet ψ(x, t) from the func-
tions (3) and the free variant (1). As a result, we obtain the wavefunction of the
particle (with the potential step) for x ≤ 0 in the form

ψ(x, t) = ψin(x, t) + ψout(x, t). (4)

Here ψin(x, t) is a part of the wave packet connected with the first term in (3); it
coincides with (1) and (2) and describes the particle moving towards the barrier and
differs from zero (for x < 0, the domain of validity) only for t ≤ a/v0, i.e., until the
packet reaches the step. The second part of the packet ψout corresponds to the particle
that is reflected at the step (it differs from zero only for t > 0). If while integrating over
κ we neglect the change in phase ϕ(k) of the reflected wave, i.e., put ϕ(k) ≈ ϕ(k0),
then for ψout we obtain the relation that follows from (2) by changing x to −x and
multiplying by −eiϕ(k0). In this approximation there is no effect of particle delay for
reflection. By using a more accurate approximation, ϕ(k0 + κ) ≈ ϕ(k0) + ϕ′(k0)κ, we
obtain[81]

ψout(x, t) ≈ −
√

a

π
eiα(x,t)

sin[(x− ϕ′(k0) + v0t)/a]

x− ϕ′(k0) + v0t
. (5)

[81] We do not indicate the value of the phase α(x, t) in (5).
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Hence it follows that the relation for the time delay (E0 = p20/2m),

τ =
ϕ′(k0)
v0

=
�√

E0(U0 − E0)
. (6)

Since τ > 0, there is a delay in the reflection of the particle at the barrier. We can
understand this by taking into account that, unlike in classical mechanics, the particle
penetrates into the barrier.[82] Note that τ decreases when U0 increases, so that τ = 0
as U0 = ∞. Concluding, we should note that τ � a/v0, i.e., the time delay is small in
comparison with the time it takes the particle to cross a distance comparable to its
packet size.

Problem 6.8

Discuss the reflection of a particle by a short-range potential U(x). The state of the
particle moving toward the non-zero part of the potential is described by a wave packet
normalized to unity. Assuming that the particle momenta from the interval p0 ±
p
are present in the packet with the same amplitude, find the restrictions on 
p for
which the values of the reflection and transmission coefficients do not depend on its
size and is defined by the simple expressions of stationary theory; see Eq. (II.4).

Solution

Eigenfunctions of the Hamiltonian that correspond to the particles coming from the
left, where the potential is zero, have the form

ψ+
k =

{
1√
2π

(
eikx +A(k)e−ikx)

)
, x < −d,

1√
2π

B(k)eikx, x > d,
(1)

where k =
√
2mE/�2 and d is the radius of a potential, so we can suggest that U = 0

for |x| > d. Let us consider the wave packet, normalized to unity (compare with the
previous problem):

ψ(x, t) =

κ0∫
−κ0

ψ+
k0+κ(x) exp

{
−i

�t

2m
(k0 + κ)2

}
dκ√
2κ0

. (2)

For the case of κ0 � k0 and so small that we can suggest that

A(k0 ± κ0) ≈ A(k0) and B(k0 ± κ0) ≈ B(k0),

[82] Actually, τ ∼ δx/v0, where δx ∼ �/
√

m(U0 − E0) is the distance of particle penetration inside the
barrier.
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and neglect the term ∝ κ2 in the exponent (for |t| � T = m/�κ0). The wavefunction
outside the potential range, using the asymptote (1), takes the form

ψ(x, t) =

{
ψin(x, t) + ψrefl(x, t), x < −d,
ψtrans(x, t), x > d,

(3)

where[83]

ψin(x, t) ≈
√

a

π
eiα(x,t)

sin[(x− v0t)/a]

x− v0t
,

ψrefl(x, t) ≈ A(k0)

√
a

π
eiα(−x,t) sin[(x+ v0t)/a]

x+ v0t
, (4)

ψtrans(x, t) ≈ B(k0)

√
a

π
eiα(x,t)

sin[(x− v0t)/a]

x− v0t
,

while v0 = �k0/m and a = 1/κ0.

The interpretation of the expressions (3) and (4) is as follows. For t < −d/v0 only
ψin is essentially different from zero, and it describes the particle incident from the left
which has not reached the region |x| ≤ d where the potential is non-zero. On the other
hand, for t > d/v0 only the parts of the wavefunction that describe the particle after
interaction with the potential, ψrefl and ψtrans, are essentially different from zero. Here
the probabilities of finding the particle in the reflected and transmitted wave packets
are equal to R = |A(k0)|2 and D = |B(k0)|2 respectively, in accordance with the result
of the stationary approach.

Problem 6.9

Consider a two-level system[84] (its levels are non-degenerate and have the energies

ε
(0)
1 and ε

(0)
2 ), that is in one of its stationary states; when t > 0, an external field

begins to act. The interaction V̂ of the system with the field is characterized by
the matrix elements V11, V22, V12 = V ∗

21 between the unperturbed states |1〉 and |2〉,
where Vab is time-independent (for t > 0). Determine the wavefunction of the system
for t > 0 and the probabilities of finding the system in eigenstates of unperturbed
Hamiltonian Ĥ0.

Solution

We will describe the wavefunction of the system by the two-component column vector

Ψ(t) =

(
ψ1(t)
ψ2(t)

)
, where the functions ψ1(2)(t) would be the amplitudes of the 1st and

[83] See (2) from the previous problem: α(x, t) = k0x− �k20t/2m.

[84] The two-level system models the behavior of a system whose energy spectrum has two close levels.
Transitions between these and other levels of the system are small for low-energy interactions.
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2nd eigenstates of unperturbed Hamiltonian Ĥ0 in the absence of a perturbation (i.e.,

ψ
(0)
1,2 = C1,2 exp

{
−iε

(0)
1,2t/�

}
). When the external field acts on the system, its new

stationary states (their energies and wavefunctions) are determined by the solution

to the Schrödinger equation (Ĥ0 + V̂ )Ψε = εΨε, which, by substituting Ψε =

(
a1
a2

)
,

takes the form of two algebraic equations(
ε
(0)
1 + V11 − ε

)
a1 + V12a2 = 0, V21a1 +

(
ε
(0)
2 + V22 − ε

)
a2 = 0.

The solution gives the “perturbed” energy levels ε1,2 and their corresponding eigen-
functions:

ε1,2 =
1

2

[
ε
(0)
1 + ε

(0)
2 + V11 + V22 ∓

√(
ε
(0)
1 − ε

(0)
2 + V11 − V22

)2

+ 4|V12|2
]
, (1)

Ψε1 = N

(
1
b

)
, Ψε2 = N

(−b∗

1

)
,

b =
ε1−ε

(0)
1 −V11

V12
,

N =
(
1 + |b|2)−1/2

(2)

(note that the wavefunctions Ψε1 and Ψε2 are mutually orthogonal, as expected).

For t > 0, the wavefunction of the system has the form

Ψ(t) = c1Ψε1e
−iε1t/� + c2Ψε2e

−iε2t/�,

where the values of c1,2 are determined by the initial conditions. In the case under

consideration we have Ψ(0) =

(
1
0

)
, and obtain

Ψ(t) ≡
(
ψ1(t)
ψ2(t)

)
=

1

1 + |b|2
(
e−iε1t/� + |b|2e−iε2t/�

b
(
e−iε1t/� − e−iε2t/�

)), (3)

so that the probability of a transition of the system to the other eigenstate of the
unperturbed Hamiltonian is given by

w2(t) = |ψ2(t)|2 =
4|b|2

(1 + |b|2)2 sin2
[
1

2�
(ε2 − ε1)t

]
. (4)

As is seen, its value oscillates between 0 and wmax = 4|b|2/(1 + |b|2)2. The value of
wmax can be close to 1 if the matrix element V12 is sufficiently large. Such a situation

takes place when[85] ε
(0)
1 = ε

(0)
2 (the unperturbed energy levels) and V11 = V22 = 0. As

[85] We should note the existence of the almost degenerate 2s− and 2p− states of hydrogen atom,
significant transitions between which appear even in a weak field. This leads to an important effect
of the electric field on the life time of the metastable 2s−state; see Problem 11.62.
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can be seen from (1), the eigenstates of the perturbed system have equal probability
to be in either of the unperturbed energy eigenstates in this case.

6.2 Time-dependent observables; Constants of motion

Problem 6.10

For a charged spinless particle moving in an external electromagnetic field,[86] find the
velocity v̂ and acceleration ŵ operators. Compare the results with the expressions for
classical theory.

Solution

Taking into account the Hamiltonian (VII.1), from Eq. (VI.4) we find

v̂ ≡ ˆ̇r =
1

μ

(
p̂− e

c
A
)
, (1)

ŵ ≡ ˆ̇v =
∂v̂

∂t
+

i

�
[Ĥ, v̂] =

e

μ
E +

e

2μc
(v̂ ×H−H× v̂), (2)

where E = −∇ϕ− ∂A
c∂t , H = rotA, which gives the natural quantum-mechanical gen-

eralization of the corresponding classical theory expressions. (Here the right-hand part

of (2) determines the Lorentz force operator F̂Lor.)

Problem 6.11

For a neutral particle with a spin s that has its own magnetic moment μ0 and moves
in an electromagnetic field,[87] find the operators for its velocity v̂, acceleration ŵ,
and time derivative of the spin operator ˆ̇s.

Solution

Similar to the previous problem, we obtain

v̂ =
p̂

μ
, ŵ =

μ0

sμ
∇ (ŝ ·H(r, t)), ˆ̇s =

i

�
[Ĥ, ŝ] =

μ0

s�
ŝ×H(r̂, t).

(Compare these with the corresponding classical expressions for a neutral particle
which has magnetic moment μ and angular momentum M = κμ; its interaction with
magnetic field is described by the potential U = −μ ·H(r, t), and dM/dt = μ×H.)

[86] The Hamiltonian is given by Eq. (VII.1).

[87] The Hamiltonian of the particle is again given by Eq. (VII.1).
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Problem 6.12

Show that the expectation value of the time derivate of any observable that does not
explicitly depend on time is zero when the state is stationary. Using this result,[88]

prove that by averaging the operator d
dt (p̂ · r̂) in an attractive potential U = αrν , we

obtain the virial theorem.

Solution

1) By averaging the operator
ˆ̇
f , we find

ḟ =

∫
ψ∗
n
ˆ̇
fψndτ =

i

�

∫
ψ∗
n

(
Ĥf̂ − f̂ Ĥ

)
ψndτ = 0.

(Here we took into account that Ĥψn = Enψn and under the integral sign∫
ψ∗
nĤ · · · = ∫ (

Ĥψn

)∗
. . . due to the Hermitian character of Ĥ.)

2) Taking into account that dr̂/dt = p̂/m and dp̂/dt = −∇U , for U = αrν we have

d (p̂ · r̂)
dt

= ˙̂p · r̂+ p̂ · ˙̂r = 2T̂ − νÛ , (2)

and according to (1), the expectation values for stationary states satisfy Tnn =
νUnn/2, which is the quantum-mechanical generalization of the virial theorem in
classical mechanics (where averaging is conducted over time).

Note Another derivation of the virial theorem is obtained by the application of
Eq. (I.6). We should note that the power law potential U = ±αrν is characterized
one parameter: α. We can then use the three parameters m, α, and � to obtain a

quantity with units of energy: ε0 = α
(
�
2/mα

)ν/(ν+2)
. We cannot form a dimensionless

parameter from the same parameters, so just using dimensional considerations, the
discrete energy spectrum from the Hamiltonian Ĥ = − (

�
2/2m

)
+ U has the form

En = C(n, ν)ε0. Since U ≡ α∂Ĥ/∂α according to Eq.(II.6) we obtain

Unn = α
∂En

∂α
=

2

ν + 2
En.

From this relation and the equality En = Tnn + Unn, the virial theorem follows
immediately.

Note that the relation obtained is also valid for systems consisting of an arbitrary
number of particles if the interaction between them and the external field is described
by the a power-law potential with the same exponent ν.

[88] In some cases, given a potential and convenient choice of the operator f̂ = f̂(r, p̂), we can use the
condition

˙̂
f =

i

�
[Ĥ, f̂ ] = 0

to calculate different averages.
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Problem 6.13

For a system consisting of N identical charged particles in the nth eigenstate, show
that the following equality is valid (the so-called sum rule:, see Problem 14.11):

2μ

e2�2

∑
k

(Ek − En)|(di)kn|2 = N, (i = 1, 2, 3),

where (d̂i)kn are the matrix elements of the system’s dipole moments. The summation
is taken over all the independent stationary states, and μ and e are the mass and
charge of the particles.

Solution

If we take the expectation value of [p̂ai, x̂bk] = −i�δabδik and d (x̂aix̂bk) /dt =
(i/�μ) (p̂aix̂bk + x̂aip̂bk) (indices a, b enumerate the particles) with respect to an
eigenfunction of the Hamiltonian, ψn, and we take into account that the second average
is equal to zero for i = k (without summation!), then we find∑

m

{〈n|x̂ai|m〉 〈m|p̂bi|n〉+ 〈n|x̂bi|m〉 〈m|p̂ai|n〉} = i�δab (1)

(where we have used the completeness condition
∑
m

|m〉 〈m| = 1). Now we take into

account that p̂ai = (iμ/�)[Ĥ, x̂ai], so that we obtain

〈m|p̂ai|n〉 = i
μ

�
(Em − En) 〈m|x̂ai|n〉. (2)

Since d̂ = e
∑

a x̂a, then after multiplying (1) by e2, substituting (2), and performing
a sum over a and b (over all particles), we obtain the sum rule given in the problem
statement.

Problem 6.14

Show that if some time-independent unitary operator Û leaves a Hamiltonian of a
system unchanged, i.e., ÛĤÛ+ = Ĥ, then the Hermitian operator F̂ related to Û by
Û = exp(iF̂ ) (see Problem 1.50) describes a constant of motion. Indicate the physical
meaning of the constants of motion for a system of N particles that are associated with
invariance of its Hamiltonian with respect to the following coordinate transformations:

a) a translation rn → r′n = rn + a;

b) rotation through an angle φ0 = ϕ0n0;

c) an inversion rn → r′n = −rn; n = 1, 2, . . . , N.
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Solution

From the conditions of the Hamiltonian being invariant with respect to this unitary
transformation, it follows that ÛĤ − ĤÛ = 0, and if we write the operator in the form
Û = exp(iF̂ ), where F̂ is an Hermitian operator, then we have [F̂ , Ĥ] = 0. Therefore,
if ∂F̂ /∂t = 0 then F̂ is constant in time – the constant of motion. We should note
that the existence of such constants of motion is connected with the symmetry of the
interaction (Hamiltonian) – its invariance under coordinate transformation – and does
not depend on the concrete form of the interaction.

a) The translation operator has the form Û = exp
{
(i/�)a · P̂

}
, see Problem 1.7; its

commutativity with Ĥ is equivalent to the condition [P̂, Ĥ] = 0, which corresponds

to the conservation of the total momentum P̂ =
∑
n
p̂n,

b) The operator of coordinate rotation Û = exp{iϕ0 · Ĵ}, where Ĵ = L̂+ Ŝ is the
angular momentum operator. Commutativity between Û and Ĥ is equivalent to con-
dition [Ĵ, Ĥ] = 0, which corresponds to conservation of total angular momentum.
(If the interaction does not depend on spin, then the Hamiltonian invariance under
coordinate rotation leads to the conservation of both orbital and spin momenta
separately.)

c) For coordinate inversion, Ûψ(rn) ≡ ψ(−rn), and from the commutativity of Û and
Ĥ we obtain the conservation of parity.

The Hamiltonian of any closed system of particle is invariant with respect to
the transformations considered above, which is related to the properties of the free
space: its homogeneity, isotropy, and equivalence of “right” and “left” (the last
invariance and hence the law of parity conservation are broken by so-called weak
interactions). External fields change these properties of space. So, the Hamiltonian
of a system in an external field does not have the same degree of symmetry. However,
some elements of symmetry and their corresponding constants of motion can appear
in these cases; see the following problems.

Problem 6.15

Indicate the constants of motion for a system of N spinless particles in the following
fields:

1) for free motion;

2) in a field created by an infinite, uniform plane;

3) in a field created by a uniform sphere;

4) in a field created by two points;

5) in a uniform field alternating with the time;

6) in a field created by homogeneously charged straight wire;

7) in a field created by an infinite cylindrical helix with pitch a.
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Solution

The Hamiltonian Ĥ of the system without any external field has the highest degree of
symmetry: it is invariant with respect to arbitrary coordinate translation, rotation, or
inversion. External fields break this symmetry. The potential energy in external fields
has the form:

Uext(r1, . . . , rN ) =
∑
n

Un(rn),

and it determines the symmetry of the system Hamiltonian Ĥ = Ĥ0 + Uext in
general.

The explicit form of the momentum and angular momentum operators are

P̂z = −i�
∑
n

∂

∂zn
, L̂z = −i

∑
n

∂

∂ϕn
,

and we have conservation of system energy in the case of ∂Uext/∂t = 0. Considering
this alongside parity, we obtain the following constants of motion.

1) The constants of motion are E, P, L, I (energy, momentum, angular momentum,
and parity, respectively).

2) The system is translationally invariant in any direction parallel to the plane x, y
that creates the field. It also has azimuthal symmetry with respect to any axis z
that is perpendicular to the plane x, y and reflective symmetry with respect to this
plane; so

Uext =
∑
n

Un (|zn|).

The constants of motion are E, Px, Py, Lz, I.

3) This system has spherical symmetry; the constants of motion are E, L, I.

4) The system has axial symmetry around the axis that penetrates the points – our
sources of the field; Uext =

∑
n
Un (ρn, zn) and the constants of motion are E, Lz.

In the case when points carry same “charges” we have Un = Un (ρn, |zn|),[89] and
therefore the parity I is conserved too.

5) If the direction of forces that act on the particles depends on time, then there exist
no non-trivial constants of motion. If only the values of the forces depend on time
(but not the direction) then, choosing the z-axis along this direction, we have

Uext = −
∑
n

Fn(t)zn.

[89] Let the plane z = 0 pass through the middle of the line connecting the points.
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and the constants of motion are Px, Py, Lz (for Fn(t) = const energy, E is also the
constant of motion).

6) The system has axial symmetry with respect to the z-axis, directed along
the wire, and translational invariance in this direction also, so that Uext =∑
n
Un(ρn). The constants of motion are E, Pz, Lz, I (conservation of parity

I expresses the reflective symmetry with respect to the plane perpendicular to
axis z).

7) If the axis of the helix is the z-axis, the angle of rotation about this axis is ϕ, the
pitch of the helix is a, then the potential function is

Uext =
∑
n

Un (ρn, ϕn, zn),

and is invariant with the respect to the transformation of the form: ϕn → ϕn +
δα, zn = zn + a

2π δα, for a fixed value of ρn. This means that the operator Uext,

and therefore the Hamiltonian Ĥ, commutes with the operator∑
n

∂

∂ϕn
+

a

2π

∑
n

∂

∂zn
=

i

�

(
�L̂z +

a

2π
P̂z

)
.

Hence the combination

Lz +
a

2π�
Pz

is a constant of motion, and due to ∂Ûext

∂t = 0, the energy E is conserved too.

Problem 6.16

For a spin-1/2 particle, consider the following interactions with an external field:[90]

a) Û = U0(r) + U1(r)(σ̂ · l̂),
b) Û = U0(r) + U1(r)(σ̂ · n̂), n = r/r.

Determine the constants of the motion and the spin-angular dependence of the energy
eigenfunctions.

Solution

In both cases the constants of motion are energy E, total angular momentum j = l+ s,
and j2, of course. Moreover, in case a) the square of the orbital angular momentum l2

and parity I are constants of motion too.

[90] See also Problem 12.5.
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Since constants of the motion commute with the Hamiltonian, the energy eigen-
functions can be chosen to simultaneously diagonalize the Hamiltonian and the
(commuting) constants of motion. In the case of a) we have the form

ψEjl1(2)jz = f(r)ψjl1(2)jz ,

where ψjljz are the spin-angular wavefunctions for a particle with spin, s = 1/2 (see
Problem 5.24), l = l1(2) = j ± 1/2, I = (−1)l1,2 . The Schrödinger equation reduces to
a one-dimensional equation for the function f(r).

For the cases b) the eigenfunctions have the form

ψEjjz = f1(r)ψjl1jz + f2(r)ψjl2jz

and the Schrödinger equation reduces to a system of two linear differential equation
for functions f1 and f2: Compare with Problem 12.5.

Problem 6.17

Show that if f̂1 and f̂2 are constants of motion of some system, then ĝ1 = (f̂1f̂2 + f̂2f̂1)

and ĝ2 = i(f̂1f̂2 − f̂2f̂1) are also constants of motion.

As an illustration of this result, indicate another constant of the motion for a
system where a) Px and Jz, b) Jx and Jy are conserved; explain the results obtained
from the symmetry properties of this system.

Solution

From the condition df̂1,2/dt = 0, it follows that d
(
f̂1f̂2

)
/dt = 0 and d

(
f̂2f̂1

)
/dt =

0, so that f̂1f̂2 and f̂2f̂1, as well as their Hermitian combinations indicated in the
condition of the problem (if f̂1,2 are Hermitian), are the constants of motion.

a) Since P̂y = i
(
P̂xĴz − ĴzP̂x

)
– see Eq. (III.2) – then from the conservation of Px

and Jz, it follows that Py is also conserved. The conservation of Px means that
system has the translation invariance along the axis x, while conservation of Jz
indicates its axial symmetry with respect to the z-axis. The existence of these two
symmetries results in the translation symmetry along the axis y (and in xy-plane
in general).

b) Ĵz = −i
(
ĴxĴy − ĴyĴx

)
is also a constant of motion. The conservation of Jx and

Jy indicates axial symmetry of the system with respect to the x-axis, and y-
axis, which leads to the axial symmetry with respect to axis having the common
point of intersection with the axes mentioned above, i.e., the system has spherical
symmetry.
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Problem 6.18

For a particle acted on by a uniform constant force, show that the operator Ĝ =
p̂− F0t is the operator of a conserved quantity (F0 is the force acting on the particle).
Compare this with the result of classical mechanics.

Solution

We begin with the Hamiltonian Ĥ = p̂2/2m− F0r, and we obtain

d

dt
Ĝ =

∂

∂t
Ĝ+

i

�
[Ĥ, Ĝ] = −F0 − i

�
[(F0r), p̂] = 0,

so that the mean value is

G = p(t)− F0t = const.

This is the natural quantum-mechanical generalization of the classical result. The
motion of a particle in an homogeneous vector field can be characterized by the
constant of the motion p0 = p(t)− F0t (since v(t) = v(0) + F0t/m), which is equal
to the momentum of particle at t = 0.

6.3 Time-dependent unitary transformations; The Heisenberg
picture of motion

Problem 6.19

Verify the following relation

eÂB̂e−Â = B̂ +
1

1!
[Â, B̂] +

1

2!
[Â, [Â, B̂]] + . . . .

Solution

Let us first introduce the operator f̂(λ) = eλÂB̂e−λÂ. Differentiating f̂ with respect
to λ gives

df̂

dλ
= ÂeλÂB̂e−λÂ − eλÂB̂Âe−λÂ = eλÂ[Â, B̂]e−λÂ.

In a similar manner we find derivatives of the second and higher orders: f̂
′′
(λ) =

eλÂ[Â, [Â, B̂]]e−λÂ, etc. Now using the expansion in Taylor series we obtain the
required relation:

eÂB̂e−Â = f̂(λ = 1) =
∑
n

1

n!

(
dnf̂

dλn

)
λ=0

= B̂ +
1

1!
[Â, B̂] +

1

2!
[Â, [Â, B̂]] + . . . .
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Problem 6.20

For the following systems:

1) a free particle;

2) a particle acted on by a constant force, U(x) = −F0x;

3) a linear harmonic oscillator,

find the Heisenberg operators for the coordinate and momentum of the particle by

1) using the unitary transformation that connects the Schrödinger and Heisenberg
pictures of motion;

2) solving equations of motion for Heisenberg operators.

Solution

1) The form of the Heisenberg operators, according to Eq. (VI.9), is easy to find if we
use the result of the previous problem. We will give the answer:

a) for a free particle,

x̂(t) = x̂+
t

m
p̂, p̂(t) = p̂;

b) for a particle acted on by a constant force,

x̂(t) = x̂+
t

m
p̂+

F0t
2

2m
, p̂(t) = p̂+

F0t

m
;

c) for a linear oscillator,

x̂(t) = x̂ cos ωt+ p̂
sin ωt

mω
, p̂(t) = p̂ cos ωt− x̂mω sin ωt.

Here x̂ and p̂ are the ordinary Schrödinger operators, which coincide with Heisen-
berg operators at t = 0.

2) Let us now demonstrate how the Heisenberg operators can be derived from the
equations of motion by considering the linear oscillator. Its Hamiltonian is

Ĥ =
1

2m
p̂2(t) +

1

2
kx̂2(t).

Using the value of the commutator [p̂(t), x̂(t)] = −i�, the equations of motion take
the form:

dx̂(t)

dt
=

i

�
[Ĥ, x̂(t)] =

p̂(t)

m
,
dp̂(t)

dt
=

i

�
[Ĥ, p̂(t)] = −kx̂(t).

The solution of this system of equations is given by (ω =
√
k/m):

x̂(t) = Ĉ1 cos ωt+ Ĉ2 sin ωt, p̂(t) = −mω(Ĉ1 sin ωt− Ĉ2 cos ωt).



234 Exploring Quantum Mechanics

If we take into account that Schrödinger and Heisenberg operators coincide at the
point t = 0, we have Ĉ1 = x̂, Ĉ2 = p̂/mω.

Problem 6.21

Using the Heisenberg operators for position and momentum, find the expectation
values x(t), p(t), (Δx(t))2, (Δp(t))2 for the systems given in the previous problem
and for the initial wavefunction of the form

ψ0(x) = A exp

[
i
p0x

�
− (x− x0)

2

2a2

]
.

Solution

The time-dependence of the physical expectation values can be determined using their
corresponding Heisenberg operators and taking into account the expectation values in
the initial state

x̂ = x0, x̂2 = x2
0 +

1

2
a2, p̂ = p0, p̂2 = p20 +

�
2

2a2
, x̂p̂+ p̂x̂ = 2x0p0.

Using Problem 6.20 we find:

a) for a free particle,

x(t) ≡ x̂(t) = x0 +
p0
m

t, p(t) = p0, (Δx(t))2 =
a2

2

(
1 +

�
2

m2a4
t2
)
,

(Δp(t))2 =
�
2

2a2
;

b) For a particle acted on by a constant force,

x(t) = x0 +
p0
m

t+
F0

2m
t2, p(t) = p0 +

F0

m
t, (Δx(t))2

=
a2

2

(
1 +

�
2

m2a4
t2
)
, (Δp(t))2 =

�
2

2a2
.

c) For a linear oscillator,

x(t) = x0 cos ωt+
p0
mω

sin ωt, p(t) = p0 cos ωt−mωx0 sin ωt,

(Δx(t))2 =
1

2
a2
(
cos2 ωt+

�
2

m2ω2a4
sin2 ωt

)
,

(Δp(t))2 =
�
2

2a2

(
cos2 ωt+

m2ω2a4

�2
sin2 ωt

)
.
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We should note that for the oscillator in the case a2 = �/mω, both the position
and momentum dispersions do not depend on time while their product takes the
minimum possible value that is allowed by the uncertainty relation ΔxΔp = �/2.
Such states of an oscillator are called the coherent states, see Problem 10.15.

Determining the desired expectation values in the Schrödinger representation is
more laborious as can be seen by comparing this solution with that of Problem 6.2.

Problem 6.22

Using equations of motion for the Heisenberg operators, show that [p̂i(t), x̂k(t)] =
−i�δik.

Solution

Using equations of motion (VI.4) for Heisenberg operators, it is easy to find that

d

dt
[p̂i(t), x̂k(t)] = 0,

i.e., the value of the commutator does not depend on the time, and since at t = 0 it
is equal to −i�δik, it remains such at all times. These are sometimes called the equal
time commutation relations.

Problem 6.23

Find the value of the unequal time commutation relation [p̂(t), x̂(t′)] for the systems
considered in Problem 6.20.

Solution

Using the form of the position and momentum Heisenberg operators found in problem
6.20, we find

a) [p̂(t), x̂(t′)] = −i�;

b) [p̂(t), x̂(t′)] = −i�;

c) [p̂(t), x̂(t′)] = −i� cos ω(t− t′),

for a free particle, a particle acted on by a constant force, and a linear oscillator,
respectively.

The commutator for part c) goes to zero for the values t− t′ = π(n+ 1/2)/ω
(n is integer). If at the initial time, t = 0, an oscillator state is characterized by a
small position dispersion (the limit Δx → 0), so that position takes (almost) definite
value, then at the moments of time t′ = π(n+ 1/2)/ω the momentum takes (almost) a
definite value. (Compare with the result of Problem 1.30 and expressions for oscillator
position and momentum dispersion relations from Problem 6.21.)
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Problem 6.24

A particle (described by some normalized wave packet) is acted on by an homogeneous
time-dependent force, F(t), and F (t) → 0 for t → ±∞. Determine the change of the
expectation value of the particle energy caused by the action of the force. Compare
the result obtained with the classical mechanics analog.

Solution

The interaction of the particle with external field is described by the expression
Û = −F(t) · r̂(t). And here,

d

dt
p̂(t) =

i

�
[Ĥ, p̂(t)] = F(t).

Hence it follows (in analogy with the classical case) that

p̂(t) = p̂(−∞) +

t∫
−∞

F(t′)dt′. (1)

Since as t → ±∞, the Hamiltonian of the particle has the form

Ĥ(±∞) =
1

2m
p̂2(±∞),

and according to (1) we obtain

E(+∞) = E(−∞) +
1

m
p(−∞)

∞∫
−∞

F(t)dt+
1

2m

⎡⎣ ∞∫
−∞

F(t)dt

⎤⎦2

. (2)

This relation, as well as (1), is in a form analogous to the classical equivalent, which
is obtained from (2) by replacing the quantum-mechanical expectation values by their
definite classical values and, of course, E(−∞) = p2(−∞)/2m. If we consider an
ensemble of classical particles with some distribution over momenta, then for the
averages, even in the classical case, expression (2) is suitable.

Problem 6.25

Consider a one-dimensional harmonic oscillator that at t → −∞ is in its ground state.
It is further subjected to the action of an external force F (t) and F (t) → 0 as t → ±∞.
Obtain the probabilities that the oscillator is excited into its various excited states
and the expectation value of its energy as t → +∞. When solving the problem, use
the Heisenberg picture, and begin from the equations of motion for the creation â+(t)
and annihilation â(t) operators.
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Solution

Using the Heisenberg operators,

â(t) =
1√
2�

(
λx̂(t) +

i

λ
p̂(t)

)
, â+(t) =

1√
2�

(
λx̂(t)− i

λ
p̂(t)

)
, (1)

where λ =
√
mω and [â(t), â+(t)] = 1, we can write the Hamiltonian of the system in

the form

Ĥ(t) = �ω

(
â+(t)â(t) +

1

2

)
−
√

�

2mω
F̂ (t)(â(t) + â+(t)).

The equations of motion for the operators are

d

dt
â(t) =

i

�
[Ĥ(t), â(t)] = −iωâ(t) + i

F (t)√
2m�ω

, (2)

d

dt
â+(t) = iωâ+(t)− i

F (t)√
2m�ω

and they can easily be integrated[91]

â(t) = e−iωt

⎧⎨⎩âin +
i√

2m�ω

t∫
−∞

F (t′)eiωt′dt′

⎫⎬⎭. (3)

Hence as t → ±∞, we have

â(t) = e−iωtâin as t → −∞,
â(t) = e−iωtâf , âf = âin + α as t → +∞.

(4)

In (4) we use the definition

α =
i√

2m�ω

∞∫
−∞

F (t)eiωtdt.

For the Hamiltonian of the system, we obtain

Ĥ(−∞) ≡ Ĥin = �ω

(
â+inâin +

1

2

)
,

Ĥ(∞) = �ω

(
â+f âf +

1

2

)
. (5)

The time-independent state vector |ψ〉 in Heisenberg representation is determined by
the condition that as t → −∞ the oscillator was in its ground state, i.e., for this vector

[91] The operator â+(t) is the Hermitian-conjugate to the operator â(t). The time-independent operator
âin plays the role of the “initial” condition and the commutation relation [âin, â+in] = 1 must be
fulfilled.
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we have Ĥin|ψ〉 = (�ω/2)|ψ〉. According to (5), this state is the vacuum with respect
to the operators âin, â+in, i.e., |ψ〉 ≡ |0, in〉 so that âin|0, in〉 = 0.

The oscillator eigenvectors for t → +∞ are given by

|n, f 〉 = 1√
n!

(
â+f

)n |0, f 〉,

so that the coefficients in the expansion |0, in〉 = ∑
n
cn|n, f〉 determine the desired

transition probability of the oscillator: w(0 → n) = |cn|2. Acting by the operator âin
on both sides of the expansion, and taking into account its relation with âf given in
(4) as well as the identity

âf |n, f 〉 = √
n|n− 1, f 〉,

we obtain a recurrence relation cn = (α/
√
n)cn−1. From this relation it follows that

cn = (αn/
√
n!)c0, and the normalization condition

〈0, in|0, in〉 =
∑
n

|cn|2 = 1

gives |c0|2 = exp{−|α|2}. For the transition probability to any excited state, we obtain

w(0 → n) =
|α|2n
n!

e−|α|2 (6)

(the Poisson distribution). Using the expectation value n = |α|2, we find

E(+∞) = �ω

(
n+

1

2

)
= �ω

(
|α|2 + 1

2

)
.

Let us give another way of calculating E(+∞) that does not require calculation of the
transition probabilities. According to (4) and (5) we have

Ĥ(+∞) = Ĥin + �ω(|α|2 + αâ+in + α∗âin).

Hence if at t → −∞ the oscillator was in its kth excited state, i.e., |ψ〉 ≡ |k, in〉 (in
the case of the problem 〈ψ|âin|ψ〉 = 〈ψ|â+in|ψ〉 = 0), then

E(+∞) = E(−∞) + �ω|α|2, E(−∞) = �ω

(
k +

1

2

)
. (7)

(We should note that the expectation value of the energy acquired by the oscillator,
which is equal to �ω|α|2, does not contain the Plank constant, and coincides with the
result of classical mechanics.)
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Problem 6.26

Find the unitary operator that corresponds to a Galilean transformation, i.e., a
transformation to a new inertial frame of reference. Prove that the Schrödinger
equation is invariant with respect to this transformation. How would the particle
wavefunction transform in the position and momentum representations respectively?

Solution

Let a frame of reference K ′ move relative to a system K with a velocity V along the
x-axis, so that x = x′ + V t, t = t′. Using this transformation we obtain how potentials
must transform:

U ′(x′, t′) ≡ U ′(x− V t, t) = U(x, t).

The unitary operator[92] Û , corresponding to a Galilean transformation, is found from
the condition that if the wavefunction ψ(x, t) satisfies the Schrödinger equation,

i�
∂

∂t
ψ(x, t) = Ĥψ ≡

[
1

2m
p̂2 + U(x, t)

]
ψ(x, t), (1)

in the frame of reference K, then the wavefunction ψ′(x′, t) = Ûψ(x, t) has to satisfy
the Schrödinger equation in the frame of reference K ′ (and vice versa):

i�
∂

∂t
ψ′(x′, t) = Ĥ ′ψ′ ≡

[
1

2m
(p̂′)2 + U ′(x′, t)

]
ψ′(x′, t). (2)

Since both the functions, ψ(x, t) and ψ′(x′, t), describe the same physical state (but
with respect to different frames of reference), they must satisfy the condition

|ψ′(x′, t)|2 ≡ |ψ′(x− V t, t)|2 = |ψ(x, t)|2, (3)

which expresses the independence of the probability density from the choice of the
frame of reference. Hence, from (3) it follows that the desired unitary operator has
the form

Û = eiS(x,t),

where S(x, t) is some real function. If we substitute

ψ′(x′, t) = eiS(x,t)ψ(x, t) (4)

[92] Do not confuse this operator with the potential energy U(x, t). Also, for simplicity we restrict
ourselves to the case of one-dimensional motion.
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into (2) and transform to the variables x, t, we obtain the following equation:

i�
∂

∂t
ψ(x, t) = − �

2

2m

∂2

∂x2
ψ(x, t) + i�

(
− �

m

∂S

∂x
− V

)
∂ψ

∂x
+[

U(x, t)− i�2

2m

∂2S

∂x2
+

�
2

2m

(
∂S

∂x

)2

+ �V
∂S

∂x
+ �

∂S

∂t

]
ψ(x, t).

If we then require that this equation is identical to (1), we will obtain the system of
equations

�

m

∂S

∂x
+ V = 0, − i�

2m

∂2S

∂x2
+

�

2m

(
∂S

∂x

)2

+ V
∂S

∂x
+

∂S

∂t
= 0.

From the first of them we have S = −mV x/�+ f(t), while the second equation allows
us to find f(t) and to obtain

S(x, t) = −mV x

�
+

mV 2t

2�
+ C. (5)

(The unimportant real constant C may be omited, since it is just an overall phase to
our wavefunction.)

Let us now find the transformation of the wavefunction in the momentum repre-
sentation. Multiplying (4) by ψ∗

p′(x′) (eigenfunctions of the momentum operator) and
integrating over x′, we obtain (using (5)),

φ′(p′, t)′ = exp

{
−i

mV 2t

2�
+ i

pV t

�

}
φ(p, t), p = p′ +mV. (6)

Hence we obtain the relation

w′(p−mV, t) = w(p, t)

between the probablity distributions over particle momenta in systems K ′ and K.

Problem 6.27

Determine the form of the unitary transformation corresponding to a gauge trans-
formation of the electromagnetic field potentials. Show gauge invariance of the
Schrödinger equation.

Solution

Let the wavefunction ψ(r, t) be a solution of the Schrödinger equation:

i�
∂

∂t
ψ =

1

2m

(
p̂− e

c
A(r, t)

)2

ψ + eϕ(r, t)ψ, (1)
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where A(r, t) and ϕ(r, t) are the potentials of an external electromagnetic field. The
gauge invariance of the Schrödinger equation means that if we introduce new potentials
according to

A′ = A+∇f(r, t), ϕ′ = ϕ− ∂

c∂t
f(r, t),

then there must exist a unitary operator Û such that the wavefunction ψ′(r, t) =
Ûψ(r, t) describes the same physical state as the initial wavefunction ψ (but with the
different choice of the potentials), and hence satisfies the relation |ψ′(r, t)|2 = |ψ(r, t)|2
and solves the Schrödinger equation:

i�
∂

∂t
ψ′ =

1

2m

(
p̂− e

c
A′(r, t)

)2

ψ′ + eϕ′(r, t)ψ′. (2)

Due to the invariance of the probability density, the desired operator must be of the
form

Û = eiS(r,t),

where S(r, t) is some real function (compare with the previous problem). Substituting
the function

ψ′(r, t) = eiS(r,t)ψ(r, t)

into equation (2), and demanding that the relation obtained coincides with relation
(1), we obtain the following equations:

c�∇S(r, t) = e∇f(r, t), c�
∂

∂t
S(r, t) = e

∂

∂t
f(r, t).

Hence we find that S(r, t) = e
�cf(r, t) + C, which gives the solution of the problem

(the unimportant real constant C may be omitted). Thus, for a system of charged
particles,

Û = exp

{
i

�c

∑
a

eaf(ra, t)

}
.

Problem 6.28

Find a time-dependent unitary transformation of the Hamiltonian that leaves the
Schrödinger equation invariant. Compare with the canonical transformations in clas-
sical mechanics.

Solution

1) In the case of unitary transformations, wavefunctions and operators are transformed
in the following way:

ψ → ψ′ = Ûψ, f̂ → f = Û f̂ Û+.
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In particular, for the Hamiltonian of a system we have

Ĥ ′ = ÛĤÛ+. (1)

Let us determine the form of the Schrödinger equation for time-dependent unitary
transformation. Applying the operator Û(t) to the both parts of Schrödinger
equation, we obtain the equation

i�Û
∂ψ

∂t
≡ i�

∂

∂t
(Ûψ)− i�

(
∂Û

∂t

)
ψ = ÛĤψ.

Substituting ψ′ = Û(t)ψ and taking into account that Û+Û = 1, the equation
becomes

i�
∂ψ′

∂t
=

[
ÛĤÛ+ + i�

(
∂Û

∂t

)
Û+

]
ψ′,

which gives the Schrödinger equation with the Hamiltonian:

Ĥ ′′ = ÛĤÛ+ + i�

(
∂Û

∂t

)
Û+ = Ĥ ′ + i�

(
∂Û

∂t

)
Û+. (2)

This is the desired solution (here H ′′ is a Hermitian operator).

2) So, we could assign the system Ĥ the two different operators after a time-dependent
unitary transformation: Ĥ ′ and Ĥ ′′. To understand the result obtained we have
to take into account the fact that the Hamiltonian of a system plays, generally
speaking, two roles: 1) it determines the wavefunction time evolution in accordance
with the Schrödinger equation; and 2) in the case when it is time-independent it
is a constant of motion, and its eigenvalues have a definite physical interpretation,
i.e., they determine the system’s energy spectrum.

If the initial Hamiltonian Ĥ does not depend on time, then in the case of the
time-dependent unitary transformation its roles mentioned above are distributed
among between the operators Ĥ ′ and Ĥ ′′ The first of them is the constant of motion
(the eigenvalues of Ĥ and Ĥ ′(t) coincide), while the second determines the time
evolution of the wavefunction.
If Ĥ(t) is time-dependent, then the Hamiltonian is no longer a constant of motion

(energy is not conserved). Here the eigenvalues of “instant” Hamiltonians Ĥ(t) and
Ĥ ′(t) have no physical content in general. However, the operator Ĥ ′′ still determines
the time evolution.[93]

As an illustration, consider the transformation from the Schrödinger picture to

the Heisenberg picture for the case ∂Ĥ/∂t = 0, which is given by Û(t) = exp(
i
�
)Ĥt.

Here Ĥ ′ = Ĥ, Ĥ ′′ = 0, and from the Schrödinger equation it follows, as is expected,
that the system’s wavefunctions are time-independent (since it is the Hiesenberg
picture).

[93] If Ĥ′′, unlike Ĥ(t), does not depend on time, then it fulfills both roles mentioned. see Problem 6.29.
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Unitary transformations in quantum mechanics are the analogues of canonical
transformations in classical mechanics. Here the tranformation given by (2) for the
Hamiltonian is the quantum-mechanical generalization of the equation

H ′′(P,Q, t) = H(P,Q, t) +
∂f

∂t

from classical mechanics which gives a canonical transformation for the Hamiltonian
function determined by a time-dependent function f(t).

Problem 6.29

Determine the form of the unitary transformation describing transition to a uniformly
rotating coordinate system. Show how the operators for position, momentum, velocity,
and energy (the Hamiltonian) are transformed. Compare your results with their
classical analogs. As an illustration, consider a charged particle moving in a uniform
circular electric field of the form:

Ex = E0 cos ωt, Ey(t) = E0 sin ωt, Ez = 0.

Solution

The unitary operator which describes a rotating reference frame is given by Û = eiL̂·ωt,
where ω is the angular velocity of the rotating coordinate system with respect to the
initial inertial system. The wavefunction transformation law has the form

ψ′(r, t) = eiL̂·ωψ(r, t) ≡ ψ(r′, t), (1)

where ψ′(r, t) is the wavefunction in a rotating system, while ψ(r′, t) is the initial
wavefunction in a static coordinate system. r is the position vector in the rotating
system, and r′ = R̂r is the position vector in the static coordinate system, that at the
moment t, r′ coincides with r (R̂(t = 0) = 1̂). Eq (1) implies that the wavefunction does
not depend on the coordinate system nor on the variables that describe it (stationary
r′ or rotating r).[94]

Let us find the form of our physical operators in the new representation, i.e.,
in the rotating coordinate system, and their connection with the operators in the
initial stationary frame of reference. First we determine the form of the position
operator r̂stat(t) and momentum operator p̂stat(t) with respect to the inertial frame
of reference. Using the result of Problem 6.19, the known values of the commutators
for the operators r̂, p̂, and L̂, see, Eq. (III.2), and the general formula for operator

transformation, f̂ ′ = Û f̂ Û+, we obtain

[94] Compare this with Problems 6.26 and 6.27.
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x̂stat(t) = Û x̂Û+ = ÛxÛ+ = x cos ωt− y sin ωt,

ŷstat(t) = x sin ωt+ y cos ωt, ẑstat(t) = z, (2)

as well as

p̂x,stat(t) = Û

(
−i�

∂

∂x

)
Û+ = p̂x cos ωt− p̂y sin ωt,

p̂y,stat(t) = p̂x sin ωt+ p̂y cos ωt, p̂zstat(t) = p̂z, (3)

where p̂x = −i�∂/∂x etc., while the z-axis is directed along the vector ω.

The equations in (2) imply that the position operator transforms as a simple vector
under the rotation. In this way we can conclude that the position operator in the
rotated frame, after being rotated into the stationary coordinate system, is just that
– the position operator in the stationary coordinate system.[95] In an analogous way,
equations (3) are also exactly the vector transformation of the components of the
momentum, which implies that the momentum operator in both systems is the same
and has the form p̂ = −i�∇. Similarly, in the rotating and stationary systems the
angular momentum operator has the form

�L̂ = r̂× p̂ = r̂stat × p̂stat.

The particle Hamiltonian, Ĥ = p̂2/2m+ U(r, t), transitioning to the rotating coordi-
nate system and according to Eq. (2) from Problem 6.28 has the form

Ĥrot = ÛĤÛ+ − �ωL̂ =
p̂2

2m
+ U ′(r, t)− �ωL̂, (4)

where U ′(r, t) = U(r′, t) is the potential in the rotating coordinate system. Now, taking
into account the relation v̂ = ˙̂r = i[Ĥ, r̂]/�, it is easy to find the velocity operator in
both the stationary and rotating coordinate systems:

v̂stat =
p̂

m
, v̂rot =

p̂

m
− [ω × r] = v̂stat − [ω × r] (5)

Finally, let us consider a particle in an external field whose sources rotate with a
constant angular velocity with respect to some axis, so that the potential energy in
the initial coordinate system U(r, t) depends explicitly on time. Changing coordinate
systems by rotating and using (4), we obtain

Ĥrot = − �
2

2m
Δ+ U ′(r)− �ω · L̂. (6)

It is important that now U ′(r) as well as the Hamiltonian in general do not explicitly
depend on time, so the energy in a rotating system is a constant of motion; so,

[95] We should note that in the initial rotating frame, r is the position vector and r̂ = r (the operator
is just multiplication by the coordinates). When we transform, r transforms like a vector into

the stationary frame, but the operator transforms in the common-operator way, r̂′ = Û r̂Û+. This
statement is also true for momentum.
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for a particle moving in an electric field of circular-polarized monochromatic wave,
U ′(x) = −eE0x.

In conclusion, note that the results of the given problem are the natural quantum-
mechanical generalizations of the corresponding results of classical mechanics.

Problem 6.30

The Hamiltonian of some system has the form Ĥ = Ĥ0 + V̂ where the unperturbed
Hamiltonian Ĥ0 does not depend explicitly on time. Consider the unitary transforma-
tion from the Schrödinger representation to so-called interaction representation that

is carried out by the unitary operator,[96] Û = exp
(

i
�
Ĥ0(t− t0)

)
. (In the case V̂ ≡ 0

and t0 = 0, this transformation gives rise to the Heisenberg representation.)

Determine the time-dependence of the wavefunction and operators of the system
in the interaction representation.

As an illustration, consider the excitation of a linear harmonic oscillator, which
was in the ground state at t → −∞, by an external force F (t), where F (t) → 0 as
t → ±∞. Consider the interaction V̂ = −F (t)x̂ to be small. Compare with the exact
result. See Problem 6.25.

Solution

The relation between wavefunctions and operators in the interaction representation
(they have indexes “int”) with those in the Schrödinger representation has the form

ψint(t) = exp

{
i

�
Ĥ0(t− t0)

}
ψ(t), (1)

f̂int(t) = exp

{
i

�
Ĥ0(t− t0)

}
f̂ exp

{
− i

�
Ĥ0(t− t0)

}
.

If f̂ = f(p̂, q̂, t), then f̂int ≡ f(p̂int, q̂int, t).

Differentiating (1) with respect to time we obtain the equation of motion for the
corresponding operator

d

dt
f̂int =

∂

∂t
f̂int +

i

�
[Ĥ0, f̂int], (2)

where

Ĥ0(p̂, q̂) = Ĥ0,int = Ĥ0(p̂int, q̂int), p̂int(t0) = p̂, q̂int(t0) = q̂.

[96] The value of time t0 is chosen so that it precedes the moment when interaction V̂ (t) is turned on.
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The time-evolution of the wavefunction is determined by the equation

i�
∂

∂t
ψint = Ĥ ′

intψint, Ĥ ′
int = V̂int (3)

(such a form of the Hamiltonian Ĥ ′
int in the interaction picture follows from Eq. (2)

of Problem 6.28.)

Let us illustrate the application of the interaction picture for the harmonic oscillator
in a uniform time-dependent external field. Here,

Ĥ0 =
1

2m
p̂2 +

1

2
mω2x̂2, V̂ = −F (t)x.

The coordinate and momentum operators’ time-dependence in the interaction repre-
sentation is the same as in the Heisenberg representation for a free oscillator (i.e., with
no interaction). Using the result of Problem 6.20 for x(t), we obtain

V̂int(t) = −F (t)x̂int(t) = −F (t)

[
x cos ω(t− t0)− i�

mω
sin ω(t− t0)

∂

∂x

]
. (4)

To solve (3) with V̂int in (4), consider consecutive iterations that take into account the
smallness of force F (t), and we substitute into (3) the wavefunction

ψint(x, t) = ψ0(x) + ψ(1)(x, t),

where, in accordance with problem statement, ψ0(x) is the wavefunction of the ground
state of the oscillator and ψ(1)(x, t = −∞) = 0 (before the force was turned on,
the oscillator was in the ground state). Now taking into account the form of the
wavefunction, See Eq. (II.2),

ψ0(x) =

(
1

πa2

)1/4

exp

(
− x2

2a2

)
, a =

√
�

mω
,

and using (3) and (4) we obtain

i�
∂

∂t
ψ(1)(x, t) = −F (t)eiω(t−t0)xψ0(x).

Hence it follows that ψ(1) =
√
2C1(t)xψ0(x)/a, where

C1(t) =
i√

2m�ω
e−iωt0

t∫
−∞

F (t′)eiωt′dt′.

Considering that ψ1 =
√
2xψ0(x)/a is the wavefunction of the first excited state of

the oscillator, we note that under the action of uniform field and to the first order
in F , there are only transitions to the first excited state from the ground state. The
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transition probability as t → ∞ is equal to[97]

w(1)(0 → 1) = |C1(+∞)|2 =
1

2m�ω

∣∣∣∣∣∣
∞∫

−∞
F (t)eiωtdt

∣∣∣∣∣∣
2

,

which in the case of a weak force agrees with the exact result. See Problem 6.25.

6.4 The time-dependent Green function

Problem 6.31

Show that for the case of a time-independent Hamiltonian, the time-dependent Green
function obeys the equation[98]

q̂(−t)G(q, t; q′, t′ = 0) = q′G(q, t; q′, 0), (1)

where q̂(t) is the Heisenberg operator.

Using this relation, find the Green function for a free particle in the coordinate
and momentum representation. Obtain it also using Eq. (VI.6). With the help of the
Green function, solve Problem 6.2.

Solution

1) Let us first show that if a wavefunction in the Schrödinger representation at t = 0 is

an eigenfunction of a time-independent operator f̂ , then ψ(q, t) is the eigenfunction

of the Heisenberg operator f̂(−t). Indeed, applying the operator e−iĤt/� to the

equation f̂ψ(q, 0) = fψ(q, 0), and using the known connection between wavefunc-
tions and operators in the Schrödinger and Heisenberg representations, we obtain

f̂(−t)ψ(q, t) = fψ(q, t).

Furthermore, if we choose f̂ ≡ q̂ = q, f = q′, then the function ψ(q, t) coincides
with Green function G(q, t : q′, 0)[99] and we arrive at the equation for it which is
given in the condition of the problem.

2) For a free particle, p̂(t) = p̂ (the operator does not depend on time). In the
momentum representation p̂ = p, and the equation for Green function takes the
form pG = p′G. Hence, it follows that

G(p, t;p′, 0) = c(p, t)δ(p′ − p). (2)

[97] Note that this probability does not depend on the choice of t0, as expected.

[98] For the case of several degrees of the freedom this would be a system of equations whose number
would correspond to those degrees of freedom.

[99] Indeed, the function ψ(q, t) satisfies the Schrödinger equation in the variables q, t, and at t = 0 is
equal to δ(q − q′), as the Green function demands.
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Using the Schrödinger equation (in the variables p, t) we find that

c(p, t) = c0(p) exp

{
−i

p2t

2m�

}
,

while from the initial condition at t = 0, it follows that c0(p) = 1. This unambigu-
ously determines the form of time-dependent Green function in the momentum
representation.
In an analogous way, using the relation r̂(t) = r̂+ p̂t/m in coordinate representa-
tion, we have (r− tp̂/m)G = r′G, which is a system of three differential equations.
Using the x-component as an example of how they look,(

xi + i
�t

m

∂

∂xi

)
G = x′G.

The solution of this system of equations is given by

G(r, t; r′, 0) = a(r′, t) exp
{
i
m(r− r′)2

2�t

}
. (3)

Substituting this function into the Schrödinger equation we obtain ȧ = −3a/2t.
Hence, it follows that

a(r′, t) = a0(r
′)t−3/2.

In order to determine a0(r
′), we note that according to the initial condition,∫

GdV → 1 as t → 0. Calculating the integral we find

a(r′, t) = a(t) =

(
− im

2π�t

)3/2

. (3)

Taking into account (3), we obtain the final expression for the Green function.
Let us note that this expression could also be obtained in the following two ways:

1) by the direct calculation of integral (VI.6), choosing the eigenfunction ψE(r)
in the form of plain waves and performing the integration over p, and 2) using
(2) and the general equation that connects the operator kernel in the coordinate
and momentum representations, as was done in Problem 2.20 for the stationary
Schrödinger equation.

To conclude, we note that the exponential factor in (2) is equal to iS/�, where

S(r, r′, t) =
1

2
mv2t =

m(r− r′)2

2t

is the action of a free classical particle which moves from the point r′ at t = 0 to
the point r at the time t. Its velocity is equal to (r− r′)/t.
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Problem 6.32

Repeat the previous problem but for a particle acted on by a uniform force
U(r) = −F0r.

Solution

Since r̂(t) = r̂+ p̂t/m+ F0t
2/2m – see Problem 6.20, the equation for the Green

function, r̂(−t)G = r′G, differs from the one considered in the previous problem by
only the change r′ → r′ − F0t

2/2m. This is also valid for its solution (3) from Problem
6.31. But now

ȧ =

{
− 3

2t
+

i

�
F0

(
r′ − F0t

2

2m

)}
a.

Hence we can find a(r′, t) and obtain the final expression for the Green function in
the coordinate representation:

G(r, t; r′, 0) =
( m

2πi�t

)3/2

exp

{
i

�

[
1

2mt

(
r− r′ − F0t

2

2m

)2

+ F0rt− F 2
0 t

3

6m

]}
. (1)

(Just as in Problem 6.31, the exponent is the action for a classical particle acted on
by a constant force.)

In the momentum representation,

G(p, t;p′, 0) = exp

{
− it

2m�

(
p2 − F0pt+

1

3
F 2
0 t

2

)}
δ(p− p′ − F0t).

Problem 6.33

Repeat Problem 6.30 but for a linear harmonic oscillator.

Solution

1) First we find the Green function by using Eq. (VI.6). For an oscillator we have

ψn =
(
2n

√
πan!

)−1/2
exp

(
− x2

2a2

)
Hn

(x
a

)
, En = �ω

(
n+

1

2

)
,

where a =
√

�/mω The summation in Eq. (VI.6) is performed by using the follow-
ing identity

(1− z2)−1/2 exp

{
2xyz − (x2 + y2)z2

1− z2

}
=

∞∑
n=0

Hn(x)Hn(y)

2nn!
zn,
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and this leads to the following result:

G(x, t;x′, 0) =
exp

{
i cot(ωt) · (x2 − 2xx′ sec(ωt) + (x′)2

)
/2a2

}√
2πia2 sin(ωt)

. (1)

2) Determining the form of the Green function by using Eq. (1) in Problem 6.31, we
obtain (with the Heisenberg position operator in Problem 6.20):

x̂(−t)G ≡
(
x̂ cos ωt+ ia2 sin(ωt)

∂

∂x

)
G = x′G.

Hence, it follows that

G = c(x′, t) exp
{

i

2a2
(x2 cot(ωt)− 2xx′ cosec(ωt))

}
.

Substituting this expression into the Schrödinger equation, we obtain

ċ+
1

2

(
ω cot(ωt) + i

ω(x′)2

a2 sin2(ωt)

)
c = 0.

The solution of this equation is

c = c0(sin(ωt))
−1/2 exp

{
i
(x′)2 cot(ωt)

2a2

}
.

From the initial condition we have c0 = (2πia2)−1/2, and for the Green function we
again obtain the expression (1).
The Schrödinger equation for the harmonic oscillator in the momentum represen-

tation has the same form as in the coordinate representation, so the expression for
the Green function G(p, t; p′, 0) may be obtained from (1) by just changing x → p
and a → √

�mω.

Problem 6.34

Find the time-dependent Green function for a charged particle moving in a circular
electric field in a rotating coordinate system; see Problem 6.29.

Solution

The Hamiltonian of a particle in this rotating system has the form (see Problem 6.29):

Ĥrot =
p̂2

2m
− ωL̂z − F x̂, F = eE0.

The time-dependent Green function can be found by using equation (1) from Problem
6.31. For that we should first find the Heisenberg operators r̂(t) and p̂(t). For brevity,
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we shall use the units � = m = 1. The equations of motion for the Heisenberg operators
have the form

˙̂x = p̂x + ωŷ, ˙̂y = p̂y + ωx̂, ˙̂z = p̂z,

˙̂px = ωp̂y + F, ˙̂py = −ωp̂x, ˙̂pz = 0.

Due to the linearity of this system of equations we can solve them by looking at the
case of non-operator functions. Using the combinations p̂x ± ip̂y and x̂± iŷ, we find

p̂x + ip̂y = Âpe
−iωt − iF

ω
, x̂+ iŷ = (Âx + tÂp)e

−iωt − F

ω2
,

where Âx, Âp are time-independent non-Hermitian operators. Their explicit form is
determined by the equivalence of Heisenberg and Schrödinger operators at t = 0, which
gives

Âz = x+ iy +
F

ω2
, Âp = −i

∂

∂x
+

∂

∂y
+

iF

ω
.

The Green function can now be found up to a factor c(r′, t) by the system of equations
r̂(−t) = r′G (compare with the previous problems). To solve this set of equations it
is convenient to introduce compex variables u = x+ iy and v = x− iy. We determine
c(r′, t) in the same way as in the previous problems,[100] and arrive at the final
expression for the Green function:

G(r, t; r′, 0) = (2πit)−3/2exp

{
i

t

[
1

2
(r− r′)2 + ρ · ρ′(1− cosωt)+

(x′y − xy′) sinωt+
1

ω2
F (1− cosωt)(x+ x′)− 1

ω2
F (ωt− sinωt)(y − y′)+

+
1

ω4
F 2(1− cosωt)− 1

2ω2
F 2t2

]}
,

where ρ is the radius in the x, y-plane. As ω → 0 this expression turns into the Green’s
function from Problem 6.32.

Problem 6.35

Find the time-dependent Green function for a charged particle moving in a uniform
magnetic field.

[100] Considering the Hamiltonian’s time-independence, when substituting the Green function into the
Schrödinger equation, it is convenient to express the Hamiltonian in terms of particle coordinate
and momentum Schrödinger operators.
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Solution

Let us first consider the transverse motion of a particle in a magnetic field, using the
vector potential A = (0,Hx, 0). Taking into account (from Problem 7.1a) the explicit
form of the eigenfunctions ψnpy

(ρ), and the spectrum Et,n, we can use Eq. (VI.6) as
well as the result of Problem 6.33 to obtain

G(ρ, t;ρ0, 0) =
∑
n

∫
e−iωH(n+1/2)tψnpy

(ρ)ψ∗
npy

(ρ0)dpy =

1

2π�

∫
Gosc (x̃, t; x̃0, 0) e

ipy(y−y0)/�dpy. (1)

In (1), Gosc is the Green function of a one-dimensional harmonic oscillator found in
Problem 6.33 with the frequency ωH = |e|H/mc, x̃ = x− cpy/eH, and similarly for
x̃0. Calculating the integral in (1) and multiplying the expression[101] obtained by the
Green function of free particle G0(z, t; z0, 0) – see Problem 6.31 – we obtain the desired
Green function (a2 = �/mωH):

G(r, t; r0, 0) =
( m

2iπ�t

)3/2

· ωt

2 sin(ωt/2)
eiS/�, (2)

�
−1S =

m(z − z0)
2

2�t
+

1

4a2

{
cot

ωHt

2
· (ρ− ρ0)

2 + 2
e

|e| (x+ x0)(y − y0)

}
, (3)

where S is the action of a classical charged particle moving in a magnetic field.
Compare with Problems 6.31 and 6.32.

Note that when we perform a gauge transformation on the vector potential, i.e.,
the A → A′ = A+∇f(r), the Green function in the new gauge is obtained from (2)
by multiplying it with

eie(f(r)−f(r0))/�c.

Compare this result with Problem 6.27. In particular, for the transformation to the
symmetric gauge A′ = (1/2)H× r we should choose f(r) = −Hxy/2.

6.5 Quasistationary and quasi-energy states; Berry phase

The general ideas of quasi-energy states are presented in Problems 6.40 and 8.41–8.43.

[101] The multiplicative form of the Green function is connected with separation of variables of the
transverse and longitudinal motion.
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Problem 6.36

Calculate the level shift and the decay width of a particle in the ground state of a
one-dimensional δ-well (see Problem 2.7) due to the application of a constant force
described by the potential V = −F0x. The field is assumed to be weak, so that aF0 �
�
2/ma2, where a = 1/κ0 = �

2/mα determines the typical localization length of the
particle in the well.

Solution

The Hamiltonian of the particle has the form

Ĥ = − �
2

2m

d2

dx2
− αδ(x)− Fx. (1)

The level E0 of the discrete spectrum is isolated in the δ-well; see Problem 2.7.
After applying the constant force we obtain a decay width and the state becomes
quasistationary. This width, Γ, determines the lifetime τ = �

Γ of the state, and is
connected with the process where the particle tunnels through the barrier; see Fig.
6.1. To determine the properties of the quasistationary state, it is necessary to find
the solution of the Schrödinger equation that has the correct asymptotic behavior
for x → ±∞: wave moving rightwards for x → +∞ (the radiation condition), and a
decaying wave in the classically inaccessible region for x → −∞.

Fig. 6.1

To solve the Schrödinger equation, we see that for x �= 0, we can make the following
change of variables:

z = ξ

(
x+

E

F

)
, ξ =

(
2mF

�2

)1/3
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which brings the Schrödinger equation the form ψ′′(z) + zψ(z) = 0. Taking into
account the asymptotic behavior mentioned above, the solution must be chosen in
the form of the following combinations of the Airy functions:

ψ = C1[Ai(−z)− iBi(−z)] ∝z→+∞ z−1/4 exp

{
i
2

3
z3/2

}
, x > 0, (2)

ψ = C2Ai(−z) ∝z→−∞ (−z)−1/4 exp

{
−2

3
(−z)3/2

}
, x < 0.

The matching conditions at the point x = 0, according to Problem 2.6, lead to the
equation[102]

Ai(−z0)Bi(−z0) + iAi2(−z0) =
�
2ξ

2πmα
, z0 =

ξE

F
, (3)

determining the spectrum of the quasi-discrete levels.

In the case of a weak field,[103] ξ�2/mα � 1, the right-hand side of equation (3) is
small. Hence it follows that |Ai(−z0)| is small and Re(−z0) � 1. By using the known
asymptotics of the Airy functions and Eq. (3), we obtain(

− �
2

2mE

)1/2 [(
1 +

5

72ν2
+ . . .

)
+

i

2

(
1 +O

(
1

ν

))
e−2ν

]
=

1

κ0
, (4)

where ν = (2/3)(−z0)
3/2 and κ0 = mα/�2.

Solving (4) order-by-order in 1/ν, (Re ν � 1), we obtain the zeroth-order approx-
imation (replacing the expression within square bracket by 1), E ≈ E0 = −�

2κ2
0/2m,

i.e., the unperturbed level in a δ-well. Futhermore, substituting

E = E0 +
E − i

2
Γ

and substituting ν within square brackets in (4) by its unperturbed value ν0 =
�
2κ3

0/3mF , we find both a shift of the level ΔE and its width Γ that appear due
the constant force:


E = −5

8

mF 2

�2κ4
0

, Γ =
�
2κ2

0

m
exp

(
−2�2κ3

0

3mF

)
. (5)

The level shift is quadratic in the force applied, and it determines the polarization of
ground state of the particle in the δ-well to be β0 = 5me2/4�2κ4

0 (we put F = eE).
This can also be calculated by using the perturbation theory; see Problem 8.12.

The exponential smallness of the decay width is due to a small transmittance of
the barrier, and may be obtained using the classical expression for the transmittance;
see Eq. (IX.7) and Problem 9.28. Such exponential dependence of the level width on

[102] The value of the Wronskian W{Ai(z),Bi(z)} = 1/π was used.

[103] When this condition is violated (in the strong-field case), strong widening of level occurs and the
specific properties of quasi-stationary state disappear.
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its energy and potential gradient is typical for a wide range of potentials that decay
at large distances; see Problem 11.67.

Problem 6.37

Find quasi-discrete energy levels (their position and decay widths) for s-states of a
particle moving in the potential U(r) = αδ(r − a); see Fig. 6.2. Consider specifically
the case of low-lying states captured by a weakly penetrable barrier mαa/�2 � 1.
Relate the decay width with the penetrability of the δ-barrier; see Problem 2.30.

Fig. 6.2

Solution

The wavefunction of the quasi-stationary s-states, ψk,l=0(r) = χk(r)/r, satisfies the
equation

−χ′′
k + α̃δ(r − a)χk = k2χk, k =

√
2mE

�2
, α̃ =

2mα

�2
, (1)

the boundary condition χk(0) = 0, and has the asymptotic behavior, χk(r) ∝ eikr

as r → ∞. In such a problem the solution exists only for some complex values k =
k1 − ik2, and in this case

E = Er − i

2
Γ, Er =

�
2
(
k21 − k22

)
2m

,Γ =
2�2k1k2

m
,

where Er and Γ are the energy and the decay width of the quasi-stationary state (we
should note that k1,2 > 0).

The required solution of Eq. (1) has the form

χk(r) =

{
C1 sin kr, r < a,
C2e

ikr, r > a.
(2)
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The matching conditions of the wavefunction at the point r = a, according to Problem
2.6, give

ika− ka cot ka = α̃a, (3)

which determines the energy spectrum of quasi-discrete s-levels.

In the case α̃a � 1, from (3) it follows that the values of ka for the low-lying levels
(such that |ka| � α̃a) are close to (n+ 1)π. Writing it as

kna = (n+ 1)π + ε1 − iε2, n = 0, 1, . . . , |ε1,2| � 1

and substituting it in (3), we can obtain the approximate values of ε1,2:

ε1 ≈ − (n+ 1)π

α̃a
, ε2 ≈ ε21,

as well as the spectrum of the lowest quasi-discrete s-levels:

Er,n ≈
(
1− 2

α̃a

)
E(0)

n , Γn ≈ 4π(n+ 1)

(α̃a)2
E(0)

n , E(0)
n =

π2
�
2(n+ 1)2

2ma2
. (4)

Note that the decay width of the levels is much smaller than the level spacing between
neighboring levels.

As expected, the positions of the quasi-discrete levels are close to the s-levels E
(0)
n

of a particle in an infinitely deep potential well of radius a, and turn into them as
α̃ → ∞, i.e., when the potential barrier becomes impenetrable.

The width of the quasi-stationary state, Γ = �w, determines the probability w of
its decay per unit of time (or life time of state τ = 1/w). Equation (4) for the level
width allows us to illustrate this correspondence if we write it in the form

wn =
Γn

�
=

(
2π(n+ 1)

α̃a

)2

· π�(n+ 1)

2ma2
≡ D ·N, (5)

where D(Er,n) is the penetration probability (transmission coefficient) through the
δ-barrier in the case of a single collision with the barrier – see Problem 2.30 while

N =
π�(n+ 1)

2ma2
=

v

2a

determines the number of collisions (of bounces of the particle off of the barrier wall)
per unit of time.

In conclusion we note that the results obtained could be applied equally well to
the case of α < 0 (δ-well), which at first sight looks counterintuitive. In fact this is
a peculiarity of quantum mechanics; particles can be reflected by a potential well
when it has pronounced discontinuities and kinks. The transmission coefficient in the
well’s case can be small, D � 1, even for a large particle energy. On the other hand,
if we change it to a smooth well (“spread out” the δ-function), then D ∼ 1, and the
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quasi-stationary state disappears (the lifetime will be of the same order as the time of
particle motion through the localization domain).

Problem 6.38

Explore the question of the wavefunction normalization in the case when the potential
energy of a particle is the complex function, U(r) = U0(r)− iU1(r), where U0,1 are
real functions (so-called optical potential ). The change of wavefunction normalization
in time could be interpreted as “absorption” or “creation” of the particle during the
interaction process. How is the sign of the imaginary part of the potential related to
the character of such processes?

Specifically, consider the one-dimensional δ-well with U = −(α0 + iα1)δ(x), and
find the shift and decay width of its ground state, connected with the possibility of
particle “absorption” (see also the following problem).

Solution

1) In the usual way, we obtain a generalized continuity equation

∂ρ(r, t)

∂t
+ div j(r, t) = −2

�
U1(r)|ψ(r, t)|2, (1)

ρ = |ψ(r, t)|2, j = − i�

2m
(ψ∗∇ψ − ψ∇ψ∗).

Integrating (1) over an arbitrary volume gives

d

dt

∫
V

|ψ(r, t)|2dV = −
∮
S

jds− 2

�

∫
V

U1(r)(|ψ(r, t)|2dV. (2)

In the case of U1 ≡ 0, (2) constitutes, the law of the probability conservation: the
change of the probability of finding a particle in some volume V per unit time is
equal to (with a minus sign) the flow of it through the surface S surrounding this
volume. In the case of U1 �= 0, the second term in the right-hand side of (2) disturbs
this balance, and thus it presents an additional mechanism for the probability to
change with time, and therefore the normalization of the wavefunction which can
be interpreted as a change in the number of particles. In the case of U1 > 0, it is
“absorption”, and for U1 < 0, “creation” of a particle. We note that the optical
potential is usually used for description of a specific channel in a many-channel
system. And here the processes of “absorption” and “creation” reflect the interplay
between the channels. See the following problem.

2) In the case of a complex δ-well, as in Problem 2.7, we obtain (α0,1 > 0):

ψE(x) = Ae−κ|x|, κ =

(
−2mE

�2

)1/2

=
m

�2
(α0 + iα1).
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Hence it follows that E = E0 − iΓ/2, where

E0 = −m
(
α2
0 − α2

1

)
2�2

, Γ =
2mα0α1

�2

determine the position and decay width of the desired quasi-discrete level.

Problem 6.39

Consider the following model of a system with two channels. The system consists of
two particles in one-dimensional motion. One of them is a structureless particle, while
the other is a composite system that has two independent states of “internal” motion
with the energy difference Q0. The wavefunction of such a system in the center-of-mass

frame can be presented as a column of the form Ψ =

(
ψ1(x, t)
ψ2(x, t),

)
, where x = x2 − x1

is the relative coordinate and ψ1(2) are the amplitudes of finding the composite particle
in the 1st or 2nd internal states channels. The interaction between the particles is local
and is described by the following operator

Û = −α̂δ(x) = −
(

α β
β α

)
δ(x),

where α and β are real parameters and α > 0.

Find the spectrum of discrete and quasi-discrete levels of such a system. Show that
for the energies close to the threshold of the second channel, the dynamics can be
described in terms of a one-channel optical potential, and find its form.

Solution

The Hamiltonian of the system considered has the form

Ĥ = − �
2

2m

d2

dx2
−
(

α β
β α

)
δ(x) +

(
0 0
0 Q0

)
,

where m is the reduced mass of the particles; furthermore, we will consider Q0 > 0, so
that the 1st state of the composed particle, which corresponds to the upper component
of the wavefunction (see the problem statement), is the ground state. The Schrödinger
equation becomes a system of two equations and for x �= 0, and we have

ψ′′
1 (x) = −k21ψ1(x), ψ′′

2 (x) = −k22ψ2(x), (1)

where k1 =
√

2mE/�2 and k2 =
√

2m(E −Q0)/�2. The solution of this system of
equations is of the form ψ1,2(x) = C1,2 exp{ik1,2|x|}, where we have used both the
wavefunction continuity at the point x = 0 and the required asymptotic behav-
ior of the expanding wave[104] as x → ±∞. Now using the matching conditions

[104] Here the closed channel wavefunction decreases at the large distances.
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for the derivatives of the wavefunction at the point x = 0, as in Problem 2.6,
we have

(ik1 + α̃)C1 + β̃C2 = 0, β̃C1 + (ik2 + α̃)C2 = 0, (2)

where α̃ = mα/�2 and β̃ = mβ/�2. The condition for the existence of a non-trivial
solution leads to the relation

(ik1 + α̃)(ik2 + α̃) = β̃2, (3)

which determines the energy spectrum of the discrete and quasi-discrete levels.

First we note that in the case β = 0, there is no interaction between the channels
(i.e., interaction between the particles does not affect the internal motion of the
composite particle), and the system considered has two discrete levels: one for each
channel. These are the ordinary discrete spectrum levels in a δ-well. Particularly,

E
(0)
2 = Q0 + E

(0)
0 > 0, where E

(0)
1 = E

(0)
0 = −mα2/2�2, and the discrete level in the

second channel lies in the background of the continuous spectrum of the first chan-
nel. In this situation, turning on even a weak interaction between the channels,
β � α, leads to the appearance of a width of this level, and the corresponding
state becomes quasi-stationary. Then from (3) we can find the energy E2 of this
state:

E2 ≡ Er − i

2
Γ ≈ Q0 + E

(0)
0 − 2

β2

α2
|E(0)

0 |

⎧⎪⎨⎪⎩E
(0)
0

Q0
+ i

√√√√(
Q0 − |E(0)

0 |
)
|E(0)

0 |
Q2

0

⎫⎪⎬⎪⎭. (4)

Note that the level moves upwards and acquires a width (the discrete level E
(0)
1 of the

first channel undergoes only the small shift downwards).

2) To conclude, let us show, in the framework of the given problem, how an
optical potential can be introduced. If we consider the system appearing in the
second channel only as the result of a transition from the first channel, we can
write the stationary state wavefunction of the system with (real) energy E in the

form Ψ =

(
ψ1(x)

C2 exp(ik2|x|)
)
. The matching conditions at the point x0 give (compare

with (2))

−1

2
δψ′

1(0) = α̃ψ1(0) + β̃C2, −ik2C2 = α̃C2 + β̃ψ1(0), (5)

where δψ′
1(0) is the jump of the function derivative at the point x = 0. Eliminating

C2 from these equations we obtain

−1

2
δψ′

1(0) =

(
α̃− β̃2

α̃+ ik2

)
ψ1(0). (6)
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Since for x �= 0, ψ1(x) still satisfies Eq. (1), the matching condition (6) (with the
condition of ψ1(x) continuity) implies that this function is the solution of stationary
Schrödinger equation with a “potential” of the form

Uopt(x,E) = −αopt(E)δ(x), (7)

where

αopt(E) = α− mβ2

mα+ i�2k2(E)
. (8)

So the dynamics in this particular channel of the initially two-channel system can
be considered in terms of the wavefunction of only this channel,[105] and the corre-
sponding equation has the form of the stationary Schrödinger equation with the one-
channel Hamiltonian. We should note the following properties of the effective (optical)
potential in such a Hamiltonian[106].

1) It depends on the energy, and therefore the corresponding “Hamiltonian” is not a
self-adjoint operator.

2) As seen from (7) and (8), if the energy of the particle in the channel considered
exceeds the threshold of the other channel (i.e., in the case E > Q0), then the
optical potential acquires an imaginary part with a negative sign. This corresponds
to the fact that, with respect to the initial channel, the transition of the particle
into the other, open channel may be considered absorption. Compare with Problem
6.38.

Problem 6.40

A charged particle is moving in a uniform electric field that is periodic in time (i.e.,
E(t+ T ) = E(t)) and whose average over a period is equal to zero. Find the quasi-
energy spectrum and the form of the wavefunctions for the quasi-energy states.

Specifically consider the cases:

a) E(t) = E0 cos ωt;

b) Ex(t) = E0 cos ωt, Ey(t) = E0 sin ωt, Ez = 0,

(electric fields of the linearly and circularly polarized monochromatic wave).

Solution

1) We consider the quasi-energy states (QES) and quasi-energies of quantum systems,
whose Hamiltonians are periodic (with the period T = 2π/ω) functions of time.

[105] In spite of interaction transitions between the channels.

[106] Such a simple form of the effective (optical) potential (7), (8) is due to the locality of the interaction.
In the general case such an effective potential is a non-local operator that depends on the energy.
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QES are defined as states whose wavefunctions are solutions to the time-dependent
Schrödinger equation and satisfy the condition

ψε(q, t+ T ) = e−iεT/�ψε(q, t), (1)

where ε is called the quasi-energy (compare with the notion of quasi-momentum
and Bloch functions for a particle in a spatially-periodic potential; see Problem
2.53).
The wavefunction of a QES can be written in the form

ψε(q, t) = e−iεt/�uε(q, t), (2)

where uε(q, t) is a periodic function of time. Its Fourier series expansion is

uε(q, t) =

∞∑
k=−∞

e−ikωtCε,kϕε,k(q), (3)

and defines the quasi-energy harmonics ϕε,k(q).
The quasi-energy (as well as quasi-momentum) is uniquely defined modulo an

integer multiple of ±�ω. To get rid of this ambiguity we can restrict our quasi-
energies to an interval; for example, −�ω/2 < ε ≤ �ω/2 is often used, or sometimes

the interval such that the quasi-energy and the corresponding value of energy E
(0)
n

of the stationary Hamiltonian coincide when adiabatically turning off the time-
dependent part of the Hamiltonian.
The notion of QES is the natural generalization of a stationary state: the system

of QES wavefunctions has properties that, to a large extent, are analogous to
the stationary Hamiltonian’s eigenfunctions. So, QES wavefunctions with different
quasi-energies are orthogonal, and at different moments of time they form a
complete set of functions. And the analog to Eq. (VI.2) is an expansion over the QES
wavefunctions with constant coefficients, and this determines the general solution
of the time-dependent Schrödinger equation.

An important difference between the QES and stationary states manifests itself
in the emission processes and also in the resonance effect of perturbations. If we
have a system with stationary Hamiltonian Ĥ0, the frequencies of photon emission
(corresponding to spontaneous transitions between the stationary states) and the
frequencies of the harmonic perturbation that causes the resonance transitions in

the system are determined entirely by the transition frequencies, �ωfi = E
(0)
f −

E
(0)
i , but the QES situation is different. The corresponding frequencies for QESs

are defined by the relation

�ωkns = εk − εn ± s�ω, s = 0, 1, 2 . . . ,

where εk,n are quasi-energy levels and the values n = k are allowed. The intensity
of the transition for different values of s depends on the amplitudes of quasi-energy
harmonics in (3).
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2) Now let us return to the actual problem. We will describe a uniform
electric field in terms of a vector potential: E(t) = −Ȧ(t)/c, which for the case of
E(t) = 0 is a periodic function in time.[107] The Hamiltonian of the particle takes the
form

Ĥ(t) =
1

2m

(
p̂− e

c
A(t)

)2
. (4)

Since the momentum operator commutes with the Hamiltonian, the generalized
momentum is a constant of motion. Its eigenfunction is ∝ exp(ip · r/�), and is also
the eigenfunction of the instantaneous Hamiltonian. This function corresponds to
the eigenvalues E(t), which are obtained from Ĥ(t) by simply p̂ → p. This allows
us to write the solution of the Schrödinger equation:

ψp,ε(p)(r, t) =
1

(2π�)3/2
exp

⎧⎨⎩ i

�

⎛⎝p · r−
t∫

0

E(t′)dt′

⎞⎠⎫⎬⎭ ,

E(t) =
1

2m

(
p− e

c
A(t)

)2

. (5)

For a periodic dependence of the vector potential A(t) on time, we can describe
the QES with the quasi-energy (further, we take A(t) = 0):

ε(p) = E(t) ≡ 1

T

T∫
0

E(t)dt =
p2 + p2

0

2m
, p2

0 =
e2

c2
A

2
(t), (6)

which is equal to the average value of the particle energy over a period.
To elucidate the physical meaning of p and p2

0, we should note that since

p− e

c
A(t) = mv(t) and A(t) = 0,

we have that p = mv(t), i.e., the conserved momentum of the particle determines
the average velocity of the particle. Furthermore, from the above equations it follows
that

e

c
A(t) = m(v − v(t)),

e2

c2
A2(t) = m2(v − v(t))2

Therefore, the value of p20/2m defines the average value of the kinetic energy of
the oscillatory motion of the particle in the electric field (on the background of its
uniform motion with the velocity v).
In the case of a linearly polarized monochromatic wave we have

ε(p)− p2

2m
=

e2E2
0

4mω2
, (7)

[107] For different gauge choices of the potentials, see Problem 6.27.
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(for the motion of a particle in the field of a circularly polarized wave we should
multiply the right-hand side by 2). The divergence of εp as ω → 0 corresponds to
the unlimited increase in velocity of a particle moving in a constant uniform electric
field.

Problem 6.41

Analyze the quasi-energy states (QES) that appear from a doubly-degenerate level
of the Hamiltonian Ĥ0 due to a periodic perturbation V̂ (t) whose matrix elements
between the two degenerate states considered are given by[108] V11 = V22 = 0, V12 =
V21 = V0 sinωt, and where V0 = V ∗

0 . Expand the QES wavefunctions over the quasi-
energy harmonics; see Problem 6.40. Neglect the other states, and compare the
resulting model with the two-level system in Problem 6.9.

Solution

We write the wavefunction of the system in the form Ψ(t) =

(
ψ1(t)
ψ2(t)

)
e−iε0t/�, where

the functions ψ1(2)(t) are the amplitudes of the 1st (2nd) independent stationary

state of the unperturbed Hamiltonian Ĥ0 with the energy ε0. Then the Schrödinger

equation, i�∂Ψ/∂t =
(
Ĥ0 + V̂

)
Ψ, takes the form

i�ψ̇1 = V0 sin(ωt)ψ2, i�ψ̇2 = V0 sin(ωt)ψ1,

from which we obtain

ψ1 ± ψ2 = A±e±if(t), f(t) =
V0

�ω
cos ωt,

and so

Ψ(t) =
C1√
2
ei(f(t)−ε0t/�)

(
1
1

)
+

C2√
2
e−i(f(t)+ε0t/�)

(
1
−1

)
. (1)

Each of the terms in the wavefunction (1) describes an independent QES, and here
the quasi-energies of both states are the same and equal to ε0. We now use the
expansion

eiz cos ωt =
∞∑
−∞

ikJk(z)e
ikωt, z = ± V0

�ω
, (2)

[108] This problem models, for example, the influence of electric field E(t) = E0 sinωt on a charged
particle in a potential with degenerate s− and p−levels (2s− and 2p− states with lz = 0 in
the hydrogen atom). When the field density is much lower the atomic density, the distortion of
wavefunctions is small, and their mixing by the external field is an essential effect.
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where Jk is a Bessel function, and this allows us to define, in accordance with (3)
from Problem 6.40, the amplitudes of the quasi-energy harmonics of the QES. Their
intensities are ∝ J2

k (z), and oscillate as V0 is raised.

Problem 6.42

Prove that the analysis of the quasi-energy states and calculation of the quasi-energy
spectrum for a system in an electric field of a circularly polarized monochromatic wave
of the form

Ex(t) = E0 cos ωt, Ey(t) = E0 sin ωt, Ez = 0

can be reduced to solving a time-independent Schrödinger equation.

Solution

To prove the problem statement, consider a coordinate system that is rotating with
the same angular velocity as the electric field, ω. The Hamiltonian in this frame
of reference, Ĥrot, does not depend on time and energy is conserved; see Problem
6.29. The stationary state and its energy in the rotating system are exactly the
QES and quasi-energy with respect to the initial coordinate system. Furthermore,
the corresponding wavefunctions are related by Eq. (1) from Problem 6.29.

Problem 6.43

A localized spin-1/2 (quantum two-level system) is subjected to a periodic-in-time
time-dependent magnetic field

b(t) = (b1 cos[ωt], b1 sin[ωt], b0) ,

where b0 is a constant component of the field, b1 is the amplitude of the rotating com-
ponent, and ω is its frequency. The corresponding Schrödinger equation is i∂tΨ(t) =
μb(t) · σ̂Ψ(t), where Ψ(t) is a two-component spinor wavefunction, σ̂ = (σ̂x, σ̂y, σ̂z) is
a vector of Pauli matrices, and μ is a magnetic moment. Use the units where � = 1.

Initially, the spin is pointing “up” i.e., the initial condition for the Schrödinger
equation is Ψ(0) =

(
1
0

)
. The evolution operator, Û(t), can be defined by the relation:

Ψ(t) = Û(t)Ψ(0)

(a) “Construct” the exact evolution operator for the given problem.

(b) Find the spin-flip probability, wsf(t), directly from the evolution operator.

(c) Consider the initial condition corresponding to the spin pointing in the x-direction
at t = 0, and find the corresponding exact time-dependent wavefunction, Ψ(t).
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(d) Calculate the determinant of the evolution operator, det Û(t), and provide a
mathematical and physical interpretation of your result.

(e) Evaluate explicitly the “velocity” i∂Û(t)
∂t

∣∣∣
t=0

, and interpret your result in the

context of the original Schrödinger equation.

Solution

(a) First we find the exact solution of the problem.[109] The state of the spin is
described by the spinor,

Ψ(t) =

(
ψ↑(t)
ψ↓(t)

)
.

We simplify the time-dependent Schrödinger equation by the following unitary
transformation, Ψ(t) = e−iωtσz/2Ψ̃(t):

i
∂Ψ̃

∂t
+

ωσz

2
Ψ̃ = eiωtσz/2Ĥ0e

−iωtσz/2Ψ̃ = μ

(
b0 b1
b1 −b0

)
Ψ̃,

which reduces to

i
∂Ψ̃

∂t
=

(
Ω μb1
μb1 −Ω

)
Ψ̃ = ĤΨ̃,

where Ω = −ω/2 + μb0. If we define

E =
√

Ω2 + μ2b21, cos θ =
Ω

E ,

then H = E(cos θσz + sin θσx). The time-evolution operator for Ψ̃(t) is given by

Û(t) = e−iĤt = exp [−iEt (cos θσz + sin θσx)] = cos Et− i sin Et(cos θσz + sin θσx).

Returning to the original wavefunction, Ψ(t), we obtain

Ψ(t) = e−iωtσz/2Û(t)Ψ̃(0) = Û(t)Ψ(0).

Hence,

Û(t) =

(
cos Et− iΩE sin Et −iμb1E sin Et
−ieiωt μb1

E sin Et eiωt
(
cos Et+ iΩE sin Et)

)
.

[109] This problem provides a rare example of exactly solvable driven two-level-system dynamics. Such
a generic problem reduces to a differential equation of the Riccati type, and its solution generally
cannot be expressed in terms of standard elementary or special functions.
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(b) Given the initial condition, Ψ(0) =

(
1
0

)
, the wavefunction at a later time, t, is

Ψ(t) = Û(t)Ψ(0) =

(
e−iωt/2

(
cos Et− iΩE sin Et.)

−ieiωt/2 μb1
E sin Et

)
.

Therefore, the spin-flip probability is

wsf(t) = |〈↓|Ψ(t)〉|2 =
μ2b21

Ω2 + μ2b21
sin2

(√
Ω2 + μ2b21t

)
.

(c) We assume that at t = 0 the spin points in the positive x-direction, which implies
that σxΨ(0) = Ψ(0). So the initial condition is as follows:

Ψ(0) =
1√
2

(
1
1

)
.

Consequently, the exact wavefunction at time, t, is

Ψ(t) = Û(t)Ψ(0).

(d) A simple calculation shows that det Û = 1. Notice that this is not implied just
by the unitarity of timeevolution. The unitarity condition, Û†Û = Û Û † = 1̂, leads
to | det Û |2 = 1, so | det Û | = 1. Therefore, the unitarity implies that det Û may
give rise to a complex phase: det Û = eiα. This is consistent with the fact that
the time-evolution of a quantum system must be unitary in order to preserve the
norm of the wavefunction, up to a global phase. In mathematical language, Û is
an element of unitary group U(N), where N is the dimension of Hilbert space.

(e) A straightforward calculation shows that

i
∂Û

∂t

∣∣∣
t=0

= Ĥ(0).

Actually, this is a general result. We substitute Ψ(t) = Û(t)Ψ(0) into the
Schrödinger equation, i∂tΨ(t) = Ĥ(t)Ψ(t), and noting that Ψ(0) is arbitrary, one
must have

i∂tÛ(t) = Ĥ(t)Û(t).

Now, take the limit t → 0 and noting that Û(0) = 1̂, we obtain

i∂tÛ(t)|t=0 = Ĥ(0).

Problem 6.44

Consider a spin-1/2 particle in an arbitrary time-dependent magnetic field, b(t).

The evolution operator, Û(t), satisfies the equation, i
[
∂tÛ(t)

]
Û †(t) = μb(t) · σ̂. This

operator is a unitary 2× 2 matrix, and any such matrix can be represented in the
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form Û(t) = exp [−iθ(t) · σ̂], where θ(t) = (θx(t), θy(t), θz(t)) ≡ θ(t)n(t) is a time-
dependent 3D-vector, θ(t) ≡ |θ(t)| is its modulus, and |n(t)| ≡ 1 is its direction. Use
the algebraic identities for the Pauli matrices to express explicitly the magnetic field,
b(t), through θ(t) and its derivatives.

Solution

The time-evolution operator satisfies the standard Schrödinger equation:

i∂tÛ(t) = Ĥ(t)Û(t).

Multiplying, both sides by Û†(t) from right,

Ĥ(t) = μb(t) · σ̂ = i
[
∂tÛ(t)

]
Û †(t).

The fact that Û(t) ∈ SU(2) allows us to write Û(t) = exp [−iθ(t) · σ̂] =
exp [−iθ(t)n(t) · σ̂] = cos θ(t)− iσ̂ · n(t) sin θ(t). So

i
(
∂tÛ(t)

)
Û †(t) =

[
σ̂ · nθ̇ cos θ − i(θ̇ + iσ̂ · ṅ) sin θ

]
(cos θ + iσ̂ · n sin θ)

= θ̇σ̂ · n+ σ̂ · ṅ sin θ cos θ + i(σ̂ · ṅ)(σ · n) sin2 θ.

Now we invoke the following algebraic identity for Pauli matrices:

(σ̂ · a)(σ̂ · b) = a · b+ iσ̂ · (a× b).

Thus we can simplify the last term in the expression as

(σ̂ · ṅ)(σ̂ · n) = ṅ · n+ iσ̂ · (ṅ× n),

where ṅ · n = 0, following the fact that n is a unit vector: |n|2 = 1. Putting everything
together we find

μb · σ̂ = θ̇σ̂ · n+ σ̂ · ṅ sin θ cos θ − sin2 θσ̂ · (ṅ× n),

which yields the expression of b in terms of θ and n:

μb(t) = θ̇n+ sin θ cos θṅ− sin2 θṅ× n.

Note that the result obtained in this problem can be used to construct exact
solutions of quantum dynamics of a spin-1/2 in a time-dependent magnetic field.
A common mistake is to write the following: ∂tÛ(t) = ∂t

(
eiθ(t)·σ̂

)
= i (∂tθ · σ̂) eiθ(t)·σ̂.

This is, however, not correct, because ∂tθ · σ̂ and θ · σ̂ do not commute in general.

Let us show this in a general setting. Consider the operator, eÂ(t). It is defined by its
Taylor series:

eÂ =
∞∑

n=0

Ân

n!
.
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Taking the derivative with respect to t, we find

∂

∂t
eÂ(t) =

∞∑
n=0

1

n!

∂

∂t

[
Ân(t)

]
=

∞∑
n=0

1

n!

n∑
m=0

Âm dÂ

dt
Ân−m.

Only if ∂Â/∂t commutes with Â (which is generally not the case), this sum can be

simplified to dÂ
dt e

Â.

Problem 6.45

Consider the same setup as in Problem 6.43: a localized spin-1/2 driven by a peri-
odic time-dependent magnetic field, b(t) = (b1 cos[ωt], b1 sin[ωt], b0) with the period,
T = 2π/ω. But now assume that the perturbation is sufficiently slow, and calculate the
dynamic phase and the Berry phase within the adiabatic approximation.[110] Compare
your results with the exact results obtained earlier.

Solution

Let us first calculate the Berry phase using the adiabaticity of time-evolution. The
instantaneous eigenstates of the time-dependent Hamiltonian |b(t)〉 are found from
the eigenvalue problem σ̂ · b(t)|ψ(t)〉 = E(t)|ψ(t)〉 (the Hamiltonian is H = μσ̂ · b(t)
and we set μ = 1 for simplicity). The instantaneous ground state is

|ψ−(t)〉 =
(

cos
(
θ
2

)
− sin

(
θ
2

)
eiωt

)
, with E− = −

√
b20 + b21,

and where tan(θ/2) = b1√
b20+b21−b0

.

The Berry phase of the ground state is calculated as follows:

γ = i

∫ T

0

∂t 〈ψ−(t)|∂t|ψ−(t)〉

= i

∫ T

0

∂t (cos (θ/2) ,− sin (θ/2) e−iωt)

(
0

−iω sin (θ/2) eiωt

)
= −ωT sin2(θ/2) = −2π sin2(θ/2)

= −π

(
1 +

b0√
b20 + b21

)
.

The dynamical phase is simply

−
∫ T

0

∂tE−(t) =
√
b20 + b21T.

[110] If a quantum system is subjected to a slow periodic-in-time perturbation, then upon the completion
of a single evolution cycle, the wavefunction does not necessarily return to its original initial value
(even though there are no transitions for adiabatic evolution), but acquires a phase that consists
of a dynamic phase and a topological Berry phase.
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Therefore, the total phase, φ, acquired by the wavefunction in the course of a single
evolution cycle, is found to be

φ =
√

b20 + b21T − π

(
1 +

b0√
b20 + b21

)
.

Now we use the exact solution obtained in Problem 6.43. The exact time-evolution
operator is

U(t) =

(
e−iωt/2 cos Et− iΩE sin Et −ie−iωt/2 b1

E sin Et
−ieiωt/2 b1

E sin Et eiωt/2
(
cos Et+ iΩE sin Et)

)
,

where E =
√

Ω2 + b21andΩ = b0 − ω/2.

The initial state is as follows:

|ψ(0)〉 = |ψ−(0)〉 =
(

cos
(
θ
2

)
− sin

(
θ
2

)) .

Therefore, the final state reads:

|ψ(T )〉 = U(T )|ψ(0)〉 =

⎛⎜⎜⎝e−iωt/2 cos(θ/2)

[
cos ET + i

√
b20+b21+ω/2

E sin ET
]

−eiωt/2 sin(θ/2)

[
cos ET + i

√
b20+b21−ω/2

E sin ET
]
⎞⎟⎟⎠ .

Now we want to compare this exact result with the “adiabatic” Berry phase calcula-
tion. Notice that

cos ET + i

√
b20 + b21 ± ω/2

E sin ET ≈ eiET .

This is justified by expanding in the adiabatic limit:√
b20 + b21 ± ω/2

E = 1∓ 1√
b20 + b21

(
b0√

b20 + b21
− 1

)
ω +O(ω2).

Hence, the difference between the phase of the exact wavefunction, |ψ(T )〉, and the
phase of the initial condition, |ψ(0)〉, is

π + ET = π +

√(
b0 − ω

2

)2

+ b21T ≈
√

b20 + b21T + π − πb0√
b20 + b21

+O(ω),

which indeed agrees with our previous Berry phase result φ. (In fact, our calculation
gives phases that differ by 2π, but since a quantal phase is defined modulo 2π, the
two phases are in fact identical.) Notice that the π-phase originates from the factor,
e±iωT/2, in the time-evolution operator. This calculation confirms that the Berry phase
indeed arises as the leading-order term in an adiabatic perturbative expansion.
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Motion in a magnetic field

The Hamiltonian of a charged particle with spin s and (intrinsic) magnetic moment
μ0 moving in an external magnetic field is given by[111]

Ĥ =
1

2m

(
p̂− e

c
A
)2

+ eϕ− μ0

s
H · ŝ, (VII.1)

where H = curl A and p̂ = −i�∇. It is called the Pauli Hamiltonian.

The velocity operator is (see Problem 6.10) v̂ = 1
m

(
p̂− e

cA(r, t)
)
, and its compo-

nents obey the commutation relations,

[v̂i, v̂k] = i
e�

m2c
εiklHl, (VII.2)

or when written in the vector form, v̂ × v̂ = i e�
m2cH.

In a uniform magnetic field, H0, along the z direction, the “transverse” motion (in
the plane perpendicular to the magnetic field) of spinless particles yields the discrete
energy spectrum,

Etr,n = �ωH

(
n+

1

2

)
, n = 0, 1, 2, . . . (the Landau levels), (VII.3)

where ωH = |e|
mcH0. The explicit form of the corresponding eigenfunctions depends on

a particular gauge chosen for the vector potential; see Problem 7.1. If the particle has
a non-zero spin s, then an additional term, − 1

sμ0Hsz, must be included in Eq. (VII.3),
where sz is the z-component of the particle spin.

The electric current density in the presence of a magnetic field has the following
form:

j = jorb + jsp, (VII.4)

[111] The operator of spin magnetic moment is μ̂ = μ0ŝ/s, so the last term in Eq. (VII.1) has the form
−μ̂ ·H; for a particle with s = 1/2 it is equal to −μ0σ̂ ·H.

In this chapter we use the coordinate representation and the Schrödinger picture of motion, and
hence we omit, as usual, the operator symbol over quantities that depend only on the coordinate,
r; see Problem 7.15.

We should also mention that in this chapter the following conflicting notations are used: m is
used to denote either a particle mass or magnetic quantum numbers, and μ corresponds to either
a magnetic moment or a reduced mass. The meaning of a particular notation should be clear from
the context.
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where the first term jorb is related to the orbital motion of the particle:

jorb =
ie�

2m
{(∇ψ∗)ψ − ψ∗∇ψ} − e2

mc
Aψ∗ψ, (VII.5)

and the second term jsp is related to the spin magnetic moment:

jsp =
μ

s
c curl(ψ∗ŝψ). (VII.6)

7.1 Stationary states in a magnetic field

Problem 7.1

Find the energy levels and the normalized wavefunctions of the stationary states of a
charged spinless particle moving in a uniform magnetic field directed along the z-axis,
using the following gauges of the vector potential A:

a) Ax = 0, Ay = H0x, Az = 0; b) A = 1
2H0 × r.

Pay attention to the quantization of the transverse motion and different forms of
normalization of the “transverse” part of the eigenfunction. Explain the reason for
these differences. Compare your results with the case of a discrete spectrum of a
particle in a potential field, U(r).

Solution

a) The fact that the operators p̂y, p̂z commute with both each other and the
Hamiltonian of the system

Ĥ =
1

2μ

{
p̂2x +

(
p̂y − e

c
H0x

)2

+ p̂2z

}
,

ensures that p̂y and p̂z are conserved quantities, and accordingly the eigenfunctions
of the Hamiltonian can be chosen in the form

ψEpypz
(x, y, z) =

1

2π�
exp

{
i

�
(pyy + pzz)

}
ψ(x). (1)

The Schrödinger equation then becomes

− �
2

2μ
ψ′′(x) +

1

2μ

(
py − e

c
H0x

)2

ψ(x) = Etψ(x),

where we have introduced the energy of the transverse motion Et = E − p2z/2μ.
This equation describes an harmonic oscillator with the fundamental frequency,
ωH = |e|H0/μc; see Eq. (II.2). Hence, the solution is given by:

ψnpypz
(x, y, z) =

1

2π�
exp

{
i

�
(pyy + pzz)

}
ψ(osc)
n

(
x− cpy

eH0

)
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and

Enpz
= Et,n +

p2z
2μ

, Et,n = �ωH

(
n+

1

2

)
, n = 0, 1, 2, . . . (2)

Let us emphasize that the energy levels of the transverse motion, Et,n, i.e., the
Landau levels, are discrete and have infinite degeneracy (the energy levels do not
depend on py, which takes its value in −∞ < py < ∞). The transverse part of the
eigenfunctions, ψnpypz

, cannot be normalized to unity, since |ψ|2 does not depend
on y.

b) In this gauge, the Hamiltonian takes the form

Ĥ =
p̂2

2μ
− e�

2μc
H0 l̂z +

e2H2
0

8μc2
ρ2 ≡ Ĥtr, 2 +

p2z
2μ

. (3)

Now l̂z, p̂z, and Ĥ form a set of mutually commuting operators, and we can write
the eigenfunction in the form (by using cylindrical coordinates):

ψEmpz
(ρ, z, ϕ) =

1

2π
√
�
exp

{
i
(
mϕ+

pzz

�

)}√
ρf(ρ), (4)

where an unknown radial part is determined by the following equation:

f ′′ +
2

ρ
f ′ +

[
2μEt

�2
− m2 − 1/4

ρ2
+

emH0

�c
− e2H2

0

4�2c2
ρ2
]
f = 0.

This equation has been studied in Problem 4.5. Using the results there, we obtain
the solution

√
ρf(ρ) = Ce−x/2x|m|/2F

(
1

2

(
− 2Et

�ωH
+ |m|+ 1− em

|e|
)
, |m|+ 1, x

)
, (5)

where the following notations are used:

x =
ρ2

2a2H
, aH =

√
�

μωH
, ωH =

|e|H0

μc
.

Demanding that the hyper-geometric function is reduced to a polynomial, we obtain
the condition

1

2

(
− 2Et

�ωH
+ |m|+ 1− em

|e|
)

= −nρ, nρ = 0, 1, 2, . . . ,

which determines the energy spectrum of the transverse motion. Hence, it follows:

Et,n = �ωH

(
n+

1

2

)
, n = 0, 1, 2, . . . n = nρ +

1

2

(
|m| − e

|e|m
)

(6)

in accordance with Eq. (2).
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Here for the energy level, Et,n, with a given n, the degenerate eigenstates can take
the following values of m (the quantum number that physically corresponds to the
z-component of the angular momentum):[112]

m = −n, −n+ 1, . . . , 0, +1, . . . , +∞ in the case e > 0,

or

m = −∞, . . . , −1, 0 . . . , n for e < 0,

where the infinite number of possible m implies the infinite degeneracy of the
Landau levels.

It should be noticed that now eigenfunctions (4) and (5) of the Hamiltonian are
localized in the transverse (perpendicular to H0) directions (i.e., in the xy-plane).
The “transverse” part ψnm(ρ, ϕ) of the eigenfunction can be normalized to unity,
with the value of the normalization coefficient in Eq. (5) being

|C|2 =
(|m|+ nρ)!

nρ!(|m|!)2a2H
.

Concerning the normalization of the stationary states corresponding to a discrete
spectrum, we should note that for particles moving in a potential U(r), they
are always localized in a bounded spatial domain. The unusual properties in an
homogeneous magnetic field are related to the fact that the discrete Landau levels of
the transverse motion are infinitely degenerate. Let us consider a wave-packet that
consists of the eigenfunctions, ψnpy

(we omit the z-dependence of the wavefunction),
of the form

ψn(x, y) =

∫
C(py)ψn,py

(x, y)dpy.

This wavefunction also belongs to the Landau level, Et,n, and if
∫ |C(py)|2dpy = 1,

then it is normalized and thus describes a localized particle state, unlike the
non-normalizable wavefunction, ψn,py

. On the contrary, from the normalizable

eigenfunctions ψnm, we can construct a wavefunction of the form ψ̃n =
∑
m

Cmψnm.

They also belong to the Landau level Et,n, but in this case
∑
m

|Cm|2 = ∞ and they

do not describe states localized in the plane (x, y).

Problem 7.2

For a charged spinless particle moving in a uniform magnetic field, find the operators
for 1) the coordinate of the orbital center, ρ̂0, of the “transverse” motion (perpendic-
ular to the magnetic field; i.e., directed along the z-axis); 2) the square of the orbital
center coordinate, ρ̂2

0; and 3) the square of the Larmor orbit radius, ρ̂2
L.

[112] Note that for the lowest Landau level with n = 0, the following condition holds: e ·m � 0.
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Obtain the commutation relations of the operators with each other and the
Hamiltonian.

Determine the spectrum of the eigenvalues of the operators ρ̂2
0 and ρ̂2

L.

Describe the transverse spatial distribution of the particle in the stationary states
ψnmpz

considered in the previous problem, for the following cases:

a) m = − e
|e|n (consider, in particular, the case n � 1 and compare with the result of

classical mechanics);

b) n = 0 and |m| � 1.

Solution

1) In classical mechanics, the orbit of a charged particle in the plane perpendicular
to the direction of the magnetic field is a circle (Larmor’s orbit) whose radius
square is given by

ρ2
L =

v2⊥
ω2
H

≡ v2x + v2y
ω2
H

, ωH =
|e|H
μc

. (1)

Here the vectors ρ, ρ0, v⊥ represent the position of the particle, the orbital
(circle) center, and the velocity, respectively. They obey the relation

ω × (ρ− ρ0) = v⊥, ω =

(
0, 0, −eωH

|e|
)
.

This formula describes a uniform circular motion of the particle in the (xy)-
plane, and the sign of ω determines the direction of the motion (clockwise or
counterclockwise; here, the z-axis is directed along the magnetic field). From this
relation, it follows that

x0 = x− vy
ω

, y0 = y +
vx
ω

; ρ20 = x2
0 + y20 . (2)

The quantum-mechanical generalizations of Eqs. (1) and (2) of classical mechanics
are the corresponding Hermitian operators:

x̂0 = x̂− v̂y
ω

= x− −i�∂/∂y − eAy

μω
, ŷ0 = ŷ +

v̂x
ω
, (3)

ρ̂20 = x̂2
0 + ŷ20 , ρ̂2L =

v̂2x + v̂2y
ω2

,

(here, μv̂ = p̂− eA/c, p̂ = −i�∇), which yields the following commutation rela-
tions:[113]

[Ĥ, x̂0] = [Ĥ, ŷ0] = [Ĥ, ρ̂20] = [Ĥ, ρ̂2L] = 0, [x̂0, ŷ0] = −i
�c

eH , [ρ̂20, ρ̂
2
L] = 0 . (4)

[113] We can obtain them without choosing a particular gauge for the vector potential, but calculations
may be made easier if we do fix the gauge as follows: A = (0, Hx, 0).
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Since these operators commute with the Hamiltonian, the corresponding physical
quantities are constants of motion, just as in classical mechanics.

2) Since ρ̂2L = 2Ĥtr/μω
2
H , where Ĥtr = Ĥ − p̂2z/2μ is the Hamiltonian of the trans-

verse motion of the particle, by using the results of Problem 7.1, we obtain the
eigenvalues of the square of the orbit radius:(

ρ2L
)
n
= (2n+ 1)a2H , n = 0, 1, 2, . . . , a2H =

c�

|e|H . (5)

Furthermore, after fixing the gauge of the vector potential to be[114] A=(1/2)H×
r, we find that

μω2
H ρ̂20 = 2Ĥtr +

e

|e| l̂zωH .

Therefore, the wavefunctions (4) from Problem 7.1 are also the eigenfunctions of
the operator ρ̂20, and the spectrum[115] can be read off directly:(

ρ20
)
k
= (2k + 1)a2H , k = n+

em

|e| = 0, 1, 2, . . . . (6)

As for the eigenvalues of x̂0 and ŷ0, they both have a continuous spectrum. We
should note that the wavefunctions, ψnpypz

from Problem 7.1, are the eigen-
functions of the operator, x̂0, with the corresponding eigenvalues: x0 = −py/μω.
However, since these operators do not commute with each other, the location of
the orbit center is constrained by the uncertainty relation, Δx0 ·Δy0 � a2H/2, and
hence is not well-defined (see Problem 1.30).

3a) By using the expressions (4) and (5) from Problem 7.1 for the wavefunctions of
the eigenstates with m = −en/|e|, we obtain the probability distribution

dw(ρ) = |ψnmpz
|2 · 2πρdρ =

1

n!a2H

(
ρ2

2a2H

)n

e−ρ2/2a2
Hρdρ, (7)

which gives the mean values

ρ =

∫
ρdw =

√
2
Γ(n+ 3/2)

n!
aH , ρ2 = 2(n+ 1)a2H , ρm.p. =

√
2n+ 1aH . (8)

Here ρm.p. is the most probable value of ρ, which corresponds to the maximum of
the distribution.

We should also note that the operators ρ20 and ρ2L have definite values in the
states considered. According to Eqs. (5) and (6), they are given by(

ρ20
)
0
= a2H ,

(
ρ2L
)
n
= (2n+ 1)a2H . (9)

[114] See also Problem 6.27 concerning the behavior of the wavefunction under a gauge transformation.

[115] The spectrum of the operators ρ̂2Ls and ρ̂20 can be obtained by identifying their commutation
relations (3) and the commutators, [x̂0, ŷ0] and [v̂x, v̂y ], with the corresponding commutation

relations for the harmonic oscillator: Ĥ = p̂2/2m +mω2x̂2/2 and [p̂, x̂] = −i�. This algebraic
equivalence determines the familiar spectrum, En = �ω(n + 1/2).
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In the case n � 1 (quasi-classical limit), using the known asymptote of the
Γ−function,

Γ(x) ≈
√
2πxx−1/2e−x , x → ∞,

we obtain, from Eq. (8), ρ ≈ √
2naH , and therefore,

ρm.p. =
√
(ρ2L)n ≈

√
ρ2 ≈ ρ ≈

√
2naH � aH . (10)

These relations indicate that if n � 1, the radial probability distribution has a
sharp peak near ρm.p.. Also, relation (7) in the most relevant domain of ρ can be
rewritten as

dw ≈ (
πa2H

)−1/2
exp

{
− (ρ− ρm.p)

2

a2H

}
dρ. (11)

Consequently, we have Δρ ≡
√

ρ2 − ρ2 ≈ aH/
√
2 � ρ.

Thus, the probability of finding the particle is noticeably different from zero
only in a narrow ring-shaped region with the radius,

√
2naH , and the width of

order aH . It corresponds to the transition to the classical picture of motion,
averaged over the period of the circular orbit. The relation m = −en/|e| for
n � 1, after the substitutions, m = Mz/�, together with n ≈ Et/�ωH , becomes
the standard classical relation between the angular momentum with respect to
the orbital center and the energy of transverse motion:

Et =
|e|H|Mz|

μc
= ωM.

b) Now, for n = 0 and m = e|m|/|e|, we have the probability distribution as follows:

dw(ρ) =
1

|m|!a2H

(
ρ2

2a2H

)|m|
e−ρ2/2a2

Hρdρ, (12)

which differs from Eq. (7) only by the replacement: n → |m|. The analogous
changes in Eqs. (8), (10), and (11) define other characteristics of the radial
distribution in this case.

However, the interpretation of the states under consideration differs greatly
from the previous case. Here, the energy of the transverse motion for n = 0 is
�ωH/2, and such states are essentially “non-classical”. But taking into account
the fact that instead of Eq. (9), we have
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ρ2L
)
0
= a2H , ρ2(0)|m| = (2|m|+ 1)a2H

if |m| � 1, we can view the states in accordance with the following classical
picture: a uniform distribution of the “orbits” of the minimal “radius” equal to√

(ρ2L)0aH = aH over a narrow ring-shaped region of the radius, R ≈ √
2|m| �

aH , with the width, aH .

Problem 7.3

Find the stationary states and the corresponding energy levels of a charged spinless
particle moving in uniform electric and magnetic fields perpendicular to each other.

Solution

Directing the z-axis along the magnetic field and the x-axis along the electric field,
and using the vector potential of the form

Ax = 0, Ay = Hx, Az = 0,

we obtain the single-particle Hamiltonian as follows:

Ĥ =
1

2μ

{
p̂2x +

(
p̂y − e

c
Hx

)2

+ p̂2z

}
− eEx. (1)

Since the operators p̂y, p̂z, and Ĥ are mutually commuting, the eigenfunctions could
be chosen in the following way:

ψEpypz
(x, y, z) =

1

2π�
exp

{
i

�
(pyy + pzz)

}
ψ(x). (2)

Hence the Schrödinger equation can be written as

f ′′(x) +
1

�2

[
2μEtr + 2μeEx−

(
py − e

c
Hx

)2
]
f(x) = 0, (3)

where Etr = E − p2z/2μ. This equation can be viewed as the Schrödinger equation
of an harmonic oscillator with the frequency, ωH = |e|H/μc. Using its solution (see
Eq. (II.2)), we obtain the eigenfunctions and the spectrum of the Hamiltonian (1) as
follows:

ψnpypz
(x, y, z) =

1

2π�
exp

{
i

�
(pyy + pzz)

}
ψ(osc)
n

(
x− cpy

eH − μc2E

eH2

)
(4)

and

Enpypz
= �ωH

(
n+

1

2

)
− cEpy

H − μc2E2

2H2
+

p2z
2μ

, n = 0, 1, 2, . . .

A few remarks on the properties of solution (4) are in order:
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1) The energy spectrum of the particle is continuous and is not bounded from below.
Consequently, the discrete levels of a particle in a potential, which vanishes (U → 0)
at large distances, acquire a finite width and become quasi-stationary under the
influence of an electric field; see also Problem 6.36.

2) The eigenfunctions of the Hamiltonian (4) describe states in which the particle is
localized in the x-direction. In the case E < H, it corresponds to the finite classical
motion of the particle in the x-direction.

3) The derivatives

∂Enpypz

∂pz
=

pz
μ

,
∂Enpypz

∂py
= − E

H c

determine the z-component of the velocity of the particle and the drift velocity[116]

of the particle along the y-direction.

Problem 7.4

Consider the same setting as in the previous problem, except that the electric and
magnetic fields are parallel.

Solution

Taking the z-axis as the direction of both the electric and magnetic fields, we see that
the Hamiltonian of the particle differs from that in Problem 7.1 only by an additional
term, −eEz. Therefore the transverse and longitudinal motions remain separated, and
can be treated independently. The longitudinal motion is equivalent to a particle in an
homogeneous field, which is different from the free particle motion of Problem 7.1. The
solution of the present problem may be obtained from the equations of Problem 7.1 by
changing the term p2z/2μ there to the energy Et of the longitudinal motion, and the
plane wave, ψpz

(z), to the wavefunction, ψEt
(z), of the particle in an homogeneous

field; see also Problem 2.41. We also note that the energy spectrum is continuous and
unbounded from below, as in Problem 7.1.

Problem 7.5

Find the energy levels and normalized wavefunctions of the stationary states for a
charged spherical oscillator (i.e., a charged particle in the potential, U(r) = 1

2kr
2) in

an external uniform magnetic field. Examine the limiting cases of a weak and strong
magnetic field.

Solution

If we choose the vector potential in the form A = 1
2H× r, the Hamiltonian of the

particle in the cylindrical coordinates (with the z-axis directed along the magnetic
field) takes the form

[116] Due to the non-relativistic condition, v � c, solution (4) is valid if E � H.
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Ĥ = − �
2

2μ

[
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2
∂2

∂ϕ2
+

eH
c�

l̂z

]
+

(
k

2
+

e2H2

8μc2

)
ρ2 + Ĥl,

where

Ĥl = − �
2

2μ

∂2

∂z2
+

k

2
z2.

Due to the mutual commutativity of the operators l̂z, Ĥl, and Ĥ, the eigenfunctions
can be chosen as (the operator, Ĥl, describes a harmonic oscillator):

ψEmn2
(ρ, z, ϕ) =

eimϕ

√
2π

ψ(osc)
n2

(z)
√
ρf(ρ) , n2 = 0, 1, 2, . . . (1)

Here the Schrödinger equation leads to

f ′′ +
2

ρ
f ′ +

[
2μEtr

�2
− m2 − 1/4

ρ2
+

emH
�c

− ρ2

4a2

]
f = 0,

where the following notations are used:

Etr = E − �ω

(
n2 +

1

2

)
, ω =

√
k

μ
, ωH =

|e|H
μc

, a =

(
�

μ

)1/2 (
4ω2 + ω2

H

)−1/4
.

The equation is almost identical to the Schrödinger equation considered in Prob-
lem 4.5, apart from a redefinition of some variables. Therefore, using the results of
Problem 4.5, we obtain

√
ρfn1m = C

(ρ
a

)|m|
exp

{
− ρ2

4a2

}
F

(
−n1, |m|+ 1,

ρ2

2a2

)
(2)

and

Etr; n1m =
1

2
�

√
ω2
H + 4ω2(2n1 + |m|+ 1)− e�ωH

2|e| m , n1 = 0, 1, 2, . . . .

Expressions (1) and (2) determine the eigenfunctions and the spectrum of the Hamil-
tonian of the oscillator in a magnetic field:

En1n2m =
1

2
�

√
ω2
H + 4ω2(2n1 + |m|+ 1) + �ω

(
n2 +

1

2

)
− e�ωH

2|e| m. (3)

In the case of a weak magnetic field, ωH � ω, we have

En1n2m ≈ E
(0)
N − e�

2μc
mH+

e2�

8μ2ωc2
(2n1 + |m|+ 1)H2. (4)

Here, E
(0)
N = �ω(N + 3/2) describes the unperturbed oscillator levels (see Prob-

lem 4.5), where N = 2n1 + |m|+ n2. The linear-in-H term in the level shift corre-
sponds to an interaction of the magnetic moment of the oscillator with the magnetic
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field described by the expression V̂ = −μ̂ ·H, where μ̂ = (e�/2μc)̂l is the angular
magnetic moment of the charged particle. The term in Eq. (4) quadratic in H
determines the diamagnetic part of the level shift. In particular for the ground state,
the linear term vanishes, and

ΔE0 ≈ −1

2
χ0H2, where χ0 = − e2�

4μ2c2ω

determines the magnetic susceptibility of the oscillator.

In the case of a strong magnetic field, when ωH � ω, Eq. (3) yields

En1n2m ≈ Etr, n +
�ω2

ωH
(2n1 + |m|+ 1) + El; n2

. (5)

In this case, the “transverse” part of the energy spectrum is determined mainly
by the magnetic field. Etr, n = �ωH(n+ 1/2) describes the spectrum of the Landau
levels with n = n1 + |m|/2− em/2|e|. The second term in (5) gives a correction that
originates from the effect of the elastic force (the harmonic potential) on the transverse
motion of the particle. The last term, El,n2

= �ω(n2 + 1/2), can be interpreted as the
energy of the free oscillation along the magnetic field.

Problem 7.6

Show that a magnetic field, H(r), that is non-zero in some bounded domain, cannot
“bind” a charged spinless particle, i.e., there are no localized stationary states. Why
does not this result contradict the existence of magnetic traps for charged particles in
classical mechanics?

Solution

Indeed, the eigenvalues of the Hamiltonian Ĥ = 1
2m

(
p̂− e

cA
)2

are always positive, and
for positive energy E > 0 the particle is essentially free, whenever it is far from the
region where magnetic field is non-zero. Hence there are no solutions of the Schrödinger
equation that are decreasing with r as r → ∞ . However, even though true bound states
in magnetic fields do not exist, there may exist quasi-stationary states (see Chapter 6,
sec. 5), whose lifetime could be considered as infinitely long for macroscopic (classical)
systems.

Problem 7.7

As it is known in one and two dimensions, a particle in any attractive potential well
always has bound state(s), where it is localized in a bounded region of space. In three
dimensions, no such states exist in the case of a shallow potential well.

Show that in the presence of a uniform magnetic field, a charged particle in a
attractive potential always does have bound states in which the particle is localized
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(and not only in the “transverse” direction), provided that the potential satisfies the
conditions U(r) ≤ 0 and U(r) → 0 as r → ∞. That is to say, in the presence of a
magnetic field, any well can “bind” a quantum particle.

In the case of a shallow well U0 � �
2/ma2 (U0 and a being the characteristic

strength and radius of potential), obtain approximate expressions for the binding
energy; see also Problem 8.61.

Solution

Let us use the variational method (as in Problem 2.3). Taking the form of the vector
potential as A = 1

2H× r, we can write the Hamiltonian as

Ĥ = Ĥtr +
p̂2z
2μ

+ U(r),

where Ĥtr is the transverse part of the Hamiltonian with a magnetic field directed
along the z-axis; see Eq. (3) from Problem 7.1. Let us now consider the following
normalized wavefunctions

ψm =
√
κe−κ|z|ψn=0,m(ρ, ϕ), (1)

where ψnm is the “transverse” part of the wavefunction (4) from Problem 7.1. For

this part we have Ĥtrψ0m = (�ωH/2)ψ0m, where ωH = |e|H
μc ; so the mean value of the

energy in the state represented by the wavefunction (1) is equal to

Em(κ) =

∫
ψ∗
mĤψmdV =

�ωH

2
+

�
2κ2

2μ
+ κ

∫
U(r)e−2κ|t||ψ0m|2dV.

Since U(r) ≤ 0, it is always possible to choose a small value of κ to ensure that
Em(κ) < �ωH/2. Therefore, the Hamiltonian under consideration has eigenvalues less
than �ωH/2, which is the minimal energy of the particle in a uniform magnetic field.
Therefore, there does exist a bound state, where the particle cannot “escape” to
infinity. We should note that there is an infinite number of such independent states
for different values of the angular moment component, m (see Problem 7.1).

The emergence of the bound states in the problem under consideration, even in
the case of a shallow potential, has a simple interpretation: the particle is already
bounded by the magnetic field in the transverse direction – see Problem 7.1 – while
the existence of the potential well leads to its binding in the longitudinal direction, as
in the one-dimensional case (see Problem 2.3).

Let us focus on the case of a shallow well. The wavefunctions of the bound states
have the approximate form as follows(see Eq. (1)):

ψEm ≈ ψ0m(ρ, ϕ)ψεm(z), Em =
�ωH

2
+ ε. (2)

Here we took into account that the dependence of the eigenfunctions on the transverse
coordinates is mainly determined by the magnetic field. Substituting this wavefunction
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into the Schrödinger equation, ĤψEm ≈ EψEm, multiplying the latter by ψ∗
0m(ρ) from

the left, and integrating over the coordinates of the transverse motion,[117] we obtain
the one-dimensional Schrödinger equation

− �
2

2μ
ψ′′
εm(z) + [Ueff, m(z)− εm]ψεm(z) = 0 (3)

with the effective potential

Ueff, m(z) =

∫
U(r)|ψ∗

0m(ρ, ϕ)|2d2ρ =
2

|m|!

∞∫
0

U(r)ρ̃2|m|+1 exp {−ρ̃2}dρ̃. (4)

Here,

ρ̃ =
ρ√
2aH

, aH =

√
�

μωH
, r =

√
ρ2 + z2,

and in this procedure we have used the explicit form of the wavefunction as follows
(see also Problem 7.1)

ψ0m = ρ̃|m| exp {imφ− ρ̃2/2}√
2π|m|!aH

.

In the case of a shallow potential well, U(r), the effective potential (4) is also shallow,
and the energy level εm can be determined using the result of Problem 2.22:

εm ≈ −μα2
m

2�2
, αm = −

∞∫
−∞

Um,eff (z)dz. (5)

(Here the dependence of the wavefunction (2) on z is the same as in Eq. (1) with
κ = μαm/�2.)

A simple calculation shows that the binding energy of the bound states is small:
|εm| � �ωH . Here the binding energies of the states with different angular momentum
components, m, depend strongly on the relation between the “magnetic length”, aH ,
and the radius of the potential well, R. The dependence of εm on m is particularly
strong for R � aH ∝ H−1/2. In this case, the term exp{−ρ̃2} in the integral in Eq. (4)
can approximated by 1, and from Eqs. (4) and (5) we obtain

εm ∝
(

R

aH

)4|m|+4

∝ H2|m|+2,

so the binding energy decreases fast with increasing |m|.

[117] A similar method for the Schrödinger equation is often used in the framework of the adiabatic
approximation; see Problem 8.61.
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A generalization of the above results to the case where the potential well U(r) is
not shallow is given in Problem 8.61.

Problem 7.8

Find the stationary states and the corresponding energy levels for a neutral particle
with spin s = 1/2 and magnetic moment μ0 (so that μ̂ = μ0σ̂) in a uniform magnetic
field.

Solution

Choosing the z-axis along the magnetic field, the Hamiltonian of the particle reads
Ĥ = 1

2m p̂2 − μ0Hσ̂z; see Eq. (VII.1). Due to the mutual commutativity of the oper-

ators Ĥ, p̂, and σ̂z, we can immediately determine the eigenfunctions and the
corresponding energy eigenvalues:

ψpsz =
1

(2π�)3/2
eip·r/�χsz , Epsz =

p2

2m
− 2μ0Hsz,

where χsz are the eigenstates of the operator, ŝz, with eigenvalues sz = ±1/2; see
Problem 5.1.

Problem 7.9

Consider the same conditions as in the previous problem, but for a charged particle
with spin s = 1

2 . Compare with the results of Problems 7.1 and 7.8.

Pay attention to the appearance of an additional degeneracy[118] of the energy
levels of the transverse motion with the magnetic moment, μ0 = e�

2mc (e and m are the
charge and mass of the particle, respectively. Note that this value of μ0 follows from
the Dirac equation describing electrons, muons, and their anti-particles).

Solution

The Hamiltonian of the particle differs from the spinless case by an additional term
that has the form −μ0Hσ̂z (see Eq. (VII.I), with the z-axis directed along the
magnetic field). Since it does not depend on the spatial coordinates, the orbital and
the spin degrees of freedom separate. This consideration, combined with the result of
Problem 7.1 and the conservation of sz, allows us to write the eigenfunctions of the
Hamiltonian as

ψnνpzsz = ψnpzν(r)χsz , (1)

where ψnpzν(r) are the eigenfunctions of the spinless Hamiltonian. Their explicit form
depends on a specific gauge choice (here ν ≡ py and ν ≡ m correspond to cases a) and
b) in Problem 7.1). Eigenfunctions given in (1) have the following energies:

[118] This degeneracy is related to the supersymmetric character of the Hamiltonian. Some properties
and consequences of supersymmetry are studied in Problems 10.2 and 10.27.
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Enszpz
= Etr,nsz +

p2z
2m

, Etr,nsz = �ωH

(
n+

1

2

)
− 2μ0Hsz, (2)

with n = 0, 1, 2, . . . , ωH = |e|H/mc. Here the discrete part of the spectrum Etr,nsz

is associated with the transverse motion of the particle.

Considering the spin magnetic moment, μ0 = −|e|�/2mc, Eq. (2) gives Et,nsz ≡
EN = �ωHN, whereN = n+ sz +

1
2 = 0, 1, . . . . This spectrum has the following prop-

erty. The ground state with N = 0 is “non-degenerate”[119] and its energy is E0 = 0
(n = 0, sz = −1/2), while the levels with N �= 0 are “two-fold degenerate”. The two-
fold degenerate states are those with n = N, sz = −1/2, and n = N − 1, sz = +1/2.

These properties of the energy spectrum can be understood from the supersym-
metric nature of the transverse part of the Hamiltonian. Indeed, this Hamiltonian can
be reduced to a supersymmetric oscillator (considered also in Problem 10.26), since it
can be written as

Ĥtr =
1

2
(p̂⊥ + |e|A⊥/c)2 +

1

2
|e|�Hσ̂z ≡ �ωH

(
b̂+b̂+

1

2

)
+ �ωH

(
f̂+f̂ − 1

2

)
. (3)

Here, f̂ ≡ (σ̂x − iσ̂y) =

(
0 0
1 0

)
and f̂+f̂ = (1 + σ̂z)/2 and {f̂ , f̂+}+ = 1, while

b̂ = (π̂y + iπ̂x) /
√
2m�ωH , with π̂ ≡ mv̂ = (p̂+ |e|A/c) and [b̂, b̂+] = 1. So, the spin

corresponds to a fermionic degree of freedom with nF = sz + 1/2, while the orbital
motion corresponds to a bosonic degree of freedom with nB = n. The spectrum (3)
takes the form: Etr, nBnF

= �ωH(nB + nF ). It coincides with the spectrum, Etr, N ,
and explains the properties mentioned above.

In conclusion, we present the expressions for the operators of supersymmetry
transformation, Q̂ (see also Problem 10.26) for the given problem:

Q̂+ ≡ 1

2

(
Q̂1 + iQ̂2

)
= qb̂f̂+ =

(π̂y + iπ̂x)√
2m

·
(

0 1
0 0

)
, Q̂ = (Q̂+)+,

Q̂1 = Q̂+ + Q̂ =
(σ̂xπ̂y − σ̂yπ̂x)√

2m
, Q̂2 = −i(Q̂+ − Q̂) =

(σ̂xπ̂x + σ̂yπ̂y)√
2m

,

where q =
√
�ωH . In terms of the superoperators, the Hamiltonian (3) can be written

in the following equivalent forms:

Ĥtr = Q̂2
1 = Q̂2

2 = {Q̂, Q̂+}+.

[119] Here we do not count the degeneracy of the levels Et,n of the transverse orbital motion in a
magnetic field.
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Problem 7.10

Show that the Pauli Hamiltonian (VII.1) for an electron moving in an electromagnetic
field can be written in the form,

Ĥ =
1

2m

[
σ̂ ·

(
p̂− e

c
A
)]2

+ eϕ. (1)

Using this expression, show that

a) For an electron in a stationary uniform magnetic field, the projection of its spin
along the direction of its velocity is a constant of motion.

b) A magnetic field, H(r), which is non-zero only in a bounded region of space, cannot
“bind” an electron (see also Problem 7.6).

Do these results generalize for other spin-1/2 particles (proton, neutron, and others)?

Solution

1) With the help of relations (V.3) and (VII.2), we can rewrite the Hamiltonian given
in the problem as follows:

Ĥ =
1

2m

(
σ̂ ·

(
p̂− e

c
A
))2

+ eϕ ≡ m

2
σ̂iσ̂kv̂iv̂k + eϕ

=
m

2
(δik + iεiklσ̂l)v̂iv̂k + eϕ =

m

2
v̂2 + eϕ− e�

2mc
H · σ̂. (2)

Hence, this is the Pauli Hamiltonian for a particle with spin s = 1/2, charge e,
and the spin magnetic moment μ0 = e�/2mc moving in the electromagnetic field.
(Electron, muon, and their antiparticles have this value of μ0, which follows from
the Dirac equation).

2) When the particle moves in a stationary magnetic field (in the absence of an electric
field), one can choose, ϕ = 0, while the vector potential, A(r), does not depend on
time. Hence, the velocity of the particle and the operator, σ̂ · v̂, do not depend
explicitly on time. Furthermore, taking into account the fact that the Hamiltonian,
Ĥ = m(σ̂ · v̂)2/2, obviously commutes with σ̂ · v̂, and recalling the equation of
motion given in Eq. (VI.4),[120] we come to the conclusion that σ̂ · v̂ is conserved
(constant of motion). Similarly, for a particle moving in a uniform magnetic field,
v̂2 is also a constant of motion.[121] The fact that both σ̂ · v̂ and v̂2 are conserved
means that the projection of the spin onto the direction of the velocity is also a
constant of motion.

This result has an intuitive interpretation: the variation of the velocity and the
spin with time are “synchronized” when the magnetic field is uniform: i.e., both
involve a precession with the frequency, ωH ; see Problem 7.15. But if the magnetic
moment of a particle is different from e�/2mc (for s = 1/2), then the relative angle
between the velocity and the spin varies with time. This fact forms the basis of

[120] We should note that ∂v̂/∂t = −(e/mc)∂A/∂t = 0 and hence dσ̂ · v̂/dt = (i/�)[Ĥ, σ̂ · v̂] = 0.

[121] For a spinless particle, v̂2 is also conserved even in an inhomogeneous magnetic field.
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an experimental method (see also Problem 7.15 and a relevant footnote there) for
measuring the anomalous part of the magnetic moment

μ′
0 ≡ μ0 − e�

2mc
,

when it is small.

3) The argument used in Problem 7.6 to show that there are no bound states for a
charged spinless particle in a magnetic field can be applied here for our Hamiltonian
(1) (with ϕ = 0).

7.2 Time-dependent quantum mechanics in a magnetic field

Problem 7.11

Show that for the motion of a charged particle with a non-zero spin (and spin magnetic
moment) in a time-dependent, uniform magnetic field, H(t), the spin and spatial
dependence of the wavefunction are separated (the electric field can be arbitrary).

Solution

The first two terms in the Pauli Hamiltonian (VII.1) do not depend on the spin, while
the last term does not depend on the spatial coordinates. Hence we can find a particular
set of solutions to the Schrödinger equation in the following form, Ψ(r, t) = ψ(r, t)χ(t),
where the functions ψ and χ satisfy the corresponding Schrödinger equations:

i�
∂ψ

∂t
=

[
1

2m

(
p̂− e

c
A
)2

+ eϕ

]
ψ, i�

∂χ

∂t
= −μ

s
H(t) · ŝχ. (1)

A general wavefunction satisfying the Schrödinger equation is a superposition of (2s+
1) (corresponding to the number of spin states) solutions whose spin and spatial
dependence can be factorized. To illustrate this point, we write the wavefunction of
an arbitrary initial state at t = 0 in the form (for simplicity, we choose s = 1/2)

Ψ(r, t = 0) =

(
ψ1(r, 0)
ψ2(r, 0)

)
= ψ1(r, 0)

(
1
0

)
+ ψ2(r, 0)

(
0
1

)
.

Due to the linearity of the Schrödinger equation, we have

Ψ(r, t) = ψ1(r, t)χ1(t) + ψ2(r, t)χ2(t),

where the functions ψ1,2 and χ1,2 satisfy the equations given in (1) and the corre-
sponding initial conditions.
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Problem 7.12

For a particle with spin s = 1/2 and a magnetic moment, μ, moving in a uniform
stationary magnetic field, determine the time evolution of the spin wavefunction and
the mean values of the spin components (given that the spin and spatial variables are
already separated, as shown in the previous problem).

Solution

Directing the z-axis along the magnetic field, the spin sector of the Hamiltonian takes
the following form: Ĥ = −μHσ̂z. The Schrödinger equation, (i�)∂ψ(t)/∂t = Ĥψ(t), for

the spin wavefunction, Ψ(t) =

(
C1(t)
C2(t)

)
, is reduced to the following set of equations:

Ċ1(t) = iωC1(t) , Ċ2(t) = −iωC2(t), where ω =
μH
�

.

Hence

C1(t) = eiωtC1(0), C2(t) = e−iωtC2(0),

where the constants, C1(0) and C2(0), are determined by the initial conditions, and
to normalize the wavefunction we use the condition |C1|2 + |C2|2 = 1.

The mean values of the spin vector components can be evaluated as follows:

s(t) =
1

2
Ψ∗(t)σ̂Ψ(t), sx(t) = sx(0) cos 2ωt+ sy(0) sin 2ωt, (1)

sy(t) = sy(0) cos 2ωt− sx(0) sin 2ωt, sz(t) = sz(0) = const,

i.e., the vector s(t) precesses around the magnetic field with the angular velocity 2ω.

Problem 7.13

Generalize the results of the previous problem to the case of a time-dependent magnetic
field, whose direction does not change with time; i.e., H(t) = H(t)n0.

Solution

The results of the previous problem could be directly generalized to the present case
of magnetic field H(t) = (0, 0, H(t)). Now the Schrödinger equation becomes

i�Ċ1 = −μH(t)C1 , i�Ċ2 = μH(t)C2,

and its solution is

C1(t) = eiξ(t)C1(0), C2(t) = e−iξ(t)C2(0), ξ(t) =
μ

�

t∫
0

H(t)dt.
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The mean values of the spin vector components, s(t), are given by equation (1) of
the previous problem, after replacing ωt by ξ(t). Hence the vector s(t) still precesses
(generally non-uniformly) around the magnetic field direction.

Problem 7.14

Consider a particle with spin s = 1/2 and magnetic moment, μ, in the uniform
magnetic field H(t),

Hx = H1 cosω0t, Hy = H1 sinω0t, Hz = H0,

where H0,1 and ω0 are constants.

At the moment t = 0, the particle is in a state with sz = 1/2. Determine the
probabilities of different values of sz at the moment, t > 0. Pay attention to the
resonance of the spin-flip probability in its dependence on the frequency ω0 when
|H1/H0| � 1.

Solution

The spin part of the Hamiltonian has the form

Ĥ(t) = −μH(t) · σ̂ = −μ

( H0 H1 exp{−iω0t}
H1 exp{iω0t} −H0

)
.

The Schrödinger equation for the spin wavefunction Ψ(t) =

(
a(t)
b(t)

)
is reduced to the

following set of equations:

i�ȧ = −μH0a− μH1 exp{−iω0t}b,
i�ḃ = −μH1 exp{iω0t}a+ μH0b.

(1)

By using the substitutions

a(t) = e−iω0t/2ã(t), b(t) = eiω0t/2b̃(t),

the time-dependence of the coefficients of the differential equations is eliminated,
allowing us to find its solution (compare with Problem 6.9):

ã(t) = C1e
iωt + C2e

−iωt ,

b̃(t) = (ω − γ1)γ
−1
2 C1e

iωt − (ω + γ1)γ
−1
2 C2e

−iωt,

where we have introduced the following notations:

γ1 =
μH0

�
+

ω0

2
, γ2 =

μH1

�
, ω =

√
γ2
1 + γ2

2 .
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Using the initial conditions, a(0) = 1 and b(0) = 0, we obtain

Ψ(t) =
1

2ω

( [
(ω + γ1)e

iωt + (ω − γ1)e
−iωt

]
e−iω0t/2

2iγ2 sin ωt · eiω0t2

)
. (2)

The spin-flip probability (i.e., the probability to find the particle in the spin state
with sz = −1/2 at the moment of time, t) is

W (sz = −1/2, t) =
(γ2
ω

)2

sin2 ωt ≡ g sin2 ωt, (3)

where

g =
(γ2
ω

)2

=
H2

1

H2
1 + (H0 + �ω0/2μ)2

.

If H1 � H0, the spin-flip probability (as well as the value of the parameter, g) is
small except in the narrow frequency-range ω ∼ ω0 res = −2μH0/�, with the width of
the order of Δω0 ∼ μH1/�. The resonance in the frequency-dependence of the spin-
flip probability forms the basis of experimental techniques used to measure magnetic
moments.

Problem 7.15

For a charged particle with spin s = 1/2 and spin magnetic moment μ, moving in a
uniform stationary magnetic field, find the operators of position, velocity, momentum,
and spin in the Heisenberg picture. Choose the vector potential in the form,[122] A =
(0,H0x, 0). Solve the problem using a method presented in Problem 6.20.

Compare the time-dependencies of the mean values of the velocity, v(t), and spin,
s(t); see also Problem 7.10.

Solution

The problem will be solved similarly to Problem 6.20. We give the expressions for
Heisenberg operators of the position, momentum, and particle spin components:

x̂(t) = x̂ cos ω0t+
p̂x

mω0
sin ω0t+

p̂y

mω0
(1− cos ω0t),

ŷ(t) = ŷ − x̂ sin ω0t+
p̂x

mω0
(cos ω0t− 1) +

p̂y

mω0
sin ω0t,

ẑ(t) = ẑ + p̂z

m t,

p̂x(t) = p̂x cos ω0t+ p̂ysin ω0t−mω0x̂ sin ω0t, ŝx(t) = ŝx cos ωt+ ŝy sin ωt,
p̂y(t) = p̂y, ŝy(t) = ŝy cos ωt− ŝx sin ωt,
p̂z(t) = p̂z, ŝz(t) = ŝz,

[122] Note that this classical expression must be modified in the quantum-mechanical Heisenberg picture:

Â = (0,H0x̂(t), 0).
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ωH =
eH0

mc
, ω =

2μH0

�
,

where x̂i, p̂i, ŝi are the corresponding operators in the Schrödinger picture, and e, m
are the charge and mass of the particle, respectively.

The velocity v̂(t) = dr̂(t)/dt could be obtained by directly differentiating r̂(t).
The time evolutions of the mean values of v(t) and s(t) describe the precession of
these vectors with angular velocities, ω0 and ω, respectively. In the case ω0 = ω, the
angle between them does not change with time (this case corresponds to μ = e�/2mc;
see Problem 7.10). If ω0 �= ω, then the angle between the two vectors v(t) and
s(t) in the azimuthal plane (perpendicular to the magnetic field) varies with time:
Δϕ(t) = (g − 2)ω0t/2, and g = 2μ/μ0.

This fact forms the basis of the experimental measurement of the g-factor,[123] when
it differs slightly from the value, g0 = 2, given by the Dirac equation. Experiments show
that small deviations from the value gD = 2 occur in the g-factors of the electrons and
muons, which is in agreement with the prediction of quantum electrodynamics.

Problem 7.16

Under the conditions of Problem 7.12, find the time-dependent Green function,
Gαβ(t, t

′), for the spin degrees of freedom of the particle (α, β = 1 and 2 are the
spin variables).

Solution

The Green function, Gαβ(t, t
′), satisfies the Schrödinger equation of the spin Hamil-

tonian, Ĥ = −μHσ̂z (the z-axis is directed along the magnetic field). At t = t′ it is
given by Gαβ = δαβ . Its explicit form is (ω = μH/�):

Ĝ(t, t′) =
(
exp {iω(t− t′)} 0

0 exp {−iω(t− t′)}
)
.

Problem 7.17

The same as in the previous problem, but for the conditions of Problem 7.13.

Result

The Green function is obtained from the expression of the previous problem by
changing ω(t− t′) → ξ(t, t′) = (μ/�)

∫ t

t′ H(t)dt.

[123] The angle, Δϕ(t), is an “accumulative effect”. After a sufficiently long measurement time, Δϕ
becomes of the order of 1, which allows determination of (g − 2), even if this difference is very
small.
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Problem 7.18

Find the time-dependent Green function, Gαβ(r, t; r
′, t′), of a neutral particle with

spin s = 1/2 and magnetic moment μ in a uniform stationary magnetic field.

Solution

In accordance with the results of Problem 7.11 about the separation of the spatial and
spin variables for a particle moving in a uniform magnetic field, the required Green
function is given by the product:

Gαβ(r, t; r
′, t′) = G(r, t; r′, t′) ·Gαβ(t, t

′).

Here, G(r, t; r′, t′) is the Green function of a free spinless particle, – see Eq. (VI.7) –
and Gαβ(t, t

′) is the spin Green function from Problem 7.16.

Problem 7.19

Generalize the result of the previous problem to the case of a uniform but
non-stationary magnetic field, whose direction does not vary with time; i.e.,
H(t) = H(t)n0.

Result

The Green function has the same form as in the previous problem, but now the spin
Green function is given by the result from Problem 7.17.

7.3 Magnetic field of the orbital currents and spin magnetic
moment

Problem 7.20

Find the mean values of the current density for a charged spinless particle in a uniform
magnetic field in the stationary state, ψnmpz

(see Problem 7.1 b).

Solution

Using the explicit form of the wavefunctions, ψnmpz
(see Eqs. (4)–(6) from Prob-

lem 7.1), with the vector potential chosen as A = 1
2H0 × r, we obtain the current

density of the charged spinless particle in the magnetic field from Eq. (VII.5):

jρ = 0, jz =
epz
μ

|ψnmpz
|2, jϕ =

(
e�m

μρ
− e2H0ρ

2μc

)
|ψnmpz

|2,

where cylindrical coordinates are used. We should emphasize that |ψ|2 for the states
considered depends only on the radius, ρ.
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Problem 7.21

The same as in previous problem, but for a charged particle with spin s = 1/2 and
magnetic moment μ0 in the stationary state ψnmpzsz from Problem 7.9.

Solution

The wavefunctions of the states under consideration have the form

ψ ≡ ψnmpzsz = ψnmpz
χsz ,

where χsz are the spin eigenfunctions of the operator ŝz (see also Problem 7.9 and the
previous problem). In this case,

μ0ψ
∗σ̂ψ =

(
0, 0, 2μ0sz|ψnmpz

|2).
Noting that |ψnmpz

|2 depends only on ρ and according to Eq. (VII.6), we find the
components (in cylindrical coordinates) of the current density originating from the
spin magnetic moment:

jsp,ρ = jsp,z = 0, jsp,ϕ = −2μ0csz
∂

∂ρ
|ψnmpz

|2. (1)

The total current density is given by the sum of the contribution (1) and the
corresponding components of the orbital current calculated in the previous problem.

Problem 7.22

Determine the mean value of the magnetic fieldH(0) at the origin created by a charged
spinless particle moving in the Coulomb field of a nucleus: U(r) = −Ze2/r. Consider
the 1s- and 2p-states.

Solution

We use the following equation well known from classical electrodynamics:

H(R) =
1

c

∫
j(r)× (R− r)

|R− r|3 dV. (1)

In the absence of any external magnetic field, the current density is given by Eq. (VII.5)
with A = 0. For the stationary s-state, the wavefunction is real, so we have[124] j = 0
and H = 0.

The wavefunction of a 2p state has the form:

ψ2p = (32πa5)−1/2(ε · r)e−r/2a, a =
�
2

Ze2μ
, |ε|2 = 1

[124] The physical reason for the vanishing magnetic field in the s-states is related to the spherical
symmetry of the state.
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(For the angular dependence, see Problem 3.42.) Using Eqs. (1) and (VII.5) for A = 0,
we obtain (we set the charge of the particle to be −e)

H(0) = − ie�

64πμa5c

∫
e−r/a

r3
[r× (ε∗(ε · r)− ε(ε∗ · r))]dV. (2)

(Note that to calculate the current we need to apply the operator ∇ only to the
terms ε · r and ε∗ · r in the wavefunctions, because [r×∇f(r)] = 0 and ∇(ε · r) = ε.
Introducing the vector, b = [ε∗ × ε], we see that the integral in (2) takes the form∫

1

r3
e−r/a{r(r · b)− br2}dV ≡ I. (3)

In order to calculate this integral, let us first consider the following integral:∫
1

r3
e−r/axixkdV = Cδik. (4)

If we perform convolution over the indices i and k, we obtain

3C =

∫
1

r
e−r/adV = 4πa2. (5)

From Eqs. (3)–(5) it follows that I = −8πa2b/3, and as a result we find the magnetic
field “on the nuclei” to be

H(0) = − ie�

24μa3c
[ε∗ × ε]. (6)

Hence, using the explicit form of ε(m) – see Problem 3.42 – we obtain

Hm=0(0) = 0, Hm=±1(0) =

(
0, 0, ∓ e�

24μa3c

)
. (7)

In conclusion, we should note that if a nucleus has a non-zero magnetic moment, then
its interaction with the magnetic field, H(0), leads to a hyperfine structure splitting
of the atomic levels; see Problem 11.2.

Problem 7.23

Find the mean magnetic field created by an electron in the ground state in the Coulomb
field of a nucleus with the charge Ze.

Solution

The wavefunction of the state of the electron is ψ = (πa3)−1/2e−r/aχ, where χ is its
spin function and a = �

2/Ze2μ. The orbital current density is zero, so the current is
determined solely by the spin magnetic moment. According to Eq. (VII.6) we have
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j = jsp = −μ0c[σ ×∇ρ], σ = χ∗σχ, ρ(r) =
1

πa3
e−2r/a.

Using the known expression for the vector potential

A(R) =
1

c

∫
j(r)

|R− r|dV = −μ0

[
σ ×

∫ ∇ρ(r)

|R− r|dV
]
, (1)

we can make here the following transformations:∫ ∇ρ(r)

|R− r|dV =

∫ {
∇ ρ(r)

|R− r| − ρ(r)∇ 1

|R− r|
}
dV = ∇R

∫
ρ(r)

|R− r|dV. (2)

Here we have applied Gauss’s theorem, and the relation∇r g(R− r) ≡ −∇R g(R− r).
The integral in Eq. (2) yields[125]∫

ρ(r)

|R− r|dV =
1

R
−
(
1

R
+

1

a

)
e−2R/a ≡ f(R). (3)

Hence we obtain A(r) = −μ0[σ ×∇f(r)]. Let us also give the asymptotic expressions
for the magnetic field, H = ∇×A(r):

H(0) =
8

3a3
μ, H(r) ≈ 3(μ · r)r− μr2

r5
; for r → ∞;μ = μ0σ.

(At large distances this corresponds to the field of a magnetic dipole.)

Problem 7.24

Find the mean magnetic field produced at the origin by a particle with the spin
s = 1/2, and magnetic moment μ0, in the stationary s-state of an arbitrary central
potential.

Solution

From Eqs. (1) and (2) of the previous problem, we find

A(R) = −μ0[σ ×∇Rf(R)], f(R) =

∫ |ψ(r)|2
|R− r|dV, (1)

where ψ(r) is the wavefunction of the s-state. The magnetic field has the form
(μ = μ0σ):

H(R) = ∇×A(R) = −μ
f(R) + (μ ·∇)∇f(R).

[125] This integral describes a contribution to the effective potential created by the electron “cloud”. Its
value can be found in Problem 4.6.
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Therefore, its components are found to be

Hi(R) = −μk

(
δik
− ∂2

∂Xi∂Xk

)
f(R). (2)

Now consider the expression

∂2

∂Xi∂Xk
f(R)

∣∣∣∣
R=0

= Cδik. (3)

Taking the convolution over i and k, we obtain 3C = 
f(R)|R=0, and using Eq. (1) for
f(R) and the equation 
|R− r|−1 = −4πδ(R− r), we find: 3C = −4π|ψ(0)|2. Hence,
from Eqs. (2) and (3), it follows that

H(0) =
8π

3
|ψ(0)|2μ, (4)

which can be compared with the results of the previous problem and Problem 7.22.



8

Perturbation theory; Variational
method; Sudden and adiabatic
theory

The methods of the perturbation theory are based on introducing the system Hamil-
tonian in the form of Ĥ = Ĥ0 + V̂ , where the perturbation V̂ is a small correction.
It is assumed that the solutions of the Schrödinger equation for the unperturbed
Hamiltonian Ĥ0 are known and that the specific form of V̂ is also known. The
perturbation theory methods enable us to consider the effects of perturbation by
iterative approximations.

1) In the case when Ĥ0 and V̂ and so the total Hamiltonian Ĥ do not depend on
time, its egenvalues and eigenfunctions of the discrete spectrum can be written as
an expansion in powers of the perturbation. Succinctly:

En = E(0)
n + E(1)

n + E(2)
n + . . . ;

ψn =
∑
m

cnmψ(0)
m , cnm = c(0)nm + c(1)nm + . . . ,

where E
(0)
n and ψ

(0)
n are the spectrum and eigenfunctions of the unperturbed

Hamiltonian. Here if the unperturbed level E
(0)
n is not degenerate, then

E(1)
n =

〈
ψ(0)
n |V̂ |ψ(0)

n

〉 ≡ 〈
n|V̂ |n〉 E(2)

n =
∑
m

′ |
〈
m|V̂ |n〉|2

E
(0)
n − E

(0)
m

(VIII.1)

(the sum has no term with m = n), while for the eigenfunctions

c
(0)
nk = δnk, c(1)nn = 0, c

(1)
nk =

〈
k|V̂ |n〉

E
(0)
n − E

(0)
k

for k �= n. (VIII.2)

The condition for the applicability of these results is given by (n �= k):

|〈k|V̂ |n〉| � |E(0)
n − E

(0)
k |. (VIII.3)
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If an unperturbed level E
(0)
n is s-fold degenerate and corresponds to mutually

orthogonal eigenfunctions ψ̃
(0)
nα with α = 1, 2, . . . , s, then the correct eigenfunctions

in zeroth approximation are ψn =
∑
α
c
(0)
α ψ

(0)
n,α, and corresponding energy level shifts,

E
(1)
n , are determined by solving the system of equations:∑

β

(
〈
nα|V̂ |nβ〉− E(1)

n δαβ)c
(0)
β = 0. (VIII.4)

A non-trivial solution to this system exists only if the following determinant is
equal to zero:

|〈nα|V̂ |nβ〉− E(1)
n δαβ | = 0. (VIII.5)

The corresponding roots E
(1)
n (their number is s) determine the energy level

splitting,[126] and their substitution in (VIII.4) determines the wavefunctions of
the corresponding sublevels (in the zeroth approximation).

2) In the case of a time-dependent perturbation, V̂ (t), for the wavefunctions

ψ(t) =
∑
k

ak(t)e
− i

�
E

(0)

k
tψ

(0)
k (q) (VIII.6)

from the Schrödinger equation i� ∂
∂tψ = (Ĥ0 + V̂ (t))ψ, it follows that[127]

i�
dam(t)

dt
=
∑
k

Vmk(t)e
iωmktak(t), (VIII.7)

where Vmk(t) =
∫
ψ
(0)∗
m (q)V̂ (t)ψ

(0)
k (q)dτq, ωmk = 1

�
(E

(0)
m − E

(0)
k ).

The solution of (VIII.7) by successive iterations, ak(t) = a
(0)
k (t) + a

(1)
k (t) + . . . ,

first gives a
(0)
k (t) = const. Then if we take V̂ (t) → 0 for t → −∞ and assume that

before the perturbation was turned on, the system was in the nth discrete state,

ψ
(0)
n , we have ak(t−∞) → δnk, and we choose a

(0)
k ≡ a

(0)
kn = δnk (instead of ak(t) we

now write akn(t) to emphasize the particular setup). For the first-order correction

from (VIII.7), using a
(1)
kn (t = −∞) = 0, we obtain

a
(1)
kn (t) = − i

�

t∫
−∞

Vkn(t)e
iωkntdt. (VIII.8)

[126] If all the rootsE
(1)
n are different then the degeneracy is removed completely. Otherwise, if degenerate

roots exit, the level degeneracy is lifted only partially and an ambiguity exists in determining the
corresponding eigenfunctions of zeroth order.

[127] We should note that the time-dependence of the matrix elements Vk,n(t) is determined only by

the operator V̂ (t). The factors exp{−iE
(0)
n t/�} have already been separated out.
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If the perturbation V̂ (t) vanishes as t → +∞, then to first order in the perturbation,

a
(1)
kn (t = +∞) determines the system transition probability from its initial nth state

into the final kth state (k �= n):

W (1)(n → k) =
1

�2

∣∣∣∣∣∣
∞∫

−∞
Vkn(t)e

iωkntdt

∣∣∣∣∣∣
2

. (VIII.9)

3) The transition probability (per unit time) from the initial i-th state[128] into
the final close f -state of the continuous spectrum under the action of a time-
independent perturbation, V̂ is

dw(i → f) =
2π

�
|Vfi|2δ(Ei − Ef )dνf , (VIII.10)

where dνf characterizes the number of final states. Integration over their energies
gives the Fermi’s golden rule for the transition probability:

w(i → f) =
2π

�
|Vfi|2ρf (Ei), (VIII.11)

where ρf (Ei) is the final density of states.
An important generalization of (VIII.10) appears for a periodic-in-time pertur-

bation of the form

V̂ (t) = F̂ e−iωt + F̂+eiωt, (VIII.12)

where F̂ is a time-independent operator. In this case, the transition probability is
given by

dw(i → f) =
2π

�
|Ffi|2δ(Ei − Ef − �ω)dνf . (VIII.13)

8.1 Stationary perturbation theory (discrete spectrum)

Problem 8.1

Consider a particle in an infinitely-deep one-dimensional potential well in the presence
of a rather arbitrary perturbing potential, V (x). Prove that the first-order correction to

the energy, E
(1)
n , of the highly excited levels in the well (with n � 1) is n-independent.

Solution

The eigenfunctions of the unperturbed Hamiltonian have the form ψ
(0)
n (x) =√

2/a sin(π(n+ 1)x/a) (for 0 ≤ x ≤ a). In the matrix element < n|V (x)|n >, we can

[128] It can belong either to the discrete or continuous spectrum.
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replace the fast oscillating sin2-term by its mean value of 1/2 for n � 1.[129] We
obtain:

E(1)
n =

〈
n|V (x̂)|n〉 ≈ 1

a

a∫
0

V (x)dx.

Problem 8.2

For a charged linear oscillator in a uniform electric field directed along the oscillation
axis, find a shift of the energy levels in the first two orders of perturbation theory and
determine the polarizability of different states. Compare with the exact results.

Solution

The perturbation is V (x) = −eEx, and it is obvious that E
(1)
n = 0. In order to calculate

the corrections to second order of perturbation theory, according to (VIII.1) we should
use the coordinate matrix elements. See Eq. (II.3). Taking into account the form of

the spectrum E
(0)
n of the unperturbed oscillator, we obtain

En ≈ E(0)
n + E(1)

n + E(2)
n = �ω

(
n+

1

2

)
− 1

2

e2

mω2
E2, (1)

so that the polarizability for all the oscillator states is the same and is equal to β0 =
e2/mω2. This result coincides with the exact one (see Problem 2.2). The corrections
of the third and higher orders of perturbation theory are equal to zero.

Problem 8.3

The same as in previous problem, but for the ground state of a charged particle moving
within a one-dimensional infinitely deep potential well.

Solution

The perturbation is V (x) = −eEx. Using the form of the unperturbed wavefunction

(see 8.1) and the symmetry of |ψ(0)
n (x)|2 with respect to the center of the well, we find

that < n|x|n >= a/2. So in the first order of perturbation theory for all the levels,

E
(1)
n = −eaE/2. Then we calculate the coordinate matrix elements (for n �= 0):

xn0 =
2

a

a∫
0

x sin
πx

a
· sin π(n+ 1)x

a
dx =

4 [(−1)n − 1] (n+ 1)a

π2n2(n+ 2)2
.

[129] Quantum states with n � 1 are quasi-classical. Perturbation theory for such states is considered
in Problems 9.10–9.12.
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This differs from zero for odd values of n only. Using the results of Problem 2.1

and Eq. (VIII.1), we find the second-order correction E
(2)
0 ≡ −β0E2/2 that gives the

polarizability of the ground state:

β0 =
1024

π6

e2ma4

�2

∞∑
k=0

(k + 1)2

(2k + 1)5(2k + 3)5
. (1)

This series converges rapidly, and its value is determined mainly by the first term, so
β0 ≈ 4.39 · 10−3e2ma4/�2.

Let us comment on the small numerical value of the coefficient. Dimensional
estimate of polarizability has the form β ∼ e2/mω2, where ω is the characteristic
frequency (compare with the polarizability of an oscillator from Problem 8.2). This
frequency is determined from the relation �ω = ΔE, where ΔE is the distance to the
neighboring level (of opposite parity). In the problem considered, see that

ω =
E

(0)
1 − E

(0)
0

�
=

3π2
�

2ma2
.

And, in accordance with (1), we obtain β0 ≈ 0.96e2/mω2.

Problem 8.4

For a isotropic planar oscillator under the action of the perturbation V = αxy,
determine the shift of the ground-state energy in the first non-vanishing order of
perturbation theory. Indicate the conditions for applicability of the result and compare
it with the exact one. See Problem 2.49.

Solution

The eigenfunctions and spectrum of the unperturbed Hamiltonian are considered in
Problem 2.48, and have the form:

ψ(0)
n1n2

= ψ(osc)
n1

(x) · ψ(osc)
n2

(y), E(0)
n1n2

≡ E
(0)
N = �ω(N + 1), (1)

N = n1 + n2 = 0, 1, 2, . . . .

In the first order of perturbation theory, the ground state does not shift: E
(1)
0 = 0.

When using (VIII.1) to calculate the second-order corrections, we should take m to be
a set of two numbers (n1, n2) that define the unperturbed eigenfunctions (1). Using
the coordinate matrix elements (see Eq. (II.3)), we find that < n1n2|V |00 > differs

from zero only for n1 = n2 = 1, and that < 11|V |00 >= α�/2mω. We obtain E
(2)
0 =

−α2
�/8m2ω2. The condition for applicability, Eq. (VIII.3), in this problem takes the

form of |α| � mω2 = k.

According to Problem 2.49, the exact value of the ground-state energy is equal
to E0 = �ω(

√
1 + α/k +

√
1− α/k)/2. Its expansion in powers of α/k corresponds

to the perturbation theory series. In the case |α/k| � 1, this series converges very
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rapidly. On the other hand, in the case of |α/k| ≥ 1 there is no energy quantization,
the series diverges, and perturbation theory breaks down.

Problem 8.5

Under conditions of the previous problem, find the splitting: a) of the first excited
and b) of the second excited levels of the oscillator. Indicate the correct eigenfunctions
of the zeroth approximation.

Solution

a) The unperturbed oscillator level with N = 1 is two-fold degenerate. We will denote

the unperturbed eigenfunctions that correspond to it ψ
(0)
n1n2 (see the previous

problem) as ψ
(0)
1 ≡ ψ

(0)
10 and ψ

(0)
2 ≡ ψ

(0)
01 . The matrix elements of the perturbation

with respect to these eigenfunctions (using Eq. (II.3)) are V11 = V22 = 0, V12 =
V21 = α�/2mω. The secular equation (VIII.5) and its solution take the form:∣∣∣∣∣−E

(1)
1

α�
2mω

α�
2mω −E

(1)
1

∣∣∣∣∣ = 0, E
(1)
1,1(2) = ∓ α�

2mω
. (1)

The degeneracy is lifted. The correct eigenfunctions in the zeroth approximation

have the form: ψ
(0)
1,1(2) =

1√
2

(
ψ
(0)
1 ∓ ψ

(0)
2

)
.

b) The level with N = 2 is three-fold degenerate. Its eigenfunctions are ψ
(0)
1 ≡

ψ
(0)
20 , ψ

(0)
2 ≡ ψ

(0)
11 , ψ

(0)
3 ≡ ψ

(0)
02 . The non-vanishing matrix elements of the perturba-

tion are V12 = V21 = V23 = V32 = α�/
√
2mω. The solution of the secular equation

gives the following values for the first-order perturbative corrections:

E
(1)
2,1 = − α�

mω
, E

(1)
2,2 = 0, E

(1)
2,3 =

α�

mω
, (2)

so that the level splits into three sub-levels and therefore its degeneracy is com-
pletely lifted. The correct functions of the zero approximation that correspond to
the splitted levels (2) have the form:

ψ
(0)
2,1(3) =

1

2

(
ψ
(0)
1 ∓

√
2ψ

(0)
2 + ψ

(0)
3

)
, ψ

(0)
2,2 =

1√
2

(
ψ
(0)
1 − ψ

(0)
3

)
.

Compare this result, obtained with the help of perturbation theory, with the exact
one. See Problem 2.49.

Problem 8.6

A two-level system (the levels are non-degenerate, with the energies ε1 and ε2) is under
the action of a perturbation characterized by matrix elements V11, V22, V12 = V ∗

21

between initial unperturbed states 1 and 2. Obtain the energy level shifts in the first
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two orders of perturbation theory. Indicate the conditions for applicability of the
results obtained, and compare to exact results.

Solution

1) Energy level shifts in the first two orders of perturbation theory are equal to

E
(1)
1 = V11, E

(1)
2 = V22, E

(2)
1 = −E

(2)
2 =

|V12|2
ε1 − ε2

. (1)

The conditions for perturbation theory applicability have the form |V11|, |V22|,
|V12| � ε2 − ε1.

2) It is useful to compare these results with the exact solution of the problem, which
can be obtained by diagonalization of the operator:

Ĥ = Ĥ0 + V̂ =

(
ε1 + V11 V12

V21 ε2 + V22

)
.

This matrix is the Hamiltonian of the perturbed two-level system in the energy
representation of the unperturbed Hamiltonian. Its eigenvalues are equal to[130]

E1(2) =
1

2

(
ε1 + ε2 + V11 + V22 ∓

√
(ε1 − ε2 + V11 − V22)2 + 4|V12|2

)
. (2)

In the case of the small values of matrix elements Vab, the expansion of the radical
in (2) in powers of the parameter ∼ V/(ε2 − ε1) corresponds to a series of the
perturbation theory, whose first terms coincide with the expressions in (1).
For the case of ε1 = ε2, the result (2) follows immediately from the secular

equation (VIII.5) for the two-fold degenerated level. And for the case ε1 �= ε2,
equation (2) gives a generalization of perturbation theory for the case of two close
levels. The interaction between them is taken into account exactly, while we neglect
their interaction with other levels.

Problem 8.7

A Hamiltonian depends on some real parameter λ so that Ĥ(λ) = ĥ+ λŴ, where ĥ
and Ŵ do not depend on λ. For the ground level, E0(λ), of such a Hamiltonian, prove
that d2E0(λ)/dλ

2 < 0. As an illustration, apply this result to a linear oscillator and
to a particle in Coulomb potential.

Solution

Let us consider the values of λ which are close to some λ0 and write down the
Hamiltonian in the form:

Ĥ(λ) = Ĥ(λ0) + (λ− λ0)Ŵ.

[130] Compare with Problem 6.9.
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Using the perturbation theory for λ → λ0, we find that

E0(λ) = E0(λ0) +A(λ0)(λ− λ0) +B(λ0)(λ− λ0)
2 + . . . ,

where B(λ0) < 0, since the correction of the second approximation to the ground level
is always negative. The problem statement follows, since

d2E0(λ)

dλ2
= 2B(λ) < 0.

Let illustrate this property of E0(λ) on the example of a linear oscillator. Here
the Hamiltonian is Ĥ = p̂2/2m+ kx2/2 and E0 = �ω/2, where ω =

√
k/m. Choosing

λ = k, we immediately obtain the inequality E′′
0 < 0 by a direct differentiation. The

Coulomb potential is treated analogously.

Problem 8.8

A planar (two-dimensional) rotor with the moment of inertia I and electric dipole
moment d is placed in an homogeneous electric field, E , that lies in the plane of the
rotation. Considering the electric field as a perturbation, find the polarizability of
the ground state.

Solution

For the unperturbed rotor, we have (see Problem 3.2):

ψ(0)
m =

1√
2π

eimϕ, E
(0)
|m| =

�
2m2

2I
, m = 0, ±1, ±2, . . . . (1)

The perturbation is V = −d · E = −dE cosϕ. Using the expression cosϕ =(
eiϕ + e−iϕ

)
/2, we find that the matrix elements Vmm′ differ from zero only in the

case m′ = m± 1, and then are equal to −dE/2. Then, according to Eqs. (VIII.1) and
(1) for the ground state of the rotor, we obtain

E0 ≈ E
(0)
0 + E

(1)
0 + E

(2)
0 = −d2I

�2
E2. (2)

So the polarizability of the ground state is equal to β0 = 2d2I/�2. Compare with
Problems 8.2 and 8.3.

Problem 8.9

Under the conditions of the previous problem, determine up to second order in
perturbation theory the shifts, splittings, and polarizabilities of the excited states
of the quantum rotor. Indicate the correct eigenfunctions in zeroth approximation.
Pay attention to properties of the first excited level.
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Solution

Although the excited levels of the rotor are twofold degenerate, we can apply the non-
degenerate perturbation theory to calculate the level shifts in a uniform electric field
if we take into account the following fact: the perturbation V = −dE cosϕ, as well
as the Hamiltonian Ĥ0, are invariant with respect to coordinate reflection along the
electric field axis. That is, they are invariant with respect to the transformation ϕ →
−ϕ. Therefore, we can classify the Hamiltonian eigenfunctions by the value of parity
P = ±1 and consider the corresponding states separately. We immediately determine
the correct eigenfunctions in the zeroth approximation (compare with Problem 8.8):

ψ
(0)
μ,+ =

1√
π
cosμϕ, ψ

(0)
μ,− =

1√
π
sinμϕ,

E
(0)
μ,± =

�
2μ2

2I
, μ = |m| = 1, 2, . . .

and ψ
(0)
0,+ = 1/

√
2π, E

(0)
0,+ = 0 (ground level).

We begin by calculating the even energy levels. For these, we find that only the
following perturbation matrix elements are different from zero:

Vμ+,μ′+ =

{− 1
2dE ; μ′ = μ± 1, μ′ �= 0, μ �= 0,

− 1√
2
dE ; μ′ = 1, μ = 0 or μ′ = 0, μ = 1.

By using the equations from (VIII.1), we obtain

E
(1)
μ,+ = 0; E

(2)
1,+ =

5

6

d2I

�2
E2, E

(2)
μ,+ =

1

4μ2 − 1

d2I

�2
E2 for μ ≥ 2. (1)

For the odd energy levels, Vμ−,μ′− = −dE/2 with μ′ = μ± 1 (other matrix elements
are equal to zero), and their energy shifts are given by

E
(1)
μ,− = 0; E

(2)
1,− = −1

6

d2I

�2
E2, E

(2)
μ,− =

1

4μ2 − 1

d2I

�2
E2 for μ ≥ 2. (2)

Comparing Eq. (1) and (2), we see that in the second order of perturbation theory the
energy level with |m| = 1 splits and the degeneracy is removed, while for the values
|m| ≥ 2 only a shift appears. The splitting of the mth energy level appears only in the
2|m|th order of perturbation theory.

Problem 8.10

A three-dimensional rotor with a moment of inertia I and dipole moment d is placed
into a uniform electric field, considered as a perturbation. Find the polarizability of
the ground state.
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Solution

The eigenfunctions and eigenvalues of the unperturbed Hamiltonian are (see
Problem 3.3)

ψ
(0)
lm = Ylm(ϑ, ϕ), E

(0)
lm ≡ E

(0)
l =

�
2l(l + 1)

2I
, (1)

where the perturbation is V = −dE cosϑ, the z-axis directed along the electric field.
Remembering the relation cosϑ · Y00 = −iY10/

√
3 (see Eq. (III.7) and the condition

of orthogonality of the spherical harmonics), we find that the perturbation matrix
element Vlm,00 is different from zero only for l = 1, m = 0, and V10,00 = idE/√3.
From Eq. (VIII.1) we obtain

E0 ≈ E
(0)
0 + E

(1)
0 + E

(2)
0 = −I

3

d2E2

�2
. (2)

The polarizability of the ground state of the rotor is β0 = 2d2I/3�2.

Problem 8.11

Under the conditions of the previous problem, calculate the shifts of the excited energy
levels of the rotor in the first non-vanishing order of perturbation theory. When does
the level degeneracy get lifted? Is there a further degeneracy lifting in the higher orders
of perturbation theory?

Solution

In order to calculate the perturbation matrix elements (see the previous problem) we
use the following relation:

cosϑ · Ylm = almYl+1,m − al−1,mYl−1,m, l ≥ 1, (1)

alm = −i

√
(l −m+ 1)(l +m+ 1)

(2l + 1)(2l + 3)
.

In order to obtain this relation we have used the connection between the spherical

harmonics Ylm and the associated Legendre polynomials P
|m|
l , and recursive relations

for the Legendre polynomials.

From Eq. (1) we see that only the perturbation matrix elements for the adjacent
energy levels are different from zero:

Vl+1,m;lm = −Vlm;l+1,m = −almdE .

Although the energy levels of the unperturbed rotor are degenerate for l �= 0, the calcu-
lation of their shift and splitting in electric field does not require the use of degenerate
perturbation theory. Due to the conservation of lz, the action of perturbation on the
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states with different values of m can be considered separately. The equations of non-
degenerate perturbation theory apply. Taking this into account and using equations
(VIII.1), we obtain:

E
(1)
lm = 0; E

(2)
lm =

l(l + 1)− 3m2

l(l + 1)(2l − 1)(2l + 3)

d2I

�2
E2 for l ≥ 1. (2)

As is seen, the (2l + 1)-fold degeneracy of the unperturbed rotor level is partially
removed. The l-th level splits into l + 1 sub-levels including the non-degenerate m = 0
level and l twofold degenerate (±|m|) levels. Further degeneracy lifting does not occur
in the higher levels of perturbation theory. This is connected with the fact that the
value m ≡ lz is the constant of motion and has a definite value together with the
energy, and that the Hamiltonian is invariant with respect to coordinate reflection in
all planes that include the z-axis, so the energy of the states that differ only by the
sign of the projection of the angular momentum on the direction of the electric field
must be the same.

Problem 8.12

Find the energy shift and polarizability of the ground state of a charged particle in
the one-dimensional δ-well, U(x) = −αδ(x).

Solution

For the ground level of the particle in the δ-well we have (see Problem 2.7):

E
(0)
0 = −�

2κ2

2m
, ψ

(0)
0 (x) =

√
κe−κ|x|, κ =

mα

�2
.

We must calculate its shift under a perturbation of the form V = −eEx in the

second-order perturbation theory (it is obvious that E
(1)
0 = 0). For the unperturbed

eigenfunctions of the continuous spectrum, it is convenient to use the functions ψ
(0)
kI (x)

which correspond to a definite parity I = ±1. The even Hamiltonian eigenfunctions
which are distorted by the δ-potential give rise to a vanishing perturbation matrix
element, and thus their explicit form is not important. The odd wavefunctions are not
distorted by the δ-potential and thus coincide with the wavefunctions of a free particle

ψ
(0)
k,−1 = (1/

√
π) sin(kx). So according to Eq. (VIII.1) we have (Ek = �

2k2/2m)

E
(2)
0 ≡ −1

2
β0E2 =

∑
I

∞∫
0

∣∣〈kI|eEx|0〉∣∣2
E

(0)
0 − Ek

dk =

−2mκe2E2

π�2

∞∫
0

dk

κ2 + k2

∣∣∣∣∣∣
∞∫

−∞
x sin kx · e−κ|x|dx

∣∣∣∣∣∣
2

.



Perturbation theory; Variational method; Sudden and adiabatic theory 307

Using the value of the integral,

∞∫
−∞

x sin kx · e−κ|x|dx =
4κk

(κ2 + k2)2

and the integral (App.1.5) we find the level shift and the polarizability:

E
(2)
0 = −1

2
β0E2, β0 =

5

4

me2

�2κ4
.

Compare with Problem 6.36.

Problem 8.13

For a two-dimensional rotor with a dipole moment d placed in a strong electric field,
E (dE � �

2/I), find the approximate form of the wavefunctions and energies of the
low-lying states.

Solution

In a strong electric field, the wavefunctions of the low-lying states are localized in the
region of small angles |ϕ| � 1, since the potential energy U(ϕ) = −d · E = −dE cosϕ
has a deep minimum at ϕ = 0. See Fig. 8.1.

Fig. 8.1
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We can expand U(ϕ) in a series and keep only the first two terms of the expansion:

U(ϕ) = −dE cosϕ ≈ −dE +
1

2
dEϕ2. (1)

In the zeroth approximation we reduce the rotor Hamiltonian to that of a linear
oscillator. Using Eq. (II.3) we obtain[131]

E(0)
n = −dE + �

√
dE
I

(
n+

1

2

)
, n = 0, 1, 2, . . . , (2)

ψ(0)
n (ϕ) =

1√
2n

√
πϕ0n!

exp

{
−1

2

(
ϕ

ϕ0

)2
}
Hn

(
ϕ

ϕ0

)
, ϕ0 =

(
�
2

IdE
)1/4

.

The validity of this result relies on the eigenfunction (2) being small for |ϕ| ∼ 1. Since

the wavefunctions, ψ
(0)
n (ϕ), are essentially different from zero only around the angles

allowed for a classical rotator,

1

2
dEϕ2 ≤ E(0)

n + dE , or ϕ2 ≤ ϕ2
0

(
n+

1

2

)
,

then the required condition is E � �
2(n+ 1)2/Id. In conclusion, we note that by using

the next terms in the expansion (1) in ϕ2 (anharmonic corrections), we can determine
the value of En in (2).

Problem 8.14

The same as the previous problem, but for a three-dimensional rotor (see Problem
8.10).

Solution

The Hamiltonian of the system has the form

Ĥ =
�
2

2I
l̂2 − d · E = −�

2

2I

θ,ϕ − dE cos θ. (1)

The polar axis z is directed along the electric field E . For a strong field, the Hamiltonian
wavefunctions of the low-lying levels are localized to θ � 1 due to the deep minimum
of potential energy U(θ) = −dE cos θ at θ0 = 0 (see the previous problem). Note that
the operator 
θ,ϕ (the Laplacian on the sphere of unit radius) in the case of the small
θ could be approximated as the Laplacian in two-dimensional space (on the plane
tangential to the unit sphere at the point θ0 = 0, so that θ is considered as a “radial”
variable). The Hamiltonian can be written in the form:

Ĥ ≈ −�
2

2I

(
∂2

∂x2
+

∂2

∂y2

)
− dE +

1

2
dE(x2 + y2). (2)

[131] In this limit, we can not view the rotor as a rotating particle.
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Here x = θ cosϕ, y = θ sinϕ, θ =
√
x2 + y2. This Hamiltonian describes a planar

oscillator, which allows us (using Problem 2.48) to obtain the spectrum and eigen-
functions of the initial Hamiltonian (1) in the zeroth approximation:

E(0) = −dE + �ω(N + 1), ω =

(
dE
I

)1/2
, N = 0, 1, 2, . . . , (3)

ψ(0)
n1n2

= Cn1
Cn2

exp

{
− θ2

2θ20

}
Hn1

(
x

θ0

)
Hn2

(
y

θ0

)
, n1 + n2 = N,

where θ0 = (�2/IdE)1/4. Since the oscillator eigenfunctions (2) are localized in the
domain θ2 ≤ (N + 1)θ20, the condition θ � 1 used above gives the applicability condi-
tion for relation (3) as θ20 � 1/(N + 1), or E � �

2(N + 1)2/dI.

In the approximation considered, the N -th level E
(0)
N has the degeneracy g(N) =

N + 1. If in the expansion of cos θ we consider the next term, O(θ4), and if we use
a more accurate expression for the Laplacian, Δθ,ϕ, we can find a splitting of levels

E
(0)
N .

Problem 8.15

A particle moves in a central potential of the form (a > 0):

a) U(r) = − U0

er/a − 1
, b) U(r) = −U0

a

r
e−r/a,

where U0 � �
2/ma2. Find the difference between the low-lying energy levels and the

energy levels of the Coulomb potential, UC(r) = −U0
a
r , in first-order perturbation

theory. Pay attention to a lifting of the accidental Coulomb level degeneracy.

Solution

For r � a, the potentials considered reduce to the form U(r) ≈ −U0a/r. In such a
Coulomb field, the wavefunctions of low-energy states are localized at distances of order
rn ∼ a0n

2 from the origin; here a0 = �
2/mU0a and n is the principal quantum number.

If rn � a (i.e. ξ ≡ mU0a
2/�2 � n2), it is obvious that in the zeroth approximation

the low-energy states and the corresponding eigenfunctions will have the same form
as in the Coulomb field:

E
(0)
nrl

= −mU2
0 a

2

2�2n2
, ψ

(0)
nrlm

= ψCoul
nrlm. (1)

See Eq. (IV.3). Here the difference between the potentials considered and the Coulomb
potential acts as the perturbation V (r) = U(r) + U0

a
r . Since the particle angular

momentum is a constant of the motion, and since under the perturbation, eigenfunc-
tions (1) are the correct functions in the zeroth approximation, then the first-order
correction is determined by Eq. (VIII.1):
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E
(1)
nrl

=

∫
V (r)|ψ(0)

nrlm
|2d3r. (2)

a) Expanding the perturbation potential into a series in the power r/a, we have:

V (r) = −U0

[
−1

2
+

r

12a
+O

(
r3

a3

)]
. (3)

We also note the value of the integral:∫
r|ψ(0)

nrlm
|2d3r =

1

2
[3n2 − l(l + 1)]

�
2

mU0a
. (4)

According to (2)–(4) we find:

E
(1)
nrl

= U0

{
1

2
− 3n2 − l(l + 1)

24ξ

}
, n = nr + l + 1. (5)

We should note that if in expansion (3) we take into account the term ∼ r3/a3, then
we would exceed the accuracy of the approximation used. Since its contribution
to the level shift ∼ U0/ξ

3 has the same order of magnitude as a second-order
perturbation, and we do not account for it, inclusion of this term is unnecessary.

b) We have V (r) ≈ U0(1− r/2a+ r2/6a2) and

E
(1)
nrl

= U0

{
1− 3n2 − l(l + 1)

4ξ
+

n2

12ξ2
[5n2 + 1− 3l(l + 1)]

}
. (6)

As seen from (5) and (6), the accidental Coulomb degeneracy of the levels with
respect to l is lifted.
We should note that in the case of the Hulthen potential, the Schrödinger

equation for the s-states has an exact solution (see Problem 4.8). In this case,

(l = 0), E
(0)
n,l together with (5) gives the exact result.

Problem 8.16

For a particle in the central attractive potential U(r) = −α/rν with 0 < ν < 2 and α >
0, find the energy levels, Enrl, with large value of the angular momentum l � 1 and
the radial quantum number nr ∼ 1. For the Coulomb potential, i.e., ν = 1, compare
this result with the exact one.

Solution

The Schrödinger equation for the radial part, χ(r) = rR(r), the wavefunction has the
form:

− �
2

2m
χ′′ − α

rν
χ+

�
2l(l + 1)

2mr2
χ = Enrlχ.
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The effective potential energy in this equation,

Ueff = − α

rν
+

�
2l(l + 1)

2mr2
,

has a minimum at the point

r0 =

(
�
2l(l + 1)

mαν

)1/(2−ν)

.

In the case of ν < 2 and l → ∞, the wavefunctions of the low-energy radial states are
localized near the minimum point in a domain, where we can restrict ourselves to a
few first terms in the expansion of the effective potential:

Ueff ≈ −1

2
α(2− ν)r−ν

0 +
1

2
α(2ν − ν2)r

−(ν+2)
0 (r − r0)

2 + . . . . (1)

Compare with Problems, 8.13–8.15. In the zeroth approximation we essentially return
to the problem of a linear oscillator with equilibrium point r = r0 and elasticity k =
U ′′
eff (r0). This allows us to obtain[132] (compare with Eq. (II.2)):

χ
(0)
nrl

=
(
2nr

√
πnr!a

)−1/2
exp

(
− (r − r0)

2

2a2

)
Hnr

(
r − r0

a

)
, (2)

E
(0)
nrl

= −1

2

α(2− ν)

rν0
+ �

√
1

m
α(2ν − ν2)r

−(2+ν)
0

(
nr +

1

2

)
, (3)

where a =
(
�
2r2+ν

0 /αm(2ν − ν2)
)1/4

.

For the applicability of these results, the condition we used in the derivation must
be fulfilled: namely, the radial function (2) must be localized within region |r − r0| �
r0. So we have l � (nr + 1/2)/

√
2− ν (compare with Problems 8.13 and 8.14).

As an illustration we will apply the result obtained to the case of the Coulomb
potential, ν = 1. Here we have En = −mα2/2�2n2. Writing n ≡ l + 1/2 + nr + 1/2,
and performing the expansion

En = −mα2

2�2
1

(l + 1/2 + nr + 1/2)2
≈ − mα2

2�2(l + 1/2)2

+
mα2

�2(l + 1/2)3

(
nr +

1

2

)
, (4)

we see that (3) represents the first two terms of the expansion (4) for En over the
small parameter (nr + 1/2)/(l + 1/2). Note that since l � 1, in the approximation
considered, l(l + 1) ≈ (l + 1/2)2.

[132] Taking into account the following terms in expansion (1) (anharmonic corrections) allows us, with
the help of perturbation theory, to obtain more accurate expressions for the radial wavefunction
and energy spectrum. Compare with Chapter 9, Sec. 4
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Problem 8.17

The same as in the previous problem, but for the potential U(r) = αrν with α, ν > 0
(now Enrl > 0). For a spherical oscillator, ν = 2, compare the result obtained with the
exact one.

Solution

The solution of this problem can be obtained by changing −α → α and −ν → ν in
the equations of the previous problem. Now Enrl > 0, and there are no restrictions for
the value ν > 0.

In the case of a spherical oscillator, the exact spectrum has the form EN = �ω(N +
3/2), where N = 2nr + l and ω =

√
2α/m (see Problem 4.5). Equation (3) in the pre-

vious problem reproduces this spectrum with the only difference l + 1/2 → √
l(l + 1),

which is inconsequential, since l � 1.

Problem 8.18

A particle is inside an impenetrable ellipsoid of rotation, so the potential has form:

U(x, y, z) =

⎧⎨⎩ 0, x2+y2

a2 + z2

b2 < 1,

∞, x2+y2

a2 + z2

b2 ≥ 1,

and |a− b| � a. Find the energy shift of the ground level with respect to the ground
level of the particle in a spherical well of the same volume, to first order in perturbation
theory.

Solution

The substitutions x = x′, y = y′, z′ = az/b yield the following form of the Schrödinger
equation and the boundary condition:

− �
2

2m

(
∂2

∂x′2 +
∂2

∂y′2 +
(a
b

)2 ∂2

∂z′2

)
ψ = Eψ, ψ(r′ = a) = 0.

Since |a− b| � a, then writing a = (1 + ε)b with |ε| � 1, we can write the Hamiltonian
in the form Ĥ = Ĥ0 + V̂ with

Ĥ0 = − �
2

2m

′, V̂ = − �

2

2m
(2ε+ ε2)

∂2

∂z′2 . (1)

Here V̂ is the perturbation operator. For the ground state of the unperturbed Hamil-
tonian, we have (compare with Problem 4.1):

ψ
(0)
0 =

1√
2πar

sin
πr

a
, r ≤ a; E

(0)
0 =

π2
�
2

2ma2
. (2)

In what follows in this problem, we shall omit the primes on variables.
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From (1) we see that to obtain the correction of the first order in small parameter
ε, we have to calculate the mean value of ∂2/∂z2 for the ground state. Because of the
spherical symmetry of the wavefunction, we have

∂2

∂x2
=

∂2

∂y2
=

∂2

∂z2
=

1

3

.

By using Eqs. (1) and (2), we obtain:

E
(1)
0 =

επ2
�
2

3ma2
, E0 ≈ E

(0)
0 + E

(1)
0 =

(
1 +

2

3
ε

)
π2

�
2

2ma2
. (3)

As the volume of the ellipsoid is equal to

4π

3
a2b ≈ 4π

3
a3(1− ε) ≡ 4π

3
R3,

then according to (3) we see that E0 ≈ π2
�
2/2mR2, where R is the radius of the sphere

of the same volume. Hence, in the first approximation with respect to the deformation
parameter ε, the ground-state energy depends on the volume of ellipsoid only. Using
the fact that in the s-states, the particle exerts equal surface pressure onto all parts
of the walls of the spherical well, and also using the expression for the work done
under changes of volume, −PdV , we see that the result obtained remains valid in the
case of small surface deformations of sufficiently arbitrary shape, which preserve the
volume.

Problem 8.19

Solve the previous problem for the excited states of the particle. Explain why the
degeneracy with respect to the projection of the angular momentum is lifted in the
first and higher orders of perturbation theory.

Solution

The problem can be solved similarly to the previous one, but now

ψ
(0)
nrlm

=
C̃√
r
Jl+1/2

(
αnr+1,l

r

a

)
Ylm, E

(0)
nrl

=
α2
nr+1,l�

2

2μa2
.

See Problem 4.9. Note that the unperturbed lth level is (2l + 1)-fold degenerate. Since
lz is a constant of motion, the above wavefunctions are the correct functions in the
zeroth approximation, so the energy level shifts are given by

E
(1)
nrlm

= −ε
�
2

μ

∫
ψ
(0)∗
nrlm

∂2

∂z2
ψ
(0)
nrlm

dv. (1)
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To evaluate this integral, let us first consider the more general matrix element of the
form 〈

nrlm
′
∣∣∣∣ ∂2

∂xi∂xk

∣∣∣∣nrlm

〉
.

After integrating over the coordinates, it becomes
〈
m′

∣∣∣T̂ik

∣∣∣m〉
, where T̂ik is now

an ordinary matrix, operating in the space of the state vectors with the angular
momentum, l. The vectors |m > define a basis in this space. The most general form of

the tensor, operator Tik, is (compare with Problem 3.40, with l̂i as the vector-matrices
of the angular momentum components):

T̂ik = Aδik +Bεikl l̂l + C
(
l̂i l̂k + l̂k l̂i

)
. (2)

Due to the symmetry of T̂ik, we have B = 0. From the condition

l̂iT̂ik = l̂i
∂2

∂xi∂xk
≡ 0,

we obtain

A+ [2l(l + 1)− 1]C = 0. (3)

The convolution in (2) over the indexes i and k gives

3A+ 2l(l + 1)C = T̂ii = 
. (4)

Determining A and C from (3) and (4), and taking into account −(�2/2μ)
 = E
(0)
nrl

,
we obtain

E
(1)
nrlm

= 2ε
2l2 + 2l − 1− 2m2

(2l − 1)(2l + 3)
E

(0)
nrl

. (5)

Hence it follows that the level degeneracy is lifted: it splits into (l + 1) sublevels, one
of which (m = 0) is non-degenerate, while the others sublevels (m = ±|m|) are two-
fold degenerate. Note that this remaining degeneracy is preserved in higher orders of
perturbation theory.

We should note that the average value of the first-order correction over all the
sublevels is

E
(1)
nrlm

=
1

2l + 1

∑
m

E
(1)
nrlm

=
2ε

3
E

(0)
nrl

.

See the calculation of the sum in Problem 3.1. So the value Enrlm is determined by
the volume of the ellipsoid only, just as in the case of the ground state (see the remark
on this matter in the previous problem).
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Problem 8.20

Using perturbation theory, obtain the quantization condition for the angular momen-
tum squared and find the form of spherical harmonics for the case l ≈ |m| � 1.

Solution

The equation l̂2ψlm = L2ψlm by the substitution

ψlm =
1√

2π sinϑ
eimϕχ(ϑ)

takes the form of the one-dimensional Schrödinger equation,

χ′′ +
(
L2 +

1

4
− m2 − 1/4

sin2 ϑ

)
χ = 0 (1)

with � = 1, “mass” μ = 1/2, “potential energy” U(ϑ) = (m2 − 1/4)/ sin2 ϑ, and
“energy” equal to L2 + 1/4. In the case of m2 � 1, the “potential” has a deep
minimum at ϑ = π/2, and so the wavefunctions of lower “energy levels” are localized
in the proximity of this point. Expanding U(ϑ) into a series

U(ϑ) =

(
m2 − 1

4

)[
1 +

(
ϑ− π

2

)2

+
2

3

(
ϑ− π

2

)4

+ . . .

]
, (2)

we see that the problem considered reduces to the Schrödinger equation for a linear

oscillator. In the zeroth approximation, omitting the term ∼ (
ϑ− π

2

)4
in (2), we obtain

(with x = ϑ− π/2)

χ(0)
n = C

|m|1/4√
2n

√
πn!

e−|m|x2/2Hn(
√
|m|x), n = 0, 1, . . . , (3)

(
L2
n

)(0)
= m2 + 2|m|(n+ 1/2)− 1/2,

where C is a phase factor (see below). In the wavefunction and expression for L2
n, the

terms of the order 1/|m| are omitted.

In order to refine this value of L2, we include the next anharmonic term ∼ (ϑ−
π/2)4 in (2). It is equal to

(
L2
n

)(1)
=

2

3
m2

(
ϑ− π

2

)4

= n2 + n+
1

2
.

Adding this to the value of zeroth approximation from (3), we obtain

L2 =
(
L2
n

)(0)
+
(
L2
n

)(1)
= (|m|+ n)(|m|+ n+ 1), (4)

which coincides with the exact value of L̂2 = l(l + 1), where l = |m|+ n.
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We should note that the localization condition (3) in the region |ϑ− π/2| � 1
demands that n � |m| and |m| � 1 (compare with Problem 8.13). Finally, the spheri-
cal function phase factor is fixed (see Eqs. (III.8) and (III.5)), so that in (3), we should
have

C = il(−1)(m+|m|)/2.

8.2 Variational method

Problem 8.21

For a particle in a potential from Problem 2.8, U(x) = F0x for x ≥ 0 and U(x) = ∞
for x < 0, find the energy of the ground state by the variational method, using the
trial functions of the form

a) ψ = Ax exp(−αx), b) ψ = Bx exp(−1

2
αx2)

for x ≥ 0. Compare with the exact result.

Solution

Let us calculate the mean energy E(α) and find its minimum value minE = E(α0).
According to the main idea of the variational method, the minimal value on the class
of trial functions approximates the ground-state energy, E0,var = E(α0). The trial
functions we use reflect the characteristic properties of the exact wavefunction of the
ground state, ψ0(x), which can be seen from the general considerations: 1) ψ0(x) ∝ x
as x → 0; 2) the rapid (exponential) decrease on large distances; 3) the absence of zeros
(except boundary values); 4) its smooth behavior on the both sides of the extremum.

To calculate the mean value E = T + U , it is convenient to normalize the trial
function and use the following relation

T =
�
2

2m

∫
|ψ′(x)|2dx,

and taking into account the integral (App.1.6).

a) From the normalization condition for the wavefunctions, we have A2 = 4α3; then
we find

T =
�
2α2

2m
, U =

3

2

F0

α
.

Minimization of E(α) gives (at α0 = (3mF0/2�
2)1/3)

E0,var =

(
243

32

)1/3(
�
2F 2

0

m

)1/3

≈ 1.966

(
�
2F 2

0

m

)1/3

. (1)
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b) In an analogous way we obtain

B2 = 4

√
α3

π
, T =

3

4

�
2α

m
,U =

2F0√
πα

, α0 =

(
16m2F 2

0

9π�4

)1/3

,

E0,var =

(
81

4π

)1/3(
�
2F 2

0

m

)1/3

≈ 1.861

(
�
2F 2

0

m

)1/3

. (2)

Since the variational calculation gives a restriction from above on the exact value
of the ground-state energy, we can confirm that (2) is more accurate than (1);
note that the exact value is E0 = 1.856(�2F 2

0 /m)1/3. We should also note that in
both cases, the relation 2T (α0) = U(α0) is valid due to the virial theorem (see
Problem 6.12).

Problem 8.22

The same as in the previous problem, but for

a) a δ-well (see Problem 2.7) and trial function ψ(x) = A(a+ |x|)−ν ;

b) a linear oscillator and ψ(x) = A(a2 + x2)−ν/2 (ν is integer);

c) the Coulomb potential and ψ(r) = A(a+ r)−ν ,

where a and ν are variational parameters.

Solution

Making the same calculation as in the previous problem, we obtain the following
results.

a)

A2 =
1

2
(2ν − 1)a2ν−1, T =

�
2ν2(2ν − 1)

2m(2ν + 1)a2
, U = − (2ν − 1)α

2a
.

Minimizing E(a, ν) first with respect to the parameter a, we obtain

E(a0, ν) = −mα2

2�2

(
1− 1

4ν2

)
, a0 =

2�2ν2

(2ν + 1)mα
. (1)

Minimizing with respect to ν (it is obvious that ν0 = ∞) gives the value E0,var =
−mα2/2�2, which coincides with the exact result (see Problem 2.7). This is due
to the fact that lim(1− z/ν)ν = e−z as ν → ∞; the trial function for the values
of a0(ν) from (1) for ν → ∞ coincides with the exact wavefunction of the ground
state.
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As is seen from (1), the values of E(a0, ν) are close to E0, even for the values of ν
different from ν0 = ∞:

ν 1 2 3 5 7 10

E(ν)/E0 0.750 0.938 0.972 0.990 0.995 0.998
.

Strong deviations occur only for small values of ν, where the slow decrease at large
distances begins to manifest itself.

b) Using the value of the integral (App.1.5), we find:

A2 =
2ν−1(ν − 1)!a2ν−1

π(2ν − 3)!!
, T =

ν(2ν − 1)

8(ν + 1)

�
2

ma2
, U =

kx2

2
=

ka2

2(2ν − 3)
.

Minimizing over a we obtain (ω =
√

k/m):

E(a0, ν) =
1

2

√
1 +

3

2ν2 − ν − 3
�ω, a0 =

(
ν(2ν − 3)(2ν − 1)�2

4(ν + 1)mk

)1/4

, (2)

while the following minimization over ν gives (ν = ν0 = ∞) the exact value E0 =
�ω/2. Explanation of this fact is the same as in the case of the δ-well, and the
statement of E(a0, ν) being close to E0 at ν �= ν0, which we made before, remains
valid for the oscillator as well.

c) For the Coulomb potential, U = −α/r, we obtain

4πA2 = (ν − 1)(2ν − 3)(2ν − 1)a2ν−3, T =
ν(ν − 1)(2ν − 3)

2(2ν + 1)

�
2

ma2
,

U = −2ν − 3

2

α

a
.

Minimization over α gives

E(a0, ν) = −
(
1− 3

8ν(ν − 1)

)
mα2

2�2
, a0 =

2ν(ν + 1)�2

(2ν + 1)mα
, (3)

while the following minimization over ν gives the exact result, E0 = −mα2/2�2.
The situation here is the same as for the potentials used above.
Finally, we should note that if the trial function used gives the accuracy of

variational calculation of E0 high enough so that∣∣∣∣E0,var

E0
− 1

∣∣∣∣ ≡ γ2 � 1,

then a variational calculation of another generic property, f , of the ground state
(such as |ψ|2, (Δx)2, etc.) has usually a much lower accuracy. Generally speaking
|fvar/fex − 1| ∼ γ. For the δ-well, the trial function considered for ν = 10 gives the
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value of E0 with an error 0.2%. The mean value calculated with its help,

x2 =
8ν4

(2ν − 3)(2ν − 2)(2ν + 1)2

(
�
2

ma

)2

,

differs from the exact value by 19%. For the Coulomb potential, with ν = 10,
according to (3), E0,var differs from the exact value by 0.4%. While

|ψ(0)|2 =
(2ν − 3)(2ν − 1)(2ν + 1)3

32πν3(ν − 1)2

(mα

�2

)3

differs from the exact value by 15%. This reduction in accuracy is connected with
the fact that the trial functions used for finite values of the parameter ν decrease as a
power law at large distances, while the exact wavefunctions decrease exponentially.

Problem 8.23

Find the energy a) of the ground state and b) of the first excited state for a particle
moving within a one-dimensional infinitely deep potential well, approximating the
Hamiltonian eigenfunctions by the simplest polynomials that satisfy the required
conditions.

Solution

To better determine the form of polynomials that faithfully approximate the wavefunc-
tions we should first take into account the boundary conditions ψ(0) = ψ(a) = 0 and
the absence of ground-state wavefunction zeros (except at the boundaries). Further-
more, the trial function for the first excited level must be orthogonal to the ground-
state wavefunction; only if this condition is fulfilled will the value of E be restricted
from above for the excited level energy (compare to Problem 8.28). In problems with
one-dimensional symmetric potentials it is easy to fulfill this orthogonality condition
due different parities of the ground and first excited state for coordinate inversion with
respect to the well center.

a) For the ground state we choose ψ = Ax(x− a) for 0 ≤ x ≤ a; this trial function,
as well as the exact one, is even for coordinate inversion with respect to the well
center x = a/2. By normalizing the wavefunction we find (note that U = 0 means
E = T ):

A2 =
30

a5
, E =

�
2

2m

∫
|ψ′(x)|2dx =

5�2

ma2
≈ 1.013E0. (1)

b) Now, for the first excited level we choose ψ = Bx(x− a/2)(x− a); here the multi-
plier (x− a/2) gives rise to the proper symmetry of the wavefunction. We find

B2 =
840

a7
, E = T = 21

�
2

ma2
≈ 1.064E1. (2)
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The variational results (1) and (2) for the quantity E determine the approximate
values of energy levels E0 and E1. They turn out to be rather close to the exact
values, En = π�2(n+ 1)2/2ma2, which is connected with the fact that the trial
functions correctly represent the key properties of the exact wavefunctions ψ0(x)
and ψ1(x). Compare with Problem 8.21.

Problem 8.24

For two particles of the same mass m moving in a one-dimensional infinitely deep
potential well and interacting with each other as impenetrable points, evaluate the
energy of the ground level by approximating the ground state by the simplest
polynomial that fulfills the conditions demanded. Compare with the exact value (see
Problem 2.51).

Solution

Due to the mutual impenetrability of particles, the two-particle wavefunction satisfies
the condition ψ(x1, x2) = 0 at x1 = x2. So, taking into account the boundary condi-
tions on the well walls and assuming that particle 1 is to the left of the particle 2, we
approximate the exact ground-state wavefunction by

ψ(x1, x2) = Ax1(x1 − x2)(a− x2), 0 ≤ x1 ≤ x2 ≤ a.

This plays the role of the trial function for the variational calculation of the ground-
level energy E0. Normalizing the wavefunction, which gives A2 = 5040a−8, and taking
into account U = 0 we find

E0,var = T1 + T2 = − �
2

2m

a∫
0

x2∫
0

ψ∗
(

∂2

∂x2
1

+
∂2

∂x2
2

)
ψdx1dx2 = 28

�
2

ma2
, T1 = T2.

This value differs from the exact value E0 = 5π2
�
2/2ma2 by 13%. See Problem 2.51

and a discussion about the level degeneracy.

Problem 8.25

Find the energy of the lower p-level of a particle in an infinitely deep spherical
potential well of radius a by the variational method. Use the trial radial func-
tion of the form R(r) = Ar(aν − rν) for r ≤ a, where ν is a variational parameter
(ψl=1,m(r) = R(r)Y1m(n)). Compare with the exact result.

Solution

In this problem there are no complications connected with the fact that the trial
function must be chosen to be orthogonal to the wavefunctions with the angular
momentum l = 0; the angular dependence in the spherical functions Ylm enforces
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this orthogonality automatically. By using the value U = 0 and normalizing the trial
function given in the problem statement, we find

A2 =
5(5 + ν)(5 + 2ν)

2ν2a2ν+5
,

and

E(ν) = T =
�
2

2m

a∫
0

R∗(r)
[(

−1

r

d2

dr2
+

2

r2

)
R(r)

]
r2dr

+
5(5 + ν)(5 + 2ν)

4(3 + 2ν)

�
2

ma2
.

The minimum of E(ν) is E01var ≈ 10.30�2/ma2, with the minimum point ν0 ≈ 0.37.
But other values of ν ∼ 1 also give a close result, as we can see from the following:

ν 0 0.4 1 2

Ema2

�2 10.42 10.30 10.50 11.25

We should note that the exact value, E01 = 10.10�2/ma2, follows from Prob-
lem 4.9 if we use the value x0 = 4.4934 of the first zero of the Bessel function
J3/2(x).

Problem 8.26

For the ground level of a particle in the one-dimensional δ-well, U0(x) = −αδ(x), find
the level shift in a weak uniform field, i.e. for the perturbation V = −F0x, using the
variational method and the trial function of the form:

ψ(x) = Cψ
(0)
0 (x)

(
1 + εF0 xe−γ|x|

)
, ψ

(0)
0 (x) =

√
κ0 e−κ0|x|,

where ψ
(0)
0 (x) is the wavefunction of the unperturbed state (see Problem 2.7)

and ε and γ are variational parameters. Compare with the exact result from
Problem 8.12.

This problem illustrates the possibility of calculating terms of the perturbation
theory series for Hamiltonian Ĥ = Ĥ0 + V̂ using variational method.

Solution

Let us calculate the mean value E(ε, γ) in accordance with the main idea of the vari-
ational method; that is by minimizing this value over the free variational parameters.
First we normalize the trial function.

C2 =

(
1 +

κ0ε
2F 2

2(κ+ γ)3

)−1

, i.e. C2 ≈ 1− ε2F 2

2(1 + γ)3
. (1)
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We use fact that the external field is weak and also introduce the units � = m = α = 1;

in this case κ0 = 1 and E
(0)
0 = −1/2 (the level energy in the absence of a field). Now

we have

T =
1

2

∫
|ψ′(x)|2dx =

1

2
C2

(
1 +

ε2F 2
0

2(1 + γ)

)
, (2)

U = −δ(x)− F0x = −C2

(
1 +

8εF 2
0

(2 + γ)3

)
.

Using (1) we obtain

E(ε, γ) = −1

2
− 8εF 2

0

(2 + γ)3
+

(1 + (1 + γ)2)ε2F 2
0

4(1 + γ)3
. (3)

Minimizing this expression as a function of ε, we obtain

E(ε0, γ) = −1

2
− 1

2
β0(γ)F

2
0 , β0(γ) =

128(1 + γ)3

(2 + γ)6[1 + (1 + γ)2]
. (4)

Now minimization over the parameter γ allows us to find the level shift. The minimum
is at γ = γ0 ≈ 0.34. Here β0,var = 1.225, while the exact value is β0 = 5/4 = 1.250.

Problem 8.27

Using the variational method and a trial function of the form ψ(r) = Ce−κr, with
κ > 0 as a variational parameter, obtain a sufficient condition for the existence of a
bound state in a central potential U(r) < 0 (U(r) → 0 as r → ∞).

Apply your result to the potentials considered in Problem 4.8 and compare with
both the exact result and the necessary condition of the bound state existence from
Problem 4.21.

Solution

Let us calculate the mean energy of the particle[133] (with normalization C2 = κ3/π):

T =
�
2κ2

2m
, U = 4κ3

∞∫
0

r2U(r)e−2κrdr, E(κ) = T + U.

E0 ≤ E(κ) (E0 is the ground state energy), so if for some value of κ ≥ 0 we would have
E0(κ) ≤ 0, then in the potential considered there certainly exists at least one discrete
spectrum state (the potential binds the particle). Therefore, the desired condition takes
the form:

[133] Only the sign of E(κ) is important, so normalizing the trial function is unnecessary for our purposes.
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max

⎧⎨⎩κ

∞∫
0

|U(r)|r2e−2κrdr

⎫⎬⎭ ≥ �
2

8m
(1)

The use of the maximum value corresponds to an optimal choice of the parameter κ.

For potential U = −αδ(r − a), condition (1) takes the form

max(ακa2e−2κa) ≥ �
2

8m
, or ξ ≡ mαa

�2
≥ e

4
≈ 0.68,

while the exact and necessary condition (in the given case, they coincide with each
other) is ξ ≥ 1/2.

For the potential from Problem 4.8 b), condition (1) gives

ξ ≡ ma2U0

�2
≥ 27

32
≈ 0.84.

The exact condition is ξ ≥ 0.72, while the necessary one is ξ ≥ 1/2.

Problem 8.28

Let ψa with a = 0, 1, . . . , N − 1 be some system of N mutually orthogonal wavefunc-
tions normalized to unity, and let Ēa be the mean values of the Hamiltonian, Ĥ, for
these states. Prove that

N−1∑
a=0

Ēa ≥
N−1∑
n=0

E(0)
n , (1)

where E
(0)
n are the exact discrete energy levels of the Hamiltonian and the summation

over them accounts for their degeneracy.

Solution

Let us consider the following sum:

1

N

N−1∑
a=0

< ψa|Ĥ|ψa > =
1

N

N−1∑
a=0

Ea. (2)

Now we expand the wavefunctions ψa =
∑
n
Canψ

(0)
n into a series of the Hamiltonian

Ĥ eigenfunctions and obtain the relation,

1

N

N−1∑
a=0

∞∑
n=0

|Can|2E(0)
n =

1

N

N−1∑
a=0

Ea. (3)
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Coefficients Can have the following properties:

∑
n

|Can|2 = 1 and

N−1∑
a=0

|Can|2 ≤ 1. (4)

The first of them is obvious, while the second property is a consequence of the mutual
orthogonality of the wavefunctions ψa. Indeed, from the condition < ψb|ψa >= δab it
follows that ∑

n

CanC
∗
bn = δab.

Multiplying this relation by C∗
an′Cbn′ and summing over a and b, we obtain

N−1∑
a=0

|Can′ |2 =

∞∑
n=0

∣∣∣∣∣
N−1∑
a=0

CanC
∗
an′

∣∣∣∣∣
2

=

(
N−1∑
a=0

|Can′ |2
)2

+

′∑
n=0

∣∣∣∣∣
N−1∑
a=0

CanC
∗
an′

∣∣∣∣∣
2

, (5)

where the prime on the sum indicates the absence of the term with n = n′.
Now we note that the left-hand side of Eq. (3) can be written in the form:

E ≡
∞∑

n=0

wnE
(0)
n , where wn =

1

N

N−1∑
a=0

|Can|2. (6)

It is proper to think of wn as some probability distribution normalized to 1 (
∑
n
wn = 1),

for which from (4) we have wn ≤ 1/N . In this case we see that

E ≥ 1

N

N−1∑
n=0

E(0)
n , (7)

where E
(0)
n with n = 0, 1, . . . , N − 1 are the energy values of the N states from (1).

From (3) and (7) the inequality[134] follows.

In conclusion, we note that the result obtained is the generalization of the inequality
E ≥ E0, and constitutes the basis for variational calculation involving excited states.
It is important that the trial functions are mutually orthogonal, but there is no need
to enforce orthogonality to the eigenfunctions that correspond to the lower energy
levels.

[134] The equality is fulfilled only for ψa coinciding with the exact wavefunctions ψ
(0)
n .
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8.3 Stationary perturbation theory (continuous spectrum)

Problem 8.29

Using the result of Problem 2.42, find the amplitude of the reflected wave in a short-
range potential U(x) (U(x) → 0 for x → ±∞) in the first two orders of perturbation
theory. Discuss the conditions for applicability of perturbation theory for calculating
the particle reflection coefficient. Consider the application of this result to the following
specific potentials:

a) U(x) = αδ(x),

b) U(x) =

{
U0e

−x/a for x > 0,
0 for x ≤ 0,

c) U(x) = U0

cosh2(x/a)
,

d) U(x) = U0e
−x2/a2

,

and compare with the exact amplitudes.

Solution

Using an integral form of the Shrödinger equation,

ψ+
p (x) = eipx/� − i

m

�|p|

∞∫
−∞

ei|p(x−x′)|/�U(x′)ψ+
p (x

′)dx′, (1)

we obtain the expression for the reflected wave amplitude:

A(p) = −i
m

�|p|

∞∫
−∞

eipx/�U(x)ψ+
p (x)dx. (2)

(See Problem 2.42). This gives the reflection coefficient for the particles,
R(p) = |A(p)|2.

The solution of Eq.(1) as an expansion in powers of the potential

ψ+
p (x) = ψ(0)

p (x) + ψ(1)
p (x) + . . . ,

gives

ψ(0)
p (x) = eipx/�,

ψ(1)
p (x) = −i

m

�|p|

∞∫
−∞

exp

{
i

�
(|p||x− x′|+ px′)

}
U(x′)dx′. (3)
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We have the analogous expansion for the amplitude A(p) = A(1)(p) +A(2)(p) + . . . ,
where

A(1)(p) = −i
m

�|p|

∞∫
−∞

e2ipx/�U(x)dx, (4)

A(2)(p) = − m2

�2p2

∫ ∞∫
−∞

exp

{
i

�
(px′ + px+ |p||x− x′|)

}
U(x′)U(x)dx′dx.

Using the Fourier transform of the potential,

Ũ(p) =

∞∫
−∞

eipx/�U(x)dx,

and relation (E.1.3), it is convenient to write Eq. (4) in the form,

A(1)(p) = − im

�|p| Ũ(2p), (5)

A(2)(p) =
im2

π�2|p|

∞∫
−∞

Ũ(p− q)Ũ(p+ q)

q2 − p2 − iγ
dq,

where ε > 0 is infinitesimal. Using these equations gives the structure of a perturbation
theory series for A(p), and we can make the following conclusions for its applicability.

1) Perturbation theory is not applicable for p → 0, i.e., in the case of slow particles.
This is not surprising, since according to Problem 2.39 we have R(p) → 1 for p →
0, while the applicability of perturbation theory demands the fulfillment of the
condition R � 1.

2) Denoting by U0 and a the typical values of the potential and its radius correspond-
ingly, we see that in the case of pa/� ≤ 1 (i.e., for the particles that are not fast,
here Ũ(p) ∼ U0a), the applicability of perturbation theory demands fulfillment of
the condition

U0 � �|p|
ma

for
|p|a
�

≤ 1. (6)

In this case, both |ψ(1)
p | � |ψ(0)

p | and |A(2)| � |A(1)|.
3) In the case of fast particles, p → ∞, though the distortion of the wavefunction,

ψ+
p (x), by comparison with the unperturbed one, ψ

(0)
p , is always small, the applica-

bility of perturbation theory (and the convergence of the series for A(p) in general)
depends on the nature of Ũ(p) decrease for p → ∞.
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As is seen from Eq. (5), if the asymptotic behavior of Ũ(p) is

|Ũ(p)| > C exp{−α|p|ν}, |p| → ∞
with ν < 1 (i.e., the slower than exponential ∝ e−α|p|), the integral in Eq. (5)
decreases faster than Ũ(2p), and therefore |A(2)|/|A(1)| → 0 as |p| → ∞ (the same
condition takes applies to the higher-order A(n)). This means that for p → ∞, the
perturbation theory is applicable and the series for A(p) converges for any value of U0.

In the case of a decrease law of the form

|Ũ(p)| < B exp{−α|p|ν}, ν > 1, |p| → ∞,

i.e., faster than exponential ∝ e−α|p|, the integral in Eq. (5) decreases slower than
Ũ(2p) (see below in d), so that |A(2)|/|A(1)| → ∞ and the perturbation series diverges.

We should note that a transitional situation occurs in the case of a decrease in the
form Ũ(p) ∝ |p|γe−α|p| with γ = 1: for γ > 1 the perturbation theory is applicable,
while for γ < 1 it is non-applicable. In the case of γ = 1, the integral in Eq. (5)
decreases in the same way as Ũ(2p). Here, perturbation theory applicability and the
convergence of series A(p) depends on the value of parameter ma2U0/�

2.

Let us consider some concrete applications of perturbation theory.

a) For the δ-potential, by using Eq. (4), we obtain

A(1)(p) = − imα

�|p| , A(2)(p) = −mα2

�2p2
, (7)

which is useful to compare with an expansion of the exact expression for the
amplitude (see Problem 2.30):

A(p) = − imα

�|p|+ imα
= − imα

�|p| − mα2

�2p2
+ . . .

In accordance with Eq. (6), perturbation theory is valid in the case of mα � �p (for
δ-potential a = 0, but U0a ∼ α); the perturbation theory series for A(p) converges
if the condition mα/�p < 1 is fulfilled.
For the calculation of A(p) in the other cases, we shall consider p > 0 and take

into account the symmetry of the function under the integrand in Eq. (4), rewriting
it in the form:

A(2)(p) = − 2m2

�2p2

∞∫
−∞

e2ipx/�U(x)

x∫
−∞

U(x′)dx′dx. (8)

b) For the potential under consideration, the simple integration in Eqs. (4) and
(8) gives

A(1)(p) = − imaU0

�p(1− 2ipa/�)
, A(2)(p) = − m2a2U2

0

�2p2(1− ipa/�)(1− 2ipa/�)
. (9)
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As is seen for pa/� ∼ 1, the condition of perturbation theory applicability,
|A(2)|/|A(1)| � 1, coincides with Eq. (6). Due to the power-law decrease of Û(p),
perturbation theory is applicable in the case of p → ∞. The parameter of expansion
is mU0/p

2. For the potential considered, the exact value of the amplitude is

A(p) =
J1−2ika(2iξ)

J−1−2ika(2iξ)
, (10)

where k = p/�, ξ = (2ma2U0/�
2)1/2, Jν(x) is the Bessel function of νth order.

c) For the potential U = U0ch
−2(x/a) in first-order perturbation theory,

A(1) = − imU0

�

∞∫
∞

eeipx/�

ch2(x/a)
dx. (11)

The integral is calculated with the help of residue theory by closing the integration
contour into the upper half-plane of the complex variable x. The singular points
of the function under the integral, the poles of the second order, are xn = ia(πn+
π/2), where n = 0, 1, . . . , a > 0. Since for x → xn we have

ch2
(x
a

)
≈ − (x− xn)

2

a2
+O

(
(x− xn)

4
)

and hence here

e2ipx/�

ch2(x/a)
≈ −e2ipxn/�

[
a2

(x− xn)2
+

2ipa2

�

1

(x− xn)

]
,

then the total contribution of all of the poles is

A(1) = − imU0

�p
2πi

∞∑
n=0

(
−2ipa2

�
e2ipxn/�

)
= − 2πima2U0

�2sh(πpa/�)
. (12)

The series is geometric.
The integral for A(2), according to Eq. (8), takes the form

A(2) = −2maU0

�2p2

∞∫
∞

1

ch3(x/a)
exp

{
2ipx

�
+

x

a

}
dx, (13)

and after some simple transformations it can be expressed in terms of integral (11),
which allows us to obtain

A(2) = −4π

(
1 +

ipa

�

)
m2a3U2

0

�3psh(πpa/�)
. (14)

Comparing Eqs. (12) and (14), we see that for pa/� ∼ 1, the applicability of
perturbation theory demands the fulfillment of (6). As for the case of pa/� � 1,
the perturbation theory is applicable only with the condition U0 � �

2/ma2. This
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situation differs from the one for the two previous potentials, and is connected with
the exponential decrease of Û(p) ∝ pe−πpa/� for p → ∞. We should note that this
potential allows an exact calculation of A(p). With this result it is easy to reach
the conclusion that when |U0| > �

2/8ma2, the perturbation theory series diverges
for p → ∞.

d) For the potential U(x) = U0e
−x2/a2

, we obtain

A(1)(p) = −i
√
π
maU0

�p
exp

{
−p2a2

�2

}
. (15)

In calculating the amplitudes of second order in the perturbation in the case of a
fast particle, with Eq. (5) and with p � �/a, we see that in the integral over q, the
domain q ≤ �/a plays the main role (contribution of the rest of the space is not
important due to the exponential decrease of the function under the integral). As
a consequence, we can put q = 0. Then it is easy to calculate the integral, which
allows us to obtain

A(2)(p) ≈ −i
√
2π

m2aU2
0

�p3
exp

{
−p2a2

2�2

}
, for

pa

�
� 1. (16)

A comparison of this and Eq. (15) shows that |A(2)|/|A(1)| → ∞ as |p| → ∞ and
the perturbation theory for fast particles is not applicable (the series for A(p) is
divergent).
In conclusion, we should mention that the different roles of higher orders of

perturbation theory for p → ∞, and how they depend on the Ũ(p) decrease,
correctly reflect the actual physical situation per the following arguments. For the
“slow” decrease of Ũ(p) (i.e., roughly speaking, for the case |Ũ | > Ce−αp), a sharp
change in particle momentum happens due to a single interaction. For the “fast”
decrease, a noticeable change in momentum requires a large number of interactions,
each giving only a small change. Compare with the results of Problems 4.18 and
13.84.

Problem 8.30

Determine the reflection coefficient, R(E), for a fast particle in the case of a potential,
U(x), having a jump at the point x = 0 (see Fig. 8.2). Generalize this result to the
case of a potential that has gaps at several points. Apply the result to the potential
in Problem 8.29 b and to the square barrier from Problem 2.31. Compare with the
asymptote for E → ∞ of the exact result for R(E). See also Problem 9.27.

Solution

From Eq. (4) of the previous problem we can determine amplitude of the reflected
wave, A(1), from the Fourier transform of the potential.

Ũ(k) =

∞∫
−∞

U(x)eikxdx =
i

k

∞∫
−∞

eikx
∂U(x)

∂x
dx (2)
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Fig. 8.2

(Here we should use the relation ikeikx = ∂eikx/∂x and perform the integration
by parts.) For the potential, which has a jump at the point x = 0, its derivative
U ′(x) includes the term (U2 − U1)δ(x), and this δ-function determines the asymptotic
behavior:

Ũ ≈ i(U2 − U1)

k
for k → ∞.

The contribution from the other part of the integration region is inessential due to the
fast oscillation of the function under the integral. Thus

R(p) ≈ m2(U2 − U1)
2

4p4
, p → ∞. (2)

The generalization of this formula for the case of potential which contains jumps at
several points, xn, is given by

R(p) =
m2

4p4

∣∣∣∣∣∑
n

ΔUne
2ipxn/�

∣∣∣∣∣
2

, p → ∞, (3)

where ΔUn is the potential jump at the corresponding point xn. Note that for
discontinuous potentials, R(p) ∝ 1/p4 as p → ∞.

According to (2) and (3) we find the reflection coefficients

1) R(p) ≈ m2U2
0

4p4
, 2) R(p) ≈ m2U2

0

p4
sin2

(pa
�

)
for the potential from Problem 8.29 b and for a square potential, respectively, which
coincide with the asymptotes of the exact expressions for R(p) as p → ∞. See also
Problem 8.31.
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Problem 8.31

The same as in the previous problems but for a jump in the derivative of the potentials
at the point x = 0. Apply the result obtained to the parabolic barrier of the form:
U(x) = U0(1− x2/a2) for |x| < a and U(x) = 0 for |x| > a.

Solution

As in Eq. (1) from the previous problem, we obtain

Ũ(k) = − 1

k2

∞∫
−∞

eikxU ′′(x)dx. (1)

In this case, the potential has a derivative U ′(x) jump, so that U ′′(x) contains a
δ-function term of the form −ΔFδ(x). −ΔF = U ′(0+)− U ′(0−) is the jump of the
derivative, which determines the relevant asymptote of A(1). The reflection coefficient
for the potential whose derivative has discontinuities at several points xn for p → ∞
is equal to

R(p) ≈ m2
�
2

16p6

∣∣∣∣∣∑
n

ΔFne
2ipxn/�

∣∣∣∣∣
2

, (2)

thus R(p) ∝ 1/p6. For the parabolic potential, (2) gives

R(p) =
m2

�
2U2

0

a2p6
sin2

(
2pa

�

)
.

In conclusion, we should note that that the reflection coefficient for p → ∞ and the
analytical properties of the potential energy, U(x), as a function of x are closely related.
If the potential has critical points (singularities) on the real axis x, then R(p) decreases
as a power law. Here, the weaker the singularity, the faster the decrease; compare with
the results of the previous problem. But if U(x) has no critical points on the real axis
x (an infinitely differentiable function), then R(p) decreases exponentially. See also
Problem 4.18.

Problem 8.32

As is known, the particle energy spectrum in a periodic potential consists of bands. For
such a one-dimensional potential, U(x+ a) = U(x), regarded as a small perturbation,
find the energy spectrum En(q), where n is the band label and �q is the quasi-
momentum (here −π/a ≤ q ≤ π/a).

Determine a relation between the momentum, �k, of a free particle and the quasi-
momentum, �q, and find the correct eigenfunctions in the zeroth approximation,

ψ
(0)
n,q(x). Find the energy gap between the neighboring energy bands. Apply the results

obtained to the potential from Problem 2.53.
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Solution

Using the known relation for the Bloch functions,

ψn,q(x+ a) = eiqaψn,q(x), −π

a
< q <

π

a
, (1)

it will be sufficient to solve the Schrödinger equation on the interval 0 < x < a:

− �
2

2m
ψ′′
n,q(x) + U(x)ψn,q(x) = En(q)ψn,q(x). (2)

Here, relation (1) can be viewed mathematically as a condition that gives a self-
adjoint extension[135] of the Hermitian operator p̂2/2m+ U(x) in Eq. (2) defined on
this interval, to all values of q (see Problem 1.29). For a given value, q, the spectrum,
En(q), is discrete, while the continuous dependence on q leads to a band structure of
the energy spectrum in general.

Neglecting U(x) in Eq. (2) we obtain the following unperturbed eigenfunctions and
eigenvalues:

ψ
(0)
k =

1√
a
eikx, E

(0)
k =

�
2k2

2m
.

Taking into account relation (1), we can classify these expressions in terms of the quasi-
momentum q (and the band number n). Writing k = 2πn/a+ q, where n = 0, ±1, . . . ,
we obtain

E(0)
n (q) =

⎧⎨⎩
�
2

2m

(
πn
a + |q|)2, n = 0, 2, 4, . . . ,

�
2

2m

(
π(n+1)

a − |q|
)2
, n = 1, 3, 5, . . . .

(3)

This spectrum consists of the unperturbed spectrum E
(0)
k (see dashed lines on Fig. 8.4),

so the neighboring bands touch one another (there are no forbidden values of the

[135] It actually implies imposing the following two boundary conditions,

ψ(a) = eiqaψ(0), ψ′(a) = eiqaψ′(0),

which corresponds to the (2, 2) deficiency index of this operator (see, Problem 1.29 for the relevant
definition and discussion).
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energy). The relation between the momentum and the quasi-momentum of a free
particle is given by

k =

⎧⎨⎩
πn
a + q, q > 0,

n = 0, 2, 4, . . . ,
−πn

a + q, q < 0,
(4a)

k =

⎧⎨⎩
−π(n+1)

a + q, q > 0,
n = 1, 3, 5, . . . ,

π(n+1)
a + q, q < 0.

(4b)

from which we have the explicit form of the unperturbed Hamiltonian eigenfunctions,

ψ
(0)
n,q(x) = eikx/

√
a, which satisfy condition (1).

Fig. 8.3

From relations (3) and (4) (see also Fig. 8.3), we find that for a given value of q,

the unperturbed levels, E
(0)
n (q), are separated by a finite interval, generally speaking.

So for the calculation of level shifts under the influence of the potential U(x), we can
use Eq. (VIII.1) of non-degenerate perturbation theory. For the first-order correction,
we obtain

E(1)
n (q) =

1

a

a∫
0

U(x)dx ≡ U. (5)



334 Exploring Quantum Mechanics

(In this approximation, the shift is the same for all values of q and n.) The condition
for applicability of (5) is given by∣∣∣E(0)

n (q)− E
(0)
n+1(q)

∣∣∣ � E(1)
n (q).

As we see from Eq. (3) and Fig. 8.4, this condition is broken for 1) q ≈ 0, and 2)
q ≈ ±π/a, when the neighboring energy bands touch each other for values of energy
equal to

1) E(0)
n (0) = E

(0)
n+1(0), and 2) E(0)

n (±π/a) = E
(0)
n−1(±π/a).

Here n = 1, 3, 5, . . . in both cases.

For the values of q given above to calculate the shifts E
(0)
n (q) we should use per-

turbation theory valid for the closely-positioned levels. Compare to Problem 8.6. Just
as in the case of strongly degenerated levels, the perturbation mixes the unperturbed
eigenfunctions with the close energies, so

ψ̃ = C1ψ
(0)
n,q(x) + C2ψ

(0)
n+1,q(x), n = 0, 1, 2, . . . (6)

The perturbed levels and the coefficients C1,2 which determine the correct eigenfunc-
tions in the zeroth approximation are found in the same way as in the degenerate
perturbation theory. The secular equation takes the form∣∣∣∣∣U + E

(0)
n (q)− E Un,n+1

Un+1,n U + E
(0)
n+1(q)− E

∣∣∣∣∣ = 0, (7)

where we take into account the value (5) for Unn. In the matrix element Un+1,n we can

use the eigenfunctions ψ
(0)
n(n+1),q(x) for the values of q that correspond to the levels

joining together. The values of the corresponding momenta are �k = ±(n+ 1)h/a (in
the case where nth and (n+ 1)-th zones meet), so that in Eq. (7),

|Un+1,n| = 1

a

∣∣∣∣∣∣
a∫

0

exp
{
±2iπ(n+ 1)

x

a

}
U(x)dx

∣∣∣∣∣∣ ≡ 
n. (8)

See that 
n does not depend on the choice of the sign ±.

The solution of Eq. (7) gives

En(n+1)(q) = Ũ +
1

2

[
E(0)

n (q) + E
(0)
n+1(q)∓

√(
E

(0)
n+1(q)− E

(0)
n (q)

)2

+ 4
2
n

]
. (9)

The signs (−) and (+) correspond to the (lower) n and (upper) n+ 1 bands respec-
tively. From relations (3), (5), and (9), the plot for En(q) is shown in Fig. 8.4 (solid
line, and we put U = 0). Taking into account the interaction, we obtain the band
structure with an energy gap present in the spectrum. The gap width – the distance
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between the neighboring n and n+ 1 zones – is equal to 2Δn. Coefficients C1,2 in
expression (6) are equal to

C1 =
Un,n+1

E − U − E
(0)
n (q)

C2. (10)

The two values of E are given by Eq. (9). Particularly, at the point of an avoided
crossing of the unperturbed levels, we obtain C1 = ±C2 = 1/

√
2.

As we deviate (with a change of q) from the avoided crossing, we have

δE(0)
n (q) ≡ E

(0)
n+1(q)− E(0)

n (q) � 
n,

from Eq. (9) it follows that

En(n+1)(q) ≈ E
(0)
n(n+1)(q) + Ũ ∓ 
2

n

δE
(0)
n (q)

. (11)

Here the last term is a part of the second-order correction, corresponding to the term
associated with the closest level in Eq. (VIII.1).

Using the explicit form for E
(0)
n , Eq. (9) may be rewritten in a more informative

form. For example, when in Eq. (9) for the lowest band the value of n is odd (the
avoided crossing of levels is for q = 0), we have

En(n+1)(q) ≈ �
2

2m

(
k2n + q2

)
+ Ũ ∓

√
�4k2nq

2

m2
+
2

n, (12)

where kn = π(n+ 1)/a. For |q| � m
n/�
2kn from here it follows[136]

En(n+1)(q) ≈ �
2

2m
k2n + Ũ ∓
n ∓ 1

2

[
�
2k2n

m2
n
∓ 1

m

]
�
2q2. (13)

In the case when for the lower band the value of n is even and the avoided crossing
takes place for q = ±π/a, we obtain the expression analogous to Eqs. (12) and (13),
but with the change |q| → π/a− |q|.

In conclusion, we should note that if we apply our results to the potential from
Problem 2.53 we have U = α and Δn = |α|, so the energy gap between the neighboring
zones has a constant value independent of n. This is specific to the δ-potential; for
any other potential, Δn → 0 for n → ∞. At the same time, the width of the allowed
bands increases linearly with n.

[136] We should pay attention to the quadratic dependence of the energy on the quasi-momentum close
to the band edge: E(q)− E(0) ∝ q2.
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8.4 Non-stationary perturbation theory; Transitions
in continuous spectrum

Problem 8.33

A charged linear oscillator is under the effect of an homogeneous electric field that
changes in time by the law:

a) E(t) = E0 exp{−t2/τ2};
b) E(t) = E0(1 + t2/τ2)−1;

c) E(t) = E0 exp{−t2/τ2} cosω0t.

Assuming the oscillator was in the nth quantum state before the field was turned
on (for t → −∞), find the transition probabilities into different states for t → +∞ in
the first order of perturbation theory. For n = 0, compare the result obtained to the
exact one (see Problem 6.25).

Solution

The oscillator perturbation has the form V = −exE(t). Its matrix elements are Vkn(t),
and hence the probabilities for the oscillator transitions in the first order of pertur-
bation theory are non-zero only for k = n± 1 (see Eq. (II.3); transitions appear only
between the neigboring levels). Using Eq. (VIII.9) we obtain

W (1)(n → k) =
e2|I|2
2m�ω

·
{
(n+ 1), k = n+ 1,

n, k = n− 1,
(1)

where I(ω) =
∞∫

−∞
eiωtE(t)dt. We should note that |I(ω)|2 does not depend on the sign

of ω. For the forms of E(t) given above, we find (τ > 0):

a) I(ω) = E0
∞∫

−∞
exp{iω − t2/τ2}dt = √

πτE0 exp{−ω2τ2

4 },

b) I(ω) = E0
∞∫

−∞
eiωt dt

1+(t/τ)2 = πτE0e−|ωτ |,

c) I(ω) = E0
∞∫

−∞
exp{iωt− t2/τ2} cos(ω0t)dt =

1

2

√
πτE0

{
exp

[
−1

4
(ω − ω0)

2τ2
]
+ exp

[
−1

4
(ω + ω0)

2τ2
]}

.

The main condition for the applicability of this result obtained by perturbation theory
is the fulfillment of inequality (VIII.3), which here takes the form:

eE0
√

(n+ 1)�

mω
� �ω.
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For a non-resonant perturbation this condition implies small transition probabilities,
W (1)(n → k) � 1. In the case of a weak resonance interaction (see c), this condition
also restricts the duration of the perturbation.

We should note that for the slow constant field turning on and off, i.e., for τ → ∞,
the transition probabilities go to zero,[137] except for the case c, where for ω → ω0 the
probabilities increase with τ , which is connected with the resonant nature of the field.

Problem 8.34

An homogeneous electric field that changes in time as E(t) = E(t)n0 is applied to a
two-dimensional rotor with the dipole moment d. Before the field is applied, the rotor
has a definite value of energy and a definite projection of the angular momentum,
m. Calculate the probabilities of different values of the projection of the angular
momentum and rotor energies for t → +∞ in the first order of perturbation theory.
Consider in particular the forms of E(t) given in the previous problem.

Solution

The perturbation has the form V = −dE(t) cosϕ. ϕ is the angle between the rotor axis
and the direction of the electric field. Perturbation matrix elements are different from
zero only for m′ = m± 1, and are equal to

Vm′m = −dE(t)
2

.

See Problem 8.8. In the first order of perturbation theory, only transitions between
the neighboring levels occur, and their probabilities are

W (1)(m → m′) =
d2

4�2

∣∣∣∣∣∣
∞∫

−∞
E(t)eiωm′mtdt

∣∣∣∣∣∣
2

, m′ = m± 1. (1)

The values of the integral in (1) are given in the previous problem, but it is necessary
to take into account the fact that now the values of the transition frequencies ωm′m
are equal to (1± 2m)�/2I for m′ = m± 1. The applicability condition is also given in
the previous problem.

Problem 8.35

The same as in the previous problem, but for a spherical (three-dimensional) rotor.
Before the electric field was turned on, the rotor was in the state with quantum
numbers l, lz = m. The field is directed along the z-axis.

[137] This property, which reflects the adiabaticity of the slow perturbations, remains even in the case
of strong fields. See Problems 8.54 and 8.55.
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Solution

The perturbation has the form V = −dE(t) cos θ. Using the values of matrix elements
Vkn from Problem 8.11 (where we considered a stationary field), from Eq. (VIII.9) we
obtain

W (1)(l,m → l′m) =
d2

�2

∣∣∣∣∣∣
∞∫

−∞
E(t)eiωl′ltdt

∣∣∣∣∣∣
2

×
{ |alm|2, l′ = l + 1,
|al−1,m|2, l′ = l − 1.

In the first order of perturbation theory, transitions appear only to the neighboring
energy levels. Due to conservation of lz, the value of m does not change. The transition
frequencies are equal to

ωl+1,l =
�(l + 1)

I
and ωl−1,l = −�l

I
.

The values of the integral in Eq. (1) are given in Problem 8.33.

Problem 8.36

For the conditions of Problem 8.34, determine the transition probabilities for the
case when the direction of the electric field rotates in-plane with the rotor and with
the angular velocity ω0, i.e., Ex = E(t) cosω0t, Ey = E(t) sinω0t. Pay attention to
the possibility of a resonant increase of the transition probabilities even for a slow
dependence, E(t), of the form a and b from Problem 8.33.

Solution

Considering interaction between the rotator and the field as a perturbation,

V = −dE(t) = −dE(t) cos(ϕ− ω0t),

we can see that the results for the rotor transition probabilities in the rotating field
are obtained from Eqn. (1) of Problem 8.34 by changing the corresponding integral to

∞∫
−∞

E(t) exp{i(ωm′m +mω0 −m′ω0)t}dt.

This means that the transition probability is determined by the Fourier component of
the field, with the frequency

ω̃m′m = ωm′m + (m−m′)ω0,

which could be small for the corresponding value of ω0. The probability of such a
transition could increase sharply if the duration of the perturbation is long enough.
This resonance situation can be understood if we go into a rotating reference frame
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that rotates together with the field (see Problem 6.29). In this coordinate system
the unperturbed energy levels, Erot,m = E

(0)
m − �ω0m, with the different values of the

projection of the angular momentumm can be degenerate, and the perturbation slowly
changing in time could sharply enhance (if its duration is long enough) transitions
between the corresponding states (see Problem 8.40). The value ω̃m′m is the frequency
of the transition for rotor states considered in the rotating frame of reference.

Problem 8.37

Obtain a relation between the wavefunction and the transition amplitude from the
initial nth (for t → −∞) to finite kth (for t → +∞) states in the second order of non-
stationary perturbation theory. Assume that for t → ±∞, the perturbation is absent.

Solution

Using Eqs. (VIII.6)–(VIII.9), we find

akn(t) = δkn + a
(1)
kn (t) + a

(2)
kn (t) + . . . ,

where the values of the first-approximation amplitudes a
(1)
kn (t) are determined by

Eq. (VIII.8). Substituting them into Eq. (VIII.7), we obtain

ȧ
(2)
kn (t) = − i

�

∑
m

Vkma(1)mn(t)e
iωkmt.

Hence, using Eq. (VIII.8) and the fact that a
(2)
kn (−∞) = 0, we find

a
(2)
kn (t) = − 1

�2

∑
m

t∫
−∞

Vkm(t′)eiωkmt′
t′∫

−∞
Vmn(t

′′)eiωmnt
′′
dt′′dt′. (1)

The transition probability for the system from the initial nth to the finite kth (for
t → +∞) state is equal to (k �= n):

W (n → k) = |akn(t = +∞)|2 = |a(1)kn (∞) + a
(2)
kn (∞) + . . . |2.

If a
(1)
kn (∞) = 0, then

W (2)(n → k) = |a(2)kn (∞)|2, k �= n,

defines the probability of a transition that is forbidden in the first order of perturbation
theory.
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Problem 8.38

In the conditions of Problem 8.33, find in second-order perturbation theory the
oscillator transition probabilities that are forbidden in the first order.[138] Compare
these second-order transition probabilities with W (1)(n → k).

Solution

From relation (1) of the previous problem and the values of the perturbation (V =
−eE(t)x) matrix elements for the oscillator (see Eq. (II.3)), it follows that in second
order, oscillator transitions from the initial states with quantum numbers n to the final
states with n± 2 appear and those are forbidden in first-order perturbation theory
(see Problem 8.33). Here, the sum in the relation is reduced to the single term with
m = n± 1. The transition frequencies in this term coincide, ωkm = ωmn = ±ω (due
to the equal level spacing between the oscillator levels), which allows to simplify the
integration to

∞∫
−∞

f(t)eiωtdt

t∫
−∞

f(t′)eiωt′dt′ =
1

2

⎡⎣ ∞∫
−∞

f(t)eiωtdt

⎤⎦2.
After the transformations above, we obtain

a
(2)
n±2,n(∞) = − e2

4m�ω
g(±)
n

⎡⎣ ∞∫
−∞

E(t)e±iωtdt

⎤⎦2,
where

g(+)
n =

√
(n+ 1)(n+ 2) and g(−)

n =
√

(n− 1)n.

The probabilities of the transitions considered are

W (2)(n → k) = |a(2)n±2,n(∞)|2.
If we compare them with the transition probabilities from first-order perturbation
theory (see Problem 8.33), we see that W (2) ∼ [W (1)]2; hence W (2)/W (1) ∼ W (1) � 1,
as long as perturbation theory applies.

Problem 8.39

If we use relation (VIII.8), then we obtain the unreasonable result that Wn =
|ann(+∞)|2 > 1 for the probability of the system to remain in the initial nth state.
Resolve this paradox and recover the conservation law of the wave-function normal-
ization, taking into account the transitions in first-order perturbation theory.

[138] I.e., transitions for which W (1)(n → k) = 0.
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Solution

To resolve the paradox, we notice that to calculate the square of modulus of a quantity
such as a = 1 + a(1) + a(2) + . . . , that is the expansion in some small parameter V � 1
(so that |a(n)| ∼ V n), to an accuracy up to the second order in V , it is necessary to
know the real part[139] of a with the same accuracy, since

|a|2 = 1 + 2Re a(1) + |a(1)|2 + 2Re a(2) +O(V 3), |a(1)|2 ∼ Re a(2) ∼ V 2.

(According to Eq. (VIII.8), a
(1)
mn is an imaginary quantity.)

Now we should discuss the conservation of the wavefunction normalization, taking
into account transitions in first-order perturbation theory. According to Eq. (1) from
Problem 8.37, we have

amn(t = +∞) ≈ 1− i

�

∞∫
−∞

Vmn(t)dt

− 1

�2

∑
m

∞∫
−∞

Vnm(t)eiωnmt

t∫
−∞

Vmn(t
′)eiωmnt

′
dt′dt,

so that the probability for the system to remain in the initial nth state as t → +∞ to
an accuracy of the second order in perturbation is

W (2)
n = |ann(∞)|2 = 1 +

1

�2

⎡⎣ ∞∫
−∞

Vnn(t)dt

⎤⎦2

− 1

�2

⎧⎨⎩∑
m

∞∫
−∞

Vnm(t)eiωnmt

t∫
−∞

Vmn(t
′)eiωmnt

′
dt′dt+ c.c.

⎫⎬⎭,

where “c.c.” denotes the complex conjugate. Taking into account ωnm = −ωmn, V
∗
nm =

Vmn(t), and using the relation

∞∫
−∞

dt

t∫
−∞

f(t, t′)dt′ =

∞∫
−∞

dt′
∞∫
t′

f(t, t′)dt,

expression (1) could be transformed to the desired form:

W (2)
n = 1− 1

�2

∑′

m

∣∣∣∣∣∣
∞∫

−∞
Vmn(t)e

iωmntdt

∣∣∣∣∣∣
2

= 1−
∑′

m

W (1)(n → m),

where the prime after the sum means the absence of a term with m = n.

[139] It is enough to have the imaginary part only in the first order.
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Problem 8.40

For a system that for t → −∞ was in the n1th quantum state corresponding to a

two-fold degenerate level E
(0)
n of a Hamiltonian Ĥ0, a time-dependent perturbation

V̂ (t) is applied. Find the wavefunction in the zeroth approximation at an arbitrary
moment in time. Assume that the diagonal matrix elements for the degenerate states
satisfy the condition Vn1n1

= Vn2n2
= 0 (which takes place, for example, if the states

|n1,2 > have definite and opposite parities, and the perturbation is proportional to the
system dipole moment). How should we modify Eq. (VIII.8) for transition amplitudes
between states with different energies?

Solution

While transitions between states with different energies are small, transitions between
the states that correspond to the degenerate level can be significant if the duration of
the perturbation is long enough. The situation is analogous to the case of a resonant
perturbation action and may be viewed formally as the case of an exact resonance
with the frequency ω = 0. Taking into account the probability of transitions between
the degenerate states, and without assuming that the probabilities are small, we write
down the system wavefunction in zeroth approximation (compare with Eq. (VIII.6)):

ψ(t) = [a1(t)ψ
(0)
1 + a2(t)ψ

(0)
2 ]e−iωnt.

We write 1, 2 instead of n1,2. As usual, we obtain the equations

i�ȧ1 = f(t)a2, i�ȧ2 = f(t)a1. (1)

Here we took into account that Vnn = 0, and denote V12 = f(t), considering f(t) to
be real. From (1), it follows that

d

dt
(a1 ± a2) = ∓ i

�
f(t)(a1 ± a2).

So, taking into account the initial conditions, we find

a1(t) = cos ξ(t), a2(t) = −i sin ξ(t), ξ(t) =
1

�

t∫
−∞

f(t′)dt′. (2)

These results for ξ � 1 correspond to Eq. (VIII.8).

The generalization of Eq. (VIII.8) for the transition amplitudes between states
with different energies is

a
(1)
k (t) = − i

�

∑
n=1,2

t∫
−∞

Vkn(t
′)a(0)n (t′)eiωknt

′
dt′.

In conclusion, we should note the oscillating character of the time-dependence of the
amplitude a1,2(t) and the transition probabilities, which appears even for the case of a



Perturbation theory; Variational method; Sudden and adiabatic theory 343

weak but long-lasting perturbation. We should also mention that according to Eq. (1),
superpositions |1 > ±|2 > of the initial states are diagonal (there are no transitions
between them). The appearance of such independent states is connected with the
restrictions on the values of the perturbation matrix elements Vab.

Problem 8.41

For a periodic in time perturbation, V̂ (q, t+ T ) = V̂ (q, t), find the wavefunctions
of quasi-energy states[140] (QES) in the zeroth approximation and the quasi-energy
spectrum in the first order of perturbation theory. Consider the energy spectrum of
the unperturbed Hamiltonian to be discrete and assume that it does not contain level

spacings corresponding to the resonant transitions, E
(0)
n − E

(0)
k �= ±�ω, with ω = 2π/T

(see 8.43).

Solution

We write the QES wavefunctions in the form of an expansion

ψεn(q, t) = exp{−i(E(0)
n + ε(1)n + . . . )t/�}

×
{
cn(t)ψ

(0)
n (q) +

∑′

k

cnk(t)ψ
(0)
k (q)

}
(1)

(where prime means the absence of the term with k = n in the sum). Here E
(0)
n and

ψ
(0)
n are the eigenvalues and eigenfunctions of the unperturbed Hamiltonian, which

in this case coincides with the quasi-energy and wavefunction of QES in the zeroth
approximation. The coefficients in the expansion are periodic functions: for example,
cn(t+ T ) = cn(t). Substituting (1) into the Schrödinger equation, multiplying it by

ψ
(0)∗
n (t) from the left, and integrating over the coordinates, we obtain (taking into

account only the first-order terms):

i�ċn(t) + ε(1)n cn(t) = Vnn(t)cn(t). (2)

Therefore,

cn(t) = c0 exp

⎧⎨⎩ i

�

⎛⎝ε(1)n t−
t∫

0

Vnn(t
′)dt′

⎞⎠⎫⎬⎭. (3)

[140] These quasi-energy states are also called “Floquet states” in the literature. They represent a time
analogue to the Bloch states that appear in a periodic spatial potential. The existence of both
the Bloch states and the quasi-energy (Floquet) states are related to the general mathematical
fact (Floquet’s theorem) that a fundamental solution to a general (matrix) first-order differential
equation with periodic coefficients can be written as a product of a periodic part and a simple
exponential dependence typical for the problem with constant coefficients.
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The value of ε
(1)
n (of the first-order correction to the quasi-energy) is determined by the

periodicity condition on cn(t). Introducing Vnn(t) – the mean value of the perturbation
matrix element – we rewrite the exponential factor from (3) in the form:

i

�

⎡⎣(ε(1)n − V nn)t−
t∫

0

(Vnn(t
′)− V nn)dt

′

⎤⎦ .

Since the integral term here is a periodic function, periodicity condition on the
function, cn(t) gives

ε(1)n = Vnn(t). (4)

So the value of the quasi-energy in first-order perturbation theory, εn ≈ E
(0)
n + ε

(1)
n ,

coincides with the average instantaneous energy over the period, En(t) = E
(0)
n +

Vnn(t), Compare to the result of Problem 8.56 for the case of an adiabatic change.

Problem 8.42

Under the conditions of the previous problem, find the second perturbative correction
to the quasi-energy for the case of Vnn(t) ≡ 0. Consider specifically a perturbation
of the form V̂ = V̂ (q) cosωt and the limiting cases ω → 0 and ω → ∞. Obtain the
dynamic polarizability of the levels in the field of a linearly polarized monochromatic
wave, V̂ = −d̂ · E0 cosωt, and then in particular for an oscillator.

Hint

For a system in the electric field of a linearly polarized wave, the dynamic polarizability,
βn(ω), is connected with the second-order perturbative correction to quasi-energy by
the relation[141]

ε(2)n = −1

4
βn(ω)E2

0 .

Solution

1) First we write the wavefunction of the QES in the form (compare to the previous
problem; hereafter we put � = 1):

ψεn(q, t) = e−i(E(0)
n +ε(1)n +ε(2)n +... )t

{
cn(t)ψ

(0)
n (q) +

∑′

k

cnk(t)ψ
(0)
k (q)

}
. (1)

Here, in the context of perturbation theory,

cn = 1 + c(1)n + c(2)n + . . . , cnk = c
(1)
nk + . . . .

[141] An additional term 1/2 in comparison to the static case is connected with the mean value

cos2 ωt = 1/2. Compare to Problem 8.56.
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Substituting (1) into the Schrödinger equation and multiplying it from the

left[142] by 〈ψ(0)
k | with k �= n, as usual, we find in the first approximation (ωkn =

E
(0)
k − E

(0)
n ):

iċ
(1)
nk (t) = ωknc

(1)
nk (t) + Vkn(t).

The general solution of this equation is:

c
(1)
nk (t) = e−iωknt

⎛⎝c
(1)
nk (0)− i

t∫
0

Vkn(t
′)eiωknt

′
dt′

⎞⎠. (2)

The value of the constant c
(1)
nk (0) is found from the condition of c

(1)
nk (t+ T ) = c

(1)
nk (t)

periodicity, and is equal to

c
(1)
nk (0) = − i

eiωknT − 1

T∫
0

eiωkntVkn(t)dt. (3)

(Relations (2) and (3) are used below to determine the corrections of the second
order for quasi-energy.)

Now multiplying the Schrödinger equation by 〈ψ(0)
n |, we find (for terms of the

first order in perturbation)

iċ(1)n (t) = −ε(1)n + Vnn(t).

Further calculations are performed under the assumption that Vnn ≡ 0. Here c
(1)
n =

iε
(1)
n t+ c

(1)
n (0), and from periodicity we have ε

(1)
n = 0 (compare to the previous

problem). We can choose the value of the constant as c
(1)
n (0) = 0 (this choice does

not effect the q- and t-dependence of the wavefunction), so that c
(1)
n (t) = 0.

For terms of the second order in perturbation theory that appear when we

multiply the Schrödinger equation by 〈ψ(0)
n |, we find

iċ(2)n (t) = −ε(2)n +
∑′

k

Vnk(t)c
(1)
nk (t), (4)

where c
(1)
nk are determined by Eqs. (2) and (3). Thus

c(2)n (t) = iε(2)n t− i
∑′

k

t∫
0

Vnk(t
′)c(1)nk (t

′)dt′ + c(2)n (0). (5)

The constant c
(2)
n (0) could be omitted as was c

(1)
n (0) above.

[142] This symbolic notation implies a multiplication by ψ
(0)∗
k (q) and integration over coordinates.
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The value of ε
(2)
n is found from the periodicity of the coefficient c

(2)
n (t). Taking

into account the fact that both Vnk(t) and c
(1)
n (t), as well as their product in (5),

are periodic functions with the period T , we find the correction:

ε(2)n =
1

T

∑′

k

T∫
0

Vnk(t)c
(1)
nk (t)dt

= − i

T

∑′

k

⎧⎪⎨⎪⎩ 1

eiωknT − 1

∣∣∣∣∣∣
T∫

0

Vnk(t)e
iωkntdt

∣∣∣∣∣∣
2

+

T∫
0

Vnk(t)e
−iωknt

t∫
0

Vnk(t
′)eiωknt

′
dt′dt

⎫⎬⎭. (6)

Using the fact that the perturbation is a Hermitian operator, we see (for ωkn �=
2πN/T ) that the relation inside the brackets is imaginary and ε

(2)
n is real. If

Vnk(q, t) ≡ Vnk(q) (i.e., the perturbation does not depend on time) then (6)
becomes a standard equation of stationary second-order perturbation theory
(VIII.1) for the level shift.

2) In the case of an harmonic perturbation of the form V̂ = V̂ (q) cosωt with
ω = 2π/T , relation (6) is simplified:

ε(2)n =
1

2

∑′

k

|Vnk(q)|2 ωkn

ω2 − ω2
kn

. (7)

We analyze this result below.
First, note that as ω → 0, relation (7) differs from the standard perturbation

theory equation for V̂ = V̂ (q) only by the factor 1/2. This corresponds to the

fact that ε
(2)
n is obtained as a result of an averaging, E

(2)
n (t) ∝ cos2 ωt, for an

“instantaneous” perturbation V̂ (q) cosωt, and cos2(ωt) = 1/2 (these results also
follow from the adiabatic approximation; see Problem 8.56). In the opposite limiting

case, ω → ∞, from (7) it follows that ε
(2)
n ∝ 1/ω2 (see Eq. (10) below).

In the important case of a system of charged particles interacting with an elec-
tromagnetic wave, where V̂ = −E0 · d̂ cosωt, from (7) it follows that the dynamic
polarizability of the system is (the z-axis is directed along E0):

βn(ω) = 2
∑′

k

ωkn|〈k|d̂z|n〉|2
ω2
kn − ω2

, ε(2)n = −1

4
βn(ω)E2

0 . (8)

For ω = 0, the dynamic polarizability coincides with the static polarizability.
Specifically for a linear oscillator, as well as in the case of a stationary electric
field in Problem 8.2, we find
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βn(ω) =
e2

m(ω2
0 − ω2)

, (9)

where ω0 is its fundamental frequency.
Using the relation pkn = imωknrkn and the sum rule from Problem 6.13, we see

that for a system of N charged particles with the same mass m and charge e, Eq.
(8) can be transformed to the form

βn(ω) = − 1

ω2

{
e2

m
N −

∑′

k

2ω3
kn|〈k|d̂z|n〉|2
ω2
kn − ω2

}
. (10)

The first term, β0(ω) = −e2N/mω2, corresponds to a level shift in the wave field,
as if the particle were free (compare to Problem 6.40, and also with (9) for ω0 = 0);
this term is dominant for ω → ∞. The correction term in (10) is reduced to a
diagonal matrix element, if we take into account the sum rule in Problem 14.11.

Eqs. (7)–(10) are not applicable for ω → ωkn, where ωkn = (E
(0)
k − E

(0)
n )/� is

the frequency of transitions between discrete levels, which are caused by the
perturbation, V̂ . In this resonance situation, even a weak perturbation leads to
a strong mutual interaction between resonance levels. Compare to the previous
problem.
A different scenario is realized if the resonant states with k ≡ ν are in the

continuous spectrum. Here, the application of perturbation results in ‘ionization’
of the system and a QES attenuation in time. To determine its lifetime, according

to Eq. (7), we should make the substitution E
(0)
n → E

(0)
n + iγ or ω2

kn → ω2
kn − iγ,

where γ > 0 is infinitesimal.
Writing

ε(2)n = Δε(2)n − i

2
Γn

and replacing the summation over k by the integration over ν, we find the width of
the QES,

Γn = −2Imε(2)n =
π

2

∫
|Vνn|2δ(Eν − E(0)

n − ω)dν, (11)

in accordance with the general equation for transition probability (remember that
Γn = �/τn = �ωn).
In conclusion, we note that for a system in a linearly-polarized electric field,

V̂ = −E0 · d̂ cos(ωt), the level width and the imaginary part of the dynamic polar-
izability are connected with the photo-ionization[143] cross-section for this state by
the relation

[143] This relation follows automatically from the comparison of the Vνn and single-photon transition
operator Eqs. (XIV.12) and (XIV.13), which determine the photo-effect cross-section. See Problems
14.18–14.20.
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Imβn(ω) =
c

4πω
σph.i.(ω), (12)

where c is the light-speed. Compare to Problems 11.63 and 14.20.

Problem 8.43

Analyze the quasi-energy states that appear when a periodic resonant perturbation

of the form V̂ = V̂0 cosωt is applied to a two-level system with the energies E
(0)
1,2 ,

where |ω − ω0| � ω0, �ω0 = E
(0)
2 − E

(0)
1 . Operator V̂0 does not depend on time, and

its diagonal matrix elements are equal to zero, while the off-diagonal elements are
given by (V̂0)12 = V0, V0 = V ∗

0 , where V0 � �ω0. Analyze the quasi-energy harmonics
of QES and compare to Problem 6.41.

Solution

We write the wavefunction in the form

ψ(t) =

(
ψ1(t)
ψ2(t)

)
, ψ1,2 = a1,2(t)e

−iE
(0)
1,2t/�

(compare to Problem 6.41). The Schrödinger equation, i�∂ψ/∂t = (Ĥ0 + V̂ )ψ, is

reduced to a system of two equations (�ω0 = E
(0)
2 − E

(0)
1 ):

i�ȧ1 = V0e
−iω0t cos(ωt)a2, i�ȧ2 = V0e

iω0t cos(ωt)a1. (1)

Consider the time factors:

e±iω0t cosωt =
1

2
[e±i(ω0−ω)t + e±i(ω0+ω)t].

The first term is a slowly changing function, while the second one is a rapidly changing
function of time. In the case of a weak perturbation, V0 � �ω, terms in Eqs. (1) that
contain a fast-changing factor could be omitted, since they do not play an important
role in transitions (compare to Problem 8.40). Taking into account this fact and making
the substitution

a1,2(t) = ã1,2(t)e
∓iγt/2, γ = ω0 − ω,

we transform the system (1) to the form (v0 = V0/�):

2i ˙̃a1 = −γã1 + v0ã2, 2i ˙̃a2 = v0ã1 + γã2. (2)
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We find two independent solutions of this system of equations with constant coefficients
by the substitution ã1,2(t) = C1,2e

−iλt:

λ1 =
1

2

√
γ2 + v20 , C

(1)
1 =

v0

γ +
√

γ2 + v20
C

(1)
2 ,

λ2 = −1

2

√
γ2 + v20 , C

(2)
1 = − 1

v0

(
γ +

√
γ2 + v20

)
C

(2)
2 .

So the general solution of the Schrödinger equation has the form

ψ(t) =
A1√
1 + β2

(
β

−e−iωt

)
e−iε1t/� +

A2√
1 + β2

(
eiωt

β

)
e−iε2t/�, (3)

where

ε1 = E
(0)
1 +

1

2
γ + λ, λ =

1

2

√
γ2 + v20 , (4)

ε2 = E
(0)
2 − 1

2
γ − λ, β =

γ + 2λ

v0
.

We should note that for exact resonance, i.e., ω = ω0, we have γ = 0 and
β = |v0|/v0 = ±1.

Each of the two terms in wavefunction (3) describes an independent QES, where
ε1,2 are the quasi-energies of these states. As is seen, there are only two quasi-energy

harmonics (see Problem 6.40), which correspond to the states

(
1
0

)
and

(
0
1

)
, i.e.,

they are the eigenfunctions of the unperturbed Hamiltonian, Ĥ0. Higher harmonics
have amplitudes proportional to powers of the small parameter, V0/�ω0 � 1, and so
do not appear in the approximation considered. The disappearance of these terms is
connected with neglecting fast-changing terms in the system of equations.

Problem 8.44

For the system with two channels considered in Problem 6.39, and in the case of a weak
coupling between the channels (β � α), find the width of the quasi-stationary state
in the channel with the excited composite particle, by perturbation theory. Consider
the non-interacting (a) and interacting (b) cases separately, and compare your results
in these two cases with each other and the exact result.

Solution

The transition probability per unit of time from a discrete state to a continuous state
under the influence of a constant perturbation is,

w =
2π

�

∫
|Vνn|2δ(Eν − E(0)

n )dν. (1)
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The perturbation in our case, V̂ = −
(
0 β
β 0

)
δ(x), is the part of the interaction

that corresponds to the coupling between the channels. For the wavefunction,

ψ
(0)
n , of the initial state,[144] we take the wavefunction ψ

(0)
n =

(
0

ψ0(x)

)
, of the bound

state in the channel with the excited composite particle (for definitions, see Problem
6.39). Here

ψ0(x) =
√
κ0e

−κ0|x|, κ0 =
mα

�2
, E(0)

n = Q0 − �
2κ2

0

2m
.

The state corresponds to a particle in the ground state of the δ-well (see Problem 2.7),
with the bottom of the continuous spectrum shifted by Q0 in this channel. Finally,

we have the wavefunction ψ
(0)
ν =

(
ψν(x)
0

)
, with the function ψν(x) describing a

continuum state in the main channel with energy Eν = E
(0)
n ; see below for a specific

choice of ψν .

a) Neglecting interaction in the main channel, we can use for ψν the wavefunction of
free motion, i.e., ψν = (2π)−1/2eikx; here ν ≡ k, −∞ < k < ∞, and Eν = �

2k2/2m.
Now the perturbation matrix element is

Vνn = 〈k|V̂ |0〉 = −β

∫
ψ∗
k(x)δ(x)ψ0(x)dx = −β

√
κ0

2π

and according to (1) we obtain

Γ = �ω =
β2κ0

�

√
2m

E
(0)
n

. (2)

b) To determine Γ more accurately, we should also take into account the interaction
(the δ-potential) in the final state. For the wavefunction ψν , it is convenient to
choose a state ψk,I with a definite parity I and k =

√
2mEν/�2 > 0. For the δ-

potential these wavefunctions have the form

ψk,−1 =
1√
π
sin kx, ψk,+1 =

1√
π
cos(k|x|+ δ),

using the matching conditions at x = 0 (see Problem 2.6), we find tan δ = mα/�2k.
The matrix element Vνn, where ν ≡ (k, I), differs from zero only for even states,
with I = +1, and there is equal to

Vνn = −β

√
κ0

π
cos δ.

[144] This state is truly bound only if we neglect the perturbation. Under the influence of the perturbation
it becomes quasi-stationary with the width Γ = �ω. Coupling to the opened channels plays the role
of a finite transparency of the barrier for quasi-stationary states of a one-channel system. Compare
to Problems 6.36 and 6.37.
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Taking into account the value of δ, according to (1), we obtain

Γ = �ω =
β2κ0k

Q0
, k =

√
2mE

(0)
n

�2
. (3)

Let us now compare our results (2) and (3). In case a), equation (2) is applicable
only for Q0 � |E0| = �

2κ2
0/2m, i.e., if the kinetic energy in the ground channel

is much larger than the binding energy. Indeed, in this case Eqs. (2) and (3)
almost coincide. For Q0 ∼ |E0|, Eq. (2) is not applicable (for particles with energy
E ∼ |E0|, the reflection coefficient R ∼ 1 and we cannot consider them as free).
Equation (3), which was derived under the assumption of a weak inter-channel
coupling, β � α, remains valid even in this case. Comparing (3) to the exact
solution, Eq. (4) from Problem 6.39, confirms this fact.

Problem 8.45

Find the probability of “ionization” per unit of time for a particle in the ground state
of a one-dimensional δ-well up to first order in perturbation theory (see Problem 2.7),
if the particle is under the influence of a uniform, periodic-in-time field, V (x, t) =
−xF0 cosω0t. Solve the problem both neglecting the interaction in the final state and
taking it into account.

Solution

The transition probability into a continuum state due to a periodic perturbation is

w =
2π

�

∫
|Fνn|2δ(Eν − E(0)

n − �ω0)dν. (1)

In this problem, V̂ = −F0x cos(ω0t) and hence F̂ = −F0x/2. Then (compare to the

solution of the previous problem) ψ
(0)
n =

√
κe−κ|x| is the wavefunction of the ground

state of the δ-well, κ = mα/�2, and E
(0)
n ≡ E0 = −�

2κ2/2m is the ground-state energy.

When neglecting the effect of the δ-potential on the particle in the final state, we
should choose ψν = (2π)−1/2eikx, with ν ≡ k, −∞ < k < ∞, Eν = �

2k2/2m. Calcu-
lating the matrix element

Fνn = −F0
√
κ

2
√
2π

∞∫
−∞

x exp{−(κ|x|+ ikx)}dx = i

√
2kκ3/2F0√

π(k2 + κ2)2
,

according to (1) we find

w =
2�F 2

0 |E0|3/2
√

�ω0 − |E0|
m(�ω0)4

. (2)
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Since we neglected the interaction in the final state, our results are formally valid if
the condition �ω0 � |E0| is fulfilled. However, the results are actually applicable for
�ω0 > |E0| (and in the vicinity of the threshold). To see this, we include the interaction.
We choose for ψν the exact wavefunctions of the unperturbed Hamiltonian, ψk,I , that
correspond to a definite parity I (compare to the previous problem). Now notice
that the matrix element Fνn is different from zero only for the odd states, whose
wavefunctions are not distorted by the δ-potential and coincide with the free-particle
wavefunction. So Eq. (2) holds even if we take into account interaction in the final
state, where there are no restrictions on the energy of the outgoing particle.

In conclusion, note that w = 0 for �ω0 < |E0| in the first-order perturbation theory.
Particle transitions to continuous spectrum appear in higher orders of perturbation
theory (“multi photon ionization”) and therefore has lower probability. Compare to
tunnel ionization in a static field, in the limiting case ω0 → 0. See Problem 6.39.

Problem 8.46

A particle is in a one-dimensional short-range potential, U(x), such that U(x) → 0 for
x → ±∞. Considering this potential as a perturbation, find the reflection coefficient
using perturbation theory for transitions in the continuous spectrum. Determine
applicability conditions for your result and compare it to Problem 8.29.

Solution

For transitions in the continuous spectrum,

dwν0ν =
2π

�
|Vν0ν |2δ(Eν − Eν0

)dν, ν �= ν0. (1)

ν0 and ν are the wave “vectors” (one-dimensional motion) of free particles, and the
corresponding wavefunctions are

ψk =

√
m

�k
eikx, ψk′ =

1√
2π

eik
′x.

Let us point out a few caveats about normalization. While the final wavefunctions
are normalized in the usual way, the initial states are to be normalized according to
the following considerations. If we consider the system to be inside a “box” of a large
dimension, L, the initial wavefunction should be chosen in the form ψν0

= eikx/
√
L

(normalized to unity). The transition probability w has the right physical dimension of
inverse time, T−1. But for the states of the continuous spectrum, we usually consider
not a single particle but a particle current, with the current density j = ρv = v/L. An
important quantity in this case is not the probability, but a “cross-section” defined
by the formula σ = w/j. It does not depend on a choice of L (unlike the transition
probability). In the one-dimensional case, the “cross-section” is dimensional and has
the physical meaning of a reflection coefficient.
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If we perform integration over ν (i.e. over k′) in Eq. (1), we obtain

R = w(k → k′ = −k) =
m2

�4k2

∣∣∣∣∣∣
∞∫

−∞
U(x)e2ikxdx

∣∣∣∣∣∣
2

.

Transitions appear to the states with k′ = −k that correspond to reflected particles.

8.5 Sudden perturbations

Problem 8.47

A system described by Hamiltonian Ĥ0 is in the nth discrete state. At t = 0, the
Hamiltonian changes abruptly and becomes Ĥf = Ĥ0 + V̂0, where neither V̂0 nor Ĥ0

depend on time. Find the probabilities of different stationary states for t > 0. Find
the mean energy and show that for a small perturbation, V̂0, these results can also be
obtained by time-dependent perturbation theory.

Solution

1) The wave-function does not have time to change during the sudden change and
therefore coincides with the initial wavefunction (the n-th eigenstate, ψn,i, of the
original Hamiltonian) right after the perturbation is turned on.
The change of the expectation value of the system energy after the perturbation

is turned on therefore reads[145]

ΔE = 〈n, i|V̂0|n, i〉. (1)

The expansion coefficients of wavefunction ψn,i in the eigenfunctions ψk,f of the

final Hamiltonian (Ĥf = Ĥ0 + V̂0),

ψn,i =
∑
k

cknψk,f ,

determine the desired transition probabilities:

w(ni → kf ) = |ckn|2 = |〈k, f |n, i〉|2. (2)

2) Considering V̂0 as a small perturbation, we can use the known expansion of
perturbation theory (see Eq. (VIII.2)) and find, analogously to (2),

w(1)(ni → kf ) =
|〈k, f |V̂0|n, i〉|2
(En,i − Ek,i)2

, k �= n. (3)

[145] See also Problem 9.22, where sudden perturbations are considered within the quasi-classical
approximation.
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The same result could be obtained by non-stationary perturbation theory. Integra-
tion in Eq. (VIII.8) by parts gives

a
(1)
kn (t) =

1

�ωkn

t∫
−∞

eiωknt
∂Vkn

∂t
dt− Vkn(t)

�ωkn
eiωknt. (4)

In this problem V̂ = V̂0η(t), where η(t) is the step function (η(t) = 1 for t > 0 and
η(t) = 0 for t < 0). Since dη(t)/dt = δ(t), we see that for t > 0, the first term in the
right-hand side of (4) that determines transition probability reproduces Eq. (3).
The second term in (4) describes a distortion of the wavefunction of the nth state
for t > 0 by perturbation V̂0, and is unrelated to system transitions.

Problem 8.48

A system experiences an impulse perturbation V̂ = Ŵ0δ(t), so its Hamiltonian has the
form Ĥ = Ĥ0 + Ŵ0δ(t). For t < 0 the system was in the nth state of discrete spectrum.
Find the probabilities of different quantum states for t > 0. For small perturbation V̂ ,
compare these probabilities to the result of non-stationary perturbation theory.

Illustrate your general result on the example of the specific petrubation with W0 =
−P0x (here, P0 is constant parameter that has the physical dimension of momentum
and x is the particle coordinate).

Solution

To determine how the wavefunction changes due to the impulse, it is convenient to
consider it a τ → 0 limit of the interaction V̂ (t, τ) = Ŵ0f(t), where the function f(t)
differs from zero only for |t| < τ , and its integral in the limits from −τ to τ is equal
to 1. The Schrödinger equation for |t| < τ takes the form i�ψ̇ = Ŵ0f(t)ψ (the term
Ĥ0 in the Hamiltonian is omitted since for the infinitely small period of time τ , it
does not yield a noticeable change; we only need f(t) ∼ 1/τ → ∞). The solution of
this equation gives

ψ(t) = exp

⎧⎨⎩− i

�

t∫
−τ

f(t′)dt′Ŵ0

⎫⎬⎭ψ(−τ). (1)

If we put t = τ and take the limit τ → 0 we find

ψ(t = 0+) = exp

{
− iŴ0

�

}
ψ(t = 0−). (2)

Taking into account that, ψ(0−) = ψ
(0)
n , we find the desired probabilities:

w(n → k) =

∣∣∣∣∫ ψ
(0)∗
k exp

{
− i

�
Ŵ0

}
ψ(0)
n dτq

∣∣∣∣2. (3)
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Expanding the exponential in the case of a small perturbation, where |(Ŵ0)kn| � �,
gives

w(n → k) ≈ w(1)(n → k) =
1

�2
|(Ŵ0)kn|2, k �= n,

which coincides with the result of non-stationary perturbation theory that is obtained
by integration (due to the δ-function) in Eq. (VIII.8).

The impulse of the form V (x, t) = −xP0δ(t) exerted on a classical particle results
in giving the particle a momentum kick, P0 =

∫
F (t)dt. This interpretation remains

valid in quantum mechanics, which follows (compare to Problem 6.26) from (2).
Indeed, wavefunctions in the momentum representation just before (ai(p) = 〈p|t =
0−〉) and just after (af (p) = 〈p|t = 0+〉) the impulse are related by expression
af (p) = ai(p− P0).

Problem 8.49

A particle is in the ground state of an infinitely deep potential well with the width a
(0 < x < a). At some moment, the well’s right wall moves suddenly (in a short period
of time, τ) to the point b > a. Find probabilities of different quantum states after the
wall stops.

Solution

From equation (2) from Problem 8.47, we find

w(0 → k) =
4ab3

π2[a2(k + 1)2 − b2]2
sin2

π(k + 1)a

b
.

The applicability condition is τωk0 = π2(k + 1)2�τ/ma2 � 1.

Problem 8.50

A particle is in the ground state of a δ-well, so that U = −αδ(x). The parameter α
that characterizes the “depth” of the well changes suddenly to α̃ (physically, this may
occur if the charge of an atomic nucleus changes suddenly, for example, for β-decay).
Find

a) the probability of the particle to remain in the ground state,

b) the momentum distribution of the particle escaped from the well.

Solution

a) Use the relation

ψ0(x, α) =
√
κe−κ|x|, where κ =

mα

�2
,
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for the ground state wavefunction in a δ-well (see Problem 2.7). According to
general equation (2) from Problem 8.47 for transition probabilities, we find the
probabilities for the particle to remain bound by the well:

w0 ≡ w(0i → 0f ) =

∣∣∣∣∫ ψ∗
0(x, α̃)ψ0(x, α)dx

∣∣∣∣2 =
4αα̃

(α+ α̃)2
. (1)

b) To consider transitions into the continuous spectrum, it is convenient to choose
the states, ψk,I(k) corresponding to states with definite parity I as the basis
classifying the final states. Such functions, normalized to δ-functions and with
k =

√
2mE/�2 > 0, were obtained in Problem 8.44. Using the expression for them

and according to a generalization of Eq. (2) from Problem 8.47 to the case of
continuous spectrum, we find

dw(k) =

∣∣∣∣∫ ψ∗
k,I=+1(x, α̃)ψ0(x, α)dx

∣∣∣∣2 dk =
4

π

κ(κ− κ̃)2k2dk

(κ2 + k2)2(κ̃2 + k2)
. (2)

This distribution is normalized to 1− w0, where w0 is determined by Eq. (1).
Transitions appear only to the even final states, and therefore the probabilities of
the momentum values p = ±�k are the same. As is seen from Eqs. (1) and (2), in
the case of α ≈ α̃, the escape probability is small, while for the values α̃ � α and
α̃ � α, the probability for the particle to remain in the bound state is small.

Problem 8.51

A particle is in the ground state of a δ-well, so that U = −αδ(x). At t = 0, the well
begins to move with a constant speed V . Find the probability that the well will carry
the particle with it. Consider the limiting cases of small and large velocities.

Solution

To calculate the probability, we turn to the coordinate system K ′ that moves together
with the well, where x′ = x− V t. The particle wavefunctions immediately after the
motion commences in the initial, ψ0(x), and moving, ψ̃0(x

′), coordinate systems have
the form

ψ̃0(x
′) = exp

{
− i

�
mV x′

}
ψ0(x

′), ψ0(x) =
√
κe−κ|x|.

κ = mα/�2 (see Problem 2.7). The relation between the wavefunctions reflects the fact
that the Galilean transformation is just the substitution p → p′ = p−mV (compare
to 6.26). Since the wavefunction of the particle bound state in K ′ is obtained from
ψ0(x) by changing x → x′, then the probability given from Eq. (2) in Problem 8.47
becomes

w0 =

∣∣∣∣∫ ψ∗
0(x

′)ψ̃0(x
′)dx′

∣∣∣∣2 =
1

(1 + V 2/4v20)
2
,
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where v20 = α2/�2 (we should note that v20 coincides with v2, which is the mean value of
the velocity square in the ground state of the particle in a δ-well). In the case V � v0,
we have w0 ≈ 1− V 2/2v20 ≈ 1, which means that the particle remains confined to
the well with the large probability. On the contrary, in the limiting case of V � v0,
w0 ≈ (2v0/V )4 � 1, the particle will most probably escape the well.

Problem 8.52

For a charged oscillator in the ground state, an homogeneous electric field is sud-
denly applied along the oscillation axis. Find the excitation probability into different
oscillator states after the field turns on. Compare to the result of Problem 6.25.

Solution

The probabilities are w(0 → n) = |〈n, f |0, i〉|2 (see Eq. (2) in Problem 8.47). The
easiest way to calculate these matrix elements is to use the creation and annihilation
operator formalism (compare to Problem 6.25). For an unperturbed oscillator, âi =
(2�)−1/2(λx+ iλ−1p̂), where λ =

√
mω; the ground state is determined by the relation

âi|0, i〉 = 0. Application of an electric field is equivalent to a shift of the oscillator
equilibrium point to x0 = eE/mω2, so that here âf = âi − λ(2�)−1/2x0. Meanwhile,
the final (for t > 0, after the field turns on) stationary states are determined by the
relations

|n, f〉 = 1√
n!
(â+f )

n|0, f〉, âf |0, f〉 = 0.

The expansion coefficients |0, i〉 = ∑
n
cn|n, f〉 were calculated in Problem 6.25. Using

these values we find the desired transition probabilities:

w(0 → n) = |cn|2 =
1

n!
α2ne−α2

, α = − λx0√
2�

. (1)

As is seen, the dependence of the transition probabilities on the quantum state n of
the oscillator is described by the Poisson distribution.

Problem 8.53

For a linear oscillator in the ground state at the moment t = 0, the equilibrium point
of the oscillator begins to move with velocity V . Find the probability of transitions
into different oscillator states for t > 0.

Solution

We should act as in the previous problem. The transformation to the frame of reference
moving with the velocity V corresponds to the change of particle momentum by −mV ,
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so that now âf = âi − imV/
√
2�λ. The probability distributions are determined by Eq.

(1) of the previous problem, where we should put |α| = mV/
√
2�λ.

8.6 Adiabatic approximation

a) Adiabatic approximation in non-stationary problems

Problem 8.54

A Hamiltonian, Ĥ(p̂, q, λ(t)), explicitly depends on time. For each moment of time, t,
a discrete energy spectrum, En(λ(t)), of the “instantaneous” Hamiltonian is assumed
to be known. A complete system of the corresponding orthonormal eigenfunctions,
ψn(q, λ(t)), is also known.

Write the wave equation for the system in the basis of functions ψn(q, λ(t)). Prove
that for an adiabatic change (in the limit λ̇ → 0), the distribution of quantum states
does not depend on time. What is the classical analog of this result?

Solution

We write the system wavefunction in the form of expansion[146]

ψ(q, t) =
∑
n

Cn(t)ψn(q, t) exp

⎧⎨⎩− i

�

t∫
0

En(t
′)dt′

⎫⎬⎭. (1)

Here

Ĥ(p̂, q, λ(t))ψn(q, λ(t)) = En(λ(t))ψn(q, λ(t)), (2)

while coefficients Cn(t) are the wavefunctions in the representation used. Substituting
(1) into the Schrödinger equation, multiplying both its sides by ψ∗

k(t) from the left,
and integrating over coordinates q using wavefunction ψn(q, t) orthogonality, we find

Ċk(t) = −
∑
n

Cn(t) exp

⎧⎨⎩ i

�

t∫
0

(Ek − En)dt
′

⎫⎬⎭
∫

ψ∗
k(t)ψ̇n(t)dq. (3)

This is the sought-after equation.[147] It is convenient to use it for Hamiltonians slowly-
varying with time. Indeed, since ψ̇n = λ̇∂ψn/∂λ, then 〈ψk|ψ̇n〉 ∝ λ̇ � 1, and in the

[146] For brevity below we write ψn(q, t) instead of ψn(q, λ(t)), and often do not show the coordinate
q dependence.

[147] We can write it in the form of the Schrödinger equation, i�Ċk =
∑
n

H′′
knCn ≡ Ĥ′′Ck. Here

the operator (matrix) Ĥ′′ is Hermitian and describes the Hamiltonian of the system in the
energy representation of the instantaneous Hamiltonian. However, its connection with the initial
Hamiltonian due to a non-trivial time-dependence of the unitary transformation is not obvious.
Compare to Problem 6.28.
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zeroth approximation we can put the right side of equation (3) equal to zero and
obtain[148]

Cn(t) ≈ C(0)
n = const. (4)

This can be characterized as the (approximate) conservation of the quantum state
number during the adiabatic change. This result is the quantum-mechanical analog of
the adiabatic invariance of the value

I =
1

2π

∮
pdq,

in classical mechanics. This analogy becomes more straightforward in the quasi-
classical case (see the next chapter) if we take into account the Bohr–Sommerfeld
quantization rule.

In conclusion, we should mention the following circumstance. Despite the slow
evolution of the Hamiltonain, it can change significantly during a long-enough time
interval (its final form may be nothing like the initial Hamiltonian). Nevertheless, if
at the initial moment of time the system was in the nth quantum state, then it would
most likely remain in the same quantum state but with the wavefunction ψn(q, λ(t)).

Problem 8.55

In the conditions of the previous problem, consider the system to be in the nth non-
degenerate quantum state at t = t0, and find its wavefunction for t > t0 in the first
order of adiabatic perturbation theory.

Using the results obtained, consider the excitation of a charged linear oscillator,
that was in the ground state at t → −∞, under the action of an homogeneous electric
field E(t). Compare to the exact solution (see Problem 6.25). Analyze the forms of
E(t) given in Problem 8.33.

Solution

1) Let us first clarify the conditions for result (4) of the previous problem to be valid,
by transforming the matrix element 〈ψk|ψ̇n〉 from Eq. (3). We differentiate both
parts of Eq. (2) from Problem 8.54 with respect to λ, then multiply it by ψ∗

k from
the left and integrate over the coordinates. Taking into account the hermiticity of
Ĥ, we obtain

∫
ψ∗
kψ̇ndq =

1

En(t)− Ek(t)

∫
ψ∗
k

(
∂Ĥ

∂t

)
ψndq, k �= n. (1)

[148] For an applicability condition, see the following problem.
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More precisely, for Ek �= En. In the case of n = k, we can always make 〈ψn|ψ̇n〉
equal to zero[149] by a change of the phase factor. So relation (3) from Problem
8.54 takes the form

Ċk(t) =
∑′

n

1

�ωkn(t)

(
∂Ĥ

∂t

)
kn

exp

⎧⎨⎩i

t∫
0

ωkn(t
′)dt′

⎫⎬⎭Cn(t). (2)

The term with n = k in the sum is absent, and �ωkn = Ek − En. If the derivative,
∂Ĥ/∂t, is small enough, then Ċk ≈ 0 and

Ck ≈ C
(0)
kn = const = δkn

from the problem condition. In the next approximation of adiabatic perturbation
theory, according to (2), for k �= n we have

C
(1)
kn (t) =

1

�ωkn(t)

(
∂Ĥ

∂t

)
kn

exp

⎧⎨⎩i

t∫
0

ωkn(t
′)dt′

⎫⎬⎭.

Integrating with the given initial condition, we obtain

C
(1)
kn (t) =

∫ t

t0

1

�ωkn(t′)

(
∂Ĥ

∂t′

)
kn

exp

⎧⎨⎩i

t′∫
0

ωkn(t
′′)dt′′

⎫⎬⎭ dt′. (3)

An order-of-magnitude estimation of C
(1)
kn has the form

|C(1)
kn | ∼

∣∣∣∂Ĥ∂t 1
ωkn

∣∣∣
|Ek − En| .

In the right-hand we have the ratio of the Hamiltonian change during the time of
Bohr period, ω−1

kn , and the energy difference between the corresponding levels. If
this ration is small then the evolution of the Hamiltonian can be considered slow
(adiabatic). We should mention that if while Ĥ(t) is changing with time, some levels
come closer to each other (so that Ek(t

′) ≈ En(t
′)), then the adiabaticity is broken,

and in this case the transitions between the nth and kth states are most intensive.

2) For the oscillator in an electric field, we have

Ĥ =
p̂2

2m
+

kx2

2
− eE(t)x.

[149] Since for a real eigenfunction we have

〈ψn|ψ̇n〉 = 1

2

∂

∂t

∫
ψ2
ndq = 0.
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The eigenfunctions and eigenvalues of the instantaneous Hamiltonian are given in
Problem 2.2. Here ∂Ĥ/∂t = −eĖx, while the matrix element (∂Ĥ/∂t)k0 for the
levels k �= 0 is different from zero only for k = 1, where it is equal to −eaĖ/√2,
a =

√
�/(mω). From Eq. (3) we obtain (we put t0 = −∞)

C
(1)
10 (t = +∞) = − ea√

2�ω

∞∫
−∞

∂E
∂t

eiωtdt. (4)

So the probability of a single allowed oscillator transition in the first order of
adiabatic perturbation theory is

W (0 → 1) = |C(1)
10 |2 =

e2a2

2�2

∣∣∣∣∣∣
∞∫

−∞
E(t)eiωtdt

∣∣∣∣∣∣
2

. (5)

Assuming that the electric field is turned off for t → +∞, we make substitution
(4) and integrate by parts. This result coincides with that obtained in Problem
8.33 using the methods of usual non-stationary perturbation theory[150] and differs
from the exact result only slightly (see Problem 6.25) for W � 1. The transition
probabilities for the forms of E(t) given in the problem statement coincide with
those given in Problem 8.33.

Problem 8.56

Analyze the quasi-energy states[151] in the adiabatic approximation. Consider the
energy spectrum of the instantaneous Hamiltonian to be discrete and non-degenerate.

Solution

The solution of the Schrödinger equation in the “zeroth” approximation of adiabatic
approximation theory for a periodic dependence on time (see the previous problem in
the case when λ(t+ T ) = λ(t)) is

ψcn(q, t) = exp

⎧⎨⎩− i

�

t∫
0

En(λ(t))dt

⎫⎬⎭ψn(q, λ(t)). (1)

[150] The reason that the result of adiabatic approximation (whose applicability condition is r � ω−1,
eaE/�ω2r � 1) coincides with the result of perturbation theory (applicability condition is eaE �
�ω) is that the specific action of the homogeneous field on the oscillator is reduced to a shift of
the equilibrium point. This causes the perturbation matrix elements to differ from zero only for
transitions between the neighboring oscillator levels.

[151] See Problem 6.40.
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This describes the QES. It is assumed that the phase factor in the eigenfunctions ψn

themselves is chosen so that ψ̇n ∼ λ̇. Transforming the exponent with

t∫
0

Endt =

t∫
0

(En(t)− En)dt+ Ent,

we see that the value of quasi-energy for this state in the zeroth approximation is
equal to

εn = En =
1

T

T∫
0

En(λ(t))dt, (2)

i.e., it coincides with the mean value over the period of Hamiltonian change of En(t).
The expansion of the periodic function

exp

⎧⎨⎩− i

�

t∫
0

(En(t)− En)dt

⎫⎬⎭ψn(q, λ(t))

into a Fourier series determines the quasi-energy harmonics of QES. See Problem 6.40.

Problem 8.57

A particle is in the field of two δ-wells approaching each other, so that

U(x, t) = −α

[
δ

(
x− L(t)

2

)
+ δ

(
x+

L(t)

2

)]
.

For t → −∞, the wells were infinitely separated and the particle was bound by one of
them. The distance L(t) between wells decreases slowly, and at some moment of time
the wells collide: U(x) = −2αδ(x). Find the probability for a particle to remain in a
bound state.

Solution

The probability for the particle to remain bound is equal to 1/2.

Taking into account parity conservation, it is convenient to analyze the time-
dependence of even and odd wavefunction components separately. Denoting the bound
state wavefunction in a δ-well by ψ0(x), and assuming for concreteness that for
t → −∞ the particle was bound by the right well, we write the wavefunction of the
initial state in the form ψ(t = −∞) = (ψ+ + ψ−)/

√
2, where

ψ± =
1√
2

{
ψ0

[
x− L(−∞)

2

]
± ψ0

[
x+

L(+∞)

2

]}
.
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For a large distance between the wells, L(−∞) = ∞, both the even ψ+ and odd ψ−
wavefunction components describe the bound particle with energy equal to the energy
in the field of one well (the level is two-fold degenerate).

Now we note that regardless how exactly the wells approach each other, we can
predict that when the wells run into one another, the odd wavefunction component
would describe an “unbinding” of the particle. That is due to the fact that in the field
of a single δ-well, there is only one even discrete state. (We should note that when
the two wells are close, the discrete odd level and continuum merge together, and the
adiabatic approximation for the odd part of the wavefunction is not applicable.)

The time-dependence of the even component of the wavefunction depends strongly
on a specific motion of the wells, but if it has adiabatic nature then the particle remains
in the ground state. Since for the initial state the probability of the particle being in
an odd state is 1/2, then the probability for it to remain bound for a slow collision of
the wells is also 1/2, which we mention at the beginning of this solution.

The applicability condition of this result is |L̇| � α/�. But this condition must
be fulfilled only when the wells approach to a distance of the order of the particle
localization length in the δ-potential ground state, i.e., L ≤ �

2/mα. At large distances
there is not such a strict restriction on the well velocity, since in this case the particle
localized in one of the wells does not “feel” the other well, while for the well motion with
an arbitrary (but constant) velocity, in accordance with the principle of relativity, there
are no transitions. (On distances L � �

2/mα it is only required that the acceleration
L̈ is not too large.)

b) Adiabatic approximation in stationary problems

Problem 8.58

The Hamiltonian of a system consisting of two subsystems has the form

Ĥ = Ĥ1(x) + V (x, ξ) + Ĥ2(ξ),

where x, ξ are the coordinates of the first and second subsystem, and V (x, ξ) describes
an interaction between them. Considering the characteristic frequencies of the first
(“fast”) subsystem to be much larger than the frequencies of the second (“slow”)
subsystem, reduce the problem of finding the energy levels and corresponding wave-
functions of the full system to the solution of the Schrödinger equation for separate
subsystems.

Use these results to analyze the states in the lower part of the energy spectrum in
a two-dimensional potential of the form

U(x, y) =

{
0, x2

a2 + y2

b2 ≤ 1,

∞, x2

a2 + y2

b2 > 1,

for the case b � a.
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Solution

Let us introduce ψn1
(x, ξ) and En1

(ξ), to be the eigenfunctions and the eigenvalues
of the operator Ĥ ′ = Ĥ1(x) + V (x, ξ) for the “slow” subsystem with fixed values of
coordinates ξ, so that

[Ĥ1(x) + V̂ (x, ξ)]ψn1
(x, ξ) = En1

(ξ)ψn1
(x, ξ). (1)

These play a role analogous to eigenfunctions and eigenvalues of the instantaneous
Hamiltonian in adiabatically-driven systems (see Problems 8.54 and 8.55). For the
exact eigenfunctions of the total system Hamiltonian, an expansion of the form

ΨN (x, ξ) =
∑
n1

φNn1
(ξ)ψn1

(x, ξ)

is valid.

The important thing is that for the “fast” subsystem, the change of “slow” system
state works like an adiabatic perturbation, where the quantum numbers are conserved
(see Problem 8.54). Neglecting transitions, we obtain an approximate expression for
the wavefunction, which corresponds to taking into account only one term in the sum
given above:

ΨN ≈ ψn1n2
(x, ξ) = φn1n2

(ξ)ψn1
(x, ξ). (2)

Using the Schrödinger equation,

[Ĥ1 + V (x, ξ) + Ĥ2]φn1n2
(ξ)ψn1

(x, ξ) ≈ En1n2
φn1n2

(ξ)ψn1
(x, ξ),

and taking into account relation (1), we make the following transformations. We
multiply both parts of the equation obtained by ψ∗

n1
from the left, integrate over the

coordinates x of the “fast” subsystem, and neglect the action of operator[152] Ĥ2(ξ)
on the variable ξ from wavefunction ψn1

(x, ξ) (i.e., put Ĥ2φψ ≈ ψĤ2φ; here again we
take advantage of the difference between the typical motion times); as a result, we
obtain the Schrödinger equation for the “slow” subsystem:

[Ĥ2(ξ) + En1
(ξ)]φn1n2

(ξ) = En1n2
φn1n2

(ξ). (3)

As is seen in the approximation considered, interaction with the “fast” subsystem is
characterized by an effective potential, here as Ueff (ξ) = En1

(ξ).

Eqs. (1)–(3) are the basis of adiabatic approximation for stationary states. For
example, with the potential given in the problem condition, since b � a, we have
motion along x as a “fast” subsystem, and motion along y as a “slow” subsystem.
For a fixed y, motion along x is a motion in an infinitely deep well with the width
a(y) = 2a

√
1− y2/b2, so that

[152] An analogy with the case of adiabatic approximation considered in Problems 8.54 and 8.55, is seen
in the fact that there, while calculating the derivative ∂ψ/∂t, we could omit the term obtained by
differentiating the instantaneous wavefunction ψn(q, λ(t)) over time.
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ψn1
=

√
2

a(y)
sin

[
π(n1 + 1)

a(y)

(
x+

a(y)

2

)]
, En1

(y) =
�
2π2(n1 + 1)2

2ma2(y)
.

According to Eq. (3), along y the particle moves in an effective potential:

U(y) = En1
(y) =

�
2π2(n1 + 1)2b2

8ma2(b2 − y2)
, |y| < b.

For such a potential, wavefunctions of the energy levels that are not too high are
localized on the distances |y| � b, where the effective potential can be expanded in a
series:

U(y) ≈ �
2π2(n1 + 1)2

8ma2
+

�
2π2(n1 + 1)2

8ma2b2
y2.

The calculation of the wavefunction, φn1n2
(y), and levels, En1n2

, can be reduced to
the problem of an harmonic oscillator, which allows us to obtain

En1n2
=

�
2π2(n1 + 1)2

8ma2
+

�
2π(n1 + 1)

2mab

(
n2 +

1

2

)
,

ψn1n2
= (2n2

√
πy0n2!)

−1/2 exp

{
− y2

2y20

}
Hn2

(
y

y0

)
ψn1

(x, y), n1,2 = 0, 1, . . . , (4)(
y0 =

√
2ab

π(n1 + 1)
, y20

(
n2 +

1

2

)
� b2

)
.

Problem 8.59

The Hamiltonian has the form

Ĥ =
1

2m
p̂2x +

1

2M
p̂2y +

k(x2 + y2)

2
+ αxy, |α| < k,

where M � m (two bound oscillators with different masses). Find the energy levels
and corresponding wavefunctions using the adiabatic approximation. Compare the
result obtained with the exact solution (see Problem 2.50).

Solution

The fast subsystem is the light oscillator with the mass m which is characterized
by the coordinate x. For a fixed y, the coordinate of the slow subsystem, we have
(ω =

√
k/m):

ψn1
≡ ψosc

n1

(
x+

αy

k

)
, En1

(y) = �ω

(
n1 +

1

2

)
− α2

2k
y2.
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The wavefunctions and energy levels of the slow subsystem are determined according
to Eq. (3) of the previous problem. In this case,

En1n2
= �ω

(
n1 +

1

2

)
+ �ω

√
m

M

(
1− α2

k2

)(
n2 +

1

2

)
;

compare to the exact result for the spectrum from Problem 2.50 by making an
expansion over the small parameter

√
m/M .

Problem 8.60

Two particles with sharply different masses,M � m, are in an infinitely deep potential
well of width a, and interact with each other as mutually impenetrable points. Find
the low-lying energy levels and the corresponding wavefunctions.

Solution

We use the adiabatic approximation. See Problem 8.58. The fast subsystem is the
light particle (coordinate x1). Its levels and wavefunctions for a fixed value of x2, the
coordinate of the heavy particle (slow subsystem), have the form

ψn1
=

√
2

a− x2
sin

π(n1 + 1)(x1 − x2)

a− x2
, En1

(x2) =
�
2π2(n1 + 1)2

2m(a− x2)2
.

For concreteness, we put x2 < x1; the wavefunction is equal to zero for the values
x1 > a and x1 < x2. Compare to Problem 2.51.

The energy, En1
(x2), acts as an effective potential, U(x2), for the heavy particle

with 0 < x2 < a (outside this interval, U = ∞). For the lower energy states, the typical
position of the heavy particle, x2 � a, and U(x2) could be expanded in series (compare
to Problem 8.58):

U(x2) ≈ �
2π2(n1 + 1)2

2ma2
+

�
2π2(n1 + 1)2

ma3
x2, x2 ≥ 0.

Now calculation of the spectrum, En1n2
, and the eigenfunctions, φn1n2

(x2), is reduced
to the one considered in Problem 2.8. Using the result of this problem, we obtain

En1n2
=

�
2π2(n1 + 1)2

2ma2
+

[
�
6π4(n1 + 1)4

2m2Ma6

]1/3
αn2+1; n1,2 = 0, 1, . . . .

Here −αk, where k = 1, 2, . . . , is the sequence of the Airy function zeros increasing
order.
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Problem 8.61

Using the adiabatic approximation, analyze the energy spectrum and the correspond-
ing wavefunctions of bound states in a central attractive potential, U(r), and in the
presence of a strong, homogeneous magnetic field.

Use your general considerations to find (a) the shift of Landau levels by a short-
range potential and (b) the ground state of the hydrogen atom in a strong magnetic
field.

Solution

The particle Hamiltonian has the form

Ĥ = Ĥt +
1

2μ
p̂2z + U(

√
ρ2 + z2),

where

Ĥt = − �
2

2μ

(
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2
∂2

∂2ϕ

)
− e�

2μc
Hl̂z +

e2H2

8μc2
ρ2

is the Hamiltonian of the transverse motion in an homogeneous magnetic field, directed
along the z-axis with the vector potential A = [H× r]/2 (see Problem 7.1).

In the case of a strong enough magnetic field, the particle motion in the transverse
direction is determined generally by this field. Here ωH = |e|H/μc, which is the typical
frequency of such motion, exceeds strongly the frequency of the longitudinal motion.
So, we can use the adiabatic approximation (see Problem 8.58). Here as a “fast”
subsystem, we take the motion of the particle in the transverse direction. For this,
the potential, U(r), can be considered as a perturbation. And the wavefunctions of
the “fast” subsystem (for a fixed value of the coordinate z of the longitudinal motion
that characterizes the “slow” subsystem) in the “zeroth” approximation have the form

ψn1
≡ ψnm(r) ≈ ψ(0)

nm(ρ) =
eimϕ

√
2π

1

aH |m|!
[
(nρ + |m|)!

nρ!

]−1/2

x|m|/2

× e−x/2F (−nρ, |m|+ 1, x) (1)

(they do not depend on z), where

x =
ρ2

2a2H
, aH =

√
�

μωH
, n = nρ +

|m| − em/|e|
2

.

Energy levels of the “fast” subsystem in the first order of perturbation theory are
described by the expressions
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En1
(z) ≡ Enm(z) ≈ E(0)

n + E(1)
mn(z); E(0)

n = �ωH

(
n+

1

2

)
, (2)

E(1)
mn(z) =

∞∫
0

U(
√
ρ2 + z2)|ψ(0)

nm(ρ)|22πρdρ,

here E
(0)
n determine the Landau levels.

Now, according to Problem 8.58, solving for the wavefunctions ψ
(0)
nm(ρ)ψnn2

(z) and
the energy spectrum En1n2

≡ Enmn2
of the bound states is reduced to a solution of

a one-dimensional Schrödinger equation in an effective potential that coincides with

E
(1)
nm(z). The properties of such bound states depend essentially both on the form of

potential U(r) and quantum numbers n, m that characterize the transverse motion
(the “fast” subsystem).

Let us consider some special cases.

1) It is possible to analyze the case of a “shallow” spherical well U(r) (of an arbitrary
form) with radius R and characteristic depth U0, for which μR2U0/�

2 � 1, and
without particle bound states in the absence of a magnetic field. The effective

potential Ueff ≡ E
(1)
nm(z) also defines a “shallow” well, but one-dimensionally. In

such a well, for each pair of quantum numbers n, m there is one and only one
bound state, for which (compare, for example, to Problem 2.22)

Enm0 ≈ E(0)
n − μα2

nm

2�2
; ψ0(z) ≈

√
μαnm

�2
exp

{
−μαnm

�2
|z|
}
,

αnm = −2

∞∫
0

∞∫
0

U(
√
ρ2 + z2)|ψ(0)

nm(ρ)|22πρdρdz > 0. (3)

So, for example, in the case of a weak magnetic field,[153] for which aH � R, it
follows that

αnm ∝ −a
−2|m|−2
H

∫ ∫
U(r)ρ2|m|+1dρdz ∼ RU0

(
R

aH

)2|m|+2

∝ H|m|+1. (4)

In the integral, values ρ ≤ R � aH are important, for which, according to (1),

ψ
(0)
nm ∝ ρ|m|/a|m|+1

H . We see that the binding energy, equal to μα2
nm/2�2, decreases

sharply with the increase of |m|. We should emphasize that the value l‖ ∼ �
2/μαnm

determines a localization domain in the z-direction. Also, we can see l‖ � l⊥, where
l⊥ ∼ aH is the size of the particle’s localization domain in the plane perpendicular to
the magnetic field. Thus the particle localization domain has a needle-shaped form.
This property remains even with an increase of the magnetic field, when condition
aH � R is not fulfilled. The needle-shaped form of the particle’s wavefunction

[153] We should mention that the results obtained for a “shallow” well do not put any restrictions on
the value of the magnetic field. The field could also be weak. Compare to Problem 7.7.
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localization domain is connected with the difference in periods for motion along
and across the magnetic field in the adiabatic approximation.

2) Now let the attractive potential U(r) be strong, so that μR2U0/�
2 ≥ 1. To consider

it as perturbation on the background of the magnetic field, the latter must be so
strong that the condition R � aH ∝ 1/

√H is fulfilled. For the states with quantum
numbers n, m ∼ 1 (or

√
n,

√|m| � R/aH ; compare to Problem 7.2) in relation
(2), we can factor U(|z|) outside the integral sign and obtain

E(1)
nm(z) ≈ U(|z|), (5)

so that the effective one-dimensional potential has the same form as the initial
central potential, U(r). See Problems 4.1 and 2.5 for the relation between the energy
spectrum in a symmetric one-dimensional potential, U(|z|), and the spectrum of
s-levels in central field U(r).

3) Substitution of U(r) → U(|z|) in (2) that gives (5) is not valid at short distances,
|z| ≤ aH , in potentials with Coulomb (or stronger) attraction, since the particle
can now fall into the center. We will analyze the position of levels with n2 = 0
(low-lying levels of the longitudinal motion) for the hydrogen-like atom in a strong

magnetic field. In this case we write E
(1)
nm ≈ −Ze2/(|z|+ aH); in comparison with

(5), here a “cutoff” of the Coulomb potential on small distances is used. Using the
variational method with a trial wavefunction of the form ψ0 =

√
κe−κ|z|, where κ

is the variational parameter, we find

Enm0 ≈ E(0)
n + Ĥ(z) = E(0)

n +
�
2κ2

2μ
− κ

∫ ∞

−∞

Ze2

|z|+ aH
e−2κ|z|dz

≈ E(0)
n +

�
2κ2

2μ
− 2κZe2 ln

1

2κaH
. (6)

To approximately calculate this integral to logarithmic accuracy, we can replace the
exponent by 1, while replacing the limits of integration ±∞ by the values ∼ (±1/κ).

Minimization of this relation for the hydrogen atom with aH = 10−2 (we use
atomic units) gives a binding energy of 12.5 (for κ = 3.4).
We emphasize that just as in the previous case, according to Eq. (3), the depth

of the longitudinal levels (for fixed quantum numbers n, m) is much smaller than
the distance �ωH between the neighboring Landau levels.

4) Now, we make a few concluding statements. The first is connected with the problem
of generalizing the results obtained above in (1) to include the impact of a “shallow”
well on Landau levels in the case of a weak magnetic field, when aH � R (R is the
radius of an arbitrary short-range potential) with the help of perturbation theory
with respect to the scattering length (see Problems 4.29, 4.31, and 4.11). We should
note, being limited by states with m = 0 (for m �= 0 see Problems 13.36 and 13.37),
that according to (3) and for aH � R, the integral in relation

an0 ≈ − 1

a2H

∫ ∞

−∞

∫ ∞

0

U(r)ρdρdz
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differs from the s-scattering length aB0 in the Born approximation only by the
coefficient μ/�2. So, replacing aB0 by the scattering length a0 in potential U(r) in
the case of a0 < 0 gives the desired generalization of (3). Now

αn0 ≈ −�
2a0

μa2H
, En00 ≈ E(0)

n − 1

2
μω2

Ha20. (7)

For a0 > 0 there are no bound states, just as in the case of a repulsive potential
in the conditions of Eq. (1). This equation becomes inapplicable in the case of
|a0| ≥ aH , when in the (isolated) potential U(r), there exists a “shallow” s-level
with the energy ∼ �ωH . In this case there is an important reconstruction of the
Landau level spectrum with m = 0 (i.e., their shifts become ∼ �ωH ; compare to
Problems 11.4 and 9.3). We should emphasize that the rest of the “deep” levels
with both angular momentum l = 0 and l �= 0, if they exist, undergo only a small
shift under the weak magnetic field.
Now we note that the levels considered, Enmn2

, under the combined action of
the magnetic field and potential, are truly bound only for the values of quantum
number nρ = 0 (for each m). For the levels nρ ≥ 1 they correspond to quasi-
stationary states, so that under the potential U(r) (which results in the formation

of a bound state in the longitudinal direction) transitions to even lower levels, E
(0)
n′ ,

of transversal motion with n′
ρ < nρ are possible. In the longitudinal direction, the

particle is not bound and has the energy Et ≈ �ωH(nρ − n′
ρ), Here we take into

account the smallness of the depth where the levels are lying. In the case of a
“shallow” well and a weak magnetic field, as considered in Eq. (1), the width such
quasi-stationary states with m = 0

Γn00 ≈
n−1∑
n′=0

μ

�3

√
2μ

�ωH(n− n′)
a30, a0 = − 1

a2H

∫ ∞

−∞

∫ ∞

0

U(r)ρdρdz, (8)

could be obtained in the same way[154] as Eq. (3) from Problem 8.4. With the help
of substituting α0 by the scattering length a0, as mentioned above, expression (8)
could be generalized to the case of a “strong” short-range potential.

5) Finally, we discuss the peculiarities of the quantum-mechanical problem of particle
motion in the one-dimensional Coulomb potential U = −α/|x| on the whole axis
−∞ < x < +∞. As noted in section (3) above, here the particles falls into the
center, the point x = 0; from Eq. (6) for the “cutoff” of the potential, aH → 0, it
follows that E0 → −∞. The central point is that the particle Hamiltonian

Ĥ =
1

2m
p̂2 − α

|x| , −∞ < x < +∞ (9)

[154] For parameter β, which determines the relation between the two channels in the conditions of
Problem 8.44, we now have

βn1n2m = −
∫

U(r)ψ∗
n1m

(ρ)ψn2m(ρ)dV.

Compare to αnm from Eq. (3).
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for motion on the whole axis is Hermitian, but is not a self-conjugate operator.
This is connected with the fact that Hamiltonian eigenfunctions for x = ±|x| → 0
have the form[155] (on the right and on the left):

ψ±(x) = C1,±

{
1− 2|x|

aB
ln

|x|
aB

+O

(
x2 ln

|x|
aB

)}
+ C2,±

[
|x|+O

(
x2

aB

)]
,

aB =
�
2

mα2
, (10)

and the usual continuity condition for the regular potential wavefunction and its
derivative cannot be fulfilled at the point x = 0, since ψ′

±(x) becomes infinite for
x → 0.
But Hermitian operator (9) allows a self-adjoint extension. For a discussion about
the additional conditions that give such an operator extension, see Problem 1.29.
We note that for functions that satisfy conditions (10) for |x| → 0, the following
relation is valid:∫ ∞

ε

ψ∗
2Ĥψ1dx+

∫ −ε

−∞
ψ∗
2Ĥψ1dx =

∫ ∞

ε

(Ĥψ2)
∗ψ1dx+

∫ −ε

−∞
(Ĥψ2)

∗ψ1dx

+
�
2

2m

{
ψ∗
2(ε)ψ

′
1(ε)− ψ∗′

2 (ε)ψ1(ε)− ψ∗
2(−ε)ψ′

1(−ε) + ψ∗′
2 (−ε)ψ1(−ε)

}
. (11)

Here ε > 0, and the term outside the integral for ε → 0 is equal to

�
2

2m

{
C

(2)∗
1,+ C

(1)
2,+ − C

(2)∗
2,+ C

(1)
1,+ + C

(2)∗
1,− C

(1)
2,− − C

(2)∗
2,− C

(1)
1,−

}
, (12)

where the upper indices 1 and 2 correspond to the wavefunctions ψ1,2. If for the
self-adjoint extension of the operator (9), we keep the same wavefunctions as (10),
then the continuity conditions at the point x = 0 are

C
(1,2)
1,+ = C

(1,2)
1,− . (13)

In addition to that relation, from the condition of term (12) outside the integral
turning into zero, we obtain

C
(1)
2,+ + C

(1)
2,−

C
(1)
1,±

=

{
C

(2)
2,+ + C

(2)
2,−

C
(2)
1,±

}∗

= β = const. (14)

The real parameter β, which determines the matching conditions at the point
x = 0, gives the self-adjoint Hamiltonian extension of Eq. (9). From a physical
point of view, different choices of the parameter β correspond to different “cutoffs”
of the potential on small distances. Compare to the case considered in paragraph

[155] Pay attention to the logarithmic term and its energy independence; an energy dependence appears
only in the subleading correction terms in the asymptotic expression (10). Compare to Problem
9.14.
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(3). There, the value of β could be uniquely found from the position of the ground
state. We should also emphasize that the parameter β determines not only the
energy spectrum of bound states but also of continuous states (particle reflection
by the potential).
Now we obtain the discrete spectrum of Hamiltonian (9) using the matching

conditions at the point x = 0, (13) and (14). The solution for the Schrödinger
equation in the one-dimensional Coulomb potential that exponentially decreases as
|x| → ∞, with the energy E = −mα2/2�2ν2, is expressed in terms of the Whittaker
function, Wν,1/2(x):

ψ±(x) = C±Wν,1/2

(
2|x|
νaB

)
=

C±
Γ(1− ν)

{
1− 2|x|

aB
ln

2|x|
νaB

−
[
1

ν
+ 2ψ(1− ν)− 2 + 4γ

] |x|
aB

+O

(
x2

a2B
ln

|x|
aB

)}
. (15)

Here ν > 0, ψ(z) = Γ′(z)/Γ(z) is the logarithmic derivative of the Γ-function, and
γ = 0.5772 . . . is the Euler constant.
The energy levels have definite parity. For odd states, ψ±(0) = 0. To satisfy this, the
expression in square brackets in (15) must be infinite. Since ψ(z) becomes infinite
only at the points z = −k, where k = 0, 1, 2, . . . , and since

ψ(z) ≈ − 1

(z + k)
for z → −k, (16)

we see that for the odd levels, ν takes the values ν−n = n with n = 1, 2, . . . .
Therefore, the spectrum of such levels

E−
n = − mα2

2�2n2
(17)

coincides with the spectrum of s-levels in the central field U = −α/r. This is
expected; see Problems 4.1 and 2.5.
For the even particle levels, according to relations (14) and (15), we obtain[156]

−1

ν
− 2ψ(1− ν) + 2− 4γ + 2 ln

ν

2
= βaB . (18)

Their spectrum depends strongly on the value of parameter β. We will analyze two
limiting cases. Let β > 0 and βaB � 1. Taking into account relation (16), we see
that in this case, the even levels are only slightly shifted with respect to the odd
levels. Writing ν+n = n+Δνn, according to Eq. (18) we obtain

E+
n = − mα2

2�2(n+Δνn)2
, Δνn ≈ − 2

βaB
, n = 1, 2, . . . , (19)

[156] Pay attention to the difference of the arguments in the logarithm in Eqs. (10) and (15).
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and here |Δνn| � 1. This formula is valid also in the physically more interesting
case of β < 0 with |β|aB � 1. See the “cutoff” of the Coulomb potential, considered
in paragraph (3). Now the even levels (19) move up slightly with respect to the odd
levels. But in addition to these, there appears an additional deep-lying level, E+

0 ,
for which, from relation (18), we find

ν+0 ≡ ν0 ≈ − 1

βaB + 2 ln(|β|aB) � 1, (20)

and thus

E+
0 = − mα2

2�2ν20
. (21)

This level (without E
(0)
n ) is described by Eq. (6). By determining the value of β

according to Eq. (19), we can obtain the spectrum of the even the excited levels of
the longitudinal motion for a hydrogen-like atom in a magnetic field.



9

Quasi-classical approximation;
1/N-expansion in quantum
mechanics

The quasi-classical approximation is also known as the WKB (Wentzel–Kramers–
Brillouin) method. Within this approximation, two independent solutions of the
Schrödinger equation[157] (II.1) can be written as

ψ
(±)
E (x) =

1√
p(x)

exp

⎧⎨⎩± i

�

x∫
c

p(x)dx

⎫⎬⎭, (IX.1)

with

p(x) =
√
2m[E − U(x)],

being the classical momentum.

This approximation is valid if the quasi-classical condition is fulfilled:∣∣∣∣d�dx
∣∣∣∣ ≡ �

d

dx

1

p(x)
= m�

∣∣∣∣U ′(x)
p3(x)

∣∣∣∣ � 1. (IX.2)

A general solution of the Schrödinger equation in the quasi-classical approximation is
expressed as a superposition of the wavefunctions (IX.1):

ψE(x) = C1ψ
+
E(x) + C2ψ

−
E (x).

Usually, there are regions of x where the quasi-classical condition (IX.2) breaks down
(for example, in the vicinity of a classical turning point). This raises the problem[158]

of matching the quasi-classical functions, where we must link the solution of the
Schrödinger equation on opposite sides of such regions.

[157] We remind the reader that the Schrödinger equation for a particle in a central potential reduces to
a one-dimensional form (see Eq. (IV.5)). Some difficulties, however, appear here due a term corre-
sponding to centrifugal energy, Ucf (r) = �2l(l + 1)/2mr2, in the effective potential. The term makes

the quasi-classical approximation inapplicable for r → 0 since, in this case, dλ/dr ∝ r−1/2 → ∞.
An effective way to overcome this difficulty is to use the Langer transformation which we discuss
later.

[158] Its solution is needed, for instance, in order to take account of the boundary condition.
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The matching conditions based on a linearization of the potential near a classical
turning point can often be used:

U(x) ≈ U(x0)− F (x0)(x− x0), F (x0) = −U ′(x0), p(x0) = 0.

Here it is assumed that x belongs to the region close enough to the turning point,
x0, where the truncated Taylor expansion is reliable, but at the same time far enough
from it, so that the quasi-classical condition (IX.2) remains reliable. Near the right
turning point (corresponding to x = b in Fig. 9.1), the solutions have the form

ψ(x) =
C

2
√|p(x)| exp

⎧⎨⎩−1

�

x∫
b

|p(x)|dx
⎫⎬⎭, x > b, (IX.3a)

ψ(x) =
C√
p(x)

sin

⎧⎨⎩1

�

b∫
x

p(x)dx+
π

4

⎫⎬⎭, x < b. (IX.3b)

Near the left turning point (corresponding to x = a in Fig. 9.1), we have

Fig. 9.1

ψ(x) =
C1

2
√|p(x)| exp

⎧⎨⎩−1

�

a∫
x

|p(x)|dx
⎫⎬⎭, x < a; (IX.4a)

ψ(x) =
C1√
p(x)

sin

⎧⎨⎩1

�

x∫
a

p(x)dx+
π

4

⎫⎬⎭, x > a. (IX.4b)

For the potential shown in Fig. 9.1 and for the discrete levels, E = En, the Bohr–
Sommerfeld quantization rule follows from the condition that expressions (IX.3 b)
and (IX.4 b) (which describe the same solution of the Schrödinger equation) coincide,
i.e., the sum of the phases in the sine terms is a multiple of π:[159]

[159] In a more general case, when the conditions of matching Eqs. (IX.3) and (XI.4) are not applicable,
the right-hand side in the quantization rule is equal to π(n + α), where the quasi-classical
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1

�

b∫
a

√
2m(En − U(x))dx = π

(
n+

1

2

)
, n = 0, 1, 2, . . . , (IX.5)

Although strictly speaking, the quasi-classical quantization rules accurately determine
the spectrum, En, only for n � 1, a sufficient accuracy even for n ∼ 1 is often achieved
in the case of a smooth potential.

Differentiating (IX.5) with respect to n gives the level spacing between the neigh-
boring levels

δEn ≡ En+1 − En ≈ ∂

∂n
En = �ω(En),

where ω(E) = 2π
T (E) is the frequency of quasi-classical motion for a particle with energy

En, and T is its period (see Eq. (IX.7)).

For a bound-state wavefunction, we can usually use the following expression (see
Eq. (IX.3,4))

ψn(x) ≈
⎧⎨⎩ Cn√

p(x)
sin

(
1
�

x∫
a

p(x)dx+ π
4

)
, a < x < b,

0, x < a, x > b.
(IX.6)

Here we have neglected the possibility of the particle penetrating the classically
forbidden region, where the wavefunction is suppressed exponentially. In order to
normalize the wavefunction to unity we should choose

C2
n =

2nω(En)

π
, T (En) =

2π

ω(En)
= 2m

b∫
a

dx

p(x,En)
. (IX.7)

The quantum mechanical probability density |ψn(x)|2 oscillates rapidly as a function of
x, due to n � 1. After averaging[160] over a small interval of values x these oscillations
disappear, and the probability density takes the form

|ψn(x)|2 =
2m

T (En)p(x)
=

2

T (En)v(x)
.

This corresponds to the classical probability

ωclass(x) =
2

T
dt =

2

T (E)

dx

v(x)
, a < x < b, (IX.8)

which is determined by the time interval dt the particle takes to pass through spatial
interval dx, divided by one half of its period.

correction, α ∼ 1. In this case, the domain of quasi-classical applicability usually persists down
to n ∼ 1.

[160] It reduces to the substitution of sin2{. . . } by its mean value 1/2.
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We shall note here that whenever a derivative of the wavefunction needs to be
computed, the leading contribution comes from differentiating only the trigonometric
factor (sines and cosines), since it is the most rapidly-varying part of the wavefunction.

Fig. 9.2

One of the most important applications of the quasi-classical method is in calculat-
ing transmission coefficients (penetrabilities) of potential barriers. The penetrability
of a generic barrier shown in Fig. 9.2 in the quasi-classical approximation is described
by the expression

D(E) = exp

⎧⎨⎩−2

�

b∫
a

|p(x,E)|dx
⎫⎬⎭. (IX.9)

This expression is applicable for a large negative argument of the exponential function
such that D � 1. Equation (IX.9) as well as (IX.5) assume the possibility of quasi-
classical solution-matching in the vicinity of turning points based on the linear approx-
imation of the potential. If this condition is broken, the quasi-classical result (IX.9)
is valid only to within the accuracy of the factor in front of the exponent (although
the main feature – namely, the exponential suppression of the barrier penetration
coefficient – is still captured).

Langer transformation

1) Let us recall the Schrödinger Eq. (IV.5) for the radial component χEl(r). One sees
that the centrifugal energy in the effective potential (here and below � = m = 1,
E = k2/2),

Ueff (r) = U(r) +
l(l + 1)

2r2
, (1)

dominates for small distances, i.e., r → 0. In this case, dλ(r)/dr ∝ r−1/2 → ∞,
and the quasi-classical condition is not satisfied. To overcome this difficulty Langer
proposed using the change of variables and wavefunction transform as follows:

r = ex, ψ(x) = e−x/2χEl(e
x), −∞ < x < ∞. (2)



378 Exploring Quantum Mechanics

As a result, the radial Schrödinger equation becomes

d2ψ(x)

dx2
+ p2(x)ψ(x) = 0, p2(x) = [k2 − 2U(ex)]e2x − ν2, ν = l +

1

2
. (3)

This then has the form of the one-dimensional Schrödinger equation for which the
barrier is located at x → −∞ (corresponding to r → 0 in the original variables).
The equation thus provides a quasi-classical solution for the radial function having
the correct dependence on angular momentum for small distances. Indeed, applying
Eq. (IX.4a) to Eq. (3) using Eq. (2) gives

χWKB
El (r) =

C√|pL(r)|
exp

⎧⎨⎩−
r−∫
r

|pL(r)|dr
⎫⎬⎭ = cWKB

El (rl+1 + . . . ), r → 0. (4)

where r− = ea is the left turning point and the quasi-classical momentum is
described by the relation

pL(r) =

[
k2 − 2U(r)− (l + 1

2 )
2

r2

]1/2
. (5)

Application of Bohr–Sommerfeld quantization (IX.5) to Eq. (3), and writing it in
terms of the variable r, gives the quantization condition:

r+∫
r−

pL(r)dr = π�

(
nr +

1

2

)
, (6)

with the quasi-classical momentum pL(r).
We see that although the quasi-classical condition breaks down at small distances

for the potential in (1), the quantization condition of its spectrum is still described
by the usual expression (IX.5), where for centrifugal potential the following sub-
stitution is fulfilled:[161] l(l + 1) → (l + 1/2)2. This sometimes is referred to as the
Langer correction.

Note that the application of Kramers matching conditions to Eq. (3) (which are
used for deriving the quantization rule (IX.5)) is strictly-speaking not justified. The
issue is that in the case of ν ∼ 1 we cannot use the matching condition (IX.4) for
this equation in the vicinity of the left turning point x = a, based on the linear
expansion of the potential: the non-quasi-classical domain here is much wider.
It is easier to see this for free motion (i.e., U = 0) where, according to Eq. (5),

p(x) = ν
√
e2(x−a) − 1, a = ln(ν/k) is the turning point. For |x− a| � 1 we have

p(x) ≈ ν
√

2(x− a), and the quasi-classical condition (IX.2) takes the form

ν−2/3 � |x− a| � 1. (6)

[161] We note that the Langer method is also applicable for s-states.
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These inequalities are fulfilled simultaneously only in the case of ν � 1 (i.e., l � 1),
when the centrifugal potential becomes quasi-classical.

2) We discuss the modification of Kramers matching condition for quasi-classical
solutions of Eq. (3) in the vicinity of the left turning point x = a in the two following
cases.

Matching at large energies

As the energy grows at the left turning point a → −∞, there r− → 0 and, in relation
(3), we can omit the term with potential, U(ez). The equation can then be solved in
terms of the Bessel functions, and allows one to match the quasi-classical asymptotes,
ψ(x). It gives the following quasi-classical relations for χEl(r)

χEl(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C√
pL(r)

cos

(
r∫

r−
pL(r)dr − π

4

)
, r > r−,

C′√
|pL(r)| exp

(
−

r−∫
r

|pL(r)|dr
)
, r < r−,

(7)

where

C ′

C
=

1

2
ξ(ν), ξ(ν) =

√
2πνν−1/2 e−ν

Γ(ν)
. (8)

This can be compared to Eqs. (IX.4a) and (IX.4b). We see that the quasi-classical
phase, −π/4, has not changed, unlike the relation between the coefficients C and
C ′. We note that ξ(1/2) =

√
2/e = 0.8578 and ξ(1) =

√
2πe−1 = 0.9221, while ξ(x) ≈

1− 1/12x for x → ∞, so that for l � 1, relations (8) become Kramers’ matching
conditions (IX.4).

The modification made for the matching conditions influences the values of the
radial wavefunction in the region under the barrier on small distances.[162] Let us now
see its role by calculating the “asymptotic coefficient at zero”, cnrl, on the example of
a spherical oscillator U(r) = ω2r2/2 (remembering that we are using the units, where
� = m = 1). This coefficient determines the behavior of a bound-state normalized

wavefunction,
∞∫
0

χ2
nrl

(r)dr = 1, at small distances,

χnrl(r) ≈ cnrlr
l+1, r → 0, see Eq. (4). (9)

The exact value of c
(ex)
nrl

for the oscillator, according to Problem 4.5, is equal to

c
(ex)
nrl

=
√
2
Γ(l + nr + 3/2)√
nr!Γ(l + 3/2)

ωl/2+3/4, (10)

[162] We should emphasize that Langer quantization – i.e., according to Eq. (6) – in the cases of
a harmonic oscillator and a particle in the Coulomb potential actually gives the exact energy
spectrum.
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while the quasi-classical values are defined by

c
(q)
nrl

= ξ(ν)c
(L)
nrl

, c
(L)
nrl

=

{
1

π

nneν

(nr + 1/2)nr+1/2ν2l+2

}1/2

ωl/2+3/4, n = nr + l + 1,

(11)

where c
(L)
nrl

are obtained using the Kramers matching conditions. In the table below
we compare the specific values of these coefficients. Below, we provide the values of
the ratios

η
(L)
nrl

=
c
(L)
nrl

c
(ex)
nrl

, η
(q)
nrl

=
c
(q)
nrl

c
(ex)
nrl

, (12)

which characterize an accuracy of the corresponding approximation.

l η nr = 0 nr = 1 nr = 2 nr = 5 nr = ∞
0 η(L) 1.1469 1.1620 1.1642 1.1655 1.1658

η(q) 0.9838 0.9967 0.9986 0.9997 1

1 η(L) 1.0293 1.0493 1.0531 1.0555 1.0563

η(q) 0.9744 0.9934 0.9969 0.9992 1

2 η(L) 1.0039 1.0251 1.0295 1.0325 1.0337

η(q) 0.9711 0.9917 0.9959 0.9988 1

5 η(L) 0.9826 1.0045 1.0095 1.0133 1.0153

η(q) 0.9678 0.9895 0.9943 0.9981 1

As we see, the modification of the matching conditions, given in Eqs. (7) and (8),
not only ensures the asymptotic accuracy of the quasi-classical approximation in
calculating cnrl for nr → ∞, but also gives satisfactory results for the states with
small values of the radial quantum number, nr, and even for the ground state. These
properties persist also in the case of other smooth potentials.

Matching conditions in the case of level concentration, En → −0

Let us now consider the case of attractive potentials, U(r) = −grα, with −2 < α < 0
(for α = −1, it is the Coulomb potential), where there is an infinite number of levels
accumulating towards the point E = −0. In Eq. (3), in the vicinity of the left turning
point, we can neglect the term with energy E = k2/2, which allows us to obtain the
exact (not quasi-classical) solution. Using this solution we can match the quasi-classical
asymptotes. This leads to the previous relations (7), where now

C ′

C
=

1

2
ξ(μ), μ =

2l + 1

2 + α
. (13)



Quasi-classical approximation; 1/N-expansion in quantum mechanics 381

We will illustrate their role in calculating the asymptotic coefficient at zero in the case
of the Coulomb potential (for which μ = 2l + 1). According to Eq. (IV.3) the exact
value is

c
(ex)
nrl

=
2l+2

(2l + 1)!nl+2

{
(n+ l + 1)!

nr!

}1/2

gl+3/2, n = nr + l + 1, (14)

while the quasi-classical relations for them are (see Eq. (11))

c
(q)
nrl

= ξ(μ)c
(L)
nrl

, c
(L)
nrl

=
ν2l+3/2eν

2l+1
√
πnl+2

(n+ ν)(n+ν)/2

(n− ν)(n−ν)/2
gl+3/2. (15)

Comparisons to the exact values are given in the following table.

l η nr = 0 nr = 1 nr = 2 nr = 5 nr = ∞
0 η(L) 1.0602 1.0787 1.0819 1.0838 1.0844

η(q) 0.9776 0.9947 0.9977 0.9994 1

1 η(L) 0.9974 1.0189 1.0235 1.0267 1.0281

η(q) 0.9702 0.9911 0.9955 0.9987 1

2 η(L) 0.9844 1.0063 1.0112 1.0150 1.0162

η(q) 0.9681 0.9897 0.9945 0.9982 1

We see that the modified matching conditions ensure a good asymptotic accuracy of
the quasi-classical asymptotic coefficients.

9.1 Quasi-classical energy quantization

Problem 9.1

Using the quasi-classical approximation find the energy spectra in the following two
cases:

a) linear oscillator,

b) bound states in the potential, U(x) = −U0 cosh
−2(x/a).

Solution

a) For a linear oscillator the integration in Eq. (IX.5) gives En = �ω(n+ 1/2), which
coincides with the exact result.

b) For the given potential, the integration in Eq. (IX.5) can be done using the
substitution
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sinh
x

a
= κ sin t, κ =

√
U0

|En| − 1,

which leads to

En = − �
2

2ma2

[√
2ma2U0

�2
−
(
n+

1

2

)]2

. (1)

We note that this problem can be solved exactly, and the exact result has the
form of Eq. (1) but with 2ma2U0/�

2 + 1/4 inside the square root sign, so for the
values of the quasi-classical parameter ξ ≡ √

2ma2U0/�2 � 1 (when there exist
many bound states in the potential), the quasi-classical and exact results are close
for n ∼ 1. The quasi-classical result reproduces the exact spectrum even when there
are only three to four discrete levels in the potential. Indeed, the maximum value
n is determined by the condition n+ 1/2 ≤ ξ, i.e. nmax ≈ ξ for ξ � 1. Here, the
difference between the exact and the quasi-classical results is given by

√
ξ2 + 1/4−

ξ ≈ 1/8ξ � 1.

Problem 9.2

Obtain an energy quantization rule and find the corresponding quasi-classical wave-
functions for a potential of the form[163] shown in Fig. 9.3. Apply the result obtained

Fig. 9.3

to the potential considered in Problem 2.8. Pay particular attention to the closeness
of the quasi-classical and exact values En even for n ∼ 1.

[163] The result of this problem can be straightforwardly transplanted to the case of s-states of a particle
in a central potential; see Problem 4.1.
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Solution

The matching of quasi-classical solutions in the vicinity of the right turning point,
x = b, is done in the usual way by Eqs. (IX.3). Now the expression for a wavefunction
for x < b is valid, generally speaking, for the values of x close to the left turning point
x = 0 as well (which however is not a “stopping” point here!). Using the boundary
condition ψ(0) = 0 allows us to obtain the quantization rule:

1

�

b∫
0

√
2m(En − U(x))dx = π

(
n+

3

4

)
, n = 0, 1, 2, . . . . (1)

We should note that the change in the matching conditions affects the value of the
quasi-classical correction only; we have n+ 3/4 instead of n+ 1/2 in the quantiza-
tion rule (IX.5). We should also note that relation (1) could be obtained from the
Bohr–Sommerfeld quantization rule, applied to odd levels in the symmetric potential
U = U(|x|) (i.e., by substituting n by 2n+ 1; see Problem 2.5).

For the potential, U = Fx for x > 0, we find in accord with (1) that

En =

(
9π2

8

)1/3(
n+

3

4

)2/3

ε0, ε0 =

(
�
2F 2

m

)1/3

. (2)

This quasi-classical result differs only slightly from the exact one for all values of n
(not only for n � 1). So, the values of En/ε0 in (2) for n = 0 and 1 are equal to 1.842
and 3.240; the exact results are 1.856 and 3.245 (note that using the quantization rule
Eq. (IX.5) would have resulted in a loss in accuracy for n ∼ 1: giving, for example,
1.405 and 2.923 instead of the values given above).

Problem 9.3

A particle moves in a central field which is a superposition of a long-range potential,
U(r), shown in Fig. 9.3 (with the substitution x → r so that there is no potential
barrier for small distances) and a short-range potential approximated by the zero-
range potential (z.r.p.) (see Problems 4.10 and 4.31). Obtain a quantization rule for
the s-levels and discuss the level shift in the potential U(r) under the influence of the
z.r.p. Pay special attention to the possibility of spectrum reconstruction, i.e., the large
shifts, comparable to the level spacing of the unperturbed potential U(r).

Solution

For the radial wavefunction of an s-state, χnr
(r) = rRnr0 (see Eq. (IV.5)), we have

for r < b:

χnr
(r) =

C√
p(r)

sin

⎧⎨⎩1

�

r∫
0

p(r)dr + γ

⎫⎬⎭, (1)
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p =
√

2m[Enr0 − U(r)],

(γ = 0 in the absence of the z.r.p.), so that as r → 0,

χnr
(r) ≈ C̃

{
sin γ +

(
p(0)

�
cos γ

)
r

}
.

Note that due to the quasi-classical property it is sufficient to take account of the
dependence on r only inside the sine and replace p(r) by p(0). Comparing this
expansion to the boundary condition from Problem 4.10, which determines the z.r.p.,

we find[164] γ = − arctan p(0)a0

�
. Matching function (1), in accordance with Eq. (IX.3),

with the solution decreasing in the classically forbidden region, we obtain the required
quantization rule:

1

�

b∫
0

√
2m[Enr0 − U(r)]dr = π

(
nr +

3

4
+

1

π
arctan

pnr
(0)a0
�

)
. (2)

In the case of a0 = 0 this relation determines the spectrum E
(0)
nr0

for s-levels in a
potential U(r) (without the z.r.p). In the case of |pnr

(0)a0/�| � 1 the value of the

arctan in (2) is small, hence the energy level shift is also small. Writing Enr0 = E
(0)
nr0

+
ΔEnr0 and performing an expansion of the square root in (2),

b∫
0

√
E(0) +ΔE − Udr ≈

b0∫
0

{√
E(0) − U +

ΔE

2
√
E(0) − U

}
dr,

we find the level shift under the action of the z.r.p.:

ΔEnr0 =
1

π
ω(0)
nr

p(0)nr
a0, (3)

where ω
(0)
nr =

[
1
π

b0∫
0

mdr

p
(0)
nr (0)

]−1

is a frequency of the radial motion of a classical par-

ticle with zero angular momentum in the potential U(r). Using the quasi-classical
arguments for the wavefunction normalization (see Eqn. (IX.7)) this result may be
rewritten in the form (ψ = χ/

√
4πr):

ΔEnr0 =
2π�2

m

∣∣∣ψ(0)
nr00

(0)
∣∣∣2 a0, (4)

which corresponds to a level shift that is obtained using perturbation theory with
respect to the scattering length (see Problem 4.29).

On the contrary, for |pnr
(0)a0/�| ≥ 1 the level shifts are large and are comparable

to the distance between the unperturbed levels in the potential U(r). For example, let

[164] Here a0 = α−1
0 is the scattering length for the z.r.p. The results, being expressed in terms of the

scattering length, are applicable for arbitrary short-range potentials.



Quasi-classical approximation; 1/N-expansion in quantum mechanics 385

us consider the case a0 = ∞. The distinguishing feature of this case is that in the z.r.p.
there exists a “shallow” real (a0 > 0) or virtual (a0 < 0) level with the energy E0 ≈
−�

2/2ma20 (see Problems 4.11 and 13.49), which is of the same order of magnitude as
the levels in the potential U(r) (which leads to a resonant regime in some sense).

In conclusion we should note that the wavefunction (1) corresponds to the case
E > U(0), which could exist only without the z.r.p. With the z.r.p. we must also con-
sider the values E < U(0). Here, the wavefunction for r > 0 is described by a decreasing
“quasi-classical exponent” instead of (1). We can see that such a solution exists only for
the values, a0 > 0, and corresponds to E0 = −�

2/2ma20 + U(0), describing a discrete
level, shifted by U(0), that exists in an isolated zero range potential.

Problem 9.4

In the quasi-classical approximation, analyze the energy spectrum for a particle
moving in a symmetric potential well U0(x) separated by a δ-barrier αδ(x) so that
U(x) = U0(x) + αδ(x).

Consider the limiting cases of

1) the weakly reflecting barrier;

2) the weakly penetrable barrier.

Solution

It is convenient to analyze the spectra of the even and odd levels separately. For the
odd states, ψ(0) = 0. Here, taking into account the matching conditions for the δ-
potential from Problem 2.6, we see that the wavefunction derivative is continuous at
x = 0. Hence the particle in the odd states does not “feel” the δ-potential, while the
odd-level spectrum is determined by quantization rule (IX.5) for values n = 2k + 1
(where k + 1 is the number of an odd level):

1

�

b−∫
0

√
2m(E−

k − U0(x))dx = π

(
k +

3

4

)
. (1)

For the even levels, the condition for the wavefunction derivative jump takes the form
ψ′(0+) = (mα/�2)ψ(0). For x > 0 we use Eq. (IX.3) to find

−p(0) cos

⎡⎣1

�

b∫
0

p(x)dx+
π

4

⎤⎦ =
mα

�
sin

⎡⎣1

�

b∫
0

p(x)dx+
π

4

⎤⎦.
(Due to the quasi-classical property it is sufficient to differentiate with respect to x
only the sine term.) Hence, introducing tan γ = mα/p(0)� we obtain the quantization
rule for the even levels with n = 2k:
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b0∫
0

√
2m[E+

k − U0(x)]dx = π�

(
k +

1

4
+

1

π
arctan

mα

p+k (0)�

)
. (2)

For α = 0 it reproduces the even-level spectrum E+
0,k for potential U0(x). In the case

mα/�p+k (0) � 1 the level shifts are small (much smaller than the distance between the
unperturbed levels). Writing E+

k = E+
0,k +ΔE+

k and performing an expansion under
the integral sign (compare to the previous problem), we obtain

ΔE+
k =

4mα

T (E+
0,k)

√
2m[E+

0,k − U0(0)]
, (3)

which coincides with α|ψ+
0,k(0)|2 and corresponds to the result of perturbation theory

for V = αδ(x); here T (E+
0,k) is the period of motion, and ψ+

0,k(0) is the wavefunction
of an odd state at x = 0 in the potential U0(x) (see Eq. (IX.7)).

The case considered above corresponds to weak reflection (R � 1) from the δ-
potential whose transmission coefficient is equal to (see Problem 2.30)

D(p) =

(
1 +

m2α2

�2p2

)−1

.

With increasing α, even level shifts increase. For mα/�p+k (0) � 1, they move closer
to the neighboring odd levels above. This is the case of the weakly penetrable barrier,
α > 0. Substituting

p+k (0) ≈ p−k (0) =
√
2m[E−

k − U0(x)]

into the right-hand side of Eq. (2) and using the expansion arctan x ≈ π/2− 1/x for
x � 1, we find, according to Eqs. (1) and (2), the distance between neighboring even
and odd levels in this case:

δEk ≡ E−
k − E+

k ≈ 4�2

mαT (E−
k )

√
2m[E−

k − U0(x)], (4)

or, taking into account the relation for D(p),

δEk =
2�

τ(E−
k )

D1/2(p−k (0)). (5)

Here, τ(E−
k ) = T (E−

k )/2 is the period of classical motion of a particle with the energy
E−

k in the potential U0(x) divided by the potential barrier (at x = 0). Note that this
Eq. (5) for a level splitting in a symmetric potential is quite general and remains valid
for a wide range of weakly-penetrable barriers of a rather arbitrary shape.

The results obtained above are valid even in the case of α < 0, i.e., for the δ-well.
But now the even levels move down, and in the case of m|α|/�p+k (0) � 1 an even level
(with the number k + 1) approaches the lower neighboring odd level (with the number



Quasi-classical approximation; 1/N-expansion in quantum mechanics 387

k). Here, the ground-state level E+
0 (α) with increase in |α| has the following behavior.

It decreases, first reaching the value, E+
0 (α0) = U0(0). With the subsequent increase

in |α| it approaches the ground-state energy in the δ-well, shifted by U0(0) (compare
this to the discussion at the end of the previous problem).

Problem 9.5

For a particle in a potential, which behaves as the attractive Coulomb potential,
U(r) ≈ −α/r, at small distances, obtain the wavefunctions and quantization rule
for the s-levels with the energy |E| � mα2/�2 in the quasi-classical approximation.
Apply these results to the pure Coulomb potential, U(r) = −α/r, and the Hulthen

potential, U(r) = −U0

(
er/a − 1

)−1
. Compare your results with the exact solution for

the spectrum (see Problem 4.8).

Solution

A complication of this problem is due to the fact that the quasiclassical conditions for
the radial Schrödinger equation for the function χ = rR (see Eq. (IV.5)) are broken
at small distances, r → 0. Indeed, here p(r) ≈ √

2mα/r and dλ/dr ∝ r−1/2 → ∞.
Hence, to take account of the boundary condition χ(0) = 0 in the quantization rule
we should find an exact (non-quasi-classical) solution of the Schrödinger equation for
small distances, and match it with the quasi-classical solution (IX.3).

The Schrödinger equation for small distances takes the form χ′′ + (α̃/r)χ = 0,
where α̃ = 2mα/�2. With the help of substitutions, χ =

√
rϕ and z = 2

√
α̃r, we obtain

the Bessel equation with ν = 1 for the function ϕ(z). Using the boundary condition
at zero, χ(0) = 0, we find

χ(r) = A
√
rJ1(2

√
α̃r). (1)

The asymptotic behavior of this function for
√
α̃r � 1 has the form

χ(r) ≈ A
( r

π2α̃

)1/4

sin
(
2
√
α̃r − π

4

)
. (2)

We now see that for values of r satisfying

r � α

|E| ,

we have 1√
α̃
� √

r, and |dλ/dr| ∼ (α̃r)−1/2 � 1, i.e., the quasi-classical method is

applicable.[165] The quasi-classical solution of the Schrödinger equation

χquas =
C√
p(r)

sin

⎛⎝1

�

r∫
0

p(r)dr + γ

⎞⎠, p(r) =
√
2m(E − U(r)) (3)

[165] Here we assume that on such distances the potential still behaves as U ≈ −α/r and E corresponds
to the upper levels with n � 1 in such a potential.
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for such distances takes the form (here p(r) ≈ �
√

α̃/r):

χquas(r) ≈ C
( r

α̃�2

)1/4

sin(2
√
α̃r + γ). (4)

By matching it with the exact solution (2) we find γ = −π/4. (Compare this to the
value γ = π/4 that is obtained from the matching condition within the quasi-classical
method in the vicinity of the left turning point x = a in Eq. (IX.4), based on the
linear approximation of the potential, and also with γ = 0 using the conditions of
Problem 9.2.)

Finally, the matching condition between the quasi-classical solution (3) for
γ = −π/4 and the solution (IX.3 b) (with substitution ψ(x) → χ(x)), which fulfills
the boundary condition at r → ∞, gives the quantization rule:

1

�

b∫
0

√
2m(Enr0 − U(r))dr = π(nr + 1). (5)

For the Coulomb potential, U = −α/r, we therefore find

Enr0 = − mα2

2�2(nr + 1)2
,

which coincides with the exact result. This also can be proven for the Hulthen poten-
tial, where the exact result for the s-level spectrum is also available (see Problem 4.8).

Problem 9.6

For a central potential of the form shown in Fig. 9.3. (restricted as r → 0), find
the radial wavefunctions of the stationary states of a particle with the angular
momentum[166] l ∼ 1 in the domain of its classical motion and in the quasi-classical
approximation. Using the obtained result, analyze the modified quantization rule
(IX.5), and find the energy spectra for a) the spherical oscillator U = mω2r2/2; and
b) the particle in one dimension in the potential U(x) = U0 tan

2 πx
a for |x| < a

2
and U = ∞ for |x| > a/2. Compare this to the result of quantization by Eq. (IX.5)
and the exact solution for the spectrum.

Solution

Note that for the potential U(r) ≈ α/r2, the quasi-classical property is broken in the
case of 2mα/�2 = l(l + 1) � 1 and at small distances (r → 0). Hence, we should use
the exact (non-quasi-classical) solution of the Schrödinger equation that satisfies the
boundary condition χ(0) = 0; we obtain

[166] This case is of particular interest because for l � 1 the centrifugal barrier �2l(l + 1)/2mr2 is
already quasi-classical, and we can use the matching conditions (IX.4); see also the previous
problem.
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χ′′ +
[
k20 −

α̃

r2

]
χ = 0, χ = A

√
rJν(k0r). (1)

Here, k20 = 2m(E − U0(0))/�
2, and potential[167] U0(r) is replaced by its value at the

origin U0(0), α̃ = 2mα/�2, and ν =
√
α̃+ 1/4. Using the asymptotic behavior of the

Bessel function we see that over such distances where k0r � 1 (for values ν ∼ 1) the
exact solution of the Schrödinger equation (1) takes the form

χ(r) ≈
√

2

πk0
A sin

(
k0r − πν

2
+

π

4

)
, (2)

and coincides with the quasi-classical expression

χquas =

√
2�

πp(r)
A sin

⎧⎨⎩1

�

r∫
a

pdr + γ

⎫⎬⎭, (3)

γ =
π

2

[√
α̃−

√
α̃+

1

4
+

1

2

]
,

where p(a) = 0. Indeed, for the distances considered here, we have

p(r) ≈ �k0

√
1− α̃

k20r
2
.

The integral in (3) is easy to calculate using integration by parts with the substitution
z = 1/r. For r � √

α̃/k0 it becomes �(k0r − π
√
α̃/2). (We should note that for a free

particle, U0(r) ≡ 0, the quasiclassical phase of the radial wavefunction, according to
(3), is equal at large distances to kr − πl/2 and coincides with the exact relation.)

Eq. (3) solves the problem of incorporating the boundary condition, χ(0) = 0, in
the quasi-classical solution in the classically allowed region of motion. As α̃ → 0 we
have γ → 0 and, from Eq. (3), we have the result of Problem 9.2. On the contrary,
for α̃ � 1, the barrier, α/r2, is already quasi-classical, |dλ/dr| ∝ α̃−1/2 � 1; here,
γ ≈ π/4 in accordance with Eq. (IX.4 b).

Using Eq. (3) and the usual matching condition (IX.3) for the right turning point,
we obtain the following quantization rule for levels with the angular momentum l in
a central potential U(r), which is bounded at the origin:

[167] Eq. (1) corresponds to the one-dimensional Schrödinger equation with the potential U(r) = α/r2 +
U0(r), where U0(r) is a smooth function of r. For a centrifugal potential, α̃ = l(l + 1), and ν =
l + 1/2.
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1

�

b∫
a

√
2m

[
Enrl −

�2l(l + 1)

2mr2
− U(r)

]
dr =

π

(
nr +

l

2
− 1

2

√
l(l + 1) +

3

4

)
. (4)

2) Hence, for the spherical oscillator, U = mω2r2/2, using

b∫
a

1

x

√
(b− x)(x− a)dx =

π

2
(a+ b− 2

√
ab),

we find Enrl = �ω(2nr + l + 3/2), which coincides with the exact relation for the
spectrum (see Problem 4.5).

Let us now consider the potential U = U0 tan
2(πx/a). For x → ±a/2 it takes the

form U ≈ α/r2, where r = a/2− |x| and α = U0α
2/π2. Therefore, in order to take

account of the boundary conditions ψ(±a/2) = 0 and derive the quantization rule, we
should use relations analogous to Eq. (3) for the quasi-classical wavefunction in the
vicinity of both turning points. We then obtain

1

�

b∫
−b

√
2m

[
En − U0 tan

2
(πx

a

)]
dx =

π

[
n+

1

2
+

√
2mU0a2

π2�2
+

1

4
−
√

2mU0a2

π2�2

]
.

This can be compared to π(n+ 1/2) on the right-hand side of Eq. (IX.5). Calculating
the integral using the substitution

sin
πx

a
= κ sin t, κ =

(
1 +

U0

En

)1/2

,

we find

En =
π2

�
2

2ma2

{(
n+

1

2

)2

+ 2

(
n+

1

2

)√
2mU0a2

π2�2
+

1

4
+

1

4

}
,

which gives the exact spectrum. In view of the result obtained here, we note that
quantization according to Eq. (IX.5) for the values mα/�2 ≤ 1 leads to a loss of
accuracy even for large enough values of n. For U0 = 0 (i.e., for an infinitely deep
potential well), we have En ∝ (n+ 1)2 for the exact spectrum, while En ∝ (n+ 1/2)2

follows from Eq. (IX.5). Therefore, for n = 10, the deviation is approximately 10%.
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Problem 9.7

In the previous problem we obtained the quantization rule for states of a particle with
the angular momentum l in a central potential U(r), restricted in the limit r → 0:[168]

1

�

b∫
a

{
2m

[
Enrl −

�
2l(l + 1)

2mr2
− U(r)

]}1/2

dr =

π

[
nr +

1

2
+

1

2

(
l +

1

2
−
√

l(l + 1)

)]
. (1)

Prove that within the quasi-classical accuracy it is equivalent to the Langer correction:

1

�

b∫
a

{
2m

[
Enrl −

�
2(l + 1/2)2

2mr2
− U(r)

]}1/2

dr = π

(
nr +

1

2

)
. (2)

Show also that both these relations, within the same accuracy, are equivalent to the
more simple quantization rule:

1

�

b∫
0

p̃(r)dr ≡ 1

�

b∫
0

√
2m[Enrl − U(r)]dr = π

(
nr +

l

2
+

3

4

)
, (3)

where the radial momentum p̃(r) does not contain the centrifugal potential, and the
value of the quasi-classical correction to nr depends only on the value of the angular
momentum l.

Using the quantization rules, calculate the energy spectra for: a) a spherical
oscillator U = mω2r2/2; and b) a particle in an infinitely deep spherical well of radius
R (take into account the change in the matching condition for the right turning point
r = R). Compare to the exact spectrum.

Solution

Let us begin by noting that for quasi-classical states with nr � 1, and for classical
motion over distances, r ≤ b, the kinetic energy, Enrl − U(r), has the following order-
of-magnitude estimate

Enrl − U(r) ∼ �
2n2

r

mb2
,

which follows from the quantization rules. In the integrand associated with the
quantization rules, the centrifugal potential for l ∼ 1 is a correction of the order
(l + 1/2)2/n2

r (which is outside the level of accuracy that we are working at) and

[168] We should emphasize that all three quantization conditions the standard usual quasi-classical
matching condition at the right turning point according to Eq. (IX.3). The Langer quantization
scheme is valid even for a potential which, for r → 0, has the form U(r) ≈ α/rν with 0 ≤ ν < 2.
A generalization of the quantization rule for this case is given in the solution.
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can be omitted. The exception is the region of small distances near the left turning
point. The difference in the contributions to the integral in this region determines
the difference between the quasi-classical corrections on the right-hand sides of the
quantization rules given in the problem.

To prove this statement we divide the integration domain into two: from a (or 0)
to c and from c to b. We choose c[169] in such a way that: 1) we can also neglect a
change in U(r) in the region r < c and replace the potential by U(0); and 2) �2/mc2 �
Enrl − U(0) is satisfied. According to 2) the centrifugal potential can be omitted while
integrating between c and b. Therefore, the integrals in all three cases are the same
(for the same value Enrl). Using

c∫
a

√
1− α

r2
dr =

[
r

√
1− α

r2
+
√
α arcsin

√
α

r

]∣∣∣∣c
a

≈ c− π
√
α

2
, (4)

where a =
√
α and c � a (see the previous problem for its calculation) ensure that

indeed the difference in the right-hand sides of the quantization rules is compensated
by the difference in their left-hand side integrals. Hence the equivalence follows (with
quasi-classical accuracy) for the three quantization rules given in the problem.

2) For a spherical oscillator, U = mω2r2/2, they all lead to the same result that
coincides with the exact expression for the spectrum Enrl = �ω(2nr + l + 3/2). (Here
the calculation is especially easy for the last quantization rule (3) not involving the
centrifugal potential. For the values of the integrals for the other two quantization
rules, see the previous problem.)

For a particle in an infinitely deep potential well we should make the following
modification: replace nr + 1/2 by nr + 3/4 (as in Problem 9.3, it is now connected with
the right turning point x = R). Here, the last of the quantization rules (3) immediately
gives √

Enrl

ε0
= π

(
nr +

l

2
+ 1

)
, i.e. Enrl = π2ε0

(
nr +

l

2
+ 1

)2

, (5)

where ε0 = �
2/2mR2 (E0 = π2ε is the ground state). From the Langer quantization

rule and from Eq. (4), it follows that[170]√
Enrl

ε0
−
(
l +

1

2

)2

+

(
l +

1

2

)
arcsin

[(
l +

1

2

)√
ε0

Enrl

]
= π

(
nr +

l

2
+ 1

)
. (6)

[169] The possibility to choose such c is provided by the quasi-classical condition, |dλ/dr| � 1, over
small distances subject to potential U(r) (without the centrifugal potential).

[170] For the values nr � (l + 1/2)

δ2 ≡
(
l +

1

2

)2 ε0

Enrl
� 1

and omitting the correction connected with δ from (6) we obtain (5).
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For an illustration of the accuracy of the quasi-classical result, we write, using
Enrl = gnrlε0, the table of values gnrl for a set of quantum numbers nr and l
calculated according to Eq. (5) and the exact values (in brackets). For the exact
spectrum gnrl = x2

nrl
,

l nr = 0 nr = 1 nr = 2 nr = 3 nr = 4

1 22.2 61.7 120.9 199.9 298.6

(20.2) (59.7) (118.9) (197.9) (296.5)

2 39.5 88.8 157.9 246.7 355.5

(33.2) (82.7) (151.9) (240.7) (349.3)

3 61.7 120.9 199.9 298.6 417.0

(48.8) (108.5) (187.6) (286.4) (404.9)

4 88.8 157.9 246.7 355.3 483.6

(67.0) (137.0) (226.2) (334.9) (463.3)

where xnrl is the (nr + 1)-th zero (without x = 0) of the Bessel function Jν(x) with
ν = l + 1/2. We confine ourselves to small values of nr only when the quasi-classical
approach is not applicable to emphasize that in this case the quasi-classical result is
close to the exact one. It is important here that the choice of quasi-classical corrections
in the quantization conditions is consistent with the boundary conditions.[171] There
are no s-states in the table; for them the quasi-classical spectrum coincides with the
exact one, gnr0 = π2(nr + 1)2. As is seen in the table, the difference between the
exact and quasi-classical values for Enrl with a fixed l weakly depends on nr. Since
the subleading quasi-classical correction on the right-hand side of the quantization
rule is ∼ 1/nr for nr � 1, this property persists down to nr ∼ 1.

3) Let us make two concluding remarks regarding the quantization rule without
the centrifugal potential. Since nr and l appear here only in the combination 2nr + l,
we have an unexpected (approximate) level degeneracy for arbitrary quasi-classical
states, similar to the degeneracy well-known from the exact solution of a spherical
oscillator. The degeneracy is removed however if we include the subleading quasi-
classical corrections.

The quantization rule (3) corresponds to a potential restricted at small distances.
However, we can generalize it to the case where U(r) ∝ 1/rν for r → 0 and 0 ≤ ν < 2
if we replace the right hand side[172] with the expression

[171] Note that quantization according to Eq. (IX.5) leads to a noticeable loss in accuracy (see Problem
9.6).

[172] Such a modification of the quantization rule could be obtained if, at small distances, we use the
exact solution of the Schrödinger equation χ′′

l − (l(l + 1)/r2)χl − (2mα/�2)r−νχl = 0 and then
match it with the quasi-classical solution; see also the Problem 9.9.
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π

[
nr +

1

2
+

2l + 1

2(2− 2ν)

]
(for a bounded potential ν = 0; compare also with Problem 9.5). Here, for the Coulomb
potential, U = −α/r, the quasi-classical result obtained gives the exact spectrum for
all values of the angular momentum l.

Problem 9.8

For a one-dimensional attractive potential which, for |x| → ∞, has the form
U(x) ∝ x−4, determine within the quasi-classical approximation the condition for the
appearance of a new bound state as the depth of the well increases. Apply the result
obtained to the potential from Problem 2.40 and compare to the exact result.

Solution

The condition can be obtained from the quantization rule (IX.5) using n = N − 1 (N
being the level number) and by taking the value of EN−1 to zero (hence a → −∞
and b → +∞). However, if we take into account the quasi-classical correction of 1/2
subleading to n, we would go beyond its regime of accuracy. It is connected with
the fact that the matching condition for quasi-classical solutions based on the linear
potential approximation is not applicable near the turning points in this problem:
turning points move to infinity where for E = 0 the quasi-classical property is broken,
since |dλ/dx| ∝ |x| → ∞.

To obtain a quasi-classical correction we should find the exact solution of the
Schrödinger equation at large distances and then match it with the quasi-classical
solution. The Schrödinger equation takes the form:

ψ′′ +
α̃

x4
ψ = 0, U ≈ − α

x4
, α̃ =

2mα

�2
.

Using the substitution, ψ = ϕ(z)/z, where z =
√
α̃/|x|, we obtain ϕ′′(z) + ϕ(z) = 0.

The existence of a zero-energy solution to the Schrödinger equation which is bounded
as x → ±∞, corresponds to the moment a new discrete state appears as the potential
well deepens (see Problem 2.13). Then the solution for ϕ(z) must be chosen in the
form ϕ = A sin z. Hence, the exact wavefunction for large distances, just when the
level appears, has the form

ψ(x) ≈ A±x sin
(√

α̃±
x

)
, x → ±∞. (1)

For such large distances, but |x| � √
α, the quasi-classical condition, |dλ/dx| � 1,

is already satisfied and the quasi-classical method is applicable (but it is of course
assumed that on such distances potential is still described by an asymptotic expression,
i.e., U ∝ x−4). In the quasi-classical approximation we have
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ψ =
C1√
p
sin

⎡⎣1

�

π∫
−∞

pdx+ γ1

⎤⎦ =
C2√
p
sin

⎡⎣1

�

∞∫
x

pdx+ γ2

⎤⎦. (2)

We find the values for parameters γ1,2 from the matching conditions of the quasi-
classical solutions with the exact ones found in Eq. (1). Here, p/� ≈ √

α̃±/x2, so we
see that γ1 = γ2 = 0. Now, from condition (2) (the phases in the sines sum to πN) we
obtain the relation desired:

1

�

∞∫
−∞

√
−2mU(x)dx = πN. (3)

(The direct use of Eq. (IX.5), as was mentioned earlier in this solution, gives the value
of the right-hand side equal to π(N − 1/2)). Hence for the potential U = −U0(x

2/a2 +
1)−2, we find

ξ ≡ 2mU0a
2

�2
= N2. (4)

The exact result (see Problem 2.40) is obtained by the substitution N2 → N2 − 1. We
see that conditions (3) and (4) yield a higher accuracy[173] than those obtained by
Eq. (XI.5). We find that ξN for N = 10 (according to (4)) differs from the exact result
by 1%, while the “simplified” conditions give a difference of approximately 10%.

Problem 9.9

Using the quasi-classical approximation, obtain the condition for the appearance of
new bound states with angular momentum l ∼ 1, as one increases the well depth of an
attractive potential with the following properties: U ≈ −α2r

−ν2 with ν2 > 2 for large
distances, and U ≈ −α1r

−ν1 with 0 ≤ ν2 < 2 for r → 0. Illustrate your results on the
examples of the Hulthen, Yukawa, and Tietz potentials.

Solution

As in the previous problem we first write the quasi-classical expression for the radial
function (ψ = Ylmχl(r)/r) for E = 0 in two ways:

χl(r) =
C1√
p̃
sin

⎡⎣1

�

r∫
0

p̃dr + γ1�

⎤⎦ =
C2√
p̃
sin

⎡⎣1

�

∞∫
r

p̃dr + γ2�

⎤⎦. (1)

Note that χl ∝ rl+1 for r → 0 and χl ∝ 1/rl for r → ∞ when a bound state appears
(see Problem 4.26). In (1), p̃ =

√−2mU(r) is the radial momentum without the
centrifugal potential (for a reasoning behind this approximation for states with l ∼ 1

[173] Here the difference between the classical and exact results appears as ∼ 1/N2.
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in the quasi-classical domain, see Problem 9.7). In this problem, however, the quasi-
classical property is not obeyed over both small and large distances. We should,
therefore, use the exact solution to the Schrödinger equation which is matched with the
quasi-classical solutions (1) in order to find γ1(2)l. We then can obtain the threshold
condition for the appearance of a bound state using (1).

The Schrödinger equation both for r → 0 and r → ∞ takes the form

χ′′
l +

[
α̃

rν
− l(l + 1)

r2

]
χl = 0, α̃ =

2mα

�2
. (2)

As is known, solutions of this equation are expressed in terms of cylindrical functions:

√
rZs(βr

μ); s =
2l + 1

2− ν
, μ =

2− ν

2
, β =

2
√
α̃

2− ν
.

In order to satisfy the boundary condition at small distances (χl ∝ rl+1) the solution
should be chosen in the form

χl = C
√
rJs1(β1r

μ1).

Using the asymptotic expression for the Bessel function, Js, as z → ∞, we obtain

χl ∝ rν1/2 sin

[
2
√
α̃1

2− ν1
rμ1 − πs1

2
+

π

4

]
. (3)

This corresponds to the quasi-classical solution applicable for short distances such
that U ≈ −α1/r

ν1 , but in which the contribution from the centrifugal potential can
already be neglected.[174] Comparing with the first expression for χ1 in (1) gives

1

�

r∫
0

p̃dr =
2
√
α̃1

2− ν1
rμ1 and γ1l = π

[
2l + 1

2(ν1 − 2)
+

1

4

]
. (4)

For large distances we choose the solution of Eq. (2) in the form

χl = C̃
√
rJ−s2(−β2r

μ2),

and find the parameter value

γ2l = π

[
2l + 1

2(2− ν2)
+

1

4

]
. (5)

Now, from the equality in Eq. (1) (the phases in the sines must sum to πN1), we
obtain the condition for the appearance of the Nlth bound state for a particle with
the angular momentum l:

[174] We should emphasize that the part of the quasi-classical phase in Eq. (3) which depends on r
does not contain l, because taking account of the centrifugal potential in the principle domain
of quasi-classical motion is outside the limits of accuracy for the considered approximation. see
Problem 9.7.
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1

�

∞∫
0

√
−2mU(r)dr = π

[
Nl +

2l + 1

2(2− ν1)
+

2l + 1

2(ν2 − 2)
− 1

2

]
. (6)

We note that the case ν2 → ∞ corresponds to a potential which exponentially
decreases for large distances.

Let us now consider applications of the result in (6).

1) For s-states in the Hulthen potential, U(r) = −U0/e
r/a−1, we should choose

ν1 = 1, ν2 = ∞ and l = 0 in (6). After integration, we obtain

2ma2U0

�2
= N2

s ,

which coincides with the exact result (see Problem 4.8).

2) For the Yukawa potential, U = −αe−r/a/r, we obtain (according to (6))

ξ ≡ 2mα

�2a
=

πN2
s

2
.

Hence the values of ξ equal to 1.57, 6.28, and 14.14 correspond to the appearance
of the lower 1s-, 2s-, and 3s-states, respectively. The exact values obtained by
numerical integration of the Schrödinger equation are 1.68, 6.45, and 14.34.

3) Let us now consider the Tietz potential, U = − a
r(r+1)2 , for which ν1 = 1 and ν2 = 3.

According to (6) we have

2mα

�2a
=

(
N1 + 2l +

1

2

)2

.

For this potential we can find the exact condition for the appearance of the first
bound state, Nl = 1, for an arbitrary value of l. The wavefunction when the bound
state appears has the form

χl = Crl+1(r + a)−2l−1,

where

2mα

�2a
= (2l + 1)(2l + 2).

We see that even for Nl = 1 the quasi-classical result is quite close to the exact
condition for all values of the particle’s angular momentum, l.

Problem 9.10

Using the Bohr–Sommerfeld quantization rule, obtain an expression for the energy
levels shifts caused by a small change in a potential, δU(x), and compare it with
the result of first-order perturbation theory. What is the interpretation of the result
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obtained in the framework of the classical theory? As an illustration consider the
energy-level shifts for a linear oscillator caused by an anharmonicity, δU(x) = βx4,
and compare this to the exact result obtained from first-order perturbation theory.

Solution

Let us denote the energy levels in the potential fields U0(x) and U0(x) + δU(x) by

E
(0)
n and E

(0)
n + δEn, respectively. Expanding the function under the integral in the

quantization rule,

b+δb∫
a+δa

√
2m

[
E

(0)
n + δEn − U0(x)− δU(x)

]
dx = π�

(
n+

1

2

)
. (1)

Taking into account the smallness of δEn and δU we find the desired level shift[175]

δEn ≈ E(1)
n =

2

T

b∫
a

δU(x)

v0(x)
dx, (2)

v0(x) =

√
2

m

[
E

(0)
n − U0(x)

]
,

where T (E
(0)
n ) is the period of classical motion in the potential U0(x).

The result corresponds to the equation of first-order perturbation theory,

E
(1)
n = (δU(x))nn (see Eq. (VIII.1)). It can be calculated from it using the quasi-

classical expression (IX.6) for unperturbed wavefunction and replacing the rapidly
oscillating sine-squared with its mean value 1/2.

The classical interpretation of Eq. (2) can be given in terms of the adiabatic

invariant. It describes the change in the energy, E
(0)
n (which in classical theory is not

quantized!) of a particle’s finite motion inside the potential U0(x) due to an adiabatic
change in the potential, δU(x). Here I = 1

2π

∮
pdx = const, and in the case of a small

potential perturbation, δU , we have Eq. (2). Compare this with the case of a sudden
perturbation discussed in Problem 9.22.

Let us apply Eq. (2) to the case of an oscillator with a weak anharmonicity:

U0(x) =
1

2
mω2x2, E(0)

n = �ω

(
n+

1

2

)
, δU(x) = βx4.

δEn =
ω

π

b∫
−b

βx4dx√
2E

(0)
n /m− ω2x2

=
3

2
β

(
�

mω

)2(
n2 + n+

1

4

)
. (3)

[175] See Problem 9.3. We note that the change in the left-hand side of Eq. (1) due to a shift of the
turning points vanishes in the first order. If δU(x) differs from zero only outside the domain of
classical motion, then the level shift is δEn = 0 (according to Eq. (2)). Of course, a small level shift
does occur in this case. However, it is, generally speaking, exponentially small, and its calculation
requires a separate analysis; see Problem 9.4.
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We should emphasize that taking into account 1/4, which is subleading to n2 + n,
is, strictly speaking, beyond the accuracy of the quasi-classical approximation (see

Problem 9.13). Indeed, the true expression for E
(1)
n differs from (3) by 1/2 instead of

1/4. We see that the quasi-classical result satisfactory reproduces the exact one for
n ∼ 1 (except for the case n = 0).

Problem 9.11

For a particle in a symmetric potential well, U(x), obtain the energy level shifts in a
weak uniform electric field and the polarizabilities of its stationary states using the
Bohr–Sommerfeld quantization rule. What is the interpretation of the result in the
framework of the classical theory? Find the polarizabilities for a linear oscillator and
a particle in an infinitely deep potential well.

Solution

Let us denote the unperturbed energy levels by E
(0)
n , and their shifts by ΔEn(E). The

shifts are determined by the quantization rule:

a2∫
a1

√
2m[E

(0)
n +ΔEn − U(x) + eEx]dx = π�

(
n+

1

2

)
. (1)

Here, V = −eEx is the potential energy of a particle with charge e in an homogeneous
electric field E . Since ΔEn ∝ E2 an expansion with respect to E in the left-hand side
of Eq. (1) should take account of the second-order terms. To this end we transform
the left-hand side of (1) in the following way:

3

2

∂

∂E
(0)
n

a2∫
a1

1

2m
[2m(E(0)

n +ΔEn − U(x) + eEx)]3/2dx ≈

3

2

∂

∂E
(0)
n

a∫
−a

{
p3n(x)

2m
+

3

2
pn(x)(ΔEn + eEx) + 3m

4pn(x)
(eEx)2

}
dx, (2)

where pn =

√
2m(E

(0)
n − U(x)) and ±a are the turning points for the unperturbed

motion. The first term with p3n(x) reproduces the right-hand side in (1); the second

term is equal to T (E
(0)
n )ΔEn/2, while the third term determines the desired level shift,

ΔEn ≡ −1

2
βnE

2 = − me2E2

T (E
(0)
n )

∂

∂E
(0)
n

a∫
−a

x2dx√
2m[E

(0)
n − U(x)]

. (3)

Here T (E
(0)
n ) is the period of unperturbed motion, and βn is the polarizability

of the nth state, and it in turn determines the mean dipole moment of the system,
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dnn = βnE , induced by the external field. According to (3) the polarizability is equal

to (for E = E
(0)
n ):

β(E) =
e2

T (E)

∂

∂E (T (E)x
2), (4)

where x2 is the mean value of x2 in potential U(x) averaged over a period of classical
motion. The classical interpretation of this relation is based on considering the mean
dipole moment over the period:

dclass(E) = 1

T (E)
∮

ex

v(x, E)dx, v = ±
√

2(E − U(x) + eEx)
m

.

Expanding the integral here in powers of E as in Eq. (2) we obtain the relation
dclass = βE , where β is defined via Eq. (4). We should note also that the polarizability
determines a change in energy of the classical system when the field is turned on
slowly: in accordance with (3) ΔE = −βE2/2 (see the previous problem).

For the oscillator T (E) = const, while x2 = E/mω2 (as follows, for example,
from the virial law). Here, βn = e2/mω2, which coincides with the exact quantum-
mechanical result (see Problem 2.2).

For a particle in an infinitely deep potential well, βn = −e2a2/24E
(0)
n < 0, where

a is the well width.

Problem 9.12

Using the Bohr–Sommerfeld quantization rule, obtain quasi-classical expressions for
the first- and second-order shifts in energy levels caused by a potential V (x). As
an illustration determine the shifts for a linear oscillator due to the anharmonicity,
V (x) = αx3, and compare them with the exact result from second-order perturbation
theory.

Solution

Writing En = E
(0)
n + E

(1)
n + E

(2)
n , U(x) = U0(x) + V (x), and performing the expan-

sion in Eq. (IX.5) in a way similar to the previous problem, we find

E(1)
n = V (x),

E(2)
n =

1

2T
(
E

(0)
n

) ∂

∂E
(0)
n

{
T
(
E(0)

n

)[(
V (x)

)2

− (V (x))2
]}

. (1)

Here an overbar denotes the average of the corresponding quantity over one period of

classical motion in the potential, U0(x), with the energy, E
(0)
n . More specifically, it is

defined by[176]

[176] I.e., by averaging over the classical probability, see Eq. (IX.8).
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f(x) ≡ 2

T
(
E

(0)
n

) b∫
a

f(x)dx

vn (x)
, vn =

√
2

m

[
E

(0)
n − U0(x)

]
. (2)

For an oscillator with U0(x) = mω2x2/2 and anharmonicity V (x) = αx3, we find
V (x) = 0 and

(V (x))2 =
ω

π

b∫
−b

α2x6dx√
2E

(0)
n /m− ω2x2

=
5

2
α2

(
E

(0)
n

mω2

)3

.

Hence E
(1)
n = 0, and from Eq. (1) we have

E(2)
n = −15

4

α2

mω2

(
�

mω

)2(
n2 + n+

1

4

)
. (3)

This differs from the exact value only by the factor 1/4; the exact result is equal to
11/30 (such a difference is within the error bars allowed by the quasi-classical accuracy
of the Bohr–Sommerfeld quantization rule; see Problem 9.13). Here the quasi-classical
result faithfully reproduces the exact one even for states with n ∼ 1 (except for the
case n = 0).

Problem 9.13

Find a quasi-classical correction to the Bohr–Sommerfeld quantization rule to next up
to the next-to-leading order in �. Prove that if such a correction is taken into account,
the level energy becomes

En = EBS
n +ΔEn, ΔEn =

�
2

24mT (E)

∂2

∂E2
((U ′(x))2T (E)),

where the overline means average with the classical probability, dw = 2dx/T (E)v(x),
for an energy, E = EBS

n , determined by the Bohr–Sommerfeld quantization rule.
Calculate the next-order correction with respect to � for the results in Problems
9.10 and 9.12, where anharmonic oscillators with V (x) = βx4 and V (x) = αx3 were
considered.

Solution

1) The desired quantization rule correction can be obtained if we use more precise
quasi-classical wavefunctions that take into account the quasi-classical correction
to next order in �, while obtaining the Bohr–Sommerfeld rule.



402 Exploring Quantum Mechanics

The wavefunction to the right of the right turning point,[177] x = b, now has the
form

ψ =
C

2
√−ip

exp

⎧⎨⎩ i

�

x∫
b

pdx− im�

4

F

p3
− i�

24

∂2

∂E2

x∫
b

F 2

p
dx

⎫⎬⎭, (1)

where F = −dU/dx. Here we used the next-to-leading order results for the wave-
function available in the literature (see, for example, vol. III of the theoretical
physics course by Landau and Lifshitz) and also the following identity

i�m2

8

∫
F 2

p5
dx =

i�

24

∂2

∂E2

∫
F 2

p
dx.

(On the real axis for x > b the value p(x) is imaginary and ip < 0.) If we move into
the region of classical motion on the contour in the complex plane, x, we obtain
the wavefunction for[178] x < b:

ψ =
C√
p
sin

⎧⎨⎩1

�

b∫
x

pdx+
m�

4

F

p3
− �

24

∂2

∂E2

b∫
x

F 2

p
dx+

π

4

⎫⎬⎭. (2)

By matching with the decreasing solution for x → −∞, we find the wavefunction
in the region x > a:

ψ =
C ′
√
p
sin

⎧⎨⎩1

�

x∫
a

pdx− m�

4

F

p3
− �

24

∂2

∂E2

x∫
a

F 2

p
dx+

π

4

⎫⎬⎭, (3)

and identifying the expressions (2) and (3), we obtain the quantization rule:

1

�

b∫
a

pdx = π

(
n+

1

2

)
+

�

24

∂2

∂E2

b∫
a

F 2

p
dx. (4)

The last term here is the sought-after correction. Therefore, by writing En = EBS
n +

ΔEn, where ΔEn is the energy level shift of interest, and performing an expansion
with respect to ΔEn (see Problem 9.3) we obtain

ΔEn =
�
2

12T (E)

∂2

∂E2

b∫
a

(U ′(x))2dx√
2m(E − U(x))

∣∣∣∣∣∣
E=EBS

n

, (5)

(on the right-hand side of Eq. (4) we neglect the change in the energy levels), which
coincides with the relation given in the problem statement.

[177] Here we denote the left and right turning points by a and b respectively.

[178] The upper limit for the integral in (2) must be chosen to be the turning point x = b.



Quasi-classical approximation; 1/N-expansion in quantum mechanics 403

Let us now consider some applications of Eq. (5). For an oscillator we have
U ′ = mω2x; here, (U ′)2 = mω2E, and since T = 2π/ω = const (independent of
energy), we find ΔEn = 0. This is a natural result, since for an oscillator, the
Bohr–Sommerfeld law reproduces the exact spectrum and there are no higher-order
corrections with respect to �.
For an oscillator with the anharmonicity, βx4, performing the corresponding

expansions in Eq. (5), we find the part of the shift linear in β,

ΔEn =
3β�2

8m2ω2
.

If we combine this with Eq. (3) from Problem 9.10 we obtain the result from first-

order perturbation theory, E
(1)
n , which coincides with the exact one.

In an analogous way, for the anharmonicity V = αx3 we obtain using Eq. (5):

ΔEn = − 7α2
�
2

16m3ω4

for the correction quadratic in α, which along with Eq. (3) from Problem 9.12,
reproduces the exact result from second-order perturbation theory.

2) Finally, we would like to present another method of obtaining quasi-classical
corrections to the quantization rule to higher order in �; the method is based
on analyzing the non-linear equation equivalent to the Schrödinger equation,

χ′ =
2m

�2
(U − En)− χ2, (6)

which is written in terms of the logarithmic derivative χ = ψ′/ψ. Here,

χ = −
√

2m(U(x)− En)

�2
− χ′(x) (7)

(for the choice of a sign, see below).
We integrate (7) using the residue theorem over a contour, which in the complex

plane of variable x surrounds the part of the real axis between the turning points
a and b: ∮

C

χdx = −1

�

∮
C

√
2m(U − En)− �2χ′dx = 2πin. (8)

Here we have taken into account the fact that the zeros of the wavefunction are
the poles of the function χ(x). The number of these poles is equal to n, and the
residue for each of them is 1.
Relation (8) is exact (for analytic potentials) and is valid for an arbitrary choice of

the contour C. But for further transformations it is convenient to choose the contour
such that it is not too close to the interval on the real axis between the turning
points. In this case, according to Eqs. (7) and (8), χ′ is a subleading correction on
the integration contour. Indeed, near the interval (a, b) on the real axis, ψ(x) has an
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oscillatory behavior, ψ ∝ sin((i/�)
∫
pdx+ γ), and the values χ′ and χ2 are of the

same order. If we move into the complex plane there exists only one exponentially-
increasing term in the wavefunction. Here, χ = ψ′/ψ does not contain a rapidly
changing factor, and the derivative χ′ appears to be a small quantity, of the order
of dλ/dx � 1, in comparison to χ2. Hence, in this case Eq. (7) can be solved by
successive iterations

χ = χ(0) + χ(1) + χ(2) + . . . ,

and we find

χ(0) = − i

�
pn(x),

χ(1) = − χ(0)′

2χ(0)
=

mU ′

2p2n
, (9)

χ(2) = χ(0)

⎡⎣�
2χ(1)′

2p2n
− 1

8

(
�
2χ(0)′

p2n

)2
⎤⎦ etc.

Here, as usual, pn =
√

2m(En − U(x)). The turning points a, b are the branch
points for the function, pn(x). Here, we introduce a branch cut along the interval
(a, b) on the real axis x. Above the cut, pn > 0 (pn < 0 below the cut). We should
note that pn = −i

√
2m(U(x)− En), where the phase, U(x)− En, to the right of

the right turning point, b, is chosen equal to zero; it is in accordance with the choice
of sign in Eq. (7), so that χ < 0 for x > b. We should emphasize that the turning
points are neither critical points nor branch points for the exact solution χ(x).
Substituting the expansion of χ into Eq. (8), we obtain[179]

i

�

∮
pndx = 2π

⎡⎣n+
1

2
+

�

24π

∂2

∂E2
n

b∫
a

(U ′(x))2

pn(x)
dx+ . . .

⎫⎬⎭. (10)

Here we took into account that[180]∮
χ(1)dx = −1

2

∮
d ln p(x) = −iπ,

[179] The integration contour could now be deformed so that it includes the interval (a, b) along the real
axis. We emphasize that analytic properties of the exact solution and its quasi-classical expansion
are different!

[180] Here we use the equation lnx = ln |z| + i arctan z, and take into account that the phase p(x)
changes by 2π while going around the integration contour (at each branch point a phase equal to
π is accumulated).
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while for an integral transformation from χ(2) we integrated by parts in the term
with χ(1)′ and used the relation

∮
(U ′)2

p5
dx =

1

3m2

∂2

∂E2

∮
(U ′)2

p
dx = − 2

3m2

∂2

∂E2

b∫
a

(U ′)2

p
dx.

The quantization rule (10) coincides with expression (4) obtained above in another
way.

Problem 9.14

Let us consider a singular attractive potential U = −α/rν with ν > 2 as r → 0, which
classically gives rise to trajectories where a particle “falls into the center.” In this case,
both independent solutions of the radial Schrödinger equation behave in a similar way
at small distances (compare this to Rl ∝ rl and ∝ r−l−1 for a regular potential with
ν < 2) and, at first sight, there is no energy quantization, since a single condition for
a decreasing wavefunction in the classically forbidden region for r → ∞ can always be
fulfilled.

Using a regularization (small-distance cut-off) of the potential by an impenetrable
sphere of radius r0 surrounding the origin, prove that energy quantization does occur,
but for r0 → 0 it is necessary to fix[181] a position of one of the levels (for each value
of l) in order to uniquely determine the full spectrum. Obtain a quantization rule and
find the corresponding boundary condition on the wavefunction for r → 0. Find also
the energy spectrum for the potential U = −α/r2 in the conditions for “falling into
the origin”.

Solution

1) The most general solution of the radial Schrödinger equation within the quasi-
classical approximation in the region of finite particle motion has the form (ψElm =
YlmχEl/r)

χEl =
C√
p(r)

sin

⎛⎝1

�

r∫
a

pdr + γ

⎞⎠, p = �

√
α̃

rν
− l(l + 1)

r2
− κ2. (1)

Here[182] α̃ = 2mα/�2 and E = −�
2κ2/2m. Since the integral in (1) for r → 0

diverges (ν > 2), both independent solutions behave in a similar way – with infinite
sine oscillations – and ensure convergence at the normalization integral at small

[181] It is important to note here that the Hamiltonian is Hermitian but not self-adjoint (see Problem
1.29). Extending to the case where it is also self-adjoint requires an additional condition that is
equivalent to fixing a position of one of the levels.

[182] For concreteness, we assume that the potential has the form U = −α/rν in the entire space (and
ν > 2). We emphasize that the value of the lower integration limit a in Eq. (1) is not connected
with a turning point, and can be chosen in an arbitrary way.
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distances. Hence, for an arbitrary value of E and by a proper choice of γ, we
can make the wavefunction decrease in the classically forbidden region for r → ∞.
Hence, naively, there is no quantization of the energy spectrum. A mathematical
subtlety however exists due to the fact that the condition for the self-adjoint
extension for the Hamiltonian operator here constrains values of parameter γ. This
is seen by first “cutting” the potential with an impenetrable sphere at the origin of
radius r0 (as is given in the problem statement), and then proceeding to the limit
of r0 → 0.
For small but finite r0 we have the boundary condition χ(r0) = 0. Here, in Eq.

(1) we should put a = r0 and γ = 0. Then, as usual, we obtain the quantization
rule:

b∫
r0

√
2m

[
Enrl +

α

rν
− �2l(l + 1)

2mr2

]
dr = π�

(
nr +

3

4

)
(2)

(see Problem 9.2).
The energy-level spectrum that follows from the quantization rule (2) and

depends on a particular choice of r0, and with the decrease of r0 it has two features.
First, the level with a given fixed value of nr shifts down, and the corresponding
Enrl → −∞ as r0 → 0. Secondly, in some energy domain Ẽ < E < Ẽ +ΔE (with
E < 0), new levels appear with increasingly greater values of nr, so that nr → ∞
as r0 → 0. Although the positions of these levels depend on r0 and there is no limit
for them as r0 → 0, the distance between the neighboring levels (inside the given
domain) is fixed to �ω(Enrl), as is typical in the quasi-classical approximation.
Hence the energy spectrum in the problem for E < 0 is discrete. However,

there must be additional conditions which uniquely fix positions of the levels (the
potential itself does not provide that, in contrast to the case of ν < 2). We can see
that a position of a single level (for each value of the angular momentum, l) entirely
determines the entire spectrum. Indeed, writing down an expression analogous to
Eq. (2) with another value of the radial quantum number nr and subtracting one
from the other, we obtain the relation (we can put r0 = 0 and hence find a specific
quantization rule determining the spectrum (ε → 0)):

b∫
ε

√
2m

[
Enl +

α

rν
− �2l(l + 1)

2mr2

]
dr −

b̃∫
ε

√
2m

[
E0l +

α

rν
− �2l(l + 1)

2mr2

]
dr =

= π�n; n = 0,±1, . . . . (3)

Here we have introduced the following notations: Enrl is replaced by Enl, and
Eñrl by E0l. We also used the quantum number n = nr − ñr that characterizes an
ordering of the levels with respect to the fixed level E0l. The fixed value of E0l

determines the entire spectrum. Note that the number of levels is infinite, because
the values of n are not restricted from below and Enl → −∞ as n → −∞, which
corresponds to the case of “falling into the origin”.
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2) Let us discuss a connection of the quantization rule (3) with the corresponding
restrictions on the wavefunctions (1). For this we emphasize that relation (3) follows
from the wavefunction of the form

χEl =
C√
pn(r)

sin

⎛⎜⎝1

�

b∫
ε

pndr − 1

�

b̃∫
ε

p0dr − π

4

⎞⎟⎠ ≈r→0

C̃rν/4 sin

[
2
√
α̃

(ν − 2)r(ν−2)/2
+ γ̃l

]
,

with ε → 0. It is important here that the value of the phase, γ̃l, does not depend
on energy. Here the wavefunctions of all the states (for a given l) for r → 0 have
the same radial dependence which does not depend on energy and makes the term
outside the integral sign in

∞∫
0

χ∗
2Ĥlχldr =

∞∫
0

(Ĥlχ2)
∗χ1dr − �

2

2m
[χ∗

2χ
′ − χ∗′

2 χ1]

∣∣∣∣∣∣
∞

r=ε→0

equal to zero. This means that fixing[183] a value of γ̃l defines a self-adjoint extension
of the Hermitian operator Ĥ (in the states with a definite angular momentum, l;
see Problem 1.29).

3) The analysis given above can be applied to the case of ν = 2 if we put the Langer
correction into the centrifugal potential. Using∫ √

c2

r2
− a2dr =

√
c2 − a2r2 − c

2
ln

c+
√
c2 − a2r2

c−√
c2 − a2r2

, (5)

we obtain the quantization rule (3) in the form

a ln
E0l

Enl
= 2πn, al =

√
2mα

�2
−
(
l +

1

2

)2

> 0.

Hence, we have the explicit expression for the spectrum:

Enl = E0l exp

{
−2πn

αl

}
, n = 0,±1,±2, . . . . (6)

We should note that the number of levels is infinite both due to the existence
of states with an arbitrarily large binding energy (n → −∞) and due to the
condensation of levels for E = 0 (for n → +∞); the latter does not occur in the case

[183] Fixing γ̃l is equivalent to fixing a position of one of the levels. We emphasize that the same
parameter, γ̃l, determines the properties of both the discrete spectrum forE < 0 and the continuous
spectrum for E > 0. We should note also that if we consider a smooth regularization of the potential
for r < r0 of the form U(r) = U(r0) (instead of the impenetrable wall), then we obtain γ̃l =
γ̃0 + πl/2 for the γ̃l dependence on l; see Problem 9.7.
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of ν > 2. We also write the expression for the wavefunctions for small distances.
Using Eqs. (5) and (6), and according to Eq. (4), we find

χEnl(r) ≈ Cn

√
r sin

{
αl

[
ln

(
κ0lr

2αl

)
+ 1

]
− π

4

}
. (7)

There is no phase-dependence on energy for r → 0.
Finally, for the potential, U = −α/r2, the Schrödinger equation has an exact

solution. Here,

χEl ≈ C
√
rKsαl

(κr), (8)

where Kν is the MacDonald function and the exact spectrum coincides with the
quasi-classical one (6). Indeed, for r → 0 the radial function (8) takes the form

χEl(r) ≈ C|Γ(iαl)|
√
r cos

{
αl ln

kr

2
+ arg Γ(−iαl)

}
. k =

1

�

√−2mE.

From condition (7) it follows that

al ln
knl
k0l

= −πn, or Enl = E0l exp

(
2πn

αl

)
, n = 0,±1,±2, . . . ,

which coincides with (6).

9.2 Quasi-classical wavefunctions, probabilities, and mean values

Problem 9.15

Obtain the quasi-classical wavefunction in the momentum representation in the regime,
where the particle momentum takes its typical values. Find the momentum distribu-
tion of a particle in a discrete stationary state. Determine a classical interpretation of
the result.

Solution

1) Let us first consider the quasi-classical wavefunction in the form of a traveling wave:

ψ(±)(x) =
C√
p(x)

exp

⎧⎨⎩± i

�

x∫
a

p(x′)dx′

⎫⎬⎭,

p(x) =
√

2m(E − U(x)).

The corresponding wavefunctions in momentum representation are given by

φ(±)(p) =
C√
2π�

∫
exp

⎧⎨⎩ i

�

⎡⎣± x∫
a

pdx′ − px

⎤⎦⎫⎬⎭ dx√
p(x)

. (1)
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(Do not confuse p as the variable of representation with ±p(x) – momentum of
the classical particle.) The characteristic property of the integral in (1) for the
quasi-classical states is that the phase, ϕ(x), in the exponential varies rapidly as a
function of x, and the value of the integral is determined mainly by the contribution
near the stationary points of the phase. Let us denote the positions of these points
by[184] x±

s (p). They are determined from the condition

∂ϕ±(x)
∂x

= 0, or ± p(x±
s ) = p. (2)

Expanding ϕ±(x) in the vicinities of the points, x±
s (p), we have

ϕ±(x) ≈ ϕ±(x±
s )±

mω(x±
s )

2�v(x±
s )

(x− x±
s )

2, (3)

where ω = −U ′/m and v are the acceleration and velocity of the classical particle at
the corresponding points, x±

s . Factoring out the slowly varying p−1/2(x) outside the
integral sign (i.e., replacing it by its value at the corresponding stationary point)
and calculating the integrals using the expansions[185] (3) we find:

φ±(p) ≈
∑
s

C

m
√∓iω(xs)

exp

⎧⎨⎩ i

�

⎡⎣± xs∫
a

pdx− pxs

⎤⎦⎫⎬⎭. (4)

We should emphasize that all the points on a classical trajectory with momentum
p contribute to the sum (here φ+ = 0 for the values p < 0, while φ− = 0 for p < 0).

2) Let us now consider the wavefunction, ψn(x), of a stationary state in the potential
with a single minimum, as shown in Fig. 9.1. Writing the sine function in Eq. (IX.6)
in terms of exponents, and using (4), we find for p > 0,

φn(p) =

√
−i

mT (En)

{
exp{iϕ(x1(p))}√

ω(x1(p))
+

exp{iϕ(x2(p))}√
ω(x2(p))

}
, (5)

while φn(p) for p < 0 can be obtained by complex conjugation of (5), calculated
with the momentum fixed to |p|. Wavefunction (5) is different from zero only for
the following values of momentum:

0 ≤ p ≤ p0 =
√

2m(En −minU).

Here we have taken into account that relation (2) has two roots on both sides of
the minimum points of U(x), which merge together as p → p0 (at the minima of
U(x), Eq. (2) has no roots for the larger values of p).

[184] If there are no such points, then φ±(p) = 0. In the classically forbidden domain, where the
wavefunction decreases exponentially, we can consider ψ = 0.

[185] Although the integration is performed over narrow regions around the points, x±
s , due to its fast

convergence we can extend it to infinite limits; the integrals obtained are the Poisson integral.
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The momentum distribution, dWn(p) = |φn(p)|2dp, due to the existence of the
rapidly oscillating exponents in (5), rapidly oscillates as well (compare to the
osculations of |ψn(x)|2). But if we average this distribution over a small momentum
interval, the interference term disappears and we have

dWn(p) =

(
1

ω(x1(p))
+

1

ω(x2(p))

)
dp

mT (En)
, −p0 ≤ p ≤ p0 (6)

(here ω > 0). This expression has a simple classical interpretation. Indeed, sub-
stituting into dWcl = dt/T (E), the time of motion along the trajectory dt by the
particle momentum change

dt =

(
dt

dp

)
dp = ± dp

mω(p)
,

and taking into account the two-valuedness of ω(p) with respect to p, we obtain
the classical momentum distribution that coincides with relation (6) (compare this
to the classical probability dWcl = 2dx/Tv(x) for the particle coordinates).

Problem 9.16

For the stationary states of a discrete spectrum, determine the probability of finding
the particle in the classically forbidden region. Apply the result obtained to a linear
oscillator.

Solution

The main contribution to the desired probability comes from the regions that adjoin
the turning points where the quasi-classical property is broken. Let us consider the
exact solution of the Schrödinger equation based on the linear approximation of
the potential near these points. In the vicinity of the right turning point, x = b,
the Schrödinger equation takes the form:

ψ′′(x)− 2m|F (b)|
�2

(x− b)ψ(x) = 0, (1)

where |F (b)| = U ′(b) and E = U(b). With the substitution

z =

(
2m|F (b)|

�2

)1/3

(x− b)

we transform (1) into the form ψ′′(z)− zψ(z) = 0. The solution of this equation which
decreases as one goes deeper into the classically forbidden region is expressed in terms
of the Airy function, i.e., ψ = cAi(z). Its asymptotes are[186]

[186] Since in this case ζ = �−1

∣∣∣∣∣ x∫b p(x)dx

∣∣∣∣∣, (2) reproduces the matching conditions given in Eqs. (IX.3,4)

(the region |ζ| � 1 is already the quasi-classical region).
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Ai(z) ≈
{

1
2π1/2z1/4 e

−ζ , z � 1

1
π1/2|z|1/4 sin

(
ζ + π

4

)
, −z � 1

(2)

where ζ = 2|z|3/2/3. By matching the solution with the quasi-classical wavefunction
(IX.6) normalized to unity, we find

c2 = 2π

(
4m2

|F |�
)1/3

T−1(En),

and for the probability of the particle being in the classically forbidden region on the
right of the turning point, x = b, we have

w1 =

∞∫
b

|ψ(x)|2dx ≈ 2π

T (En)

(
2m�

F 2(b)

)1/3
∞∫
0

(Ai(z))2dz.

Now using a relation between the Airy and MacDonald functions, Ai(z) =√
z/3π2K1/3(ζ), where ζ = 2|z|3/2/3 and using

∞∫
0

z−νK2
ν (z)dz, we find the desired

probability

w = w1 + w2 =
31/3Γ2(2/3)

2πT (En)

[(
2m�

F 2(a)

)1/3

+

(
2m�

F 2(b)

)1/3
]
, (3)

where for the potential given in Fig. 9.1, both of the classically forbidden regions are
taken into account; Γ(z) is the Γ-function, and Γ(2/3) ≈ 1.354.

For the oscillator U = mω2x2/2, En = �ω(n+ 1/2), and we have

F 2(a) = F 2(b) = 2m�ω3

(
n+

1

2

)
,

and according to (3) we obtain

wn ≈ 0.134

(
n+

1

2

)−1/3

. (4)

As usual, a quasi-classical result remains accurate for n ∼ 1 as well. For the ground
state and the first excited state, it follows from (4) that w0 ≈ 0.169 and w1 ≈ 0.117,
while the true values of these probabilities are equal to 0.157 and 0.112.

Problem 9.17

Using the quasi-classical approximation, find the mean value of a physical quantity
F (x) that is a function only of the coordinate of a particle in the nth stationary state
of a discrete spectrum. As an illustration of the result, calculate the mean values x2

and x4 for the linear oscillator and compare them with the exact values.
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Solution

Using the approximation (IX.6) for the wavefunction, we obtain

Fnn =
2

T (En)

b∫
a

F (x)dx

v(x)
=

√
2m

T (En)

b∫
a

F (x)dx√
En − U(x)

, (1)

so the quantum mechanical mean value coincides with the corresponding mean value
over a period of motion in classical mechanics.

In the case of the linear oscillator, U(x) = mω2x2/2. By using (1), we then obtain

x2 = a2
(
n+

1

2

)
, x4 =

3

2
a4
(
n2 + n+

1

4

)
, (2)

where a2 = �/mω (the integrals are calculated by using the substitution
x =

√
2En/mω2 sin ϕ). The value of x2 coincides with the exact result; the quasi-

classical mean value, x4, differs from the true result by the last term 1/4 (in the
brackets) instead of 1/2. These results are within the quasi-classical accuracy of
relation (1) that provides the correct values of the first two terms in the expansion in
1/n of the considered physical quantity; see Problems 9.10 and 9.13.

Problem 9.18

In the quasi-classical approximation, find the mean value of a physical quantity F (p)
that is a function only of the momentum of a particle in the nth stationary state of a
discrete spectrum. As an illustration of the result, calculate the mean values p2 and
p4 for the linear oscillator and compare with the exact results.

Solution

Using the approximation for the wavefunction (IX.6) we express the sine function in
terms of exponents. We see that

p̂k
1√
p(x)

sin

⎛⎝1

�

x∫
a

p(x)dx

⎞⎠ ≈

1

2i
√

p(x)

⎡⎣pk(x) exp
⎛⎝ i

�

x∫
a

p(x)dx

⎞⎠− (−p(x))k exp

⎛⎝− i

�

x∫
a

p(x)dx

⎞⎠⎤⎦. (1)

Due to the quasi-classical property it is necessary to differentiate only the exponents,
since they are the most rapidly-varying terms. By a relation analogous to (1), with
the substitution (±p(x))k → F (±p(x)), action of the operator, F̂ ≡ F (p̂), on the
wavefunction is described. Now the calculation of the mean value of Fnn is reduced
to the calculation of four integrals. Two of them include rapidly oscillating terms,
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exp[(±2i/�)
∫
pdx], hence they are small and can be neglected. As a result we obtain

Fnn =
2

T (En)

b∫
a

F (p(x))− F (−p(x))

v(x)
dx =

1

T (En)

∮
F (p(x))dx

v(x)
, (2)

which coincides with the mean value over the period of classical motion.[187]

For the oscillator, according to (2), we have

p2 = m�ω

(
n+

1

2

)
, p4 =

3

2
(m�ω)2

(
n2 + n+

1

4

)
. (3)

The value of p2 coincides with the exact one, while p4 differs from exact result only by
corrections which are subleading to n2 + n: in the exact result it is equal to 1/2 instead
of 1/4; see the comment in the previous problem for the accuracy of the quasi-classical
approximation while calculating mean values.

Problem 9.19

For the quasi-classical states of a discrete spectrum, indicate the order of magnitude
for the product of the uncertainties, Δp ·Δx. Compare this estimate to the exact

value of

√
(Δp)2 · (Δx)2 for the linear oscillator and for a particle in an infinitely deep

potential well.

Solution

The estimation can be obtained by using the quantization rule (IX.5). Taking into
account the fact that the integral in this expression is order-of-magnitude equal to
(b− a)pch, where pch is the characteristic value of the particle momentum, and that
Δx ∼ (b− a)/2 and Δp ∼ pch (as p = 0), we obtain

Δp ·Δx ∼ π

2
�

(
n+

1

2

)
. (1)

(Here we keep 1/2 on top of the leading term n to use this estimation for n ∼ 1, and

also for n = 0.) The exact value of

√
(Δp)2 · (Δx)2 for the linear oscillator is equal to

(n+ 1/2)� (for all values of n), while for a particle in an infinitely deep potential well
the value is equal to πn�/2

√
3 in the case n � 1.

To avoid misunderstandings it should be noted that the obtained estimate,
�
−1Δx ·Δp ∼ n, for n � 1 corresponds to the stationary quasi-classical states whose

wavefunctions are essentially different from zero in the whole region of classical motion.
For localized wave packets created from a large number of quasi-classical states there
is only a lower bound for the product, Δx ·Δp, that is determined by the uncertainty

[187] We can write it in the form, Fnn =
∫
F (p)dWn(p), where the momentum probability distribution

is determined by the result from 9.15.
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relation. Compare, for example, to the case of the coherent states of the harmonic
oscillator. See Problem 6.21.

Problem 9.20

Using the quasi-classical approximation obtain the matrix elements, Fmn, for an oper-
ator of the form F̂ = F (x) in the case where |m− n| ∼ 1, i.e., for closely-positioned
levels of a discrete spectru. Find a relation between them and the Fourier components,
F̃s, of the function F (x(t)) in classical mechanics:

F (x(t)) =
∞∑

s=−∞
F̃se

isωt, F̃s =
1

T

T∫
0

F (x(t))e−isωtdt,

where T (E) = 2π
ω is the period of motion of a classical particle with energy E =

1
2 (Em + En). As an illustration of the result, compute the matrix elements, xmn and
(x2)mn, for the linear oscillator and compare with the exact ones.

Solution

The main contributions to the matrix elements come from the integration domain
between the turning points. We can use Eq. (XI.6) for the wavefunction in this
calculation. Due to the expected proximity of the states, n and m, locations of the
turning points and the frequency of motion for them can be assumed the same and
calculated as follows:

Fmn =

∫
ψ∗
mF̂ψndx ≈ ω

π

b∫
a

F (x)

v(x)
cos

⎡⎣1

�

x∫
a

(pm − pn)dx
′

⎤⎦ dx−

ω

π

b∫
a

F (x)

v(x)
cos

⎡⎣1

�

x∫
a

(pm + pn)dx
′

⎤⎦ dx. (1)

The function under the integral in the second term oscillates rapidly (due tom,n � 1),
hence its value is negligible. Taking into account the fact that in the quasi-classical
approximation the difference between the neighboring energy levels is equal to �ω, we
find

pm(x)− pn(x) ≈ �ω
m− n

v(x)
,

and then we obtain

Fmn ≈ ω

π

x∫
a

F (x)

v(x)
cos

⎡⎣ω(m− n)

x∫
a

dx′

v(x′)

⎤⎦ dx. (2)
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Due to the time-dependence of the coordinates for a classical particle, x = x(t), which
moves with an energy[188] E = (Em + En)/2, we make a substitution t = t(x) in (2)
and obtain

Fmn =
2

T

T/2∫
0

F (x(t)) cos[ω(m− n)t]dt,

Fmn =
1

T

T∫
0

F (x(t))e−iω(m−n)tdt = F̃s=m−n. (3)

(The initial moment of time is chosen so that x(0) = a; and the change in x from a to b
and back corresponds to the change of t from 0 to T (E) = 2π/ω.) (3) gives the desired
relation between the quantum-mechanical matrix elements and Fourier components
in classical mechanics.

Let us analyze the accuracy of relation (3) for the case of the linear oscillator
coordinates. Here x(t) = A cosωt, so that, according to (3), only the Fourier compo-
nents, x̃1 = x̃−1 = A/2, differ from zero. Since the classical oscillator energy is equal
to E = mω2A2/2, then equating it to (En + Em)/2 and taking into account that
En = �ω(n+ 1/2), we find A2 and the non-vanishing matrix elements of the oscillator
coordinates in the classical approximation,

xn+1,n = xn,n+1 =

√
�

2mω
(n+ 1),

which coincides with the exact result. In the same way for the square of the coordinate,
x2(t) = A2 cos2(ωt), we find that only the following Fourier components are different
from zero: (x̃2)0 = 2(x̃2)2 = 2(x̃2)−2 = A2/2. Using the relation between A2 and Em,n

mentioned above (note that the values of A2 for the cases m = n and m �= n are
different) we find that, according to (3), the non-vanishing matrix elements are

(x2)nn = a2
(
n+

1

2

)
, (x2)n,n+2 = (x2)n+2,n =

1

2
a2
(
n+

3

2

)
, (4)

where a2 = �/2mω. The true value, (x2)nn, coincides with (4), while for (x2)n,n+2 it
differs from (4) by the substitution, n+ 3/2 → [(n+ 1)(n+ 2)]1/2. We see that the
quasi-classical formula gives a high enough accuracy even for n,m ∼ 1.

Problem 9.21

Generalize the result of the previous problem for the case of an operator of the form,
F̂ = F (p̂). Apply it to calculate the matrix elements of the operators p̂ and p̂2 for an
oscillator.

[188] The use of the physically meaningful quantity describing the average energy ensures the hermiticity
of the corresponding matrix elements, Fmn = Fnm.
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Solution

The problem can be solved in a way similar to the previous one. We should take into
account that the action of the operator, p̂, on a quasi-classical function it is sufficient
to differentiate the latter over x only in the argument of the sine (see Problem 9.18).
After simple transformations we obtain

(pk)mn =
2

T

T/2∫
0

dt pk(t) ·
{
cos[ω(m− n)t], k is even,
−i sin[ω(m− n)t], k is odd.

(1)

Since signs of the particle momenta for 0 < t < T/2 and T/2 < t < T are opposite,
both relations (1) could be combined into one:

(pk)mn =
1

T

T∫
0

pk(t)e−iω(m−n)tdt ≡
(
p̃k(t)

)
s=m−n

. (2)

We see that the analogous relation, Fmn = F s=m−n, between the quasi-classical
matrix elements and the classical Fourier components exists for an arbitrary physical
quantity[189] F (p), Eq. (3) in see Problem 9.20.

The matrix elements, pmn and (p2)mn, for the oscillator momentum are calculated
in the same way as in the previous problem for the coordinate, and are described
by the same expressions with the substitution, �/mω → �mω (there also appear
some unessential phase factors). Such analogy is not accidental, reflects the fact that
the Schrödinger equation and the wavefunction for an oscillator in coordinate and
momentum representations have similar forms.

Problem 9.22

A particle is in the nth stationary state in a potential U(x). Suddenly (at t = 0),
potential energy becomes equal to U(x) + V (x). What are the particle’s mean energy
and its fluctuations at t > 0?

Assuming that n � 1 and the potential change is large enough[190] so that
|V ′

char(x)| × (b− a) � �ωn, where Tn = 2π/ωn is the period of classical particle motion
in the initial state, find the probabilities of its transitions to new stationary states.
In what case can the system “ionize”? Provide an interpretation of the results using
classical mechanics. As an illustration, consider the linear oscillator, U = mω2x2/2,
with a sudden appearance of an homogeneous field V = −F0x.

[189] It is fulfilled in the quasi-classical approximation for an arbitrary physical quantity F (x, p).

[190] Physically, this condition means that in the initial state represents a large number of states of the

final Hamiltonian Ĥf .
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Solution

1) Due to the instantaneous nature of the potential change, wavefunction coincides
with ψi,n immediately after the potential, V (x), turns on. (Here and below, i and
f correspond to the stationary states of the particle in the potentials U(x) and
U(x) + V (x); if it does not lead to misunderstandings we will omit them.) For the
desired mean values we obtain (for t > 0)

E = En + V (x), (ΔE)2 = V 2(x)− (V (x))
2
. (1)

(After V (x) turns on, the Hamiltonian does not depend on time again, so the
energy is conserved.) In the general case, the quantum-mechanical averaging of (1)
is performed over the state with the wavefunction, ψn(x), but in the quasi-classical
approximation it can be replaced by a more simple averaging over a period of finite
motion of a classical particle with energy En in potential U(x) (see Problem 9.17).

2) The transition probability after the sudden change in the potential is (see Problem
8.47)

w(n → k) =

∣∣∣∣∫ ψ∗
f,k(x)ψs,n(x)dx

∣∣∣∣2. (2)

Here, using the relations of the form (IX.6) for the wavefunctions (for the potentials
given above), we transform the matrix elements in the following way:

〈k, f |n, i〉 = m√
Tf (Ek)Ti(En)

b∫
a

⎧⎪⎨⎪⎩exp

⎡⎢⎣ i

�

⎛⎜⎝ x∫
af

pkdx
′ −

x∫
ai

pndx
′

⎞⎟⎠
⎤⎥⎦−

exp

⎡⎢⎣ i

�

⎛⎜⎝ x∫
af

pkdx
′ +

x∫
ai

pndx
′

⎞⎟⎠+ i
π

2

⎤⎥⎦+ c.c.

⎫⎪⎬⎪⎭ dx√
pk(x)pn(x)

, (3)

where c.c. means the complex conjugate, a = max(ai, af ), b = min(bi, bf ); ai,f and
bi,f are the turning points in the quasi-classical states, ψi,n, ψf,k.
A notable feature of the integrals in (3) are the large and rapidly changing values

of the phases in the exponent. Such integrals are essentially different from zero only
when the phases as functions of x have stationary points, and the integration in the
vicinity of them gives the main contribution to the integrals. We can see that there
are no such points in the second exponent in (3) and its complex conjugate (by
definition, pn,k > 0), and these terms can then be omitted. For the first exponent,
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the saddle-point condition, ∂ϕ/∂x = 0, takes the form[191] pf,k(xs) = pi,n(xs), i.e.,√
Ei,n − U(xs) =

√
Ef,k − U(xs)− V (xs), or Ef,k = Ei,n + V (xs). (4)

Hence we see that the energy interval of allowed transitions is bounded by conditions

Vmin < Ef,k − Ei,n < Vmax,

where Vmax(min) is the maximum (minimum) value of V (x) on the interval ai <
x < bi for a classical particle in the initial state. We should note that condition
(4) has a clear physical meaning. Due to the instantaneous potential change, the
classical particle momentum does not change. Therefore, (4) gives the trajectory
points in phase space (p, x) which are the same for the initial and final states.
To calculate the integral we expand the phase of the exponent in the vicinity of a
stationary point:

1

�

⎛⎜⎝ x∫
af

pkdx−
x∫

ai

pndx

⎞⎟⎠ ≈ ϕk(xs) +
1

2�

(
Ff (xs)

vk(xs)
− Fi(xs)

vn(xs)

)
(x− xs)

2 =

ϕk(xs)− mV ′(xs)

2�pn(xs)
(x− xs)

2. (5)

Now we should note that due to the assumed condition, |V ′|(b− a) � �ωn, the
range of values of (x− xs), where the phase change is of order 1 and which gives
the main contribution to the integral, is small with respect to the characteristic
region of particle motion, ∼ (b− a). Hence in (5) we can restrict ourselves to the
quadratic term in the expansion and expand the integration in the vicinity of each
stationary point, x, to the whole domain (due to rapid integral convergence) and
obtain ∫

ψ∗
f,k(x)ψi,n(x)dx =

√
2πm�

TsTf

∑
s

{
exp{iϕk(xs)}√
iV ′(xs)pn(xs)

+ c.c.

}
. (6)

Due to the large value of phases ϕk(xs) in (6), probability values (2), as well as
the value of matrix element (6) itself, are subject to strong oscillation even for
a small change in the number k of the final state. But after the averaging over a
small interval of final states, such oscillations disappear and we obtain the following
expression

w̄(n → k) =
4πm�

Ts(En)Tf (Ek)

∑
s

1

pi,n(xs)|V ′(xs)| . (7)

[191] A number of stationary points x depends on both the form of the potentials and the values of
En,k. If V (x) is a monotonic function of x, then there is one point or there are no points at all;
in the case when U(x) and V (x) are symmetric functions (with one minimum), there are two or
no such points. The absence of stationary points implies that the probability of the corresponding
transition is negligible.
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3) Let us now find the probability of excitations of final states k that correspond to
some energy interval, dEf . Since the distance between the neighboring levels in the
quasi-classical approximation is equal to ΔEk = �ωf (Ek), the desired probability
is obtained by multiplying (7) by dk = dEf/ΔEk – the number of states in this
interval – and is described by the expression

dwf =
2m

Ti(En)

∑
s

dEf

pi,n(xs)|V ′(xs)| . (8)

There is no Planck’s constant in this equation and it can be interpreted within the
framework of classical mechanics. We see that the classical particle’s energy after
V (x) has turned on depends on the coordinate, x, of the particle, and is equal to
Ef = Ei + V (x). Hence the probability distribution for Ef is determined by the
coordinate distribution for a particle, in the initial state, which has the form

dw =
2dx

T (Ei)vi(x)
.

Now, if we turn from variable x to energies Ef , and take into account the multi-
valued nature of x as a function of Ef , we obtain (8), which confirms that
this distribution is normalized to unity and hence the same for the probability
distribution (7).
If, for a particle’s energy E ≥ Ẽ0, the motion in the potential U(x) + V (x) is

unbounded, then equation (8) for Ef > E0 gives an energy distribution for the
particles escaping from the well, while the integration over the energy Ef within
the limits, E0 and Emax = Ei,n +max V , gives the full escape probability after the
change in potential (system ionization).[192]

4) When applying the results to an oscillator we have

Ei,n = �ω

(
n+

1

2

)
, Ef,k = �ω

(
k +

1

2

)
− F 2

0

2mω2
.

According to Eq. (4) we find

xs =
[�ω(n− k) + F 2

0 /2mω2]

F0
.

Then, according to Eq. (7), we obtain the probability of transitions:[193]

w̄(n → k) =
�ω

π

{
2�F 2

0 (n+ 1/2)

mω
−
[
�ω(n− k) +

F 2
0

2mω2

]2}−1/2

.

[192] This fact becomes evident if we take into account the analogy with classical mechanics, mentioned
above. If we consider it quasi-classically we should take into account the change of the wavefunction,
ψf,k, which for Ek > E0 describes states of the continuous spectrum.

[193] We see that w̄(n → k) = w̄(k → n).
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(They are different from zero only for the values of k for which the expression in
the square root is positive.) Eq. (8) here can be written in a more illuminating way:

dwf =
dEf

π [(Ef − Ef,min)(Ef,max − Ef )]
1/2

,

where Ef,max(min) = Ei,n ± anF0 is the maximum (minimum) energy that the
oscillator can have for t > 0 within the stated conditions of the problem. Here,
an =

√
2�(n+ 1/2)/mω is the amplitude of a classical oscillation for t < 0.

9.3 Penetration through potential barriers

Problem 9.23

Using the quasi-classical approximation, determine the penetrabilities of the following
potential barriers:

a) a triangular barrier (see Problem 2.36);

b) U(x) = U0 cosh
−2(x/a);

c) the barrier from Problem 2.35.

Indicate the conditions for the applicability of these results, and compare them to the
exact values of D(E).

Solution

By using Eq. (IX.9) we obtain the following results.

a)
D(E) = exp

{
−8

√
2m|E|3
3�F0

}
, (1)

which for large values in the exponent, when D � 1, coincides with the exact result
for the penetrability through a triangular barrier (see Problem 2.36).

b) In the case of potential, U(x) = U0/ cosh
2(x/a), using the substitution,

sinh(x/a) = κ sin t, κ =
√
U0/E − 1,

for the integral, we find the barrier penetrability in the quasi-classical approxima-
tion:

D(E) = exp

{
−2π

�

√
2ma2

(√
U0 −

√
E
)}

; (2)

while its exact value is

D(E) =
sinh2(πka)

sinh2(πka) + cosh2
(
π
√

2mU0a2/�2 − 1/4
) , k =

1

�

√
2mE.
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As we see, while the conditions

2π
√
2ma2/�2

(√
U0 −

√
E
)
� 1 and E � �

2/ma2 (3)

are fulfilled, the quasi-classical result and the exact one are in close agreement.
The first of the conditions in (3), which provides the value D(E) � 1, is a usual
condition for the applicability of the quasi-classical approximation when computing
barrier penetrability. As for the second one, we should make the following remark.
Its origin lies in the fact that while deriving Eq. (IX.9) we used the quasi-classical
matching conditions in the vicinity of classical turning points, based on the linear
approximation of the potential. But in problems similar to this one (when U →
0 for large distances), the use of such conditions is not valid for small particle
energies.[194] This is seen from the case of E = 0, where for large distances the
quasi-classical method is not applicable; see Problems 9.8 and 9.9. The change in
the solution matching conditions leads to a modification of the classical equation
(IX.9), and causes the appearance of an additional factor before the exponent,
which is of order unity. For this problem, as is seen from the relations for D(E),
the factor is equal to 4 sinh2(πkα)e−2πkα and is especially important for E → 0,
since there it is ∝ E (but with the increase in energy it approaches unity).

c) For the given potential,

D(E) ∼ exp

{
−4a

√
2m

3�U0
(U0 − E)3/2

}
. (4)

This expression determines only an order of magnitude for transmission coefficient.
However, it shows an important fact of its exponential smallness. In the exact
value there appears an additional factor, equal to 4

√
E(U0 − E)/U0, in front of the

exponent. Its appearance is connected with the change in the classical matching
conditions near the turning point x = 0 in comparison with those which lead to
Eq. (IX.9) (compare to the barrier penetrability from b) for E → 0).

A calculation of the factor in front of the exponent in the quasi-classical rela-
tions for barrier penetrability, when the matching conditions (based on the linear
potential approximation at the turning points) are not applicable, are discussed in
Problems 9.24–9.26.

Problem 9.24

Obtain a pre-exponential multiplicative factor in the quasi-classical expression for the
transmission coefficient in the case of a potential barrier of the form shown in Fig. 9.4a)
for the particle energy given there. Apply the result obtained to the potential barrier
considered in Problem 2.35, and compare with the exact one (see also Problem 9.23c)).

[194] Except for the case of slowly decreasing potentials, U ∝ |x|−ν with ν < 2 for x → ±∞.
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(a) (b)

Fig. 9.4

Solution

Proceeding in the same way as when deriving the quasi-classical equation (IX.9) for
the barrier penetrability, and considering the falling particle moving from the left to
the right, we can write the wavefunction for x > b in the form

ψ(x) =
C√
p(x)

exp

⎛⎝ i

�

x∫
b

p(x′)dx′ +
iπ

4

⎞⎠. (1)

The wavefunction in the barrier region is given by

ψ(x) =
C√|p(x)| exp

⎛⎝1

�

b∫
x

|p(x′)|dx′

⎞⎠, 0 < x < b. (2)

(Here we omit the term that dies out inside the barrier.) It is important here that
this quasi-classical expression is valid up to the turning point,[195] x = 0, where the
potential has a jump. The wavefunction for x ≤ 0 has the form

ψ(x) =
1√
p(x)

⎧⎨⎩exp

⎛⎝ i

�

x∫
0

p(x′)dx′

⎞⎠+A exp

⎛⎝− i

�

x∫
0

p(x′)dx′

⎞⎠⎫⎬⎭. (3)

For such a normalization, the transmission coefficient for the barrier is D = |C|2.
Matching the wavefunctions (2) and (3) at the point x = 0 (using the continuity

of the wavefunction and its derivative, and due to the quasi-classical property, it is
enough to differentiate only the exponential factors as they are changing rapidly), we
obtain the relations

[195] Here, E is should not be too close to U2 and U1 (so that in the vicinity of the point, x = 0, the
quasi-classical property is not broken), but if U(x) = U1 = const for x < 0 then there is no second
restriction.
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(1 +A)p
−1/2
1 (0) = CD0(E)|p2(0)|)−1/2,

(1−A)p
1/2
1 (0) = iC|p2(0)|1/2D−1/2

0 (E),

where

p1(0) =
√
2m(E − U1), |p2(0)| =

√
2m(U2 − E),

while D0(E) is given by the quasi-classical expression (IX.9) for the barrier penetra-
bility. Hence we can find the value of C and also the barrier transmission coefficient:

D(E) =
4
√

(E − U1)(U2 − E)

U2 − U1
exp

⎛⎝−2

�

b∫
0

|p(x′)|dx′

⎞⎠. (4)

The appearance of the additional factor multiplying the exponential (whose value is of
order unity) in comparison to Eq. (IX.9), is related to a change in the quasi-classical
matching conditions in the vicinity of the turning point, x = 0.

For the potential from Problem 2.35 we have U2 = U0, U1 = 0, and the pre-
exponential factor is equal to 4

√
E0(U0 − E)/U0. Here (4) coincides with the exact

result (for large values of the exponent, when D � 1; see Problem 9.23 c).

Problem 9.25

Repeat the previous problem for a potential barrier of the form shown in Fig. 9.4b.
Apply the result to the case of a rectangular potential barrier (see Problem 2.31).

Solution

We solve the problem similarly to the previous one, but taking into account the fact
that now the quasi-classical matching conditions, based on the linear approximation
of the potential, change at both turning points a, b. Obtaining the final result is
straightforward without calculations. First we should note that the modification of the
quasi-classical equation (IX.9), that is connected with the change in the wavefunction
matching condition, is reduced to the appearance of an additional pre-exponential
factor, α(E), which depends on the character of how the quasi-classical conditions
break near the turning points. An important property is

α(E) = α1(E) · α2(E), (1)

where, independent of one another, multipliers α1,2(E) are connected with each of the
turning points. (At first sight such a relation is not obvious, due to the different forms
of the solutions that are matched at the left and right turning points. If, however,
we take into account that the transmission coefficient is independent of the direction
in which the particle falls towards the barrier for a given energy, it becomes more
evident; see Problem 9.26). Using the matching conditions from Eq. (IX.9), we have
α1,2 = 1. And specifically for the conditions of the previous problem:
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α1 =
4
√
(E − U1)(U2 − E)

U2 − U1
, α2 = 1. (2)

According to (1), for our problem, α1 is described by relation (2), while α2(E) differs
from α1(E) only by the substitutions U1 → U3 and U2 → U4. This statement solves
the problem of barrier penetrability,

D(E) = α1(E)α2(E)D0(E),

where D0(E) is described by Eq. (IX.9). Hence, for a rectangular barrier of height U0

and width a we obtain

D(E) = 16
E(U0 − E)

U2
0

exp

{
−2

�

√
2m(U0 − E)a2

}
for

m(U0 − E)a2

�2
� 1. (3)

Compare this to the exact result given in Problem 2.31.

Problem 9.26

In the quasi-classical approximation, find the transmission coefficient of slow particles,
E → 0, for a potential barrier that decreases in a power-law fashion as x → ±∞,

U(x) ≈ U1,2

(
a
|x|
)ν1,2

with ν1,2 > 2. Extend the result to the case of a potential barrier

decreasing exponentially for large distances.

Solution

Eq. (IX.9), for E → 0, is not applicable.[196] According to the equation, D(E = 0) �=
0, while the exact result gives D(E) ≈ bE → 0. To calculate the coefficient b (see
Problem 2.39), we should find the solution to the Schrödinger equation for E = 0
which satisfies the boundary condition, ψ(x) → 1, as x → +∞. Since, for E = 0, the
quasi-classical property over large distances is broken, we should use the exact solution
to the Schrödinger equation in this region, and match it with the quasi-classical result
at finite distances (compare this to Problems 9.8 and 9.9).

The Schrödinger equation for large distances, where U(x) ≈ U1,2(a/|x|)ν1,2 , takes
the form

ψ′′ − α

|x|ν = 0, α =
2mUaν

�2
.

The solutions of this equation are to be expressed in terms of the cylindrical functions:√
|x|Zs(2i

√
αs|x|1/2s), s =

1

2− ν
.

[196] see Problem 9.23 b).
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Using the boundary condition, ψ(+∞) = 1, we choose the solution to the Schrödinger
equation (for large distances on the right) in the form:

ψ = C
√

|x|J−s1(2i
√
α1s1|x|1/2s1), C = (i

√
α1s1)

s1Γ(1− s1), (1)

where Γ(z) the Γ-function. For x � α−s1
1 , using the asymptotic form of the Bessel

function

Jν(z) ≈
(

2

πz

)1/2

sin
(
z − πν

2
+

π

4

)
, z → ∞,

we obtain

ψ(x) ≈ Cis1
(

ν1 − 2

4π
√
α1

)1/2

xν1/4 exp

{
2
√
α1

ν1 − 2
x1/2s1

}
. (2)

(Here we have taken into account the fact that the Bessel function argument in
(1) is imaginary for ν > 2; here the term in (2), which exponentially decreases as
x decreases, is omitted). This solution has a quasi-classical form, which determines
the wavefunction, ψ(x), in the whole quasi-classical domain at finite distances (where
the potential is not described by its asymptotic form):

ψ ≈ C1√|p(x)| exp
⎧⎨⎩1

�

∞∫
x

|p|dx
⎫⎬⎭ ≡ C2√|p(x)| exp

⎧⎨⎩−1

�

x∫
−∞

|p|dx
⎫⎬⎭, (3)

where

p =
√

−2mU(x),

C1 = C2 exp

⎧⎨⎩−1

�

∞∫
−∞

|p|dx
⎫⎬⎭ = (4)

1

2

√
�

π
(ν1 − 2)ν1/2(ν1−2)α

−1/2(ν1−2)
1 Γ(1− s1).

Now we see that the solution to the Schrödinger equation for large negative distances
(i.e., for x → −∞) should be chosen in the form:

ψ(x) = C
√−xH

(2)
−s2(2i

√
α2s2(−x)1/2s2), (5)

where H
(2)
ν (z) is the Hankel function. Using the asymptotic form for H

(2)
ν (z) as z → ∞

we obtain

C = −i

√
π

(ν2 − 2)�
exp

{
i

2
πs2

}
C2. (6)
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Now using the relations between the Hankel and Bessel functions, we find the asymp-
totic behavior of solution (5) for x → −∞ (here the argument of the Hankel function
goes to zero). It has the form ψ ≈ −Bx, and using conditions (4) and (6) we obtain

B =
1

β1β2
exp

⎧⎨⎩−1

�

+∞∫
−∞

|p|dx
⎫⎬⎭,

where β1,2 are determined by the relation

β =

√
2π

Γ(1− s)

[
α

(ν − 2)ν

]1/2(ν−2)

(7)

(Indices 1, 2 are omitted for brevity).

Finally, using the result of Problem 2.39 we obtain the transmission coefficient for
slow particles in the form:

D(E) = γ1(E)γ2(E) exp

⎧⎨⎩−2

�

+∞∫
−∞

√
2mU(x)dx

⎫⎬⎭ ∝ E, (8)

where

γ1,2(E) = 2kβ2
1,2. (9)

The modification to the quasi-classical formula (IX.9), i.e., the appearance of an
additional multiplicative factor in front of the exponent, γ(E), and the form of the
factor

γ(E) = γ1(E) · γ2(E)

reflect a general pattern, as mentioned in the previous problem.

In an analogous way, we can consider the case of exponentially decreasing poten-
tials, U ∝ e−|x|/R, for large distances. (For the exact solution of the Schrödinger
equation, see, for example, Problem 4.8 b.) But if we take into account Problem 9.23
b, then the final result is evident without a calculation: in this case

γ1,2 = 2 sinh(2πkR1,2) exp{−2πkR1,2} (10)

and for a slow particle,

γ1,2 ≈ 4πkR1,2. (11)

It is instructive to obtain the last relation from Eqs. (7) and (9) by considering the
exponential potential as a limiting case of a power-law potential in the limit of ν → ∞.
Here we first introduce x0 = νR and consider the values of x close to x0. Here,(x0

x

)ν

≡
(

x0

x0 + (x− x0)

)ν

≈ν→∞ e−x̃/R, x̃ = x− x0.
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For the transition from the power-law potential, U = α̃/xν , to the exponential one,
U = U0e

−x/R, we must put

α̃

xν
0

≡ α̃

(νR)ν
= U0, i.e. α̃ = (νR)νU0. (12)

Substituting (12) into (7) (here α = 2mα̃/�2) and taking ν → ∞, we obtain β =
√
2πR

and, according to (9), we obtain relation (11) for the potential with an exponential
tail.

Problem 9.27

Using the quasi-classical approximation, determine the coefficient of the particle to be
reflected above a barrier in the case where the potential has a jump at point x = 0
(see, for example, Fig. 8.2). Compare this with perturbation theory result derived in
Problem 8.30.

Solution

Particle reflection is determined mainly by the fact that the potential has a singularity
at the point x = 0. The wavefunction that describes the reflection (and transmission)
process of a particle, which impinges on the barrier from the left, has the form (within
the quasi-classical approximation):

ψ(x) =

⎧⎪⎪⎨⎪⎪⎩
1√
p(x)

{
exp

(
i
�

x∫
0

pdx′
)
+A exp

(
− i

�

x∫
0

pdx′
)}

, x < 0,

C√
p(x)

exp

(
i
�

x∫
b

pdx′
)

x > 0.
(1)

where p =
√

2m(E − U(x)) > 0; here the reflection coefficient is equal to R(E) = |A|2.
From the conditions of the wavefunction and its derivative being continuous at x =
0 (as it usually is in the case of the quasi-classical approximation, it is enough to
differentiate the exponential factors only, since they are the most rapidly varying
components), we obtain

√
p2(1 +A) =

√
p1B,

√
p1(1−A) =

√
p2B,

where p1,2 =
√

2m(E − U1,2). Hence it follows that A = (p1 − p2)/(p1 + p2) and the
reflection coefficient is given by

R(E) = |A|2 =

(√
E − U1 −

√
E − U2

)2(√
E − U1 +

√
E − U2

)2 . (2)
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We should note that for (2) to be satisfied for finite values of energy it is not necessary
for R(E) to be small. But for E → ∞, we have (from (2))

R(E) ≈ (U2 − U1)
2

16E2
→ 0,

which coincides with the result of perturbation theory (see Problem 8.30).

Problem 9.28

In the quasi-classical approximation find the shift and width of the ground-state energy
level in a δ-potential well, U = −αδ(x), arising under an action of a weak uniform field,
V = −F0 x. Compare with the results of Problems 6.36 and 8.12.

Solution

The energy level considered under the action of the field corresponds to a quasi-
stationary state. The position, E0, and width, Γ, of the quasi-discrete energy levels are
determined by the conditions for the existence of a solution of the Schrödinger equation
which has a complex-valued energy, E = E0 − iΓ/2, and the form of an outgoing wave
as x → ±∞ (if in some direction of motion U(x) > E0 then, in this direction, the
solution is exponentially decreasing), see Problem 6.36.

In this problem the solution to the Schrödinger equation in the quasi-classical
approximation has the form[197] (see Fig. 6.1)

ψ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A√
p(x)

exp

{
i
�

0∫
x

p(x′)dx′
}
, x < 0, (1.1)

C√
p(x)

exp

{
− i

�

x∫
b

p(x′)dx′
}
, 0 < x < b, (1.2)

C√
p(x)

exp

{
i
�

x∫
b

p(x′)dx′ + iπ4

}
, x > b, (1.3)

where p(x) =
√
2m(E + F0x) (We should emphasize that in the classically forbidden

regions and when the width is neglected, p(x) is purely imaginary, and ip(x) < 0.) Here
we used the known matching condition for the solutions in the vicinity of turning point
x = b. In Problem (1.2) we only kept the term that increases exponentially inside the
barrier.

[197] Strictly speaking, the turning points are now complex; but because of the exponentially small Γ
this fact is not reflected in the matching conditions.
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From the matching conditions at point x = 0 (see Problem 2.6) we obtain

A = C exp

⎧⎨⎩− i

�

b∫
0

p(x)dx

⎫⎬⎭,

A+ C exp

⎧⎨⎩− i

�

b∫
0

p(x)dx

⎫⎬⎭ =

(
2imα

�p(0)

)
A. (2)

(To calculate the wavefunction derivatives we differentiate only the exponential factors,
since they are the most rapidly varying factors within the quasi-classical conditions,

see Eq. (6) below). Hence, we obtain �p(0) = imα or E = E
(0)
0 = −mα2/2�2, which

coincides with the energy level without perturbation, V = −F0x.

We see in the considered approximation that neither the shift nor the level width
can be obtained at this level of approximation. To obtain the shift we should have used
more accurate quasi-classical relations for the wavefunction that take into account the
next-to-leading order corrections in � (see below). As to the level width, it has not
appeared in the calculation above because we have omitted the function exponentially-
decaying inside the barrier, 0 < x < b. Direct calculations using this function are
very cumbersome, but one can circumvent these technical complications by using the
following considerations.

Taking into account the physical meaning of Γ as the value that determines the
decay probability per unit of time, ω = Γ/�, in the state considered we focus on the
current density impinging on the right-hand side of the turning point, x = b. Using
Eq. (1.3) we obtain

j = − i�

2m

(
ψ∗ ∂

∂x
ψ − ψ

∂

∂x
ψ∗
)

=
|C|2
m

. (3)

Here, if the wavefunction is normalized so that the particle is in the vicinity of the
well with probability ≈ 1, then this current density gives the decay probability per
unit of time, w = j. As is seen from Eqs. (1.1) and (1.2), the probability density, |ψ2|,
is essentially different from zero only for the values

|x| ≤
√

�2

2m|E| ≈
�
2

mα2
,

and if

F0 · �
2

mα
� |E0|, i.e., F0 � m2α3

�4
, (4)
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then in p(x) we can omit the term with F0x. As a result, using the wavefunction
normalized to unity in the region of particle localization and near the well, we obtain

|ψ|2 ≈ 1

|p(0)|A
2 exp

{
−2mα|x|

�2

}
, A2 =

m2α2

�3
.

(In the approximation considered, the wavefunction in this region coincides with the
wavefunction of bound states in the δ-well that is unperturbed by the field.) According
to Eq. (2) we obtain

|C|2 exp
⎧⎨⎩2

�

b∫
0

√
2m(|E0| − F0x)dx

⎫⎬⎭ = A2 =
m2α2

�3
.

After the integration we obtain the value of |C|2 and the level width

Γ =
�|C|2
m

=
mα2

�2
exp

{
−2

3

m2α3

�4F0

}
. (5)

Now we discuss the level shift. Using the more accurate relations for the quasi-classical
wavefunction in Eq. (1),

ψ =
C√
p(x)

⎛⎝1∓ im�

4

F

p3
∓ im2

�

8

x∫
0

F 2

p5
dx

⎞⎠ exp

⎧⎨⎩± i

�

x∫
0

pdx

⎫⎬⎭,

and differentiating the factors in front of the exponents while matching the solutions
at the point x = 0, we obtain a correction to Eq. (2) and find

ip(0) +
5i

8

m2
�
2F 2

0

p5(0)
= −mα

�
.

Substituting p(0) in the second correction term by its unperturbed value, imα/�, we
find

E0 = −mα2

2�2
− 5

8

�
6F 2

0

m3α4
. (6)

The second term here gives the level shift (and the polarizability), and coincides with
the exact result in the second-order perturbation theory (see Problems 8.12 and 6.36),
where the level shift and the level width are obtained from the exact solution of the
Schrödinger equation.

Problem 9.29

Using the quasi-classical approximation, obtain the energies, E0n, and widths, Γn, of
the quasi-stationary states in the one-dimensional potential shown in Fig. 9.5. Extend
the results to the case where the barrier on the left and on the right of the well has a
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Fig. 9.5

Fig. 9.6

finite penetrability (Fig. 9.6). Apply the result to the case of a linear oscillator subject
to a weak anharmonicity, V (x) = −λx3.

Solution

1) The quasi-classical solution to the Schrödinger equation for quasi-stationary states
has the form:[198]

ψ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
iC

2
√

p(x)
exp

(
i
�

a1∫
x

p(x′)dx′
)
, x < a1, (1.1)

C√
p(x)

sin

(
i
�

x∫
a1

p(x′)dx′ + π
4

)
, a1 < x < b1, (1.2)

C1√
p(x)

exp

(
− i

�

a2∫
x

p(x′)dx′
)
+

C2√
p(x)

exp

(
i
�

a2∫
x

p(x′)dx′
)
, b1 < x < a2, (1.3)

C1√
p(x)

exp

(
i
�

x∫
a2

p(x′)dx′
)
, x > a2. (1.4)

[198] In Eq. (1), a1, b1, a2 are the turning points.
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Here (1.1) decreases exponentially as x → −∞; (1.2) is written by using the
matching conditions for solution (IX.4). Then in relations (1.3) and (1.4) we
obtain the same coefficient C1 as it follows from the matching condition for the
solution in the vicinity of point, x = a2. Neglecting in (1.3) the second term, which
exponentially decreases inside the barrier, we can use conditions (IX.3) in order to
match the solution near the point x = b1. Hence we obtain the Bohr–Sommerfeld
quantization rules for E0n, which determine the position of the quasi-discrete levels,
and the relation between coefficients

C1 =

√
i

2
(−1)n exp

⎛⎝−1

�

a2∫
b1

|p(x′)|dx′

⎞⎠C.

Now using |C|2 = 4m/T (E0n), which provides the normalized wavefunction in
the region of the particle’s classical motion, a1 < x < b1, and calculating the flow
of probability for x > a2 (compare this to the previous problem), we obtain the
following expression for the width of the quasi-stationary states:

Γn = �ωn =
�D(E0n)

T (E0n)
=

�ω(E0n)

2π
exp

⎧⎨⎩−2

�

a2∫
b1

|p|dx
⎫⎬⎭. (2)

Here, the intuitive meaning of ωn is given as follows: the probability for a particle
to leave the well per unit of time is equal to the number of times the classical
particle hits the barrier 1/T per unit of time, multiplied by the quantum-mechanical
probability to pass through the barrier in a single collision. Then the expression
for the level width has a larger range of applicability, since it is not connected with
the quasi-classical formula for the barrier penetrability; compare this, for example,
to Problem 6.37. If the barrier has a finite penetrability on both sides of the well,
we have

Γn =
�ω

2π
(D1 +D2).

2) We now apply our results to the case of the linear oscillator with anharmonicity,
U = mω2x2/2− λx3. Level shifts for the unperturbed oscillator were calculated in
Problems 9.10 and 9.13. The level width calculation, according to (2), is reduced
to the calculation of the integral:

x2∫
x1

|p(x)|dx =

x2∫
x1

√
2m

[
1

2
mω2x2 − λx3 − E0n

]
dx. (3)

To approximately calculate it, we divide the integration domain into two: from x1

to d and from d to x2, where the value of d is assumed to satisfy the condition√
E0n

mω2
� d � mω2

λ
. (4)
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In the first integral we could consider λx3 as a small correction, and in the second
one the same can be done for the term with E0n, Expanding with respect to these
parameters we find

1

�

d∫
x1

|p|dx ≈ 1

�

d∫
x10

{√
(mωx)2 − 2mE0n − λmx3√

(mωx)2 − 2mE0n

}dx
}

≈ mωd2

2�
− E0n

2�ω
− E0n

2�ω
ln

2mω2d2

E0n
− λd3

3�ω
, (5)

and also

1

�

x2∫
d

|p|dx ≈ 1

�

x20∫
d

{√
(mωx)2 − 2mλx3 − mE0n√

(mωx)2 − 2mλx3
}dx

}

≈ m3ω5

15�λ2
− mωd2

2�
+

λd3

3�ω
− E0n

�ω
ln

2mω2

dλ
. (6)

The sum of (5) and (6) gives the exponent in Eq. (2) and also the relation for
the sought-after level width (the auxiliary variable d used to calculate the integral
drops out of the final result):

Γn =
�ω

2π

[
8m3ω5

λ2�(n+ 1/2)

]n+1/2

exp

{
−2m3ω5

15�λ2
+

(
n+

1

2

)}
. (7)

Here, E0n is replaced by the unperturbed value, �ω(n+ 1/2).

Problem 9.30

Evaluate the penetrability of a centrifugal barrier and the particle lifetime in the quasi-
stationary state (related to the level width by τ = �/Γ) for a short-range potential,
US(r), with a radius rS ; the state energy is E � �

2/mr2S .

Solution

The qualitative form of the effective potential,

Ueff(r) = US(r) +
�
2l(l + 1)

2mr2
,

is shown in Fig. 9.7; at small distances, r → 0, and in the region, r > rS , the centrifugal
potential dominates. Here, U0 ≥ �

2/mr2S , since, in the other case of a “shallow” well,
there exists neither a truly bound state (with E < 0) nor a quasi-stationary state
(with E > 0). For the radial wavefunction, χ(r) = rR (see Eq. (IV.5)), we can use one-
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Fig. 9.7

dimensional quasi-classical approximation. Calculating the integral (E = �
2k2/2m),

1

�

b∫
a

|pr(r)|dr ≈
b∫

a

√
(l + 1/2)2

r2
− k2dr

≈
b∫

a

(2l + 1)dr

2r
≈ 2l + 1

2
ln

2l + 1

2krS
. (1)

(Here the turning points are a ∼ rs and b ≈ (l + 1/2)/k; for the centrifugal potential
the Langer correction is included, i.e., using the substitution, l(l + 1) → (l + 1/2)2),
we obtain the following estimation for the penetrability through the centrifugal barrier
using Eq. (IX.9)

D ∼
(

2krS
2l + 1

)2l+1

∝ (krS)
2l+1

, (2)

(pay attention to the energy dependence of this expression).

We note that by using a relation for the barrier analogous to (1), which is applicable
at the coordinate origin (with the change of b by r0 and rS by r < b), we obtain (for
r → 0)

χquas =
C√|pr|

exp

⎛⎝−1

�

r0∫
r

|pr|dr
⎞⎠ ∝ rl+1,

in accordance with the exact result, Rl = χ/r ∝ rl.
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To estimate the lifetime,[199] τ , we find the probability, w, for the particle to leave
the well per unit time. This probability is obtained by multiplying the number of
times the particle hits the barrier per unit time (which is approximately equal to[200]

vS/rS ∼ �/mr2S) by the single collision probability for it to pass through the barrier
(which coincides with D). We then have

τ =
1

w
, w ∼ �

mr2S

(
2krS
2l + 1

)2l+1

. (3)

(For a more exact relation for τ , see Eq. (XIII.17).) Compare this to the energy
dependence, w ∝ k2l+1, for a centrifugal barrier in the case of slow particles with an
exponential dependence for the Coulomb barrier (see the next problem).

Problem 9.31

Extend the result of the previous problem to the case of a particle in the attrac-
tive Coulomb potential outside the well:[201] UC = −ζe2/r and rS � aS = �

2/mζe2;
consider E � ζe2/aS .

Solution

The form of the effective potential is shown in Fig. 9.8. For the states with small
energy (E → 0):

1

�

b∫
a

|pr|dr ≈
b∫

a

{
(l + 1/2)2

r2
− 2

aBr

}1/2

dr

≈ 2l + 1

2

{
ln

(2l + 1)2aB
2rS

− 2

}
. (1)

Here, a ≈ rS , b = (2l + 1)2aB/8, and we took into account that rS � aB . Hence,

D ∼
(

2e2rS
(2l + 1)2aB

)2l+1

∼ 1

[(2l + 1)!]2

(
2rS
aB

)2l+1

(2)

(e = 2.718 . . . ; in the last transformation we used the Stirling equation). Note that
Coulomb attraction “shortens” the centrifugal barrier and, for small energies (E → 0),
increases its penetrability; compare this to the previous problem.

[199] In the quasi-classical approximation the quasi-stationary state energy, as well as the energy of the
exact bound state, is determined by the Bohr–Sommerfeld quantization rule; compare this to the
previous problem.

[200] Here vs = pS/m is the characteristic velocity of the particle in the well, pS ∼ √
mU0 ≥ �/rS (do

not confuse pS with the momentum, p = �k, of the particle leaving the well, pS � �k).

[201] Such a problem appears in the theory of hadron atoms (see Problem 11.4). There, the quantity
of interest is the penetrability of the barrier that separates a region of nuclear attraction from a
region with the Coulomb attraction.
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Fig. 9.8

2) On the contrary, in the case of the repulsive Coulomb potential, the barrier
penetrability for slow particles decreases sharply. Here the dominant contribution to
the integral (E = mv2/2, UC = α/r),

1

�

b∫
a

|pr|dr ≈ 1

�

α/E∫
0

√
2mα

r
− (mv)2dr =

πα

�v

comes from large distances, where the centrifugal potential is small. Taking this into
account we arrive at the relation

D(E) ∼ e−2πα/�v (3)

for the barrier penetrability; compare Eqs. (3) to (2) and also to Eq. (2) from the
previous problem.

9.4 1/N -expansion in quantum mechanics

1/N -expansion is a computational method used in different fields of theoretical
physics. The idea of the method is to “construct” a parameter N such that for
N � 1 the solution simplifies and allows an expansion in powers of 1/N . For a
suitable choice of parameter N , the region of applicability of such an expansion
may extend down to N ∼ 1, which characterizes the initial system. (Compare this
to the high accuracy of quasi-classical results for En even for n ∼ 1, despite the fact
that the formal condition of its applicability is n � 1.) The auxiliary parameter N
is often connected with increasing the number of degrees of freedom (the number
of states, spatial dimensionality, etc.) of the considered system. Below, we discuss
several elementary applications of this method for solutions to the one-dimensional
Schrödinger equation.
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Problem 9.32

Analyze the discrete spectrum of a particle in a one-dimensional potential, U(x) =
−U0f(x/a), which is a well with a single minimum (at the point x0 = 0), using
1/N -expansion. Here, choose

N =

(
ma2U0

�2

)1/2

. (1)

To illustrate the accuracy of the expansions for the energy levels and the wavefunction,
consider the following potentials:

a) U(x) = −U0 cosh
−2(x/a);

b) U(x) = U0(a/x− x/a)2;

c) U(x) = U0(e
−2x/a − be−x/a).

Solution

As N increases, the potential well becomes deeper and the number of bound states
grows as well. In the case N � 1, the wavefunctions of the low-lying energy levels
are localized around the potential minimum point, where U ′(0) = 0. Therefore we can
expand the potential energy in terms of x/a (below we put � = m = a = 1):

U(x) = U(0) +
1

2
ω2x2 + αx3 + βx4 + . . . ,

where

ω2 = U ′′(0), α =
1

6
U ′′′(0), β =

1

24
U IV(0). (2)

Here the third and higher order terms are considered as a perturbation; the unper-
turbed system is a linear oscillator with frequency ω. The perturbation series with
respect to such anharmonic corrections,

En = U(0) + ω

(
n+

1

2

)
− 15

4

α2

ω4

(
n2 + n+

11

30

)
+

3

2

β

ω2

(
n2 + n+

1

2

)
+ . . . , (3)

may be regarded as a 1/N -expansion for the particle energy levels; here U(0) ∼ N2,

ω ∼ N, α2

ω4 ∼ β
ω2 ∼ N0 = 1, and so on. The result obtained for En is asymptotically

exact as, N → ∞. However, in the case of smooth potentials it has a high enough
accuracy even for N ≥ 1 as well (to increase the accuracy we should consider higher-
order corrections). As an illustration, let us consider some specific potentials.

a) For the potential

U(x) = −U0 cosh
−2(x/a)
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the expansion (3) takes the form, N =
√
U0, and ω =

√
2U0,

En(1/N) = −N2 +
√
2N

(
n+

1

2

)
− 1

2

(
n2 + n+

1

2

)
+O

(
N−1

)
≈ −U0 +

√
2U0

(
n+

1

2

)
− 1

2

(
n2 + n+

1

2

)
. (4)

Let us compare this both with the exact energy spectrum,

En = −1

8

[√
8U0 + 1− (2n+ 1)

]2
, (5)

and with the quasi-classical expression, E
(q)
n , that differs from (5) by, 8U0 + 1 →

8U0. For the ground state for different values of N we have

N =
√
U0 1 1.5 2 3 4

−E0(1/N) 0.543 1.439 2.836 7.129 13.422

−E0 0.500 1.410 2.814 7.114 13.411

−E
(q)
0 0.418 1.314 2.711 7.004 13.297

For the first excited state, n = 1, we have

N =
√
U0 1.5 2 3 4

−E1(1/N) 0.318 1.007 3.886 8.765

−E1 0.231 0.942 3.842 8.732

−E
(q)
1 0.193 0.882 3.761 8.640

We should note that the level appears at the value U0 = 1. (According to (5), the
total number of discrete levels in the considered potential for N � 1 is Nlev ≈√
2N .)
Let us discuss the wavefunctions within the 1/N -expansion. From the perturba-

tion theory equations (VIII.2), we obtain

ψ0(x) ≈
[
ψ
(0)
0 (x) + c

(1)
02 ψ

(0)
2 (x) + c

(1)
04 ψ

(0)
4 (x)

]
, (6)

where ψ
(0)
n (x) are the eigenfunctions of a linear oscillator with frequency ω =

√
2U0.

Here the linear oscillator perturbation has the form, V = −2U0x
4/3, so that the

non-zero expansion coefficients, c
(1)
02 = 〈k|V |0〉 are equal to

c
(1)
02 =

1

4
√
U0

, c
(1)
04 =

1

8
√
3U0

.
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Let us emphasize that the wavefunction[202] (6) is normalized to unity up to within
the quadratic order in 1/N .
The exact wavefunction for the ground state has the form

ψ̃0(x) = A cosh−s x, s =
1

2
(
√

8U0 + 1− 1).

It is easy to find the normalization coefficient for the values, U0 = 1 (here s = 1)
and U0 = 3 (s = 2): A(1) = 1/

√
2 and A(3) =

√
3/2.

Let us compare the wavefunction values at zero. Here, ψ̃0(0) = A while

ψ0(0) = ψ
(0)
0 (0)

(
1− 3

16
√
2U0

)
=

(√
2U0

π

)1/4(
1− 3

16
√
2U0

)
,

and for the relation R = ψ0(0)/ψ̃0(0) we obtain

R = 1.0048 for U0 = 1 and R = 1.0020 for U0 = 3.

As we see, 1/N -expansion gives accurate results for both the energy levels and
the wavefunction in the region where the particle is localized even in the case
of relatively small values of N , when there are only several discrete levels in
the potential. This remains true for more general potentials as long as they are
“smooth” enough.

b) For the potential, U(x) = U0(a/x− x/a)2, we obtain (N =
√
U0, we put a = 1)

En(1/N) =
√
8U0

(
n+

1

2

)
+

1

8
+ . . . . (7)

A comparison to the exact expression for the spectrum

Ẽn =
√
8U0

[
n+

1

2
+

1

4
(
√
8U0 + 1−

√
8U0)

]
(8)

shows that we again obtain highly accurate results within the 1/N -expansion even
for N ≥ 1; so, for N = 1 for the ground level, E0/Ẽn = 1.026.

c) For the potential (U0 > 0, a > 0, b > 0),

U(x) = U0(e
−2x/a − be−x/a),

and the 1/N -expansion gives (N =
√
U0, a = 1):

En(1/N) = −1

4
U0b

2 +

√
1

2
U0b2

(
n+

1

2

)
− 1

2

(
n+

1

2

)2

+ . . . . (9)

The three expansion terms coincide with the exact result for the spectrum,
En = −[

√
2U0b2 − (2n+ 1)]2/8 (see Problem 2.9).

[202] The relation for the wavefunction is valid only in the region where the particle is localized (and is
not applicable for large distances in the classically forbidden domain; in the latter region we can
use the quasi-classical expression for the wavefunction).
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Problem 9.33

Analyze the energy spectrum for bound s-states of a particle moving in a spherically-
symmetric potential, U(r), using the 1/N -expansion with spatial dimensionality,[203]

D, as the parameter N , i.e., considering N ≡ D � 1. To illustrate this method,
consider the potentials a) U(r) = Fr, b) U(r) = αr4, and c) U(r) = −α/r.

Solution

In the N -dimensional space and for spherically symmetric functions we have[204]


f(r) = f ′′ +
N − 1

r
f ′, r2 =

N∑
i=1

x2
i .

Hence, the Schrödinger equation for the s-states, using the substitution ψ(r) = χ(r)/rν

with ν = (N − 1)/2, takes the form of the ordinary one-dimensional Schrödinger
equation (below we consider � = m = 1):

−1

2
χ′′ + (Ueff(r)− E)χ = 0, Ueff(r) =

(N − 1)(N − 3)

8r2
+ U(r). (1)

In the case of large N , due to the quasi-centrifugal barrier ∝ N2/r2, the wavefunctions
and the energy spectrum around the minimum of the effective potential have the
properties[205] similar to those noted in the previous problem for the potential,
U = U0f(x/a) for U0 → ∞, and can be calculated along the same lines.

To solve Eq. (1) for N � 1 using the 1/N -expansion it is convenient to obtain the
solution in the form of an expansion in powers of 1/Ñ , where Ñ2 = (N − 1)(N − 3),
and then perform an expansion in 1/N . Let us consider application of this method to
some specific potentials.

a) For the potential, U(r) = Fr, equation (1) takes the form:

−1

2
χ′′ +

[
Ñ2

8r2
+ Fr

]
χ = Eχ.

Performing an expansion of Ueff in the vicinity of the point, r0 =
(
Ñ2/4F

)1/3

,

where the effective potential minimum is located,

Ueff =
3

2
Fg−1/3 +

3

2
Fg1/3x2 − 2Fg2/3x3 +

5

2
Fgx4 + . . . ,

[203] It is also called the 1/D-expansion; for real space, D = 3, but sometimes this method can be used
even in one- and two-dimensional systems.

[204] This result can be obtained by using the following relations: Δ = div∇, ∇f(r) = f ′r/r, and
divr = N .

[205] This statement is valid only for potentials with an infinite number of bound states, and below we
restrict ourselves to this case. For short-range attractive potentials with a finite number of discrete
states we should use the method from the following problem, which involves writing the potential
in the form, U(r) = N2gv(r/R).
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where x = r − r0 and g = 4F/Ñ2. We then obtain (similarly to the previous
problem):

E0(1/Ñ) =
3

2
Fg−1/3 +

1

2

√
3Fg1/3 +

1

72
g2/3 + . . . . (2)

Taking into account that

g =
4F

N2 − 4N + 3
≈ 4FN−2

(
1 +

4

N
+

13

N2

)
, (3)

we obtain the following 1/N -expansion for the ground level:

E0(1/N) =
3

2

(
FN

2

)2/3{
1 +

1

N

(
−4

3
+

2√
3

)
+

1

N2

(
−20

27
+

4

3
√
3

)
+ . . .

}

=
3

2

(
FN

2

)2/3

· (1− 0.17863N−1 + 0.02906N−2 + . . . ). (4)

For N = 3 we obtain E0 = 1.8549F 2/3, which differs from the exact value, Ẽ0 =

β1

(
F 2/2

)1/3
= 1.8558F 2/3 (here −β1 = −2.3381 is the first zero of the Airy func-

tion, Ai(−β1) = 0; see Problem 2.8) by merely 0.05%. For the one-dimensional
potential, U = F |x| and N = 1, and it follows from (4) that E0 = 0.8036F 2/3, while
the exact value is equal to Ẽ0 = 0.8086F 2/3. The high accuracy of Eq. (4) is due
to the serendipitous fact that the actual expansion parameter is ≈ 1/5N .

b) For the potential, U(r) = αr4, we obtain the following expansions:

E0(1/Ñ) = 3α1/3

(
Ñ2

16

)2/3{
1 +

4
√
6

3Ñ
+

44

27Ñ2
+ . . .

}
,

and in terms of the expansion parameter, 1/N , we obtain

E0(1/N) = 3α1/3

(
N2

16

)2/3
{
1 +

8(
√

3/2− 1)

3N
+

50− 24
√
6

27N2
+ . . .

}

= 3α1/3

(
N2

16

)2/3 (
1 + 0.5993N−1 − 0.3255N−2 + . . .

)
. (5)

(the expansion parameter is ≈ 1/2N). Hence, for N = 3 we have E0 = 2.379α1/3,
which differs from the exact numerical result of the Schrödinger equation,
Ẽ0 = 2.394α1/3, by merely 0.4 %.

c) For the Coulomb potential, U(r) = −α/r, we obtain

E0(1/Ñ) = −2α2

Ñ2

(
1− 2

Ñ
+

2

Ñ2
+ . . .

)
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and the 1/N -expansion takes the form

E0(1/N) = −2α2

N2

(
1 +

2

N
+

3

N2
+ . . .

)
. (6)

Here, in comparison to (4) and (5), the expansion convergence is worse. We can
“improve” this if we use the expansion parameter 1/(N − 1). Then relation (6)
takes the form, E0(1/(N − 1)) = −2α2/(N − 1)2, which coincides with the exact
result. The use of this slightly modified expansion parameter is connected with the
fact that for N = 1 it involve the “falling into the origin” behavior (gives E0 = −∞)
that appears in the one-dimensional Coulomb potential,[206] (see Problem 8.61).

Problem 9.34

Analyze the energy spectrum of bound states in a spherically symmetric attractive
potential, U(r) = U0v(r/R), using the 1/N -expansion with the parameter

N ≡ n = l + nr + 1. (1)

Consider the radial quantum number, nr, to be fixed, and consider a large angular
momentum, l → ∞. Illustrate the accuracy of the obtained energy levels by comparing
them with the exact solutions of the Schrödinger equation.

Solution

Let us write the potential in the form, U(r) = n2gv(r/R), i.e., put U0 ≡ gn2, and
function v(z) determines the shape of the potential. Then the effective potential energy
appearing in Eq. (IV.5) takes the form that is suitable for subsequent use in the 1/n-
expansion,

Ueff(r) = n2

{
gv(r) +

1

2r2
− 2nr + 1

2nr2
+

nr (nr + 1)

2n2r2

}
(2)

(here and below, � = m = R = 1). In an analogous way we write the 1/n-expansion
for the energy levels:

Ennr
= n2

{
ε(0) +

1

n
ε(1)nr

+
1

n2
ε(2)nr

+ . . .

}
. (3)

In the limiting case, n → ∞, the particle is localized in the vicinity of the effective
potential minimum, r0, for which

gr30v
′(r0) = 1, ε(0) = min Ueff =

1

2r20
+ gv(r0). (4)

[206] The interpolation between the regions N → ∞ and N ∼ 1 is often used in other versions of the
1/N -expansion method.
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Restricting ourselves to the vicinity of this point by expanding to quadratic order in
(r − r0), we obtain using (2),[207]

χ′′
nnr

−
[
n2ω2(r − r0)

2 − n(2nr + 1)

r20
− 2nε(1)nr

]
χnnr

(r) = 0, (5)

ω =

(
gv′′(r0) +

3

r40

)1/2

.

In this approximation we have

ε(1)nr
=

(
ω − 1

r20

)(
nr +

1

2

)
, (6)

χ(0)
nnr

=

{
mω

22nrπ(nr!)2

}1/4

Hnr
(ξ)e−ξ2/2, ξ =

√
nω(r − r0). (7)

In an analogous way we can find terms of higher order in the 1/n-expansion. These
higher-order results are quite cumbersome however, and so we illustrate the accuracy
of the 1/n-expansion up to the leading approximation only.

For power-law attractive potentials (G > 0, ν > −2),

U(r) = G
1

ν
rν ≡ n2

(
�
2

mR2

)
1

ν

( r

R

)ν

, R =

(
n2

�
2

mG

)1/(2+ν)

. (8)

1/n-expansion for the energy levels takes the form[208]

Ennr
= n2

(
�
2

mR2

)
εnnr

= n2

(
�
2

mR2

){
ε(0) +

1

n
ε(1)nr

+ . . .

}
= n2

(
�
2

mR2

){
2 + ν

2ν
+

1

n
(
√
2 + ν − 1)

(
nr +

1

2

)
+ . . .

}
. (9)

Hence for the Coulomb potential, ν = −1, and the spherical oscillator, ν = 2, the exact
results for the energy spectra follow.

Let us also consider the case of the linear potential, ν = 1. For this potential, from
(9), the 1/n-expansion for the energy levels has the form:

[207] Let us note that here the expansion in 1/n is connected with the n-dependence of various terms
in (2), and with the subsequent expansion in (r − r0) that has the smallness of the order of

n−1/2. Here this expansion in Ennr contains only integer powers of 1/n, as in the conditions of
Problem 9.33.

[208] In this case, ω =
√
2 + ν. The singularity appearing here for ν = −2 (compare to Eq. (12) below)

manifests the appearance of the “falling into the origin” type of behavior see Problem 9.14.
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εnnr
(1/n) =

2

3
+

1

n
(
√
3− 1)

(
nr +

1

2

)
+ . . . . (10)

A comparison of this result to the true values of ε
(exact)
nnr , obtained from numerically

solving the radial Schrödinger equation, is given in the table below, where we also give
the values of error

δ(0(1))nnr
=

Ennr
(1/n)

E
(exact)
nnr

− 1, (11)

in the zeroth- and first-order approximations in the 1/n-expansion.

nr = 0 nr = 1

l 0 1 2 0 1 2

ε
(exact)
nnr 1.85576 2.66783 3.37178 3.24461 3.87679 4.46830

δ
(0)
nnr -0.19 -0.11 -0.075 -0.27 -0.20 -0.15

δ
(1)
nnr 5.5 · 10−3 1.4 · 10−3 6.3 · 10−4 2.5 · 10−3 1.2 · 10−3 7.2 · 10−3

In conclusion, we present the result of the second-order approximation in 1/n for
power-law potentials:

ε(2)nr
=

2− ν

144(2 + ν)

{
ν2 − 15ν − 52 + 36

√
2 + ν + 6nr(nr + 1)

× (ν2 − 9ν − 34 + 24
√
2 + ν

}
, (12)

which increases the accuracy of the approximation.

Problem 9.35

For a short-range attractive potential, U(r) = U0v(r/R), (U(r) → 0 for r → ∞), find,
using 1/n-expansion (see the previous problem), the critical values, ξnnr,cr, of a
parameter in the potential

ξ ≡ mU0R
2

�2
,

where the nnrth level appears as the potential well deepens.

Solution

The problem is solved in a way analogous to the previous one, but now, for the 1/n-
expansion, we determine not the energy level but the value of the coupling constant:

U0 ≡ gnnr
n2, gnnr

= g0 +
1

n
g(1)nr

+
1

n2
g(2)nr

+ . . . . (1)
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Here, the expansion coefficients, g
(k)
nr , are to be found from the condition that, when

a level appears, its energy E = 0 so ε
(k)
nr = 0 at all orders in the 1/n-expansion.

The position of the classical equilibrium point, r0, and the value of the coupling
constant, g0, in the zeroth-order approximation are determined from the following
relations (see Eq. (4) from the previous problem):

r0v
′(r0) = −2v(r0), g0 = − 1

2r20v(r0)
. (1)

For the first-order correction we obtain

g(1)nr
= −2nr + 1

2v(r0)

(
ω − 1

r20

)
= (2nr + 1)(ωr20 − 1)g0, (2)

where the frequency, ω, is given by Eq. (5) from the previous problem with the
substitution, g → g0.

We illustrate the application of the results obtained on the example of the Yukawa
potential,[209] U(r) = −U0(R/r) exp(−r/R). In this case,

gnnr
= e

{
1

2
−

√
2− 1

2
√
2

(2nr + 1)
1

n
+ . . .

}
, (3)

where e = 2.718 . . . . A comparison of this relation to the exact values, g
(exact)
nnr , obtained

by numerically solving the radial Schrödinger equation, is given in the following tables.

nr = 0

l 0 1 2 5

g
(exact)
nnr 0.8399 4.5410 10.947 46.459

δ
(0)
nnr 0.62 0.20 0.12 0.053

δ
(1)
nnr 0.14 0.022 8.3 · 10−3 1.8 · 10−3

nr = 1

l 0 1 2 5

g
(exact)
nnr 3.2236 8.8723 17.210 58.496

δ
(0)
nnr 0.69 0.38 0.26 0.14

δ
(1)
nnr −0.054 −0.025 −0.014 −5.6 · 10−3

[209] Here the role of the second-order correction, g
(2)
nr , is more important than in the previous problem.
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Here, we also give the values of the errors:

δ(0(1))nnr
=

gnnr
(1/n)

g
(exact)
nnr

− 1, (4)

for the corresponding approximation in the 1/n-expansion (compare this to the
previous problem).



10

Identical particles; Second
quantization

The wavefunction of a system that contains identical particles has a definite symmetry
with respect to particle permutations, so that

ψ(. . . , ξα, . . . , ξb, . . . ) = ±ψ(. . . , ξb, . . . , ξα, . . . ).

Here ξn ≡ (rn, σn) denotes a set of variables (position and spin) for each of the
corresponding particles. The wavefunction is symmetric with respect to permutations
of particles with integer spin – bosons – and it is anti-symmetric for particles with half-
integer spin – fermions. Therefore, when the system is in a definite quantum state its
wavefunction in general can be obtained by symmetrizing products of single-particle
wavefunctions for bosonic particles and anti-symmetrization of such wavefunctions for
fermions. The total state of the system can also be described by designating occupation
numbers of the single-particle states.

It is convenient to use the many-particle second-quantization formalism that
automatically ensures the proper quantum-mechanical symmetry of identical particles.
This formalism relies on the occupation number (Fock) representation with operators
â+i , âi – the particle creation and annihilation operators (in corresponding discrete
quantum states characterized by i). In the case of bosons, these operators obey the
canonical commutation relations:

[âi, âk] = [â+i , â+k ] = 0, [âi, â+k ] ≡ âiâ
+
k − â+k âi = δik, (X.1)

while in the case of fermions, they obey the canonical anti-commutation relations:

{âi, âk} = {â+i , â+k } = 0, {âi, â+k } ≡ âiâ
+
k + â+k âi = δik, (X.2)

(so that for fermion operators, â2i = (â+i )
2 = 0).

The operator n̂i = â+i âi yields the particle number in the corresponding quantum
state i. For states normalized to unity with well-defined occupation numbers we have

âi| . . . , ni, . . . 〉 = √
ni| . . . , ni − 1, . . . 〉;

â+i | . . . , ni, . . . 〉 =
√
ni + 1| . . . , ni + 1, . . . 〉

(for fermions ni = 0 or 1, for bosons ni = 0, 1, 2, . . . ).
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For a system of identical particles (bosons or fermions), the operator for an additive

one-particle physical quantity, F̂ (1) =
∑
a
f̂
(1)
a , is expressed in the occupation-number

representation in terms of the ψ(ξ)-operators as follows:[210]

F̂ (1) =

∫
ψ̂+(ξ)f̂ (1)ψ̂(ξ)dξ, (X.3)

where f̂ (1) is the usual single-particle operator in the coordinate representation, while
the operators ψ̂, ψ̂+ act in the space of occupation-number functions.

Similarly, an additive two-particle quantity F (2) =
∑
a<b

f
(2)
ab in the occupation num-

ber representation has the form

F̂ (2) =
1

2

∫
ψ̂+(ξ)ψ̂+(ξ′)f̂ (2)ψ̂(ξ′)ψ̂(ξ)dξdξ′. (X.4)

10.1 Quantum statistics; Symmetry of wavefunctions

Problem 10.1

Consider a system of two identical particles with spin s. Find the number of different
spin states symmetric (anti-symmetric) with respect to the interchange of the spin
variables.

Solution

Spin functions (not symmetrized in the spin variables) have the form[211]

χsz (σ1)χs′z (σ2). (2s+ 1)2 functions of this form are possible. The following combi-
nations of these functions:

[210] Operators ψ̂(ξ), ψ̂+(ξ) represent an important special case of the operators â+i , âi that create
and destroy particles in position and spin states designated by i = r, σ. Another common choice is
when â+i , âi correspond to states denoted by i = p, σ. To obtain a discrete spectrum of momentum

eigenvalues, the system can be assumed to be in a “box” of large but finite volume V = L3. An
expansion of the ψ-operator in plane waves takes the form:

ψ̂(ξ) =
1√
V

∑
k,σ

eik·râk,σ , p = �k.

The limit V → ∞ is taken using the substitution
∑
k
· · · → (V/(2π)3)

∫
d3k . . . .

Generalization of Eqs. (X.3) and (X.4) to the case of some arbitrary ai-operator (instead of

ψ̂(ξ)) reduces to using the i-representation for operators f̂ (1), f̂ (2).

[211] Here χsz (σ) is a normalized single-particle spin wavefunction with a definite value of spin projection
sz . In the sz-representation it has the form χsz (σ) = δσ,sz .
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ψ+
szsz = χsz (σ1)χsz (σ2),

ψ±
szs′z

=
1√
2
{χsz (σ1)χs′z (σ2)± χs′z (σ1)χsz (σ2)}, sz �= s′z, (1)

normalized to unity, have a definite symmetry with respect to particle permutation:
ψ+ are symmetric, while ψ− are anti-symmetric functions. The number of independent
symmetric and anti-symmetric states are (s+ 1)(2s+ 1) and s(2s+ 1) respectively.

The wavefunctions given above do not correspond to definite values of the total
spin S (except for the case of s = 1/2; see Problem 5.10). However, using the result
of Problem 3.30 we can state that in the symmetric states the total spin values are
S = 2s, 2s− 2, 2s− 4, . . . , while in the anti-symmetric states, the values are S =
2s− 1, 2s− 3, . . . (here S ≥ |sz + s′z|).

Problem 10.2

Show that if n identical particles with spin s are in different orbital states
ϕ1(r), ϕ2(r), . . . , ϕn(r) (here 〈ϕi|ϕk〉 = δik), then the total number of independent
states, including the spin degrees of freedom, is equal to G = (2s+ 1)n, and it does
not depend on the particle quantum statistics.

What is the number of possible states in the case where the particles are distin-
guishable?

Solution

Taking into account the spin, the wavefunctions of single-particle states have the form:

ψi,sz,i = ϕi(r)χsz,i(σ),

where χsz is the spin function (the index i in sz,i emphasizes that different orbital
states sz have generally different values for sz,i). The set of numbers sz,i uniquely
determines n different single-particle states:

ψ1,sz,1 , ψ2,sz,2 , . . . , ψn,sz,n (1)

as well as a unique state of the total system of n identical particles. The system
wavefunction is obtained by symmetrization (or anti-symmetrization) of products of
functions (1). Any change of the set of values sz,i gives another distinct set of single-
particle states (1) (here it is important that all wavefunctions ϕi are different). Since
each sz,i can take (2s+ 1) different values, the total number of different single-particle
sets (1) and hence the number of independent system states is equal to (2s+ 1)n.

For a system of distinguishable particles, the manner in which particles are assigned
to different single-particle states is important. The number of different orbital states
here is equal to n!, while the total number of system states, with the spin degrees of
freedom taken into account, is equal to (2s+ 1)nn! (here there is no symmetrization
(nor anti-symmetrization) of wavefunctions).
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Problem 10.3

Let ψfi(ξ) be the wavefunctions of single particle states normalized to unity (fi are the
quantum numbers of some complete set). Write normalized wavefunctions for states
of a system of three identical weakly interacting particles (consider both the bosonic
and fermionic cases) which occupy single particle states with given quantum numbers
f1, f2, f3.

Solution

For bosons, the form of the system wavefunction depends on whether or not the
occupied single-particle states coincide. Here we should consider three cases.

1) All the particle are in the same state, f1 = f2 = f3 = f . The system wavefunction,
normalized to unity, is ψ = ψf (1)ψf (2)ψf (3) (here and below instead of particle
variables we give only the quantum number, so ψ(1) ≡ ψ(r1, σ1), etc.).

2) Two of three occupied states coincide. Now,

ψ =
1√
3
{ψ1(1)ψ2(2)ψ2(3) + ψ2(1)ψ1(2)ψ2(3) + ψ2(1)ψ2(2)ψ1(3)} (1)

(we put f1 �= f2 = f3 for concreteness and write the index a instead of fa for
brevity). The expression inside the curly brackets is derived from the wavefunction
symmetry condition with respect to the permutation for any two particles. The
coefficient 1√

3
is determined by the normalization condition for the wavefunction ψ:

∫
|ψ|2dξ1dξ2dξ3 = 1,

∫
ψ∗
a(ξ)ψb(ξ)dξ = δab (2)

(integration over ξ includes also a summation over the spin variable); while calcu-
lating the normalization integral, only three of the nine terms in |ψ2| give a non-
vanishing contribution due to the orthogonality of the single-particle wavefunctions
given in (2).

3) If all three occupied states are different, then

ψ =
1√
6
{ψ1(1)ψ2(2)ψ3(3) + ψ2(1)ψ3(2)ψ1(3) + ψ3(1)ψ1(2)ψ2(3)±

± ψ1(1)ψ3(2)ψ2(3)± ψ3(1)ψ2(2)ψ1(3)± ψ2(1)ψ1(2)ψ3(3)}, (3)

where the upper signs correspond to bosons.
In the case of fermions, all three occupied states must be different, and the

anti-symmetric wavefunction is determined by relation (3) with the choice of lower
signs.
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Problem 10.4

Three identical bosons with spin s = 1 are in the same orbital states described by
the wavefunction ϕ(r). Write the normalized spin functions for the total system. How
many independent states are there? What are the possible values of the total spin of
the system?

Solution

Since the coordinate part of the system wavefunction, ϕ(r1)ϕ(r2)ϕ(r3), is symmet-
rical, the spin part must also be symmetrical with respect to the particles’ mutual
permutation. Non-symmetrized products of spins functions have the form:

χsz,1(σ1)χsz,2(σ2)χsz,3(σ3),

where χsz,i(σ) is the spin function of a single particle with a definite value of the
spin projection sz. The number of these products is 3× 3× 3 = 27, but the sym-
metry condition reduces the number of independent states. Such states correspond
to different (not connected to each other by permutations) sets {sz,a} of values sz
for single particles. The corresponding spin functions of the system are obtained by
symmetrization of the one-particle spin functions; compare to the previous problem.

As an example, for the set of values sz,1 = sz,2 = sz,3 = 1 we have

ψ111 = χ1(1)χ1(2)χ1(3) =

⎛⎝1
0
0

⎞⎠
1

⎛⎝1
0
0

⎞⎠
2

⎛⎝1
0
0

⎞⎠
3

, (1)

while for the set sz,1 = sz,2 = 1, sz,3 = 0,

ψ110 =
1√
3
{χ1(1)χ1(2)χ0(3) + χ1(1)χ0(2)χ1(3) + χ0(1)χ1(2)χ1(3)} =

=
1√
3

⎧⎨⎩
⎛⎝1

0
0

⎞⎠
1

⎛⎝1
0
0

⎞⎠
2

⎛⎝0
1
0

⎞⎠
3

+

⎛⎝1
0
0

⎞⎠
1

⎛⎝0
1
0

⎞⎠
2

⎛⎝1
0
0

⎞⎠
3

+

+

⎛⎝0
1
0

⎞⎠
1

⎛⎝1
0
0

⎞⎠
2

⎛⎝1
0
0

⎞⎠
3

⎫⎬⎭. (2)

We will also write the other sets of values (sz,1, sz,2, sz,3) that lead to new
states of the system: (1, 1,−1), (1, 0, 0), (1, 0,−1), (1,−1,−1), (0, 0, 0), (0, 0,−1),
(0,−1,−1), (−1,−1,−1). The total number of independent spin states is equal to 10.

From these ten states, seven correspond to the value S = 3 of total system spin,
while the remaining three correspond to the value S = 1. Indeed spin function (1)
corresponds to S = 3. Function (2) also corresponds to S = 3 with projection Sz = 2.
Two states, (1, 1,−1) and (1, 0, 0), correspond to the value Sz = 1. Both these states
represent a superposition of states with the total spin S = 3 and S = 1.
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Problem 10.5

Indicate the restrictions on the quantum numbers (spin JA and intrinsic parity PA) of
some neutral particle A0 that follow from the fact that it decays to the two π0-mesons:
A0 → 2π0 (for pion JP

π = 0−). Compare to Problem 5.30.

Solution

The total angular momentum of two pions in their center-of-inertia frame (it is also
a rest frame for the particle A0) coincides with the orbital momentum L of their
relative motion which, due to the angular momentum conservation, is equal to the
spin of the particle A0, so that JA = L. However, the condition of symmetry on the
two π0-mesons wavefunctions requires that L take only even values. Thus JA = 0, 2, 4
(indeed, the permutation of pions is equivalent to coordinate inversion in their center-
of-inertia frame. Since r = r1 − r2, the permutation multiplies the wavefunction by
(−1)L). Here the two-pion system parity is even, and if it is conserved during the
decay, then PA = +1.

Problem 10.6

It is known that the reaction π− + d → n+ n, corresponding to the capture of a slow
π−-meson (its spin is Jπ = 0), occurs from the ground state of a meso-deuterium with
the parity conservation.

Taking into account the fact that proton’s and neutron’s intrinsic parities are the
same and the quantum numbers of deuteron JP

A = 1+, find the pion intrinsic parity.

Solution

For this problem, the quantum numbers of the π−d-system are the following:[212]

J = Jd = 1 is the total angular momentum, and P = Pπ is the parity that coincides
with the pion’s intrinsic parity. Due to the angular momentum conservation, the two
neutrons in the final state also have total angular momentum J = 1 (in the center-
of-inertia system), and since for them J = L+ S (L is the orbital momentum of the
relative motion, S is the total spin, the neutron’s spin is s = 1/2), only the following
values of L and S are possible:

1) L = 0, S = 1, 2) L = 1, S = 0; (1)

3) L = 1, S = 1, 4) L = 2, S = 1.

It is seen that the anti-symmetric condition for the two-neutron wavefunction forbids
them from having the states with quantum number sets 1), 2), and 4). In this case,
we should take into account the fact that spin functions with S = 1 and S = 0 are
symmetric and anti-symmetric respectively (see Problem 5.10), while the symmetry of
the coordinate functions with a given value of the orbital momentum L coincides with
the parity of these functions (−1)L (since the coordinate permutation is equivalent to

[212] For the ground state of a meso-deuterium (i.e., a π−d-atom), the angular moment is l = 0.
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a reflection with respect to the center-of-mass, r = r1 − r2). Therefore, for the total
angular momentum, J = 1, the two-neutron system could have only the quantum
numbers L = 1 and S = 1 and hence negative parity. Thus it follows that Pπ = −1
and the pion is a so-called pseudo-scalar particle, i.e., it has JP

π = 0−.

Problem 10.7

Three identical bosonic particles with zero spin weakly interacting with each other are
in stationary states with the same quantum numbers nr and l, where l = 1, in some
central potential. Show that a total angular momentum L of the system cannot take
on a zero value.

Solution

The problem of possible states for a system of three bosons is equivalent to
Problem 10.4, and wavefunctions could be obtained by the substitution of the spin
functions χsz in Problem 10.4 for the spherical functions Y1m(n). Hence it follows that
the total angular moment could take the values L = 3 and L = 1.

The states of the system with the total angular momentum L = 0 could be much
more easily obtained from the form of the wavefunction ψL=0. For this problem, three
independent single-particle states with l = 1 could be chosen in the form ψi = xif(r),
where xi are the components of the radius-vector, r; see Problem 3.21. The wave-
functions (non-symmetrized) for a system of three particles in l = 1 states have the
form:

ψikl = x1ix2kx3lf(r1)f(r2)f(r3). (1)

The wavefunction of a state with total angular momentum L = 0 does not change
under the rotation of the coordinate system. From the wavefunctions (1) it is possible
to make only one scalar (or pseudo-scalar) function that has the property:

ψL=0 = (r1 · [r2 × r3]) f(r1)f(r2)f(r3), (2)

but it is anti-symmetric with respect to particle permutation and could not describe
a bosonic system.

Problem 10.8

Indicate possible values of a total spin S of two identical Bose particles with spin s in
a state with the total angular momentum L (L here is the angular momentum in the
center-of-inertia system), i.e., what states 2S+1L of the system are possible? Consider,
for example, the case of s = 0.
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Solution

A coordinate permutation of two particles is equivalent to their reflection with respect
to the center of mass (since r = r1 − r2). Hence the symmetry of the coordinate
wavefunction for a state with a given value of angular momentum L coincides with the
parity of the state, which is equal to (−1)L. The bosonic symmetry property requires
that in the even states, spin variable permutation does not change the wavefunction,
while in the odd states it yields a sign change for the wavefunction. Hence, taking
into account the result of Problem 3.30 for the wavefunction symmetry over addition
of two identical angular momenta, we see that for the states with angular momenta
L = 0, 2, 4, . . . , only the values of total spin S = 2s, 2s− 2, . . . , 0 are possible, while
for the states with L = 1, 3, 5, . . . , only S = 2s− 1, 2s− 3, . . . , 1 are possible.

As an example, for spinless bosons (s = 0) only the even values of L are possible.
Consequently, we obtain an exclusion rule that prohibits a of a neutral particle with
spin Sv = 1 (vector meson) into two π0-mesons; see also Problem 10.5.

Problem 10.9

The same as the previous problem, but considering identical Fermi particles.

Result

In a system of two identical fermions with an even angular momentum, L, the total
spin could take even values S = 2s− 1, 2s− 3, . . . , 0, while for the odd L only the
odd S = 2s, 2s− 2, . . . , 1 are possible. Compare to the previous problem, and also to
Problem 10.6.

Problem 10.10[213]

A system consists of two identical spinless Bose particles in states described by mutu-
ally orthogonal wavefunctions, normalized to unity, ψ1,2(r). Indicate the probability
of finding both particles in the same small volume dV . Compare it to the case of
distinguishable particles.

Solution

The system’s wavefunction normalized to unity has the form

ψ(r1, r2) =
1√
2
{ψ1(r1)ψ2(r2) + ψ2(r1)ψ1(r2)},∫∫
|ψ|2dV1dV2 = 1. (1)

[213] Problems 10.10 and 10.11 give examples of important interference effects between states of identical
particles. This is in contrast to the interference effects in single-particle quantum mechanics, where
the interference occurs between states describing the same particle.
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The probabilities of two particles to be in the same volume dV simultaneously is
equal to

dwbos = |ψ(r, r)|2dV dV = |ψ1(r)|2dV · |ψ2(r)|2dV + |ψ1(r)ψ2(r)|2(dV )2, (2)

which is greater than the analogous probability,

dwdist = |ψ1(r)|2dV · |ψ2(r)|2dV, (3)

for the case of distinguishable particles. This result shows the existence of interference
between identical particles. We can characterize it as a tendency for bosons to mutually
approach. Different aspects of this interference phenomenon are discussed in the
following problem.

Such an interference between identical particles, in the same spin states, also takes
place in the case of fermions. Here dwferm = 0, and we can describe the interference
as a tendency for fermions to mutually repel. For particles (both bosons and fermions)
in different (orthogonal) spin states, there is no such interference.

Problem 10.11

Two identical Bose particles with zero spin occupy two states described by wave-
functions, ψ1,2(r), normalized to unity. Find the (average) particle density for such a
system, and compare it to the case of distinguishable particles.

Solution

ψ(r1, r2) = C{ψ1(r1)ψ2(r2) + ψ2(r1)ψ1(r2)}, (1)

where 2C2 = (1 + |〈ψ1|ψ2〉|2)−1. The mean particle density is obtained by averaging
the corresponding operator,

n̂(r) ≡ n(r) =
∑
a

δ(r− ra), (2)

where the summation is performed over all particles. Such an operator form is
connected with the fact that the analogous classical quantity depends only on the
particle coordinates (but not on their momenta; compare to the operators of potential
energy Û(ra) = U(ra) in the coordinate representation), where r acts as an “external”
parameter. We see that

n(r) ≡ 〈ψ|n̂(r)|ψ〉 = 2C2{|ψ1(r)|2 + |ψ2(r)|2 +Δ(r)}, (3)

where

Δ(r) = ψ1(r)ψ
∗
2(r)〈ψ1|ψ2〉+ ψ2(r)ψ

∗
1(r)〈ψ2|ψ1〉.
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Let us discuss the result obtained for n(r). First we should note that
∫
n(r)dV = 2 is

independent of the form of the functions, ψ1,2(r). If these functions are orthogonal, so
that 〈ψ1|ψ2〉 = 0, then C2 = 1/2, Δ(r) = 0 and

n(r) = |ψ1(r)|2 + |ψ2(r)|2 ≡ ndist(r), (4)

as in the case of distinguishable particles. But if 〈ψ1|ψ2〉 �= 0, then n(r) differs from
ndist(r). There appears an interference between the different (but identical) particles,
as discussed in the previous problem. Since 2C2 < 1, in the areas of space where the
wavefunctions ψ1,2(r) do not “overlap” (so that ψ∗

1(r)ψ2(r) ≈ 0), we have n < ndist.
Taking into account the normalization of n(r), we see that in the essential region of
wavefunction overlap it is n > ndist, in accordance with the tendency of bosons to
mutually approach. For fermions in the same spin states, the change of sign in terms
that include |〈ψ1|ψ2〉|2 and Δ corresponds (here 2C2 ≤ 1) to the opposite interference
effect – mutual repulsion; compare to Problem 10.10.

10.2 Elements of the second quantization formalism
(the occupation-number representation)

Problem 10.12

Find the commutation relation for the Hermitian and anti-Hermitian parts of a bosonic
annihilation operator â (or creation operator â+).

Solution

Writing

â =
1

2
(â+ â+) + i

1

2i
(â− â+) ≡ Â+ iB̂,

(here Â = (â+ â+)/2), we find [Â, B̂] = i/2; compare to [p̂, x̂] = −i�, and see the
following problem.

Problem 10.13

In the terms of operators for position x̂ and momentum p̂ of a particle, construct the
operators â and â+ having the properties of boson annihilation and creation operators.

Determine the wavefunction ψ0(x) of the vacuum state.

Solution

Writing â = αx̂+ βp̂ and â+ = α∗x̂+ β∗p̂, we have

[â, â+] = i�(αβ∗ − α∗β) = 1.



Identical particles; Second quantization 457

The choice of parameters α, β is not unique. We can choose, for example,

α =
1√
2L

, β =
iL√
2�

.

(L is a real parameter with dimensions of length.)

From the condition â|0〉 = 0 or(
x

L
+ L

∂

∂x

)
ψ0(x) = 0,

we find the wavefunction of the vacuum state,

ψ0(x) = (πL2)−1/4 exp

{
− x2

2L2

}
. (1)

This wavefunction has the form of linear oscillator ground state, see Problem (11.2).
Such a state does not change with time (it is stationary). In the case of a real free
particle, the Gaussian wave packet (1) spreads out; see Problem (6.2) and (6.21),
which in terms of pseudo-particles (corresponding to the operators â and â+) could
be interpreted as their creation and annihilation with time.

Problem 10.14

Can we consider â′†, â′ as creation and annihilation operators of some new particles
corresponding to the transformation of the form â′ = â+, â′+ = â? Analyze the states
|n′〉 (i.e., states with a definite number n of new particles) in the basis of initial
particles states. Write the unitary operator Û that accomplishes the transformation
considered.

Solution

For the bosonic operators we cannot do this, since in this case [â′, â′+] = −1 (unlike
[â, â+] = 1).

In the case of fermion operators, the transformation is legitimate, since we still
have â′2 = 0 and {â′, â′+} = 1. Here the vacuum state of “new” particles |0′〉 is the
one-particle state |1〉 in the initial particle basis, i.e., |0′〉 = |1〉 and |1′〉 = |0〉. Such
“new” particles are called holes (on the background of initial particles). For fermions
the transformation considered is unitary and is provided by the operator Û = â+ â+,
since here, â′ = Û âÛ+ = â+.

Problem 10.15

Find the eigenfunctions and eigenvalues of the annihilation and creation operators.
For these states, obtain a distribution function over the number of particles. Consider
the cases of bosonic and fermionic operators.
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Prove that for a linear oscillator, the eigenfunctions of the annihilation operator
â = (mωx̂+ ip̂)/

√
2m�ω describe the coherent states; see also Problem 6.21.

Solution

1) First we remind ourselves that operators â and â+ act in the space of state vectors,

|ψ〉 =
∑

cn|n〉 = c0|0〉+ c1|1〉+ . . . ,

where symbol |n〉 corresponds to the n-particle state. Here,

â|n〉 = √
n|n− 1〉, â+|n〉 = √

n+ 1|n+ 1〉,
for fermions â†|1〉 = 0.
Eigenfunctions |α〉 ≡ ∑

cn|n〉 and eigenvalues α of the boson operator â are
determined from the relation â|α〉 = α|α〉. Since[214]

â|α〉 = â
∑

cn|n〉 =
∑

cn
√
n|n− 1〉 =

∑
cn+1

√
n+ 1|n〉,

then the relation takes the form:∑
n

(cn+1

√
n+ 1− αcn)|n〉 = 0. (1)

Therefore, taking into account the independence of states |n〉, it follows that

cn+1 =
α√
n+ 1

cn =
α√
n+ 1

· α√
n
cn−1 = · · · = αn+1√

(n+ 1)!
c0. (2)

It can be seen that the eigenvalue of a bosonic operator â can be any complex
number α (operator â is non-Hermitian!), while the corresponding eigenfunction
|α〉 could be normalized to unity. The condition 〈α|α〉 = 1 gives

〈α|α〉 =
∑
n

|cn|2 = |c0|2
∑
n

|α|2n
n!

= 1, i.e. |c0|2 = e−|α|2, (3)

so that the distribution over the number of particles in state |α〉 is determined by
the relation,

wn = |cn|2 = exp{−|α|2} |α|
2n

n!
, (4)

and is a Poisson distribution with n = |α|2.
The equation for eigenfunctions and eigenvalues of the bosonic operator â+

has no solution. The fermion operators â, â+ have one eigenfunction each: |0〉
is the eigenfunction for â, while |1〉 is the eigenfunction for â+; the corresponding
eigenvalues are equal to 0.

[214] Here and below, the summation over n in all the equations is performed from n = 0 to n = ∞.
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2) Let us now consider the linear oscillator and find the form of eigenfunctions ψn(x)
of the operator

â =
1√

2m�ω
(mωx̂+ ip̂) (5)

in the coordinate representation. From the relation âψα = αψα it follows that

ψα(x) = C exp

⎧⎨⎩−mω

2�

(
x−

√
2�

mω
α

)2
⎫⎬⎭, (6)

which is the wavefunction of a coherent state considered in Problem 6.21. If we put
(compare the relation for eigenvalues with the form of operator (5))

α =
1√

2m�ω
(mωx0 + ip0),

then we see that the change of the coherent state in time happens so that its
wavefunction at any time t remains an eigenfunction of the operator â, but with a
time-dependent eigenvalue α(t), where

α(t) = αe−iωt. (7)

This fact is evident in the Heisenberg representation, where â = e−iωtâ (compare
to Problem 6.25), but the wavefunction ψα does not depend on time. It also follows
from the expansion given above that |α〉 = ∑

cn|n〉, if we take into account that
for an oscillator,

|n, t〉 = exp

{
− i

�
Ent

}
|n〉, En = �ω

(
n+

1

2

)
,

and use relation (2) for the expansion coefficients.

Problem 10.16

Is the transformation from the operators â, â+ to new operators â′ = â+ α, â′+ =
â+ + α∗ (α is a complex number) a unitary? What is the form of the unitary operator
here? Consider the cases of bosonic and fermionic operators â, â+.

Analyze the vacuum states for “new” particles |0′〉 in the basis of initial particles
states |n〉, and find the number distribution over the initial particle states.

Solution

For the fermionic operators, (â′)2 = 2αâ+ α2 �= 0 (for α �= 0), and therefore the
transformation considered is not unitary.

For the boson operators, it is still [â′, â′+] = 1, and the transformation is unitary.
Taking into account the result from Problem 6.19, we find an explicit form of the
unitary operator,
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Û = exp{α∗â− αâ+}, (1)

that performs such a transformation – here, â′ = Û âÛ+. Then, using the equation
from the condition for Problem 1.10, we can write operator (1) in the form:

Û = e−|α|2/2e−αâ+

e−α∗â.

Now it is easy to find a state for the “new” vacuum in the initial basis,

|0′〉 = Û |0〉, e−|α|2/2e−αâ+

e−α∗â|0〉 = e−|α|2/2∑
n

(−α)n√
n!

|n〉, (2)

if we expand the exponents in terms of the operators â and â+.

See another way to find the states |0′〉 from the equation â|0′〉 = 0 in the previous
problem. In this problem, the distribution over the number of initial particles in state
|0′〉 that follows from (2) coincides with expression (4) (Poisson distribution) from the
previous problem.

Problem 10.17

Repeat the same analysis as in the previous problem, but for a transformation of the
form â′ = αâ+ βâ+, â′+ = αâ+ + βâ (here α, β are real numbers).

Solution

For the fermionic operators, the transformation considered is unitary if the following
conditions are fulfilled:

(â′)2 = (αâ+ βâ+)2 = αβ = 0, {â′, â′+}+ = α2 + β2 = 1,

i.e., only in the trivial case of α = ±1, β = 0, and also the case α = 0, β = ±1, which
corresponds to a transformation from particles to holes; see Problem 10.14.

For bosonic operators the transition is unitary if the condition α2 − β2 = 1 is
fulfilled. If we write |0′〉 = ∑

n
cn|n〉 and repeat the solution to Problem 10.15, from

the relation â′|0′〉 = 0 we can find

c2k =

(
−β

α

)k
√

(2k − 1)!!

2kk!
c0, (1)

where cn = 0 for the odd values of n. From the normalization condition 〈0′|0′〉 = 1
we obtain |c20| = |α|−1; the distribution over the initial particle numbers in the “new”
vacuum is wn = |cn|2.
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Problem 10.18

An arbitrary single-particle state |1〉 can be written in the form |1〉 = ∑
i

Cfi â
+
fi
|0 >,

where â+fi is a creation operator for a particle in state ψfi(ξ) (fi is a set of quantum
numbers of some complete set). Clarify the quantum-mechanical interpretation of the
coefficients Cfi .

As an illustration, consider a single-particle state of a spinless particle of the form:

|1〉 =
∫

ϕ(r)ψ̂(r)dV |0〉.

Normalize this state vector to unity and calculate the mean value of a physical
quantity, f , using the second quantization operator (X.3).

Solution

The relation between the state vectors,

|1〉 =
∑
n

Cfn â
+
fn
|0〉, (1)

is equivalent to the expansion[215] ψ =
∑
f

Cfψf of the wavefunction ψ of an arbi-

trary single-particle state over a complete set of eigenfunctions ψf . Hence Cf is the
wavefunction of the state considered in the f -representation.

Since the operator ψ†(r) “creates” a particle at the point r, ϕ(r) (see the condition)
is the wavefunction in the coordinate representation (f ≡ r). Of course, the calculation
of the mean value of any additive physical quantity whose operator in the occupation
number representation is defined by the relation (X.3) gives the usual quantum-
mechanical equation (I.5)

F = 〈1|F̂ |1〉 =
∫

ϕ∗(r)f̂ϕ(r)dV,

while the normalization condition 〈1|1〉 = 1 takes the form
∫ |ϕ|2dV = 1. These rela-

tions can also be derived using the general properties of creation and annihilation
operators. Compare to the solution of Problem 10.23.

Problem 10.19

Operators âfk , â+fk , and âgk , â+gk are the annihilation and creation operators for a
particle in states defined by quantum numbers fk and gk of two different complete
sets. Indicate the relations between these operators.

[215] The derivation of this relation is accomplished by projecting the state vectors in (1) onto the vectors

|ξ〉: here 〈ξ|1〉 = ψ(ξ), 〈ξ|â†f |0〉 = ψf (ξ).
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Solution

The operators are related in the following way:

â+fi =
∑
k

C(fi, gk)â
+
gk
, âfi =

∑
k

C∗(fi, gk)âgk . (1)

To define C(fi, gk) we apply (1) to the vacuum state:

â+fi |0〉 =
∑
k

C(fi, gk)â
+
gk
|0〉.

This relation is equivalent to the one for the eigenfunction

ψfi =
∑
k

C(fi, gk)ψgk (2)

in the previous problem. Hence it follows that

C(fi, gk) =

∫
ψ∗
gk
ψfidξ,

so that C(fi, gk) is the eigenfunction of ψfi in the g-representation.

Problem 10.20

A two-particle state of identical bosons (or fermions) is described by the state vector
|2〉 = â+f1 â

+
f2
|0〉. Normalize it to unity. Find the form of normalized wavefunction in

the coordinate representation. Consider both the case of same and different quantum
numbers f1,2.

Solution

If f1 �= f2 then the state vector |2〉 = â+1 â
+
2 |0〉 is normalized to unity; indeed

〈2|2〉 = 〈0|â2â1â+1 â+2 |0〉 = 〈0|â2(1± â+1 â1)â
+
2 |0〉

= 〈0|1± â+2 â2 ± â2â
+
1 (±â+2 â1)|0〉 = 〈0|0〉 = 1

(signs “+” and “−” correspond to bosons and fermions, respectively).

In the case f1 = f2 = f , the normalized two-boson state has the form

|2〉 = 1√
2
(â+f )

2|0〉,

while the analogous two-fermion state does not exist.
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Wavefunctions of two-particle states considered in the coordinate representation
have the form:

ψ(ξ1, ξ2) =
1√
2
{ψ1(ξ1)ψ2(ξ2)± ψ2(ξ1)ψ1(ξ2)}, f1 �= f2;

ψ(ξ1, ξ2) = ψf (ξ1)ψf (ξ2), f1 = f2 ≡ f.

Problem 10.21

Perform the same analysis as in the previous problem, but for the case of a three-
particle state, |3〉 = â+f1 â

+
f2
â+f3 |0〉.

Solution

In the case of different values of all quantum numbers fa for the state vector given,
we have 〈3|3〉 = 1 (both for bosons and fermions). Here, the system’s wavefunction in
the coordinate representation is described by Eq. (3) from Problem 10.3.

If all three fa are the same, then to ensure normalization we should include
the multiplier 1/

√
3! = 1/

√
6; the wavefunction of the corresponding three-boson

state is ψ = ψf (ξ1)ψf (ξ2)ψf (ξ3). If only two of quantum numbers fa coincide, then
the normalization factor should be 1/

√
2, while the corresponding wavefunction is

described by Eq. (1) from Problem 10.3.

Problem 10.22

For a system consisting of identical particles, determine a form of the particle density
operator n̂(r) (at the point r) and of the particle number operator N̂(v) for some
volume v in the occupation-number representation.

Solution

The following operator corresponds to the density of particles with the spin projection,
sz at the point r in space

n̂(r, sz) =
∑
a

δ(r− ra)δσa,szδσ′
a,sz. (1)

(Compare to Problem 10.11; the operator is written in the coordinate representation
for orbital variables and in the sz-representation for spin variables). It is a sum of
single-particle operators (particle density is an additive quantity), so that its form in
the occupation number representation is given by Eq. (X.3), from which we obtain

n̂(r, sz) = ψ̂∗(r, sz)ψ̂(r, sz), n̂(r) =
∑
sz

n̂(r, sz). (2)
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Here, n̂(r) is the particle density operator independent of the particles’ spin pro-
jections. Operators N̂(v, sz) and N̂(v) are obtained from n̂ by integration over the
corresponding volume; see also Problems 10.28–31.

Problem 10.23

Prove the following commutation relations:

[P̂, ψ̂(ξ)] = i�
∂

∂r
ψ̂(ξ), [P̂, ψ̂+(ξ)] = i�

∂

∂r
ψ̂+(ξ),

where P̂ and ψ̂(ξ) are momentum and field (ψ-operators) operators in the occupation-
number representation for a system of identical bosons and fermions.

Solution

The momentum operator P̂ (an additive physical quantity) for an identical particles
system, according to Eq. (X.3), has the form

P̂ = −i�

∫
ψ̂+(ξ′)

∂

∂r′
ψ̂(ξ′)dξ′.

Using commutation relations for the bosonic ψ-operators

[ψ̂(ξ), ψ̂(ξ′)] = [ψ̂+(ξ), ψ̂+(ξ′)] = 0; [ψ̂(ξ), ψ̂+(ξ′)] = δ(ξ − ξ′),

we find

[P̂ψ̂(ξ)] = P̂ψ̂(ξ)− ψ̂(ξ)P̂

= −i�

∫
ψ̂+(ξ′)

∂

∂r′
ψ̂(ξ′)dξ′ψ̂(ξ) + i�ψ̂(ξ)

∫
ψ̂+(ξ′)

∂

∂r′
ψ̂(ξ′)dξ′

= −i�

∫
{ψ̂+(ξ′)ψ̂(ξ)− ψ̂(ξ)ψ̂+(ξ′)} ∂

∂r′
ψ̂(ξ′)dξ′

= i�

∫
δ(ξ − ξ′)

∂

∂r′
ψ̂(ξ′)dξ′ = i�

∂

∂r
ψ̂(ξ). (1)

In an analogous way we obtain

[P̂, ψ̂+(ξ)] = −i�

∫
ψ̂+(ξ′)

∂

∂r′
δ(ξ − ξ′)dξ′ = i�

∂

∂r
ψ+(ξ). (2)

Replacing the bosonic ψ-operator commutation relations by fermionic anti-
commutation relations does not change the results obtained.
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Problem 10.24

Investigate the stationary states (energy spectrum and wavefunctions) for the “trans-
verse” motion of a charged spinless particle in a uniform magnetic field using the
creation and annihilation operators.[216] We fix a gauge and use the following expres-
sion A = [H× r]/2 for the vector potential.

Solution

1) The Hamiltonian of the transverse motion in a magnetic field has the form (see
Problem 7.1):

Ĥt =
1

2m
[p̂2x + p̂2y +m2ω2(x2 − y2)]− e

|e|�ωl̂z, �l̂z = xp̂y − yp̂x, (1)

where ω = |e|H/2mc. We can transform it using annihilation (and creation) oper-
ators of “oscillation quanta” along the x and y axes:

âx =
1√

2m�ω
(mωx+ ip̂x), ây =

1√
2m�ω

(mωy + ip̂y),

to the form

Ĥt = �ω

{
â+x âx + â+y ây + 1 + i

e

|e| (âyâ
+
x − â+y âx)

}
. (2)

Instead of the operators âx,y, it is convenient to use their linear combinations

â1 =
1√
2

(
âx + i

e

|e| ây
)
, â2 =

1√
2

(
âx − i

e

|e| ây
)
, (3)

which are also independent annihilation operators, since for them we have

[âi, â
+
k ] = δik, [âi, âk] = [â+i , â

+
k ] = 0; i = 1, 2.

Now we have (ωH = 2ω),

Ĥt = �ωH

(
â+1 â1 +

1

2

)
, l̂z =

e

|e| (â
+
2 â2 − â+1 â1). (4)

Since these operators are expressed only in terms of number operators n̂1,2, the

eigenvectors |n1, n2〉 of the latter ones are also the eigenvectors of Hamiltonian Ĥt

and operator l̂z. Hence, we obtain the Landau level spectrum

Et,n1
= �ωH

(
n1 +

1

2

)
,

[216] The creation/annihilation operators should be chosen in the same way as for of a linear oscillator,

where â = (mωx̂− ip̂)/
√
2�mω that yields the Hamiltonian Ĥ = �ω(â+â + 1/2). For the prob-

lem considered, we need to introduce two pairs of creation and annihilation operators, but the
Hamiltonian can be chosen in such a way that explicitly includes only one such pair.
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and find that the levels are infinitely-degenerate, since they do not depend on n2.
Here lz = (e/|e|)(n2 − n1). Compare to Problem 7.1.

2) Let us now derive the form of the eigenfunctions ψn1n2
in the coordinate represen-

tation. First we obtain the wavefunction ψ00 of the vacuum state. From the solution
of equations â1ψ00 = 0 and â2ψ00 = 0 we have

ψ00 =

√
mω

π�
exp

{
− 1

2Δ2
(x2 + y2)

}
, Δ2 =

�

mω
. (5)

The wavefunctions

ψn1n2
=

1√
n1!n2!

(â+1 )
n1(â+2 )

n2ψ00

are obtained from ψ00 by differentiation. Here, instead of x, y it is convenient to
use the variables

ξ =
1√
2Δ

(x+ iy), ξ∗ =
1√
2Δ

(x− iy).

In the case of e > 0 we find

ψn1n2
=

[
2n2−n1mω

π�(n1!)(n2!)

]1/2(
ξ∗ − ∂

∂ξ

)n1

ξn2e−ξ∗ξ. (6)

Eigenfunctions for e < 0 are obtained by complex conjugation of (6).

Problem 10.25

The energy spectrum En1n2
= �ω1

(
n1 +

1
2

)
+ �ω2

(
n2 +

1
2

)
of a two-dimensional (pla-

nar) oscillator with U = 1
2m(ω2

1x
2 + ω2

2y
2) in the case of commensurate frequencies

ω1,2 contains degenerate levels. For special cases where a) ω1 = ω2, and b) ω1 = 2ω2

identify a symmetry of the Hamiltonian responsible for this degeneracy. Find explicitly
the symmetry operators.

Solution

1) The planar oscillator Hamiltonian has the form Ĥ = Ĥx + Ĥy, where Ĥx,y are

linear oscillator Hamiltonians. From the commutativity of the operators Ĥx,y with

each other and with the Hamiltonian Ĥ, we can find the spectrum

En1n2
= �ω1

(
n1 +

1

2

)
+ �ω2

(
n2 +

1

2

)
; n1,2 = 0, 1, 2, . . . (1)

and its eigenfunctions in the form of oscillator wavefunction products. Compare
to Problem 2.48. For incommensurate frequencies, the oscillator levels are non-
degenerate.
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2) In the case of commensurate frequencies, an additional symmetry appears.[217] We
find this symmetry in the existence of new operators that commute with Ĥ (and
do not commute with Ĥx,y), which gives rise to the degeneracy of the energy levels.
Here symmetry operators that act on the eigenfunctions of the Hamiltonian that
correspond to a given eigenvalue transform them into each other. In particular,
in the case of frequency ω1 = ω2 (i.e., for isotropic oscillator), the Hamiltonian is
rotationally-invariant that implies angular momentum conservation.
Using the energy spectrum from (1) we can relate symmetry operators to creation

and annihilation operators for “oscillation quanta” along the axes x and y. If
the relation between frequencies kω1 = sω2 holds where k, s are integers, such
“additional” symmetry operators could be chosen to have the form

Q̂ = (â+x )
k(ây)

s, Q̂+ = (âx)
k(â+y )

s. (2)

Here Hermitian linear combinations of these operators

Q̂1 = Q̂+ Q̂+, Q̂2 = i(Q̂− Q̂+) (3)

describe conserved quantities – integrals of motion for the system considered. For
example, if ω1 = ω2 (when k = s = 1) we have (an expression for â, can be found
for example in Problem 10.5)

l̂z = −i(Q̂− Q̂+), p̂xp̂y +m2ω2xy = m�ω(Q̂+ Q̂+). (4)

The conservation of lz for the isotropic oscillator is evident.

Problem 10.26

Consider a supersymmetric oscillator described by the Hamiltonian

Ĥ ≡ ĤB + ĤF = �ω(b̂+b̂+ f̂+f̂), (1)

ĤB = �ω(b̂+b̂+ 1/2), ĤF = �ω(f̂+f̂ − 1/2),

where b̂(b̂+) and f̂(f̂+) are the bosonic and fermionic annihilation (creation) operators
respectively. The energy spectrum of this Hamiltonian is of the form EN = �ωN,N =
nB + nF , and the state vectors are |nB , nF 〉. The spectrum has the following proper-
ties: EN ≥ 0, the levels with EN > 0 are two-fold degenerate, the ground state E0 = 0
is non-degenerate.

Indicate the form of the symmetry operators, and prove that the Hamiltonian could
be expressed in terms of the anti-commutator of these operators. Explain the spectrum
properties using the symmetry operators.

[217] In classical physics such a symmetry manifests itself in that the trajectories are closed curves.
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Comment

The symmetry that appears in transformations that replace bosons by fermions, and
vice versa, is called supersymmetry. It has a set of attractive properties, and yields
hope for the construction of a unified theory of elementary particles. Here and in the
following problem we consider the elementary properties of supersymmetry and its
application to the simplest quantum-mechanical systems.

Solution

Since, for the system considered, the energy spectrum EN = �ω(nB + nF ) depends
only on the total number of particles N = nB + nF , we see that

Q̂ = qb̂†f̂ , Q̂† = qb̂f̂†, here Q̂2 = (Q̂†)2 = 0 (2)

(q is a real parameter. It is convenient to choose q =
√
�ω) is the operator that replaces

fermions by bosons (Q̂), and vice versa, (Q̂†). These operators commute with the
Hamiltonian so that they are the symmetry operators of the system. Compare to the
previous problem.

The important property of the symmetry operators considered is that the system
Hamiltonian Ĥ is equal to their anti-commutator, so that[218]

{Q̂, Q̂+} ≡ Q̂Q̂+ + Q̂+Q̂ = Ĥ, {Q̂, Q̂} = {Q̂+, Q̂+} = 0,

[Ĥ, Q̂] = [Ĥ, Q̂+] = 0. (3)

If instead of operators Q̂, Q̂+ we introduce their Hermitian combinations,

Q̂1 = Q̂+ Q̂+, Q̂2 = i(Q̂− Q̂+),

then relation (3) takes the more compact form:

{Q̂i, Q̂k} = 2δikĤ, [Q̂i, Ĥ] = 0; i, k = 1, 2. (4)

The anti-commutators in (3) and (4), along with the commutators which appear in
the Hamiltonian, are the characteristic property of supersymmetry. The algebra of
operators (3) and (4) provides useful information about the spectrum (without using
the concrete form of operators Q̂, Q̂+ and Ĥ):

1) The eigenvalues are non-negative, i.e., E ≥ 0. Indeed, in any state, mean values

Q̂Q̂+ ≥ 0 and Q̂+Q̂ ≥ 0 (compare to Problem 1.15), so that Ĥ ≥ 0 and hence
E ≥ 0.

2) Levels with E �= 0 are two-fold degenerate. First we should note that the Hermitian
operator Ŝ = Q̂+Q̂ commutes with the Hamiltonian. Thus, there is a complete set
of functions ψES that are the eigenfunctions both of Ĥ and Ŝ. Then from the
equation ŜψES = SψES and (Q̂+)2 = 0, it follows that SQ̂+ψES = 0. We surmise
that either the eigenvalues vanish, S = 0, or Q̂+ψES = 0. However, in the second

[218] Recall that [b̂, b̂+] = 1, {f̂ , f̂+} = 1, f̂2 = (f̂†)2 = 0.
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case the relation ĤψES = EψES tells us that the eigenvalues are S = E. Operator
Ŝ has no other eigenvalues (for the states with given E). It is important to note
that for E �= 0 there are two values S1 = 0 and S2 = E, and the corresponding
eigenfunctions pass into each other under the operators Q̂ and Q̂+. This explains the
two-fold degeneracy of levels with E �= 0.[219] Indeed, let ψE0 �= 0 (here Q̂ψE0 = 0),
then we have ψEE ∝ Q̂+ψE0 �= 0 (since Q̂(Q̂+ψE0) = EψE0 �= 0); in the same way,
ψE0 ∝ Q̂ψEE (here Q̂+ψEE = 0).

3) The absence of degeneracy for a level with[220] E = 0 (if it exists). From the
equation Ĥψ0 = 0 it follows that Q̂ψ0 = 0 and Q̂+ψ0 = 0, since no new states
appear under the action of the symmetry operators on ψ0.
The spectrum and eigenvectors of the supersymmetric oscillator illustrate the

general properties mentioned above. Let us add one more trivial realization of the
operator (3) algebra that is connected with the choice Q̂ = f̂ and Q̂+ = f̂+, where
Ĥ = 1. The spectrum of such a “Hamiltonian” consists of a single “level” with
E = 1 (here E > 0!), which is two-fold degenerate with eigenvectors |nF 〉, where
nF = 0 or 1 and there is no level with E = 0. See more interesting examples in the
following problem and also in Problem 7.9.

Problem 10.27

Let us introduce the operators

Q̂ = Â+f̂ , Q̂+ = Âf̂+, Ĥ = Q̂Q̂+ + Q̂+Q̂,

where f̂ , f̂+ are the fermion annihilation and creation operators, while Â and Â+ are
some operators commuting with them.

Verify that the system[221] considered is supersymmetric (see the previous
problem).

Show that for a proper choice of the “coordinate” Â, Â+ and spin f̂ , f̂+ operators,
the supersymmetric Hamiltonian considered characterizes one-dimensional motion of
a particle with spin s = 1/2. What are the consequences of supersymmetry?

Solution

1) It is easy to prove that

{Q̂, Q̂+} = Ĥ, [Q̂, Ĥ] = [Q̂+, Ĥ] = 0, Q̂2 = (Q̂+)2 = 0,

[219] Here the degenerate states are called super-partners. We emphasize that we mean the level
degeneracy that is connected with the Hamiltonian supersymmetry.

[220] The absence of a state with E = 0 is called spontaneous supersymmetry breaking.

[221] Here Ĥ is its Hamiltonian, and the system vector state space is defined by the space where operators

Â, f̂ are defined and hence also Q̂, Q̂+, Ĥ.
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as it is supposed to be for a supersymmetric system. If we write Â = Â1 + iÂ2,
where Â1,2 are Hermitian operators, we transform the system Hamiltonian to

Ĥ = Â†
1 − Â†

2 − i[Â1, Â2](f̂
+f̂ − f̂ f̂+). (1)

Now we see that if we choose

Â1 =
1√
2m

p̂, Â2 = W (x),

where W (x) is a real function, and if we identify the operators f̂ , f̂+ with spin

operators f̂ =

(
0 0
1 0

)
and f̂+ =

(
0 1
0 0

)
, so that

f̂+f̂ − f̂ f̂+ =

(
1 0
0 -1

)
= σ̂z,

then Hamiltonian (1) takes the form of the Pauli Hamiltonian (VII.1) for one-
dimensional motion with spin s = 1/2.

Ĥ =
1

2m
p̂2 + U(x)− μH(x)σz, (2)

where

U(x) = W 2(x), μH(x) =
�√
2m

W ′(x).

Using the general properties of eigenfunctions and eigenvalues of a supersymmetric
Hamiltonian given in the previous problem, we can make some interesting state-
ments about the spectrum of the ordinary one-dimensional Hamiltonian (spinless
particle). Indeed, eigenfunctions ψEσ of Hamiltonian (2) and the operator σ̂z that
commutes with it have the form

ψE,+1 =

(
ψ+
E

0

)
, ψE,−1 =

(
0
ψ−
E

)
.

Here, from the Schrödinger equation, ĤψE = EψE , it follows that(
1

2m
p̂2 + U±(x)

)
ψ±
E = E±ψ±

E , (3)

where

U±(x) = W 2(x)∓ �√
2m

W ′(x). (4)

Formally, equations (3) are the Schrödinger equations for one-dimensional motion in
two different potentials U±(x). From supersymmetry of the Hamiltonian in Eq. (2),
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it follows that their discrete spectra of the two potentials coincide.[222] E± coincide,
except for one level E0 = 0 which could exist only in one of these fields. Such a
conclusion is based on the fact that the functions ψEσ coincide with the functions
ψES given in the previous problem, and here S = (1± σ)E/2. Taking into account
the relation between eigenfunctions ψES for different values of S we find relations
for eigenfunctions ψ±

E (x) from (3) (for the states with E+ = E−):

ψ±
E (x) ∝

(
1√
2m

p̂∓ iW (x)

)
ψ∓
E (x). (5)

2) The fact that E+ = E−, in some cases allows us to find the spectrum algebraically,
without solving the Schrödinger equation. For example, let us consider the linear
oscillator with U = mω2x2/2 and denote its spectrum by En. Let us now choose
the superpotential

W =

√
mω2

2
x, then U± =

1

2
mω2x2 ∓ 1

2
�ω. (6)

The corresponding spectra are E±
n = En ∓ �ω/2. In one of them (evidently among

E+) the value E+
0 = 0 appears, while coincidence of the other levels means

that E+
n+1 = E−

n . Hence it follows that E0 = �ω/2 and En+1 = En + �ω. This
immediately gives the spectrum of the linear oscillator as En = �ω(n+ 1/2). The
spectrum for the field U = −U0 cosh

−2(x/a) can be found analogously, choosing
the superpotential W ∝ tanh(x/a).

3) Let us consider the existence of a zero-energy bound state. From the equation
Ĥψ0 = 0 it follows that

Q̂ψ0 = 0, Q̂+ψ0 = 0

(compare to the previous problem), and hence applying it to Hamiltonian (2) we
obtain (

p̂√
2m

± iW (x)

)
ψ±
0 = 0, ψ∓

0 = B∓ exp

⎧⎨⎩±
√
2m

�

x∫
0

Wdx

⎫⎬⎭.

Taking into account the fact that W (±∞) �= 0 (see the footnote), we see that one of
the functions ψ±

0 increases over large distances, and we should choose B = 0 for it
(in accordance with the general result for a level with E = 0 being non-degenerate).
For the other function satisfying boundary conditions ψ0(±∞) = 0), a zero-energy
state ψ0 exists only if the signs of the superpotentials at infinity W (±∞) are
opposite. For example, for W (x) = W0 = const in Eqs. (3) we have U± = W 2

0 =
const, and there is no state with E0 = 0. In the case of W (x) = W0x/|x| we have

[222] Since E± ≥ 0, the existence of a discrete spectrum states means that the limit U±(x) → C± > 0
for x → ±∞ (hence here limW (x) �= 0). If W (x) is an even function, then potentials U±(x) are
obtained from one another by mirror reflection and their spectra coincide, E+ = E−. There is no
level with E0 = 0.
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U±(x) = W 2
0 ∓ αδ(x), α =

√
2

m
�W0,

and the existence of the zero-energy state is connected to the presence of a single
discrete level in a δ-well; see Problem 2.7.

10.3 The simplest systems with a large number of particles
(N � 1)

Problem 10.28

For the ground state of a Bose-gas consisting of N identical non-interacting particles
with the spin s = 0 in a volume V , calculate the mean particle number density, the
mean number of particles in a volume v, and the fluctuation of this particle number.

Solve this problem by averaging the physical operators in the occupation-number
representation.

Solution

Expressing ψ(r)-operators in terms of creators â+k and annihilators âk of a particle with

a given momentum p = �k, the operator for particle number density n̂(r) = ψ̂+(r)ψ̂(r)

(see Problem 10.22) (here ψ̂(r) =
∑
k

(1/
√
V )eik·râk) becomes

n̂(r) =
1

V

∑
k1k2

ei(k2−k1)râ+k1
âk2

. (1)

The mean particle number density n(r) is obtained from operator (1) by averaging
over the ground state |ψ0〉 = |Nk=00k �=0〉 (all the particles have zero momentum p = 0).
Since

〈ψ0|â+k1
âk2

|ψ0〉 =
{
N, k1 = k2 = 0,
0, in all other cases,

we have the natural result n = N/V .

The mean particle number in the volume v is obtained by averaging the operator
N̂(v) =

∫
v

n̂(r)d3r, and is equal to N(v) = Nv/V .

To calculate the fluctuations of particle number, we first average the operatorN2(v)
over the state |ψ0〉. Since

N2(v) =
1

V 2

∫
v

∫
v

∑
k1k2k3k4

exp{i[(k2 − k1) · r+ (k4 − k3) · r′]}â+k1
âk2

â+k3
âk4

d3rd3r′,
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we must first find the matrix elements

〈ψ0|â+k1
âk2

â+k3
âk4

|ψ0〉

to calculate N2(v). Using the explicit form of |ψ0〉, we see that the matrix elements are
non-vanishing only when conditions k1 = k4 = 0, k2 = k3 are fulfilled. These elements
are equal to N2 for k2 = k3 = 0 and to N for k2 = k3 ≡ k �= 0. Taking this into
account we obtain

N2(v) =
1

V 2

∫
v

∫
v

⎧⎨⎩N2 +N
∑
k �=0

eik·(r−r′)

⎫⎬⎭ d3r d3r′. (2)

Because the functions ψk = eik·r/
√
V form a complete set, the sum here is equal to

V δ(r− r′)− 1, and integration gives

N2(v) =

(
Nv

V

)2

+
Nv

V
− Nv2

V 2
. (3)

Hence

(ΔN(v))2 = N2(v)−N(v)
2
=

Nv

V

(
1− v

V

)
. (4)

For v = V we have (ΔN(v))2 = 0, which is obvious, since the total number of particle
in the system is equal to N and does not fluctuate. When v � V , according to (4),
we have

(ΔN(v))2 ≈ Nv

V
= N(v).

Let us note that for a system of N non-interacting classical particles in a volume V ,
the distribution of the number of particles Nv in the volume v has the form

W (Nv) =
N !

Nv!(N −Nv)!

( v

V

)Nv
(
1− v

V

)N−Nv

(binomial distribution). For such a distribution, the calculation of mean values Nv,
N2

v , (ΔNv)2 gives results that coincide with those obtained above (see also a remark
in the next problem).

Problem 10.29

Under the same conditions as in the previous problem, consider the spatial correlation
of density fluctuations. For a homogeneous system it is characterized by a correlation
function ν(r) (r = r1 − r2) equal to

ν(r) =
n1n2 − n2

n
, n1,2 ≡ n(r1,2),
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where n is the mean particle number density.

Compare this result to the corresponding result for a system of classical particles.

Solution

Since particle density operators in different points of space commute with each other,
the operator of the form n̂1n̂2 can be written:

n̂1n̂2 = ψ̂+(r1)ψ̂(r1)ψ̂
+(r2)ψ̂(r2)

=
1

V 2

∑
k1k2k3k4

exp{i[(k2 − k1)r1 + (k4 − k3)r2]}â+k1
âk2

â+k3
âk4

,

and its mean value in the Bose-gas ground state is

n1n2 =
1

V 2

⎧⎨⎩N2 +N
∑
k �=0

eik(r1−r2)

⎫⎬⎭ =
N

V
δ(r1 − r2) +

N2

V 2
− N

V 2
. (1)

Compare this to the derivation of Eqs. (2) and (3) in the previous problem. Hence[223]

1

n
{n1n2 − n2} = δ(r)− n

N
,

and the correlation function becomes equal to

ν = − n

N
. (2)

In order to understand the results obtained, we derive correlators similar to (1), (2)
for the case of non-interacting classical particles. Taking into account the fact that
the probability distribution of particle coordinates is described in terms of a product
d3ra/V and n(r) =

∑
a
δ(r− ra), we find

n(r′1)n(r
′
2) =

∫
. . .

∫ ∑
a,b

δ(r′1 − ra)δ(r
′
2 − rb)

d3r1
V

. . .
d3rN
V

=
N

V
δ(r′1 − r′2) +

N(N − 1)

V 2
, (3)

which coincides with Eq. (1). (Note that the term with a δ-function in (3) corresponds
to the terms with a = b. The number of such terms is N . The second term corresponds
to the terms with a �= b, and their number is N(N − 1).)

For macroscopic systems, the value of N is extremely large, and therefore the last
term in (1) can be omitted and we have ν = 0 (there is no correlation) in (2). On the
other hand, for finite values of N we have ν �= 0. Here the characteristic properties
of ν – its independence from r and its sign ν < 0 – have an intuitive explanation for

[223] The term with the δ-function, that goes to zero as r �= 0, has a universal character and does not
depend on the form of the distribution function.
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classical particles. Indeed, the value of n1n2 is lower than n2, since a single particle
cannot contribute to the particle number density at different points of space at the
same time, regardless of the distance between them (in the case where N � 1 the
density at different points in space is determined mainly by the contribution of different
particles).

Many characteristics of a Bose-gas in the ground state, considered here and in the
previous problem, are the same as for a gas of classical particles. It is not accidental.
Indeed, the wavefunction of the ground state for the Bose gas has the form

Ψ0 = ψ0(r1)ψ0(r2) . . . ψ0(rN ), ψ0(r) =
1√
V
,

i.e., is a product of single-particle wavefunctions. This is similar to a gas of distinguish-
able particles. The particles therefore do not interfere with each other, and for each
one of them |ψ0|2 = 1/V , which corresponds to a constant probability distribution
over the volume.

Problem 10.30

In the ground state of an ideal Fermi-gas of N particles in volume V , find the mean
particle number density and the mean particle number in some volume v.

This problem should be solved by averaging the physical operators in the
occupation-number representation.

Solution

The particle density operator n̂(r) has the form

n̂(r) =
∑
σ

n̂(r, σ) =
1

V

∑
σ

∑
k1k2

ei(k2−k1)râ+k1σ
âk2σ

. (1)

Compare to Problem 10.28 and 10.22, σ ≡ sz. The ground state of the Fermi-gas
is determined by occupation numbers nkσ, equal to 1 for |k| < kF and 0 for |k| > kF ,
so that

|ψ0〉 =
∏

â+kσ|0〉, (2)

where the product includes operators â+kσ with quantum numbers (kσ) of occupied
states. Here the Fermi momentum, pF = �kF , is found from the condition

∑
σ

∑
k(k<kF )

1 = (2s+ 1)

∫
k<kF

V d3k

(2π)3
=

(2s+ 1)V k3F
6π2

= N,
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i.e., we have

kF =

[
6π2N

(2s+ 1)V

]1/3
.

Since we see that the matrix element 〈ψ0|â+k1σ
âk2σ|ψ0〉 is different from zero (and equal

to 1) only for k1 = k2 ≡ k, and |k| ≤ kF , from Eqs. (1) and (2) we obtain

n = 〈ψ0|n̂(r)|ψ0〉 = N

V

(which is expected), and n(σ) = n/(2s+ 1), while N(v) = nv = Nv/V .

Problem 10.31

Under the conditions of the previous problem, consider the correlation of particle
number densities with definite values of spin z-projection at different points in space:
find n(r1, sz1)n(r2, sz2), and compare to the product n(r1, sz1) · n(r2, sz2). Consider
the cases of different and identical values of sz1 and sz2.

Find the density-density correlation function (see Problem 10.29).

Solution

The operator n(r1, σ1)n(r2, σ2) has the form

n̂(ξ1)n̂(ξ2) =
1

V

∑
{k}

exp{i[(k2 − k1)r1 + (k4 − k3)r2]}â+k1σ1
âk2σ1

â+k3σ2
âk4σ2

. (1)

(Compare to Problems 10.29 and 10.30). Letting |ψ0〉 be the wavefunction of the
Fermi-gas ground state given in the previous problem, it is easy to see that the matrix
element obtained by averaging

〈ψ0|â+k1σ1
âk2σ1

â+k3σ2
âk4σ2

|ψ0〉,
for the case σ1 �= σ2, is different from zero (and equal to 1) only for k1 = k2, k3 = k4

and |k1,3| ≤ kF . Taking this into account, for σ1 �= σ2 we find

〈ψ0|n̂(ξ1)n̂(ξ2)|ψ0〉 = 1

V 2

∑
|k1,2|≤kF

1 =
n2

(2s+ 1)2
, n =

N

V
. (3)

(For the calculation of the sum over k1,2, see the previous problem.) Since n(σ) =
n/(2s+ 1), the result (3) means that n1n2 = n1 · n2, i.e, in the case of different values
of the spin projections σ1 �= σ2 there is no correlation between the particle densities
at different points in space.

In the case of σ1 = σ2, the situation is different. Now the matrix element (2) is
different from zero and equal to 1 in the following cases:
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1) k1 = k2, |k2| ≤ kF , k3 = k4, |k4| ≤ kF ;

2) k1 = k4, |k4| ≤ kF , k2 = k3, |k3| > kF .

Using this fact, we find

n(r1, σ)n(r2, σ) =
1

V 2

⎧⎨⎩ ∑
|k1,2|≤kF

1 +
∑

|k1|≤kF

∑
|k2|≥kF

ei(k2−k1)(r1−r2)

⎫⎬⎭. (4)

Then, using the relation

1

V

∑
|k|≥kF

eik·r =
1

V

⎧⎨⎩∑
k

eik·r −
∑

|k|<kF

eik·r

⎫⎬⎭ = δ(r)− 1

V

∑
|k|<kF

eik·r

and calculating the integral (in spherical coordinates with the polar axis directed along
the vector r) we obtain:

1

V

∑
|k|≤kF

eik·r =
V

(2π)3

∫
k≤kF

eik·r d3k =
V

2π2r2

{
sin kF r

r
− kF cos kF r

}
,

We transform (4) using (r = r1 − r2, n(σ) = n/(2s+ 1)):

n(r1, σ)n(r2, σ) = n(σ)2 − 1

4π4r4

{
sin kF r

r
− kF cos kF r

}2

.

Hence we obtain the correlation function:

ν(r, σ) = − [sin kF r − kF r cos kF r]
2

4π4n(σ)r6
. (5)

Let us discuss this result. The character of the particle density correlations can be
made physically clear. Identical particles with different values of spin projection behave
like distinguishable ones, so there is no correlation between them. The sign of the
correlation function ν(r, σ) < 0 in the case of the same spin projections is also natural.
It shows the “repulsive” character of the fermion exchange interaction. For the values
r = |r1 − r2| → ∞, the correlation disappears.

In conclusion, we should note that the full correlation function for particle number
density ν(r) coincides (independent of the spin projection) with ν(r, σ).

Problem 10.32

Considering the interaction between particles as a perturbation, find the ground state
energy of the Bose-gas (consisting of N spinless particles in volume V ) in the first
order of the perturbation theory (the interaction between particles is described by a
short-range repulsive potential U(r) ≥ 0, r = ra − rb).
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Solution

The particle interaction operator in the occupation numbers representation, according
to Eq. (X.4), has the form:

Û =
1

2

∫∫
ψ̂+(r1)ψ̂

+(r2)U(|r1 − r2|)ψ̂(r2)ψ̂(r1)d3r1d3r2. (1)

Using the expansion of the ψ-operator over plane waves (given in Problem 10.28) we
transform relation (1) to the form

Û =
1

2

∑
k1k2k3k4

Uk3k4

k1k2
â+k3

â+k4
âk2

âk1
, (2)

where the matrix elements of the interaction potential have the form:

Uk3k4

k1k2
=

1

V 2

∫
V

∫
V

U(|r1 − r2|) exp{i[(k1 − k3)r1 + (k2 − k4)r2]}d3r1d3r2.

In the first order of the perturbation theory we have

E0 ≈ E
(0)
0 + E

(1)
0 = 〈ψ0|Û |ψ0〉, (3)

where |ψ0〉 is the wavefunction of the non-interacting ground state with all particles

having the momentum p = �k = 0. Here E
(0)
0 = 0, while the matrix element

〈ψ0|â+k3
â+k4

âk2
âk1

|ψ0〉

differs from zero only when ka = 0, in which case it is equal to N(N − 1) ≈ N2 (due to
N � 1). Hence,

E0 ≈ E
(1)
0 =

U00
00N

2

2
.

Since the radius R of the potential U(r) is assumed to be small, so that R � L ∼ V 1/3,
the integral ∫

V

U(r1 − r2)d
3r2 =

∞∫∫∫
−∞

U(r1 − r2)d
3r2 =

∫
U(r)d3r ≡ Ũ0 (3′)

could be integrated over all the space and appears not to depend on r1. As a result
we obtain U00

00 = Ũ0/V , and the final expression for the energy is

E0 ≈ 1

2
Ũ0

N2

V
=

1

2
nŨ0N, n =

N

V
. (4)

It has a simple meaning. It is a product Ũ0/V of any two particles’ mean interaction
energy over the volume (w = 1/V ) with the number of total pairs N2/2.
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In conclusion, let us mention the following. Result (4), obtained by using perturba-
tion theory over the potential, demands that the interaction between the particles
is weak, so that the condition[224] Ũ0 � �

2R/m is fulfilled. However, it could be
generalized to the case of a strong repulsive[225] potential with a small range of action
using perturbation theory in terms of the scattering length (see Problem 4.29, 4.31 and
11.4). Using the method of short-range potentials (mentioned in Problem 11.4), and
the fact that Ũ0 (Ũ0 = 2π�2a0/μ, μ = m/2 is the particles reduced mass) differs from
the scattering length a0 only by a factor in the Born approximation, we can state that
Eq. (4) for E0 remains valid in the case of strong short-range potential when expressed
in terms of the exact scattering length a0. Also, it is valid when a0 � (n)−1/3.

Problem 10.33

Repeat the analysis from the previous problem for a Fermi-gas of spinful particles
with s = 1/2. It is assumed that the interaction potential does not depend on spin
and satisfies the condition kFR0 � 1, where R0 is the potential radius and �kF is the
Fermi momentum.

Solution

The problem is to be solved in a way analogous to the previous one. The interaction
operator Û is determined by Eqs. (1) and (2), where we only need to add a spin
index σ ≡ sz to the operators âka

, â+ka
(i.e, to replace âka

by âkaσa
, etc., and add a

summation over σa to the summation over ka. Here σ3 = σ1 and σ4 = σ2).

While calculating the first-order correction E
(1)
0 = 〈ψ0|Û |ψ0〉 to the Fermi-gas

ground state energy E
(0)
0 (assuming no interaction), we should take into account the

occupation numbers nkσ in the state |ψ0〉. They are equal to 1 for k < kF and 0 for
k > kF . Averaging the operator Û (see Eq. (2) from Problem 10.32) we see that in
the sums over ka, all the terms for which at least one of the ka is higher than kF go

to zero, so that only the matrix elements Uk3k4

k1k2
with ka < kF occur in E

(1)
0 . Turning

to the center-of-mass variables,

r = r1 − r2, R =
r1 + r2

2
,

we transform the matrix element considered into the form:

Uk3k4

k1k2
=

1

V 2

∫
V

U(r) exp

{
i

2
(k1 − k2 − k3 + k4)r

}
d3r

×
∫

exp {i(k1 + k2 − k3 − k4)R} d3R.

[224] Note that Ũ0 ∼ U0R3, where U0, R are the characteristic value and radius of particles’ pair-
interaction potential.

[225] The repulsive character of the interaction ensures stability of the gaseous phase at the absolute
zero of temperature T = 0.
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Using the condition R0 � V 1/3 on the effective radius of potential U(r), the integra-
tion over r can be extended to all the space (compare to the previous problem), and
due to the inequality kFR0 � 1 the exponential factor can be replaced by unity. We
obtain

Uk3k4

k1k2
≈ 1

V
δk1+k2,k3+k4

Ũ0, Ũ0 =

∫
U(r)dr3,

(the factor δk1+k2,k3+k4
corresponds to momentum conservation), and hence

E
(1)
0 =

Ũ0

2V
〈ψ0|

∑
σ1,2

∑
{ka}

δk1+k2,k3+k4
â+k3σ1

â+k4σ2
âk2σ2

âk1σ1
|ψ0〉. (1)

Using the explicit form of the wavefunctions |ψ0〉 we see that of all the terms only
those for which k3 = k1, k4 = k2, or k4 = k1, k3 = k2 differ from zero, so that (1)
can be transformed to

E
(1)
0 =

Ũ0

2V
〈ψ0|

∑
σ1,2

∑
k1,2

(â+k1σ1
â+k2σ2

+ â+k2σ1
â+k1σ2

)âk2σ2
âk1σ1

|ψ0〉. (2)

Here the double sum over k1,2 for σ1 = σ2 is equal to zero because

â+k1σ
â+k2σ

+ â+k2σ
â+k1σ

= {â+k1σ
â+k2σ

} = 0

for fermion operators. For σ1 �= σ2, we may use the anti-commutation properties of
the operators â, â+ to write the first part of sum (2) in the form∑′

σ1σ2

∑
k1k2

â+k1σ1
â+k2σ2

âk2σ2
âk1σ1

=
∑′

σ1,2

∑
k1,2

n̂k2σ2
n̂k1σ1

, σ1 �= σ2, (3)

where n̂k,σ are the occupation-number operators. Since N̂(σ) =
∑
k

n̂kσ is the total

number of particles in a state σ and since in the ground state these numbers have
definite values equal to N/2, the average of relation (3) over the state |ψ0〉 yields
2(N/2)2 = N2/2. The second part of the sum in (2) for σ1 �= σ2 is different from zero
only for the values k1 = k2. We can see that this second part is equal to N , i.e., is
negligibly small (since N � 1) compared to the first part of the sum. Hence we find

E
(1)
0 =

1

4
Ũ0

N2

V
(4)

and the ground state energy is

E0
∼= E

(0)
0 + E

(1)
0 =

3

10

(
3π2N

V

)2/3
�
2

m
N +

1

4
Ũ0

N2

V
. (5)

An additional factor of 1/2 appears in the relation for E
(1)
0 as compared to the Bose-

gas (see the previous problem) for a simple reason. In the approximation considered,
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kFR0 � 1, fermions with the same value of spin projection do not interact with each
other due to the Pauli principle. Compare to Problem 10.31.

In conclusion, let us note that the generalization of the result from our perturbation
theory to the case of strong short-range potential, mentioned in the previous problem,
is also valid for a Fermi-gas.

Problem 10.34

An ideal Fermi-gas of neutral particles with the spin s = 1/2 and the spin magnetic
moment μ0 (so that μ̂ = μ0σ̂) is placed in an external homogeneous magnetic field.
For the ground state of this system, find:

1) the single-particle states’ occupation numbers;

2) the magnetic susceptibility (in a weak field).

Assume that the interaction between the magnetic moments is negligibly small.

Solution

The energy of a particle with momentum p and spin projection (onto the direction of
the magnetic field) sz is equal to (for s = 1/2)

εpsz =
1

2m
p2 − 2μ0szH.

Denote the number of particles in the ground state of the Fermi-gas with sz = ±1/2
by N±. Since the ground state is the state wherein the system energy attains its
minimum value, it corresponds to the occupation number

np,± = 1 for |p| ≤ pF,± and np,± = 0 for |p| > pF,±

and

1

2m
p2F,+ − μ0H =

1

2m
p2F,− + μ0H. (1)

This relation means that equally filling states with sz = ±1/2 to their maximum
energies allowed by the Fermi momentum provides the energy minimum for the whole
system.

Expressing pF,± in terms of N± in the usual way,

N± =
∑
p

np,± =

∫
p<pF,±

V d3p

(2π�)3
=

V p3F,±
6π2�3

, pF,± =

(
6π2

�
3N±
V

)1/3

,
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according to (1), we find the equation that determines N±:

N
2/3
+ −N

2/3
− = 4mμ0H

(
V

6π2�3

)2/3

, N+ +N− = N. (2)

Here, the magnetic moment of the gas is equal to

Mz = μ0(N+ −N−), Mx = My = 0. (3)

In the absence of a magnetic field, N+ = N− = N/2. In the case of a weak field, N±
only slightly differs fromN/2. Writing them in the formN± = N/2± n and performing
an expansion over the small parameter n/N in (2) (using (N/2± n)2/3 ≈ (N/2)2/3(1±
4n/3N)), we find:

2n = (N+ −N−) = mμ0NH
( √

3V

π2�3N

)2/3

. (4)

(The condition n/N � 1 equivalently defines the case of a weak field.)

From (3) and (4) in a weak field we have

M = χ0VH, χ0 =
3mμ2

0

(3π2�3)2/3

(
N

V

)1/3

. (5)

Since the magnetic susceptibility χ0 > 0, the Fermi-gas is a paramagnet.

With the increase of the field, the value |N+ −N−| increases monotonically for
H ≥ Hcr, where

Hcr =
1

4m|μ0|
(
6π2

�
3N

V

)2/3

. (6)

When the spins of all the particles array in the same direction, the system’s magnetic
moment saturates at

M = |μ0|N, (7)

and is directed along the magnetic field.

Problem 10.35

Describe the screening of a point charge q placed inside a conductor by the conduction
electrons. Use statistical methods,[226] considering conduction electrons as a Fermi-gas
(on the background of a positively charged uniform distribution that ensures overall
electroneutrality) at temperature T = 0. Electron density distortions in the vicinity of
the charge can be considered small.

[226] This is similar to the Thomas-Fermi method; see Chapter 2, sec. 3.
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Solution

At T = 0, electrons occupy the lowest energy states. The electron density n(r), the
maximum kinetic energy of electrons at point r (equal to ε0(r) = p20(r)/2m), and the
electrostatic potential ϕ(r) inside the conductor,[227] are connected by the relations

Δϕ = −4πρ = −4πqδ(r) + 4πeδn(r), (1)

where

1

2m
p20(r)− eϕ(r) = εF =

1

2m
p2F = const, (2)

n(r) =
1

3π2�3
p30(r), δn = n− n0 =

1

3π2�3
(p30(r)− p3F ).

Here e > 0 is the electron charge, δn(r) is a change of electron density caused by the
charge q; relation (2) provides the minimum of energy for the whole electron system.
The parameter εF characterizes the unperturbed system. (This remains so if a charge
is held at a large distance from it.)

Due to the assumed smallness of |δn| � n0 we have |p0 − pF | � pF , and from
relations (2) we obtain

eϕ ≈ 1

m
pF (p0(r)− pF ), δn =

1

π2�3
p2F (p0(r)− pF ).

Now Eq. (1) takes the form

Δϕ = −4πqδ(r) + κ2ϕ, κ =

(
4me2pF
π�3

)1/2

, (3)

and its solution[228]

ϕ(r) =
q

r
e−κr (4)

shows that the electric field inside the conductor is screened over distances r ∼ 1/κ.

Problem 10.36

Find the charge distribution in the vicinity of a charged surface of a conductor
(with the “surface” charge density σ). Use statistical considerations assuming that
the conduction electrons form a degenerate Fermi-gas. Consider fluctuations in the
electron density in the vicinity of the conductor surface to be small, and compare your
results to the previous problem.

[227] The quantities considered are spherically symmetric with respect to the point r = 0, where the
charge q is placed. Note that here, unlike in the case of an atom, n(r) → n0 �= 0 for r → ∞.

[228] Compare, for example, to Problem 4.20.
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Solution

Since the width of the near-surface region inside the conductor, where the charge is
distributed (i.e., ρ �= 0), has a microscopic size, we can neglect the curvature of the
surface and consider only effectively the one-dimensional case. Considering the surface
as a plane at z = 0, the electron charge and potential distribution in the vicinity of
the surface are described by the equation

ϕ′′(z) = −4πρ(z) = 4πe δn(z) ≈ κ2ϕ(z), (1)

where

κ =

(
4m2pF
π�3

)1/2

.

Compare to the previous problem. The solution of the equation that satisfies the
boundary condition ϕ(z) → ϕ0 = 0 as z → ∞ (we consider that the conductor corre-
sponds to the values z > 0) has the form:

ϕ(z) = Ae−κz, z ≥ 0, (2)

while the volume charge density is

ρ(z) = −κ2

4π
ϕ(z) = −κ2A

4π
e−κz, z ≥ 0. (3)

The value of A is determined by the “surface” charge density:

σ0 =

∞∫
0

ρ(z)dz, A = −4πσ0

κ
. (4)

The same value of A follows from the boundary condition En(0) = ϕ′(0) = 4πσ0,
familiar from electrostatics.
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Atoms and molecules

Most calculations for atomic systems are based on the assumption that individual
electrons composing the atom occupy certain single-electron quantum states within
the atom. In the framework of this approximation, the atomic wavefunction can be
written as an anti-symmetric combination of products of the single-electron states.
The most accurate approach within this approximation involves numerical solution
of the Hartree–Fock equations, obtained using the self-consistent-field method for the
one-electron states.

For systems with a large number of electrons, the self-consistent field idea develops
into the Thomas–Fermi method, where the average electron density, n(r), in the
ground-state of a neutral atom or a charged ion, is connected with the electrostatic
potential, ϕ(r), by the relation[229]

n(r) =
1

3π2
[2(ϕ(r)− ϕ0)]

3/2. (XI.1)

For a neutral atom, ϕ0 = 0, and the Poisson equation, Δϕ = −4πρ, leads to the
Thomas–Fermi equation as follows (below, r �= 0):

Δϕ = 4πn =
8
√
2

3π
ϕ3/2. (XI.2)

We introduce the more convenient quantities x and χ(x), according to

r = xbZ−1/3, ϕ(r) =
Z

r
χ(x) =

Z4/3

b

χ(x)

x
, (XI.3)

where b = (3π/8
√
2)2/3 ≈ 0.885, and Z is the number of electrons (the charge of the

nucleus). We transform relation Eq. (XI.2) to the form

√
xχ′′(x) = χ3/2(x), (XI.4)

[229] The electrons are assumed to form a many-particle state, a degenerate Fermi-gas at absolute zero,
in the presence of a slowly varying field with the potential energy, U(r) = −eϕ(r). Here −eϕ0

determines the maximum total energy of the occupied electron states, and e(ϕ(r)− ϕ0) determines
the maximum kinetic energy (1/2me)p2F (r). The case of ϕ0 > 0 corresponds to positively-charged
ions.
Here and below we use atomic units (a.u.), where e = � = me = 1.
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with boundary conditions χ(0) = 1 and χ(∞) = 0. The function χ(x) is universal in the
Thomas–Fermi method (that is, it remains the same independent of the atomic system
at hand). Numerical calculations in the Thomas–Fermi model give the full ionization
energy of an atom as follows: E0 = −(3χ′(0)/7b) Z7/3 = 0.769 Z7/3 = 20.9 Z7/3 eV,
with χ′(0) = −1.589 (see also Problem 11.21).

This chapter presents, in particular, a set of problems that focus on the properties of
weakly-bound particles in external electric and magnetic fields (it is assumed that the
particle is bound by a short-range neutral potential of radius, rS , and that the binding
energy is small: ε = κ2/2, κrS � 1). Such models[230] are used in atomic physics to
study negatively charged ions, where the outer weakly-bound electron is considered
to be in a short-range collective potential produced by the neutral atom.

In this class of problems, large distances play a dominant role. In the case of a short-
range potential, the unperturbed wavefunction has the following asymptotic behavior
in this limit:

ψ
(0)
nlm(r) ≈ Cκl

√
κ

2π

e−κr

r
Ylm(n), r � rS (XI.5)

where Cκl is the so-called asymptotic coefficient (at infinity).

The Schrödinger equation that determines the bound states of a one-electron atom
(an atom with nucleus charge Ze and a single electron) is given in Chapter 4. The
radial wavefunction for the lower levels is given by Eqs. (IV.4) with a = �

2/(meZe2).

11.1 Stationary states of one-electron and two-electron atoms

Problem 11.1

Find relativistic corrections arising due to the velocity-dependence of the electron
mass to the energy levels of a hydrogen-like atom[231] in the first-order perturbation
theory with respect to the electron velocity.[232]

Solution

The relativistic correction to the classical Hamiltonian function of a charged particle
in a static electric field follows from the classical equation (we assume that −e is the
charge of the particle and p � mc):

[230] Many properties of states with a small binding energy, E � �2/mr2S , are determined by just two
parameters: the binding energy and a so-called “asymptotic coefficient”, Cκ, (see Problems 11.36
and 11.37). They in turn are connected with the parameters of low-energy scattering: the scattering
length al and the effective radius rl see; Eq. (XIII.15).

[231] A hydrogen-like/helium-like atom or ion is a system consisting of a nucleus with an arbitrary charge
Ze and one/two electrons.

[232] For the model of a spinless charged particle (as considered in the problem), the result will determine
a fine structure of the hydrogen-like atom. In the case of an electron with spin, as follows from the
Dirac equation, there exists an additional correction arising from the spin-orbit interaction. Its
contribution to the energy levels has the same order of magnitude as the correction calculated in
this problem.
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H =
√

p2c2 +m2c4 − eϕ(r)−mc2 � p2

2m
− p4

8m3c2
− eϕ(r), (1)

and is equal to −p4/8m3c2. The quantum-mechanical generalization of this correction
corresponds to the operator, V̂ = −p̂4/8m3c2, which can be viewed as a perturbation.

Since it commutes with the operators, l̂2 and l̂z, the eigenfunctions ψ
(0)
nrlm

of the

unperturbed Hamiltonian (U = −eϕ = −Ze2/r; see also Eq. IV.3) are the correct
zeroth-order approximation. Thus, according to Eq. (VIII.1), the shift of the energy
level is

E
(1)
nrl

=

∫
ψ
(0)∗
nrlm

V̂ ψ
(0)
nrlm

d3r = − 1

2mc2
〈nrlm|

(
p̂2

2m

)2

|nrlm〉 ≡,

− 1

2mc2
〈nrlm|

(
Ĥ0 +

Ze2

r

)2

|nrlm〉 =

− 1

2mc2
〈nrlm|Ĥ2

0 + Ĥ0
Ze2

r
+

Ze2

r
Ĥ0 +

(
Ze2

r

)2

|nrlm〉, (2)

where Ĥ0 is the unperturbed Hamiltonian of the hydrogen-like atom.

Since ψ
(0)
nrlm

is an eigenfunction of the operator, Ĥ0, all the operator terms in

Eq. (2) involving Ĥ0 can be replaced by the corresponding eigenvalue below:[233]

E
(0)
nrl

= E(0)
n = −m(Ze2)2

2�2n2
, n = nr + l + 1. (3)

Then, the first perturbative correction is related to the two matrix elements

〈nrlm|Ze2

r
|nrlm〉 = −E(0)

n , 〈nrlm| 1
r2

|nrlm〉 = − 4mE
(0)
n

(2l + 1)�2n
. (4)

The easiest way to calculate these matrix elements is to use relation (I.6). Let us note
that (3) can be viewed as eigenvalues of the operator

Ĥl = − �
2

2m

1

r2
d

dr
r2

d

dr
− �

2l(l + 1)

2mr2
− Ze2

r
.

Now, differentiating Eq. (3) with respect to the parameters, Z and l, and using (1.6),
we obtain Eq. (4) and

E
(1)
nrl

=

(
Ze2

�c

)2{
− 3

4n2
+

2

(2l + 1)n

}
E(0)

n . (5)

[233] In particular,∫
ψ
(0)∗
n Ĥ0

Ze2

r
ψ
(0)
n d3r =

∫
(Ĥ0ψ

(0)
n )∗

Ze2

r
ψ
(0)
n d3r = E

(0)
n

∫
Ze2

r
|ψ(0)

n |2d3r,

where we used the fact that Ĥ0 is an Hermitian operator.
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We see that the relativistic correction lifts the accidental degeneracy of the levels in
the Coulomb field. The level with a given n splits into n components corresponding to
the possible values of the angular momentum, l = 0, 1, . . . , (n− 1) of the unperturbed
level. The relative shift of the levels decreases as the angular momentum increases.
The width of the fine structure interval, the distance between the energies of the levels
corresponding to l = 0 and l = (n− 1),

ΔEFS = 4(Zα)2
n− 1

n(2n− 1)
|E(0)

n |, (6)

also decreases with the increase in n. Here α = e2/�c = 1/137 is the fine-structure
constant. Let us note that for the n = 2 level, the splitting is ΔEFS(2) =
1.21 · 10−4 Z4 eV.

Generally, for the levels with n ∼ 1, Eq. (5) gives∣∣∣∣∣E
(1)
nrl

E
(0)
n

∣∣∣∣∣ ∼ (Zα)2 ∼ 10−4 Z2.

Note that perturbation theory is reliable if Z � 137. The atomic number is a natural
parameter that controls the applicability of the theory here, because the typical
electron velocity inside the atom is v ∼ Ze2/� = Zαc, and for the values Z ∼ 100
the motion becomes essentially relativistic.

Let us make a few further comments on the applicability of the results. As
emphasized in the problem and as is obvious from its solution, the correction we found
does not take into account the effects of spin-orbit interaction, but rather describes
a spinless charged particle. The solution correctly describes the energy shift within
this model in the first order of perturbation theory in (Zα)2. However, note that
this näıve Hamiltonian perturbation theory does not capture properly the relativistic
effects in higher orders of perturbation theory, which are properly described by the
fundamental equation of quantum field theory that describes such particles: the Klein–
Gordon equation (see also Problems 15.13–15.15). Furthermore, while the “spinless
model” is mathematically well-defined, it does not have an obvious physical realization.
Real spinless particles, such as the π- and K-mesons for example, involve the strong
interaction, which has a far higher impact on the atomic levels than the relativistic
corrections discussed here (see Problem 11.4).

On the other hand, the inclusion of spin-orbit interaction to describe the real
electron involves solving the Dirac equation for the model of a hydrogen-like atom
with a point nucleus. The fine structure of the model has the following property. A
level with a given n, which is 2n2-fold degenerate according to the non-relativistic
theory (2 due to the spin), splits into n components due to the relativistic effects
(as in the case of a spinless particle). Each sublevel corresponds to some value, j,
of the total electron angular momentum j = 1/2, 3/2, . . . , n− 1/2. In this case, the
accidental degeneracy is not totally removed, since the levels with the same values
of j but different l = j ± 1/2 remain degenerate. Hence, the n = 2 level, for example,
splits into two components, one of which corresponds to 2p3/2-states, and the other
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to degenerate 2s1/2 and 2p1/2-states. Here the width of the fine-structure split level
is equal to ΔFS ≈ 4.5 · 10−5Z4 eV. A further lifting of the degeneracy in l (the
Lamb shift) appears due to so-called radiative corrections which are discussed in
Problem 11.62.

Problem 11.2

Consider the hyperfine structure of the s-levels of a hydrogen-like atom arising from
the interaction between the electron and nuclear magnetic moments. Take the model
of a point nucleus with spin, I, and the magnetic moment, μ0, so that μ̂ = μ0Î/I .
Estimate the hyperfine splitting and compare it with the fine structure discussed in
the previous problem.

The nuclear magnetic moment is of the order e�/mpc, with mp being the proton
mass. In the case of the hydrogen atom, compare the result obtained with the
experimentally observed hyperfine splitting of the ground-state levels: ΔνHFS ≡
ΔEHFS/2π� ≈ 1420 MHz.[234] The proton magnetic moment is equal to
μp = 1.396 e�/mpc.

Solution

1) According to classical electrodynamics, the mutual interaction of two magnetic
moments has the form[235] V = −μ1 ·H2(r), where

H2(r) = ∇×A2 = ∇× [μ2 × r]

r3
≡ {(μ2 ·∇)∇− μ2Δ}1

r

is the magnetic field produced by the second moment. The quantum-mechanical
generalization of this interaction to the case of spin magnetic moments is the
operator V̂ , obtained by the change of classical variables to the corresponding
operators (the convention here and below in this problem is that the electron,
corresponds to the first particle):

μ1 → μ̂e = − e�

mec
ŝ, μ2 → μ̂nuc =

μ0

I
Î.

The Hermitian operator, V̂ , can be written in the form

V̂ =
e�μ0

mecI
Îiŝk

(
∂

∂xi

∂

∂xk
− δikΔ

)
1

r
. (1)

We now consider it as a perturbation and take into account the form of the
unperturbed Hamiltonian. The wavefunction of the s-states can be written as

ψ(0) = ψ
(0)
ns (r)χ (where χ is the spin part of the wavefunction). Now we average

[234] The energy corresponding to frequency ν = 1 MHz is equal to ε0 ≈ 4.136 · 10−9 eV.

[235] Note that particle permutation does not change the form of the interaction.
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the operator V̂ (VIII.5) over the electron coordinates using the secular equation of
degenerate perturbation theory.[236] We have∫

|ψ(0)
ns (r)|2

(
∂

∂xi

∂

∂xk
− δikΔ

)
1

r
d3r = Cδik.

The tensor δik appears in the right-hand side, because no other tensors are possible
that are consistent with the spherical symmetry of the s-state. To determine the
value of C, we trace over the indices i and k. Taking into account that δii = 3 and

∂

∂xi

∂

∂xi

1

r
≡ Δ

1

r
= −4πδ(r),

we find that C = (8π/3)|ψ(0)
ns (0)|2. Thus, we obtain

V̂ =
8πe�μ0

3mecI
|ψ(0)

ns (0)|2(Î · ŝ); |ψ(0)
ns (0)|2 =

Z3e6m3
e

π�6n3
. (2)

Here V̂ remains an operator in the spin space. The eigenfunctions of this operator
are spinors that correspond to a definite value J = I ± 1/2 of the total angular
momentum of the atom and determine the hyperfine splitting of the ns-level:

EHFS = E
(1)
n,J =

4πe�μ0

3mecI
|ψ(0)

ns (0)|2 ·
{

I, J = I + 1
2 ,

−(I + 1), J = I − 1
2 .

(3)

The level splits into two sublevels in accordance with two possible values of the
total angular momentum. Compare to Problem 3.27.
The value of the hyperfine splitting is

ΔEHFS(ns) = EHFS

(
J = I +

1

2

)
− EHFS

(
J = I − 1

2

)
=

4π(2I + 1)e�μ0

3mecI
|ψ(0)

ns (0)|2. (4)

A comparison (for n ∼ 1 and Z ∼ 1) with the fine-structure interval (6) from Prob-
lem 11.1 gives ΔEHFS/ΔEFS ∼ me/mp ∼ 10−3. That is, the hyperfine splitting is
actually much smaller than fine structure effects.

2) For the ground-state of the hydrogen atom, n = 1, we estimate from Eq. (4):
ΔνHFS(1s) = ΔEHFS/2π� ≈ 1420 MHz. But a more accurate comparison shows
that the theoretical result, 1418.6 MHz, differs from the experimental value of
1420.4 MHz by ≈ 0.1 %. This difference exceeds by an order of magnitude the
relativistic correction (∼ α2 ∼ 10−4, and we have taken into account the difference

[236] Note that the zeroth-order perturbation theory wavefunctions have a definite value of the angular
momentum (l = 0 in this problem), which is related to the accidental Coulomb degeneracy of atomic
levels in the non-relativistic hydrogen atom. This degeneracy, however, is removed by relativistic
effects which give rise to the fine structure of the atomic spectrum, as discussed in the previous

problem. Note also that the interaction, V̂ , does not mix the s1/2- and p1/2-states.
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between reduced mass of the ep-system and the electron mass, me). The inconsis-
tency is due to the anomalous magnetic moment of the electron, whose value is
equal to μ0(1 + α/2π), where μ0 = −e�/2mec.

Finally, we note that there exist other reasons behind the actual hyperfine struc-
ture apart from the magnetic interaction considered here. They include interaction
of the electron orbital current with the nuclear magnetic field, (jorb = 0 for l = 0).
Furthermore, note that in general a distortion of the potential due to the quadrupole
moment of the nucleus with I ≥ 1 also contributes to the splitting. This effect,
however, is less important than the contribution of the magnetic interactions, and
is absent in the case of a spherically symmetric s-state.

Problem 11.3

Calculate the shift of the s-levels of a hydrogen-like atom due to nuclear finite-size
effects. Use first-order perturbation theory. Consider the nuclear charge distribution
to be spherically symmetric. Provide a numerical estimate of the correction using the
model of a nucleus as a uniformly charged sphere with radius R ≈ 1.2× 10−13A1/3

cm, A ≈ 2Z, where A is the atomic mass number. Compare the magnitude of the
finite-size corrections with those of the fine-structure and hyperfine-structure effects
discussed in the two previous problems.

How important are the finite-size effects for a μ-atom? The interaction of the muon
with the nucleus has the electrostatic character.

Solution

We denote the nuclear potential as ϕ(r). Outside the nucleus, ϕ = Ze/r. The dis-
tortion of the Coulomb potential, δϕ = ϕ− Ze/r, near the nucleus determines the
perturbation V = −eδϕ(r). Therefore, the shift of the ns-levels due to this Coulomb
perturbation is

ΔEns =

∫
V (r)|ψ(0)

ns (r)|2d3r ≈ −e|ψ(0)
ns (0)|

∫
δϕ(r)d3r. (1)

We approximated |ψ(0)
ns (r)|2 ≈ |ψ(0)

ns (0)|2, because the electron wavefunction ψ
(0)
ns (r) is

almost constant on the length scales of the nuclear radius (r ≤ R ≈ 10−13 − 10−12

cm).[237]

The integral in Eq. (1) depends on the charge distribution in the nucleus. Taking
into account that Δr2 = 6, the integral in Eq. (1) takes the form:[238]

[237] Note that for states with a non-zero angular momentum, l �= 0, the wavefunction scales as ψ ∝ rl,
at small distances. Consequently, the finite-size effects in the level shifts decrease sharply with the
increase in l.

[238] Here we used the Poisson equation in the form, Δ(δϕ) = −4π[ρ− Zeδ(r)], and the fact that the
contribution of the δ-function term in the integral in Eq. (2) is equal to zero.
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δϕ(r)dV ≡ 1

6

∫
δϕΔr2dV =

1

6

∫
r2Δ(δϕ(r))dV =

= −2π

3

∫
r2ρ(r)dV = −2πZe

3
〈r2〉. (2)

Here ρ(r) is the charge density inside the nucleus, and

〈r2〉 ≡ r2e =
1

Ze

∫
r2ρ(r)dV,

where re is the nuclear charge radius. The quantity, 〈r2〉, also determines the behavior
of nuclear electric form-factor F (q) for q → 0:

F (q) ≈ Ze

(
1− 1

6
〈r2〉q2

)
.

For a uniform charge distribution in the sphere with radius R, we find 〈r2〉 = 3R2/5,
and according to Eqs. (1) and (2) we obtain[239]

ΔEns =
2π

5
Ze2R2|ψ(0)

ns (0)|2, |ψ(0)
ns (0)|2 =

Z3

πa3Bn
3
. (3)

The numerical value of the ratio∣∣∣∣ΔEns

E
(0)
n

∣∣∣∣ = 4

5n
Z2

(
R

aB

)2

≈ 8 · 10−10Z
8/3

n
(4)

(where we used R ≈ 1.5 · 10−11Z1/3 cm). It is substantially smaller than both the rel-
ativistic correction (see Problem 11.1) and the hyperfine splitting (see Problem 11.2).
For Z ∼ 1, the finite size correction is just about 10−5 of the former and 10−2 of the
latter.

It is interesting to estimate the contribution of the proton size, whose charge radius
is re ≈ 0.8 · 10−13 cm, to the Lamb shift of the hydrogenic levels 2s1/2 and 2p1/2 (see
Problem 11.1). According to Eqs. (1) and (2), we obtain

ΔE2s =
1

12

(
re
aB

)2
e2

aB
≈ 5.2 · 10−10 eV ≈ 0.12 MHz.

Remarkably, the shift of the 2p1/2-level is (aB/re)
2 ∼ 1010 times smaller. Since the

experimental value of the Lamb shift is ΔLS ≈ 1058 MHz, the contribution of the
proton size is not important, and is of the order or smaller than the experimental
error in ΔLS .

Let us note, however, that the finite-size effects are clearly seen in the μ-atoms.
This is related to the fact that the muon Bohr radius, aμ,B = (me/mμ)aB , is 207 times

[239] This result could also be obtained from Eq. (1) and using the relation ϕ =
Ze(3R2−r2)

2R3 for the

electrostatic potential inside a uniformly charged ball.



Atoms and molecules 493

smaller than the electron Bohr radius. So, we should add an additional factor, equal to
(mμ/me)

2 ≈ 4.3 · 104, to the estimate (4). For the ground level, n = 1, and the value

Z = 27, we find |ΔE1s/E
(0)
1s | ≈ 0.2 for muons.

Problem 11.4

Consider the shifts of the ns-levels in pion and hadron atoms[240] caused by short-range
strong nuclear interaction between the pion and nucleus. Prove that the corresponding
shift is described by the following perturbation theory equation

ΔEns =
2π�2

m
|ψ(0)

ns (0)|2as,

where ψ
(0)
ns (0) is the value of the unperturbed Coulomb wavefunction, as is the pion

scattering length, describing scattering off of the nuclear potential (see Problem 4.29,
and also Problem 13.36, where a generalization for l �= 0 is discussed).

Comment

The effect of a short-range potential, Us(r), with the radius rs on the levels,

E
(0)
n � �

2/mr2s , of a long-range potential, UL, with the radius rL � rs could be taken
into account as a change in the boundary conditions as follows: the wavefunction at
small distances is constrained to have the asymptotic behavior, ψn ∝ (1− as/r) for
r � rL. Thus the shift of the energy levels is determined entirely by the scattering
length, as, of the short-range potential, Us, and does not depend on its detailed form.

Solution

1) Consider the effect of the short-range potential, Us(r), with the radius rs (i.e.,
we assume that Us(r) ≈ 0, for r ≥ rs) on the levels of a particle with the energy,

|E(0)
n | � �

2/mr2s , determined by a “long-range” potential, UL(r), with the radius,
rL � rs. The latter is assumed to be small at distances of order r ∼ rs, so that
UL � �

2/mr2s ; however, for r ≥ rL there are no restrictions on its value.
For these hadron atoms, the Coulomb attractive potential plays the role of

UL, while Us describes their strong nuclear interaction. For example, for the pion
atoms, rL ∼ aπ,B = �

2/mπe
2 ≈ 2 · 10−11 cm and rs ≈ 2 · 10−13 cm. Considering an

arbitrary interaction, Us, the unperturbed levels, E
(0)
n , shift only weakly, and these

shifts can be determined using perturbation theory in terms of the scattering length
developed below.
Consider first the case where UL(r) is a spherically-symmetric potential, and

focus on the s-levels. The conventional perturbation theory gives, in the first
approximation,

[240] Hadron atoms are systems of two hadrons bound by Coulomb interaction, such as pion–proton
(π−p) or proton–anti-proton (pp) atoms, for example. The Coulomb levels of such a system are

E
(0)
n = −m(ζe2)2

2�2n2 , where m = m1m2
m1+m2

is the reduced mass. ζ = −Z1Z2 > 0, Z1,2 are the hadron

charges, and aB = �
2

ζme2
is the Bohr radius.
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ΔEns =

∫
Us(r)|ψ(0)

ns (r)|2d3r ≈ |ψ(0)
ns (0)|2

∫
Us(r)d

3r. (1)

Note that only small distances, r ≤ rs, are important in the integral above, and due
to the smallness of rs, the value of the unperturbed wavefunction hardly changes
within this integration domain (see Eq. (1) from the previous problem).
The integral above is proportional to the Born approximation scattering ampli-

tude of a particle with zero energy E = 0 in the potential Us(r) see; Eq. (XIII.6).
Since as = −f(E = 0) is the s-wave scattering length of the potential, Us(r), Eq. (1)
takes the form

ΔEns =
2π�2

m
|ψ(0)

ns (0)|2aBs , aBs =
m

2π�2

∫
Us(r)d

3r, (2)

where aBs is the scattering length in the Born approximation.

2) Eqs. (1) and (2) are applicable only in the case of a weak potential, Us � �
2/mr2s ,

where |aBs | � rs. If the potential Us is sufficiently strong, näıve perturbation
theory breaks down. However, in this case a correction to the energy can still be
straightforwardly obtained from Eq. (2) via its simple modification: by replacing
the Born scattering length, aBs , by the exact scattering length, as, of the potential
U(r). Since quite generally, as ∼ rs, the level shift will remain small. For example,
for the long-range attractive potential UL(r) of the radius rL, the unperturbed

spectrum can be estimated as E
(0)
n ∼ �

2/mr2L and the wavefunction near the origin

is |ψ(0)
ns (0)|2 ∼ r−3

L . The s-levels shift according to Eq. (2), ΔEns ∼ (as/rL)E
(0)
sn ,

which remains small as long as as � rL (the opposite case, as � rL, is considered
below).

Fig. 11.1
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To clarify the method introduced here, consider Fig. 11.1, which illustrates a qualita-
tive change of the wavefunction. The solid line shows the unperturbed wavefunction,

ψ
(0)
ns (r), and the dashed line corresponds to the wavefunction, ψns(r), which includes

the effects of the short-range potential, Us(r). The latter wavefunction has the
following properties: 1) it remains finite at r = 0; 2) its explicit form at r ≤ rs
depends strongly on the potential, Us(r); 3) outside the range of the potential, Us,

rs � r � rL,

(
m|En|
�2

)−1/2

, (3)

it has the form ψns ≈ A(1− as/r), where as is the scattering length of the potential,
Us, and in this region the wavefunction depends on the long-range potential, UL,
only weakly. This is connected with the fact that in this domain the Schrödinger
equation can be approximated by Δψns(r) = 0 or (rψns(r))

′′ = 0.
Now let us note that for the values of scattering length that satisfy the conditions

|as| � rL and |as| �
(
m|E(0)

n |
�2

)−1/2

, (4)

the exact wavefunction ψns(r) is quite different from the unperturbed wavefunction

ψ
(0)
ns (r) at small distances, but they almost coincide at large distances, r � |as|. We

conclude that the level shift is small and its value depends on the scattering length
of the short-range potential only, but not on the detailed shape of the potential,
Us(r). Therefore, Us(r) can be replaced by a fictitious potential, the pseudo-potential
Ũs(r), which is within the domain of validity of perturbation theory. A requirement
here is that the Born scattering length, ãBs , of the pseudo-potential[241] coincides
with as, and its radius is consistent with Eq. (4) for as.

3) Now we obtain the equation for the shift of the energy level from the Schrödinger
equation. We start from the following equations:[

− �
2

2m
Δ+ UL − E(0)

ns

]
ψ(0)
ns = 0,

[
− �

2

2m
Δ+ UL + Us − Ens

]
ψns = 0.

Multiplying the first equation by ψ
(0)
ns and the second by ψ

(0)∗
ns , subtracting one

from the other and integrating over space, except for a spherical domain of radius
d in the vicinity of the origin (we assume, rs � d � rL), we find

[241] The choice of potential Ũs(r) is not unique and is quite arbitrary. In the first order of approximation
theory we can use the simplest relation:

Ũs = αδ(r), where α =
2π�2as

m
.

Note that such a “potential”, unlike the one-dimensional δ-potential and the potential of a three-
dimensional δ-sphere, has only a formal meaning and faithfully represents the perturbation only in
the first order.
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ΔEns ·
∫

r≥d

ψ(0)∗
ns ψnsdV =

�
2

2m

∮
r=d

(ψ(0)∗
ns ∇ψns − ψ∗

ns∇ψ(0)
ns ) · ds (5)

The phases of the wavefunctions are chosen so that ψ
(0)
ns /ψns is real and the terms

containing UL cancel each other.

Since the level is perturbed only weakly and ψ
(0)
ns ∼ ψns for r � rs, as, which is

the only domain that essentially contributes to the integral, the integral on the
left-hand side of Eq. (5) can be simply replaced by unity. In the right-hand side,
we use the asymptotic form of the wavefunctions at the distances rs � r � rL, as
follows:

ψ(0)
ns (r) ≈ ψ(0)

ns (0), ψns(r) ≈
(
1− as

r

)
ψ(0)
ns (0),

and obtain

ΔEns = Ens − E(0)
ns =

2π�2

m
|ψ(0)

ns (0)|2as, (6)

which agrees with Eq. (2) above.
Let us comment on Eq. (6).

1. The equation remains quantitatively reliable as long as relation (4) holds. The
latter breaks down only in the case of a resonance, where |as| ≥ rL, and the
potential Us(r) features a shallow (real or virtual) level[242] with l = 0 and the
energy

Es ∼ E(0)
ns � �

2

mr2s
.

In this case, the levels can shift strongly and are not described by Eq. (6).[243]

A complete reconstruction of the spectrum of the long-range potential under the
action of a short-range center is possible (the Zeldovich effect; see Problems 4.11
and 9.3).

2. Equation (6) remains applicable to non-central long-range potentials, UL(r), as
well.

3. Note that the sign of the shift in the energy levels is determined by the sign of
the scattering length, as (and not by the bare form of the potential, Us(r)). For
a repulsive potential, the scattering length is always positive, and the levels shift
upward, “pushed out”. For an attractive potential, either negative or positive as
is possible (in the case of “shallow” well, as < 0, and the levels move downwards,
“sucked in”).

[242] The existence of “deep” levels with the energy |Es| ∼ �2/mr2s in the potential Us(r) does not
affect the applicability of Eq. (6).

[243] If an attractive part of the potential Us(r) is present, but is separated by a weakly penetrable
barrier, then the shift of the levels of the long-range potential is guaranteed to remain small. This
situation is realized for states with non-zero angular momenta, where the centrifugal force gives
rise to such a barrier; see also Problem 11.74.
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4. The method of dealing with a “strong” short-range potential, Us(r), described
above, involves replacing the perturbative Born scattering length by an exact
value, as. This approach is, in fact, more general than the problem considered
here (see Problems 4.27 and 8.61, for example).

5. A generalization of Eq. (6) to the case of non-zero angular momenta is given in
Problem 13.36, and an extension of perturbation theory in terms of the scattering
length to the continuous spectrum is considered in Problem 13.37.

6. Let us emphasize that Eq. (6) is valid without any restrictions on the form of the
short-range interaction. The interaction may involve inelastic processes (such as,
for example, in the case of a pp-atom, where annihilation into pions is possible).
In this case, the scattering length as becomes a complex quantity, and the level
shifts also become complex. The imaginary part describes the width of the levels
corresponding to the quasi-stationary states.

Problem 11.5

Use first-order perturbation theory to calculate the ground-state energy of a two-
electron atom/ion, considering the Coulomb interaction between electrons as a
perturbation. Calculate the atomic ionization energy and compare it to the fol-
lowing experimental data for the helium atom and the lithium, beryllium, car-
bon, and oxygen ions: I(He) = 24.6 eV ; I(Li+) = 75.6 eV ; I(Be++) = 154 eV ;
I(C4+) = 392 eV ; I(O6−) = 739 eV .

Solution

1) If we neglect the interaction between electrons, the ground-state energy is

E
(0)
0 = −Z2, while the ground-state wavefunction has the form:

ψ
(0)
0 =

1

π
Z3 exp{−Z(r1 + r2)}.

The first-order correction to the energy due to electrons interaction is

E
(1)
0 =

∫ |ψ(0)
0 (r1, r2)|2
|r1 − r2| dV1dV2 =

Z6

π2

∫
e−2Z(r1+r2)

r21r
2
2dr1dr2dΩ1Ω2√

r21 + r22 − 2r1 · r2
. (1)

To calculate the integrals below,

I =

∫
f(r1)g(r2)

r21r
2
2dr1dr2dΩ1Ω2√

r21 + r22 − 2r1 · r2
, (2)

it is convenient to first integrate over the angles of the vector, r2, for a fixed r1 in
spherical coordinates, choosing the polar axis along r1. Here,∫

dΩ2

|r1 − r2| =
∫

sin θ dθdϕ√
r21 + r22 − 2r1r2 cos θ

=

{
4π
r1
, r1 > r2,

4π
r2
, r2 > r1,



498 Exploring Quantum Mechanics

and Eq. (2) takes the form:

I = 16π2

⎧⎨⎩
∞∫
0

f(r1)r1

r1∫
0

g(r2)r
2
2dr2dr1 +

∞∫
0

g(r2)r2

r2∫
0

f(r1)r
2
1dr1dr2

⎫⎬⎭. (2′)

From Eqs. (2) and (2), we find∫
e−αr1−βr2

|r1 − r2| dV1dV2 = 32π2α
2 + β2 + 3αβ

α2β2(α+ β)3
(3)

and, according to Eq. (1), obtain (here, we put α = β = 2Z in Eq. (3))

E0 ≈ E
(0)
0 + E

(1)
0 = −Z2 +

5

8
Z. (4)

Therefore, the ionization energy is

I0 = E0,H − E0 =
1

2
Z2 − 5

8
Z, (5)

with E0,H = −Z2/2 as the ground-state energy of the corresponding one-electron
ion.

2) Interestingly, the first-order perturbation theory results obtained above may be
improved further almost without any additional calculations. Let us represent the
system Hamiltonian as follows (introducing an effective nuclear charge, Zeff):

Ĥ = Ĥ0 + Veff , Ĥ0 = −1

2
(Δ1 +Δ2)− Zeff

(
1

r1
+

1

r2

)
,

Veff =
1

|r1 − r2| − (Z − Zeff )

(
1

r1
+

1

r2

)
.

Here the choice of Zeff < Z, which gives the mutual screening of the nucleus by
electrons, leads to a decrease of the perturbation Veff with respect to the case
V = 1/|r1 − r2|, used in Eq. (1). From a physical point of view, it seems natural to
choose Zeff such that the first-order correction vanishes, i.e., V eff = 0. Since now

E
(0)
0 = −Z2

eff , while

〈ψ(0)
eff |

1

|r1 − r2| |ψ
(0)
eff 〉 =

5

8
Zeff , 〈ψ(0)

eff |
(

1

r1
+

1

r2

)
|ψ(0)

eff 〉 = −2E
(0)
0

Zeff
.

(The last relation can be obtained using the arguments of Problem 11.1, for
example.) Then from the condition, V eff = 0, we find Zeff = Z − 5/16 and obtain

E0 = −
(
Z − 5

16

)2

, I0 =
1

2
Z2 − 5

8
Z +

25

256
. (6)
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See, Eqs. (4) and (5). Interestingly, the “new” value of E0 coincides with the result
of a variational calculation in Problem 11.6.
The table below presents a comparison of the ionization energies, I0, with the

experimental data (energies are expressed in electron-Volts, eV, and the atomic
energy unit is equal to 27.2 eV).

Ion He Li+ Be++ C4+ O6+

According to (5) 20.4 71.4 150 388 735

According to (6) and 11.6 23.1 74.0 152 390 737

Exper. value I0 24.6 75.6 154 392 739

We see that second-order corrections to the results (4), (5), and (6) do not depend
on Z. This explains the weak dependence on Z of the difference between the
experimental and calculated values of I0, as seen in the table.

Problem 11.6

Find the ground-state energy and ionization energy of a two-electron atom/ion using
the variational method. Take the product of hydrogen functions with some effective
charge Zeff , which plays the role of a variational parameter, as a trial function.
Compare your results with Problem 11.5. Discuss the stability of a hydrogen ion H−.

Solution

The expectation value of the energy of the two-electron ion in the trial state,

ψtest =
α3

π
exp{−α(r1 + r2)}, α ≡ Zeff ,

can be calculated if we follow the following steps:

1) write the Hamiltonian in the form

Ĥ = −
(
1

2
Δ1 +

α

r1

)
−
(
1

2
Δ2 +

α

r2

)
− (Z − α)

(
1

r1
+

1

r2

)
+

1

|r1 − r2| ,

2) take into account the relation(
1

2
Δ +

α

r

)
e−αr =

α2

2
e−αr,

and

3) use the values of integrals∫
1

r
e−2αrdV =

π

α2
,

∫
|ψtest|2 dV1dV2

|r1 − r2| =
5α

8
.

(For the second calculation, see Problem 11.5.)
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We find

E(α) = α

(
α− 2Z +

5

8

)
.

Minimization over the parameter α gives (here α = Zeff = Z − 5/16) the variational
value of the ground-state energy as follows:

E0,var = min E(α) = −
(
Z − 5

16

)2

. (1)

The ionization energy is

I0 = −1

2
Z2 − E0 =

1

2
Z2 − 5

8
Z +

25

256
. (2)

For comparison to experimental data, see the table in the previous problem.
For the hydrogen ion, H−, we have from Eq. (1) E0,var = −0.47, which is higher

than the ground-state energy of the hydrogen atom (equal to –0.50). The H− ion
is not stable against auto-ionization according to this calculation and Eq. (1) (see
Problem 11.8).

Problem 11.7

Prove that the trial wavefunction with the effective charge, Zeff = Z − 5/16, from
the previous problem, is the most optimal among all trial functions of the form,
ψtrial = ψ(r1 + r2)/4π (i.e., within the class of functions that depend only on variable
u = r1 + r2).

Solution

To prove this statement, we write E = 〈ψtest|Ĥ|ψtest〉 as an integral over the variable,
u, and calculate the first variation of the functional. It is convenient to use spherical
coordinates, go back to the variable, r2 = u− r1, and integrate over r1.

The normalization integral takes the form:

N ≡
∫

|ψtrial|2r21dr1dΩ1r
2
2dr2dΩ2 =

∞∫
0

u5

30
|ψ(u)|2du. (1)

Using

Δ2ψ(r1 + r2) =
1

(u− r1)2
∂

∂u
(u− r1)

2 ∂

∂u
ψ(u),



Atoms and molecules 501

we find the average kinetic energy as follows:

T = 2T 2 = −
∞∫
0

ψ∗(u)

u∫
0

∂

∂u
(u− r1)

2 ∂

∂u
ψ(u)r21dr1du =

−
∞∫
0

ψ∗(u)
[
u5

30

d2

du2
+

u4

6

d

du

]
ψ(u)du. (2)

The interaction energy between the electrons and the nucleus is given by:

Uen = 2U2 = −2Z

∞∫
0

|ψ(u)|2
u∫

0

(u− r1)r
2
1dr1du = −

∞∫
0

Zu4

6
|ψ(u)|2du, (3)

while the inter-electron interaction reads

Uee = 2

∫∫
r1≤r2

|ψtest|2 dV1dV2

|r1 − r2| = 2

∞∫
0

|ψ(u)|2
u/2∫
0

(u− r1)r
2
1dr1du

=

∞∫
0

5u4

96
|ψ(u)|2du. (4)

Note that since ψ(r1 + r2) does not depend on the angles, the integral over the angles
in Eq. (4) is readily evaluated.

To determine an optimal trial function, ψ(u), normalized to unity, for
which E = T + Uun + Uee is minimal, it is convenient to examine the functional
E − E0,varN and look for its extrema. Here E0,var acts as a Lagrange factor. The
presence of the term, E0,varN , allows us not to “worry” about the wavefunction
normalization. Using relations (1)–(4) and setting the first variation of the functional
to zero, we obtain the equation (compare this to the variational principle for the
Schrödinger equation):[

d2

du2
+

5

u

d

du
+

(
5Z − 25

16

)
1

u
+ E0,var

]
ψ(u) = 0.

By replacing the function ψ(u) = u−5/2χ(u), so that χ(0) = 0, we obtain the equation:

χ′′ − 15

4u2
χ+

(
5Z − 25

16

)
1

u
χ+ E0,varχ = 0. (5)

It has the form of the Schrödinger Eq. (IV.5) (with � = m = 1) for a particle in
the Coulomb potential −α/r with α = 5

2 (Z − 5
16 ) and with a fictitious “angular
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momentum”, l = 3/2 (or equivalently l(l + 1) = 15/4).[244] Here, Enrl =
1
2E0,var. The

spectrum reads

Enrl = − α2

2(nr + l + 1)2
= −25(Z − 5/16)2

8(nr + 5/2)2
,

and the nr = 0 term determines the variational ground-state energy on the class of
trial functions considered:

E0,var = 2E0,3/2 = −
(
Z − 5

16

)2

. (6)

The optimal variational wavefunction that minimizes E is, according to Eq. (5), the
Coulomb wavefunction with l = 3/2 and n = nr + l + 1 = 5/2:

χ = Cul+1e−au/n, or ψ0 =
1

π
Z3
eff exp{−Zeff (r1 + r2)}, (7)

where Zeff = Z − 5/16, in accordance with the statement in the problem.

Problem 11.8

Find the expectation value of the energy of a two-electron ion with the nuclear charge,
Z, in the following state:

ψ(r1, r2) = C[exp{−αr1 − βr2}+ exp{−βr1 − αr2}].

Set the parameters to be α = 1 and β = 0.25, and prove the stability of the hydrogen
ion H−.

Solution

The calculation of E =
∫∫

ψ(r1, r2)Ĥψ(r1, r2)dV1dV2 reduces to the following
integrals: ∫

e−γrdV =
8π

γ3
,

∫
1

r
e−γrdV =

4π

γ2
,∫

e−αrΔe−βrdV = −
∫
(∇e−αr)(∇e−βr)dV =

8παβ

(α+ β)3

and the integral (3) from Problem 11.5.

[244] If we set l = −5/2, the wavefunction χ ∝ ul+1 does not satisfy the proper boundary condition in
the origin.
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Evaluating those, we obtain

E(α, β) = 2C2

{
−Z(α+ β) +

1

2
(α2 + β2) +

αβ

α+ β
+

α2β2

(α+ β)3

+ 20
α3β3

(α+ β)5
+ 64[αβ − Z(α+ β)]

α3β3

(α+ β)6

}
, (1)

where 2C2 = (1 + 64α3β3/(α+ β)6)−1 follows from the normalization condition.

If α = β = Z − 5/16, from Eq. (1) we recover the result of Problem 11.6. But the
possibility of an independent variation of parameters α and β allows us to improve
the result. For the example of the ion H−, choosing α = 1 and β = 0.25, we find

E0,var = E = −0.512, (2)

which is below the ground-state energy of the hydrogen atom, equal to−1/2, and hence
we prove that a stable H− ion does exist (a more sensitive variational calculation gives
E0 = −0.528).

Problem 11.9

Estimate the energy and ionization energy of a helium-like atom in an excited state.
Use the approximation where the motion of the excited electron is viewed as occurring
in the nuclear field screened by the ground-state electron. Compare the results to the
relevant experimental data (the details are presented in the solution).

Solution

In the model considered, the energy of a helium-like atom in an nL-state, which is
the same for para- and ortho-states, is a sum of terms corresponding to a hydrogen-
like atom with charge Z (ground-state energy, En=1 = −Z2/2) and the energy, En =
−(Z − 1)2/2n2, of the n-level state in the field of a screened charge, Z − 1. The energy
and ionization energy in this approximation are

EnL(Z) = −Z2

2
− (Z − 1)2

2n2
, InL(Z) =

(Z − 1)2

2n2
. (1)

For the 2L-states of the helium atom we have I2L(He) = 0.125, and a comparison to
the experimental values is given in the following table.

Term 23S 21S 23P 21P

Iexp 0.175 0.146 0.133 0.124

(1) with Rydberg correction 0.172 0.145 0.134 0.124

For the 3L-state of the helium atom, the model gives I3L(He) = 556 · 10−4, while
the experimental values are
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Term 33S 31S 33P 31P 33D 31P

Iexp · 104 685 612 580 550 560 555

(1) with Rydberg correction 684 611 582 551 557 556

The approximation here neglects an “overlap” of the 1s- and nl-electron wavefunc-
tions (with l ≡ L). If n � 1, this is justified by the large size of the nl-electron orbit
(recall that rn ∝ n2) and hence by the small probability of finding the electron in the
“ground-state region”.

To improve the result, taking into account the quasi-classical property of electron
motion for n � 1, we may use the Rydberg correction Δl (that does not depend
on n), which implies replacing n by n+Δl in Eq. (1). As is seen in the tables, the
Rydberg correction[245] improves the accuracy, especially for[246] n = 2 and n = 3.
As for the states with angular momentum l �= 0, the model considered reproduces
experimental values quite well, even without the Rydberg correction. This is connected
to the fact that with the increase in l, the probability to find the excited electron at
small distances decreases fast, so that here, ψl ∝ rl. Hence the value of the Rydberg
correction decreases fast with the increase in l.

Problem 11.10

Find the energy and ionization energy of a helium-like atom in the 23S-state by the
variational method. Use a antisymmetrized product of the hydrogen 1s- and 2s-states
as a trial function, and introduce an effective nuclear charge, Zeff , as a variational
parameter. In the case of the helium atom and lithium ion Li+, compare the results
obtained to the following experimental data (in atomic units): IHe(2

3S) = 0.175 and
ILi+(2

3S) = 0.610.

Solution

The normalized wavefunction of the 23S-state has the form (α ≡ Zeff ):

ψ(r1, r2) =
1√
2
{ψ1(r1)ψ2(r2)− ψ2(r1)ψ1(r2)}, (1)

ψ1 =

√
α3

π
e−αr, ψ2(r) =

√
α3

8π

(
1− 1

2
αr

)
e−αr. (2)

[245] The experimental values of the Rydberg correction ΔSl for the helium atom (S is the electrons’
total spin) are equal to

Δ0s = −0.140, Δ0p = +0.012, Δ0d = −0.0022 (for S = 0),

Δ1s = −0.269, Δ1p = −0.068, Δ1d = −0.0029 (for S = 1).

[246] Here the peculiarity of quasi-classical approximation, mentioned in Chapter 9, manifests itself in
that it remains reasonable even for n ∼ 1 and improves the accuracy of the results.
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To calculate the energy of the state (1), we write the Hamiltonian as a sum of three
terms:

Ĥ =

{
−1

2
(Δ1 +Δ2)− α

r1
− α

r2

}
− (Z − α)

(
1

r1
+

1

r2

)
+

1

|r1 − r2|
≡ Ĥ1 + Ĥ2 + Ĥ3. (3)

Since the wavefunction (1) is an eigenfunction of the Hamiltonian Ĥ1, we easily find

Ĥ1 = −5α2/8. And also, using virial theorem, we determine the mean value of the
second term:

Ĥ2 =
Z − α

α

(
− α

r1
− α

r2

)
= −5

4
α(Z − α). (4)

At last we find Ĥ3 = K − J , where

K =

∫∫
ψ2
1(r1)ψ

2
2(r2)

dV1dV2

|r1 − r2| , (5)

J =

∫∫
ψ1(r1)ψ2(r1)ψ1(r2)ψ2(r2)

dV1dV2

|r1 − r2| , (6)

characterizes Coulomb interaction between the electrons. Its first part, connected
to the integral, K, has the classical interpretation of interacting charge densities
corresponding to the 1s- and 2s-electrons. The integral, J , determines a so-called
exchange interaction. It is a part of the electron Coulomb interaction and has a purely
quantum origin, connected to the symmetry properties of the fermion wavefunction
describing identical particles.

Using relations (2) for functions ψ1,2(r), we see that the calculation of K and J is
reduced to the following integrals:

Ik,n =

∫∫
rk1r

n
2

|r1 − r2|e
−αr1−βr2dV1dV2,

where n, k are integers. We find

Ik,n = (−1)k+n ∂k

∂αk

∂n

∂βn

∫∫
e−αr1−βr2

|r1 − r2| dV1dV2 ≡ (−1)k+n ∂k

∂αk

∂n

∂βn
I0,0.

The integral I(0, 0) was calculated before (see Eq. (3) from Problem 11.5). A more
cumbersome but straightforward calculation gives K = 17α/81 and J = 16α/729 (let
us note that the exchange part of the Coulomb interaction is ten times smaller than
the direct Coulomb interaction).

Finally, we obtain

E(α) = Ĥ1 + Ĥ2 +K − J =
5

8
α2 − 5

4
αZ +

137

729
α,
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and a minimization over the parameter, α = Zeff , gives the variational energy

E(23S) = min E = −5

8

(
Z − 548

3645

)5

≈ −5

8
(Z − 0.150)

2
, (7)

where Zeff = Z − 0.150, and the ionization energy is

I(23S) =
5

8
(Z − 0.150)

2 − 1

2
Z2. (8)

According to Eq. (8) we have I = 0.139 for the helium atom and I = 0.576 for
the lithium ion, Li+. (Note that the variational result for I is rather far from the
experimental value for the helium atom, which is connected to the fact that our trial
function has used the same values of effective charge for both the “inner” 1s- and
“outer” 2s-electrons; see Problems 11.6 and 11.8.)

Problem 11.11

Calculate the hyperfine splitting of the triplet 23S-state of a helium atom with the He3

nucleus. The nuclear spin is I = 1/2 and its magnetic moment is μ = −1.064 e�/mpc.
For calculations, use an approximate form of the 23S-state wavefunction that neglects
electron–electron interaction. Compare the results with the following experimental
values of the hyperfine splitting: ΔνHFS ≡ ΔEHFS/2π� = 6740 MHz.

Solution

We follow here the same strategy as in Problem 11.2. We choose the perturbation to
be of the form V̂ = V̂1 + V̂2, where V̂1,2 describes interaction between each electron
and the nuclear magnetic field (see Eq. (1) from Problem 11.2). Due to the spherical
symmetry of the s-state, there is no interaction between electrons’ orbital currents
and the magnetic field in the leading order. Averaging the operator, V̂ , with the
wavefunction ψ(r1, r2), we find

V̂ =
8πe�μ

3mecI
C(Î · Ŝ), (1)

where Ŝ = ŝ1 + ŝ2 is the total electron spin, and

C =

∫
|ψ(0, r2)|2dV2 =

∫
|ψ(r1, 0)|2dV1. (2)

The eigenvalues of the operator V̂ (acting in the spin space) determine the hyperfine
structure of the levels. Since S = 1 and I = 1/2, then

EHFS =
8πe�μC

3mec
·
{
1, J = 3

2 ,

−2, J = 1
2

(3)
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where J is the total angular momentum, and the value of hyperfine splitting is equal
to

ΔEHFS =

∣∣∣∣EHFS

(
J =

3

2

)
− EHFS

(
J =

1

2

)∣∣∣∣ = 8πe�μC

mec
. (4)

Using the approximate expression for the wavefunction,

ψ(r1, r2) =
1√
2
{ψ1(r1)ψ2(r2)− ψ2(r1)ψ1(r2)},

where ψ1,2 are the wavefunctions of a hydrogen-like atom with Z = 2 for the 1s- and
2s-states, we find

C =
1

2
(|ψ1(0)|2 + |ψ2(0)|2) = 9

2π

1

a3B
, aB =

�
2

mee2
. (5)

The numerical value of EHFS , according to Eqs. (4) and (5), is equal to

ΔνHFS =
ΔEHFS

2π�
≈ 7340 MHz. (6)

It follows from Eq. (5) that the dominant contribution to the hyperfine structure comes
from the 1s-electron. The 2s-electron is eight times lower. In fact, its actual contribu-
tion is even smaller, since the probability of finding the 2s-electron wavefunction at
r = 0 is further reduced due to a screening of the nuclear charge by the 1s-electron.
If we use the value of the screened charge Z = 1, then the contribution of the 2s-
electron becomes 64 times smaller, and instead of Eq. (6) we obtain ΔνHFS ≈ 6630
MHz, which is, of course, much closer to the experimental value.

Problem 11.12

Prove that among all possible stationary states of a helium-like atom, only the electron
configurations of type 1snl (i.e., one of the electrons must be in the ground 1s-state)
are stable with respect to decay (auto-ionization) into a hydrogen-like ion and a free
electron.

Solution

If we neglect the electron–electron interaction, the energy of the state where both
electrons are excited is

En1n2
= −1

2
Z2

(
1

n2
1

+
1

n2
2

)
.

If n1,2 ≥ 2, this energy is higher than the ground-state energy, E0 = −Z2/2, of the
one-electron ion ground-state. This simple energetic argument indicates the instability
of the state. Interaction between electrons gives rise to a non-zero probability of
(auto)-ionization, where a transition to the continuous spectrum occurs for one of
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the electrons, while the other electron occupies the 1s-orbit yielding the ground-state
of the ion.

Clearly, the repulsive electron–electron interactions can only increase the energy of
the two-electron atom, so the conclusion above remains valid. This can be proven more
formally using Eq. (1.6). Specifically, for the eigenvalues, En(β), of the Hamiltonian,

Ĥ(β) = −1

2
(Δ1 +Δ2)− Z

r1
− Z

r2
+

β

|r1 − r2| ,

we find

∂En

∂β
=

∂Ĥ

∂β
=

1

|r1 − r2| > 0,

so “turning on” the ee-interaction indeed raises the energy.

Note that the above conclusion about instability of excited two-electron states
against auto-ionization is based entirely on energy arguments. The complete picture
is in fact more complicated, as apart from the energetic analysis, the selection rules
have to be considered as well, which may prohibit certain transitions that appear
energetically favorable within a näıve analysis such as above. Connected to electron
configuration 2pnl with n ≥ 2, we have the set of states stable with respect to
ionization, so that their decay is forbidden by the angular momentum and parity
conservation laws. These are the states with the angular momentum L ≥ 1 and parity
equal to (−1)L+1 (for example, the 3P+-term for the electron configuration (2p)2, see
Problem 11.72).

Problem 11.13

Estimate the ionization energies of the ground 2S-(electron configuration (1s)22s)
and first excited 2P -states (electron configuration is (1s)22p) of a lithium-like atom,
assuming that the electronic interaction between the ground state and the excited state
is effectively reduced to a screening of the nuclei charges (for the excited electron).

In the case of lithium compare your results to experimental values:
I(2S) = 5.39 eV and I(2P ) = 3.54 eV.

Solution

In this model, we can write the energy of the three-electron atom (or ion) state with
electron configuration (1s)2nl, n ≥ 2, as a sum of the energy of the ground-state of the
corresponding two-electron ion Ẽ0, which corresponds to the two 1s-electrons, and the
energy of outer nl-electron, En in the nuclear Coulomb field, whose charge is screened
by two 1s-electrons. This determines the ionization energy

In = |En| = (Z − 2)2

2n2
.
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Its numerical value for lower 2S- and 2P -states of lithium atom is the same (in the
model considered) and is equal to I2L = 0.125 a.u. ≈ 3.40 eV.

In conclusion, we note that the general considerations about the applicability of
the model and corrections to it are similar to those presented in the solution for prob-
lem 11.9. One of these corrections is the Rydberg correction: Δ0 = −0.400 for S-states,
using which we obtain I2S = 5.31 eV (close to the experimental value); for P -states,
Δ1 = −0.047.

11.2 Many-electron atoms; Statistical atomic model

Problem 11.14

Find possible atomic terms consistent with the following electron configurations (above
the closed shells):

a) np; b) (np)2; c) (np)3; d) (np)4; e) (np)5; f) (np)6.

Find their parities. Using the Hund law, find the corresponding ground states.

Solution

Atomic spectra that correspond to (np)L electron configuration above the closed
shells are given in table

Configuration np, (np)5 (np)2, (np)4 (np)3 (np)6

Terms 2P1/2,3/2
1S0,

1D2,
2P1/2,3/2

1S0

3P0,1,2
2D3/2,5/2,

4S3/2

Parity I -1 +1 -1 +1

Since the parity of an electron state with the angular momentum, l is equal to
(−1)l and is a multiplicative quantity (for the electrons that form a closed shell, it is
positive), then I = (−1)k.

The ground states according to Hund law, are 2P1/2,
3P0,

4S3/2,
3P2,

2P3/2 in the
cases a)−f) (in the order of k increase). See Problems 11.17 and 11.18.

Problem 11.15

Find atomic terms allowed for the electron configuration (nl)2.
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Solution

The wavefunction of two electrons must be anti-symmetric with respect to the inter-
change of spin and spatial variables. Since 1) the radial dependence of two equivalent
electrons’ wavefunctions is symmetric with respect to the interchange of r1 and r2, 2)
the spin part of the wavefunction is symmetric for the total electron spin, S = 1 and
anti-symmetric for S = 0, and 3) the nature of the angular symmetry is determined
by the value of the total angular momentum, L (see Problem 3.30), then we obtain
for the electron configuration (nl)2:

S = 0, L = 2l, 2l − 2, . . . , 0 (singlet terms),

S = 1, L = 2l − 1, 2l − 3, . . . , 1 (triplet terms, l �= 0).

Compare to Problems 10.8 and 10.9.

Problem 11.16

Two terms, 1L and 3L (L is the total angular momentum L = l), correspond to
the atomic states that have the electron configuration nsn′l above the closed shells.
Considering interaction between electrons as a perturbation, prove that the energy of
the triplet term is lower than the energy of the singlet. Do not specify the form of the
ns- and n′l-electrons radial functions.

Solution

The spatial part of the wavefunction has the form

ψ± =
1√
2
{ψ1(r1)ψ2(r2)± ψ2(r1)ψ1(r2)}. (1)

Signs + and − correspond to the singlet and triplet terms, and ψ1 and ψ2 are the
wavefunctions of the ns- and n′l-electrons. When we neglect electron interaction,
wavefunctions (1) correspond to the same energy. The difference due to electron
interaction to first order of perturbation theory is

ΔE± = 〈ψ±| 1

|r1 − r2| |ψ±〉 ≡ K ± J.

The exchange integral (compare to Problem 11.10),

J =

∫∫
ψ∗
1(r1)ψ

∗
2(r1)

1

|r1 − r2|ψ1(r2)ψ2(r2)dV1dV2, (2)

determines the energy splitting.



Atoms and molecules 511

Let us show that J > 0. We see that without loss of generality we can consider the
wavefunction ψ1 of a (non-degenerate) ns-state to be real, and write[247] ψ2 in the
form ψ2 = ϕ1 + iϕ2, where ϕ1,2 are real functions. We rewrite expression (2) as

J =

∫∫
1

|r1 − r2|ψ1(r1)ψ1(r2){ϕ1(r1)ϕ1(r2) + ϕ2(r1)ϕ2(r2)}dV1dV2.

We see that this expression is positive if we compare it to the known equations for
the energy of an electrostatic field, produced by a charge distribution with the charge
density ρ(r):

W =

∫
E2(r)

8π
dV =

1

2

∫∫
ρ(r1)ρ(r2)

|r1 − r2| dV1dV2 > 0.

So J > 0 and the singlet term is above the triplet. The physical explanation of the
fact is that in the triplet state, which is anti-symmetric in electron’s coordinates, the
probability density becomes zero for r1 = r2, which leads to a decrease in the electron’s
Coulomb interaction energy (and the system energy in general) in comparison to the
singlet state. Compare this to the condition of S being maximum for the ground term
of an atom according to Hund’s law.

In conclusion, let us mention that in this approximation there are no electrons in
closed shells. Their existence appears indirectly in the form of a self-consistent field
that determines the one-electron wavefunctions ψ1,2 of the “outer” electrons. For a
discussion about the accuracy of this approximation, see Problems 11.17 and 11.18.

Problem 11.17

An atom contains two equivalent np-electrons above closed shells. Considering inter-
action between electrons as a perturbation, find the energy order of the 1S, 1D, 3P
terms. Make sure that the values of quantum levels S and L in the ground state satisfy
the Hund law. Show that these terms satisfy the expression

Δ ≡ E(1S)− E(1D)

E(1D)− E(3P )
=

3

2
.

In this approximation, the expression also holds true for the configuration (np)4. Do
not specify the explicit form of the np-electron radial wavefunction.

Comment

To construct the correct wave function of zeroth approximation that corresponds to
a definite value of the angular momentum, L, it is convenient to use tensor formalism
(see the Problems in Chapter 3, sec. 4).

[247] One-electron nl-levels with l �= 0, as well the terms 1,3L with L = 1 considered, are degenerate
with respect to the projection of the angular momentum on the z-axis. Since the energy does not
depend on the value of lz , then considering the state with Lz = lz = 0 and taking into account
the fact that wavefunction ψ2 here is real, we can conclude that J > 0 from relation (2).
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Solution

The wavefunction of a single p-electron has the form

ψ(r) =

√
3

4π
(a · n)ϕ(r); n =

r

r
, |a|2 = 1,

∞∫
0

ϕ2r2dr = 1.

The coordinate part of the wavefunction for a system of two np-electrons with a definite
value of the total angular momentum L is described by the expression

ψL(r1, r2) = aik(L)n1in2kϕ(r1)ϕ(r2). (1)

Compare to Problem 3.45. Depending on the value of L, tensor aik(L) has the following
properties:

aik =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

3
16π2 δik, L = 0 (term S),√
9

32π2 εiklbl, |b|2 = 1 L = 1 (term P ),

aki, aii = 0, aika
∗
ik = 9

16π2 , L = 2 (term D).

(2)

As is seen, wavefunctions of S- and D-terms are symmetric with respect to the
interchange of r1 and r2, since these are singlet terms, S = 0. The P -term, asymmetric
in coordinates, is a triplet, S = 1.

If we neglect the interaction of np-electrons, all terms have the same energy. The
energy difference due to their interaction in the first order of perturbation theory

E
(1)
L =

∫∫
|ψL(r1, r2)|2 1

|r1 − r2|dV1dV2 (3)

could be written in the form

E
(1)
L = 2aika

∗
lm

∞∫
0

dr2

r2∫
0

dr1r
2
1r

2
2ϕ

2(r1)ϕ
2(r2)

∫∫
n1in2kn1ln2mdΩ1dΩ2√

r21 + r22 − 2r1r2
. (4)

The contribution of the integration regions r1 > r2 and r1 < r2 in relation (3) is the
same.

First, perform integration over the angles of the coordinate of the first electron in
(4). Recall the following constraint on the tensors involved∫

n1in1ldΩ1√
r21 + r22 − 2r1r2n1n2

= Aδil +Bn2in2l. (5)
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First performing convolution over i and l, then multiplying (5) by n2in2l, we obtain
two relations (for r2 > r1):

3A+B =

1∫
−1

2πdz√
r21 + r22 − 2r1r2z

=
4π

r2
,

A+B =

1∫
−1

2πz2dz√
r21 + r22 − 2r1r2z

=
π

3r32

(
8

5
r21 + 4r22

)
. (6)

These allow us to determine A and B (it is convenient to direct the polar axis along
the vector n2, here n1 · n2 = cos θ1 ≡ z).

Now we integrate over the angles of the coordinate of the second electron, using
the known relations:∫

ninkdΩ =
4π

3
δik,

∫
ninknlnmdΩ =

4π

15
(δikδlm + δilδkm + δimδkl).

As the result of integration over the angles, Eq. (4) takes the form

E
(1)
L = 2aik(L)a

∗
lm(L)

∞∫
0

dr2

r2∫
0

dr1r
2
1r

2
2ϕ

2(r1)ϕ
2(r2)

×
[
4π

3
δilδkmA+

4π

15
(δikδlm + δilδkm + δimδkl)B

]
. (7)

Using relation (2) and the values of A and B that follow from (6), we find

E
(1)
L = 2

∞∫
0

dr2

r2∫
0

dr1r
2
1r

2
2ϕ

2(r1)ϕ
2(r2)

[
1 +

8

5
bL

r21
r22

]
, (8)

where

bL =

⎧⎪⎨⎪⎩
1
4 , L = 0,

− 1
8 , L = 1,

1
40 , L = 2.

We obtain the order of terms

E(3P ) < E(1D) < E(1S),

so that 3P is the ground state in accordance with Hund’s. Let us emphasize that this
relation does not depend on a specific form of the wave-function of the np-electron,
which is determined by a self-consistent field of closed shells electrons. We could use
this as a check on the accuracy of the approximation considered. We compare the
obtained value of the ratio Δ = 3/2 to its experimental values for some atoms and
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ions that have electron configuration (np)2, and also (np)4 (i.e., two holes in the
np-shell). These values are given in the following table:

Atom C N+ O2+ O Si Ge Sn Te

Config. 2p2 2p2 2p2 2p4 3p2 4p2 5p2 5p4

Δexp 1.13 1.14 1.14 1.14 1.48 1.50 1.39 1.50

Problem 11.18

The same as in the previous problem, but for the atom with three equivalent np-
electrons. Prove the following relation

Δ =
E(2P )− E(2D)

E(2D)− E(4S)
=

2

3
.

Solution

The possible terms are 4S, 2P , 2D. The calculation of their energies shifts due to np-
electrons’ mutual interaction goes along the strategy outlined in the previous problem.
But now it is more tedious, which is connected to a more complex structure of the
three-electron wavefunction.

1) We start from the 4S term that corresponds to the maximum possible value of
the total spin, S = 3/2. Here the spin part χαβγ of the wavefunction is symmetric
with respect to the interchage of the spin variables of any two electrons. So, the
spatial part of the wavefunction (actually just the angular part, since the radial
wavefunction dependence is the same for all electrons) must be anti-symmetric,
which gives the angular dependence of wavefunction in the form

n1 · [n2 × n3] ≡ εikln1in2kn3l,

so that

ψ(4S) = C1εikln1in2kn3lϕ(r1)ϕ(r2)ϕ(r3)χαβγ . (1)

Since the coordinate part of the wavefunction is pseudo-scalar, and its form does not
change under rotation, then it really corresponds to the angular momentum L = 0
and describes the S-term (compare to Problem 3.47). Wavefunction normalization
of (1) gives C2

1 = 9/128π3 (to calculate the normalization integral, take into account
the values of the “angular” integrals given in the previous problem and the known
relation ε2ikl = 6).

The 4S-term shifts due to electrons’ mutual interaction, and the shift in the first
order of perturbation theory is equal to
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ΔE(4S) = V12 + V13 + V23 = 3V12 = 3

∫∫∫
|ψ(4S)|2 dV1dV2dV3

|r1 − r2| . (2)

After elementary integration over r3, this relation takes the form of Eq. (4) from
the previous problem. It is only necessary to replace aika

∗
lm by

4πC2
1 (δilδkm − δimδkl). (3)

Here we used the relation

εiklεsll = δisδkl − δilδks.

With this, all equations from Problem 11.7 up to Eq. (7) could be used for our
problem. Moreover, after the substitution of Eq. (3) into Eq. (7) from Problem
11.17, we obtain an expression for the shift (2) of 4S-term which differs from the
result (8) of Problem 11.17 only by a factor of 3, and the value of parameter bL
becomes equal to b(4S) = −1/8.

2) Now consider 2P . Since it corresponds to the angular momentum, L = 1, the coor-
dinate part of the wavefunction must be expressed in terms of vector components.
Such a vector, since it is linear in all the three vectors na, where a = 1, 2, 3, could
be made in three independent ways:

(n1 · n2)n3, (n1 · n3)n2, (n2 · n3)n1.

The condition that the wave-function is antisymmetric uniquely determines its form
as follows:

ψ(2P ) = ϕ(r1)ϕ(r2)ϕ(r3)C2i{(n1 · n2)n3εαβχγ − (n2 · n3)n1εγβχα

−(n1 · n3)n2εαγχβ}. (4)

α, β, γ are spin variables of 1, 2, and 3 electrons, anti-symmetric spin function

εαβ = −εβα =

(
0 1
−1 0

)
describes the state of the two electrons with the total spin

equal to zero (it is normalized to 2), χ =

(
a
b

)
is the spinor, normalized to unity,

that determines both the spin state of the last electron and of the whole system,
with S = 1/2. Vector C2 characterizes the orbital state (compare to Problem 3.45).
Further calculations are analogous to those made for the 4S-term. Wavefunction
normalization gives |C2|2 = 9/256π3. Applying the same consideration as above for
the S-term now to the 2P -term. We have instead of expression (3) the factor

4π[2|C2|2δikδlm + 2C2iC
∗
2lδkm + 2C2lC

∗
2iδkm − 3C2mC∗

2lδik − 3C2lC
∗
2mδik], (5)

while Eq. (8) from Problem 11.17, multiplied by 3, determines term shift ΔE(2P ),
if we put bL to be equal to b(2P ) = 0.

3) Finally, the term 2D corresponds to the angular momentum L = 2, and the
coordinate part of the corresponding wavefunction must be expressed in terms
the components of a symmetric tensor of the second rank, which in the conditions
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of the problem is linear in all vectors na, with the trace equal to zero. This tensor
is a superposition of tensors of the following type

[n1 × n2]in3k ≡ εislnisn2ln3k. (6)

The form of this superposition is determined by the antisymmetry of the wavefunc-
tion of the three-electron system:[248]

ψ(2D) = Cikεipl{n1kn2pn3l(εαβχγ + εαγχβ) + n1pn2kn3l(εαβχγ + εβγχα)

+ n1ln2pn3k(εγβχα + εαγχβ)}ϕ(r1)ϕ(r2)ϕ(r3). (7)

Here, Cik = Cki and Cii = 0. This tensor determines the orbital states; see Prob-
lem 3.45. The meaning of functions εαβ and χγ is the same as in relation (4).
Normalization of this wavefunction gives

CikC
∗
ki =

1

128π3
.

Calculating the shift ΔE(2D) gives us expression (8) from Problem 11.17, multi-
plied by 3, and here the value bL must be put equal to b(2D) = −1/20.

From the values bL given above, we obtain the order of terms:

E(4S) < E(2D) < E(2P ).

The standard term is 4S, according to the Hund law with respect to the value
of the total spin S.[249] Also, the ratio of energy differences given in the problem
statement is Δ = 2/3. Experimental values of this ratio for atoms with the electron
configuration (np)3 are given in the following table:

Atom N O+ S+ As Sb Bt

Config. 2p3 2p3 3p3 4p3 5p3 6p3

Δexp 0.500 0.509 0.651 0.715 0.908 1.121

Compare with the results of the previous problem.

Problem 11.19

Consider the statistical model of the ground state of a neutral atom with the nuclear
charge, Z � 1, neglecting electron mutual interaction. Using this model, find:

a) electron density n(r) and rk for a single electron;

[248] Note that expression (6) is anti-symmetric with respect to permutation of n1 and n2. In the same
way, relation (7) is anti-symmetric with respect to permutation, inside the curly brackets, of indices
p and l, convoluted with indices of the anti-symmetric tensor εipl.

[249] In the case considered, S = 3/2. Here, for the system of three equivalent p-electrons, the angular
momentum is L = 0.
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b) electron momentum distribution n(p) and also p and p2;

c) the typical value of electron’s angular moment;

d) total ionization energy of atom Etot.ion. = −E0.

Pay attention to the independence of these values from Z. Compare to the results
of the Thomas–Fermi model.

Neglecting electron–electron interaction, obtain the exact ground-state energy E0,
and for Z � 1 compare it to the result of the statistical model.

Solution

The ground state can be built by filling up the lowest-lying single-electron states one
by one. In the quasi-classical approximation, the electron density n(r) is connected to
their momentum maximum p0(r) by the relation:

n(r) =
1

3π2
p30(r) =

2
√
2

3π2

Z3/2

R3/2

(1− x̃)3/2

x̃3/2
, x̃ =

r

R
. (1)

We have used the fact that the total electronic energy is

ε0 =
1

2
p20 −

Z

r
= const ≡ −Z

R
, (2)

and does not depend on r (this makes system energy minimum). For r > R we have[250]

n = 0, while the value R is determined from the normalization condition for the neutral
atom,

∫
n(r)dV = Z, and is equal to R = (18/Z)1/3.

It is interesting to compare this electron density to the result of the Thomas–Fermi
model. If we write (1) in the form of Eqs. (XI.1) and (XI.3), then for χ(x) we obtain
(with r ≤ R)

χ(x) = 1− r

R
= 1− 0.338x; x = Z1/3 r

b
, b = 0.885.

Comparison of the results obtained using the two different models is presented in the
following table:

x 0 0.5 1.0 1.5 2.0 2.5 3.0

χTF(x) 1 0.607 0.424 0.314 0.243 0.193 0.157

χ(x) 1 0.831 0.662 0.439 0.324 0.155 0

The higher electron density in the vicinity of nuclei in the model reflects the absence
of nuclei charge screening, which is connected to neglecting the electrons’ mutual
repulsive interaction.

[250] In the model considered, the atom has a well-defined radius. But for peripheral electrons, because
of the screening effect on the nuclei, the model predictions are unreliable.
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We will now discuss the main conclusions that follow from the model considered.

a) Since the density n(r) is normalized to the total electron number, equal to Z,
then the function w(r) = n(r)/Z is the probability distribution density for the
coordinates of a single electron. It is evident that rn ∝ Z−n/3, and it is easy to
obtain that r ≈ 0.98 Z−1/3. See that the average distance of the electrons from the
nucleus decreases with the increase of Z as Z−1/3.

b) The electron number density in momentum space is

ñ(p) =
1

4π3
Vq(p) =

8Z3

3π2(p2 + 2Z/R)3
. (3)

Compare to Eq. (1). Here, Vq(p) is the volume in r-space where an electron is still
“allowed” to have momentum p. As is seen from relation (2), this is the volume of
a full sphere with radius

r(p) =
2Z

(p2 + 2Z/R)
. (4)

This density is also normalized to the electron number Z, so the relation w̃(p) =
ñ(p)/Z has the meaning of the probability distribution function of a single electron’s
momenta. Now, it is easy to obtain

p ≈ 1.11Z2/3 and p2 = (12)1/3Z4/3 ≈ 2.29 Z4/3.

So, the characteristic value of electron’s momentum increases as Z2/3.

c) Taking into account a) and b) for the typical values of electrons’ angular momen-
tum, we can estimate

lchar ∼ rchar · pchar ∼ Z1/3. (5)

d) Using the virial theorem, according to which for Coulomb interaction E = U/2, we
find the energy of total atom ionization as

Etot.ion. =
1

2

R∫
0

Z

r
n(r)4πr2dr =

(
3

2

)1/3

Z7/3 ≈ 1.14 Z7/3. (6)

The integral here is calculated by substitution r/R = sin2 u. The same result follows
from the relation −E = T = Zp2/2m, but in the Thomas–Fermi model Etot.ion. =
0.77 Z2/3 (the higher value of (6) is connected with neglecting the electrons’ mutual
interaction, which decreases the total energy).
Let us note that if we neglect electron–electron interaction, the atomic energy is

equal to the sum of single electron energies, εn = −Z2/2n2. Placing them on the
lowest levels and taking into account the Pauli principle and the Coulomb level
degeneracy, equal to 2n2, we have

E0 =

nmax∑
n=1

2n2εn = −Z2nmax,

nmax∑
n=1

2n2 = Z, (7)
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where nmax is the maximum value of the principal quantum number where there
are still electrons. In the case nmax � 1 we can replace summation by integration
in the second of the sums in (7), to find nmax ≈ (3Z/2)1/3. Energies of the atomic
ground-state, according to the first of the sums in (7), coincides with the result of
the statistical model in (6).
In conclusion, we emphasize that the results of the simple atom model considered

here differ from the results of the Thomas–Fermi approximation only by a numerical
coefficient ∼ 1, and correctly determine the dependence on Z.
See also Problem 11.39.

Problem 11.20

Find the number of s-electrons as a function of the nuclear charge, Z, using the
Thomas-Fermi approximation.

Solution

Single-electron s-levels are determined by the quasi-classical quantization rule for an
electron in a self-consistent field (U = −ϕ(r)):

r0∫
0

√
2[En + ϕ(r)]dr = π(n+ γ). (1)

From the assumption of the Thomas–Fermi distribution, the total number of s-
electrons in the atom is two times larger than the number of occupied levels (with
spin taken into account), for which En ≤ Emax, where Emax is the maximum value
of energy of the Thomas–Fermi electrons. For a neutral atom Emax = 0 and for the
corresponding value of nmax in (1) we should put r0 = ∞. Using Thomas–Fermi units
(XI.3) and omitting quasi-classical correction γ ∼ 1 in relation (1), we obtain the total
number of s-electrons in the atom,

N(l = 0) = 2nmax ≈ 2

π

√
2bZ1/3

∞∫
0

√
χ(x)

x
dx = aZ1/3, (2)

with the numerical factor a ≈ 3.5 (it could be estimated using the simple approxima-
tion from Problem 11.22 for χ(x)).

According to (2), for Z = 27 we have N ≈ 10, while for the atom 27Co the number
of s-electrons is actually equal to 8. For Z = 64, according to (2), N = 14, while the
number of s-electrons in atom 64Gd is actually 12.

Problem 11.21

In the Thomas–Fermi model, express electron’s kinetic energy, their interaction energy,
the electron–nucleus interaction energy, and the total energy of the atom, E[n(r)], in
terms of the electron density n(r).
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Prove that the function n0(r) which minimizes the functional E[n(r)] is the solution
of the Thomas–Fermi equation (XI.2) with ϕ = (1/2)(3π2n0(r))

2/3. Using variational
analysis prove in the framework of the Thomas–Fermi model: a) Uen = −7Uee is the
relation between the electron interaction energy Uee and the electron–nuclei interaction
Uen; b) the virial theorem.

Using a trial function of the form[251]

ntrial(r) =
αλ3Z3/2

16πr3/2
exp

{
−λ

√
rZ1/3

}
,

∫
ntestdV = αZ,

where α, λ are variational parameters, find the energy E of the ground-state of a
neutral atom with the nuclear charge Z by the variational method. Compare to the
result of the Thomas–Fermi model.

Solution

Electron interaction energy and the electron-nucleus interaction energy is determined
by the electrostatic equations:

Uen = −Z

∫
n(r)

r
dV, Uee =

1

2

∫∫
ρ(r)ρ(r′)
|r− r′| dV dV ′

=
1

2

∫∫
n(r)n(r′)
|r− r′| dV dV ′. (1)

Electron kinetic energy is determined from the condition that they are distributed
(with occupation numbers nk = 1) over the lower energy levels in the self-consistent
atomic field, and is equal to

T =
3

10
(3π2)2/3

∫
n5/3(r)dV. (2)

This expression follows from the quasi-classical equation for the number of available
quantum states:

ΔN =
2ΔΓ

(2π)3
=

2ΔVqΔVp

(2π)3
,

which for the values ΔVq = 1 and ΔVp = 4πp3max/3 connect the electron density n =

ΔN with pmax, here p2 = 3 p2max/5.

[251] Let us emphasize that here we imply an unconstrained minimum of functional E[n(r)], without
an additional condition for n(r) normalization. The exact function, n0(r), becomes automatically
normalized to the electron number Z. The approximate trial function is not supposed to satisfy
such a condition.

Let us note an interesting property of the energy functional. In the conditions of this problem,
E[n(r)] for a neutral atom takes the minimum value. On the contrarty, if we introduce the functional
E[ϕ(r)] (see Problem 11.22), then for a neutral atom it takes maximum value. The results of
Problems 11.21 and 11.22 give both the upper and lower bound for the atomic energy in the
Thomas–Fermi model.
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The atomic (ionic) energy in the quasi-classical approximation is expressed in terms
of the electron density by

E[n(r)] =
3(3π2)2/3

10

∫
n5/3dV − Z

∫
n

r
dV +

1

2

∫∫
n(r)n(r′)
|r− r′| dV dV ′. (3)

Variation of the functional E[n(r)] gives

δE =

∫
δn(r)

{
(3π2)2/3

2
n2/3(r)− Z

r
+

∫
n(r′)dV ′

|r− r′|
}
dV.

The extremal value condition gives the equation for the function n(r) which minimizes
the atomic energy:

1

2
(3π2)2/3n2/3(r)− Z

r
+

∫
n(r′)dV ′

|r− r′| dV ′ = 0. (4)

If we apply the Laplace operator to both sides of this equation and use the relation

Δ
1

|r− r′| = −4πδ(r− r′),

we obtain the differential form of Eq. (4):

Δ

[
1

2
(3π2)2/3n2/3(r)

]
= −4π[Zδ(r)− n(r)]. (5)

So by taking onto account the electrostatic Poisson equation, Δϕ = −4πρ, we conclude
that the value ϕ = 1

2 (3π
2)2/3n2/3 describes the atom’s electrostatic potential, while

Eq. (5) here

Δϕ =
8
√
2

2π
ϕ3/2

(for the values r �= 0) coincides with the Thomas–Fermi equation (XI.2).

From Eq. (4) for r → ∞ it follows that
∫
n(r)dV = Z, i.e., the neutral atom has

minimum energy, but the ion does not. This proves the atom stability in the Thomas–
Fermi model, and means that the statistical model could not explain the existence of
stable negative[252] ions.

a) Examine the relations between quantities T , Uee, Une for a neutral atom. Denote
the electron spatial density by n0(r) in the Thomas–Fermi model. The change of the
functional E[n0(r)] value, which determines the atomic energy, with the substitution
n0(r) → n(r) = (1 + λ)n0(r), |λ| � 1 is equal to

δE = E[n(r)]− E[n0(r)] ≈
(
5

3
T + 2Uee + Uen

)
λ,

[252] The existence of such ions is connected to the properties of external electron shells, the consideration
of which in the statistical model is inadequate.
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and the condition δE = 0, gives

5T + 6Uee + 3Uen = 0. (6)

In an analogous way, considering the transformation of the form n(r) = n0 ((1 + λ)r)
with |λ| � 1, we obtain

3T + 5Uee + 2Uen = 0. (7)

From (6) and (7) we have both relation Uen = −7Uee and the virial theorem 2T =
−(Uee + Uen) ≡ −U .

b) Finally, we will calculate the ground-state energy through the variational method
for E[n0(r)]. For the trial function given in problem condition, according to Eq. (3)
we obtain

E(α, λ) =
9

400

(
3π

2

)2/3

α5/3λ4Z7/3 − 1

2
αλ2Z7/3 +

1

16
α2λ2Z7/3. (8)

(While calculating Uee it is convenient to use the value of integral (2) from Problem
11.15.) Minimization of relation (8) over λ gives

E(α) = min
(λ=λ0)

E(α, λ) = − 25

576

(
2

3π

)2/3

α1/3(α− 8)2Z7/3.

where

λ2
0(α) =

25(8− α)

18

(
2

3πα

)2/3

.

The minimization over α gives α = α0 = 8/7 and the ground-state energy

E0,var ≈ −0.759 Z7/3, (10)

and the value of the parameter λ0(α0) = 1.761. Compare to the exact result
E0 = −0.769 Z7/3 for the Thomas–Fermi model.

In conclusion, let us comment on the properties of the trial function ntrial(r).
Formally, it is normalized to the number of electrons, equal to αZ, but the value
of E0,var obtained using this corresponds to a neutral atom with the number of
electrons equal to Z. (The choice of α = 1 gives the less accurate value of E0, though
the difference is not essential: instead of 0.759 in Eq. (10) we have 0.757). After
minimization in λ, the trial function considered corresponds to a choice of the universal
function χ(x) in the Thomas–Fermi model in the form (b = 0.885):

χtrial(x) =
25(8− α)

144
exp{−λ

√
x}; x = Z1/3 r

b
, λ =

2

3
λ0(α)

√
b.

It is easy to see that the difference of χtrial from the exact function, χT−F , is more
significant than in the case of energy values E0. For example, for α = 8/7 we have
χtrial(0) = 1.19, while χT−F (0) = 1. Compare to Problem 8.22.
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Problem 11.22

In the framework of the statistical model of a neutral atom, write its energy, E[ϕ(r)]
in terms of the potential ϕ(r), in such a form that the Thomas–Fermi equation (XI.2)
follows from the extremum of the functional E[ϕ(r)].

Using the trial functions,

ϕ(r) =
Z

r
χ(r), χ(r) =

1

(1 + αZ1/3r)2
,

where α is a variational parameter, find the ground-state energy using the variational
method. Compare to the previous problem and to the exact result of the Thomas–
Fermi model.

Solution

We write the atomic electrostatic potential in the form ϕ = Z/r + ϕel, where ϕel(r)
is the potential produced by the electrons. Using the relation

n(r) = −ρel(r) =
(2ϕ)3/2

3π2
,

(see Eq. (XI.1)) and the known equations from electrostatics, we find∫
ρel(r)ϕ(r)dV = −2

√
2

3π2

∫
ϕ5/2(r)dV = 2Uee + Uen,

1

2

∫
ρel(r)ϕel(r)dV = − 1

8π

∫ (
ϕ− Z

r

)
Δ

(
ϕ− Z

r

)
dV = Uee, (1)

T =
2
√
2

5π2

∫
ϕ5/2dV.

For the electron kinetic energy, see Eq. (2) from previous problem. Now,

E[ϕ(r)] = T + Uen + Uee = − 4
√
2

15π2

∫
ϕ5/2(r)dV

+
1

8π

∫ (
ϕ− Z

r

)
Δ

(
ϕ− Z

r

)
dV. (2)

If we vary ϕ(r) to extremize (in this case, maximize; see the previous problem) the
functional E[ϕ(r)], we indeed obtain the Thomas–Fermi equation for the potential.
Now consider the potential[253]

ϕ = (1 + λ)ϕ0 ((1 + λ)r) ,

[253] As we vary the potential, the condition, ϕ(r) ≈ Z/r must be fulfilled for r → 0; otherwise, as is
seen from expression (1), the value of Uee becomes infinite.
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where ϕ0(r) is the solution of the Thomas–Fermi equation and |λ| � 1. From the
maximum condition on E[ϕ(r)], we obtain the relation

T + 4Uee + Uen = 0, (3)

and from Eq. (1) we have

5T + 6Uee + 3Uen = 0. (4)

We obtain both equation Uen = −7Uee and the virial theorem for Coulomb interaction
in an atom.

For the variational calculation of the atomic ground-state energy E0, it is conve-
nient to transform Eq. (2). Since the function, ϕ− Z/r, has no singularities at the

point r = 0, then in the second of the integrals in Eq. (2) we can replace Δ by 1
r

∂2

∂r2 r.
Integration by parts gives us

E[ϕ(r)] = −16
√
2

15π

∞∫
0

r2ϕ5/2(r)dr − 1

2

∞∫
0

[
∂

∂r
(rϕ(r))

]2
dr. (5)

For the trial function given in the problem condition, we obtain (the first integral by
substitution x =

√
r is reduced to E 1.5):

E(α) = −7
√
2

24
Z7/3 1√

α
− 2

5
Z7/3α. (6)

The maximum value E(α0) of this quantity gives the energy of the atom’s ground-
state:

E0,var = E(α0) = −0.771 Z7/3, (7)

where

α0 =

(
35

48

√
2

)2/3

≈ 0.643.

In the conditions of the problem, (7) is a lower bound for the true value of E0 in
the Thomas–Fermi model, equal to E0 = −0.769 Z7/3. Compare to the result of the
previous problem.

In conclusion, let us note that the trial function considered reproduces with
high accuracy not only the value of E0, but also the universal function χ(x)
of the Thomas–Fermi model. Comparison of χtrial = (1 + α̃x)−2, x = Z1/3r/b,
α̃ = α0b ≈ 0.569 to the exact function χT−F is given in the following table:
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x 0 0.5 1.0 2.0 5.0

χT−F (x) 1 0.607 0.424 0.243 0.079

χtrial(x) 1 0.606 0.406 0.219 0.068

Their difference is especially small in the region x ≤ 1, where most electrons are;
with the increase of x, relation χtest/χT−F decreases. It is connected to the fact that
the trial function considered, n = (2ϕ)3/2/(3π2), is normalized to the electron number,
equal to

√
2

3α
3/2
0

Z =
32

35
Z.

This is lower than Z. Compare to the previous problem.

11.3 Principles of two-atom-molecule theory

Problem 11.23

Classify possible terms of the hydrogen molecular ion H+
2 . Give possible values of the

electron angular momentum, L with respect to the symmetry center for different ion
terms.

Solution

For terms of a hydrogen molecular ion H+
2 with the quantum number Λ, the electron

angular momentum projection on the direction of the axis, passing through the nuclei,
could only take the values m = ±Λ. So, wavefunctions of such terms could be written
in the form of an expansion over the spherical functions:

ψm(r, θ, ϕ) =
∑
L≥Λ

RLΛYLm(θ, ϕ) = R(r, θ)eimϕ, (1)

where r, θ, ϕ are the spherical coordinates. (The polar axis is directed along the ionic
symmetry axis, and the system origin is at the center of the segment that connects
the nuclei.)

For the Σ-terms (for which m = Λ = 0) the wavefunction (1) does not change under
reflection of the electron coordinates through the plane which passes through the ion
symmetry axis. For such transformation of coordinates, r and θ remain the same, and
the wavefunction does not depend on ϕ, since m = 0. This means that Σ-states are
Σ+-terms, while Σ−-terms for H+

2 do not exist, which is a specific property of the
one-electron system.

Wavefunction (1) could be chosen as an eigenfunction of the inversion operator Î
which inverts electron coordinates through the point r = 0 and commutes with the
system Hamiltonian. Since here ÎYLm = (−1)LYLm, the sum in (1) includes either
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only even or only odd values of L. In the former case, wavefunction (1) corresponds
to even terms with quantum numbers Λe, while in the latter case it corresponds to
odd terms Λo. Remember that classification of two-atom molecular terms as even and
odd arises for identical molecular nuclei and is connected with the behavior of the
wavefunction under coordinate inversion.

The possible ion terms:

2Σ+
g ,

2Σ+
u ,

2Π+
g ,

2Π+
u ,

2Δ+
g ,

2Δ+
u , . . . .

Problem 11.24

The state of a system consisting of two electrons is described by wavefunction
ψ = ψ(r1, r2)χαβ , where χαβ is the spin function, and ψ(r1, r2) has the form:

a) ψ = f(r1, r2);

b) ψ = (r1 · n0 + r2 · n0)f(r1, r2);

c) ψ = ([r1 × r2] · n0)f(r1, r2);

d) ψ = (r1 · n0 + r2 · n0)([r1 × r2] · n0)f(r1, r2).

In accordance with the standard classification of two-atom molecules, classify these
states, considering the vector n0 as the radius-vector connecting the nuclei.

Solution

None of the four wavefunctions given in the problem condition change under rotation
around the coordinate axis that is parallel to the vector n0 and passes through r = 0.
So all of them describe states with projection m = Λ = 0 of total electrons’ angular
momentum onto this axis, i.e., the Σ-states.

Now, the wavefunctions have a definite parity with respect to electron coordinate
inversion: wavefunctions a) and c) are even, i.e., describe the Σe-states, while odd
wavefunctions b) and d) describe the Σo-states (compare to the previous problems).

Finally, under electron coordinate inversion in a plane that includes the axis
mentioned above, wavefunctions a) and b) do not change, i.e., correspond to the
Σ+-states, while c) and d) change sign and are described by the Σ−-states.

Therefore, we have the following classification of states considered:

a) Σ+
g ; b) Σ+

u ; c) Σ−
g ; d) Σ−

u

Their multiplicity, 1 and 3, is defined by the value, S, of the total electron spin
that depends on the symmetry of coordinate wavefunctions ψ(r1, r2) with respect
to electron permutation.
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Problem 11.25

For a two-atom molecule, estimate ratios of the following quantities:

a) level spacings between electronic vibrational and rotational levels;

b) distance between the nuclei and amplitude of nuclear oscillations;

c) typical periods and velocities of electronic and atomic motion.

Solution

The main physical fact in molecular quantum mechanics is the smallness of the ratio

m

M
∼ 10−4 − 10−3

where m is the electron mass and M is the reduced nuclear mass. This provides
different orders of magnitudes for the quantities given in the problem statement.

a) Molecule’s linear dimensions amol and distances ann between the nuclei have the
same order of magnitude as the localization length of valence (outer) electrons in
the atom, ae:

amol ∼ ann ∼ ae ∼ aB =
�
2

me2
.

Characteristic values of valence electron’s energy in the molecule, as well as the level
spacing between the neighboring electron terms of the molecule for “fixed” nuclei,
are equal by the order of magnitude: Eel ∼ �

2/ma2B . The characteristic values of
the intervals between oscillation and rotational levels of a molecule for the same
electron term are much smaller

Eosc ∼ �ωosc ∼
√

m

M
Eel, Erot ∼ �

2

I
∼ �

2

Na2B
∼
√

m

M
Eosc ∼ m

M
Eel.

Oscillation levels of a molecule, Eosc,v = �ωosc(v + 1/2), are the levels of an
oscillator with mass M and elastic coefficient k, whose order of magnitude from
dimensional considerations is determined by the relation ka2B ∼ �

2/ma2B , while

ωosc =
√

k/M . Molecule’s rotational levels, Erot,K = �
2K(K + 1)/2I, are the levels

of a spherical rotator with the moment of inertia I = MR2
0, where R0 is an

equilibrium distance between nuclei, R0 ∼ aB (in practice, for terms with Λ �= 0,
molecular rotation is simulated by a symmetric spinning top).

b) Evaluation of a nuclear oscillations amplitude from the relation Eosc ∼ ka2osc
gives

aosc ∼
(m

M

)1/4

aB � aB .
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c) The characteristic periods of different type of motion in the molecule are

τel ∼ aB
vel

∼ ma2B
�

, τosc ∼ 1

ωosc
∼
(
M

m

)1/2

τel,

τrot ∼ aB
vnuc rot

∼ aB

(
M

Erot

)
∼ M

m
τel.

The different orders of magnitudes of these time-scales ensure the applicability of
the adiabatic approximation (see Chapter 8, sec. 6), according to which, the energy
levels of a molecule are given in the form:

E = Eel + Eosc + Erot,

and Erot � Eosc � Eel.

Problem 11.26

Considering the following properties of the hydrogen molecule H2 to be known:

1) dissociation energy of the molecular ground-state into two unperturbed hydrogen
atoms: I0 = 4.46 eV;

2) oscillation frequency, ωe, of the molecule: �ωe = 0.54 eV;

3) rotational constant: Be = 7.6 · 10−3 eV;
find the corresponding values for molecules HD and D2, where one or both proton–
nuclei are replaced by a deuteron.

Compare the isotope shift effects for a hydrogen atom and a molecular hydrogen.

Solution

The energy of the molecular ground-state is equal to

E0 = Eel,0 + Eosc,0 = E0(R0) +
1

2
�ωosc, (1)

where E0(R) is the ground-state energy, R0 is the equilibrium distance between nuclei,
ωosc ≡ ωe =

√
E′′

0 (R0)/M , M is the nuclei reduced mass. The rotational constant of
the molecule is Be = �

2/2MR2
0.

Since after replacing the molecular nuclei by their isotopes, the function E0(R) and
the value R0 remain the same, then taking into account the relation md ≈ 2mp, we
find:

(�ωe)HD ≈
√
3

2
(�ωe)H2

= 0.46 eV, (Be)HD ≈ 3

4
(Be)H2

= 5.7 · 10−3 eV;

(�ωe)D2
≈ 1√

2
(�ωe)H2

= 0.38 eV, (Be)O2
≈ 1

2
(Be)H2

= 3.8 · 10−3 eV.
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The molecular dissociation energy is

I0 = E
(0)
1 + E

(0)
2 − E0,

where E
(0)
1,2 are the ground levels of the corresponding hydrogen atom, taking into

account the finiteness of their nuclei masses:[254]

E(0) ≈ −mee
4

2�2

(
1− me

Mnuc

)
= −13.60

(
1− me

Mnuc

)
eV.

From the given equations we obtain

(I0)HD ≈ 4.50 eV, (I0)D2
≈ 4.54 eV.

The effect of the isotopic shift in a hydrogen atom has the magnitude of the order
(ΔE/E)at ∼ me/Mnuc ∼ 10−3, while in a molecule it is(

ΔE

E

)
mol

∼
√

me

Mnuc
∼ 1

40
,

and therefore manifests itself more clearly as a change in the frequency of nuclear
oscillations ωosc.

Problem 11.27

Find possible rotational states of the molecules H2, deuterium D2, and HD, which
are in the ground-state Σ+

g , as a function of the total nucleus spin (the deuterium spin
is equal to 1).

How does the parity of the term depend on the value of the molecule’s angular
momentum?

Solution

1) Restrictions on possible values of the molecular angular momentum K for a fixed
value of the total nuclear spin are due to the fact that the wavefunction of a system
with identical particles (in this case the nuclear subsystem in molecules H2 and D2)
must have a definite symmetry with respect to permutation of the variables (spin
and coordinate) of any two such particles. Remember that the spin wavefunction
of a two-spin system, where[255] i is the spin of each system, is symmetric with
respect to the permutation of spin variables if it has I = 2i, 2i− 2, . . . for the total
spin, and is asymmetric if it has I = 2i− 1, 2i− 3, . . . (see Problem 3.30), and also
there are of course constraints on the wavefunction symmetry for identical bosons
and fermions. Using this information, we see that under permutation of the spatial
variables, the nuclear wavefunction of the molecule does not change sign for an
even value of the nuclear spin (I = 0 for H2 and I = 0; 2 for D2) and changes sign

[254] See the footnote for the solution of Problem 11.30.

[255] Nuclear spins are usually denoted by i and I.
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for odd I. We should emphasize that this conclusion, as well as the possible values
of the angular momentum K, corresponds to any two-atom molecule with Λ = 0
and identical nuclei. We can examine what restrictions on K this imposes.

For the molecules considered with Λ = 0, the wavefunction dependence on the
nuclear coordinates is defined by the relation

ψKMnΛ=0 = ψnΛ=0(r1, r2,R)ψosc(R)YKM (θ, ϕ). (1)

Here YKM are spherical functions; θ, ϕ – polar and azimuth angles of the radius-
vector R = R2 −R1 ≡ Rn connecting the nuclei; ψnΛ=0 is the wavefunction of
the molecule’s electron Σ-term, and ψosc(R) is the wavefunction of the nuclei’s
oscillation. For the permutation of nuclei coordinates, i.e., for a transformation of
the form R → −R, the oscillation part of the wavefunction does not change, while
the spherical function is multiplied by (−1)K .
More delicate is a question concerning the electron term wavefunction ψnΛ=0.

This function is a scalar (or pseudo-scalar, depending on term quantum numbers)
that depend only on vectors r1, r2, and R. The most general form of such a
function is

ψnΛ=0 = ψ(r1, r2, R, r1 ·R, r2 ·R, r1 · r2, [r1 × r2] ·R). (2)

This function does not change under rotation of the electron subsystem around the
axis that passes through the vector R, as is needed for the term with Λ = 0. Under
coordinate inversion in a plane that includes the vector R, we have

P̂1ψnΛ=0 ≡ ψ(r1, r2, R, r1 ·R, r2 ·R, r1 · r2, −[r1 × r2] ·R) =

= σ1ψ(r1, r2, R, r1 ·R, r2 ·R, r1 · r2, [r1 × r2] ·R), (3)

where σ1 is equal to +1 and −1 for the Σ+ and Σ−-terms. In the same way, for
electron’s coordinates reflection with respect to the center of the segment that
connects the nuclei, we obtain

P̂2ψnΛ=0 ≡ ψ(r1, r2, R, −r1 ·R, −r2 ·R, r1 · r2, [r1 × r2] ·R) =

= σ2ψ(r1, r2, R, r1 ·R, r2 ·R, r1 · r2, [r1 × r2] ·R), (4)

where σ2 is equal to +1 for even Σg and −1 for odd Σu-terms.
Now we see that the transformation R → −R is equivalent to a product of

transformations performed in Eq. (3) and (4), i.e., P̂ (R → −R) = P̂1P̂2, so that

P̂ψnΛ=0 = σ1σ2ψnΛ=0,

and for the wavefunction of the molecule,

P̂ (R → −R)ψKMnΛ=0 = (−1)Kσ1σ2ψKMnΛ=0. (5)

In accordance with the symmetry properties discussed at the beginning, we have

(−1)Kσ1σ2 = (−1)I . (6)
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This expression gives a relation between possible values of the quantum numbers
K, I, σ1, σ2 for a two-atom molecule with identical nuclei. In particular, for the
hydrogen molecule, the ground term is Σ+

g . Here σ1 = σ2 = +1, so according to
(6) for molecule H2 with the total nuclear spin I = 0 and for molecule D2 with
I = 0, 2, only even values of the angular momentum K = 0, 2, 4, . . . are possible,
while for I = 1 only the odd K are possible (the possible values of K for molecule
HD with different nuclei do not depend on the total spin of its nuclei).

2) Now note that from relations (3) and (4) it follows that for wavefunction (2)
the product of transformations P̂ (R → −R)P̂2, which corresponds to inversion
of coordinates for both electrons and nuclei, is equivalent to transformation of
P̂1, and wavefunction (1) under inversion is multiplied by (−1)Kσ1. This factor
determines the parity of the molecule in the Λ = 0 state (but with not necessarily
identical nuclei). So for the Σ+ (Σ−) terms, the states of the molecule with even
(odd) angular momentum K are positive, while those with odd (even) K are
negative.[256]

In conclusion, let us first discuss the values of the nuclear angular momentum.
It does not coincide with the value of molecule rotational angular momentum K
and, furthermore nor does it have a definite value, just as the electrons’ angular
momentum does not. But for the Σ-terms of molecules with identical nuclei, all
its possible values, Lnuc, have the same parity, so that (−1)Lnuc = (−1)I ; here,
the relation (6) connects the values of Lnuc with quantum numbers K, σ1, σ2. For
example, for the Σ+

g - and Σ−
g -terms, we have Lnuc = K,K ± 2, . . . .

Molecule states are classified as symmetric with respect to nuclei for (−1)Lnuc =
(−1)Kσ1σ2 = +1 and as anti-symmetric for (−1)Lnuc = (−1)Kσ1σ2 = −1 (remem-
bering that the factor (−1)Kσ1 = (−1)Iσ2 determines the parity of a molecular
level). This classification is connected to definite values of the quantity (−1)Lnuc

(for a two-atom molecule with identical nuclei) that corresponds to Hamiltonian’s
invariance with respect to nuclei’s coordinate permutation.
The restriction, see Eq. (6), on the possible values of the rotational moment K

for different parity of the total nuclear spin I leads to a dependence of the molecular
levels on I due to different values of the rotational energy (even in the absence of
spin terms in Hamiltonian). A nuclear exchange interaction appears. But due to the
smallness of rotational energy (∼ me/Mnuc), it is much weaker than the exchange
interaction of electrons in the atom. So for the corresponding levels EI,K of the
ortho-hydrogen (I = 1) and para-hydrogen (I = 0), we have:

EI=1,K+1 − EI=0,K = 2Bc(K + 1) = 0.015(K + 1) eV,

where K = 0, 2, 4, . . . (a value of the rotational constant for the molecule H2: see
Problem 11.26).

[256] Do not confuse the parity of a molecular level with signs + and − of electron terms Σ±!
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Problem 11.28

Find electron terms E(R) of a negative molecular ion (AB)− in the framework of
the model where interaction between the external electron and atoms A and B is
approximated by a zero-range potential (see Problem 4.10).

Determine

a) if a stable ion (AB)− can exist, in the case when stable ions A− and B− do not
exist;

b) level spacing between the even and odd terms for R → ∞ (in the case of identical
atoms, A ≡ B).

Solution

The solution of the Schrödinger equation for a particle in the combined field of two
zero-range potentials which are localized at the points r1,2 for energy values E =
−�

2κ2/2m < 0 has the form:[257]

ψE(r) =
c1

|r− r1|e
−κ|r−r1| +

c2
|r− r2|e

−κ|r−r2|. (1)

The boundary conditions for r → r1,2 associated with the zero-range potentials give
(see Problem 4.10)

(κ− α1)Rc1 = e−κRc2, e−κRc1 = (κ− α2)Rc2, (2)

whereR = r1 − r2. A consistency condition for this system of equations with respect to
c1,2 gives an equation for spectrum E(R) that models electron terms of the molecular
ion:

(κ− α1)(κ− α2) =
1

R2
e−2κR. (3)

We will analyze this equation.

1) In the case of α1,2 > 0, there exist bound states in both potentials (negative atom

ions) with energies E
(0)
1,2 = −�

2α2
1,2/2m. These states represent Σ+-terms, (since

wavefunction (1) does not change under rotation around the axis that passes
through the vector R), have the following properties. For R → ∞ there are two

separate states, and for them, E1,2(R) → E
(0)
1,2 , while their wavefunctions in the

case of α1 �= α2 are localized on each of the centers individually. As R decreases,
the lower term deepens, and for this lower term, E(R) → −∞ for R → 0, while
the other term moves upward and for R = Rc = (α1α2)

−1/2 enters the continuous
spectrum (see Fig. 11.2). Deepening of the term with decrease of R (attraction)
shows that there is a stable ion (AB)−. In this model, the equilibrium distance

[257] Compare to Problem 4.10. Note that analogously to (1), a similar linear combination of exponentials
determines the form of the solution for particle bound states in an arbitrary number of zero-range
potentials (it follows from integral form of Schrödinger equation; see Problem 4.20).
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Fig. 11.2

between the nuclei is R0 = 0 and E(R0) = −∞. It means that the real values of
these quantities depend essentially on the form of the potential on atomic distances.
So, we emphasize that approximation of the interaction between the electron and
atom by a zero-range potential is only reasonable if the electron binding energy in
the atom ion is |E0| � �

2/ma2B , while the domain of the wavefunction localization
is ∼ κ−1 = α−1 � aB . The second electron term, which increases with decrease in
R, corresponds to repulsive interaction and does not lead to the appearance of a
stable molecular ion.
In the case of α1 = α2 ≡ α > 0, it is seen from Eqs. (2) and (3) that for the

terms considered, c1 = ±c2, so that they have a definite parity, i.e., are Σ+
g - and

Σ+
u -terms. For the difference between their energies for R → ∞ from (3), we obtain

Eu(R)− Eg(R) ≈ 2�2α

mR
e−αR. (4)

In the right-hand side of Eq. (3) we can put κ = α, so that (κg,u − α) ≈ ±e−αR/R,
while ΔE ≈ �

2αΔκ/m.

2) In the case of α1 > 0, α2 < 0, there is only one stable atomic ion. According to (3),
there is only one term with E(R) < 0, and for it, as well as in the previous case,

E(R) → E
(0)
1 for R → ∞ and E(R) → −∞ for R → 0.

3) Finally, in the case of α1,2 < 0 there are no stable atomic ions. But for an electron
in the field of the two atoms that are separated by a distance R < Rc = (α1α2)

−1/2,
a bound state appears. We have that E(Rc) = 0 and E(R) decreases with decrease
in R, and E(R) → −∞ for R → 0. This gives the possibility of a stable state in a
molecular ion. But this conclusion is valid only in the case of Rc � aB . If Rc ≤ aB ,
then the study based on zero-range potentials is not valid. (For example, interaction
of the particle and an impenetrable sphere of radius a for the values of energy
E � �

2/mα2 could be approximated by a zero-range potential with α = −1/a;
while we know that there no bound states in the field of two impenetrable spheres.)



534 Exploring Quantum Mechanics

Problem 11.29

Find the ground term, E0(R), of a molecular hydrogen ion H+
2 by variational method,

approximating the wavefunction of the state by a “hydrogen” function of the form:

ψtrial(r) =

√
α3

πR3
exp

{
−αr

R

}
,

where r is the distance between the electron and the center of the segment that
connects nuclei-protons, and α is a variational parameter.

Calculate the minimum energy of the term E0, equilibrium distance between the
nuclei R0, and energy of nuclear zero-point oscillations Eosc,0, and compare them to
experimental values: E0 ≈ −0.60 a.u., R0 ≈ 2.0 a.u., Eosc,0 ≈ 0.0044 a.u.

Is it possible, using this result, to make a conclusion about stability of the ion,
H+

2 ?

Solution

The mean value of the electron Hamiltonian for “fixed” ion nuclei

Ĥel = −1

2
Δ− 1

|r−R/2| −
1

|r+R/2| +
1

R

in the state described by wavefunction ψtrial(r) is equal to

E0(R,α) = Ĥel =
α2

2R2
− [3− 2(2 + α)e−α]

1

R
. (1)

Since the wavefunction has the form of a “hydrogen” function, then for mean values
T and |r±R/2|−1 we can use the known expressions; in particular:

∣∣∣∣r± R

2

∣∣∣∣−1

= [2− (2 + α)e−α]
1

R
,

as it follows from the Eq. (4) of Problem 4.6, if we put r = R/2, a = R/α, e = 1, and
subtract 2/R.

In the framework of the variational method, expression (1) could be considered as
some approximate value of the true energy[258] E0(R) of the ground term, and the
best approximation is obtained by minimizing (1) over parameter α. Optimal value
α(R) follows from the condition ∂E0(R,α)/∂α = 0 and we have

αeα

(α+ 1)
= 2R. (2)

[258] More precisely, we should add to Ĥel the small term l̂2el/2MR2 ∝ me/Mnuc, which is obtained
after averaging over the electron state of the centrifugal energy of the nuclei.
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Here expressions (1) and (2) determine the dependence of E0,var, that in the vicinity
of the absolute minimum R0 has the form

E0,var(R) = E0(R0) +
1

2
E′′

0 (R0)(R−R0)
2. (3)

A simple numerical calculation gives

E0,var(R) = −0.470 + 0.078(R− 1.78)2. (4)

According to (4) the ground-state properties are

E0 = −0.47, R0 = 1.78, Eosc,0 =
1

2
ωe =

√
meE′′(R0)

2mp
= 0.0065.

These results differ significantly from the experimental values, which is connected to
the simple choice of the trial function.

Problem 11.30

Estimate the typical distance between the nuclei in a μ-mesomolecular ion of hydro-
gen,[259] and also the quantities ωμ and Bμ for the ion in the adiabatic approximation,
using results from the previous problem for the simple ion H+

2 .

Solution

Since mμ/mp ≈ 1/9 � 1, characteristic nuclei velocities are much lower than muon
velocities, and we can use adiabatic approximation. The nuclei motion occurs in the
effective potential U(R) = E0(R), defined by the energy of the ground muon term for
“fixed” nuclei, and has the same form as in the case of the usual molecular ion H+

2 , if
we use the muon atom units mμ = e = � = 1.

In this approximation, ion characteristic ion size is determined by the distance R0

that corresponds to the minimum of E0(R), and for the mesomolecular ion it is R0 ≈ 2
a.u.= 2�2/mμe

2 ≈ 5 · 10−11 cm. The values of ωμ and Bμ (in the muon atomic units):

ωμ ≈ 0.27

√
mμ

M
, Bμ =

mμ

2MR2
0

=
mμ

8M
, (1)

where M is the nuclei reduced mass. Compare to Problem 11.26.

We should mention the subtleties of the adiabatic approximation applied for
mesomolecular systems, due to the value χ ∼ 1/10 of the adiabatic parameter, com-
pared to χ ∼ 10−4 − 10−3 for common molecules (see Problem 11.25). Although the
approximation of “fixed” nuclei for a calculation of E0(R) is still valid (but with

[259] Due to a small size of the mesomolecule ions, Coulomb barrier penetrability, that separates nuclei,
increases significantly. So, in the case when ion nuclei are heavy isotopes of hydrogen (d and t),
the muon acts as a catalyst for the nuclear fusion reaction (for example, dt → nα + 17.6 MeV);
see also Problems 11.59 and 11.74.
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much lower accuracy), there is no further separation between the nuclei motion
into independent oscillatory motion and rotational motion. The oscillations have a
strongly anharmonic character and depend strongly on K, so that the use of adiabatic
approximation equations for the spectrum,

EKv = E0 + ωμ

(
v +

1

2

)
+BμK(K + 1), (2)

is not valid. But for states with v = 0, K = 0 and 1 it gives reasonable values of
energy. For example, for the dtμ-system, we have the following values of the binding
energy[260]: εKv = −1/2− EKv, equal to ε00 ≈ 0.059 a.u. ≈ 330 eV and ε10 ≈ 0.036
a.u. ≈ 200 eV; compared to the exact values 319 eV and 232 eV. Let us note that, as
is seen from exact calculations, for the mesolecular hydrogen ions there are two bound
states (v = 0 and 1) with K = 0 and K = 1, one (v = 0) with K = 2, and there are
no stable states with K ≥ 3.

11.4 Atoms and molecules in external fields; Interaction of atomic
systems

Problem 11.31

Calculate the polarizability of the hydrogen atom in the ground state using variational
method, with the following trial functions:

a) ψ(r) = Cψ0(r)(1 + αE0 · r) = Cπ−1/2e−r(1 + αE0r cos θ);

b) ψ(r) = Cπ−1/2[e−r + αγ5/2E0re−γr cos θ],

where α, γ are variational parameters, ψ0 = e−r/
√
π is the wavefunction of the

unperturbed ground-state, and E0 is the external electric field. Compare to the exact
value β0 = 9/2 (we use atomic units).

Solution

First we write the wavefunction in the form ψtest = C(ψ0 + αEψ1), where

ψ1 =

√
3

4π
cos θ · (2γ)

5/2

2
√
6

re−(2γr)/2.

[260] Here in the energy of the mesoatomic ground-state, equal to −1/2, we did not make a correction
due to a finite mass (heavier) nucleus, which leads to an increase in the binding energy. Its value

is of the same order, ∼ mμ/Mnuc, as a contribution to the energy from the term Î
2

μ/2MR2 that
appears after averaging over the muon state of the centrifugal nuclei energy. This term in the
mesomolecule is more important than in common molecules, and leads to an increase in term’s
energy (and decrease in the binding energy). Hence, the unaccounted terms have opposite signs
and partly compensate each other.

Note that the muon atom energy unit is ≈ 5.63 keV.
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Let us note that the functions ψ1, normalized to unity, coincides with the wavefunction
of the state with quantum numbers n = 2, l = 1, m = 0 of a hydrogen-like atom with
the nuclear charge Z = 2γ (γ = 1 in case a), and satisfies the equation:(

−1

2
Δ− 2γ

r

)
ψ1 = − Z2

2n2
ψ1 = −γ2

2
ψ1.

Writing the system Hamiltonian in the form

Ĥ = −1

2
Δ− 1

r
+ Ez ≡ Ĥ0 + Er cos θ, (1)

with axis z along the electric field direction, we find

〈ψ1|Ĥ0|ψ1〉 ≡ 〈ψ1| − 1

2
Δ− 2γ

r
+

2γ − 1

r
|ψ1〉 = γ2 − 1

2
. (2)

The value 〈ψ1| 1r |ψ1〉 ≡ 1
2γ 〈ψ1| 2γr |ψ1〉 = γ

2 follows from the virial theorem. Then it is
evident that

〈ψ0|Ĥ0|ψ0〉 = −1

2
, 〈ψ0|z|ψ0〉 = 〈ψ1|z|ψ1〉 = 0,

〈ψ1|Ĥ0|ψ0〉 = 〈ψ0|Ĥ0|ψ1〉 = −1

2
〈ψ1|ψ0〉 = 0, (3)

C2 =
1

1 + α2E2
≈ 1− α2E2.

Note that wavefunctions ψ0 and ψ1 are mutually orthogonal, as they correspond to
different values of the angular momentum. Finally,

〈ψ1|z|ψ0〉 = 〈ψ0|z|ψ1〉 = γ5/2

π

∫
e−(1+γ)rr4 cos2 θdrdΩ =

32γ5/2

(1 + γ)5
. (4)

Expressions (1)–(4) allow us to find E(α, γ) = 〈ψ|Ĥ|ψ〉 with accuracy up to the
terms ∼ E2. In case a) we have

E(α) = −1

2
+

1

2
α2E2 + 2αE2.

Minimization over the parameter α gives

E0,var = minE(α) = E(α0) = −1

2
− 2E2, α0 = −2. (5)

Comparing this approximate value of the hydrogen atom ground-state energy in a
weak electric field to the exact result, −1/2− β0E2/2, where β0 is the ground-state
polarizability, we find its approximate (variational) value:

β0,var = 4. (6)
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In case b), we have

E(α, γ) = −1

2
+

1

2
(1− γ + γ2)α2E2 +

64γ5/2

(1 + γ)5
αE2.

Minimization over the parameter α gives

E(γ) = −1

2
− 211γ5

(1 + γ)10(1− γ + γ2)
E2,

and the following minimization over parameter[261] γ allows us to find polarizatility
more accurately than in case a):

β0,var =
212γ5

0

(1 + γ0)10(1− γ0 + γ2
0)

= 4.475, γ0 = 0.797. (7)

This differs from exact β0 = 9/2 by only 0.6 %.

In conclusion, we should note that if the trial function is chosen so that in the
absence of an electric field it coincides with the exact wavefunction of the unper-
turbed Hamiltonian, then variational calculation of ground-state polarizability gives
restriction from below on its exact value (so even without knowing the exact value of
polarizability, we can conclude that result (7) is more accurate than (6)).

Problem 11.32

Using the known value β0 = 9/2 a.u. of the hydrogen atom ground-state polarizability,
obtain an approximate value of the ground 11S-state polarizability for a two-electron
atom or ion:

a) neglecting electron-electron interaction:

b) taking it into account as mutual partial screening of the nuclear charge, choosing
the effective charge to be equal to Zeff = Z − 5/16 (see Problem 11.6).

Compare these results to the experimental data in this solution.

Solution

The Hamiltonian and ground-state energy of the hydrogen atom in an homogeneous
electric field have the form:

Ĥ =
p̂2

2m
− e2

r
+ eEz, E0 ≈ E

(0)
0 + E

(2)
0 , E

(2)
0 = −1

2
β0E2,

[261] Optimal value of γ0 is obtained from the condition ∂E/∂γ = 0, which is an algebraic equation
of third degree with respect to γ. From it we have γ0 ≈ 0.797 (the two other equation roots are
complex).
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and E
(0)
0 = − 1

2 (me4/�2), while β0 = 9
2 (�

2/me2)3. For a hydrogen-like atom with the
nuclear charge Ze, the Hamiltonian is

Ĥ =
p̂2

2m
− Ze2

r
+ eEz. (1)

Energy E0 could be obtained from the relations given above using substitutions e →√
Ze, E → E/√Z, so that

E
(2)
0 = −9

4
· a

3
B

Z4
E2,

and the polarizability of such an atom is β0 = 9a3B/2Z
4.

The Hamiltonian of a helium-like atom in an electric field, while neglecting electron-
electron interaction, is equal to Ĥ = Ĥ1 + Ĥ2, where Ĥ1,2 have the form (1). The
energy and polarizaility of such a system (in its ground-state) is obtained by multi-
plying the corresponding quantities for a hydrogen-like atom with the same nuclear
charge Z by 2. In this approximation,

β
(0)
0,2e = 9

a3B
Z4

=
9

Z4
a. u. (2)

It seems natural that a more accurate value of two-electron atom (ion) polarizability
could be obtained as a result of substitution in (2) of the charge Z with its effective
charge:

β0,2e =
9

(Z − 5/16)4
. (3)

A comparison of the theoretically-obtained values of polarizability to experimental
data for the 11S-state of a helium atom and some two-electron ions is given in the
following table:

Ion He Li+ Be2+ B3+ C4+

According to (2) 0.56 0.111 0.035 1.4 · 10−2 6.9 · 10−3

According to (3) 1.11 0.173 0.049 1.9 · 10−2 8.6 · 10−3

Exp. val. 1.36 0.196 0.054 2 · 10−2 8.8 · 10−3

Problem 11.33

Consider the Stark effect for excited states of the hydrogen atom with the principal
quantum number, n = 2, in the first order of perturbation theory. To solve the problem,
use the eigenfunctions of the unperturbed Hamiltonian ψnlm in spherical coordinates.
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Obtain the correct functions of zeroth approximation and discuss applicability condi-
tions for the results obtained.

Solution

The unperturbed level of the hydrogen atoms with n = 2 is four-fold degenerate
(without taking spin of electron into account). For the calculation of its splitting
in an homogeneous electric field, we use the secular equation. The corresponding
eigenfunctions ψnlm of the unperturbed Hamiltonian we renormalize in the following
way:

ψ
(0)
1 = ψ200, ψ

(0)
2 = ψ210, ψ

(0)
3 = ψ211, ψ

(0)
4 = ψ2l,−1.

Here, ψ2lm = R2l(r)Ylm, where

R20 =
1√
2a3B

(
1− r

2aB

)
e−r/2aB, R21 =

r√
24a5B

e−r/2aB ,

while spherical functions Y00 and Y1m are given in Eq. (III.7). It is easy to see that
only the following matrix elements of perturbation V = ezE = er cos θ · E are different
from zero:

V12 = −V21 = i
eE

16πa4B

∫∫
e−r/aB

(
1− r

2aB

)
r4 cos2 θdr dΩ = −3ieaBE .

The secular equation, |Vik − E
(1)
2 δik| = 0, and its solution take the form:∣∣∣∣∣∣∣∣∣∣∣

−E
(1)
2 −3ieaBE 0 0

3ieaBE −E
(1)
2 0 0

0 0 −E
(1)
2 0

0 0 0 −E
(1)
2

∣∣∣∣∣∣∣∣∣∣∣
= (E

(1)
2 )2

(
(E

(1)
2 )2 − 9e2a2BE2

)
= 0,

E
(1)
2,1 = 3eaBE , E

(1)
2,2 = −3eaBE , E

(1)
2,3 = E

(1)
2,4 = 0. (1)

Spittings occur on three sublevels, two of which are non-degenerate, while one is two-
fold degenerate.

The true functions of zeroth approximation ψ
(0)
± that correspond to split levels

E
(1)
2,1(2) = ±3eaBE have the form:

ψ
(0)
± =

1√
2
(ψ

(0)
1 ± iψ

(0)
2 ) =

1

8
√
πa

5/2
B

(2aB − r ∓ r cos θ)e−r/2aB.

In these states, which have no definite parity, electrons have a mean dipole moment
different from zero. It is directed along the electric field and is equal to ∓3eaB . Here
we recover accidental degeneracy specific to the Coulomb potential, which gives the

linear Stark effect in the hydrogen atom (for excited levels). States ψ
(0)
3,4 with l = 1,
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lz = ±1 correspond to a definite parity and their energy change in the electric field
∝ E2.

The applicability condition for the results obtained (1) is

5 · 10−5 eV � 6eaB � 3 eV, or 2 · 103 V/cm � E � 108 V/cm.

That is, the Stark splitting must be much larger than the fine structure splitting
(see Problem 11.1) but much smaller than the level spacing between the neighboring
unperturbed atomic levels.

Problem 11.34

Calculate the energy shift in an homogeneous electric field and the polarizability of
a particle bound state in a zero-range potential by the variational method, using the
trial function of the form:[262]

ψtrial = C[ψ0(r) + λ(E · r)e−γr], ψ0 =

√
κ0

2π

e−κ0

r
,

where λ, γ are variational parameters, and ψ0 is the wavefunction of the unperturbed
state. Compare to the exact value (see the following problem).

Solution

Writing the trail function in the form ψtrial = C(ψ0 + ψ1), where ψ1 = λ(E · r)e−γr,
we find matrix elements for the unperturbed Hamiltonian:

〈ψ0|Ĥ0|ψ0〉 = −�
2κ2

0

2m
, 〈ψ0|Ĥ0|ψ1〉 = 〈ψ1|Ĥ0|ψ0〉 = 0,

〈ψ1|Ĥ0|ψ1〉 = 〈ψ1| p̂
2

2m
|ψ1〉 = �

2

2m
λ2

∫
(∇(E · r)e−γr)2dV =

πλ2
�
2E2

2mγ3
,

and the perturbation V̂ = −e(E · r):
〈ψ0|V̂ |ψ0〉 = 〈ψ1|V̂ |ψ1〉 = 0,

〈ψ1|V̂ |ψ0〉 = 〈ψ0|V̂ |ψ1〉 = −λe

√
κ0

2π

∫
1

r
(E · r)2e−(γ+κ0)rdV

= −4
√
2πκ0

λeE2

(γ + κ0)4
.

Now choosing

C2 =
1

1 + πλ2γ−5E2
≈ 1− πλ2γ−5E2

[262] Pay attention to the fact that ψtrial(r), as well as ψ0(r), for r → 0 satisfies the boundary condition
consistent with the zero-range potential (see Problem 4.10).
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to satisfy the normalization condition for the trial function, we have

E(λ, γ) = 〈ψtrial|Ĥ0 + V̂ |ψtrial〉 ≈ −�
2κ2

0

2m
− 8

√
2πκ0λe

(γ + κ0)4
E2

+
πλ2

�
2(γ2 + κ2

0)

2mγ5
E2.

After minimization over parameter λ, we obtain

E(γ) = min
λ

E(λ, γ) = −�
2κ2

0

2m
− 64me2κ0γ

5

�2(γ2 + κ2
0)(γ + κ0)8

E2. (1)

The subsequent minimization over parameter γ (which implies γ = κ0) gives a varia-
tional energy shift under the action of the electric field

E0,var = minE(λ, γ) = −�
2κ2

0

2m
− me2

8�2κ4
0

E2 (2)

and the polarizability

β0,var =
me2

4�2κ4
0

∝ 1

κ4
0

,

which coincides with the exact result. See the following problem.

Problem 11.35

Find the exact polarizability for a particle bound by a zero-range potential (see
Problem 4.10). Apply the result obtained to the H− ion (compare to Problem 11.36).

Solution

To calculate a ground level shift calculation due to the perturbation of the form
V = −eEz, it is convenient to choose wavefunctions with definite values of the angular
momentum l and its projection lz, as unperturbed eigenfunctions. Since the wavefunc-
tion of the ground-state

ψ
(0)
0 =

√
κe−κr

√
2πr

(
its energy is E

(0)
0 = −�

2κ2

2m

)
corresponds to the value l = 0, perturbation matrix elements 〈n|(−eEz)|0〉 are different
from zero only for states |n〉 with l = 1 and lz = 0. The zero-range potential will not
affect the particle with l �= 0, hence eigenfunctions of Ĥ0 for l �= 0 coincide with the
wavefunctions of a free particle, and for l = 1, lz = 0 they have the form:
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ψ
(0)
k10 =

√
k

r
J3/2(kr)Y10(n) = −i

√
3

2

cos θ

πr

(
sin kr

kr
− cos kr

)
, (1)

normalized so that 〈k′l′m′|klm〉 = δ(k − k′)δll′δmm′ .

We calculate the perturbation matrix element:

〈k10|(−eEz)|0〉 = −i

√
4κ

3π

eE
k

∞∫
0

e−kr(sin kr − kr cos kr)dr

= −4i

√
κ

3π

ek2E
(k2 + κ2)2

. (2)

According to Eq. (VIII.1) we obtain (now we should replace
∑′
m

→ ∑
l,m

∫∞
0

dk, and

notice that in the sum over l and m, only one term with l = 1, m = 0 differs from
zero):

E
(2)
0 = −32me2κE2

3π�2

∞∫
0

k4dk

(k2 + κ2)5
= − me2

8�2κ4
E2. (3)

The polarizability is

β0 =
me2

4�2κ4
. (4)

For an application of this equation to the ion, H−, see the following problem.

Problem 11.36

Find the polarizability of a weakly-bound state of a charged particle with the angular
momentum l = 0 in a central potential US(r) of the radius rS , so that κrS � 1,

where κ =

√
−2E

(0)
0 /�2, E

(0)
0 is the energy of the unperturbed state. Apply the result

obtained to ion H−.
One can use the following parameters for the ion H− (a two-electron system):

κ = 0.235 a.u. (binding energy ε = 0.754 eV), asymptotic coefficient square (see Eq.
(XI.5)) C2

κ0 = 2.65, polarizability β0 = 206 a.u.

Solution

Due to the fact that the wavefunction of a state with a small binding energy decreases
quite slowly with increase in r, while the perturbation V = −eEz increases, the
dominant role in the sum (VIII.1) of second-order perturbation theory, which gives
the level shift, is played by the states of the continuous spectrum with a small energy
E ≤ �

2κ2/m. Indeed, for such states, perturbation matrix elements 〈k|V |0〉, where the
dominant role is played by large distances r ∼ κ−1, are especially large. On the other
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hand, at large distances, wavefunctions of the states considered are straightforwardly
related to the wavefunctions of free particles. For example, the wavefunction of an
unperturbed bound state with l = 0 outside the region of potential action differs from
the wavefunction in the zero-range potential only by an additional factor Cκ0 (see
the previous problem). Wavefunctions of the continuous spectrum for slow particles
with l �= 0 on distances r > rS actually coincide (in the absence of a perturbation)
with the wavefunction of a free particle. (Due to the centrifugal barrier, which is
poorly penetrable for slow particles, they do not “feel” the potential center.) They are
described by Eq. (1) from the previous problem.

Therefore, the shift and polarizaility of a shallow s-level in the short-range potential
are determined from the equations of the previous problem for a zero-range potential
by adding the factor C2

κ0. For example, polarizability is described by the expression:

β0 =
me2

4�2κ4
C2

κ0, κrS � 1. (1)

Let us emphasize that the dominant role of the large distances for the matrix elements
〈k|eEz|0〉 for low-energy states (seen from Eqs. (2) and (3) of the previous problem)

manifests itself as a divergence in the expressions for E
(2)
0 and β0 for κ → 0.

Let us make a few additional comments:

1) For the s-state of a particle with a small binding energy in a short-range potential,
the parameters κ and C2

κ0 determine most physical properties in response to
external electric and magnetic fields (see Problems 11.46 and 11.66). They also
determine scattering of slow particles, krS � 1, off of this potential. Using effective-
range expansion (see, Chapter 13, sec. 3),

k cot δ0 = − 1

a0
+ r0

k2

2
+ . . . ,

parameters of the low-energy s-scattering, the scattering length a0, and the effective
interaction radius r0, are connected to κ and C2

κ0 by the relations

a0 =
2C2

κ0

κ(1 + C2
κ0)

, r0 =
C2

κ0 − 1

κC2
κ0

. (2)

For a zero-radius potential, C2
κ0 = 1 and r0 = 0.

2) In negative atomic ions, an external electron with can be considered as experi-
encing a short-range potential of a neutral atom. Using such a method (with-
out any specification of “internal” electrons states) we can describe properties
of the ion, determined by the external electron. For an ion H−, using values
κ = 0.235 a.u. and C2

κ0 = 2.65 given in the problem condition, according to Eq.
(1) we find β0 = 216; compare to the result of the variational calculation, β0 =
206. See also Problem 13.40 for the scattering of slow electrons on hydrogen
atoms.
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3) Note that the dominant role of large distances for the polarizability with a small
binding energy is preserved for both l = 1 (here βl=1 ∝ κ−3, see the following
problem) and l = 2 (βl=2 ∝ κ−1). For larger values of the angular momentum,
the polarizability is determined by r ≤ rS , and depends on a specific form of the
potential and wavefunction on these distances. It can be estimated as

βl≥3 ∼ me2r4S
�2

.

Such a dependence of the polarizability on the angular momentum is connected
to a decrease of the centrifugal barrier with an increase of l that leads to stronger
localization of the bound state with increase of l.

Problem 11.37

The same as in the previous problem, but for a weakly bound state of a particle with
the angular momentum l = 1.

Solution

Calculation of the polarizability is analogous to the in the two previous problems.
Now the wavefunction of the unperturbed bound state outside the potential range, for
r > rS , has the form (for l = 1):

ψ
(0)
κlm = 2κCκl

1√
πr

Kl+1/2(κr)Ylm(n), (1)

where Kν is the MacDonald function, and Cκl is the asymptotic coefficient.[263] As in
Problem 11.36, we can choose wavefunctions of free particles to describe states of the
continuos spectrum:[264]

[263] The wavefunction asymptote is

ψ
(0)
κlm ≈

√
2κCκlYlm

e−κr

r

for r → ∞. As in the case of l = 0, the asymptotic coefficient is connected to the parameters of
low-energy scattering with the angular momentum l, that define the effective-range expansion

k2l+1 cot δl ≈ − 1

al
+ rl

k2

2
,

by the relation

1

C2
κl

= −rlκ
1−2l + (−1)l(2l + 1) +O((κrS)

−3−2l).

Here rl < 0 and C2
κl ∝ κ2l−1 for κ → 0 for l ≥ 1.

[264] For slow particles, krS � 1, the wavefunction of the continuous spectrum outside of the potential
range differs essentially from the wavefunction of a free particle only in a resonant wave; see Chapter
13, sec. 3.
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ψ
(0)
klm =

√
k

r
Jl+1/2(kr)Ylm(n). (2)

The wavefunctions given approach the exact ones only at large distances r > rS
(outside of the potential range). But perturbation matrix elements 〈klm|(−eEz)|κlm〉
for k ≤ κ are defined by large distances r ∼ 1/κ. While calculating the matrix element
〈klm|z|κlm〉, integration over the angles is easily performed.

For a particle with l = 1 and the angular momentum projection onto the electric
field direction lz = ±1, only one perturbation matrix element differs from zero, for
which

|〈k, 2,±1|z|κ, 1,±1)|2 =
16C2

κ1k
6

5πκ(k2 + κ2)4
.

The level shift in second-order perturbation theory becomes equal to

E
(2)
1,±1 = −2m

�2

∞∫
0

|〈k, 2,±1|eEz|κ, 1,±1)|2
k2 + κ2

dk = −me2C2
κl

8�2κ4
E2,

so the polarizabilities are

β1,±1 =
me2C2

κl

4�2κ4
∝ 1

κ3
. (3)

Remember that C2
κl ∝ κ. See the comment in Problem 11.36.

For the state with l = 1 and lz = 0, there are two non-vanishing matrix elements
of the perturbation potential corresponding to the angular momenta l = 2 and l = 0,

|〈k00|z|κ10)|2 =
4C2

κlk
2(k2 + 3κ2)2

3πκ(k2 + κ2)4
,

|〈k20|z|κ10)|2 =
64C2

κlk
6

15πκ(k2 + κ2)4
.

Calculation of the integrals, analogous to E
(2)
1,±1, allows us to find a correction to the

energy and the polarizability, which is as follows

β1,0 = 7β1,±1. (4)

In the state with lz = 0, the particle localization domain is somewhat extended along
the electric field, than in the states with lz = ±1. So, the field has a larger effect on
such a state.
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Problem 11.38

Obtain approximate expressions for the polarizabilities of the excited 23S- and 21S-
states of a two-electron atom (ion). Compare to the experimental values for the helium
atom and lithium ion Li+ (a.u.): βHe(2

3S) = 316, βHe(2
1S) = 803, βLi+(2

3S) = 47,
βLi+(2

1S) = 99.

Take into account the close proximity of the 2S- and 2P -levels and the following
experimental values: EHe(2

3P )− EHe(2
3S) = 1.14 eV and EHe(2

1P )− EHe(2
1S) =

0.602 eV, as well as the corresponding values 2.26 eV and 1.29 eV for the ion Li+.
Treat an excited electron, as moving in the field of nucleus charge screened to unity
by the 1s-electron, and neglect exchange effects.

Solution

An important property of the states that gives rise to the large values of their
polarizabilities, is the closeness of helium-like atoms’ (ions) 2S- and 2P -levels. So in the
sum (VIII.1) for a level shift under the influence of the perturbation V = (z1 + z2)E,
the dominant role is played by the term that contains the small energy difference in
the denominator, so

E
(2)
2S = −1

2
β(2S)E2 ≈ |〈2P,Lz = 0|(z1 + z2)|2S〉|2 E2

E
(0)
2S − E

(0)
2P

. (1)

The multiplicity symbol is omitted.

In the states 2S and 2P , one of the electrons is in the ground 1s-state, while the
other is in the excited 2s- or 2p-state. Since the “excited” electron is on the average
much further from the nucleus, then to calculate the perturbation matrix element in
Eq. (1) we can use the following approximate expressions for the wavefunctions (the
same for both singlet and triplet states):

ψ2S ≈ ψ1s(r1, Z)ψ2s(r2, Z − 1), ψ2P ≈ ψ1s(r1, Z)ψ2p(r2, Z − 1). (2)

These wavefunctions have no definite symmetry, due to the neglecting of exchange
effects. The one-particle wavefunctions in expressions (2) correspond to Coulomb
wavefunctions, and for the “excited” electron, the nucleus charge is chosen to be
equal to Z − 1, which gives its partial screening by the 1s-electron (compare to
Problem 11.9). Using known expressions for the Coulomb wavefunction, we find the
perturbation matrix element:

|〈2P,Lz = 0|z1 + z2|2S〉| ≈ 3

Z − 1
.

Only the second, “excited” electron contributes. According to Eq. (1) we obtain:

β(2S) =
18

(Z − 1)2(E
(0)
2P − E

(0)
2S )

. (3)
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Using the experimental values for the energy difference of 2S- and 2P -states, given in
problem condition, we find the polarizabilities:

βHe(2
3S) = 428, βHe(2

1S) = 813;

βLi+(2
3S) = 54, βLi+(2

1S) = 53.

In conclusion, let us note that analogous closeness of energy levels is typical for many
atomic systems, and explains the large numerical values of their polarizabilities. For
example, for the ground 22S-state of the lithium atom, E2S = 5.39 eV, while for the
excited 22P -state, E2P = 3.54eV. Estimation of polarizability, according to Eq. (3),
with replacing Z − 1 by Z − 2 (due to the presence of two 1s-electrons), gives β1s ≈ 265
a.u.(The experimental value is 162; the main reason for the over-estimated value of β
according to Eq. (3) is due to the approximation assuming that the “excited” electron
is moving in the field of a nuclear charge screened by two 1s-electrons; for a lithium
atom, screening is not so strong, as seen from the Rydberg correction Δs = −0.40.)

Problem 11.39

Provide an order-of-magnitude estimate of the polarizability of an atom and its
dependence on the nuclear charge Z in the Thomas–Fermi model. Neglecting the
interaction between electrons (see Problem 11.19), calculate explicitly the numerical
coefficient in the leading Z-dependence. Compare your results to the contribution of
valence electrons to polarizability.

Solution

We aim to estimate the polarizability of Thomas–Fermi electrons (T-F) βT−F that
determines their dipole moment d = βT−FE induced by an electric field. We note that
although linear relation is valid only for a weak field, nevertheless it gives the right
order of magnitude of d also in the case of strong fields. Call ET−F ∼ Ze/r2T−F the

characteristic value of nuclear electric field in the region r ∼ rT−F ∼ aB/Z
1/3, where

the electrons are predominately located. For E ∼ ET−F , the electron shift under the
action of the external field would be of the order of rT−F , so that here d ∼ ZerT−F

and

βT−F =
d

E
∼ ZerT−F

Ze/r2T−F

= r3T−F ∼ a3B
Z

=
1

Z
a. u. (1)

To find the numerical coefficient in this scaling relation βT−F = γ/Z, consider the
statistical model of an atom neglecting interaction between electrons (see Problem
11.19). Now, with the weak electric field, we have

p0(r) =

[
2

(
Z

r
− E · r− Z

R

)]1/2
≈
[
2

(
Z

r
− Z

R

)](
1− 3rRr · E

2Z(R− r)

)
.
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Thus

n(r) = p30(r)/3π
2 ≈ n0(r)

(
1− 3rRr · E

2Z(R− r)

)
,

where n0(r) =
2Z2(1−z)3/2

9π2x1/2 is the density in an unperturbed atom, x = r/R, and the

value R = (18/Z)1/3 remains the same as before. The dipole moment is[265]

d = −
∫

rn(r)dV ≈ 3R

2Z

∫
r(r · E)rn0(r)

R− r
dV =

=

{
R

2Z

∫
r3n0(r)

R− r
dV

}
E =

63

16Z
E

gives the polarizability in the model considered:

βT−F =
63

16Z
. (2)

Similarly to Eq. (1), an estimate of the contribution of the external (valence) electrons
that are on the periphery of the atom (r ∼ aB), where Eat ∼ e/a2B � ET−F , gives
βval ∼ a3B = 1 a.u. Therefore, we conclude that the atomic polarizability is determined
mostly by the valence electrons. Note also that the atomic polarizabilities are usually
large, ∼ 10− 100 a.u. See also Problem 11.38.

Problem 11.40

Find the Stark splitting of rotational components for a two-atom molecule that has a
constant dipole moment (in a coordinate system rigidly connected to the moleculular
symmetry axis). The Stark splitting is assumed to be small with respect to the
level spacing between neighboring rotational levels for the molecule electron term
1Σ. Compare to the result of Problem 8.11 for a spherical rotor.

Solution

The stationary states of the molecule in the absence of a field are described by
wavefunctions (compare to Problem 11.27, Λ = S = 0):

ψ
(0)
nvKM = ψel,n(R, ξ1, ξ2, . . . )ψosc,v(R)ψrot,KM (θ, ϕ), (1)

(ξa label both the electron coordinates and spins), while their energy is

E
(0)
nvK = E(0)

n + �ωosc

(
v +

1

2

)
+BeK(K + 1).

It is convenient to calculate matrix elements of the perturbation V̂ = −d̂ ·E in two
steps: first, integrate over the electron coordinates and the relative distance R between

[265] Compare, for example, to the calculation of integral 1 in Problem 7.22.
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the nuclei for a fixed molecular axis orientation, and then perform integration over the
angles θ, ϕ that determine the direction of this axis. In the case of matrix elements
that are diagonal in quantum numbers n and v, the first integration gives∫

(ψel,nψosc,v)
∗d̂ψel,nψosc,vdτ = d = dn0, n0 =

R

R
. (2)

The direction of the vector d along the molecule axis is seen from symmetry con-
siderations. Directing the z-axis along the electric field E and taking into account
the fact that the rotational wavefunction ψrot,KM (for Λ = 0) is a spherical function
YKM (θ, ϕ), we find that perturbation matrix elements between wavefunctions (1)
which correspond to the same molecule level (i.e., differ only by the values of M)
are equal to zero, so that

∫
cos θY ∗

KM ′YKMdΩ = 0. In the first order of perturbation
theory, the molecular levels are not shifted. Since in the case of an homogeneous field,
the projection of the angular momentum onto the direction of vector E is a “good”
quantum number, wavefunctions (1) are true functions of the zeroth approximation,
and we can use perturbation theory for non-degenerate levels. The second-order
correction is

E
(2)
nvKM =

∑′

k′

|〈k′|d̂ · E |k〉|2
E

(0)
k − E

(0)
k′

, (3)

where for brevity we have used one index, k, to describe different molecular states.

Now note that in sum (3) we can restrict ourselves to such states |k′〉 that
correspond to the initial electron term and differ only by the rotational quantum
number K. In Eq. (3),

E
(0)
k − E

(0)
k′ = Be[K(K + 1)−K ′(K ′ + 1)],

while the contribution of states with other quantum numbers is much smaller due to
larger energy denominators, since Erot � Eosc � Eel. Taking this fact and relation
(2) into account, we can write Eq. (3) in the form (K �= 0)

E
(2)
nvKM =

d2E2

Bc

∑
K′

|〈K ′M | cos θ|KM〉|2
K(K + 1)−K ′(K ′ + 1)

=
d2E2[K(K + 1)− 3M2]

2BcK(K + 1)(2K − 1)(2K + 3)
. (4)

We have used the result of problem 8.11. Since the wavefunction of state |KM〉 is a
spherical function, then sum (4) is analogous to the one calculated in Problem 8.11,
using substitutions l → K, m → M , �2/2I → Be.

In the case of K = 0 we have E
(2)
nv = −d2E2/6Be (see Problem 8.10).

Let us finally note that for two-atom molecules with identical nuclei, the dipole
moment (2) vanishes, and the influence of an electric field on the molecular levels
requires a different analysis.
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Atomic systems in an external magnetic field

Problem 11.41

Consider the Zeeman effect for the hydrogen atom. Assume that the magnetic field is
strong and the Zeeman splitting is much larger than the fine structure splitting (see
Problem 11.1). Determine the condition of applicability of your results.

Solution

In the approximation linear over a magnetic field, the perturbation potential has the
form[266]

V̂ = μBH(l̂z + 2ŝz),

where μB is the Bohr magneton and the z-axis is directed along the vector H.
Since operators l̂z and ŝz commute with each other and with the Hamiltonian, the
eigenfunctions of the unperturbed Hamiltonian ψnlmχs (see Eq. (IV.3), χs is the spin
part of the wavefunction) are true functions of the zeroth approximation, and the
first-order correction to the energy is

E
(1)
nlzsz

= 〈nllzsz|V̂ |nllzsz〉 = μBH(lz + 2sz). (1)

As is seen, the 2n2-fold degenerate level splits into 2n+ 1 components (remember
that lz = 0,±1, . . . ,±(n− 1), while sz = ±1/2), the outermost of which are non-
degenerate.

The applicability condition of the result in Eq. (1) requires that the level splittings
ΔEZeem = 2nμBH are much larger than the fine structure interval ΔEFS (see Problem
11.1), but also much smaller than the level spacing ΔEn between the neighboring
hydrogen levels. For n = 2, condition ΔFS � ΔEZeem � ΔEn takes the form

5 · 10−5 eV � 4μBH � 2 eV, or 3 · 103 Oe � H � 108 Oe.

Recall that e/a2B = 5.14 · 109 V/cm = 1.71 · 107 Oe.

Problem 11.42

Consider the Zeeman effect for the ground state of a hydrogen atom taking into account
its hyperfine structure (see Problem 11.2). Pay attention to the level shift dependence
on H in the cases of weak (μBH � Δ) and strong (Δ � μBH) external magnetic
fields. Here Δ ≈ 1420 MHz is the hyperfine level splitting.

Solution

We denote by Δ0(1) the ground level shift due to interaction between the electron
and proton spins for the states with the total spin S = 0(1). They are determined by

[266] Electron spin magnetic moment is μe = −μB = −|e|�/2mcc.
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Eq. (3) of Problem 11.2, and Δ = Δ1 −Δ0 = 1420 MHz. In the absence of a magnetic
field, wavefunctions of the corresponding unperturbed states have the form ψ0(r)χSSz

,
where χSSz

is the spin function and ψ0(r) is the wavefunction of the hydrogen atom
ground-state. The level with S = 0 is non-degenerate, while the one with S = 1 is
three-fold degenerate. To calculate the shift (and splitting) of the levels under the

action of the perturbation[267] V̂ = μB(l̂z + 2ŝe,z)H, we find its matrix elements. We
use the following numeration of states: 1 for S = 0, Sz = 0; 2 for 1, 0; 3 for 1, +1, and
4 for 1, −1, and also the explicit form of spin functions[268] χSSz

(see Problem 5.10).
We find that only four matrix elements are different from zero:

〈1|V̂ |2〉 = 〈2|V̂ |1〉 = 〈3|V̂ |3〉 = −〈4|V̂ |4〉 = μBH.

We also include unperturbed hyperfine shifts Δ0,1 into the perturbation matrix and
we come to the secular equation:∣∣∣∣∣∣∣∣

Δ0 − E(1) μBH 0 0
μBH Δ1 − E(1) 0 0
0 0 Δ1 + μBH− E(1) 0
0 0 0 Δ1 − μBH− E(1)

∣∣∣∣∣∣∣∣ = 0, (1)

from which we find

E
(1)
1,2 =

1

2

[
(Δ0 +Δ1)∓

√
(Δ1 −Δ0)2 + 4μ2

BH2

]
, E

(1)
3,4 = Δ1 ± μBH. (2)

See that for the states with S = 1, components of level with Sz = ±1 have a linear shift
in H. For the singlet and triplet unperturbed states with Sz = 0, which are “mixed” by
the magnetic field, level shifts in a weak field, μBH � Δ (note that H0 = Δ/μB ≈ 103

Oe), are quadratic in the field:

E
(1)
1(2) ≈ Δ0(1) ∓ μ2

BH2

Δ1 −Δ0
. (3)

But in a strong field, when Δ � μBH, we have

E
(1)
1,2 ≈ ∓μBH, χ1(2) ≈ 1√

2
(χ0,0 ∓ χ1,0). (4)

In the states here, electron and proton spin projection onto the direction of the
magnetic field have definite values (while the interaction between the spin magnetic
moments that breaks their conservation acts like perturbation).

[267] We restrict to the part of it linear in the field H. Proton magnetic moment interaction with the
magnetic field is not accounted for, due to its smallness (μp/μe ∼ me/mp ∼ 10−3).

[268] Particularly,

χ1(0),0 =
1√
2

{(
1
0

)
e

(
0
1

)
p

±
(
0
1

)
e

(
1
0

)
p

}
.

σ̂e,zχ1(0),0 = χ0(1),0
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Problem 11.43

Consider the Zeeman effect for the ground level of a positronium, a bound state of an
electron–positron system (similar to the hydrogen atom), taking into account its fine
structure.[269] Find the spin functions in the presence of a magnetic field.

Solution

This solution is analogous to the previous solution. Now, interaction with the magnetic
field has the form:[270]

V̂ = 2μB(ŝez − ŝnz)H.

Using the same numeration of states as in the previous problem, replacing the proton
spin by the positron spin, we see that only two perturbation matrix elements are
different from zero: 〈1|V̂ |2〉 = 〈2|V̂ |1〉 = 2μBH. The secular equation takes the form:∣∣∣∣∣∣∣∣∣

Δ0 − E(1) 2μBH 0 0

2μBH Δ1 − E(1) 0 0

0 0 Δ1 − E(1) 0

0 0 0 Δ1 − E(1)

∣∣∣∣∣∣∣∣∣ = 0,

Δ0(1) are the level shifts of para-(ortho-)positronium that determine its fine structure.
Its solution gives level shifts:

E
(1)
1,2 =

1

2

[
(Δ0 +Δ1)∓

√
(Δ1 −Δ0)2 + 16μ2

BH2

]
, E

(1)
3,4 = Δ1.

Note that the levels of ortho-positronium with Sz = ±1 in this approximation do not
shift. The shift of components with Sz = 0 in a weak field μBH � Δ is quadratic in
H, as it is included in the problem add a factor of 4 into the second term. In the case

of a strong field , Δ0(1) � μBH, the shifts are linear: E
(1)
1,2 ≈ ∓2μBH.

Spin functions for states with Sz = 0 that are “mixed” by the magnetic field have
the form:

χ1(2) = C
(1)
1(2)χ0,0 + C

(2)
1(2)χ1,0, C

(1)
1,2 =

2μBH
E

(1)
1,2 −Δ0

C
(2)
1(2).

[269] The magnetic spin interaction in positronium is of the same order of magnitude (there is no small
parameter ∼ me/mp) as other relativistic corrections to the Hamiltonian. Unlike usual atoms,
in positronium it is not meaningful to speak of a hyperfine–level structure. Positronium–level
classification with respect to S (0 or 1) of total spin remains if we take into account the relativistic
effects (para- and ortho-positronium). Fine splitting for ground levels of ortho- and para-positronium
is Δ = Δ1 −Δ0 ≈ 8.2 · 10−4 eV.

[270] The orbital magnetic moment of positronium is equal to zero, since electron and positron contri-
butions compensate each other.
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In particular, in the case of a strong field we have C
(1)
1(2) ≈ ∓C

(2)
1(2), so that

χ1 ≈
(
0
1

)
e

(
1
0

)
p

, χ2 ≈
(
1
0

)
e

(
0
1

)
p

,

i.e., particle spin projections onto the direction of field H have definite values – a
natural physical result. In the case of a weak field, state “mixing” is small, but this
fact strongly affects the lifetime of positronium (see Problem 11.61).

Problem 11.44

For the ground-state of the hydrogen atom, find the diamagnetic part of the level shift,
connected to electron’s orbital motion.

Solution

The level shift considered is equal to ΔE = − 1
2χH2, where χ is determined by

the known equation for diamagnetic susceptibility:[271]

χ = − e2

6mc2
r2, r2 = 3a2B ; χ = −1

2
α2a3B . (1)

The mean value r2 is calculated in the ground level of the atom. This shift is the same
for all electron spin states. The part of the level shift that depends on the electron
spin state (and is dominant) has already been considered in Problem 11.41. See also
Problem 11.42.

Problem 11.45

Find the magnetic susceptibility for a helium atom in the ground-state, using the
approximate form of the wavefunction from the variational calculation in Problem
11.6. Consider also the magnetic susceptibility of 1 cm3 of gaseous helium in normal
conditions, and compare it to its experimental value, −8.4 · 10−11.

Solution

From the known equation for diamagnetic susceptibility, we obtain

χat = − e2

6mc2

∑
a=1,2

r2a = − e2

mc2
1

Z2
eff

≡ −α2 1

Z2
eff

a3B . (1)

The mean values r2a are calculated with the wavefunction from 11.6 and Zeff = 27/16.
The numeric value of susceptibility according to (1) is χat = −2, 77 · 10−30 cm3 (see

[271] Here, α = e2/�c ≈ 1/137 is the fine structure constant. We emphasize that smallness ∼ α2 in the
quantity χ reflects the relativistic nature of the interaction with the magnetic field. Compare this
to β ∼ α4

B for the polarizability in an electric field.
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also the footnote in the previous problem). In normal conditions we can consider all
gas atoms to be in the ground-state, so that for magnetic susceptibility of 1 cm3 of
helium gas we obtain

χHe = n0χat = −7.5 · 10−11,

where n0 = 2.69 · 1019 cm3 is the Loschmidt number.

Problem 11.46

Find the shift and magnetic susceptibility of the ground level for a charged particle in
a zero-range potential placed in an external homogeneous magnetic field. Generalize
the result to the case of a weakly-bound state of a particle with the angular momentum
l = 0 in a short-range potential US(r) of radius rS . Compare to Problems 11.35 and
11.36.

Solution

The unperturbed wavefunction of the l = 0 state is ψ0 =
√
κe−κr/

√
2πr (see Problem

4.10). The diamagnetic shift is equal to

ΔE0 =
e2H2

12mc2

∫
r2ψ2

0dV =
e2

24mc2κ2
H2, (1)

so that the magnetic susceptibility is

χ0 = − e2

12mc2κ2
. (2)

The applicability condition for the result obtained is ΔE0 � |E(0)
0 | = �

2κ2/2m.

These equations are valid for particle states with a small binding energy and l = 0,
in an arbitrary short-range potential (a negative ion) Us(r) of radius rs, where the
particle localization domain, which is ∼ κ−1, is much larger than rs. The dominant
role of large distances manifests itself as a divergence of ΔE0 as κ → 0 and in the
χ0-dependence on the particle binding energy.

A correction due to a finite radius (rs �= 0) of the potential is found by including
factors C2

κ0 to the relations obtained, where Cκ0 is the asymptotic coefficient (compare
to Problem 11.36). In particular, the magnetic susceptibility is

χ0 = − e2C2
κ0

12mc2κ2
. (3)

Problem 11.47

Find paramagnetic and diamagnetic level shifts for a weakly-bound state of a charged
particle with the angular momentum l = 1 in a short-range potential, US(r).
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Solution

The wavefunction of the particle with a small binding energy decreases at large
distances quite slowly, while the perturbation (the part that is quadratic in field)

V̂ = − e�

2mc
H · l̂+ e2

8mc2
[r ·H]2 (1)

increases. Due to this, large distances[272] play the dominant role in the integral of
matrix element 〈1lz|[H× r]2|1lz〉 that determines the diamagnetic part of the level
shift. Outside the range of the potential, Us, the wavefunction of the unperturbed state
has the form given in Problem 11.37. To calculate the perturbation matrix element,
we can use this expression for the wavefunction for all values of r (the region r ≤ rs
is not important). Now, using the value of integral

∞∫
0

x3K2
3/2(x)dx =

5π

8

we find the energy shifts:

ΔEl=1,lz=0 =
e2κ2C2

κ1H
2

2πmc2
〈10| sin2 θ|10〉

∞∫
0

r3K2
3/2(κr)dr =

e2C2
κ1

8mc2κ2
H2,

ΔEl=1,lz=±1 = ∓ e�

2mc
H+

e2C2
κ1

4mc2κ2
H2. (2)

We emphasize that the linear-in-the-field perturbation term (1) gives also a linear-
in-the-field paramagnetic level shift (higher corrections to it are equal to zero). Also,
remember that C2

κ1 ∝ κ for κ → 0 (see Problem 11.37), so that ΔE(2) ∝ κ−1.

Problem 11.48

Find the Zeeman splitting of the rotational levels of a two-atom molecule, assuming
that the shift is small with respect to the distance between neighboring rotational
levels. The electron term of the molecule is 1Σ.

[272] The dominant role of large distances manifests itself as a divergence of susceptibility for κ → 0. Note
that for the angular momentum values l ≥ 2, the role of large distances is not special. Diamagnetic
susceptibility is determined by the form of the wavefunction on distances ∼ rs and its value

χdia ∼ e2r2S
mc2

depends on a specific form of the potential US . Compare to the properties of polarizability for a
weakly bound state, considered in Problems 11.36 and 11.37.
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Solution

The perturbation has the form:

V̂ = μB(L̂+ 2Ŝ) ·H+
e2

8mc2

∑
a

{r2aH2 − (ra ·H)2}. (1)

Summation is performed over all of the molecule’s electrons, L and S are the total
angular and spin momenta, and nuclear magnetism, due to its smallness ∼ me/MNuc,
is not taken into account.

Using the expression for eigenfunctions ψ
(0)
nvKM of the unperturbed Hamiltonian

(given in Problem 11.40), we see that to first order in H, level shift is absent, since
Λ = S = 0 and ∫

(ψel
n ψosc

v )L̂(ψel
n ψosc

v ) ≡ An0 = Λn0 = 0.

The level shift due to the second term in expression (1) is equal to

E
(2)
KM =

e2HiHk

8mc2

∫
ψ
(0)∗
nvKM

∑
{r2aδik − xiaxak}ψ(0)

nvKMdτ. (2)

Integrating over the coordinates of electrons and the variable R, we obtain

E
(2)
KM =

e2HiHk

8mc2

∫
Y ∗
KM{aδik − bn0in0k}YKMdΩn0

, (3)

where a and b are some constants that do not depend on the quantum numbers K
and M . Using the expression∫

Y ∗
KMn03n03YKMdΩn0

≡
∫

cos2 θ|YKM |2dΩ =
2K2 + 2K − 1− 2M2

(2K − 1)(2K + 3)

(see Problem 8.11) and formulas Eqs. (2) and (3), we find

E
(2)
KM =

e2H2

8mc2

{
a− b

2K2 + 2K − 1− 2M2

(2K − 1)(2K + 3)

}
. (4)

Note that the contribution of second-order perturbation theory in terms of
V̂ ′ = μBL̂ ·H in expression (1) has the same dependence on K and M as in Eq. (4).

Thus Eq. (4) gives the desired Zeeman splitting of rotational levels for a two-atom
molecule with electron term 1Σ, to second order in a magnetic field. Note that the

contribution to level shift E
(2)
KM from the H2 term in Eq. (1) is positive. Just as in the

case of atoms with L = S = 0, it corresponds to diamagnetism. Input of the second
approximation from the linear-in-the-field term in Eq. (1) (which is absent in case of
atoms with L = S = 0) could have either sign. For example, in the ground term, this
part of the shift is negative.
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In conclusion, we note that for molecular terms other than 1Σ, levels shifts in a
weak magnetic field are linear in H.

Interactions of atomic systems at large distances

Here we assume that the relative velocities of the colliding composite particles are not
too large, so that the adiabatic approximation is applicable.

Problem 11.49

Find the interaction potential of a charged particle (ion, electron, etc.) with an
unexcited hydrogen atom at large distances from each other.

Solution

The interaction operator for a particle and an atom (the usual electrostatic interaction
of a charged system), assuming that the atom size is much smaller than the distance
between them, has the form (Ze is the particle charge, atom is at the origin)

Û = Zeϕat(R) = Ze

{
d ·R
R3

+ ϕat quadr(R) + . . .

}
. (1)

Assume we can neglect excited states of the atom, in accordance with the main idea
of adiabatic approximation (see Chapter 8, sec. 8 Problem 8.58). The potential U(R)
of interaction between the particle and the atom for their slow relative motion is
determined by a change in atom energy due to the interaction (1), and is obtained
by averaging this operator, considered as a perturbation over the atomic state, i.e.,

U(R) = Û . In the first order of perturbation theory, Û = 0, since all multipole moments
of the atom are zero due to spherical symmetry (for states with L = 0). In second order,
we find:

U(R) = −β0

2

(
Ze

R2

)2

= −9Z2e2a3B
4R4

. (2)

We have taken into account the fact that the perturbation V̂ = Zed ·R/R3 is equiva-
lent to atom interaction with an homogeneous electric field E = −ZeR/R3, and used
the value β0 = 9a3B/2 for polarizability of the hydrogen atom ground-state. Let us
emphasize that interaction (2) is attractive, and decreases ∝ R−4 with increase in R.

Problem 11.50

Find the interaction energy between a charged particle and a two-atom molecule that
are far from each other. It is assumed that the molecule has a constant dipole moment
d (in a coordinate system rigidly bound to the molecular axis) and is in the state with
the rotational quantum number K = 0. The electron term of the molecule is 1Σ.
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Solution

As in the previous problem, interaction is determined by the dipole term V̂ = Ze(d ·
R)/R3. (Here it is important that the molecule is in a state with the rotational number
K = 0, since otherwise the quadrupole interaction, which is different from zero even in
the first order of perturbation theory and decreases with increase in R as R−3, would
be dominant.) So,

U(R) = −1

2
β0

(
Ze

R2

)2

= −Z2e2d2

6BcR4
. (1)

In the polarization potential we used the value of the molecular polarizability from
Problem 11.40 (for K = 0).

Problem 11.51

Find how the interaction between a charged particle and a hydrogen atom in an excited
state depends on the distance between them. Compare your results to Problem 11.49.

Solution

Generally speaking, U(R) ∝ R−2, which corresponds to interaction between a charge
and a dipole moment, whose existence for an excited state of unperturbed hydrogen
atom is connected to the accidental degeneracy of levels with different values of l and
different parity, specific to the Coulomb potential. The proportionality coefficient in
that power law depends on a state of the atom, and the corresponding independent
states[273] that diagonalize the perturbation are the same as for the atom in an homo-
geneous electric field. For the level with n = 2, these are considered in Problem 11.33.

In conclusion, we note that the mean value of U(R) over all independent states of
the hydrogen atom with given n vanishes. The mean value of the next, ∝ R−3 term in
the potential, corresponding to the interaction between the particle and the quadrupole
moment of the atom, is also equal to zero. The value U(R) ∝ R−4 originates from
polarization effects as discussed in two previous problems.

Problem 11.52

Find the interaction energy between two hydrogen atoms (in the ground-state) at a
large distance, R, from one another, using the variational method. For calculation, we
Use the trial function of the form:[274]

[273] For these, the angular momentum projection on the direction R has a definite value. Vector d is
directed along R and d = 0 for the states with lz = ±(n− 1). But we should take into account
that particle motion gives rise to transitions appear between the states. Compare to Problem 11.55.

[274] By considering the electrons localized in the vicinity of their nuclei corresponds to neglecting the
exchange interaction, which decreases exponentially at large distances. The choice of the trial
function (and its difference from the unperturbed wavefunction) reflects the dipole–dipole nature
of the atom-atom interaction.
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ψtrial = Cψ0(r1)ψ0(r2)[1 + α(x1x2 + y1y2 − 2z1z2)],

where ψ0(r) is the ground-state wavefunction, α is a variational parameter, r1, r2 are
radius vectors of the electrons in the two atoms relative to their nuclei, and axis z is
directed along the axis that connects the nuclei.

Solution

The atom-atom interaction, U(R), is determined by the electron term E(R). For atoms
in the ground-state, the term E0(R) could be calculated by variational method. In the
problem considered, the Hamiltonian of the electron subsystem has the form:

Ĥ = Ĥ01 + Ĥ02 + Û ≈ Ĥ01 + Ĥ02 − e2(2z1z2 − x1x2 − y1y2)

R3
,

where Ĥ01(2) are Hamiltonians of isolated hydrogen atoms, and their interaction is
taken into account in the dipole–dipole approximation. Compare to Problem 11.49.

It is easy to find the average energy E(α,R) using the trial wavefunction ψtrial if
we take into account the following expressions (compare to Problem 11.49):

1) 〈0|x|0〉 ≡ ∫
xψ2

0(r)dV = 0 due to the function under the integral being odd in x. In
the same way, all integrals containing an odd power of any of the of components of
the vectors r1 or r2 are equal to zero;

2) 〈0|Ĥ0|0〉 = −e2/2aB , because ψ0 is an eigenfunction of the operator Ĥ0;

3) 〈0|x2|0〉 = 〈0|y2|0〉 = 〈0|z2|0〉 = 1
3 〈0|r2|0〉 = a2B ;

4) 〈0|xĤ0x|0〉 = 〈0|yĤ0y|0〉 = 〈0|zĤ0z|0〉 =
∫
(zψ0)Ĥ0(zψ0)dV = 0. The easiest way

to calculate such matrix elements is given at the beginning of Problem 11.34.

Summarizing, we obtain (here C2 ≈ 1− 6α2a4B from the normalization of the trial
wavefunction):

E(α,R) ≈ − e2

aB
+ 6α2e2a3B + 12αe2a4B

1

R3
,

and after a minimization over the parameter α, we find the approximate variational
value of the ground-state energy for the system of two hydrogen atoms considered,
E0(R), and their interaction energy, U(R):

E0(R) = − e2

aB
+ U(R), U(R) = −6

e2a5B
R6

. (1)

The term, −e2/aB , corresponds to the energy of two isolated atoms.

The power-law decay of the atom-atom interaction energy with distance, U ∝ R−6,
corresponds to the van der Waals force. Let us note that the exact numerical calcula-
tion gives the coefficient of order 6.5 (instead of 6 in Eq. (1)).
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Problem 11.53

Find the large-distance asymptote of the interaction energy between two molecules
with the dipole moments d1 and d2 (in coordinate systems rigidly bound to the
molecular axes). It is assumed that the molecules are in states with rotational quantum
numbers K1,2 = 0, and that their electron terms are 1Σ.

Solution

A molecule-molecule interaction appears in the second order of perturbation theory
in the dipole–dipole interaction (see the previous problem):

V̂ =
(d̂1·d̂2)R

2 − 3(d̂1·R)(d̂2·R)

R5

and is determined by the expression:

U(R) = E
(2)
0 (R) =

∑′

k1k2

|〈k1k2|d̂1·d̂2R
2 − 3(d̂1·R)(d̂2·R)|0, 0〉|2

(E0,1 + E0,2 − Ek1
− Ek2

)R10
, (1)

where k1,2 are the sets of quantum numbers that characterize stationary states of an
isolated molecule (see Problem 11.40). Here it is important that rotational quantum
numbers of the molecules are K1 = K2 = 0, because otherwise the interaction appears
in the first order in quadrupole interaction and decreases with distance as R−3.

Note that the dominant role in sum (1) is played by terms that correspond to
states for which all quantum numbers except for K and M are the same as for the
colliding molecules. This is because the energy denominators are anomalously small,
due to the smallness of rotational energy (compare to Problem 11.40). Direct axis z
along the vector R and perform the integration in matrix elements over the electron
coordinates and the distance between the molecular nuclei. Sum (1) is:

U(R) = −
∑

K1M1K2M2

d21d
2
2|〈K1M1,K2M2|3n1zn2z − n1n2|0, 0〉|2
[B1K1(K1 + 1) +B2K2(K2 + 1)]R6

. (2)

n1,2 are unit vectors which determine molecular axes’ orientations. The wavefunctions,
|KM〉, correspond to spherical functions. Taking into account their forms (III.7) we
find that the matrix elements 〈KM |ni|00〉 are different from zero only for K = 1 and
are equal to

〈11|nx|00〉 ≡ 〈11| sin θ cosϕ|00〉 = −〈1,−1|nx|00〉 = i√
6
,

〈11|ny|00〉 = 〈1,−1|ny|00〉 = 1√
6
,

〈10|nz|00〉 = − i√
3
.
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The final expression for the energy of interaction between the molecules is

U(R) = − d21d
2
2

3(B1 +B2)R6
. (3)

This is the van der Waals attraction.

Problem 11.54

Calculate interaction (including the exchange potential [275]) of an atom with its
negatively-charged ion (system A−A) at large distances. Consider the valence electron
inside the ion as a weakly-bound particle in a short-range potential US(r) created by
the atom, approximating it with a zero-range potential.

Solution

We consider the electron in the combined field of two identical atoms as moving in the
field of two zero-range potentials. The corresponding electronic terms were determined
in Problem 11.28, from which it follows that the exchange potential at large distances
is equal to

Δ(R) = Eg(R)− Eu(R) = −2�2α

mR
e−αR. (1)

Now writing the interaction potential for even and odd terms in the form Ug,u(R) =
U0(R)± 1

2Δ(R), we find for their common part:

U0(R) ≈ �
2α

mR
e−2αR − �

2

2mR2
e−2αR − β0e

2

2R4
. (2)

Here we have also taken into account the polarization potential according to Problem
11.49, where β0 is the atom polarizability. Let us also note that to deduce interaction
(2) from Eq. (3) of problem 11.28 by successive iterations, we should rewrite it in the
form (α1 = α2 = α):

κg,u − α = ± 1

R
exp{−κg,uR} ≈ ± 1

R
e−αR − 1

R
e−2αR.

For κg,u in the exponent, we used the value of its first approximation, κg,u ≈ α±
e−αR/R, and correspondingly expanded the exponential factor.

[275] The exchange potential, Δ(R) = Eg(R)− Eu(R), is the energy difference between even Eg and
oddEu electron terms. It determines (with a coefficient 1/2) the interaction matrix element between

the states |1〉 and |2〉, 〈2|Ĥ(R)|1〉, where the electron in |i〉 is localized in the vicinity of the ith

nuclei. This matrix element (unlike the diagonal 〈1(2)|Ĥ(R)|1(2)〉) characterizes interaction where
there is the exchange of an electron between the atom and the ion. See also, Problem 13.88.
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Problem 11.55

Consider interaction between an unperturbed hydrogen atom and a hydrogen atom in
the excited state with n = 2. Determine the correct functions of the zeroth approxi-
mation that diagonalize the atoms’ dipole–dipole interaction operator.

Solution

Interaction potentials (for different states) are obtained by diagonalizing the dipole-
dipole interaction operator:

V̂ =
(d1 · d2)R

2 − 3(d1 · r)(d2 ·R)

R5
, d1,2 = −r1,2,

where r1,2 are the radius vectors of electrons in the hydrogen atoms with respect
to their nuclei (compare to Problem 11.49). The diagonalization is performed in the
basis of the Hamiltonian Ĥ0 = Ĥ01 + Ĥ02 for two non-interacting hydrogen atoms
corresponding to the degenerate unperturbed level

E(0) = − 1

2n2
1

− 1

2n2
2

= −5

8
,

where n1 = 1 and n2 = 2. For degenerate states, both matrix elements of the operators
d1,2 and perturbation V̂ are different from zero.

Note the following:

1) matrix elements of d1,2 are non-zero only for states with different parity;

2) angular momentum projections onto the direction of R are constants of the motion;

3) there exists a symmetry due to having two identical atoms in the problem.
With these, the form of unperturbed eigenfunctions that diagonalize the per-
turbation V̂ operator, i.e., the correct functions of the zeroth approximation, is
straightforward to find as follows:

ψ1,2 =
1√
2
(|1s, 2s〉 ± |2s, 1s〉), ψ5,6 =

1√
2
(|1s, 2p1〉 ± |2p1, 1s〉); (1)

ψ3,4 =
1√
2
(|1s, 2p0〉 ± |2p0, 1s〉); ψ7,8 =

1√
2
(|1s, 2p,−1〉 ± |2p,−1, 1s〉).

Here the first symbols 1s, 2s, 2pm in the state vectors |...〉 characterize electron
states in the first atom, and the second symbols characterize states in the second
atom. See that each of the atoms has probability 1/2 to be in the ground, 1s-state,
and probability 1/2 to be in the excited state with n = 2.
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Using known expressions for “hydrogen” wavefunctions, ψnlm = RnlYlm (see Eqs.
(IV.3) and (III.7)), we find the matrix elements 〈2lm|r|1s〉:

〈2p0|z|1s〉 = − i√
3
d0, 〈2p1|x+ iy|1s〉 = −〈2p,−1|x− iy|1s〉 = i

√
2

3
d0,

d0 =
256

81
√
6
. (2)

Now writing

d1 · d2 =
1

2
(x1 + iy1)(x2 − iy2) +

1

2
(x1 − iy1)(x2 + iy2) + z1z2,

it is easy to find the dipole–dipole interaction potential Ua(R) = 〈a|V̂ |a〉 in the
states given above, a = 1, 2 . . . 8. They have the form:

Ua(R) = ga
d20
R3

, where g1,2 = 0, g3,4 = ∓2

3
, g5,6 = g7,8 = ±1

3
.

In conclusion, we note that as the atoms move, the direction of R changes. This will
induce transitions between the almost-degenerate states in Eq. (1). See Problem
13.89.

Problem 11.56

Find a large-distance asymptote of the interaction potential of two atoms in the case
when the valence electron of one of the atoms is weakly bound, so that |E0| � �

2/ma2B .
Use scattering length perturbation theory developed in Problem 11.4 and determine
the condition of applicability of your results.

Solution

The interaction potential U(R) = ΔE(R) is determined by the energy change ΔE
of the valence electron, caused by its additional interaction with the other atom.
This interaction could be described by a short-range potential US(r) with a radius
of action of the order of the atomic size. Due to the fact that the valence electron’s
localization domain is large enough that L ≈ κ−1

0 � aB , the level shift is determined
by the equation from scattering length perturbation theory (see, Problem 11.4):

U(R) = ΔE(R) ≈ 2π�2

m

∣∣∣ψ(0)(R)
∣∣∣2 as, (1)

where ψ(0)(r) is an unperturbed wavefunction of the valence s-electron, and as is the
scattering length from “another” atom (see Problems 11.4 and 4.29).

We will make several remarks regarding applicability of expression (1):

1) It is assumed that |as| � L (see 11.4). This means that there exists no weakly-
bound negative ion for the“other” atom.
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2) This formula is valid for distances R ∼ L. For larger distances, it gives an exponen-
tially small shift. At these distances, the atoms’ interaction would be determined
by van der Waals forces (it is assumed that both atoms are in S-states).

3) Eq. (1) needs clarification in the case when the angular momentum l of the weakly-
bound electron is different from zero. Now the interaction will depend on the value
of the projection of the angular momentum onto the direction of R. If lz = 0, then
the potential is still described by Eq. (1). If lz �= 0, then Eq. (1) gives U(R) = 0.
Here, the level shift would be determined by the interaction between the electron
and the atom in the state with angular momentum equal to |lz|.

4) Let us note that Eq. (1) also describes interaction between a negative ion with a
weakly bound outer-shell electron and the “other” atom.

11.5 Non-stationary phenomena in atomic systems

Problem 11.57

A tritium atom (a superheavy hydrogen isotope) is in its ground-state. As a result of
β-decay, the triton turns into helium: 3H → e+ ν̃ +3 He. Find:

a) the mean energy acquired by the electron in the β-decay;

b) the probability that a ground-state helium ion He+ forms from β-decay;

c) the formation probability of an excitated state of a Helium atom with the principal
quantum number, n = 2.

Take into account that the electron in the β-decay is relativistic (the energy release
in the decay is ≈ 17 keV).

Solution

a) The β-electron flies through the atom very fast and the problem could be solved
using the sudden approximation. The electron Hamiltonian before the decay Ĥ1,
immediately turns into Ĥ2 after the decay, where[276]

Ĥ1 = −1

2
Δ− 1

r
, Ĥ2 = −1

2
Δ− 2

r
.

The electron wavefunction immediately after the nuclear decay (at the moment
t = 0), as well as before decay, has the form:

ψ1s(r, Z) =

√
Z3

π
e−Zr with Z = 1.

[276] The effect of nuclei recoil is unessential (compare to Problem 11.58). Thus the nucleus can be
considered at rest at all stages of the decay process.



566 Exploring Quantum Mechanics

A change in the atomic electron energy appears precisely at the moment of nucleus
decay, but for t > 0 its mean value does not depend on time, and is equal to

E = 〈1s, Z = 1|Ĥ2|1s, Z = 1〉 ≡ 〈1s, 1|Ĥ1 − 1

r
|1s, 1〉 = −3

2
. (1)

So, mean atom energy acquired as a result of the decay (due to the β-electron) is

Erot = E − E0 = −1 a.u. = −27.2 eV.

See that Erot < 0, i.e., the atomic (ion) energy decreases.

b) The probability for the electron to remain in the ground-state of the helium ion
that appears as a result of the decays, according to main equation of the theory of
sudden perturbations (see Problem 8.47), is given by the following overlap integral

w1s→1s =

∣∣∣∣∫ ψ1s(r, Z = 2)ψ1s(r, Z = 1)dV

∣∣∣∣2 =
512

729
≈ 0.70. (2)

In the same way, and taking into account the form of the wavefunction of the 2S
state of a hyrdogen-like atom (helium ion Z = 2),

ψ2s(r, Z) =

√
Z3

8π

(
1− Zr

2

)
e−Zr/2,

we find that the probability of transition into this state is

w1s→2s =

∣∣∣∣∫ ψ2s(r, Z = 2)ψ1s(r, Z = 1)dV

∣∣∣∣2 =
1

4
. (3)

Let us note that due to the spherical symmetry of the Hamiltonian Ĥ1,2 and in the
approximation of instantaneous escape of the β-electron, the angular momentum
of the atomic electron is conserved, and since it is equal to zero in the initial
state, then after the nucleus decays, only electron transitions in the s-states are
possible. With nuclear decay, atom (ion) ionization can occur, i.e., atomic electron
transitions into the states of the continuous spectrum with E > 0 are possible. The
angular distribution of such escaping electrons is isotropic. It should be noted that
the ionization probability is small, as is seen from the calculated probabilities, see
Eqs. (2) and (3).

Problem 11.58

A nucleus of an atom (the atom is in the stationary state, ψ0) experiences an instant
impulse and acquires a momentum P. Express in a general form the probability of
atomic transition into a stationary state ψn as the result of such a “shaking.” Consider
specifically the case of a hydrogen atom and calculate the total probability of its
excitation and ionization.
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Solution

Usually, for the wavefunction of an atom we take a wavefunction of the shell electrons
ψ(r1, r2, . . . , rN ) (spin variables are omitted for the sake of brevity), while the atomic
nucleus is considered to be fixed at the coordinate origin. Free motion of the nucleus
(whose position almost coincides with the system’s center of mass) does not affect the
electron state. To determine how the atomic state changes as a result of an instant
transfer of momentum P = MV to the nucleus (M is the nucleus mass), we see that
due to Galilean invariance, it is equivalent to a change to p = −mV of all electrons’
momenta (and the initial nuclear momentum). The wavefunction of the electron shell
immediately after the “shaking” takes the form:

ψ̃0 = exp

{
− i

�
mV ·

∑
a

ra

}
ψ0(r1, r2, . . . , rN ), (1)

where ψ0 is the wavefunction immediately before the “shaking” (compare to Problem
6.26). Further evolution of the electron wavefunction is determined by the Schrödinger
equation, and the excitation probabilities for different stationary states

w0→n = |〈ψn|ψ̃0〉|2 =

∣∣∣∣∣
∫

ψ∗
n exp

{
− i

�
mV ·

∑
a

ra

}
ψ0dτ

∣∣∣∣∣
2

(2)

do not depend on time (compare to Problem 8.47).

For example, for a hydrogen-like atom in the ground, 1s state, the probability of
remaining in the initial state according to Eq. (2) is equal to (q = mP/�M):

w0 =

∣∣∣∣ Z3

πa3B

∫
exp

{
−2Zr

aB
− iq · r

}
dV

∣∣∣∣2 =
1

(1 + q2a2B/4Z
2)4

. (3)

Here, the total probability of excitation and ionization of the atom is w = 1− w0. For
the limiting cases of weak, qaB/Z � 1, and strong, qaB/Z � 1, “shaking,” we have:

w =

⎧⎪⎨⎪⎩
q2a2

B

Z2 � 1, qaB

Z � 1,

1−
(

2Z
qaB

)8

≈ 1, qaB

Z � 1
.

Note that qaB/Z ≡ V/va, where va = Z�/maB is the characteristic electron velocity
in the initial state.
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Problem 11.59

For a mesomolecular dtμ-system that is in its ground-state (K = v = 0), estimate
the probability of the α-particle, that appears in the nuclear fusion reaction dt →
nα+ 17.6 MeV, “catching” the muon.[277]

Solution

Using adiabatic approximation for the dtμ-system (see Problem 11.30), we see that
when the deuteron and triton move closer down to nuclear lengthscales, where the
fusion reaction occurs dt → nα, the muon wavefunction is reduced to that of a
hydrogen-like atom in the ground-state with the nuclear charge Z = 2. Then, as a
result of the reaction, a fast α-particle (nucleus 4He) appears, and the probability
for it to “pick up” the muon, i.e., to form a muon-atom ion (μα)+, is determined
by Eq. (2) of the previous problem. The dominant mechanism here is associated
with the process where the muon is caught in the ground state whose probability
w0 is calculated by Eq. (3) of the previous problem, if we put Z = 2 and take for aB
the muon Bohr radius. The value of q2 here is determined by the 17.6 MeV energy
release in the reaction dt → nα, 3.52 MeV of which belongs to the α-particle. Taking
into account the fact that mμ = 207mc, mα = 7286mc, we find q2a2B ≈ 35.5 MeV and
hence w0 ≈ 9.3 · 10−3. Thus, one muon could cause about 100 events of the reaction
dt → nα. A more accurate calculation that takes into account adiabatic corrections to
the wavefunction, the finiteness of the ratio mμ/mα, and also transitions into other
bound states of the system (μα)+, gives ≈ 160 events of the fusion reaction.

Problem 11.60

Generalize the result of Problem 11.58 to the case of a two-atom molecule, i.e., obtain
the general expression for the probability of the molecular transitions from a stationary
state ψ0 to an excited state ψn as the result of a sudden “shaking,” when a momentum
P is given to one of the molecule’s nuclei (for example, the recoil momentum for
emission of a quantum by an excited nuclei). Apply the result obtained to calculate the
probability for the molecule to remain in the initial state if the nuclear velocity change
is much smaller than the characteristic velocities of the electrons in the molecule. The
molecular term is 1Σ, and it is in a state with quantum numbersK = v = 0. Discuss the
conditions under which excitation of the rotational and oscillatory degrees of freedom
occurs in the molecule.

Solution

The wavefunction of the system immediately before the “shaking” has the form:

ψsyst = ψ(Rc.m.) · ψ0(ρ1 −Rc.m., . . . ,ρN −Rc.m.;R1 −R2).

[277] When bound in a mesoatomic ion μHe, the muon stops acting as a catalyst of the fusion reaction.
This fact (and not the finiteness of the muon lifetime) places restrictions on the number of reaction
events initiated by one muon, and so places restrictions on the energy effectiveness of the μ-catalysis.
See also Problem 11.74.
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The wavefunction ψ(Rc.m.) describes the motion of the center of mass, while ψ0 is the
wavefunction of a molecular “internal” state. Here (compare to Problem 11.40), we
use ra = ρa −Rc.m. as the radius vectors of the electrons with respect to the center
of mass.

If a momentum P is imparted on nucleus 1, with the radius-vector R1, then the
wavefunction of the system immediately after the “shaking” is

ψ̃syst = exp

{
i

�
P ·R1

}
ψsyst. (1)

Note the relation (R = R1 −R2, M = M1 +M2):

R1 = Rc.m. +
M2

M
R− m

M

∑
a

(ρa −Rc.m.).

From Eq. (1) we find that the change of the molecular wavefunction as a result of the
“shaking” is (compare to Eq. (1) from Problem 11.58 for an atom)

ψ̃0 = exp

{
i

�
· M2

M
P ·R− i

�
· m
M

P ·
∑
a

ra

}
ψ0(r1, . . . , rN ;R).

The transition probabilities in the molecule are calculated by the usual equation:
w(0 → n) = |〈ψn|ψ̃0〉|2. This matrix element contains an integration over the coordi-
nates of all electrons, the relative distance between the nuclei R, and the angles that
determine the orientation of the molecular axis. A summation over the spin indices is
also performed.

2) For a molecule with electron term 1Σ, the probability of remaining in the initial
state with quantum numbers K = v = 0, using the form of the wavefunction from
Problem 11.40, is determined by expression:

w0 =

∣∣∣∣∣
∫

exp

{
iM2P ·R

�M
− imP

�M
·
∑
a

ra

}
· |ψel

n ψosc
0 ψrot

00 |2dτeldR dΩR

∣∣∣∣∣
2

. (2)

From the condition P/M � vel ≈ �/maB and characteristic values for the electron
coordinates r ∼ aB , we can replace the factor exp{−i(mP/�M)

∑
a
ra} by unity, in

Eq. (2). We have
∫ |ψel

n |2dτel = 1 (which corresponds to the fact that change of the
electron term is a low-probability event). Performing an integration over the angles

1

4π

∫
exp

{
i
M2PR cos θ

�M

}
dΩR =

sinαR

αR
, α =

M2P

�M
=

μV

�

(μ is the nuclei’s reduced mass), we transform Eq. (2) to the form:

w0 =

∣∣∣∣∫ 1

2αR
(eiαR − e−iαR)|ψosc

0 (R)|2dR
∣∣∣∣2. (3)
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The wavefunction

ψosc
0 =

(μωe

π�

)1/4

exp

{
−μωe(R−R0)

2

2�

}
is essentially different from zero only in the region, where

|R−R0| ≤
(

�

μωe

)1/2

� R0 ∼ aB

(R0 is the equilibrium distance between molecule nuclei, and we is the oscillation
frequency). So, to calculate the integral in Eq. (3), the value of R in the denominator
could be replaced by R0. The integral is easily calculated, since∫

|ψosc
0 (R)|2e±iαRdR =

(μωe

π�

)1/2

e±iαR0 exp
{
−μωe

�
(R−R0)

2±

±iα(R−R0)} dR = exp

{
±iαR0 − �α2

4μωe

}
.

Due to the fast convergence, we can integrate in infinite limits.

As a result, the final relation for the probability that the molecule remains in the
initial state with the quantum numbers K = v = 0 is

w0 =

(
sinαR0

αR0

)2

· exp
(
− �α2

2μωe

)
. (4)

The physical meaning of the two factors in this expression is easily explained. The first
of them, [(sinαR0)/αR0]

2, gives the probability that rotational degrees of freedom are
not excited. It becomes essentially different from unity only for αR0 ≥ 1 or μV R0 ≥ �.
This is a natural physical result if we recall the angular momentum quantization
and that μV R0 characterizes the value of the angular momentum imparted onto
the molecule. The second factor in Eq. (4) corresponds to the probability that the
oscillatory degrees of freedom are not excited.

Problem 11.61

Find the change of lifetime for the ground-states of ortho- and para-positronium (see
Problem 11.43) upon application of an homogeneous magnetic field.

Comment

The finiteness of positronium lifetime is connected into the annihilation of the electron–
positronium pair into photons. In the absence of external fields, the ortho- and para-
positronium lifetimes have different values: τ1 ≈ 1.4 · 10−7 s for the ortho-positronium,
and τ0 ≈ 1.2 · 10−10 s for the para-positronium, which is connected to the difference
of their decay channels: they decay into three and two photons respectively. Also note
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that in the presence of several decay channels, the total probability of decay ω (the
quantity inverse to the lifetime τ) is equal to the sum of the partial probabilities.

Solution

A magnetic field strongly affects the positronium lifetime because it “mixes” the ortho-
and para-states (see Problem 11.43) that have sharply different lifetimes. The lifetimes
of the quasi-stationary states that appear are determined by the relation:

1

τ̃1
= ω

(1)
0 · 1

τ0
+ ω

(1)
1 · 1

τ1
, (1)

where ω
(1)
0(1) = |C(1)

0(1)|2 are the probabilities of positronium being in para- (ortho-)

states. Spin functions for the positronium ground-state in a magnetic field were found
in Problem 11.43. Since states of ortho-positronium with projection of spin Sz = ±1
in the direction of the magnetic field remain (quasi)stationary and are not distorted
by the weak magnetic field, their lifetimes are not changed.

A completely different situation takes place for states with Sz = 0. Now the
magnetic field “mixes” the ortho- and para-states. Using the results of Problem 11.43

for coefficients C
(1)
0(1), and according to Eq. (1), we find

1

τ̃1(2)
=

y ± 1

2y
· 1

τ0
+

y ∓ 1

2y
· 1

τ1
. (2)

We have used y =
√
1 + (4μBH/Δ)2 (Δ is the fine splitting of the positronium ground

level), and the signs + and − correspond to states 1 and 2. The former corresponds to
para-positronium and the latter to orthopositronium. Since τ1 � τ0, then from Eq. (2)
we see that even a weak magnetic field strongly affects the lifetime of orthopositronium,
decreasing it as

τ̃2 ≈
(
1 +

4μ2
BH2

Δ2
· τ1
τ0

)−1

τ1, μBH � Δ. (3)

This result follows from expression (1) if we use coefficients C
(2)
1 ≈ 1 and C

(2)
2 ≈

2μBH/Δ, according to Eq. (VIII.2) of perturbation theory.

With an increase of magnetic field, the value τ̃1 increases, while τ̃2 decreases. In a
strong magnetic field, when μBH � Δ, these lifetimes approach each other τ̃1 ≈ τ̃2 ≈
τ0/2. In this case, the states 1 and 2 considered contain the ortho- and para-states of
positronium with equal probability.

Problem 11.62

Find the change in lifetime of the metastable 2s-states of the hydrogen atom with a
weak homogeneous electric field applied.
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Comment

Excited states of atomic systems are, properly speaking, quasi-stationary states, since
they have a finite lifetime, connected to electrons’ transition to lower levels with photon
emission. Usually, the characteristic lifetime is τ ∼ 10−9 s. For example, for the 2p-
state of the hydrogen atom, τ2p = 1.6 · 10−9 s. But the lifetime of 2s-state is much
larger, τ2s ≈ 0.1 s, and is determined by transition to ground-state with a two-photon
emission (see, for this, Problem 14.6 and 14.8). While solving the problem we should
take into account the anomalous closeness between the energies of 2s1/2- and 2p1/2-
states, the difference of which is ΔE/2π� ≈ 1058 MHz (the so-called Lamb shift).

Solution

The physical cause for the strong influence of even a weak electric field on the lifetime
of the hydrogen atom 2s-state lies in the fact that it “mixes” it with 2p-state, and the
latter quickly emits photons, passing to the ground-state (compare to the previous
problem). The special role of the 2p- (and especially 2p1/2-) states is due to their
near-degeneracy in energy with the 2s-state. The level shift, appearing for the non-
relativistic level En=2 of the hydrogen atom due to relativistic and so-called radiational
corrections, is shown in Fig. 11.3. ΔLS/2π� = 1058 MHz is the Lamb shift, while
ΔHS/2π� = 1.1 · 104 MHz is due to fine structure.

Fig. 11.3

Upon applying a weak electric field, instead of a “pure” 2s1/2-state, a superposition
appears:

ψE ≈ C1ψ2s1/2 + C2ψ2p1/2
,

where we restrict ourselves only to the 2p1/2 state due to the smallness of ΔLS with
respect to ΔFS (see below). The lifetime of such a state is

1

τ
= |C1|2 · 1

τ2s
+ |C2|2 · 1

τ2p
.

As usual, from the Schrödinger equation Ĥ|ψE〉 = E|ψE〉, by successively multiplying
by 〈2s1/2|, 〈2p1/2|, we obtain

V ∗C2 = E(1)C1, V C1 = (E(1) +ΔFS)C2, (1)
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where E(1) is the difference of energy between the 2s state and the unexcited level

E
(0)
2s , while

V = 〈2p1/2|eEz|2s1/2〉 = i
√
3eaBE .

This perturbation matrix element is calculated for states with similar values of the
angular momentum projection jz = ±1/2 onto the direction of the electric field, and
differs from the matrix element 〈2p0|eEz|2s〉 only by the factor[278] 1/

√
3, calculated

from Problem 11.33, neglecting spin-orbital interaction.

We will not present the general solution[279] of the system of equations (1) that gives
the shifts of the 2s1/2- and 2p1/2-levels and values of the corresponding coefficients
Ci, but instead consider only limiting cases.

To satisfy the conditions eaBE � ΔLS for coefficients Ci that describe the distor-
tion of the wavefunction in the 2s-state by an electric field, we can use the result of
perturbation theory (VIII.2), according to which C2s ≈ 1 and C2p1/2

≈ V/ΔLS . We
obtain an expression for the lifetime of the state considered:

1

τ
=

1

τ2s
+

3e2a2BE2

Δ2
LS

· 1

τ2p
. (2)

Let us note that C2p3/2
=

√
2V/(ΔLS −ΔFS) and the correction involving the 2p3/2-

state is approximately 4% of the second term on the right-hand side of (2).

In the case of eaBE � ΔLS (we note that E0 = ΔLS/eaB ≈ 800 V/cm) in the
superposition considered, the 2s- and 2p-states are given with the same probability,
and now τ ≈ τ2p/2.

In conclusion, we note that here, as well as in the previous problem, the widths
of the states considered, Γ = �/τ , are small with respect to the level spacing, ΔE,
between the unexcited levels. In analogous problems with Γ ≥ ΔE, it is necessary to
take into account the attenuation of states.

Problem 11.63

To first order in perturbation theory, find the probability for a charged particle
subjected to an electrostatic field of a monochromatic electromagnetic wave to be
pulled out of a bound state of a zero-range potential. The particle momentum λ
is considered to be much larger than the particle’s localization domain, so that the
electric field could be considered homogeneous, changing in time in an harmonic way.

Consider the most general case of a wave with an elliptical polarization. Generalize
the result obtained to the case of a weakly-bound state of a particle in a short-range
potential US(r) of a finite radius.

[278] It is a Clebsch–Gordan coefficient. Its value follows, for example, from the result of Problem 5.18.

[279] It could be obtained as a result of simple substitutions from equations that give the solution for
Problems 11.61 and 11.43 (for states with Sz = 0).
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Comment

For a monochromatic wave of an elliptical polarization that propagates in the direction
of the z axis, the electric field at a fixed point in space changes in time by the law:

E(t) = (E0 cosωt, ζE0 sinωt, 0),

where ζ is the degree of ellipticity (|ζ| ≤ 1), and E0 is the amplitude of the field
intensity. The sign of ζ gives the direction of rotation for the vector E(t). For ζ = 0,
the wave is linearly-polarized, while for ζ = ±1 it has a circular polarization.

Solution

We use the equation for transition probability per unit of time from a state of the
discrete spectrum to a state of the continuous spectrum under the action of a periodic
perturbation:

dwv =
2π

�
|Fνn|2δ(Eν − E(0)

n − �ω)dν. (1)

In the problem considered, the perturbation has the form

V̂ = −eE(t) · r ≡ F̂ e−iωt + F̂+eiωt,

and

F̂ =
−eE0(x+ iζy)

2
.

In the perturbation matrix element Fνn = 〈ψ(0)
ν |F̂ |ψ(0)

n 〉, ψ(0)
n is the wave-function of

the initial state as follows,

ψ0 =

√
κ0

2π

e−κ0r

r
,

which describes the particle ground-state in a zero-range potential (see Problem 4.10).
We choose[280] ν to be the wave vector k of the particle leaving to infinity after

ionization, and correspondingly for ψ
(0)
ν , we take wavefunctions ψ

(−)
k . But in the

conditions of the problem, instead of ψ
(−)
k we should use the wavefunctions of a free

particle: ψ
(0)
k = (2π)−3/2eik·r. This is connected with the fact that in the case of a zero-

range potential, ψ
(−)
k differs from ψ

(0)
k only by terms that correspond to the angular

momentum l = 0 (a zero-range potential does not affect a particle with l �= 0), and

[280] Remember that ν is a set of quantum numbers that describe a continuous spectrum of unexcited
states. Another convenient set for ν is ν = (k, l,m), where l is the angular momentum of the
leaving particle. The perturbation matrix element is different from zero only for the value l = 1,

while the corresponding wavefunctions ψ
(0)
ν coincide with the wavefunctions ψ

(0)
klm of a free particle.

See Problem 11.35.
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the input of these terms into the matrix element 〈ψ(−)
k |F̂ |ψ0〉 is equal to zero. We

obtain:

Fνn = −e
√
κ0E0
8π2

∫
x+ iζy

r
e−κ0r−ik·rdV. (2)

The integral here is equal to

i

(
∂

∂kz
+ iζ

∂

∂ky

)∫
1

r
e−κ0r−ik·rdV = i

(
∂

∂kz
+ iζ

∂

∂ky

)
4π

κ2 + k2
. (3)

It is calculated in spherical coordinates, with the polar axis directed along vector k.
Using

dν ≡ d3k = k2dk dΩk =
mk dΩk dEk

�2
,

and performing integration over Ek ≡ Eν in Eq. (1), we obtain

dw

dΩk
=

2e2mκ0k
3E2

0

π�3(κ2
0 + k2)4

sin2 θ · (cos2 ϕ+ ζ2 sin2 ϕ). (4)

The polar axis is chosen along axis z, so that kz = k sin θ · cosϕ. Since E
(0)
0 =

−�
2κ2

0/2m, then for the escaping particles, �k =
√

2m�ω − �2κ2
0.

Note the following properties of the angular distribution of escaping particles. For
the values ζ = ±1 (that correspond to a circular polarization), we have

dw

dΩk
∝ sin2 θ,

which corresponds to a particle with angular momentum l = 1 and its projection
lz = ±1. In the case of ζ = 0 (linear polarization of the wave along axis x), the angular
distribution is

dw

dΩk
∝ cos2 θ′,

where θ′ is the angle between vector k and axis x. This corresponds to a particle with
l = 1 and lx = 0.

Performing integration over the angles in expression (4), we obtain the total
probability of ionization per unit of time:

w =
2e2(1 + ζ2)

3�m
·
√
ω0(ω − ω0)

3/2

ω4
E2
0 . (5)

where ω0 = �κ2
0/2m is the ionization threshold frequency. Let us note that the

dependence

w ∝ (ω − ω0)
3/2 ∝ k3 for ω → ω0
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is determined by the angular momentum (w ∝ k2l+1) of the leaving particle – in this
case equal to l = 1 – and is connected to the penetrability of the centrifugal barrier
for slow particles. Compare to Problem 9.30.

Let us make several final remarks:

1) For ω < ω0, the ionization probability according to Eqs. (1) and (5) is equal to
zero. In this case, it is determined by higher orders of perturbation theory.

2) The generalization of the results obtained, Eqs. (4) and (5), to the case of ionization
of a state with a small binding energy and the angular momentum l = 0 in a short-
range potential Us(r) with a finite radius, rs �= 0, is obtained by inserting the factor
C2

κ0 into these equations. Compare to Problem 11.36.

3) We emphasize that apart from the usual applicability condition of perturbation
theory |Fνn| � |Eν − En| or emE0/�2κ3

0 � 1, validity of expressions (4) and (5)
requires satisfaction of two more conditions: κ0rs � 1 and krs � 1. The former
reflects the weakly-bound nature of the state considered, while the latter places a
restriction on the frequency of the wave, �ω � �

2/mr2s . If these are not satisfied,
then in the integral of matrix element Fνn, an essential role is played by the region
r ≤ rS (in the case of krs ≥ 1 this is connected to fast oscillations of eik·r), where
the wavefunctions ψ

(0)
n and ψ

(−)
k depend on a concrete form of potential. Then, the

replacement of the potential by a zero-range potential is not justified.

4) The considered state in the field of a wave that is periodic in time, strictly speaking,
is a quasi-energy state (see Chapter 6, sec. 5). In Eq. (8) from Problem 8.42 we
calculate the quasi-energy, the imaginary part of which gives the width of this QES,
which is connected to ionization probability (5) by relation Γ = �w. See Problem
11.66.

Problem 11.64

The same as in the previous problem, but now a particle in a short-range potential
US(r) that is weakly bound with the angular momentum l = 1 is subjected to the field
of a linearly polarized wave.[281] The frequency of this wave satisfies the condition
�ω � �

2/mr2s , where rs is the radius of the potential.

Solution

This problem is solved analogously to the previous Problem. Due to the weak-bound
nature of the state, κ0rs � 1, and the restriction on the wave frequency �ω � �

2/mr2s ,
in perturbation matrix element 〈ν|eEz|n〉 (axis z is directed along the vector E(t))
the essential role is played by large distances[282] r � rs. For the wavefunction of

the initial state ψ
(0)
n ≡ ψκ,l=1,m we can use expression (1) from Problem 11.37. The

wavefunction of the final state (as in Problem 11.63) could be taken in the form of

[281] Wavefunctions of quasi-stationary states, that appear in the wave-field, are characterized by a
definite value of the projection of the angular momentum onto the direction of the electric field.
For them, the ionization probability per unit of time is connected to the width of the level Γ = �w.

[282] Compare to the case of a statistic electric field in the conditions of Problem 11.37.



Atoms and molecules 577

a plane wave ψ
(−)
k = ψ

(0)
k . (This is connected to the fact that the leaving particle is

slow, krs � 1, and so the phase shifts δl ∼ (krS)
2l+1, that determine the difference of

the wavefunction from that of a free particle for r > rs, are small; see Eq. (XIII.15)).
With the expressions Ylm(n) = ai(m)xi/r for spherical functions (see Problem 3.41),
the perturbation matrix element could be transformed to the form:

〈k|eE0z|κlm〉 = −eκ0Cκ1E0√
2π2

ai(m)
∂

∂kz

∂

∂ki

∫
r−3/2+εe−ik·rK3/2(κ0r)dV, (1)

with ε → 0 (ε > 0; we cannot immediately put ε = 0 due to the appearance of a
“false” divergence of the integral, which disappears after differentiation over ki). After
performing integration over the angles in spherical coordinates, the integral takes the
form:

4π

k

∫
r−1/2+ε sin kr ·K3/2(κ0r)dr =

π

(
2

κ0

)3/2+ε

Γ
(ε
2

)
Γ

(
3

2
+

ε

2

)
F

(
3 + ε

2
,
ε

2
,
3

2
,−k2

κ2
0

)
, (2)

where F is an hypergeometric function:

F (α, β, γ, z) = 1 +
α · β
γ

· z

1!
+

α(α+ 1) · β(β + 1)

γ(γ + 1)
· z

2

2!
+ . . . , |z| < 1.

Using the fact that ε → 0,

F (γ + ε, ε, γ, z) ≈ 1 + ε

∞∑
n=1

zn

n
= 1− ε ln(1− z),

and Γ(ε) ≈ ε−1. The integral in expression (1), according to Eq. (2), is written in the
form:

B(κ0, ε)−
√

2π3

κ3
0

ln

(
k2 + κ2

0

κ2
0

)
.

The first term diverges ∝ 1/ε for ε → 0, but does not depend on k and so does not
contribute to matrix element (1).

Now, using the connection between ai(m) and Ylm(n), we find:

ai(m)
∂

∂kz

∂

∂ki
ln(k2 + κ2

0) = −−4k cos θ · Ylm(k/k) + 2i
√

3/4π(k2 + κ2
0)δm,0

(k2 + κ2
0)

2
. (3)

This determines the perturbation matrix element (1), and we obtain the angular
distribution of the particle after ionization:

dw

dΩ
=

e2E2
0C

2
κ1

√
ω − ω0

2�mω4
√
ω0

∣∣∣∣∣
√

3

4π
ωδlz,0 + 2i(ω − ω0) cos θY1lz

(
k

k

)∣∣∣∣∣
2

. (4)

Compare to the derivation of Eq. (4) from Problem 11.63.
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We will discuss the result obtained, Eq. (4).

For the ionization from states with the projections of the angular momentum,
lz = ±1, the angular distribution of the leaving particle is described by the expression:

dw

dΩ
∝ cos2 θ · sin2 θ ∝ |Y21|2,

which corresponds to a particle that has the angular momentum l = 2 and lz = ±1. At
the threshold of ionization, i.e., for ω → ω0 = �κ2

0/2m, we have dw/dΩ ∝ (ω − ω0)
5/2,

as it is supposed to be (∝ k2l+1) for the angular momentum l = 2. Compare to the
previous problem.

In the case of lz = 0 for the bound particle, the angular distribution (4) describes
interference of the s- and d-waves. Here on the threshold, the s-wave dominates and

dw

dΩ
∝ (ω − ω0)

1/2 for ω → ω0.

Performing in expression (4) an integration over the angles, we find the total prob-
ability of ionization per unit of time. For a particle that in the initial state has the
angular momentum l = 1 and projection lz = ±1, we obtain

wlz=±1 =
2e2C2

κ1E2
0 (ω − ω0)

5/2

5m�ω4
√
ω0

, (5)

for a particle with l = 1 and lz = 0:

wlz=0 =
e2C2

κ1E2
0

√
ω − ω0(7w

2 − 4ωω0 + 12ω2
0)

10m�ω4
√
ω0

. (6)

Problem 11.65

The same as in Problem 11.63, but for a hydrogen-like atom in the ground-state.
Consider only the case of an external field with a large frequency, �ω � m(Ze2)2/�2,
so that the leaving electron is has a high velocity.

Comment

To solve the problem, use the operator of the form V̂ = −(e/mc)A(t) · p̂ to describe
the interaction between charged particle and an homogeneous electric field. This
operator corresponds to the choice of potential, ϕ = 0. Here E(t) = −∂A(t)/c∂t, so
for an elliptically polarized monochromatic wave,

A(t) = −cE0
ω

(sinωt,−ζ cosωt, 0).

Such interaction is equivalent to the one used in the two previous problems,
V̂ ′ = −eE(t) · r (A′ = 0, ϕ′ = −E(t) · r), and is obtained by a gauge transformation
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with χ = −cr · ∫ E(t)dt (see, for example, Problem 6.27). Its advantage, in comparison

to V̂ ′, is the fact that in the case of large frequency ω, when the leaving particle is
fast, while calculating the perturbation matrix element, we can take the wavefunction

of the final state, ψ
(−)
k , to be a plane wave.

Solution

As in the two previous problems, we calculate the ionization probability using Eq. (1)
from Problem 11.63. Now, though,

F̂ = − iE0
2ω

(p̂x + iζp̂y), ψ(0)
n ≡ ψ1s =

√
Z3

π
e−Zr

(we use atomic units), but still ψ
(0)
ν ≈ (2π)−3/2eik·r.

The perturbation matrix element is

Fνn = − i
√
Z3E0

4
√
2π2ω

∫
e−ik·r(p̂x + iζp̂y)e

−ZrdV = − i
√
2Z5E0
4πω3

(kx + iζky).

Under the integral, we can replace operators p̂x,y by kx,y. Then it is easily calculated
in spherical coordinates with polar axis along k. In the expression given we have taken
into account that k ≈ √

2ω � Z. So, the probability of ionization per unit of time with
the given direction of electron escape becomes equal to

dw

dΩ
=

Z5E2
0√

2πω9/2
sin2 θ · (cos2 ϕ+ ζ2 sin2 ϕ). (1)

The angular distribution has the same form as in the conditions of Problem 11.63. See
Eq. (4) of that problem and the comment connected to it.

Integration of expression (1) over the angles gives the total probability of atom
(ion) ionization per unit of time:

w(ω) =
64(1 + ζ2)

3
Z5

(
a2BE0
e

)2 (ω0

ω

)9/2

ω0, (2)

ω � Z2ω0, ω0 = me4/�3.

Problem 11.66

Find the dynamic polarizability β0(ω) for a particle in a zero-range potential. Gen-
eralize the result obtained to the weakly-bound state of a particle with the angular
momentum l = 0 in a short-range potential US(r), and in the corresponding limit-
ing cases, compare it to Problems 11.36 and 11.63. To solve the problem, use the
perturbation theory for quasi-energy states from Problem 8.42.

Solution

Dynamic polarizability βn(ω) determines the change of quasi-energy (the quadratic
in the field term) of a system in the quasi-energy state ψεn , that is subjected to a
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monochromatic uniform electric field. In the case of a linearly polarized wave, i.e., an
electric field of the form E(t) = E0 cosωt, QES are characterized by a definite value
of the projection of the angular momentum onto the direction of the electric field
(chosen along the axis z), so we can use the theory for non-degenerate (in the absence
of perturbation) levels given in Problem 8.42. Note that for states with an angular
momentum different from zero, in the field of an elliptically polarized wave, difficulties
appear, connected to the problem of finding true zeroth approximation functions. But
for initial states with the angular momentum l = 0, there are no such problems, and
here the change of quasi-energy is described by the expression:

E
(2)
0 = −1

4
(1 + ζ2)β0(ω)E2

0 ,

where ζ is the degree of ellipticity.

The initial relation for the calculation of β0(ω) is Eq. (8) from Problem 8.42, which
now has the form:

β0(ω) = 2

∫
ωk0|〈ψ(−)

k |z|ψ0〉|2d3k
ω2
k0 − ω2 − iγ

. (1)

γ > 0 is an infinitely small quantity, wavefunctions ψ and ψ
(−)
k are the same as in

Problem 11.63, E0 = −κ2
0/2 is the energy of the unperturbed state, Ek = k2/2 and

ωk0 = (k2 + κ2
0)/2, and here we use the system of units e = � = m = 1.

The matrix element of coordinate z in Eq. (1) was calculated in Problem 11.63. Its
angular part ∝ kz = k cos θ. After an elementary integration over the angles (d3k =
k2dk dΩ), Eq. (1) becomes equal to

β0(ω) =
32κ0

3π

∞∫
−∞

k4dk

(κ2
0 + k2)3[(κ2

0 + k2)2 − 4ω2 − iγ]
. (2)

The integral is calculated using residues by closing the integration contour, for
example, in the upper half-plane of the complex variable k. Calculation could be
simplified if we first perform some simple algebraic transformations and write the
function under the integral sign in (2) in the form:

k4

4ω2(κ2
0 + k2)

[
− 1

(κ2
0 + k2)2

+
1

(κ2
0 + k2)2 − 4ω2 − iγ

]
. (3)

The integral of the first term in the brackets is easily calculated (especially if we write
(z + k2)−3 with z = κ2

0 as d2(z + k2)−1/2dz2 and take differentiation over z outside
the integral sign). Its contribution to β0(ω) is −1/ω2. Then, writing the term that
corresponds to the second term in the brackets in the form

k4

32ω4

(
− 2

κ2
0 + k2

+
1

κ2
0 + k2 − 2ω − iγ

+
1

κ2
0 + k2 + 2ω + iγ

)
(4)
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(ω > 0), we obtain the final result:

β0(ω) = C2
κ0

[
− 1

ω2
− 2κ4

0

ω4
+

κ0

3ω4
(κ0 − 2ω)3/2 +

κ0

3ω4
(κ2

0 + 2ω)3/2
]
. (5)

Here we introduced the factor C2
κ0 (the square of the asymptotic coefficient), which

corresponds to a generalization of the result for a zero-range potential to the case of
a weakly-bound state of a particle with the angular momentum l = 0 in a short-range
potential Us(r). Compare to Problems 11.36 and 11.63.

Let us discuss some properties of the dynamic polarizability in (5):

1) For small frequencies, ω � κ2
0, we have

β0(ω) ≈ β0

(
1 +

7ω2

6κ4
0

)
, where β0 =

1

4κ4
0

C2
κ0, (6)

and where β0 reproduces the value of the static polarizability from Problem 11.36.

2) For values of frequency ω > κ2
0/2 (above the ionization threshold), an imaginary

part appears in β0(ω) that determines a width Γ of the state, E
(2)
0 ≡ ΔE − iΓ/2,

Γ(ω) =

√
2(1 + ζ2)

3ω4
κ0C

2
κ0E2

0

(
ω − κ2

0

2

)3/2

. (7)

The existence of a quasi-energy level width reflects the possibility of system
ionization, the probability (per unit of time) of which ω = Γ (since � = 1) coincides,
of course, with the result of Problem 11.63.

3) In the case of a zero-range potential, C2
κ0 = 1, and from Eq. (5) we have β0(ω) ≈

−1/ω2 for ω → ∞ in accordance with the general result (see Problem 6.40). For a
potential of finite radius rs, Eq. (5) is applicable only for frequencies that are not
too large: ω � r−2

S . For more about this restriction, see Problem 11.63.

Problem 11.67

Estimate up to exponential accuracy (i.e., do not pay attention to overall coefficients
of order one) the probability of escape per unit of time of a charged particle, bound
in a central potential U(r) (U(r) → 0 for r → ∞), under the influence of a weak
homogeneous electric field.

Solution

The important, exponential factor in the probability is determined by the penetrability
of the electrostatic barrier V = −eEz, and is equal to (c = � = m = 1):

w ∼ v

rS
D ∼ 1

r2S
exp

⎧⎨⎩−2

b∫
0

√
κ2
0 − 2Ez dz

⎫⎬⎭ ≈ 1

r2S
exp

{
−2κ2

0

3E
}
. (1)
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The right turning point is b = κ2
0/2E , the left turning point is a ∼ rs, rs is the potential

radius, we put κ0rs � 1 (a weakly-bound particle, its energy is E0 = −κ2
0/2), and v/rs

determines how many times the particle hits the barrier per unit of time (compare to
Problems 9.30 and 9.28).

To refine this result, we see that in Eq. (1) the barrier penetrability corresponds
to a particle that moves along the field (in the direction of axis z). For a particle
that moves at an angle θ with the field, the barrier is less transparent, and this
fact could be taken into account if we see that the effective electric field for it is
E cos θ ≈ E(1− θ2/2). Here, for the probability of particle tunneling ionization from
the state with angular momentum l and its projection m onto the direction of the
field, we obtain[283]

wlm ≈ 1

r2S

∫
|Ylm(n)|2D(E cos θ)dΩ ≈

≈ 1

r2S

∫
|Ylm|2 exp

{
−2κ3

0

3E
(
1 +

θ2

2

)}
dΩ ≈

≈ 2l + 1

|m|!r2S
(l + |m|)
(l − |m|)!

(
3E
4κ3

0

)|m|+1

exp

{
−2κ3

0

3E
}
. (2)

(Since only small angles θ � 1 are important, then in the spherical function it is
enough to restrict ourselves to only the factor ∝ θ|m|.) For a short-range potential,
this equation correctly gives a dependence of the ionization probability on a weak
electric field intensity both in the exponential and the overall coefficient.

Problem 11.68

Find the probability of a K-electron ejection from an atom for a dipole transition
of the nucleus from an excited state, as a result of direct electrostatic interaction
between the electron and the nuclear protons (inner conversion). Use the ψ function
of a hydrogen-like atom with a K-electron as the wavefunction of the electron’s initial
state. The velocity of the escaping electron is assumed to be much larger than atomic
velocities.

Solution

The Hamiltonian of the “nucleus+electron” system has the form:

Ĥ = Ĥnuc − 1

2
Δe −

∑
p

1

|re − rp| . (1)

[283] Strictly speaking, in Eq. (2) we should also include the factor ∼ (κ0τS)
2l+1, which takes into

account the decrease in probability of particle escape due to the centrifugal barrier. Compare to
Problem 9.30.
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Ĥnuc is the Hamiltonian of the nucleus subsystem in the center-of-inertia system.
Summation is performed over all protons. Writing

U = −
∑
p

1

|re − rp| = −Z

re
−
∑
p

(
1

|re − rp| −
1

re

)
≡ −Z

re
+ V,

we see that V is the relevant part of the interaction that depends on the state
of the nucleus subsystem, and is responsible for the transition of interest (in the
approximation a point nucleus, V ≡ 0). Its probability (per unit of time) is given by
the equation

dwν = 2π|Vνn|2δ(Eν − E(0)
n )dν. (2)

The wavefunctions that enter the perturbation matrix element Vνn are

ψ(0)
n = ψnuc

0 ψ0, ψ0 =

(
Z3

π

)1/2

e−Zre , ψ(0)
ν = ψnuc

1 ψk, ψk =
1

(2π)3/2
eik·re ,

where ψnuc
0(1) is the wavefunction of the nucleus subsystem, so that

Vνn = − Z3/2

√
8π2

∫∫
ψnuc
1 e−ik·re

∑
p

(
1

|re − rp| −
1

re

)
e−Zreψnuc

0 dτ dVc.

In this expression, dτ is the product involving all independent nucleus coordinates
(including spin variables).

To calculate the matrix element, we expand the Coulomb potential in a Fourier
integral:

∑
p

1

|re − rp| =
1

2π2

∫
d3q

q2
eiq·re

∑
p

e−iq·rp .

Now

Vνn = − Z3/2

25/2π4

∫
d3q

q2

∫
dτψnuc

1

∑
p

(eiq·rp − 1)ψnuc
0

∫
dVce

(q−k)·re−Zre . (3)

We can expand the “nucleus” exponent into a series over powers q · rp. This cor-
responds to the expansion of terms |re − rp|−1 over a small parameter rp/re ∼
ZRnuc/aB � 1 (but the latter expansion is less convenient for further transformations
than the transition to Fourier components). Expanding the exponent, we obtain

∫
ψnuc
1

∑
p

(e−iq·rp − 1)ψnuc
0 dτ ≈

∫
ψnuc
1

(
−iq

∑
p

rp

)
ψnuc
0 dτ ≡ −iq · d10, (4)



584 Exploring Quantum Mechanics

where d10 denotes the matrix element of the nuclear dipole moment. Now, we integrate
over the electron coordinates, which gives∫

exp{i(q− k) · rc − Zre}dVc =
8πZ

[Z2 + (q− k)
2
]2
.

We transform matrix element (3) to the form

Vνn =
i
√
2Z5/2

π3
d10 ·

∫
d3q

q2
q

[Z2 + (q− k)
2
]2
. (5)

Since the velocity of the escaping electron is much larger than the atomic velocities[284]

i.e., k � Z (here the energy of escaping electron is Ek = k2/2 ≈ Enuc,0 − Enuc,1), then
the dominant role in integral (5) is played by the region of q for which |q− k| ≤ Z,
and so ∫

d3q

q2
q

[Z2 + (q− k)
2
]2

≈ k

k2

∫
d3q

[Z2 + (q− k)
2
]2

=
π2

Z

k

k2
.

q ≈ k, so it follows that qrnuc � 1, which explicitly justifies the aforementioned
expansion of the exponential. Now,

Vνn =
i
√
2Z3/2

πk2
k · d10. (6)

Since in Eq. (2), dν ≡ k2dk dΩ = k dEk dΩ, then if we perform an integration in it
first over Ek and then over the angles of the escaping electrons, using (6), then we
find that

dw =
4Z3

π

|k · d10|2
k3

dΩ, w =
16Z3

3k
|d10|2. (7)

Since there are two K-electrons in the atom, the total probability of inner conversion
(per unit of time) of electrons on the K-shell is equal to

wK = 2w =
32Z3

3k
|d10|2 =

32m3e6

3�7
Z3e2

�v
|d10|2. (8)

In this last expression, we returned to the conventional units.

On the other hand, the probability of a dipole photon emission for a nuclear
transition is

wemis =
4ω3

3�c3
|d10|2,

[284] In this case, we can choose the plane wave (the wavefunction of a free electron) as a wavefunction
of the escaping electron.
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(see Eq. (XIV.10)), �ω = mv2/2, so that the coefficient of inner conversion is

βK ≡ wK

wemis
=

Z3α4

2

(
2mc2

�ω

)7/2

, α =
e2

�c
≈ 1

137
. (9)

As is seen, it increases sharply with increase in Z and decrease of frequency ω.

Problem 11.69

The same as in the previous problem, but when the initial and final states of the nucleus
have the angular momentum equal to zero and the same parity (such processes are
called monopole or E0 transitions).

Solution

This problem is solved in a way similar to the previous one, and the initial stages of
solutions to both problems are identical. But here, while calculating the nuclear part
of the matrix element, we cannot use Eq. (4), since we now have d10 = 0. Taking the
following term in the expansion of the exponential in powers of q · rp, we obtain the
nuclear part of the matrix element in the form:

−1

2

∫
ψnuc∗
1

∑
p

(q · rp)(q · rp)ψnuc
0 dτ = −qiqk

2

∫
ψnuc∗
1

∑
p

xpixpkψ
nuc
0 dτ ≡

−1

6
qiqkQ0δik = −1

6
q2Q0, (1)

where

Q0 =

∫
ψnuc∗
1

(∑
p

r2p

)
ψnuc
0 dτ. (2)

It has been assumed that the parities of the initial and final states of nucleus are the
same. Otherwise Q0 = 0.

The perturbation matrix element is equal to

Vνn =
1

12π2
Q0

∫
eiq·reψ∗

k(re)ψ0(re)d
3q dVc,

and after the integration over q that leads to the δ-function δ(re), we obtain

Vνn =
2π

3
Q0ψ

∗
k(0)ψ0(0). (3)

Now we easily find the angular distribution of escaping electron and the total proba-
bility of its escape (per unit of time):

dw

dΩ
=

8π3

9
k|Q0|2|ψ∗

k(0)ψ0(0)|2, w =
32π4

9
k|Q0|2|ψ∗

k(0)ψ0(0)|2. (4)

The isotropic nature of the distribution dw/dΩ is evident from symmetry.
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Taking into account the existence of two K-electrons in the atom, the probability
of the E0-transition is equal to wE0 = 2w. In particular, if the escaping electron is
fast k � Z, then ψk(0) ≈ (2π)−3/2 and so

wE0 =
8

9
Z3k|Q0|2. (5)

In conclusion, we note that from these results, it follows that inner conversion plays a
dominant role for the electrons in the K-shell (since w ∝ |ψ(0)|2, compare to Problems
14.18 and 14.19).

Problem 11.70

Find the probability of K-electron escape as a result of the Auger effect in a
μ-mesoatom (the muon in an excited state goes to the lower level, giving energy
to the electron). Consider only a dipole or so-called Auger P -transition, for which a
change of the muon angular momentum is |Δl| = 1. Assume that the size of the muon
orbit is much smaller than the electron’s, and approximate the electron in the final
state as a free particle. Use, as an example, the muon transition 2p → 1s.

Solution

The Hamiltonian of a system that consists of a muon and an electron (which is one of
the K-shell electrons), that are in the Coulomb field of a nucleus with charge Z, has
the form:

Ĥ = − 1

2mμ
Δμ − Z

rμ
− 1

2
Δe − Z

re
+

1

|re − rμ| . (1)

Since the size of the muon orbit is much lower than the electron orbit (mμ = 207me

and the Bohr radius aB ∝ m−1), this Hamiltonian could be written in the form

Ĥ = Ĥμ + Ĥe + V̂,

where

Ĥμ = − 1

2mμ
Δμ − Z

rμ
, Ĥe = −1

2
Δe − Z − 1

re

and

V̂ =
1

|re − rμ| −
1

re
.

If we neglect the perturbation V̂ , the system considered consists of two independent
subsystems: the muon and electron (with the nucleus charge screened to unity).

Note that a calculation of the Auger effect is analogous to the calculation of
the probability of inner conversion (see Problem 11.68), since we can consider the
muon subsystem as a nucleus. Moreover, equations that describe the dipole (or P -)
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Auger effect are obtained from the equations of problem 11.68 by replacing Z → Z − 1
and substituting the initial and final states of the muon wavefunction instead of the
nucleus wavefunction ψnuc

0,1 . The probability (per unit of time) of the process with two
K-electrons taken into account has the form:

wP =
32

3

(Z − 1)3e2

�v

m3
ee

6

�7
|d10|2. (2)

Compare to Eq. (8) from Problem 11.68. v is the velocity of the escaping electron,
and d10 is the matrix element of the muon dipole moment. In particular, for the muon
transition 2p → 1s we have

|d10|2 =
215

(310Z2m2
μ)

, v2 =
3

4
Z2mμ

in atomic units, mμ = 207, and according to (2) we obtain:

wμ(2p → 1s) ≈ 4.6 · 1011(Z − 1)3/Z3 s−1.

Compare to the probability of z photon emission ωemis ≈ 1.3 · 1011Z4 s−1.

In conclusion, we note that since the size of the muon orbit is an,μ ∼ n2/Zmμ,
while the size of the K-electron orbit is ∼ 1/Z, the condition of applicability of
Eq. (2) becomes the inequality n2 � mμ ≈ 200 (and that the escaping electron is
fast).

Problem 11.71

The same as in the previous problem, but for Δl = 0 (Auger S-transitions). Consider
the case, where the muon angular momentum in the initial and final states is equal to
zero. Consider also the special case of the muon transition 2s → 1s.

Solution

If the dipole Auger transition is analogous to the process of inner conversion for a
dipole nuclear transition (see Problem 11.68), then an Auger S-transition, in the case
where muon has the angular momentum l = 0 in the initial and final states, is the
analog of conversion for an E0-transition in nucleus (see Problem 11.69). In the same
way that the solution of the previous problem followed the solution of Problem 11.68,
the solution of this one follows Problem 11.69.

The probability of the transition considered (taking into account two K-electrons)
is described by the expressions

wS(n1s → n2s) =
8

9
(Z − 1)3k|Q0|2, Q0 =

∫
ψ∗
n200(rμ)r

2
μψn100(rμ)d

3rμ. (1)

Compare to Eqs. (5) and (2) from Problem 11.69.
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In particular, using the explicit expression for wavefunction ψn00 of a hydrogen-like
mesoatom, we find the value Q2

0 = 219/(310Z4m4
μ) for the muon transition 2s t → 1s,

and since here k2 = 3Z2mμ/4, then according to Eq. (1) we obtain

wS(2s → 1s) =
221√
3 311

(Z − 1)3

m
7/2
μ Z3

a.u. ≈ 2.21

(
Z − 1

Z

)3

109 s−1.

Problem 11.72

Classify (i.e., find all possible values of the following quantum numbers: total electron
spin S, total angular momentum L, and parity I) the lower autoionization states[285]

(AIS) of a two-electron atom or ion, connected to the electron configuration nlnl′,
with n = 2. Considering the interaction between the two electrons as a perturbation,
find energy levels for these states in the first order of perturbation theory. Determine
the true wavefunctions of the zeroth approximation.

Discuss the width of the AIS levels and their dependence on the nuclear charge, Z.

Solution

1) There are four (remembering spin, eight) independent one-particle states with the
principal quantum number n = 2: one 2s-state and three 2p-states (with lz = 0
and ±1). For the electron configuration 2s2, we have L = 0, I = +1, S = 0. The
wavefunction of such a term 1S+ has the form

ψ2s2 = ψ2s(r1)ψ2s(r2)χ
(−)
αβ , (1)

where ψ2s(r) =
√

Z3/8π(1− Zr/2)e−Zr/2 is the wavefunction of a hydrogen-like

atom’s 2s-state, while χ
(−)
αβ is the anti-symmetric spin wavefunction, which corre-

sponds to the value S = 0 (due to the Pauli principle there is no state with S = 1
for configuration 2s2).
For configuration 2s2p, we have L = 1, I = −1, and both singlet, S = 0, and

triplet, S = 1, states are possible. The coordinate parts of the wavefunctions for
such terms 1,3P− have the form:

ψ2s2p =
1√
2
{ψ2s(r1)ψ2p(r2)± ψ2p(r1)ψ2s(r2)}, (2)

where ψ2p(r) =
√
Z5/32π(a · r)e−Zr/2 is the wavefunction of the 2p-states. Here

|a| = 1 (see Problem 3.42), while signs + and − correspond to the values of S,
equal to 0 and 1.
Finally, with an even, I = +1, configuration 2p2, both singlet 1S+ and 1D+-

terms and triplet 3P+-term are involved. The wavefunctions for these terms are

[285] By autoionization states we mean states of atomic systems with two or more excited electrons that
are unstable against ionization (electron escape). So that when an excitation energy is transferred
to one of the electrons, the latter leaves the atom (ion). AIS are quasi-stationary states, and usually
appear as resonances.
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determined by the corresponding equation from Problem 11.17, where for ϕ(r) we
should take the radial wavefunction of the 2p-state. In particular, for the 1S+-term
we have

ψ2p2,L=0 =

√
3

96π
Z5(r1 · r2)e−Z(r1+r2)/2χ

(−)
αβ . (3)

If we neglect interaction between electrons, the energies of all these states are the
same and equal to E(0) = −2(Z2/2n2) = −Z2/4. This is larger than the energy of
the corresponding one-electron ion (ground-state), equal to−Z2/2, which shows the
instability of such states. As a result of electron–electron interaction, a transition
of one of the electrons to the 1s-state together with a simultaneous escape of the
other one is possible. Compare to Problem 11.12.

2) Let us now calculate a change in energy of the states considered due to mutual
electron interaction. We begin with the 1S+-terms. Since there are two of them
(for configurations 2s2 and 2p2), we should use the secular equation. A calculation
of the relevant matrix elements gives:

〈2s2| 1

|r1 − r2| |2s
2〉 = 77

512
Z, 〈2p2| 1

|r1 − r2| |2p
2〉 = 111

512
Z,

〈2s2| 1

|r1 − r2| |2p
2〉 = 〈2p2| 1

|r1 − r2| |2s
2〉 = − 45

512
√
3
Z. (4)

The methods for calculating the corresponding integrals are described in Problems
11.5, 11.10, and 11.17. Now, the solution of the secular equation allows us to find
shifts of the 1S+-terms and the true functions of the zeroth approximation:

E
(1)
1S,1(2) =

47∓√
241

256
Z =

{
0.123Z = E

(1)
1S,1,

0.244Z = E
(1)
1S,2,

(5)

|1S+, 1〉 = 0.880{|2s2〉+ 0.540|2p2〉}, (6)

|1S+, 2〉 = 0.880{−0.540|2s2〉+ |2p2〉}.
As is seen, in the lower of the split 1S+-terms, the configuration 2s2 is present
with a high probability; for it, we have w2s2,1 ≈ 0.774. In the other split 1S+-term,
the configuration 2p2 has a higher probability. Hence, these terms are sometimes
classified as 2s2 1S+ and 2p2 1S+. We should, though, take into account that the
“mixing” of configuration (6) strongly affects the widths of these auto-ionization
states.
Shifts of the other terms are determined by the mean value of the perturbation

V = |r1 − r2|−1 in the corresponding states, and are as follows,

E(1)(3P+) =
21

128
Z ≈ 0.164Z, E(1)(1D+) =

237

1280
Z ≈ 0.185Z,

E(1)(1(3)P−) =
83± 15

512
Z =

{
0.191Z, 1P−,
0.133Z, 3P−. (7)
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Note that the shift for configuration 2p2 can be calculated using Eq. (7) from
Problem 11.17.
From expressions (5) and (7), we see that one of the 1S+ terms has the lowest

energy (the other one has the highest energy). For this AIS, the energy of the
escaping electron is equal to Z2/4 + 0.123Z, which for a helium atom is 33.9 eV.
The excitation energy for this state from the atom ground-state (E0(He) = −79.0
eV) is 58.5 eV. (Although Z = 2 is not large, these values differ from exact ones by
only 0.5 eV, and for other terms the difference is not greater than 2 eV.)

3) Now consider the widths of the AIS. Their values to first order in the perturbation
V = |r1 − r2|−1 could be found by the usual equation for the transition probability
per unit of time (Γi = wi→f , � = 1):

wi→f = 2π

∫
|〈f |V̂ |i〉|2δ(Ef − Ei)dνf . (8)

To describe the final states |f〉 with a set of quantum numbers for the escaping
electron, we can choose k, l, m: Ek = k2/2. Since here another electron passes
to the 1s-state, but the total spin does not change after ionization, Sf = Si, then
the coordinate part of the wavefunction ψf can be obtained as a result of the
corresponding symmetrization (or anti-symmetrization) of the function

Ylm(n1)Rkl(r1, Z)ψ1s(r2), (9)

where Rkl is the radial wavefunction of an electron in the Coulomb potential,

Rkl =
2k|Γ(l + 1− iZ/k)|√

2π(2l + 1)!
(2kr)!e−ikr+πZ/2kF

(
iZ

k
+ l + 1, 2l + 2, 2ikr

)
.

Here, we have made a modification that takes into account the form of the
potential: −Z/r (instead of −1/r), and added the factor (2π)−1/2, corresponding
to wavefunction normalization ψklm = YlmRkl of the form:

〈klm|k′l′m′〉 = δll′δmm′δ(k − k′).

For such normalization, integration
∫
dνf . . . in Eq. (8) is reduced to

∑
lm

∫
dk . . .

and takes the form:

wi→f =
2 · 2π
k

∑
m

|〈k, lf ,m, 1s| 1

|r1 − r2| |ψi〉|2. (10)

The angular momentum of the escaping electron, lf , coincides with the angular
momentum L of the state considered. The wavefunction of the final state coincides
with Eq. (9), i.e., is not symmetrized; so we put an additional factor of 2 into Eq.
(10). It is important that the wavefunctions of the initial states, given above, are
symmetrized in the proper way.

Calculation of the radial part of the perturbation matrix element in Eq. (10) can
not be done analytically and requires use of numerical methods (integration over the
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angles is performed in the usual way, as, for example, in Problem 11.17). So, we will
limit oneself to only a few remarks about the width of auto-ionization states.

1) If for k we use the unperturbed value k2/2 = E
(0)
1 − E1s, i.e., k = Z/

√
2, then we

easily see that the width Γi = wi→f , according to Eq. (10), becomes independent
from the nuclear charge Z.

2) The numerical values of the width are quite different for different AIS. The lower
1S+- and also 1D+- and 1P−-terms (we can see that the width is two orders
of magnitude smaller than the characteristic value me4/�2 ≈ 27 eV, if we note
that according to Eqs. (6) and (7) the perturbation matrix element is of order
∼ 0.1− 0.2) have the largest width, Γ ∼ 0.2 eV. For the state 3P− and second
term of 1S+, the width is much (more than one order) lower. This is connected
to a strong cancellation in the matrix element of the contributions coming from
different terms. In the case of the 3P−-state, these are “direct” and “exchange”
interactions, while in case of the 1S+-term they are contributions coming from the
2s2- and 2p2-configurations (see Eq. (6)).

3) Calculation of the width in first order of perturbation theory for small values of Z
is not very accurate (the results have a rather qualitative nature). This is mainly
connected to the effect of nucleus screening for the escaping electron due to the
1s-electron.

4) Finally, note an interesting fact about the 3P+ state (for configuration 2p2) that has
the angular momentum L = 1, positive parity, and electron spin S = 1. The decay of
such a state with the transition of one electron to the 1s-state and the escape of the
other one is forbidden by the laws of angular momentum and parity conservation.
Indeed, the escaping electron must have the angular momentum lf = 1, but then
the parity of the final state becomes negative. This means that if we take into
account only Coulomb interaction, such a state, which exists on the background
of a continuous spectrum, remains truly bound. Relativistic corrections to the
interaction (specifically the spin-orbital interaction terms) lead to the appearance
of an ionization width for such a state.

Problem 11.73

Find the time-dependence of the μ+-muon polarization vector in the ground-state of
a muonium that is in a uniform magnetic field perpendicular to the initial muon
polarization (i.e., investigate muon spin precession). Consider the case of a weak

magnetic field, i.e., μ
(e)
B H � Δ, where μ

(e)
B is the electron Bohr magneton and Δ

is the hyperfine splitting of the muonium ground level (compare to Problem 11.2).
Assume that the electron is unpolarized at muonium formation, while the muon is
entirely polarized.[286]

[286] Muonium is a kind of hydrogen atom, whose “nucleus” is the μ+-muon. We can neglect the change
of muon and electron polarization during the process of muonium formation. Recall the main
characteristics of a muon: spin 1/2, mass mμ ≈ 207me, magnetic moment equal to e�/2mμc, and
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Solution

The Hamiltonian of the spin subsystem for the ground-state of muonium in a magnetic
field (directed along the axis z) takes the form:

Ĥ =
Δ

4
σ̂μ · σ̂(e) +

e�

2mec
Hσ̂(e)

z . (1)

The first term here describes the interaction of muon and electron spin magnetic
moments, and is defined by Eqs. (2) and (4) of Problem 11.2. Here,

Δ =
32π

3
μ
(e)
B μ

(μ)
B ψ2

1s(0)

is the hyperfine splitting of the ground, 1s-level of muonium. In the second term in Eq.
(1) we neglected the interaction of the muon magnetic moment with the magnetic field
due to the smallness (207 times) of the corresponding Bohr magneton in comparison

to electron’s μ
(e)
B .

Considering the interaction with the magnetic field as a perturbation (μ
(e)
B H � Δ),

we see that spin functions χSSz
of the electron–muon system that correspond to the

states with different values of the total spin S and its projection Sz (see Problem
5.10) are the true functions of the zeroth approximation for Hamiltonian (1). The
corresponding eigenvalues, ESSz

, are determined by Eqs. (VIII.1) in first-and second-
order perturbation theory (see also Problem 11.42):

E1,±1 =
Δ

4
± μ

(e)
B H, E10 ≈ Δ

4
+

(μ
(e)
B H)2

Δ
,

E00 = −3Δ

4
− (μ

(e)
B H)2

Δ
. (2)

For the temporal dependence of the spin wavefunction, according to Eq. (VI.2) we
have[287] (n ≡ S, Sz):

ψ(t) =
∑
n

cne
−iEnt/�χSSz

. (3)

Coefficients cn in this expansion are determined by initial conditions. Since for t = 0
the muon is polarized in a direction perpendicular to the magnetic field, then (choosing
this direction to be axis x) we have (see Problem 5.1):

ψ(0) ∝ χ
(μ)
sx=1/2, so that ψ(0) =

1√
2

(
1
1

)
μ

(
a1
a2

)
e

. (4)

lifetime τμ ≈ 2.2 · 10−6 s. Since the polarization of the muon could be easily measured by the
angular distribution of the positron that appears in its decay μ+ → e+νν̃, then the dynamics of
muon spin could be used for the investigation of material properties.

[287] First consider a pure spin state of a system, and then go to the description using the density matrix.
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Using the explicit form of spin functions χSSz
:

χ1(0),0 =
1√
2

{(
1
0

)
μ

(
0
1

)
e

±
(
0
1

)
μ

(
1
0

)
e

}
,

χ11 =

(
1
0

)
μ

(
1
0

)
e

, χ1,−1 =

(
0
1

)
μ

(
0
1

)
e

.

From the condition that wavefunction (3) coincides with function (4) at t = 0, we find:

c10 + c00 =
√
2c1,−1 = a1, c10 − c00 =

√
2c11 = a2. (5)

Therefore,

c1(0),0 =
a1 ± a2

2
.

The (complex) quantities ai uniquely define the system’s spin function ψ(t). Through
these coefficients, in the form of a bilinear combination a∗kai, any spin characteristics
of the electron–muon system may be expressed at an arbitrary moment of time. As
is seen from Eq. (4), these quantities, ai, determine the electron spin function at the
moment of time t = 0. If the initial state of the electron is given by a density matrix
ρ̂, then in the corresponding bilinear combination we should make the substitution:

aia
∗
k → aia∗k = ρik.

For an entirely unpolarized state (as in the conditions of this problem),

a1a∗1 = a2a∗2 =
1

2
, a1a∗2 = 0. (6)

For calculation of the muon polarization vector,

Pμ(t) = 〈ψ(t)|σ̂μ|ψ(t)〉,

we should first consider the action of the operators σ̂μ
z and σ̂μ

x + iσ̂μ
y on the spin

functions χSSz
. We find:

σ̂μ
z |1(0), 0〉 = |0(1), 0〉, σ̂μ

z |1,±1〉 = ±|1,±1〉,
(σ̂μ

x + iσ̂μ
y )|1(0), 0〉 = ±

√
2|1, 1〉, (σ̂μ

x + iσ̂μ
y )|1, 1〉 = 0,

(σ̂μ
x + iσ̂μ

y )|1,−1〉 =
√
2(|1, 0〉+ |0, 0〉).

Now, we see that

P (μ)
x (t) + iP (μ)

y (t) =
1

4

∑
k

eiωkt, P (μ)
z (t) = 0, (7)
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where

�ω1 = E11 − E10 = μ
(e)
B H− (μ

(e)
B H)2

Δ
, �ω3 = E00 − E1,−1 = �ω1 −Δ,

�ω2 = E10 − E1,−1 = μ
(e)
B H+

(μ
(e)
B H)2

Δ
, �ω4 = E11 − E00 = �ω2 +Δ. (8)

We now discuss these results:

1) For t = 0, we have P (0) = 1 – a fully polarized (along axis x) muon in accordance
with the problem condition. But in the following moments of time, P (t) < 1, so
that a depolarization occurs.

2) The dependence Px + iPy ∝ eiωt describes a uniform precession of the polarization
vector P(t) around axis z with the frequency ω. According to Eq. (7), we can
characterize the time–dependence of P(t) as a four-frequency precession.

3) The frequencies of precession, ωk, have essentially different orders of magnitude.
Two of them, ω3 and ω4, are large. For them,

|ω|
2π

≈ Δ

2π�
≡ ν0 ≈ 4.5 · 103 MHz.

Compare to 1420 MHz for hydrogen (see Problem 11.2). Frequencies ω1,2, due to

the condition μ
(e)
B H � Δ, have much lower values. If we average the vector P(t)

over the fast oscillations, with the period T = ν−1
0 ∼ 10−10 s (this time it is much

smaller than the muon lifetime), then Eq. (7) takes the form:

(Px + iPy) =
1

4
(eiω1t + eiω2t) =

1

2
eiωHt cos

(
�ω2

H

Δ
f

)
. (9)

This is a two-frequency precession. We have defined ωH = μ
(e)
B H/�. Let us note

that in the absence of a magnetic field, ω1 = ω2 = 0, so that 〈P(t)〉 = (1/2, 0, 0). In
this case, the depolarization degree of the muon does not depend on the hyperfine
splitting Δ (which is why the dynamics of muon spin is interesting in a magnetic
field).

Problem 11.74

Estimate the nuclear fusion reaction rate of dt → nα for a meso-molecular dtμ− ion
in a state with the rotational quantum number K = 0. How does the rate affect the
number of reaction events that are initiated by a single muon? Compare to Problem
11.59.

Hint

Use adiabatic approximation and “perturbation theory in terms of the scattering
length” (see Problem 11.4). The scattering length in the resonant s-state for a dt-
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system is as ≈ −(90 + i · 30) Fm (see the comment in the problem solution). Connect
the quantity |ψ(0)(0)|2 to the penetrability of the Coulomb barrier that divides the
nuclei in a mesomolecular ion.

Solution

The main equation of perturbation theory in terms of the scattering length for the
level shift (see, for example, Eq. (5) from Problem 11.4) remains valid even in the
presence of absorption on small distances inside the system. This absorption, which
corresponds to inelastic scattering, appears due to a mixing of different channels,[288]

which in the absence of a short-range potential act as independent systems dt and nα.
The scattering length here is a complex quantity. The change in system energy under
the short-range interaction is also complex ΔE = ΔEr − iΓ/2, and its imaginary part
describes the width of the s-level

Γ = −4π�2

m
|ψ(0)(0)|2Im as, (1)

and determines the lifetime τ = �/Γ and the reaction rate λf = τ−1 = Γ/� in this
state.

For the mesomolecular ion, the wavefunction ψ(0)(rα) in (1) should be taken to be
the wavefunction of the nucleus subsystem in the adiabatic approximation for the s-
state (since the rotational quantum number K = 0). A sketch of the effective potential
for this subsystem without the short-range nuclear part is given in Fig. 11.4.

Fig. 11.4

To estimate the quantity |ψ(0)(0)|2, we first note that the typical value of |ψ(0)(r)|2
in the relevant region where the nuclei are localized in the ion is of the order:

|ψchar|2 ∼ 3

4πR3
0

, (2a)

[288] This includes channels associated with the continuous spectrum (the nαμ-channel in this problem).
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where R0 = 2Lμ is the characteristic size of the ion (see Problem 11.30), Lμ =
�
2/mμe

2, and mμ is the mass of the muon. In relation with this estimate, note that
in the adiabatic approximation, a more natural estimate is the following

|ψchar|2 ∼ 1

4πR2
0 · 2aosc

. (2b)

This corresponds to a localization domain in a spherical layer of radius R0 and a
width of the order of twice the amplitude of nuclear oscillations in the ion. Since
aosc ∼ (mμ/Mnuc)

1/4Lμ (compare to Problems 11.25 and 11.30), then both estimates
become essentially the same.

But the quantity |ψ(0)(0)|2 is much smaller, which is connected to the existence of a
weakly-penetrable Coulomb barrier, that separates the “molecular” region of nuclear
motion and the nuclear region, where the fusion reaction dt → nα is taking place.
Taking this into account for |ψ(0)(0)|2, we have the following estimate:

|ψ(0)(0)|2 ∼ P (k)|ψchar|2 ≈ 3

16kaBL3
μ

e−2π/kaB . (3)

We have aB = �
2/me2, m is the nuclei reduced mass, and E = �

2k2/2m is the energy
of motion of the dt-system on nuclear distances. The factor

P (k) =
2π

kaB

1

exp{2π/kaB} − 1

characterizes a ratio of the wavefunction squared for a particle at r → 0 in the
Coulomb repulsive potential, U = e2/r, and that of a free particle; (here the dominant
exponential factor exp{−2π/kaB} for kaB < 1 can be calculated according to quasi-
classical equation (IX.7); see 9.31.)

Important in this problem is a numerical value of energy E in the expression for
P (k). It is defined from the following considerations: the effective potential of the
dt-system in the adiabatic approximation (see Fig. 11.4) outside the nuclear region
has the form U = e2/r + Eμ(r), where Eμ(r) is the energy of the ground muon term
for a fixed distance r from the nuclei. As r → 0 (the essential region of the Coulomb
barrier) we have

Eμ(r) ≈ −μ(2e2)2

2�2
≡ U0,

where μ = mμM(mμ +M),M = md +mt. This follows from the fact that for r � Lμ,
the molecular term Eμ(r) coincides with the ground level of the μ-mesoatom with the

nuclear charge Z = 2 and massM . If we denote by E
(0)
0ν the mesomolecular levels (with

K = 0) in the effective potential, then E = E
(0)
0ν − U0. Usual mesomolecular levels give

binding energies ε
(0)
0ν , which are counted from the ground level of the mesoatom with

the heaviest of the ion nuclei (this defines the bottom of the continuous spectrum for
separated nuclei). In this case,
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E
(0)
0ν = − μ̃e4

2�2
− ε

(0)
0ν ,

where μ̃ = mμmt/(mμ +mt), so that

E =
2μe4

�2
− μ̃e4

2�2
− ε

(0)
0ν ,

or E ≈ 8.3 keV−ε
(0)
0ν .

Using the following values for the dt-system aB = 24.0 fm, �2/ma2B = 60.0 keV,
Lμ = 2.56 · 10−11 cm, and E = 8 keV so that kaB = 0.52 (for binding energy of the
molecular levels, see Problem 11.30), and also using Eqs. (1) and (3) we find:

Γ ∼ 1.5 · 10−3 eV, τ ∼ 5 · 10−13 s−1. (4)

In conclusion, we make a few remarks

1) Nuclear reaction lead time in the mesomolecule is lower than the muon lifetime by
seven orders of magnitude. So, it does not play a noticeable role in the kinetics of
μ-catalysis, and does not affect the number of nuclear fusion events,[289] initiated
by a single muon. Compare to Problem 11.59.

2) We can notice a large value of scattering length for the dt-system. It is connected to
the existence of a quasi-stationary state with a small energy – nucleus 5He(3/2+)
(the energy of the resonance is ER ≈ 50 keV and the width is ΓR ≈ 70 keV; resonant
phenomena for scattering are discussed in Chapter 13, Sec. 3).
The value of τ given above corresponds to the resonant s-state of the dt-system

with the total spin I = 3/2. For the non-resonant state with I = 1/2, the evaluation
of τ (and Γ) differs from Eq. (4), but the conclusion about the fusion reaction lead
time being small remains valid for this state.

3) As mentioned in Problems 11.4 and 9.3, if s-states with a small energy exist in a
short-range potential then necessarily a reconstruction of the s-levels in the long-
range potential occurs. However, no reconstruction of the mesomolecular levels
under the influence of the nuclear resonance interaction actually takes place. This
is connected to the weak penetrability of the Coulomb barrier, which divides the
molecular and nuclear regions of nuclei motion in the mesomolecule. An analogous
situation takes place for states with a non-zero angular momentum due to the
centrifugal barrier (even in the absence of the Coulomb barrier). The shifts of
levels with l �= 0 in conditions of a resonance are also small. See Problem 13.36.

[289] Note that kaB ≈ √
3mμ/m and the exponent in the Coulomb barrier penetrability is ≈ −12.5.

If we now go back to the conventional atomic systems (replacing mμ with me), the value of the
exponent increases greatly (to approximately −180) and the molecule lifetime becomes so large
that the nuclear fusion reaction becomes unobservable.
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Atomic nucleus

1) Atomic nuclei consist of nucleons – protons and neutrons – that are bound together
by nuclear forces, which are characterized by a small radius and large strength.
Qualitative features of the nucleon-nucleon interactions can be described under
the following assumptions about the typical length scales and energy scales in the
system: the range of the nuclear forces is about R ≈ 2 · 10−13 cm, and the typical
potential for the same force is U0 ≈ 40 MeV.[290] For a proton-neutron system,
there exists a bound state (the only possible bound state in a two-nucleon system)
– the deuteron – whose binding energy is ε0 = 2.23 MeV and the deuteron has
quantum numbers, JP = 1+.

The striking similarity between the properties of the proton and neutron (both
have spin, s = 1/2, and very close masses: mp = 1836.1me and mn = 1838.6me)
reflects the concept of isotopic symmetry. This symmetry groups elementary parti-
cles, hadrons, into multiplets according to their quantum numbers in this symmetry
group, in analogy to ordinary spin. We refer to the corresponding quantum numbers
as isospin. It can be viewed as a vector quantity in an abstract three-dimensional
space, and is characterized by a definite value of the isospin, T .[291] Possible values
of T are connected to the eigenvalues, T (T + 1), of the operator, T̂2, and are equal
to 0, 1/2, 1, . . . . Particles, that belong to a given multiplet, differ from each other by
their value of electric charge that correspond to different values of the T3 component
of the isospin.[292] The number of particles in a multiplet is equal to (2T + 1). All
of them have the same spin, parity, and close masses.
The isospin of the nucleon is TN ≡ τ = 1/2. Isospin operators for the nucleon, τ̂

have the form of the standard Pauli matrices for spin s = 1/2:

τ̂1 =
1

2

(
0 1
1 0

)
, τ̂2 =

1

2

(
0 −i
i 0

)
, τ̂3 =

1

2

(
1 0
0 −1

)
. (XII.1)

[290] For comparison, Coulomb interaction on such a distance is UCoul = e2/R ≈ 0.7 MeV, and
the interaction of the nuclear magnetic moments is Umag ∼ μ2/R3 ∼ 10−2 MeV, where
μ = e�/mpc.

[291] In addition to the doublet of nucleons (p, n), we note the existence of the iso-triplet of pions
(π+, π0, π−), here T3(π±) = ±1, T3(π0) = 0.

[292] The “quantization axis” in the iso-space is usually dictated by isotopic symmetry breaking (which
is primarily due to electromagnetic interaction). There exists a relatively small splitting of the
masses of particles in multiplets due to breaking of this symmetry.
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The physical states of a nucleon – proton or neutron – are described by eigen-
functions of the operator, τ̂3, so that[293]

ψp = ψτ3=+1/2 =

(
1
0

)
, ψn = ψτ3=−1/2 =

(
0
1

)
, (XII.2)

where the eigenvalues, τ3 = ±1/2, determine the particle charge: q = e(1 + 2τ3)/2.

2) Classification of states of atomic nuclei can be obtained from the shell model. In
this model, each nucleon is considered as moving in some self-consistent field (mean
field) produced by other nucleons. For the model to produce results consistent with
experimental data (e.g., nucleon energy levels, Enrjl), one needs to introduce, apart
from a spherically symmetric self-consistent potential, U(r), a spin-orbit interaction
of the form, Ûls = −f(r)̂l · ŝ.
In the shell model, the spin and parity, JP , magnetic μ and quadrupole Q

moments of nuclei are determined only by nucleons outside the filled closed shells.
In particular, in the case of a nucleus with one nucleon in the shell nlj , it has spin
J = j = l ± 1/2 and parity P = (−1)l. Here, the operator for the nuclear magnetic

moment takes the form μ̂ = gl l̂+ gsŝ, where gl and gs are the orbital and spin
gyromagnetic factors, equal to gl = 1, gs = 5.59 for proton and gl = 0, gs = −3.83
for neutron (μ and g are expressed in units of the nuclear-magneton, equal to
e�/2mpc). Averaging this operator (see Problem 3.40) gives the magnetic moment
of a nucleon in the nlj-shell as follows:

μj ≡ gjj = 〈j, l, jz = j|μ̂z|j, l, jz = j〉 =

=
(gl + gs)j(j + 1) + (gl − gs)[l(l + 1)− 3/4]

2(j + 1)
. (XII.3)

The values of μj and gj for a series of states are given in the following table:

s1/2 p1/2 p3/2 d3/2 d5/2

Proton μ 2.79 −0.26 3.79 0.12 4.79

g 5.59 −0.53 2.53 0.08 1.92

Neutron μ −1.91 0.64 −1.91 1.15 −1.91

g −3.83 1.28 −1.27 0.77 −0.76

(XII.4)

The predictions of the shell model for a nucleus with only one nucleon above
a closed shell are the same as for a nucleus with a missing proton or neutron
(i.e., a hole), and the values of μ and g are also the same. For the nuclei with an
empty shell, the predictions of the shell model that employs one-particle nuclear
potentials are not unique. The properties of such nuclei depend strongly on residual
interactions of the nucleons with each other. From an analysis of experimental data,

[293] In the literature, a “reversed” classification is also used sometimes, where τ3 = +1/2 corresponds
to the neutron, and τ3 = −1/2 to the proton.
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the residual interactions for nucleons of the same charge suggest a “pairing” into
a state with zero total angular momentum. Hence, for an even number of protons
and/or neutrons, their total angular momentum in the ground state is equal to
zero. Here, the spin and parity of a nucleus with an odd number of nucleons are
entirely determined by quantum numbers of the unpaired nucleon.
The characteristic size of a nucleus that consists of A nucleons, is R ≈ r0A

1/3,
where r0 = 1.2 · 10−13 cm.

12.1 Nuclear forces—the fundamentals; The deuteron

Problem 12.1

Approximating the proton–neutron interaction by a spherically symmetric potential
well of radius[294] R = 1.7 · 10−13 cm, and using the value ε0 = 2.23 MeV for the
deuteron binding energy, evaluate the depth of the potential well, U0. Also, find
the probability of finding nucleons outside the well and the average distance between
the nucleons, 〈r〉.
Solution

For a particle with a mass μ, confined within a square potential well of the radius
R and depth U0, the wavefunction of the s-state with an energy E has the form
ψE = 1√

4πr
χE(r), with

χE =

{
A sin

(
1
�

√
2μ(U0 − ε0)r

)
, r < R,

Be−κr, r > R,

where ε0 = |E| = �
2κ2/2μ is the binding energy. Using the standard matching condi-

tions at r = R, we find the following equation for the spectrum:

x cotx = −κR, x =
1

�

√
2μ(U0 − ε0)R2. (1)

In the case of the deuteron, μ is given by the reduced mass of the proton–neutron
system, μ ≈ (mp +mn)/4. Here,

�
2

2μ
=

me

mp +mn
· 2�2

mea2B
· a2B ≈ 4.15 · 10−25 MeV · cm2,

and κR ≈ 0.394. From Eq. (1) we find x ≈ 1.79 and U0 = 48.1 MeV.

Now let us perform some estimates using general quantum-mechanical equations
that describe a weakly-bound particle in a potential well.

[294] Note that for a square well, the effective interaction radius, r0, coincides with its actual radius,
R; see Problem 13.43. Here, the value of R is chosen such that r0 agrees with the experimentally
measured value. See also Problem 11.36.



Atomic nucleus 601

At the threshold where the bound state just appears in a square well, the corre-
sponding “critical” wavefunction reads

χE=0(r) =

{
C sinλr, r < R,
1, r > R,

(2)

where λ =
√
2μŨ0/�2 and Ũ0 is the threshold value of the well depth corresponding

to the appearance of a new s-level (see Problem 4.25). Using the matching conditions
again at r = R gives

λR =

(
n+

1

2

)
π and C = (−1)n,

where n = 0, 1, 2 . . . . Note that λR = π/2 in the ground state. Hence for the proton–
neutron system, we have

Ũ0 =
π2

�
2

8μR2
= 35.4 MeV

(R = 1.7 · 10−13 cm). Here, for deuteron ε0 � Ũ0, so that it is indeed a weakly-bound
system. For the zero-energy level E = 0 to move down to the value E0 = −ε0, the well
must be deepened by δU0. In accordance with Problem 4.27, we find

δU0 ≈
√

2�2ε0
μR2

=
4

π

√
εŨ0 = 11.3 MeV

and

U0 = Ũ0 + δU0 ≈ 46.7 MeV. (3)

As shown, the value δU0 is much larger than ε0. This is a natural result, because
a weakly-bound particle with l = 0 is located mainly outside the region, where the
attractive forces act. We should also note that for a weakly bound state, strictly
speaking, the condition, κR � 1, must be fulfilled. This value for the deuteron is
κR ≈ 0.4, which is not so small. Nevertheless, Eq. (3) differs from the exact value
(48.1 MeV) by only 3%. This high accuracy of the method is due to the fact that the
corresponding expansion parameter is ε/Ũ0 � 1.

For a weakly-bound state, the wavefunction has the form

χE(r) ≈
√
2κCκ0e

−κrχE=0(r), (4)

where Cκ0 is the asymptotic coefficient (see Problem 11.36). Integrating the function,
χ2
E , in the region of the well and taking into account that κR � 1, we obtain

C2
κ0 = (1− κr0)

−1 = (1− κR)−1 ≈ 1.65. (5)
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The probability of finding the nucleons outside the well reads

wout =

∞∫
R

χ2
E(r)dr = C2

κ0e
−2κR ≈ 1.65e−0.79 ≈ 0.75,

while the mean distance between the nucleons is

〈r〉 ≈ C2
κ0

2κ
≈ 3.6 · 10−13 cm,

which is approximately twice as large as the range of the potential.

Problem 12.2

What is the magnetic moment of a system consisting of a proton and a neutron in the
following states:

a) 1S0; b) 3S1; c) 1P1; d) 3P0; e) 3P1; f) 3D1?

Use the values of magnetic moments, μp = 2.79 and μn = −1.91, of the free nucleons
(in nuclear magnetons). Using the fact that the deuteron has spin, Jd = 1, and its
magnetic moment is μd = 0.86, and that it is in a superposition of the 3S1- and

3D1

states, evaluate the magnitude of the admixture ofD-wave (compare to Problem 12.3).

Solution

The mean value of the z-component of a magnetic moment of a particle in a state
with Jz = J , is

μ0 = 〈J, Jz = J |μ̂z|J, Jz = J〉. (1)

For a system that consists of a proton and a neutron, we have:

μ̂ = μ̂orb + μ̂sp =
1

2
L̂+ μpσ̂p + μnσ̂n =

1

2
L̂+ (μp + μn)Ŝ+

1

2
(μp − μn)(σ̂p − σ̂n).

(2)

Here, again the magnetic moments are expressed in units of nuclear magnetons,
e�/2mpc. The orbital magnetic moment is connected to the proton motion and is

given by L̂/2, since the angular momentum of the proton is equal to a half of the total
angular momentum in the center-of-mass frame.

In the singlet, 1L, states (S = 0), we have Ŝ = σ̂p = σ̂n = 0 and J = L, so that
according to Eqs. (1) and (2), μ(1L) = L/2. In particular,

μ(1S0) = 0; μ(1P1) =
1

2
; μ(1D2) = 1 etc.

For the triplet 3LJ -state, (σ̂p − σ̂n) = 0 (S = 1 is symmetric, while the operator
(σ̂p − σ̂n) is antisymmetric with respect to permutation of the proton and neutron
spins), so that from Eqs. (1) and (2) it follows that
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μ(3LJ) = 〈J, Jz = J, L, S|1
2
L̂z + (μp + μn)Ŝz|J, Jz = J, L, S〉. (3)

Using the results of Problem 3.40, we obtain

μ(3LJ) =
1

2(J + 1)
{1.38J(J + 1)− 0.38[L(L+ 1)− 2]}. (4)

For example, we have

μ(3S1) = 0.88; μ(3P1) = 0.69; μ(3P0) = 0; μ(3D1) = 0.31.

For the deuteron, the experimental value of its magnetic moment, μ0 = 0.86, shows
that the wavefunction of the deuteron has Jd = 1 and exists in a superposition of the
S- and D-wave, and that the admixture of the D-wave is small, around wD ≈ 0.04
(compare to Problem 12.3).

Problem 12.3

The magnetic moment of the deuteron, described by the superposition of the (3S1 +
3

D1)-states, is equal to

μd = (1− w)μ(3S1) + wμ(3D1) ≈ 0.86 nuc.mag,

where μ(3S1) and μ(3D1) are the magnetic moments of the proton–neutron system in
the states 3S1 and 3D1, and w ≈ 0.04 is the admixture of the D-component.

Explain why no analog of the above relation for the magnetic moment exists for
the deuteron’s quadrupole moment. Note that the quadrupole moment is zero in the
3S1-state and negative in the 3D1 state. Its experimental value for the deuteron is
Qd ≈ 2.82 · 10−27 cm2 > 0.

Solution

Writing the deuteron wavefunction as a superposition of S- and D-waves, ψd = ψS +
ψD, where

〈ψd|ψd〉 = 1, 〈ψS |ψS〉 = 1− wD, 〈ψD|ψD〉 = wD ≈ 0.04

(a specific expression for the wavefunction, ψS,D, is given in Problem 12.5), we find:

μ =

∫
ψ∗
S μ̂ ψSdr +

∫
ψ∗
D μ̂ ψDdr. (1)

Here we have taken into account that the interference terms are equal to zero:

〈ψS |μ̂|ψD〉 = 〈ψD|μ̂|ψS〉 = 0.

Indeed, since μ̂ = μ̂orb + μ̂sp – see Problem 12.2 – we have μ̂orbψS = 1
2 L̂ψS = 0 (L = 0

for S-wave), and also

〈ψS |μ̂sp|ψD〉 ∝ 〈ψS |ψD〉 = 0



604 Exploring Quantum Mechanics

due to orthogonality of the wavefunctions with different values of L. The expression
for μd follows from Eq. (1).

For the quadrupole moment however, Q̂zz = e(3z2p − r2p), the situation is quite
different, since the interference term does not vanish:

1

4

{∫
ψ∗
S(3z

2 − r2)ψDdτ +

∫
ψ∗
D(3z2 − r2)ψSdτ

}
�= 0.

Moreover, taking into account the small D-wave admixture in the deuteron, we
expect that its contribution to the quadrupole moment ∝ wD would be much lower
than that of the interference term ∝ √

wD. This explains the positive value observed
experimentally.

Problem 12.4

Discuss experimentally observed properties of the deuteron that (discussed in the
previous problems of this Chapter) suggest that the proton–neutron interaction is
spin dependent? Consider the following spin-dependent potentials:

a) ÛS = V (r)σ̂1 · σ̂2 = V (r)(2Ŝ2 − 3);

b) Û = V (r)Ŝ · L̂ (spin-orbit interaction);

c) Û = V (r)[6(Ŝ · n)2 − 2Ŝ2] (tensor forces) (n = r/r, r = r1 − r2, Ŝ = 1/2(σ̂1 + σ̂2)
is the operator of the total spin)
and determine which of these potential(s), together with a central potential, could
explain the aforementioned properties of the deuteron. Find the integrals of motion
for these potentials.

Solution

Experimental data for a deuteron, and for its magnetic and quadrupole moment (see
also the previous problems), show that its wavefunction is a superposition of S- and
D-wave, so that the orbital angular momentum L does not have a definite value, as it
must be for spin-independent central forces. From the potentials given, only the third
one, which describes tensor forces, could lead to the given state of the deuteron.

a) Indeed, the potential in a) is central, although the magnitude of the interaction
does depend on spin: ÛS = −3V (r), if S = 0, and ÛS = V (r), if S = 1. For this
potential, the integrals of motion are the angular momentum, L, and the total
spin, S, which are separately conserved.

b) In the presence of spin-orbit interaction, L and S are not conserved separately, and
only the total angular momentum J = L+ S remains an integral of motion. Nev-
ertheless, this potential cannot lead to a superposition of S- and D-waves. Indeed,
although for such potential vectors L and S are not conserved, the corresponding
operators squared give rise to independent integrals of motion, L̂2 and Ŝ2, which
commute with the operator of spin-orbit interaction.
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c) The tensor interaction, unlike the spin-orbit interaction, does not conserve the
angular orbital momentum, nor its square. It leads to a state, that is a superposi-
tion 3S1+

3D1, which is qualitatively consistent with the experimentally observed
properties of the deuteron (see also the following problem).
Finally, note that even though the tensor potential does not conserve S, it still

conserves the value of S2. Also note that for all potentials considered in a), b),
and c), the total angular momentum J (and hence J2) and parity are integrals of
motion.

Problem 12.5

Show that the deuteron wavefunction can be written as follows:

ψd = ψ(3S1) + ψ(3D1) = [f0(r) + f2(r)Ŝ12]χS=1.

Here, Ŝ12 = 6(Ŝ · n)2 − 2Ŝ2, Ŝ = 1/2(σ̂1 + σ̂2) is the operator of the total nucleon
spin, and χS=1 is an arbitrary spin function for S = 1 (see also Problem 5.26).

Use the proton–neutron interaction in the form Û = US(r) + UT (r)Ŝ12 (a superpo-
sition of central and tensor interactions; see the previous problem) to obtain equations
for the radial functions, f0,2(r), of the deuteron. Prove also that a potential of tensor
forces, considered as a small perturbation, leads to a shift of the 3S-level that appears
only second-order perturbation theory.

Solution

1) A spherically symmetric wavefunction, ψ(3S1) = f0(r)χS=1, describes the state
with L = 0 and J = S. Hence, this wavefunction corresponds to the 3S1-wave.
Let us show now that the wavefunction ψ(3D1) = f2(r)Ŝ12χS=1 indeed describes

the 3D1-state. We write it in the form:

ψ(3D1) = f2(r){6nink − 2δik}ŜiŜkχS=1. (1)

The angular part of this wavefunction, Tik = 6nink − 2δik, is a symmetric tensor
of the second rank with zero trace. According to Problem 3.41, we confirm that
the wavefunction in Eq. (1) indeed describes a state with the angular momentum,
L = 2. Then, since the commutator [Ŝ2, ŜiŜk] = 0, we have:

Ŝ2ψ(3D1) = f2(r){6nink − 2δik}ŜiŜkŜ
2χS=1 = 2ψ(3D1),

i.e., the wavefunction, ψ(3D1), describes the state with spin S = 1. In an analogous

way, from the commutativity of Ĵ with the scalar operator f2(r)Ŝ12, it follows that

Ĵ2ψ(3D1) = f2(r){6nink − 2δik}ŜiŜkĴ
2χS=1 = 2ψ(3D1).

(since the spin part of the wavefunction, χS=1, does not depend on the angles, we

have Ĵ2χ = Ŝ2χ = 2χ). Hence, the wavefunction, ψ(3D1), corresponds to a state
with J = 1 and indeed describes a 3D1-wave.
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2) Let us discuss now the properties of the operator, Ŝ12 = 6(Ŝ · n)2 − 2Ŝ2. Taking into

account that (Ŝ · n)3 = (Ŝ · n) for spin S = 1 (see Problem 1.21), we obtain[295]

Ŝ2
12 = −2Ŝ12 + 4Ŝ2. (2)

Then, using the value of the integral∫
ninkdΩ =

4π

3
δik,

we find ∫
Ŝ12dΩ = 0,

∫
Ŝ2
12dΩ = 16πŜ2. (3)

Hence, we obtain the normalization condition for the wavefunction of the deuteron
as a superposition of 3S1 and 3D1 waves:

〈ψd|ψd〉 = 4π

∞∫
0

{|f0(r)|2 + 8|f2(r)|2}r2dr = 1, (4)

where 〈χS=1|χS=1〉 = 1. We also find that the shift of the 3S1-level vanishes in
first-order perturbation theory in the tensor interaction:

E(1) = 〈ψ(3S)|ÛT |ψ(3S)〉 = 0.

Now, the Schrödinger equation for the deuteron is(
− �

2m
Δ+ Û

)
ψd = Edψd

(where m is the reduced mass). Together with Eq. (2), the radial functions, f̃0,2 =
rf0,2, are described by the equations

− �
2

2m
f̃ ′′
0 + [US(r)− Ed]f̃0 + 8UT (r)f̃2 = 0

and [
− �

2

2m

d2

dr2
+

3�3

mr2
+ US(r)− 2UT (r)− Ed

]
f̃2 + UT (r)f̃0 = 0. (5)

Let us note that the tensor interaction causes transitions between states with
different values of the orbital angular momentum L (but with the same parity)
only in the triplet, S = 1, states. In the singlet states, S = 0, the tensor forces
are absent and the orbital angular momentum is an integral of motion, coinciding
with J .

[295] Since the possible values of S are 0 and 1, then (Ŝn)Ŝ2 = 2(Ŝn), (Ŝ2)2 = 2Ŝ2 and relation (2) is
valid for both S = 1 and S = 0; that is, for all states of the system of two nucleons.
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Finally, note (in connection with the deuteron wavefunction considered here)
that the relation

〈Ĵ〉 = χ∗Ŝχ

holds (see Problem 5.21).

Problem 12.6

For a system of two nucleons:

1) find the eigenfunctions and eigenvalues of the isospin (i.e., its value, T , and
projection, T3);

2) determine the value of the isospin, T , in the 2S+1L-state with a definite values of
the total spin S and the angular momentum, L (see Problem 10.9);

3) find the isospin part of the deuteron wavefunction.

Solution

1) Using the formal analogy between the isospin and spin, the wavefunctions ψTT3

of the two-nucleon system with definite values of the total isospin, T , and its
projection, T3, could be written as in Problem 5.10 (see also Eqs. (XII.1) and
(XII.2)):

ψ11 =

(
1
0

)
1

(
1
0

)
2

≡ ψP (1)ψP (2);

ψ10 =
1√
2

{(
1
0

)
1

(
0
1

)
2

+

(
0
1

)
1

(
1
0

)
2

}
≡

≡ 1√
2
{ψP (1)ψn(2) + ψn(1)ψP (2)};

ψ1,−1 =

(
0
1

)
1

(
0
1

)
2

≡ ψn(1)ψn(2); (1)

ψ00 =
1√
2

{(
1
0

)
1

(
0
1

)
2

−
(
0
1

)
1

(
1
0

)
2

}
≡

≡ 1√
2
{ψP (1)ψn(2)− ψn(1)ψP (2)}.

Let us emphasize that for the states with ψT,T3=0, each of the nucleons is not in
a state with a definite charge, but with the 50% probability could be in either the
proton or neutron states. This is a reason why an interaction that conserves isospin
has, generally speaking, an exchange character.

2) According to isotopic symmetry, the proton and neutron are considered as different
charge (or equivalently isospin) states of the same particle – a nucleon. Since a
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nucleon is a fermion, a wavefunction of a many-nucleon system must be anti-
symmetric with respect to permutation of particles – including the coordinate, spin,
and isospin degrees of freedom – which gives rise to a generalized Pauli principle.
For a two-nucleon system:

a) permutation of coordinates is equivalent to inversion with respect to the system
center of mass, and symmetry of the coordinate part of the wavefunction with a
given value of the angular momentum, L, is determined entirely by parity, (−1)L;

b) symmetry of the spinor part of the wavefunction for states with the total spin,
S, with respect to permutation of spin variables is determined by the factor
(−1)S+1;

c) symmetry of the isospin wavefunction is given by the factor (−1)T+1.
Therefore, permutation of two nucleons in the state, ψLST , with definite values

of quantum numbers L, S, and T reduces to a multiplication by (−1)L+S+T .
Using the condition that the wavefunction is anti-symmetric, we have the
relation:

(−1)T = (−1)L+S+1. (2)

In states with S = 1 and even values of L – as, for example, for the deuteron
(see Problem 12.5) – the isospin of two nucleons is T = 0. (Per the generalized
Pauli principle, we find that the T = 1 states with two identical nucleons – two
protons or two neutrons – are forbidden; see also Problem 10.9.)

3) The isospin part of the deuteron wavefunction with T = 0 is described by the
function ψ00 above.

Problem 12.7

Which properties of the real nuclear forces would have had to be “eliminated” if the
deuteron state were a superposition 1P1+

3P1 (in contrast to 3S1+
3D1 in the real

deuteron)? Discuss a possible interaction that could produce such a state.

Solution

In the 3P and 1P states, the proton–neutron system would have had different values
of the isospin, T = 1 and 0 respectively; see the previous problem. It means that the
interaction, which gives the superposition 1P1+

3P1, does not conserve the isospin, i.e.,
it is not isoscalar. As an example of such an interaction, we can write:

Û = V (r)(σ̂1 · τ̂ (1)
3 + σ̂2 · τ̂ (2)

3 )̂l =
1

2
V (r)(σ̂p − σ̂n) · l̂.

Compare with Problem 12.8.

Problem 12.8

Assume that nucleon–nucleon interaction has the following isotopic structure: Û =

V̂1 + V̂2τ̂
(1)
3 τ̂

(2)
3 , where V̂1,2 are isospin-independent operators (i.e., operators acting
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in the coordinate and/or spin space, symmetric under nucleon permutation) and find
the form of the interaction for a) two protons, b) two neutrons and c) a proton and w
neutron.

Does this interaction have 1) isotopic invariance; 2) charge symmetry?

Solution

Since for the proton and neutron, τ3p = +1/2 and τ3n = −1/2, then for the interaction
considered and different charge states, we have:

Ûpp = Ûnn = V̂1 +
1

4
V̂2, Ûpn = V̂1 − 1

4
V̂2.

The equality Ûpp = Ûnn shows the charge-independence of the interaction. But it

does not have isotopic invariance, since it is a superposition of the isoscalar V̂1 and

the tensor component V̂2τ̂
(1)
3 τ̂

(2)
3 . Hence, the interaction in the pn-system differs from

the interaction between two identical nucleons.

Problem 12.9

For the system of two nucleons, find the following:

1) the most general form of the isospin-invariant interaction, Û . Express it in terms
of the operators, ÛT , of the nucleon-nucleon interaction in states with a definite
value of isotopic spin: T = 0 and T = 1;

2) the isospin structure of the nucleon Coulomb interaction.

Solution

1) The desired form must be a scalar in the isospace, and as such could only contain
the following operators:

1̂, τ̂ 2
1,2, τ̂ 2

1 τ̂
2
2 , . . . , τ̂1τ̂2, (τ̂1 · τ̂2)2, . . . ,

where τ̂1,2 are (iso-vector) operators, acting on the isospin of a single nucleon.
Only two among these operators are independent: 1̂ and τ̂1τ̂2. Indeed, the operator,
τ̂ 2
1 = τ̂ 2

2 = 3/4, is proportional to the identity operator, and any power of τ̂1τ̂2 can
be expressed in terms of a linear combination of 1̂ and τ̂1τ̂2, because

(τ̂1τ̂2)
2 =

3

16
− 1

2
(τ̂1τ̂2)

(see Problem 5.12). Hence, a generic isospin-invariant interaction has the form

Û = V̂1 + V̂2(τ̂1τ̂2), (1)

where V̂1,2 are isospin-independent operators acting in the coordinate and/or spin
space, which are symmetric with respect to nucleon permutation.
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Since τ̂1 · τ̂2 = (1/2)T̂2 − 3/4, where T̂ is the total isospin operator of the two-
nucleon system, then according to Eq. (1) we obtain for states with a definite value
of T :

Û(T = 0) = V̂1 − 3

4
V̂2, Û(T = 1) = V̂1 +

1

4
V̂2. (2)

Hence, we can express V̂1,2 in terms of Û(T ) and write interaction (1) as follows:

Û =
1

4
(Û0 + 3Û1) + (Û1 − Û0)τ̂1 · τ̂2, (3)

where Û0,1 ≡ Û (T = 0, 1).

2) In a two-nucleon system, the Coulomb interaction is non-zero only if both nucleons
are in the charged, proton, state. Since the operator corresponding to the nucleon
charge is

q̂N =
e

2
(1 + 2τ̂3),

the Coulomb interaction has the form

ÛCoul =
e2

4|r1 − r2| (1 + 2τ̂
(1)
3 )(1 + 2τ̂

(2)
3 ). (4)

Clearly, the Coulomb interaction breaks both isospin invariance and charge
invariance.

Problem 12.10

Find the mean value of Coulomb interaction energy for protons inside a 3He nucleus
and estimate the size of the mirror nuclei, tritium 3H, and helium 3He. Use the fact
that in β-decay, 3H → 3He + e− + ν̃, the maximum kinetic energy of the electron
is ε0 = 17 keV. Also recall that the nuclei considered have no excited states, and
(mn −mp)× c2 ≈ 2.5mec

2 ≈ 1.3 MeV.

Solution

If isospin symmetry were exact, then the tritium and helium, 3He, would have had
many identical nuclear properties (masses, energy levels, and their quantum numbers),
and β-decay would have been prohibited by energy conservation. The breaking of
this symmetry originates primarily from the electromagnetic interaction, and results
in a difference between the 3H and 3He masses and hence the corresponding rest
energies, Mc2.

This difference between the nucleon masses is basically due to the[296] masses of
the proton and neutron being different and the Coulomb interaction between protons
in the nucleus 3He. We have

[296] Here we neglect both the interaction of the nucleon magnetic moments (which is much smaller
than the Coulomb interaction) and also the influence of electromagnetic interactions on the nuclear
potential.
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[M(3H)−M(3He)]c2 = (mn −mp)c
2 −

∫
e2

r
|ψ|2dτ,

where ψ is the wavefunction of the 3He nucleus, and r = r1 − r2 is the distance between
the protons. Taking into account the expression

mec
2 + ε0 = [M(3H)−M(3He)]c2,

we find

UCoul =

〈
e2

r

〉
= (mn −mp −me)c

2 − ε0 ≈ 1.5mec
2 ≈ 0.77 MeV.

This result can be used to estimate the mean size, R:

R ∼ 〈r〉 ∼
[〈

1

r

〉]−1

≈ 1.9 · 10−13 cm

(Here we used e2/aB ≈ 27 eV and aB ≈ 0.53 · 10−8 cm.)

Problem 12.11

As mentioned before, nuclear sizes are determined by the relation R = r0A
1/3, where

A is the number of nucleons in a nucleus.

Estimate the value of r0 from β+-decay data for a nucleus that contains (Z + 1)
protons and Z neutrons, so that A = 2Z + 1. Express it in terms of the maximum
energy of positron decay, ε0. Take into consideration that the decaying nuclei and
its decay product are mirror nuclei in the same states (that is, they have the same
quantum numbers, except for the T3 isospin component). Consider the Coulomb
interaction of protons inside the nucleus and setting it equal to the electrostatic
energy of a uniformly charged ball with the same charge and radius as the nucleus.
Obtain a numerical estimate of r0 from the data, ε0 = 3.48 MeV, for the decay
27
14Si →27

13 Al + e+ + ν.

Solution

Using the mass difference between the mirror nuclei (given in previous problem) and
the value UCoul = 3(Ze)2/5R, corresponding to the Coulomb energy of a charged ball
(with the charge, Ze, and radius, R), we find

ε0 = −(mn −mp)c
2 +

3(2Z + 1)e2

5(2Z + 1)1/3r0
,

where the last term is the difference between the electrostatic energies of two full-
spheres with the same radii R = r0A

1/3, but different charges, (Z + 1)e and Ze (here,
A = 2Z + 1). Hence,
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r0 =
3(2Z + 1)

5(2Z + 1)1/3
e2

(ε0 +Δ)
,

where Δ = (mn −mp)c
2 ≈ 1.29 MeV, and from the β-decay data for the nucleus27Si

we obtain: r0 ≈ 1.6 · 10−13 cm.

12.2 The shell model

Problem 12.12

Assuming that the self-consistent field inside a nucleus can be approximated by the
potential, U(r) = −U0 +mω2r2/2 (m is the mass of the nucleon), find single-particle
energy levels.

What are the values of the magic numbers given by such a model of the self-
consistent potential?

What are the predictions of the model for the angular momenta and parities of the
nuclear ground states?

Estimate the value of the model parameter, �ω, using the nuclei size data.

Solution

To find the single-particle energy levels and the corresponding eigenfunctions, we
consider the Schrödinger equation,[

− �
2

2m
Δ− U0 +

1

2
mω2r2

]
ψN = ENψN ,

which was solved before in Problem 4.4. Here,

EN = −U0 + �ω

(
N +

3

2

)
, N = 2nr + l = 0, 1, 2, . . . .

For every level with a given value of N , there exist one-particle states, ψnrlm,
with the angular momenta, l = N,N − 2, . . . , 1(0). Therefore, the level degeneracy is
G(N) = (N + 1)(N + 2)/2 (without taking the nucleon spin into account).

Fig. 12.1 shows the spectrum of the single-particle levels for the potential consid-
ered. Displayed at right are the following quantities: G(N) is the level degeneracy;
n(N) = 2G(N) is the maximum number of nucleons for each charged state, which
could occupy a given level (the doubling of G(N) is due to spin); and M(N) is the
maximum number of nucleons in each charged state, which could be placed on all
levels, starting from the lowest and ending with M(N + 1) = M(N) + n(N + 1).

The magic numbers, M(N), are equal to 2, 8, 20, 40, 70, . . .

The accidental degeneracy of the levels is a specific peculiarity of the oscillator
potential, which possesses an additional symmetry. If we slightly deform the potential
by δU(r), the accidental degeneracy is lifted and the degenerate level splits into as
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Fig. 12.1

many sublevels as there are different values of l that correspond to it.[297] This fact is
illustrated in Fig. 12.2, where a splitting of the levels with N = 3 and 4 is presented
schematically.

Fig. 12.2

The model does not provide well-defined predictions for the value of the total
nuclear spin, J , due to the large degeneracy of the levels. However, it does provide
accurate predictions for the parity in the ground states, which is related to the parity,
P = (−1)l = (−1)N , of all single-particle states that correspond to the level with a
givenN , and the fact that the parity is a multiplicative quantum number. For example,
the ground state of the nucleus 13

6 C has a negative parity, while that for of 17
8 O is

positive.

To estimate the parameter, �ω, for nuclei with A ≈ 2Z � 1, we equate the size of
the nucleus, R = r0A

1/3, where r0 = 1.2 · 10−13 cm, to the “radius” R(Nmax) of the
quasi-classical orbit for a nucleon in an outer filled level that is given by the relation

mω2R2(Nmax) = �ω(2Nmax + 3).

Taking into account the estimate Nmax = (3A/2)1/3 (as follows from the condition
A =

∑
N≤Nmax

4G(N) ≈ ∑
N≤Nmax

2N2 ≈ 2
3N

2
max, with the sum replaced by an integral),

we find

�ω ≈ 2Nmax�
2

mr20A
2/3

≈ 60A−1/3 MeV.

[297] The order of the sublevels l depends on a specific form of the perturbation, δU(r).
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Problem 12.13

Using the conditions of the previous problem, discuss the effect of adding a spin-
orbital interaction of the form Û1s = −αl̂ · ŝ on the one-nucleon energy spectrum. For
α = �ω/10, provide a graphical illustration of the low-lying single-particle levels.[298]

In the framework of the model considered, find the angular momenta (spins) and
parities of the ground states of the following nuclei: 6

2He, 6
3Li,

10
5 B, 12

6 C, 13
6 C, 13

7 N, 14
6 C,

16
8 O, 17

8 O, 27
13Al, and 40

20Ca.

Solution

The energy levels of a particle with spin in a central potential do not depend on the
spin and are determined only by quantum numbers nr, l (but not lz, sz). With a spin-
orbital interaction present, the energy of a particle (with spin, s = 1/2, and a certain
value of l) splits into two sub-levels, corresponding to the values j = l ± 1/2 of the total
angular momenta (except for s-levels). In this case the “good” quantum numbers are
the total angular momenta j, its projection jz, and parity P = (−1)l. (Even though l
itself is not conserved, the orbital angular momentum squared remains an integral of
motion; i.e., the operator, l̂2, commutes with Hamiltonian.) Hence, the eigenfunctions
of the Hamiltonian can be chosen in the form:

ψE(r) = f(r)ψjljz (n),

where the spin-orbit functions, ψjljz , were discussed in Problem 5.24 (their explicit
form is not germane to this problem).

Since the operator, l̂ · σ̂ = ĵ2 − l̂2 − 3/4, for states with definite j and l, also has
definite value:

l̂ · σ̂ =

{
l, in the state with j = l + 1

2 ,

−l − 1, in the state with j = l − 1
2 ,

the spin-orbit interaction gives the following splitting:

ΔEjl =

{
α(l + 1), j = l − 1

2 ,

−αl, j = l + 1
2

(1)

to the unperturbed level, Enrl, and is independent of the concrete form of the central
potential, U(r). Therefore, the energy levels are described by the expression:

Enrjl = −U0 + �ω

(
2nr + l +

3

2

)
+ΔEjl. (2)

The width of the level splitting is

ΔEl = Ej=l−1/2,l − Ej=l+1/2,l = (2l + 1)α, l �= 0,

[298] The parameter α > 0, because, according to experiment, the level with j = l + 1/2 lies below that
with j = l − 1/2.
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and it increases with increasing l. For degenerate levels, the maximum value of the
orbital angular momentum is lmax = N , so for them the splitting is

ΔEN = (2N + 1)α, N ≥ 1.

Let us also note that the mean value of level shift vanishes as follows:∑
j

(2j + 1)ΔEjl = 0.

The left-hand side of Fig. 12.3 shows a level splitting for the unperturbed oscillator
with N = 2; its right-hand side displays the low-lying single-particle levels of our
model.

Fig. 12.3

Taking into account that the nuclear ground state in the shell model is defined by
putting the nucleons on the lowest one-particle levels with the Pauli principle taken
into account (the Aufbau building-up principle), the total angular momentum, J , and
the parity, P , of the filled shells are given by JP = 0+, while the quantum numbers of
the “hole-like” states are the same as those of the corresponding single-particle level.
This yields the following predictions for the spins and parities of the ground states of
the given nuclei:

1) For the nuclei 12C, 14C, 16O, and 40Ca we find JP = 0+ (these nuclei have only
filled shells).

2) The nuclei 13C, 13N, 17O, and 27Al have only one nucleon (proton or neutron) or
one hole above the filled shells, whose quantum numbers determine JP of these
nuclei and are equal to (1/2)−, (1/2)−, (5/2)+, and (5/2)+ respectively.

3) Predictions made by the shell model with respect to spin (but not parity) for 6He,
6Li, 10B are not unique. For example, for 6Li, which has a (1s)4 proton and a
neutron in the state 1p3/2 above the filled shell, JP could take one of the following
values: 3+, 2+, 1+, 0+. In the same way, we obtain the predicted values for 10B,
which has one proton and one neutron hole in the shell 1p3/2.

6He has two neutrons
in state 1p3/2 above the full shell (1s)4, and according to the model the possible
values of JP are 2+ and 0+ (quantum numbers 3+ and 1+ are forbidden by the Pauli
principle, see Problem 12.6). But if we take into account the “pairing effect” due
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to the residual interactions of neutrons, then for the nucleus 6He, the prediction is
unique: JP = 0+.

Problem 12.14

Using the shell model, find the spin–isospin dependence of the wavefunctions for the
tritium (3H) and helium (3He) nuclear ground-states.

Solution

In the nuclei considered, the three nucleons are in the 1s-shell. Such a configuration
could be considered as one hole in the 1s-state, which defines the quantum numbers –
spin, parity and isospin – of these nuclei. JP = (1/2)+, T = 1/2 (here T3 = −1/2 and
+1/2 for the nuclei, 3H and 3He, respectively).

The orbital (coordinate) part of their wavefunction is symmetric with respect to
permutation of the nucleon coordinates (which all are in the 1s orbital state). Hence,
the spin–isospin part of the wavefunction must be anti-symmetric (see Problem 12.6).
Its explicit form is found by anti-symmetrizing the wavefunction of a system of
identical fermions with given occupied single-particle states. For brevity, below, we use
the following notation for the spin–isospin wavefunctions: p↑(1) is the wavefunction
of the first nucleon in the proton-state with the definite value sz = +1/2 of the spin
projection, and so forth.

If the three nucleons occupy the states p↑, p↓, and n↑, then the spin-isospin part
of the wavefunction is defined by the determinant below

ψT3=1/2,Sz=1/2 =
1√
6

∣∣∣∣∣∣
p↑(1) p↓(1) n↑(1)
p↑(2) p↓(2) n↑(2)
p↑(3) p↓(3) n↑(3)

∣∣∣∣∣∣. (1)

This wavefunction corresponds to the 3He nucleus in the Jz = +1/2 state.

Making the substitution p ↔ n in Eq. (1), we obtain a spin–isospin wavefunction
for 3H nuclei with Jz = +1/2. In the same way, substitutions ↑↔↓ give wavefunctions
for the Jz = −1/2 states.

Problem 12.15

Find possible values of the total angular momentum, J , and the isospin, T , for nuclei
that contain two nucleons in states p1/2 with the same n above filled shells. The nuclei
with such configurations are 14

6 C, 14
7 N, and 14

8 O (two nucleons above the filled shells:
(1s1/2)

4(1p3/2)
8).

Solution

Since J and the isospin of the filled shells are zero, J and T are determined by the
nucleons above the closed shells. Here, the possible values of J and T are restricted
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by the anti-symmetry constraint (in accordance with the generalized Pauli principle;
see also Problem 12.6) on the nucleon wavefunction.

Notice that the isospin part of a two-nucleon wavefunction is symmetric with
respect to isospin permutation, if T = 1, and is antisymmetric if T = 0; also, the
wavefunction of two nucleons with the same angular momenta, j1 = j2 = 1/2, is
symmetric with respect to permutation of the jz-variables, if J = 2j, 2j − 2, . . . , and
it is antisymmetric, if J = 2j − 1, 2j − 3, . . . . Finally, taking into account the same
radial dependence of the wavefunction for the two fermions, we see that:

1) for T = 1, only J = 2j − 1, 2j − 3, . . . are possible;

2) for T = 0, only J = 2j, 2j − 2, . . . are possible.

Problem 12.16

The same as in the previous problem, but for two nucleons in the state p3/2.

Solution

For T = 1 only J = 2 and J = 0 are possible; while for T = 0, only J = 3 and J = 1
are allowed.

Problem 12.17

Use the shell model to find the spin and magnetic moments of the following nuclei in
their ground states:[299]

3H

(
J =

1

2
, μ = 2.91

)
; 3He

(
1

2
, −2.13

)
;

11
5 B

(
3

2
, 2.69

)
; 13

6 C

(
1

2
, 0.70

)
; 15

7 N

(
1

2
, −0.28

)
;

17
8 O

(
5

2
, −1.89

)
; 29

14Si

(
1

2
, −0.55

)
.

Use the scheme for one-particle levels from Problem 12.13.

Solution

Taking into account the hierarchy of one-nucleon levels found in Problem 12.13, we see
that indeed the nuclei considered contain only either one nucleon or one hole above
the filled shells. Therefore, the nuclear spin J and parity P are determined by this
single-particle entity, and according to Eq. (XII.4) the same holds for the moment, μ.

[299] We indicate the experimental values of the spin J and magnetic moment μ of a nucleus in brackets.
Note that the nuclei under consideration in this problem either contain only one nucleon above
their filled shells or have one hole in a filled shell.
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Nucleus JP μ Nucleus JP μ

3H(p(1s1/2)) 1/2+ 2.79 13N(p(1p1/2)) 1/2− −0.26

3He(n(1s1/2)) 1/2+ −1.91 17O(n(1d5/2)) 5/2+ −1.91

11B(p(1p3/2)
−1) 3/2− 3.79 29Si(n(2s1/2)) 1/2+ −1.91

13C(n(1p1/2)) 1/2− 0.64

The table provides a nucleus configuration only above the filled shells; (nlj)−1 denotes
the existence of a hole in the state nlj.

Agreement between the calculated and experimental values μ is quite good, except
for the nuclei 11B and 29Si.

Problem 12.18

In the shell model, find the magnetic moment of a nucleus that contains one proton and
one neutron (or the corresponding hole) above filled shells in the states nlj depending
on the nuclear spin J .

Compare the results with experimental data for the following nuclei:

2H(J = 1, μ = 0.86) ; 6
3Li (1, 0.82);

10
5 B (3, 1.80) ; 14

7 N(1, 0.40).

Use the one-nuclei level scheme from Problem 12.13.

Solution

In the shell model, the magnetic moment, spin, and parity of a nucleus are determined
by the nucleons above the filled shells. In this case, the magnetic moment operator
takes the form (see Problem 12.20):

μ̂ = gpĵp + gnĵn, (1)

where gp,n(l, j) are the gyromagnetic factors for the proton and neutron in the state
lj ; see table (XII.4). Averaging this operator and using the results of Problem 3.40,
we find the magnetic moment of the nucleus in the configuration p(nlj)

1n(nlj)
1 and

for the nuclear spin, J (here, Ĵ = ĵp + ĵn and jp = jn = j), as follows:

μ(J) = 〈J, Jz = J |μ̂z|J, Jz = J〉 = 1

2
[gp(l, j) + gn(l, j)]J. (2)

This equation also determines the magnetic moment of a nucleus that has one proton
and one neutron hole in the state nlj . Equation (2) yields:
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Nucleus J μ

2H(p(1s)1, n(1s)1) 1 0.88

6Li(p(1p3/2)
1, n(1p3/2)

1) 1 0.63

10B(p(1p3/2)
−1, n(1p3/2)

−1) 3 1.89

14N(p(1p1/2)
1, n(1p1/2)

1) 1 0.38

Problem 12.19

Calculate the magnetic moment of a nucleus that contains one proton and one
neutron (or the corresponding holes) above filled shells in the same states within
the LS-coupling scheme.[300]

Apply the result obtained to the ground state of 6
3Li, which has spin J = 1.

Assuming that the nucleons above the filled shell (1s)4 are in the 1p-state, find the
nuclear magnetic moment for different possible states L and S, and compare these
results to the experimental value of μexp = 0.82, and also with the results of the
previous problem. What is the isospin of the states considered?

Solution

The problem involves the nuclear magnetic moment operator in the LS-coupling
scheme,

μ̂ = gLL̂+ gSŜ,

where gL,S are the orbital and spin gyromagnetic factors for the nuclei (unfilled shell).
Averaging this operator according to Problem 3.40, we find

μ(L, S, J) = 〈J, Jz = J |μ̂z|J, Jz = J〉 =

=
1

2(J + 1)
{(gL + gS)J(J + 1) + (gL − gS)[L(L+ 1)− S(S + 1)]}, (1)

where L, S are the total angular and spin momenta of the nucleons, which, along with
J , characterizes the state of a nucleus in the framework of the LS-coupling scheme.

Let us find gL,S for the proton–neutron system. The orbital magnetic moment is
given by (see Problem 12.21)

μ̂orb = gl,p l̂p + gl,n l̂n,

with the gyromagnetic factors gl,p = 1 and gl,p = 0, and it takes the form μ̂orb = gLL̂
only after averaging over the states with well-defined values of L. As well as above,
we take advantage of the results of Problem 3.40 and obtain (here lp = ln):

[300] Here, the single-particle levels are characterized by quantum numbers n, l, but not n, l, j, as in
the jj-coupling scheme.
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μL = gLL, gL =
1

2
(gl,p + gl,n) =

1

2
. (2)

Similarly, we find

μS = gSS, gS =
1

2
(gs,p + gs,n) = 0.88, (3)

and according to Eqs. (1), (2), and (3) we obtain:

μ(L, S, J) = 0.69J − 0.19

(J + 1)
[L(L+ 1)− S(S + 1)]. (4)

If we apply Eq. (4) to the nucleus 6Li with J = 1 for different values of L, S (consistent
with J = 1), it gives

μ(0, 1, 1) = 0.88 (T = 0); μ(2, 1, 1) = 0.31 (T = 0),

μ(1, 0, 1) = 0.50 (T = 0); μ(1, 1, 1) = 0.69 (T = 1),

where we provide the values of the isospin T for the corresponding nuclear states (see
Problems 12.6 and 12.15). Experimental data for 6Li show a tendency towards the
LS-coupling scheme in this nucleus, here L = 0, S = 1.

Problem 12.20

Use the jj-coupling scheme to find the magnetic moment of a nucleus that has the same
number of protons and neutrons above filled shells in the same nlj states depending
on the value of J .

Apply the result to the nucleus 22
11Na that has J = 3 and the magnetic moment

μexp = 1.75.

Solution

The magnetic moment operator of a nucleus in an nlj state can be written in the form
(see Problem 12.9):

μ̂N = gp(l, j)

(
1

2
+ τ̂3

)
ĵ+ gn(l, j)

(
1

2
− τ̂3

)
ĵ,

where the gyromagnetic factors, gp,n, are determined by Eqs. (XII.3) and (XII.4).
Hence, for these nuclei,

μ̂ =
1

2
(gp + gn)

∑
a

ĵa + (gp − gn)
∑
a

τ̂3,aĵa, (1)

where the sum is taken over all the nucleons in the (unfilled) shell nlj . If we average
this operator over the nuclear states with a definite value of the isospin T , the second
sum vanishes due to the fact that T3 = 0; indeed,
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〈T, T3 = 0|τ̂3a|T, T3 = 0〉 ∝ 〈T, T3 = 0|T̂3|T, T3 = 0〉 = 0.

Hence, the nuclear magnetic moment is determined by the first sum in Eq. (1), and

since
∑
a
ĵa = Ĵ, we have

μ(J) =
1

2
[gp(l, j) + gn(l, j)]J. (2)

22
11Na in its ground state has the nucleon configuration p(1d5/2)

3n(1d5/2)
3 above

the closed shells; see Problem 12.13. Taking into account the values of gp,n(l, j)
according to Eq. (2), we find the shell model prediction for the magnetic moment
of the nucleus 22Na (that has the spin J = 3): μshell = 1.74, which is near-identical to
the experimental value: μexp = 1.75.

Problem 12.21

The same as in the previous problem, but using the LS-coupling scheme.

Solution

The magnetic moment here takes the form:

μ̂N = (gl,p l̂+ gs,pŝ)

(
1

2
+ τ̂3

)
+ (gl,n l̂+ gs,nŝ)

(
1

2
− τ̂3

)
,

where the gyromagnetic factors are gl,p = 1, gl,n = 0, gs,p = 5.59, gs,n = −3.83. Hence,
for the nucleus we have

μ̂ = gLL̂+ gSŜ+
∑
a

[(glp − gln)̂la + (gsp − gsn)ŝa]τ̂3a, (1)

L̂ =
∑
a

l̂a, Ŝ =
∑
a

ŝa, gL =
glp + gln

2
=

1

2
,

gS =
gsp + gsn

2
= 0.88,

where the sum is taken over the unfilled shell (see Eq. (1) of the previous problem,
which determines the magnetic moment in the jj-coupling scheme).

After averaging Eq. (1) over the nuclear states that correspond to a definite value
of the isospin T and its projection T3 = 0, the last term vanishes. Hence the magnetic
moment of such a nucleus is determined only by the first, isoscalar part, μ̂isosc =
gLL̂+ gSŜ, of the operator μ̂. Therefore,

μ(L, S, J) =
(gL + gS)J(J + 1) + (gL − gS)[L(L+ 1)− S(S + 1)]

2(J + 1)
. (2)

See Problems 12.19 and 12.20.



622 Exploring Quantum Mechanics

Problem 12.22

Using the shell model, find a relation between the magnetic moments of the ground
states of the mirror nuclei. Consider all nucleons (of both charge states) to be in same
states nlj above filled shells.

Solution

The magnetic moment operator, where all the nucleons are above the filled shells and
are in the same states, nlj, has the form (see Problem 12.20):

μ̂ =
1

2
[gp(l, j) + gn(l, j)]Ĵ+ [gp(l, j)− gn(l, j)]

∑
a

τ̂3aĵa.

After taking the expectation value (see also Problems 12.18 and 12.21), we obtain

μ = μisosc + μisovec,

where

μisosc =
1

2
(gp + gn)J, μisovec = (gp − gn)

〈∣∣∣∣∣∑
a

τ̂3aĵza

∣∣∣∣∣
〉
. (1)

Let us denote the mirror nuclei as A and A. Since they differ from each other only by
the sign of the isospin projection T3, their isoscalar parts of the magnetic moment are
the same, while the isovector parts have the opposite signs, so that

μ(A) + μ(A) = [gp(l, j) + gn(l, j)]J. (2)

For the mirror nuclei, 3H and 3He, Eq. (2) gives

μ(3H) + μ(3He) = 0.88.

Note that the experimental value is 0.78 (see also Problem 12.17).

Problem 12.23

Find the quadrupole moment, Q0, of nuclei that have only one proton above filled
shells, for the states: a) s1/2, b) p3/2, and c) d5/2 (express Q0 in terms of 〈r2p〉).
Consider A � 1.

Solution

Let us remind ourselves that the following mean value actually defines the nuclear
quadrupole moment:

Q0 = 〈J, Jz = J |
∑
p

(3z2p − r2p)|J, Jz = J〉.
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For the nuclei considered, the dominant contribution to Q0 comes from the proton
above filled shells, hence

Q0 ≈
∫

ψ∗
nj lj (3 cos

2 θ − 1)ψnj ljr
2dV, (1)

where ψnj lj is the wavefunction of the proton, J = j, and Jz = jz. Since in this
problem, j = l + 1/2, the wavefunction takes the form:

ψnj lj = Yll(n)

(
1
0

)
f(r), |Yll|2 =

(2l + 1)!!

2l+2πl!
sin2l θ.

Here, according to Eq. (1), we find

Q0 =
(2l + 1)!!

2l+2πl!

∫
(3 cos2 θ − 1) sin2l θdΩ〈r2p〉, (2)

where

〈r2p〉 = 〈njlj|r2|njlj〉 =
∞∫
0

r4f2(r)dr

is the mean value of the radius-vector squared for the proton.

An elementary integration over the angles in Eq. (2) gives

a) Q0(s1/2) = 0; b) Q0(p3/2) = −2

5
〈r2p〉; c) Q0(d5/2) = −4

7
〈r2p〉.

Note the signs of Q0 (see also the following two problems).

When calculating the quadrupole moment, we can neglect the contribution from
protons in filled shells. They give a spherically symmetric charge distribution, whose
quadrupole moment with respect to the symmetry center is guaranteed to vanish. Their
contribution to Q0 (defined relative to the nuclear center of mass) is ∼ Z/A2 � 1 of
the value (2) (see Problem 12.26).

Finally, the quadrupole moments of the nuclei that have one proton above filled
shell and one proton hole, respectively, differ by a sign (in contrast to the magnetic
moments of such nuclei).

Problem 12.24

Generalize the results of the previous problem to the case of a nucleus with a proton
outside a filled shell in a state with an arbitrary value of l and j = l + 1/2.
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Solution

The quadrupole moment is again defined by Eq. (2) from the previous problem.
Rewrite it in the form

Q0 =

∫
(3 cos2 θ − 1)|Yll|2dΩ〈r2p〉, (1)

and use the expression

sin2 θ · |Yll|2 =
2l + 2

2l + 3
|Yl+1,l+1|2

(see the formula for |Yll|2 given in Problem 12.23). Using Eq. (1) here and performing
the integration, we obtain

Q0 = − 2l

2l + 3
〈r2p〉 = −2j − 1

2j + 2
〈r2p〉. (2)

In conclusion, let us comment on the sign, Q0 < 0, and the limiting value Q0 = −〈r2p〉
for j → ∞. Both these properties become apparent if we note that in the quasi-classical
limit, the trajectory of a particle with Jz = J lies in the equatorial plane (here z = 0
and from the expression for Q0 it follows Q0 = −〈r2p〉).

Problem 12.25

Find the quadrupole moment of a nucleus that has only one proton above filled shells
in a state with an arbitrary l and j = l − 1/2. Compare it to the results of the previous
two problems.

Solution

The expression for Q0 (with the corresponding value of the total proton angular
momentum, j = l − 1/2) obtained in the previous problem remains valid here as well.
This result follows from the same angular distributions for the probability density,
described by the wavefunctions of the form ψjl1(2)jz with l1,2 = j ± 1/2, as discussed
in Problem 5.25.

Hence, the same remarks regarding the sign of the nuclear quadrupole moment,
made in the two previous problems, can be transplanted to this case as well.

Problem 12.26

Find the quadrupole moment of a nucleus that has only one neutron above filled shells
in a state with the orbital angular momentum, l, and the total angular momentum,
j = l ± 1/2.
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Comment

Consider this nucleus as a combination of two subsystems: a neutron above filled shells
and a set of filled shells (as a whole), which moves with respect to the nuclear center
of mass.

Solution

In this approximation, where the nuclear center of mass coincides with the system of
filled shells, the nuclear quadrupole moment is equal to zero (see Problem 12.23). The
center of the nucleon charge distribution for the filled shells coincides with their center
of mass, and is located in the point

rshell = − rn
A− 1

,

where rn is the radius-vector of the neutron, measured with respect to the total center
of mass. Here, the quadrupole moment of the nucleus (originating from the protons of
the filled shells) is defined by the expression

Q
(n)
0 =

Z

(A− 1)2
〈ψnjlj |(3 cos2 θ − 1)r2|ψnjlj〉

(see Problem 12.23), where ψnjlj is the neutron wavefunction. Hence,

Q
(n)
0 = −2j − 1

2j + 2

Z

(A− 1)2
〈r2n〉, (1)

which follows directly from the results of the two previous problems: here, the nuclear

spin is J = j. Note also that Q
(n)
0 < 0.

Problem 12.27

In the shell model with a self-consistent potential of the harmonic-oscillator type
(see Problem 12.12), obtain the expression for the nucleon’s radial density inside a
nucleus with A � 1. Use quasi-classical considerations. Here, neglect the Coulomb
interaction between the protons and consider nuclei with the same number of protons
and neutrons. How do these results compare with the experimental data for heavy
nuclei?

Solution

If we neglect the Coulomb interactions, the levels for protons and neutrons are the
same in the ground state. Here, for the ground-state of the nucleus with A = 2Z the
same single-particle proton and neutron levels would be occupied.

Let us denote the maximum energy of occupied states as εF (see Fig. 12.4, where
a constant energy, −U0, has been omitted in the potential). We see that the volume
of phase space (corresponding to the occupied states in volume dV ) is equal to
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Fig. 12.4

dΓ =
4πp3F
3

dV =
4π

3
(2mεF −m2ω2r2)3/2dV.

Dividing it by (2π�)3, we obtain the number of filled states. In each of them, there
are four nucleons (in different charge and spin states), so that the total number of
nucleons in the volume, dV , is

dN =
2

3π2�3
(mωR)3

(
1− r2

R2

)3/2

dV, r ≤ R =

√
2εF
mω2

. (1)

Hence the nucleon density inside the nucleus is described by the following expression:

n(r) =
2

3π2�3
(mωR)3

(
1− r2

R2

)3/2

dV, r ≤ R, (2)

where np = nn = n/2 and for r > R, n ≡ 0.

Normalization condition for expressions (1) and (2) is tied to the total number of
nucleons, and yields the relation

1

�
mωR2 = (12A)1/3

between the parameters ω and R. Hence, Eq. (2) takes the form

n(r) =
8A

π2R3

(
1− r2

R2

)3/2

, r ≤ R (3)

(where the normalization integral is calculated using the substitution, r/R = sinu).

Let us note that for heavy nuclei, Eq. (3) (based on the harmonic oscillator self-
consistent potential) contradicts experimental data, which indicates that in such nuclei
the nucleon density is almost constant except for a narrow region near the boundary
(see Problem 12.28).
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Problem 12.28

The same as in the previous problem, but for the following self-consistent potential:

U(r) =

{−U0, r < R
∞, r > R.

Choose the model parameter, R, equal to the nuclear radius R = r0A
1/3, r0 = 1.2 ·

10−13, and find a threshold momentum of nucleons and their maximum velocity.

Solution

The problem can be solved in the same way as the previous one. Now, the threshold
momentum is constant, p =

√
2mεF and instead of Eq. (2) of the previous problem

we obtain:

n(r) =
2p3F
3π2�3

= const, r < R. (1)

Normalization to the total number of nucleons, A, gives (pFR)3 = 9πA�3/8, or

pF =
1

2
(9π)1/3

�

r0
(2)

having made use of the expression for R.

The maximum velocity for the nucleons (treated like an ideal Fermi-gas) corre-
sponding to the momentum pF is

vF =
pF
m

=
1

2
(9π)1/3

me

m

aB
r0

�

meaB
≈ c

4
,

where m/me ≈ 1840, aB ≈ 0.53 · 10−8 cm, vat = �/meaB = c/137, and c is the speed
of light, while the maximum kinetic energy is εF ≈ 30 MeV� mc2 ≈ 940 MeV, so that
nucleons can be considered non-relativistic.

12.3 Isotopic invariance

Problem 12.29

Charges (measured in the units of the proton’s charge, e) of different particles in
an isospin multiplet are generally expressed in terms of the isospin component, T3,
corresponding to a given particle: q = (1/2)Y + T3, where Y is a so-called hypercharge
(for example, for a nucleon, YN = 1, for a pion, Yπ = 0, etc.).

Prove that isospin conservation in the presence of interactions implies hypercharge
conservation.
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Solution

Let us label particles in the initial and final states by indices, i and f , so that

qi,f =
1

2
Yi,f + T3,i,f .

From the charge conservation law, it follows that
∑

qi =
∑

qf , while the isospin
conservation[301] yields

∑
T3,i =

∑
T3,f . Hence, we obtain

∑
Yi =

∑
Yf , which indeed

implies hypercharge conservation.

Note that since the mean value, T3, for particles in a given multiplet is equal to
zero, the hypercharge is twice the mean electric charge of the particles in the multiplet.

Problem 12.30

Find the most general form of an isospin-invariant pion–nucleon interaction operator.

How are the operators of the πN -interaction in states with a definite value of
the isospin (T = 1/2, 3/2) connected to the operator Û? Express Û in terms of the
operators, Û(T ).

Solution

The operator can be expressed in terms of the following operators: the identity
operator, 1̂; the nuclear isospin operators, τ̂i; and the pion t̂k components that must be
iso-scalars. Since the operators τ̂ and t̂ are isovector operators, then we can produce
only the following isoscalar operators τ̂ 2, t̂2, (τ̂ · t̂), and also different combinations
of these operators. But they can all be expressed as linear combinations of two
operators: 1̂ and (τ̂ · t̂) (see Problem 12.9). Indeed, τ̂ 2 = 3/4 and t̂2 = 2 are multiples
of the identity operator, while for τ̂ · t̂, the expression (τ̂ · t̂)2 = (1− τ̂ · t̂)/2 holds.

It follows, for example, from Problem 1.21, that the operator τ̂ · t̂ = T̂2/2− 11/8 has
only two different eigenvalues, equal to −1 and +1/2, in the states with the total
isospin of the πN -system equal to T = 1/2 and 3/2, respectively.

Hence, the sought after operator has the form

Û = V̂1 + V̂2(τ̂ · t̂), (1)

where V̂1,2 are operators in configuration space that do not depend on the isospin.

Hence, we find the form of operators Û(T ) for the πN -interaction in states with the
definite values of total isospin, T = 1/2 and 3/2, as follows:

Û

(
T =

1

2

)
= V̂1 − V̂2, Û

(
T =

3

2

)
= V̂1 +

1

2
V̂2. (2)

[301] In fact, we only require the T3-components to be conserved.
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We can relate Û with these operators:

Û =
1

3

[
Û

(
1

2

)
+ 2Û

(
3

2

)]
− 2

3

[
Û

(
1

2

)
− Û

(
3

2

)]
τ̂ · t̂. (3)

Problem 12.31

Repeat the previous problem for a system of two pions. Express the operator Û in
terms of the ππ-interaction operators for states with a definite isospin.

Solution

The solution is analogous to the previous one. The difference lies in the fact that
now the operator t̂1 · t̂2 = 1

2 T̂
2 − 2 has three different eigenvalues equal to −2, −1,

and +1 corresponding to the values 0, 1, and 2 of the total pion isospin. Hence, the
independent isoscalar operators are 1̂, t̂1 · t̂2, and (t̂1 · t̂2)2 (here (t̂1 · t̂2)3 = 2 + (t̂1 ·
t̂2)− 2(t̂1 · t̂2)2), while the isotopic-invariant ππ-interaction has the form:

Ûππ = V̂1 + V̂2(t̂1 · t̂2) + V̂3(t̂1 · t̂2)2. (1)

Operators for the pion interaction in the states with definite values of the isospin read

Ûππ(T = 0) = V̂1 − 2V̂2 + 4V̂3; Ûππ(T = 1) = V̂1 − V̂2 + V̂3;

Ûππ(T = 2) = V̂1 + V̂2 + V̂3.

Problem 12.32

For a two-pion system find the isospin structure of the Coulomb interaction operator.

Solution

Since the pion charge operator is connected to the t3-component of the isospin by
q̂π = et̂3 (compare to Problem 12.29, e > 0), then the Coulomb interaction between
the pions has the form:

ÛCoul =
e2

|r1 − r2| t̂
(1)
3 t̂

(2)
3 .

Problem 12.33

Repeat the previous problem for the Coulomb interaction in a πN-system.

Result

The operator for the πN Coulomb interaction is
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ÛCoul =
e2

|rπ − rN | (1 + 2τ̂3)t̂3,

see Problems 12.9 and 12.32.

Problem 12.34

What are the possible values of the isospin for a two-pion system in states with a
definite value of the orbital angular momentum, L?

Solution

Isotopic invariance suggests that we should consider different particles that correspond
to the same multiplet as identical particles but in different charge states. Here
the principle of indistinguishability of identical particles is valid for the different
particles in the same multiplet. In particular, for mutual permutation of two pions
(that are spinless bosons) the wavefunction must remain unchanged (and remain
symmetric).

For two pions, permutation of the pion’s spatial variables is equivalent to coordinate
inversion with respect to the center of mass, so that the symmetry of the wavefunction
coincides with the parity, (−1)L. Symmetry of the isospin part of the wavefunction
is determined by the factor (−1)T , where T is the total isospin of the system, which
follows from the result of Problem 3.30 and taking into account an analogy between the
angular momentum and isospin (with, Tπ = 1). Hence, the symmetric wavefunction
of two pions leads to (−1)L+T = 1 and the possible values L and T are of the same
parity: in the states with an even L, only T = 0 and T = 2 are possible; if L is odd,
only T = 1 can be realized.

Problem 12.35

For a system that consists of two π0-mesons, find the probabilities, w(T ), to have
different values of the total isospin and the mean value, T2.

Solution

For the pion, Tπ = 1 and T3(π0) = 0. Due to the analogy between the angular
momentum and isospin, the solution to the current problem follows one-to-one that
to Problem 3.32. Hence, we just provide the final results as follows:

w(T = 2) =
2

3
, w(T = 1) = 0, w(T = 0) =

1

3
, T2 = 4.

Problem 12.36

Find the probabilities to have different values of the pion–nucleon total isospin and
the mean value T 2 in the following charge states: π+p, π+n, π0p, π0n, π−p, and π−n.
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Solution

In the charged states of the πN -system considered, the t3-components of the nucleon
and pion isospin have definite values.[302] Hence, using the technique introduced in
Problem 3.29, we find T 2 and the probabilities, w(T ), of the total isospin for the
πN -system (T = 1/2 and 3/2), as follows:

1) for π+p and π−n-systems w(3/2) = 1, T 2 = 15/4;

2) for π+n and π−p-systems T 2 = 7/4, w(1/2) = 2/3, w(3/2) = 1/3;

3) for π0p and π0n-systems T 2 = 11/4, w(1/2) = 1/3, w(3/2) = 2/3.

Problem 12.37

A neutral particle f0 with isospin T = 0 decays into two pions: f0 → 2π. The pos-
sible decay channels are f0 → π+π− and f0 → 2π0. Find the relation between the
probabilities of decay via these channels.

Solution

The problem could be solved in different ways. For example, using the alge-
braic analogy between the angular momentum and isospin properties, we can use
Clebsch–Gordan coefficients. The case of addition of angular momentum with the
sum equal to zero was discussed in Problem 3.39. In our context, these results lead to

ψT=0(2π) =
1√
3
{ψ1(1)ψ−1(2)− ψ0(1)ψ0(2) + ψ−1(1)ψ1(2)}. (1)

Here ψT=0(2π) is the isospin wavefunction of a state with two pions with T = 0, while
ψt3(1(2)) are the isospin wavefunctions for pions with a definite value of t3 (t3 = ±1, 0).

The probabilities of f0 decaying into different charge states of a two-pion system,
π+π− and 2π0 are proportional to the probabilities of finding pions in the states with a
zero total isospin T = 0 (due to isospin conservation in decays). According to Eq. (1),
the probability of a charged state with two π0 is equal to wT=0(2π

0) = (1/
√
3)2 = 1/3

(recall that t3(π
0) = 0); hence, wT=0(π

+π−) = 2/3, so that

w(f0 → π+π−)
w(f0 → 2π0)

= 2. (2)

Let us examine alternative ways of obtaining the same result:

1) Consider the decay of N particles f0. As a result of their decay, there appear
Nw (f0 → π+π−) charged π+-mesons, the same number, Nw, of π−, and 2Nw
(f0 → 2π0) uncharged pions (in the decay f0 → 2π0, two π0 are produced). The
initial f0 system is isospin-symmetric (isotropic in the isospace, since Tf = 0). The
final state, which includes decayed pions, must also be isospin-symmetric. This
symmetry demands in particular that the same number of pions are in different
charge states – π+, π−, and π0 – which leads to Eq. (2).

[302] Recall that for the pion, Tπ = 1 and T3(π±) = ±1, and T3(π0) = 0.
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The solution given is very intuitive from the physical point of view, and can be
generalized to the case of more complicated (with respect to isospin) decays and
reactions; see, for example, Problem 12.39.

2) Let us use the result of Problem 1.43, according to which |ψA(B)|2 = |ψB(A)|2.
We choose the operators t̂

(1)
3 , t̂

(2)
3 for the pion’s isospin components as the “B̂-

operators”, and T̂2 and T̂3 as the “Â-operators”. The aforementioned relation from
Problem 1.43 then takes the form (see Problem 3.33):

|ψTT3
(t

(1)
3 , t

(2)
3 )|2 = |ψ

t
(1)
3 ,t

(2)
3

(T, T3)|2. (3)

If we now set T = 0 and t
(1)
3 = t

(2)
3 = 0, we obtain

wT=0(2π
0) = w2π0(T = 0) =

1

3
, (4)

where we have used the probability to have T = 0 in the 2π0-system obtained in
Problem 12.35.

Problem 12.38

Prove that the isospin part of the wavefunction for a system of three pions in
the state with the total isospin, T (3π) = 0, has a definite symmetry with respect
to interchange of the isospin variables of any two pions, and find the character
(symmetric/antisymmetric) of this symmetry.

On the basis of this result, show that the neutral particle, ω0, with the isotopic
spin T = 0, cannot decay into three π0-mesons; i.e., the decay process ω0 → 3π0 is
forbidden.

Solution

To find the isospin part of the wavefunction with a zero total isospin, we rely again on
the formal algebraic analogy between the angular momentum and isospin properties.
We also take into account the following considerations and facts:

1) To describe a single pion isospin state with tπ = 1, we use a vector φ in the
isospace. Here, the relation between the vector representation and the conventional
t3-representation is the same as in the case of the angular momentum (e.g., see
Problem 3.44). The pion in the charge state π0 (i.e., t3 = 0) is described a vector,
φπ0 , in the isospace with the following components: φπ0 = (0, 0, 1).

2) The wavefunction of the state with isospin T = 0 is a scalar (or a pseudo-scalar) in
the isospace (does not change under isospin rotations).

3) From the three vectors, φa, that describe the isospin states of a single pion, we can
make only one isospin scalar (or pseudo-scalar) for the three-pion system:

ψT=0(3π) = φ1 · [φ2 × φ3] = εiklϕ1iϕ2kϕ3l. (1)
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The isospin function is therefore anti-symmetric with respect to permutation of
any two pion isospin variables. Hence, it does not contain the term that have all
three pions in the same charge state, which proves that the corresponding decay is
impossible (if isospin is conserved).

Problem 12.39

A particle Δ that has isospin T = 3/2 and charge states Δ++, Δ+, Δ0, and Δ−,
corresponds to the values +3/2, +1/2, −1/2, and −3/2 of the isospin projection T3

and decays into a pion and a nucleon: Δ → πN .

Show the possible decay channels for different charge states of the Δ-particle, and
find relations between the probabilities of decay into these channels.

Solution

1) Decays of the particles Δ++ anf Δ− involve one charge channel, while decays of
particles Δ+ and Δ0 involve two channels:

Δ++ → π+p, Δ− → π−n,

Δ+ →
{
π+n, w1,
π0p, w2,

Δ0 →
{
π−p, w1,
π0n, w2.

(1)

Let us note that due to isospin invariance, the decay probabilities per unit of time for
all the particles in the same multiplet are the same.[303] The respective probabilities
of different decay channels that are mirror reflection of one another in the isospace
are also the same (as, for example, the decays Δ+ → π+n and Δ0 → π−p).

For the calculation of the specific probabilities, w1,2, for the particles, Δ
+ and Δ0,

we note that they are determined by the probabilities of forming the corresponding
charge states in a πN -system in the state with T = 3/2 and T3 = ±1/2. The isospin
wavefunction of the πN -system, that is formed as a decay process of Δ+, has the
form:

ψT=3/2,T3=1/2 = C1|π+n〉+ C2|π0p〉 = C1ψ1(π)ψ−1/2(N) + C2ψ0(π)ψ1/2(N),

where ψt3(π(N)) are normalized isospin wavefunctions of a pion (nucleon) in a
state with a definite value of t3. Here, the quantities |C1|2 and |C2|2 determine
the probabilities of different charge states (π+n and π0p, respectively) of the
πN -system, and hence the decay probabilities of Δ into different channels are
w1 = |C1|2 and w2 = |C2|2. Again taking into account the analogy between the
angular momentum and isospin algebras, we see that C1,2 here correspond to
the Clebsch–Gordan coefficients and could be found using the known equations
for these coefficients. Their values, C1 = 1/

√
3 and C2 =

√
2/3, were obtained in

Problem 5.18. Hence we find the following relations:

[303] One of the consequences of isospin invariance breaking is the appearance of a mass difference for
particles in a given isomultiplet. It is reflected in the released energy during a decay, and also may
significantly affect the relative decay probabilities in various channels.
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w(Δ+ → π+n)

w(Δ+ → π0p)
=

w(Δ0 → π−p)
w(Δ0 → π0n)

=
1

2
. (2)

2) Let us mention two alternative methods to solve the problem, which do not involve
a calculation of C1,2.
The first method is based on the following physical considerations. Let us consider

a non-polarized (in the isospace) particle “beam” of the Δ particles, where all
charged states of Δ come in the same numbers, N0. Among the decay products –
pions and nucleons – different charge states would be in the following proportions:

N(π+) = N(π−) = N0(1 + w1),

N(π0) = 2N0w2 = 2N0(1− w1).

From these considerations, it is evident that the “beam” of decaying pions must
remain unpolarized (in the isospace), and the different charge states of the pion are
presented in same numbers: N(π+) = N(π−) = N(π0). Hence we find w1 = 1/3
and obtain the relation (2). Note also that the nucleon beam emitted in this decay
is unpolarized as well, i.e., N(p) = N(n).
The second method is based on using Eq. (3) from Problem 12.37. We leave it

to the reader to reproduce the results of this problem within this method (see also
Problem 12.36).

Problem 12.40

Repeat the previous problem for a particle N∗ that has isospin T = 1/2 and
charge states N∗+(T3 = 1/2), N∗0(T3 = −1/2), and decays into a pion and nucleon:
N∗ → πN .

Solution

Using the same method as in the previous problem, we obtain

w(N∗+ → π+n)

w(N∗+ → π0p)
=

w(N∗0 → π−p)
w(N∗0 → π0n)

= 2.

Problem 12.41

Prove that

dσ(p+ p → d+ π+)

dσ(n+ p → d+ π0)
= 2,

where dσ are differential cross-sections of the corresponding reactions involving the
same energies, angles, and spin orientations.
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Solution

Since the isospins Td = 0 and Tπ = 1, the final states of the two reactions considered
exist in different isospin states of the same “pion+deuteron” system with T = 1.
Isospin conservation demands that the reactions can take place only if the initial
nucleon–nucleon system has T = 1. In the reaction pp → dπ+, both nucleons are in a
state with T = 1 (and T3 = 1); while in the reaction pn → dπ0, the isotopic state of the
nucleons with T = 1 and T3 = 0 is present only with probability 1/2 (the realization
of the nucleon–nucleon system with T = 0 is equally probable).

From the viewpoint of coordinate and spin degrees of freedom, the cross-sections
of both reactions are the same. However, the isospin invariance constraints the ratio
of their cross-sections to be equal to the ratio of the decay probabilities into a desired
isospin channel with T = 1 in the initial states and is equal to 2; q.e.d.

Problem 12.42

Prove that

dσ(p+ d → d+ n+ π+)

dσ(p+ d → d+ p+ π0)
= 2,

where the meaning of dσ is the same as in the previous problem.

Solution

Since Td = 0, the isospin invariance implies that the deuteron plays the role of a
“catalyst” in the process of proton “dissociation” into a nucleon and a pion:

p → N

(
T =

1

2

)
+ π(T = 1).

At the initial stage of the process, T = 1/2 and T3 = 1/2, and due to isospin conser-
vation, the πN -system has to have the same values of T and T3 in the final state.
From the viewpoint of the coordinate and spin degrees of freedom, the reactions are
the same, so that the ratio of their cross-sections is equal to the ratio of the charge
states, π+n and π0p, in the pion–nucleon system with T = 1/2 and T3 = 1/2. The
latter ratio is equal to 2 (see Problems 12.40 and 12.36), which proves the statement.

Problem 12.43

Using the hint that the pions are scattered by nucleons (in some energy interval) mainly
through intermediate states of a πN -system with the total isotopic spin, T = 3/2 (here,
interaction in the state T = 1/2 is negligibly small), find the differential cross-sections
of the following three relations (assuming the same relative energies, angles, and spin
orientations)
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π+ + p → π+ + p (I)

π− + p → π0 + n (II)

π− + p → π− + p (III)

Solution

Since the problem condition states that the reactions considered go only through the
state with isospin T = 3/2 and are the same from the viewpoint of coordinate and
spin degrees of freedom, we conclude that their cross-sections are proportional to the
probabilities (or “weights”) of the isotopic state with T = 3/2 required in both the
initial and final states of the pion–nucleon system:

dσ ∝ wi

(
T =

3

2

)
· wf

(
T =

3

2

)
. (1)

These probabilities can be calculated using the same methods as used in Problem 12.36
(see also Problem 12.39), and we find them to be equal to 1 for π+p-; 2/3 – for π0n-;
and 1/3 – for π−p. Hence, it follows that the relation

dσ(I) : dσ(II) : dσ(III) = 9 : 2 : 1 (2)

between the cross-sections of the reactions considered.

Problem 12.44

Taking into account charge symmetry of the nucleon–nucleon and pion–nucleon inter-
actions, find the relation between differential cross-sections of the processes

n+ p → p+ p+ π−, n+ p → n+ n+ π+.

Solution

The reactions

n+ p → p+ p+ π−, p+ n → n+ n+ π+

are “mirror” reflections of one another in the isospace. Hence, due to isospin invariance,
the differential cross-sections of these reactions for the same momenta and spins of the
corresponding “mirror” particles (p and n, π+ and π−) are identical. Let us emphasize
that replacing the particles by their “mirror” iso-partners must be performed in both
stages of the process: the initial and final stages. It means that momentum and
spin properties of the proton and neutron in the initial states of reactions must be
interchanged as well.
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Particle collisions

1) The quantum scattering problem for a particle with momentum p0 = �k0, inter-
acting with a potential, U(r), involves solving the familiar Schrödinger equation,[

− �
2

2m
Δ+ U(r)

]
ψ+
k0
(r) = Eψ+

k0
(r). (XIII.1)

A solution to this equation has the following large-distance asymptotic behavior:[304]

ψ+
k0
(r) ≈r→∞ eik0r +

f(k,k0)

r
eikr, k =

k0r

r
, (XIII.2)

where k is the wavevector of the scattered particle (k = k0 =
√

2mE/�2). Here,
f(k,k0) is the scattering amplitude, which is a key quantity of interest in the
quantum theory of scattering. The square of its absolute value gives the differential
scattering cross-section, dσ/dΩ, which integrated over a sphere yields the total
scattering cross-section, σ =

∫ |f(k,k0)|2dΩk.
Using the Green function for free particles,

G+
E(r, r

′) =
m

2π�2|r− r′|e
ik|r−r′|, (XIII.3)

Eq. (XIII.1), along with boundary condition (XIII.2), can be expressed as an
integral equation:

ψ+
k0
(r) = eik0·r − m

2π�2

∫
eik|r−r′|

|r− r′| U(r′)ψ+
k0
(r′)dV ′. (XIII.4)

This leads to the following expression for the scattering amplitude f(k,k0):

f(k,k0) = − m

2π�2

∫
e−ik·rU(r)ψ+

k0
(r)dV, (XIII.5)

which is very convenient for constructing various perturbative expansions and for
approximate calculations.

[304] For U(r) that falls faster than ∝ 1/r at large distances, r → ∞.
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First Born approximation: Set ψ+
k0

= eik0·r. Following Eq. (XIII.5), this leads to
the following approximate equation for the scattering amplitude:

fB(q) = − m

2π�2
Ũ(q), Ũ(q) =

∫
e−iq·rU(r)dV, (XIII.6)

We use q = k− k0 for the change in momentum of the particle after scattering. If
the scattering is elastic, there is no change in the magnitude of this momentum,
and q = 2k sin(θ/2), where θ is the scattering angle. The first Born approximation
constitutes the lowest-order expansion of the scattering amplitude in powers of
the interaction potential. This approximation is valid if one of the following two
inequalities is satisfied:

U0 � �
2

mR2
or U0 � �v

R
, (XIII.7)

where U0 and R are the typical strength and radius of the potential respectively.
For scattering in a central potential, the scattering amplitude depends only on

the energy E and the polar angle θ, and in the first Born approximation it depends
only on the magnitude of momentum transfer, �q. In the latter case, Eq. (XIII.6)
can be written as

fB(q) = −2m

�2

∞∫
0

U(r)
sin qr

q
r dr. (XIII.8)

2) For a spherically-symmetric potential, the scattering amplitude can be expanded
in terms of the partial waves as follows:

f(k, θ) =
∞∑
l=0

(2l + 1)ϕl(E)Pl(cos θ),

ϕl =
e2iδl − 1

2ik
=

1

k(cot δl − i)
, (XIII.9)

where the phase shifts δl(k) are related to the large distance asymptote of the radial
wavefunction Rk,l, by rRk,l ≈ C sin(kr − πl/2 + δl), and the sum is over all angular
momenta, l. The total scattering cross-section is given by

σ =

∞∑
l=0

σl,

σl =
4π

k2
(2l + 1) sin2 δl =

4π

k2
(2l + 1)(cot2 δl + 1)−1. (XIII.10)

Comparing Eqs. (XIII.9) and (XIII.10), we obtain the following identity (the optical
theorem):[305]

[305] The optical theorem follows from very basic conservation laws and as such has a very general nature.
It is valid even for scattering of composite particles, where inelastic processes are possible. In the
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Im f(E, θ = 0) =
k

4π
σ(E). (XIII.11)

Below, we list explicit approximate expressions for the phase-shifts under various
approximation schemes:

1. In the Born approximation (where |δBl | � 1),

δBl (k) = −πm

�2

∞∫
0

U(r)J2
l+1/2(kr)r dr. (XIII.12)

2. In the quasi-classical approximation,

δ
(q)
l =

∞∫
r0

{√
k2 − 2m

�2
U(r)− (l + 1/2)2

r2
− k

}
dr+

+
1

2
π

(
l +

1

2

)
− kr0, (XIII.13)

where r0 is the turning point of the motion. If |U(r)| � E, this expression is
further simplified to

δ
(q)
l = −

∞∫
r0

mU(r)dr

�2
√

k2 − (l + 1/2)2/r2
, r0 =

(l + 1/2)

k
. (XIII.14)

3) For the scattering of slow particles (kR � 1), and if the potential falls rapidly
enough (see Problems 13.28–30), an effective range expansion holds:

k2l+1 cot δl = − 1

al
+

rlk
2

2
+ . . . , (XIII.15)

where al and rl are called the scattering length and the effective interaction
range[306] respectively for the state with the orbital angular momentum, l; these
parameters determine the low-energy scattering for the corresponding partial wave,
in accordance with Eqs. (XIII.9) and (XIII.10).
If there are no shallow real/virtual (for l = 0) or quasi-stationary (for l �= 0) levels

in the potential, then the second term involving the effective interaction range can
be ignored. In this case,

δl ≈ −alk
2l+1, |al| ≤ R2l+1, and σl ≤ 4π(2l + 1)(kR)4lR2.

latter case, we should use in Eq. (XIII.11), the total collision cross-section for σ(E), while f(E, 0)
should be understood as the forward-scattering amplitude of elastic scattering of the composite
particle.

[306] Note, however, that these parameters have the physical dimensions of length only for l = 0. In
general, their dimensionality is [al] = L2l+1, [rl] = L1−2l, where L is a unit of length.
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On the other hand, if the potential supports a shallow bound state with the
energy |El| � �

2/mR2 and angular momentum, l, the scattering cross-section for
the corresponding partial wave, σl(E), is sharply peaked at E ≈ El (resonant
scattering). Specifically, if a shallow s-level (l = 0) exists, then it follows that
|a0| � R and

σ(E) ≈ σl=0(E) ≈ 2π�2

m

1 + r0κ0

E + ε0
, (XIII.16)

where |E0| = ε0 = �
2κ2

0/2m and κ0 is given to second order in 1/a0 by[307] κ0 =
1/a0 + r0/2a

2
0. If a0 > 0, it follows that κ0 > 0, and ε0 gives the energy of a real

bound state. For a0 < 0, the level is virtual.
For resonant scattering with an angular momentum l �= 0, the type of the energy-

dependence and in particular the behavior of σl(E) depend crucially on the nature of
the level specifically on whether the level is real or quasi-stationary (al < 0). In the
latter case, writing El as El = ER − iΓR/2 (where ER and ΓR are the level energy
and its width), from the poles of the scattering amplitude in the l-th harmonic
located at cot δl(El) = i, we find:[308]

ER ≡ �
2k2R
2m

≈ �
2

malrl
> 0 and ΓR ≈

(
2�2

m|rl|
)
k2l+1
R .

In this case, the partial-wave cross-section, σl(E), changes sharply close to ER and
is given by

σl(E) ≈ (2l + 1)π

k2R

Γ2
R

(E − ER)2 + Γ2
R/4

. (XIII.17)

4) For scattering of fast particles (kR � 1 and E � |U(r)|), the following relation
holds for the amplitude of the scattered wave in the region of small scattering
angles θ ≤ 1/kR (the eikonal approximation):

f(k0,q⊥) =
k

2πi

∫
[S(ρ)− 1]e−iq⊥·ρd2ρ (XIII.18)

Here q⊥ is the component of q in a direction perpendicular to the incident
momentum, �k0 (for small-angle scattering, q⊥ ≈ q ≈ kθ and q‖ ≈ kθ2/2) and

S(ρ) = e2iδ(ρ), δ(ρ) = − 1

2�v

∞∫
−∞

U(ρ, z)dz. (XIII.19)

[307] The poles of the partial-wave amplitude φl(E) are given by cot δl(E) = i. Combining this with

the wave-vector corresponding to a bound state κ = −i
√

2mE/�2 and taking into account Eq.

(XIII.15) for a0 � R(≈ r0), it follows that κ0 ≈ 1/a0, ε0 ≈ �2/2ma20 to first order in 1/a0. The
second-order term is obtained by substituting the first-order term in (XIII.15).

[308] For a shallow level with l �= 0 to exist, effective interaction range must be negative, rl < 0, so that
ER, ΓR > 0 (see Problem 13.44).
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Using the optical theorem with Eq. (XIII.18), we obtain the total scattering cross-
section:[309]

σ(E) = 2

∫
[1− cos 2δ(ρ)] d2ρ. (XIII.20)

In the case of a central potential, Eq. (XIII.19) for δ(ρ) coincides with the quasi-
classical expression (XIII.14) for l ≈ kρ � 1, and Eq. (XIII.18) could be written in
the form:

f(k, θ) = ik

∞∫
0

[
1− e2iδ(ρ)

]
J0(kρθ)ρdρ, (XIII.21)

where J0(z) is the zeroth-order Bessel function.

5) In case of a spin-dependent interaction, the scattering amplitude becomes a matrix,

f̂ , in the spin-basis, whose elements χ∗
f f̂χi describe the scattering from an initial

spin state χi into a final state χf . For the scattering of spin-1/2 particles off of
spinless ones and in the case of a parity-conserving interaction,[310]

f̂ = A(k, θ) + iB(k, θ)ν · σ̂, ν =
[k0 × k]

|[k0 × k]| . (XIII.22)

The differential scattering cross-section summed over the spin states of the scattered
particles is given by

dσ

dΩ
= |A|2 + |B|2 + 2Im(AB∗)ν ·P0, (XIII.23)

where P0 = 2χ∗
i σ̂χi is the polarization vector of the particles before collision. The

polarization state of the scattered particles depends on both the interaction and the
initial polarization, P0. If the particles were not polarized before collision, P0 = 0,
then the polarization vector after scattering is

P =
2Im(AB∗)
|A|2 + |B|2ν. (XIII.24)

As before, Eq. (XIII.22) for the amplitude can be expanded in terms of the partial
waves:

A =
1

2ik

∞∑
l=0

[(l + 1)(exp{2iδ+l } − 1) + l(exp{2iδ−l } − 1)]Pl(cos θ),

B =
1

2ik

∞∑
l=1

(exp{2iδ+l } − exp{2iδ−l }) sin θP ′
l (cos θ), (XIII.25)

[309] For this relation to hold, it is only required that kR � 1 (see Problem 13.51).

[310] Note that we have factored out the i term in front of B. This step is a matter of convention and
different conventions are used in the literature (both with and without separating out the i-term;
keep it in mind when comparing your results with the literature).
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where δ±l are the phase shifts for states with the orbital angular momentum l and
the total angular momentum j = l ± 1/2.

6) The scattering amplitude has well-defined analytic and unitarity properties. In
particular, it satisfies the following unitarity condition:[311]

f(k,k0)− f∗(k0,k) =
ik

2π

∫
f(k′,k0)f

∗(k′,k)dΩ′. (XIII.26)

(For k = k0, the optical theorem is reproduced.)
The analytic properties of scattering amplitudes are effectively dispersion rela-

tions for them. The simplest analytic properties exist for the forward-scattering
amplitudes in a central potential, which as a function of energy E[312] in the complex
plane satisfies a dispersion relation of the form:

f(E, 0) = fB(0) +
∑
n

dn
E − En

+
1

π

∞∫
0

Im f(E′, 0)
E′ − E

dE′. (XIII.27)

Here, fB(0) is the amplitude of the first Born approximation; see Eq. (XIII.6). The
summation is performed over all the discrete states in the potential (each of which
corresponds to a pole in the scattering amplitude); dn is the residue at the pole
corresponding to En, and is given by

dn = −(−1)ln(2ln + 1)
�
2A2

n

2m
, (XIII.28)

where An is a normalization coefficient for the large-distance asymptote of the radial
wavefunction corresponding to a bound state with the angular momentum ln; that
is, rRn ≈ An exp{−κnr} (compare to Eq. (XI.5)).

13.1 Born approximation

Problem 13.1

Using the Born approximation, find the scattering amplitude and the total scattering
cross-section of a particle on the following potentials:

a) U(r) =
α

r
e−r/R; b) U(r) = αδ(r −R); c) U(r) = U0e

−r/R;

d) U(r) =
α

r2
; e) U(r) =

{
U0, r < R,
0, r > R;

f) U(r) = U0e
−r2/R2

.

[311] It is consequence of the unitarity of the S-matrix. The same relation holds as a unitarity condition
for scattering of composite particles, but only for values of energy for which inelastic processes are
absent (“elastic” unitarity).

[312] It has the following singular points: branch points E = 0 and E = ∞ and poles En on real half-axis
E < 0, which coincide with the positions of discrete levels.
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Consider the limiting cases of slow and fast particles. Find the conditions under which
the approximations in these limiting cases are valid.

Solution

The scattering amplitude (under the first Born approximation) can be calculated from
Eqs. (XIII.6) and (XIII.8). The total scattering cross-section is

σ(E) =

∫
|f |2dΩ = 2π

π∫
0

|f |2 sin θ dθ =
π�2

2mE

8mE/�2∫
0

f2(q)dq2, (1)

with q = 2k sin(θ/2). This leads to the following results:

a) f = − 2mαR2

�2(1 + q2R2)
, σ(E) = 16π

(
mαR2

�2

)2
1

1 + 4k2R2
. (2)

For R finite, the scattering cross-section also has a finite magnitude. However, as
R → ∞, the short-range Yukawa potential considered here crosses over to a long-range
Coulomb potential U = α/r. For the latter, the differential cross-section is described by
the Rutherford formula, dσ/dΩ = 4m2α2/�4q4, and the total scattering cross-section
is infinite.

b) f = −2mαR2

�2

sin qR

qR
, σ(E) =

4πmα2R2

�2E

√
8mER2/�2∫

0

sin2 x

x
dx. (3)

In the limiting cases, we have

σ(E) ≈E→0
16π(mαR2)2

�4
, σ(E) ≈E→∞

πmα2R2

�2E
ln

8mER2

�2
.

In the E → ∞ limit, the integral in (3) diverges; to calculate this diverging integral
we replace the oscillating factor sin2 x by its mean value, 1/2.

c) f = − 4mU0R
3

�2(1 + q2R2)2
,

σ(E) =
8πmR4U2

0

3�3E

[
1− 1

(1 + 8mER2/�2)3

]
. (4)

d) f = −πmα

�2q
= − πmα

2�2k sin(θ/2)
(5)

The total scattering cross-section is infinite, which is related to a slow decrease of the
potential at large distances. For more on scattering from the potential U = α/r2, see
Problem 13.19.

e) f =
2mU0R

�2q2

(
cos qR− sin qR

qR

)
,
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σ(E) =
2π

k2

(
mU0R

2

�2

)2 [
1− 1

(2kR)2
+

sin 4kR

(2kR)3
− sin2 2kR

(2kR)4

]
. (6)

In the limiting cases we have

σ(E) ≈E→0
16πm2U2

0R
6

9�4
, σ(E) ≈E→∞

πmU2
0R

4

�2E
.

The limit E → ∞ is also discussed in Problem 13.2.

f) f = −
√
πmU0R

3

2�2
e−q2R2/4,

σ(E) =
π2mU2

0R
4

4�2E
(1− e−4mER2/�2

). (7)

Due to the exponential decrease of f(q), the Born approximation is not applicable for
large values of q2 (see Problem 13.13). Therefore, the inclusion of the exponentially-
small term in the equation for σ(E) for E → ∞ is beyond the accuracy of the
approximation used.

Problem 13.2

Prove that the total scattering cross-section (in the Born approximation) of a high-
energy particle in a potential, U(r) with kR � 1 is described by the expression[313]

σ(E)
∣∣∣
E→∞

≈ m

2�2E

∞∫∫
−∞

⎡⎣ ∞∫
−∞

U(ρ, z)dz

⎤⎦2

d2ρ. (1)

The momentum of the particle before scattering is along the z-axis; ρ is a two-
dimensional radius-vector lying in the plane perpendicular to the z-axis.

Apply this result to the potential U(r) = U0 exp{−r2/R2} and to a rectangular
potential well (barrier) of strength, U0, and radius, R. Compare to Problem 13.1.

Prove also that, in this case, the transport scattering cross-section has an asymp-
totic behavior given by

σtr =

∫
(1− cos θ)dσ

∣∣∣
E→∞

≈ 1

8E2

∫∫ ⎡⎣ ∞∫
−∞

ρ

r

∂U(r)

∂r
dz

⎤⎦2

d2ρ. (2)

State conditions of applicability for these results.

[313] For this problem see also Problems 13.14, 13.51, and 13.52.
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Solution

1) From Eq. (XIII.6), the scattering amplitude is related to the Fourier transform of
the potential, Ũ(q), with

fB(q) = − m

2π�2
Ũ(q), Ũ(q) =

∫
e−iq·rU(r)dV.

From this, it follows that fB(q) is essentially different from zero only if qR � 1
(where R is the range of the potential); for qR � 1, this the integral is small due to
the fast oscillating integrand. Since q2 = 2k2(1− cos θ), the two conditions, kR � 1
and qR ≤ 1, lead to the known conclusions that the scattering of fast particles occurs
primarily into small angles, θ ∼ 1/kR � 1 . From this, it follows that q ≈ kθ ∼ R−1.

Fig. 13.1

For what follows, we decompose q into two perpendicular components, q = q‖ +
q⊥, where q‖ is directed along the incident momentum, �k0 (see Fig. 13.1). For
θ � 1, we have

q‖ = k(1− cos θ) ≈ 1

2
kθ2, q⊥ = k sin θ ≈ kθ,

so that q⊥ � q‖. It is safe to consider q ≈ q⊥, so that

Ũ(q) ≈ Ũ(q⊥) =
∫∫∫

e−iq⊥·ρU(ρ, z)dz d2ρ. (3)

To find the scattering cross-section we will carry out the q-integration only in a
small region of the 4π-sphere around the z-axis. This region can be considered as
approximately flat, so that k2dΩ ≈ dS = dq⊥xdq⊥y = d2q⊥. Therefore,

σ(E) =

∫
|fB |2dΩ ≈ m2

4π2�4k2

∫∫
|Ũ(q⊥)|2d2q⊥.

Using expression (3), we have

σ(E) =
m

8π2�2E

∫∫ [∫∫∫
e−iq⊥·ρU(ρ, z)dz d2ρ

]
×[∫∫∫

eiq⊥·ρ′
U(ρ′, z′)dz′ d2ρ′

]
d2q⊥.
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After performing the q⊥-integration using∫∫
exp{−iq⊥ · (ρ− ρ′)}d2q⊥ = (2π)2δ(ρ− ρ′) (4)

and the resulting δ-function integration over ρ′, we are immediately led to the
following asymptote of the scattering cross-section:

σ(E)E→∞ =
m

2�2E

∫∫ ⎡⎣ ∞∫
−∞

U(ρ, z)dz

⎤⎦2

d2ρ.

For the potential U(r) = U0 exp{−r2/R2} and the rectangular well (barrier),
using this expression, we obtain

σ(E) =
π2mU2

0R
4

4�2E
and σ(E) =

πmU2
0R

4

�2E
,

respectively (see Problem 13.1 e, f).

2) In an analogous way, we can find the energy-dependence of the transport cross-
section (2) for E → ∞:

σtr(E) =

∫
(1− cos θ)dσ

∣∣∣
E→∞

≈ m

8π2�4k4

∫∫
q2⊥|Ũ(q⊥)|2d2q⊥. (5)

Now, instead of Eq. (4), we use the integral∫∫
q2e−iq·ρd2q = −(2π)2Δ⊥δ(ρ).

Following some transformations in Eq. (5) for the case of a spherically-symmetric
potential, we obtain the desired asymptotic form:

σtr(E)
∣∣∣
E→∞

≈ 1

8E2

∫∫ ⎡⎣ ∞∫
−∞

ρ

r

∂U

∂r
dz

⎤⎦2

d2ρ.

Note that this expression does not contain Planck’s constant, and coincides with
σtr for fast particles (E � U) in classical mechanics, defined as

σtr,class(E) =

∞∫
0

[1− cos θ(ρ)] · 2πρ dρ ≈ π

∞∫
0

θ2(ρ)ρ dρ.

We have used an equation for small-angle scattering from classical mechanics.
The agreement of the result of Born approximation with the classical result at

first sight might appear strange. However, it becomes less surprising if we recall that
the same result follows from the quasi-classical eikonal approximation (XIII.18) too;
Compare to the Rutherford equation.
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In conclusion, we note that expression in Eq. (2) assumes that the differential
scattering cross-section at large momenta falls faster than ∝ q−2, so that the upper
limit of the q2-integration could be set to infinity.

Problem 13.3

Using Born approximation, obtain an expression for the scattering amplitude of a
particle in an exchange potential;[314] that is, Ûexcψ(r) ≡ U(r)ψ(−r).

Find how the scattering amplitude in this case is related to the scattering ampli-
tude of the particle in a regular garden-variety potential, U(r). Obtain the angular
distribution of fast particles.

Solution

Substituting Uψ+
k0

in Eqs. (XIII.4, 5) by Ûexψ
+
k0
, ψ+

k0
(r) by eik0·r, and taking into

account the exchange nature of Ûex, we find

fB
ex(k0,k) = fB

ex(Δ) = − m

2π�2

∫
e−iΔ·rU(r)dV, (1)

where Δ = k+ k0 and Δ2 = 2k2(1 + cos θ). Thus,

fB
ex(E, θ) = fB(E, π − θ),

where fB(E, θ) is the amplitude of scattering in a regular spherically-symmetric
potential, U(r). From this relation, it is clear that for fast particles (kR � 1), the
scattering from the exchange potential occurs primarily “backwards,” with the relevant
angles, π − θ � (kR)−1. For more on scattering from an exchange potential, see
Problem 13.56.

Problem 13.4

Find the differential and total cross-section of elastic scattering of fast electrons by
a hydrogen atom in its ground state. Neglect a polarization of the atom. See also
Problem 13.77.

Solution

The scattering potential is of the form:

U(r) = −e2
(
1

r
+

1

aB

)
e−2r/aB ,

[314] For a two-body problem, where r = r1 − r2, such a potential describes interaction resulting in a
permutation of the particles (exchange). Such interactions appear naturally in nuclear physics.
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(see Problem 4.6). According to Eq. (XIII.8), we obtain

fB(q) =
2(8 + q2a2B)

(4 + q2a2B)
2
aB . (1)

The total scattering cross-section (dΩ = πk−2dq2):

σ =
π

k2

4k2∫
0

(fB)2dq2 =
4π

k2

[
7

12
− 7 + 9k2a2B + 3k4a4B

12(1 + k2a2B)
3

]
≈ 7πa2B

3(kaB)2
. (2)

Here, we have taken into account the condition of applicability of the Born approxi-
mation (XIII.7), viz. kaB � 1. (See also Problems 13.77 and 13.78)

Problem 13.5

The same as the previous problem, but for a helium atom. Choose the atomic
wavefunction using the variational calculation performed in Problem 11.6.

Solution

In the approximation considered in Problem 11.6, we found that the mean electronic
density in the ground state of a helium atom is n = 2

πa3 e
−2r/a, where a = aB/Zeff =

16aB/27. From this, we calculate the form-factor:

F (q) =

∫
n(r)e−iq·rdV =

2

πa3

∫
e−2r/a−iq·rdV =

32

(4 + q2a2)2
.

Using the known equation,

dσ

dΩ
=

4[Z − F (q)]2

q4a2B
,

we find the differential and total cross-section of elastic scattering from the helium
atom:

σ =
π

k2

4k2∫
0

dσ

dΩ
dq2 =

4πa2

k2a2B

7k6a6 + 18k4a4 + 12k2a2

(1 + k2a2)3
≈ 28πa2

3(kaB)2
.

We have kaB � 1, and the total cross-section differs from the cross-section for
scattering from the hydrogen atom by the factor 4(16/27)2 ≈ 1.40.

Problem 13.6

Find the Z-dependance of the cross-section for the elastic scattering of fast electrons by
a neutral atom with Z � 1; use the Thomas–Fermi model for the interaction potential.
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Solution

Under the Thomas–Fermi approximation, the interaction potential between the scat-
tered electrons and the neutral atom (ignoring an atom polarization) is

U(r) = −ϕ(r) = −Z

r
χ

(
rZ1/3

b

)
,

where χ(x) is the universal function in the Thomas–Fermi model (see Eq. (XI.3). We
use the atomic system of units e = � = me = 1.) The scattering amplitude in the Born
approximation is

fB(Z, q) = −2

∞∫
0

U(r)
sin qr

q
r dr = Z1/3Φ

( q

Z1/3

)
, (1)

where Φ(x) is a new universal function (the same for all atoms):

Φ(x) =
2

x

∞∫
0

χ
(y
b

)
sin(xy)dy. (2)

As x → ∞, only a small region of y in the vicinity of the lower limit contributes to

the integral (2). Taking into account that χ(0) = 1 and
∞∫
0

sin y dy = 1,[315] we find

Φ(x) ≈ 2/x2, as x → ∞. Hence, from Eq. (1), we have fB ≈ 2Z/q2 for q � Z1/3.
It is not unexpected that this corresponds to the amplitude of Rutherford electron
scattering in atomic nuclei, since for a large momentum transfer, the screening by
atomic electrons can be ignored. As x → 0, the function Φ(x) takes a finite value.

Eqs. (1) and (2) give the differential cross-section of elastic scattering; the total
scattering cross-section is given by

σ =
π

k2

4k2∫
0

[
fB(q)

]2
dq2 ≈ πZ2/3

k2

∞∫
0

Φ2
( q

Z1/3

)
dq2 = πC

Z4/3

k2
,

where C = 7.14.

Problem 13.7

Using the Born approximation, find the amplitudes for scattering from two identical
potential centers that are at some distance, a, from each other (viz., of the form
U(r) = U0(r) + U0(|r− a|)). Express your answer in terms of the scattering amplitude,
fB
0 (q), for scattering from U0(r) alone.

[315] To evaluate the integral, the usual procedure is to introduce a “cutoff” factor e−αy with α > 0 in
the integrand, and in the final result take the limit α → 0.
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From this expression, determine a relation between the differential cross-sections
for scattering of fast electrons from monoatomic and homonuclear diatomic molecules.
Note that this quantity should be averaged over the molecular axis orientations,
considering all of them to appear with equal probability.

Find a relation between the total scattering cross-sections from one and two centers
for the following limiting cases:

a) ka � 1 (here the quantity kR — R being the range of potential U0(r)— could be
arbitrary);

b) kR ∼ 1 and a � R (i.e., the distance between the centers is much larger than the
range of U0(r)).

Solution

The scattering amplitude for two identical force centers separated by a distance, a, is
given by

fB
2c(q) = − m

2π�2

∫
e−iq·r[U0(r) + U0(|r− a|)]dV = fB

0 (q)[1 + e−iq·a], (1)

from which the differential scattering cross-section follows:

dσ2c

dΩ
= 2(1 + cosq · a)[fB

0 (q)]2. (2)

Although the form of the potential implies two identical force centers, the expres-
sions in (1) and (2) are also applicable to a diatomic molecule. This is because only
the valence electrons participate in the molecular formation, leaving behind two inner
cores (nuclei screened by inner electrons) that are essentially the same as those of
two isolated atoms. However, Eq. (2) must be averaged over all a. Neglecting nuclear
vibrations (see Problem 11.25), it is sufficient to average only over the directions
of a. For an isotropic distribution, this means that we perform the averaging using a
direction-element dw = dΩn/4π (dΩn is an infinitesimal element of the solid angle that
includes the direction of the vector a = an). We obtain (choosing the z-axis along q):

cos a · q =
1

4π

∫
cosa · q dΩn =

sin qa

qa
.

Thus,

dσmol

dΩ
= 2

(
1 +

sin qa

qa

)
dσat

dΩ
.

As can be seen, the relation between the atomic and the molecular scattering cross-
sections changes with the distance between the nuclei, a. (Similar relations can be
found for multiatomic molecules, even heterogeneous ones. They form the basis of the
diffraction methods used for examining molecular structures.)
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Let us discuss the relation between the total scattering cross-sections. For ka � 1
and qa � 1, fB

2c ≈ 2fB
0 , the scattering cross-section on two centers is four times larger

than on a single center. In the cases kR ≤ 1 and a � R, we have ka � 1, and hence
the quantity qa changes essentially, even for a small change of the scattering angle.
So, in the integration (2) over the angles, the term with the fast oscillating factor,
cos(q · a), is much smaller than the first term, so that in this case the cross-section of
scattering on two centers is twice as large as on one center.

Problem 13.8

Generalize the result of the previous problem for the case of a system with arbitrary
number N of identical centers, located at the points an, n = 1, 2, . . . , N .

Discuss properties of the angular distribution of the scattered particles for an
ordered array of a large number (N � 1) of centers along a straight line with the
same distance, b, between closest neighbors.

Solution

In the Born approximation, the scattering amplitude is described by the expression
(compare to the previous problem):

fB
N (q) = fB

0 (q)GN (q), GN (q) =
∑
n

e−iq·an. (1)

Let us emphasize that the factor GN (q) depends only on the mutual position of the
centers and on the vector q (but not on the form of interaction between the particle
and a single center).

In the case of an array of potential centers ordered along a line with the unit vector
j (an = b(n− 1)j), we have

GN =

N∑
n=1

exp{−ib(n− 1)q · j} =
1− exp{−ibNq · j}
1− exp{−ibq · j} ,

|GN (q)|2 =

[
sin(bNq · j/2)
sin(bq · j/2)

]2
. (2)

In the case of N � 1, the quantity |GN (q)|2 is especially large for specific values,
q = qs with[316] bqs · j = 2πs, where s = 0,±1,±2, . . . . So, the particles are scattered
mostly into particular directions, for which

cosβs ≈ k0 · j
k0

+
2πs

bk0
,

[316] Restriction on |s|max is determined by the momentum of scattered particles. In the case of k < π/b,
only the value s = 0 is possible. In this case, q = 0, so that coherent scattering is absent.
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where βs is the angle between the vectors k and j (note that qj = kj− k0j). At
maximum, |GN |2 = N2. The maxima are sharp; their width is Δβs ∝ 1/

√
N . The

scattering cross-section into such interval of angles is ∝ N . For other scattering angles,
|GN |2 ∼ 1.

These results could be obtained by taking advantage of the large-N limit in the
expression for |GN |2. Using the relation

lim
N→∞

sin2 αN

πα2N
= δ(α),

and expanding sin(bq · j/2) in expression (2) in the vicinity of qs, we find

|GN (q)|2 ≈ 2πN

b

∞∑
s=−∞

δ

(
k · j− k0 · j− 2πs

b

)
. (3)

Such method allows for an easy generalization to the case of a “crystalline” arrange-
ment of the scattering centers. In particular, for a system of centers with a{n} =
n1b1 + n2b2 + n3b3, na = 0, 1, . . . , Na − 1, we have[317]

|GN (q)|2 =

∣∣∣∣∣∣
∑
{n}

exp{−iq · a{n}}
∣∣∣∣∣∣
2

=
(2π)3N

b1b2b3

∑
τ

δ(k− k0 − 2πτ ), (4)

where N = N1 ·N2 ·N3 is the total number of scattering centers,

τ = s1a1 + s2a2 + s3a3, sa = 0,±1, . . . ,

a1 =
1

Δ
[b2 × b3], a2 =

1

Δ
[b3 × b1], a3 =

1

Δ
[b1 × b2], Δ = (b1 · [b2 × b3])

(where a1 · b1 = a2 · b2 = a3 · b3 = 1).

The δ-function terms in Eq. (4) determine the directions, k = k0 + 2πτ , of particle
elastic scattering in crystals (Bragg’s law).

Problem 13.9

In the Born approximation, find the scattering amplitude for the collision of two
extended (non-point-like) particles, interacting with each other via electrostatic forces.
The particles are considered to be extended, which means they are characterized
by some charge distribution, ρ1,2(r), that is assumed to be spherically symmetric

[317] Here we have used the relation:

3∏
a=1

δ(q · ba − 2πsa) =
1

b1b2b3
δ(q− 2πτ ).
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with respect to the center of mass of the corresponding particle[318] and does not
change in the collision process. Express the scattering amplitude in terms of the charge
distributions, ρ1,2(r), and the form-factors F1,2(q).

Solution

The interaction potential is

U(r) =

∫∫
ρ1(r

′
1)ρ2(r

′
2)

|r+ r′1 − r′2|
dV ′

1dV
′
2 ,

where r = r1 − r2, and r1,2 are the radius vectors of the centers of mass of the colliding
particles. Taking into account the relation∫

e−iq·rdV
|r+ r′1 − r′2|

=
4π

q2
eiq·(r

′
1−r′2),

and according to Eq. (XIII.6), we obtain

fB(q) = − 2m

�2q2
F1(q)F2(q)

(where m is the reduced mass of the particles). Here,

F1,2(q) =

∫
e−iq·rρ1,2(r)dV

are the form-factors of the corresponding charge distributions. Note that F1,2(0) = e1,2
are particle charges. Some properties of the form-factors are considered in Problems
13.80 and 13.84.

Problem 13.10

Obtain an expression for the scattering amplitude in the n-th order of perturbation
theory for a potential U(r).

Hint

First, using Eqs. (XIII.5) and (XIII.4), obtain an integral equation for the scattering
amplitude (the Lippmann-Schwinger equation).

[318] The fact that charge distribution is not point-like denotes the composite character of colliding
particles (compare, for example, to Problem 13.4). Since, though, the change of their inner states
in a collision process is to be neglected, then the problem is reduced to a common problem of
two-body scattering. In connection with this problem, see also Problem 13.80.
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Solution

Substituting expression (XIII.4) into Eq. (XIII.5), and using the momentum represen-
tation for the free-particle Green function,

eik0|r−r′|

|r− r′| =
1

2π2

∫
eiκ·(r−r′)

κ2 − k20 − iε
d3κ,

(ε > 0, ε → 0), we obtain the Lippmann-Schwinger equation:

f(k,k0) = − m

2π�2

[
Ũ(k− k0) +

∫
Ũ(k− κ)f(κ,k0)

2π2(κ2 − k20 − iε)
d3κ

]
. (1)

Let us emphasize that for physical real elastic scattering, k2 = k20 = 2mE/�2. On the
other hand, Eq. (1) connects the scattering amplitudes for values k2 �= k20 (outside the
physical sheet or so-called energy surface; see also Eq. (XIII.5)).

Using Eq. (1), we find a recurrence relation for the terms in the expansion,
f(k,k0) =

∑
n
f (n), of the scattering amplitude in powers of interaction, and then

obtain an explicit expression for them (q = k− k0):

f (1)(k,k0) = fB(q) = − m

2π�2
Ũ(q), Ũ(q) =

∫
e−iq·rU(r)dV ;

f (n)(k,k0) =
(
− m

2π�2

)n
∫

. . .

∫
Ũ(k− κn−1)

Ũ(κn−1 − κn−2)d
3κn−1

2π2(κ2
n−1 − k20 − iε)

. . .

Ũ(κ1 − k0)d
3κ1

2π2(κ2
1 − k20 − iε)

. (2)

For applications of these results, see Problems 13.15 and 13.50.

Problem 13.11

In the Born approximation, the forward scattering amplitude (angle θ = 0) is a real
quantity and so does not satisfy the optical theorem (XIII.11). Why does this fact not
contradict the successful description of differential and total scattering cross-section
in the framework of the Born approximation, whenever it applies?

Write an expression for the scattering amplitude in second-order perturbation
theory. Find Im f (2)(E, θ = 0) and explain the result obtained.

Solution

The Born approximation is the first linear term in the expansion of the scatter-
ing amplitude in power of the interaction (more specifically, of parameters given
in Eq. (XIII.7)). On the other hand, an expansion of the scattering cross-section
begins from the term quadratic in interaction, since σ ∝ |f |2. So, in the relation
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4π Im f(E, 0) = kσ(E), the left-hand side must have a second-order interaction term,
as the right-hand side does. It follows that necessarily Im fB(θ = 0) = 0.

In the second order of perturbation theory, the scattering amplitude is described
by expression (2) of the previous problem. In particular, for forward scattering (θ = 0,
k = k0), it gives

f (2)(k0,k0) =
m2

8π4�4

∫ |Ũ(κ− k0)|2
κ2 − k20 − iε

d3κ. (1)

We used the fact that Ũ(q) = Ũ∗(−q). It follows that

Im f (2)(k0,k0) =
m2

8π4�4

∫
ε

(κ2 − k20)
2 + ε2

|Ũ(κ− k0)|2d3κ. (2)

If we note that[319] ε/π(x2 + ε2) = δ(x) (for infinitesimal ε > 0), and write κ = κn,
d3κ = 1

2κdκ
2dΩn, we transform expression (2) to the form

Im f (2)(k0,k0) =
m2

16π3�4

∫∫
|Ũ(kn− k0)|2κδ(κ2 − k20)dκ

2dΩn =

m2k0
16π3�4

∫
|Ũ(k0n− k0)|2dΩn ≡ k0

4π

∫
|fB(k− k0)|2dΩn,

i.e., Im f (2)(E, θ = 0) = kσB(E)/4π, which expresses the optical theorem in the
second order of perturbation theory.

Problem 13.12

In the second order of perturbation theory, find the scattering amplitude of the Yukawa
potential, U(r) = α

r e
−r/R. Compare f (1) to f (2) for different values of energy and

scattering angle.

Solution

For the Yukawa potential,

f (1)(q) ≡ fB(q) = − 2mαR2

�2(1 + q2R2)
, q = k− k0, (1)

and according to Eq. (2) from Problem 13.10, in the second order of perturbation
theory we have

f (2)(k0,k0) =
2m2α2R4

π2�4

∫
d3κ

[1 +R2(k0 − κ)2][1 +R2(k− κ)2](κ2 − k20 − iε)
. (2)

[319] Indeed, this function differs from from zero only for |x| ≤ √
ε → 0, while integrating it in the

infinite limits gives unity, as it is supposed to be for the δ-function.



656 Exploring Quantum Mechanics

Using relation (with k2 = k20)

1

1 +R2(k0 − κ)2
· 1

1 +R2(k− κ)2
=

1∫
0

dξ

{1 + k2R2 + κ2R2 − 2R2κ[k0ξ + (1− ξ)k]}2 ,

in Eq. (2) it is easy to perform integration over the angles (d3κ = κ2dκ dΩ), and obtain

f (2)(k0,k0) =
4m2α2R4

π�4

1∫
0

∞∫
−∞

κ2

κ2 − k2 − iε
K(k, q, κ, ξ)dκ dξ, (3)

where

K = {(1 + k2R2 + κ2R2)2 − 4κ2R4[k2 − ξ(1− ξ)q2]}−1. (4)

Taking into account the parity of the function under the integral, the integration over
the variable κ may be extended to the entire axis.

Equation (4) for K could be transformed to

K =
1

(κR− α1)(κR− α2)(κR− α3)(κR− α4)
.

This function, considered as a function of the complex variable κ, is (as is the entire
expression under the integral in Eq. (3)) meromorphic, and has only simple poles at
the points κn = αn/R. We have

α1 ≡ α =
√

k2R2 − ξ(1− ξ)q2R2 + i
√

1 + ξ(1− ξ)q2R2,

(since 0 ≤ ξ ≤ 1 and q2 ≤ 4k2, then both radicals are real and positive) and α2 = α∗,
α3 = −α, α4 = −α∗.

Now, in Eq. (3), it is easy to perform an integration over κ using residues, closing
the integration contour into the upper half-plane of the complex variable κ.

The positions of the poles are shown in Fig. 13.2. A contribution to the integral in
Eq. (3) from the pole at the point κ = k + iε is

I1(ξ) =
iπk

1 + 4k2R2 + 4k2q2R4ξ(1− ξ)
.

This part of the integral is imaginary. The contributions from the poles located at the
points κ = α1/R and κ = α4/R are real and equal to

I2(ξ) =
π

2R
√
1 + q2R2ξ(1− ξ)[1 + 4k2R2(1 + q2R2ξ(1− ξ))]

.
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Fig. 13.2

Finally, performing an integration over the variable ξ in

f (2)(k,k0) =
4m2α2R4

π�4

1∫
0

[I1(ξ) + I2(ξ)]dξ,

we obtain the final expression for the scattering amplitude of the Yukawa potential in
second-order perturbation theory:

f (2)(k,k0) =
2m2α2R3

�4

{
2 arctan(qR/2

√
Δ(k, q))

qR
√
Δ(k, q)

+

i

qR
√
Δ(k, q)

ln

√
Δ(k, q) + kqR2√
Δ(k, q)− kqR2

}
, (5)

where

Δ(k, q) = 1 + k2R2(4 + q2R2).

Let us discuss these results. We first note that calculating the imaginary part of the
amplitude in second-order perturbation theory for θ = 0 (here also q = 0) and using
the optical theorem, Eq. (XIII.11), we can find the total scattering cross-section in the
Born approximation. The result obtained coincides, of course, with the calculation of
cross-section by the equation σB =

∫
(fB)2dΩ. See Problem 13.1 a.

It is interesting to compare Im f (2) and Re f (2) with each other and with the
amplitude of the first approximation for different values of the energy and the
scattering angle. In the case of slow particles, when kR � 1, according to Eqs. (5)
and (1), we obtain

Im f (2)

Re f (2)
≈ 2kR � 1,

∣∣∣∣f (2)

f (1)

∣∣∣∣ ≈ mαR

�2
.

Taking into account the optical theorem, we can conclude that the smallness of the
ratio Im f (2)/Re f (2) (for kR � 1) is a general result for fairly arbitrary short-
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range potentials. The smallness of
∣∣f (2)/f (1)

∣∣ assumes fulfilment of the condition
mαR/�2 � 1, which ensures applicability of the Born approximation (see Eq. (XIII.7);
for the Yukawa potential, U0 ∼ α/R). These estimates are also useful for particles of
“moderate” energy, kR ∼ 1, but in this case, Im f (2) and Re f (2) are quantities of the
same order for an arbitrary scattering angle.

Let us consider the case of fast particles, kR � 1. For small scattering angles,
when qR � 1 (this domain provides a dominant contribution into the total scattering
cross-section), we find

Im f (2)

Re f (2)
∼ kR � 1,

∣∣∣∣f (2)

f (1)

∣∣∣∣ ∼ mα

�2k
.

The smallness of Re f (2) in comparison to Im f (2) is a general result (see Problem
13.14), while the condition |f (2)/f (1)| � 1, as expected, assumes that the applicability
condition of the Born approximation for fast particles is satisfied, namely the second of
conditions (XIII.7). The obtained estimates remain valid for larger value of qR. (Here,
some specific properties of the Yukawa potential manifest themselves, in particular, a
power-law decrease of Ũ(q) for q → ∞; compare to result of the previous problem.)

Problem 13.13

In the second order of perturbation theory, find the scattering amplitude in the
potential U(r) = U0e

−r2/R2

for large momenta transferred, qR � 1. Compare the real
and imaginary parts of f (2) with each other and with the Born amplitude.

Solution

The Fourier component of the potential is

Ũ(q) =

∫
U0 exp

{
−iq · r− r2

R2

}
dV = π3/2U0R

3e−q2R2/4,

and according to Eq. (2) from Problem 13.10, the scattering amplitude in the second
order of perturbation theory is described by the expression:

f (2)(k,k0) =
m2

8π4�4

∫
Ũ(k− κ)Ũ(κ− k0)

κ2 − k20 − iε
d3κ =

m2U2
0R

6

8π�4
e−q2R2/4

∫
exp{− 1

2R
2[κ− 1

2 (k+ k0)]
2}

κ2 − k20 − iε
d3κ. (1)

The dominant role in the integral comes from the region of values κ, where |κ−
(k+ k0)/2|R ≤ 1 (outside of this domain, the integrand is exponentially small). For
large energies, kR � 1, and large momenta transfered, qR � 1, in this domain the
denominator of the integrand in Eq. (1) changes only slightly, and it can be factored
outside the integral sign at the point κ = k+ k0/2. Then, a simple integration gives
(for k2 = k20):
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f (2)(k,k0) ≈ Re f (2) ≈ −
√
2πm2U2

0R
3

�4q2
exp

{
−1

8
q2R2

}
. (2)

In this approximation, amplitude f (2) is a real function. Its imaginary part according
to Eq. (1) could be easily found in general if we note that

Im
1

κ2 − k20 − iε
= πδ(κ2 − k20)

(compare to Problem 13.11). Writing d3κ = κ dκ2 dΩ/2 and integrating first over κ2

and then over the angles (choosing the polar axis along the vector k+ k0), we find:

Im f (2) =

(
mU0R

3

4�2

)2 ∫∫
κδ(κ2 − k2) exp

{
−κ2R2 +

1

2
κ · (k+ k0)R

2

}
dκ2dΩ =

πm2U2
0R

4

2�4|k+ k0| sinh
(
1

2
|k+ k0|kR2

)
e−k2R2

. (3)

(Note that |k+ k0| = (4k2 − q2)1/2.)

For large energies, kR � 1, and small scattering angles, when qR ≤ 1, the scatter-
ing amplitude of the second order is determined mainly by the imaginary part of Eq.
(3), as is seen from Problem 13.14 (Eq. (2) for qR ≤ 1 is not applicable). For large
changes of momentum, on the contrary, the integral is dominated by the real part of
the scattering amplitude, f (2). Moreover, since

Re f (2) ∝ e−q2R2/8, while f (1) = fa ∝ Ũ(q) ∝ e−q2R2/4,

then for the values of qR large enough, |Re f (2)| � |fB |. This signal a break-down
of the Born approximation, independently of the parameter U0 that characterizes
the interaction strength.[320] Let us emphasize that the discovered properties are
characteristic for potentials with an exponential decrease of the Fourier component
Ũ(q) ∝ exp{−αqn} with n ≥ 1 for q → ∞ (compare to Problem 8.29, and also to the
case of a power-law decrease of Ũ(q), considered in the previous problem).

In conclusion, let us note that using Eq. (3) and the optical theorem (XIII.11), we
can find the scattering cross-section in the Born approximation; the result, of course,
coincides with its calculation by the equation σB =

∫
(fB)2 dΩ (see Problem 13.1 f).

Problem 13.14

Prove that the scattering amplitude of second-order perturbation theory for large
energies, kR � 1, but for relatively low momenta[321] transfered, qR � 1, is described

[320] It corresponds to the large values of qR (the contribution of which to the total cross-section is
small).

[321] This region of momenta transferred contributes dominantly to the total scattering cross-section.
Here |q⊥| ≈ q, where q⊥ is the component of q perpendicular to the initial momentum k0 (directed
along the axis z).
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by (R is the radius of the potential)

f (2) ≈ i
m2

4π�4k

∫∫ ⎡⎣ ∞∫
−∞

U(ρ, z)dz

⎤⎦2

exp{−iq⊥ · ρ}d2ρ.

Apply this result to the potential U(r) = U0e
−r2/R2

, and compare to Problem 13.13.

Solution

In the second order of perturbation theory, the scattering amplitude is given by

f (2)(k,k0) =
m2

8π4�4

∫
Ũ(k− κ)Ũ(κ− k0)

κ2 − k20 − iε
d3κ. (1)

See Problem 13.10. For a large energy, kR � 1, and a small scattering angle, qR ≤ 1,
the vector κ, as well as k, is “close” to k0. Let us write these vectors in the form:

k = k0 + q = k‖n0 + q⊥, κ = κ‖n0 + κ⊥,

where n0 = k0/k0, while q⊥,κ⊥ ⊥ n0. See that |q⊥| ≈ q and k‖ = k0 + q‖, q‖ ≈
−q2/2k0. Compare to Problem 13.2. After substitution of the explicit expression for
Fourier components of the potential (in terms of U(r)), the integral in Eq. (1) takes
the form:∫ U(ρ1, z1)U(ρ2, z2) exp{−i[κ′

‖(z1 − z2) + κ⊥ · (ρ1 − ρ2) + q⊥ · ρ2]}
2k0κ′

‖ + (κ′
‖)

2 + κ2
⊥ − iε

×

d3r1d
3r2dκ

′
‖d

2κ⊥. (2)

Here κ′
‖ = κ‖ − k0, and the term −iq‖z2 in the exponent is omitted, since |q‖z2| ≤

q2R/k0 � 1. Let us note that the terms in the perturbative expansion for the scattering
amplitude (see Eq. (2) from Problem 13.10) could be interpreted as describing a
number of single-particle collisions with the scattering potential, each accompanied
by a momentum change for the particle being scattered. In this sense, the radius-
vector r1 in the corresponding integral corresponds to the point of first collision, after
which the particle momentum becomes equal to κ (after the second collision, it takes
the value k).

Closing the contour in the upper half-plane of the complex variable κ′
‖ in the case

of z2 > z1, and in the lower half-plane for z2 < z1, we can perform the integration over
κ′
‖ in Eq. (2):

∫ exp{−iκ′
‖(z1 − z2)}dκ′

‖
2k0κ′

‖ + (κ′
‖)

2 + κ2
⊥ − iε

=

{
iπ
k0

exp
{

iκ2
⊥

2k0
(z1 − z2)

}
, z2 > z1,

iπ
k0

exp {2ik0(z1 − z2)}, z2 < z1.
(3)

If |k0z1,2| ∼ k0R � 1, then in the case of z1 > z2, the exponent in Eq. (3) is a fast
oscillating function. This means that for the subsequent integration over z1,2 in Eq. (2),
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a contribution of such z1,2 would be small, and can be neglected. Thus, Eq. (3) could
be considered equal to

iπ

k0
η(z2 − z1) exp

{
i
κ2
⊥(z1 − z2)

2k0

}
, (4)

where η(z) is a step function,[322] and since typically we have z1,2 � R and κ⊥ � R−1,
then the exponent can be replaced by 1. The appearance of a step function in Eq. (4)
has a physical explanation: for fast particles, each successive “collision” takes place
for larger and larger values of z (there is no backward scattering).

Now, in Eq. (2), integration over κ⊥ is easily performed, and the δ-function, δ(ρ1 −
ρ2), allows integration over ρ2. As a result, we obtain

f (2) = i
m2

2π�4k0

∫ ⎧⎨⎩
∞∫

−∞
U(ρ, z1)dz1

∞∫
z1

U(ρ, z2)dz2

⎫⎬⎭ e−iq⊥·ρd2ρ.

Finally, replacing the lower limit of integration over z2 by −∞ and introducing the
coefficient 1/2, we obtain the expression given in the problem condition. Let us note
that for a central potential, the scattering amplitude is purely imaginary (a real part of
the amplitude f (2) is much smaller than the imaginary part, and in this approximation
it does not appear; compare to Problems 13.12 and 13.13).

For the potential U = U0 exp{−r2/R2}, we obtain

f (2) = i
πm2U2

0R
4

8�4k0
e−q2R2/8,

which coincides with Eq. (3) from Problem 13.13 for the values qR � 1.

In conclusion, note that taking q = 0 in the equation for f (2) and using the optical
theorem (XIII.11), we obtain the scattering cross-section in the Born approximation,
which coincides with the result of Problem 13.2.

Problem 13.15

From the solution of the Lippmann–Schwinger equation (see Problem 13.10), find
the scattering amplitude for a separable potential with the following integral kernel
U(r, r′) = λχ(r)χ∗(r′). Find the angular distribution and total scattering cross-section.

Solution

The Lippmann–Schwinger equation (Eq. (1) from Problem 13.10) remains valid for an
arbitrary interaction Û , if we replace the potential Fourier component Ũ(k− k′) by
the corresponding kernel Ũ(k,k′). For the separable potential,

[322] Recall that η(z) = 1 for z > 0, and η(z) = 0 for z < 0.
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Ũ(k,k′) = λg(k)g∗(k′), g(k) =

∫
e−ik·rχ(r)dV,

and the Lippmann–Schwinger equation reads

f(k,k0) = − λm

2π�2
g(k)

[
g∗(k0) +

∫
g∗(κ)f(k,k0)d

3κ

2π2(κ2 − k20 − iε)

]
. (1)

Denoting the integral here by F (k0), we have

f(k,k0) = − λm

2π�2
g(k)[g∗(k0) + F (k0)],

and after substituting this expression back into the integral, we obtain a self-consistent
equation for F (k0) and determine the scattering amplitude (k = k0):

f(k,k0) ≡ f(k) = − λm

2π�2
g2(k)

1 +K(k)
,

where

K(k) =
λm

4π3�2

∫ |q(κ)|2d3κ
κ2 − k2 − iε

.

One of the notable properties of the scattering amplitude is its independence from
the scattering angle,[323] so that the angular distribution of the scattered particles
is isotropic, and the total scattering cross-section is simply σ(E) = 4π|f |2 (it is
informative to prove its consistence with the optical theorem). Note that in the large-
energy limit: σ(E) ∝ |g(k)|4 for E → ∞.

Problem 13.16

For E = 0, compare the values of the exact and Born scattering amplitudes in a
potential U(r) for

a) a repulsive potential U(r) ≥ 0;

b) an attractive potential in which there are no bound states (i.e., the potential well
is “shallow” enough).

Prove that the Born approximation in case a) overestimates the scattering cross-
section, while in case b), it underestimates it.

Solution

For E = 0, we have

fB(0) = − m

2π�2

∫
U(r)dV, fex(0) = − m

2π�2

∫
U(r)ψ0(r)dV, (1)

[323] Compare to the scattering from a zero-range potential, considered in Problem 13.20.
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where the wavefunction ψ0(r) satisfies the equation:

ψ0(r) = 1− m

2π�2

∫
U(r′)

1

|r− r′|ψ0(r
′)dV ′. (2)

If there are no bound states in the potential U(r), then the wavefunction for E = 0 has
no zeros, and since ψ0(∞) = 1, then ψ0(r) > 0. As follows from Eq. (2), for a repulsive
potential, 0 ≤ ψ0(r) ≤ 1, and according to Eq. (1), we have the inequality |fB(0)| >
|fex(0)|, i.e., the Born approximation overestimates the scattering cross-section. In the
analogous case of an attractive potential, U(r) ≤ 0, we obtain |fB(0)| < |fex(0)|, so
the Born approximation underestimates the scattering cross-section (in the absence
of bound states in the potential). Let us emphasize that the relations between the
cross-sections do not assume that the potential is weak, as required for the Born
approximation to be formally valid. In connection to this problem, see also Problems
13.69 and 13.70.

Problem 13.17

In the Born approximation, obtain a scattering amplitude for scattering of a charged
particle by a magnetic field, H(r). Prove gauge invariance of the result obtained.[324]

Solution

To first order in the magnetic field, the interaction has the form:

V̂ = − e

2mc
(p̂ ·A+A · p̂).

Substituting this expression into Eq. (XIII.5) instead of U(r), and replacing the
wavefunction ψ+

k0
by a plane wave, we obtain the scattering amplitude

f(k,k0) =
e

4π�2c

∫
e−ik·r(p̂ ·A+A · p̂)eik0·rd3r =

e

4π�c
(k+ k0) · Ã(q),

where Ã(q) =
∫
e−iq·rA(r)dV is the Fourier transform of the vector potential. Under

a gauge transformation, a term ∇χ(r) is added to A(r), and consequently iqχ̃(q) to
Ã(q). But since q · (k+ k0) = 0, then the value of f and the value of the differential
scattering cross-section do not change, in accordance with gauge invariance.

13.2 Scattering theory: partial-wave analysis

Problem 13.18

Obtain an expression for phase shifts directly from the partial-wave expansion of the
Born scattering amplitude in a spherically-symmetric potential.

[324] See also Problem 13.24.
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Solution

Let us use the expansion:

sin qr

qr
=

sin
√
2k2r2 − 2k2r2 cos θ√

2k2r2 − 2k2r2 cos θ
=

π

2kr

∞∑
l=0

(2l + 1)[Jl+1/2(kr)]
2Pl(cos θ),

which follows from the addition theorem for cylindrical functions, if we note that
(sin z)/z =

√
π/2zJ1/2(z). Substituting this into Eq. (XIII.8), we obtain the Born

amplitude in the form of a series:

fB =

∞∑
l=0

(2l + 1)

⎧⎨⎩−πm

�2k

∞∫
0

U(r)[Jl+1/2(kr)]
2rdr

⎫⎬⎭Pl(cos θ). (1)

Comparing this to expansion (XIII.9) of the scattering amplitude in partial waves,
we conclude that the Born approximation corresponds to small scattering phase-
shifts,[325] |δl(k)| � 1, where

f =
∑
l

(2l + 1)
e2iδl − 1

2ik
Pl(cos θ) ≈

∑
l

(2l + 1)
δl(k)

k
Pl(cos θ). (2)

From a comparison between Eqs. (1) and (2), we reproduce the known expression for
the Born phase shifts - Eq. (XIII.12) - which is a linear-in-the-potential term in the
expansion for δl(k).

Problem 13.19

Find phase shifts in the field U(r) = α/r2, α > 0.

Perform summation of the series (XIII.9), i.e., of the partial-wave expansion of the
scattering amplitude for the following cases:

a) mα/�2 � 1 for an arbitrary scattering angle;

b) mα/�2 � 1 for small-angle scattering;

c) mα/�2 � 1 for the backward scattering (θ = π).

Find the differential scattering cross-section and compare it to that in the Born
approximation and the scattering cross-section that follows from classical mechanics.

[325] The smallness of all phase shifts is a necessary (but not sufficient) condition for the Born
approximation to remain valid. This smallness is responsible for the scattering amplitude being
real in this approximation.
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Solution

Writing the wavefunctions as ψklm = ukl(r)Ylm/
√
r, for the function ukl(r) we have

the following equation (compare to Eq. (IV.6)):

u′′
kl +

1

r
u′
kl +

{
k2 − 1

r2

[(
l +

1

2

)2

+
2mα

�2

]}
ukl = 0.

Its solution, satisfying the boundary condition u(0) = 0, is ukl = CJν(kr), where Jν
is the Bessel function with the index

ν =

√(
l +

1

2

)2

+
2mα

�2
.

The asymptote of this solution for r → ∞ is

ukl ≈ C

√
2

πkr
sin

[
kr − πν

2
+

π

4

]
≡ C

√
2

πkr
sin

[
kr − π l

2
+ δl

]
.

The phase shifts are

δl = −π

2

⎡⎣√(
l +

1

2

)2

+
2mα

�2
−
(
l +

1

2

)⎤⎦. (1)

Since δl does not depend on k, then according to Eq. (XIII.9) the scattering amplitude
has the form f(k, θ) = F (θ)/k, and the differential scattering cross-section goes as
dσ/dΩ ∝ k−2 ∝ E−1. The same energy-dependence[326] (but not a dependence on the
scattering angle) occurs in classical mechanics (see Eq. (5)).

Let us consider some special cases where it is possible (approximately) to sum the
series (XIII.9) with phase shifts (1).

a) In the case mα/�2 � 1, according to (1) we have

δl ≈ − πmα

(2l + 1)�2

where |δl| � 1. Expanding e2iδl in Eq. (XIII.9), we obtain[327]

f(E, θ) ≈ −πmα

�2k

∞∑
l=0

Pl(cos θ) = − πmα

2�2k sin(θ/2)
, (3)

[326] For the potential U = α/r2, the dependence dσ/dΩ ∝ E−1, both in classical and in quantum
mechanics, is easily obtained from a dimensional analysis.

[327] To sum this series, use the generating function of the Legendre polynomials (with z = cos θ and
x = 1):

1√
1− 2xz + x2

=

∞∑
l=0

xlPl(z).
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which coincides with the result of the Born approximation (see Problem 13.1 d).
The angular dependence of the differential cross-section,

dσ

dΩ
= |f |2 =

π2mα2

8�2E sin2(θ/2)
, (4)

is dissimilar from the corresponding result of classical mechanics:(
dσ

dΩ

)
cl

=
π2α(π − θ)

Eθ2(2π − θ)2 sin θ
. (5)

b) In the case mα/�2 � 1, it is impossible to perform summation of the partial-wave
series for an arbitrary scattering angle. But it is easy to see that for sufficiently
small scattering angles, Eqs. (3) and (4) are valid. It is connected to an unbounded
increase of the scattering amplitude for θ → 0. Since each term of series (XIII.9)
is bounded, then such a divergence of the amplitude means that there are a lot of
terms with large values of l in the sum (generally, the smaller the scattering angles,
the larger the values of l). But for values of l large enough, relation (2) is still
valid, from which Eq. (3) and (4) are deduced. The fact that for small scattering
angles, the Born approximation is applicable independently of the value ofmα/�2, is
reasonable: In the conditions of the problem, large distances contribute dominantly
to the relevant quantities (due to the aforementioned divergence of the scattering
amplitude), where U = α/r2 � �v/r, and the potential can be considered as a
perturbation.

c) Let us consider backward scattering. In this case, we have:

∞∑
l=0

(2l + 1)Pl(cos θ) = 4δ(1− cos θ),

i.e., for θ �= 0 the sum is equal to zero, and Pl(−1) = (−1)l. Now series (XIII.9)
takes the form:

f(E, θ = π) =
1

2k

∞∑
l=0

(2l + 1) exp

⎧⎨⎩−iπ

√(
l +

1

2

)2

+
2mα

�2

⎫⎬⎭. (6)

In the case of mα/�2 � 1, the dominant role in this sum is played by the terms with
large angular momenta[328] l � (mα/�2)1/4. Here, the neighboring terms differ from
one another only slightly, and the summation could be replaced by an integration:

[328] For large values of l, terms of the sum (6) oscillate quickly, and as result of their mutual
compensation, the corresponding part of the sum becomes small. Let us note that for the calculation
of series (6), as well as for the previous sum with the δ-function, we should introduce a cutoff factor,
e−γl with γ > 0, in integral (7), and then the limit take γ → 0 in the final result.
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f(E, π) ≈ 1

k

∞∫
0

l exp

{
−iπ

√
l2 +

2mα

�2

}
dl. (7)

Using the substitution x =
√
l2 + 2mα/�2, we finally obtain

f(E, π) = −i

√
2mα

π�k
exp

{
−iπ

√
2mα

�2

}
. (8)

This differential scattering cross-section for θ = π coincides with result (5) of
classical mechanics. This remains so also for the region of scattering angles (which
expand with an increase of α), that are close to θ = π.
Let us note in conclusion that in the case of an attractive potential, α < 0,

the phase shifts, (1), could become imaginary. Formally, this coincides with the
appearance of “absorption” in the system. This instability can be linked to the
classical phenomenon of “fall into the center” (see Problem 9.14). What concerns
the small-angle scattering, it is described by Eqs. (3) and (4), independently of the
sign of α.

Problem 13.20

Find the wavefunction, ψ+
k0
(r), scattering amplitude, and scattering cross-section of

a particle in a zero-range potential (see Problem 4.10). Find the value of effective
radius, r0.

Solution

Since a zero-range potential affects only particles with the angular momentum l = 0,
then only an s-scattering phase-shift, δ0(k), is non-zero, and the scattering amplitude
does not depend on the angle θ. The asymptotic form of the wavefunction,

ψ+
k (r) = eik·r +

f(E)

r
eikr, (1)

determines the exact solution of the Schrödinger equation for all r > 0. Comparing
the wavefunction expansion for r → 0,

ψ+
k ≈ f

r
+ (1 + ikf),

with the boundary condition for the zero-range potential (see Problem 4.10), we find

f(E) = − a0
1 + ika0

, σ = 4π|f |2 =
4π

k
Im f(E) =

4πa20
1 + k2a20

. (2)

Here, a0 = 1/α0. Note that f(0) = −a0, where a0 is the scattering length of a z.r.p.
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Finally, using the equality e2iδ − 1 = 2i/(cot δ − i), we obtain the s-scatterig phase-
shift on the zero-range potential as follows:

k cot δ0(k) = − 1

a0
. (3)

Its comparison with the effective-range expansion, (XIII.15), proves that for scattering
from a z.r.p., the effective radius of interaction is r0 = 0.

Problem 13.21

Reconstruct the interaction potential U(r) from the s-scattering phase-shift δ0(k),
considering it to be known for all energies, and assuming that |δ0(k)| � 1.

To illustrate applications of this result, consider the following dependencies:

a) δ0(k) = const; b) δ0(k) =
αk

1 + βk2
.

Solution

Since |δ0(k)| � 1 for all energies, we can consider the potential as a perturbation and
use expression (XIII.12) for the phase shift of the s-wave:

δ0(k) = − 2m

�2k

∞∫
0

U(r) sin2 kr dr = − m

�2k

∞∫
0

U(r)[1− cos 2kr]dr. (1)

Multiplying both parts of this equality by (−�
2k/2m) and differentiating by k, we

obtain

− �
2

2m

d

dk
[kδ0(k)] =

∞∫
0

rU(r) sin 2kr dr ≡ i

2

∞∫
−∞

rU(|r|)e−2ikrdr. (2)

Here we have used the even continuation of the potential, U(−|r|) ≡ U(|r|), into the
region with negative values of r.

Equation (2) determines the Fourier component of the potential (to be more precise,
of the function rU(|r|)) and allows us to find the potential using the inverse Fourier
transform:

rU(|r|) = i�2

πm

∞∫
−∞

e2ikr
d

dk
[kδ0(k)]dk. (3)
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Since according to Eq. (1), δ0(k) is an odd function of the variable k, and so δ′0(k) is
an even function, then Eq. (3) takes the form:

U(r) = − 2�2

πmr

∞∫
0

sin(2kr)
d

dk
[kδ0(k)]dk. (4)

Let us consider applications of this general formula.

a) In the case of δ0(k) = const = C (for k > 0), according to Eq. (4) we obtain:

U(r) = −2�2C

πmr

∞∫
0

sin 2kr dk = − �
2C

πmr2
≡ γ

r2
. (5)

To calculate this integral, introduce the “cutoff” factor e−λk with λ > 0, and in
the final result take λ → 0.

b) Substituting [kδ0(k)]
′ = 2αk/(1 + βk2)2 into Eq. (3) and calculating the integral

using residues, we find:

U(r) = − 2α�2

m
√

β3
exp

{
− 2r√

β

}
≡ U0e

−r/R. (6)

Note that the condition |δ0(k)| � 1 assumes that |C| � 1 and |α| � √
β. The

reconstructed potentials (5) and (6), as expected, are consistent with the appli-
cability condition of the Born approximation for any energy.

Problem 13.22

Obtain phase shifts in the Born approximation for an exchange potential (see Prob-
lem 13.3).

Solution

Since the action of the operator Ûex on the wavefunction of a state with a definite
value of angular momentum, l, is reduced to its multiplication by (−1)lU(r), then the
expression for the phase shift, δBex,l(k), differs from the Born expression, (XIII.12), for

a regular potential, U(r), only by the factor (−1)l.

Problem 13.23

Develop scattering theory based on a partial-wave analysis for an axially-symmetric
potential, U(ρ), in two-dimensional quantum mechanics.

What is a form of the optical theorem in two dimensions?
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Solution

A theory of scattering for an axially-symmetric potential in two dimensions can be
developed along the same lines as that for a spherically-symmetric potential in three
dimensional quantum mechanics.

The Hamiltonian in an axially-symmetric field has the form:

Ĥ = − �
2

2μ

(
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2
∂2

∂ϕ2

)
+ U(ρ), (1)

while the solution of the Schrödinger equation has the following asymptotic behavior

ψ+
k (ρ) ≈ eikρ cosϕ +

√
i
f(k, ϕ)√

ρ
eikρ, ρ → ∞. (2)

Incident particles move in the direction of the positive x axis; here, x = ρ cosϕ. Note
that now the scattered wave is cylindrical (not spherical), and so instead of 1/r we
have 1/

√
ρ. In this two-dimensional case, the scattering amplitude, f(k, ϕ), has the

physical dimension of the square root of length, and the physical dimension of the
differential scattering cross-section dσ/dϕ = |f |2 is length. Finally, a phase factor

√
i

is used for convenience.

Since the operator l̂z = −i∂/∂ϕ commutes with both the Hamiltonian of free
motion and Hamiltonian (1), then the two-dimensional plane wave and the exact
wavefunction ψ+

k (ρ) can be expanded in the eigenfunctions, ψm = eimϕ, of this
operator (analogous to the expansion over spherical functions in the case of a central
potential):

eikρ cosϕ =

∞∑
m=−∞

AmJ|m|(kρ)eimϕ, ψ+
k =

∞∑
m=−∞

BmRkm(ρ)eimϕ. (3)

Here, we have taken into account that the radial function of free motion with an
“angular momentum” m is expressed in terms of the Bessel functions J|m|(kρ), with
the coefficients Am = i|m|. The values of the coefficients Bm are determined from
the condition that the difference, ψ+

k − eikx, at large distances contains the outgoing
waves, ∝ eikρ, for each term of the sum over m. Writing the asymptote of the radial
function in the form[329]

Rkm(ρ) =

√
2

πkρ
sin

(
kρ− π|m|

2
+

π

4
+ δm

)
, (4)

we find Bm = eiδmAm. As a result, we obtain a partial-wave decomposition of the
scattering amplitude:

[329] The normalization factor in this function and the phase δm are chosen so that for δm = 0,
asymptote (4) coincides with the asymptote of a Bessel function, which describes the radial function
of free motion.
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f(k, ϕ) =
1

i
√
2πk

∞∑
m=−∞

(e2iδm − 1)eimϕ. (5)

Note that the phase shift δm does not depend on the sign of m.

According to Eq. (5), the total scattering cross-section is

σ =

2π∫
0

|f |2dϕ =
4

k

∞∑
m=−∞

sin2 δm, (6)

and the optical theorem in this two-dimensional case reads

Im f(k, ϕ = 0) =

√
k

8π
σ(E). (7)

Notice that extracting the factor
√
i in Eq. (2) in the Born approximation is indeed

convenient, as this convention ensures that for |δm| � 1, the scattering amplitude
given becomes real, according to Eq. (5).

Problem 13.24

Using the partial-wave decomposition, find the scattering amplitude and differential
scattering cross-section of charged particles in an axially symmetric magnetic field,
H(ρ), directed along the z axis and localized at small distances ρ ≤ a in the vicinity
of this axis.

Hint: Consider the limiting case a → 0, and a finite value, Φ0, of the magnetic flux.
It is convenient to choose the vector potential in the form Aϕ = Φ0/2πρ, Az = Aρ = 0.

Solution

In the polar coordinates, the Hamiltonian of transverse motion in a magnetic field
Ĥ⊥ = (p̂− eA/c)2/2μ, takes the form:[330]

Ĥ⊥ =
�
2

2μ

{
−1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

[
λ2 + 2iλ

∂

∂ϕ
− ∂2

∂ϕ2

]}
, (1)

where λ = eΦ0/2π�c. Since the operator Ĥ⊥ commutes with l̂z, the two-dimensional
theory of scattering developed in the previous problem is also applicable here. Now,
though, the phase shifts, δm, depend on the sign of m. The radial functions here, as
well as for free motion, are expressed in terms of the Bessel functions, Jν(kρ), but
with the index ν = |m− λ|. Using their known asymptote, we find

[330] Note that free motion along the field is not particularly interesting and therefore is not being
considered. Also note that for to derive Hamiltonian (1), we used the following azimuthal component
of the gradient operator, ρ−1∇ϕ = ∂/∂ϕ.
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δm = −π

2
(|m− λ| − |m|).

The scattering amplitude (see Eq. (5) of the previous problem) becomes

f(k, ϕ) =
1

i
√
2πk

∞∑
m=−∞

{eiπ(m−|m−λ|) − 1}eimϕ. (2)

Denoting the minimum value of m (that is still larger than λ) by m0, and dividing the
sum into two pieces: with m ≥ m0 and with m ≤ m0 − 1, we can calculate the latter
summing up a geometrical progression. This yields a closed equation for the amplitude
and differential cross-section:

f = i
exp{i(m0 − 1/2)ϕ}√

2πk

sinπλ

sin(ϕ/2)
,

dσ

dϕ
=

sin2(eΦ0/2�c)

2πk sin2(ϕ/2)

∣∣∣
φ→0

∝ φ−2.

An interesting property of this result is the infinite value of the total scattering cross-
section, i.e., particle scattering occurs even for an arbitrarily large impact parameter.
From the point of view of classical theory, this conclusion appears counter-intuitive: the
magnetic field and the Lorentz force are different from zero only on the axis, and hence
have no influence on the particle’s classical motion. This paradox is a manifestation
of the fact that the phenomenon due to the magnetic flux described in this problem,
the Aharonov–Bohm effect, is purely quantum, and disappears in the classical limit;
for � → 0 and k−1 = �/p → 0, the scattering is indeed absent. In quantum mechanics,
the interaction between a charged particle and a magnetic field is characterized by
a vector potential: as in the Hamiltonian.[331] In this problem, despite the fact that
outside the axis, the field vanishes, H = 0, the vector potential can not be turned off
(“gauged away”) by any gauge transformation (

∮
A · dl = Φ0), and its slow, ∝ 1/ρ,

decrease on large distances explains the infinite scattering cross-section.

Problem 13.25

Find the energy dependence of phase shifts, δl(k), with a fixed value of l, in the limit
k → ∞. Consider potentials with the following behavior at small distances (r → 0):
U ≈ α/rν with a) ν < 1; b) 1 < ν < 2; c) ν = 1.

Solution

For large energies, the Born approximation is applicable, and we can use expression
(XIII.12) for the phase shifts. For k → ∞, the argument of the Bessel function is large,

[331] See also an excellent discussion about whether the vector potential is “real” in The Feynman
Lectures on Physics, vol. 6, Ch. 15.
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x = kr � 1, in the entire integration domain, except for a narrow region of small r.
Using the known asymptote for Jμ(x), we obtain

δl(k) =
k → ∞

− 2m

�2k

∞∫
0

U(r) sin2
(
kr − πl

2

)
dr ≈

− m

�2k

∞∫
0

U(r) dr ∝ k−1. (1)

The fast-oscillating factor sin2(x− πl/2) was replaced by its mean value, equal to 1/2.
This result is valid in case a), where rU(r) → 0 for r → 0.

For more singular potentials, Eq. (1) is not applicable, due to a divergence of the
integral. Such a divergence means that now the region of small r plays a dominant
role, and we cannot replace Jμ(x) by its asymptote. Dividing the integration domain
over r in Eq. (XIII.12) into two: from r = 0 to some small but finite R, and from
r = R to infinity, we see that the second of these integrals is proportional to k−1, as
in Eq. (1). A contribution of the first of these integrals is dominant, and we can put
there U = α/rν . Making substitution x = kr, we obtain the[332]

δl ≈ −πmα

�2
kν−2

∞∫
0

J2
l+1/2(x)dx

xν−1
=

−πmα

�2

Γ(ν − 1)Γ(l + (3− ν)/2)

2ν−1Γ2(ν/2)Γ(l + (ν + 1)/2)
kν−2 ∝ kν−2. (2)

Normally, we would replace the upper limit of integration, equal to kR, for k → ∞ by
∞. For ν = 1 however, such a replacement is not valid due to the divergence of the
integral (in the upper limit).

Using the asymptote Jμ(x) for x → ∞, we calculate the divergent part as follows

δl ≈ −mα

�2k
ln kR, ν = 1. (3)

This equation has the logarithmic accuracy in accordance with an uncertainty in the
value of R.

Let us note that the ν-dependence of the phase-shifts, δl(k), for k → ∞, affects
the scattering of particles with a large momentum transfer. This is connected with the
fact that fB ∝ Ũ(q) for large values of q is determined by the singularities of the
potential U(r) as a function of r. For singular at r → 0 potentials, U ≈ α/rν , we have
Ũ ∝ qν−3 ∝ kν−3 for q → ∞. But such a difference in the energy dependence of phase-

[332] For ν = 2, the independence of phase-shifts from k holds for any values of α and l, even if the
Born approximation is not applicable (see Problem 13.19). Note also that for ν > 2, the Born
approximation breaks down.
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shifts with fixed values of l does not affect the total scattering cross-section, σ ∝ 1/E,
that is determined by angular momenta l ∼ kR � 1.

Problem 13.26

Prove that for large values of energy and angular momentum, where kR ∼ l � 1,
the Born approximation, (XIII.12), for phase-shifts crosses over to the quasi-classical
expression, see Eq. (XIII.14).

Solution

In Eq. (XIII.12) for the values l ∼ kR � 1 (R is the potential radius), we divide the
integration domain into two parts: from r = 0 to r = r0 ≡ (l + 1/2)/k, and from r = r0
to r = ∞. In the second of these integrals, we use the tangent approximation for the
Bessel function, i.e., the following asymptote

Jν

(
ν

cosβ

)
≈
√

2

πν tanβ
cos

(
ν tanβ − βν − π

4

)
, ν � 1. (1)

Here, ν = l + 1/2 and ν/ cosβ = kr, so that ν tanβ = k
√
r2 − r20. After replacing the

fast-oscillating factor, cos2[. . . ], under the integral by its mean value of 1/2, we find:

δBl (k) ≈ − m

�2k

∞∫
r0

rU(r)dr√
r2 − r20

. (2)

We restrict ourselves to the second of the integrals mentioned, since the contribution
of the first one is small. This smallness is connected to the fact that for ν � 1, the
function Jν(x) decreases exponentially with the decrease of x from the value x = ν.
Such a decrease of Jν(x) is a manifestation of the common quasiclassical behavior,
where the quasiclassical wavefunctions decreases rapidly into a classically-forbidden
region, inside a barrier (in this case, the centrifugal barrier).

Equation (2) coincides with the known quasi-classical expression, (XIII.14), for the
phase shift in the case of |U(r)| � E. The use of the Born approximation assumes the
fulfilment of a stricter condition, |U(r)| � �v/r, with |δB′′

l � 1.

According to Eq. (2), a dependence of the phase shift on l and k (in the relevant
parameter range) is determined by the expression:

δBl (k) =
g(s)

k
, s =

l + 1/2

k
. (3)

The function g(s) depends on the concrete form of the potential. If the Born approxi-
mation applies, by replacing the summation over l with an integration in Eq. (XIII.9),
we obtain the known result, σ ∝ 1/E for E → ∞ (for a short-range potential).
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13.3 Low-energy scattering; Resonant scattering

Problem 13.27

Find the energy dependence of the scattering cross-section, σ(E), in a field that
decreases at large distances as U(r) ≈ α/rν , 2 < ν ≤ 3, and in the low-energy limit,
E → 0.

Solution

For potentials with this behavior at large distances, the Born amplitude for q → 0
diverges. Since q = 2k sin(θ/2), then for E → 0 in the Born approximation, the total
scattering cross-section would diverge as well (here, q → 0 for all scattering angles).
The divergence of the scattering cross-section signals the importance of large distances,
where conditions (XIII.7) are fulfilled, and therefore the Born approximation does
work. Here, according to Eq. (XIII.12), we have:

f(q) ≈ − 2mα

�2q3−ν

∞∫
qR

sin x

xν−1
dx. (1)

We consider only the diverging part of the amplitude and total scattering cross-section.
We do not consider a contribution from distances r ≤ R, where the potential is not
described by its known asymptote.

For ν < 3, in Eq. (1) we set the lower integration limit as qR = 0 and obtain:

f =
Cν

q3−ν
, Cν =

πmα

�2Γ(ν − 1) cos(πν/2)
, (2)

using the integral

∞∫
0

sin x

xν−1
dx = Γ(2− ν) sin

πν

2
= − π sin(πν/2)

Γ(ν − 1) sinπν
.

The total scattering cross-section is (for q2 = 2k2(1− cos θ))

σ = 2π

π∫
0

f2 sin θ dθ ≈
E → 0

2πC2
ν

(
�
2

4mE

)3−ν 1∫
−1

dz

(1− z)3−ν
∝ 1

E3−ν
→ ∞. (3)

If ν = 3, we cannot replace the lower limit of integration in Eq. (1) by zero, due to
integral divergence. Since sinx ≈ x for x → 0, the diverging part of the integral is
equal to ln(1/qR), so that
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f ≈ 2mα

�2
ln qR, (4)

and the total scattering cross-section is

σ =

∫
f2dΩ ≈

∫
4m2α2

�4
ln2 kR dΩ =

16πm2α2

�4
ln2 kR → ∞. (5)

For a calculation of the diverging, ∝ ln2 k, part of the scattering cross-section, we put
ln qR ≈ ln kR. An uncertainty in the value of R gives rise to the logarithmic accuracy
of Eqs. (4) and (5).

Problem 13.28

Find the k-dependence of the phase shifts, δl(k), for slow particles, and discuss the
effective-range expansion in the Born approximation. What are the constraints on the
large-distance asymptotic behavior of the potential that ensure the applicability of
the expansion (XIII.15)? Introduce the following parameters of low-energy scattering:
scattering length, al, and an effective range of the interaction, rl, with the angular
momentum, l.

Solution

For k → 0, the argument, x = kr, of the Bessel function in Eq. (XIII.12) is small, and
we can use the known expansion of Jμ(x) for x → 0. We consider only the first two
terms of the expansion,[333] and obtain

δBl (k) ≈ k2l+1[Al +Blk
2 + . . . ] ∝ k2l+1. (1)

Here,

Al = cl

∞∫
0

U(r)r2l+2dr, Bl = − cl
2l + 3

∞∫
0

U(r)r2l+4dr,

cl = − πm

22l+1Γ2(l + 3/2)�2
. (2)

Taking into account the effective range expansion, Eq. (XIII.15), and also the smallness
of the phase shift in the Born approximation, we find:

aBl = −Al, rBl = −2BlA
−2
l . (3)

One of the applicability conditions for these results is a fast decrease of the potential
at large distances. This guarantees convergence of the integral in Eq. (2). For an
exponential decrease of the potential, no restriction on the values[334] of l appears.

[333] These transformations are valid for fixed finite value of k, but l � (kR)2, which allows us to make
a conclusion for the phase shifts at large values of the angular momentum: δl ∝ (kR/l)2l+1.

[334] The dependence δl ∝ k2l+1 is valid for “strong” potentials including those for which the Born
approximation is not valid.
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For potentials with a power-law decrease, U ≈ α/rν , we have a different situation. For
the values l < (ν − 5)/2, the integrals in Eq. (2) converge in the upper limit, and the
notions of the scattering length al and effective range rl are still well-defined.

In the case of (ν − 5)/2 ≤ l < (ν − 3)/2, the second of the integrals in Eq. (2)
diverges. Here, the effective range expansion, Eq. (XIII.15), is not valid, but the
notion of the scattering length and the dependence δl ≈ −alk

2l+1 for slow particles
are preserved.

Finally, for the values l ≥ (ν − 3)/2, the dependence δl ∝ k2l+1 is broken for k → 0.
Low-energy scattering with an arbitrary angular momentum l in potentials with a
power “tail” is considered in the following two problems (see Problem 13.27).

Problem 13.29

For a potential with a power-law decrease at large distances, U ≈ α/rν with ν > 2,
find the k-dependence of phase-shifts for slow particles with an angular momentum, l.

Solution

For the values l < (ν − 3)/2, δl = Alk
2l+1. In the Born approximation, the coefficient

Al in this case is obtained as in the previous problem. In the case l ≥ (ν − 3)/2, we can
not replace the Bessel function, Jμ(x), in Eq. (XIII.12) by its first, ∝ xμ, expansion
term, as it would have led the dependence δl ∝ k2l+1, and a divergence in the integral.
Now, we divide the integration domain in Eq. (XIII.12) into two parts: from r = 0 to
r = R, and from r = R to r = ∞ (the value of R is such that for r > R, we can use
an asymptotic form of the potential), we see that the first integral, proportional to
k2l+1, is less important than the second one. We find:

δl ≈ −πmα

�2
kν−2

∞∫
kR

1

xν−1
J2
l+1/2(x)dx. (1)

For l > (ν − 3)/2, we can replace the lower integration limit by zero and obtain:

δl ≈ −πmα

�2

Γ(ν − 1)Γ(l + (3− ν)/2)

2ν−1Γ2(ν/2)Γ(l + (ν + 1)/2)
kν−2. (2)

In the case of l = (ν − 3)/2, the integral in Eq. (1) for k → 0 diverges in the lower
limit. Using the expansion of Jμ(x) for x → 0, we find the divergent part of the integral
and the phase shift:

δl ≈ πmα

22l+1Γ2(l + 3/2)
k2l+1 ln kR. (3)

Let us make a few remarks:
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1) Although the above results are based on the Born approximation, for ν > 2 they
apply more broadly. Indeed, in this case, the large distances are essential, where
|U(r)| � �

2/mr2, so that the potential can be considered as a perturbation.

2) For a potential that is a superposition of a “strong” short-range and a “weak”
long-range (with a power-law asymptote) potential, generally speaking,[335] the
contributions to the phase shift are additive: δl ≈ δl,shor + δl,long. For abnormally
small k, the dominant contribution comes from the long-range potential, while for
k not too small it comes from the short-range potential. See Problem 13.37, and
also Problem 13.42.

Problem 13.30

For potential with a power-law decrease at large distances, U ≈ α/rν , discuss how the
effective-range expansion, see Eq. (XIII.15), should be modified in order to describe
scattering of particles with angular momenta, l, in the range (ν − 5)/2 ≤ l < (ν −
3)/2. As an illustration of this result, consider s-wave scattering of slow particles in a
potential with the large-distance asymptote, U ≈ α/r4.

Solution

Taking into account the solutions of the two previous problems, it is easy to obtain
the following expansions:

δl + alk
2l+1 ≈ −πmα

�2
kν−2

∞∫
0

1

xν−1

[
J2
l+1/2(x)−

x2l+1

22l+1Γ2(l + 3/2)

]
dx,

ν − 5

2
< l <

ν − 3

2
. (1)

In the case l = (ν − 5)/2, we can also obtain Eq. (1), but the lower limit of the integral
will be equal to kR. Calculating the divergent part, we find:

δl + alk
2l+1 ≈ − πmα

22l+1(2l + 3)Γ2(l + 3/2)
k2l+3 ln kR. (2)

In particular, for a potential that at large distances has the form U ≈ α/r4 (i.e., ν = 4),
and for l = 0, we obtain from Eq. (1):

δ0 + a0k ≈ −2mα

�2
k2

∞∫
0

1

x3

[
sin2 x

x
− x

]
dx =

2πmα

3�2
k2.

[335] Except for the case, where there exists a state with a small binding energy in the short-range
potential.
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The generalization of the effective range expansion, Eq. (XIII.15), takes the form:

k cot δ0(k) ≈ − 1

a0
+

2πmα

3�2a20
k.

Problem 13.31

Find the scattering length, a0, in the following potentials:

a) U(r) =

{−U0, r < R,
0, r > R;

b) U(r) = −U0Rδ(r −R);

c) U(r) = −U0e
−r/R;

d) U(r) = −U0[1 + (r/R)2]−2;

e) U(r) = U0(R/r)4, U0 > 0.

What is notable about the potential parameters that correspond to a divergent
scattering length?

What is the reason behind a non-analytic dependence of a0(U0) on the parameter
U0, for U0 → 0 in case e)?

Solution

To calculate the scattering length, a0, we should find a bounded solution of the radial
Schrödinger equation with E = 0 and l = 0. Its asymptote,[336]

Rl=0,E=0 ≈ 1− a0
r

for r → ∞,

determines the value of a0. The solutions of the Schrödinger equation for the potentials
considered were discussed in Chapter 4, so here we make only several remarks,[337]

(below, χ = rRl=0,E=0 and λ =
√

2mU0R2/�2).

a) For the square potential well,

χ =

{
A sin λr

R , r < R,
r − a0, r > R.

From the conditions of χ and χ′ continuity at the point r = R, we find:

a0 =

(
1− 1

λ
tanλ

)
R.

[336] Such an asymptote assumes a decrease of the potential at large distances faster than ∝ 1/r3.

[337] Let us reiterate that the boundary condition, ψ(∞) = 0, that is used for states of the discrete
spectrum, does not appear here.
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b) For the δ-spherical potential,

χ =

{
Cr, r < R,
a0 − r, r > R.

Matching the solution at the point r = R (see Problem 4.8) gives

a0 = − λ2

1− λ2
R.

c) For an exponential potential, the solution to the Schrödinger equation is

χ = J0(2λ)N0(x)−N0(2λ)J0(x), where x = 2λe−r/2R.

Here, J0 and N0 are Bessel and Neumann functions, respectively. We have used the
boundary condition χ(r = 0) = 0 (compare to Problem 4.8). Since for r → ∞, we
have x → 0, then we can use the expression (with C = eγ = 1.781 . . ., γ = 0.5772 . . .
is Euler’s constant):

J0(x) ≈ 1− x2

4
, N0(x) ≈ 2

π
J0(x) ln

x

2
+

2γ

π
+

1

2π
(1− γ)x2, |x| � 1,

and find the scattering length:

a0 =
πR

J0(2λ)

[
2

π
J0(2λ) ln γλ−N0(2λ)

]
. (3)

d) For the potential given, the Schrödinger equation has the form (compare with
Problem 4.25):

ψE=0,l=0 = C

√
1 +

R2

r2
sin

(
ξ arctan

r

R

)
,

where ξ =
√
1 + λ2. From its asymptote, we find:

a0 = ξR cot

(
1

2
πξ

)
. (4)

e) In analogy to the solution to Problem 4.25, we find the wavefunction,

ψE=0,l=0 = A exp

{
−λR

r

}
,

and the scattering length,

a0 = λR. (5)

Now, we discuss the results obtained. We first mention an essential difference in the
dependence of the scattering length, a0, on the parameter λ ∝ √

U0 for U0 → 0 in
case e) in comparison to the other cases a)–d). According to (1)–(4), a0 for small λ is
expanded into a series in powers of λ2, and is an analytic function of the parameter
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U0. Depending on the sign of U0, these expressions give a scattering length in either
an attractive potential U0 > 0, or a repulsive one U0 < 0. For example, Eq. (1) for
U0 < 0 takes the form:

a0 =

(
1− 1

|λ| tanh |λ|
)
R

and describes the scattering length of a potential barrier. In the case of the
potential U = α/r4, with α = U0R

4, the dependence of a0 on the parameter α
(or, equivalently, U0) is non-analytic, since a0 ∝ √

α. This non-analyticity reflects a
qualitatively different way in which the potential affects the particle for small values
of α > 0 versus α < 0, that manifests itself in the “fall into the center” phenomenon
in the latter case[338] α < 0. Here, Eq. (5) is invalid, since the boundary condition,
ψ(0) = 0, used for its derivation, could not be fulfilled and requires a modification.
Compare to Problem 9.14.
Eqs. (1)–(4) reflect the general nature of the dependence of the scattering length,

a0, on the parameters U0 and R for a regular potential of a fixed sign and of the
form U(r) = −U0f(r/R), where f(|z|) ≥ 0 (attraction for U0 > 0 and repulsion for
U0 < 0). Its qualitative nature is shown in Fig. 13.3.

Fig. 13.3

We now list some properties of the solution:

1) For |λ|2 � 1 (a “weak” potential), the scattering length is also small, since |a0| ∼
|λ|2R � R. Writing a0 = −βλ2R from a) – d), we find that the parameter β, is
equal to 1/3, 1, 2, π/4 respectively. These results can be obtained from the Born
approximation equation:

aB0 = −fB(E = 0) =
m

2π�2

∫
U(r)dV.

The sign of the scattering length coincides with the sign of potential.

[338] Compare to the analogous property of the scattering phases δl, in the case of an attractive potential
U = −|α|/r2, which follows from Eq. (1) of Problem 13.19. For 2m|α|/�2 = (l + 1/2)2, the particle
with the angular momentum, l, “falls into the center.”
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2) For an increase of |λ|2, the value of the scattering length increases. The depen-
dence of a0 on U0 is monotonic, except for the unique values, λn, of the parameter
λ, where, in an attractive potential, the scattering length, a0, becomes infinite.
Such values of λ correspond to the appearance of a new bound state in the
potential with the angular momentum l = 0.[339] Indeed, the wavefunction’s
asymptote for r → ∞ at the threshold of emergence of a new bound state is
ψE=0 ∝ 1/r (but not C1 + C2/r, as in the general case; compare to Problem
4.25). This corresponds to a divergent scattering length, a0 → ∞.

Let us prove that the dependence of a0 on U0 is monotonous if the potential
does not change sign. The two Schrödinger equations for E = 0 and l = 0 are

χ′′
0 = −2m

�2
U0f

( r

R

)
χ0, χ′′ = −2m

�2
(U0 + δU0)f

( r

R

)
χ.

The boundary conditions take the form χ0(0) = χ(0) = 0, while the asymptotes
of the solutions for r → ∞ are χ0 ≈ a0 − r and χ ≈ a− r, with a = a0 + δa0
(where δa0 is a change in the s-wave scattering length due to a change of the
potential by −δU0f). Multiplying the first of these equations by χ and the second
one by χ0, subtracting them term by term, and integrating over r from 0 to ∞,
we find:

δa0 = −(χχ′
0 − χ0χ

′)|∞0 ≈ −2m

�2
δU0

∞∫
0

f
( r

R

)
χ2
0(r)dr.

In the integral, we put χ ≈ χ0, which is valid due to the assumed smallness of
δU0 → 0 and the condition a0 �= ∞; here, δa0 is also small and δa0/δU0 < 0,
which proves the monotonic a0(U0) dependence.

3) Along with the values of λ close to λn, for which the scattering amplitude
is anomalously large (resonant scattering), there also exist values λ̃n, where
the scattering length on the contrary vanishes. For such values, λ̃n, of the
parameters of the potential, the scattering cross-section, σ = 4πa20, of particles
with energy E = 0 vanishes. So for λ close to λ̃n, the scattering cross-section
for slow particles, kR � 1, can be abnormally small, which manifests itself in
the Ramsauer–Townsend effect. Let us emphasize that this smallness of the
scattering cross-section, σ � πR2, for slow particles in a “strong” short-range
potential of radius R might appear only if the potential is attractive.
Finally, let us mention the following property of the scattering length in the

case of a strong potential, with |λ| � 1. If the potential has a well-defined radius,
R, as in the case of a rectangular δ-well (or the corresponding barrier), then
a0 ≈ R, except for narrow regions of λ in the vicinity of the points[340] λn (see
Eqs. (1) and (2)). This property exists also for rapidly (exponentially) decreasing

[339] In the case of the δ-well, Eq. (2), only one bound state with the angular momentum l = 0 appears,
as λ ≥ λ0 = 1.

[340] These narrow regions also include the points λ̃n. As is seen from Eqs. (1) and (3), for rapidly

decreasing potentials, the points λn and λ̃n move closer as n → ∞; for the step potential (see Eq.
(4)) this statement is not valid.
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potentials. From Eq. (3), for ln γλ � 1, we have a0 ≈ Reff ≈ 2R ln γλ, except
when the Bessel function, J0(2λ), is close to zero. These exceptional values of
λ correspond to the appearance of new bound states. The difference from the
previous case lies in the weak, logarithmic dependence of Reff on λ, which
is seen from the expression |U(Reff )| ≈ �

2/mR2
eff . For potentials with a

power-law decrease, as seen from Eq. (4), we have a different situation. In this
case, a0(λ) is a “lively” function of λ in the entire interval between λn and λn+1.

Problem 13.32

Find the scattering length and cross-section for slow particles scattered by an impen-
etrable ellipsoid, i.e., by the potential:

U(r) =

⎧⎨⎩∞, x2+y2

b2 + z2

c2 < 1,

0, x2+y2

b2 + z2

c2 ≥ 1.

Assume c ≥ b. Consider specifically two limiting cases: c ≈ b and c � b.

Solution

This problem is reduced to solving the Schrödinger equation with energy E = 0, which
takes the form Δψ(r) = 0 with the boundary condition ψ(r0) = 0 on the surface of
the ellipsoid and with the asymptote, ψ ≈ 1− a0/r, at large distances. The scattering
length is[341] a0 = −f(E = 0).

For the function φ(r) = 1− ψ(r), the equation, the boundary condition, and the
asymptote are:

Δϕ = 0, ϕ(r0) = 1, ϕ ≈ a0
r

for r → ∞. (1)

According to these relations, the function ϕ(r) can be considered as an electrostatic
potential of a charged ellipsoid that on its surface takes the value ϕ0 = 1, and
e = a0 is the ellipsoid’s total charge. Since e = Cϕ0, where C is the capacitance, the
particle’s scattering length for an “impenetrable” ellipsoid is formally equivalent to
the electrostatic capacitance of a conductor of the same form.[342] The solution of the
electrostatic problem, Eq. (1), for an oblong ellipsoid is known and has the form (for
c > b):

ϕ(r) =
e

2
√
c2 − b2

ln
z +

√
c2 − b2 + [(z +

√
c2 − b2)2 + x2 + y2]1/2

z −√
c2 − b2 + [(z −√

c2 − b2)2 + x2 + y2]1/2
. (2)

[341] Let us emphasize that in the limit of zero energy, particle scattering is isotropic even in the case
of a non-spherically-symmetric short-range interaction.

[342] The relation a0 = C is valid for an “impenetrable” body of an arbitrary form. For example, for
particle scattering from an impenetrable disc of radius R, the scattering cross-section is σ(E =
0) = (16/π)R2 (the disc capacitance is C = 2R/π).
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This result can be obtained by the method of images: the potential created by the
ellipsoid coincides with that of a homogeneously-charged segment, whose ends are at
the foci of the ellipsoid, with the coordinates x = y = 0, z = ±√

c2 − b2. Determining e
from the condition ϕ(r0) = 1 (here, it is convenient to chose the point on the ellipsoid
that lies on the rotation axis, x = y = 0, z = c), we find the scattering length:

a0 = e = 2
√
c2 − b2

[
ln

c+
√
c2 − b2

c−√
c2 − b2

]−1

. (3)

In the case c = b, we have a0 = c and σ = 4πc2, the known result for slow particle
scattering cross-section for an impenetrable sphere of radius R = c. For a strongly
prolate ellipsoid, c � b, Eq. (3) gives:

a0 ≈ c

ln(2c/b)
, σ(E = 0) ≈ 4πc2

(ln(2c/b))2
. (4)

The generalization to the case of an oblate ellipsoid, b > c, can be obtained using
analytic continuation of the scattering length (3). Writing

√
c2 − b2 = i

√
b2 − c2 ≡ iv

and using the relation

ln(c± iv) =
1

2
ln(c2 + v2)± i arctan

v

c
,

we obtain

ln

(
c+ iv

c− iv

)
= 2i arctan

v

c
= 2i arctan

√
b2 − c2

c
= 2i arccos

c

b
,

and for the scattering length, we obtain (b > c)

a0 =

√
b2 − c2

arccos(c/b)
. (5)

If we put here c = 0 and b = R, we obtain the scattering length, a0 = 2R/π, for an
impenetrable disc of radius R.

Problem 13.33

In the quasi-classical approximation, find the scattering length, a0, for a repulsive
potential that has the asymptotic behavior U ≈ α/r4 at large distances.

To illustrate the quasi-classical result obtained, apply it to the potentials a)
U = α(R2 + r2)−2 and, b) U = α(R+ r)−4, where R > 0. Compare these with exact
results.
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Solution

At finite distances, the quasi-classical solution of Eq. (IV.5) for the function χ = rR(r)
with E = 0 and l = 0 should be chosen as follows

χquas(r) =
C√|p| exp

⎧⎨⎩−1

�

∞∫
r

|p|dr
⎫⎬⎭, |p| =

√
2mU(r). (1)

Here, only the wavefunction that vanishes at the origin is kept. By neglecting the
increasing part of the solution, we enforce the boundary condition,[343] χ(0) = 0.

But at large distances, r → ∞, we have |p(r)| ∝ 1/r2 → 0, and the quasiclassical
approximation is not applicable. So, we should match solution (1) at large distances,
where U ≈ α/r4, with the exact solution of the Schrödinger equation, whose asymp-
tote, χ(r) ≈ a0 − r, gives the scattering length. Such an exact solution has the form
(see Problem 4.25):

χ = r

[
a0
d

sinh
d

r
− cosh

d

r

]
≈

r → ∞
a0 − r, d =

√
2mα

�2
. (2)

Matching of the solutions (1) and (2) can be performed only if in Eq. (2), as well as
in Eq. (1), there exists no term exponentially increasing towards the origin, r → 0.
Hence, we find the scattering length in the quasi-classical approximation:

a0,quas = d =

√
2mα

�2
. (3)

This result for U = α/r4 reproduces the exact one.

For the other potentials from the problem condition, the scattering lengths are (see
Problem 13.31 d; ξ =

√
2mα/�2R2 = d/R):

a) a0 = R
√
ξ2 − 1 coth

(
1

2
π
√

ξ2 − 1

)
, b) a0 = Rξ

(
coth ξ − 1

ξ

)
. (4)

As expected, for ξ → ∞ they become Eq. (3). Even for the values ξ ≥ 1, the quasi-
classical result is close to the exact one. As an illustration, below is a table showing
the ratios, η = a0,quas/a0 for several ξ:

ξ 1 2 4 6
η, a) 1.571 1.145 1.033 1.014
η, b) 3.202 1.862 1.332 1.200

[343] If U(r) is a bounded potential, χquas(0) is different from zero, but is exponentially small. Such a
break-down of the boundary condition gives exponentially small errors in the results for relevant
observables. More important are corrections connected to the deviation of the potential from its
asymptotic form at large distances. See the following problem.
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The lower accuracy in case b is due to a larger difference between the potential U(r)
and its asymptote, α/r4, at large distances. See the following problem.

Problem 13.34

In the conditions of the previous problem, find a quasi-classical correction to the
scattering length using the subleading term in the large-distance expansion of the
potential: U = αr−4(1 + b/r + . . . ).

Solution

If the potential U(r) differs from α/r4 only at finite distances, r ≤ R, then for
ξ =

√
2mα/�2R2 � 1, the difference of a0 from its quasi-classical value

√
2mα/�2

is exponentially small and is outside the limits of applicability of the quasi-classical
approximation.

If the difference, U(r)− α/r4, is different from zero for r > R, then power-law
corrections in the parameter, 1/ξ ∝ �, appear. To determine the first such correction
in the case of U(r) ≈ (α/r4)(1 + b/r) for r → ∞, it is necessary to find a solution
of the Schrödinger equation at large distances, whose accuracy allows to determine
correctly a correction in the asymptote of the potential. To do this, we note that within
the required accuracy, U = α/(r − b/4)4. For this potential, the Schrödinger equation
allows an exact solution, which can be obtained by replacing r by r − b/4 in Eq. (2)
of the previous problem, and has the form:

χ = −
(
r − b

4

)
exp

{
−

√
2mα

�(r − b/4)

}
. (1)

We have omitted here a second independent solution of the Schrödinger equation,
which increases exponentially with a decrease in r. From the asymptote of Eq. (1) for
r → ∞, we obtain:

a0,quas =

√
2mα

�2

(
1 +

�b√
32mα

)
. (2)

In the same way, for a potential with the asymptote

U(r) =
α

r4

(
1 +

b1
r

+
b2
r2

+ . . .

)
,

we can find a more accurate quasi-classical correction to Eq. (2) if we note that, within
the required accuracy, it can be written in the form:

U =
α

[(r + b)2 +R2]2
, where b = −1

4
b1, R2 =

5

16
b21 −

1

2
b2.
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For such a potential, the solution of the Schrödinger equation with E = 0 can be
obtained as in Problem 4.25, and then we find the following correction to Eq. (2):

a0,quas =

√
2mα

�2

[
1 +

�b1√
32mα

+
�
2

64mα
(8b2 − 5b21)

]
. (3)

The inclusion of these quasi-classical corrections greatly increases the accuracy of the
results. For example, according to Eq. (3) instead of the values given in the table in
the previous problem, we now have 0.786, 1.002, 1.0005, 1.0001 in case a, and 0, 0.931,
0.999, 0.99998 in case b.

In conclusion, we give quasi-classical expressions for the scattering length, a0, in
the case of repulsive potentials with other asymptotic behaviors at infinity, r → ∞.

In the case of a power-law asymptote, U = (α/rν)(1 + b/r + . . . ) with ν > 3, we
find:

a0,quas =
Γ[(ν − 3)/(ν − 2)]

Γ[((ν − 1)/(ν − 2))]

(
2mα

(ν − 2)2�2

)1/(ν−2)

+
b

ν
, (4)

where Γ(z) is the Γ-function. For ν → 3, a0,quas → ∞, which reflects the fact that
in the potential U = α/r3, the particle scattering cross-section diverges in the limit
E → 0.

For a potential with the exponential decrease, U ≈ U0e
−r/R,

a0,quas = R

[
ln

(
2mU0R

2

�2

)
+ 2γ

]
, (5)

where γ = 0.5772 . . . is Euler’s constant.

Problem 13.35

For an attractive potential, U(r) ≤ 0, that has a power-law decrease, U ≈ −α/rν with
ν > 3, at large distances, find the scattering length, a0, in the quasi-classical approx-
imation. Assume that the potential has the following behavior at small distances,
U ∝ r−β with 0 ≤ β < 2. What is special about the parameters of the potential that
correspond to a divergent scattering length?

Consider applications of this result to the potentials a) U = −α(r +R)−4, and b)
U = −α(r2 +R2)−2, and compare to the exact solution.

Solution

At finite distances, the quasi-classical solution of the Schrödinger Eq. (IV.5) for E = 0
and l = 0 has the form (compare to Problem 9.9):

χquas = rR(r) =
C√
p(r)

sin

⎛⎝1

�

r∫
0

p(r)dr + γ0

⎞⎠, p =
√

−2mU(r), (1)
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where γ0 depends on the form of the potential at small distances. In the case U ≈
−A/rβ for r → 0, we have:

γ0 = − πβ

4(2− β)
.

At large distances, p(r) → 0 and the quasi-classical method is not applicable. Here,
though, by taking into account the form of potential, U ≈ −α/rν , we could find the
exact solution of the Schrödinger equation:

χ =
√
r[C1Js(2s

√
α̃r−1/2s) + C2J−s(2s

√
α̃r−1/2s)], (2)

where s = 1/(ν − 2) and α̃ = 2mα/�2. On the other hand at distances, where the
argument of the Bessel functions in Eq. (2) is large, the quasi-classical approximation
is applicable, and both Eqs. (1) and (2) are valid. Using the asymptote of the Bessel
function, Jν(z), for z → ∞, solution (2) is transformed to

χ =

√
πs�

p(r)

⎡⎣C1 sin

⎛⎝1

�

∞∫
r

pdr − πs

2
+

π

4

⎞⎠+

C2 sin

⎛⎝1

�

∞∫
r

pdr +
πs

2
+

π

4

⎞⎠⎤⎦. (3)

We use p(r) =
√
2mα/rν , and by matching Eqs. (3) and (1) obtain:

C1

C2
= − sin(τ + πs/2 + π/4)

sin(τ − πs/2 + π/4)
, τ =

1

�

∞∫
0

√
−2mU(r)dr + γ0. (4)

Furthermore, using an expansion of J±s(z) for z → 0, we find the asymptote of solution
(2) at large distances:

χ(r) ≈ C1

Γ(1 + s)
(s
√
α̃)s +

C2

Γ(1− s)
(s
√
α̃)−s, r → ∞. (5)

Since χ ∝ r − a0, and taking into account relation (4), we obtain the quasi-classical
scattering amplitude as follows:

a
(0)
0,quas ≈

Γ(1− s)

Γ(1 + s)

sin(τ + πs/2 + π/4)

sin(τ − πs/2 + π/4)

(
s

√
2mα

�2

)2s

. (6)

The parameters of the potential for which the scattering length becomes infinite
correspond to the appearance of a new discrete state, as the well becomes deeper.
According to Eqs. (6) and (4), this happens when the following conditions are fulfilled
(with l = 0):
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1

�

∞∫
0

√
−2mU(r)dr = π

[
N +

β

4(2− β)
+

1

2(ν − 2)
− 1

4

]
, (7)

where N = 1, 2, . . . is the sequence number of the new bound state (compare to
Problem 9.9).

For the potentials given in the problem condition, we have ν = 4, s = 1/2, γ =
β = 0. From Eq. (6), we obtain

a) a
(0)
0,quas = Rξ cot ξ, b) a

(0)
0,quas = Rξ cot

(π
2
ξ
)
, (8)

where ξ =
√
α̃/R. The exact values of the scattering length are equal to, respec-

tively,[344]

a) a0 = R(ξ cot ξ − 1), b) a0 = R
√
ξ2 + 1 cot

(
π

√
ξ2 + 1

2

)
. (9)

As is seen, for ξ → ∞ the quasi-classical and exact expressions for the scattering length
coincide. Their difference scales as 1/ξ for finite values of ξ, and is due to quasi-classical
corrections. A calculation of such corrections is more difficult (compare to Problem
13.34), since it is necessary to take into account the next term in � in the phase of the
wavefunction at finite distances, i.e., in the quasi-classical region.

Problem 13.36

Consider a quantum particle moving in the presence of two potentials: a long-range
potential, UL(r), with the radius rL and a short-range potential, US(r), with the
radius, rS � rL. Treat the latter short-range potential as a small perturbation and
generalize the results of Problem 11.4 for the level shift due to US(r) (perturbation
theory in terms of the scattering length) for a state with an arbitrary angular
momentum, l (as opposed to l = 0 in Problem 11.4). Assume that at small distances,
r � rS , the long-range potential is weak (|UL| � �

2/mr2S) and that∣∣∣E(0)
nrl

∣∣∣ � �
2

mr2S
.

Solution

We use the method described in Problem 11.4. Using ordinary perturbation theory
for the potential US(r), we obtain

ΔEnrl = US(r) =

∫
US(r)|ψ(0)

nrlm
(r)|2dV. (1)

[344] This exact solution to the Schrödinger equation could be obtained using substitutions analogous
to those in Problem 4.25 b and c.
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At the relevant small distances (where the potential, US(r), has an effect), we can use
the following expression for the unperturbed wavefunction:

ψ
(0)
nrlm

(r) = Rnrl(r)Ylm(n), Rnrl(r) ≈ Qnrlr
l for r � rL.

Using this, we can express integral (1) in terms of the scattering length with the
angular momentum l for the potential US(r), in the Born approximation (see Problem
13.28):

aBl =
πm

22l+1Γ2(l + 3/2)�2

∞∫
0

r2l+2US(r)dr.

Finally, by replacing aBl with the exact scattering length, aSl , in the short-range
potential, US(r), we obtain the level shift expressed in terms of the scattering
length:

ΔEnrl =
�
2

2m
[(2l + 1)!!]2Q2

nrla
(S)
l . (2)

We used the fact that 2l+1Γ(l + 3/2) =
√
π(2l + 1)!!. Also, note a simplification that

occurs for the s-states: Q2
n0 = 4πψ

(2)
n0 (0).

We now discuss the main result – Eq. (2).

1) Since, generally speaking, a
(S)
l ∝ r2l+1

S while Q2
nrl

∝ r−2l−1
L , then with an increase

of l, level shifts decrease fast, ∝ (rS/rL)
2l+1. This is connected to a decrease in the

penetrability of the centrifugal barrier that divides the regions, where the short-
range and long-range potentials act.

2) If the short-range interaction gives rise to inelastic processes (for example, annihila-
tion into pions due to nuclear interaction for the pp-hadron atom; see also Problem

11.74), then the scattering length, a
(S)
l , acquires an imaginary part. In this case,

ΔEnrl describes not only a shift in energy, but also a widening of the level. The
level becomes quasi-stationary and has a finite lifetime.
Let us note that the level width

Γnrl = −2 Im ΔEnrl ∝ Im a
(S)
l

is connected with the inelastic scattering cross-section (the reaction cross-section),

σ
(S)
rl , in the partial wave with the angular momentum, l due to the short-range

interaction of slow particles, since

−Im a
(S)
l =

σ
(S)
rl (k)

4
(2l + 1)πk2l−1|k→0. (3)

Note that the long-range potential can also strongly affect the reaction cross-section
for slow particles (see the following problem).
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3) As mentioned in Problem 11.4, for the case of angular momentum l = 0, if the

condition |a(S)
0 | � rL is broken, then Eq. (2) is not applicable. In this case, large

shifts of the s-levels are possible in the long-range potential, i.e., a reconstruction of
the spectrum occurs (see also Problem 9.3). In the case of l �= 0 we have a different
situation and there are no large level shifts, which is due to a low-transparency of

the centrifugal barrier. But in the case of a large scattering length, |a(S)
l | � r2l+1

S ,
when there is a shallow level with the angular momentum l in the potential, Eq.
(2) does require modification. Here, we note that the solution of the Schrödinger
equation in the potential US(r) for slow particles, krS � 1, and for the distances
rs � r � (k−1, rL), has the form:

Rkl ≈ C

[
rl +Bl(k)

1

rl+1

]
, (4)

where

B−1
l =

1

(2l − 1)!!(2l + 1)!!
k2l+1 cot δ

(S)
l (k).

The substitution k2l+1 cot δ
(S)
l → −1/a

(S)
l , which leads to Eq. (2) for the level shift

(it could be more formally obtained, as in Problem 11.4 for the angular momentum

l = 0), corresponds to the non-resonant case, where a
(S)
l ≤ r2l+1

S . A generalization
of this equation to the resonant case, with the effective range expansion (XIII.15)

taken into account, is obtained by replacing a
(S)
l with[345]

a
(S)
l →

[
1

a
(S)
l

− r
(S)
l E

]−1

. (5)

Generally speaking, we can put E = E
(0)
nrl

. For l �= 0, the second, singular term in

Eq. (4) (which is independent of a
(S)
l and scales ∝ 1/rl+1) is small in the region

r ∼ rL. This ensures the validity of Eqs. (2) and (5) and yields the corresponding
modification of the expression for level shift,

ΔEnrl =
1

2
[(2l + 1)!!]2Q2

nrl

(
1

a
(S)
l

− r
(S)
l E

(0)
nrl

)−1

. (6)

The importance of the l �= 0 condition to the validity of Eq. (6) in the resonant
case is connected to a large effective radius that makes the level shifts small, since

[345] Below in this footnote � = m = 1, so that E = k2/2. Note that Eq. (4) can be viewed as a boundary
condition for the Schrödinger equation with potential UL(r) at small distances, which is due to the
appearance of the short-range potential US(r) (compare to Problem 11.4). But in the case l �= 0,
to take the limit r → 0 is impossible due to the divergence of the normalization integral (since it
gives ψ ∝ 1/rl+1 at short distances r ≤ rs, the wavefunction coincides with that in the short-range
potential). In the case l = 0, the limit rs = 0 is possible and corresponds to approximating of the
short-range potential by a zero-range potential. See Problem 4.10.
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r
(S)
l ∝ r1−2l

S (see Problem 13.44). The substitution E = E
(0)
nrl

used in Eqs. (5) and
(6) is invalid only if

E
(0)
S ≡ 1

a
(S)
l

r
(S)
l ≈ E

(0)
nrl

. (7)

This is because E
(0)
S describes a level with the angular momentum l that exists

in an isolated potential, US(r). Condition (7) is fulfilled when there are two close

levels, related to both potentials. If we do not substitute E
(0)
nrl

for E in Eq. (6), we

obtain a equation for ΔEnrl = E − E
(0)
nrl

, and solve it as follows:

E1,2 =
1

2

⎧⎨⎩E
(0)
S + E

(0)
nrl

±
[
(E

(0)
S − E

(0)
nrl

)2 +
1

|r(S)
l |

((2l + 1)!!)2Q2
nrl

]1/2⎫⎬⎭. (8)

This gives the energy of these levels with their interaction taken into account. Note

that this equation describes “quasi-crossing” levels. In the case of E
(0)
S > E

(0)
nrl

, one

of the roots of Eq. (8) describes a shift of the unperturbed level E
(0)
S upwards under

the influence of the long-range potential,[346] UL(r), while the second one describes

a level shift downward of E
(0)
nrl

under the influence of the short-range potential,

US(r). In the case E
(0)
S < E

(0)
nrl

, their roles are switched.
Finally, we discuss the form of wavefunctions in the presence of a level quasi-

crossing. For a sufficiently large difference between E
(0)
S and E

(0)
nrl

, with E
(0)
S >

E
(0)
nrl

, the wavefunction that corresponds to the first of the levels in Eq. (8) is

approximately ψ
(0)
S , localized at small distances r � rs, while the wavefunction

that corresponds to the second level in Eq. (8) is approximately ψ
(0)
nrl

localized

at large distances, r ∼ rL. In the case E
(0)
S < E

(0)
nrl

, wavefunctions corresponding
to the two levels (in the essential localization domain) change places. In the case

of an exact resonance E
(0)
S = E

(0)
nrl

, the quantum particle occurs in the two states
with an equal probability (equal to 1/2); i.e., has the same probability, 1/2, to be
bound in either the localization domains of the potential US(r) (for r � rS) and
or that of UL(r) (for r ∼ rL). Wavefunctions of the corresponding states are the
same for r � rs and differ by a sign in the region r � rs, which gives rise to their
orthogonality.

[346] Strictly speaking, here we reproduce only the part of the shift that is connected to the action of

UL(r) at large distances, r � rs. The influence of UL on the level shift E
(0)
S at short distances

manifests itself in a renormalization of the parameters a
(S)
l , r

(S)
l . For example, if UL(r) ≈ U0 for

r ≤ rS , then it would be more accurate to replace E in Eq. (5) by E − U0. Such a replacement

corresponds to a renormalization of the scattering length, i.e., replacing a(S) by a
(SL)
l , 1/a

(SL)
l =

1/a
(S)
l + r

(S)
l U0. The effective radius is not renormalized in this case. See also Problem 13.42.
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Problem 13.37

A particle is moving in a combined field of two potentials: a strong short-range
potential US(r) with the radius rS and a long-range potential UL(r) with the radius
rL � rS , which is weak at small distances r � rS : |UL| � �

2/mr2S . Assuming that the
solution of the Schrödinger equation for the potential UL(r) is known, find a change

of the phase shift, Δδ
(S)
l , in this potential under the influence of US , in the case of

slow particles, so that krS � 1. Express Δδ
(S)
l in terms of the scattering length a

(S)
l

in the potential US .

Under what conditions is the phase shift in the field U = US + UL approximately
equal to the sum of phase shifts in the potentials US and UL separately?

Apply this result to the long-range Coulomb potential.

Solution

We are going to use the methods developed in the previous problem: (1) find a

change of the phase shift, Δδ
(S)
l , by perturbation theory, (2) express it in terms

of the scattering length by a short-range potential in the Born approximation,

and (3) replace the scattering length by the exact scattering length a
(S)
l in the

“strong” potential US(r). A formal justification of this method is provided in
Problem 11.4.

To determine the shift, Δδ
(S)
l , under the influence of US(r) by perturbation theory,

we write two Schrödinger equations for the radial wavefunctions, ψklm = χklYlm/r, of
the continuous spectrum:

χ
(0)′′

kl +

[
k2 − l(l + 1)

r2
− 2m

�2
UL(r)

]
χ
(0)
kl = 0,

χ′′
kl +

[
k2 − l(l + 1)

r2
− 2m

�2
(UL(r) + US(r))

]
χkl = 0. (1)

The solutions of these equations, which correspond to the boundary condition
χ(0) = 0, have the following asymptotes at large distances:

χ
(0)
kl ≈ sin

(
kr ± Z

kaB
ln 2kr − π

2
l + δ

(L)
l

)
,

χkl ≈ sin

(
kr ± Z

kaB
ln 2kr − π

2
l + δ

(L)
l +Δδ

(S)
l

)
. (2)

For concreteness, we have considered the case where at large distances: UL ≈ ∓Ze2/r,
aB = �

2/me2.

Multiplying the first of the equations in (1) by χkl and the second by χ
(0)
kl ,

subtracting them term by term, and integrating over r from 0 to ∞, we obtain:
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k sinΔδ
(S)
l = −2m

�2

∞∫
0

US(r)χkl(r)χ
(0)
kl (r)dr. (3)

We can approximate the sine-function by its argument, and χkl by χ
(0)
kl . Taking into

account the short-range nature of the potential US and also the relation χ
(0)
kl ≈ Qklr

l+1

for r → 0, we find:

Δδ
(S)
l = − 2m

�2k
Q2

kl

∞∫
0

r2l+2US(r)dr. (4)

The integral here is expressed in terms of the scattering length with angular momen-
tum l in the Born approximation (see the previous problem). Now, we replace it by
the exact scattering length, and obtain the desired result:

Δδ
(S)
l (k) = −[(2l + 1)!!]2a

(S)
l

Q2
kl

k
. (5)

We now analyze Eq. (5):

1) Let us first note that in the case UL ≡ 0, we have

χ
(0)
kl =

√
πkr

2
Jl+1/2(kr).

Here,

Q2
kl =

k2l+2

[(2l + 1)!!]2
,

so that

Δδ
(S)
l = −a

(S)
l k2l+1, (6)

i.e., Eq. (6) coincides with the scattering phase δ
(S)
l from the isolated potential

US(r), as it should be.

2) The same relation, Δδ
(S)
l = δ

(S)
l , holds approximately also in the case of a long-

range potential UL(r) that can be considered as perturbation (see conditions
(XIII.7)). In this case, the scattering phase in the potential, which is the super-
position US(r) + UL(r), is equal to the sum of the scattering phases for each of
them separately.

3) Let us finally focus on the case of the long-range Coulomb potential, UL = ∓Ze2/r.
Here,
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χ
(0)
kl =

Zr

aB
C

(∓)
kl

(2kr)l

(2l + 1)!
e∓ikrF

(
i
Z

kaB
+ l + 1, 2l + 2,±2ikr

)
,

δ
(L)
l = arg Γ

(
l + 1∓ iZ

kaB

)
,

C
(∓)
kl = 2k′e±π/2k′

∣∣∣∣Γ(l + 1∓ i

k′

)∣∣∣∣ =
e±π/2k′

(
πk′

sinh πk′

)1/2 l∏
s=1

√
s2 +

1

(k′)2
.

We let k′ = kaB/Z, so that

(Q
(∓)
kl )2 =

πZ(2k)2l+1

[(2l + 1)!]2aB

(∓1)

e∓2πZ/kaB − 1

l∏
s=1

[
s2 +

(
Z

kaB

)2
]
. (7)

For l = 0, the products are replaced by 1.
In the case of “fast” particles, when kaB � Z (but still krs � 1), the Coulomb

potential could be considered as a perturbation, and from Eqs. (5) and (7), the
results discussed above in 1) and 2) follow.

A completely different situation arises for kaB ≤ Z. Here, values of Q
(∓)
kl differ

greatly from the unperturbed values given in 1). Particularly for kaB � Z, accord-
ing to Eqs. (5) and (7), for an s-wave we obtain

a) Δδ
(S)
0 =

2πZ

kaB
δ
(S)
0 ; b) Δδ

(S)
0 =

2πZ

kaB
e−2πZ/kaBδ

(S)
0 (8)

for the attractive and repulsive Coulomb potential respectively. The essential change
of the phase shift value (its increase by 2πZ/kaB � 1 in the case of attraction, and
its exponential decrease in the case of repulsion) has a clear physical underpinning:
in the case of slow particles the long-range Coulomb attraction (repulsion) greatly
increases (decreases) the probability of finding particles at small distances. This
also strongly affects the cross-sections of inelastic processes caused by a short-range
interaction, that accompany collisions of slow particles.
In conclusion, let us note that all of this assumes that the scattering from the

short-range potential is non-resonant, i.e., there is no “shallow” level in the potential

US(r). Here a
(S)
l ≤ r2l+1

S and δ
(S)
l ≈ −a

(S)
l k2l+1 � 1. However, by substituting the

scattering length a
(S)
l , as in the previous problem, with the expression(

1

a
(S)
l

− 1

2
k2r

(S)
l

)−1

, (9)

Eq. (5) could be generalized to include the resonant case. The condition of its

applicability is Δδ
(S)
l � 1 (which was used to transform Eq. (3)). Note that for
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a repulsive long-range potential, this condition may remain satisfied even if the

scattering phase δ
(S)
l for the isolated short-range potential US(r) is not small.[347]

Problem 13.38

How should we modify the Rutherford formula to describe the differential scattering
cross-section in the Coulomb potential U = ±Ze2/r, which is “distorted” at small
distances r � rS? Assume that the conditions krS � 1 and Ze2 � �v are fulfilled.
The distortion of the Coulomb field is described by a potential US(r), with a known

scattering length, a
(S)
0 .

Solution

The scattering amplitude is described by the expression:

f ≈ fCoul + fS ; fCoul = ± Ze2m

2�2k2 sin2(θ/2)
, fS = −a

(S)
0 . (1)

This follows from the fact that we only need to consider influence of the short-range
potential, US(r), on the particles with the angular momentum l = 0 (since krs � 1),
and that we can consider the Coulomb potential as a perturbation (since Ze2 � �v).
According to the previous problem, the phase shift in the total potential field (the
superposition UCoul + US) is approximately equal to the sum of phase shifts for each
of the potentials separately.

The differential scattering cross-section is described by

dσ

dΩ
=

(
Ze2

2mv2

)2
1

sin4(θ/2)
+
(
a
(S)
0

)2

∓ Ze2a
(S)
0

mv2 sin2(θ/2)
. (2)

The last term corresponds to an interference of the scattering amplitudes due to the
Coulomb and the short-range interactions. As is seen, its character depends of the sign

of the scattering length a
(S)
0 .

Problem 13.39

Find the scattering length, al, of a particle with an arbitrary angular momentum, l
for the following potentials:

a) an impenetrable sphere with radius R;

b) U(r) = −αδ(r −R);

c) a square well of radius R and depth U0.

Compare to the case of l = 0 from Problem 13.31.

[347] However, if the scattering length is large, a renormalization of the parameters describing low-energy
scattering may become significant. See the previous problem, and also Problem 13.42.
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Solution

The scattering length, al, could be found from the asymptote of the radial wavefunc-
tion, Rkl(r), for E = 0:

R0l ≈ rl − 1

rl+1
{(2l − 1)!!(2l + 1)!!al}, for r → ∞.

This follows, for example, from a comparison of the expression for the wavefunctions
of slow particles at distances d � r � 1/k:

Rkl ≈ rl +Bl(k)
1

rl+1
, B−1

l =
k2l+1 cot δl

(2l − 1)!!(2l + 1)!!
,

with the effective range expansion (XIII.15).

Below, we present the final results:

a) for scattering from the impenetrable sphere:

al =
1

(2l − 1)!!(2l + 1)!!
R2l+1 ≡ asph,l; (1)

b) for scattering from the δ-well:

al =
ξ

ξ − 2l − 1
asph,l, ξ =

2mαR

�2
; (2)

c) for scattering from the square potential well:

al = −Jl+3/2(λ)

Jl−1/2(λ)
asph,l, λ =

√
2mU0R2

�2
. (3)

Note that the properties of the scattering length, al, as a function of the parameters
of the potentials (in cases b) and c)) are similar to those considered in Problem 13.31
for an s-wave. In particular, when a new bound state appears, the scattering length,
al, becomes infinite.

Problem 13.40

Estimate the singlet (i.e., the total electron spin is S = 0) electron s-scattering length,
a0(1), for scattering off of an unexcited hydrogen atom. Keep in mind that there exists
a weakly-bound state, the ion H−, with the binding energy ε0 = 0.754 eV = 0.0277
a.u.

a) Neglect the finite-size effects for both the atomic size and the interaction range of
the external electron with the atom.

b) Consider the external electron as weakly bound in a finite-range potential, and use
the following asymptotic coefficient C2

κ0 = 2.65 (see Problem 11.36).

Compare to the result of a variational calculation: a0(1) = 5.97 a.u.
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Solution

a) In this approximation, which corresponds to considering the external electron as
in a zero-range potential, we have (see Problems 13.20 and 4.10):

a0 = κ−1
0 = (2ε0)

−1/2 = 4.25 (1)

(in atomic units).

b) Considering the external electron as weakly bound in the potential of finite radius
rS , we first use the relation between the effective interaction radius r0 and the
asymptotic coefficient:

r0 =
C2

κ0 − 1

κ0C2
κ0

.

Now, taking into account the effective-range expansion, Eq. (XIII.15), and the fact
that the scattering amplitude, as a function of energy, has a pole at E = −ε0 (Note
that at the pole, k cot δ0 = ik = −κ0), we find:

a0 =
2C2

κ0

κ0(1 + C2
κ0)

= 6.17. (2)

As is seen, the correction to the effective radius strongly affects the value of the
scattering length. This is because κ0rs ≈ 0.6 is not that small. In connection to
this, let us mention the role of the subleading, ∝ k4, term in the effective-range
expansion, Eq. (XIII.15). It is usually written as

−Pr30k
4, (3)

A typical value of this parameter, P , here is small, |P | � 0.1. Taking this into
account, we should see that the scattering length (2) is determined to within a few
percent accuracy.

Problem 13.41

In a proton–neutron system, estimate the triplet s-wave scattering length, a0(3), taking
into account the existence of a weakly bound state, the deuteron, with the binding
energy ε0 = 2.23 MeV. Compare to the experimental value, a0(3) = 5.39 · 10−13 cm.

Solution

Neglecting the finiteness of the effective range of the interaction, we have

a0(3) = κ−1
0 =

(
�
2

2με0

)1/2

= 4.3 · 10−13 cm, (1)

where μ ≈ mp/2 is the reduced mass of the pn-system. Since the range of the nuclear
forces is rs ∼ 10−13 cm, then κ0rs ∼ 0.3, Equation (1) has the same accuracy: about
20 %. If we include the term with the effective range (r0(3) = 1.7 · 10−13 cm) in
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expansion (XIII.15), we reproduce the experimental value of the triplet scattering
length. Compare with the previous problem.

Problem 13.42

a) Using the experimental value of the singlet s-wave scattering length, a0(1) =
−23.7 · 10−13 cm, for a proton–neutron system, estimate the energy of the shallow
virtual level[348] in such a system in the state with S = 0 and l = 0.

b) For a proton–proton system, a0(1) = −7.77 · 10−13 cm. Does the significant dif-
ference between the scattering lengths for the pn- and pp-systems contradict the
isotopic invariance of the nuclear interaction? The effective range of the interaction
r0(1), is equal to 2.67 · 10−13 cm and 2.77 · 10−13 cm, respectively, for the pn- and
pp-systems.

Solution

a) Neglecting the effective range of the interaction, we obtain (compare to Problems
13.20 and 4.10, and also Problem 13.40)

εvirt ≈ �
2

2μa20(1)
= 56 keV.

Here, μ = mp/2 is the reduced mass of the pn-system.

b) Since the Coulomb interaction at small distances is weaker than the nuclear forces
by approximately two orders of magnitude, then näıvely we might assume that the
difference of the low-energy scattering parameters for the pp-system from those for
the pn-system should remain to within a few percent. This is indeed so specifically
for the effective range of the interaction.
The scattering lengths however do differ noticeably: by a factor of three. But

this does not imply that isotopic invariance of nuclear interactions is strongly
broken, since the difference could be explained by the Coulomb interaction in the
pp-system. In the pn-system there is a shallow virtual level, and the scattering
length is large (approximately twenty times larger than the interaction radius!). In
such conditions, this function depends sharply on the parameters of the potential
(see Problem 13.31), and differs greatly for even a small change of those (in this
problem, due to the Coulomb interaction).
Let us provide a simple estimate of the renormalization of the scattering length.

We write the pn-interaction in the form Upn = U0(r) + δU(r), where U0(r) corre-
sponds to the threshold of the appearance of a new bound state, here δU(r) ≥ 0,
since the level in the pn-system is virtual. For the pp-system, considering protons
to be point-like, we have Upp = U0 + δU + e2/r. Using the result of Problem 4.27
for a shallow s-level depth, we find:

[348] The virtual nature of the level and the sign of a0(1) < 0 both follow from the absence of a real
bound state. Accounting for a finite effective range, r0(1), we obtain εvirt = 67 keV.
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κpp = −2μ

�2

d∫
0

(
δU(r) +

e2

r

)
χ2
0(r)dr. (1)

We use χ0(r) as the wavefunction (χ = rR) at the threshold of the appearance of
a new bound state, normalized by the condition χ0(r) = 1 outside of the potential
range. The upper integration limit is d ∼ aB = �

2/mpe
2 ≈ 29 · 10−13 cm. (At larger

distances, a contribution coming from the Coulomb interaction is taken into account
independently, and appears in the amplitude of Coulomb scattering of the protons.)
The integral of δU(r) in Eq. (1) gives κpn (in both systems κ < 0, since the levels
are virtual). To estimate the integral of the Coulomb potential, we put χ2

0(r) = 1.
Due to a divergence in the lower limit, we introduce a cutoff at rs ≈ 10−13 cm
(of the order of the nuclear interaction radius). Finally, taking into account the
relations κpn = 1/apn0 (1) and κpp = 1/app0 (1), according to Eq. (1), we obtain:

1

app0 (1)
− 1

apn0 (1)
≈ − 1

aB
ln

(
aB
r0

)
. (2)

Here, instead of rs, we put the effective interaction radius, r0. Let us emphasize that
the uncertainty in parameters d and rs, for which d/rs � 1, is “softened” in the
final result because of the logarithm. So, we see that accounting for the protons’
“weak” Coulomb interaction explains the significant difference of the scattering
lengths for the pp- and pn-systems.

Problem 13.43

Prove the following relation for the effective range of the interaction (see,
Eq. (XIII.15)):

r0 = 2

∞∫
0

{(
− r

a0
+ 1

)2

− χ2
0(r)

}
dr,

where χ0(r) is the radial wavefunction (χ0 = rR0) of a state with l = 0 and E = 0,
normalized by the condition χ0(r) = (−r/a0 + 1) for r → ∞ (a0 is the scattering
length).

Find r0 for an impenetrable sphere of radius R, and also for a δ-well, U(r) =
−αδ(r −R) and a square well of radius R at the threshold for bound state formation
(a0 = ∞) in the two latter cases.

Solution

We denote the radial wavefunctions for the values of energy E = 0 and E = �
2k2/2m

by χ0 and χ, respectively. They satisfy the following equations:

χ′′
0 − Ũ(r)χ0 = 0, χ′′ − [Ũ(r)− k2]χ = 0; Ũ =

2m

�2
U(r). (1)
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To normalize χ0(r), use the condition χ0(r) ≈ (1− r/a0) for r � d (d is the potential
radius). For wavefunction χ(r) at distances d � r � 1/k, we have

χ(r) = k cot δ0 · r[1 +O(k2r2)] + [1 +O(k2r2)], (2)

where O(k2r2) corresponds to corrections in the asymptote.

Multiplying the first equation of (1) by χ, the second one by χ0, subtracting them
term by term, and integrating in the region where expansion (2) is valid, we obtain:

r∫
0

d

dr
{χ′

0χ− χ0χ
′}dr ≡ −1

2
r0k

2 +O

(
k2r, k2

r2

a0
, k2

r3

a20

)
=

k2
r∫

0

χ(r)χ0(r)dr. (3)

Here, we have taken into account the asymptotes given above, the boundary condition
χ(0) = 0, and the effective range expansion (XII.15). The integral on the right-hand
side of the expression can be cast into the form

r∫
0

χχ0dr ≈
r∫

0

[
χ2
0 ±

(
− r

a0
+ 1

)2
]
dr =

=

r∫
0

[
χ2
0 −

(
− r

a0
+ 1

)2
]
dr +

r3

3a20
− r2

a0
+ r

(here we have used χ ≈ χ0; the notation ±(−r/a0 + 1)2 means an addition or sub-
traction of the corresponding term).

We have used the fact that χ ≈ χ0. In the last integral we could extend the
integration to infinite limits. Then, leaving only r independent terms in Eq. (3), we
obtain

r0 = 2

∞∫
0

{(
− r

a0
+ 1

)2

− χ2
0(r)

}
dr. (4)

For the scattering from an impenetrable sphere of radius R we have χ0 = 1− r/R
for r > R and χ0 = 0 for r < R. In this case, the scattering length is a0 = R, and
according to Eq. (4) we find the effective range of the interaction, r0 = 2

3R.

For a0 = ∞ from Eq. (4) the well-known result for effective range, r0, at the
threshold of s-level appearance follows. In particular, for the scattering from a δ-
well with a0 = ∞, we have χ0 = 1 for r > R and χ0 = r/R otherwise. According to
Eq. (4) with a0 = ∞, we obtain r0 = 4

3R. For the scattering from a square potential
well r0 = R, and the effective range is the same whenever a new bound state appears
(independently of its sequence number). Here, for r < R, the wavefunction is
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χ0 = sin

[
π

(
nr +

1

2

)
r

R

]
,

where nr = 0, 1, 2, . . . is the sequence number of bound state that appear with a
deepening of the well.

Note that both the value r0 ∼ R and the sign r0 > 0 of the “critical” effective
range (at the threshold of appearance of a new s-state) are quite general for attractive
potentials, U(r) ≤ 0. Compare to the case of angular momenta l �= 0 in Problem 13.44,
and also to the case l = 0 for a well surrounded by a potential barrier, in Problem
13.47.

Problem 13.44

Prove that the effective range of the interaction rl, in a state with l �= 0 (see Eq.
(XIII.15)) and at the threshold of bound-state[349] formation, is

rl = −2[(2l − 1)!!]2
1

C2
l

,

where Cl is the normalization coefficient in the wavefunction of the zero-energy state
(E = 0):

χ
(0)
l (r) ≈ Cl

1

rl
for r → ∞ and

∞∫
0

(
χ
(0)
l (r)

)2

dr = 1.

Find rl for a δ-well.

Solution

We will follow the method outlined in the previous problem. Taking into account
that the wavefunction when a new bound state is just about to appear has the form

χ
(0)
l = Clr

−l for r � d, and also the relation

χkl ≈ Cl

[
r−l +

k2l+1 cot δl
(2l − 1)!!(2l + 1)!!

rl+1

]
, d � r � 1

k

(compare, for example, to Problem 13.39), we find:

− 1

[(2l − 1)!!]2
C2

l k
2l+1 cot δl = k2

r∫
0

χklχ
(0)
l , d � r � 1

k
.

Now, if we replace χkl by χ
(0)
l in the right-hand side (due to a small value of k2), extend

the integration to infinity (in the case l = 0, we cannot do this due to a divergence of

[349] This case is interesting, since in the absence of a shallow level in the potential, the term containing
the effective range in Eq. (XIII.15) acts as a small correction.
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the integral at the upper limit) and use the relation k2l+1 cot δl = rlk
2/2 (since al = ∞

at the threshold), then we obtain:

rl = −2[(2l − 1)!!]2C−2
l , l ≥ 1. (1)

The value of C2
l is uniquely determined by the normalization of the radial wavefunc-

tion, χ
(0)
l , to 1.

Unlike in the case of s-scattering, the effective range of the interaction is negative,
rl < 0, and is of the order of |rl| ∼ R1−2l, where R is the radius of the potential (which
is of the same magnitude as the localization domain of a zero-energy bound-state with
the angular momentum l �= 0).

For a δ-well, the wavefunction at the threshold of appearance of a new bound state
with the angular momentum, l, has the form:

χ
(0)
l =

{
Clr

−l, r > R,

Cl
rl+1

R2l+1 , r < R.

From the normalization condition, we find C2
l and the effective range of the interac-

tion is:

rl = −4(2l − 3)!!(2l + 1)!!

2l + 3
R1−2l, l ≥ 1.

In conclusion, note that a change in the effective range as a result of a small change in
the potential is also small. So, the “critical” value of rl at the threshold of bound-state
formation is applicable also in the case of a shallow level (real and quasi-discrete).

Problem 13.45

Find the phase shift, δ0(k), and scattering cross-section for scattering of slow particles
in the following potentials:

a) an impenetrable sphere of radius R;

b) a δ-well, U(r) = −αδ(r −R);

c) a square well of radius R and depth U0.

Use the effective range expansion.

Solution

a) For the radial function χl = rRl with l = 0, the Schrödinger equation and its
solution, which corresponds to the boundary condition χ0(R) = 0, have the form:

χ′′
0 + k2χ0 = 0, χ0(r) = A sin[k(r −R)].
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So, the s-scattering phase shift is δ0(k) = −kR, and the scattering cross-section for
slow particles, when kR � 1, is described by the expression:

σ ≈ σl=0(k) =
4π

k2
sin2 δ0 ≈ 4πR2

(
1− 1

3
k2R2

)
.

Recall that the first correction to the cross-section is connected with p-wave
scattering, and is ∝ k4. The contribution of higher waves is less important.
In the cases b) and c), it is also possible to find δ0(k) from a exact solution to the

Schrödinger equation. But it is easier to consider slow particle scattering using the
effective range expansion, Eq. (XIII.15). The parameters of low-energy scattering,
al and rl, could be obtained using the zero-energy solution of the Schrödinger
equation. See Problems 13.31 and 13.43, specifically for a discussion of the s-wave
scattering.

b) The solution of the Schrödinger equation for E = 0 and l = 0 has the form:

χ0(r) =

{
r − a0, r > R,
Cr, r < R.

Matching the solution at the point r = R (see Problem 2.6) gives:

a0 =
α̃R

α̃− 1
, C = 1− a0

R
, α̃ =

2mαR

�2
.

If α̃ is not close to 1, then |a0| ≤ R, and for slow particles σ ≈ 4πa20 (a correction
of the order of k2R2 to this expression could be found by calculating the effective
range, r0, according to Problem 13.43). However, if α̃ is close to 1, then |a0| � R and
the scattering cross-section has a pronounced energy-dependence that is described
by resonance equation (XIII.16). For this, the effective range of the interaction for
a δ-well at the threshold of s-state formation is r0 = 4

3R (see Problem 13.43). Note
that the relation σ ≈ 4πa20 needs to be corrected also for values of the parameter
α̃ close to 2l + 1 with l ≥ 1 (when a bound state with the angular momentum l
appears in the system), due to the resonant nature of scattering in the l-th partial
wave (see Problem 13.46).

c) The parameters of low-energy scattering, a0 and r0, for the square potential well
were found in Problems 13.31 and 13.43.

Problem 13.46

Consider scattering of slow particles in the partial wave with the angular momentum,
l �= 0, for the potential U(r) = −αδ(r −R). Consider specifically the case of angular
resonant scattering with a quasi-stationary state of small energy, ER � �

2/mR2, and
find its width, ΓR.



Particle collisions 705

Solution

As in the previous problem, we use the effective range expansion, Eq. (XIII.15). The
scattering length,

al = − 1

(2l − 1)!!(2l + 1)!!

α̃

2l + 1− α̃
R2l+1, α̃ =

2mαR

�2
, (1)

was calculated in Problem 13.39. When α̃ is not close to 2l + 1, the scattering in lth
partial wave is non-resonant. For slow particles,

σl ≈ 4π(2l + 1)a2l k
4l,

and the dominant scattering is s-wave.

If α̃ is close to 2l + 1, then in the potential there exists a shallow real (for α̃ > 2l + 1)
or quasi-discrete[350] (for α̃ < 2l + 1) level. Scattering has a resonant nature, and the
term with the following effective range (according to Problem 13.44)

rl ≈ −4(2l − 3)!!(2l + 1)!!
R1−2l

2l + 3
(2)

is essential.

The energy spectrum is determined by the poles of the partial scattering amplitude
fl(E) = 1/k(cot δl − i). At the pole El we have cot δl(El) = i, and using the effective
range expansion, Eq. (XIII.15), we obtain for “shallow” levels:

ik2l+1
R = − 1

al
+

1

2
rlk

2
R. (3)

In the case l ≥ 1, the left-hand side of this equation is small in comparison to both
terms in the right-hand side, so that it could be solved by successive iterations. In the
“zeroth” approximation, neglecting the left part in Eq. (3), we obtain:

ER ≈ �
2

mrlal
≈ (2l − 1)(2l + 3)(2l + 1− α̃)

4(2l + 1)

�
2

mR2
. (4)

Since rl < 0 (for l ≥ 1), then for al > 0 (i.e., for α̃ > 2l + 1) we have ER < 0, so that
the level corresponds to a bound state in the δ-well (compare to Problem 4.9). For
the scattering of slow particles in this case, fl ≈ (k cot δl)

−1, while the corresponding
partial scattering cross-section is

[350] Since l ≥ 1, the s-level for α̃ < 1 is virtual.
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σl(E) = 4π(2l + 1)|fl|2 ≈ 4π(2l + 1)
�
4

m2r2l

k4l

(E + |ER|)2 . (5)

As is seen, σl ∝ (kR)4(l−1)R2, i.e., in this case the resonant cross-section in the lth
partial wave has the same order of magnitude as the non-resonant cross-section in the
lower partial wave, with the angular momentum equal to l − 1. So, except for the case
l = 1, it does not provide a significant contribution to the scattering cross-section.

In the case of αl < 0 (i.e., for the value α̃ < 2l + 1, l ≥ 1), the situation is different.
Here, according to Eq. (4), ER > 0 and the left part of Eq. (3) is imaginary. The
next iteration allows us to obtain the imaginary part of the amplitude’s pole, El =
ER − iΓR/2, which determines the width of the quasi-stationary state considered:

ΓR ≈ 2�2

m|rl|k
2l+1
R ∼ (kRR)2l+1 �

2

mR2
, kR =

1

�

√
2mER. (6)

The dependence of ΓR on kR is determined by the energy-dependence of the trans-
mission coefficient of the centrifugal barrier:

ΓR ∝ Dl ∼ exp

⎧⎨⎩−2

b∫
R

√
(l + 1/2)2

r2
− k2Rdr

⎫⎬⎭ ∼

exp

{
−(2l + 1) ln

l + 1/2

kRR

}
∝ (kRR)2l+1.

b = (l + 1/2)/kR is the quasi-classical turning point. Compare to Problem 9.30.

Now the partial scattering cross-section, σl(E), is large for energies in a narrow
region of width ∼ ΓR around ER, and is

σl(E) ≈ π(2l + 1)

k2
Γ2
R

(E − ER)2 + Γ2
R/4

. (7)

It is large, σl ∼ k−2
R � R2, and is much larger than the scattering cross-section in the

s-wave (σ0 ∼ πR2), so the total cross-section is σ ≈ σl. Outside this energy region,
for |E − ER| � ΓR, the cross-section is described analogously to Eq. (5), with the
change (E + |ER|)2 → (E − ER)

2. Therefore, the estimate of the scattering cross-
section given above for al > 0 is the same as for al < 0 considered here.

Problem 13.47

On the basis of the specific model, including a potential well of strength U0 and radius
R that is surrounded by a δ-barrier U(r) = αδ(r −R) (Fig. 13.4), investigate how



Particle collisions 707

the existence of a weakly-penetrating barrier[351] (in this model, mαR/�2 � 1) affects
scattering of slow particles int he s-state.

Hint: Use the effective range expansion, paying attention to the effect of the weakly
penetrable barrier on the effective range of the interaction, r0.

Solution

We use the effective range expansion and calculate the parameters of low-energy
scattering, a0 and r0. The wavefunction χ0 = rR0(r) for E = 0 and l = 0 has the
form:

χ0(r) =

{
C sinκ0r, r < R, κ0 = 1

�

√
2mU0.

1− r
a0
, r > R.

Matching the solution at the point r = R (see Problem 2.6), we obtain:

C sinλ = 1− R

a0
,

R

a0
+ λC cosλ = α̃

(
R

a0
− 1

)
, (1)

where λ = κ0R and α̃ = 2mαR/�2. Hence, we find the scattering length:

a0 = R

(
1− 1

α̃+ λ cotλ

)
. (2)

When the inequality α̃ � 1 is fulfilled, we generally have a0 ≈ R, which corresponds
to the scattering length of an impenetrable sphere of radius R (a physically intuitive
result due to the small penetrability of the barrier).

Fig. 13.4

A large difference from the scattering length of an impenetrable sphere appears if
λ is close to nπ, with n = 1, 2, . . . .Writing here λ = nπ + γ, where |γ| � 1, we obtain:

[351] For physical applications, especially interesting is the case where such barrier originates from the
Coulomb repulsion of charged particles. But due to the slow decrease of the Coulomb potential,
this case needs special consideration.
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a0 ≈ R

[
1− 1

α̃+ nπ/γ

]
. (3)

When γ ≈ γ0,n = −nπ/α̃, the scattering length is large, |a0| � R, and becomes infinite
for γ = γ0,n. Such potential parameters correspond to the appearance of a level with
energy E = 0 (the nth level). In the case of |a0| � R, slow particle scattering is
resonant.

Now calculate the effective range, r0. According to Eq. (1), for a0 = ∞ we have
C ≈ (−1)n+1α̃/nπ, and from the equation for effective range, r0, at the threshold of
s-level formation,

r0 = 2

∞∫
0

(1− χ2
0(r))dr, χ0 = 1 for r → ∞

(compare Problem 13.43 for the case a0 = ∞), we find:

r0 = R(2− C2) ≈ −C2R ≈ −
(

α̃

nπ

)2

R. (4)

Unlike the case of s-scattering by a well without a barrier (where r0 ∼ R and r0 >
0; see Problem 13.43), the effective range at the threshold is large, |r0| � R, and
negative, r0 < 0. Therefore, the term containing the effective range in Eq. (XIII.15)
is essential[352] for description of the resonant s-scattering. The situation is analogous
to the one that takes place for scattering of particles with non-zero angular momenta,
and the physical reason for this similarity is the existence of the weakly-penetrable
δ-barrier that for l = 0 plays the same role as the centrifugal potential for l �= 0.

Both the amplitude of resonant scattering,

f ≈ f0 =
1

− 1
a0

+ 1
2r0k

2 − ik
, (5)

and the scattering cross-section, σ ≈ 4π|f0|2, have a pronounced energy dependence,
whose character depends on the relation among the three small parameters kR � 1,
R/|a0| � 1, R/|r0| � 1. Let us consider two cases.

1) If |a0| � |r0|, then

σ ≈ 4π(
1
a0

)2

+ k2 + 1
4r

2
0k

4

, (6)

so that the scattering cross-section is almost independent of the sign of the scattering
length. In the regime with k � 1/|r0|, the term containing the effective range, as in
the ordinary s-scattering, acts as a correction. It begins to play an important role for
k > 1/|r0|.
[352] Let us note that |r0| � R holds only of there exists a “shallow” level in the system.
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2) In the case of |a0| � |r0|, scattering strongly depends on the sign of the scattering
length. For a0 > 0, we have (in the denominator of Eq. (5), we could neglect the −ik
term):

σ(E) ≈ 4π

(
�
2

mr0

)2
1

(E + ε)2
, ε = − �

2

ma0r0
> 0. (7)

The cross-section is also described by an analogous equation (but with ε ≡ −ER < 0)
if a0 < 0, except for a narrow region of energies[353], |E − ER| ∼ ΓR, where

σ(E) ≈ π

k2R

Γ2
R

(E − ER)2 + Γ2
R/4

, (8)

ΓR =
2�2kR
m|r0| =

2(nπ�)2kR
mα̃2R

. (9)

Parameters ER and ΓR determine the position and width of the quasi-discrete level;
the value of the width is connected to the penetrability of the δ-barrier. Compare to
the previous problem, and also with Problem 13.48.

Problem 13.48

Find the partial amplitude of s-wave scattering in the potential U(r) = αδ(r −R). In
the case of a weakly-penetrable δ-barrier, determine, ER,n, and the widths, ΓR,n, of
the lowest quasi-discrete s-levels (with ER,n ∼ �

2/mR2).

Compare the scattering cross-section from the δ-sphere and impenetrable sphere.
What is the difference, Δσ(E), between these cross-sections if the energy is close to
the energy of the quasi-discrete level?

Solution

The Schrödinger equation and its s-wave solution are

χ′′ − α̃δ(r −R)χ+ k2χ = 0, α̃ =
2mα

�2
,

χ(r) =

{
A sin kr, r < R,
(S0e

ikr − e−ikr), r > R.

Matching at the point r = R (see Problem 2.6), we find

S0 = e2iδ0 = e−2ikR α̃R sin kR+ kR cos kR+ ikR sin kR

α̃R sin kR+ kR cos kR− ikR sin kR
. (1)

If the conditions α̃R � 1 and kR ∼ 1 (or more precisely, kR � α̃R) are fulfilled, then
from Eq. (1) we generally have S0 ≈ e−2ikR, i.e., δ0 ≈ −kR, which corresponds to the
scattering from an impenetrable sphere (see Problem 13.45).

[353] Where the real part of the denominator in Eq. (5) is close to zero.
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The case of particle energies for which kR ≈ nπ with n = 1, 2, . . . needs special
consideration, and in Eq. (1) we cannot simply replace the fractional factor by 1.
Writing kR = nπ + γ, with |γ| � 1, we have

α̃R sin kR+ kR cos kR− ikR sin kR ≈ (−1)n(α̃Rγ + nπ − inπγ) ≈
(−1)n(α̃R− inπ)(kR− nπ + λ+ iλ2),

where λ = nπ/α̃R � 1. Equation (1) becomes

S0 ≈ e−2ikR kR− nπ + λ− iλ2

kR− nπ + λ+ iλ2
. (2)

Multiplying both the numerator and denominator by

(kR+ nπ − λ)
�
2

2mR2
≈ nπ�2

mR2
,

we transform Eq. (2) to a more convenient form,

S0 ≈ e2iδ
(0)
0

E − ER,n − iΓR,n/2

E − ER,n + iΓR,n/2
, (3)

where δ
(0)
0 = −kR, and

ER,n =
π2n2

�
2

2mR2

(
1− 2

α̃R

)
,

ΓR,n =
2π2n2

�
2

mR2

nπ

(α̃R)2
� ER,n.

Equation (3) has a familiar form for resonant scattering from a quasi-discrete level.

δ
(0)
0 describes the phase of potential scattering (i.e., phase far from resonance), while
ER,n and ΓR,n give the position and the width of the quasi-discrete level. Therefore:

1) the phase of potential scattering coincides with the scattering phase for an
impenetrable sphere of radius R;

2) the position, ER,n, of the quasi-discrete levels almost coincides with the levels
in an infinitely deep well of radius R;

3) the level width, which determines the lifetime of the quasi-stationary state, could
be written in the form:

ΓR,n =
�

τn
≡ �DN = � · 4λ2 · πn�

2mR2
,

where D is the transmission coefficient (for a single collision) of the δ-barrier for an
energy equal to ER,n (see Problem 2.30), while N = v/2R = πn�/2mR2 gives the
number of times the particle hits the “wall” per unit of time.
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Fig. 13.5

From physical considerations, we should assume that analogous results take place
for non-zero values of the angular momentum. So, for kR � α̃R, the scattering cross-
section on the δ-sphere almost coincides with that on the impenetrable sphere of the
same radius, except for narrow regions, ΔE, in the vicinity of quasi-discrete levels.
Now, the partial cross-section is described by the expression:

σl = 4π(2l + 1)
1

k2
|Sl − 1|2.

Note that there is no scattering with the angular momentum l = 0 from the impene-
trable sphere for particles with energy close to the resonant energy ER,n of the s-level

(here δ
(0)
0 ≈ nπ). Hence, we see that the difference between the scattering cross-sections

of the δ- and the impenetrable sphere in the vicinity of a quasi-discrete s-level is equal
to (Fig. 13.5)

Δσ = πR2
Γ2
R,n

n2π2[(E − ER,n)2 + Γ2
R,n/4]

> 0.

Problem 13.49

Parameters of a potential U0(r) are chosen so that there exists a zero-energy bound

state with the angular momentum l in it (the scattering length is a
(0)
l = ∞). Find the

scattering length, al, in this partial wave, for a small change of the potential by δU(r).

Using the result obtained, discuss how the dependence of the level position on the
perturbation, δU(r), differs in the l = 0 case from the l �= 0 case. Compare to Problems
4.27 and 4.28.

Solution

Let χ
(0)
l (r) and χl(r) = rR(r) be the zero-energy solutions to the Schrödinger equation

with the potentials U0(r) and U0(r) + δU(r) respectively, normalized by the following
conditions (compare to Problem 13.39):

χ
(0)
l = r−l and χl = r−l − rl+1{(2l − 1)!!(2l + 1)!!al}−1 for r → ∞.
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If we write the Schrödinger equation for χ
(0)
l and χl, and multiply the first equation

by χl and the second one by χ
(0)
l , then subtract one from the other term by term, and

integrate the result over r from 0 to ∞, we find:

�
2

2[(2l − 1)!!]2mal
= −

∞∫
0

δUχlχ
(0)
l dr ≈ −

∞∫
0

δU
(
χ
(0)
l

)2

dr. (1)

Compare this to the analogous transformation in Problem 13.31. We emphasize that
relation (1) is valid for any value of angular momentum.

Using the result obtained and the effective range expansion (XIII.15), from the
condition cot δl(El) = i we can find the position of the pole in the partial scattering

amplitude, which determines the change of the level E
(0)
l = 0 under the influence of

the perturbation. If l = 0, we have:

κ0 = −i

√
2mE0

�2
≈ 1

a0

and for a positive scattering length a0 > 0 (for δU < 0), we obtain the known result:

E0 ≈ −2m

�2

⎡⎣ ∞∫
0

δU
(
χ
(0)
0 (r)

)2

dr

⎤⎦2

. (2)

Compare to Problem 4.27. In the case a0 < 0, we also have κ0 < 0, so that the level
E0 is virtual. We emphasize that the s-wave scattering cross-section depends weakly
on the sign of δU(r) (see Eq. (XIII.16)).

Now, consider the case with l �= 0. Using Eq. (1) and the result of Problem 13.44
for the effective range of the interaction, rl, at the threshold where a new bound state
appears, we see that the level shift (determined by the poles of the partial amplitude),

El ≈ − �
2

mal|rl| , l ≥ 1, (3)

is linear in δU and is described by first-order perturbation theory (compare to Problem
4.28). For al > 0, the level is real with El < 0. If al < 0, then El > 0 determines the
energy of a quasi-stationary state. Its width is

Γl ≈ 2�2

m|rl|
(
2mEl

�2

)l+1/2

. (4)

In the case of l �= 0, the nature of resonant scattering depends strongly on the sign of
δU(r). See, for example, Problem 13.46.
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13.4 Scattering of fast particles; Eikonal approximation

Problem 13.50

Derive Eq. (XIII.18) for the scattering amplitude of fast particles by summing up the
non-perturbative series, f =

∑
n
f (n), derived in Problem 13.10 (see Eq. (2) there).

Solution

The Fourier components of the potential, Ũ(κ) are essentially different from zero
only for κR � 1 (R is the radius of the potential). So, for fast particles, kR � 1, and
small scattering angles, qR = |k− k0| ≤ 1, the integrals over κk in this equation are
dominated by the integration domains where |κk − k0| � 1/R. Writing

κk = k0 + κ̃
‖
kn0 + κ⊥

k ,

where n0 = k0/k0 and κ⊥
k ⊥ n0, then for the energy denominators we have the

approximate expression:

κ2
k − k20 − iε ≈ 2k0κ̃

‖
k − iε. (1)

We neglected the terms (κ̃
‖
k)

2 and (κ⊥
k )

2 in comparison to 2k0κ̃
‖
k, which leads to an

error ∼ 1/kR. Now we substitute the Fourier components of the potential into Eq. (2)
from Problem 13.10:

Ũ(κk − κk−1) =

∫∫∫
U(ρk, zk) exp{−i[(κ̃

‖
k − κ̃

‖
k−1)z + (κ̃⊥

k − κ̃⊥
k−1) · ρk]}d2ρkdzk.

Recall the following identity for the delta-function:∫∫
exp{i(ρk+1 − ρk) · κ⊥

k }d2κ⊥
k = (2π)2δ(ρk+1 − ρk)

Now integrating over κ⊥
k , and using the δ-function to integrate over ρk, we see that

in all factors of U(ρk, zk), the values ρk (with different k) become the same. Finally,
using the integral ∫

exp{i(zk+1 − zk)κ
‖
k}

2k0κ′′
k − iε

dκ
‖
k =

iπ

k0
η(zk+1 − zk)

(η(z) is the step function; see Problem 13.14), we find (for k = k0):

f (n) ≈ k

2πi

(
− im

�2k

)n
z2∫

−∞
dz1

z3∫
−∞

dz2 . . .

∞∫
−∞

dzn×

∫∫
U(ρ, z1) . . . U(ρ, zn)e

−iq⊥·ρd2ρ. (2)
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In the exponent we neglected the term −iq‖zn, because q‖ � q⊥ (compare to Problem
13.2). In this expression we extend integration to infinite limits over all zk if we
introduce the factor (n!)−1. As a result, we obtain the scattering amplitude in the
eikonal approximation:

f ≈ k

2πi

∫∫ ⎧⎨⎩
∞∑

n=1

1

n!

(
− im

�2k

)n
⎡⎣ ∞∫
−∞

U(ρ, z)dz

⎤⎦n⎫⎬⎭ e−iq⊥·ρd2ρ =

=
ik

2π

∫∫ ⎧⎨⎩1− exp

⎧⎨⎩− i

�v

∞∫
−∞

U(ρ, z)dz

⎫⎬⎭
⎫⎬⎭ e−iq⊥·ρd2ρ. (3)

In conclusion, we discuss the conditions of applicability of Eq. (3), which follow form
the above derivation. Omission of the terms q‖z ≤ q2R/k ≈ kθ2R � 1 in the exponent

of Eq. (2) implies small scattering angles θ � 1/
√
kR. Since kR � 1, then this region

includes scattering angles θ � 1/kR, which dominate the total cross-section. This, as
we noted in the context of Eq. (1), contributes an error ∼ 1/kR. But the quantity
of interest appears in the exponent of Eq. (3). So the condition of its applicability
becomes

1

�v
UR · 1

kR
� 1, i.e. |U(r)| � E.

Problem 13.51

Prove that the total scattering cross-section of fast particles, kR � 1, in a potential,
U(r), of radius R follows from the equation:

σ(E) = 4π

∞∫
0

⎧⎨⎩1− cos

⎡⎣ m

k�2

∞∫
−∞

U(
√
ρ2 + z2)dz

⎤⎦⎫⎬⎭ ρdρ, (1)

independently of the relation between particle energy and the characteristic strength
of the potential, i.e., the validity of the equation in question does not require that
the condition of applicability of the eikonal approximation, E � |U(r)|, is necessarily
satisfied.[354]

Use this result to calculate the scattering cross-section from the potential barrier
(or well) with U = U0 for r < R and U = 0 for r > R.

Solution

Eq. (1) can be derived by combining the optical theorem and the eikonal approxima-
tion, Eq. (XIII.18). The condition for its applicability for fast particles is the inequality

[354] This condition is needed for the applicability of the eikonal approximation for the differential
scattering cross-section.
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|U(r)| � E, which is valid for a large fraction of scattering angles, θ � 1/kR (see the
previous problem). In the case of a “strong” potential, for which |U(r)| � E when
r ∼ R, scattering into the angles θ ∼ 1/kR is not described by the eikonal expression.
But for forward scattering, corresponding to the angle θ = 0, the amplitude,

f(E, θ = 0) =
1

2ik

∑
l

(2l + 1)(e2iδl − 1), (2)

still has the eikonal form (the approximation actually remains valid for the region of
small scattering angles θ � 1/kR, for as long as we can put Pl ≈ 1 in the amplitude
expansion over partial waves, Eq. (XIII.9) and until the oscillations in the Legendre
polynomials with l � kR begin to play out). To see this, recall that the eikonal equation
for the scattering amplitude follows from the quasi-classical expressions for the phase
shifts, Eq. (XIII.14). In the case of a “strong” potential, we should use the more general
expression, (XIII.13). But this fact is not reflected in the value of the forward scattering
amplitude, (2). For the values of l in the sum, Eq. (2), for which |U(r0)| ≥ E (r0 is
the quasi-classical turning point in Eq. (XIII.13)), the phase shifts have the following
properties: they are large, |δl| � 1, and change rapidly with increase in l, |δl+1− δl|≥ 1.
These properties follow both from Eq. (XIII.13) and from[355] Eq. (XIII.14). This leads
to the fact that in the corresponding part of sum (2), the contribution of the term
with exp(2iδl) is negligible due to fast oscillations. This happens independently of
which expression is used, correct (XIII.13) or “incorrect” Eq. (XIII.14). For values of
l such that |U(r0)| � E, (XIII.14) is still valid. Therefore the amplitude of forward
scattering for fast particles is still described by the eikonal expression, even if the
condition |U(r0)| � E breaks down. The statement of the problem follows from the
optical theorem. The unitary properties of the scattering amplitude in the eikonal
approximation are discussed in Problem 13.76.

In the case of a potential barrier (or a well), we find:

σ(E) = 4π

R∫
0

[
1− cos

(
ξ

√
1− ρ2

R2

)]
ρdρ =

2πR2

[
1− 2

ξ2
(ξ sin ξ + cos ξ − 1)

]
, (3)

ξ =
2mU0R

k�2
.

This integral is calculated using the substitution x =
√
1− ρ2/R2. For the values

ξ � 1 from Eq. (2), the result of the Born approximation follows

[355] For example, according to Eq. (XIII.14) we have:

|δl+1 − δl| ∼
∣∣∣∣ ∂∂l δl

∣∣∣∣ ∼ m

�2k
|U(r0)| l

k2R
∼ m|U(r0)|

�2k2
.
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σ(E) ≈ πR2

(
mU2

0R
2

�2E

)
� πR2

for fast particles (see Problem 13.1), while for ξ � 1 we have σ ≈ 2πR2, the known
result for the scattering cross-section of fast particles from an impenetrable sphere
(see Problem 13.57).

Problem 13.52

Find the total scattering cross-section in the potential U(r) = α/rν with ν > 2 and
α > 0, for energy E → ∞. Compare to Problem 13.2.

Solution

Let us use the quasi-classical equation for the scattering cross-section from the previous
problem. We will also use the integral:

∞∫
−∞

U(
√
ρ2 + z2)dz = 2αρ−ν+1

∞∫
0

du

(1 + u2)ν/2
=

√
πα

ρν−1

Γ((ν − 1)/2)

Γ(ν/2)
.

(By the substitution 1 + u2 = 1/t, this integral could be transformed to the Euler
integral, giving the β-function, B(x, y), with x = 1/2 and y = (ν − 1)/2.) We can
perform the integration[356] over ρ and obtain

σ(E) = 2πΓ(λ) sin
πλ

2

[√
πα

�v

Γ((ν − 1)/2)

Γ(ν/2)

]μ
∝ E−1/(ν−1), (1)

where λ = (ν − 3)/(ν − 1) and μ = 2/(ν − 1).

As is seen from Eq. (1), the decrease of the scattering cross-section for E → ∞ is
slower than is required for the applicability of the Born approximation, where σ ∝ 1/E.
This is because in the scattering of fast particles in the potential U ∝ r−ν with ν > 2,
small distances play the dominant role (small impact parameter), and the potential
cannot be considered as a perturbation. For large values of energy E → ∞, Eq. (1)
is valid for a fairly arbitrary potential, which has the form considered only at small
distances. See that for the values ν → 2, the energy dependence of the cross-section is
determined by Eq. (1) and “matches” the result obtained in the Born approximation.

[356] First we make the substitution x = ρ2 and perform integration by parts, which leads to the
integral of the form

∫
1
xs sin

(
a
xs

)
dx with s = (ν − 1)/2. Expressing the sine as a sum of two

complex exponentials and making the substitution v = ±ia/xs, we obtain the integrals that give
the Γ−function.
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Problem 13.53

Consider a “potential” of the form U = g(E)e−r/R, with the interaction constant,[357]

which scales as a power-law with energy, g(E) = g0(E/E0)
n. Prove the inequality

σ(E) ≤ σ0 ln
2

(
E

E0

)
for the energy-dependence of the scattering cross-section in the large-energy limit,
E → ∞.

Solution

To calculate the scattering cross-section we use the result of Problem 13.51. The quasi-
classical phase shift for large values of the impact parameter ρ � R is equal to

δ(ρ) =
g(E)

2�v

∞∫
−∞

exp

{
− 1

R

√
ρ2 + z2

}
dz ≈

g0
2�v

√
2πρR

(
E

E0

)n

e−ρ/R. (1)

To calculate this integral, use the expansion:
√
ρ2 + z2 ≈ ρ+ z2/2ρ.

Let us denote by ρ0 the value of ρ for which the following condition for the phase
shift is satisfied: δ(ρ0) = 1. In the case n > 1/2 and at large energies, we have ρ0 � R
(for E → ∞, ρ0 → ∞ as well). Now we note that the phase shift is a sharp, rapidly
decreasing function of ρ. For calculation of the cross-section using the equation from
Problem 13.51, we can completely neglect both the contribution of integration domain
ρ > ρ0 (since there, δ ≈ 0). On the other hand, in the other domain ρ < ρ0, we can
neglect the term corresponding to the fast-oscillating factor, cos 2δ(ρ) (because, δ �1).
As a result, we obtain σ(E) = 2πρ20(E). Thus, using Eq. (1), we find that

σ(E) ≈ σ0 ln
2

(
E

E0

)
, where σ0 = 2π

(
n− 1

2

)2

R2, (2)

for n > 1/2. To calculate approximately ρ0(E) from the relation ln δ(ρ0) = 0, we
neglected the term ln(ρ0/R) in comparison to ρ0/R. Finally, we mention that for
the values n < 1/2, the scattering cross-section decreases with the increase of E.

Problem 13.54

In the eikonal approximation, find the amplitude and differential scattering cross-
section for the Coulomb potential, U = α/r, in the limiting case opposite to that

[357] Let us note that the spin-orbital interaction, Û = ŝ · l̂f(r), increases ∝ √
E with E. Compare to

Problem 13.59. The restriction on the increase of cross-section is known as the Froissart theorem
in the theory of strong interactions in elementary particle physics.
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required for the validity of the Born approximation: i.e., consider |α|/�v � 1. Compare
to Problem 13.1.

Hint: To calculate the scattering amplitude, introduce a cut-off for the Coulomb
potential at some large, but finite, distance R (i.e., put U = 0 for r > R).

Solution

According to Eq. (XIII.19), for the values ρ � R, we have

δ(ρ) = − α

2�v

R∫
−R

dz√
ρ2 + z2

≈ − α

�v
ln

2R

ρ
, (1)

and for the q �= 0 scattering amplitude from Eq. (XIII.19), we obtain the relation:

f(E, q) =
k

2πi

∞∫
0

2π∫
0

eiS(ρ,ϕ)ρ dρ dϕ,

where

S =
2α

�v
ln

ρ

2R
− qρ cosϕ. (2)

In the case |α| � �v, the phase in the exponential is large, and changes rapidly with
a change in ρ and ϕ. Hence, the integral is determined mainly by the integration
domains in the vicinity of the saddle points, where the phase reaches extrema as a
function of the variables ρ, ϕ. From this saddle point condition, we find:

2α = �vρ0q cosϕ0, qρ0 sinϕ0 = 0.

Thus ρ0 = 2|α|/�vq, and ϕ0 = 0 for α > 0 or ϕ0 = π for α < 0 (here |α|/ρ0 � �kv,
i.e., |U | � E, which allows us to use the eikonal approximation). Expanding S(ρ, ϕ)
in the vicinity of the extremum (ρ0, ϕ0) with quadratic accuracy, and using the value
of the Poisson integral, we obtain the scattering amplitude:

f(E, q) ≈ −i
2m|α|
�2q2

exp {iS(ρ0, ϕ0)}. (3)

Therefore, the differential scattering cross-section is

dσ

dΩ
=

(
2mα

�2q2

)2

≈ α2

E2θ4
,

which coincides with the Rutherford equation (for small scattering angles, θ � 1).

Let us note in conclusion that the need to cut off the potential and the absence of a
well-defined limit for R → ∞ of the scattering amplitude (but not for the differential
cross-section) are connected to the slow decrease of the Coulomb potential. At large
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distances, the wavefunction of the Coulomb problem is not the wavefunction of a free
particle. The phase of the wavefunction gets “distorted” by the factor,

Δ(r) = − α

�v
ln 2kr,

due to the cutting off the potential at the distance r = R. This distortion is then
“inherited” by the scattering amplitude in the form of the factor exp{2iΔ(R)}.
Factoring it out from Eq. (3), we obtain the scattering amplitude:

f̃(k, q) = fe−2iΔ(R) = −2mα

�2q2
eiϕ(k,q),

ϕ(k, q) = −2α

�v
ln

q

2k
+

2α

�v
ln

|α|
�v

− 2α

�v
+

π

2

α

|α| . (4)

It is now independent of the cutoff radius, and coincides, as expected, with the
amplitude of Coulomb scattering:[358]

fCoul = − α

2mv2 sin2(θ/2)

Γ(1 + iα/�v)

Γ(1− iα/�v)
exp

{
−2iα

�v
ln sin

θ

2

}
.

In the quasi-classical case, |α|/�v � 1 for all scattering angles, while the eikonal
approximation is applicable only for angles θ � �v/|α|.

Problem 13.55

In the eikonal approximation, express the scattering amplitude in the field of two
identical potentials located at a distance a from one another, i.e., in the potential
U(r) = U0(|r− a/2|) + U0(|r+ a/2|), in terms of the amplitude, f0, of scattering from
a single spherically-symmetric potential, U0(r). What is the connection between the
total scattering cross-section in U(r) and that in a single potential, σ0?

Use the result obtained to calculate the total scattering cross-section for a weakly
bound system of two centers (like a deuteron), when its characteristic size is much
larger than the interaction radius of a single scattering center.

Solution

In the eikonal approximation, the scattering amplitude is described by the expression:

f(k,q⊥) =
ik

2π

∫∫ ⎧⎨⎩1− exp

⎧⎨⎩− im

�2k

∞∫
−∞

U(ρ, z)dz

⎫⎬⎭
⎫⎬⎭ e−iq⊥·ρd2ρ. (1)

[358] The ratio of Γ−functions is determined only by their phase factors, which are easily found from
the known asymptotes for ln Γ(z).



720 Exploring Quantum Mechanics

Using the Fourier transformation, we obtain:

exp

⎧⎨⎩− im

�2k

∞∫
−∞

U(ρ, z)dz

⎫⎬⎭ = 1 +
i

2πk

∫∫
f(k,κ⊥)eiκ⊥·ρd2κ⊥. (2)

Now substituting into Eq. (1) the potential

U(r) = U1

(
r− a

2

)
+ U2

(
r+

a

2

)
,

and transforming potentials U1,2(r) according to Eq. (2), we obtain the scattering
amplitude from two centers in the eikonal approximation:

f(k,q⊥) = f1(k,q⊥) exp
{
− i

2
q⊥ · a⊥

}
+ f2(k,q⊥) exp

{
i

2
q⊥ · a⊥

}
+

i

2πk

∫
f1

(
k,κ⊥ +

q⊥
2

)
f2

(
k,−κ⊥ +

q⊥
2

)
exp{−iκ⊥ · a⊥}d2κ⊥. (3)

Here, a⊥, κ⊥ are vectors are perpendicular to the direction of the momentum of the
incident particle, n0; for example, a = a‖n0 + a⊥.

Now, we use Eq. (3) to calculate the elastic scattering amplitude from a bound
system of two centers (i.e., on some composite particle), and average the wavefunction
ψ0(a) of the composite system, i.e.,

∫
d3a|ψ0(a)|2 (here it is assumed that the velocity

of the target particle is small with respect to the velocity of the incident particle). We
also emphasize that ψ0(a) is the wavefunction of the composite system in its center-
of-mass frame (and the target as a whole remains at rest). The radius vectors of the
target particles are chosen to be equal to ±a/2, and it is assumed that they have
identical masses (as is the case for the deuteron). The integrals that appear after the
averaging are expressed in terms of the form factor of the composite system, equal to

F (q) =

∫
|ψ0(r)|2 exp

{
− i

2
q · r

}
d3r.

As a result of averaging, Eq. (3) takes the form:

〈f(k,q⊥)〉 = f1(k,q⊥)F (q⊥) + f2(k,q⊥)F (−q⊥)+

i

2πk

∫
f1

(
k,κ⊥ +

q⊥
2

)
f2

(
k,−κ⊥ +

q⊥
2

)
F (2κ⊥)d2κ⊥. (4)

Using the optical theorem (XIII.11), the total scattering cross-section can be expressed
in terms of the forward scattering amplitude for angle θ = 0 (i.e., q⊥ = 0), so that

σtot = σ1 + σ2 +
2

k2
Re

∫
F (2κ⊥)f1(k,κ⊥)f2(k,−κ⊥)d2κ⊥ (5)
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where σ1,2 are the scattering cross-sections of free particles hitting the target. (We
should emphasize that the total scattering cross-section may also include processes,
where the initial composite system breaks up).

Notice that the properties of scattering from a weakly-bound system are determined
by the fact that the typical momentum, where the form factor begins to noticeably
decrease, is of the order of

q ∼ 1

R
∼
(μεbind

�2

)1/2

, (6)

where R is the size of a system, εbind and μ are the binding energy and reduced mass of
target particles, and R is assumed to be much larger than the interaction radius. Since
the characteristic values of q for scattering are of the order of the inverse interaction
radius, i.e., are large in comparison to (6), then in Eq. (5) the amplitudes, f1,2, can be
factored outside of the integral at the point κ⊥ = 0. Next, we perform the following
transformation:∫

F (2κ⊥)d2κ⊥ =

∫∫∫
exp{−iκ⊥ · ρ}|ψ0(ρ, z)|2d2ρ dz d2κ⊥ =

= (2π)2
∞∫

−∞
|ψ0(0, z)|2dz = 2π

∞∫
0

1

r2
|ψ0(r)|24πr2 dr ≡ 2π

〈
1

R2

〉
.

We have assumed that the angular momentum of the composite system is equal to
zero, so that the wavefunctiom ψ0(r) is spherically symmetric. 〈R−2〉 is the mean value
of the inverse distance between the target particles squared. We obtain:

σtot = σ1 + σ2 +Δ, Δ =
4π

k2

〈
1

R2

〉
Re(f1(k, 0)f2(k, 0)). (7)

In particular, if f1,2(k, 0) are purely imaginary quantities, then, using the optical
theorem for the single center amplitudes, we find:

Δ = − 1

4π
σ1σ2

〈
1

R2

〉
. (8)

Let us note that such a case of imaginary amplitudes corresponds to scattering from
impenetrable (or “black”) spheres (compare to Problems 13.57 and 13.90). Also, note
that the fact that the scattering cross-section from two centers is a little smaller (since
Δ < 0) than σ1 + σ2, can be thought of as an effect of mutual shading one sphere by
the other.

Problem 13.56

Extend the eikonal approximation to the case of an exchange interaction, Ûexψ(r) ≡
U(r)ψ(−r). What is the connection between the differential and total scattering cross-
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sections for the exchange potential and the corresponding ordinary potential? Compare
to scattering in the Born approximation, as considered in Problem 13.3.

Solution

We will generalize the derivation of the scattering amplitude in the eikonal approxi-
mation based on the quasi-classical expression, Eq. (XIII.14), for the phase shift. If we
replace the summation over partial waves by integration over the impact parameters
and note that in approximation (XIII.14) for the exchange potential, the phase shift is

δl,ex = (−1)lδl,com, (1)

then it is easy to obtain the following results.

In the region of small scattering angles, θ � 1, the scattering amplitude for the
exchange interaction is described by an equation analogous to (XIII.18), but with
cos 2δl instead of e2iδl ; i.e.,

fex(k, θ) ≈
θ � 1

k

2πi

∫∫
[cos 2δ(ρ)− 1] exp{−iqρ}d2ρ =

−ik

∞∫
0

[cos 2δ(ρ)− 1]J0(kρθ)ρ dρ, (2)

with the same function, δ(ρ).

Note that the appearance of the factor (−1)l in Eq. (1) does not change the even-
in-δl part of the scattering amplitude. For odd functions, ∝ sin 2δl,ex, a strong mutual
compensation of the neighboring terms in the sum over l appears, and this part of the
amplitude is negligibly small.

Let us note that amplitude (2) is imaginary and coincides with the imaginary part
of the scattering amplitude for the ordinary potential U(r). If we take into account
the optical theorem, then their total scattering cross-sections also coincide (the same
for partial scattering cross-sections σl).

In the case of the exchange potential, the scattering amplitude has a sharp
maximum in the region of angles close to π (for scattering backwards, compare
to Problem 13.3). Taking into account the relation for the Legendre polynomials
P1(z) = (−1)lPl(−z), we find:

fex(k, θ) ≈
π − θ � 1

k

2π

∫∫
sin 2δ(ρ) exp{−iΔ · ρ}d2ρ =

k

∞∫
0

sin 2δ(ρ)J0(kρ(π − θ))ρ dρ, (3)

where Δ = k+ k0. In this region of angles, the amplitude is a real function, and
coincides with the real part of the scattering amplitude from the corresponding regular
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potential, with the scattering angle θ′ = π − θ � 1. From Eqs. (2) and (3), we recover
the same fact that the total scattering cross-sections are the same for the exchange an
the corresponding ordinary potential.

Problem 13.57

Calculate the scattering amplitude and the differential and total cross-sections for
small-angle scattering (kRθ � 1) of fast particles (kR � 1) on a hard sphere with
radius, R. Use the quasi-classical expression (XIII.13) for the phase shift.

Solution

To calculate the scattering amplitude of fast particles, we use its expansion over partial
waves, Eq. (XIII.9), and the quasi-classical expression (XIII.13) for phase shifts. Since
U = 0 for r > R, then integration by parts in Eq. (XIII.13) gives:

δl =

(
l +

1

2

)
arccos

l + 1/2

kR
−
√

k2R2 −
(
l +

1

2

)2

, l ≤ L, (1)

where L = kR− 1/2 (here r0 = R), while for the values l > L we obtain (here r0 =
(1 + 1/2)/k):

δl = 0, l > L. (2)

For l > L, the exact phase shift is exponentially small. This is beyond quasi-classical
approximation, which yields δl = 0. Let us also mention that, strictly speaking, we
should put an additional term, −π/4, in Eq. (1). It has the same origin as the
modification of the quantization rule considered in Problem 9.2 (for l < L in our
problem, the quasi-classical approximation is reliable up to the turning point). Let us
also mention that the results obtained for δl need correction for values of l that are
close to L, since in the vicinity of the point r = R, the quasi-classical approximation
is not applicable, and the matching conditions require a modification. However, these
conditions are not important for further calculations.

Using relations (1) and (2), it is convenient to write the scattering amplitude in
the form:

f = fdif + fcl,

where

fdif =
i

2k

L∑
l=0

(2l + 1)Pl(cos θ), fcl =
1

2ik

L∑
l=0

(2l + 1)e2iδlPl(cos θ).

This partitions the amplitude into “diffractive” and “classical” parts. We will note
a few important points about this partition, since it will be important for this and
the following few problems. For small scattering angles (i.e., for θ � (kR)−1/3 � 1),
we have |fdif | � |fcl|. The contribution of this region into the total cross-section
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is πR2. Such small-angle scattering is often referred to as diffractive, because it is
similar to the diffraction of a plane-parallel light beam falling onto a non-transparent
(reflecting or absorptive) screen, Fraunhofer diffraction (see also Problem 13.90). For
scattering angles θ � (kR)−1/3, the diffractive amplitude fdif is negligibly small. fcl
describes the isotropic distribution of scattered particles, dσ/dΩ ≈ |fcl|2 ≈ R2/4, so
that the scattering cross-section into such angles is also πR2 (as in classical mechanics).
In the region of angles θ ∼ (kR)−1/3, the amplitudes fdif and fcl are of the same
order. However, the contribution of these angles to scattering is negligibly small in
comparison to πR2. Therefore, the total scattering cross-section is equal to 2πR2.

For sufficiently small scattering angles, the diffraction part of the scattering
amplitude becomes dominant, and f ≈ fdif . Indeed, since the phase shifts, (1), are
large, |δl| � 1, and change rapidly, then in the sum for fcl, a mutual compensa-
tion appears due to the oscillations of e2iδl in different terms. Using the relation
Pl(cos θ) ≈ J0((l + 1/2)θ) for l � 1, θ � 1, and replacing the summation in fdif by
an integration over l, we obtain (L ≈ kR):

fdif ≈ i

2k

L∫
0

(2l + 1)J0

((
l +

1

2

)
θ

)
dl ≈ iR

J1(kRθ)

θ
. (4)

We have used the equation
∫
xJ0(x)dx = xJ1(x).

Note that the diffractive part of the scattering amplitude is purely imaginary.
Using the optical theorem and the relation J1 ≈ x/2 for x → 0, we again find that the
total scattering cross-section is σ = 2πR2, which is two times larger than the classical
cross-section (compare to Problem 13.51).

In the region of small scattering angles, the differential cross-section, dσ/dΩ =
|fdif |2, is an oscillating function of θ, and the distance between the neighboring
maxima is of the order of Δθ ∼ 1/kR. Using known asymptotes of the Bessel functions,
according to Eq. (4) we find:

dσdif

dΩ
≈

θ � 1/kR

1

4
(kR)2R2;

dσdif

dΩ
≈

1/kR � θ � 1

2R sin2(kRθ − π/4)

πkθ3
.

The differential scattering cross-section has a maximum in the region θ � 1/kR, and
decreases fast with the increase in θ.

The total cross-section of diffraction scattering is

σdif =

∫
|fdif |2dΩ ≈ 2πR2

∞∫
0

J2
1 (kRθ)

θ
dθ = πR2,

i.e., half of the total scattering cross-section.
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Problem 13.58

The same as in the previous problem, but for not necessarily small scattering angles
θ � (kR)−1/3. Compare to the result of classical mechanics.

Solution

Let us consider the classical part of the scattering amplitude,

fcl =
1

2ik

L∑
l=0

(2l + 1)e2iδlPl(cos θ), L = kR, (1)

where δl is given by Eq. (1) of the previous problem.

We use a general method of calculating sums such as in Eq. (1) (which involves
replacing the sum over l with an integral and using the saddle-point approximation
as discussed in great detail in, e.g., the relevant chapter of the Landau and Lifshtiz
theoretical physics course) and first write down the equation

2 arccos
l + 1/2

kR
± θ = 0

that determines the extremum point l0 as follows

l0 +
1

2
= kR cos

θ

2
, δl0 =

1

2

(
l0 +

1

2

)
θ − kR sin

θ

2
.

The final expression[359] for fcl takes the form:

fcl = − i

2
R exp

{
−2ikR sin

θ

2

}
. (2)

Therefore,

dσcl

dΩ
= |fcl|2 =

R2

4
, σcl = πR2, (3)

which coincides with the result of classical mechanics.

In conclusion, let us refer to Fig. 13.6 for an illustration of a qualitative dependence
of the scattering cross-section, dσ/dΩ, on the angle θ for scattering of fast particles,
kR � 1 (or, more precisely, for (kR)1/3 � 1), from an impenetrable sphere according
to the results of this and the previous problems.

[359] This corresponds to a repulsive potential. The phase factor e−iπ/4, which appears at the transition
from the summation over l to an integration, is omitted here (which, however, is not reflected in
the value of the differential scattering cross-section.)



726 Exploring Quantum Mechanics

Fig. 13.6

13.5 Scattering of particles with spin

Problem 13.59

The operator describing interaction of a spin-1/2 particle with an external field has
the form:[360]

Û = U0(r) + U1(r)σ̂ · l̂.
What is the energy dependence of the total scattering cross-section for fast particles
in the Born approximation? Compare to the scattering of spinless particles.

Find the spin-dependent part of the electron scattering amplitude in the Coulomb
field of a nucleus, U0 = −Ze2/r, taking into account the spin-orbital interaction, U1 =
(�2/4m2c2r)∂U0/∂r.

Solution

Eqs. (XIII.1–XIII.5) are easily generalized to describe scattering of “spinfull” parti-
cles. A substitution of the interaction operator Û (instead of the potential U) and

[360] A classical analog of the spin-orbital interaction U(r)σ̂ · l̂ is considered in Problem 13.60. If for a
particle with spin s = 1/2, we write the magnetic moment in the form μ0 = e�/2mc + μ′, where
e, m are the charge and mass of a particle and μ′ is the anomalous magnetic moment, then the
correct quantum-mechanical generalization of the classical result from Problem 13.60 is obtained
by substituting the operator μ′

0σ̂ with μ′
0 = e�/4mc + μ′ instead of μ. See Problem 15.32.
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unperturbed wavefunction ψ+
k0

= eik0·rχl (χl is the spin function of the particle before
collision) into Eq. (XIII.5) determines a spinor amplitude of the scattered wave,

F = f̂χ, in the Born approximation. Therefore,

f̂(k,k0) = − m

2π�2

∫
e−ik·r[U0(r) + U1(r)̂l · σ̂]eik0·rdV =

= − m

2π�2

{
Ũ0(q)− i([k0 × k] · σ̂) · 1

q

∂

∂q
Ũ1(q)

}
, (1)

where Ũ0,1(q) =
∫
U0,1(r) exp{−iq · r}dV .

According to Eqs. (1) and (XIII.23), the total scattering cross-section in the Born
approximation is described by the expression (compare to Problem 13.1)

σ =
m2

4π�4k2

4k2∫
0

⎧⎨⎩|Ũ0(q)|2 +
(
k2 − q2

4

) ∣∣∣∣∣∂Ũ1(q)

∂q

∣∣∣∣∣
2
⎫⎬⎭ dq2. (2)

Let us note that in general, the term in the differential cross-section ∝ ν ·P0 which
describes azimuthal asymmetry in scattering (see Eq. (XII.23)) disappears from the
calculation of the total scattering cross-section; the cross-section, averaging over the
over spin projections, does not depend on the polarization, P0, of the initial state. So,
for fast particles we obtain:[361]

σ(E) ≈ C0

E
+ C1, (3)

where

C0 =
m

8π�2

∞∫
0

|Ũ0(q)|2dq2, C1 =
m2

4π�4

∞∫
0

∣∣∣∣∣∂Ũ1(q)

∂q

∣∣∣∣∣
2

dq2.

The terms here correspond to different interactions. For a large but finite energy, they
could be of the same order. But in practice, the relativistic origin of the spin-orbit
interaction for electrons, yields that the second (non-decreasing with energy) term is
less important in the non-relativistic case.

For electron scattering in the Coulomb field, we obtain:

f̂ =
2mZe2

�2q2

{
1− i

�
2k2

4m2c2
sin θ (ν · σ̂)

}
, (4)

where ν = [k0 × k]/|[k0 × k]|. Note that the spin-dependent part of the scattering
amplitude is small, ∼ θv2/c2.

[361] Note that the applicability conditions of the Born approximation for the spin-orbital interaction
involve a restriction on the power law decay of U1(r) at large distances, which ensures the finiteness
of the total scattering cross-section. Let us emphasize that the independence of scattering cross-
section from energy for E → ∞ reflects its effective increase with the increase in E, since leff ∼
kR ∝ √

E.
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We now calculate the spin-dependent amplitude in the presence of spin-orbit inter-
action, U1(r) =

γ
r

∂
∂rU0(r). Taking into account Eq. (1), let us perform the following

transformations∫
e−ik·rU1 l̂e

ik0·rdV =

∫
U1[r× k0]e

−iq·rdV = −γ

∫
e−iq·r [k0 ×U0(r)] dV =

= −iγ[k0 × q]Ũ0(q).

So, for the considered spin-orbital interaction, the scattering amplitude in the Born
approximation is described by the expression:

f̂ = − m

2π�2
Ũ0(q)(1− iγ[k0 × k] · σ̂). (5)

Thereafter, using the expression Ũ0 = −4πZe2/q2 for the Fourier component of the
Coulomb potential and the parameter γ = �

2/4m2c2, we obtain Eq. (4).

Problem 13.60

Find the Born scattering amplitude and differential cross-section of fast neutrons from
the Coulomb field.

Solution

Let us first find the form of the interaction between a moving magnetic dipole and
an electric field in classical electrodynamics. In the initial coordinate system, there is
only an electric field E = −∇φ with ϕ = Ze/r. To find its interaction with a neutron,
moving with the velocity v = p/M , we pass to the frame of reference moving with the
neutron. In this system, a magnetic field H ≈ [E × v]/c appears, and the interaction
energy becomes becomes equal to (with μ being the neutron magnetic moment):

U = −μ ·H =
1

Mcr

∂ϕ

∂r
μ · L, L = [r× p]. (1)

A quantum mechanical generalization of this equation is obtained by substitutions:
of μ by spin magnetic moment operator[362] μ̂ = μ0σ̂, where μ0 = βe�/2Mc (for

the neutron, the experimental value is β = −1.91), and L by �̂l. This generalization
determines the interaction operator:

Û =
γ

r

∂ϕ

∂r
σ̂ · l̂, γ =

βe�2

2M2c2
. (2)

Using the equations for scattering amplitude with the spin-orbit interaction in the
Born approximation, obtained in the previous problem, we find:

f̂ = i
2Ze2Mγ

�2q2
σ̂ · [k0 × q] = i

βZe2

2Mc2
cot

θ

2
(σ̂ · ν), (3)

[362] See the footnote of Problem 13.59.
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where ν = [k0 × k]/|[k0 × k]| is the unit vector normal to the scattering plane. The
differential cross-section, summed over the neutron’s spin states, is

dσ

dΩ
= F ∗F = χ∗

i f̂
+f̂χi =

(
βZe2

2Mc2

)2

cot2
θ

2
. (4)

Here, F = f̂χi is the spinor amplitude of the scattered wave. For a small-angle
scattering, θ → 0, we have dσ/dΩ ∝ θ−2, so that the total scattering cross-section
becomes infinite (this divergence of the cross-section disappears if we take into account
screening of the nuclear charge).

Problem 13.61

What constraints does the hermiticity property of the Hamiltonian impose on the
spin-orbit interaction, Û = U0(r) + U1(r)̂l · σ̂, of a spin-1/2 particle with an external
field.

(1) Find in the first Born approximation polarization of particles scattered by such
a potential, assuming that they were unpolarized initially. (2) Show also that if the
particles were, on the contrary, polarized before the collision, the latter can result only
in a rotation of the polarization vector.

Solution

The hermiticity of Û = U0(r) + U1(r)̂l · σ̂ demands that the functions U0,1(r) are real.

Their Fourier components, Ũ0,1(q) are also real, and so are the invariant functions A
and B in the expression below for the Born scattering amplitude

f̂ = A(k, θ) + iB(k, θ)ν · σ̂ (1)

(see Eqs. (1) and (5) from Problem 13.59). So, according to the general equation
(XIII.24), we find that the scattered particles remain unpolarized, P = 0, if they were
unpolarized initially, P0 = 0.

For the scattering of polarized particles, the final polarization vector is equal to[363]

P =
(|A|2 − |B|2)P0 + 2|B|2ν(ν ·P0)− 2Re AB∗[ν ×P0] + 2Im AB∗ · ν

|A|2 + |B|2 + 2Im AB∗νP0
.

Since A and B are real functions, then

PB =
1

A2 +B2
{(A2 −B2)P0 + 2B2ν(ν ·P0)− 2AB[ν ×P0]},

and P2
B = P2

0. This corresponds to a rotation of the polarization vector around the
normal to the scattering plane; here, ν ·PB = ν ·P0.

[363] Note that in Eq. (1), we have adopted a convention, which includes the imaginary constant, i, in
front of the coefficient, B (different conventions can be found in the literature).
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Problem 13.62

Find the polarization that appears as a result of scattering of fast (Ze2/�v � 1)
(initially unpolarized) electrons in the Coulomb field of a nucleus. Find also the
induced polarization for the Coulomb scattering of initially unpolarized positrons.

Hint: Spin-orbital interaction was discussed in Problem 13.59. To calculate the
amplitude in second-order perturbation theory, first consider a screened Coulomb
potential, U0(r) = −(Ze2/r)e−r/R, and take the R → ∞ in the end of the calculation
(compare to Problem 13.54).

Solution

To the first order in interaction

Û = U0(r) +
�
2

4m2c2r

∂U0(r)

∂r
σ̂ · l̂, where U0(r) = −Ze2

r
e−r/R,

the scattering amplitude has the form:

f (1)(k,k0) =
2mZe2

�2[(k− k0)2 +R−2]

{
1− i

�
2

4m2c2
[k0 × k] · σ̂

}
≡

A(1) + iB(1)ν · σ̂. (1)

See Eqs. (4) and (5) from Problem 13.59. Functions A(1) and B(1) are real, and so in
the first order of perturbation theory there is no polarization from scattering (see Eq.
(XIII.24)).

The general expression for the second-order amplitude, as in the case of spinless
particles (see Problem 13.10), is

f̂ (2)(k,k0) =
1

2π2

∫
f̂ (1)(k,κ)f̂ (1)(κ,k0)

d3κ

κ2 − k2 − iε
. (2)

To calculate a spin-dependent part of the scattering amplitude, A(2), it suffices to
retain only the first-order terms in Eq. (2) (including A(2) into both amplitudes
f (1) in (2) would result in the additional small relativistic factor ∼ (v/c)2, which
is beyond the accuracy of the approximation used). Thus A(2) coincides with the
scattering amplitude in second-order perturbation theory for the potential, U0(r).
For a Yukawa potential (corresponding to the screened Coulomb interaction), it
was calculated in Problem 13.12. Using Eq. (5) of this problem, we obtain (with
substitution α → −Ze2):

Im A(2) =
4(Ze2m)2

�4kq2
ln qR, R � 1

k
. (3)
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For the spin-dependent part of the amplitude, f (2), according to Eqs. (2) and (1) we
find:

σ̂ · νIm B(2) =
1

4π

(
Ze2

�c

)2

k · σ̂
∫

[q× κ]dΩκ

[(k0 − κ)2 +R−2][(k− κ)2 +R−2]
. (4)

Here, we should put |κ| = |k| = |k0| for the calculation of the imaginary part (see, for
example, Problem 13.11). The corresponding integral has the form:∫

κ dΩκ

[(k0 − κ)2 +R−2][((k− κ)2 +R−2]
= C1(k+ k0) + C2q. (5)

After multiplying it by (k+ k0), we obtain

(k0 + k)2C1 =
1

2

∫
dΩκ

{
− 1

(k0 − κ)2 +R−2
− 1

(k− κ)2 +R−2
+

4k2 + 2R−2

[(k0 − κ)2 +R−2][(k− κ)2 +R−2]

}
.

The first two integrals are easily calculated, and the third one could be expressed in
terms of the imaginary part of the scattering amplitude for the Yukawa potential (see
Problem 13.12). As a result, we obtain for kR � 1 (remember that |κ| = k):

(k0 + k)2C1 = 2π

[
− 1

k2
ln 2kR+

4

q2
ln qR

]
.

Taking into account the fact that C2q in Eq. (5) does not contribute to integral (4),
and that (k0 + k)2 = 4k2 cos2(θ/2), we find:

Im B(2) =
1

4

(
Ze2

�c

)2
sin θ

cos2(θ/2)

[
ln 2kR

k
− 4k ln qR

q2

]
. (6)

Now, using Eqs. (1), (3), and (6) along with Eq. (XIII.24), we obtain the electron
polarization for scattering in the Coulomb field of the nucleus:

P ≈ 2

(A(1))2
{Im A(2) B(1) −A(1)Im B(2)}ν =

2
Ze2

�c

v

c

sin3(θ/2)

cos(θ/2)
ln

(
sin

θ

2

)
ν; ν =

[k0 × k]

|[k0 × k]| . (7)

We emphasize that the cut-off, introduced for regularization purposes, disappears from
the final result.

For the scattering of positrons, the polarization vector has the opposite direction
(the amplitude f (1) changes sign, while f (2) remains unchanged).
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Problem 13.63

The interaction of particles with spin s = 1/2 in an external field has the form

Û = U0(r) + U1(r)̂l · σ̂. Find the phase shifts δ±l :

a) in the Born approximation;

b) in the quasi-classical approximation.

Calculate also the scattering amplitude in the eikonal approximation, from the partial-
wave expansion, Eq. (XIII.25).

Solution

The solution of the Schrödinger equation, corresponding to a definite value of the
angular momentum squared, l(l + 1), the total angular momentum, j = l ± 1/2, and
its projection, jz, has the form:

ψkjljz = ψ̃jljzRkjl(r), E =
�
2k2

2m
.

Here, ψ̃jljz is the spin and angular part of the wavefunction (see Problems 5.24 and
5.25, and note that in this problem its explicit form is not important). Since

σ̂ · l̂ψ̃jljz =

[
j(j + 1)− l(l + 1)− 3

4

]
ψ̃jljz ,

then we note that the radial Schrödinger equation for Rkjl has the same form as in
the case of a spinless particle with the angular momentum l in the potential

U±
1 (r) = U0(r)±

(
l +

1

2
∓ 1

2

)
U1(r).

The upper and lower signs correspond to the values j = l ± 1/2. Replacing the
potential U(r) by U±

1 in Eqs. (XIII.12–XIII.14) determines the phase shifts, δ±l , in
expansions (XIII.25). Therefore the sought-after generalization of Eq. (XIII.14) has
the form:

δ±l ≈ − m

2�v

∞∫
−∞

{
U0(

√
ρ2 + z2)± kρU1(

√
ρ2 + z2)

}
dz, l = ρk � 1.

Using this relation and Eq. (XIII.25), just as in the case of spinless particles, we can
obtain expressions for the invariant amplitudes A and B in the eikonal approximation.
It is important to remember that

sin θP ′
l (cos θ) ≈ − ∂

∂θ
J0(lθ) = lJ1(lθ); l � 1, θ � 1.
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The scattering amplitude operator (i.e., a matrix function in the spin space) in the
eikonal approximation has the following simple form:

f̂ =
ik

2π

∫∫ {
1− exp{2iδ̂(k0,ρ)}

}
e−iq·ρd2ρ, (1)

which becomes physically more transparent if we introduce an operator for the quasi-
classical phase-shift (compare to Eq. (XIII.19)):

δ̂(k0,ρ) = − m

2�v

∞∫
−∞

{U0(ρ, z) + U1(ρ, z)[ρ× k0] · σ̂}dz. (2)

Using the identity

exp{iασ̂ · ν} = cosα+ iσ̂ · ν sinα, where ν2 = 1,

it is easy to obtain the eikonal expressions for amplitudes A and B in Eq. (XIII.22).

Problem 13.64

In the case of a spin-1/2 particle colliding with a spinless particle, find a relation
between the scattering amplitude in the helicity representation (see Problem 5.20)
and the invariant functions A and B in Eq. (XIII.22).

Solution

Let the plane, where the scattering occurs, be the plane (x, z), where the z axis
is directed along momentum p0 of the particle with spin s = 1/2 in the center-of-
inertia system before the collision. We have p0 = (0, 0, p), p = (p sin θ, 0, p cos θ), and
ν = (0, 1, 0), so that σ̂ · ν = σ̂y.

Taking into account the fact that the helical states, ϕλ before the collision and χμ

after the collision, are described by the spinors (see Problem 5.20):

ϕ1/2 =

(
1
0

)
, ϕ−1/2 =

(
0
1

)
; χ1/2 =

(
cos(θ/2)
sin(θ/2)

)
,

χ−1/2 =

(− sin(θ/2)
cos(θ/2)

)
,

we find the helical amplitudes fλμ = χ∗
μf̂ϕλ:

f1/2,1/2 = f−1/2,−1/2 = cos(θ/2) ·A− sin(θ/2) ·B,

f1/2,−1/2 = f−1/2,1/2 = − sin(θ/2) ·A− cos(θ/2) ·B.
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Problem 13.65

Upon the collision of two spinless particles, a reaction occurs and two particles are
created, one of which has spin s = 1, and the other s = 0. The intrinsic parities of all
particles are positive.

Using the vector representation (see Problem 5.26) to describe the spin states of
the particle with s = 1, prove that the spin structure of the amplitude for the reaction
considered is described by the expression:

〈f |f̂ |i〉 = a∗ · [p0 × p1]f(E, θ),

where a is the spin function, and p0 and p1 are momenta before and after the collision.

Present a partial-wave expansion of f(E, θ).

Also determine the spin structure of the amplitude in the case, where the particle
with spin s = 1 has negative intrinsic parity.

Solution

The wavefunction describing the relative motion of the colliding particles at large
distances has the form:

eikz ≈
∑
l

il(2l + 1)Pl(cos θ)
1

2kr
{e−i(kr−πl/2) − ei(kr−πl/2)}.

The term il(2l + 1)Pl(cos θ)e
−i(kr−πl/2)/2kr of this sum describes the state of the

colliding particles (before interaction) with angular momentum l = 1, parity Il =
(−1)l, and zero projection of the angular momentum onto the z axis (directed along
the momentum p0 = �k), i.e., jz = lz = 0. The particles appearing in this reaction
channel, are described (when the separation between them, r1, is large) by the following
outgoing wave:

ηl(E)Φj=l,Il,jz=0(n1)
1

r1
eik1r1 , n1 =

r1
r1

. (1)

ΦjIjz (n) describes the spin-angular dependence of the escaping particles. The value
of the parameter ηl is determined by the intensity of the interaction. To determine
the explicit form of Φ(n1), we note that the angular momentum of the final state
coincides with the initial one, l. Indeed, for total angular momentum j = l and spin
s = 1, the angular momentum could only take the values l′ = l, l ± 1. With the parity
of the states accounted for, it follows that l′ = l (and l �= 0). Thus,

ΦlIl0(n1) =
∑

m=0,±1

Cl0
lm,1,−mYlmYlm(n1)χ−m. (2)
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Using the explicit form of the spherical functions, Ylm, the components of the vector
χm (see Problem 3.41), and the Clebsch–Gordan coefficients,

Yl,±1 = ∓il
[

2l + 1

4πl(l + 1)

]1/2
sin θP ′

l (cos θ)e
±iϕ;

χ±1 = ∓ i√
2
(1,±i, 0); Cl0

l,±l,1,∓1 = ∓(−1)l
1√
2
, Cl0

l0,10 = 0,

we transform Eq. (2) into the form:

ΦlIl0 = γl sin θ1P
′
l (cos θ1)(− sinϕ1, cosϕ1, 0),

where

γl = (−i)l
[

2l + 1

4πl(l + 1)

]1/2
.

Recognizing that the vector with components sin θ1(− sinϕ1, cosϕ1, 0) is equal to
[p0 × p1]/p0p1, and performing a summation over l, we obtain an equation for the
vector amplitude of the “scattered” wave, the coefficient in front of eik1r1/r1 in the
asymptote of the wavefunction for r1 → ∞ in the reaction channel considered:

Φ(n1) = f(E, θ)[p0 × p1], f(E, θ) =
∑
l

η̃l(E)P ′
l (cos θ), (3)

with η̃l(E) = ηl(E)γl/p0p1. The differential cross-section for this reaction is summed
over the spin states, dσ/dΩ = (v1/vB)|Φ|2, where v0,1 are the velocities of the particles’
relative motion in the initial and final states. The total reaction cross-section is

σr =
∑
l

σr,l; σr,l =
v1
v0

|γl|−2p20p
2
1|η̃l|2 =

v1
vB

|ηl(E)|2.

From the unitarity condition of the S-matrix, a constraint on the partial reaction
cross-section follows: σr,l ≤ (2l + 1)π/k20 .

The reaction amplitude for the creation of the particle with s = 1 in a specific spin
state, described by the polarization vector a, is determined by the expression:

〈f |f̂ |i〉 = (a∗ ·Φ) = f(E, θ)(a∗ · [p0 × p1]). (4)

This was evident before (and does not really require the preceding calculation) from
the fact that the reaction amplitude is a scalar quantity. Indeed, it is the only possible
scalar combination which could be formed from the vectors p0, p1, and a (due to
the superposition principle, the polarization vector must enter linearly). We should
take into account that a is an axial vector (or pseudo-vector), since under inversion,
Îa = +a, due to the positive intrinsic parity of the particle with s = 1. Let us also
note that according to Eq. (4), the particle with s = 1, that is created in the reaction
considered, becomes linearly polarized in the direction perpendicular to the reaction
plane (the spin projection on this direction has a definite value, equal to zero).
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In the case of a reaction when the particle with spin s = 1 has negative intrinsic
parity, its polarization vector, v, is a polar vector (since under inversion Îv = −v).
So now, from the condition that the transition amplitude is a scalar, it follows that
its spin structure has the form:[364]

〈f |f̂ |i〉 = v∗ · {f1(E, θ)p0 + f2(E, θ)p1}. (5)

The appearance of the two invariant amplitudes, f1,2, is connected with the fact that
for a given angular momentum, l, of the colliding particles, the angular momentum of
the particles in the final state could take two values: l′ = l ± 1.

Problem 13.66

A spinless particle is scattered from a system of identical spin-1/2 scattering centers,
distributed about the space. Interaction with a single center is described by the
expression Û = U0(r) + U1(r)̂l · σ̂. Analyze the amplitude and differential scattering
cross-section in the Born approximation in the case of non-polarized centers (Pn = 0).
Compare to the scattering from the same system of spinless particles.

Solution

In the Born approximation, the scattering amplitude is described by the following
expression (compare to Problems 13.7 and 13.8)

f̂ =
∑
n

{An(q) + iB0(q)σ̂n · ν} exp{−iq · an}. (1)

Here, an is the radius vector of the nth center, and the real functions A0(q) and B0(q)
were defined in Problem 13.59.

The differential scattering cross-section, averaged over the initial spin states of the
scattering centers and summed over their final spin states, has the form:〈

dσ

dΩ

〉
= A2

0(q)

∣∣∣∣∣∑
n

e−iq·an
∣∣∣∣∣
2

+ 2A0(q)B0(q)
∑
k �=n

Pn · ν sin[q · (an − ak)]+

NB2
0(q) +B2

0(q)
∑
k �=n

(σn · ν)(σk · ν) cos[q · (an − ak)], (2)

where the line means averaging over the initial spin states of the centers. If there is
no correlation between the states of single centers, then

(σn · ν)(σk · ν) = (Pn · ν)(Pk · ν), n �= k.

[364] Here, as well as in the previous problem, it is important that all other spinless particles that take
part in the reaction have positive intrinsic parity (or, more precisely, their product must be positive;
in the opposite case, then Eqs. (4) and (5) must be exchanged with one another).
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In the case of unpolarized centers, Pn = 0, only the first and third terms in Eq. (2)
are different from zero. The first of them is determined by the spin-independent part
of the interaction, U0(r), and has the same form as for the scattering from spinless
centers (compare to Problem 13.8). The termNB2

0(q) is determined by the spin-orbital
interaction. Its notable property, is its proportionality to the number of scattering
centers, which is due to the lack of coherence between them. This term corresponds
to scattering involving a spin-flip (so that we can indicate which particular scattering
center was involved in the scattering; therefore, there is no interference).

Problem 13.67

How to generalize the optical theorem to describe scattering of quantum particles with
non-zero spin?

Solution

From the unitarity of the S-matrix, the optical theorem is

Im 〈p, α|f̂ |p, α〉 = k

4π
σtot(p, α),

where p = �k is the relative momentum of the colliding particles, and α characterizes
their spin state. On the left-hand side of the equation is the imaginary part of
the elastic forward scattering amplitude, θ = 0, without change of the particle spin
state. On the right-hand side is the total scattering cross-section (including inelastic
collisions) for the same spin state.

13.6 Analytic properties of the scattering amplitude

Problem 13.68

Analyze the analytical properties and dispersion relation for the scattering amplitude
on a zero-range potential (see Problem 13.20). Consider separately the cases with and
without a bound state in the potential. Compare to Eq. (XIII.27).

Solution

The scattering amplitude for a zero-range potential is (see Problem 13.20)

f(E) =
1

−1/a0 − (i/�)
√
2mE

. (1)

As an analytical function of the complex variable E, it has branch points at E = 0 and
E = ∞ and a pole at the point E0, for which

√
E0 = i�a0/

√
2m. Making the branch cut

along the real semiaxis, as usual (see Fig. 13.7), and choosing the phase on the upper
side of the cut to be equal to ϕ = 0, we see that for a0 > 0, pole E0 is located on the
physical sheet and corresponds to a bound state in the zero-range potential (compare
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to Problem 2.30). When a0 < 0, the pole is located on the unphysical Riemann sheet
and corresponds to a virtual level.

Fig. 13.7

Let us consider the integral over the contour C in Fig. 13.7:

1

2πi

∫
C

f(E′)dE′

(E′ − E)
. (2)

Using Cauchy’s theorem, and sending the contour circle radius to infinity, RE → ∞,
in the case of a0 > 0 we obtain:

f(E) = − �
2

ma0(E − E0)
+

1

π

∞∫
0

Im f(E′)dE′

E′ − E
. (3)

We have used the fact that the value of the amplitude jump on the cut (for E′ > 0)
coincides with 2iIm f(E′) (on the lower side of the cut,

√
E = −√|E|), and that the

value of the integral is determined by the contribution of two poles: E and E0.

In the case a0 < 0, pole E0 is on the unphysical sheet. It does not contribute to
the value of integral (2), and the dispersion relation has a form analogous to (3), but
without the pole term.

The dispersion relation in the case of a zero-range potential can be found by direct
calculation. Substituting the imaginary part of the scattering amplitude (1), equal to

Im f(E) =

√
�2E

2m

1

|E0|+ E
, E > 0,

into the integral in Eq. (3) and integrating, we obtain:

f̃(E) =
1

π

√
�2

2m

∞∫
0

√
E′dE′

(E′ − E)(|E0|+ E′)
=

�√
2m

1√|E0| − i
√
E
.
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In the case a0 < 0 (without a bound state), this coincides with the scattering ampli-
tude, Eq. (1). In the case a0 > 0, we obtain the scattering amplitude after adding,
according to Eq. (3), the pole term.

The dispersion relations found differ from Eq. (XIII.27) by the absence of the term
fB ∝ ∫

UdV . This has a simple explanation. A zero-range potential can be obtained
from a potential of finite radius, R, by passage to the limit R → 0 for which U0R

2 =
const, so that we would have fB ∝ U0R

3 → 0. In a finite-range potential, the scattering
amplitude in the limit E → ∞ coincides with the Born one. In order to have a condition
as in Eq. (2), we subtract fB from f on a circle of the finite radius (for a zero-range
potential, the scattering amplitude goes to zero for E → ∞).

In conclusion, we note that the residue at the point E = E0 in Eq. (3) is equal
to −�

2/ma0 = −�
2A2/2m. The coefficient A =

√
2/a0 =

√
2κ0 coincides with the

normalization coefficient in the wavefunction,

ψ0 = A
exp{−κ0r}√

4πr
,

of the bound state in the zero-range potential (see Problem 4.10), in accordance with
Eqs. (XIII.27) and (XIII.28).

Problem 13.69

Using the dispersion relation, prove that there is the following restriction on the
energy-dependence of the particle-scattering cross-section in a repulsive potential,
U(r) ≥ 0:

∞∫
0

σ(E)√
E

dE < 4π2

√
2m

�

∞∫
0

r2U(r)dr.

Solution

Since according to the optical theorem, Im f(E, 0) = kσ(E)/4π, then from the disper-
sion relation, Eq. (XIII.27), for energy E = 0, it follows that

f(E = 0) = − m

2π�2

∫
U(r)dV +

√
2m

4π2�

∞∫
0

σ(E)dE√
E

. (1)

Here we have also used the fact that in the repulsive potential U(r) ≥ 0, there are
no bound states. Due to the fact that in such a potential we have f(E = 0) < 0 (see
Problems 13.16 and 13.31), we immediately obtain the inequality given in the problem
condition.

Let us note that in the case of a “weak” potential, U0 � �
2/mR2, the inequality

considered becomes obvious (since f ∝ U0, while σ ∝ U2
0 ) and is well-fulfilled. But for
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a “strong” repulsive potential,[365] U0 � �
2/mR2, |fB | � |f(E = 0)|, and the terms

of the inequality are approximately the same:

∞∫
0

σ(E)√
E

dE ≈ 4π2

√
2m

�

∞∫
0

U(r)r2dr. (2)

In conclusion, we note that from relation (1), obtained in Problem 13.16 by another
method, it follows that in a repulsive potential the Born approximation for E = 0
greatly overestimates the scattering cross-section.

Problem 13.70

Prove the relation

∞∫
0

σ(E)√
E

dE < π

√
2π�2

m
σ(0)

for the scattering in an attractive potential, U(r) ≤ 0, where there are no bound
states (the well is not deep enough). Here σ(0) = 4πa20 is the scattering cross-section
for E = 0. In what case both sides of the inequality are close?

Solution

Because there are no bound states in the attractive potential, relation (1) from the
previous problem is still valid. Now, however, all three terms in it are positive. So
in particular, the result from Problem 13.16 follows for the attractive potential.
Then the inequality from the problem condition in the case of a “weak” potential
must be conservatively valid (compare to the previous problem). When this potential
approaches the “critical” one, where a bound state appears, we obtain f(E = 0) → ∞,
so that f(E = 0) � fB . The values of both inequality parts are close to one another,
so that

∞∫
0

σ(E)√
E

dE ≈ π

√
2π�2

m
σ(0). (1)

However, this relation in the case of a “shallow” (real or virtual) s-level in the potential
is evident. According to Eq. (XIII.16) in the region of small energies, the scattering
cross-section is anomalously large.

σ(E) ≈ 2π�2

m(E + ε0)
, ε0 � �

2

mR2
.

[365] As an example, for a square potential barrier of radius R, for U0 → ∞, we also have |fB | → ∞,
but f(E = 0) = −R = const.
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This region has the dominant contribution to the value of the integral; by calculating
it, we prove relation (1).

Problem 13.71

Using only the condition of unitary and the dispersion relation (for q2 �= 0), it is
possible to reconstruct[366] the scattering potential in a series over powers of the
interaction potential, by the known expression for scattering amplitude in the Born
approximation.

As an example, prove that the calculation of the second-order perturbative ampli-
tude for q2 = 0 reproduces the result of perturbation theory over the potential, based
on the Schrödinger equation (see Problem 13.10).

Solution

The iteration procedure for the calculation of scattering amplitude f =
∑
n
f (n) is the

following. First, by the known amplitude of first approximation, f (1) = fB , we can
use the unitarity condition, Eq. (XIII.26), to find the imaginary part of the second,
order amplitude,[367] Im f (2)(E, q2). Then, using the dispersion relation for q2 �= 0
(analogous to Eq. (XIII.27)), we can find the entire amplitude, f (2). Higher-order
approximation terms are calculated in the same way.

In particular, for the value q2 = 0 we easily find

f (2)(E, q2 = 0) =
1

4π

∞∫
0

dE′
√
E′(E′ − E)

4E′∫
0

f2
B(x)dx. (1)

The imaginary part of the scattering amplitude with the help of the optical theorem
is expressed in terms of the scattering cross-section in the Born approximation. For
simplicity, we use the system of units � = 2m = 1. With this, E = k2. The Born
amplitude, fB , is written in the form fB(q

2).

On the other hand, in the second order of perturbation theory according to the
result from Problem 13.10, we have:

f (2)(E, q2 = 0) =
1

2π2

∫
f2
B((k0 − κ)2)

κ2 − E
d3κ =

1

2π

∞∫
0

κdκ√
E(κ2 − E)

(κ+
√
E)2∫

(κ−√
E)2

f2
B(x)dx. (2)

[366] Let us emphasize that the Schrödinger equation is not used here.

[367] Here, in principle, the relation obtained gives the imaginary part of the amplitude also for the
unphysical values of energy 0 < E < �2q2/8m.



742 Exploring Quantum Mechanics

To prove that Eqs. (1) and (2) are actually the same, we make the following transforma-
tions (note that their equivalence becomes obvious in the E → 0 limit, if we integrate
Eq. (1) by parts): First, we divide the “internal” integral in Eq. (2) into two, with the
point x = 0 as one of the integration limits. Then, in the first of two terms that appear
as a result, use the substitution 2κ′ = κ+

√
E, while in the second, use 2κ′ = κ+

√
E.

In the resulting integrals over κ′, again divide the integration domains into two: from
0 to ∞ and from 0 to ±√

E/2. The contributions of the latter integration domains
cancel each other out, while the sum of the contributions of the former reproduces
(after the substitution, E′ = (κ′)2) Eq. (1).

Problem 13.72

Consider the interaction for partial waves with l ≥ L0 ≡ kR � 1 to be negligibly small,
and obtain the upper bound for the scattering amplitude of spinless particles at high
energies for different scattering angles.[368]

Solution

In the scattering amplitude expansion over partial waves, Eq. (XIII.9), we have the
inequality |ϕl| ≤ 1/k, so that in accordance with the problem condition we obtain:

|f(k, θ)| ≤ 1

k

L0∑
l=0

(2l + 1)|Pl(cos θ)|. (1)

Replacing the summation by integration, for angles θ = 0 and θ = π we find:

|f | ≤ L2
0

k
= kR2, θ = 0; π. (2)

For scattering angles, θ �= 0, π, we have:

|Pl(cos θ)| ≤
(

2

πl sin θ

)1/2

,

and so we obtain:

|f(θ)| ≤ 4

3

(
2

π sin θ

)1/2

R(kR)1/2. (3)

Note that due to the Legendre polynomials oscillation for θ �= 0, such a restriction for
arbitrary scattering angle is too weak and conservatively valid. Indeed, the restriction

[368] In Problems 13.72–13.75, general constraints on the interaction amplitudes and cross-sections for
large energies are discussed. These restrictions are connected, basically, with the possibility of
neglecting interaction at distances that are larger than the radius of the potential, R. This situation
occurs frequently in elementary particle physics. Here, the effective interaction radius increases with
energy, but not faster than ∝ ln(E/E0) (see Problem 13.53). The necessity of using relativistic
kinematics is practically not reflected in the results.
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on the value of total elastic scattering cross-section which follows from inequality (3),
σel =

∫ |f |2dΩ ≤ CR2 kR, is uninteresting, since σel ≤ σtot ≤ 4πR2 and kR � 1.

Problem 13.73

Under the conditions of the previous problem, obtain the lower bound on the value of
the elastic scattering cross-section, σel, of fast particles for a given value, σtot, of the
total collision cross-section.

Solution

From the expressions for partial cross-sections (total and elastic cross-sections),

σ
(l)
tot = 2π(2l + 1)

1

k2
(1− Re Sl),

σ
(l)
el = π(2l + 1)

1

k2
|1− Sl|2 = π(2l + 1)

1

k2
(1− 2 Re Sl + |Sl|2),

it follows that for a given value of σ
(l)
tot, the quantity σ

(l)
el is minimal for Im S1 = 0.

Thus,

σel =
∑
l

σ
(l)
el ≥ σ̃el =

π

k2

L0∑
l=0

(2l + 1)(1− αl)
2,

where α = Re Sl. To find the minimum value of σ̃el as a function of variables αl for
the given σtot =

∑
l

σ
(l)
tot, we use Lagrange’s method of undetermined multipliers and

introduce A(αl) = σ̃el − λσtot. From the extremality conditions (now all variables αl

could be varied independently) for A(αl), we find that αl = const = α (no dependence
on l). Replacing summation over l by integration and excluding α from the expressions
for σel and σtot, we obtain the inequality

σel ≥ min σ̃el =
1

4πR2
σ2
tot. (1)

As mentioned in Problem 13.53, in the theory of strong elementary particle interactions
there is a restriction on the possible growth of the interaction radius R with increase
in energy:

R ≤ R0 ln
E

E0
for E → ∞. (2)

From this, inequality (1) takes the form:

σel(E) ≥ C
σ2
tot(E)

ln2(E/E0)
. (3)
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Problem 13.74

For large energies, find the upper bound for the real part of the amplitude for elastic
forward scattering, θ = 0, assuming that the total collision cross-section is known
and that particle interaction is negligibly small for distances above R. What is the
restriction for |f(E, θ = 0)|?
Solution

Denoting Sl = |Sl|e2iδl for the partial amplitudes in Eq. (XIII.9), we have the following
expressions:

Im ϕl =
1

2k
(1− |Sl| cos 2δl), Reϕl =

1

2k
|Sl| sin 2δl.

For this value of Im ϕl, the value of |Reϕl| is maximum when |Sl| = 1. In this case,
inelastic scattering is absent and σtot = σel. So, writing Im ϕl = (1− αl)/2k, we obtain

|Re f(E, 0)| ≤
∑
l

(2l + 1)|Re ϕl| ≤ 1

2k

L0∑
l=0

(2l + 1)
√

1− α2
l .

Using the method from the previous problem, we obtain the following restriction on
the real part of the elastic forward scattering amplitude for the total scattering cross-
section:

|Re f(E, 0)| ≤ 1

2
√
π

√
σtotkR

(
1− σtot

4πR2

)1/2

≤ 1

2
√
π

√
σtotkR. (1)

So, taking into account the fact that σtot ≤ 4πR2 and the restriction on interaction
radius growth with increase in energy (see the previous problem), we obtain

|f(E, 0)| ≤ Ck
√

σtot(E) ln
E

E0
. (2)

Here, we used the optical theorem.

As mentioned before, restriction (1) suggests the absence of inelastic processes.
Analogously (using Lagrange’s method of undetermined multipliers), we can obtain a
less strict restriction on the scattering amplitude for given values of both total, σtot,
and inelastic, σinel, collision cross-section.

Problem 13.75

Prove that for large energies, the derivative with respect to θ at θ = 0 of the imaginary
part of the elastic scattering amplitude satisfies the following inequalities:

σtot

32π
≤ − d

dq2
ln Im f(E, q)

∣∣∣∣
q=0

≤ R2

4
, q = 2k sin

(
θ

2

)
,
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where σtot is the total collision cross-section and R is the interaction radius. (At
distances larger than R, the interaction is negligibly small.)

Verify explicitly that these inequalities are indeed satisfied by the diffraction
scattering amplitude from Problem 13.57.

Solution

Since for the Legendre polynomial, P ′
l (1) = l(l + 1)/2, then using the scattering

amplitude expansion over partial waves, Eq. (XIII.9), for high energies we obtain

d

d cos θ
Im f(E, θ)

∣∣∣∣
θ=0

≈
∑
l

l3Im ϕl. (1)

Using the fact that Im ϕl ≤ 1/k, we see that for a given total scattering cross-section,
and so the imaginary part of the scattering amplitude, Im f(E, 0) (due to the optical
theorem), the sum (1) takes the minimum value when

Im ϕl =

{
1
k , l ≤ L1,
0, l > L1.

(2)

The value of L1 is determined by the total cross-section:

σtot =
4π

k

∑
l

(2l + 1)Im ϕl ≈ 8π

k2

L1∑
l=0

l.

Replacing summation over l by integration, we obtain L2
1 = k2σtot/4π and the follow-

ing restriction:

− d

dq2
Im f(E, q2)

∣∣∣∣
q2=0

≥ 1

128π2
kσ2

tot(E). (3)

We emphasize that relations (2) correspond to the “saturation” of the total scattering
cross-section by the lower partial waves. Here σtot = σel (there are no inelastic pro-
cesses), and moreover, for l ≤ L1 all of the phases are δl = π/2, so that restriction (3)
must be fulfilled conservatively.

In the same way, we note that the sum in (1) takes the maximum value in the case
when total scattering cross-section is saturated by the higher partial waves and

Im ϕl =

{
0, l < L2.
1
k , L2 ≤ l ≤ L0 = kR.

We obtain the following restriction (now from above):

− d

dq2
Im f(E, q2)

∣∣∣∣
q2=0

≤ kR2σtot

16π

(
1− σtot

8πR2

)
≤ kR2σtot

16π
. (4)



746 Exploring Quantum Mechanics

As an example, consider an impenetrable sphere of the radius R (see Problems 13.57
and 13.90). The diffraction scattering amplitude is

fdifr = i
kR

q
J1(qR).

The restrictions of the problem condition, which are the direct result of relations (3)
and (4), take the form of the following inequality (after cancelling out the factor R2/4):
1/3 < 1/2 < 1.

In conclusion, we should emphasize that, as mentioned above, restrictions on (3)
and (4) assume the absence of inelastic processes. Using the method of Lagrange
multipliers, just as in Problem 13.73, we can obtain weaker restrictions when the
values of both total and inelastic collision cross-sections are given independently.

Problem 13.76

Prove unitarity of the scattering amplitude in the eikonal approximation.

Solution

The eikonal approximation assumes that only small scattering angles are important.
For these angles, the right-hand part of relation (XIII.26) with the eikonal expression
for the amplitude, Eq. (XIII.18), taken into account could be transformed to the
form:

ik

2π

∫∫
[S∗(ρ)− 1][S(ρ)− 1] exp{−iq⊥ · ρ}d2ρ. (1)

To perform the integration over angles which leads to Eq. (1), we use the relations:

k− k0 ≈ q⊥, k′ − k0 ≈ q′
⊥, k′ − k ≈ q′

⊥ − q⊥, dΩ′ ≈ 1

k2
d2q′⊥.

Although q⊥, q′⊥ � k, due to the fast decrease of the integrand, we can integrate over
q⊥ in infinite limits.

Using Eq. (XIII.19) for S(ρ), we find the relation:

[S∗(ρ)− 1][S(ρ)− 1] = [1− S(ρ)]− [S∗(ρ)− 1].

So now Eq. (1) takes the form f(k,k0)− f∗(k0,k), which proves the unitarity of
the scattering amplitude in the eikonal approximation. In particular, according to
the optical theorem, the expression for the scattering cross-section of fast particles,
discussed in Problem 13.51, follows.
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13.7 Scattering of composite quantum particles;
Inelastic collisions

Problem 13.77

Prove that the amplitude of elastic scattering of an electron with an atom (the
composite system) in the Born approximation coincides with the amplitude of electron
scattering from a static local potential U(r), if we neglect exchange effects.[369] Find
its physical meaning. Compare to Problems 13.4–6.

Solution

The interaction between the incident electron and the atom has the form (ra are radius
vectors of the atomic electrons):

U (r, {ra}) = −Ze2

r
+
∑
a

e2

|r− ra| .

The electron’s elastic scattering amplitude on the atom in the Born approximation,
if we neglect exchange effects (which play a role of higher-order corrections) is
described by an expression similar to Eq. (XIII.6):

fB = − m

2π�2

∫
ψ∗
0(ξa)e

−ik·rU (r, {ra}) eik0·rψ0(ξa)dV dτξ. (1)

Integration over τξ also includes a summation over the spin variables of the atomic
electrons. Performing the integration over ξa and also examining the “potential”,

ϕat =

∫ (
Ze

r
−
∑
a

e

|r− ra|

)
|ψ0(ξa)|2dτ, (2)

which gives the mean value of the electrostatic potential maintained by the atom, we
see that expression (1) has the form of Eq. (XIII.6) for the scattering amplitude in
the Born approximation, with the local potential U(r) = −eϕat(r). Applications are
considered in Problems 13.4–13.6.

Problem 13.78

A polarized electron with sz = +1/2 collides with a hydrogen atom that is in the
ground state, where the electron has the opposite value of spin projection, sz = −1/2.
In the Born approximation, find the amplitude and cross-section of a spin-flip collision
(i.e., the case when sz = −1/2 for a scattered electron, while sz = +1/2 for the atomic

[369] In the Born approximation (for fast particles), the neglect of exchange effects is valid. It is important
that the spin state of the free electron, as well as the atomic one, is not changed during collision.
Compare to Problem 13.78.
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electron), while the atom remains in the ground state. Compare to the case of elastic
scattering without spin-flip (see Problem 13.77).

Solution

The system Hamiltonian (with an infinitely heavy proton nucleus) is described by the
expression:

Ĥ =
1

2m
(p̂2

1 + p̂2
2)−

e2

r1
− e2

r2
+

e2

|r1 − r2| .

Spin projections, sz, for each electron are conserved, and the electrons with sz = +1/2
and sz = −1/2 could be considered as distinguishable particles (anti-symmetrization
of the wavefunction is not reflected in the results). So, we denote the electron with
sz = +1/2 by e1 and the electron with sz = −1/2 by e2. Now we see that the process
considered is

e1 + (e2p) → e2 + (e1p), (1)

where, the symbol (eap) corresponds to the hydrogen atom with electron ea. We
see that this process involves a redistribution of particles, where the initial and final
channels of the reaction are different.

Amplitudes of such processes are expressed in terms of matrix elements of the
corresponding T -operator, which could be written in two different forms:

T̂1 = Vα + Vβ
1

E − Ĥ + i0
Vα, (2a)

T̂2 = Vβ + Vβ
1

E − Ĥ + i0
Vα. (2b)

Here α and β enumerate reaction channels, Vα,β describes the interaction in the

corresponding channels (α initial, β final channels). Note that although T̂1 �= T̂2,
reaction amplitudes 〈β|T̂1,2|α〉 coincide.

Further, for the plane waves, ψ = eipr/�, describing relative motion in each of the
two-particle channels[370] we use a probability density that is normalized to unity.
The differential cross-section of a process is connected to its element of the T -matrix,
〈β|T̂ |α〉, by the expression:

dσ

dΩ
=

μ1μ2

(2π)2�4
p2
p1

|〈β|T̂ |α〉|2,

where p1,2 and μ1,2 are the momenta, and the reduced masses for colliding particles
in channels α, β; dΩ is an element of the scattering solid angle in the center-of-
mass system. The amplitude of elastic scattering commonly used (μ1 = μ2, p1 = p2)

[370] These waves (but not the incoming and outgoing waves), in a product involving the wavefunctions
of bound states corresponding to composite particles in the channels (compare to Eq. (3)), appear

in the matrix elements, 〈β|T̂ |α〉, that determine reaction amplitudes.
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is connected to the T -matrix by the relation:

f = − μ

2π�2
〈α|T̂ |α〉.

The same relation is valid in the case of inelastic collisions, if μ1 ≈ μ2, p1 ≈ p2.

Using Eq. (2a), we can calculate the amplitude of process (1) to the first order
of approximation, i.e., restricting ourselves to the term Vα in T̂1. In this case,
Vα = −e2/r1 + e2/|r1 − r2|, and the amplitude of the process considered with elec-
tron’s spin-flip takes the form:

f↓↑,↑↓ = − m

2π�2

∫
ψ∗
0(r1)e

−ip2·r2/�
[

e2

|r1 − r2| −
e2

r1

]
eip1·r1/�ψ0(r2)dV1dV2, (3)

where p1,2 are momenta of the electron becoming bound and of the scattered electron,
and ψ0(r) is the wavefunction of the hydrogen atom in the ground state. In the
momentum representation (below we use atomic units e = � = m = 1),

U(r) =
1

r
=

∫
eiκ·rŨ(κ)d3κ, ψ0(r) =

1√
π
e−r =

1

(2π)3/2

∫
eiκ·rϕ0(κ)d

3κ,

Ũ(κ) =
1

2π2κ2
, ϕ0(κ) =

√
8

π(1 + κ2)2
,

Eq. (3) could be transformed to be

f↓↑,↑↓ = −(2π)2
{∫

ϕ∗
0(p1 + κ)ϕ0(p2 + κ)Ũ12(κ)d

3κ+

ϕ0(p2)

∫
ϕ∗
0(p1 + κ)Ũm(κ)d3κ

}
. (4)

We have p1,2 � 1 (the necessary condition for the Born approximation), and we can see

that ϕ0(p) for p → ∞ decreases faster than Ũ(p). Therefore, the integration domains
where the argument of one of the wavefunctions, ϕ0(κ̃), is of the order of 1 play the
dominant role. In both integrals κ ≈ |p1,2| ≡ p, and we can factor Ũ(p) outside of the
integrals, after which they are easily calculated (compare to Problem 4.17):∫

ϕ∗
0(p1 + κ)ϕ0(p2 + κ)d3κ =

∫
ϕ∗
0(κ

′)ϕ0(q+ κ′)d3κ′ =

=

∫
ϕ∗
0(κ

′)T̂qϕ0(κ
′)d3κ′ =

∫
e−iq·r|ψ0(r)|2dV =

=
16

(4 + q2)2
, q = p2 − p1

(the integral has been reduced to the form factor of the hydrogen atom), and∫
ϕ∗
0(p1 + κ)d3κ = (2π)3/2ψ∗

0(0) =
√
8π.
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As a result, we obtain the amplitude of the process considered:

f↓↑,↑↓(p2,p1) = −32

p2

{
1

(4 + q2)2
− 1

2(1 + p2)2

}
, q = p2 − p1. (5)

We can see that the region of values q � 1, i.e., of scattering angles θ � 1/p, plays
the dominant role in scattering. The second term in Eq. (5) is negligibly small, so the
differential, dσ/dΩ = |f |2, and total scattering cross-sections become equal to

dσ

dΩ
=

4

p4(1 + p2θ2/4)4
, θ � 1

p
; σ =

16π

3p6
=

16πa2B
3(kaB)6

. (6)

In conclusion here, note the following:

1) The electron scattering cross-section for a hydrogen atom with spin-flip, which is
practically inelastic, for large energies is much lower than the elastic scattering
cross-section, σel = 7π/3p2. See Problem 13.4.

2) The appearance of the small factor, ∼ 1/(paB)
2, in the amplitude (and ∼ 1/(paB)

4

in the cross-section) compared to the case of elastic scattering (no spin flip)
has a simple explanation. To “switch” places, the electrons must be scattered
into one another under the angle ≈ 180◦ in the center-of-inertia system. The
dependence of the Rutherford scattering amplitude on momentum transferred,
f ∼ Ũ(q) ∼ 1/(paB)

2, gives rise to this smallness (here q ≈ p; in the case of elastic
scattering qaB ∼ 1, the value qmin ∼ 1/aB here is due to screening of the Coulomb
potential at the distances ∼ aB).

3) It is essential that in the process considered, the two particles (two electrons) receive
a large momentum change, and that it could be provided by a single interaction.
In other reactions with a particle redistribution of the form a+ (bc) → b+ (ac),
in the case ma �= mb, we have pa �= pb and the large change of the momenta of a
and b particles requires an additional large momentum transfer to particle c. This
leads to the appearance of an additional small factor in the process amplitude[371]

∼ Ũ(q)/q2. Such a situation takes place in process (1) for scattering angles that
are not too small, when q � 1, as is seen from Eq. (5). The additional smallness is
connected to the fact that the amplitude of the process includes the hydrogen atom
wavefunction (or that of the composite system, in the more general case), ϕ(p), that
for large momenta (p ∼ q � 1) has an asymptote of the form ϕ(p) ∼ Ũ(p)/p2 ∼
1/p4 (for s-states, compare to Problems 4.17 and 4.18). The factor mentioned has
the same order of magnitude as the second-order terms in the T -operator. In this
case, when the change of momentum for all particles is large, calculations of the
amplitude and cross-section, using first order of perturbation theory, have only
qualitative character. A systematic and reliable calculation of the asymptote needs
the inclusion of terms of higher order in the T -operator. For processes with large
momentum change for all particles in a three-particle system, as, for example, in
the conditions of Problem 13.79, we should take into account terms of at least
second order in the interaction, Vα,β .

[371] Compare to Problem 13.79.
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Problem 13.79

Evaluate the charge-exchange cross-section for the collision of a fast positron with
a hydrogen atom in the ground state (i.e., find the cross-section of positronium
formation – a hydrogen-like system with an electron and a positron).

Use the Oppenheimer–Brinkman–Kramers approximation (OBK) for the charge-
exchange processes, which neglects the mutual interaction of the nuclei involved (in
this case, positron with proton); compare with the previous problem.

Solution

The Oppenheimer–Brinkman–Kramers approximation for the charge-exchange process
e+ + (e−p) → (e+e−) + p is based on the following expression for the T -operator[372]

T̂ ≈ Vα ≈ Ue+e− = − 1

|r1 − r2| ,

where r1,2 are the radius vectors of the positron (electron). We will denote the
momentum of the incident positron as p1 (in the rest system of the hydrogen atom,
mp = ∞), and the momentum of the positronium as p2 (with mass m(e+e−) = 2).
From the energy conservation law, it follows that p2 =

√
2p1 (E = p21/2 = p22/4, and

we can neglect the binding energy in the hydrogen atom and in the positronium, since
p1,2 � 1).

The wavefunctions of the initial (channel α) and final (channel β) states have the
form:

ψα = eip1·r1ψ1s(r2), ψβ = exp

{
i

2
p2 · (r1 + r2)

}
· 1√

8
ψnlm

(
r1 − r2

2

)
.

Here, ψnlm(r) is the wavefunction of the hydrogen atom (with massm = 1). Coefficient
1/
√
8 and factor 1/2 in the argument of the wavefunction correspond to the fact that

the Bohr radius for positronium is twice that of the hydrogen atom.

The amplitude of the process in the OBK-approximation is described by the
expression (after the substitution ρ = (r1 − r2)/2):

TOBK(1s → nlm) = 〈β|Ue+e− |α〉 = −
√
2

∫
ψ1s(r)e

i(p1−p2)·rdV×∫
1

ρ
ψ∗
nlm(ρ)e−i(p2−2p1)·ρd3ρ. (1)

The first integral in this expression is equal to (2π)3/2ϕ1s(q) (with q = q1 − q2), while
the second, with the Schrödinger equation taken into account, is

[372] The same results follow also from the choice T ≈ Vβ ≈ Ue−p. See the previous problem, where

we made general statements about processes with a particle redistribution. Let us note that for
the charge-exchange processes, the results of both exact amplitude calculations in the first order of
perturbation theory according to T = Vα,β and in the OBK-approximation have only qualitative
character (a reliable calculation necessitates the inclusion of second-order second-order terms).
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(2π)3/2
(
1

2
q21 − En

)
φ∗

nlm(q1), where q1 = 2p1 − p2.

Since q, q1 � 1, we can use asymptotes for wavefunctions ϕ(p) in the Coulomb
potential, U = −1/r (so Ũ(p) = −1/2π2p2), for p → ∞. According to Problem 4.18:

ϕ1s(p) =

√
8

πp4
, ϕnlm(p) =

√
2

π

2(l!)

pl+4
(−2i)lR̃nl(0)Ylm(n). (2)

To obtain this we used a relation for the coordinate Coulomb wavefunctions:

ψnlm(r) = Ylm(n)rlR̃nl(r), R̃nl(0) =
2l+1

(2l + 1)!nl+2

√
(n+ l)!

(n− l − 1)!
.

Using these asymptotes, we obtain

TOBK(1s → nlm) = −16
√
2π3(

√
2i)lR̃nl(0)l!Ylm(n0)

(3− 2
√
2 cos θ)3+l/2p6+l

1

. (3)

We have used n0 = (−p2 + 2p1)/(|p2 − 2p1|), and also that q21 = 2q2 = 2(3−
2
√
2 cos θ)p21, where θ is the angle between vectors p2 and p1.

This angular distribution of the emitted positronium,[373] dσ/dΩ = |T |2/√2π2, has
several interesting properties. It does not depend on the value of the incident positron’s
momentum. It is sharply anisotropic (the values of 3− 2

√
2 cos θ for angles θ = 0

and π differ by a factor of 35). The polarization state of the positronium created is
characterized by a definite projection of its angular momentum onto the direction
of vector n0, mn = 0, since Ylm(θ = 0) =

√
(2l + 1)/4πδm,0. For the total charge-

exchange cross-section, after summing over the values of the projection of the angular
momentum, m, of the positronium created, we obtain

σOBK(1s → nl) = 64πa2B
2l(2l + 1)(l!)2R̃2

nl(0)

(l + 5)(3− 2
√
2)5+l

1

V 12+2l
, (4)

where V = p1aB/� is the relative velocity of the colliding positron and hydrogen atom
in atomic units. In particular, we can write the charge-exchange cross-section for the
ns-states of the positronium as

σOBK(1s → ns) =
πa2B
n3

(
2.89

V

)12

. (5)

Pay attention to the pronounced energy-dependence of the charge-exchange cross-
section, σ ∝ p−12−2l (compare with the result of the previous problem and with the
case of elastic scattering; see Problem 13.4). It is explained by the fact that all
particles involved experience a large change of momentum. In connection with this, we
should note that the charge-exchange cross-section for collisions of fast heavy particles
m � me with a hydrogen atom have a similar energy-dependence. For m � me, the

[373] See Problem 13.78 for amplitude normalization. In this problem, μ1 = 1, μ2 = 1, p2 ≈ √
2p1.
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charge-exchange cross-section does not depend on the mass of the incident particle
(for example, proton, muon, etc.). In particular, the charge-exchange cross-section in
the ns-state is

σOBK(1s → ns) = πa2B
218Z5

5n3V 12
≈ πa2B

n3
Z5

(
2.47

V

)12

, (6)

where Z is the particle charge. From comparison of Eqs. (5) and (6), we see that the
charge-exchange cross-section for the collision of the positron and hydrogen atom is
≈ 7 times larger than for the collision with a proton (for the same velocities).

Problem 13.80

In the Born approximation, express the amplitude of the process Ai +Bi → Af +Bf

for the collision of fast composite particles A and B, interacting electrostatically,
through electric form-factors[374]

eF
A(B)
if (q) = 〈ψA(B)f |

∑
a

ea exp{−iq · ra}|ψA(B)i〉

for transitions i → f .

Consider the behavior of the form-factor for q → 0, depending on the quantum
numbers of the initial and final states.

Calculate the form-factors for transitions 1s → 1s, 1s → 2s, 1s → 2pm in the
hydrogen atom. Consider their behavior as q → ∞.

Find the collision cross-section for the following processes:

1) H(1s) +H(1s) → H(1s) +H(1s), elastic scattering of hydrogen atoms from one
another;

2) the collision of a charged, structureless particle (electron, muon, proton, etc.,
but not an ion) with a hydrogen atom in the ground state, accompanied by the
excitation of a) 2s state in the atom; b) 2p states in the atom.

Solution

Let us denote the radius vectors of the A(B) particles’ centers of mass by RA(B), their
masses by mA(B), and the momenta of their relative motion by p1,2 (1) before and (2)
after the collision. The wavefunctions of the initial and final states have the form:[375]

[374] Let us emphasize that ra is the radius vector of the ath charged particle in the composite system
A(B) with respect to the system’s center-of-mass.

[375] Wavefunctions ψA(B) of the composite particles describe the states of the particles in the composite
system, with respect to its center-of-mass.
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ψi = exp

{
i

�
p1 ·R

}
ψAi{x′

a}ψBi{r′B}, R = RA −RB ,

ψf = exp

{
i

�
p2 ·R

}
ψAf{x′

a}ψBf{r′B}, �q = p2 − p1, (1)

The amplitude of the process considered in the Born approximation is described by
the expression (compare to Problems 13.77 and 13.78):

fif = − μ

2π�2
Tif = − μ

2π�2
〈ψf |

∑
a,b

eaeb
|xa − rb| |ψi〉, dσ

dΩ
= |f |2. (2)

We use μ = mAmB/(mA +mB), the reduced mass of particles A and B. The integra-
tion in matrix element (2) is performed both over independent “inner” coordinates x′

a,
r′b (in the case of atoms, these are the coordinates of all electrons), and over the radius
vector, R, of the relative motion. Writing here xa = RA + x′

a and rb = RB + r′b, using
the form of the wavefunctions (1), and using the Fourier transform of the Coulomb
potential

1

|xa − rb| =
1

2π2

∫
exp{iκ(xa − rb)}d

3κ

κ2
,

we obtain

Tif =
4πe2

q2
FA
if (−q)FB

if (q). (3)

Here

eF
A(B)
if (q) = 〈ψA(B)f |

∑
a

ea exp{−iq · r′a}|ψA(B)i〉 (4)

are the electric form-factors for the corresponding transitions in the composite particles
A(B). We can associate the Feynman diagram in Fig. 13.8 with the amplitude, Eq. (3).

It illustrates an important property of the amplitude: it is factorized in terms
of the particles, A and B, that take part in the process. In this figure, the wavy

line between the vertices corresponds to 4π/q2, while the form-factors eF
A(B)
if (∓q)

correspond to the vertices (note that the changes in the momenta of particles A and
B differ by a sign).

Let us note some properties of the form-factors:

1) For point (structureless) particles, F (q) = Z = const, where Ze is particle charge.

2) For q → 0, expanding exp{−iq · r} in Eq. (4) for F (q) into a series reveals that
for a system with charge Ze different from zero, only the elastic (without a
change of composite particle’s state) form-factor is different from zero, and is
equal to Fnn(0) = Z. In all other cases Fif (0) = 0 (for a charged particle, due to
wavefunction orthogonality). The character of how exactly the form-factor vanishes
in the limit q → 0 depends on the quantum numbers, angular momenta, and parity
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Fig. 13.8

of the initial and final states. The slowest decrease in the form factor is for the
dipole transitions: eFif ≈ −i〈f |d̂|i〉q ∝ q. For transitions with unchanging values
of the angular momentum and parity (for example, for S-states), Fif ∝ q2. With
an increase in the difference between the angular momenta of the initial and final
states, the form-factor goes to zero for q → 0 more abruptly.

3) For q → ∞ the form-factor of any composite system vanishes.[376] The power law
of this decrease depends strongly on the number of particles in the system and on
the specific interaction. From physical considerations, it is evident that the faster
U(q) decreases and the larger the particle number in the compound system, the
faster the form-factor decreases. Compare to Problem 13.84.

For transitions of the hydrogen atom, the form-factors

F1s→nlm(q) =

∫
ψ∗
nlm(r)(1− e−iq·r)ψ1s(r)dV

are easy to calculate. Taking into account the form of the wavefunctions (see
Eq. (IV.4)), we can obtain

F1s→1s = 1− Fat(q) =
8q2 + q4

(4 + q2)2
, F1s→2s = − 4

√
2q2

(9/4 + q2)3
. (5)

[376] For an atom in the approximation of an infinite nuclear mass, for q → ∞ the elastic form-factor is
Fel = Z (it is determined by the contribution from a point-like nucleus).
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For the 2p-states, it is convenient to write the angular part of the wavefunction in
the form

√
3/4πε(m) · n, where |ε(m)|2 = 1 (compare Problems 3.41 and 3.42), after

which we obtain

F1s→2pm = −ε∗(m)

4
√
2π

i∂

∂p

∫
exp

{
−3r

2
− iq · r

}
dV =

= 6
√
2i

ε∗(m)q

(9/4 + q2)3
. (6)

This form-factor is different from zero only for the states with projection of the angular
momentum on the direction of the vector q equal to zero.

For calculating the scattering cross-sections, we first note that

q2 = p21 + p22 − 2p1p2 cos θ, p2 =
√
p21 − 2μ(ε1 − ε2) ≈

≈ p1 − μ(ε1 − ε2)

p1
,

where ε1,2 > 0 are the binding energies of the system before and after the collision.
So dΩ could be replaced by πdq2/p21, with the integration over q2 within limits 0 and
∞ (due to the fast convergence in the upper limit, q2max ≈ 4p21). We cannot always
replace the lower integration limit

q2min = (p1 − p2)
2 ≈

(
μ(ε1 − ε2)

p1

)2

by 0, because of a divergence that may appear. This complication however only arises
for the inelastic collisions where one of the colliding particles has charge different from
zero and its state during the collision process does not change, so that for it, F (0) =
Z �= 0, and for the other particle, the transition is of dipole type. Thus, eFif ≈ −idifq
for q → 0.

Elementary integration gives the following results:

1) σ(1s1s → 1s1s) =
4π

V 2

∞∫
0

F 4
1s→1s(q)dq

2 =
33π

35V 2
, (7)

2) σ(1s → 2s) =
4πZ2

V 2

∞∫
0

F 2
1s→2s(q)dq

2 =
217πZ2

5 · 310V 2
≈ 0.444

πZ2

V 2
, (8)

where V = p1/μ is the relative velocity of the colliding particles, and Ze is the charge
of the particle colliding with the hydrogen atom.

Now we calculate the total cross-section for collisions with transitions 1s → 2p, by
summing over the transitions 1s → 2pm:
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σ(1s → 2p) = 288π

(
Z

V

)2

⎛⎜⎝− 1

5!

∂5

∂a5

∞∫
q2
min

dx

x(a+ x)

⎞⎟⎠ = (9)

288π

(
Z

V

)2
1

5!

[
− ∂5

∂a5

(
1

a
ln

a

q2min

)]
=

217πZ2

310V 2

[
ln(16V 2)− 137

60

]
,

where x = q2, a = 9/4, q2min = (ε2p − ε1s)
2/V 2 = 9/64V 2. Finally,

σ(1s → n = 2) =
218πZ2

310V 2

(
ln 4V − 25

24

)
≈ 4.44

πZ2

V 2

(
ln 4V − 25

24

)
(10)

is the total cross-section of exciting the states of the hydrogen atom with the principal
quantum number n = 2 by collision with a charged particle.

Problem 13.81

Consider the collision between a fast charged particle and a two-atom molecule in its
ground state with the dipole moment, d0. The electron term of the molecule is 1Σ.
Estimate the cross-sections of collisions, which involve excitation of the rotational and
oscillation molecular levels. Compare to the case of the collision with an atom (see the
previous problem).

Solution

As in the previous problem, the collision cross-section is connected to the electric
form-factor of the molecule,

eF0→vKM (q) = 〈n,Λ = 0, vKM |
∑
a

eae
iq·ra |n, 0〉. (1)

In the initial state, the quantum numbers are Λ = v = K = M = 0, while n charac-
terizes the state of molecular electrons. The wavefunctions of the moleculular states
with Λ = 0, as are in matrix element (1), have the form:

ψn Λ=0vKM = ψel
nΛ=0(ξa,R)ψosc

v (R−R0)YKM (n). (2)

Here ξa are the electron variables (coordinate and spin); R = Rn = R1 −R2 is
the radius vector from one nucleus to the other; the masses are M1,2; and the
radius vectors in the molecule’s center-of-mass system: R1 = M2R/(M1 +M2) and
R2 = −M1R/(M1 +M2). Summation in Eq. (1) is performed over both the molecular
electrons (ra denotes the radius vectors relative to the molecular center of mass), and
the nuclei, whose contribution is Z1e

−iq·R1 + Z2e
−iq·R2 .
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We write the cross-section for the collision between the charged particle and the
molecule,

dσ0→vKM

dΩ
=

(
2μZe2

�2q2

)2

|F0→vKM (q)|2, (3)

where Ze is particle charge, and μ is its and the molecule’s reduced mass. We note
that the easiest way to obtain these cross-sections is to neglect the change in the state
of the valence electron states in the molecular formation. In this approximation, the
wavefunction of the electron term of the molecule is

ψelec
nΛ=0 ≈ ψ1(ra −R1)ψ2(rb −R2),

where ψ1,2(ra,b) is the wavefunction for the electron bound to a single atom of the
molecule, and for its form-factor, we obtain

F0→νKM ≈ 〈νKM | (e−iR1q·nF1(q) + eiR2q·nF2(q)
) |0〉, (4)

where F1,2(q) are the form-factors of the atoms in the molecule (which also include
contributions of the corresponding nuclei). Note that for q = 0, the form-factor of the
molecule, as of any neutral system, is equal to zero (see a discussion of form-factors
in the previous problem).

Due to the smallness of amplitude of nuclear oscillations, we can replace R1,2 by
their equilibrium positions. Then, due to wavefunction orthogonality, only the form-
factors for transitions with v = 0 (i.e., without a change of the molecular oscillation
state) are non-zero. For such transitions, we can calculate the differential cross-section,
Eq. (3), by summing over the values of the quantum numbers K and M of the
molecule’s final states. Using approximation (4) and the completeness condition for
the spherical functions, according to which∑

KM

|〈KM |Â|0〉|2 =
∑
KM

〈0|Â+|KM〉〈KM |Â|0〉 = 〈0|Â+Â|0〉,

we calculate the differential cross-section:∑
KM

dσ0→0KM

dΩ
=

(
2μZe2

�2q2

)2

〈0||F1(q) + F2(q)e
iq·R0 |2|0〉.

Compare to Problem 13.7.

Collision cross-sections that do not excite molecular oscillations obey the same
rules as the case of a charged particle colliding with an atom (compare to the previous
problem). In particular, for collisions that excite a rotational level with the angular
momentum K �= 1, the cross-section is

σ0→0KM = πa2BZ
2AKM

(
Vat

V

)2

, K �= 1, (5)
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where V is the relative velocity of the colliding particles, and AKM ∼ 1 for the most
important transitions.

For collisions that excite a rotational level with K = 1, connected to the ground
level by a dipole transition,[377] for q → 0 we have (compare to the previous problem):

dσ(0 → 0 M)

dq2
=

4πZ2e2d20
3�2q4V 2

|ε(M)q|2. (6)

ε(M) is the polarization vector that determines a molecular rotational state
with K = 1, and is connected to the spherical functions by the relation Y1M =√
3/4πε(M)n, where |ε|2 = 1. Eq. (6) follows from expressions (1) and (3) if we

take into account that: 1) for q → 0, the sum in (1) becomes −iq · d, where d is
the operator of the molecular dipole moment; 2) averaging d over the electron states
of the molecule with Λ = 0 gives d(R)n; 3) after averaging over the oscillation states
with v = 0, we can replace d(R) by d(R0) ≡ d0 due to the smallness of the nuclear
oscillation amplitudes (compare to Problem 11.25). The summation in Eq. (6) over
M gives

∑ |ε(M)q|2 = q2, and the following integration over q2 with the lower limit
of integration (to cut off a divergence) being

q2min =

[
�

μ̃R2
0V

]2
(μ̃ is the reduced mass of the molecular nuclei) allows us to obtain the cross-section
of transitions to states with K = 1 to logarithmic accuracy:[378]

σ(0 → v = 0,K = 1) ≈ 8πZ2e2d20
3�2q4V 2

ln
μ̃

meVat
. (7)

Let us properties of the collision processes, accompanied by excitation of the molecular
oscillation levels. As was mentioned before, replacement of R by is equilibrium value
R0 due to the weak nuclear oscillations is valid only for transitions that do not excite
oscillations. For states with v �= 0, in this approximation, the form-factor goes to
zero due to wavefunction orthogonality. So for transitions with v �= 0, it is necessary
to perform expansion over the small parameter ΔR/R0, where ΔR = R−R0 is of
the order of the nuclear oscillation amplitudes. For the linear expansion term, which
corresponds to transitions with Δv = 1, in expression (1) for v = 1, as opposed to
v = 0, a small factor appears, on the order of (see Problems 11.3 and 11.25)

〈v = 1|R−R0

R0
|v = 0〉 = aosc√

2R0

∼
(
me

μ̃

)1/4

.

[377] For this transition, approximation (4) for q → 0 is not valid; the dipole moment of the molecule is
determined by its valence electrons.

[378] Here as usual, for the upper integration limit we choose the value q2max ∼ a−2
B . We should note

that although the argument of the logarithm in Eq. (7) is much larger than in the case of a dipole
transition in an atom, due to the small rotational energy, nevertheless the accuracy of Eq. (7) does
not increase because of it. Usually, the dipole moment of the molecule, d0, is much smaller than
the value eaB .
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This leads to much lower, ∼ (μ̃/me)
1/2, cross-sections of the transitions with v = 1.

With an increase of the value v, it is necessary to consider higher orders in ΔR/R0,
which leads to a sharper, ∼ (μ/me)

v/2, suppression of the cross-section for the
corresponding molecular transitions.

Problem 13.82

Find the cross-section of a fast charged particle colliding with a hydrogen atom in a
metastable 2s-state, accompanied by its transition into a 2p-state.

Comment: In this problem it is necessary to take into account the relativistic
splitting of the s- and p-levels (see Problem 11.62).

Solution

For collisions of a charged particle and an atom accompanied by an atomic dipole
transition, the region with small values of q2 plays the dominant role. The cross-section
of the collision with transition from the s- to the p-state of the atom to logarithmic
accuracy is described by the expression (compare to Problem 13.80):

σs→p =
4πZ2e2

�2V 2
|〈l = 1,m = 0|dz|0〉|2 ln 1

q2mina
2
B

, (1)

where Ze is the charge of the incident particle and V is the relative velocity of
the colliding particles. For a transition 2s → 2p in the hydrogen atom, the matrix
element[379] 〈1, 0|dz|0〉 = 3eaB was calculated in Problem 11.33, in connection with
the Stark effect for the states with n = 2.

If we neglect relativistic corrections, the states 2s and 2p of the hydrogen atom
are degenerate; here q2min = 0 and the cross-section, Eq. (1), diverges. Splittings, Δ,
of the levels 2s1/2, 2p1/2 and 2p3/2, which determine the values of q2min = (Δ/�V )2,
were discussed in Problem 11.62. Since here, transitions into the atomic states 2p1/2
and 2p3/2 must be considered separately, it is necessary to add the additional factors,
equal 1/3 and 2/3, for the p1/2- and p3/2 -states, in Eq. (1). These factors, the squares
of the corresponding Clebsch–Gordan coefficients (see, for example, Problem 5.18),
reflect the contribution of p-states with lz = 0 to the states[380] p1/2 and p3/2. If we
take into account these facts, we find

σ(2s → 2p) = 72πa2B

(
Ze2

�V

)2

ln
�V

aBΔ
1/3
0 Δ

2/3
1

, (2)

where Δ0 = E(2s1/2)− E(2p1/2) and Δ1 = E(2p3/2)− E(2s1/2), with the numerical

value Δ
1/3
0 Δ

1/3
1 ≈ 8 · 10−7 (in atomic units).

[379] We emphasize that Eq. (1) describes the cross-section, summed over the projections of the angular
momentum of the p-state. Although in Eq. (1) there is a state with lz = 0, we should remember
that the choice of a quantization axis z, along the vector q, depends on the scattering angle.

[380] If we take into account relativistic corrections, lz is not a constant of the motion.
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As is seen from Eq. (2), the cross-section σ � (Vat/V )2σ0, where σ0 = πr2 =
40πa2B , characterizes the transverse size of the hydrogen atom in states[381] with
n = 2. This means that in this problem, large impact parameters (� aB) are essen-
tial. Effective interaction at such distances is Zed · r/r3 ∼ Zed/r2. The applicability
condition of perturbation theory (see Eq. (XIII.7)) for such a potential is fulfilled for
the distances r � Zed/�V . Even for values V ≈ 1, this condition holds true, which
proves the applicability of Eq. (2) for such collision velocities.

In conclusion, note that the large value of the transition cross-section, (2), implies
that the lifetime of the metastable 2s-state in a gas could decrease sharply due to
collisions (for an isolated hydrogen atom, τ(2s) = 1/8 s; while in the presence of
transitions in the 2p-state, the atom “flashes up” within ∼ 10−9 s).

Problem 13.83

Calculate (with logarithmic accuracy) the cross-section of fast deuteron fission in the
Coulomb field of a nucleus with charge Ze (for simplicity, consider the nucleus to be
point-like and infinitely heavy). Choose the deuteron wavefunction as in the case of
a zero-range potential (see 12.1), which is reasonable because of the smallness of the
proton-neutron binding energy.

Solution

The differential cross-section of deuteron fission is described by the expression:

dσfis =
4Z2e4m2

d

�2q4
|〈p,−|e−iq·rp |0〉|2d3k dΩf . (1)

Here, �q = Pf −Pi, Pi = mdV is the deuteron momentum, Pf is the nucleon’s total
momentum after the collision, dΩf is the infinitesimal solid angle (which contains
vector Pf direction), and m, md = 2m are the nucleon and deuteron masses. The
Matrix element

F0→p = 〈p,−| exp{−iq · rp}|0〉
could be considered as an inelastic form-factor for transitions into the continuum
(compare to Problem 13.80). For the wavefunction of the initial state, we write (see
Problems 4.10 and 12.1):

ψ0(r) =

√
κ

2π

1

r
e−κr, ε0 =

�
2κ2

m
,

where ε0 is the deuteron binding energy, and rp = r/2. For the wavefunctions of the
final states, we should choose[382] the wavefunction ψ−

k (r), that has an asymptote in
the form of “a plane wave + a converging wave;” they are normalized to δ(k− k′).

[381] For the ns-states of the hydrogen atom, r2 = 1
2
n2(5n2 + 1).

[382] For an alternative convenient choice of final state wavefunctions, see Problem 11.63.
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The dominant input into the fission cross-section comes from small q2, where
transitions to states of the two-nucleon system are important, connected to the
deuteron’s dipole transition, since for them dσ ∝ dq2/q2 (compare to Problem 13.80).
For such q, we have

〈p,−| exp{−iq · rp}|0〉 ≈ 〈p,−|(−iq · rp)|0〉, (2)

and in the last expression we can replace the wavefunction ψ−
k by the plane wave

ψk = (2π)−3/2eik·r. This is connected to the fact that in a zero-range potential,
wavefunctions ψ−

k and ψk differ from one another in s-wave only, which does not
contribute to the dipole moment, Eq. (2). A calculation of the corresponding matrix
element gives

√
κq

8π2

∂

∂k

∫
1

r
e−κr−ik·rd3r =

√
κq

2π

∂

∂k

1

k2 + κ2
= −

√
κq · k

π(k2 + κ2)2
. (3)

The angular dependence ∝ (q · k) of the vector k reflects the fact that for a dipole
transition, the angular momentum of the nucleon pair in the final state is l = 1.

To obtain the differential cross-section, we substitute Eq. (3) in Eq. (1) and perform
the integration over the directions of the vector k, using the relations

d3k = k2dk dΩ,

∫
(q · k)2 dΩ =

4π

3
q2k2.

After this, dΩf in Eq. (1) could be replaced by π�2dq2/P 2
i . Then the value of Pf that

follows from the energy conservation law,

1

2md
P 2
i − ε0 =

1

2md
P 2
f + ε,

where ε = �
2k2/m is the energy of the nucleon pair’s relative motion after the collision,

determines

�
2q2min = (Pf − Pi)

2 ≈ 1

V 2
(ε+ ε0)

2.

Integrating over q2 within the limits q2min and[383] q2max ≈ κ2, we find

dσfis =
8(Ze2)2(ε0ε

3)1/2

3m(ε+ ε0)4V 2
ln

�
2κ2V 2

(ε+ ε0)2
dε. (4)

As is seen, the characteristic value of energy is ε ∼ ε0. The integration of Eq. (4) over
ε gives the total cross-section of deuteron electro-fission. With logarithmic accuracy,
we can neglect the dependence on ε under the logarithm and obtain (making the
substitution x =

√
ε; see App.1.5)

[383] Note that for larger values of q it is necessary to take into account the finiteness of nucleon size,
whose form-factor decreases fast for q > 1/R. Since q2max in the final result is inside a logarithm,
its detailed value is not so important.
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σfis(E) ≈ π(Ze2)2

6ε0E
ln

E

ε0
, (5)

where E = mdV
2/2 is the deuteron energy.

According to Eq. (5), the value of the cross-section for E = 200 MeV, ε0 = 2.2
MeV is σfis = 1.1 · 10−28Z2 cm2. For all nuclei except for perhaps the heaviest, this
quantity is much lower than their geometric size, which shows that the dominant role
in the process of deuteron fission is nuclear interaction.

We also note a quasi-classical estimation of the fast deuteron fission cross-section
accompanied by the escape of one of the nucleons, a proton or a neutron, for a collision
with a nucleus with radius R. Considering the potential to be a hard sphere of radius R:

σ ∼ 2πRΔR, ΔR ∼ Rd ∼ 1

κ
. (6)

This area is that of a ring with radius R and width of the order of the deuteron size.

In conclusion, we note that each escaping nucleon takes away the energy EN ≈
E/2 and moves in the direction of the falling beam with the angle of dispersion
Δθ ∼ (ε0/E)1/2 (the transverse component of the nucleon momentum p⊥ ∼ √

mε0
is determined by the binding energy of the deuteron).

Problem 13.84

Find the asymptotic behavior of the electric form-factor of a two-particle system as
q → ∞. It is assumed that the Fourier component of the interaction potential, Ũ(q),
that is responsible for the formation of the composite system, has a power-law decay
at q → ∞: Ũ(q) ∝ q−n with n > 1. Compare to Problem 4.18. Consider applications
of the results obtained to the hydrogen atom.

Solution

The electric form-factor for the transition between states ψ1 and ψ2 of a two-
particle composite system is described by the following expression (see, for example,
Problem 13.80):

eF1→2(q) = 〈n2l2l2z|e1e−iq·r1 + e2e
−iq·r2 |n1l1l1z〉, (1)

where e1,2 and m1,2 are the charges and masses of the particles, �q is the momentum
transferred between systems, and r1,2 are their radius vectors in the center-of-inertia
system. Here,

r1 =
m2

m1 +m2
r, r2 = − m1

m1 +m2
r, r = r1 − r2

Eq. (1) includes two integrals:

I(q1,2) =

∫
ψ∗
n2l2l2z (r) exp{−iq1,2r}ψn1l1l1z (r)d

3r, (2)
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where q1,2 = ±m2,1q/(m1 +m2). The asymptotes of these integrals for q → ∞ are
determined by the singular terms of the radial wavefunctions in ψ1,2 (see Prob-
lem 4.18). Let us write

ψnllz (r) = εi...n(l, lz)xi . . . xn{R̃reg(r) + R̃sin(r)},

where R̃reg(r) and R̃sin(r) are the regular and singular parts of the radial function.
Remember that the regular part could be expanded into a series over even, (r2)s,
powers of the variable r, and R̃reg(0) �= 0, while R̃sin(0) = 0. To obtain the asymptote
of integral (2), take one of the radial functions at r = 0, and keep the singular part of
the other, so that

I(q) ≈
q → ∞

ε∗i...n(2)εs...l(1)i
∂

∂qi
. . . i

∂

∂qn
i
∂

∂qs
. . . i

∂

∂ql
×

×
{
R̃2 reg(0)

∫
e−iq·rR̃1 sin(r)d

3r + R̃1(0)

∫
e−iq·rR̃2 sin(r)d

3r

}
. (3)

The singular part for both radial functions is very small for r → 0, and does not effect
the leading asymptotic term of the expansion I(q) for q → ∞. The integrals here
are connected to the asymptotes of wavefunctions in the momentum representation.
According to Problem 4.18, we have:

�
2q2

2μ
D̂

∫
e−iq·rR̃sin(r)d

3r ≈
q → ∞

− R̃(0)D̂

∫
e−iq·rU(r)d3r, (4)

where the differential operator D̂ = εi...n(l, lz)∂/∂qi . . . ∂/∂qn, and μ is the reduced
mass of the particles.

Eqs. (3) and (4) determine the asymptote of integral (2), and the asymptote of
form-factor (1) for q → ∞. In particular, for a transition between the states with the
angular momenta l1 = 0 and l2 = l, we find:

eF0→1m ≈ −8(2i)lπ5/2 μ

�2
R̃1(0)R̃2(0)Y

∗
lm

(
q

q

)
×

×
{
e1

[
ql1

∂l

∂(q21)
l

Ũ(q1)

q21
+ ql−2

1

∂l

∂(q21)
l
Ũ(q1)

]
+ (−1)le2[q1 → q2]

}
, (5)

where the symbol [q1 → q2] means the expression written in the first square bracket,
but with q1 replaced by q2, and

Ũ(q) =
1

(2π)3

∫
U(r)e−iq·rd3r.

Note that the power-law decrease of the form-factors for q → ∞ is similar to that
mentioned in Problem 4.18 in connection with the asymptotes of the wavefunctions
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in the momentum representation. In particular, for potentials such that Ũ ≈ −α/qn

with n > 1, the form-factor is

F1→2 ∝ q−(2+n+l1+l2) for q → ∞. (6)

To illustrate the result obtained, we consider the application of Eq. (5) to the hydrogen
atom. In the approximation of an infinitely heavy nucleus, Eq. (5) must be slightly
revised by simply putting q2 ≡ 0. So, the term e2e

−iq·r2 in Eq. (1), which corresponds
to the proton contribution, is now reduced to just its charge e, and inelastic transitions
give no contribution to the form-factor due to the wavefunctions’ orthogonality. Taking
into account that for the Coulomb potential, Ũ = −e2/2π2q2, and using the values of
the radial functions at zero for this potential (given in Problem 13.79), we find for the
transitions 1s → ns and 1s → np with n ≥ 2:

F1s→ns ≈ − 16

n3/2(qaB)4
, F1s→npm ≈ 16

√
3i
√
n2 − 1(ε∗(m) · q/q)
n5/2(qaB)5

.

These results, of course, coincide with the asymptotes of the exact expression for the
form-factor, calculated in Problem 13.80.

Problem 13.85

Find the differential and total cross-sections of Coulomb excitation of an atomic
nucleus (initially in a state with the angular momentum, J = 0) by a fast, light,
charged particle[384] by a) dipole (E1−) and b) monopole (E0−) nuclear transition.

Solution

Just as in the previous problems, the sought-after cross-sections could be related to
nuclear electric form-factors Fi→f (q) = 〈f |∑p e

−iq·rp |i〉 for the corresponding tran-
sitions. Summation is performed over all nuclear protons; rp are their radius-vectors
with respect to the nucleus’ center of mass.

For non-relativistic collisions between the light particle and the nucleus, there holds
the inequality qrp ≤ pR/� � 1 (where R is the nucleus radius, and p = mV is the
incident particle momentum), so that in the expression for the form-factor, we can
expand the exponent and keep only the first non-zero term. The differential cross-
sections of the processes considered are dσE1/dq

2 ∝ q−2 and dσE0/dq
2 = const, while

the total cross-sections are

σE1 =
8πe2

�2V 2
|〈J = 1, Jz = 0|dz|0〉|2 ln p+ p′

p− p′
(1)

(the cross-section is summed over projections of the angular momentum of the p-state;
though the state has Jz = 0, we should take into account that the choice of the

[384] Assume that the (electron, muon) Compton wavelength �/mc is larger than the nuclear size, and
the particle charge is ±e.



766 Exploring Quantum Mechanics

quantization axis z along the vector q depends on the scattering angle; compare to
Problem 13.80) and

σE0 ≈ 4π

9

(
me2

�2

)2
p′

p
|Q0|2, Q0 = 〈f |

∑
p

r2p|i〉 (2)

(parameter Q0 also determines the probability of inner conversion for the correspond-
ing nuclear transition; see Problems 11.68 and 11.69). In these relations, p′ is the
particle momentum after collision.

Problem 13.86

Find a relation between the amplitudes and differential cross-sections for elastic
scattering of a neutron on a proton and of a proton on a hydrogen atom (in the ground
state). Neglect the interaction of the neutron magnetic moment with the electron.

Solution

Due to the smallness of the nuclear-force radius, the time of interaction between
the proton and neutron is much smaller than the characteristic atomic time. So for
the electron, the result of the interaction between the neutron and proton could
be considered as a sudden change resulting in the velocity boost V = �q/mp for
the proton-nucleus. Therefore, the following relation between the amplitudes of the
processes considered follows:

fnH(E, q) ≈ fnp(E, q)a(q), (1)

where

a(q) =

∫
|ψ0(r)|2 exp

{
− i

�
meV · q

}
d3r =

1

[1 + (qmeaB/2mp)2]2
(2)

is the probability amplitude for the atom to remain in the ground state. (Compare to
Problem 11.58; we note that a(q) coincides with the atomic form-factor; see 13.80.)

Since a(0) = 1, then, using the optical theorem and relation (1), we conclude that
the total cross-sections of the neutron scattering from a proton and from a hydrogen
atom are the same.[385] As is seen from Eqs. (1) and (2), the differential cross-sections,
dσ/dΩ = |f |2, start to differ only for qaB � mp/me, which corresponds to neutron
energies that are much larger than atomic (since �q ≤ 2p).

[385] It is important thatmH ≈ mp. A completely different situation arises for neutron scattering from a
proton bound in a molecule. In the case of a heavy molecule, M � mp, the scattering cross-section
for small energies from the bound proton is four times larger than the scattering cross-section from
a free nucleon.
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Problem 13.87

Find the scattering cross-section for heavy charged particles (for example, protons or
ions) from neutral atoms with zero angular momentum. The velocities of the scattered
particles are assumed to be much lower than the velocities of atomic electrons, but
at the same time, V � �/MaB , where M is the particle mass. Use the quasi-classical
expression for the scattering cross-section (see Problem 13.51).

Solution

The energy of the interaction between the charged particle and the atom at large
distances, r � aB , has the form (polarization potential, see Problem 11.49)

U(r) =
Ze(d · r)

2r3
= −1

2
β
(Ze)2

r4
, (1)

where Ze is the particle charge, and β is the atomic polarizability. The calculation of
the scattering cross-section by quasi-classical equation (see Problem 13.51)

σ = 4π

∞∫
0

⎧⎨⎩1− cos

⎡⎣ 1

�v

∞∫
−∞

U(
√
ρ2 + z2)dz

⎤⎦⎫⎬⎭ ρdρ (2)

for a power-law potential was performed in Problem 13.52. For polarization potential
(1), it gives

σ = πΓ

(
1

3

)(
πβZ2e2

4�v

)2/3

. (3)

Let us make several comments about this result. As it follows from (3), distances
essential in the scattering process are of the order ρ0 ∼ √

σ ∼ v−1/3 (in atomic units),
and we put Z ∼ 1 and β ∼ a3B (such estimation follows from the condition that for
ρ ∼ ρ0, the argument of the cosine, i.e., the quasi-classical phase, is of order 1; let us
note that for r ≤ aB , Eq. (1) is not applicable, but in the problem conditions such
distances do not play an essential role). To be able to use Eq. (1), these distances
must be large, ρ0 � 1, hence v1/3 � 1. (The condition, ρ0/v � ω−1

at , that ensures
the adiabaticity of the atomic electrons, is also fulfilled; when it is broken, dynamic
excitation processes become essential for the atom, and the notion of an interaction
potential loses its strict meaning.) On the other hand, the quasi-classical condition
must also be fulfilled: l ∼ Nρ0v � 1, so v2/3 � 1/M (M is the mass of the particle
considered). So, Eq.(3) is valid if the conditions(me

M

)3/2

vat � v � vat (4)

are fulfilled. Hence, the particle must be heavy, M � me (for electrons, Eq. (3) is not
applicable).
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Problem 13.88

Find the charge-exchange cross-section[386] for the collision of a slow, v � vat, negative
ion, A−, with its atom, A. Consider the atom and ion to be in their S-states, and the
ion’s valence electron to be weakly bound (see Problem 11.28). The relative motion of
atom and ion should be treated quasi-classically.

Solution

The specifics of the situation involving a resonant charge-exchange process, for the
relative velocity of colliding particles 1/

√
M � v � 1 (in atomic units, M is mass of

atom or ion), is determined by following facts. 1) The charge-exchange cross-section is
large, σnon−rez � πa2B , i.e., large impact parameters are essential. 2) The atom’s and
ion’s relative motion is quasi-classical, and we can only straight ballistic trajectories,
since Mv2 � 1. 3) States of the “inner” electrons of the atom and ion do not change in
the collision process, while the outer-shell electron can be viewed as being in the field
of two zero-range potentials. 4) Due to the adiabaticity of the collision process (for the
electron subsystem), only transitions between levels that are close in energy matter,
that represent, the even (g) and odd (u) states of the quasi-molecular ion. Recall
that for R → ∞, these states are degenerate in energy. With decrease of distance,
to Rc = 1/α, the odd term goes to the continuous spectrum, and ionization becomes
possible (see Problem 11.28). But during the process of charge-exchange, distances
which are much larger than Rc are essential.

In the conditions mentioned, the wavefunction of the outer-shell electron for large
distances R(t) = ρ+ vt between atoms has the form:

ψ(r,R, t) ≈ 1√
2

⎧⎨⎩exp

⎧⎨⎩−i

t∫
−∞

Eg dt

⎫⎬⎭ψg + exp

⎧⎨⎩−i

t∫
−∞

Eu dt

⎫⎬⎭ψu

⎫⎬⎭, (1)

where Eg,u(R) and

ψg,u ≈ 1√
2

{
ψ0

(
r− R

2

)
± ψ0

(
r+

R

2

)}
are the energy and wavefunction of the even (odd) molecular terms on such distances,
while ψ0(r) is the wavefunction of a bound state in an isolated zero-range potential
(see Problem 4.10). Coefficients in the superposition, (1), were chosen so that for t →
−∞, the wavefunction has the form ψ ≈ C(t)ψ0(r−R/2), i.e., describes an electron,
localized in the vicinity of one atom, which corresponds to the ion before collision. So
for t → +∞, the coefficient in front of the wavefunction ψ0(r+R/2) determines the
probability of charge-exchange:

[386] Compare to the charge-exchange cross-section in the collision between a slow proton and a hydrogen
atom.
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Wch−ex(ρ) = sin2

⎡⎣ ∞∫
−∞

(Eu(R)− Eg(R))
dz

2v

⎤⎦ (2)

(R2 = ρ2 + z2, z = vt); here the charge-exchange cross-section is

σch−ex(v) =

∞∫
0

2πρWch−ex(ρ)dρ. (3)

Compare Eqs. (2) and (3) to the expression for the elastic scattering cross-section from
a potential, U(r), in the quasi-classical approximation, as considered in Problem 13.51.

According to Problem 11.28, at large distances, Eu − Eg ≈ 2αe−αR/R, where
εbind = α2/2 is the binding energy of an electron in the ion. Writing

e−αR ≈ exp

{
−αρ

(
1 +

z2

2ρ2

)}
,

we find that the integral in Eq. (2) in the case αρ � 1 is equal to

I(ρ) ≈
√

2πα

ρ

1

v
e−αρ.

Due to its pronounced dependence on ρ, the argument of the sine in Eq. (2) decreases
rapidly with an increase in ρ. Thus, the dominant contribution to integral (3) is in the
region of impact parameter ρ ≤ ρ0 (where I(ρ0) = 1), where the rapidly oscillating
factor sin2 I(ρ) could be replaced by its mean value, equal to 1/2. This gives

σch−ex(v) ≈ 1

2
πρ20 ≈ π

2α2
ln2

[
α

v

√
2π

ln
√
2πα2/v2

]
. (4)

Note that the value ρ0 satisfying equation I(ρ0) = 1, which is convenient to write in
the form ln I(ρ0) = 0, can be obtained by successive iterations. The first iteration gives
αρ0 = ln(

√
2πα/v).

Finally, we emphasize that the large value of the charge-exchange cross-section in
Eq. (4) is due to the fact that for a weakly-bound electron, α � 1.

Problem 13.89

For the collision of identical atoms, one of which is in the ground state while the other
is in an excited state (these states are connected by a dipole transition), estimate
the interaction cross-section and, in particular, the excitation transfer cross-section.
Consider the atoms’ angular momenta to be equal to 0 and 1. The velocity of the
atoms’ relative motion is assumed to be small in comparison to the characteristic
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atomic velocity, while the energy, on the other hand, is assumed to be much larger
than atomic. Compare to the previous problem.

Solution

An important property of the process considered, that leads to a large excitation
transfer cross-section (as well as to a large elastic scattering cross-section) is the near-
degeneracy of the states corresponding to an excitation of one of the identical atoms if
the distance between them is large. Therefore, for slow collisions, transitions between
the close-in-energy states appear if the impact parameter is large enough. Interaction
between the atoms, which has a dipole–dipole nature, was discussed in Problem 11.55.
In comparison to the previous problem, here the difficulty arises due to an increase in
the number of states: there are three g-terms and three u-terms. These are independent
states corresponding to different polarizations of the excited atom (with the angular
momentum l = 1).

One such state, which corresponds to the projection of the angular momentum lz =
0 of the excited atom with the angular momentum l = 1, evolves independently of the
other two. Here, as well as in the previous problem, the translational motion of atoms
is considered quasi-classically in the approximation of a straight-line trajectory, and
axis z is chosen perpendicular to the plane of motion. For this state, Ug,u = ±d2/(3R3)
(see Problem 11.55), and calculation of the excitation transfer cross-section could be
performed by Eqs. (2) and (3) from Problem 13.88. Calculating the integral

∞∫
−∞

[Ug(R)− Uu(R)]
dz

2v
=

d2

3v

∞∫
−∞

dz

(ρ2 + z2)3/2
=

2d2

3ρ2v
,

just as in the previous problem, we find the excitation transfer cross-section with
lz = 0:

σ0 =

∞∫
0

2πρ sin2
(

2d2

3ρ2v

)
dρ =

2πd2

3v

∞∫
0

sin2 x
dx

x2
=

π2d2

3v
. (1)

As stated in the problem condition, it much exceeds the atomic length-scales (remem-
ber that v � 1).

For the two other polarized states of the excited atom (with lz = ±1, or with
lx,y = 0; see Problem 3.21 and also Problem 3.41), calculation of the excitation
transfer cross-section needs to rely on numerical methods. Note that in this case,
transitions appear between such states, i.e., in the process of excitation transfer, the
atom polarization may change. Diagonalization of the “instantaneous” Hamiltonian
(performed in Problem 11.55) is based on the choice of a quantization axis along
the direction, which passes through the atoms’ centers. But due to their motion, the
corresponding “rotating” system is non-inertial. Going to this rotating system gives
rise to the following additional term in the Hamiltonian:

V̂cor = −Ω̂ · l̂ = −1

I
L̂z l̂z = − vρ

R2
l̂z.
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This is the Coriolis interaction,[387] (compare to Problem 6.29). The Coriolis operator
does not commute with the operators of the “instantaneous” Hamiltonian, and this
leads to transitions between the eigenstates, except for the case of lz = 0 mentioned
above. As for the estimation of the excitation transfer cross-section, it is evident that,
as in Eq. (1), it is of order σ ∼ πd2/v.

Problem 13.90

Find the total cross-section σtot, elastic cross-section σel, and inelastic cross-section
σin, for the scattering of fast particles, kR � 1, from an absorbing (“black”) sphere
of radius R. Find also the differential cross-section of elastic scattering. Compare to
Problems 13.57 and 13.58.

Hint

Use quasi-classical ideas to describe particle motion. Assume that all particles that
reach the surface of the sphere are absorbed by it.

Solution

Since we are dealing with a fully-absorbing “black” sphere, all scattering phases in
Eq. (XIII.9) for the amplitude of elastic scattering are the same: δl = i∞ (e2iδl = 0)
for l < l0 = kR and δl = 0 for l > l0. Such values of δl correspond to the following
physical picture (particle motion is quasi-classic, since kR � 1): particles with impact
parameter ρ = l/k < R are “absorbed” by the sphere, while those with ρ > R move
freely. Elastic scattering by its physical nature is analogous to Fraunhofer diffraction
on an opaque screen (in this case, a fully absorbing screen). It is described by the
scattering amplitude (compare to Problem 13.57)

fdifr =
i

2k

l0∑
l=0

(2l + 1)Pl(cos θ) ≈ iR

θ
J1(kRθ), θ � 1. (1)

Using the optical theorem, we find total collision cross-section

σtot =
4π

k
Im fdifr(θ = 0) = 2πR2. (2)

The inelastic scattering cross-section (the absorption cross-section) is equal to

σinel =
π

k2

∞∑
l=0

(2l + 1)(1− |Sl|2) = π

k2

l0∑
l=0

(2l + 1) ≈ πR2, (3)

while the elastic scattering cross-section is

σel = σtot − σinel ≈ πR2. (4)

[387] Here L̂ is the angular momentum of the relative motion of the atoms, and I = μR2 is the moment

of inertia with respect to the center of mass. In the quasi-classical approximation, the operator L̂
could be replaced by the only non-zero component Lz = μρv.
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This result is obtained by direct calculation of

σel =

∫
|fdifr|2 dΩ = πR2,

just as in Problem 13.57.

Problem 13.91

Interaction between an electron and a positron may result in their mutual annihilation,
i.e., their conversion into a pair into photons. Because of this, positronium levels have
a width, connected to the finite lifetime of the states (see Problem 11.61).

Find a relation between the level width, Γns, for the s-states of positronium and
the annihilation cross-section of a pair, σan(v).

Hint

Taking into account the fact that the annihilation interaction radius is small, Ran ∼
�/mec � aB , use perturbation theory in terms of the scattering length for the level
shift and for the phase shift. See Problems 13.36 and 13.37.

Solution

Note that in the non-relativistic case, kRan � 1. Thus annihilation processes are
most important for the s-states. The effect of short-range interaction on an s-state

is described by only one parameter: a
(S)
0 , the scattering length (for the angular

momentum, l = 0) of an isolated center (see Problems 13.36 and 13.37). For inelastic
processes, the (annihilation) scattering length has a non-zero imaginary part. So, the
level shift (see Problem 13.36) has an imaginary part, which determines the level
width:

Γns = −2Im ΔEns = −8π�2

me
|ψ(0)

ns (0)|2Im a
(S)
0 . (1)

Here, we have taken into account that for positronium, the reduced mass is m = me/2,

and ψ
(0)
ns (0) is the wavefunction at zero for the unperturbed state.

On the other hand, the change of the s-wave phase shift for the Coulomb potential,
U = −e2/r, under the influence of a short-range interaction, according to Problem
13.37 is equal to

Δδ
(S)
0 (k) = −Q̃2

k0ka
(S)
0 , (2)

where

Q̃2
k0 =

π

kaB(1− exp{−π/kaB}) , |ψ(0)
ns (0)|2 =

1

8πa3Bn
3
, (3)

and aB = �
2/mee

2. (In (3), the fact that the Bohr radius for positronium is twice as
large as the atomic Bohr radius has been used.) From the phase shift of the elastic
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scattering amplitude (its imaginary part), we find the annihilation cross-section:

σan =
π

k2
(1− |S0|2) = π

k2
(1− exp{−4Im Δδ

(S)
0 }) ≈ 4π

k2
Im Δδ

(S)
0 =

= −4π

k2
Q̃2

k0Im a
(S)
0 . (4)

According to Eqs. (1) and (4), we obtain:

Γns = �|ψ(0)
ns (0)|2

1

Q̃2
k0

(vσan(v)), (5)

where v = �k/m = 2�k/me is the relative velocity of the electron–positron pair. In the
case �v/e2 � 1, when the Coulomb potential could be considered as a perturbation,
relation (5) becomes simpler, since here Q̃2

k0 ≈ 1.

In conclusion, we emphasize that both the annihilation cross-section and positro-
nium level widths (and hence their lifetime τ = �/Γ) depend strongly on the value
of the total electron–positron pair spin (see Problem 11.61), so that the ortho- and
para-states of the positronium should be considered separately. Let us also mention
that these results could be extended to describe hadron atoms. However, the condition
of their applicability assumes that there is no s-level with small binding energy in the
strong short-range potential. See Problem 11.4, and also Problem 11.74.

Problem 13.92

Using the principle of detailed balance, relate the cross-section of neutron radiation
capture by a proton, n+ p → d+ γ, and the cross-section of photodisintegration of a
deuteron, d+ γ → n+ p.

Hint

The relation between cross-sections of mutually inverse two-particle processes, which
appear in the principle of detailed balance, is valid in the relativistic region as well.
Keep in mind that although the photon spin is equal to 1, it has only two independent
polarizations.

Solution

According to the principle of detailed balance for inverse reactions A → B and B → A,
the relation

σA→B

σB→A
=

gBp
2
B

gAp2A
(1)

must be satisfied. Here σ are total cross-sections of the corresponding reactions A → B
and B → A, averaged over the particle spins in the initial state, and summed over the
particle spins in the final state; gA,B are the spin statistical weights, and pA,B are
the momenta of relative motion in two-particle systems A and B, taken at the same
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energy in the center-of-mass system (analogous relations hold not only for the total
but also for the differential reaction cross-sections).

In the case of the reactions, n+ p � d+ γ we have σA→B ≡ σcap (neutron radiation
capture cross-section) and σB→A ≡ σph (deuteron photodisintegration cross-section).
Since the spin (polarization) statistical weight for a particle with spin s is equal to gs =
(2s+ 1) (except for the photon, for which gγ = 2 due to its transverse polarization),
then

gA = (2sp + 1)(2sn + 1) = 4, gB = gγ(2sd + 1) = 6. (2)

Momenta pA,B in Eq. (1) are equal to the momenta of the particles in the rest
frames of systems A, B. For the reactions considered, pA ≡ pp = pn and p0 ≡ pγ = pd.
Considering all particles to be non-relativistic (except for the photon; for it we
have Eγ � Mc2, where M is the mass of a nucleon), then according to the energy
conservation law we obtain

EA =
1

M
p2A = EB = Eγ + Ed − ε0 ≈ �ω − ε0.

We have defined by ε0 the deuteron binding energy and by ω the photon frequency.
We have neglected the value Ed in comparison to Eγ (for a non-relativistic deuteron,
Ed � Eγ for pd = pγ).

Taking into account the fact that pγ = �ω/c, according to Eqs. (1)–(3) we find:

σcap

σph
=

3

2

�ω

Mc2
�ω

�ω − ε0
. (4)

Thus, it follows that in the non-relativistic case, �ω � Mc2, we have σph � σcap.
The only exception is a narrow region of values �ω in the vicinity of the reaction
d+ γ → n+ p threshold (here �ω ≈ ε0), where, conversely, σph � σcap.

In conclusion, we emphasize that Eq. (4), as well as Eq. (1), does not rely on any
information or assumptions about the mechanism(s) driving the reaction, but is based
solely on the symmetry of quantum mechanical equations with respect to time-reversal.

Problem 13.93

Find the relation between the cross-section of photoelectric effect (a.k.a. “photoeffect”)
from the ground state of a hydrogen atom and the radiation recombination cross-
section of an electron with a proton (the process inverse to photoeffect) into the
ground state of a hydrogen atom.

Solution

This problem is solved similarly to the previous one (moreover, the processes consid-
ered in these two problems are physically related; see also Problems 14.38 and 14.19).
Averaged over the spins, the cross-sections of the photoeffect reaction, γ +H → e+ p,
and the radiation recombination reaction, e+ p → H + γ, are connected by the
relation:
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σph(ω)

σrec(εe)
=

p2e
2p2γ

=
�ω − |E0|

�ω

mec
2

�ω
. (1)

To prove Eq. (1), we should take into account that first, the center-of-mass frames
for these reactions are the rest frames of the hydrogen atom in the ground state[388]

or the proton; second, the statistical spin weight is equal to 4 for both the hydrogen
atom and the electron-proton system. Finally, the electron and photon energies are
connected by the energy conservation law as follows:

�ω + E0 = εe =
1

2me
p2e,

where E0 is the energy of the hydrogen atom in the ground state.

[388] Here we neglect the hyperfine structure of the hydrogen atom (see Problem 11.2). Let us also note
that for processes involving the hydrogen atom in a state with the angular momentum, l, the “spin”
statistical weight is equal to 4(2l + 1).
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Quantum radiation theory

1) A consistent theory of photon emission and absorption relies on the occupation
number representation for the photon subsystem. We describe the radiation field
(i.e., the free electromagnetic field) with the vector potential operator:[389]

Ârad(r) =
∑
kσ

(
2π�c2

ωkV

)1/2

(ekσâkσe
ik·r + e∗kσâ

†
kσe

−ik·r). (XIV.1)

Here, â†k,σ and âk,σ are the creation and annihilation operators of a photon with
the wavevector k, frequency ωk = c|k|, and polarization ekσ. The latter, the unit
vector of photon polarization, satisfies the transversal condition k · ekσ = 0. A state
of the emission field is described by the wavefunction, φ(nkσ, t), where nkσ are the
occupation numbers of the photon states.

The Hamiltonian operator of the free emission field is Ĥ
(0)
rad =

∑
kσ

�ωkâ
†
kσâkσ.

Interaction between non-relativistic particles and this field is described[390] by:

V̂int = − ea
mc

Ârad(r) · p̂+
e2a

2mc2
Â2

rad(r)−
μ

s
ŝ · Ĥrad(r). (XIV.2)

where ea, m, s, μ are the charge, mass, spin and magnetic moment of a particle,
and Ĥrad(r) = ∇× Ârad(r).

Interaction between a particle (or a system of particles) and the radiation field
is characterized by the small parameter α ≡ e2/�c ≈ 1/137 (for ea ∼ e). For our
purposes, usually only transitions accompanied by emission or absorption of the
minimum possible number of photons are essential. The probability of various
processes can be calculated using the methods of perturbation theory. In particular,
the transition probability (per unit of time) between states in the discrete spectrum,
that are connected by the emission of a single photon, is

[389] Compare to the ψ̂ operators from Chapter 10. To describe the field, we used the Coulomb gauge

∇ · Ârad = 0, ϕ̂rad ≡ 0, with operators Ârad(r) given in the Schrödinger representation. We assume
that the system in enclosed by a volume V , which in the limit V → ∞ does not enter physical
observables.

[390] External fields that are described classically, as well as the Coulomb interaction, are included in
the Hamiltonian in the usual manner. If the system is in an external magnetic field, so that A �= 0,
then in Eq. (XIV. 2) we should replace p̂ by p̂− (ea/c)A.
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dwnσ =
2π

�

∣∣∣〈f |V̂int|i〉
∣∣∣2 dρf . (XIV.3)

Wavefunctions of the initial and final states of a “particle+photon” system have
the form:

|i〉 = ψi(ξ)|0〉γ , Ei = εi,

|f〉 = ψf (ξ)|1kσ, 0, . . . 〉γ , Ef = εf + �ωk,

where ξ is the set of independent particle coordinates, ψi,f (ξ) and εi,f are the
wavefunctions and energy of the corresponding states, |0〉γ and |1kσ, 0, . . . 〉γ are
state vectors of the photon subsystem, corresponding to vacuum and one-photon
states. After taking Eqs. (XIV.1) and (XIV.2) (and properties of the operators â,
â†) into account, the matrix element in Eq. (XIV.3) becomes

〈f |V̂int|i〉 = −
(
2π�c2

ωkV

)1/2

〈ψf |
∑
a

{
ea
mac

e∗kσ · p̂a+

i

(
μa

sa

)
[e∗kσ × k] · ŝa

}
e−ik·ra |ψi〉. (XIV.4)

2) In the dipole approximation we can replace e−ik·r by 1, neglect the term with the
magnetic moments of the particles, and transform[391] the perturbation matrix
element to the form:

〈f |V̂int|i〉 = i

√
2π�ω

V
e∗kσ · dfi, (XIV.5)

where dfi = 〈ψf |
∑
a
eara|ψi〉 is the matrix element of the system’s dipole moment.

For each of the two independent photon polarizations, the density of final states is

dρf =

∫
δ(εi − εf − �ω)

V d3k

(2π)3
=

V ω2

(2π)3�c3
dΩn (XIV.6)

where �ω = εi − εf , dΩn is an element of solid angle in the direction of photon
emission, and k = kn. Eq. (XIV.3) takes the form:

dwnσ =
ω3

2π�c3
|e∗kσ · dfi|2dΩn. (XIV.7)

[391] Here, the following relation is used

〈ψf |
p̂a

ma
|ψi〉 = −iω〈ψf |ra|ψi〉, �ω = εi − εf .

It is also valid for a system that is in a magnetic field, though p̂a must be replaced by p̂a −
(ea/c)A(ra).



778 Exploring Quantum Mechanics

Summation over photon polarizations, performed using the equation[392]∑
σ=1,2

(e∗kσ)i · (ekσ)j = δij − kikj
k2

, (XIV.8)

gives the angular dependence of the emitted photon:

dwn =
∑
σ

dwnσ =
ω3

2π�c3
|[n× dfi]|2 dΩn. (XIV.9)

Following this with an integration over the directions of particle escape gives the
probability of photon emission for the corresponding transition i → f in the dipole
approximation:

w ≡ wE1 =

∫
dwn =

4ω3

3�c3
|dfi|2. (XIV.10)

Note that under the dipole approximation, interaction (XIV.2) becomes

V̂int ≈ − e

mc
Ârad(0) · p̂+

e2

2mc2
Â2

rad(0). (XIV.11)

This is equivalent to the interaction[393]

V̂ ′
int = −d̂ · Êrad(0), (XIV.12)

where d̂ = er̂ is the dipole moment, and

Êrad(0) = −1

c
˙̂
Arad(0) =

i

c�
[Ĥ

(0)
rad, Ârad(0)] =

i
∑
kσ

√
2π�ωk

V
{âkσekσ − â†kσe

∗
kσ}. (XIV.13)

In the following problems, the free-particle wave functions[394] are normalized to
unity in the volume V : ψp = V −1/2eip·r/�. The transition probability (per unit of time),

[392] Here ∑
σ

(e∗kσ · a)(ekσ · b) = a · b− (n · a)(n · b) = [a× n][b× n].

[393] We emphasize that Eq. (XIV. 12) is equivalent to the total expression (XIV.11), not just a part
linear in the operators â, â† on the right-hand side.

[394] The possible values of momentum, which in a finite system form a discrete set, are determined
by the orthogonality condition: 〈p|p′〉 = δpp′ . The number of independent quantum states in a

momentum-volume element d3p is V d3p/(2π�)3.
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dw, between states is related to the differential cross-section of the corresponding
process by

dσ =
dw

j
= V

dw

v
. (XIV.14)

where j = ρv is the current density, ρ = 1/V is the particle volume density, and v is
the colliding relative velocity of the colliding particle. For collisions between photons
and a particle (or atom), v = c.

14.1 Photon emission

Problem 14.1

Find the lifetime and level width for the excited 2p-states in hydrogen.

Apply the result obtained to the μ-mesoatom, and compare it to the free muon
lifetime, τμ = 2.2 · 10−6 s.

Solution

Wavefunctions of the initial and final states of the hydrogen atom have the form (see
Eq. (IV.4)):

ψi = ψ2lm =

√
3

4π
(ε(m) · n) r√

24a5B
exp

{
− r

2aB

}
,

ψf = ψ100 =
1√
πa5B

exp

{
− r

aB

}
, �ω = εi − εf =

3e2

8aB
.

(1)

Here ε(m) is the unit vector that describes polarization of a hydrogen atom with
the angular momentum l = 1. The matrix element of dipole moment for this transi-
tion is

dfi =

∫
ψ∗
f (−er)ψid

3r = −128
√
2

243
eaBε(m) (2)

Compare to Problems 3.41 and 3.42. According to Eq. (XIV.10), the probability of
the 2p → 1s transition for the hydrogen atom from photon emission is

w =

(
2

3

)8(
e2

�c

)4
c

aB
=

(
2

3

)8(
e2

�c

)3
mee

4

�3
. (3)

The lifetime, τ = 1/w, and level width, Γ = �/τ = �w, for the 2p-state of the hydrogen
atom are thus:

w ≈ 0.63 · 109 s−1, τ ≈ 1.60 · 10−9 s, Γ ≈ 0.41 · 10−6 eV.

We calculate similarly for the μ-mesoatom. The lifetime of the 2p-level of the μ-
mesoatom (mμ ≈ 207me) is ≈ 10−11 s. This value is much smaller than the lifetime of
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a free muon, and illustrates the fact that a muon, upon being captured in an atomic
orbit, falls to the ground level via cascade transitions before finally decaying. This is
also so for the pion atoms, where τπ± ≈ 2.6 · 10−8 s.

Problem 14.2

Find the lifetime of a charged spherical oscillator in the first excited level.

Solution

The wavefunctions of the spherical oscillator were discussed in Problems 4.4 and 4.5.
For the initial and final states in this case, they have the form (compare to the previous
problem):

ψi = ψN=1 =

(
2√
π3a5

)1/2

(ε(m) · r)e−r2/2a2

, |ε|2 = 1,

ψf = ψN=0 =

(
1√
π3a3

)1/2

e−r2/2a2

, a =

√
�

mω
.

(1)

Since the oscillator’s first excited level has angular momentum l = 1, photon emission
has a dipole nature. The matrix element for the dipole moment of transition, d = er, is

dfi = e

√
2

π3a8

∫
(ε · r)re−r2/a2

d3r =
1√
2
eaε, (2)

and the probability of photon emission (per unit of time) is equal to

w =
2

3

e2a2ω3

�c3
=

2

3

(
e2

�c

)(
�ω

mc2

)
ω. (3)

As is seen, w � ω.

Problem 14.3

Find the probability of electromagnetic transition (per unit of time[395]) for a spherical
rotor on the first excited level, if the rotor has moment of inertia I and dipole moment
d directed along its axis.

[395] Hereafter, this statement is omitted for brevity.
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Solution

Wavefunctions of the initial (l = 1) and final (l = 0) states of the rotor have the form
(compare to the two previous problems and to Problem 3.3):

ψi = Ylm =

√
3

4π
ε(m) · n, ψf = Y00 =

√
1

4π
.

The matrix element of the dipole moment, d = d0n, is

dfi =

∫
ψ∗
fd0nψidΩ =

√
3d0
4π

∫
n(ε · n)dΩ =

1√
3
d0ε.

The probability of photon emission, according to Eq. (XIV.10), is equal to

w =
4d20ω

3

9�c3
, �ω = εi − εf =

�
2

I
. (1)

Problem 14.4

Find the probability of electromagnetic transition between two-atom molecular rota-
tional levels (without a change in electronic and oscillatory states) that has dipole
moment d0. The molecule is 1Σ. Consider only the first excited rotational term.

Estimate transition probabilities and compare them to the probability of atomic
dipole transition.

Solution

The properties of two-atom molecular rotational states with Λ = 0 are analogous
to the properties of a spherical rotor with the moment of inertia I = μR2, where μ
is the reduced mass of the molecular nuclei and R is the equilibrium distance between
them. This analogy, mentioned previously in Problem 11.40, translates directly to
photon emission in the molecular system. The probability of the process considered is
described by Eq. (1) of the previous problem.

The estimate of this molecular photon emission probability differs sharply from the
typical value for atomic dipole emission, wat ∼ 109 s−1 (compare to Problem 14.1).
This is due to the smallness, ∼ me/μ, of the molecular rotational energy in comparison
to the electron energy (see Problem 11.25) and consequently of the frequency of
the emitted photon. Since w ∼ ω3, then for the emission probability of a rotational
transition we obtain the estimation wmol ∼ 10−2 s−1 (for concreteness we have used
μ = 3mp).

In conclusion, we note that emission from higher rotational levels in the dipole
approximation appears only for transitions to a neighboring level, i.e., the molecular
rotational level changes by 1: Kf = Ki − 1. The frequency of photon emission is
ω = �Ki/I, while the emission probability, after summation over the independent
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final states of the rotor (different values of moment projection), is described by the
expression:

w(K → K − 1) =
4d20ω

3
K

3�c3
K

2K + 1
.

Problem 14.5

Prove that dipole transitions are forbidden between:

a) levels of an atom with different multiplicity (for example, between the states of
ortho- and parahelium),

b) different hyperfine components of the same atomic term (i.e., between different
sublevels of the same multiplet with given values of L and S).

Solution

a) The operator of dipole moment, d =
∑
a
eara, depends only on the spatial coor-

dinates and so commutes with any spin operator. In particular, d̂Ŝ2 − Ŝ2d̂ = 0,
where S is the total spin. The matrix element of this relation, which corresponds
to transition between states ψi,f with definite values of Si,f gives

[Si(Si + 1)− Sf (Sf + 1)]〈ψf |d̂|ψi〉 = 0.

It follows that dfi = 0 for Si �= Sf , so that dipole emission for such transitions is
absent.

b) All states of hyperfine structure with the same atomic terms have the same parity,
since electrons in them have the same one-particle orbital states. Taking into
account the anticommutativity of the inversion operators Î and dipole moment,
Îd̂+ d̂Î = 0, and calculating the matrix element of this equality between states ψi,f

with definite parities, we obtain (Ii + If )dfi = 0. It follows that dipole emission
for transitions between the states considered is indeed forbidden.

Problem 14.6

For the 2s1/2-state of the hydrogen atom, find the probability of electromagnetic
transition to the 2p1/2-state. Compare this to the probability of transition 2s1/2 →
1s1/2 through a two-photon emission, w2γ ≈ 8 s−1, and to the result of Problem 14.8.
Remember that the difference of energies between 2s1/2- and 2p1/2-levels (the Lamb
shift) is ΔELS ≈ 1058 MHz ≈ 4.4·10−6 eV.

Solution

The wavefunctions in the initial and final states in the hydrogen atom have the form
(see Eq. (IV.4))
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ψi = ψ200χi =
1√
8πa3B

(
1− r

2aB

)
e−r/2aBχi,

ψf = R21(r)
1√
4π

(σ̂ · n)χf =
1√

96πa5B
re−r/2aB (σ̂ · n)χf . (1)

The spinor χi characterizes the spin state of an electron in the initial 2s1/2-state of
atom, while the spinor (σ̂ · n)χf determines the spin-angular part of the 2p1/2-state
(see 5.21). Spinors χi,f are normalized by the condition 〈χ|χ〉 = 1.

The matrix element of the dipole moment for the transition is

dfi = − e

16
√
3πa4B

χ∗
f

{∫
r

(
1− r

2aB

)
r(σ̂ · n)e−r/aBdV

}
χi =

√
3eaBχ

∗
f σ̂χi. (2)

The probability of photon emission according to Eq. (XIV.10) depends on the projec-
tions of the angular momentum in the initial and final atomic states. The summation
of the transition probability over the two independent values, jz = ±1/2, in the final
state is performed with the help of the relation:∑

m=±1/2

|〈χf (m)|σ̂|χi〉|2 =
∑
m

〈χi|σ̂|χf (m)〉〈χf (m)|σ̂|χi〉 =

= 〈χi|σ̂ · σ̂|χi〉 = 3〈χi|χi〉 = 3.

Therefore, the total probability of the transition is

w(2s1/2 → 2p1/2) = 12
e2a2Bω

3

�c3
. (3)

The numerical value is (�ω = ΔELS ≈ 4.4 · 10−6 eV)

w ≈ 0.81 · 10−9 s, τ =
1

w
≈ 39 years (4)

(1 year is 3.15 · 107 s). The small probability of dipole transition and large lifetime
(compare to Problems 14.1 and 14.4) is due to a small frequency of the emitted photon.
See also Problem 14.8.

Problem 14.7

A neutral spin-1/2 particle with the magnetic moment μ (so that μ̂ = μσ̂), is in an
homogeneous magnetic field, H0, and exists in a state with a definite value of the spin
projection onto the direction of the field. Find the probability of photon emission per
unit of time as a result of spin-flip.
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Solution

Interaction between the particle and electromagnetic field is described by

Û = −μ̂ · [H0 +Hrad(r̂)]. (1)

Compare this to Eq. (XIV.2). We use

Hrad(r̂) = ∇×Arad(r̂) =
∑
k,σ

(
2π�c2

ωkV

)1/2

i[k× (ekσâkσe
ik·r − e∗kσâ

†
kσe

−ik·r)].

Neglecting the influence of orbital motion on emission,[396] we consider only the spin
degree of freedom, and put r = 0. The term Ĥ0 ≡ −μ̂ ·H0 = −μH0σ̂z (the z axis is
directed along the external magnetic field) is the unperturbed spin Hamiltonian. Its
eigenfunctions and eigenvalues are described by

ψ1 =

(
1
0

)
, E

(0)
1 = −μH0; ψ2 =

(
0
1

)
, E

(0)
2 = μH0.

Considering for concreteness μ > 0, we find that E
(0)
2 > E

(0)
1 . Under the action of the

perturbation V̂ = −μ̂ ·Hrad(0), a transition from the state ψ2 to ψ1 is possible. This

happens from photon emission with energy �ω = E
(0)
2 − E

(0)
1 = 2μH0 (here state ψ1

is stable with respect to emission: for μ < 0, the roles of states ψ1,2 are interchanged).

Transformations, analogous to Eqs. (XIV.3)–(XIV.7), lead to the following expres-
sion for the differential probability of the transition considered:

dwnσ =
2π

�
|Vfi|2dρ =

μ2ω

2π�c
|[k× e∗kσ] · ψ∗

1σ̂ψ2|2 dΩn. (2)

Denoting

μ1,2 = μψ∗
1σ̂ψ2 ≡ μσ1,2,

which is the matrix element of the magnetic moment, and introducing vector a1,2 =
[k× σ12], we rewrite Eq. (2) in the form:

dwnσ =
ω

2π�c
|e∗kσ · a12|2dΩn. (3)

Compare to Eq. (XIV.7). Summation over photon polarizations, performed as in Eqs.
(XIV.8) and (XIV.9), gives (using k · a12 = 0):

dwn =
∑
σ

dwnσ =
ω

2π�c
{k2|μ12|2 − (k · μ12)(k · μ12)

∗}dΩn, (4)

[396] In particular, neglecting Doppler broadening of spectral lines.
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and after integration over directions of photon escape, we obtain

w =

∫
dwn =

4ω3

3�c3
|μ12|2. (5)

To calculate it, we used the value of integral∫
(a · k)(b · k)dΩ = aibk

∫
kikkdΩ = aibk

4π

3
k2δik =

4π

3
k2(a · b).

Let us note that Eqs. (3)–(5) are general equations of magnetic-dipole emission theory.

Taking into account the explicit form of function ψ1,2 and the Pauli matrices, we
find matrix elements

(σx)12 =
(
1 0

)( 0 1
1 0

)(
0
1

)
= 1, (σy)12 = −i, (σz)12 = 0

and obtain the final expression for the total probability of photon emission for spin-flip
in the magnetic field:

w =
64

3

μ5H3
0

�4c3
. (6)

Problem 14.8

Estimate the probability of a single-photon transition of a hydrogen atom from the
excited 2s1/2-state into the ground 1s1/2-state. Compare this value with the result of
Problem 14.6. What is the transition multipolarity?

Solution

Interaction V̂int between an electron and a radiation field is described by Eq. (XIV.2),
where we put μa = −e�/2mc (−e is the electron charge). The matrix element of
such a perturbation for a single-photon transition is given by Eq. (XIV.4). For
the wavefunctions of initial and final states, ψi,f = ψns(r)χi,f , we should take the
wavefunctions of the corresponding ns-states of the hydrogen atom with the spin
state of the electron taken into account. In this problem, the first term in the matrix
element 〈f |V̂int|i〉, which includes p̂, is zero. Indeed, due to spherical symmetry, we
see that the matrix element

〈ψ1s|e−ik·rp̂|ψ2s〉 ∝ k, but k · ekσ = 0.

For the transitions considered,

〈f |V̂int|i〉 = − ie�

2m

√
2π�

ωkV
〈1s|e−ik·r|2s〉e∗kσ · 〈χ1|[σ̂ × k]|χ2〉. (1)

Due to the fact that kaB � 1, we can expand the exponent in the matrix element (how-
ever, the integral could be calculated exactly; see the value of form-factor F1s→2s(q)
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in Problem 13.80). The first two expansion terms, e−ik·r ≈ 1− ik · r, give zero, the
first vanishes due to wavefunction orthogonality and the second does so due to the
function under the integral being odd. So we have:

〈1s|e−ik·r|2s〉 ≈ −1

2

∫
ψ∗
1s(r)(k · r)2ψ2s(r)d

3r.

This integral gives 29
√
2k2a2B/3

6. The differential probability of photon emission is

dwnσ =
214e2�a2Bω

5

312πm2c7
|(e∗kσ · [σ12 × k])|2 dΩn. (2)

Compare to the transition from Eq. (XIV.5) to Eq. (XIV.7), and also to Eq. (3) from
the previous problem. In Eq. (2),

�ω = �kc = E2s − E1s =
3e2

8aB
,

and we have introduced σ12 = 〈χ1|σ̂|χ2〉. Now we sum Eq. (2) over the photon
polarizations and then integrate over the direction of photon escape, as in the previous
problem. This gives the transition probability:

w12 =
217e2�a4Bω

2

313m2c9
|σ12|2 =

1

24 · 36
(
e2

�c

)9

|σ12|2me4

�3
. (3)

It depends on the electron spin states. To find the total emission probability for the
transition 2s1/2 → 1s1/2 of the hydrogen atom, Eq. (3) must be summed over the two
independent spin states of the 1s-electron. As in Problem 14.6, we obtain

w(2s1/2 → 1s1/2) =
1

24 · 35
(
e2

�c

)9
me4

�3
≈ 0.62 · 10−6 s−1. (4)

This gives the lifetime of the 2s1/2-state with respect to the transition considered.
τ = 1/w ≈ 18 days.

Comparison between the results of this problem and the results of Problem 14.6
with the probability of two-photon transition w2γ ≈ 8 s−1 shows that the one-photon
emission from the 2s1/2-state has a much lower probability (by several orders of
magnitude), than the two-photon transition, i.e., the former is strongly suppressed. In
the conditions of Problem 14.6, such suppression has an obvious reason – the smallness
of emitted photon frequency. The probability of emission is wE1 ∝ ω3.

The suppression of the one-photon transition 2s1/2 → 1s1/2, which has dipole
magnetic character, is explained by the fact that neglecting retardation effects,
e−ik·r ≈ 1, and the transition is forbidden due to orthogonality of wavefunctions’
coordinate parts, as was mentioned before. We should mention that the smallness
of the matrix element (which has an order of magnitude k2a2B ∼ α2 = (1/137)2 and,
correspondingly, α4 ∼ 10−9 in the expression for emission probability) that appears in
the exponential expansion has the same order of magnitude as relativistic corrections
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to the wavefunction. If we take into account the latter, we obtain a nine-fold increase
of probability (4). Therefore, the analysis presented here is qualitative at best.

Problem 14.9

Find the probability of electromagnetic transition between the components of hyper-
fine structure of the hydrogen atom[397] (see Problem 11.2).

Solution

In the hydrogen atom, the triplet level, S = 1, of hyperfine structure is above the
singlet one, S = 0, by ΔEHFS = 1420 MHz≈ 5.9 · 10−6 eV (see Problem 11.2). Wave-
functions of these states have the form (for concreteness we restrict ourselves to the
case of the triplet state with Sz = 0):

ψi = ψ1sχ10 =
1√
2

{(
1
0

)
e

(
0
1

)
p

+

(
0
1

)
e

(
1
0

)
p

}
e−r/a

√
πa3

, (1)

ψf = ψ1sχ00 =
1√
2

{(
1
0

)
e

(
0
1

)
p

−
(
0
1

)
e

(
1
0

)
p

}
e−r/a

√
πa3

.

χSSz
are spin functions of the electron–proton system.

The matrix element of interaction (XIV.2) for one-photon transition between states
(1) has the form:

〈f |V̂int|i〉 = − ie�

2m

√
2π�

ωkV
〈1s|e−ik·r|1s〉e∗kσ · 〈χ00|[σ̂e × k]|χ10〉.

Compare to the derivation of Eq. (1) in the previous problem. (We neglected the
interaction of the proton magnetic moment with the radiation field, since it is about
mp/me ≈ 2 · 103 times weaker than that of the electron.) Replacing the exponent by
unity and calculating the vector components

σ12 = 〈χ00|σ̂e|χ10〉 = (0, 0, 1),

we obtain

〈f |V̂int|i〉 = − ie�

2m

√
2π�

ωkV
e∗kσ · [σ12 × k]. (2)

[397] Note that the emission processes considered here (corresponding to the radio range, a wavelength
of 21 cm) play an important role in astrophysics research; as an example, the redshift of these
spectral lines determines the distances to (receding) galaxies.
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Now, using standard methods (compare, for example, to the solutions of the two
previous problems), we find that the total probability of the transition considered is

w =
e2�k2ω|σ12|2

3m2c3
=

1

3

(
e2

�c

)
(ΔEHFS)

3

�m2c4
≈ 3 · 10−15 s−1, (3)

which corresponds to triplet-level lifetime τ = 1/w ≈ 107 years (such a large value is
connected to the small frequency of the emitted photon, τ ∝ ω−3).

Problem 14.10

What is the multipolarity of emission for the dominant electromagnetic transitions
between fine structure components with the same atomic terms? Estimate the proba-
bility of the corresponding transitions per unit of time.

Solution

Probabilities of one-photon electromagnetic transitions (per unit of time) of different
multipolarity can be estimated as follows:

a) wE1 ∼ d212ω
3

�c3
∼ α3

(
ω

ωat

)3

ωat (1)

for a dipole electric or E1-transition;

b) wM1 ∼ μ2
12ω

3

�c3
∼ α5

(
ω

ωat

)3

ωat (2)

for a dipole magnetic, or M1-transition;

c) wE2 ∼ Q2
12ω

5

�c5
∼ α5

(
ω

ωat

)5

ωat (3)

for a quadrupole electric, or E2-transition.

In the above estimates, we put d12 ∼ eaB , μ12 ∼ e�/mc, Q12 ∼ ea2B as character-
istic values of the matrix elements for dipole, magnetic, and quadrupole moments,
α = e2/�c = 1/137 is fine structure constant, and ωat = me4/�3 = 4.13 · 1016 s−1. For
transitions between different terms, ω ∼ ωat. So probabilities ofM1 and E2 transitions
are of the same order of magnitude (if they are not forbidden by selection rules), and
are α−2 ∼ 104 times lower than E1-transitions.

The specifics of emission for transitions between fine structure components with
the same atomic terms are determined by the two following facts. First, corresponding
atomic states have the same parity, and E1-transitions between them are forbidden
(see Problem 14.5). Second, the transition energy of photons emitted is of the order of
the fine structure interval, i.e., their frequencies are small: ω ∼ α2ωat. A comparison
of Eqs. (2) and (3) shows that the probability of an E2-transition is α−2 ∼ 104 times
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lower than the probability of a M1-transition. Quadrupole emission is strongly sup-
pressed, and magnetic dipole transitions are dominant. For such transitions, a selection
rule states that |ΔJ | = 0 or 1. When the energy of fine structure levels changes
monotonically with increase in J , M1-transitions appear between the neighboring
components of the fine structure. Estimation of the emission probability according to
Eq. (2) with ω ∼ α2ωat gives

wM1 ∼ α11ωat = α12 c

aB
≈ 10−7 s−1.

Problem 14.11

For a particle in the field U(r), prove the validity of the following relations (the
so-called “sum rules,” compare to Problem 6.13):

a)
∑
m

|〈m|x|n〉|2 = 〈n|x2|n〉;

b)
∑
m

ωmn|〈m|x|n〉|2 =
�

2μ
;

c)
∑
m

ω2
mn|〈m|x|n〉|2 =

1

μ2
〈n|p̂2x|n〉;

d)
∑
m

ω3
mn|〈m|x|n〉|2 =

�

2μ2
〈n|∂

2U

∂x2
|n〉.

We use μ for particle mass, summation is performed over all stationary states, and |n〉
is a stationary state of the discrete spectrum, 〈n|n〉 = 1.

Solution

To prove the “sum rules”, we should use the completeness condition,
∑
m

|m〉〈m| = 1,

the equality ωmn = −ωnm, the property xmn = (xnm)∗, and also relations

ωmnxmn =
1

�
〈m|[Ĥ, x̂]|n〉 = − 1

μ
〈m|p̂x|n〉,

ω2
mnxmn = −i

ωmn

μ
(px)mn = − 1

μ�
〈m|[Ĥ, p̂x]|n〉 = 1

μ
〈m|∂U

∂x
|n〉.

Next, we make the following transformations:

a)
∑
m

|〈m|x|n〉|2 =
∑
m

〈n|x|m〉〈m|x|n〉 = 〈n|x2|n〉;

b)
∑
m

ωmn|〈m|x|n〉|2 =
i

2μ

∑
m

{〈n|p̂x|m〉〈m|x|n〉 − 〈n|x|m〉〈m|p̂x|n〉} =
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=
i

2μ
〈n|[p̂x, x̂]|n〉 = �

2μ
;

c)
∑
m

ω2
mn|〈m|x|n〉|2 =

1

μ2

∑
m

〈n|p̂x|m〉〈m|p̂x|n〉 = 1

μ2
〈n|p̂2x|n〉;

d)
∑
m

ω3
mn|〈m|x|n〉|2 = − i

2μ2

∑
m

{
〈n|∂U

∂x
|m〉〈m|p̂x|n〉 −

− 〈n|p̂x|m〉〈m|∂U
∂x

|n〉
}

=
i

2μ2
〈n|

[
p̂x,

∂U

∂x

]
|n〉 = �

2μ2
〈n|∂

2U

∂x2
|n〉.

Similar relations are valid for the y- and z-components. If on the left-hand sides of
relations, we replace matrix elements |〈m|x|n〉|2 by |〈m|r|n〉|2, then the right-hand
sides become equal to

a) 〈n|r2|n〉; b)
3�

2μ
; c)

1

μ2
〈n|p̂2|n〉; d)

�

2μ2
〈n|ΔU |n〉.

Note that for a particle in the Coulomb potential, U = −α/r, we have ΔU = 4παδ(r),
so that in the case d, the sum becomes equal to

∑
m

ω3
mn|〈m|r|n〉|2 =

2πα�

μ2
|ψn(0)|2,

and is zero for states |n〉 with an angular momentum different from zero.

14.2 Photon scattering; Photon emission in collisions

Problem 14.12

Find the differential and total cross-section of a photon elastic scattering off of a free
charged particle. Compare to the result of classical electrodynamics.

Solution

We will calculate the probability of transition per unit of time for a “particle+photon”
system from the initial state, described by the wavefunction

ψi = |1k1σ1
, 0, . . . 〉 1√

V
exp

{
i

�
p1 · r

}
; p1 = 0, E1 = �ω1, (1)

into a state with the wavefunction

ψf = |1k2σ2
, 0, . . . 〉 1√

V
exp

{
i

�
p2 · r

}
; Ef =

p22
2m

+ �ω2, (2)
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under the action of the perturbation (compare to Eq. (XIV.2))

V̂ = − e

mc
Ârad(r) · p̂+

e2

2mc2
Â2

rad(r). (3)

It is determined by the general equation of the second order of perturbation theory

dwfi =
2π

�

∣∣∣∣∣Vfi +
∑′

ν

VfνVνi

Ei − Eν

∣∣∣∣∣
2

dρf . (4)

The specifics of perturbation (3) is in that it contains terms of different order (both
linear and quadratic) in the expansion parameter - the fine-structure constant, α =
e2/(�c). Therefore, first-order perturbation theory in ∝ e2A2 should be accompanied
by second-order perturbation theory in the other linear-in-the-field term in Eq. (3).
Note that the matrix element Vfi is determined entirely by the former (quadratic-in-
the-field) term, while the intermediate matrix elements, Viν and Vνf , in the second-
order sum are on the contrary determined by the latter. Since in our case, p̂ψi =
p1ψi = 0, the sum in Eq. (4) vanishes, and we get

〈f |V̂ |i〉 = e2

2mc2
〈f |Ârad(r) · Ârad(r)|i〉 =

2πe2�

m
√
ω1ω2V 2

(e∗2 · e1)
∫

exp
{
i
(
k1 − k2 − p2

�

)
· r
}
d3r =

2πe2�

m
√
ω1ω2V 2

(e∗2 · e1)δk1, k2+p2/�. (5)

(Compare to the derivation of Eq. (XIV.4); we used e1 instead of ek1σ1
, etc.).

The factor δk1, k2+p2/� in Eq. (5) enforces momentum conservation in the process of
photon scattering, and means that the final state is determined by quantum numbers
k2, σ2 of the photon. Here, we can neglect recoil energy, since

p2 ∼ �k1,2 � mc, E2 =
1

2m
p22 ∼ 1

m
�
2k21,2 ≡ �kc

�k

mc
� �ω1,2.

Using Eq. (XIV.6) for final density of states dρf with ω = ω2 ≈ ω1, according to Eq. (4)
and (5), we obtain:

dσ =
V

c
dw =

e4

m2c4
|(e∗2e1)|2dΩ2. (6)

For the relation between differential cross-section and probability, see Problem
(XIV.14).

Let us point out that for a vector particle (spin sv = 1) with non-zero mass, the
dependence of the elastic scattering amplitude on polarization vectors, in the form
f = A(e∗2 · e1), means that its polarization is conserved in the scattering. However, in
the case of photon scattering we have a different situation because of its transverse
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polarization. This leads to the appearance of polarization even for scattering of initially
non-polarized photons. For example, if the scattering angle is θ = π/2, the photon
becomes totally linear polarized in the direction perpendicular to the scattering plane.

Now we will calculate the scattering differential cross-section for non-polarized pho-
tons. Writing |(e∗2 · e1)|2 = e∗2ie1ie2ke

∗
1k and applying relation (XIV.8) to Eq. (6), we

can the average over polarizations of the incident photons and sum over polarizations
of scattered ones, to obtain a differential scattering cross-section for the non-polarized
photons by a free charge (θ is the scattering angle, k1 · k2 = k2 cos θ):

dσ =
1

2
r20(1 + cos2 θ)dΩ, r0 =

e2

mc2
. (7)

Here r0 is the classical radius of the charged particle. Integration over the angles gives
the total scattering cross-section

σ =
8π

3
r20.

See that this does not depend on the polarization of the incident beam.

Eq. (7) and (8) do not include the Planck constant, and coincide with corresponding
results, the Thomson formula, of classical electrodynamics (quantum effects appear in
the relativistic domain, where �ω � mc2).

Problem 14.13

Find the differential and total cross-sections of photon elastic scattering from a
spherical rotor with the moment of inertia I and electric dipole moment d (directed
along the rotor axis), and which is in the ground state (see also the following problem).

Solution

The “rotor+photon” system transitions from the initial state, described by the wave-
function,

ψi = |1k1σ1
, 0, . . . 〉Y00, Ei = �ω1,

into the final state

ψf = |1k2σ2
, 0, . . . 〉Y00, Ef = �ω2,

under the influence of the interaction between the rotor[398] and the radiation field
V̂ = −d0n · Erad(0) (see Eq. (XIV.12)) and these transitions appear only in the
second order of perturbation theory. The transition probability (per unit of time) is
defined by the general equation, given in the previous problem. Here, we have Vfi = 0,

[398] We consider only intrinsic degrees of freedom of the rotor, neglecting recoil effects, and assume
that it is localized at the point r = 0 as a whole.
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and only the following intermediate states contribute to the sum:

ψν1 = Y1m(n)|1k1σ1
, 1k2σ2

, 0, . . . 〉, Eν1 =
�
2

I
+ �ω1 + �ω2;

ψν2 = Y1m(n)|0〉γ , Eν2 =
�
2

I
.

The rotor is in the first excited level with l = 1 (for other states, the matrix element of
the dipole moment in the perturbation operator is equal to zero). Taking into account
the fact that ω1 = ω2 = ω, the frequencies of incident and scattered photons are the
same, and Eq. (XIV.6) for the final density of states dρf , we find:

dw =
d40ω

4

c3V

∣∣∣∣∣∑
m

〈Y00|ni|Y1m〉〈Y1m|nk|Y00〉
[

e∗2ie1k
�ω − �2/I

− e∗2ke1i
�ω + �2/I

]∣∣∣∣∣
2

dΩ2. (1)

The sum over m here can be calculated if we note that summation over m for l = 1
could be extended to all possible values of l, m, since 〈Y00|n|Ylm〉 �= 0 for only l = 1.
Using the completeness condition for the spherical functions,

∑
lm

|Ylm〉〈Ylm| = 1, and

taking into account the value of the integral

〈Y00|nink|Y00〉 = 1

4π

∫
ninkdΩ =

1

3
δik,

we obtain the differential cross-section of photon elastic scattering by a spherical rotor
in the ground state:

dσ =
V

c
dw =

1

4π
σ0|(e∗2 · e1)|2

ω4

(ω2 − �2/I2)2
dΩ2, (2)

σ0 =
16π

9

d40
I2c4

. (3)

For the relation between the scattering cross-section and transition probability, see
Eq. (XIV.14).

Let us note that the polarization effects in photon elastic scattering from the rotor
are the same as for photon-scattering from a free charge. Compare Eq. (2) to Eq.
(6) of the previous problem. Following the previous problem (averaging and summing
over photon polarizations), we find that the differential scattering cross-section of the
non-polarized photon beam is

dσ =
1

8π
σ0

ω4

(ω2 − �2/I2)2
(1 + cos2 θ)dΩ. (4)

Integration over the angles gives the total cross-section from the unexcited rotator:
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σ(ω) =
2

3
σ0

ω4

(ω2 − �2/I2)2
. (5)

In the limiting cases, we have

σ(ω) ≈
{

2
3σ0

(
Iω
�

)4
for �ω � �

2

I ,
2
3σ0 for �ω � �

2

I .
(6)

For the frequency ω → �/I, the scattering cross-section increases indefinitely, which
reflects its resonant character (resonant fluorescence) and corresponds to the possibil-
ity of exciting the rotor via photon absorption (for such frequencies, Eqs. (2), (4), and
(5) do not apply directly).

In connection to this problem, see also Problem 14.14, where we consider photon
inelastic scattering by a rotor.

Problem 14.14

In the conditions of the previous problem, find the differential and total photon
inelastic scattering cross-section by the rotor. What states of the rotor get excited
as a result of this process?

Solution

The solution goes along the lines of the previous problem with minor modifications.
Since in the case |l − l′| �= 1, the matrix elements 〈Ylm|n|Yl′m′〉 = 0, we see that
inelastic photon scattering occurs in second-order perturbation theory and these
processes only excite the rotor into states with angular momentum, l = 2. The possible
final states are described by the wavefunction,

ψf = Y2m(n)|1k2σ2
, 0, . . . 〉 and Ef =

3�2

I
+ �ω2 = �ω1.

We follow the previous problem and obtain the differential cross-section of photon
inelastic scattering by the rotor as follows

dσ2m =
d40ω1ω

3
2

c4
|〈2m|nink|0〉e∗2ie1k|2

I2

(�+ Iω2)2(�− Iω1)2
dΩ2. (1)

Now we sum over projections of rotor’s angular momentum, m. To do this, we first
write

|〈2m|nink|0〉e∗2ie1k|2 = e∗2ie1ke2le
∗
1m〈0|nlnm|2m〉〈2m|nink|0〉
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and use the relation ∑
m

〈0|nsnl|2m〉〈2m|nink|0〉 =

=
∑
lm

〈0|nsnl|lm〉〈lm|nink|0〉 − 〈0|nsnl|0〉〈0|nink|0〉 =

= 〈0|nsnlnink|0〉 − 〈0|nsnl|0〉〈0|nink|0〉 = 1

45
{3δisδkl + 3δilδks − 2δikδsl}.

In the above calculation, we took into account that the terms of the sum over l, m are
different from zero only for l = 0 and 2, the completeness condition for the spherical
functions, and the values of integrals

〈0|nink|0〉 = 1

4π

∫
nink dΩ =

1

3
δik,

〈0|ninknsnl|0〉 = 1

15
(δikδsl + δisδkl + δslδks).

As a result of these transformations, we obtain:

dσ =
∑
m

dσ2m =
d40ω1ω

3
2

45c4
I2

(�+ Iω2)2(�− Iω1)2
(3 + |e∗2 · e1|2)dΩ2. (2)

After averaging and summing over photon polarizations (before and after scattering;
compare to Problem 14.12), the differential cross-section of unpolarized photon inelas-
tic scattering takes the form:

dσinel

dΩ
=

3

160π
(13 + cos2 θ)σinel(ω1). (3)

The total cross-section of inelastic scattering is

σinel(ω1) =
16π

27

d40ω1ω
3
2

c4
I2

(�+ Iω2)2(�− Iω1)2
. (4)

In the vicinity of the rotor’s excitation threshold, i.e., for �ω1 → 3�2/I, we obtain

σinel ≈ 4π

9

Id40
�3c4

(
ω1 − 3�

I

)
∝ ω3

2 , (5)

and for large photon frequencies, it becomes

σinel ≈ 16π

27

d40
I2c4

, ω1 ≈ ω2 � �

I
. (6)

The latter expression, as well as the photon elastic scattering cross-section, σelast,
determined in the previous problem, does not contain the Planck constant.
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The total scattering cross-section

σtot = σelast + σinel ≈ 16π

9

d40
I2c4

, ω � �

I
(7)

coincides with the result of classical electrodynamics for the scattering cross-section
of an electromagnetic wave by a spherical rotor.

Problem 14.15

Find the differential and total photon-scattering cross-section from a charged spherical
oscillator in the ground state.

Solution

Calculation of the scattering cross-section follows Problem 14.13. It is convenient to
use Eq. (XIV.12) for particle interaction with a radiation field. Taking into account the
form of the wavefunction for a spherical oscillator (see Problems 4.4 and 4.5), and the
fact that for a (linear) oscillator, matrix elements of the dipole moment are different
from zero for transitions between the neighboring levels only (see Problem 11.3), we
see that the only difference between the calculation of the photon cross-section by the
oscillator in comparison to scattering by a rotor in Problem 14.13 is to replace the
spherical functions Y00 and Ylm by the wavefunctions of the oscillator ψnrlm:

ψ000 =
2

(πa6)1/4
e−r2/2a2

Y00, ψ01m =
2
√
6

(πa10)1/4
re−r2/2a2

Y1m.

a2 = �/mω0 and the rotor energy El is replaced by EN = �ω0(N + 3/2). So the matrix
element of the dipole moment for the rotator, d0〈Y1m|n|Y00〉, is replaced by

〈01m|er|000〉 =
√

3

2
ea〈Y1m|n|Y00〉.

As in the case of the photon scattering by a rotor in the second order of perturbation
theory, only the first excited oscillator level with the angular momentum l = 1 con-
tributes to the sum over intermediate states. Again, extending the summation over the
l = 1 projections to all relevant oscillator Hamiltonian eigenfunctions is possible and
useful. As a result, we obtain the differential photon elastic scattering cross-section
from an oscillator (instead of Eq. (2) from Problem 14.13 in case of a rotor):

dσ =
e4

m2c4
|(e∗2 · e1)|2

ω4

(ω2 − ω2
0)

2
dΩ. (1)

For the scattering of an unpolarized photon after averaging (summing) over photon
polarizations (compare to Problem 14.12), we have

dσ

dΩ
=

3

16π
(1 + cos2 θ)σ(ω). (2)
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The total scattering cross-section of a photon by the oscillator is

σ(ω) =
8π

3

(
e2

mc2

)2
ω4

(ω2 − ω2
0)

2
. (3)

Again, the results do not contain the Planck constant, and coincide with classical
results for electromagnetic waves scattered by an oscillator. Compare this to the
previous problem. In the context of this comparison, we should mention that for
photon-scattering by the oscillator, no inelastic scattering occurs in second-order
perturbation theory, i.e., the oscillator is not excited, in contrast to the scattering
by a rotor.

Problem 14.16

Find the differential and total scattering cross-sections of photons from a neutral
particle with spin s = 1/2 and magnetic moment μ. Consider the following cases:

a) No spin-flip occurs as a result of scattering and the particle remains in the initial
spin state with sz = +1/2 (with the z-axis along the momentum of incident
photons).

b) The collision process does involve a spin-flip, i.e., in the final state we have
sz = −1/2.

c) A spin state after collision is not detected.

Generalize the result obtained to a particle with arbitrary spin.

Solution

Focusing only on the spin degree of freedom (i.e., neglecting recoil effects for the
scattering), we consider for concreteness that the particle is localized at the point
r = 0. We now calculate the transition probability from the initial state

ψi = χ1|1k1σ1
, 0, . . . 〉, Ei = �ω1

into the final state (here χ1,2 are the corresponding spin functions)

ψf = χ2|1k2σ2
, 0, . . . 〉, Ef = �ω2

under the influence of perturbation V̂ = −μ̂ · Ĥrad(0). Compare to Problem 14.7.

A transition appears in the second order of perturbation theory, and its probability
is given by the equation:

dw =
2π

�

∣∣∣∣∣∑′

ν

VfνVνi

Ei − Eν

∣∣∣∣∣
2

dρf . (1)
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In this problem, the sum over intermediate states, |ν〉, contains four terms, corre-
sponding to the following wavefunctions (with sz = ±1/2)

ψν1 = χsz |0, 0, . . . 〉, Eν1 = 0;

ψν2 = χsz |1k1σ1
, 1k2σ2

, 0, . . . 〉, Eν2 = 2�ω.

As usual, χsz=+1/2 =

(
1
0

)
, χsz=−1/2 =

(
0
1

)
and we have taken that: ω1 = ω2 = ω.

The sum in Eq. (1) takes the form:

2πμ2c2

ω2V

∑
sz

{〈χ2|σ̂ · a∗2|χsz 〉〈χsz |σ̂ · a1|χ1〉 − 〈χ2|σ̂ · a1|χsz 〉〈χsz |σ̂ · a∗2|χ1〉}.

We have introduced a1(2) = [e1(2) × k1(2)]. If we take into account the completeness
condition,

∑
sz

|χsz 〉〈χsz | = 1, we obtain:

∑′

ν

VfνVνi

Ei − Ef
=

2πμ2c2

ω2V
a∗2ia1k〈χ2|σ̂iσ̂k − σ̂kσ̂i|χ1〉 =

= 4πi
μ2c2

ω2V
a∗2ia1kεikl〈χ2|σ̂l|χ1〉.

We have used the commutation relations for the Pauli matrices, σ̂iσ̂k − σ̂kσ̂i = 2iεiklσ̂l.
Taking into account Eqs. (XIV.6) and (XIV.14), we find the differential cross-section
for a photon in a magnetic field:

dσ21 =
4μ2

�2ω2
|εikla∗2ia1kχ∗

2σ̂lχ1|2dΩ2. (2)

We perform averaging (summation) over photon polarizations. We obtain

|εikla∗2ia1k(σl)21|2 = (σl)21(σt)
∗
21εiklεmnta

∗
2ia1ka2ma∗1n.

Since a1k = εkspe1sk1p, then using Eq. (XIV.8) we obtain

a1ka∗1n =
1

2

∑
σ1

εkspe1sk1pεnuwe
∗
1uk1w =

1

2
k1pk1wεkspεnuw

(
δsu − 1

k2
k1sk1u

)
=

1

2
εkpsεnwsk1pk1w.

Analogously, we have ∑
σ2

a∗2ia2m = εipsεmwsk2pk2w.
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Now we integrate over the angles of photon scattering:∫ ∑
σ2

a∗2ia2mdΩ2 = εipsεmws · 4π
3
k2δpw =

8π

3
k2δim.

As a result of the transformations above, we obtain the scattering cross-section for
non-polarized photons in the form:

σ21 =
16π

3

μ4

�2c2
(σl)21(σl)

∗
21εiklεintεkpsεnwsk1pk1w,

or, using relation εiklεint = δknδlt − δktδln,

σ21 =
16π

3

μ4

�2c2
(σl)21(σt)

∗
21{δltk2 + k1tk1l} =

16π

3

k2μ4

�2c2

{
|σ21|2 +

∣∣∣∣σ21 · k1

k

∣∣∣∣2
}
. (3)

The cross-section depends on particle spin state before and after the collision. Let us
note the following cases:

a) The cross-section from a pure spin state with polarization vector P, |P| = 1,
without change of the spin state, is

σ↑↑ =
16π

3

μ4ω2

�2c4

{
1 +

(
P · k1

k

)2
}

=
16π

3

μ4ω2

�2c4
(1 + cos2 α), (4)

where α is the angle between the vectorsP and k1. As can be seen, this cross-section
is maximum if the spin is directed along the momentum of incident photons (α = 0
or π).

b) The same as in the previous case, but with a spin-flip, i.e., Pf = −P:

σ↑↓ =
16π

3

μ4ω2

�2c4
(2 + sin2 α). (5)

c) The scattering cross-section in the case, where the particle spin state after collision
is not detected:

σ = σ↑↑ + σ↓↑ =
64π

3

μ4ω2

�2c4
. (6)

This cross-section, unlike (4) and (5), does not depend on the initial polarization.

For a particle with arbitrary spin, s, we have μ = μs/s. It can be shown that the
total photon scattering cross-section by unpolarized particles, summed over the final
spin states of the photon and particle, is equal to

σ =
16π

9

μ4ω2

�2c4
s+ 1

s3
, (7)
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which for s � 1 coincides with the result of classical electrodynamics for the cross-
section of an electromagnetic wave scattered by a magnetic moment, averaged over
different orientations of the classical moment

σcl =
16π

9

(κμω
c2

)2

. (8)

Here κ, the gyromagnetic ratio, is determined by the relation μ = κM, where M is
mechanical angular momentum.

Problem 14.17

Express the photon scattering cross-section in the small-frequency limit, �ω → 0, from
an atom in a stationary state with zero angular momentum, in terms of atomic polar-
izability β0 (which determines a level shift in a uniform electric field, ΔE = −β0E2/2).

Solution

We are interested in the transition probability between the states

ψi,f = ψ0|1ki,fσi,f
, 0, . . . 〉, Ei,f = E0 + �ω

(ψ0 is the atomic wavefunction) under the influence of interaction between the
electrons and the radiation field. In the dipole approximation, it is described by Eq.
(XIV.12) with d = −e

∑
ra (summation is performed over all atomic electrons), and

is calculated according to the known equation of second-order perturbation theory:

dw =
2π

�

∣∣∣∣∣∑′

ν

VfνVνi

Ei − Eν

∣∣∣∣∣
2

dρf . (1)

In this case, Vfi = 0. Contributions to the sum come from intermediate states of two
types, whose wavefunctions and energies are as follows

ψν1 = ψn|0, 0, . . . 〉, Eν1 = En;

ψν2 = ψn|1k1σ1
, 1k2σ2

, 0, . . . 〉, Eν2 = En + 2�ω.

ψn, En are wavefunctions and energies of atomic stationary states. If we take into
account relations (XIV.12) and (XIV.13), the sum takes the form:

2πω

V

∑′

n

〈0|di|n〉〈n|dk|0〉
{

e∗2ie1k
ω0n + ω

+
e∗2ke1i
ω0n − ω

}
.

These two sums have the same tensor structure (due to spherical symmetry):∑′

n

〈0|di|n〉〈n|dk|0〉
ω0n ± ω

= B(±ω)δik.
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Performing a convolution over the indices i and k, we obtain

B(±ω) =
1

3

∑′

n

|〈n|d|0〉|2
ω0n ± ω

. (2)

In the limit, ω → 0, we find∑′

ν

VfνVνi

Ei − Eν
≈ 4πω

V
B(0)(e∗2 · e1).

Knowing that B(0) = − 1
2�β0 and using relations (XIV.6) and (XIV.14), we obtain

the small-frequency limit of the differential cross-section of photon-scattering from an
atom:

dσ =
β2
0ω

4

c4
|e∗2 · e1|2dΩ. (3)

After averaging and summing over photon polarizations (compare to Problem 14.12),
we obtain the differential cross-section and total scattering cross-section of non-
polarized photon scattering:

dσ

dΩ
=

β2
0ω

4

2c4
(1 + cos2 θ), σ(ω) =

8π

3

β2
0ω

4

c4
. (4)

As an illustration of this relation, see Problems 14.13 and 14.15 that discuss photon
scattering on a rotor and an oscillator, respectively; polarizabilities for these systems
were found in Problems 8.10 and 8.2.

In conclusion, note that Eq. (4) does not contain the Planck constant (unlike
the polarizabilities of quantum systems), and coincides with the analogous results
from classical electrodynamics for an electromagnetic wave scattered by a polarizable
system.

Problem 14.18

Find the cross-section of the photoelectric effect for a hydrogen-like atom in the ground
state. Assume that the photon frequency satisfies the condition �ω � I, where I is
the atomic ionization potential.

Solution

In the “hydrogen-like atom+photon” system – that is, in the state described by the
wavefunction,

ψi = ψ0(r)|1kσ, 0, . . . 〉; ψ0 =
1√
πa3

e−r/a, Ei = �ω − m(Ze2)2

2�2

(a = �
2/Zme2) – ionization of the atom could occur as a result of photon absorption

by the electron, under the action of the perturbation V̂ = e
mcÂrad(r) · p̂ (compare to
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Eq. (XIV.2)). Since in our case, energy is equal to Ef ≈ �ω � I = m(Ze2)2/2�2, i.e.,
the escaping electron is fast, then in the final state we can neglect the effect of the
nucleus on the electron and choose the corresponding wavefunctions in the form:

ψf =
1√
V

exp

{
i

�
p · r

}
|0〉γ , Ef =

p2

2m
.

The transition probability is given the equation dw = 2π
�
|Vfi|2dρf , where the matrix

element of perturbation is described by (see Eq. (XIV.4))

Vfi =
e

mV

√
2�

ωa3
ekσ ·

∫
e−ip·r/�+ik·rp̂e−r/ad3r. (1)

The integral is easy to calculate, if we first act by the operator p̂ on the exponent on
the left. We obtain

8π�a3

(1 + a2κ2)2
κ ≈ 8π�4

p4a
p,

where κ = p/�− k. We have taken into account that p � �k, as follows from the
relations

p2

2m
≈ �ω = �ck � mc2.

Neglecting k corresponds to replacing eik·r → 1 in the dipole approximation. Also,
pa/� � 1 due to the condition �ω � I. Finally, taking into account the expression for
the density of states,

dρf =

∫
δ

(
�ω − I − p2

2m

)
V p dp2dΩ

2(2π�)3
=

mpV

(2π�)3
dΩ,

and relation (XIV.14) between the cross-section and the transition probability, we find
the photo-effect differential cross-section:

dσ = 32
e2�

mc

I5/2

(�ω)7/2

∣∣∣∣ekσ · p
p

∣∣∣∣2 dΩ. (2)

If we average over photon polarizations using relations (XIV.8), which gives
|ekσ · p|2 = 1

2p
2 sin2 θ (θ is the angle between the vectors p and k), we obtain the

photo-effect differential cross-section for unpolarized photons:

dσ = 32Z5

(
e2

�c

)(
�
2

me2

)2(
I0
�ω

)7/2

sin2 θ dΩ. (3)

Note that electrons tend to escape in a direction perpendicular to photon momentum,
which reflects the dominance of photon’s “wave-like” properties in the non-relativistic
case. The electromagnetic wave exerts the Lorentz force on the electron in this
direction. In the relativistic case, for “harder” photons, their corpuscular properties
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begin to play out, which leads to electrons escaping primarily in the direction of photon
momentum.

Integration of Eq. (3) over the angles gives the total photo-effect cross-section,

σ(ω) =
256π

3
Z5

(
e2

�c

)(
�
2

me2

)2(
I0
�ω

)7/2

, (4)

where I0 = I/Z2 = 13.6 eV is the ionization potential of the hydrogen atom. Cross-
section (4) for the values Z = 1 and �ω = 5 keV is ≈ 6 · 10−26 cm2.

Eq. (4), multiplied by 2 (for the K-electron), could be also used for an (approx-
imate) calculation of the photo-effect cross-section for atoms that are not hydrogen-
like. The contribution into the cross-section from other atomic electrons in the excited
states is lower than that of K-electrons; they are more weakly bound to the nucleus,
and in the limit of free electrons, photon absorption does not take place. Estimation of
the photo-effect cross-section on such atomic electrons could be performed in the way
analogous to that used in the following problem for radiative electron recombination.

Problem 14.19

Find the cross-section of fast electron radiative recombination with a proton at rest
(the inverse process of photo-effect), assuming that the final state’s hydrogen atom is
in the ground state.

Solution

The solution follows the previous problem with minor changes and simple substi-
tutions. (Recall that the general relation between cross-sections of mutually inverse
processes, such as the photoelectric effect and electron radiation recombination, follows
directly from the principle of detailed balance; see Problem 13.93). Permutation of the
initial and final states does not change the value of |Vfi|2, since the operator, V̂ , is
Hermitian. Below, we list the changes that are required compared to the solution of
Problem 14.18:

1) In the expression for the final density of states, now dρf is described by Eq. (XIV.6)
with �ω = εe + I ≈ εe.

2) Expression (XIV.14), which relates the probability and cross-section, here we have
dσ = V dw/ve.

3) Replace averaging over photon polarizations by a summation over them, which
results in an additional factor of 2 in the cross-section.

As a result, we obtain the following expressions for the differential and total cross-
sections of fast electron radiative recombination into the ground state of a hydrogen-



804 Exploring Quantum Mechanics

like atom (ion):

dσrec,1s = 16Z5

(
e2

�c

)3(
�
2

me2

)2(
I0
εe

)5/2

sin2 θ dΩ, (1)

σrec,1s =
128π

3
Z5

(
e2

�c

)3(
�
2

me2

)2(
I0
εe

)5/2

.

We should note that the recombination of fast electrons into an excited level of the
atom has a much lower cross-section. Indeed, from (1) of the previous problem it
follows that Vif ∝ (e · p)φi(p), where φi(p) is the wavefunction of the appropriate
electron state in the momentum representation. For ns-states, the asymptote of this
wavefunction for large momenta has the form φns ≈ C/

√
n3p4, so that[399] σrec,ns ∝

1/n3 (for states with angular momentum l �= 0, both the wavefunction φnl(p), and
the recombination cross-section decrease in the p → ∞ limit faster than those in the
case of s-states; see Problem 4.18). Accounting for the recombination to excited levels
is reduced to a multiplication of the cross-sections (1) by

∑
n
n−3 = ζ(3) = 1.202 (ζ(s)

the Riemann ζ function), i.e., these processes increase the recombination cross-section
by only 20%.

Problem 14.20

Find the differential and total cross-sections of deuteron photodisintegration, i.e., the
process γ + d → p+ n.

Hint

Use the wavefunction in a zero-range potential to model the deuteron and approximate
both the proton and the neutron as free in their final states.

Solution

The deuteron photo-disintegration process is physically reminiscent of the photo-effect,
and hence the calculation here follows closely the solution of Problem 14.18. Below
we mention modifications that are to be made in the current problem compared to
Problem 14.18.

We approximate the deuteron wavefunction by

ψ0(r) = Cκ0

√
κ

2π

e−κr

r
, ε0 =

�
2κ2

M
, (1)

where ε0 is the deuteron binding energy, M is the nucleon mass, μ = M/2 is the
reduced mass of the pn-system, and Ei = �ω − ε0. Note that we have included the
asymptotic coefficient, Cκ0, which takes into account finite-size effects (see Problem
12.1 and also Problem 11.36).

[399] Note that the photo effect cross-section from the excited ns-state of a hydrogen-like atom has the
same dependence, σns ∝ n−3.
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In the expression for the interaction (now of the proton) with the radiation field, we
should substitute e → −e, m → M , r → rp = r/2. The form of the final wavefunction,
ψf , does not change, but here Ef = p2/M .

So the value of the integral in the perturbation matrix element becomes (see Eq.
(1) from Problem 14.18)∫

e−ip·r/�p̂
e−κr

r
d3r =

4π�2

(p2 + �2κ2)
p. (2)

The term ik · r/2 in the exponent is omitted as in Problem 14.18.

The density of final states is

dρf =

∫
δ

(
�ω − ε0 − p2

M

)
V d3p

(2π�)3
=

MpV dΩ

2(2π�)3
,

p =
√
M(�ω − ε0).

Summarizing, we obtain the following expression for the differential cross-section of
deuteron photo-disintegration:

dσ = 2
e2

�c
C2

κ0

p
√
ε0

�M5/2ω3
|e · p|2dΩ. (3)

After averaging over photons polarizations (compare to Problem 14.18), we obtain:

dσ =
e2

�c
C2

κ0

p3
√
ε0

�M5/2ω3
sin2 θ dΩ. (4)

Integration gives the total cross-section of deuteron photo-disintegration:

σ =
8π

3

e2

�c
C2

κ0

√
ε0(�ω − ε0)

3/2

M�ω3
. (5)

In conclusion, we briefly comment on the applicability of these results. The above
derivation was based on the zero-range approximation for the pn-interaction potential.
This approximation assumes that only the distances much larger than those involved
in the nuclear forces are important. As is seen from Eq. (2), this is valid for p ∼ �κ,
i.e., for photon frequencies with �ω ∼ ε0. However, this condition breaks down if the
momenta of escaping nucleons, p � �/r0, where r0 is the nuclear interaction radius.
For large momenta, due to the exponent in integral (2), fast oscillations and small
distances are important, so the details of the deuteron wavefunction are important.

Problem 14.21

Find the differential cross-section of braking radiation (bremsstrahlung) for electrons
in the Coulomb field of a nucleus. Analyze the angle and spectral distribution of the
photons emitted. Electron–nucleus interaction should be considered as a perturbation.
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Solution

1) The Bremsstrahlung process involves a fast electron in the initial state,

ψi =
1√
V

exp

{
i

�
p1 · r

}
|0〉γ , Ei =

1

2m
p21.

The perturbation below leads to electron scattering with a single photon emission

V̂ = −Ze2

r
+

e

mc
Ârad(r) · p̂. (1)

Compare to Eq. (XIV.2). The term ∝ Â2
rad is omitted, since it induces transitions

involving an even number of photons.
The final wavefunction is

ψf =
1√
V

exp

{
i

�
p2 · r

}
|1kσ, 0, . . . 〉, Ef =

1

2m
p22 + �ω.

The Bremsstrahlung transition probability in second-order perturbation theory
reads

dw =
2π

�

∣∣∣∣∣∑′

ν

VfνVνi

Ei − Eν

∣∣∣∣∣
2

dρf . (2)

Note that perturbation matrix element Vfi is already in first-order perturbation
theory due to the second term in Eq. (1). But it contains the factor δp1,p2+�k,
which expresses momentum conservation for the photon emission by a free electron,
which when combined with energy conservation, shows that the emission of a
photon by a free electron is impossible. So, interaction with the external field,
which leads to momentum transfer to the nucleus, is the essential element of the
process considered.
Intermediate states, |ν〉, in the sum (2) that provide a non-zero contribution are

described by the wavefunctions of two types:

ψν1 =
1√
V
eiκ·r|1kσ, 0, . . . 〉, Eν1 =

�
2κ2

2m
+ �ω;

ψν2 =
1√
V
eiκ·r|0〉γ , Eν2 =

�
2κ2

2m
. (3)
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Summation over ν1,2 is reduced to the sum over all possible values of electron wave
vector κ in the intermediate state.

2) We use the explicit form of the wavefunctions and operator Ârad(r) (see Eq.
(XIV.1)) to find the perturbation matrix elements in Eq. (2):

Vν1i =
e

mc
(Ârad · p̂)ν1i = e

mV

√
2π�

ωV
e∗kσ ·

∫
e−i(κ+k)·rp̂eik1·rdV

=
e�

m

√
2π�

ωV
(e∗kσ · k1)δk1,κ+k;

Vfν2 =
e

mc
(Âradp̂)fν2 =

e�

m

√
2π�

ωV
(e∗kσ · κ)δκ,k2+k;

Vν2i = −Ze2
(
1

r

)
ν2i

= −Ze2

V

∫
1

r
ei(k1−κ)·rdV = − 4πZe2

(k1 − κ)2V
;

Vfν1 = −Ze2
(
1

r

)
fν1

= − 4πZe2

(κ− k2)2V
, p1,2 = �k1,2.

The factor δk1,κ+k in these expressions allows us to perform summation over ν in
Eq. (2) (in the sum over states ν1, only the term with κ = k1 − k is different from
zero, and for states ν2, only that with κ = k2 + k) and obtain

∑′

ν

VfνVνi

Ei − Eν
=

4πZe2

�ωq2
e�

mV

√
2π�

ωV
e∗kσ · (k1 − k2), (4)

�q = �(k1 − k2 − k) ≈ �(k1 − k2) is the momentum transferred to the nucleus. We
have neglected the photon momentum, �k, in comparison to electron momenta,
�k1,2, (This is justified for non-relativistic electrons, and corresponds in practice
to the use of the dipole approximation for photon radiation; compare to Problem
14.18), so the energy denominators become equal to −�ω and �ω, for the states ν1
and ν2, respectively.

Finally, writing the density of final states as

dρf =

∫
δ(Ef − Ei)

V d3k2
(2π)3

V d3k

(2π)3
=

∫
δ

(
�
2k22
2m

+ �ω − �
2k21
2m

)
V ω2k2m

(2π)6�2c3
×

×dΩγdΩ2dω d
�
2k22
2m

=
mV 2k2ω

2

(2π)6�2c3
dΩγdΩ2dω, k2 =

√
k21 −

2mω

�
,

and using relation (XIV.14) between the cross-section and transition probability,
we find the differential cross-section of braking radiation (Bremsstrahlung):

dσ =
e2

�c

(Ze2)2k2
π2�2c2k1ωq4

|e∗kσ · q|2dΩγdΩ2dω. (5)
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This equation gives the most complete information about the Bremsstrahlung
process. To determine the spectral composition of the braking radiation (Brems-
strahlung), we now perform the following transformations:

3) First, we sum over two independent photon polarizations in Eq. (5), using relations
(XIV.8), which gives

dσ =
e2

�c

(Ze2)2k2
π2�2c2k1ωq2

[
1− (q · k)2

q2k2

]
dΩγdΩ2dω. (6)

Now we integrate over the directions of emitted photon (which is straightforward
if we choose the polar axis along the vector q):

dσ =
8

3

e2

�c

(Ze2)2

π�2c2k1

k2
ωq2

dΩ2dω. (7)

Finally, we integrate over the angles of the scattered electron. We find the differen-
tial cross-section of braking radiation as a function of the emitted photon frequency
(i.e., the photon spectral distribution):

dσω =
8

3

e2

�c

(Ze2)2

mc2E

1

ω
ln

(
√
E +

√
E − �ω)2

�ω
dω, (8)

where E is the initial electron energy.
Since dσ/dω ∝ 1/ω for ω → 0, then the total cross-section of Bremsstrahlung is

infinite (the so-called infrared catastrophe). But this divergence is not important
for the calculation of electron energy loss to radiation, characterized by “effective
braking”, or “effective radiation”, κ =

∫
�ω dσω. Using Eq. (8) it is easy to obtain:

κ = �

E∫
0

ωdσω =
16

3
Z2 e

2

�c
mc2r2e , (9)

where re = e2/mc2 is the electron classical radius.

In conclusion, we emphasize that since the nucleus field action has been considered
as a perturbation, the applicability of these results, Eqs. (5)–(8), needs fulfillment
of the conditions Ze2/�v1,2 � 1 (the electron must be fast both in the initial and
final states). So, the results are not applicable if almost all the energy of the incident
electron is given to the emitted photon. But Eq. (9) is valid even when only the
condition Ze2/�v1 � 1 is fulfilled, since the contribution of the upper limit of the
integration domain, where Eq. (8) is not applicable, does not play an essential role in
the value of integral (9).

Finally, we give a generalization of expression (8) to the case of braking radiation
for a two-particle collision, with the charges e1, e2 and masses m1, m2, and in the
case of purely electrostatic interaction. As can be seen, it is obtained from Eq. (8) by
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substitutions −Ze2 → e1e2, e/m → (e1/m1)− (e2/m2), and has the form:[400]

dσω =
8

3
e21e

2
2

(
e1
m1

− e2
m2

)2
μ

�c3E

1

ω
ln

(
√
E +

√
E − �ω)2

�ω
dω, (10)

where μ is the reduced mass of the particles, v is the relative velocity of colliding
particles, and E = μv2/2.

[400] The fact that dσω vanishes if e1/m1 = e2/m2 has an analogue in classical electrodynamics, which
forbids dipole radiation by a system of classical particles with the same ratio, e/m.



15

Relativistic wave equations

The peculiar property of quantum mechanics in the relativistic domain rises from the
ability of particles to transform into one another through creation and annihilation.
Hence the single-particle description in terms of the probability amplitude becomes
inadequate.[401] A relativistic quantum theory necessitates the use of wavefunctions
with definite transformation properties under the Lorentz transformation. These trans-
formation properties, as well as the form of the corresponding wave equation, depend
on the value of the particle spin.

1) In the case of a spinless particle, its single-component wavefunction ψ(r, t) is a
four-dimensional scalar.[402] The relativistic wave equation for such a free particle
– the Klein–Gordon equation – has the form

(p̂2i +m2c2)ψ = 0, or

(
Δ− 1

c2
∂2

∂t2

)
ψ =

(mc

�

)2

ψ. (XV.1)

The wave equation for a spinless charged particle with a charge, e, in an external
electromagnetic field described by the potentials A and ϕ, is obtained from Eq.
(XV.1) by the following substitutions: p̂ → p̂− eA/c and i�(∂/∂t) → i�(∂/∂t)−
eϕ. This equation takes the form:

1

c2

(
i�

∂

∂t
− eϕ

)2

ψ =

[(
p̂− e

c
A
)2

+m2c2
]
ψ. (XV.2)

From here, the continuity equation can be derived:

∂ρ

∂t
+∇ · j = 0,

[401] Indeed, from the uncertainty relation, ΔpΔx ≥ �, it follows that a particle localized in a small
spatial region, Δx ≤ �/mc, implies a large energy transfer to the particle, e.g., through the influence
of strong external fields. In these conditions, particle creation becomes possible, and the single-
particle description loses its meaning.

[402] With respect to spatial transformations, including inversion, the wavefunction could be either
scalar or pseudo-scalar. These two possibilities correspond to particles with different (opposite)
inner parities; see Problem 15.5.
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where

ρ =
i�

2mc2

(
ψ∗ ∂ψ

∂t
− ∂ψ∗

∂t
ψ +

2ie

�
ϕψ∗ψ

)
, (XV.3)

j = − i�

2m

(
ψ∗∇ψ − ψ∇ψ∗ − 2ie

�
Aψ∗ψ

)
,

and the corresponding charge Q =
∫
ρ(r, t)dV is conserved. Note that while these

relations look similar to those of non-relativistic quantum mechanics, the quantity,
ρ, here is not positive definite, and therefore cannot be interpreted as a proba-
bility density. However, since creation and annihilation processes are possible in
relativistic quantum mechanics, a probability density is not a necessary ingredient
of relativistic quantum theory. Some questions dealing with the interpretation of
solutions to the Klein–Gordon equation and the properties of spinless particles in
external fields are considered in the problems of sec. 1 of this chapter.

2) For a free particle with spin s = 1/2, the relativistic wave equation – the Dirac
equation – has the form:

i�
∂

∂t
ψ = Ĥψ ≡ (cα · p̂+mc2β)ψ, ψ =

(
ϕ
χ

)
=

⎛⎜⎜⎝
ψ1

ψ2

ψ3

ψ4

⎞⎟⎟⎠. (XV.4)

Here the spinor wavefunction, ψ, has four components,[403] and the Dirac matrices
are defined as

α =

(
0 σ
σ 0

)
, β = γ4 =

(
1 0
0 −1

)
, Σ =

(
σ 0
0 σ

)
,

γ = −iβα = i

(
0 −σ
σ 0

)
, γ5 = γ1γ2γ3γ4 = −

(
0 1
1 0

)
, (XV.5)

where σ, 1, 0 are the respective two-dimensional Pauli matrices, unit, and zero
matrices.

For an electron in an external electromagnetic field described by the potentials,
A and ϕ ≡ A0, the Dirac equation is obtained from Eq. (XV.4) using the same
substitutions given above (with the electron charge, −e < 0):

i�
∂

∂t
ψ =

(
cα ·

(
p̂+

e

c
A
)
+mc2β − eA0

)
ψ. (XV.6)

[403] The increase in the number of components of the wavefunction, relative to the non-relativistic
case, reflects the general fact that the relativistic wave equations describe both particles and their
antiparticles. In the case of spinless particles, these “additional” anti-particle solutions are related
to the fact that the Klein–Gordon equation, unlike the Dirac equation, contains a second-order
time-derivative.
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Hence it follows that the electron has a spin magnetic moment of μe = −e�/2mc, so
that its gyromagnetic ratio[404] is equal to −e/mc, in accordance with experimental
value.

From Eqs. (XV.4) and (XV.6), the continuity equations can be derived:

∂ρ

∂t
+∇ · j = 0, ρ = ψ∗ψ, j = cψ∗αψ. (XV.7)

Eq. (XV.6) can be cast into a covariant form:[
ic
(
p̂+

e

c
Â
)
+mc2

]
ψ(r, t) = 0, (XV.8)

where p̂ ≡ p̂μγμ = p̂ · γ + p4γ4 = p̂ · γ − �

c γ4
∂
∂t and Â = Aμγμ = A · γ + iA0γ4.

15.1 The Klein–Gordon equation

Problem 15.1

Prove that if a wave-packet, ψ±(r, t), consists of partial solutions to the free Klein–
Gordon equation that all have the same sign of the energy (i.e., either ε ≥ mc2, or
ε ≤ −mc2), then the conserved quantity.

Q± =

∫
ρ±(r, t)dV =

i�

2mc2

∫ {
ψ(±)∗ ∂ψ

±

∂t
− ∂ψ(±)∗

∂t
ψ±

}
dV

also has a definite sign.

Solution

A general solution of the Klein–Gordon equation (XV.1) can be written in the form
of a superposition,

ψ(r, t) = ψ+(r, t) + ψ−(r, t), ψ± =

∫
a±(k)ψ±

k (r, t)d
3k, (1)

of the partial solutions

ψ±
k = e±i(k·r−ω(k)t), ω(k) =

√
k2c2 +

(
mc2

�

)2

> 0, (2)

forming a complete basis.

The function ψ+
k describes a particle with momentum p = �k and energy

ε = �ω ≥ mc2, while the function ψ−
k formally corresponds to a particle with energy

ε′ = −�ω ≤ −mc2 and momentum −�k. Under charge conjugation, the negative-
energy solutions describe an antiparticle with the energy ε = �ω ≥ mc2 and momen-
tum �k; see Problem 15.2. We emphasize that the general solution (1) of the

[404] This result, as well as Eq. (XV.6), is valid for spin-1/2 particles that have no strong interaction.
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Klein–Gordon equation does not describe any particular single-particle state. Single-
particle states are described only by functions ψ+(r, t) and ψ−(r, t), separately.

Considering superpositions of ψ+ and ψ− separately, we substitute them into the
expression for Q, given in the problem. An elementary integration, with the use of the
equation ∫

e±i(k−k′)·rd3r = (2π)3δ(k− k′),

give the following relation:

Q± = ±(2π)3
�

mc2

∫
ω(k)|a±(k)|2d3k. (3)

Therefore, the quantities Q± indeed have a definite sign that corresponds to the
solution, ψ±. However, in the coordinate representation the expression for ρ±(r, t),
under the integral of Q±, does not have a fixed sign. Therefore, ρ+ and ρ− cannot be
interpreted as a probability density.

If we consider charged particles we can relate the quantity ρ± to a charge density.
For a particle with charge e, the expression eρ+(r, t) (with normalization Q+ = 1)
corresponds to the charge density of a one-particle state. Similarly, the quantity eρ−

describes the charge density of the corresponding anti-particle state. The normalization
Q− = −1 automatically provides the opposite signs of the charges for the particles and
their anti-particles.

For neutral particles, interpretation of local quantities ρ±(r, t) is, generally speak-
ing, impossible. But this fact should not be considered as a deficiency of the theory,
since the local spatial characteristics have no deep physical meaning in relativistic
theories. Consequently, in such relativistic theories the interpretation of a wavefunction
as a probability amplitude remains only in the momentum (but not coordinate)
representation; see also Problem 15.7.

Problem 15.2

Prove that the Klein–Gordon equation for a free particle is invariant under the
transformation

ψ → ψc(r, t) = Ĉψ(r, t) ≡ ψ∗(r, t),

which describes charge conjugation. It relates the solutions, ψ−(r, t), of the Klein–
Gordon equation that have no physical meaning individually (ψ− is a superposi-
tion of solutions that formally have negative energy; see Problem 15.1 above) to
the function, ψ+

c = Ĉψ−, that describes positive-energy states. The wavefunction,
Ĉψ(r, t) ≡ ψ∗(r, t), can be interpreted as the wavefunction of the antiparticle.

Verify that if the function ψ is an eigenfunction of any of the following operators
ε̂ = i� ∂

∂t , p̂, l̂z, l̂2, then the corresponding charge-conjugated function, ψc, is also
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an eigenfunction. What is the relation between the corresponding charge-conjugated
eigenvalues?

Solution

The invariance of the free Klein–Gordon equation under charge conjugation

(−�
2c2Δ+m2c4)ψ(r, t) = −�

2 ∂2

∂t2
ψ(r, t) (1)

implies that if ψ(r, t) is a solution of Eq. (1), then so is the function, ψc = Ĉψ. It is
straightforward to verify that indeed, Eq. (1) is invariant under complex conjugation.

Since the operator Ĉ satisfies the relation Ĉ2 = 1, then the general solution of the
Klein–Gordon equation can be written in the form:

ψ = ψ+(r, t) + ψ−(r, t) = ψ+(r, t) + Ĉψ+
c (r, t). (2)

Analogously, the solution of the charge-conjugated equation can be written as

ψc = ψ+
c + ψ−

c = ψ+
c + Ĉψ+. (3)

General solutions of the Klein–Gordon equation include both the particle wavefunc-
tion, ψ+, and the corresponding antiparticle wavefunction, ψ+

c , and have only a formal
mathematical meaning. (Since the transformation Ĉ is anti-linear, relations (2) and (3)
can not be used in the framework of the quantum-mechanical superposition principle.)
A physically sensible set of particle and antiparticle; states can be described as a
superposition of specific solutions with frequencies (energies) of a certain sign.

Let us note that the physical meaning of the transformation, Ĉ, as charge conjuga-
tion becomes clear in the presence of a coupling to an external electromagnetic field,
which acts differently on the particles and antiparticles; see Problem 15.3.

Since ψc = Ĉψ = ψ∗, the charge-conjugated form of the eigenvalue problem, f̂ψf =

fψf , for a generic operator, f̂ , becomes f̂∗(ψf )c = f(ψf )c. Hence, if f̂
∗ = f̂ , then the

charge-conjugated eigenfunction (ψf )c = ψ∗
f is also an eigenfunction of the operator,

f̂ , corresponding to the same eigenvalue of f . But if f̂∗ = −f̂ , then (ψf )c is also an
eigenfunction but with the eigenvalue −f . Hence, the eigenfunction of the operators
p̂ = −i�∇, l̂z = −i ∂

∂ϕ , and ε̂ = i� ∂
∂t under charge conjugation “change” eigenvalues

to those of the opposite sign, while the eigenfunctions of the operator, l̂2, “conserve”
their eigenvalues.

Problem 15.3

a) What is the form of the Klein–Gordon equation for a charged spinless particle in
an external electromagnetic field under the transformation

ψ → ψc(r, t) = Ĉψ(r, t) ≡ ψ∗(r, t)?
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b) What transformation of the electromagnetic field should be performed simulta-
neously with the transformation of the wavefunction, ψ(r, t) in order to keep the
Klein–Gordon equation invariant?

c) Using the results of parts (a) and (b), interpret the transformation Ĉ as a
charge conjugation that transforms a particle into an antiparticle (compare to
Problem 5.2).

Solution

a) Since ψc = Ĉψ = ψ∗, the Klein–Gordon equation for a particle with the charge e
in a field is {

c2
(
−i�∇− e

c
A
)2

+m2c4
}
ψ =

(
i�

∂

∂t
− eϕ

)2

ψ. (1)

After the complex conjugation, it takes the form{
c2
(
−i�∇+

e

c
A
)2

+m2c4
}
ψc =

(
i�

∂

∂t
+ eϕ

)2

ψc, (2)

which also has the form of the Klein–Gordon equation in the same electromagnetic
field as Eq. (1), but for a particle with the charge −e.

b) Transforming the potentialsA → Ac = −A and ϕ → ϕc = −ϕ simultaneously with
the charge conjugation of the wavefunction in Eq. (1), we obtain{

c2
(
−i�∇− e

c
Ac

)2

+m2c4
}
ψc =

(
i�

∂

∂t
− eϕc

)2

ψc, (3)

which is identical to the original equation (1).

c) To interpret the transformations given above, we consider a constant electromag-
netic field (i.e., the potentials, A and ϕ, do not depend on time). In this case,
Eq. (1) has “stationary” solutions as follows: ψε = e−iεt/�ψc(r). All such solutions
can be divided into two groups, ψ+

ε and ψ−
ε , which are adiabatically connected

to the free particle states, with ε ≥ mc2 or ε ≤ −mc2, upon adiabatic “removal” of
the external field.[405] The solutions, ψ+

ε , adiabatically connected to the states from
the upper continuum, have the meaning of the wavefunction describing a particle
with the energy, ε, in the electromagnetic field. The solutions, ψ−

ε , are associated
with the states of the antiparticle. Here, as well as in the absence of any external
fields, the antiparticle wavefunction is

ψ+
c = Ĉψ−

ε = (ψ−
ε )

∗, (4)

while its energy is equal to −ε.

[405] Let us note that such classification of the solution is worthwhile only in the case of weak external
fields, when the energy spectrum of the states ψ+

ε lies above the upper edge of the states

ψ−
ε . In strong fields, these boundaries may “merge” together, and the single-particle language

loses its meaning, since spontaneous creation of particle–antiparticle pairs becomes possible; see
Problems 15.12 and 15.13 for a related discussion.
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Hence, the general solution of the Klein–Gordon equation (1) for a particle in an
electromagnetic field is (just as in the free-particle case, discussed in Problem 15.2)

ψ = ψ+ + ψ− = ψ+ + Ĉψ+
c .

Here the antiparticle wavefunction, ψ+
c , has the “correct” time-dependence, and

corresponds to the Klein–Gordon equation (2) for a particle with charge −e.

Let us emphasize that both equations, (1) and (2), carry the same physical
information, since solutions of either equation include a description of both particle
and the corresponding antiparticle states (note that this is valid also in the case of
external fields of any nature). But the description of the particle and anti-particle
states in each of these equations is “non-symmetrical”, since both are described by
their wavefunctions, while the other state is obtained through the charge conjugation
of the negative energy solution.

The interpretation given above for the transformation Ĉ as a charge conjugation
operator, which converts “non-physical” particle states to “physical” states of the
corresponding antiparticle, is based on the result of paragraph a) of the present
solution. In this context, the invariance of the Klein–Gordon equation found in
paragraph b) reflects the charge symmetry of the laws described by it: that is, for
any physical state of a particle described by a wavefunction, ψ+(r, t), we have the
same state of an antiparticle with the wavefunction ψ+

c (r, t) ≡ ψ+(r, t). Here it is
important that the transformation to the anti-particle involve a change of the sign of
the external electromagnetic field.

Problem 15.4

Prove that an external scalar (with respect to the Lorentz group) field has the same
effect on a spinless particle and its antiparticle. Compare this to the case of a particle
in an external electromagnetic field (Problem 15.3).

Hint

The equation that describes a spinless particle in the scalar potential, U(r, t), reads

{c2p̂2 +m2c4 + 2mc2U}ψ = −�
2 ∂2

∂t2
ψ.

One should not confuse a scalar field with the electrostatic field (which represents a
time-component of a 4-vector). In the non-relativistic limit, U(r, t) has the meaning
of a potential energy.

Solution

Since the charge-conjugation operator, Ĉ, for spinless particles is given by ψc =
Ĉψ ≡ ψ∗ (see Problems 15.2 and 15.3), and U(r, t) is a real function (this constraint
is analogous to the condition that a Hamiltonian must be Hermitian in the non-
relativistic case), then, applying the complex conjugation operator to equation,
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(−�
2c2Δ+m2c4 + 2mc2U)ψ = −�

2 ∂2

∂t2
ψ, (1)

we obtain the same equation for the charge-conjugation function,

(−�
2c2Δ+m2c4 + 2mc2U)ψc = −�

2 ∂2

∂t2
ψc, (2)

which proves the invariance of the Klein–Gordon equation for a particle in a scalar
field with respect to charge conjugation.

Let us make a few comments. Eqs. (1) and (2) have the same form, but only the first
of them (or, more accurately the positive-frequency part of its solutions) describes the
particle, while the second describes the corresponding antiparticle (see the previous
problem). Hence, if the wavefunction ψ+(r, t) is the solution of Eq. (1) and describes
a physically realizable state of a particle in the field U , then the same state with
wavefunction ψ+

c = ψ+ is physically possible for the antiparticle in the same field.
This shows that the action of the scalar field on the particle and its antiparticle[406]

reflects the charge symmetry of Eqs. (1) and (2) (which is different from the case of a
charged particle in an electromagnetic field, where to restore the charge symmetry it is
necessary to change the signs of the potentials as well, as discussed in Problem 15.3).

Problem 15.5

Prove that the intrinsic parities of a spinless particle and its antiparticle are the same.

Solution

The parity of a spinless particle is determined by how its wavefunction transforms
under spatial inversion: P̂ψ(r, t) = ±ψ(−r, t). The parity is either +1 or –1 for scalar
or pseudo-scalar functions respectively.

As mentioned in Problems 15.2 and 15.3, the wavefunctions of a particle and
the corresponding anti-particle are related to special solutions of the Klein–Gordon
equation, ψ(r, t), which can be written in the form

ψ = ψ+ + ψ− = ψ+ + Ĉψ+
c , (1)

where ψ+
c = Ĉψ− = (ψ−)∗. The functions ψ+ and ψ+

c are the wavefunctions of particle
and antiparticle states, respectively.

Since the functions ψ+ and ψ− transform equivalently under space inversion (i.e.,
they both are either scalar or pseudo-scalar functions), and it does not change under
complex conjugation; hence it follows that they indeed also have the same intrinsic
parities.

Note here that for particles with an arbitrary spin, the intrinsic parities of a particle
and antiparticle are the same for bosons and have opposite signs for fermions.

[406] Compare this conclusion to a similar action of a gravitational field on the particle and antiparticle.
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Problem 15.6

Using the fact that the quantity Q (defined in Problem 15.1) is conserved, discuss
the orthogonality and normalization of the solutions to the Klein–Gordon equation,
ψp,ε(r, t), corresponding to definite values of energy (of both signs) and momentum.

Solution

In non-relativistic quantum mechanics, the orthogonality of the eigenfunctions of an
Hermitian operator, f̂ , is given by the relation:∫

ψ∗
f ′(r)ψf (r)dV = δ(f − f ′) (or δf ′f for d.s.). (1)

Its form is closely connected to the normalization condition,
∫ |ψ|2dV = const = 1,

that follows directly from the Schrödinger equation.

In the case of the Klein–Gordon equation (XV.1), the following quantity is con-
served in time:

Q =
i�

2mc2

∫ {
ψ∗ ∂

∂t
ψ −

(
∂

∂t
ψ

)∗
ψ

}
dV, (2)

and it determines both a normalization constraint and eigenfunction orthogonality
conditions (a generalization of Eq. (1) for the relativistic case).

Let us write the wavefunction ψp,ε in the form (see Problem 15.1),

ψ±
p = C±(p) exp

{
± i

�
(p · r− εt)

}
, ε(p) =

√
p2c2 +m2c4 ≥ mc2. (3)

Here, ψ+
p describes the state with momentum p, and energy ε, while the plane-wave

ψ−
p , formally corresponds to a state with momentum (−p) and energy (−ε). Physically,

the latter corresponds to the antiparticle with momentum p and energy ε, as discussed
in Problem 15.2. Substituting the respective wavefunctions, ψ±

p and ψ±∗
p′ , for ψ and ψ∗

into the integral in Eq. (2) , we see that the integral vanishes for wavefunctions with
different signs of frequency, and is proportional to δ(p− p′) otherwise. By choosing
the values of Eq. (3),

C±(p) =

√
mc2

(2π�)3ε(p)
,

we normalize the system functions and obtain the following orthonormality relations:

i�

2mc2

∫ {
ψ±∗
p′

∂

∂t
ψ±
p −

(
∂

∂t
ψ±∗
p′

)
ψ±
p

}
dV = ±δ(p− p′) (4)

and

i�

2mc2

∫ {
ψ±∗
p′

∂

∂t
ψ∓
p −

(
∂

∂t
ψ±∗
p′

)
ψ∓
p

}
dV = 0.

These relations are a generalization of Eq. (1) to the relativistic case.
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Problem 15.7

Prove that for a spinless particle in the relativistic case we can keep the interpretation
of a wavefunction in the momentum representation as the probability amplitude of dif-
ferent momenta (in sharp contrast to the coordinate representation; see Problem 15.1).

What is a connection between the particle and antiparticle wavefunctions in the
momentum representation and the solutions, ψ±(r, t), of the Klein–Gordon equation?
Discuss the eigenfunctions of the coordinate operator. Compare this to the non-
relativistic case.

Solution

1) Writing a positive-frequency solution, ψ+(r, t), of the Klein–Gordon equation
(XV.1), which describes a physical particle state, in the form of a superposition
of plane waves, ψ+

p (r, t) (see Eq. (3) of the previous problem) with the value of the
coefficient C+(p) chosen to be:

ψ+(r, t) =

∫
a+(p)ψ+(r, t)d3p =

∫ √
mc2

(2π�)3ε(p)
a+(p)ei(p·r−εt)/�d3p, (1)

gives

Q+ =
i�

2mc2

∫ {
ψ+∗ ∂

∂t
ψ− −

(
∂

∂t
ψ+

)∗
ψ+

}
dV =

∫
|a+(p)|2d3p (2)

for the quantity Q+ (see Problem 15.1). Hence, by analogy to the non-relativistic
case, the function a+(p) (or more accurately, a+(p, t) = a+(p)e−iεt/�) may be
interpreted as a wavefunction of a particle state in the momentum representation
in the usual quantum-mechanical sense, and one must use the value Q+ = 1 for its
normalization.
In a similar way we can introduce a wavefunction of an antiparticle in the

momentum representation, using the expansion of the negative-frequency solutions,
ψ−(r, t), over the plane-waves ψ−

p = (ψ+
p )

∗,

ψ−(r, t) =
∫

a−(p)ψ−
p d

3p =

∫ √
mc2

(2π�)3ε(p)
a−(p)e−

i(p·r−εt)
� d3p,

and the standard relation between the antiparticle wavefunction ψ+
c = Ĉψ− ≡

(ψ−)∗ and the solutions ψ−; see Problem 15.2. Here the antiparticle wavefunction
in the momentum representation has the form a+c (p, t) = a−∗(p)e−iεt/�, while the
normalization condition,

∫ |a+c (p, t)|2d3p = 1, is equivalent to Q− = −1.
The fact that the particle wavefunction in the momentum representation has the

familiar meaning of a probability amplitude allows us to obtain a generalization of
the corresponding quantum-mechanical equations for the coordinate representation
directly from the momentum representation, as discussed in Problems 15.8–15.10.
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Let us emphasize that according to Eq. (1) the transition from the momentum
representation to the coordinate representation differs from the non-relativistic case
by an additional factor of

√
mc2/ε(p) in the expansion of the wavefunction into the

plane-wave basis. The inability to define a quantity, ρ ≥ 0, that would have been
otherwise interpreted as probability distribution in the coordinate space, is a direct
consequence of this fact.

2) Despite the fact that localized particle states are poorly defined in the relativistic
case, it is educative to discuss the eigenfunctions of the coordinate operator
using the simplest example of a spinless particle. Consider the form of coordinate
operator, r̂ = i� ∂

∂p , in the momentum representation. In this representation, the
desired eigenfunctions read

a+r0(p) =
1

(2π)3/2
exp{−ip · r0},

as in the non-relativistic case (here and below, we set � = c = 1). In the coordinate
representation we obtain from Eq. (1):

ψ+
r0(r) =

∫ √
m

(2π)3/2(p2 +m2)1/4
a+r0(p)e

ip·rd3p =

= − 1

2π2

m

r̃

∂

∂r̃

∞∫
0

cos(mpr̃)

(p2 + 1)1/4
dp =

m3

(2π2)3/4Γ(1/4)

K5/4(mr̃)

(mr̃)5/4
, (3)

where r̃ = |r− r0|. To perform the integration over momenta in the first integral, we
used spherical coordinates with the polar axis directed along the vector (r− r0), and
for the second (single) integral, we used its expression in terms of the MacDonald
function.
Let us discuss the properties of the eigenfunctions, ψ+

r0 . First, consider the
limiting cases (here we restore dimensional constants, � and c):

ψ+
r0(r) ∝

{
1

|r−r0|5/2 , |r− r0| � �

mc ,
1

|r−r0|7/4 exp
{−mc

�
|r− r0|

}
, |r− r0| � �

mc .
(4)

Both these wavefunctions reduce to δ(r− r0), much as in the non-relativistic case,
but are localized on the distances of the order of particle Compton wave-length,
�/mc. In the non-relativistic limit (i.e., for c → ∞), the domain of localization of
the function ψr0(r) shrinks to a point, and (since

∫
ψr0(r)dV = 1 to calculate the

integral here, it is convenient to substitute into Eq. (3) a wavefunction expressed
in terms of the plane-waves and perform integration over the variable r first, which
gives, δ(p)), then the eigenfunction ψr0(r) reduces to δ(r− r0) in this limit, as
expected.
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Problem 15.8

Obtain an expression for the mean value of the energy of a free spinless particle in an
arbitrary state, described by the solution ψ+(r, t) of the Klein–Gordon equation.

Solution

We use the fact that the free-particle wavefunction in momentum representation,

a+(p, t) = a+(p) exp

{
− i

�
ε(p)t

}
, (1)

has, as in non-relativistic quantum mechanics, the meaning of the momentum prob-
ability amplitude (see the previous problem). Hence, this wavefunction is normalized
via the condition: ∫

|a+(p, t)|2d3p = 1, (2)

and the mean value of particle energy is given by

ε =

∫
ε(p)|a+(p, t)|2d3p =

∫
a+∗(p, t)

√
p2c2 +m2c4 a+(p, t)d3p. (3)

Now, note that in the coordinate representation, the wavefunction, ψ+(r, t) of an
arbitrary free-particle state is described by a superposition of positive-frequency
solutions to the Klein–Gordon equation (XV.1), and is connected to the momentum-
space wavefunction by the relation:

ψ+(r, t) =

∫ √
mc2

ε(p)
a+(p, t)eip·r/�

d3p

(2π�)3/2
(4)

(see also Problems 15.1 and 15.7). From this Eq. (4), it follows that√
mc2

ε(p)
a+(p, t) =

∫
ψ+(r, t)e−ip·r/� d3p

(2π�)3/2
. (5)

Using this relation, we transform Eq. (3) in the following way:

ε =
1

(2π�)3mc2

∫
(p2c2 +m2c4)ψ+∗(r, t)eip·(r−r′)/�ψ+(r′, t)d3pd3r′d3r

=
1

(2π�)3mc2

∫
ψ+∗(r, t)(−�

2c2Δ+m2c4) exp

{
i

�
p · (r− r′)

}
× ψ+(r′, t)d3pd3r′d3r. (6)

After performing the integration over momenta in Eq. (6), and using the equation,

1

(2π�)3

∫
exp

{
i

�
p · (r− r′)

}
d3p = δ(r− r′),



822 Exploring Quantum Mechanics

the integration over r′ can be readily performed, and we obtain the mean value of the
particle energy:

ε =
1

mc2

∫
ψ+∗(r, t)(−�

2c2Δ+m2c4)ψ+(r, t)d3r. (7)

Here, the normalization condition (2) in the coordinate representation takes the form
(Eq. (2) of the previous problem):∫

|a+(p, t)|2d3p =
i�

2mc2

∫ {
ψ+∗ ∂ψ

+

∂t
− ∂ψ+∗

∂t
ψ+

}
d3r = 1. (8)

It is possible to obtain a slightly different expression, yet still equivalent to Eq. (7),
for the mean energy of the particle, if we use Eqs. (1) and (5), as follows:

−i

√
ε

�
a+(p, t) =

∂

∂t

a+(p, t)√
ε

=
1√
mc2

∫
e−ip·r/� ∂

∂t
ψ+ d3r

(2π�)3/2
. (9)

From Eq. (9) we rewrite Eq. (3) in the coordinate representation as follows:

ε =
�
2

mc2

∫ (
∂

∂t
ψ+(r, t)

)∗
∂

∂t
ψ+(r, t)d3r. (10)

According to Eqs. (7) and (10), the mean energy of a spinless particle has the form:

ε =
�
2

mc2

∫ {
∂ψ+∗

c∂t

∂ψ+

c∂t
+ (∇ψ+)∗(∇ψ+) +

m2c2

�2
|ψ+|2

}
d3r, (11)

which is analogous (modulo a normalization factor) to the energy of a classical scalar
(or a pseudo-scalar) complex field that corresponds to the wave equation(

−Δ+
∂2

c2∂t2
+ κ2

)
ψ(r, t) = 0, κ =

mc

�
.

The energy of such a field, E =
∫
T00d

3r, is expressed in terms of the component T00

(or T44) of the energy-momentum tensor, and has the form:

T00 ∝
[
∂ψ∗

c∂t

∂ψ

c∂t
+ (∇ψ∗) · (∇ψ) + κ2ψ∗ψ

]
.

(See also the following problem on the relation between a particle’s mean momentum
and the angular momentum of a classical field:)

In conclusion, we see that all considerations above can be directly generalized
to the antiparticle, using the charge-conjugated wavefunction, ψ+

c (r, t), instead; see
Problems 15.2 and 15.3.
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Problem 15.9

Consider the same conditions as in the previous problem, but find the mean value of
momentum instead.

Solution

As in the previous problem, we start from the momentum representation, where the
particle wavefunction has the meaning of a momentum probability amplitude. Hence,
the mean value of the particle momentum is determined by the expression:

p =

∫
p|a+(p, t)|2d3p =

∫
a+(p, t)pa(p, t)d3p. (1)

Using the relations (see Eqs. (5) and (9) of the previous problem)√
mc2

ε(p)
a+(p, t) =

∫
ψ+(r, t)e−ip·r/� d3r

(2π�)3/2

and

− i

�

√
mc2ε a+(p, t) =

∫
e−ip·r/� ∂

∂t
ψ+(r, t)

d3r

(2π�)3/2
,

Eq. (1) here can be written in the form:

p =
i�

(2π�)3mc2

∫
ψ+∗(r, t)peip·(r−r′)/� ∂

∂t
ψ+(r′, t) d3pd3r′d3r =

�
2

(2π�)3mc2

∫
ψ+∗(r, t)

∂

∂r
eip·(r−r′)/� ∂

∂t
ψ+(r′, t) d3pd3r′d3r. (2)

Here the integration over p is easily performed (and it gives rise to the factor,
δ(r− r′)), and then the integration over r′ becomes straightforward as well; so, we
obtain the mean particle momentum:

p̄ =
�
2

mc2

∫
ψ+∗(r, t)

∂

∂r

∂

∂t
ψ+(r, t) d3r. (3)

This Eq. (3) may be written in a more symmetric form:

p = − �
2

2mc2

∫ {
∂ψ+∗

∂r

∂ψ+

∂t
+

∂ψ+∗

∂t

∂ψ+

∂r

}
d3r. (4)

This expression for the mean momentum of a spinless particle has the same form, up
to a normalization factor, as the equation for the momentum of a classical scalar (or a
pseudo-scalar) complex field. The components of the field momentum are determined
by the expression, Pi =

∫
Ti0d

3r, where Ti0 (or Ti4) is the density of field momentum,
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corresponding to the component of the energy-momentum tensor, where

Ti0 ∝ −
(
∂ψ∗

∂xi

∂ψ

∂t
+

∂ψ∗

∂t

∂ψ

∂xi

)
,

and i = 1, 2, and 3.

Problem 15.10

Consider the same condition as in the two previous problems, but find the mean value
of the angular momentum.

Solution

The mean value of the particle’s angular momentum in the momentum representation
reads:

l̄ =

∫
a+∗ l̂a+d3p = −i

∫
a+∗(p, t)[p×∇p]a

+(p, t)d3p.

Using this equation and the transformations described in the previous two problems,
we obtain the relation:

l̄ =
�

mc2

∫
ψ+∗(r, t)

[
r× ∂

∂r

]
∂

∂t
ψ+(r, t)d3r,

or in more a symmetric form:

l̄ = − �

2mc2

∫ [
r×

{
∂ψ+∗

∂r

∂ψ+

∂t
+

∂ψ+∗

∂t

∂ψ+

∂r

}]
d3r. (1)

This form coincides with the equation for the angular momentum, L, of a classical
scalar field. Here, the expression for density λ of the angular momentum of the field
has a clear physical meaning, since we can write it in the form:

λ(r, t) =
1

�
[r× π],

where π(r, t) is the field’s momentum density, as discussed in the previous problem.

Problem 15.11

Find the energy spectrum of a relativistic charged spinless particle in a uniform
magnetic field.

Solution

The energy spectrum and the corresponding wavefunctions of the stationary states are
determined from the stationary solutions of the Klein–Gordon equation for a charged
particle in a magnetic field. This equation has the form:
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c2
(
p̂− e

c
A
)2

+m2c4
}
ψ = ε2ψ, (1)

where e is the particle charge, andH = ∇×A. Eq. (1) differs from the non-relativistic
Schrödinger equation

1

2m

(
p̂− e

c
A
)2

ψ = Eψ (2)

only by the substitution E → (ε2 −m2c4)/2mc2. Hence, using the known solutions of
the last equation for a particle in a uniform field (e.g., given in Problem 7.1), we find:

ε2pzn = m2c4 + p2zc
2 + 2mc2�ω

(
n+

1

2

)
, n = 0, 1, . . . ,

ω =
|e|H
mc

> 0.

Hence, it follows that

εpzn = ±
√

m2c4 + p2zc
2 + 2mc2�ω

(
n+

1

2

)
(3)

(to be compared with the expression, ε(p) = ±
√
m2c4 + p2c2, for a free particle).

The interpretation of the two values of εpzn, which differ in sign, is the same as in
the free-particle case (see Problems 15.2 and 15.3). The value εpzn > mc2 describes the
energy spectrum of a particle with the charge e. The negative values, εpzn < −mc2,
are associated with the antiparticle, with the charge (−e). Here the energy of the
antiparticle is −ε > mc2. Hence, the energy spectra of the particle and antiparticle in
a magnetic field are the same. (This conclusion is not unexpected, since the energy
spectrum does not depend on the sign of the particle charge.)

To summarize this problem, we found the energy spectrum of a relativistic spinless
particle in a magnetic field. As in the non-relativistic case, it has a continuous
dependence on pz, associated with the free longitudinal (along the magnetic field)
particle motion, and it also includes a discrete dependence on the quantum number,
n, connected to the particle’s transverse motion. Here, the transverse motion of the
particle is reflected in the kinematics of the free longitudinal motion (unlike the non-
relativistic case), and according to Eq. (3) this relativistic effect may be viewed as a
“change”,

m → mn = m

√
1 + (2n+ 1)

�ω

mc2
,

in the particle mass.
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Problem 15.12

Find the energy spectrum of the s-states of a spinless particle in the external scalar
field (see Problem 15.4) of the form:

U(r) =

{−U0, r ≤ a
0, r > a.

What is the antiparticle spectrum in this field?

Discuss the conceptual difficulties in interpreting the spectrum in the case of a deep
well.

Solution

The particle energy spectrum in a scalar field is determined by the equation

[−�
2c2Δ+ 2mc2U(r)]ψ = (ε2 −m2c4)ψ. (1)

It has the form of the non-relativistic Schrödinger equation for a particle in a
potential U(r), where energy E is replaced by (ε2 −m2c4)/2mc2. Considering only
the particle s-states (so that the wavefunction is spherically symmetric), and making
the substitution, R(r) = rψ(r), we transform Eq. (1) to the form:

− d2

dr2
R+

2m

�2
U(r)R =

ε2 −m2c4

�2c2
R. (2)

For the potential well considered, a solution to Eq. (2) satisfying the boundary
condition R(0) = 0 (for (ε2 −m2c4) < 0) is given by the following expressions:

R(r) =

{
A sin

√
2mU0

�2 − κ2r, r < a

Be−κr, r > a,

where

κ =
1

�c

√
m2c4 − ε2 > 0. (3)

(Since U = 0 for r > a, then in the region of ε2 > m2c4, the energy spectrum is
continuous; scattering off a scalar potential is considered in Problem 15.19.) The
continuity constraints on the wavefunction and its derivative at the point r = a lead
to the transcendental equation,

tan

√
2mU0a2

�2
− κ2

na
2 = − 1

κna

√
2mU0a2

�2
− κ2

na
2, (4)

which determines the energy spectrum of the bound s-states.

Let us discuss the main peculiarities of the energy spectrum, which are relatively
easy to understand, using the analogy of our problem to that of a non-relativistic
particle’s discrete levels in a spherical potential well:
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1) If the well is sufficiently “shallow”, no bound states exist. The bound states, just
as in the non-relativistic case, appear only if the strength of the potential satisfies
the condition, U0 > π2

�
2/8ma2.

2) Upon deepening the well, (i.e., increasing the parameter, U0a
2), new discrete levels

would appear. For the existing levels, the quantity (m2c4 − ε2n) increases, which
corresponds to an increase of |En| in the non-relativistic case; that is, ε2n decreases
as the well depth increases.

3) A situation, unique to the relativistic case, arises when the ground level reaches the
value ε20 = 0. Any further increase of U0 leads to an imaginary ε0, which indicates
an instability.

To clarify the physics behind this instability, we note the following: The solution
of the problem allows us to find the quantity, ε2n, so that εn = ±√ε2n. The two values
of the energy of the opposite sign should be interpreted in the same way as in the
free-particle case: the positive energy state, εn > 0, corresponds to particles, while
the other one, εn < 0, corresponds to the antiparticles with the energy (−εn) > 0.
Indeed, as the well depth decreases, all the levels with εn > 0 move towards a higher
continuum, ε > mc2, while the levels with εn < 0 “merge” with the lower continuum,
ε < −mc2. Hence, the energy spectra for the particle and its antiparticle in an external
scalar field are the same; i.e., the field effects them similarly (unlike, for example, the
electrostatic field, as discussed in Problems 15.3 and 15.4).

For critical values of the well parameter (a critical combination of its depth and
width), the ground-state energy of both the particle and antiparticle energies vanish,
ε0 = 0. This corresponds to the possibility of spontaneous creation of a “particle-
antiparticle pair” (a spontaneous appearance of single particles is possible, if they are
charge neutral). This is the physical explanation of the instability of the solution of the
one-particle problem in a strong external field.[407] In strong fields, another interesting
effect – vacuum reconstruction – also appears.

Let us discuss the dependence of the critical well depth U0,cr on its width a. Putting
ε0 = 0 in Eqs. (3) and (4), we obtain the equation:

tan

{
mca

�

√
2Uo,cr

mc2
− 1

}
= −

√
2Uo,cr

mc2
− 1. (5)

For the limiting cases of “wide”, a � �/mc, and “narrow” wells, a � �/mc, we
have:

[407] Let us note that the single-particle problem also loses its physical meaning if the fields are not too
strong but change rapidly in time. Hence, only the Fourier components of the “potential” U(ω)
that are essentially different from zero correspond to frequencies ω ≥ mc2/�. The breakdown of the
one-particle description in this case is connected to the inability to separate solutions to the wave
equations into independent positive- and negative-frequency parts (due to unavoidable transitions
between them). This is a fundamentally important element in the interpretation of relativistic wave
equations.
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a) Uo,cr ≈ mc2

2
+

π2
�
2

2ma2

(
≈ mc2

2

)
, a � �

mc
;

b) Uo,cr ≈ π2
�
2

8ma2
+

mc2

2

(� mc2
)
, a � �

mc
. (6)

(Note that independently of the well width, Uo,cr > mc2/2, these expressions deter-
mine the smallest root Uo,cr of Eq. (5); other roots of the equation correspond to ε2n
vanishing with n ≥ 1). W see that a “wide” scalar well “demolishes” the rest energy
for the depth U0 ≈ mc2/2. With the decrease of the well width of critical well depth
increases. In case b) of a “narrow” well, the value of Uo,cr differs only slightly from
the well depth that corresponds to the appearance of a bound state.

Problem 15.13

Find the discrete spectrum energy levels of a charged spinless particle (charge, −e) in
the Coulomb field of a nucleus with the charge, Ze. The nucleus is to be considered
point-like and infinitely heavy.

In the case of Zα � 1 (α = e2/�c ≈ 1/137), compare the result to the correspond-
ing expression of non-relativistic theory.

Pay attention to difficulties that appear in the interpretation of the energy spectrum
if the nucleus charge is large, and explain the origin of the difficulties.

Solution

The energy levels and the corresponding wavefunctions are determined from the solu-
tion of the stationary Klein–Gordon equation (Eq. (XV.2) with A = 0 and ϕ = Ze/r):

{−�
2c2Δ+m2c4}ψ =

(
ε+

Ze2

r

)2

ψ. (1)

Taking into account the spherical symmetry of the problem, we seek solutions in the
form, ψ(r) = Rl(r)× Ylm(θ, ϕ). Then, from Eq. (1), it follows that{

− �
2

2m

1

r

d2

dr2
+

�
2[(l + 1/2)2 − 1/4]

2mr2
− Ze2ε

mc2r
− Z2e4

2mc2r2

}
R =

ε2 −m2c4

2mc2
R. (2)

This equation has the form of the radial Schrödinger equation (IV.2) for a hydrogen-
like atom in non-relativistic theory:{

− �
2

2m

1

r

d2

dr2
r +

�
2[(l + 1/2)2 − 1/4]

2mr2
− Ze2

r

}
R̃nrl = EnrlR̂nrl,

and is obtained by using the following substitutions (α = e2/�c):

Z → Zε

mc2
,

(
l +

1

2

)2

→
(
l +

1

2

)2

− Z2α2, Enrl →
ε2 −m2c4

2mc2
. (3)
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Now, using the known expression for the energy spectrum of a non-relativistic
hydrogen-like atom (or ion),

Enrl ≡ En = −m(Ze2)2

2�2n2
= − m(Ze2)2

2�2(nr + 1/2 + l + 1/2)2
, (4)

and making the substitutions as in Eq. (3), we find

(ε2 −m2c4)

⎡⎣nr +
1

2
+

√(
l +

1

2

)2

− Z2α2

⎤⎦2

= −Z2α2ε2.

Hence, the energy spectrum reads:

εnrl = mc2

{
1− Z2α2

Z2α2 + [nr + 1/2 +
√

(l + 1/2)2 − Z2α2]2

}1/2

. (5)

(Formally, we should have put two signs, ± on the right-hand side, but the choice of
the sign “–” corresponds to “extra” levels that are not in the energy spectrum. Such
levels would be associated with antiparticle bound states, but there are no such levels
in the conditions of this problem, i.e., for a point-like nucleus; see Problem 15.16).

Let us make several statements about the result obtained in Eq. (5). If we take into
account relativistic effects, the accidental degeneracy of the Coulomb potential present
in non-relativistic theory is lifted. In relativistic theory, the energy levels depend on
the angular momentum of the particle. In the case Zα � 1, Eq. (5) yields:

Enrl = εnrl −mc2 ≈ −m(Ze2)2

2�2n2
− Zα

m(Ze2)2

�2n3

(
1

2l + 1
− 3

8n

)
. (6)

The second term here is a relativistic correction to the non-relativistic quantum-
mechanical result (see Problem 11.1).

For Zα > 1/2, Eq. (5) leads to complex values of energy (first for s-states, and then
for larger values of the angular momentum), which again signals an instability in the
problem. Its origin is easy to understand if we note that the term −Z2e4/2mc2r2 in
Eq. (2), which is singular for r → 0, could be considered as an attractive potential. For
Zα > 1/2, this attraction is so strong that the quantum analog of the classical “falling
into the center” appears (see Problem 9.14). If we take into account a finite size of
the nucleus, the potential is bounded and, hence, the instability is gone. But even in
the case of a finite nuclear radius, R, a further increase in the nuclear charge leads
for some new threshold value of Zcr (that depends on the radius, R), where another
instability in the spectrum shows up. The physical reason for the latter is the same
as in the previous problem: in a sufficiently strong electromagnetic field (in this case,
nuclear field), spontaneous creation of particle+antiparticle pairs commences, and the
single-particle description becomes fundamentally incomplete. We note that after the
threshold value of the nuclear charge is reached, Zcr ≈ 170, the instability of vacuum
with respect to creation of electron–positron pairs becomes important.
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Problem 15.14

Prove that the free Klein–Gordon equation can be written in the form of the
Schrödinger equation, i�∂ψ/∂t = Ĥrelψ. Find the corresponding Hamiltonian and
discuss its non-relativistic limit.

What is the relation between the Schrödinger wavefunction, ψ, and the solution,
ψ+ (see Problems 15.1 and 15.7) of the Klein–Gordon equation?

Solution

The Klein–Gordon equation for a free particle (XV.1) can be written in the form:(
i�

∂

∂t
+
√

c2p̂2 +m2c4
)(

i�
∂

∂t
−
√

c2p̂2 +m2c4
)
ψKG = 0. (1)

The solutions ψ+
KG, which describe particle states with positive energies (see Prob-

lem 15.1) and correspond to the equation(
i�

∂

∂t
−
√

c2p̂2 +m2c4
)
ψ+
KG = 0. (2)

This Eq. (2) has the form of the Schrödinger equation i� ∂
∂tψ = Ĥψ with the Hamil-

tonian

Ĥ ≡ Ĥrel =
√

c2p̂2 +m2c4. (3)

(For the negative-frequency solutions of the equation, we have i� ∂
∂tψ

− = −Ĥψ−;
after charge conjugation, ψ+

c = Ĉψ−, this equation takes the form (2), but for the
wavefunction, ψ+

C , describing an antiparticle; see Problem 15.2.)

To obtain a non-relativistic description, we make the substitution:

ψ+
KG = exp

{
− i

�
mc2t

}
ψ (4)

(the application of exponential factor here corresponds to writing the particle energy
in the form ε = mc2 + E, which singles out the rest energy, mc2) and perform the
expansion of the square root in Eq. (2) in powers of p̂2/m2c2. As a result, we obtain
the equation:

i�
∂

∂t
ψ =

(
1

2m
p̂2 − 1

8m3c2
p̂4 +

1

16m5c4
p̂6 + . . .

)
ψ, (5)

where the second- and higher-order terms in the right-hand side are relativistic
corrections to the Hamiltonian, Ĥ0 = p̂2/2m, of a free non-relativistic particle.

In conclusion here, we draw attention to the following fact. The Klein–Gordon
equation implies that the quantity Q+ =

∫
ρ+dV is conserved (in time), where ρ+

is determined by Eq. (XV.3) with ϕ ≡ 0; see also Problem 15.1. At the same time,
according to the Schrödinger equation (5), the value Q =

∫
ρdV is conserved, where
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ρ = |ψ|2. Let us compare Q+ and Q. For Q+, with Eq. (2) taken into account, we
have:

Q+ =
1

mc2

∫
ψ+∗
KG

√
c2p̂2 +m2c4ψ+

KGdV. (6)

For the relation Q+ = Q (= 1 for normalized wave-fuctions) to be valid in the
transition from ψ+

KG to the Schrödinger wavefunction, ψ, we should, in addition to
Eq. (3), apply the non-unitary transform

ψ+
KG = Ŝψ, Ŝ =

(
1 +

p̂2

m2c2

)−1/4

(7)

to preserve normalization (for an arbitrary unitary transformations, both the value
and the form –

∫ |ψ|2dV = const – of normalization integral will remain the same).

However, in the case of a free particle the transformation Ŝ commutes with the
Hamiltonian, and hence Eq. (2) has the same form as the equation for the Schrödinger
wavefunction, ψ = Ŝ−1ψ+

KG, (see the case of a particle in an external field, considered
in Problem 15.15).

Problem 15.15

Using the stationary Klein–Gordon equation for a charged spinless particle in a
constant electromagnetic field:

a) obtain the Schrödinger equation in the non-relativistic limit;

b) find the first two (∼ 1/c2 and ∼ 1/c4) relativistic corrections to the single-particle
Hamiltonian.

Prove that the correction ∼ 1/c4 includes terms that differ from the Hamiltonian
expansion:

Ĥrel =

√
c2
(
p̂− eA

c

)2

+m2c4 + eϕ−mc2.

Solution

The stationary Klein–Gordon equation for a charged particle in an external electro-
magnetic field is given by{

c2
(
p̂− eA

c

)2

+m2c4

}
ψ+
KG = (ε− eϕ)2ψ+

KG.

In the case |eϕ| � mc2 and |E| � mc2, where ε = mc2 + E, it is convenient to write
it in the form (we omit the index (+) for the wavefunction, ψ+

KG; see Problems 15.1
and 15.3):
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1

2m

(
p̂− eA

c

)2

+ eϕ− E

}
ψKG =

(E − eϕ)2

2mc2
ψKG. (1)

Here, the right-hand side of the equation is much smaller than each of the left-hand-
side terms, and, neglecting it in leading approximation, we obtain the Schrödinger
equation of standard non-relativistic theory with the Hamiltonian, Ĥ0 = π̂2/2m+ eϕ,
where π̂ = p̂− eA/c.

The calculation of the relativistic corrections for a Hamiltonian involves successive
iterations and an expansion in powers of a small parameter, ∝ 1/c2. It is based on the
possibility of the transformation of Eq. (1) to the form of the Schrödinger equation
(with the accuracy up to 1/c2). This situation differs from the case of a free particle,
where we could easily write a closed form of the relativistic Hamiltonian; see Eq. (3)
of the previous problem.

Let us begin with the calculation of the first-order correction, ∝ 1/c2. Taking into
account that the right-hand side of Eq. (1) contains the factor 1/c2, we can replace
(E − eϕ)2ψKG by its zeroth-order approximation. Since in this approximation,

(E − eϕ)ψKG ≈ (Ĥ0 − eϕ)ψKG =
1

2m
π̂2ψKG, (2)

we can perform the following transformations to the right-hand side of Eq. (1):

(E − eϕ)2ψKG ≈ (E − eϕ)
π̂2

2m
ψKG =

=

{
− 1

2m
[eϕ, π̂2] +

1

2m
π̂2(E − eϕ)

}
ψKG ≈

≈
{
− 1

2m
[eϕ, π̂2] +

1

4m2
π̂4

}
ψKG.

As a result, this equation takes the form:{
π̂2

2m
+ eϕ− π̂4

8m3c2
+

1

4m2c2
[eϕ, π̂2]

}
ψKG = EψKG, (3)

with the accuracy of ∼ 1/c2. Even though it looks similar to the Schrödinger equation,
it is not the case, because the operator in the curly brackets, which is supposed to
represent a Hamiltonian, is not Hermitian. For the transition from Eq. (3) to the
Schrödinger equation, we should transform the wavefunction according to

ψKG = Ŝψ =

[
ε− eϕ

mc2

]−1/2

ψ =

[
1 +

E − eϕ

mc2

]−1/2

ψ =

=

[
1− 1

2mc2
(E − eϕ) +

3

8m2c4
(E − eϕ)2 + . . .

]
ψ. (4)
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Such a non-unitary transformation preserves the wavefunction normalization∫
ψ∗
KG

1

mc2
(ε− eϕ)ψKGdV =

∫
|ψ|2dV,

as discussed in the previous problem.

Substituting Eq. (4)[408] into Eq. (3), and keeping terms of order 1/c2, we obtain
the Schrödinger equation with the first relativistic correction:{

1

2m
π̂2 − 1

8m3c2
π̂4 + eϕ

}
ψ = Eψ. (5)

This correction to the Hamiltonian, equal to −π̂4/8m3c2, is the same as in the
free-particle case, and represents a natural quantum-mechanical generalization of
the corresponding relativistic correction in the classical theory. Note, however, that
this “natural” classical-to-quantum correspondence disappears in the next order of
perturbation theory, ∼ 1/c4.

To calculate these corrections of order ∼ 1/c4 and higher-order terms, it is conve-
nient to move the term (E − eϕ)ψKG in Eq. (1) to the right-hand side. Within the
given accuracy, we find

π̂2

2m

(
1− E − eϕ

2mc2
+

3(E − eϕ)2

8m3c4

)
ψ =

= (E − eϕ)

(
1 +

(E − eϕ)2

8m2c4

)
ψ. (6)

For all the terms containing the factor 1/c4, we can use the leading-order approxima-
tion for (E − eϕ)ψ and simply replace it by (π̂2/2m)ψ. On the other hand, in terms
of order 1/c2, we use the following substitution instead:

(E − eϕ)ψ by

(
1

2m
π̂2 − 1

8m3c2
π̂4

)
ψ.

After some algebra, Eq. (6) takes the form of the Schrödinger equation with the
Hamiltonian

Ĥ ′ = Ĥ +
1

16m3c4

[(
1

2m
π̂2 + eϕ

)
, [π̂2, eϕ]

]
, (7)

where

Ĥ =
π̂2

2m
+ eϕ− π̂4

8m3c2
+

π̂6

32m5c4
+

1

32m4c4
[
π̂2, [π̂2, eϕ]

]
. (8)

This technically solves the problem. However, this Hamiltonian could be simplified
further. Indeed, within the accuracy considered (∼ 1/c4), in the second term in the

[408] Note that in the leading approximation, ψKG = ψ.



834 Exploring Quantum Mechanics

left-hand side of Eq. (7), we can replace π̂2/2m+ eϕ by Ĥ. This yields

Ĥ ′ ≈ Ĥ +
1

16m3c4

[
Ĥ, [π̂2, eϕ]

]
≈

exp

{
− 1

16m3c4
[π̂2, eϕ]

}
Ĥ exp

{
1

16m3c4
[π̂2, eϕ]

}
. (9)

Note that the operator, F̂ = i[π̂2, eϕ], is Hermitian, and Û = exp{iF̂} is unitary.
Therefore, Eq. (9) implies that the two operators, Ĥ and Ĥ ′, are connected to
one another by a unitary transformation and represent physically equivalent par-
ticle Hamiltonians. Since the expression for Ĥ is simpler than that for Ĥ ′, it is
more convenient to use the former. We see that relativistic corrections following
from the Klein–Gordon equation, differ from the näıve expansion of the operator
Ĥrel =

√
π̂2c2 +m2c4 + eϕ already in the second subleading order, ∼ 1/c4.

Problem 15.16

Prove that in a sufficiently strong electrostatic field a charged spinless particle expe-
riences an attraction (in the quantum-mechanical sense) independently of the sign of
its charge.[409]

Solution

Let us consider only the case where the particle energy is close to the rest energy,
and write ε = mc2 + E, where |E| � mc2. The stationary Klein–Gordon equation for
a particle in an electrostatic field,

{−�
2c2Δ+m2c4}ψ = (ε− eϕ)2ψ,

could be written in the form:{
− �

2

2m
Δ+ eϕ− (eϕ)2

2mc2
+

E

mc2
eϕ− E2

2mc2

}
ψ = Eψ,

which is analogous to the Schrödinger equation with the effective potential:

Ueff = eϕ+
E

mc2
eϕ− (eϕ)2

2mc2
− E2

2mc2
≈ eϕ− (eϕ)2

2mc2
.

For a region of space, where |eϕ| > 2mc2, Ueff < 0, so that the interaction between
the particle and the field is indeed attractive independently of the sign of the charge.
Hence, we note that in the relativistic case, bound states can exist both for a spinless
particle and its antiparticle if the field is sufficiently strong.

[409] This statement is valid for particles with non-zero spin as well.



Relativistic wave equations 835

Problem 15.17

Using the Born approximation, find the amplitude and differential scattering cross-
section of a charged (charge e1) relativistic spinless particle in the Coulomb field of a
nucleus with the charge, Ze (consider the nucleus to be infinitely heavy).

Compare your result to the case of a non-relativistic particle.

Find the range of applicability of the result.

Solution

The stationary Klein–Gordon equation, corresponding to time-dependent Eq. (XV.2)
with eϕ = Zee1/r and A = 0, has the form{

− �
2

2m
Δ+

Zee1ε

mc2r
− (Zee1)

2

2mc2r2

}
ψ+
p0

=
p20
2m

ψ+
p0
, (1)

where ε =
√
p20c

2 +m2c4, identical to the non-relativistic Schrödinger equation with
an effective potential energy (that depends on the total particle energy, ε):

Ueff =
Zee1ε

mc2r
− (Zee1)

2

2mc2r2
. (2)

Since the free-particle wavefunction expansion into the plane-waves is the same in
both relativistic and non-relativistic theories, the general approach to non-relativistic
scattering problem (which is based on asymptotic solutions of the stationary wave
equation in the form of a plane wave and an outgoing wave, as discussed in the
introduction to Chapter 13) holds directly (or is easily generalizable) in the relativistic
regime:

ψ+
p0
(r) ≈

r → ∞
ep0·r/� +

f

r
eikr.

In particular, the scattering amplitude in the Born approximation is described by
Eq. (XIII.6):

fB = − m

2π�2

∫
Ueffe

−iq·rd3r, �q = p− p0. (3)

We should consider the range of applicability of the Born approximation more
accurately. The analogy between Eq. (1) and the Schrödinger equation, mentioned
above, assumes the use of momentum (but not velocity or energy) to describe the
free-particle states (at large distances). Hence, the well-known condition (XIII.7) of
the Born approximation applicability takes the form in the relativistic case:

|Ueff | � �p

ma
, |Ueff | � �

2

ma2
. (4)
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For the first term in Eq. (2), the first of the conditions in Eq. (4) requires the following
inequality to hold:∣∣∣∣Zee1ε

mc2r

∣∣∣∣ � �p

mr
, or

Ze2

�c
� v

c
< 1, (vε = pc2, |e1| ∼ e). (5)

(As well as in non-relativistic case; the necessary condition for the validity of pertur-
bation theory is the restriction, Z � 137.) The applicability of perturbation theory
for the second term in the effective potential (2) is restricted by the second condition
in Eq. (4), which requires that

(Zee1)
2

2mc2r2
� �

2

mr2
, or

(
Ze2

�c

)2

� 1. (6)

This condition is weaker than that in Eq. (5).

Let us now note that when calculating the scattering amplitude with Eqs. (2) and
(3), the second term in Eq. (2) should be omitted, because it is second-order in the
small parameter Zα. With this, and using the value of the integral below,∫

1

r
e−iq·rd3r =

4π

q2
,

we find the amplitude and differential scattering cross-section for a spinless particle
in the Coulomb field:

fB = −2Zee1ε

�2c2q2
,

dσ

dΩ
= |f |2 ≈

(
Zee1
2v0p0

)2
1

sin4(θ/2)
, (7)

to be compared with the Rutherford equation for non-relativistic theory.

Problem 15.18

In the Born approximation, find the energy-dependence of the scattering cross-section,
σ(ε), for a charged spinless particle in an external electrostatic field, ϕ(r), for ε → ∞.

Find the conditions of applicability for the result obtained, and compare it to the
result of non-relativistic theory.

Solution

The Born scattering amplitude for a charged spinless particle in an electrostatic field
with the potential, ϕ(r), is described by the expression

fB = − m

2π�2

∫
Ueffe

−iq·rd3r, (1)

where the effective potential energy is

Ueff =
eε

mc2
ϕ(r)− 1

2mc2
(eϕ(r))2. (2)
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(For a general discussion of Eqs. (1) and (2) and the applicability of the Born
approximation in the relativistic case, see the previous problem.)

In the ultra-relativistic case, when ε ≈ pc → ∞, we can neglect the second term in
Eq. (2) and the scattering amplitude becomes

fB ≈ − ep

2π�2c

∫
ϕ(r)e−iq·rd3r ≡ − ep

2π�2c
ϕ̃(q).

Hence, the scattering cross-section is described by

σ =

∫
|f |2dΩ =

e2

4π�2c2

4p2/�2∫
0

|ϕ̃(q)|2dq2. (3)

(We recall that dΩ = (π�2/p2)dq2.)

For p → ∞, the upper integration limit in Eq. (3) can be set to infinity, so that the
scattering cross-section, σ(ε), for ε → ∞ is constant (in the non-relativistic case, the
scattering cross-section decreases as σ ∝ E−1 → 0, with E → ∞; see Problem 13.2).
This is connected to the fact that according to Eq. (2), the interaction between a
particle and an electrostatic field increases with increasing energy.

The applicability of the Born approximation in the problem considered is deter-
mined by the first of the expressions in Eq. (4) of Problem 16.17, and requires that the
inequality |eϕ0| � �c/a is satisfied, where ϕ0 and a are the characteristic strength of
the potential and its characteristic radius, correspondingly. In a “strong” electrostatic
field the Born approximation is not applicable. But the conclusion that the scattering
cross-section is constant in the ε → ∞ limit is still true. Here, the scattering cross-
section could be calculated by the quasi-classical equation

σ =
ε → ∞

4π

∞∫
0

⎧⎨⎩1− cos

⎡⎣ e

�c

∞∫
−∞

ϕ(
√

ρ2 + z2)dz

⎤⎦⎫⎬⎭ ρ dρ, (4)

which is a generalization of the result of Problem 13.51 to the relativistic case. This
generalization is obtained by replacing U(r) by Ueff (see also the previous problem)
in the corresponding equations, and substituting p ≈ ε/c for �k.

In conclusion, we note that for the validity of the results obtained, it is necessary
that the potential decreases faster than ∝ 1/r2. In the opposite case, the scattering
cross-section becomes infinite as in the non-relativistic theory, due to the divergence
of the integral in Eq. (3) at the lower limit (which corresponds to small scattering
angles).

Problem 15.19

In the Born approximation, find the energy dependence of the scattering cross-
section, σ(ε), for a spinless particle in an external scalar field, U(r) (see the note
in Problem 15.4) for ε → ∞.
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Fine the range of applicability of the results, and compare them to the non-
relativistic theory.

Solution

The stationary wave equation for a relativistic spinless particle in an external constant
scalar field can be written in the form:{

− �
2

2m
Δ+ U(r)

}
ψ =

p20
2m

ψ, (c2p20 = ε2 −m2c4),

which is identical in form to the non-relativistic Schrödinger equation. Due to this
analogy for the scattering amplitude, we can use the known results of the non-
relativistic theory (compare to Problem 15.17). In the Born approximation,

fB(q) = − m

2π�2

∫
U(r)e−iq·rdV ≡ − m

2π�2
Ũ(q).

Hence, the scattering cross-section,

σ(ε) =
m2

4π�2p2o

4p2
0/�

2∫
0

|Ũ(q)|2dq2,

in the ultra-relativistic limit (p0 ≈ ε/c) is determined by the expression

σ(ε) =
m2c2

4π�2ε2

∞∫
0

|Ũ(q)|2dq2 ∝ 1

ε2
. (1)

The applicability condition for the Born approximation is U0 � �p0/ma, where U0

and a are the characteristic potential strength and its radius, respectively.

15.2 The Dirac equation

Problem 15.20

Determine which of the operators below commute with the Hamiltonian of a free
relativistic particle with spin s = 1/2 (and hence are integrals of motion):

1) p̂ = −i�∇; 2) l̂ = 1
�
[r× p̂] = −i[r×∇]; 3) l̂2;

4) ŝ = 1
2Σ; 5) ŝ2; 6) ĵ = l̂+ ŝ; 7) ĵ2;

8) Λ̂ = p̂ ·Σ; 9) Î[where, Îψ(r) ≡ ψ(−r)]; 10) P̂ ≡ βÎ; 11) γ5.

Compare to the case of a free non-relativistic particle.

Solution

The Hamiltonian of a particle is Ĥ = cα · p̂+mc2β; see Eqs. (XV.4 and XV.5). For
the calculation of the commutators it is convenient to use the result of Problem 1.4,
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and recall that an operator acting on spatial variables (p̂, l̂, etc.) commutes with an
operator acting only on the spin variables (α, Σ, etc.):

1) [p̂, Ĥ] = 0,

2) [l̂i, Ĥ] = [l̂i, cα · p̂] = cαk[l̂i, p̂k] = icεiklαkp̂l �= 0;

3) [̂l2, Ĥ] = [l̂i l̂i, Ĥ] = l̂i[l̂i, Ĥ ] + [l̂i, Ĥ]l̂i = icεiklαk(l̂ip̂l + p̂l l̂i) �= 0;

4) Since

[Σi, αk] =

(
σi 0
0 σi

)(
0 σk

σk 0

)
−
(

0 σk

σk 0

)(
σi 0
0 σi

)
=

=

(
0 σiσk − σkσi

σiσk − σkσi 0

)
=

(
0 2iεiklσl

2iεiklσl 0

)
= 2iεiklαl

and [Σi, β] = 0, then [ŝi, Ĥ] = c
2 [Σi, αk]p̂k = icεiklαlp̂k ≡ −icεiklαlp̂l;

5) Σ2 =

(
σ 0
0 σ

)
·
(
σ 0
0 σ

)
=

(
σ2 0
0 σ2

)
=

(
3 0
0 3

)
= 3,

hence the operator ŝ2 = (1/4)Σ2 = 3/4 and commutes with Ĥ.

Using the values of the commutators 1), 2), and 4), we find that

6) [ĵi, Ĥ] = 0;

7) [̂j2, Ĥ ] = 0;

8) [Σ · p̂, Ĥ] = [Σi, Ĥ]p̂i +Σi[p̂i, Ĥ] = 2iεiklαlp̂kp̂i = 0;

9) Since Îp̂ = −p̂Î, then [Î , Ĥ] = [Î , cα · p̂] = −2c(α · p̂)Î;
10) [P̂ ,mc2β] = 0, [P̂ , Ĥ] = [βÎ, cα · p̂] = cβÎα · p̂− cα · p̂βÎ = 0;

11) [γ5, Ĥ] = 2mc2
(

0 1
−1 0

)
(and for a particle with zero mass, m = 0, this

commutator is equal to zero).

In the non-relativistic case, the first nine operators commute with the free-particle
Hamiltonian, Ĥ0 = p̂2/2m. In the relativistic case, however, we have a different situ-
ation. The commutativity between the momentum operator, p̂, and the free-particle
Hamiltonian reflects translational symmetry of the problem; on the other hand, the
commutativity between the total particle angular moment operator ĵ = l̂+ ŝ and Ĥ is
due to the isotropy of free space. But the operators l̂ and ŝ do not independently
commute with the Hamiltonian. This means that in the relativistic case there is
some kinematic correlation between possible spin states of a particle and its angular
momentum (compare to Problem 15.23). It is also seen in the non-commutativity of

the square of the angular momentum operator l̂2 with Ĥ. Nevertheless, according to
1) and 8), the helicity is still a “good” quantum number. The commutativity of the
inversion operator P̂ = βÎ with the Hamiltonian of a free particle reflects the mirror
symmetry of free space (i.e., the indistinguishability of “right” and “left”).
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Problem 15.21

Find the solutions of the Dirac equation describing a free particle with definite
momentum and energy. To describe the particle spin states use the fact that the
operator Λ̂ = Σ · p̂ commutes with the operators p̂ and Ĥ (see Problem 15.26).

Solution

The solutions of the Dirac equation for a free particle, corresponding to definite values
of the energy, ε, and momentum, p, have the form:

ψp,ε(r, t) = u(p, ε) exp

{
i

�
(p · r− εt)

}
, (1)

where the bi-spinor, u(p, ε), satisfies the stationary Dirac equation (see, Eq. (XV.4)):

(cα · p+mc2β)u(p, ε) = εu(p, ε), (2)

or, using the “two-component spinor language”,

cσ · pχ+mc2ϕ = εϕ, cσ · pϕ−mc2χ = εχ, (3)

u(p, ε) =

(
ϕ
χ

)
.

The second equation in (3) gives

χ =
c

ε+mc2
σ · pϕ, (4)

and after the substitution of this equation into the first equation in (3), we obtain
(using the relation (σ · p)2 = p2):

c2p2

ε+mc2
ϕ = (ε−mc2)ϕ.

Hence, it follows that ε = ±
√
p2c2 +m2c4. Here, the spinor remains undefined, and

could be arbitrarily chosen in two independent ways, corresponding to the positive
and negative signs of ε.

Hence, for a fixed momentum p there are four independent solutions to the Dirac
equation of the form (1), for which the bi-spinors u(p, ε) are equal to

u(p, ε = E) =

(
ϕ1

cσ·p
E+mc2ϕ1

)
, u(p, ε = −E) =

(
ϕ2

cσ·p
−E+mc2ϕ2

)
, (5)

where E = +
√
p2c2 +m2c4 ≥ mc2.

The existence of the solutions to the Dirac equation that formally correspond
to a particle with negative energy is associated with the antiparticle state (see
Problem 15.27).
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To explicitly specify the spinor form, ϕ, and also the wavefunctions (1) and (5),
we use the commutativity of the Hermitian operator Λ̂ = Σ · p̂ with the operators,
p̂ and Ĥ, and introduce the complete system of eigenfunctions: ψpεΛ. Here, from the

equation, Λ̂ψpεΛ = ΛψpεΛ, where

ψpεΛ = u(p, ε,Λ) exp

{
i

�
(p · r− εt)

}
, u(p, ε,Λ) =

(
ϕΛ

cσ·p
ε+mc2ϕΛ

)
,

it follows that

(σ · p)ϕΛ = ΛϕΛ, or
(σ
2
n
)
ϕΛ = λϕΛ, n =

p

|p| , Λ = 2λ|p|. (6)

Solutions to Eq. (6) were obtained before in the non-relativistic spin theory (see
Problems 5.3 and 5.20). We remind here that particle states with a definite value
of λ (with eigenvalues of λ equal to ±1/2) are called “helical states”. Also note here
that the helicity, λ, does not change under charge conjugation – see, Problem 15.27 –
unlike p and ε, which do change sign.

Problem 15.22

Find 4-vector components for the current density of a free Dirac particle in a state
with a definite momentum. Compare your answer to the corresponding expression
from non-relativistic theory.

Solution

Substituting into the known expressions (XV.7),

j = cψ∗αψ ≡ icψγψ, ρ = ψ∗ψ ≡ ψβψ, (1)

the wavefunction of a Dirac particle in the state with momentum p and energy ε =√
p2c2 +m2c4 ≥ mc2:

ψpε = u(p, ε) exp

{
i

�
(p · r− εt)

}
, (2)

where the bi-spinor u is equal to (see the previous problem)

u = N

(
ϕ
χ

)
= N

(
ϕ

cσ·p
ε+mc2ϕ

)
, N =

√
ε+mc2

2ε
(3)

(the value of N is chosen so that the normalization of the bi-spinor, u, coincides with
that of ϕ; i.e., u∗u = ϕ∗ϕ); and using the relations

u∗ = N(ϕ∗, χ∗) = N

(
ϕ∗, ϕ∗ cσ · p

ε+mc2

)
, (σ · p)2 = p2,
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we obtain

ρ = ψ∗ψ = u∗u = ϕ∗ϕ, (4)

j = cψ∗αψ = cu∗αu = cN2

(
ϕ∗, ϕ∗ cσ · p

ε+mc2

)(
0 σ
σ 0

)(
ϕ

cσ·p
ε+mc2ϕ

)
=

= cN2

(
ϕ∗, ϕ∗ cσ · p

ε+mc2

)(
cσ(σ·p)
ε+mc2 ϕ

σϕ

)
=

c2N2

ε+mc2
ϕ∗[σ(σ · p) + (σ · p)σ]φϕ. (5)

Hence, using the relation

σi(σ · p) + (σ · p)σi = (σiσk + σkσi)pk = 2δikpk = 2pi,

it follows that

j = cψ∗αψ =
2c2N2

ε+mc2
pϕ∗ϕ =

c2p

ε
ϕ∗ϕ = vϕ∗ϕ = ρv, (6)

where v is the velocity of a relativistic particle with momentum p.

In conclusion, we consider the velocity operator, v̂, of a Dirac particle. The formal
calculation of the commutator [Ĥ, r] gives (see VI.4)

v̂ = ˙̂r =
i

�
[Ĥ, r̂] = cα. (7)

Remember that the appearance of the operator,
˙̂
f = i

�
[Ĥ, r] as the time derivative of

a generic physical quantity, f (for which ∂f̂/∂t = 0) is connected in non-relativistic
theory with the following relation:

d

dt
〈f〉 ≡ 〈df̂

dt
〉 = i

�

∫
ψ∗[Ĥ, f̂ ]ψdτ, (8)

from which it directly follows that there are no essential restrictions on the wave-
function, ψ. In the case of a relativistic particle that satisfies the Dirac equation,
these restrictions do occur. They arise from the fact that only a superposition of
positive-frequency solutions may have an immediate physical meaning of a particle
state (compare to Problem 15.1 for a spinless particle). Such a superposition, ψ+, can
be constructed out of an arbitrary solution to the Dirac equation using the projection
operator, P̂+:

ψ+ = P̂+ψ, P̂+ =
cα · p̂+mc2β + ε̂

2ε̂
, ε̂ = ε(p̂) =

√
p̂2c2 +m2c4, (9)

where P̂ 2
+ = P̂+. Using the properties of the matrices α and β:

αiαk + αkαi = 2δik, βαi + αiβ = 0,
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and

αiαkαl =

(
0 σiσkσl

σiσkσl 0

)
= −iεiklγ5 + δikαl − δilαk + δklαi,

we obtain

P̂+αP̂+ =
cp̂

ε̂
P̂+. (10)

Now, making the following substitutions in Eq. (8):

f̂ → r, ψ → ψ+ ≡ P̂+ψ
+, Ĥ = cα · p̂+mc2β,

and performing the following transformation with the help of relation (10),

〈v̂〉 = 〈ψ+|P̂+cαP̂+|ψ+〉 = 〈ψ+|c
2p̂

ε̂
P̂+|ψ+〉 = 〈ψ+|c

2p̂

ε̂
|ψ+〉, (11)

we obtain the relation v̂ = c2p̂/ε̂ between the operators of velocity, momentum, and
energy of a free relativistic particle (in particular, in the momentum representation,
we obtain, v̂ = c2p/ε(p)).

Problem 15.23

Find the mean value of the spin vector for a Dirac particle with a definite momentum
(and arbitrary spin state). For simplicity, assume that the momentum is directed along
the z axis. Compare to the corresponding result of non-relativistic theory.

Solution

The wavefunction of the state considered has the form:

ψ = u(p) exp

{
i

�
(p · r− εt)

}
,

where the bi-spinor, u(p), is

u(p) = N

(
ϕ
χ

)
= N

(
ϕ

cσ·p
ε+mc2ϕ

)
, N =

√
ε+mc2

2ε
,

(see Problem 15.21), and we used the normalization condition u∗u = ϕ∗ϕ = 1.
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The mean value of the spin vector is calculated by the equation:

s =
1
2u

∗Σu

u∗u
=

N2

2

(
ϕ∗, ϕ∗ c(σ · p)

ε+mc2

)(
σ 0
0 σ

)(
ϕ

c(σ·p)
ε+mc2ϕ

)

=
N2

2
ϕ∗

{
σ +

c2

(ε+mc2)2
(σ · p)σ(σ · p)

}
ϕ

=
N2

2
ϕ∗

{
σ +

p2c2

(ε+mc2)2
σzσσz

}
, p = (0, 0, p). (1)

Hence, using the properties (V.3) of the Pauli matrices, we obtain

sx =
N2

2
ϕ∗

{
σx − p2c2

(ε+mc2)2
σx

}
ϕ =

mc2

2ε
ϕ∗σxϕ, (2)

sy =
mc2

2ε
ϕ∗σyϕ, sz =

1

2
ϕ∗σzϕ.

Note that the vector s0 = 1
2ϕ

∗σϕ has the meaning of a mean spin vector, but is
expressed specifically in the coordinate system, where the particle is at rest; see
Problem 15.25. Hence, the results obtained in Eq. (2) can be characterized as a
sort of reduction of the transversal components in Lorentz transformation. In the
ultra-relativistic limit, ε � mc2, the vector s becomes directed along the particle’s
momentum (compare this to the case of a particle with rest mass m = 0, discussed in
Problem 15.24).

Problem 15.24

Consider the unitary transformation of bi-spinors given by the unitary operator
(matrix)

Û =
1√
2

(
1 1
1 −1

)
.

What is the form of particle spin operator and Dirac equation in the new representation
for the two-component spinors

ψ′ = Ûψ ≡
(
ξ
η

)
?

Discuss the case of a massless particle, m = 0.

Solution

For the unitary transformation considered,

Û = Û+ =
1√
2

(
1 1
1 −1

)
,
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we find

β′ = ÛβÛ+ =
1

2

(
1 1
1 −1

)(
1 0
0 −1

)(
1 1
1 −1

)
=

(
0 1
1 0

)
,

Σ′ = ÛΣÛ+ = Σ,

α′ = ÛαÛ+ =
1√
2

(
1 1
1 −1

)(
0 σ
σ 0

)(
1 1
1 −1

)
=

(
σ 0
0 −σ

)
.

Hence, the spin vector operator in the new representation conserves its form 1
2Σ, while

the Dirac equation

(cα′ · p̂+mc2β′)ψ′ = i�
∂

∂t
ψ′, ψ′ = Ûψ =

1√
2

(
ϕ+ χ
ϕ− χ

)
=

(
ξ
η

)
,

written in terms of the two-component spinors, ξ and η, takes the form

i�
∂

∂t
ξ = c(σ · p̂)ξ +mc2η, i�

∂

∂t
η = −c(σ · p̂)η +mc2ξ. (1)

Let us discuss now the case of a particle with zero rest mass m = 0 (neutrino).
From Eq. (1), we see that in this case the new representation is especially convenient,
since the spinors, ξ and η, satisfy the equations independently. Moreover, these spinors
are transformed independently from one another under the Lorentz transformations
(compare to Problem 15.25). Hence, for m = 0 each of the equations in (1) is rela-
tivistically invariant – the Weyl equation. However, these equations are not invariant
with respect to spatial inversion, unlike the Dirac equation. This is connected with
the fact that under inversion, the spinors, ξ and η, are “permuted”. This follows from
the transformation ψ̃′ = P̂ψ′ = Îβ′ψ′.

Problem 15.25

Assuming that the spin state of a particle at rest is known, find the bi-spinor, u(p),
in an arbitrary coordinate system, where the particle momentum is p.

Using the result obtained, find the connection between the mean values of the
particle spin vector in the coordinate system at rest and in motion.

Solution

In the coordinate system K, where a particle is at rest and has the energy ε = mc2, its

spin state is described by the bi-spinor u(0) =

(
ϕ0

0

)
, where ϕ0 is some two-component

spinor.

In the system K ′, which moves with respect to K with velocity −v, the particle
has velocity v and momentum p = mv/

√
1− (v/c)2, while its spin state is described
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by a bi-spinor u(p), which is expressed in terms of u(0) as follows:

u(p) ≡ u′ = Ŝu(0),

with

Ŝ = exp

{
−1

2
α · nθ

}
= cosh

θ

2
− (α · n) sinh θ

2

(
tanh θ =

v

c

)
, (2)

where n = −v/v is the unit vector of the velocity of K ′ with respect to K.

Using the relations

tanh
θ

2
=

tanh θ

1 +
√

1− tanh2 θ
=

v/c

1 +
√

1− (v/c)2
=

pc

ε(p) +mc2
,

cosh
θ

2
=

√
1 + cosh θ

2
=

√√√√1

2

(
1 +

1√
1− tanh2 θ

)
=

√
ε(p) +mc2

2mc2
,

and Eqs. (1) and (2), we obtain

u(p) =

( (
cosh θ

2

)
ϕ0(

sinh θ
2

)
σv
v ϕ0

)
=

√
ε+mc2

2mc2

(
ϕ0

cσ·p
ε+mc2ϕ0

)
. (3)

This expression for the bi-spinor, u(p), coincides with the form of the general solution
to the Dirac equation discussed in Problem 15.21. In this sense, an essential element

of the solution is the fact that the spinor ϕ in the bi-spinor u(p) =

(
ϕ
χ

)
is the same

in all Lorentz systems and is equal to ϕ0.

Using the normalization, ϕ∗
0ϕ0 = 1, we find the mean value of the particle spin

vector in the system K ′, where it has momentum p, as follows:

sp =
1
2u

∗Σu

u∗u
=

ε+mc2

4ε
ϕ∗
0

{
σ +

c2

(ε+mc2)2
(σ · p)σ(σ · p)

}
ϕ0. (4)

It is now straightforward to calculate the mean value of the spin vector in rest frame
s0 = 1

2ϕ
∗
0σϕ0, by choosing the vector p to be directed along the z axis and using the

properties of the Pauli matrices (V.3):

sp,x =
mc2

ε
s0,x; sp,y =

mc2

ε
s0,y; sp,z = s0,z, (5)

(see Problem 15.23).

Problem 15.26

As is known (see, e.g., Problem 15.21), the wavefunction of a spin s = 1/2 particle

with momentum p, and energy, ε =
√

p2c2 +m2c4, has the form:
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ψ+
p = u(p)ei(p·r−εt)/�; u(p) =

(
ϕ

cσ·p
ε+mc2ϕ

)
.

This state is two-fold degenerate (there are two independent ways to choose the spinor,
ϕ), due to the spin degree of freedom. Let us consider two such independent states,
corresponding to the choice of the spinor ϕ = ϕλ, where

(σ · ñ)ϕλ = λϕλ,

ñ is an arbitrary unit vector, and λ = ±1; see, Problem 5.12.

Prove the orthogonality of the spin states that correspond to different values of λ
for the relativistic particle.

Using the result of the previous problem, find the physical meaning of the vector
ñ and the corresponding eigenvalues, λ.

What is the meaning of the vector 1
2ϕ

∗σϕ, with the normalization condition being
ϕ∗ϕ = 1?

Solution

Taking into account that

ψp,λ = uλ(p) exp

{
i

�
(p · r− εt)

}
, uλ(p) =

(
ϕλ

cσ·p
ε+mc2ϕλ

)
u∗
λ(p) =

(
ϕ∗
λ, ϕ

∗
λ

cσ · p
ε+mc2

)
,

we find

ψ∗
pλ′ψpλ = u∗

λ′uλ = ϕ∗
λ′

[
1 +

c2(σ · p)2
(ε+mc2)2

]
ϕλ =

2ε

ε+mc2
ϕ∗
λ′ϕλ ∝ δλ′λ,

which proves the orthogonality of the relativistic spin states corresponding to different
values of λ. We used orthogonality ϕ∗

λ′ϕλ = δλ′λ of the two-component spinors as
eigenfunctions of the Hermitian operator, σ · ñ.

The answers to the remaining questions become evident if we use the result of
the previous problem. According to the latter, the spinor, ϕ, in the bi-spinor, u(p) =(
ϕ
χ

)
, which describes a particle with a definite momentum, but in a different inertial

coordinate system, is the same (modulo an overall normalization factor). In the system

where the particle is at rest, the bi-spinor has the form u(0) =

(
ϕ
0

)
and uλ(0) =(

ϕλ

0

)
. In this coordinate system, the equation (σ · ñ)ϕλ = λϕλ is equivalent to

(Σñ)uλ(0) = λuλ(0). (1)

That is, it is an equation for the eigenfunction of the operator (Σñ) = 2(ŝ · ñ) – twice
the spin projection along ñ. Hence, the vector ñ has a direct physical meaning not
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in the initial coordinate system, where the particle momentum is equal to p, but in
the system where it is at rest, and this vector determines the direction along which the
spin projection has a definite value, equal to λ/2. Then, the vector, 1

2ϕ
∗σϕ, gives the

mean value of the spin vector in rest frame of the particle. In order to avoid mistakes
we should reiterate that here only particle states with a definite value of momentum
are considered, and hence we can speak about a rest system of the particle.

In conclusion, we mention that we can give the problem a covariant form by
classifying the particle states by both a definite momentum and spin, using the
quantum number, λ. We introduce the operator

λ̂ = iγ5ν̂ ≡ iγ5(γ · ν + γ4ν4) =

(
σ · ν −ν0
ν0 −σ · ν

)
, (2)

where νi = (ν, ν4) is some unit 4-vector, so that ν2i = ν2 + ν24 = 1 is orthogonal to
the 4-momentum of the particle pi = (p, iε/c), i.e. νipi = ν · p− ν0ε/c = 0, while
ν4 = iν0. The equation

λ̂uλ(p) = λuλ(p) (3)

is equivalent to the equation (σ · ñ)ϕλ = λϕλ, where the connection between the three-
dimensional vector ñ and the 4-vector νi is determined by the condition that νi in the
rest frame has the form ν̃i = (ñ, 0). Indeed, taking into account the expression for the

bi-spinor uλ(p) and the operator λ̂, we find

λ̂uλ ≡
⎛⎝ σ ·

(
ν − cν0p

ε+mc2

)
ϕλ(

ν0 − c(σ·ν)(σ·p)
ε+mc2

)
ϕλ

⎞⎠. (4)

Then, expressing ν and ν0 in terms of the components, (ñ, 0), and using the Lorentz
transformations for the 4-vector:

ν = ν⊥ + ν‖ = ñ⊥ +
ε

mc2
ñ‖, ν0 =

c

ε
(ν · p),

where the labels ⊥, ‖ correspond to the perpendicular and parallel components of
vectors with respect to the vector p/|p|, we obtain

ν − cν0p

ε+mc2
= ν − ν(ε−mc2)p

cp2
= ν⊥ +

mc2

ε
ν‖ = ñ.

Here, as is seen, the upper spinor in the bi-spinor (4) coincides with (σ · ñ)ϕλ.
Similarly, we can prove the relation(

ν0 − c(σ · ν)(σ · p)
ε+mc2

)
ϕλ =

c(σ · p)
ε+mc2

(σ · ñ)ϕλ

for the lower spinor in (4). From these equalities, the equivalence of Eq. (3) with
(σ · ñ)ϕλ = λϕλ follows. Let us finally note that the equivalence of these equations is



Relativistic wave equations 849

seen also from the following considerations. The operator λ̂ introduced is a pseudo-
scalar operator with respect to the Lorentz group. Hence, from the covariance of Eq.
(3) it follows that if it is satisfied in one reference system, it must be automatically
satisfied in any Lorentz system. Since in the rest system of the particle, Eq. (3) has
the form (σ · ñ)ϕλ = λϕλ, this relation holds in all other Lorentz systems.

Problem 15.27

By applying the charge conjugation transformation, find explicitly the wavefunction,
ψ+
c , of the antiparticle state corresponding to the solution of the Dirac equation,

ψ−, with the definite momentum, equal to −p, and the negative energy E = −ε =
−
√
p2c2 +m2c4. Compare this to the wavefunction of the physical particle state with

the energy, ε ≥ mc2, and momentum, p (see Problems 15.21 and 15.26).

How does the helicity change under charge conjugation (see Problem 15.2)?

Solution

The solutions of the Dirac equation corresponding with definite values of momentum
and energy have the form:[410]

ψ±
pε =

(
ϕp

cσ·p
ε±mc2ϕp

)
e±i(p·r−εt)/� =

( cσ·p
ε∓mc2χp

χp

)
e±i(p·r−εt)/�, (1)

where ε =
√
p2c2 +m2c4 ≥ mc2. Here the solution, ψ+

pε, has the meaning of the
wavefunction of a particle with momentum p and energy ε.

The solution ψ−
pε that corresponds to a formally negative energy and momentum,

(−p), has no direct meaning as a physical wavefunction. Such a solution is associated
with an antiparticle, whose wavefunction, ψ+

c = Ĉψ−, is obtained via charge conju-
gation of the function ψ−

pε. This transformation for the Dirac matrices is given in
Eq. (XV.5), and can be presented as follows:

ψ+
c = Ĉψ− ≡ γ2γ4ψ− = γ2γ4(ψ

−∗β), (2)

or, using the bi-spinor indexes,

(ψ+
c )α = (γ2γ4)αδ(ψ

−∗β)δ = (γ2γ4)αδ(ψ
−∗)μβμδ =

= (γ2γ4)αδβδμ(ψ
−∗)μ = (γ2γ4β)αμ(ψ

−∗)μ = (γ2)αμ(ψ
−∗)μ (3)

(here we used β = γ4, β
2 = 1, and βμδ = βδμ).

[410] Here we use the same notations as in Problem 15.1, which discussed a spinless particle.
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Using the relations

ψ−∗
pε =

(
cσ∗p

ε+mc2χ
∗
p

χ∗
p

)
ei(p·r−εt)/�, γ2 =

(
0 −iσ2

iσ2 0

)
,

σ∗ = (σ1,−σ2, σ3), σ2σ
∗ = −σσ2,

and according to Eq. (3), we find the wavefunction of the antiparticle state, corre-
sponding to the “non-physical” solution, ψ−

pε, of the Dirac equation:

ψ+
c =

(
0 −iσ2

iσ2 0

)(
cσ∗·p
ε+mc2χ

∗
p

χ∗
p

)
ei(p·r−εt)/� =( −iσ2χ

∗
p

− cσp
ε+mc2σ2χ

∗
p

)
ei(p·r−εt)/�. (4)

In this state, the antiparticle has momentum p, and energy ε =
√

p2c2 +m2c4 ≥ mc2.
Denoting ϕcp ≡ −iσ2χ

∗
p, we rewrite Eq. (4) in the form:

ψ+
c,pε =

(
ϕc,p

cσ·p
ε+mc2ϕc,p

)
ei(p·r−εt)/�, (5)

which has the same form as the wavefunction of the analogous particle state with
momentum p and energy ε.

The wavefunction of the antiparticle state with a known helicity, ψ+
c,pελ, follows

from the equation

1

2
(Σ · n)ψ+

c,pελ = λψ+
c,pελ, n =

p

|p| ,

from which it follows that

1

2
(σ · n)ϕc,pλ = λϕc,pλ. (6)

Taking into account the relation between the spinor ϕc,p, its antiparticle wavefunction,
and the spinor, χ−

p , in the solution, ψ−
pc, of the Dirac equation (ϕc,p = −iσ2χ

−∗
p ), we

see that Eq. (6) is equivalent to

−1

2
(σ · n)χ−

pλ = λχ−
pλ.

To avoid any misunderstanding, we emphasize that the spinor χ−
p corresponds to the

solution of the Dirac equation with the momentum, (−p) since the helicity operator
here is − 1

2 (σ · n). It means that under charge conjugation, ψ+
c = Ĉψ−, the helicity

remains invariant, while the momentum and energy change sign. This helicity property
appears in “hole theory”, where an antiparticle is interpreted as a hole among filled
particle states with negative energy.
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Problem 15.28

Prove that for a Dirac particle with mass m = 0, the operator (matrix) γ5 commutes
with the Hamiltonian of a free particle.

Find the eigenvalues of this operator, and determine their physical meaning.

Solution

The commutativity of the Hermitian operator γ5 = −
(
0 1
1 0

)
with the Hamiltonian

Ĥ = cα · p̂ = c

(
0 σ
σ 0

)
· p̂ of a spinless Dirac particle is straightforward to verify:

[γ5, Ĥ] = 0.

To find the physical meaning of the eigenvalue, μ, of the operator, γ5, we find the
general eigenfunctions ψpεμ of the commuting Hermitian operators Ĥ, p̂, γ5. These
functions have the form:

ψpεμ =

(
ϕpμ

c
εσ · pϕpμ

)
ei(p·r−εt)/�, ε = ±pc (1)

(compare to Problem 15.21), and from the equation, γ5ψpεμ = μψpεμ, it follows that

− c

ε
σ · pϕpμ = μϕpμ, −ϕpμ = μ

c

ε
σ · pϕpμ. (2)

Hence μ2 = 1, i.e., the eigenvalues are equal to μ = ±1 (which is evident a priori, since
γ2
5 = 1). Taking into account the relation (2) and the equality (σ · p)2 = p2 = ε2/c2,

we see that the equations

γ5ψpεμ = μψpεμ and (Σ · n)ψpεμ = −μ
ε

|ε|ψpεμ, (3)

where n = p/p, are equivalent to each other. Hence, the physical meaning of the
quantity −με/|ε| is that it is twice the helicity of the particle, 2λ. For the positive-
energy solutions of the Dirac equation, ε = pc > 0, we have μ = −2λ, while for the
negative-energy solutions (corresponding to an antiparticle), we have μ = 2λ; see also
Problems 15.27 and 15.29.

Problem 15.29

Prove that the matrix operators P̂± = 1
2 (1± γ5), are projection operators.

For a Dirac particle with mass m = 0 these operators commute with the Hamilto-
nian. Onto what state do the operators P̂± project?

Solution

Since P̂ 2
± = P̂±, then the Hermitian operators P̂± = 1

2 (1 + γ5) are indeed projection
operators (see Problem 1.31). Taking into account the relation between the eigenvalues
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of the operator γ5 and helicity λ found in the previous problem, we see that the
operator P̂+ acting on solutions of the Dirac equation with positive energy projects
onto the states with helicity λ1 = −1/2. Similarly, a negative energy particle (i.e. the
anti-particle states) projects onto λ2 = +1/2. Therefore, the operator P̂− projects onto
states with opposite values of helicity.

Note that the opposite signs of the particle and antiparticle helicity, corresponding
to the eigenvalues μ of matrix γ5, is due to the fact that under charge conjugation the
equation γ5ψ = μψ becomes: γ5ψc = −μψc, since Ĉγ5 = −γ5Ĉ.

Problem 15.30

The photon can be described quantum-mechanically through two vectors, E(r, t)
and H(r, t), that satisfy[411] equations corresponding to the Maxwell equations in
classical electrodynamics for a free electromagnetic field E(r, t), H(r, t) (i.e., for
electromagnetic waves in vacuum).

Prove that these equations can be introduced in a form analogous to the Dirac
equation for two-component spinors (it is necessary to use the properties that the
photon mass is zero, m = 0, and its spin is s = 1).

Solution

The Dirac equation for a two-component spinor of a massless particle, m = 0, has the
form (see Problem 15.21, σ = 2ŝ ≡ ŝ/s):

i�
∂ϕ

∂t
= cσ · p̂χ ≡ c

s
ŝp̂χ, i�

∂χ

∂t
= cσ · p̂ϕ ≡ c

s
ŝp̂ϕ. (1)

The two spinors, ϕ and χ, describe the spin states of a s = 1/2 particle with respect to
a pure spatial rotation of the coordinate system, and transform independently under
such a transformation (but not under a general Lorentz transformation).

The natural generalization of Eq. (1) to the case of a particle with an arbitrary
spin s (and mass m = 0) is to identify the equations for ϕ and χ with two (2s+
1)-component spin functions, with spin s, and take ŝ as the spin operator of the
quantity s.

In the case s = 1, it is convenient to use a vector representation where the spin
components are Cartesian coordinates of a vector (see the problems in Chapter 3,
sec. 4), while the operators of the spin components are determined by the relations
ŝiak ≡ −iεiklal. Here,

ŝp̂ak = ŝip̂iak = −�εikl
∂

∂xi
al ≡ �(∇× a)k,

[411] Let us emphasize that E and H, as well as the vector potential A, are complex quantities unlike
the corresponding real functions used for the description of a classical electromagnetic field.
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i.e., (̂s · p̂)a = �∇× a, and identifying in (1) ϕ and χ with the vectors E and iH, we
obtain the equation

1

c

∂

∂t
E = ∇×H, −1

c

∂

∂t
H = ∇× E ,

which corresponds to the Maxwell equations in free space. The other two equations,
∇ · E = 0 and ∇ ·H = 0, are additional conditions imposed on the vectors E and H.
In classical electrodynamics these lead to transverse electromagnetic waves, while in
the quantum-mechanical case they correspond to the exclusion of photon states with
zero helicity.

Problem 15.31

Find the non-relativistic limit (including terms up to order “1/c”) for the charge and
current densities of a Dirac particle in an external electromagnetic field.

Solution

The current and charge densities of a Dirac particle are given by Eq. (XV.7) (e is the
charge of the particle):

j = ecψ∗αψ ≡ iecψγψ, ρ = eψ∗ψ ≡ eψγ4ψ. (1)

Note that these expressions are valid both for a free particle and a particle in an
external electromagnetic field.

In the non-relativistic limit (ε ≈ mc2), for the spinor wavefunctionψ =

(
ϕ
χ

)
, the

lower spinor χ corresponding to the equation

i�
∂χ

∂t
= cσ ·

(
p̂− e

c
A
)
ϕ−mc2χ+ eA0χ

is approximately equal to (since, i�∂χ
∂t ≈ mc2χ)

χ ≈ 1

2mc
σ ·

(
p̂− e

c
A
)
ϕ, i.e. |χ| � |ϕ|.

Hence, the particle wavefunction is described by the expression

ψ ≈
(

ϕ
1

2mcσ · (p̂− e
cA

)
ϕ

)
, (2)
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while the complex conjugate wavefunction is

ψ∗ =

(
ϕ∗,

(
1

2mc
σ ·

(
p̂− e

c
A
)
ϕ

)∗)
=

(
ϕ∗,

1

2mc

(
p̂− e

c
A
)
ϕ∗σ

)
. (3)

Substituting Eqs. (2) and (3) into Eq. (1), we find

ρ = eψ∗ψ ≈ eϕ∗ϕ, (4)

j = ecψ∗
(
0 σ
σ 0

)
ψ = ec

(
ϕ∗,

1

2mc

(
−p̂− e

c
A
)
ϕ∗σ

)
×
(

σ
2mc

(
σ · (p̂− e

cA
))

ϕ
σϕ

)
=

e

2m

{
ϕ∗σ

(
σ ·

(
p̂− e

c
A
))

ϕ−
((

p̂+
e

c
A
)
· ϕ∗σ

)
σϕ

}
, (5)

up to terms of the order of (1/c)2. Using the relation σiσk = δik + iεiklσl for the Pauli
matrices, Eq. (5) can be simplified as follows:

ji =
e

2m

{
ϕ∗σiσk

(
p̂k − e

c
Ak

)
ϕ−

((
p̂k +

e

c
Ak

)
ϕ∗
)
σkσiϕ

}
=

e

2m

{
ϕ∗p̂iϕ− (p̂iϕ

∗)ϕ− 2e

c
Aiϕ

∗ϕ+ iεikl[ϕ
∗σlp̂kϕ+ (p̂kϕ

∗)σlϕ]

}
,

and since

εikl

[
ϕ∗σl

∂

∂xk
ϕ+

(
∂

∂xk
ϕ∗
)
σlϕ

]
= εikl

∂

∂xk
ϕ∗σlϕ ≡ {∇× (ϕ∗σϕ)}i,

we obtain

j = − ie�

2m
{ϕ∗∇ϕ− (∇ϕ∗)ϕ} − e2

mc
Aϕ∗ϕ+

e�

2m
∇× (ϕ∗σϕ), (6)

which coincides with Eqs. (VII.4–VII.6) of the non-relativistic theory for the current
density of a particle with spin s = 1/2, charge e, and magnetic moment μ = e�/2mc.

Problem 15.32

The Hamiltonian of a particle with spin s = 1/2 in an external electromagnetic field
has the form:

Ĥ = cα · p̂+mc2β +
iκ

2
Fμνγμγν ,
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where κ is some parameter that characterizes the particle, and Fμν is the electromag-
netic field strength tensor.

Considering the non-relativistic limit (that is, keeping only terms of order “1/c”) of
the wave equation,[412] i� ∂

∂tψ = Ĥψ, determine the physical meaning of the parameter,
κ. That is find its connection to the electromagnetic properties of the particle. Consider
specifically the case of a charged Dirac particle – electron or muon, whose Hamiltonians
have the form:

Ĥ = cα ·
(
p̂− e

c
A
)
+mc2β + eA0.

Solution

Taking into account the form of Dirac matrices (XV.5) and the field strength tensor
of the electromagnetic field

Fμν =

⎛⎜⎜⎝
0 Hz −Hy −iEx

−Hz 0 Hx −iEy
Hy −Hx 0 −iEz
iEx iEy iEz 0

⎞⎟⎟⎠,
F4i = −Fi4 = iEi,
Fik = εiklHl,
i, l, k = 1, 2, 3,

the Hamiltonian considered could be transformed to the form:

Ĥ = cα · p̂− κβ
∑

H+ iκβαE +mc2β. (1)

Here, the wave equation i� ∂
∂tψ = Ĥψ leads to the following equations for the two-

component spinors, ϕ and χ, of the wavefunction ψ =

(
ϕ
χ

)
:

i� ∂
∂tϕ = cσ · p̂χ+mc2ϕ+ iκσ · Eχ− κσ ·Hϕ,

i� ∂
∂tχ = cσ · p̂ϕ−mc2χ− iκσ · Eϕ+ κσ ·Hχ.

(2)

For the transition to the non-relativistic limit, where the particle’s energy is ε ≈ mc2,
we should extract the factor e−imc2t/� from the wavefunction, i.e. write it in the form

ψ = e−imc2t/�

(
ϕ̃
χ̃

)
and use the inequality∣∣∣∣i� ∂

∂t
ψ̃

∣∣∣∣ ∼ |Eψ̃| � mc2|ψ̃|, ψ̃ =

(
ϕ̃
χ̃

)
(3)

in the expression

i�
∂

∂t
ψ = e−imc2t/�

[
mc2ψ̃ + i�

∂

∂t
ψ̃

]
,

[412] This equation can be written in a manifestly relativistically-invariant form:(
icp̂ +

iκ

2
Fμνγμγν +mc2

)
ψ = 0

(
p̂ ≡ p̂μγ̂μ = p̂ · γ − �

c
γ4

∂

∂t

)
.
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where E is the non-relativistic energy. Here the second expression of Eq. (2) takes the
form:

2mc2χ̃− κσ ·Hχ̃+ i�
∂

∂t
χ̃ = (cσ · p̂− iκσ · E)ϕ̃. (4)

From the relations given, with inequality |κH| � mc2 taken into account, it follows
that

χ̃ ≈ 1

2mc

(
σ · p̂− iκ

c
σ · E

)
ϕ̃. (5)

Let us note that |χ̃| � |ϕ̃|, as in the case of a free, non-relativistic particle.

Then, substituting Eq. (5) into the first of equations (2) (having previously

extracted the factor e−imc2t/� from the spinors ϕ and χ), we obtain

i�
∂

∂t
ϕ̃ =

1

2m

(
σ · p̂+

iκ

c
σ · E

)(
σ · p̂− iκ

cσ · E
)
ϕ̃− κσ ·Hϕ̃. (6)

Writing σ · p̂ = σip̂i, σ · E = σkEk and using the relation σiσk = δik + iεiklσl for the
Pauli matrices, we find

(σ · p̂)(σ · E)−(σ · E)(σ · p̂) = (p̂ · E)− (E · p̂) + i[p̂× E ] · σ − i[E × p̂]σ,

where

(p̂ · E)−(E · p̂) = −i�∇ · E , [p̂× E ]− [E × p̂] = −i�∇× E − 2[E × p̂] ≈ −2[E × p̂].

Note that since ∇× E = −∂H/c∂t, then the term ∇× E can be omitted to order 1/c
(in the stationary case it vanishes). Using these relations, the equality (σ · p̂)2 = p̂2,
and neglecting the term ∝ (E/c)2, we transform Eq. (6) to the form:

i�
∂

∂t
ϕ̃ =

p̂2

2m
ϕ̃− κσ ·Hϕ̃+

κ

mc

(
−�

2
∇ · E − [E × p̂] · σ

)
ϕ̃. (7)

Neglecting the “small” spinor, χ̃, in the wavefunction, ψ̃, this equation reduces to the
Schrödinger equation with the Hamiltonian:

Ĥ =
p̂2

2m
− κσ ·H+

κ

mc

(
−�

2
∇ · E − [E × p̂] · σ

)
, (8)

Compare to the Pauli Hamiltonian (VII.1). The absence of the term eA0 in Ĥ means
that the particle described by it is charge-neutral (A0 is the scalar potential of an
external electrostatic field), while the term −κσ ·H shows that the particle has a
magnetic moment equal to μ ≡ κ.

The third term in Eq. (8) describes spin-orbital interaction. Here, the term[413]

− κ
mc [E × p̂] · σ is a natural quantum-mechanical generalization of the energy

[413] The term − κ�
2mc

∇ · E, which is non-zero at points of space with finite charge density, produces an
external electric field, ∇ · E = 4πρ, that has no direct classical interpretation.
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describing the interaction between a moving classical magnetic dipole and an elec-
trostatic field, as discussed in Problem 13.60.

The Hamiltonian (1) in the non-relativistic limit (8) is used to describe a neutron in
an electromagnetic field. The expression 1

2μ
′βγτγνFτν is also used for the description of

the interaction between an electromagnetic field and the anomalous magnetic moment
μ′ of a charged particle with spin s = 1/2. Here, the interaction between the particle of
charge e and the field includes a normal part of the magnetic field, equal to e�/2mc,
and that described by the expression (−eα ·A+ eA0). Hence, the relativistic wave
equation for such a particle in the electromagnetic field has the form:

i�
∂

∂t
ψ =

{
cα ·

(
p̂− e

c
A
)
+mc2β + eA0 +

i

2
μ′βγτγνFτν

}
ψ.

Note here that for a particle with spin s = 1/2, charge e, and magnetic moment μ,
the “separation” of the magnetic moment into the normal and anomalous parts is
determined by the relations: μ = μnorm + μanom, μnorm = e�/2mc, and μanom = μ−
e�/2mc.

Problem 15.33

Find the energy spectrum of a charged Dirac particle in a uniform magnetic field.

Solution

The energy spectrum and corresponding wavefunction are determined from the Dirac
equation in the magnetic field (e is the particle charge):(

cα
(
p̂− e

c
A
)
+mc2β

)
u = εu, ψε(r, t) = ue−

iεt
� =

(
ϕ
χ

)
e−

iεt
� ,

or, for the two-component spinors,

(ε−mc2)ϕ = cσ
(
p̂− e

c
A
)
χ, (ε+mc2)χ = cσ

(
p̂− e

c
A
)
ε. (1)

Eliminating the spinor, χ, from this system of equations, we obtain

(ε2 −m2c4)ϕ = c2
(
σ ·

(
p̂− e

c
A
))2

ϕ. (2)

Using the relation(
σ ·

(
p̂− e

c
A
))2

=
(
p̂− e

c
A
)2

− e�

c
σ ·H, H = ∇×A

(see, for example, Problem 7.10), Eq. (2) can be cast into the following form:{
1

2m

(
p̂− e

c
A
)2

− e�

2mc
σ ·H

}
ϕ =

ε2 −m2c4

2mc2
ϕ. (3)
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The substitution, (ε2 −m2c4)/2mc2 → E, makes Eq. (3) identical to the Pauli equa-
tion for a particle with spin s = 1/2, charge e, and magnetic moment μ = e�/2mc. Note
that the Pauli equation in a uniform magnetic field H0 was solved in Problem 7.9.
Choosing the vector potential as A = (0,H0x, 0), the solution to Eq. (3) has the form:

ε2npzσz
−M2c4 = 2mc2

[
�ω0

(
n+

1

2

)
− e�H0

2mc
σz +

p2z
2m

]
, n = 0, 1, . . . ,

ϕnpypzσz
= Cei{pyy+pzz)/� exp

{
− 1

2a2

(
x− cpy

eH0

)2
}
Hn×(

1

a

(
x− cpy

eH0

))
ϕσz

, (4)

ω0 =
|e|H0

mc
, a =

√
�c

|e|H0
,

where the constant spinor, ϕσz
, is an eigenfunction of the operator, σz, corresponding

to the eigenvalues σz = ±1 (the z-axis is directed along the magnetic field).

The second expression in Eq. (1) determines spinor χnpypzσz
, and hence the

wavefunction ψnpypzσz
.

Recall that in non-relativistic theory the quantum number sz = σz/2 determines
the particle spin projection onto the z axis. In the relativistic case, σz no longer has
this direct interpretation, because the spinor, χnpypzσz

, is no longer an eigenfunction
of the operator σz, and neither the wavefunction ψnpypzσz

is an eigenfunction of the
operator, ŝz = 1

2

∑
z. Nevertheless, Eq. (4) shows that the level degeneracy of the

transverse motion present in non-relativistic theory (see Problem 7.9), is preserved in
the relativistic case as well.

Eq. (4) gives two values of energy of the opposite sign: ε ≥ mc2 corresponds the
particle energy spectrum, while the other, ε ≤ −mc2, corresponds to antiparticles
with a positive energy (see Problem 15.27). Here, the energy spectra for a particle
and antiparticle are the same (compare to the case of a spinless particle in a magnetic
field, considered in Problem 15.11).

Problem 15.34

In first-order perturbation theory, find the differential scattering cross-section of a
Dirac particle in a Coulomb field of a nucleus with charge Ze. Consider the limiting
case of an infinitely heavy nucleus.

Solution

The Hamiltonian of a Dirac particle in an external electrostatic field has the form
(below, e1 is the particle charge):
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Ĥ = cα · p̂+mc2β + e1A0(r) ≡ Ĥ0 + V̂ , V̂ = e1A0 =
Zee1
r

.

Let us calculate the differential cross-section according to the pertubative equation
for transitions between continuous free-particle states.[414]

The initial state with a definite momentum, p1, is given by (see also Problem 15.22)

ψi =

√
ε+mc2

2ε

(
ϕi

cσ·p1

ε+mc2ϕi

)√
1

v
ei(p1r−εt)/�, (1)

j = cψ∗
i αψi =

v1

v
, j = 1,

where ε and v are the particle energy and velocity. Similarly, the final wavefunction
with momentum p2 reads:

ψf =

√
ε+mc2

2ε

(
ϕf

cσ·p2

ε+mc2ϕf

)√
1

v
ei(p2·r−εt)/�, ρ = ψ∗

fψf = 1. (2)

Note that the spinors, ϕi,f , are normalized to unity: |ϕi,f |2 = 1 and the particle
energies in the initial and finite states are the same. The differential transition
probability per unit time can be found from the perturbation theory formula:

dσ = dw =
2π

�
|Vif |2dρf . (3)

The density of final states is given by:

dρf =

∫
δ(εf − εi)

d3ρf
(2π�)3

≡
∫

δ(ε− ε2)
p2ε2dε2dΩ

(2π�)3c2
=

pε dΩ

(2π�)3c2
. (4)

The perturbation matrix element has the form:

Vif =

∫
ψ∗
f V̂ ψid

3r =
Zee1(ε+mc2)

2ε
√
v

×∫
e−iq·r

r
d3rϕ∗

f

[
1 +

c2(σ · p2)(σ · p1)

(ε+mc2)2

]
ϕi, (5)

where, as usual, �q = p2 − p1. Introducing a scattering angle, θ, we find

(σ · p2)(σ · p1) = p2ip3kσiσk = p2ip1k(δik + iεiklσl) =

p1 · p2 + i[p1 × p2] · σ = p2 cos θ − ip2 sin θσν;

ν =
[p1 × p2]

|[p1 × p2]| , ν2 = 1,

∫
e−iq·r d

3r

r
=

4π

q2
=

π�2

p2 sin2(θ/2)
,

[414] For a more consistent calculation of the differential cross-section based on the Born approximation,
see Problem 15.37.
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and transform Eq. (5) to the more convenient form:

Vif =
πZee1�

2

2εp2
√
v(ε+mc2) sin2(θ/2)

ϕ∗
f{(ε+mc2)2 + p2c2 cos θ−

−ip2c2 sin θσ · ν}ϕi. (6)

Eqs. (3), (4), and (6) determine the differential scattering cross-section as a function
of the particle energy, scattering angle, and the spin states before and after scattering,
described by the spinors, ϕi,f . Averaging the differential cross-section over the particle
spin states in the incident beam (assuming it to be non-polarized), and summing over
the independent spin states of the scattered particle, and using the following relation
from non-relativistic theory,∣∣∣ϕ∗

f (f1 + if2σ · ν)ϕi

∣∣∣2 = |f1|2 + |f2|2,

we find

ϕ∗
f{(ε+mc2)2 + p2c2 cos θ − ip2c2 sin θσ · ν}ϕi|2 = 4ε2(ε+mc2)2×(

1− v2

c2
sin2

θ

2

)
.

The final expression for differential scattering cross-section then reads:

dσ =
(Zee1)

2

4p2v2 sin4(θ/2)

(
1− v2

c2
sin2

θ

2

)
dΩ (7)

(compare to the scattering of a spinless particle, considered in Problem 15.17). In
the non-relativistic limit, v/c � 1, p ≈ mv, and our result reproduces the Rutherford
equation.

Finally, we mention that the regime of validity of this result is given by |Zee1| � �v.

Problem 15.35

To first order in perturbation theory, find the energy-dependence of the scattering
cross-section σ(ε) of a charged Dirac particle in an external electric field, A0(r), in the
limit, ε → ∞. Compare your result with Problem 15.18.

Solution

The expression for the differential scattering cross-section of a non-polarized particle,

dσ =
e2p2Ã2

0(q)

4π2�4v2

(
1− v2

c2
sin2

θ

2

)
dΩ, (1)
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can be obtained directly from Eq. (7) of the previous problem, if we make the
substitution,

πZee1�
2

p2 sin2(θ/2)
=

∫
Zee1
r

e−iq·rdV → e

∫
A0(r)e

−iq·rdV ≡ eÃ0(q).

Using the relation dΩ = (π�2/p2)dq2, we find the total scattering cross-section as
follows:

σ(ε) =
e2

4π�2v2

4p2/�2∫
0

Ã2
0(q)

(
1− �

2v2

4p2c2
q2
)
dq2. (2)

In the ultra-relativistic limit, we have p ≈ ε/c and v ≈ c. Noting that the integrand
in (2) is dominated by the region q2 ≤ R−2, where R is the characteristic radius of
the potential A0(r), we observe that in the limit, ε → ∞, the scattering cross-section
approaches a constant value:

σ(ε) →
ε → ∞

σ0 =
e2

4π�2c2

∞∫
0

Ã2
0(q)dq

2. (3)

This result coincides with the scattering cross-section of a charged spinless particle
considered in Problem 15.18. Let us note that the integral in Eq. (3) diverges at
the lower limit, (q2 → 0), if the potential decreases as |A0(r)| < B/r2, and the total
scattering cross-section diverges as well. This result is analogous to the non-relativistic
case.

Problem 15.36

Find the Green functions, Ĝ±
ε,αβ(r, r

′), of the stationary Dirac equation for a free

particle with energy, ε ≥ mc2. The Green functions satisfy the following equation:

(Ĥ − ε)Ĝε ≡ (−i�cα ·∇+mc2β − ε)Ĝε = δ(r− r′),

and have the following asymptotic behavior, as r → ∞:

Ĝ±
ε ∝ 1

r
e±ikr, k =

√
ε2 −m2c4

�2c2
.

Find also the Green functions, f̂±
ε , of the Dirac equation written in the symmetric

form:

(icp̂+mc2)ψε = 0, p̂ ≡ −i�γ ·∇+
iε

c
γ4.
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Solution

The desired Green functions can be expressed in terms of the corresponding Green
functions of a free non-relativistic particle, g±(r, r′). The latter satisfy the following
equation:

(−Δ− k2)g±(r, r′) = δ(r− r′), g±(r, r′) =
exp{±ik|r− r′|}

4π|r− r′| .

Using the relation,

−�
2c2Δ− ε2 +m2c4 ≡ (cα · p̂+mc2β − ε)(cα · p̂+mc2β + ε),

we have (note that ε2 = �
2k2c2 +m2c4)

(−�
2c2Δ− �

2c2k2)
exp{±ik|r− r′|}
4π�2c2|r− r′| ≡

(cα · p̂+mc2β − ε)(cα · p̂+mc2β + ε)
exp{±ik|r− r′|}
4π�2c2|r− r′| = δ(r− r′).

Hence, the Green function of a free Dirac particle follows:

Ĝ±
ε (r, r

′) =
1

4π�2c2
(cα · p̂+mc2β + ε)

exp{±ik|r− r′|}
|r− r′| . (1)

In bi-spinor notations, it takes the form:

Ĝ±
εαβ =

1

4π�2c2
(−i�cα∇+mc2β + ε)αβ

exp{±ik|r− r′|}
|r− r′| .

Analogously, using the relation

−�
2c2Δ− ε2 +m2c4 ≡ (icp̂+mc2)(−icp̂+mc2),

we find the “symmetric form” of the Green function

f±
ε (r, r′) =

−icp̂+mc2

4π�2c2
exp{±ik|r− r′|}

|r− r′| =

−�cγ∇+ εγ4 +mc2

4π�2c2
exp{±ik|r− r′|}

|r− r′| ,

that corresponds to the equation

(icp̂+mc2)f̂±
ε = δ(r− r′).



Relativistic wave equations 863

Problem 15.37

In the Born approximation, find the scattering amplitude of a Dirac particle in a
constant external electromagnetic field.

Apply your results to the case of the electrostatic field, A0 = Ze/r, and compare
them with Problem 15.34.

Solution

Using the Green function, Ĝ+
ε (r, r

′), from the previous problem, we can present the
Dirac equation for a particle in an external electromagnetic field as

(cα · p̂+mc2β − ε)ψ(r) = e[α ·A(r)−A0(r)]ψ(r). (1)

The integral equation, corresponding to the scattering problem involving a particle
with momentum p1 = �k1, reads:

ψ(+)
p1

(r) = u1(p1)e
ik2·r +

e

4π�2c2
(cα · p̂+mc2β + ε)×∫

eik|r−r′|

|r− r′| (α ·A(r′)−A0(r
′))ψ(+)

p1
(r′)dV ′. (2)

At large distances, r → ∞, the second term in the right-hand side of this equation
becomes

e

4π�2c2
(cα · p̂+mc2β + ε)

eikr

r

∫
e−ikn·r′(α ·A(r′)−A0(r

′))ψ(+)
p1

(r′)dV ′,

where n = r/r, p2 = �k2 = �kn is the momentum of the scattered particle (see
Eqs. (XIII.1)–(XIII.6)). The asymptotic behavior of the wavefunction (2) at large
distances is

ψ(+)
p1

(r) ≈ u1(p1)e
ik1·r + F

eikr

r
, r → ∞, (3)

where the bi-spinor,

F =
e

4π�2c2
(cα · p2 +mc2β + ε)

∫
e−ik2·r′(α ·A(r′)−A0(r

′))ψ(+)
p1

(r′)dV ′, (4)

is the amplitude of the scattered wave.

In the Born approximation, instead of the asymptotically exact function, ψ
(+)
p1 (r)

in (4), we should use the unperturbed value in an external field u1(p1)e
ik1·r, where

F ≈ FB ≡ F̂Bu1(p1), (5)

F̂B =
e

4π�2c2
(cα · p2 +mc2β + ε)

∫
e−iq·r′(α ·A(r′)−A0(r

′))dV ′, (6)

and q = k2 − k1, �q = p2 − p1.
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The operator (matrix) F̂B is the scattering matrix in the Born approximation. Its
matrix elements F12 ≡ u∗

2(p2)F̂Bu1(p1), constrained by the normalization condition
u∗
1,2u1,2 = 1, give the corresponding differential cross-section as follows:

dσ12 = |u∗
2(p2)F̂Bu1(p1)|2dΩ2. (7)

Let us emphasize that this relation depends on the spin states of the scattering
and scattered particles, described by the corresponding bi-spinors. If the spin of the
scattered particle is not fixed, the differential scattering cross-section is determined
by the expression dσ = F ∗FdΩ2.

Eq. (7), with F̂B determined by Eq. (6), can be simplified further if we use the
following relations:

(cα · p2 +mc2β)u2(p2) = εu2(p2), u∗
2(p2)(cα · p2 +mc2β) = εu∗

2(p2).

Hence,

u∗
2(p2)F̂Bu1(p1) ≡ u∗

2(p2)ĜBu1(p1), (8)

where

ĜB =
eε

2π�2c2

∫
e−iq·r(α ·A(r)−A0(r))dV. (9)

The differential scattering cross-section,

dσ12 = |u∗
2(p2)ĜBu1(p1)|2dΩ2, (10)

(note that this expression is identical to Eq. (7)) in the case of a purely electrostatic
field, takes the form:

dσ12 =

∣∣∣∣ eε

2π�2c2

∫
e−iq·rA0(r)dV u∗

2(p2)u1(p1)

∣∣∣∣2 dΩ2. (11)

The spin-dependence of this expression, determined by the bi-spinors u1,2, takes a
more natural form when expressed in terms of the “upper” spinor components, ϕ1,2,
according to

u∗
2(p2)u1(p1) =

1

2ε(ε+mc2)
ϕ∗
2(ε+mc2)2 + (pc)2 cos θ − i(pc)2 sin θσ · νϕ1,

ν =
[p1 × p2]

|[p1 × p2]| , (ν2 = 1) (12)

(where θ is the scattering angle). As a result of the summation over the particle spin
states after scattering, and averaging over its initial spin state,[415] we obtain

[415] This operation is denoted by an overbar, and the initial spin state is assumed to be non-polarized.
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|ϕ∗
2(ε+mc2)2 + (pc)2 cos θ − i(pc)2 sin θσ · νϕ1|2 =

4ε2(ε+mc2)2
[
1− v2

c2
sin2

(
θ

2

)]
(13)

(v is the particle velocity).

The differential scattering cross-section, described by Eqs. (11), (12) and (13),
coincides with Eq. (1) of the previous problem (obtained in another way). For the
case of the Coulomb field, A0 = Ze/r, we have Eq. (7) from Problem 15.34.
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Appendix

16.1 App.1. Integrals and integral relations

1.

δ(x) =
1

2π

∞∫
−∞

eikxdk, δ(r) =
1

(2π)3

∫
eik·rd3k (App.1.1)

An analogous relation holds in higher dimensions as well.

2.

b∫
a

F (x)dx

x− x0 ∓ iε
= P

b∫
a

F (x)dx

x− x0
± iπF (x0) (App.1.2)

Here a < x0 < b, ε > 0 and is infinitely small, and the integral is understood as its
principle value. For a calculation of its imaginary part, see Problem 13.11.

3.

∞∫
−∞

eikxdk

k2 − κ2 ∓ iε
= ±i

π

κ
ei±κ|x|,

∞∫
−∞

eikxdk

k2 + κ2
=

π

κ
e−κ|x|, (App.1.3)

where x and κ are real, κ > 0, and ε > 0 is infinitely small. Integrals are calculated
using the residue theorem, by closing the integration contour in either the upper
(x > 0) or lower (x < 0) complex half-plane, k.

4. ∫
1

r
eik·r−κrd3r =

4π

k2 + κ2
, Re κ > 0 (App.1.4)

The integral (which for κ = 0 gives Fourier transform of the Coulomb potential)
is calculated in spherical coordinates with the choice of the polar axis along the
vector k.
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5.

∞∫
−∞

dx

(x2 + a2)n+1
=

(−1)n

n!

∂n

∂a2n

∞∫
−∞

dx

x2 + a2
=

=
π(2n− 1)!!

2nn!a2n+1
, a > 0 (App.1.5)

6.

∞∫
−∞

x2ne−a2x2

dx = (−1)n
∂n

∂a2n

∞∫
−∞

e−a2x2

dx =

=

√
π(2n− 1)!!

2na2n+1
, a > 0 (App.1.6)

7.

b∫
a

1

x

√
(x− a)(b− x)dx =

π

2
(a+ b− 2

√
ab), 0 < a < b (App.1.7)

8.

∞∫
0

sinx

x
=

π

2
(App.1.8)

16.2 App.2. Cylinder functions

The cylinder functions Zν(z) are solutions of the following differential equation:

Z ′′
ν (z) +

1

z
Z ′
ν(z) +

(
1− ν2

z2

)
Zν(z) = 0 (App.2.1)

The Bessel functions

Jν(z) =

∞∑
k=0

(−1)k

k! Γ(k + ν + 1)

(z
2

)ν+2k

(App.2.2)

are a special case of the cylinder functions. If the index, ν, labeling a Bessel function
is not an integer, then one can use it to construct a general solution to Eq. (App.2.1)
as follows:

Zν(z) = C1Jν(z) + C2J−ν(z), ν �= 0,±1,±2, . . . .
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The asymptotic behavior of the Bessel functions near z → 0 follows from their defini-
tion in terms of a series (App.2.2), while the asymptote at large arguments, |z| → ∞,
reads

Jν(z) ≈
(

2

πz

)1/2

cos
(
z − πν

2
− π

4

)
. (App.2.3)

The Neumann function is as follows:

Nν(z) ≡ Yν(z) =
1

sinπν
[cos(πν)Jν(z)− J−ν(z)]. (App.2.4)

For the integer values of the index ν = n, the Neumann function can be defined as the
following limit, Nn(z) = lim

ν→n
Nν(z), and it represents the second linearly independent

solution to Eq. (App.2.1) (apart from the Bessel function, Jν(z)). Note the following
asymptotic behavior of the Neumann functions,

N0(z)
∣∣∣
z→0

≈ 2

π
ln

Cz
2

and

Nν(z)
∣∣∣
z→0

≈ −Γ(ν)

π

(
2

z

)ν

for ν > 0, (App.2.5)

here γ = lnC = 0.5772 . . . is the Euler constant.

The asymptote of the Neumann function for z → ∞ has the form:

Nν(z) ≈
(

2

πz

)1/2

sin
(
z − πν

2
− π

4

)
. (App.2.6)

Closely connected to the Bessel and Neumann functions are the Hankel functions,

H(1)
ν (z) = Jν(z) + iNν(z), H(2)

ν (z) = Jν(z)− iNν(z), (App.2.7)

and the modified Bessel functions, Iν(z) and Kν(z) (the latter is called the MacDonald
function), determined by relations

Iν(z) = i−νJν(iz) =

∞∑
k=0

1

k!Γ(ν + k + 1)

(z
2

)ν+2k

, (App.2.8)

Kν(z) =
π

2 sinπν
[I−ν(z)− Iν(z)], ν �= 0,±1,±2, . . . .

For all integer indices, Kn(z) = limKν(z) for ν → n = 0,±1,±2, . . . , which leads to

K0(z)
∣∣∣
z→0

≈ ln
2

Cz ; Kn(z) ≈z→0
(n− 1)!

2

(
2

z

)n

,



Appendix 869

n = 1, 2, . . . , (App.2.9)

See Eq. (App.2.5). A linear combination of the modified Bessel functions,

uν(z) ≡ Zν(iz) = C1Iν(z) + C2Kν(z),

which is a cylinder function of an imaginary argument, represents a general solution
for the equation

u′′
ν +

1

z
u′
ν −

(
1 +

ν2

z2

)
uν = 0. (App.2.10)

We also mention here that solutions to the following differential equations have
important quantum-mechanical applications:

u′′ + αzνu = 0, u =
√
zZ1/(ν+2)

(
2
√
α

ν + 2
z1+ν/2

)
; (App.2.11)

u′′ +
[
αzν − l(l + 1)

z2

]
u = 0,

u =
√
zZ(2l+1)/(ν+2)

(
2
√
α

ν + 2
z1+ν/2

)
; (App.2.12)

u′′(z) + (γ2e2x − ν2)u(z) = 0, u = Zν(γe
z), (App.2.13)

and are related to the cylinder functions.
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Coulomb barrier

penetrability 536, 596
quasi-classical approximation 435–6

Coulomb excitation of atomic nucleus 765–6
Coulomb field 488

braking radiation 805–9
differential scattering cross-section 864
motion in a magnetic field 292–3

Coulomb gauge 776
Coulomb interaction 491, 625

between electrons 505
ns-levels 490
protons 611

Coulomb level degeneracy 519
Coulomb potential 380, 387–8, 441–3, 491, 597

accidental degeneracy 829
hadron atoms 493
long range 694–5
motion in a central field 116, 119, 125, 135, 144
particle collisions 700, 718
perturbation theory 303, 309–10, 318–19, 369,

371–2
Coulomb wavefunction 493, 502
creation and annihilation operators 461–2
crystal with defect (vacancy), one-dimensional

motion 80
current density, transmission and reflection of

particles 64

degenerate perturbation theory 490
deuterium, rotational states 530
deuteron 598

binding energy 598
magnetic moment 603
and proton 602

proton–neutron interactions 600, 604
quadrupole moment 604
Schrödinger equation 606
wavefunction 603, 605

deuteron photodisintegration, differential and total
cross-sections 804

dipole approximation
dipole moments

molecular interactions 559–61
transition 780

forbidden 781–2
dipole–dipole interactions 561
Dirac delta function 36
Dirac equation 812

current density of a free Dirac particle 841
four independent solutions 840
free particle with definite momentum and

energy 840
Green function 861–2
model of a hydrogen-like atom with a point

nucleus 488
model of hydrogen-like atoms 489
motion in a magnetic field 290
two-component spinors 852

Dirac matrices 812, 855
Dirac particle

charge and current densities, non-relativistic
limit 853

in constant external electromagnetic field,
scattering amplitude, Born
approximation 862

in Coulomb field, first-order perturbation
theory 858

energy spectrum in a uniform magnetic
field 857

first-order perturbation theory 858
Hamiltonian 854, 858
mean value of spin vector 843
projection operators 851
velocity operator 842

Dirac string 206
dynamic polarizability

particle in a zero-range potential 579
quasi-energy 580

effective radius 486
eigenfunctions

and eigenvalues
operator, spin (s = 1/2) 169–70
spin-flip 783

eigenvalues of isospin 607
eigenvalues and mean values 8–19
Hermitian operators 851
orthogonality 818, 846

eigenvalues, operator, free-particle
Hamiltonian 851

Eikonal approximation, scattering of fast
particles 640, 713–26

elastic scattering, fast electrons 647–8, 742–46
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electromagnetic transition 780
between two-atom molecular rotational

levels 781
E1 and M1 788

electromagnetic wave, scattered by magnetic
moment 799

electron Bohr radius 492
electron mutual interaction energy 520
electrostatic barrier, penetrability 582
electrostatic form-factors 753
energy levels, motion in central field 132–3
energy spectrum

degeneracy 81–3
identical particles 76–8
motion in central field 128–9, 155–6

exchange integral 509
exchange potential

large distances 562
negative ion 562

Fermi gas 485
ground state 475–7
neutral particles (s = 1/2) 481–4
spinful particles (s = 1/2) 479–81

fermions 446, 453–5, 462, 608
Feynman diagram 754
fine-structure constant/interval 488
Fourier components

perturbation theory 330, 338
quasi-classical approximation 414–17

Fourier integral 583
Fourier series, time-dependent quantum

mechanics 261
Fourier transform 23

one-dimensional motion 47
particle collisions 645, 658

Fraunhofer diffraction, particle collisions 724
free particle in half-space, one-dimensional

motion 53, 56

Galilean transformation, time-dependent quantum
mechanics 239–40

Galileo’s relativity principle 567
Gaussian integral, time-dependent quantum

mechanics 216
Gauss’s law, orbital angular momentum 90
germanium ion 514
Green function 69, 71–4, 137–8, 140–1, 151, 156–9

charged particle 250–2
free particle 137–8, 156–7, 247–50
general solution 50–1
plane rotator 157–8
radial Schrödinger equation 140
spherical rotator 158–9
spin 200
stationary Dirac equation 861
symmetric form 862
time-dependent quantum mechanics 213,

246–52

ground-state energy 428–30
dissociation energy 528
expectation value 502

muonium 591
neutral atom 517
oscillation frequency 528
rotational constant 529
two-electron atom/ion 497, 499
variational method 523
variational value 537

ground-states
mirror nuclei 622
moments (spins) and parities 614
ortho- and para-positronium 570–2
wavefunction 52–3

gyromagnetic factors 619

hadrons 598
Coulomb attractive potential 493

Hamiltonian 14
charged particle 270–1
Dirac particle 854, 858

motion in central field 119–20, 148, 159
non-relativistic limit, neutron in electromagnetic

field 857
one-dimensional motion 35, 75–6
orbital angular momentum 86–7
Pauli matrices 855
relativistic corrections 832
spin-1 system 210–12
spin-orbit-coupled particles 198–202

Perturbation Hamiltonian, homogeneous magnetic
field 556

Hankel function, quasi-classical
approximation 425–6

Hartree—Fock equations, self-consistent- field
method 485

Heisenberg operators, time-dependent quantum
mechanics 233–7, 245–51

helical states/helicity 841, 849
charge-conjugation transformation 849

helium atom
atomic ionization energy 497, 499
ground state, diamagnetic susceptibility 554
magnetic susceptibility 554
nuclear ground-states 616
quantum numbers – spin, parity and isospin 616

helium-like atom 503–8
energy and ionization energy 503

variational method 504
energy of state where both electrons are

excited 507
Hamiltonian in an electric field 538
hyperfine splitting 506
polarizability 539, 546
stationary states, stability with respect to decay

(auto-ionization) 507
Hermitian conjugate, perturbation theory 341
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Hermitian operators 175–6, 487, 488
general eigenfunctions 851
linear operators 1–4, 9–22, 25, 27–9
orthogonality of eigenfunctions 818, 846
projection operators 851
quasi-classical approximation 407
time-dependent quantum mechanics 226–8, 242

Hilbert space 1, 6–7, 16, 266
one-dimensional motion 56

Hulthen potential
motion in central field 123
perturbation theory 310
quasi-classical approximation 387–8

Hund’s law 509, 511, 513, 516
hydrogen atom

electromagnetic transition between the
components of hyperfine structure 787

ground state 121–3
diamagnetic shift 554

metastable 2s-states 572
change in lifetime 572

one-photon transition 785
two interacting at a large distance 559–61

hydrogen molecule
dissociation energy 528
oscillation frequency 528
rotational constant 529
Stark effect, principal quantum number

n = 2 539–40
hydrogen-like atom, ground state 578
hyperfine splitting 492

ns-level 490

inversion operator 839
isospin 598, 607

nucleon 598
isotopic invariance 627–36

pion+deuteron 635
isotopic symmetry 598
isotropic oscillator energy levels 74

jj -coupling scheme 620

K-electrons 803
ejection 582

Auger effect in a mesoatom 586
K-mesons 192–3

strong interaction 488
Clebsch–Gordan coefficients 177, 188, 196, 573, 631

addition of angular momenta 107–8
orbital angular momentum 102, 107–8
particle collisions 734

Klein–Gordon equation 488
Born approximation 835
charged particle in an external electromagnetic

field 831
energy of a spinless particle 821
for a free particle 830
general solution 813

invariance 813
orthogonality and normalization of solutions 818
particle and antiparticle wavefunctions 819
scalar field 816
stationary solutions 825, 835

particle in an electrostatic field 834
Kramer’s matching conditions, quasi-classical

approximation 378–80

Lagrange factor 501–2
Laguerre polynomial 116
Lamb shift 489, 492, 572, 783
Landau levels

motion in a magnetic field 272–3
shifts, perturbation theory 367–8, 370
spectrum 465

Laplace operator, orbital angular momentum 84
Laplacian on sphere of unit radius 308
Larmor orbit radius, motion in a magnetic

field 274–5
Legendre polynomials

orbital angular momentum 85, 104
oscillations 715
perturbation theory 305

Lie group 213
linear operators 2–7
Lippmann—Schwinger equation 662
lithium atom 509
lithium ion

atomic ionization energy 497, 499
polarizability 546
polarizability values 539

Lorentz force
electromagnetic wave 803
operator 225
particle collisions 671

Lorentz group, pseudoscalar operator 849
Lorentz transformation 810

spinors 645
Loschmidt number, helium gas 554
LS-coupling scheme 619, 621
Langer correction, quasi-classical

approximation 378–80, 391–5, 434
Langer quantization rule 393
Langer transformation 376

MacDonald function 156, 545, 820
quasi-classical approximation 408, 411

magic numbers, M(N) 612
magnetic field, see also motion in a magnetic field
magnetic susceptibility 482, 554–5
magnetic traps 280
many-electron atoms, statistical model 509–15
Maxwell equations, classical electrodynamics 852
mirror nuclei 622
mirror reflections 636
mirror-image charges, one-dimensional motion 54
molecular interactions, second order of

perturbation theory 561
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molecule states, symmetric/anti-symmetric with
respect to nuclei 532

momentum operator 839
momentum probability distribution,

wavefunctions 823
momentum representation, one-dimensional

motion 46–8, 73–4
monopole or E0 transitions 585
monotonic attractive potential 152–3
motion in a central field 116–59

Bessel functions 125–6, 134, 143–5, 154, 156
Bohr radius 116
bound state of particle 129–32
Cartesian coordinates 119
central potential parameters 145–8
change of energy levels 118
Coulomb potential 116, 119, 125, 135, 144
discrete spectrum of particle 153–5
discrete spectrum states in central fields

117–41
energy levels 132–3
energy spectrum of particle 128–9, 155–6
Fourier component 135, 137
Gauss law 156
Green function 137–8, 140–1, 151, 156–9
Hamiltonian 119–20, 148, 159
Hulthen potentials 123
hydrogen atom ground state 121–3
Laguerre polynomial 116
levels with an arbitrary angular motion 125–6
Macdonald function 156
monotonic attractive potential 152–3
Neumann functions 125, 134
new bound states 144–5
particle in attractive potential 138–9

energy level shifts 148–51
s-state wavefunction 134–7
particles in a one-dimensional well 117–18
Poisson equation 122
s-levels 123–5
Schrödinger equation 116–18, 119–20, 127–32,

134, 136, 142, 144–5, 153, 155
low-energy states, combined potentials 141–53
systems with axial symmetry 153–60
Van der Waals forces 123
Yamaguchi potential 129
zero-range potential 126–8

motion in a magnetic field 270–96
charged spherical oscillator 278–80
Coulomb field 292–3
Dirac equation 290
Hamiltonian of charged particle 270–1
Landau levels 272–3
Larmor orbit radius 274–5
magnetic traps 280
neutral particle with spin s = 1/2 283
orbital currents and spin magnetic

moment 291–6
Pauli Hamiltonian 285–6

spin s = 1/2 and magnetic moment 287–90,
294–5

stationary states and energy levels of charged
spinless particle 277–8

stationary states in a magnetic field 271–86
time-dependent Green function 290–1
time-dependent magnetic field 286–91

muon
Bohr radius 492
orbital moment 586
polarization vector 593–4
wavefunction 568

muonium, ground-state energy 591

negative ion, exchange potential 562
Neumann functions

motion in central field 125, 134
particle collisions 679

neutral particle with spin s = 1/2 283
neutrino

particle with negative helicity 645
particle with zero rest mass m = 0 845

neutrons 598
in an electromagnetic field, Hamiltonian in

non-relativistic limit 857
elastic scattering 766–7
fast neutrons from a Coulomb field 728

nitrogen ion 514
non-relativistic theory

charge and current densities of Dirac
particle 853

Green function 861
neutron in an electromagnetic field 857
quantum numbers 858
Rutherford equation 836

non-stationary perturbation theory 336–53
normalization integral 500
np-electrons 514
ns-level, hyperfine splitting 490
nuclear magnetic moment 489
nuclear potential 491
nuclear quadrupole moment 603, 622–5
nuclear synthesis reaction rate 594
nucleons

charge distribution for the filled shells 625
eigenfunctions and eigenvalues of isospin 607
energy levels 599
many-nucleon system, wavefunctions 608
maximum velocity 627
nucleon density inside a nucleus 626
radial density inside a nucleus 625

nucleon–nucleon interactions 636

one-dimensional motion 32–83
Airy functions 63, 65
arbitrary representation 51
bound states 44, 54–5
branching points 58, 69
change of variables 39
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one-dimensional motion (cont.)
continuous spectrum reflection from and

transmission through potential
barriers 56–74

crystal with a defect (vacancy) 80
current density, transmission and reflection of

particles 64
Dirac delta function 36
discrete spectrum 39, 52
energy spectrum and degeneracy 81–3
Fourier transform 47
free particle in half-space 53, 56
Green function 69, 71–4

general solution 50–1
ground state wavefunction 52–3
Hamiltonian 35, 75–6
Hermite polynomials 32
Hilbert space 56
identical particles, energy spectrum 76–8
incident particles 70
infinite potential well 55
isotropic oscillator energy levels 74
low-lying levels 41–2
mirror-image charges 54
momentum representation 46–8, 73–4
particle fields 45
periodic potential particle 77–8
physical sheet and Riemann surface 58–9
potential properties 56
properties of the spectrum 42–3
quasi momentum band structure 78
rectangular potential well 55
repulsive deltapotential 71–3
Riemann surface 58
Schrödinger equation 33–40, 43–5, 50–7, 60–1,

63, 66–8, 74, 77–8, 80–2
separable potential 51
shallow potential well 53
slow particles 66, 67–8
square potential well 67
stationary states with definite parity 41
stationary states in discrete spectrum 33–46
surface or Tamm states 81

particle in a periodic potential 74–83
transmission and reflection of particles 56–74
uniform field 68
zero-energy solution 43–4, 67

one-particle problem, strong external field 827
operators in quantum mechanics 1–31

eigenfunctions, eigenvalues and mean
values 8–19

Fourier transform 23
Hamiltonian 14
Hermitian linear operators 1–4, 9–22, 25, 27–9
Hilbert vector space 1, 6–7, 16
linear operators 2–7
projection operators 20–1
Schrödinger equation 25
Taylor expansion 4–6, 12

wavefunctions unitary operators 22–31
Oppenheimer—Brinkman—Cramers

approximation (OBC) 751–3
optical theorem, particle collisions 736–7
orbital angular momentum 84–115

addition of angular momenta 99–110
commutators, finding of 100
Clebsch—Gordan coefficients 107–8
subsystems 102–3
three weakly interacting subsystems 106
two particles 104–5
weakly interacting systems 99–101, 108–9
projection of 102

angular momentum 94–9
commutation relations 84
Clebsch—Gordan coefficients 102, 107–8
Laplace operator 84
Legendre polynomials 85, 104
plane rotator, stationary wavefunctions and

energy levels 86–7
probability overlap 93
projection operators 92–3
raising and lowering operators 85
spherical rotator, stationary wavefunctions and

energy levels 87
tensor formalism 110–15
vector mean values 89–90
see also angular momentum

orbital currents, and spin magnetic moment 291–6
oxygen ion 514

atomic ionization energy 497, 499

p-electron, wavefunction 512
particle(s)

acted on by uniform constant force 232
with arbitrary spin, intrinsic parities 817
momentum representation 46–8, 73–4
one-dimensional motion, transmission and

reflection 58
one-particle problem, strong external field 827
wavefunctions 819
with zero rest mass m = 0 (neutrino) 845
zero-range potential, dynamic polarizability 579

particle collisions 637–776
Aharonov—Bohm effect 672
analytic properties of scattering

amplitude 637–64, 737–47
annihilation and positronium levels 772–3
Born approximation 642–64
collision between fast charged particle and

two-atom molecule 757
Coriolis interaction 771
Coulomb excitation of atomic nucleus 765–6
Coulomb potential 700, 718
differential scattering cross-section 638–46
effective interaction radius 702–3
effective radius expansion 639
elastic scattering of fast electrons 647–8, 742–6
electrostatic form-factors 753
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excitation transfer cross section 769–70
fast charged particle colliding with hydrogen

atom 759–60
fast neutrons from a Coulomb field 728
fast particles scattering 723
Feynman diagram 754
Fourier transform 645, 658
Fraunhofer diffraction 724
invariant functions 733
Clebsch—Gordan coefficients 734
Lippmann—Schwinger equation 662
long range Coulomb potential 694–5
Lorentz force 671
low-energy scattering, scattering resonance

phenomena 674–713
neutron elastic scattering 766–7
Oppenheimer—Brinkman—Cramers

approximation (OBC) 750–4
optical theorem 736–7
perturbation theory in terms of scattering

length 689–93
phase scattering theory 664–74
phase shifts 664–9, 703, 731–2

slow particles 677–8
polarization for positron scattering 730
principle of detailed balance, neutron radiation

capture and photodisintegration 773
proton—neutron system, value of triplet s-wave

scattering length 698–9
Ramsauer—Townsend effect 678
resonance scattering 639
Rutherford equation for scattering angle 719
s-wave scattering 709–11
scattering amplitude of spinless particles 741
scattering of composite quantum particles,

inelastic collisions 747–76
scattering of fast particles, Eikonal

approximation 640, 713–26
scattering lengths in potentials 678–88
scattering of particles with spin 726–37
slow particle scattering 705
spinless particles 732–4
Thomas—Fermi model 648–9
transport cross-section 646
Yukawa potential 655–7, 730–1

identical particles, second quantization 446–84
arbitrary one-particle state 461
Bose gas, energy 478–9
bosons 446, 450, 453–5, 462
commutation relations 464
correlation function 474, 477
creation and annihilation operators 461–2
electron density charge 484
energy spectrum of two-dimensional (planar)

oscillator 466–7
Fermi gas

ground state 475–7
neutral particles (s = 1/2) 481–4
spinful particles (s = 1/2) 479–81

fermions 446, 453–5, 462
identical particles 446–8
Landau level spectrum 465
magnetic susceptibility 482
neutral particles (s = 1/2) 481–2
occupation-number representation 456–72
Pauli principle 481
pseudo-scalar particle 453
quantum statistics, symmetry of

wavefunction 447–56
scattering length 479
simplest systems with large number of

particles 472–85
spontaneous symmetry breaking 469
super-partners 469
supersymmetric oscillator 467–8
transverse motion of charged spinless

particle 465–6
two identical Bose particles 454–6, 462–4

particle localization domain 546
particle—antiparticle pair 827

energy spectra 858
Pauli equation, uniform magnetic field 858
Pauli exclusion principle 198
Pauli Hamiltonian 285–6
Pauli matrices 165–9, 198, 785, 856

commutation relation 798
time-dependent quantum mechanics 264, 267

periodic potential particle, one-dimensional
motion 77–8

perturbation matrix element 542–3, 547, 556–7,
806, 859

perturbation theory
adiabatic approximation 358–73
Airy function 367
Bloch functions 332
Bohr—Sommerfeld quantization rule 359
Born approximaton 370
Coulomb potential 303, 309–10, 318–19, 369,

371–2
degenerate 490
energy spectrum 331–6
first-order

Dirac particle in Coulomb field 858
Dirac particle energy-dependence of the
scattering cross-section 860

ground-state energy of a two-electron
atom/ion 497, 499

Fourier component 330, 338
Hermitian conjugate 341
Hulthen potential 310
Landau level shifts 367–8, 370
Laplacian on a sphere of unit radius 308
Legendre polynomials 305
non-stationary, transitions in continuous

spectrum 336–53
charged linear oscillator 336–7
homogenous electric field applied to plane
rotator 337–9
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perturbation theory (cont.)
ionization probability 351–2
periodic resonant perturbation 348–9
periodic-in-time perturbation 343–8

two-channel system 349–51
wavefunction and amplitude 339

Poisson distribution 358
quasi-energy states (QES) 343–4, 362
scattering length 565
second-order 340, 546

general equation 791
molecular interactions 561–2
potential of tensor forces 605
transitions 797, 806

stationary perturbation theory (continuous
spectrum) 325–36

amplitude of reflected wave 325–31
energy spectrum 331–5
reflection coefficient 329–30

stationary perturbation theory (discrete
spectrum) 298–316

charged linear oscillator 299–300
Coulomb potential energy levels 309–11
energy level shifts 302
first-order correction to energy levels 298
particle inside an impenetrable ellipsoid of
rotation 312–14

plane isotropic oscillator 300–1
plane rotator 303–4, 307–8
spherical rotator 308–9

sudden action 353–8
variational method 316–25

energy of ground state and of first exited
state 319–20

sudden and adiabatic action 296–374
two particles of same mass 320

photo-effect cross-section
hydrogen-like atom in ground state 802
photoeffect differential cross-section for

unpolarized photons 803
photo-effect, inverse, radiation recombination 803
photon, Maxwell equations in classical

electrodynamics 852
photon emission 779–89

differential photon elastic scattering
cross-section 796

magnetic-dipole emission theory 785
one-photon electromagnetic transitions 788
probability 781–3
scattering cross-section for non-polarized

photons 798
scattering differential cross-section 792
sum rules 789
suppression of one-photon transitions 785
total probability of photon emission for

spin-flip 785
transition probability 786

photon scattering
atom+photon system 800

differential and total cross-sections 792
polarization effects 791–4

photon scattering cross-section for small
frequency 800

pi -mesons, strong interaction 488
pion+deuteron system 635
pion quantum numbers 192
pions

scattering by nucleons 635
scattering length 493

pion–nucleon interaction 636
plane rotator, stationary wavefunctions and energy

levels 86–7
Poisson distribution, perturbation theory 358
Poisson equation 485

motion in central field 122
polarizability 543–5

zero-range potential 543
polarization effects, photon-scattering 791–4
polarization vector, muon 593–4
positronium, ground-states (ortho- and para-) 570
positronium cross-section formation 751
projection operators 20–1, 851
proton, and neutron 598
proton magnetic moment 489
proton—neutron system, value of triplet s-wave

scattering length 698–9
proton–neutron interactions 600, 604
pseudoscalar operator, Lorentz group 849

quadrupole electric one-photon electromagnetic
transitions 788

quadrupole moment 603, 622–5
deuteron 604

quantum numbers, non-relativistic theory 858
quantum radiation theory 776–810

photon emission 779–89
quasi-classical approximation 374–445

1/N -expansion 436–45
discrete spectrum of particle 437–9
energy spectrum for bound s-states 440–4
short-range attractive particle 444–5

Airy function 411
attractive potential with a dip at origin 405–8
Bessel function 389, 393, 396, 425–6
Bohr—Sommerfeld quantization rule 375, 378,

383, 398–9, 401–5, 431
classical probability 376
Coulomb potential 380, 387–8, 441–3
energy level shifts 398–405
ground-state energy level 428–30
Hankel function 425–7
Hulthen potential 387–8
Kramer’s matching conditions 378–80
Langer correction 378–80, 391–5, 434
Langer quantization rule 393
Langer transformation 376
MacDonald function 408, 411
matching at large energies 379–80
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mean value 412–13
new bound states 395–8
particle in classically forbidden region 411–12
particle lifetime 433–4
particle reflection 427–8
penetration through potential barriers 421–37
quasi-classical energy quantization 381–409
quasi-classical wavefunctions, probabilities and

mean values 382–3, 409–21
radial wavefunctions 388–91
Tietz potential 398
transmission coefficient for potential

barrier 424–7
Wentzel—Kramers—Brillouin (WKB)

method 374–446
Yukawa potential 445

quasi-energy states (QES), perturbation
theory 343–4, 362

radiation field (free electromagnetic field) 776
radiation theory 776–809

braking radiation 804–9
radiation recombination 803

Ramsauer—Townsend effect, particle collisions 678
Rashba coupling 202
redshift, spectral lines, (receding) galaxies 787
relativistic wave equations 810–66

Dirac equation 838–66
Klein—Gordon equation 813–38
single-particle problem 827

resonant fluorescence 794
resonant scattering, particle collisions 639
Rutherford equation, non-relativistic theory 836
Rydberg correction 503–4, 547

s-states 826
s-wave scattering 709–11

partial amplitude 709–11
scalar field

effect on a spinless particle and its
antiparticle 816

particle energy spectrum 826
scalar functions 817
scattering amplitude, Born approximation 494, 835
scattering cross-section, quasi-classical

equation 837
scattering length 486

perturbation theory 565
Schrödinger equation 198–9, 612

central potential 116–17
deuteron 606
first relativistic correction 833
in momentum space, Green function 46–56
one-dimensional motion 33–40, 43–5, 50–7,

60–1, 63, 66–8, 74, 77–8, 80–2
operators 25
radial 828
time independent 32

arbitrary potential 3

asymptotic form of particles 32, 61–2
energy levels 32
linear oscillators 32

transition 832
shell model, atomic nucleus 599, 612–26

mirror nuclei 622
oscillator potential 612
unperturbed oscillator 615

silicon ion 514
single-particle problem 827
slow particles 66, 67–8
spherical oscillator 278–80
spherical oscillator, charged 780

differential and total photon-scattering
cross-sections 796

spherical rotator, electromagnetic transition 780
spin 165–213

bound states of spin-orbit-coupled
particles 198–202

density matrix, angular distribution in
decays 191–8

Dresselhaus to Rashba interaction strength
ratio 199–200

generators of Lie group 213
Green function 200
polarization density matrix of particle 195–6
resolution of identity, coherent-state spin

path-integral 203–9
resting particle 193–4
s-system, definition of coherent states 209
spinless particles 196–7
unstable particles 194–5
wavefunction of particle 165–6

spin (s = 1) 186–9
spin (s = 1/2) 166–81

angular momenta 177–8
arbitrary rank 2 square matrix 168–9
characterization 177
eigenvalues and eigenfunctions of

operator 169–70
higher spins 180–91
matrix element of form 171–2
normalized wavefunction 168
spin z-projection, projection operators 172–3
system consisting of N spins 176–7
system of three particles 178–9
system of two particles 174–6
system of two spins 173
transformation law 170–1

spin (s = 1/2), higher spins 180–91
helical states 180
and magnetic moment 287–90, 294–5
spin-angular dependence 180–2
spin-angular wavefunction 182–4
spinor representation 186–9

spin (s = 3/2) 189–91
spin-flip

eigenfunctions and eigenvalues 783
total probability of photon emission 785
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spinless particle
attraction independently of sign of its

charge 834
Born scattering amplitude 836
Coulomb field 836
energy spectrum in a uniform magnetic field 824
external scalar field 826
in a magnetic field 825
mean momentum 823
scalar potential 816
stationary wave equation 838
wavefunction transformation under spatial

inversion 817
spinors 783

inversion 845
Lorentz transformation 645
two-component spinor language 840
two-component spinors 852
two-fold degeneracy 846
unitary transformation of bi-spinors 844
wavefunction 812, 853

spin–isospin wavefunctions 616
Stark effect 539

main quantum number n = 2 539–40
splitting, rotational components for a two-atom

molecule 549
stationary states, one-electron and two-electron

atoms 486–509
stationary wave equation, relativistic spinless

particle 838
statistical atomic model, many-electron

atoms 509–15
coherent-state spin part-integral 207

sum rules, photon emission 789

Tietz potential, quasi-classical approximation 398
Tamm states 81
Taylor expansion 4–6, 12
tensor formalism 511
Thomas—Fermi equations, systems with large

number of electrons 485
Thomas—Fermi model, particle collisions 648–9
Thomas–Fermi electrons 519

polarizability 548
Thomas–Fermi method/model 485–6, 517, 519
Thomson formula 792
three-electron atom (or ion) state 508–9

system ionization energy 508–9
time-dependent quantum mechanics 213–69

asymptotic behaviour of wavefunction 218
Bloch functions 261
external electromagnetic field potentials 240–1
Galilean transformation 239–40
gauge transformation 240
Green function 213, 246–52
Heisenberg operators 233–7, 245–51
Hermite polynomials 249
interaction representation 245–6
particle, acted on by uniform constant force 232

quasi-discrete energy levels of particles
s-states 255–7

quasi-stationary and quasi-energy states Berry
phase 252–69

Schrödinger equation 213–14, 231, 233–5,
239–42

Schrödinger representation 213
motion of wave packets 214–25

spectrum of quasi-energy 260–3
spin (s = 1/2) particle

arbitrary magnetic field 266–9
interactions 230–1

sum rule 227
time-dependent Green function 247–52, 290
time-dependent unitary transformations,

Heisenberg motion 232–47
two channel systems 258–60
two-level system 223–5
unitary transformation 240–3
unperturbed Hamiltonian 245–7
velocity and acceleration operators 225
virial theorem 226–8
wave-packet reflection 219–20

transmission and reflection of particles
branching points 58, 69
continuous spectrum potential barriers 56–74
current density 64
one-dimensional motion 56–74
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