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Numerical Weather and Climate Prediction 

This textbook provides a comprehensive, yet accessible, treatment of weather and climate
prediction, for graduate students, researchers, and professionals. It teaches the strengths,
weaknesses, and best practices for the use of atmospheric models, and is ideal for the
many scientists who use such models across a wide variety of applications. The book
describes different numerical methods, data assimilation, ensemble methods, predictabil-
ity, land-surface modeling, climate modeling and downscaling, computational fluid-
dynamics models, experimental designs in model-based research, verification methods,
operational prediction, and special applications such as air-quality modeling and flood
prediction. The book is based on a course that the author has taught for over 30 years at the
Pennsylvania State University and the University of Colorado, Boulder, and also benefits
from his wide practical modeling experience at the US National Center for Atmospheric
Research.

This volume will satisfy everyone who needs to know about atmospheric modeling for
use in research or operations. It is ideal both as a textbook for a course on weather and cli-
mate prediction and as a reference text for researchers and professionals from a range of
backgrounds: atmospheric science, meteorology, climatology, environmental science,
geography, and geophysical fluid mechanics/dynamics.

Tom Warner was a Professor in the Department of Meteorology at the Pennsylvania State
University before accepting his current joint appointment with the National Center for
Atmospheric Research and the University of Colorado at Boulder. His career has involved
teaching and research in numerical weather prediction and mesoscale meteorological pro-
cesses. He has published on these and other subjects in numerous professional journals.
His recent research and teaching has focussed on atmospheric processes, operational
weather prediction, and arid-land meteorology. He is the author of Desert Meteorology
(2004), also published by Cambridge University Press.



“Numerical Weather and Climate Prediction is an excellent book for those who want a
comprehensive introduction to numerical modeling of the atmosphere and Earth system,
whether their interest is in weather forecasting, climate modeling, or many other applica-
tions of numerical models. The book is comprehensive, well written, and contains clear
and informative illustrations.”

Dr. Richard A. Anthes, President,
University Corporation for Atmospheric Research, Boulder

 
“Tom Warner’s book is a rich, effectively written and comprehensive detailed summary of
the field of atmospheric modeling from local to global scales. It should be in the library of
all meteorologists, climate researchers, and other scientists who are interested in the capa-
bilities, strengths and weaknesses of modeling.”

Professor Roger A. Pielke, Sr.,
Department of Atmospheric Science, Colorado State University, Fort Collins

“Tom Warner has taught Numerical Weather and Climate Prediction courses for over thirty
years at Pennsylvania State University and the University of Colorado at Boulder. He also
has been one of the principle developers of numerical models widely used in the atmos-
pheric science community, and has a long history of applying such codes. This extensive
background gives Professor Warner a unique insight into how models work, how to use
them, where their problems lie, and how to explain all of this to students. His book assumes
students have a basic understanding of atmospheric science. It covers all aspects of modeling
one might expect, such as numerical techniques, but also some that might be unexpected
such as ensemble modeling, initialization, and error growth. Today most students have
become model users instead of model developers. Fewer and fewer peer into the models they
use beyond the narrow regions that may directly interest them. With hundreds of thousands
of lines of code, and groups of developers working on individual parts of the code, very few
can say they truly understand all the parts of a model. Professor Warner's textbook should
help both the student and the more advanced user of codes better appreciate and understand
the numerical models that have come to dominate atmospheric science.”

Professor Brian Toon, Chair,
Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder

“Tom’s new book covers an impressive range of need-to-know material spanning traditional
and cutting-edge atmospheric modeling topics. It should be required reading for all model
users and aspiring model developers, and it will be a required text for my NWP students.”

Professor David R. Stauffer,
Department of Meteorology, The Pennsylvania State University

“The book addresses many practical issues in modern numerical weather prediction. It is
particularly suitable for the students and scientists who use numerical models for their
research and applications. While there have already been a few excellent textbooks that
provide fundamental theory of NWP, this book offers complementary materials, which is
useful for understanding of key components of operational numerical weather forecasting.”

Professor Zhaoxia Pu,
Department of Atmospheric Sciences, University of Utah
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Lewis Fry Richardson is arguably the father of numerical weather prediction. 
In addition to his great interest in methods for modeling the atmosphere, 

he was equally passionate about developing mathematical equations 
that could predict wars, with the hope that they could thus be avoided. 

Let us all, in small or large ways, follow LFR’s passions. 

With gratitude
to

John Hovermale,
who wanted to write this book 
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This textbook provides a general introduction to atmospheric modeling for those using
models for either operational forecasting or research. It is motivated by the fact that all
those who use such models should be aware of their strengths and limitations. Unlike the
many other books that specialize in particular aspects of atmospheric modeling, the aim
here is to offer a general treatment of the subject that can be used for self study or in con-
junction with a course on the subject. Even though there is considerable space devoted
here to numerical methods, this is not intended to be the major focus. As the reader will
see, there are many other subjects associated with the modeling process that must be
understood well in order for models to be used effectively for research or operations. For
those who need more information on particular topics, each chapter includes references to
specialized resources. It is assumed that the reader has a Bachelors Degree in atmospheric
sciences, with mathematics through differential equations. 

Abbreviations or acronyms, as well as symbols, will be defined in the text the first time
that they appear, and for future reference they are also defined in the lists that appear
before Chapter 1. Even though the student should focus on concepts rather than jargon, a
technical vocabulary is still necessary in order to discuss these subjects. Thus, commonly
used, important terms will appear in italics the first time, in order to identify them as worth
remembering. 

There has been no attempt to provide an exhaustive list of references for any particular
topic. The reader should refer to the more-recent references, or one of the review papers
recommended at the end of the chapters, for a thorough list of historical references.
Because World Wide Web addresses tend to change frequently, none are provided here.
Instead, the reader should use an available search engine to access current information
about model specifications or data sources. 

Many colleagues provided tangible and moral support during the production of this
book. Cindy Halley-Gotway skillfully and patiently produced the graphic art for the fig-
ures and for the cover. Gregory Roux ran model experiments that served as the basis for
plots of shallow-fluid-model solutions, and also generated graphical displays of some of
the functions in Chapter 3. Many individuals shared their time by engaging in very helpful
technical discussions, where special thanks go to George Bryan, Gregory Byrd, Janice
Coen, Joshua Hacker, Yubao Liu, Rebecca Morss, Daran Rife, Dorita Rostkier-Edelstein,
Robert Sharman, Piotr Smolarkiewicz, Wei Wang, and Andrzej Wyszogrodzki. Those who
donated their time and skills by reading and editing chapters include Fei Chen, Luca Della
Monache, Joshua Hacker, Andrea Hahmann, Thomas Hopson, Jason Knievel, Yubao Liu,
Yuwei Liu, Linlin Pan, Daran Rife, Robert Sharman, David Stensrud, Wei Wang, Jeffrey
Weil, and Yongxin Zhang. Christina Brown efficiently managed the process of obtaining
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copyright permissions, and technical assistance with manuscript preparation was provided
by Carol Makowski. Leslie Forehand and Judy Litsey of the library of the National Center
for Atmospheric Research assisted with reference material. And, John Cahir offered useful
comments on the organization of the chapters, which led to a more logical presentation.
Lastly, valuable assistance in many forms was provided by Matt Lloyd, Editor; Laura
Clark, Assistant Editor; and Abigail Jones, Production Editor, of Cambridge University
Press.
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1

When Phillip Thompson began to write the first widely read textbook1 on numerical
weather prediction2 (NWP), the subject was in its infancy, even though an earlier book,
Weather Prediction by Numerical Process by L. F. Richardson (1922), presaged what
was to come later in the century after the advent of electronic computers. The availabil-
ity of computers increased greatly in the 1960s, and universities began to offer courses
in atmospheric modeling, but most modelers had to also be model developers because
the untested codes had many errors, the numerical schemes for solving the equations
and the physical-process representations were not well tested and understood, lateral-
boundary conditions for limited-area models produced noisy solutions, and codes for
defining the initial conditions needed to be further developed. These early practitioners
learned the basics of atmospheric modeling from each other, through journal articles, in
seminars and conferences, and from early courses on the subject. During the last
30 years of the twentieth century, graduate-level courses in atmospheric modeling flour-
ished at many universities. And because computer modeling of the atmosphere was
increasingly becoming an important tool in research and operational weather prediction,
these courses were typically filled. Nevertheless, atmospheric modeling was still some-
what of a specialty, and models were not very accessible beyond national centers and a
few research universities. Smagorinsky (1983), Thompson (1983), Shuman (1989),
Persson (2005), Lynch (2007), and Harper (2008) should be consulted for additional his-
tory on atmospheric modeling.

In contrast, most of today’s modelers are model users only, not developers, and have
available, at no cost, well-tested community, global and limited-area models with com-
plete documentation, regular tutorials, and help desks. Some models are being touted as
“turn-key” systems that can be run on desk-top computers, and they are accessible to any-
one in the meteorological and nonmeteorological communities having little experience in
atmospheric modeling and knowledge of the model limitations. There are, of course, still
the developers working on the next-generation in modeling capabilities, but they are dis-
tinct from the much-more-numerous model users who simply want to employ the model as

1 Thompson (1961)
2 Historically the expression “numerical weather prediction” has been used to describe all activities involv-

ing the numerical simulation of atmospheric processes, whether or not the models were being used for
research or operational forecasting. But, some reserve the use of this reference only for model applications
to forecasting. In this book we will use the term “numerical weather prediction” to refer to all types of
model uses.

1 Introduction



Introduction2

a tool to address practical questions related to physical processes, policy, or operational
prediction. 

The range of time and space scales simulated by contemporary models is great. Regard-
ing time scales, in some cases models are used as the basis of data-assimilation schemes
where the objective is to simply define the current state of the atmosphere in a way that is
consistent with the data and the model dynamics. Model-based “nowcasts” have time hori-
zons of 1–2 hours. Deterministic predictions of weather (i.e., specific meteorological
events) extend to weeks, while interseasonal predictions of weather trends are produced
with coupled ocean–atmosphere models. On the longest end of the time spectrum, climate
models are integrated for hundreds of years of simulated time. Resolved spatial scales are
shrinking as well. Some models that span the globe have sufficient horizontal resolution to
simulate mesoscale processes. Other models can simulate winds in urban street canyons
and in the wakes of buildings, in some cases quickly enough to be useful for operational
applications. 

With the growing skill of atmospheric models, and the availability of cheap computing
power, a variety of new applications has emerged for specialized and standard versions of
the models. When coupled with air-quality models, they are applied to regional airsheds to
help government and business develop strategies for managing regional air quality. They
are used by governments and private industry for operational prediction of weather to
which agriculture is sensitive, for purposes of estimating crop-disease spread, timing
planting and harvesting operations, and scheduling irrigation. Militaries employ models
for producing specialized forecasts of weather that affects the conduct of their operations
on the land and sea, and in the air. Models are used for planning the emergency response
to accidental or intentional releases of hazardous chemical, biological, or radiological
material into the atmosphere. And they predict quantities such as wind-shear, turbulence,
cloud ceiling, visibility, and aircraft icing that affect the safety and efficiency of commer-
cial and private aviation. Atmospheric models are coupled with river-discharge models for
prediction of floods. Wind-energy companies use models to “prospect” for the best places
to locate farms of wind turbines. Energy companies use atmospheric models to predict
cloud cover, temperature, and other quantities that influence the near-future demand for
electricity for heating and cooling. And, there are dozens of other sectors of industry and
government that have found that model-based weather forecasts improve the profitability
and safety of their operations. In general, it has been found that better weather predictions
lead to better decisions.

Global atmospheric models have been at the center of the climate-change challenge
and controversy for decades, and our increasing confidence in their skill is mirrored in
the worldwide call to reduce emissions of carbon dioxide and other greenhouse gases.
Even though climate-change processes are of global proportions, there is evidence that
the specific manifestations (precipitation and temperature changes) will vary greatly
from region to region. Thus, high-resolution regional models are being embedded within
the global models in order to provide specific guidance to local decision makers. The
models can also be used to better understand and anticipate climate change that is unre-
lated to greenhouse-gas concentrations. For example, worldwide land-use degradation
and modification, such as from deforestation and urbanization, are known to have
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significant effects on atmospheric processes. Thus, “what if ” experiments are performed
in which different scenarios are assumed for the landscape change, and the model is run
for short or long periods to define the effects of the change on precipitation, for exam-
ple. The results can be used as motivation for reversing those trends that have negative
consequences.

A traditional use of global and regional models has been for basic research on atmos-
pheric processes. Special field programs are very expensive to perform, and they only
sample a small area of the atmosphere for a short period of time. Thus, it has been com-
mon practice in the research community to augment observations with model simulations.
If the model reproduces the atmospheric conditions reasonably well at the observation
locations and times, it is assumed that the model is also skillful elsewhere. Thus, the grid-
ded four-dimensional (three space, and time) model data set is used as a surrogate for the
real atmosphere, where the advantage, in addition to low cost, is that the availability of
data on a regularly spaced grid, at high temporal frequency, makes it much easier to diag-
nose atmospheric structures and physical processes. However, it will be noted strongly in
Chapter 10, about experimental designs in model-based research, that we should first thor-
oughly analyze all available observational data, and learn everything we can in that proc-
ess, before running a model. Figure 1.1 emphasizes that observations and theory are as
important as models, as research tools that we have at our disposal. And we should avoid
the tendency to start running the model before we have learned all that we can from theory
and observations. Indeed, it is the author’s experience that using the model early in the
process only prolongs the amount of time required to complete a research project, or a
thesis.

Even though the historical trend has been to use specialized models for different
scales and forecast durations, the cost of maintaining multiple modeling systems has

Observations

ModelsTheory
Illustration of the equal importance of observations, theory, and models as tools in atmospheric research.Fig. 1.1



Introduction4

led to a trend toward a “unified” modeling approach by national meteorological serv-
ices and other organizations. For example, instead of developing different models for
mesoscale and global-scale applications, a single flexible system can be used for both.
Similarly, weather-prediction and climate-simulation models used to be distinct, but
there are efforts to merge the models used for these two purposes. Lastly, operational
models have often not been used by the research community, which has meant that
there has not been a straightforward path for operational implementation of improved
numerical methods, physical-process parameterizations, initialization schemes, etc.
But, there are now a number of examples where operational and research activities use
the same models. 

This book begins with a review of the governing equations that serve as the basis for
atmospheric models (Chapter 2). It is assumed that the reader already has a good under-
standing of atmospheric dynamics, and the meaning of the various terms in these equa-
tions. One goal of the book is to educate the model user about the various components
of the modeling process, and how the errors in those components affect the solution.
Thus, the well-known sources of error will be described: the numerical approximations
in the dynamical core (Chapter 3), the physical-process parameterizations (Chapters 4
and 5), the lateral-boundary conditions (Chapter 3), and the initial conditions
(Chapter 6). The discussion of ensemble methods in Chapter 7 responds to the fact that
most models, the operational ones at least, use this approach in order to provide valuable
information to the model user about uncertainty in the forecast. The inherent predicta-
bility of the atmosphere has profound implications regarding the skill that we can expect
from models, so this is discussed in Chapter 8. This is followed in Chapter 9 by the
related topic of how we can best verify the skill of models. This is important for compar-
ing different models, and for determining whether changes that we make in a single
model have a positive or negative effect on the quality, and therefore the utility, of the
output. Chapters 10 and 11 summarize common practices in designing research experi-
ments with models, and the techniques for analyzing model output, respectively.
Because models used for operational weather prediction often have different require-
ments and constraints than those used for research, some common differences are dis-
cussed in Chapter 12. The post processing of operational-model output to correct for
biases and to make the forecast fields easier to interpret and support decision making is
discussed in Chapter 13. As noted above, atmospheric models are sometimes coupled
with other models that provide information about specialized processes, and these cou-
pled applications are reviewed in Chapter 14. Even though computational fluid-
dynamics models are normally applied on scales too small to be called weather, they
nevertheless still simulate atmospheric processes, and are becoming more routinely used
for a variety of purposes, so they are described in Chapter 15. Chapter 16 discusses how
global and regional models are being used for simulation of current and future climates.
Figure 1.2 summarizes the overall structural components of a modeling system, and the
chapters that describe them.
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Initialization
Ch 6

Dynamical core
Ch 3

Physical-process parameterizations
Chs 4 and 5

Lateral-boundary 
conditions

Ch 3

ForecastVerification
Ch 9

Post
processing

Ch 13

Analysis of
model output

Ch 11

Coupled special-
applications models

Ch 14

Schematic of the overall structure of a modeling system, and the chapters that discuss the components. The dashed 

line encloses the two major components of the model code.

Fig. 1.2
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2.1 The basic equations

This chapter describes the governing systems of equations that can serve as the basis for
atmospheric models used for both operational and research applications. Even though
most models employ similar sets of equations, the exact formulation can affect the accu-
racy of model forecasts and simulations,1 and can even preclude the existence in the model
solution of certain types of atmospheric waves. Because these equations cannot be solved
analytically, they must be converted to a form that can be. The numerical methods typi-
cally used to accomplish this are described in Chapter 3.

The equations that serve as the basis for most numerical weather and climate prediction
models are described in all first-year atmospheric-dynamics courses. The momentum
equations for a spherical Earth (Eqs. 2.1–2.3) represent Newton’s second law of motion,
which states that the rate of change of momentum of a body is proportional to the resultant
force acting on the body, and is in the same direction as the force. The thermodynamic
energy equation (Eq. 2.4) accounts for various effects, both adiabatic and diabatic, on tem-
perature. The continuity equation for total mass (Eq. 2.5) states that mass is neither gained
nor destroyed, and Eq. 2.6 is analogous, but applies only to water vapor. The ideal gas law
(Eq. 2.7) relates temperature, pressure, and density. The variables have their standard
meteorological meaning. The independent variables u, v, and w are the Cartesian velocity
components, p is pressure, is density, T is temperature,  is specific humidity,  is the
rotational frequency of Earth,  is latitude, a is the radius of Earth,  is the lapse rate of
temperature,  is the dry adiabatic lapse rate,  is the specific heat of air at constant
pressure, g is the acceleration of gravity, H represents a gain or loss of heat,  is the gain
or loss of water vapor through phase changes, and Fr is a generic friction term in each
coordinate direction.

 (2.1)

 (2.2)

1 In this text, the noun simulation refers to a model solution that is obtained for any purpose other than estimat-
ing the future state of the atmosphere (for example, for research). An estimate of the future state of the atmos-
phere is referred to as a forecast.
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(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

A complete model will also have continuity equations for cloud water, cloud ice, and
the different types of precipitation (see Chapter 4). See Dutton (1976) and Holton (2004)
for discussions of this set of prognostic,2 coupled, nonlinear, nonhomogeneous partial dif-
ferential equations. The equations are called the primitive equations, and models that are
based on these equations are called primitive-equation models. This terminology is used to
distinguish these models from ones that are based on differentiated versions of the equa-
tions, such as the vorticity equation. Virtually all contemporary research and operational
models are based on some version of these primitive equations. Note that the terms in the
equations related to diabatic effects (H), friction (Fr), and gains and losses of water
through phase changes (Qv) must be defined within the model. This particular example of
the primitive equations has pressure as the vertical coordinate, but other options will be
discussed in the next chapter.

2.2 Reynolds’ equations: separating unresolved turbulence effects

The above equations apply to all scales of motion, even waves and turbulence that are too
small to be represented by models designed for weather processes. Because this turbulence
cannot be resolved explicitly in such models, the equations must be revised so that they
apply only to larger nonturbulent motions. This can be accomplished by splitting all the
dependent variables into mean and turbulent parts, or, analogously, spatially resolved and
unresolved components, respectively. The mean is defined as an average over a grid cell, as
described by Pielke (2002a). For example:

, and

2 The word prognostic implies that an equation is predictive, in contrast to a diagnostic equation, which has no time
derivative and simply relates the state of variables at the same time. For example, the ideal gas law is diagnostic.

∂w
∂t
------ u∂w

∂x
------– v∂w

∂y
------– w∂w

∂z
------– u2 v2+

a
-----------------

1
ρ
--

∂p
∂z
------–– 2Ωu φcos g– Frz+ +=

∂T
∂t
------ u∂T

∂x
------– v∂T

∂y
------– γ γd–( )w 1

cp
----

dH
dt
-------+ +=

∂ρ
∂t
------ u∂ρ

∂x
------– v∂ρ

∂y
------– w∂ρ

∂z
------– ρ ∂u

∂x
------

∂v
∂y
-----

∂w
∂z
------+ +⎝ ⎠

⎛ ⎞–=

∂qv

∂t
-------- u

∂qv

∂x
--------– v

∂qv

∂y
--------– w

∂qv

∂z
--------– Qv+=

P ρRT=

u u u′,+=

T T T ′+=

p p p′.+=



The governing systems of equations8

These expressions are substituted into Eqs. 2.1–2.7, producing expansions such as the fol-
lowing one for the first term on the right side of Eq. 2.1:

(2.8) 

Because we want the equations to pertain to the mean motion, that is, the nonturbulent
weather scales, we apply an averaging operator to all the terms. For the above term, we have

. (2.9)

Note that the last term on the right is a covariance term. Its value depends on whether the
first quantity in the product covaries with the second. For example, if positive values of the
first part tend to be paired with negative values of the second, the covariance, and the term,
would be negative. If the two parts of the product are not physically correlated, the mean
has a value of zero. We then simplify the equations using Reynolds’ postulates (Reynolds
1895, Bernstein 1966). For variables a and b,

 and , and

.

Given these postulates, the terms in Eq. 2.9 become

(2.10)

Before we show how to apply these methods to all the terms in Eqs. 2.1–2.7, let us
rewrite Eq. 2.1 with a typical representation for the friction terms, Frx, without the Earth-
curvature terms, and with only the dominant Coriolis term. In these equations, which
explicitly represent turbulent motion, subgrid friction results only from viscous forces,
which are a consequence of molecular motion. 

(2.11)

Here, is the force per unit area, or the momentum or shearing stress, exerted in the x
direction by the fluid on one side of a constant-z plane with the fluid on the other side of
the z plane, and  and  are the forces in the x direction across the other two coordi-
nate planes. In hypothetical, inviscid fluids, there would be no “communication” between
the flow on either side of a plane. But, in real fluids, the molecular motion, or molecular
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diffusion, across each of the coordinate surfaces will allow for the exchange of properties.
A typical representation for the stress is 

 ,

where  is dynamic viscosity coefficient. This is called Newtonian friction, or Newton’s
law for the stress. Referring to the two (infinitesimally shallow) layers of fluid on either
side of the z plane, if there is no shear in the fluid, viscosity produces no stress, or force per
unit area, of one layer on the other. Substituting these expressions for the Newtonian fric-
tion into the terms for Frx in Eq. 2.11, we have 

.  (2.12)

Now apply the averaging process to all the terms in Eq. 2.11. In particular, we represent
each dependent variable by the sum of a resolved mean and an unresolved turbulent com-
ponent, and then apply the averaging operator. Using Reynolds’ postulates, and the
assumption that  we obtain

(2.13)

Stull (1988) uses a scale analysis to show that, for turbulence scales of motion, the follow-
ing continuity equation applies:

. (2.14)

Multiply this by , average it, and add it to Eq. 2.13 to put the turbulent advection terms
into flux form:

(2.15)
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(also, eddy stresses or Reynolds’ stresses) as follows:
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Substituting these expressions into Eq. 2.15, and assuming that the spatial derivatives of
the density are much smaller than those of the covariances, we have

. (2.16)

This equation is the same as Eq. 2.11, except for the turbulent-stress terms and the mean-
value symbols. The mean-value symbols are rarely used with the primitive equations, but
it is still understood that the dependent variables represent only nonturbulent motions.
And, the turbulent stresses are much larger than the viscous stresses, so the latter terms are
usually not included. The turbulent-stress terms are sometimes represented symbolically
as “F”, referring to friction. The representation of the turbulent stresses in terms of varia-
bles predicted by the model is the subject of turbulence parameterizations for the bound-
ary layer, or for above the boundary layer, described in Chapter 4. 

2.3 Approximations to the equations

There are a few reasons why we might desire to use approximate sets of equations as the
basis for a model. 

• Some approximate sets are more efficient to solve numerically than the complete equa-
tions. For example, the hydrostatic, Boussinesq, and anelastic approximations described
below do not permit sound waves in the solutions, which, for reasons that will be
explained in the next chapter, means that less computing resources are required to pro-
duce a simulation or forecast of a given length.

• The complete equations describe a physical system that is so complex that it is challeng-
ing to use them in a model for research, to better understand cause and effect relation-
ships in the atmosphere. Thus, sometimes specific terms and equations (and the
associated processes) are removed from the set of equations. For example, removing
equations for water in all its phases, and the thermodynamic effect of phase changes,
allows the study of processes in a simpler setting.

• Very simple forms of the equations are more amenable for pedagogical applications and
for initial testing of new numerical algorithms. For example, the shallow-fluid equa-
tions, described below, are used as the basis for “toy models” in NWP classes (and in
this text). But, they contain enough of the dynamics of the full set of equations that they
can be profitably used to test new differencing schemes, which can later be evaluated in
complete models.

The approximations described in the following subsections are commonly used in research
and operational models. 
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2.3.1 Hydrostatic approximation

The existence of relatively fast-propagating sound waves in a model solution means, as
will be explained in the next chapter, that short time steps are required in order for the
model’s numerical solution to remain stable. The consequence of the short time step is that
many more will be required in a model integration of a specific duration, and more com-
puting resources will be required. Because sound waves are generally of no meteorological
importance, it is desirable to use a form of the equations that does not admit them. One
approach is to employ the hydrostatic approximation, wherein the complete third equation
of motion (Eq. 2.3) is replaced by one containing only the gravity and vertical-pressure-
gradient terms. That is 

 .

This implies that the density is tied to the vertical pressure gradient. Because the propaga-
tion of sound waves requires that the density adjust to the longitudinal compression and
expansion within the waves, sound waves are not possible in a hydrostatic atmosphere. For
the hydrostatic assumption to be valid, the sum of all the terms eliminated in the complete
equation must be, say, at least an order-of-magnitude smaller than the terms retained.
Stated another way

 .

A scale analysis of the third equation of motion (e.g., Dutton 1976, Holton 2004) shows that
the hydrostatic assumption is valid for synoptic-scale motions, but becomes less so for
length scales of less than about 10 km on the mesoscale and convective-scale. Thus, coarser-
resolution global models will tend to be based on the hydrostatic equations, while models of
mesoscale processes will not. It will be shown in the next chapter that there are other
approaches for dealing with the computational effects of fast waves on the model grid.

2.3.2 Boussinesq and anelastic approximations

As with the hydrostatic assumption, the Boussinesq and anelastic approximations are part
of a family of approximations that directly filter sound waves from the equations by decou-
pling the pressure and density perturbations. However, their use is not limited to modeling
larger horizontal length scales, as is the case with the hydrostatic approximation. Indeed,
these approximations are widely used in models of mesoscale or cloud-scale processes.
The Boussinesq approximation (Boussinesq 1903) is obtained by substituting the follow-
ing for Eq. 2.5, the complete continuity equation:

.
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This amounts to substituting volume conservation for mass conservation. For the anelastic
approximation (Ogura and Phillips 1962, Lipps and Hemler 1982),

is substituted for the complete continuity equation, where is a steady reference-
state density. In addition, both approximations involve simplifications in the momentum
equations (see Durran 1999, pp. 20–26). Another type of approximation in this class is the
pseudo-incompressible approximation described by Durran (1989).

2.3.3 Shallow-fluid equations 

The shallow-fluid equations, sometimes called the shallow-water equations, can serve as
the basis for a simple model that can be used to illustrate and evaluate the properties of
numerical schemes. Inertia–gravity, advective, and Rossby waves can be represented. Not
only is such a model useful for gaining experience with numerical methods, the fact that
the equations represent much of the horizontal dynamics of full baroclinic models makes
it a useful tool for testing numerical methods in a simple framework. For example,
Williamson et al. (1992) used a shallow-fluid model applied to the sphere to test numerical
methods that were proposed for climate modeling. 

The name “shallow fluid” refers to the fact that the wavelengths simulated must be long
relative to the depth of the fluid. There are various forms of this set of equations (Nadiga
et al. 1996), but here the fluid is assumed to be autobarotropic (barotropic by definition,
not by virtue of the prevailing atmospheric conditions), homogeneous, incompressible,
hydrostatic, and inviscid. The homogeneity condition means that the density does not vary
in space, and incompressibility means that density does not change in time following a
parcel. The equations from which we begin the derivation are 

, (2.17)

, (2.18)

, and (2.19)

. (2.20)

Now, incompressibility and homogeneity imply

, (2.21)
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, for  a constant, and (2.22)

. (2.23)

The hydrostatic equation can thus be written

. (2.24)

Differentiating Eq. 2.24 with respect to x, and using the fact that the right side is a con-
stant, yields

, (2.25)

which means that there is no horizontal variation of the vertical pressure gradient or verti-
cal variation of the horizontal pressure gradient (the definition of barotropy). Because the
pressure-gradient force generates the wind, and the resulting Coriolis force, all forces are
invariant with height. Integrating Eq. 2.24 over the depth of the fluid,

, (2.26)

where  and  represent the pressure at the top and bottom boundaries of the fluid,
respectively, yields

, (2.27)

for h equal to the depth of the fluid. If , or ,

 and (2.28) 

. (2.29)

This statement that the horizontal pressure gradient at the bottom of the fluid is propor-
tional to the gradient in the depth of the fluid provides a new form of the pressure-gradient
term in Eqs. 2.17 and 2.18. The incompressible continuity equation (Eq. 2.23) can also be
rewritten by integrating it with respect to z:

(2.30)
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If u and v are initially not a function of z, they will remain so because the pressure gradient
is not a function of z. And, because u and v are not a function of z, neither are their deriva-
tives, so that

(2.31)

for z = h. For a horizontal lower boundary, the kinematic boundary condition pre-
vails. Recognizing that 

(2.32)

leads to a new continuity equation. There are now three equations in three variables, u, v,
and h.

, (2.33)

, (2.34) 

. (2.35)

For simplicity, a one-dimensional version of this system of equations is frequently used. In
order to permit a mean u component on which perturbations occur, a constant pressure
gradient of the desired magnitude is specified in the y direction. The one-dimensional
equations are

, (2.36)

, (2.37)

, where (2.38)

(2.39)

and  is the specified, constant mean geostrophic speed on which the u perturbation is
superimposed. Obviously there are limitations to the degree to which this system of equa-
tions can represent the real atmosphere, but one step toward more realism is to define the
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fluid depth to be consistent with the layer being represented, such as the boundary layer or
the troposphere. The depth of the total atmosphere can be represented by the scale height

, (2.40)

where  is the surface temperature and  is about 8 km. If the model atmosphere is to
represent the troposphere, it can be assumed that the active fluid layer of depth h is sur-
mounted by an inert layer (Fig. 2.1) that represents the stratosphere. This exerts a buoyant
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Schematic showing the vertical structure of a shallow fluid model, for a situation where a wave ridge is centered in the 

computational domain. The lower shaded layer represents the active fluid for which the depth (h) and wind 

components are simulated. The depth, H, is the scale height of the atmosphere, and  is the factor by which the 

depth is reduced to account for the buoyancy of an inert layer above.

α

Fig. 2.1

T0 H



The governing systems of equations16

force on the lower layer that can be represented in the model by a reduced gravity. But this
would impact the geostrophic relationship, so a better approach is to proportionately
reduce the depth of the active layer. This is justified by the fact that, in the linear solution
for the phase speed of external gravity waves, the acceleration of gravity is multiplied by
the mean depth of the fluid. Application of either method would have the same effect of
decreasing the phase speed of external gravity waves to one that is more characteristic of
the internal waves at the layer interface. It can be shown that the gravity or layer depth
should be reduced by a factor , which is based on the mean potential
temperatures of the top and bottom layers. For the example where the lower layer repre-
sents the troposphere, this ratio is ~0.25 and the layer mean depth would be defined
as 2 km.

When the above nonlinear shallow-fluid equations are used as the basis for a model, an
explicit numerical diffusion term will need to be added to each equation to suppress the
short wavelengths that will grow through the aliasing process, which will be described in
the next chapter. Additional information on the shallow-fluid equations, and their numeri-
cal solution, may be found in Kinnmark (1985), Pedlosky (1987), Durran (1999), and
McWilliams (2006).

PROBLEMS AND EXERCISES

1. Derive Reynolds’ equations for Eqs. 2.2–2.7. 
2. Reproduce the development of Reynolds’ equations using tensor notation, and note the

relative simplicity compared to the process in Section 2.2.

α θT θB–( )= θB⁄
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The current chapter summarizes various topics related to the numerical solution of the
model equations, for resolvable scales of motion. This part of an atmospheric model that
treats the resolvable scales is called the dynamical core, and is distinct from the represen-
tations of the subgrid-scale, parameterized physical processes. An especially important
topic is how the numerical approximations that are used to solve the equations can affect
the model solution. These nonphysical effects should be thoroughly understood by all
model users. Even though basic concepts are described here, and examples provided, this
presentation of numerical methods is far from exhaustive. A comprehensive text on this
subject, such as Durran (1999), should be consulted if more depth is needed. Step-by-step
derivations are frequently left to the reader.

Numerical methods used for solving the equations have naturally evolved over the last
few decades, partly because of the results of research and partly because of changes in the
available computational resources. Various factors are involved in the decision about the
numerical methods to use for a particular modeling application, including computational
efficiency (speed), accuracy, memory requirements, and code-structure simplicity. The last
factor is especially important if the model is going to be used for research, especially by
students. Simple methods that are not typically used in current operational models are
sometimes described here for pedagogical purposes.

3.1 Overview of basic concepts

The following brief overview of concepts will help the reader to better understand the spe-
cialized material in later sections.

3.1.1 Grid-point and spectral methods for representing spatial 
variations of the atmosphere

The model equations are often solved at points defined by a quasi-regular, three-
dimensional spatial grid. Section 3.2.1 reviews the different options for the structure of
these grids. The term “quasi-regular” is used here as an acknowledgment that the points
are typically not exactly equally spaced, when the grid is defined on a map projection
where the Earth-distance between grid points varies from place to place. Sometimes the
points are very nonuniformly spaced, for example when using latitude–longitude coordi-
nates or with adaptive grids where the resolution is increased in areas of strong gradients.

3 Numerical solutions to the equations
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The time axis is also defined by discrete, evenly spaced points. The time and space deriva-
tives in the equations can be approximated using finite-difference methods (Section 3.3),
which introduce nonphysical properties to the model solution, and have stability criteria
that limit the time step (Section 3.4). As an example of solving an equation on a grid, the
first equation of motion (Eq. 2.1) will be represented using a simple three-point centered-
difference approximation in time and space, such as 

,

where f is any dependent variable;  defines a discrete point on the time axis; i, j, k define
coordinates on the x, y, z space axes, respectively; and  is the distance between two
adjacent points on the y axis. The first equation of motion, Eq. 2.16, 

,

is a nonlinear, nonhomogeneous, partial differential equation that cannot be solved analyt-
ically. With the above, three-point, finite-difference approximations, it becomes the fol-
lowing solvable arithmetic equation

,  (3.1)

where  and  are often assumed to be the same, and Fr is a frictional-dissipation
term. This equation is solved for on the left side, and, for each grid point, the right
side is evaluated based on values of the dependent variables from the two previous time
levels  and . The other equations are similarly solved for the values of the
dependent variable. 

The value of  is chosen so that there is a sufficient number of grid points to ade-
quately represent the smallest meteorological feature of interest, for the particular appli-
cation of the model. Section 3.4.1 on the concept of truncation error quantifies the
accuracy associated with representing continuous functions with a finite number of
points. A rule of thumb is that 10 grid points are needed to reasonably resolve a wave. So,
depending on whether the purpose of the model is to simulate synoptic-scale Rossby
waves or mesoscale convective complexes, the grid increment must be chosen accord-
ingly. An alternative approach is to represent the spatial variation of the dependent varia-
bles using global or local functions, and calculate the derivatives analytically. Such
approaches include the spectral and finite-element methods described in Sections 3.2.2
and 3.2.3, respectively.
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There are two general types of models in terms of the spatial extent of the computa-
tional volume. If the model calculations span the sphere, the model is referred to as a glo-
bal model. If the model applies only to a particular regional subvolume of the atmosphere,
it is called a limited-area model.

3.1.2 The time integration

Section 3.3.1 reviews different methods for integrating the equations in time. The
approach shown in Eq. 3.1, for all terms except the friction term, is known as leap-frog, or
three-point centered, time differencing because the value of the derivative is calculated at a
time ( , right side of equation) that is centered between the initial ( ) and final ( )
times of the extrapolation. Figure 3.1 illustrates this time-differencing method. Note that a
forward time step is required at the beginning of the integration, before the leap-frog proc-
ess can be used. For the friction term, forward differencing is used, where the derivative is
calculated at the point from which the extrapolation originates. This is the only method
that is stable. For many differencing schemes, the time step is constrained by a limiting
value of the Courant number, defined as , where  is the horizontal speed of the
fastest wave on the grid, and  was chosen, as described earlier, to allow resolution of
the relevant meteorological processes. If the time step is too long, a stability criterion is
violated, nonmeteorological features grow exponentially in the solution, and floating-point
overflows in the computer will cause the integration to stop. The stability requirement for
the advection term represented in an Eulerian framework (the equations are solved at grid
points), for the combination of space and time differencing methods used in Eq. 3.1, is
called the Courant–Friedrichs–Lewy (CFL) criterion, which requires that .
The concept of numerical stability is further developed in Section 3.4.2.

In order to understand what controls the computational requirements for running a
model, assume that a forecast is needed over a certain limited geographic area. Also, for
simplicity, assume that the grid points are regularly spaced in the horizontal. The horizon-
tal grid increment is chosen such that the features of meteorological interest are well repre-
sented by a sufficient number of points over the length of a wave. The chosen vertical
distribution of points will similarly depend on the vertical structures that need to be
resolved. Given the types of atmospheric waves admitted by the model equations, it is pos-
sible to estimate the fastest wave on the grid. For example, if sound waves and external
gravity waves are not part of the model solution, the fastest advective wave (e.g., in a jet
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Centered-in-space time-differencing schematic, except for the initial forward-in-time step to extrapolate from 
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stream) can be estimated based on knowledge of the local atmosphere. Thus, the only
remaining parameter in the expression for the Courant number is the time step. This must
be chosen such that the numerical solution will remain stable. The cost of running the
model on this grid will be based on the number of times the full set of algebraic equations,
of which Eq. 3.1 is one, must be solved during the forecast period. This is linearly propor-
tional to the number of calculation points, sometimes called nodes, in the three-
dimensional grid, because the equations need to be solved at each point. The cost is also
related to the fact that the equations need to be solved for each time step, at each grid
point, so the number of time steps in the forecast period will also control the computa-
tional requirements. Thus, for a given area, the smaller the grid increment in the vertical
and the horizontal, and the smaller the time step, the more computationally demanding the
model will be to run. For a given area, a fine-mesh mesoscale model will have many more
grid points than will a model designed for synoptic-scale processes, and thus it will be
much more costly to run. To reveal the nonlinearity of the dependence of computational
cost on resolution, assume that we want to double the horizontal resolution of a grid over a
given area. This will require four times as many grid points, and because the stability crite-
rion (e.g., based on the Courant number) needs to be satisfied, the time step will probably
need to be halved. Thus, increasing the horizontal resolution by a factor of two will cause
an increase in the computational expense by a factor of eight. It is for this reason that
NWP research has often focussed on the development of more efficient numerical
schemes for solving the equations of motion. 

3.1.3 Boundary conditions

Solving the model equations represents both a boundary-value (lateral, upper, lower) prob-
lem and an initial-value problem. For a global model, there are no lateral boundaries
because the computational area is naturally periodic. For limited-area models (i.e., not glo-
bal), the equations cannot be solved for points on the edge of the grid because there are no
points beyond the boundary to use for evaluating the derivative perpendicular to it (see
Section 3.5 for a discussion of lateral-boundary conditions). The values of dependent vari-
ables at these boundary points need to be externally specified. For operational forecasting
with limited-area models, the lateral-boundary values must be defined by interpolation
from grid points of a previously run global forecast model. For research applications,
archived, gridded regional or global analyses of observations may be used. 

In addition to these lateral-boundary conditions, there are also upper and lower bound-
ary values that must be specified with both global and limited-area models. Because the
model atmosphere cannot extend to infinity as does the real atmosphere, and because we
sometimes want to limit our computations to the troposphere, it is necessary to define an
artificial upper-boundary condition for models. Approaches for doing that, which mini-
mize downward reflections, are discussed in Section 3.6. Another major challenge is defin-
ing the fluxes of heat, moisture, and momentum at the land and ocean surface. Because the
midlatitude planetary circulation and monsoons are driven by gradients in sensible heating
at the surface, it should be obvious that models must treat this process reasonably well. In
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addition, mesoscale boundary-layer circulations result from horizontally differential heat-
ing at coastlines and at other landscape boundaries, so small-scale variations in sensible-
heat fluxes need to be modeled accurately as well. And, the sensible- and latent-heat fluxes
compete for the solar-energy input at the surface, so the latent-heat fluxes can greatly
influence boundary-layer winds and thermal properties. The modeling of land-surface
processes and surface fluxes is discussed in Chapter 5 on land-surface modeling and in
Section 4.4 on boundary-layer parameterizations, respectively. 

3.1.4 Initial conditions

Because atmospheric modeling is an initial-value problem, the state of the dependent varia-
bles at the beginning of the integration of the equations must be specified (the left-most
point in Fig. 3.1). This process is called initializing the model, and is discussed in
Chapter 6. How well this is accomplished has important consequences regarding the accu-
racy of the forecast. First, except for locally forced processes (e.g., forced by orography,
coastlines), it is reasonable to assume that forecast quality can generally be no better than
that of the initial conditions. Second, if the mass and momentum fields are far out of balance
(e.g., geostrophic) relative to what should prevail for the physical processes as rendered by
the model equations, inertia–gravity waves are created by the model fields adjusting
after the initialization. These waves, which have no counterpart in the atmosphere, can
sometimes have sufficient amplitude to obscure real features in the model solution, at least
until they have been damped or have propagated away from the source region. Lastly, if the
initial conditions do not contain realistic vertical motions associated with orography or con-
vection, or realistic mesoscale coastal or mountain-valley circulations, the model has to spin
up these features during the forecast. The above adjustment issues led to the historical situa-
tion where forecasters did not use the forecast for the first 12–24 h after initialization.

There are two general types of initializations: static initializations and dynamic initiali-
zations. In the former, observations applicable at the initial time are objectively analyzed to
the model grid, perhaps some balance constraint is applied, and the model forecast is begun.
These static initializations that do not provide spun-up vertical motions and ageostrophic
circulations are referred to as cold starts. For the dynamic initialization, the name implies
that there is a dynamic constraint, typically from a model, that is aimed at ensuring that the
model solution is spun up, or nearly so, at the initial time of the forecast. One approach
would be to perform a static initialization, 12–24 h before the desired start time of the fore-
cast, and run the model to allow the solution to spin up during the preforecast period. A var-
iant of this is for the model to assimilate observations during the preforecast period of
integration. Or, a common technique is to use an existing spun-up model forecast, which is
valid at the initialization time, as the first guess for an objective analysis that incorporates
observations made within some time window (e.g., perhaps h) of the initial time. That
is, the observations are used to adjust a model forecast that is valid at the initialization time.
For example, Fig. 3.2 illustrates a series of forecasts of 24-h duration, where the forecasts
are initialized at a 6-h interval. In this example, it would be said that the model runs with a
6-h forecast cycle. For initialization of the fourth forecast in the cycle, the 12-h forecast

1±
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from the second forecast in the series (which should be spun up by that time) could be used
as a first guess in an objective analysis of observations. This process by which observations
are merged with an analysis at a sequence of times is called intermittent or sequential data
assimilation. That is, data are incorporated into the model intermittently at the initialization
times only. Alternatively, there are techniques where observations are ingested by a continu-
ously running data assimilation system, as they become available. This is called continuous
data assimilation. Initializations using conditions where small-scale circulations are spun
up to varying degrees are called warm starts or hot starts.

Because radiosonde soundings are still the only generally available, and somewhat spa-
tially and temporally regular, sources of three-dimensional atmospheric data over land, they
are a primary source of information. Unfortunately, these profiles are many hundreds of kil-
ometers apart, so a typical situation is one in which synoptic-scale processes may be repre-
sented reasonably, but those on the mesoscale are not. Even though there are currently many
other sources of observational data from satellites, radars, commercial aircraft, etc., the reli-
ance on radiosondes explains why operational forecast models still use 0000 UTC and
1200 UTC as two of the times when forecasts are initiated daily (most operational models
employ four cycles per day, initialized at 0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC). 

3.1.5 Physical-process parameterizations

The terms in Eqs 2.1–2.7 that represent the effects of turbulent mixing of heat, water
vapor, and momentum; moist convection; cloud-microphysical processes; and solar and
atmospheric radiation are very complex to include in a model, and often require
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considerably more arithmetic operations than the rest of the terms in the equations com-
bined. The parameterization of these physical processes is treated in Chapter 4. Parameter-
ization involves the representation of a process in terms of its known relationship to
dependent variables resolved on the model grid. For example, we cannot resolve individ-
ual turbulent eddies, but we can develop relationships between turbulence intensity and
model-resolved wind shear and static stability. There are typically three reasons why we
parameterize a process: we do not understand the process well enough to represent it
directly through physical relationships, the process is of sufficiently fine scale that we can-
not resolve it on the model grid, or the physical relationships are so complex that they
would require a prohibitive amount of computing resources to treat explicitly. 

3.2 Numerical frameworks

There are four different modeling frameworks described here for dealing with the space
dependence in the nonlinear partial differential equations of atmospheric dynamics and
thermodynamics:

• finite difference, or grid point;
• spectral;
• finite element; and
• finite volume.

This section does not focus on the details of the methods used to approximate the space
derivatives in the equations, but rather on the overall approaches. 

3.2.1 Spatial finite-difference/grid-point methods

Over the past half century, atmospheric scientists and oceanographers have developed
numerous approaches for applying grid-point methods to the solution of the equations of
fluid flow over part or all of the sphere. These methods include the use of map projections,
latitude–longitude grids, and spherical geodesic grids. In each case, a procedure is defined
for organizing grid points in a systematic way over the area of the sphere for which the
atmosphere is to be modeled. The choice of which method to adopt in a particular mode-
ling application depends on a variety of factors including whether the model has a limited
area or global computational area, and the degree to which the code needs to be easy to
modify for research purposes. 

Computational grids may be classified as structured or unstructured. Traditional grids
are structured in that they consist of an array of cells that are arranged in a regular pattern
in two or three dimensions. In contrast, unstructured grids are defined by collections of
elements, such as triangles, in an irregular pattern. This provides for greater flexibility in
discretizing complex domains, and allows for the convenient use of adaptive-meshing
techniques where cells can be added or subtracted. Unlike structured grids, unstructured
grids require a list of mesh connectivities. 
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Map projections

Map projections are geometric, and therefore mathematical, relationships that transform
atmospheric properties defined on a quasi-spherical surface, such as Earth’s surface or a
500-hPa surface, to a flat surface, such as a geographic map, a weather map, or a model
grid. Figure 3.3 shows the geometric relationships between a spherical surface and a sur-
face on which properties defined on the sphere are projected (the image surface), for the
three types of projections commonly used in atmospheric modeling. In each case, imagine
a set of rays drawn from a common origin, so that the rays connect points on the sphere

Polar stereographic

Mercator Lambert conformal

Three map projections commonly used in atmospheric modeling. The cylinder (Mercator), right-circular cone (Lambert 

conformal), and plane (polar stereographic) are the surfaces on which the information on the sphere is projected. The 

radial lines connect points on the sphere and points on the projection surface. The axes of the cylinder and the cone, 

and the perpendicular to the plane, are parallel to Earth’s axis of rotation. In these images, we are thus viewing Earth 

from over the Equator.

Fig. 3.3
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and points on the surface of the projection. For example, the Mercator projection is
defined using a cylinder whose central axis passes through the center of the sphere. The
conditions on the sphere are mapped to the cylinder, and the cylinder can be cut, opened,
and made flat. Similarly, a flat surface and a cone define the projection surfaces for polar-
stereographic and Lambert-conformal projections, respectively. The plane and the cylinder
may be viewed as special cases of the cone, with vertex angles of 180° and 0°, respec-
tively. In atmospheric-modeling applications, the axes of the cylinder and cone, and the
perpendicular to the plane, are virtually always coincident with the axis of rotation of
Earth. For each type of projection, the projection surface may intersect the sphere, as in the
figure, or it may be tangent to the sphere. In the former case it is called a secant projection,
and in the latter a tangent projection.

It is not possible to preserve all geometric properties on the sphere (e.g., area, shape,
angles) during a projection. For example, Fig. 3.3 shows that distances and areas of high-
latitude features are exaggerated with the Mercator projection, as are low-latitude features
with the polar-stereographic projection. In fact, only at the lines or points of intersection of
the sphere and the projection surface (the standard parallels) are all properties preserved.
But, the three projections described above are all conformal in that they everywhere pre-
serve angles between two curves, and the distance distortion is the same in all directions at
a point.1 For meteorological applications where preserving the angles of atmospheric fea-
tures is important (e.g., the angle between isobars and wind vectors), conformal projec-
tions are desirable. The lack of distance and area preservation with conformal projections
is dealt with by applying them only for latitudes where the distortion is small. 

Map projections are needed for virtually all atmospheric models. For a global model
that uses spherical coordinates, visualizing the output on paper or on a computer screen
requires that the atmospheric conditions, and associated georeference information, such as
political boundaries and natural features, be defined on one of the map projections. Math-
ematical transformations for each of the projections convert from spherical coordinates
(latitude and longitude) to Cartesian coordinates on the projection surface. This is the
process by which geographers transfer properties defined on Earth’s surface to a map. 

For limited-area models, which employ Cartesian coordinate systems and solve the
equations on planar surfaces, the transformation between the sphere and projection surface
becomes an intimate part of the modeling process and the equations themselves. In partic-
ular, observations whose locations are defined in latitude–longitude coordinates need to be
applied at the appropriate coordinates of the Cartesian model grid that is defined on the
projection surface. And, because of the distance distortion, the grid increment used in the
finite-difference equations needs to reflect the true horizontal distance between points.
Figure 3.4 shows how the grid increment is affected by the distance transformation
between the sphere and a projection surface on which a computational grid is defined. The
points on the computational grid defined on the projection surface are equidistant, but the

1 If x is a horizontal displacement from a point,  is the same regardless of the direction of the dis-
placement, where E refers to Earth and G to the grid. 

δxE δxG⁄
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physical distance represented by each increment is generally different and dependent on
the location on the grid. A measure of this distortion is the map-scale factor, defined in
Eq. 3.2, using the notation in Fig. 3.4, as the ratio of distance on the projection to distance
on the sphere:

. (3.2)

The map-scale factor is the same along each latitude circle. Figure 3.5 shows this scale
factor as a function of latitude for the three projections. The direction of the departure of m
from unity depends on whether the image surface is above or below Earth’s surface. For
each point on a model grid, the map-scale factor is precalculated, and used in the equations
to account for the varying distance between grid points. Equation 3.3 shows the first equa-
tion of motion, with Earth-curvature terms, for a popular limited-area model (Dudhia and
Bresch 2002). 

. (3.3)

Here, m is the map-scale factor given by, for example,

for a polar-stereographic projection that is true at ; e and f represent the full Coriolis
force, where  and ; D is a diffusion, or frictional-dissipation,
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term; r is the radius of Earth;  is density; and  is the angle between the local
meridian and the y axis. Figure 3.5 shows that the differential-map-scale terms in Eq. 3.3
are smallest for this projection near the poles and largest in equatorial areas. 

Because of the varying effective distance between grid points, computations are really
being performed on a “stretched” grid, and this leads to spatial contrasts in the numerical
properties (i.e., the errors) of the solution to the equations. As will be seen later in this
chapter, this means that the same wave on the grid will have different phase and group
speeds depending on latitude. And there will be latitudinal differences in the conditions
needed to maintain stability of the numerical solution to the equations. Thus, objectives in
the decision about the best choice of map projection to use for a particular model applica-
tion are to minimize (1) the departure of the map-scale factor from unity over the grid and
(2) the latitudinal derivative of the map-scale factor. In general, these conditions can be
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best satisfied by using the Mercator projection for grids in tropical latitudes, the polar-
stereographic projection for high-latitude grids, and the Lambert-conformal projection for
midlatitude grids (see Fig. 3.5).

Even when a reasonable map-projection choice is made for a particular application of a
model, and the transformations are properly incorporated into the model equations and the
initialization process (i.e., getting the observations in the right place on the computational
grid), there are a few ways in which the properties of the projection may impact the model
user. One is that the u and v velocity components in the atmosphere (defined in terms of
the east–west and north–south directions on the sphere) are not the same as the u and v
components on the computational grid (defined in terms of grid-point rows and columns).
This issue must be dealt with when initializing the model. Another is that the time step that
is chosen by the user, or automatically by the model, is based on the grid increment in
order to maintain a stable solution to the equations (see Section 3.4.2). Because the true
horizontal grid increment varies spatially, some areas of the grid may have sufficiently
large values that stability criteria are locally violated. Evidence of this would be
unrealistic-appearing (e.g., small-scale waves) model solutions in latitudes where the grid
increment is the smallest.

The above discussion was in the context of using map projections to model limited
areas of Earth’s surface. However, there have also been methods developed for using
combinations of map projections to model the entire sphere using a composite grid,
where one of the objectives is to avoid the problems of latitude–longitude grids described
later. For example, Phillips (1957a, 1962) used a combination of a Mercator projection
for latitudes equatorward of a boundary latitude and stereographic projections for higher
latitudes. And, Stoker and Isaacson (1975) and Dudhia and Bresch (2002) used two polar-
stereographic projections that overlapped in equatorial regions. Calculations on these
grids can communicate at the interfaces, thus avoiding the need for artificial lateral-
boundary conditions, or the integrations can be separate. Figure 3.6 shows an example of
two overlapping polar grids. The method of using two overlapping polar-stereographic
projections for global simulations was compared with two spectral methods by Browning
et al. (1989) in terms of memory requirements, execution time, and arithmetic-operation
count. The results were mixed, but the conclusion was that the methods were generally
competitive. 

Another common approach to modeling the sphere with map projections is to cir-
cumscribe a regular polyhedron, such as a cube, by the sphere. On each face of the pol-
yhedron is defined a regular Cartesian grid, and radials from the center of the sphere
are projected through the grid points in order to map the grid to the surface of the
sphere. In the case of the cube, the model equations are solved on each of the six grids,
but the calculation of finite differences at the boundaries is challenging. Sadourny
(1972), McGregor (1996), Ran i  et al. (1996), Ronchi et al. (1996), and Purser and
Ran i  (1997, 1998) review the testing and properties of such polyhedral-gnomonic
projections. Adcroft et al. (2004) describe the use of the expanded cube as the basis for
the general-circulation model of the Massachusetts Institute of Technology, McGregor
and Dix (2001) summarize the use of this approach in Australia’s Commonwealth

č ć
č ć
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Scientific and Industrial Research Organization (CSIRO) general-circulation model,
and Zhang and Ran i  (2007) apply the method to a version of the US National
Weather Service’s (NWS) Eta model. Figure 3.7 illustrates the projection of Earth’s
surface on the faces of an exploded cube, as well as an example of the relatively uni-
form distribution of grid points on the sphere. This approach produces a nonconformal
projection, but additional transformations can convert it to one that has conformal
properties.

č ć

A composite grid defined by overlapping North Polar and South Polar stereographic projections. From Williamson 

(2007). 

Fig. 3.6
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Latitude–longitude grids

In this approach, latitude and longitude are the horizontal coordinates, and the vertical
coordinate is defined along the local radial from the center of Earth. On each vertical coor-
dinate surface, the sphere is partitioned into grid cells using increments of latitude and
longitude. If these intervals are constant over the entire sphere, the longitudinal distance
between grid points becomes progressively smaller as the meridians converge at the poles
(Fig. 3.8). 

This requires that time steps be small in order to maintain stable solutions to the equa-
tions. In addition, the existence of the singularities at the poles, where the coordinate lines
(the meridians) intersect, means that calculating horizontal derivatives can be problematic.
Shortening the time step near the poles produces satisfactory results, but calculations for

(a) (b)

A cubic gnomonic projection, used as the basis for a global model grid, is defined by establishing Cartesian grids on each 

face of a cube that is inscribed within a sphere. These grids are mapped to Earth’s surface, producing the relatively 

evenly spaced grid points shown on the sphere in (b). The expanded cube with geographic and latitude–longitude 

references is shown in (a). Panel (b) is from Ran i  et al. (1996). č ć

Fig. 3.7
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the small percent of Earth’s surface area near the poles can consume more than half the
computer time (Grimmer and Shaw 1967).

One approach to dealing with the small distance between grid points near the poles, and
the associated impact on the time step and model performance, is to Fourier filter the vari-
able fields in the east–west direction near the poles. This is accomplished by Fourier trans-
forming a variable, filtering out the higher wavenumbers by truncating the series, and then
inverse transforming back to physical/grid-point space to obtain a smoother field. This
removal of small-scale information from the model solution effectively filters the faster
modes, and permits the use of a longer time step in spite of the small longitudinal grid dis-
tance. Note that, in this approach, there is still the computational burden of solving the
equations at the dense array of grid points near the poles, and the excessive density of
points wastes memory. Williamson (2007) points out that this is an unsatisfying engineer-
ing approach, but it is in use today, for example in the optional finite-volume core of the
National Center for Atmospheric Research’s (NCAR) Community Atmosphere Model
(CAM). Another method is to use larger increments of longitude as the pole is approached
(Williamson and Rosinski 2000). An example of the resulting reduced grid is shown in
Fig. 3.9.

A latitude–longitude grid shown for part of the sphere, where the points are defined at a uniform interval in each 

coordinate direction. 

Fig. 3.8
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Spherical geodesic grids

A desirable property of a grid is uniformity in the spacing of the grid points over the
sphere, or a portion of the sphere. It has been shown that map projections can produce
grids that have significant variability in the Earth-distance between points (Fig. 3.5),
especially when the computational domain must span a large area. Similarly, latitude–
longitude grids have inherently higher resolution where the meridians converge at high

A reduced grid, in which the longitudinal grid increment in degrees is increased with decreasing distance from the 

pole, where the objective is to maintain a relatively uniform physical distance between grid points. From Williamson 

(2007).

Fig. 3.9
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latitudes. However, geodesic grids have a nearly homogeneous distribution of points
over the sphere.

In mathematics, a geodesic is the equivalent of a straight line, but on a curved surface.
On a spherical surface, such as that of Earth, a geodesic is the shortest path between two
points, specifically a segment of a great circle. A spherical geodesic grid is defined by
spherical, equilateral triangles whose edges are geodesics. One way of defining this grid is
to begin with an icosahedron, the geometric solid shown in Fig. 3.10a with 20 triangular
faces (major triangles), 12 vertices, and 30 edges, where the vertices touch the surface of a
sphere. The vertices may then be connected by geodesics on the sphere, producing spheri-
cal triangles. A grid may be created by dividing the major triangles into smaller ones (grid
triangles) using a variety of approaches. For example, bisecting each edge of the icosahe-
dron and connecting the bisection points produces four new equilateral triangles for each
original one (Fig. 3.10b). The vertices of these new triangles can then be projected onto
the sphere along a radial from the center (Fig. 3.10c), and then connected by geodesics to
again produce spherical triangles (Fig. 3.10d). Even though the distances between adjacent
points look uniform, they are not exactly so. A hint at the asymmetries from one part of the
surface to the next can be seen in the fact that the “new” vertex facing the viewer in the
upper-center (Fig. 3.10d) is surrounded by six adjoining triangles, while the “original”
icosahedron vertex to its right is surrounded by only five. Williamson (1968) and
Sadourny et al. (1968) describe another approach for dividing the major triangles into grid
triangles, where the inequality in the distance between points is less than that resulting
from the method just described. Figure 3.11 shows an example of the distribution of grid
points over the sphere.

Some applications of spherical geodesic grids employ the above triangular cells, while
others use a related grid with hexagonal cells. To obtain the latter, Voronoi cells are con-
structed based on the triangular grid, where such cells consist of the set of all points that
are closer to a particular vertex than to any other vertex. For the twelve original vertices in
the icosahedral grid (e.g., in Fig. 3.11), the Voronoi cells are pentagons. For all the rest,
they are hexagons. Figure 3.12 illustrates the geometric relationship between the triangular

(a) (b) (c) (d)
In the generation of a spherical geodesic grid, the major triangles of the icosahedron (a) are subdivided, where 

(b) shows one approach. The vertices of the new triangles are projected (c) onto the sphere that is coincident with 

the vertices of the icosahedron. Geodesic lines are then drawn between the new vertices to generate spherical grid 

triangles (d).

Fig. 3.10
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and hexagonal grids. Randall et al. (2002) describe the relative merits of hexagonal,
square, and triangular cells, and Weller et al. (2009) compare a few additional mesh-
refinement methods. 

Other advantages of the spherical geodesic grid include the fact that it is straightfor-
ward to selectively enhance the resolution in some areas (adding triangles), to better
render fine-scale features in the vicinity of mountains or other types of small-scale local

An example of the relatively uniform distribution of grid points over the sphere, for a spherical geodesic grid, based on 

one method for dividing the major triangles of an icosahedron into grid triangles. Note that the horizontal resolution in 

this example is very coarse. Adapted from Williamson (1968).

Fig. 3.11
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forcing. A disadvantage is that the indexing of the grid points is more complex than for
Cartesian or latitude–longitude grids, but Randall et al. (2002) show how the grid cells
on the sphere can be separated into rectangular panels whose cell values can be logically
organized in computer memory.

Examples of contemporary models that employ spherical geodesic grids are the
Ocean–Land–Atmosphere Model (OLAM; Walko and Avissar 2008a,b), the Operational
Multiscale Environment Model with Grid Adaptivity (OMEGA; Bacon et al. 2000), and
the operational GME model of the German Weather Service (Majewski et al. 2002).
Randall et al. (2002) describe the development of a coupled ocean–land–atmosphere

Illustration of the geometric relationship between triangular cells and hexagonal cells, either of which can be used as 

the basis for a spherical geodesic grid.

Fig. 3.12
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spherical-geodesic-grid model for climate applications. Tomita and Satoh (2004) and
Satoh et al. (2008) describe a model that uses this method for global, cloud-resolving
simulations. And, the US National Oceanic and Atmospheric Administration (NOAA) is
developing the Flow-following finite-volume Icosahedral Model (FIM) for operational
use. Further discussions and literature summaries about spherical geodesic grids can be
found in Sadourny et al. (1968), Williamson (1968), Baumgardner and Frederickson
(1985), Nickovic (1994), Ringler et al. (2000), and Ringler and Randall (2002). 

Differential grid resolution across the sphere 

For modeling global-scale processes, it is reasonable to desire somewhat uniform horizon-
tal resolution over the sphere. However, in other model applications it is common to want
greater resolution in certain regions. For example, in research settings a specific meteoro-
logical feature is often being studied, and the grid points and computational resources
should be focussed there. For operational forecasting models, small-scale processes domi-
nate in certain regions such as near complex terrain, making it desirable to have greater
horizontal resolution there than elsewhere. Additionally, operational models are often set
up to serve limited areas such as specific countries, so, again, greater resolution is needed
there. 

There is a variety of approaches that can be used to produce different horizontal resolu-
tions over a three-dimensional computational volume. A common one is to embed a high-
resolution limited-area model within a global model, with the global model providing
lateral-boundary conditions to the limited-area model. The global model forecast or simu-
lation is performed first. The limited-area model may consist of a single high-resolution
grid, or a nest of multiple grids with grid spacings that change abruptly by a factor of per-
haps three to five between adjacent grids. Figure 3.13 illustrates an example of a nest with
multiple grids that is used for operational prediction over an area near the Chesapeake Bay
in the eastern USA (Liu et al. 2008a). Section 3.5 on lateral-boundary conditions dis-
cusses the methods and limitations of this approach for obtaining higher horizontal resolu-
tion over specific areas of the sphere. 

A property of some models is that all the grids in a horizontal nest must have the same
vertical resolution (distribution of layers). In contrast, with others, not only can the vertical
resolution vary among the grids in a nest, but vertical nesting is permitted. Figure 3.14c
shows the common situation where the grids in a nest have the same vertical resolution. In
contrast, Figs. 3.14a and b illustrate vertical nesting, where the inner grid not only has
higher vertical resolution, but it can focus computational resources in certain vertical lay-
ers. For example, in the inner grid with higher horizontal resolution, enhanced vertical res-
olution can be used in the boundary layer, near the tropopause, or in layers with low-level
jets, all regions with larger vertical gradients of variables. See Clark and Farley (1984) and
Clark and Hall (1991, 1996) for additional information about vertical grid nesting in the
Clark model. 

Because wave reflections can sometimes occur at an abrupt variation in resolution, such
as at the transition between grids in a nest (Davies 1983), there is a benefit to using a grad-
ual variation in horizontal grid increment to achieve greater resolution in certain areas.
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Such grids with a gradual change in resolution are sometimes called stretched grids.
Kalnay de Rivas (1972) and Fox-Rabinovitz et al. (1997) discuss the truncation error asso-
ciated with the approximation of derivatives on a variable-resolution mesh. They point out
that such errors with a nonuniform smoothly varying mesh are equivalent to those with a
uniform mesh defined by a transformation, such as associated with map projections. That
is, even though  is constant, the effective grid increment on Earth’s surface, ,
varies smoothly. Virtually all models employ a stretched grid in the vertical, with higher

Global model

30 km

10 km

3.3 km

1.1 km

An example of a nested-grid model used for operational prediction. The model with the two-way interacting grids is 

embedded within a global-model prediction. Model grid increments are indicated. From Liu et al. (2008a).

Fig. 3.13
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vertical resolution in some layers, such as near Earth’s surface. Cartesian, horizontally
stretched grids for limited-area models have been investigated and used by Anthes (1970),
Anthes and Warner (1978), Staniforth and Mitchell (1978), Staniforth and Mailhot (1988),
and Walko et al. (1995b). Global-model stretched grids are sometimes motivated by the
fact that there is a cost-saving associated with modeling systems that are sufficiently versa-
tile that they can be used both for global studies and for those that focus on specific geo-
graphic regions. Examples are the Global Environmental Multiscale (GEM) model of the
Meteorological Service of Canada (MSC) (Côté et al. 1998a,b; Yeh et al. 2002) and the
National Aeronautics and Space Administration (NASA) Goddard Earth Observing Sys-
tem (GEOS) general circulation model (Suarez and Takacs 1995; Takacs and Suarez 1996;
Fox-Rabinovitz et al. 1997, 2000). Côté et al. (1993) describe a global shallow-fluid model
that employs a similar stretching method. This strategy uses spherical coordinates with
variable resolution in both horizontal directions. For global studies, a conventional
latitude–longitude grid is employed, with the singularities at the poles. When a concentra-
tion of grid points is needed for higher resolution in a particular region, the resolution is
varied, as in the example shown in Fig. 3.15. The poles of the coordinate system do not
necessarily coincide with Earth’s poles. With increasing distance from the grid’s poles,
near the geographic poles in this example, the resolution in that direction increases, as
shown, until becoming constant for the east–west belt around the sphere shown in gray.
The resolution of the other spherical coordinate also varies, with uniform high resolution
in the north–south belt through the Americas. Where the areas of highest resolution in the
two horizontal dimensions overlap, a high-resolution regional grid with a uniform
latitude–longitude grid increment of 0.04° exists in this example. Fox-Rabinovitz et al.
(2006) discuss the Stretched-Grid Model Intercomparison Project (SGMIP), where a
number of variable-resolution global models were used for regional-climate simulations.

(a) (b)
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Schematic examples of vertical grid nesting, where certain layers in the atmosphere are represented by a subgrid with 

greater vertical resolution. Three examples are shown for a situation where there is a grid with greater horizontal 

resolution that is horizontally nested within a grid having lower horizontal resolution. One example shows vertical 

nesting where the lower atmosphere is represented by the higher-resolution grid (a), another shows the enhanced 

vertical-resolution grid confined to the middle of the model atmosphere (b), and another illustrates the situation 

where the model does not allow vertical nesting or grid stretching (c).

Fig. 3.14
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There are also various approaches in which the grid resolution changes during a model
integration in order to better represent the evolving atmospheric processes. One method
used with Cartesian limited-area models is called adaptive mesh, or grid, refinement, and
is described in Berger and Oliger (1984) and Skamarock and Klemp (1993). This method
uses the above concept of nested grids, but here the fine grids can change size, shape,
location, and number (i.e., they can adapt) automatically based on estimates of the trun-
cation error during a simulation or forecast. For example, fine-mesh grids are spawned

 An example of the variable-resolution horizontal grid of the operational regional configuration of the GEM model. See 

the text for details. Adapted from Yeh et al. (2002).

Fig. 3.15
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automatically to follow convective or tropical storms as they move. Other methods are
described in Dietachmayer and Droegemeier (1992) and Srivastava et al. (2000). Also,
spherical geodesic grids easily accommodate adaptive mesh refinement methods because
spherical triangles can be added or removed as needed (e.g., Bacon et al. 2000). 

Consistency of vertical and horizontal grid increments

There is evidence that model vertical and horizontal resolutions should not be specified
independently. In particular, physical features that can be resolved well by the horizontal
grid increment should also be resolvable by the vertical grid increment (and vice versa). If
the vertical grid increment is too coarse to satisfy this criterion, the resulting truncation
error will generate spurious gravity waves during the simulation and the features will be
poorly rendered by the model. This problem has been most-commonly described in the
context of sloping features in the atmosphere such as fronts (e.g., Snyder et al. 1993) or
the slantwise convection resulting from conditional symmetric instability (e.g., Persson
and Warner 1991). The mathematical relationship that defines consistency between the
vertical and horizontal grid increments has been defined differently by different authors,
but the expressions tend to be quite similar from a practical standpoint. For example, Pec-
nick and Keyser (1989) state that the optimal vertical grid increment is related to the hori-
zontal grid increment by the expression 

,  (3.4)

where s is the frontal slope,  is the optimal vertical grid increment, and  is the
horizontal grid increment. For synoptic-scale fronts with typical slopes from 0.005 to 0.02,
this relationship gives optimal vertical grid spacings of 0.5–2.0 km for  = 100 km, and
50–200 m for  = 10 km. Alternatively, Lindzen and Fox-Rabinovitz (1989) suggest two
consistency relationships, one for quasi-geostrophic flows and another for flows that con-
tain gravity waves near a critical layer. In both cases, the  for midlatitudes is similar
to that obtained from Eq. 3.4.

These consistency relationships and the associated research with hydrostatic and nonhy-
drostatic models suggest that decreasing the horizontal grid spacing of a model without
also reducing the vertical grid spacing may not lead to an improvement, and may actually
produce a worse simulation. The two-dimensional model simulations of frontogenesis pre-
sented by Pecnick and Keyser (1989) show that spurious gravity-wave structures and spu-
rious large velocity and vorticity values result when . Also, Lindzen and Fox-
Rabinovitz (1989) refer to instabilities, spurious amplitude growth, and other problems
when an inconsistency exists between the vertical and horizontal resolutions. And, Gall
et al. (1988) report that the intensity of erroneous waves generated at a front was dimin-
ished when the vertical grid spacing was reduced, to be consistent with the horizontal grid
spacing.

Examples of the effects of using a vertical grid spacing that is insufficient to represent
structures that are well resolved in the horizontal are shown in many of the above studies. As
an illustration here, Fig. 3.16 shows the numerical noise in the vertical motion that results
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from the use of an inappropriately large vertical grid spacing in a simulation of slantwise
convection. Figure 3.16a shows the smooth vertical-motion field from a 24-h simulation that
employed 75 layers of equal depth, and a horizontal grid increment of 10 km, while
Fig. 3.16b shows the same field for an analogous simulation that employed only 25 layers of
equal depth. The truncation error associated with the poor vertical resolution of the feature
has created a noisy vertical motion field and associated gravity waves (not shown). In the
first experiment, , while in the second . A third experiment
used 25 layers, as in Fig. 3.16b, but the horizontal grid increment was increased from 10 km
to 30 km. In this case, the use of both the coarser horizontal and vertical grid increments
produced  and a smooth solution (not shown), but one with considerably less
amplitude than in Fig. 3.16a because of the overall coarser resolution.

Even though these resolution-consistency studies clearly isolate the importance of this
source of error for specific meteorological cases, this effect is not always responsible when
model solutions appear to degrade with increasing horizontal resolution. For example,
other problems such as the inappropriateness of resolution-dependent physical-process
parameterizations may also be encountered as the horizontal resolution is increased in a
model. And, it is well known that conventional objective measures of forecast skill, such as
bias, mean-absolute error, and root-mean-square error, show lower skill for forecasts that
have small-scale structures (i.e., that can result from high horizontal resolution), compared
with forecasts that are smoother (Rife et al. 2004).

Many numerical models used for research and operational forecasting, especially those
applied on the mesoscale, do not satisfy these consistency relations. For example, in the
model simulations associated with Fig. 3.16, 750 vertical levels would have been required
for consistency if the grid increment had been 1 km. Nevertheless, it is not clear what the
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practical consequences are of not satisfying the consistency relations, especially in light of
the general success of numerical model studies and forecasts where the vertical resolution
has presumably been insufficient. Lindzen and Fox-Rabinovitz (1989) suggest that this
success is partly attributable to the use of horizontal numerical diffusion that limits the
effective horizontal resolution of features. Complicating a desire to comply with the con-
sistency constraint is the fact that, with operational modeling, in contrast to focussed case
studies, there are many features with different slopes across the computational domain.
And, the vertical grid spacing in most models varies considerably with distance above
Earth’s surface. Furthermore, two-way interacting model grids in a grid nest have different
horizontal grid increments, but they typically must utilize the same vertical grid structure.
Thus,  will vary considerable with time and place in the same model integration.

For a given amount of computational resources, modelers tend to maximize the horizon-
tal resolution at the expense of the vertical resolution – the horizontal grid increment has
tended to be the Holy Grail of modeling. However, for a given model application, even
though there may not be computational resources available to completely satisfy the con-
sistency criterion, the above experimental evidence suggests that modelers should not
ignore this issue. Instead, a compromise should be made between the vertical and horizon-
tal resolutions, where the sensitivity of the model solution to different choices should be
evaluated using case studies of the prevailing meteorological processes in a given area.
With the trend toward using an ensemble of coarser horizontal-resolution model runs, this
consistency issue may, at least temporarily, become less critical. 

3.2.2 Spectral methods

Early approaches to global grid-point modeling included the use of latitude–longitude
grids with reduced time steps near the poles, quasi-homogeneous spherical-geodesic and
cubed-sphere grids, and composite meshes. At the time that they were proposed, all of
these approaches were problematic in some respect, and this resulted in the dominance of
spectral modeling after the spectral-transform method (Machenhauer 1979) was intro-
duced by Eliasen et al. (1970) and Orzag (1970), and implemented by Bourke (1974). This
method dominated global modeling for decades, and still is widely used even though
refinements to the above grid-point approaches and new computer architectures have
resulted in the adoption of other options. 

The spectral form of a series of meteorological equations is obtained by substituting
finite expansions of the dependent variables, typically using double Fourier series or
Fourier–Legendre functions (called basis functions) to represent the horizontal spatial var-
iation. The orthogonality of these functions allows the derivation of a series of coupled,
nonlinear, ordinary differential equations in the expansion coefficients, which are functions
of time and the vertical coordinate. The equations are numerically integrated forward in
time using conventional finite differencing in time and in the vertical dimension. Such
models are initialized by forward transforming the standard dependent variables from
physical space (grid-point values) to the transform space (expansion coefficients), and
interpretable forecast fields are obtained by inverse transforming back to physical space. 

Δzopt
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Before further discussing the spectral method and its strengths and weaknesses, the one-
dimensional shallow-fluid equations will be used to illustrate the approach. A Fourier
series will be used as the basis function. In general, a one-dimensional field can be repre-
sented by the following series: 

, (3.5)

where the Fourier coefficients  and  are real, m is an integer wavenumber,
, and L is the domain length. If we add and subtract the two exponentials in

Euler’s relations

 and

,

where , the following expressions are obtained:
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Substituting Eqs. 3.6 and 3.7 into Eq. 3.5 produces
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Before substituting this solution into a set of meteorological equations, it will be assumed
that the Fourier coefficients  are a function of time, and a maximum value of the wave-
number m will be defined. Recall that m represents the number of waves over the domain
length, L, so defining the highest wavenumber (or smallest wavelength) in the series deter-
mines the model resolution.

The shallow-fluid equations (Eqs. 2.36–2.38) will be converted to spectral form by rep-
resenting the dependent variables in terms of truncated versions of the above Fourier
series. Specifically, 

, (3.9)

, and (3.10)

, (3.11)

where  is the complex conjugate of  and K is the highest permitted wave-
number. Thus, the time dependence of the dependent variables will be represented through
the complex Fourier coefficients U, V, and H, and the space dependence will be represented
analytically in terms of the sinusoidal variation of the sine and cosine functions embodied
by the exponential. To obtain the spectral equations, substitute Eqs. 3.9–3.11 into the dif-
ferential equations Eqs. 2.36–2.38, multiply each equation by , where j is any arbi-
trary wavenumber, and integrate each equation with respect to x, from 0 to L. After using
the following condition resulting from the orthogonality of the exponential,

,

the shallow-fluid equations in spectral form are obtained. The original partial differential
equations are now ordinary differential equations, where 
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, 

where  for  and  for . And, 

, etc.

The spatial derivatives have been evaluated analytically, leaving only the time derivatives
to be approximated with finite differencing. 

The basis functions used in most global spectral atmospheric models are spherical har-
monics, a combination of sines and cosines in a Fourier series to represent the zonal varia-
tion of the dependent variables, and associated Legendre functions for the meridional
variation. Such spherical harmonics take the form

, (3.12)

where

,

 is any dependent variable,  is longitude,  is latitude, m is zonal wavenumber, K is
the highest zonal wavenumber, n is the order of the associated Legendre polynomial, N(m)
is the highest order of the associated Legendre polynomial, are spectral coefficients,

are spherical harmonics, and  are the associated Legendre functions of the
first kind (which are polynomials). See, for example, Krishnamurti et al. (2006a) for the
form of the associated Legendre polynomials. Other approaches include the use of two-
dimensional Fourier expansions (Cheong 2000, 2006). 

The relationship between the number of waves allowed in the meridional direction and
the number of waves allowed in the zonal direction defines the type of truncation used in
the model. Two types of truncation schemes are typically used in global spectral models –
triangular and rhomboidal. The truncation defines the form of N(m) in Eq. 3.12. For trian-
gular truncation,  and the same number of waves is allowed in each direction.
For rhomboidal truncation  and the number of meridional waves is
greater than the zonal wavenumber by a constant factor. Figure 3.17 shows graphically the
differences in these truncations. The triangular truncation is more commonly used today,
for reasons discussed in Krishnamurti et al. (2006a). Triangular truncation provides a res-
olution that is uniform on the sphere and the same in the zonal and meridional directions.
In contrast, rhomboidal truncation produces higher resolution near the poles. 

Solving the nonlinear terms in models that are completely spectral is computationally
intensive, and makes the process prohibitive. And, local-forcing processes (e.g., latent heat
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release, differential surface heat fluxes), some of which are discontinuous, are only possi-
ble to represent in physical space. These problems have been resolved through the devel-
opment of pseudospectral models that treat some processes in spectral space and others in
physical, or grid-point, space. This approach is called the transform method because it
involves transformations between spectral and physical space every time step. In particu-
lar, after extrapolations in time produce new expansion coefficients, the dependent varia-
bles are converted from spectral space to values defined on an appropriate grid using an
inverse transform (e.g., Eqs. 3.9–3.11 for the one-dimensional Fourier expansion, or
Eq. 3.12 for the two-dimensional expansion with spherical harmonics). The transform
method works as follows, for a nonlinear term such as .

• Calculate in spectral space, and inverse transform it and u to physical space on
an appropriate grid.

• Calculate on the grid by multiplication.
• Transform back to spectral space, providing a value for each predicted wave-

number.
• Add this number to the tendency equations for the u coefficients for each wavenumber,

along with the contributions from other terms. 
• Predict new values for the u coefficients for each wavenumber.

No finite-difference approximations to the derivatives are required in this procedure. A
number of particular spectral-transform methods exist. For example, Swarztrauber (1996)
compared the accuracy of nine methods for solving the shallow-water equations.

For alias-free solutions to the nonlinear terms, with both triangular and rhomboidal trun-
cations, the number of grid points in the zonal direction on the transform grid must be
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3N + 1. In the meridional direction, (3N + 1)/2 points are needed for triangular truncation
and 5N/2 are needed for rhomboidal truncation. The points are equally spaced in the zonal
direction, but are not in the meridional direction. Legendre polynomial solutions on this
Gaussian grid are exact. However, the use of simple latitude–longitude transform grids for
the above purpose has the previously described pole problem (a Gaussian grid would look
similar to the one in Fig. 3.8). Constructing reduced Gaussian grids, of the same type
shown schematically in Fig. 3.9 for a pure latitude–longitude grid, and described in
Williamson (2007), is one way of addressing this. Figure 3.18 shows an example of a
reduced Gaussian grid. Hortal and Simmons (1991) showed that the use of a reduced grid in

An example of a reduced Gaussian T106 grid. From Hortal and Simmons (1991).Fig. 3.18
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a spectral model produced no significant loss of accuracy relative to the use of a full grid.
However, reducing the number of grid points leads to error in the calculation of nonlinear
terms, and therefore some aliasing. One constraint for spectral applications of reduced grids
is that the number of grid points on latitude circles must be consistent with the requirements
of fast Fourier transform algorithms. The use of a relatively uniform grid increment across
the sphere in reduced-grid, spectral-transform models is consistent with the fact that trian-
gular truncation of the spherical harmonics produces a uniform resolution in spectral space. 

Vertical derivatives in spectral models are typically approximated with standard finite
differencing or with finite-element methods. Legendre polynomials and Laguerre polyno-
mials have been used for vertical basis functions, but they both have significant disadvan-
tages. Applications of the finite element approach are discussed in Béland and Beaudoin
(1985), Steppeler (1987), and Hartmann (1988).

The following is a typical process by which forecasts are produced with global spectral
models.

• Based on the desired resolution in physical space, a spectral truncation is chosen (e.g.,
triangular with K = 42 would be referred to as T42). The numbers of grid points in both
the latitudinal and longitudinal directions are chosen, possibly based on a desire to avoid
aliasing. For the chosen spectral truncation, the highest-degree Legendre polynomial is
identified, and the latitudes where the roots of the polynomial occur are determined.
These are the Gaussian latitudes, and are the basis for the Gaussian grid used in the
transform.

• Observations of dependent variables are objectively analyzed, in physical space, to a
grid.

• Gridded data representing model initial conditions are forward transformed to define
expansion coefficients.

• Each time step, dependent variables are inverse transformed from spectral to physical
space, and tendency contributions associated with local processes are calculated on
the grid for the momentum, thermodynamic, and moisture equations. Such processes
that are inherently local, with strong gradients or discontinuities that cannot be repre-
sented in spectral space include surface heat, moisture, and momentum fluxes; radia-
tive flux divergence; latent-heat gains or losses; cloud-microphysical and convective
processes; etc. Similarly, nonlinear terms are calculated on the grid according to the
transform method described above. Terms with vertical derivatives may also be calcu-
lated in physical space. Tendency contributions are then transformed back to spectral
space.

• Tendency contributions for terms calculated in spectral and physical space are added,
and a time extrapolation is performed using standard time-differencing methods. 

• At a desired frequency, dependent variables are reverse transformed to physical space
and graphically displayed on a map projection to provide information on the state of the
forecast and for comparison with observations. 

Because modelers tend to think in terms of grid increments rather than wavenumbers
for defining horizontal resolution, it is useful to have a simple conversion between global
spectral resolution and the equivalent grid spacing. A few alternatives, based on different
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interpretations of the meaning of spectral resolution, were given by Laprise (1992).2 The
formulae are 

,

,

,

,

where K is as defined above, and a is the radius of Earth. The spectral resolution is expressed
in terms of K and the type of truncation. If K is 799, and the truncation is triangular, the res-
olution is given as T799. For a spectral resolution of T799, the estimates of the equivalent
grid increments are  km,  km,  km, and  km.
Some advantages and disadvantages of spectral models are summarized below.

Advantages

• There is generally no aliasing of quadratic nonlinear terms, and thus no nonlinear instability.
• There is no spatial truncation error because the derivatives are treated analytically, and

thus there is no numerical dispersion of waves.
• Semi-implicit time-differencing schemes are easily implemented.
• There is almost no grid (computational) diffusion.

Disadvantages

• Local-forcing processes (e.g., latent-heat release, differential surface heat fluxes), some
of which are discontinuous, are only possible to represent in physical space.

• When a linear combination of waves (e.g., spherical harmonics) is used to represent a
large gradient or discontinuity, spurious waves can result (Gibbs phenomenon). In the
case of specific humidity, this “spectral ringing” can result in negative values, which are
physically impossible. And overshooting the correct solution can lead to spurious pre-
cipitation, called spectral rain. 

• For higher resolutions, spectral models are computationally more demanding than grid-
point models.

• Spectral models do not exactly conserve mass or energy.

2 It should not be surprising that there is lack of agreement on the meaning of “horizontal resolution” in spec-
tral space, given that there is even disagreement about the meaning of the term in the much more intuitive
physical (grid-point) space. In addition to the fact that the scales represented by a grid-point model depend on
the numerical smoothing and other factors, Pielke (1991) points out that modelers often erroneously use the
term resolution to refer to the grid increment.
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Lastly, a few regional, that is limited-area, spectral models have been developed and
employed for research and operational prediction. One of the most widely used is the US
National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM;
Juang and Kanamitsu 1994, Juang et al. 1997, Juang 2000, Roads 2000, Juang and Hong
2001) that has been used for operational weather prediction. The high-resolution RSM is
typically used in a nest with a low-resolution global spectral model, with the two spectral
models having the same vertical structure and physical processes. The regional model uses
a double Fourier series as the basis function, and is defined on a map projection. Multiple
spectral nests are possible within the global model. The Scripps Experimental Climate
Prediction Center has used the RSM, coupled with the NCEP Global Spectral Model, for
seasonal predictions (Roads 2004), and Han and Roads (2004) describe its use for 10-year
climate simulations. There are numerous other applications of regional spectral models.
The Florida State University nested regional spectral model has been used for weather and
seasonal-climate simulations (Cocke 1998, Cocke et al. 2007), and the Japan Meteorolog-
ical Agency has used such a model for operational prediction (Tatsumi 1986). Boyd (2005)
provides a table of spectral limited-area models, and Krishnamurti et al. (2006a) provide a
summary of the modeling process.

3.2.3 Finite-element methods

Finite-element methods were first developed for engineering applications, and have been
since adopted for use in some models of ocean and atmospheric processes. They are anal-
ogous to spectral modeling methods, both being special cases of the Galerkin procedure in
which the dependent variables are approximated by a finite sum of spatially varying basis
functions with time-dependent coefficients. For spectral modeling, global (i.e., nonlocal)
basis functions are employed, where for finite-element modeling the basis functions are
low-order polynomials that are zero except in a localized region. In finite-element mode-
ling, the computational domain is divided into a number of contiguous finite subregions
called elements. On each element is defined a simple function, where continuity between
functions on adjacent elements is required. 

The finite-element method has been used in the operational Canadian Regional Finite
Element (RFE) model (Staniforth and Mailhot 1988, Benoit et al. 1989, Tanguay et al. 1989,
Belair et al. 1994), in the ECMWF model (Burridge et al. 1986), and elsewhere (Staniforth
and Daley 1979). Finite-element representations are sometimes used only in the vertical,
where finite-difference or spectral methods are employed for the horizontal (Staniforth and
Daley 1977, Beland et al. 1983, Beland and Beaudoin 1985, Burridge et al. 1986, Steppler
1987). Good summaries of the application of finite-element methods in atmospheric models
can be found in Cullen (1979), Staniforth (1984), and Hartmann (1988).

3.2.4 Finite-volume methods

In contrast to grid-point models where the prognostic quantity is the value of dependent
variables at grid points, with finite-volume models it is the integrated value of a variable
over a specific finite control volume. The control volumes are typically the traditional
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three-dimensional model grid cells, which leads to the fact that finite-volume methods are
also referred to as cell-integrated methods. They are especially well suited for applications
where it is important to conserve quantities such as mass, total energy, angular momen-
tum, or entropy. Indeed, one of the reasons for the renewed interest in this approach is the
significant lack of global mass conservation in models that use the semi-Lagrangian tech-
nique. There are two approaches in the finite-volume framework. One is the Departure
Cell-Integrated Semi-Lagrangian (DCISL) scheme, and the other is the Flux-Form Semi-
Lagrangian (FFSL) scheme. The DCISL and the FFSL differ in terms of how they esti-
mate a property, for example the mass, of the cell at the trajectory’s departure point in the
semi-Lagrangian transport calculation. If mass conservation is the primary concern, the
finite-volume method can be applied to the continuity equation, while conventional semi-
Lagrangian grid-point methods are used for the other equations. Two recent examples of
dynamical cores that use the finite-volume method are the European HIgh Resolution
Limited Area Model (HIRLAM) and the NCAR global Community Atmospheric Model
(CAM 3.0, Collins et al. 2006b). The HIRLAM employs the DCISL method and the CAM
uses a flux-based scheme. The FIM model being developed by NOAA, mentioned earlier,
also uses the finite-volume method. See Machenhauer et al. (2008) for a thorough sum-
mary of the use of finite-volume methods in atmospheric modeling. 

3.3 Finite-difference methods

3.3.1 Time-differencing methods

Time-differencing methods can be explicit or implicit, or a combination of both. With
explicit methods, the prognostic equation can be solved for the value of the dependent var-
iable at the new (most-forward) time, with the new value on the left side of the equation,
and the right side consisting of dependent variables defined at current or prior times. With
implicit methods, dependent variables at the new time level appear on both sides of the
equations, and the solution must be obtained iteratively. Semi-implicit techniques solve
some terms in the equations explicitly, and some implicitly. 

Unless the anelastic or Boussinesq equations described in Chapter 2 are used for a
model, the solution contains acoustic waves and external gravity waves that both move
with speeds at or near Mach number 1.3 These meteorologically inconsequential waves can
require the use of a small time step because of Courant-number constraints, and thus make
the model computations inefficient. The next sections will explain how both explicit and
implicit time-differencing methods deal with this problem. With split-explicit differencing,
only the terms in the equations associated with the acoustic and external-gravity modes are
computed with a short time step. The terms related to the meteorological processes use a
longer time step, which is consistent with the relatively slow speed of those waves. With

3 The Mach number is the ratio of the phase speed of a wave to that of a sound wave.
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semi-implicit differencing, implicit methods, whose time step is not constrained by the
Courant number, are used for the fast acoustic and gravity modes, and explicit time differ-
encing is used for the other terms associated with the slower meteorological waves.

Explicit time differencing

There are two general types of explicit time-differencing approaches. One employs a single
computational step, such as the forward-in-time or centered-in-time methods described
earlier, to arrive at the new values of the dependent variables at the next time level. Another
single-step scheme is the Adams–Bashforth method evaluated in Durran (1991). The other
type uses multiple steps. When there are two steps, they are called predictor–corrector
schemes. The first step is the predictor step and the second is the corrector step. Even
though the multi-step methods involve a greater number of arithmetic operations, and
therefore have greater computational expense, their numerical properties are superior in
some respects to those of the single-step methods. In the following equations, F represents
the finite-difference approximation to all the terms on the right side of any of the model
prognostic equations (the forcing),  is any dependent variable, and  is an intermediate
solution. Equation 3.1 above shows an example of the centered-in-time, centered-in-space,
single-step explicit scheme. Equation 3.13 is a representation for any such equation: 

. (3.13)

There are many multi-step schemes, and some have numerous variations with different accu-
racies. For example, one approach is the Lax–Wendroff scheme (Lax and Wendroff 1960):

(predictor step), (3.14)

(corrector step). (3.15)

In the first step, a forward extrapolation is made from time  for one-half the time step. In
the second, these forecast values are used to calculate the tendency for the extrapolation
from  to , which is a centered time step. Another two-step scheme is the Euler-
backward (or Matsuno 1966) method. Here, we have

, (3.16)

. (3.17)

Another commonly used method, with many variations, is the Runge–Kutta scheme. One,
described by Wicker and Skamarock (2002), is
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. (3.20)

This scheme is used in the community Advanced Research version of the Weather
Research and Forecasting (WRF) model (Skamarock et al. 2008).

Another type of explicit time differencing is the so-called split-explicit method. The
motivation for this approach, which is also called time splitting, is based on the fact that
compressible, nonhydrostatic equations support sound waves (Mach number 1) and fast-
moving external-gravity waves, as well as of course the meteorological waves (e.g., advec-
tive waves, Rossby waves, and internal-gravity waves that effect geostrophic adjustment)
whose Mach numbers rarely exceed 0.3 even in the fastest jet-stream winds. Because the
sound waves and external-gravity waves have small amplitudes and are not meteorologi-
cally significant, it is wasteful of computing resources to use the very-small time step that
is needed to satisfy the Courant condition for these waves. There are a few methods to deal
with this problem. One is to use split-explicit methods that integrate different terms in the
equations using different time steps. The few terms associated with sound and external-
gravity wave propagation are integrated with a small time step, and the rest of the terms
that represent meteorological processes are integrated with a larger time step. All explicit
methods have linear-stability criteria that are constrained by the Courant number. A
number of nonhydrostatic models use this approach, including the WRF (Skamarock and
Klemp 2008), the Mesoscale Model Version 5 (MM5, Dudhia 1993), the Lokal Modell
(LM, Doms and Schättler 1997), the Coupled Ocean–Atmosphere Mesoscale Prediction
System (COAMPS, Hodur 1997), and the Advanced Regional Prediction System (ARPS,
Xue et al. 2000). Additional discussion of split-explicit time differencing can be found in
Marchuk (1974), Klemp and Wilhelmson (1978), Wicker and Skamarock (1998), Klemp
et al. (2007), Purser (2007), and Skamarock and Klemp (1992, 2008).

Implicit and semi-implicit time differencing

An example of an explicit treatment of a one-dimensional linear advection equation would be

   ,

where there are no variables defined at  on the right side of the equation. In contrast,
the following form of the linear advection equation is implicit because  values of
dependent variables appear on the right:

. (3.21)

The approximation to the space derivative is represented as a time average of the derivative
evaluated at the forward time and at the current time, so that it applies at . Such
schemes applied to the full set of equations are typically unconditionally stable, and can
use long time steps that are unconstrained by the Courant number. Because implicit equa-
tions need to be solved iteratively (e.g., for ), they require much more computation
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per time step than do explicit equations. Specifically, three-dimensional Helmholtz equa-
tions must be solved each time step. Unfortunately, for fully three-dimensional problems,
with six or seven variables and complex equations, the computational savings from the
longer time step are typically more than offset by the greater computational cost per time
step. Motivated by this problem, Marchuk (1965) and many others since then have devel-
oped semi-implicit schemes, which do provide computational advantages compared with
explicit methods. With semi-implicit approaches, some terms are treated explicitly and
some are treated implicitly. That is, in the finite-difference equation, implicit terms use
averaging operators similar to the one above, while explicit terms have the conventional
formulation. Those terms treated implicitly are typically the ones associated with proc-
esses that motivate the use of the implicit method in general; that is, those terms associated
with fast-moving acoustic and external-gravity waves that would normally demand the use
of a short time step. The rest of the terms, which are related to the slower meteorological
processes, are treated explicitly. The time step that is stable for the explicit terms is also
stable for the implicit terms because they are stable for any time step. Robert (1979) ana-
lyzed the following semi-implicit form of the shallow water equations: 

,

,

.

Here,  is a mean geopotential height and the overbarred height gradient and divergence
terms are the implicit time-mean expression of Eq. 3.21. The rest of the terms are treated
explicitly. Robert (1979) linearized this set of equations and showed that the gravity waves
have no time-step restriction and that the advection has the standard CFL time-step restric-
tion. The shallow-fluid equations are incompressible and have no acoustic mode.

3.3.2 Space-differencing methods 

Eulerian space differencing

Eulerian models calculate the transport (advection) terms in the equations at points that
have fixed horizontal and vertical coordinates. This is the approach described thus far in
this chapter, regardless of whether the models are entirely grid-point based or use the
spectral-transform method. Equations such as the following, for any independent variable

, are solved for the values of the time derivatives at specific points, where the advection
terms and the other forcing terms (F) apply at the same locations: 
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In all cases, the advection (and other) terms require adherence to a stability criterion that is
related to the time step, regardless of whether such a short time step is needed for accuracy
(truncation-error control). Because of this inherent stability limitation of Eulerian meth-
ods, and the associated computational liability, the semi-Lagrangian approach described
below has become widely used.

Lagrangian and semi-Lagrangian space differencing

With purely Lagrangian methods, changes in the properties of individual moving parcels
of air are calculated. That is, our reference frame is air parcels and not grid points. In this
case, the following equation would apply, where the material derivative, or the derivative
following the parcel, is on the left side:

. (3.22)

For a perfectly conserved quantity,

. (3.23)

That is, the value of  does not change following the parcel. Integrating Eq. 3.23 in time,
as part of a larger set of equations, would simply involve estimating how the conserved 
field is redistributed by the wind. Such a Lagrangian forecast system could be initialized
by beginning with regularly spaced parcels, and assigning values of  to parcels based on
standard initialization techniques. However, after a short forecast period the parcels would
become very unevenly distributed, providing unacceptable contrasts in spatial resolution.
This problem motivated the development of semi-Lagrangian space differencing, where a
completely new set of regularly spaced parcels is chosen each time step. One approach is,
at each time step, to initially define the parcels at grid points, and move each parcel in
space for one time step based on the prevailing velocity field. The new parcel positions
will, of course, not be at grid points, but the parcels will have retained their original value
of  so a new spatial distribution of  will be defined based on the irregularly spaced
end-points of the trajectories. The values of  at trajectory end-points are then spatially
interpolated to the original grid points, defining new regularly spaced parcels from which
to begin the next time step. An alternative approach is to also begin with parcels at grid
points, but calculate one-time-step back-trajectories using the same wind field as in the
above process. Then the  at the back-trajectory’s end-point is defined by spatial interpo-
lation from the current grid-point values, and this value is assigned to the grid point (i.e.,
the value of  is the same at both ends of the trajectory). The latter approach is more
common because it is more straightforward to interpolate from a regular grid to irregularly
located points, than the opposite.

For the typical situation where there are forcing terms (F), and  is not conserved for
each parcel (Eq. 3.22), a schematic one-dimensional finite-difference equation based on a
trapezoidal integration approach would be the following, where  refers to the
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position at grid points, , and  is the estimate of the starting position of the tra-
jectory at time  (notation based on Durran 1999):

.

Here, the forcing is defined as an average of the values applicable at the beginning and end
of the trajectory. If this is an equation for a chemical species, , the forcing term would
represent sources or sinks of that material. If  is a meteorological variable, the forcing
would represent all the standard terms on the right side of the equation, other than advec-
tion of course. These terms would be calculated using standard Eulerian differencing
methods on the grid. The value of F at grid point  would be calculated directly, and the
value of F at  would be defined by interpolation from adjacent grid points. Unfortu-
nately, this form of the equation is implicit (variables defined at are on both sides of
the equation) and would require additional computational work in order to solve it. Alter-
natively, the following explicit, centered-in-time approach could be solved explicitly. The
time step is only limited by the constraints that trajectories cannot cross, and trajectory
end-points need to be within the grid:

.

As a result of the pioneering work of Robert (1981, 1982) and others, the semi-Lagrangian
method has become an extremely popular approach for global and limited-area modeling,
where some of the reasons are:

• it is often more efficient than competing Eulerian schemes because the CFL condition
associated with advection terms is avoided,

• it can be used with both grid-point and spectral-transform methods,
• it may be combined with semi-implicit methods that are applied to the pressure-gradient

and velocity-divergence terms, and
• the primary source of nonlinear instability, the nonlinear advection terms, does not exist.  

Conversely, there are criticisms of semi-Lagrangian methods in that they generally fail to
exactly conserve energy and mass. Summaries of semi-Lagrangian methods can be found
in Staniforth and Côté (1991), Durran (1999), and Williamson (2007).

Grid staggering methods

Grid staggering involves defining different dependent variables on different grids. Typi-
cally, the points in one mesh are offset from those in the other by . Figure 3.19
shows a one-dimensional schematic of an approach to staggering. For the unstaggered
grid shown in Fig. 3.19a, calculation of an advection term such as  with a cen-
tered, three-point method would require differencing across a  interval. For the stag-
gered grid in Fig. 3.19b, the derivative can be calculated by differencing across a 
interval. This halves the effective grid increment for such terms, increasing the spatial
resolution and decreasing the effects of truncation error on the solution. Also, a benefit of
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staggering the horizontal and vertical velocity in hydrostatic models, described by Pielke
(2002a), is that, when the vertical velocity is diagnosed from the horizontal divergence by
integrating the continuity equation, lateral boundary values for the horizontal velocity
have no direct impact on the vertical velocity. This is illustrated in Fig. 3.20. For

(a)

uj−1, θj−1 uj +1, θj +1uj, θj

Δx

(b)

uj−1 uj+1ujθj−1/2 θj+1/2

xx

Schematic of one-dimensional unstaggered (a) and staggered (b) grids. For the staggered grid, the mass-field variable 

( ) is offset by one-half grid increment from the momentum variable (u). Adapted from Durran (1999).θ
Fig. 3.19
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Schematic showing horizontal and vertical velocities on a one-dimensional unstaggered grid (a) and on one type of 

staggered grid (b). The subscript shows the position of the grid points relative to the left boundary. Adapted from 

Pielke (2002a).

Fig. 3.20
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unstaggered grids, where u and w are defined at the same points, Fig. 3.20a shows that the
vertical velocity at the first interior point (w1) is calculated using a lateral boundary value
of u(u0). In contrast, for the staggered grid the vertical velocity at the first interior point is
calculated using only nonboundary values (Fig. 3.20b). Figure 3.21 shows an example of
a standard approach to horizontal and vertical grid staggering for a three-dimensional
model. The wind components (u, v) are defined at the locations of the vectors in the fig-
ure, and the mass variables (q, p, ) are defined at the locations defined by the dots. This
is called the Arakawa-C grid, where other alternative staggering methods are described in
Arakawa and Lamb (1977) and Haltiner and Williams (1980). Unfortunately, the smaller
distance over which the derivatives are calculated means that the effective grid increment
is smaller, and therefore the time steps need to be smaller in order for the CFL condition
to be satisfied. Nevertheless, the increase in effective resolution, relative to an unstag-
gered grid, is gained without the use of additional grid points, which would require more
computer storage and more computations. Virtually all contemporary grid-point models
use staggered meshes.

3.4 Effects of the numerical approximations

This section focusses on the important subject of how the numerical methods that are
employed to integrate the equations can affect the model solution in various ways. The
discussion of truncation error shows how the derivatives in the equations are incorrectly
estimated by finite-difference approximations. Then is described how each term in the
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equations possesses criteria, based on model parameters and atmospheric conditions, that
must be met in order for the model solution to be stable. The effects of the numerical
methods on the phase and group speeds of meteorological waves in the model solution are
described, illustrating that for some differencing schemes wave energy can even move in
the wrong direction. The nonlinear interaction of waves on a grid can lead to the erroneous
accumulation, through aliasing, of wave energy in small wavelengths, and this can lead to
the problem of nonlinear instability. And, the concept of horizontal diffusion (the spread,
and smoothing, of properties on the grid) is discussed because it is a process that can
remove correct small-scale information in the model solution, and it can be used to control
numerical problems in the model solution. Lastly, the strengths and weaknesses are sum-
marized of the various vertical coordinates used in models.

3.4.1 Truncation error

Because the equations that govern atmospheric processes are differential equations, with
derivatives in most of the terms, approximating the continuous space and time derivatives
with finite-difference expressions represents a considerable potential source of error in the
modeling process. It is straightforward to quantify this error by using Taylor’s theorem,
which defines a polynomial that approximates any function over an interval. A remainder
term in the polynomial represents the difference between the values of the function and
the approximation. The following polynomial is called Taylor’s series, where f is any
meteorological variable in the derivative terms of Eqs. 2.1–2.6, and the series can be writ-
ten for any independent variable:

 + . . . 

. . . + . (3.24)

It states that the value of a function, f, at any point, x, can be approximated by using the
known value and derivatives at point a. In the case of an infinite series, the expression
would be exact. For a series truncated at n terms, there is a residual, R, that defines the
error. The truncation error will be defined here for three finite-difference approximations
to the derivative: two-point, three-point, and five-point formulae. 

For a two-point approximation, let  in Eq. 3.24, truncate the series by drop-
ping second-order and higher terms, and solve for the derivative, to obtain the following:

. (3.25)

This is called the forward-in-space differencing formula, which has first-order accuracy
because second-order and higher terms in Taylor’s series were dropped. An analogous
backward-in-space formula results from letting .
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A three-point differencing scheme can be obtained by writing Taylor’s series as

 + . . . (3.26)

and

 + . . . . (3.27)

Subtracting the two series produces

 + . . . . 

Solving for  provides

 + . . . . (3.28)

Truncating this equation after the first term on the right produces the following approxi-
mation, which we say has second-order accuracy because we ignore the third-order and
higher terms in the series. This is called a three-point approximation to the derivative
because it spans points , x, and :

.

One way of calculating the effect of truncating the series on the accuracy of the derivative is to
compare the value of the derivative from this approximation with the exact value. Let

, where  and L is the wavelength. The exact value of the derivative is 

, (3.29)

where the approximation is

. (3.30)

Using trigonometric identities it can be shown that

, (3.31)
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where, as ,  and . That is, as the argument of the sine
function approaches zero, so does the function itself, and the ratio approaches unity. This
ratio defines the truncation error because it represents the error in the finite-difference
approximation to the derivative that is associated with the truncation made in Taylor’s
series. Thus, for a wave of length L that is defined by many grid points, the ratio of the
approximation to the derivative and the exact derivative is near unity. Figure 3.22 shows
this ratio for different wavelengths. For a given grid increment, the derivatives of long
waves are clearly better represented than the derivatives of shorter waves. For example,

Δx L⁄ 0→ kΔx 0→ kΔxsin kΔx→

n (L = nΔx)
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 The ratio of the value of the numerical approximation to the derivative of the cosine function and the value of the true 

derivative, for different numbers of grid increments per wavelength (how well the wave is resolved), for the five-point 

(fourth-order) and three-point (second-order) approximations.

Fig. 3.22
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calculating the derivative of a wave of length with the three-point approximation
underestimates the derivative by 17%. For a  wave the error is only 6%. This leads to
the common qualitative statement that at least ten grid increments are needed in order to
properly represent a wave. 

Taylor’s series can also be used to estimate the truncation error for a five-point approxi-
mations to the derivative. For example, add Eqs. 3.26 and 3.27 and solve for the second
derivative to obtain

 + . . . .

A third derivative can then be defined as

.

Using the above expression for the second derivative,

,

and simplifying yields

.

Substituting this expression for the third derivative into Eq. 3.28 and simplifying produces
the following expression, which is a five-point approximation to the derivative:

. (3.32)

The truncation error is calculated as before (Eqs. 3.29–3.31) and is shown in Fig. 3.22.
This is a fourth-order accurate approximation to the derivative because the fifth-order
and higher terms in the series were truncated, and has smaller error than the three-point/
second-order approximation, as can be seen in the figure. It is interesting that Eq. 3.31
for the truncation error of the second-order approximation, and the analogous one for the
fourth-order approximation (not shown), only depend on how well the wave is resolved
on the grid (n in ) and not on x itself. However, for the two-point approxima-
tion in Eq. 3.25, the truncation error also depends on x (not shown). That is, the
ratio  depends on position within the cosine wave. For a wave of length

, this ratio is unity at , but becomes very large in magnitude as .
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In summary, in a grid-point model (i.e., a nonspectral model), every time a derivative is
calculated with a finite-difference approximation – which is in virtually every equation, at
every grid point, at every time step – the derivative is imperfectly estimated, where the mag-
nitude of the error depends on the sophistication of the differencing scheme and how well
the wave is resolved by the grid. Such errors in the pressure-gradient terms in the momen-
tum equations lead to errors in the geostrophic wind, errors in the divergence terms of the
continuity equation result in incorrect vertical motions, errors in the gradients in advective
terms lead to incorrect advective changes, etc. Also, the pressure gradient in equations
expressed in terrain-following, sigma vertical-coordinate systems consists of two derivative
terms (see Section 3.4.8), where each term is large and the small difference between them
defines the pressure-gradient force. Over large terrain gradients, these terms become espe-
cially large, and truncation errors that do not cancel in the two terms create erroneous pres-
sure gradients and accelerations. This problem is partly mitigated by using perturbation
forms of the equations, where the derivatives apply to departures from a mean state. 

3.4.2 Linear stability, and damping properties

The term stability in the context of atmospheric modeling is related to whether the ampli-
tudes of waves in the numerical solution to Eqs. 2.1–2.7, or some other equation set that is
the basis for a model, grow exponentially for numerical (i.e., nonphysical) reasons,
quickly causing floating-point-overflow conditions that halt the integration of the equa-
tions. Many modelers will normally not need to worry about this problem because model
codes often contain limits on the time step, and other parameters, that attempt to prevent
the instability. Nevertheless, it is useful to know why these constraints exist, and what to
expect if the linear-stability criteria are accidentally violated.

Different finite-difference approximations to the time and space derivatives in the equa-
tions of motion have different criteria for maintaining stable solutions. Some approxima-
tions are absolutely stable – that is, they are never unstable. Some are always unstable –
they are called absolutely unstable – and cannot be used. Most are conditionally stable,
meaning that stable solutions are obtainable for certain ranges of model parameters and
meteorological conditions. Each term in Eqs. 2.1–2.7 contributes to the stability of the
numerical solution of its respective equation, but the advection terms are often the most
problematic. It is fortunate that the condition for stability of the linear advection equation
is about the same as that of the nonlinear advection equation, allowing us to analytically
calculate a useful stability criterion with the linear term. Because this kind of instability
exists for linear advection, it is called a linear instability, contrasting it with the nonlinear
instability problem that is described later. This section discusses the linear stability condi-
tion for both advection and diffusion terms.

Linear stability of an advection term

The following linear equation will be used as the basis for our analysis of the stability
of the advection equation. Assume that h is a meteorological variable such as the height
of a pressure surface or the depth of a shallow fluid, and that U is a mean wind speed.
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This notation indicates that the terms apply at grid point j on the x axis and at time
step :

.

Assume harmonic solutions to this equation of the following form,

, (3.33)

where  is the amplitude, , L is wavelength, , and  is wave
frequency. Now assume that  is complex, so that . The implication of this
can be seen by substitution into Eq. 3.33, producing

.  (3.34)

The assumption of a complex frequency has allowed for a wave-amplitude variation with
time, such that positive  is associated with exponential wave growth as time (t)
increases, negative  is associated with wave damping, and  means that the
amplitude remains constant at . The value of  will determine which of these situations
prevails, where wave growth is associated with an unstable model solution. The second
exponential defines the phase of the wave in the x direction.

For instructional purposes, we will first analyze the stability of the advection equation
using forward differencing for the time derivative and backward differencing for the space
derivative. The finite-difference expression is

, or  (3.35)

, (3.36)

where  is the time-step number and j is the grid-point number. Expressing the assumed
form of the solution in Eq. 3.34 in finite-difference form by letting  and 
produces

. (3.37)

Substitute this form of the solution into the finite-difference expression Eq. 3.36, producing

. (3.38)

Using Euler’s relations
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In order to obtain information about whether the solution damps or amplifies, the complex
equation is separated into its real and imaginary parts:

, (3.41)

. (3.42)

Squaring both sides of each equation and adding them eliminates the real part of the fre-
quency, leaving 

. (3.43)

Recall that Eq. 3.34 shows that the value of this exponential in the assumed form of the
model solution controls whether the solution increases or decreases in amplitude with
increasing time. That is 

,

so the value of the solution amplifies or damps exponentially as the time-step value 
increases with the model integration.

For this particular combination of space and time differencing schemes, Eq. 3.43 shows
the dependence of the exponential on wavelength and the ratio . Figure 3.23 indi-
cates that the model solution damps exponentially with time for , it does not
change amplitude when this ratio is unity, and it amplifies exponentially for ratios greater
than unity. Shorter wavelengths are damped more severely than are longer wavelengths.
Thus, the stability criterion for this differencing scheme is . The
ratio  is the previously defined CFL condition. It is also called the Courant
number, and is described in Courant et al. (1928). Thus, given the chosen grid increment,
and the largest wave speed that is likely to exist anywhere on the grid during the forecast
(U), the time step required for stability is chosen. Note that such selective damping of
short waves that are poorly resolved on a grid is sometimes considered to be an advanta-
geous property of a differencing scheme.

A similar procedure can be used to analyze the stability criterion for the forward-in-
time, centered-in-space advection equation

,
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The only time step that will allow the exponential to be less than or equal to unity, and
guarantee a stable solution, is zero. Thus, this differencing scheme is absolutely unstable. 

Now consider the stability of the three-point centered-in-space, centered-in-time, linear
advection equation:

. (3.44)
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From the assumed form of the solution in Eq. 3.37, it is easy to obtain

  and (3.45)

. (3.46)

The substitution of Eq. 3.45 into the right side of Eq. 3.44, and then the use of Euler’s rela-
tions (Eqs. 3.39 and 3.40), provides

.

Defining  produces

 and  (3.47)
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Using Eq. 3.47 to eliminate  in Eq. 3.48 yields

. (3.49)

The matrix form of Eqs. 3.47 and 3.49 is

. (3.50)

The time step for this differencing scheme is  (Eq. 3.44), so we can represent the
phase and amplitude change in the solution during that period by substituting 2 for  in
Eq. 3.46, which becomes

, (3.51)

where .

Because  represents the change between any two time steps, we can also write              

. (3.52)

Substitution of Eq. 3.52 into Eq. 3.47 and Eq. 3.51 into Eq. 3.49 yields
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Thus, Eq. 3.50 becomes

.

This linear system of equations has a nontrivial ( ) solution if the determinant of the
matrix of coefficients equals zero. That is

 , yielding

, with the two solutions being

. (3.53)

Recall that  represents the amplitude and phase change of the wave over a centered time
step, . Thus, the magnitude of  represents the amplification or damping of the wave
during the  period:

.

If ,  for both solutions. For ,  for the solution with the
negative sign. For ,  is complex, and solving for  using

 

also yields . Thus  for , where the latter is the requirement for sta-
bility. Note that it is sufficient that only one solution for  be greater than unity
when  in order to make this condition unstable. Substituting the definition for 
into the stability requirement leads to

, (3.54)

and because the sine can equal unity, the stability requirement is . Note that if
this condition is marginally violated, the wave of length  for which the sine function
in Eq. 3.54 is unity will be the first to become unstable. Using a similar approach, it can be
shown that the stability requirement for the five-point centered-in-space (see Eq. 3.32),
and centered-in-time, linear advection equation
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is . These centered-in-space and centered-in-time schemes, unlike the
forward-in-time and backward-in-space method (Fig. 3.23), do not damp for any stable
value of the Courant number. 

As noted earlier, the advection term has one of the most restrictive linear-stability crite-
ria of all the terms in the model equations. That is, the time step must be sufficiently small
to guarantee that the Courant number ( ) is always less than unity at any time in
the integration and at all locations on the grid. The grid increment in this ratio is chosen to
be sufficiently small so that processes or meteorological features that are being simulated
or forecasted can be defined on the grid with acceptably small truncation error. The veloc-
ity scale is a function of the prevailing meteorology, and cannot be controlled. That leaves
the time step as the only free parameter that can be adjusted to maintain a stable solution.
A useful geometric way of visualizing this stability criterion is that , the numerator in
the ratio, is the distance traveled by an advecting feature in one time step. If this distance is
greater than one grid increment (the denominator), the ratio is greater than unity and the
solution is linearly unstable. Unfortunately, further analysis of this term in the context of
the full equations, which contain more than advection effects, reveals that the speed in the
stability criterion that must be accommodated when choosing a time step is . This
is the advective speed plus the phase speed of the fastest wave on the grid. If the model
equations admit sound waves or external-gravity waves, this phase speed can be 300 ms−1.
So, in choosing a stable time step, this largest wave speed must be estimated, as well as the
magnitude of the advective speed in the strongest jet on the grid. Many models will make
these estimations internally, and choose a “safe” time step, allowing also for the fact that a
horizontally varying map-scale factor will cause the Earth distance between grid points to
depart from . Nevertheless, sometimes the estimates will not be sufficiently conserva-
tive, and a linear instability will occur in extreme circumstances. Such occasional stability
problems may be acceptable given the fact that an extremely conservative small time step
would waste computer resources.

The linear stability of the vertical-advection term also has a potentially serious con-
straint on the time step. This condition parallels that of the horizontal-advection term,
and for the three-point approximation is  for z as the vertical coordinate.
Analogous to the horizontal-advection problem, the velocity in this expression is the
maximum wave velocity in the vertical, which could be simply the advective velocity, or
it could be the sum of the advective velocity and that of vertically propagating gravity
waves and sound waves.  The vertical grid increment, , typically varies significantly
across the depth of the model atmosphere, where smaller values are often used in the
boundary layer and near the tropopause in order to resolve large vertical gradients. The
vertical advective wave speed is often a maximum near the level of nondivergence, but
can be locally large when convective circulations are explicitly represented in the model.
Where especially small vertical grid increments and large vertical velocities coexist, the
constraint on the time step may be greater than that associated with the horizontal-
advection term. For example, recall the discussion in the previous chapter of techniques
(Boussinesq, anelastic, hydrostatic approximations) for filtering sound waves from
the model solution. The combination of sound waves propagating in the vertical at
300 m s−1, and the fact that vertical grid increments are typically much smaller than
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horizontal grid increments for most models, would require an extremely small time step.
Thus, there is great motivation to remove the sound waves, or to deal with them numeri-
cally in such a way that they do not represent a severe constraint on the time step for the
entire equation (for example, the split-explicit time differencing described previously in
Section 3.3.1).

Linear stability of an explicit horizontal-diffusion term

Even though much more will be discussed later in this chapter about explicit numerical
diffusion terms, in the overall context of the diffusion or damping of model solutions, the
linear stability of the following low-order diffusion term will be evaluated here. The
strength of the diffusion effect is controlled by the specified magnitude of the positive dif-
fusion coefficient, K:

. (3.56)

The term on the right side of this equation is added to the standard physical-process terms
in a prognostic equation for the variable h, where the purpose is to damp poorly resolved
and sometimes-erroneous small space-scale features in the model solution. If the damping
is sufficiently strong, some of the problems described later related to the nonphysical
behavior of small-scale energy on the grid can be mitigated. As in the analysis of the
advection equation, the amplitude change of the solution depends on the value of the
imaginary part of the wave frequency in the assumed form of the wave solution in Eq.
3.34. Approximating this equation with the centered-in-time, centered-in-space approach
used for the advection equation,

,

yields

, for .

Unless , the exponential is more-negative than −1, for the negative sign on the rad-
ical, and thus that solution is absolutely unstable, amplifying and changing sign (i.e.,
phase) each time step. If a forward-in-time, centered-in-space approximation is used,

, and 

, again for . (3.57)
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For infinitely long waves, the exponential equals unity, so there is no damping or amplifi-
cation regardless of the value of K or . For waves of length , 

. (3.58)

For ,  and the  solution damps; 

for ,  and the solution damps while changing phase

every time step;

and for ,  and the solution amplifies while changing phase each

time step. 

Thus, for physically realistic solutions, the linear stability criterion is .
Section 3.4.7 discusses other types of horizontal-diffusion terms. Note that models also
typically have vertical-diffusion terms with analogous stability criteria. For thin model lay-
ers (small ) and a large diffusion coefficient, for example in the boundary layer, this cri-
terion may be easily violated. 

Maintaining linear stability with multiple terms in an equation

The individual analyses of the linear stability conditions for the finite-difference approxi-
mations to the advection and diffusion terms provided quantitative information about the
combinations of values of model parameters (e.g., time step) and meteorological condi-
tions required for stable, realistic solutions. For the advection term, the stability constraint
was  for centered-in-time, and second-order centered-in-space differencing.
For the second-order diffusion term, realistic solutions with forward-in-time, centered-in-
space, differencing required that . With both of these terms in the same
equation, there are questions about how we choose our parameters appropriately to main-
tain stability, and how we accommodate the fact that one term employs centered-in-time
differencing and the other uses forward-in-time differencing. The latter issue can be
addressed by evaluating the diffusion term at the  time, and extrapolating over a 
interval to the  time. Equation 3.59 shows the prognostic finite-difference equation
for the two terms combined.

 +  − . (3.59)

The previous separate analysis of the stability of the individual linear versions of the advec-
tion and diffusion terms was necessary for mathematical reasons, but the actual operative
constraint is based on the combination of all the terms in an equation. Nevertheless, in prac-
tice, the constraints associated with the individual terms are considered, and the time step
from the most restrictive one is employed for the integration. For example, in the case of
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Eq. 3.59, let the grid increment be 25 km, and the estimated largest speed on the grid be
50 m s−1. Because unity is the largest stable value of the Courant number, the maximum
time step would be 500 s. In practice, the chosen time step used is typically about 20–25%
less than this limit to account for the facts that (1) the estimate of the largest stable Courant
number is based on a linear analysis, (2) the distance on Earth between grid points is less
than  in some areas because of the map projection, and (3) the maximum wind speed
may be incorrectly estimated. So, the actual time step used in this case would perhaps be
400 s. For the diffusion term, assume that we would like to damp 25% of the amplitude of
the  wave each time step, which means that  must equal 0.75. Because Eq. 3.58
shows that the damping rate is a function of both the time step and the value of the diffusion
coefficient, K, the time step from the advection equation can be used, and the value of K
chosen to achieve the desired damping. Thus  would produce the desired damping.

3.4.3 Phase/group-speed errors

In this section it will be shown how finite-difference approximations can lead to physically
unrealistic phase and group speeds. Consider first the forward-in-time and backward-in-
space approximation to the advection equation discussed earlier (Eq. 3.35). The speed of
an advecting feature should simply be . To define the advective speed in the numerical
solution, divide Eq. 3.42 by Eq. 3.41 to eliminate , take the inverse tangent of the
resulting equation, and use the fact that , obtaining

.

This phase speed of the advective wave on the grid is a function of wavelength (in terms of
the wavenumber k) and the Courant number. Figure 3.24 illustrates this relationship. For all
wavelengths, Courant numbers of less than 0.5 cause the waves to move more slowly than
they should, and Courant numbers of greater than 0.5 cause the waves to move at an errone-
ously high speed. In general, waves whose phase speed is a function of wavelength are
called dispersive (e.g., Rossby waves). Even though the advective wave is not dispersive in
nature, in the numerical solution it is, so this process is called numerical dispersion. 

For the three-point, centered-in-space and centered-in-time advection equation, for the
situation with a stable solution where  in Eq. 3.53,

.

For nondamping, stable solutions, the first exponential is equal to unity. Employing Euler’s
relation, Eq. 3.40, to rewrite the second exponential, separating the real and imaginary
parts of the complex equation, recalling that , substituting the definition of ,
and employing trigonometric identities yields

. (3.60)
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There are two waves defined here. The one corresponding to the positive argument of the
inverse sine is an approximation to the physical wave, moving in the correct direction but
slower than the true feature being advected. The other wave, called the computational
mode or ghost mode, is entirely fictitious, with no counterpart in nature, and moves in the
opposite direction. The amplitude of the computational mode is typically much smaller
than that of the physical mode. The phase speed of the physical mode is shown in
Fig. 3.25, as a function of wavelength and the Courant number. This differencing scheme
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is also dispersive, with the phase speeds of the longer waves better approximating the true
speed, and the speed of the  wave being zero. Also, the wave speeds are more realistic
for Courant numbers closer to unity.

Examples of model solutions for the three-point (second-order accuracy) centered-in-
space and centered-in-time approximation to the linear advection equation (Eq. 3.44) are
shown in Fig. 3.26. For the “no-diffusion” curve, the model represents only the linear
advection equation defined on a one-dimensional grid that has periodic lateral-boundary
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conditions. That is, a wave exiting one end of the computational domain enters on the
opposite end. The initial conditions were defined by a wave in the height field centered on
grid-point 50 and with the shape of the lighter curve in the figure. The advective velocity
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was from left to right in the figure, with a magnitude of 10 m s−1. The lighter line in the
figure also shows the theoretical solution for the wave after it has traversed approximately
100 grid points (100 km), exiting on the right and entering on the left. That is, the wave
moved at exactly the advective speed, U, and there was no damping or amplification. In
contrast, the black lines (focus on the upper one in this discussion) show the numerical
solution at the same time for a Courant number of 0.1 (  = 10 s). The original wave,
even though it appears smooth, was composed of many Fourier components with differ-
ent wavelengths, which, as we have seen, have different numerical phase speeds. The
longer wavelengths have speeds closer to the correct value (see Fig. 3.25), but the shorter
components move at speeds that are proportional to their wavelength. The very short
waves have not even exited the grid on the right at this time, having moved at less than
half the correct speed. Some of the erroneous wave energy might be associated with the
previously mentioned computational mode, but it is difficult to visually separate it from
the poorly represented short waves in the physical mode. Clearly, this is not an especially
satisfactory solution for representing the advection process. In particular, when model
dependent variables change rapidly over a small distance, such as across fronts, the sharp
gradient is defined by short-wavelength Fourier components. Thus, even when such phys-
ical features are realistically rendered in model initial conditions, as the short wave-
lengths become separated from the longer wavelengths as the feature propagates, the
gradient will weaken. 

To illustrate how the choice of the Courant number can affect numerical dispersion,
Fig. 3.27 depicts model solutions analogous to the upper one (no diffusion) in Fig. 3.26,
but for the additional Courant numbers of 0.5 (  = 50 s) and 0.9 (  = 90 s). The differ-
ences can be explained by referring to Fig. 3.25, which shows that the use of Courant num-
bers closer to unity produces more-correct phase speeds for the 3–10  wavelengths, and
thus there is less energy in the erroneously slow waves. The influence of the Courant
number is dependent on the specific approximation to the advection term, but this shows
how great the impact can be.

The analogous model solution using the higher-accuracy, fourth-order (five-point)
approximation for the derivative in the linear advection equation (Eq. 3.55) is shown in
Fig. 3.28 for a Courant number of 0.1. This also shows erroneous numerical dispersion,
like the three-point scheme, but it is less severe. Nevertheless, significant amplitude has
been lost relative to the correct solution, and there is still wave energy in erroneous fea-
tures that trail the more-correctly rendered longer wave.

In nature, the advective wave is nondispersive, and the phase speed and the group
speed are equal. Given that these centered-in-space and centered-in-time solutions
exhibit numerical dispersion, it is revealing to calculate the group speed ( ) of
the waves, or in other words the speed at which the wave energy propagates. In
general, 

. (3.61)
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For the three-point, centered-in-space and centered-in-time approximation to the advec-
tion equation, Eq. 3.60 represents the phase speed, CP . Substituting this expression into
Eq. 3.61 and evaluating the derivative gives

.

This group speed is plotted in Fig. 3.25 as a function of wavelength and Courant number.
For a wave of length , the group speed is zero. The  wave energy travels at the
correct speed, but in the wrong direction. Thus, the energy propagation properties of the
shorter waves are severely mishandled by this finite-difference approximation.
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3.4.4 Properties of some example, multi-step, time-differencing schemes

Section 3.3.1 defines only a few of the many multi-step time-differencing schemes that have
been used in atmospheric models. Even though Durran (1999) provides a thorough discus-
sion of their numerical properties, a few schemes will be mentioned here. In general, these
methods are popular because their stability criteria are often not as stringent as for the sin-
gle-step methods that are the focus above, they can have relatively high orders of accuracy,
and some very selectively damp the smaller, poorly resolved wavelengths. Figure 3.29a
shows the fractional damping each time step associated with the Lax–Wendroff and Euler-
backward time-differencing schemes applied to the linear-advection equation. In each case,
the second-order, centered-in-space approximation is used for the space differencing (the
variable F in Eqs. 3.14–3.20). Because of the desirability of selectively damping short-
wavelength, poorly resolved waves, while leaving the well-resolved waves relatively
undamped, the Lax–Wendroff scheme is superior in this respect. The numerical dispersion
caused by these schemes is shown in Fig. 3.29b, where the Euler-backward method pro-
duces more-correct phase speeds for the better-resolved waves. An example of an advec-
tive-wave solution using a multi-step time-differencing scheme with high-order space
differencing is seen in Fig. 3.30. The third-order Runge–Kutta time-differencing scheme,
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shown in Eqs. 3.18–3.20 and employed in the dynamic core of the community Advanced
Research WRF (ARW) model (Skamarock et al. 2008), is combined with sixth-order space
differencing. Compared to the wave solution shown in Fig. 3.28 resulting from single-step,
centered-in-time differencing and fourth-order centered-in-space differencing, there is less
numerical dispersion and the amplitude of the primary wave is better preserved. The ARW
offers second- through sixth-order options for the space differencing, where the default is
the fifth-order option because the odd-order schemes have desirable implicit damping prop-
erties, whereas the even-order schemes do not. But, regardless of the approach for the space-
differencing, the Runge–Kutta time differencing contributes some damping of its own. 

3.4.5 Aliasing

Aliasing is a process by which two waves represented on a model grid interact through a
nonlinear term in the equations to produce fictitious waves, resulting in an erroneous
redistribution of energy (amplitude) in the wave spectrum, and possibly even leading to an
instability that is fatal to the model integration. This process can be illustrated with a sim-
ple, nonlinear advection term:

.

For simplicity, assume that u can be represented mathematically as a sum of cosine waves,
such as

                  , where ,

L is the length of the computational grid, and km is a wavenumber.4 Differentiating this
expression with respect to x, as in the advection term, we obtain

,

and multiplying by −u gives

 = − (  + . . . +  + . . . ) × 

(  + . . . +  + . . .).

The result of any two waves, km and kn, interacting is

.

4 Note that both km and m are wavenumbers. The m represents the number of waves on the domain of length L,
and is nondimensional. The km is  divided by the wavelength (L/m), has dimensions of inverse distance,
and is sometimes referred to as a rotational wavenumber. 
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But 

,

and therefore the interaction product is 

 =

.

Thus, when wavenumbers m and n interact, they produce two waves, one with wavenum-
ber n+m and one with wavenumber n−m. This is no problem in continuous space where all
wavenumbers are possible, but it can be in the discrete (grid-point) space of a model. For
example, assume a one-dimensional grid having jmax intervals (see Fig. 3.31), where jmax
is an even number. Table 3.1 shows the range of wavenumbers and wavelengths on this
grid, where the longest complete wave that can be represented is defined by the domain
length, L, and the shortest wave is defined in terms of the grid increment, .

Now consider what happens when resolvable wavenumbers m and n interact to yield a
wavenumber that is larger than what is permitted by the grid (i.e., a wavelength of less than
2 x). This would result from the m+n interaction product rather than the m−n product, so
m+n > jmax/2. A way of defining m+n without the inequality is m+n = jmax − s, where s <
jmax/2. So the wave resulting from the problematic m+n interaction would be
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But sin (x−y) = sin x cos y − cos x sin y, so that

,

where the sine function in the first term on the right side is equal to zero, and the cosine
function in the second term is equal to unity. Thus, 

 =  = .

So the unresolvable wavenumber shows up on the grid as wavenumber s, such that s = jmax −
(m+n). For example, say m = jmax (a 2 x wave) and n = jmax (a 4 x wave), so m+n =

jmax (a x wave) and m−n = jmax (a 4 x wave). But the x wave is unresolvable,
and the aliasing produces energy in the 4 x wavelength (s = jmax − jmax = jmax).  

To illustrate all possible interactions, assume jmax = 24. Any interaction that produces a
wavenumber greater than 12 will result in aliasing. The erroneous redistribution of energy
on this grid is illustrated in Fig. 3.32.

Not only does this aliasing process cause energy to be incorrectly located in the wrong
scales, resulting in errors in the model solution, it can also result in the model solution
becoming unstable and stopping the numerical integration process. This is called a
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nonlinear instability and will be discussed in the following section. Aliasing is also men-
tioned in the discussion of spectral modeling, wherein each wave interaction is analytically
treated, and those interactions that would result in unresolvable products are not permitted.
This is one of the advantages of the spectral-modeling approach. 

Figure 3.33 shows the impact of aliasing on a model’s kinetic-energy spectrum. The plot
on the left shows a normal spectrum, where aliasing is not a significant problem. The filter-
ing of the high wavenumber (short wavelength) part of the model solution, through proc-
esses described in Section 3.4.7 below, causes a loss of kinetic energy in the segment of
the spectrum between the 2 x wavelength and the effective resolution of the model. This
damping is desirable because these wavelengths are poorly represented on the grid. The
right panel shows the spectrum when aliasing has added erroneous energy in the resolved
part of the spectrum, overwhelming the desirable damping illustrated in the left panel, and
impacting the model’s representation of physical processes.

3.4.6 Nonlinear instability

The discussion of computational instability in Section 3.4.2 was based on a linear differen-
tial equation, and adhering to the appropriate stability criterion is sufficient to avoid prob-
lems of that type. For nonlinear equations, there is a similar criterion, but even when this
condition is satisfied it is possible for another type of instability to develop in the
numerical solution. As shown in Chapter 2, primitive-equation models are based on non-
linear equations, and the source of the problem is the aliasing that was just described. The
symptom of nonlinear instability that results from aliasing is a rapid buildup of energy in
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(b) is shown a model solution where aliasing has added erroneous energy that remains in the high wavenumbers.  
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the 2–4 x wavelengths in the model solution, after the model has been integrated for a
long period of time. The cause of this can be inferred from the list of wave interactions that
are associated with aliasing on the 24-point grid shown in Fig. 3.32 (see Problem 1 at the
end of this chapter). In particular, there are 42 combinations of wavenumbers m and n that
result in aliasing, and 30 of these interactions produce energy in the 2−4 x range. Couple
this with the fact that every aliasing interaction involves at least one wave in this range,
and it is clear that such an uncontrolled accumulation of energy can lead to numerical
problems. The energy accumulation in these short wavelengths can be controlled by using
a differencing scheme that selectively damps the short waves, or scale-selective diffusion
(dissipation) terms can be added to the equations (see next section). Alternatively, spectral
or semi-Lagrangian methods can be used for the nonlinear terms so that the interactions
are treated analytically. Continued integration of a model that has a kinetic-energy spec-
trum like that in Fig. 3.33b could lead to nonlinear instability.  

3.4.7 Diffusion: real, explicit numerical, implicit numerical, grid

The diffusion processes described here all have the effect of spatially spreading features in
the heat, moisture, and momentum fields of the modeled fluid. This can have the effect of
damping the amplitude of perturbations in the variables, so sometimes they are referred to
as damping processes. Because the diffusion or damping is scale selective, the methods
may also be considered filters. There is obviously real (physical) diffusion, or mixing, in
the atmosphere, caused by turbulence, and this needs to be represented in some realistic
way. In addition, however, a nonphysical, scale-selective, diffusion or damping process is
incorporated in all models, through explicit terms in the predictive equations or implicitly
through the use of damping differencing schemes. The purpose is to “clean up” unrealistic
features in the model solution associated with lateral-boundary noise, computational
modes, and erroneous shortwave energy from numerical wave dispersion. Lastly, even if
none of the above diffusion processes were incorporated in the model, there would still be
the spatial spread of information about the model variables through the vertical and hori-
zontal finite differencing. The terminology used in the literature for referring to the differ-
ent types of diffusion is not standard, so the reader should be cautious.  

Physical diffusion

The atmosphere contains turbulence that smooths out, or diffuses, structures in the momen-
tum, thermal, and moisture fields, in all three coordinate directions. Where gradients exist,
turbulent fluxes transport properties, such that the amplitudes of maxima or minima in
physical fields are reduced. Because of the intensity of shear- and buoyancy-driven turbu-
lence in the boundary layer, and the typically strong gradients there, planetary boundary-
layer parameterizations are needed to represent this important physical process. Likewise,
turbulent mixing can be important elsewhere, in the free atmosphere, such as near jets in the
wind field and in the vicinity of moist convection, and models need to be able to treat the
associated mixing in a realistic way.  This is the “real” diffusion, or mixing, that must be

Δ

Δ
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represented in a physically faithful model of the atmosphere. Chapter 4 discusses the repre-
sentation of this physical diffusion by turbulence parameterizations.

Explicit numerical diffusion

In the previous section on aliasing, it was mentioned that one way of controlling the artifi-
cial accumulation of energy in short wavelengths, and the resulting nonlinear instability, is
through the use of diffusion terms, on the right side of the predictive equations, that are
explicitly designed to damp these short wavelengths. In addition to controlling this insta-
bility, damping the short wavelengths also improves model solutions like those shown in
Figs. 3.27 and 3.28, where numerical dispersion causes short wavelengths to be errone-
ously separated from the physical solution. A challenge is sufficiently damping the errone-
ous component of the model solution while not damping the physically realistic part.

There are a few different mathematical forms, shown in Eq. 3.62, that are used for the
term that explicitly controls shortwave amplitudes:

. (3.62)

Here, K is the diffusion coefficient, h is any dependent variable, and n = 0, 2, 4, 6 indicates
the order of the term. The right side for zero-order (n = 0) damping is . This pro-
duces a non-scale-selective relaxation, and is typically applied near lateral and upper
boundaries. The second-order term has the form of the Laplacian, and is the equivalent of
Eq. 3.56 except that it has two horizontal space dimensions. Recall that a term with this
form appears in the physical heat-diffusion equation, where higher values are always trans-
ferred down gradient toward regions with smaller values. The fact that the change in the
property depends solely on the sign and magnitude of the curvature (the second derivative)
means that new extrema are not added to a field. This second-order term is less scale-
selective than the higher-order ones. Equation 3.57 represents the amount of damping per
time step for the forward-in-time, centered-in-space finite-difference scheme for the one-
dimensional problem. Equation 3.63 shows analogous equations for the fourth- and sixth-
order diffusion as well. The upper equation is the same as Eq. 3.57, and represents the
damping per time step for second-order diffusion, and the middle and lower equations
apply to fourth- and sixth-order diffusion, respectively: 

. (3.63) 

The amount of damping at different wavelengths for these three diffusion-operator
options is important because it is necessary to filter the poorly resolved, small scales, espe-
cially in the 2–4  range, without greatly damaging the amplitudes of the better-resolved
length scales. Figure 3.34 shows the amount of damping per time step for the second-,
fourth-, and sixth-order terms as a function of wavelength. For each curve, the values of K
and  have been chosen so that the  wave is completely removed, each time step. In
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practice, it would be unusual to use such a large diffusion coefficient, but such an assump-
tion allows us to normalize the curves to reveal relative damping rates. For example, for
the reasonably well-resolved  wave, second-order diffusion removes ~15% of the
amplitude each time step, whereas the higher-order approaches remove 1–2% or less. For
the  wave, second-order diffusion removes about twice the amplitude per time step as
does the fourth-order diffusion.

Figure 3.35 shows the result of the damping in Eq. 3.62, over multiple time steps, by the
second- and sixth-order diffusion terms (n = 2 and n = 6, respectively). A square-wave,
even though it possesses first-order discontinuities that would typically not exist for most
variables in the atmosphere, is chosen for the initial shape of the feature to be diffused.
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Figure 3.35a shows that 100 time steps of the second-order diffusion, in addition to damp-
ing the small scales that make up the corners of the square wave, suppresses the amplitude
of the 25  main wave by ~15%. Higher-order diffusion terms, even though they are
more scale-selective, can introduce new local extrema, or noise, near large gradients in the
model solution. This effect is known as the Gibbs phenomenon. In these schemes, the dif-
fusive flux is not necessarily down gradient, leading to the nonphysical artifacts. One rem-
edy to this problem is described in Xue (2000), wherein diffusive fluxes are set to zero
whenever they are in the same direction as the gradient. Figure 3.35b is analogous to
3.35a, but pertains to the sixth-order diffusion with this flux limiter.  

Figure 3.26 provides an additional illustration of the effect of diffusion operators of dif-
ferent order. Here, the one-dimensional, shallow-fluid, second-order, advection equation,
with a Courant number of 0.1 that produced the “no diffusion” solution, is rerun with dif-
ferent-order diffusion terms. Even though the fourth-order-advection term used for
Fig. 3.28 is more realistic, the second-order approach is employed in this illustration
because it is easier to visualize the effects of the diffusion on the different wavelengths.
For each experiment, the diffusion coefficient was chosen such that 10% of the 2  wave
amplitude was damped each time step. The second-order diffusion damps all wavelengths,
including the main wave. Fourth-order diffusion is more selective in its damping, affecting
shorter waves the most. The sixth-order term only touches the very-shortest waves, espe-
cially those on the right side of the domain that have not yet exited the grid. Further
discussions and examples of the use of diffusion terms or filters to remove small-scale
wave energy can be found in Shapiro (1970, 1975), Raymond and Garder (1976, 1988),
Raymond (1988), Durran (1999), Xue (2000), and Knievel et al. (2007). 
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It is worth noting that the diffusion term should be calculated on a quasi-horizontal sur-
face, and not on a model’s constant sigma or potential temperature vertical-coordinate sur-
faces. For example, the temperature on a terrain-following sigma surface will typically be a
minimum over a mountain. Thus, diffusion of temperature (from high to low values) in the
thermodynamic equation, if calculated on the sigma surface, will produce temperature
increases over the mountain. This temperature rise over the elevated terrain will result in the
development of an erroneous thermally direct wind circulation. Thus, for each grid point,
the variable being diffused should be vertically interpolated from the model-coordinate sur-
face to the horizontal surface passing through the grid point. The value of the diffusion term
calculated on the horizontal surface should then be used in the tendency equation.

To illustrate the effect of this diffusion on the spatial spectrum of a model variable,
Fig. 3.36 shows the kinetic-energy spectrum for a WRF-model forecast having a 10-km grid
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increment. The expected slope of k−5/3 is shown as a reference, and is reproduced by the
model for wavelengths above 7 . But the energy between the 2  and 7  wavelengths
has been damped by the diffusion, resulting in an effective resolution of 70 km, not 20 km.
See Frehlich and Sharman (2008) for an additional analysis of effective model resolution.

Implicit numerical diffusion

Some finite-difference schemes, such as the forward-in-time and backward-in-space
method described in Section 3.4.2, and the odd-order Runge–Kutta time-differencing
schemes mentioned in Section 3.4.4, selectively damp certain wavelength bands (e.g.,
Fig. 3.23). If the damping is controllable and sufficiently scale-selective, this is a desirable
property of the differencing scheme, and an explicit numerical diffusion term may not be
needed to damp poorly resolved shortwave energy.

Grid diffusion

This process results from the fact that the model variables at each grid point are affected
each time step by the variables at neighboring grid points, through terms with spatial
derivatives. The grid increment and the time step thus define the rate at which grid diffu-
sion causes the spread of atmospheric properties through every nonzero term in the equa-
tions that involves a spatial finite-difference expression. Naturally, processes in the real
atmosphere such as advection, turbulent diffusion, and inertia–gravity wave motion cause
information to spread spatially, but grid diffusion is nonphysical, ubiquitous, and can act
rapidly. For example, consider a model with a 25-km grid increment. If we assume a max-
imum wave speed of 50 m s−1anywhere on the grid, and if we conservatively require that
the Courant number be less than 0.7, the time step would be 350 s. Also assume that the
wind speed in the boundary layer is 5 m s−1. With a three-point finite-difference
approximation to an advection term, where the tendency at each grid point uses informa-
tion that is one grid increment away, the information propagates at a speed of , or
over 70 m s−1. This fictitious propagation is over 10 times faster than the speed of the
transfer of information by advection in the boundary layer. Even though this process is
nonphysical, the resulting smoothing or mixing is sometimes used to represent the real dif-
fusion in the atmosphere. Unfortunately, the effect is not controllable in terms of its overall
strength and its ability to selectively damp small scales. 

3.4.8 Numerical implications of the choice of the model vertical coordinate

The following sections provide a brief summary of the numerical implications of the use
of the historically most-common choices for the vertical coordinate in NWP models. See
Sundqvist (1979) for more information.

Height above sea level

At face value, this would seem like an intuitively appealing coordinate. In particular, the
coordinate surfaces are fixed relative to Earth’s surface, and, unlike some other options, the
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pressure-gradient force in the momentum equations is represented by one term, the
gradient of pressure. There are significant problems, however. Because the height surfaces
are penetrated by orographic features at low levels, there are areas of grid points on the
coordinate surfaces where atmospheric properties are undefined. This makes it virtually
impossible to properly calculate derivatives on the constant-z surfaces at the grid points
located next to these voids, and it is impossible to employ spectral methods to define the
horizontal variation of model variables. Lastly, grid-point-model codes typically scan sys-
tematically through the rows and columns of grid points in the matrix of points, and it
becomes very cumbersome to interrupt this process with breaks in the pattern where the
points do not exist.

There is an approach to the use of z coordinates, called the volume-fraction or shaved-
grid-cell method (Adcroft et al. 1997, Steppeler et al. 2002, Walko and Avissar 2008b),
that avoids some of the above disadvantages. Computations for cells that are partially
embedded below the terrain surface are modified to account for the kinematic effect of the
barrier. Even with this approach, a disadvantage relative to terrain-following vertical-
coordinate systems is that employing high vertical resolution immediately above the
surface requires the use of many thin model layers when there is a large variation in topo-
graphic height, thus increasing the computational expense. Another disadvantage is that
the grid cells that intersect topography have different properties than the rest, and thus they
must be treated differently in the numerical algorithms.

Pressure

Pressure is the variable that radiosondes use to define vertical position when observed
values of dependent variables are transmitted to the ground station. So, in some sense,
it may be reasonable to use this as the vertical coordinate in a model in which the radi-
osonde observations must be assimilated. However, this coordinate has virtually the
same problems as does the height system. But the difficulty with orography interrupt-
ing the surfaces is even more problematic because the heights of the pressure surfaces
change with time, and thus does the pattern of the grid points that are masked. During
the integration, grid points will appear and disappear, and it is very difficult to assign
realistic physical properties to grid points that are only temporarily part of the calcula-
tions.  

Potential temperature

Under hypothetical adiabatic conditions, the potential temperature ( ) of a parcel does
not change as it moves, and the parcel remains on  surfaces. That is,  surfaces are mate-
rial surfaces, and when these surfaces are the vertical coordinate surfaces, the vertical
motion ( ) is zero. Even though both real and model atmospheric processes are
close to being adiabatic, outside of the boundary layer and where phase changes are not
consuming or releasing latent heat, they are never perfectly adiabatic because radiative
flux divergences are never zero. So, over those large volumes where  is small,
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vertical advection is also small, and artificial grid diffusion in the vertical is small. This
reduced artificial vertical spread of moisture and other scalar quantities in  coordinates
leads to their more-realistic transport. 

Because this variable is obviously linearly related to temperature, where temperature
gradients are largest the model potential-temperature surfaces are more-tightly packed.
This means that there is more vertical resolution in the model where it is needed most in
order to represent large gradients, for example along quasi-horizontal frontal surfaces and
near the tropopause. Figure 3.37 illustrates a cross section of a front in both pressure (a)
and  (b) coordinates. In  coordinates (Fig. 3.37b), the strong wind shear in the frontal
zone (shaded area) spans one-quarter of the vertical extent of the cross section, whereas in
pressure coordinates (Fig. 3.37a) this shear is concentrated within a narrow region in the
vertical. Also, the fact that the coordinate surfaces approximate material surfaces implies
that horizontal gradients will be smaller than when the coordinate surfaces cut across
fronts. Thus, the truncation error associated with horizontal and vertical derivatives will be
smaller. Because isentropic surfaces intersect Earth’s surface, with or without orography,
potential temperature has disadvantages similar to those of the pressure and height coordi-
nates. Also, near the strongly heated surface of Earth, potential temperature can decrease
with height (superadiabatic lapse rates) in a shallow layer, below where it displays its
normal increase with height. Thus, in a model with this vertical coordinate, any lapse rate
that approaches the adiabatic value during the forecast must be artificially adjusted to a
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more-stable one to avoid the situation where potential temperature is the same at two
places on the vertical scale. Another problem that is in common with sigma coordinates
(see below) is that the pressure-gradient term appears as the horizontal derivative of the
Montgomery potential, which consists of the sum of two terms ( ). The horizon-
tal derivatives of these individual terms can be large, and the pressure gradient is repre-
sented by a small difference between the two large derivatives. Thus, noncancelling
truncation errors in the derivatives can produce large errors in the pressure gradient. 

Sigma-p

The so-called sigma coordinate systems are terrain following and thus avoid the above
noted problems of the height, pressure, and potential-temperature coordinates that inter-
sect the land or water surface. The pressure-based sigma coordinate (Phillips 1957b, Gal-
Chen and Somerville 1975) is defined as

,

where  is a constant pressure chosen for the top of the model,  is the surface pressure,
and p is local pressure at any point in the column. If the top of the model is defined to be at
the top of the atmosphere, we simply have . For , the condition at the
surface,  everywhere. For ,  everywhere. Thus, over any column of
model atmosphere, . Because surface pressure and local pressure are functions
of time, the vertical positions of sigma-coordinate surfaces will change. Figure 3.38 shows
a vertical cross section of sigma surfaces in a model of the eastern USA, where the model
top is located at 500 hPa.

As noted earlier, the pressure gradient in equations expressed in sigma vertical-coordi-
nate systems consists of two terms. In the sigma-p system, one contains the derivative of
the surface pressure, , and the other contains the derivative of the geopotential height of
the sigma surface, as shown in the following pressure-gradient term from the first equation
of motion. 

.

Each term is potentially very large, and the small difference between them represents the
pressure gradient force. Where there are large terrain-elevation gradients, these individual
terms become especially large, and truncation errors that do not cancel in the two terms
create erroneous pressure gradients and accelerations. This issue is partly addressed by
defining a base state condition, and by using perturbation forms of the equations where the
derivatives apply to departures from a mean state. See Mesinger et al. (1988) for a discus-
sion of the history and shortcomings of this coordinate.
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Sigma-z

Where the above sigma-p coordinate system is normalized by the pressure depth of the
model atmospheric column, the sigma-z system (Kasahara 1974) is normalized by the
physical depth of the atmosphere. Specifically
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where  is the constant height chosen for the top of the model,  is the surface height,
and z is local height at any point in the column. Obviously the heights of these coordinate
surfaces do not vary with time. Like the sigma-p system, the coordinate ranges from 0 to 1
through the depth of the model atmosphere.

Hybrid isentropic-sigma

This approach involves the use of terrain-following sigma coordinates in the lower tropo-
sphere and isentropic coordinates above. It retains the advantages of the isentropic repre-
sentation, but avoids the previously mentioned major shortcoming that occurs in the
boundary layer. A variety of these hybrid schemes has been developed. Benjamin et al.
(2004b) should be consulted for more information. 

Step-mountain (eta)

A vertical coordinate described by Mesinger et al. (1988), Black et al. (1993), Black
(1994), and Wyman (1996) is the step-mountain coordinate, also known as the eta coordi-
nate. Figure 3.39 shows a vertical cross section of the coordinate surfaces. The approach
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was motivated in order to avoid the problems of the sigma system that are associated with
steep orographic slopes. As seen in the figure, the orography is constructed from the three-
dimensional grid boxes of the model, with the surface elevation being defined with a dis-
crete set of values. At the vertical surfaces, which are essentially internal hard boundaries,
the normal component of the velocity (circled in the figure) is zero. The coordinate sur-
faces are quasi-horizontal. The eta coordinate is defined as  

, 

where  is the definition of the sigma coordinate provided above,  is the pressure at
the model top,  is the pressure at the surface, and

 ,

which is the value of eta at Earth’s surface. The reference pressures, , correspond to
the pressures at the interface between model layers. For , the eta-coordinate’s defi-
nition simplifies to

.

For flat terrain ( ), the eta coordinate is identical to the sigma coordinate. See the
above references for example simulations using this coordinate.

3.4.9 Time smoothers and filters

Propagating disturbances can be damped by both space and time smoothers. The explicit
numerical diffusion operators described above in Section 3.4.7 are intended to damp or
smooth small-scale disturbances in terms of the spatial variability. Other operators
smooth in the time dimension. Again, propagating disturbances may be smoothed in
either way. In particular, there are situations where, with centered time-differencing
methods, the model solutions at odd and even time steps can depart from each other. This
separation of the solution results from the fact that, after the initial forward time step, the
leapfrog differencing allows even and odd time steps to affect each other only through
the derivative. That is, the leap is from even-to-even and odd-to-odd time steps.
This  oscillation can easily be damped with a time smoother. One of the most popu-
lar is described by Asselin (1972), 

,

where  is any dependent variable and a typical value of  is 0.1. It can be applied at
every time step, or intermittently. 
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3.5 Lateral-boundary conditions

The values of dependent variables must be specified (i.e., not internally calculated) at the
lateral edges of the computational grids of Limited-Area Models (LAMs; that is, every-
thing but global models). Even though some global models used for weather or climate
prediction are capable of resolving mesoscale processes, for the foreseeable future there
will be a need to embed even-higher resolution LAM grids within the coarser models.
Thus, the challenges of dealing with Lateral-Boundary Conditions (LBCs) will need to be
addressed. The LBCs should have the following properties.

• Meteorological features should propagate from coarse- to fine-mesh grids without sig-
nificant distortion.

• Inertia–gravity waves should propagate through the boundary, especially longer-length
waves that are related to important physical processes such as geostrophic adjustment.
Shorter waves may be damped on outflow, but they should not be reflected.

• The LBCs should not allow artificial dynamic/numerical feedbacks between grids that
can cause a catastrophic termination of the model integration.

Note that there are numerous references that describe various kinds of evidence of the
potentially serious effect of LBC error on LAM forecasts (e.g., Miyakoda and Rosati
1977, Oliger and Sundstrom 1978, Gustafsson 1990, Mohanty et al. 1990, and Warner et
al. 1997). Much of the following analysis of LBC effects is based on Warner et al. (1997).

3.5.1 Sources of LBC error

Because the negative impacts of LBCs on LAM solutions are inevitable, our objective
should be to understand the nature of the problems well and learn how to mitigate their
effects.  The LBC’s negative influences can be attributed to at least six factors.

• Low resolution of LBC data – Open LBCs (see Section 3.5.3) are defined based on fore-
casts from coarser-resolution models or analyses of observations, depending on whether
the LAM is being used for operational or research applications. In either case, the hori-
zontal, vertical, and temporal resolution of the boundary information is generally poorer
than that of the LAM, and thus the boundary values interpolated to the LAM grid at
every time step have the potential of degrading the quality of the solution.

• Errors in the meteorology of the LBCs – Even if the LBC-data resolution is hypotheti-
cally similar to that of the LAM, and there is little interpolation error, the quality of the
LBC data may be erroneous for other reasons, especially if they are based on other
model forecasts. That is, the forecast that provides the LBCs may simply be wrong in
some important respect having nothing to do with its resolution. In any case, these
errors will be transmitted to the LAM domain at the grid interface.

• Lack of interactions with larger scales – Specified LBCs determine the computational-
domain-scale structure of the meteorological fields. But, these longer wavelengths
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cannot interact with the model solution on the interior. This limited spectral interaction
can affect the evolution of the LAM forecast because the LAM solution cannot feed
back to the large scales.

• Noise generation – The specific LBC formulation used can produce transient, nonme-
teorological, inertia–gravity modes on the LAM domain. Even though these modes are
thought to not interact strongly with the meteorological solution, they are superim-
posed on the physically realistic fields and can complicate the interpretation of the
forecast.

• Physical-process parameterization inconsistencies – The physical-process parameter-
izations may, sometimes out of necessity, be different for the LAM and the coarser-
resolution model providing the LBCs. The resulting inevitable differences in the
solution at the boundary may cause spurious gradients and feedbacks between the two
grids, which can influence the solution on the LAM domain.

•  Phase- and group-speed contrasts – Earlier in this chapter it was shown that some dif-
ferencing schemes can cause phase- and group-speed errors whose magnitude depends
on how well a wave is resolved on the grid. Thus, as a wave passes between computa-
tional areas with different grid increments, waves can be stretched or compressed.
Browning et al. (1973) refer to a numerical refraction effect resulting from the phase-
speed differences, that causes “unexpectedly large errors” on the coarse mesh of two-
way interacting grids.

3.5.2 Examples of LBC error

At least four general types of studies have been performed, from which we can gain
insight into LBC error. One involves the application of model computational domains of
different size, and from these simulations a direct determination is made of the effect of
the proximity of the lateral boundaries on some measure of the quality of the simulation.
Another type can be grouped into the general category of mesoscale predictability studies
wherein a control simulation is first performed with a LAM. Then, perturbations are
imposed on the model initial conditions or LBCs, and the differences between the model
solutions with and without the perturbations are analyzed and ascribed to specific factors,
including the LBCs. A third category of study uses an adjoint model from which actual
LBC-sensitivity fields are produced directly. Relevant studies from which we can gain
insight are described here. And a fourth type is the Big-Brother–Little-Brother experi-
ment, which is discussed in more detail in Chapter 10. 

Domain-size sensitivity studies

One of the first studies of the effects of defining LAM LBCs with a coarser-resolution
forecast was that of Baumhefner and Perkey (1982). A LAM (Valent et al. 1977) with a
2.5° latitude–longitude (lat–lon) grid was embedded within, and obtained its LBCs from, a
5° lat–lon hemispheric model (Washington and Kasahara 1970). Both models used the
same vertical grid structure and physical-process parameterizations. The LBC “error” was
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first assessed by comparing the solution from this nested system with that from a non-
nested, 2.5° lat–lon version of the hemispheric model. Figure 3.40 shows the
midtropospheric pressure error (difference between the LAM and hemispheric-model
solutions) associated with the LBCs for a 48-h forecast period. Large pressure errors with
amplitudes of 5–10 hPa propagate rapidly onto the forecast domain at middle and high lat-
itudes, primarily from the west and north boundaries, with speeds of 20°–30° lon day−1.
Comparison of this error distribution with the location of synoptic disturbances (not
shown) shows that the error maxima are associated with areas in which significant changes
are taking place at the boundaries. The fairly inactive large-scale meteorological condi-
tions in the subtropics and tropics generate very little LBC error. For LAM simulations in
which the LBCs were provided by a 2.5° lat–lon hemispheric model (i.e., the LAM and
hemispheric models had the same horizontal resolution), errors were also large and had a
similar distribution, indicating that significant LAM errors in these regions resulted from

12 hours 24 hours

36 hours 48 hours

For different simulation lead times, pressure difference at 6 km ASL (about 500 hPa) between simulations from a 

2.5° lat–lon hemispheric model and a limited-area model with the same resolution embedded within a 5° lat–lon 

hemispheric model. The differences are associated with boundary-condition effects. The area delineated is that of 

the LAM domain. The isobar interval is 1 hPa, and negative values are dashed. Adapted from Baumhefner and 

Perkey (1982).

Fig. 3.40



3.5 Lateral-boundary conditions99

the LBC formulation itself and not just the quality of the LBC data. Figure 3.41 summa-
rizes the Root-Mean-Square (RMS) error growth in 500-hPa heights on the limited-area
domain associated with the use of LBCs from the 2.5° (dotted curve) and 5° (dashed
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curve) lat–lon hemispheric models. It is revealing that the error growth in the LAM is sim-
ilar whether or not the LBC information was defined by a model of the same or worse res-
olution. The solid curve shows the difference between the 2.5° and 5° hemispheric
simulations over the area of the LAM domain, and represents the error that is associated
with the use of the 5° unbounded grid compared to the 2.5° unbounded grid. The most
rapid error growth is during the first 24 h for both the 2.5° and 5° LBCs. The fact that the
error associated with the 2.5° LBCs decreases after 24 h probably indicates that some of it
is related to rapidly propagating and damped transients generated at the lateral boundaries
early in the simulation. In contrast, when the 5° LBCs are used there is a continuing prop-
agation of coarse-resolution information that causes the error to generally increase
throughout the forecast. 

This, of course, is not true forecast error because observations are not being used as a
reference. However, it is sobering to see that, when the hemispheric 2.5° simulation is used
as a reference, the hemispheric 5° simulation shows smaller error than do either of the 2.5°
LAM simulations containing the LBC error. That is, when using the 2.5° hemispheric
solution as a standard, higher accuracy is obtained by using only the coarse hemispheric
model rather than the coarse hemispheric model with an embedded higher-resolution
LAM. In another experiment (not shown), where the computational domain was extended
by 20° lon at the east and west boundaries, the center of the domain was protected from
LBC contamination for a longer period, but by 48 h the high central latitudes were contam-
inated from both the east and the west by error propagating inward at about 30° lon day−1.
Baumhefner and Perkey (1982) state that “these experiments lead to the not too surprising
conclusion that boundary locations should be determined from the forecast time frame
selected and the typical boundary error propagation rate.” Comparison of model-
simulation error defined based on observed conditions for the 2.5° hemispheric model and
the 2.5° LAM embedded within the 5° hemispheric model revealed that the LBCs
increased the total simulation error at high latitudes by up to 50% after 24 h. That is, the
total error growth from all non-LBC sources is about twice that which is related to the
LBCs. Naturally, the relative contribution of the LBCs to the total error depends greatly on
the overall predictive skill of the model. It is noteworthy that similar results were obtained
using two totally different algorithms for specifying the LBCs.

A well-controlled demonstration of the domain-size problem is described by Treadon
and Petersen (1993), who performed a series of experiments with 80- and 40-km grid-
increment versions of the US NWS Eta model (Black et al. 1993, Black 1994) with a win-
ter and summer case. While maintaining the same resolution and physics, they progres-
sively reduced the area coverage and documented the impact on forecast skill. The
“control simulation” utilized the full computational domain of the Eta model, while exper-
imental simulations used domains that were progressively smaller, with each having
approximately one-half of the area coverage of the next larger domain (Fig. 3.42). In each
case, US NWS global spectral, T126, previous-cycle forecasts were used for LBCs. For a
winter cyclogenesis case, the 80- and 40-km grid-increment models with the full domain
produced reasonably accurate forecasts. However, the forecast on the smallest domain,
which had its lateral boundaries close to the area affected by the storm, had 500-hPa RMS
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height errors that were twice as large (relative to data analyses) as those of the forecast on
the full domain, by only 12 h into the forecast period. In addition, the surface low-pressure
center was much weaker than observed, and was erroneously placed, in the forecast on the
smallest domain. For a summer case, with much weaker flow over the small domains, the
error growth was qualitatively similar to that of the winter case. Again, RMS 500-hPa
height errors were more than twice as large on the smallest domain than they were on the
largest domain by the 36-h forecast time (Fig. 3.43). An example is shown in Fig. 3.44 of
the rapid influence that the LBCs can have at upper levels, even when the cross-boundary
flow is weak to moderate. For this summer case, Fig. 3.44 illustrates two 12-h simulations
of 250-hPa isotachs from the 40-km grid-increment Eta model. Figure 3.44a shows a
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strong narrow jet streak simulated on the largest domain, while Fig. 3.44b shows that the
same feature on the smallest domain (with the same resolution) has been considerably
smoothed. 
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Mesoscale predictability studies

Predictability studies with mesoscale LAMs have demonstrated that error growth is much
different than what has been documented for global models (Anthes et al. 1985, Errico
and Baumhefner 1987, Vukicevic and Paegle 1989, Warner et al. 1989). When small per-
turbations (errors) are added to the initial conditions (but not the boundary conditions) of a
LAM, the simulation from the perturbed initial state and that from the unperturbed (con-
trol) initial state do not diverge as they would with an unbounded model. The perturbed
atmosphere on the domain interior is advected out of the domain at the outflow bounda-
ries, and the use of identical LBCs in the two simulations causes unperturbed atmosphere
to be swept in at the inflow boundaries. 

In a predictability study that is revealing of LBC effects, Vukicevic and Errico (1990)
used a relatively coarse resolution version of The Pennsylvania State University–NCAR
Mesoscale Model Version 4 (MM4) with a grid increment of 120 km for a 96-h simula-
tion of Alpine cyclogenesis. The LBCs were defined for MM4 using data analyses, and
simulations from the NCAR global Community Climate Model Version 1 (CCM1) that
was initialized at the same time as the LAM. In one experiment, a control simulation
was first performed with MM4, and then the initial conditions were perturbed and the
model was again integrated. The LBCs were based on analyses of data and were thus
“forecast-error free” and the same for both simulations. Figure 3.45 shows the 96-h
500-hPa geopotential-height differences between the two simulations. The largest dif-
ferences between the two simulations are on the eastern, downwind half of the domain
because the identical LBC data strongly influence the model solutions on the western
half.

To gain further insight about LBC effects on LAM solutions, an additional experiment
used normal (control) and perturbed-initial-condition CCM1 forecasts to define the LBCs
of a corresponding pair of MM4 forecasts that had initial conditions that were identical
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and equal to those of the control CCM1 simulation. The perturbed CCM1 initial
conditions were defined so as to emulate expected operational measurement errors. Thus,
this experimental design has considerable relevance to operational forecasting with a
LAM because it isolates the effects of normal errors in a coarse-mesh forecast on the
dynamical evolution of a LAM forecast for which it provides LBCs. Figure 3.46 shows
the 500-hPa geopotential-height difference in the two 6-h LAM solutions, where differ-
ences of over 10 m appear near the domain center over Europe. During this short time,
high-frequency transient modes resulting from the LBC formulation have contaminated
the entire domain. It is important to recognize that the LAM domain employed here has
perhaps four times the area of many LAMs, and thus the LBC error effects would nor-
mally be felt on considerably shorter time scales. Based on these results, Vukicevic and
Errico (1990) state that “medium range forecasts with nested limited-area models may
not significantly reduce RMSEs relative to the same forecasts performed with global
models.” 
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Adjoint sensitivity studies

Variational techniques employing an adjoint model have been used to investigate the sensi-
tivity of LAM forecasts to initial conditions and boundary conditions. The adjoint operator
produces fields that indicate the quantitative impact on a particular aspect of the forecast
of any small, but arbitrary, perturbation in initial conditions, boundary conditions, or
model parameters. This approach has an advantage over the traditional types of predicta-
bility studies discussed above in that the resulting dependencies are not sensitive to the
specific perturbations applied to the initial or boundary conditions. For a more in-depth
discussion of this technique, the reader should consult Hall and Cacuci (1983), Errico and
Vukicevic (1992), and Errico (1997). 

Errico et al. (1993) applied this approach to investigate the sensitivity of LAM simula-
tions to conditions on the domain interior and LBCs. A dry version (no moisture variables)
of the MM4 model and its adjoint were employed, where the model had a grid increment
of 50 km and 10 computational layers. The LBCs were provided by linear temporal inter-
polation between 12-h T42 analyses from the European Centre for Medium-Range
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Weather Forecasts (ECMWF). The sensitivity was tested in 72-h simulations of both a
summer and a winter case. A number of aspects of the simulations were investigated rela-
tive to their sensitivity to initial and boundary conditions. We will concentrate on the influ-
ence of the LBCs on the 72-h relative vorticity at the 30 grid points on each computational
level that are within 150 km of the center of the domain. 

Figure 3.47a shows the sensitivity of the 72-h relative vorticity in a small column in the
center of the domain to perturbations of the initial 400-hPa v-component of the wind on
the domain interior for the winter case. (For further discussion of the sensitivity metric,
see Errico et al. 1993.) For comparison, Fig. 3.47b illustrates the sensitivity of the same
72-h vorticity to the v-component of the wind on the lateral boundaries. The LBC-
sensitivity metric extends over four rows and columns of grid points near the boundary
because the LBC formulation in this model is such that LBCs are defined at all four points
closest to the boundary. The isopleth intervals differ greatly between Figs. 3.47a and 3.47b
(see caption). The LBC and grid-interior sensitivities are only in the upwind directions to

(b)(a)

Sensitivity of the 72-h relative vorticity in a limited volume in the center of the domain (black circle, panel a) to 

perturbations of the 400-hPa v-component of the wind on (a) the domain interior and (b) the lateral boundaries at the 

initial time for the winter case. For panel “a” (“b”), the maximum absolute value is 1.4 units (8 units), and the isopleth 

interval is 0.25 unit (1 unit). Only the western one-half of the computational domain is shown. Adapted from Errico et 

al. (1993).

Fig. 3.47
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the west and north. Table 3.2 summarizes the maximum value of the sensitivity metric on
the domain interior and on the lateral boundaries at four times during the simulation, and
indicates that, as expected, the sensitivity of the 72-h vorticity to conditions on the domain
interior is less for early times of the simulation. That is, the 72-h vorticity simulation tends
to “forget” the impact of the perturbations as these conditions become more temporally
removed. In terms of the effect on the 72-h simulation, the 48-h LBCs are more important
than those at other times because the 24-h difference (between 48 h and 72 h) is the time
required for the LBC signal to propagate to the center of the domain at this level. It is
interesting that the 72-h forecast is less sensitive to initial condition (t = 0) perturbations
(1.4 units) than it is to LBC perturbations at any time (8–150 units). The results for lower
levels in the model (i.e., perturbations below 400 hPa) with weaker winds are qualitatively
similar except that it naturally requires more time for LBC effects to penetrate to the
center of the domain. For the summer case, the weaker wind speeds cause a factor-of-two
slower propagation of the sensitivity.

Big-Brother–Little-Brother experiments

In these experiments, a high-resolution model whose grid spans a large area is used to gener-
ate a reference simulation. This is the Big-Brother simulation. Then, using the identical
model, another simulation is performed for a sub-area within the reference-simulation’s grid.
Lateral-boundary conditions are provided based on a data set that results from filtering all but
the larger scales from the Big-Brother solution. This is the Little-Brother simulation. Because
the experimental conditions in the two simulations are exactly the same, except for the pres-
ence of the LBCs in the Little-Brother simulation, differencing the two model solutions over
the area of the smaller grid isolates the effect of the LBCs. See the discussion in Section 10.4
for additional information and references about this type of experiment. An example illustrat-
ing LBC effects that have been isolated using this method is shown in Fig. 3.48. Shown is the
computational-domain-averaged precipitation rate for the area of the small grid, based on both
the Big-Brother and Little-Brother simulations. The Canadian Regional Climate Model (Caya
and Laprise 1999) was employed here in a test of regional climate modeling methods. The
existence of the LBCs in this case had very little effect on the average precipitation rate.

Table 3.2 Maximum values of the metric of the sensitivity of the 72-h relative vorticity near the center of
the domain to the 400-hPa v-wind component on the lateral boundaries and on the domain interior. Values
are shown pertaining to the sensitivity of the 72-h vorticity to the v-component perturbations at four times
during the simulation. 

Simulation time (h)

0 24 48 60

Lateral boundary sensitivity 8 40 150 52

Interior sensitivity 1.4 18 76 93

Source: From Warner et al. (1997).
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3.5.3 Types of LBC formulations

Open, or free, LBCs allow values of variables to be externally specified based on forecasts
from a larger model grid (e.g., a global model), or from gridded analyses of data. There are
two approaches for defining LBCs from a coarser-resolution grid. One involves the simul-
taneous integration of the LAM and a coarser-mesh model within which it is embedded,
where the information flow between the domains is in both directions. See Harrison and
Elsberry (1972), Phillips and Shukla (1973), and Staniforth and Mitchell (1978) for a dis-
cussion of such techniques. In the other approach, LBCs are prescribed based on the out-
put from a previous integration of a coarser-mesh model or an analysis of observations.
The development of these techniques is described in Shapiro and O’Brien (1970), Asselin
(1972), Kesel and Winninghoff (1972), and Anthes (1974). The first approach is called
two-way interactive nesting, and the latter is called one-way, or parasitic, nesting. In both
cases, meteorological information from the coarser-mesh domain must be able to enter the
fine-mesh domain, and inertia–gravity and other waves must be able to freely exit the fine-
mesh domain. With the two-way interacting boundary conditions, the information from
the fine mesh can affect the solution on the coarse mesh, which can feed back to the fine
mesh. An example of the desirability of this approach is provided in Perkey and Maddox
(1985), who use numerical experiments to show that a convective-precipitation system can
influence its large-scale environment, which can then feed back to the mesoscale. Note
that LAMs that employ a two-way interacting nested grid system must generally obtain
LBCs for their coarsest-resolution domain from a previously run global model or from
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analyses of observations. Thus, whether or not a two-way interacting nesting strategy is
employed, the use of a one-way interacting interface condition is almost always necessary. 

For the interface condition between domains of a two-way interacting nest, a variety of
approaches are successfully used for interpolating the coarser-grid solution to the finer
grid, and for filtering the finer-grid solution that is fed back to the coarser grid (Clark and
Farley 1984, Zhang et al. 1986, Clark and Hall 1991). For one-way interacting grids, tech-
niques are common that filter or damp small scales in the fine-mesh solution near the
boundary (Perkey and Kreitzberg 1976, Kar and Turco 1995). For example, in the Perkey
and Kreitzberg (1976) approach, a wave-absorbing or sponge zone near the lateral bound-
ary prevents internal reflection of outward-propagating waves through an enhanced diffu-
sion as well as truncation of the time derivatives. In these approaches, the fine grid is
forced with large-scale conditions through a relaxation or diffusion term (Davies 1976,
1983, Davies and Turner 1977).

It is intuitive that two-way interactive nesting should provide for better model solutions
on the finest grid than does one-way, parasitic nesting, simply because upscale effects can
feed back to the fine mesh. This has, in fact, been demonstrated, for example by Clark and
Farley (1984) for forced gravity-wave flow, and as noted earlier by Perkey and Maddox
(1985) for convection. However, there are sometimes practical reasons for one-way nest-
ing. For example, for operational nested modeling systems, one-way nesting allows the
coarse-grid forecast to be completed first, and the products made available quickly to fore-
casters while the more computationally intensive calculations are taking place for the finer
grids. And, in situations where significant computer-memory limitations exist, it is some-
times essential to limit calculations to one grid at a time.  

For simple research or educational models, periodic, or cyclic, LBCs may be employed.
Here, the grid points near one edge of the domain are coupled with those near the opposite
edge, so that features that exit at one boundary enter at the other. This is illustrated in
Fig. 3.49 for a three-point horizontal differencing scheme applied on a one-dimensional
grid. At each time step, after the extrapolation in time is performed for grid points 2
through , the values of the variables at the penultimate points are used to redefine
the values at the corresponding edge points. For a model that uses five-point horizontal

jmaxjmax–1

1 2

Transfer of information between grid points at the edges of a computational grid that employs cyclic, or periodic, LBCs.Fig. 3.49

jmax 1–
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differencing, one more overlap point would be required near each edge. In a model with
two horizontal dimensions, LBCs can be periodic in both directions. Or, a periodic LBC
can be employed in only one direction, and an impervious wall boundary condition can be
assumed on the other two edges, in which case the model is called a channel model.

3.5.4 Some practical recommendations

The studies described in the previous section, and others, are synthesized into the follow-
ing recommendations for how LBC effects can be minimized in any LAM application.

(1) Utilize a lateral-boundary buffer zone

The LBC errors that reach the central part of a LAM grid are sometimes so large as to render
the LAM forecast to be of no more value than that of the coarser-mesh model that produces
the LBCs. In this situation, if enough computational resources are available, the lateral
boundaries can be distanced from the central part of the LAM grid so that LBC errors do not
penetrate to this region during a forecast with the desired duration. Alternatively, a standard
domain area can be employed and the forecast duration can be limited so as to prevent pene-
tration of the LBC errors into the central area of meteorological interest. Table 3.3 illustrates
the domain sizes and forecast-duration limits that are necessary in order to minimize LBC
impacts for different meteorological regimes and forecast-area length scales. 

To illustrate the implications of the need for an LBC “buffer zone”, a typical LAM con-
figuration will be assumed, and the useful length of the forecast will be calculated. It will be
assumed that the lateral boundaries are removed in each direction from the area of meteoro-
logical interest (having length scale L) by a distance equal to one-half L. For example, if the
computational domain has 100 grid points in each direction, the inner protected area of
meteorological interest on the model domain is represented by the central subset of 50 × 50
points. Most modelers would agree that this is a reasonable compromise, even though there
are three times as many computational points in the buffer-zone region outside the area of
interest than there are in it. This seemingly large computational “overhead” is generally
accepted as unavoidable. The useful period of the forecast is defined here as the time
required for LBC influences to advect to the central forecast area.5 Table 3.3 shows the use-
ful forecast periods (entry a) for four different computational areas with different scales
(rows), and for four different meteorological regimes (columns). Average midtropospheric
wind speeds (S in Table 3.3) are used in the advection-time calculation for midlatitude win-
ter and summer regimes, and for the tropical regime. For the midlatitude-uncoupled regime,
it is assumed that there is weak vertical coupling and that the dominant meteorological
processes are forced by lower-tropospheric effects. The smallest domain has the size of a
large city (row 1, metropolitan area), the next larger one spans an area equivalent to the cov-
erage of a typical weather radar (row 2, radar-range area), the next larger one covers about a

5  For simplicity, it is assumed here that the advective speed represents the speed with which LBC error pen-
etrates inward on the LAM domain. However, LBC errors may be propagated by nonadvective waves such as
inertia–gravity or Rossby waves. 
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quarter of a typical continent (row 3, regional area), and the largest one covers an entire
continent (row 4, continental area). For the metropolitan-area domain, the forecast is hardly
more than a “nowcast”, regardless of the regime (entry a, useful forecast length). The radar-
range and regional domains are of a scale that might be appropriate for regional weather
prediction for small to moderate size countries, but unless they are in the tropics the fore-
cast period is generally limited to considerably less than one day. Only for continental
domains can useful forecasts have durations beyond a day. 

Also shown in Table 3.3 is the lateral boundary displacement (entry b), in units of L,
required to produce a forecast of “standard” duration (column 3) without LBC-error pene-
tration to the domain interior. In addition, for each of these extended domains is computed
the ratio of the number of buffer-zone grid points to the number of interior forecast-area
grid points (entry c), which serves as a metric of the computational overhead resulting
from the need for a buffer zone. If the buffer-zone width is increased for the small domains
to allow for forecasts with a longer, more operationally useful, duration, the computational
overhead generally becomes quite large. For example, to obtain a 6-h forecast in winter
with the metropolitan area domain could require an overhead factor of between 500 and
1000. Often it is possible to take advantage of an asymmetry in the speed/direction

Table 3.3 For four different computational areas (rows) and four different meteorological regimes (columns): auseful duration
of forecasts for a standard domain; bwidth of buffer zone required (in units of L, defined in column 2) for forecasts of “standard”
duration (defined in column 3); and cratio of buffer-zone grid points to central forecast-area grid points for forecasts of
“standard” duration. 

Meteorological regimes

Forecast
domain size

Interior
forecast-area 
length scale 
(L)

“Standard” 
forecast 
duration

Winter 
mid lat
S = 30 m s−1

(~60 kt)

Summer 
mid lat
S = 15 m s−1

(~30 kt)

Tropical
S = 8 m s−1

(~15 kt)

Mid lat 
uncoupled
S = 5 m s−1

(~10 kt)

Metropolitan 
area

50 km 6 h a14 min
b13.0 L
c724

a28 min
b6.5 L
c194

a52 min
b3.5 L
c63

a1.4 h
b2.2 L
c27

Radar-range 
area

500 km 18 h a2.3 h
b3.9 L
c76

a4.6 h
b1.9 L
c23

a8.7 h
b1.0 L
c8

a13.9 h
b0.6 L
c4

Regional 
area

2000 km 36 h a9.3 h
b1.9 L
c23

a18.5 h
b1.0 L
c8

a34.7 h
b0.5 L
c3

a55.6 h
b0.3 L
c1.7

Continental 
area

5000 km 72 h a23.1 h
b1.6 L
c16

a46.3 h
b0.8 L
c6

a86.8 h
b0.4 L 
c2

a138.9 h
b0.3 L
c1.3

Source: From Warner et al. (1997).
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climatology of the prevailing advecting wind, and increase the width of the buffer zone in
the direction of stronger prevailing flow. Using available computational resources wisely
by asymmetrically protecting the domain interior is recommended, but this will likely only
permit an increase in the useful duration of the forecast by less than 50% compared to the
use of a symmetric buffer zone with the same number of grid points. It has been implied
that the LBC error is sufficiently large that it overwhelms the forecast accuracy when the
error penetrates to the domain interior. However, there are measures that can be taken to
control the amplitude of the LBC errors, and some current LBC formulations may not be
especially damaging to the model solution. 

(2) Minimize interpolation error with the lateral-boundary data

The actual magnitudes of LBC errors will depend on a number of factors including the
quality of the coarse-mesh forecast that is producing the LBCs and the magnitude of the
error associated with the spatial and temporal interpolation from the coarse mesh to the
LAM domain at the lateral boundaries. The interpolation error can be reduced through the
frequent passing of LBC information from the coarse-mesh model to the LAM. For exam-
ple, passage of a fast-moving mesocyclone through the boundary may be missed entirely
if LBC data are updated only every six hours. 

(3) Use compatible numerics and physics with the LAM and the model providing the LBCs

The use of reasonably consistent physical-process parameterizations (convection, cloud
microphysics, turbulence, and radiation) on the two grids will minimize unrealistic gradi-
ents that can develop at the interface and propagate onto the LAM domain through advec-
tion and inertia–gravity waves. For example, Warner and Hsu (2000) show how
parameterized convection on an outer grid can strongly influence resolved convection on
an inner grid through LBC-forced mass-field adjustments. 

(4) Employ well-tested and effective LBC formulations

Many LBC formulations for meteorological models are inherently ill-specified mathemat-
ically, and thus engineering approaches have been devised to minimize the potentially
serious numerical problems that can develop. The LBC formulation used should be suffi-
ciently well tested and designed so that it does not generate significant-amplitude, inertia–
gravity waves that can move toward the central area of the domain at much greater than
advective speeds. Even though some of the examples presented earlier demonstrate that
this error can be significant, the use of appropriately engineered LBC algorithms can often
limit the amplitude of this mode of error propagation to acceptable levels.

(5) Allow for effects of data assimilation on LBC impact

The use of a preforecast FDDA period can have both a positive and negative effect on the
LBC influence, whether continuous or intermittent assimilation techniques are utilized.
On the one hand, the preforecast integration period will allow LBC error to propagate
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closer to the domain center by the start of the forecast. Conversely, the data assimilated
during the period will partially correct for errors of LBC origin that are within the influ-
ence region of the observations. 

(6) Account for importance of local forcing

If strong local forcing mechanisms prevail within the fine mesh, and dominate the local
meteorology, the forecast quality may not be as strongly affected by LBC errors as it
would otherwise be. For example, the time of onset of a coastal-breeze circulation is more
strongly correlated with local thermodynamic effects than with specific characteristics of
the large-scale flow field and its LBC-related errors.

(7) Avoid strong forcing at the lateral boundaries

Strong dynamic forcing at the lateral boundaries can create numerical problems with
many LBC formulations. Even though it is not possible to avoid the passage of transient
high-amplitude meteorological phenomena through the boundaries, it is possible to avoid
collocating lateral boundaries with known regions of strong surface forcing such as asso-
ciated with steep orography and surface temperature gradients. Locating large terrain gra-
dients near or at lateral boundaries is one of the most common ways in which LBCs can
cause the catastrophic failure of a model integration.

(8) Utilize interactive grid nests when possible

When a LAM cannot influence the solution of the coarser-mesh model that provides its
boundary values, the scale interactions of the LAM-resolved waves and those on the large
scale are prevented. In addition, the use of a two-way interactive interface can, but will not
necessarily, reduce the development of spurious gradients at the boundaries. Thus, interac-
tive boundaries should be employed where possible, rather than one-way-specified bound-
aries.

(9) With any new model application, perform sensitivity studies to determine 

the LBC influences

After considering the experiences described in the last section, it should be clear that LBC
sensitivity studies should be performed for any new application of a LAM, especially if
the aforementioned recommendations regarding the buffer-zone width are not taken liter-
ally. These sensitivity studies should include the testing of the dependence of forecast
accuracy on buffer-zone width, the sensitivity of the forecast quality to different LBC for-
mulations, and a comparison of the LAM skill to that of other operational modeling sys-
tems that have unbounded domains. A practical test for any LAM application is to
compare the solution over the limited area with that from a model with equivalent resolu-
tion integrated over a much larger domain (Yakimiw and Robert 1990). If the LAM is to
be used operationally, the forecasts naturally should be evaluated for LBC sensitivity over
a wide range of events within all seasons.



Numerical solutions to the equations114

3.6 Upper-boundary conditions

Artificial upper-boundary conditions are required in all atmospheric models because the
model atmospheres do not extend to infinity. Indeed, for some historical applications the
upper boundary has been located within the troposphere in order to save computational
resources. An example of this approach is that Lavoie (1972) placed the upper model
boundary, the “lid”, at the top of the boundary layer. Pielke (2002a) describes the location
of the upper boundary in various historical model applications. 

Upward-propagating internal-gravity waves, for example generated by mountains or by
deep convective storms, can extend to great heights in the atmosphere. Commonly used
upper-boundary conditions (e.g., rigid lid, free surface) completely reflect these waves,
which is a problem because no such reflection happens in nature, and erroneous downward-
propagating waves contaminate the model solution. There are a number of approaches for
preventing this from happening. One involves the use in the model of a gravity-wave absorb-
ing layer, or sponge layer, immediately below the model top, to prevent the wave from
reaching the top and reflecting. Such wave absorption can be produced by employing a
greatly enhanced, artificial horizontal and/or vertical diffusion (viscosity), where the viscos-
ity increases from the standard value at the bottom of the layer to a maximum at the top
boundary. A particular disadvantage of this approach is that the absorbing layer may need to
be thick, spanning a large number of model layers and thus involving a large computational
overhead. The overall effectiveness of the absorption depends on the wavelength of the grav-
ity wave, the thickness of the absorbing layer, and the distribution of viscosity in the layer.
Note that using a shallow absorbing layer with a very large, but computationally stable, vis-
cosity will not be effective because large gradients in viscosity will also cause wave reflec-
tions. Klemp and Lilly (1978) defined the entire upper half of their computational domain as
the absorbing layer. Figure 3.50 shows a two-dimensional model solution for idealized flow
over a maximum in the orography, with and without the use of a viscous damping layer. The
Gaussian obstacle had a 5-km half-width, and an amplitude of 1 km. Shown is the vertical
motion field in the lowest 10 km of the 50-km-deep model. The model is described in Shar-
man and Wurtele (1983). The damping spanned the 20 km below a rigid lid that defined the
model top. Without the damping, the reflected waves produce considerable noise in the trop-
osphere, over 40 km below the model top. The waves in the solution for the experiment with
the absorbing layer could be a result of imperfect damping, or more likely they could be a
consequence of wave reflections from the lateral boundaries. An alternative approach for
damping the waves before they reach the upper boundary is to use a Raleigh damping layer,
again below the model top, where model variables are relaxed toward a predetermined refer-
ence state. For example, the Rayleigh damping term in a prognostic equation would be like

,

where  is any dependent variable,  is the reference value of that variable, and 
increases upward within the damping layer and defines its vertical structure (e.g., see

t∂
∂α τ z( ) α α–( )=

α α τ z( )
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Durran and Klemp 1983). Israeli and Orzag (1981) compare the Rayleigh-damping and
viscous-damping methods.

A completely different approach, which does not rely on an absorbing layer, involves
the use of a radiation boundary condition. Here, values of variables at the boundary are
modified during the integration to minimize wave reflection. Clearly the term radiation
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Vertical motion over the lowest 10 km of the atmosphere from two-dimensional model simulations of flow over ele-

vated orography (see the black shading at the bottom), with a viscous layer at the top of the model (a) and without a 

viscous layer (b).  The flow was from left to right, and downward motion is shaded. The damping layer spanned the 

upper 20 km of the 50-km-deep model.  Provided by Robert Sharman.

Fig. 3.50
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refers to the fact that waves are intended to radiate through the boundary, and not reflect
from it. These approaches are discussed in Durran (1999) and Klemp and Durran (1983),
and compared with the sponge approaches in Israeli and Orzag (1981).

3.7 Conservation issues

The various numerical approaches used in atmospheric models possess inherent properties
that determine the extent to which they conserve mass, energy, and other quantities. Even
though we might like to see a model have the same conservation properties as the continu-
ous equations and the real atmosphere, there are many factors that enter into the choice of
numeric methods, such as the inherent damping of small-scale energy, the correct render-
ing of phase speeds, and numerical efficiency. That said, systematic leaks in mass or
energy that are manifested as slow artificial drifts in the model mean state may be tolera-
ble for short-term forecasts, but definitely would not be for integrations on climate time
scales. Thus, serious consideration needs to be given to the degree to which spurious
sources and sinks of physical quantities are acceptable for a particular model application.
Thuburn (2008) contains a summary of conservation issues for weather-prediction and cli-
mate models, and suggests that we can expect accurate solutions from models provided
that the time scale for artificial numerical sources is long compared to the time scale for
the true physical sources. 

The conservation of mass is arguably the most absolute conservation property, given
that true physical sources are irrelevant. And, unlike other quantities, mass is conserved
for diabatic and frictional processes. If mass is not conserved, it affects the surface pres-
sure distribution, and in turn the circulations. Sometimes when models do not conserve
mass, a nonphysical, so-called mass-fixer is used each time step to correct for changes in
the total global mass, but where the mass is added or removed in the correction is arbi-
trary. Furthermore, if total mass is not conserved, neither are the various constituents
such as water vapor or long-lived chemical species. Thuburn (2008) argues that, at least
for long climate simulations, there is a very strong argument for requiring dynamical
cores to conserve total mass, and therefore the mass of constituents. He also discusses the
situations in which it is important to conserve momentum, angular momentum, potential
enstrophy, energy (kinetic, and available and unavailable potential), entropy, and poten-
tial vorticity.

3.8 Practical summary of the process for setting up a model 

This section is meant to summarize how our knowledge of the numerical processes dis-
cussed in this chapter should serve as a guide for setting up a model. There are additional
factors that must be considered, such as the appropriateness of physical-process parame-
terizations, but these are reviewed in other chapters. It is assumed in the following that the
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time step is internally determined by the model, and that there is no choice in the methods
used to solve the equations (e.g., spectral versus grid-point approaches, explicit versus
semi-implicit time differencing, etc.).

• Based on a knowledge of the purpose for using the model and the prevailing meteor-
ology in the geographic area to be modeled, determine the physical processes that must
be simulated or forecasted.

• Choose a horizontal grid increment that is sufficiently small to resolve all the processes
to be represented on the grid. 

• Define a vertical distribution of grid points that adequately defines anticipated impor-
tant vertical structures (e.g., boundary-layer gradients, low-level jets, the tropopause)
and, if possible, ensure reasonable compatibility of the vertical grid increment with the
horizontal increment.

• For limited-area models, choose the map projection that is most suitable for the range of
latitudes represented by the model grid. View a graphic of the map-scale factor at each
grid point when setting up the model grid to confirm the degree to which it departs from
unity. 

• Compare the model solution with observations, and quantify the skill. If the model is
to be used as a general research or operational-forecasting tool, numerous cases
should be chosen from all seasons. Just because the model has been reported to be
accurate for other locations and configurations, do not assume that this step can be
avoided.  

• For limited-area models, perform tests to define the sensitivity of the accuracy of
the model solution to different locations of the boundaries and different domain
sizes. 

• Perform tests to determine the sensitivity of the model accuracy to the vertical and hori-
zontal grid increments.

Section 10.1 provides additional practical guidance for applying models to perform research
case studies.
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PROBLEMS AND EXERCISES

1. For the 24-point grid referenced in Fig. 3.32, list all the combinations of interacting
wavenumbers that produce aliasing, and the erroneous wavenumbers that results from
the interactions.

2. Derive an expression for the ratio of the five-point numerical approximation to the
derivative and the analytic solution for the derivative, analogous to what is shown for
the three-point approximation in Section 3.4.1.

3. Explain graphically, or in words, why the truncation error for the forward-in-space dif-
ferencing formula in Eq. 3.25 is dependent on position within the wave, in addition to
how well the wave is resolved on the grid.

4. Given that Fig. 3.27 shows that the use of Courant numbers close to unity produces
more-realistic solutions than do smaller values, for the centered-in-space and centered-
in-time approximation to the advection term, why can’t we use sufficiently large time
steps to ensure the prevalence of these large Courant numbers?

5. Prove the orthogonality of the exponential function.
6. Using the programming language of your choice, construct a one-dimensional model

based on the shallow-fluid equations (Chapter 2) with three-point time and space dif-
ferencing and no explicit diffusion. Assume periodic lateral-boundary conditions, and
perform the following experiments. 
• Simulate an advective wave and a gravity wave. 
• Choose a time step that violates the linear stability criterion, and output the model

solution each time step.
• Add an explicit diffusion term and show its effect on the model solution for different

diffusion coefficients.
• Alter the time step to evaluate how the use of different Courant numbers affects the

model solution.
• For the same initial conditions, evaluate the effect of horizontal resolution on the

model solution. 
7. Some studies with LAMs (e.g., Alpert et al. 1996) suggest that the quality of simu-

lations decreases as lateral boundaries become too distant from or too close to the area
of meteorological interest. Provide possible explanations for this situation.

8. Given the typical spacing of radiosonde soundings (~400 km), explain the types of
meteorological processes that can be adequately resolved by them in the initial con-
ditions.

9. Regarding Fig. 3.44, explain why the jet streak simulated on the small domain is so
much smoother than the one simulated on the larger domain.
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4.1 Background

The parameterization problem involves algorithmically or statistically relating the effects
of physical processes that cannot be represented directly in a model to variables that are
included. Physical processes are parameterized for a few reasons.

• The small scales involved make it too computationally expensive to represent a process
directly. 

• The complexity of a process makes it too computationally expensive to represent
directly. 

• There is insufficient knowledge about how a process works to explicitly represent it
mathematically. 

The representation of atmospheric processes in models takes place within the dynami-
cal core as well as through the so-called model “physics”. The dynamic processes include
the propagation of various types of waves (e.g., advective, Rossby, inertia–gravity). Even
though the physics processes are parameterized to a large degree, their correct rendering
by a model is nevertheless essential for the prediction of virtually all of the dependent var-
iables. The parameterized processes that are discussed in this chapter include cumulus
convection, cloud microphysics, turbulence, and radiation. Land-surface processes are
also parameterized because they occur on too small a scale to be represented directly, but
they are discussed separately in Chapter 5.

Even though parameterizations are typically developed and discussed independently
from each other, and from the dynamical core, this is artificial and should be avoided. This
is because parameterizations do interact, and the realism of this interaction determines the
accuracy of the model. For example, the parameterized spectral solar radiation represents
an energy flux at the land surface, and the land-surface parameterization partitions some
of it to the sensible heating of the ground. The resulting land–atmosphere fluxes provide
lower-boundary conditions to the surface-layer and boundary-layer parameterizations of
turbulence, which distribute heat and moisture throughout the lower atmosphere. And,
when the water vapor condenses, parameterizations of convection are relied upon to repre-
sent all aspects of the associated subgrid-scale processes. And, microphysical processes
that are related to the development of hydrometeors are parameterized for stable precipita-
tion. In turn, convective-cloud and stable-cloud effects on radiation must be parameter-
ized, where this radiation attenuation strongly influences the surface temperature through

4 Physical-process parameterizations
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the land-surface parameterization. Thus, because of these interdependencies, parameteri-
zations should not continue to be developed in isolation. A more holistic approach is
greatly needed if we are to reduce model error.

An issue that will be discussed below is that the performance of some parameterizations
can depend on season and the meteorological processes that prevail in specific geographic
regions. For example, some convective parameterizations are more appropriate for midlat-
itudes, while others perform better in the tropics. And, models employed for polar
applications will use parameterizations that are different from those that are applicable for
midlatitude, coastal-zone simulations, etc. And, the same parameterization is sometimes
tuned for specific needs. An obvious related issue is that global models must use the same
parameterizations for all geographic areas, thus eliminating the option of choosing ones
that best suit a particular region.

Figure 4.1 illustrates how parameterizations fit within the overall framework of a
model. The term “resolved” in the upper box refers to grid-scale processes that do not
need to be parameterized. An important aspect of this figure is that the primary inputs for
parameterizations of any type are the resolved-scale structures of the atmosphere that
control the process that is being parameterized. As a very simple example, the resolved
static stability near the ground can be used to infer the strength of subgrid-scale turbu-
lence in the boundary layer, which controls the grid-box-average vertical fluxes in the
tendency equations for temperature, humidity, and wind. Similarly, layer-average relative
humidity from the model can be used to infer the fractional-area coverage of subgrid-
scale cumulus clouds, which can be used in the equation that calculates the radiation
reaching the surface. Thus, a parameterization relates the resolved-scale input variables
to the resolved-scale effects (  in Fig. 4.1) of the parameterized process. It will be
seen that parameterizations can have a wide range of complexities. The middle box in

Algorithmically
represented processes

Resolved-scale
variables 

Resolved
processes 

∂ΦR
∂t

∂ΦP
∂t
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 Schematic showing how a predictive equation for a dependent variable  has contributions from terms that corre-

spond to resolved processes (subscript R) and parameterized processes (subscript P). The inputs to the parameteriza-

tions are the resolved-scale atmospheric variables. 

ΦFig. 4.1
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Fig. 4.1 can be a simple look-up table, or it can be so computationally intensive
that  cannot be recalculated at every time step

Refer to Eqs. 2.1–2.6 to see how the effects of parameterized processes are included in
the prognostic equations. The momentum equations, Eqs. 2.1–2.3, contain friction terms
(Fr), that are separated into viscous and turbulent stresses in Eq. 2.16. The rest of the
terms are solved using the methods described in Chapter 3, and their numerical form is
part of the dynamical core of the model. But the friction, for example in the boundary
layer, results from the existence of the turbulent eddies that cannot be resolved. The
boundary-layer parameterization will define these friction terms. Similarly, the diabatic
heating–cooling term (H) in the thermodynamic equation, Eq. 2.4, contains contributions
from phase changes of water that are defined in the microphysical and convective parame-
terizations, from heat transport by the parameterized turbulence fluxes near the surface,
and from the radiation parameterization. 

It is important to be aware that parameterizations are generally developed with certain
grid increments in mind. That is, only those aspects of the physical system that are not
resolved by the model need to be parameterized. Thus, the modeler should be aware of
such assumptions when deciding on parameterizations to employ for a given purpose.
There is another general parameterization issue that is related to model resolution: As
model grid increments continue to decrease as computing power increases, the models
begin to partially (i.e., poorly) resolve some processes that are being parameterized. Thus,
there is the risk of “double counting” processes. The consequence of this situation is that
there is a range of grid increments for which a process is too poorly resolved to represent
explicitly, but there is not a sufficient separation between resolved and parameterized
scales for the parameterization assumptions to be valid. 

Stensrud (2007) represents the best review available of all the types of parameterizations
used in atmospheric models. The discussions in this chapter often follow those in that reference. 

4.2 Cloud microphysics parameterizations

Cloud microphysics encompasses all cloud processes that occur on the scales of the cloud
droplets and the hydrometeors, rather than on the scale of the cloud itself. The correct mod-
eling of these processes determines the skill with which precipitation type, amount, and
spatial distribution are forecast. Similarly, microphysical processes are the cause of the
potentially destructive straight-line winds of convective outflow boundaries. And, cloud
horizontal and vertical distributions must be modeled well in order for the radiation and
surface energy budgets to be predicted with accuracy. Microphysical processes are also crit-
ically important in climate modeling. For example, the physical system may respond to
increases in greenhouse gases with an alteration in global cloud properties (and albedo),
which can have a potential positive or negative feedback relative to the original temperature
increase. And, the microphysical impacts of increased natural or anthropogenic aerosols in
the atmosphere of a modified climate must be represented in a model because this can
change precipitation efficiency. 

∂ΦP ∂t⁄
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Historically, stratiform clouds have been explicitly represented in NWP models, with
the microphysics parameterized, because their large horizontal extent has allowed them to
be resolved by most grids. In contrast, the small horizontal size of most convective clouds
relative to typical grid increments has meant that they have been subgrid-scale phenom-
ena, and thus their effects are represented through parameterizations. Thus, the same
model parameterizes one type of cloud and explicitly represents another. The two compo-
nents of the model compete for water vapor, and model output files generally include sep-
arate variables for convective precipitation and stable precipitation. This situation still
prevails for most operational NWP models, and for climate models. 

For research applications, and for some operational LAMs, the horizontal grid incre-
ments can be sufficiently small so that the models, called cloud-resolving models, can
explicitly represent moist convection on the grid. This allows the same model code,
including microphysics parameterizations, to represent all moist processes – a much more
appealing situation than the one noted above where different parts of the model apply to
convective and stratiform cloud. The horizontal grid increment below which cloud-
generating circulations can be explicitly represented by a model is very situation depend-
ent. Weisman et al. (1997) suggests that a grid increment of 4 km is sufficient to resolve
squall-line convection. However, there will never be a grid increment below which micro-
physical process will not need to be parameterized. This is because such processes, as we
will see, exist on the cloud-droplet and rain-drop scales of micrometers to millimeters;
indeed, even the molecular scales are relevant. 

4.2.1  Microphysical particles and processes

The following summary is provided for the reader who has not had the benefit of a
course in cloud microphysics. The particle types and the microphysical processes that
they undergo are important in the context of the generation of precipitation in its vari-
ous forms, and thus they should be parameterized in some way in atmospheric models.
Further information can be obtained from Fletcher (1962), Rogers (1976), Cotton and
Anthes (1989), Rogers and Yau (1989), Houze (1993), Pruppacher and Klett (2000),
and Straka (2009). The particle types that are involved in microphysical processes are
listed below. 

• Cloud droplets – These are liquid drops, with a typical radius of 10 , that form
through the condensation of water vapor in the presence of a cloud-condensation
nucleus (CCN, small particles that have an affinity for water).

• Rain drops – Cloud droplets can grow to rain drops through the accretion mechanism
described below, or rain drops can result from the melting of snow crystals. Rain drop
radii range from 100 to 1000 .

• Ice crystals – Water droplets freeze in the presence of an ice nucleus (IN, similar to a
CCN) at temperatures below the normal freezing point. Larger droplets freeze at higher
temperatures. 

μm

μm
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• Aggregates of ice crystals, snow flakes – These are clusters of ice crystals formed when
ice crystals with different terminal velocities collide and coalesce. Snow flakes are
formed by this process. 

• Rimed ice particles – These form when ice crystals collide and coalesce with cloud
droplets at temperatures below freezing. If the features of the ice crystal can be distin-
guished, it is called a rimed ice particle. 

• Graupel particles – If the crystal features of a rimed ice particle are not recognizable, it
is called a graupel particle. Graupel also results from the instantaneous freezing of rain
drops, when the sub-freezing drops collide with ice crystals. 

• Hail stones – As graupel particles fall through the cloud of sub-freezing liquid, they
grow by riming. Hail stones result from cases of extreme riming.

Some of the microphysical processes are as follows.

• Condensation – Liquid droplets form when water saturation is exceeded at temperatures
from −40 οC to above freezing. The condensation takes place on CCN that are natural or
anthropogenic, typically submicrometer-sized, particles. 

• Accretion – In the warm-cloud process, droplets with different masses have different ter-
minal velocities, and the resulting collisions between droplets can result in coalescence
and droplet growth. As a droplet grows, so does its vertical velocity relative to the
smaller cloud droplets, thus increasing the rate of collisions. 

• Evaporation – Cloud droplets and rain drops evaporate.
• Ice and snow aggregation – When ice crystals and snow flakes collide and coalesce, it is

called aggregation. 
• Accretion by frozen particles – Snow, graupel, or hail collect other solid or liquid par-

ticles as they fall.
• Vapor deposition – The saturation vapor pressure with respect to liquid water is higher

than the saturation vapor pressure with respect to ice. Thus, if a cloud that contains both
droplets and ice crystals is saturated with respect to water, it is supersaturated with
respect to ice. As the ice crystals grow by vapor deposition, the air becomes sub-
saturated with respect to the liquid surface, and cloud droplets evaporate. This process is
called the Bergeron–Findeisen mechanism.

• Melting – As snow flakes fall into the lower troposphere, below the freezing level, they
may melt and form rain drops. Similarly, hail and graupel begin to melt as they fall
below the freezing level. 

• Freezing – Water droplets freeze in the presence of IN, riming involves the freezing
of water droplets that collide with ice crystals, and rain drops can freeze to form
graupel. 

Figure 4.2 illustrates the microphysical processes that must be represented in some form
in a model in order to predict the types of precipitation shown at the bottom of the figure.
A similar diagram can be found in Cotton and Anthes (1989). 
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Schematic showing the microphysical processes that are important for defining the spatial and temporal distribution 

of the types of precipitation shown at the bottom of the figure. The purpose of the figure is to emphasize the 

complexity of the processes that must be represented in a model. See Stensrud (2007) for details, and Cotton and 

Anthes (1989) for a similar diagram. Adapted from Braham and Squires (1974).

Fig. 4.2
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4.2.2 Microphysical parameterizations

Microphysical parameterizations aim to represent, as thoroughly as possible, the
processes described in the previous section. The parameterizations are divided into
two categories, based on how the size distributions of particle types are represented.
In bin models, the particle size spectrum is divided into intervals, and the particle
concentrations are predicted for each interval, or bin. Changes for each bin can result
from conversions between particle types, and from the increase or decrease of parti-
cle sizes. This requires a predictive equation for each particle type and size bin,
which must be solved at each grid point. Thus, the use of bin models is very compu-
tationally intensive and is presently limited to research activities, and not operational
weather and climate prediction. In contrast, bulk microphysical parameterizations
assume a prescribed analytic form for the size spectrum of each particle type – e.g.,
exponential (Kessler 1969) or gamma (Walko et al. 1995a) distributions – and the
evolutions of the size spectra are obtained by solving predictive equations for the
moments. Single-moment, bulk parameterizations only involve prediction of the par-
ticle mixing ratio or specific humidity; that is, the ratio of the mass of a particular
particle type to the volume or mass, respectively, of the dry air in which the particles
are distributed. Double moment schemes predict both the particle mixing ratio and
the particle number concentration. Triple-moment schemes add radar reflectivity to
the predictive equations, allowing the shape parameter in the gamma distribution to
vary independently. 

To illustrate an example of how bulk microphysical parameterizations are represented
in a single-moment model, the following are predictive equations for the specific humid-
ity of five different forms of water: water vapor (qv), cloud water (qcw), cloud ice (qci),
snow (qs), and rain (qr). Tensor notation is used for notational brevity, such that when a
subscript appears twice in the same term it is assumed that the term is summed over all
possible subscript values. For example, the first term to the right of the equal sign repre-
sents advection in the three space directions, such that  equals u, v, and w, and 
equals x, y, and z for  respectively. The next term to the right is the turbulent
mixing term (see Chapter 2) in tensor notation, and is interpreted in the same way. The
third terms on the right side in the equations for snow and rain represent the fact that
these two types of hydrometeors have significant terminal velocities (VT). Where there
are vertical derivatives in the mass of a species, there will be a contribution to the ten-
dency in proportion to the terminal velocity. The rest of the terms on the right (S) repre-
sent various sources and sinks associated with conversions from one type of particle to
another. 

ui xi
i 1 2 3,, ,=

∂qv

∂t
-------- ui xi∂

∂qv– 1
ρ0
-----

xi∂
∂ ρ0ui'qv'– Sdeps– Sdepci–=

Sevapr Svcondtocw–+
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The sources and sinks are defined as follows.

It is within these “S” terms that the parameterizations of microphysical processes are
represented. Some schemes are simple, and only a few of the particle types and interac-
tions (conversions) are operative. Others are more complex, with many more interac-
tions. Figure 4.3 illustrates the microphyical processes that are represented in three
different example parameterizations, and emphasizes the fact that the number of inter-
actions allowed among particles varies greatly. Shown are the interactions for the
Dudhia (1989), Reisner et al. (1998), and Lin et al. (1983) schemes. The reader should
refer to Stensrud (2007) for examples of different approaches for actually representing
the different processes. 

∂qcw

∂t
----------- ui xi∂

∂qcw– 1
ρ0
-----

xi∂
∂ ρ0u'i q'cw– Svcondtocw Sfreezcw–+=
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∂t
---------- ui xi∂

∂qci– 1
ρ0
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∂qs

∂t
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∂qs– 1
ρ0
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xi∂
∂ ρ0u'i q's– VTs z∂

∂qs– Scitos+=
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∂qr– 1
ρ0
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xi∂
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 evaporation of rain drops
 accretion of cloud-water drop-

lets by rain drops 
 growth of cloud-water droplets to

rain drops by cold-cloud (Bergeron–
Findeisen) process

 melting of snow to produce rain
drops

 growth of cloud ice to snow
 accretion of cloud ice by snow

 accretion of cloud water by
snow

 growth of snow by vapor deposi-
tion

 freezing of cloud water to pro-
duce cloud ice

 growth of cloud ice by vapor dep-
osition

 condensation of vapor to form
cloud-water droplets
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4.2.3 Initialization of microphysical variables

Ideally it would be possible to initialize the microphysical variables just as we do the
other dependent variables. However, there are a couple of impediments to success. First,
the existence of specific types of microphysical particles in the atmosphere can only be
roughly inferred, at best, based on satellite cloud imagery (cloud ice and water) and var-
ious sources of precipitation observations (rain and snow). The vertical distributions of
the particles, and their horizontal spatial detail at the cloud scale, are unknown, thus
making their initialization very problematic. In addition, the microphysical variables
respond quickly to forcing by atmospheric circulations on the cloud scale and larger, so
initializing the variables without also including corresponding compatible circulations
would be futile. For example, if cloud and precipitation observed along a front are used
to initialize microphysical variables, the variables will only be retained by the model if it
has the front and associated vertical circulation in the correct location. Without the fron-
tal lifting, the cloud and precipitation will dissipate. Because of the above issues,
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Microphysical processes represented in three different parameterizations: (a) Dudhia (1989), (b) Reisner et al. (1998), 

and (c) Lin et al. (1983). Particle types are abbreviated as vapor (v), cloud ice (i), snow (s), cloud water (c), rain water 

(r), and a combination of graupel and hail (g).  The arrows indicate the direction of the particle interactions. The line in 

panel (a) separates the processes above the freezing level (above the line) from those below the freezing level.  From 

Stensrud (2007).

Fig. 4.3
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microphysical variables are sometimes assumed to have zero concentrations at the initial
time of a forecast, where the expectation is that they will spin up to realistic values
within the initial 3–6 h. When sequential data-assimilation methods are employed (see
Chapter 6), the model simulation that provides the first-guess for the analysis can be
used to define the microphysical variables. Or, when continuous data-assimilation, such
as Newtonian relaxation, is used, model-generated microphysical variables are automat-
ically part of forecast initial conditions.

4.2.4 Modeling the effects of anthropogenic and natural aerosols on 
microphysical processes

The atmospheric CCN represent the subset of the general population of aerosols that
can nucleate a cloud droplet at a particular water saturation. The ability of a particle to
act as a CCN depends primarily on chemical composition and size. Thus, an important
issue related to the inclusion of microphysical processes in NWP and climate models is
the correct representation of the details of the CCN from natural and anthropogenic
sources (Rosenfeld et al. 2008). This is challenging from a number of respects. One is
that atmospheric aerosol properties are not systematically observed at all. Another is
that the complex interactions among aerosol particles, hydrometeors, and cloud
dynamics, including the dynamic competition for water vapor among nuclei of differ-
ent sizes and composition, mean that predicting the specific response of the system to
the types and amounts of available aerosols (even if we had that information) can be
challenging. An example of the importance of knowing simply the approximate amount
of CCN follows. If there are many CCN available, cloud-droplet concentrations can be
large. For a given liquid-water content, this means that droplets are smaller, the cloud
optical thickness and albedo are higher, and precipitation efficiency is reduced. The
lower precipitation efficiency leads to higher cloud liquid-water content, cloud lifetime,
and cloud thickness (Albrecht 1989). We thus can have the situation where an increase
in CCN availability can lead to a reduction in rain-drop concentration. Complicating
the situation are the facts that some aerosols can decrease cloud albedo (Kaufman and
Nakajima 1993) and their chemical compositions influence their activation as cloud
droplets (Raymond and Pandis 2002). Thus, the lack of our ability to operationally pre-
dict aerosol properties has implications for the predictability of microphysical proc-
esses and clouds, and weather in general. For example, Taylor and Ackerman (1999)
found that the elevations of cloud tops and the microphysical structure of stratus clouds
were significantly affected by aerosols emitted by ships into an otherwise clean mari-
time environment. 

Because of long-term trends in anthropogenic aerosols from pollution, and mineral aer-
osols from desertification, and the fact that aerosols, clouds, and precipitation are critical
components of the climate system, it is especially important in climate modeling for
aerosols to be simulated in terms of their sources, sinks, and transport. See Levin and
Cotton (2009) for a complete summary of aerosol effects on microphysics, and Heintzen-
berg and Charlson (2007) for their role in climate.
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4.3 Convective parameterizations

It is important to be able to accurately simulate moist convection1 with models for a vari-
ety of practical reasons. Intense moist convection can lead to flash flooding, gust fronts,
and tornadoes. And, the aggregate effect of individual convective elements is an important
component of monsoon circulations, the Hadley and Walker circulations, and the ENSO.
These large-scale processes need to be simulated properly in climate predictions and long-
range weather predictions, and thus models need to be able to accurately represent the
effects of the convection on their resolved scales. And, shallow cumulus clouds dominate
the tropics, and are common in other latitudes, greatly impacting the global albedo. The
effects of these clouds thus need to be represented in weather and climate models, which
must reasonably render the radiation budget. 

In general, convective parameterizations activate moist convection at relative humidi-
ties lower than water-vapor saturation at a grid point. This is because the convective col-
umns are subgrid scale, so the grid-box-average relative humidity will be sub-saturated
even though there are saturated regions within the grid box. In addition to generating
grid-box-average values of convective precipitation, the schemes also define the effects
of the subgrid-scale convection on other grid-scale variables. The overall objective is for
these parameterizations to define convection in the right place and at the right time (with
the correct diurnal cycle if applicable), and with the correct evolution and intensity. And,
the parameterization should define the appropriate modification by the convection to the
large-scale environment, so that subsequent convection can be accurately predicted.
Figure 4.4 shows the overall concept, even though Mapes (1997) points out how it is a
simplification. In general, the large-scale processes (e.g., low-level convergence, destabi-
lization of a deep layer) control the moist convection, and, in turn, the convection will

1 The term moist convection refers to convection that leads to cloud, and possibly precipitation, formation.

Control

Feedback

Moist-convective
processes

Large-scale
processes

Schematic of the interaction between large-scale processes and moist convection. Adapted from Arakawa (1993).Fig. 4.4
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modify the large scale, possibly with the aggregate latent heating from the convective
cells maintaining the larger-scale circulation. The purpose of the parameterization is to
emulate this process. 

Moist convection in the atmosphere can be classified into two types. Deep convection
extends vertically over a large fraction of the depth of the troposphere, and is associated
with (1) low-level convergence that exists on a scale larger than the individual updrafts and
(2) deep conditional instability. In contrast, shallow convection spans only a small fraction
of that depth, with cloud tops perhaps a few kilometers above the surface. Precipitating
deep convection dries the environment by removing water vapor, and warms it as a result
of the compensating subsidence. However, nonprecipitating shallow moist convection has
no direct net influence on the environment. Its existence does indirectly impact the envi-
ronment, however, because the clouds reflect solar energy and the resulting shading of the
ground means a cooler boundary layer.

Cloud-resolving models, that are capable of explicitly resolving convective-scale circu-
lations, employ grid increments of perhaps 1 km and are commonly used in research (see
Wu and Li (2008) for a review and a comprehensive list of references). For example,
Weisman et al. (1997) use a model with a grid increment of 4 km that they state explicitly
resolves squall-line convection. However, because moist convection consists of a mix of
updrafts and downdrafts that often have scales of a few hundred meters to a few kilom-
eters, it will be years before operational global and limited-area weather-forecast models
are capable of resolving them. And, it will be decades before global climate models have
sufficient horizontal resolution to resolve moist convection. Thus, convective parameteri-
zations will be needed well into the foreseeable future. 

4.3.1 Types of convective parameterizations

A common feature of most convective parameterizations is that they calculate the Convective
Available Potential Energy (CAPE) and the Convective INhibition (CIN) of the environment
in order to estimate the characteristics of convection. Figure 4.5 graphically illustrates these
two variables in terms of a typical warm-season sounding on a thermodynamic chart. In this
sounding (thin line), the lapse rate is dry adiabatic below 800 hPa, it is isothermal between
800 and 700 hPa, and nearly dry adiabatic above that to about 500 hPa. The heavy solid line
shows the temperature of a parcel that is lifted from the surface, through the Lifting Conden-
sation Level (LCL) to the Level of Free Convection (LFC). Between the LCL and LFC the
parcel is colder and more dense than its environment, and is thus negatively buoyant. Energy
is required to lift the parcel against this downward force. This amount of energy is, by defini-
tion, the CIN, and is proportional to the striped area in the figure. Mathematically, CIN is
defined as follows:

,

where  is the potential temperature of a parcel rising dry or moist adiabatically from its
Starting Level (SL) to the LFC,  is the potential temperature of the environment, and the

CIN g θ z( ) θ z( )–

θ z( )
--------------------------- zd

SL

LFC

∫–=

θ
θ
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negative sign exists so that CIN is positive when energy is required to lift the parcel to its
LFC. If there is sufficient energy to lift the parcel above the LFC, it will rise buoyantly
along the heavy line until it reaches the Equilibrium Level (EL) where the parcel is neu-
trally buoyant. It is assumed with this simple parcel theory that there is no mixing between
the parcel and its environment. The CAPE is the buoyant energy available to an ascending
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Example of a warm-season temperature sounding (fine line) with a dry adiabatic layer below 800 hPa, an isothermal 

layer from 800 to 700 hPa, and another near-dry-adiabatic layer up to about 500 hPa. The heavy solid line defines the 

temperature of a parcel that is lifted from the surface through the Lifting Condensation Level (LCL) and the Level of Free 

Convection (LFC), to the Equilibrium Level (EL). The areas are shown that define the Convective Available Potential 

Energy (CAPE) and the Convective INhibition (CIN). The surface temperature is TSF. 

Fig. 4.5



Physical-process parameterizations132

parcel as it rises from the LFC to its EL where it loses its buoyancy, and is proportional to
the shaded area in the figure. It is defined mathematically as

.

Thus, for convection to exist there must be available CAPE to provide the buoyant energy
to accelerate parcels upward, and there must be a method by which parcels overcome the
prevailing CIN. 

There are a large number of ways of categorizing convective-parameterization schemes,
including the following. 

• There are general approaches to the convective-parameterization problem, and schemes
are identified in terms of whether they follow a particular one. For example, schemes
that adjust the environmental vertical temperature profile when the relative humidity
exceeds a threshold and the temperature profile is unstable are called moist-convective
adjustment schemes. Sometimes schemes are identified in terms of the first author to
publish an approach. For example, methods that produce convection based on resolved-
scale moisture convergence are called Kuo-type schemes. 

• A classification suggested by Mapes (1997) is based on whether the development of
convection is controlled by the creation of CAPE or the removal of CIN. So-called deep-
layer-control schemes, also termed equilibrium-control schemes, tie the development of
convection to the creation of CAPE by large-scale processes. In these methods, the con-
vection is assumed to maintain the instability in the large-scale environment in a state of
equilibrium that is near neutrality. Alternatively, low-level-control schemes, also called
activation-control schemes, relate convection to the removal of CIN. In fact, many
approaches include elements of both low-level and deep-layer controls. 

• Some convective parameterizations represent the effects of only deep moist convection
(most schemes discussed here), while others apply to only shallow convection (e.g.,
Albrecht et al. 1979, Deng et al. 2003, Bretherton et al. 2004). Some apply to both types
(Tiedtke 1989, Gregory and Rowntree 1990, Betts and Miller 1993, and Kain 2004). 

• The schemes can be classified in terms of the environmental, grid-scale, variables that
are affected by the convection. Most schemes only define the impact on the environ-
mental temperature and humidity, but some also treat effects on the momentum (e.g.,
Fritsch and Chappell 1980, Han and Pan 2006).

• Some methods directly define the final state of the environment after the convection has
effected the change, while others attempt to simulate the process by which the change
takes place. The former, generally more simple, approaches are called static schemes,
while the latter are referred to as dynamic schemes. 

• A distinction among methods is the nature of the so-called trigger function. This is
the set of criteria in the parameterization that prescribes where and when the parame-
terized convection will be activated. The importance of this component of a convec-
tive parameterization was demonstrated by Kain and Fritsch (1992), who tested five
different trigger functions in the same model and in the same parameterization, the

CAPE g θ z( ) θ z( )–

θ z( )
--------------------------- zd

LFC

EL

∫=
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Kain–Fritsch scheme (Kain and Fritsch 1993), for the same meteorological case.
There were substantial differences in the simulated parameterized convection for the
different trigger functions. A similar dependence was found by Stensrud and Fritsch
(1994).

• The scales resolved by the models are a way of classifying these schemes, such that
there are mesoscale-model parameterizations and coarse-grid-model parameterizations.
The particular distinction is that the mesoscale models (grid increments of 5–50 km)
have sufficient horizontal resolution to explicitly resolve mesoscale circulations associ-
ated with the convection, where examples include thunderstorm outflow boundaries,
mesohighs and mesolows, rear-inflow jets, and midlevel vortices associated with mesos-
cale convective systems. Thus, the mesoscale models need to only parameterize the con-
vective-scale processes (e.g., Stensrud and Fritsch 1994, Zheng et al. 1995), whereas
coarser-grid models must parameterize both the mesoscale and the convective-scale pro-
cesses, and their many interactions (Frank 1983).

A given convective parameterization can be classified in terms of a number of the methods
in the above incomplete list.

4.3.2 Scale considerations 

In the above discussion is mentioned the relationship between model resolution and the
nature of the convective parameterization. But, the parameterization problem also depends
on other scale issues. In particular, Frank (1983) elaborates on a discussion in Ooyama
(1982) regarding the relationships between convective parameterizations and the scale of
the convective process. Figure 4.6 illustrates the scale regions that have relevance to the
parameterization of convection. The abscissa is the physical length scale (L) of the proc-
ess, and the ordinate is the dynamic length scale expressed in terms of the Rossby radius
of deformation (R). The latter length scale is defined as

,

where N is the Brunt–Väisälä frequency, H is the scale height of the circulation,  is the
relative vorticity, f is the Coriolis parameter, V is the rotational component of the wind, and
r is the radius of curvature of streamlines. Within region I, with length scales of less than
10 km, are individual convective cells and clouds. Regions I and II pertain to phenomena,
referred to as dynamically small, where , and region III pertains to dynamically
large phenomena where . Frank (1983) states that the parameterization problem is
somewhat simpler for region-III processes because there is a stronger relationship between
the large-scale flow and convection. For example, if a cold-front’s strength and position are
simulated correctly, the associated convective rainfall will be straightforward to represent
with a parameterization. A parallel argument is that, when latent heating from convection
affects the mass field in dynamically large systems, the system will adjust through changes
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in the rotational component of the wind.2 Because the rotational wind component is not
strongly related to convection, there are no links, or only weak links, to secondary convec-
tive processes. In contrast, for dynamically small systems, adjustment of the mass field to

2 On dynamically large scales, the mass field will “dominate” the geostrophic-adjustment process, and the
imbalance caused by the latent heating will produce an adjustment toward a geostrophic value in the rota-
tional component of the wind. See Section 6.10.1 for a discussion of the geostrophic-adjustment process. 
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the latent heating will cause divergent circulations that will influence the future evolution
of convection, making the process more difficult to parameterize. 

4.3.3 Relationship between the subgrid-scale (convective) precipitation 
parameterization and the resolved-scale precipitation

For all but very-high-horizontal-resolution models that can explicitly represent convec-
tive cells, models generally employ both convective and microphysical (Section 4.5.1)
parameterizations. This means that precipitation can be produced by the model both when
the convective parameterization is triggered and when the explicit processes represented
in the microphysical parameterization produce resolved-scale precipitation that reaches
the ground. In the former case, subgrid-scale precipitation is represented by the parame-
terization at the model-resolved grid scale, for sub-saturated grid-box conditions. In the
latter case, grid-box saturation is required at some point in the column. There are two pre-
cipitation variables defined on the model grid at the surface; one is the parameterized
convective precipitation and one is the resolved-scale precipitation. Even though these
are summed to produce a total-rainfall field, model developers often look at both output
fields separately to help them better understand internal model processes. This dual treat-
ment of precipitation processes, by two generally distinct components of the model, leads
to some conceptual and real difficulties. For example, the convective parameterization
often does not produce cloud water and ice on the grid scale, even though precipitation
has been generated, and thus no radiative effects of the clouds are rendered in the model.
And, precipitation generated in one geographic region of a meteorological event will be
produced by the parameterization, and by the explicit microphysics code in another geo-
graphic area. For example, in a mesoscale convective system, the microphysics parame-
terization may produce precipitation in the trailing stratiform-precipitation region, while
the convective parameterization represents the precipitation elsewhere. Or, in an extra-
tropical cyclone the microphysics and convective parameterizations could predominate in
the precipitating regions of the warm and cold fronts, respectively. Figure 4.7 illustrates
how the partitioning of precipitation from these two sources can depend on the meteoro-
logical event and the convective parameterization. Shown in both panels is the ratio (per-
centage) of the convective precipitation to the total precipitation, for 36-h simulations
that employed four different convective parameterization schemes in a model that was
otherwise the same. The left panel applies to simulations of a mesoscale convective sys-
tem that occurred in the spring season, and the right one pertains to an Arctic front in the
winter, with some convection in the warm air mass. There were clearly great differences
among the simulations in terms of the partitioning of the precipitation between the
resolved and subgrid components. For example, for the mesoscale convective system (a),
the use of the Anthes–Kuo parameterization caused virtually all of the precipitation to be
produced by the subgrid-scale mechanism, whereas when the Grell parameterization was
used a large percentage of the precipitation was produced by the resolved-scale mecha-
nism. Relationships between the two parts of the model that simulate precipitation proc-
esses are clearly not simple, nor is it always easy to anticipate which one will dominate
for a particular case. And, these results make it clear that it is not reasonable to equate
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resolved and subgrid precipitation produced in the model to stratiform and convective
precipitation in the atmosphere. 

In spite of the common lack of a direct link between the convective and resolved-scale
precipitation code in a model, there are exceptions. For example, hybrid methods partition
a fraction of the parameterized precipitation from the convective scheme to the grid-scale
precipitation defined in the microphysics scheme (e.g., Frank and Cohen 1987). 

4.3.4 Summary of example convective-precipitation parameterizations

Many different convective parameterizations have been developed and used in models of
various scales (e.g., Arakawa and Schubert 1974; Kuo 1974; Kreitzberg and Perkey 1976;
Anthes 1977; Brown 1979; Fritsch and Chappell 1980; Molinari and Corsetti 1985; Betts
and Miller 1986; Frank and Cohen 1987; Tremback 1990; Grell 1993; Kain and Fritsch
1993; Janji  1994, 2000; Grell and Dévényi 2002; Kain 2004). 

The following are commonly used schemes. The very brief descriptions are meant only
to illustrate some of the high-level properties of the methods. Stensrud (2007) and Wang
and Seaman (1997) should be consulted for more-lengthy summaries. 

Grell scheme

This is a variant of the Arakawa–Schubert parameterization (Arakawa and Schubert 1974),
and is a deep-layer-control scheme. In the Arakawa–Schubert method, shallow and deep
cumulus clouds, with a spectrum of sizes in each grid box, are idealized as plumes. In
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contrast, the Grell scheme only uses one cloud size, which is justified given that the appli-
cations are on the mesoscale. The subgrid precipitation is calculated by

,

where I is the condensate in the updraft, m is the updraft mass flux at cloud base,
and  is the precipitation efficiency. The latter is assumed to be a function of the
resolved environmental wind shear in the lower troposphere. Convective downdrafts are
parameterized.

Anthes–Kuo scheme

This parameterization (Anthes 1977, Grell et al. 1994) is a variation of one of the earliest
convective schemes (Kuo 1965, 1974), and uses a column-integrated moisture convergence
(M) to determine the location and intensity of convection. When conditional instability
exists and the moisture convergence exceeds a threshold, convection is initiated. Because
the parameterized convection is based on the source of buoyant energy, it is classified as a
deep-layer-control scheme. The moisture that is converging in the column is partitioned
into convective precipitation and moistening of the column. The precipitation rate (P) is
calculated by

,

where

and  is the column-mean relative humidity. This is a computationally undemanding
scheme, which is one reason for its somewhat enduring popularity. It is, however, not espe-
cially well founded because moisture convergence does not necessarily result in convec-
tive activity. There are better schemes now available.

Betts–Miller scheme

The Betts–Miller scheme (Betts and Miller 1993, Janji  1994) is another deep-layer-
control scheme that, upon initiation of convection, adjusts the model profiles of tempera-
ture and moisture in each grid column toward specified reference profiles that correspond
to a quasi-equilibrium condition that is associated with deep convection (Betts 1986). The
parameterized precipitation is calculated by

,

where q is the grid-point specific humidity,  is based on the deep-convection reference
profile for specific humidity,  is the time scale over which the adjustment occurs, and the
PT  and PB are the pressures at the top and bottom of the cloud.
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Kain–Fritsch scheme

The Kain–Fritsch scheme (Kain and Fritsch 1993) is an updated version of the Fritsch–
Chappell scheme (Fritsch and Chappell 1980). Here, the activation of convection is defined
by low-level forcing, and is also a function of the CAPE at a grid point. So it is both a low-
level- and deep-layer-control scheme. The convective precipitation is calculated as

,

where E is the precipitation efficiency and S is the sum of the vertical fluxes of vapor and
liquid at about 150 hPa above the LCL.

4.3.5 The choice of convective parameterization, and its impact on the simulation

Convective parameterizations employ a wide variety of approaches to the problem, and
assumptions, and they inevitably perform best for those situations where the assump-
tions are better satisfied. This can make them dependent on the geographic area and the
prevailing meteorological process. For example, some parameterizations seem to work
best in the tropics, or in midlatitudes, or in high latitudes. Unfortunately, the parame-
terizations in global models must perform adequately for all climates and weather sce-
narios. 

The point was made earlier that parameterization methods used for coarse-
resolution models must represent both the convective-scale processes as well as the
mesoscale processes that are related to the convection. In contrast, schemes used in
mesoscale models only need to parameterize the convective scales. In a nested system
of grids in a LAM, which may span resolutions from the synoptic scale to the mesog-
amma scale, it is not unreasonable to use different parameterizations on the different
grids. On a very-high-resolution grid in a nest, which can explicitly resolve convec-
tion, it would be appropriate to not use any parameterization. Unfortunately, most con-
vective parameterizations were designed for models with grid increments of 20–30 km
or larger. Even though there is evidence that some can still be used with grid incre-
ments as small as 10 km, there currently is no good solution to the problem of how to
represent convection between that resolution and those that are needed to explicitly
resolve convection. 

To illustrate the potential sensitivity of the accuracy of the precipitation forecast to the
choice of the convective parameterization, see Fig. 4.8. The average total (convective and
resolved) rain rate is plotted for a spring-season convective event (panel a), based on
observations, and for five simulations that used different treatments for the convection –
four different parameterizations, and no parameterization. For all simulations, the model
grid increment was 12 km. At specific times in the simulations, the rain rate varied by as
much as a factor of three or four among the different parameterizations. Also depicted is
the bias score averaged for three warm-season convective events (panel b), again for each
of the four parameterizations and for the use of no parameterization. The horizontal grid
increment was 36 km, representing an appropriate resolution for the use of any of the
parameterizations tested. Both the simulation-average scores on the right, as well as the

P ES=
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time-dependent curves, show a substantial dependence of the precipitation amount on the
parameterization that was employed. The Betts–Miller scheme produced a simulation-
average bias of close to unity, whereas the Grell scheme had a bias that exceeded two.
The simulation that used no convective parameterization (explicit – EX) severely under-
predicted the early precipitation amounts because of the time required to develop grid-
scale saturation. This is one of hundreds of examples in the literature of the dependence
on many factors of convective-parameterization performance. 

Not only is model-simulated precipitation sensitive to the parameterization scheme
employed on that grid, it has been shown that precipitation from cloud-resolving simula-
tions on a fine grid in a nest is sensitive to the convective parameterization that is employed
on the surrounding coarser grids. For example, Warner and Hsu (2000) describe tests with
an operational LAM having three grids in a nest. The two coarser grids had grid increments
of 10 km and 30 km, and thus required the use of a convective parameterization. In contrast,
the innermost grid, with a grid increment of 3.3 km, explicitly represented the convection
(i.e., no parameterization was used). For a model simulation of summer convection in the
southwestern USA, Fig. 4.9 shows the grid-average hourly rain rate produced on the con-
vection-resolving grid of this model when three different convective parameterizations
were used on the surrounding grids. Also shown is the rainfall on that grid when no param-
eterization was used on the outer grids, as well as the rainfall estimated by the reflectivity
from the WSR-88D radar. Even though the model used on the inner grid was identical in all
four simulations, there clearly was a large impact of the choice of the convective parameter-
ization used on the other grids. Through LBC effects, the parameterizations on the coarser
grids caused stabilization and drying to various degrees on the convection-resolving grid,
resulting in substantial differences in the simulated precipitation.
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4.4 Turbulence, or boundary-layer, parameterizations

4.4.1 Boundary-layer structure

At the lower boundary of the troposphere is the turbulent layer through which the influ-
ence of the surface is directly transmitted to the free atmosphere above. Through this
boundary layer, or mixed layer, turbulent eddies transport water vapor and heat upward
from their source at the surface. Also, the frictional stress exerted by the surface on the
atmospheric fluid is transmitted by the turbulence. There are two causes of turbulence, or
sources of turbulent energy. One is the buoyancy that creates rising parcels of air, or con-
vection, and the compensating subsidence, when the land surface is heated during the
day. The other source is related to the rate of change of the horizontal wind speed with
height – i.e., the vertical shear of the horizontal wind. When this shear is small, and there
is no buoyancy, the flow is nonturbulent, or laminar. When the shear exceeds a threshold,
the flow becomes turbulent, with the turbulent energy derived from the mean wind. The
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buoyancy-driven convective turbulence is dominant during the day, while the shear-
driven turbulence is more common at night. Because the wind speed perpendicular to any
surface, including the ground, must be zero, turbulence cannot exist at the surface and
cannot transport heat or moisture there. Thus, in a very shallow layer of a few molecules
to a few millimeters above the surface, called the laminar sublayer (also, microlayer),
transfers of heat, moisture, and surface-frictional effects are through molecular proc-
esses. Thus, the laminar sublayer is the nonturbulent interface between the ground and
the turbulent mixed layer, and the mixed layer is the turbulent interface between the lami-
nar sublayer and the free atmosphere above the mixed layer. The lower 50–100 m of the
mixed layer, where the turbulent transport of heat, moisture, and momentum vary rela-
tively little (compared to the situation in the mixed layer above), is called the surface
layer. 

The vertical extent of the turbulent mixing defines the daytime (convective) boundary-
layer depth. At night, the atmosphere near the surface cools, and the source of the buoyant
energy is eliminated. Any new turbulent energy in this stable layer near the ground must
now be derived from the vertical shear in the horizontal wind. Unless the horizontal wind
is exceptionally strong, this nocturnal boundary layer is much more shallow than the day-
time one. The turbulence and the well-mixed profiles of the different meteorological varia-
bles penetrate progressively upward during the daytime heating cycle. Figure 4.10 shows
measured profiles of the vertical structure of potential temperature at a few times during
the daytime heating cycle in the Great Basin Desert in the USA. As the heating continued
during the day, the depth of the approximately constant potential-temperature layer pro-
gressively increased. At night, as the cooling land surface in turn cools the lowest layer of
the atmosphere, a temperature inversion forms. 

Figure 4.11 illustrates distinctions between nocturnal turbulence that is generated from
wind shear alone, and daytime turbulence that results from both buoyant motion as well as
wind shear. Both curves show the variation with time of the vertical inclination of the
wind at 29 m Above Ground Level (AGL), based on bivane measurements.3 The lower
curve, with relatively small-amplitude and high-frequency excursions from the horizontal
direction, shows the effect of nocturnal turbulence that results only from the vertical shear
of the horizontal wind. In contrast, the upper daytime curve shows similar high-frequency
variability, but it is superimposed on a lower-frequency change with a period of perhaps
15–60 seconds. The longer-period changes during the day are associated with larger hori-
zontally moving turbulent eddies.

In purely laminar flow, the layers of air slide over each other without much mixing
between them. The only mixing that occurs is through the exchange of molecules between
layers. Molecules from a slower-moving layer nearer the ground enter a faster-moving
layer above, and the slower speed of the molecules represents a drag that slows down the
upper layer. Analogously, faster-moving molecules move downward, with the drag effect
causing the lower layer to speed up. Molecules of water vapor move between layers, caus-
ing a net transfer from moist layers to dry layers, and heat is transferred by virtue of the

3 A bivane is a wind vane with two axes of rotation, one horizontal and one vertical.
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different kinetic energies of the molecules exchanged between layers. In nonturbulent
flow, this is how the layers of air “feel” each other. With turbulent flow, there are eddies
that mix the air between the layers, with this type of mixing being much more efficient
than the molecular mixing of laminar flow. One can imagine the vertical exchange of prop-
erties with turbulent mixing in the same way as with molecular mixing. For example,
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because water-vapor content near the surface generally decreases with height, upward-
moving air in the turbulent eddies will contain more water vapor and downward-moving
air will contain less water vapor. 

Figure 4.12a is a schematic of the geometry of the daytime (convective) and nocturnal
(stable) mixed-layer structure, and of the transitions between the two regimes. During
the daylight hours, the convective mixed layer will increase in depth as the surface heat-
ing generates buoyancy-driven turbulence that erodes upward into the troposphere. The
depth will typically reach about 1 km, but may span the entire troposphere in strongly
heated deserts. After sunset, the ground and the lower atmosphere cool, and the buoyant
source of turbulent energy diminishes. The nocturnal, or stable, mixed layer derives
most of its turbulent energy from the wind shear, with the depth of the layer being con-
siderably less than in the daytime. In contrast to the daytime, at night the mixing can be
intermittent. The shear will develop to a critical value; mixing will abruptly ensue and
decrease the shear to a subcritical value, shutting off the mixing; the shear will then
increase again; etc. At the ground, this process is manifested as periods of calm that are
occasionally interrupted when moderate or strong winds are briefly mixed downward
from above. Above the stable, nocturnal boundary layer there exists residual turbulence
from the daytime mixed layer, with the intensity decaying with time as a result of inter-
nal friction within the fluid.

Figure 4.12b shows typical vertical daytime profiles of wind speed (u), water-vapor den-
sity (ρv), and potential temperature (θ). Parcels of unsaturated air that are mixed upward or
downward by turbulence, cool and warm, respectively, at the dry adiabatic lapse rate. Thus,
the well-mixed vertical profile of temperature is the dry adiabatic lapse rate, which is
known as a “neutral” temperature profile. In these conditions, the potential temperature is
uniform with height. The temperature itself decreases at about 10 °C km−1 in this region.
Within the surface layer, closer to the ground, the temperature decreases even more rapidly
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with height at a superadiabatic rate. At the top of the mixed layer is often a potential tem-
perature inversion, within which potential temperature increases with height. The transition
from uniform potential temperature to the inversion above is often used to define the depth
of the mixed layer based on radiosonde soundings. Wind speed increases rapidly with
height within the surface layer, from zero at the ground, and remains relatively uniform
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within the mixed layer. Throughout the midlatitude troposphere above the mixed layer, the
climatological north–south temperature contrast causes the wind speed to increase with
height up to the tropopause. The dashed line represents the value that the wind speed would
attain without the retarding effect of friction, which is transmitted through the boundary
layer by turbulence. Above the mixed layer in the free atmosphere, where turbulence does
not transmit the frictional stress of Earth’s surface, the wind speed is greater. The water-
vapor content, here defined in terms of the density of the water vapor, is fairly uniform
within the mixed layer, but it does decreases somewhat with height because the source is at
the surface and entrainment mixes in drier air from above the boundary layer.

Internal structures within boundary layers

Daytime convective boundary layers and the nighttime residual mixed layers are repre-
sented in Fig. 4.12 as simple structures with smooth temperature lapse rates. However,
various factors can cause a considerable amount of internal structure to exist. First, when
the boundary layer contains layers of dust, the radiative heating and cooling effects of the
dust impact the vertical temperature profile. Even if the dust appears to be uniformly dis-
tributed throughout the boundary layer, the vertical sorting of different particle sizes and
mineral types (having different optical properties) can produce vertical differences in heat-
ing and cooling rates. Another factor is the development of internal boundary layers that
result from air flowing over surfaces with contrasts in properties such as the heat flux or
roughness. For example, if the horizontal wind transports boundary-layer air from a
smooth, hot surface to a cooler, rougher one, an internal boundary layer that is forced by
the rougher surface develops within the original boundary layer. That is, the different sur-
face roughness and heat flux would produce an internal boundary, within the mixed layer,
across which the wind and temperature profiles would differ. This boundary would inter-
sect the surface at the edge of the temperature and roughness contrast, and rise with
increasing distance downstream. There are always subtle to major contrasts in surface
properties, so whenever the boundary-layer air moves horizontally these internal boundary
layers will complicate the structure. For example, the potential-temperature profiles in
Fig. 4.10 show considerable variability within the boundary layer.

Aerodynamic roughness and the vertical wind profile

The near-surface turbulent fluxes of heat, moisture, and momentum are influenced by the
structure and spacing of surface-roughness elements such as rocks, vegetation, and soil
grains. In general, rougher surfaces cause more-intense turbulence. Expressions representing
the effect of the turbulence on the vertical wind profile in the surface layer employ a parame-
ter called the roughness length (z0) to describe the roughness characteristics of the surface. In
particular, it can be shown that, for conditions of neutral stability (strong convective mixing),

, (4.1)

where u is the speed of the mean wind at height z, u* is the friction velocity, k is the von
Karman constant with a value that is thought to be 0.35–0.40, and z is the height above the
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ground. The friction velocity represents the drag of the atmosphere against Earth’s surface,
or the frictional stress. Recall that the surface layer, where this equation applies, is the
lower 50–100 m of the mixed layer where the turbulent fluxes of heat, moisture, and
momentum vary relatively little in the vertical.

If z in Eq. 4.1 is set to z0, u is equal to zero. Thus, z0 is the height above the ground at
which the mean wind speed goes to zero in neutral conditions, and is proportional to the
roughness of the surface. Because u* is not a function of height in the surface layer and k is
a constant, u increases logarithmically with increasing z. Figure 4.13 shows a typical verti-
cal profile of horizontal wind speed for neutral conditions (i.e., a solution to Eq. 4.1). If the
equation is solved for u*, it is clear that u* is linearly related to the slope of the line (u/ln(z/
z0)). The y-intercept of the line is z0. Also shown are profiles of u with height for unstable
and stable conditions; that is, with temperature lapse rates greater than and less than,
respectively, the neutral (dry adiabatic) value. For stable conditions the profile is concave
downward, and for unstable conditions it is concave upward.

Obviously it is important to be able to estimate the roughness length in order to apply
this equation. Bagnold (1954) determined that the roughness length over a bare flat sand
surface is approximately equal to the mean diameter of the sand grains, divided by 30
(roughly 10−5 m for typical sand). When vegetation is present, the roughness lengths are
larger and more difficult to obtain (Driese and Reiners 1997). Even though studies that
estimate roughness lengths over agricultural fields with regularly spaced plantings are
abundant, there are fewer studies of less-homogeneous natural environments. 
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Boundary layers that are detached from the surface

All boundary layers originate because of the influence of a surface with which they are in con-
tact. However, boundary layers do not necessarily remain in contact with the surface over
which they form, with important consequences for the weather. An example of one such situ-
ation is shown in Fig. 4.14, where a boundary layer first develops over the high desert plateau
of northern Mexico. When southwesterly lower-tropospheric winds cause this heated layer of
air to move toward the lower terrain elevations to the northeast, the boundary layer becomes
detached from the surface. When this happens, a temperature inversion, i.e., a stable layer of
air, forms at the base of the Elevated Mixed Layer (EML). This stable layer can inhibit the

Schematic of an EML-related severe-weather environment over the southern Great Plains of North America. In the fore-

ground is the high plateau of Mexico, from which a mixed layer is flowing to the northeast and becoming elevated over 

the Great Plains of the USA. The northwest quadrant of the area is the southern Rocky Mountains. Convective clouds are 

seen on the northwest edge of the EML, associated with low-level southeasterly flow causing moist, unstable air to run 

out from under the convection-inhibiting inversion at the base of the EML. The meteorological case discussed in the text 

had a front positioned to the east of the Rocky Mountains, as illustrated. Adapted from Lakhtakia and Warner (1987).

Fig. 4.14
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development of convective rainfall because parcels of air that are buoyant in the neutral lapse
rates near the surface are no longer buoyant when they encounter this warm elevated mixed
layer. The large CIN associated with this thermal “lid”, represented by the hot boundary-layer
air, allows moisture and heat to build up in the layer between it and the ground. If the convec-
tive motions erode through the inversion, or leak out around it, the consequence is a sudden
release of energy that can lead to severe convective storms. This process produces severe con-
vective weather in the semi-arid Great Plains of the USA in the spring. There are many other
areas in the world where mixed layers become elevated, with important potential conse-
quences for downstream precipitation. These situations must be represented in models in
order for precipitation forecasts to be accurate.

4.4.2 Boundary-layer parameterization closures 

The momentum equations in tensor notation are 

, (4.2)

where the viscous-stress terms have not been included. As noted earlier, we sum over
repeated indices that appear with variables that are multiplied by each other. The
Kronecker delta, , equals 1 when  and is zero otherwise. The alternating unit
tensor is defined as

+1, if i, j, k are in ascending order
 = , if i, j, k are in descending order

0, otherwise,

where ascending order means that i, j, k are 1, 2, 3 or 2, 3, 1 or 3, 1, 2. Descending order is
3, 2,1 or 2, 1, 3 or 1, 3, 2. The value is zero if any of the i, j, k are the same.

In the calculation of the Reynolds’ equation for the u component of momentum, shown
in Eq. 2.15, the first step was to separate each dependent variable in Eq. 2.1 into a pertur-
bation and a mean component, where it was assumed that the perturbation is associated
with turbulence. Making this same substitution into Eq. 4.2, produces 

.

Expanding this, and making the assumption that , produces

. 

(4.3)
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Now, applying the Reynolds’ postulates as well as the continuity equation, as in Section 2.2,
produces 

. (4.4)

The Reynolds’ stress term on the right represents the effects of turbulence on the mean motion,
where the quantity  is called a double correlation or a second statistical moment. Given
that the model equations only predict the mean quantities, these covariances need to be defined
in some way. There are two approaches for accomplishing this. One involves linking the mag-
nitude of this (second-moment) term to the resolved-scale, or mean (first-moment), variables.
The other requires the development of a predictive equation for the covariances. 

To obtain a predictive equation for the covariances, begin by subtracting Eq. 4.4 from
Eq. 4.3, producing a predictive equation for the turbulent velocity components:

. (4.5)

Multiply this by , apply an averaging operator and Reynolds’ postulates, to produce an equa-
tion for the second term on the right in the following predictive equation for the covariance:

. (4.6)

Then change all i indices to k in Eq. 4.5, multiply every term by , and again apply an
averaging operator and Reynolds’ postulates, producing an equation for the first term on
the right in Eq. 4.6. Add the two equations to produce the following predictive equation for
the covariance:

+ .

This represents six different predictive equations, for , , , , , and .
Unfortunately, a triple-correlation or third-moment term now exists on the right side of the
equation. If predictive equations are derived for these moments, quadruple correlations
will appear on the right side. This situation where there are always more unknowns than
equations, requiring that the unknown terms be represented as some function of the known
variables, defines the turbulence-parameterization closure problem. Table 4.1 summarizes
the equations for the different statistical moments. 
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When there are predictive equations for the first moments of the state variables (u, v, w,
T, etc.), and the covariance terms (e.g., ) are parameterized in terms of the first
moments, it is called a first-order closure. With second-order closure methods, there are
predictive equations for both the state variables and the covariances, and the triple correla-
tions are parameterized in terms of the first and second moments. Thus, the order of the
closure is defined in terms of the highest-order prognostic equations that are retained. Stull
(1988) illustrates the use of correlation triangles to summarize the unknowns for different
orders of closure (Table 4.2). Note that these two tables apply only to the momentum

Table 4.1 Example of the prognostic equations for the first three statistical moments, indicating the number of equations and 
the number of unknowns. 

Example 
prognostic 
variable

Statistical 
moment Equation

Variable 
parameterized

Number 
of 
equations

Number of 
unknowns

First 3 6

Second 6 10

Third 10 15
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Table 4.2 Correlation triangles illustrating the unknowns associated with the different levels of the turbulence closure, for the 

momentum equations only 
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equations, and thus there are more unknowns when considering the full set of equations. A
motivation for higher-order closures is the assumption that the more moments that are pre-
dicted, the more accurate will be the solution for the state variables. That is, the higher the
moment that is defined by a parameterization, the less the approximation will affect the
principal forecast variables, the first moments. 

There also are closure methods wherein some of the terms in a particular moment cate-
gory are parameterized and some are explicitly predicted. For example, in the prognostic
equations for the first moments, some second moments on the right side may be parame-
terized while others are predicted. If all the second moments are predicted, the closure
would be second order. If they are all parameterized, it would be first order. Thus, in this
case it would be referred to as a 1.5 order method. There are other noninteger closures. 

Regardless of the order of the closure, there are two different approaches that can be
used in the parameterization. In one, the unknown quantity at a grid point is defined in
terms of known quantities, or their vertical derivatives, at the same grid point. Of course
the derivative would have to be calculated using adjacent grid points in the vertical. This is
called a local closure, where such methods have been used through the third order. Alter-
natively, the unknown variable at a grid point can be estimated using known quantities that
are defined at locations that are a significant distance away in the vertical. This is a nonlo-
cal closure. The nonlocal closures and the higher-order local closures generally yield
more-accurate solutions than do the lower-order local closures, but the former involve
greater computational expense and model-code complexity (Stull 1988). An advantage of
the second-order or higher closure methods is that the second moments of the wind com-
ponents can be used to quantify the total Turbulent Kinetic Energy (TKE), such that

, 

where m is mass. The TKE variable is useful for any application that requires knowledge
of the turbulence intensity (such as dispersion of air pollution and turbulence loading on
structures). 

4.4.3 Local closures

There are many, many different local and nonlocal closure approximations in use in mod-
els, and this section and the next one will only provide a couple of illustrations. A common
local closure approximation is referred to as K-theory or gradient-transport theory. In a
first-order closure, we must parameterize the second moments. Assume the following
generic predictive equation for a variable :

.

A closure approximation for the flux  is

, (4.7)

TKE
m

----------- 1
2
--uiui=

ξ

t∂
∂ ξ …

xj∂
∂ ξ'u'j( )–=

ξ'u'j

ξ'u'j K
xj∂
∂ ξ–=



Physical-process parameterizations152

where the parameter K is a scalar with units of m2s−1. For positive K, the above equation
states that the flux  is down the local gradient of . Combining the above equations
leads to 

,

which now has no undefined variables on the right. The entire system of equations would
be closed because there is a prognostic or diagnostic equation for each variable. The
coefficient K is referred to by a variety of names, including the eddy viscosity, the eddy
diffusivity, the eddy-transfer coefficient, the turbulent-transfer coefficient, and the gradi-
ent-transfer coefficient. Different K values are sometimes associated with the transfer of
different variables, so that we sometimes see the Ks written as Km, KE, and KH, for
momentum, moisture, and heat, respectively. Obviously the values of K control the turbu-
lent flux, and intuition tells us that a parameterization of K in terms of the first moments
would link it to the wind shear (Richardson number) and the static stability, quantities
that are related to the mechanical and buoyant production of turbulence, respectively.
Stull (1988) reviews many methods for the parameterization of K in the context of this
local closure. That reference also reviews many other local closures.

Because the turbulent flux is defined by local conditions, this simple closure works best
for situations when the turbulent eddies are small and locally generated. For large eddies,
the nonlocal closures described in the next section provide better results. 

4.4.4 Nonlocal closures

Nonlocal-closure methods are motivated by the recognition that much of the mixing in the
boundary layer can be associated with large eddies whose vertical dimension is approxi-
mately that of the boundary-layer depth, and that these eddies are not related to the local
static stability or wind shear at some point in the middle of the boundary layer. Rather,
these eddies are driven by the deeper mean stability that spans the boundary layer, which
in turn responds to the surface heat flux. Figure 4.15 is a schematic that illustrates the dis-
tinction between local closures and a couple of different types of nonlocal closures. In
Fig. 4.15a, which applies to local closures, the unknown higher-moment terms at the mid-
dle grid point in the column are parameterized through the use of known variables at that
point, or through derivatives of the known variables whose calculation requires values at
adjacent grid points.

One framework for treating the nonlocal-closure problem is called transilient turbulence
theory (Stull 1988, 1993). Imagine a column of model grid boxes, where a small subset of
the boxes is shown in Fig. 4.15, and identify a single reference grid box within the column.
And, assume that we can define the grid boxes above and below from which turbulent
eddies mix air into the reference grid box, as well as the grid boxes that receive air from
the reference grid box. Figure 4.15b shows mixing between a reference grid box at the
midpoint of the column, and all the surrounding boxes. The same process can be used to
define the vertical turbulent mixing between all the other grid points and their
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surroundings. Given this conceptual view of the situation, the process by which heat,
water vapor, or a passive tracer are transferred among boxes can be quantified using the
transilient-turbulence concept and the notation of Stull (1988). Let  represent the con-
centration of a passive tracer in a reference grid box i, let  be the fraction of air in box i
that is transported by turbulence from the donor box j during a time period , and let 
be the concentration of the tracer in donor box j. To find the new concentration in box i
after the elapsed time, we simply sum the contributions from all N grid boxes in the col-
umn, such that

.

This equation defines the exchange between each box i and all the other boxes j. It is a
matrix equation, where  is an N × N matrix of mixing coefficients called a transilient

(b)(a) (c)

Schematic of the distinction between local closures and two different types of nonlocal closures. Panel (a) applies to 

local closures, and (b) and (c) pertain to nonlocal closures. See the text for details.

Fig. 4.15

ξi

cij
Δt ξj

ξi t Δt+( ) cij Δt( )ξj t( )
j 1=

N

∑=

cij



Physical-process parameterizations154

matrix, and  and  are N × 1 matrices (vectors). Because the transilient matrix is a
function of the turbulence, it is the same for all variables . See Stull (1993) for dis-
cussions of many nonlocal parameterizations in the context of transilient-turbulence
theory.

An example of a simple nonlocal closure is described in Blackadar (1978) and Zhang
and Anthes (1982). Here, the intensity of the vertical convective transfer of heat, moisture,
and momentum during the day is determined from the surface heat flux and the thermal
structure of the entire mixed layer (not the local thermal structure). Figure 4.15c, which
applies to this method, shows that the vertical exchange is visualized as taking place
between each model layer in the boundary level and the lowest model layer. That is, both
the small and the large eddies have their roots in the surface layer. An example of a
turbulent-transfer term is as follows: 

,

where  is the local potential temperature at some model level in the boundary layer,
is the potential temperature at the top of the surface layer (~10 m AGL), and m is a func-
tion of the surface heat flux and represents the fraction of the mass in a grid box in the col-
umn that is exchanged with the surface grid box during a specific time interval. 

Figure 4.16 shows another way of viewing the distinction between nonlocal and local
closures. On the left (a) is a vertical profile of the mean potential temperature within and
above a forest canopy during the daylight hours (a convective mixed layer). There is a shal-
low inversion within the canopy, with an unstable layer above that, which transitions to a
near-neutral layer. Above this, near the top of the boundary layer, the profile becomes sta-
ble. The vertical dashed lines show the deep movement of air parcels (open circles) within
the boundary layer. The demarcations along the three vertical lines to the right of the
sounding, also in panel (a), show how the layer is divided into turbulent and nonturbulent
(laminar) flow regimes, and into stability regimes according to whether local or nonlocal
methods are used in the definition. In panel (b) are shown heavy vertical arrows (heat flux)
that indicate the directions and magnitudes of the vertical fluxes of heat that are observed
under these conditions. Also shown are the heat fluxes estimated using local and nonlocal
closures. A local-closure approximation for the vertical heat flux, such as Eq. 4.7
with  and , would be

,

such that the direction and magnitude of the flux is defined by the vertical gradient of the
potential temperature. Use of this approach results in the “Local static stability” layering
(a) and the “Local interpretation” of the heat flux directions (b). These heat fluxes are
clearly inconsistent with the observed fluxes shown with the large arrows (b). In contrast,
when the static stability is defined across the depth of the boundary layer by comparing the
potential temperature of the near-surface parcel with those of the parcels above, to reflect
the deep-layer stability, the more-realistic nonlocal static stability and heat-flux profiles
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result. Equations such as the above one for the local-closure approximation to the vertical
heat flux can incorporate a correction term to the local gradient that incorporates the
effects of the large eddies, such that

.

This correction defines an effective vertical lapse rate that is more unstable than the actual
one, maintaining an upward heat flux through a deeper layer.

4.5 Radiation parameterizations

Electromagnetic radiation from the Sun is responsible for the existence of all processes in
the atmosphere, including the midlatitude westerlies and cyclones, monsoons, tropical
cyclones, and the Hadley circulation on the global scale, to convection and coastal

(a) Stability determination from a sounding (b) Heat flux
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circulations on the mesoscale. Less obvious, but nevertheless important, consequences of
radiative processes include radiation fogs, the strong surface-based temperature inver-
sions that impact air quality, evaporation of water at Earth’s surface, the extreme kata-
batic winds in polar latitudes, the development of buoyant instabilities that lead to
convective weather, etc. In order to simulate these processes correctly, models must rep-
resent the interaction of the radiation with the land, oceans, vegetation, clouds, air mole-
cules, and mineral aerosols of natural and human origin. A critical component of the
calculations is to provide the radiative flux at Earth’s surface, because it is the spatial dis-
tribution of this surface heating that is responsible for the differential heating of the
atmosphere. In addition, the radiative flux divergence of energy within the atmosphere
must be calculated in order to define the radiative heating and cooling in a column.
Because radiation sometimes interacts with the atmosphere and the surface at a molecu-
lar level (e.g., molecular scattering, interaction with cloud droplets) and because this
interaction is a complex function of the prevailing spectrum of wavelengths, the proc-
esses are too small in scale and too complex to simulate directly. Thus they need to be
parameterized. The first section below briefly reviews the relevant radiative processes that
must be simulated by models, and the remaining ones describe the parameterization of
shortwave and longwave radiative fluxes. 

4.5.1 Processes that must be represented

This section reviews some basic concepts regarding the transmission of radiation within the
atmosphere, and illustrates the sorts of physical processes that must be represented by a radia-
tion parameterization. Figure 4.17 shows the disposition of the solar energy that enters the
Earth–atmosphere system, in terms of global-average values. Of 100 units of radiation entering
the atmosphere annually from the Sun, 31 units are both reflected and scattered back to space.
This includes 6 units that are reflected from Earth’s surface (land and ocean), 17 units that are
reflected and scattered from clouds, and 8 units that are reflected and scattered from molecules
and dust in the atmosphere. Twenty units are absorbed by the atmosphere and clouds. The
remaining 49 of the 100 units are direct and diffuse solar radiation that are absorbed by Earth's
surface. The partitioning of radiant energy at Earth’s surface between the absorbed (49 units)
and reflected (6 units) components is typically calculated within the land-surface model
(Chapter 5) that is part of the atmospheric model. The other processes – absorption by the
atmosphere, clouds, and dust; scattering by air molecules and dust; and reflection by clouds
and dust – are represented in the radiation parameterization. Figure 4.18, again based on a
global annual average, summarizes what happens to the 69 units of energy that are shown in
Fig. 4.17 to be absorbed by both Earth’s surface and atmosphere. Energy gains at the surface,
totaling 144 units, are 49 units from direct and diffuse solar radiation and 95 units of infrared
from the clouds and gas of the atmosphere. Surface energy losses, which also must total
144 units, include 114 units of infrared emitted to space and the atmosphere, 23 units lost by
evaporation, and 7 units lost to the atmosphere through sensible heat fluxes. The net radiation
is the radiative gain of 144 units minus the radiative loss of 114 units. Also, the 155 units of
energy gains by the atmosphere from the various sources on the left must equal the losses from
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the processes on the right. The land-surface component of the modeling system is responsible
for calculating the evaporation rate, and the emission and absorption of infrared energy; the
boundary-layer parameterization calculates the turbulent fluxes of heat by convection; the pre-
cipitation processes (both parameterized and resolved-scale) define the latent heating resulting
from water condensation; and the radiation parameterization defines the remaining processes.
These estimates of the various components of the budgets are being routinely revised, and
there are some important differences among the estimates (e.g., Mitchell 1989, Kiehl and
Trenberth 1997). It is important to remember that the magnitudes of these components are
global averages, and thus they represent a large contribution from conditions over the oceans.
Some energy-budget diagrams of this sort show an actual energy flux at the top of the atmos-
phere, rather than an arbitrary base value of 100 units. The global-average, top-of-the-
atmosphere energy flux on a horizontal surface is about 342 W m−2. The individual
components of the budget thus represent partitions of this base value.

All substances with a temperature greater than absolute zero emit radiation. The rate at
which energy is radiated at a given temperature, summed over all wavelengths, is
proportional to the fourth power of the absolute temperature, which is the basis for the
Stefan–Boltzmann law. With an added dimensionless coefficient, ε, the law states that

Energy emitted = εσ T 4,  (4.8)
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where σ is the Stefan–Boltzmann constant, equal to 5.67 × 10−8 W m−2 K−4. If the radiating
body emits the maximum possible radiation per unit area per unit time, the emissivity, ε, is
equal to unity, and the emitter is called a black body. Less efficient radiators have emissivities
between zero and unity. The intensity of the radiation emitted by a black body at different
wavelengths is a function of temperature, and is prescribed by Planck’s law. This intensity dis-
tribution with wavelength has a very similar shape for emitters of any temperature (see the
examples of Fig. 4.19), and has a single maximum. The particular wavelength composition of
the emitted energy depends on the temperature of the emitter, such that a temperature increase
not only increases the total amount of energy emitted (Eq. 4.8), but it also increases the frac-
tion from the shorter wavelengths. That is, the curve in Fig. 4.19 shifts to the left as tempera-
ture increases, and the wavelength of the peak emission, λmax, moves accordingly, such that

λmax = 2.88 × 10−3/T, 

where λmax is in meters and T is in kelvin.
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In most atmospheric applications, we are only concerned with wavelengths in the ultra-
violet, visible, and infrared portions of the full electromagnetic spectrum. Much of the
Sun’s energy is in the visible part of the spectrum, from 0.36 μm (violet) to 0.75 μm (red),
as shown in Fig. 4.19, which depicts the energy intensity for the different wavelengths
emitted by the Sun which has a surface temperature of about 6000 K. There is also signifi-
cant solar energy emitted in the wavelength bands that are shorter than the violet (the
ultraviolet) and longer than the red (the infrared), with the total solar ultraviolet–visible–
infrared band extending from about 0.15 μm to about 3.0 μm. The infrared energy in this
solar spectrum is referred to as the solar infrared, to contrast it with the longer wavelength
infrared that is emitted by the cooler Earth and its atmosphere. Figure 4.19 also shows the
spectrum of the energy emitted by the Earth and its atmosphere, which have a temperature
of roughly 300 K. The wavelength band is all within the infrared, and extends from about
3 μm to 100 μm. Thus, the solar spectrum from 0.15 to 3.0 μm is referred to as shortwave
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radiation, while Earth’s spectrum in the range 3.0–100 μm is longwave radiation. Note that
the maximum intensity of the Sun’s radiation is about a factor of 107greater than that for
Earth. The peak intensity of the solar spectrum is at 0.48 μm (λmax is green, in the middle
of the visible spectrum), whereas for the Earth–atmosphere system it is at about 10 μm.

Figure 4.20 shows the seasonal and latitudinal variation of the possible daily total
(without atmospheric attenuation) solar radiation receivable on a horizontal surface. The

Daily-total radiant energy received on a horizontal surface at the top of the atmosphere, by time of year and latitude. 

The isopleths are labelled in cal cm−2. From List (1966).

Fig. 4.20
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values represent the time integral of the unattenuated direct solar energy flux during day-
light hours, which is based on the intensity of the Sun’s radiation, and the Earth–Sun
geometry that controls the daily evolution of the Sun angle. No meteorological effects are
accounted for (reflection by clouds, scattering, etc.), so this is the maximum possible
energy receivable. It is the effect of the atmosphere on this radiation that must be param-
eterized. 

Because of the existence of clouds, dust, and optically active (absorbing and emitting)
gases, Earth’s atmosphere is far from transparent to the passage of the radiant energy emit-
ted by Earth and the Sun. Each of the constituents has its own unique effect on each indi-
vidual wavelength band of the radiation. In terms of the bulk effect of the atmosphere, part
of the radiation is reflected or scattered, part is absorbed, and the remainder is transmitted.
The fraction of the incident radiation that is absorbed (absorptivity) individually by the
atmosphere’s major gaseous components, and by the total atmospheric mixture of gases, is
shown in Fig. 4.21. It is clear that the gaseous medium totally absorbs some wavelength

The absorptivity (fraction absorbed) of the atmosphere’s major gaseous components, and of the total atmospheric 

mixture of gases. Adapted from Fleagle and Businger (1963).

Fig. 4.21
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bands of radiant energy, while it is relatively transparent to others. Within the visible wave-
lengths of the solar spectrum, from 0.36 to 0.75 μm, where the greatest energy is repre-
sented, not much absorption occurs from gases. At ultraviolet wavelengths shorter than
0.30 μm, ozone effectively absorbs virtually all of the energy, and water vapor becomes an
important absorber at wavelengths longer than 0.80 μm. There is a “window” in the
longwave absorption from about 8 to 11 μm, which encompasses the wavelength of the
peak emission at 10 μm from the Earth–atmosphere system that emits at about 300 K
(Fig. 4.19). Clouds absorb and emit radiation in this window, and thus their correct param-
eterization is important to the modeled radiation balance. Figure 4.22 shows the effects of
both scattering and absorption on the attenuation of the solar beam as it penetrates the
cloud-free atmosphere. The outer curve, A, is the solar spectrum at the top of the atmos-
phere, which differs from the smooth blackbody spectrum of a 6000 K radiator shown in
Fig. 4.19. Here, the degree to which the emissivity departs from unity depends on
wavelength. The remainder of the curves show the progressive modification of the top-of-
the-atmosphere spectrum by ozone absorption, molecular scattering, aerosol scattering,
and water vapor and oxygen absorption. The lower curve (E) shows the energy that sur-
vives the downward transit of the solar beam through the atmospheric medium. It is the
purpose of radiation parameterizations to estimate the three-dimensional time-of-day-,
seasonal-, weather-, and climate-dependent details of these processes whose annual-
average effects are shown in these figures. 
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4.5.2 The general framework for representing radiation in models

The above physical effects of absorption, emission, scattering, and reflection are
accounted for in calculations of the vertical fluxes of longwave and shortwave radiation at
every grid point in a model. The vertical convergence of these energy fluxes is then
employed in the thermodynamic energy equation (Eq. 2.4), such that

,

where FD is the downward flux and FU is the upward flux of radiant energy of all wave-
lengths. This equation is converted to finite-difference form, and solved at every grid point
with the other terms in the equation. In addition, the downward flux at Earth’s surface is
also calculated and used as input to the model’s land-surface parameterization (Chapter 5).
The challenge is to calculate the longwave and shortwave fluxes with sufficient accuracy,
especially for climate models where a small percentage error could be damaging, yet with
sufficient efficiency so that the models can execute in the required period of time. This lat-
ter issue can be critical because radiation parameterizations can be very time consuming,
and thus a variety of alternative approaches and approximations have been developed for
solving the radiative-transfer equations. This is a sufficiently important issue that these
parameterizations are often not called every time step, in order to reduce the computa-
tional demand. 

Stephens (1984) lists a few factors that make the accurate modeling of radiation proc-
esses challenging, including the following.

• Radiation can simultaneously influence the atmospheric dynamics in multiple ways, and
the required accuracy of the approximations in the parameterization can be dependent
on the prevailing meteorological process. This makes it difficult to choose a set of
approximations that is satisfactory in all situations. 

• The atmospheric dynamics respond to diabatic heating from radiative flux convergence,
phase changes, and sensible heating. However, these processes are sometimes coupled,
for example when radiative cooling leads to condensation, leading to complex nonlinear
interactions that may be difficult to approximate.

Another challenge is the following one. Required for calculations of shortwave and long-
wave radiative transfer are vertical profiles of temperature, pressure, and water-vapor mix-
ing ratio from the model. In addition, concentrations of many other optically active gases,
as well as natural and anthropogenic aerosols, are needed. In some forecasting situations,
climatological distributions of the gases and aerosols are assumed. But, it is well known
that there is considerable temporal and spatial (horizontal and vertical) variability in these
quantities, and this is motivating efforts to include estimates of their concentrations in
model initial conditions. For simulation of future climate, experimental approaches
involve the specification of future increases in carbon dioxide and other gases according to
different scenarios (see Chapter 16). 

t∂
∂T 1

ρcp
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Note that there will be no attempt in this text to go into detail about radiative-transfer
calculation methods, and associated approximations used in various parameterizations.
Readers interested in the details should consult Liou (1980), Stephens (1984), and Sten-
srud (2007). 

4.5.3 Parameterization of longwave fluxes

The simplest, least computationally demanding, and generally least accurate approach
relates bulk properties of the resolved-scale atmosphere to the radiative flux. For example,
there are simple, empirical approaches to estimating the downwelling longwave radiation
(FLD) at the ground using near-surface values of temperature. For example, Unsworth and
Monteith (1975) suggest that 

,

where  is the 2-m air temperature,  W m−2, and  for a
location in the UK. A similar relationship was proposed by Anthes et al. (1987) to calcu-
late the net longwave flux at the surface:

,

where  is the substrate, or ground, emissivity,  is the ground temperature, and 
and  are the temperature and the emissivity, respectively, at 40 hPa above the surface.

The general solution of the radiative transfer problem involves estimation of the follow-
ing integral equations:

(4.9)

and

, (4.10)

where  and  are the upward and downward longwave fluxes through level z,
respectively,  is frequency,  is Planck’s function,  is the diffuse transmission func-
tion defined by the hemispheric integral

,

where  is the cosine of the zenith angle and
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The quantity  is the absorption coefficient and u is the concentration of the attenu-
ating gas defined along the path from z to . The first term on the right in Eq. 4.9 repre-
sents the attenuation of the radiation emitted by Earth’s surface. The second term in
Eq. 4.9 and the single term in Eq. 4.10 correspond to the analogous emittance of longwave
radiation by the atmosphere. The various parameterizations used for calculation of the
longwave fluxes employ a variety of approximations for calculating the integrals in the
above four equations. See Liou (1980), Stephens (1984), and Stensrud (2007) for discus-
sions of specific techniques, and of how the effects of clouds on longwave fluxes are
parameterized.

4.5.4 Parameterization of shortwave fluxes

The transfer of solar radiation in the atmosphere is less complex than that for longwave
radiation because there is not the complexity of the simultaneous absorption and emission
from layer to layer in the vertical. That is, the atmosphere does not emit in these wave-
lengths. However, shortwave radiative transfer has additional complexity in the sense that
molecular scattering is important, unlike the situation with longwave transfer. 

As with longwave parameterizations, there are relatively simple empirical methods for
estimating the shortwave fluxes at Earth’s surface. Examples are described in Anthes et al.
(1987), Savijärvi (1990), and Carlson and Boland (1978). For example, Anthes et al.
(1987) employ the following expression for the shortwave flux absorbed by the ground
surface:

,

where  is the solar constant,  is the albedo,  is the solar zenith angle, and  is the
shortwave transmissivity. The transmissivity calculation is based upon Benjamin (1983),
and accounts for absorption and scattering by direct and diffuse radiation, and the effects
of multiple cloud layers. 

For more-complex calculations, the direct irradiance at a level z is defined by Beer’s law as 

, 

where  is the downward radiant flux through level z for a beam of radiation with
a zenith angle  ( ), the integral is over frequency ( ),  is the solar
irradiance at the top of the atmosphere, and the monochromatic transmittance function is 

.

See Stensrud (2007) and Stephens (1984) for a discussion of approximations to these inte-
grals used in parameterizations, as well as to the expressions that represent shortwave
absorption and scattering. These references also discuss the parameterization of cloud
effects on the shortwave fluxes. 
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4.6 Stochastic parameterizations 

The influence of unresolved scales on the resolved scales is typically parameterized
through the use of deterministic formulae. In contrast, stochastic parameterizations recog-
nize that there are multiple possible states of the unresolved processes corresponding to a
given state of the resolved variables, and that these can feed back differently to the
resolved scales. These stochastic approaches take various forms. One example is described
in Lin and Neelin (2000), wherein a random component is added to the CAPE that is cal-
culated from the temperature and moisture profiles in the deep-layer-control scheme of the
Betts and Miller (1986) convective parameterization. Addition of this random component
improved the tropical intraseasonal variability of modeled convection. Similarly, Grell and
Dévényi (2002) developed a parameterization that can use a large ensemble of closure
assumptions and parameter values, and statistical techniques are then used to define the
proper feedback to the resolved model variables. This method has been used operationally
in the NCEP Rapid Update Cycle (RUC) model. Other examples of the many applications
of stochastic parameterizations are described in Palmer (2001), Jung et al. (2005), and
Plant and Craig (2008).

4.7 Cloud-cover, or cloudiness, parameterizations

With high-resolution cloud-resolving models, e.g., with grid increments of 1 km, it is
possible to reasonably assume that an entire grid box is either cloudy or cloud-free.
This is clearly not a reasonable assumption for global weather and climate models
having horizontal grid increments of 10–100 km. Thus, for such coarser-resolution
models there is a need to parameterize the cloud geometry in order to properly allow
for the effects of the clouds on the radiation and surface-energy budgets. See
Tompkins (2002, 2005) and Tompkins and Janisková (2004) for background and addi-
tional references.

Geometric cloud properties that might be estimated include:

• the horizontal fractional coverage of the grid box by cloud,
• the vertical fractional coverage of the grid box by cloud, and
• the overlap of the clouds in each vertical column.

Because the microphysics and convection parameterizations do not directly yield the
above information, it must be independently estimated. Two approaches are used: relative-
humidity-based methods and statistical methods.

Imagine a single grid volume whose horizontal area is partially filled with clouds,
where such clouds extend in the vertical through the model layer. In the subvolume filled
with cloud, the air is saturated. Elsewhere, the region is cloud-free and unsaturated. In
this case, the grid-volume-mean relative humidity is obviously less than 100%. Thus, if
a model predicts the grid-resolved relative humidity to be 100%, it can be assumed that
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the grid-box area is filled with cloud. If the model grid-resolved relative humidity is less
than 100%, it remains to be inferred by the parameterization whether there is any cloud
in the grid box whose effects on the radiation and surface-energy budget should be
accounted for. 

All parameterization approaches assume the existence of fluctuations of humidity and/
or temperature on the subgrid scale. Figure 4.23 shows an example distribution of mixing
ratio and saturation mixing ratio over a grid increment, where the mean grid-box condition
is unsaturated. Without the fluctuations, there would be no regions where , leading
to saturation. There are a number of different approaches for relating subgrid cloud cover
to resolved-scale variables. One set of methods is based on diagnostic relationships
between subgrid-scale fractional cloud cover and relative humidity. They generally apply
to only the first property in the above list – the horizontal fraction of the grid box that is
covered by cloud. A common mathematical relationship between relative humidity and
fractional cloud cover, proposed by Sundqvist et al. (1989), is 

,

where C is cloud fraction and  is the critical Relative Humidity (RH) above which cloud
is assumed to form. Here  and , so that C increases monoton-
ically from 0.0 to 1.0 as RH increases from  to 1.0. Because such a simple relationship is
not likely to be equally suitable over a wide range of cloud types and climates and weather
regimes, many alternative approaches have been suggested. For example, Slingo (1980, 1987)
proposes separate RH-based relationships for convective clouds and high-, medium-, and low-
level stratiform clouds. And Xu and Randall (1996) include both the total cloud-water and
cloud-ice mixing ratio, and RH as predictors.

Another general approach to the problem involves specification of the subgrid-scale proba-
bility distribution function for the humidity, as well as possibly that of the temperature. Vari-
ous symmetrical and asymmetrical distributions have been assumed, where Fig. 4.24 shows a
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schematic example of how this can be used to estimate the cloud fraction. In the figure, it is
assumed, as a simplification, that the temperature does not fluctuate on these scales, so that
there is a constant saturation mixing ratio. The cloud cover is defined by the integral over the
part of the distribution for which q exceeds .
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PROBLEMS AND EXERCISES

1. Why might it be problematic for global models to use different parameterizations for
different geographic regions, even though this could mean that the parameterizations
perform better?

2. At about what horizontal grid increment do you imagine that parameterizations for sub-
grid-scale cloud cover will not be needed? How might the answer to this be weather-
regime dependent? 

3. Suggest types of sensing systems that might be useful for initializing microphysical
variables.
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4. Describe how the existence of mineral aerosols of natural and human origin can influ-
ence microphysical and radiative processes in the atmosphere.

5. Given that mineral aerosols have important impacts on microphysical and radiative pro-
cesses, how can their effect be practically represented in model forecasts? 

6. What physical mechanisms might be responsible for convective parameterizations on
the outer grids of an interacting nest influencing the resolved convective precipitation
on the inner grid (e.g., as in Fig. 4.9)?
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5.1 Background

The surface processes whose numerical simulation is discussed here occur near both the
land–atmosphere and the water–atmosphere interfaces. Over land, the movement of heat
and water within the plant canopy and the ground beneath it must be represented in both
weather- and climate-prediction models. Through this movement of heat and water across
the land–atmosphere interface, properties of the land surface such as temperature and wet-
ness are felt by the atmospheric boundary layer and the free atmosphere above. The atmos-
phere, in turn, affects the substrate and vegetation properties through radiation,
precipitation, and controls on evapotranspiration. The effect of the surface on the frictional
stress felt by the air moving over it is more the subject of boundary-layer meteorology and
parameterizations rather than land-surface physics, so most of the discussion of this topic
is found in Chapter 4. Over water, the interaction is complicated by the fact that the wind
stress causes currents, waves, and vertical mixing of the water, which affect surface tem-
perature and evaporation.

The skillful numerical prediction of atmospheric processes of many types and scales
depends on the proper representation of surface–atmosphere interactions. For example, the
prediction of convection relies on the accurate calculation by the model of surface fluxes
of heat and water vapor. And, direct thermal circulations on the mesoscale, forced by hori-
zontally differential heating at the surface, can dominate the local weather and climate
near coastlines and sloping orography. On larger scales, monsoon circulations respond to
seasonal variations in surface-heating differences between continents and oceans. And the
modification of air masses by surface–atmosphere heat fluxes is an important factor that
controls near-surface temperatures on the synoptic scale. On the global scale, the proc-
esses associated with the ENSO cycle involve ocean–atmosphere interaction. Indeed, of
course the entire general circulation of the atmosphere is driven by differential surface
heating, and a critical link in the global hydrologic cycle is the evapotranspiration at the
surface. There are many more examples of atmospheric phenomena whose accurate simu-
lation or forecasting depends on skillfully modeling the surface–atmosphere interaction,
and the subsurface processes, over land and water.

Although many similar land-surface processes prevail on both weather and climate time
scales, there are some that are only important for climate forecasting. Examples of these
include interactions related to the carbon cycle, as well as changes in plant species associ-
ated with drought and other climate change. Modeling both categories of processes will be

5 Modeling surface processes



Modeling surface processes172

considered in this chapter, although the climate-related ones are discussed in greater detail
in Chapter 16. 

Because most students and professionals who are studying NWP will not have had the
same background in land and ocean processes as they have had in atmospheric dynamics
and thermodynamics, a summary is offered here in order to illustrate what must be
included in a complete model. More detail will be provided below about land processes
relative to ocean processes because, on weather-prediction time scales of a week or two, it
is typical to assume that water conditions (e.g., temperature) are constant. In contrast,
because of the fast response of the land conditions to precipitation, diurnal and day-to-day
variations in solar radiation, frontal passages, etc., land-surface and subsurface processes
are modeled explicitly or parameterized in virtually all models. 

There are two ways in which Land-Surface Models (LSM) are used in NWP. They are
integral components of the atmospheric model, and are run simultaneously with the rest of
the code to predict or simulate surface fluxes of heat, moisture, and momentum. And, they
are used as the basis of Land Data-Assimilation Systems (LDAS), which are run as stand-
alone systems that ingest observed meteorological variables in order to diagnose current
substrate temperature, moisture, and vegetation conditions for use in model initialization.
That is, the LDAS is not coupled with the atmospheric model when it is run. 

There is a hierarchy of LSMs that are appropriate for different applications, and all the
processes discussed here do not need to be represented in every LSM. Nevertheless,
regardless of the level of complexity of the treatment, the surface-process representations
are an integral part of the atmospheric-model code. Thus, it is important for the model user
to understand the strengths and weaknesses of this part of the model, just as with any other
aspect of the model – just because it is not atmospheric science does not mean that LSMs
can be treated as black boxes. 

5.2 Land-surface processes that must be modeled

Land-surface models use atmospheric information (wind speed, temperature, etc.) from
the atmospheric model’s surface-layer representation, precipitation forcing from the con-
vective and microphysics parameterizations, and radiative forcing from the radiation
scheme. This forcing is used with information about the land’s state variables to calculate
the surface fluxes of heat and moisture to the atmosphere, reflected shortwave radiation,
and longwave radiation emitted to the atmosphere and space. An appreciation for the
breadth of the topic of land-surface processes and modeling can be developed through
Fig. 5.1, which shows the various prevailing physical processes. The processes involve
heat transfers, and the movement and transformation of water in its various forms. Within
the substrate, there are the following processes. 

• Liquid water is transported downward through gravity drainage and in all directions
through capillary effects. Water also can rise and fall through changes in the water table.

• Water vapor moves vertically through the air spaces by convection and molecular diffusion.
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• The roots of vegetation draw water from the substrate within the root zone.
• The substrate water freezes and thaws, with the release and consumption of the latent

heat of fusion.
• Evaporation and condensation occur, with the release and consumption of the latent heat

of condensation.
• Heat is conducted.

At the interface between the substrate surface and the atmosphere, there are the following
exchanges.

• Rainwater, snowmelt water, irrigation water, and dew enter the substrate.
• Water from the substrate evaporates and sublimates into the atmosphere.
• Heat is exchanged between the atmosphere and the substrate.
• Liquid water passes from the underground roots to the above-ground stems and leaves.

Immediately above the interface, the following processes are important.

• Rain falls on the bare ground and vegetation.
• Water drips from vegetation onto the bare ground or onto other vegetation.
• Snow accumulates on the bare ground and vegetation.
• Snow and frost melt and sublimate, consuming heat. 
• Dew and frost form on the bare ground and vegetation, releasing latent heat. 
• Fog deposits on the bare ground and vegetation.
• Water evaporates from the leaf surfaces of vegetation, and transpires from vegetation,

with the consumption of heat.

5.2.1 The energy and water budgets of the land surface

The energy and water budgets at the land surface control the temperature and moisture
content of the substrate and vegetation, which interact with the atmosphere. The energy-
conservation equation can be written for a unit mass or unit area of the surface that is
experiencing gains or losses of energy: 

 (5.1)

The variable R is the net radiation, L is the latent heat of evaporation, E is the evaporation
or condensation rate, H is the sensible-heat exchange between the substrate/vegetation and
the atmosphere, and G is the sensible-heat exchange (conduction) between the surface and
the subsurface substrate. The quantity LE is the latent-heat flux, and H and G are heat
fluxes also, all with the same dimensions as R. The net radiation represents the rate of radi-
ant energy gain or loss at the surface of Earth, after accounting for all the various sources
and sinks of short- and longwave radiation. The surface radiative energy balance is sym-
bolically represented as

R = (Q + q)(1 − α) − I↑ + I↓,  (5.2)

where R is the net radiation, Q is the direct-solar and q is the diffuse-solar radiation inci-
dent on Earth's surface, α is the surface albedo, I↑ is the outgoing longwave radiation

R LE H G+ +=
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from the surface, and I↓ is the absorbed downwelling longwave radiation that has been
emitted by the atmosphere (gas, particulates, and clouds). Equation 5.1 simply states that
the radiative energy gain or loss at the surface, R, must equal the sum of the other three
terms. During the day, the rate of energy gain at the surface must equal the loss of energy
associated with evaporation, the loss associated with heat conduction away from the sur-
face into the substrate, and the loss of sensible heat to the atmosphere. 

The water budget for a shallow soil layer at the surface can be represented as

, (5.3)

where  (dimensionless) is the volumetric soil water content; P is the rate of input
through precipitation, snowmelt, dew and fog deposition, and irrigation water; ET is the
rate of loss through evapotranspiration; RO is the rate of loss through lateral runoff; and D
is the rate at which water is lost through drainage to deeper layers.

5.2.2 Vertical heat transport within the substrate

Vertical heat transport within substrates is mostly through conduction (i.e., molecular diffu-
sion), even though convective and advective movement of air can transport heat when the
porosity (percentage air space) is high. This subsurface transport is important because it
strongly modulates the thermal-energy budget at the surface. For example, heat gained and
stored by the substrate during the day can be released to the atmosphere at night, affecting
the boundary-layer structure and moderating the nocturnal minimum temperatures. 

Because the substrate is a medium potentially consisting of solid, liquid, and gas phases,
the thermal conductivity will depend on the proportions and characteristics of these com-
ponents. The direction of the conductive heat transfer is from higher temperature to lower
temperature, and the magnitude of the heat flux is proportional to the temperature gradi-
ent. Mathematically, 

, (5.4)

where Hs is the heat flux in the soil (positive upward), ks is the soil thermal conductivity, z
is distance on the vertical axis (positive upward), and Ts is the substrate temperature. That
is, the heat flux is proportional to the temperature gradient multiplied by a factor that
reflects the ability of the substance to transfer heat. This is called a flux-gradient form of
equation. The negative sign indicates that the flux is in the direction of lower temperature.
The thermal conductivity is formally defined as the quantity of heat that flows through a
unit cross-sectional area per unit time, when there exists a temperature gradient of one
degree per unit distance perpendicular to the cross section. In general, a soil consists of
solid substrate particles, liquid water, ice, and air spaces, and the relative contributions
from the conductivity of these four components determines the total soil conductivity. The
existence of water in the soil dramatically increases the thermal conductivity, not only
because the conductivity of water is high, but because the water displaces the air which
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has an especially low conductivity (i.e., air is a good thermal insulator). Specifically, the
conductivity of air is about two orders of magnitude lower than that of rock or wet soil.
Thus, tabulated values of conductivity should specify the soil-moisture content and the
porosity of the soil. Figure 5.2 shows qualitatively how the conductivity and other thermal
properties of soil depend on the soil-moisture content.

Another important physical property of a substrate is the thermal, or heat, capacity,
which describes how much heat is required to raise the temperature of a unit volume by
one degree. As with the conductivity, the value of the soil heat capacity (Cs) depends on
the fractions of the soil solids, liquid water, ice, and air. Air has a low heat capacity, so dis-
placing air with water, as soil is moistened, raises the heat capacity of the air–water–solid
mixture (Fig. 5.2b). Thus, more heat is required to raise the temperature of a moist soil
than a dry soil. A related quantity is the specific heat (c), which is the amount of heat
required to raise the temperature of a unit mass by one degree. Thus, it is equal to the heat
capacity divided by the density of the substrate (c = C/ρ). The heat capacity and the spe-
cific heat are sometimes referred to as the soil’s thermal sensitivity.

Soil moisture

ks
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Soil moisture

Cs

(b)

Soil moisture

KHs
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Soil moisture

µs
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General relationship between soil-moisture content and (a) thermal conductivity, (b) heat capacity, (c) thermal 

diffusivity, and (d) thermal admittance for most soils.  From Oke (1987).

Fig. 5.2
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A quantity that is related to the heat capacity and the thermal conductivity is the thermal
diffusivity (KΗs = ks/Cs). We will see that it determines the speed with which a temperature
change propagates through a medium such as soil. Imagine the surface of the substrate
heating up during the daytime heating cycle, which creates an upward temperature gradi-
ent immediately below the surface. Equation 5.4 predicts a downward heat flux that is
directly proportional to the soil’s thermal conductivity. Because the temperature gradient
and therefore the heat flux are still small some distance below the surface, there will be a
heat-flux convergence between the surface and that level. That is, the downward heat flux
into the layer from the top is greater than the downward heat flux out of the layer at the
bottom. This will raise the temperature of the soil in the layer in inverse proportion to its
heat capacity, as shown in Eq. 5.5: 

. (5.5) 

In the above example, Hs just below the surface has a large negative value, and is less neg-
ative with greater depth. The vertical derivative is thus negative, providing for a tempera-
ture increase. Combining Eqs. 5.4 and 5.5 gives

, (5.6)

where the simplification has been made that ks does not vary with depth. Here we see that
the rate of temperature change is proportional to the diffusivity and the second derivative
of temperature with respect to depth. Figure 5.3 shows a schematic of an idealized temper-
ature distribution immediately above and below the air–ground interface, for both night-
time and daytime conditions. During the day, the curvature of the temperature profile
below the surface is such that the second derivative in Eq. 5.6 is positive and the tempera-
ture increases. When the curvature reverses at night, the substrate cools. Note that a con-
stant rate of temperature change with depth (a straight, sloping line in Fig. 5.3) would
produce the same flux everywhere (Eq. 5.4), and no temperature change (Eq. 5.5).

Figure 5.2 shows that diffusivity is directly proportional to soil moisture, for low soil
moisture, because the conductivity increases faster with increasing soil moisture than does
the heat capacity. When the conductivity curve develops less slope than does the heat-
capacity curve at higher soil moistures, the diffusivity begins to decrease. 

Another way of understanding how the diurnal temperature wave at and below the sur-
face is related to substrate properties is through the concept of thermal admittance, which
is a property of the interface between two media (e.g., the substrate and the atmosphere). It
is defined as μs = (ksCs)

1/2, and is a measure of the ability of a surface to accept or release
heat. Consider your feet in contact with a tile floor that has a temperature that is lower than
your skin temperature. The temperature gradient at the skin–tile interface causes a flux
from you to the tile, and a critical factor that determines whether the surface “feels” cold
to you is whether the tile surface warms very rapidly to your skin temperature, or whether
it remains colder. In the case of the tile, the conductivity is large so that the heat it gains

t∂

∂Ts 1
Cs
-----

z∂

∂Hs–=

t∂

∂Ts 1
Cs
-----

z∂
∂

ks z∂

∂Ts
⎝ ⎠
⎛ ⎞ ks

Cs
-----

z
2

2

∂

∂ Ts KHS
z

2

2

∂

∂ Ts===



Modeling surface processes178

from your body is conducted rapidly from the surface to the tile material below. Thus, the
surface temperature does not rise rapidly, as it would if you were standing on a wood floor
having a lower conductivity (i.e., wood is a better thermal insulator). Analogously, if the
material has a high heat capacity, its temperature is not going to rise rapidly in response to
heat input from your skin. Thus, high conductivity and high heat capacity (i.e., large
admittance) contribute to sustaining a large heat transfer across an interface because the
temperature contrast is maintained. Of course, the temperature response of the second
medium is equally important, so in the case of the surface–air interface, the admittance of
the air must also be considered. 

Thus, when the surface in contact with the atmosphere has high admittance (i.e., high
conductivity and/or high heat capacity), the temperature of the surface does not increase as
much during the daytime as it would for a low-admittance surface. This has implications
for the daytime surface-energy budget in terms of smaller sensible-heat fluxes to the
atmosphere (a cooler boundary layer) and weaker longwave emission from the ground. 

The amplitude and time lag of the temperature wave that propagates downward into the
substrate during the day also depend on the conductivity and the specific heat. The amplitude
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of the daily temperature oscillation is greater for large conductivities and for small heat
capacities. That is, the amplitude is proportional to the diffusivity, KΗs = ks/Cs, such that

, (5.7)

where z is the depth below the surface, P is the wave period (24 h is the dominant period in
this discussion of the diurnal temperature wave), (ΔT)0 is the amplitude of the temperature
wave at the surface (z = 0), and (ΔTs)z is the amplitude at depth z. That is, the amplitude of
the diurnal temperature oscillation decreases exponentially with depth. Figure 5.4a shows
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idealized diurnal temperature variations at different depths on a cloudless day. The time
lag with depth shown in the figure is defined by 

, (5.8)

where t1 and t2 are the times that a temperature-wave maximum or minimum reaches lev-
els z1 and z2, respectively. In other words, the difference is the time required for the tem-
perature wave to pass from one depth to the other. Other variables have the same definition
as before. The temperature wave travels faster in substrates with higher thermal conductiv-
ity and with lower heat capacity. The time lag means that the near-surface substrate can be
cooling while warming continues a short distance below. At some depth, the curves are out
of phase so that the time of the temperature maximum at that depth corresponds to the
temperature minimum at the surface. Equations 5.7 and 5.8 apply also to the annual cycle,
where the period corresponds to that of the seasonal rather than the diurnal cycle
(Fig. 5.4b). Equation 5.7 shows that, with a period of 365 days, the depth to which the
thermal wave penetrates is about 14 times greater than for the diurnal period (for the same

). If the diurnal thermal wave penetrates to 0.5 m with a particular amplitude, the
annual wave will penetrate to 7 m with the same amplitude.

5.2.3 Vertical water transport within the substrate

There are two general ways for liquid water to enter the substrate between the water table
and the surface. Water can move upward from the water table through capillary action (or
the water table itself can rise). And, water can enter the substrate from the surface, where
this process is called infiltration. The efficiency of infiltration depends on a number of fac-
tors such as rainfall intensity, total rainfall amount during a storm, the physical composi-
tion of the substrate, and antecedent precipitation. This rate of water movement into the
substrate is important because it determines the potential for runoff and flooding, the
amount of water near the surface that is available for evaporation, the availability of water
for plants, and the extent of groundwater replenishment. 

The upward and downward water transport within soils can take place through five
mechanisms: Three apply to liquid water and two to water vapor. For liquid water, there
are two forces that operate. One is gravity and the other is related to the surface tension
between the soil particles and the water. It perhaps seems unusual to refer to surface ten-
sion as a force, but molecules at the surface of a liquid experience molecular forces that
are not symmetrical and, therefore, not balanced like those experienced by molecules in
the fluid’s interior, away from the surface. Consider that a volume of soil (or, more famil-
iarly, a sponge) will not drain completely dry after being wetted. Eventually, the drainage
rate will approach zero because surface-tension forces, which promote retention of water
within the soil (or sponge), balance the gravity force. 

In the first mechanism, liquid water can move vertically as a result of a change in the
pressure head, which causes the water table to change. That is, a water surface must be in
dynamic equilibrium with its surrounding fluid, so local water excesses or deficits
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compared to surroundings are reconciled through water movement that equalizes the pres-
sure. A simple illustration of this effect is found in desert environments where a hydrolog-
ically closed basin, perhaps containing a salt flat, is surrounded by mountains. Rainfall and
snowmelt over the mountains refresh the water table below, which increases the water
pressure and causes the groundwater to move laterally (from high to low pressure) into the
central basin until equilibrium is attained with a higher water table there. In these situa-
tions, frequently the water table reaches the surface, creating seasonal lakes over the salt
flats, which should be represented in a model. Analogously, extraction of water at a well
site decreases the pressure there and causes inflow from the surroundings, lowering the
water table over a wider area. This movement of water in response to pressure differences
is forced by gravity; that is, the force of gravity is responsible for static pressure within a
fluid. (Static pressure is related to the weight of the fluid above a point, whereas dynamic
pressure is a result of fluid movement.)

Second, liquid water can move through soils by capillary action. This movement results
from surface-tension effects between the water and soil particles. For example, water can
move from the water table into the dry layer above through capillary effects. The capillary-
rise layer has a lower bound at the water table and an upper bound that depends on soil
properties. In general, capillary effects contribute to the spread of water from wetter to
dryer soil. These surface-tension forces that bind the water to the soil particles are deter-
mined by the soil porosity and the soil moisture itself. The more porous the soil and the
more dry the soil, the weaker are the surface-tension effects. For example, capillary move-
ment of water can be blocked by a layer of open-textured soil (e.g., coarse sand or gravel)
or by a dry layer of soil.

Third, downward liquid-water transport between the substrate particles is forced by
gravity, where this water is supplied through infiltration – the entry at the surface of water
from rain, snowmelt, or irrigation. The infiltration rate is limited by the rate of soil-water
movement below the surface, called percolation, with any excess running off laterally or
ponding at the surface. The correct modeling of this type of soil-water movement is impor-
tant to the prediction of groundwater recharge; the evaporation rate; runoff, erosion, and
flood production; the availability of water for plant uptake; and chemical changes such as
salinization. The rate of this downward water movement, defined as the hydraulic conduc-
tivity, is controlled by the surface-tension effects between the soil particles and the water.
The force of gravity draws the water downward, but surface-tension forces between the
water and soil particles promote retention of the water. This latter effect of water retention
is quantified in terms of the soil-moisture potential, which can be visualized as the amount
of energy necessary to extract water from the soil matrix. Tight soils, such as clay, have a
high potential, or water-retention capacity, compared to sand. Also, dry soils have a higher
potential than wet soils: i.e., it takes less energy to extract a unit of moisture from a wet
soil than from the same soil after it has become drier. Thus, the hydraulic conductivity is
greater when the soil is wet and porous. 

The amount of liquid water in soils is generally defined in terms of the soil-moisture
content, which is the percentage of the volume of a soil that is occupied by water. The
upper limit of the soil-moisture content is determined by the porosity. Coarse-textured
soils, such sand, tend to be less porous than fine-textured soils, even though the mean pore
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size is greater in the former. The temporal change in the soil-moisture content at any point
in a soil can be represented by an equation that is similar to Eq. 5.5, which expresses the
local temperature change in terms of the difference in the vertical heat fluxes into and out
of a layer (as represented for a point by the vertical derivative of the flux). Analogously, for
soil moisture the vertical derivative of liquid-water fluxes must be represented. If the soil-
moisture flux toward a point is greater than the flux away from it, the soil moisture
increases, and vice versa. The following equation expresses local changes with time in vol-
umetric soil-water content (Θ) as a result of vertical variations in the vertical volume flux
of liquid water (q). Note that this expression applies for vertical water transport within
subsurface layers, and thus there are no direct effects of sources and sinks of water from
precipitation, evaporation, and runoff (as there are for Eq. 5.3, which applies to the surface
layer). However, the loss by canopy transpiration of water taken from the root zone is rep-
resented by Et. The term  is associated with capillary (i.e., surface tension)
water movement and  represents gravity-forced water movement. These are the second
and third mechanisms described above, respectively.

. (5.9)

Here, KΘ is hydraulic conductivity and DΘ is soil-water diffusivity. The subscripts on K
and D refer to their dependence on Θ. The terms conductivity and diffusivity have been
borrowed from the equations for the molecular diffusion and conduction of heat, which
have terms similar in form to those above. Unfortunately, this terminology does not reflect
the actual physical processes that are represented in the equation. The hydraulic conductiv-
ity and soil-water diffusivity are highly nonlinearly dependent on the soil moisture (Chen
and Dudhia 2001), and have been calculated using various mathematical expressions. For
example, Ek and Cuenca (1994) use

, and  (5.10)

,  (5.11)

where  is the saturation hydraulic conductivity, Θs is the saturation volumetric soil-
moisture content, Ψs is the saturation soil-moisture potential (a negative number), and b is
an empirically defined coefficient. All of these quantities are functions of the soil type.

The above mechanisms apply to liquid-water movement. However, there are also two
mechanisms by which water vapor can move vertically above the water table through
porous, dry soil: convection and vapor diffusion. Convection requires that the temperature
of the soil, and that of the air within the soil, decrease upward in the soil more rapidly than
the dry adiabatic lapse rate that is required for the triggering of buoyant motion. The flux
of water by vapor diffusion is proportional to the gradient of the water-vapor content of the
air within the soil, and results in water vapor transport from areas of higher to lower con-
centration, without the need for any movement of air on scales larger than the molecular.
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5.2.4 Liquid-water transport within vegetation, and transpiration

Vegetation is important to the moisture budget because the roots access shallow and deep
moisture that is not otherwise directly available for evaporation at the surface. This mois-
ture is transferred through the xylem up the stems to the leaves, where it evaporates
within the intercellular spaces of the leaves and is released through the stomata into the
atmosphere. The latent heat consumed in this process is provided by the foliage, in con-
trast to evaporation from bare ground where the latent heat comes from the substrate. In
either case, the energy loss is part of the surface-energy budget, which affects the atmos-
phere.

The rate of loss of water by transpiration from vegetation depends on many factors,
including vegetation type and density, atmospheric humidity, time of day, season, and
the degree of heat and water stress to which the vegetation has been subjected. There has
been considerable historical controversy about the dependence of the transpiration rate
on soil moisture. A wilting-point value of soil-moisture content has been defined as the
limit below which the vegetation permanently wilts and transpiration ceases. This is a
convenient concept, but ignores the fact that the moisture content within the root zone is
not uniform, and that different coexisting vegetation types have greatly different toler-
ances for soil dryness. Field capacity is another threshold on the soil-moisture scale,
with implications for vegetation. It is defined as the moisture value below which internal
drainage ceases. That is, for a soil-moisture content that is less than the field capacity,
the soil will retain the moisture and none will drain downward. This is another concept
that has gained popularity because of its simplicity rather than its strict accuracy. Some
have used the assumption that water is equally available to vegetation for any moisture
value above the wilting point. Others have assumed that the vegetation is under stress for
wetnesses between the wilting point and field capacity, with a transpiration rate that is
dependent on soil moisture, and that only for wetnesses above field capacity is there no
longer a stress.

5.2.5 Heat and water-vapor exchange between the surface and the atmosphere

It was mentioned previously that the vertical transfer of sensible heat at the substrate–
atmosphere interface occurs through conduction. This takes place within a very shallow
layer of atmosphere, called the laminar (nonturbulent) sublayer, having a depth of a few
molecules to, at most, a few millimeters. Above this layer, the transfer is through
turbulent eddies of air. This turbulence does not contribute to the flux at the surface
because the eddies cannot exist there, where the velocity normal to the surface must be
zero. 

Because all nonradiative transfer of heat at the surface is through conduction, the heat
flux can be represented (Eq. 5.12) by the same sort of flux-gradient relationship
employed to represent heat transport by conduction within the substrate (Eq. 5.4). A sim-
ilar expression (Eq. 5.13) can be used for the vapor flux. If it is assumed that the same
type of equations can be applied for turbulent transfer as are used for molecular transfer,
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the equations can be rewritten as follows with the molecular diffusivities replaced with
eddy diffusivities:

 and (5.12)

. (5.13)

Here, Ca is the heat capacity of the atmosphere, cp is the specific heat at constant pressure
of the atmosphere, KHa and KWa are the diffusivities of heat and water vapor in the air,
respectively, q is specific humidity, and the vertical derivatives are evaluated within the
laminar sublayer near the surface. 

A challenge to applying these equations is that the exchange coefficients are functions
of distance from the surface and static stability, varying by over three orders of magnitude
from day to night. Alternative expressions for H and LE can be obtained if we vertically
integrate these equations with the assumption that the fluxes do not vary much with height
within the first couple of meters. The resulting expressions are 

 and (5.14)

, (5.15)

where DH and DW are transfer coefficients that are integral functions of KHa and KWa, Tg is
the temperature of the surface, and Ta and qa are the temperature and specific humidity,
respectively, of the air at a specified level near the surface. The value of the specific humid-
ity at the surface, qs, is equal to the saturation value, qs,sat, at the temperature Tg, of any
surface at which evaporation is occurring – water bodies, damp soil, leaf stomata. 

Thus, the sensible- and latent-heat fluxes between the substrate and the atmosphere can
be represented in terms of the differences between the temperature and humidity at and
immediately above the surface. The direction of the fluxes depends on the sign of the dif-
ference, and the magnitude of the fluxes depends on the degree of the contrast between the
conditions at the two levels. The transfer coefficients are functions of factors that affect the
intensity of the turbulence, such as the roughness of the surface, the vertical shear of the
horizontal wind from which turbulent energy can be derived, and the vertical lapse rate of
atmospheric temperature, which determines whether turbulent energy is available from
buoyancy. For example, evaporation rates (LE) are high when the atmosphere is dry (small
qa), the surface is warm (large qs,sat) and wet, and the near-surface wind speed is high
(producing a large shear, and thus a large transfer coefficient, DW).

Another way of visualizing the controls on the surface heat flux is through the concept
of thermal admittance. Most of the earlier discussion about admittance was in the context
of the substrate properties; however, it was pointed out that the admittance of the atmos-
phere on the other side of the interface is equally important in determining the heat fluxes.
This atmospheric admittance is defined as μa = (kaCa)1/2 = CaKHa

1/2, where KHa is the
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eddy diffusivity of Eq. 5.12. For example, suppose that the surface is receiving solar radia-
tion during the day. This heating of a thin layer of substrate and air at the interface will
produce a temperature gradient within both the air and the substrate (see Fig. 5.3). The
energy not lost by longwave emission and evaporation will be partitioned between
sensible-heat fluxes into the atmosphere and the substrate in proportion to the relative
admittances of the two media. Say, for example, that the substrate has a very low admit-
tance because of poor thermal conductivity, but the boundary layer has a large admittance
because the turbulence is well developed and thus the eddy diffusivity is large. The heat
flux into the soil (Eq. 5.4) will thus be small in spite of the large , but the heat
flux into the atmosphere (Eq. 5.12) will be large because the eddy diffusivity, KHa, is large.
Thus, more of the radiant-energy input to the surface will be partitioned to the sensible-
heat flux to the atmosphere rather than to the substrate. Alternatively, at night the radiative
cooling of the surface draws heat from the air and the substrate in proportion to their
admittances. Because calm, near-surface winds and a stable vertical profile of temperature
mean that turbulence is weak and the eddy diffusivity is small, the atmospheric admittance
is small at night and most of the surface heat lost to space by radiation is provided by the
substrate rather than by the atmosphere. Methods of estimating atmospheric and substrate
admittances are discussed in Novak (1986).

5.2.6 Horizontal water movement at and below the surface

Water from rainfall or snowmelt that accumulates on the surface too rapidly to infiltrate
downward, ponds in the low spots of the substrate and eventually runs off laterally at the
surface. When this occurs, the runoff is channeled across the landscape until reaching
streams and rivers. The rate of infiltration, which determines the partitioning to runoff, of
course depends on the soil type, the density and type of vegetation, the amount of organic
litter on the surface, and the soil-moisture content. Some of the excess that runs off later-
ally will possibly infiltrate at another location. Because runoff is caused by the potential
energy of the water, the horizontal redistribution is greatest and occurs most rapidly over
steeply sloping terrain. 

5.3 Ocean or lake processes that must be modeled 

This section will provide only a brief summary of processes at and below a water surface
that can affect the atmosphere in model simulations. The reader should be able to distin-
guish, based on scale, discussions of those processes that are associated with oceans and
seas, in contrast to lakes. More-comprehensive discussions of ocean processes can be
found in Miller (2007) and Haidvogel and Beckmann (1999). Chapter 16 on climate mod-
eling discusses ocean and sea-ice processes that must be included for simulations on sea-
sonal and longer time scales. As with the land surface, it is not necessary to include all of
these processes for all model applications. Section 5.5 will clarify the level of complexity
that must be included for different modeling situations.

∂Ts ∂z⁄
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Figure 5.5 illustrates some of the processes that may be represented, explicitly or
through parameterization, in models of the coupled atmosphere–water system. The wind at
the surface causes waves, where the wave height is a function of the wind speed and the
fetch. In turn, the stress between the atmosphere and the water is a function of the wave
height. The surface waves and the subsurface turbulence, caused by the wind stress, mix
the water through a layer that is tens to hundreds of meters deep (the mixed layer). The
density, which is a function of the temperature and salinity, is relatively uniform in this
well-mixed layer. In addition to the depth and intensity of the mixing being functions of
the waves and wind speed, they also depend on the density stratification, or stability, of the
near-surface water. The more stable the surface water, the weaker is the mixing and the
shallower is the mixed layer (analogous to the atmospheric mixed layer). The near-surface
stability depends on the vertical distribution of heating from incoming atmospheric radia-
tion, the flux of fresh water from precipitation at the surface, and the mixing of warmer
surface water with cooler water below through the turbulence. Precipitation is less dense
than saline ocean water, and can remain on the top as a fresh-water lens. This increases the
stratification, making it more difficult to mix the less-dense, heated, surface water down-
ward by turbulence. This, in turn, results in higher Sea-Surface Temperatures (SST) asso-
ciated with the fresh-water lens.

The radiation budget differs from that over a land surface in a number of respects, one of
the most important being that the incoming solar and infrared radiation penetrate the
medium and distribute the energy over a depth that depends on the water’s turbidity. The
greatest amount of radiant energy is absorbed near the surface, before the beam loses inten-
sity through attenuation. The turbulence in the ocean distributes this warmer, near-surface
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water through the mixed layer. The diurnal variation of surface temperature is significant
(Kawai and Wada 2007), but less than that over land because the energy is distributed
through a layer by virtue of the penetration of the radiation and the turbulent mixing. 

The wind also drives basin-scale near-surface ocean circulations, called gyres. Near
coastlines, the Ekman drift associated with the Coriolis force can deflect the water move-
ment away from the coast, causing upwelling that greatly influences water temperatures
and the coastal climate. 

5.4 Modeling surface and subsurface processes over land

As noted earlier, LSMs can be run as integral components of LAMs and global models, or
they can be used autonomously as part of a LDAS, with input from observations instead of
the atmospheric-model output. Modeling land-surface processes begins with mapping the
types of substrate (e.g., rock, sand, loam) and vegetation (e.g., shrubs, coniferous trees,
deciduous trees) over the computational area. A look-up table is then used to provide base
values for physical variables, corresponding to the different substrate and vegetation types.
Such variables would include substrate thermal conductivity, heat capacity, porosity,
albedo, etc., where adjustments are made to variable values that are functions of surface or
subsurface moisture. Figure 5.6 shows a schematic of the overall land-surface-modeling
process. The landscape-related input variables are provided by the module in the upper
left. In the upper right is the input of initial estimates of time-dependent variables such as
substrate moisture content and temperature, which vary in both time and space, and are
predicted by the LSM. Because these variables are not observed operationally, it is neces-
sary to adjust the estimated values through the use of a LDAS, which requires observed
atmospheric variables for forcing. It is necessary for this LDAS to run for months to years,
in order to spin up the correct current conditions for the soil-temperature and -moisture
profiles. After this spinup period, the LSM and soil state are ready to use for research or
operational prediction. See Section 5.4.2 for further discussion of the concept of the
LDAS. At the bottom of the figure is an LSM, coupled with an atmospheric model, that
has used input from the LDAS to define the land-surface and subsurface conditions at the
beginning of the model integration. Once the land-variable profiles are spun up, the LDAS
is integrated forward on an hourly basis, as input observations become available, and out-
put is used to initialize the land variables for operational forecasts. 

The next subsection reviews land-surface-modeling methods, the second one describes
the use of LSMs in LDASs, and the last one discusses how the LSMs are coupled with
atmospheric models for weather and climate prediction.

5.4.1 Land-surface models

Now that we have reviewed the array of land-surface and subsurface physical processes
that can affect surface–atmosphere interaction, this section will describe how the proc-
esses can be represented in a model. There are dozens of different specific formulations for
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LSMs. For example, the Project for Intercomparison of Land-surface Parameterization
Schemes (PILPS) included 23 schemes (Henderson-Sellers et al. 1995, Shao and
Henderson-Sellers 1996, Chen et al. 1997). These references should be consulted for a
summary of the varied computational approaches used in the participating LSMs, and for
documentation of the models. The more-complete LSMs represent all the processes
depicted in Fig. 5.1, and sometimes more when simulations are on interseasonal and cli-
mate time scales. One of the outcomes of the intercomparison was that sophisticated
LSMs do not consistently outperform the simpler schemes. The reason for this is that it is

LDAS

LSM variable
estimates

Landscape
mapping

Observed
meteorology

Run to
equilibrium

Landscape
map

Initial landscape
variables

LSM
Atmospheric

model

Forecast of
land-atmosphere

system

Schematic of the overall land-surface modeling process.  At the upper left, the landscape properties (e.g., soil and 

vegetation type) are defined, and in the upper right a first guess of the vertical profiles of soil moisture and tempera-

ture are generated.  These data sets are input to a LDAS that is driven by observed atmospheric forcing, and that is 

integrated forward in time for a historical period of months to years in order to allow the spinup of realistic, current, 

three-dimensional soil temperature and moisture fields.  These conditions can then be used as input to a coupled 

atmosphere–land modeling system for production of weather forecasts, or they can be used directly for hydrological or 

other applications.

Fig. 5.6
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virtually impossible to accurately define values on the local scale for the vast number of
physical quantities that are used by some vegetation–soil–hydrology models. 

Essentially, the LSM solves numerical (finite-difference) forms of Eqs. 5.1, 5.2, 5.3,
5.6, 5.9, 5.14, and 5.15. The net radiation defined in Eq. 5.2 is calculated as follows.

• The flux of direct solar radiation, Q, at the surface is calculated using the astronomical
equations that define the Earth–Sun relationship during the diurnal and seasonal cycles
(the elevation and azimuth angles of the incoming solar beam), the slope of the terrain,
the attenuation of the solar beam by gases, clouds, and particles in the atmosphere (cal-
culated by a radiation parameterization), and the solar spectral flux at the top of the
atmosphere. For climate–time-scale simulations, the solar flux is varied based on known
periodicities in the solar output and changes in Earth’s orbital parameters.

• The indirect-solar radiation, q, is obtained from a radiation parameterization, using the
above information about the direct solar beam, and information about atmospheric par-
ticulate and liquid scatterers. 

• The albedo, , is based on the tabulated substrate and vegetation properties of the grid
box, as well as the substrate wetness (which affects the albedo). Strictly speaking, the
albedo is dependent on the wavelength, the incident angle of the radiation, and the view-
ing angle, but a single value is usually used as an approximation. 

• The upward-propagating infrared energy at the surface is calculated from the time-
dependent skin temperature (Tg) of the vegetation and soil, using I↑ = εσTg

4, where ε  is
the emissivity and σ is the Stefan–Boltzmann constant.

• The downwelling infrared energy at the surface is calculated from I↓ = εI (incident),
where the incident longwave flux at the surface is provided by the radiation parameter-
ization. 

The resulting net radiation is used in Eq. 5.1. The terms in this equation for the sensible (H)
and latent (LE) heat-flux exchanges between the surface and the atmosphere are calculated
with Eqs. 5.14 and 5.15, respectively. The heat flux between the surface and the uppermost
substrate layer (G) is computed with Eq. 5.4, with the surface (skin) temperature (Tg) and the
temperature of the uppermost soil layer used to calculate the vertical temperature derivative.
Each of these terms in Eq. 5.1 is a function of Tg, which is obtained by iteration.

Within the substrate, temperature change is computed by integrating Eq. 5.6 in time.
The water budget for the surface is computed by integration of Eq. 5.3, where the precipi-
tation rate (P) is obtained from the atmospheric model, the loss by evapotranspiration (ET)
and lateral runoff (R) are computed using various approaches, and the drainage to deeper
layers is computed with flux terms such as in Eq. 5.9. Changes in the soil-moisture content
of subsurface layers are calculated by integrating Eq. 5.9. 

Some of the major ways in which land-surface parameterizations differ from each other
are listed below.

• Land- and sea-ice process modeling
• Vegetation canopy representation
• Runoff calculation and surface routing (results from merger of hydrologic models and

LSMs)

α
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• Grid-box partitioning (whether model grid boxes contain a mixture of surface types, or
whether the dominant surface type is applied to the entire grid box) 

• Groundwater modeling
• Snowpack, snow-cover, snow-albedo treatments
• Dynamic vegetation, multi-layer vegetation canopy representation
• Urban canopy modeling (none, single-layer, multi-layer)
• Irrigation representation (seasonal and daily protocols)
• Frozen-soil treatment

5.4.2 Land-surface models used in land data-assimilation systems

The use of LDASs has two motivations. One is to initialize the land-surface conditions
(e.g., soil moisture and temperature) in atmospheric-model integrations. Even though
these quantities are forecast by the LSMs that are run with the atmospheric model, they
develop forecast errors just as do the atmospheric variables. Therefore, using the forecast
values of land-surface variables as initial conditions for a subsequent forecast can result in
the accumulation of error associated with model biases. Thus, LDASs are needed in order
to provide realistic land-surface initial conditions (IC). The second motivation is to diag-
nose surface properties that are too difficult or expensive to measure directly. For example,
a LDAS can be run for a forest, and the soil moisture and information about the vegetation
can be used to estimate wildfire potential in remote areas. And, a LDAS can be run for an
agricultural area, and the output used to diagnose regional variations in the soil-
temperature and -moisture profiles that affect crop growth. Or, it can be run for a water-
shed, and the analyzed soil moisture used as input to a flash-flood forecasting system. 

An example of a global LDAS is the Global Land Data Assimilation System (GLDAS,
Rodell et al. 2004) developed by the US NOAA and NASA. It merges ground- and space-
based measurements, which can be used as input to any of three LSMs: Mosaic (Koster
and Suarez 1996), the Common Land Model (Dai et al. 2003), and Noah (Chen et al.
1996, Koren et al. 1999). Table 5.1 lists the input and output variables for GLDAS. The
atmospheric-forcing variables in the left column are estimated based on observations,
these data are used as input to an LSM, and the LSM diagnoses the output variables on the
right. The GLDAS has basic grid-increment options of 0.25°, 0.5°, 1.0°, 2.0°, and 2.5°.
Higher-resolution, mesoscale LDASs are used for regional applications, but their opera-
tion and purpose is the same as on larger scales. These are run using typical mesoscale
grid increments of 1–10 km. Chen et al. (2007) report on the WRF-based High-Resolution
Land Data Assimilation System (HRLDAS), which employs the Noah LSM. Reanalysis
systems, described in Chapter 16, also often provide land-surface conditions as part of the
archived output, but these are not the same as LDASs because the LSM input is from the
model and not observations.

When an LDAS is used for model initialization, it is typical to use the exact same LSM,
use the same input data (e.g., substrate properties), and employ identical computational
grids for both the LSM in the model and the LSM in the LDAS. This avoids the problem
that it is challenging to translate soil-moisture and temperature profiles from one LSM (in
the LDAS) to another (in the forecast model) because of different basic assumptions and
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formulations, and different grid structures. For rapidly adjusting atmospheric variables,
modest conversion errors would be reconciled quickly. However, LDASs can require many
months to reach an equilibrium, after being initialized with erroneous soil-temperature
and -moisture profiles.

5.4.3 Land-surface models coupled with atmospheric models

When used this way, the LSM is an integral component of the entire modeling system,
with the atmospheric and land-surface components integrated together and communicat-
ing at every time step. The LSMs are employed in both weather-prediction and climate-
prediction models, and with LAMs and global models. For climate prediction, more
degrees of freedom are needed because a changing climate will lead to the evolution of the
vegetation species and density. For real-data simulations or forecasts, the land-surface var-
iables in the LAMs are generally initialized using an LDAS, a described in the previous
section.

 Table 5.1  Forcing and output fields for the GLDAS 

Required forcing fields Output fields

Precipitation Surface albedo

Downward shortwave radiation Canopy transpiration

Downward longwave radiation Soil moisture in each layer

Near-surface air temperature Snow depth, fractional coverage, and water equivalent

Near-surface specific humidity Plant canopy surface-water storage

Near-surface wind vector Soil temperature in each layer

Surface pressure Average surface temperature

Surface and subsurface runoff

Bare soil, snow, and canopy surface-water evaporation

Latent, sensible, and ground heat flux

Snow phase-change heat flux

Snowmelt

Net surface shortwave and longwave radiation

Aerodynamic conductance

Canopy conductance

Snowfall and rainfall

Source: From Rodell et al. (2004).
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5.5 Modeling surface and subsurface processes over water

At a minimum, the lower boundary of the model atmosphere over water must have the
roughness, temperature, ice-coverage, and salinity (which affects saturation vapor pressure)
specified. This approach of specifying such lower-boundary quantities over water suffices
for short-range forecasts or simulations. An exception exists when hurricanes are being
modeled, because the high wind speed produces intense vertical mixing, rapidly leading to
a negative anomaly in the SST that must be represented in the simulation. Thus, incorpora-
tion of ocean boundary-layer mixing and the resulting SST change into model simulations
has been shown to improve hurricane-intensity forecasts (e.g., Bao et al. 2000).

In general, for forecasts of longer than a week or two, variables such as water tempera-
ture and ice cover should be calculated internal to the atmospheric-model simulation. This
requires the use of ocean-circulation models and sea-ice models. Even though it is not the
purpose of this section to provide details on ocean-circulation and wave modeling, it is
worth mentioning the methods that are used. As described in Chapter 16, for simulation of
the Intergovernmental Panel on Climate Change (IPCC) climate scenarios, and for initial-
value simulations of years to decades, relatively physically complete ocean models are
used. For interseasonal predictions, sometimes ocean models are run separately from the
atmospheric model. For weather prediction and research, on smaller scales in maritime
environments, coupled ocean–atmosphere LAMs are used. For example, the COAMPS is a
LAM that has been used for a wide variety of applications for processes in the open sea
and in littoral zones (e.g., Pullen et al. 2006). Similarly, Bao et al. (2000) have coupled the
MM5 mesoscale atmospheric model, an ocean-wave model, and a version of the Princeton
Ocean Model for regional-process studies.

Sometimes wave-height forecasts are needed, and this requires that atmospheric-model
forecasts be used as input to wave-height models. Because the output from the wave-height
model does not typically get fed back to the atmospheric model (i.e., the coupling is one
way), wave models are discussed in Chapter 14, which is about special-application models.

At land–sea boundaries, it is especially important that the model have grid points
defined correctly in terms of whether they are land or water points. That is, the land–sea
mask, as it is called, which defines the coastline, must be accurate. This requirement
sounds trivial, but the complex configuration of many coastlines means that sometimes
grid points or observation points are defined to be on the wrong side of the coast. Thus, a
land observation may be erroneously compared with a water grid point, and even though
the points are close to each other, the model solution verifies poorly for obvious reasons.

5.6 Orographic forcing

The forcing of the atmosphere by orography is important on all scales, from the global to
the mesoscale. Thus, except for models that are used for pedagogical applications, or those
that employ less-than-complete physics to allow for simpler interpretation of the results in
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studies of physical processes or numerical methods, virtually all models allow for variable
orography. Gridded data sets of terrain elevation are available with a variety of horizontal
resolutions, with grid increments ranging from tens of meters to tens of kilometers. There
are two considerations when deciding upon the best degree of smoothness to use to define
the lower-boundary elevation in a model. If there is too much variability of the elevation in
the 2–4  wavelengths, this will be reflected in energy in these wavelengths in the model
solution, which can require heavier filtering to avoid the development of nonlinear insta-
bility. However, one of the motivations for using high horizontal resolution in a model is to
permit the development of atmospheric features that result from small-scale forcing at the
lower boundary. Thus, the terrain data set should be of as high a resolution as possible,
while avoiding the wavelengths that will generate troublesomely short wavelengths in the
model solution.

Any terrain-elevation data set is going to show some effects of smoothing relative to the
actual terrain, with elevation maxima that are less than observed, and elevation minima that
are higher than observed. That is, valleys will be less deep than they should be, and moun-
tains will be less tall than they should be. The use of such smoothed data sets in models has
implications for the accurate representation of processes that depend on the orographic
extremes. For example, the amplitude of standing planetary waves, the drag of mountains on
the atmosphere, and the effectiveness of the blocking of tropospheric synoptic-scale features
are dependent upon the height of the lower-boundary obstacles. Indeed, it has been argued
that the large-scale flow responds to an envelope that somewhat intersects the mountain
peaks, rather than to the mean elevation of the mountains and valleys. That is, the height of
terrain obstacles should be preserved in models, regardless of the smoothness of the terrain
data set. This elevation-preserving topography is called envelope topography. Wallace et al.
(1983) first tested this approach with the ECMWF model, because it was noted that model
solutions showed persistent negative height biases over mountain ranges. They enhanced the
orographic elevation by adding to the grid-box average value an increment that was propor-
tional to the subgrid-scale variance in the true orography. Their tests showed forecast
improvement for longer lead times, but a degradation for shorter times. Other approaches
have been used to define the envelope orography. For example, Mesinger et al. (1988)
defined the grid-box-average elevation as the tallest actual value for the area. Other applica-
tions of this approach have led to mixed results (e.g., Tibaldi 1986, Lott and Miller 1997,
Georgelin et al. 2000). Even though this method has conceptual appeal, its implementation
should be thoroughly evaluated in particular applications. For satisfying the particular need
of improved mountain drag, Catry et al. (2008) suggest an alternative to the use of envelope
orography in the French ARPEGE/ALADIN model. 

An example is shown in Fig. 5.7 of how horizontal resolution can affect the ability of a
model to correctly define the orography with which the atmosphere interacts. Shown is the
terrain elevation for two different model horizontal resolutions, for the same region of
complex orography in the southwestern USA. In one, the grid increment is 30 km, and in
the other it is 3.3 km. No methods for defining envelope orography were employed. The
coarser-resolution grid defines the significant regional topographic features with only a
couple of grid points, and any atmospheric response to the orography on these scales is
going to be filtered strongly by the model. 

Δx
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5.7 Urban-canopy modeling

There exists a number of modeling approaches for representing the dynamic and thermo-
dynamic effects of urban areas on the atmosphere. One is to employ a Computational
Fluid Dynamics (CFD) model that explicitly represents the effect of each building or other
structure on the atmosphere. However, as described in Chapter 15, these models are very
computationally expensive to use. In contrast to such fine-scale modeling, what is com-
monly needed is simply a way of representing the bulk effects of built-up areas on mesos-
cale processes. The simplest approach is to employ standard LSMs by defining the surface
properties so that they approximate the artificial surface conditions in cities. For example,
roughness length can be increased to represent the drag from buildings; albedo can be
decreased to account for the existence of asphalt pavement, dark rooftops, and the trapping
of shortwave radiation in street canyons; the heat capacity and thermal conductivity of the
substrate can be elevated above standard values for asphalt and concrete to account for
heat storage in building walls; the substrate water capacity can be decreased to reflect the
prevalence of impermeable surfaces; and the green-vegetation fraction can be reduced. Liu
et al. (2006) used this approach to successfully simulate urban–rural boundary-layer dif-
ferences for Oklahoma City, USA. However, other methods need to be used to represent
more-complex processes that are associated with the existence of buildings and non-
natural substrates. Tools to accomplish this are called Urban Canopy Models (UCM, also
known as urban canopy parameterization), which represent the model grid-cell-averaged
effect of the building structures on the dynamics and thermodynamics. Such UCMs
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The terrain elevation (see gray shades on the right) for two different model horizontal resolutions, for the same region 
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Fig. 5.7
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parameterize the aggregate effects of the urban morphology, but individual buildings and
street canyons are not explicitly represented (Masson 2000, Kusaka et al. 2001, Martilli
et al. 2002). Many UCMs consider the geometry of buildings and roads to represent the
radiation trapping and wind shear in the urban canopy. Such an approach requires detailed
three-dimensional, urban land-use data sets, and the input of a number of parameters that
define the urban geometry, where these parameters need to be calibrated for each individ-
ual city. Because of the cost of mapping the three-dimensional geometries of tens of thou-
sands of structures, these data sets are not available for many cities. Figure 5.8 illustrates
one of the many factors that can be included in a UCM; in this case it is the shadowing that
results from a particular configuration of structures. Two different sun angles are illus-
trated, where the smaller zenith angle ( ) shades one side of a building and part of the
street, while the larger one also shades part of the building on the opposite side of the
street canyon.

Most UCMs to date have been single-layer parameterizations. That is, even though the
vertical effects of buildings are represented, the fluxes of heat, moisture, and momentum
are defined at the bottom boundary of the lowest atmospheric layer in the model. In con-
trast, multi-layer UCMs allow direct interaction between buildings and multiple layers in
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Illustration of how UCMs must use the three-dimensional morphology of urban landscapes to calculate the 

illumination of the surface of the street canyon and the sides of the buildings.  Similarly, this geometry is required to 

calculate the longwave radiation trapping in the street canyons.  Shown are the direct solar radiation (Sd) and the 

zenith angle ( ).  Adapted from Kusaka et al. (2001).θz
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the atmospheric model (even though obviously the buildings are not explicitly resolved).
See Kusaka et al. (2001), Chin et al. (2005), Kondo et al. (2005), Holt and Pullen (2007),
and Martilli (2007) for further discussion of multi-level UCMs.

5.8 Data sets for the specification of surface properties

As noted before, there are two general kinds of landscape variables. One defines the sub-
strate type, and vegetation type and density, as a function of location. There are a number
of national and regional data sets that represent surveys of these properties. For example,
for the USA, the Geological Survey’s Earth Resources Observing System (EROS) 1-km
dataset (Loveland et al. 1995) defines vegetation type, and the State Soil Geographic
(STATSGO) 1-km database defines soil type (Miller and White 1998). The EROS data set
can need significant correction based on field reconnaissance.

The second kind of variable represents the time and space variability of the specific
physical properties of the substrate and vegetation, such as temperature and soil-moisture
content for the substrate, and the leaf-area index or the green vegetation fraction for the
vegetation (which can vary as a function of season and antecedent rainfall). The variables
of both kinds need to be defined for any model application over land. The LDASs
described above can be used to define values for the substrate physical properties. For
example, the GLDAS data set provides the variables listed on the right of Table 5.1. When
the same land-surface parameterization is used in both GLDAS and the LSM that is cou-
pled with the atmospheric model, no soil-moisture conversion is required. Numerous
satellite-based methods are used to define the state of the vegetation (e.g., Gutman and
Ignatov 1998).

For water, surface-temperature analyses are available from a variety of sources. For
example, the NCEP Version 2.0 global SST data set (Reynolds et al. 2002) is defined on a
1° × 1° grid and updated daily. Also, the Real-Time Global (RTG) analysis (Thiebaux
et al. 2003) from the Marine Modeling and Analysis Branch of NCEP produces a two-
dimensional variational analysis of data from buoys, ships, and satellites over the preced-
ing 24 hours. The product is incorporated into the NCEP North American mesoscale
Model (NAM) and the global forecast model at ECMWF. Since 2001, the RTG analysis
has been available daily on a grid with pixel size of 0.5 deg latitude and longitude. In 2005,
a 1/12-deg product became available. There is also an optimum interpolation SST analysis
from NOAA. It is available weekly, and with a pixel size of 1/3 deg. The product uses in-
situ and satellite SST observations, and incorporates a weekly median ice concentration.

SUGGESTED GENERAL REFERENCES FOR FURTHER READING
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PROBLEMS AND EXERCISES

1. Why are microclimate conditions less extreme when high soil diffusivities prevail? 
2. Miller (1981) describes the following situation. When a cold air mass (−17 °C) moved

over an area near Leningrad, the surface flux was 45 W m−2 over frozen bare soil with
an admittance of 1000 J m−2 K−1 s−1/2, but was only 15 W m−2 over an adjacent snow-
covered surface with an admittance of about 330 J m−2 K−1 s−1/2. Explain these
measurements in the context of the definition and meaning of admittance. 

3. List the ways in which land-surface properties in urban areas differ from those else-
where, and explain how these differences can be incorporated into LSMs in order to
reasonably represent urban land-surface effects.

4. Perform a literature search on the use of coupled ocean–atmosphere LAMs, and
describe why it can be important to represent regional ocean processes in forecasts hav-
ing weather time scales.

5. How would the choice of the depth of the substrate layer that is modeled depend on
whether the model is being used for weather, interseasonal, or long-term (multi-
decadal) climate prediction?

6. Show mathematically that the depth to which the annual cycle’s temperature wave pen-
etrates into the substrate is about 14 times greater than the penetration depth of the
diurnal cycle’s temperature wave.

7. Based on physical arguments, describe what specific vegetation effects need to be mod-
eled to account for the vegetation’s influence on the surface-energy budget, and the
atmosphere.
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6.1 Background

As we have seen in Chapter 3, solving the equations that govern the physical systems
that we are modeling is an initial- and boundary-value problem. The lateral, upper,
and lower boundary conditions are discussed in Chapters 3 and 5. In this chapter will
be described the procedure by which observations are processed to define initial con-
ditions for the model dependent variables, from which the model integration begins.
This process is called model initialization.1 There are essentially two requirements for
the initialization. First, the dependent variables defined on the model grid must faith-
fully represent conditions in the real atmosphere (e.g., fronts should be in the correct
location), and second, the gridded mass-field variables (temperature, pressure) and
momentum-field variables (velocity components) should be dynamically consistent, as
defined by the model equations. An example of the mass–momentum consistency
requirement is that, on the synoptic scale, the gridded initial conditions should be in
approximate hydrostatic and geostrophic balance. If they are not, the model will gen-
erate potentially large-amplitude inertia–gravity waves after the initialization shock,
and these nonphysical waves will be overlaid on the meteorological part of the model
solution until the adjustment process is complete. The final adjusted condition will
prevail after the inertia–gravity waves have been damped, or have propagated off the
grid of a LAM. However, the model solution will be typically unusable during this
adjustment period, which is one reason for the common, historical recommendation
that model output not be used for about the first 12 h of the integration. On the smaller
mesoscale and convective scales, ageostrophic circulations, such as associated with
horizontally differential surface forcing and convection, should ideally exist in the ini-
tial conditions. Otherwise, such features will need to spin up during the early period
of the model integration.

Historically, there have been two approaches for accomplishing the initialization,
although modern methods have blurred the distinctions between them. One is called static
initialization, where observations are first interpolated to a model grid (data analysis), and
then the resulting variables may be adjusted using diagnostic, dynamical constraints to

1 The terminology here is not used consistently in the community. Some employ the term initialization to refer
only to the process of defining a dynamic balance in the initial conditions.

6 Model initialization
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make them more consistent with each other and with the model equations. In contrast to
this diagnostic method, dynamic initialization involves the preforecast integration of the
model to produce an initial state that is dynamically consistent with the equations used for
the forecast.

The commonly used terms data assimilation and data analysis both refer to processes
that employ observations to construct a gridded data set that defines the spatial variability
of model dependent variables at the initial time of a forecast. However, the expression data
assimilation typically means that a meteorological model is employed, where many
approaches will be discussed throughout this chapter. The objective of data assimilation
can be the production of initial conditions for operational forecasts, or the construction of
long-term reanalyses of the state of the atmosphere (see Chapter 16 for an explanation of
the latter).

Because the initialization of the land surface was treated in the last chapter in the con-
text of LDASs, this subject will not be treated here. But, it should be remembered that
these land-surface variables, such as substrate temperature and moisture, the state of the
vegetation, etc., are time dependent, and their accurate specification in the model initial
conditions is an important part of the initialization process.

6.2 Observations used for model initialization

6.2.1 Sources of observations used for model initialization

Meteorological observations can be classified as either in situ or remotely sensed. Obtain-
ing the former involves the use of sensors that measure the local value of a variable.
Remote sensing employs sensors that perform measurements from a distance, through the
use of either active or passive methods. Passive methods employ the measurement of natu-
rally emitted radiation. With active methods, the sensing system emits radiation and meas-
ures the response of the atmosphere to that radiation. Radiosondes are examples of in-situ
sensors. Satellite-borne radiometers that measure radiances (the emissions spectrum) from
the atmosphere are passive remote sensors, while radars that emit microwave energy and
measure that fraction which is reflected by hydrometeors are active remote sensors. For
either remote-sensing method, a retrieval algorithm is often needed in order to translate
the information obtained by the sensor into meteorologically useful information (values of
dependent variables). In the case of the radiometer, the algorithm translates the sensor data
into temperature, and for the radar data the echo strength is converted to precipitation
intensity. In contrast to the use of retrieval algorithms, variational-analysis methods, to be
discussed later, allow the direct use of raw sensor information in the analysis process.
Non-satellite-based measurement platforms that are commonly used to provide initial con-
ditions for NWP models are listed below.

• Radiosondes – Measure temperature, relative humidity, and pressure; and tracking the
balloon displacement provides wind speed and direction. This is still the primary
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method for defining the three-dimensional structure of the atmosphere on the synoptic
and global scales, for model initialization. Even though the most-common frequency for
radiosonde ascents is every 12 h, at 0000 UTC and 1200 UTC, in some countries it is
every 24 h. These two standard radiosonde launch times define the most-common ini-
tialization times for models.

• Near-surface weather stations – Typically measure temperature, humidity, pressure,
wind speed, wind direction, and precipitation. A challenge associated with using these
observations is that it is difficult to estimate how far into the model boundary layer to
spread their influence (i.e., over how many model levels) when defining the initial con-
ditions on the model grid. This is important to know because vertical mixing in the
model can quickly eliminate near-surface information that is incorporated in the initial
conditions, if the atmosphere above is not analyzed with vertically consistent structures.
Another challenge is that it is difficult to consider these observations in the context of
any dynamic balance, simply because of the dominance of local forcing. Near-surface
variables may be reported at intervals of 5 minutes, 15 minutes, 1 hour, 3 hours, or
6 hours. For near-surface winds, the averaging that is done to remove turbulence can be
over periods of 5 minutes to 15 minutes. The height above ground at which near-surface
measurements are made also varies. The standard is for winds to be measured at 10-m
AGL and temperature and humidity to be measured at 2-m AGL; however, some observ-
ation networks do not adhere to this. The spatial distribution of observations varies con-
siderably, on the scales of countries, and on smaller scales depending on population
density. Contributing to the spatial-density variation is the fact that numerous special-
purpose mesoscale networks exist, for example those that are established to meet air-
quality and highway-maintenance needs. Buoy data are another type of near-surface
measurement.

• Commercial aircraft – Onboard sensors measure wind speed and direction, tempera-
ture, pressure, and humidity. Some also measure turbulence intensity. Sloping pro-
files are provided at takeoff and landing, and a near-horizontal series of observations
is available at cruising altitudes. Instrumented commuter aircraft, with shorter flight
segments, generate a large number of vertical profiles in the lower troposphere. The
reporting frequency varies, but observations are available at an interval of 60 sec-
onds or less during ascent and descent, and approximately every 3 minutes at cruis-
ing altitude. Other aircraft sensor packages produce observations at specified
pressure and horizontal-distance intervals. See Moninger et al. (2003) for additional
information.

• Doppler radar – Measures the reflectivity from hydrometeors, and the radial wind speed
relative to the radar. It scans a three-dimensional volume, and in modeling applications
is used primarily for initialization of convective-scale models.

• Doppler lidar – Measures the radial wind speed relative to the lidar. It scans a three-
dimensional volume on the convective scale, and is used primarily for initialization of
mesogamma-scale and smaller-scale models of the boundary layer.

• Wind profiler – Upward-pointing radar that measures the horizontal wind vector in a
column, with an hourly frequency. Often collocated with the wind profilers are Radio
Acoustic Sounding Systems (RASS) for measuring temperature profiles.
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Satellite-based measurement platforms include the following. There are many others that
are described in the literature.

• QuikSCAT SeaWinds sea-surface winds from NASA are disseminated by the
NOAA National Environmental Satellite, Data, and Information Service (NESDIS).
The SeaWinds instrument on QuikSCAT is an active microwave radar that measures
the backscatter from ocean-surface waves, and winds can be obtained in all con-
ditions except for moderate to heavy rain. A function is used to relate the measured
backscatter to the 10-m Above Sea Level (ASL) neutral-stability-equivalent winds.
The QuikSCAT Level 3 gridded ocean wind vectors are available on an approximate
0.25° × 0.25° global grid with separate maps for the ascending and descending
passes. The data are available for the period 2000 to the present. See Bourassa et al.
(2003) and Hoffman and Leidner (2005) for additional information about data prop-
erties.

• Radio-occultation soundings of temperature and water vapor are obtained by using
satellite-borne receivers to measure the phase delay of radio waves emitted from Global
Positioning System (GPS) satellites, as the waves are occulted by Earth’s atmosphere.
These soundings are available globally, and can provide data where there are voids in
other observation networks. Additional information can be found in Anthes et al.
(2008).

• The Tropical Rainfall Measurement Mission (TRMM) product (Huffman et al. 2007)
combines precipitation estimates from multiple satellites (retrievals from measurements
in the microwave and infrared regions of the spectrum) as well as gauge-based analyses
on a 0.25° × 0.25° grid that extends from 50° N to 50° S for the period from 1998 to the
present. Latent-heating rates inferred from these rainfall analyses are used during the
model-initialization process.

• The NASA Earth Observing System Terra and Aqua platforms have a MODerate-
resolution Imaging Spectroradiometer (MODIS) sensor with visible, near-infrared, and
infrared bands. The MODIS provides information on a suite of meteorological variables,
including temperature and moisture. See Seemann et al. (2003) for an example of the
retrieval of temperature and moisture.

• Special Sensor Microwave Imager (SSM/I) and Total Ozone Mapping Spectrometer
(TOMS) provide data that have been used widely for model initialization. See Okamoto
and Derber (2006), Goerss (2009), and Monobianco et al. (1994) for examples of the
assimilation of SSM/I data. 

• The Geostationary Operational Environmental Satellite (GOES) allows the calculation
of hourly feature-track winds derived from infrared, visible, and water-vapor imagery
(Gray et al. 1996, Nieman et al. 1997, Le Marshall et al. 1997). Also, estimates of pre-
cipitation based on the GOES Precipitation Index (GPI) can be used in diabatic
initializations.

• The infrared Spinning Enhanced Visible and InfraRed Imager (SEVIRI) sensors on the
geostationary Meteosat Second Generation satellites provide information about tem-
perature and humidity (Di Giuseppe et al. 2009).



Model initialization202

6.2.2 Observation-quality, -frequency, and -density variability

There is a great deal of space and time variation in the availability of observations used to
initialize models. For example, in-situ measurements of the model-dependent variables are
reported at time intervals (frequencies) that vary greatly, depending on the observation
network. Figure 6.1 illustrates the spatial-density variability of near-surface observations,
using North Africa as an example. The smaller number of population centers in the arid
region is responsible for the paucity of observations there. In addition to the fact that the
standard data-reporting interval varies among different observation networks, missing data
are a frequent problem in some areas of the world. Such gaps in the data record can occur
because meteorological observing stations are staffed only during the day, meteorological-
and communications-equipment malfunctions occur, political unrests cause observing sta-
tions to be shut down for long periods, and late observations or communications-network
delays cause data to arrive too late to be used to initialize a forecast. As an example of one
of the more-continuous data records for West Africa, Fig. 6.2 shows the observed relative
humidity for a surface station in Benin for a winter season. Clearly there are significant
data gaps. Lastly, the suitability of instrument locations can vary considerably. Even
though there are standards for the land-surface properties that should exist at an observa-
tion site, and for minimum distances between the observation site and physical obstruc-
tions, there is nevertheless considerable variability in the quality of the instrument

The spatial distribution of near-surface, relative-humidity measurements in northern Africa.Fig. 6.1
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locations. For example, some measurement sites in cities are located on rooftops, where
the thermal properties of the surface can be extreme, and where the winds are distorted by
the structure. The next section describes specific approaches for ensuring the quality of
observations used in a model.

6.2.3 Observation quality assurance and quality control

The term Quality Assurance (QA), in the context of meteorological observations, refers to
the overall protocol that is employed to ensure the availability of quality observational data
for use in NWP models and other applications. It is, in fact, a formal plan for accomplish-
ing this goal, and typically might include the specifications for the instruments to be
deployed, the instrument-siting requirements, the schedule for instrument calibration, the
schedule for field inspection of instruments, and the routine numerical checks to be
applied to the data (the Quality-Control (QC) process). See Shafer et al. (2000) for discus-
sion of a complete QA procedure for a mesoscale network of sensors.

Historical (e.g., more than a day old) meteorological observations are publicly available
from a variety of sources, some of which are mentioned in Section 10.10. In contrast, cur-
rent observations for some nations are only available for a fee, which makes it difficult to
establish real-time modeling systems for use in research or operations. Whether from his-
torical observational-data archives, or from real-time observation networks, most observa-
tions have already undergone some quality checking. But, it is still important for those
using the observations in a model initialization to perform checks of their own. A single
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grossly incorrect observation that erroneously passes the QC tests can have its negative
influence spread over a large area in a model, and potentially damage the entire model
solution.

There are a variety of causes for observations to be incorrect in some respect. A meas-
urement may be of good quality, but the time, date, or geographic-location identifier can
be wrong, resulting in the observation being applied at the wrong place or time. Or, the
electronic transmission of the observation may have compromised it in a major or subtle
way. The observation itself can have systematic and random errors. The systematic error
is often related to incorrect instrument calibration. Another type of observation problem
is referred to as representativeness error, which is discussed in more detail in
Section 9.5.2. It results from the fact that an observation typically represents conditions
at a point in space, and sometimes an average in time (e.g., winds), while the variables
defined in model initial conditions represent grid-box-area averages, and apply at a spe-
cific time. Thus, the use of an observation to define conditions on a model grid can cause
very-local properties to be spread over an erroneously large area. For example, if the
observed wind and temperature associated with a convective outflow boundary are inter-
polated to a synoptic-scale-model’s grid, and influence five to ten model grid boxes, an
area of hundreds of square kilometers would be impacted by the small mesogamma-
scale event.

Some simple, commonly employed QC tests include the following. More discussion
about such checks can be found in Liljegren et al. (2009).

• Limit tests – Observations are compared with physical limits, sensor limits, and climato-
logical limits. A physical limit, or constraint, for relative humidity would be that it can-
not be less than 0% or much greater than 100%. And, wind speed cannot be less than
zero. Similar absolute limits on the value of an observation can be defined in terms of
the physical limits of a sensor or in terms of climatology (e.g., the minimum tempera-
ture ever observed at a station).

• Temporal-consistency checks – Successive observations of a variable define a rate of
change, and this is compared with likely values. Because of rapid changes that can occur
during convective weather, this check can be turned off when precipitation is occurring.

• Spatial-consistency checks – This is sometimes referred to as a buddy check, because
observations are compared with horizontally or vertically adjacent data points. Or, an
observation can be compared with an average calculated using a number of nearby
observations. The resulting difference is compared with the historical maximum differ-
ence observed at that point, based on archived observations. 

As will be seen later in this chapter, many modern data-assimilation systems merge
observations with the most-recent gridded forecast that is valid at the observation time.
Specifically, the gridded forecast is adjusted based on differences from the observations,
and the result is used to initialize the next forecast cycle. But frequent large differences
between the short forecasts and the observations at a particular location often result more
from errors in the observations than from forecast errors. In effect, the volume of atmos-
phere that was initialized with accurate measurements is advected, during the short
forecast, over the locations of new observations, and the statistical difference over a long
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period is used to judge observation quality. For example, Hollingsworth et al. (1986)
describe how the operational ECMWF data-assimilation system can be used to monitor
observation quality. This automated and economical approach to the QC process allows
suspect instruments to be identified and corrective action taken, without routinely visiting
and inspecting every instrument. 

6.2.4 Other observation processing

Whether winds are observed and reported in terms of the individual components or as
speed and direction, the measurements may need to be converted to the model wind com-
ponents. This is because the model u that is defined to be parallel to the grid-point rows,
and the model v that is parallel to the grid-point columns, generally differ from the geo-
centric u and v that are defined relative to latitude and longitude lines. For every vertical
column of grid points (the same i, j coordinate), the mathematical transformation will be
slightly different. This necessity may be most easy to accidentally overlook when the
model coordinates are Cartesian, and the grid-point rows and columns are approximately
oriented east–west and north–south. 

Software that interpolates (analyzes) observations to a model grid operates in the frame-
work of the model’s horizontal coordinate system. Thus, because observation locations are
typically defined in terms of latitude and longitude coordinates, there needs to be a trans-
formation to the horizontal coordinates of the model, if it is x–y and not latitude–longitude
based. 

Lastly, the units of the observations may need to be transformed to those employed by
the model. For example, wind speeds are often reported in knots, but models generally use
the meter–kilogram–second (mks) system. And it is common for humidity observations to
require conversion as well. 

6.2.5 Metadata

Metadata (also called meta-knowledge) accompany the observations themselves, and pro-
vide information necessary for their use. Essential types of metadata include the file struc-
ture, data format (e.g., NetCDF), the variable (e.g., wind speed), the units (e.g., mks), and
the time and three-dimensional-spatial coordinates of the observation. Optional, but use-
ful, information includes the instrument type, the date of the most-recent calibration, and a
photo of the instrument site and surroundings. The concept of metadata also applies to
model-generated data as well, although the relevant information will obviously be
different. 

Conventions have been established for the format of metadata. For example, the NetCDF
(Network Common Data Format) Climate and Forecast (CF) Metadata Convention is a well-
documented standard for observational and forecast metadata, which is designed to promote
the processing and sharing of files created with the NetCDF Application Programmer Inter-
face [NetCDF API]. The CF conventions generalize and extend the convention of the Coop-
erative Ocean/Atmosphere Research Data Service, a NOAA/university cooperative group
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whose goal is the sharing and distribution of global atmospheric and oceanographic research
data sets.

6.2.6 Targeted or adaptive observations

Economic and other constraints limit the number of observations that are made of the
atmosphere, and thus it is reasonable to want to obtain observations from locations where
they will have the largest positive impact on model-forecast accuracy, for a particular pre-
vailing weather situation. Methods have been developed to satisfy this need, where the
measurements are referred to as adaptive or targeted observations. However, it is clearly
not economically feasible to deploy mobile observation platforms on a day-to-day basis.
But, there are high-impact weather events, such as hurricanes or severe extratropical
cyclones, for which special aircraft observations are made. If the aircraft can be routed so
as to provide observations from locations for which the forecast skill is very sensitive to
the accuracy of the initial conditions, the procedure can save lives. The routine use of tar-
geted aircraft observations may become more common with the continued development of
unmanned aerial vehicles.

Various strategies for observation targeting have been evaluated as part of the following
field programs.

• Fronts and Atlantic Storm Tracks EXperiment (FASTEX; Emanuel and Langland 1998;
Bergot 1999, 2001; Bishop and Toth 1999; Joly et al. 1999; and Bergot and Doeren-
becher 2002)

• NORth Pacific EXperiment (NORPEX, Langland et al. 1999, Majumdar et al. 2002a)
• Atlantic THORPEX (The Hemispheric Observing-system Research and Predictability

EXperiment) Observing System Test (Langland 2005) 
• Annual US NWS Winter Storm Reconnaissance (WSR) programs (Szunyogh et al.

2000, 2002; Majumdar et al. 2002b)

The following notational framework for viewing the adaptive-observation problem is
provided by Berliner et al. (1999), Majumdar et al. (2006), and others. Let Xi , Xa, and
Xv represent n-dimensional vectors that define the state of the atmosphere at times ti , ta,
and tv , respectively, in terms of the grid-point values of variables or spectral coefficients.
The initial time, ti , is when the decision must be made, based on Xi information, about
the types and locations of special observations to be collected at time ta (the targeted
observation time, and the analysis (initial) time of the operational forecast), where the
objective is to optimize the statistical properties of a forecast Xv at the verification time
tv . Within the interval ta − ti , the observing platforms need to travel to the target loca-
tions so that observations can be made at ta for use in initializing the forecast. The time
interval ta − ti is chosen based on logistical considerations associated with planning the
surveillance mission, launching the aircraft, and getting the aircraft to the necessary
locations to make the observations. The data set Xa is the result of assimilating standard
observations and the special targeted observations, and is used as the initial conditions
for the forecast. 
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A practical example of the above process is as follows. Assume that a 72-h forecast
from a standard operational model run predicts very-heavy, flood-producing rainfall over
New York City, associated with a coastal cyclone. At ti it is decided to deploy dropsondes
at ta, 24 h in the future, at locations where they will have the greatest impact on the 48-h
precipitation forecast over New York City. The best location for making the measurements
(the target area) will depend on the variable whose forecast must be improved (rainfall)
and the verification region (New York City). Most adaptive-observation strategies allow
the association of the observation target area with a specific verification region in the
model. An exception is the ensemble-spread method discussed below.

There are a number of approaches for defining the locations and types of observations
that will have the greatest positive impact on the quality of forecasts. A few of these are
summarized below. Discussions of other methods can be found in Palmer et al. (1998),
Bishop et al. (2001), Aberson (2003), and other references cited in this section. Berliner
et al. (1999) focused on a statistical framework for the adaptive-observation problem.

• Ensemble variance/spread – This is a simple approach, described by Aberson (2003),
that can improve tropical-cyclone-track forecasts by locating supplemental observations
in areas where the variance is largest among members of an ensemble prediction that is
valid at the analysis time. In regions of large ensemble variance, it is assumed that there
is also a large uncertainty in the wind analysis, implying the need for additional observ-
ations. Unfortunately, there is no way to propagate the uncertainty or error at the analy-
sis time, ta, into another region at the forecast verification time, tv . Nevertheless,
Aberson (2003) showed that observations made in areas with large ensemble variance
improved tropical-cyclone-track forecasts more than did uniformly distributed
observations.

• Adjoint methods – In Chapter 3 it was noted that the adjoint operator, which is based on
a linear version of a nonlinear forecast model, produces sensitivity fields that indicate
the quantitative impact on a particular aspect of the forecast of any small, but arbitrary,
perturbation in initial conditions, boundary conditions, or model parameters. Thus,
given a specific characteristic of the forecast for which the sensitivity will be calculated,
for example the minimum pressure in a cyclonic storm, the area in the initial conditions
to which the characteristic is most sensitive can be defined. Thus, the implication is that
this region should be better measured. This kind of analysis is also discussed in
Chapter 10 in relation to the design of sensitivity studies. Palmer et al. (1998), Pu et al.
(1998), Bergot (1999), Buizza and Montani (1999), and Bergot and Doerenbecher
(2002) describe the use of the adjoint method for targeting observations. Using the ter-
minology described above, at ti the forward linear version of the nonlinear forecast
model is integrated from ti to tv. Then, the adjoint of the linear model is used to define
the sensitivity of conditions at ta to the forecast error at tv. This sensitivity information
defines the target area for observation platforms, which are deployed with sufficient time
to reach the defined area and make the measurements at ta. Shortly after time ta, the
operational model is initialized with the available data, and the forecast is performed.
Figure 6.3 illustrates the process by which this method is applied. An issue with this
approach is that a verification region must be defined, where error growth is to be
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minimized, and this is problematic for phenomena spanning a large area or for situations
where there are multiple regions of interest.

• Ensemble transform Kalman filter – The ensemble transform technique (Bishop and
Toth 1999; Szunyogh et al. 1999, 2000) and the subsequent ensemble transform
Kalman filter (ETKF, Bishop et al. 2001, Majumdar et al. 2002a,b) employ information
from ensemble forecasting systems to identify regions where sampling would lead to
forecast improvements. Advantages of the ETKF technique compared with the adjoint
method include the lack of a requirement for an adjoint of the model, its low computa-
tional cost, the fact that it is based on nonlinear (ensemble) forecasts, and the fact that
it provides quantitative estimates of the reduction in forecast error (not simply sensitiv-
ity metrics).

Because all of the above methods employ a model, the obtained target locations for obser-
vations will depend on both the method and the model. Different models can produce
quite different estimates of locations.

A commonly noted practical limitation of adaptive-observation methods is that aircraft
observations, whether they are made from the aircraft itself or with dropsondes, can only
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measure a relatively small volume of atmosphere. Thus, even if the targeting region is cal-
culated accurately, it is often not logistically possible to measure a sufficiently large area to
adjust the position or amplitude of large-scale features such as fronts or baroclinic waves
in the model initial conditions. This is especially problematic in a region that is otherwise
a data void. A related issue is that data-assimilation systems are sometimes more appropri-
ate for observations made over larger areas than are observable with a modest number of
observing platforms. Therefore, the impact of targeted observations on forecast skill can
depend on the data-assimilation scheme. For example, Bergot (2001) shows that targeted
observations from 20 FASTEX cyclogenesis cases have a greater positive influence on
forecast skill when used in a four-dimensional rather than a three-dimensional variational
assimilation system.

Figure 6.4 provides an example of the impact of targeted observations on forecast
skill. It is a scatter plot of the RMS 500 and 1000 hPa height errors for 30, 36, 42, and
48 h forecast lead times from the ECMWF global model for five FASTEX case stud-
ies. The model was run with and without the use of the targeted observations. Each
point represents an average error for the verification region, and corresponds to a par-
ticular verification height, FASTEX case, and verification time. With a few exceptions,
the errors were less when dropsonde data were used. Of course adding observations
anywhere in the model domain might be expected to reduce forecast errors, so inter-
pretation of these results in the context of the effectiveness of the targeting method
needs to be done cautiously. See Montani et al. (1999) for information about the tar-
geting method used.

6.2.7 Optimal siting of permanently located observations

In contrast to the targeted observations just described, conventional, permanent observa-
tion platforms are distributed geographically to allow convenient access for their mainte-
nance. However, there are approaches that could be used to locate such fixed platforms so
as to improve model initial conditions and therefore predictive skill. For example, if a
LAM is being run primarily to forecast a specific type of severe-weather event in a partic-
ular area, such as wind shear in the vicinity of an airport, one of the above-described
observation-targeting methods could be applied for a large number of historical cases,
and the results used to define the best overall permanent locations for observations.
Another approach that has been evaluated is called a field-coherence technique (Stauffer
et al. 2000, Tanrikulu et al. 2000), which is based on a statistical analysis of the model-
simulated atmospheric structure. The spatial and temporal coherence, as defined here, is a
measure of the distance scale over which there is temporal consistency in the spatial
structure within a variable field. Thus, the coherence indicates how well a measurement
made at one location is able to serve as an estimate of the value of that field at another
location at a given analysis time. The concept is that the larger the field coherence in a
geographic area, the fewer measurement sites are needed to adequately resolve the domi-
nant features of that field. Observing-system simulation experiments, discussed in
Section 10.2, can also be employed to evaluate the relative benefits of different spatial
distributions of observations.



Model initialization210

6.3 Continuous versus intermittent data-assimilation methods

The processes of data assimilation and data analysis both have the objective of construct-
ing a gridded data set that defines the state of a meteorological variable, and the terms are
sometimes used interchangeably. That said, the use of the expression “data-assimilation
system” generally means that a meteorological model is employed in the process. The
overall purpose behind the use of the data-assimilation system can be the production of
initial conditions for operational forecasts, or the construction of long-term reanalyses of
the state of the atmosphere (see Chapter 16). The related expression “data-assimilation
cycle” often encompasses the entire process of data quality control, the objective analysis,
the initialization of the model (possible balancing), and the production of a short forecast
to produce the next background field (Daley 1991). This section illustrates two general
categories of data-assimilation systems, both of which involve the use of a model.
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The qualities that are desirable in a computer-based objective-analysis process are well
known by anyone who has constructed a manual, or subjective, analysis of observations.
The following are traditional methods that have been used for decades in the manual anal-
ysis of observations.

• A first guess of the overall weather pattern is important. It provides the analyst with con-
text for the observations, and can be based on the map constructed at the previous analy-
sis time, a recent forecast, or personal knowledge of the typical regional weather
patterns (the climatology).

• The variables should not be analyzed independently. For example, on large scales, areas
with strong gradients in the height analysis are used to infer regions of high wind speeds
when drawing isotachs.

• The overall weather patterns provide information that can be used in the interpolation
between observation points. For example, when analyzing a jet maximum, isotachs are
streaked out in the direction of the wind. And, at the analyzed position of fronts, isop-
leths of all variables reflect the transition in air-mass properties. 

• The spatial density of observations is used in the analysis process. In areas where the
observations are dense, the analysis is faithfully drawn to them, whereas in areas where
the observations are sparse or nonexistent the analysis is based on knowledge of the
background (climatology or the prior analysis). Also, an observation in a cluster of
observations that is inconsistent with the rest is ignored, or given less weight, in the
analysis.

• The smoothness of the analysis is made to be consistent with the density of the data and
the known scales of the phenomena being analyzed.

6.3.1 Intermittent, or sequential, assimilation

Most operational data-assimilation systems use the intermittent, or sequential, approach.
The general process is shown in Fig. 6.5. The cycle begins with an initial forecast. The
next forecast in the cycle is initialized using a merger of observations (upper left) and a
first-guess field (upper right). The latter is typically the output from the most-recent fore-
cast, which is valid at the initial time of the current forecast. Observations that are made
within a specific time window (±n minutes in the figure) that spans the initialization time
are aggregated and used in the analysis. The prior forecast in this process is called the first
guess, or the prior estimate, or the background field. This use of the forecast in the analysis
process allows the model solution to better fill spatial observation gaps than would inter-
polation over large distances between observations. In addition, the model solution can
develop circulations in response to local surface forcing, and this allows those signatures
to be included in the initial conditions (see Section 6.4). Because the merger of the fore-
cast and the observations involves the use of information from different times, the process
is referred to as Four-Dimensional Data Assimilation (FDDA). The initial conditions are
then used to initialize the forecast, which will need LBCs if the model is a LAM. For glo-
bal models, new forecasts are typically initiated every 6 hours, whereas for regional mod-
els this can occur as frequently as hourly. In either case, model fields are extracted at
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forecast time m to be used as the first guess for the next forecast cycle. This sequential
approach to data assimilation serves as the basis for the optimal-interpolation, three-
dimensional variational, ensemble Kalman filter, and other methods described later in this
chapter. These represent particular approaches for accomplishing the process in the upper
rectangular box of Fig. 6.5. See Fig. 6.6b for a different graphical depiction of this sequen-
tial-assimilation method.

6.3.2 Continuous assimilation

These continuous approaches involve the assimilation of observations at the times that
they are made, rather than in batches, as with the sequential methods. Four-dimensional
variational assimilation is a continuous-assimilation method, and is described later after
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(statistical interpolation)

and balancing

Initial conditions

Forecast model

Operational forecasts

Boundary conditions 
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Schematic showing the process of intermittent, or sequential, data assimilation. See the text for discussion.Fig. 6.5
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background material on statistically optimal methods is presented. The other major contin-
uous-assimilation method, Newtonian relaxation, is summarized in this section. Data
assimilation by Newtonian relaxation (or nudging) is accomplished by adding nonphysical
nudging terms to the model predictive equations. These terms force the model solution at
each grid point to observations (observation, or station, nudging), or analyses of observa-
tions (analysis nudging), in proportion to the difference between the model solution and
the observation or analysis. The following equation illustrates the form of the relaxation
term in a prognostic equation, where f is any dependent variable, F represents all the
physical-process terms,  is the observed value of f interpolated to the grid point,
and  is a relaxation time scale. This relaxation-term weight can be separated into three
components: the factor that determines the magnitude of the term relative to the physical
terms in the equation (G), the function that defines the spatial and temporal influence of
observations (W), and the observation-quality factor (ε). In finite-difference space, this
equation applies at a particular grid point and at a particular time step: 

. 

If the relaxation time scale is too small, the model solution will converge to the observa-
tion too quickly, and the other variables will not have sufficient time to dynamically adjust.
If the time scale is too large, errors in the model solution will not be corrected by the
observations.

This approach has several advantages. It is efficient computationally, it is robust, it
allows the model to ingest data continuously rather than intermittently, the full model
dynamics are part of the assimilation system so that analyses contain all locally forced
mesoscale features, and it does not unduly complicate the structure of the model code.
Studies using Newtonian relaxation include Stauffer and Seaman (1990, 1994), Stauffer
et al. (1991), Fast (1995), Seaman et al. (1995), and Liu et al. (2006, 2008a). A finding of
these studies is that analysis nudging may work better than intermittent assimilation on
synoptic scales. Furthermore, Stauffer and Seaman (1994) and Seaman et al. (1995)
showed that nudging toward observations was more successful on the mesoscale than
nudging toward analyses. Leslie et al. (1998) found that the impact of observation-
nudging was similar to that of assimilating the same data in a four-dimensional variational
system (Section 6.11.1), with the former being practicable while the latter was too compu-
tationally expensive. Bao and Errico (1997) applied the adjoint method to illustrate the
impact of the nudging terms and some limitations of the method.

Figure 6.6 is a schematic that compares the intermittent and the continuous assimilation
processes. In both cases, the time increases from left to right. For the continuous assimila-
tion (Fig. 6.6a), observations are ingested into the model at every time step, and forecasts
are launched at whatever frequency is desired (6 h in this example). The intermittent-
assimilation process (Fig. 6.6b) uses the same observations, except that they are aggre-
gated temporally over some time interval to produce an objective analysis (Anal) that is
combined with a first-guess field from a short forecast. The resulting gridded fields may
undergo balancing (Initialization – Init), and are then used for the initial conditions of a

fobs
τ

t∂
∂f

F f x t, ,( )
fobs f–

τ f x t, ,( )
-------------------+ F f x t, ,( ) G f( )W x t,( )ε f x,( ) fobs f–( )+= =



Model initialization214

forecast. Figure 6.6b shows the same cycling process as does Fig. 6.5, but emphasizes the
distinctions with the continuous-assimilation method.

A negative aspect of this type of continuous data assimilation is encountered when
relaxing a mesoscale-model solution toward a synoptic-scale analysis of observations. Spe-
cifically, the model will develop fine-scale atmospheric features in response to differential
surface forcing, but relaxation terms will damp these features if they are not properly rep-
resented in the analysis. Consider a situation where the model develops a sea-breeze circu-
lation and a coastal front in response to differential surface thermal forcing at a coastline.
Given the typical density of two-dimensional and three-dimensional observations, and the
resulting lack of spatial detail in an objective analysis based on these observations, an anal-
ysis will only represent large-scale features and not the mesoscale detail. Thus, relaxing the
model solution toward this analysis will damage the solution. This issue also exists when

Observations

(a) Continuous data-assimilation cycle

(b) Intermittent data-assimilation cycle

Data assimilation

Forecasts

00 UTC 06 UTC 12 UTC 18 UTC

Observations

Data
assimilation

00 UTC 06 UTC 12 UTC 18 UTC

Forecasts

Fore

{ {{{ {
Anal/Init Anal/Init Anal/Init Anal/Init

ForeFore

Schematic showing the components of data-assimilation cycles for the intermittent and continuous methods. See the 

text for details.

Fig. 6.6
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relaxing the model solution towards observations (rather than gridded analyses of observa-
tions) because isotropic functions for spatially spreading the influence of the observations
do not respect linear mesoscale features and will also damage fine-scale features in the
model solution. To avoid this problem, a method called spectral nudging has been devel-
oped. Here, the evolving model solution is filtered so that only the larger-scale features are
differenced with the analysis, to define the correction term. The concept of spectral nudg-
ing is also discussed in Chapter 16, relative to climate modeling, because it is sometimes
used when regional models are employed to downscale from global-climate simulations. In
particular, the solution of the regional climate model is spectrally filtered, and the large-
scale fields in the regional model are nudged toward the global-model solution, thus avoid-
ing a drift of the large-scale solution in the regional model. 

6.3.3 Hybrid intermittent–continuous methods

Even the assimilation methods that are referred to as continuous are, strictly speaking,
intermittent because the data are inserted at the time-step intervals. Thus, it is perhaps
understandable that there is not an especially clear definition of the terminology. For
example, as the time period between analyses decreases (Fig. 6.6b), it is easy to see that
the intermittent method approaches the so-called continuous one. This is not a hypotheti-
cal point, because the cycle, or update, frequency is now hourly in some operational data-
assimilation systems. In addition, other methods combine aspects of the continuous and
intermittent approaches. For example, in the analysis-correction system described in
Lorenc et al. (1991), batches of data within 6-h time intervals are analyzed at each model
time step, and the results are inserted into the model solution at each time step, with
greater weight given to the observations whose valid times are closer to the analysis time.
And, Bloom et al. (1996) describe an incremental analysis updating method wherein an
analysis based on statistical interpolation is conducted every 6 h, and the analysis incre-
ments (the difference between the analyzed value and the first guess) are used as a contin-
uous forcing during a 6-h integration. Even though these two methods retain some aspects
of the intermittent approach, the data impact the model simulation at every time step. 

6.4  Model spinup

Now that a couple of different types of data-assimilation methods have been discussed, it
is appropriate to introduce the concept of model spinup. Because of the typical lack of spa-
tial density in the observing network, especially in terms of observation platforms that
provide information in three space dimensions, observations cannot generally define sharp
cross-frontal gradients, the correct wind-speed amplitude of upper-level or low-level jet
maxima, the structure of thermally forced boundary-layer circulations, the waves or
channeling associated with orography, and the small-scale vertical motions and humidity
gradients associated with clouds and precipitation. And, because the observations are
not adequate to define these features, a simple analysis of them is not going to suffice. 
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However, the model itself can provide information about the atmosphere, to supplement
what is in the observations. For example, land-surface properties (e.g., terrain elevation,
land–water boundaries) are known with a horizontal resolution that is orders of magnitude
greater than the resolution of our information about the three-dimensional structure of the
atmosphere. Thus, after the model integration is begun, the lower troposphere will respond
to the dynamic and thermodynamic forcing from the landscape at the lower boundary, pro-
ducing thermally and dynamically forced wind circulations, contrasts in the boundary-
layer temperature and humidity fields at coastlines, etc. The model dynamics have added
this structural information to what was defined in the initial conditions based on observa-
tions. In addition, during the early period of a model integration the deformation at fronts
will increase poorly resolved gradients, nonlinear interactions among larger waves will
generate finer scales in the spectrum, and ageostrophic circulations will strengthen, creat-
ing vertical motions that can produce the saturation necessary for the development of
cloud and precipitation in the model. This post-initialization development of realistic
three-dimensional features during the model integration is called spinup. 

Even though the spinup process allows the generation in the model solution of features
that are not observed, it is problematic because it occurs during the model forecast. Thus,
the early period of the forecast – perhaps 12 h in duration – does not contain properly ren-
dered, potentially important, atmospheric processes. For example, precipitation during the
first half-day of a forecast may not be realistic. Thus, there has been a great emphasis on
developing initialization procedures that produce model initial conditions that are spun up,
or largely so. This has led to subjective terminology such as cold starts for initializations
that contain no spun-up processes, hot starts for the use of initial conditions that are com-
pletely spun up, and warm starts for the use of partially spun-up initial conditions. 

When reading about the various data-assimilation strategies that are described through-
out the rest of this chapter, the reader should keep in mind the desirability of having rea-
sonably well spun-up initial conditions. For example, in the context of the so-called
intermittent (or sequential) and continuous assimilation methods described in the previous
section, the sequential method could produce less-well-spun-up initial conditions if the
influence of the observations is distributed in a way that smooths out the model-produced
background field. The historical motivation for all dynamic-initialization methods that
employ a model during a preforecast integration period has been the desire for spun-up
initial conditions. 

6.5 The statistical framework for data assimilation 

6.5.1 Introduction, and illustration with scalar relationships

This section describes mathematical concepts that form the basis for many approaches to
data assimilation. Data assimilation is an analysis method wherein information from
observations is accumulated, over a period of time, into a model state. The observational
information is carried forward in time by the model, which imposes dynamic consistency
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among the variables and spreads the information both spatially and among the variables.
There are three components to the data-assimilation process: observations; background
information about the state of the atmosphere, perhaps based on a previous analysis or a
model forecast; and dynamic constraints, perhaps based on a model.

In the following discussion, the term “vector” will be used to refer to a group of ele-
ments that defines a state of the model atmosphere, either in the form of gridded values or
spectral coefficients. For example, the vector x may be defined as x = (x1, x2, . . . , xn). If
this vector corresponds to the state of the atmosphere as defined in a grid-point model, the
dimension n will be the number of grid points multiplied by the number of dependent
variables. 

In the above example, the column matrix that is a collection of numbers that defines
the state of a model atmosphere is referred to as the state vector, x. If this vector results
from the use of an analysis system, it will disagree with observations because of errors in
the analysis process, instrument error, and representativeness error that results from the
finite spatial resolution of the analysis. The true-state vector, xt, represents the best-
possible state that can be defined on the model grid. This is not the same as a perfect-state
vector, which corresponds exactly to the atmospheric state, because of the unavoidable
representativeness error. The gridded background field, which is the first-guess estimate
of xt before the analysis is conducted, is defined by the vector xb. Lastly, the analysis is
represented as xa. The analysis problem is thus defined as finding a correction, x, such
that

is as close as possible to xt. 
The observations used in an analysis are collected into an observation vector, y. In the

analysis process, this observation vector needs to be compared with the state vector for
the model-based first guess. Because each degree of freedom (the value of each variable
defined at each grid point) in the state vector obviously does not have a corresponding
observation (the observations being relatively few in number and irregularly located),
for this comparison it is thus necessary to transform from model state space to observa-
tion space. This transformation is made by an observation operator (also called a for-
ward operator) that is defined as H(x). In the simplest sense, it corresponds to
interpolating state variables from grid points to observation points. It also can involve
the transformation of a state variable to an observed variable. In the data-analysis proc-
ess, differences between the observations and state vectors are calculated. The
difference

is called the innovation, and the difference 

is the analysis residual.

δ

xa xb δx+=
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These concepts can be used in a simple illustration of least-squares estimation, which
will lead to a general framework for data assimilation. Suppose we have two estimates, T1
and T2, of the true value of a scalar, say the temperature, Tt, at a point. In order to combine
them optimally, we need statistical information about the errors, , of these estimates. Let

, and (6.1)

, (6.2)

where  are unknowns. Let E(X) be the expected value of measurement X, or the value
that would be obtained by averaging many measurements. It is assumed that the instru-
ments that measure T are unbiased. That is, 

, or equivalently (6.3)

. (6.4)

And, we assume that we know the variances of the observational errors:

 and . (6.5)

It is also assumed that the errors in the two observations are uncorrelated:

. (6.6)

Equations 6.4–6.6 define the statistical information that we need about the two observa-
tions. Our objective is to linearly combine the two estimates of T in an optimal way, such
that the result is the best least-squares estimate of Tt. Specifically, where Ta is the best
(optimal) estimate of Tt, let

, and (6.7)

. (6.8)

The value of Ta will be the best estimate of Tt if the coefficients are chosen to minimize the
mean-squared error of Ta. Specifically, using Eqs. 6.7 and 6.8,

. (6.9)

Using the fact that E(XY ) = E(X )E(Y), for X and Y independent, and Eqs. 6.1, 6.2, 6.3,
and 6.5, Eq. 6.9 becomes

.  (6.10)

Given Eq. 6.8, and defining , Eq. 6.10 becomes

. (6.11)
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To find the value of k that corresponds to a minimum in the analysis variance, , differ-
entiate Eq. 6.11 with respect to k, and set the expression to zero. This leads to

.  (6.12)

Now, assume that our two sources of information, T1 and T2, are based on an observation
and a background value. Eq. 6.7 becomes

 (6.13)

and Eq. 6.12 becomes

, (6.14)

leading to

. (6.15)

For example, if the observation is very poorly known,  is large and the analysis is
weighted strongly toward . Rearranging Eq. 6.13 yields

. (6.16)

Substitution of Eq. 6.14 into Eq. 6.11, and letting  and , yields 

.  (6.17)

This represents the uncertainty of the estimate  in terms of the uncertainties of the
observation and the background. Note that  and , meaning that the analy-
sis variance is smaller than the variance of both sources of contributing information.
Stated differently, using even a large-variance source of information will reduce the uncer-
tainty in the analysis. Equation 6.17 can be rewritten as

. (6.18)
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The inverse of a variance is called the precision (the larger the variance, the lower the
precision). Thus, the precision of the analysis is the sum of the precisions of the observa-
tion and the background.

Alternatively, instead of minimizing  in Eq. 6.11 to find an expression for the best
estimate of Ta, a different approach can be used. For any T, the distance between T and ,
and T and  can be measured by the following quadratic relationship:

.  (6.19)

This function represents the square of the misfit of a variable (T) from each of the two
sources of information, weighted by the precision of each of the estimators. It is often
called a cost function or a penalty function. To define a value for T that corresponds to a
minimum in the cost function, J is differentiated with respect to T, the resulting expression
is set to zero, and it is confirmed that the extremum is, in fact, a minimum. The best esti-
mate of T defined by this expression is Ta. The result is the same as defined in Eq. 6.15.
Figure 6.7 illustrates graphically how the two penalty terms, Jo and Jb, in Eq. 6.19 are
combined to produce the minimum in the analysis, Ta.

The above analysis involves the optimal combination of only two pieces of information,
an observation and a background, or first-guess, value. That is, this has been posed as a
simple scalar rather than a vector problem. It has also been assumed that these pieces of
information are defined at the same location, and thus there has been no need for a forward
operator to transform from model space to observation space. For application of these con-
cepts in the framework of a model, the background state vector has a size in excess of 107

(for a grid-point model, the number of grid points times the number of dependent varia-
bles). And the observation vector has perhaps a size of 106. Fortunately, the above least-
squares estimation methods have exactly the same form when applied to real multi-
dimensional data-assimilation problems. The following summary of the most important
points is based on Kalnay (2003).

• Equation 6.16 states that an analysis value is obtained by adding to the background (first
guess), the innovation (the difference between the observation and first guess) multi-
plied by an optimal weight.

• The optimal weight, k, defined in Eq. 6.14, is the background error variance multiplied
by the inverse of the total error variance (the sum of the background and observation
error variances). The larger the background error variance, the larger is the correction to
the background by the observation.

• Equation 6.18 states that the precision of the analysis is the sum of the precisions of the
observation and the background.

• The rightmost part of Eq. 6.17 means that the error variance of the analysis is equal to
the error variance of the background, reduced by a factor that is equal to one minus the
optimal weight.

The application of the above least-squares methods to multi-dimensional and multi-
variable problems is found in subsequent sections.
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6.5.2 Statistical concepts for multi-dimensional problems

The following list summarizes the vectors and vector operators used in this and some of
the following sections, as well as in the wider literature on this subject, and will serve as a
reference for the discussion. The symbols are generally consistent with the unified nota-
tion proposed in Ide et al. (1997). State vectors x may be defined on a model grid (or they
can define spectral coefficients). Depending upon the setup of the analysis, the unknown
analysis vector xa and the known background vector xb can define the values of a single
variable in a two-dimensional space – e.g., Tb(x, y). Or the vectors can represent the three-
dimensional structure of a single variable – e.g., Tb(x, y, z). Or they can define all the
variables in the three-dimensional space – e.g., xb = (Psfcb(x, y), Tb(x, y, z), qb(x, y, z),
ub(x, y, z), vb(x, y, z), etc.). The model background and analysis fields are defined by
column vectors ordered by grid point and by variable, where the vector length n is the
product of the number of variables and the number of grid points.

C
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J

)

T

Tb Ta To

Jo

Jb
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Schematic showing how the two penalty terms, Jo and Jb, in Eq. 6.19, are combined to produce the minimum in the 

analysis error at Ta.

Fig. 6.7
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State and observation vectors are defined as follows.

• xt The true model state vector. As described in Section 6.5.1, it represents the best-
possible state that can be defined on the model grid. It is not the same as a perfect-state
vector, which corresponds exactly with the atmospheric state (perfect observations),
because of the unavoidable representativeness error. The dimension is n.

• xa The analysis model state vector. The dimension is n. 
• xf  The forecast model state vector. The dimension is n.
• xb The background model state vector. The dimension is n. If a model forecast is used

to define this, as in sequential initialization, xb = xf.
• y Vector of observations. The dimension is p.

Error covariance matrices are defined as follows:

• B The covariance matrix of the background (or forecast) errors. The background-
error matrix has dimensions n × n. It is very important to have reasonable estimates for
this matrix because it controls the influence function for the analysis increment, in
terms of its magnitude and shape. Regarding the shape, it defines the spreading of
information from an observation to the analysis grid. And regarding magnitude, when
background errors are large, observations are given greater weight. If this error covari-
ance matrix is relatively accurate, a better adjustment of the gridded background to the
observations will result, and observations will be used more effectively. That is, the
information in the innovation vector that is defined at an observation point will be
translated by B into a spatially variable analysis increment that is applied at surround-
ing grid points in such a way as to minimize the analysis error. In a scalar system, the
background error covariance is simply the variance, or the average squared departure
from the mean, where

.

In a multi-dimensional system, 

,

which is a square, symmetric matrix with variances along the diagonal. For a very sim-
ple three-dimensional system,

.

The off-diagonal terms are cross-covariances between each pair of “variables” in the
model, where, as noted earlier, the term variable here corresponds to the value of each
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physical dependent variable at each grid point. A variable pair can be the same model
dependent variable at two different points, or it can be two different dependent varia-
bles. The number of variables, and the dimension of the matrix, is the product of the
number of physical variables and the number of grid points. There are three approaches
for estimating the covariance matrix.

1. Precalculated error covariances – Some data-assimilation methods use precalcu-
lated covariances that are based on (a) an average over many different observed states
of the atmosphere, (b) theoretical considerations, or (c) model simulations. In any
case, the statistics may be spatially and temporally homogeneous (i.e., not dependent
on the specific meteorological regime or synoptic situation). Observation-based
covariances are ideally calculated from a dense and homogeneous network of sensors
with uncorrelated errors, where the innovation vector  (observation
minus forecast) is calculated for varying separations between the locations of y and
xb. In contrast, the so-called NMC (US National Meteorological Center) method
is based entirely on model simulations, and is discussed briefly in Section 6.8 on
three-dimensional variational (3DVAR) analysis. Examples of two different assumed
decreases in correlation with increasing distance between y and xb are seen in
Fig. 6.8. See Schlatter (1975), Hollingsworth and Lönnberg (1986), Lönnberg and
Hollingsworth (1986), Thiebaux et al. (1986), Bartello and Mitchell (1992), Xu and
Wei (2001, 2002), and Xu et al. (2001) for additional discussion of the calculation of
the non-regime-dependent error-covariance matrix.

2. Nonoptimal, anisotropic spatial weighting – One class of such methods employs infor-
mation about the orographic elevation to control the spread of the innovation vector at
lower elevations in the model atmosphere. The logic here is that covariances should be
smaller between points on opposite sides of a mountain ridge, so an observation on
one side has a weaker effect on grid points on the opposite side. So, the distribution of
the analysis increment is anisotropic, with smaller increments (adjustments based on
observations) on the opposite side of a barrier from an observation. Lanzinger and
Steinacker (1990) employ this approach for an Optimal Interpolation (OI, see
Section 6.7) analysis in the area of the Alps mountains. And, Miller and Benjamin
(1994) made use of the fact that variables at two points will be better correlated if their
potential temperatures and elevations are similar. So, the effective distance between an
observation and a grid point was made proportional to the differences in elevation and
potential temperature between the two points. Similarly, Dévényi and Schlatter (1994)
spread their OI observation increments along isentropic surfaces.

3. Fully regime-dependent error covariances – The above methods do not account for
the existence of “errors of the day” (Kalnay et al. 1997), which are weather-
dependent errors in the background (forecast) field that should greatly influence the
way that observations are analyzed. Ignoring these day-to-day variations in the cova-
riance statistics can lead to large analysis errors. Some advanced data-assimilation
methods, described in Section 6.11, calculate flow-dependent background-error
covariances that evolve during the assimilation process. For example, Fig. 6.21 in
Section 6.11.3 illustrates the spatial variability of these covariances.

y H xb( )–[ ]
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Figure 6.9 illustrates the difference between the use of a typical isotropic covariance
matrix to spread the influence of an observation, and the use of one that is regime
dependent, for a two-dimensional (x,y) system. Shown are surfaces that define the value
of the u velocity component on a grid. The background value (ub) is spatially uniform
(flat), and the observation y produces a positive innovation. In Fig. 6.9a, the analysis
increment is distributed isotropically on the grid, around y, producing a conical impact
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of the observation (ua). The shaded surface below shows isotachs for the resulting anal-
ysis on the grid. In Fig. 6.9b, the covariance matrix recognizes that, at this location, the
wind speed pattern is streaked out in the direction of the total wind vector (shown), pro-
ducing a nonisotropic, weather-regime-dependent distribution of the analysis increment
and the isotachs.
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• R The covariance matrix of the observation errors ( ). The dimensions
are p × p. Observation errors are often considered to be independent, especially when
the observations are made by different instruments (e.g., in contrast to radiosonde pro-
files of observations). The variances are generally estimated based on knowledge of the
instrument characteristics, which can be studied in the laboratory, even though represen-
tativeness errors and errors in the operator H can also be important. Most models of R
are diagonal, or almost diagonal. 

• A The covariance matrix of the analysis errors (xa − xt). The dimensions are n × n.
• Q The covariance matrix of model forecast errors (xf − xt). The dimensions are 

n × n.

Vector operators are defined as follows.

• M The model dynamic operator. For example, xf (t + 1) = M [xf (t)] refers to the
fact that a model is used to advance the forecast value of vector x from time (t) to
time (t + 1). Dimensions are from n to n.

• H The observation operator. This is also known as the forward operator. Dimensions
are from n to p because the transformation is from model state space (n) to observation
space (p). Imagine interpolating a variable from model grid points to the location of an
observation. 

The following defines the general problem of finding an optimal analysis, xa, of a set of
model variables, given a background field, xb, available at a two- or three-dimensional set
of grid points, and a set of observations y available at irregular locations r (see Fig. 6.10).
Analogous to Eq. 6.16, which pertains to a scalar problem, the following relationship
applies to a full multi-dimensional problem, where the vectors and vector operators have
just been defined:

, where  (6.20)

.  (6.21)

As before, the variable K is a weight matrix of the analysis. Exactly as in Eq. 6.16, the
innovation is multiplied by an optimal weight, and this defines the analysis increment,

. The gain matrix is obtained by multiplying the background error covariance in
the observation space and the inverse of the total error covariance (the sum of the back-
ground and the observation error covariances). The larger the magnitude of the ele-
ments of , corresponding to an observation and an analysis variable at a grid
point, the larger the weight with which the innovation vector is applied at that grid
point. Regarding the inverse term , the larger the uncertainty in the
observation, the smaller the observation increment will be weighted in the analysis.
The vector  is the optimal least-squares estimate. Most of the references listed at the
end of the chapter, e.g., Kalnay (2003), can be consulted for a derivation of the gain
matrix in Eq. 6.21.
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6.6 Successive-correction methods

One of the first procedures to be used for interpolating observations to a grid is called the
Successive-Correction (SC) method (Bergthorsson and Doos 1955, Cressman 1959). Vari-
ations of this approach are in use today because it is simple and robust. As mentioned
above, a first-guess field represents a best estimate of the variable defined on the grid, and
it is corrected using successive adjustments in which the observations influence surround-
ing grid-point values. The process is defined by the following expression:

,  (6.22)

where  is the n-th iteration estimation at grid point i,  is the k-th observation of x sur-
rounding the grid point i,  is the value of the n-th estimate of x interpolated from the
surrounding grid points to the observation point k, and  is an estimate of the ratio of the
observation-error variance to the first-guess error variance. The weights can be formulated
in various ways. In Cressman (1959) they are defined as

for  (6.23)

for ,

where  is the square of the distance between an observation point k and a grid point i.
Figure 6.10 illustrates an influence region defined on a field of regularly spaced grid points
and irregularly distributed observations.

 For the initial iteration,  in Eq. 6.22 is the value of the first guess. For each grid
point, i, in the first-guess field, each of the K observations that is within the first radius of
influence, , of the grid point is used to adjust the first guess. The adjustment for each
observation is weighted based on its distance from the grid point and on the difference
between the observed value and the value of the first guess interpolated to the observation
point. The difference between the first guess and the observation is, as before, called the
innovation, and its weighted distribution around each observation point is isotropic. This
process is repeated with successively smaller radii, given the constraint that there should
be at least a few observations within each area of influence. Thus, the first guess is
adjusted on the broader scales based on the effects of a large number of observations, and
a progressively smaller number of nearby observations is reused in subsequent iterations
to account for local effects.
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If  is defined to be zero, the implication is that the observations are perfect. This
means that the procedure will faithfully analyze to the observations, to the point of result-
ing in a bulls-eye pattern in the isopleths that encircle a bad grid-point value. By using a
realistic value for , the adjustment to the observation in Eq. 6.22 is smaller and the first
guess is given more weight. With , the impact of a single bad observation can be
reduced by not using small radii of influence, so that multiple observations influence each
grid point. Figure 6.11 shows a one-dimensional schematic of the generation of an
analysis through the correction of a background field within an influence region of
observations.

i
rik

k

Schematic of regularly spaced grid points (open circles) and irregularly distributed observations (black squares). Also 

shown is a circular influence function around grid point i, with a displacement vector r between that grid point and 

observation k.

Fig. 6.10
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Another version of this method was developed by Barnes (1964, 1978), where one of
the advantages is that no independent first guess is needed. In fact, the first guess is
defined by a weighted sum of the observations within a radius of influence: 

.

This has advantages on small scales where there may be no operational model to produce a
background estimate. The Barnes formulation is similar to that in Eq. 6.22, except that 
is assumed to be zero because we have no first guess (i.e., the error is large). The weights
are given by

,

where the radii of influence

 

are reduced by a constant fraction ( ) for each iteration. Additional discussion of the SC
method, and examples of recent applications, can be found in Daley (1991), Barnes
(1994a,b), and Garcia-Pintado et al. (2009).

The above use of an isotropic distribution of the analysis increment around each obser-
vation point obviously makes this method easy to implement, but it is an unnecessary
approximation. Alternatives are based on the aforementioned idea that the spatial
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Analysis (xa)

Background (xb)

Schematic showing the generation of an analysis (dashed line) through the correction of a background field (solid line) 

within an influence region of observations (black circles). The background and analysis are coincident outside the 

influence of the observations.

Fig. 6.11

xi
0 w

ik
0 yk

k 1=

K i

∑=

ε2

w
ik
n e

r
ik
2– 2Rn

2
⁄

=

Rn 1+
2 γ Rn

2=

γ



Model initialization230

influence of observations can be related to prevailing meteorological structures. For exam-
ple, observations should probably not be used to influence grid points on the opposite side
of a front. And, in the atmosphere, scalar variables will be spread out more in the along-
stream rather than the cross-stream direction. Regarding the latter point, an elliptical
weighting function whose aspect ratio is proportional to the wind speed is an option
(Benjamin and Seaman 1985). If the flow is curved, the semi-major axis of the ellipse can
be curved accordingly. Such a weighting pattern has been called a banana function, for
obvious reasons. And, Stauffer and Seaman (1994) adjusted the weight of an observation
at a low-level grid point based on the surface-elevation difference between the two points.
Obviously these weights are not optimal in any statistical sense. See Otte et al. (2001) for
a description of other methods of weighting observations based on prevailing meteorolog-
ical structures. And, see Bratseth (1986) for a discussion of how the SC method can be for-
mulated so that it is equivalent with the statistical optimal-interpolation method (see next
section). 

6.7 Statistical interpolation (optimal interpolation)

Statistical interpolation is sometimes referred to as optimal interpolation. Equations 6.20
and 6.21 serve as the basis for OI. The unknown analysis and known background can be
two-dimensional fields of a single variable, or three-dimensional fields for all the model
dependent variables. The benefit of the OI method and three-dimensional variational
(3DVAR) assimilation described below, relative to the SC method above, is that the spa-
tial distribution of analysis increments is defined by the background-error covariance
matrix that is based on archived model solutions or climatology (observations). In con-
trast, with the SC method the weight is often isotropic and somewhat arbitrary, only
depending on distance from the observation. A fundamental computational-cost-saving
concept in OI is that for each model variable (again, a model variable is one dependent
variable at one grid point), only a few nearby observations are considered important in
determining the analysis increment. These observations are selected based on empirical
criteria, where it is assumed that distant observations would have small background error
covariances BHT.

The OI approach has been most often applied in intermittent-analysis schemes, such
as depicted in Figure 6.6b. That is, the OI is used for the “Anal” at the beginning of
each cycle. The model is integrated from the time of one analysis to the time of the
next one. This provides the background vector xb, while all the observations that are
available in the analysis time window are used to build the vector y. Methods of defin-
ing B for OI approaches are described in Thiebaux and Pedder (1987) and Hollings-
worth and Lönnberg (1986), and involve differencing the short forecast and the
radiosonde observations (see the discussion of the background-error covariance
matrix in Section 6.5.2). An advantage of OI is the simplicity with which it can
be implemented, and the modest cost if the necessary assumptions can be made
(e.g., observation selection).
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6.8 Three-dimensional variational analysis

It was shown in Section 6.5.1 that there is a correspondence between two methods for the
optimal analysis of a scalar: (1) minimizing the analysis error variance (by finding the
optimal weights through a least-squares approach) and (2) using a variational approach
(finding the analysis that minimizes a cost function that is a measure of the distance of the
analysis to both the background and the observation). This correspondence also holds true
for analyses of multi-dimensional fields, as described in the previous section for OI.

Lorenc (1986) showed the formal equivalence of the approach used in OI (where an
optimal gain matrix K is found that minimizes the analysis-error covariance matrix) and a
particular variational-assimilation problem. The latter is used in 3DVAR analysis, and cor-
responds to finding an optimal analysis field, xa, that minimizes a cost function, such that
the cost function is defined as the sum of (1) the distance between x and xb, weighted by
the inverse of the background-error covariance and (2) the distance to the observation y
weighted by the inverse of the observation-error covariance. Mathematically, the cost
function is

,

(6.24)
and the gradient with respect to x is

.

Note the parallel between Eqs. 6.24 and 6.19. The control variable, the variable with
respect to which the cost function is minimized, is the state vector, x. The minimum of the
cost function can be found analytically (e.g., Kalnay 2003), but in practice it is far less
computationally demanding to estimate it iteratively by performing multiple evaluations of
both equations. The minimum is approached by using a minimization, or descent, algo-
rithm such as the conjugate-gradient or quasi-Newton methods. Only a small number of
iterations are used, to produce an approximate minimum. Figure 6.12 illustrates the mini-
mization process for a two-variable model space. The quadratic cost function has the shape
of a paraboloid. The initial point in the iteration is generally taken to be the background
value, xb, and the final point is xa, the approximate location of the minimum of J. Each
step of the iteration moves the estimate down the gradient of the cost function.

Despite their formal equivalence, 3DVAR has a few advantages relative to OI. They are
listed below, and are discussed more extensively in Kalnay (2003). 

• In 3DVAR, there is no selection of only a limited number of observations that are within
an influence region of a grid point. All observations are used simultaneously, which
leads to a smoother analysis.

• The forecast- or background-error covariance, B, is defined using fewer assumptions in
3DVAR. In particular, the so-called NMC (now NCEP) method (Parrish and Derber 1992)
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is generally employed. This does not depend on measurements, as with OI (Hollingsworth
and Lönnberg 1986, Thiebaux and Pedder 1987) but rather the error covariance is based on
the average (over perhaps 50 instances) difference between forecasts valid at the same
time. Even though any time lag and lead time can be used, the following example is based
on 24-h and 48-h forecasts.

.

J(x)

J(xb)

x1

x2

xb

xa

Schematic showing the variational cost-function minimization for a two-variable (x1, x2) model space. See the text 

for details.

Fig. 6.12
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Even though this is the covariance of the forecast differences, which is only a surrogate
for the background- or forecast-error covariance, it has been shown to produce better
results than the methods used in OI, where forecasts and observations are employed.
Parrish and Derber (1992) and Rabier et al. (1998) point out that the radiosonde network
is not sufficiently dense to properly estimate structures. Nevertheless, the covariances in
3DVAR are typically isotropic and climatological (e.g., Fig. 6.8) – i.e., they are not situ-
ation (case, regime) dependent – which is a major disadvantage. 

• Additional constraints can be added to the cost function, such as those related to dynam-
ical-balance relationships. For example, Parrish and Derber (1992) employed an
additional penalty term in Eq. 6.24, forcing the analysis increments to approximately
satisfy the balance equation. In contrast, it was often found necessary to follow an OI
analysis with a Nonlinear Normal-Mode Initialization (NNMI, see Section 6.10.3).
Importantly, with the implementation of 3DVAR it became unnecessary to perform a
separate balancing, or initialization, step in the analysis cycle (cf., Fig. 6.6b). 

• Prior to the availability of 3DVAR, satellite radiances had to be processed through a
retrieval algorithm that generated values of a model dependent variable that would be
assimilated. But with 3DVAR, the radiances themselves can be assimilated directly.

6.9 Diabatic-initialization methods

Diabatic initialization involves the use of observations of precipitation and other variables
to produce estimates of the four-dimensional distribution of latent-heating rate, and the
associated humidity and divergence fields, in a model during the initialization process.
This has two motivations. One is that it employs precipitation observations in a model ini-
tialization, and the other is that it helps produce reasonable vertical-motion and moisture
fields at the initial time of a forecast. The latter goal is motivated by the fact that, typically,
initial conditions do not have realistic vertical motions and humidities, and there is the
resulting spinup period during which the model must internally develop such precipita-
tion-scale circulations and humidity fields.

Some early diabatic-initialization methods simply inserted estimated latent-heating
profiles into the model grid columns during a preforecast dynamic-initialization period.
The column-total latent heat was based on satellite-, rain-gauge-, or radar-estimated rain
rates, and the vertical distribution of the heating was typically defined to be consistent
with the model’s parameterizations (Fiorino and Warner 1981, Danard 1985, Ninomiya
and Kurihara 1987, Wang and Warner 1988, Monobianco et al. 1994). Sometimes, addi-
tional observations are assimilated during the preforecast period using Newtonian relaxa-
tion. Figure 6.13 shows a schematic of this method (a), and of other methods to be
described shortly. The black bars on the time axis of Fig. 6.13a indicate the insertion of
latent-heating-rate information at appropriate grid points. Also shown is the simultaneous
use of Newtonian relaxation to assimilate other observations during the dynamic-
initialization period. A related approach, referred to as latent-heat nudging, is described in
Jones and Macpherson (1997), and is applied in Leuenberger and Rossa (2007) to a
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mesogamma-scale rainfall simulation. Application of the method involves correcting the
model’s latent heating at each time step based on the ratio of the observed and model-
simulated surface precipitation. Another approach is the use of a diabatic omega equation
to define the vertical motion and divergent component of the wind in a static initialization

Observations assimilated by NR

(a) Latent heat insertion

(c) Physical initialization
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Fore
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SI Fore t0LHLH

Fore
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Diabatic
omega equation
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Diabatic NNMI

(b) Static initialization

Fore t
SI

t
Observations

Schematics of three different types of diabatic initializations: (a) insertion of latent-heating (LH) profiles based on 

observed rain rates during a preforecast dynamic-initialization period, with possible simultaneous Newtonian 

relaxation (NR) using other observations; (b) the use of a diabatic nonlinear normal-mode initialization (NNMI) or a 

diabatic omega equation to incorporate precipitation processes in a static initialization (SI); and (c) a physical 

initialization where information about model dependent variables obtained from a physical initialization (PI, see text) 

is assimilated in an intermittent-assimilation cycle to improve the first-guess field.

Fig. 6.13
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(Fig. 6.13b, Tarbell et al. 1981, Salmon and Warner 1986). Turpeinen et al. (1990) and
Raymond et al. (1995) include a summary of these early studies.

Simultaneous with these efforts was the development of a diabatic version of the NNMI
method (Wergen 1988) described in Section 6.10.3. This process incorporated estimated
latent-heating rates into a static initialization (Fig. 6.13b), where the objective was also to
provide initial conditions that did not require significant spinup of the precipitation proc-
esses during the early period of the forecast. Examples of the use of NNMI for diabatic
initialization can be found in Puri (1987), Heckley et al. (1990), Turpeinen (1990),
Turpeinen et al. (1990), and Kasahara et al. (1996).

 The so-called physical-initialization method, described in Krishnamurti et al. (1991),
also enables the use of rainfall-rate estimates and other observations during a preforecast
integration to provide model initial conditions that contain spun-up vertical motion, hori-
zontal divergence, and humidity fields. The details of the method can vary, but a common
feature is that reverse algorithms are employed for relationships in the model that involve
the moisture variables: the parameterizations for convection and outgoing longwave radia-
tion (OLR), and similarity theory. For example, convective parameterizations provide the
convective rain rate as a function of grid-resolved variables such as the vertical moisture
profile. “Reversing” the convective-parameterization algorithm allows observations of the
rain rate to be translated into an estimate of grid-resolved model dependent variables,
which can be ingested into model initial conditions using Newtonian relaxation or they
can replace simulated variables during a preforecast integration (Fig. 6.13c). Following the
conceptual explanation in Treadon (1996), consider the equation  that represents
a simple model parameterization relationship, where x is a grid-resolved variable, and y is
an observed, parameterized variable. For example, let y be OLR, and x the variables that
are used in its parameterization (e.g., temperature, specific humidity, etc.). Thus, based on
measurements of OLR, the reverse algorithm provides estimates of the large-scale forcing,
x. This estimate can be assimilated, or it can be fed back into the forward algorithm to pro-
vide an improved value after iteration. Physical initialization methods have been applied
most often in the tropics, where the scarcity of conventional observations increases the
dependence of the forecast on a reasonable first guess. Krishnamurti et al. (1994, 2007)
and Shin and Krishnamurti (1999) show that this method leads to a significant improve-
ment in the skill of forecasts of tropical rainfall, global cloudiness, land-surface hydrology,
and tropical cyclones. The method has been tested with the Florida State University spec-
tral model, the US Navy’s NOGAPS model (Van Tuyl 1996), and the NCEP Global Data
Assimilation System (Treadon 1996). A recent application of the method is described in
Milan et al. (2008). Physical initialization has also been employed for ensemble prediction
(Chaves et al. 2005, Ross and Krishnamurti 2005) as well as with LAMs (Li and Lai 2004,
Nunes and Cocke 2004).

The above methods are not as likely to be effective for midlatitude precipitation events
that are associated with large-scale forcing. For example, using observed precipitation-
related fields to develop vertical motion and latent-heating rates in the initial conditions
for a case of frontal precipitation is not going to be effective if the front, or the cyclone
itself, is in the wrong location in the model solution. In this case, the lack of correct
large-scale forcing for the specified precipitation in the model will cause the precipitation

y f x( )=
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to dissipate during the early period of a forecast. Similarly, precipitation imposed in the
solution through diabatic initialization will not persist in situations of air-mass convec-
tion if the large-scale environment is not sufficiently unstable. In contrast, for convection
within air masses with realistic stability, and for tropical cyclones, the methods will be
more likely to improve predictive skill. 

Other methods, such as three- and four-dimensional variational data assimilation (dis-
cussed elsewhere), can also be used to assimilate observations that represent precipitation-
scale processes in model initial conditions. 

6.10 Dynamical balance in the initial conditions 

This section focusses on the need to have a realistic dynamic balance in model initial
conditions, the consequences of not having that balance, and methods that have been
employed to ensure that a reasonable balance exists. The first section reviews the rele-
vance to initialization of the concept of geostrophic adjustment, the second describes how
integrating a model for a period prior to the initialization can contribute to an improved
balance, and the third briefly summarizes the use of diagnostic relationships for achieving
a balance. 

6.10.1 Geostrophic-adjustment concepts, and relevance to initialization

The atmosphere on synoptic and planetary scales is in approximate geostrophic balance.
Thus, if the mass and wind fields on these scales are significantly inconsistent with each
other in the model initial conditions, inertia–gravity waves will cause those fields to adjust
toward balance during the early period of the integration. Of course, the large-scale mass
and wind fields in the real atmosphere are always in a state of continuous imbalance and
adjustment. But, inertia–gravity waves that result from poorly defined initial conditions
are not physically based, can be of large amplitude, and are potentially problematic in a
model solution. This adjustment process is relevant to numerical modeling for a few rea-
sons. First, if the inertia–gravity waves that effect the adjustment are of significant ampli-
tude, they can mask the true meteorological features in the model solution until the waves
are damped or propagate away from the area of interest. This could mean that the model
solution will not be useful for the first 12–24 h after initialization. Also, the resulting
waves can have troublesome interactions with the LBCs of LAMs. Lastly, the geostrophic-
adjustment process can cause good-quality observations in one field to compensate for
poor-quality observations in the other, or poor-quality observations in one field can negate
the value of good-quality observations in the other. 

To better understand the geostrophic-adjustment process, consider the simple geopoten-
tial-height pattern in Fig. 6.14. A parcel of air at location 1 is moving with a speed that is
in geostrophic balance with the local pressure gradient. As the parcel moves toward loca-
tion 2, the local pressure gradient becomes greater and the motion is subgeostrophic. The
fluid system can respond in two ways to regain a balance: Either the parcel’s speed can
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increase as it moves into the geostrophic jet maximum, or the pressure-gradient maximum
can move downstream, causing the pressure-gradient at location 2 to weaken. Of course a
similar question could be posed about the response of the system as parcels move farther
downstream, away from the pressure-gradient maximum (from location 3 to 4). To resolve
this, consider the ways in which the mass and wind fields can adjust in such situations. The
shallow-fluid equations (see Chapter 2) represent a simple framework for addressing this,
which nevertheless contains all the relevant dynamics. Two of the admissible wave solu-
tions are gravity waves and inertia waves. Both mechanisms operate simultaneously to rec-
oncile an imbalance. The inertia waves modify the winds, and the gravity waves modify
the mass field (the fluid depth, in the shallow-fluid system). As an indicator of how much
of the adjustment results from changes in each of the mass field and momentum field, con-
sider the periods of these waves. For inertia waves , and for gravity waves

, where L is the length of the gravity wave (defined by the horizontal scale
of the imbalance) and H is the depth of the imbalance (the vertical scale). Given that both
types of waves simultaneously act to adjust the atmosphere toward the geostrophic state,
the wave mode with the shortest period accomplishes most of the adjustment. To define the
condition where there is equal adjustment from both types of waves, the expressions for
the two periods can be equated. Solving for the wavelength yields

,

where this length scale is the Rossby radius of deformation for the shallow-fluid system.
For wavelengths shorter than this value, redistribution of the mass field through gravity
waves is responsible for most of the adjustment, whereas for longer wavelengths, modifi-
cation of the windfield by the inertia waves accomplishes most of the adjustment. The
value of L for deep (tropospheric) midlatitude adjustments is ~15 000–18 000 km. So, for
planetary scales and very-long synoptic scales, the winds adjust to the mass field when
there is an imbalance. That is, the mass field does not change much, so we say that it
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dominates the adjustment. This is consistent with the fact that large-scale weather maps
are analyzed in terms of geopotential height, and the winds are sometimes inferred from
that field. For much smaller scales, the winds change little when there is an imbalance
because the gravity waves act quickly to adjust the mass. At these scales, we say that the
winds dominate the adjustment process. A related important point is that the short periods
of the gravity waves on small scales means that adjustments take place quickly, relative to
the situation on larger scales where the time scale is that of the inertial period (~17 h at
40° latitude). In tropical latitudes (small f), for an imbalance of a given length scale, the
windfield changes less than in higher latitudes. For shallow adjustments, for example those
that are limited to the boundary layer or lower troposphere, the mass field is more domi-
nant than with deeper adjustments. 

As mentioned earlier, the geostrophic-adjustment process has many implications for
model initialization and data assimilation. First, the model initial conditions need to be in
a realistic state of balance, or the resulting excited gravity waves can mask the meteorolog-
ical pressure field. As an example, Fig. 6.15a shows the evolution of the surface pressure at
a point, after a well-balanced and a poorly balanced initialization of a LAM. For the poorly
balanced initial conditions, the amplitude of the gravity waves created by the adjustment
decreases with time, because the waves have propagated away from the area and possibly
been damped by the model, but the sea-level pressure prediction for the first 6–12 h would
have been relatively unusable by a forecaster. Also shown in the figure is the
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computational-domain average of the absolute value of the second time derivative of the
surface pressure, a measure of the intensity of inertia–gravity-wave noise, for two initiali-
zations with different degrees of initial imbalances. In both cases, the inertia–gravity-wave
intensity decreases by a factor of 5–10 during the first 12 h of the integration, but there is
still a residual benefit after 12 h of the better-balanced initial conditions. Ballish et al.
(1992) show similar plots for a global model, where the unbalanced initial conditions led
to high-frequency aphysical surface-pressure oscillations during the first 12 h, with a
change of over 5 hPa in 2 h. However, in that study the use of one type of NNMI (see
Section 6.10.3 below) to produce a balance filtered the gravity waves too effectively, such
that the real semi-diurnal tidal oscillations were removed during the first 24 h of the simu-
lation. An alternative NNMI approach removed the large-amplitude spurious waves, but
retained the tidal oscillations. 

Knowledge of the adjustment process can also inform decisions about the variables that
need to be better observed. For example, because of the dominance of the windfield during
the adjustment in the tropics (even though the atmosphere is less geostrophic in those lati-
tudes), the model initialization should emphasize the use of wind observations. Informa-
tion from pressure observations will be lost in the adjustment. Similarly, at all latitudes, on
the scales where the winds dominate the adjustment, assimilated mass-field information
can be viewed as redundant. 

The concept of adjustment can be viewed in the context of the errors in the initial
fields. If the observations and the analysis system are perfect, the generated model initial
conditions will be in perfect balance relative to the model equations, and there will be no
artificial adjustment. If only the winds have errors, and the winds dominate the adjust-
ment, error will be induced in the mass field during the adjustment process, and vice
versa. This means that there should be an interconsistency or compatibility of initial-
condition mass-field and windfield errors on the scale of the motion being studied. This
concept of initial-condition-error interconsistency for large-scale motions was discussed
extensively as part of the Global Atmospheric Research Program (Jastrow and Halem
1970). In the context of data assimilation, the idea is that assimilated observations should
have error consistency. The problem of error inconsistency exists because of the
exchange of error-related energy through dynamic adjustment. A convenient way of dem-
onstrating the transfer of errors among model variables is through the use of a stochastic-
dynamic model (Fleming 1971a,b). Here, the statistical moments of the dependent
variables are explicitly predicted with the model equations. Figure 6.16 illustrates a sim-
ulation with a one-dimensional (x), spectral, stochastic-dynamic, shallow-fluid model,
where the smallest resolved wave had a length of 1250 km. In this experiment, there was
no initial error in the u component, but a spatially uniform standard error of 23 m was
defined in the initial height field. The plot shows the temporal evolution of the grid-
average second moment of the fluid depth for different spatially uniform initial errors in
v. When there was no initial error in u or v, the h error decreased with time because the
perfectly known v component caused an adjustment of h toward a compatible value. For
larger initial v errors, there was a greater consistency in the initial mass and wind errors,
and there was less net change in . These results are independent of the first moments
that are specified for the variables. 

σh
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6.10.2 Preforecast integration of the model equations for achieving a 
dynamic balance

The objective of preforecast integrations has been mentioned before in the context of
allowing ageostrophic circulations, related to precipitation and other processes, to spin up
before the initial time of a forecast. Observations can also be assimilated during this
period. In addition, initial imbalances can be reconciled during this preforecast integra-
tion, if there is some way to eliminate the inertia–gravity waves that are produced.
Figure 6.13a is an example of a preforecast integration during which observations are
assimilated, ageostrophic circulations spin up, and initial imbalances are reconciled.
Another approach is to utilize a damping differencing scheme, such as the Euler-backward
method described in Chapter 3, during a backward–forward integration of the model equa-
tions (e.g., Nitta and Hovermale 1969). A version of the forecast model that includes only
the reversible processes is used; e.g., precipitation and explicit diffusion terms are
removed. As the reversible model is integrated backward and forward by one or more time
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steps, inertia–gravity waves are generated by the adjustment process, and they are damped
by the differencing scheme. At the end of each forward–backward cycle, the better
observed of the wind or mass field can be recovered. This effectively forces the more-
poorly observed field to adjust to the better-observed one. See Figure 6.17 for a schematic
of the process. For additional discussion of this type of initialization method, see Fox-
Rabinovitz and Gross (1993), Fox-Rabinovitz (1996), and Kalnay (2003). 

6.10.3 The use of diagnostic relationships for achieving a balance

It is important to recognize that the use of a hypothetical method that provides a balance
between the gridded initial wind and mass fields that is perfect with respect to the real
atmosphere, will nevertheless result in the generation of gravity-wave noise in the model.
This is because the model obviously represents a numerical approximation of the real
atmosphere, so it has its own unique balance that is a function of the numerical methods
and their associated truncation error. Thus, any initialization method, whether it is static or
dynamic, should employ equations that use numerical approximations that are similar to
those in the forecast model. Otherwise, the truncation error inconsistency between the
forecast model and the initialization method will be a source of inertia–gravity wave noise
in the model solution. 

Early models used simple large-scale balance relationships to define somewhat compat-
ible mass and wind fields in the initial conditions. The earliest and most primitive

T = 0

Forward forecastForward forecast

Backward forecastBackward forecast

T = −Δt T = Δt

Initial guess

Recovery of mass
or wind field

Recovery of mass
or wind field

Schematic of a model-initialization method that utilizes a backward–forward integration, with a reversible 

version of the model, to permit the geostrophic-adjustment process to be completed before the initial time of a 

forecast. The integration is performed with a damping differencing scheme. Adapted from Nitta and Hovermale 

(1969).

Fig. 6.17
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approach was to use the geostrophic relationship. More-complete balances were achieved
through other diagnostic equations such as a combination of a divergent balance equation
(see Holton 2004) and a vertical–velocity equation (e.g., Tarbell et al. 1981). 

Another method of diagnosing a balanced set of initial conditions is the previously men-
tioned NNMI, introduced by Machenhauer (1977) and Baer and Tribbia (1977). It is
applied after the analysis step (e.g., that uses OI). As the name implies, it requires the
determination of a model’s “normal modes” (i.e., solutions of a linearized version of the
model equations) as a first step, and then the high-frequency (inertia–gravity waves) and
low-frequency (quasi-geostrophic) components of the model input data are separated. The
high-frequency modes are assumed to have no meteorological significance, and are
removed. This method has been used in the initialization of many operational modeling
systems. 

Kalnay (2003) summarizes a few shortcomings of the standard NNMI. One is that phys-
ically meaningful fast modes are removed with the rest. And, the importance of diabatic
processes in the tropics led to the need for a diabatic NNMI (Wergen 1988). Ballish et al.
(1992) describe a so-called incremental NNMI procedure in which the process is applied
to analysis increments rather than to the complete analysis fields. This procedure substan-
tially reduces the aforementioned problems with NNMI, as well as others. See Daley
(1991) for additional information about NNMI.

6.11 Advanced data-assimilation methods

With the OI, 3DVAR, and SC sequential methods of data assimilation, the observations
employed are made at or near the time of the analysis, and the process is repeated at regu-
lar intervals that are defined by the update cycle (e.g., every 6, 12, 24 h). In each case, the
model is used to propagate the observations and background information from one analy-
sis to the next. Unfortunately, many types of observations are not available at regular inter-
vals. These so-called asynoptic observations are abundant, and are provided by satellites,
aircraft, radars, etc. But, unless they are available near one of the standard initialization
times, they are not very useful with sequential methods. Of course it is possible to perform
some sort of temporal adjustment for off-time observations, but this is not a very satisfy-
ing process. And, with the above methods the background-error covariance matrix remains
the same throughout a simulation, as if the forecast errors were statistically stationary. The
solution is thus to employ a data-assimilation method that can use observations that are
available at any arbitrary time, and one for which the background-error covariance evolves
during the forecast.

6.11.1 Four-dimensional variational initialization

The method of four-dimensional variational (4DVAR) assimilation is a generalization of
3DVAR, to allow inclusion of observations that are distributed in time within an interval
(t0, tn), where the subscript 0 denotes observations at the initial time of the assimilation
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period and the subscript n corresponds to the time of the last (n-th) observation that is
assimilated. The following cost function must be minimized, where the control variable is

, the model state vector at the initial time of the forecast:

.

(6.25)

The summation is over the number of observations, n. The zero-th observation applies at
the beginning of the assimilation window. Note that, if observations are only available at a
single time t0, the cost function is the same as that used for 3DVAR (Eq. 6.24). That is,
observations for  appear as additional penalty terms. This minimization problem is
subject to the strong constraint that the sequence of model states, xi, represents solutions
to the model equations. That is

, ,

where  is a model forecast operator that is applied from  to the time of the
last observation. The 4DVAR process is illustrated in Fig. 6.18, where the ordinate is the
model state vector x and the abscissa is time. With observations distributed throughout the
assimilation period, the objective of the 4DVAR process is to estimate the state vector xa
that produces a model solution M that minimizes the cost function that has terms that
(1) represent the distance to the background (the previous forecast) at the beginning of the
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interval and (2) are based on the observational increment computed with respect to the
model solution at the time of the observations. That is, the process defines an initial condi-
tion that produces a forecast that best fits the observations within the assimilation window.
In practice, if a forecast model is run with a 6-h update cycle, the assimilation window
would extend from the time of the previous initialization to the time of the current one.

To solve the minimization problem, we must differentiate Eq. 6.25 with respect to the
control variable, and solve for x at the minimum. For , the differentiation of
Jb is identical to the process for 3DVAR. However, the evaluation of Jo and  requires
a model integration from , as well as an integration of the adjoint model defined as
the transpose of the model operator Mi ( ). Note that M is the tangent linear version of
M. Constructing this adjoint model from the forecast model is a complex process, and, fur-
thermore, the adjoint model must be maintained (bug fixes, improvements) in parallel with
the forecast model. See Kalnay (2003) for mathematical details and additional references. 

6.11.2 Extended Kalman filtering

A specific implementation of the least-squares analysis method is called the Extended
Kalman Filter (EKF, Ghil and Malanotte-Rizzolli 1991, Bouttier 1994, Kalnay 2003,
Hamill 2006). Equations 6.26a–e below summarize the process. As in OI, the EKF is
based on the least-squares analysis method applied in the framework of sequential data
assimilation, where each background is produced by a forecast that is initiated from the
previous analysis. However, now the background error-covariance matrix is time depend-
ent. The background (i.e., forecast) and analysis error-covariance matrices are now repre-
sented as Pf and Pa, respectively. Compare the constant background error covariance B in
the weight matrix used for OI (Eq. 6.21) with the time-dependent  below in the gain
matrix defined by Eq. 6.26c.

State forecast  (6.26a)

Error-covariance forecast  (6.26b) 

Kalman-gain computation  (6.26c)

State analysis  (6.26d) 

Error covariance of the analysis  (6.26e) 

Similar to Eqs. 6.20 and 6.21, Eqs. 6.26c and 6.26d estimate the optimal analysis state
 by correcting the background  based on the observation increment

 that is weighted by the Kalman-gain matrix K(t). As noted before, the
purpose of K is to spatially distribute the influence of the observation increment in order
to correct the background at grid points in the vicinity of the observation. And, H is the
forward operator that maps the state to the observations. The matrix H is the Jacobian
matrix of H, such that . Equation 6.26e updates the background error
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covariance to reflect the reduced uncertainty that results from the assimilation of the
observations. Here, I is the identity matrix. Equations 6.26a and 6.26b propagate the state
vector and error-covariance vector forward to the time when observations are next availa-
ble. The matrix M is the nonlinear model-forecast operator that integrates forward in time
from the analysis vector  (initial conditions) to the time of the next analysis, where
the model forecast  will become the background. The matrix M is the Jacobian
matrix of M, where  and MT is its adjoint. The matrix Q is the covariance of
model errors that accumulate during the update interval. Figure 6.19 shows a schematic of
how Eqs. 6.26 are solved. See Kalnay (2003) and Hamill (2006) for the assumptions that
are involved in the use of this method, and LeDimet and Talagrand (1986) and Lacarra and
Talagrand (1988) for additional information about the mathematics.

A major benefit of the EKF relative to 3DVAR is that the forecast, or background, error-
covariance matrix is explicitly advanced using the model itself, evolving during the fore-
cast. A few of the distinctions between the EKF and 4DVAR methods are summarized as
follows.

• The EKF explicitly evolves the covariance matrix, whereas the covariance evolution in
4DVAR is implicit.

• Unlike the EKF, 4DVAR assimilation is based on the assumption that the model is per-
fect (i.e., Q = 0).
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x forecast (a)
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P forecast (b)
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xa Pa
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Schematic showing the organization of the computations for the solution of Eqs. 6.26 in an EKF assimilation. The 

letters refer to the specific equations in the Eqs. 6.26 series.

Fig. 6.19



Model initialization246

• The 4DVAR method can be used operationally in NWP because it is computationally
much cheaper than the EKF. In contrast, with current computing resources the EKF is
prohibitively expensive to use for all but the very smallest modeling systems.

• The 4DVAR method simultaneously uses all the observations within the update interval,
whereas the EKF is a sequential method that assimilates observations that are grouped
at the update times. The former situation is preferable. 

An additional difficulty with the EKF is the fact that the accuracy of the assimilation
depends greatly on the quality of the determination of Q, but this is especially difficult to
estimate. 

6.11.3 Ensemble Kalman filtering

Ensemble-based data-assimilation methods are sequential in the sense that there is an
ensemble of parallel short forecast and analysis steps. With the Ensemble Kalman Filter
(EnKF) method, an ensemble of analyses is produced for a given time using (1) back-
grounds that are produced by an ensemble of forecasts and (2) observations that have been
perturbed by the addition of random noise that is drawn from a distribution of observation
errors. The next ensemble of backgrounds is produced by running a short forecast from
each of the members of the ensemble of analyses. The analyses are produced using the
Kalman filter method described earlier, where each background is updated with a slightly
different realization of the observations because of the addition of errors. For each cycle,
the ensemble of backgrounds provides an estimate of the covariance matrix of the back-
ground error, and the ensemble of analyses allows the calculation of the covariance matrix
of the analysis error. Specifically, 

(6.27)

defines the ensemble mean of the forecast state vector, where K is the number of ensemble
members, and the following represents the covariance of the sample of ,

 , (6.28)

where  is an estimate of  from a finite ensemble. Similar to the state analysis in
Eq. 6.26d,

 ,

where  are perturbed observations, and the Kalman gain matrix (Eq. 6.26c) is
now

 . (6.29)
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Methods for simplifying and parallelizing the application of the EnKF are summarized in
Hamill (2006), and include efficient ways of obtaining the Kalman gain without explicitly
computing the background-error covariance matrix. 

Figure 6.20 shows a schematic of the EnKF process, where time progresses downward
from the top. An ensemble of analyses serves as the initial conditions for an ensemble of
forecasts, where the forecast length is consistent with what is typically used for sequential
initialization methods – e.g., 6 h. The ensemble of forecasts of x at t + 1 is used to calculate
the forecast, or background, error covariance using Eqs. 6.27 and 6.28. The resulting vector
is then used in the Kalman gain calculation in Eq. 6.29, and this gain matrix is applied to
the analysis increment to obtain the optimal correction to  in order to obtain . After
another ensemble forecast, the Kalman filter is applied again, and the process continues. 

The EnKF method unifies data assimilation and ensemble forecasting. Using a Monte
Carlo approach, the ensemble of forecasts provides a sample of the relationship between
observations and state variables, from which the forecast-error covariance can be calcu-
lated. The statistics derived from this sample serve as the basis for an ensemble of analysis
from which the next ensemble of forecasts is initiated. One of the strengths of the EnKF is
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the fact that the background-error covariance varies with location and time. Figure 6.21
shows an example of the covariance field for a particular case from a global-data-
assimilation system. The covariance patterns are shown relative to five different observa-
tion locations in the Northern Hemisphere, based on a 100-member ensemble. The back-
ground-error magnitudes and patterns vary from one region to another, with greater values
surrounding the grid points in northern Russia and to the south of Alaska. The pattern
around the former location is especially complex. 

The 4DVAR and EnKF methods are equivalently demanding computationally, but the
EnKF approach has the advantage that adjoint and tangent-linear models are not required.
And, where ensemble simulations are used operationally for reasons aside from data
assimilation, the added computational burden associated with the EnKF approach to data
assimilation is not especially great. See Lorenc (2003) for a further comparison of these
two methods. Additional information about the EnKF method can be found in Burgers
et al. (1998), Houtekamer and Mitchell (1998, 1999, 2001), Hamill and Snyder (2000),
Keppenne (2000), Mitchell and Houtekamer (2000), Hamill et al. (2001), Heemink et al.
(2001), Keppenne and Rienecker (2002), Mitchell et al. (2002), Anderson (2003), Evensen
(2003, 2007), Lorenc (2003), Snyder and Zhang (2003), Houtekamer et al. (2005), Hamill
(2006), and Zheng (2009). For recent practical tests of the EnKF method in realistic set-
tings, see Fujita et al. (2007), Bonavita et al. (2008), Meng and Zhang (2008), Torn and
Hakim (2008), and Houtekamer et al. (2009).

6.12 Hybrid data-assimilation methods

There are quite a few hybrid data-assimilation approaches, drawn from the aforemen-
tioned methods, that have had historically distinct development paths. For example,
Hamill and Snyder (2000) suggest a hybrid of the EnKF and 3DVAR methods where the

Normalized covariances
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An example of the background-error covariance (gray shading) of sea-level pressure (solid lines) around the five 

indicated observation points (black dots). Adapted from Hamill (2006), based on experiments conducted by Whitaker 

et al. (2004).

Fig. 6.21
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background-error covariance is a linear combination of the typically constant, isotropic,
and homogeneous 3DVAR covariance (see Section 6.8) and the variable EnKF covariance.
Specifically, 

,

where  is a tunable parameter that varies from 0.0 to 1.0. The objective here is to com-
pensate for the relatively small sample of ensemble members that are used to calculate 
by also incorporating information that is represented in B. Hamill and Snyder (2000)
obtained the best results for .

Another hybrid method combines Newtonian relaxation and the adjoint of 4DVAR, the
two approaches that are able to assimilate asynoptic observations at the actual measure-
ment time. Recall that the adjoint equations compute the gradient of a cost function with
respect to a control variable. In applications of the adjoint method for model initialization,
such as in the 3DVAR and 4DVAR methods, the control variable is the model initial state.
For model-parameter estimation, a vector of model parameters is the control variable.
Examples of this hybrid approach include Zou et al. (1992) and Stauffer and Bao (1993),
who employed the adjoint method for an optimization of analysis-nudging coefficients,
which were the control variables. 

Lastly, the 4DVAR and EnKF methods have been combined by Zhang et al. (2009).
Using a somewhat idealized experimental setting, the EnKF-4DVAR system outperformed
both the EnKF and 4DVAR methods.

6.13 Initialization with idealized conditions

For a variety of reasons, it is useful to be able to perform model simulations based on
idealized (or synthetic) initial conditions. Even though this is discussed in Chapter 10,
in the context of experimental designs of modeling studies, it will be mentioned here as
well. The term idealized means that the initial conditions are not based on observations,
but rather on a conceptual model of an atmospheric state. In general, this state is
described by an analytic function that represents the dependent variables, which are
defined at grid points. The general motivation for the use of synthetic initial conditions
is that a single process or phenomenon can be isolated, in contrast to real-data initiali-
zations where there exist the inevitable complexities of the real atmosphere with many
processes and scales. Specific purposes for using synthetic initial conditions include
the following.

• Instruction – It is straightforward to demonstrate the effects of model numerics on a
known solution. An example is a comparison of the correct phase speed with that pro-
duced by a given model solver. Or, simple experiments can be performed, for example
of the geostrophic-adjustment process. 

• Testing a model for the existence of code errors – There are some simple phenomena for
which analytic solutions exist, and the model solutions can be compared with them to
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assess model performance. Or a new model configuration can be tested against the solu-
tion that results from an older well-tested version of the model.

• Dynamic-solver evaluation – The same simple case can be run for many space and time
scales.

Some modeling systems include software that allows the user to run a variety of precon-
structed, idealized test cases. For example, the WRF system includes the following cases:
flow over a bell-shaped mountain, a two-dimensional squall line, a three-dimensional
supercell thunderstorm, a three-dimensional baroclinic wave, a two-dimensional gravity
wave, a three-dimensional large-eddy-simulation case, and a two-dimensional sea breeze.
See Chuang and Sousounis (2000) for an example of how idealized initial conditions can
be implemented in a LAM. 
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PROBLEMS AND EXERCISES

1. What processes can damp inertia–gravity waves that are generated by a model initial-
ization?

2. What variables, in addition to the second time derivative of the surface pressure, might
be used to diagnose the intensity of inertia–gravity waves associated with imbalances in
the initial conditions? 

3. Describe the relationship between the need for spectral nudging and the domain-size, in
relaxation-based continuous data-assimilation systems.

4. Explain how a bad meteorological observation can have its negative influence spread
over a large area of the computational domain.

5. Define what is meant by the expression Monte Carlo approach.
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6. Conceptually and mathematically relate the SC analysis method (Section 6.6) to the
statistical approaches to data assimilation (Section 6.5). 

7. Explain possible ways in which near-surface observations can be used to infer model
initial conditions for the boundary layer and lower troposphere. How could vertical
mixing during the early part of the model forecast cause the value of the observations to
be lost?

8. Derive Eqs. 6.9 and 6.10.
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7.1 Background

As we have seen in previous chapters, there is a variety of generally unavoidable sources
of model error, including

• initial conditions,
• lateral-boundary conditions for LAMs,
• land/water-surface conditions,
• numerical approximations used in the dynamical core, and
• parameterizations of physical processes.

Each of these input data sets or modeling approaches introduces some error in the mode-
ling process, and ensemble prediction involves performing parallel forecasts or simula-
tions using different arbitrary choices for the above imperfect data or methods. The
objective of defining the different conditions for each model integration is to sample the
uncertainty space associated with the modeling process in order to define how this uncer-
tainty projects onto the uncertainty in the forecasts. As a preliminary example of the sensi-
tivity of model forecasts to the above factors, Fig. 7.1 illustrates an ensemble of 5-day
track predictions for hurricane Katrina in 2005. The forecasts are based on the ECMWF
ensemble prediction system. The tracks are strongly dependent on the specific errors in the
input observations as well as the model configurations employed.

An ensemble of forecasts is more useful than an individual, deterministic forecast for
the following reasons.

• The mean of the ensemble of forecasts is generally more accurate than the forecast from
an individual ensemble member, when the statistics are computed over a number of
forecasts. 

• The difference (spread, variance) among the ensemble members can be an indication of
the flow-dependent quantitative uncertainty in the ensemble-mean forecast, given a
proper calibration. 

• The Probability Distribution (or Density) Function (PDF) of the frequency distribution
of a variable can provide information about extreme events, which is especially useful
information from a practical standpoint (e.g., issuing weather warnings).

• The quantitative probabilistic products can be more effectively employed in decision-
support software systems. 

7 Ensemble methods
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The availability of stochastic forecast products is clearly a great advantage relative
to the situation with a deterministic modeling system where a single realization of
the future state of the atmosphere is produced, and the forecaster must guess at its
veracity.

It should not be surprising that using ensembles of model simulations has led to
improved forecast skill. Since the early 1960s it has been known that combining differ-
ent forecasts from individual forecasters produces a group-mean probability forecast
that is superior to the single probability forecast from the most skillful forecaster
(Sanders 1963). These findings were confirmed through later studies by Sanders (1973),
Bosart (1975), and Gyakum (1986). The recognition of the benefits of this statistical
synthesis of human predictions has contributed to a similar process being applied to
model predictions.

The potential of ensemble methods is also reflected in how forecasters have used
model products for the last few decades. It has been well known by forecasters that when
all available models are predicting a similar outcome, the probability is generally high
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An ensemble of track predictions for hurricane Katrina, initialized at 0000 UTC 26 August 2005, from the ECMWF 

ensemble-prediction system. The heavy line is the track forecasted by the ECMWF deterministic system. Adapted from 

Leutbecher and Palmer (2008).
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that the predictions will verify reasonably well. In contrast, when the solutions from
different models diverge significantly, there is more uncertainty. Thus, before the concept
of ensemble prediction was formally established, forecasters were treating the available
products as a multi-model ensemble and qualitatively relating the forecast spread to
uncertainty. 

Given that producing an ensemble forecast requires the parallel integration of many
realizations of the modeling system, compromises of some sort need to be made in order
to keep the process computationally tractable. Rather than use simpler and inevitably
less-accurate physical-process parameterizations, the horizontal resolution is typically
reduced in order to compensate for the cost of the multiple integrations. For the same
model forecast area, we know that doubling the horizontal grid increment can allow the
model to execute eight times faster. Thus, all other things being equal, halving the reso-
lution will allow eight ensemble members to be run in the same amount of time. Quad-
rupling the horizontal grid increment will allow 64 ensemble members to be used. An
issue that exists in parallel with that of computation speed is the general need for more
memory by ensemble systems. 

The sources of forecast error are a subject of this chapter because ensemble methods
seek to sample the uncertainty associated with the sources in order to produce the ensem-
ble. These same sources of error will also be considered in the next chapter on atmospheric
predictability because that discussion must be based on the same concepts. The reader
should consult Chapter 8 for additional information about that subject. 

7.2 The ensemble mean and ensemble dispersion

7.2.1  The ensemble mean

One of the products of an ensemble-prediction system is the average of the members of
the ensemble, which represents a forecast that can be interpreted in the same way as a
deterministic (nonensemble) product. This ensemble mean, defined at the initial time or
at any forecast lead time, is calculated simply by averaging together the gridded fields
of the dependent variables from the ensemble members. The mean is typically more
accurate than any arbitrarily chosen forecast from an individual member of the ensem-
ble, when averaged over a number of forecasts. The averaging of the ensemble mem-
bers appears to produce a nonlinear filtering that causes the unpredictable (random)
aspects of the forecast to cancel each other, whereas the aspects of the forecasts on
which the models agree are not removed in the averaging. Maps of the ensemble-aver-
age meteorological fields tend to be smoother than those from the individual members,
especially for longer forecast lead times after the individual model solutions have
diverged to a larger degree. Palmer (1993) has suggested that ensemble averaging will
improve the forecast only up to the time when there is a change in meteorological
regime – that is, when there is a bifurcation in the solutions of the members. For
example, Fig. 7.2 shows a schematic of the model-state trajectories (dashed lines), for
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a two-dimensional phase space.1 The initial conditions for the ensemble members are
shown with open circles, as are the solutions at two times during the forecast. At each
time, the ensemble mean is defined with an “x”. In this example, the eight-member
ensemble is constructed by perturbing a control set of initial conditions, and thus the
initial states are defined by different phase-space coordinates. At the intermediate fore-
cast time, the model solutions differ more than they did at the initial time, but the error
growth has been somewhat linear. Later, at the final time, the trajectories of two of the
forecasts have diverged from the trajectories of the other six forecasts; a regime change
has taken place. Such a bifurcation in a real ensemble forecast might correspond to
some forecasts defining rapid cyclogenesis while others are producing cyclolysis (see
Mullen and Baumhefner 1989). In the illustration of Fig. 7.2, the ensemble mean after
the bifurcation corresponds with neither branch of the solution, and thus might not rep-
resent an especially accurate forecast. An example of a bifurcation in a real forecast is
seen later in Fig. 7.13, where the ensemble members tend to be grouped into two differ-
ent patterns of midtropospheric troughs.

1 Phase space has a dimension corresponding to each dependent variable in the system, and the coordinates in
the phase space define the value of each variable. Thus, a trajectory in phase space represents the temporal
change in the state of the system. Sometimes, spatial independent variables may also be dimensions of the
phase space. 

Initial time
Intermediate

forecast projection

Final forecast
projection

Schematic of model-state trajectories for simulations from an eight-member ensemble initialized from perturbed 

initial conditions. See the text for details. Adapted from Wilks (2006).

Fig. 7.2
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The above figure also illustrates that the time-dependent behavior of a forecast that is
initiated from the ensemble mean (the solid arrow) is different from the time-dependent
behavior of the ensemble mean itself. The reason for this can be understood by recogniz-
ing that an atmospheric model is a highly nonlinear function that transforms a set of initial
conditions into a set of forecast conditions (Wilks 2006). For a nonlinear function f(x),
with x the dependent variables and n the number of ensemble members, 

, (7.1)

where the right side corresponds to the nonlinear function (the forecast model) applied to
the mean and the left side is the average of the forecast fields. Stated another way, on aver-
age the best forecast does not result from the use of the best estimate of the initial condi-
tions (the ensemble mean).

7.2.2 Ensemble dispersion, spread, or variance

Because of nonlinear interactions in the fluid, and interactions among the different
sources of error in the modeling system, errors tend to grow during an integration. In
fact, the errors will continue to grow until the forecast and the true state of the atmos-
phere (e.g., depicted by an objective analysis) will be as dissimilar as two randomly
chosen observed states of the atmosphere. In a deterministic forecast setting we have
no way of defining the future error growth. So, we employ an ensemble approach to
estimate it by perturbing different aspects of the modeling system (the initial condi-
tions or the model) and interpreting the degree to which the model solutions diverge.
This divergence in the solutions, called the dispersion of the ensemble, can be related
to the uncertainty in the ensemble mean and is an important component of the fore-
cast. Figure 7.3 displays two arbitrarily chosen ECMWF ensemble predictions of tem-
perature for London, UK and illustrates that the sensitivity of the model atmosphere to
uncertainties in the inputs can be very flow (meteorological-situation or -regime)
dependent. Clearly the ensemble members have much greater spread on one day than
the other. 

This relationship between the ensemble dispersion and the error of the ensemble mean
is sometimes called the spread–skill relationship. It can be quantified by associating the
variance in the ensemble members about their mean with the accuracy of the ensemble
mean itself, for each of a large number of ensemble forecasts. Any of the standard metrics
discussed in Chapter 9, such as the Root-Mean-Square Error (RMSE), can be used to
quantify the accuracy of the ensemble mean. Calibration of the ensemble (see Section 7.5)
is necessary in order to quantitatively relate the spread to the uncertainty. Discussions of
the ensemble spread–error relationship can be found in Grimit and Mass (2007), and in
references cited therein.
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7.3 Sources of uncertainty, and the definition of ensemble members

The list in Section 7.1 provides a brief summary of the sources of forecast uncertainty.
This section will offer additional discussion of this subject, as well as of how the uncer-
tainties can be represented in an ensemble-prediction system. The accepted terminology is

D
eg

re
e 

C

Forecast day

8

16

22

8 10976543210

10
12
14

20
18

26
24

30
28

Control

Analysis

Ensemble

D
eg

re
e 

C

Forecast day

8

16

22

8 10976543210

10
12
14

20
18

26
24

30
28

(a)

(b)

Two ensemble forecasts of 2-m AGL temperature for London, UK, based on ECMWF forecasts separated by 1 year. Note 

the large difference in ensemble spread. Based on Buizza (2001).
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that forecast error can be divided into initial-condition error and model error. The latter
refers to all aspects of the modeling system other than initial conditions. 

There are two general approaches for defining ensemble members. In one, the normal
configuration of a model is used for a control simulation, and then those conditions (ini-
tial conditions or model specifications) are perturbed to create the remainder of the
ensemble members. It is reasonable to assume that the control simulation will be the most
accurate because it has been optimized in terms of the tuning of the model physics
parameterizations and numerics, and has resulted from the generation of an optimal ini-
tial state. The perturbations to this control may be somewhat less skillful. In the other
approach, entirely different models are used for the different members of the ensemble.
These are called multi-model ensembles. 

A number of single-model ensembles, which each employ variations in initial
conditions, model physics, etc., can be combined to produce a multi-model ensemble.
This is referred to as a multi-model superensemble (Krishnamurti et al. 1999, Palmer
et al. 2004). 

7.3.1 Initial-condition uncertainty

We have seen in Chapter 6 that errors in the observations that are used to define model ini-
tial conditions can result from a number of sources. Possible sources include instrument-
calibration errors, improper siting of the instrument, representativeness error, and data-
transmission errors. In addition, the use of a dynamic-balancing method can introduce
errors. Lastly, initial-condition uncertainty cannot be disentangled from the model error
because, as we have seen in Chapter 6, modern data-assimilation systems employ the
model in various ways. For example, sequential data-assimilation systems use a short
model forecast from the previous cycle in order to define the background field for the anal-
ysis process. Thus, errors in any aspect of the model formulation will influence the quality
of the first-guess field, which in turn will impact the initial-condition error, especially
where observations are sparse. Improving the accuracy of the model can thus provide
more-accurate initial conditions. 

It is intuitive that the sensitivity of forecasts to the initial conditions is flow dependent.
Imagine a synoptic-scale situation that is dominated by a large semi-permanent anticy-
clone, for example associated with a Mediterranean-type climate in summer. The forecast
will be relatively insensitive to the details of the initial-condition error because the situa-
tion is dominated by the large-scale planetary forcing associated with the general circula-
tion and the land surface. In contrast, there are situations where the atmosphere is close to
an instability threshold and small initial-condition differences can cause the state of the
model atmosphere to follow either one path or another at the bifurcation.

Initial-condition error could be created by adding to a mean state a random error that is
consistent with the uncertainty in the observations. However, it has been found that sim-
ply adding random numbers to initial conditions will create ensemble members that are
very similar to each other. This should not be surprising, given the discussion in Chapter
6 about geostrophic adjustment. That is, perturbations that are imposed independently on
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the mass and windfield variables on small scales will be dispersed as inertia–gravity
waves. In contrast, the methods that are used in practice in NWP to generate initial-
condition uncertainty in ensembles produce perturbations that have dynamically consist-
ent structures. 

Three different approaches are used to define initial-condition uncertainty in ensembles. 

• Ensemble-based data assimilation is used to define a sample of initial states, as
described in Section 6.11.3. The Kalman filter combines (1) background fields that have
been created with an ensemble of forecasts and (2) observations, with their associated
errors. 

• An approach is based on so-called bred vectors, and samples the dynamically most sen-
sitive modes in the initial conditions. It consists of the following steps.
1. Random perturbations are added to the dependent variables that define an initial state.
2. Both the perturbed and unperturbed states are used as initial conditions for model

simulations with a duration of 6 h to 24 h.
3. The two simulated states are subtracted, and the gridded difference field is scaled so

that its magnitude is similar to the error in a typical analysis.
4. The scaled perturbation is added to a new initial-state estimate, and the perturbed and

unperturbed initial states are again used for a pair of parallel model simulations.
5. This process of perturbation growth and rescaling is repeated, where the bred vector

is the perturbation that results after a few iterations.
The bred patterns are different from day to day, and reflect the features with respect to
which the ensemble members are diverging most rapidly. See Ehrendorfer (1997), Toth
and Kalnay (1993, 1997), and Kalnay (2003) for additional information about the breed-
ing method. 

• Singular vectors (Buizza 1997, Ehrendorfer 1997, Molteni et al. 1996, Ehrendorfer and
Tribbia 1997, Kalnay 2003), also called optimal perturbations, are obtained by using
tangent-linear and adjoint models, and define the fastest-growing patterns for the pre-
vailing weather situation of the day. Linear combinations of these patterns, with the
magnitudes scaled according to the expected analysis uncertainty, are added to a control
analysis to define the ensemble members. 

7.3.2 Lateral-boundary-condition uncertainty for LAM ensembles

For LAMs, the model solution depends strongly on the LBCs, especially for longer inte-
gration times, so errors in the LBCs can contribute significantly to the model error. In a
forecast setting, the LBC-related error in the LAM depends on both the error in the fore-
cast from the large-scale model as well as errors introduced by the algorithm used to cou-
ple the two grids. If the large-scale model is an ensemble, the individual ensemble
members can be used to provide the LBCs for the LAM ensemble members. If the large-
scale forecast is not an ensemble, the LBCs need to be perturbed in such a way that the
process estimates typical errors from the large-scale model. Thus, the time scale, space
scale, and amplitude of the errors need to be estimated, and used in the generation of LAM
ensemble members. 
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7.3.3 Surface-boundary-condition uncertainty

Errors in the calculation of the land-surface properties during a forecast can result from
initial-condition error or model error. 

• The initial conditions for the time-varying land-surface variables are defined by a
LDAS, as described in Chapter 5, and errors in the LDAS calculations can result from
both errors in the LSM that is the basis for the LDAS and errors in the estimates of the
non-time-varying physical properties of the substrate such as the thermal conductivity
and heat capacity of the dry substrate, leaf-area index, etc. Thus, as with the atmospheric
model, land-surface initial-condition error is intertwined with model error.

• Model error is associated with the LSM that is integrated in parallel with the atmos-
pheric model, as described in Chapter 5. As with the atmospheric models, errors can
result from the numerical approximations to the differential equations, as well as from
the parameterizations of the physical processes.

This source of error can be represented by defining uncertainties in the parameterizations
of the processes, in the estimates of the initial conditions of the time-varying physical
properties of the substrate (moisture and temperature profiles), and in the time-invariant
physical properties of the substrate (pore space, specific heat and thermal conductivity of
the dry substrate). Many studies have evaluated the uncertainty in the atmospheric struc-
ture that results from uncertainties in different aspects of the land surface. See Pielke
(2001), Sutton et al. (2006), and Hacker (2010) for references. 

7.3.4 Errors in the numerical algorithms

We have seen in Chapter 3 that numerical approximations to space and time derivatives intro-
duce errors, and they, along with the physical-process parameterizations, contribute to the
model error. Even though these dynamical-core errors are initially largest on the small scales
near the truncation limit of the model, through nonlinear interactions they can affect the scales
of mid-latitude high- and low-pressure systems within a couple of days of model integration.
The typical way to include in an ensemble the uncertainty associated with the particular proper-
ties of the dynamical core is to use entirely different models for different ensemble members.
Ensembles constructed in this way are called multi-model ensembles. Because of the limited
number of models available for this approach, the size of such an ensemble is limited to per-
haps 10 members. A recent approach to including model error in ensembles is the use of sto-
chastic kinetic-energy backscatter methods, which represent upscale propagating energy
caused by unresolved subgrid-scale processes (Shutts 2005, Berner et al. 2009). 

7.3.5 Errors in the physical-process parameterizations

As with the above method for representing model error associated with the dynamical core,
errors related to physical-process parameterizations can also be represented with a multi-model
ensemble. In addition, some modeling systems allow the user to choose from a list of options
for each of the parameterizations. Even though some combinations of parameterizations are
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incompatible with each other, it is possible to create a significant number of ensemble members
simply by varying the parameterizations used with a single dynamical core. And, as we have
seen in Chapter 4 it is possible to vary uncertain parameters within a particular parameteriza-
tion in order to create multiple ensemble members. Alternatively, Buizza et al. (1999) model
random errors associated with physical-process parameterizations by multiplying a dependent-
variable’s time tendency from the parameterization by a random number that is sampled from a
uniform distribution between 0.5 and 1.5. This method increases the ensemble spread and
improves the skill of the probabilistic prediction. See Teixeira and Reynolds (2008) for an addi-
tional example of the use of a stochastic parameterization. Lastly, there are many studies that
compare the use of initial-condition and model-physics uncertainties in ensemble systems (e.g.,
Stensrud et al. 2000, Clark et al. 2008a). 

7.3.6 Multi-model ensembles

The use of multi-model ensembles is appealing when various models are already being
routinely run operationally by different modeling centers for either weather or climate pre-
diction. In these situations, the normally daunting challenge of creating a multi-model
ensemble prediction is simply a matter of reconciling the outputs to a common grid for
quantitative processing. Or, forecasters often view products from all the available models
and qualitatively synthesize the information. 

Regarding the latter approach, it was mentioned earlier that, for decades, forecasters
have related the degree to which forecasts from different models agree to the overall
uncertainty in the products. Fritsch et al. (2000), Woodcock and Engel (2005), and many
others discuss the concept of consensus forecasting, which can involve the synthesis of
forecasts made by humans as well as forecasts from different operational models. 

Multi-model ensembles have been used especially extensively for seasonal prediction
(Feddersen et al. 1999, Rajagopalan et al. 2002, Stefanova and Krishnamurti 2002,
Barnston et al. 2003, Palmer et al. 2004, Robertson et al. 2004, Doblas-Reyes et al. 2005,
Feddersen and Andersen 2005, Hagedorn et al. 2005, Hewitt 2005, Stephenson et al. 2005,
Krishnamurti et al. 2006b), and climate prediction on longer time scales (Section 10.5.4 in
Meehl et al. 2007, Section 16.1.6 in this text).

In its simplest form, a multi-model ensemble forecast can be produced by simply aver-
aging the individual members using equal weights. However, more-complex methods for
combining the model solutions are used, for example as described in Clemen (1989),
Robertson et al. (2004), and Stephenson et al. (2005).

7.4 Interpretation and verification of ensemble forecasts

The ensemble mean and the individual members of the ensemble can be evaluated employ-
ing standard metrics that are also used for deterministic predictions, while other measures
are used for the probabilistic aspects of the forecasts. This section summarizes some of
these methods. Additional information on this subject can be found in Wilks (2006) and
the Appendix of McCollor and Stull (2008a). 
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7.4.1 Ensemble – mean predictions

The predicted ensemble means can be evaluated using any of the conventional accuracy
and skill metrics described in Chapter 9, which focusses on verification of nonprobabilis-
tic model solutions. The accuracy measures include such familiar quantities as bias,
RMSE, and Mean-Absolute Error (MAE). In contrast, the skill score is a way of compar-
ing the accuracy of one forecast method with that of a reference forecast (Eq. 9.3). If the
accuracy is no better than that of the reference forecast, the skill score is zero. This is rele-
vant to ensemble prediction because a deterministic forecast can be used as the reference,
and its accuracy can be compared with that of the ensemble mean. Lu et al. (2007) use the
skill score in a comparison of the mean-absolute error of a time-lagged ensemble forecast
(Section 7.6) with that of a deterministic counterpart. 

The Taylor diagram (Taylor 2001) is used in atmospheric science to graphically sum-
marize how well statistical properties of observed and forecast patterns match. Because it
is easy to plot the statistical properties of multiple forecasts on the same diagram, it is
used to display the performance of individual ensemble members as well as the ensemble
mean. Figure 7.4 shows the form of the diagram, where the radial distance from the ori-
gin is proportional to the standard deviation of a pattern (of a forecast variable, in this
application), and the azimuthal position is related to the correlation of the pattern with a
reference field (the verification field). Plotted on these diagrams are points associated
with the forecast fields, and a point corresponding to the analyzed field (open circle),
where the latter has a correlation coefficient of 1.0 because it is perfectly correlated with
itself. 

In this example from Delle Monache et al. (2006a), the ensemble modeling system con-
sists of coupled meteorological and air-quality models, and the forecast variable being
plotted is ozone concentration. The numbers correspond to indices of forecasts of individ-
ual ensemble members, and the open square represents the ensemble mean. The objective
is to graphically quantify the relationship between the forecast and verification ozone
fields in terms of the two noted statistical metrics. Taylor (2001) shows how the forecast’s
Centered RMSE (CRMSE, the RMSE after the bias has been removed) can be plotted as
well (the dashed line), because of its mathematical relationship to the original two statisti-
cal measures (the graph coordinates). The CRMSE is the distance between the two points
that represent a forecast and the analysis, where the closeness of the two points is propor-
tional to the accuracy of the ensemble member. In this case, the CRMSE coordinate asso-
ciated with the ensemble mean ozone concentration is plotted. This CRMSE of the
ensemble mean is smaller than the CRMSE of any of the ensemble members. Note that the
bias of an ensemble must be represented separately, because the Taylor diagram shows the
CRMSE, not the RMSE.

7.4.2 Probabilistic predictions

The following approaches are traditional ones used to evaluate the statistical properties of
ensemble predictions. 
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Reliability diagrams

Reliability is an important attribute of ensemble forecasts of dichotomous events – ones
that either occur or do not occur at a grid point or over an area – and reliability graphs are
a device for easily visualizing the quality of probabilistic forecasts. Such discrete events
include the existence of temperatures below freezing, or 3-h accumulated rainfall above a
threshold value. Consider a set of ensemble forecasts of event E that are performed during
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a period of time, where, for each forecast, E is predicted to occur with probability p, for
. For the subset of the ensemble forecasts for which the forecast probability

of occurrence is , the observed frequency of occurrence is calculated to be . For a
perfect forecasting system, . Figure 7.5 shows characteristic forms of the reliabil-
ity graph (also called an attributes diagram or calibration function). Figures 7.5a and b
illustrate unconditional biases, where the ensemble overpredicts (a) and underpredicts (b)
the probability for all situations; that is, the sign of the bias is the same for all forecasts.
Figure 7.5c shows a situation where the probabilities are predicted reasonably well in all
situations. The plots in Figs. 7.5d and e show conditional biases in the model prediction of
the event probabilities. In the former case, the model underpredicts the probability for
low-probability situations and overpredicts it for high-probability situations. Here, it is
said that the model forecasts have poor resolution (in a statistical sense). That is, the
observed probability is similar over the full range of predicted probabilities. In contrast, in
Fig. 7.5e there is good resolution because forecasts are able to identify situations with a
variety of different probabilities, even though of course the forecasts are conditionally
biased. See Wilks (2006) for additional discussion of this subject. 

As an illustration of an actual reliability graph, Fig. 7.6 pertains to an ensemble of sea-
sonal predictions, where the event is above-average 2-m temperature for the period Febru-
ary through April in the tropics. The panel on the left (a) is based on an ensemble that used
a single model, where the ensemble was created by perturbing the atmosphere and ocean
initial conditions. A number of other single-model-ensemble seasonal simulations were
created, and all had reliability diagrams with a similar conditional bias. But, when the sin-
gle models were combined into a multi-model superensemble, a considerably improved
reliability resulted (b). This ensemble modeling was part of the Development of a
European Multi-model Ensemble system for seasonal to inTERannual prediction
(DEMETER), and employed models from seven institutions in Europe. See Chapter 16 for
more information. 
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Rank histograms 

Rank histograms, or verification rank histograms or Talagrand diagrams, are used to dis-
play the relationship between observations and forecasts from individual ensemble mem-
bers. That is, they define the bias of probabilistic predictions. For a specific variable and
the location of an observation, take an ensemble forecast of that variable at that location,
and rank-order the forecasts from each of the members. Then define the intervals
bounded by the n ordered forecast values. Figure 7.7 shows an example schematic with
four ensemble members and five intervals, for a forecast variable P. For this location, and
at time , the observed P (X obs) is lower than any of the forecast Ps, and the
observation is thus in interval . If we follow a similar process for all other pairs of
observations and forecasts at this time, we can calculate the total number of observations
in each of the five intervals, or ranks, and plot a histogram of the frequency. This will pro-
vide a graphical view of how the ensemble of forecasts relates to the observations. A non-
uniformity in the histogram’s distribution will reveal systematic errors in the ensemble.
Figure 7.8 shows four problems with an ensemble, which can be defined with rank histo-
grams. In this hypothetical eight-member ensemble, the rank histogram has nine ranks, or
intervals. In panels (a) and (b), many of the observations fall near the edge of the distribu-
tion of forecasts in the ensemble, or outside of the distribution entirely, corresponding to
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an overforecasting bias and an underforecasting bias, respectively. For example, in the sit-
uation depicted in panel (a), the most common situation was for all the ensemble members
to forecast a value larger than the observation. Panel (c) shows a desirable rank-uniform
distribution where observations are equally likely to fall anywhere within the distribution
of ensemble members. In panel (d), many observations fall outside of, or near the edge of,
the range of the forecasts from the ensemble members. Because the histogram is symmet-
ric, there is no bias. In this case, the ensemble spread is too small, or in other words the
ensemble is underdispersive. This situation is common, where the ensemble fails to always
encompass the observations. Stated another way, the spread in the ensemble is less than
the difference between forecasts and the validating analysis. The opposite situation is indi-
cated in panel (e) where the ensemble is overdispersive. The ordinate can also be plotted as
a probability, where the probability for each rank is defined by dividing the total number of
times the verification occurred in the rank (the frequency) by the total number of forecast–
observation pairs. These types of diagrams are further discussed in Anderson (1996), Tala-
grand et al. (1997), Hamill and Colucci (1997, 1998), Hamill (2001), and Wilks (2006).

Time t forecast

P
4

3

2

1

I4

I3

I1

I2

x obs

I5

Schematic illustrating how a rank histogram is constructed. The trajectories show the time evolution of a forecasted 

variable P at the location of an observation, from a four-member ensemble. The values of P at the forecast time define 

the intervals (I) against which an observation of P (X obs) is compared. Each observation of P is assigned to one interval 

in the rank (even though the P values of the intervals will be a function of the observation location), and the resulting 

fractions of the total observations that fall into each rank are plotted in the histogram.

Fig. 7.7



7.4 Interpretation and verification of ensemble forecasts267

Relative Operating Characteristic (ROC) diagrams

The ROC diagram, used to evaluate probability forecasts of binary predictands, has the
false-alarm rate (F ) as the abscissa and the hit rate (H) as the ordinate, where F and H
are defined in Section 9.2.2. Such a forecast might be whether the daily precipitation
amount exceeds 1 cm, or whether the maximum daily temperature exceeds 30 °C.
Wilks (2006) describes how to convert probabilistic forecasts, in this case from ensem-
ble systems, into 2 × 2 contingency tables from which F and H can be calculated. The
pairs of F and H are used to define points on the diagram, and along with the (0.0, 0.0)
and (1.0, 1.0) points represent a curve. Better forecasts have a low F and a high H, so
more-accurate ones have points in the upper-left. The area under the curve has a maxi-
mum possible value of unity, corresponding to a perfect forecast. The diagonal corre-
sponds to an unskilled forecast, and the associated area would be 0.5. Forecasts with
ROC areas of ~0.75 or higher are considered to be good. Figure 7.9 shows an example
ROC curve.

Brier scores and Brier skill scores

The Brier Skill Score (BSS, Jollife and Stephenson 2003, Wilks 2006) is based on the Brier
Score (BS), which assesses the accuracy of probabilistic predictions. The BS is defined as 

,

and calculates the average squared difference between forecast probabilities ( ) and
observational outcomes ( ), for n forecast-event pairs, where o is zero if the event does
not occur and unity if it does occur. This expression is completely analogous to that pre-
sented in Section 9.2.1 for the Mean-Square Error (MSE) that is used for nonprobabilistic
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predictions. The BS ranges from zero to one, with lower values indicating better forecasts.
The BSS is defined as

(7.2)

where . The BSS is unity for a perfect forecast, and zero or negative for
unskillful forecasts relative to the reference forecast. 
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Rank probability skill score

The Rank Probability Score (RPS) describes the quality of categorical probabilistic fore-
casts for any number of event categories. The BS can be regarded as the special case of an
RPS with two forecast categories. The Rank Probability Skill Score (RPSS) is defined
analogous to Eq. 7.2, where the RPSref is based on the climatological probabilities. See
Wilks (2006) for the mathematical definition of the RPS and Weigel et al. (2007) for a
comparison of the RPSS and BSS. An example of the use of the RPSS is found in the next
section.

7.5 Calibration of ensembles

The calibration of ensemble forecasts of weather and climate is a post-processing step that
removes the bias from the first moment (the ensemble mean) and possibly the higher
moments. This is necessary in order to:

• provide greater accuracy in the ensemble mean,
• provide improved estimates of the probabilities of extreme events, and
• represent ensemble spread in terms of quantitative measures of the uncertainty in the

forecast of the ensemble mean. 

Figure 7.10 illustrates the calibration process in terms of its influence on the PDF. Both the
mean and the spread of the distribution have been adjusted in the process.

Like many other statistical corrections that are applied to model output to remove sys-
tematic errors, a history of high-quality observations and ensemble forecasts is required to
calibrate the operational forecasts. Historical, archived operational ensemble forecasts are
not ideal for this purpose because models are continually being updated, and thus the
required calibration changes as well. Ideally, reforecasts that use the current version of the
ensemble system to recreate forecasts for a significant historical period should be used for
the calibration. Discussion of ensemble reforecasts can be found in Hamill et al. (2004).
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There are several ensemble-calibration techniques. Hamill and Colucci (1997, 1998)
employ the information in the verification rank histogram to interpret and correct the
ensemble forecasts. It is important to note that a calibration performs better when it is
done for as specific a set of conditions as possible. For example, calibrations can be
dependent on weather-regime, forecast lead-time, geographic-area, season, etc. Also, sepa-
rate calibrations are sometimes performed for different amounts of ensemble spread, for
example as quantified by the standard deviation of the ensemble members. That is, the
ensemble forecasts are divided into different bins based on their standard deviation, and
separate rank histograms and calibrations are constructed for each group. 

Eckel and Walters (1998) used a subset of a long history of Medium-Range Forecast
model (MRF) ensemble predictions as a training data set with which they calibrated that
model. They then used a complementary period for forecast verification. Both uncali-
brated and calibrated forecasts were verified using the RPSS, which employed climatology
as the reference forecast, to assess the benefit of the calibration of the MRF-ensemble
Quantitative Precipitation Forecasts (QPF). Figure 7.11 shows the RPSS, based on cali-
brated and uncalibrated two-week forecasts. In one approach, the forecasts were calibrated
using the “weighted ranks” method of Hamill and Colucci (1997, 1998). In another, an
uncalibrated “democratic voting” method was used, where each ensemble member gets an
equal vote regarding the occurrence of precipitation above some threshold. In the uncali-
brated approach, the total number of ensemble members for which the precipitation
exceeds the threshold, divided by the number of ensemble members, defines the probabil-
ity. The skill score for a climatology-based forecast is zero, so positive scores beat clima-
tology while negative ones do not. In this case, calibration of the forecasts extended the
predictability by about one day. Other examples of the many calibration methods available
are found in Bremnes (2004), Doblas-Reyes et al. (2005), Raftery et al. (2005), Roulston
(2005), and Weigel et al. (2009). Weigel et al. (2009) address the issue of whether cali-
brated single-model ensembles are superior to multi-model ensembles. 
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7.6 Time-lagged ensembles

Because contemporary forecasting systems typically involve the use of a production cycle
in which new forecasts are initiated every 1 h to every 12 h, multiple forecasts are availa-
ble for the same times when forecasts overlap. Figure 7.12 illustrates the concept. In the
top example of a time-lagged ensemble, forecasts are initiated every 6 h as part of a nor-
mal deterministic operational system. These forecasts can be combined to form an ensem-
ble, say for the time in the future corresponding to the dotted line. Only the initial
conditions are different in this ensemble – different by an amount equal to the changes in
the initial states between the 6-h initialization times. The bottom half of the diagram
depicts the traditional approach for creating an ensemble, where multiple forecasts are ini-
tialized at the same time using different initial conditions or model configurations. The
time-lagged ensemble can be created at no additional cost because the forecasts are part of
a normal forecasting system, in contrast to the traditional ensemble approach where multi-
ple forecasts are performed from the same initial time. 

This approach was first proposed and evaluated by Hoffman and Kalnay (1983) and
Dalcher et al. (1988). Lu et al. (2007) employ the RUC model with a 1-h update cycle in
tests of very-short-range (1–3 h), time-lagged ensemble forecasts, where two approaches
were used to create the ensemble mean. In one, the forecast values from each of the
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t forecast
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Schematic showing forecasts in time-lagged (top) and traditional (bottom) approaches to ensemble prediction. See 

text for details.
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ensemble members were equally weighted. In the other, different weights were used for the
different time-lagged forecasts. Even though both methods provided improved forecasts
relative to the deterministic-system products, the method with unequal weights was supe-
rior. Yuan et al. (2009) describe the verification of a multi-model time-lagged forecast sys-
tem that employed the WRF and MM5 models running on a 1-h cycle. Because the cycle
frequency was so high, a large number of forecasts were valid at the same time and thus it
was possible to utilize a large ensemble. The ensemble-mean QPF had greater skill than
did the forecasts from the deterministic NAM model running at the same horizontal grid
increment (12 km), but other aspects of the verification were less positive. In Yuan et al.
(2008) a larger time-lagged multi-model ensemble, based on MM5, WRF, and RAMS with
a 3-km grid increment, was tested for hydrological applications. They concluded that such
time-lagged ensemble systems can provide valuable ensemble-mean QPFs and probabilis-
tic QPFs for water-management applications. For longer-range global-model forecasting,
Buizza (2008) compared the performance of the 51-member low-resolution (T399L62)
ECMWF traditional ensemble system with that of a higher-resolution (T799L91) 6-mem-
ber lagged ensemble, for a 7-month period. The cycle frequency was 12 h, and the initiali-
zation times of the lagged forecasts spanned 60 h. The 51-member ensemble was superior
to the lagged ensemble in terms of probabilistic measures, but the ensemble-member-
weighted lagged ensemble had similar skill in predicting the ensemble mean out to fore-
cast-day 4. Lastly, Delle Monache et al. (2006a) describe encouraging results from the use
of an 18-member lagged-ensemble system for air-quality applications. Additional discus-
sion of the lagged-ensemble method is found in Mittermaier (2007). 

The relationship between forecast uncertainty and the spread of time-lagged ensemble
members has a foundation in the way that forecasters have used operational models for
decades. When consecutive forecasts from a series of forecasts in a cycle predict the same
outcome at a particular verification time, the forecasters are confident in the model solu-
tion. On the other hand, models occasionally signal uncertainty by producing different out-
comes in consecutive forecasts in the cycle. This results in the forecasters having less
confidence in the products.

7.7 Limited-area, short-range ensemble forecasting

Mesoscale ensemble modeling with LAMs is becoming more prevalent in the research and
operational communities. As noted earlier in Section 7.3.2, the existence of LBCs affects
the error that must be sampled in the generation of the ensemble. Because the limited-area
ensemble systems are used for producing shorter-range forecasts than are the global
ensemble models, the process is often referred to as Short-Range Ensemble Forecasting
(SREF). Eckel and Mass (2005) provide a summary of challenges posed by SREF, com-
pared to medium- and longer-range ensemble forecasting with global models. 

• Near-surface variables exhibiting fine-scale structures are important forecast quantities,
but they are less predictable and their errors may saturate for short forecast lead times,
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thus limiting the use of an ensemble. Error saturation means that the forecast has no
skill in the sense that it is completely uncorrelated with the verification field (see
Fig. 8.1, and related discussion). 

• Model error is poorly understood and difficult to quantify, and has a larger impact on
near-surface variables for short-range forecasts (Stensrud et al. 2000).

• Methods for generating optimal initial-condition perturbations (e.g., the breeding
method) were developed for the medium range, where nonlinear error growth generates
a large spread of solutions. It is unclear how to generate initial-condition perturbations
for SREFs, where error growth is initially linear (Gilmour et al. 2001).

• The use of LAMs may result in insufficient ensemble dispersion, even when the LBCs
are perturbed (Nutter 2003).

• Very-high resolution may be needed in order to capture variability at small scales.

For additional examples of mesoscale ensemble prediction with LAMs, see Marsigli et al.
(2005) and Holt et al. (2009). 

7.8 Graphically displaying ensemble-model products

Probabilistic forecast information must be displayed in ways that are meaningful to both
model developers as well as to the ultimate users of the forecast information. Even though
the needs of those two groups, in terms of appropriate graphical products, are somewhat
different, there is the commonality that more creativity is required than for the display of
the state variables themselves. The following subsections review some of the common
types of displays.

7.8.1 Spaghetti plots

One of the greatest challenges in interpreting the spread among ensemble members is
graphically synthesizing the vast amount of information in an easily interpretable way. The
use of small individual maps that show a particular variable field from each of the ensem-
ble members is one approach (see Fritsch et al. 2000, Legg et al. 2002, Palmer 2002, and
Buizza 2008 for examples). However, these “stamp maps” are small and can be difficult to
interpret when details are important. An alternative is to define a meteorologically impor-
tant and graphically simple aspect of the variable field, and display that for each of the
ensemble members in the same image. Figure 7.13 shows an example of this approach that
uses a single contour (5520 m) of the 500-hPa height field. Even though the entire field
cannot be visualized, the shape and position of this contour reveal how the pattern evolves
with time, and more importantly how it differs among the 17 ensemble members in this
case. At the 12-h lead time (a), some of the ensemble members are beginning to produce a
trough over central Canada, although they are all in good agreement elsewhere. Thus,
except in the region of this trough the forecast would be interpreted with confidence. By
36 h (b), this trough development has continued in some of the members, leading to a
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growing degree of uncertainty about the solution in this area. The control simulation (dot-
ted line) shows no evidence of the trough, even though the verifying analysis (heavy solid
line) indicates a large-amplitude feature. At the 84-h lead time (c), all members tend to
agree with respect to the location and amplitude of the trough in the East Pacific, but over
the continent and West Atlantic there is much scatter among all the members and much
reason to be suspicious about the forecast accuracy. 

(a)

(b)

(c)

Spaghetti plots of the 5520-m contour of the 500-hPa height field over North America, based on an ensemble forecast 

by NCEP, where 12 h (a), 36 h (b), and 84 h (c) lead times are shown. The light solid lines are the contours associated 

with each of the 17 ensemble members, the heavy solid lines in panels (b) and (c) are based on the verifying analyses, 

and the dotted lines show the control forecast. From Toth et al. (1997). 

Fig. 7.13
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7.8.2 Meteograms, or box plots

Ensemble forecasts of a single variable at a single location (or an average over an area)
can be displayed, where the value of the variable is plotted as a function of time for each
ensemble member. The spread of the members and the mean can easily be visualized as a
function of forecast lead time. The ultimate user of the forecasts (not the forecaster) often
has a particular variable of concern (e.g., precipitation rate) and a specific location (e.g., a
city or watershed), so this type of plot makes more sense than a more-complicated map-
ping for a large area. An example of this type of display is shown in Fig. 7.14, in the form
of plots of an ensemble of 6-month forecasts of El Niño SST anomalies for the NINO3
region in the eastern Pacific, based on an ECMWF coupled ocean–atmosphere model.
The model solutions progressively diverge throughout the simulation period. Figure 7.3,
shown previously, is another example of such a display, for near-surface temperature in
London, UK.
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7.8.3 Probability-of-exceedance plots

The PDF from properly calibrated ensemble forecasts can be interpreted in terms of the
probability of an event occurring at a particular grid point. For example, 30 ensemble mem-
bers will produce an equal number of estimates of the wind speed at a grid point at a partic-
ular forecast lead time. The number of members for which the speed exceeds a certain
threshold can be used to define the probability that the speed will be exceeded at that point
(this is the uncalibrated democratic voting method defined in Section 7.6). The resulting
gridded field of probabilities can be contoured. An example of this type of plot is shown in
Fig. 7.15. Based on a 50-member ECMWF ensemble, the map shows the probability that
wind gusts will exceed 50 m s−1 at the 42-h lead time of a forecast of a severe synoptic-
scale storm that devastated parts of Europe on 26 December 1999. Similar exceedance plots
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The probability (percentage) that wind gusts will exceed 50 m s−1 at the 42-h lead time of a forecast of a severe 

synoptic-scale storm that devastated parts of Europe on 26 December 1999. This is based on a 50-member ECMWF 

ensemble. Adapted from Palmer (2002).

Fig. 7.15



7.8 Graphically displaying ensemble-model products277

are used widely, where Delle Monache et al. (2006c) contains other examples. These types
of products could, of course, be based on a PDF that has been adjusted through calibration.

7.8.4 Plots of some metric of ensemble variance

A number of measures are available for reflecting, in a single number, the spread of an
ensemble, averaged over a model computational domain or defined at a point. For exam-
ple, variance can be plotted as a function of forecast lead time in order to represent the
spread of the ensemble as a function of time. Figure 7.16 is an example of this type of plot,
and shows the variance in the 850-hPa specific humidity as a function of forecast lead time
for a 19-member physics ensemble and a 19-member initial-condition ensemble that were
run with MM5 for the same case of a long-lived mesoscale convective system.
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7.8.5 Ensemble plots from coupled special-applications models

Special-applications models that use atmospheric model output fields will be discussed in
Chapter 14. This section shows example displays of variables produced by the secondary
models that have used ensemble products from atmospheric models as input. For example,
gridded ensemble forecasts or simulations may be used as input to air-quality models or
plume-dispersion models that calculate the transport of gases or aerosols released into the
atmosphere. Figure 7.17 illustrates stamp maps of dosages from plumes of gas whose
transport and diffusion have been calculated using the Second-order Closure Integrated
PUFF (SCIPUFF) plume model (Sykes et al. 1993), which has employed gridded meteor-
ological products from a 12-member ensemble that is based on the MM5 regional model.
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The dosages show considerable sensitivity to the input from the meteorological ensemble.
Also shown (Fig. 7.18) is a probability-of-exceedance plot that is based on the dosages in
Fig. 7.17.

Atmospheric-model forecasts are also routinely used for estimating the future (e.g., next
day) demand for electricity. The near-surface temperature, cloud cover, etc., are used as
input to energy-demand models, and forecasts of the demand are plotted as a function of
forecast lead time. When ensemble atmospheric models are employed, stochastic energy-
demand products are produced, which can be plotted as lines on a meteogram or in the
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form of the “electricity-gram” in Fig. 7.19. Here, forecasted average-daily demand for
England and Wales is plotted in terms of the total range of the predictions and the range of
the middle 50% of the demand forecasts.

7.9 Economic benefits of ensemble predictions

One of the stated motivations for performing ensemble predictions is that the probabilistic
information can have greater value for making decisions than would the output from a
deterministic prediction. Such value can be defined in the context of societal, environmen-
tal, or economic impacts, even though the economic benefits are more easy to quantify.
Unfortunately, the skill and dispersion measures for the forecasts, discussed above, do not
provide direct information about the value of the forecast information. This value, in fact,
is dependent on the weather sensitivity and decision-making process of a forecast user
group. 

There are different frameworks for assessing value, where one of the most common is
the cost–loss model. Given an uncertain prediction of whether an event will or will not
occur, a decision maker has the option of choosing to either protect against the occurrence
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of the weather event or not protect against it. This is the simplest decision problem because
there are only two possible actions (protect, not protect) and two possible outcomes (the
event occurs, the event does not occur). Examples of the many potential events of eco-
nomic consequence include sub-freezing temperatures that can damage agricultural crops,
daily precipitation in excess of an amount that can produce flooding, heavy snowfall that
can impact highway or air travel, or damaging wind speeds. A decision to protect against
the event will incur a cost (C), whether or not the event actually occurs. A decision to not
protect will result in a loss (L) if the event occurs. Figure 7.20 summarizes the cost–loss
consequences of the different outcomes.

It is assumed that probabilistic forecasts for the dichotomous weather event are availa-
ble, and, if their quality is sufficiently good, decisions with better economic outcomes will
be possible. Assume that a calibrated ensemble forecast predicts that the probability of an
event occurring is p. The optimal decision about whether to protect or not to protect will
be the one yielding the smallest expected expense. If the decision is made to protect,
the expense will be C with a probability of 1.0. If no protective action is taken, the
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probability-weighted expense will be pL. Therefore, protecting against the risk will result
in the smallest expense whenever

, 

or

.

Thus, protecting against an event is the optimal action when the predicted probability of its
occurrence is more than the ratio of the cost to the loss. If the predicted probability is less
than the cost/loss ratio, not protecting is the least-expensive action. Because the costs and
losses are very strongly dependent on the particular situation, the threshold for protection
will differ. The above discussion is only applicable if , because otherwise the protec-
tive action could not result in a gain. 
 The economic value (V) of forecasts can be defined using an expression that is similar to
that employed for skill scores for meteorological forecasts. Where E is an expected expense,

.

The quantity  is a default that represents the minimum of the expenses resulting
from always protecting or never protecting. Always protecting incurs a constant cost, C,
while never protecting results in losses , where  is the climatological probability of
the event occurring. With perfect forecasts, the protective action would only take place
when the event was going to occur, so . See Wilks (2006) and McCollor
and Stull (2008b) for a complete discussion of the calculation of this value score. 

The cost–loss decision model has been frequently applied to assess the economic bene-
fits of ensemble prediction, for many specific applications that require decisions. These
applications include hydroelectric reservoir operations (McCollor and Stull 2008a,b),
medium-range flood prediction (Roulin 2007), temperature forecasts for the energy sector
(Stensrud and Yussouf 2003), precipitation predictions (Mullen and Buizza 2002, Yuan
et al. 2005), severe-weather forecasts (Legg and Mylne 2004), and air-quality prediction
(Pagowski and Grell 2006). Additional discussion of the economic value of ensemble pre-
dictions is found in Richardson (2000, 2001). 
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PROBLEMS AND EXERCISES 

1. Choose a nonlinear function and demonstrate the correctness of the inequality in
Eq. 7.1.

2. Given that we know from Chapter 9 that smoother forecasts verify better with conven-
tional statistics (e.g., RMSE, MAE), and that the ensemble mean must be smoother
than the solution from individual members, is it true that the smoothness of the ensem-
ble mean contributes to its superior performance?

3. Access the web site of an operational ensemble prediction system and observe how the
spread of the ensemble members varies from day to day, both within the same forecast
and from one forecast to another in the cycle.

4. When ensemble modeling systems are coupled with special-application models, such
as discussed in Section 7.8.5, describe how the system might be calibrated in terms of
the variables predicted by the coupled model rather than the meteorological variables.
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8.1 Background

The term atmospheric predictability may be defined as the time required for solutions from
two models that are initialized with slightly different initial conditions to diverge to the point
where the objective (e.g., RMS) difference is the same as that between two randomly chosen
observed states of the atmosphere. In the practical context of a forecast, the no-skill limit
that defines the predictability may be the forecast lead time when the model-simulated state
has no greater resemblance to the observed state of the atmosphere than does a reference
forecast based on persistence or climatology. Many of the other chapters in this text address
the various components of the modeling process that limit predictability, from data-
assimilation systems to numerical methods to physical-process parameterizations, as well as
metrics for quantifying it. This chapter will review the general concept of theoretical and
practical limits to forecasting skill.

8.2 Model error and initial-condition error

As shown in the previous chapter, error that limits predictability originates in both the
model and the initial conditions. Refer to Section 7.3 for more information, especially
about the various sources of error associated with the model. Often the concept of predict-
ability is discussed in the context of the system’s response to infinitesimally small pertur-
bations in the model initial conditions. This predictability is an inherent property of the
fluid system and not of the model. Indeed, it is sometimes assumed in this hypothetical dis-
cussion that the model is perfect. In contrast, the term predictability is most-often used in
the literature in a very practical sense to refer to the average length of useful forecasts that
are obtainable from a particular operational modeling system, where all the sources of
uncertainty in the modeling process contribute to error growth. For example, the impact of
a particular new data source, or data-assimilation system, or parameterization will be eval-
uated in terms of its effect on the predictability of a particular variable. 

Lorenz (1963a,b) describes simple modeling experiments that served as the foundation
for later studies on the inherent predictability of the atmosphere. Using a form of identical-
twin experiment (see Section 10.2), he initialized the same model with initial conditions
that differed only very slightly, in the digit a few places to the left of the decimal point. He
found that, after a few weeks of simulated time the two model solutions differed by as much

8 Predictability
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as two random solutions. Many modelers have unintentionally replicated this experiment
with contemporary models by changing computer compilers, or compiler optimizations, in
the middle of a series of controlled, long-running simulations. Different compilers often
perform arithmetic operations in an equation in a different order, which leads to different
roundoff or truncation errors. Even if modeling-system configurations (initial conditions
and physics) are identical, the subtle compiler-introduced differences in the model solutions
can amplify to define the same type of predictability time limit that Lorenz observed. This
growth of small perturbations in the atmosphere (or the model atmosphere), regardless of
the source, led Lorenz to refer to the possibility that the flutter of a butterfly’s wings could,
after passage of significant time, influence the large-scale weather.

A more-contemporary identical-twin experiment is shown in Fig. 8.1, and illustrates
error growth from small initial-condition perturbations. Here, the same atmospheric GCM
is used for a control simulation, and for a perturbation simulation in which the initial
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conditions were slightly different. For the perturbation simulation, the initial conditions
were perturbed according to the following method,

,

where A is a model dependent variable, and r is a random variable that ranges from −1 to 1.
This perturbation was applied independently at each grid point to temperature (K), both
horizontal wind components, specific humidity, and surface pressure. The area-average
difference in a variable between the control and perturbation experiments defines an error,
and the square of this error is the error variance that is plotted in the figure. Specifically,
the error variance in the u velocity component is illustrated as a function of integration
time. There is an induction period of 10–15 days during which the error grows very slowly,
for the next 20 days it grows rapidly and approximately linearly, and then it reaches a satu-
ration level where the two simulated fields are uncorrelated. 

The relative contributions of model error and initial-condition error to the total forecast
error, and therefore to the predictability, are not well understood nor are they easy to indi-
vidually quantify. One approach is to define the growth in the total error through a com-
parison of the forecast with observations, or analyses of observations. Then, initial-
condition-related error growth is estimated by calculating the difference between two fore-
casts that are initialized from slightly different initial times, for the same integration
period. This is illustrated in Fig. 8.2 for the ECMWF ensemble-prediction system. The
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upper curve corresponds to the total model error, and the lower one is based on the growth
of differences in the initial conditions of forecasts whose initialization times differed by
12 h. In this example, the initial-condition error is a large fraction of the total error. 

8.3 Land-surface forcing’s impact on predictability

The existence of the diurnally and seasonally varying solar forcing of Earth’s surface and
atmosphere causes processes that are tied to this cycle. Thus, correctly defining this forc-
ing in the model will produce circulations and structures that are seasonally and diurnally
dominant, without the processes necessarily being well observed in model initial condi-
tions. Examples of diurnally varying phenomena that require thermal forcing are some
low-level jets, sea breezes, mountain-valley breezes, urban heat-island circulations, and a
variety of moist-convective processes. Figure 8.3 illustrates the near-surface u wind com-
ponent observed over three diurnal periods near the slope of a north–south-oriented moun-
tain range. If a model resolves the orography and represents the diurnal heating and
cooling cycle reasonably well, these reoccurring winds, which are a dominant local fea-
ture, should be predictable, especially for weak synoptic-scale regimes. On seasonal time
scales there are monsoons, the migration of the Hadley circulation and associated precipi-
tation and trade winds, and the subtropical high-pressure systems whose seasonal migra-
tion with the Sun produces the Mediterranean-type climates described later. Getting the
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solar forcing prescribed correctly in a model, and using a good LSM to translate this
energy source into appropriate sensible-heating patterns at the lower boundary of the
atmosphere, will positively impact predictability. 

8.4 Causes of predictability variations

There are numerous dependencies of the predictability of models (and the skill of human
forecasters) on the geographic region, the local climatology, the season, the weather-
regime, the time scale of a phenomenon, and the dependent variable. The following
sections discuss a few examples.

8.4.1 Regional and climatological variability

Because of the planetary-scale circulation of the atmosphere, there are some regions for
which the weather patterns on both large scales and mesoscales vary little from day to day,
so the weather is relatively easy to anticipate using even simple tools like diurnal persist-
ence. For example, when the trade winds prevail in a tropical region the wind speed and
direction tend to be very regular when they are not interrupted by convective events. Again
for the tropics, if a location is near a coastline, the diurnal variation of the winds associ-
ated with a sea-breeze circulation, as they are superimposed on the trade winds, is very
predictable. And, the development of cloud and precipitation associated with the inland
penetration of the sea-breeze front are regular parts of the local climatology and easy to
anticipate as well. Lastly, there are some climates that are so dominated by the planetary
circulation that their weather is virtually identical every day of the year. For example, there
is a large area of northeastern Africa that experiences cloudiness less than 2% of the time.

8.4.2 Seasonal variability

For some regions that are seasonally influenced by subtropical high-pressure centers, half
the year is dominated by subsidence from the Hadley circulation. During those months,
days are generally cloud free, with no precipitation or other disturbances. Again, simple
forecasting methods such as diurnal persistence are difficult to improve upon. During the
rest of the year, when the latitudinal positions of the subtropical high-pressure centers and
the storm track are different, the region can be dominated by synoptic-scale storms that are
challenging to predict. Regions having seasonal variability in the predictability of their
weather, with cloud-free warm-season months and cyclones in the cold season, include the
Mediterranean Sea and the west coast of North America. 

8.4.3 Weather-regime dependence

Predictability varies by weather regime, and on longer time scales, for reasons that are
sometimes understood, and sometimes not well understood. The existence of the longer
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time-scale trends suggests that the predictability variation is not random, and may be asso-
ciated with low-frequency variability or oscillations. Of course, one of the benefits of
ensemble prediction is that we are provided with information about predictability on a
day-to-day, or regime-to-regime, basis. It is simply pointed out here that this predictability
can vary significantly in an organized way over relatively long time-scale shifts in weather
regimes. As an illustration, Fig. 8.4 is of the Northern Hemisphere anomaly correlation
(see Chapter 9 for a discussion of this verification metric) between 108, 15-day global-
model forecasts and corresponding analyses of observations, for approximately a 3-month
period. Clearly the predictability varies on time scales of a few weeks to a month. The
plots in Fig. 7.3, showing the great difference in the ensemble dispersion of two forecasts
one year apart, could be illustrating a regime dependence, or some variation on shorter
time scales. Various studies have formally documented the relationship between predicta-
bility and the existence of various types of flow patterns and low-frequency variability. For
example, Tracton (1990) states that a strong association exists between atmospheric pre-
dictability and the existence of blocking events in midlatitudes.1 The onset of a blocking
pattern results in a dramatic drop in predictability, and the collapse of the blocking

1 Blocking refers to a situation where there is an obstruction to the west-to-east progress of migratory cyclones
and anticyclones in midlatitudes. This situation is normally associated with upper-tropospheric closed anticy-
clonic circulations at high latitudes and cyclonic circulations at low latitudes. It may be viewed as an
extreme-amplitude pattern of the ridges and troughs that normally prevail in the westerlies. This anomalous
circulation remains stationary or moves slightly to the west, and can persist for weeks.
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situation leads to a recovery in the predictability. In general, when and where there exist
states of the atmosphere that are close to an instability threshold, whether it be baroclinic
instability or some type of convective instability, the predictability is less because small
perturbations that are poorly observed or poorly resolved by the model can cause the sys-
tem to take alternative trajectories in phase space. 

8.4.4 Phenomenon time-scale dependence

As described in Chapter 9, it is illustrative to consider model predictability in the context of
three time-scale regimes: periods longer than diurnal (super-diurnal), periods that are
approximately diurnal, and periods that are shorter than diurnal (sub-diurnal). Meteorologi-
cal features with longer-than-diurnal periods are generally associated with synoptic-scale or
planetary-scale processes, and are therefore reasonably predictable by global or regional
models. Diurnal time-scale motions of course are related in some way to the heating cycle.
In the wind field, a diurnal signal could be related to stability-related vertical momentum
mixing, mountain-valley circulations, coastal circulations, etc. Provided that the model rea-
sonably represents the land-surface and boundary-layer processes, features with these time
scales should be reasonably predictable. Motions with sub-diurnal time scales include mes-
oscale features or circulations that are not thermally forced by the diurnal heating cycle.
They can result from orographic or other landscape forcing, perhaps far upstream, or from
nonlinear interactions. Given the sparse nature of the radiosonde network, these mesoscale
features are not represented well, or at all, in three dimensions by the observation network,
and therefore are not in the model initial conditions. Unless they are locally generated
through nondiurnal forcing, they are not deterministically predictable by any model, no
matter how good the resolution and physics. Time-scale dependences of predictability for
longer-period variations in the atmosphere are discussed by van den Dool and Saha (1990).

8.5 Special predictability considerations for limited-area and 
mesoscale models

An aspect of LAMs that affects predictability is the existence of LBCs. It was explained in
Section 3.5 that information from upstream LBCs will sweep across a model grid during
an integration, as information from the initial conditions exits the grid through the outflow
boundary. This means that, unlike the situation with global models, the predictability of
phenomena will depend less on initial-condition error for longer forecast lead times and
more on LBC error. The importance of the LBCs to predictability with mesoscale LAMs is
easily understood when one considers the number of important mesoscale phenomena that
occur only when the large-scale atmospheric characteristics produce a conducive environ-
ment. Examples include frontal squall lines, mesoscale convective complexes, coastal
fronts, and freezing rain. Also, land–atmosphere interaction has especially important con-
trols on the solution of mesoscale LAMs (see Chapter 5). Thus, as noted in Section 8.3
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above, the ability of the LAM to properly represent these processes will be an important
factor in defining the predictability. 

There is also perhaps a practical difference in the criteria used to define the predictive skill
in forecasts by limited-area, mesoscale models, relative to synoptic- and global-scale mod-
els. For forecasts on the large-scale, predictive skill may arguably be defined with a continu-
ous scale in terms of the phase error of waves or accumulated-precipitation amounts. On the
mesoscale, in contrast, predictability may be in the context of whether individual high-
impact events were forecast or not. The prediction of the existence of a severe-weather event,
even in an incorrect location, may be viewed as a very successful forecast. In contrast, fore-
casters may consider the model solution to have zero utility beyond the point in the simula-
tion when a major precipitation event was not forecast by the model.

Some of the smaller-space-scale processes that motivate the use of mesoscale models,
such as moist convection, also have short time scales. And, it is sometimes stated that a
practical limit to predictability is one life cycle of a physical process. This leads to a pre-
dictability limit of less than a few hours for individual convective events (not long-lived
convective complexes). 

Predictability based on mesoscale dynamic models has historically been considered to be
somewhat complementary with the predictability based on algorithms that perform some
sort of extrapolation from the current state. This is shown in the schematic of Fig. 8.5.
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Extrapolation methods, of which persistence is perhaps the simplest, begin with a best esti-
mate of the current state of the atmosphere, and evolve it using statistical or other algorith-
mic approaches. Because there is no atmospheric dynamics involved, nonlinear processes
cause the accuracy to deteriorate quickly, and thus the predictability limit for this approach
is short. On the other hand, mesoscale models sometimes require a period of time early in
the forecast during which local, thermally driven circulations spin up. And, models can suf-
fer from a dynamic adjustment period after initialization, which causes the solution during
at least the first 6–12 h to be problematic. Both the algorithmic and dynamic approaches
begin from an imperfect state because of the coarseness of the observation network. Even
though the details of the curves will be model and data-assimilation-system and weather-
situation dependent, there is likely a period of time during which algorithmic methods have
greater predictability than do dynamic models. 

8.6 Predictability and model improvements

New data-assimilation methods, numerical algorithms, and physical-process parameteri-
zations are routinely being developed with the goal of increasing the predictability of
models for use in operational prediction or research. This section provides advice to con-
sider when methods that are thought to represent improvement are implemented, but there
is no apparent benefit to the accuracy of the model products. One issue is that a new
parameterization, for example, may be very sophisticated and include more interactions
among components of the physical system than did the previous version. However, new
required inputs for the more-complex parameterization may be so poorly known that the
new method performs worse than the older and simpler approach – more complicated
methods do not necessarily lead to better performance. An example is that new multi-level
LSMs of one or two decades ago had difficulty producing more-accurate predictions than
were obtainable from single-substrate-layer slab models. Or, cloud-microphysics models
with more microphysical particle types will not perform better than simpler methods if the
conversion among types is not parameterized realistically. 

Another consideration is related to the forecast verification metric that is used to assess
the impact of a model change on predictability. It will be shown in Chapter 9 that standard
metrics such as RMSE and MAE often produce better verification scores for smoother
model solutions (e.g., Fig. 9.4). Thus, if a change to the model increases its ability to rep-
resent small-scale features, the predictability may appear to decrease. Model changes that
could lead to this misleading response of the predictability metric are decreases in the hor-
izontal grid increment; improvements in the filtering properties of the numerical algo-
rithms such that finer-scale features are retained; or the use of higher-resolution estimates
of the variability of landscape properties, which could lead to finer-scale structures in the
boundary layer. 

Lastly, there is the weak-link concept. The modeling system consists of many interact-
ing components, and weaknesses in one of them can prevent improvements in another
from leading to a better model prediction. There are numerous possible examples of this,
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but an obvious one is that a new observing system will not improve predictability if the
data-assimilation scheme is not able to adequately use the observations. 

8.7 The impact of post processing on predictability

The post processing of model output, described in Chapter 13, should be viewed as an
integral part of the modeling system, at least for operational applications. This processing
can take many forms, but one involves the use of methods for reducing the systematic
error in the forecast products. The resulting better correspondence with observations will
result in improved predictability for the entire system. 
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PROBLEMS AND EXERCISES 

1. Read about Observing System Simulation Experiments (OSSEs) in Section 10.2, and
explain how that type of experiment might be used to estimate the relative contribution
of model and initial-condition error.

2. Refer to the weak-link concept in Section 8.6, which is related to how model changes
impact predictability, and provide additional examples of why anticipated benefits may
not be realized. 

3. What types of mesoscale processes that can be predicted by LAMs have predictability
limits of at least one day?

4. Referring to the accuracy curves for mesoscale models and algorithmic nowcasting
methods, shown in Fig. 8.5, discuss what modeling-system, weather-regime, and scale
factors will influence the shapes of the curves and their relationship with each other.

5. The predictability of clouds is quite low. Speculate on the reasons.



294

9.1 Background

9.1.1 What is verification?

Forecast verification involves evaluating the quality of forecasts. Various methods exist to
accomplish this. In all cases, the process entails comparing model-predicted variables
with observations of those variables. The term validation is sometimes used instead of
verification, but the intended meaning is the same. That said, the root word “valid” may
imply to some that a forecast can either be valid, or invalid, whereas obviously there is a
continuous scale that measures forecast quality. Thus, the term verification is preferable
to many, and will be employed here. Special verification measures that are most applica-
ble to ensemble predictions have been discussed in Chapter 7. There is an extensive body
of literature on the subject of model verification, and students and researchers should
read beyond the summary material in this chapter to ensure that they understand underly-
ing statistical concepts and that they use the verification metrics that are most appropriate
for their needs. 

9.1.2 Reasons for verifying model simulations and forecasts

There are multiple motivations for evaluating the quality of model forecasts or simulations.

• Most models are under continuous development, and the only way modelers can know if
routine system changes, upgrades, or bug fixes improve the forecast or simulation qual-
ity is to objectively and quantitatively calculate error statistics.

• For physical-process studies, where the model is used as a surrogate for the real atmos-
phere, the model solution must be objectively verified using observations, and if the
observations and model solution correspond well where the observations are available,
there is some confidence that one can believe the model where there are no observations.
This is a necessary step in most physical-process studies. 

• When a model is being set up for a research study or for operational forecasting,
decisions must be made about choices for physical-process parameterizations, vertical
and horizontal resolutions, LBC placement, etc. Objective verification statistics are
employed for defining the best configuration.

• Forecasters learn, through using model products over a period of time, about the relative
performance of the model for various seasons and meteorological situations. This

9 Verification methods
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process can be made easier through the calculation of weather-regime-dependent and
season-dependent verification statistics for the model.

• Objective decision-support systems, which utilize model forecasts as input, can benefit
from information about the expected accuracy of the meteorological input data.

• Model-intercomparison projects, which compare model accuracy and skill in order to
better understand the strengths and weaknesses of the participating models, are based on
a foundation of objective model verification.

9.1.3 Some terminology related to forecast performance 

It is useful to define some basic terminology that we will be employing. Further discussion
of the following definitions can be found in Wilks (2006) and other general references on
the subject.

• Accuracy – A measure of the average degree to which pairs of forecast values and
observed values correspond. Scalar measures of accuracy summarize the overall quality
of the forecasts in the form of a single number.

• Bias – A measure of the correspondence between the average of a forecast variable and
the average of the observations.

• Skill – The accuracy of a forecast relative to a reference forecast.
• Reference forecast – This is an easily available, non-model-based data set that can be

interpreted as a simple, minimal-skill forecast. See Section 9.3 for additional discussion
of such reference forecasts.

9.2 Some standard metrics used for model verification

9.2.1 Accuracy measures for continuous variables 

These measures apply to variables that are continuous in the sense that they can take on
any value within a physically realistic range. For example, if temperature itself is the pre-
dictand, it represents a continuous variable. But, if the predictand is a binary “yes or no”,
regarding whether the temperature tomorrow will exceeds some threshold, it is a discrete
variable (discussed in Section 9.2.2). 

The MAE is the arithmetic average of the absolute difference between pairs of forecast
and observed quantities. It is the average magnitude of the forecast error, and is defined as

,

where (xk, ok) is the k-th of n pairs of forecasts and observations. In order for the MAE
to be zero, the difference between each forecast and observation pair must equal zero.
Another scalar accuracy measure for continuous variables is the Mean-Square Error

MAE 1
n
-- xk ok–

k 1=

n

∑=
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(MSE), which is the average squared difference between the forecast and observation pairs.
It is defined as

.

Because the errors are squared, the MSE will be more sensitive to large errors than will the
MAE. Sometimes, the square root of the MSE is used, such that . This
has the same physical dimensions as the forecast and observations. The above metrics rep-
resent both systematic and random components to the error.

An additional, commonly used measure of correspondence between observations and
forecasts is the Anomaly Correlation (AC). As the name implies, it is designed to define
similarities in the patterns of the departures (i.e., anomalies) of the observed and forecast
variables from the climatological means. The AC can be calculated based on time series or
spatial fields, and is designed to reward for good forecasts of the pattern (phase and ampli-
tude) of the observed variable. See Wilks et al. (2006) for additional detail.

The bias is the same as the Mean Error (ME), such that 

.

This is also known as the systematic error. Given that  is a simple way of defining the
climatology of the variable (at least for the limited period of the verification), and  is the
model climatology for the variable, the bias represents a comparison of the model and
actual climatological values. 

9.2.2 Accuracy measures for discrete variables

These measures apply when the verification question is defined in terms of a yes–no
condition. For example, consider a precipitation forecast of whether the accumulated
amount is above a specified threshold at a particular location. The observation at that
point defines whether precipitation of that amount indeed occurred, a yes or no
condition, and the forecast is also in the form of a yes or no. This problem can be
illustrated with a 2 × 2 contingency table of the form shown in Fig. 9.1a. Of the n
forecast–observation pairs, a represents the number of times that an observed event was
correctly forecast (called hits), b is the number of times that no event occurred but the
forecast was for an occurrence (called false alarms), c is the number of times that an
observed event is forecast to not occur (called misses), and d is the number of times that
an event was correctly forecast to not occur (called a correct negative). An example is
shown in Fig. 9.1b of areas where a condition (e.g., 24-h accumulated precipitation
above a threshold) is observed and forecast. Each area is defined in terms of the
elements of the contingency table.

MSE 1
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Many forecast-accuracy measures are based on the components of the contingency
table. The Proportion Correct is defined as 

, (9.1)

and represents the fraction of the forecasts that correctly anticipated the event or nonevent.
A potential disadvantage of this score for some situations is that equal credit is given for
correct positive or negative forecasts. If the forecast variable is the existence of sun in
Cairo in summer, the correct forecast of sun is given equal credit as the more difficult cor-
rect prediction of the rare obscuring cloud. An alternative is the Threat Score (TS), which
is useful when the yes-event to be forecast occurs much less frequently than the no-event.
This is also termed the Critical Success Index, and is expressed as

. (9.2)

The bias compares the average forecast and the average observation, and is defined as

.

The False-Alarm Ratio, 

,

(a)

Forecast Observed

F
or

ec
as

t

Observed

Sample sizeMarginal totals
for observations

No

Yes

No

a b

c d

M
ar

gi
na

l t
ot

al
s

fo
r 

fo
re

ca
st

s

Yes

a+b

c+d

b+da+c n=
a+b+c+d

(b)

a

b c

d

Contingency table showing the four possible outcomes of a forecast of a discrete variable (a). Also shown is a schematic 

example of the observed and predicted areas where a variable (e.g., accumulated precipitation) exceeds a specific 

threshold.

Fig. 9.1

PC
a d+

n
------------=

TS CSI
a

a b c+ +
---------------------= =

B
a b+
a c+
-----------=

FAR
b

a b+
------------=



Verification methods298

is the fraction of yes forecasts that are wrong, and is different from the false-alarm rate 

which is the ratio of false alarms to the total number of nonoccurrences of the event. The
hit rate, which is also called the probability of detection, is defined as

,

and represents the fraction of the event occurrences that were forecast.

9.2.3 Skill scores 

As noted earlier, skill is defined as the accuracy of one forecast method relative to that of a
reference forecast. The skill is usually represented as a Skill Score (SS), which is defined
as a percentage improvement over the reference forecast. Mathematically, a SS can be
defined as

%, (9.3)

where A is the accuracy of a forecast, Aref  is the accuracy of a reference forecast, and Aperf
is the accuracy of a perfect forecast. If , the skill score is 100%. If ,
the skill is zero, indicating no improvement relative to the reference forecast. If the fore-
cast accuracy is less than that of the reference forecast, the skill score is negative.

A number of skill scores are based on the previously described 2 × 2 verification contin-
gency table, and have the form of Eq. 9.3. One of the most-frequently used is called the
Heidke Skill Score (HSS), and is based on the proportion correct (Eq. 9.1) as the accuracy
measure (A, in Eq. 9.3). The reference accuracy measure, , is the proportion-correct
value that would be obtained by random forecasts that are statistically independent of the
observations. The expression for the HSS is 

,

where the derivation is described in Wilks (2006) and elsewhere. Analogously, the TS
(Eq. 9.2) can be used as the basic accuracy measure, and the TS for random forecasts is
used as the reference. This is called the Gilbert Skill Score (GSS) or the Equitable Threat
Score (ETS), and is derived in Wilks (2006) as
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Skill scores are also computed for continuous variables, using MAE, MSE, or RMSE,
again based on Eq. 9.3. Climatology or persistence are generally used for the reference
forecast. Using the MSE as an example, the accuracies for these references are

 and

,

where  is the observation,  is the climatological mean of the observed variable,
and  is the previous value of the variable. Similar equations apply for MAE. For either
metric, and for either reference forecast, the skill score, based on Eq. 9.3, can be written as

.

Many more skill scores, with various strengths and weaknesses, are described in Wilks
(2006) and Gilleland et al. (2009).

9.3 More about reference forecasts and their use

The reference forecast defines a minimal-accuracy or zero-accuracy point on the scale –
essentially a zero point on the accuracy scale. This is the forecast accuracy that can be
achieved without running a model. Example reference forecasts include (1) a persistence
forecast where it is assumed that present conditions prevail throughout the forecast period,
(2) a diurnal-persistence forecast where it is assumed that the previous day’s diurnal cycle
is replicated, (3) a forecast based on seasonal climatological-average values of the forecast
variables, and (4) the use of random forecasts. The first three approaches are self-
explanatory. For the random forecast, the bootstrap technique of Efron and Tibshirani
(1993) is an example of a method that can be used. Here, the available observations
throughout the study period are repeatedly and randomly resampled (with replacement), to
yield multiple synthetic samples (hundreds to thousands) of the same size as the set of
observations that are used normally in the verification. These are the random forecasts,
which are constrained by the climatological distribution of the observations over the study
period. Note that randomly sampling the entire body of observations has the effect of
removing the diurnal signal from the data set. Each of the random forecasts is compared
with the observations at each verification time, and the average verification score at each
time is then used to define the error. 

The accuracy of the random no-skill forecast or one of the other reference forecasts, and
the estimates described later in Section 9.5.2 of the maximum (or perfect-model) accuracy
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that is related to the existence of instrument and representativeness error, effectively pro-
duce a range within which falls the actual model-forecast accuracy. Figure 9.2 shows an
example of the verification of 12-h wind-speed forecasts from four models, where the
bounding perfect-model and no-skill curves are shown. Wind-speed MAEs from all mod-
els cluster around 2 m s−1, within the range of about 1.5 m s−1 between the two bounding
curves. The verification statistics for the Eta, GFS, and RUC-2 models were calculated for
the mesoscale area spanned by the MM5 LAM.

9.4  Truth data sets: observations versus analyses of observations

Verification of model solutions can be performed using either observations or analyses of
observations. For the latter approach, operational analyses can be used for near-real-time
verification of forecasts, or reanalyses can be used for verification of retrospective simula-
tions. See Chapter 6 for a review of how operational analyses are produced, and
Chapter 16 for a description of reanalyses. Using analyses for verification is advantageous
in situations where conventional in-situ data are sparse, either temporally or spatially. In
such situations, variational assimilation of satellite data in the analysis process can con-
strain the analysis and compensate to some degree for the paucity of in-situ observations.
One problem with the use of analyses is that they are model generated, so one model is
being verified with the products from another model. This is especially troublesome when
verifying a variable such as precipitation, where the model that created the analysis often
has not assimilated any precipitation observations – that is, the analyzed precipitation is
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entirely a creation of the model. Another issue is that only global-scale operational analy-
ses or reanalyses are available for much of the world, so there is a clear scale mismatch if
forecasts from high-resolution mesoscale models must be verified. The fine-scale details in
the solution from the mesoscale model will not have counterparts in the analysis, and
measures of accuracy will interpret the differences as errors. Thus, the mesoscale model
will be penalized for successfully serving its intended purpose of providing information
on the mesoscale. For verification using analyses, the forecast values can be interpolated to
the grid points of the analysis, or vice versa. Because of the short distance between grid
points, simple bilinear interpolation is often used.

In regions where observations are sufficiently dense, whether they be in situ or remotely
sensed, it can be advisable to interpolate model forecasts or simulations to the observation
points, and calculate the statistics there. In-situ observations include those from radio-
sondes, near-surface mesonetwork stations, aircraft-borne sensors, and rain and snow
gauges. Remotely sensed data that can be compared directly with model output may be
from wind profilers (Doppler radars that point approximately in the vertical), radial winds
from scanning Doppler radars and lidars, satellite cloud-track winds, satellite water-vapor-
track winds, and satellite-estimated precipitation. Interpolation of model values from the
grid to observation locations can be done through simple linear interpolation. Near-
surface wind observations are often at 10 m AGL, although this height can vary, and corre-
sponding temperature and humidity observations are generally at 2 m AGL. When the low-
est model computational level is above the elevation of the observations, Monin–Obukhov
similarity theory can be used to extrapolate the wind, temperature, and humidity predic-
tions to the height of the observations (Stull 1988).

9.5 Special considerations

9.5.1 Orographic smoothing

Verification of a model solution is complicated by the fact that model orography is smooth
compared to the actual orography. Unless envelope orography is used with a model, val-
leys are filled in and mountain ridges are lowered. Thus, a surface-based observation has a
different elevation above sea level in the model compared to reality. As a practical exam-
ple, assume that a model is used to forecast the winds at the 80-m AGL hub height of wind
turbines that are located on a ridge near a coastline (see Fig. 9.3). And, assume that winds
observed by anemometers at the hub height are available for model verification. The actual
ridge is 100 m ASL, but the smoothness of the model terrain causes the ridge in the model
to be only 20 m ASL. This raises the question about which model winds should be com-
pared with the 180-m ASL observations. Based on the distance of the observation above
sea level, 180-m ASL model winds (level 1) should be used. But, if distance above the
local land surface is more physically relevant, the model winds at 100 m ASL (level 2)
should be used. Note that this problem is not limited to wind prediction, and applies to
temperature and humidity as well. In this example, the question takes on greater
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importance when the prevailing large-scale wind is from the water. There is thus some-
times the question whether an observation should be assumed to apply at the correct loca-
tion in the vertical (ASL) or at the correct distance above the model land surface. There is
no easy answer to this question, but the modeler should be aware of the paradox because
the choice will certainly influence verification statistics.

The above example might be interpreted as being somewhat isolated; however, in
complex orography a systematic error will generally exist in forecasts of variables that
have a significant climatological variation with height. For example, model forecasts
will have a warm bias relative to observations located over mountains, where the sur-
face elevation in the model is lower than in reality as a result of orographic smoothing.
Similarly, wind speeds will be underforecast at higher elevations when the orography is
smoothed.

9.5.2 The imperfect nature of verifying observations

It is well recognized that the errors produced by the model and the errors in the observa-
tions both contribute to the total error diagnosed in the verification process. The observa-
tions used for verification contain error associated with the accuracy of the instruments
and the calibration error. In addition, there is another, somewhat less well-documented,
cause of differences between the model solution and the observations that impacts the ver-
ification statistics. And, this error will always exist regardless of how much the model and
instrument errors are reduced. This is the representativeness error. 

Representativeness errors arise from the fact that there is a fundamental mismatch
between the spatial and temporal scales represented by the models and the observations.
Conventional ground-based instruments make instantaneous or time-averaged measure-
ments at a point, whereas the model-predicted quantities represent spatial averages over
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Schematic showing a cross section of the orography near a coastline, based on the actual elevation (a) and that 
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each model grid-box volume. In addition, the numerics and explicit diffusion smooth the
grid-box information so that it, in fact, represents an even-larger area (see Fig. 3.36).
Representativeness error can be understood through the following idealized example. Sup-
pose there exists a perfectly known near-surface wind field over a 1-km2 area. The wind at
the center of this area is used to create a “perfect” point observation of the wind. Next, the
1-km2 spatial average is computed, which represents the corresponding grid-box-mean
value of the wind predicted by a perfect model. Despite the fact that both the model-aver-
age and observation exactly characterize the wind field in their own way, the difference
between the two will obviously not be zero. This difference is termed the representative-
ness error, and its magnitude is dependent on a number of factors including the prevailing
weather regime, the amplitude of fine-scale atmospheric structures, and the geographic
extent of the sampling area (or size of the model grid box). 

It is worthwhile estimating this error because it contributes to the maximum model
accuracy (see definition above) that is practically achievable, given the properties of the
forecasting systems and the verifying observations. A tractable approach is to use an
extremely high-resolution model to define the variability within a larger grid-box area. For
example, Rife et al. (2004) used the model described by Clark and Farley (1984) and Clark
and Hall (1991, 1996) to estimate the representativeness error in a verification of MM5
mesoscale-model wind simulations in complex terrain. The Clark–Hall model was run for
a real-data case over the complex terrain near Pinewood Springs, Colorado, where the
highest resolution grid in a nest had an increment of approximately 50 m and encom-
passed a nearly 36-km2 area. To estimate the representativeness error, the spatially aver-
aged wind speed and direction were computed from the Clark–Hall model output within a
stencil having the dimensions of a 1.33-km grid box of the MM5 model. There were 676
Clark–Hall model grid points for each MM5 grid box. Next, the point values of the speed
and direction were determined at the stencil center. This process was repeated until the
entire Clark–Hall model domain had been sampled in a nonoverlapping fashion. The mean
difference between the grid-box-average and point values of wind speed and direction
from each unique sample (36 individual paired values) was computed to produce an esti-
mate of the representativeness error. 

Based on the above analysis, the representativeness errors for 10-m AGL wind speed
and direction, under well-mixed boundary-layer conditions with this MM5 model resolu-
tion in complex terrain, are 1.15 m s−1 and 14.6°, respectively. This estimate is conserva-
tive because the Clark–Hall model with a 50-m grid increment underestimated the true
amount of spatial variability that would exist in the near-surface wind field. Conventional
cup and vane anemometers are generally accurate to within ±0.3 m s−1 and ±3° for wind
speed and direction, respectively. This yields a practically realizable minimum error for a
wind speed and direction forecast by a perfect model of 1.45 m s−1 and 17.6°, respectively
(assuming that the errors are additive). 

The existence of representativeness error can extend beyond the influences of complex
orography. For example, observations are made sufficiently far from natural obstructions,
or those of human origin, such that the measured value of a variable is presumably not
influenced by the obstacle. However, model grid-box-average values of surface properties,
such as roughness length, are defined based on the average character of the surface over
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the grid-box area. Because grid boxes often contain obstructions, the average roughness
length is defined accordingly. Thus, the observed wind experiences a different roughness
than does the model wind, and this representativeness problem can lead to a difference
between observed and modeled winds that has nothing to do with model accuracy. Strass-
berg et al. (2008) calculate that this effect can lead to small but nontrivial artificial errors
in the wind verification. See the problem at the end of the chapter regarding how similar
landscape representativeness problems can lead to errors in the verification of near-surface
temperature or humidity.

The results of the above analyses of representativeness of course apply only to a specific
configuration of the forecast model, the spatial structure of the meteorological field being
sampled, and the error properties of the observing system. A separate analysis would need
to be performed for other situations. Nevertheless, the example illustrates the potential
importance of these factors to the verification process. Note that this sum of the represent-
ativeness error and the instrument error can be viewed as an upper bound on the forecast
accuracy. That is, this is the accuracy of a perfect model.

9.5.3 Special issues related to the verification of winds

There are a few special issues that should be kept in mind with respect to the verification
of winds. One is related to the fact that, unlike the other variables discussed here, wind
is a vector quantity. We thus have the option of comparing the observed and forecast
wind in terms of (1) separate statistics for the u and v components, (2) separate statistics
for the speed and direction, and (3) vector differences. On the synoptic scale in midlati-
tudes, or with verification of upper-air winds, individual verification of u and v can make
physical sense if the components align with the zonal and meridional direction. That is,
the components represent the direction of the mean wind, and the perturbations to the
mean wind. Wind speed and direction are intuitive metrics because they are geometric
attributes of the vector, and the two types of error can be easily visualized. Alternatively,
the vector difference between the observed and forecast winds is a way of representing
the error.

If wind speed and direction are used for verification, account should be taken of the fact
that low mean-wind speeds are associated with highly variable directions because turbu-
lence will dominate the measurement. Given that we wish to verify the mean (nonturbu-
lent) wind direction, it is common practice to not include in the verification, wind
directions that are associated with speeds of less than some threshold, such as 0.5 m s−1.
Also, direction-error calculations are complicated by the fact that the direction scale is
periodic, and this needs to be remembered when differencing the modeled and observed
values.

A point that was made in Chapter 3 is that models with Cartesian grids, which are defined
on map projections, have u and v wind components defined in terms of the rows and col-
umns of grid points. That is, the u component is parallel to the rows and the v component is
parallel to the columns. Thus, the model-defined wind components at a particular latitude–
longitude are not the same as those reported in an observation at the same point. The latter
components, of course, are parallel to the local latitude and longitude lines. Thus, just as
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with the model initialization process, the model and observed wind components need to be
reconciled. In this case, if verification statistics are being computed at observation locations,
the model wind components are transformed to the traditional geocentric components. 

9.5.4 Response of the standard accuracy metrics to horizontal resolution

Conventional objective measures of forecast skill sometimes seem to show little improve-
ment from increased horizontal resolution, in spite of the fact that a subjective assessment
of model accuracy shows a definite positive impact. For example, Mass et al. (2002)
describe the overall performance of a real-time mesoscale weather prediction system, and
show that there were clear improvements in the objectively measured forecast skill as the
horizontal grid spacing was decreased from 36 to 12 km. In contrast, there were only small
improvements in the objective skill as the grid spacing was decreased from 12 to 4 km.
However, in terms of subjective comparisons of observed and forecast structures, the
coarser-resolution forecasts were often profoundly inferior to those from the highest-
resolution grid. Similarly, Davis et al. (1999) showed that, in terms of conventional skill
scores such as bias, MAE, and RMSE, a high-resolution (1.11-km grid increment) mesos-
cale model that was run operationally over the mountainous western USA provided only
slightly better surface temperature forecasts than did the much coarser 80-km Eta model,
with the two models exhibiting 10-m wind-field forecast errors of comparable magnitude.
However, only the mesoscale model was able to accurately depict some important aspects
of the observed locally forced circulations resulting from the regional orography and
variations in other land-surface characteristics. Another study, for east-central Florida,
compared objective skill scores from a mesoscale model, which employed a 1.25-km hori-
zontal grid increment, to the scores from the 32-km grid increment Eta model (Case et al.
2002). The high-resolution model provided little objective improvement over the much
coarser Eta model. However, a detailed subjective analysis indicated that the mesoscale
model exhibited considerably more skill in predicting the observed Florida sea breeze,
which strongly determines temperature and the timing and location of thunderstorm
initiation.

One well-known characteristic of some standard verification metrics is that they can
reward smooth solutions. That is, if output from a high-resolution model is progressively
smoothed, the accuracy metrics calculated from the output may show progressively greater
skill. Thus, the use of higher horizontal resolution, or the use of numerical methods that
have small truncation error, can lead to poorer model verification. This is in spite of the
fact that these model properties should lead to a more-realistic representation of fine-scale
structures in the model solution. Figure 9.4 illustrates the common situation where model
forecasts can have both phase and amplitude errors. The solid line represents the observed
wind speed in a jet that is oriented perpendicular to the page. The dashed line shows a
forecast from a high-horizontal-resolution model, where the correct amplitude of the jet is
retained, but the maximum is displaced to one side. The dot-dash line and the dotted line
show solutions from models that have less horizontal resolution, and therefore produce a
smoother solution. The RMSE between the observed and forecast wind speed is greater for
the model solution that better retains the correct amplitude of the feature.
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Another way to look at this influence of fine-scale spatial structures on the standard ver-
ification metrics is in the context of the decomposition of the definition for MSE. Murphy
(1988) demonstrates that

.

(1) (2) (3) (4)

Term (1) is the mean error, or bias; term (2) is the variance of the forecasts; term (3) is
the variance of the observations; and term (4) contains rxo, the coefficient of correlation
between the forecasts and observations. Thus, all other things being equal, high-resolution
forecasts or verification fields (observations) with larger variance, will lead to larger MSEs.

9.6 Verification in terms of probability distribution functions

Because the extremes in weather (temperature, precipitation) are often the most important
situations that must be forecast with models, it is useful to use verification methods that pro-
vide specific information about how model accuracy varies for different values of the pre-
dictand. A simple approach would be to simply plot the frequency distributions of the
observed and forecast variables for a point, based on a long series of forecasts. This will pro-
vide information about how well the model-forecast climatology verifies relative to the
actual climatology for extreme values of the variable, which is important, but it does not
quantify how accurately the extremes are forecast. To accomplish the latter, the joint distribu-
tion of the observed and forecast values of a variable can be plotted. For example, Fig. 9.5a
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contains a bivariate histogram that shows the distribution of forecast temperatures for differ-
ent values of the observed temperature. Similar information is provided in the simpler dis-
play in Fig. 9.5b, for a different set of forecasts. Alternatively, scatter plots showing observed
and forecast values could be used to reveal errors in different parts of the distribution. No
matter how the information is displayed, it can be used to better understand how well a model
predicts the extreme values in the PDF, so that the modeling system can be improved as
needed, and so that forecasters can develop a better knowledge of model strengths and weak-
nesses relative to forecasts of weather extremes. 

9.7 Verification stratified by weather regime, time of day, and season

Model-verification statistics can be stratified by time of day, season, forecast duration, and
weather regime. The resulting situation-dependent model-performance statistics can reveal
information that is useful for isolating model shortcomings. For example, separating the pre-
cipitation-prediction skill by season provides insight into the model calculations of
convective versus stable precipitation. Calculation of time-of-day-dependent statistics for
near-surface variables can distinguish errors in the boundary-layer parameterization that
manifest themselves differently during daytime, nocturnal, and day–night-transition
regimes. Figure 9.6 shows examples of the verification of a mesoscale model by season and
time of day. In Fig. 9.6a is the 2-m AGL temperature RMSE for forecasts of 24-h duration
initialized at 3-h intervals, aggregated for all seasons. The location is the southwestern USA.
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Regardless of when the forecast is initialized, the RMSE is a minimum in the late morning
and early afternoon, and increases rapidly during the late afternoon and evening. This
is potentially valuable evidence for identifying aspects of the boundary-layer parameteriza-
tion that need improvement. In a second example (Fig. 9.6b), the temperature RMSE for the
10–12-h lead time of forecasts is shown separately for each season and for different times of
the day. There is a clear trend for the errors to be greater in the winter. There is no diurnal
variation in the cold-season RMSE because the forecasts are for central Alaska. But, the
warm-season forecasts display an obvious error maximum during the nighttime hours. 

Calculation of verification statistics for different weather regimes can also be revealing
of model strengths and weaknesses. The process involves using some method to classify
different weather regimes that prevailed during a large number of model forecasts. On glo-
bal scales, the regimes might be extremes in a global cycle such as ENSO. In this case,
forecast skill during the El Niño phase could be compared with the skill during the La
Niña phase. On regional scales, cluster analysis methods (Wilks 2006) or the methods of
self-organizing maps (Cassano et al. 2006, Seefeldt and Cassano 2008) can be used to
aggregate weather patterns into different regimes, and the forecast error statistics can be
calculated separately for each of the regimes. Or, more manual and subjective methods can
be used to identify weather regimes, before the separate statistics are calculated. As an
example of this concept, Fig. 9.7 shows the 2-m AGL temperature bias, computed sepa-
rately for two large-scale weather regimes, based on mesoscale-model (MM5) summer-
season forecasts for Greece, in the vicinity of Athens. There are two dominant wind
regimes in this season. When the northerly Etesian winds are strong, they sweep across the
peninsula and inhibit the development of a sea breeze. When the Etesian flow is weak, the
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sea breezes from the north and south can dominate, penetrating to the center of the penin-
sula. Even though the daily-mean temperature bias is not much different for the two
regimes, the diurnal amplitude of the bias is over twice as large when the sea breeze dom-
inates, likely indicating a significant contribution by model errors in some aspect of the
simulated land–atmosphere interaction. 

9.8 Feature-based, event-based, or object-based verification

The most useful information in weather forecasts is often related to changes or events, such as
abrupt shifts in temperature or wind speed associated with frontal passages. Thus, model fore-
cast verification can be especially meaningful if it is performed in terms of how well events
are forecast. The terms objects, features, or events are used interchangeably in the literature.

An application of this approach to wind events is described in Rife and Davis (2005).
Figure 9.8 illustrates an event in a time series of hourly wind observations. In this study,
an event is defined as a 2-h change in the wind speed that exceeds one standard deviation
from the 1-year average value at a given station and time of day. Two verification metrics
are used. For one, a set of events is defined in a time series of observations, where

 is defined as the event in the observations, and . For each observed
event, the following quantity is calculated,

,

where  is the change in the model solution for the location and time period of
the observed event. The individual observed and forecast event magnitudes are normalized
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by the respective variances in the two time series for each location. This ratio is calculated
for each station, where the value is +1 for a perfect forecast. In the second approach, again
based on time series of observed and forecast values of a variable, both forecast and
observed features are defined within every 12-h period. The resulting binary data set, of
the existence of one or more features within each period, can be used to populate a contin-
gency table of the sort shown in Fig. 9.3a, allowing the calculation of the many accuracy
metrics that are based on discrete variables. 

The verification of convective precipitation is well known to be especially problematic,
and it lends itself to the use of feature-based methods. Other approaches in which analyses
and forecasts of precipitation fields are overlaid, and the overlap regions used to compute
scores (Section 9.2.2 above, Wilks 2006), sometimes do not adequately represent the accu-
racy or value of a forecast. Thus, alternative feature-based approaches have been devel-
oped that provide better metrics (Nachamkin et al. 2005, Ebert and McBride 2000, Davis
et al. 2006a,b). Davis et al. (2006a,b) should be consulted for a summary of feature-based
verification procedures applied to precipitation. In summary, the general approach
involves (1) identifying features in the observed (e.g., radar-based analyses) and forecast
precipitation fields using thresholds of precipitation amount; (2) describing the geometric
properties of the features (e.g., number, location, shape, orientation, size, average precipi-
tation intensity in the feature); (3) comparing the relative attributes of the observed and
forecast features; and (4) associating features in the forecast and observed fields, where
possible. Figure 9.9 illustrates the benefit of this method for verifying precipitation
forecasts. Shown are different examples of observed and forecast areas of precipitation.
Forecasts (a)–(d) all have identical basic verification statistics, with POD = 0, FAR = 1,
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and CSI = 0 because the forecast and observed precipitation areas do not overlap (the area
of “a” in Fig. 9.1b is zero). However, there clearly are differences in the forecast accuracy
or value. Forecast (e) has some skill based on these metrics, but would likely not be judged
as the best of the five. However, feature-based methods that compare the distances
between features, their orientation, and area would provide a better ranking.

An example is shown in Fig. 9.10 of the use of feature-based methods to compare the
skill of a few models at predicting summer-season precipitation in an area of complex
orography in the southwestern USA. In particular, the method described in Davis et al.
(2006a,b) will be employed here to compare the accuracy of short-range precipitation
forecasts from the MM5, NAM, and RUC models. The horizontal grid increments are
10 km for MM5, 12 km for NAM, and 13 km for RUC. The precipitation forecasts are
compared with the NCEP Stage-IV analyses, which are constructed by compositing
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Verification methods312

WSR-88D radar and gage estimates (Fulton et al. 1998, Lin and Mitchell 2005). Precipi-
tation features in the analyses and model forecasts are defined using thresholds of precip-
itation amount. Any closed isohyet defines a feature, whether or not it represents a
maximum or minimum within the surrounding field. The forecasts were verified for the
entire month of August 2005, a period during which the North American monsoon was
active in the southwestern USA. Given that there were eight forecast cycles per day, this
verification is based on over 200 forecasts, most of which have some rainfall. 

The comparison here will be limited to the number of forecast and observed rainfall
objects (1) having different area coverage (size) and (2) defined by different rainfall
thresholds. Figure 9.10a shows the size distributions of the observed and forecast features
for the 2-mm h−1 intensity threshold. This measure reflects whether the models capture the
degree to which the rainfall occurs in a scattered versus contiguous pattern. Figure 9.10b
compares the number of observed features for each rain-rate threshold, with those in the
model forecasts. For both measures, there are clear differences among the models. 

9.9 Verification in terms of the scales of atmospheric features

A model solution should approximately preserve the observed spatial and temporal spectra
of the dependent variables. Thus, the spectral power for the atmosphere and the model
solution have been compared in numerous studies. Of course, unlike other verification cri-
teria, model-simulated features do not need to be in phase with observed features in order
for the model to verify well in this context. Rather, the model solution simply needs to
contain the features on the correct scales. This type of verification can:

• help the modeler better understand the explicit and implicit spatial and temporal filters
in a model;
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• provide information about whether the lower-boundary forcing in the model is impart-
ing the correct scales of motion in the lower troposphere and boundary layer;

• define the model’s true resolution;
• illustrate the amount of fine-scale information that is contained in the initial conditions,

provided by a data-assimilation system; and 
• define the time required for the model to spin up scales of motion that are not in the

initial conditions. 

9.9.1 Temporal spectra

It is common to partition the temporal spectrum into three regions: periods longer than
diurnal (super-diurnal), periods that are approximately diurnal, and periods that are shorter
than diurnal (sub-diurnal). Features with longer-than-diurnal periods may be viewed as
synoptic scale or planetary scale, and therefore reasonably representable by global or
regional models that have typical horizontal resolution. Diurnal time scales of course are
related in some way to the heating cycle. For example, in the wind field a diurnal signal
could be related to stability-related momentum mixing, mountain-valley circulations,
coastal circulations, etc. Provided that the model reasonably represents the land-surface
and boundary-layer processes, features with these time scales should verify well. Motions
with sub-diurnal time scales include mesoscale features or circulations that are not forced
by the diurnal heating cycle. They can result from orographic or other landscape forcing,
perhaps far upstream, or from nonlinear interactions. Comparison of the observed and
model-simulated spectral power in each of these three regions is a way of verifying the
ability of the model to simulate these types of features.

Figure 9.11a shows how the observed temporal spectrum, which must be represented
by a model, depends on geographic location. Illustrated is the spectral power for time
series of the observed zonal wind at three locations in Slovenia. The higher-elevation
station on a mountain (M) is exposed to the synoptic-scale flow, more than are the other
stations, so there is greater power in the longer time scales. The coastal station (C) has
power maxima on approximately the diurnal time scale (12 h and 24 h peaks), as a result
of thermally forced coastal circulations. And the valley station (V), which is protected
by the orography from synoptic-scale features and has weak diurnal forcing, shows the
flattest spectrum, the lowest overall power, and the largest fraction of the total power in
the sub-diurnal range. A model that properly represents the various prevailing processes
should replicate this spectrum, and have roughly the same percentage of the spectral
power in each of the bands. This type of verification thus has the potential to reveal
model strengths and weaknesses in an interesting way. Figure 9.11b shows how well
zonal-wind power spectra from the ERA-40 reanalysis with a 125-km grid increment
(see Chapter 16 for more information on this analysis) and the ALADIN model with a
10-km grid increment compare with the observed spectrum for the coastal station. Both
the reanalysis and the model underestimate the power at all sub-diurnal scales, and over-
estimate the power on the synoptic scales. The relatively coarse-resolution ERA-40 anal-
ysis misses most of the diurnal component, but the ALADIN model captures its
approximate amplitude.
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9.9.2 Spatial spectra 

The above type of verification of model temporal spectra is made possible and convenient
by the general availability of frequent measurements at surface stations. However, there is
no equivalently good source of dense observations for use in comparisons of observed and
model-based spatial spectra. Thus, the model solution is compared with field-program
observations and theoretical solutions, for example of the shape of kinetic-energy spectra.
As with the verification of the model temporal spectra, this spatial verification will also
confirm the degree to which the model is faithful to the dynamics of the atmosphere. 
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See Skamarock (2004) for additional information about the characteristics of the kinetic-
energy spectrum to be expected on different space scales. In summary, global-scale models
should reproduce the large-scale, k−3 slope of the spectrum. In mesoscale and cloud-scale
model solutions, the slope should be k−5/3. Examinations of model spectra have been used to
verify possible negative impacts of explicit or implicit damping mechanisms (Laursen and
Eliasen 1989). When model resolutions span the global scale and the mesoscale, as is the case
with high-resolution global models, the verification of the existence of the slope transition in
the kinetic-energy spectrum is a test that the model is faithful to the atmospheric dynamics
(Koshyk and Hamilton 2001). And, analyses of kinetic-energy spectra have been used to verify
the ability of a model to represent scales near the  limit of resolution (Bryan et al. 2003,
Lean and Clark 2003, Skamarock 2004). This latter type of verification defines the effective
resolution of the model. Figure 9.12 illustrates the concept of examining the kinetic-energy
spectrum for this purpose. The sloping straight line is the anticipated spectrum, where the slope
depends on the wavenumber range (k). Because of explicit and/or implicit dissipation in the
model, there is some wavelength above the  limit where the model spectrum shows kinetic
energy that is less than the expected value. This has been defined as the effective resolution
because the model dissipation causes the kinetic energy to be unrealistic. The specific shape of
the high-wavenumber part of the spectrum is dependent on the model. See Skamarock (2004)
for illustrations of actual model spectra that demonstrate this concept.
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9.9.3 Variance 

Comparing the observed spatial variance among observations with the corresponding var-
iance based on the model output for the same locations is another way of estimating the
realism of the simulated spatial structure. Figure 9.13 shows a comparison of the spatial
variance for observed, and 12-h model forecast, 10-m AGL winds for a region of complex
orography. The variances for a coarse-resolution global model (GFS) and for two resolu-
tions of a mesoscale model (MM5) are shown. In each case, the model-forecast winds
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were interpolated to the locations of the observations before the variance was calculated.
The analysis illustrates the benefit of the higher horizontal resolution toward replicating
the observed variance. 

9.10 The use of reforecasts for model verification

Chapter 10 defines reforecasts as retrospective forecasts that have been produced with a fixed
version of a model, which is the same as what is currently used operationally. Verification sta-
tistics that are calculated from a long series of reforecasts provide a more meaningful descrip-
tion of model biases and other shortcomings than would statistics that are based on only a
short recent history of operational forecasts. Additionally, rerunning forecasts with the current
version of the model means that the verification statistics apply specifically to the current
model, a situation that would not be the case if verification statistics were calculated from
archived operational forecasts that were based on an evolving model. References on this sub-
ject are Hamill et al. (2004, 2006), Hamill and Whitaker (2006), and Glahn (2008).

9.11 Forecast-value-based verification

Assessment of the value of ensemble probabilistic forecasts was discussed in Chapter 7,
but the importance of this process is worth repeating in the context of model verification.
Forecast models are developed and employed because it is anticipated that there is some
value to the products that they provide. This value associated with the numerical products
can be defined in terms of money saved by business and government, lives saved, and pub-
lic convenience. Thus, given that these are the ultimate goals of using the models, it is rea-
sonable to verify the models in this value-centric context. That is, these values can serve as
metrics that demonstrate, for example, the relative merits of different models. However, it
is generally quite challenging to quantify the monetary value of forecasts. And, verifica-
tion methods that are aimed at improving model performance must be based on accuracy
that is expressed in terms of physical forecast variables. Nevertheless, for any operational
model application, it is instructive for the modeler to at least qualitatively consider how the
forecast value could be defined. There is a substantial body of literature on this subject,
and Wilks (2006) and McCollor and Stull (2008b) are among many sources of information
about the mathematical basis behind the assessment of forecast value. 

9.12 Choosing appropriate verification metrics

There are obviously many choices of metrics available for assessing the accuracy or skill
of model forecasts or simulations, and it is often difficult to decide which ones are the best
for a particular situation. The reader should refer to the general references at the end of the
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chapter, to better understand the sometimes subtle differences in the properties of the dif-
ferent metrics. There are also choices with respect to the most appropriate variables on
which to focus. In both cases, the answers depend on the ultimate use of the model output. 

In terms of the relevant variables, if the most important use of the model output is to
provide input to a flash-flood-prediction system, obviously hourly precipitation rate is
most important, with an emphasis on verifying the higher-rate thresholds. Forecasting the
precipitation in the correct watershed is important, so the geometry of the landscape can
inform the selection of acceptable displacement criteria in feature-based verification meth-
ods. If the model is used to provide input to an air-quality model, errors in the low-level
winds and boundary-layer depth contribute to errors in the boundary-layer ventilation.
And, the depth and strength of surface-based inversions would be important aspects of the
forecast. Ideally, if the atmospheric model is being used to provide input to specialized
models, such as the above examples for flood and air-quality prediction, the verification
should also be in the context of the ultimate variables – e.g., ozone concentration, water
discharge in a river, etc.

9.13 Model-verification toolkits

Model verification can be made easier by taking advantage of toolkits available for this
purpose. Some are model specific, and others are not. For example, the WRF model has
the Model Evaluation Toolkit (MET, supported by NCAR). A free software environment
for statistical computing and graphics, which can be used for verification of any model, is
provided by the “R Project for Statistical Computing”. Available on-line for virtually all
the toolkits are the software itself, manuals, announcements of conferences for users to
compare applications, frequently asked questions, newsletters, etc. Regardless of the
model that is being used, it is worth inquiring about the availability of verification support
services such as these.

9.14 Observations for model verification

Observations are, of course, required for both model initialization and verification. How-
ever, the availability of observations varies greatly for different parts of the world.
Section 6.2 summarizes the observation platforms that can provide in-situ observations
over land, as well as remotely sensed data that can be processed with retrieval algorithms
to produce state variables or precipitation rates. Global data are archived by operational
and research centers throughout the world, such as NCEP, ECMWF, the United Kingdom
Meteorological Office (UKMO), NASA, the European Space Agency (ESA), and NCAR.
The data are often available on-line, at no cost. As an example, Advanced Data Processing
data sets are available from the NCAR Computational and Information Systems Labora-
tory’s Data Support Section. The data represent a global synoptic set of hourly surface and
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6-hourly data reports, operationally collected by NCEP. The surface data set includes
mostly SYNOP1 and METAR2 land reports, but a few ship observations also exist. The
upper-air data consist mainly of radiosonde soundings.

Because precipitation is a variable that often receives special attention for model verifi-
cation, some special sources of such data are worth mentioning. Gauge data are, of course,
useful, except they are only available over land. And their spatial distribution is far from
uniform, and their locations tend to be biased toward more-populated lower elevations
rather than the higher elevations where the precipitation is generally greater. Other data
sets are based on a merger of satellite and gauge data. For example, the Tropical Rainfall
Measurement Mission (TRMM) product (product 3B43; Huffman et al. 2007) combines
precipitation estimates from multiple satellites (retrievals from measurements in the
microwave and infrared regions of the spectrum) as well as gauge-based analyses on a
0.25° × 0.25° grid that extends from 50° N to 50° S for the period from 1998 to the
present. For verification of model climatologies, the Global Precipitation Climatology
Centre (GPCC; Beck et al. 2005) data set provides gauge-based monthly precipitation
totals from 1901 to the present on a 0.5° × 0.5° global grid, but only over land. And, some
national weather services produce analyses based on weather-radar data. For example, the
US NCEP, 4-km, Stage-IV multi-sensor precipitation analysis is constructed using WSR-
88D radar estimates, corrected by available gauge measurements (Lin and Mitchell 2005,
Fulton et al. 1998). 

In addition to national data networks, there are numerous regional mesonetworks whose
data are often available in real time for no cost at a central repository. Examples in the USA
are the Oklahoma (Brock et al. 1995) and MesoWest (Horel et al. 2002) mesonetworks.

SUGGESTED GENERAL REFERENCES FOR FURTHER READING

Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E. Ebert (2009). Intercompari-
son of spatial forecast verification metrics. Wea. Forecasting, 24, 1416–1430.

Jolliffee, I. T., and D. B. Stephenson (2003). Forecast Verification: A Practitioner’s Guide
in Atmospheric Science. Chichester, UK: Wiley and Sons Ltd.

Wilks, D. S. (2006). Statistical Methods in the Atmospheric Sciences. San Diego, USA:
Academic Press.

PROBLEMS AND EXERCISES 

1. Explain sources of representativeness error in addition to the influence of orography
on the low-level windfield. For example, how can differences between local and

1 SYNOP reports are observations that are made at internationally agreed upon times, every 3, 6 or 12 hours,
by meteorological observers. Specific practices are prescribed by the World Meteorological Organization,
and adhered to by all national meteorological services.

2 METAR reports are near-surface observations of the standard meteorological variables that are made hourly,
or between hours when special observations are warranted, often at airports. METAR codes are regulated by
the World Meteorological Organization.



Verification methods320

grid-box-average landscape properties lead to artificial errors in the temperature and
humidity fields? 

2. On what factors do the spatial and temporal spectra of model solutions depend? What
determines how well these properties of the model solution verify against the real
atmosphere?

3. Why are there peaks in the power at both 12 h and 24 h for the coastal station winds in
Fig. 9.11?

4. For the precipitation observation–forecast pairs in Fig. 9.9, how would you subjectively
rank the forecasts in terms of accuracy? Explain your choices. 

5. Is the so-called representativeness error really an error?
6. Describe different types of meteorological feature or events that could be used for fore-

cast verification.
7. Using the general references above, summarize which accuracy and skill metrics are

most appropriate for different purposes.
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The aim of this chapter is to provide a few examples of some common methods for using
models in research studies. Other chapters also discuss experimental designs in the context
of the specific subject being discussed. For example, there are many places in Chapter 16
describing experimental methods related to modeling studies of climate change. The sum-
mary here is far from complete because experimental methods are obviously closely tied
to the objectives of a research project, which can vary widely. Nevertheless, the methods
summarized are in wide use, and their strengths and limitations should be understood.

10.1 Case studies for physical-process analysis

Model simulations, generally for short time periods, are often used to study some aspect of
a meteorological phenomenon. Sometimes the purpose is to better understand the predict-
ability of a process, in terms of the necessary physical-process parameterizations or initial
conditions. This is treated in Section 10.7 on predictive-skill studies. More often, the pur-
pose is to use the model to help better understand the dynamics or kinematics of a physical
process. The model is integrated from an initialization that is based on observations at the
beginning of the study period. A next step in the process is to confirm that a good corre-
spondence exists between the model simulation and the observations that are available
during the simulation period. Good verification of the model skill at these observation
locations is typically considered to be justification for believing the simulation in the space
and time gaps between the observations. A benefit of using the model to fill the observa-
tion gaps is that the resulting fields are dynamically consistent, at least with respect to the
dynamics embodied by the numerical approximation to the equations. Another benefit is
that it is easier to analyze data on a quasi-regular matrix of grid points, compared to using
the randomly spaced observations themselves. Additionally, the models respond to fine-
scale local surface forcing that often adds information beyond what can be represented by
the observations, and nonlinear wave interactions can add smaller scales than those repre-
sented in the observations.

The publicly available global or regional reanalyses described in Chapter 16 can be used
for case studies. They are model-generated, and have all of the benefits mentioned above.
And, these data sets are ready for analysis, requiring none of the investments associated
with individual scientists running models. But, even though these data have been gener-
ated by trusted models from major forecasting centers, the resolutions are sometimes not
sufficient to adequately represent some processes. Thus, it is often necessary to run a LAM

10 Experimental design in model-based research
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to generate a fine-scale gridded data set for a case study. Generally, the LAM will use the
large-scale reanalysis for LBCs. In predictive-skill studies, operational forecasts can
be used instead. In addition to the benefits of added resolution, the use of a LAM for case
studies allows the physical-process parameterizations to be chosen specifically for the phe-
nomenon and geographic area being studied.

The following is a summary of the suggested components, and sequence of tasks, for a
physical-process case study. It is especially important to understand the importance of first
thoroughly analyzing the observations themselves, before running the model. Studying the
observations will provide an understanding of the prevailing horizontal and vertical scales
of motion, and the probable processes that are operating. This is essential information that
is needed in order to properly set up the model.

• Clearly define the scientific objectives of the case study.
• Identify a candidate case to study, based on reviewing reanalyses or operational analyses,

personal observation of a case, or the availability of special field-program observations.
• Obtain, quality check, and study all observations for the proposed study period. Analyze

the vertical and horizontal structures in the atmosphere. Perform the best possible over-
all analysis of the process being studied – this could require months. Avoid the tendency
to run the model before this phase is complete; running the model prematurely is a very
common mistake (modelers like to model)! 

• Determine how you would like the model to improve upon the above analysis of observ-
ations.

• Develop an experimental design for the modeling study. For example, will there be sen-
sitivity studies? How will the model simulations be analyzed to satisfy the study objec-
tives – cross sections, trajectory analyses, budget calculations? 

• Based on the identified vertical and horizontal scales of motion associated with the pro-
cesses being studied, choose appropriate horizontal and vertical grid increments. This
should be based on the effective resolution of the model (Fig. 3.36), and not simply the
grid increment. Evaluate the sensitivity of the model solution to the use of different
horizontal and vertical resolutions. 

• Based on a review of the literature, estimate the most appropriate physical-process
parameterizations for the geographic area, the horizontal and vertical grid resolutions,
and the process being simulated. Evaluate the sensitivity of the model solution to the use
of alternative physical-process parameterizations.

• Define sources for the best possible model initial conditions, LBCs (if a LAM is being
used), and land-surface conditions.

• If a LAM is being used, run test simulations to evaluate the sensitivity of the model
solution to the domain size (LBC location).

• Perform a control model simulation, for use in verification.
• Compare the model solution with the observations available during the simulation

period. If there are significant errors, adjust the model configuration accordingly (resol-
ution, parameterizations).

• Based on the fact that the model compares favorably with available observations, use
the gridded model output as a surrogate for the atmosphere in the physical-process
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analysis. Chapter 11 reviews some methods that might be useful for analyzing model
output. 

The reader should have received the clear message above that there is much work that
needs to be done in a physical-process case study before a researcher even thinks about
using the model. In fact, the author’s experience is that the sooner that the model is used in
the process, the longer the study will take. 

It is tempting to consider using continuous data assimilation, for example through
Newtonian relaxation, to generate the gridded data sets for cases studies. After all, it
can be argued that that process is better at integrating observations and model dynamics
than one in which a model simulation only uses observations at the initial time.
However, the relaxation, or nudging, terms are not physical, so the resulting model-
generated data set does not exactly represent the thermodynamic or dynamical balance
of the finite-difference equations. However, if this is less important than the correspond-
ence of the model solution and the observations, the observations can be assimilated in
this way. Nevertheless, it would still be advisable to first perform the simulation without
assimilating observations throughout the study period, to allow those observations to be
used as an independent check on the ability of the model equations to reproduce the
processes. 

When a single extreme weather event is to be analyzed using a case study, or if special
field-program observations are available for a short period, it makes sense to use only
one example of the process (i.e., one case) in the analysis. And, an in-depth analysis of
even a single case can be very time consuming. However, it may be reasonable for some
purposes to study a series of cases, to evaluate case-to-case variations in a process, or to
make the conclusions more convincing. In such situations, it may be appropriate to
focus on one or two aspects of each case, to make the analysis more tractable, rather
than perform the analysis with the same level of detail that would be appropriate for a
single case.

10.2 Observing-system simulation experiments

An Observing-System Simulation Experiment (OSSE) is a procedure for identifying the
potential benefit to operational NWP of a yet-to-be-developed and -deployed observing
system or observational strategy. Its use is motivated by the fact that observing systems
are often extremely expensive to develop and deploy, so they must be first justified by a
quantitative evaluation of the degree to which the possible new observations will improve
the forecasts of operational models. This is accomplished by simulating the entire proc-
ess, beginning with observing the atmosphere and ending with the verification of the
forecast. Figure 10.1 shows the components of the OSSE process. The process begins in
the upper left with the so-called nature run, where the best possible surrogate for the real
atmosphere is generated by a model. Then, the measurement process is simulated by sam-
pling the surrogate atmosphere in a way that is consistent with the existing and proposed
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new observing systems. The simulated existing measurements are assimilated by the
operational data-assimilation system, and this process is repeated by assimilating both
the simulated existing and proposed new observations. Forecasts based on both sets of
initial conditions are produced by an operational-class model (i.e., it must run in real
time), and they are compared with the nature run in order to assess the impact of the new
observations. The process is the same whether the impact is being evaluated of proposed
new observing systems, or of new configurations (e.g., locations, numbers) of existing
instruments. The OSSEs can be performed with global models alone, or with LAMs
nested within global models. More discussion about each of these steps is provided
below.
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ing System Experiment – OSE).

Fig. 10.1
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As suggested above, in addition to assessing the impact of potential new observing
systems, OSSEs can be used to evaluate new observing strategies. For example, the influ-
ence of adding additional observations of a type that is already used can be estimated, as
can the effect of moving present observations from one location to another. 

10.2.1 The nature run

This simulation of an historical study period employs the highest model resolution and
the best representation of physical processes that can be afforded with the available time
and computational resources. It should therefore be expected that the nature run will
more faithfully represent the real atmosphere than will forecasts from operational mod-
els that must run faster, on operational time scales. This is because the higher resolution
in the nature run will result in (1) smaller truncation-related errors in approximating
derivatives, (2) an ability to explicitly represent some processes rather than parameterize
them, and (3) a better rendering of landscape forcing. The results of the nature run are
archived at the native grid-point resolution and with high temporal frequency. This
nature-run output has also been referred to as the “truth”, “history”, or “reference”
atmosphere. 

A goal is for the nature-run model to be as different from the operational model used
later in the process as the real atmosphere is from the solution from the operational
model. If the same model is used for the nature run and for the forecast, the surrogate
atmosphere will have the same biases as does the forecast model. Thus, even if the resolu-
tion of the nature run is much greater than used in the forecast run, and the representa-
tions of some of the physical processes are much better in the nature run, the use of the
same dynamical core will lead to common biases. The use of the exact same model con-
figuration for both purposes is referred to as an identical-twin experiment. When the
exact same model is not used for both purposes, but the models are not as different from
each other as the forecast-model solution is from the real atmosphere, it is called a frater-
nal-twin experiment. Given that the nature-run simulation will be used to verify the fore-
casts, any biases that are common between the nature and forecast runs will make the
forecasts appear better than they really are. An alternative is to use completely different
models, and therefore different dynamical cores, for the nature run and forecasts, and this
would normally qualify as a reasonable approach for an OSSE. But, even then it is well
known that model solutions are sometimes more similar to each other than they are to the
atmosphere. 

10.2.2 Simulating the observations

There are two basic approaches for simulating an observation. The simplest is to interpo-
late from the nature run’s model grid to the observation location, and add an error that is
consistent with the known systematic and random error of the measurement system.
However, the most thorough approach is to use what is called an instrument-forward
model that, as explicitly as possible, represents the interaction of the sensor with its
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environment, to produce a measurement that may, in fact, not be one of the model
dependent variables. The atmosphere from the nature run is used as input to the instru-
ment-forward model, and the output of the model is the simulation of the sensor output.
For example, an emulator for a satellite-based sensor would use the nature-run variables
as input to software (a model of the sensor) that would emulate the functioning of the
sensor’s optics and electronics. The output from the sensor, for example radiances, would
then be assimilated by the data-assimilation software.

It is worth being reminded that the truth atmosphere was generated by Reynolds-
averaged equations, and thus the model solution does not represent the turbulence that
exists in the actual atmosphere. Thus, a current area of research is the development of
methods for representing the effects of the turbulence on simulated observations in
OSSEs. 

10.2.3 Data assimilation

If an OSSE is being employed to assess the impact of a completely new sensor, on a sat-
ellite that has yet to be launched, it could be 5–10 years before the new data become
available. The operational assimilation systems and models in use at that time in the
future will inevitably be different than the present-day systems used in the OSSE. Thus,
because the impact of an observation on forecast skill depends greatly on the assimila-
tion system and the model, the impact of the new observations as assessed by the OSSE
will not reflect the future impact. Even though there is no obvious way to address this
problem, it should be recognized as a source of error in the process. A separate point is
that, just as the error characteristics of real observations are used in operational data-
assimilation systems, the error characteristics associated with the instrument-forward
models mentioned above should be used in the data-assimilation software employed in
the OSSE.

10.2.4 Forecasting

For the reasons mentioned above in the context of the data-assimilation system, the fore-
cast model used in the OSSE should, as closely as possible, approximate the operational
systems that will be in use at the time that the potential new observations will become
available. This is because the characteristics of the forecast model will affect the impact of
observations. To understand this, remember that the entire modeling process has many
components that contribute to the final errors in the forecast, where these include the
model initial conditions, the dynamical core, the physical-process parameterizations, and
the quality of the lower-, upper-, and lateral-boundary conditions. Large errors in any one
of these components can limit forecast skill regardless of the sophistication of the other
components. For example, the benefit of accurate, high-resolution data from a new sensor
is not going to be realized if the forecast model has coarse resolution or large errors in the
representation of the physics. Thus, the value of a new observing system can be limited by
the properties of the model used to produce the forecasts. The implication is that the use in
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the OSSE of a forecast model that is inferior to the one that will be in use when the future
observing system is implemented, will probably underestimate the positive impact of the
new observations. 

10.2.5 Assessing the impact of observations

The forecast-skill measures used here can be conventional ones, or they can be specific to
a particular application of the forecast. For example, if the objective of the OSSE is to
evaluate the impact of a new type of global satellite-based observing system on 72-h
synoptic-scale weather forecasts, measures such as anomaly correlations would be reason-
able. However, consider an OSSE that is conducted to estimate the effectiveness of differ-
ent scan strategies for Doppler radars that are used to initialize forecasts of moist
convection. In this case, some of the measures described in Chapter 9 for verification of
precipitation forecasts would be more appropriate. 

10.2.6 Calibrating the OSSE 

The right side of Fig. 10.1 illustrates a way of verifying the ability of the OSSE procedure
to properly represent all components of the process, based on the use of current, real
observing systems. The process is called an Observing System Experiment, or an Obser-
vation Sensitivity Experiment (OSE), where the purpose is to evaluate the impact on fore-
cast skill of the use of an existing observation network. Here, a nature run isn’t needed
because real observations are used to initialize the forecast. And, the data-assimilation and
forecast steps are run both with and without the observations from the measurement sys-
tem that is being evaluated. The comparison of the forecast variables and real observations
during the forecast period defines the contribution of the withheld observations to forecast
skill. Then, the OSSE procedure is applied to the same case, where a nature run is gener-
ated, and the observations are simulated using the method of choice. Again, the data-
assimilation and forecast systems are run with and without the simulated observations. A
comparison of the two forecasts with data from the nature run defines the impact of the
observation type. If the impact is similar from the OSSE and the OSE, it provides some
confidence that the OSSE will reasonably estimate the impact of a hypothetical new meas-
urement system. If there is a difference, OSSE results can be calibrated such that the esti-
mate of the impact of the new measurements will be more realistic. Comparison of the
documented, known error statistics from real observations and those from the simulated
observations is another way of evaluating the OSSE process. 

10.2.7 Examples of OSSEs

Table 10.1 lists examples of the use of OSSEs to assess the impact on model-forecast
accuracy of future observing systems. Note that this list represents only a small subset of
the hundreds of OSSEs that have been conducted. The observing system whose impact
was evaluated, and the associated references, are provided.
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10.3 Observing-system experiments

The OSE procedure described above was used to verify the validity of OSSEs. However,
OSEs may also be used to quantify the contribution to model forecast skill of existing
observations. This may be motivated by the need to eliminate individual observations, or
perhaps entire types of observations, as a budget-cutting measure. The process is
described in the schematic on the right side of Fig. 10.1. A pair of data-assimilation and
forecast cycles is performed, with and without the use of the observations being evaluated.
As with OSSEs, the results should be based on an analysis of the sensitivity for each
season of the year, for as long a period as possible. The availability of special observing
systems during a field program also provides an opportunity for using OSEs to evaluate
the impact on forecast skill of adding new types of observations. 

 Table 10.1 Example applications of OSSEs, arranged approximately chronologically

Purpose of experiment Observing system, variable References

Define the sensitivity of the accuracy of heat and 
moisture budget calculations, for convective situations, 
to the spatial and temporal density of soundings. 

Radiosonde Kuo and Anthes 
(1984)

Define the spatial and temporal frequency of soundings 
needed for calculation of accurate kinematic trajectories.

Radiosonde Kuo et al. (1985)

Estimate the impact of a new surface-based observing 
system on mesoscale weather prediction.

Profiler network, winds and 
temperature

Kuo et al. (1987),
Kuo and Guo (1989)

Assess the impact of potential new satellite observing 
systems on a global data-assimilation system. 

Satellite Doppler lidar wind, 
microwave temperature and 
moisture

Hoffman et al. (1990), 
Zagar et al. (2008)

Assess the impact of potential new satellite observing 
systems on analyses and forecasts.

Microwave sensors; rainfall, 
water vapor, temperature

Nehrkorn et al. (1993)

Estimate the impact of a potential new satellite 
observing system on predictability.

GPS refractivity Kuo et al. (1998),
Ha et al. (2003)

Evaluate the impact of satellite winds on forecasts. Satellite scatterometer winds Atlas et al. (2001)

Evaluate the impact on forecast skill of a higher 
density observation network.

In-situ observations and 
satellite radiances

Liu and Rabier (2003)

Generate improved 13-month nature run with the 
ECMWF T511 General Circulation Model (GCM)

NA Reale et al. (2007)

Assess the impact of potential new super-pressure 
balloon data on regional weather analyses and 
forecasts.

Balloon-borne pressure, 
temperature, humidity, and 
wind

Monobianco et al. 
(2008)
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10.4 Big-Brother–Little-Brother experiments

These Big-Brother – Little-Brother (BB-LB) experiments have traditionally been used to eval-
uate the impact of LBCs on the model solution in dynamic-downscaling experiments. The pro-
cedure is to first generate a high-resolution, large-grid-area reference simulation, called the BB
simulation. This solution is then spatially filtered, so as to retain the scales typical of atmos-
phere–ocean general-circulation-model simulations. The identical model is then run for a
smaller grid that is within the area of the larger grid, using the filtered large-grid simulation for
ICs and LBCs. This is the LB simulation. The difference between the BB solution, and the LB
solution after it spins up, is entirely attributable to the numerical impacts of the nesting proce-
dure (e.g., the size of the smaller grid, the LBC update frequency, the blending strategy at the
boundary) used in the downscaling process. Figure 10.2 shows a schematic of the procedure.

Large limited-area
high-resolution model

Global low-resolution
analyses

Filter small scales

Regional
climate validation

IC and LBC

Large regional
high-resolution

reference simulation

Small limited-area
high-resolution model

Small regional
high-resolution

simulation

IC LBC

Schematic of BB-LB experiments, as they can be used to test the LBC process for downscaling with regional climate 

models. Adapted from Denis et al. (2002).

Fig. 10.2
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Examples of the use of this type of experiment are in Denis et al. (2002), Castro et al. (2005),
Dimitrijevic and Laprise (2005), Antic et al. (2006), Herceg et al. (2006), Diaconescu et al.
(2007), and Køltzow et al. (2008). Even though these references focus on climate downscal-
ing, this method can be used for other purposes. For example, Fig. 10.3 is based on the Denis
et al. (2002) BB-LB experiment, and shows the time required for different spatial scales to
spin up after initialization in the LB experiment. Panel (a) illustrates the area coverage of the
large (BB) and small (LB) computational grids, and panel (b) shows the spectrum of the ratio
of the LB and BB low-level Kinetic Energy (KE) for different times during the LB simulation.
The ratio for the ICs (0 hour) of the LB simulation shows the result of the low-pass filter that
was applied to the BB simulation. In fact, there was virtually no KE at this time in scales
below 500 km on the LB grid. The ensuing KE growth in this part of the spectrum results at
least partly from the model atmosphere’s response to the Appalachian Mountains near the east
coast of North America. The most rapid adjustment in the KE occurs between 6 and 12 hours.
By 24 h into the simulation, the LB KE is very similar to that of the BB. This use of BB-LB
experiments could define, for a new model application, the time required after initialization for
model spin-up. The user of the simulations or forecasts would thus be aware that the model
output should not be used during that period after initialization. 

10.5 Reforecasts 

Chapter 16 describes reanalyses, which are obtained by running the same data assimilation
system for a long historical period. Reforecasts are similar to reanalyses, except that fore-
casts with the same numerical model are produced at regular intervals (e.g., daily) over an
historical period using the reanalysis data set for initial conditions. The reforecasts can be
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deterministic forecasts or ensemble forecasts. These retrospective forecasts, which have
been produced with a fixed version of the model, can be used for a variety of purposes.
Biases can be calculated to help identify and correct weaknesses in the model. Or, they can
be used for calculation of model-output statistics or, similarly, for training algorithms for
statistically downscaling the forecasts. Lastly, predictability studies can be conducted. The
obvious benefit of reforecasts over archived operational forecasts is the fact that opera-
tional models are routinely changing, with implementations of improved physics and
numerics, and with code-bugs fixed. 

Unfortunately, the computational requirements for generating decades of reforecasts are
usually prohibitive for operational centers, given that operational-forecasting demands
consume virtually all available resources. Alternatively, it has been possible for individual
researchers to conduct a limited number of reforecasts to satisfy some of the above objec-
tives. However, long periods of reforecasts are needed in order quantify model skill at
forecasting infrequent, extreme events. References on this subject are Hamill et al. (2004,
2006), Hamill and Whitaker (2006), and Glahn (2008).

10.6 Sensitivity studies

A common motivation for performing a modeling study is to define the sensitivity of a
model simulation to initial conditions, lateral or lower boundary conditions, or physical-
process parameterizations. The following sections summarize some of the methods used
for analyzing this sensitivity.

10.6.1 Simple sensitivity studies

A simple and historically common method of performing a sensitivity analysis is to pro-
duce a simulation with a control version of the model, and then change some aspect of the
modeling process and perform a second simulation. By directly comparing the two simu-
lations, or subtracting them to produce a difference field, an assessment can be made of the
sensitivity to the modified process. For example, Fig. 10.4 shows the difference between
two simulations, one with the Great Salt Lake and Utah Lake in western North America
(the control experiment), and the other with the lakes replaced by the surrounding natural
landscape. The purpose was to define the influence of the lakes on the regional wind field.
A drawback to this approach to sensitivity analysis is that it only can answer simple ques-
tions. For example, in this case there are mountains near the lake shore, so the lake breeze
at the time in the figure is influenced by the terrain, so what is seen is the interaction of the
lake breeze with the orography, and not the result of the lake breeze alone. Nevertheless, if
the objective of the analysis is to answer a practical question – in this case, how would the
low-level wind field change if the lakes dried up – rather than to separate the different
physical effects, this experimental design serves the purpose. 

Table 10.2 lists a few of the many hundreds of model-based sensitivity studies that have
been conducted. In addition to physical-process sensitivity studies, others isolate the
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impact of some aspect of the model configuration, such as resolution, physical-process
parameterizations, LBCs, etc. Some of the listed studies, many of which had the aim of
improving our understanding of the physical processes that prevailed in a particular mete-
orological situation, could have used the factor-separation method described in the next
section. The last section of Chapter 16 discusses additional sensitivity studies that evalu-
ated the impact of landscape changes on regional and global climate.
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Simulated 10-m-AGL wind (see vector scale) and 2-m potential temperature (shaded) difference fields (control minus 

no-lake experiment) for 1900 LT 14 July 1998. The potential temperature difference field is analyzed and shaded with a 

1 degree interval, and the wind vector difference field is plotted at every second grid point. The heavy solid lines out-

line the Great Salt Lake and Utah Lake. Adapted from Rife et al. (2002).

Fig. 10.4
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10.6.2 Factor-separation method

This method is similar to the previous approach to performing sensitivity analyses, except
that, here, more modeling runs span all the different combinations of the chosen factors,
and mathematical manipulation of the model results allows isolation of the contribution of
each factor to a specific output variable, such as precipitation. As an illustration, consider
the experiment in Stein and Alpert (1993), where the purpose was to evaluate the relative
contributions of the surface heat fluxes and irregular orography to modifying the large-
scale dynamical production of precipitation in the region of the eastern Mediterranean
Sea. During the day, the boundary layer is warmed as a result of the existence of surface
heat fluxes, this establishes horizontal pressure gradients where there are variations in sur-
face elevation, and the resulting thermally direct circulations have ascent over the higher
elevations. This can generate precipitation. Here, it is not possible to isolate the effect of
either the surface heat flux or the orography using just two simulations. For example,
comparing the results of a control simulation having all the factors represented, with the
results of a simulation that does not have variable orography, will eliminate the thermally
forced precipitation over the higher elevations. But, the difference between the two precip-
itation simulations does not represent the contribution of only the orography because the
heat fluxes were necessary as well. Similarly, precipitation from a no-heat-flux simulation
subtracted from the control precipitation might produce a similar difference field, but the
difference would be associated with the orographic variation as well as the fluxes. The

Table 10.2 Examples of simple sensitivity studies. They include evaluations of the sensitivity of simulations of synoptic- and
convective-scale processes to various factors (impact variables), including surface conditions, surface fluxes, latent heating,
static stability, resolution, and LBCs.

Processes for which impacts are evaluated Impact variables References

Ice storms in the southeastern USA Atlantic Ocean SSTs Ramos da Silva et al. 
(2006)

Explosive maritime cyclogenesis in the 
Atlantic Ocean

Ocean sensible- and latent-heat 
fluxes, latent-heat release, initial 
conditions, horizontal resolution

Anthes et al. (1983)

Idealized maritime cyclogenesis Ocean sensible- and latent-heat 
fluxes, latent-heat release, static 
stability, baroclinity

Nuss and Anthes (1987)

Convective initiation Amount of assimilated data, 
lateral-boundary location, data-
analysis procedure

Liu and Xue (2008)

Southern Hemisphere extratropical climate Sea ice Menendez et al. (1999)

Island convection Wind speed and direction, surface 
fluxes, low-level moisture

Crook (2001)
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factor-separation method addresses this problem by conducting four experiments: a con-
trol simulation with all the factors, a simulation with variable orography eliminated, a
simulation with no surface heat fluxes, and an experiment with no variable orography and
no surface heat fluxes. From these experiments, the effects on precipitation of the interac-
tion of the heat fluxes and orography can be isolated.

Using notation similar to that in Stein and Alpert (1993), let f represent a variable field
that results from a model simulation. For the above study, there are three factors that con-
tribute to precipitation formation: large-scale dynamics (d), surface sensible-heat fluxes
(f), and variable orography (o). Subscripts indicate the factors that are represented in a
simulation; e.g.,  is the precipitation field that results from the inclusion of all three
factors in a control simulation. The quantities , , and  are similarly defined, and
represent simulations where one or two of the local-forcing factors are not included. Now,
let  be the variable field after factors have been separated from the solution, where sub-
scripts refer to processes that have been isolated. For example, for the above situation, 
is the precipitation that results from two factors, the large-scale dynamics and the heat
fluxes; that is, the variable-orography factor has been eliminated. Based on Stein and
Alpert (1993), the factor-separated fields can be calculated by the following equations:

, (10.1)

, (10.2)

, and (10.3)

. (10.4)

The last equation defines the precipitation field that results from the interaction of the sur-
face heat flux and the irregular terrain elevation. Stein and Alpert (1993) describe the gen-
eral form of the above equations, for an arbitrary number of factors. Note that multiple
factors can be lumped together, if it is acceptable for their effects on the model solution to
be aggregated in the sensitivity analysis. And, simulations do not necessarily need to be
performed for every combination of factors. Even though there are clear benefits to the
factor-separation method in terms of enabling the isolation of specific factors and combi-
nations of factors, there are a few drawbacks.

• The method is time consuming. If n factors must be completely separated,  model
simulations are required.

• It is often not possible to identify a priori the most important physical factors that contri-
bute to a particular aspect of a model solution. The unidentified factors, as important as
they might be, have their effects collectively represented in the simulation that has all
the other factors removed.

• Knowing the quantitative effect, on a simulated variable, of interactions among factors
provides no insight about the physical processes represented in the interaction. This
issue becomes more challenging for larger numbers of factors.
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Table 10.3 lists some examples of applications of the factor-separation method used in
sensitivity studies, with information about the variable in terms of which the sensitivity is
tested, the geographic area, the types of factors whose impact on the model solution is
assessed, the numbers of factors, and references. Figure 10.5 illustrates one way of

Table 10.3 Examples of applications of the factor-separation method 

Process or variable on 
which impacts are 
evaluated Geographic area Factors

Number 
of factors References

MCS-precipitation 
forecast skill

High Plains of 
North America

Physics parameterizations, 
initial conditions

8 Jankov et al. (2005, 
2007)

Lee cyclone Sea-Level 
Pressure (SLP)

Western 
Mediterranean Sea

Orography, upper-level 
Potential Vorticity (PV) 
anomaly, surface 
sensible-heat flux

3 Horvath et al. 
(2006)

Snowfall North America Different Great Lakes 3 Mann et al. (2002)

Extreme convective 
precipitation

Spain Orography and latent 
heating

2 Romero et al. 
(2000)

Mesocyclone vorticity Eastern 
Mediterranean Sea

Orography, sea-surface 
fluxes (latent and 
sensible)

2 Alpert et al. (1999)

Cool-season heavy 
precipitation

Western 
Mediterranean Sea

Orography and surface 
latent-heat flux

2 Romero et al. 
(1998)

Quasi-tropical cyclone 
SLP and precipitation

Western 
Mediterranean Sea

Orography, surface 
sensible- and latent-heat 
fluxes, latent-heat 
release, PV anomaly

5 (not all 
are 
separated)

Homar et al. 
(2003)

Sea-breeze wind Monterey Bay, 
California, USA

Coastline, coastal 
mountain, inland 
mountain

3 Darby et al. (2002)

Lee cyclone SLP Alps Mountains Lateral-boundary 
location, initial 
conditions, orography

3 Alpert et al. (1996)

Cyclone geopotential 
height, convective 
instability, wind

Coastal South 
Africa

Orography, surface 
sensible-heat fluxes

2 Singleton and 
Reason (2007)

Extratropical cyclone 
precipitation

Connecticut and 
Long Island, New 
York, USA

Orography, coastal 
differential friction

2 Colle and Yuter 
(2007)
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viewing results from a factor-separation experiment, in this case from the Horvath et al.
(2006) study listed in the table. The factors evaluated here are the existence of Atlas
Mountain orography (factor 1), the surface sensible-heat flux (factor 2), and an upper-level
Potential Vorticity (PV) anomaly (factor 3). The influence of these factors on the central
pressure of a deep cyclone in the Mediterranean Sea is assessed. In the figure, the F1, F2,
and F3 curves are calculated using an equation analogous to Eq. 10.2. They thus isolate the
individual influences of the three factors on the pressure depth of the storm. The next three
curves identified in the legend show the contributions of the synergies between pairs of
factors to the evolution of the central pressure (Eq. 10.4). The last curve shows the results
of the triple interaction among the factors. Another way to interpret factor-separation
results is to compare plan views of a simulated variable, for the same time in each experi-
ment. Or, the factor-separated fields defined by Eqs. 10.1–10.4 can be plotted. For another
synoptic-scale cyclogenesis case in the eastern Mediterranean, Fig. 10.6 shows the 36-h
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precipitation totals associated with large-scale dynamics alone (a), orography alone (b),
surface fluxes alone (c), and the interaction between orography and surface fluxes (d),
based on Stein and Alpert (1993). The results are intuitively reasonable. The large-scale
dynamics produces a relatively large, smooth area of precipitation along the storm track,
the orographic effects are smaller in scale and near mountains, the surface fluxes have
their greatest impact over the waters of the eastern Mediterranean and immediately down-
wind, and the synergistic effects of fluxes and orography are near the orographic forcing in
the eastern Mediterranean.

10.6.3 Adjoint methods

Adjoint methods are discussed in Chapter 6 in the context of their use in variational
model-initialization procedures. And, Chapter 3 describes variational techniques, employ-
ing an adjoint model, that were used to investigate the sensitivity of LAM forecasts to ini-
tial conditions and boundary conditions. The adjoint operator produces fields that indicate
the quantitative impact, on a particular aspect of the forecast, of any small, but arbitrary,
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perturbation in initial conditions, boundary conditions, or model parameters. In the types
of sensitivity studies described in the previous two sections, modeling systems with differ-
ent physics, data inputs, LBCs, etc., are run, and the resulting differences in the simulated
variables are the measures of sensitivity. The difference fields represent the sensitivity of
the variable to the perturbed factors. With the adjoint approach, direct metrics of the sensi-
tivity are provided. For a more in-depth discussion of this technique, the reader should
consult Hall and Cacuci (1983), Errico and Vukicevic (1992), Errico et al. (1993), and
Errico (1997). 

10.7 Predictive-skill studies

This common type of study assesses an operational model’s skill at weather prediction,
typically emulating the operational environment in a retrospective setting. This can be
motivated by an interest in testing a forecast model for perhaps some new geographic area,
or because a modification to the model has been made and the impact on forecast skill
must be evaluated. Such studies are different in a couple of respects from case studies that
use research models rather than operational systems. Specifically, because an operational
system is being emulated, the resolutions and model physics are chosen such that the
model will execute in a sufficiently short period of time for the output to serve as a fore-
cast. Also, unlike physical-process-oriented modeling studies, the LBCs of LAMs must be
specified using archived operational global-model forecasts rather than reanalyses of
observations. That is, operationally realistic errors should exist in the LBCs. An individual
case can be used, or more-meaningful results can be obtained using a long series of fore-
cast cycles. 

Modeling system components that are often evaluated in the context of operational pre-
diction are the data-assimilation system, the dynamical core (numerics), the formulation
of the LBCs for LAMs, the physical-process parameterizations, and the land-surface spec-
ification. Also, the impact of new data types, in OSE or OSSE frameworks, is evaluated in
tests that emulate operational models. 

Criteria for evaluating a forecast’s success in an operational setting should be related to
the variables of greatest importance for the ultimate users of the forecast information. For
example, if warm-season convective rainfall is an important quantity because forecasts of
it are used for agricultural applications, that variable should be included in the verification
process. 

Every operational forecast center conducts studies such as these using off-line
(nonoperational) versions of the operational models. Thus, the fact that many hun-
dreds of such studies have been conducted makes it impractical to summarize the liter-
ature. Let a couple of examples suffice. Powers et al. (2003) describe the initial testing
of a new operational regional modeling system for use over Antarctica, to support avi-
ation, maritime, and land-based activities. And, Liu et al. (2008b) summarize the per-
formance of an operational regional modeling system used for five locations in North
America. 
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10.8 Simulations with synthetic initial conditions

The use of real meteorological situations for modeling studies introduces inevitable com-
plexity, sometimes making it difficult to interpret results when many processes are inter-
acting. A solution to this problem can sometimes be achieved by the use of synthetic, or
idealized, initial conditions. For example, much can be learned about coastal circulations,
urban-heat-island circulations, and mountain-valley circulations through model simula-
tions that use simple, idealized large-scale flow conditions. Initial large-scale winds may
be defined as horizontally uniform or calm, and in geostrophic or gradient balance with
the mass field. The resulting thermally forced circulations are more easy to interpret when
they are superimposed upon the smooth large-scale flow, compared to the situation with
real-data simulations where other features exist. Or, if the model’s ability to properly sim-
ulate Rossby waves is a subject of study, an appropriate large-scale wave in the initial con-
ditions can be prescribed analytically, superimposed on a zonal flow in a channel model.
This general approach has been used for simulation of many processes, including tropical
cyclones (Frank and Ritchie 1999, Riemer et al. 2008), boundary-layer flow over a forest
canopy (Inclan et al. 1996), conditional symmetric instability (Persson and Warner 1995),
and mesocyclones (Klein and Heinemann 2001). 

10.9 The use of reduced-dimension and reduced-physics models 

The use of these reduced-dimension and reduced-physics models is motivated by the same
reasons as the use of synthetic initial conditions described above – simplifying the experi-
mental situation to allow for a more-clear interpretation of results. In addition, the simpli-
fication of the modeling framework results in the use of less wall-clock time and
computational expense to perform simulations. 

10.9.1 Reduced-dimension models

These models include the single-layer, shallow-fluid models (x–y) described in Chapter 2,
cross-section models (x–z or y–z), and column models (z). The shallow-fluid models are
useful because the computer codes are simple, and there are generally no moist processes,
radiation, or turbulence. They are typically used for evaluation of dynamical cores. Two-
dimensional, vertical cross-section models often include a fairly complete representation of
physical processes (to the extent possible with two dimensions), but the lack of the second
horizontal dimension makes the models perhaps two-orders of magnitude less computation-
ally intensive to use. Thus, higher vertical and horizontal resolutions can be used efficiently,
and more computationally intensive numerical procedures and process parameterizations
can be evaluated. Lastly, one-dimensional, column models are convenient for testing
parameterizations of boundary-layer fluxes and growth, radiation, and moist convection –
all being somewhat one-dimensional processes in terms of their representation in a model. 
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Some LAM systems allow a user to select an option that collapses the model to a cross-
section configuration. If that option is not available, the user may be able to sufficiently
reduce the grid dimension in one direction to achieve the same goal. For example, if only
one row or column of grid points is needed to define the lateral boundary conditions at
each edge of the grid, it may be possible to specify a grid dimension of three in the col-
lapsed direction – one computational row or column, and boundary values replaced by
interior values (zero-order extrapolation). 

10.9.2 Reduced-physics models

Obviously these models that employ less than the full suite of physics need to be employed
appropriately for situations where the lack of complete physics still allows the experimen-
tal objectives to be met. One type of reduced-physics model that we have already seen is
the shallow-fluid model. The shallow-fluid system has no moist processes, no radiation,
and no turbulence parameterization because it is used primarily for studies that focus on
numerical solutions to the equations, and on simple dynamical processes. As noted in the
previous section, this is also a reduced-dimension model, with typically no variability in
the vertical. 

The above-mentioned column models are, out of necessity, reduced-physics models. For
example, if studies of the radiative impact of dust on the vertical temperature profile are
conducted with a column model, all processes except radiation can be excluded. Similarly,
in boundary-layer studies, all processes other than those associated with the land surface
and the vertical fluxes of heat, moisture, and momentum can be ignored. 

In the context of operational weather prediction and climate-system modeling, there are
many examples of some physical processes not being included in the modeling system.
For example, for weather prediction on time scales of weeks or less, coupled ocean proc-
esses are not represented. On climate time scales, a spectrum of models with different
complexities is available for answering specific questions (Randall et al. 2007). In addition
to quite simple climate models, there are Earth-system Models of Intermediate Complex-
ity (EMICs) that have somewhat simplified physics representations compared with full
physics Atmosphere–Ocean General Circulation Models (AOGCMs). Because of their
greater simplicity and computational speed, the EMICs can address climate processes and
interactions that evolve on time scales too long for AOGCMs. The use of simplified
EMICs also allows large ensembles to be employed. 

10.10 Sources of meteorological observational data 

Unless model initial conditions are idealized, or the verification of the model uses analytic
solutions, observations will be needed for initialization and verification in research or
operational applications. Observational data are available at no cost from a number of
sources. The US NCAR archives operational observations in their Mass-Storage System,
but late observations are not added to the data set, nor are data-transmission-related gaps
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in the record filled. In contrast, complete archives are maintained by the US NOAA
National Climatic Data Center (NCDC). In fact, NCDC maintains the world’s largest
archive of climate data. Satellite products that define atmospheric and land-surface proper-
ties are available from the ESA and NASA. Also, there are many regional mesonets that
make, primarily, near-surface data available on servers in real time. However, it is always
the user’s responsibility to ensure that the data, regardless of the source, have been ade-
quately QCed. Reanalyses, and archivals of operational forecasts, can also be obtained
from many sources including NCAR, NASA, NOAA, and ECMWF. The best way to inves-
tigate how to obtain data from these organizations is to see their websites. 
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Errico, R. M., and T. Vukicevic (1992). Sensitivity analysis using an adjoint of the PSU–
NCAR mesoscale model. Mon. Wea. Rev., 120, 1644–1660.

PROBLEMS AND EXERCISES 

1. Explain why the impact on model-forecast skill of a new type of observation will
depend on the characteristics of the model and data-assimilation system. 

2. It is claimed that, if the instrument characteristics are properly specified and utilized in
the assimilation process of an OSSE, then the instrument should have a positive or
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neutral impact on the forecast quality. In contrast, a negative impact indicates a prob-
lem in the OSSE system. Explain why this should be true. 

3. An example is provided in this chapter about how a BB-LB experiment can be used to
estimate the time required during a simulation for the atmosphere to spin up in
response to local forcing. Describe alternative approaches for this, with relative advan-
tages and disadvantages. 

4. Why are reduced-dimension models also commonly reduced-physics models? 
5. The first section discusses the use of case studies for physical-process analysis. Tradi-

tionally, the cases analyzed were only a few days in duration. Speculate about how
longer-period model simulations can be analyzed in a practical way, to provide more
robust analyses of physical processes.
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11.1 Background

This chapter describes methods for (1) the graphical display and interpretation of model
output, and observations; (2) the calculation of derived variables from model output, which
can help in the analysis of processes; and (3) the mathematical processing of model output,
which can reveal properties and patterns that are not apparent from the dependent variables
themselves. The comparison of the model output with observations is a type of analysis of
course, but Chapter 9 on model verification is devoted to this subject. Also, the application
of post-processing algorithms, for example to remove systematic error, is a special type of
mathematical processing of the output, and this subject is treated in Chapter 13.

11.2 Graphical methods for displaying and interpreting model 
output and observations

Much of the material in this section is covered in courses on meteorological analysis; how-
ever, it is provided here because many students of NWP have not had such a course availa-
ble to them. More in-depth material can be found in texts such as Saucier (1955) and
Bluestein (1992a,b).

There have been so many creative ways of displaying model output, and comparing it
with observations, that it is impossible to present a thorough treatment here. Nevertheless,
some examples will be provided and the student is encouraged to review the literature and
become familiar with typical techniques (see chapter Problems 1 and 3). This subject is
important because successfully publishing research, whether it is model-based or not,
depends on displaying the results in an easily and quickly understood format.

11.2.1 Eulerian analysis frameworks

In the Eulerian framework, the values of dependent variables are defined at grid points that
are fixed in space. All standard software packages that are used for viewing model output
include the option of plotting Eulerian plan views (quasi-horizontal), or maps, of the
variables, where the analysis is performed on some reference surface such as pressure and
is applicable at a particular time defined in terms of Greenwich time, local time, or

11 Techniques for analyzing model output
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forecast lead time. Maps of conditions near the ground may apply at a certain distance
above ground level. For the atmosphere above the boundary layer, where diabatic heating
associated with surface fluxes is negligible, performing the analysis of the meteorological
conditions on isentropic surfaces can allow for a revealing interpretation of processes
because, in the absence of diabatic effects, the flow remains on the analysis surface. Note
that model output can be plotted and interpreted on isentropic surfaces, even if the model
itself uses a different vertical coordinate.

An alternative Eulerian plotting option is the use of vertical cross sections. Here, a specific
vertical plane is chosen on which model-output variables or analyses of observations are plot-
ted. The orientation of the plane should ideally by chosen so that it best reveals particular proc-
esses or phenomena of interest. For example, Fig. 11.1 shows an east–west-oriented vertical
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cross section of model-simulated conditions over the Andes Mountains of Colombia. For spe-
cial applications such as providing weather guidance to aircraft pilots, displays of forecast
weather can be produced on vertical surfaces that follow an irregular flight path.

There are numerous other types of Eulerian analyses that show the time evolution of
forecast variables at a point, or along a line of points. For example, Fig. 11.2 illustrates a
type of display in which the diurnal evolution and seasonal evolution of a meteorological
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variable can be revealed for a single location. In this case, the winds (vectors) are plotted
for John F. Kennedy Airport, New York. The vectors illustrate the strong sea breeze during
spring and summer afternoons. The gray shades define the constancy of the wind, which is
the ratio of the magnitude of the resultant wind vector and the average wind speed.

Two other types of plots are known as Hovmöller diagrams and time–height sections.
The Hovmöller diagram is a commonly used approach for plotting meteorological data,
either generated by a model or based on observations, to highlight the motion of waves or
features. The abscissa is latitude or longitude, and the ordinate is time/date. Colors or
shading on the diagram indicate the values of some quantity that varies with the position
of the wave. If longitude is defined on the abscissa, the value plotted at a longitude–time
coordinate is an average value of the variable for a latitude band. An example of a Hov-
möller diagram is shown in Fig. 11.3. Here, the GFS-model-simulated precipitation rate
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averaged for 5–15° N latitude in West Africa is shown as a function of longitude and time.
The slope of the pattern shows that the precipitation features were moving from east to
west, where the period is about 4–5 days between the occurrence of heavier precipitation
at a particular longitude. 

An example of one type of time–height section is shown in Fig. 4.12a, which depicts
the vertical structure of the boundary layer as a function of time of day. A more typical
version of this diagram would show isopleths, or colors, or gray shades that define the
variation of the vertical profile of a variable at a point in the horizontal, as a function of
time.

11.2.2 Tracking the movement of parcels of air, or physical features: 
the Lagrangian framework

Trajectory analysis

Trajectories are paths followed by parcels of air, and are thus often called parcel trajecto-
ries. A graphical display of trajectories applies to the period of time over which the parcel
translation takes place. There are two common methods for calculating the parcel move-
ment that defines the trajectory, where the difference is in terms of how the vertical veloc-
ity is computed. In what are called kinematic trajectories, the most-common type, the
three velocity components are provided by a model, and these are used to define the par-
cel’s three-dimensional motion. For v the velocity vector and x the position vector, 

is integrated in time, where displacement in each coordinate direction can be calculated
independently. Thus, in the east–west direction,

.

Solving this numerically, using a time step , we have

for small . Thus, using high-frequency output of the three wind components from a
model forecast or research simulation, the path of a parcel can be incrementally calculated.
Typically a variety of initial points is chosen if the purpose is to reveal the pattern of fluid
motion. For example, Fig. 11.4 shows a large number of trajectories calculated using
model-simulated winds within the circulation of a hurricane. The trajectories were initi-
ated in the low-level convergence zone, rise in the eye wall, diverge at upper levels, and
provide a visual perspective on the circulation that would not have been possible using
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vectors or other Eulerian displays. The other approach for calculation of trajectories is to
assume that the parcels remain on surfaces of constant potential temperature, where these
are called isentropic trajectories. The vertical velocity is thus implicitly defined by the hor-
izontal component of the motion and the slope of the surface. As with kinematic trajecto-
ries, the model-defined winds are used to compute the horizontal displacement of parcels.
Sometimes it is desirable to calculate the origin of a parcel of air that arrives at a particular
location, in which case the mathematical process can be reversed and back trajectories

Kinematic trajectories calculated using the model-simulated winds of a hurricane circulation. The lower circular plane 

is at 960 hPa, the middle one is at 640 hPa, and the upper one is at 130 hPa. Arrowheads are shown every 9 h along the 

path of each trajectory. From Anthes and Trout (1971).

Fig. 11.4
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calculated. Figure 11.5 shows another example of how trajectory analysis can be used to
visualize complex spatial patterns in the motion of a model-simulated fluid. A grid was
placed over a simple flow pattern in the troposphere, associated with an approximately
symmetric trough in the heights. Trajectories were used to define the paths of different
regions in the fluid, as defined by the grid, and the resulting distortions in the grid were
mapped.

0 h 6 h 12 h

24 h 36 h
 The deformation of a layer of air at 500 mb in a barotropic model of the atmosphere, after the indicated simulation 

times. The initial streamline pattern is seen at the top, along with the overlaid pattern whose subsequent evolution is 

traced with trajectories. From Welander (1955).

Fig. 11.5
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Physical features can also be tracked, where an example is the image of the tracks of the
hurricane centers shown in Fig. 7.1. All that is required to produce this type of analysis is the
ability to define the location of a feature in an automated way. This is fairly straightforward for
a hurricane, but can be more problematic for extratropical cyclones or convective systems.

Streamline analysis

Streamlines are lines that are drawn parallel to wind vectors at a specific time. They are
thus different from trajectories because the lines do not follow the movement of parcels
through both time and space. Rather, the lines simply make it easier to view the pattern in
the wind direction, compared to the use of vectors or other symbols that only define wind
direction at grid points. Note that streamlines are not the same as streamfunction lines,
where the latter define the rotational part of the wind. The two may visually appear to be
similar, but the spacing of the streamfunction lines is quantitatively related to the wind
speed, whereas the spacing of streamlines is arbitrary and is determined by the analyst or
analysis software so as to optimize the ease of visual interpretation. Figure 11.6 illustrates

Streamlines for ~15-m AGL based on a mesoscale-model simulation of a region in the western USA. There is much 

structure to the wind pattern because of the existence of complex orography. The shading shows wind speeds, where 

white is less than 5 m s−1, and the gray shades have bandwidths of 5 m s−1. Provided by Yubao Liu, NCAR.

Fig. 11.6
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~ 15-m AGL streamlines based on a mesoscale-model simulation for a region in the west-
ern USA. There is much structure to the pattern because the area is dominated by complex
orography. In this display, the speed is also shown in the form of gray-shade bands.

Isochrone analysis

Isochrones are lines (literally, lines that apply at a particular time) that define the location of a
geometrically simple feature in the atmosphere, based on model output or observations. An
example with which we are nearly all familiar is the synoptic-scale midlatitude front. But, in
an isochrone analysis the frontal location would be shown for multiple times in order to char-
acterize changes in its shape and position. Other features that could be similarly analyzed
include convection-related gust fronts or outflow boundaries, sea-breeze fronts, dry lines, the
edge of elevated mixed layers, the leading edge of a precipitation shield, etc. A necessary char-
acteristic of the feature is that its geographic position must be definable in a simple way, so
that when it is drawn for multiple times the image does not become too complex to interpret.
An example is shown in Fig. 11.7 of isochrones of frontal position.
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Isochrones of a sequence of frontal positions over the northwest USA. Dashed occluded fronts are decaying, and dashed 

lines without frontal symbols represent trough positions. Adapted from Steenburgh et al. (2009).

Fig. 11.7



Techniques for analyzing model output352

11.2.3 Miscellaneous special plotting diagrams

A variety of special data-plotting diagrams can be used to help the modeler interpret out-
put. Many of these have been described already in the context of the verification of fore-
casts, but a few are worth mentioning again. For example, there are many types of
thermodynamic diagrams, such as the skew T–log P plot, that can be used to display the
vertical distribution of variables based on model output and observations. From these dia-
grams can be inferred many important properties of the atmosphere, such as static stability
and associated variables such as CAPE and CIN, and the structure of the boundary layer.
Another type of special display approach is the Taylor diagram in Fig. 7.4.

11.3 Mathematical methods for analysis of the structure of model 
variable fields

Rather than discussing the mathematical foundations for the following methods for ana-
lyzing model output, basic concepts and applications will be stressed, as will sources of
additional information. 

11.3.1 Grouping atmospheric structures by pattern analysis

A variety of techniques exist for grouping atmospheric structures, whether the structures be
defined based on model output, analyses of observations, or observations themselves. This
process involves the automatic identification of recurring weather patterns in a large data
set (e.g., composed of model forecasts or analyses) and the association of variable fields in
the data set with one of the patterns. A manual and qualitative equivalent of this process
would be for an analyst to sort through a large number of weather maps, say of the sea-level
pressure, and put each map into a pile according to the locations of troughs and ridges, the
amplitude of the wave pattern, the strength of the average pressure gradient, etc.

Applications of such an analysis process are many. They include the following.

• Define a regional climatology based on model-generated reanalyses – For each variable,
the climatology would consist of gridded fields that represent the different prevailing
patterns, accompanied by the frequency of occurrence of each pattern. Note that cata-
loguing the extreme patterns and their frequency may be just as important as document-
ing the more-common patterns. 

• Verification of a model’s treatment of regime transitions – Sequences of weather pat-
terns that appear in the analyses of observations are compared with sequences that pre-
vail in model forecasts. Differences can provide insight about regimes that are not
represented by the model. 

• Conventional model verification statistics can be computed separately for different pre-
vailing weather regimes. This can offer insight into the different components of the
model that contribute to the errors. For example, Fig. 9.7 shows model bias calculated
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for two of the most-common warm-season weather regimes in the area of Athens,
Greece: strong Etesian flow from the north, and weak large-scale flow with a prevailing
sea-breeze circulation. 

Disadvantages of these automated pattern-sorting techniques are as follows.

• The patterns are not sorted using any dynamical constraints, so there will likely be dif-
ferent underlying processes within a category.

• The patterns represent a composite of the individual analyses, and thus they may not be
internally consistent in a kinematic or dynamic sense. Thus, a “typical day” is some-
times chosen from the archive, where the pattern for that day closely matches the com-
posite. This analysis for the selected day will be internally consistent.

• Because there is no predefined number of groups, this is an arbitrary choice that must be
made by the analyst without any knowledge of the number of natural clusterings. Thus,
some trial and error will be involved. 

Two of the most common approaches for such pattern analysis are referred to as Self-
Organizing Maps (SOMs) and cluster analysis. See Wilks (2006) for a summary of mete-
orological applications of cluster analysis, and Marzban and Sandgathe (2006, 2008) for
examples of applications related to model verification. And, Kohonen (2000) describes the
general method of SOMs, and an example of one of its many applications for analyzing
model simulations of weather and climate output is provided by Seefeldt and Cassano
(2008). 

Figure 11.8 shows an example of a SOMs analysis for a small number of categories. Six
patterns have been arbitrarily chosen for this analysis of 0000 UTC 700-hPa winds, based
on one year of model-generated reanalyses for an area of the Middle East. The patterns are
distinct in terms of wind speed and/or direction, and the frequency of occurrence of each
classification ranges from 10.1% to 26.1%. The frequency refers to the percentage of the
analyses that fall into each category. Because the number of categories was arbitrarily cho-
sen, further analysis could involve repeating the process with additional degrees of free-
dom to determine if there exists considerable variance within any of the original
categories.

11.3.2 Finding coupled patterns in model or observational data

A different group of methods is aimed at finding coupled patterns in data from models or
observations. Bretherton et al. (1992) and Wilks (2006) describe and compare three of the
most commonly used methods: Principal Component Analysis (PCA), Canonical Correla-
tion Analysis (CCA), and Singular Value Decomposition (SVD). Additional comparisons
are found in articles by Hannachi et al. (2007) and Tippett et al. (2008).

Principal component analysis 

This is also referred to as Empirical Orthogonal Function (EOF) analysis, where the objec-
tive of the mathematical procedure is to transform a data set containing a large number of
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correlated variables into one containing many fewer uncorrelated variables, called princi-
pal components. The new variables are linear combinations of the original ones, with the
first component being the linear combination that contains the largest variance, the second
being the combination that contains the second largest variance, etc. Two or more variables
can be combined in a PCA to reveal relationships between the fields.

There have been many applications of PCA in the atmospheric sciences. For example,
Teng et al. (2007) use a form of PCA to show that an AOGCM supports three distinct cir-
culation regimes, having a persistence period of about 7 days, and that analyses of obser-
vations have very similar regimes and persistence periods. The impact of greenhouse
warming is interpreted in the context of changes in these regimes. Other studies include
one by Smith et al. (2008) who use PCA to compare the diurnal cycles in a climate-model
simulation and observations.
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An early description of the PCA method in the context of applications in the atmos-
pheric sciences was by Kutzbach (1967). Exhaustive treatments of PCA can be found in
Preisendorfer (1988), which is aimed at geophysical applications, and in Jolliffe (2002),
which is a more-general treatment. 

Canonical correlation analysis

Canonical correlation analysis is applied to two multivariate data sets and identifies cou-
pled variability between them. The two data sets can apply to the same time period, or
there can be a lag between them. In the latter case, the relationships between the lagged
variable fields can be used for statistical weather prediction. Indeed, this was the first mete-
orological application of CCA, where in most of the subsequent efforts the forecast time
scales have tended to be interseasonal. For example Barnett and Preisendorfer (1987)
relate seasonal-mean SST anomalies over the Pacific Ocean to surface air-temperature
anomalies over the USA during the following season. See Bretherton et al. (1992) and
Wilks (2006) for other examples.

Singular value decomposition 

Singular value decomposition is similar to CCA in that it isolates combinations of varia-
bles in two fields that tend to be related to one another. See Bretherton et al. (1992) for ref-
erences to example applications. 

11.3.3 Spectral analysis

We have seen in Fig. 3.36 that the spectrum of model output can be computed, and interpreted
to define the effective-resolution of the model. And, Section 9.9.2 discusses how a model solu-
tion can be verified in terms of its spatial spectrum. Here it will be shown that the same type
of spectral decomposition can be used to interpret model output in creative ways. There is a
variety of different wavelength bands that the modeler might desire to isolate using spectral
analysis, but a common one is that which is associated with diurnal forcing. For example,
Fig. 11.9 illustrates the variability (each dot is a location) in the amount of spectral power in
this diurnal band. For time series of observations of 10-m AGL winds at each of 28 locations
in a mountain valley, a spectral analysis separated the spectral energy into three bands: periods
longer than the diurnal, a period of about 24 h, and periods of less than the diurnal. The diur-
nal power for each station is plotted against the average diurnal amplitude of the oscillation of
the u component of the wind at that station. This spectral decomposition has allowed us to
learn that there is a large station-to-station difference in the diurnal power, and that the great-
est diurnal power is located at those stations near a canyon or near a mountain slope (open cir-
cles) where the thermally forced circulation should be the strongest.

A recent, related method is called wavelet analysis. If there is a long time series of val-
ues of model-simulated or observed variables, performing a Fourier transform will convert
the series to frequency space. But, frequently the time series is not stationary in the sense
that frequencies change with time. An option for defining the frequency spectrum for short
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periods, in order to characterize this variability, is a short-period Fourier transform. How-
ever, wavelet analyses are more suitable for this, and are capable of providing the time and
frequency information simultaneously, thus giving a time–frequency representation of the
signal. Torrence and Compo (1998) offer a practical guide to wavelet analysis in the
atmospheric sciences, and Wilks (2006) provides additional references. 

11.4 Calculation of derived variables

The model dependent variables have been used to calculate many derived variables that are
useful in understanding atmospheric processes. For example, based on the model winds, the
vorticity and divergence can be computed. Or, frontogenesis terms can be calculated. Show-
ing the geostrophic and ageostrophic wind vectors can reveal interesting circulations. See one
of the previously noted standard references on meteorological analysis for further examples.

11.5 Analysis of energetics

The analysis of model energetics was discussed in Chapter 3 in the context of ensuring
that there are no erroneous sources or sinks of energy in the model. However, the calcula-
tion of energy terms and conversions based on the gridded output from model simulations,
forecasts, or reanalyses can reveal physical processes as well as differences among
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models. Energy can be partitioned into kinetic, internal, and potential components, and
into components that are associated with the mean flow and eddies that are superimposed
on the mean flow. The potential energy can be separated into both available and unavaila-
ble components; the available part is convertible to kinetic energy while the unavailable
part is related to the equilibrium base state of the system and cannot be converted.

The time-dependent equations for the different energy components are derived from the
same fundamental equations that are the basis for the model. The rates of change in the
energy components are then obtained by applying the model-defined values of the depend-
ent variables in the terms on the right side of the energy equations. 

Two general approaches to the calculation and display of energy-conversion terms
involve the use of grid-averaged values as well as local, instantaneous formulations. As an
example of the latter method, referred to as the “local energetics” (Orlanski and Katzfey
1991) approach, the eddy kinetic energy tendency would be represented on a grid, and dis-
plays of that quantity would be provided. 

Energetics analyses have been performed in many types of studies. A few of the classes
of studies, with references, are listed below.

• Midlatitude cyclogenesis – Orlanski and Katzfey (1995), Lackmann et al. (1999),
Lapeyre and Held (2004), Moore and Montgomery (2004, 2005)

• Storm tracks in IPCC AOGCM simulations – Laîné et al. (2009)
• Madden–Julian oscillation in a climate model – Mu and Zhang (2006)
• Hydrostatic and geostrophic adjustment to thermal forcing – Fanelli and Bannon (2005)

SUGGESTED GENERAL REFERENCES FOR FURTHER READING

Bluestein, H. (1992). Synoptic-dynamic Meteorology in Midlatitudes. Vol. 1: Principles of
Dynamics and Kinematics. New York, USA: Oxford University Press.

Bluestein, H. (1992). Synoptic-dynamic Meteorology in Midlatitudes. Vol. 2: Observations
and Theory of Weather Systems. New York, USA: Oxford University Press.

Saucier, W. J. (1955). Principles of Meteorological Analysis. Chicago, USA: University of
Chicago Press.

PROBLEMS AND EXERCISES 

1. Survey a variety of journal articles, and list and describe the various types of plots that
are used to display model output and compare it with observations.

2. Using the shallow-fluid model employed in the problems of Chapter 3, calculate the tra-
jectory of a parcel of air at the surface of the fluid, as a gravity wave propagates past.

3. Access the websites of national and international modeling centers, both those doing
operational forecasting and research, and describe the types of plots that are used to
display model products.

4. What fundamental differences should exist between analysis methods that are designed
for use by operational forecasters and those designed for researchers?

5. Using a hypothetical wind-field pattern of your own creation, illustrate Lagrangian and
Eulerian approaches to its characterization.
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12.1 Background

The application of models for operational NWP has much in common with their use for
answering physical-process questions, and for satisfying practical needs related to the
assessment of air quality, evaluating the potential utility of new observing systems with
OSSEs, and testing new numerical methods and physical-process parameterizations. Nev-
ertheless, there are some issues that are unique to operational modeling. These will be
addressed in this chapter.

It could be argued that the student of NWP should not need this kind of operations-
oriented information because only large national modeling centers with experienced
staff and large, fast computers are involved in operational prediction. However, there is a
rapid growth in the use of operational regional models by consulting companies, univer-
sities, and regional governments to satisfy specialized needs. Thus, the student should
become familiar with some of the concepts associated with the operational use of
models.

Figure 12.1 illustrates the various components of a very simple operational modeling
system. It should be kept in mind that the modeling systems that are operated by national
weather services have very large infrastructures, and that the one summarized here is more
consistent with the many modest-sized, specialized, operational-modeling systems that
exist throughout the world. Some of these system components have been discussed before
in earlier chapters, for example related to model initialization. To begin with, the system
must have real-time connectivity to operational observational-data networks (top box in
the figure), where this generally involves separate access to a number of different data pro-
viders. The input data types include current land-surface conditions, meteorological obser-
vations from in-situ and remote sensors, and gridded analyses and forcecasts from
operational centers. After observations are received, they must undergo a quality-control
process (Chapter 6). If the observations (e.g., satellite radiances) are not in the form of the
standard model dependent variables, some data-assimilation processes may require that a
retrieval algorithm be applied to obtain these variables. In the figure, the analysis and the
data-assimilation processes are listed separately; however, as we have seen, they are often
closely coupled (Chapter 6). 

If a LAM is being used, LBCs must be provided to the forecast model, and possibly
the data-assimilation system, from a global-model forecast (or a forecast from a
larger-area LAM). The gridded forecast fields from the global model must be acquired

12 Operational numerical weather prediction
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from a data service, unless the global model is run at the same facility as the LAM.
Obviously, the global-model forecast must be completed prior to the integration of the
LAM. 

For each forecast of the model, observations that are assimilated, gridded initial condi-
tions, and forecast products are typically written to a storage facility for archival. This
archive allows retrospective reruns of the forecasts, to allow modelers to perform experi-
ments to evaluate and correct the causes of especially poor model performance. Forecasts
are also often verified in real time on a separate computing platform. The real-time verifi-
cation statistics are sometimes made available to forecasters so that they can assess the
objective accuracy of forecasts from recent cycles of the model. 

The post-processing step will be discussed in Chapters 13 and 14, and can include the sta-
tistical correction of systematic errors. In addition, special post-processing codes (other mod-
els, in some cases) can be applied that derive unforecast variables – such as ocean wave
height, river discharge, and air-pollution and dust concentration – from the forecast variables. 

The forecasts are disseminated in graphical (analog) and digital form. Forecasters can
use a web-based graphical interface to visualize the model output, or the gridded model
output can be downloaded to a workstation on which special graphics software is installed.

Observations

Data QC
and analysis

Data assimilation

Model forecast

Forecast
post-processing

Forecast
distribution

Archival

LBCs from large-
scale forecast

Real-time
verification

?
?

Schematic showing the various components of a simple operational NWP system. See the text for discussion.Fig. 12.1
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When the atmospheric-model forecast products are to be used as input to the above-
mentioned specialized post-processing models, users can access the digital, gridded fore-
cast products from a data server. Lastly, sometimes specialized model products are
produced for specific geographic locations such as major cities. A number of websites pro-
vide publicly available software for use in displaying forecast products. One of them is the
Unidata site of the University Corporation for Atmospheric Research.

It is worth commenting on the evolving relationship between operational NWP and cli-
mate prediction. As will be seen in Chapter 16 on climate modeling, deterministic fore-
casts with coupled atmosphere–ocean (and other components) models are being produced
on interseasonal and interannual time scales. These forecasts are now generated on a regu-
lar cycle like weather forecasts, and as the cycle frequency increases, the distinction will
become even more blurred between them and operational NWP (see Toth et al. 2007). For
example, the NOAA Climate Forecast System (CFS) is now running out to ~9 months,
with a daily cycle and output every 12 h.

12.2 Model reliability

For research applications of models, the ability of the model to complete the integration
with a very high reliability is not an especially great concern because the modeler has the
opportunity to rerun the model with the problem corrected – perhaps eliminating a bad
observation that made it through the QC process or reducing the time step to correct a vio-
lation of the CFL criterion. However, when fatal errors occur in an operational setting, the
consequences are more severe, especially if the problem occurs in a model-based, sequen-
tial, data-assimilation system where each set of model initial conditions is based on the
successful execution of a prior forecast. The resulting unavailability of a forecast in
extreme-weather situations can result in the loss of lives. Interruptions to a forecast cycle
can occur for the following reasons, among others.

• Violations of the CFL criterion can occur because of the existence of especially strong
winds associated with the prevailing meteorological conditions. This could be prevented
with an extremely small time step, but it is not especially sensible to use unnecessary
computing resources during the 99.9% of the forecasts when the short time step is not
needed in order to ensure trouble-free operations during the other 0.1% of the forecasts.

• Models rely on the timely availability of initial conditions. Problems with the data-
assimilation system can cause cycles to be missed.

• Limited-area forecast models obtain their LBCs from previously run models, such as
operational global models, that span larger areas. If this model does not complete its
forecast cycle on time, or if there is a failure in the communication network over which
data from the larger model are transmitted, the LAM forecast cannot run.

• The hardware on which the model computations are performed can have a catastrophic
failure that will cause the entire system to become unavailable for executing the model,
or a sufficient number of processors can become unavailable so that a forecast cannot be
produced. 
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• When using LAMs operationally, for some meteorological situations and grid place-
ments, the LBCs can generate sufficient noise to terminate a forecast. This is especially
problematic when LAM grids are relocated operationally to focus the high resolution on
specific prevailing meteorological features. 

• There are many components of model code, especially related to physical-process
parameterizations, that can fail when confronted with an unusual combination of
meteorological inputs. Clearly one of the requirements for selecting a parameterization
for operational use is its stability over a wide range of inputs. 

12.3 Considerations for operational limited-area models

The above discussion highlights a couple of possible reliability problems that are unique to
operational LAMs, related to generation of LBC noise and the availability of larger-scale
data for defining the LBCs. There are additional issues that have to do with the efficiency
of the operational LAM. One is the fact that the large-scale forecast that provides the
LBCs must complete before the LAM forecast begins. Thus, there can be a substantial
delay, of at least a few hours, in the start time of the LAM forecast, after the initial condi-
tions have been defined.

Another point related to forecast-product timing applies when using a nested system of
grids in an operational LAM – a common practice. If the grids are not two-way interact-
ing, i.e. the information passage is only from the coarser grid to the finer grid, the coarse-
grid forecast that is run first can be disseminated while the forecasts on the finer grids are
still being generated. This sequential output of forecast products, as they are being pro-
duced, puts model guidance in the hands of the forecasters faster than if a two-way-inter-
acting grid nest is used. Whether this benefit is worth sacrificing the possible advantages
of two-way interacting grids is a situation-dependent decision. 

12.4 Computational speed

For operational prediction, it is of obvious importance that model (simulated) time advance
much more rapidly than actual (wall-clock) time. This is one of the motivations behind the
adaptation of model codes to allow them to run on massively parallel computer architectures.
And it is why such a great effort is invested in the development of efficient algorithms for
solving the model equations, and allowing the use of longer time steps. The following factors
influence the wall-clock time required by a model to produce a forecast of specific duration.

• Before an analysis or data-assimilation process can begin, the system must wait suf-
ficiently long for most of the observations to be available from the network. Different
operational systems have different cutoff times for observation availability, after which
the data processing is begun and later-arriving observations are not used. This cutoff
time is often 60–90 minutes.
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• For LAMs, the forecast must wait for the availability of LBCs from a larger model that
has to finish executing first.

• The time step defines the rate at which the integration moves forward, given specific
computing resources. And, this time step depends on numerical-stability considerations
as well as on the amount of temporal truncation error that is acceptable. If the CFL ratio
is a constraint, obviously the grid increment is a strong controller of the time step, as is
the speed of the fastest wave on the grid.

• The number of points in the computational mesh is a strong constraint. If the comput-
ing cost per grid point does not change with the number of grid points, this is a linear
relationship. Combining this factor with a requirement for the CFL criterion to be
satisfied leads to the often-stated rule that halving the horizontal grid increment
increases the computational burden by a factor of eight, given the same area coverage
for the grid. 

• Operational models are run on computing platforms that range from desktops to mas-
sively parallel systems with thousands of processors. In addition to the effect on model-
forecast speed of the number and speed of the processors, the efficiency depends on how
the total-model speed scales with the number of processors. 

• Some atmospheric models that are used for specialized applications do not include the
full suite of physical processes. For example, for short-range predictions of convective
outflow boundaries, many processes, such as long- and short-wave radiation, do not
need to be included. 

• Model output is sometimes made available to the forecaster as it is generated. For
example, forecast products might be made available to the forecaster at 12-h intervals
(forecast time), while the model is still running. Thus, the forecaster does not have to
wait for the entire integration to finish before benefiting from information at the shorter
lead times.

• There is sometimes a trade-off that must be made, when deciding on the numerical con-
structs to use in a model, between execution speed (and accuracy) and the “friendliness”
of the code. That is, fast numerical methods (e.g., implicit differencing) will allow fore-
casts to finish more quickly, but the codes can sometimes be cumbersome to work with.
This is an issue when an effort is made to unify the operational and university-research
modeling communities by using a common model that must be accessible by both
graduate students and experienced modelers. How this compromise is made will affect
the speed of the forecast.

• Large data input–output loads can slow down the model-execution speed.

12.5 Post processing

There are a few types of post-processing algorithms that are commonly used.

• Correction of systematic error – When models are used in research for the study of
physical processes, it is important that the gridded output be faithful to the governing
equations. However, for operational prediction the imperative is to have the best
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guidance for the forecaster. Thus, it is perfectly appropriate to apply statistical-
correction algorithms to the raw model output, for example to remove systematic error,
even though this will upset the dynamic compatibility of the gridded output. See Chap-
ter 13 for additional discussion. 

• Calculation of additional variables with simple statistical or physically based algorithms –
As noted above, the post processing also includes the use of the forecast dependent vari-
ables as input to statistical algorithms to calculate quantities that are not well forecast by
the model, or not forecast at all. The latter have historically included quantities such as
freezing rain, fog, turbulence intensity, and visibility.

• Use of secondary models that are coupled to the atmospheric model, for simulating
complex processes – These models are discussed in Chapter 14, and include air-quality
models, models that predict the elevation of dust from the surface and its transport in the
atmosphere, models for the prediction of wildfire behavior, models for predicting the
development of agricultural and human infectious diseases, etc.

12.6 Real-time verification

Chapter 9 describes the basic concepts of model verification. Real-time verification is dis-
tinct from what is done for research applications because it is performed immediately after
observations become available for use in verification. The resulting statistics inform the
forecaster about recent errors in model performance, in terms of the error dependence on
time of day, lead time, location, etc. A challenge is summarizing and displaying the error
statistics in ways that are intuitive, and that can be understood quickly by forecasters who
are operating under severe time constraints. 

12.7 Managing model upgrades and developments

Many organizations that employ operational modeling systems also perform research that
is aimed at carefully verifying the forecasts, and improving the predictive skill of the
model in the context of the specific mission of the organization. The computing needs
associated with this objective are two-fold. First, proposed model improvements must be
thoroughly tested in the setting of the operational system, and this can be most effectively
done by having two independent modeling systems running in parallel. One is the opera-
tional system, and the other is identical except that the system improvements are included.
In this controlled setting, model performance, with and without a system change, can be
compared for a long series of forecasts. Such real-time system testing obviously requires a
second computer platform that has at least the capability of the primary platform. In addi-
tion, while these two systems are running in parallel, allowing a comparison of the per-
formance of the existing and prototype system, researchers need to be able to conduct case
studies and other tests in the process of developing future upgrades to the system. This
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requires a more-modest sized third computing platform, or additional processors on the
secondary platform. An important message is that it is not advisable to perform research
during idle time on an operational system, because there is too much risk of accidentally
corrupting it.

12.8 The relative role of models and forecasters 
in the forecasting process

Decades ago, when models were not nearly as skillful as they are now, the experience of
forecasters was especially crucial to the generation and accurate interpretation of the oper-
ational products provided to the public. In the intervening years, models have contributed
a growing amount to the “human–machine mix”. In the extreme, model products are
sometimes translated directly into images and computer-worded forecasts for the public,
without expert interpretation. This has led to an ongoing discussion of how forecasters can
best add value to the final products, now and in the future. As an illustration of the direc-
tions of such conversations, the following points have been made about the relative roles
of the models and forecasters.

• Forecasts of “routine” weather should be automated to allow forecasters to focus their
efforts on high-impact weather (Sills 2009).

• There should be a greater emphasis on the use of science in operational forecasting,
which would be based on improved forecaster knowledge and the use of a more scien-
tific approach to forecasting (Roebber et al. 2004).

• Forecasters should be at the “heart of weather prediction”, playing a vital role in fore-
casting high-impact weather. 

• Product generation should be automated, with forecasters focussing on analyzing the
prevailing meteorology.

• Forecasters can make important contributions to forecast quality by manually modifying
model gridded output, using a software system that maintains dynamic consistency
among variables (Carroll and Hewson 2005).

• The use of higher-resolution models provides the forecaster with products having ever-
increasing complexity. Tools thus need to be available to the forecaster to allow for the
easy exploration and analysis of the model output (Roebber et al. 2004).

• As the role of forecasters evolves, benefit could be derived from entraining other disci-
plines that are involved in the cognitive psychology of decision making (Doswell 2004).

See the references in Sills (2009) for additional information.

SUGGESTED GENERAL REFERENCES FOR FURTHER READING

The reader should access the websites of organizations that run operational modeling sys-
tems and become familiar with the models, the organizational missions, and the weather
products that are provided. 
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PROBLEMS AND EXERCISES

1. Compile a list of operational modeling systems that are employed by organizations
other than national weather services.

2. Why have LAM systems been developed to predict weather for limited geographic
areas? Do they compete in any way with national weather services? Are they comple-
mentary?

3. Speculate on the role of forecasters as models continue to improve in accuracy.
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13.1 Background

The statistical post processing, or calibration, of operational NWP-model output is com-
mon because it can result in skill metrics that are equivalent to many years of improvement
to the basic model. And, the greater skill is achieved at relatively little day-to-day expense,
compared to other traditional approaches of trying to improve skill, such as through
increasing the model resolution.

Historically, statistical post-processing methods were used to diagnose variables that
could not be predicted directly by the low-resolution, early-generation NWP models. Stand-
ard model dependent variables associated with the large-scale conditions were statistically
related to other poorly predicted or unpredicted weather variables such as freezing rain, fog,
and cloud cover. However, many current-generation, high-resolution models can explicitly
forecast such variables, and statistical correction methods are primarily employed to reduce
systematic errors.

There is a variety of ways of classifying statistical post-processing methods. They
may be categorized in terms of the statistical techniques used, as well as by the types of
predictor data that are used for development of the statistical relationships. And, distinc-
tions are made between static and dynamic methods. With static methods, statistical
algorithms are developed for removing systematic error using a long training period that
is based on the same version of the model, and the algorithms are applied without
change for a significant period of time. Because of the computational expense associated
with the calculation of the statistical relationships, models cannot be upgraded fre-
quently because doing so requires recalculation of the relationships. Even when signifi-
cant code errors are revealed, they cannot be corrected until new relationships are
created. In contrast, with dynamic methods the calibration equations are recalculated on
a regular basis. 

Statistical post-processing methods are not appropriate for use in research applications
of models. For physical-process studies, it is important that the model output be consistent
with the dynamic equations, so artificial adjustments in the output would not be appropri-
ate. Also, in such studies it is straightforward to optimize the model for a particular case to
reduce systematic error (e.g., by testing different physical-process parameterizations,
model resolutions, etc.), so there is less need for statistical adjustment than with opera-
tional NWP. And, research is often aimed at improving the model in order to reduce the
systematic error.

13 Statistical post processing of model output
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The NWP-model forecast variables are sometimes used as input to specialized models
that provide information about other quantities. For example, air-quality models contain
continuity equations for various gaseous and aerosol species, they calculate the transport
and diffusion of these contaminants, and they represent their chemical transformations.
This use of appended and specialized models may be viewed as one type of post process-
ing of the NWP-model output, but it is sufficiently specialized that it will be treated sepa-
rately in Chapter 14. 

The following section reviews some different approaches for statistical correction of
model output. Another type of model post processing employs what are called weather
generators, which are summarized in Section 13.3. Weather generators, also discussed
in Chapter 16 in the context of climate models, take model output that is typically
smoother than reality in terms of space and time variability, and define a more-realistic
statistical structure. This kind of post processing is important for some model applica-
tions, for example in predicting flooding where the local short-time-scale variations in
rainfall intensity are highly relevant for estimating the partitioning of rainfall between
runoff and infiltration. In the last section is a brief discussion of how some types of
downscalings of model output – that is, processing that can define the modulation of the
large scales by local forcing, such as from orography – represent a form of statistical
post processing. 

13.2 Systematic-error removal

The following subsections review various methods for statistically correcting NWP-
model forecasts in order to reduce the systematic error. The static methods require
the use of a lengthy period of model reforecasts in order to define the statistical cor-
rections based on relationships between past model output and past observations.
These statistical relationships are not updated frequently. In contrast, the dynamic
methods perform corrections to forecasts based on much shorter periods of training.
In both cases, the goal is to reduce the error in current forecasts using estimates of
past error. 

Note that only systematic error is reduced by these methods. The random errors that
result from numerically induced phase errors in the propagation of features, the smoothing
of small-scale propagating features associated with insufficient model resolution, and
other causes, will remain in the solution and cannot be statistically removed. However, the
systematic error can represent a significant fraction of the total error, especially near the
ground, so removing it through the use of post-processing methods can be very beneficial.
For example, Fig. 13.1 shows the systematic and random forecast errors in the near-sur-
face temperature (2 m AGL) and wind speed (10 m AGL), based on regional mesoscale-
model simulations for the southwestern USA. The systematic temperature errors are
clearly larger at some of the observation sites, presumably because local forcing is not rep-
resented well in the model.
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13.2.1 The “perfect-prog” method

The earliest approach to statistical post processing is known as the Perfect-Prog (PP,
perfect-prognosis) method (Klein et al. 1959). Here, observations of quantities that are
predicted by the model (the predictors) are statistically related to observations of a pre-
dictand that may or may not be predicted by the model. The regression relationships are
then applied to NWP-model forecasts of the predictors to produce forecasts of the pre-
dictands. Because the statistical relationships are not generated using model forecasts,
they do not correct for model error. They simply statistically translate predicted variables
into unpredicted or poorly predicted variables. In effect, it is assumed that the model prog-
nosis is perfect. Because, as noted earlier, current models can explicitly predict many of
the quantities that previously had to be statistically inferred through the PP method, this
approach is less used operationally. A benefit of the PP method is that it is not dependent
on the model to which it is applied, and thus the statistical relationships do not need to be
recalculated when the model is modified. Figure 13.2 schematically compares the PP
approach with the method of Model Output Statistics (MOS) described in the next section.

13.2.2 Model output statistics

The calculation of MOS involves statistically relating previous forecasts of a variable and
the corresponding observations of the variable, in order to quantify the systematic forecast
errors (bias) for each observation point. This bias results from many factors, including
shortcomings in the physical-process parameterizations, and the inability of the model with
a particular resolution to represent small-scale processes. The bias for each observation
location is then used to correct future forecasts at the respective points. There are a number
of MOS-type approaches, that differ in terms of the length of time over which the previous
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forecasts are used to define the bias. The classical, historical approach, referred to above as
the static method, has been to calculate the statistical relationships over a multi-year histor-
ical period. The use of this long training period leads to stable statistics, but it is so
computer-resource intensive that operational models cannot be frequently updated with
improvements because that would invalidate the statistics (that would then need to be recal-
culated). As a result, other MOS-type methods with shorter training periods have been
developed. An advantage of very-short training periods is that systematic errors can be
weather-regime dependent, so adjustments based on recent model performance can be ben-
eficial. Thus, a balance must be reached between (1) a short learning period that is vulnera-
ble to missing data that are needed for training, and to the occurrence of extreme weather
events with unrepresentative errors and (2) a long learning period that produces stable sta-
tistics but that is arguably too computationally expensive to be practical. The following sec-
tions review a few different MOS-based approaches to systematic-error reduction.

Conventional MOS

This approach, requiring statistics that are generated by forecasts from the same model
over a period of at least two years, is summarized in Glahn and Lowry (1972). Because
MOS requires the separate calculation of statistics based on forecast–observation pairs for
each forecast lead time, for each observation location, and for each variable, a large
number of equations are involved. Even though there has been a clear trend toward the use
of shorter training periods with MOS-based methods, Hamill et al. (2004, 2006) present
results that show that, for challenging situations such as long-lead-time forecasts, forecasts
of rare events, or forecasts of surface variables with significant bias, long training periods
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can be beneficial. And Clark and Hay (2004) illustrate the great potential benefit of con-
ventional MOS for producing improved forecasts for hydrological applications. 

Jacks et al. (1990) provide a summary of an NCEP MOS system, where predictors
included forecasts of temperature, temperature advection, thickness, precipitation amount,
precipitable water, relative humidity, vertical velocity, horizontal wind components, wind
speed, relative vorticity, vorticity advection, stability, and moisture convergence. These
predictors are often defined at different levels in the model. The resulting system was very
computationally demanding, involving the use of many thousands of statistical equations.
It is interesting to note that in the late 1980s the MSC replaced its operational MOS sys-
tem with PP products, which were used throughout the 1990s. See Brunet et al. (1988) for
a discussion of the relative statistical characteristics of the PP and MOS methods.

Figure 13.3 shows an example of the benefit of the application of the conventional MOS
approach, in this case in the context of mesoscale LAM simulations of 10-m AGL winds.
The MM5 model was used for operational prediction during the 2002 Winter Olympics,
for the Salt Lake City area, which is dominated by the complex orography of the surround-
ing area. The MOS equations were derived using three winter seasons of forecasts and
observations for 18 mountain and valley locations. The grid increment of the model used
for the generation of the statistics and for the operational prediction was 12 km, even
though a 4-km nested grid was also employed in order to assess the benefit of higher hori-
zontal resolution. The 4-km grid did not feed back to the 12-km grid, so it did not affect
the MOS correction. However, the model version did change during the period of the
MOS-equation development. The figure shows the wind speed MAE for both the 0000
UTC and 1200 UTC forecast cycles, based on the Direct Model Output (DMO) from the
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12-km and 4-km models, as well as based on the MOS from the 12-km model. Based on
the four curves for the DMO, the higher horizontal resolution produced no significant ben-
efit because much of the orographic variability was still subgrid-scale. However, the use of
MOS reduced the average MAE from about 3.5 m s−1 to about 1 m s−1.

Updatable MOS

Updatable MOS (UMOS, Wilson and Vallée 2002, 2003) allows frequent and automatic
updating of statistical forecast equations soon after changes are made to the NWP model.
This is accomplished through user-controlled weights, such that, after a model change is
implemented, the statistical properties of the new model forecasts and those for the old
model can be weighted and blended in the operational statistical relationship. That is, instead
of training a new algorithm using a frozen version of the new model for a long period of
time, independent of the operational system, with UMOS the statistical properties of the new
model are gradually given more weight as a longer history is accumulated. In the MSC
UMOS implementation of this system, the blending of the old and new systems begins after
30 cases from the new model have accumulated. After 300–350 cases with the new model
have been included, the influence of the old model is neglected. Figure 13.4 compares the
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bias associated with a hierarchy of three applications of UMOS (UMO, UMB, complete
UMOS) with that of the PP method and the statistically uncorrected DMO for 250 Canadian
stations for a winter season. The UMO statistical equations contain no new-model data,
so this method ignores the effect of the change in the model, using the old statistical equa-
tions with the new model. With UMB, some new-model data are used, but none that are
close in time to the test period. The DMO has a negative bias that varies between −0.5°C and
−1.3°C, depending on forecast lead time. Because the PP method does not correct for model
biases, the PP method curve has a similar average bias. In spite of the fact that the UMO
correction was based on old-model-version statistics, there is still significant bias correction.
The complete UMOS approach has the smallest bias, averaged over all forecast lead times.
See Wilson and Vallée (2002, 2003) for additional information about this method.

Very-short-update-period dynamic MOS 

A review and evaluation of implementations of MOS with different training periods is pro-
vided in McCollor and Stull (2008c), where the model employed was the CMC GEM
model (Côté et al. 1998a,b). Four bias-calculation approaches tested are summarized
below.

• Seasonal-mean error – For cold-season forecasts, the average mean forecast error was
calculated for the six-month period encompassing the previous cold season. Similarly,
warm-season forecasts were corrected using errors from the previous warm season.

• Moving average with uniform weighting – The average mean forecast error was calcu-
lated using an unweighted average of the bias error from the previous n days.

• Moving average with linear weighting – Same as above, but using a linearly weighted
average, with recent errors weighted more heavily.

• Moving average with nonlinear weighting – Same as above, but using a nonlinearly
weighted average.

The objective of the weighting of course was to provide greater weight to the recent fore-
cast errors, to be responsive to regime changes, while employing a significantly long aver-
aging period to enhance statistical stability. Averaging windows from 1 to 24 days were
evaluated in terms of their ability to reduce the forecast error. Figure 13.5 shows the MOS-
adjusted errors in forecasted maximum temperature for the method that used the linear
weighting. Each curve corresponds to a particular lead time within 8-day forecasts, and
shows the error at that lead time as a function of the length of the different averaging peri-
ods involved in the calculation of the bias. For all lead times, the greatest incremental fore-
cast improvement associated with adding days to the averaging period was for the shorter
averaging times. The longer lead times benefited the most from the use of longer averaging
windows. The 1- and 2-day lead time forecasts did not benefit much from the use of aver-
aging windows of greater than 5 days, but the 8-day forecast benefited from the extension
of the windows out to 15 or 20 days. Other studies have used error-weighting windows of
7 days (Stensrud and Skindlov 1996, Stensrud and Yussouf 2003), 12 days (Stensrud and
Yussouf 2005), 14 days (Eckel and Mass 2005, Jones et al. 2007), 21 days (Mao et al.
1999), and 15–30 days (Woodcock and Engel 2005). 
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13.2.3 Kalman-filter methods

The use of Kalman filters (KF) is another automatic post-processing method for
employing past observations and forecasts to estimate model bias in future forecasts.
Delle Monache et al. (2006b) review the mathematical basis for the method. Analogous
with Eq. 6.16, which describes the application of least-squares estimation with Kalman
filtering to data assimilation, the following equation pertains to the bias-estimation
problem:

.

The variable B is the estimate of the bias in some forecast variable. The quantity
is the estimate of the bias in the variable at a forecast lead time ,  is the estimate
of the bias at the end of the previous forecast,  is the observed forecast error (both
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systematic and random) at the end of the previous cycle (difference between the fore-
cast and observations), and  is the Kalman gain. Say the forecasts are of 24 h duration
( ), and we desire to estimate the bias in the forecast of B at this time ( ) so that
we can correct for it. For the forecast valid at the present time, the bias had previously
been estimated to be , and this is used as the first guess. Because the forecast valid at
time t has completed, the total error  has been calculated. This is differenced with the
previous estimate of the bias, and multiplied by the weighting factor . Thus, the
future bias is estimated to be the most-recent estimate of the bias that is adjusted by a
weighted difference between this bias estimate and the observed total error. See Delle
Monache et al. (2006b), and Appendix A therein, for a discussion of the calculation of
the Kalman gain. 

Delle Monache et al. (2008) illustrate the error reduction associated with the applica-
tion of a KF procedure for each member of a multimodel ensemble of 24-h forecasts of
ozone concentration (Fig. 13.6). Each of the first eight names in the legend corresponds
to a particular photochemical model and meteorological model combination that was
used in the construction of the ensemble. Position on the coordinate axes corresponds to
the RMSEs associated with the systematic error (abscissa) and the random error (ordi-
nate) of model forecasts of ozone concentration. The distance between the origin and any
coordinate represents the total RMSE. The coordinate of the tail of each vector represents
the RMSE values for the DMO, and the coordinate of the head of the vector represents
the RMSE for the KF-corrected forecast. The direction and length of the vector show the
amount of change in the systematic and random errors that results from the application of
the KF correction. The “E” refers to the ensemble average of the forecasts, where the
vector tail defines the RMSEs of the ensemble average of the DMO, and the head defines
the RMSEs after the KF correction is applied to the ensemble average. Here, the ensem-
ble averaging is done before the filtering. The tail of the “EK” vector applies to the
ensemble average of the individual KF-corrected forecasts, and the position of the head
results from the application of the KF correction a second time. Here, the filtering is done
before the averaging. There was clearly a large decrease in the systematic error that
resulted from the application of the KF to each of the ensemble members and to the
ensemble mean. Note that this method does not require an extensive statistical database
for training. 

13.2.4 Gridded bias-correction

Statistical corrections based on standard MOS methods apply at observation points only,
and thus it is not possible to straightforwardly infer the model bias in a more general way
at any arbitrary location for which a forecast is desired. This ability to provide spatially
distributed information about systematic error is important for many applications, such as
when using forecast precipitation in a gridded hydrologic model, or when forecast temper-
atures interact with the land surface at every grid point to control evaporation and
sensible-heat fluxes. Hacker and Rife (2007) show how computation of error covariance
matrices can allow the definition of systematic error on a grid, and describe the implemen-
tation of the method in an operational LAM. 
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13.3 Weather generators

Even though model time steps may be relatively short - perhaps tens of minutes – much of
the short-time-scale variability associated with some phenomena is not represented in the
model solution. For example, precipitation rates in nature can be highly variable, as rain
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bands, or other small convective features that are in various stages of their life cycle, pass
across a location. Variability on these time scales is not represented in most operational
models. This is especially true for large AOGCM grid boxes for which the time series of
variables are smoother than those that apply to single points, simply because of the averag-
ing that is implied over the large area. Unfortunately, high-frequency rain rates are needed
for many hydrological applications, where the rate determines the partitioning of the rain-
water between runoff and infiltration. Another example of high-frequency variability that
is not represented in NWP models is wind gustiness, which is needed in models of dust
elevation and transport, ocean waves, etc. To address such needs for high-frequency infor-
mation from NWP and climate models, synthetic high-resolution time series can be gener-
ated with what are called stochastic weather generators. These methods essentially post-
process the model-generated time series, adding realistic higher-frequency variability. 

For NWP model simulations, the weather generators can add high-frequency spatial and
temporal variations in the precipitation rate. For climate projections, which perhaps only
have output at a monthly frequency, these generators can simulate the temporal distribu-
tion of wet and dry spells, the typical number of days with and without precipitation, etc.
The generators can be tuned to apply to particular current and recent weather types. Infor-
mation about the application of stochastic weather generators for climate-change studies,
especially related to precipitation rate, can be found in Katz (1996), Semenov and Barrow
(1997), Goddard et al. (2001), Huth et al. (2001), Palutikof et al. (2002), Busuioc and von
Storch (2003), Katz et al. (2003), Wilby et al. (2003), Elshamy et al. (2006), Wilks (2006),
and Kilsby et al. (2007).

Analogously, high-frequency wind-speed variability, sometimes known as gustiness or
turbulence, is not represented in NWP or climate models, but it is important for predicting
ocean-wave height, the elevation of dust from the surface in dust models, and dangers to air-
craft. Application of weather generators for predicting gusts and turbulence will be discussed
in Chapter 14, which deals with specialized models that are coupled to NWP models.

13.4 Downscaling methods

The concept of downscaling large-scale analyses and forecasts of weather and climate,
such that small-scale features are estimated based on input about the larger-scale structure
of the atmosphere, is discussed in Chapter 3 regarding the use of nested grids, and in
Chapter 16 related to defining regional climates based on large-scale analyses or projec-
tions. The statistical downscaling of climate simulations, from interseasonal to century
time scales, is described in Section 16.3.1, and has much in common with the MOS-based
statistical methods described above. 

SUGGESTED GENERAL REFERENCES FOR FURTHER READING

Hamill, T. M., J. S. Whitaker, and S. L. Mullen (2006). Reforecasts: An important data set
for improving weather predictions. Bull. Amer. Meteor. Soc., 87, 33–46.
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McCollor, D., and R. Stull (2008c). Hydrometeorological accuracy enhancement via post-
processing of numerical weather forecasts in complex terrain. Wea. Forecasting, 23,
131–144.

Wilks, D. S. (2006). Statistical Methods in the Atmospheric Sciences. San Diego, USA:
Academic Press.

PROBLEMS AND EXERCISES 

1. Speculate on the possible sources of systematic and random errors in NWP-model fore-
casts, in addition to those listed in this chapter. Distinguish between the two sources,
and if necessary explain why the error is in one category or the other.

2. In reference to Fig. 13.1, why might the wind have a larger percentage of the error
associated with the random component than does the temperature?

3. Again in reference to Fig. 13.1, describe situations that could be responsible for the
considerably larger error at some locations compared to others.

4. Why might there be a greater need for statistical correction of model error for levels
near the ground?
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 14.1 Background

Sometimes the standard dependent variables of NWP and climate models are all that are
required for making decisions. But, frequently these meteorological variables influence
some other physical process that also must be simulated before a weather-dependent deci-
sion can be made. As we will see, there are myriad examples of such situations. These
models that are coupled with the atmospheric model may be referred to as special-applica-
tions models or secondary models. Examples include the following.

• Air-quality models
• Infectious-disease models
• Wave-height models
• Agricultural models
• River-discharge, or flood, models
• Wave-propagation models – sound and electromagnetic
• Wildfire-behavior and -prediction models
• Electricity-demand models
• Dust-elevation and -transport models
• Ocean-circulation models
• Ocean-drift models
• Aviation-hazard models – turbulence, icing, visibility

Sometimes the secondary model is embedded within the code of the atmospheric model,
and the coupled system is run simultaneously. And, sometimes there are two distinct
model codes that are run sequentially. When the code that represents the secondary proc-
ess is run within the atmospheric model, the secondary process may interact with the
atmospheric simulation. Or, the flow of data may be in one direction only, where the
atmospheric variables are used in the secondary model without feedback. There are some
secondary-model processes that have strong feedbacks to the atmosphere, and for their
prediction there is of course a greater need to have a two-way exchange of information
between the atmospheric and secondary models. Examples include dust models wherein
the dust influences the atmospheric radiation budget, wildfire behavior models where the
fire modifies the atmospheric circulation, atmospheric-chemistry models where gases and
particles that are involved in reactions influence the radiation budget, and wave-height
models where the waves influence the evaporation rate and roughness length. These

14 Coupled special-applications models
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coupled models are applied on time scales of daily weather prediction, seasonal predic-
tion, and multi-decadal climate prediction.

Even though it is implied above that the coupling is between two models, the atmos-
pheric model and the application model, there are some situations in which more models
are involved in the process. For example, assume that a disease pathogen is released into
the atmosphere. 

• Atmospheric model – The atmospheric model will define the transport winds, boundary-
layer turbulence, humidity, etc.

• Plume model – A plume model will calculate the transport and diffusion of the aerosol,
and the dosage (time-integrated concentration) or human exposure footprint at ground
level.

• Disease models – A disease model can simulate the spread of a disease in an organism
(humans or agricultural livestock) or among organisms (e.g., human beings) in a popu-
lation.

• Treatment models – These define an optimal course of treatment based on many factors
including the time since exposure, the size of the exposed organism, etc. This will most
likely be a simple protocol that is based on previously run pharmacokinetics (how the
drug moves around the organism) models and pharmacodynamics (how the drug acts on
the organism) models. 

The secondary and tertiary (etc.) processes or variables may be defined using physically
based equations, such as chemical reactions in air-quality models or ocean currents in
ocean-circulation models. Or, the secondary model may simply be a set of statistical or
empirical algorithmic relationships that relate the predicted atmospheric state to some
other variable. The simpler relationships are often call translation algorithms because they
translate atmospheric conditions to the state of some other quantity. Thus, a hierarchical
ranking of coupled models, from the simplest to the most sophisticated approaches, is as
follows.

• Type 1: Decision-Support Systems (DSSs) – These can be simple or complex systems
that formalize a decision-making process, using meteorological and other input data.
Even though it can be argued that these are not models at all, DSSs nevertheless do post
process model output, interpreting the large amount of data to allow decisions to be
made in an intelligent and repeatable way. As shown below, these DSSs can be used to
interpret atmospheric-model or coupled-model output. 

• Type 2: Translation algorithms – These are simple physical equations or statistical
relationships that use, as input, the variables predicted by the atmospheric model to
define ancillary, sometimes nonmeteorological, variables that are required. An example
would be algorithms that calculate atmospheric visibility or radio refractive index based
on model output.

• Type 3: One-way coupled models – Even though the above translation algorithms do not
feed information back to the atmospheric model, and are therefore one-way coupled,
they are sufficiently simple that it can be argued that they should be distinguished from
codes that are larger in size and might actually be considered a model in a traditional
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sense. Examples of one-way coupled models are codes that model the spread of infec-
tious diseases, some dust elevation and transport models that do not feed back, and
some flood models. 

• Type 4: Two-way coupled models – These are generally large pieces of code that may be
embedded in the atmospheric model, for example as a subroutine. An example may be
an ocean-wave model or an ocean-circulation model.

• Type 5: Specialized atmospheric models – Sometimes an atmospheric model is merged
with specialized-applications codes in such an extensive way that the entire modeling
system becomes specialized. For example, some atmospheric-chemistry models involve
a thorough merger of the atmospheric and chemistry codes to produce an integrated,
specialized model (e.g., WRFChem). 

Because the coupled, secondary models are typically employed in order to provide
information that can be used to make practical decisions, the secondary-model output is
often used as input to a formal DSS. This DSS translates the data provided by the second-
ary model, and perhaps the driving atmospheric model, into a decision about whether to
take an action – protect an agricultural crop against freezing, apply an anti-icing agent to a
highway or an aircraft, vaccinate a population against an infectious disease, or evacuate a
town that is threatened by flooding. The DSS may include an analysis of the relative bene-
fit versus cost of taking alternative actions. This sequence of software components is sum-
marized in Fig. 14.1.

There is a hierarchy of methods for verification of coupled modeling systems, and this
is illustrated in Fig. 14.2. First, it is reasonable to want to verify the accuracy of the atmos-
pheric model alone, in the context of the geographic area and atmospheric variables of
interest. In the figure, this is referred to as a Type-1 verification, where archived cases are
used and the model retrospective forecasts are compared with meteorological observations
or reanalyses. A Type-2 verification would again involve the use of historical cases, but the
full coupled model (the atmospheric model and the end-user, or secondary, model) would
be employed to produce a forecast of the secondary variable. This would be compared with
a forecast from the secondary model that used meteorological input from observations or
analyses. This tests the coupled system, but no observations of the secondary variable are
used for verification, so the veracity of the secondary model is not evaluated. For the Type-
3 verification, the coupled model is used for a retrospective forecast, but the forecast sec-
ondary variable is compared with observations. 

This chapter will not provide a detailed discussion of the coupled models themselves.
Rather, the focus will be on how the coupled modeling systems or algorithms are used to
address practical problems. References will be cited for additional reading.
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14.2 Wave height

There are various practical and modeling-related reasons for wanting to model the proper-
ties of wind-driven waves that exist on oceans and other water bodies. 

• Heights of waves and swells impact the safety of recreational and commercial maritime
activities, and therefore must be forecast. In the extreme, it would also be desirable if the
probability of “freak” or “rogue” wave occurrences might be predictable. 

• Wave action in littoral zones can be used to generate electricity, and thus wave forecasts
are related to power forecasts.

• Evaporation of spray from waves releases aerosols into the atmosphere, which can influ-
ence cloud microphysical processes that are parameterized in a model.

• The albedo of the water surface is a function of wave activity, and is needed in the calcu-
lation of the ocean’s energy budget.

• The evaporation rate is a function of the amount of sea spray, and this affects atmos-
pheric temperatures.

• The roughness of the ocean surface that is experienced by the atmospheric-model’s sur-
face layer is a function of wave properties.

• Wave activity is associated with vertical mixing in the upper layer of water, which influ-
ences the water temperature at the lower boundary of the model atmosphere.

One or more of the above effects of waves on the atmosphere can be individually param-
eterized directly in the atmospheric model, or the predicted atmospheric variables can be
used as input to a separate model that diagnoses wave properties. Wave-height predictions
can be verified against buoy observations, as can the near-surface wind predictions that are

Observed
meteorological data

 or reanalyses

Meteorological
model retrospective

forecasts  

Observations of
coupled-model

variables  

End-user (coupled) model

Type 1

Type 2 Type 3
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used in the wave models. Indeed, wind-prediction accuracy is critical to wave-height pre-
diction. For example, Fig. 14.3 shows the improvement in the accuracy of ECMWF wave
predictions over a 13-year period, as well as the associated improvement in the prediction
of the near-surface wind speed. Janssen (2008) calculated that 25% of the improvement in
the wave-height forecasts, whose accuracy is shown in this figure, resulted from improve-
ments in the wave model itself. The rest of the improvement was a consequence of more-
accurate wind predictions. Growth in the wave-height RMSE was approximately linear
between about 48 h and 168 h, with the error beginning to saturate after that. For addi-
tional discussion of wave-model verification, see Bidlot et al. (2002) who compare buoy
observations with ocean-wave forecasts from a number of operational centers. 

Note that wave heights are a function of wind gustiness as well as of the mean wind that
is predicted by Reynolds-averaged model equations. The previously mentioned concept of
a weather generator can be used here to infer gustiness based on air–sea temperature dif-
ferences, where the gustiness metric can be used in the wave model (Abdalla and Cavaleri
2002).

14.3 Infectious diseases

The atmosphere can influence the spread of human and agricultural infectious diseases
through a few different mechanisms, which are summarized in Fig. 14.4.

• Health of the pathogen – The health of the disease organism may be related to atmos-
pheric variables such as temperature, relative humidity, the intensity of ultraviolet radi-
ation, and precipitation. 
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• Disease vectors – The disease may spread through vectors such as fleas, mosquitoes, or
rodents, and the number and health of the vectors can depend on temperature, relative
humidity, vegetation greenness, and soil moisture. 

• Animal behavior – Animal behavior is related to atmospheric conditions (e.g., for
humans, the amount of time spent indoors in proximity to other people), and this behav-
ior can influence the spread of disease. 

• Wind transport – The wind can transport disease organisms and expose new popu-
lations.

• Flooding – This can increase the incidence of many diseases as a results of the com-
promise of fresh-water supplies, forced migration, and the production of a favorable
environment for disease vectors.

Through knowledge of the statistical or physical relationships between disease inci-
dence, for example outbreaks, and weather or climate conditions, it is possible to translate
predictions of the atmosphere into predictions of disease spread or incidence. Medium-
range forecasts of 7–10 days can allow redistribution of vaccines and medical personnel to
locations that will be in greatest need. And interseasonal forecasts, e.g., of the ENSO
cycle, can provide long-lead-time information for disease early-warning systems, which

Disease 
organisms

Mechanisms

Disease 
vectors

Animal 
behavior

Wind 
transport of 
pathogens

Floodwater 
transport of 
pathogens

Forecast
atmospheric effects

(wind, T, RH, soil 
moisture, rainfall)

Forecast
disease

incidence

Mechanisms by which atmospheric processes influence the spread of infectious diseases. The implication is that predic-

tions for the atmosphere can be translated into predictions of disease emergence and spread. 

Fig. 14.4



Coupled special-applications models384

can guide the manufacture of vaccines and inform aid agencies about future requirements
(Thomson et al. 2006). Because of the existence of complex physical, biological, and soci-
etal aspects to the links between atmospheric conditions and disease, correlations used for
prediction are sometimes employed without a good knowledge of the underlying mecha-
nisms. Given that some period of time exists between the occurrence of atmospheric con-
ditions that are related to disease incidence, and the response of the incidence itself,
lagged correlations can be used to develop statistical relationships for prediction. 

14.3.1 Human infectious diseases

The following major infectious diseases have been shown to have some relationship to
atmospheric conditions (weather or climate). The meteorological and other factors can be
temperature, relative humidity, wind speed and direction, precipitation, sea-surface tem-
perature, and vegetation-canopy density and health. 

• West Nile virus
• Dengue Fever (DF)
• Dengue Hemorrhagic Fever (DHF)
• Valley fever
• Rift Valley fever
• Malaria 
• Meningitis
• Cholera
• Typhoid fever
• Leptospirosis
• Hepatitis A 

For human infectious diseases, there is an especially strong potential connection
between weather or climate and human activities that can spread pathogens. For example,
drought can cause migrations. Windy, dusty, rainy, or cold conditions can cause humans to
congregate inside and spread diseases through contact. Thus, disease-spread prediction
models must incorporate societal/behavioral factors as well as physical and biological
processes. 

An example of a success at establishing correlations between weather factors and
human disease is described in Fuller et al. (2009), who explain 83% of the variance in
weekly DF/DHF cases in Costa Rica from 2003 to 2007 using a simple regression model
that incorporates lagged ENSO-related SST and MODIS vegetation indices. Another
example involves the production of retrospective forecasts of malaria. The atmospheric
model simulations were produced by seven institutions in Europe that participated in the
DEMETER project (Palmer et al. 2004). The output from these models was used in a
Malaria Transmission Simulation Model (MTSM, Hoshen and Morse 2004). The
DEMETER-MTSM system was verified using the Type-2 method described earlier
(Fig. 14.2), where ERA-40 gridded analyses (see Chapter 16) served as the atmospheric
verification data set. The malaria predictions were shown to be skillful for the 1-month
lead seasonal predictions, and for the 4–6-month lead for the seasonal malaria peak. Other
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discussions of the use of seasonal weather predictions for anticipating malaria outbreaks
are found in Thomson et al. (2000) and Thomson and Connor (2001). Reviews of the over-
all potential for predicting human infectious diseases using weather and climate forecasts
can be found in Kuhn et al. (2005) and NRC (2001).

As another illustration of how atmospheric-model reanalyses and predictions can be
used to make decisions about infectious-disease management, consider the problem of
meningitis in the Sahel of Africa. Even though the mechanisms are unclear, meningitis
outbreaks tend to occur as the relative humidity decreases in the winter season, when har-
mattan winds bring dry, dusty air from the Sahara. When the relative humidity increases
with the beginning of the Guinea monsoon, the number of cases decreases. Forecasting the
spatial pattern of the seasonal rise in relative humidity is important to allow the appropri-
ate distribution of the remaining vaccine. We begin by defining a somewhat arbitrary
threshold for cessation of meningitis susceptibility as the first occurrence of five continu-
ous days of relative humidity of at least 40% for any point on a grid. Those areas of the
Sahel for which this threshold is reached at times that vary considerably from year to year
could benefit from forecasts. If there is little year-to-year departure from the climatologi-
cal date when this condition is met, the climatology can be used. Figure 14.5 shows a map
of the standard deviation of the date on which this criterion is first met, based on the
NCEP-NCAR Reanalysis Project archive (NNRP, Section 16.2, Kalnay et al. 1996) for
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The standard deviation in the date on which five continuous days of relative humidity of at least 40% first occur in the 

Sahel, based on 50 years of the NNRP reanalysis. Provided by Thomas Hopson, NCAR.

Fig. 14.5
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1949 through 2009. The standard deviation approaches or exceeds a month over a signifi-
cant area of the central Sahel, indicating where forecasts of this threshold, or a similar one,
would be useful.

14.3.2 Agricultural diseases

Many agricultural diseases are related to atmospheric conditions, so models for disease
probability or spread use NWP forecasts or analyses as input. Examples of plant-disease
forecasting systems used by the US Department of Agriculture for diagnosis and predic-
tion of insect pests, fungal diseases, mildew, etc., are NAPPFAST (Magarey et al. 2007)
and ipmPIPE (Isard et al. 2006). These are interactive web-based systems that generate a
number of weather-dependent crop and disease maps and other graphical products that
allow farmers to save money by targeting mitigation strategies (e.g., pesticide applica-
tions) only where and when they are needed. Also, some plant and livestock diseases are
spread by aerosols (e.g., spores, bacteria, viruses) that are carried by the wind, so the
plume models discussed in Section 14.5.1 can be used with input from NWP-model analy-
ses or forecasts to track the movement of these pathogens. Similarly, insect pests are car-
ried by wind from regions where they begin their life cycle to regions where they can
impact agriculture, so plume-type models can predict these processes as well. Many dif-
ferent systems that employ atmospheric-model products have been developed to address
the specific needs of agriculture, worldwide.

14.4 River discharge, and floods

Operational river-discharge1 models, flood models, and flash-flood models often use
precipitation estimates from radars and rain gages as input. However, the forecast lead
time for flooding at a particular location on a river is thus limited to the time it takes the
rainwater (and possibly resulting snowmelt) to travel along the water course. This may
allow insufficient time to respond, whether the forecast information is being used to
warn or evacuate people near the water course, or to release water from a downstream
dam. A solution is to use atmospheric-model forecasts of precipitation as input to the
discharge/flood-prediction model, thus providing much additional lead time for the
response.

Discharge models have a wide range of complexities, and the partitioning between
those aspects of the surface hydrologic cycle that are treated in the atmospheric model and
those that are represented in a separate discharge model varies considerably. Many
current-generation NWP models employ a simple representation of the hydrologic cycle in
their land-surface model; they partition some water as runoff in each grid cell, but they do

1 Discharge is the volume of water flowing in a river or stream channel, and is generally defined in cubic
meters per second.
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not route or track the water from grid cell to grid cell through channels across the land
surface, and thus they cannot explicitly predict discharge. This would need to be accom-
plished by a coupled runoff/discharge model. Obviously, the processes represented in cou-
pled discharge and atmospheric models need to be compatible, and collectively define the
entire surface-hydrologic system. Alternatively, some atmospheric models represent the
entire process, including surface routing and calculation of discharge. 

Flash floods are defined as events wherein the water goes from base-flow to flood level
in less than 6 hours, they are most common in complex orography, they are typically
caused by convective–precipitation events, and they take a significant number of lives
because of the short warning time available. Unfortunately, for a variety of reasons, radar
estimates of precipitation are often unreliable or nonexistent in areas of complex terrain.
And, rain gages are sparse in mountains, and their estimates are not representative of a
larger area. Thus, a useful degree of predictability of flash floods in mountainous terrain, if
that is attainable, may have to rely on precipitation forecasts with convection-resolving
atmospheric models that accurately represent local orographic and other landscape forc-
ing. There have been occasional successful simulations in research settings that give us
hope for possible eventual operational predictability in such situations. For example, Nair
et al. (1997) describe a successful model simulation of the convective storm that produced
the severe 1972 Black Hills flash flood in a mountainous area of South Dakota, USA. Also
for an area in the USA with complex orography, Fig. 14.6 shows a discharge simulation
from a coupled mesoscale LAM (MM5) and a discharge model (Precipitation-Runoff
Modeling System, PRMS, Leavesley et al. 1983) for a convection-related flash-flood event
(Yates et al. 2000, Chen et al. 2001). The simulations were part of a research study to
estimate the effects of a recent wildfire on the severity of the flood. Shown are discharge
calculations from PRMS based on the use of radar-estimated and model-simulated precip-
itation, and for land-surface parameters in MM5 and PRMS that were defined with the
burn area (fire) and with the pre-burn natural vegetation (no fire). Also shown is the dis-
charge calculated by simply totaling the amount of model-simulated rainwater that is
partitioned to runoff, where no routing through the stream channels is calculated. The dis-
charge estimated from the high-water marks along the water course is indicated. Discharge
was calculated accurately by PRMS using the radar-estimated rainfall (with the fire, solid
line), but the use of MM5-simulated precipitation in PRMS underestimated the peak dis-
charge by a factor of three (dotted line). However, the base flow for the stream was nor-
mally only a few meters per second, so a significant event was still predicted. The direct-
MM5 discharge peak was earlier than the observed peak because the time required for the
rainwater to flow to the location of the verification was ignored. And, no water was lost to
infiltration during overland flow, so the peak discharge was greater than that produced by
PRMS. Thus, the reasonably accurate value of this peak was probably obtained for the
wrong reason. 

As an example of the use of this type of coupled system for larger scales (continental
USA) and longer lead times (to 8 days), Clark and Hay (2004) evaluated discharge fore-
casts for four study basins, based on the PRMS model coupled with the NCEP MRF
model. The MRF precipitation forecasts showed considerable error in many regions, so the
temperature and precipitation forecasts were corrected using MOS (Chapter 13). The
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MOS correction of systematic error provided improved discharge forecasts in only the
snowmelt-dominated river basins because the MOS was only able to improve temperature
and not precipitation forecasts. 

The predictive skill of discharge forecasts from coupled atmospheric–discharge models
is obviously no better than that of the precipitation forecasts. And, of course we know that
precipitation forecast skill has shown the slowest benefit, relative to other dependent varia-
bles, as a result of improvement in all aspects of atmospheric-modeling systems. On the
convective scale, operational models have virtually no skill at deterministically predicting
precipitation events – i.e., correctly locating individual convective cells. Thus, referring to
the convective events that commonly lead to flash flooding, even though a mesoscale
model may be able to routinely predict the general area and severity of the convection,
there is relatively little hope of using the forecasts as a basis for evacuating residents when
the watersheds are of small to modest size.
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Discharge models are often used in conjunction with global or regional climate models
in order to couple the hydrologic cycles over land and over the ocean. In addition, there is
a need to assess changes to the hydrologic system associated with future-climate scenarios
(e.g., Bell et al. 2007, Bronstert et al. 2007, Charles et al. 2007, Fowler et al. 2007). 

14.5 Transport, diffusion, and chemical transformations of
gases and particles

There are a few types of models that are used operationally and for research to track the
transport, turbulent diffusion, and chemical transformation of particulates and gases in the
atmosphere. These types of models are summarized in the sections below. Note that there
can be considerable overlap in the purpose, numerical approaches, and processes repre-
sented in the different types of models. Dust elevation and transport models are used to
simulate or predict the elevation of mineral dust from the surface, and the consequent dust
storms that result. Volcanic-ash models also track dust, but specifically the material that is
ejected forcefully into the troposphere and stratosphere from a volcano. Air-quality mod-
els are specialized or general models that simulate gases or particles whose concentrations
are often regulated for environmental or human-health reasons, where the sources can be
numerous and distributed over a large area (e.g., an entire city). Plume models tend to be
used for single sources of contaminants, or perhaps a few sources. 

14.5.1 Plume models

A plume is a volume of air, containing particles or gases that have been released into the
atmosphere, that spreads horizontally and vertically from its source. Models that simulate
plumes are generally Type-3 models, which do not feed back to the atmospheric model
that provides them with time-dependent winds, thermal properties, humidity, precipitation,
and possibly turbulence intensity. All of these meteorological variables can influence
plumes in different ways. Plume models can have either an Eulerian or Lagrangian frame-
work. With an Eulerian approach, the gaseous or particulate contaminant is released in a
grid box within a three-dimensional array of points, and the model calculates the transport
of the material from the source to downwind grid boxes through transport by the mean
wind and turbulence. In contrast, with Lagrangian methods, puffs or particles of material
released from the source are tracked, where their size or concentration, and location, are
again controlled by atmospheric processes. Thus, Eulerian methods are grid-centric and
Lagrangian methods are plume-centric. In either case, the plume model essentially solves
a continuity equation for the gas or particles released. 

Plume models have a variety of practical applications, including predicting 

• the impact of smoke from wildfires;
• the movement of hazardous chemical, biological, and radiological material that has been

accidentally released (an industrial or transportation accident) or intentionally released
(a terrorist attack) into the atmosphere; and
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• the airborne movement of insects or naturally occurring pathogens that are related to
human or agricultural infectious diseases. 

If the atmospheric model produces a forecast, the plume evolution is a forecast. If
model-based reanalyses are used as input to the plume model, the simulated plume can be
viewed as a reconstruction of a real or hypothetical historical event. The plume-modeling
process involves a few steps. First, the atmospheric variables must be predicted by a model
or diagnosed by a data-assimilation system. Then the source of the material being tracked
needs to be estimated in terms of the amount of material released (instantaneously or con-
tinuously) and the location of the source (moving or stationary). The plume-model equa-
tions, in Eulerian or Lagrangian form, are then integrated in order to calculate the
downwind advection and diffusion of the plume. 

14.5.2 Air-quality models

Air-quality models typically represent (1) multiple sources and species of contaminants,
(2) chemical reactions among contaminants, and between them and naturally occurring
gases and particles, (3) transport and diffusion, and (4) interactions of contaminants with
cloud, precipitation, and radiation. They are used for research, regulatory purposes, and
forensic analysis. Research applications attempt to improve knowledge of physical and
chemical processes associated with the existence of pollutants in the atmosphere. Regula-
tory applications take a number of forms, where an example is the use of the model to
assess the impact on air quality of a proposed new source of pollution, where the results of
the study would serve as the basis for a decision about whether to permit the source to
operate. A forensic analysis could involve the use of a model to establish a source–receptor
relationship between a region that produces pollutants and regions that are impacted by
them. Air-quality models can be of Type 3, 4, or 5. Examples and brief discussions of each
type of air-quality model application are provided in the following sections. Summaries of
these models, and extensive reference lists are provided in the review papers by Russell
and Dennis (2000) and Carmichael et al. (2008), and the text by Jacobson (1999). 

Research applications

Research applications are likely to use model Types 4 and 5, because complete interaction
among the various physical and chemical processes is desirable. An example of a Type-5
model is the WRFChem LAM system (Grell et al. 2005) that is based on the integration of
chemistry into the framework of the community WRF atmospheric model. When used
with some type of urban-canopy parameterization, it is applicable for research studies of
atmospheric, physical, and chemical processes in urban areas. For example, Jiang et al.
(2008) used WRFChem to estimate the impact on surface ozone of climate change related
to greenhouse gases and urban growth in Houston, USA for the 2050s. And, Zhang et al.
(2009) applied the model for Mexico City for the period of the MILAGRO field campaign,
and verified chemical-species concentrations against special observations. 

An example of a global air-quality system is the Model for Integrated Research on
Atmospheric Global Exchanges (MIRAGE, Easter et al. 2004), which is designed to study
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the impacts of anthropogenic aerosols on the global environment. The MIRAGE system
consists of a chemical transport model coupled with the Community Climate Model,
Version 2 (CCM2). Zhang (2008) summarizes the history, current status, and outlook for
coupled atmospheric and chemistry models, and includes the MIRAGE and WRFChem
models in the discussion. The Community Multiscale Air Quality (CMAC) model is an
example of a Type-3 coupled system that is used for research.

Operational applications

Air-quality models are used to provide operational next-day predictions of various meas-
ures of air quality, such as ozone concentration, in order to inform the public about the
need for possible avoidance of exposure. Such models are used worldwide, and address
the specific local air-quality issues. An example is the US National Air Quality Forecast
Capability (NAQFC), which utilizes the NCEP Eta meteorological model coupled with the
CMAQ modeling system (Byun and Schere 2006). Others are the MM5-CMAQ-based
system, which is employed for Europe (San José et al. 2006) and the Australian Air
Quality Forecasting System, which is applied to the regions of Melbourne and Sydney
(Cope et al. 2004). 

Forensic analysis

Forensic studies can take a number of forms, and can be viewed as research investigations
that have a specific practical objective (in contrast to improving our knowledge of proc-
esses). For example, if a particular geographic region experiences poor air quality in terms of
some chemical species or aerosol, perhaps not attaining the minimum standards prescribed
by government, air-quality models can be used to help estimate whether the contaminant is
being transported into the area from external sources, or how different local mitigation strat-
egies will improve the air quality. The above noted CMAQ model is often used for such stud-
ies, where models or reanalyses provide the input meteorological variables. 

14.5.3 Dust elevation and transport models

For both research and operational-prediction applications, it is important to be able to model
processes that involve mineral dust that has been elevated into the atmosphere by high winds.
Because dust has strong influences on atmospheric short- and longwave radiation, and it
affects cloud microphysical processes that in turn influence precipitation, its effects should
be represented in weather- and climate-prediction models. An example of this importance is
that aerosols of Saharan origin have been shown to affect the development of tropical
cyclones and hurricanes in the Atlantic Ocean (Karyampudi and Pierce 2002). In addition,
dust elevated into the atmosphere has numerous environmental consequences that are impor-
tant to represent in coupled-modeling systems. These include contributing to climate change;
modifying local weather conditions; producing chemical and biological changes in the
oceans that can lead to blooms of toxic algae and coral-reef mortality; transporting bacteria
and other pathogens over long distances; and affecting soil formation, air quality, surface
water and groundwater quality, and crop growth and survival. Societal impacts include
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disruptions to air, land and rail traffic; interruption of radio services; the effects of static-
electricity generation; property damage; and health effects on humans and animals. 

Physical processes that must be simulated by a dust model include the lifting of the dust
from the surface, which requires accurate representation of the near-surface wind speeds,
including the parameterization of gustiness. Correct calculation of this source term also
relies on the use of a good land-surface model for predicting soil moisture, and the correct
estimation of the density and size of vegetation that can shield the surface from high
winds. Winds aloft must also be simulated well by the meteorological model in order to
accurately estimate the distance and direction of the horizontal transport. Lastly, the size
distribution of aerosol particles needs to be estimated in order for settling velocities and
surface deposition to be accurately calculated. 

There are numerous dust models used for research and operational prediction world-
wide. Examples of Type-4/5 models include (1) the US Navy Aerosol Analysis and Predic-
tion System (NAAPS), which is a global operational aerosol model that involves a
coupling of the Navy Operational Global Atmospheric Prediction System (NOGAPS)
meteorological model and a dust-transport model (Westphal et al. 2009) and (2) a com-
panion LAM, the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS)
with an embedded dust-modeling capability (Liu et al. 2007). Type-3 models are the Com-
munity Aerosol and Radiation Model for Atmospheres (CARMA, Toon et al. 1988, Bar-
num et al. 2004, Su and Toon 2009) and the DUst-emission MOdule (DuMo, Darmenova
and Sokolik 2007). Lastly, the Barcelona Supercomputing Center operates the Type-3 Dust
REgional Atmospheric Model (DREAM, Nickovic et al. 2001), which uses meteorologi-
cal input from the NCEP Eta model. 

14.5.4 Volcanic-ash models

Contemporary volcanic-ash models are based on atmospheric models coupled to special
transport and diffusion models. Their use is motivated by the need to evacuate popula-
tions because of the negative health effects of the dust (called tephra) immediately down-
wind. And, the dust can seriously damage aircraft engines, so commercial airline flights
must be rerouted to avoid the dust plumes. The need for ensuring aircraft safety has moti-
vated most of the historical model applications. One of the earliest examples of the oper-
ational use of such a coupled modeling system employed NCEP (then NMC) regional
and global models to provide input to the Volcanic Ash Forecast Transport And Disper-
sion (VAFTAD) model (Heffter and Stunder 1993). Operational products included rela-
tive ash concentrations in three aircraft flight layers. Other operational plume-tracking
systems are used by the Canadian Meteorological Centre (CMC). The simplest is a three-
dimensional trajectory model (see Section 11.2.2) that uses input from the CMC global
data-assimilation and forecast systems. The second capability is the CANadian Emer-
gency Response Model (CANERM), which is a three-dimensional Eulerian model for
calculating the medium- to long-range transport of pollutants (volcanic ash, radioactive
plumes, etc.) in the atmosphere (Pudykiewicz 1988). It uses the same operational CMC
global modeling system for meteorological input. More recent coupled models have
focussed on predicting tephra impacts and accumulations at the surface. For example, the
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RAMS atmospheric model coupled with the HYbrid Particle And Concentration Trans-
port (HYPACT) model was used to simulate the ash dispersal from the 1995 and 1996
eruptions of Mount Ruapehu, New Zealand (Turner and Hurst 2001). More recently,
Byrne et al. (2007) verified simulations from the MM5 atmospheric model used with tra-
jectory and particle-fall models against observed tephra accumulations for the Cerro
Negro, Nicaragua, volcano. 

14.6 Transportation safety and efficiency

14.6.1 Aviation

Airport ground operations, the routing of aircraft by traffic controllers, and real-time pilot
decisions are all affected by weather, and in many cases DSSs are employed to translate
weather observations and forecasts into decisions. The example topics below focus on
weather impacts on in-flight safety, and discuss associated coupled models.

Turbulence

Turbulence that impacts aviation safety results from a variety of meteorological situations,
such as convection and wind shear. Models that diagnose the probability of turbulence use
forecasts from NWP models as well as pilot reports of turbulence as input. The resulting
fields are used by dispatchers and pilots for turbulence avoidance. Graphical products dis-
playing turbulence potential are available on the web for different flight levels. See Shar-
man et al. (2006) for a description of one such turbulence diagnostic model. This is a
Type-3 coupling.

In-flight icing

Aircraft icing, which results from flight through supercooled liquid water, is a significant
cause of aircraft accidents. An example of an operational system for predicting the like-
lihood of aircraft icing is the Current Icing Product (CIP) algorithm (Bernstein et al.
2005), which combines analyses and very-short-range forecasts from the RUC model
(Benjamin 2004a) with real-time satellite, radar, surface, lightning, and pilot-report
observations to create an hourly three-dimensional diagnosis of the potential for the
presence of supercooled large droplets and icing. First, the volume of atmosphere that is
occupied by clouds and precipitation is estimated. Then, fuzzy-logic methods use tem-
perature, relative humidity, vertical velocity, pilot reports of icing, and explicit model
fields of supercooled liquid water to estimate the presence of icing. A Future Icing
Product (FIP) system produces forecasts of icing based on longer-lead-time RUC prod-
ucts. Resulting icing-advisory and icing-severity maps are available on the web, as are
flight-path tools that define conditions along a prescribed flight track. This is a Type-3
coupling. 
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Cloud ceiling and visibility

Cloud ceiling and visibility must be predicted for a couple of reasons. Airport capacity, in
terms of the minimum spacing of aircraft on approach and departure, is generally a function
of the prevailing visibility. And, noncommercial pilots with only “visual-flight-rules” certifi-
cation must avoid flight within clouds and in low-visibility situations. To obtain ceiling and
visibility from model-simulated, state-of-the-atmosphere variables, Stoelinga and Warner
(1999) developed a translation algorithm based on empirical and theoretical relationships
between model hydrometeor characteristics and light extinction. This is a Type-2 coupling.

14.6.2 Surface transportation

Weather affects highway and rail traffic in almost as many ways as it does air travel. Fore-
casts from NWP-models have been used as input to algorithms and DSSs that are
employed for

• deployment and prepositioning of snow-removal equipment in advance of a winter storm;
• evacuation of the public in advance of a hurricane;
• estimating regions where rail lines and highways will flood as a result of heavy precipitation;
• defining the amount and type of chemicals to be applied to highways to melt ice and

snow; and 
• deployment and prepositioning of electrical and communications workers in advance of

a natural disaster such as a hurricane or midlatitude winter storm. 

Visibility is a hazard that surface and air transportation have in common. Some models
now have sufficient skill to enable them to predict visibility, based on impairments from
aerosols and fog. For example, Clark et al. (2008b) and Haywood et al. (2008) report on
the operational version of the UKMO Unified Model in terms of its ability to predict visi-
bility. This would be a Type-4 modeling system.

14.7 Electromagnetic-wave and sound-wave propagation

Electromagnetic (EM) energy is refracted through, primarily, vertical gradients of temper-
ature and moisture. This is a practical issue because it is important, for various applica-
tions of radars, to know from where in space a reflection originates. This requires
knowledge of the refraction, obtained through the use of a propagation model. An example
of an EM propagation model that simulates this refraction, based on atmospheric variables
provided by a model, is the Advanced Refractive Effects Prediction System (AREPS). The
AREPS is a complete suite of software modules that can be applied for a wide range of
propagation applications over sea and land.

Sound propagation through the atmosphere is sensitive to vertical profiles of meteoro-
logical variables as well as the nature of Earth’s surface, so predictions of the sound inten-
sity at various distances and azimuths can be produced using input from an NWP model.
Practical applications of such coupled modeling systems include the timing of explosions
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associated with military testing or commercial excavation, such that the resulting sound
will have minimal impact on surrounding structures and personnel. Another application
could involve mitigation of the impact of aircraft-engine noise on developed areas around
airports. An example of a prediction from a coupled sound-propagation model and a mes-
oscale NWP model is shown in Fig. 14.7. The sound propagation model is the Noise
Assessment Prediction System (NAPS), where the physical basis for the model and refer-
ences can be found in Sharman et al. (2008). 

Predicted sound intensity from an explosion in a coastal area in the eastern USA. Output from the MM5 LAM was used 

as input to the Noise Assessment Prediction System. The sound intensity in the outer shaded band is 100–105 dB and 

for the innermost band it is 140-145 dB. Adapted from Sharman et al. (2008).

Fig. 14.7
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14.8 Wildland-fire probability and behavior

The probability that a wildland fire will occur in a particular region depends on many
factors, but one of the most important is the amount of moisture in the natural fuel (live
and dead vegetation). This fuel-moisture level is a function of antecedant temperature,
relative humidity, wind speed, and rainfall. In order to supplement in-situ and remotely
sensed estimates, specially adapted high-resolution land data-assimilation systems (see
Section 5.4.2) can be used to provide continuous gridded fields of fuel-moisture estimates.
Or atmospheric-model forecasts can provide the input variables. An example of the latter
approach is described in Fiorucci et al. (2007), wherein the atmospheric variables pre-
dicted by the LAM described in Doms and Schättler (1999) are used as input to an opera-
tional Italian dynamic wildfire-danger assessment system. Analogous wildfire-danger
assessment systems in the USA and Canada employ observed meteorological conditions.
The resulting fire-threat assessment can be used in a DSS that optimizes the location of
fire-fighting assets such that they will be available quickly in the event of a fire.

Models that directly simulate, or provide qualitative guidance about, the behavior (e.g.,
direction and rate of growth of the fire perimeter) of wildland fires span a wide range of
spatial scales, complexities, and types of applications. The categories of operational and
research coupled-modeling systems are summarized as follows. 

• Standard mesoscale NWP models are used to predict wind speed and direction, tempera-
ture, relative humidity, and precipitation, all quantities that strongly impact the evolution
of existing or potential fires. Accurate forecasts of these variables are critical for use by
wildfire managers who must (1) define the strategy for fighting an existing fire, and deploy
the firefighters in the most safe and effective way or (2) decide whether to proceed with an
intentional controlled burn of dead fuelwood. Such models generally have horizontal res-
olutions on the mesogamma or mesobeta scales. These are Type-1 coupled systems. 

• High-resolution NWP models, or even-higher resolution computational fluid-dynamics
(CFD) models (see Chapter 15), provide meteorological input to a fire-growth model,
but there are no feedbacks from the fire to the atmosphere – i.e., fire impacts on
humidity, temperature, and winds are not represented (Fujioka 2002). These are Type-3
coupled systems.

• The NWP or CFD models interact with a fire model, such that the fire feeds back to the
atmospheric state (Coen 2005). These are Type-4 or -5 coupled systems. 

14.9 The energy industry

There are a number of sectors of the energy industry that use special models that are
driven by atmospheric predictions. For example, hydropower-generation facilities use
decision models to determine how much water to release in anticipation of a heavy rain-
fall event over their supply watersheds (Section 14.4). And, energy companies that have
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nuclear facilities use air-quality and plume models to assess the potential impact of acci-
dental releases from their facilities on public health (Section 14.5). Thus, the following
sections only illustrate a few examples of the use of coupled models by this large indus-
trial sector. 

14.9.1 Electricity-demand models

Because electric-power providers benefit from being able to anticipate the demand, they
use models to estimate this quantity from the many governing meteorological and nonme-
teorological factors. Meteorological variables that are relevant are cloud cover, wind
speed, temperature, and humidity. Taylor and Buizza (2003) summarize the use of atmos-
pheric ensemble models for providing 10-day lead time probabilistic demand forecasts.
Electricity-demand models are also used with input from climate projections to provide
insight into long-term trends in requirements (e.g., Miller et al. 2008). These would typi-
cally be Type-2 or -3 coupled systems. 

14.9.2 Wind-power prediction

Because available wind power is a function of the wind speed at 80–100 m AGL at the
farms where the turbines are located, estimates of future power require wind-speed fore-
casts for these heights. The forecast wind speeds are translated to power production using
an algorithm that is based on the number of turbines operating, the mix of turbine types,
the efficiency of each turbine, etc. These also would typically be Type-2 or -3 coupled
systems.

Forecasts of wind-power production are required in order to plan how to balance the
load among the various available sources, such as gas, coal, nuclear, and wind. Especially
problematic for energy companies are wind “ramp events” that are not correctly forecast.
In these cases, the speed increases or decreases precipitously because of a frontal passage,
the variation in the height of the shear zone below a low-level jet, orographically forced lee
waves, or the passage of a convective outflow boundary. All of these can be challenging for
a model to predict well.

As wind power becomes a greater percentage of the total power supply, regionally at
least, coupled-model forecasts of power from this source must become increasingly accu-
rate in order to avoid (1) brownouts if the wind speed decreases unexpectedly and (2)
wasting fossil fuels and releasing greenhouse gases unnecessarily if the wind speed
increases unexpectedly. This will be especially challenging because of the mesoscale char-
acter of many of the above processes, and because advantageous locations for wind farms
are in complex terrain and in complex littoral zones. 

14.9.3 Wind-power resource assessment

Wind-power resource assessment, or prospecting, involves the generation of short- to
long-term reanalyses (see Section 16.2) of the near-surface climate. The resulting statistics
of the windfield and air-density field, when used as input to power-production algorithms



Coupled special-applications models398

or models, enable wind-farm developers to determine where installation of turbines would
be economically successful. Current climatological maps that have been produced show
the most favorable regions to be over water in littoral zones, over some elevated terrain,
and where low-level jets prevail. Because low-level wind-speeds vary greatly in space
because of landscape forcing, especially high-resolution regional reanalyses are desirable,
but it is very computationally demanding to produce them for long periods. Note that the
PDF of the wind speed is needed for such wind-farm-siting decisions because it is impor-
tant for the winds to not be excessively intermittent. Figure 14.8 shows an example of a
wind-speed climatology for North America based on an MM5, 40-km grid increment, glo-
bal reanalysis. This map defines the 120-m AGL wind speed at 0600 UTC for July 1997,
and is especially relevant to wind-resource assessment because it shows the importance of
the warm-season, nocturnal, low-level jet in the Southern Plains. See Landberg et al.
(2003) and Petersen et al. (1998a,b) for an overview of wind-resource estimation, and Sec-
tion 16.3 for a discussion of dynamical and statistical methods for downscaling coarse-
resolution analyses to represent finer scales. 
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The 120-m AGL wind-speed climatology of the US for 0600 UTC for July 1997, based on a 40-km grid increment, 

21-year, MM5 global reanalysis. Every sixth wind vector is shown. This month and time are especially relevant to 

wind-resource assessment because they show the importance of the warm-season, nocturnal, low-level jet in the 

Southern Plains. Provided by Daran Rife, NCAR.

Fig. 14.8
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14.10 Agriculture

There are many agricultural applications of atmospheric models. 

• Planting and harvesting – This often requires dry conditions, and necessary planning is
based on weather predictions of at least 12–72 h lead time. The use of appropriate soil
models coupled with atmospheric-prediction models can allow the diagnosis of soil traf-
ficability by farm machinery. 

• Application of pesticides – Integrated pest-management systems require that chemicals
be applied a specific number of hours before rainfall, and at appropriate temperatures
and relative humidities. Low-wind conditions also allow for more-accurate application. 

• Application of herbicides – Herbicides must not be allowed to drift with the wind into
areas where unintended damage to vegetation will take place. 

• Application of fertilizers – Chemical or natural fertilizers should not be applied too soon
before rainfall because the fertilizer will run off into waterways, not serving its intended
purpose and contaminating waterways with nitrogen and other chemicals.

• Insect movement – Insects that can damage crops are carried by winds from their breed-
ing grounds to agricultural areas, and predictions of weather patterns can allow for
assessment of this risk.

• Crop selection – For agricultural areas in which irrigation water is not available, crops can
be selected for planting that will be appropriate for the weather conditions that are
expected during the growing season. For example, if dry conditions are forecast to accom-
pany the onset of a particular phase of the ENSO cycle, crops can be selected accordingly.

• Development and spread of plant and animal disease – This is discussed in Section 14.3.2.
• Crop yield estimation – This is an especially important agricultural application of ensemble

NWP systems (Cantelaube and Terres 2005, Challinor et al. 2005, Marletto et al. 2005). 

Two well-established crop-yield modeling systems are summarized in Mera et al.
(2006), who studied the impact of climate-related changes in radiation, temperature, and
precipitation on crops, specifically soybeans and corn. The two models are CROPGRO
(soybean) and CERES-Maize (corn), which are part of a Decision Support System for
Agrotechnology Transfer (DSSAT). Both are predictive, deterministic models that simu-
late physical, chemical, and biological processes in the plant as a function of weather, soil,
and crop-management conditions. 

14.11 Military applications

Many military requirements for coupled models are very similar to those discussed above,
for example related to forecasting quantities that are important for aviation safety and effi-
ciency, and calculating the transport and diffusion of hazardous material in the atmos-
phere. There are, however, additional types of coupled models that specifically address the
needs of military activities. A few are noted below.
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• Soil trafficability – Heavy vehicles have difficulty operating on soils that are wet or too
loose. Special types of land-surface models, called soil-trafficability models, employ
analyses and forecasts of meteorological variables that affect substrate wetness (precipi-
tation, temperature, wind speed, and humidity), and are used to estimate the ability of
the substrate to support different vehicle types. 

• Guided and unguided missile trajectories – Winds, turbulence, and air density affect the
trajectory of missiles. The aerodynamic impact of observed and modeled meteor-
ological conditions on the trajectories is calculated using a trajectory model. 

• Electro-optical visibility – Weapons targeting systems are sometimes optical, so atmos-
pheric turbulence and aerosol influences on feature detection by existing and proposed
systems are anticipated using a model that employs atmospheric-model input. 

See Sharman et al. (2008) for additional discussion of some of these applications.
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PROBLEMS AND EXERCISES 

1. Predictability of atmospheric processes is an important topic in NWP. Speculate on the
likelihood that the coupling between an atmospheric model and a secondary model will
be such that there is a nonlinear sensitivity of the error in the solution of the secondary
model to the error in the solution of the atmospheric model. Provide an example of a
type of coupled-model application that might have a high degree of sensitivity to the
accuracy of the atmospheric forecast.

2. Perform a literature search to determine the ways in which atmospheric information
(observations, analyses, forecasts) is used in disease surveillance, early-warning, and
response systems, and summarize them.

3. The use of coupled atmospheric models and decision models by many businesses and
industries is not discussed in this chapter. Speculate on such applications of coupled
modeling systems.
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15.1 Background

The expression Computational Fluid Dynamics (CFD) modeling comes from engineering,
and refers to methods that can be used for the simulation of very-fine scales of motion.
The terminology is confusing in the context that weather and climate modeling also
involves the use of computational methods to solve the dynamic equations for a fluid.
When the term CFD modeling is used in its conventional way in the atmospheric sciences,
it refers to the simulation of motions that can synonymously be referred to as occurring on
the sub-mesogamma scale, the microscale, or the turbulence scale.

Because we are revisiting the concept of the scales of motion that are represented by a
model solution, a reminder of the pertinent discussions in Chapter 3 is appropriate. There
is a tendency to think of the  length scale as the resolution limit of a model, although
it has been shown by Skamarock (2004) (e.g., Fig. 3.36) and others that spatial filters asso-
ciated with the finite-differencing scheme and the explicit diffusion in a model can cause
the effective resolution to be quite different from this limit. Motions unresolved by the
model can generally be referred to as the subfilter-scale (SFS). 

15.2 Types of CFD models

There are three general categories of CFD models, although there are myriad methods for
solving the equations, just as with larger-scale models.

• Reynolds’-Averaged Navier–Stokes (RANS) equations serve as the basis for one type,
where, as described in Chapter 2, averaging operations relegate the turbulence effects on
the mean motion to Reynolds-stress terms that must be parameterized, and the depen-
dent variables in the equations pertain to the nonturbulent part of the motion. These
RANS-type CFD models resolve small-scale flows around obstacles such as complex
terrain and buildings, but the solution represents an average over the turbulent eddies
that can dominate the motions in these situations. Thus model solutions remain steady,
as long as the large-scale conditions defined by the LBCs do not change. An example of
a RANS CFD model is described in Coirier et al. (2005).

• Large-Eddy Simulation (LES) models do not use averaging to eliminate the turbulence,
but explicitly simulate the larger energy-containing eddies. A SFS parameterization

2Δx
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(also called a model) is used to represent the effects of the smallest-scale turbulence on
the resolved scales. 

• Direct Numerical Simulation (DNS) models capture all of the relevant scales of turbu-
lent motion, so no parameterization is needed of the effects of unresolved scales. This is
by far the most computationally demanding type of CFD modeling, and has limited use
for complex processes.

The LES-type models are the ones most commonly used for research and practical appli-
cations in the atmospheric sciences. As an example of LES-model applications, an inter-
comparison of simulations of the stable boundary layer by eleven LES models was
undertaken as part of the Global Energy and Water-cycle EXperiment (GEWEX) Atmos-
pheric Boundary-Layer Study (GABLS). See Holtslag (2006) for a description of GABLS
and Beare et al. (2006) for a summary of the LES models used in the study. 

15.3 Scale distinctions between mesoscale models and LES models

Using the terminology of Wyngaard (2004), let  represent the scale of the spatial filter
associated with the solution of the equations of motion and l be the scale of the energy-
containing turbulence. Figure 15.1 shows a schematic of a turbulent-energy spectrum, as
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Schematic of a turbulent-energy spectrum, as well as spatial-filter length scales ( ) for LES and mesoscale (MESO) 

models. The variable l is the scale of the energy-containing turbulence,  is turbulent energy, and  is wavelength. 

See the text for details. Adapted from Wyngaard (2004).
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well as spatial-filter length scales for LES and mesoscale (or larger scale) models. For
model spatial-filter scales in the “MESO” region on the right, long-wavelength, side of
the graph, the turbulent energy is clearly in the unresolvable SFSs ( ). This is appro-
priate because for meso- and larger-scale models, the turbulence should be parameterized
and not resolved. But, for LES models that resolve the energy-containing turbulence, the
scale of the spatial filter must be sufficiently small relative to the turbulence scales
( ). Thus LES spatial filters should be in the short-wavelength region on the left side
of the graph. The point of Wyngaard (2004) is that it is not clear how to apply models
with spatial-filter scales within the part of the spectrum containing the turbulent energy
(the terra incognita). 

15.4 Coupling CFD models and mesoscale models

Because CFD model domains only span a limited area, they must obtain their LBCs from
observations, analyses of observation, or larger-model grids with perhaps resolutions on
the mesoscale. The CFD model may be run with temporally constant LBCs, or the LBCs
may vary as the large-scale flow evolves. Initial conditions are typically defined from a rel-
atively smooth, or even horizontally uniform, variable field. The local forcing, e.g. from
orography or structures, will then allow microscale features to develop. For example, when
CFD models are used to simulate the impact of a building on the winds in an urban area,
the initial conditions will represent the “skimming flow”, well above the rooftops, and the
forcing from the building will generate channeling in the street canyons, and vortices on
all sides of the building, during the simulation.

In some cases, the same dynamical core can be run as a traditional mesoscale model and
as an LES model, with inner grids using LES closures and the outer grids run with stand-
ard mesoscale-model closures. In this case, there is generally two-way interaction between
the mesoscale and the LES scale. In contrast, when distinct models simulate the two
scales, it is more typical to use one-way coupling. Note that the use of the same model
dynamical core to span the LES scale and the mesoscale with a series of nested grids can
lead to the scale-separation issues described in the last section, if a standard ratio of 3–5 is
used for the resolution of adjacent grids. 

A significant issue with LES-model LBCs is that the inflow boundary will generally be
defined by an atmosphere in which the turbulence effects are parameterized. Thus, there
will be no turbulence structures entering the grid, and because of the short residence time
of the air flowing over such small computational grids there may not be sufficient time for
the turbulence to develop before the air exits at the outflow boundary. This situation is sim-
ilar, in principle, to that discussed in Section 3.5, where a significant buffer zone is needed
between the upwind boundary and the area of meteorological interest on the grid. This
allows small-scale processes to spin up as the air enters the central region of the grid.
Unfortunately, the advective time scales are the same for mesoscale and LES-scale mod-
els, even though the sizes of the computational grids are much smaller in the latter case.
For example, an LES model may have a grid increment of 5 m and a computational
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domain with a length scale of 1 km. If the inflow wind speed is 5 m s−1, the air will reach
the center of the computational grid in 100 s, quite possibly an insufficient amount of time
to develop the turbulence. This would render the LES inadequate for the intended purpose.
One approach to this problem is to try to specify turbulence structures in the inflowing air,
but this is challenging.

As with any system of coupled models, a situation-dependent aspect of the coupling
between LES and larger-scale models is the sensitivity of the LES model solution to errors
in the LBCs. For example, wind-direction errors in a mesoscale model may be consistent
with the state of the science, and these errors may not have a significant negative impact on
the value of forecasts of sensible weather. But, there may be particular applications of a
CFD model such that this error in the initial conditions and LBCs produces a profound
error on the CFD-model scales. For example, Fig. 15.2 shows the simulated concentration
of a plume of hazardous material that has been released at street level into the atmosphere
on the south side of Oklahoma City, USA. A large-scale wind was used as the input to a
RANS-type CFD model (Coirier et al. 2005), and the resolved wind flow within the street
canyons was used as input to a transport and diffusion model. In one case, the large-scale
wind was from the south-southwest, in which case the plume covered the east side of the
urban area (a). When the large-scale wind direction was changed by 22.5°, to southerly, the
plume’s impact changed from the eastern half to the western half of the city (b). Here, the
existence of the street canyons causes a large response in the low-level flow of the plume
to a small change in the large-scale wind direction. Note that this wind-direction differ-
ence is consistent with the expected errors in forecasts of low-level winds from mesoscale
models. 

(a) (b)

A large-scale wind was used as the input to a RANS-type CFD model (Coirier et al. 2005), and the resolved wind flow 

within the street canyons (black area between rectangular buildings) was used as input to a transport and diffusion 

model. In one case, the large-scale wind was from the south-southwest, in which case the plume (irregular gray 

shapes) covered the east side of the urban area (a). When the large-scale wind direction was changed by 22.5°, to 

southerly, the plume’s impact changed from the eastern half to the western half of the city (b). Provided by William 

Coirier, Kratos/Digital Fusion, Inc.

Fig. 15.2
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15.5 Examples of CFD-model applications

Applications of CFD models fall into two categories, as do the uses of NWP models – they
are used for scientific discovery (knowledge generation) as well as for addressing practical
problems. Practical applications are of course abundant in the engineering area, such as
simulating the flow over an aircraft as part of the design process. In the context of micros-
cale atmospheric science, some examples follow.

• Studies that are aimed at better understanding turbulence can lead to improved parame-
terizations of the effects of the turbulence on fluxes, for example in the nocturnal stable
boundary layer, or within a tree canopy during the day.

• The wind loading on tall buildings is studied by design engineers, to enable safer con-
struction.

• Wind turbines must be located to maximize the available power as well as to minimize
the turbulence load on the generator. Decisions about the general area for locating wind
farms are often made using analyses that are based on mesoscale models. But, optimiz-
ing the locations of the individual turbines in complex terrain requires the use of CFD
models. 

• Wake turbulence produced by specific types of aircraft on takeoff is studied to define the
requirements for safe distances that must be maintained between aircraft in a takeoff
sequence.

• The transport in the urban boundary layer of hazardous gases or aerosols, released for
example from a transportation or industrial accident, can be studied. 

Many, many other examples exist.

15.6 Algorithmic approximations to CFD models

Because of the small grid increments, CFD models are very computationally demanding
to run. Thus, when solutions are required quickly to meet operational needs of some type,
algorithmic approximations to CFD-model solutions are used. For example, if forecasts
are needed of street-level winds between buildings in an urban area, say based on the input
of rooftop winds from an operational mesoscale model, LES or RANS CFD models may
be too computationally demanding to provide building-scale solutions on usable time
scales. An approach that has been used to address this problem is to employ LES-model
solutions and wind-tunnel studies to define the patterns of the airflow around a variety of
obstacle shapes, for different wind directions, stabilities, and vertical shears of the hori-
zontal wind. The resulting catalogue of flow patterns can be used to develop algorithms
that define the building-aware wind flow under variable large-scale conditions. An exam-
ple of such a rule-based system is the Quick Urban & Industrial Complex (QUIC) model
(Pardyjak et al. 2004), which has a wind-flow component (QUIC-URB) and a QUIC-
PLUME code that tracks plumes of air pollutants among buildings. 
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PROBLEMS AND EXERCISES

1. Describe additional practical applications of LES models. 
2. Speculate about the challenges associated with using LES models to simulate the stable

boundary layer, versus the neutral or unstable boundary layer. Confirm your ideas with
a literature search.

3. What are the similarities between the turbulence-modeling scale issues described in
Wyngaard (2004), and the fact that 1–10 km grid increments are considered to be too
small for parameterizing convection but too large to resolve it in a model?

4. When CFD models run fast enough in the future to be used operationally, discuss
whether there will be a role them in predicting urban weather – that is, the specific
weather conditions within the street canyons.
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The term climate modeling, as used here, includes (1) forecasts of climate with global
AOGCMs that simulate the physical system’s response to radiative-forcing scenarios that
assume a specific trajectory for anthropogenic and natural gas and aerosol emissions, (2)
initial-value simulations on seasonal to annual time scales, (3) the production of model-
based analyses of the present climate, and (4) model experiments that evaluate the
response of the climate system to anthropogenic changes in the landscape, say associated
with continued urbanization or the expansion of agriculture. Thus, the term climate mode-
ling refers to the use of a model to define the state of Earth’s physical system on time
scales of seasons to centuries. As we will see, the specifics of the modeling process depend
on the time scale. Typically not included are monthly forecasts (e.g., Vitart 2004), which
bridge the gap between medium-range forecasting and seasonal forecasting. If the
AOGCM forecasts or the global-reanalysis data sets are used as input to a regional (mesos-
cale) model or a statistical procedure for correlating the large- and small-scale climate of a
region, the process is called climate downscaling. 

The material about the modeling of weather that has been presented so far in this book
also has direct application to the problem of climate modeling. The climate is, after all,
just the aggregate behavior of many thousands of individual weather events. So, errors in
the model’s numerical algorithms, shortcomings in physical-process parameterizations,
and incorrectly represented land–ocean–atmosphere interactions may affect climate pre-
dictions just as severely as weather predictions. In fact, some model errors that are
acceptable for forecasts of a day to a couple of weeks may severely impact model inte-
grations that extend over decades and centuries. Included would be slow rates of mass
gain or loss, or errors in the representation of radiation such that there are nonphysical
drifts in the temperature. Alternatively, there are serious errors that can develop in
weather predictions, such as phase errors in waves, that may have less consequence for
climate prediction.

This chapter will begin with a review of global climate modeling, including how the
models differ from those used in weather prediction, how their skill is verified using simu-
lations of current or past climates, the differences in approach between seasonal and
longer radiatively forced predictions, a summary of the models being employed, and the
use of ensemble methods. The section after that summarizes how global models are used
to create reanalyses of the current climate. This is followed by a section on climate down-
scaling, where downscaling is motivated by the often-stated fact that “all climate is local”.
That is, the human response to climate change takes place at the local level, and depends
on local economic, agricultural, and societal factors. Thus, this need for fine-scale infor-
mation requires the use of LAMs or statistical methods that employ input from AOGCM

16 Climate modeling and downscaling
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forecasts or global reanalyses. The final section describes the use of models to estimate the
effects on climate of anthropogenic landscape changes. 

16.1 Global climate prediction

Numerical methods and physical-process parameterizations used for modeling the global
atmosphere, with applications to both weather and climate prediction, were described in
earlier chapters. However, global climate models must also represent many additional
physical processes in the hydrosphere (including ocean circulations), the cryosphere (land
and sea ice), the lithosphere (land surface), and the biosphere, and how they interact with
each other. For most weather forecasts of up to two weeks, the sea-surface temperature; the
health, spatial extent, and types of vegetation; the extent of the permafrost, glaciers, and
sea ice; the chemical composition of the atmosphere; etc., can be specified and assumed to
be invariant during the model integration. However, this is not the case with climate simu-
lations with durations of years to decades to centuries. To the greatest extent possible, the
physical subsystems need to fully interact in the coupled model because they are part of
the complex of, sometimes nonlinearly interacting, processes that affect climate. This is
why such models are sometimes referred to as climate-system models rather than simply
climate models.

16.1.1 Experimental designs for global climate-change studies

Before models are employed for forecasting future climates, their ability to reasonably
replicate the current or past climates must be confirmed. Naturally, this success is not a
guarantee of an accurate climate forecast because some model representations of physical
processes are tuned for the current climate, and may not be as accurate in a different cli-
mate regime. Nevertheless, for future-climate studies using AOGCMs, and LAMs or sta-
tistical methods to downscale from AOGCM simulations, the responsible experimental
approach is to first apply the modeling system for present or past climates to quantify the
model’s performance. This verification process will be described in Section 16.1.3.

The annual-mean weather varies from year to year and decade to decade, partly because
of internal variability in the climate system resulting from natural long-time-scale physical
processes (related to deep-ocean circulations, the land surface, and ice). For example, the
heavy black line in Fig. 16.3, later in the chapter, shows the evolution of the global-average
observed surface temperature during the twentieth century. Superimposed on the long-term
upward trend in temperature are many scales of variation, from a few years to multiple dec-
ades. Research has shown that the long-term trend is probably of anthropogenic origin,
while the decadal and shorter oscillations represent internal variability. If the goal is to
quantify the effects of anthropogenic forcing – e.g., the Intergovernmental Panel on Climate
Change (IPCC) effort – simulated changes associated with internal variability should be fil-
tered in some way in order to avoid misinterpreting natural variability as anthropogenic
effects. This is especially important when downscaling from AOGCM simulations, where
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only short segments of time (referred to as slices) are simulated for the present and future
climates. That is, the simulated difference between the current and future downscaled
climate will depend on the phase of the internal variations at the times of the slices. 

There are a few approaches for modeling climate change, where the method of choice
depends on the objective. For estimation of the effects on climate of radiative forcing from
optically active gases and aerosols of anthropogenic origin, it is typical to first generate a
present-climate AOGCM control, or reference, simulation for a period of centuries, using
a constant, present radiative forcing. These simulations sometimes require thousands of
years of spin up in order to allow the deep ocean circulations sufficient time to develop.
Figure 16.1 illustrates the global-mean surface air temperature from such a control simula-
tion, where the multi-year (internal) variability in this current-climate regime results from
slow ocean–atmosphere interactions. Then, a future-climate projection is made, starting at
an arbitrary time in the control simulation, using a particular future-emissions scenario for
aerosols and optically active gases. See Nakicenovic (2000) for a description of the differ-
ent scenarios used in the IPCC modeling experiments. Because longer-term trends associ-
ated with the climate change will be superimposed on the internal variations, the simulated
change in a variable will depend on the phase and amplitude of the internal anomalies at
the start time of the simulation. Choosing a different start time will result in a different
pattern to the internal variability. Thus, running an ensemble of simulations with different
start times, and averaging, will remove some of the effects of the internal variation. The
same model can be used for each simulation in the ensemble, but a similar filtering can be
achieved by using a variety of different models, such as the suite used in the IPCC simula-
tions (IPCC 2007). As evidence of this smoothing, note that the individual simulations
(light gray lines) depicted later in Fig. 16.3 have much greater temporal variance than does
the ensemble-average (dark gray line).

Coupled AOGCMs can also be used to forecast the change in climate – both internal and
anthropogenic – on time scales of seasons to years. For example, the drought in the Sahel
during the last few decades of the twentieth century was likely, at least partially, caused by
natural internal variability in the climate system. Thus, forecasts must accurately define the
prevailing phases and amplitudes of many internal processes such as ENSO, the Pacific
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decadal oscillation, the North Atlantic oscillation, and changes in the meridional overturn-
ing circulation in the Atlantic Ocean basin. To represent the internal oscillations, initial con-
ditions must be employed that define the state of the entire physical system. Accurately
defining the state of the deep-ocean waters is clearly a great challenge. Section 16.1.4 sum-
marizes the process by which these initial-value climate predictions are produced.

As with weather prediction, multi-model ensembles can be used to improve the predict-
ability of climate. In particular, the unpredictable aspects in the model solution can cancel
when aggregating the simulations, so that the ensemble mean is superior to the individual
members. However, unlike ensemble weather prediction, where the members can be cho-
sen so that they have roughly equal skill, that is not possible when members are based on
disparate models from various organizations worldwide. The use of such multi-model
ensembles is central to the IPCC assessments of climate change (IPCC 2007). Ensemble
methods used in climate simulation are discussed in Section 16.1.6.

Another category of experiments has been used to define the strength of the internal
feedback processes that amplify or dampen the system’s response to the radiative forcing.
Metrics for this sensitivity include a quantity called the equilibrium climate sensitivity,
which is defined as the equilibrium surface temperature change that results from a dou-
bling of the carbon dioxide concentration in a model atmosphere, and it is expressed in
degrees Celsius. An alternative measure of the strength of the feedbacks is the transient
climate response, which is the surface air temperature change that results from a carbon
dioxide concentration increase of 1% yr−1, until the doubling point is reached. After reach-
ing this point, the system is given sufficient time to come to equilibrium. Differences
among models in terms of their future-climate predictions are partially a result of the feed-
back strengths measured here. See Box 10.2 in Meehl et al. (2007) and Section 8.6 in Ran-
dall et al. (2007) for further discussions of the concept of climate sensitivity.

 For estimation of the effects on global (and regional) climate of future anthropogenic
landscape changes, models can be run for long periods of time with and without the
change. Such studies are important because of the potential climate impacts of future
large-scale deforestation, conversion of grassland to agricultural crops, expansion of cit-
ies, expansion and contraction of the irrigation of agricultural crops, and diversion of
water from lakes causing them to shrink in size or disappear altogether. Depending on the
scale of the climate response to be evaluated, a global model can be used for the study, or
a LAM can be employed to resolve mesoscale processes.

16.1.2 Special model requirements

Climate models differ in a variety of ways from the traditional weather-forecast models
described elsewhere in this book. The following sections review some of these differences. 

Land-surface and ice modeling

Surface-process components of weather-prediction models were discussed earlier in
Chapter 5. However, there are a number of land-ice processes that operate on longer, cli-
mate time scales that must be considered here. Ice (cryospheric) processes, on both land
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and sea, are also included in this discussion. The reader should see Sections 8.2.3 and
8.2.4 of Randall et al. (2007), and the references in the land and sea-ice columns of
Table 16.1 in this chapter, for additional information. The terminology used in this table
deserves elaboration. For sea-ice dynamics, the word “leads” refers to the representation in
the models of narrow areas of open-water in cracks within the ice. In these areas, the heat
and water-vapor fluxes are extremely large. The word “rheology” refers to whether the
models represent the slow “flow” of ice sheets. None of the models represents the dynam-
ics of ice-sheet melting (e.g., Greenland and Antarctica), which is why there is great
uncertainty about sea-level rise. In the column that pertains to land processes, “canopy”
refers to the explicit treatment of vegetation effects, “routing” refers to whether rainwater
or snow/ice-melt water are routed into stream channels on the land surface, “layers” refers
to the use of a multi-layer soil model, and “bucket” refers to a simple method for treating
soil hydrology. Two community-developed land-surface-process models that are com-
monly used for climate applications are the Community Land Model (Oleson et al. 2008)
and the Common Land Model (Dai et al. 2003). 

One of the major important advances in newer-generation climate models is the inclu-
sion of terrestrial-biosphere models that treat some terrestrial carbon sources and sinks.
The processes that are represented involve both soil carbon cycling and vegetation. For
example, dynamic-vegetation models simulate the response of the vegetation to changes
in carbon dioxide concentrations and to climate variables (e.g., precipitation, temperature)
that affect vegetation health. In addition, there is higher-resolution modeling of the over-
land flow of water, the inclusion of plant root dynamics, the use of multi-layer snowpack
models, and the prediction of the motion and thickness of sea ice. However, as with efforts
to improve other aspects of climate models, it is unclear how well the new representations
of these land-surface and cryospheric processes will perform in greatly different climate
regimes.

It is important to be reminded of the need to employ surface-process models that can
adequately represent land–biosphere–cryosphere–atmosphere feedbacks. For example, the
simulated soil moisture influences dynamic-vegetation models, and the state of the vegeta-
tion determines its quantitative influence in the carbon cycle. Pielke et al. (1999a) illus-
trate the importance of land–atmosphere interactions by calculating the time after which
the initial soil-moisture conditions became unimportant in seasonal weather prediction
with an Atmospheric General Circulation Model (AGCM). They concluded that the
model’s memory of the initial soil moisture lasted 200–300 days. A general discussion is
provided, along with a good list of references, of the importance of properly modeling the
landscape (e.g., landcover type, leaf-area index, soil moisture) changes associated with
drought and climate change. There are also plentiful examples provided of the long-
distance impacts on climate of anthropogenic landscape changes, which need to be
accounted for as well in climate simulations. 

Ocean-circulation modeling

The ocean and atmosphere interact through fluxes of heat, water vapor, and momentum.
For weather-prediction purposes, it is generally sufficient to represent the ocean through
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specified surface temperature and salinity (which affects saturation vapor pressure)
patterns, and the use of a wind-speed dependent roughness length. That is, except as a
result of extreme wind speeds, such as in hurricanes, the feedback between the ocean and
the atmosphere during the period of a forecast is sufficiently small that most weather-
prediction models are not coupled to ocean models. However, on time scales of longer
than a few weeks the ocean properties can evolve considerably, and an active ocean-
circulation model should be employed. The ocean models run simultaneously with the
atmospheric models, out of necessity because of the two-way interaction, but they
typically have different horizontal resolutions than do the atmospheric models. See
Section 8.2.2 of Randall et al. 2007, and the ocean-modeling references in Table 16.1, for
additional information about the ocean component of global-climate models.

Physical-process parameterizations

The challenges of parameterizing physical processes in climate models do not differ
greatly from those associated with global weather-prediction models. Exceptions include
the fact that small errors in the representation of processes may be acceptable for forecasts
of weeks, but over much longer time periods the cumulative error can cause unacceptable
drifts in simulated climate. This problem can be addressed to some degree by “tuning”
model parameters (in parameterizations) so as to optimize simulation results, such as in
the atmosphere–ocean flux corrections described below. But, this process is not intuitively
appealing because tuning the model to the current climate does not ensure an equally pos-
itive effect for future climates. Furthermore, adjusting a particular parameter does not nec-
essarily give you a better model solution for the right reason. A partial remedy to this
problem is to use higher-resolution global models that explicitly resolve processes such as
convection. The use of higher-resolution regional models for downscaling may allow bet-
ter explicit local representation of processes, but that has no benefit for the simulation of
the global climate by the parent AOGCM. Lastly, because global climate models typically
have coarser horizontal resolution than do global weather-prediction models, parameteri-
zations may be more suitable for one application than the other because their performance
is sometimes scale dependent.

Conservation properties of dynamical cores

The general issues associated with the conservation of properties such as mass and energy
by models were discussed in Chapter 3. This need for conservation is clearly more critical
for long climate-time-scale simulations than for weather-prediction time scales of days to
weeks. That is, small rates of error accumulation may not be damaging for short model
integrations, but may be for long ones. For example, Boville (2000) states that, for climate
models, energy must be conserved to tenths of a watt per square meter. Williamson (2007)
points out that one of the energy conservation problems that must be addressed is the
accumulation of energy in small scales through aliasing, discussed in Section 3.4.5. See
Thuburn (2008) for a good general discussion of conservation issues for the dynamical
cores of climate and NWP models.
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Initial conditions

For IPCC-scenario climate-change simulations, or those involving projected landscape
changes, it is sufficient to initialize the model with any realization of the weather associ-
ated with current climate conditions. However, the aforementioned seasonal to decadal
forecasts that hope to represent the phase and amplitude of internal climate variations are
initial-value problems. Thus, the states of the atmosphere, ocean, biosphere, cryosphere,
and lithosphere must be defined by initial values.

For experiments that might involve more drastic perturbations to the climate or external
forcing, it is useful to keep in mind the distinction between transitive and intransitive cli-
mate systems (Lorenz 1968). A transitive climate system is one in which there is only one
permitted set of long-term climate statistics – that is, given a particular set of external
forcing parameters for the atmosphere, such as the orography, the solar input, Earth’s rota-
tion rate, etc., there is only one stable long-term climate. In contrast, an intransitive system
has more than one possible stable climate, with the prevailing climate determined by the
present state of the system. A special type of system is an almost-intransitive one, in which
the climate remains within a regime for a finite time, with the system then migrating into
another equally acceptable regime without any change in the external forcing. In other
words, climate regimes have sufficient “inertia”, in a dynamic sense, to be self-perpetuat-
ing for a period of time. This is consistent with the observed situation where distinct peri-
ods of prolonged regional drought can transition abruptly into periods with normal or
abundant precipitation. Thus, for intransitive and almost-intransitive climate systems, the
initial conditions that define the present state of the system can determine the resulting cli-
mate regime. 

Flux corrections

Small errors in the simulated fluxes of heat, water vapor, and momentum at the air–sea
interface can cause climate-model solutions to drift to an unrealistic climate state. To
address this problem of some models, artificial corrections have been added to the flux
terms in the equations. This practice is of obvious concern because it is nonphysical, and
the corrections cannot be targeted for those physical situations where the errors may dom-
inate. In the first two Climate Model Intercomparison Projects, which took place in the
1990s, over half of the models were flux corrected (Reichler and Kim 2008), whereas in
the third and latest comparison, less than one-quarter of the models were flux corrected
(for example, see the flux-adjustments column in Table 16.1 later in the chapter).

16.1.3 Verification of global climate-change models for past or current climates

As noted above, the only way of gaining confidence in the ability of a global climate
model to simulate future climate is to evaluate its ability to replicate the conditions of past
climates or the current climate. The advantage of using recent climates for this purpose is
that meteorological observations are more plentiful. However, the opportunity to fully test
the ability of models to simulate climate change is limited because recent climate variation
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has been small compared with the potential future changes that must be predicted. Thus,
there have also been efforts to test models by running them for paleoclimate periods,
during which climates have varied widely. The obvious drawback is that there are large
uncertainties in the external forcing as well as in the prevailing climate variables them-
selves, where various proxies need to be used to estimate the latter. In addition, simulating
climate change that takes place over very long, paleoclimate time periods is computation-
ally impractical with traditional full-physics models. 

It is arguable that this process should involve verification of the model’s ability to simu-
late individual weather events, as well as the long-term statistics of the events – the climate.
That is, both the specific characteristics of the simulated weather events (e.g., tracks, inten-
sity, and frequency of midlatitude storms; characteristics of easterly waves in the tropics;
properties of low-level jets near coastlines and mountains) and the climate statistics of the
aggregated weather events should be compared with the actual properties of the weather
and climate as defined by archived observations. Without evaluating the model’s rendering
of the events that make up the climate, there is the risk that the statistics could be correct for
the wrong reason, leading to errors when applying the model for future climates.

Because climate models are extremely complex, components are often developed and
tested individually. For example, the properties of numerical methods can be isolated and
evaluated much more effectively without the use of the physical-process parameteriza-
tions. And the physical-process parameterizations can be studied through the use of case
studies, possibly with special field-program data for verification. Only when a climate
model has been tested as thoroughly as possible at the component level, should its per-
formance be evaluated in the context of approximating the entire climate system. 

Climate-model verification has employed a number of metrics for comparing the model
solution with observations, including global means of variables, composite global indices
based on a number of variables, spatial patterns of variables, the temporal variability of
regional climates over times scales as large as decades (internal climate-system variabil-
ity), the ability of the model to replicate specific well-documented features of the current
climate (e.g., ENSO), and the ability of the model to simulate regional extremes of varia-
bles on various time scales. A good general reference for this subject is Section 8.3 of Ran-
dall et al. (2007).

Verification of global-average climate statistics

One of the challenges in climate-model verification is simply deciding upon what variables
best represent climate and can serve as metrics of overall errors in its simulation. This
choice is not easy because of the many variables associated with the state of the atmos-
phere, hydrosphere, cryosphere, lithosphere, and biosphere. Some studies simply use
global-mean surface air temperature (e.g., Min and Hense 2006). Others use composite
error indices that are based on a broad range of climate variables (Murphy et al. 2004,
Reichler and Kim 2008). Others use a few traditional error statistics, where Boer and Lam-
bert (2001) and Taylor (2001) summarize them in graphical form. Another complication in
the model verification process results from the fact that the observations that define the cur-
rent climate are not an independent measure of the model accuracy because they have
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already been used to tune the model physical-process parameterizations. Nevertheless, we
have no choice but to use them for the verification. This issue may be somewhat mitigated
by the use of higher-resolution climate models that require less parameterization of proc-
esses.

An example of a thorough verification of models for current climates is described in
Reichler and Kim (2008). In this study, numerous models (see Table 16.1) were compared,
using a performance index that was based on many variables, for simulations from three
different Climate Model Intercomparison Projects (CMIP): CMIP1 (Meehl et al. 2000)
organized in the mid-1990s; CMIP2 (Covey et al. 2003, Meehl et al. 2005); and CMIP3
(PCMDI 2007) based on the IPCC Fourth Assessment Report (AR4, Meehl et al. 2007,
Randall et al. 2007) simulations that were produced by the most-current climate models.
For the calculation of the multivariate performance index, observations and global gridded
analyses were used to compute annual-mean climatologies for the period 1979–1999.
From this data set can be calculated errors in the modeled mean states of many different
climate variables. To determine a model performance index, a normalized error variance,

, is calculated by squaring the grid-point differences between simulated and observed
climate, normalizing for each grid point with the observed interannual variance, and aver-
aging globally. This can be written as 

,

where  is the simulated annual climatological mean for variable v, model m, and grid
point n,  is the corresponding observed climatology;  are weights required for area
and mass averaging; and  is the interannual variance based on the observations. One
challenge when combining errors for variables with different dimensions is to weight
them properly. In this method,  is scaled according to the average error for a reference
ensemble of models. Specifically, a performance index (I) is calculated as follows:

,

where the overbar represents an average of the climates from all the models for that
variable. The final step in calculating the performance index involves averaging over all
the variables:

.

Figure 16.2 shows the value of the performance index, , (solid vertical lines) for each
of the models, for each of the three generations of CMIP exercises. The average perform-
ance index for each generation of models is shown by the dashed vertical line. The value
of the index associated with the NCEP-NCAR reanalysis (Kalnay et al. 1996), which is a
model-based analysis of observations, is 0.4. And, the black circle indicates the perform-
ance of the multi-model ensemble mean. The figure depicts a large variation in the ability
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of the models of a given generation to replicate the current climate. Also, there is a steady
improvement in this ability from one generation to the next, such that the realism of the
climate of the best models from CMIP3 approaches that of the atmospheric reanalysis.
These generational improvements are at least partly a consequence of improvements in
physical-process parameterizations and the greater horizontal and vertical resolution that
has been permitted by increases in available computing capacity. 

Another example of the relative performance of the individual models used in the Third
IPCC Assessment Report (c. 2000), and those used in the current IPCC AR4, is provided
in Randall et al. (2007) (Section 8.3.5). These statistics are reported individually for differ-
ent variables, such as precipitation, sea-level pressure, and surface air temperature, rather
than for a single performance index. Conclusions are that (1) on average, flux-adjusted
models have smaller errors than those without flux adjustments, for both the third and
fourth assessments, but the smallest errors are from models without flux adjustments; and
(2) the mean error from the recent suite of models is smaller than that from the earlier
suite, in spite of the fact that all but two of the newer models do not use flux adjustments. 

An illustration of historical-temperature change produced by CMIP3 simulations is
shown in Fig. 16.3. Depicted is the observed global-average near-surface temperature
trace from 1900 to the early twenty-first century (black line), the simulations from the
individual models used in the ensemble (light gray lines), and the multi-model ensemble
mean (heavy gray line). The model simulations shown in Fig. 16.3a employed both natural
and anthropogenic forcings, and those in Fig. 16.3b used only natural forcings. The
ensemble-mean model-simulated temperature in Fig. 16.3a closely approximates the
observed trend.

The relative skill of different models of an ensemble in replicating the observed histori-
cal climate can be used to infer which models will perform best for future climates. For
example, Shukla et al. (2006) correlated the skill at simulating twentieth-century surface
temperature with simulated future-climate temperatures. The models that had the smallest
error for the twentieth-century climate produced relatively larger temperature increases for
the twenty-first century. Meehl et al. (2007) describe the use of observation-based metrics
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to weight the reliability of contributing models when making projections with ensembles,
but a challenge is defining a metric, or a set of metrics, that is a reasonable indicator of
overall model performance.
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Verification of specific processes and regional features 

The above verification involved the calculation of global-average statistics, which facili-
tated the use of multivariate composite error indices. In contrast, this section provides
examples of how global climate models have been evaluated (1) in the context of specific
physical processes, such as the ENSO cycle, (2) in terms of the spatial pattern of error
over the globe, and (3) for limited geographic areas. The inability of some climate models
to faithfully simulate specific observed features of the current atmosphere has historically
been the cause for a lack of confidence in the models for use in climate prediction. 

As an example of the models’ replication of spatial patterns, Fig. 16.4 shows the spatial
distribution of annual-mean precipitation based on observations and CMIP3 climate-
model simulations. The observation-based climatology is from the NOAA Climate Predic-
tion Center (CPC) Merged Analysis of Precipitation (Xie and Arkin 1997) for the period
1980 to 1999. The model climate is based on a multi-model mean for the same period. The
observed and simulated patterns are very similar, but quantitative differences are apparent
regionally. For example, the subtropical precipitation deficits to the west of the continents
in the Americas are less widespread and intense in the model solution, and the simulated
precipitation maxima off the east coasts in midlatitudes are also smaller and weaker. An
example of a more-quantitative interpretation of model skill at the regional level, also for
precipitation, is provided in Fig. 16.5. It shows the annual cycle of regional-average pre-
cipitation for southwestern USA, simulated by the models participating in the CMIP2
comparison. Even though the overall cycle is captured, there is much variation among the
models in the specific monthly precipitation values. AchutaRao et al. (2004) show similar
plots for other variables and geographic areas. 

There are many examples of studies that have focussed on the ability of climate models
to simulate specific processes in the current climate. For example, precipitation is a pri-
mary climate variable, and in the tropics the diurnal cycle dominates its occurrence. How-
ever, many models have difficulty simulating the early-evening maximum, instead
producing it before noon (Yang and Slingo 2001, Dai 2006). The ENSO cycle has been a
process that has received special attention in terms of climate-model verification. For
example, AchutaRao and Sperber (2006) compared the ENSO-simulation skill of the
CMIP2 AOGCMs developed in the late 1990s with the skill of the more-recent models
used as the basis for the IPCC AR4. The AR4 models were better in many respects, but the
fact that fewer of those models use flux corrections may have prevented an otherwise
greater improvement. Also, Randall et al. (2007) review progress with respect to the abil-
ity of climate models to simulate the Madden–Julian oscillation, the quasi-biennial oscilla-
tion, ENSO, and intraseasonal to interannual variability in monsoons. Also summarized is
the ability of the models to reproduce observed extreme events in the current climate,
including extreme temperatures, extreme precipitation events, and tropical cyclones.

The extreme values of model dependent variables, in new climate regimes, are often of
equal or greater interest than are mean values. For example, greater temperature extremes
associated with heat waves would take a larger toll in human lives, wind extremes would
affect wind-power generation as well as the engineering design of tall buildings, heavier rains
would produce more floods and flash floods that affect public safety, more-prolonged drought
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periods would have water-resources and agricultural implications, and stronger hurricanes
would increase the loss of lives and infrastructure in coastal communities. Thus, there is a
great emphasis in global and regional climate-change studies on verifying the model simula-
tions of extremes for current climates and forecasting them for future climates. For example,
a European project entitled Modeling the Impact of Climate Extremes (MICE) involved the
use of both climate models and impact models (Hanson et al. 2007). Also, Meehl and Tebaldi
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(2004) use an ensemble of AOGCM predictions to conclude that heat waves in North
America and Europe will become more intense, more frequent, and longer lasting in the sec-
ond half of the twenty-first century. Additional examples of the use of ensembles for predic-
tion of extremes are Alexander and Arblaster (2009) and Fowler and Ekström (2009). 

16.1.4 Seasonal to multi-year initial-value predictions

Regional climate variability on time scales of seasons to decades must be forecast in order
to permit preparation for the economic, humanitarian, and environmental consequences of
the change. Variability on these time scales can result from anthropogenic, greenhouse-gas
forcing and from landscape changes, but also because of internal variability in the climate
system. For example, Fig. 16.6 shows the Sahel-average precipitation record for a recent
83-year period, where there is evidence of variability on times scales of a few years to mul-
tiple decades. See Barnston and Livezey (1987) for a summary of the low-frequency
atmospheric-circulation patterns. To forecast the internal variation, which results from the
atmosphere’s response to sea-surface temperatures, soil moisture, and snow and sea ice, the
full physical system must be initialized. Kanamitsu et al. (2002b) suggests that there are at
least four major requirements for a successful dynamical seasonal prediction system: 

• accurate models of the atmosphere, ocean, land, and sea ice that are coupled in a physi-
cally consistent manner;

• initial conditions for the atmosphere, ocean, land, and sea ice;
• a methodology for ensemble prediction; and 
• a strategy for correcting the systematic error.

Monthly total precipitation for the southwest USA, based on the models participating in the CMIP-2 comparison (fine 

dashed lines), the precipitation analyses of Xie and Arkin (1996,1997) (gray line), and the NOAA CPC Merged Analysis 

of Precipitation (CMAP) (wide black line). The region was defined by 30.0–37.5° N latitude and 105–115° W 

longitude. From AchutaRao et al. (2004).

Fig. 16.5
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Thus, the modeling system, in addition to encompassing the atmosphere, needs to also
represent all the slower components of the variability in the system – the ocean, the land,
and the ice. Defining the initial conditions for the forecasts is especially challenging
because these slowly varying systems are not well-measured in three dimensions. Thus,
data-assimilation systems must be relied upon, where the models themselves provide
information that supplements the observations. And, as with longer-range simulations of
greenhouse-gas emission scenarios, ensemble methods are important here. However, in
addition to the multi-model ensemble methods used for simulation of those scenarios, the
fact that this is an initial value problem with some poorly observed variables means that
the initial-condition uncertainty must be sampled as well. Lastly, the model bias must be
removed by subtracting the model climatology from the seasonal prediction to produce an
anomaly field, and then adding the resulting anomaly to the observed climatology. This is
equivalent to correcting the prediction using the difference between the model and
observed climatology, and significantly increases the forecast skill of the model. A disad-
vantage of having to correct for this systematic error is that the error is a function of fore-
cast lead times as well as month/season, and is best calculated through performing a large
number of predictions with previous cases (reforecasts). Unfortunately, every time
changes are made to the model, the systematic error must be recomputed. This problem is
similar to the one described in Chapter 13 on the post processing of model output, where
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 Time series of Sahel (10°N–20°N, 18°W–20°E) regional rainfall during the rainy season (April–October) from 1920 

through 2003, illustrating large changes on time scales of years to decades. Negative values of the index correspond to 

deficits relative to the period mean, and positive values are excesses. It is these changes, which include internal climate 

variability, that interseasonal to decadal predictions are designed to capture. The black curve shows decadal time-scale 

variations. From Trenberth et al. (2007).
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the correction of weather forecasts using MOS precludes making frequent improvements
and code corrections in the forecast model.

A number of special projects have been aimed at improving seasonal predictions. For
example, the DEMETER project employed models from seven institutions in Europe.
Using hindcasts, seasonal predictability was assessed for single-model ensembles, and for
combining the single-model ensembles to produce multi-model superensembles. Palmer
et al. (2004) and Hagedorn et al. (2005) summarize the project, and Doblas-Reyes et al.
(2005) discuss the calibration of the ensemble and the combination of the members. A sig-
nificant amount of the research effort related to prediction on these time scales has been
focussed, understandably, on development and verification of methods for the prediction
of the ENSO cycle (e.g., Gualdi et al. 2005, Keenlyside et al. 2005).

There are also seasonal climate-prediction methods that are based on a combination of
dynamical and statistical models. For example, O’lenic et al. (2008) describe such a sys-
tem used by the NCEP Climate Prediction Center for producing predictions with lead
times of 1 month to 12 months. Also, there are research efforts that are aimed at extending
the seasonal and multi-year initial-value prediction methods for use on time scales of dec-
ades (e.g., Smith et al. 2007, Keenlyside et al. 2008).

16.1.5 Summary of existing global models

Global models used for forced anthropogenic climate-change prediction

Table 16.1 lists the AOGCMs, from a variety of different research centers worldwide, that
were involved in the IPCC AR4 (Randall et al. 2007). Most of the model versions origi-
nated in the late 1990s or the first five years of the twenty-first century. For the atmos-
pheric models, the horizontal grid increments varied from about one degree (T106) to five
degrees latitude–longitude, and the number of vertical levels varied from 12 to 56. The
coupled ocean models typically had similar or better horizontal resolution than that of the
corresponding atmospheric models, and the number of vertical ocean levels ranged from
16 to 47. Most of the models represent sea-ice rheology and leads in the ice. Only a few
use flux adjustments. Lastly, regarding land-surface processes, most employ multi-layer
soil models, route surface water in channels, and have some representation of a vegetation
canopy. The main point of showing this table is to emphasize the tremendous effort that is
being dedicated to the modeling of radiatively forced climate change.

Global models used for seasonal to multi-year initial-value predictions

Interseasonal prediction systems sometimes employ atmospheric models that are similar
to the AGCMs that are used for medium-range forecasting, but a separately run ocean
model provides the SSTs. For longer time-scale predictions, fully coupled AOGCMs are
used. Interseasonal forecasts are produced operationally by a number of national centers,
on a regular forecast cycle. Ensemble methods are virtually always employed. Table 16.2
lists some of the models that are being used operationally on seasonal to annual time
scales.
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Longer-range (decadal) initial-value predictions are performed on a one-time basis,
rather than on a regular cycle. Even though the model products are used for development
of adaptation strategies, the modeling is more reasonably defined as a research project
rather than being operational.

16.1.6 Ensemble climate simulation

The use of ensemble methods in weather prediction is discussed in Chapter 7. The applica-
tion of similar techniques has also been well established for seasonal, interannual, decadal,
and centennial forecasting with AOGCMs. Good summaries are provided in Section
10.5.4 in Meehl et al. (2007). In contrast to ensemble weather prediction, predictions of
forced anthropogenic climate change and inter-seasonal forecasting, both with AOGCMs,
require the sampling of additional sources of uncertainty. For initial-value simulations, the
uncertain initial state of the ocean and other components of the system must be sampled.
For IPCC-type simulations, future emissions of aerosols and greenhouse gases are
unknown, and this uncertainty can be sampled by assuming different scenarios. Also,
ensembles can take two forms. In one, the same model can be used for multiple experi-
ments with different choices for poorly constrained internal parameters and for the overall
process parameterizations themselves. In the other, multi-model ensembles can be gener-
ated through the use of a range of AOGCMs developed at different modeling centers, such
as used in the CMIP experiments described above or in the IPCC ensemble. 

In experiments that define the climate response to different forcing scenarios, the
change between the present state of a variable and the state in some future year is a result
of both the start and end times. Because the aim of such experiments is to assess the
impact of the forcing on the climate, it is typical to create an ensemble using different

Table 16.2 Example global models used for operational seasonal to annual initial-value predictions. Note that forecast systems
that combine dynamical and statistical models are not listed here.

Models (where model 
developed)

Organization 
producing forecast

Duration of 
predictions

References

CFS NCEP 9 months Saha et al. 2006

ECHAM (MPI) 
CCSM (NCAR) 
MRF (NCEP)
NSIPP (NASA)
COLA
ECPC (Scripps) 

IRI 6+ months Barnston et al. 2003

System-III ECMWF 3 months
1 year

Anderson et al. 2003
George and Sutton 2006

GloSea UK Met Office 3 months Gordon et al. 2000
Graham et al. 2005
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initial times within the current climate, and use the average of the projections in order to
minimize the influence of the internal variations. 

To the degree that the errors from different AOGCMs used in an ensemble are inde-
pendent of each other, the ensemble mean can be expected to outperform the individual
ensemble members. Palmer et al. (2004), Hagedorn et al. (2005), and Krishnamurti et al.
(2006b) demonstrate that this is the case for seasonal prediction. For longer-range radia-
tively forced scenarios, Lambert and Boer (2001), Taylor et al. (2004), and Reichler and
Kim (2008) show the superiority of the ensemble mean over the use of individual mem-
bers (e.g., Fig. 16.2). Indeed, the conclusions about global warming reported by the IPCC
were based on the multi-model ensemble mean of the CMIP3 models. 

As with ensemble weather prediction, ensemble climate predictions can be calibrated
(Doblas-Reyes et al. 2005). Because of the disparate nature of the multi-national suite of
climate models, it is not possible to make the assumption that all the models are equally
skillful at predicting each variable at each geographic location. Thus, the optimal solution
would not be based on an equally weighted combination of the model solutions. It was
noted earlier that models that have verified better against the historical climate record may
be given more weight in terms of their projections of future climate (e.g., Krishnamurti
et al. 1999, Shukla et al. 2000, 2006, Goddard et al. 2001, Rajagopalan et al. 2002,
Robertson et al. 2004, Yun et al. 2005). Clemen (1989) reviews different methods for
optimally combining multi-model ensemble climate predictions. 

One of the many examples of the benefits of ensemble climate prediction is described
in Fedderson and Andersen (2005), who compared the skill of 2-month (seasonal) statis-
tically downscaled multi-model ensemble predictions with the skill of the downscaled
individual-model predictions. This comparison was made for 40 years of retrospective
seasonal-forecast downscalings over Europe, northwest North America, the contiguous
USA, Australia, and Scandinavia. The forecasts employed were part of the DEMETER
study, and were performed by Météo-France, ECMWF, and the UK Meteorological
Office (Palmer et al. 2004). A linear-regression-based downscaling algorithm was con-
structed using the ensemble mean from the model forecasts (the MOS approach men-
tioned in Section 16.3.1) and observations from the noted geographic areas. Using a
cross-validation approach (Michaelsen 1987), the statistical relationship used in each
forecast year was constructed without data from that year. The regression equation
obtained from using the ensemble mean was also applied to the downscaling of the indi-
vidual ensemble members. Table 16.3 shows the verification of the 2-month forecasts in
terms of the anomaly correlation, for the individual models as well as the multi-model
ensemble, for selected seasons and geographic areas. The predictive skill varies geo-
graphically, with season, and with the model. No single model is consistently better than
another. The ensemble skill is generally comparable to that of the best model, where the
positive scores indicate modest predictive skill beyond that of climatology. The skill var-
ies from year to year, as seen in Fig. 16.7, which shows the time series of the anomaly
correlation for the 2-m temperature for Europe in the JAS season. In years where the
ensemble prediction shows no skill (negative or zero anomaly correlation), two of
the member forecasts have typically failed. In most years, the anomaly correlation of the
ensemble prediction is positive.
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Another European ensemble climate-prediction effort is ENSEMBLES (Hewitt 2005).
This project involves the development, verification, and application of several AOGCMs
and regional models to produce ensemble forecasts on time scales of seasons to decades. In
addition to generating the probabilistic forecasts for Europe, the project is linking the outputs
with the needs of various sectors such as agriculture, health, energy, water, and food security.

Table 16.3 Comparison of the anomaly correlation for individual models and for the ensemble mean, for selected seasons and
geographic regions.

Model

Precipitation 2-m Temperature

Europe
JFM

Scandinavia
JFM

Europe
JAS

Scandinavia
AMJ

Météo-France 0.07 0.11 0.16 0.33

ECMWF 0.30 0.09 0.35 0.14

UK Met Office 0.03 0.28 0.25 0.15

Ensemble 0.22 0.27 0.35 0.28

 Source: From Feddersen and Andersen (2005). 
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16.1.7 Example global climate-change predictions

Predictions with AOGCMs have been conducted on seasonal, annual, decadal, and centen-
nial time scales. Even though our focus in this text is not on the results, but rather on the
methods, a couple of examples will be provided of climate change that has been simulated
by radiative-forcing experiments. Figure 16.8 illustrates the change in global-average sur-
face air temperature and precipitation predicted for the twenty-first century by 21
AOGCMs used in the IPCC AR4 experiments. There is a significant spread among the
model predictions, especially for precipitation, but all of the simulations have the same
general trend. Of more direct use for addressing practical questions about adaptation to
climate change are regional interpretations of the global-model output. Such regional anal-
yses of the results of IPCC-ensemble simulations have been generated for a wide range of
applications related to water resources, air quality, etc. For example, Fig. 16.9 shows the
ensemble-mean predicted precipitation change in the Middle East between 2005 and 2050,
based on 18 global climate models that participated in the IPCC AR4. These results indi-
cate a trend toward a drier future to the north and east of the Mediterranean, along the
track of extratropical cyclones. By the end of the century (not shown), the precipitation
decrease exceeds 100 mm, and the temperature increases by 4 °C. Note that these types of
regional analyses are not based on downscalings, but are simply windows within which the
global-model output is displayed and analyzed. For other examples of regional analyses of
AOGCM climate projections, see Gibelin and Déqué (2003), Déqué et al. (2005), Cook
and Vizy (2006), d’Orgeval et al. (2006), García-Morales and Dubus (2007), and Hanson
et al. (2007). 
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16.2 Reanalyses of the current global climate

Global data-assimilation systems typically employ a model to periodically ingest observa-
tions, with the result being a gridded set of model dependent variables that are consistent
with both model dynamics and the information represented in the observations. The result-
ing analyses are sometimes called Model-Assimilated Data Sets (MADS). Such data-
assimilation systems are used to define long-term analyses of atmospheric fields pertaining

mm
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SyriaMed.

2050 - 2005

-55 -45 -35 -25 -15 -5 5 15

Change in precipitation (mm) in the Middle East during the period 2005–2050, based on the ensemble mean of the 

predictions of 18 global models that participated in the IPCC AR4. Adapted from Evans (2008).
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to the current and recent climates, for use by the research and climate-monitoring commu-
nities, and they are used to provide initial conditions for operational GCM forecasts. The
former process of reconstructing historical conditions involves using a contemporary, fro-
zen version of the assimilation system, to generate multi-decadal analyses. These gridded
data sets are called reanalyses.

Even though the same assimilation modeling software is used for the entire reanalysis
period, to avoid any shifts in analyzed climate that would result from model changes, the
types and amounts of ingested data obviously do change during the reanalysis period.
Observation locations change, periodic data voids occur throughout entire nations or
regions for political and economic reasons, and observation platforms such as satellites
change throughout the period. Thus, there is an unavoidable lack of uniformity in the proc-
ess that can lead to changes in the accuracy of the reanalysis and to difficulties in interpret-
ing the climate. When major new observation platforms are introduced, parallel
assimilations are run for short test periods, with and without the new data, to help isolate
the impact of the new data on the analyzed climate. 

Different analyzed variables have different relative dependencies on the model and assimi-
lated observations. For example, surface fluxes and precipitation are often not assimilated, so
their values provided in the reanalysis data set can be entirely products of the model. In con-
trast, winds, mass-field variables, and thermodynamic variables are assimilated, so the result-
ing analysis will represent a mix of the constraints of the observations and model dynamics.

The assimilation methods used in the different global reanalysis systems are similar. The
NCEP-NCAR Reanalysis Project (NNRP) reanalysis (referred to as R-1, Kalnay et al. 1996)
was generated with a 6-h intermittent-assimilation method, for the 40-year period from 1957
to 1996, using the NCEP Global Data-Assimilation System (Kanamitsu 1989, Kanamitsu et
al. 1991). Here, an objective analysis is performed every 6 h, using the previous 6-h forecast
as the first guess. The horizontal grid increment of the model and the analysis is about 210
km, and there are 28 layers in the vertical. An updated reanalysis was subsequently produced,
with the same data input and model resolution, but with some model and data errors cor-
rected (the NCEP-DOE Reanalysis, or R-2; Kanamitsu et al. 2002a). A more-recent global
reanalysis is the ERA-40, also a second-generation product, produced by the ECMWF
(Uppala et al. 2005). The assimilation model also used a 6-h assimilation cycle, the horizon-
tal grid increment was about 125 km, and there were 60 layers in the vertical. Other global
reanalyses are the Japanese 25-year Reanalysis Project (JRA-25, Onogi et al. 2007) and
NASA’s Modern Era Retrospective-analysis for Research and Applications (MERRA, Bosi-
lovich et al. 2006). The MERRA analysis is defined on a 2/3 degree longitude by 1/2 degree
latitude grid, with 72 vertical layers. The JRA-25 analysis has a horizontal grid size of about
120 km and 40 vertical layers.

16.3 Climate downscaling

The term future-climate downscaling refers to techniques that use AOGCM predictions of
future climates as input to methods that produce finer-scale climate information. This
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process is necessitated by the fact that the AOGCMs that are used for predicting future
climate typically have grid spacings of hundreds of kilometers, and thus there is a mis-
match between the output data of those models and the needs of, for example, hydrologi-
cal models that require watershed-scale information. In the process of determining the
accuracy of the AOGCMs and the downscaling methods, simulations of current or past cli-
mates may be performed, but the ultimate objective in future-climate downscaling studies
is to produce high-horizontal-resolution information about future climates. Downscaling
methods can be applied to initial-value-based interseasonal or longer forecasts, or to radi-
atively forced IPCC-type simulations. 

There is also a need for gridded, high-horizontal-resolution information about the cur-
rent climate. For example, wind-energy prospecting and defining source–receptor relation-
ships in air-quality studies benefit from the availability of high-resolution mesoscale data
that define the characteristics of the current climate. To satisfy this need, current-climate
downscaling uses global gridded data sets that are produced by the global-model-based
data-assimilation systems described in the last section. 

For both present and future climates, there are two basic approaches for accomplishing
this downscaling. One is to use statistical-empirical relationships that define the high-
resolution subgrid-scale variability based on resolved, grid-scale, values from the global
data set. The other uses a LAM whose LBCs are forced by the global data set, or a
stretched-grid AGCM. The former process is referred to as statistical downscaling, while
the latter is called dynamical downscaling. The advantages and disadvantages of the two
approaches are summarized in Table 16.4.

Topics that are related to the subject of climate downscaling appear elsewhere in this
book. For example, Chapter 13 about the post processing of model output discusses statis-
tical downscaling as applied to weather prediction. And, the subject of forcing the LBCs of
LAMs with global analyses or global forecast-model output is described in Chapter 3 on
numerical methods.

Downscaling, whether it is statistically or dynamically based, is a local diagnostic
process that represents a post processing of the global data set. That is, the modulations
of the large-scale climate by local forcing, such as orography, are diagnosed by statisti-
cal or dynamical methods, but they typically cannot feed back to the global scales to
improve the rendering of the climates of other regions. The exception is when variable-
resolution global climate models focus higher horizontal resolution over certain
geographic areas (discussed in Laprise 2008). Even in this latter situation, there are con-
cerns that teleconnections between two distant geographic areas cannot be treated prop-
erly in climate simulations if only one region is modeled with high resolution. For
example, if we are modeling the future climate of the Amazon Basin, we would be
tempted to represent only that area with higher resolution. However, there is recent evi-
dence (Koren et al. 2006) that the dust originating in the relatively small Bodélé Depres-
sion in the Sahara Desert provides a large fraction of the nutrients for Amazon
vegetation. Thus, inadequate resolution of the orographically generated high winds in
this area of Africa could lead to an erroneous devegetation of the Amazon in a future-
climate simulation that was able to represent the effects of soil nutrients on the vegeta-
tion. Unfortunately, we often don’t have sufficient understanding of the current climate
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sensitivities, such as the one just mentioned, let alone teleconnections that will be poten-
tially important in future climates. 

Section 16.1.3 describes the need for global climate models to provide information on
the extremes in the PDFs of the dependent variables, for use in analyzing both current and
future climates. Because atmospheric extremes tend to be associated with small-scale fea-
tures, such as convective events, strong fronts, terrain-induced downslope winds, etc., it is
understandable that coarse-resolution global-model-based analyses or predictions will
tend to underestimate extremes, resulting in overly smooth features in analyses of the cur-
rent climate or predictions of future climates. Thus, there has been much research activity
associated with capturing the extremes with the downscaling process. For example, the
STAtistical and Regional dynamical Downscaling of EXtremes (STARDEX) project was
designed to compare statistical and dynamical downscaling methods in terms of their abil-
ity to estimate the extremes, for European future climates. For more information about
STARDEX and the downscaling of extremes, see Fowler et al. (2007) and references
therein. Figure 16.10 shows how downscaling with a Regional Climate Model (RCM) can
better define extremes, by comparing the maximum one-day rainfall at a location in

Table 16.4 Summary of advantages and disadvantages of statistical and dynamical downscaling for current and future climates

Statistical downscaling Dynamical downscaling

Advantages • Computationally efficient, and cheap
• Can be used to derive variables not 

available from RCMs (e.g., river discharge)
• Easily transferable between different 

regions
• Based on standard and accepted statistical 

procedures
• Able to directly incorporate observations
• Can provide climate variables at a point, 

based on large-scale input

• Response is based on physically consistent 
process

• Gridded output is available for physical-
process analysis

• Can better capture extreme events and 
variance

Disadvantages • Requires long and reliable observed 
historical data record for calibration

• Success dependent upon choice of 
predictors

• Nonstationarity may exist in the predictor–
predictand relationship

• Climate-system feedbacks not included
• Variance is underestimated, may poorly 

represent extreme events
• GCM biases can cause error, unless the 

procedure corrects for them
• Domain size, region, and season affect 

skill

• Computationally intensive
• Sensitive to location of lateral boundaries
• Feedback to large scale generally not 

considered
• Biases in large-scale conditions will cause 

errors
• Domain size, region, and season affect 

skill
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Europe in each year of a 30-year period, based on observations, the NNRP global analysis
(Kalnay et al. 1996), and a simulation by the HadRM3 RCM. The NNRP reanalysis is
model based, with a grid increment of about 210 km. The RCM has a grid increment of
about 40 km, with LBCs provided by an AOGCM having about one-fourth the resolution.
Clearly, the RCM produces rainfall extremes whose average magnitude is more consistent
with the observations than that of the GCM-based NNRP reanalysis. 

The following subsections will describe climate downscaling by classifying methods
in different ways. First, the statistical and dynamical methods will be described and
contrasted in Sections 16.3.1 and 16.3.2, respectively. Then, the use of both of these
methods for downscaling future climates and current climates will be described in
Sections 16.3.3 and 16.3.4, respectively. Lastly, a summary will be provided of how the
downscaling methods have been applied to address different practical climate-
dependent problems.

16.3.1 Statistical climate downscaling methods

Spatial statistical downscaling

Spatial statistical downscaling involves using linear or nonlinear statistical/empirical rela-
tionships to estimate small-scale local processes (the predictands, such as precipitation
rate, temperature, or river discharge) based on features of the large-scale weather or
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climate (the predictors) that are represented in (1) global reanalyses, (2) seasonal or annual
predictions with AOGCMs, or (3) longer climate-forcing simulations with AOGCMs.
Whether reanalyses or AOGCM output are used to define the predictors (for current-
climate or future-climate downscaling), the general objective is to infer information about
fine-scale processes without the use of a high-resolution model. A two-step process is
involved. First, the statistical relationships are developed between the local climate varia-
bles of interest and the large-scale predictors, using local and large-scale data for the cur-
rent climate. If observations of the local variables are not available for a geographic area, a
LAM can be run for a range of large-scale regimes and a catalogue developed of local
responses. In the second step, the statistical relationships are used to define the local sys-
tem response to the large-scale features, for example in a future-climate simulated by an
AOGCM. This statistical-downscaling process can be imagined as a parameterization of
the local system response to the large-scale forcing, or as the establishment of analogs
between the large- and small-scale features. 

The choice of the predictor obviously depends on the predictand, given that a physical
relationship must prevail. Two requirements exist for this choice: (1) it must be possible to
diagnose the predictand accurately from the predictor and (2) the predictor must be well-
predicted by the dynamic model or well-defined by the reanalysis. A third requirement,
which may be more problematic, is that the predictor–predictand relationship must remain
stationary during climate change. For diagnosis of precipitation on small scales, examples
of predictors from the large-scale dynamic model are precipitation, sea-level pressure, rel-
ative humidity, geopotential height, wind direction, vorticity, and divergence (Wilby and
Wigley 2000). The geographic area over which the predictor is defined should be suffi-
ciently large to encompass the relevant large-scale processes. For example, Feddersen
(2003) had to include a large fraction of the North Atlantic in order to represent the North
Atlantic Oscillation (NAO) for the downscaling of seasonal precipitation predictions for
Scandinavia. 

Statistical relationships used in downscaling are typically calculated from
observed or analyzed predictors and predictands. This is analogous to the perfect
prognosis (perfect prog) approach to the statistical post processing of model weather
forecasts, described in Chapter 13, where observations are used to define the algo-
rithms that translate model output into information (e.g., variables) that cannot be
obtained directly from the model. However, the large-scale dynamic models have
biases, and thus the predictors produced by their forecasts will introduce errors in the
downscaled variables. An alternative for defining predictor–predictand relationships
for downscaling interseasonal predictions is to employ the approach used to generate
MOS (Wilks 2006), also described in Chapter 13. Here, the predictands used to
obtain the post-processing relationships are obtained from model forecasts, so the
post processing of the model output corrects for the model’s systematic errors. In the
context of statistically downscaling climate forecasts, if the statistical downscaling
relationship is based on model fields, the systematic errors in the model will auto-
matically be accounted for. Unfortunately, as with the use of any MOS-based meth-
ods, a long series of historical climate reforecasts, or hindcasts, is needed in order to
build the statistical relationships. And, these relationships must be regenerated any
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time the model is upgraded because the systematic errors will change. Examples of
the use of this method for defining the predictands in the statistical downscaling of
seasonal predictions are found in Feddersen et al. (1999), Feddersen (2003), and
Feddersen and Andersen (2005).

An obvious issue related to statistical climate downscaling is that it is limited by the
assumption of temporal stationarity in the empirical relations. That is, an algorithm that is
trained with current-climate data may not apply for future climates. Unfortunately, the
nonstationarity in empirical climate relations is well documented (Ramage 1983, Slonosky
et al. 2001, Charles et al. 2004). In contrast, Hewitson and Crane (2006) found that the
nonstationarity can be relatively small. Of course the tuning to the current climate of
parameters in physical-process parameterizations is of concern as well. 

There are a number of different mathematical approaches for statistically relating the
predictors on the large scale and the local variables, the predictands. Linear approaches
are based upon regression models, while nonlinear approaches are based on weather-
typing schemes and weather generators. See Zorita and von Storch (1999), Hanssen-
Bauer et al. (2005), and Fowler et al. (2007) for further discussion of the different
methods.

Regression models

These methods directly quantify the relationship between the predictand and the predictor
variables, and are classified as linear methods. A simple example described in Zorita and
von Storch (1999) is based on the well-known correlation between the surface air temper-
ature in Scandinavia and the NAO. In this case, a linear regression equation can be estab-
lished between the anomaly in the NAO index (the sea-level pressure difference between
the Azores and Iceland) and the anomaly in the temperature at a Scandinavian station.
Thus, given changes in the NAO index in a future climate, the change in the Scandinavian
temperature can be obtained from the regression equation. The technical complexity of the
regression methods can be considerably greater than in this example, where the following
mathematical constructs can be applied. See Zorita and von Storch (1999) and other refer-
ences for discussion of the assumption, which is implicit in these methods, that the local
variables are normally distributed. 

• Simple/multiple regression (Hanssen-Bauer et al. 2003, Hay and Clark 2003, Johansson
and Chen 2003, Matulla et al. 2003, Huth 2004, Hessami et al. 2008, Huth et al. 2008,
Tolika et al. 2008),

• singular-value decomposition (Huth 1999, 2002; von Storch and Zwiers 1999;
Widmann et al. 2003; Paul et al. 2008), 

• canonical-correlation analysis (Wigley et al. 1990; von Storch et al. 1993; Busuioc et al.
2001, 2006, 2008; Chen and Chen 2003; Huth 2004; Xoplaky et al. 2004),

• empirical-orthogonal functions (Zorita and von Storch 1999, Benestad 2001, Wilby
2001), and 

• principal-component analysis (Cubasch et al. 1996, Kidson and Thompson 1998,
Hanssen-Bauer et al. 2003).
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Weather-typing schemes 

Some of these approaches classify the large-scale weather in a region into a specific
number of different, dominant weather regimes, patterns, or classes, based on a variable
such as sea-level pressure or geopotential height. Then, the local weather (the predictand,
say precipitation) is defined for each category based on the historical observation record.
In contrast to the previous regression methods, where a grid-box value of a large-scale var-
iable may be the predictor, here the pattern is the predictor. The downscaled climate, cur-
rent or future, is defined by the frequency-of-occurrence of the predictor regimes. This
method assumes that the same weather regimes will exist for future climates, and that the
change will be represented by a new occurrence frequency for each of the regimes. The
weather typing can be done through self-organizing maps, cluster analysis, or empirical-
orthogonal functions. Alternatively, so-called analog or weather-classification schemes are
based on a long record of observations of the large-scale weather and the local weather.
The output from a GCM is compared to the large-scale observations for the period of
record, the historical case where the observations best fit the GCM output is defined, and
the simultaneously observed local weather is then associated with the case. Some exam-
ples of these methods follow: 

• weather-classification/analogs (Zorita and von Storch 1999, Palutikof et al. 2002, Díez
et al. 2005, Timbal and Jones 2008), and 

• self-organizing maps, cluster analysis, neural networks (Heimann 2001, Trigo and
Palutikov 2001, Cavazos et al. 2002, Hewitson and Crane 2002, Gutiérrez et al. 2005,
Moriondo and Bindi 2006, Huth et al. 2008, Tolika et al. 2008). 

The downscaling relationships can be developed for large-scale data that pertain to dif-
ferent time scales. For example, monthly or seasonal anomalies on the global scales can be
downscaled to produce corresponding anomalies on small scales. Or large-scale daily data
can be downscaled. Buishand et al. (2004) discuss temporal aggregation levels for statisti-
cal downscaling of precipitation. For summaries of different statistical-downscaling meth-
ods, and their limitations and comparison, see Wilby et al. (1998), Haylock et al. (2006),
and Busuioc et al. (2008).

Temporal statistical downscaling

One of the motivations for the spatial downscaling of climate forecasts is to produce
information on the scales that are needed for decision making. Similarly, it is important
to provide data with sufficient temporal structure for these decisions. Time series of
monthly or seasonal averages of future temperature or precipitation anomalies are useful
for broad assessment of water-resources and agricultural impacts, but daily information
is really needed for crop-yield models, and even finer time scales are needed, for exam-
ple, for assessing the risk of flash floods. There are at least two issues. One is that statis-
tical spatial downscaling may only provide monthly or seasonal anomalies. The other is
that time series of variables that are associated with large AOGCM grid boxes are
smoother than those that apply to single points, simply because of the averaging that is
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implied over the large area. To address this need, synthetic high-resolution time series can
be generated with what are called stochastic weather generators. For example, regarding
precipitation, these generators can simulate the temporal distribution of wet and dry
spells, the typical number of days with and without precipitation, and the intensity of pre-
cipitation. The generators can be tuned to apply to particular current and recent weather
types. Information about the application of stochastic weather generators for climate-
change studies can be found in Katz (1996), Semenov and Barrow (1997), Goddard et al.
(2001), Huth et al. (2001), Palutikof et al. (2002), Busuioc and von Storch (2003), Katz
et al. (2003), Wilby et al. (2003), Elshamy et al. (2006), Wilks (2006), and Kilsby et al.
(2007).

16.3.2 Dynamical climate downscaling methods

Dynamical downscaling, or the dynamic-model-based generation of high-resolution cli-
mate conditions for a particular region and period of time, can be accomplished using a
few different approaches (CCSP 2008). Each of the following methods can be used for
current-climate or future-climate downscaling. 

• Limited-area models (RCMs) are located over a geographical region of interest, and
long simulations are produced by defining LBCs with output from an AOGCM or with
a global analysis (Jones et al. 1995, 1997; Ji and Vernekar 1997; McGregor 1997;
Gochis et al. 2002, 2003; Frei et al. 2003; Hay and Clark 2003; Roads et al. 2003a;
Boo et al. 2004; Liang et al. 2004; Castro et al. 2005; Díez et al. 2005; Kang et al.
2005; Misra 2005; Paeth et al. 2005; Sotillo et al. 2005; Sun et al. 2005; Afiesimama
et al. 2006; Antic et al. 2006; De Sales and Xue 2006; Druyan et al. 2006; Feser 2006;
Liang et al. 2006; Moriondo and Bindi 2006; Woth et al. 2006; Christensen et al. 2007;
Xue et al. 2007; Jiang et al. 2008; Lo et al. 2008; Rockel et al. 2008; Salathé et al.
2008). 

• Global stretched-grid AGCMs (discussed in Chapter 3) use enhanced horizontal resol-
ution over a geographic region of interest, and are run for climate time scales (Déqué
and Piedelievre 1995, Lorant and Royer 2001, Gibelin and Déqué 2003, Déqué et al.
2005, Fox-Rabinovitz et al. 2006, Boé et al. 2007).

• Uniformly high-resolution AGCMs produce simulations of climate (Brankovi  and Gre-
gory 2001, May and Roeckner 2001, Duffy et al. 2003, Coppola and Giorgi 2005,
Yoshimura and Kanamitsu 2008).

• Very-high-resolution orographic forcing is used in coarse-grid AOGCMs (Ghan et al.
2006, Ghan and Shippert 2006).

Instead of the typical grid increments of hundreds of kilometers for AOGCMs, models
used for dynamical downscaling have grid increments of tens of kilometers or less. As
with the use of high-resolution LAMs for weather prediction, the benefits of the resolution
for climate prediction are attributable to (1) the better representation of fine-scale local
forcing such as from orographic or other landscape variability, (2) the ability to explicitly
represent processes rather than parameterize them, (3) the nonlinear interactions permitted

ć
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among a more-complete spectrum of waves, and (4) greater compatibility between the
model’s vertical and horizontal resolutions. 

When the above approaches are used for future-climate downscaling, the downscaling
models generally do not have ocean, ice, and vegetation dynamics, and thus the surface
properties must be specified from (1) previously run parent, coarser-resolution AOGCM
simulations or (2) global analyses for which ocean and surface conditions are specified. In
common for all the approaches is the way that the downscaling models are run for time
slices of a few decades, for example from 1961 to 1990 for a baseline climate and from
2070 to 2100 for a changed climate. 

Even though global, multi-model ensemble climate-prediction methods have proven to
be very valuable, opportunities for performing multi-model ensemble downscalings are
limited by the fact that AOGCM output for many models is not archived with sufficient
frequency to allow the use of the data to drive RCM LBCs. Another disadvantage of
dynamic downscaling approaches is that the higher-resolution features represented in the
atmosphere cannot interact with the ocean dynamics, and a departure of the large-scale
atmospheric features in the downscaling model from those in the AOGCM means that the
atmosphere–ocean interaction is negatively affected. 

The following sections review the above-listed different approaches for dynamic down-
scaling. 

Limited-area models nested within AOGCMs or global analyses

An advantage of downscaling with RCMs is that the models are often very similar to
mesoscale weather-prediction models that have already been developed and are well
tested. The resolutions of the LAMs are simply adjusted so that they can be integrated
for decades to centuries, with the computational resources available. Also, the use of
RCMs for future-climate downscaling is appealing because the global-model output
used for LBCs is easily accessed from the IPCC runs of past, present, and future cli-
mates that are archived at the Program for Climate Model Diagnosis and Intercompari-
son (PCMDI) at the Lawrence Livermore National Laboratory in the USA. And, for
current-climate downscaling, high-quality global reanalyses are publicly available and
easily accessible (Kalnay et al. 1996, Kanamitsu et al. 2002a, Upalla et al. 2005). Chris-
tensen et al. (2007) summarize a series of papers that describe results from the project
entitled Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Cli-
mate change risks and Effects (PRUDENCE), a European study of dynamic downscaling
that evaluated simulations of current and future climates using various RCMs. Also dis-
cussed were (1) the modeling of the specialized impacts of regional climate change on
water resources, agriculture, ecosystems, energy, and transportation; (2) the modeling of
extreme weather events; and (3) the policy implications associated with the availability
of high-resolution climate predictions. Several other coordinated projects have applied
RCMs for simulating regional climate change in various parts of the world: PIRCS for
the USA (Takle et al. 1999), RMIP for Asia (Fu et al. 2005), ARCMIP for the Arctic
(Curry and Lynch 2002, Rinke et al. 2005), and over the Pacific Ocean (Stowasser et al.
2007).
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The impact of lateral boundaries on the solution of a LAM must be viewed somewhat
differently in the context of climate downscaling. In Chapter 3 it was stated that, ideally,
lateral boundaries should be sufficiently distant from the area of meteorological interest on
a grid such that the negative effects of the boundaries do not contaminate the solution dur-
ing the period of a forecast. However, for climate downscaling that involves running the
LAM for years, this is not an option. In fact, there has been plentiful documentation of the
strong sensitivity of downscaled climates to the exact position of lateral boundaries, the
domain size of the RCM, and the quality of the data used for LBCs (Dickinson et al. 1989,
Jones et al. 1995, Laprise et al. 2000, Denis et al. 2002, Rojas and Seth 2003, Seth and
Rojas 2003, Dimitrijevic and Laprise 2005, Vannitsem and Chomé 2005, Diaconescu et al.
2007). In Section 10.4, a method was demonstrated for assessing the impact of the LBCs
in RCM simulations. Denis et al. (2002) describe what are called Big-Brother–Little-
Brother experiments, wherein a large domain RCM (Big-Brother) is used to establish a
reference climate over an area, and short waves are filtered so that the RCM climate has
scales similar to those of a GCM. This filtered reference climate is then used to provide
LBCs for the same RCM (same resolution) that is run for a smaller domain (Little-
Brother). The differences between the climate statistics from the Big- and Little-Brother
integrations can then be attributed to LBC effects. Dimitrijevic and Laprise (2005), Antic
et al. (2006), and Køltzow et al. (2008) use a similar method to evaluate LBC effects in
downscaling with RCMs. Other applications of this method are referenced in Laprise et al.
(2008) and Laprise (2008).

Because the RCM is intended to simulate the atmospheric response on small scales to
the forcing by the global weather patterns, it is desirable if the regional model’s large-
scale solution does not depart significantly from that in the global data set. Unfortu-
nately, if the models communicate only through the lateral boundaries of the regional
model, the large-scale solution of the regional model can drift away from the imposed
large scale (e.g., Jones et al. 1995). In order to reduce this problem for both future-
climate and current-climate downscaling, a method is used called spectral nudging
(Waldron et al. 1996; von Storch et al. 2000; Miguez-Macho et al. 2004; Castro et
al. 2005; Kanamaru and Kanamitsu 2007a, 2008; Yoshimura and Kanamitsu 2008;
Alexandru et al. 2009). Most applications of this method are based on the data-
assimilation approach called Newtonian relaxation, or nudging, described in Chapter 6,
wherein the model solution is nudged toward observations or gridded data using artifi-
cial terms in the prognostic equations. With spectral nudging, however, only the large-
scale part of the regional-model solution is nudged toward the global data set, leaving
the small scales unaffected. 

For future- or present-climate downscaling, if sufficient computational resources exist
the regional model can be run for many decades, with LBCs from AOGCMs or global
reanalyses. However, to make the efforts more tractable, the downscaling may be done
for selected time slices. For example, if a current-climate downscaling is required for a
region, but only for, say, one season, the model can be run for time slices consisting of
only the particular three months out of each year in the 40-year record of the NNRP rea-
nalysis. For future-climate downscalings using output from AOGCM IPCC-scenario
runs, the time-slicing can be more challenging because the existence of internal climate
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variability in the AOGCM output can cause the implied climate change in the region to
depend on the time of the slices. For example, if an internal-variability cycle is at an
extreme during the period of a slice, the downscaled climate during the time slice would
not be representative of the more temporally averaged climate. This can be avoided by
using long time slices, or by first evaluating the internal cycles in the AOGCM solution
and avoiding the extremes. Another significant disadvantage of using short time slices is
that the RCM does not have sufficient time to fully develop its own regional climate.
Even though fine-scale responses to orography and coastlines will develop, recall that
Pielke et al. (1999a) concluded that almost one year of simulation time may be required
for a model to spin up its own soil moisture (for example, in response to fine-scale pre-
cipitation).

To illustrate the resolution benefits of downscaling with an RCM, Fig. 16.11 shows the
mean temperature and winds over an area along the west coast of South America, for a
period simulated by the NCAR Community Climate System Model 3 (CCSM3) AOGCM
with a grid increment of 250 km, and the mean temperature and winds for the same region
and period simulated by the WRF model with a grid increment of 10 km. The WRF RCM
used the CCSM simulation for LBCs. In the CCSM mean temperatures, there is no evi-
dence of the spine of the smoothed Andes Mountains, but the effect is clearly seen in the
WRF solution. 
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of WRF were forced by the CCSM simulation. Illustrated are the mean temperature and wind simulations from each 

model for the same period and geographic area. Darker grays represent lower temperature. The box in the map inset at 

the upper left shows the model study area over Peru. Provided by Andrew Monaghan, NCAR.
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Global variable-resolution (stretched-grid) AGCMs

These variable-resolution GCMs have enhanced, sometimes uniform, horizontal resolution
over the geographic region for which a downscaled solution is needed (e.g., Déqué and
Piedelievre 1995; Déqué et al. 1998; Fox-Rabinovitz et al. 2001, 2002, 2005, 2006; Gibelin
and Déqué 2003). The fine grid is an integral part of the AGCM, with the transition in grid
increment being gradual between the coarse-resolution and fine-resolution regions. Thus,
unlike RCMs, there are no traditional LBC issues to deal with when using the stretched
grids, and there is less potential error in the propagation of waves from the low-resolution
to the high-resolution regions. Other claimed benefits of stretched-grid GCMs, relative to
RCMs that are one-way nested within AOGCMs, include (1) the consistency in the param-
eterizations and the numerics between coarse and fine grids (thus ensuring greater spatial
consistency in the model solution) and (2) the fact that processes represented on the
regional grid can feed back to the global scales, which they cannot do with the one-way,
parasitic nesting that is used with RCMs. Regarding point (1) above, it can, however, be
argued that there are some situations where different parameterizations (e.g., convection)
should be used in the regions with different horizontal resolution. Fox-Rabinovitz et al.
(2006) describe a GCM Stretched-Grid Model Intercomparison Project (SGMIP).

These models have been run for times scales of seasons to decades in physical-process
studies related to current regional climates. For example, Fox-Rabinovitz et al. (2001) use
a stretched-grid GCM to study the anomalous regional climates associated with the 1988
US summer drought and the 1993 US summer flood. And Barstad et al. (2008) spectrally
nudged a stretched-grid GCM to the ERA-40 analysis, where the resulting downscaled
data set showed large improvements over the ERA-40 analysis. For example, the precipi-
tation bias was reduced from 50% to 11%. For future-climate downscaling, Gibelin and
Déqué (2003) obtain sea-surface temperature forecasts from a coarser-resolution coupled
AOGCM, allowing their stretched-grid AGCM to simulate the future climate in the
Mediterranean region for an IPCC scenario. 

Uniformly high-horizontal-resolution AGCMs

These AGCMs use relatively high horizontal resolution over the entire sphere in order to
represent fine-scale processes, for time slices of AOGCM simulations. A disadvantage is
obviously the high computational cost, which necessitates the use of time slices of mod-
est length. Advantages include the lack of LBC problems that can be encountered with
parasitically nested RCMs, and the uniformly high resolution means that small-scale
processes in one region can interact with small-scale processes in another. Various studies
have demonstrated the benefit of employing such higher horizontal resolution for climate
simulations. Spectral nudging has been used to maintain the larger scales of the high-
resolution simulation consistent with those of the coarser-resolution AOGCM simula-
tions, while allowing fine-scale forcing from orography and other landscape features to
develop regional climate features (von Storch et al. 2000, Yoshimura and Kanamitsu
2008). Figure 16.12 summarizes the relative strengths and weaknesses of the use of
RCMs embedded within AOGCMs or global analyses, global variable-resolution
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(stretched-grid) AGCMs, and uniformly high-resolution AGCMs in terms of computa-
tional cost and LBC effects.

Very-high-resolution orographic forcing in a coarse-grid AOGCM

This method uses a very-high-resolution surface-elevation data set to define the fractional
area and mean elevation of a set of elevation classes, for each model grid cell. This infor-
mation is then used during the simulation to define the vertical displacement of air flowing
over the orography, where the effect of the Froude number is accounted for. The heating
and moistening rates for each elevation class are area-weighted and applied to the grid-
cell-mean conservation equations. Leung and Ghan (1995, 1998) developed and tested
this method in a regional climate model, Ghan et al. (2002) applied it for a global-model
downscaling simulation (with the NCAR CCSM) of western USA, and Ghan et al. (2006)
tested it for a variety of other geographic regions worldwide.

16.3.3 Downscaling future climates

Future climate downscaling, using both dynamical and statistical methods, has been per-
formed for every region of the world. As noted earlier, initial-value-based interseasonal
and multi-year predictions can be downscaled, as can simulations of radiatively forced cli-
mate change. Many of the examples and citations in the previous two sections pertain to
future-climate downscaling, and should be referenced for additional information. 

Just as global models that are used for future-climate predictions are verified against
observations of past or present climate, a similar process should be undertaken when down-
scaling with statistical or dynamical methods. That is, observations that define the present
or past regional climates of an area should be used to verify the skill of the downscaling
method. As noted earlier, for the verification of statistical methods the observations used in
training the algorithm should not be used for verification. An example of the verification of
a statistical downscaling process, using retrospective simulations of the current climate, is
shown in Fig. 16.13. The observations define high average precipitation in northern Spain

Computational expense
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global model

High-resolution 
global model

RCM embedded in 
coarse-resolution 

global model

LBC effects
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large none

Schematic comparing the LBC effects and computational costs of three approaches to high-resolution climate 

modeling. Adapted from original by Jack Katzfey, CSIRO.

Fig. 16.12
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for February through April, with a maximum on the Atlantic coast (a). The analogous cli-
mate that is based on the ensemble-mean of ECMWF and UK Met Office global-model
simulations (b) has no regional detail. An analog-based statistical downscaling reasonably
reproduces the higher precipitation in the north, and the maximum to the west.

 The following list provides examples of future-climate downscaling studies, for addi-
tional reading. Included are studies to define future regional climates, as well as evalua-
tions of future-climate-downscaling methods using the current climate. One set of papers
summarized by Iversen (2008) is related to the project Regional Climate Development
under Global Warming (RegClim) that focusses on Northern Europe. See Fowler et al.
(2007) for additional examples.

• Asia – Boo et al. (2004), Rupa Kumar et al. (2006), Chu et al. (2008), Ghosh and
Mujumdar (2008), Paul et al. (2008), Zhu et al. (2008) 

• Europe – Déqué and Piedelievre (1995), Jones et al. (1995, 1997), Zorita and von
Storch (1999), Gibelin and Déqué (2003), Haylock et al. (2006), Boé et al. (2007),
Bronstert et al. (2007), Ådlandsvik (2008), Beldring et al. (2008), Busuioc et al. (2008),
Debernard and Røed (2008), Haugen and Iversen (2008), Hundecha and Bárdossy
(2008), Huth et al. (2008), Tolika et al. (2008).

• North America – Wilby et al. (1998), Leung et al. (2004), Duffy et al. (2006), Liang
et al. (2006), Gachon and Dibike (2007), Salathé et al. (2008)

• South America – Druyan et al. (2002) 
• Australia – Timbal and Jones (2008)
• Africa – Lynn et al. (2005)

16.3.4 Downscaling current climates

To provide a historical context to current-climate downscaling, note that atmospheric mod-
els have been used for decades for filling space and time gaps among observations. For
example, on global scales, long-term reanalyses have been generated with global-model
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A comparison, for the current climate, of the regional precipitation for February through April in Spain, based on 

observations (a), the ensemble-mean of ECMWF and UK Met Office global-model simulations (b), and an analog-

based statistical downscaling. Adapted from Palmer et al. (2004).
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data-assimilation systems. The resulting MADS are used for analyzing trends, studying
physical processes, and identifying erroneous observational data. On smaller scales, mesos-
cale models have been used in short simulations for case study analyses, using LBCs from
global MADS, where good model-simulation skill at observation locations has been justifi-
cation for believing the simulation in the space and time gaps between the observations. In
both cases, the strength of using the models to fill the observation gaps is that the fields are
dynamically consistent and they are defined on a regular grid. Additionally, the models
respond to local forcing that adds information beyond what can be represented by the
observations. More recently, the availability of greater computing power has allowed the
generation of long-term mesoscale analyses using downscaling methods, where the result-
ing gridded data sets are used for various applications. For example, mesoscale analyses
can be used to define the statistical distribution of wind speeds for wind-energy “prospect-
ing”. Boundary-layer climatologies can be used with transport and diffusion or air-quality
models to define prevailing patterns in source–receptor relationships. Also, such boundary-
layer climatologies can allow an assessment of the statistical risk to populations of the
release of hazardous material into the atmosphere from chemical or nuclear-power-
generation facilities. Lastly, the automated interpretation of long-period reconstructions of
the atmosphere can be used to define physical processes in ways that are much more robust
than obtainable from the use of a few case studies. 

Mesoscale reanalyses are used to fill both small and large space and time gaps. In
regions with plentiful radiosonde data, the spatial voids may be only a few hundred kilom-
eters in size. In other areas of the world, there are large expanses without data, either
because there are no observations or because data have not been archived. Of course the
oceans of the world represent large voids where models and satellite data must be relied
upon for estimates of atmospheric properties and processes.

For future-climate downscaling, discussed in the last section, the RCM’s solution is
determined by the LBCs and the surface forcing. But, for current-climate downscaling,
observations are available to help define the model’s solution for the regional climate. The
model can be restarted periodically, in an intermittent-assimilation process, or observa-
tions can be assimilated continuously through Newtonian relaxation or other methods. For
example Hahmann et al. (2010) describe the use of Newtonian relaxation (Stauffer and
Seaman 1994) in a WRF-based RCM used for current-climate downscaling. And Nunes
and Roads (2007a,b) showed the benefits of precipitation assimilation in regional downs-
caling. When RCMs are restarted at regular intervals from new initial conditions, for
example to assimilate observations or to maintain consistency with the large-scale analy-
sis, the model may never fully spin up its own internal regional climate. Even though the
RCM solution will contain small-scale thermally or orographically forced features, which
is obviously value added to what is available from the coarse analysis, the restarts can pre-
vent the model from developing its own soil moisture equilibrium and land–atmosphere
feedbacks. 

In order for a MADS to be used for a particular purpose, the veracity of the analysis
needs to be verified in the context of the application. For example, for wind-energy-
prospecting purposes, the model must be able to reasonably reproduce the PDF of the
wind speed at the height of the generator. Because the generation equipment is vulnerable
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to speeds above a threshold, it would be especially important that the model capture the
upper tail of the speed PDF. Similarly, for air-quality or other transport and diffusion mod-
eling applications, the boundary-layer depth and static stability must be simulated accu-
rately, as must the mean wind in the boundary layer.

Specific applications of a MADS also dictate how the data must be interpreted. That is,
translating a reanalysis data set into useful and intuitively understandable climatological
information generally goes beyond the calculation of simple, conventional climate statis-
tics. Further processing may be necessary to classify the data into different weather
regimes as a function of time of day and season. It may be necessary to define a “typical
day” in July over a particular area, in terms of the wind field, or the precipitation distribu-
tion, and this product is clearly not the climatological mean. And, for many applications,
the complete PDF of a variable is needed; for example, for hydrologic purposes the PDF
of rainfall intensity is essential. 

An example of the use of an RCM (MM5) for current-climate downscaling is shown in
Fig. 16.14. In this case, the ability of the model to replicate the climate of 60-m AGL

Frequency distribution of 60-m AGL wind speed at a location on the Eastern Mediterranean coast, based on 

observations (dark gray), a downscaling simulation by the MM5 RCM (black line), and the ECMWF global model (light 

gray line) for 10 Januaries from 1998 to 2007. Adapted from Hahmann et al. (2010).

Fig. 16.14
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winds has implications for wind-power generation. The figure depicts the frequency distri-
bution of observed wind speed at a location on the eastern coast of the Mediterranean, for
the month of January during the period 1998–2007. Also shown are the frequency distri-
butions based on the ECMWF analysis, and the MM5 model that was used to downscale
from the NNRP analysis. This clearly shows that added model resolution does not always
produce improved PDFs. The RCM better defines the low-speed part of the spectrum, but
the global reanalysis is better at the higher speeds.

Another example of a current-climate dynamic downscaling by an RCM (WRF model)
is shown in Fig. 16.15. Here, the WRF model’s LBCs are forced by the North American
Regional Reanalysis (NARR, Mesinger et al. 2006) in a six-month simulation for a region
of the Rocky Mountains in western Colorado that is the source of the water for the
Colorado River. The WRF grid increment was 2 km and the NARR’s is 32 km. Shown in
the figure is the cumulative precipitation (liquid equivalent) for the period of the winter-
and spring-season simulation, averaged over 120 snow observation locations (SNOw
TELemetry - SNOTEL), based on the NARR and the WRF RCM simulation. The NARR
and WRF precipitation values were bilinearly interpolated to the SNOTEL locations. In
this case, the RCM clearly added value to the coarser reanalysis. The expectation is that
such a downscaling with an RCM could be similarly beneficial for downscaling future
climates. 

Some dynamic downscalings of the current climate have been performed to provide
gridded publicly available data sets for community use, in the same way that the NNRP,
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NCEP-DOE, MERRA, and ERA-40 analyses have been generated on the global scale. For
example, the NARR has been created for North America and adjacent ocean areas using
NCEP’s Eta-model (Janji  1994) Data-Assimilation System (EDAS). Unlike the global
analysis systems, the EDAS that was used to construct the NARR assimilated high-quality
precipitation observations. Thus, the land-surface state is more-accurately defined, as is
the land–atmosphere interaction. This makes the analysis more valuable for hydrologic
studies. The horizontal grid increment of the NARR is 32 km, there are 45 levels in the
vertical, and LBCs are provided by the NCEP-DOE (R-2) global reanalysis. The reanalysis
spans the 25-year period from 1979 to 2003, but its production has been continued beyond
2003 in near-real time using a Regional Climate Data Assimilation System. Another long-
period current-climate downscaling for North America was performed for the period
1950–2002 using the RAMS model (Castro et al. 2007a,b). For the area of California, a
57-year regional reanalysis has been produced, with a 10-km grid increment, for applica-
tions in various climate studies (Kanamitsu and Kanamaru 2007, Kanamaru and Kana-
mitsu 2007b). Publicly available regional reanalyses are also being prepared for other
areas, such as Europe and the Arctic.

The following list provides example references to additional efforts that used current-
climate downscaling methods to study the regional climate of an area, or the prevailing
physical processes.

• Asia – Ji and Vernekar (1997), Fox-Rabinovitz et al. (2002), Kang et al. (2005)
• Europe – Heimann (2001), Frei et al. (2003), Fil and Dubus (2005), Sotillo et al. (2005),

agar et al. (2006), Boé et al. (2007) 
• North America – Stensrud et al. (1995), Fox-Rabinovitz et al. (2001, 2002, 2005),

Gochis et al. (2002, 2003), Hay and Clark (2003), Widmann et al. (2003), Liang et al.
(2004), Duffy et al. (2006), Xue et al. (2007) 

• South America – Fox-Rabinovitz et al. (2002), Roads et al. (2003b), Rojas and Seth
(2003), Seth and Rojas (2003), Misra (2005), Sun et al. (2005), Rauscher et al. (2007)

• Australia – Fox-Rabinovitz et al. (2002), Mehrotra et al. (2004)
• Africa – Fox-Rabinovitz et al. (2002), Song et al. (2004), Paeth et al. (2005), Afiesimama

et al. (2006), Druyan et al. (2006, 2007), Anyah and Semazzi (2007)

16.3.5 Examples of practical problems addressed by climate downscaling

It was noted earlier that climate impacts must typically be forecast, understood, and dealt
with at the local and regional levels. This need has motivated many of the current-climate
and future-climate downscaling activities. Some examples of the practical problems that
have been addressed by the hundreds of downscaling studies are provided in Table 16.5.
This table does not include the many other downscaling studies that have been used for
(1) the evaluation and comparison of downscaling methods, (2) long-term mesoscale
physical-process studies, and (3) the verification of downscaling schemes for the present
climate, so that they may be used with greater confidence in downscalings of future cli-
mates. Fowler and Wilby (2007) introduce a series of papers that describe downscaling
techniques employed in hydrological impact studies.

ć

Ž
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Table 16.5 Examples of the practical problems that have been addressed by downscaling studies. Listed are (1) the application
of the study; (2) whether the downscaling was dynamically (D) or statistically (S) based; (3) if the downscaling was applied to
future-climate simulations (not current), was the simulation for forced climate change (GG, greenhouse gas) or based on initial
conditions (IC); (4) the relevant geographic area; and (5) references. 

Application

Dynamical 
or 

statistical

GG-forced 
or IC global 
forecast, or 

current
Geographic 

area References

Water resources, 
drought, flood

S
S and D
D

S and D
S

S and D
S
D
D
S

IC
GG
GG

GG
GG

IC
GG
current
GG
GG

UK
UK
Europe

Germany
Australia

Spain
Greece
North America
North America
East Asia

Wilby et al. 2004, 2006
Haylock et al. 2006, Bell et al. 2007
Hanson et al. 2007, Blenkinsop and 
Fowler 2007
Bronstert et al. 2007
Charles et al. 2007,
Timbal and Jones 2008
Diez et al. 2005
Tolika et al. 2008
Brochu and Laprise 2007
Salathé Jr. et al. 2007, 2008
Paul et al. 2008

Air quality D GG Houston, USA Jiang et al. 2008

Wind energy S and D
S

GG
current

Europe
Europe

Pryor et al. 2005a, b; 2006
Heimann 2001, Landberg et al. 2003

Wave, storm surge D GG North Sea Woth et al. 2006, 
Debernard and Røed 2008

General weather D GG  USA Liang et al. 2006, Salathé Jr. et al. 2008, 
Leung et al. 2004, Duffy et al. 2006

Crop development, 
agriculture

S and D GG Italy Moriondo and Bindi 2006, Marletto et 
al. 2005

Radioactive waste 
disposal

D current USA Dickinson et al. 1989

Forestry D GG Europe Hanson et al. 2007

Energy use D GG Europe Hanson et al. 2007

Tourism D GG Mediterranean Hanson et al. 2007

Insurance D GG Europe Hanson et al. 2007

Temperature 
extremes

D
S

current
IC

Canada
Spain

Gachon and Dibike 2007
Frías et al. 2005

Hurricanes D GG Atlantic Knutson et al. 2008
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16.4 Modeling the climate impacts of anthropogenic landscape 
changes

Atmospheric models are good tools for evaluating the impact of historical or future land-
scape changes on climate. Specifically, a simulation is performed with the landscape that
prevailed before the change, a second simulation is performed based on the landscape that
prevailed after the change, and the differences in the associated weather and climate are
documented. Sometimes, short simulations focus on weather impacts, from which can be
inferred climate impacts. Or, such pairs of simulations can be conducted for longer peri-
ods to allow more-direct calculation of climate statistics. If the experiments are performed
for historical periods, the motivation is generally to develop a better understanding of
land–atmosphere interactions that could have led to regional-climate change in the recent
past. Alternatively, estimates of possible future changes in the landscape can be used in
“what if ” experiments – that is, what will be the impact on the regional climate if specific
anthropogenic changes occur, such as continued urbanization, conversion of an area of
grassland to farming, changing irrigation practices, or desertification. These studies are
generally conducted using GCM, or coupled GCM-RCM, simulations of the present large-
scale climate, but sometimes climate-forcing effects are included along with prescribed,
expected anthropogenic landscape changes.

Even though there clearly are local-climate effects of landscape change, it is estimated
that humans have modified one-third to one-half of the land surface area of Earth, and the
aggregate effect of this could influence global-scale circulations as well. For example,
Pielke (2005) states that landscape effects may be just as important in altering the weather
as changes in climate patterns associated with greenhouse gases, and he further points
out that anthropogenic landscape changes are not adequately accounted for in IPCC
simulations. 

16.4.1 Modeling the effects on local and regional climate of specific anthropogenic 
landscape changes

The following sections describe a few of the different types of anthropogenic landscape
change for which the climate impacts have been modeled.

Urbanization and suburbanization

Even though urban regions cover only about 0.2% of Earth’s land surface, their impacts on
local and regional climate can be substantial. Thus, urban landscapes must be accurately
mapped (Jin and Shepherd 2005), and their physical properties must be included in the
land-surface components of RCMs. The urban heat island is a well-known impact of
urbanization on local climate, where the thermal effect can be 5–10 °C. An example of a
study that looked at both the anthropogenic landscape changes associated with future
urbanization as well as greenhouse forcing is Jiang et al. (2008). For the city of Houston
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(USA), the coupled CCSM and WRF-Chem models were run for a current time slice and
for a future time slice (2051–2053) for the A1B emissions scenario. The WRF RCM’s land
surface for the future-climate simulation was defined based on the landscape changes
expected from the growth of the city. The WRF-Chem model was used because the objec-
tive was to predict the impacts on surface ozone concentrations. Other examples are Pielke
et al. (1999b) and Marshall et al. (2004) who use multi-month RCM simulations to show
the significant impact on regional climate of the development of the Florida Peninsula dur-
ing the last century.

Deforestation and the expansion of agriculture 

The area involved in this type of landscape change is immense, and numerous modeling
studies have evaluated its impacts on regional climate. For example, Strack et al. (2008)
used an RCM and a landcover data set for the eastern USA to estimate the regional climate
for the years 1650, 1850, 1920, and 1992, which span the deforestation and expansion of
agriculture that has occurred since European settlement began. Since 1650, the model sim-
ulations showed an increase in maximum and minimum daily temperatures by 0.3–0.4°C,
with most of the change occurring before 1920. Adegoke et al. (2006) found similar
important climate effects of landscape change in the US High Plains. For example, cloud
development occurred almost two hours earlier over agricultural land than over forested
areas. Even though it might be imagined that desert climates would remain unaffected by
anthropogenic impacts, Beltrán-Przekurat et al. (2008) demonstrated that the conversion
of grassland to shrubland in the Chihuahuan Desert, through overgrazing in the last
150 years, had significant impacts on the regional climate. And, in a study of tropical land-
scape modification, Lawton et al. (2001) showed the impact of deforestation in Costa Rica
on ecosystems in adjacent mountains. And for Africa, Semazzi and Song (2001) evaluated
the potential effect on climate of the deforestation of the tropical rain forests.

Agricultural irrigation

As agriculture has expanded into semi-arid lands, large areas have become irrigated so
that their soil moisture far exceeds natural values. Models have shown a significant impact
on regional climate. Segal et al. (1989) employed a LAM and observations to study the
atmospheric effects of irrigation in eastern Colorado (USA), and demonstrated a signifi-
cant impact. Yeh et al. (1984) used a simple global model to show that large-scale irriga-
tion has an effect on regional climate, and especially precipitation. Chang and Wetzel
(1991) employed a LAM to show that spatial variations in soil moisture and vegetation
affect the evolution of the prestorm convective environment in the eastern Great Plains of
North America. Beljaars et al. (1996) documented that model precipitation forecasts of
extreme rainfall events in July 1993 in the Midwest USA were strongly related to soil-
moisture anomalies about one day upstream. Paegle et al. (1996) related model-simulated
rainfall for the same period to local evaporation, where the link was through effects on the
low-level jet. Chen and Avissar (1994) demonstrated that landscape discontinuities (such
as those associated with boundaries between irrigated and nonirrigated land) enhance
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shallow convective precipitation. Chase et al. (1999) and Chen et al. (2001) show how
conversion of semi-arid grasslands to dry farmland and irrigated farmland in northeastern
Colorado affected the local atmospheric conditions as well as the rainfall in the mountains
to the west.

16.4.2 Modeling the effects on global climate of anthropogenic landscape change

Because of the large land-surface area that has been modified by humans, it is reasonable
that the aggregate effect could be sufficiently large to influence global-scale weather pat-
terns and climate. Feddema et al. (2005) describe experiments with an AOGCM that were
designed to evaluate this large-scale impact. By adding the effects of global land cover
changes in simulations of IPCC scenarios A2 and B1, they showed the influence of land-
scape-change impacts on many aspects of regional climate, as well as effects on the global
circulation. For example, in simulations to 2100 for the A2 scenario, agricultural expan-
sion over the Amazon influenced the Hadley circulation, monsoon circulations, and the
location of the ITCZ, which in turn affected extratropical climates. Also, in simulations
with an AGCM, Chase et al. (2000) showed that tropical landscape changes altered the
high-latitude Northern Hemisphere winter climate, including pushing the westerly jet far-
ther north. Pielke (2002b) claims that anthropogenic landscape change has been over-
looked in the IPCC assessments. 

SUGGESTED GENERAL REFERENCES FOR FURTHER READING

AOGCM simulations

AchutaRao, K., C. Covey, C. Doutriaux, et al. (2004). An Appraisal of Coupled Climate
Model Simulations. Lawrence Livermore National Laboratory report UCRL-TR-
202550, 16 August 2004.

Giorgi, F. (2005). Climate change prediction. Climate Change, 73, 239–265, doi: 10.1007/
s10584-005-6857-4.

Hurrell, J., G. A. Meehl, D. Bader, et al. (2009). A unified modeling approach to climate
system prediction. Bull. Amer. Meteor. Soc., 90, 1819–1832.

IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change, S. Solomon, D. Qin, M. Manning, et al. (eds.). Cambridge, UK: Cambridge
University Press.

McGuffie, K. and A. Henderson-Sellers (2001). Forty years of numerical climate mode-
ling. Int. J. Climatol., 21, 1067–1109.

Seasonal to interannual simulations

Goddard, L., S. J. Mason, S. E. Zebiak, et al. (2001). Current approaches to seasonal-to-
interannual climate predictions. Int. J. Climatol., 21, 1111–1152.

Shukla, J., J. Anderson, D. Baumhefner, et al. (2000). Dynamical seasonal prediction.
Bull. Amer. Meteor. Soc., 81, 2593–2606.



Climate modeling and downscaling454

Climate downscaling

Feser, F. (2006). Enhanced detectability of added value in limited-area model results sepa-
rated into different spatial scales. Mon. Wea. Rev., 134, 2180–2190.

Fowler, H. J., S. Blenkinsop, and C. Tebaldi (2007). Linking climate change modelling to
impacts studies: Recent advances in downscaling techniques for hydrological model-
ling. Int. J. Climatol., 27, 1547–1568. 

Hanssen-Bauer, I., E. J. Førland, J. E. Haugen, and O. E. Tveito (2003). Temperature and
precipitation scenarios for Norway: comparison of results from dynamical and empiri-
cal downscaling. Climate Res., 25, 15–27.

Hewitson, B. C., and R. G. Crane (1996). Climate downscaling: Techniques and applica-
tion. Climate Res., 7, 85–95.

Laprise, R. (2008). Regional climate modelling. J. Comput. Phys., 227, 3641–3666.
Laprise, R., R. de Elía, D. Caya, et al. (2008). Challenging some tenets of regional climate

modeling. Meteorol. Atmos. Phys., 100, 3–22.
Wilby, R. L., and T. M. L. Wigley (1997). Downscaling general circulation model output:

a review of methods and limitations. Prog. Phys. Geog., 21, 530–548.

Modeling the impacts of anthropogenic landscape changes on climate

Feddema, J. J., K. W. Oleson, G. B. Bonan, et al. (2005). The importance of land-cover
change in simulating future climates. Science, 310, 1674–1678.

Pielke, R., Sr. (2005). Land use and climate change. Science, 310, 1625–1626.
Pielke, R. A., Sr., J. Adegoke, A. Beltrán-Przekurat, et al. (2007). An overview of regional

land-use and land-cover impacts on rainfall. Tellus, 59B, 587–601.
Pielke, R. A., G. Marland, R. A. Betts, et al. (2002). The influence of land-use change and

landscape dynamics on the climate system: relevance to climate-change policy beyond
the radiative effect of greenhouse gases. Phil. Trans. R. Soc. Lond., 360, 1705–1719.

PROBLEMS AND EXERCISES

1. Learn how to access the IPCC-model output at a website provided by your instruc-
tor, and use the data to briefly illustrate climate change for a particular geographic
area.

2. In interpreting output from current- or future-climate downscalings, it is common to
want to define a “typical day” rather than simply looking at mean values or PDFs of
variables. Explain possible approaches for doing this.

3. Summarize the types of land–atmosphere–biosphere feedbacks that should be repre-
sented in models that are used for studies of the impacts on regional climate of anthro-
pogenic landscape changes.

4. Explain specific examples of the component-level testing of climate models.
5. Summarize the types and time scales of the different cycles that contribute to the inter-

nal variability of the climate system.
6. Based on your knowledge of physical processes, suggest some reasonable choices for

predictors, for different predictand variables.
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7. Describe the types of applications of climate models for which PDFs of model vari-
ables would be especially important.

8. Internal variability in the climate system, on time scales of years to decades, is relevant
to the problem of modeling radiatively forced climate change. Is there variability on
shorter time scales that must be understood and accounted for when interpreting seas-
onal climate predictions?

9. How can Rossby phase-speed errors associated with a particular dynamical core have
consequences for climate prediction?
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Many NWP courses involve the coding by students of one- or two-dimensional shallow-
fluid models, and the use of these models in experiments to evaluate the influence of dif-
ferent numerical methods on model solutions (described in Chapter 3). This allows stu-
dents to become familiar with the structural components of models, to gain experience in
debugging model code, and to conduct experiments to confirm concepts discussed in the
text.

This appendix suggests an overall framework for coding the shallow-fluid equations
that are described in Section 2.3.3, as well as some experiments that can be part of a
laboratory component of an NWP course. Because the specific programming language
used will determine the details of the model code, only a high-level outline will be
provided here. The best approach is to start with the development of a one-dimen-
sional model. Figure A.1 shows a schematic of the procedure for solving such a sys-
tem, using an advection equation as a simple example. The abscissa is the space
dimension and the ordinate is time. A predictive equation would of course be required
for u, unless a constant mean speed is employed. 

Components, or subroutines, of the model could be organized as follows.

• Set parameters – Define physical constants and quantities that establish the structure of
the model. These would include the gravitational constant (g), the Coriolis parameter
(f ), the grid increment (Δx), the time step (Δt), the length of the simulation (timemax),
the dimension of the computational array in terms of the number of grid points (idim),
the output frequency, etc. Additional quantities may need to be defined here, depending
on the specific form of the equations being used. 

• Initialization – Define the initial value of the model dependent variables; ,
, and .

• Tendency calculation – For example,

, for grid points .

• Extrapolation – For example,

, for grid points . (A.1)

• Define lateral-boundary conditions (LBCs) – constant, periodic, etc., for i equal 1 and
idim.
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• Output plotting – graphical display of dependent variables.
• Digital save – archive for analysis, restart. The restart file contains all the information

needed to seamlessly start the model in the middle of a simulation in the event of a hard-
ware- or software-related failure. Without this file, the simulation would need to be
restarted from the beginning, wasting computing resources. For simple experiments, this
capability is typically unnecessary.

Figure A.2 shows a standard sequence in which these operations take place in a model
integration. 
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Schematic showing the method of solving a one-dimensional shallow-fluid model that is based on an advection 

equation for a variable . The subscript is the grid-point number (abscissa) and the superscript is the time-step 

number (ordinate).

Φ

Fig. A.1
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The extrapolation step can be problematic to program without the use of temporary
arrays. That is, in Eq. A.1 the grid-point number (i) can be used as the index of the variable
array, but the time-step number (τ) should not also be employed as an array index. This is
because the value of a variable does not need to be saved for every time step, and to do so
would require the use of a prohibitive amount of storage. Thus temporary arrays can be
used in the following way. For each time step, solve

, for grid points ,

where ua represents an “advance” value of u, and ub is a “back” value. After  is calcu-
lated for each interior grid point, the following exchange is made: 

 and

.

This process is repeated every time step.
Some configuration suggestions follow, for initial experiments. 

• The total number of grid points (idim) may be 100. 
• Let  = 10 km.
• The LBCs should be periodic (cyclic). See Fig. 3.49 for an illustration of how infor-

mation is exchanged. The boundary values on each edge of the grid are defined based on

Setparam

Initial

Tendency

Extrapolation

LBC

Output and save file?

STOP?

A standard sequence (flow chart) for executing components of a simple model.Fig. A.2

uai ubi 2+ ΔtUTENDi
τ

= i 2 idim 1–→=
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ui ubi→

uai ui→

Δx
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the penultimate points on the opposite end. What leaves the grid on one edge comes
back in on the other, where essentially the computational domain is wrapped around on
itself.

• Choose a midlatitude value for the Coriolis parameter.
• Define the time step to be 80% of the value calculated using the CFL criterion. 

Lastly, the following list is of experiments that can be performed with the shallow-fluid
model. Note that the model-check-out process extends throughout virtually all of the
experiments.

• Linear advection tests – The initial experiment consists of the advection of a perturba-
tion in the height field. Use three-point time and space differencing, with no explicit dif-
fusion. Other terms in the equations should not be included, and a constant u should be
employed. That is, there is no predictive equation for u. Different perturbation shapes
can be employed, such as a Gaussian function, a square wave, and a triangular wave. The
shapes with first-order discontinuities have more short-wavelength energy, and thus
numerical dispersion should be more evident. 

• CFL violation test – Choose a time step that violates the linear stability criterion, per-
haps using a Courant number of 1.1, and print the model solution each time step to
observe the instability.

• Effect of Courant number on the solution – Using the equation for the linear-advection of
h, vary the time step over a range of stable values to evaluate how the use of different Cou-
rant numbers affects the model solution. Test Courant numbers ranging from 0.1 to 0.99.

• Diffusion-term tests – Add an explicit second-order diffusion term to the equation for
the linear advection of h, and show its effect on the model solution for different stable
diffusion coefficients. Repeat with higher-order forms of the diffusion term.

• Gravity-wave tests – Use the complete forms of all three predictive equations, and simu-
late a gravity wave. Define the initial wind components to be zero, and the initial height
field as a smooth perturbation (maximum) in the middle of the grid, superimposed on
the mean value. The model solution will show the mass being transported in both direc-
tions by gravity waves. Repeat the experiment with different mean depths for the fluid. 

• Horizontal-resolution tests – For the same initial conditions (perturbation wavelength
and amplitude), evaluate the effect of horizontal resolution on the model solution. Begin
with a grid increment that resolves the wave very well, and progressively increase the
grid increment in subsequent experiments. 

• Geostrophic adjustment experiments – Establish in the initial conditions a geostrophic
balance between a perturbation in h (e.g., Gaussian) and the v component of the wind.
Run the model to determine if the balance is correct. Then run the model for 48 h with
the h perturbation but with an initial v of zero, and observe the adjustment. Perform the
analogous experiment with the initial v that is in geostrophic balance with the original
h perturbation, but do not include the h perturbation. Again run the simulation for 48 h
and observe the adjustment. Perform the experiments for both synoptic-scale and
mesoscale perturbations, and observe the differences in the adjustment process.

• Advanced experiment – Program a spectral version of the shallow-fluid equations, and
compare the solution with the equivalent grid-point model.
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Table A.1 summarizes these experiments.

Table A.1 Suggested experiments with the one-dimensional shallow-fluid model

Experiment Initial conditions Equation set Comments

1. Linear advection tests

1a Wave shape Gaussian wave Linear advection of h, 
second-order time and 
space differencing 

Courant number = 0.8

1b Wave shape Square wave same same

1c Wave shape Triangular wave same same

1d CFL violation test Gaussian wave same Courant number = 1.1

1e Courant number 
effect

Gaussian wave same Courant number from 
0.1 to 0.99

1f Horizontal resolution 
tests

Gaussian wave same Vary  so that L = 4  
to L = 20

1g Higher-order 
differencing

Gaussian wave Linear advection, higher-
order space differencing, 
and multi-step methods

2. Diffusion tests

2a Stable diffusion Gaussian wave same + 2nd-order diffusion Use K that is stable and 
damps the same fraction of 
the  wave

2b Stable diffusion Gaussian wave same + 4th-order diffusion

2c Stable diffusion Gaussian wave same + 6th-order diffusion

2d Unstable diffusion Gaussian wave same + 6th-order diffusion Use slightly unstable 

3. Gravity wave tests

3a Standard depth Gaussian h, u = v = 0, 
H = 8 km

Complete, with diffusion

3b Reduced depth same, H = 2 km same

4. Geostrophic-adjustment experiments

Balanced ICs Gaussian h, u = 0, 
v = vg

Complete, with diffusion

Unbalanced ICs Gaussian h, u = v = 0 Complete, with diffusion Perform for both 
synoptic-scale and 
mesoscale perturbations

Unbalanced ICs h = u = 0, v = vg for 
Gaussian h

Complete, with diffusion same 

Δx Δx
Δx

2Δx

Δt
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č ć
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