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Preface

In his biography of the great twentieth-century theoretical physicist Richard Feyn-
man, Gleick (1993) writes: ‘He (Feynman) believed in the primacy of doubt, not as
a blemish on our ability to know, but as the essence of knowing’. Feynman’s philos-
ophy applies as much to weather and climate forecasting as to fundamental physics,
as made explicit by Tennekes et al. (1987) when they wrote: ‘no forecast is complete
without a forecast of forecast skill’.

The estimation of uncertainty in weather and climate prediction is encapsulated
in the word ‘predictability’. If something is said to be predictable, then presumably
it can be predicted! However, initial conditions are never perfect and neither are the
models used to make these predictions. Hence, the predictability of the forecast is
a measure of how these inevitable imperfections leave their imprint on the forecast.
By virtue of the non-linearity of the climate, this imprint varies from day to day, just
as the weather itself varies; predictability is as much a climatic variable as rainfall,
temperature or wind.

Of course, it is one thing to talk about predictability as if it were just another
climatic variable; it is another thing to estimate it quantitatively. The predictability of a
system is determined by its instabilities and non-linearities, and by the structure of the
imperfections. Estimating these instabilities, non-linearities and structures provides a
set of tough problems, and real progress requires sophisticated mathematical analysis
on both idealised and realistic models.

However, the big world out there demands forecasts of the weather and the climate:
is it going to rain tomorrow, will the Arctic ice cap melt by the end of the century?
The man in the street wanting to know whether to bring his umbrella to work, or
the politician looking for advice on formulating her country’s strategy on climate

xiii



xiv Preface

change, cannot wait for the analysis on existence or otherwise of heteroclinic state-
space orbits to be finalised! The difference between the real world of prediction, and
the more aesthetic world of predictability has been perfectly encapsulated by one of
the pioneers of the subject, Kiku Miyakoda, who said: ‘Predictability is to prediction
as romance is to sex!’. Oscar Wilde, who wrote: ‘The very essence of romance is
uncertainty!’, might well have approved.

However, as we enter the twenty-first century, is this still a fair characterisation? We
would argue not! In the last decade, the romantic world of predictability has collided
head-on with the practical world of prediction. No longer do operational centres
make forecasts without also estimating forecast skill – whether for predictions one
hour ahead or one century ahead. This change has come in the last few years through
the development of ensemble forecast techniques made practical by mind-boggling
developments in high-performance computer technology.

In late 2002, the European Centre for Medium-Range Weather Forecasts
(ECMWF) held a week-long seminar on the topic of Predictability of Weather and
Climate. A subtheme, borrowing from Kiku Miyakoda’s aphorism, was to celebrate
the ‘reconciliation of romance and sex’! World leaders in the field of predictability
of weather and climate gave pedagogical presentations covering the whole range of
theoretical and practical aspects on weather and climate timescales, i.e. from a few
hours to a century. It was decided, as this was a sufficiently landmark meeting and
the presentations sufficiently comprehensive, that it was worth publishing the pro-
ceedings for the benefit of the larger scientific community. During 2004 and 2005
authors were asked to expand and update their presentations.

In fact there is one exception to this strategy. One of the greatest pioneers of the
subject is Ed Lorenz – his prototypical model of chaos spawned a revolution, not only
in meteorology, but in mathematics and physics in general. Ed was unable to come
to the 2002 meeting, but a few years earlier had given a presentation at ECMWF on
what has become known as the Lorenz-1996 model. This paper is widely cited, but
has never been published externally. We decided it would be proper to acknowledge
Ed’s unrivalled contribution to the field of weather and climate predictability by
publishing his 1996 paper in this volume.

Lorenz’s contribution is one of the introductory chapters on predictability where
both general and specific theoretical/mathematical aspects of predictability theory
are discussed. These chapters are followed by contributions on data assimilation
methods. The next chapters represent a journey through the predictability of different
timescales and different phenomena. The link to real-world applications is made
by discussing important developments in operational forecast systems, presenting
methods to diagnose and improve forecast systems, and finally giving examples
utilising predictability in decision-making processes.

We would like to acknowledge the help of Anabel Bowen, Rob Hine, Els Kooij-
Connally, and Matt Lloyd during all stages of the production of this book. Last but
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not least, we would like to thank ECMWF for initiating and supporting the seminar
on which the contributions of this book are based.
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Predictability of weather and climate: from
theory to practice

T. N. Palmer
European Centre for Medium-Range
Weather Forecasts, Reading

1.1 Introduction

A revolution in weather and climate forecasting is in progress, made possible by
theoretical advances in our understanding of the predictability of weather and climate
on the one hand, and by the extraordinary developments in supercomputer technology
on the other. Specifically, through ensemble prediction, whose historical development
has been documented by Lewis (2005), weather and climate forecasting is set to enter
a new era, addressing quantitatively the prediction of weather and climate risk in a
range of commercial and humanitarian applications. This chapter gives some back-
ground to this revolution, with specific examples drawn from a range of timescales.

1.2 Perspectives on predictability: theoretical
and practical

Predictions of weather and climate are necessarily uncertain; our observations of
weather and climate are uncertain and incomplete, the models into which we assim-
ilate this data and predict the future are uncertain, and external effects such as vol-
canoes and anthropogenic greenhouse emissions are also uncertain. Fundamentally,
therefore, we should think of weather and climate prediction in terms of equations
whose basic prognostic variables are probability densities ρ(X, t), where X denotes

Predictability of Weather and Climate, ed. Tim Palmer and Renate Hagedorn. Published by Cambridge University Press.
C© Cambridge University Press 2006.
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2 T. N. Palmer

Figure 1.1 Schematic illustration of the climatological probability distribution of
some climatic variable X (solid line) and a forecast probability distribution (dotted
line) in two different situations. The forecast probability distribution in (a) is
obviously predictable. In a theoretical approach to predictability, ρ(X, t) − ρC (X ) in
(b) may not be significantly different from zero overall. However, considered more
pragmatically, the forecast probability distribution in (b) can be considered
predictable if the prediction that it is unlikely that X will exceed Xcrit can influence
decision-makers.

some climatic variable and t denotes time. In this way, ρ(X, t)dV represents the
probability that, at time t, the true value of X lies in some small volume dV of state
space. Prognostic equations for ρ, the Liouville and Fokker–Planck equations, are
described in Ehrendorfer (this volume). In practice these equations are solved by
ensemble techniques, as described in Buizza (this volume).

The question of whether or not X is predictable depends on whether the forecast
probability density ρ(X, t) is sufficiently different from some prior estimate ρC (X ),
usually taken as the climatological probability density of X. What do we mean by
‘sufficiently different’? One could, for example, apply a statistical significance test
to the difference ρ(X, t) − ρC (X ). On this basis, the hypothetical forecast probabil-
ity distribution shown as the dotted curve in Figure 1.1(a) is certainly predictable;
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but the forecast probability distribution shown in Figure 1.1(b) may well not be
predictable.

However, this notion of predictability is a rather idealised one and takes no account
of how ρ(X, t) might be used in practice. In a more pragmatic approach to predictabil-
ity, one would ask whether ρ(X, t) is sufficiently different from ρC (X ) to influence
decision-makers. For example, in Figure 1.1, an aid agency might be interested only
in the right-hand tail of the distribution, because disease A only becomes prevalent
when X > Xcrit. On the basis of Figure 1.1(b), the agency may decide to target scarce
resources elsewhere in the coming season, since the forecast probability that X >

Xcrit is rather low.
These two perspectives on the problem of how to define predictability reflect

the evolving nature of the study of predictability of weather and climate predic-
tion; from a rather theoretical and idealised pursuit to one which recognises that
quantification of predictability is an essential part of operational activities in a wide
range of applications. The latter perspective reflects the fact that the full economic
value of meteorological predictions will only be realised when quantitatively reli-
able flow-dependent predictions of weather and climate risk are achievable (Palmer,
2002).

The scientific basis for ensemble prediction is illustrated in Figure 1.2, based
on the famous Lorenz (1963) model. Figure 1.2 shows that the evolution of some
isopleth of ρ(X, t) depends on starting conditions. This is a consequence of the fact
that the underlying equations of motion

Ẋ = F[X ] (1.1)

are non-linear, so that the Jacobian d F/d X in the linearised equation

d δX

dt
= d F

d X
δX (1.2)

depends at least linearly on the state X about which Equation (1.1) is linearised. As
such, the so-called tangent propagator

M(t, t0) = exp
∫ t

t0

d F

d X
dt ′ (1.3)

depends on the non-linear trajectory X (t) about which the linearisation is performed.
Hence, the evolved perturbations

δX (t) = M(t, t0) δX (t0) (1.4)

depend not only on δX (t0), but also on the region of phase space through which the
underlying non-linear trajectory passes.

It is of interest to note that the formal solution of the Liouville equation, which
describes the evolution of ρ(X, t) arising from initial error only (Ehrendorfer, this
volume, Eq. (4.49)), can be written using the tangent propagator (for all time in
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Figure 1.2 Finite time ensembles of the Lorenz (1963) system illustrating the fact
that in a non-linear system, the evolution of the forecast probability density ρ(X, t)
is dependent on initial state.

the future, not just the time for which the tangent-linear approximation is valid).
Specifically

ρ(X, t) = ρ(X ′, t0)/|det M(t, t0)| (1.5)

where X′ corresponds to the initial state which, under the action of Eq. (1.1), evolves
into the state X at time t. Figure 1.2 shows solutions to Eq. (1.5) using an ensemble-
based approach.

To illustrate the more practical implications of the fact that ρ(X, t) depends on
initial state, I want to reinterpret Figure 1.2 by introducing you to Charlie, a builder
by profession, and a golfing colleague of mine! Charlie, like many members of my
golf club, takes great pleasure in telling me when (he thinks) the weather forecast
has gone wrong. This is mostly done in good humour, but on one particular occasion
Charlie was in a black mood. ‘I have only four words to say to you,’ he announced,
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‘How do I sue?’ I looked puzzled. He continued: ‘The forecast was for a night-time
minimum temperature of five degrees. I laid three thousand square yards of concrete.
There was a frost. It’s all ruined. I repeat – how do I sue?’

If only Charlie was conversant with Lorenz (1963) I could have used Figure 1.2 to
illustrate how in future he will be able to make much more informed decisions about
when, and when not, to lay concrete! Suppose the Lorenz equations represent part of
an imaginary world inhabited by builders, builders’ customers, weather forecasters
and lawyers. In this Lorenz world, the weather forecasters are sued if the forecasts
are wrong! The weather in the Lorenz world is determined by the Lorenz (1963)
equations where all states on the right-hand lobe of the attractor are ‘frosty’ states,
and all states on the left-hand lobe of the attractor are ‘frost-free’ states. In this
imaginary world, Charlie is planning to lay a large amount of concrete in a couple of
days’ time. Should he order the ready-mix concrete lorries to the site? He contacts the
Lorenzian Meteorological Office for advice. On the basis of the ensemble forecasts
in the top left of Figure 1.2 he clearly should not – all members of the ensemble
predict frosty weather. On the basis of the ensemble forecasts in the bottom left of
Figure 1.2 he also should not – in this case it is almost impossible to predict whether
it will be frosty or not. Since the cost of buying and laying concrete is significant, it
is not worth going ahead when the risk of frost is so large.

How about the situation shown in the top right of Figure 1.2? If we took the
patronising but not uncommon view that Charlie, as a member of the general public,
would only be confused by a probability forecast, then we might decide to collapse
the ensemble into a consensus (i.e. ensemble-mean) prediction. The ensemble-mean
forecast indicates that frost will not occur. Perhaps this is equivalent to the real-world
situation that got Charlie so upset. Lorenzian forecasters, however, will be cautious
about issuing a deterministic forecast based on the ensemble mean, because, in the
Lorenz world, Charlie can sue!

Alternatively, the forecasters could tell Charlie not to lay concrete if there is even
the slightest risk of frost. But Charlie will not thank them for that either. He cannot
wait forever to lay concrete since he has fixed costs, and if he doesn’t complete this
job, he may miss out on other jobs. Maybe Charlie will never be able to sue, but
neither will he bother obtaining the forecasts from the Lorenzian Meterorological
Office.

Suppose Charlie’s fixed costs are C, and that he loses L by laying concrete when
a frost occurs. Then a logical decision strategy would be to lay concrete when the
ensemble-based estimate of the probability of frost is less than C/L. The meteorol-
ogists don’t know Charlie’s C/L, so the best they can do is provide him with the full
probability forecast, and allow him to decide whether or not to lay concrete.

Clearly the probability forecast will only be of value to Charlie if he saves money
using these ensemble forecasts. This notion of ‘potential economic value’ (Murphy,
1977; Richardson, this volume) is conceptually quite different from the notion of
skill (in the meteorological sense of the word), since value cannot be assessed by
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analysing meteorological variables alone; value depends also on the user’s economic
parameters.

The fact that potential economic value does not depend solely on meteorology
means that we cannot use meteorological skill scores alone if we want to assess
whether one forecast system is more valuable than another (e.g. to Charlie). This is
relevant to the question of whether it would be better to utilise computer resources to
increase ensemble size or increase model resolution. As discussed in Palmer (2002),
the answer to this question depends on C/L. For users with small C/L, more value
may accrue from an increase in ensemble size (since decisions depend on whether
or not relatively small probability thresholds have been reached), whilst for larger
C/L more value may accrue from the better representation of weather provided by a
higher-resolution model.

In the Lorenz world, Charlie never sues the forecasters for ‘wrong’ forecasts.
When the forecast is uncertain, the forecasters say so, and with precise and reliable
estimates of uncertainty. Charlie makes his decisions based on these forecasts and if
he makes the wrong decisions, only he, and lady luck, are to blame!

1.3 Why are forecasts uncertain?

Essentially, there are three reasons why forecasts are uncertain: uncertainty in the
observations used to define the initial state, uncertainty in the model used to assimilate
the observations and to make the forecasts, and uncertainty in ‘external’ parameters.

Let’s consider the last of these uncertainties first. For example, the aerosol content
of the atmosphere can be significantly influenced by volcanic eruptions, which are
believed to be unpredictable more than a few days ahead. Also, uncertainty in the
change in atmospheric CO2 over the coming decades depends on which nations sign
agreements such as the Kyoto protocol.

In principle, perhaps, ‘stochastic volcanoes’ could be added to an ensemble pre-
diction system – though this seems a rather fanciful idea. Also, uncertainties in
humankind’s activities can, perhaps, be modelled by coupling our physical climate
model to an econometric model. However, we will not deal further with such uncer-
tainties of the ‘third kind’ but rather concentrate on the first two.

1.3.1 Initial uncertainty

At ECMWF, for example, the analysed state Xa of the atmosphere is found by
minimising the cost function

J (X ) = 1
2 (X − Xb)T B−1 (X − Xb) + 1

2 (H X − Y )T O−1 (H X − Y ) (1.6)

where Xb is the background state, B and O are covariance matrices for the probability
density functions (pdf) of background error and observation error, respectively, H is
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Figure 1.3 Isopleths of probability that the region enclosed by the isopleths contains
truth at initial and forecast time. The associated dominant singular vector at initial
and final time is also shown.

the so-called observation operator, and Y denotes the vector of available observations
(e.g. Courtier et al., 1998). The Hessian

∇∇ J = B−1 + H T O−1 H ≡ A−1 (1.7)

of J defines the inverse analysis error covariance matrix.
Figure 1.3 shows, schematically, an isopleth of the analysis error covariance

matrix, and its evolution under the action of the tangent propagator M (see Eqs. 1.3
and 1.4). The vector pointing along the major axis at forecast time corresponds to the
leading eigenvector of the forecast error covariance matrix. Its pre-image at initial
time corresponds to the leading singular vector of M, determined with respect to
unit norm in the metric given by A. The singular vectors of M correspond to the
eigenvectors of MT M in the generalised eigenvector equation

MT M δx(t0) = −λA−1δx(t0). (1.8)

Given pdfs of uncertainty based on Eq. (1.6), we can in principle perform a Monte
Carlo sampling of the Hessian-based initial pdf and produce an ensemble forecast
system based on this initial sampling.

There are three reasons for not adopting this strategy.
Firstly, there is the so-called ‘curse of dimensionality’. The state space of a weather

prediction model has about 107 dimensions. Many of these dimensions are not dynam-
ically unstable (i.e. are not associated with positive singular values). In this sense, a
random sampling of the initial probability density would not be a computationally
efficient way of estimating the forecast probability density. This point was made
explicitly in Lorenz’s analysis of his 28-variable model (Lorenz, 1965):
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If more realistic models . . . also have the property that a few of the eigenvalues
of MMT are much larger than the remaining, a study based upon a small
ensemble of initial errors should . . . give a reasonable estimate of the growth rate
of random error. . . . It would appear, then, that the best use could be made of
computational time by choosing only a small number of error fields for
superposition upon a particular initial state.

Studies of realistic atmospheric models show that the singular values of the first 20–
30 singular vectors are indeed much larger than the remainder (Molteni and Palmer,
1993; Buizza and Palmer, 1995; Reynolds and Palmer, 1998).

The second reason for not adopting a Monte Carlo strategy is that in practice
Eq. (1.6) only provides an estimate of part of the actual initial uncertainty; there are
other sources of initial uncertainty that are not well quantified – what might be called
the ‘unknown unknowns’. Consider the basic notion of data assimilation: to assimilate
observations that are either made at a point or over a pixel size of kilometres into
a model whose smallest resolvable scale is many hundreds of kilometres (bearing
in mind the smallest resolvable scale will be many times the model grid). Now
sometimes these point or pixel observations may be representative of circulation
scales that are well resolved by the model (e.g. if the flow is fairly laminar at the
time the observation is made); on other occasions the observations may be more
representative of scales which the model cannot resolve (e.g. if the flow is highly
turbulent at the time the observation is made, or if the observation is sensitive to
small-scale components of the circulation, as would be the case for humidity or
precipitation).

In the latter case, the practice of using simple polynomial interpolation in the
observation operator H in Eq. (1.6) to take the model variable X to the site of the
observation, is likely to be poor. However, this is not an easily quantified uncertainty–
since, ultimately, the uncertainty relates to numerical truncation error in the forecast
model (see the discussion below). Similarly, consider the problem of quality control.
An observation might be rejected as untrustworthy by a quality-control procedure if
the observation does not agree with its neighbours and is different from the back-
ground (first-guess) field. Alternatively, the observation might be providing the first
signs of a small-scale circulation feature, poorly resolved by either the model or
the observing network. For these types of reason, a Monte Carlo sampling of a pdf
generated by Eq. (1.6) is likely to be an underestimate of the true uncertainty.

The third reason for not adopting a Monte Carlo strategy is not really independent
of the first two, but highlights an issue of pragmatic concern. Let us return to Charlie,
as discussed above. Charlie is clearly disgruntled by the occasional poor forecast of
frost, especially if it costs him money. But just imagine how much more disgruntled
he would be, having invested time and money to adapt his decision strategies to a
new weather risk service based on the latest, say, Multi-Centre Ensemble Forecast
System, if no member of the new ensemble predicts severe weather, and severe
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Figure 1.4 May–July 2002 average root-mean-square (rms) error of the ensemble-
mean (solid lines) and ensemble standard deviation (dotted lines) of the ECMWF,
NCEP and MSC ensemble forecast systems. Values refer to the 500 hPa geopotential
height over the Northern Hemisphere latitudinal band 20–80 N. From Buizza et al.
(2003, 2005).

weather occurs! Just one failure of this sort will compromise the credibility of the
new system.

To take this into account, a more conservative approach to sampling initial pertur-
bations is needed, conservative in the sense of tending towards sampling perturbations
that are likely to have significant impact on the forecast.

For these three reasons (together with the fact that instabilities in the atmosphere
are virtually never of the normal-mode type: Palmer, 1988; Molteni and Palmer,
1993; Farrell and Ioannou, this volume and Ioannou and Farrell, this volume), the
initial perturbations of the ECMWF ensemble prediction system are based on the
leading singular vectors of M (Buizza, this volume).

The relative performance of the singular-vector perturbations can be judged from
Figure 1.4 (Buizza et al., 2003), based on a comparison of ensemble prediction sys-
tems at ECMWF (Palmer et al., 1993; Molteni et al., 1996), NCEP (US National
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Centers for Environmental Prediction; Toth and Kalnay, 1993) and MSC (Meteo-
rological Service of Canada; Houtekamer et al., 1996); the latter systems based on
bred vectors and ensemble data assimilation respectively. The solid lines show the
ensemble-mean root-mean-square error of each of the three forecast systems, the
dashed lines show the spread of the ensembles about the ensemble mean. At initial
time, both NCEP and MSC perturbations are inflated in order that the spread and
skill are well calibrated in the medium range. The growth of perturbations in the
ECMWF system, by contrast, appears to be more realistic, and overall the system
appears better calibrated to the mean error.

1.3.2 Model uncertainty

From the discussion in the last section, part of the reason initial conditions are
uncertain is that (e.g. in variational data assimilation) there is no rigorous operational
procedure for comparing a model state X with an observation Y. The reason that
there is no rigorous procedure is directly related to the fact that the model cannot
be guaranteed to resolve well the circulation or weather features that influence the
observation. In this respect model error is itself a component of initial error. Of
course, model error plays an additional role as one integrates, forward in time, the
model equations from the given initial state.

Unfortunately, there is no underlying theory which allows us to estimate the statis-
tical uncertainty in the numerical approximations we make when attempting to inte-
grate the equations of climate on a computer. Moreover, an assessment of uncertainty
has not, so far, been a requirement in the development of subgrid parametrisations.

Parametrisation is a procedure to approximate the effects of unresolved processes
on the resolved scales. The basis of parametrisation, at least in its conventional form,
requires us to imagine that within a grid box there exists an ensemble of incoherent
subgrid processes in secular equilibrium with the resolved flow, and whose effect
on the resolved flow is given by a deterministic formula representing the mean (or
bulk) impact of this ensemble. Hence a parametrisation of convection is based on
the notion of the bulk effect of an incoherent ensemble of convective plumes within
the grid box, adjusting the resolved scales back towards convective neutrality; a
parametrisation of orographic gravity-wave drag is based on the notion of the bulk
effect of an incoherent ensemble of breaking orographic gravity waves applying a
retarding force to the resolved scale flow.

A schematic representation of parametrisation in a conventional weather or climate
prediction model is shown in the top half of Figure 1.5. Within this framework,
uncertainties in model formulation can be represented in the following hierarchical
form:

� the multimodel ensemble whose elements comprise different weather or
climate prediction models;
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Figure 1.5 (Top) Schematic for conventional weather and climate prediction models
(the ‘Reynolds/Richardson Paradigm’). (Bottom) Schematic for weather and climate
prediction using simplified stochastic-dynamic model representations of unresolved
processes.

� the multiparametrisation ensemble whose elements comprise different
parametrisation schemes P(X, α) within the same dynamical core;

� the multiparameter ensemble whose elements are all based on the same
weather or climate prediction model, but with perturbations to the parameters
α of the parametrisation schemes.

The DEMETER system (Palmer et al., 2004; Hagedorn et al., this volume) is
an example of the multimodel ensemble; the ensemble prediction system of the
Meteorological Service of Canada (Houtekamer et al., 1996) is an example of a
multiparametrisation scheme; the Met Office QUMP system (Murphy et al., 2004)
and the climateprediction.net ensemble system (Stainforth et al., 2005) are examples
of multiparameter ensemble systems.

The hierarchical representation of model error as discussed above should be con-
sidered a pragmatic approach to the problem – it certainly should not be considered
a complete solution to the problem. The fundamental reason why parametrisations
are uncertain is that in reality there is no scale separation between resolved and unre-
solved motions: according to Nastrom and Gage (1985), the observed spectrum of
atmospheric motions shallows from a −3 slope to a −5/3 slope as the truncation
limit of weather and climate models is approached. That is to say, the spectrum of
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Figure 1.6 Schematic examples of the failure of conventional parametrisation to
account for tendencies associated with subgrid processes: (a) when the subgrid
topographic forcing is coherent across grid boxes; (b) when the convective motions
have mesoscale organisation.

unresolved motions is dominated by a range of near grid-scale motions. Figure 1.6
gives schematic examples of near-grid-scale motions (a) for orographic flow and
(b) for organised deep convection. In the case of orography, the flow is forced
around the orographic obstacle. In the grid box containing the tip of the orogra-
phy, a parametrisation will detect unresolved orography and apply a drag force, the
very opposite of what may actually be required. In the case of convection, the grid box
containing the bulk of the updraught may not be warming (through environmental
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subsidence); moreover, there is no requirement for the vertical momentum transfer
to be upgradient, or for the implied kinetic energy generated by convective available
potential energy within a grid box to be dissipated within that grid box.

Hence, in neither case can the impact of the unresolved orographic or convective
processes be represented by conventional parametrisations, no matter what formulae
are used or what values the underlying parameters take. In other words, part of the
uncertainty in the representation of unresolved scales is structural uncertainty rather
than parametric uncertainty.

In order to represent such structural uncertainty in ensemble prediction systems,
we need to broaden the standard paradigmatic representation of subgrid scales. In
considering this generalisation, it can be noted that in the conventional approach
to weather and climate modelling, there is in fact a double counting of subgrid
processes within an ensemble prediction system. By averaging across an ensemble
prediction system with identical resolved-scale flow but different subgrid circula-
tions, the ensemble prediction system effectively provides us with a mean of subgrid
processes. But this averaging process has already been done by the parametrisation
scheme, which itself is defined to be a mean of putative subgrid processes. Apart
from possible inefficiency, what danger is there in such double counting?

The danger is that we miss a key element of the interaction between the resolved
flow and the unresolved flow, leading to a component of systematic error in the climate
models. Let us represent the grid-box tendency associated with unresolved scales
by a probability density function ρm(X ) where X is some resolved-scale variable.
Consider an ensemble prediction system where the grid-box mean variable is equal
to X0 across all members of the ensemble. Suppose now that instead of using the
deterministic subgrid parametrisation P(X0; α) across all ensemble members, we
force the ensemble prediction system by randomly sampling ρm(X0). Would the
ensemble-mean evolve differently? Yes, because of non-linearity!

It is therefore being suggested here that we change our paradigm of parametrisation
as a deterministic bulk formula representing an ensemble of some putative ‘soup’ of
incoherent subgrid processes, to one where each ensemble member is equipped with
a possible realisation of a subgrid process. Hence, Figure 1.6(b) illustrates a possible
generalisation in which the subgrid scales are represented by a simplified compu-
tationally efficient stochastic-dynamic system, potentially coupled to the resolved
scales over a range of scales.

There are three reasons why the representation of model uncertainty through
stochastic-dynamic parametrisation may be superior to the multimodel and related
representations. Firstly, model uncertainty may be more accurately represented, and
the corresponding ensembles may be more reliable. Secondly, as discussed above,
noise-induced drift may lead to a reduction in model systematic error in a way impos-
sible in a multimodel ensemble. Thirdly, estimates of ‘natural climate variability’ may
be more accurate in a model with stochastic-dynamic representation of unresolved
scales. This is important for the problem of detecting anthropogenic climate change.
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A simple example of stochastic parametrisation has been discussed in Buizza
et al. (1999) and Palmer (2001). Let us write, schematically, the equations of motion
of our climate or weather prediction model as

Ẋ = F[X ] + P + e (1.9)

e = εP

where P denotes the conventional parametrisation term and ε is a non-dimensional
stochastic parameter with mean zero. The physical basis for such a multiplicative-
noise form of stochastic parametrisation is that stochastic model perturbations are
likely to be largest when the parametrisation tendencies themselves are largest, e.g.
associated with intense convective activity, when the individual convective cells have
some organised mesoscale structure, and therefore where the parametrisation concept
breaks down. This notion of multiplicative noise has been validated from a coarse-
grained budget analysis in a cloud-resolving model (Shutts and Palmer, 2004, 2006;
Palmer et al., 2005). Buizza et al. (1999) showed that probabilistic skill scores for
the medium-range ensemble prediction systems (EPS) were improved using this
stochastic parametrisation scheme.

From a mathematical point of view the addition of stochastic noise in Eq. (1.9)
is straightforward. However, adding the noise term e makes a crucial conceptual
difference to Eq. (1.9). Specifically, without stochastic noise, the subgrid parametri-
sation represents an averaged tendency associated with a supposed ensemble of
subgrid processes occurring inside the grid box. With stochastic noise, the subgrid
parametrisation represents a possible realisation of the subgrid tendency.

We can go further than this and ask whether some dynamical meteorology could
be built into this stochastic realisation of the subgrid world. A possible stochastic-
dynamic model could be associated with the cellular automaton, a computationally
simple non-linear dynamical system introduced by the mathematician John von Neu-
mann (Wolfram, 2002). Figure 1.7 (from Palmer, 2001) is a snapshot from a cellular
automaton model where cells are either convectively active (‘on’) or convectively
inhibited (‘off’). The probability of a cell being ‘on’ is dependent on the convective
available potential energy in the grid box and on the number of adjacent ‘on’ cells.
Agglomerations of ‘on’ cells have the potential to feed vorticity from the parametrisa-
tion to the resolved scales. ‘On’ cells can be made to advect with the grid-mean wind.
In a further development of this scheme (J. Berner, personal communication) a two-
level multiscale cellular automaton has been developed. The smallest level represents
individual convective plumes, whilst the intermediate level represents convectively
coupled wave motions which can force the Madden–Julian Oscillation. It is planned
to try to include characteristics of the dispersion equation of convectively coupled
Kelvin waves in the intermediate cellular automaton.

Independently, cellular automata based on the Ising model have been devel-
oped as a stochastic-dynamic parametrisation of deep convection (Khouider et al.,
2003). Recently Shutts (2005) has built a hybrid stochastic-dynamic parametrisa-
tion scheme which combines the cellular automaton with the notion of stochastic
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Figure 1.7 A snapshot in time from a cellular automaton model for convection.
Black squares correspond to convectively active sites, white squares to convectively
inhibited sites. From Palmer (2001).

backscatter (e.g. Leith, 1990; Frederiksen and Davies, 1997). Specifically, estimates
of dissipation are made based on four components of the ECMWF model: convec-
tion, orographic gravity-wave drag, numerical diffusion, and the implicit dissipation
associated with the semi-lagrangian scheme. The basic assumption is that a fraction
(e.g. 10%) of the implied energy dissipation is actually fed back on to the model grid,
through the cellular automaton.

Preliminary results with this scheme are very promising: there is quantifiable
reduction in midlatitude systematic error which can be interpreted in terms of an
increased frequency of occurrence of basic circulation regimes (Molteni et al., this
volume; Jung et al., 2005) which are underestimated in the version of the model with
conventional parametrisation. In this way, one can say that the stochastic parametri-
sation has reduced systematic error through a non-linear noise-induced drift effect.

1.4 Ensemble forecasts: some examples

In this section, some examples of ensemble forecasts from different forecast
timescales will be shown, illustrating some of the ideas discussed above. Logically,
one should perhaps order these examples by timescale, e.g. starting with the short
range, finishing with centennial climate change. However, in this section the examples
will be presented more or less in the historical order in which they were developed.

1.4.1 Extended range

Much of the early work on ensemble forecasting with comprehensive weather predic-
tion models arose in trying to develop dynamical (as opposed to statistical-empirical)
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Figure 1.8 State-space trajectories from an unreliable time-lagged ensemble (solid),
and verifying analysis (dashed). See Palmer et al. (1990).

techniques for monthly forecasting. One of the basic motivations for such work was
that whilst the monthly timescale was clearly beyond the mean limit [PW] of pre-
dictability of daily weather, as shown by Miyakoda et al. (1986), from time to time the
actual predictability of the atmospheric circulation would far exceed [PW]. Ensemble
forecasts were seen as a necessary means of determining ahead of time whether such
enhanced predictability existed. The first ever operational probabilistic ensemble
forecast was made for the 30-day timescale (Murphy and Palmer, 1986).

In these early days, methodologies to produce initial ensemble perturbations were
rather simple, e.g. based on adding random noise to the initial conditions, or using
the time-lagged technique, where ensemble members were taken from consecutive
analyses (Hoffman and Kalnay, 1983).

Unfortunately, early results did not always live up to hopes. Figure 1.8 shows one
of the pitfalls of ensemble forecasting. The figure shows the evolution in phase space
(spanned by leading empirical orthogonal functions of the forecast ensemble) of an
ensemble of five-day mean forecasts made using the time-lagged technique, based
on an early version of the ECMWF model (Palmer et al., 1990). Unfortunately the
evolution of the verifying analysis is in a class of its own! A probability forecast
based on this ensemble would clearly be unreliable. Charlie would not be impressed!

During the 1990s, work on 30-day forecasting went into a period of decline.
However, in 2004, an operational 30-day forecast system was finally imple-
mented at ECMWF, using singular-vector ensemble perturbations in a coupled
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ocean–atmosphere model (Vitart, 2004). Unlike the early example shown above,
probability forecasts have been shown to be reliable in the extended range. This
improvement results from developments in data assimilation, in deterministic fore-
casting, and in medium-range ensemble forecasting as discussed in this chapter and
in Buizza (this volume).

1.4.2 Medium range

A general assessment of predictability in the medium range, based on the ECMWF
system, is given in Simmons (this volume). Even though early results on 30-day
forecasting were disappointing, it was nevertheless clear that the idea of using ensem-
ble forecasts to determine periods where the atmospheric circulation was either espe-
cially predictable, or especially unpredictable, was also relevant to the medium range.
Based on the experience outlined above, there was clearly a need to ensure that the
resulting ensembles were not underdispersive. The initial work in this area was done at
ECMWF and NCEP, using different methods for obtaining initial perturbations (see
section above). The ECMWF ensemble prediction system comprises 51 forecasts
using both singular vector initial perturbations and stochastic physics (more details
are given in Buizza, this volume).

In late December 1999, two intense storms, subsequently named Lothar and Mar-
tin, ran across continental Europe leaving behind a trail of destruction and misery,
with over 100 fatalities, over 400 million trees blown down, over 3 million homes
without electricity and water. Figure 1.9 shows the ensemble ‘stamp maps’ (based
on a TL255 version of the ECMWF model) for Lothar, at initialisation time on
24 December and for forecast time 6 UTC on 26 December. This storm was excep-
tionally unpredictable, and even at 42 hours lead time there is considerable spread in
the ensemble. The best-guidance deterministic forecast only predicts a weak trough
in surface pressure. A number of members of the ensemble support this forecast;
however, a minority of ensemble members also show an intense vortex over France.
In this sense, the ensemble was able to predict the risk of a severe event, even though
it was impossible to give a precise deterministic forecast. More recent deterministic
reforecasts with a T799 version of the ECMWF model also fail to predict this storm
(Martin Miller, personal communication) – this is clearly a case which demonstrates
the value of ensemble forecasts even at intermediate resolution (Palmer, 2002).

1.4.3 Seasonal and decadal prediction

The scientific basis for seasonal prediction lies in the interaction of the atmosphere
with slowly varying components of the climate system: notably the oceans and
land surface (Timmermann, this volume; Shukla and Kinter, this volume). Early
work showed firstly that El Niño events are predictable seasons ahead of time using
intermediate-complexity coupled ocean–atmosphere models of the tropical Pacific
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(Zebiak and Cane, 1987), and secondly that sea surface temperature (SST) anoma-
lies in the tropical Pacific Ocean have a global impact on atmospheric circulation
(e.g. Shukla and Wallace, 1983). Putting these factors together has led to global sea-
sonal prediction systems based on comprehensive global coupled ocean–atmosphere
models (Stockdale et al., 1998). Inevitably such predictions have been based on
ensemble forecast techniques, where initial perturbations represent uncertainties in
both atmosphere and ocean analyses.

In addition to initial uncertainty, representing forecast model uncertainty is a
key element in reliably predicting climate risk on seasonal and longer timescales.
The ability of multimodel ensembles to produce more reliable forecasts of seasonal
climate risk over single-model ensembles was first studied by the PROVOST (Predic-
tion of Climate Variations on Seasonal to Interannual Timescales) project funded by
the European Union IVth Framework Environment Programme, and a similar ‘sis-
ter’ project DSP (Dynamical Seasonal Prediction) undertaken in the United States
(Palmer and Shukla, 2000).

As part of the PROVOST project, three different atmospheric general circulation
models (including one model at two different resolutions) were integrated over four-
month timescales with prescribed observed SSTs. Each model was run in ensemble
mode, based on nine different initial conditions from each start date; results were
stored in a common archive. One of the key results from PROVOST and DSP was that,
despite identical SSTs, ensembles showed considerable model-to-model variability
in estimates both of the SST-forced seasonal-mean signal, and the seasonal-mean
‘noise’ generated by internal dynamics (Straus and Shukla, 2000). Consistent with
this, probability scores based on the full multimodel ensemble scored better overall
than any of the individual model ensembles (e.g. Doblas-Reyes et al., 2000; Palmer
et al., 2000).

Based on such results, the DEMETER project (Development of a European Mul-
timodel Ensemble System for Seasonal to Interannual Prediction; Palmer et al.,
2004, Hagedorn et al., this volume) was conceived, and successfully funded under
the European Union Vth Framework Environment Programme. The principal aim
of DEMETER was to advance the concept of multimodel ensemble prediction by
installing a number of state-of-the-art global coupled ocean–atmosphere models on
a single supercomputer, and to produce a series of six-month ensemble reforecasts
with common archiving and common diagnostic software.

Figure 1.10 shows an example of results from DEMETER. Forecasts of El Niño
are seen to be more reliable in the multimodel ensemble than in the ECMWF single-
model ensemble; more specifically, the observed SSTs do not always lie in the range
of the ECMWF-model ensembles, but do lie in the range of the DEMETER mul-
timodel ensembles. Other results supporting the notion that multimodel ensembles
are more reliable than single-model ensembles are given in Hagedorn et al. (this
volume). However, it is not necessarily the case that multimodel ensembles are reli-
able for all variables. As discussed in Palmer et al. (2005), seasonal forecasts of
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Figure 1.10 Time series of forecast NINO-3 SST anomalies for DJF, initialised
1 November, based on (a) ECMWF ensemble, (b) DEMETER multimodel ensemble.
Bars and whiskers show terciles, the ensemble-mean values are shown as solid
circles, and the actual SST anomalies are shown as open circles.

upper-tercile precipitation over Europe are neither reliable in single-model nor
DEMETER multimodel ensemble systems. Consistent with the discussion above,
this latter result suggests that multimodel systems may not represent model uncer-
tainty completely. In the European Union FP6 project ENSEMBLES, it is proposed
to compare the reliability of seasonal ensemble forecasts, made using the multimodel
technique, with stochastic parametrisation.

At the beginning of this chapter, the existence or otherwise of predictability was
discussed from the perspective of decision-making: are the forecast probability densi-
ties sufficiently different from climatological densities to influence decision-making?
In DEMETER quantitative crop and malaria prediction models were linked to
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individual ensemble members; based on this, the probability of crop failure or malaria
epidemic could be estimated. See Hagedorn et al. (this volume) for details.

Many observational and modelling studies document pronounced decadal and
multidecadal variability in the Atlantic, Pacific and Southern Oceans. For example,
decadal variability in Atlantic sea surface temperatures is in part associated with
fluctuations in the thermohaline circulation (e.g. Broecker, 1995); decadal variability
in the Pacific is associated in part with fluctuations in the Pacific Decadal Oscillation
(e.g. Barnett et al., 1999). Variations in the Atlantic thermohaline circulation appear
to be predictable one or two decades ahead, as shown by a number of perfect model
predictability studies, e.g. Griffies and Bryan (1997), Latif et al. (this volume). The
SST anomalies (both tropical and extratropical) associated with decadal variations
in the thermohaline circulation appear to impact the North Atlantic Oscillation in the
extratropics. A weakening of the thermohaline circulation is likely to lead to a cooling
of northern European surface temperatures. There is also evidence (Landerer et al.,
2006) that decadal variability in the thermohaline circulation could lead to significant
decadal sea level fluctuations in Europe.

Variations in the thermohaline circulation may also be associated with climate
fluctuations in the tropics. For example, there is some evidence that long-lasting
drought over the African Sahel is associated with decadal-timescale variability in
the so-called sea surface temperature dipole in the tropical Atlantic (Folland et al.,
1986).

In order for decadal prediction to evolve into a possible operational activity, suit-
able observations from which the thermohaline circulation can be initialised must
exist. Programmes such as ARGO (Wilson, 2000) may help provide such observa-
tions. These need to be properly assimilated in the ocean component of a coupled
forecast model. It is clearly essential that the model itself has a realistic representation
of the thermohaline circulation.

On the timescale of a decade, anticipated changes in greenhouse gas concentrations
will also influence the predictions of future climate (Smith et al., 2006). In this sense,
decadal timescale prediction combines the pure initial value problem with the forced
climate problem, discussed in the next subsection.

1.4.4 Climate change

Climate change has been described by the UK Government’s Chief Scientific Advi-
sor as one of the most serious threats facing humanity – more serious even than
the terrorist threat. Nevertheless, there is uncertainty in the magnitude of climate
change; this uncertainty can be quantified using ensemble techniques (Allen et al.,
this volume). For example, Palmer and Räisänen (2002) used the multimodel ensem-
ble technique to assess the impact of increasing levels of CO2 on the changing
risk of extreme seasonal rainfall over Europe in winter (Figure 1.11; colour plate),
and also for the Asian summer monsoon, based on the CMIP multimodel ensemble
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Figure 1.12 Probability distributions of global average annual warming associated
with a 53-member ensemble for a doubling of carbon dioxide concentration.
Ensemble members differ by values of key parameters in the bulk formulae used to
represent unresolved processes, in a version of the Hadley Centre climate model.
Solid curve: based on ‘raw model output’. Dashed curve: the probability distribution
weighted according to the ability of different model versions to simulate observed
present day climate. From Murphy et al. (2004).

(Meehl et al., 2000). More recently Murphy et al. (2004) and Stainforth et al. (2005)
have quantified uncertainty in climate sensitivity (the global warming associated with
a doubling of CO2) based on multiparameter ensembles (see also Allen et al., this
volume).

Figure 1.12 shows a probability distribution of climate sensitivity based on the
multiparameter ensemble of Murphy et al. (2004). The solid line shows the raw
output; the dashed line shows results when the individual ensemble members are
weighted according to the fit of control integrations to observations. It is interesting
to note that this fit to data does not change the range of uncertainty – rather the
forecast probability distribution is shifted to larger values of climate sensitivity.

As yet, probability distributions in global warming have not been estimated using
the stochastic physics approach. It will be interesting to see how estimates of uncer-
tainty in climate sensitivity are influenced by the methodology used to represent
model uncertainty.

How can the uncertainty in global warming be reduced? It can be noted that much
of the ensemble spread in Figure 1.12 is associated with uncertainty in parame-
ters from parametrisations of clouds and boundary layer processes. These are fast-
timescale processes. Hence it may be possible to reduce the spread in Figure 1.12 by
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assessing how well the contributing models perform as short-range weather predic-
tion models. More specifically, the type of budget residual technique pioneered by
Klinker and Sardeshmukh (1992) could be applied to the multiparameter ensemble.
On this basis, models with large residuals, obtained by integrating over just a few time
steps but from many different initial conditions, could be rejected from the ensemble
(Rodwell and Palmer, 2006).

Ultimately, the uncertainties in climate prediction arise because we are not solving
the full partial differential equations of climate – for example, the important cloud
processes mentioned above are parametrised, and, as noted, parametrisation theory
is rarely a justifiable procedure. On this basis, further reduction of the uncertainty in
global warming may require significantly larger computers so that at least major con-
vective cloud systems can be resolved. Of course, this will not eliminate uncertainty,
as cloud microphysics will still have to be parametrised.

In truth, reducing uncertainty in forecasts of climate change will require a com-
bination of significantly greater computer resources and the use of sophisticated
validation techniques as used in numerical weather prediction studies.

1.4.5 Short-range forecasting

For many years, it was generally assumed that while ensemble techniques may well
be important for medium and longer range predictions, the short-range weather pre-
diction problem, up to day 2, let’s say, should essentially be considered deterministic.
Such a view is no longer held today – predictions of flash floods and other types of
mesoscale variability are not likely to be strongly predictable on timescales of a
day. To quantify uncertainty in such forecasts, ensemble prediction systems based on
multiple integrations of fine-scale limited area models are now being actively devel-
oped around the world. To create such ensembles, ensemble boundary conditions
are taken from a global ensemble prediction system, and these are combined with
initial perturbations within the limited-area model domain. Insofar as some of the
principal forecast variables are related to processes close to the model resolution, a
representation of model uncertainty is also necessary.

An example of an ensemble of limited-area model integrations is shown in
Figure 1.13, based on the COSMO-LEPS system (Tibaldi et al., this volume; Waliser
et al., 2006). The boundary conditions for this limited-area model ensemble have
been taken from ECMWF ensemble integrations (in this case using moist singular
vectors; M. Leutbecher, personal communication). The example shown here is for
the storm Lothar (see Figure 1.9). It can be seen that the limited-area model ensem-
ble is predicting a significant risk of damaging wind gusts – in a situation where the
deterministic forecast from the most likely initial state had no warning of severe gusts
at all.

Development of short-range ensemble prediction systems using limited-area mod-
els is now a significant growth area.
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Figure 1.13 Probability that wind gusts exceed 40 m/s for the storm Lothar based on
an ensemble (COSMO-LEPS) of limited-area model integrations using ECMWF
ensemble boundary conditions. From Waliser et al. (2005).

1.5 Discussion

In this chapter, we have charted a revolution in the way weather and climate predic-
tions are produced and disseminated as probability forecasts. The revolution started
in studies of monthly predictability, spread to medium range and seasonal timescales,
finally permeating extremes of meteorological predictions, the climate change and
short-range weather forecast problems. The revolution is based on the notion that
in many cases the most relevant information for some user is not necessarily what
is most likely to happen, but rather a quantified probability of weather or climate
events to which the user is sensitive. We introduced the case of Charlie, who wants
to know if he can lay concrete. If Charlie’s cost/loss ratio is less than 0.5, he may
decide not to lay concrete even when frost is not likely to occur. If Charlie were
one day to become minister for the environment, he might be faced with similar
risk-based decisions on the adequacy of the current Thames barrier, one of London’s
key flood defences. A prediction of an 11 K warming associated with a doubling
of CO2 (Stainforth et al., 2005) doesn’t have to be likely in order for the replace-
ment of the barrier to be in need of urgent consideration. However, the decision



26 T. N. Palmer

to replace may need better quantified estimates of uncertainty than we currently
have.

Predicting the probability of occurrence of weather and climate events requires us
to be able to quantify the sources of uncertainty in weather and climate prediction,
and to estimate how these sources actually impact on the predictions themselves. In
practice, these sources of uncertainty are not easy to quantify. This is not because we
don’t know the accuracy of instruments used to observe the atmosphere (and oceans).
Rather, it is because the approximations used in making computational models of
the essentially continuum multiphase fluid equations are themselves hard to quan-
tify. Hence, for example, when model variables are compared with observations in
data assimilation, the observation operator doesn’t recognise the fact that the obser-
vation may be strongly influenced by scales of motion that the model is unable to
resolve well. On many occasions and for certain types of observation (e.g. surface
pressure) this may not be a serious problem, but occasionally and for other types
of observation (e.g. humidity) it is. At present, this type of uncertainty is unquan-
tified in operational data assimilation – from this perspective it is an example of
an ‘unknown unknown’. In the presence of such ‘unknown unknowns’, operational
ensemble prediction systems run the danger of being underdispersive. This is poten-
tially disastrous: if Charlie lays concrete when the risk of frost is predicted to be
zero, and frost occurs, Charlie will never use ensemble prediction again! If, in his
future career as politician, Charlie decides against replacing the Thames barrier on
the basis of underdispersive ensemble climate forecasts, history may not be kind to
him!

One specific conclusion of this chapter is that the development of accurate ensem-
ble prediction systems on all timescales, hours to centuries, relies on a better quan-
tification of model uncertainties. It has been argued that this may require a funda-
mental change in the way we formulate our models, from deterministic to stochastic
dynamic. This change has been anticipated by Lorenz (1975) who said: ‘I believe that
the ultimate climatic models . . . will be stochastic, i.e. random numbers will appear
somewhere in the time derivatives’. Stochastic representations of subgrid processes
are particularly well suited to ensemble forecasting.
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Predictability from a dynamical
meteorological perspective

Brian Hoskins
University of Reading

2.1 Introduction: origins of predictability

Predictability of weather at various timescales has its origins in the physics and
dynamics of the system. The annual cycle is an example of very predictable behaviour
with such an origin, though this predictability is of little other than general background
use to the forecaster. The rapid rotation of the Earth with its shallow, generally stably
stratified atmosphere leads to the dominance of phenomena with balance between
their thermodynamic and dynamic structures. These structures evolve on timescales
comparable to, or longer than, a day. This balanced motion is best described by con-
sideration of two properties that are materially conserved under adiabatic conditions,
potential temperature (θ , or equivalently entropy) and potential vorticity (PV). A
feature of particular importance, leading to potentially predictable behaviour, is the
ability of the atmosphere to support balanced, large-scale Rossby waves.

Atmospheric phenomena with recognised structures tend to exhibit characteristic
evolutionary behaviour in time and thus to have a level of predictability. Particular
examples of such phenomena are the midlatitude cyclone on synoptic timescales, the
tropical Intra-Seasonal Oscillation and the El Niño–Southern Oscillation (ENSO) on
annual timescales.

Slower parts of the climate system can leave an imprint on shorter timescales and
hence give an element of predictability to them. Tropical sea surface temperature
(SST) anomalies tend to persist and can lead to anomalous convective activity in
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z

Figure 2.1 The balanced structure typically associated with a positive potential
vorticity (PV) anomaly. Features shown are the cyclonic circulation in the region and
the isentropes ‘sucked’ towards the anomaly in the vertical, consistent with high
static stability there.

their region. This activity can trigger Rossby waves that communicate anomalous
conditions to other regions of the globe. Soil moisture anomalies in tropical or extra-
tropical regions can persist a month or more and similarly trigger both local and
remote responses.

Here aspects of balanced motion and its description with PV and Rossby waves
will be discussed in Section 2.2. The focus in Section 2.3 is on particular phenomena,
midlatitude weather systems, blocking highs, and a particular mode of variability,
the North Atlantic Oscillation (NAO). Section 2.4 gives some discussion of aspects
of the summer of 2002 and their possible predictability. Some concluding comments
are given in Section 2.5.

2.2 Balanced motion, potential vorticity and
Rossby waves

Hydrostatic balance and geostrophic balance together lead to so-called thermal wind
balance between the wind and temperature fields. The development of such motion is
described by the quasi-geostrophic version of the conservation of PV. As discussed in
detail in Hoskins et al. (1985), more general balanced motion is uniquely determined
through an elliptic problem by the PV/θ distribution. Its development is described
by the material conservation of PV on θ surfaces and θ on the lower boundary. Alter-
natively it is often convenient to summarise the upper tropospheric PV/θ distribution
by the distribution of θ on the PV = 2PVU surface (here northern hemisphere signs
are used for convenience), which away from the tropics can be considered to be the
dynamical tropopause (Hoskins, 1997).

Because of the elliptic nature of the inversion problem, a positive PV anomaly
is generally associated with both cyclonic motion and increased static stability
(Figure 2.1). Similarly a negative PV anomaly is associated with anticyclonic motion
and reduced static stability. As in Figure 2.2, the tip of PV ‘trough’ often elongates,
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y

x
Figure 2.2 An upper air development of a geopotential trough, indicated by a PV
contour on a θ surface or a θ contour on a PV surface in the tropopause region. Shown
is the elongation of the trough, and the development and movement away of a cut-off.

develops its own cyclonic circulation and cuts itself off. Once it has done this, the
cut-off low must continue to exist until either the PV anomaly is eroded by diabatic
processes or it moves back into the higher PV region. This implies some extended
predictability of such a cut-off low once it has formed.

+y

High PV

Low PV

+ -

(a)

(b)
Figure 2.3 Rossby wave development. In (a) PV contours are shown displaced to the
south, leading to a PV anomaly and cyclonic circulation. This circulation advects the
PV meridionally, leading to the PV distribution and anomalies shown in (b).

If a contour is displaced equatorwards as in Figure 2.3(a), the associated cyclonic
anomaly advects the PV distribution as shown in Figure 2.3(b). This gives a negative
(anticyclonic) PV anomaly to the east and a positive (cyclonic) anomaly to the west.
If there is a basic westerly flow, the net result is that the original PV anomaly will
move to the east at less than the speed of the basic flow and could be stationary.
However, the wave activity develops downstream, to the east, at a speed greater than
that of the basic flow. The motion described is that of Rossby waves and the two
speeds described respectively their phase and group speeds.
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Figure 2.4 (See also colour plate section.) September–November 2000 300hPa
geopotential height anomalies from climate. From Blackburn and Hoskins (personal
communication).

On a β-plane Rossby wave activity spreads eastwards along regions of large
meridional PV gradients as these provide the restoring mechanism for them. However,
on the sphere, the path of long wavelength quasi-stationary Rossby wave activity is
closer to great circles. Such Rossby waves generated in the tropics can arc polewards
and eastwards into middle latitudes. Figure 2.4 (colour plate) shows the 300 hPa
geopotential height anomalies for October 2000. As discussed by M. Blackburn and
B. J. Hoskins (personal communication), the record rainfall over the UK is associated
with the anomalous low over and to the west of the UK. It can be seen that this
cyclone is preceded upstream, to the south-west, by an anticyclone. Streamfunction
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Day 7 Day 12

Figure 2.5 Surface pressure fields 7 days and 12 days after a baroclinically unstable
zonal flow was disturbed near ‘3 o’clock’. The contours are drawn every
4 hPa. From Simmons and Hoskins (1979).

anomalies indicate a further cyclone south-west of this. The strong suggestion is that
anomalous rainfall in the South American–Caribbean region triggered a stationary
Rossby wave pattern that in turn led to the anomalous weather in the UK. If this
hypothesis is correct, there is potential predictability of such anomalous midlatitude
months. However, there must be the ability to represent the tropical anomalies in
large-scale rainfall if it is to be realised.

2.3 Some phenomena

Middle latitude synoptic systems tend to have a characteristic structure including
surface fronts and upper tropospheric troughs. They also have characteristic evo-
lutions in time and therefore there is the implication of some predictability. These
structural and evolutionary characteristics can be usefully interpreted in terms of
theoretical descriptions in terms of normal mode baroclinic waves (Charney, 1947;
Eady, 1949), non-linear life cycles (Simmons and Hoskins, 1978), the omega and
vorticity equations (Hoskins et al., 1978), and coupled mid-troposphere and sur-
face Rossby waves (Heifetz et al., 2004). A link with Rossby wave behaviour is
shown by the ordered downstream development of baroclinic instability illustrated in
Figure 2.5. In this numerical experiment from Simmons and Hoskins (1979) an
unstable westerly flow had been perturbed at day zero at ‘3 o’clock’. Successive
lows and highs have developed to the east and occluded, with the newest sys-
tems at day 12 near ‘6 o’clock’. Each system moves at some 10 m s−1. How-
ever, the downstream development propagates at nearer 30 m s−1, like a synoptic
scale Rossby wave on the upper tropospheric jet. The orderly downstream propaga-
tion of baroclinic wave activity has been documented in a number of studies (e.g.
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(a) (b)

Figure 2.6 (See also colour plate section.) The block of 21 September 1998. Shown
are the 250 hPa geopotential height field and the θ on PV2 field. From Pelly and
Hoskins (2003a).

Chang, 1993). It gives the possibility that the development of new weather systems
is predictable much beyond the synoptic timescale on which each individual system
evolves.

The normal progression of middle latitude weather systems is sometimes inter-
rupted by ‘blocking highs’. An example of one of a block in the western European
region is shown in Figure 2.6 (colour plate) in terms of its 300 hPa geopotential and θ

on PV = 2 fields. The reversal of the zonal wind in the region of the block is associ-
ated with a reversal of the negative latitudinal gradient in θ . The formation of blocks,
particularly in the European region, can often be viewed as a breaking of synoptic
waves and, consistent with this, the timescale tends to be synoptic. However, once
there is a low PV cut-off (here high θ cut-off) the decay is on the generally longer
timescale of either diabatic processes or reabsorption into the subtropical region.
Again there is associated enhanced predictability. These ideas are supported by Fig-
ure 2.7 from Pelly and Hoskins (2003a) which shows that on short timescales the
decay of blocking-like features is on a timescale of about two days, but once a feature
has lasted four days, and is probably associated with a PV cut-off, the decay time is
about twice as long. It has indeed been found that the ECMWF Ensemble Predic-
tion System has skill for the onset of blocking for about four days but for blocking
events and the decay of them on timescales of about seven days (Pelly and Hoskins,
2003b).

A classic pattern of variability in the climate system is the North Atlantic Oscil-
lation (NAO; Hurrell et al., 2002) that describes the fluctuation of the surface west-
erly winds in that region. Alternative descriptions that have been used in recent
years are the Arctic Oscillation (AO; Thompson and Wallace, 1998) that emphasises
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Figure 2.7 The number of blocking events in the period 1 August 2000 to 31 July
2001 lasting at least the number of days shown on the abscissa. The ordinate gives
the logarithm of the number of sector blocking events and a straight line in the figure
indicates a uniform decay rate of the events. For more details, see Pelly and Hoskins
(2003a).

the fluctuations of the pressure in the polar cap and the Northern Annular Mode
(NAM; Thompson and Wallace, 2000) that focuses on the polar vortex and the
analogy with the southern hemisphere vortex. Figure 2.8 shows the autocorrelation
timescales of the NAO and the northern hemisphere stratospheric vortex in winter
(Ambaum and Hoskins, 2002). Synoptic timescale decay in the NAO changes to
longer timescales beyond ten days. One hypothesis is that this reflects a link with the
stratosphere and the longer timescales there, which are indicated in Figure 2.8.

The tropical Intra-Seasonal Oscillation (ISO), or Madden–Julian Oscillation
(MJO), describes the large-scale organisation of tropical convection in the Indian
Ocean that then migrates eastwards to the west Pacific, with its associated circula-
tion changes. Consistent with the name, the timescale for the ISO is 30–60 days,
although the word oscillation perhaps overemphasises its oscillatory nature. Once
an ISO event has started, its typical evolution on the timescale of weeks is known.
Since the convection associated with an ISO generates Rossby wave trains that lead
to characteristic responses, particularly in the winter hemisphere (Matthews et al.,
2004), there is potential predictability on the timescale of weeks both in the tropics
and higher latitudes. However, the current ability of models to simulate the ISO is
generally poor and this potential predictability is yet to be realised.
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Figure 2.8 Lagged autocorrelations for the North Atlantic Oscillation (dashed) and
the 500 K stratospheric vortex (dotted), and the lagged correlation between them
(solid). The measures of the two patterns are the first principal components of daily
mean sea-level pressure and 500 K PV, respectively. For more details, see Ambaum
and Hoskins (2002).

2.4 Summer 2002

The northern summer of 2002 contained a number of climate features and anomalies
that may have been linked. There were strong ISOs in the tropics. The surface westerly
winds associated with these may have triggered the onset of an El Niño event that
was observed to occur. Reduced Indian monsoon rainfall has been found to tend
to occur in El Niño years and this certainly happened in 2002. The reduction in
Indian monsoon rainfall was particularly dramatic in the middle of the season and
was related to one very strong ISO event. The latent heat release associated with
Indian monsoon rainfall leads to ascent in that region. It has been shown (Rodwell
and Hoskins, 1996) that compensating descent occurs in the Mediterranean region
and leads to the characteristic summer weather in the region. The reduction in the
monsoon in 2002 is therefore consistent with the unusual occurrence in that year
of weather systems moving into the Mediterranean region and then up into Europe,
leading to flooding events there.

The possible linkages between all these events are explored by M. Blackburn
et al. (personal communication). These linkages give the possibility of predictability.
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However, they also indicate the range of processes and phenomena that may have to
be modelled well in order to obtain this predictive power.

2.5 Concluding comments

A number of examples have been given in which phenomena and their structures
give predictability. The dynamical perspective illustrated here provides a framework
for consideration of the approach to prediction on various timescales and for the
processes that need to be improved in models if potential predictability is to be found
in practice.
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Predictability – a problem partly solved

Edward N. Lorenz
Massachusetts Institute of Technology, Cambridge

Ed Lorenz, pioneer of chaos theory, presented this work at an earlier ECMWF
workshop on predictability. The paper, which has never been published
externally, presents what is widely known as the Lorenz 1996 model. Ed was
unable to come to the 2002 meeting, but we decided it would be proper to
acknowledge Ed’s unrivalled contribution to the field of weather and climate
predictability by publishing his 1996 paper in this volume.

The difference between the state that a system is assumed or predicted to possess, and
the state that it actually possesses or will possess, constitutes the error in specifying
or forecasting the state. We identify the rate at which an error will typically grow or
decay, as the range of prediction increases, as the key factor in determining the extent
to which a system is predictable. The long-term average factor by which an infinitesi-
mal error will amplify or diminish, per unit time, is the leading Lyapunov number; its
logarithm, denoted by λ1, is the leading Lyapunov exponent. Instantaneous growth
rates can differ appreciably from the average.

With the aid of some simple models, we describe situations where errors behave
as would be expected from a knowledge of λ1, and other situations, particularly
in the earliest and latest stages of growth, where their behaviour is systematically
different. Slow growth in the latest stages may be especially relevant to the long-
range predictability of the atmosphere. We identify the predictability of long-term
climate variations, other than those that are externally forced, as a problem not yet
solved.

Predictability of Weather and Climate, ed. Tim Palmer and Renate Hagedorn. Published by Cambridge University Press.
C© Cambridge University Press 2006.
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3.1 Introduction

As I look back over the many meetings that I have attended, I recall a fair number
of times when I have had the pleasure of being the opening speaker. It’s not that
this is necessarily a special honour, but it does allow me to relax, if not to disappear
altogether, for the remainder of the meeting. On the present occasion, however, I
find it is a true privilege to lead off. This is both because the subject of the seminar,
predictability, is of special interest to me, and because much of the significant work
in this field has taken place here at the European Centre.

Most of us who are here presumably have a special interest in the atmosphere,
but the subject of predictability and the knowledge of it that we presently possess
extend to much more general systems. By and large these systems fall into two
categories, within which, to be sure, there are many subcategories. On the one hand
there are real or realisable physical systems. On the other there are systems defined
by mathematical formulas. The distinction between these categories is not trivial.

The former category includes the atmosphere, but also many much simpler sys-
tems, such as a pendulum swinging in a clock, or a flag flapping in a steady breeze.
Instantaneous states of these systems cannot be observed with absolute precision, nor
can the governing physical laws be expressed without some approximation. Exact
descriptions of the dissipative processes are particularly elusive.

In the latter category, initial states may be prescribed exactly. Likewise, the defin-
ing formulas may be precisely written down, at least if the chosen finite-difference
approximations to any differential equations, and the inevitable round-off proce-
dures, are regarded as part of the system. In some instances the equations are of
mathematical interest only, but in other cases they constitute models of real physical
systems; that is, they may be fair, good, or even the best-known approximations to
the equations that properly represent the appropriate physical laws. The relevance of
mathematically defined systems cannot be too strongly emphasised; much of what
we know, or believe that we know, about real systems has come from the study of
models.

Systems whose future states evolve from their present states according to precise
physical laws or mathematical equations are known as dynamical systems. These
laws or equations encompass not only the internal dynamics of a system, but also
any external factors that influence the system as it evolves. Often the concept of a
dynamical system is extended to include cases where there may be some random-
ness or uncertainty in the evolution process, especially when it is believed that the
general behaviour of the system would hardly be changed if the randomness could
be removed; thus, in addition to mathematical models and abstractions, many real
physical systems will qualify. Stochastic terms sometimes are added to otherwise
deterministic mathematical equations to make them simulate real-system behaviour
more closely.
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In the ensuing discussion I shall frequently assume that our system is the atmo-
sphere and its surroundings – the upper layers of the oceans and land masses –
although I shall illustrate some of the points with rather crude models. By regularly
calling our system the ‘atmosphere’ I do not mean to belittle the importance of the
non-atmospheric portions. They are essential to the workings of the atmospheric
portions, and, in fact, prediction of oceanic and land conditions can be of interest for
its own sake, wholly apart from any coupling to the weather.

A procedure for predicting the evolution of a system may consist of an attempt
to solve the equations known or believed to govern the system, starting from an
observed state. Often, if the states are not completely observed, it may be possible to
infer something about the unobserved portion of the present state from observations
of past states; this is what is currently done, for example, in numerical weather pre-
diction (see, for example, Toth and Kalnay, 1993). At the other extreme, a prediction
procedure may be completely empirical. Nevertheless, whatever the advantages of
various approaches may be, no procedure can do better than to duplicate what the
system does. Any suitable method of prediction will therefore constitute, implicitly
if not explicitly, an attempt at duplication – an attempt to reproduce the result of
marching forward from the present state.

When we speak of ‘predictability’, we may have either of two concepts in mind.
One of these is intrinsic predictability – the extent to which prediction is possible if
an optimum procedure is used. The other is practical predictability – the extent to
which we ourselves are able to predict by the best-known procedures, either currently
or in the foreseeable future. If optimum prediction consists of duplication, it would
appear that imperfect predictability must be due to one or both of two conditions –
inability to observe the system exactly, and inability to formulate a perfect forward-
extrapolation procedure. The latter condition is certainly met if the laws involve some
randomness, or if future external influences cannot be completely anticipated.

When we cannot determine an initial state of a system precisely, there are two
possible consequences. The system may be convergent; that is, two or more rather
similar states, each evolving according to the same laws, may become progressively
more similar. In this event, a precise knowledge of the true initial state is clearly
not needed, and, in fact, the governing laws need not be known, since empirical
methods will perform as well as any others. When we predict the oceanic tides, for
example, which we can do rather well years in advance, we do not start from the
observed present state of the ocean and extrapolate forward; we base our prediction on
known periodicities, or on established relations between the tides and the computable
motions of the sun, earth, and moon.

If, instead, the system is divergent, so that somewhat similar states become less
and less similar, predictability will be limited. If we have no basis for saying which,
if any, of two or more rather similar states is the true initial state, the governing laws
cannot tell us which of the rather dissimilar states that would result from marching
forward from these states will be the one that will actually develop. As will be noted
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in more detail in the concluding section, any shortcoming in the extrapolation pro-
cedure will have a similar effect. Systems of this sort are now known collectively
as chaos. In the case of the atmosphere, it should be emphasised that it may be
difficult to establish the absence of an intrinsic basis for discriminating among sev-
eral estimates of an initial state, and the consequent intrinsic unpredictability; some
estimates that now seem reasonable to us might, according to rules that we do not
yet appreciate, actually be climatologically impossible and hence rejectable, while
others might, according to similar rules, be incompatible with observations of earlier
states.

3.2 First estimates of predictability

Two basic characteristics of individual chaotic dynamical systems are especially rele-
vant to predictability. One quantity is the leading Lyapunov number, or its logarithm,
the leading Lyapunov exponent. Let us assume that there exists a suitable measure for
the difference between any two states of a system – possibly the distance between the
points that represent the states, in a multidimensional phase space whose coordinates
are the variables of the system. If two states are infinitesimally close, and if both
proceed to evolve according to the governing laws, the long-term average factor by
which the distance between them will increase, per unit time, is the first Lyapunov
number. More generally, if an infinite collection of possible initial states fills the sur-
face of an infinitesimal sphere in phase space, the states that evolve from them will
lie on an infinitesimal ellipsoid, and the long-term average factors by which the axes
lengthen or shorten, per unit time, arranged in decreasing order, are the Lyapunov
numbers. The corresponding Lyapunov exponents are often denoted by λ1, λ2, . . . ;
a positive value of λ1 implies chaos (see, for example, Lorenz, 1993). Unit vectors in
phase space pointing along the axes of the ellipsoid are the Lyapunov vectors; each
vector generally varies with time.

Our interest in pairs of states arises from the case when one member of a pair is
the true state of a system, while the other is the state that is believed to exist. Their
difference is then the error in observing or estimating the state, and, if the assumed
state is allowed to evolve according to an assumed law, while the true state follows
the true law, their difference becomes the error in prediction. In the meteorological
community it has become common practice to speak of the doubling time for small
errors; this is inversely proportional to λ1 in the case where the assumed and true
laws are the same.

The other quantity of interest is the size of the attractor; specifically, the aver-
age distance ρ between two randomly chosen points of the attractor. The attractor
is simply the set of points representing states that will occur, or be approximated
arbitrarily closely, if the system is allowed to evolve from an arbitrary state, and
transient effects associated with this state are allowed to die out. Estimation of these
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quantities is fairly straightforward for mathematically defined systems – ordinarily
ρ2 is simply twice the sum of the variances of the variables – but for real systems λ1

may be difficult to deduce.
The third quantity that would seem to be needed for an estimate of the range

of acceptable predictability is the typical magnitude of the error in estimating an
initial state, ostensibly not a property of the system at all, but dependent upon our
observing and inference techniques. For the atmosphere, we have a fair idea of how
well we now observe a state, but little idea of what to expect in the years to come.
Even though we may reject the notion of a future world where observing instruments
are packed as closely as today’s city dwellings, we do not really know what some
undreamed-of remote-sensing technique may some day yield. However, assuming
the size of an initial error, taking its subsequent growth rate to be given by λ1,
and recognising that the growth should cease when the predicted and actual states
become as far apart as randomly chosen states – when the error reaches saturation –
we can easily calculate the time needed for the prediction to become no better than
guesswork.

How good are such naive estimates? We can demonstrate some simple systems
where they describe the situation rather well, at least on the average. One system is
one that I have been exploring in another context as a one-dimensional atmospheric
model, even though its equations are not much like those of the atmosphere. It contains
the K variables X1, . . . , X K , and is governed by the K equations

d Xk/dt = −Xk−2 Xk−1 + Xk−1 Xk+1 − Xk + F, (3.1)

where the constant F is independent of k. The definition of Xk is to be extended to all
values of k by letting Xk−K and Xk+K equal Xk , and the variables may be thought of
as values of some atmospheric quantity in K sectors of a latitude circle. The physics
of the atmosphere is present only to the extent that there are external forcing and
internal dissipation, simulated by the constant and linear terms, while the quadratic
terms, simulating advection, together conserve the total energy (X2

1 + · · · + X2
K )/2.

We assume that K > 3; the equations are of little interest otherwise. The variables
have been scaled to reduce the coefficients in the quadratic and linear terms to unity,
and, for reasons that will presently appear, we assume that this scaling makes the
time unit equal to 5 days.

For very small values of F, all solutions decay to the steady solution X1 = . . . =
X K = F , while, when F is somewhat larger, most solutions are periodic, but for still
larger values of F (dependent on K) chaos ensues. For K = 36 and F = 8.0, for
example, λ1 corresponds to a doubling time of 2.1 days; if F is raised to 10.0, the
time drops to 1.5 days.

Figures 3.1 and 3.2(a) have been constructed with K = 36, so that each sector
covers 10 degrees of longitude, while F = 8.0. We first choose rather arbitrary values
of the variables, and, using a fourth-order Runge–Kutta scheme with a time step 	t
of 0.05 units, or 6 hours, we integrate forward for 14 400 steps, or 10 years. We then



Figure 3.1 (a) Time variations of X1 during a period of 180 days, shown as three
consecutive 60-day segments, as determined by numerical integration of Eq. (3.1),
with K = 36 and F = 8.0. Scale for time, in days, is at bottom. Scales for X1 in
separate segments are at left. (b) Longitudinal profiles of Xk at three times separated
by 1-day intervals, determined as in (a). Scale for longitude, in degrees east, is at
bottom. Scales for Xk in separate profiles are at left.
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use the final values, which should be more or less free of transient effects, as new
‘true’ initial values, to be denoted by Xk0.

From Figure 3.1 we may gain some idea as to the resemblance or lack of resem-
blance between the behaviour of the model variables and some atmospheric variable
such as temperature. Figure 3.1(a) shows the variations of X1 during 720 time steps,
or 180 days, beginning with the new initial conditions. The time series is displayed as
three 60-day segments. There are some regularities – values lie mostly between −5
and +10 units, and about 12 maxima and minima occur every 60 days – but there is
no sign of any true periodicity. Because of the symmetry of the model, all 36 variables
should have statistically similar behaviour. Figure 3.1(b) shows the variations of Xk

with k – a ‘profile’ of Xk about a ‘latitude circle’ – at the initial time, and one and
two days later. The principal maxima and minima are generally identifiable from one
day to the next, and they show some tendency to progress slowly westward, but their
shapes are continually changing.

To produce the upper curve in Figure 3.2(a) we make an initial ‘run’ by choos-
ing errors ek0 randomly from a distribution with mean 0 and standard deviation
ε, here equal to 0.001, and letting X ′

k0 = Xk0 + ek0 be the ‘observed’ initial val-
ues of the K variables. We then use Eq. (3.1) to integrate forward from the true
and also the observed initial state, for N = 200 steps, or 50 days, obtaining K
sequences Xk0, Xk1, . . . , Xk N and K sequences X ′

k0, X ′
k1, . . . , X ′

k N , after which we
let ekn = X ′

kn −Xkn for all values of k and n.
We then proceed to make a total of M = 250 runs in the same manner, in each

run letting the new values of Xk0 be the old values of Xk N and choosing the values
of ek0 randomly from the same distribution. Finally we let e2(τ ) be the average of
the K values e2

kn , where τ = n	t is the prediction range, and let log E2(τ ) be the
average of the M values of log e2(τ ), and plot E(τ ) against the number of days (5τ ),
on a logarithmic scale. (The lower curve is the same except that the vertical scale is
linear.)

For small n we see a nearly straight sloping line, representing uniform expo-
nential growth, with a doubling time of 2.1 days, agreeing with λ1, until saturation
is approached. For large n we see a nearly straight horizontal line, representing
saturation. It should not surprise us that the growth rate slackens before satura-
tion is reached, rather than continuing unabated up to saturation and then ceasing
abruptly.

The alternative procedure of simply letting E2(τ ) be the average value of e2(τ ),
i.e. averaging the runs arithmetically instead of geometrically, would lead to a figure
much like Figure 3.2(a), but with the sloping line in the upper curve indicating a
doubling time of 1.7 days. Evidently the errors tend to grow more rapidly for a while
in those runs where they have already acquired a large amplitude by virtue of their
earlier more rapid growth, and it is these runs that make the major contribution to
the arithmetic average. One could perhaps make equally good cases for studying
geometric or arithmetic means, but only the former fits the definition of λ1.



Figure 3.2 (a) Variations of average prediction error E (lower curve, scale at right)
and log10 E (upper curve, scale at left) with prediction range τ (scale, in days, at
bottom), for 50 days, as determined by 250 pairs of numerical integrations of Eq.
(3.1), with K = 36 and F = 8.0 (as in Fig. 3.1). (b) The same as (a), but for
variations of log10 E only, and as determined by 1000 pairs of integrations of Eq.
(3.1), with K = 4, and with F = 18.0 (upper and middle curves, with different initial
errors), and F = 15.0 (lower curve).
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3.3 Atmospheric estimates

Some three decades ago a historic meeting, organised by the World Meteorological
Organization, took place in Boulder, Colorado. The principal topic was long-range
weather forecasting. At that time numerical modelling of the complete global cir-
culation was just leaving its infancy; the three existing state-of-the-art models were
those of Leith (1965), Mintz (1965), where A. Arakawa also played an essential role,
and Smagorinsky (1965).

At such meetings the greatest accomplishments often occur between sessions.
In this instance Jule Charney, who headed a committee to investigate the fea-
sibility of a global observation and analysis experiment, persuaded the creators
of the three models, all of whom were present, to use their models for pre-
dictability experiments, which would involve computations somewhat like those that
produced Figure 3.2(a). On the basis of these experiments, Charney’s commit-
tee subsequently concluded that a reasonable estimate for the atmosphere’s dou-
bling time was five days (Charney et al., 1966). Taken at face value, this estimate
offered considerable hope for useful two-week forecasts but very little for one-month
forecasts.

The Mintz–Arakawa model that had yielded the five-day doubling time was a two-
layer model. Mintz’s graphs showed nearly uniform amplification before saturation
was approached; presumably they revealed the model’s leading Lyapunov exponent,
although not, as we shall see, the leading exponent for the real atmosphere. As
time passed by and more sophisticated models were developed, estimates of the
doubling time appeared to drop. Smagorinsky’s nine-level primitive-equation model,
for example, reduced the time to three days (Smagorinsky, 1969).

Experiments more than a decade later with the then recently established opera-
tional model of ECMWF, based upon operational analyses and forecasts, suggested
a doubling time between 2.1 and 2.4 days for errors in the 500-millibar height field
(Lorenz, 1982). In the following years the model was continually modified, in an
effort to improve its performance, and the newly accumulated data presently pushed
the estimate below two days. There were small but significant variations of pre-
dictability with the season and the hemisphere, and quantities such as divergence
appeared to be considerably less predictable than 500-m height.

One of the most recent studies (Simmons et al., 1995), again performed with
the ECMWF model, has reduced the estimate to 1.5 days. It is worth asking why
the times should continually drop. Possibly the poorer physics of the earlier models
overestimated the predictability, but it seems likely that a major factor has been spatial
resolution. The old Mintz–Arakawa model used about 1000 numbers to represent the
field of one variable at one level; the present ECMWF model uses about 45 000.
Errors in features that formerly were not captured at all may well amplify more
rapidly than those in the grossest features.
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As with the Mintz–Arakawa model, the doubling times of the recent models
appear consistent with the values of λ1 for these models. Obviously not all of them
can indicate the proper value of the exponent for the real atmosphere, and presumably
none of them does.

Our reason for identifying the time unit in the model defined by Eq. (3.1) with five
days of atmospheric time is now apparent. With K = 36 and F = 8.0 or 10.0, and
indeed with any reasonably large value of K and these values of F, the doubling time
for the model is made comparable to the times for the up-to-date global circulation
models.

3.4 The early stages of error growth

Despite the agreement between the error growth in the simple model, and even in
some global circulation models, with simple first estimates, reliance on the leading
Lyapunov exponent, in most realistic situations, proves to be a considerable over-
simplification. By and large this is so because λ1 is defined as the long-term average
growth rate of a very small error. Often we are not primarily concerned with averages,
and, even when we are, we may be more interested in shorter-term behaviour. Also,
in practical situations the initial error is often not small.

Sometimes, for example, we are interested in how well we can predict on specific
occasions, or in specific types of situation, rather than in some general average skill.
For any particular initial state, the initial growth rate of a superposed error will be
highly dependent on the form of the error – on whether, for example, it assumes its
greatest amplitude in synoptically active or inactive regions. In fact, there will be
one error pattern – in phase space, it is an error vector – that will initially grow more
rapidly than any other. The form and growth rate of this vector will of course depend
upon the state on which the error is superposed.

Likewise, the average initial or early growth rate of randomly chosen errors super-
posed on a particular initial state will depend upon that state. Indeed, the identification
of situations in which the atmosphere is especially predictable or unpredictable – the
prediction of predictability – and even the identifiability of such situations – the pre-
dictability of predictability – have become recognised as suitable subjects for detailed
study (see Kalnay and Dalcher, 1987; Palmer, 1988).

Assuming, however, that we are interested in averages over a wide variety of initial
states, the value of λ1 may still not tell us what we want to know, particularly in the
earliest or latest stages of growth. In fact, in some systems the average initial growth
rate of randomly chosen errors systematically exceeds the Lyapunov rate (see, for
example, Farrell, 1989).

This situation is aptly illustrated by the middle curve in Figure 3.2(b), which has
also been produced from Eq. (3.1), in the same manner as Figure 3.2(a), but with
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K reduced to 4 and F increased to 18.0, and with ε = 0.0001. Also, because so
few variables are averaged together, we have increased M to 1000. Between about
6 and 30 days the curve has a reasonably uniform slope, which agrees with λ1,
and indicates a doubling time of 3.3 days, but during the first 3.3 days the average
error doubles twice. Systems exhibiting anomalously rapid initial error growth are
in fact not uncommon. Certainly there are practical situations where we are mainly
interested in what happens during the first few days, and here λ1 is not always too
relevant.

This phenomenon, incidentally, is in this case not related to the chaotic behaviour
of the model. The lower curve in Figure 3.2(b) is like the middle one, except that
F has been reduced to 15.0, producing a system that is not chaotic at all. Again
the error doubles twice during the first six days, but then it levels off at a value far
below saturation. If ε had been smaller, the entire curve would have been displaced
downward by a constant amount.

When the initial error is not particularly small, as is often the case in operational
weather forecasting, λ1 may play a still smaller role. The situation is illustrated by
the upper curve in Figure 3.2(b), which has been constructed exactly as the middle
curve, except that ε = 0.4, or 5% of saturation, instead of 0.001. The rapid initial
error growth is still present, but, when after four days it ceases, saturation is already
being approached. Only a brief segment between 4 and 8 days is suggestive of 3.3-day
doubling.

The relevance of the Lyapunov exponent is even less certain in systems, such as
more realistic atmospheric models or the atmosphere itself, where different features
possess different characteristic time scales. In fact, it is not at all obvious what
the leading exponent for the atmosphere may be, or what the corresponding vector
may look like. To gain some insight, imagine a relatively realistic model that resolves
larger scales – planetary and synoptic scales – and smaller scales – mesoscale motions
and convective clouds; forget about the fact that experiments with a global model
with so many variables would be utterly impractical with today’s computational
facilities. Convective systems can easily double their intensity in less than an hour,
and we might suppose that an initial error field consisting only of the omission of one
incipient convective cloud in a convectively active region, or improperly including
such a cloud, would amplify equally rapidly, and might well constitute the error
pattern with the greatest initial growth rate.

Yet this growth rate need not be long-term, because the local instability responsible
for the convective activity may soon subside, whereupon the error will cease to grow,
while new instability may develop in some other location. A pattern with convective-
scale errors distributed over many regions, then, would likely grow more steadily
even if at first less rapidly, and might more closely approximate the leading Lyapunov
vector.

Since this reasoning is highly speculative, I have attempted to place it on a slightly
firmer basis by introducing another crude model which, however, varies with two
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distinct time scales. The model has been constructed by coupling two systems, each
of which, aside from the coupling, obeys a suitably scaled variant of Eq. (3.1). There
are K variables Xk plus JK variables Y j,k , defined for k = 1, . . . , K and j = 1, . . . , J ,
and the governing equations are

d Xk/dt = −Xk−1(Xk−2 − Xk+1) − Xk − (hc/b)
J∑

j=1

Y j,k, (3.2)

dY j,k/dt = −cbY j+1,k(Y j+2,k − Y j−1,k) − cY j,k + (hc/b)Xk . (3.3)

The definitions of the variables are extended to all values of k and j by letting Xk−K

and Xk+K equal Xk , as in the simpler model, and letting Y j,k−K and Y j,k+K equal
Y j,k , while Y j−J,k = Y j,k−1 and Y j+J,k = Y j,k+1. Thus, as before, the variables Xk

can represent the values of some quantity in K sectors of a latitude circle, while the
variables Y j,k , arranged in the order Y1,1, Y2,1, . . . , YJ,1, Y1,2, Y2,2, . . . , YJ,2, Y3,1, . . .,
can represent the values of some other quantity in J K sectors. A large value
of J implies that many of the latter sectors are contained in one of the former,
and we may think of the variables Y j,k as representing a convective-scale quan-
tity, while, in view of the form of the coupling terms, the variables Xk should
represent something that favours convective activity, possibly the degree of static
instability.

In our computations we have let K = 36 and J = 10, so that there are ten small
sectors, each one degree of longitude in length, in one large sector, while c = 10.0
and b = 10.0, implying that the convective scales tend to fluctuate ten times as rapidly
as the larger scales, while their typical amplitude is 1/10 as large. We have let h, the
coupling coefficient, equal 1.0, and we have advanced the computations in time steps
of 0.005 units, or 36 minutes. Our chosen value F = 10.0 is sufficient to make both
scales vary chaotically; note that coupling replaces direct forcing as a driver for the
convective scales.

Figure 3.3 reveals some of the typical behaviour of the model, by showing the
distribution of Xk and Y j,k about a latitude circle, at times separated by 2 days. There
are seven active areas (Xk large), generally 30 or 40 degrees wide, that fluctuate in
width and intensity as they slowly propagate westward, while the convective activity,
which is patently strongest in the active areas, tends to propagate eastward (note the
signs in the subscripts in the non-linear terms in Eq. 3.3), but rapidly dies out as it
leaves an active area.

Figure 3.4 presents separate error-growth curves for the large and small scales. For
computational economy we have averaged 25 runs rather than 250. The small-scale
errors begin to amplify immediately, doubling every 6 hours or so and approaching
saturation by the third day. This growth rate is compatible with the computed value
of λ1 for the model. Meanwhile, the large-scale errors begin to grow at a similar
rate once the small-scale errors exceed them by an order of magnitude, the growth
evidently resulting from the coupling rather than the dynamics internal to the large
scales. After the small-scale errors are no longer growing, the large-scale errors
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Figure 3.3 (a) Longitudinal profiles of Xk and Y j,k at one time, as determined by
numerical integration of Eqs. (3.2) and (3.3), with K = 36, J = 10, F = 10.0,
c = 10.0, b = 10.0, and h = 1.0. Scale for longitude, in degrees east, is at bottom.
Common scale for Xk and Y j,k is at left. (b) The same as (a), but for a time two days
later.
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Figure 3.4 Variations of log10 E (scale at left) with prediction range τ (scale, in
days, at bottom), shown separately for large scales (variables Xk , curve a) and small
scales (variables Y j,k , curve b), for 30 days, as determined by 25 pairs of integrations
of Eqs. (3.2) and (3.3), with the parameter values of Figure 3.3.

continue to grow, at a slower quasi-exponential rate comparable to what appears in
Figure 3.2(a), doubling in about 1.6 days. Finally they approach their own saturation
level, an order of magnitude higher than that of the small-scale errors. Thus, after the
first few days, the large-scale errors behave about as they would if the forcing were
slightly weaker, and if the small scales were absent altogether.

In a more realistic model with many time scales or perhaps a continuum, we would
expect to see the growth rate of the largest-scale errors subsiding continually, as, one
after another, the smaller scales reached saturation. Thus we would not expect a large-
scale-error curve constructed in the manner of Figure 3.4 to contain an approximate
straight-line segment of any appreciable length.

We now see the probable atmospheric significance of the error doubling times of
the various global circulation models. Each doubling time appears to represent the rate
at which, in the real atmosphere, errors in predicting the features that are resolvable
by the particular model will amplify, after the errors in unresolvable features have
reached saturation. Of course, before accepting this interpretation, we must recognise
the possibility that some of the small-scale features will not saturate rapidly; possibly
they will act in the manner of coherent structures.
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3.5 The late stages

As we have seen, prediction errors in chaotic systems tend to amplify less rapidly,
on the average, as they become larger. Indeed, the slackening may become apparent
long before the errors are close to saturation, and thus at a range when the predictions
are still fairly good. For Eq. (3.1), and in fact for the average behaviour of some
global atmospheric circulation models, we can construct a crude formula by assuming
that the growth rate is proportional to the amount by which the error falls short of
saturation. We obtain the equation

(1/E)d E/dτ = λ1(E∗ − E)/E∗, (3.4)

where E∗ denotes the saturation value for E. Equation (3.4) possesses the solution

E = E∗ (1 + tanh(λ1τ ))/2, (3.5)

if the origin of τ is the range at which E = E∗/2. The well-known symmetry of the
hyperbolic-tangent curve, when it is drawn with a linear vertical scale, then implies
that the rate at which the error approaches saturation, as time advances, equals the
rate at which it would approach zero, if time could be reversed. This relationship
is evidently well approximated in the lower curve of Figure 3.2(a), and it has even
been exploited to estimate growth rates for small errors, when the available data
have covered only larger errors (see Lorenz, 1969b, 1982). It is uncertain whether
the formula is more appropriate when E is the root-mean-square error or simply the
mean-square error.

For many systems, however, Eq. (3.4) and hence Eq. (3.5) cannot be justified in
the later stages. This may happen when, as in the case where the early growth fails
to follow Eq. (3.4), the system possesses contrasting time scales. Here, however, the
breakdown can occur because some significant feature varies more slowly than the
features of principal interest – the ones that contribute most strongly to the chosen
measure of total error.

Perhaps the feature most often cited as falling into this category is the sea surface
temperature (SST), which, because of the ocean’s high heat capacity, sometimes
varies rather sluggishly. Along with the atmospheric features most strongly under its
influence, the SST may therefore be expected to be somewhat predictable at a range
when migratory synoptic systems are not. A slow final approach to saturation may
thus be anticipated, particularly if the ‘total error’ includes errors in predicting the
SST itself.

A perennial feature in which the SST plays a vital role is the El Niño–Southern
Oscillation (ENSO) phenomenon. Phases of the ENSO cycle persist long enough
for predictions of the associated conditions a few months ahead to be much better
than guesswork, while some models of ENSO (e.g. Zebiak and Cane, 1987) suggest
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that the onsets of coming phases may also possess some predictability. Again, the
phenomenon should lead to an ebbing of the late-stage growth rate.

Perhaps less important but almost certainly more predictable than the ENSO-
related features are the winds in the equatorial middle-level stratosphere, dominated
by the quasi-biennial oscillation (QBO). Even though one cannot be certain just
when the easterlies will change to westerlies, or vice versa, nor how the easterlies or
westerlies will vary from day to day within a phase, one can make a forecast with
a fairly low expected mean-square error, for a particular day, a year or even several
years in advance, simply by subjectively extrapolating the cycle, and predicting the
average conditions for the anticipated phase. Any measure of the total error that gives
appreciable weighting to these winds is forced to approach saturation very slowly in
the latest stages.

Looking at still longer ranges, we come to the question, ‘Is climate predictable?’
Whether or not it is possible to predict climate changes, aside from those that result
from periodic or otherwise predictable external activity, may depend on what is
considered to be a climate change.

Consider again, for example, the ENSO phenomenon. To some climatologists,
the climate changes when El Niño sets in. It changes again, possibly to what it had
previously been, when El Niño subsides. We have already suggested that climatic
changes, so defined, possess some predictability.

To others, the climate is not something that changes whenever El Niño arrives or
leaves. Instead, it is something that often remains unchanged for decades or longer,
and is characterised by the appearance and disappearance of El Niño at rather irregular
intervals, but generally every two to seven years. A change of climate would be
indicated if El Niño should start to appear almost every year, or only once in twenty
years or not at all. Whether unforced changes of climate from one half-century or
century to another, or one millennium to another, are at all predictable is much less
certain.

Let us then consider the related question, ‘Is climate a dynamical system?’ That
is, is there something that we can conscientiously call ‘climate’, determined by the
state of the atmosphere and its surroundings, and undergoing significant changes
over intervals of centuries but usually remaining almost unchanged through a sin-
gle ENSO cycle or a shorter-period oscillation, whose future states are determined
by its present and past according to some exact or approximate rule? To put the
matter in perspective, let us first re-examine the justification for regarding the
ever-changing synoptic pattern, and possibly the ENSO phenomenon, as dynamical
systems.

Experience with numerical weather prediction has shown that we can forecast the
behaviour of synoptic systems fairly well, far enough in advance for an individual
storm to move away and be replaced by the next storm, without observing the super-
posed smaller-scale features at all, simply by including their influence in parametrised
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form. If instead of parametrising these features we omit them altogether, the models
will still produce synoptic systems that behave rather reasonably, even though the
actual forecasts will suffer from the omission. Evidently this is because the features
that are small in scale are relatively small in amplitude, so that their influence acts
much like small random forcing.

Moving to longer time scales, we find that some models yield rather good sim-
ulations of the behaviour of the ENSO phenomenon, even if not good forecasts of
individual occurrences, without including the accompanying synoptic systems in any
more than parametrised form. Here the synoptic systems do not qualify as being small
in amplitude, but they appear to be rather weakly coupled to ENSO, so that again
they may act like small random forcing.

Similarly, climatic fluctuations with periods of several decades or longer have
more rapid oscillations superposed on them, ranging in timescale all the way from
ENSO and the QBO to synoptic and small-scale features. Certainly these fluctuations
are not small. Is their effect on the climate, if large, determined for the most part by
the climate itself, so that climate can constitute a dynamical system? If this is not
the case, are these features nevertheless coupled so weakly to the climate that they
act like small random forcing, so that climate still constitutes a dynamical system?
Or do they act more like strong random forcing, so that climate does not qualify as
a dynamical system, and prospects for its prediction are not promising? At present
the reply to these questions seems to be that we do not know.

3.6 Concluding remarks

In this overview I have identified the rate at which small errors will amplify as the
key quantity in determining the predictability of a system. By an error we sometimes
mean the difference between what is predicted and what actually occurs, but ordinarily
we extend the concept to mean the difference, at any designated time, between two
evolving states. We assume that there would be no prediction error if we could observe
an initial state without error, and if we could formulate an extrapolation procedure
without error, recognising that such formulation is not possible if the governing laws
involve any randomness.

In my discussions and numerical illustrations I have found it convenient to consider
the growth of errors that owe their existence to errors in the initial state, disregarding
the additional influence of any inexactness in the extrapolation procedure. However,
if the fault lies in the extrapolation and not in the initial state, the effect will be similar;
after a reasonable time interval there will be noticeable errors in the predicted state,
and these will proceed to grow about as they would have if they had been present
initially. If the assumed and actual governing laws define systems with different lead-
ing Lyapunov exponents, the larger exponent will be the relevant one. Randomness
in the governing laws will have the same effect as any other impediment to perfect
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extrapolation. In the case of the atmosphere, the inevitable small-scale features will
work like randomness.

I have confined my quantitative discussions to results deduced from pairs or ensem-
bles of numerical solutions of mathematical models with various degrees of sophisti-
cation, but alternative approaches have also been exploited. Some studies have been
based on equations whose variables are ensemble averages of error magnitudes.
These equations have been derived from conventional atmospheric models, but, to
close the equations, i.e. to limit the number of variables to the number of equations, it
has been necessary to introduce auxiliary assumptions of questionable validity (see,
for example, Thompson, 1957; Lorenz, 1969a). Results agree reasonably well with
those yielded by more conventional approaches.

There have also been empirical studies. Mediocre analogues – pairs of some-
what similar states – have been identified in northern-hemisphere weather data; their
differences constitute moderate-sized errors, whose subsequent growth may be deter-
mined by noting how the states evolve (see Lorenz, 1969b). The growth rates of small
errors may then be inferred from Eq. (3.4); again they are consistent with growth
rates obtained from numerical integrations.

There are other aspects of the predictability problem that I have not touched
upon at all, and I shall conclude by mentioning just one of these – the improvement
in weather forecasting that may reasonably be expected in the foreseeable future.
Recent experience, again with the ECMWF operational system, suggests that errors
in present-day forecasting amplify more rapidly than they would if the continual error
accumulation that results from imperfect extrapolation were not present, i.e. if all of
the error growth resulted from amplification of already-present errors. There should
therefore be room for improvement. Numerical estimates suggest that we may some
day forecast a week in advance as well as we now forecast three days in advance,
and two weeks ahead almost as well as we now forecast one week ahead.
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The Liouville equation and atmospheric
predictability
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4.1 Introduction and motivation

It is widely recognised that weather forecasts made with dynamical models of the
atmosphere are inherently uncertain. Such uncertainty of forecasts produced with
numerical weather prediction (NWP) models arises primarily from two sources:
from imperfect knowledge of the initial model conditions and from imperfections in
the model formulation itself. The recognition of the potential importance of accurate
initial model conditions and an accurate model formulation dates back to times
even prior to operational NWP (Bjerknes, 1904; Thompson, 1957). In the context
of NWP, the importance of these error sources in degrading the quality of forecasts
was demonstrated to arise because errors introduced in atmospheric models are, in
general, growing (Lorenz, 1982, 1963, 1993, this volume), which at the same time
implies that the predictability of the atmosphere is subject to limitations (Errico
et al., 2002). An example of the amplification of small errors in the initial conditions,
or, equivalently, the divergence of initially nearby trajectories is given in Figure 4.1,
for the system discussed by Lorenz (1984). The uncertainty introduced into forecasts
through uncertain initial model conditions, and uncertainties in model formulations,
has been the subject of numerous studies carried out in parallel with the continuous
development of NWP models (e.g. Leith, 1974; Epstein, 1969; Palmer, 2000, this
volume, Buizza, this volume).
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Figure 4.1 Time evolution of Z component of Lorenz (1984) model. Initial
perturbation size is 0.04. The dashed curve indicates negative perturbation, dash–dot
plus SV1 perturbation, and dash–dot–dot minus SV1 perturbation (see also
Sections 4.4.2 and 4.5.2).

In addition to studying the intrinsic predictability of the atmosphere (e.g. Lorenz,
1969a, 1969b; Thompson, 1985a, 1985b), efforts have been directed at the quantifica-
tion or prediction of forecast uncertainty that arises due to the sources of uncertainty
mentioned above (see the review papers by Ehrendorfer, 1997; Palmer, 2000; and
Ehrendorfer, 1999). In the context of predicting uncertainty, the Liouville equation
(LE) arises as the general framework to describe in a probabilistic manner the time-
dependent behaviour of an ensemble of solutions of a numerical model started from
different initial conditions. It carries the name of Joseph Liouville (for an extensive
biographical account, see Lützen, 1990), since its formulation can be traced back to a
mathematical result that Liouville published in 1838 (see Section 4.2). The generality
of the LE arises from the fact that the LE governs the time evolution of the proba-
bility density function (pdf) of the model’s state vector X given the corresponding
model dynamics. Closely analogous to the mass conservation equation in hydrody-
namics, the LE is the mathematical formulation of the statement that realisations
(i.e. members of the ensemble) cannot spontaneously appear or disappear; which, in
turn, implies that the phase-space integral of the density of realisations is constant
in time. These properties of the LE imply that it contains all (statistical) information
about time-evolving model solutions, and as such is the basis for studying uncertainty
prediction and state-dependent predictability of weather and climate phenomena.

The purpose of this chapter is to review the LE and its relation to atmospheric
predictability. Following an overview of the LE, together with its various connections
to mathematical physics (Section 4.2), the general solution to the LE is described
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(Section 4.3). The relationship of various aspects of the LE to operational ensem-
ble prediction, to the stochastic-dynamic equations, and to classical and statistical
mechanics, is discussed in Section 4.4. The chapter concludes with a summarising
outlook.

4.2 The Liouville equation: background

4.2.1 Historical background

The LE is apparently named after Joseph Liouville since it can be related to a result
that he proved in 1838 on the material derivative of the ‘Jacobian’ of the transforma-
tion exerted by the solution of an ordinary differential equation on its initial condition
(see Section 4.2.2). Subsequently, this result can be used in deriving the so-called
transport theorem. Further, the LE, the Fokker–Planck equation and the Liouville
theorem (LT) of statistical mechanics can all be viewed as special cases of the trans-
port theorem. Comprehensive accounts on the historical details may be found in
Lützen (1990), who mentions that Liouville’s Nachlass contains 340 notebooks,
consisting of more than 40 000 pages.

In view of the fundamental nature of Liouville’s results, references to his name
are found in various areas of physics, and in the atmospheric sciences. Some selected
areas are briefly discussed here.

In classical mechanics, Liouville is referred to with regard to the LT (see
Section 4.5.6) that expresses the conservation of phase space volume for Hamiltonian
systems (see, for example, Abraham and Marsden, 1978; Goldstein, 1980; Marion
and Thornton, 1988; Arnold, 1989; see also Section 4.5.6). The importance of the
LT for statistical mechanics is emphasised, for example, by Landau and Lifschitz
(1979) who state that the pdf remains constant along trajectories (for a Hamilto-
nian system; see also Eq. 4.108). Balescu (1991) points out that the LE is the most
important equation of statistical mechanics and emphasises that the most important
feature of the LE is its linearity. Lindenberg and West (1990) mention the LE as
describing the conservation of phase-space points (their p. 21). Penrose (1989) refers
to the LT as ‘a very beautiful theorem, due to the distinguished French mathematician
Joseph Liouville (1809–1882), that tells us that the volume of any region of the phase
space must remain constant under any Hamiltonian evolution’ (his p. 181; see also
Section 4.5.6; see also Penrose, 1970). In the literature on stochastic processes,
the LE plays an important role in its connection with the Fokker–Planck equation
(Risken, 1989; Gardiner, 1990; van Kampen, 1992; see also Section 4.5.4). In that
context, these equations are also referred to as the Chapman–Kolmogorov equation,
or the Master equation (Gardiner, 1990). Also, as a further remark on terminology,
Nicolis (1995) refers to a time-discrete version of a pdf-governing equation as the
Frobenius–Perron equation.
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In the meteorological and in the turbulence literature, the LE has been used as a
starting point for various investigations, among them the problem of deriving equilib-
rium statistics of geophysical flows (see Holloway, 1986, for an excellent overview),
described, for example, in Thompson (1972), Salmon et al. (1976), Thompson (1983),
1985b, and Merryfield et al. (2001) (see also Hasselmann, 1976; Stanišić, 1988;
McComb, 1991; Penland and Matrosova, 1994; Hu and Pierrehumbert, 2001; Chu
et al., 2002; Weiss, 2003a). More specifically, with regard to the time evolution of
uncertainty in atmospheric models, the LE was considered as a fundamental tool for
approaching that question by Epstein (1969), Gleeson (1966), Tatarskiy (1969), and
Fortak (1973).

Given the above brief (and necessarily incomplete) overview of some of the impli-
cations of Liouville’s work, a more detailed inspection of his result is discussed in
the next section.

4.2.2 Theoretical background
The result of J. Liouville in 1838

In the paper that is considered to contain the basic result for the LE and the LT,
Liouville (1838) first discussed the general result for an Nth order ordinary differential
equation and then considered the particular case N = 3 by illustrating in terms of a
third-order ordinary differential equation of the following form:

x ′′′ = P(t, x, x ′, x ′′), (4.1)

subsequently assuming the solution to be of the form

x = x(t, a, b, c). (4.2)

He defined u, the determinant of the Jacobian of the mapping that the solution of
the differential equation exerts on the initial condition, as

u = u(a, b, c, t) = det
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 . (4.3)

He then showed that it is true that

∂u

∂t
= u

∂ P

∂x ′′ (4.4)

when the chain rule of differentiation is observed to rewrite, for example, the follow-
ing partial derivative in the form

∂x ′′′

∂a
= ∂ P

∂a
= ∂ P

∂x

∂x

∂a
+ ∂ P

∂x ′
∂x ′

∂a
+ ∂ P

∂x ′′
∂x ′′

∂a
. (4.5)
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Figure 4.2 Reproduction of (parts of) original proof by J. Liouville. Photograph
from Lützen (1990).

As already mentioned, the result was generalised to Nth-order equations and to
systems of first-order equations. A part of the original paper from 1838 is reproduced
in Figure 4.2.

Generalisation of Liouville’s result

The generalisation of Liouville’s result is known as the material derivative of the
Jacobian, or as the Euler expansion formula (see, for example, chapter 13.4 in Lin
and Segel, 1988). To illustrate that extension, an N-dimensional system of first-order
ordinary differential equations:

Ẋ = Φ(X, t) (4.6)

is considered with the solution X being a function of both the initial condition Ξ and
time t:

X = X(Ξ, t). (4.7)

Under the assumption of continuous dependence on the initial condition (e.g. Nicolis,
1995, p. 51), the Jacobian J may be defined as the determinant of the transformation
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that the solution exerts on the initial condition:

J = J (Ξ, t) = det

(
∂X(Ξ, t)

∂Ξ

∣∣∣∣
Ξ

)
. (4.8)

At the same time it is implied that Ξ can be recovered from knowledge of X and t,
through ‘inverting’ Eq. (4.7):

Ξ = Ξ(X, t). (4.9)

In that situation, two equivalent formulations of the generalisation of Liouville’s
result are

∂ J (Ξ, t)

∂t
=

(
N∑

i=1

∂�i (X, t)

∂ Xi

∣∣∣∣∣
X(Ξ,t)

)
J (Ξ, t) (4.10)

and (
∂

∂t
+

N∑
i=1

Ẋi
∂

∂ Xi

)
J (X, t) =

(
N∑

i=1

∂�i (X, t)

∂ Xi

)
J (X, t). (4.11)

Here, in the first formulation (‘material’ formulation), Eq. (4.10), J is considered as a
function of Ξ and t, and the partial derivative with respect to time t is taken for fixed
Ξ, and the divergence expression (in parentheses) must be written as a function of
Ξ, too. In the second formulation (‘spatial’ formulation), Eq. (4.11), however, J is
considered as a function of X and t, and an advective term appears. An illustration
of these concepts appears in the next subsection.

A one-dimensional example

To illustrate the result on the material derivative of the Jacobian in the two versions
(4.10) and (4.11), consider the following Riccati equation (see, e.g., Zwillinger,
1989):

Ẋ = −X2 (4.12)

with the solution written in the form (4.7) as

X (, t) = 

1 + t
(4.13)

and the ‘inverse’ mapping of the form (4.9) written as

(X, t) = X

1 − t X
. (4.14)

From (4.13), J is obtained as a function of  and t through the defining equation
(4.8) as

J (, t) = ∂ X

∂
= 1

(1 + t)2
. (4.15)



4 The Liouville equation 65

Further, J (X, t) may be found by expressing  in (4.15) through its dependence on
X as given in (4.14) in the form:

J (X, t) = 1

[1 + t(X, t)]2
= 1(

1 + t X
1−t X

)2 = (1 − t X )2. (4.16)

To see the correctness of the first formulation (4.10), the derivative of J using (4.15):

∂ J (, t)

∂t
= (−2) (1 + t)−2︸ ︷︷ ︸

=J (,t)

(1 + t)−1 (4.17)

is compared with the right-hand side of (4.10) written in the form:

∂�(X, t)

∂ X

∣∣∣
X (,t)

J (, t) = (−2)X (, t)J (, t). (4.18)

Clearly, on the basis of (4.13), results (4.17) and (4.18) are the same, establishing
Liouville’s result in the formulation (4.10) for the example under consideration here.
Similarly, for the second formulation, the left-hand side of (4.11) is, for the example
under consideration here, found to be(

∂

∂t
+ Ẋ

∂

∂ X

)
J (X, t) = (−2X )(1 − t X ) + (−X2)(−2t)(1 − t X ), (4.19)

or, equivalently:(
∂

∂t
+ Ẋ

∂

∂ X

)
J (X, t) = (−2X ) (1 − t X )2︸ ︷︷ ︸

=J (X,t)

, (4.20)

which, on the basis of (4.16), is equal to the right-hand side of (4.17), thus establishing
Liouville’s result in the second formulation.

4.2.3 The transport theorem

The transport theorem (TT) describes how to rewrite the time derivative of the phase
space integral of some quantity χ over a material region. This result is briefly derived
below. In the derivation of the TT, Liouville’s result is used in the formulation (4.10).
Consequently, the TT may be viewed as one of the main implications of Liouville’s
result. In turn, all the consequences derivable from the TT, especially the LE and the
LT, relate through this dependence back to the work of Liouville.

Consider the integral of χ over a material region R(t) (see, for example,
chapter 14.1 in Lin and Segel, 1988), with the material points subject to the dynamics
(4.6):

I (t) ≡
∫

R(t)
χ (X, t)dX. (4.21)
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The time derivative of I(t) is

d I (t)

dt
= d

dt

∫
R(t)

χ (X, t)dX

= d

dt

∫
R(0)

χ (X(Ξ, t), t)J (Ξ, t)dΞ, (4.22)

where the integral has been transformed to the initial region R(0) and J (Ξ, t) is
defined in Eq. (4.8). Since R(0) does not depend on time, the time derivative can be
taken inside the integral, noting that Ξ has to be held fixed:

d I (t)

dt
=

∫
R(0)

d

dt

∣∣∣
Ξ

[χ (X(Ξ, t), t)J (Ξ, t)]dΞ

=
∫

R(0)


J (Ξ, t)

dχ(X(Ξ, t), t)

dt

∣∣∣∣
Ξ

+χ(X(Ξ, t), t)
d J (Ξ, t)

dt

∣∣∣∣∣
Ξ︸ ︷︷ ︸


 dΞ,

(4.23)

where the bracketed term has been differentiated according to the product rule. In
the next step, the first term of the integrand is differentiated according to the chain
rule, whereas result (4.10) is used to express the underbraced time derivative of the
Jacobian:

d I (t)

dt
=

∫
R(0)

J (Ξ, t)

{
∂χ (X(Ξ, t), t)

∂t

+
N∑

j=1

∂χ (X(Ξ, t), t)

∂ X j

d X j (Ξ, t)

dt

∣∣∣∣
Ξ

}
dΞ

+
∫

R(0)
χ (X(Ξ, t), t)

(
N∑

i=1

∂ Ẋi

∂ Xi

∣∣∣∣∣
X = X(Ξ,t)

)
J (Ξ, t)

︸ ︷︷ ︸
dΞ. (4.24)

At this point, the Jacobian appears as common factor in both terms of the integrand
and is factored out:

d I (t)

dt
=

∫
R(0)

{
∂χ (X(Ξ, t), t)

∂t
+

N∑
j=1

∂χ (X(Ξ, t), t)

∂ X j

d X j (Ξ, t)

dt

∣∣∣∣
Ξ

+ χ (X(Ξ, t), t)

(
N∑

i=1

∂ Ẋ i

∂ Xi

∣∣∣
X = X(Ξ,t)

)}
J (Ξ, t)dΞ. (4.25)
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Finally, the integration over R(0) is reverted back to integration over R(t), analogously
to (4.22), through which step the dependencies on X reappear:

d

dt

∫
R(t)

χ (X, t)dX =
∫

R(t)

{
∂χ (X, t)

∂t
+

N∑
j=1

Ẋ j
∂χ (X, t)

∂ X j

+ χ (X, t)
N∑

i=1

∂ Ẋ i

∂ Xi

}
dX. (4.26)

The result (4.26) is known as the TT. The above derivation has clearly shown the
central role of Liouville’s result (4.10) in order to arrive at the TT. The consequences
of the TT are manifold. For example, if χ is set to the density of realisations in phase
space ρ(X, t) and it is required that the phase space integral over any material region
of that density cannot change (i.e. realisations cannot leave the material region or the
probability mass in the material region must remain constant):

d

dt

∫
R(t)

ρ(X, t)dX = 0, (4.27)

which is the natural analogy to mass conservation in hydrodynamics, then the inte-
grand in (4.26) has to vanish, which in turn is the LE (see Section 4.2.4). Equally
important is the special case χ = 1, which makes I(t) equal to the volume V(t) of a
material region:

χ ≡ 1 → I (t) =
∫

R(t)
dX ≡ V (t). (4.28)

In this situation, the TT implies the result:

dV (t)

dt
=

∫
R(t)

(
N∑

i=1

∂ Ẋi

∂ Xi

)
dX, (4.29)

stating that the time derivative of the volume of a material region is equal to the
integral of the phase-space divergence (see also Section 4.5.6). It is finally noted that
setting χ ≡ ρF in the TT, where ρ satisfies the requirement (4.27), leads, on the
basis of (4.26), to the result:

d

dt

∫
R(t)

ρ(X, t)F(X, t)dX =
∫

R(t)
ρ(X, t)

{
∂ F(X, t)

∂t

+
N∑

j=1

Ẋ j
∂ F(X, t)

∂ X j

}
dX, (4.30)

which, similarly to the TT, gives a description on how to interchange the time deriva-
tive and the phase-space integration. It is noted in passing that combining the second
and third of the terms on the right-hand side in Eq. (4.26) into a ‘divergence’ expres-
sion, and subsequently rewriting the integral over that divergence expression through
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the Gauss divergence theorem as a surface integral, leads to a reformulation of result
(4.26) that is sometimes known as the Reynolds transport theorem (e.g. Lin and
Segel, 1988).

4.2.4 Formulation of the Liouville equation

The LE is the continuity equation for the pdf ρ of the state vector X of a dynamical
system. On the basis of the requirement (4.27), by setting χ = ρ in the TT, the LE
is obtained as:

∂ρ(X, t)

∂t
+

N∑
k=1

∂

∂ Xk
[ρ(X, t)Ẋ k(X, t)] = 0, (4.31)

where the flow Ẋ of the dynamical system in phase space is given by (4.6); that is, the
time evolution of the state X is governed by the (non-autonomous) dynamical system
specified through Φ. Another formulation of the LE that is completely equivalent to
(4.31) is given by expanding the phase-space derivative:

∂ρ(X, t)

∂t
+

N∑
k=1

�k(X, t)
∂ρ(X, t)

∂ Xk
= −ψ(X, t)ρ(X, t), (4.32)

where

ψ(X, t) ≡
N∑

k=1

∂�k(X, t)

∂ Xk
(4.33)

is the divergence of the flow in phase space. Evidently, since derived from (4.27),
the LE expresses the conservation of the phase-space integral of the number density
of realisations of the dynamical system (4.6). As a continuity equation, it is entirely
analogous to the continuity equation in hydrodynamics. In the case of the LE, how-
ever, the phase space velocity is a known function at every point in phase space
through (4.6), whereas when the continuity equation is considered in physical space
in hydrodynamics the flow velocity has to be determined through the momentum
equation.

Physically, the LE states that the local change of ρ – at a particular point in phase
space – must be exactly balanced by the net flux of realisations across the faces
of a small volume surrounding the point under consideration (Thompson, 1983). In
the balance equation for the pdf, given by the LE (4.31), no source terms or non-
convective fluxes appear. The absence of source terms is equivalent to the requirement
that realisations are neither created nor destroyed in phase space. Inspection of the
LE in the form (4.33) shows that the LE is a linear (in ρ), inhomogeneous partial
differential equation with the single dependent variable being the pdf ρ. The inde-
pendent variables in the LE are time t and the phase space coordinates X. Finally,
it is apparent that the solution to the LE is fundamentally dependent on the model
dynamics Φ(X, t).
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4.3 Solution of the Liouville equation

Given the one-to-one relationship between the initial state X(t = 0) ≡ Ξ and the
state X(t) of the dynamical system (4.6) at time t, as expressed through Eqs. (4.7)
and (4.9) (see Section 4.2.2), it is possible to formulate an analytical solution to
the LE. To obtain the solution to the LE, written in the form (4.32), the method of
characteristics is used (e.g. Zwillinger, 1989) together with the fact that the LE is
linear. For an initial condition prescribed through ρ0:

ρ(X, t = 0) = ρ0(X), (4.34)

the solution is

ρ(X, t) = ρ0(Ξ) exp

[
−

∫ t

0
ψ(X(Ξ, t ′), t ′)dt ′

]
︸ ︷︷ ︸

≡h(X,t)

. (4.35)

In this formulation of the solution (Ehrendorfer, 1994a, 1994b), for a given point X in
phase space and time t, it is necessary to compute Ξ according to (4.9). Subsequently,
Ξ is used for evaluating the solution (4.35) by computing ρ0(Ξ) and referring to
the definition of ψ in Eq. (4.33). An illustration of such a computation is given in
Section 4.4.1. It is therefore also evident that the function h is indeed a function of X
and t; for a discussion of h, see Section 4.5, and especially Section 4.5.1. It is further
apparent that the solution (4.35) satisfies the initial condition (4.34) and is both
non-negative and – essentially through requirement (4.27) – correctly normalised.
Solution (4.35) does indeed satisfy the LE (4.32) (Ehrendorfer, 1994a).

4.4 Illustrations

4.4.1 A one-dimensional autonomous example

As an illustration of the LE and its solution, as expressed in Eq. (4.35), the one-
dimensional autonomous dynamical system

d

dt
x = x − x3 (4.36)

is considered, with the functions � and ψ (see Equations 4.6 and 4.33) given as

�(x) = x − x3, ψ(x) = 1 − 3x2. (4.37)

System (4.36) has two stable equilibrium points at xs = ±1 and one unstable equi-
librium point at xu = 0. The LE specific for this system is given by (see Eq. 4.32)

∂ρ(x, t)

∂t
+ (x − x3)

∂ρ(x, t)

∂x
= −(1 − 3x2)ρ(x, t). (4.38)
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Figure 4.3 Solution of LE for system ẋ = x − x3; initial pdf is N(0, 0.12); ρ(x, t) is
shown at time increments of 0.5. Initial pdf is plotted as a solid line; ordering of
subsequent time (shown in different linestyles) is given by observing that value at
x = 0 decreases monotonically with t.

The solution to the LE (4.38) for an arbitrary initial condition ρ0 is obtained on the
basis of (4.35) as:

ρ(x, t) = ρ0(ξ [x, t]) exp


−

∫ t

0
{1 − 3(x{ξ [x, t], t ′})2}︸ ︷︷ ︸

=ψ(x)

dt ′


 . (4.39)

Here, the function ψ is indicated for clarity; note that for the present autonomous
system ψ possesses no explicit time dependence (time dependence enters only implic-
itly through the dependence of x on t). In the more general formulation of a non-
autonomous system used in Sections 4.2.4 and 4.3, ψ possesses an explicit time
dependence, as indicated in Eq. (4.33). For the present system, conditions (4.7) and
(4.9) – explicitly solving (4.36) – are:

x = x(ξ, t) = ξet (1 − ξ 2 + ξ 2e2t )−
1
2

⇔ ξ (x, t) = xe−t (1 − x2 + x2e−2t )−
1
2 . (4.40)

Illustrations of the functional form of the time evolution of the pdf, given the dynamics
(4.36), are shown in Figures 4.3– 4.5. The initial pdf is taken as normal with the same
variance in all three illustrations, but with different means. It is apparent that the pdf
decreases at the unstable equilibrium point xu as realisations are attracted to the stable
equilibrium points xs . Depending on how much initial probability mass lies on either
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Figure 4.4 Same as Figure 4.3, except for initial pdf N(0.1, 0.12).

side of xu , the pdf becomes differently asymmetric at later times; for example, in
Figure 4.4 the pdf at the last time point shown (second dotted line) is much more
strongly peaked at xs = +1 than in Figure 4.5, since the initial pdf is centred at 0.1
in the former case, whereas it is centred at 0.05 in the latter case. The pdfs shown in
Figure 4.3 are entirely symmetric, as the initial pdf is centred at zero.

An example code for carrying out the actual computation for evaluating the solu-
tion (4.39) is given below. Here x denotes x and time denotes t. Note that the time
integral that appears in (4.39) is approximated in this code through an approximate
trapezoidal rule (even though the integration could – presumably – be carried out
analytically in the present situation).

xi = x � exp (−time) / sqrt (1. − x � x + x � x � exp (−2. � time)) ; find xi

a1 = (xi − smean)/sdev

y1(i) = 1./(sqrt(2.�!pi) � sdev) � exp(−0.5 � a1 � a1) ; rho 0(xi)

xint = 0.0

for k = 1 , 100 do begin

tp = k � time / 100.0

b = xi � exp (tp) /sqrt (1.0 − xi � xi + xi � xi � exp (2. � tp)) ; finding x(xi, t′)
c = 1.0 − 3.0 � b � b ; psi(x)

xint = xint + c& endfor

y1 (i) = y1 (i) � exp (−xint � time/100.0) ; apply h(x, t)
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Figure 4.5 Same as Figure 4.3, except for inital pdf N(0.05, 0.12).

4.4.2 A three-dimensional autonomous example

To illustrate the LE in a somewhat higher-dimensional context, the prototypical
chaotic model for atmospheric flow proposed by Lorenz (1984) is used. This model
consists of three coupled, non-linear ordinary differential equations for the variables
X, Y and Z, written as

 Ẋ
Ẏ
Ż


 =


−Y 2 − Z2 − aX + aF

XY − bX Z − Y + G
bXY + X Z − Z


 , (4.41)

where the parameters a, b, F, and G take on the values a = 0.25, b = 4.0, F =
8.0, G = 1.25. Since this system will be used later for illustrating other properties
of the LE, the tangent-linear system corresponding to (4.41) for primed perturbation
variables is recorded here, too:

 Ẋ ′

Ẏ ′

Ż ′


 =


 −a −2Ȳ −2Z̄

Ȳ − bZ̄ X̄ − 1 −bX̄
bȲ + Z̄ bX̄ X̄ − 1




︸ ︷︷ ︸
LX(t)


 X ′

Y ′

Z ′


 , (4.42)

where L denotes the tangent-linear model operator that depends on the time-dependent
basic state X(t) that is used for linearising the non-linear model (4.41). The tangent-
linear system to any non-linear system is obtained by retaining the term linear in the
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Figure 4.6 Non-linear evolution of states in the Lorenz (1984) system. Reference
initial state (solid) is defined by X = 2, Y = −1, Z = 0. Perturbation sizes are 0.04,
with dashed (−, −, −) perturbation, dash–dot (−, +, +) perturbation, and
dash–dot–dot (+, −, +) perturbation on reference initial state.

perturbation quantities in a Taylor series expansion of the non-linear model dynamics
along X(t):

d

dt
(X − X)︸ ︷︷ ︸

≡X′

= Φ(X) − Φ(X) ≈ LX (X − X)︸ ︷︷ ︸
≡X′

, (4.43)

where the tangent-linear model operator (illustrated here in Eq. 4.42) is given as

LX ≡
(

∂�i (X)

∂ X j

)
X

, (4.44)

and the tangent-linear resolvent MΞ,t connects an initial perturbed state to a perturbed
state at time t:

X′(t) = MΞ,t X′(t = 0). (4.45)

An approximation to the dynamics of perturbations made in the form of the linear
model (4.43) will obviously be valid only to the degree that the perturbations are in
some sense small. In the absence of analytical model solutions, numerical solutions
to the non-linear and the tangent-linear Lorenz (1984) model, Eqs. (4.41) and (4.42),
respectively, are obtained here with a predictor-corrector method to connect X and
Ξ (see Eqs. 4.7 and 4.9). Illustrations of the behaviour of the non-linear system are
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Figure 4.7 Same as Figure 4.6, except for dash–dot denoting positive SV1
perturbation, and dash–dot–dot negative SV1 perturbation. For perturbation sizes
compare TLD/NLD picture in Figure 4.8.

shown in Figures 4.6 and 4.7. In Figure 4.8, the evolution of perturbations is shown,
as obtained by both the fully non-linear difference (solid) in Eq. (4.43), as well as
through (numerically) solving the tangent-linear model, as given in (4.45) (dashed).
In the three panels in Figure 4.8, the size of the initial perturbation increases by a factor
of two by going from panel to panel; it is apparent that the tangent-linear solution
scales exactly, whereas the non-linear differences deviate from the tangent-linear
solution earlier when the initial perturbation size becomes larger.

In the situation of system (4.41), the pdf with its time evolution described through
the LE is a function of the three model variables and time, given as ρ(X, Y, Z , t).
Stating the LE in the form (4.32) is straightforward noting that ψ , defined in (4.33),
takes on the form:

ψ(X, Y, Z ) ≡ ∂ Ẋ

∂ X
+ ∂Ẏ

∂Y
+ ∂ Ż

∂ Z
= −a + (X − 1) + (X − 1)

= 2X − 2 − a. (4.46)

As in Section 4.4.1, ψ contains no explicit time dependence as the dynamical system
under consideration is autonomous. Referring back to the general solution of the LE

→
Figure 4.8 Evolution of perturbations in the Lorenz (1984) system. Initial
perturbation size increases by a factor of 2 from panel to panel. Basic state is defined
by (2, −1,0). Broken curves are non-linear difference (NLD) with X dotted, Y
dashed, Z dash–dot. Solid curves are tangent-linear difference (TLD); variables may
be identified by matching NLD at small t. Note that TLD scales exactly.
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Figure 4.9 Solution of the LE for the Lorenz (1984) system displayed in phase
space. From Ehrendorfer (1997).

given in Eq. (4.35), the solution of the LE relevant for the system (4.41) can be written
in the form:

ρ(X, t) = ρ0(Ξ) exp

[
−

∫ t

0
ψ(X(Ξ, t ′))dt ′

]
.︸ ︷︷ ︸

≡h(X,t)

(4.47)

In stating this form of the solution, the fact that ψ is not explicitly time dependent has
been used. Also, as in Section 4.4.1, it is necessary to find Ξ through the (numerical)
implementation of Eq. (4.9) appropriate for system (4.41) given X and t. The form of
the solution stated in (4.47) is shown in Figure 4.9. Since, in the present situation, the
pdf lives in a three-dimensional phase space, it is obviously necessary to somehow
contour three-dimensional regions of the same values of the pdf. An attempt to
visualise the pdf is shown in Figure 4.9 by showing the surface (as a contour in three-
dimensional space) that encloses all pdf values that are greater than one at a given
time. At the initial time (Figure 4.9a) that surface is a sphere, since the initial pdf ρ0

is specified to be multivariate normal with the same variance for all three variables.
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At a somewhat later time (Figure 4.9b) that surface becomes elongated along the
direction of preferred error growth in the model (4.41), and still later (Figures 4.9c, d)
acquires some curvature and clearly non-linear features. It is noted that this surface
(defined through the equation ‘ρ equal to some specified constant’) is clearly not a
material surface, since realisations on that surface obviously do not have to remain
connected to that particular value of ρ (see also Ehrendorfer, 1997).

4.5 Comments on the Liouville equation

In this chapter various comments relating to the LE and atmospheric predictability
are brought together.

4.5.1 A likelihood ratio

It is noted that the quantity h, defined in Eq. (4.35), may be referred to as a likelihood
ratio, as it is the ratio of two pdfs:

h(X, t) = ρ(X, t)

ρ0(Ξ)
≡ exp

[
−

∫ t

0
ψ(X(Ξ, t ′), t ′)dt ′

]
. (4.48)

In contrast, since, on the basis of (4.7), X can be viewed as the time-dependent
transform of Ξ, it is possible to ascertain that the pdf of X (viewed as the trans-
formed Ξ) may be specified in terms of the pdf of Ξ in the form (see, for example,
Theorem 4.6.18 in Dudewicz and Mishra, 1988):

ρ(X, t)

ρ0(Ξ)
= 1

|J | , (4.49)

where J – already defined in Eq. (4.8) – is the determinant of the Jacobian of the
transformation:

J ≡ det

(
∂X(Ξ, t)

∂Ξ

∣∣∣
Ξ

)
= det(MΞ,t ). (4.50)

The second equality in Eq. (4.50) represents expressing the Jacobian in terms of the
resolvent MΞ,t of the tangent-linear model, defined in Eq. (4.45) as the operator that
maps an initial perturbation into a perturbation at time t. The identification used in
Eq. (4.50) becomes clear by, referring to (4.7), taking the following Taylor series
expansion:

X(Ξ + Ξ′, t) = X(Ξ, t) + ∂X(Ξ, t)

∂Ξ
|ΞΞ′ + hot. (4.51)

It is evident from Eq. (4.51) that MΞ,t – the resolvent of the tangent-linear model that
linearises the mapping X = X(Ξ, t) around a trajectory starting at Ξ up to time t –

is precisely the same as ∂X(Ξ,t)
∂Ξ

∣∣∣
Ξ

, as already indicated in Eq. (4.50).
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Figure 4.10 Likelihood ratio h, defined in Eq. (4.35), for the Lorenz (1984) system
(4.41), for five different initial conditions. Overplotted curves show results computed
by determinant of resolvent (thick dashed), and by evaluating ψ (thin dotted) in
(4.52). The single dashed curve shows h for  = 0; single thin dotted curve shows h
when computed for a ‘resting’ basic state; in that case h(t) = exp[−(−a − 2)t].

Consequently, on the basis of the results (4.48), (4.49), and (4.50), the likelihood
ratio h can be expressed in the two different, but exactly equivalent formulations as
follows:

h(X, t) = exp

[
−

∫ t

0
ψ(X(Ξ, t ′), t ′)dt ′

]
= [| det(MΞ,t )|]−1. (4.52)

The important result (4.52) will be referred to in subsequent sections. Figure 4.10
shows the (almost) exact agreement of computing h by the two methods indicated
in Eq. (4.52), for five different initial conditions Ξ, for the Lorenz (1984) system
(4.41).

4.5.2 The Liouville equation and singular vectors

To illustrate a connection between the LE and the computation of singular vectors
(SVs), consider the linear non-autonomous system (see also, for example, Eq. 4.42):

Ẋ = L(t)X (4.53)
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as the dynamics (4.6) relevant for the LE (4.31). In that situation the phase space
divergence ψ , defined in (4.33), is independent of the position in phase space, but
remains to be a function of time t:

ψ(X, t) = ψ(t) =
N∑

k=1

(L(t))k,k ≡ σ (t). (4.54)

In the autonomous situation, L and σ become time independent, and, consequently,
the eigendecomposition of L (assumed to exist) has the time-independent eigenvalues
lk . In that situation, ψ may be written as the sum of the eigenvalues lk of L (e.g. Strang,
1993):

ψ = trace(L) =
N∑

k=1

lk . (4.55)

Through the solution of the autonomous version of (4.53) in the form:

X(t) = eLtΞ (4.56)

the resolvent Mt (see Eq. 4.45) is identified as

Mt = eLt , (4.57)

which yields the following relation between lk and the eigenvalues mk of Mt :

mk = elk t , k = 1, . . . , N . (4.58)

Referring back to the definition of the likelihood ratio, Eq. (4.35), relation (4.52)
becomes explicit in the present autonomous situation as follows:

h−1(t) = exp

(∫ t

0

N∑
k=1

lkdt ′
)

= exp

(
t

N∑
k=1

lk

)
=

N∏
k=1

elk t =
N∏

k=1

mk = det Mt . (4.59)

Equation (4.59) is an explicit illustration of the general result (4.52) for the special
situation of the linear system (4.53) considered in autonomous form, where relation
(4.58) was used, as well as the fact that the determinant of a matrix may be written
as the product of its eigenvalues.

Referring back to the non-autonomous situation, it is evident that the LE (4.32)
may be written on the basis of (4.53) and (4.54) as

∂ρ

∂t
+

N∑
k=1

(L(t)X)k
∂ρ

∂ Xk
+ σ (t)ρ = 0, (4.60)

with the explicit solution given on the basis of (4.35) and (4.54) as follows:

ρ(X, t) = ρ0(Ξ) exp

[
−

∫ t

0
σ (t ′)dt ′

]
, (4.61)
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or, more explicitly, by denoting the resolvent of the non-autonomous system (4.53)
as Mt :

ρ(X, t) = ρ0
(
M−1

t X
)

exp

[
−

∫ t

0
σ (t ′)dt ′

]
. (4.62)

Equation (4.62) is the solution to the LE (4.60) appropriate for the non-autonomous
system (4.53) using the definition (4.54). It clearly allows for computing the time
evolution of the pdf associated with a linear system for an arbitrary ρ0, given knowl-
edge about L and the associated resolvent Mt (see also Tribbia and Baumhefner,
1993).

As a next step the following SV problem using the same norm – described through
CTC – at initial and final times, is considered (see, for example, Ehrendorfer and
Tribbia, 1997; Errico et al., 2001):

(CTC)−1MT
t (CTC)Mt z0 = λz0 subject to : zT

0 (CTC)z0 = 1. (4.63)

Given the (squared) singular value spectrum λk , the product of the λk determines the
likelihood ratio h through

N∏
k=1

λk = det
[
(CTC)−1MT

t (CTC)Mt
] = (det Mt )

2 = [h(X, t)]−2, (4.64)

where (4.52) has been used (omitting the subscript Ξ) together with relations between
determinants and eigenvalues of matrices (e.g. Strang, 1993). Result (4.64) implies
the following relation between the likelihood ratio h and the eigenvalue spectrum λk :

h2(X, t) =
(

N∏
k=1

λk

)−1

. (4.65)

Retracing the steps that lead to result (4.65), it is evident that (4.65) is valid for
resolvents Mt that correspond to non-autonomous (and autonomous) linear systems.
Clearly, result (4.65) may be used to re-express the solution (4.62) of the LE for
system (4.53) in the form:

ρ(X, t) = ρ0
(
M−1

t X
) (

N∏
k=1

λk

)−1/2

, (4.66)

so that knowledge of the resolvent Mt and its singular value spectrum is sufficient to
determine the time evolution of the PDF.

Referring back to (4.52), it is seen that a consequence of (4.65) is that for tangent-
linear systems with vanishing phase space divergence (i.e. ψ = 0) the product of the
squared singular values is one:

ψ = 0 ⇒
N∏

k=1

λk = 1. (4.67)
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It is obvious that condition (4.67) does not necessarily imply that the singular value
spectrum is symmetric in the sense that λk = λ−1

N−k+1 (k = 1, 2, . . . , N
2 ) even though

it is interesting to ask under what circumstances such symmetry will exist; it should
be expected that these circumstances will be closely related to properties of the basic
state used to define the resolvent Mt . Further, it is clear that (4.67) implies that the
averaged sum of the squared singular values is greater (or equal) than one:

N∏
k=1

λk = 1 ⇒ 1

N

N∑
k=1

λk ≥ 1, (4.68)

essentially, because the arithmetic mean is greater (or equal) than the geometric mean
(with equality only if all λk are equal).

4.5.3 Lyapunov exponents

The Lyapunov exponents relevant for a non-linear dynamical system of the form
(4.6) may be defined as (see, for example, Parker and Chua, 1989):

γk ≡ lim
t→∞

1

t
ln |mk(MΞ,t )|︸ ︷︷ ︸

≡γ̂k

, k = 1, 2, . . . , N , (4.69)

where the resolvent MΞ,t is defined in the context of Eq. (4.45), and mk denotes the
eigenvalues of MΞ,t (see Section 4.5.2). Clearly, through the relationship between h
and M discussed in Section 4.5.1, especially through Eq. (4.52), the following rela-
tionship may be derived between the likelihood ratio h and the sum of the (uncon-
verged) Lyapunov exponents γ̂k :

N∑
k=1

γ̂k = 1

t

N∑
k=1

ln |mk |

= 1

t
ln

∣∣∣∣∣
N∏

k=1

mk

∣∣∣∣∣ = 1

t
ln | det MΞ,t | = 1

t
ln[h(X, t)]−1. (4.70)

On the basis of (4.70), it follows that the sum of the Lyapunov exponents may be
expressed in terms of the likelihood ratio as

N∑
k=1

γk = − lim
t→∞

1

t
ln h(X, t). (4.71)

Alternatively, by re-expressing h through the result (4.65) in terms of the product
of λk , and inserting into (4.70), the following relationship between the sum of the
(unconverged) Lyapunov exponents γ̂k and the logarithms of the squared singular
values λk is obtained:

N∑
k=1

γ̂k =
N∑

k=1

1

2t
ln λk, (4.72)
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Figure 4.11 Sum of Lyapunov exponents as defined in (4.69), computed via the
likelihood ratio h, defined in (4.35), for the Lorenz (1984) system (4.41), for five
different initial conditions (as in Figure 4.10). Overplotted curves show results for∑

k γ̂k (see Eq. 4.70) obtained from h that is computed either through the determinant
of resolvent (thick dashed), or by evaluating ψ (thin dotted) according
to Eq. (4.52). The thick solid line is drawn at −0.3.

or, for the sum of the Lyapunov exponents themselves:

N∑
k=1

γk = lim
t→∞

1

2t

N∑
k=1

ln λk . (4.73)

Even though both Eqs. (4.72) and (4.73) are written in terms of sums over k, the
relation between an individual γk and λk should hold analogously. For the chaotic
attractor of the Lorenz (1984) system, the sum of the three Lyapunov exponents is
negative (about −0.3 for the parameters used; see Section 4.4.2, and Figure 4.11).
Thus, in the limit, h grows exponentially (see Figure 4.10). Figure 4.11 illustrates
how −t−1 ln h converges to

∑
k γ̂k (Eq. 4.71) as a function of t for five different initial

conditions.

4.5.4 The Fokker–Planck equation

Random processes added to the governing dynamics (4.6) appear in the equation
governing the evolution of the pdf, namely the LE, as a diffusion term, since the
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transport of phase space points by random motions is a diffusive process (see, for
example, Thompson, 1972, 1983; de Groot and Mazur, 1984). The LE written for
such a dynamical system that includes random processes to account for, for example,
model error, is generally referred to as the Fokker–Planck equation (FPE). As in
the case of the LE, the FPE (see, for example, Risken, 1989; Gardiner, 1990; Soize,
1994) has only one dependent variable, namely the probability density function ρ,
and it is a linear equation (Thompson, 1972).

Selected references to the FPE include the work by Hasselmann (1976), and
Thompson (1983, 1985b), accounting by random processes for unknown forcings
in the equations, and investigating the problem of determining equilibrium statistics
of the atmosphere/climate system under such circumstances. It is worth pointing
out that the FPE is – quite analogously to the LE – governing the time evolution of
the pdf, and, as such, also contains all information about the equilibrium statistics
of the forced dynamical system, as well as all relevant information regarding the
predictability of that system (Hasselmann, 1976). The statistical equilibrium between
forcing and dissipation has been referred to as a fluctuation–dissipation relation (see,
for example, Penland, 1989 and Penland and Matrosova, 1994). Thompson (1983)
has discussed the problem of finding analytical solutions to the stationary form of
the FPE (see also Thompson, 1985b).

As an example, consider the one-dimensional dynamical system that includes
δ-correlated (white) noise:

Ẋ = �(X ) + η(t) with :
〈
η(t)η(t ′)

〉 = �δ(t − t ′), (4.74)

where η(t) is a normal random variable, with mean zero and variance �. The FPE
for system (4.74) is obtained by inserting Ẋ into the LE (4.31) as:

∂ρ(X, t)

∂t
+ ∂

∂ X


�(X )ρ(X, t) − �

2

∂ρ(X, t)

∂ X︸ ︷︷ ︸
=ηρ


 = 0, (4.75)

where the first term in brackets results from the deterministic component in (4.74) and
the second (diffusive) term results from the stochastic component in (4.74). Clearly,
for a stationary (equilibrium) solution of (4.75) it is necessary that the bracketed term
is a constant.

As an alternative to solving analytically for the stationary solution of (4.75), a
numerical integration of the stochastic differential equation (4.74) may be carried
out as, for example:

X (t + 	t) = X(t) + �(X )	t +
√

� ∗
√

	t ∗ g with : g ∼ N(0, 1), (4.76)

where g is a standard-normal random variable (see, for example, Penland, 1989).
Figure 4.12 shows the result of two integrations of Eq. (4.74) according to (4.76)
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Figure 4.12 Numerical solution of one-dimensional stochastic differential
Eq. (4.74) with � = 10 for system (4.77) and two different initial conditions. The
equilibrium pdf is not normal; its mean is close to, but not equal to Xs,1 = 10.19615
(black, solid).

with different initial conditions with the deterministic dynamics specified as

�(X ) = −X2 + 10X + 2. (4.77)

Note that the two stationary solutions of the unforced system (4.74), given the dynam-
ics (4.77), are given by Xs,1 = 10.19615 and Xs,2 = −0.19615. It is noted that the
equilibrium pdf of the forced system has a mean close to, but not equal to, Xs,1. For a
detailed discussion of the impact of forcing on the equilibrium statistics of non-linear
dynamical systems see Palmer (1999, 2000).

4.5.5 The stochastic-dynamic equations

The LE was used by Epstein (1969) as the starting point to derive the so-called
stochastic-dynamic equations. The stochastic-dynamic equations describe the time
evolution of the statistical moments of a state vector governed by a non-linear dynam-
ical system such as Eq. (4.6). The statistical moments are the expectations of various
functions of powers of the state vector.

To review the computation of expectations consider the random variable X with
pdf f (x), that is, X ∼ f (x), and the random variable Y that is related to X through



4 The Liouville equation 85

the deterministic function r:

Y = r (X ). (4.78)

One possibility for the computation of the expectation of Y is given through deter-
mining the pdf g(y) of Y (from the known pdf of X), essentially through Eq. (4.49),
and then directly compute E(Y ) as (e.g. DeGroot, 1986, p. 184):

E[r (X )] = E[Y ] =
∫

yg(y)dy. (4.79)

In analogy to Eq. (4.79), the expectation of the model state xt at time t is computed
from the pdf ρt for the random variable xt , as

E[xt ] =
∫

xρt (x)dx. (4.80)

As an extension, the expectation of any function s of xt (e.g. any power of xt ) is
computed as

E[s(xt )] =
∫

s(x)ρt (x)dx. (4.81)

It is noted that result (4.81) accomplishes the computation of the expectation of the
random variable s(xt ) without actually computing its associated pdf (see, for example,
DeGroot, 1986), as is the case in Eq. (4.79). Equation (4.81), more abstractly rewritten
as

E[r (X )] =
∫

r (x) f (x)dx, (4.82)

is, in fact, the fundamental basis of ensemble prediction, in which the Monte Carlo
approach is used to compute (among other things) the expectation of the state xt at
time t:

E[xt ] = E[Mt (x0)] =
∫

Mt (x)ρ0(x)dx, (4.83)

on the basis of the pdf ρ0 of the initial state variable x0, where the non-linear model
Mt takes on the role of the function r in Eq. (4.82) (see also Paegle and Robl, 1977).

Evidently, from (4.83), or (4.81), the expectation of the variable s(xt ) is time
dependent. That time dependence is described by the stochastic-dynamic equa-
tions that govern the time evolution of expectations. An appropriate starting point
for deriving these equations is given by taking the time derivative of Eq. (4.81),
and subsequently using the transport theorem (4.26) to obtain the second line in
Eq. (4.84), where ψ is defined in Eq. (4.33), and the operator d

dt inside the integral
is simply the sum of the first two operators inside the integral on the right-hand side
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of Eq. (4.26):

d

dt
E[s(x)] ≡ d

dt

∫
s(x)ρt (x)dx

TT=
∫ (

d

dt
(sρt ) + (sρt )ψ

)
dx

=
∫ (

ρt
ds

dt
+ s

dρt

dt
+ sρtψ

)
dx

=
∫ (

ρt
ds

dt
+ s

[
dρt

dt
+ ρtψ

])
dx

LE=
∫

ρt
ds

dt
dx

= E

[
ds(x)

dt

]
. (4.84)

The third and fourth line in Eq. (4.84) are obtained by simple rearrangements, whereas
the fifth line is obtained by observing that the bracketed term in the fourth line is
zero on the basis of the LE in the form (4.31). The last line in Eq. (4.84) is obtained
by recognising that the integral in the fifth line is simply the expectation of the time
derivative of s. Note also the close analogy between result (4.30) and the equality
expressed through the fifth line in Eq. (4.84). The important result Eq. (4.84) relates
the time derivative of the expectation to the expectation of time derivatives and is
therefore at the basis of deriving the stochastic-dynamic equations (see also Epstein,
1969, and Fortak, 1973):

d

dt
E[s(x)] = E

[
ds(x)

dt

]
. (4.85)

To illustrate the implications of Eq. (4.85) consider the following one-dimensional
example with governing dynamics given by

Ẋ = a X2 + bX + c. (4.86)

Consider the function s1 as

s1(X ) = X, (4.87)

with the notations

E[s1(X )] = E[X ] ≡ µ, σ 2 ≡ E[(X − µ)2]. (4.88)

For the function s1, result (4.85) implies

dµ

dt
= E[Ẋ ], (4.89)

or, on the basis of (4.86):

dµ

dt
= E[aX2 + bX + c]. (4.90)
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Using the identity

E(X2) = σ 2 + µ2, (4.91)

the stochastic-dynamic equation (4.90) for the mean µ may be written as

µ̇ = aµ2 + bµ + c + aσ 2. (4.92)

It is obvious from Eq. (4.92) that the equation for the mean µ is not obtained by
replacing X by µ in the governing dynamics (4.86). An additional term appears in
the stochastic-dynamic equation (4.92) that contains the variance σ 2. Clearly, (4.92)
can only be evaluated if σ 2 is available as a function of time.

The stochastic-dynamic equation for σ 2 can be derived by considering the
function s2:

s2(X ) = (X − µ)2, (4.93)

with

E[s2(X )] = σ 2. (4.94)

For the function s2, result (4.85) implies

dσ 2

dt
= E

[
d

dt
(X − µ)2

]
, (4.95)

which may be rewritten as

dσ 2

dt
= E[2(X − µ)(Ẋ − µ̇)], (4.96)

or, due to Eqs. (4.88) and (4.89), as

1

2

dσ 2

dt
= E(X Ẋ ) − µµ̇. (4.97)

Since, on the basis of (4.86) and (4.92), the two terms on the right-hand side of (4.97)
can be rewritten as

E(X Ẋ ) = aE(X3) + bE(X2) + cµ

= a(E(X − µ)3 + 3µσ 2 + µ3) + bσ 2 + bµ2 + cµ,

µµ̇ = µ(aµ2 + bµ + c + aσ 2), (4.98)

the stochastic-dynamic equation (4.97) for σ 2 may be brought in the form:

1

2

dσ 2

dt
= aE(X − µ)3 + 2aµσ 2 + bσ 2. (4.99)
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Summarising, the stochastic-dynamic equations for the mean µ and the variance σ 2

for the dynamical system (4.86) are given as:

dµ

dt
= aµ2 + bµ + c + aσ 2,

dσ 2

dt
= 4aµσ 2 + 2bσ 2 + 2a E(X − µ)3︸ ︷︷ ︸

≡ϑ

. (4.100)

As in the context of Eq. (4.92), the stochastic-dynamic equation for the variance σ 2

contains a higher-order moment term that needs to be specified somehow in order for
Eqs. (4.100) to be useful. It is clearly possible to derive an equation for the evolution
of ϑ ≡ E(X − µ)3 by defining the function

s3(X ) = (X − µ)3, (4.101)

and obtaining, on the basis of (4.85), and with the definition of ϑ :

dϑ

dt
= E

[
d

dt
(X − µ)3

]
. (4.102)

Using steps analogous to those necessary to obtain Eq. (4.99), it is possible to rewrite
(4.102) as

dϑ

dt
= 6aµϑ + 3bϑ − 3aσ 4 + 3aE(X − µ)4. (4.103)

As expected, the equation for ϑ is unclosed again, containing a fourth-order term. The
basic principle of how to obtain the stochastic-dynamic equations is now evident.
For a non-linear governing dynamical system, such as (4.86), these equations are
non-linear themselves, as well as coupled, and unclosed. No finite closed hierarchy
of stochastic-dynamic equations will be derivable for non-linear dynamics. This
situation is very similar to the closure problem in turbulence work (e.g. Stanišić,
1988; McComb, 1991). This property is also very clearly stated by Epstein (1969):
‘as long as the deterministic prognostic equations are nonlinear it is impossible to
write a closed finite set of prognostic equations for the moments. In other words,
to predict exactly the future behavior of even the mean of the distribution, all the
moments of the distribution (or, equivalently, the entire distribution itself) must be
known.’ Nevertheless, when a closure assumption is utilised, the stochastic-dynamic
equations provide the means to determine moments of the pdf without the need to
integrate the governing dynamics multiple times, as is necessary when a Monte Carlo
approach is taken.

4.5.6 Classical and statistical mechanics

As already mentioned in Sections 4.2.1 and 4.2.3 (see Eq. 4.29), the LE takes on a
particularly simple form for Hamiltonian dynamics. In addition, Liouville’s results
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imply conditions on the evolution of phase space volume for Hamiltonian dynamics
that may be written as (e.g. Marion and Thornton, 1988)

q̇k = ∂ H

∂pk
(4.104)

and

ṗk = −∂ H

∂qk
(4.105)

for coordinates qk and momenta pk . The formulation Eqs. (4.104) and (4.105) specify,
for a given Hamiltonian H, a dynamical system of the form (4.6). Apparently it follows
with Eqs. (4.104) and (4.105) that the phase space divergence ψ , defined in (4.33),
vanishes, since

ψ = ∂ q̇k

∂qk
+ ∂ ṗk

∂pk
= ∂

∂qk

∂ H

∂pk
+ ∂

∂pk

(
−∂ H

∂qk

)
= 0. (4.106)

The fact that the phase space divergence vanishes for Hamiltonian systems leads to
the following two implications. First, the LE (4.32) takes on the simplified form

∂ρ

∂t
+

∑
k

q̇k
∂ρ

∂qk
+

∑
k

ṗk
∂ρ

∂pk
= 0, (4.107)

which may be expressed by saying, sometimes referred to as the Liouville theorem,
that the pdf remains constant during (along) the motion (see, for example, Landau
and Lifschitz, 1979, and Marion and Thornton, 1988, p. 235). Clearly, ψ = 0 implies,
by (4.52), that the likelihood ratio h is one, so that the above statement can be seen
in terms of the solution of the LE (4.35) as

ρ(X, t) = ρ0(Ξ). (4.108)

Further, by inserting the dynamics into (4.107), Balescu (1991) expresses the LE in
the form

∂ρ

∂t
=

∑
k

(
−∂ H

∂pk

∂ρ

∂qk
+ ∂ H

∂qk

∂ρ

∂pk

)
︸ ︷︷ ︸

≡[H,ρ]

, (4.109)

or

∂ρ

∂t
= [H, ρ] (4.110)

by defining the linear operator [H, . . .] as the Liouvillian of the system (4.104)
and (4.105). Referring to the central role of the LE in statistical mechanics, Balescu
(1991) emphasises the need to exploit the linearity of the LE as thoroughly as possible
(see also Figure 4.13).
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Figure 4.13 Reference from Balescu (1991, p. 41) concerning the LE for
Hamiltonian dynamics.

Second, the property ψ = 0 for Hamiltonian systems implies on the basis of the
general result (4.29) that the time derivative of a material volume in phase space is
zero:

dV (t)

dt
= 0. (4.111)

Consequently, for Hamiltonian evolution (with ψ = 0) one has V (t) = const, which
is also referred to as the Liouville theorem (e.g. Arnold, 1989; Penrose, 1989; see also
Section 4.2.1). The importance of the aspect of volume conservation for Hamiltonian
systems has been discussed by Penrose (1989) (see also the quote in Section 4.2.1, as
well as Figure 4.14). Penrose (1989) points out that in a way similar to how a small
drop of ink placed in a large container of water spreads over the entire contents of
the container (while preserving the volume of ink), an initially ‘reasonably’ shaped
region in phase space will distort and stretch in a very complicated way and can
get very thinly spread out over huge regions of the phase space (this effect is also
illustrated in Figure 4.14).

In addition, through Eq. (4.71), implications exist for the Lyapunov exponents in
case of Hamiltonian evolution (with ψ = 0).
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Figure 4.14 Reference from Penrose (1989, p. 181) concerning the LT on phase
space volume.



92 Martin Ehrendorfer

4.5.7 A spectral barotropic model

As a final illustration of the LE it will be demonstrated below that a spectral formu-
lation of the barotropic model has zero divergence in phase space. The consequences
for the LE are discussed.

The model equation in physical space is the barotropic quasi-geostrophic potential
vorticity equation with free surface and bottom topography hB :

∂

∂t
[∇2ψ − 	R−2ψ]︸ ︷︷ ︸

≡Lψ

+J


ψ,∇2ψ + f − 	R−2ψ + 	 f0

hB

h︸ ︷︷ ︸
≡q


 = 0, (4.112)

where ψ is the streamfunction for the geostrophic flow, R is the Rossby deformation
radius, defined by R2 = g∗h/ f 2

0 , f is the Coriolis parameter indicating the rotation
rate of the fluid, with reference value f0, g∗ is gravity, hB is the bottom topogra-
phy (positive above a z = 0 reference level), and h is the mean depth of the fluid.
The operator J denotes the Jacobian operator defined as (k is the unit vector in the
vertical):

J (ψ, q) = k · (∇ψ × ∇q), (4.113)

and the parameter 	 is included to allow for a divergent (	 = 1) or a non-divergent
(	 = 0) model (in physical space). Equation (4.112) results from approximating
the full shallow-water equations for a homogeneous rotating fluid assuming nearly
geostrophic flow, with q being the geostrophically approximated shallow-water
potential vorticity (for further details see Salmon, 1998). It is important to note that
flow subject to (4.112) conserves (for appropriate boundary conditions) a form of
total energy given as 1

2 [(∇ψ)2 + 	R−2ψ2]. The spectral formulation of Eq. (4.112)
for flow on a sphere with radius a, in spherical coordinates λ (longitude) and µ (sine
of latitude), assuming an expansion of ψ(λ, µ, t) in terms of the spherical harmonics
Y m

n (λ, µ), may be written as

ψ̇m
n = αn J m

n , with : αn ≡ a2

n(n + 1) + 	(a/R)2
, (4.114)

where ψm
n (t) are the time-dependent expansion coefficients (observe the dot on top of

ψm
n in Eq. (4.114) indicating time differentiation), the factor αn results from inverting

the linear operator L in Eq. (4.112), and the spectral Jacobian J m
n is given as

J m
n = 1

4π

∫ 2π

0

∫ +1

−1
J (ψ, q)

(
Y m

n

)∗
dµdλ, (4.115)

where (Y m
n )∗ denotes the complex conjugate spherical harmonic. The spectral for-

mulation (4.114) describes one of the simplest geophysical flow examples for an
N-dimensional system of first-order autonomous differential equations of the form
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(4.6), as it represents a set of non-linear coupled ordinary differential equations. The
number N of equations depends on the type and degree of spectral truncation.

The special property of zero phase space divergence of system (4.114) results
by first inserting the spectral expansions for ψ and q into the Jacobian formulation
(4.115):

J m
n = 1

4π

∫ 2π

0

∫ +1

−1
J

{∑
m ′

∑
n′

ψm ′
n′ (t)Y m ′

n′ (λ, µ),
∑
m ′′

∑
n′′

qm ′′
n′′ (t)Y m ′′

n′′ (λ, µ)

}
(

Y m
n

)∗
dµdλ, (4.116)

and subsequently rearranging integrals and summations as

Ji =
∑

j

∑
k

ψ jqk
1

4π

∫ 2π

0

∫ +1

−1
Y ∗

i J (Y j , Yk)dµdλ︸ ︷︷ ︸
≡Ai jk

=
∑

j,k

Ai jkψ j qk. (4.117)

In Eq. (4.117), the summation indices j and k (as well as the free index i) must be
understood to stand for the index pair (n, m) in the previous equation (4.116). Note
that the interaction coefficients Ai jk , defined in (4.117), are independent of the actual
fields and may be precomputed; it is noted in passing that (4.117) forms the basis of the
fully spectral (but computationally highly inefficient) interaction coefficient method
(see Bourke, 1972, for a comparison of that method with the so-called transform
method). The spectral expansion of q may be found from the spectral expansion of
ψ as

qm
n = −α−1

n ψm
n + gm

n , with : gm
n ≡

(
f + 	 f0

hB

h

)m

n

, (4.118)

where gm
n denotes the spectral coefficients of the expansion of the term in parenthesis

in (4.118). In the more symbolic notation used in (4.117), Eq. (4.118) reads

qk = −α−1
k ψk + gk . (4.119)

On the basis of (4.117) and (4.119), the spectral equation (4.114) may be written in
the form:

ψ̇ i = αi

∑
j,k

Ai jkψ j

(
−α−1

k ψk + gk

)
︸ ︷︷ ︸

≡ fi (ψl )

. (4.120)

Obviously, a function fi may be defined, as done in Eq. (4.120), that defines the
right-hand side of Eq. (4.114), or, equivalently, Eq. (4.120), in terms of ψl and
precomputed coefficients. Equation (4.120) most clearly demonstrates the analogy
between the geophysical example Eq. (4.112) and the prototypical system Eq. (4.6).
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At this point the property of the interaction coefficients to vanish if two indices are
equal:

Aiik = Ai ji = 0 (4.121)

is observed that is basically a consequence of properties of the Jacobian operator
(4.113) and the definition of the interaction coefficients in (4.117). It therefore follows
that fi , defined in (4.120), does not depend on ψi . This result clearly implies that
the divergence in phase space (defined as ψ in Eq. 4.33) of system (4.120) is zero,
even though the flow may evidently be divergent in physical space (for 	 = 1). In
other words, the dynamics (4.112) has no divergence in phase space (see also Salmon
et al., 1976). Using the symbolic notation that the vector X contains the ordered real
and imaginary expansion coefficients:

X =




. . .

r (ψ)m
n

i (ψ)m
n

. . .


 , (4.122)

the dynamics (4.120) are written as

Ẋ = f(X), (4.123)

(see Eq. 4.6) with divergence-free f. As a consequence, the LE, as written in
Section 4.2.4, takes on the form

∂ρ

∂t
+ Ẋ · ∇ρ = 0, (4.124)

with solution (see Eq. 4.35) given by ρ(X, t) = ρ0(Ξ); all the consequences discussed
in Section 4.5.6 for a system with vanishing phase space divergence apply. Due to
the phase-space non-divergence condition of the barotropic dynamics (4.112), the
stationary solution ρs to the LE (4.124) is determined by:

Ẋ · ∇ρs = 0, or :
∑

k

fk(X)
∂ρs

∂ Xk
= 0, (4.125)

with the definitions introduced above, in particular through Eq. (4.122) and (4.120).
This linear last equation (4.125) determines the stationary pdf ρs (see also Thompson,
1983). For further discussion, reference is made to Holloway (1986), Salmon et al.
(1976), and Salmon (1998).

4.6 Conclusions

The Liouville equation governs the time evolution of the pdf of the state of a dynamical
system. Since such dynamical systems play a prominent role as prediction models
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in the atmospheric sciences in general, and in NWP in particular, the LE, governing
the relevant pdfs, plays a fundamental role in atmospheric predictability. As the
continuity equation for probability, the LE contains all the relevant information about
the predictability of a (forced) dynamical system.

The LE is demonstrably linear and it is a partial differential equation. As the LE
describes the entire pdf, closure problems typical for non-linear dynamical systems
are avoided, as is the need for obtaining many realisations of the system, if specific
values of the pdf are of interest. The LE (see also Ehrendorfer, 2003) provides the
basis for making probabilistic statements about specific forecasts, as well as about
atmospheric predictability in general. As such, the LE is fundamental for the areas
of ensemble prediction (see, for example, Molteni et al., 1996; Hamill et al., 2000;
Hamill et al., 2003; Lewis, 2005) and atmospheric predictability (see, for example,
Simmons and Hollingsworth, 2002; Weiss, 2003b; Tribbia and Baumhefner, 2004).

In the context considered here, an ‘analytical’ solution to the LE (see Eq. 4.35)
was given for arbitrary governing dynamics. This solution avoids the fully numerical
solution of an initial-value problem for a partial differential equation with very many
independent variables. In the context of that solution, various considerations related to
singular vectors, Lyapunov exponents, stochastic differential equations, the Fokker–
Planck equation, the stochastic-dynamic equations, and statistical mechanics were
considered in this chapter.

It is clear that a fundamental difficulty in dealing with the LE is related to the
extremely high dimensionality of phase space that must be considered in contexts
of realistic NWP models. Nevertheless, its theoretical attractiveness makes the LE
a fundamental tool for exploring various aspects and relationships in the area of
atmospheric predictability.
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Application of generalised stability theory to
deterministic and statistical prediction

Petros J. Ioannou
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Understanding of the stability of deterministic and stochastic dynamical systems has
evolved recently from a traditional grounding in the system’s normal modes to a more
comprehensive foundation in the system’s propagator and especially in an apprecia-
tion of the role of non-normality of the dynamical operator in determining the sys-
tem’s stability as revealed through the propagator. This set of ideas, which approach
stability analysis from a non-modal perspective, will be referred to as generalised
stability theory (GST). Some applications of GST to deterministic and statistical
forecast are discussed in this review. Perhaps the most familiar of these applications
is identifying initial perturbations resulting in greatest error in deterministic error
systems, which is in use for ensemble and targeting applications. But of increasing
importance is elucidating the role of temporally distributed forcing along the fore-
cast trajectory and obtaining a more comprehensive understanding of the prediction
of statistical quantities beyond the horizon of deterministic prediction. The optimal
growth concept can be extended to address error growth in non-autonomous systems
in which the fundamental mechanism producing error growth can be identified with
the necessary non-normality of the system. In this review the influence of model
error in both the forcing and the system is examined using the methods of stochas-
tic dynamical systems theory. Deterministic and statistical prediction are separately
discussed.
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C© Cambridge University Press 2006.

99



100 Petros J. Ioannou and Brian F. Farrell

5.1 Introduction

The atmosphere and ocean are constantly evolving and the present state of these
systems, while notionally deterministically related to previous states, in practice
becomes exponentially more difficult to predict as time advances. This loss of pre-
dictability of the deterministic state is described as sensitive dependence on initial
conditions and quantified by the asymptotic exponential rate of divergence of ini-
tially nearby trajectories in the phase space of the forecast system (Lorenz, 1963)
given by the first Lyapunov exponent (Lyapunov, 1907; Oseledets, 1968). Moreover,
the optimality of the Kalman filter as a state identification method underscores the
essentially statistical nature of the prediction problem (Ghil and Malanotte-Rizzoli,
1991; Berliner, 1996). The initial state is necessarily uncertain but so is the forecast
model itself and the system is subject to perturbations from extrinsic and subgrid-
scale processes. Given all these uncertainties the notion of a single evolving point in
phase space is insufficient as a representation of our knowledge of forecast dynamics,
and some measure of the uncertainty of the system state and the evolution of this
uncertainty must be included in a comprehensive forecast system theory (Epstein,
1969; Ehrendorfer, this volume; Palmer, this volume).

The appropriate methods for studying errors in deterministic and statistical fore-
cast are based on the system’s propagator and proceed from advances in mathemat-
ics (Schmidt, 1906; Mirsky, 1960; Oseledets, 1968) and dynamical theory (Lorenz,
1963, 1965, 1985; Farrell, 1988, 1990; Lacarra and Talagrand, 1988; Molteni and
Palmer, 1993; Penland and Magorian, 1993; Buizza and Palmer, 1995; Farrell and
Ioannou, 1996a, 1996b; Moore and Kleeman, 1996; Kleeman and Moore, 1997;
Palmer, 1999; DelSole and Hou, 1999a, 1999b; Ehrendorfer, this volume; Palmer,
this volume; Timmermann and Jin, this volume).

We review recent advances in linear dynamical system and stability theory relevant
to deterministic and statistical forecast. We begin with deterministic error dynamics
in autonomous and non-autonomous certain systems and then address the problem
of prediction of statistical quantities beyond the deterministic time horizon; finally,
we study model error in certain and uncertain systems.

5.2 Deterministic predictability of certain systems

The variables in a certain forecast model are specified by the finite dimensional state
vector y which is assumed to evolve according to the deterministic equation

dy
dt

= f(y). (5.1)

Consider a solution of the forecast equations y(t) starting from a given initial
state. Sufficiently small forecast errors x ≡ δy are governed by the tangent linear
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equations

dx
dt

= A(t) x, (5.2)

in which the Jacobian matrix

A(t) ≡ ∂f
∂y

∣∣∣∣
y(t)

, (5.3)

is evaluated along the known trajectory y(t).
The matrix A(t) is time dependent and in general its realisations do not commute,

i.e. A(t1)A(t2) �= A(t2)A(t1). It follows that the evolution of the error field cannot
be determined from analysis of the eigenvalues and eigenfunctions of A, as would
be the case for time independent normal matrices, but instead the analysis must be
made using the methods of generalized stability theory (GST) (for a review see
Farrell and Ioannou, 1996a, 1996b). GST concentrates attention on the behaviour of
the propagator �(t, 0), which is the matrix that maps the initial error x(0) to the error
at time t :

x(t) = �(t, 0) x(0). (5.4)

Once the matrix A(t) of the tangent linear system is available, the propagator is
readily calculated. Consider a piecewise approximation of the continuous operator
A(t): A(t) = Ai where Ai is the mean of A(t) over (i − 1)τ ≤ t < iτ for small enough
τ . At time t = nτ the propagator is approximated by the time ordered product

�(t, 0) =
n∏

i=1

eAi τ . (5.5)

If A is autonomous (time independent) the propagator is the matrix exponential

�(t, 0) = eAt . (5.6)

Deterministic error growth is bounded by the optimal growth over the interval [0, t]:

‖�(t, 0)‖ ≡ maxx(0)
‖x(t)‖
‖x(0)‖ . (5.7)

This maximisation is over all initial errors x(0). The optimal growth for each t is
the norm of the propagator ‖�(t, 0)‖. The definition of the optimal implies a choice of
norm. In many applications ‖x(t)‖2 is chosen to correspond to the total perturbation
energy.

We illustrate GST by applying it to the simple autonomous Reynolds1 matrix A:

A =
( −1 100

0 −2

)
. (5.8)
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Figure 5.1 The upper curve gives the optimal growth as a function of time for the
Reynold’s matrix (5.8). The optimal growth is given by the norm of the propagator
eAt . The lower curve shows the evolution of the amplitude of the least damped
eigenmode which decays at rate −1.

Consider the model tangent linear system:

dx
dt

= Ax. (5.9)

Traditional stability theory concentrates on the growth associated with the most
unstable mode, which in this example gives decay at rate −1, suggesting that the
error decays exponentially at this rate. While this is indeed the case for very large
times, the optimal error growth, shown by the upper curve in Figure 5.1, is much
greater at all times than that predicted by the fastest growing mode (the lower curve
in Figure 5.1). The modal prediction fails to capture the error growth because A is
non-normal, i.e. AA† �= A†A and its eigenfunctions are not orthogonal.

The optimal growth is calculated as follows:

G = ‖x(t)‖2

‖x(0)‖2
= x(t)†x(t)

x(0)†x(0)
= x(0)†eA†t eAt x(0)

x(0)†x(0)
. (5.10)

This Rayleigh quotient reveals that the maximum eigenvalue of the positive def-
inite matrix eA†t eAt determines the square of the optimal growth at time t . The
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corresponding eigenvector is the initial perturbation that leads to this growth, called
the optimal perturbation (Farrell, 1988). Alternatively, we can proceed with a Schmidt
decomposition (singular value decomposition) of the propagator:

eAt = U�V† (5.11)

with U and V unitary matrices and � the diagonal matrix with elements the singular
values of the propagator, σi , which give the growth achieved at time t by each of
the orthogonal columns of V. The largest singular value is the optimal growth and
the corresponding column of V is the optimal perturbation. The orthogonal columns,
vi , of V are called optimal vectors (or right singular vectors), and the orthogonal
columns, ui , of U are the evolved optimal vectors (or left singular vectors) because
from the Schmidt decomposition we have

σi ui = eAt vi . (5.12)

The forecast system has typical dimension 107 so we cannot calculate the propagator
directly as in Eq. (5.5) in order to obtain the optimal growth. Instead we integrate the
system

dx
dt

= Ax (5.13)

forward to obtain x(t) = eAt x(0) (or its equivalent in a time dependent system), and
then integrate the adjoint system

dx
dt

= −A†x (5.14)

backward in order to obtain eA†t x(t) = eA†t eAt x(0). We can then find the optimal
vectors (singular vectors) by the power method (Moore and Farrell, 1993; Molteni
and Palmer, 1993; Errico, 1997). The leading optimal vectors are useful input for
selecting the ensemble members in ensemble forecast (Buizza, this volume; Kalnay
et al., this volume) because they span and order in growth the initial error (Gelaro
et al., 1998). They also identify sensitive regions that can be targeted for further
observation (Thorpe and Petersen, this volume).

We have remarked that optimal growth depends on the norm. The choice of norm
is dictated by the physical situation; we are usually interested in growth in energy
but other norms can be selected to concentrate on the perturbation growth in other
physical measures such as growth in square surface pressure, or in square potential
vorticity (for a discussion of the choice of the inner product see Palmer et al., 1998;
for a discussion of norms that do not derive from inner products see Farrell and
Ioannou, 2000). Formally for autonomous operators there exist ‘normal coordinates’
in which the operator is rendered normal; however, this coordinate system is not
usually physical in the sense that the inner product in these coordinates is not usually
associated with a physically useful measure. But a more deeply consequential reason
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why the concept of ‘normal coordinates’ is not useful is that time dependent operators,
such as the tangent linear forecast system, are inherently non-normal, in the sense
that there is no transformation of coordinates that renders a general A(t) normal at all
times. It follows that analysis of error growth in time dependent systems necessarily
proceeds through analysis of the propagator as outlined above.

The tangent linear forecast system is generally assumed to be asymptotically
unstable in the sense that the Lyapunov exponent of the tangent linear system is
positive. Lyapunov showed that for a general class of time dependent but bounded
matrices A(t) the perturbations x(t) grow at most exponentially so that ‖ x(t) ‖∝ eλt

as t → ∞, where λ is the top Lyapunov exponent of the tangent linear system which
can be calculated by evaluating the limit

λ = limt→∞
ln ‖ x(t) ‖

t
. (5.15)

This asymptotic measure of error growth is independent of the norm, ‖ · ‖.
It is of interest and of practical importance to determine the perturbation subspace

that supports this asymptotic exponential growth of errors. Because this subspace
has a much smaller dimension than that of the tangent linear system itself, a theory
that characterises this subspace can lead to economical truncations of the tangent
linear system. Such a truncation could be used in advancing the error covariance of
the tangent linear system which is required for optimal state estimation. We now
show that the inherent non-normality of time dependent operators is the source of the
Lyapunov instability which underlies the exponential increase of forecast errors and
that understanding the role of non-normality is key to understanding error growth.

Consider a harmonic oscillator with frequency ω. In normal coordinates (i.e.
energy coordinates), y = [ωx, v]T , where x is the displacement and v = ẋ , the system
is governed by

dy
dt

= Ay, (5.16)

with

A = ω

(
0 1

−1 0

)
. (5.17)

This is a normal system AA† = A†A and the system trajectory lies on a constant
energy surface, which is a circle. In these coordinates the perturbation amplitude is
the radius of the circle and there is no growth.

Assume now that the frequency switches periodically between ω1 and ω2: so that
for T1 = π/(2ω1) units of time the frequency is ω1 and then for T2 = π/(2ω2) units
of time the frequency is ω2. There is no single transformation of coordinates that
renders the matrix A normal when ω = ω1 and also when ω = ω2 so we revert to
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Figure 5.2 The parametric instability of the harmonic oscillator governed by (5.18)
is caused by the non-normality of the time dependent operator. So long as there is
instantaneous growth and the time dependent operators do not commute, asymptotic
exponential growth occurs. For this example ω1 = 1/2 and ω2 = 3. See text for
explanation of numbers 1 to 5.

the state y = [x, v]T with dynamical matrices:

A1,2 =
(

0 1
−ω2

1,2 0

)
. (5.18)

When the frequency is ω1 the state y traverses the ellipses of Figure 5.2 that are
elongated in the direction of the x axis and when the frequency is ω2 it traverses the
ellipses of Figure 5.2 that are elongated in the v axis (both marked with dots). The
dynamics of this system can be understood by considering the evolution of the initial
condition y(0) = [1, 0] marked with 1 in Figure 5.2. Initial condition 1 goes to 2 at
time t = T2 under the dynamics of A2, then the dynamics switch to A1 taking the
system from 2 to 3 at time t = T1 + T2; reverting back to A2, the system advances
from 3 to 4 at t = T1 + 2T2, and then under A1, 4 goes to 5 at time t = 2(T1 + T2) with
coordinates y(2(T1 + T2)) = [36, 0]. As time advances the trajectory clearly grows
exponentially as this cycle is repeated despite the neutral stability of the system at
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each instant of time. How is this possible? The key lies in the inherent non-normality
of the operator in time dependent systems. If the operator were time independent and
stable, transient growth would necessarily give way to eventual decay. In contrast,
a time dependent operator reamplifies the perturbations that would have otherwise
decayed. This process of continual rejuvenation producing asymptotic destabilisation
is generic and does not depend on the stability properties of the instantaneous operator
state (Farrell and Ioannou, 1999).

As a further example consider harmonic perturbations �(y, t)eikx on a time depen-
dent barotropic mean flow U (y, t) in a β plane channel −1 ≤ y ≤ 1. The perturba-
tions evolve according to

d�

dt
= A(t)�, (5.19)

with time dependent operator:

A = ∇−2

(
−ik U (y, t)∇2 − ik

(
β − d2U (y, t)

dy2

) )
, (5.20)

in which discretised approximations of the operators on the right-hand side are
implied. According to Rayleigh’s theorem (Drazin and Reid, 1981) this flow cannot
sustain growth unless the mean vorticity gradient Qy = β − U ′′ changes sign. Let us
consider only flows that are asymptotically stable at all times by Rayleigh’s theorem,
and for simplicity that the mean velocity switches periodically between the two flows
shown in the left panels of Figure 5.3. The corresponding mean vorticity gradient is
shown in the right panels of the same figure. Despite the asymptotic stability of each
instantaneous flow implied by Rayleigh’s theorem the periodically varying flow is
asymptotically unstable. The Lyapunov exponent of the instability as a function of
the switching period is shown in Figure 5.4.

This instability arises from sustaining the transient growth of the operator through
time dependence. The same process is operative when the flow is varying continu-
ously in time. In that case the Lyapunov exponent for given statistically stationary
fluctuations in operator structure can be shown to depend on two parameters: the fluc-
tuation amplitude and the autocorrelation time, Tc, of the fluctuations (Farrell and
Ioannou, 1999). Snapshots of perturbation structure revealing the process of transient
growth by the interaction of the perturbations with the time dependent operator in a
continuously varying flow are shown in Figure 5.5. This mechanism of error growth
predicts that the perturbation structure should project most strongly on the subspace
of the leading optimal and evolved optimal (right and left singular) vectors. This is
indeed the case, as can be seen in the example in Figure 5.6.

Study of the asymptotic error structure in more realistic tangent linear systems
confirms the conclusions presented above that error structure in forecast systems
projects strongly on the optimal vectors (Gelaro et al., 2002). This result is key
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Figure 5.3 (Left panels) the mean flow velocity as a function of latitude for the
Rayleigh stable example. (Right panel) the associated mean vorticity gradient,
Qy = β − U ′ ′, with β = 10.

for dynamical truncation of the error covariance which is required for optimal state
estimation (Farrell and Ioannou, 2001).

5.3 Model error in deterministic forecast

We have discussed methods for determining the impact of uncertainties in the initial
state on the forecast. However, as the initialisation of forecast models is improved with
the advent of new data sources and the introduction of variational assimilation meth-
ods, the medium range forecast will become increasingly affected by uncertainties
resulting from incomplete physical parametrisations and numerical approximations
in the forecast model, and by the necessarily misrepresented subgrid-scale chaotic
processes such as cumulus convection which act as temporally stochastic distributed
forcing of the forecast error system. These influences, referred to collectively as
model error, conventionally appear as an external forcing in the forecast error system
(Allen et al., this volume).
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Figure 5.4 Lyapunov exponent as a function of switching period T for the example
shown in Figure 5.3. The time dependent flow results from periodic switching every
T time units between the Rayleigh stable flow profiles shown in Figure 5.3. The
zonal wavenumber is k = 1 and β = 10.

Improving understanding of model error and specifically identifying forcings that
lead to the greatest forecast errors are centrally important in predictability studies.
In analogy with the optimal perturbations that lead to the greatest forecast error
in the case of initial condition error, these continuous error sources will be called
optimal distributed forcings. In an approach to this problem D’Andrea and Vautard
(2000) obtained approximate optimal temporally distributed deterministic forcings
of the forecast error system (which they refer to as forcing singular vectors) and
Barkmeijer et al. (2003) obtained the optimal temporally distributed deterministic
forcing of the forecast error system over fixed spatial structures. We here describe
the method for determining the general optimal forcing in both the forecast and
assimilation systems.

The underlying theory for determining the optimal forcing in the deterministic
case is based on analysis of the dynamical system as a mapping from the space of
input forcings to the space of states at later time. We seek the deterministic forcing
f(t) of unit norm on t ∈ [0, T ] producing the greatest state norm at time T , i.e. that
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Figure 5.5 For a continuously varying barotropic flow, the structure of the state
�(y, t)eikx in the zonal (x), meridional (y) plane at four consecutive times separated
by an autocorrelation time Tc. The rms velocity fluctuation is 0.16 and the noise
autocorrelation time is Tc = 1. The zonal wavenumber is k = 2, β = 0, and the
Reynolds number is Re = 800. The Lyapunov exponent is λ = 0.2. At first (top
panel) the Lyapunov vector is configured to grow, producing an increase over Tc of
1.7; in the next period the Lyapunov vector has assumed a decay configuration
(second panel from top) and suffers a decrease of 0.7; subsequently (third panel from
top) it enjoys a slight growth of 1.1; and finally (bottom panel) a growth by 1.8.
Further details can be found in Farrell and Ioannou (1999).

maximises the square norm of the state ‖x(T )‖2, assuming the state is initially zero,
x(0) = 0, and that x obeys the tangent linear forecast equation

dx
dt

= A(t)x + f(t). (5.21)

The forcing f(t) over the interval [0, T ] is measured in the square integral norm

‖f‖2
L2

=
∫ T

0
f†(t)f(t)dt, (5.22)

while the state x is measured in the vector square norm

‖x‖2 = x†x. (5.23)

The use of alternative inner products can be easily accommodated.
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Figure 5.6 (Top panel) Mean and standard deviation of the projection of the
Lyapunov vector on the optimal vectors of the mean flow calculated for a time
interval equal to Tc in the energy norm. (Bottom panel) The mean projection and
standard deviation of the Lyapunov vector on the Tc evolved optimal vectors of the
mean flow in the energy norm.

The optimal forcing, f(t), is the forcing that maximises the forcing normalised
final state norm at time T , i.e. that maximises the quotient

Rd = ‖ x(T ) ‖2

‖ f ‖2
L2

. (5.24)

It can be shown (Dullerud and Paganini, 2000; Farrell and Ioannou, 2005) that this
intractable maximisation over functions, f(t), can be transformed to a tractable max-
imisation over states, x(T ). Specifically the following equality is true:

max
f(t)

‖ x(T ) ‖2

‖ f(t) ‖2
L2

= max
x(T )

‖ x(T ) ‖2

x(T )†C−1x(T )
, (5.25)

where C is the finite time state covariance matrix at time T under the assumption
of temporally white noise forcing with unit covariance I. The covariance can be
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obtained by integrating from t = 0 to t = T the Lyapunov equation

dC
dt

= A(t)C + CA†(t) + I, (5.26)

with the initial condition C(0) = 0. Note that the form of the second optimisation
in Eq. (5.25) is reminiscent of the covariance or Mahalanobis metric used in pre-
dictability analysis (Palmer et al., 1998), suggesting the interpretation of optimals
weighted by the Mahalanobis metric as structures that are most easily forced.

Quotient (5.25) is maximised for unit forcing by the state

xopt (T ) =
√

λ1v1, (5.27)

where λ1 is the maximum singular value of C and v1 is the corresponding singular
vector of C (v1 is conventionally called the top empirical orthogonal function (EOF)
of C). It can be shown (Farrell and Ioannou, 2005) that the optimal forcing and
the associated state of the system can be obtained simultaneously by integrating the
following coupled forward and adjoint systems backwards over the finite interval
from time t = T to the initial time t = 0:

dx
dt

= A(t)x + f

df
dt

= −A†(t)f , (5.28)

with x(T ) = √
λ1v1 and f(T ) = v1/

√
λ1. The initial state xopt (0) = 0 is recovered as

a consistency check.

5.4 Prediction of statistics of certain systems

Beyond the limit of deterministic forecast it is still possible to predict the statisti-
cal properties which constitute the climate of a system. Consider the perturbation
structure, x, produced by the forced equation

dx
dt

= Ax + Fn(t). (5.29)

Here A may be the deterministic linear operator governing evolution of large-scale
perturbations about the mean midlatitude flow, and Fn(t) an additive stochastic forc-
ing with spatial structure F, representing neglected non-linear and other forcing terms.
For simplicity we assume that the components of n(t) are white noise with zero mean
and unit variance. We wish to determine the perturbation covariance matrix

C(t) = 〈xx†〉, (5.30)

where 〈·〉 denotes the ensemble average over the realisations of the forcing Fn(t).
If a steady state is reached, 〈·〉 is also the time mean covariance. We argue
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(Farrell and Ioannou, 1993; DelSole, 1996, 1999, 2001, 2004)2 that the midlati-
tude jet climatology can be obtained in this way because the transient climatology in
the midlatitudes is the statistical average state resulting from random events of cyclo-
genesis. Because cyclogenesis is a rapid transient growth process primarily associated
with the non-normality of A, its statistics are well approximated by the linear opera-
tor A. The diagonal elements of the steady state covariance C are the climatological
variance of x, and they locate the storm track regions. All mean quadratic fluxes are
also derivable from C, from which the observed climatological fluxes of heat and
momentum can be obtained. In this way we obtain a theory for the climate and can
address systematically statistical predictability questions such as how to determine
the sensitivity of the climate, that is of C, to changes in the boundary conditions and
physical parameters which are reflected in changes in the mean operator A and the
forcing structure matrix F.

If n(t) is a white noise process it can be shown (Farrell and Ioannou, 1996a) that

C(t) =
∫ t

0
eAsQeA†s ds, (5.31)

where

Q = FF† (5.32)

is the covariance of the forcing. It can also be shown that the ensemble mean covari-
ance evolves according to the deterministic equation

dC
dt

= AC + CA† + Q ≡ HC + Q , (5.33)

where H is a linear operator. It should be noted that the above equation is also valid
for non-autonomous A(t). If A is time independent the solution of the above equation
is

C(t) = eHt C(0) +
(∫ t

0
eH(t−s)ds

)
Q

= eHt C(0) + H−1(eHt − I)Q . (5.34)

As t → ∞ and assuming the operator A is stable a steady-state is reached, which
satisfies the steady-state Lyapunov equation

AC∞ + C∞A† = −Q . (5.35)

This equation can be readily solved for C∞, from which ensemble mean quadratic
flux quantities can be derived.

Interpretation of C requires care. The asymptotic steady-state ensemble aver-
age, C∞, is the same as the time averaged covariance and can be obtained from a
single realisation of x(t) by averaging the covariance over a sufficient long inter-
val. However, the time dependent C(t) cannot be associated with a time average3 but



5 Application of generalised stability theory 113

rather is necessarily an ensemble average. With this consideration in mind, C(t) from
Eq. (5.34) is appropriate for evolving the error covariance in ensemble prediction as
will be discussed in the next section. In this section we consider a time independent
and stable A and interpret the steady state C∞ as the climatological covariance.

It has been demonstrated that such a formulation accurately models the midlat-
itude climatology (Farrell and Ioannou, 1994, 1995; DelSole, 1996, 1999, 2001,
2004; Whitaker and Sardeshmukh, 1998; Zhang and Held, 1999) and reproduces the
climatological heat and momentum fluxes. The asymptotic covariance captures the
distribution of the geopotential height variance of the midlatitude atmosphere as well
as the distribution of heat and momentum flux in the extratropics.

The algebraic equation (5.35) gives C∞ as an explicit functional of the forcing
covariance Q and the mean operator A, which is in turn a function of the mean flow and
the physical process parameters. This formulation permits systematic investigation
of the sensitivity of the climate to changes in the forcing and structure of the mean
flow and parameters.

We first address the sensitivity of the climate to changes in the forcing under the
assumption that the mean state is fixed.

We determine the forcing structure, f, given by a column vector, that contributes
most to the ensemble average variance 〈E(t)〉. This structure is the stochastic optimal
(Farrell and Ioannou, 1996a; Kleeman and Moore, 1997; Timmermann and Jin, this
volume).

The ensemble average variance produced by stochastically forcing this structure
(i.e. introducing the forcing fn(t) in the right-hand side of Eq. (5.29) can be shown
to be

〈E(t)〉 = 〈x†x〉 = f† B(t) f, (5.36)

where B(t) is the stochastic optimal matrix

B(t) =
∫ t

0
eA†seAs ds. (5.37)

The stochastic optimal matrix satisfies the time dependent back Lyapunov equation,
analogous to Eq. (5.33):

dB
dt

= BA + A†B + I . (5.38)

If A is stable the statistical steady state B∞ satisfies the algebraic equation

B∞A + A†B∞ = − I , (5.39)

which can be readily solved for B∞.
Having obtained B∞ from (5.36) we obtain the stochastic optimal as the eigen-

function of B∞ with the largest eigenvalue. The stochastic optimal determines the
forcing structure, f, that is most effective in producing variance. Forcings will have
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impact on the variance according to the forcing’s projection on the top stochastic
optimals (the top eigenfunctions of B∞).

As another application the sensitivity of perturbation statistics to variations in the
mean state can be obtained. Assume, for example, that the mean atmospheric flow
U is changed by δU inducing the change δA in the mean operator. The statistical
equilibrium that results satisfies the Lyapunov equation

(A + δA)(C∞ + δC∞) + (C∞ + δC∞) + (A + δA)† = −Q , (5.40)

under the assumption that the forcing covariance Q has remained the same. Because
C∞ satisfies the equilibrium (5.35) the first order correction δC∞ is determined from

AδC∞ + δC∞A† = −(δAC∞ + C∞δA†) . (5.41)

From this one can determine a bound on the sensitivity of the climate by determining
the change in the mean operator that will result in the largest change δC∞. This
operator change leading to maximum increase in a specified quadratic quantity is
called the optimal structural change. Farrell and Ioannou (2004) show that a single
operator change fully characterises any chosen quadratic quantity tendency, in the
sense that, if an arbitrary operator change is performed, the quadratic tendency, δC∞,
is immediately obtained by projecting the operator change on this single optimal
structure change.

In this way the sensitivity of quadratic quantities such as variance, energy, and
fluxes of heat and momentum, to change in the mean operator can be found. The mean
operator change could include jet velocity, dissipation and other dynamical variables,
and these jet structure changes, as well as the region over which the response is
optimised, can be localised in the jet. The unique jet structure change producing
the greatest change in a chosen quadratic quantity also completely characterises the
sensitivity of the quadratic quantity to jet change in the sense that an arbitrary jet
change increases the quadratic quantity in proportion to its projection on this optimal
structure change. This result provides an explanation for observations that substantial
differences in quadratic storm track quantities such as variance occur in response to
apparently similar influences such as comparable sea surface temperature changes,
and moreover provides a method for obtaining the optimal structural change.

5.5 Prediction of statistics of uncertain systems

The sensitivity of forecasts to various aspects of the model can be determined by per-
forming parallel computations of the forecast system in which the uncertain aspects
of the model are varied. These integrations produce an ensemble of forecasts (Palmer,
Kalnay et al., and Buizza, this volume). The ensemble mean of these predictions is
for many systems of interest a best estimate of the future state (Gauss, 1809; Leith,
1974). These ensemble integrations also provide estimates of the probability density
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Figure 5.7 Schematic evolution of a sure initial condition x(0) in an uncertain
system. After time t the evolved states x(t) lie in the region shown. Initially the
covariance matrix C(0) = x(0)x†(0) is rank 1, but at time t the covariance matrix has
rank greater than 1. For example if the final states were xi (t) (i = 1, · · · , 4) with
equal probability, the covariance at time t : C(t) = 1

4

∑4
i=1 xi (t)x

†
i (t) would be rank 4,

representing an entangled state. In contrast, in certain systems the degree of
entanglement is invariant and a pure state evolves to a pure state.

function of the prediction. The covariance matrix of the predicted states C = 〈xx†〉,
where 〈·〉 signifies the ensemble mean, provides the second moments of the proba-
bility density of the predictions and characterises the sensitivity of the prediction to
variation in the model. We wish to determine bounds on the error covariance matrix
resulting from such model uncertainties.

5.5.1 The case of additive uncertainty

Consider first a tangent linear system with additive model error. With the assumption
that the model error can be treated as a stochastic forcing of the tangent linear system
the errors evolve according to

dx
dt

= A(t)x + Fn(t), (5.42)

where A(t) is the tangent linear operator which is considered certain, F the structure
matrix of the uncertainty which is assumed to be well described by zero mean and
unit covariance white noise processes n(t). Such systems are uncertain and as a
result a single initial state maps to a variety of states at a later time depending on the
realisation of the stochastic process n(t). This is shown schematically in Figure 5.7
for the case of four integrations of the model.
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Let us assume initially that the ensemble had model error covariance C(0). At a
time t later the error covariance is given by Eq. (5.34). The homogeneous part of
(5.34) is the covariance resulting from the deterministic evolution of the initial C(0)
and represents error growth associated with uncertainty in specification of the initial
state. Predictability studies traditionally concentrate on this source of error growth.
The inhomogeneous part of (5.34) represents the contribution of additive model error.

The deterministic part of the growth of the error covariance at any time is bounded
by the growth produced by the optimal perturbation. The forced error growth at
any time, by contrast, is bounded by the error covariance at time t forced by the
quite different stochastic optimal that is determined as the eigenfunction with largest
eigenvalue of the stochastic optimal matrix

B(t) =
∫ t

0
eA†seAs ds (5.43)

at time t . Given an initial error covariance, C(0), and a forcing covariance, Q, it
is of interest to determine the time at which the accumulated covariance from the
model error exceeds the error produced by uncertainty in the initial conditions. As
an example consider the simple system (5.8). Assume that initially the state has
error such that trace(C(0)) = 1 and that the additive model error has covariance
trace(Q) = 1. The growth of errors due to uncertainty in the initial conditions is
plotted as a function of time in Figure 5.8. After approximately unit time the error
covariance is dominated by the accumulated error from model uncertainty.

From this simple example it is realised that in both stable and unstable systems
as the initial state is more accurately determined error growth will inevitably be
dominated by model error. At present the success of the deterministic forecasts
and increase in forecast accuracy obtained by decreasing initial state error suggest
that improvements in forecast accuracy are still being achieved by reducing the
uncertainty in the initial state.

5.5.2 The case of multiplicative uncertainty

Consider now a forecast system with uncertain parametrisations (Palmer, 1999;
Sardeshmukh et al., 2001, 2003) so that the tangent linear system operator itself
is uncertain and for simplicity takes the form

A(t) = A + εBη(t), (5.44)

where η(t) is a scalar stochastic process with zero mean and unit variance and B is a
fixed matrix characterising the structure of the operator uncertainty, and ε is a scalar
amplitude factor.

An important property of these multiplicative uncertain systems is that different
realisations produce highly disparate growths. Fix the inner product with which
the perturbation magnitude is measured and concentrate on calculation of the error
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Figure 5.8 Error variance resulting from free evolution of the optimal unit variance,
initial covariance and evolution of error variance forced by additive uncertainty with
unit forcing variance. The operator A is the simple 2 × 2 Reynolds operator given in
(5.8).

growth. Because of the uncertainty in the operator, different realisations, η, will result
in different perturbation magnitudes, and because the probability density function
of η is known, perturbation amplitudes can be ascribed a probability. A measure of
error growth is the expectation of the growths:

〈g〉 =
∫

P(ω)) g(ω)dω, (5.45)

where ω is a realisation of η, P(ω) is the probability of its occurrence, and g(ω) is the
error growth associated with this realisation of the operator. Because of the convexity
of the expectation the root-mean-square second moment error growth exceeds the
amplitude error growth, i.e.√

〈g2〉 ≥ 〈g〉. (5.46)

It follows that in uncertain systems different moments generally have different growth
rates and the Lyapunov exponent of an uncertain system may be negative while
higher moments are unstable. This emphasises the fact that rare or extreme events
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that are weighted more by the higher moment measure, while difficult to predict, are
potentially highly consequential.

As an example consider two classes of trajectories which with equal probability
give growth in unit time of g = 2 or g = 1/2. What is the expected growth in unit
time? While the Lyapunov growth rate is 0 because

λ = 〈log g〉
t

= log 2

2
+ log(1/2)

2
= 0, (5.47)

the second moment growth rate is positive:

λ2 = log〈g2〉
t

= log

(
1

2
× 4 + 1

2
× 1

4

)
= 0.75, (5.48)

proving that the error covariance increases exponentially fast and showing that uncer-
tain systems may be Lyapunov (sample) stable, while higher order moments are
unstable. The second moment measures include the energy, so that this example
demonstrates that multiplicative uncertain systems can be Lyapunov stable while
expected energy grows exponentially with time. In fact if the uncertainty is Gaus-
sian there is always a higher moment that grows exponentially (Farrell and Ioannou,
2002a).

One implication of this property is that optimal error growth in multiplicative
uncertain systems is not derivable from the norm of the ensemble mean propagator.
To obtain the optimal growth it is necessary to first determine the evolution of the
covariance C = 〈xx†〉 under the uncertain dynamics and then determine the optimal
C(0) of unit trace that leads to greatest trace(C(t)) at later times.

Consider the multiplicative uncertain tangent linear system:

dx
dt

= Ax + εn(t)Bx, (5.49)

where A is the sure mean operator and B is the structure of the uncertainty in the oper-
ator and n(t) is its time dependence. Take n(t) to be a Gaussian random variable with
zero mean, unit variance and autocorrelation time tc. Define �(t, 0) to be the prop-
agator for a realisation of the operator A + εη(t)B. For that realisation the square
error at time t is

x(t)†x(t) = x(0)†�† (t, 0)�(t, 0) x(0) (5.50)

where x(0) is the initial error. The optimal initial error, i.e. the initial error that leads
to the greatest variance at time t , for this realisation is the eigenvector of

H(t) = �† (t, 0)�(t, 0) (5.51)

with largest eigenvalue.
For uncertain dynamics we seek the greatest expected variance at t by determining

the ensemble average

〈H(t)〉 = 〈
�†(t, 0)�(t, 0)

〉
. (5.52)
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The optimal initial error is identified as the eigenvector of 〈H(t)〉 with largest eigen-
value. This eigenvalue determines the optimal ensemble expected error growth. This
gives constructive proof of the remarkable fact that there is a single sure initial error
that maximises expected error growth in an uncertain tangent linear system; that is,
the greatest ensemble error growth is produced when all ensemble integrations are
initialised with the same state.

To quantify the procedure one needs to obtain an explicit form of the ensemble
average 〈H(t)〉 in terms of the statistics of the uncertainty. It turns out that this is
possible for Gaussian fluctuations (Farrell and Ioannou, 2002b, 2002c), in which
case 〈H(t)〉 evolves according to the exact equation

d 〈H〉
dt

= (A + ε2E(t)B)† 〈H(t)〉 + 〈H(t)〉 (A + ε2E(t)B) (5.53)

+ ε2(E†(t) 〈H〉 B + B† 〈H〉 E(t)) (5.54)

where

E(t) =
∫ t

0
e−AsBeAse−νs ds. (5.55)

For autocorrelation times of the fluctuations which are small compared with the time
scales of A, the above equation reduces to

d 〈H〉
dt

=
(

A + ε2

ν
B2

)†
〈H(t)〉 + 〈H(t)〉

(
A + ε2

ν
B2

)

+ 2ε2

ν
B† 〈H〉 B. (5.56)

As an example application of this result, the ensemble for an uncertain tangent
linear system arising from a forecast system with Gaussian statistical distribution of
parameter value variation could be constructed from this basis of optimals, i.e. the
optimals of 〈H〉.

5.6 Conclusions

Generalised stability theory (GST) is required for a comprehensive understanding of
error growth in deterministic autonomous and non-autonomous systems. In contrast
to the approach based on normal modes in GST applied to deterministic systems,
attention is concentrated on the optimal perturbations obtained by singular value anal-
ysis of the propagator or equivalently by repeated forward integration of the system
followed by backward integration of the adjoint system. The optimal perturbations are
used to understand and predict error growth and structure and for such tasks as build-
ing ensembles for use in ensemble forecast. In addition this approach provides theoret-
ical insight into the process of error growth in both autonomous and non-autonomous
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systems. In the case of non-autonomous systems the process of error growth is iden-
tified with the intrinsic non-normality of a time dependent system and the unstable
error is shown to lie in the subspace of the leading optimal and evolved optimal (right
and left singular) vectors.

Beyond the deterministic time horizon, GST can be used to address questions of
predictability of statistics and of sensitivity of statistics to changes in the forcing and
changes in the system operator. As an example of the power of these methods, the
sensitivity of a statistical quantity is found to be related to a single structured change
in the mean operator.

Finally, we have seen how GST addresses error growth in the presence of both
additive and multiplicative model error. In the case of multiplicative model error the
role of rare trajectories is found to be important for the stability of higher statistical
moments, including quadratic moments which relate sample stability to stability in
energy.
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Notes
1. It is called the Reynolds matrix because it captures the emergence of rolls in

three-dimensional boundary layers that are responsible for transition to turbulence.
2. See also the related linear inverse model perspective (Penland and Magorian, 1993;

Penland and Sardeshmukh, 1995).
3. Under certain conditions it can be associated with a zonal mean; for discussion and

physical application of this interpretation see Farrell and Ioannou (2003).
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Ensemble-based atmospheric data assimilation

Thomas M. Hamill
Physical Sciences Division NOAA Earth System Research Laboratory, Boulder

Ensemble-based data assimilation techniques are being explored as possible alter-
natives to current operational analysis techniques such as three- or four-dimensional
variational assimilation. Ensemble-based assimilation techniques utilise an ensemble
of parallel data assimilation and forecast cycles. The background-error covariances
are estimated using the forecast ensemble and are used to produce an ensemble of
analyses. The background-error covariances are flow dependent and often have very
complicated structure, providing a very different adjustment to the observations than
are seen from methods such as three-dimensional variational assimilation. Though
computationally expensive, ensemble-based techniques are relatively easy to code,
since no adjoint nor tangent linear models are required, and previous tests in simple
models suggest that dramatic improvements over existing operational methods may
be possible.

A review of the ensemble-based assimilation is provided here, starting from the
basic concepts of Bayesian assimilation. Without some simplification, full Bayesian
assimilation is computationally impossible for model states of large dimension.
Assuming normality of error statistics and linearity of error growth, the state and
its error covariance may be predicted optimally using Kalman filter (KF) techniques.
The ensemble Kalman filter (EnKF) is then described. The EnKF is an approxi-
mation to the KF in that background-error covariances are estimated from a finite
ensemble of forecasts. However, no assumptions about linearity of error growth are
made. Recent algorithmic variants on the standard EnKF are also described, as well
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as methods for simplifying the computations and increasing the accuracy. Examples
of ensemble-based assimilations are provided in simple and more realistic dynamical
systems.

6.1 Introduction

The purpose of this chapter is to introduce the reader to promising new experimental
methods for atmospheric data assimilation involving the use of ensemble forecasts
(e.g. Evensen, 1994; Evensen and van Leeuwen, 1996; Houtekamer and Mitchell,
1998; Burgers et al., 1998; Tippett et al., 2003; Anderson, 2003; Evensen, 2003;
Lorenc, 2003). There is a natural linkage between data assimilation and ensemble
forecasting. Ensemble forecasts (Toth and Kalnay, 1993, 1997; Molteni et al., 1996;
Houtekamer et al., 1996a) are designed to estimate the flow-dependent uncertainty of
the forecast, while data assimilation techniques require accurate estimates of forecast
uncertainty in order to optimally blend the prior forecast(s) with new observations.
Ensemble-based assimilation methods integrate the two steps; the ensemble of fore-
casts is used to estimate forecast-error statistics during the data assimilation step,
and the output of the assimilation is a set of analyses. This process is cycled, the
short-term ensemble forecasts from the set of analyses providing the error statistics
again for the next assimilation cycle.

Rather than starting with the specifics of recently proposed ensemble-based assim-
ilation techniques, in this chapter we will take a step back and try to motivate their
use by quickly tracing them from first principles, noting the approximations that
have been made along the way. This will take us from Bayesian data assimilation
(Section 6.2), which is conceptually simple but computationally prohibitive, to the
Kalman filter (Section 6.3), a simplification assuming normality and linearity of error
growth, to ensemble-based data assimilation methods (Section 6.4), which may be
more computationally tractable and robust. This review will include a description of
stochastic and deterministic ensemble update algorithms, a simple pictorial example,
discussions of model error and covariance localisation, and some pseudocode of an
ensemble filter. Important ongoing research issues are discussed (Section 6.5) and
conclusions provided (Section 6.6).

Several other useful review papers on ensemble-based data assimilation are avail-
able. Evensen (2003) provides a review of most of the proposed ensemble-based
assimilation approaches, a more theoretical examination of the treatment of model
errors, and a wide array of references to ensemble-based assimilation in the atmo-
spheric and oceanographic literature. Lorenc (2003) also reviews ensemble meth-
ods, and in particular provides some thoughts on the potential relative strengths and
weaknesses compared with the current state-of-the-art assimilation algorithm, four-
dimensional variational analysis (4D-Var). Tippett et al. (2003) discusses the simi-
larities and differences between a number of the proposed algorithms, and Anderson
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(2003) discusses a way of interpreting ensemble-based techniques using simple linear
regression terminology.

To keep the size of this chapter manageable, several topics will be omitted. We
will not describe the full variety of ensemble filters nor Kalman filters, in particular
leaving out a discussion of reduced-order Kalman filters (e.g. Farrell and Ioannou,
2001). Related subjects such as atmospheric predictability will be discussed only
in relevance to the assimilation problem, and applications of ensemble filters to
problems like adaptive observations will not be included.

In subsequent discussion, the atmosphere state, which is of course a continuum,
is assumed to be adequately described in discretised fashion, such as by the values
of winds, temperature, humidity, and pressure at a set of grid points.

6.2 Bayesian data assimilation

Conceptually, the atmospheric data assimilation problem is a relatively simple one.
The task at hand is to estimate accurately the probability density function (pdf)
for the current atmospheric state given all current and past observations. Much of
the material in this section follows Anderson and Anderson (1999). If the reader is
interested in further background material on the subject, Lorenc (1986) provides a
formulation of data assimilation in a Bayesian context, and Cohn (1997) provides a
more rigorous statistical formulation of the problem.

When considering Bayesian assimilation, there are two general steps to the assim-
ilation. Assume that a pdf of the state of the atmosphere is available (in the lack of
any knowledge, this may be the climatological pdf). The first step is to assimilate
recent observations, thereby sharpening the pdf. The second step is to propagate the
pdf forward in time until new observations are available. If the pdf is initially sharp
(i.e. the distribution is relatively narrow), then chaotic dynamics and model uncer-
tainty will usually broaden the probability distribution. The update and forecast steps
are then repeated. We will describe each of these steps separately, starting with the
assimilation of new observations.

6.2.1 Bayesian updating

Assume that an estimate of the pdf has been propagated forward to a time when obser-
vations are available. The state can be estimated more specifically by incorporating
information from the new observations. This will be termed the ‘update’.

The following notational convention is used. Boldface characters will denote vec-
tors or matrices, while use of the italicised font denotes a scalar. xt

t−1 will denote
the n-dimensional true model state at time t − 1 : xt

t−1 = [x t
t−1(1)

, . . . , x t
t−1(n)

]. Also,
assume a collection of observations ψ t. This vector includes observations yt at the
most recent time as well as observations at all previous times ψ t = [yt, ψt−1], where
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ψ t−1 = [yt−1, . . . , y0]. There are Mt observations at time t, i.e. yt =
[yt(1) , . . . , yt(Mt)]. Let P(xt

t) be a multivariate probability density function, defined
such that Pr (a ≤ xt

t ≤ b) = ∫b
a P(xt

t)dxt
t, and probability density integrates to 1.0

over the entire phase space.
Formally, the update problem is to accurately estimate P(xt

t | ψ t), the probability
density estimate of the current atmospheric state, given the current and past obser-
vations. Bayes’ rule tells us that this quantity can be re-expressed as

P
(
xt

t | ψ t
) ∝ P

(
ψ t | xt

t

)
P
(
xt

t

)
. (6.1)

Bayes’ rule is usually expressed with a normalisation constant in the denominator
on the right-hand side of Eq. (6.1); for simplicity, the term in the denominator will
be dropped here, and it is assumed that when coded, the developer will ensure that
probability density integrates to 1.0.

One hopefully minor assumption is made: observation errors are independent from
one time to the next. Hence, P(ψ t | xt

t) = P(yt | xt
t)P(ψt−1 | xt

t). This may not be true
for observations from satellites, where instrumentation biases may be difficult to
remove. Also, errors of observation representativeness (Daley, 1993) may be flow
dependent and correlated in time. But under this assumption, (6.1) is equivalent to

P
(
xt

t | ψ t
) ∝ P

(
yt | xt

t

)
P

(
ψt−1 | xt

t

)
P

(
xt

t

)
. (6.2)

By Bayes’ rule again, P(ψt−1 |xt
t)P(xt

t) ∝ P(xt
t |ψt−1). Hence, (6.2) simplifies to

P
(
xt

t | ψ t
) ∝ P

(
yt | xt

t

)
P

(
xt

t | ψt−1
)
. (6.3)

In principle, Eq. (6.3) is elegantly simple. It expresses a recursive relationship:
the ‘posterior’, the pdf for the current model state, given all the observations, is a
product of the probability distribution for the current observations P(yt | xt

t) and the
‘prior’, P(xt

t |ψt−1), also known as the ‘background’. The prior is the pdf of the model
state at time t given all the past observations up to time t − 1. Typically, the prior
will have been estimated in some fashion from a cycle of previous data assimilations
and short-term forecasts up to the current time; approximations of how this may be
computed will be discussed in Section 6.2.2.

Let’s now demonstrate the update step of Bayesian assimilation with a simple
example. P(xt

t | ψt−1) is an estimate of the prior for a two-dimensional model state.
This was produced by assimilating all prior observations up to and including time
t − 1 and estimating in some manner how that pdf has evolved in the time interval
between t − 1 and t. Consider how to update the pdf given a new scalar observation
y, which in this example is observing the same quantity as the first component of
the state vector measures. The pdf for the observation P(yt | xt

t) is assumed to be
distributed normally about the actual observation, ∼ N (yt, σ

2). Here, let yt = 58 and
σ 2 = 100.

Selected contours of the prior are plotted in Figure 6.1(a); as shown, the
prior is bimodal. The shape of the marginal prior distributions P(xt(1) | ψt−1) and
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Figure 6.1 Example of Bayesian data assimilation update. Here the model state is
two dimensional and a single observation is assimilated. This observation measures
the same variable as the first component of the model state. (a) Probability density
for joint and marginal prior distributions (solid) and observation distribution
(dashed). The three contours enclose 75%, 50%, and 25% of the probability density,
respectively. (b) Probability density for posterior distributions. Contours levels set as
in (a).

P(xt(2) | ψt−1) are plotted along each axis in solid lines. The dashed line denotes
the observation probability distribution P(yt | xt

t). This probability varies with the
value x t(1), but given x t(1) is the same for any value of x t(2). The updated posterior
distribution is computed using Eq. (6.3) and is shown in Figure 6.1(b). Note that
the assimilation of the observation enhanced the probability in the lobe overlapping
the observation distribution and decreased it in the other lobe. Overall, the posterior
distribution is more sharp (specific) than the prior, as is expected.

6.2.2 Forecasting of probability density

With an updated model pdf, a method for forecasting the evolution of this pdf forward
in time is needed. Assume that we have an (imperfect) non-linear forecast model
operator M so that the time evolution of the state can be written as a stochastic
differential equation:

dxt
t = M

(
xt

t

)
dt + G

(
xt

t

)
dq (6.4)

where dq is a Brownian-motion process with covariance Qtdt and G is the model-
error forcing. Conceptually, the time evolution of the pdf can be modelled with the
Fokker–Planck equation (e.g. Gardiner, 1985, section 5.3):

∂ P
(
xt

t

)
∂t

= −�.
[
M

(
xt

t

)
P

(
xt

t

)] +
∑
i, j

∂2

∂x t
t(i)∂x t

t( j)

(GQtGT

2

)
i j

P
(
xt

t

)
(6.5)
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If GQtGT is zero, then only the first term remains, and the Fokker–Planck equation
reduces to the Liouville equation (Ehrendorfer, 1994a, 1994b), a continuity equation
for the conservation of probability. Probability thus diffuses with time according to
the chaotic dynamics of the forecast model. The second term includes the effects of
model error, including the increased diffusion of probability due to model uncertainty
as well as noise-induced drift (Sardeshmukh et al., 2001).

6.2.3 Limitations of Bayesian data assimilation

Unfortunately, neither the update nor the forecast steps in Bayesian data assimilation
can be applied directly to real-world numerical weather prediction (NWP) applica-
tions. For the update step, one problem with modelling a complicated pdf in higher
dimensions is the ‘curse of dimensionality’ (e.g. Hastie et al., 2001, pp. 22–7). Were
one to try to estimate the probability density in a higher-dimensional space using a
small ensemble, one would find that the model of probability was very poor unless
simplifying assumptions about the form of the distribution were made. Even were
this problem surmountable, the computational cost would be extravagant. In the
prior example the probability density was evaluated on a 100×100 grid. Suppose a
similarly complicated structure for the prior existed in 100 dimensions. Then if the
joint probabilities were monitored on a similar grid for each dimension, this would
involve evaluating and modifying 100100 density estimates. Such computations are
already prohibitive for a 100-dimensional model state; the problem becomes incom-
prehensible for model states of O(107). Similarly, the Fokker–Planck equation can-
not be integrated in high-dimensional systems using Eq. (6.5) due to computational
constraints.

Consequently, Monte Carlo techniques are typically applied. Suppose we cannot
explicitly compute the sharpening of the pdf from updating to new observations,
nor the subsequent diffusion of probability in the forecast due to chaos and model
error. As an approximation, let’s randomly sample the initial probability distribution
P(xt

t | ψ t). Thereafter, let’s simulate the effects of chaos, model error and observa-
tions. Ensemble forecast techniques will be used to model the growth of errors due
to the initial condition uncertainty, and some additional random noise will be added
to each member to correct for the uncertainty contributed by model error. Monte
Carlo data assimilation methods will be used that draw the ensemble of model states
toward the observations in a process that recognises the uncertainty inherent in the
observations. Hopefully, with a large enough random sample, probabilities estimated
from the ensemble relative frequency will converge to the probabilities that would
be calculated explicitly, were that computationally feasible.

6.3 Kalman filters

The methods underlying ensemble-based data assimilation come in part from Monte
Carlo techniques, but the underlying concepts also are derived from a method known
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as the Kalman filter (Kalman, 1960; Kalman and Bucy, 1961; Jazwinski, 1970 section
7.3 Gelb, 1974 section 4.2; Maybeck, 1979 section 5.3; Ghil, 1989; Daley, 1991
section 13.3; Cohn, 1997; Talagrand, 1997; Daley, 1997). We review the Kalman
filter first. The Kalman filter is an approximation to Bayesian state estimation which
assumes linearity of error growth and normality of error distributions. There are two
components of the Kalman filter, an update step where the state estimate and an
estimate of the forecast uncertainty are adjusted to new observations, and a forecast
step, where the updated state and the uncertainty estimate are propagated forward to
the time when the next set of observations becomes available.

6.3.1 The extended Kalman filter

We now consider an implementation of the Kalman filter called the extended Kalman
filter, or ‘EKF’ (Jazwinski, 1970; Gelb, 1974; Ghil and Malanotte-Rizzoli, 1991; Gau-
thier et al., 1993; Bouttier, 1994). The EKF assumes that background and observation
error distributions are Gaussian: xb

t = xt
t + e, where e ∼ N (0, Pb

t ). That is, the prob-
ability density of the prior is distributed as a multivariate normal distribution with
known n×1 mean background xb

t and n×n background-error covariance matrix Pb
t .

Similarly, y = H(xt
t) + ε, where ε ∼ N (0, R) andH is the Mt ×n ‘forward’ operator

that maps the state to the observations. Let H represent the m×n Jacobian matrix
of H: H = ∂H

∂x (see Gelb, 1974, section 6.1). Also, let M represent the non-linear
model forecast operator. M is the n×n Jacobian matrix of M, M = ∂M

∂x . M is often
called the transition matrix between times t and t + 1. MT is its adjoint (see Le Dimet
and Talagrand, 1986, and Lacarra and Talagrand, 1988). Q will represent the n×n
covariance of model errors accumulated between update cycles.

The EKF equations are

xa
t = xb

t + K
(
yt − H

(
xb

t

))
(6.6a)

K = Pb
t HT

(
HPb

t HT + R
)−1

(6.6b)

Pa
t = (I − KH)Pb

t (6.6c)

xb
t+1 = M

(
xa

t

)
(6.6d)

Pb
t+1 = MPa

t MT + Q = M
(
MPa

t

)
T + Q. (6.6e)

Equations (6.6a–6.6c) describe the update step. The optimal analysis state xa
t

is estimated by correcting the background xb
t toward the ‘observation increment’

yt − H(xb
t ), weighted by the Kalman-gain matrix K. The effect of K is to apply

observation increments to correct the background at relevant surrounding grid points.
Equation (6.6c) indicates how to update the background-error covariance to reflect
the reduction in uncertainty from assimilating the observations. Equations (6.6d–
6.6e) propagate the resulting analysis and error covariance forward in time to when
observations are next available. The expected analysis state is propagated forward
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with the full non-linear forecast model. Model errors are assumed to be uncorrelated
with the growth of analysis errors through the tangent-linear forecast dynamics.

The conceptual appeal of the Kalman filter relative to an analysis scheme
like three-dimensional variational assimilation (3D-Var; Lorenc, 1986; Parrish and
Derber, 1992) is that the error covariances of the forecast and subsequent analysis are
explicitly prognosed. The analysis reduces error variances in locations where accu-
rate observations are plentiful, and the error covariances are also forecast forward in
time, growing at a rate proportional to the local error growth. Consequently, the struc-
ture of the background-error covariances and hence the adjustment to observations
xa

t − xb
t can be quite complicated and flow and time dependent (e.g. Bouttier, 1994).

6.3.2 Considerations in the use of Kalman filters

What approximations may limit the accuracy of the EKF? First, Kalman filters assume
linear growth and normality of errors, for the assimilation problem becomes some-
what more tractable when these assumptions are made. Non-normality of the prior
such as the bimodality in Figure 6.1(a) is typically assumed to be uncommon in atmo-
spheric data assimilation. These linear and normal assumptions may be inappropriate
for atmospheric data assimilations of moisture, cloud cover, and other aspects of the
model state that may be very sensitive to motions at small scales, where the timescale
of predictability is small and errors grow and saturate rapidly. Similarly, if obser-
vations are not regularly available, error covariances estimated with tangent linear
dynamics may grow rapidly without bound (Evensen, 1992; Gauthier et al., 1993;
Bouttier, 1994).

Second, error statistics must be carefully estimated and monitored; in particular, it
is important that the background-error covariance matrix be estimated accurately. For
example, if background error variances are underestimated, the EKF will assume the
error statistics are indicating that the background is relatively more accurate than the
nearby observations and thus will not correct the background to the observations to
the extent it should (Daley, 1991, p. 382). Estimating Q may be particularly difficult.
In practice, accurately determining even the time-averaged statistics of Q may be
quite complicated (Cohn and Parrish, 1991; Daley, 1992; Dee, 1995; Blanchet et al.,
1997). For both the Kalman filter and ensemble-based methods, the accuracy of the
assimilation is likely to depend strongly on this assumed model for Q. Methods for
estimating Q will be discussed for ensemble-based methods in Section 6.4.4.

Another disadvantage of the Kalman filters for atmospheric data assimilation is
their computational expense. Though Kalman filters provide a dramatic reduction in
the computational cost relative to full Bayesian data assimilation, for a highly dimen-
sional state vector, the computational costs in weather prediction models may still
be impossibly large. Consider the last line in Eq. (6.6). For an n-dimensional model
state vector, it will require 2n applications of M to forecast the error covariances.
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Some reductions of computational expense may be possible. For example, there have
been suggestions that this computation may be more practical if the tangent linear
calculations are performed in a subspace of the leading singular vectors (Fisher, 1998;
Farrell and Ioannou, 2001).

Much more can be said about the Kalman filter, such as its equivalence to
4D-Var under certain assumptions (Li and Navon, 2001), the manner of comput-
ing M, iterated extensions of the basic extended Kalman filter (Jazwinski, 1970;
Gelb, 1974; Cohn, 1997), and the properties of its estimators (which, in the case of
the discrete filter, if assumptions hold, provide the Best Linear Unbiased Estimate,
or BLUE; see Talagrand, 1997).

6.4 Ensemble-based data assimilation

Ensemble-based assimilation algorithms use Monte Carlo techniques and may be able
to provide more accurate analyses than the EKF in situations where non-linearity is
pronounced and pdfs exhibit some non-normality. If these assimilation algorithms
can work accurately with many fewer ensemble members than elements in the state
vector, then they will be computationally much less expensive as well.

Many researchers have proposed a variety of ensemble-based assimilation meth-
ods. Despite the many differences between the various ensemble-based algorithms,
all comprise a finite number (perhaps ten to a few hundred) of parallel data assim-
ilation and short-range forecast cycles. Background-error covariances are modelled
using the ensemble of forecasts, and an ensemble of analyses are produced, followed
by an ensemble of short-term forecasts to the next time observations are available.
Ensemble-based assimilation algorithms also have the desirable property that if error
dynamics are indeed linear and the error statistics Gaussian, then as the ensemble
size increases, the state and covariance estimate from ensemble algorithms converge
to those obtained from the extended Kalman filter (Burgers et al., 1998).

The concepts behind ensemble assimilation methods have been used in engineer-
ing and aerospace applications as far back as the 1960s (Potter, 1964; Andrews,
1968; Kaminski et al., 1971; Maybeck, 1979, ch. 7). Leith (1983) sketched the basic
idea for atmospheric data assimilation. The idea was more completely described and
tested in an oceanographic application by Evensen (1994) and in atmospheric data
assimilation by Houtekamer and Mitchell (1998).

For notational simplicity, the t time subscript used in previous sections is dropped;
it is assumed unless noted otherwise that we are interested in estimating the state
pdf at time t. We start off by assuming that we have an ensemble of forecasts that
randomly sample the model background errors at time t. Let’s denote this ensemble
as Xb, a matrix whose columns comprise ensemble members’ state vectors:

Xb = (
xb

1, . . . , xb
m

)
, (6.7)
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Figure 6.2 Background-error covariances (grey shading) of sea-level pressure in
the vicinity of five selected observation locations, denoted by dots. Covariance
magnitudes are normalised by the largest covariance magnitude on the plot. Solid
lines denote ensemble mean background sea-level pressure contoured every 8 hPa.

The subscript now denotes the ensemble member. The ensemble mean xb is defined
as

xb = 1

m

m∑
i=1

xb
i . (6.8)

The perturbation from the mean for the ith member is x′b
i = xb

i − xb. Define X′b

as a matrix formed from an ensemble of perturbations

X′b = (
x′b

1 , . . . , x′b
m

)
(6.9)

and let P̂b represent an estimate of Pb from a finite ensemble

P̂b = 1

m − 1
X′bX′bT

. (6.10)

Unlike the Kalman filter or 3D-Var, the background-error covariance estimate is
generated from a specially constructed ensemble of non-linear forecasts. The finite
sample will introduce errors (see, for example, Casella and Berger, 1990, section
5.4, and Hamill et al., 2001, section 2) relative to the EKF. However, estimating the
covariances using an ensemble of non-linear model forecasts may provide a powerful
advantage over the EKF. Envision a situation where errors grow rapidly but saturate
at low amplitude; the linear assumption of error growth in the EKF will result in
an overestimate of background error variance, but the differences among ensemble
members will not grow without bound and thus should provide a more accurate model
of the actual background-error statistics. Unlike data assimilation algorithms such
as 3D-Var (in most operational implementations), the background-error covariances
can vary in time and space. If this error covariance model is relatively accurate, it
will thus provide a better adjustment to the observations.

Figure 6.2 illustrates the potential benefit from estimating background-error
covariances using an ensemble-based data assimilation system. Here we see a
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snapshot of sea-level pressure background-error covariances with five locations
around the northern hemisphere, estimated from a 100-member ensemble. The data
were taken from the ensemble data assimilation experiment of Whitaker et al. (2004),
which tested the efficacy of assimilating only a sparse network of surface pressure
observations concentrated over the USA, Europe, and east Asia. A covariance local-
isation with a correlation length of approximately 2700 km was applied (see Section
6.4.5). Notice that the magnitude and the spatial structure of the background-error
covariances change from one location to the next, with larger covariances for the
point south of Alaska and northern Russia and smaller covariances at other loca-
tions. The horizontal extent of the positive covariance also changed markedly from
one location to the next. The background-error covariances control the magnitude
of the adjustment to the observation, drawing more to observations when back-
ground errors are large. Hence, observations will affect the analysis very differ-
ently around each of the five locations, which is the essence of why ensemble-
based algorithms may outperform methods assuming fixed background-error
covariances.

We will first consider the update step in two general classes of ensemble filters,
stochastic (fully Monte Carlo) and deterministic. Both classes propagate the ensemble
of analyses with non-linear forecast models; the primary difference is whether or not
random noise is applied during the update step to simulate observation uncertainty. A
brief pictorial example of the update step is then provided, followed by a discussion
of the ensemble forecast process and how model error may be treated. A description
of an important algorithmic modification, covariance localisation, is then provided.
Finally, some pseudocode for a simple deterministic filter is provided.

6.4.1 Stochastic update algorithms

The most well-known stochastic ensemble-based data assimilation algorithm is the
ensemble Kalman filter, or ‘EnKF’ (Houtekamer and Mitchell, 1998, 1999, 2001;
Burgers et al., 1998; Keppenne, 2000; Mitchell and Houtekamer, 2000; Hamill and
Snyder, 2000; Hamill et al., 2001; Heemink et al., 2001; Keppenne and Rienecker,
2002; Mitchell et al., 2002; Hamill and Snyder, 2002; Houtekamer et al., 2005).
This algorithm updates each member to a different set of observations perturbed
with random noise. Because randomness is introduced every assimilation cycle, the
update is considered stochastic.

The EnKF performs an ensemble of parallel data assimilation cycles, i =
1, . . . , m, with each member updated to a somewhat different realisation of the
observations:

xa
i = xb

i + K̂
(
yi − H

(
xb

i

))
. (6.11)
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In (6.11), the yi = y + y′
i are ‘perturbed observations’, defined such that y′

i ∼
N (0, R), and

1

m

m∑
i=1

y′
i = 0. (6.12)

The m sets of perturbed observations are thus created to update the m different
background fields. Here, in (6.11),

K̂ = P̂bHT(HP̂bHT + R)−1, (6.13)

similar to the Kalman gain of the EKF gain in (6.6b), but using the ensemble to
estimate the background-error covariance matrix as in (6.10).

Notice that the EnKF assimilates perturbed observations in Eq. (6.11) rather than
the observations themselves. To understand this, let X′a be a matrix of analysis ensem-
ble member deviations from the analysis mean state, as (6.9) defined background
deviations. Let P̂a be formed from the ensemble of analyses assimilating perturbed
observations using (6.11). Then as the ensemble size approaches infinity and if the
dynamics are linear, P̂a = 1

m−1 X′aX′aT → Pa, where Pa is the extended Kalman filter
analysis-error covariance from (6.6c) (Burgers et al., 1998). If unperturbed obser-
vations are assimilated in (6.11) without other modifications to the algorithm, the
analysis-error covariance will be underestimated, and observations will not be prop-
erly weighted in subsequent assimilation cycles.

Adding noise to the observations in the EnKF can introduce spurious observation-
background error correlations that can bias the analysis-error covariances, especially
when the ensemble size is small (Whitaker and Hamill, 2002). Pham (2001) proposed
an alternative to perturbing the observations, adding noise to background forecasts in
a manner that also ensures analysis-error covariances are equal to those produced by
the EKF. Anderson (2003) proposed a sequential observation processing method that
minimises this effect. Houtekamer and Mitchell (1998) proposed the use of a ‘double’
EnKF with two parallel sets of ensembles, each set used to estimate background-
error covariances to update the other set. See van Leeuwen (1999), Houtekamer and
Mitchell (1999), and Whitaker and Hamill (2002) for a discussion of covariance
biases in the single and double EnKFs.

Several algorithms have been proposed for simplifying and parallelising the coding
of the EnKF. One technique that is uniformly used is to form the Kalman gain (6.13)
from the ensemble without ever forming the actual background-error covariance
matrix. For a complex numerical weather prediction model with a high-dimensional
state vector, explicitly forming P̂b as in (6.10) would be computationally prohibitive;
for example, in a model with 107 elements in its state, storing and readily accessing
the 1014 elements of P̂b is not possible. However, in ensemble-based methods, K̂ can
be formed without ever explicitly computing the full P̂b (Evensen, 1994; Houtekamer
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and Mitchell, 1998). Instead, the components of P̂bHT and HP̂
b
HT of K̂ are computed

separately. Define

H(xb) = 1

m

n∑
i=1

H
(
xb

i
)
,

which represents the mean of the estimate of the observation interpolated from the
background forecasts. Then

P̂bHT = 1

m − 1

m∑
i=1

(
xb

i − xb
)(
H

(
xb

i
) − H(xb)

)T
, (6.14)

and

HP̂bHT = 1

m − 1

m∑
i=1

(
H

(
xb

i
) − H(xb)

)(
H

(
xb

i
) − H(xb)

)T
. (6.15)

Of course, if the number of observations is as large as the elements in the model
state, P̂bHT and HP̂bHT will be as large as P̂b, negating this advantage. However,
another possible coding simplification is serial processing. If observations have inde-
pendent errors uncorrelated with the background, they can be assimilated simulta-
neously or serially (sequentially), producing the same result (Kaminski et al., 1971;
Gelb, 1974 p. 304; Bishop et al., 2001). The analysis ensemble after the assimilation
of the first observation is used as the background ensemble for the assimilation of the
second, and so on. When observations are assimilated serially, for each observation
that is assimilated, HP̂bHT and R become scalars. Thus, the inverse (HP̂bHT + R)−1

in the gain matrix is trivial to compute. Also, the application of the covariance
localisation, discussed later, is much more straightforward to apply. Serial stochastic
ensemble filters have been demonstrated in Houtekamer and Mitchell (2001), Hamill
et al. (2001), Hamill and Snyder (2002), and Anderson (2003).

The equivalence of serial and simultaneous processing is only true if observations
have independent errors (Kaminski et al., 1971). Practically, however, many observa-
tions may have vertically or horizontally correlated errors. Consider two alternatives
to deal with this. First, if the size of a batch of observations with correlated errors
is relatively small, these correlated batches can be processed simultanteously with-
out much more computational expense (Houtekamer and Mitchell, 2001; Mitchell
et al., 2002; Houtekamer et al., 2005); the matrix inverse of (HP̂bHT + R)−1 should
not be prohibitively expensive. Another option is to transform the observations and
the forward operator so that the observations are effectively independent (Kaminski
et al., 1971).

Several investigators have proposed speeding up the performance of the stochastic
EnKF by separately updating different grid points independently on different proces-
sors. Keppenne and Rienecker (2002) designed an algorithm whereby all observations
in the region of a particular set of grid points are simultaneously assimilated to update
those grid points, while other distinct sets of grid points are updated independently.
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Houtekamer and Mitchell (2001) propose a method that uses both serial processing
of observations and processing different regions separately from one another. They
also discuss other ways of minimising the amount of information that needs to be
swapped between processors on a parallel computer. Reichle et al. (2002, 2003) and
Reichle and Koster (2004) demonstrate a parallelised EnKF algorithm applied to
soil-moisture state estimation.

6.4.2 Deterministic update algorithms

Several methods have been proposed to correct the background ensemble to new
observations so that P̂a → Pa without adding random noise. Algorithms that do not
add stochastic noise are called deterministic algorithms, so named because if the
background ensemble and the associated error statistics are known, the ensemble of
analysis states will be completely known as well. These algorithms (e.g. Lermusiaux
and Robinson, 1999; Bishop et al., 2001; Anderson, 2001; Whitaker and Hamill,
2002; Lermusiaux, 2002; Hunt et al., 2004) update in a way that generates the same
analysis-error covariance update that would be obtained from the Kalman filter,
assuming that the Kalman filter’s background-error covariance is modelled from the
background ensemble. Tippett et al. (2003) describe the similarities and differences
between several of these algorithms. In each, the background-error covariances are
never explicitly formed, with manipulations being performed using the matrix square
root (i.e. Eq. (6.9), the matrix of ensemble member deviations from the mean). As
pointed out in Tippett et al., since P̂b = 1

m−1 X′bX′bT
, given a matrix U representing

any n×n orthogonal transformation such that UUT = UTU = I, then P̂b can also
be represented as P̂b = 1

m−1 (X′bU)(X′bU)T. Hence, many square-root filters can be
formulated that produce the same analysis-error covariance.

Since Tippett et al. (2003) review many of these methods, we will explicitly
describe only one of these, a particularly simple implementation, the ‘ensemble
square-root filter’, or ‘EnSRF’, described by Whitaker and Hamill (2002), which is
mathematically equivalent to the filter described in Anderson (2001). The EnSRF
algorithm has been used for the assimilation at the scale of thunderstorms by Snyder
and Zhang (2003), Zhang et al. (2004) and Dowell et al. (2004). Whitaker et al. (2004)
used the algorithm for the global data assimilation of surface pressure observations.
Like the EnKF, the EnSRF conducts a set of parallel data assimilation cycles. It is
convenient in the EnSRF to update the equations for the ensemble mean (denoted by
an overbar) and the deviation of the ith member from the mean separately:

xa = xb + K̂
(
y − H

(
xb)), (6.16)

x′a
i = x′b

i − K̃H
(
x′b

i
)
. (6.17)

Here, K̂ is the traditional Kalman gain as in Eq. (6.13), and K̃ is the ‘reduced’ gain
used to update deviations from the ensemble mean.
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When sequentially processing independent observations, K̂, K̃, HP̂
b

and P̂bHT

are all n-dimensional vectors, and HP̂
b
HT and R are scalars. Thus, as first noted by

Potter (1964), when observations are processed one at a time,

K̃ =
(

1 +
√

R

HP̂
b
HT + R

)−1

K̂. (6.18)

The quantity multiplying K̂ in Eq. (6.18) thus becomes a scalar between 0 and
1. This means that, in order to obtain the correct analysis-error covariance with
unperturbed observations, a modified Kalman gain that is reduced in magnitude
relative to the traditional Kalman gain is used to update deviations from the ensemble
mean. Consequently, deviations from the mean are reduced less in the analysis using
K̃ than they would be using K̂. In the stochastic EnKF, the excess variance reduction
caused by using K̂ to update deviations from the mean is compensated for by the
introduction of noise to the observations.

In the EnSRF, the mean and departures from the mean are updated indepen-
dently according to Eqs. (6.16) and (6.17). If observations are processed one at a
time, the EnSRF requires about the same computation as the traditional EnKF with
perturbed observations, but for moderately sized ensembles and processes that are
generally linear and Gaussian, the EnSRF produces analyses with significantly less
error (Whitaker and Hamill, 2002). Conversely, Lawson and Hansen (2003) suggest
that if multimodality is typical and ensemble size is large, the EnKF will perform
better.

Another deterministic update algorithm is the ensemble transform Kalman filter
(ETKF) of Bishop et al. (2001). The ETKF finds the transformation matrix T such that
P̂a = 1

m−1 (X′bT)(X′bT)T → Pa (see Bishop et al. for details on the computation of
T). Compared with the EnSRF, an advantage of the ETKF is its computational speed;
a disadvantage is that the ETKF cannot apply covariance localisations (Section 6.5),
which may make the analyses very inaccurate unless large ensembles are used. The
ETKF has been successfully demonstrated for generating perturbed initial conditions
for ensemble forecasts about a mean state updated using 3D-Var (Wang and Bishop,
2003), and computationally efficient hybrid ETKF-variational schemes are being
explored (Etherton and Bishop, 2004), which may have an advantage in situations
with significant model errors.

6.4.3 A simple demonstration of stochastic and
deterministic update steps

Consider again the Bayesian data assimilation problem illustrated in Figure 6.1.
There, a bimodal two-dimensional probability distribution was updated to an obser-
vation of one component. Let’s explore the characteristics of the EnKF and EnSRF
update applied to this problem.
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A 100-member random sample was first generated from the bimodal pdf in Figure
6.1(a). These samples are denoted by the black dots in Figure 6.3(a). Let’s keep track
of the assimilation for one particular member, denoted by the larger black dot.

The EnKF and EnSRF adjust the background to the observations with weighting
factors that assume the distributions are normal. Estimated from this random sample,
the background-error covariance is

P̂b =
(

σ 2
(
xb

(1)

)
Cov

(
xb

(1), xb
(2)

)
Cov

(
xb

(1), xb
(2)

)
σ 2

(
xb

(2)

) )
�

(
150.73 109.70
109.70 203.64

)
.

The shape of this distribution is illustrated by the black contours in Figure
6.3(a). Here, the observation measures the same aspect as the first compo-
nent of our state variable: H = [1, 0]. As in Figure 6.1, assume R = 100, so
HP̂bHT + R � 150.73 + 100.00 = 250.73. P̂bHT � [150.73, 109.70]T, and hence
K̂ = PbHT(HPbHT + R)−1 � [0.60, 0.44]T.

For the EnKF, perturbed observations were then generated, denoted by the short
vertical lines along the abscissa in Figure 6.3(a). Equation (6.11) was then applied,
updating background samples to their associated perturbed observations, generating
analysis samples. For example, the enlarged black dot in Figure 6.3(a) was updated
to the perturbed observation marked with the ‘*’. The resulting analysis sample is the
enlarged black dot in Figure 6.3(b). For the noted sample, the first component of the
background state was much less than the mean, and the perturbed observation was
greater than the mean background state. The resulting analysis nudged the posterior
state toward the mean in both components. Other dots in Figure 6.3(b) denote other
updated EnKF member states.

In the EnSRF, the ensemble background mean state ∼ [47.93, 50.07]T was
updated to the mean observed value 58.0 using K̂ computed above and Eq. (6.16),
resulting in a mean analysed state of ∼ [53.55, 54.16]. As with the EnKF, given the
positive observation increment and the positive correlation of the background-error
covariances between the two components, both components of the mean state were
adjusted upward. EnSRF perturbations from the mean were updated using Eq. (6.17)
and the reduced gain, here K̃ � 0.613 K̂.

Compare the EnKF and EnSRF random samples of the posterior from Figures
6.3(b–c) and their fitted distribution (thin lines) with the correct Bayesian posterior
(bold lines). The samples from both distributions do not appear to sample randomly
the correct posterior. The EnKF and EnSRF posterior distributions are shifted slightly
toward lower values in both components. The EnSRF posterior samples preserve the
original shape from the prior, though their values are shifted in mean and compressed
together. In comparison, the EnKF samples are randomised somewhat through the
assimilation of the perturbed observations, and in this case, its distribution is rather
more diffuse than that of the EnSRF. The EnKF samples appear to overlap more with
the correct distribution than the samples from the EnSRF.
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Figure 6.3 Illustration of the EnKF and EnSRF with a two-dimensional state
variable and observations of the first component of the model state. (a) Random
samples (black dots) from the probability distribution in Figure 6.1(a), and the
original prior pdf, contoured in bold lines. Implied bivariate normal probability
background distribution estimated from the sample ensemble contoured in thin lines,
and the observation sampling distribution (dashed). Solid vertical lines along
abscissa denote individual perturbed observations sampled from this distribution.
The one large black dot and the perturbed observation marked with a star denote the
sample discussed in the text. (b) Analysed samples from the EnKF assimilation
scheme (dots), the implied analysis-error bivariate normal distribution from this
sample (thin contours), and the true posterior pdf from Figure 6.1 (bold contours).
(c) Analysed samples from EnSRF (dots), implied bivariate normal pdf (thin
contours) and the true posterior pdf (bold contours). In each panel, the three contours
enclose 75%, 50%, and 25% of the probability density, respectively.
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Why can’t ensemble-based methods correctly adjust the prior ensemble to the new
observations so that the samples reflect a random draw from the Bayesian posterior?
The reason is that ensemble-based methods implicitly assume a second-moment
closure; that is, the distributions are assumed to be fully described by means and
covariances. The example shown above demonstrates that some inaccuracies can
be expected in these analyses if indeed there are higher-moment details in these
distributions (Lawson and Hansen, 2004). Hopefully, highly non-normal distributions
are not frequently encountered, as radically more expensive and unproven techniques
than those discussed here may then be required (e.g. Gordon et al., 1993).

6.4.4 Ensemble propagation of the pdf and model-error
parametrisation

In real-world applications, background-error covariances cannot simply be estimated
at the next assimilation cycle by conducting an ensemble of deterministic forecasts
forward from the current cycle’s analyses. Because of model deficiencies, even if the
true state of the atmosphere is perfectly known, the resulting forecast will be imper-
fect: xt

(t+1) = M
(
xt

(t)

) + η, where here we denote the time index in parentheses and
M is again the non-linear forecast operator. Let’s first assume that our forecast model
is unbiased 〈η〉 = 0, again with model-error covariance 〈ηηT〉 = Q (here the angle
brackets denote a statistical expected value). In practice, the assumption of no bias
is probably not justified, and if the bias can be determined, the forecasts ought to
be corrected for this bias (Dee and Todling, 2000; Evensen, 2003), or more ideally,
the forecast model ought to be improved. In any case, consider the error covari-
ance at the next assimilation time. Assume again that forecast error due to initial-
condition uncertainty and model error are uncorrelated 〈(M(xa

(t)) − M(xt
(t)))η

T〉 = 0,
and assume linearity of the error growth M(xa

(t)) − M(xt
(t)) � M(xa

(t) − xt
(t)). Then

the true background-error covariance at the next assimilation time is〈(
xb
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(t+1)

)(
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〉
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〉
+ 〈

ηηT
〉

= MPa
(t)M

T + Q (6.19)

where M is again the Jacobian of the non-linear operator. Consider what happens
when covariances are estimated directly from an ensemble of forecasts propagated
forward from an ensemble of i = 1, . . . , m analyses using the fully non-linear forecast
model

xb
i(t+1) = M

(
xa

i(t)

)
. (6.20)
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Calculating the expected covariance, we get〈(
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Comparing (6.19) and (6.21), it is apparent that an ensemble of analyses that are
simply propagated forward with the non-linear forecast model will have too small
an expected amount of spread, missing the extra model-error covariance Q. Let us
define some hypothetical set of background forecasts at time t + 1 that do have the
correct covariance, i.e. define x̆b

i(t+1) such that 〈(x̆b
i(t+1) − x̆b

(t+1))(x̆b
i(t+1) − x̆b

(t+1))T〉 =
MP̂

a
(t)M

T + Q. Such an ensemble is possible if we add noise to our existing ensemble:

x̆b
i(t+1) = xb

i (t+1) + ξi, (6.22)

where 〈ξiξ
T
i 〉 = Q, 〈ξi〉 = 0, and 〈xb

i(t+1) ξ
T
i 〉 = 0.

Several methods have been proposed for incorporating noise into the ensemble
of forecasts so that they account for model error. First, the forecast model could be
stochastic-dynamic instead of deterministic, with additional terms in the prognostic
equations to represent interactions with unresolved scales and/or misparameterised
effects; in essence, M is changed so that the ensemble of forecasts integrates random
noise in addition to the deterministic forecast dynamics, as in Eq. (6.4). Over an
assimilation cycle, this additional variance added to the ensemble as a result of
integrating noise should be designed to increase the covariance by the missing Q. A
second possibility is that one may choose to run a forecast model without integrating
noise but to add noise to each member at the data assimilation time so as to increase
the ensemble variance appropriate to the missing Q. Third, it may be possible to use
a multimodel ensemble to estimate covariances, or to achieve satisfactory results by
inflating the deviations of ensemble members about their mean.

Little work has yet been done on the first of these three approaches. Buizza et al.
(1999) demonstrated a simple technique for integrating noise to account for deter-
ministic subgrid-scale parametrisations. Under their methodology, the parametrised
terms in the prognostic equations were multiplied by a random number. Shutts (2004)
describes an updated stochastic backscatter approach. Penland (2003) outlines a more
general approach for integrating system noise in numerical models. To date, how-
ever, a comprehensive noise integration scheme has not yet been demonstrated in an
operational weather prediction model. Palmer (2001) discusses the potential appeal
of such an approach.
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The second general approach is to augment the ensemble-estimated model of
covariances during the update step with noise representing the missing model error
covariances. Mitchell and Houtekamer (2000) describe one such approach whereby
innovation statistics were used to develop a simple model-error covariance model.
More recently, Houtekamer et al. (2005) have tested an additive-error filter with oper-
ational data. Hamill and Whitaker (2005) have recently attempted to use differences
between high- and low-resolution model forecasts to parametrise the additive errors.

A third approach, use of multiple forecast models for generating the ensemble of
background forecasts (e.g. Houtekamer et al., 1996b; Harrison et al., 1999; Evans
et al., 2000; Ziehmann, 2000; Richardson, 2000; Hou et al., 2001), is appealing for its
simplicity. A wider range of forecasts is typically generated when different weather
forecast models are used to forecast the evolution of different ensemble members.
Unfortunately, it is not clear whether or not the differences between members are
actually representative of model errors; initial experimentation has shown that the
multimodel ensembles tend to produce unrealistic estimates of error covariances.
Forecast errors at larger scales ought to be mostly in balance, but when estimated
from multimodel ensembles, preliminary results suggest that the errors can be greatly
out of balance, with detrimental effects on the subsequent assimilation (M. Buehner,
personal communication). See also Hansen (2002) for a discussion of the use of
multimodel ensembles in data assimilation in a simple model.

A last approach is to modify the observation- or background-error covariances in
some manner so they draw more to the observations. Pham (2001) proposes reducing
R with a ‘forgetting factor’ to achieve this. Another approach is ‘covariance inflation’,
discussed in Anderson and Anderson (1999). Ensemble members’ deviations about
their mean are inflated by an amount r (slightly greater than 1.0) before the first
observation is assimilated:

xb
i ← r

(
xb

i − xb
) + xb. (6.23)

Here, the operation ← denotes a replacement of the previous value of xb
i . Application

of a moderate inflation factor has been found to improve the accuracy of assimilations
(Hamill et al., 2001; Whitaker and Hamill, 2002; Whitaker et al., 2004). Note that
inflation increases the spread of the ensemble, but it does not change the subspace
spanned by the ensemble. Hence, if model error projects into a substantially different
subspace, this parametrisation may not be effective.

6.4.5 Covariance localisation

In ensemble assimilation methods, the accuracy of error covariance models is espe-
cially important. Unlike 3D-Var, the effects of a misspecification of error statistics
can affect the analysis-error covariance, which is then propagated forward in time.
Hence, if the analysis errors are underestimated in one cycle, the forecast errors
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may be underestimated in the following cycle, underweighting the new observations.
The process can feed back on itself, the ensemble assimilation method progressively
ignoring observational data more and more in successive cycles, leading eventually
to a useless ensemble. This is known as filter divergence (e.g. Maybeck, 1979, p. 337;
Houtekamer and Mitchell, 1998).

One of the most crucial preventatives is to model background-error covariances
realistically (Hamill et al., 2001). Of course, an adequate parametrisation of model
error will be necessary in all but perfect model simulations (see previous section).
However, filter divergence can occur even in simulations where the forecast model
is perfect, for background-error covariances will incur large sampling errors when
estimated from small ensembles. While more ensemble members would be desirable
to reduce these sampling errors, more members requires more computational expense.

One common algorithmic modification to improve background-error covariance
estimates from small ensembles is covariance localisation. The covariance estimate
from the ensemble is multiplied point by point with a correlation function that is 1.0
at the observation location and zero beyond some prespecified distance. Houtekamer
and Mitchell (1998) and Evensen (2003) simply use a cut-off radius so that obser-
vations are not assimilated beyond a certain distance from the grid point. This may
be problematic in situations where observations are sparse, for then there will be
grid points affected by the observation adjacent to grid points unaffected by the
observation, potentially introducing spurious discontinuities.

A preferable approach is to use a correlation function that decreases monotonically
with increasing distance (Houtekamer and Mitchell, 2001). Mathematically, to apply
covariance localisation, the Kalman gain K̂ = P̂bHT(HP̂bHT + R)−1 is replaced by
a modified gain

K̂ = (ρS ◦ P̂b)HT (H(ρS ◦ P̂b)HT + R)−1, (6.24)

where the operation ρS◦ in (6.24) denotes a Schur product (an element-by-element
multiplication) of a correlation matrix S with local support with the covariance model
generated by the ensemble. For horizontal localisation, one such correlation matrix
can be constructed using an approximately Gaussian-shaped function that is actu-
ally a compactly supported, fourth-order piece-wise polynomial, described in Gas-
pari and Cohn (1999). The Schur product of matrices A and B is a matrix C of
the same dimension, where ci j = ai j bi j . When covariance localisation is applied
to smaller ensembles, it can actually result in more accurate analyses than would
be obtained from larger ensembles without localisation (Houtekamer and Mitchell,
2001). Mathematically, localisation increases the effective rank of the background-
error covariances (Hamill et al., 2001). In the extreme, if the correlation matrix S
were the identity matrix, the covariance model would consist of grid points with vari-
ances and zero covariance and the rank of the covariance matrix after localisation
would increase from m − 1 to n, the dimension of the state vector. In practice, such an
extreme localisation would harm the quality of the analysis, destroying the mass-wind
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balance (Mitchell and Houtekamer, 2002; Lorenc, 2003) and prohibiting the observa-
tion from changing the analysis at nearby grid points. Hence, broader localisations are
typically used. Generally, the larger the ensemble, the broader the optimum correla-
tion length scale of the localisation function (Houtekamer and Mitchell, 2001; Hamill
et al., 2001). See Whitaker et al. (2004) and Houtekamer et al. (2005) for examples
of ensemble assimilations that also include a vertical covariance localisation.

As a concrete example of horizontal covariance localisation, consider Figure 6.4.
This used the same data set as in Figure 6.2, a global ensemble-data assimilation
scheme utilising only sea-level pressure observations (Whitaker et al., 2004). Part
(a) of Figure 6.4 (colour plate) provides a map of sea-level pressure correlations at grid
points around the northern hemisphere with a grid point in the western Pacific Ocean
on 0000 UTC 14 December 2001. When directly estimated using the 25-member
ensemble subsampled from the 200-member ensemble (Figure 6.4b), correlations
for grid points in the region around the observation are positive. The shape of the
correlation function was anisotropic, with positive correlations generally limited to
a region east of the axis of the cyclone. Background errors for regions in the east-
ern Pacific and near the Greenwich meridian also appeared to be highly correlated
with background errors at the observation location. However, when the correlations
are estimated from a 200-member ensemble, it is apparent that these distant corre-
lations in the 25-member ensemble were artefacts of the limited sample size. The
errors in the eastern Pacific and along the Greenwich meridian were not dynam-
ically interconnected with the errors in the western Pacific. When the covariance
localisation function (Figure 6.4c) was applied to the 25-member ensemble, the
resulting correlation model (Figure 6.4d) more closely resembles that from the larger
ensemble.

In applying the covariance localisation, distant grid points are forced to be statisti-
cally independent. Should they be? As a thought experiment, consider a two-member
ensemble. Dynamically, there is no a-priori reason to expect that, say, the growth of
spread over Japan is dynamically interconnected to the growth of spread over Africa,
and neither interconnected with the growth of differences over South America. This
two-member ensemble may identify many distinct regions where rapid growth of
differences is occurring, but with a covariance model estimated from only two mem-
bers, the ensemble assumes they are all intimately coupled. Covariance localisation
is thus an heuristic attempt to modify the model of background-error covariances so
that a limited-size ensemble will not represent distant, distinct features as dynami-
cally interrelated when in fact they only appear to be so due to limited sample size.
If indeed distant regions are dynamically coupled, the localisation will cause the loss
of this information. The effect on the data assimilation will be that observations will
not be able to change the analysis and reduce the analysis-error variance in distant
regions; local observations will have to be relied upon instead. This is judged to be
less detrimental than the opposite, to let observations affect distant regions when this
is inappropriate.
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Figure 6.4 (See also colour plate section.) Illustration of covariance localisation.
(a) Correlations of sea-level pressure directly estimated from 25-member ensemble
with pressure at a point in the western Pacific (colours). Solid lines denote ensemble
mean background sea-level pressure contoured every 8 hPa. (b) As in (a), but
using 200-member ensemble. (c) Covariance localisation correlation function.
(d) Correlation estimate from 25-member ensemble after application of covariance
localisation.
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6.4.6 Pseudocode for an ensemble Kalman filter

The previous detail on ensemble-based assimilation algorithms may make them
appear more complex than they are. In many circumstances, the basic algorithm
is extremely easy to code. Here some pseudocode is provided for the EnSRF filter
discussed in Section 6.4.2. Assume that model error is treated through the introduc-
tion of additive error noise, and assume that observations have independent errors,
so that they can be serially processed. The steps are:

1. Construct an ensemble of arbitrary initial conditions with a large amount of
spread, perhaps by taking random samples from the model’s climatology.

2. Perform the forecast step; integrate an ensemble of short-range forecasts
forward to the time when the next set of observations are available (Eq. 6.20).

3. Perform the EnSRF update step:
(a) Add samples of model error to all members (6.22).

(b) Loop through all the available observations.
(i) Determine the ensemble-mean background (6.8) and the matrix of

ensemble perturbations (6.9).

(ii) Determine the subcomponents of the estimated Kalman gain (6.14
and 6.15), applying covariance localisation (6.24) if desired.

(iii) Form the Kalman gain (6.13) and reduced Kalman gain (6.18).

(iv) Update the ensemble mean (6.16) and the individual perturbations
(6.17).

(v) Set the background mean and perturbations for the assimilation of
the next observation to the newly updated analysis mean and
perturbations.

4. Add the updated mean and the perturbations together to reform the ensemble
of analysed states.

5. Go back to step 2.

6.5 Discussion

6.5.1 Major research questions

Researchers are just beginning to test ensemble-based atmospheric data assimilation
methods in full numerical weather prediction modelling systems using real obser-
vations. From these and other studies, we can make an educated guess at some of
the major issues that will need to be resolved before operational implementation is
practical.

As discussed previously, in order to ensure a high-quality analysis, great care must
be taken to ensure that the error-covariance models are realistic in ensemble meth-
ods. These methods cycle the covariance estimates. Thus, for example, if observation
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errors are assumed to be unbiased and independent but in fact are biased or corre-
lated (Liu and Rabier, 2003), these errors will cause the analysis-error covariance
to be misestimated, later affecting the subsequent background-error estimates and
subsequent fit to the observations. Accurate estimation of model error in particular
is likely to be crucial, as was discussed in Section 6.4.4.

Practically, an ensemble-based assimilation method ought to be self-correcting,
able to detect when the system is not appropriately fitting the observations. Theoret-
ically, this can be done by monitoring the innovation statistics (y − H(xb)), which
ought to be white noise with zero mean and covariance (HP̂bHT + R) (Maybeck,
section 5.4; Dee, 1995). Perhaps the influence of model error can then be increased
or decreased so the innovation statistics have the correct properties (Mitchell and
Houtekamer, 2000).

Other problems may be more subtle. For instance, initial tests with real observa-
tions (Houtekamer et al., 2005) suggest that when many observations are frequently
assimilated, the errors due to chaotic effects may not grow rapidly after the analysis,
as expected. The reasons for this are not yet fully apparent. It is known that the more
observations that are assimilated, the spectrally whiter and more random are the
analysis errors (Hamill et al., 2002); consequently, it may take longer than the time
between updates for the dynamics to organise the perturbations into growing struc-
tures. The slow growth of analysis errors may also be exacerbated by the addition of
random model error to the background forecasts, because of imbalances introduced
by covariance localisation, and/or because the computational costs require the use of
reduced-resolution models with unrealistically slow error growth characteristics.

A final major concern is the computational expense. The cost of most ensemble
methods scales as the number of observations times the dimension of the model
state times the number of ensemble members. In the coming years, observations
will increase in number faster than computer processing speed. It may be possible to
mitigate this problem in one of several ways. Perhaps computations can be speeded up
through parallelisation (Houtekamer and Mitchell, 2001; Keppenne and Rienecker,
2002), perhaps the method can be cast in a variational framework where the costs
do not scale with the number of observations (Hamill and Snyder, 2000; Etherton
and Bishop, 2004), or perhaps many high-density observations can be combined into
fewer ‘superobservations’ (Lorenc, 1981).

6.5.2 Comparisons with 4D-Var

An important question is whether, for a given amount of computer time, a better
analysis could be produced by an ensemble-based assimilation or by the current state-
of-the art, four-dimensional variational analysis (4D-Var; Le Dimet and Talagrand,
1986; Courtier et al., 1994; Rabier et al., 1998, 2000). Such direct comparisons
of ensemble assimilation methods and 4D-Var in realistic scenarios have yet to be
performed and ideally should wait until ensemble methods have been given a chance
to mature.
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Some intelligent guesses can be made regarding their relative advantages and
disadvantages (for another view, see Lorenc, 2003). Ensemble-based methods are
much easier to code and maintain, for neither a tangent linear nor an adjoint of
the forecast model is required, as they are with 4D-Var. Ensemble-based meth-
ods produce an ensemble of possible analysis states, providing information on
both the mean analysis and its uncertainty. Consequently, the ensemble of analy-
sis states can be used directly to initialise ensemble forecasts without any additional
computations.

Another advantage is that if the analysis uncertainty is very spatially inhomo-
geneous and time dependent, in ensemble-based methods this information will be
fed through the ensemble from one assimilation cycle to the next. In comparison, in
4D-Var, the assimilation typically starts at each update cycle with the same stationary
model of error statistics. Hence, the influence of observations may be more prop-
erly weighted in ensemble-based methods than in 4D-Var. Ensemble-based methods
also provide a direct way to incorporate the effects of model imperfections directly
into the data assimilation. In comparison, in current operational implementations of
4D-Var, the forecast model dynamics are a strong constraint (Courtier et al., 1994;
but see Bennett et al., 1996 and Zupanski, 1997 for possible alternatives). If the
forecast model used in 4D-Var does not adequately represent the true dynamics of
the atmosphere, model error may be large, and 4D-Var may fit a model trajectory
that was significantly different from the trajectory of the real atmosphere during that
time window.

Ensemble-based techniques may have disadvantages relative to 4D-Var, including
some that will only be discovered through further experimentation. Most ensemble-
based techniques are likely to be at least as computationally expensive as 4D-Var,
and perhaps significantly more expensive when there are an overwhelmingly large
number of observations (though see Hamill and Snyder, 2000 and Etherton and
Bishop, 2004 for more computationally efficient alternatives). Ensemble approaches
may be difficult to apply in limited-area models because of difficulty of specifying an
appropriate ensemble of lateral boundary conditions, and the method is very sensitive
to misestimation of the error covariances.

6.5.3 Applications of ensemble-based assimilation methods

Ensemble data assimilation techniques offer the potential of generating calibrated
analyses that may be useful for a variety of applications. Anderson (2001) showed that
the ensemble techniques can be used for parameter estimation. Hamill and Snyder
(2002) showed that ensemble assimilation techniques facilitate the calculation of
regions where adaptive observations are necessary. Snyder and Zhang (2003), Zhang
et al. (2004), and Dowell et al. (2004) demonstrate the feasibility of ensemble filters
for mesoscale data assimilation of radar observations. Reichle et al. (2002, 2003)
apply ensemble filters to estimation of soil moisture. Hamill et al. (2003) demonstrate
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how analysis-error covariance singular vectors, the most rapidly growing forecast
structures consistent with analysis errors, can be diagnosed using ensemble filters.

6.6 Conclusions

This chapter presented a brief tutorial of ensemble-based atmospheric data assimi-
lation. The technique is being explored by a rapidly growing number of researchers
as a possible alternative to other atmospheric data assimilation techniques such as
three- and four-dimensional atmospheric data assimilation. The technique is appeal-
ing for its comparative algorithmic simplicity and its ability to deal explicitly with
model error. Testing of ensemble filters has progressed rapidly over the past few
years from perfect-model experiments in toy dynamical systems to the assimilation
of real observations into global NWP models. Recent results are both suggestive of
the potential, though substantial continued development may be necessary for these
methods to become competitive with or superior to the existing four-dimensional
variational techniques.
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7

Ensemble forecasting and data assimilation: two
problems with the same solution?

Eugenia Kalnay, Brian Hunt, Edward Ott, Istvan Szunyogh
University of Maryland, College Park

7.1 Introduction

Until 1991, operational numerical weather prediction (NWP) centres used to run a
single computer forecast started from initial conditions given by the analysis, which
is the best available estimate of the state of the atmosphere at the initial time. In
December 1992, both the US National Centers for Environmental Prediction (NCEP)
and ECMWF started running ensembles of forecasts from slightly perturbed initial
conditions (Molteni and Palmer, 1993; Toth and Kalnay, 1993; Tracton and Kalnay,
1993; Toth and Kalnay, 1997; Buizza et al., 1998; Buizza, this volume).

Ensemble forecasting provides human forecasters with a range of possible solu-
tions, whose average is generally more accurate than the single deterministic forecast
(e.g. Figures 7.3 and 7.4), and whose spread gives information about the forecast
errors. It also provides a quantitative basis for probabilistic forecasting.

Schematic Figure 7.1 shows the essential components of an ensemble: a control
forecast started from the analysis, two additional forecasts started from two pertur-
bations to the analysis (in this example the same perturbation is added and subtracted
from the analysis so that the ensemble mean perturbation is zero), the ensemble
average, and the ‘truth’, or forecast verification, which becomes available later. The
first schematic shows an example of a ‘good ensemble’ in which ‘truth’ looks like a
member of the ensemble. In this case, the ensemble average is closer to the truth than
the control due to non-linear filtering of errors, and the ensemble spread is related
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Figure 7.1 Schematic of the essential components of an ensemble of forecasts. The
analysis (denoted by a cross) constitutes the initial condition for the control forecast
(dotted); two initial perturbations (dots around the analysis), chosen in this case to be
equal and opposite; the perturbed forecasts (full line); the ensemble average (long
dashes); and the verifying analysis or truth (dashed). (a) is a ‘good ensemble’ in
which the truth is a plausible member of the ensemble. (b) is an example of a bad
ensemble, quite different from the truth, pointing to the presence of deficiencies in
the forecasting system (in the analysis, in the ensemble perturbations and/or in the
model).

to the forecast error. The second schematic is an example of a ‘bad ensemble’: due
to a poor choice of initial perturbations and/or to model deficiencies, the forecasts
are not able to track the verifying truth, and remain relatively close to each other
compared with the truth. In this case the ensemble is not helpful to the forecasters at
all, since the lack of ensemble spread would give them unjustified overconfidence in
the erroneous forecast. Nevertheless, for NWP development, the ‘bad’ ensemble is
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still very useful: after verification time, the poor performance of the ensemble clearly
indicates that there is a deficiency in the forecasting system. A single failed ‘deter-
ministic’ forecast, by contrast, would not be able to distinguish between a deficiency
in the system and growth of errors in the initial conditions as the cause of failure.

Ideally, the initial perturbations should sample well the analysis ‘errors of the day’
and the spread among the ensemble members should be similar to that of the forecast
errors. The two essential problems in the design of an ensemble forecasting system
are how to create effective initial perturbations, and how to handle model deficiencies,
which, unless included in the ensemble, result in the forecast error being larger than
the ensemble spread.

In this chapter we give a brief historic review of ensemble forecasting, current
methods to create perturbations, and discuss ensemble Kalman filtering methods
designed to perform efficient data assimilation, but which can, at the same time,
provide optimal initial ensemble perturbations and estimate the model errors. We
compare the properties of ensemble Kalman filters with those of 4D-Var, the only
operational data assimilation method that currently includes the effect of the ‘errors
of the day’.

7.2 Ensemble forecasting methods

Human forecasters have always performed subjective ensemble forecasting by either
checking forecasts from previous days, and/or comparing forecasts from different
centres, approaches similar to lagged forecasting and multiple systems forecasting.
The consistency among these forecasts at a given verification time provided a level
of confidence in the forecasts, confidence that changed from day to day and from
region to region.

7.2.1 Early methods

Epstein (1969) introduced the idea of stochastic-dynamic forecasting (SDF), and
pointed out that it could be also used in the analysis cycle to provide the forecast
error covariance. Epstein designed SDF as a shortcut to estimate the true probability
distribution of the forecast uncertainty, given by the Liouville equation (Ehrendorfer,
this volume), which Epstein approximated running a huge (500) number of perturbed
(Monte Carlo) integrations for the three-variable Lorenz (1963) model. However,
since SDF involves the integration of forecast equations for each element of the
covariance matrix, this method is still not computationally feasible for models with
a large number of degrees of freedom.

Leith (1974) suggested the direct use of a Monte Carlo forecasting approach
(MCF), where random perturbations sampling the estimated analysis error covariance
are added to the initial conditions. He indicated that a relatively small number of
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integrations (of the order of eight) is enough to approximate an important property of
an infinite ensemble. In a large ensemble the average forecast error variance at long
time leads converges to the climatological error variance, whereas individual forecast
errors have an average error variance that is twice as large. Since the estimation of the
analysis error covariance was constant in time, the MCF method did not include the
effects of ‘errors of the day’. Errico and Baumhefner (1987) applied this method to
realistic global models, using perturbations that represented a realistic (but constant)
estimation of the error statistics in the initial conditions. Hollingsworth (1980) showed
that for atmospheric models, random errors in the initial conditions took too long to
spin up into growing ‘errors of the day’, making MCF an inefficient approach for
ensemble forecasting.

Hoffman and Kalnay (1983) suggested, as an alternative to MCF, the lagged
averaged forecasting (LAF) method, in which forecasts from earlier analyses were
included in the ensemble. Since the ensemble members are forecasts of different
length, they should be weighted with weights estimated from the average forecast
error for each lead time. Hoffman and Kalnay found that, compared with MCF, LAF
resulted in a better prediction of skill (a stronger relationship between ensemble
spread and error), presumably because LAF includes effects from ‘errors of the day’.
The main disadvantage of LAF, namely that ‘older’ forecasts are less accurate and
should have less weight, was addressed by the scaled LAF (SLAF) approach of
Ebisuzaki and Kalnay (1991), in which the LAF perturbations (difference between
the forecast and the current analysis) are scaled by their ‘age’, so that all the initial
SLAF perturbations have errors of similar magnitude. They also suggested that the
scaled perturbations should be both added and subtracted from the analysis, thus
increasing the ensemble size and the probability of ‘encompassing’ the true solution
within the ensemble. SLAF can be easily implemented in both global and regional
models, including the impact of perturbed boundary conditions (Hou et al., 2001).

7.2.2 Operational Ensemble Forecasting methods

In December 1992 two methods to create perturbations became operational at NCEP
and at ECMWF. They are based on bred vectors and singular vectors respectively,
and like LAF, they include ‘errors of the day’. These and other methods that have
since become operational or are under consideration in operational centres are briefly
discussed. More details are given in Kalnay (2003).

Singular vectors

Singular vectors (SVs) are the linear perturbations of a control forecast that grow
fastest within a certain time interval (Lorenz, 1965), known as ‘optimisation period’,
using a specific norm to measure their size. SVs are strongly sensitive to the
length of the interval and to the choice of norm (Ahlquist, 2000). Ehrendorfer and
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Tribbia (1997) showed that if the initial norm used to derive the singular vectors is
the analysis error covariance norm, then the initial singular vectors evolve into the
eigenvectors of the forecast error covariance at the end of the optimisation period.
This indicates that if the analysis error covariance is known, then singular vectors
based on this specific norm are ideal perturbations.

ECMWF implemented an ensemble system with initial perturbations based on
singular vectors using a total energy norm (Molteni and Palmer, 1993; Molteni et al.,
1996; Buizza et al., 1997; Palmer et al., 1998; Buizza, this volume).

Bred vectors

Breeding is a non-linear generalisation of the method to obtain leading Lyapunov
vectors, which are the sustained fastest growing perturbations (Toth and Kalnay,
1993, 1997; Szunyogh and Toth, 2002). Bred vectors (BVs) (like leading Lyapunov
vectors) are independent of the norm and represent the shapes of the instabilities
growing upon the evolving flow. In areas where the evolving flow is very unstable
(and where forecast errors grow fast), the BVs tend to align themselves along very
low dimensional subspaces (the locally most unstable perturbations). An example of
such a situation is shown in Figure 7.2, where the forecast uncertainty in a 2.5-day
forecast of a storm is very large, but the subspace of the ensemble uncertainty lies
within a one-dimensional space. In this extreme (but not uncommon) case, a single
observation at 500 hPa would be able to identify the best solution. The differences
between the forecasts are the bred vectors. The non-linear nature of BVs allows for
the saturation of fast-growing instabilities such as convection, or, in the case of EL
Niño–Southern Oscillation ENSO coupled instabilities, the weather noise (Peña and
Kalnay, 2004).

In unstable areas of fast growth, BVs tend to have shapes that are independent of the
forecast length or the norm, and depend only on the verification time. This suggests
that forecast errors, to the extent that they reflect instabilities of the background flow,
should have shapes similar to bred vectors, and this has been confirmed with model
simulations (Corazza et al., 2003).

NCEP implemented an ensemble system based on breeding in 1992, and the US
Navy, the National Centre for Medium Range Weather Forecasting in India, and
the South African Meteorological Weather Service implemented similar systems.
The Japanese Meteorological Agency implemented an ensemble system based on
breeding, but they impose a partial global orthogonalisation among the bred vectors,
reducing the tendency of the bred vectors to converge towards a low dimensional
space of the most unstable directions (Kyouda and Kusunoki, 2002).

Multiple data assimilation ensembles

Houtekamer et al. (1996) developed a system based on running an ensemble of data
assimilation systems using perturbed observations, implemented in the Canadian
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Figure 7.2 ‘Spaghetti plots’ showing a 2.5 day ensemble forecast verifying on
95/10/21. Each 5640 gpm contour at 500 hPa corresponds to one ensemble forecast,
and the dotted line is the verifying analysis. Note that the uncertainty in the location
of the centre of the predicted storm in the Midwest of the USA is very large, but that
it lies on a one-dimensional space (thick line).

Weather Service. Hamill et al. (2000) showed that in a quasi-geostrophic system, a
multiple data assimilation system performs better than the singular vectors and the
breeding approaches. With respect to the computational cost, the multiple data assim-
ilation system and the singular vector approach are comparable, whereas breeding is
essentially cost free.

Perturbed physical parametrisations

The methods discussed above only include perturbations in the initial conditions,
assuming that the error growth due to model deficiencies is small compared with
that due to unstable growth of initial errors. Several groups have also introduced
changes in the physical parametrisations to allow for the inclusion of uncertainties in
the model formulation (Houtekamer et al., 1996; Stensrud et al., 2000). Buizza et al.
(1999) developed a perturbation approach that introduces a stochastic perturbation
of the impact of subgrid-scale physical parametrisations by multiplying the time
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Figure 7.3 Average anomaly correlation of the bred vector ensembles during the
winter of 1997/1998 (data courtesy Jae Schemm, of NCEP). Note that, on the
average, the individual perturbed forecasts are worse than the control, but their
ensemble average is better.

derivative of the ‘physics’ by a random number normally distributed with mean 1
and standard deviation 0.2. This simple approach resulted in a clear improvement of
the performance of the ensemble system.

Both the perturbations of the initial conditions and of the subgrid-scale physical
parametrisations have been shown to be successful towards achieving the goals of
ensemble forecasting. However, since they both introduce changes to the best estimate
of the initial conditions and the model, which are used for the control forecast, it
is not surprising that on the average, the individual forecasts are worse than the
unperturbed control (see example in Figure 7.3). Nevertheless, the ensemble average
is an improvement over the control, especially after the perturbations grow into a
non-linear regime that tends to filter out some of the errors because the ensemble
solutions tend to diverge in the most uncertain components of the forecast.

Multiple system ensembles

An alternative to the introduction of perturbations is the use of multiple systems.
Different operational or research centres, each aiming to be the best, choose different
competitive approaches to data assimilation and forecasting systems. In principle, a
combination of these different systems should sample well the uncertainty in both
the models and the initial conditions. It has been known that the ensemble average
of multiple centre forecasts is significantly better than even the very best individual
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(a) Mean Pacific Typhoon Track Errors, West Pacific, 1998 Ð 2000

(b) Mean Pacific Typhoon Intensity Errors for West Pacific, 1998 Ð 2000

1000

E
rr

or
 (

km
)

E
rr

or
 (

kn
ots

)

900
800
700
600
500
400
300
200
100

0

0

10

20

30

40

50

60

70

80

12 24 36 48 60

Hr of Forecast

72 84 96 108 120

12 24 36 48 60

Hr of Forecast

72 84 96 108 120

SUPENS

ECMWF

MRF

NOGAPS

JMA-GSM

JMA-TYM

ENSMEAN

SUPENS

ENSMEAN

JMA-TYM

JMA-GSM

NOGAPS

MRF

ECMWF

UKMET

Figure 7.4 Mean typhoon track and intensity errors for the west Pacific, 1998–2000,
for several global models (ECMWF, UK MetOffice, US MRF, US Navy NOGAPS,
Japan JMA global and typhoon models, the ensemble mean of all these models), and
a superensemble obtained by linear regression trained on the first half of the same
season. From Kumar et al. (2003).

forecasting system (e.g. Kalnay and Ham, 1989; Fritsch et al., 2000; Arribas et al.,
2005). This has also been shown to be true for regional models (Hou et al., 2001).
Krishnamurti et al. (1999), this volume) introduced the concept of ‘superensemble’,
a multiple system ensemble where linear regression is used to correct the bias of each
of the operational systems from past performance, and the predictors are combined to
minimise the ensemble average prediction errors. This results in remarkable forecast
improvements (e.g. Figure 7.4). This method is also called ‘poor person’ ensemble
approach to reflect that it does not require running a forecasting system (Arribas
et al., 2005).
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Other methods

This field is changing quickly, and improvements and changes to the operational
systems are under development. For example, ECMWF has implemented changes in
the length of the optimisation period for the SVs, a combination of initial and final
or evolved SVs (which are more similar to BVs), and the introduction of a stochastic
element in the physical parametrisations, all of which contributed to improvements
in the ensemble performance (Buizza et al., 2000). NCEP is considering the imple-
mentation of the ensemble transform Kalman filter (Bishop et al., 2001) to replace
breeding since the BVs have a tendency to converge to the leading Lyapunov vec-
tors, providing insufficient spread. A recent comparison of the ensemble performance
of the Canadian, US and ECMWF systems (Buizza et al., 2005) suggests that the
ECMWF SV perturbations behave well beyond the two-day optimisation period, at
which time the model advantages of the ECMWF system are also paramount, giving
the best performance. The BV perturbations of NCEP are somewhat better at short
ranges, and the multiple analysis method performs well at all ranges. See other chap-
ters in this volume for further discussions on applications of ensemble forecasting
at all ranges: Hagedorn et al., Lalaurette and van der Grijn, Mylne, Palmer, Shukla
and Kinter, Tibaldi et al., Timmermann and Jin, Latif et al., Toth et al., Waliser, and
Webster et al.

7.3 Ensemble Kalman filtering for data assimilation and
ensemble forecasting

As indicated before (e.g. Ehrendorfer and Tribbia, 1997), ‘perfect’ initial perturba-
tions for ensemble forecasting should sample well the analysis errors. Thus, ideal
initial perturbations δxi in an ensemble with K members should have a covariance
that spans well the analysis error covariance A:

1

K − 1

K∑
i=1

δxiδxT
i ≈ A (7.1)

Until recently, the problem has been the lack of knowledge of A, which changes
substantially from day to day and from region to region due to instabilities of the
background flow. These instabilities, associated with the ‘errors of the day’, are not
taken into account in data assimilation systems, except for 4D-Var and Kalman filter-
ing (KF), methods that are computationally very expensive. 4D-Var has been imple-
mented at ECMWF, Météo-France, the Canadian Meteorological Service (CMS) and
Japan Meteorological Agency (Rabier et al., 2000; Desroziers et al., 2003; Andersson
et al., 2004; Gauthier, 2004). The implementation of 4D-Var at ECMWF required
some cost-saving simplifications such as reducing the resolution of the analysis from
∼40 km in the forecast model to ∼120 km in the assimilation model. Even at the
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lower resolution, the 4D-Var clearly outperformed the previous operational 3D-Var.
Versions of 4D-Var are also under development in other centres.

The original formulations of Kalman filtering and extended Kalman filtering are
prohibitive because they would require the equivalent of N model integrations, where
N is the number of degrees of freedom of the model, of the order of 106 or more.
Considerable work has been done on finding simplifying assumptions to reduce the
cost of KF (e.g. Fisher et al., 2003), but so far they have been successful only under
special circumstances.

An alternative approach to Kalman filter which is much less expensive is ensemble
Kalman filter (EnKF) suggested first by Evensen (1994) and now under development
by several groups (Hamill, this volume). In the original extended KF the background
error covariance is updated by using the linear tangent model and its adjoint (Cohn,
1997; Ghil et al., 1981) equivalent to running the model about N times, where N is the
number of degrees of freedom. By contrast, EnKF attempts to estimate the evolution
of the background error covariance from an ensemble of K forecasts, with K << N. In
the formulation of EnKF of Evensen (2003) and Houtekamer and Mitchell (1998),
ensembles of data assimilation are driven by perturbed observations and used to
derive the background error covariance from the ensemble of forecasts. A more recent
class of EnKF is known as square-root filters (Anderson and Anderson, 1999; Bishop
et al., 2001; Anderson, 2001; Tippett et al., 2002; Whitaker and Hamill, 2002; Ott
et al., 2002, 2004; Whitaker et al., 2004). The ensemble forecasts are used to obtain
a most likely forecast (the ensemble mean xb = 1

K

∑K
i=1 xi ) and the background

error covariance (obtained from the perturbations of the ensemble with respect to
the mean B = 1

K−1

∑K
i=1 (xi − xb) (xi − xb)T ) at the time of the analysis. The full

Kalman filter equations and the new observations are then used to obtain the most
likely analysis xa , with the analysis increment (difference between the single analysis
and the forecast) lying within the subspace of the forecast ensemble perturbations.
After this is completed, the new initial analysis perturbations δxi for the next analysis
cycle are obtained by solving the square root problem 1

K−1

∑K
i=1 δxiδxT

i = A, where
A is the analysis error covariance estimated by the Kalman filter, and K is the number
of ensemble members. The solution of this problem is not unique and different square-
root filters have adopted different solutions to the square-root problem (Tippett et al.,
2002; Ott et al., 2002). An advantage of the square-root filter approach is that there
is no need to add perturbations to the observations, which reduces the sampling error
(Whitaker and Hamill, 2002).

Several of the EnKF approaches reduce the computational cost by assimilating
the observations one at a time, for the whole physical domain, a method known
as sequential assimilation of observations. This is done using a localisation of the
error covariance in the horizontal and in the vertical, to avoid spurious long-distance
correlations due to sampling. Although the sequential assimilation of observations
is very efficient with limited observations (such as those available before 1979), it
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becomes less practical with the abundant satellite observations currently available
(about 3.5 million data per assimilation cycle, about 40 times more than a decade
ago) and planned for the next decade.

A different approach, also within the class of the square-root filters, is the local
ensemble Kalman filter (LEKF) method (Ott et al., 2002, 2004; Szunyogh et al.,
2005). In the LEKF the square root filter problem is solved locally in physical space,
not in observation space. For each grid point a local three-dimensional volume of the
order of 700 km by 700 km by a few vertical layers is used to perform the analysis.
The Kalman filter equations are solved exactly in the subspace locally spanned by the
global ensemble members, using all the observations available within the volume.
This localisation in space results in a further reduction of the number K of ensemble
members needed to obtain an accurate solution, so that matrix operations are done
in a very low dimensional space. The analysis is carried out independently at each
grid point, leading to a completely parallel algorithm.

In schematic Figure 7.5 we compare ensemble Kalman filtering (EnKF) with
the 3D-Var approach, in which the background error covariance is estimated as an
average over many cases. Figure 7.5(a) shows how the 3D-Var analysis maximises
the joint probability defined by the observations error covariance and the background
error covariance, both of which are high dimensional. Since the 3D-Var background
error covariance is a statistical average, the 3D-Var analysis does not know about
‘errors of the day’. Figure 7.5(b) shows that in the EnKF, the ensemble perturbations
define a very low-dimensional subspace within which the forecast errors lie, and
the KF analysis maximises the joint probability within that subspace. Because the
computations are performed within this subspace, the rank of the matrices involved
is low, and the Kalman filter equations providing the analysis and analysis error
covariance can be solved directly, not iteratively.

Figure 7.6 (colour plate) shows the background errors and the analysis corrections
based on a given set of noisy observations in a quasi-geostrophic data assimilation
system (Morss et al., 2000; Hamill and Snyder, 2000; Corazza et al., 2003). The top
panel corresponds to 3D-Var, with a background error covariance constant in time.
Because the system does not know about the dynamical stretching produced by the
‘errors of the day’, the analysis increments introduced by the new observations tend
to be isotropic. The bottom panel shows that the local ensemble Kalman filter (Ott
et al., 2004; Szunyogh et al., 2005) is much more efficient in correcting the back-
ground errors. The large improvements made on the analysis are also apparent in
forecasts (not shown).

Performing the EnKF locally in space substantially reduces the number of ensem-
ble members required for the analysis, as shown in Figure 7.7, from Ott et al., 2004;
obtained using the Lorenz (1996) model. When performed globally, the number of
ensemble members required for the EnKF to converge to the optimal value is propor-
tional to the size of the model. When done locally, the number of ensemble members



168 Eugenia Kalnay et al.

Background ~10 6-8 d.o.f. 

The 3D-Var Analysis doesnÕt know 
about the errors of the day

(a)

Observations  
~10 5-8 d.o.f. 

BR 

(b)

Background ~10 6-8 d.o.f. 
Observations  
~10 5-8 d.o.f. Errors of the day lying 

on a very low-dim attractor

Ensemble Kalman Filter Analysis: 
the correction is computed within the 
low dim attractor 

R

Figure 7.5 Schematic of the analysis given the background forecast in a very large
dimensional space, the background error covariance B (which in the case of 3D-Var
is isotropic and constant in time), the vector of observations, in a very large dimen-
sional space, with observations error covariance R. The analysis estimate of the true
state of the atmosphere maximises the joint probability distribution. (a) 3D-Var.
(b) EnKF, in which the ensemble forecast members define a subspace within which
the analysis lies.

is reduced from 27 to 8, and it does not increase with the size of the model. In addi-
tion, the analysis for different grid points can be carried out in parallel, since they
are independent of each other.

The efficiency of localisation is schematically shown in Figure 7.8, where three
independent unstable regions a, b, c, can each have wave number 1 and wave number
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Background error (shaded) and 3D- Var analysis increments

Background error (shaded) and LEKF analysis increments 

Figure 7.6 (See also colour plate section.) Simulation of data assimilation in a
quasi-geostrophic model, assimilating potential vorticity observations at a particular
day (15 June). The shades represent the 12 hr forecast (background) error and the
contours the analysis corrections. (Top) 3D-Var. (Bottom) local ensemble Kalman
filter. Figures courtesy of Matteo Corazza.
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Figure 7.7 Number of ensemble members required for convergence to the optimal
solution in a Lorenz (1996) model. (Top) using a full global ensemble Kalman filter.
(Bottom) using a local ensemble Kalman filter. The size of the domain, M, is either
40, 80 or 120. Note that the Kaplan–Yorle dimension is about 27 for the 40-variable
model and increases linearly with size. Figure adapted from Ott et al. (2004).
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V1 V3V2

a aab b b c c c

Figure 7.8 Schematic showing the advantage of performing a local rather than a
global analysis. The domain is composed of three regions, a, b, c, each of which has
possible instabilities with wave numbers 1 and 2. From a local point of view, the
ensemble perturbations V1 and V2 are sufficient to represent all possible unstable
perturbations, whereas from a global point of view, V3 is independent from V2, and
there are many more independent perturbations.

2 instabilities, in the same way that different areas of the world can develop baro-
clinic instabilities that evolve independently from each other. Three of the possible
ensemble perturbations are depicted. From a local point of view, the first two pertur-
bations are enough to represent all possible combinations of wave numbers 1 and 2
instabilities, whereas from a global point of view the third perturbation and many
others are linearly independent of the first two.

The LEKF has been tested in a ‘perfect model’ mode, using the operational NCEP
Global Forecasting System at a resolution of T62/28 levels, with excellent results
(Szunyogh et al., 2005). Figure 7.9 shows the evolution of the analysis of surface
pressure, when about 11% of the points (separated by about 200 km) have ‘raw-
insonde’ observations. The analysis errors for temperature and winds show similar
quick convergence to values much smaller than the observational errors. Figure 7.10
shows the vertical root-mean-square analysis errors for temperature and zonal wind
for several levels of observational density, including 11% of the grid points, a den-
sity similar to that of the rawinsondes in the northern hemisphere extratropics, and
2%, a density similar to rawinsondes in the southern hemisphere. The ability of the
LEKF to extract information through the knowledge of the ‘errors of the day’ is
very encouraging. Figure 7.11 shows that despite the local nature of the analysis, in
the perfect model simulation, the LEKF, with just 2% observations, is able to reach
‘superbalance’, being able to reproduce the evolution of not only slow synoptic waves
but also that of a gravity wave present in the ‘nature’ run.

7.4 Prospects for operational implementation

At the time of this writing (December 2004), tests of the LEKF with real obser-
vations have not yet been carried out. Tests with other square-root filters have been
performed only with rawinsonde upper air observations and cloud tracked winds, and



Figure 7.9 Evolution of the LEKF analysis error in surface pressure in hPa as a
function of assimilation step (in units of 6 hr). The rms error of the observations is
shown by the dashed line. Observations are made at 11% of the grid points, and the
model has T62 horizontal resolution (about 200 km). From Szunyogh et al. (2005).
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Figure 7.10 Root-mean-square global analysis error for temperatures (left, ◦C) and
tropical analysis error for zonal winds (right, m/sec). The dashed line is the rms of
observations. From left to right, the following percentage of the grid points have
‘rawinsonde’ data: 100%, 11%, 5%, 2%. Since the grid resolution is about 200 km,
the second is similar to the current rawinsonde density in the northern hemisphere,
and the fourth to the southern hemisphere and tropics. From Szunyogh et al. (2005).
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Figure 7.11 Comparison of
the true (crosses) and
analysed (circles) gravity
wave observed at 30N
150W. The observing
network has density similar
to that of the southern
hemisphere. From
Szunyogh et al. (2005).

yield results comparable in the northern hemisphere to the 3D-Var used in the NCEP
Reanalysis, which also used satellite retrievals (Jeff Whitaker, personal communi-
cation, 2004). The perturbed observations approach has been tested at the Canadian
Meteorological Centre (CMC) in an operational environment and also yields results
comparable to those of the very mature operational 3D-Var in the Canadian Meteo-
rological Service (Houtekamer et al., 2005). By contrast, 4D-Var has been shown to
be superior to 3D-Var in several centres (ECMWF, Météo-France, CMC). This rela-
tively disappointing performance of the EnKF approach, although it is to be expected
in the still early stages of testing, is in contrast to the excellent results obtained with
perfect model simulations.

From this experience we cannot say at this point whether EnKF will be able to
compete with or replace 4D-Var in operational centres as the next data assimilation
system of choice. However, EnKF has a number of very attractive advantages that
hold promise once the new systems are tested and tuned. Because of familiarity we
will describe the advantages of the LEKF system that has been developed at the
University of Maryland (Ott et al., 2002, 2004; Hunt et al., 2004; Szunyogh et al.,
2005), comparing with the corresponding characteristics of 4D-Var, but some of the
advantages are generic to other EnKFs.

(a) The LEKF is very efficient, due to its complete parallelism and relatively few
required ensemble members, and can use data simultaneously. In the original
formulation it takes only 15 minutes to assimilate 1.5 million observations
using 40 ensemble members on a cluster of 25 dual processor 2.8 GH PCs.
This includes the 6-hour 40-member ensemble forecast, which takes about
6 minutes (and which would be free within an operational centre that
performs ensemble forecasting). B. R. Hunt (personal communication, 2003)
has developed an alternative algorithm (local ensemble transform Kalman
filter, LETKF) not based on singular value decomposition, which is about
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three times faster than the LEKF while yielding essentially identical results
(I. Szunyogh, and E. Kostelich, personal communication, 2004). The
efficiency of the LEKF ensures that it can be used operationally with a resolu-
tion at least the same as that of the operational ensemble forecasting system.

(b) Like other EnKF methods, the LEKF does not require the development and
maintenance of the model’s linear tangent or adjoint models, saving the large
effort needed for these models, and avoiding the need for linear
approximations, since the full non-linear model is used for every operation.

(c) Similarly, like other EnKF, the LEKF does not require the Jacobian or the
adjoint of the observation operator H, another important advantage
(Houtekamer and Mitchell, 1998; Szunyogh et al., 2005). Basically, if we
define a matrix E of perturbation vectors, so that B = EET ; HBHT =
(HE)(HE)T , one can replace the linear HE with its fully non-linear
expression,

HE = H [δx1| . . . |δxK ] ≈ [H (x1) − H (x)| . . . |H (x1) − H (x)] ,

which is simpler and more accurate.

(d) It can be easily extended to four dimensions (4DLEKF), so that observations
can be assimilated at their time of observation, in between analysis times
(Hunt et al., 2004). This is performed at a relatively low computational cost,
by using the ensemble to ‘transport’ observational increments from the time
of observation to the analysis time. This is important since experience
suggests that the ability to assimilate observations at the right time is the main
advantage of 4D-Var (rather than the evolution of the covariance).

(e) The 4DLEKF can be used as a smoother, taking advantage of future
observations, as would be possible in a Reanalysis mode, at the cost of
doubling the computations. At a given time t0 a preliminary (operational)
analysis and analysis error covariance is performed using only past
observations, then ensemble forecasts between this time and the next analysis
time t1 are used to bring the observations in that interval back to t0, and a
final, more accurate analysis and analysis error covariance can be obtained at
t0. The problem of using the data twice (which would erroneously reduce the
analysis error covariance) can be handled by increasing the observation error
covariance (e.g. doubling it for observations used both at t0 and t1).

(f) The LEKF provides diagnostic tools that can be used to tune the system in the
future. One of them is the local effective dimension ED (Patil et al., 2001)
obtained from the singular values σi of the ensemble

E D =

(
k∑

i=1
σi

)2

k∑
i=1

σ 2
i
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Figure 7.12 (See also colour plate section.) Example of a 6 hr trace of the 500 mb
height forecast error covariance showing the potential use of LEKF for adaptive
observations. Regions in blue and purple do not need immediate observations.
Midlatitude areas marked with red have large errors but a low effective ensemble
dimension, so that they are prime areas for targeting. Tropical regions with large
errors (ovals), by contrast, have also large effective ensemble dimension, presumably
because the error growth is dominated by convection.

Szunyogh et al. (2005) showed that there is a strong relationship between the
projection of the forecast error on the ensemble perturbations (not available in
real data assimilation experiments) and the effective dimension. Their Figure
7.7 shows that in regions where the projection of the error on the ensemble is
close to 100%, as in most of the midlatitudes, the effective dimension (about
10) is much smaller than the actual ensemble dimension (40). In the tropics,
where the projection is only about 40%, the effective dimension is larger, of the
order of 30 or more. Other diagnostics that can be used for tuning are
comparisons of observations minus forecast and observations minus analysis,
which can be compared with their predicted values.

(g) EnKF can be used to obtain best estimates of model bias as part of the data
assimilation (e.g. Anderson, 2001).

(h) Finally, the LEKF provides estimates of the background and the analysis
error covariances (and thus ideal initial perturbations), although they are
based on a space with limited dimension given by the ensemble size. This
information has other important applications such as adaptive observations, a
new area of great growth in recent years (Thorpe and Petersen, this volume).
Figure 7.12 (colour plate) suggests that EnKF makes it possible to have
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interactive targeted observations, with remote sensing instruments dwelling
only on regions identified by the ensemble as having low accuracy forecasts.

7.5 Final comments

Although the EnKF approach in general, and the LEKF/LETKF in particular, seem
to have many advantages, so far there has been no direct comparison between LEKF
and 4D-Var in a realistic system. The EnKF is based on a reduced dimension, albeit
computed with full non-linearity, and it provides an estimate of the background and
analysis covariances. 4D-Var requires an estimate of the background error covariance
B at the initial time of the assimilation window, and it is common to start with a 3D-
Var B. Obtaining a better evolving estimate of B with a reduced Kalman filter has
been difficult (Fisher et al., 2003). Mike Fisher showed in a recent presentation that
4D-Var is equivalent to a full Kalman smoother (which at the end of the interval yields
the same estimate as the Kalman filter) if the assimilation window is sufficiently long,
because the lack of an initial B is ‘forgotten’. Fisher proposed that a 4D-Var with a 3–
10 day window and including model errors (weak constraint) will provide a solution
equivalent to a full rank Kalman filter, and it could perhaps be made computationally
affordable. This is an attractive alternative to EnKF and only experience will tell
whether one is better than the other.

An important remaining problem is that of model deficiencies, leading to model
systematic errors and to problems such as those suggested in Figure 7.1(b). A success-
ful approach to start addressing this problem for ensemble forecasting applications is
using multiple models (Krishnamurti et al., 1999; Hou et al., 2001). Other approaches
(DelSole and Hou, 1999; Kaas et al., 1999) rely on empirical methods to reduce the
errors using past observations. Yet another method, known as ‘dressing’, adds ran-
dom perturbations to the ensemble forecasts in order to reproduce the observed error
covariance with the ensemble (Roulston and Smith, 2003; Wang and Bishop, 2004).
It is possible that the ensemble Kalman filtering approach will also be able to handle
efficiently model errors by augmenting the model variables with a relatively small
number of parameters associated with model errors, and using the observations to
estimate the optimal value of their time-varying coefficients (Danforth et al., 2006).

If current research in ensemble Kalman filtering methods achieves its promise,
then the problems of data assimilation and ensemble forecasting may indeed have a
unified solution.
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Approximating optimal state estimation
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Petros J. Ioannou
Department of Physics, National and Capodistrian University of Athens

Minimising forecast error requires accurately specifying the initial state from which
the forecast is made by optimally using available observing resources to obtain the
most accurate possible analysis. The Kalman filter accomplishes this for linear sys-
tems and experience shows that the extended Kalman filter also performs well in
non-linear systems. Unfortunately, the Kalman filter and the extended Kalman filter
require computation of the time-dependent error covariance matrix which presents
a daunting computational burden. However, the dynamically relevant dimension of
the forecast error system is generally far smaller than the full state dimension of the
forecast model which suggests the use of reduced order error models to obtain near
optimal state estimators. A method is described and illustrated for implementing a
Kalman filter on a reduced order approximation of the forecast error system. This
reduced order system is obtained by balanced truncation of the Hankel operator repre-
sentation of the full error system. As an example application a reduced order Kalman
filter is constructed for a time-dependent quasi-geostrophic storm track model. The
accuracy of the state identification by the reduced order Kalman filter is assessed
and comparison made with the state estimate obtained by the full Kalman filter and
with the estimate obtained using an approximation to 4D-Var. The accuracy assess-
ment is facilitated by formulating the state estimation methods as observer systems.
A practical approximation to the reduced order Kalman filter that utilises 4D-Var
algorithms is examined.
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8.1 Introduction

An important component of forecast error is error in the analysis of the initial state
from which the forecast is made. Analysis error can be reduced by taking more obser-
vations, by taking more accurate observations, by taking observations at locations
chosen to better constrain the forecast, and by extracting more information from the
observations that are available. The last of these, obtaining the maximum amount of
information from observations, is attractive because it makes existing observations
more valuable and because, at least for linear systems, there is a solution to the
problem of extracting the maximum information from a given set of observations:
under appropriate assumptions the problem of extracting the maximum amount of
information from a set of observations of a linear system in order to minimise the
uncertainty in the state estimate is solved by the Kalman filter (KF) (Kalman, 1960;
Ghil and Malanotte-Rizzoli, 1991; Wunsch, 1996; Ide et al., 1997; Lermusiaux and
Robinson, 1999). Moreover, application of the Kalman filter to the local tangent
error equations of a non-linear system provides an approximation to the optimal data
assimilation method. This non-linear extension of the KF is referred to as the extended
Kalman filter (EKF) (Ghil et al., 1981; Miller et al., 1994; Ide and Ghil, 1997; Ghil,
1997).

Unfortunately, the Kalman filter and the extended Kalman filter require statistical
description of the forecast error in the form of the error covariance; obtaining the
required error covariance involves integrating a system with dimension equal to the
square of the dimension of the forecast system. Direct integration of a system of such
high dimension is not feasible. Attempts to circumvent this difficulty (see review of
Ghil, 1997) have involved various approximations to the error covariance (Tippett
et al., 2000; Bishop et al., 2001) and approximate integration methods (Evensen,
1994; Dee,1995; Fukumori and Malanotte-Rizzoli, 1995; Cohn and Todling, 1996;
Verlaan and Heemink, 1997; Houtekamer and Mitchell, 1998; Hamill, this volume;
Kalnay et al., this volume).

While the formal dimension of the forecast error system obtained by linearising
the forecast model about a base trajectory is the same as that of the forecast system
itself, there are reasons to believe that the effective dimension is far lower. The
trajectory of the system state in a high dimensional dynamical system typically
lies on a small dimensional subspace of the entire phase space. In chaotic systems
all initial conditions approach this attractor, which can be embedded in a space of
dimension at most 2d + 1, where d is the attractor dimension (Takens, 1981). An
estimate of the attractor dimension can be made from the number of positive Lyapunov
exponents (the Kaplan–Yorke dimension; Kaplan and Yorke, 1979), but in any case
the attractor dimension is bounded above by the number of Lyapunov exponents
associated with positive volume growth along the system trajectory in phase space
(Illyashenko, 1983). While this is useful conceptually for bounding the dimension of
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the embedding space, identifying the subspace itself is more difficult in the case of
non-linear and time-dependent systems. However, in the case of stochastically forced
linear normal systems the analogous subspace to which the solution is primarily
confined can be easily found by eigenanalysis of the covariance matrix of the system
forced white in space and time. The resulting empirical orthogonal function (EOF)
spectrum typically falls off rapidly in physical models. The eigenvectors may be
identified with the modes of the normal operator, and the corresponding eigenvalues
are the variance accounted for by the modes (North, 1984; Farrell and Ioannou, 1996
(henceforth FI96)). The fact that a restricted number of EOFs account for nearly all
of the variance in normal systems shows that the effective dynamical dimension of
these systems is small compared with the dimension of their phase space. This notion
of quantifying the effective dimension of normal linear systems can be extended to
bound the effective dimension of non-normal systems (Farrell and Ioannou, 2001a
(henceforth FI01)).

In the case of the tangent linear forecast error system, the spectrum of optimal
perturbations of the error propagator over the forecast interval typically comprises
a few hundred growing structures (Buizza and Palmer, 1995) and Lyapunov spectra
for error growth have shown similar numbers of positive exponents (Palmer et al.,
1998) which suggests from the above considerations that the effective dimension of
the error system for scales resolved by forecast models is O(103).

The problem of reducing the order of a linear dynamical system can be cast math-
ematically as that of finding a finite dimensional representation of the dynamical
system so that the Eckart–Schmidt–Mirsky (ESM) theorem (Stewart and Sun, 1990)
can be applied to obtain an approximate truncated system with quantifiable error.
The ESM theorem states that the optimal k order truncation of an n dimensional
matrix in the euclidean or Frobenius norm is the matrix formed by truncating the
singular value decomposition of the matrix to its first k singular vectors and sin-
gular values. A method for exploiting the ESM theorem to obtain a reduced order
approximation to a dynamical system was developed in the context of controlling
lumped parameter engineering systems and is called balanced truncation (Moore,
1981; Glover, 1984; Zhou and Doyle, 1998). Balanced truncation was applied to the
set of ordinary differential equations approximating the partial differential equations
governing perturbation growth in time-independent atmospheric flows by FI01.

We first review the method of balanced truncation and then illustrate it with a
simple matrix example. Then we apply it to a storm track model (Farrell and Ioannou,
2001b). We then review some salient aspects of optimal state estimation using an
analysis method based on an observer model of the assimilation system and discuss
the structure of the gain matrix in the presence of model error and the asymptotic
behaviour of the assimilation error as the number of observations increases. We finally
construct a reduced order Kalman filter based on balanced truncation and apply it to
a time-dependent Lyapunov unstable quasi-geostrophic model of a forecast tangent
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linear error system with which we examine the approach of an approximation to the
optimal observer based on 4D-Var.

8.2 The storm track model

Consider an idealised model of the midlatitude storm track consisting of a Boussinesq
atmosphere with constant stratification and constant shear in thermal wind balance
on a β-plane channel with periodic boundary conditions in the zonal, x , direction;
solid walls located at two latitudes in the meridional, y, direction and a solid lid
at height z = H , simulating the tropopause. The observed zonal localisation of a
midlatitude storm track is simulated in the model by terminating the channel with
a linear damping modelling the storm track exit region. The stability properties of
such a storm track model are discussed in FI96.

Zonal and meridional lengths are non-dimensionalised by L = 1200 km; vertical
scales by H = f L/N = 12 km; velocity by U0 = 50 m/s; and time by T = L/U0, so
that a time unit is approximately 6.7 h. The Brunt–Vaisala frequency is N = 10−2 s−1,
and the Coriolis parameter is f = 10−4 s−1. The corresponding non-dimensional
value of the planetary vorticity gradient is β = 0.46.

The non-dimensional linearised equation which governs evolution of streamfunc-
tion perturbations is

∂∇2ψ

∂t
= −U (z)∇2 Dψ −

(
β − d2U (z)

dz2

)
Dψ − ∇(r (x)∇ψ), (8.1)

in which the perturbation is assumed to be in the form ψ(x, z, t)eily , where l is
the meridional wave number; ∇2ψ is the perturbation potential vorticity, with ∇2 ≡
∂2/∂x2 + ∂2/∂z2 − l2; and D ≡ ∂/∂x . The perturbation potential vorticity damping
rate r (x) is taken to vary smoothly in the zonal direction with form:

r (x) = µ

2

[
2 − tanh

(
x − π/4

δ

)
+ tanh

(
x − 7π/2

δ

)]
, (8.2)

in which parameters controlling the maximum damping rate and the width of the
damping region have been chosen to be µ = 5 and δ = 1.5, respectively. The mean
velocity profile is U (z) = 0.2 + z. The zonal extent of the re-entrant channel is
0 < x < 4π ; latitudinal walls are located at y = 0 and y = 1, and the ground and
tropopause boundaries are located at z = 0 and z = 1, respectively. In the following
we consider perturbations with l = 1. A cross-section of the idealised storm track at
a given latitude is shown in Figure 8.1. Conservation of potential temperature at the
ground and tropopause provides the boundary conditions

∂2ψ

∂t∂z
= −U (0)D

∂ψ

∂z
+ U ′(0)Dψ − r (x)

∂ψ

∂z
− �g(D2 − l2)ψ at z = 0,

(8.3)
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Figure 8.1 The cross-section of the storm tack. Also shown are the sponge layers.

and

∂2ψ

∂t∂z
= −U (1)D

∂ψ

∂z
+ U ′(1)Dψ − r (x)

∂ψ

∂z
at z = 1, (8.4)

where U ′(0) and U ′(1) denote the velocity shear at z = 0 and z = 1 respectively. The
coefficient of Ekman damping

�g ≡ N

U0

√
ν

2 f

is given the value �g = 0.0632 corresponding to a vertical eddy momentum diffusion
coefficient ν = 20 m2/s in the boundary layer.

The waves evolve with nearly zero damping in the middle third of the channel
(a length of 2π L ≈ 7500 km) which models the core of the storm track. Because in
this model absolute instabilities do not exist in flows that are westerly everywhere,
the storm track is asymptotically stable for all meridional wave numbers because
all perturbations are eventually absorbed on entering the highly dissipative sponge
(FI96).

Two scenarios are investigated. In the first a transiently growing disturbance
excited near the western boundary of the storm track is modelled using the reduced
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order system, the purpose being to illustrate the accuracy of the reduced order model
approximation of the autonomous dynamics. In the second, time dependence is added
to produce a Lyapunov unstable model of a tangent linear forecast error system, the
time mean operator remaining stable, with the purpose of evaluating the accuracy of
the Kalman filter obtained by the reduced order model in an unstable time dependent
system. Such an unstable time dependent system provides an even more stringent
test of the state estimator than does the time independent stable and unstable model
error systems studied by Todling and Ghil (1994), Ghil and Todling (1996) and Cohn
and Todling (1996).

The perturbation dynamics of the time mean storm track are governed by

dψ

dt
= Aψ, (8.5)

where

A = (∇2)−1(−(0.2 + z)D∇2 − β D − ∇(r (x)∇), (8.6)

in which the Helmholtz operator, ∇2, has been made invertible by incorporating the
boundary conditions1.

The dynamical operator is approximated spectrally in the zonal direction and with
finite differences in the vertical. With 40 zonal harmonics and 10 levels in the vertical
the resulting dynamical system has N = 400 degrees of freedom.

8.3 Reducing the model order by balanced truncation

Although this storm track model is of small enough dimension for direct numerical
solution, we are interested in using it to explore the accuracy of approximate solutions
obtained using reduced order models that could be implemented in far larger systems
such as arise in numerical forecast.

Before proceeding with the order reduction we must first choose the norm that
will be used to measure the accuracy of the approximation. The accuracy is measured
by the norm of the Euclidean length of the errors incurred in a chosen variable. This
norm is the square root of the euclidean inner product in this variable. If another norm
is selected to measure the accuracy of the approximation, the most direct method of
accounting for this choice is to transform the variable used to represent the state
of the system so that the Euclidean inner product in the transformed variable cor-
responds to the new norm. The reduced order approximate system resulting from
balanced transformation will in general depend on the norm chosen. As discussed
in FI01, optimal order reduction of dissipative stable normal systems is immediate:
it is Galerkin projection of the dynamics onto the least damped modes. Difficulties
in the reduction process arise when the system is non-normal in the variable corre-
sponding to the chosen norm. The Galerkin projection on the least damped modes is
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suboptimal and the reduction must proceed by including in the retained subspace the
distinct subspaces of the preferred excitations and preferred responses of the system.
Throughout this chapter we have chosen streamfunction as the error variable, the
root-mean-square of which is to be minimised in the construction of the model order
reduction. However, we find that the results do not change qualitatively if the energy
norm is chosen instead.

The preferred structures of response of a general non-normal system are revealed
by stochastically forcing the system with spatially and temporally uncorrelated uni-
tary forcing and calculating the eigenfunctions of the resulting mean covariance
matrix P = 〈ψψ†〉 (the brackets denote an ensemble average, and † the Hermitian
transpose of a vector or a matrix). The covariance matrix under such forcing is given
by

P =
∫ ∞

0
eAt eA†t dt, (8.7)

and this integral is readily calculated by solving the Lyapunov equation (FI96)

AP + PA† = −I, (8.8)

which P satisfies, as can be easily verified. The Hermitian and positive definite matrix
P characterises the response of the system, and its orthogonal eigenvectors, ordered
in decreasing magnitude of their eigenvalue, are the empirical orthogonal functions
(EOFs) of the system under spatially and temporally uncorrelated forcing.

In control literature the covariance matrix P is called the controllability Gramian
and it is given an alternative interpretation as a measure of the efficiency by which
forcings place the system in a given state. This alternative deterministic interpretation
of P is very useful in predictability and stems from the observation that if we force
the system

dψ

dt
= Aψ + f(t) (8.9)

from t = −∞ to t = 0, with initial condition ψ(−∞) = 0 then all the states that can
be reached at t = 0 with square integrable forcings satisfying∫ 0

−∞
f†fdt ≤ 1 (8.10)

are exactly

P1/2ψ (8.11)

with ||ψ || ≤ 1 (for a proof see Dullerud and Paganini (2000) or Farrell and Ioannou
(2005)). For example, let vi be the eigenfunctions of P with eigenvalues λi ordered in
descending order in their magnitude, i.e. λ1 > λ2 > . . .. Then the top eigenfunction
v1, in which as we have seen most of the response of the system is concentrated,
is also the state that can be most easily forced in the sense that, given forcings of



188 Brian F. Farrell and Petros J. Ioannou

unit amplitude, the largest state that can result at t = 0 is
√

λ1v1. In this way the
eigenfunctions of the covariance matrix split the state space into an orthonormal
basis that identifies the likelihood of occurrence of a given state. This is the reason
that in predictability studies in which the impact of uncertain initial conditions is
investigated, the initial states are conditioned by the covariance or Mahalanobis
metric (Palmer et al., 1998):

‖ψ ‖2
M≡ ψ†P−1ψ. (8.12)

A geometric interpretation of these states is offered by the controllability ellipsoid

ψ†P−1ψ = 1, (8.13)

which has semi-major axes in the directions of vi with length
√

λi .
The preferred structures of excitation of the system are determined from the

stochastic optimal matrix

Q =
∫ ∞

0
eA†t eAt dt, (8.14)

the orthogonal eigenvectors of which, when ordered in decreasing magnitude of their
eigenvalue, rank the forcing structures according to their effectiveness in producing
the statistically maintained variance (for a deterministic interpretation of Q see FI01).
The eigenvectors of Q are called the stochastic optimals (SOs) and because of the
non-normality of the system are distinct from the EOFs. The stochastic optimal
matrix Q satisfies the back Lyapunov equation

A†Q + QA = −I. (8.15)

The stochastic optimal matrix Q is called the observability Gramian in control liter-
ature and is given an alternative deterministic interpretation. Let the system

dψ

dt
= Aψ, (8.16)

with t = 0, be at state ψ0. The states of the system

ψ(t) = eAtψ0, (8.17)

produced by this initial condition have square integral norm:∫ ∞

0
ψ†(t)ψ(t)dt = ψ

†
0Qψ0. (8.18)

The eigenvectors of Q, ui when ordered in decreasing magnitude of their eigenvalue,
µi , rank the initial conditions in effectiveness in producing square integrable output,
and the observability ellipsoid

ψ†Q−1ψ = 1, (8.19)
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which has semi-major axes in the directions of ui with length
√

µi , identifies the
initial conditions that produce maximum square integrable output, or equivalently,
orders the initial states in the degree that they can be identified from observations of
the system ψ(t).

Lyapunov equations (8.8) and (8.15) have unique positive definite solutions P and
Q if A is stable. If the operator A is not stable, P and Q can be obtained by sta-
bilising the operator by adding Rayleigh friction. Alternatively, finite time horizon
P and Q matrices can be used to obtain a reduced order system that best approxi-
mates the dynamics over a finite time interval. In any case the covariance matrix P
and stochastic optimal matrix Q or an approximation to these matrices need to be
determined or approximated in order to proceed with order reduction by balanced
truncation.

For general non-normal systems the observability and controllability ellipsoids are
distinct. A successful order reduction must accurately approximate the dynamics by
including in the truncation both the directions of the system’s response (the dominant
eigenfunctions of P) and also the directions in which, when the system is forced, it
most effectively responds (the dominant eigenfunctions of Q). The fact that the
observability and the controllability ellipsoids are distinct is an indication that the
directions of greatest response of the system are different from the directions in
which it is most effectively forced. If we can identify a coordinate transformation
in which the controllability and observability ellipsoids are the same, then in these
balanced coordinates, reduction of the order of the system can proceed by retaining the
dominant directions of the common ellipsoid. The semi-major axes of this common
ellipsoid in the balanced representation are the Hankel singular vectors, and the
lengths of the semi-major axes are the Hankel singular values which turn out to be the
square root of the eigenvalues of the product of the covariance and stochastic matrix,
PQ. The balanced truncation thus transforms the internal coordinates of the system
so that the transformed covariance matrix P and stochastic optimal matrix Q become
identical and diagonal (while preserving the inner product of the physical variables).
The dynamical system is then truncated in these transformed balanced coordinates.
The balanced truncation retains a leading subset of empirical orthogonal functions
and stochastic optimals of the dynamical system and preserves the norm. Balanced
truncation preserves the stability of the full system and provides an approximation
with known error bounds which is found in practice to be nearly optimal (Moore,
1981; Glover, 1984; FI01) as will now be shown.

A successful order reduction must accurately approximate the dynamics of the
system, which can be expressed as the mapping of all past (square integrable) forc-
ings to all future responses. This linear mapping of inputs to outputs is called the
Hankel operator. Application of the ESM theorem to the Hankel operator provides the
optimal low order truncation of the dynamics. Remarkably, because of the separation
between past forcings and future responses in the Hankel operator representation of
the dynamics, this operator has finite rank equal to the order of the system; and its
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singular values, denoted by h, turn out to be the lengths of the semi-major axes of
the balanced controllability–observability ellipsoid.

The procedure used to implement balanced truncation is now briefly reviewed.
Consider a general k order truncation of the N dimensional system (8.5):

dψ̃k

dt
= Akψ̃k, (8.20)

where Ak is the reduced k × k dynamical matrix, with k < N , and ψ̃k the associated
reduced order k-dimensional state vector which is related to the full state vector by the
transformation ψ̃ = Xψ̃k . Similarly, the reduced state vector ψ̃k is related to the full
state vector by ψ̃k = Y†ψ̃ (the dagger denotes the hermitian transpose of a matrix),
which implies that Y†X = Ik , where Ik is the k-order identity matrix. Matrices Y
and X determine the transformation from the full system to the reduced system. The
matrix Ak , governing the dynamics in (8.20), is

Ak = Y†AX. (8.21)

Details of the construction on the biorthogonal matrices X and Y are given in Farrell
and Ioannou (2001b).

A measure of the accuracy of the truncation is the maximum difference that can
occur between the full system response, ψ(t), and the reduced order system response,
ψ̃(t). This measure is the H∞ norm of the error system:

‖A − Ak ‖∞= sup
ω

‖R(ω) − R̃(ω)‖2, (8.22)

in which the resolvent of the full system, R(ω), is defined as R(ω) = (iωI − A)−1 and
the resolvent of the full order projection of the reduced system is R̃(ω) = X(iωIk −
Ak)−1Y†. It is to be recalled that the L2 norm of a matrix, denoted as ‖ · ‖2, is equal
to its largest singular value.

Assuming the Hankel singular values have been ordered decreasing in magnitude,
it can be shown that the error in the H∞ norm Eq. (8.22) of the balanced approximation
of the full system by any k order system Ak satisfies the inequality:

hk+1 ≤ ‖A − Ak‖∞ ≤ 2
N∑

i=k+1

hi , (8.23)

where hk+1 is the first neglected Hankel singular value (Zhou and Doyle, 1998).
Although hk+1 is only a lower bound on the error, we have found in examples that
this lower bound is nearly attained.

8.3.1 A simple example of balanced truncation

Consider the 3 × 3 dynamical system

dψ

dt
= Aψ, (8.24)
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with

A =


−0.1 100 0

0 −0.2 0
0 0 −0.01


 . (8.25)

This system is stable but highly non-normal in the first coordinates whilst its third
coordinate, which when excited decays the slowest, does not interact with the other
coordinates. The non-normality of the system leads to substantial optimal growth as
revealed by the norm of the propagator, ‖eAt‖, which measures the maximum state
norm that can be produced at time t , by initial states of unit norm. The optimal growth
as a function of time is shown in Figure 8.2. We wish to obtain a 2 × 2 system that
best approximates the dynamics of the original system.

We first obtain a 2 × 2 order reduction by Galerkin projection on the two least
damped eigenmodes e1, e2 of A. This is achieved as follows: form the 3 × 2 matrix

E = [e1, e2] (8.26)

and the 2 × 2 diagonal matrix D2 with diagonal elements the first two least damped
eigenvalues of A. The 2 × 2 reduced order matrix in coordinates that preserve the
original state norm is

A2 = M1/2D2M−1/2, (8.27)

where M = E†E. The performance of the norm of the propagator of the modally
reduced system as a function of time is shown in Figure 8.2 (curve 5), and clearly
this truncation provides a very poor representation of the dynamics.

We obtain next a 2 × 2 order reduction by Galerkin projection on the top two
optimal vectors of the propagator for time t = 5 when the global optimal growth is
achieved. This reduction is achieved as follows. Form the matrix

V = [v1, v2], (8.28)

where v1, v2 are the optimal vectors, and then the matrix A2 = V†AV, which is
the matrix representation in the coordinates φ, in which ψ = Vφ. Then the 2 × 2
reduction in this basis is A2. Because the basis vectors are orthonormal the square
norm of the transformed states φ is equal to the square norm of the original states.
This procedure can be followed to obtain order reduction by Galerkin projection
on any set of orthonormal vectors. The performance of the reduced system in this
basis is poor, as shown in Figure 8.2 (curve 2). Note that the reduced order system is
unstable. Selecting as a basis the singular vectors for time t = 3 leads to even worse
performance (curve 3 in Figure 8.2). The same results would have been obtained if
we had used as a basis the corresponding evolved optimals (the left singular vec-
tors). In general it is found that if the singular vectors are used for order reduction
it is best to use the singular vectors or the evolved optimals for a sufficiently long
time. Short time optimals can be very suboptimal as a basis for truncation, because
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Figure 8.2 The norm of the propagator ‖eAt‖ as a function of time for various order
2 approximations of the dynamics. Curve 1: the optimal growth of the original
system (8.24). The circles are the optimal growth of the order 2 system obtained with
balanced truncation. This reduced system captures accurately the optimal growth of
the full 3 × 3 system. Curve 2: the optimal growth obtained from a 2 × 2 truncation
obtained by Galerkin projection on the two optimal vectors associated with the two
largest singular values of the propagator for time t = 5. The order 2 × 2 operator that
results is unstable. Curve 3: same as 2 but the optimal vectors are obtained for time
t = 3. Curve 4: the optimal growth obtained from 2 × 2 truncations obtained by
Galerkin projections on the two eigenvectors associated with the two largest eigen-
values of the covariance matrix P or the matrix Q (both truncations give identical
growths). Curve 5: the optimal growth obtained from a 2 × 2 truncation obtained by
a Galerkin projection on the two least damped eigenmodes of the matrix A. The
performance of all the truncated systems, except the one obtained by balanced
truncation, is very poor.

these vectors are often associated with directions of rapid growth that does not
persist.

We reduce the order of the system by Galerkin projection on the top two eigen-
vectors of the covariance matrix P. The performance is very poor (see Figure 8.2,
curve 4). The same poor performance is obtained if we use the top two eigenvectors
of the covariance matrix Q. The reason for the failure is that the controllability ellip-
soid xT P−1x = 1 is elongated in the direction of ψ = [1, 10−3, 0]T with semi-major
axis of about 900 (Figure 8.3). The second largest direction is the normal direction
ψ = [0, 0, 1]T with semi-major axis length of about 7. This second direction is the
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Figure 8.3 The two ellipsoids associated with the covariance matrix P and the
stochastic optimal matrix Q. The ellipsoids are respectively xT P−1x = 1 (the
controllability ellipsoid) and xT Q−1x = 1 (the observability ellipsoid) and have
semimajor axes proportional to the square roots of the eigenvalues of the matrices P
and Q. The ellipsoids are like needles. The elongated direction of the P ellipsoid
indicates that the dominant response of the system is in that direction, while the
elongated direction of the Q ellipsoid identifies the forcing directions in which the
system responds most readily. These two directions are different. A good reduction
of the order of the dynamics must include both of these directions. This is
systematically achieved with balanced truncation.

normal direction, which because of the relatively slow decay persists for a long time
when it is excited. The observability ellipsoid xT Q−1x = 1 is elongated in the direc-
tion of ψ = [2 × 10−3, 1, 0]T with semi-major axis of about 900 (Figure 8.3). The
second largest direction is again the normal direction ψ = [0, 0, 1]T with semi-major
axis length of about 7. It is thus clear that retaining the two dominant directions of
either the P or the Q matrix doesn’t retain the two dominant directions of both the P
and the Q matrix that are both necessary for a good description of the dynamics.

The transformation

X =


−15.6 −15.6 0

−0.02 0.04 0
0 0 1


 , (8.29)

and its associated biorthogonal

Y =


−0.04 −0.020 0

−15.6 15.5 0
0 0 1


 , (8.30)
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Figure 8.4 The ellipsoid of the P and Q matrices in the balanced coordinates. These
coordinates are constructed so that the transformed covariance and the optimal matrix
ellipsoids become identical. In these coordinates the system can be most effectively
truncated because the directions of the system’s dominant response coincide with the
directions in which the system is most easily forced. The length of the semimajor
axes of this ellipsoid are the square roots of the Hankel singular values.

renders both the covariance matrix P̃ = Y†PY and the stochastic optimal matrix
Q̃ = X†QX diagonal and equal to each other. This associated common ellipsoid
(Figure 8.4) in the balanced coordinates has semi-major axes equal to the square
roots of the Hankel singular values, namely approximately equal to 54, 21, 7. Bal-
anced order reduction proceeds in this coordinate system by retaining the two direc-
tions that are associated with the two top Hankel singular values, which are to a
very good approximation the first and second direction. In this way the reduced
order 2 × 2 balanced system includes the dominant directions of both the control-
lability and observability ellipsoids and is expected to be a near optimal reduction
of order. This is shown in Figure 8.2 in which the circles that give the optimal
growth of the propagator of the balanced system reproduce exactly the optimal
growth of the original system. However, the accuracy of the reduced system can
be best examined by considering the difference of the exact and reduced systems
by evaluating the norm of the difference of the resolvents of the two systems as
a function of frequency ω. This difference is plotted as a function of frequency in
Figure 8.5. The maximum of this difference over all frequencies defines the H∞ norm
of the error which has been shown to satisfy inequality (8.23), which in this case
becomes

50 ≤‖ A − A2 ‖∞≤ 100, (8.31)
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Figure 8.5 The norm of ‖ R(ω) − R2(ω) ‖ as a function of real frequency, �(ω),
where R2(ω) = X(iωI2 − A2)−1Y† is the resolvent of the 2×2 system obtained from
balanced truncation. This maximum of this norm over all frequencies defines the H∞
norm of the error system, which provides the greatest error that can be produced in
the truncated system when it is forced by monochromatic sinusoidal forcing. The two
horizontal lines indicate the bounds that the balanced truncation error must satisfy in
this measure. The lower dotted line is the first neglected Hankel singular value
h3 = 50, the top is 2h3. The H∞ norm of the error assumes the upper bound of
inequality (8.31). This error is realised when the system is forced at zero frequency
(ω = 0) with the structure of the most persistent mode of the system [0, 0, 1]T .

given that the neglected Hankel singular value is h3 = 50. The error system is found
in this way to perform worst at ω = 0 when forced with the structure of the neglected
persistent mode [0, 0, 1]T .

8.4 Applying balanced truncation to the mean storm
track perturbation model

In order to obtain a balanced truncation of the storm track model governed by operator
(8.6) we first obtain the covariance matrix, P, and the stochastic optimal matrix, Q,
by solving Lyapunov equations (8.8) and (8.15) respectively. The eigenfunction of P
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Figure 8.6 For the stable time mean storm track model. Top panels: the stream
function of the first and the thirtieth EOF. The first EOF accounts for 23% of the
maintained variance, the thirtieth EOF accounts for 0.35% of the variance. Bottom
panels: the structure of the streamfunction of the first and thirtieth stochastic optimal
(SO). The first SO is responsible for producing 19.7% of the maintained variance; the
thirtieth SO is responsible for producing 0.48% of the maintained variance.

associated with the largest eigenvalue is the first EOF of the perturbation field, and
the eigenfunction of Q associated with the largest eigenvalue is the first SO of the per-
turbation field. The structure of the first EOF, which accounts for 23% of the stream-
function perturbation variance, is concentrated in the exit region of the storm track, as
can be seen in Figure 8.6 (top left panel). By contrast, the first SO, which is responsi-
ble for generating 19.7% of the streamfunction perturbation variance, is concentrated
at the entrance region of the storm track and is nearly orthogonal to the first EOF, as
can also be seen in Figure 8.6 (bottom left panel). This near orthogonality between
the EOF structures and SO structures remains even at order 30. Balanced trunca-
tion accomplishes an accurate representation of the dynamics by retaining both the
structure of the dominant EOFs and of the SOs. It is clear from Figure 8.6 that
truncations based on projections on the leading EOFs will be very suboptimal as
the leading EOFs span well only perturbations concentrated in the exit region of the
storm track, leaving the dynamically important entry region of the storm track, where
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Figure 8.7 The Hankel singular values (stars) compared with the eigenvalues of the
covariance matrix P (circles), and the eigenvalues of the stochastic optimal matrix Q
(crosses). The Hankel singular values are the square roots of the eigenvalues of the
product PQ. Note that the EOFs (the eigenvalues of P) and the SOs (the eigenvalues
of Q) fall much more rapidly with mode number than do the Hankel singular values.

perturbations have greatest potential growth, virtually without support in the span of
the retained basis.

Although the error in the frequency response of a balanced truncation (cf. 8.31) is
bounded above by twice the sum of the neglected Hankel singular values and below
by the first neglected Hankel singular value, experience shows balanced truncation
of tangent linear forecast error systems results in truncation errors close to the lower
bound. The Hankel singular values and the eigenvalues of P and the Q for the storm
track model are shown in Figure 8.7. Note that the decrease with mode number of the
eigenvalues of P and of Q is more rapid than that of the Hankel singular values. But
this more rapid decrease with mode number of the eigenvalues of P and Q does not
indicate the order required for an accurate approximation; this is instead determined
by the first neglected Hankel singular value which falls more slowly with mode
number.

It is often assumed that a system can be well approximated by Galerkin projection
onto a subspace of its EOFs, with the effectiveness of the truncation being judged
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Figure 8.8 For the stable time mean storm track model. (Top left panel) the stream-
function of the first basis vector of the expansion for the balanced truncation of the
system. It is given by the first column of X. (Top right panel) the streamfunction of
the tenth basis vector of the expansion for the balanced truncation of the system. It is
given by the tenth column of X. (Bottom left panel) the streamfunction of the
biorthogonal of the first basis vector. It is given by the first column of Y. (Bottom
right panel) the streamfunction of the tenth basis vector. It is given by the tenth
column of Y.

from the magnitude of the eigenvalues of the neglected EOFs. This is valid only
for normal systems and we see here that for non-normal systems the decrease with
mode number of the eigenvalues of the covariance matrix is misleading and generally
optimistic even as an estimate of the order of the system required for an accurate
approximation.

A subset of the columns of X is retained in the balanced truncation. This non-
orthogonal basis and its biorthogonal, the columns of Y, are constructed so as to cap-
ture the structures supporting the dynamics most efficiently, simultaneously account-
ing for the preferred responses (EOFs) and the preferred excitations (SOs) of the
dynamics. The first and the tenth structure retained in the dynamics (the first and the
tenth column of X) and their biorthogonal structures (the first and tenth column of
Y) are shown in Figure 8.8.
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Figure 8.9 The maximum singular value of the resolvent R(ω) = (iωI − A)−1 of
the full system A as a function of the real frequency, �(ω). The maximum of this
curve as a function of ω is the H∞ norm of A which is found here to be 198.1. Also
plotted is the maximum singular value of the resolvent associate with A60, which is
the operator obtained from an order 60 balanced truncation of A. The maximum of
this curve is the H∞ norm of A60 which is found to be 196.2.

The storm track model and its reduced order approximate have very different
eigenvalue spectra. The eigenvalue spectrum of the reduced order approximate is
such that the frequency response of the approximate system is as close as possible
to that of the original system, which is shown in Figure 8.9. This results both from a
decrease in the stability of the reduced system compared with that of the full system
and from the increase in growth due to the non-normality in the reduced system.

The accuracy of the approximation is measured by the H∞ norm of the error
dynamical system ‖A − A60‖∞, which, as discussed in the previous section, lies
between the lower bound given by the first neglected Hankel singular value, h61 =
13.8, and the upper bound:

2
400∑

i=61

hi = 1.8 × 103.

The largest singular value of the error system resolvent as a function of frequency
is shown in Figure 8.10, where it can be seen that ‖A − A60‖∞= 28.5, which shows
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Figure 8.10 For the stable time mean storm track model: the maximum singular
value of the error system A − A60 as a function of real frequency, �(ω). The system
A60 is an order 60 approximation obtained from A by balanced truncation. The
maximum of this curve is the H∞ error of the order 60 balanced truncation which is
found here to be 28.5. Also indicated with a straight line is the theoretical minimum
error of an order 60 truncation, which equals the first neglected Hankel singular value
�61 = 13.8. The balanced truncation is seen to be nearly optimal.

that the balanced truncation error in this example is only approximately twice its
lower bound. The error is nearly white for the span of frequencies that correspond
to the frequencies of the system eigenmodes. For comparison, the error incurred in
an order 60 Galerkin projection of the dynamics onto the first 60 EOFs and the error
incurred in an order 60 Galerkin projection onto the first 60 least damped modes, are
also shown in Figure 8.10. It can be seen that the EOF projection performs apprecia-
bly worse than the balanced truncation, while the modal truncation at this order is
useless.

The optimal growth2 as a function of optimising time attained by the full system
and by the following: the order 60 balanced truncation; the order 60 system obtained
by Galerkin projection on the first 60 EOFs; the order 60 system obtained by Galerkin
projection on the first 60 SOs; and the order 60 system obtained by Galerkin pro-
jection on the first 60 least damped modes, are all shown in Figure 8.11. Note that
the balanced truncation performs very well, reproducing the optimal growth nearly
perfectly up to t = 5, corresponding to about two days. By comparison the EOF
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Figure 8.11 Optimal growth, ‖eAt‖, as a function of time for the Eady model in a
channel with sponge layers and meridional wave number l = 1. Shown is the optimal
growth for the full system with 400 degrees of freedom and the optimal growth
produced by an order 60 approximate system obtained by balanced truncation of the
full system. Shown also for comparison is the optimal growth attained by the order
60 approximate system obtained by Galerkin projection on the first 60 EOFs, the first
60 SOs and the first 60 least damped modes.

and SO truncations perform appreciably worse and the modal truncation gives even
poorer results.

The structure of the initial perturbation that leads to greatest square streamfunction
growth at t = 10 in the full system, together with the resulting structure, is shown in
Figure 8.12; for comparison these structures as obtained by the truncated system are
also shown. The structures are well captured by the order 60 reduced system.

We have demonstrated how to obtain balanced truncation of a stable time inde-
pendent system but the method of balanced truncation can be extended to unstable
systems (Sznaier et al., 2002) and to time dependent systems in which balancing is
performed sequentially over finite time intervals (Van Dooren, 2000).

In forecast applications we seek an accurate reduction of the dynamics of the
time dependent tangent linear operator calculated on the system trajectory over a
limited time interval (24 or 48 hours). One choice is to balance on the time mean
operator over this interval. Another choice is to balance on the time dependent
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Figure 8.12 For the stable time mean storm track model. The structure of the
streamfunction of the optimal perturbation that leads to the greatest energy growth at
t = 10 (left panels), and the evolved optimal streamfunction, which is the structure
that these optimals evolve into at the optimising time t = 10 (right panels). The top
panels are for the full system while the bottom panels are for the order 60 balanced
truncation.

version of the tangent linear operator over this or an extended interval about the
assimilation time, obtaining approximation of the P and Q matrices on this interval.
Both procedures have been tested using the time dependent version of our storm
track model and found to produce accurate truncations. We examine below results
obtained from a reduced order Kalman filter in which the truncation is made on the
time dependent tangent linear operator over 48 hours centred on the assimilation
time.

The time mean tangent linear operator (the mean being calculated over an interval)
is generally asymptotically stable. This is because realistic states of the atmosphere
support primarily instabilities with positive group velocities and do not support abso-
lute instabilities (unstable modes with zero group velocity) (Farrell, 1982; Lin and
Pierrehumbert, 1993; DelSole and Farrell, 1994). The asymptotic instability of the
tangent linear system arises primarily from the continual instigation of transient
growth which occurs in non-periodic time dependent systems in the same way that
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the Mathieu instability arises in time periodic systems. This mechanism is discussed
in Farrell and Ioannou (1999) and has been verified in the context of a forecast
system by Reynolds and Errico (1999) and Gelaro et al. (2000). The stability of
the mean operator allows balancing to be performed on a stable operator, although
the error system itself is non-autonomous and asymptotically unstable. However,
it is not necessary to balance on the mean operator, and as remarked above com-
parable results can be obtained by balancing on the time dependent tangent lin-
ear operator over an appropriate interval; experiment suggests approximately 48
hours.

8.5 Assimilation as an observer system

Consider assimilating data taken from truth, xt. The forecast error ef = xf − xt obeys
the equation

def

dt
= Aef + Q1/2wm, (8.32)

in which A is the unstable tangent linear operator, Q is the model error covariance,
and wm is assumed to be a vector of temporally uncorrelated noise processes.

Introduce n observations, yob, obtained from truth xt as

yob = Hxt + R1/2wo, (8.33)

where H is the observation matrix, R is the observational error covariance and wo is
an n vector of white noise processes.

Assimilate these observations to obtain an analysis, xa , with analysis error ea =
xa − xt satisfying the Luenberger observer system:

dea

dt
= Aea + K(yob − Hxa) + Q1/2wm

= (A − KH)ea + KR1/2wo + Q1/2wm. (8.34)

The gain, K, is chosen to minimise the analysis error variance trace (〈eae†a〉). Unlike
the forecast error system, a Luenberger observer system is asymptotically stable. Any
gain, K, that stabilises the tangent linear operator results in an observer with bounded
error, this error being forced by a combination of model error Q and observational
error R (cf. Eq. 8.34). Good gains do not just stabilise the operator but simulta-
neously reduce the non-normality of the tangent linear operator so that the mini-
mum of trace (〈eae†a〉) is maintained by the combination of observational and model
error.

Just as generalised stability of the tangent linear forecast system reveals the poten-
tial for forecast failures due to transient growth of initialisation error or unresolved
forcings distributed over the forecast interval, so also does generalised stability
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analysis of the observer system reveal how model error and initialisation error con-
tribute to analysis failures.

8.5.1 The case of an optimal observer

The gain K that minimises the statistical steady analysis error variance trace (〈eae†a〉)
is the Kalman gain. For simplicity of presentation we take as our example an oper-
ator A that is time independent and observations taken continuously in time. A
stationary error system with continuous observations is chosen for heuristic reasons
although in forecast systems the tangent linear operator is time dependent and obser-
vations are introduced at discrete intervals. However, the statistical properties of opti-
mal state estimation are general and results are qualitatively similar across observer
systems.

The asymptotic Kalman gain resulting from continual assimilation of observations
with observation matrix H is

K = PH†R−1, (8.35)

with P the stabilising solution of the algebraic Riccati equation

AP + PA† − PH†R−1HP + Q = 0. (8.36)

It is a property of the Kalman filter that the matrix P obtained as a solution of the
algebraic Riccati equation is also the asymptotic error covariance of the observer
system (8.34).

8.5.2 4D-Var as an observer system

4D-Var data assimilation with assimilation window T can be viewed as a special case
of an observer in which a climatological background error covariance B is advanced
for T units of time. In our autonomous model system the error covariance is advanced
according to

P = eAT BeA†T , (8.37)

from which we obtain the gain:

K4D-Var = PH†(HPH† + R)−1. (8.38)

This gain produces a stabilised observer if enough observations are made.
The asymptotic error in the observer (8.34) is obtained by calculating the covari-

ance, P, that solves the equation

(A − K4D-VarH) P + P (A − K4D-VarH)† + K4D-VarRK†
4D-Var + Q = 0.

(8.39)
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8.6 Effect of the number of observations on the
performance of the assimilation

Consider convergence of the assimilated state to truth as more observations are
taken in the presence of model error. To fix ideas assume that repeated independent
observations are made at each of the grid points of our model.

If the state of the assimilation system has dimension N and n observations are
taken at each grid point, the observation matrix for these n observations, Hn , is an
nN×N matrix

Hn = IN

⊗
e, (8.40)

where IN is the identity N 2 dimensional matrix,
⊗

denotes the Kronecker product
and e is the unit column e = [1, . . . , 1]T of dimension n.

Consider an observation error covariance matrix R = rIN
⊗

In , where In is the
n2 dimensional identity matrix and let Kn be the Kalman gain that results from these
n observations. The Kalman gain is

Kn = PnH†
nR−1 = 1

r
Pn

(
IN

⊗
e†

)
, (8.41)

with Pn the stabilising solution of the algebraic Ricatti equation

APn + PnA† − PnH†
nR−1HnPn + Q = 0, (8.42)

where Q is the model error covariance. On substitution of the specific expressions
above for the observation matrix Hn and the observational error covariance matrix
R, (8.42) assumes the simplified form

APn + PnA† − n

r
P2

n + Q = 0, (8.43)

from which we conclude that the analysis error in the observer system resulting
from assimilation of n observations at each grid point with each observation having
observational error variance r is equal to the analysis error that results from observing
the same system with a single isolated observation with observational error variance
r/n. It remains to determine how the error covariance Pn scales with n.

In the absence of model error (Q = 0) the answer is immediate:

Pn = P
n

, (8.44)

where P is the assimilation error covariance associated with a single observation
which satisfies the algebraic Riccati equation

AP + PA† − 1

r
P2 = 0. (8.45)

So in the absence of model error the assimilation square error tends to zero as more
observations are taken at the expected rate of n−1.
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Consider now the case in which model error exists. In that case we may expand
Pn in an asymptotic series:

Pn = po√
n

+ p1

n
+ · · · . (8.46)

The leading term in this expansion is given by

po = √
rQ1/2, (8.47)

and consequently the asymptotic error covariance in the presence of model error has
the leading behaviour

Pn =
√

r

n
Q1/2. (8.48)

We conclude that in the presence of model error the assimilation square error of the
Kalman filter in our example tends to zero at rate n−1/2 as more observations are
made.

It is instructive to compare this with the behaviour of analysis error in a 4D-Var
data assimilation as the number of observations increases. In the absence of model
error the 4D-Var analysis square error also tends to zero at rate n−1, but in the presence
of model error if the background covariance B is not rescaled as more observations
are taken the analysis error asymptotes to a non-zero constant value.

In order to understand this behaviour consider the asymptotic error as n → ∞ in
the unstable stochastically forced scalar system with growth rate a:

de

dt
= ae + q1/2w. (8.49)

The associated algebraic Riccati equation is

2apn − n

r
p2

n + q = 0, (8.50)

with stabilising solution

pn = a
r

n
+

√
a2

( r

n

)2
+ q

r

n
. (8.51)

This stabilising solution is also the error in the observer system after assimilation of
n observations. Note that in the absence of model error and for all n:

pn = 2ar

n
if q = 0, (8.52)

and that the Kalman gain is

Kn = 2a

n
[1, 1, . . . , 1, 1], (8.53)

and that the weight given each in the assimilation is

KnHn = 2a, (8.54)
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indicating that the weight given to observations is proportional to the error growth
rate and is independent of the number of observations.

With model error and as n → ∞:

pn ≈
√

qr

n
if q �= 0, (8.55)

and the Kalman gain is

Kn ≈
√

q

rn
[1, 1, . . . , 1, 1], (8.56)

so that the weight given to observations is

KnHn =
√

nq

r
, (8.57)

independent of error growth rate and indicating that as the number of observations
tends to infinity in the presence of model error the model is increasingly discounted
and the observations accepted. A comparison of the error as a function of the number
of observations in the scalar system is shown in Figure 8.13.

Regardless of model error, the error in the optimal observer vanishes if enough
observations are assimilated, a result that holds in higher dimensions, as we have
seen.

8.7 Approach of 4D-Var to the Kalman filter as the
assimilation interval increases

In the absence of model error 4D-Var is equivalent to the extended Kalman filter if
the assimilation window is extended to infinity. Present implementations of 4D-Var
employ assimilation windows of 12 hours and it may appear that these implementa-
tions must be suboptimal and that the assimilation could be improved by lengthening
the assimilation window.

Consider the asymptotic gain arising from a single observation in the time inde-
pendent storm track model with and without model error. The asymptotic gain is
shown in Figure 8.14 (top panel). It is evident that in the absence of model error
the gain is not localised: the gain identifies the unstable structures of the forecast
model and provides loadings designed to destroy these structures which have the
character of a global mode. As shown in Figure 8.14 (bottom panel), in the presence
of model error the gain becomes localised to the neighbourhood of the observa-
tion, because the model error that is distributed in the system produces incoherent
responses far from the observation location that cancel when the ensemble average
response of the system is taken so that the gain in the presence of model error is
localised.

Because 4D-Var calculates the gains without model error the gain associated with
a 4D-Var assimilation as the assimilation window is increased extends into the far
field. This evolution of the gain associated with an initial climatological background
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Figure 8.13 Error in the scalar optimal observer system and a scalar system with an
equivalent 4D-Var observer as a function of the number of observations. The gain in
the optimal observer is the asymptotic Kalman gain. The growth rate is a = 1/2d−1,
the observational error is 10 m. The model error variance is q = 58m2 d−1 resulting
in a model-induced error of 10 m after a day. With q = 0 the error in both the
observer system with the Kalman filter and the 4D-Var falls as n−1/2. With q �= 0 the
error in the 4D-Var observer asymptotes to a constant value while in the observer
with the Kalman filter falls as n−1/4.

B in a 4D-Var assimilation is shown in Figure 8.15. With time the climatological
gain associated with the background error covariance assumes a global structure.

In the absence of model error the gain as the assimilation interval increases
approaches the structure of the gain of the Kalman filter and the analysis error of 4D-
Var asymptotes to the analysis error obtained by a Kalman filter. The convergence of
4D-Var assimilation error to that of the Kalman filter is shown for the time dependent
version of the storm track model in Figure 8.16.

However, the perfect model assumption is physically unrealistic, and the 4D-Var
assimilation scheme produces gains that have global structure as the assimilation
window is increased. We find in our model storm track that 4D-Var performs best
with an assimilation window that is large enough to allow the gain to be affected
by the flow but short enough so that far-field loadings do not have time to form. An
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Figure 8.14 The asymptotic Kalman gain for observation at the centre of the channel
in the storm track model. Top panel: the gain for the case of no model error. Bottom
panel: the gain for the case with model error. The model error q produces an rms
model error of 5 m in a day. The rms observational error is 10 m. The asymptotic
Kalman gain has been calculated for the time mean flow. Note that the model error
leads to localisation of the gain in the neighbourhood of the observations.

example of 4D-Var analysis error as a function of the assimilation interval is shown
in Figure 8.17. In this example the optimal assimilation interval is 36 hours.

We conclude that neglect of model error in the formulation of 4D-Var makes
4D-Var operate best for rather short assimilation intervals. Model error must be
introduced to make 4D-Var an optimal observer. In the next section we propose a
method for introducing model error into 4D-Var.

8.8 Reduced order error covariance estimate

We now formulate the observer system in which the error covariance is advanced in
the truncated space to obtain a reduced order Kalman gain. The resulting observer
system in reduced coordinates is

dek

dt
= (Ak − KkHk) ek + KkR1/2

k wo − Q1/2
k wm, (8.58)
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Figure 8.15 Evolution of the gain associated with the observation marked with a star
in 4D-Var as a function of the assimilation interval in the unstable time mean storm
track error model. The background B matrix is the identity. As the assimilation
interval increases 4D-Var gains extend into the far field.

where the reduced analysis is ek = Y†ea for k � N and the reduced k × k operator is

Ak = Y†AX. (8.59)

The n observations, yob, are assimilated in the reduced space according to

yob = Hkxk + R1/2wo, (8.60)

where the reduced order observation matrix is

Hk = HX. (8.61)

The error system in the reduced space is used to obtain the Kalman gain Kk and to
propagate the error covariance,

Pk = 〈ekeT
k 〉. (8.62)

The error covariance of the full system is then approximated from that of the reduced
covariance Pk by

P = XPkX†. (8.63)
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Figure 8.16 Error in 4D-Var assimilations in the time dependent storm track model
with no model error as a function of assimilation interval. Also shown is the error
obtained with sequential application of a Kalman filter. Sixteen observations are
assimilated with rms observational error of 10 m. As the assimilation interval tends
to infinity the 4D-Var error approaches that of the Kalman filter.

This error covariance is used in our 4D-Var model. By introducing this covariance
in 4D-Var we evolve the error covariance and simultaneously also introduce model
error. Introduction of this reduced order covariance in 4D-Var makes the 12-hour
4D-Var perform nearly optimally. Analysis of the performance of this filter is shown
in Figure 8.18. Using the reduced order covariance obtained without model error
leads to degradation of the 4D-Var assimilation due to unrealistic far field loadings
in the gains.

8.9 Conclusions

A data assimilation system combines observations and dynamics expressed through
a numerical forecast model to obtain an estimate of the state of the atmosphere. An
optimal data assimilation system combines observations and dynamics to obtain the
statistically best state estimate. Statistical optimality requires information about the
observation error and about the error in the numerical forecast. This latter is difficult
to obtain because of the high dimension of the error system so that approximations
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Figure 8.17 Root-mean-square error in 4D-Var assimilations in the time dependent
storm track model with model error as a function of assimilation interval. The best
4D-Var performance is achieved in this example for assimilation over the interval
36 h. Also shown is the error obtained with the Kalman filter. Forty observations
are assimilated with rms observational error of 10 m; the model error variance is
q = 12 m2 d−1, so that a model error of 5 m accumulates in one day.

to the forecast error have to be made to implement practical applications of optimal
state estimation. A promising method for obtaining an approximation to forecast error
is to advance the error covariance in a state space of reduced dimension compared
with that of the full forecast error system. The error covariance in the reduced space
can then be used in an approximate optimal state estimation method such as 4D-Var
or the extended Kalman filter. Such a reduction is possible because the significantly
unstable subspace of the error system is of much lower dimension than the complete
state dimension.

Assimilation systems can be usefully modelled as observer systems in which
any gain matrix that stabilises the analysis error system is an observer and the
gain that results in minimum analysis error is the optimal observer. This perspec-
tive on assimilation provides insight by allowing generalised stability analysis of
the observer system to be performed, revealing for instance the distributed error
sources that serve to most effectively degrade the analysis (Farrell and Ioannou,
2005).
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Figure 8.18 Error in a simulation of the time dependent storm track model with
model error. (a) Comparison of the errors in a 12-h and 24-h 4D-Var with the error in
the full Kalman filter. Panel (b): Comparison of the error in a 24-h 4D-Var with the
error in a 12-h 4D-Var in which the isotropic static B has been preconditioned with
the error covariance obtained from a reduced rank Kalman filter with balanced
truncation. The reduced rank Kalman filter has been obtained with model error. In the
truncated system 40 degrees of freedom (dof) have been retained out of the 400 dof
of the system. The isotropic B introduced to the reduced rank covariance has
amplitude equal to the smallest eigenvalue of the reduced rank covariance. Also
shown is the error resulting from the Kalman filter. The 12-h 4D-Var performance is
nearly optimal. (c) Comparison of the error in a 24-h 4D-Var with the error in a 24-h
4D-Var in which the isotropic static B has been preconditioned with the error
covariance obtained from the reduced Kalman filter. The 24-h 4D-Var precondi-
tioned with the covariance from the reduced Kalman filter propagates the covariance
without model error longer and its performance is worse than that of the
corresponding 12-h 4D-Var. (d) Root-mean-square error in 4D-Var assimilations in
the time dependent storm track model with model error as a function of assimilation
interval. Also shown is the error obtained with sequential application of a Kalman
filter and the error from the 12-h 4D-Var which was preconditioned with the reduced
rank covariance. Sixteen observations are assimilated with rms observational error of
10 m. The model error variance coefficient is q = 12 m2 d−1, so that a model error of
5 m accumulates after a day.
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Analysis of the observer system modelling 4D-Var and the Kalman filter reveals
that the number of observations assimilated increases the analysis error asymptotes
to a finite value comparable to observational error and independent of the number
of observations, unless the forecast error covariance is systematically adjusted to
account for the increase of observations. One way this adjustment can be accom-
plished is by advancing the forecast error covariance in the dynamically relevant
reduced order system that supports the growing error structures.

The result from using this accurate forecast covariance is that as the number
of observations n increases, the associated Kalman filter obtains assimilation error
O(n−1/4) (with model error present) while the 4D-Var simulation fails to systemat-
ically reduce the estimation error. Assuming that redundancy of observation in the
restricted subspace of significantly growing error structures has or soon will be avail-
able it is important to systematise the error covariance calculation in order to take
advantage of these observations.

The gain under the assumption of a perfect model develops far field loadings that
degrade the assimilation because the model error is in fact non-vanishing. The error
covariance obtained by introducing model error into the reduced system suppresses
these far field loadings. The error covariance calculated in the reduced system pro-
vides a method for introducing model error into 4D-Var, thus reducing the deleterious
effects of the perfect model assumption and allowing accurate equivalent gains to be
realised on short assimilation intervals.
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Notes
1. For waves with a constant meridional wavenumber l, the operator ∇2 is invertible even

for homogeneous boundary conditions.
2. The optimal growth at time, t , is defined as the maximum perturbation growth that can

occur over time t . For an autonomous system, governed by A, the optimal growth at t is
given by the largest singular value of eAt or by ‖eAt‖2.
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Predictability past, predictability present

Leonard A. Smith
Centre for the Analysis of Time Series,
London School of Economics and Pembroke College, Oxford

Maybe we oughta help him see,
The future ain’t what it used to be.

Tom Petty

9.1 Introduction

Predictability evolves. The relation between our models and reality is one of similar-
ity, not identity, and predictability takes form only within the context of our models.
Thus predictability is a function of our understanding, our technology and our dedi-
cation to the task. The imperfection of our models implies that theoretical limits to
predictability in the present may be surpassed; they need not limit predictability in the
future. How then are we to exploit probabilistic forecasts extracted from our models,
along with observations of the single realisation corresponding to each forecast, to
improve the structure and formulation of our models? Can we exploit observations as
one agent of a natural selection and happily allow our understanding to evolve without
any ultimate goal, giving up the common vision of slowly approaching the Perfect
Model? This chapter addresses these questions in a rather applied manner, and it adds
a fourth: Might the mirage of a Perfect Model actually impede model improvement?

Given a mathematical dynamical system, a measurement function that translates
between states of this system and observations, and knowledge of the statistical
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characteristics of any observational noise, then in principle we can quantify pre-
dictability quite accurately. But this situation describes the perfect model scenario
(PMS), not the real world. In the real world we define the predictability of physical
systems through our mathematical theories and our in silico models. And all our
models are wrong: useful but imperfect. This chapter aims to illustrate the utility
of existing ensemble prediction systems, not their imperfections. We will see that
economic illustrations are of particular value, and investigate the construction of
probability forecasts of observables from model simulations. General arguments and
brief illustrations are given below; mathematical details and supporting statistics can
be found in the references. While the arguments below are often couched in terms of
economic users, their implications extend to the ways and means of meteorology as a
physical science. Just as it is important not to confuse utility with empirical adequacy,
it is also important to accept both as means of advancing any physical science.

In the next three sections we make a quick tour of useful background issues in
forecasting, economics and predictability. When considering socioeconomic value
it is helpful not to confuse severe weather and high-impact weather: the value of a
weather forecast depends not only on its information content but also on our ability
to take some mitigating action; a great deal of the unclaimed value in current opera-
tional products lies in their ability to yield useful information regarding unremarkable
weather which carries significant economic impact. Then in Section 9.5 we con-
sider the question of comparing forecasts and the notion of ‘best’. This continues in
Section 9.6 with a number of issues at the interface of meteorology and statistics,
while illustrations of their economic relevance are noted in Section 9.7. It is quite
popular nowadays to blame forecast busts on ‘uncertainty in initial condition’ (or
chaos), we discuss what this phrase might possibly mean in Section 9.8, before con-
cluding in Section 9.9. In reality predictability evolves and, as shown in Section 9.4,
‘the future’ evolves even within the mathematical fiction of a perfect model scenario
where predictability does not.

9.2 Contrasting 1995 and 2002 perspectives
on predictability

What has changed in the short time since the 1995 ECMWF Seminar on Predictabil-
ity? Since I cannot avoid directly criticising what was happening in 1995, we will
focus mostly on my contribution to the seminar (Smith, 1996).

Ensemble formation for systems of chaotic differential equations was a major topic
of discussion in 1995; in contrast this chapter does not contain a single differential
equation. In fact, it contains only one equation and, as it turns out, that equation is
ill posed. In 1995 my focus was on constructing perfect ensembles, while below we
will be more concerned with interpreting operational ensembles. The 1995 paper
quantifies the difference between some forecast probability density function (pdf)
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and a perfect pdf obtained by propagating current uncertainty forward in time under
a perfect model, while below I am content to discuss how to change an ensemble of
simulations into a pdf forecast in the first place. There is also a question as to how
one should evaluate any forecast pdf, given that we never have access to the ‘perfect
pdf’, if such a thing exists, but only observations of a single realisation of weather.
That is, we have only measurements of the one thing that happened, a target often
called the verification. In general, it seems to me that the 1995 discussion focused
on doing maths within the perfect model scenario (PMS), whereas we are now more
interested in quantifying information content and debating resource allocation.

Smith (1996) discussed quantifying model error, while now I have been reduced to
pondering model error, which I now refer to as model inadequacy (following Kennedy
and O’Hagan, 2001). Any particular model can be thought of as one member of a
model class. As a very simple example, consider different models that share the
same structural form but have different parameter values, these are in the same
model class; or consider the collection of all one-dimensional maps consisting of
finite-order polynomials. Model inadequacy reflects the fact that not only is the best
model we have imperfect, but there is no member of the available model class which
is perfect. This is a much deeper flaw than having incorrect parameter values: in this
case there are no ‘Correct’ parameter values to be had. And this case is ubiquitous
within physical science.

The concept of i-shadowing was introduced in the 1995 Predictability Seminar,
as was the notion of an accountable probability forecast. A model is said to i-shadow
over a given period in time if there exists a model trajectory that is consistent with the
observations, given the observational noise, over that period. For historical reasons,
meteorologists call the model state that corresponds to the operational best guess of
current atmospheric conditions the analysis. The question of quantifying just how
long operational models can shadow either the observations or even the correspond-
ing time series of analyses remains of key interest. The notion of an accountable
ensemble forecast was also introduced in the 1995 Seminar (see also Smith, 2001)
as a generalisation of Popper’s idea of accountability in the single forecast scenario.
Popper (1956) realised that forecasts would fail due to uncertainty in the initial con-
dition even if the model was perfect; he called a model accountable if it correctly
specified the accuracy of measurement required to obtain a given forecast accuracy.
For an accountable ensemble forecast the size of the ensemble will accurately reflect
the resolution of the probability forecast. The relevant point here is that any fore-
cast product extracted from an accountable probability forecast will suffer only from
the fact that the forecast ensemble has a finite number of members: we could never
reject the null hypothesis that both the members of the forecast ensemble and the
verification (‘Truth’) were drawn from the same distribution.

The distribution of shadowing times is arguably the best measure we have for
contrasting various non-linear models and quantifying the relevance of uncertainty
in the initial condition (as opposed to model inadequacy). I hope that in the pages
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that follow methods which reflect the quality of a simulation model (i.e. shadowing
times) are clearly distinguished from methods which reflect the quality of a complete
probabilistic forecast system (i.e. ignorance as defined in Good (1952) and Section
9.5.5). Recall that with a non-linear model, a probabilistic forecasting system can only
be evaluated as a whole: non-linearity links data assimilation, ensemble formation,
model structure and the rest.

In general, I would identify two major changes in my own work from 1995 to
2002. The first is a shift from doing mathematics to doing physics; more specifically,
of trying to identify when very interesting mathematics is taking us to a level of detail
that cannot be justified given the limited ability of our model to reflect the phenomena
we are modelling. Indeed, I now believe that model inadequacy prevents accountable
probability forecasts in a manner not dissimilar to that in which uncertainty in the
initial condition precludes accurate best first guess (BFG) forecasting in the root-
mean-square sense. In fact we may need to replace our current rather naı̈ve concept
of probability forecasts with something else; something which remains empirically
relevant when no perfect model is in hand. The second change reflects a better
understanding of the role of the forecast user as the true driver for real-time weather
forecasting. Economic users can play particularly vital roles both as providers of
valid empirical targets, the ultimate test of mathematical modelling (at least within
mathematical physics), and also as a valuable source of data for assimilation. In
the next section, we will develop an ensemble of users with which to illustrate this
interaction.

9.3 An ensemble of users

Tim Palmer’s chapter in this volume (see also Palmer, 2002) introduced his golf
buddy, Charlie the contractor. Charlie is forced by the nature of his work to make
binary decisions, for example whether or not to pour concrete on a given afternoon.
The weather connection comes in as another binary event: if it freezes then the cement
will not set properly. By using cost-loss analysis (Angstrom, 1919; Murphy, 1977;
Richardson, 2000), Charlie can work out the probability threshold for freezing at
which he should take the afternoon off and go play golf. Of course, if Charlie is
presented with a definitive forecast (‘The low temperature tonight will be 4 degrees
C’ or ‘No ground frost tonight’), then pours the concrete and it does freeze, he is
likely to be somewhat disappointed. As Tim noted, he may look for someone to sue.
There are, of course, no definitive forecasts and to sell any forecast as unequivocal
is to invite lawsuits. When a forecaster has foreknowledge of the uncertainty of a
forecast and yet still presents an unequivocal forecast to the public, justifying it as
being ‘for their own good’, she is inviting such a law suit. Arguably, the public has
the right to expect a frank appraisal of the forecaster’s belief in the forecast. As it
turns out, Charlie also plays the horses; he knows much about odds. He does not
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even hold the naı̈ve expectation that the corresponding implied ‘probabilities’ (of
each horse winning) should sum up to one!

But there is more to the world than binary decisions (and golf). While I do not
know Charlie, at a recent London School of Economics alumni dinner I met Charles.
Charles now works in the financial futures market; while he no doubt plays golf,
he does not see himself as making binary decisions; he is interested in ‘How much’
questions rather than ‘Yes or No’ questions. This is because Charles buys and sells
large quantities of petroleum products (heating oil, gas, various flavours of crude, jet
fuel and so on) always being careful not to take delivery of any of it. He has also
started pricing weather derivatives, a wide variety of weather derivatives in fact. He
is fluent in stochastic calculus and knows a bit of probability theory, enough to know
that in order to gauge his risk he wants more than a single probability threshold.

Charles has an interesting view of what constitutes a good four-week forecast.
He doesn’t care at all about the average temperature in week four, nor whether the
Monday two weeks hence is in fact going to be a very cold day. While Charlie
is concerned as to whether or not cement will set tonight, Charles is not concerned
about any particular day. Instead, Charles is very concerned about the number of days
between now and the end of the month on which cement will not set, inasmuch as
this is the kind of variable that weather derivatives near expiry might be based upon.
Charles knows how to place his bets given a good probability forecast; his question
is whether a given probability forecast is a good one! For better or for worse, one
of the advantages of providing a probability forecast is that no single probability
forecast need ever be judged ‘wrong’; finding oneself overly worried about what
might happen in any one forecast suggests we have not fully accepted this basic
lesson of first-year Statistics. Nevertheless, if Charles only bets when the forecast
probability of winning is over 90% and, after many bets, he finds he has won only
half the time, then he will have a strong case against the forecast vendor.

The financial markets are inundated with vendors of various forecasts, and Charles
is familiar with forecasts that fail to provide value. He already knows how to sue, of
course, but never does so; life is too short. Rather, he relies on natural selection in
the marketplace: if the forecasts do not contain the information he needs, or are not
presented in a manner such that he can extract that information (even if it is there),
then he simply stops buying them and speaks badly of them in London wine bars.

And then there is Charlotte, another LSE graduate now working in the energy
sector. Charlotte’s goal is not to make money per se, but rather to generate electricity
as efficiently as possible, using a mix of wind power alongside a set of combined cycle
gas turbine (CCGT) generators.1 Her definition of ‘efficiently’ is an economic one, but
includes issues of improving air quality and decreasing carbon dioxide production.
Ideally, she wants a forecast which includes the full probability density function (pdf)
of future atmospheric states, or at least the pdf for temperature, pressure, wind speed
and humidity at a few dozen points on the surface of the Earth. And she would like
to forecast weather dependence of demand as well, especially where it is sensitive
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to variables that also impact the efficiency of generation (Altalo and Smith, 2004;
Smith et al., 2005). The alternative of using only marginal distributions, or perhaps
a bounding box (Smith, 2001; Weisheimer et al., 2005), may prove an operational
alternative. Charlotte’s aim is not to be perfect but rather simply to do better, so she
is happy to focus on a single site if that is required by the limited information content
in the forecast.

A quick calculation2 shows that even with an accountable forecast the ensemble
size required in order to resolve conditional probabilities will remain prohibitive for
quite some time. Of course, the future may allow flow-dependent resource allocation,
including the distribution of ensemble members over multiple computer sites on those
days when such resources are justified. A somewhat longer and rather more dubious
calculation suggests that generating this style of weather forecasting might feed back
on the weather which is being forecast. Certainly the effect would far exceed that of
the flapping of a seagull’s wing, unless the forecasters were relocated to some remote
location, say on the moon.

Like Charles, Charlotte is also interested in the number of cold days in the remain-
der of this month, or this season. This is especially true if they are likely to be con-
secutive cold days. The consumption of natural gas, and hence its price, depends on
such things. And it is impossible to deduce them from knowing that there is a 10%
chance of a cold day on four consecutive days in week two: thinking of the ensemble
members as scenarios, Charlotte wants to know whether that 10% is composed of
the same ensemble members each day (in which case there is a 10% chance of a
four-day cold spell) or whether it was the case that 10% of the total ensemble was
cold on each of the four days, but the cold temperatures corresponded to different
members each day, in which case the chance of an extended cold spell could be very
low (depending on the size of the ensemble).

Why does she care about the four consecutive cold days problem? By law (of
Parliament), natural gas will be diverted from industrial users to domestic users in
times of high demand. If she can see that there is a moderate probability of such a
period in advance, she can fill her reserve tanks before the start of the cold spell (and
take a forward position in gas and electricity markets as well). This is a fairly low
cost action, because if the cold spell fails to materialise, she can simply decrease
purchase of natural gas next week. The carrying costs of an early purchase are small,
the profit loss of running low is huge: she is happy to overstock several times a year,
in order to have full reserves during the cold spells that do occur.

And she can mix this weather information in with a variety of other indicators
and actions; from scheduling (or postponing) preventive maintenance, to allowing
optional leave of absence, so as to embed probabilistic weather information naturally
into a scheme of seamless forward planning.

Decisions similar to Charlotte’s are made across the economy. We consider two
more examples of such decisions: one faced by the owner of a small corner shop
and one faced by a multinational energy giant. By overstocking soft drinks whenever
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the probability of a heat wave exceeds a relatively low threshold, shop owners can
hedge against the significant impact of running out of stock when a heat wave finally
materialises. The marginal costs of the extra stock are relatively low, as in Charlotte’s
case, and the shop owner will happily make this investment several times when no
heat wave materialises. We find something like the inverse of the understock problem
in offshore oil wells. In deep water, floating oil wells store the extracted oil onsite,
until a tanker can come and collect it; for a variety of reasons, it is costly for the local
storage tanks to get too full. To offload the oil, a tanker must not only reach the well,
but seas must be calm enough for it to dock; obviously it can make sense to send a
tanker early if there is a good chance of sustained heavy seas in the vicinity of the
well near the originally scheduled time of arrival.

Cost functions targeting Charles’ and Charlotte’s desires could prove very valuable
to modellers; inasmuch as we have not already fit our models to such targets, they
provide a fresh viewpoint from which we can detect hidden shortcomings of our
models. But even beyond this, Charlotte and her colleagues are not only collecting
traditional meteorological observations at various points scattered about the country
(power station locations), they also collect real-time data on weather-related demand
integrated over spatial regions comparable with the grid resolution of a weather model
and on timescales of seconds: the assimilation of such observations might also prove
of value. This value will hinge on the information content of the observations, not
their number: a huge number of uninformative or redundant observations may tell us
much less than a few relevant measurements.

Charlie, Charles and Charlotte each aim to extract as much relevant information as
possible from the forecast, but no more. Each of them realises that, in the past, weather
forecasts have been presented as if they contained much more information than even
a casual verification analysis would support. The five-day forecasts for Oxford at
www.metoffice.com present the day 5 forecast with the same air of authority given
to the day 2 forecast. The Weather Channel, which provides 10-day point forecasts at
www.weather.com, and other vendors are concerned to present the uncertainty they
know is associated with their current apparently unequivocal forecasts. Yet a decade
after ensemble forecasting became operational, it is still not clear how to do so. And
the situation is getting worse: there is talk of commercially available point forecasts
out to 364 days, each lead time presented as if it were as reliable as any other (in
this last case, no doubt, the vast majority are equally reliable). Questions of how
best to communicate uncertainty information to numerate users and how to rapidly
communicate forecast uncertainty to the general public are central to programmes like
THORPEX. Answering these questions will require improving the research interface
between social psychology, meteorology and mathematics. Our current progress in
this direction can be observed in the forecasts posted at www.dime.lse.ac.uk (see also
http:// lsecats.org and www.meteo.psu.edu/∼roulston).

So we now have our ensemble of three users, each with similar but distinct interests
in weather forecasts and different resources available to evaluate forecast information.
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Charlie is primarily interested in binary choices. Charles’ main interests lie both in a
handful of meteorological standards (where he only cares about the legal value of the
standard, not what the weather was) and in very broad meteorologically influenced
demand levels. Charlotte is interested in accurate, empirically falsifiable forecasts;
she doesn’t care what the analysis was nor what the official temperature at Heathrow
was. She has temperature records of her own in addition to measurements of the
efficiency of her CCGT generators and wind turbines. In a very real sense, her
‘economic variables’ are more ‘physical’ than any model-laden variable intended to
reflect the 500 mb pressure height field within some model’s analysis.

There are, of course, important societal uses of weather forecasts beyond eco-
nomics; many of these societal applications are complicated by the fact that the
psychological reactions figure into the effectiveness of the forecast (for an example,
see Roulston and Smith, 2004). For most of what follows, however, we will consider
weather forecasts from the varying viewpoints of Charlie, Charles and Charlotte.
Obviously, I aim to illustrate how probabilistic forecasts derived from operational
ensemble prediction systems (EPS) compare, in terms of economic relevance, with
forecasts derived from a best first guess (BFG) approach, and we shall see that prob-
abilistic forecasts are more physically relevant as well. But I will also argue that
accountable probability forecasts may well lie forever beyond our grasp, and that
we must be careful not to mislead our ‘users’ or ourselves in this respect. To moti-
vate this argument, we will first contrast the Laplacian view of predictability with a
twenty-first century view that accounts for uncertainty in the initial condition, if not
model inadequacy.

9.4 Contrasting nineteenth vs. twenty-first century
perspectives on predictability

Imagine (for a moment) an intelligence that knew the True Laws of Nature and had
accurate but not exact observations of a chaotic system extending over an arbitrarily
long time. Such an agent, even if sufficiently powerful to subject all this data to
(exact) mathematical analysis, could not determine the current state of the system
and thus the present, as well as the future, would remain uncertain in her eyes. Yet
the future would hold no surprises for her, she could make accountable probability
forecasts, and low probability events would occur only as frequently as expected. The
degree of perfection that meteorologists have been able to give ensemble weather
forecasting reflects their aim to approximate the intelligence we have just imagined,
although we will forever remain infinitely remote from such intelligence.3

It is important to distinguish determinism and predictability (see Earman, 1986;
Bishop, 2003 and the references therein). Using the notion of indistinguishable states
(Judd and Smith, 2001, 2004) we can illustrate this distinction with our twenty-first
century demon, which has a perfect model and infinite computational capacity but



9 Predictability past, predictability present 225

access to only finite resolution observations. If the model is chaotic, then we can prove
that, in addition to the ‘True’ state, there exists a set of states that are indistinguish-
able from the particular trajectory that actually generated the data. More precisely,
we have shown that given many realisations of the observational noise, there is not
one but, in each case, a collection of trajectories that cannot be distinguished from the
‘True’ trajectory given only the observations. The system is deterministic, the future
trajectory of each state is well defined and unique, but uncertainty in the initial condi-
tion limits even the demon’s prediction to the provision of probability distributions.

Note that the notion of shadowing is distinct from that of indistinguishable states
(or indistinguishable trajectories); i-shadowing contrasts a trajectory of our mathe-
matical model with a time series of targets usually based on observations of some
physical system. This is often cast as a question of existence: does the model admit
one or more trajectories that are consistent with the time series of observations given
the noise model? The key point here is that we are contrasting our model with the
observations. This is very different from the case of indistinguishable states, where
we are contrasting various model trajectories with each other and asking whether or
not we are likely to be able to distinguish one from another given only noisy observa-
tions. In this case, one considers all possible realisations of the observational noise.
Thus when working with indistinguishable states we consider model trajectories and
the statistics of the observational noise, whereas with shadowing we contrast a model
trajectory and the actual set of observations in hand. Shadowing has a long history
in non-linear dynamical systems dating back to the early 1960s; a discussion of the
various casts of shadow can be found in Smith (2001).

In terms of actually constructing an operational ensemble, the relevant members of
the indistinguishable sets are those that have, in fact, shadowed given the particular
realisation of the observational noise in the recent past. More clearly: recall that
each set of indistinguishable states is determined by integrating over all possible
realisations of the observational noise; even when we wish to pick our ensemble
members from this set, we will weight them with respect to the observations obtained
in the one realisation of the noise which we have access to (our observations).

Given the arguments above, it follows that within the perfect model scenario
an infinite number of distinct, infinitely long shadowing model trajectories would
exist, each trajectory shadowing observations from the beginning of time up until the
present. These trajectories are easily distinguished from each other within the model
state space, but the noisy observations do not contain enough information to identify
which one was used to generate the data. The contents of this set of indistinguishable
states will depend on the particular realisation of the observational noise, but the
set will always include the generating trajectory (also known as ‘Truth’). This fact
implies that even if granted all the powers of our twenty-first century demon, we
would still have to make probabilistic forecasts. Epistemologically, one could argue
that the ‘true state’ of the system is simply not defined at this point in time, and that
the future is no more than a probability distribution. Accepting this argument implies
that after each new observation is made, the future really ain’t what it used to be.
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Of course, even this restriction to an ever-changing probabilistic future is a dif-
ficulty to which we can only aspire. We do not have a perfect model; we do not
even have a perfect model class, meaning that there is no combination of model
parameters (or available parametrisations) for which any model accessible to us will
provide a shadowing trajectory. Outside the perfect model scenario (PMS), the set
of indistinguishable states tends to the empty set (Judd and Smith, 2004). In other
words, the probability that the data was generated from any model in the model class
approaches zero as we collect more observations, an awkward fact for the applied
Bayesian.4 But accepting this fact allows us to stop aiming for the perfect model, just
as accepting uncertainty in the initial condition freed us from the unattainable goal of
a single accurate forecast trajectory from ‘inaccurate’ starting conditions. When the
model is very good (that is, the typical i-shadowing times are long compared with
the forecast time) then the consideration of indistinguishable states suggests a new
approach to several old questions.

9.5 Indistinguishable states and the fair valuation
of forecasts

In this section we will consider the aims of model building and the evaluation of
ensemble forecasts. Rather than repeat arguments in Smith (1997, 2001) on the impor-
tance of distinguishing model-variables from observed variables, we will consider
the related question of the ‘best’ parameter value for a given model class. Arguably
there is no such thing outside of PMS, and the insistence on finding a best can degrade
forecast performance. We will then consider the game of weather roulette, and its
use as an illustration for the economic decisions Charles and Charlotte make every
day. A fair comparison of the value of different forecasts requires contrasting like
with like, for example we must ‘dress’ both BFG and EPS simulations in order to
obtain a fair evaluation of the probabilistic forecasts available from each method.
Weather roulette also allows us to illustrate Charles’ favoured cost function for eco-
nomic forecasts, the logarithmic skill score called ignorance (Roulston and Smith,
2002). Relative ignorance can also be used to obtain insight on operational questions
such as the division of computational resource between ensemble size and model
resolution for a given target, as illustrated with Heathrow temperatures below (see
also Smith et al., 2001). Two worked economic examples are discussed in Section
9.7.

9.5.1 Against best

What parameter values should best be used in a forecast model? If the system that
is generating the data corresponds to a particular set of parameters in our forecast
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model, then we have a perfect model class; obviously that set of parameters would be
a candidate for ‘best’. Outside PMS, at least, the question of best cannot be decoupled
from the question of why we are building the model. We will duck both questions, and
simply consider a single physically well-understood parameter, the freezing point of
water,5 within three (imperfect) modelling scenarios.

At standard pressure, it is widely accepted that liquid water freezes at zero degrees
C. In a weather model with one millimetre resolution, I would be quick to assign this
value to the model-freezing point. In a weather model with one-angstrom resolution,
I would hope the value of zero degrees C would ‘emerge’ from the model all by
itself. And at 40 kilometre resolution? Well at 40 km resolution I have no real clue
as to the relation between model-temperature and temperature. I see no defensible
argument for setting this parameter to anything other than that value which yields the
best distribution of shadowing trajectories (that is, the distribution which, in some
sense, reflects the longest shadowing times; a definition we will avoid here).

Of course, the physical relevance of the mathematical form used for the model
parametrisation assumes that the parameter value lies in some range; internal con-
sistency (and relevance) of the model parametrisation itself places some constraints
on the values of the model parameters within it. This suggests, for example, that the
freezing point of water should be somewhere around zero, but does not suggest any
precise value.

This confusion between model-parameters and their physical analogues, or even
better between model-variables and the observations (direct empirical measure-
ments), is common. The situation is not helped by the fact that both are often given
the same name; to clarify this we will distinguish between temperature and model-
temperature where needs be.

Translating between model variables and observables is also related to represen-
tation error. Here we simply note that representation error is a shortcoming of the
model (and the model-variables) not the observations. A reanalysis is a useful tool,
but its value derives from the observations. In fifty years’ time the temperature obser-
vations recorded today at Heathrow airport will still be important bits, whereas no
one will care about model-temperature at today’s effective grid resolution. The data,
not the model-state space, endure.

Outside PMS, it is not clear how to relate model-variables to variables. To be fair,
one should allow each model its own projection operator. Discussion of the difficulties
this introduces will be pursued elsewhere, but there is no reason to assume that this
operator should be one-to-one; it is likely to be one-to-many, as one model state
almost surely corresponds to many atmospheric states if it corresponds to any. It may
even be the case that there are many atmospheric states for each model state, and that
each atmospheric state corresponds to more than one model state: a many-to-many
map. But again, note that it might be best to avoid the assumption that there is ‘an’
atmospheric state altogether. We do not require this assumption. All we ever have
are model states and integer observations.
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9.5.2 Model inadequacy: the biggest picture

Let us now reconsider the issues of forecasting within the big picture. Once again,
suppose for the moment that there exists some True state of the atmosphere, call it
X(t). This is the kind of thing Laplace’s nineteenth-century demon would need to
know to make perfect forecasts, and given X(t) perfect BFG forecasts would follow
even if the system were chaotic. As Laplace noted, mere mortals can never know
X, rather we make direct measurements (that is, observations) s, which correspond
to some projection of X into the space of our observing system. Given s, and most
likely employing our model M as well, we project all the observations we have
into our model-state space to find a distribution for x(t). Traditionally attention has
focused on one model state, often called the analysis, along with some uncertainty
information regarding the accuracy of this state. This is nothing more than data
assimilation, and the empirically relevant aim of data assimilation is an ensemble
(or probability distribution function), not any single state. Using our model, we
then iterate x(t) forward in time to some future state, where we reverse the process
(via downscaling or model output statistics) to extract some observable w. In the
meantime, the atmosphere has evolved itself to a new state, and we compare our
forecast of w with our new observation and the corresponding observed projection
from the new X.

Although pictures similar to the one drawn in the preceding paragraph are com-
monplace, the existence of Truth, that is the existence of X, is mere hypothesis.
We have no need of that hypothesis, regardless of how beautiful it is. All we
ever have access to are the observations, which are mere numbers. The existence
of some ‘True’ atmospheric state, much less some mathematically perfect model
under which it evolves, is untestable. While such questions of belief are no doubt
of interest to philosophers and psychologists, how might they play a central role
within science itself? In questions of resource allocation and problem selection,
they do.

Accepting that there is no perfect model is a liberating process; perhaps more
importantly, it might allow better forecasts of the real atmosphere. Doing so can
impact our goals in model improvement, for example, by suggesting the use of
ensembles of models and improving their utility, as opposed to exploring mathemat-
ical approximations which will prove valid only for some even better model which,
supposing it exists, is currently well beyond our means. The question, of course,
is where to draw the line; few would question that there is significant information
content in the ‘Laws of Physics’ however they lie, yet we have no reliable guide for
quantifying this information content. In which cases will PMS prove to be a pro-
ductive assumption? And when would we do better by maintaining two (or seven)
distinct but plausible model structures and not trying to decide which one was best?
What is the aim of data assimilation in the multimodel context? Indeed, is there a
single aim of data assimilation in any context: might the aim for nowcasting differ
from that of medium-range forecasting?
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Charlie, Charles and Charlotte, along with others in the economy rather than in
economics, seem untroubled by many of these issues; they tend to agree on the same
cost function, even if they agree on nothing else. So we will leave these philosophical
issues for the time being, and turn to the question of making money.

9.5.3 Weather roulette

A major goal of this chapter is to convince you that weather roulette is not only a
reasonable illustration of the real-world economic decisions that Charles and Char-
lotte deal with on a daily basis, but that it also suggests a relevant skill score for
probabilistic forecast systems. Weather roulette (M. S. Roulston and L. A. Smith,
unpublished data) is a game in which you bet a fixed stake (or perhaps your entire
net worth) on, say, the temperature at Heathrow. This is repeated every day. You can
place a wager on each number between −5 and 29, where 29 will include any temper-
ature greater than 29 and −5 any value below −5. How should you spread your bet?
First off, we can see that it would be foolish not to put something on each and every
possibility, just to be sure that we never go bust. The details of the distribution depend
on your attitudes toward risk and luck, among other things; we will consider only
the first. In fact we will initially take a risk neutral approach where we believe in our
forecast probabilities: in this case we distribute our stake proportionally according
to the predicted probability of each outcome. We imagine ourselves playing against
a house that sets probabilistically fair odds using a probability distribution different
from ours. Using this approach we can test the performance of different probability
forecast systems in terms of how they fare (either as house or as punter).

As a first step, let’s contrast how the ECMWF ensemble forecast would perform
betting against climatological probabilities. Given a sample-climatology based on
17 years of observations, we know the relative frequency with which each option
has been observed (given many centuries of data, we might know this distribution
for each day of the year). But how do we convert an ensemble forecast of about
50 simulations into a probability forecast for the official observed temperature at
Heathrow airport? There are a number of issues here.

9.5.4 Comparing like with like

How can Charlotte contrast the value of two different probability forecasting systems,
say one derived from a high-resolution BFG forecast and the other from an EPS
forecast? Or perhaps two EPS forecasts which differ either in the ensemble formation
method or as to the ensemble size? There are two distinct issues here: how to turn
simulations into forecasts and how to agree on the verification.

The first question is how to turn a set of model(s) simulations into a probability
weather forecast. In the case of ensembles there are at least three options: fitting some
parametric distribution to the entire ensemble, or dressing the individual ensemble’s
members (each with an appropriate kernel), or treating the entire forecast ensemble
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(and the corresponding verification) as a single point in a higher dimensional space
and then basing a forecast upon analogues in this product space. We will focus on
dressing the ensemble, which treats each individual member as a possible scenario.
The product space approach treats the statistics of the ensemble as a whole; examples
in the context of precipitation and wind energy can be found in Roulston et al. (2001,
2003).

Treating the singleton BFG as a point prediction (that is, a delta function) does
not properly reflect its value in practice. To obtain a fair comparison with an EPS, we
‘dress’ the forecast values by replacing each value with a distribution. For the single-
ton BFG, one can construct a useful kernel6 simply by sampling the distribution of
historical ‘error’ statistics. The larger the archive of past forecast-verification pairs
is, the more specific the match between simulation and kernel. Obviously we expect
a different kernel for each forecast lead-time, but seasonal information can also be
included if the archive span is long enough. Dressing the BFG in this way allows a fair
comparison with probability forecasts obtained from ensemble forecasts. If nothing
else, doing so places the same shortcoming due to counting statistics on each case. To
see the unfairness in treating a BFG forecast as if it were an ensemble which had fore-
cast the same value 50 times, recall the game of roulette. Think of the advantage one
would have in playing roulette if, given an accountable probability forecast, you could
place separate bets with 50 one dollar chips on each game, rather than having to place
one 50 dollar chip on each game. To make a fair comparison, it is crucial that the sin-
gle high-resolution simulation is dressed and not treated as an unequivocal forecast.

Suppose we have in hand a projection operator that takes a single model state into
the physical quantity we are interested in, in this case the temperature at Heathrow.
Each ensemble member could be translated into a specific forecast; because the
ensemble has a fixed number of members, we will want to dress these delta functions
to form a probability distribution that accounts both for our finite sample and for the
impact of model error. We can use a best member approach to dressing, which is
discussed in Roulston and Smith (2003) or simply use Gaussian kernels. Why don’t
we dress the ensemble members with the same kernel used for the BFG? Because to do
so would double count for uncertainty in the initial condition. The only accounting for
this uncertainty in the BFG is the kernel itself, while the distribution of the ensemble
members aims to account for some of the uncertainty in the initial condition explicitly.
Thus, other things being equal, the BFG kernel is too wide for ensemble members.
Which kernel is appropriate for the ensemble members? Just as the error in the high-
resolution forecast is too wide, the error in the ensemble mean is irrelevant. By using
a kernel based on the best member of the ensemble, we aim to use a kernel that is as
narrow as possible, but not more so. We do not, of course, know which member of the
ensemble will turn out to provide the best forecast, but we do know that one of them
will. Of course one must take some care in identifying the best member: considering
the distant future of a trajectory will obliterate the more relevant information in the
recent past. The critical issue here is to dress the simulations, the ideal kernel may
well depend upon the circumstances, the size of the forecast archive, for instance.
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The necessity of dressing emphasises the role of the forecast archive in the proper
valuation validation of EPS forecasts. It also shows that the market value of an EPS
will be diminished if a suitable EPS forecast archive is not maintained. This remains
the case when we use simple kernels, such as a Gaussian distribution, and use the
archive to determine any free parameters.

The second question of model verification addresses how we come to agree on
what actually happened. This is not as clear-cut as it might first appear; a cyclist may
arrive home drenched only to learn that, officially, it had not rained. Often, as in the
case of the cyclist, what ‘happened’ is decided by decree: some agency is given the
power to define what officially happened. Charles is happy with this scenario as long
as the process is relatively fair: he wants to close his book at the end of each day and
go home. Charlotte may be less pleased if the ‘official’ forecast says her generators
were running at 77%, while a direct calculation based on the amount of gas burned
yields 60%. In part, this difference arises because Charles really is playing a game,
while Charlotte is trying to do something real. Outside the perfect model scenario,
there appears to be no unique optimal solution.

9.5.5 Ignorance

Roulston and Smith (2002) discuss an information theoretical skill score that reflects
expected performance at weather roulette. Called ignorance,7 this skill score reflects
the expected wealth doubling time of two gamblers betting against each other using
probability forecasts, each employing Kelly systems.8 For instance, a difference in
ignorance scores of one bit per game would suggest that, on average, the players with
lower ignorance score would double their stake on each iteration. The typical wealth
doubling (or halving) time of a balanced roulette table is about 25 games, favouring
the house, while scientific roulette players have claimed a doubling time on the order
of three and favouring the player. How do these values arise?

Prior to the release of the ball, the probability of each number on a balanced
roulette wheel can be taken to be equal, that is 1 in 37 in Europe (and 1 in 38 in the
United States). If the house offers odds of 36-for-1, then the expected value of a unit
stake after a single bet on a single number is 36/37. Raising this to the 25th power
yields the reduction of the initial stake to one half; hence the expected wealth halving
time is, in this case, roughly 25 games.

Roulette is a particularly appropriate analogy in that bets can be placed after the
ball has been released. If, using observations taken after the ball is released, one
could predict the quarter of the wheel on which the ball would land, and if such
predictions were correct one third of the time, then one would expect a pay-off of
roughly 36/9 once in every three games. This is comparable to reports of empirical
returns averaging 30% or the expected stake doubling time of about three noted above.

There are several important things to note here. First, the odds offered by the house
are not fair, even if the wheel is. Specifically, the implied ‘probabilities’ (the reciprocal
of the odds) over the available options do not sum up to one: 37 × (1/36) > 1.
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In practice it is rarely, if ever, the case that this sum is one, although this assumption
is built into the most common definition of fair odds.9

Second, ignorance contrasts probability forecasts given only a single realisation
as the verification. That is, of course, the physically relevant situation. In the 1995
ECMWF Seminar, we discussed the difference between the forecast distribution and
some ‘true’ distribution as quantified via the Kolmogorov–Smirnov (KS) distance; a
more elegant measure of the difference between two probability distributions is pro-
vided by the relative entropy (see Kleeman, 2002). What these and similar approaches
fail to grasp, however, is that there is no ‘true’ distribution to contrast our forecast dis-
tribution with. Outside PMS, our forecast distribution rarely even asymptotes to the
climatology unless forced to (and if forced, it asymptotes to a sample-climatology).

In the case of roulette, each spin of the wheel yields a single number. Before the
ball is released, a uniform prior is arguably fair; but the relevant distribution is defined
at the point when all bets must be placed, and this is not uniform. And there’s the rub.
What is a fair distribution at this point? Even if we assume it exists, it would depend
on the size of your computer, and your knowledge of mechanics, and the details of this
particular wheel, and this particular ball. And so on. Computing the relative entropy
(or the KS distance) requires knowledge of both the forecast distribution and the true
distribution conditioned on the observations. The equation that defines the relative
entropy has two terms. The first term reflects the relative frequency with which certain
forecast probabilities are verified; the second term reflects the relative frequency with
which certain probabilities are forecast by a perfect model. Thus outside PMS the
second term is unknowable, and hence the relative entropy is unavailable. The first
term reflects the ignorance skill score. A shortcoming of ignorance is that it provides
only a relative skill score ranking alternatives. Its advantage, of course, is that it is
deployable in practice. As we have only the data, and data are but numbers, only
limited skill scores like ignorance are available in practice. Similarly, our real-time
performance will depend on the single future we experience, not the expectation over
some many-worlds collection of ‘possibilities’.

9.5.6 Heathrow temperature

So back to weather roulette: How does the dressed ensemble fare against climatology?
Rather well. Consider daily bets, each with a stake of £100, placed over the period of
a year starting on 23 December, 1999. The three-day forecast based on the ECMWF
ensemble made almost £5000 in this period, while the ten-day forecast made about
£1000 over the same period. As expected even in a perfect model, the value of
the ensemble relative to climatology decreases with lead time. And there is more.
The dressed ECMWF ensemble can also be used to bet against house odds based
on the (dressed) ECMWF high-resolution best first guess (BFG) forecast. In this
case the relative information gain is greater at a lead time of 10 days than at three,
with winnings of over £5000 and over £2000, respectively. This also makes sense,
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inasmuch as the value of the ensemble forecast relative to climatology is greatest
in the short range, while its value relative to a high-resolution forecast is greater at
longer lead times (M. S. Roulston and L. A. Smith, unpublished data).

But there is still more, we can contrast the 51 member ensemble with the 10
member ensemble (all ensembles are dressed before use; the best-member kernel
will, of course, vary with the size of the ensemble); is there statistically significant
value added in the 51 member case relative to the case of randomly selecting 10
members? Yes. Relative to the 12-member case? Yes. And the 17-member case? No.
Arguably, if Charles were betting only on Heathrow temperatures he would have
done as well dressing 17 members as with using (that is, buying) all of them. He
would have taken them for free (why not?) but not paid much for them. There is
nothing universal about the number 17, in this context. The relevant ensemble size
will depend on the details of the target variable as well as the model.

Of course any meteorological sales person worth their salt would immediately
point out that users like Charlotte are interested in conditional probabilities of multiple
variables at multiple locations. Charlotte is interested in the efficiency of each of her
CCGT plants, as well as some integrated measure of electricity demand. But Charles
is happy to stick with Heathrow, as long as his probability forecasts are making him
money and costing him as little as possible. Making/pricing complicated multi-site
derivatives is hard work; and he knows that it is dangerous as well: the curse of
dimensionality implies tight constraints on the conditional probability forecasts that
can be pulled out of even the best Monte Carlo ensemble with only a few dozen, or
a few thousand, members. Charles simply need not take these risks, if the market in
trading Heathrow temperatures is both sufficiently profitable and sufficiently liquid.
Charlotte, by contrast, is exposed to these risks; the best she can do is understand the
limits placed on the available forecasts by current technology.

There are three important take-home messages here: first that, like it or not, the
ideal distribution between ensemble size and resolution will be target (that is, user)
dependent; second that the marginal value of the n + 1st ensemble member will go
to zero at different times for different uses; and third that the value of the EPS as
a whole will depend critically upon the provision of an archive that allows users to
convert these simulations into forecasts of the empirical quantities of interest.

9.6 Lies, damn lies, and the perfect model scenario

For the materialist, science is what teaches us what to believe. For the
empiricist, science is more nearly what teaches us how to give up our beliefs.

Bas van Fraassen

Philosophers might call the meteorologist striving for PMS a realist; he believes in
the physical reality of the model states and in the truth, or approximate truth, of
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the model. Alternatively, one modern variety of empiricist aims only for empirical
adequacy. Such labels might seem inappropriate outside a philosophy department,
if they were not relevant for the allocation of resources and hence the progress of
science.

A model is empirically adequate if the dynamics of the model are in agreement
with the observations. In this context, the word prediction often refers to prophecies
as well as forecasts (see Smith, 1997). To judge empirical adequacy requires some
accounting for observational noise and the fair use of a projection operator between
the model-variables and the observables; i-shadowing would be a necessary condition
for empirical adequacy of a dynamical system. There is still much to be understood
in this direction, nevertheless it is not clear to me that any of our dynamical models
are empirically adequate when applied to dynamic (non-transient) physical systems.
There are a number of points, however, where the decision to work within PMS
impacts the relevance of the statistics used to judge our models and the choice of
how to ‘improve’ them.

9.6.1 Addressing model inadequacy and multiple
model ensembles

The philosophical foundations of theories for objective probability distributions are
built about the notion of equally likely cases or events (see Gillies, 2000). Within
PMS, the perfect ensemble is an invocation of this ideal for chaotic dynamical sys-
tems that are perfectly modelled but imperfectly observed. This view of the world is
available only to our twenty-first century demon who has access to various sets of
indistinguishable states. Given a collection of good but imperfect models, we might
try and use them simultaneously to address the issue of model inadequacy. But once
we employ multiple imperfect models, the epistemological foundations that justify
empirical probability forecasting turn to sand. While we can tolerate uncertainty in
the parameter values of a model that comes from the correct model class by invoking
what are effectively Bayesian methods, it appears we cannot find an internally con-
sistent framework to support objective (empirically relevant) probability forecasts10

when using multiple models drawn from distinct model classes, the union of which
is known to be imperfect. Of course one can draw comfort in those aspects of a
forecast in which models from each model class independently assign similar prob-
abilities; but only comfort, not confidence (see Smith, 2002). Both systematic and
flow dependent differences in the skill scores between the probabilistic forecasts from
each model class may help us identify which physical phenomena deserve the most
attention in each model class. Thus with time we can improve each of the models
in the ensemble, while our probabilistic forecasts remain infinitely remote from the
accountable probability forecasts of our twenty-first century demon.
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9.6.2 Model inadequacy and stochastic parametrisations

Every attempt at model improvement is an attempt to reduce either parameter uncer-
tainty or model inadequacy. Model inadequacy reflects the fact that there is no model
within the class of models available to us that will remain consistent with all the
data. For example, there may be no set of parameter values that enable a current
model to shadow the observations out-of-sample11 (or even in-sample?). Finding the
(metric dependent) ‘best’ parameters, or distributions of parameters, and improving
the data assimilation scheme are attempts at minimising the effects of model inade-
quacy within a given class of models. But model inadequacy is that which remains
even when the best model within the model class is in hand; it affects both stochastic
models and deterministic models.

Historically, physicists have tended to employ deterministic models, and opera-
tional numerical weather prediction models have been no exception to this trend.
There are at least two good reasons why our forecast models should be stochastic in
theory. The first comes from recent results (Judd and Smith, 2004) which establish
that, given an imperfect non-linear chaotic model of a deterministic system, better
state estimation (and perhaps, even better probabilistic forecasts) can almost certainly
be obtained by using a stochastic model even when the system which generated the
data really is deterministic! The second is the persuasive argument that, given cur-
rent model resolution, it makes much more sense (physically) to employ stochastic
subgrid-scale parametrisations than to employ dogmatically some mean value, even
a good estimate of the expected value (Palmer, 2001; Smith, 2002). And in addition
to these theoretical arguments, stochastic parametrisations have been shown to be
better in practice (Buizza et al., 1999). It is useful to separate arguments for improv-
ing a forecast based on each of these two reasons; we should maintain the distinction
between methods which improve our model class (say, by adding stochastic physics)
and those that deal with residual model inadequacy (which will always be with
us).

While adopting stochastic parametrisations will make our models fundamentally
stochastic, it neither removes the issue of model inadequacy nor makes our model
class perfect. Consider what is perhaps the simplest stochastic model for a time series:
independent and identically distributed (IID) normal (Gaussian) random variables of
mean zero and standard deviation one. Data are numbers. Any data set has a finite
(non-zero) probability of coming from this trivial IID model. Adjusting the mean and
the standard deviation of the model to equal the observed sample-mean and sample-
deviation will make it more difficult to reject the null hypothesis that our IID ‘model’
generated the data, but not much more difficult. We are soon faced with probabilities
so low that, following Borel (1950), we could say with certainty that even a stochastic
model does not shadow the observations. The possibility to resemble differs from
the ability to shadow.
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One often overlooked point here is that whenever we introduce a stochastic ele-
ment into our models we also introduce an additional constraint: namely that to be
a shadowing trajectory, the innovations must be consistent with the stochastic pro-
cess specified in the model. Stochastic parametrisations may prove a tremendous
improvement, but they need not yield i-shadowing trajectories even if there exist
some series of innovations that would produce trajectories similar to a time series
of analysis states. To be said to shadow, the particular series of innovations must
have a reasonable probability given the stochastic process. Experience suggests that
it makes little difference if we require a 95% isopleth, or 99%, or 99.999% for that
matter. Model inadequacy manifests itself rather robustly. Without this additional
constraint the application of the concept of i-shadowing to stochastic models would
be trivial; the concept would be useless as any rescaled IID process could be said to
shadow any set of observations. With this constraint, the introduction of stochastic
terms does not guarantee shadowing, and their contribution to improved probabilistic
forecasts can be fairly judged.

Even within PMS we must be careful that any critical, theoretically sound assump-
tions hold if they are relevant in the particular case in question (Hansen and Smith,
2000; Gilmour et al. 2001). Outside PMS a model’s inability to shadow holds impli-
cations for operational forecasting, and for the Bayesian paradigm in applied science
if not in mathematics. First of all, it is demonstrable that we can work profitably with
imperfect models full of theory-laden (or better still, model-laden12) variables, but
we can also be badly misled to misallocate resource in the pursuit of interesting math-
ematics, which assumes an unjustified level of perfection in our models. Ultimately,
only observations can adjudicate this argument – regardless of what we ‘know’ must
be the case.

9.6.3 Dressing ensemble forecasts and the so-called
‘superensemble’

The superensemble method introduced by Krishnamurti et al. (1999) is a very inter-
esting method for extracting a single ‘locally optimised’ BFG forecast from a mul-
timodel ensemble forecast. In short, one finds the optimal weights (in space, time,
and target variable) for recombining an ensemble of multimodel forecasts so as to
optimise some root-mean-square skill score of the resulting BFG forecast.

The localised relative skill statistics generated within this ‘superensemble’
approach must contain a wealth of data of value in understanding the shortcomings
of each component model and in addressing these model inadequacies. Nevertheless
the ‘superensemble’ approach aspires only to form a single BFG forecast, and thus it
might be more aptly called a ‘super ensemble-mean’ approach. How might we recast
the single forecast output from the ‘superensemble’ approach, in order to make a
‘like with like’ comparison between the ‘superensemble’ output and a probability
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forecast? The obvious approach would be to dress it, either with some parametric
distribution or in the same way we dressed the high-resolution forecasts in Section
9.5 above. Hopefully the shortcoming of either approach is clear: by first forming a
single super ensemble-mean, we have discarded any information in the original distri-
bution of the individual model states. Alternatively, dressing the individual ensemble
members retains information from their distribution. So, while it is difficult to see
how any ‘superensemble’ approach could outperform either a dressing approach or a
product space method (or any other method which retains the distribution information
explicitly), it would be interesting to see if in fact there is any relevant information
in this distribution!

9.6.4 Predicting the relevance of indistinguishable states

The indistinguishable states approach suggests interesting alternatives both to current
methods of ensemble formation and to the optimised selection of additional observa-
tions (Judd and Smith, 2001, 2004). The second are often called adaptive observations
since the additional observation that is suggested will vary with the current state of
the atmosphere (see Lorenz and Emanuel, 1998; Hansen and Smith, 2000).

Ensemble formation via indistinguishable states avoids the problems of adding
finite perturbations to the current best guess analysis. The idea is to direct computa-
tional resources towards maintaining a very large ensemble. Rather than discarding
ensemble members from the last initialisation some would simply be reweighted as
more observations are obtained (see also Beven, 2002). It would relax (that is, discard)
the assumptions of linearised uncertainty growth, for example that the observational
uncertainty was small relative to the length scale on which the linearisation is relevant
(see Hansen and Smith, 2000; Judd, 2003), or that the uncertainty distributions are
Gaussian. And, by making perturbations as far into the distant past as possible, the
ensemble members are as consistent with the long-term dynamics as possible; there
are no unphysical ‘balance’ issues. Perhaps most importantly, an indistinguishable
states approach appears to generalise beyond the assumption that near shadowing
trajectories of reasonable duration do, in fact, exist when it is difficult to see how any
of the current alternative approaches might function in that case. Much work remains
to be done in terms of quantifying state dependent systematic model error (such as
drift, discussed by Orrell et al. 2001) and detecting systematic differences between
the behaviour of the analysis and that of the ensemble and its members.

When required, the ensemble would be reseeded from additional trajectories initi-
ated as far back in time as practical, unrealistic perturbations would be identified and
discarded without ever being included in a forecast. Reweighting evolved ensemble
members given additional data (rather than discarding them), allows larger ensembles
to be maintained, and becomes more attractive both as the period between initialis-
ing weather ensembles decreases and in the case of seasonal ensembles where many
observations may be collected between forecast launches. In the former case at least,
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we can form lagged ensemble ensemble forecasts (LEEPS) by reweighting (and per-
haps changing the kernel of) older ensemble members if they either remain relevant
in light of the current observations or contribute to the probability forecast at any
lead-time. Of course, outside PMS the relative weighting and the particular kernel
assigned to the older members can differ from that of the younger members, and it
would be interesting to use the time at which this weighting went to zero in esti-
mating an upper bound for a reasonable maximum forecast lead time. And outside
PMS, one must clearly distinguish between the ensemble of model simulations and
a probabilistic forecast of weather observables.

Seasonal forecasts as studied within DEMETER (see www.ecmwf.int/demeter)
provide ensembles over initial conditions and model structure. While it may prove
difficult to argue for maintaining multiple models within PMS, the need to at least
sample some structural uncertainties outside PMS provides an a-priori justification
for multimodel ensembles, as long as the various models are each plausible. Indeed,
it is the use of a single model structure that can only be justified empirically in this
case, presumably on the grounds that, given the available alternatives, one model
structure is both significantly and consistently better than all the others.

Within PMS, ensembles of indistinguishable states based on shadowing trajecto-
ries aims to yield nearly accountable probability forecasts, while operational methods
based on singular vector or on bred vector perturbations do not have this aim, even in
theory. The indistinguishable states framework also suggests a more flexible approach
to adaptive observations if one model simulation (or a set of simulations) was
seen to be of particular interest. To identify adaptive observations one can simply
divide the current trajectories into two groups, one group in which each member has
the interesting property (for example, a major storm) and the other group in which
the simulations do not; call these groups red and blue. One could then identify which
observations (in space, time, and model-variable) are most likely to provide infor-
mation on distinguishing the distribution of red trajectories from the distribution of
blue, or better said: which observations are most likely to give members of one of the
groups high probability and those of the other low probability. As additional regular
observations are obtained, the main computational overhead in updating our method
is to reweight the existing trajectories, a relatively low computational cost and an
advantage with respect to alternative approaches (see Hansen and Smith, 2001, and
references thereof). Given a multimodel multi-initial condition ensemble, the ques-
tion of adaptive observations shifts from complex assumptions about the growth of
uncertainty under imperfect models, to a question of how to best distinguish between
two subsets of known trajectories.

With multimodel forecasts we can also use the indistinguishable states framework
to select observations that are most likely to ‘falsify’ the ensembles from one of two
models on a given day. To paraphrase John Wheeler: each of our models is false;
the trick is to falsify them as quickly as possible. Here only the observations can
adjudicate; while what we decide to measure is constrained by what we can think
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of measuring, the measurement obtained is not. Le Verrier was as confident of his
prediction of Vulcan as he was of his prediction of Neptune, and while both planets
were observed for some time only Neptune is with us today.

Just as the plural of datum is not information, the plural of good idea is not theoreti-
cal framework. The indistinguishable states approach to forecasting and predictability
has significant strengths over competing strategies, but its operational relevance faces
a number of hurdles that have yet to be cleared. This statement should not be taken
to indicate that the competition has cleared them cleanly!

9.6.5 A short digression toward longer timescales: the
in-sample science

Noting the detailed discussion in the chapters by Tim Palmer and Myles Allen, we will
not resist a short digression towards longer timescales (additional discussion can be
found in Allen, 1999, Smith 2002, Stainforth et al., 2005 and the references therein).
An operational weather model makes many 7-day forecasts over its short lifetime;
contrast this case with that of a climate model used to make 50-year forecasts, yet
considered obsolete within a year or two. The continuous feedback from making
forecasts on new unseen (out-of-sample) data is largely denied the climate modeller,
who is constrained by the nature of the problem forever to violate one of the first
maxims of undergraduate statistics: never restrict your analysis to in-sample statistics.
By construction, climate modelling is an in-sample science. And the fundamentally
transient nature of the problem makes it harder still.

As argued elsewhere (Smith, 2002), an in-sample science requires a different
kind of consistency constraint. If model inadequacy foils our attempts at objective
probability forecasts within the weather scenario, there is little if any chance of
recovering these in the climate scenario.13 We can, however, interpret multiple models
in a different way. While approaches like best-member dressing can take into account
the fact that different models will perform better in different conditions in the weather
context, a climate modeller cannot exploit such observations. In the weather scenario
we can use all information available at the time the models are launched when
interpreting the distribution of model simulations, and as we launch (at least) once a
day, we can learn from our mistakes.

Inasmuch as climate forecasting is a transient experiment, we launch only once.
It is not clear how one might combine a collection of single runs of different climate
models into a sensible probability forecast. But by studying the in-sample behaviour
of ensembles under a variety of models, we can tune each model until an ensemble
of initial conditions under each and every individual model can at least bound the
in-sample observations, say from 1950 to 2000. If ensembles are then run into the
future, we can look for the variables (space and time scales) on which the individual
model ensembles bound the past and agree (in distribution) regarding the future.
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Of course agreement does not ensure relevance to the future; our collection of
models can share a common flaw. But if differences in the subtle details of different
models that have similar (plausible) in-sample performance are shown to yield sig-
nificantly different forecast distributions, then no coherent picture emerges from the
overall ensemble. Upon adding a new model to this mix, we should not be surprised
by a major change to the overall forecast distribution. This may still occur even if
‘each and every one’ of the current models has similar forecast distributions, but in
this case removing (and hopefully, adding) one model is less likely to do so. In any
event, we can still use these differences in the forecast distributions to gain physical
insight, and improve each model (individually) using the in-sample data yet again
(Smith, 2002). But as long as the details can be shown to matter significantly, we can
form no coherent picture.

9.7 Socio-economic relevance: why forecast everyday?

From a scientific point of view, it is interesting to ask why we make forecasts every
day? Why not spend all available funds making detailed observations in, say, January,
and then spend the rest of the year analysing them, using the same computational
resources but with a higher resolution model than possible operationally? Once we
got the physics of the processes for January down pat, we could move on to February.
And so on. There are a number of reactions to this question, but the most relevant
here is the simple fact that numerical weather forecasting is more than just a scientific
enterprise; real-time forecasting is largely motivated by the socioeconomic benefits
it provides. One of the changes we will see in this century is an increase in the
direct involvement of users, both in the consideration of their desires and in the
exploitation of their data sets. Closing this loop can benefit both groups: users will
employ forecast products more profitably while modellers will have to leave the 500
mb model-pressure height field behind, along with the entire model state space, and
again give more consideration to empirically accessible variables.

Electricity demand provides real-time observations reflecting a number of envi-
ronmental variables, updated on the timescale of a model time step, and spatially
integrated over areas similar to model grid spacing. Might not assimilating this data
(or using it to reweight the trajectories of what were indistinguishable) be more likely
to yield relevant information than a single thermometer accurate to 16 bits? Charlotte
uses demand observations every day; she would certainly be willing to sell (or barter)
these bits for cheaper (or better) forecasts.

It is easily observed that many talented meteorologists dismiss the idea of a
two-way exchange with socio-economics out of hand. They state, rather bluntly,
that meteorologists should stick to the ‘real science’ of modelling the atmosphere,
even dismissing the comparison of forecast values with observations as mere
‘post-processing’.14 Interestingly, if only coincidentally, these same scientists are
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often those most deeply embedded within PMS. Of course I do not really care about
forecasting today’s electricity demand per se any more than I am interested in benthic
foraminifera; but I do care very much about empirical adequacy and our ability to
forecast things we can actually measure: any empirically accessible quantity what-
ever its origin. I am not overly concerned whether a quantity is called ‘heating degree
days’ or ‘temperature’. As long as they correspond to something we can measure,
not a model variable, I’ll take as many as I can get. Probabilistic forecasts for both
temperature and heating degree days, as well as cumulative heating degree days, are
posted daily on www.dime.lse.ac.uk.

9.7.1 Ensembles and wind power

So let us consider three examples of economic meteorology. The first is a study of
a hypothetical wind farm using real wind data, real forecasts, real electricity prices
and a non-existent wind farm just south of Oxford. (Detailed results are available in
Roulston et al., 2003.) The economic constraints vary with changes in regulation,
which occur almost as frequently as changes in an operational weather model. In our
study, the wind farm must contract for the amount of electricity it will produce in a
given half hour a few days in advance; it will not be paid for any overproduction,
and will have to supply any shortfall by buying in electricity at the spot price on
the day. What we can do in this example is to contrast several different schemes for
setting the size of the contract, and then evaluate them in terms of the income of our
fictional wind farm. Contrasting the use of climatology, the dressed ECMWF high-
resolution forecast and the dressed ECMWF ensemble forecast shows, for instance,
that at day 4 there is a clear advantage in using the ensemble. Would Charlotte buy
the ECMWF ensemble? That question involves the cost of the ensemble relative to
its benefits, the cost of the high-resolution run, the size of the current forecast archive
and the availability of alternative, less expensive probability forecasts. But it is the
framework that is important here: she can now make an economic choice between
probability forecasts, even if some of those probability forecasts are based on single
BFG model runs (singleton ensembles). As shown in our next example, it is likely
that in some cases the dressed ensemble forecast may not contain significantly more
information than the dressed high-resolution forecast. Still, the framework allows
us to see when this is the case, and often why. Figure 9.1 shows the daily income
from the wind farm: the upper panel uses climatology forecasts; the lower panel
uses the dressed ensemble (for more detail, see Roulston et al., 2003). The ensemble
forecast provides increased profit at times of unseasonable strong winds (March
2000) while avoiding loss at times of unseasonably weak winds (January 2000). It is
not perfect, of course, just better. Presenting the impact of weather forecasts in this
format allows Charlotte to make her own decisions based on her company’s attitude
to risk.
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Not perfect, just better.

Obtaining potential profits

Avoiding foreseeable losses

Figure 9.1 The daily income from a hypothetical wind farm based on observed
winds, real electricity prices and ECMWF forecasts. (a) The profit when the
estimated production use is based on climatology. (b) The same when based on the
ECMWF ensemble. For more detail, see Roulston et al. (2003).

9.7.2 Ensembles and wave risk

Our second example comes from a research project led by Mark Roulston in coop-
eration with Jerome Ellepola of Royal Dutch Shell. Shell is interested in waves at
offshore platforms all over the world, both fixed rigs (for example, oil well plat-
forms) and floating platforms (Floating Production Storage and Offloading Vessels
or FPSOVs). The ECMWF ensemble system includes a wave model (Jansen et al.
1997). Our aim is to evaluate the relative ignorance both of dressed ensemble fore-
casts and the dressed high-resolution forecast. In this case buoy data supplied by
Shell provide the target observations and (out-of-sample) verification. The results
here differ significantly at Bonga, a floating FPSOV off the west coast of Africa, and
at Draugen, a fixed platform in the North Sea. Details of this study can be found in
Roulston et al. (2005).

At Bonga, we find no statistically significant advantage in using the ensemble
forecasts of significant wave height in the frequency bands of interest to Shell, even
at day 10. Physically, one might argue that the waves arriving at Bonga now tend to
have originated far away in space–time: having a good atmospheric forcing in day 1
and 2 yields a low ignorance wave forecast even at day 10. In that case, the wind that



9 Predictability past, predictability present 243

generates the relevant waves has already ‘hit the water’ well before the waves reach
the FPSOV, suggesting that the current forecasts may contain useful information at
Bonga well beyond day 10. Alternatively, one might argue that the current ECMWF
ensemble does not target the tropics, reducing the relevance of the ensemble at Bonga,
and that doing so would increase the value of the wave ensemble forecast in week one.
Either way, after checking for statistically insignificant but economically important
extreme events, Shell might argue that there was no reason to buy more than the
dressed BFG for Bonga. Of course, it is also possible that increasing the size of the
forecast archive might increase the relative skill of the ensemble-based forecast.

At Draugen the situation is quite different, relatively fast-growing nearby weather
events sampled in the ensemble result in a significant information advantage for the
ensemble wave height forecasts. In the North Sea the probability forecasts based on
the ensembles have a clear advantage over those from the high-resolution simula-
tions. These results suggest that significant thought should go into setting the price
structure for BFG-based probability forecasts and EPS-based forecasts (and yet other
multimodel options which dress the union of BFG and EPS simulations). Such issues
are relevant to the economics of forecasting, if not economic forecasts; Charlotte is
interested in both.

9.7.3 Electricity demand: probabilistic forecasts
or probabilities?

The third example involves forecasting electricity demand in California, a nearly
ideal ‘how much’ question. Modern economies run on electricity; to maintain a
reliable electricity grid one must first forecast likely demand and then arrange
enough generation to meet that demand. Producing excess generation is expensive,
while not having enough generation can be catastrophic (Altalo and Smith, 2004).
This asymmetry of impact between positive and negative forecast errors is com-
mon in industry; it brings the difficulties of using ‘probability’ forecasts into sharp
focus. A case study for the California electricity grid can be found in Smith et al.
(2005).

If we do not expect our probability forecasts to be accountable, then we should not
be surprised when traditional methods for using these forecasts, such as maximising
the expected utility, fail miserably in practice. It is clear that we have extracted useful
probabilistic information from our multi-initial condition, multimodel ensembles; it
is not at all clear that from this information we can extract a probability forecast
which is useful as such. A method to do so would be of great interest scientifically,
of great value economically, and of great use socially. In the meantime, however,
alternative ad hoc methods for using these predictive distributions are sometimes
found to yield more statistically robust results in practice.
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9.8 So what is ‘uncertainty in initial condition’, really?

This may seem a trivial question. The standard answer to this trivial question would
be the equation

e = x − XX

where e is the uncertainty in the initial condition, x is the model state we used at t = 0,
and X is the true state of the real system at time t = 0. There is a small difficulty
here. Perhaps unexpectedly15 it is with the symbol ‘−’, which is undefined as when
contrasting apples and oranges, making our one equation ill-posed. While x sits in our
model-state space (without doubt one large integer in this digital age), X is, at best, the
true state of the atmosphere. These vectors, if they both exist, exist in different spaces
even if we confuse model-temperature with temperature (see Smith, 1997). There is
an easy mathematical way out here, simply replacing X with P(X) where P is some
projection operator that takes the true state space into our model-state space (this is
touched upon in Smith, 2001, Orrell et al., 2001 and Judd and Smith, 2004). Introducing
the projection operator shifts the ambiguity in the minus sign to the projection operator,
P. It is not clear that we can nail down P beyond simply saying that it is many-to-many,
which may prove more troubling than it seems at first.

The main difficulty in interpreting this equation, however, may be of a different
sort: if there is no model state that shadows the time series of each consecutive analysis
to within the observational uncertainty, then the shortcomings of the forecast simply
cannot be attributed to uncertainty in the initial condition. Why? Because in this case,
there was no model initial condition to be uncertain of. It was not that we did not
know which value of x to use, but that there was no value of x which would have
given an accurate (useful) point forecast. There is no clear definition of uncertainty
in the initial condition outside the perfect model scenario.

Both the projection operator and tests of empirical adequacy are bound up with the
definition of observational ‘noise’, while the identification of shadowing trajectories
requires projecting observational noise into the model state space. Although most
scientists believe that they can recognise it when they see it, much remains to be said
about the concept of noise. Turning to a more practical matter: how might we proceed
in practice other than by developing the best model structure our technology can
support, inserting physically motivated parametrisations with empirically estimated
parameter values, insisting that water freeze at exactly zero degrees, and trusting that
in time our model will slowly approach Truth?

There is an alternative. Its implications are not yet clear, but if I am lucky enough
to be invited to Predictability 2009 then I hope to learn more at that time. The alter-
native is to embrace model inadequacy while relinquishing the twenty-first century
Laplacian dream of accountable probability forecasts. To adopt instead a goal which
is less attractive but conceivably attainable: using ensembles of initial conditions
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evolved under a collection of imperfect models, aiming to say as much as is justified
by our models. We should expect our forecasts to be blatantly wrong as rarely as
possible, but not less rarely than possible.

9.9 Conclusions and prospects

Predictability present: There is no doubt that the current operational ensemble systems
have value beyond that recognised in industry; this is an opportunity. The question
should be seen as one of how to exploit this information content, not as to whether or
not it ‘exists’. Each of our three users can base better economic decisions and reduce
their exposure to weather risk by using probabilistic forecasts based on existing
ensemble prediction systems. This is not to say that current probability forecasts are
accountable, but rather that current ensemble forecasts are valuable. Charlie, who
deals for the most part with binary decisions, can determine the ideal probability
thresholds at which he should act and interpret forecasts more profitably. Charles
can translate the forecast probabilities both better to gauge the likely behaviour of
weather derivatives in the near term, and to extract the likely impact of weather on the
futures markets. And Charlotte, our most numerate user, can incorporate probabilistic
weather forecasts in a variety of applications from hours to weeks, with the aim of
including probabilistic weather information to allow seamless forward planning for
weather impacts. Current ensemble prediction systems have demonstrable economic
value.

Two obvious questions arise. First, what can be done to raise the level of exploita-
tion of these forecasts? And second, how can we best move forward to increase
their value? The answer to the first question involves education, technology transfer,
and both the production and advertisement of case studies illustrating the value of
current forecast products in realistic economic examples. Answering the question of
how best to move forward would, no doubt, benefit from a better understanding of
what constitutes the notion of ‘forward’, but the improvement of forecast models and
their associated data assimilation, the improved generation and retention of members
in initial condition ensembles, the wider use of multimodel ensembles and improved
methods for translating ensembles of simulations into weather forecasts will each
play a role.

Almost a century ago, L. F. Richardson began the first numerical weather fore-
cast by hand, while envisioning the use of parallel computing in numerical weather
forecasting. Today, the electronic computer plays two rather distinct roles in phys-
ical science. First it allows us to calculate approximate solutions to a wide variety
of equations at speeds Richardson could only dream of. Second, and perhaps even
more importantly, it allows us to record and access data that, in turn, reveal just how
imperfect our models are. Having accepted that probabilistic forecasts are here to
stay, it will be interesting to see when it proves profitable to shift from trying to make
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our model perfect towards trying to make our forecasts better. Accepting that our
best dynamical models are not and never need be empirically adequate will open new
avenues toward understanding the physics of the Earth System, and may allow us to
achieve predictability past the limitations we face at present.

Acknowledgements
It is difficult to write the acknowledgements of a paper that covers a decade. The more
important of these insights were obtained through joint work with Mark Roulston, Kevin
Judd, Jim Hansen, David Orrell and Liam Clarke while Jost van Hardenburg supplied
critical calculations and insights. Myles Allen, Judy Curry, Milena Cuellar, Tim Palmer,
Dave Stainforth, Alan Thorpe and Antje Weisheimer made useful comments on earlier
drafts, and I am grateful to numerous others for discussions during and after the ECMWF
Seminar. Contributions by Isla Gilmore, Pat McSharry and Christine Ziehmann helped lay
the foundations on which this iteration was built, clarified by recent discussions with Jim
Berger, Jochen Broecher, Devin Kilminster, Ele Montuschi and Naomi Oreskes.

I happily acknowledge personal and philosophical debts to Nancy Cartwright, Donald
Giles and Robert Bishop, each of whom I hope to repay. Also, I again thank Tim Palmer
for the invitation to the 1995 Predictability Seminar, which had a significant if
unpredictable impact on my research; I hope he does not regret the results. LSE CATS’s
Faraday Partners, NG Transco, EDF, London Electricity and Risk Management Solutions
have contributed to my understanding of economics of weather forecasting; I am
particularly grateful to Mary Altalo, Melvin Brown, Neil Gordon, Steve Jewson, Shanti
Majithia and Dave Parker. Roulston, Judd and myself have each benefited from the
Predictability DRI under grant N00014-99-1-0056. Kilminster and myself have also been
supported by the USWRP and NOAA. I gratefully acknowledge the continuing support of
Pembroke College, Oxford.

Notes
1. The use of CCGT generators comes from the fact that their efficiency in converting fuel

to electricity varies with temperature, pressure and humidity; any generation method
with weather dependent efficiency would suffice here. For details on forecasting for
CCGT generators, see Gordon and Smith (2005).

2. The construction of state-dependent conditional probability distributions from
ensembles requires having enough members to estimate a distribution of the n + 1st
variable, given particular values of the first n variables. This is just another guise of the
curse of dimensionality, made worse both by the need for a distribution of the target
variable and by Charlotte’s particular interest in the tails of (each of the many distinct
conditional) distributions.

3. After Laplace, see Nagel (1961). Note that the distinction between uncertainty in initial
conditions and model inadequacy was clear to Laplace (although perhaps not to
Bayes); Laplace distinguished uncertainty of the current state of the universe from
‘ignorance of true causes’.

4. It is not clear how well the Bayesian paradigm (or any other) can cope with model
inadequacy, specifically whether or not it can yield empirically relevant probability
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forecasts given an imperfect model class. I am grateful to Jim Berger for introducing
me to a Bayesian research programme that strives for a systematic approach to
extracting approximately accountable probability forecasts in real time.

5. This section has generated such varied and voluminous feedback that I am loath to alter
it at all. A few things might be clarified in this footnote. First I realise that ground frost
may occur when the 2-metre temperature is well above zero, that the freezing point of
fresh water might be less relevant to the Earth System than the freezing point of sea
water, and (I’ve learned) that the freezing point of deliquescent haze is quite variable.
Yet each of these variables is amenable to physical measurement; my point is simply
that their 40 km resolution model-variable namesakes are not, except inasmuch as they
affect the model trajectories. Granted, in the lab ‘zero degrees C’ may be argued exact
by definition; any reader distracted by this fact should read the phrase as ‘32 degrees F’
throughout. I am also well aware that the value given to one parameter will affect
others, but I would avoid the suggestion that ‘two wrongs make a right’: outside PMS
there is no ‘right’. Whenever different combinations of parameter values shadow, then
we should keep (sample) all such combinations until such time as we can distinguish
between them given the observations. This is one reason why I wish to avoid, as far as
possible, the notion of shadowing anything other than the observations themselves,
since comparisons with averages and the like might yield the ‘two wrongs’ without the
‘better’. Lastly I realise that it is always possible that out-of-sample, the parameters
may fail to yield a reasonable forecast however they have been tuned: all forecasts must
be interpreted within the rosy scenario, as discussed in Smith (2002).

6. A kernel is a distribution function used to smooth the single value from each
simulation, either by substituting the kernel itself or by sampling from it. Note that
different kernels can be applied to different ensemble members, as long as they can be
distinguished without reference to any future verification (for example, one would
expect the ECMWF EPS control member to have a different kernel and be more
heavily weighted than the perturbation members at short lead-times; but even the rank
order of members may prove useful at longer lead times).

7. As far as I know, ignorance was first introduced in this context by Good (1952) who
went so far as to suggest that the wages of British meteorologists be based on the score
of their forecasts.

8. In each round, the stake is divided across all options, the fraction on each option
proportional to the predicted probability of that option. Kelly (1956) was in fact
interested in interpreting his result in terms of information theory; see Epstein (1977).

9. A typical definition of ‘fair odds’ would be those odds on which one would happily
accept either side of the bet; it is not clear that this makes sense outside PMS.
Operational fair odds should allow the house offering those odds some opportunity of
remaining solvent even if it does not have access to some non-existent perfect
probability forecasts. One might define fair odds outside PMS as those set by a
not-for-profit house aiming only to maintain its endowment while providing a risk
management resource (L. A. Smith et al., unpublished data).
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10. A necessary condition for ‘objective’ as used here is that the forecasts are accountable.
This can be tested empirically; we have found no dynamic physical system for which
accountable forecasts are available. This is a stronger constraint than other useful
meanings of objective probabilities; for example that all ‘rational men’ would
converge to the same probability forecast given the same observations and background
information. Subjective probability forecasts can, of course, be obtained quite easily
from anyone.

11. The phrase out-of-sample reflects the situation where the data used in evaluation were
not known before the test was made, in particular that the data were not used in
constructing the model or determining parameters. If the same data were used in
building the model and testing it, then the test is in-sample. Just as passing an
in-sample test is less significant than passing an out-of-sample test, failing an
in-sample test is more damning. Note that data are only out-of-sample once.

12. Our theories often involve variables that cannot be fully observed; philosophers would
call variables like a temperature field theory-laden. Arguably, this temperature field is
something rather different from its in silico realisation in a particular computational
model. Thus the model variables composing, say, the T42 temperature ‘field’ might be
called model-laden.

13. I would have said no chance, but Myles Allen argues effectively that climate models
might provide information on ‘climate variables’ without accurately resolving detailed
aspects of the Earth System.

14. ‘Post-what?’ one might ask, as a computer simulation is not a forecast until expressed
in terms of an observable weather variable.Verification against the analysis may be a
necessary evil, but its limitations make it inferior to verification against observations.

15. As with an embarrassing number of insights I initially felt were unexpected, Ed
Lorenz provided a clear discussion of this issue several decades ago; in this case, for
example, he explicitly discussed models that were similar enough to be ‘subtractable’
(Lorenz, 1985).
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The predictability of coupled multiple-timescale dynamical systems is investigated.
New theoretical concepts will be presented and discussed that help to quantify max-
imal prediction horizons for finite amplitude perturbations as well as optimal per-
turbation structures. Several examples will elucidate the applicability of these new
methods to seasonal forecasting problems.

10.1 Introduction

One of the key elements of all natural sciences is forecasting. In some situations it is
the existence of newly predicted particles that decides on the validity of physical the-
ories; in other situations it is the predicted trajectory of a dynamical system that can
falsify scientific hypotheses. In the seminal Lorenz (1963) paper, E. Lorenz discov-
ered that certain low-dimensional non-linear dynamical systems bear an interesting
and at that time unexpected property: two initially close trajectories will diverge very
quickly in phase space, eliminating the possibility for long-term forecasting. This
paper, strongly inspired by the theoretical considerations of Barry Saltzman, gave
birth to chaos theory. It is this particular dependence on the initial conditions that is
intrinsic to all weather, ocean and climate prediction efforts.

In a uni-timescale chaotic system we have the following situation. The rate of
divergence of initially infinitesimally close trajectories can be quantified roughly in
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terms of the Lyapunov exponent λ that can be expressed as

λ = limt→∞limδx(0)→0
1

t
ln

δx(t)

δx(0)
(10.1)

where δx(0) represents the initial error. With a given error tolerance level of 	 the
future state of the system can be predicted Tp ahead, with

Tp ∼ 1

λ
ln

(
	

δx(0)

)
. (10.2)

If the dynamical system has different timescales, the Lyapunov exponent is propor-
tional to the smallest characteristic timescale, irrespective of the variance carried by
fluctuations on these timescales. By contrast, for geophysical flows, predictions can
be made far beyond the Lyapunov timescale, which characterises small-scale fluctu-
ations associated with turbulence. In particular for the atmosphere it is the large-scale
dynamics that determines long-term predictability (Lorenz, 1969). Apparently, the
Lyapunov exponent and its association with predictability horizons are of very lim-
ited use in multiple-timescale systems. A similar paradoxical situation can occur
when we plan to compute the singular vectors for coupled two-timescale systems,
such as the coupled atmosphere–ocean system. In order to determine these optimal
perturbations using a coupled general circulation model, one needs to compute the
Jacobian and its adjoint along the non-linear phase-space trajectory. An important
question is now, what is the associated timescale of the linearised and adjoint cou-
pled models? Do these models really capture the long-term dynamics, associated for
example with the ENSO phenomenon, or are they mostly capturing the growth of
weather perturbations in an adiabatically slow varying oceanic background? Before
we dwell into these problems of how to determine optimal perturbation patterns of
coupled systems let us return to the concept of Lyapunov exponents.

In an attempt to overcome the difficulties associated with the infinitesimally small
amplitude perturbations Aurell et al. (1997) have generalised the Lyapunov exponent
concept to non-infinitesimal finite amplitude perturbations. This generalisation has
the advantage that both the non-linear dynamical evolution of these perturbations as
well as the predictability of multiple-timescale systems can be treated appropriately
(Bofetta et al., 1998). The so-called finite-size Lyapunov is defined as

λ(δ) = 1

Tr (δ)
lnr, (10.3)

with δ denoting the finite amplitude perturbation of the initial conditions, and Tr

the time it takes for the initial perturbation to grow by a factor of r . In Bofetta
et al. (1998) it is shown that this is a suitable quantity to describe the predictability
of multiple-timescale systems. Bofetta et al. (1998) illustrate this new concept by
studying the predictability of two coupled sets of non-linear Lorenz (1963) equations,
one characterised by a slow timescale and the other by a fast timescale. It is shown
that for small perturbations λ(δ) is almost equal to the maximum Lyapunov exponent
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λλ(δs)

λλff

λλss

log(δs)

Figure 10.1 Finite size Lyapunov exponent of two coupled (slow–fast) Lorenz
models computed from the slow variables. The two horizontal lines represent the
uncoupled Lyapunov exponents. Figure schematised after Bofetta et al. (1998).

associated with the shortest timescale, whereas for large initial perturbations λ(δ)
asymptotically approaches the Lyapunov exponent of the slow decoupled system.
This is illustrated in Figure 10.1.

Furthermore, the predictability time Tp of the slow component of the coupled
fast–slow Lorenz (1963) system becomes orders of magnitude larger than the one
based on the classical Lyapunov estimate, when large error tolerances are allowed
for, as illustrated in Figure 10.2.

An interesting example for a coupled slow–fast system, and a challenging one for
seasonal forecasters, is the tropical Pacific coupled atmosphere–ocean system with its
primary oscillatory instability, the so-called El Niño–Southern Oscillation (ENSO)
phenomenon. ENSO variability arises from the so-called Bjerknes positive air–sea
feedback and a negative feedback provided by slow ocean adjustment processes (Jin,
1997). In some ENSO models (e.g. the Zebiak and Cane 1987 model and hybrid
coupled models) the atmospheric dynamics is treated in a special way (e.g. Gill,
1980; Kleeman, 1991): the linearised atmospheric shallow water equations on an
equatorial β plane for zonal, meridional velocities and the geopotential height
anomaly can be written as

∂u

∂t
− βy v + ∂�

∂x
= −ru (10.4)

∂v

∂t
+ βy u + ∂�

∂y
= −rv (10.5)

∂�

∂t
+ c2

a

(
∂u

∂x
+ ∂v

∂y

)
= αQ(x, y) − r� (10.6)
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log Tp

log(∆)

Figure 10.2 Predictability time for the slow component of the two coupled Lorenz
models as a function of error tolerance. The dashed line represents the classical
Lyapunov estimate. Figure schematised after Bofetta et al. (1998).

where ca = 60 m/s2 represents the equatorial wave speed in the atmosphere. Given a
clear timescale separation between atmospheric adjustment and oceanic adjustment,
these equations can be simplified such that all acceleration terms are dropped and
only the stationary solution (u, v, �) for a given diabatic forcing Q is determined.
Q(x, y) is a function of the actual SST pattern. This technique, which has been quite
successful in studying ENSO dynamics and predictability, can be compared with the
so-called slaving principle of Haken (1978). Fast variables are assumed to relax very
rapidly (or instantaneously) to a state that is a function of the slow variable state
vector. This basic principle can be described mathematically as follows. Consider
the fast variable xf that is governed by

dxf

dt
= F(xf, xs, ζ (t)) (10.7)

with xs representing a slow variable, F a non-linear function and ζ noise with variance
� . The dynamics of the slow variable is assumed to be given by

dxs

dt
= xf. (10.8)

For illustrative purposes we focus on the simplified system

F(xf, xs, ζ (t)) = −βxf − dV (xs)

dxs
+

√
2βσζ (t).

In case of large β one expects a very fast relaxation of the dynamics of xf towards
a quasi-stationary state in which dxf/dt → 0. For large enough β, i.e. for quick
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relaxation times, we obtain

xf = − 1

β

[
dV (xs)

dxs
−

√
2βσζ (t)

]
. (10.9)

Substituting this equation into the dynamical equation (10.8) yields

dxs

dt
= − 1

β

dV (xs)

dxs
+

√
2σ/βζ (t). (10.10)

It should be noted here that in comparison with Eqs. (10.7) and (10.8) the order
of the stochastic differential equation is reduced by one, which might have severe
consequences for the dynamics and the predictability. For illustrative purposes let us
discuss a climate-relevant example. Locally the heat budget in a fixed mixed layer
slab ocean with depth H can be expressed in terms of

dT

dt
= −λT + Q

cpρH
, (10.11)

where T represents the mixed layer temperature and −λT the first term in a Taylor
expansion that describes the adjustment of ocean and atmospheric temperatures as
well as entrainment processes at the base of the mixed layer. According to Hasselmann
(1976) and Frankignoul and Hasselmann (1977), Q can be parametrised in high
latitudes in terms of stochastic weather fluctuations. Here we choose the following
more general ansatz:

d Q

dt
= −αQ + σζ (t) + F1T, (10.12)

which represents a red noise process and a coupling of the atmospheric fluctuations to
the mixed layer temperature. This dependence parametrises symbolically the fact that
changed meridional temperature gradients have an influence on the eddy momentum
transport and heat fluxes in the atmosphere, through changes in baroclinicity. Without
adiabatic elimination the equations can be written in terms of a stochastically driven
linear oscillator equation:

d2T

dt2
+ (α + λ)

dT

dt
+

(
αλ − F1

cpρH

)
T − σ

cpρH
ζ (t) = 0, (10.13)

whereas in the case of adiabatic elimination we obtain the following red noise equa-
tion:

dT

dt
+

(
λ − F1

αcpρH

)
T − σ

cpρHα
ζ (t) = 0. (10.14)

The associated spectra look quite different. The full spectrum of the process exhibits a
spectral peak at a particular frequency. This frequency depends mainly on the air–sea
coupling F1 as well as on the damping timescales of the atmosphere and the ocean.
The adiabatic elimination leads to a temperature spectrum that does not exhibit any
spectral peak. Generally also, the associated prediction times are different. Hence,
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Figure 10.3 Westerly wind burst (WWB) over the West Pacific Ocean seen from
satellite in May 2002.

the usage of the adiabatic elimination has to be done with care, in particular since
the order of the differential equations is reduced by one.

This pedagogic example of the adiabatic elimination procedure illustrates that
a rather straightforward but also ‘brutal’ way of getting rid of the two-timescale
problem in predictability studies is to use a quasi-stationarity assumption for the
fast variables. This assumption is implicitly made in intermediate and hybrid ENSO
prediction models. However, predicting ENSO is more complicated and it has become
questionable (Syu and Neelin, 2000) whether the adiabatic elimination approach
is successful. The question was raised (Syu and Neelin, 2000) as to whether fast
variables can really be eliminated by slaving principles, or whether they also play a
fundamental role in triggering ENSO events. Fast, so-called intraseasonal oscillations
in the atmosphere (Figure 10.3) can kick off Kelvin waves that, under appropriate
preconditioning of the warm pool, can lead to the onset of El Niño or La Niña events.
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Furthermore the amplitude of westerly wind bursts (WWBs) depends crucially on
the existing SST boundary conditions. In terms of a dynamical systems approach this
amplitude dependence of the WWB noise can be treated as a multiplicative noise
source, which provides effectively an additional non-linearity (as can be seen from
variable transformations).

Once such oceanic equatorial Kelvin waves are triggered, the oceanic evolution
is highly predictable to at least a season in advance. Kelvin waves can be compared
with a Jack-in-the box. Nobody knows exactly when the box is opened, but once it
is opened the future is well determined. Of course, this particular feature has strong
implications for ENSO prediction, since the predictability time of the individual
WWBs is very small, whereas the predictability time for the Kelvin wave propagation
and the subsequent generation of sea surface temperature (SST) anomalies by local
air–sea interactions is much larger. Is there a possibility of overcoming the initial
uncertainty in predicting WWBs? This is a question of utmost importance since the
living conditions of about 30% of the world population are significantly influenced
by ENSO-related climate anomalies.

We have already discussed the possibility of eliminating fast fluctuations from
the equations of the tropical Pacific coupled atmosphere–ocean system by adiabatic
elimination. In a sense the resulting equations can be viewed as a kind of time-
averaged set of equations, in which only slow oceanic timescales are retained. There
are now a few ways to improve on this. One is to take into account the fast fluctuations
empirically (see Section 10.2); another way is to derive effective equations of motion
directly from the data under consideration (see Sections 10.3 and 10.4).

10.2 Stochastic optimals

Tropical Pacific climate variability can be decomposed to a first order into vari-
ability �� associated with the ENSO phenomenon and non-ENSO related stochastic
fluctuations �θ of variance �. Anomalies will be computed with respect to the annual
cycle basic state. The stochastically forced dynamical equations for the tropical
atmosphere–ocean system can be written symbolically in the form

d ��
dt

= �F( ��) + ��θ. (10.15)

For a Zebiak–Cane type intermediate ENSO model (Zebiak and Cane, 1987) the
vector �� might consist of the SST anomalies and the expansion coefficients for the
different equatorial wave modes. Given a stable (linearly damped) ENSO mode, this
equation can be linearised around a non-linear trajectory ��(t). We obtain a dynamical
equation for the perturbations (denoted by primes) which reads

d ��′

dt
= ∂ �F

∂ ��
��′ | ��(t) +��θ ′ = A ��′ + ��θ ′. (10.16)
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Figure 10.4 First stochastic optimal for (a) heat flux and (b) wind stress anomalies
as computed from an intermediate ENSO model. Figure from Moore and Kleeman
(1999).

Bold face expressions denote matrices. Integral solutions of this equation can be
obtained, once the propagator R(t1, t2) = eA(t2−t1) is known. Then the solutions can
be expressed in terms of

��′(t2) = R(t1, t2) ��′(t1) +
∫ t2

t1

R(t1, t2)��θ ′dt. (10.17)

The first term on the right-hand side represents the predictable part of the dynamics,
whereas the second part belongs to the unpredictable stochastic part. It is the ratio
between these terms that strongly determines the overall predictability of the system
(Grötzner et al., 1999). It has been shown by Kleeman and Moore (1997) that the
total variance at a given time τ can be obtained from the stochastic forcing terms �θ
and the so-called stochastic optimals. Assuming Gaussian white noise, the stochastic
optimals are the eigenvectors of the operator

Z =
∫ t2

t1

R†(t, t1)XR(t, t1)dt, (10.18)

where X is the kernel defining the variance norm of interest (Farrell and Ioannou,
1996). By contrast, the optimal perturbations (singular vectors) (Trefethen et al.,
1993) �α can be computed from the eigenequation

R†XR�α = λX�α. (10.19)

They represent the fastest growing perturbations of the coupled system before non-
linearities become important. The eigenvectors of Z (stochastic optimals) corre-
sponding to the maximal eigenvalues are the spatial structures that the stochastic
forcing must possess in order to maximise the stochastically induced variance in the
model. They are an important quantity for predictability studies of coupled processes.
Moore and Kleeman (1999) computed the stochastic optimals for an intermediate
ENSO model. The result is shown in Figure 10.4. The heat flux anomalies as well
as the wind anomalies are reminiscent of anomalies associated with intraseasonal
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variability (Hendon and Glick, 1997). In fact it turned out (Moore and Kleeman,
1999) that the optimal perturbations and stochastic optimals have quite similar struc-
tures, indicating that for initial error growth as well as for the establishment of variance
throughout its evolution, ENSO is highly sensitive to intraseasonal atmospheric vari-
ability. If for a certain time period the atmospheric anomalies do not project well onto
the stochastic optimals, the resulting ENSO variance is expected to be small (given a
stable ENSO mode). Hence, the pattern of fast atmospheric fluctuations governs the
generation of El Niño and La Niña anomalies. It should be emphasised here that this
concept holds only for a stable oscillatory ENSO mode, otherwise the amplitude of
ENSO is mainly governed by non-linearities. This stability assumption is questioned,
however, by many climate researchers. At least there is the possibility that ENSO
operates close to a Hopf bifurcation point, meaning that ENSO is stable during some
decades whereas it is unstable during other decades. This hybrid hypothesis has been
confirmed by the study of An and Jin (2000). In addition to the stability properties of
ENSO, Moore and Kleeman (1999) found also that the phase of the annual cycle as
well as the non-linearities and the integrated past noise history are important factors
in controlling the sensitivity of ENSO towards stochastic forcing.

Furthermore, it has to be noted here that linear systems cannot transfer energy
from weather scales to ENSO scales. Hence, the argument that intraseasonal vari-
ability forces ENSO is strictly speaking incorrect in a linear framework. What can
force ENSO in a stochastic environment are low-frequency variations which prob-
ably project onto the patterns of intraseasonal variability. Another possibility is
that intraseasonal variability rectifies ENSO through non-linear interactions. This
dilemma has been nicely illustrated in Roulston and Neelin (2000).

10.3 Non-linear probabilistic methods

In this section an empirical non-linear method is described that allows for the determi-
nation of optimal perturbation structures associated with low and high predictability.
The principal idea of this method is to compute transition probability densities
between areas in state space. From these probability densities we learn how quickly
certain initial probability density functions are broadened. This dispersion of the prob-
ability densities is associated with information loss and hence entropy production.
The dispersion rates for different state space elements can be averaged to determine
a maximum predictability horizon. The method is closely linked to the empirical
derivation of a so-called Markov chain. Let us consider a non-linear discretised
dynamical system

xt+1 = f (xt , ζt ), (10.20)

where ζt represents a stochastic component. For simplification the equations are writ-
ten in univariate form. The generalisation to multivariate systems is straightforward.



260 Axel Timmermann and Fei-Fei Jin

Another way to write down the dynamical equation is given by

xt+1 =
∫

dyδ[x − f (y)]. (10.21)

The integrand δ[x − f (y)] is called Frobenius Perron operator and will be abbreviated
by m(x, y). Now all ‘reasonable’ functions p(x) can be written in terms of

p(xt+1) =
∫

dyδ[x − f (y)]p(yt ). (10.22)

If p belongs to the family of probability density functions, i.e. fulfilling p ≤ 1 and∫
dyp(y) = 1 this equation describes how a probability distribution at time t is trans-

formed into a probability distribution at time t + 1 under the action of the non-linear
‘transition probability kernel’ (Frobenius Perron operator) m(x, y). This kernel can
be approximated by discretising the state space of the system into N cells. The
state space cells are denoted by xi and the corresponding probability density by
�p = (p(x1), . . . p(xi ), . . . p(x N )) . The evolution equation of the discretised proba-
bility density can be written as

pi (t + 1) =
N∑

j=1

mt (i, j)p j (t). (10.23)

It becomes apparent that a good approximation of the Frobenius Perron matrix m(i, j)
(transition probability matrix) depends crucially on an intelligent discretisation of
the state space. Here we use an equinumber (equal-residence time) partition in state
space rather than an equidistant partition of the phase space variables.

The advantage of this equinumber partition is that we can exploit some beautiful
mathematical properties of the equinumber partition such as the double stochasticity
of the transition matrices (meaning that

∑
i m(i, k) = 1 and

∑
k m(i, k) = 1 ). The

disadvantage is that resolution for extreme state space directions is low. For high
dimensional systems the requirements for the amount of available data needed to
compute the transition probabilities become very large (Pasmanter and Timmermann,
2003). Here we assume that ENSO can be described by relatively few degrees of
freedom. In this mathematical context predictability can be easily quantified by the
rate at which information about the state of the system is lost – i.e. predictability
is associated with the broadening of the probability density. A convenient way of
measuring how quickly information is lost is to compute the ‘distance’ between the
highly localised initial probability density p0 and the broadened probability density
function at time t using the so-called entropy measure

I (t) =
N∑

i=1

pi (t)ln
pi (t)

pi
0

. (10.24)
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Using this equation an averaged loss of information in one time step can be computed
from

〈	I 〉 = −N−1
N∑

i=1

N∑
j=1

m(i, k)ln m(i, k). (10.25)

Notice here that the information loss or equivalently the entropy production depends
strongly upon the chosen partition. The rate of information loss determines how far
ahead we can predict the state of a system; in other words when the probability den-
sity becomes too broad, the state of the system is becoming less and less defined.
We can compute entropy production for all possible initial conditions in state space,
denoted by the cell number j . An interesting problem is to find the initial conditions
δ j,k that are associated with the largest entropy production for a given forecast time τ .
These physical initial conditions expressed in terms of a localised δ function in prob-
ability space are associated with the eigenvectors of the Markov transition matrices.
Since each cell number corresponds to an N -dimensional vector in physical space,
we can compute those initial structures that are associated with the slowest or the
largest entropy production for a given lead time τ . Using this method, optimal initial
perturbations can be determined empirically for a non-linear coupled system, given
a long multivariate data set that covers the state space densely enough. This method
is applied to ENSO data obtained from a 100-year-long present-day control simu-
lation performed with the Coupled General Circulation Model ECHAM4/OPYC3
(Timmermann et al., 1999a).

A one-dimensional cyclic Markov chain is constructed from the monthly simulated
NINO3 anomalies. An equinumber partition of the state space spanned by this time
series is chosen and the annual cyclostationarity of the climatic background state is
taken into account by an extension of the Markov chain method to cyclostationary
non-linear processes (Pasmanter and Timmermann, 2003). Figure 10.5 shows the
entropy production for different seasons averaged over all initial conditions. We
observe a relatively fast entropy growth, and hence a low predictability, during the
spring season as compared with the autumn and winter seasons. This well-known
feature of the so-called spring persistence barrier has puzzled many researchers and
is still a major obstacle for long-lead ENSO forecasting. It can be partly attributed
to the seasonally varying atmosphere–ocean instability, which attains largest values
in spring and which contributes also to the phase-locking of ENSO to the annual
cycle. In this section we have discussed how to deal empirically with the long-term
predictability of coupled processes, without considering the fast timescale explicitly.

10.4 Non-linear deterministic methods

This section describes a relatively new method (Breiman and Friedman, 1985; Tim-
mermann et al., 2001) that allows for the empirical extraction of equations of motions
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Figure 10.5 Seasonal dependence of the entropy production: entropy as a function
of lead time and of the initialisation month.

from data. Let us begin with the ‘mother’ deterministic dynamical system, prognosing
the variables x j :

ẋi = Fi (�x). (10.26)

The question arises now whether it is possible to reconstruct the ‘mother’ function F
from the data x j under consideration. This is a very difficult task and requires large
amounts of data. A simple trick, however, facilitates the reconstruction enormously.
If the dynamical equations can be written in terms of a sum of non-linear functions

ẋi =
∑

j

�
j
i (x j ) + Residual, (10.27)

the functions �
j
i (x j ) can be determined statistically by performing a multiple non-

parametric regression analysis between the variables x j and their numerically com-
puted derivatives. This multiple non-parametric regression exercise can be solved by
using the so-called Alternating Conditional Expectation (ACE) Value algorithm. This
iterative technique that provides look-up tables for the estimated functions �̃

j
i (x j )

was developed by Breiman and Friedman (1985). It was applied for the first time in
a climate context by Timmermann et al. (2001).
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The ACE algorithm converges in a consistent way to optimal transformations,
as has been shown by Breiman and Friedman (1985). (For details on the numerical
implementation of the ACE algorithm see Voss, 2001; Voss and Kurths, 1997.) The
modified ACE algorithm works as follows. Globally optimal solutions (in a least
square sense, i.e. 〈(ẋ j − ∑

i=1 �̃
j
i (xi ))2〉 = min) can be obtained iteratively from the

sequence

�̃
j
i,0(xi ) = 〈ẋ j |xi 〉, (10.28)

�̃
j
i,k(xi ) =

〈
ẋ j −

∑
p �=i

�̃
j
p,k∗ (x p)

∣∣∣xi

〉
. (10.29)

The index j corresponds to the component of the differential equation, k to the
iteration step (k > 0) and p to the sum over the predictor components. The index
k∗ equals k for p < i and k − 1 for p > i , and 〈 . . | . . 〉 denotes the conditional
expectation value. The so-called optimal transformations �̃

j
i,k(xi ) produced by this

algorithm are given in the form of numerical tables. In the expression (10.29) only
scalar quantities are involved, and in contrast to Eq. (10.26) only one-dimensional
conditional probabilities (or, equivalently, two-dimensional joint probabilities) have
to be estimated. These can be interpreted in terms of the time transition probabilities
or as the dynamical contribution to the componentwise Frobenius Perron operator of
the underlying dynamical system.

Minimising 〈(ẋ j − ∑
i=1 �

j
i (xi ))2〉 is equivalent to the maximisation of the cor-

relation

�(ẋ j , x1, . . . , x N ) =
〈
ẋ j

∑N
i �̃

j
i (xi )

〉
(
〈ẋ j2〉

〈 [∑N
i �̃

j
i (xi )

]2 〉)1/2 , (10.30)

where it is assumed that all variables have zero mean. Hence, this technique to solve
the non-linear regression problem is also called maximal correlation approach.

Once derived empirically, the functions �
j
i (x j ) can be used in order to build a

numerical (forecasting) model for the variables under consideration. It is useful to
concentrate a priori on a set of dynamically relevant variables. Here, we show how
this empirical non-linear technique can be applied to the ENSO prediction prob-
lem. We used a 240-year-long climate simulation performed with the Coupled Gen-
eral Circulation Model (CGCM) ECHAM4/OPYC3 (Timmermann et al., 1999a).
The simulated ENSO activity (pattern, phase-locking, amplitude) is quite realistic,
although the frequency of the simulated ENSO is somewhat too short (2.3 years).
We performed an empirical orthogonal function (EOF) analysis of the simulated
sea level depth anomalies (in a 1.5 layer model equivalent to thermocline depth
anomalies) as well as of the SST anomalies. According to the recharge oscillator
concept for ENSO (Jin, 1997), these two variables are key to explaining ENSO.
The leading principal components of two SST (T1, T2) and two sea level EOFs
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Figure 10.6 Simulated principal components for the two leading temperature and
sea level anomaly EOFs. The simulation is based on a four-dimensional non-linear
ENSO model that has been derived empirically from a CGCM simulation
(Timmermann et al., 2001) using non-parametric multiple regression techniques.

(H1, H2) were taken, their derivatives were computed and the ACE algorithm was
applied to these variable pairs. For computational convenience the resulting func-
tions �

j
i (x j ) were fitted by higher order polynomials and the resulting ordinary

differential equation system was integrated in time using a Runge–Kutta scheme of
fourth order. As can be seen from Figure 10.6 the principal components simulated
by this four-dimensional non-linear low order ENSO model captures most essential
features of the CGCM ENSO. An interesting reconstructed feature is that ENSO
exhibits decadal amplitude modulations. These decadal amplitude modulations of
ENSO can be explained by the theory of homoclinic orbits (Timmermann, 2003).
How can such a reduced dynamical model be used in order to assess the predictability
of ENSO?

This empirical model, which was derived from monthly anomalies, captures
the dynamics of effective, averaged variables. Short weather fluctuations are not
explicitly resolved, but their effect on the dynamics of ENSO is captured empir-
ically. The full CGCM model is far too complex to compute optimal perturba-
tions for ensemble prediction experiments. Besides, the above-mentioned problem of
fast–slow timescale systems prevents a straightforward linearisation of the coupled
atmosphere–ocean model code and the computation of its adjoint. The simplified
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ENSO model, however, based on the simulated dynamics of the CGCM, can be
linearised around its non-linear trajectory, by a Taylor expansion of the functions
�

j
i (x j ). The resulting 4×4 matrix can be transposed and singular vectors can be

determined for any given lead time. The same procedure can be performed for dif-
ferent variables for higher dimensional systems and different ‘mother’ CGCMs. If
the resulting optimal perturbations are robust with respect to reasonable changes in
the dimensions etc., these patterns can be used in order to perturb the CGCM in sea-
sonal forecasting ensemble simulations. Also here, empirical modelling might help
to circumvent the multiple-timescale problem sketched in the introduction.

10.5 Beyond error growth: predictability of the third kind

In weather and climate prediction we distinguish two different types of prediction
(Lorenz, 1975).

� Predictability of the first kind characterises initial value problems,
exemplified by conventional weather forecasting practice. It measures how
uncertainties in the initial conditions evolve during the forecasting period.
Different techniques, such as the breeding vector and the singular vector
techniques, have been developed that help to find those initial perturbations
that are associated with the maximal growth of initial errors with respect to an
a-priori chosen norm.

� By contrast, for predictions of the second kind, an attempt is made to forecast
how a system will respond to prescribed changes in its determining
parameters. The response of the climate system to a doubling of the
atmospheric carbon dioxide concentrations is a well-known example.

An important question arises now: is there a possibility to determine the state of a
non-linear dynamical system beyond error growth timescales, even when the external
‘parameter’ forcing is constant? And if yes, can we exploit this kind of information
for long-term forecasting? The answer to this question is a preliminary yes. Owing
to non-linearities, certain chaotic systems possess global phase-space topologies that
can be exploited using statistical techniques. The following system of equations
which constitutes the normal form of a triple instability (Arnéodo et al. 1991) and
which describes the dynamics of the chemical Beloushov–Zhabotinsky reaction is a
suitable and illustrative example. The dynamical equations are:

ẋ = y (10.31)

ẏ = z (10.32)

ż = −ηz − νy − µx − k1x2 − k2 y2 − k3xy − k4xz − k5x2 y (10.33)
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Figure 10.7 (a) Time series of the x-variable of the triple instability dynamical
system. A threshold level of x = −17 is indicated. (b) Phase-space plot (x,y,z) of
the dynamical equation. The underlying dynamical system is believed to capture
important dynamics of the chemical Beloushov–Zhabotinsky reaction.

with k1 = −1, k2 = 1.425, k3 = 0, k4 = −0.2, k5 = 0.01, η = 1, µ = 1.38,

ν = 1.3. The dynamics is shown in Figure 10.7.
We observe a fast chaotic oscillation with a period of a few time steps and a peculiar

bursting behaviour with a much longer timescale (50–100 time steps). The phase-
space view of the system illustrates that the trajectory spirals out of the neighbourhood
of a saddle node and returns to it via a large amplitude excursion. This kind of
behaviour is reminiscent of near-homoclinic dynamics. In fact our parameter values
are chosen such that the system operates close (in parameter space) to a homoclinic
orbit. Due to the strong skewness of the probability distribution of the variable x ,
large amplitude excursions become less likely for large x values. As expected for
such a skewed probability distribution, the averaged return times of large negative
excursions grow with the size of the excursions. What is, however, peculiar for this
system, in contrast to skewed white noise or other surrogates, is that there are lower
bounds of return times, in particular for large amplitude bursting events. The reason
is the global topology of the attractor that follows the shadow of a homoclinic orbit.
The system, after a large negative excursion, has to return to the neighbourhood of
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Figure 10.8 Histogram of the return times of bursting events that exceed the
threshold level of x < −17 for (a) the non-linear time series and (b) the linear
surrogate time series.

the saddle node, and spiral around it a couple of times before a new extremum of x
can be attained. There are now several interesting questions which can be addressed:

� If there was a bursting event n time steps back, what is the probability of
occurrence for a similar event, m time steps ahead?

� If the distance between the last two observed bursting events was n time steps,
what is the probability that the next bursting events are separated by m time
steps?

� Are there forbidden return times of extreme events?

� If yes, what is the dynamical (physical) reason for such forbidden return
times?

Let us assume for a moment, that a ‘bursting event’ stands for a very strong El Niño
event. It is obvious in this case that answers to these questions would be of utmost
importance and are beyond the reach of ‘classical’ ENSO prediction schemes. We
have integrated forward in time the system of Equations (10.31, 10.32, 10.33) using
a Runge–Kutta method of fourth order. In order to shed light on the peculiarities
of the non-linear attractor topology we have also computed surrogate data from the
time series using the method of Schreiber and Schmitz (1996). These surrogates have
the same spectrum as the non-linear time series but randomised phases. Figure 10.8
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shows the probability distribution of return times of events which cross the −17
threshold for the x-variable for the non-linear time series (a) and the corresponding
surrogate time series (b). For the fully non-linear trajectory we clearly see ‘forbidden
return times’ for large amplitude events. Certain shortcuts in phase space are not
allowed.

Conditional return-time probability maps can be computed which address the first
two questions posed above. These maps are distinct from those of the surrogate time
series, owing to the global properties of the bursting attractor.

Using a low-dimensional non-linear dynamical system we have shown that pre-
dictive information can be extracted from the system far beyond the typical growth
timescales associated with initial condition errors. Our approach exploits the bursting
behaviour of certain dynamical systems. We suggested a new kind of predictability
(the so-called third kind of predictability) which is based on the global properties
of the attractor, rather than on the local properties (such as for the first kind of
predictability).

Inspired by these considerations, let us ask the question: is there any example
in climate research for which we can exploit this kind of global predictability? The
answer is: maybe. It is well known that ENSO exhibits amplitude modulations on
a decadal timescale. Large El Niño events do not occur in a close sequence. There
seems to be a certain systematics in their return, which can be explained physically
using, for example, the non-linear recharge model (Timmermann et al., 2003). In
fact it can be shown (Timmermann, 2003) that several ENSO models of different
complexity exhibit bursting behaviour similar to the observations and that is due to
the presence of homoclinic or heteroclinic connections between stationary points. A
proof, however, that the real tropical Pacific climate system falls into this category
has not yet been provided. The following considerations are very preliminary, but
they might help to illustrate the philosophy of our approach. Part (b) of Figure 10.9
(colour plate) depicts the observed eastern equatorial Pacific SST anomaly time
series and its smoothed interannual wavelet energy. Computing the wavelet energy
is a means to obtain a time series that represents the envelope of the original SST
anomaly time series. We clearly observe that eras of high ENSO variance alternate
with eras of low ENSO variance on a decadal timescale. If the physical mechanism
for these amplitude modulations is similar to the one found in different ENSO models
(Timmermann, 2003; Timmermann et al., 2003), we sense the temptation to predict
the next high ENSO variance era, maybe 10 years ahead.

In order to predict the evolution of ENSO variance we fit polynomials (Casdagli,
1989; Hegger et al. 1999) to the embedded tendency time series of simulated and
observed ENSO variance (Figure 10.9a and b). The respective estimated dynami-
cal model is used to make out-of-sample forecasts. For the CGCM simulation an
embedding dimension of three and a delay of 48 months is used. For the observa-
tions we choose a delay of 36 months. The 10-year lead anomaly correlation skill (not
shown) obtained for the envelope curves shown in Figure 10.9 is about 0.8 and 0.6,
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Figure 10.9 (See also colour plate section.) (a) NINO-3 SSTA simulated by the
ECHAM4/OPYC3 model (red) and its interannual wavelet energy (black). (b)
Observed NINO-3 SSTA time series (red) and its interannual wavelet energy (black),
10-year forecast of interannual wavelet energy (dashed) using non-linear prediction
techniques.

respectively. Motivated by this result we perform a real forecast of the next ENSO
regime. Our prediction for the envelope curve of ENSO is shown in Figure 10.9(b)
(dash-dotted). According to our forecasting procedure an increase of ENSO variabil-
ity is expected in the coming decade.

It has to be noted here that there is no physical justification for the mathematical
ansatz chosen here other than the idea that ENSO bursting is governed by non-linear
dynamics.

What has not been taken into consideration here is how errors in the estimation
of the wavelet variance that naturally emerge due to the shadowing effect of conti-
nous wavelets (Torrence and Compo, 1998) affect the forecasts of the envelope. The
associated question is: how well can we estimate the interannual wavelet variance for
the SST anomaly on 12 September 2004. Different estimates can be obtained with
different buffering techniques of the future time series such as zero-tapering or AR(2)
surrogates (Timmermann et al., 1999a). According to this ‘illustrative’ forecast, the
positive trend increases and a super ENSO regime is predicted for the coming 6–8
years. A possibility to improve on this deterministic forecasting ansatz is to take
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into account the errors in estimating the initial ENSO variance, errors in estimating
the right coefficients in the fitted three-dimensional polynomial as well as the small
sample size (140 years of monthly data). With these refinements, it will be possi-
ble to make Monte Carlo ensemble forecasts, which will yield probabilities for the
next very active ENSO regime to occur in say 5–10 years. These very preliminary
results are presented here in order to illustrate the methodology and to document
the predictive information which might be contained in the bursting behaviour of
certain dynamical systems, which has not yet been exploited for seasonal or longer
forecasting purposes.

10.6 Some remarks on ENSO prediction models

If we take a look into the COLA Experimental long lead forecast bulletin
(http://grads.iges.org/ellfb/home.html) we will find many statistical ENSO prediction
models and, as has been shown by Landsea and Knaff (2000), these statistical models
that can be run on PCs can compete with the most sophisticated numerical coupled
atmosphere–ocean models used in seasonal forecasting (e.g. Stockdale et al., 1998).
However, it has to be noted here that the statistical models predict only indicators
such as the Southern Oscillation index or the NINO3 SST anomaly index and not the
full weather patterns and their ENSO-related changes. Why are these simple models,
which are based on a few lines of Fortran code and a random number generator, so
successful in predicting ENSO indicators? Are the sophisticated numerical models
just expensive but physically consistent random number generators? Do we really
need to resolve global small-scale weather patterns, in order to predict ENSO? It is
obvious that the timing and amplitude of individual westerly wind bursts (WWBs),
kicking off oceanic Kelvin waves that might initiate an El Niño or a La Niña event,
cannot be predicted six months ahead either by coupled atmosphere–ocean models
or by statistical models, which do not take into account WWBs explicitly. Hence,
in both cases long-term ENSO prediction is hampered by the difficulty in predicting
individual WWBs. The predictable part of, for example, an El Niño event is mainly
due to the ‘Jack-in-the-Box’ part associated with the Kelvin wave propagation plus
the SST adjustment part and the slow discharging of the equatorial heat content due to
the zonally integrated Sverdrup transport. An important question now is: do we really
need to resolve atmospheric weather patterns, oceanic instability waves and diurnal
cycles in order to predict the warming of the eastern equatorial Pacific several months
or seasons ahead? Let us assume we have a perfect model formulated in terms of
non-linear partial differential equations (PDE) and a very bright mathematician who
is capable of averaging these PDEs in time analytically. The result would be a new
set of averaged equations 1

T

∫ T
0 dtPDE(t). Now let us assume that we have a perfect

model based on the original PDEs that simulates ENSO most realistically and a clever
statistician who instead of averaging the equations averages the ensemble output of



10 Predictability of coupled processes 271

the model. Based on the central limit theorem and assuming independent variables
he would argue that the distributions of the simulated variables would approach a
Gaussian distribution for longer averaging periods, given independent samples. The
longer the averaging period, the more linear the process appears to be. The statistician
would be able to derive a quasi-linear model from the simulated data. It would in fact
be surprising if the mathematician and the statistician obtain very different results.
Hence, it appears that the key for the success of linear statistical ENSO prediction
schemes is the central limit theorem. Averaging reduces the noise but still basic fea-
tures of the ENSO mode are retained (see Eq. 10.17). There is, however, one important
statistical feature that cannot be captured by linear statistical models that operate on
a monthly basis: the skewness of the observed monthly Niño 3 SST probability dis-
tribution (Burgers and Stephenson, 1999). The role of the non-linear temperature
advection in generating this skewed probability distribution has been explained by
Jin et al. (2003). It is in particular this non-linearity that is associated also with the
propagation characteristics of SST anomalies that determines the occurrence of very
large El Niño events. This skewness cannot be captured by linear statistical models,
and hence they exhibit errors in the amplitude either of El Niño or La Niña events.

We have seen that both numerical ENSO models as well as statistical models have
some value in predicting ENSO anomalies several months ahead. Unfortunately the
advantages of these two modelling philosophies are rarely combined. Despite the
fact that the success of combined multimodel forecasts is well documented (Metzger
et al., 2004) only a few examples exist where weather and climate prediction centres
employ both approaches in an optimal way (see Krishnamurti et al., this volume).
The idea of a combined multimodel ensemble (superensemble) forecast is simple.
Let us assume we have N ENSO prediction models, denoted by Mi , iε{1, . . . N } ,
each providing a six month forecast, say, for the NINO3 SST anomaly index Xi .
The basic idea of combined forecasts is to find an optimal linear combination such
that residual errors with respect to the observations and an a-priori chosen norm are
minimised. The optimal forecast is obtained from X = ∑

i=1,N αi Xi (Mi ). Basically
the models are weighted by their hindcast and/or forecast skills. This strategy can be
refined in many ways. One is to take into account also the time derivatives; another
is to choose the αi in such a way that they are dependent on the physical situation,
representing the fact that some models work well, for example for a basic state that
favours westward-propagating SST anomalies; others perform well for eastward-
propagating anomalies, etc. Hence, with very little statistical efforts (one just has to
compute a multiple linear regression) it would be easy to improve ENSO forecasts.
A combined multimodel ensemble climate community ENSO forecast adds extra
value to the zoo of existing forecasts because it can compensate for the weaknesses
of some models by the strengths of other models, depending on the existing situation
in the tropical Pacific.

The value of an ENSO prediction model is often measured by the difference
between the anomaly correlation skill (or root-mean-square) of the model under
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consideration and a damped persistence forecast. Why do we choose a damped per-
sistence forecast, which corresponds to a red noise process, if ENSO is an oscillatory
mode? In fact if the performance of the ENSO prediction model is tested against
a physically more justified null hypothesis, such as a noise driven oscillator, the
difference between model anomaly correlation skill and AR(2) anomaly correlation
skill would be even less, as shown by Burgers and Stephenson (1999). Fairness
requires that we have to compare ENSO forecasts against a reasonable physical null
hypothesis, not an unreasonable statistical one.
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Predictability of tropical intraseasonal variability

Duane E. Waliser
Jet Propulsion Laboratory, California Institute of Technology, Pasadena

11.1 Introduction

Not long after the development of numerical weather forecasting in the 1950s, pre-
dictability studies emerged with the desire to determine the theoretical limits asso-
ciated with deterministic weather forecasting (e.g. Thompson, 1957; Lorenz, 1965,
1982; this volume; Palmer, this volume). Estimating these limits helped to better
quantify the capabilities and skill level of operational weather forecast models and
to determine how far and fast the community should press the embryonic field of
numerical weather forecasting. Numerical predictability studies expanded to include
the ocean and the climate scale with the advent of seasonal-to-interannual forecasting
based on the El Niño–Southern Oscillation (ENSO) (e.g. Cane et al., 1986; Graham
and Barnett, 1995; Kirtman et al., 1997; Barnston et al., 1999; Anderson, this vol-
ume; Hagedorn et al., this volume; Shukla and Kinter, this volume). In this case,
it was of interest to understand the theoretical limits for predicting tropical Pacific
Ocean sea surface temperature (SST) anomalies, and then in turn their implications
for predicting monthly or seasonal anomalies of midlatitude circulation, temperature
and rainfall.

Very recently, predictability at the intraseasonal timescale (i.e. lead times of about
2 weeks to 2 months) has garnered great interest (Schubert et al., 2002; Waliser
et al., 2003a; ECMWF, 2004). This evolution of research and operations in regard
to specific prediction regimes (i.e. weather, seasonal and then intraseasonal) has
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mimicked quite remarkably that anticipated by John von Neumann (1955; relevant
excerpt can be found in Waliser, 2005). His foresight followed from traditional math-
ematical approaches and was thus based on the expectation that the simplifying
extremes of the prediction problem would be tackled first. In this case, the short
lead time, ‘initial-value problem’ of weather forecasting, followed by the ‘boundary-
value problem’ associated with seasonal-to-interannual forecasting, and then finally
the regime in between (i.e. intraseasonal) where neither extreme holds. Given the
long-standing maturity of weather forecasting and the more recent establishment of
operational seasonal-to-interannual forecasting, there is now a fairly well defined
gap in prediction capability at the intraseasonal timescale. While the simple exis-
tence of this gap has certainly contributed to the community’s growing interest in
this timescale, attention has also been stimulated by the recognition that a number
of noteworthy phenomena and processes have the potential to lend predictability at
this intervening timescale. These phenomena and processes include the Arctic Oscil-
lation (AO)/North Atlantic Oscillation (NAO), the Pacific North American (PNA)
pattern, the Madden–Julian Oscillation (MJO), soil moisture and SST variability, and
the intermittent occurrence of midlatitude blocking. Improved predictions of these
phenomena and processes have the potential to provide significant practical benefits
which include useful low-frequency weather forecasts over much of the tropics – an
area where forecasting has typically been exceptionally challenging (Waliser et al.,
1999b; 2003b; Wheeler and Weickmann, 2001; Newman et al., 2003; Barlow
et al., 2005; Wheeler and McBride, 2005; Hoskins, this volume), skilful forecasts
of active and break monsoon conditions (Waliser et al., 2003c; Webster and Hoyos,
2004; Liess et al., 2005; Webster et al., this volume), and improved extratropical
surface temperature and precipitation predictions (Higgins et al., 2000; Kirtman
et al., 2001; Thompson and Wallace, 2001; Whitaker and Weickmann, 2001; Bald-
win et al., 2003; Bond and Vecchi, 2003; Koster et al., 2004; Vecchi and Bond, 2004).

While the discussion and associated studies cited above indicate that a number of
intraseasonal phenomena and processes have bearing on the intraseasonal (aka sub-
seasonal) prediction problem, the MJO in particular has been singled out as one of
the most underexploited in terms of lending potential for near-term gains in forecast
skill (Schubert et al., 2002; Waliser et al., 2003a, 2005; ECMWF, 2004). This focus
on the MJO is not only due to the characteristics of the phenomenon itself and the
direct impact it has on a broad region of the tropics at the intraseasonal timescale
but also because of the influences the MJO has on timescales of variability outside
this band. For the case of weather, the MJO – through its relatively slow modula-
tions of tropical diabatic heating – offers the hope for extending (at least occasion-
ally) the range of useful forecasts of weather and/or weather statistics (e.g. Ferranti
et al., 1990; Jones et al., 2004a), including tropical storms and hurricanes (Maloney
and Hartmann, 2000a, 2000b; Mo, 2000; Goswami et al., 2003) and extreme United
States west coast rainfall events (Mo, 1999; Higgins et al., 2000; Jones, 2000). For the
seasonal-to-interannual timescale, the MJO represents an intermittent yet important
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component of atmospheric forcing (e.g. westerly wind bursts and the development of
El Niño) as well as a key component atmospheric ‘noise’ that can limit the skill asso-
ciated with forecasts at this timescale (e.g. McPhaden, 1999; Moore and Kleeman,
1999; Kessler and Kleeman, 2000; Zhang et al., 2001).

Given the importance of the MJO to considerations of weather and climate pre-
dictability as outlined above, this chapter reviews predictability issues associated
with tropical intraseasonal variability, with a particular emphasis on the MJO. In the
following section, a brief observational description of the MJO is presented, including
its seasonal and interannual modulations. In Section 11.3, the physical theory under-
lying this variability, particularly as it relates to the phenomenon’s predictability, is
briefly reviewed. In Section 11.4, an assessment of our present-day understanding of
the predictability of the MJO is given. In Section 11.5, a number of practical consid-
erations of MJO prediction are discussed. Section 11.6 concludes with a discussion
of the outstanding issues and questions regarding future research and progress in this
area. Additional reviews of this and related material can be found in Lau and Waliser
(2005); Waliser (2006) and Zhang (2005).

11.2 Physical description

The dominant form of intraseasonal atmospheric variability, particularly in terms
of rainfall generation and global reach of influence, is most often referred to as
the Madden–Julian Oscillation (MJO; also known as the 30–60 day, 40–50 day, and
intraseasonal oscillation (ISO)) after its discoverers (Madden and Julian, 1971, 1994,
2005). The left panels of Figure 11.1 (colour plate) illustrate the canonical space–
time structure of rainfall and low-level winds in the tropics associated with an MJO
‘event’ during boreal winter, with the interval between maps being 12.5 days. These
maps illustrate its eastward propagation and equatorially trapped character. The left
panels of Figure 11.2 show similar information but for mid-tropospheric geopotential
heights and upper-level winds. Comparison of the corresponding upper and lower
tropical wind fields emphasises the baroclinic nature of its wind anomalies, with
upper tropospheric divergence (convergence) occurring in conjunction with positive
(negative) rainfall anomalies and vice versa for the lower troposphere. In addition,
it can be seen that the MJO has a global scale. At upper levels, wind anomalies are
primarily characterised by wave number 1. At lower levels, wind and rain anomalies
are primarily characterised by wave number 2, with a significant modulation by
the relatively warmer (cooler) eastern (western) hemisphere background state. For
example, over the Indian and west Pacific Oceans, there is evidence of considerable
interaction between the wind and rainfall anomalies. In these regions, where the
coupling between the convection and warm surface waters is strong, the oscillation
propagates rather slowly, about 5–10 m/s. However, once the disturbances reach the
vicinity of the Date Line, and thus cooler eastern Pacific Ocean equatorial waters,
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Figure 11.1 (See also colour plate section.) Canonical structure of an MJO event
based on 5-day average (i.e. pentad) NCEP/NCAR Reanalysis (Kalnay et al., 1996)
and CMAP rainfall data (Xie and Arkin, 1997) from 1979 to 2000. Data were
bandpassed filtered with a 30–90 day filter and then separated into boreal winter
(Nov–Apr) and summer (May–Oct). Extended EOF (EEOF) analysis with +/–5
pentad lags was performed on tropical rainfall (30N to 30S, 30E to 180E) to identify
the dominant ‘mode’ for the winter and summer separately. Composite events were
constructed by selecting events if the EEOF amplitude time series exceeded 1
standard deviation (N = 43 (49) for winter (summer)). The resulting composites have
dimensions lag (−5 to +5 pentads), latitude and longitude. In the plots above, only 4
panels of the boreal winter composite are shown, each separated by 2.5 pentads (i.e.
12.5 days). Plots show composite rainfall and 850 hPa wind vectors for (left) boreal
winter and (right) boreal summer. Only values that exceed the 90% confidence limit
are shown.
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Figure 11.2 Same as above except for 500 hPa geopotential heights and 200 hPa
wind. In this case, encircled shading denotes positive anomalies.

the convection tends to subside and propagate southeastward into the South Pacific
Convergence Zone. Beyond the Date Line, the disturbance is primarily evident only
in the near-equatorial wind field with characteristics similar to a dry Kelvin wave
with a speed of about 15–20 m/s or greater (Hendon and Salby, 1994).

Another important feature associated with the MJO, especially in relation to its
connections to midlatitudes, is its off-equatorial structure and variability. From the
left panels of Figure 11.1 and Figure 11.2 there is evidence of off-equatorial Rossby
wave gyres that straddle the near-equatorial rainfall anomalies. For example, in the
composite maps at lag +12.5 days, the positive rainfall (i.e. heating) anomaly is
located over the Maritime continent. Associated with this are upper-level cyclonic
(anticyclonic) gyres to the north-east and south-east (north-west and south-west)
centred at latitudes of about 20◦. These gyres are more easily identified in the
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life-cycle analysis of the MJO by Hendon and Salby (1994) and are consistent with
the circulation that is expected in association with a near-equatorial tropospheric
heating anomaly (Matsuno, 1966; Gill, 1980). One of the important manifestations
of these tropical heating and subtropical streamfunction anomalies is that they act as
Rossby wave sources for midlatitude variability (e.g. Weickmann, 1983; Liebmann
and Hartmann, 1984; Weickmann et al., 1985; Lau and Phillips, 1986; Sardeshmukh
and Hoskins, 1988; Berbery and Noguespaegle, 1993). For example, the +12.5-day
lag map of Figure 11.2 shows evidence of a wave train emanating from the tropics
and extending poleward and eastward over the Pacific Ocean and North America.
Such connections with the extratropics have important ramifications for midlatitude
weather variability, regime changes and forecasting capabilities (e.g. Ferranti et al.,
1990; Higgins et al., 2000; Jones et al., 2004a).

The intraseasonal variability characteristics discussed above tend to be most
strongly exhibited during the boreal winter and spring when the Indo-Pacific warm
pool is centred at or near the equator. In the boreal summer, the MJO is still
present although its spatial variability and propagation characteristics are modi-
fied by the changes in the circulation associated with the annual cycle. The right
panels of Figure 11.1 and Figure 11.2 illustrate the canonical space–time struc-
ture of the MJO in boreal summer (for more in-depth observational descriptions
see recent reviews by Goswami, 2005; Hsu, 2005; Waliser, 2006). Note that the
summertime manifestation of the MJO is often referred to as the intraseasonal oscil-
lation (ISO), the boreal summer ISO, or monsoon ISO (MISO). Examination of
the rainfall map at lag 0 days shows that positive rainfall anomalies in the west-
ern and central Indian Ocean for the boreal summer case occur in conjunction
with negative rainfall anomalies over a region extending between India and the
western equatorial Pacific. This system then appears to propagate both eastward –
similar to the boreal winter case – and northward (Yasunari, 1979; Lau and Chan,
1986; Lawrence and Webster, 2002; Hsu, 2005). As with the boreal winter case, the
associated midlatitude variability occurs primarily in the winter hemisphere.

Most relevant to the present discussion of predictability is the large spatial scale
and slow evolution of the rainfall patterns in Figure 11.1 relative to typical synoptic-
scale weather features. These characteristics suggest a measure of predictability at a
timescale on the order of weeks (e.g. Waliser et al., 1999b). This feature, along with
their somewhat regular occurrence, their impact on the Asian–Australian monsoons,
as well as their influence on extratropical weather patterns motivate the need to
develop the capability to predict these ‘events’ and improve our understanding of
their predictability. To gain an appreciation for their dramatic impact on the Asian and
Australian monsoons, Figure 11.3 shows the annual cycle of rainfall and the anoma-
lous evolution of unfiltered and filtered rainfall over India and northern Australia for
a sample of three years. These time series emphasise the overall dominance, apart
from the annual variation, of the intraseasonal timescale on these monsoon systems,
including its obvious role in dictating active and break phases. In addition, the
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Figure 11.3 Time series of rainfall over India (left) and Australia (right). Rainfall
data is based on pentad values of the satellite and in-situ merged CMAP product of
Xie and Arkin (1997) from 1979 to 1999. The data plotted for India (Australia) are
the domain averages of the grid points lying within India (Australia, lying north of
25◦S). (Top) Mean 73-pentad annual cycle. (Lower three panels) The thin black lines
are pentad anomaly values, the thick black lines are 30–90 day bandpassed values,
and the thick dashed lines are 90 day low-pass values for the years 1979, 1988 and
1996.
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three years sampled is enough to illustrate that the MJO exhibits a considerable
amount of year-to-year variability (e.g. Ferranti et al., 1997; Hendon et al., 1999;
Slingo et al., 1999; Lawrence and Webster, 2001; Teng and Wang, 2003).

While the diagrams in Figure 11.1 and Figure 11.2 illustrate what might be con-
sidered typical winter and summer MJO events, it is important to recognise that
these events have considerably more complexity in reality. For example, the study
by Wang and Rui (1990), and later by Jones et al. (2004b), have further diagnosed
the ‘synoptic climatology’ of tropical MJO events, including their seasonal modula-
tion. These studies show for example that boreal winter events display considerable
variation in the longitude that the convection develops and/or dissipates. Moreover,
it is well known that the convection associated with MJO events typically propagates
further east during El Niño events (e.g. Kessler, 2001). For the boreal summer case,
Kemball-Cook and Wang (2001) show that there is a systematic intraseasonal change
in the spatial structure and propagation characteristics of the MJO. In the early part
of the summer (e.g. May–June), the off-equatorial variability is generally found west
of South-east Asia and the Maritime continent, while in the later part of the summer,
it expands to include much of the north-western tropical Pacific.

In addition to the above complexities, there are also finer scale structures embed-
ded in the MJO that deserve mention. For example, studies by Nakazawa (1988), Lau
et al. (1991), and Chen et al. (1996) have shown that the convective variability organ-
ises on a wide range of time and space scales within the large-scale anomalies that
are emphasised in Figure 11.1. In addition, the latitudinal asymmetry of the boreal
summer MJO makes its evolution and physical description more complicated than the
boreal winter case, where the latter is generally thought of as an eastward-propagating,
convectively coupled, equatorially trapped wave complex. These aspects of the phys-
ical description also hold for the boreal summer case, particularly in the Indian Ocean
and far western Pacific. However, the summertime hemisphere in the boreal summer
case experiences a relatively larger increase in SST and surface moisture, and an
accompanying enhancement in the large-scale easterly vertical shear, than for the
boreal winter case. These features, along with the land–sea distribution in the area,
promote the emanation and growth of Rossby waves that are forced by the near-
equatorial convection anomalies (Li and Wang, 1994; Wang and Xie, 1996, 1997;
Kemball-Cook and Wang, 2001; Lawrence and Webster, 2002). The overall eastward
propagation of the large-scale, near-equatorial convective anomaly, combined with
the inherent westward-propagation of these Rossby waves (Matsuno, 1966) and a
number of mechanisms that promote the northward propagation of the latter (e.g.
Jiang et al., 2004), largely account for the appearance of the eastward-propagating,
north-west-south-east tilted, large-scale ‘rainband’ evident in Figure 11.1.
Other noteworthy features associated with the boreal summer MJO include what
is known as the climatological ISO (CISO; e.g. Wang and Xu, 1997) and significant
variability at the 10–20 day timescale. Elaboration on the above detailed features
of the MJO as well as more comprehensive aspects of MJO theory are beyond the
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scope of this chapter and the reader is referred to a number of recent reviews on
these subjects (Chang, 2004; Goswami, 2005; Hsu, 2005; Wang, 2005; Wheeler and
McBride, 2005; Waliser, 2006).

11.3 Predictability

By the late 1980s, many characteristics of the MJO were fairly well documented
and it was clear that it was a somewhat well defined phenomenon with a number
of reproducible features from one event to another as well as in events from one
year to the next. Given this, and the degree that research had shown a number of
important interactions of the MJO with other features of our weather and climate
system, it was an obvious step to consider MJO forecasting in more earnest. Since
numerical weather and climate models typically had, and still have, a relatively poor
representation of the MJO (e.g. Slingo et al., 1996; Waliser et al., 2003e; Slingo
et al., 2005; Allen et al., this volume), a natural avenue to consider was the devel-
opment of empirical models. Along with the possibility of providing more skilful
forecasts than numerical methods available at the time, this avenue also provided a
means to establish an initial estimate of the predictability limit for the MJO – at least
that which could be ascertained from the observations alone.

There were a number of different approaches and data sets used in these empirical
studies. For example, von Storch and Xu (1990) examined Principal Oscillating Pat-
terns of equatorial 200 mb velocity potential anomalies with an emphasis on boreal
winter. The model of Waliser et al. (1999b) was based on a field-to-field Singular
Value Decomposition that used previous and present pentads of outgoing longwave
radiation (OLR) to predict future pentads of OLR with separate models developed
for boreal winter and summer conditions. Lo and Hendon (2000) developed a lag
regression model that used as predictors the first two and first three principal compo-
nents of spatially filtered OLR and 200 hPa streamfunction, respectively, to predict
the evolution of the OLR and 200 hPa streamfunction anomalies associated with the
boreal winter MJO. A similar strategy was used by Jones et al. (2004c). Mo (2001)
utilised empirical basis functions in time by using a combination of singular spec-
trum analysis for the filtering and identification of the principal modes of variability
and the maximum entropy method for the forecasting component. The procedure
was applied to monitor and forecast OLR anomalies in the intraseasonal band over
the Indian–Pacific sector as well as the pan-American region. In a quite different
approach, Wheeler and Weickmann (2001) utilised tropical wave theory (Matsuno,
1966; Wheeler and Kiladis, 1999) as the basis for their filtering and forecasting
technique. In order to monitor and predict the evolution of a given mode of interest,
near-equatorial time-longitude sections were Fourier analysed in two dimensions; the
specific zonal wave numbers and frequencies associated with the mode(s) of inter-
est (e.g. MJO) were retained, and then the modified spectrum was inverse Fourier
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analysed. Goswami and Xavier (2003) identified all active and break phases associ-
ated with boreal summer MJO events and then as a means for prediction calculated
the typical (i.e. ensemble average) transition from active to break (and break to active)
conditions as a function of lead time. Most recently, Webster and Hoyos (2004) have
developed a physically based, multi-predictor, Bayesian model to predict regional
rainfall and river discharge associated with the Asian monsoon, with a particular
emphasis on intraseasonal variations over India. A number of additional empirical
schemes that have relevance to real-time prediction will be discussed in Section 11.4.

The above discussion gives a flavour of the types of empirical MJO models that
have been developed to date. For the most part, each of the above studies devel-
oped their model on a given portion of the observed record and then tested it on an
independent portion. Glossing over the details, the upshot of these studies is that
empirical models demonstrate useful predictive skill for the MJO on the order of
15–25 days or more, depending on the spatial scale and quantity being predicted.
However, as with any empirical model, these models are limited in the totality of
the weather and climate system they can predict, their ability to adapt to arbitrary
conditions, and their ability to take advantage of known physical constraints. Thus
one might conclude that if dynamical models had a realistic representation of the
MJO, this limit might be extended somewhat. While the majority of dynamical mod-
els to date still exhibit significant shortcomings in terms of their MJO simulation –
particularly if pressed to do operational prediction, there have been a few models,
or versions of models, that have demonstrated success at representing a number of
the principal features of the MJO (Slingo et al., 1996; Sperber et al., 1997; Waliser
et al., 1999a; Kemball-Cook et al., 2002; Maloney, 2002; Fu et al., 2003; Zheng
et al., 2004). This degree of model success at least provides the means to perform
‘perfect-model’, or so-called ‘twin-predictability’, experiments to ascertain an esti-
mate of the theoretical limits of prediction for the MJO. In this case, ‘forecasts’ are
verified against others that only differ in the initial conditions (e.g. Lorenz, 1965;
Shukla, 1985; Palmer, this volume). This approach was taken in two recent studies
by Waliser et al. (2003b, 2003c). In this case, the experiments were performed with
the NASA Goddard Laboratory for Atmospheres (GLA) general circulation model
(GCM) (Kalnay et al., 1983; Sud and Walker, 1992). In a number of studies, this model
has been shown to exhibit a relatively realistic MJO (Slingo et al., 1996; Sperber et al.,
1997; Waliser et al., 2003d) with reasonable amplitude, propagation speed, surface
flux characteristics, seasonal modulation, and interannual variability (Waliser et al.,
2001). One of its principal deficiencies is its relatively weak variability in the equato-
rial Indian Ocean, a problem quite common in atmospheric GCMs (AGCMs, Waliser
et al., 2003d).

For these studies, a 10-year control simulation using specified annual cycle SSTs
was performed in order to provide initial conditions from which to perform an ensem-
ble of twin predictability experiments. Note that this analysis was performed sep-
arately on boreal winter and summer MJO activity (e.g. left and right panels of
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Figure 11.4 Predictability measure, defined as the ratio of the MJO signal and the
MJO forecast error (see Waliser et al., 2003b), versus lead time based on 120
northern hemisphere winter MJO twin-predictability forecast cases for VP200 (left)
and rainfall (right) from the NASA/GLA model for 120 active/strong boreal winter
MJO cases (solid black), 30 weak/null boreal winter MJO cases (dashed grey) and
for unfiltered ‘weather’ variations (using the 120 active MJO cases; solid grey) for
the region 8◦ N–16◦ S and 120–165◦ E.

Figure 11.1, respectively). The following discussion describes the boreal winter
study (Waliser et al., 2003b) but the methods are quite similar for the boreal summer
analogue (Waliser et al., 2003c) of which a few results are also mentioned. Initial
conditions were taken from periods of strong MJO activity identified via extended
empirical orthogonal function (EOF) analysis of 30–90 day bandpassed tropical
rainfall during the October through April season. From the above analysis, 15 cases
were chosen when the MJO convection was located over the Indian Ocean, Maritime
continent, western Pacific Ocean, and central Pacific Ocean, respectively, making
60 cases in total. In addition, 15 cases were selected which exhibited very little to
no MJO activity. Two different sets of small random perturbations, determined in a
rather ad hoc and simplistic manner, were added to these 75 initial states. Simulations
were then performed for 90 days from each of these 150 perturbed initial conditions
(Buizza, this volume; Kalnay et al., this volume).

A measure of potential predictability was constructed based on a ratio of the
signal associated with the MJO, in terms of bandpassed (30–90 day filter) rainfall
or 200 hPa velocity potential (VP200), and the mean square difference between sets
of twin (bandpassed) forecasts. Predictability was considered useful if this ratio was
greater than one, and thus if the mean square error was less than the signal associated
with the MJO. The results, shown in Figure 11.4, indicate that useful predictability
for this model’s MJO extends out to about 20 to 30 days for VP200 and to about 10
to 15 days for rainfall. This is in contrast to the timescales of useful predictability
for the model’s weather, or for cases in which the MJO is absent. In these latter
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cases, the predictability limit is roughly 12 days for VP200 and 7 days for rainfall.
Note that these latter two regimes are related, in that when the MJO is quiescent, the
model lacks a low-frequency component that might help it retain predictability over
long timescales and is in a regime where the processes and timescales of weather
are the only phenomena left to provide predictability. Additional support for this
conclusion was demonstrated from a predictability analysis on EOF decompositions
of the model data (Waliser et al., 2003b). This analysis shows more definitively that
the enhanced predictability derives from the (about two) EOF modes that represent
the MJO variability in the model. In addition to the above, the predictability measure
exhibits modest dependence on the phase of the MJO, with greater predictability for
the convective phase at short (< ∼5 days) lead times and for the suppressed phase
at longer (> ∼15 days) lead times. This result appears consistent with the empirical
model results of Goswami and Xavier (2003) that showed break monsoon phases to
be more predictable than active phases.

Additional experiments have been carried out to assess the sensitivity of the results
above to changes in background state. For example, the study by Waliser et al. (2003c)
was performed in an analogous fashion, although with more cases (N = 168), to
examine the predictability limits associated with the boreal summer MJO. The left
panels of Figure 11.5 show maps that depict the size of the MJO ‘signal’ in terms of
VP200 at lead times of 5, 15 and 25 days. Due to the relatively long timescale of the
MJO, this signal remains roughly constant over this period. The right panels show
the associated mean squared error at the same lead times. Evident is the fact that the
error is generally less than the signal even up to 25 days, indicating predictability at
these lead times. As expected, the maps show that the predictable VP200 signal is
limited to the tropical regions where the MJO has an impact on this quantity. A similar
diagram for rainfall (not shown here), indicates useful predictability out to about 15
days, with the geographic extent being even more limited. The plots in Figure 11.6
provide a more quantitative illustration of the above for a select region within the
area of high MJO variability. The lead time at which the error and signal intersect
can roughly be equated to the limit of predictability (i.e. where the predictability
ratio discussed above becomes one). Similar to the boreal winter results, the limit of
predictability for the upper level circulation (i.e. VP200) and rainfall for the boreal
summer MJO is about 25–30 days and 15–20 days, respectively. Consistent with the
discussion above, this figure also demonstrates that when the MJO cases analysed
are divided into strong versus weak cases, predictability associated with the strong
cases is enhanced.

Predictability measures were also examined under El Niño and La Niña conditions.
In this case, analogous experiments to those described above for the boreal winter
case were performed but with imposed El Niño and La Niña SST anomalies. To
construct these anomalies, the observed SST anomalies between September and the
following August for the El Niño years of 1957, 1972, 1982, 1986, 1991 and 1997
were averaged together. This 12-month ‘raw’ anomaly was then subject to a Fourier
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Figure 11.5 The MJO mean signal (left) and mean forecast error (right) for all the
boreal summer MJO cases (N = 168) at lead times of 5 (top), 15 (middle), and 25
(bottom) days for filtered (30–90 days) 200 hPa velocity potential (VP200). VP200
values have been scaled by 10−12. From Waliser et al. (2003c).

analysis, retaining only the lowest three harmonics. This step ensured that the imposed
anomaly consisted of only low-frequency and, more importantly, periodic variations.
To account for signal loss in the compositing and filtering procedure, the resulting
anomaly was multiplied by a factor of 2, and then added to the climatological SSTs
to provide a perpetual 12-month evolving El Niño condition. The procedure was
performed exactly the same for the La Niña case, except using June through the
following May anomalies for the La Niña years 1950, 1954, 1956, 1956, 1970, 1973,
1974, 1988. The 12-month means of the anomalous El Niño and La Niña SST patterns
are shown in the upper panels of Figure 11.7. For each case, 10-year simulations were
performed and then analysed in the same manner as described above.
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VP200 - All Cases Rainfall - All Cases

VP200 - Strong Cases VP200 - Weak Cases

Figure 11.6 (Upper) The thick solid black lines which increase with forecast time
are the mean squared forecast error for the (30–90 day) filtered (left) 200 hPa
velocity potential (VP200) and (right) rainfall, over the region 12◦ N–16◦ N and
117.5◦ E–122.5◦ E (model grid point at centre of smaller black box in Figure 11.5)
for all the boreal summer MJO cases (N = 168). The thick solid black lines which are
roughly constant with forecast time are the mean MJO signal for the same quantities,
and over the same region and cases. The thin dotted lines depict the 95% confidence
limits for the above quantities using a student t-test. VP200 values have been scaled
by 10−12. (Lower) Same as upper left panel, except that the left panel is based on
forecasts using the strongest, and the right the weakest, MJO cases (N = 80 in each
case). The thick dashed line in the lower right panel is a re-plotting of the mean-
squared error from the lower left panel to allow for easier comparison between the
strong and weak MJO cases. VP200 values have been scaled by 10−12. Adapted from
Waliser et al. (2003c).

The middle and lower panels of Figure 11.7 illustrate that the predictability of the
model’s MJO is considerably enhanced (diminished) for the imposed El Niño (La
Niña) conditions. Examination of the results shows that part of these changes derives
from the changes in the SST in the central Pacific and the associated extension
(contraction) of the MJO propagation path for the El Niño (La Niña) case. More
substantial is the fact that overall the MJO signal, meaning the amplitude of the
typical event analysed, is considerably larger (smaller) for the El Niño (La Niña)
case than for the control (i.e. climatological SST) case. Given a somewhat similar
error growth rate, this change in signal also promotes the changes observed to the
model’s MJO predictability. This latter aspect raises an interesting question relative
to the studies performed to date that examine the relation between interannual SST
variability and MJO activity (e.g. Gualdi et al., 1999; Hendon et al., 1999; Slingo
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Mean SST Anomaly

Figure 11.7 (Upper) Annual mean of 12-month evolving perpetual sea surface
temperature (SST) anomaly applied to the set of predictability experiments
associated with El Niño (left) and La Niña (right) conditions. (Middle) The thick
solid black lines are the mean squared forecast error for the (30–90 day) filtered
200 hPa velocity potential (VP200) over the western Pacific Ocean (4◦ N–12◦ S;
147.5◦ E–162.5◦ E) for all the boreal winter El Niño (left) and La Niña (right) MJO
cases (each have N = 120). The thick dashed grey lines are the mean MJO signal for
the same quantities, and over the same region and cases. The thin dotted lines depict
the 95% confidence limits for the above quantities using a student t-test. VP200
values have been scaled by 10−12. (Lower) Same as middle, except for rainfall.

et al., 1999), which for the most part (even for this same model, Waliser et al., 2001)
have found little or no relation, particularly for the boreal winter case. The results
here suggest that perpetually warm or cool anomalous SST conditions might have a
considerable impact on the MJO (e.g. Slingo et al., 1999; Zveryaev, 2002) while the
observed intermittent interannual SST variability does not.
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While the results from these numerical studies are encouraging from the viewpoint
of intraseasonal prediction, and are not entirely inconsistent with the sorts of compli-
mentary empirical studies mentioned above, there are a number of issues to consider
that might impact the limit of predictability estimate they provide. First, the GLA
model employed has been shown to have too much high frequency, low wave-number
activity (Slingo et al. 1996). Relative to the MJO, this variability would be considered
to be unorganised, errant convective activity that may erode the relatively smooth
evolution of the MJO and thus diminish its predictability. Second, these simulations
were carried out with fixed climatological SST values. A previous study with this
model showed that coupled SSTs tend to have an enhancing and organising influence
on the MJO, making it stronger and more coherent (Waliser et al., 1999a). Thus the
exclusion of SST coupling may lead to an underestimate of the predictability as well
(Timmermann and Jin, this volume).

There are also a number of aspects associated with the model and/or analysis to
suggest that the above results might overestimate the predictability of the MJO. The
first is that the model’s coarse resolution and inherent reduced degrees of freedom
relative to the true atmosphere may limit the amount of small-scale variability that
would typically erode large time and space scale variability. However, it is important
to note in this regard that the low-order EOFs of intraseasonally filtered model output
typically do not capture as much variability as analogous EOFs of observed quantities.
Thus the model’s MJO itself still has room to be more robust and coherent, which
would tend to enhance predictability. In addition to model shortcomings, the simple
manner that perturbations were added to the initial conditions may also lead to an
overestimate of the predictability. The perturbation structure and the size of the
perturbations may be too conservative and may not adequately represent the type of
initial condition error that would be found in an operational context. However, even
if that is the case, it would seem that adequate size ‘initial’ errors would occur in
the forecast in a matter of a day or two and thus one would expect this aspect to
overestimate the predictability by only a couple of days, if at all.

In order to address some of the uncertainties mentioned above, an analogous
study for boreal summer conditions using the ECHAM AGCM has recently been
undertaken (Liess et al., 2005). The modelling and analysis framework is similar
to that described above with two important exceptions. First, rather than select a
large number of events (i.e. ∼15–20) for each of four phases of the boreal summer
MJO (i.e. convection in Indian Ocean, Maritime continent, South-east Asia, north-
west tropical Pacific) and performing only a few (i.e. two) perturbation experiments
with each, this study has selected the three strongest events in a 10-year simulation
and then performed a larger ensemble of forecasts for each of the four phases (i.e.
15). In addition, rather than use simply determined perturbations, this study uses
the breeding method (Toth and Kalnay, 1993; Cai et al., 2003). Figure 11.8 shows
the combined results from all twelve 15-member ensemble MJO forecasts using the
ECHAM5 AGCM. The data for the figure are taken from 90◦ E to 120◦ E and 10◦ N
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Figure 11.8 Signal-to-noise ratio of 30–90 day filtered precipitation (top) and
200 hPa velocity potential (bottom) predictions averaged over all four phases of three
MJO events. Shadings represent the significance at the 95% interval based on all
twelve 15-member ensemble forecasts. All values are averaged over the region 90 to
120◦ E and 10 to 20◦ N. Adapted from Liess et al. (2005).
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to 20◦ N for 30–90 day bandpass filtered rainfall (upper) and VP200 (lower) anoma-
lies. These results suggest that the boreal summer MJO has dynamical predictabil-
ity with lead times potentially up to and beyond 30 days. These lead times are
at least as large, if not larger, than those found in the Waliser et al. studies high-
lighted above. However, it should be noted that the event analysed here is a par-
ticularly robust and strong one for the model, and those above were based on both
strong and moderate sized events which could account for the difference. In any
case, even though the above results do not take into account systematic model bias
relative to the observations, they, along with many of the other studies discussed
above, indicate that a promising avenue and time scale of operational prediction lies
ahead.

11.4 Practical considerations

Based on the motivating factors presented in the Introduction and the promising
results derived from the empirical forecast and dynamical predictability studies dis-
cussed in the previous section, there is ample reason to push towards an operational
MJO predictive capability. Ideally, it would be most convenient if our present-day
numerical weather forecast models could demonstrate skill at MJO simulation and
prediction. If this was the case, our medium- to long-range forecasts could simply
be extended to provide useful subseasonal predictions of the MJO and the ancillary
weather and circulation systems it interacts with (e.g. tropical storms, midlatitude
flows). Unfortunately, due to the poor representation of the MJO by most GCMs,
this avenue cannot be readily or fully exploited (Allen et al., this volume; Palmer,
this volume). This has been found to be particularly true in the few studies carried
out to test the predictive skill of the MJO in operational weather forecast models.
For example, the studies by Chen and Alpert (1990), Lau and Chang (1992), Jones
et al. (2000), Hendon et al. (2000) were all performed on the most recent or previ-
ous versions of the National Oceanic and Atmospheric Administration’s (NOAA’s)
National Centers for Environmental Prediction (NCEP) (or NMC) medium range
forecast (MRF) model’s Dynamic Extended Range Forecasts (DERFs). In general
these studies only found useful skill out to about 7–10 days for MJO-related vari-
ability, and were simply hampered by MJO variability that was too weak and/or that
propagated too fast. Probably the most optimistic set of forecast skill experiments for
the MJO were a set of Asian monsoon MJO case studies performed by Krishnamurti
et al. (1990, 1992, 1995). The novel approach in these cases was that an attempt was
made to filter out the ‘weather’ time and space scales from the initial conditions and
leave only the ‘low-frequency modes’. In this case, the results demonstrated useful
forecast skill out to 3–4 weeks; however, there are some uncertainties associated with
making such a technique operational as well with how the boundary-layer forcing
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(i.e. SST) was handled. For a more thorough discussion of the above studies, as well
as the real-time efforts highlighted below, see Waliser (2005).

Given the need for forecast capability at the intraseasonal timescale, along with the
poor representation of the MJO in dynamical models, a number of real-time efforts
have been developed based on empirical methods. These include those based on a
number of the schemes mentioned above, such as Wheeler and Weickmann (2001),
Jones et al. (2004c), Lo and Hendon (2000) as improved on by Wheeler and Hendon
(2004), and Webster and Hoyos (2004). In addition, van den Dool and Saha (2002)
have recently applied the empirical wave propagating (EWP) technique developed by
van den Dool and Qin (1996) to forecast the MJO. EWP is a ‘phase-shifting’ technique
that allows one, in the diagnostic step, to determine the amplitude-weighted-average
climatological phase speed of anomaly waves (e.g. equatorial MJO), where the waves
are represented as either zonal or spherical harmonics. The diagnostic step results in
a table of phase speeds for waves in the anomaly field as a function of zonal wave
number, calendar month and latitude, based on the observed data. This technique
has shown to be particularly well suited for empirically forecasting the large-scale
upper-level anomalies (e.g. VP200) associated with the MJO.

In quite a different approach, stemming from somewhat different and/or more
comprehensive objectives, Newman et al.(2003) have developed and implemented
a real-time forecasting scheme that has applicability to the MJO based on what
is often referred to as the Linear Inverse Model (LIM; Winkler et al., 2001). The
LIM is based on NCEP/NCAR reanalysis data (Kalnay et al., 1996) that has had
the annual cycle removed, been smoothed with a 7-day running mean filter, gridded
to T21 spatial resolution, and been reduced by EOF decomposition. The specific
fields used include global 250 and 750 hPa streamfunction and tropical column-
integrated diabatic heating. For the boreal winter (summer) model, the first 30 (30)
streamfunction and 7 (20) diabatic heating EOFs are used. In this model, historical
data are used to define the relationship between a given state (i.e. a weekly average)
and conditions one week later, with the process being iterated to produce multi-
week forecasts. The advantage of the model is that it includes both tropical and
extratropical quantities in the forecasts. In this way, the interaction between the two
can be more readily examined and diagnosed. The results in Figure 11.9 show that
for tropical forecasts of diabatic heating, the LIM slightly outperforms a research
version of the (dynamic) NCEP MRF model at lead times of two weeks, for both
northern hemisphere summer and winter, particularly in regions where the MJO is
most strongly associated with the diabatic heating field.

Based on the sorts of activities and preliminary successes described above, along
with the need to take a more systematic approach to diagnosing problems in dynam-
ical forecasts of the MJO, an experimental MJO prediction programme has recently
been implemented (Waliser et al., 2006). The formal components of this programme
arose from two parallel streams of activity. The first was the occurrence of the
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Figure 11.9 Anomaly correlations between forecast and verification column-
integrated diabatic heating using the LIM forecast model (Winkler et al., 2001;
Newman et al., 2003) and a research version of the NCEP MRF model (i.e. MRF98)
for both the northern hemisphere winter (top) and summer (bottom). Forecasts were
made for June–August periods for the years 1979–2000. Solid (dashed) contours
indicate positive (negative) values.

intraseasonal workshop mentioned in the Introduction (Schubert et al., 2002) and
the recognition of the importance of the MJO in regard to the potential skill to be had
from intraseasonal predictions. The second stream of activity ensued from the prior-
ities and recommendations of the US CLIVAR Asian–Australian Monsoon Working
Group. These streams of activity led to the identification of forecast contributors
(which include many of the efforts described above), the formulation of an initial
framework for such a programme, the identification of a sponsor that could provide
scientific and technical support as well as serve as the data host/server (i.e. NOAA’s
Climate Diagnostics Center), and a more formal implementation meeting (Waliser
et al., 2003a).

The motivation for the above experimental programme involves not only the obvi-
ous objective of forecasting MJO variability but also to serve as a basis for model
intercomparison studies. The latter includes using the forecasts and biases in model
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error growth as a means to learn more about, and possibly rectify, model shortcom-
ings but also includes using the empirical models to provide some measure of the
expectations that should be attributed to the dynamical models in terms of MJO pre-
dictive skill. In addition, it is hoped that this programme and its forecasts will provide
a modelling resource to those trying to diagnose interactions between the MJO and
other aspects of weather and intraseasonal variability (e.g. PNA, AO). While the
immediate goal of the program has been to assemble and provide what is readily
available from the community in terms of 2–4 week forecasts of the MJO, there are
a number of challenges faced by such an effort that are worth highlighting. The most
notable involve how to deal with forecast models that have yet to have or routinely
do not have a lead-dependent forecast climatology which is necessary to remove a
model’s systematic biases, the manner the MJO signal(s) are to be extracted from
the heterogeneous set of models (e.g. empirical and numerical), the degree that cou-
pled models and ensembles need to be or can be incorporated into the project, and of
course the general logistical problems of dealing with assembling a very non-uniform
set of forecast products from different agencies and researchers in near real-time and
streamlining them for the purpose of this project.

In terms of ocean coupling, a number of recent studies (Wu et al., 2002; Fu
and Wang, 2004; Zheng et al., 2004) have indicated that accurate MJO predictions
can only be produced if SST coupling is accounted for in dynamical forecasts. For
example, the plots in Figure 11.10, taken from Zheng et al. (2004), show that the
observed (i.e. quadrature) phase relationship between MJO-related convection and
SST anomalies is properly represented in their coupled GCM (CGCM). However, the
relationship becomes incorrectly represented (i.e. nearly in phase) in the correspond-
ing AGCM simulations that use specified SSTs taken from the CGCM simulations.
These results hold for boreal summer and winter, the Indian Ocean and western
Pacific Ocean, as well as another GCM configuration (Fu and Wang, 2004). One of
the most important implications of this result is that if specified SSTs are used in
a prediction environment, phase errors in tropical convection on the order of 5–10
days (or 5–20◦ longitude) will occur. This is substantial when considering the local
tropical prediction but also problematic when considering the impact on the extra-
tropics. Thus, subseasonal (e.g. MJO) predictions must include ocean coupling – i.e.
even a ‘two-tier’ prediction framework is inadequate.

11.5 Discussion

The review of the studies examined in this chapter was meant to summarise what
is known regarding the predictability of tropical intraseasonal variability as well
as the current state of affairs of our ability to predict it. Notable is the fact that
nearly all the studies presented were primarily based on the MJO, which although
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Figure 11.10 Lagged-correlation values between SST and rainfall anomalies from
the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) ocean-atmosphere
coupled GCM (CGCM; solid) and the corresponding atmosphere-only GCM using
SSTs specified from the CGCM simulation (dotted). The top plot is for the boreal
summer period and is averaged over 85–105◦ E, 0–15◦ N while the bottom plot is for
the boreal winter period and is averaged over 80–95◦ E, 10◦S–5◦ N. From Zheng
et al. (2004).
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not the only mode of intraseasonal variability in the tropics, is the most dominant.
This limitation suggests that further research is needed to examine the predictability
of other intraseasonal variations in the tropics. This includes SST variability both
related to and unrelated to the MJO (e.g. Kirtman et al., 2001) as well as intrinsic
SST modes (e.g. tropical instability waves, see Kessler, 2005), higher-frequency
subseasonal modes associated with the Asian monsoon (e.g. Annamalai et al., 1999;
Gadgil, 2003) as well as variability over Africa (Matthews, 2004) and Pan America
(Mo and Paegle, 2005).

Based on the material presented, there appears enough evidence to suggest that
MJO predictions can be approached with considerable optimism as our present capa-
bilities seem far from saturating their potential, and once exploited operationally,
they will provide a unique and important bridge between the more established areas
of weather and seasonal-to-interannual prediction. One of our greatest challenges
remains to develop robust and realistic representations of the MJO in our weather
and climate forecast models (Slingo et al., 2005). Once we have such a capability,
we not only have a means to improve predictions of low-frequency weather vari-
ations in the tropics that are directly impacted by the MJO, including the onsets
and breaks of the Asian and Australian summer monsoons, but we will also likely
improve forecasts associated with a number of processes remote to the MJO (see the
Introduction).

To develop reliable prediction capabilities of intraseasonal variability and improve
our understanding of its limits of predictability, there are a number of areas that war-
rant investigation. This includes a more complete understanding of the role that
coupling to the ocean plays in maintaining, and in particular forecasting, the MJO. In
addition, there has been virtually no research done on model initialisation/data assim-
ilation issues in terms of what are the critical criteria to meet in order to adequately
initialise the state of the MJO (Kalnay et al., this volume; Simmons, this volume;
Thorpe and Petersen, this volume). Related to this are issues regarding the impor-
tance of the basic state of the forecast model and how an incorrect basic state might
negatively impact the maintenance and propagation of the MJO (e.g. Hendon, 2000;
Inness et al., 2003; Sperber et al., 2003; Liess and Bengtsson, 2004; Allen et al., this
volume). Additional avenues of research include exploring the methods proposed
by Krishnamurti et al. (1990) with other present-day forecast systems and on more
MJO cases as well as exploring the possibility of assimilating empirically derived
forecasts of the MJO into extended-range weather forecasts in order to improve their
forecasts of the MJO as well as the remote processes and secondary circulations they
interact with. Research is also needed to evaluate the best use of ensemble predic-
tions at the intraseasonal timescale (Buizza, this volume; Kalnay et al., this volume),
including superensemble techniques (Krishnamurti et al., 2005). It is also possible
that the interactions with soil moisture and vegetation might be an influential factor
that needs to be accounted for in the types of subseasonal predictions discussed here
(Koster et al., 2004). In addition to the above, there is clearly a need for additional
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dynamical predictability studies of the MJO using other GCMs as well as more
sensitivity studies to test the effects of SST coupling and ENSO state, the impacts
from/on midlatitude variability, and the influence of the size and type of initial con-
dition perturbations and definition of predictability. Finally, there has been very little
consideration of the economic benefits of intraseasonal predictions, namely where
and when such predictions would have the greatest economic benefit, at what specific
lead times, and for what sectors and industries (Richardson, this volume).
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Predictability of seasonal climate variations: a
pedagogical review

J. Shukla, J. L. Kinter III
Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

12.1 Introduction

It is well known that the day-to-day changes in the large-scale atmospheric circulation
are not predictable beyond two weeks. The small-scale rainfall patterns associated
with the large-scale circulation patterns may not be predictable beyond even a few
days. However, the space–time averages of certain atmospheric and oceanic variables
are predictable for months to seasons. This chapter gives a pedagogical review of the
ideas and the results that have led to our current understanding and the status of the
predictability of seasonal climate variations.

We first review the current status of the understanding of the limits of the pre-
dictability of weather. We adopt Lorenz’ classical definition of the predictability
of weather as the range at which the difference between forecasts from two nearly
identical initial conditions is as large in a statistical sense as the difference between
two randomly chosen atmospheric states. With this definition of predictability, it is
implied that the upper limit of predictability depends on the saturation value of the
maximum possible error, which, in turn, is determined by the climatological vari-
ance. Lorenz provided a simple conceptual model in which the upper limit of weather
prediction skill is described by three fundamental quantities: the size of the initial
error, the growth rate of the error and the saturation value of the error. This simple
model is able to explain the current status of the seasonal, regional and hemispheric
variations of numerical weather prediction (NWP) skill. For example, winter is more
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predictable than summer, and the midlatitudes are more predictable than the tropics,
simply because the saturation value of forecast error is much larger in winter and
in the midlatitudes than in the tropics. The progress of NWP skill for the medium
range over the past 25 years can be explained almost entirely by the reduction in the
forecast error at day one, which, in turn, can be explained by the reduction in the
initial error. The models and data assimilation techniques have steadily improved,
thereby decreasing the initial error by 50%, while the growth rate of initial error has
increased only modestly, resulting in steady improvement in the skill of NWP models
for days 2–10.

We then will show that, in spite of the two-week upper limit of deterministic
weather predictability, the effects of anomalous boundary conditions at the Earth’s
surface (sea surface temperature, snow, soil moisture, etc.) are sufficiently large to
produce statistically significant anomalies in the seasonal mean atmospheric circu-
lation. It is found, somewhat paradoxically, that the anomalous surface boundary
conditions are much more influential in the tropics, where the deterministic limit
of weather predictability is relatively short, than in midlatitudes, where the limit of
weather predictability is relatively long. We review some atmospheric general circu-
lation model (GCM) experiments which have helped advance our understanding of
the boundary-forced predictability.

We then address the question of the predictability of the boundary conditions them-
selves. Since anomalous boundary conditions are produced by interactions between
the ocean, atmosphere and land-surface processes, we review the status of the pre-
dictability of seasonal mean climate anomalies using coupled ocean–atmosphere–
land models. We also address the question of seasonal predictability in a changing
climate.

12.2 Predictability of weather

In a series of three papers that appeared in the late 1960s, E. Lorenz laid the theoretical
groundwork for weather predictability that has been used in the subsequent decades
to great advantage. In a comprehensive study of the predictability of the 28-variable
model (Lorenz, 1965), in which for the first time he calculated the singular vectors, he
showed that error growth is a strong function of the structure of the initial atmospheric
flow and he estimated the doubling time of synoptic-scale errors to be a few days.
He then employed a turbulence model (Lorenz, 1969a), assuming a −5/3 power
law for the energy density spectrum, to compute the error saturation time, defined
as the time at which the error energy at a given wave number becomes equal to
the energy at that wave number prescribed in the initial conditions. He showed
that scale interactions cause the error in the smallest scales to saturate the fastest,
producing errors at synoptic scales within a few days after the initial time. Lorenz also
devised a method for estimating the predictability of the atmosphere by searching for
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analogues or states that are sufficiently close in some phase space to permit using the
evolution of the distance between the analogous states as a proxy for error growth
in the classical predictability sense (Lorenz, 1969b). He found that the observational
record available at that time was insufficient to find analogues that could be used
in this way; nevertheless, he assumed a quadratic model for the error growth to
estimate that the doubling time of small errors would be 2.5 days. These studies, along
with several others that examined the characteristics of turbulent flows (Leith, 1971;
Leith and Kraichnan, 1972) and later attempts to refine the predictability estimates
with analogues (Gutzler and Shukla, 1984) and atmospheric GCMs (Smagorinsky,
1963; Charney et al., 1966; Williamson and Kasahara, 1971; Lorenz, 1982; Simmons
et al., 1995; see Shukla, 1985 for a review) have shown that the predictability of
weather is characterised completely by the growth rate and saturation value of small
errors. While early atmospheric GCM estimates of error doubling time were relatively
different (e.g. Charney, 1966), the diverse techniques to estimate the doubling time
have converged to become remarkably consistent, all around two days. The most
recent estimate available from ECMWF is 1.5 days (Simmons and Hollingsworth,
2002).

The ECMWF has shown recently that, as suggested by Lorenz (1982), the reduc-
tion in the error at day 1 has led to improvements in skill after 10 days. The expec-
tation that the reduction in error might be overwhelmed by the increase in growth
rate (smaller errors grow faster in the Lorenz model) has not occurred. A combina-
tion of improvements in the atmospheric GCM and better assimilation of available
observations has led to a sustained reduction in error through at least day 7 of the
forecast.

12.3 Predictability of seasonal averages – from weather
prediction to seasonal prediction

One implication of the fact that the predictability of weather is a function of the error
growth rate and saturation value is that predictability is quite different in the tropics
and the extratropics. In the tropics, the variance of daily fluctuations, and hence
the saturation value of errors, is much smaller than it is in the extratropics (Shukla,
1981a). Similarly, the error growth rate in the tropics, dominated as it is by instabilities
associated with convection, is larger than in the extratropics where the error growth is
primarily associated with baroclinic instability. Based on these considerations, Shukla
(1981a) showed that the upper limit of deterministic predictability in the tropics is
shorter than in the extratropics. By contrast, the short-term climate fluctuations in the
tropics are dominated by the slowly varying boundary conditions, as will be described
below, so, ironically, the seasonal means in the tropics are more predictable than the
extratropics, in contrast to the situation for weather predictability.

Predictability also varies with spatial scale of motion. Several studies (Smagorin-
sky, 1969; Shukla, 1981b) have shown that the long waves are more predictable than
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the short waves in the extratropics. This is primarily due to the larger saturation value
of error for the long waves, which in general have larger amplitude than the short
waves. This is also consistent with the long-standing view of synoptic forecasters
who have relied on systematic progressions of large-scale patterns in the atmosphere,
variously called Grosswetterlagen, weather regimes, or centres of action (Hess and
Brezowsky, 1969; Namias, 1986; Barnston and Livezey, 1987).

The main determinant of seasonal atmospheric predictability is the slowly vary-
ing boundary conditions at the Earth’s surface (Charney and Shukla, 1977; Lorenz,
1979; Shukla, 1981b). It is well known that the lower boundary conditions of the
Earth’s atmosphere vary more slowly than the day-to-day variations of the weather
and that, insofar as the boundary conditions can influence the large-scale atmo-
spheric circulation, the time and space averages of the atmosphere are predictable
at timescales beyond the upper limit of instantaneous predictability of weather. The
surface boundary conditions include the sea surface temperature (SST), which gov-
erns the convergence of moisture flux as well as the sensible and latent heat fluxes
between the ocean and atmosphere; the soil moisture, which alters the heat capacity
of the land surface and governs the latent heat flux between continents and the atmo-
sphere; vegetation, which regulates surface temperature as well as the latent heat
flux to the atmosphere from land surfaces; snow, which participates in the surface
radiative balance through its effect on surface albedo and in the latent heat flux,
introducing a lag due to the storage of water in solid form in winter which is melted
or evaporated in the spring and changes the soil wetness; and sea ice, which likewise
participates in the energy balance and inhibits latent heat flux from the ocean. In
each of these boundary conditions, anomalies can influence the surface fluxes and
low-level atmospheric convergence through changes in the horizontal temperature
and pressure gradients, at times leading to three-dimensional atmospheric heating
anomalies, which in turn affect the entire atmospheric circulation.

12.3.1 Oceanic influences

Over the past 20 years, literally hundreds of numerical experiments have been con-
ducted to test the hypothesis that the lower boundary conditions affect the seasonal
circulation. Sensitivity studies have examined the effects of SST and sea ice anoma-
lies in the tropical Pacific (e.g. Shukla and Wallace, 1983; Fennessy et al., 1985),
the tropical Atlantic (e.g. Moura and Shukla, 1981), the Arabian Sea (Shukla, 1975;
Shukla and Misra, 1977), the north Pacific Ocean (Namias, 1969; Alexander and
Deser, 1995), the north Atlantic Ocean (Palmer and Sun, 1985; Bhatt et al., 1998),
global SST anomalies (e.g. Miyakoda et al., 1983; Kinter et al., 1988; Shukla and
Fennessy, 1988; Shukla et al., 2000a, 2000b), sea ice (e.g. Randall et al., 1998), moun-
tains (Hahn and Manabe, 1975; Wallace et al., 1983), deforestation (e.g. Nobre et al.,
1991), surface albedo anomalies associated with desertification (Charney, 1975; Xue
and Shukla, 1993; Dirmeyer and Shukla, 1996), surface roughness anomalies (Sud
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Figure 12.1 Effects of SST anomalies on tropical precipitation and extratropical
atmospheric circulation. (a) and (b) show precipitation area-averaged over
(160◦ E–160◦ W, 5◦ S–5◦ N), for the boreal winter season. (c) and (d) show the
difference between two area-averages of the extratropical 500 hPa geopotential
height: (120◦ W–110◦ W, 50◦ N–60◦ N) minus (170◦ W–160◦ W, 40◦ N–50◦ N).
Anomalously warm tropical Pacific SST years are shown as a solid curve (1982–83
in a and c and 1986–87 in b and d), and anomalously cold tropical Pacific SST years
are shown as dashed curves (1988–89 in a and c and 1984–85 b and d). The thick
horizontal lines are the seasonal averages of the two time series.

et al., 1988), soil wetness anomalies (e.g. Dirmeyer and Shukla, 1993; Fennessy and
Shukla, 1999), vegetation (Dickinson, 1984; Sellers et al., 1986), and snow cover
(e.g. Hahn and Shukla, 1976; Barnett et al., 1988; Cohen and Rind, 1991; Bamzai
and Marx, 2000). The result of all these experiments is that, under favourable con-
ditions of the large-scale flow, and for certain structure, magnitude and location of
the boundary anomalies, there is substantial evidence that the seasonal variations of
the tropical climate are predictable and there is some possibility of predicting the
extratropical climate as well (Palmer and Shukla, 2000).

The dependence of the predictability of the climate on location and season is illus-
trated in Figures 12.1–12.3. Parts (a) and (b) of Figure 12.1 show an index of tropical
climate variability for the boreal winter season. Two years, shown as a solid curve,
have boundary forcing, i.e. SST in the tropical Pacific, that is significantly warmer
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Figure 12.1 (cont.)

than usual. Two other years, shown as a dotted curve, have tropical Pacific SST that
is significantly cooler than usual. In Figure 12.1 (c, d), an index of extratropical
climate variability in boreal winter is shown for the same years. In the extratropical
winter, the seasonal means of the two years are separated by a statistically significant
amount that is comparable to the magnitude of the intraseasonal variation. In the
tropics, the seasonal means are separated by a statistically significant amount that is
much larger than the magnitude of intraseasonal variations. The variance of a typical
quantity like sea-level pressure in the extratropical winter is larger than in the tropics.
The boundary-forced seasonal mean differences in the tropics are relatively large. As
shown schematically in Figure 12.2, the typical spread of forecasts initialised with
slightly perturbed initial conditions becomes saturated at about five days or less in
the tropics (dashed line) and about 10 days in the extratropics. Figure 12.3 illustrates
the large difference in day-to-day variability between the tropics (typical values of 4
m/s) and the extratropics (typical values of 10 m/s).

An anomaly in the boundary conditions can affect the seasonal mean, large-scale
atmospheric circulation through a relatively complex pathway, which is illustrated
schematically in Figure 12.4. An SST anomaly, for example, locally alters the sensible
and latent heat fluxes from ocean to atmosphere, thereby changing the temperature
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Figure 12.2 Schematic diagram illustrating the error growth in the tropics (dashed)
and the extratropics (solid). Both thick lines depict the rates at which initially
different states reach the boundary-forced state. The thin lines show typical spread of
forecasts initialised with slightly perturbed initial conditions on day 0.

Figure 12.3 Standard deviation of daily values of 500 hPa zonal wind, computed
with respect to individual monthly means for December, January and February,
averaged over 1970–1999 (m/s).
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Figure 12.4 Schematic diagram of the effects of boundary condition anomalies on
large-scale atmospheric heating and large-scale atmospheric circulation. See text for
explanation.

and humidity in the atmosphere nearest the surface. Depending on the scale and
magnitude of the SST anomaly, such changes can be relatively unimportant for the
seasonal mean, or they can alter the static stability and moisture flux convergence
available for convection, which can lead to an atmospheric heating anomaly over
the course of 5–7 days. The nature of the heating anomaly associated with a given
SST anomaly also depends on the magnitude and structure of the background SST
on which it is superimposed. For example, a large warm SST anomaly that is super-
imposed on a very cold background ocean temperature will have little effect and
likely will not lead to a large-scale atmospheric heating anomaly. The development
of an atmospheric heating anomaly also depends on the structure of the large-scale
atmospheric circulation overlying the SST anomaly as well as the degree to which the
convergence and divergence of the atmospheric circulation are affected. A given SST
anomaly may significantly alter the surface temperature gradient and, consequently,
the surface pressure gradient, which then changes the low-level atmospheric con-
vergence. The latter depends on the latitude of the anomaly, because the further the
location is from the equator the less significant the divergent circulation associated
with the pressure gradient anomalies is with respect to the rotational component of
the flow. Changes in the divergent flow directly affect the moisture flux convergence
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(especially in the tropics), which is important in driving convection, thereby altering
the deep heating of the atmosphere through latent heat release. Under the right condi-
tions, a positive feedback loop involving boundary layer moisture flux convergence,
precipitation and deep tropospheric heating, can significantly alter the large-scale
atmospheric circulation.

Once a three-dimensional atmospheric heating anomaly has developed, it can
influence the large-scale atmospheric circulation over the course of 10 to 30 days.
Again, this is dependent on the size, magnitude and structure of the heating anomaly
as well as several other factors. For example, if the heating anomaly is located in
the tropics, its effect on the circulation depends on its position relative to the rising
and descending branches of the Hadley and Walker circulations. Associated with the
large land masses and the air–sea contrast in the tropics, the seasonal monsoon is
the largest feature of the large-scale circulation, so the location of a heating anomaly
with respect to the centres of the monsoon circulations is also an important factor.
In the extratropics, matters are more complex, because there is a non-linear dynamic
interaction between the zonal mean flow, the quasi-stationary eddies and the transient
eddies. Similar heating anomalies located on different sides of a jet or at different
phases of a stationary wave will have dramatically different effects, either through
the forcing of transient waves or through an alteration of the mean flow by means
of instability or wave–mean flow interaction. The effects of a given heating anomaly
may be non-local as well. For example, a heating anomaly in the tropics may lead to
a change in the Hadley circulation, which can thereby alter the zonal mean flow in
the subtropics or mid-latitudes and change the orographically forced response. That
change in the mean circulation can also, in turn, lead to an altered index of refraction
for dispersive planetary waves. Through resonance, the forced waves might feed
back on the tropical circulation and change the heating anomaly itself. There is also
a possibility of teleconnections through propagation and dispersion of Rossby waves
or through normal mode-type responses to forcing.

The role of boundary conditions in enhancing the predictability of time averages
was demonstrated by Shukla (1998) through a set of numerical experiments with
the COLA atmospheric GCM. Two sets of five-member ensemble simulations were
conducted with very different initial conditions but identical observed SST specified
as lower boundary conditions. The initial conditions were for December 1982 and
December 1988, which corresponded to La Niña and El Niño years, and therefore
had very different tropical atmospheric states. It was found that, in spite of very large
differences in the initial conditions but the same (observed) SST for 1982–3, the sim-
ulated tropical winter mean precipitation pattern was nearly identical and had great
similarity to the observed precipitation anomaly. Likewise, for the winter of 1988–9,
the two simulations with very different initial states were also nearly identical, and
were very similar to the observed precipitation anomaly for that year. An examination
of the day-by-day simulation of tropical Pacific rainfall and circulation showed that
the simulations with two very different initial conditions began to converge under the
influence of the boundary conditions, and they became statistically indistinguishable
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within 7–10 days. This experiment confirmed what had been suspected for quite some
time, namely that some parts of the tropics are so strongly forced by the underlying
SST anomaly that even a very large perturbation in the initial conditions does not
change the simulation of the seasonal mean rainfall.

In the same experiments, it was also found that even the extratropical seasonal
mean circulation anomalies, especially over the Pacific–North American region, were
largely determined by the SST anomalies. For example, the 500 hPa seasonal mean
height anomalies for two very different initial conditions were nearly identical for a
given SST anomaly. This suggests that the high predictability of the tropical atmo-
sphere can also enhance the predictability of the extratropical atmosphere if the SST
boundary forcing is quite strong. There has been some debate among the researchers
whether boundary forcing merely changes the frequency of midlatitude modes of
variability, or whether the boundary-forced variability is distinctly different from the
unforced variability (Straus and Shukla, 2000).

One dramatic example of the fact, that, in spite of the high degree of variability in
the extratropical atmosphere, tropical forcing can produce predictable effects in the
extratropics, is shown in Figure 12.5 (colour plate). The bottom panel of the figure
shows the difference in the boreal winter 500 hPa geopotential height field between
large positive tropical Pacific SST anomaly (El Niño) years (1983, 1987 and 1992) and
large negative (La Niña) years (1985 and 1989). The top panel shows an ensemble-
mean simulation of the same field produced by an atmospheric GCM forced by the
observed SST in those years. The ensemble average of several runs started from
slightly different initial states was computed to filter the unpredictable component
of the simulations. There is an uncanny match in both phase and amplitude of the
simulated difference to the observed difference (anomaly correlation coefficient =
0.98 for the spatial domain shown in the figure).

This result has been reproduced by several atmospheric GCMs. Figure 12.6 shows
the anomaly correlation coefficient for each of three different models (COLA, NSIPP
and NCEP atmospheric GCMs) in each of 18 years. The years have been reordered
in ascending absolute values of the corresponding NINO3 index, an indicator of the
amplitude of the tropical Pacific SST anomaly, to show that the predictability of
the extratropical Pacific–North American regional height anomalies depends on the
magnitude of the forcing. A systematic evaluation of the possibility of dynamical
seasonal prediction has been made (Shukla et al., 2000a, 2000b)

It is by no means a given, however, that seasonal predictions, even in the pres-
ence of relatively strong SST anomalies in the tropical Pacific, will be highly
skilful for all quantities and in all cases. As an example, a pair of seasonal
hindcasts, produced using one of the models whose skill scores are shown in
Figure 12.6, is shown in Figure 12.7 for two La Niña cases, 1989 and 1999.
In both cases, the tropical Pacific SST forcing is fairly strong. The surface
air temperature anomaly hindcast is quite good, both in terms of geographi-
cal distribution and amplitude, for the 1989 case, but only somewhat resem-
bles the observed in the 1999 case. This is indicative of some of the difficulties



Figure 12.5 (See also colour plate section.) Composite, ensemble-mean AGCM
simulation of January–February–March seasonal mean difference of 500 hPa
geopotential height. Average of three years with warm SST anomalies in the eastern
tropical Pacific (1983, 1987 and 1992) minus average of two years with cold SST
anomalies (1985 and 1989). The ensemble of 10 model simulations were made with
observed SST specified as lower boundary conditions and slightly different initial
conditions in each ensemble member. The model used is the COLA atmospheric
GCM.



318 J. Shukla and J. L. Kinter III

Figure 12.6 Each thin vertical bar shows the pattern correlation of the ensemble-
mean seasonal mean 200-hPa height of an atmospheric GCM with the observed
seasonal mean over North America 15◦–70◦ N and 180◦–60◦ W. The pattern
correlation is computed separately for each year and for each GCM; the bars show
the results for the COLA, NSIPP, and NCEP GCMs from left to right. The years are
ordered by the absolute value of the NINO-3 index, increasing to the right and shown
by the thick vertical bars. Bold and light numbers indicate warm and cold years
respectively. Results (top) for boreal autumn (Sep–Nov), (middle) for boreal winter
(Jan–Mar), and (bottom) for boreal spring (Mar–May).
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Figure 12.7 The seasonal mean surface air temperature anomaly for January–March
1989 (top row) and January–March 1999 (bottom row) from the observed (left
column) and from a simulation in which the observed SST and sea ice were specified
as the lower boundary conditions of an atmospheric GCM.

of translating the advances in understanding predictability into real improvements in
seasonal prediction.

Likewise there is an asymmetry between warm and cold ENSO events in the
extratropical variability associated with each. In particular, the warm and cold events
influence the internal variability in the Pacific–North America region. Figure 12.8,
comparing the ratio of interensemble variance computed for three different atmo-
spheric GCMs, shows that all the models have more variability in cold events than
in warm events, and, for some parts of the region (near the Aleutian Islands, over the
west coast and south-eastern USA), the cold event variance exceeds the warm event
variance by a factor of two or more.

12.3.2 Land influences

The physical processes at the land surface have effects on the climate, including the
components of the hydrologic cycle and the atmospheric circulation, on a wide range
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Figure 12.8 Ratio of the January–March mean intraensemble variance of �200
between cases with cold tropical Pacific SST (1985 and 1989) and cases with warm
tropical Pacific SST (1983, 1987, 1992, and 1995).
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Figure 12.9 Schematic diagram showing the cycle of interactions between the land
surface and the climate. Beginning with the oval at the left, a change in the land
surface state (soil wetness, vegetation or snow) leads to a change in the fluxes of
water, heat and radiation between the land surface and the atmosphere (oval at top).
These changes can, in turn, lead to changes in the humidity and temperature of the air
near the surface, as well as changes in the wind due to changes in the gradients of
surface temperature or pressure (oval at right). The changes occurring near the
surface can produce changes throughout the atmospheric column that occur in solar
radiative flux (cloudiness), precipitation, air temperature and winds (oval at bottom).
These changes can then affect the land surface state, completing the feedback loop.

of temporal and spatial scales (e.g. Dirmeyer and Shukla, 1993). The properties of
the land surface, such as soil wetness, snow cover, and vegetation, affect both the
evolution and predictability of climate (Dickinson, 1984). For example, soil moisture
determines the rate of evapotranspiration as well as the partitioning of incoming
radiation into sensible and latent heat flux. Likewise, the spatial distribution and
temporal variability of vegetation, soil wetness and snow are determined by climatic
conditions, so that a complete cycle of feedbacks is in operation (Figure 12.9).

The majority of modelling experiments so far have focused on the effect of land
surface properties on climate predictability, beginning with the early atmospheric
GCM study of Shukla and Mintz (1982) in which simulations were made with the
model’s land surface constrained to produce no evapotranspiration (desiccated case)
or for the evapotranspiration to take place at the potential rate (saturated case), over
the whole globe. They found that, in the desiccated case, there is almost no rainfall
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over the extratropical continents in boreal summer, and an increase in the rainfall
over South-east Asia and India due to the large moisture flux convergence from the
oceans. They interpreted their results to indicate that dry soil at the beginning of the
summer would lead to anomalously low rainfall in the extratropical summer season.

The ‘memory’ effect of soil wetness is frequently invoked as the underlying mech-
anism for its role in predictability. Delworth and Manabe (1988, 1989), using an
atmospheric GCM with a simple ‘bucket’ model of soil moisture, showed that soil
wetness ‘reddens’ the spectrum of climate variability. More sophisticated models
incorporating a model of the biosphere (Sellers et al., 1986; Sato et al., 1989) were
used to show that soil wetness anomalies can persist much longer than previously
thought, and that the climate is quite sensitive to variations in soil wetness.

Atlas et al. (1993) and Fennessy and Shukla (1999) showed that the initial soil
wetness anomalies present in extreme drought (e.g. 1988) or flood (e.g. 1993) sum-
mers in North America contribute to the subsequent summer rainfall with persistent
soil wetness anomalies, dry (wet) rainfall anomalies and warm (cold) surface temper-
ature occurring with dry (wet) soil wetness anomalies. For example, Figures 12.10
and 12.11 (taken from Fennessy and Shukla, 1999) show that an initial soil wetness
anomaly on 1 June (Figure 12.10) can persist for up to a season, in some regions,
and have a significant impact on the evaporation (Figure 12.11) and surface air tem-
perature (not shown). They also found that the strength and nature of the impact
of initial soil wetness anomalies on precipitation and surface temperature depend
on several factors, including the extent and magnitude of the initial soil wetness
anomaly, the strength of the solar forcing, the proximity to moisture sources, and
the strength of the regional atmospheric circulation. They interpreted their results
to suggest that seasonal atmospheric predictability could be increased by realistic
initial soil wetness.

It has recently been shown that the sensitivity of precipitation to soil wetness is
regionally localised. Koster et al. (2004) used 10 different land surface models in the
Global Land–Atmosphere Coupling Experiment (GLACE) to show that the coupling
strength between the atmosphere and the land surface is a strong function of location.
Koster et al. (2004) identified the areas where this coupling is strong, and therefore
has a strong bearing on the variability of precipitation, during boreal summer. The
places where the coupling is strong, referred to as ‘hot spots’, are primarily transition
zones between dry and wet climatic zones where the evaporation is large and sensitive
to soil moisture and where the boundary layer moisture can trigger convection in the
atmosphere.

12.3.3 Ocean–atmosphere–land influences (monsoon
predictability)

The monsoon circulation is a dramatic example of the combined ocean, land and
atmospheric effects; therefore, an estimate of the limit of monsoon predictability
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Figure 12.11 Area-averaged daily time series of evaporation for nine study regions
shown in Figure 12.10(b) for control ensemble (solid) and observed initial soil
wetness ensemble (dotted). Units are mm per day.

requires a clear understanding of the atmosphere–land interaction, atmosphere–ocean
interaction, and the internal dynamics of the atmosphere alone. It was suggested by
Charney and Shukla (1977) and later shown by Charney and Shukla (1981) that the
large-scale, seasonal mean monsoon rainfall over India is largely determined by the
boundary conditions over land and ocean. This was based on the observed relationship
between Eurasian snow cover and monsoon rainfall (Blanford, 1884) and tropical
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ocean temperature and Indian monsoon rainfall (Sikka, 1980; Rasmusson and Car-
penter, 1983). However, it is well known that there is a large intraseasonal variability
of the regional rainfall in the monsoon region during the monsoon season. Therefore,
in a simple conceptual model, the seasonal mean monsoon rainfall over any small
region can be considered to consist of two components: one large-scale seasonally
persistent component and one relatively small-scale intraseasonal component (Krish-
namurthy and Shukla, 2001). The large-scale seasonally persistent component can
be attributed to ocean and/or land surface effects and the intraseasonal component to
the internal dynamics of the atmosphere. The predictability of the seasonal mean for
any given season depends on the relative magnitude of the two components. Even in
the presence of large boundary forcing (namely SST anomalies in 1997), if the large-
scale effect is small and the intraseasonal variations are large, the seasonal mean will
not be predictable. To the extent that the seasonal mean anomalies are determined
by the sampling of intraseasonal variations of rainfall, and if the intraseasonal varia-
tions were independent of the boundary forcing, the seasonal mean anomalies would
not be predictable. It has also not been possible either to make dynamical predic-
tions of seasonal mean rainfall or even to make reliable estimates of the monsoon
rainfall, because of various limitations in models and modelling strategies. For exam-
ple, models of the monsoon circulation and rainfall have large systematic errors in
the mean and variance. The current atmospheric GCM experiments in which models
are forced by prescribed SST are inadequate to capture the coupled ocean–atmosphere
variability, and the current models do not have adequate treatment of land surface
processes. The models are also not able to simulate the intraseasonal variability over
the monsoon region.

An estimate of monsoon predictability using coupled ocean–atmosphere models
is even more problematic, because the coupled models have even larger systematic
errors in simulating the mean climate and its variability. If the coupled model cannot
capture the march of the annual cycle in SST in the Indian Ocean and the surrounding
areas, it is nearly impossible to get a reasonable simulation of monsoon circulation.

12.4 Predictability of coupled system

In the previous section, we described the predictability of the tropical atmosphere
with prescribed SST. In similar experiments with an ocean model (B. Huang, per-
sonal communication), it was shown that the tropical upper ocean circulation and
temperature are largely determined by the overlying atmospheric forcing. When an
ocean model with completely different initial conditions (for 1982 and 1988) was
forced by the atmospheric fluxes of 1982–3, the resulting tropical SST anomalies
were indistinguishable from each other after 3–4 months. These experiments suggest
that the tropical atmosphere is highly predictable for prescribed SST and the tropical
ocean is highly predictable for prescribed atmospheric fluxes. However, these results
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Figure 12.12 COLA anomaly coupled GCM NINO-3.4 forecast root mean squared
error as a function of lead time. The forecast error is calculated based on 480 six
member ensemble hindcasts initialised each January, April, July and October from
1981 to 2000 (see Kirtman, 2003, for details). The idealised NINO-3.4 root-mean-
squared error growth is based on a multi-century simulation of the COLA anomaly
coupled GCM (see Kirtman et al., 2002) using an analogue approach to estimate the
growth of initial errors.

do not necessarily imply that the coupled system is also as highly predictable as the
individual components of the atmosphere and ocean. To estimate the predictability
of the coupled ocean–atmosphere system is one of the major current challenges of
climate research.

An estimate of the growth of initial error in the Zebiak–Cane coupled ocean–
atmosphere model (Zebiak and Cane, 1987) was made by Goswami and Shukla
(1991), and it was found that the coupled system is characterised by two timescales.
One had an initial error doubling time of four months and the other had a doubling time
of 15 months. In a more recent calculation, B. P. Kirtman (personal communication;
Figure 12.12), using a global anomaly coupled ocean–atmosphere model, found that
an initial error of about 0.2 K in the NINO-3.4 index of tropical Pacific SST takes
about five months to double. Comparing the evolution of the forecast model’s error
with the growth of idealised initial errors in an ‘identical twin’ experiment, it was
found that the forecast model reaches the same level of error in five months that is
only reached after 10 months of idealised error growth. This suggests that there is
substantial room for improving the prediction of tropical SST in a coupled model.
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We do not yet have a clear understanding of mechanisms that determine the
amplitude and the life cycle of ENSO. For example, we do not know whether ENSO
should be considered to be a manifestation of an unstable oscillator, or whether it
should be considered a stochastically forced damped linear system. The observations
for the past 50 years can support both theories. We also do not understand the role of
weather noise in the initiation and growth of ENSO events. A better understanding
of ENSO dynamics, and improved methods of initialising models of the coupled
ocean–atmosphere system for ENSO prediction are required before we can make
reliable estimates of the predictability of ENSO.

12.4.1 Case study

A low-resolution coupled ocean–atmosphere model, a moderate-resolution atmo-
spheric GCM and a high-resolution nested regional climate model were used to
produce six-month lead forecasts for the boreal winter of 1997–8. The procedure for
producing forecasts of the tropical SST anomaly, the global atmospheric circulation
and precipitation and the regional climate anomalies over North America is shown
schematically in Figure 12.13. It should be noted that this experimental strategy was
devised only to overcome the problem of insufficient computer time to integrate
high-resolution global coupled models. Briefly, the tropical Pacific SST pattern was
predicted for up to 18 months in advance using the coupled ocean–atmosphere model
with available input data at the time of the forecast (Kirtman et al., 1997). Multiple
realisations of the coupled model forecast were averaged to produce an ensemble-
mean SST forecast that was then statistically extended to predict the global SST
anomaly. The latter was added to an observed climatology for global SST and used
as a lower boundary condition for an ensemble of integrations of the global atmo-
spheric GCM. Each of the global model integrations was used to provide the lateral
boundary conditions for a companion integration of a regional climate model. The
ensembles of global and regional model predictions were made at least six months
prior to the verification time of the forecasts.

12.4.2 The tropical Pacific SST forecast

The SST forecast produced by the anomaly coupled model and subsequent statistical
projections called for a continuation of the unprecedented, anomalously warm surface
temperature in the tropical eastern and central Pacific through boreal summer of 1998
with a peak amplitude in about December 1997 and January 1998, and diminishing
thereafter. The predicted warmer than normal water in the Pacific was located east
of the dateline along the equator and extended about 5–10◦ north and south of the
equator. The peak SST value forecast by this model was about 3 ◦C above normal.

Up to the time that the forecast was made, during the ENSO warm event (through
September 1997), the model had been quite accurate in predicting the onset and
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Figure 12.13 Schematic diagram showing the multitiered prediction system. At
upper left is the global coupled ocean–atmosphere–land model run at low resolution
to generate an ensemble of predicted SST, snow and other boundary conditions (BC)
at the surface. These are then used as boundary conditions for both a global atmos-
pheric model run at medium resolution, used to generate an ensemble of predictions
of the large-scale circulation in the atmosphere, and a regional climate model run at
high resolution to generate an ensemble of predictions of regional variations in
surface temperature and precipitation. The large-scale circulation predicted by the
medium resolution global atmospheric model is also used as a lateral boundary
condition in the regional climate model.

rapid increase of the SST anomaly, although its prediction of the magnitude of the
maximum anomaly was substantially smaller than observed. The JFM98 forecast
made six months in advance was quite accurate in terms of amplitude, phase relative
to the annual cycle and spatial pattern. The predicted maximum anomaly was west
of the observed maximum and fell short of the observed amplitude by about 1 ◦C.
Compared with similar predictions and simulations made prior to this one, the forecast
was considered to be quite accurate and generally deemed successful.

12.4.3 The atmospheric circulation in the winter
hemisphere

The model-based SST forecast was applied as a lower boundary condition to the
COLA atmospheric GCM to produce an ensemble of nine forecasts. The ensemble
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members were generated by initialising the model with slightly different initial con-
ditions to provide some measure of the uncertainty of the forecast. The COLA
model ensemble mean forecast was quite skilful, comparable to the result shown in
Figure 12.5.

12.4.4 Precipitation over North America

Typically, predictions of precipitation are less reliable than temperature forecasts
due to the fact that precipitation is more variable, has a smaller spatial correlation
scale and is non-normally distributed. Nevertheless, the large-scale characteristics
of precipitation anomalies are known to be correlated with those of other fields and
some information may be obtained from predictions of seasonal mean precipitation.
The seasonal mean precipitation anomaly for January through March 1998 is shown
in Figure 12.14: the prediction made by the global model is in the top panel, the
observations (Xie and Arkin, 1996) are in the middle panel, and the prediction made
using the nested Eta80 model is in the bottom panel. The main features of the predicted
anomaly pattern are a swath of positive anomalies to the south and a band of negative
anomalies to the north. The positive anomalies (more than 0.5 mm per day or 50 mm
for the entire season above normal) extend from the Pacific north-west states of the
USA, through California and the south-west USA into Mexico, and along the Gulf
of Mexico into the south-east USA. The band of negative departures from normal
extends from the Pacific coast of Canada through the northern plains and Great Lakes
states of the USA into the maritime provinces of Canada.

This relatively limited case study shows that by employing an ensemble of models
it is possible to make useful predictions of the evolution of the large SST anomalies
that can have a large effect on the tropical and extratropical climate up to seasons
in advance. Furthermore, these SST predictions can be used in a tier-2 system (e.g.
Mason et al., 1999; Goddard et al., 2003) to force a reasonably good atmospheric
GCM to produce predictions of the large-scale atmospheric circulation. A nested
regional climate model can then be used to resolve important details of the topography
and the solution itself to further constrain the forecast precipitation field and make
useful six-month lead predictions of regional seasonal mean precipitation anomalies.

12.5 Predictability of seasonal variations in a
changing climate

The observed current climate changes are a combination of anthropogenic influences
and the natural variability. In addition to possible anthropogenic influence on climate
due to changing the atmospheric composition, it is quite likely that land use in the
tropics will undergo extensive changes, which will lead to significant changes in the
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Figure 12.14 Seasonal mean precipitation anomaly over North America for
January–March 1998 case. (Top) COLA atmospheric GCM ensemble mean.
(Middle) Observed. (Bottom) Eta80 nested in COLA atmospheric GCM.
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biophysical properties of the land surface. There is a scientific basis and a plausible
mechanism for the contention that these land use changes could have significant
remote influences on the climate system, and in the case of Amazon land use change,
on ENSO variability in particular (Hu et al., 2004). The dominant effects of changes
in the land surface appear to be due to changes in the albedo and soil wetness.

The role of SST variability on the atmosphere and land in the last century, including
problems such as the variability and predictability of ENSO and the ENSO/monsoon
relationship have been investigated in the Climate of the 20th Century (C20C; Folland
et al., 2002) project using SST specified from analysis of existing data. It has been
shown, for example, that the general increase in SST in the eastern tropical Indian and
Pacific Oceans has led to an increase in the predictability of seasonal variations (I.-S.
Kang, personal communication). This can be projected in future climate scenarios
using variants of the C20C approach, in which the SST is specified from coupled GCM
climate change projections. This ‘two-tier’ approach can illuminate the atmospheric
and land surface response to the SST variability. However, it is of limited value in
helping to understand the changes in the SST variability itself. A coupled approach
is needed for this part of the problem.

12.6 Factors limiting seasonal predictability

Estimates of seasonal predictability are model dependent. For example, the estimates
of seasonal predictability have changed considerably as the models have evolved. In
Figure 12.15, the response to ENSO forcing simulated by various versions of an
atmospheric GCM, as it evolved over a 20-year period, is shown. It is clear that
the fidelity of the simulation, and consequently the estimate of predictability, has
changed markedly over the two decades of model development. Even at this late
stage of model development, model differences give rise to very large differences
in estimates of predictability. Figure 12.16 shows the probability distributions of
geopotential height variance explained by tropical Pacific SST in the Pacific–North
America region produced by six different atmospheric GCMs, based on ensembles of
simulations. Current state-of-the-art models may underestimate or overestimate the
variance explained by as much as a factor of two, and there is even some variation in
the spread of the models’ distributions of this quantity. This is a direct consequence of
the uncertainty in the models’ parametrisations of subgrid-scale processes, especially
convection. As shown in Figure 12.17, the six models used to produce Figure 12.16
have significantly different rainfall variance in the tropical Pacific, where the atmo-
spheric response to SST anomalies is most sensitive. The range of rainfall variance
among the models is up to a factor of 8.

Another major factor limiting progress in understanding seasonal predictability
is the limited size of ensembles employed. The problem of seasonal prediction is a
probabilistic one, and the simple way in which this is addressed in current prediction
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Figure 12.15 Some simulations of the difference in Jan–Feb–March mean 500 hPa
geopotential height for 1983 (a year with warm SST anomalies in the eastern tropical
Pacific) minus 1989 (a year with cold SST anomalies in the eastern tropical Pacific).
The simulations are done with various versions of the same atmospheric GCM. (Left)
Atmospheric GCM simulations with the Kuo parametrisation of cumulus convection:
top, R40 horizontal resolution; middle, T30 horizontal resolution; bottom, R15
horizontal resolution. (Upper right) Atmospheric GCM simulation with RAS
parametrisation of cumulus convection and R40 horizontal resolution. (Lower right)
Observed difference computed using NCEP/NCAR reanalysis fields.

systems is to build ensembles of model integrations that are intended to sample the
uncertainty in the initial conditions. It has been shown that fairly large ensembles
are needed for cases with weak or moderate tropical forcing (Straus and Molteni,
2004). It has also been shown that the use of multiple models in an ensemble is more
effective than using multiple realisations with a single model (Palmer et al., 2004;
T. Palmer, personal communication). The latter finding is probably because multiple
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Figure 12.16 Probability distributions of (area-averaged) temporal variance of
winter mean 500 hPa height explained by an observed tropical Pacific SST time
series from 100 ‘samples’ of seasonal simulations with various atmospheric GCMs.
The SST time series is obtained from the leading mode of a singular value
decomposition of observed tropical Pacific SST with 500 hPa height over the
Pacific–North America region obtained from the NCEP reanalysis for the winters
January–March 1968–97. Each GCM sample was formed from an ensemble of
winter simulations for the winters of 1983–93 by picking one member of the
ensemble at random for each year. The temporal variance explained by the SST time
series was averaged over the Pacific–North America region (180o–60o W).

models sample the uncertainty in the physical parametrisations, and due to a non-
linear interaction between the individual models’ systematic error and the predictable
signal. The requirement for large ensembles with multiple climate models has only
been lightly explored, primarily due to limited computational resources.

A third barrier to progress is the difficulty with initialising coupled ocean–
atmosphere–land models. Atmospheric data assimilation has reached a mature stage
that is demonstrably extracting a large fraction of the usable information from the
available observations (Simmons and Hollingsworth, 2002). Similarly, ocean data
assimilation has made great strides in the recent decade, and new ocean observing
systems hold the promise of providing a more complete representation of the ocean
state, at least for the upper 500 m (Derber and Rosati, 1989; Ji et al., 1995). The
assimilation of land surface observations has only recently been attempted globally
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(Dirmeyer, 2000), so we have only a limited understanding of how well we are ini-
tialising land surface conditions. Furthermore, the systematic errors in the seasonal
prediction models make the evolution of soil moisture from its initial state problem-
atic. Most importantly, the climate system is known to have modes of variability that
depend on the couplings between ocean and atmosphere and land and atmosphere,
but these modes are not necessarily being initialised in the process of initialising the
components of the coupled model.

12.7 Summary and prospects for the future

Improvements in dynamical weather prediction over the past 30 years did not occur
because of any major scientific breakthroughs in our understanding of the physics or
dynamics of the atmosphere. Dynamical weather prediction is challenging: progress
takes place slowly and through a great deal of hard work that is not necessarily
scientifically stimulating, performed in an environment that is characterised by fre-
quent setbacks and constant criticism by a wide range of consumers and clients.
Nevertheless, scientists worldwide have made tremendous progress in improving the
skill of weather forecasts by advances in data assimilation, improved parametrisa-
tions, improvements in numerical techniques and increases in model resolution and
computing power.

The growth rate of initial errors in NWP models is well known, and the current
limits of predictability of weather are well documented. The most promising way to
improve forecasts for days 2–15 is to improve the forecast at day 1. During the past
25 years, the weather forecast error at day 1 has been reduced by more than 50%.
At present, forecasts for day 4 are, in general, as good as forecasts for day 2 made
25 years ago. With improved observations, better models and faster computers, it is
reasonable to expect that the forecast error at day 1 will be further reduced.

There is a scientific basis for extending the successes of NWP to climate prediction.
A model’s ability to reliably predict the sequential evolution of the climate system
depends on the model’s ability to simulate the statistical properties of the observed
climate system. There is sufficient evidence to indicate that, as models improve in
their representation of all the statistical properties of the observed climate, they also
improve in their prediction skill of the evolution of climate anomalies.

Until 25 years ago, a dynamical seasonal climate prediction was not conceivable.
Over the past 25 years, steadily progressing dynamical seasonal climate prediction
has achieved a level of skill that is considered useful for some societal applications.
However, such successes are limited to periods of large, persistent anomalies at the
Earth’s surface. There is significant unrealised seasonal predictability. Progress in
dynamical seasonal prediction in the future depends critically on improving coupled
ocean–atmosphere–land models, improving observations, and increasing the ability
to assimilate those observations. The current generation of ENSO prediction models
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is able to predict the average SST over the equatorial Pacific, but not the evolution
and amplitude of an individual ENSO event.

Currently, about 10 centres worldwide are making dynamical weather forecasts
every day with a lead time of 5–15 days with about 5–50 ensemble members, so that
there are about 500 000 daily weather maps that can be verified each year. It is this
process of routine verification by a large number of scientists worldwide, followed
by attempts to improve the models and data assimilation systems, that has been the
critical element in the improvement of dynamical weather forecasts. In contrast, if
we assume that dynamical seasonal predictions, with a lead time of 1–3 seasons,
could be made by 10 centres worldwide every month, each with 10–20 ensemble
members, there would be fewer than 5000 seasonal mean predictions worldwide that
could be verified each year. This is a factor of 100 fewer cases than are available for
advancing NWP, so improvement in dynamical seasonal prediction might proceed
at a pace that is much slower than that for NWP if we don’t do something radically
different.

It is suggested that, for accelerating progress in dynamical seasonal prediction,
we reanalyse and reforecast the seasonal variations for the past 50 years, every
year. This will entail annually reanalysing the observations of the atmosphere and
ocean available since 1950, and making an ensemble of six-month lead forecasts,
starting from initial conditions in each month of the ∼50-year period. By doing
so, we will exercise state-of-the-art coupled ocean–atmosphere–land models and
data assimilation systems for a large number of seasonal prediction cases and verify
them against observations. We should also conduct model development experiments
(sensitivity to parametrisations, resolution, coupling strategy, etc.) with the specific
goal of reducing seasonal prediction errors.
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Predictability of the North Atlantic
thermohaline circulation

M. Latif
Leibniz-Institut für Meereswissenschaften, Kiel

H. Pohlmann, W. Park
Max-Planck-Institut für Meteorologie, Hamburg

Sea surface temperature (SST) observations in the North Atlantic indicate the exis-
tence of strong multi-decadal variability with unique spatial structure. It is shown by
means of a global climate model which does not employ flux adjustments that the
multidecadal SST variability is closely related to variations in the North Atlantic ther-
mohaline circulation (THC). The close correspondence between the North Atlantic
SST and THC variabilities allows, in conjunction with the dynamical inertia of the
THC, for the prediction of the slowly varying component of the North Atlantic cli-
mate system. This is shown by classical predictability experiments and greenhouse
warming simulations with the global climate model.

13.1 Introduction

The North Atlantic thermohaline circulation is an important component of the global
climate system. Strong and rapid changes in the THC have been reported from palaeo-
climatic records (e.g. Broecker et al., 1985), and a current topic for discussion is
whether greenhouse warming may have a serious impact on the stability of THC (e.g.
Cubasch et al., 2001). The North Atlantic SST varied on a wide range of timescales
during the last century (e.g. Deser and Blackmon, 1993). It has been pointed out
(Bjerknes, 1964) that the short-term interannual variations are driven primarily by the
atmosphere, while the long-term multidecadal changes may be forced by variations
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13 Predictability of the thermohaline circulation 343

in ocean dynamics. The latter is supported by simulations with coupled ocean–
atmosphere models (Delworth et al., 1993; Timmermann et al., 1998; Park and Latif,
2005) which show that variations in the North Atlantic THC are reflected in large-
scale SST anomalies. Recently, consistency between the observed multidecadal SST
variability derived from palaeo-climatic and instrumental data and that simulated by
two versions of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model
has been demonstrated (Delworth and Mann, 2000). The existence of multidecadal
SST variability with opposite signs in the North and South Atlantic and its impact
on Sahelian rainfall was described by Folland et al. (1984, 1986). The multidecadal
SST variability in the Atlantic Ocean has also been described in many subsequent
papers (e.g. Delworth and Mann, 2000, and references therein).

Changes in the THC strength may have strong implications for global and regional
climates (e.g. Manabe and Stouffer, 1999). However, there currently exists no means
to observe the variability of the THC. In this chapter we present a method to recon-
struct past variations of the THC and to monitor the state of the North Atlantic
climate system in the future by simply observing Atlantic SSTs. Additionally, we
systematically explore the predictability of the North Atlantic climate system. The
multidecadal variability in North Atlantic SST is described in Section 13.2 and the
origin of this variability is investigated in Section 13.3. The dependence of the air–sea
interactions over the North Atlantic on the ocean dynamics is analysed in Section
13.4. We present the results of the classical predictability experiments in Section
13.5 and those of the greenhouse warming simulations in Section 13.6. The chapter
concludes with a summary and discussion of the major findings.

13.2 Multidecadal SST variability

We analyse first the latest Hadley Centre SST data set which covers the period
1870–1998. This data set is partly described in Folland et al. (1999). The monthly
values were averaged to annual mean values, which is justified since we con-
centrate here on the multidecadal timescale. Coupled model simulations with and
without ocean dynamics (Park and Latif, 2005) indicate that one of the regions of
strong influence of the ocean dynamics on SST is the North Atlantic at 40–60◦ N.
We therefore define an SST index which averages the SST over the region 40–
60◦ N and 50–10◦ W. This index shows some rather strong multidecadal variability
(Figure 13.1), with anomalously high SSTs around 1900 and the 1950s and increas-
ing SSTs during the most recent years. Also shown is the low-pass filtered version of
the North Atlantic SST index using a 21-year running mean filter. It is noted that the
SST index does not correspond well to the North Atlantic Oscillation (NAO) index
(see e.g. Hurrell, 1995), a measure of the westerlies over the North Atlantic, which
suggests that the North Atlantic SST variability is not simply an in-phase response
to the low-frequency variations in the NAO. As will be shown below by discussing
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Figure 13.1 Time series of the observed (dashed curve) annual North Atlantic SST
anomalies averaged over the region 40–60◦ N and 50–10◦ W and the corresponding
simulation (solid line). The thick curves are the corresponding 21-year running
means which highlight the multidecadal variability. The time series were normalised
with their respective standard deviations. From Latif et al. (2004).

model results, the type of multidecadal variability considered here originates in the
ocean. Furthermore, we note that the North Atlantic SST index does not exhibit any
strong trend during the last several decades, but shows instead a rather oscillatory
behaviour throughout the analysed period.

We computed the spatial anomaly structure of North Atlantic SST that is associated
with the multidecadal variability (not shown). It is rather homogeneous and was
discussed, for instance, by Delworth and Mann (2000), Folland et al. (1984) and
Folland et al. (1986). Anomalies of the same sign cover basically the whole North
Atlantic Ocean from the equator to the high latitudes, with strongest values near 60◦ N.
Anomalies of opposite sign are found in the South Atlantic (not shown). This SST
anomaly pattern associated with the multidecadal variability is strikingly different
from the characteristic SST anomaly pattern associated with the higher-frequency
interannual variability. The latter is characterised by the well-known North Atlantic
tripolar SST anomaly pattern (Visbeck et al., 1998) which is forced by the atmosphere
through surface heat flux anomalies associated with the NAO. Thus, the multidecadal
SST variability in the North Atlantic exhibits a unique spatial structure. In order to
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investigate the dynamics of the multidecadal SST variability further, we analyse next
the results from an extended-range integration with our global climate model.

The model used in this study to explore the dynamics of the multidecadal SST
variability is the Max-Planck-Institute for Meteorology global climate model (Latif
et al., 2004). The ocean component MPI-OM (Marsland et al., 2003) is based on a
C-grid version of the HOPE (Hamburg Ocean Model in Primitive Equations) ocean
model and employs variable horizontal resolution, with relatively high resolution
(∼10–50 km) in the high latitudes and near the equator. The atmosphere model is
ECHAM5 (Roeckner et al., 2003), the latest cycle of the ECHAM (European Centre
HAMburg) atmosphere model. It is run at T42 resolution which corresponds to a hor-
izontal resolution of about 2.8◦×2.8◦. A high vertical resolution version of ECHAM5
has been used by Giorgetta et al. (2002) to study the dynamics of the stratospheric
quasi-biennial oscillation (QBO). A Hibler-type dynamic/thermodynamic sea ice
model and a river run-off scheme are included in the climate model. Glacier calving
is treated in a simple but interactive manner. The climate model does not employ flux
adjustments or any other corrections. Here a 500-year control integration with the
model is analysed. The model simulates the present-day climate of the North Atlantic
realistically. The climate model’s thermohaline circulation is consistent with obser-
vations, with a maximum overturning of about 20 Sv and a northward heat transport
of about 1 PW at 30◦ N (Marsland et al., 2003).

The model simulates the tripolar SST anomaly pattern in the North Atlantic at
interannual timescales, and consistent with observations it is forced by the NAO
(not shown). The model also simulates pronounced multidecadal variability in North
Atlantic SST. The same North Atlantic SST index that was computed from the obser-
vations was derived from the model simulation (Figure 13.1). The figure demonstrates
that, after some initial rapid adjustment, the model oscillates with a multidecadal
timescale similar to that observed. However, the SST fluctuations simulated by the
model appear initially to be somewhat larger than those observed. In order to high-
light the multidecadal variability, the 21-year running mean is also shown in Figure
13.1. Next, we computed the spatial pattern associated with multidecadal variability
of the model (not shown). The model SST anomaly pattern associated with the mul-
tidecadal variability is consistent with that derived from the observations and also
characterised by a rather homogeneous pattern in the North Atlantic. Although some
small regional differences exist between the observed and simulated patterns, we
conclude that our climate model simulates realistically the multidecadal variability
in the North Atlantic, so that it can be used to study the origin of the SST variability.

13.3 Origin of the multidecadal SST variability

The climate model offers us the possibility to investigate the physics behind the mul-
tidecadal SST changes. An investigation of the model’s thermohaline circulation
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Figure 13.2 Time series of simulated annual mean North Atlantic SST anomalies
(40–60◦ N and 50–10◦ W, dashed line) and annual mean anomalies of the maximum
overturning at 30◦ N (solid line), a measure of the strength of the model’s thermo-
haline circulation. Note that both time series are highly correlated at timescales
beyond several years indicating that the low-frequency variations of the THC can be
monitored by SSTs. Both time series were normalised with their respective standard
deviations. From Latif et al. (2004).

and North Atlantic SST revealed that they are closely related to each other
(Figure 13.2). Specifically, the strength of the meridional overturning at 30◦ N corre-
lates almost perfectly with the North Atlantic SST index defined above at timescales
beyond several years. This suggests that the multidecadal SST fluctuations are driven
by ocean dynamics, which is also supported by the investigation of the surface heat
flux anomalies. The latter are strongly anti-correlated with the SST anomalies, which
is demonstrated by the cross-correlation function between North Atlantic SST and
surface heat flux anomalies (Figure 13.3a), which exhibits the strongest negative cor-
relations near zero lag. Thus, the surface heat flux can be regarded as a damping for
the SST anomalies, a result that is also supported by observations (WOCE, 2001).

A clear connection of the SST anomalies, however, is found to the northward
oceanic heat transport. The ocean heat transport leads the North Atlantic SST by
several years, as shown by the cross-correlation between the meridional ocean heat
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Figure 13.3 (a) Cross-correlation of the North Atlantic SST anomalies (shown in
Figure 13.1) and the surface heat flux anomalies averaged over the same region as
function of the time lag (a). Please note that the SST and the heat flux are negatively
correlated, so that the heat flux can be regarded as a damping for the SST anomalies.
(b) Cross-correlation of the North Atlantic SST index with the northward ocean heat
transport at 30◦ N as function of the time lag (a). Maximum correlation is found at
positive time lags, which indicates the ocean heat transport leads the SST. This
demonstrates together with the left panel that it is the ocean dynamics that drive the
SST. From Latif et al. (2004).

transport and the SST anomalies (Figure 13.3b). The heat transport has a thermohaline
and a wind-driven part. We investigated the relative roles of the two components of
the ocean heat transport for the SST variability. We found that the wind-driven part
is only relevant at shorter timescales of several years and that on the multidecadal
timescale it is the thermohaline part that dominates. Our results are also consistent
with modelling studies investigating the stability of the THC (Manabe and Stouffer,
1988; Schiller et al., 1997). In particular, the SST response to a shutdown of the THC
shows large similarities to the SST anomaly pattern discussed above.

The close connection between THC strength and SST variability can be used to
either reconstruct changes in the THC from SST observations or to monitor the state
of the THC in the future. If our model mimics the real relationship between THC
and SST correctly, the observed changes in North Atlantic SST (Figure 13.1) can be
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Figure 13.3 (cont.)

interpreted as changes in the THC strength; decade-long positive anomalies in the
North Atlantic SST index can be regarded as indicators for an anomalously strong
THC and vice versa. In particular, the strong cooling during the period 1960–90 may
just as well be related to an anomalously weak THC as part of an internal oscillation
than to anthropogenic factors, as hypothesised by some authors (e.g. Hegerl et al.,
1997), since the cooling is replaced by a warming during the most recent years.

13.4 Ocean dynamics and the nature of air–sea
interactions

To suppress active ocean dynamics in the coupled model ECHAM5/MPI-OM the
ocean model is replaced by a fixed depth (50 m) mixed layer model (MLO) and a
thermodynamic sea ice module. This coupled model (ECHAM5/MLO) is a realisation
of Hasselmann’s (1976) simplest stochastic climate model, in which SST variability
can be produced only by the integration of surface heat anomalies. There may be,
however, a feedback of the ocean’s SST to the atmosphere, as described below. The
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sea surface temperature variability in midlatitudes simulated by such a simplified
model was discussed, for instance, by Dommenget and Latif (2002).

We start the analysis of the coupled runs by computing the standard deviations
of 10-year mean surface temperature and sea level pressure (SLP). Since both runs
have a duration of 500 years, stable estimates of the decadal standard deviations
can be obtained. The ratios of the standard deviations (ECHAM5/MPI-OM and
ECHAM5/MLO) are shown in Figure 13.4. Decadal surface temperature variability is
enhanced by the presence of active ocean dynamics over the North Atlantic/European
region, over parts of the Tropical and North Pacific and over parts of the Southern
Ocean (Figure 13.4a). These were the regions highlighted by Pohlmann et al. (2004)
to have high decadal predictability potential. The corresponding figure for SLP shows
some similarity to the surface temperature pattern (Figure 13.4b). In particular, we
find enhanced decadal variability over the North Atlantic. The decadal standard devi-
ation ratios, however, are much smaller compared with those for surface temperature.
Over the North Atlantic, for instance, the presence of active ocean dynamics increases
the standard deviation of decadal means only by about 20%. This result, which was
obtained also by other modelling groups (e.g. Manabe and Stouffer, 1996), has often
been used to argue that the impact of changes in ocean currents on the atmosphere is
relatively small. We show that this is not the case: although the level of the decadal
variability is not strongly influenced by the presence of active ocean dynamics,
the structure of the air–sea interactions and the atmospheric response are strongly
affected. We concentrate below on the North Atlantic region.

The characteristic decadal-scale SST anomaly pattern simulated in the run with
active ocean dynamics (ECHAM5/MPI-OM) is rather flat, with positive SST anoma-
lies over most of the North Atlantic (Figure 13.5a). An anti-correlation exists in the
South Atlantic (not shown). The SST anomaly pattern in the run with active ocean
dynamics is consistent with that obtained from observations and mainly forced by
variations of the THC in the coupled general circulation model (CGCM), as described
by Latif et al. (2004). The corresponding atmospheric SLP correlation pattern is also
rather flat (Figure 13.6a), with anomalously low SLP over anomalously warm SST.
This SLP pattern resembling the East Atlantic Pattern (EAP) is also found by stan-
dard empirical orthogonal function (EOF) analysis. The EOF analysis was performed
using the last 400 years of the integration. The leading EOF mode of low-pass fil-
tered (applying an 11-year running mean filter) SLP anomalies over the North Atlantic
accounting for about 43% of the variance is the NAO, while the second most ener-
getic EOF mode explaining about 17% of the variance is the EAP. Only the principal
component of the latter is correlated in a statistically significant manner (r ∼ 0.6)
with a North Atlantic THC index, the meridional overturning at 30◦ N.

Our findings in ECHAM5/MPI-OM (anomalously low SLP over anomalously
warm SST) suggest that the atmospheric response is similar to the one proposed by
Lindzen and Nigam (1987). The same relationship between multidecadal changes
of SST and SLP was described from observations by Kushnir (1994). In principle,
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Figure 13.5 Maps of correlation coefficients of surface temperature with the North
Atlantic SST index. (a) In the coupled run with the dynamical ocean model
(ECHAM5/MPI-OM). (b) In the coupled run with the mixed layer model (ECHAM5/
MLO). An 11-yr running mean filter was applied to both variables prior to the
analysis. From Park and Latif (2005).

one would expect this type of thermal response from simple physical considerations:
the SST anomaly pattern (Figure 13.5a) is rather flat without any strong large-scale
horizontal gradients. Thus, the surface baroclinicity is not strongly changed by the
SST anomaly pattern, so that a change in the statistics of the transient eddies and a
subsequent change in the stormtrack are not to be expected.

The situation changes completely when the coupled run without active ocean
dynamics (ECHAM5/MLO) is analysed, in which the dynamical ocean model was
replaced by a mixed layer model. The dominant SST anomaly pattern is the well-
known North Atlantic tripole (Figure 13.5b). It is forced by surface heat flux anoma-
lies associated with the NAO, the leading mode of the atmosphere over the North
Atlantic. The NAO-forced SST anomaly (tripole) pattern is characterised by strong
horizontal gradients. These may well influence the surface baroclinicity and thus the
transient eddy statistics, as hypothesised by Palmer and Sun (1985). This is supported
by the associated SLP anomaly correlation pattern which shows a dipolar structure,
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Figure 13.5 (cont.)

with anomalously high pressure downstream of the main positive SST anomaly
(Figure 13.6b). Overall, the SLP anomaly pattern simulated in the coupled run with
the mixed layer model (ECHAM5/MLO) resembles the NAO. Thus, the spatial vari-
ability characteristics at decadal timescales are completely different in the two cou-
pled runs. In the run with active ocean dynamics, the main SLP pattern associated
with decadal-scale North Atlantic SST changes resembles the East Atlantic Pattern,
while, in the run without active ocean dynamics, the main pattern is the North Atlantic
Oscillation. Furthermore, we find that the response in ECHAM5/MLO is barotropic
in the vertical and baroclinic in ECHAM5/MPI-OM (not shown).

13.5 Classical predictability experiments

We have shown that the multidecadal variability in SST is closely related to ocean
dynamics, specifically to the variability of the North Atlantic thermohaline circula-
tion (e.g. Figures 13.2 and 13.3). This indicates that the SST variations may be pre-
dictable, even beyond interannual timescales. In order to explore the predictability
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Figure 13.6 As Figure 13.3, but for sea level pressure (SLP). From Park and Latif
(2005).

of the SST, we conducted an ensemble of classical predictability experiments with
the climate model ECHAM5/MPI-OM. We have chosen three states from the control
integration, perturbed the atmospheric initial conditions and restarted the model. We
did not perturb the oceanic initial conditions, so that our predictability estimates may
be regarded as upper limits of the predictability. Each perturbation experiment has
a duration of 20 years, and we conducted an ensemble of six perturbation exper-
iments for each of the three initial states. This yields a total integration time of
360 years.

The results of the predictability experiments are summarised in Figures 13.7 and
13.8. A predictability measure was defined as P = 1 − (E/C). Here E is the variance
between the ensemble members and C the variance of the control integration. If
the spread between the individual ensemble members is small compared with the
internal variability of the coupled system, the predictability measure is close to unity,
indicating a high level of predictability. If, by contrast, the spread is comparable to
the internal variability, the predictability measure is close to zero and predictability
is lost.
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Figure 13.6 (cont.)

The time series of North Atlantic THC of the control integration and the pre-
dictability experiments are shown together with the predictability in Figure 13.7(a).
The skill in predicting the North Atlantic THC is clearly better than that of the
damped persistence forecast and exceeds the 95% significance level over the whole
prediction period of 20 years. Jungclaus et al. (2005) analysed the mechanisms of
the THC variability in the coupled model ECHAM5/MPI-OM. They found that the
strength of the THC is related to the convective activity in the deep water formation
regions, most notably the Labrador Sea, which is sensitive to freshwater anomalies
from the Arctic. The same North Atlantic SST index as before (40–60◦ N and 50–10◦

W) is used to analyse the SST predictability (Figure 13.7b). The skill in predicting
the North Atlantic SST is significant at the 95% significance level over the whole
prediction period of 20 years and comparable to that of the North Atlantic THC. Our
predictability experiments indicate that the North Atlantic THC and SST are pre-
dictable even at multidecadal timescales. We investigated also whether predictability
exists in atmospheric quantities (not shown). The results are less impressive than
those for THC and SST, but predictability in sea level pressure, for instance, exists
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Figure 13.7 (a) (Left) Annual mean North Atlantic THC for years 70 to 210 of the
control integration (thin black lines); ensemble forecast experiments initialised at the
end of the years 90, 125, and 170 (thick black lines); and the ensemble means (white
lines). The results of the statistical forecast method of damped persistence are shown
as the range expected to contain 90% and 50% of the values from infinite size
ensembles of noise driven AR-1 random processes (light and dark grey, respectively).
(Right) Predictability of the North Atlantic THC averaged over the three ensemble
experiments (solid curve), with the damped persistence forecast (dashed) as a
function of the prediction period. Additionally, the 95% significance level according
to an F test is dotted. (b) As in (a), but for North Atlantic SST. Note that the changes
in the North Atlantic THC and SST indices are predictable a few decades ahead
(Pohlmann et al., 2004).

for at least one or two years. Interestingly, the multidecadal variability discussed here
projects most strongly onto the EAP and not onto the NAO. Consequently, we find
slightly higher predictability for the EAP relative to the NAO.

The predictability of surface temperature (i.e. SST over the oceans and land surface
temperature elsewhere) is shown as maps averaged over the three ensemble exper-
iments and the first and second prediction decade (Figure 13.8). Averaged over the
first prediction decade the most predictable regions are in the North Atlantic, Nordic
Seas, and Southern Ocean. The predictability of the second decade is everywhere
less significant than that of the first decade. In this period, predictability remains sig-
nificant in the North Atlantic and the Nordic Seas. In these areas, the ocean exhibits
multidecadal SST predictability. Over the ocean, the predictability of surface air
temperature (SAT) is very similar to that of SST. Over land, however, there is little
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  (a) predictability of Tsurf (years 1Ð10)

  (b) predictability of Tsurf (years 11Ð20)

Figure 13.8 Predictability of surface temperature (Tsurf) averaged over the three
ensemble experiments and the (a) first and (b) second prediction decade. The shaded
values are significant on the 90% significance level according to an F-test (Pohlmann
et al., 2004).

evidence of decadal predictability of SAT except for some small maritime-influenced
regions of Europe.

The predictability of the ECHAM5/MPI-OM is compared with that of other cou-
pled climate models in the study of Collins et al. (2006). The experiments were
performed as part of the European Union’s project ‘Mechanisms and Predictability
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of Decadal Fluctuations in Atlantic-European Climate’ (PREDICATE). The results of
the CGCM intercomparison study show that variations in the North Atlantic THC are
potentially predictable on interannual to decadal timescales and also North Atlantic
SAT, albeit with potential skill levels which are less than those seen for THC vari-
ations. Although the mechanisms behind the decadal to multidecadal variability in
the Atlantic sector are still controversial, there is some consensus that the long-term
multidecadal variability is driven by variations in the THC. In general, models with
greater decadal THC variability have greater levels of potential predictability. The
far more pertinent question is, of course, that of the predictability of surface climate
variations over land. The predictability measure used here does not reveal robustly
predictable land signals. Although the predictability of surface climate is mostly
restricted to ocean regions, the probability density functions of surface temperatures
over land are shown to be affected in some models by decadal variability of the
large-scale oceanic circulation (Collins and Sinha, 2003; Pohlmann et al., 2006).
Thus, some useful decadal predictability of economic value may exist in the Atlantic
sector. To exploit this decadal predictability, however, a suitable ocean observing sys-
tem must be installed, since the memory of the climate system resides in the North
Atlantic Ocean. In particular, the North Atlantic THC should be monitored carefully,
since its variations are most interesting in the light of decadal predictability.

13.6 Greenhouse warming simulations

The SST anomaly pattern associated with the THC variability can also be used as
a fingerprint to detect future changes in THC intensity. Many authors have reported
a weakening of the THC in global warming simulations (see e.g. Rahmstorf, 1999;
Cubasch et al., 2001) which may have strong impacts on the climate of the North
Atlantic/European sector. However, it is unclear how such a change in THC inten-
sity can be observed. Our model results suggest that an easy means to monitor the
THC strength can be obtained simply by observing Atlantic SSTs. However, in the
presence of global warming a differential SST index which measures the contrast
between the North and South Atlantic has to be used. In order to test this hypothe-
sis, an additional ensemble of three greenhouse warming simulations was conducted
(Figure 13.9a; colour plate). For this purpose the climate model was initialised from
different states of the control integration that are 30 years apart from each other (years
30, 60 and 90), and the atmospheric CO2 content was increased by 1% per year (com-
pound). The results are analysed for the longest integration (110 years), initialised
in year 60 in which the CO2 concentration triples, and they confirm the hypothe-
sis that changes in THC strength can be seen in the differential Atlantic SST index
(Figure 13.9b).

The results also show that the THC evolution in the greenhouse warming sim-
ulations closely follows that of the control run for some decades before diverging
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Figure 13.9 (See also colour plate section.) (a) Time series of the annual mean
anomalies of the maximum overturning (Sv) at 30◦N in the control integration (black
line) and in the greenhouse warming simulations (coloured lines). Note that the
evolutions in the greenhouse warming simulations closely follow those of the control
integration for several decades, indicating a very high level of THC predictability. (b)
Time series of the simulated annual mean Atlantic dipole SST index (dashed line)
and annual mean anomalies of the maximum overturning at 30◦ N (solid line) in the
longest of the greenhouse warming simulations. The dipole SST index is defined as
the difference between North Atlantic (40–60◦ N and 50–10◦ W) and South Atlantic
(10–40◦ S and 30◦ W–10◦ E) SST. Note that SST and overturning are highly
correlated at timescales beyond several years in the greenhouse warming simulation.
This implies that future changes in the THC can be monitored by observing SSTs.
The time series were normalised with their respective standard deviations (Latif
et al., 2004).

from it (Figure 13.9a). This behaviour is markedly different from that of global
mean surface temperature which exhibits a rather monotonic increase in all mem-
bers. This implies a strong sensitivity to initial conditions but also a great deal of
predictability of the multidecadal variability in the North Atlantic, provided the ini-
tial state is well known. These results are consistent with our classical predictability
experiments discussed above. Furthermore, our results imply that anthropogenically
forced changes in THC strength may be masked for quite a long time by the presence
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Figure 13.9 (cont.)

of the internal multidecadal variability. The next several decades may therefore be
dominated by the internal multidecadal variability, and we have to consider a joint
initial/boundary value problem when assessing how the THC will evolve during this
century. Greenhouse gas simulations should therefore be properly initialised using
present-day ocean conditions and they should be conducted in ensemble mode to
assess the uncertainty.

13.7 Summary and discussion

A close relationship exists between multidecadal variations in the strength of the
North Atlantic thermohaline circulation and Atlantic sea surface temperature. This
has been shown by means of simulations with a global climate model which realisti-
cally simulates the multidecadal SST variability in the North Atlantic. The same rela-
tionship was found in another climate model (ECHAM4/OPYC, not shown) which
was used by Latif et al. (2000), for instance, to discuss the stability of the THC in
a greenhouse warming simulation. The link between THC strength and SST can be
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exploited to reconstruct past changes and to monitor future changes in the strength
of the THC using SSTs only. Since SSTs are observable from space using passive
microwave techniques, they are readily available in near real-time with good spatial
and temporal coverage. Thus, the low-frequency variability of a major component
of the large-scale ocean circulation, the North Atlantic thermohaline circulation, can
be determined from the already existing ocean observing system.

These results are also important in view of the predictability of the North Atlantic
climate system at decadal timescales. As shown by analysing the results of the classi-
cal predictability experiments and the ensemble of greenhouse warming simulations,
the North Atlantic thermohaline circulation exhibits a relatively high degree of pre-
dictability at decadal timescales, which is consistent with earlier predictability studies
(Griffies and Bryan, 1997; Grötzner et al., 1999). Predictability, however, depends on
the availability of the initial state (see chapters in this volume by Anderson, Hagedorn
et al., Lorenz, and Palmer). The relationship between variations in THC and SST
found in our climate model can also be exploited for predictability purposes, as the
initial oceanic state can be estimated from the history of SST. A simple statistical
scheme, for instance, can be envisaged to reconstruct the multidecadal variations in
the oceanic density structure by projecting the multidecadal SST fluctuations onto
the three-dimensional oceanic density field using a model-derived statistical trans-
fer function. These reconstructions can then easily be used in a data assimilation
procedure to produce an ocean analysis from which the decadal predictions can be
initialised. If skilful, such predictions of decadal changes in the THC would not only
be of enormous scientific interest but also of large public interest, since they would
have a substantial economic value (Richardson, this volume).

However, more model studies on this subject are necessary. Here we conclude that
the potential may exist to reconstruct, monitor and predict decadal changes in the
North Atlantic climate using only surface observations. The situation may be sim-
ilar to that of predicting the El Niño–Southern Oscillation (ENSO) phenomenon
(Philander, 1990) on interannual timescales. ENSO predictability can also be
achieved by using only surface information (e.g. Oberhuber et al., 1998; Segschneider
et al., 2000).
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interdecadal variability: a coupled air-sea model. J. Climate, 11, 1906–31.

Visbeck, M., D. Stammer, J. Toole, et al. (1998). Atlantic Climate Variability Experiment
Prospectus. Report available from LDEO, Palisades, NY, 49 pp.

WOCE (2001). Objective 8 – To determine the important processes and balances for the
dynamics of the general circulation. Contr. by N. Hogg, J. McWilliams, P. Niiler, J. Price.
US WOCE Implementation Report, 13, 55.



14

On the predictability of flow-regime properties
on interannual to interdecadal timescales

Franco Molteni, Fred Kucharski
Abdus Salam International Centre for Theoretical Physics, Trieste

Susanna Corti
Institute of Atmospheric Sciences and Climate ISAC-CNR, Bologna

14.1 Introduction

Atmospheric flow regimes are usually defined as large-scale circulation patterns asso-
ciated with statistical equilibria in phase space, in which the dynamical tendencies
of the large-scale flow are balanced by tendencies due to non-linear interactions of
high-frequency transients. The existence of states with such properties can be verified
in a rigorous way in numerical simulations with simplified numerical models (as in
the pioneering study of Reinhold and Pierrehumbert, 1982, or in the experiments
by Vautard and Legras, 1988). By contrast, the existence of flow regimes in the real
atmosphere has been strongly debated. The detection of regimes in the observational
record of the upper-air field is indeed a complex task, which has been approached by
a number of research groups with a variety of sophisticated statistical methods (see
Section 14.3).

Although the regime classifications provided by the different observational stud-
ies were not identical, a ‘core’ number of regimes were consistently detected in
most studies devoted to a specific spatial domain. For example, the three northern-
hemisphere clusters found by Cheng and Wallace (1993) were also identified by
Kimoto and Ghil (1993a), Corti et al. (1999) and Smyth et al. (1999). However,
consistency does not necessarily imply statistical significance, and one may question
whether the level of confidence attached to these regime classifications is sufficiently
high.
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The search for regimes in the real atmosphere is also made complex by the fact that,
unlike in simple dynamical models, the sources of energy and momentum at the lower
boundary display variations on seasonal, interannual and interdecadal timescales.
Therefore, one is dealing with a dynamical system subject to a continuously variable
forcing, which may alter the statistical properties of flow regimes. Seasonal forcing
variations are usually accounted for by analysing anomalies defined with respect
to an estimated yearly cycle, and belonging to separate seasons. But how to deal
with interannual and interdecadal forcing anomalies is not a trivial problem. Should
one, for example, stratify the observed sample according to the El Niño–Southern
Oscillation (ENSO) phase, or consider that the radiative forcing of the atmosphere
has been modified by the long-term increase in greenhouse gases (GHGs)?

If regime statistics are dependent on boundary conditions and other forcing para-
meters, the consequent inhomogeneity of the observed record makes the detection of
atmospheric flow regimes more difficult. By contrast, if we were able to determine
the statistical properties of regimes as a function of the forcing anomalies, this would
imply some degree of predictability of the atmospheric conditions on interannual to
interdecadal timescales, which we can refer to as regime predictability. Given the
limited size of the observed record, it is difficult to find statistically significant results
on such an issue from observed data. In order to understand the dynamical meaning
of interdecadal differences in regime distributions such as those shown by Corti
et al. (1999), one has to resort to ensemble simulations made with general circulation
models (GCMs), in which multiple realisations of the atmospheric flow for the same
boundary (or GHG) forcing can be obtained.

Is regime predictability a sound concept? Is it feasible to obtain reliable infor-
mation about the structure and frequency of regimes from observations and GCM
simulations? Is the level of significance of these results acceptable? In this chapter,
we will argue for positive answers to these questions, focusing on two specific issues.
Firstly, we will address the issue of the statistical significance of regime estimates
from the current upper-air observational record. Secondly, we will demonstrate the
feasibility of regime predictions as a function of sea surface temperature (SST) condi-
tions, investigating the effects of ENSO on extratropical regime statistics in ensembles
of GCM simulations, and their impact on the predictability of interdecadal variations
of the wintertime northern-hemisphere circulation.

The concept of regime predictability will be given a more formal definition in the
next section. Since confidence about regimes in the real atmosphere is needed before
addressing the problem of regime predictability in GCM simulations, Section 14.3
will be devoted to a brief review of relevant observational results, and will discuss
what tests and what levels of statistical significance should be used in the assessment
of observed statistics. In Section 14.4, results from numerical simulations performed
with an intermediate-complexity atmospheric GCM will be presented, with emphasis
on the model climatology during the boreal winter. Observed and modelled effects
of ENSO on the northern extratropical circulation on interannual and interdecadal
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scales will be compared, using traditional statistics such as composite anomaly maps
and their spatial correlations. In Section 14.5, the impact of ENSO will be addressed
from the viewpoint of regime properties. Conclusions will be presented in Section
14.6.

14.2 A definition of regime predictability

If one regards the atmosphere as a multidimensional dynamical system, the time
evolution of the atmospheric state can be described by a set of differential equations
of the form

dt X = Φ(X(t), F) (14.1)

where X(t) is the time-dependent atmospheric state vector and F a set of forcing
parameters and/or boundary conditions which can be considered either as constant,
or as varying on very long timescales.

In a deterministic framework, the problem of atmospheric predictability can be
seen as the study of the uncertainty in our knowledge of X(t) given an ‘accurate’
estimate of X(t0) at a previous time. In a probabilistic approach, the knowledge
about the atmospheric state at any time t is expressed through the probability density
function (pdf) in phase space, ρ(X, t).

Given the dynamical system in Eq. (14.1), the time evolution of the pdf is formally
related to the time derivative of the state vector through to the Liouville equation

∂tρ(X, t) + div[ρ(X, t) · Φ(X, F)] = 0 (14.2)

(Gleeson, 1970; Ehrendorfer, 1994, this volume).
In weather forecasting, ρ(X, t) has to be evaluated starting from an estimate

ρ(X, t0) at the initial time t0. Lorenz (1975) referred to such initial-value problems as
‘predictions of the first kind’. After a sufficiently long time, independently from its
initial value, the pdf will approach an asymptotic value ρ*(X), which is representative
of the ‘climate’ of the system.

By contrast (again following Lorenz, 1975), a second kind of prediction can be
considered, in which one wants to estimate the variations of the ‘climate pdf’ ρ*(X)
as a function of anomalies in the forcing and boundary parameters of the system
(represented by the F vector in Eq. 14.1). Estimates of future climate scenarios as
a function of the concentration of atmospheric greenhouse gases (see, for example,
Chapter X in IPCC, 2001) are typical examples of predictions of the second kind. As
far as seasonal predictability is concerned, numerical experiments using prescribed
SST to estimate the average impact of (say) El Niño events can again be regarded as
predictions of the second kind, while actual seasonal forecasts with coupled ocean–
atmosphere models are actually initial-value problems in a complex, multi-scale
environment.
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Whatever the timescale of the prediction, one is faced with the problem of estimat-
ing the properties of a pdf in a multidimensional space with many degrees of freedom.
If the only required information is either the mean state or the variance of the state
variables, these can be easily computed and displayed in physical (i.e. geographical)
space. However, if more sophisticated probabilistic estimates are needed (typically,
when the pdf is non-normal), a suitable methodology is needed to condense the large
amount of information provided by a multidimensional pdf.

Let us now assume that a ‘meaningful’ partition of the phase space into N distinct
regions could be found, and let {Xj, j = 1, . . . N} be the set of the mean states (or cen-
troids) of such partitions. Let us also assume that the variability within each of these
partitions is smaller than the variability between the centroids. Then, the continuous,
multidimensional pdf ρ(X, t) can be approximated by a discrete probability distribu-
tion P(Xj, t), which gives the probability of the atmospheric state vector belonging
to each of the N partitions at a given time.

For probabilistic predictions of the first kind (typically provided by ensemble
forecasting systems such as those described by Toth and Kalnay, 1993; Molteni
et al., 1996; Houtekamer et al., 1996; Buizza, this volume), the phase space partitions
can be defined a priori based on the properties of the climatological pdf ρ*, or can
be redefined as a function of the initial conditions (examples of both kinds can be
found in Molteni et al., 1996, while the former approach was adopted by Chessa and
Lalaurette, 2001).

For predictions of the second kind, which by definition are concerned with the
nature of the climatological pdf, the choice of the optimal partition should reflect
the statistical and dynamical characteristics of the system’s attractor. Specifically,
if dynamical non-linearities are strong enough to generate significant anisotropic
features in the climatological pdf, the system is said to display a ‘regime’ behaviour,
where the regimes are defined by the most densely populated regions of the phase
space (as in the seminal study by Reinhold and Pierrehumbert, 1982). In such a case,
the regime structure provides a natural way to discretise the climatological pdf in
predictability studies.

When one investigates changes in regime properties as a function of anoma-
lies in forcing and boundary conditions, two possibilities should be considered. If
the forcing variations are relatively small, then the number of distinct regimes is
likely to remain the same, with minor variations of the positions of the regime cen-
troids in phase space. In this case, one should mainly be concerned with changes
in the frequency of a given set of regimes (as argued by Molteni et al., 1993;
Palmer 1993, 1999; Corti et al., 1999). Strong forcing variations, by contrast, can
take non-linear systems through bifurcation points, and the number of flow regimes
can be altered (e.g. Ghil, 1987). Variations in the number of regimes caused by
strong ENSO events have been reported by Molteni and Corti (1998), Straus and
Molteni (2004) and Molteni et al. (2003) in modelling studies of the extratropi-
cal and tropical circulation, respectively. In such a case, predictions of the second
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kind should also provide information on the regime number and their phase space
position.

14.3 Regimes in the real atmosphere: what significance?

14.3.1 The search for regimes: a brief review

The concept of weather regimes was introduced by Reinhold and Pierrehumbert
(RP, 1982) to explain the preferred circulation patterns produced by the interaction
of planetary-scale and synoptic-scale waves in a highly truncated two-level quasi-
geostrophic model forced by large-scale topography. The RP model was an extension
to synoptic scales of the model used by Charney and Straus (1980) to investigate
multiple equilibria (i.e. multiple steady states) of orographically forced waves in a
baroclinic framework. However, it was clear from the RP study that there was no one-
to-one correspondence between steady states and weather regimes. In fact, weather
regimes or flow regimes should be regarded as statistical-dynamical equilibria, which
are defined by averaging the dynamical tendencies on a timescale longer than the
typical period of baroclinic transients.

Although regime behaviour was detected in a number of simplified dynamical
models (e.g. Mo and Ghil, 1987; Vautard and Legras, 1988; Marshall and Molteni,
1993), the relevance of such results to the real atmospheric flow was often ques-
tioned (e.g. Cehelsky and Tung, 1987). The search for observational evidence of
flow regimes gave rise to even more controversy: for example, the significance of
the bimodality in the distribution of the planetary-wave amplitude index found by
Hansen and Sutera (1986) was strongly questioned by Nitsche et al. (1994) (see also
the ‘revisitation’ by Hansen and Sutera, 1995). Further debate focused on whether
regimes were best defined on a hemispheric domain (as suggested by works on
planetary wave dynamics), or rather within sectors including one of the two storm
tracks located over the northern oceans (e.g. Vautard, 1990; Kimoto and Ghil, 1993b;
Michelangeli et al., 1995; D’Andrea and Vautard, 2001).

Methodological differences in the search for regimes also contributed to the com-
plexity of the picture. While model simulations allowed the use of methods based
on the equilibration of dynamical tendencies (e.g. Vautard and Legras, 1988; Haines
and Hannachi, 1995), methods to detect densely populated regions of phase space
have been mostly applied to the observational record. These included univariate pdf
estimation (Hansen and Sutera, 1986, 1995); multivariate pdf estimation (Kimoto
and Ghil, 1993a; Corti et al., 1999; Hsu and Zwiers, 2001); and different methods of
cluster analysis (Mo and Ghil, 1988; Molteni et al., 1990; Cheng and Wallace, 1993;
Michelangeli et al., 1995; Smyth et al., 1999).

Although the regime classifications provided by the different methodologies were
(obviously) not identical, a few ‘common’ regimes were detected in most studies
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devoted to a specific spatial domain. As mentioned in the Introduction, the three
clusters identified by Cheng and Wallace (1993) for the whole northern hemisphere
were also identified by Kimoto and Ghil (1993a), Corti et al. (1999) and Smyth
et al. (1999). Of these clusters (shown in Figure 14.1), two show nearly opposite
anomalies over the Pacific–North American region, while the third one corresponds
to the negative phase of the North Atlantic Oscillation (NAO).

Among the analyses devoted to either the Atlantic or the Pacific sector of the
northern hemisphere, a robust partitioning method and a detailed analysis of statistical
significance were employed by Michelangeli et al. (1995). Their analysis yielded
three and four clusters for the Pacific and the Atlantic sectors respectively; these
clusters were also identified in earlier studies on regional regimes (e.g. Vautard,
1990; Kimoto and Ghil, 1993b).

14.3.2 The estimation of significance

In order to evaluate the significance of regimes found either by a pdf estimate or by
cluster analysis, a common methodology has been adopted in a number of the studies
cited above. Assuming that the time series of the selected phase-space coordinates
are uncorrelated (as in the case of principal components), this procedure can be
summarised by the following steps:

1. Define a quantity q which can be taken as a (positively oriented) measure of
the likelihood of the existence of multiple modes or clusters in a given data
sample.

2. Perform the pdf estimate or the cluster analysis on the selected data sample
by varying the algorithm’s parameters, in such a way to obtain regime
partitions with an increasing number of modes or clusters, and define q∗

m as
the value of q corresponding to the m-regime partition.

3. Generate a large number (Ns) of samples of pseudo-random red-noise data,
with the same size and the same mean, variance and lag-1 autocorrelation of
the actual data sample.

4. For each red-noise sample, repeat the pdf estimate or cluster analysis with the
same parameters yielding m regimes in the actual data, and compute qm in
order to obtain a sample of Ns values, say {qmk, k = 1, . . . Ns}.

5. Since the red-noise data are assumed to have a unimodal distribution, the
proportion Pm of red-noise samples for which qmk > q∗

m is an inverse measure
of the significance of the m-regime partition of the actual data, and 1 − Pm is
the corresponding confidence level for the existence of m regimes.

In cluster analysis, the total variance of the data sample can be divided into a fraction
accounted for by the cluster means (centroids) and an intracluster part represent-
ing the mean-squared distance from the appropriate cluster centroid. The ratio of



Figure 14.1 (Left column) Anomalies corresponding to the three cluster centroids of
500-hPa height found by Cheng and Wallace (1993) using a hierarchical clustering
method. (Right column) Anomalies corresponding to three of the (four) density
maxima in the pdf of the two leading PCs of 500-hPa monthly-mean anomalies,
computed by Corti et al. (1999). Data are for December to February, 1946 to 1985 in
Cheng and Wallace, November to April, 1949 to 1994 in Corti et al.
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centroid variance to intracluster variance is a measure of the separation between
clusters, and therefore provides a suitable definition of q (see Straus and Molteni,
2004). Other definitions used in the literature include quantities which indicate the
level of reproducibility of a given cluster set using different subsets of the full data
sample, or starting iterative aggregations of data from different random ‘seeds’ (e.g.
Michelangeli et al., 1995).

When regimes are studied using non-parametric pdf estimation (see Silverman,
1986), the number of regimes may be directly related to the number of local maxima
(modes) in the pdf. However, such a number depends on the degree of smoothing
used in the estimation, which is controlled by a disposable parameter. A widely used
methodology is represented by the kernel estimation, which provides an estimate of
the pdf of a (vector) variable X as the sum of elementary, unimodal functions centred
around each data point:

ρ(X) = N−1
d

∑
i
K [h−1‖ X − Xi‖] (14.3)

where K is the (normalised) kernel function, Xi are the Nd input data, ‖ · ‖ represents
a norm in phase space and h is a parameter called the kernel width, which defines
the level of smoothing in the pdf estimate.

The relationship between the kernel width h and the number of modes m in the
pdf is clearly defined when a multinormal (Gaussian) form is assumed for the ker-
nel function. In this case, it can be demonstrated that, for any data sample, m is a
monotonically decreasing function of h (Silverman, 1981). The largest value of h for
which m modes are found is called the critical kernel width for m modes (h∗

m), and
can be used to estimate the significance of multimodality against red-noise data as
outlined above for a generic variable q.

Note that, although many pdf estimates with increasing h are needed to determine
h∗

m from the actual data sample, just one estimate is needed for each red-noise sample
if a multinormal kernel is used. Because of the monotonic relationship between h
and m, it is sufficient to compute the pdf using h∗

m as kernel width. If the number of
modes in the pdf of k-th random sample is less than m, hmk must be less than h∗

m . For
example, if h∗

2 is the critical width for bimodality in the actual data, the proportion
of unimodal pdfs obtained from red-noise samples setting h = h∗

2 gives a confidence
level for bimodality.

14.3.3 On the significance of northern hemisphere regimes
computed from monthly-mean anomalies

We will now apply these concepts to the estimation of the significance of multi-
modality in pdfs derived from a sample of monthly-mean anomalies of 500-hPa
height for the northern winter (following Corti et al., 1999; CMP hereafter). For the
sake of comparison with the model results presented in Section 14.5, the analysis
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Figure 14.2 First two EOFs of 500-hPa height monthly-mean anomalies over the
northern hemisphere (20–90 N), computed from the NCEP/NCAR reanalysis in the
44 winters (DJFM) 1954–5 to 1997–8. The EOFs are scaled to represent the anomaly
patterns corresponding to one standard deviation of the associated PCs. Contour
interval 10 m.

will cover the 44 winters from 1954/5 to 1997/8, using months from December to
March (DJFM). The 500-hPa height monthly-mean data are taken from the National
Centers for Environmental Predictions/National Center for Atmospheric Research
(NCEP/NCAR) reanalysis (Kalnay et al., 1996). Although the main results of this
analysis do not differ substantially from those of CMP and other related studies (see
references above), here the goal is to illustrate and discuss the significance test in
greater detail.

As in many previous studies, the leading variability patterns are first identified
through a principal component (PC) analysis of the 500-hPa height anomalies. The
empirical orthogonal functions (EOFs) associated with the first two PCs are shown in
Figure 14.2; choosing the same sign as in CMP, they are quite similar to the negative
phase of the Arctic Oscillation and to the so-called Cold Ocean–Warm Land pattern
respectively (Thompson and Wallace, 1998; Wallace et al., 1996). The first two PCs
(normalised by their respective standard deviations) are used as the coordinates of a
bidimensional phase space in which pdfs will be estimated. An iterative version of
the Gaussian kernel estimator (see Eq. 14.3) is used to compute the bidimensional
pdfs, in order to avoid spurious local maxima in scarcely populated regions of phase
space (Silverman, 1986; Kimoto and Ghil, 1993a).

The estimated pdf in the PC1–PC2 plane is shown in Figure 14.3 for three different
values of the kernel width h (which becomes a non-dimensional parameter when
coordinates are normalised), namely 0.3, 0.4 and 0.5. For h = 0.3, four local maxima
are evident in the pdf. Three of them are also present in the estimate with h = 0.4;
when the PC coordinates of these modes are multiplied by the corresponding EOFs
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Figure 14.3 Bidimensional
probability density function
(pdf) of the first two PCs of
500-hPa height anomalies in
winter (for the EOFs shown
in Figure 14.2), computed
with different values of the
Gaussian kernel width h
(see text). (a): h = 0.3; (b):
h = 0.4; (c): h = 0.5.
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Figure 14.4 Histograms showing the proportion of pdfs with different number of
modes (i.e. local maxima), computed from red-noise samples with increasing values
of the Gaussian kernel width h.

to obtain a 500-hPa height anomaly, such patterns are (as expected) almost identical
to the three local maxima of CMP shown on the right-hand column of Figure 14.1.
By contrast, the pdf estimated with h = 0.5 is unimodal; further calculations show
that the critical kernel width for bimodality is h∗

2 = 0.48.
Pdfs from 500 samples of pseudo-random red-noise data with the same number

of data and the same mean, variance and lag-1 autocorrelation of the actual PCs were
then computed, using increasing kernel width. The histograms in Figure 14.4 show
the frequency of pdfs with different number of modes for a few selected values of
h. For h = 0.3, a very large proportion of the red-noise pdfs are multimodal, with
more than half of them displaying at least four modes. Therefore, no significance
statement can be made about the four modes shown in the top panel of Figure 14.3.
With h = 0.4, most of the red-noise pdfs are multimodal; however, a three-modal
pdf (as estimated from actual PCs with this kernel width) is found in just less than
10% of the cases. If we are simply concerned with the existence of more than one
mode, we found that 88% of the red-noise pdfs are unimodal when the critical width
for bimodality of the PC sample was used. We can therefore attach an 88% level of
confidence to the multimodality of the observed PC sample.

Is 88% confidence high enough to state that multiple regimes exist in the north-
ern hemisphere circulation? Many statisticians would not be comfortable with such
a claim unless 95% confidence would be achieved (see, for example, Stephenson
et al., 2004). From the red-noise pdf estimates (see again Figure 14.4), one finds
that a critical kernel width of 0.51 would be required in the PC sample to exceed the
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Figure 14.5 Probability
density function corres-
ponding to an analytical
3-modal distribution in the
PC1–PC2 plane, used for
the estimation of ‘useful’
significance levels for the
monthly-mean record.

95% confidence level. But should one reject the multimodality hypothesis because
the actual value h∗

2 = 0.48 gives it a 12% probability to be incorrect for this specific
data set?

There are different ways to answer this question. One may point out that the
typical duration of extratropical flow regimes is of the order of 1–2 weeks; therefore
a monthly time averaging is bound to weaken the signature of multiple regimes in
the pdf. (The pdfs computed by, for example, Hansen and Sutera (1986), Kimoto and
Ghil (1993a), Marshall and Molteni (1993) were derived from low-pass-filtered daily
data or 5-day means.) By contrast, if one wants to stick to monthly means because
of the wider data availability (for example, in comparisons with GCM simulations),
one should evaluate if the required level of significance actually allows a distinction
between a unimodal and a multimodal distribution, given the size of the observed
record.

To address this issue, an analytical 3-modal pdf was defined by a superposition of
multinormal functions centred in different points of the PC plane, close to the local
maxima of the actual pdf of PC data. The analytical form of this distribution (plotted
in Figure 14.5) was used to generate 500 samples of pseudo-random data with the
same size as the observed monthly-mean record. From each of these samples, the pdf
was recomputed using the Gaussian kernel estimator, and the critical kernel width
for bimodality was recorded. It was found that 58% of the samples from the 3-modal
distribution had a larger critical width than the actual PC data; however, in only 38%
of the cases the critical width for multimodality was larger than the value (0.51)
providing a 95% confidence level in the test against a unimodal red-noise.
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These results show that, if we require a 95% confidence limit for multimodality
in a sample as large as the 44-winter record of monthly means, we have a large
chance (62%) that Silverman’s (1981) test would fail to recognise a significant mul-
timodality in a pdf derived from the analytical distribution in Figure 14.5. Therefore,
the fact that the multimodality of the monthly-mean PC distribution does not pass
a 5% significance test (as claimed by Stephenson et al., 2004) can hardly be used
to refuse the regime hypothesis. One may wish to analyse the observed record with
a different time frequency, higher dimensionality or more sophisticated clustering
techniques to get a larger confidence. Here, we will accept the existence of multiple
flow regimes as a realistic working hypothesis, and proceed to explore the issue of
regime predictability in the context of GCM simulation.

14.4 Model climatology and variability

The numerical experiments used to investigate regime predictability in the fol-
lowing section were run with a 7-level version of the intermediate-complexity
atmospheric GCM developed at the International Centre for Theoretical Physics
(Molteni, 2003). The model (nicknamed SPEEDY, for Simplified Parametrisation,
primitivE-Equation DYnamics) is based on a hydrostatic, spectral dynamical core
developed at the Geophysical Fluid Dynamics Laboratory (see Held and Suarez,
1994), using the vorticity-divergence form described by Bourke (1974). A set of
physical parametrisation schemes has been developed from the same basic princi-
ples used in more complex GCMs, with a number of simplifying assumptions which
are suited to a model with a coarse vertical resolution (details can be found in the
on-line appendix to Molteni (2003) available at www.ictp.trieste.it/∼moltenif/
speedy-doc.html). These include short- and long-wave radiation, large-scale con-
densation, convection, surface fluxes of momentum, heat and moisture, and vertical
diffusion. The model is currently run with a T30 spectral truncation in the horizontal;
at this resolution, one year of integration takes 23 minutes on a single Xeon 2.4 GHz
processor.

The experiments consist of an ensemble of eight simulations for the period 1954–
99, using the EOF-reconstructed observed SST by NCEP (Smith et al., 1996) as
boundary conditions. The model climatology of upper-air fields and its variability
on multidecadal timescales are validated here using the NCEP/NCAR reanalysis
(Kalnay et al., 1996). A number of verification maps for the winter and summer
climatology of these experiments can be found on-line at the website above.

With respect to the 5-level version described by Molteni (2003), the wintertime
climatology of the 7-level model used here shows a much improved stationary wave
pattern in the Pacific sector of the northern hemisphere, while it still suffers from an
underestimation of the stationary wave amplitude over the Atlantic. These features
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Figure 14.6 (a) Mean field of 500-hPa height for the DJF season, from the
NCEP/NCAR reanalysis in winters 1978–9 to 1997–8. (b) as in (a), but from an
ensemble of 8 simulations with the International Centre for Theoretical Physics
(ICTP) AGCM forced by observed SST. (c) mean model error (ensemble-mean
minus reanalysis). Contour interval 100 m in (a) and (b), 30 m in (c).

are illustrated by the comparison of the December-to-February (DJF) mean of 500-
hPa height for the NCEP/NCAR reanalysis and the ensemble-mean model simulation
in the 1979–98 period (Figure 14.6a–b). The systematic error of the model (defined
by the ensemble-mean minus reanalysis difference in Figure 14.6c) reaches a large
negative amplitude (over 150 m) close to the British Isles, but it just exceeds 60 m
(in absolute value) in the North Pacific.

The good simulation of the Pacific stationary waves is reflected in a realistic repro-
duction of the extratropical response to tropical SST anomalies in opposite ENSO
phases. Composites of DJF 500-hPa height in eight warm and eight cold ENSO
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Figure 14.7 Composites of 500-hPa height anomalies in DJF for 8 warm (top row)
and 8 cold (bottom row) ENSO events in the 1955-to-98 period, from the NCEP/
NCAR reanalysis (left column) and from an ensemble of 8 AGCM simulations
forced by observed SST (right column). Contour interval 10 m. The anomaly
correlation (a.c.) between observed and modelled patterns is shown in brackets.

events during the 1954–99 period are shown in Figure 14.7 for the model ensem-
ble mean and the NCEP/NCAR reanalysis. In order to eliminate possible effects of
interdecadal variability on such composites, the anomaly for each event has been
defined with respect to a 10-winter mean centred around the selected winter. Both
the pattern and the amplitude of the model responses compare well to the observa-
tions in the Pacific/North American region. For the cold-event composite, even the
features on the eastern Atlantic are well simulated, yielding a large spatial corre-
lation (81%) between the model and reanalysis composites on the full hemispheric
domain.
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Figure 14.8 (Top left) Mean difference of 500-hPa height in DJF between two
consecutive 22-year periods (1977–98 minus 1955–76), from the NCEP/NCAR
reanalysis. (Top right) As in top left, but from an ensemble of 8 AGCM simulations
forced by observed SST (Ens-8). (Bottom panels) As in top right but from two
ensembles (Ens-4a and Ens-4b) of 4 members each, selected according to the
anomaly correlation between the observed and the simulated interdecadal difference.
Contour interval 10 m in top left panel, 5 m in the others. The correlation between
observed and modelled patterns is shown in brackets.

Since the model reproduces ENSO-related interannual variability in a realistic
way, interdecadal differences related to the well-documented SST trends in the trop-
ical oceans should also be detectable in the simulations. Significant differences in
Pacific SST before and after 1976 have been documented in many studies (e.g. Zhang
et al., 1997; Trenberth and Hoar, 1997); therefore, we will focus on the differences
in geopotential height between the mean of 22 winters from 1976/7 to 1997/8 and
the preceding 22-winter period. The 500-hPa height interdecadal differences for the
eight-member ensemble-mean and the reanalysis are shown in the top panels of Fig-
ure 14.8. The spatial correlation between the modelled and observed patterns is 43%
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over the northern hemisphere, while the average amplitude for the model is about
half of the observed amplitude (as in Hoerling et al., 2001). Looking at different
regions, one finds a better correlation over the Pacific/North American sector, while
the modelled negative anomalies over the North Atlantic and Siberia are located in a
more southerly position than the corresponding observed features.

Computing ENSO composites and interdecadal differences from individual
ensemble members, one finds that the former are quite consistent among individ-
ual members, while larger differences are found in the simulation of interdecadal
variability. If the difference patterns of 500-hPa height between the post-1976 and
pre-1976 periods for individual experiments are correlated with the observed differ-
ence, the correlation coefficients over the northern hemisphere range from slightly
negative to greater than 60%. To illustrate the effects of internal atmospheric vari-
ability, the bottom panels of Figure 14.8 show the interdecadal differences for the
ensemble means of two subensembles, one including the four members with the best
interdecadal correlations, the other one including the four least-correlated members
(hereafter referred to as Ens-4a and Ens-4b respectively, while Ens-8 will indicate the
full ensemble). With respect to Ens-4b, the difference pattern for Ens-4a shows much
stronger amplitude over the Pacific and North America, and a northward shift of the
Atlantic anomalies. As a result, the correlation with the observed pattern (top left) is
raised to 55% for Ens-4a, while it drops to 21% for Ens-4b. (A detailed analysis of
interdecadal variability in recent ensemble simulations with the SPEEDY model can
be found in Bracco et al., 2004.)

14.5 ENSO-related variability in flow regime statistics

In this section, the impact of ENSO on the interannual and interdecadal variability of
flow regimes will be investigated through a pdf analysis of the wintertime monthly-
mean anomalies of 500-hPa height simulated by the SPEEDY model. Since the
ensemble simulation gives eight times more data than the observed record, the issue
of multimodality can be addressed with much stricter levels of statistical significance.

Following the same procedure used in Section 14.3.3, we first computed the two
leading EOFs of monthly-mean anomalies in DJFM for the northern-hemisphere
extratropics (shown in Figure 14.9). When compared with its counterpart in the
reanalysis (Figure 14.2), the first EOF of the model shows a more zonally symmetric
pattern, with features of comparable amplitude in the Atlantic and the Pacific sectors.
Taking the same sign as in CMP, the first model EOF can be interpreted as the
negative phase of the Arctic Oscillation pattern, similarly to the first reanalysis EOF.
By contrast, stronger differences between model and reanalysis are found for the
second EOF. The two patterns resemble each other in the Pacific sector, but the
model EOF-2 has a much smaller amplitude in the Atlantic and Eurasian region. In
the model, the second EOF may be described as the manifestation of the Pacific/North
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Figure 14.9 First two EOFs of 500-hPa height monthly-mean anomalies over the
northern hemisphere (20–90 N) in the 44 winters (DJFM) 1954–5 to 1997–8,
computed from an ensemble of 8 AGCM simulations forced by observed SST. The
EOFs are scaled to represent the anomaly patterns corresponding to one standard
deviation of the associated PCs. Contour interval 10 m.

American teleconnection pattern, rather than a COWL-related pattern (Wallace et al.,
1996).

Because of the differences in the EOF patterns, the subspace spanned by the first
two PCs does not have exactly the same meaning in the model as in the observation.
Still, it is interesting to see whether any variability in the model pdfs associated with
different periods or ENSO phases have a counterpart in reanalysis data. Therefore, in
the following we shall compare model and observed pdfs for the same subsamples,
bearing in mind that only for the model simulations do we have enough data to
estimate the significance of multimodality using just a fraction of the total sample.
As for the observed data, bidimensional pdfs of the model PCs have been computed
with an iterative Gaussian kernel estimator (Silverman, 1986).

Figure 14.10 shows pdfs in the PC1–PC2 plane computed from model anomalies
in the 44-year period (DJFM 1955 to 1998, where the year refers to JFM), in its
first and second halves (1955–76 and 1977–98 respectively), and in three 15-winter
subsamples defined by sorting the available winters into cold, neutral and warm
ENSO phases according to the bivariate index by Smith and Sardeshmukh (2000)
(the cold-ENSO winter of 1998/9 was also included here). The pdf of model PCs is
unimodal in the full sample and in its second half, but it is bimodal in its first half.
The separation between the two modes occurs mainly along the PC2 axis, with a
smaller difference along the PC1 axis. When the significance of bimodality in the
1955–76 period is tested using Silverman’s (1981) procedure as described in Section
14.3.1, the confidence level exceeds 99.5%.

Looking at the pdfs for different ENSO phases, one finds that bimodality in the
model phase space is primarily generated during neutral (i.e. near-normal) ENSO
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Figure 14.10 Bidimensional pdfs of the first two PCs of 500-hPa height anomalies
in winter over the northern hemisphere, from an ensemble of 8 GCM simulations
forced by observed SST in the period 1954 to 1999. (a) pdf for the full 44-winter
period. (b) pdf for the 22-winter period 1955 to 1976. (c) pdf for the 22-winter period
1977 to 1998. (d) to (f) pdfs for samples of 15 winters with cold (d), neutral (e) and
warm (f) ENSO phase.
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Figure 14.11 Bidimensional pdfs of the first two PCs of 500-hPa height anomalies
in winter over the northern hemisphere, from the NCEP/NCAR reanalysis in the
period 1954 to 1999 (a) pdf for the full 44-winter period. (b) pdf for the 22-winter
period 1977 to 1998. (c) and (d) pdfs for samples of 15 winters with neutral (c) and
warm (d) ENSO phase.

winters. The confidence level estimated from the neutral-ENSO sample still exceeds
96%, despite the reduction in the number of data. During the cold and warm ENSO
phases, the pdf appears to be shifted along the PC2 axis (corresponding to a pattern
similar to the Pacific/North American (PNA) circulation), but evidence of multiple
regimes is either weak (cold phase) or totally absent (warm phase). Comparing the pdf
for the second half of the record with the pdf of warm ENSO events, it appears that the
unimodal nature of the distribution in the 1977–98 period is closely related to higher
frequency of warm events in that period. This is consistent with the modelling results
of Molteni and Corti (1998) and Straus and Molteni (2004), who found that evidence
of multiple regimes in the Pacific/North American circulation was suppressed during
warm ENSO events.

In order to verify whether the model behaviour has any correspondence in the
observations, Figure 14.11 shows pdfs from the reanalysis record for the 1955–98
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Figure 14.12 Bidimensional pdfs of the first two PCs of 500-hPa height anomalies
in winter over the northern hemisphere, from two ensembles (Ens-4a and Ens-4b) of
4 members each. (Top row) pdf for the 22-winter period 1955 to 1976, from Ens-4a
(a) and Ens-4b (c). (Bottom row) pdf for the 22-winter period 1977 to 1998, from
Ens-4a (b) and Ens-4b (d).

and 1977–98 periods, and for the two 15-winter subsamples of neutral and warm
ENSO cases. Consistently with model simulation, the multimodal nature of the 44-
year pdf is made more evident by the selection of neutral ENSO years. Also, the pdfs
for the second half of the record and for warm events resemble each other, and are
dominated by one mode, corresponding to the positive phase of the COWL pattern
(i.e. the regime in the top row of Figure 14.1).

As a further test of the robustness of the modelled interdecadal variations in flow
regime properties, Figure 14.12 compares the pdfs for the 1955–76 and 1977–98
periods, evaluated from two four-member subsets of the ensemble, namely the Ens-4a
and Ens-4b subsets with ‘good’ and ‘bad’ simulations of interdecadal variability (see
the bottom row of Figure 14.8). It is found that the bimodal versus unimodal nature
of the pdf in the two periods is reproduced in both four-member ensembles, although
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the difference is more evident in the ensemble (Ens-4a) that better reproduced the
observed spatial pattern of interdecadal difference.

14.6 Conclusions

In this chapter, we have addressed the issue of regime predictability by focusing on
two aspects:

� the significance of regimes detected in the observational record;

� the impact of interannual and interdecadal variability of the ENSO
phenomenon on the statistical properties of extratropical flow regimes as
simulated by a GCM.

On the first issue, we applied Silverman’s (1981) methodology to test the significance
of multimodality in the distribution of the two leading PCs of monthly-mean anoma-
lies of 500-hPa height in winter, using data from a 44-year sample of NCEP/NCAR
reanalyses. We estimated the confidence level for the existence of at least two regimes
to be close to 90%. We also showed that asking for a stricter significance level has
little meaning in the case of the observed monthly-mean record, since the required
level of pdf smoothing would prevent the detection of multimodality even for samples
generated by an analytical trimodal distribution.

With regard to the second issue, the results of our model simulations indicate
that predictability ‘of the second kind’ (Lorenz, 1975) is indeed present in regimes
statistics, as a result of their dependence on anomalous boundary forcing related
to the ENSO phenomenon. In addition to a shift of the pdf along a PNA-like axis,
ENSO variations change the number of regimes detected in the phase space spanned
by the two leading PCs. For both model and observed data, multimodality is best
revealed in years with weak ENSO forcing. By contrast, our intermediate-complexity
atmospheric GCM shows no evidence of multiple regimes during the warm ENSO
phase. Taking into account that the two leading PCs of model data tend to emphasise
low-frequency variability in the Pacific/North American region, the latter result is
consistent with the statistics of Pacific regimes from the quasi-geostrophic simula-
tions by Molteni and Corti (1998) and the GCM ensembles analysed by Straus and
Molteni (2004).

Such findings give a more complex picture of the ENSO impact on regimes than
the one advocated by Molteni et al. (1993) and Palmer (1993), which was based
on a change of frequencies in quasi-invariant regimes. While the frequency-change
hypothesis is likely to be appropriate for relatively small variations of the atmospheric
forcing terms (such as those related to greenhouse gas and aerosol concentrations in
the twentieth century), strong ENSO events alter the forcing of stationary waves in a
substantial way, possibly leading the atmospheric system through bifurcation points.
Interestingly, a variation in the number of regimes as a function of the ENSO phase
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has also been detected in the Asian monsoon simulations described by Molteni et al.
(2003).

The goal of this chapter was to show that the concept of regime predictability
has robust statistical and dynamical foundations. We have not addressed the issue in
such detail to quantify, for example, its practical relevance in the case of seasonal
forecasting. However, cluster analysis has been increasingly used in recent years to
condense the information provided by ensemble forecasts, so that practical examples
are already available in the literature (e.g. Brankovic and Molteni, 1997). We are well
aware that many aspects of atmospheric predictability may be addressed without the
need for introducing flow regimes. By contrast, regimes provide a valuable framework
to investigate the non-linear aspects of the relationship between anomalous forcing
and atmospheric response, and may play an important role in understanding the
mechanism of climate changes originated by the interactions of ‘internal’ climate
dynamics and anthropogenic perturbations of the Earth’s energy balance.
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As if someone were to buy several copies of the morning newspaper to assure
himself that what it said was true.

Ludwig Wittgenstein

15.1 Introduction

The phrase ‘model error’ means different things to different people, frequently arous-
ing surprisingly passionate emotions. Everyone accepts that all models are wrong,
but to some this is simply an annoying caveat on otherwise robust (albeit model-
dependent) conclusions, while to others it means that no inference based on ‘elec-
tronic storytelling’ can be taken seriously at all. This chapter will focus on how
to quantify and minimise the cumulative effect of model ‘imperfections’ (errors by
any other name, but we are trying to avoid inflammatory language) that either have
not been eliminated because of incomplete observations/understanding or cannot be
eliminated because they are intrinsic to the model’s structure. We will not provide
a recipe for eliminating these imperfections, but rather some ideas on how to live
with them. Live with them we must, because no matter how clever model developers,
or how fast supercomputers, become, these imperfections will always be with us
and represent the hardest source of uncertainty to quantify in a weather or climate
forecast (Smith, this volume). This is not meant to underestimate the importance of
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identifying and improving representations of dynamics (see Hoskins, this volume) or
parametrisations (see Palmer, this volume) or existing (and planned) ensemble-based
forecast systems (Anderson, Buizza, this volume), merely to draw attention to the
fact that our models will always be subject to error or inadequacy (Smith, this vol-
ume), and that this fact is especially chronic in those cases where we lack the ability
to use conventional verification/falsification procedures (i.e. the climate forecasting
problem).

We spend a little time reviewing how uncertainty in the current state of the atmo-
sphere/ocean system is used in the initialisation of ensemble weather or seasonal
forecasting, because it might appear to provide a reasonable starting point for the
treatment of model error. This turns out not to be the case, because of the funda-
mental problem of the lack of an objective metric or norm for model error: we have
no way of measuring the distance between two models or model versions in terms
of their input parameters or structure in all but an irrelevant subset of cases. Hence
there is no way of allowing for model error by sampling the space of ‘all possible
models’ in a representative way, because distance within this space is undefinable.
This is a fundamental problem that fatally undermines many ‘simple’ or ‘intuitive’
approaches to the treatment of model error which, after examination, turn out to be
nothing of the kind.

If the only way of measuring model similarity is in terms of outputs, complications
arise when we also wish to use these outputs to compare with observations in the
initialisation of a forecast. These problems are particularly acute in seasonal or climate
forecasting where the range of relevant observational datasets is extremely limited.
Naı̈ve strategies run the risk of using observations twice and hence underestimating
uncertainties by a significant margin.

A possible way forward is suggested by stepping back to remind ourselves of
the basic epistemological status of a probabilistic forecast. Any forecast of a single
or seldom-repeated event that is couched in probabilistic terms is fundamentally
unfalsifiable. The only way of verifying or falsifying a probabilistic statement is
through examining a sequence of forecasts of similar situations and assessing the
forecast system’s ‘hit rate’, and we cannot compute a hit rate with a single verification
point (Smith, 1995).

The objection that there are lots of different aspects of a climate forecast that
we could verify against observations is a red herring, because all these variables
are intimately interlinked. If we produce an ensemble forecast that purports to span
a nominal 5–95% ‘range of uncertainty’, it is clearly absurd to expect 90% of the
variables simulated by individual members of that ensemble to be consistent with
observations. A forecast that gets the warming rate wrong to 2020 is likely to continue
getting it wrong to 2050. A forecast that underestimates the magnitude of an extreme
El Niño event in temperature is likely also to underestimate it (after correcting for
model bias) in precipitation. In both cases, there is still, in effect, only a single (albeit
high-dimensional) point of verification.
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This verification problem applies not only to forecasts of anthropogenic climate
change but also to forecasting an extreme El Niño event or even a 100-year storm.
Because different aspects of model physics, and hence different model errors, may be
relevant in the simulation of events of different magnitudes, a probabilistic forecasting
system that performs well at forecasting ‘normal’ storms or ‘normal’ El Niños may
prove incapable of even simulating, let alone forecasting, a 100-year storm or 1000-
year El Niño. But these are precisely the cases in which there is most pressure on the
forecaster to ‘get it right’ or at the very least to provide the user with some warning
that conditions have reached the point where the forecast can no longer be relied
upon.

This lack of any conceivable objective verification/falsification procedure has
led some commentators to conclude that forecasts of anthropogenic climate change
are fundamentally subjective and can never represent anything other than a formal
expression of the beliefs of the forecaster(s). If you buy this view, then any proba-
bilistic forecast of an unprecedented event goes down as subjective as well, so any El
Niño forecaster with strongly held beliefs who specialises in probabilistic forecasts
of unusual El Niños (which, because they are unusual, cannot be subjected to tradi-
tional out-of-sample verification procedures) could claim equality of status with the
European Centre for Medium-Range Weather Forecasts. Worse still, assessment of
forecasts of anthropogenic climate change degenerates all too easily into a dissection
of the prior beliefs and motivations of the forecasters, ‘placing climate forecasts in
their sociological context’.

As die-hard old-fashioned realists, we firmly reject such New Age inclusivity. We
also recognise, however, that the subjectivists have a point, in that conventional veri-
fication/falsification procedures cannot be applied to probabilistic climate forecasts,
so it is up to us to clarify what we mean by a good forecast (or forecast system).
The measure of goodness, we argue, ought to be whether or not a forecast is likely
to have converged, in the sense that further developments in modelling (increasing
model resolution, or including different parametrisations) are unlikely to result in a
substantial revision of the estimated distribution of the forecast variable in question.

Modellers may find this counterintuitive, because they are accustomed to expecting
an increase in model resolution or improved parametrisations to change the behaviour
of their models in forecast mode, ‘otherwise why bother?’ The point is that if the
next generation of models change the forecast, what guarantee do we have that the
generation after that will not change it again? Only a few years ago we were told that
climate forecasts ‘could only be taken seriously’ if performed with models that could
run without surface flux adjustment. Now that this has been achieved, we are told
they can only be taken seriously when they resolve oceanic eddies. But many aspects
of simulated climate change have altered remarkably little, notably the overall shape
(not the magnitude, which depends on the individual models’ sensitivities) of the
global mean response to observed and projected greenhouse gas emissions over the
past and coming half-centuries.
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If all the changes in resolution, parametrisations or model structure that we attempt
fail to alter some aspect of the forecast (the ratio of warming over the past 50 years
to projected warming over the next 50 years under a specific emissions scenario, in
this example), then we might hope that this aspect of the forecast is being determined
by a combination of the observations and the basic physical constraints which all
properly formulated climate models share, such as energy conservation, and not by
the arbitrary choices made by model developers.

We cannot, and will never be able to, treat model error in the formal manner in
which observational error is taken into account in short-range ensemble forecasting
(see, for example, Buizza, this volume), because of the problems of sampling ‘all
possible models’ and defining a metric for changes to model parameters and structure.
The aim, therefore, must be to render this kind of model error as irrelevant as possible,
by ensuring that our forecasts depend on data and on the constraints that all physically
conceivable models share rather than on any specific set of models, no matter how
these are chosen or weighted. Such forecasts might be called STAID, or STAble
Inferences from Data. STAID forecasts are unexcitable, largely immune from the
whims of modelling opinion. They are also less sexy and attractive than forecasts
based on a single (preferably young) super-high-resolution model. But ultimately,
they are reliable: they will not change except through the painstaking acquisition and
incorporation of new data.

We lay out below a methodology for STAID probabilistic forecasting by looking
for convergent results across nested ensembles. Our focus will be on forecasting
long-term climate change because this is the problem in which our current lack of
a systematic treatment of model error is most acute, but the underlying principle
could be applied to shorter-term (seasonal or even, ultimately, synoptic timescale)
forecasting problems if the computing power becomes available for the necessary
very large ensembles.

15.2 Model shortcomings, random errors and
systematic errors

We will begin by setting out what we do not mean by model error. To the majority
of model developers, ‘model error’ evokes issues such as the fact that such-and-
such a climate model does not contain a dynamical representation of sea ice, or
generates an unrealistic amount of low-level cloud. Their solution to these types of
error is, naturally enough, to improve the model, either by increasing resolution or
by introducing new physics. We will refer to this kind of research as resolving model
shortcomings rather than a systematic treatment of model error, and it is not the focus
of this chapter. While it is clearly desirable, it is important to recognise that the process
of resolving model shortcomings is open-ended and will never represent the whole
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story. No matter how high the resolution or detailed the physical parametrisations
of models in the future, results will always be subject to the two further types of
error: random errors due to the cumulative impact of unresolved processes on the
resolved flow, and systematic errors due either to parameters not being adequately
constrained by available observations or to the structure of the model being incapable
of representing the phenomena of interest.

Although an important area of current research, the treatment of random errors is
relatively straightforward, at least in principle, and also not our focus here. Parametri-
sation schemes typically represent the impact of small-scale processes as a purely
deterministic relationship between inputs and outputs defined in terms of the large-
scale flow. Recently, experimentation has begun with explicitly stochastic parametri-
sation schemes as well as explicit representation of the effects of unresolved processes
through stochastic perturbation of the physics tendency in the model prognostic equa-
tions (Buizza et al., 1999; Puri et al., 2001). The theory of ‘stochastic optimals’
(Moore and Kleeman, 1999; Nolan and Farrell, 1999) is being developed as a means
of identifying those components of stochastic forcing that contribute most to forecast
error (see also Palmer, this volume).

Whether or not stochastic forcing is included in the model, random unresolved
processes will introduce unpredictable differences between model simulations and
the real world, but this source of model error is relatively straightforward to treat
in the context of linear estimation theory. A much more challenging problem is the
treatment of systematic error, meaning those model biases that we either do not know
about or have not yet had a chance to address.

Some model developers view proposals to develop a quantitative treatment of sys-
tematic error with suspicion since our objective appears to be to work out how to ‘live
with’ model shortcomings that remain unresolved, unexplained or simply unknown.
Their concern is that if usable forecasts can be made with existing models, warts and
all, then the case for further model development, increasing resolution and so forth
may be weakened. As it turns out, a comprehensive treatment of systematic model
error demands very substantial model development resources in itself, so this is not a
realistic threat. In particular, the climateprediction.net experiment (Stainforth et al.,
2004) has shown that STAID forecasting can be usefully conducted on publicly vol-
unteered computing (following a distributed computing approach), thereby utilising
an entirely new, extremely inexpensive computer resource that complements existing
model development programmes.

There is, however, a genuine issue regarding the appropriate allocation of resources
between quantifying the possible impact of systematic errors on the forecast system
and attempting to get rid of them by improving the model. For some sources of error,
it may be cheaper to eliminate them than to quantify their impact on the forecast,
but this will never be true in all cases. Particularly on longer (climate) forecasting
timescales, or in forecasting unprecedented events such as a record-breaking El Niño,
we may simply not have the data or understanding to pin down crucial uncertainties
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in the model until after the event has occurred. For many of the most interesting
forecasting situations, therefore, a systematic treatment of model error is essential
for forecasts to be useful at all. Since no one would suggest that we should keep our
probabilistic forecasts useless so that we can maintain the case for making them less
useless at some unspecified time in the future, some systematic treatment of model
error is essential.

15.3 Analysis error and model error: helpful analogy
or cul-de-sac?

The most obvious starting point for a treatment of model error in weather and cli-
mate forecasting is as an extension of the well-established literature on the treatment
of analysis error in ensemble weather forecasting. This will have been discussed
extensively elsewhere in this volume, so we only provide a cursory summary, and
refer the reader to, for example, Molteni et al. (1996) for more details and to Mylne
et al. (2002) for the extension of these principles to the multimodel context. Suppose
the analysis from which a forecast is initialised is based on a standard optimal inter-
polation or Kalman filter, ignoring for present purposes the many technical issues
regarding how such a filter might be implemented in practice:

xa = xb + (HT R−1H + B−1)−1HT R−1(y − Hxb), (15.1)

where xa is the estimated state of the system at the time of the forecast initialisation,
or more generally a four-dimensional description of the system over some period
running up to the forecast initialisation time; xb is the ‘background’ or a-priori esti-
mate of the state vector x obtained, in a Kalman filter, by integrating the forward
model from the previous analysis; y is a set of observations that depend on the true
state x via y = Hx + u; R is the measurement noise covariance, R = 〈uuT 〉 (hence,
for simplicity, incorporating error in the measurement operator H into u); and B is
the all-important, and typically rather obscure, ‘background error covariance’ into
which we might hope to bury our treatment of model error.

The derivation of the Kalman filter equations is based on the assumption that the
evolution of the state vector x and the measurement error u can be treated, at least at
the level of analysis uncertainty, as linear stochastic processes whose properties are
completely determined by the covariance matrices B and R, and that these matrices
are known, or at least knowable (see Judd, 2003, for a more complete discussion).
For a discretisable system in which

xt = Mxt−1 + Nzt , (15.2)

where zt is a vector of unit-variance, uncorrelated noise, 〈zt zT
t 〉 = I and the forward

propagator M is known, then B = NNT . Note that M and N might be functions of
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x, so the theory applies to non-linear models, provided M and N can be treated as
constant over the analysis increment, xa − xb.

If xb and u are multivariate normal, the analysis covariance, A = 〈(xa − x)(xa −
x)T 〉, is given most compactly by

A−1 = (HRHT )−1 + B−1 (15.3)

Since the notion that measurement errors can be treated, in some coordinate system,
as multivariate normal is not too far fetched, their contribution to the total analysis
error is at least conceptually straightforward, although the actual specification of R
for a wide range of multivariate observations presents clear technical challenges. If
the state vector really were generated by a linear stochastic process and the governing
equations of that process are known (never the case in practice), then the contribution
of the background error covariance, B, is also straightforward. The covariance matrix
defined by Eq. (15.3) defines a multidimensional ellipsoid surrounding the best-
guess estimate of the state vector xa within which the true state of the system might
be expected to lie. If z is simply a vector of unit-variance, uncorrelated, Gaussian
random numbers, then possible state vectors, consistent with this analysis, are given
by

x′ = xa + A
1
2 z, (15.4)

where A
1
2 could consist, for example, of the eigenvectors of A, arranged columnwise,

each multiplied by the square root of the corresponding eigenvalue: so each x′ contains
a random perturbation along each of the eigenvectors of A scaled by the standard
deviation of the analysis error in that direction.

So far so good, but these may sound like sufficiently restrictive conditions such
that this theory could never apply to, for example, a weather forecasting situation,
since the state vector of the atmosphere is not governed by linear stochastic dynam-
ics. In a low-order, noise-free chaotic dynamical system such as the Lorenz (1963)
model, which evolves on a fractal-dimensional attractor, then neither xa nor any
perturbed version thereof given by Eq. (15.4) will, with probability one, lie on the
attractor (Hansen and Smith, 2001). This might appear not to matter if the system
is such that trajectories converge rapidly back onto the attractor, although it may
cause practical difficulties if the impact of the initial conditions of the forecast being
‘unbalanced’ (off the system attractor) persist for a significant length of time (or
worse, render the forecast numerically unstable). For this reason, considerable care
is taken to ‘initialise’ members of an ensemble weather forecast to reduce the impact
of unphysically ageostrophic terms in their initial conditions.

A more fundamental difficulty arises from the fact that the distribution of trajec-
tories consistent with a given set of observations and the dynamics of the underlying
attractor may be highly non-uniform across the ellipsoid defined by Eq. (15.4), as
illustrated in Figure 15.2 of Hansen and Smith (2001). One might hope that this
kind of information could be reflected in the background error covariance matrix
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B, but because the space occupied by the attractor is fractal, no possible coordinate
transformation could convert the pattern of accessible trajectories into a multinormal
distribution.

These problems with the application of linear estimation theory to highly idealised,
low-dimensional dynamical systems may, however, give a misleadingly negative
impression of its applicability to much higher order systems such as weather or
climate models. The reason is that small-scale processes such as cloud formation
may introduce sufficient high-order ‘noise’ into a weather model such that the range
of accessible trajectories is effectively space filling (at least in the space of ‘balanced’
perturbations) over regions consistent with the observations. Let us suppose for the
sake of argument that the analysis is sufficiently accurate that analysis errors can be
treated as linear and the notion of an ellipsoid of possible state vectors, consistent
with the observations, given by Eq. (15.4) at least makes sense.

The fact that we are treating the dynamics as linear stochastic on small scales
in the immediate vicinity of xa does not, of course, restrict us to linear stochastic
dynamics on larger scales, such as the propagation of x over the forecast lead time:

x f = M(xa). (15.5)

Indeed, exploiting the non-linearity of the system over the forecast time lies at the
heart of so-called ‘optimal’ forecast perturbation systems such as singular vectors
(Palmer et al., 1994) and breeding vectors (Toth and Kalnay, 1997). Consider a two-
dimensional example: in a coordinate system in which the analysis error is uniform
in all directions, errors in the vertical direction grow over the forecast lead time
while errors in the horizontal direction decay. Hence, for any perturbation, only its
projection onto the vertical matters for the forecast spread.

In this two-dimensional system, the variance of an arbitrarily oriented vector in
the vertical direction is half that of a vector of the same expected length oriented
specifically in the vertical. Since this variance fraction declines with the dimension
of manifold to which the state vector x is confined, an arbitrarily oriented perturbation
on a weather or climate model might project only a tiny fraction of its variance in
any given direction (for a balanced, initialised perturbation the discrepancy might be
smaller, but still large). If variance in all other directions were simply to disappear
over the course of the forecast without affecting what happens to the projection of
the perturbation onto the directions in which errors grow, then this initial orientation
would not matter: we simply have to ensure that perturbations have sufficient power
in all directions to populate the n dimensional ellipsoid defined by Eq. (15.4). But
since, for a weather forecasting model, n may be extremely large, the result would
be that we would need very high total amplitude perturbations in order to ensure that
their projection onto a small number of error-growth patterns gives a representative
forecast spread, and the larger the perturbations, the more difficult it becomes to
ensure they are sufficiently balanced for a stable forecast. Hence perturbations are
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confined to the directions on which errors might be expected to grow, on the basis of
the singular vector or breeding vector analysis.

In principle, each perturbation x′ should contain a random component consistent
with the analysis error in each of the n′ (mutually orthogonal) directions in which
errors are expected to grow, scaled such that x′T A−1x′ = n′. This is complicated
by the fact that n′ is flow dependent and poorly determined in a complex non-linear
system. In practice, perturbations are applied to rather more directions than necessary
with somewhat higher amplitude (there is some ambiguity in the ‘correct’ amplitude
in any case because of uncertainty in A) and the dynamics of the ensemble sorts out
n′ (components of perturbations in directions that don’t grow don’t matter).

As stated in the introduction, the inclusion of random model error into this overall
framework should be relatively straightforward. Uncertainty in the forward prop-
agator of the analysis model, Eq. (15.2), arising from unknown small-scale unre-
solved processes, could be represented simply as an additional source of variance,
augmenting B in the estimated analysis error. Likewise, in the generation of the
ensemble forecast, individual forecast trajectories could be perturbed with the intro-
duction of some form of ‘stochastic physics’ term to represent the effect of this
small-scale noise on the overall ensemble spread. Stochastic physics is already used
in the ECMWF ensemble prediction system (Buizza et al., 1999), and has been
shown to improve ensemble representativeness at the medium range (Puri et al.,
2001). On longer timescales, a substantial body of literature is developing around
the concept of ‘stochastic optimals’, meaning (in a nutshell) forcing perturbations
that have maximal impact on forecast spread, analogous to the optimal pertur-
bations on initial conditions identified by singular vectors (Moore and Kleeman,
1999).

While important issues remain to be resolved in the appropriate specification
of a stochastic physics term and the derivation of stochastic optimal perturbations,
this is not the most challenging class of model error from a theoretical point of
view. If unresolved small-scale processes exist that have an impact on the large-scale
flow, then including them in the analysis or forecast model is a necessary model
improvement, not a systematic treatment of model error as we interpret the term
here.

15.4 Parametric and structural uncertainty and the
problems of a metric for model error

Suppose the forecast model M in Eq. (15.5) contains a single underdetermined
parameter, p, the uncertainty (prior distribution) of which is known, so M = M(p).
For the sake of simplicity, let us assume this uncertainty only affects the forecast
model and not the model used to generate the analysis. Generating an ensemble
forecast allowing for this uncertainty is straightforward. If p has no impact on the
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dynamics of error growth in the model, then we simply take initial conditions from
the region defined by Eq. (15.4) and propagate these forward in time using a set of
possible forecast models generated by making random perturbations to the parameter
p consistent with its prior distribution. Because, ex hypothesi, p is independent of xa

there is no need to increase the size of the ensemble significantly: we simply perturb
p at the same time as we perturb the initial conditions.

Generalising this to a vector of underdetermined parameters, p, is also simple
enough, provided the prior distribution of p, P(p), is known: we sample the distri-
bution of possible models M(p) using random perturbations conditioned on P(p).
If perturbations to the initial conditions, x′, have been made by perturbing a random
combination of singular/breeding vectors simultaneously, then random perturbations
to p can again be treated just like perturbations to the initial conditions.

If parametric perturbations interact with the growth of initial condition errors,
then, again in principle, they can be treated with a simple extension of the singular
or breeding vector technology. The goal is now to identify joint perturbations on
parameters and initial conditions which maximise error growth, or for which

‖M([x′, p′])‖ f � ‖[x′, p′]‖a (15.6)

where primes denote perturbations. The crucial element in all this is that we have a
distance measure or metric for parameter perturbations analogous to the analysis error
covariance for initial condition perturbations. If the distribution of p is multinormal
and there is no interaction with x′, then a logical distance measure for contribution
of p to the total error is provided by the inverse covariance matrix,

‖p′‖a = p′T C−1
p p′. (15.7)

If the distribution of p is not normal but known, then some form of non-Euclidean
distance measure could be defined to ensure an unbiased sampling of ‘possible’ values
of p where ‘possible’ is defined, crucially, without reference to the observations used
in the analysis.

As soon as we begin to consider structural uncertainty, or uncertainty in parameters
for which no prior distribution is available, then all this tidy formalism breaks down.
Unfortunately, the most important sources of model error in weather and climate
forecasting are of precisely this pathological nature. The fundamental problem is
the absence of a credible prior distribution of ‘possible models’, defined in terms
of model structure and inputs, from which a representative sample can be drawn. In
order to perform such a representative sampling, we need to know how far apart two
models are in terms of their structure, and how can we possibly compare the ‘size’
of a perturbation involving reducing the spatial resolution by a factor of ten versus
introducing semi-Lagrangian dynamics without reference to model output?

Goldstein and Rougier (2004) make a useful distinction between ‘measurable’
inputs (like the acceleration due to gravity) and ‘tuning’ inputs (like the choice of
numerical scheme used to integrate the equations) to a computational model. The
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treatment of measurable inputs is straightforward: distributions can be provided based
on what is consistent with direct observations of the process in question, and provided
these observations are independent of those used subsequently to initialise the ensem-
ble forecast, everything is unproblematic. Unfortunately, many of the parameters that
have the most impact on the behaviour of climate models do not correspond to directly
measurable quantities (although they may share names, like ‘viscosity’): defining an
objective prior distribution for such tuning inputs is effectively impossible, since we
have no way of comparing the relative ‘likelihood’ of different perturbations to model
structure (how can we compare varying a parameter with introducing a new func-
tional form for the parametrisation?). The solution (Kennedy and O’Hagen, 2001;
Craig et al., 2001; Goldstein and Rougier, 2004) must be to make use of the fact that
models make predictions of the past as well as the future, and we discuss how this
can be used to get around the problem of a lack of a defensible prior on the tuning
parameters in the final sections of this chapter. We believe the practical approach we
suggest here should fit nicely into the formalism proposed by Goldstein and Rougier
(2004), although there is much to be done on the details.

The difficulty of defining prior distributions without reference to the observations
used to initialise the ensemble is particularly acute on climate timescales where the
number of independent observations of relevant phenomena are extremely limited.
The point is important because a number of modelling centres are beginning to adopt
the following approach to ensemble climate forecasting which we might call the
‘likelihood-weighted perturbed-physics ensemble’. First a collection of models is
obtained either by gathering together whatever models are available (an ‘ensemble
of opportunity’) or by perturbing parameters in one particular model over ranges
of uncertainty proposed by experts in the relevant parametrised processes. Second,
members of this ensemble are weighted by some measure inversely proportional to
their ‘likelihood’ as indicated by their distance (dissimilarity) from observed climate.
Third, a ‘probabilistic forecast’ is generated from the weighted ensemble. Problems
with this approach are discussed in the following section.

15.5 The problem with experts is that they
know about things

The use of ‘expert prior’ information in the treatment of model error in climate
forecasting is sufficiently widespread that we feel we should devote a section to the
problems intrinsic to this approach. Lest it be thought that we have any problem with
experts, we stress that we will end up using expert opinion to design our perturbations
in the concluding sections, but we will introduce additional steps in the analysis to
minimise the impact of any ‘double-counting’ this might introduce.

The problem with a direct implementation of a likelihood-weighted perturbed-
physics ensemble is that some of the observations are almost certainly used twice,
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first in determining the perturbations made to the inputs and second in conditioning
the ensemble. The result, of course, is that uncertainties are underestimated, perhaps
by a significant margin.

Take a very simple example to begin with: suppose, no matter what parame-
ters are perturbed in a climate model, the climate sensitivity (equilibrium response
to doubling CO2) varies in direct proportion to the net cloud forcing (CF) in
the model-simulated present-day climate which, in turn, is constrained by the avail-
able observations to be zero, with standard deviation σ CF = 4 Wm−2 (if only things
were so simple, but we simply wish to make a point here about methodology).
We assemble an ensemble of models, either by collecting them up or by asking
parametrisation developers to provide ‘credible’ ranges for parameters in a single
model. Suppose we find that the model developers have done their homework well,
and net cloud forcing in the resulting ensemble is also 0 ± 4 Wm−2. We then weight
the ensemble by exp(−CF2/σ 2

CF) to mimic their ‘likelihood’ with respect to current
observed climate and find that the variance of CF in the weighted ensemble is σ 2

CF/2.
If the model developers had no knowledge of the fact that the perturbations they

were proposing might have an impact on cloud forcing, or no knowledge of current
observations and accepted uncertainty ranges for cloud forcing, this would be the
correct result: if we double the number of independent normally distributed pieces
of information contributing to the same answer, then the variance in the answer is
halved. But is it really credible that someone working on cloud parametrisations
in a climate model could operate without knowledge of current observations? In
reality, of course, the knowledge that a perturbation would be likely to affect cloud
forcing and the knowledge of the likely ranges of cloud forcing consistent with
the observations would have conditioned the choice of ‘reasonable’ perturbations to
some unquantifiable extent, so uncertainties would have been underestimated by an
unquantifiable margin.

In the case of ‘ensembles of opportunity’ obtained by assembling models from
different groups, the situation is likely to be worse than this, since no one particularly
wants their model to be the 2-σ outlier in something as basic as cloud forcing, which
5% of models should be if their distribution of behaviour is to be representative of
current uncertainty. Hence uncertainty estimates from ‘raw’ unweighted ensembles of
opportunity are likely to be biased low (see, for example, Palmer and Raisanen, 2002),
and estimates from likelihood-weighted ensembles of opportunity would be biased
even lower. To make matters even worse, it has been proposed (Georgi and Mearns,
2002; Tebaldi et al., 2005) that models should be explicitly penalised for being
dissimilar to each other, which would further exacerbate the low bias in uncertainty
estimates resulting from the natural social tendency of modelling groups each to
aspire to produce the ‘best-guess’ model.

The cloud forcing case is hypothetical, but there are practical examples of such
problems, particularly with ensembles of opportunity. The curve and top axis in
Figure 15.1, following Figure 15.1 of Allen and Ingram (2002), show an estimate
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Figure 15.1 Comparison of the distribution of transient responses to increasing CO2

expressed as attributable warming over the twentieth century (top axis) and transient
climate response (TCR) (bottom axis). Crosses indicate members of the CMIP-2
intercomparison, while diamonds show models included in the summary figures of
the 2001 IPCC Scientific Assessment. Inset panel shows the number of CMIP-2
models falling into each decile of the distribution.

of the distribution of warming attributable to greenhouse gases over the twentieth
century based on the analysis of Stott and Kettleborough (2002). Consistent with
current expert opinion, the ‘best guess’ greenhouse-induced warming, at 0.8 K, is
slightly higher than the total warming over the twentieth century, with the net effect of
other forcings estimated to be negative, but with a broad and more-or-less symmetric
range of uncertainty due to internal variability and the possible confounding effects
of other signals.

The bottom axis shows the same information expressed in terms of transient
climate response (the expected warming at the time of CO2 doubling under a 1% per
year increasing CO2 scenario). The advantage of transient climate response (TCR)
is that it has been calculated for a wide range of models in the CMIP-2 model
intercomparison experiment (Covey et al., 2000), shown by the crosses on the plot.
If these models were representative of behaviour consistent with observations, we
would expect to see similar numbers falling in each decile (vertical stripe) of the
distribution, and a more-or-less flat histogram in the inset panel. They clearly do not,
with only two out of 19 models lying in the upper half of the distribution. Should
we revise down our estimate of observed greenhouse-induced warming over the



404 Myles Allen et al.

twentieth century because the models generally underpredict it, or should we rather
suspect that our sample of models is likely to be biased?

Problems also arise in the use of explicitly defined ‘expert priors’, such as that
used by Forest et al. (2002) (which we feel comfortable criticising since one of
us was a co-author responsible for statistical methodology, although the author-of-
intersection would like to emphasise, in self-defence, that this study was far from
alone in its overall approach). In one of the cases considered, Forest et al. (2002) used
an ‘expert prior’ on climate sensitivity based on a systematic survey of the opinions
of a number of climate experts to generate an initial sample of possible models.
These were subsequently weighted by a goodness-of-fit statistic involving, among
other things, the observed warming over the twentieth century. This procedure is only
valid if the opinions of the climate experts are independent of the observed warming.

There are climate experts who claim that they would still be of the opinion that
the climate sensitivity (equilibrium warming on doubling of CO2) is in the range
1.5–4.5 K even if the world had not warmed up by 0.6 K over the past century,
more or less in line with a sensitivity somewhere near the middle of this range, and
therefore this observation represents independent information. It is true that this range
was originally proposed before much of the late-century warming took place, and
also before the extent to which anthropogenic aerosol emissions might be masking
CO2-induced warming was established. Hence there might be some truth to the claim
that it represented information independent of the observed warming trend back in
1979, but this is much harder to argue now: consider what the consensus view on
climate sensitivity would be if the world had not warmed up at all, or had already
warmed by 1.5 K. Ideally, of course, we would like the opinion of experts in the
physical processes represented in climate models who happen to be unaware of any
of the observations we might subsequently use to condition the ensemble, but climate
model development is an empirical science, so such ‘cloistered experts’ (thanks to
Lenny Smith for this nomenclature) are hard to find.

The problem becomes worse, not better, if the measure of model-data consistency
is widened to encompass a broader range of observations. The more data are put into
the ensemble-filtering step, the more likely it is that some of the data were available
to the experts designing the models or parameter perturbations used to generate the
initial ensemble. If models are originally designed to fit the data, and then pruned
to fit better still, the resulting spread will seriously understate the likelihood that the
particular cloud data set that everyone uses to both tune and evaluate their cirrus
parametrisation might just happen to contain a fluke bias.

One response to this problem would be to exhort the modellers to try harder
to produce models which are less like the observations in order to populate the
tails of the distribution consistent with the data sets available. In the cloud forcing
case, for example, if CF in the initial ensemble were uniformly distributed between
±10 Wm−2 then the application of likelihood weighting gives almost exactly the cor-
rect variance for the weighted distribution. We have tried this approach in a seminar in
one leading climate modelling centre, and would advise against it: persuading model
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developers to produce parametrisations that are further from uncertain observations
in order that they should span the range of behaviour consistent with the observations
more completely appears to be a lost cause, however theoretically desirable.

On a purely practical level, models are typically designed such that they are
numerically stable only in the vicinity of observed climate, so producing a truly ‘flat’
prior distribution of something like CF would be impossible, and any convexity of
the prior distribution across the range consistent with the observations would result in
the variance of a likelihood-weighted ensemble being underestimated. The solution
we propose in the final sections is simply to renormalise the ensemble by the density
of the prior distribution in the space of the forecast variable in question, to mimic
what we would have got had we been able to produce a flat prior, without actually
going to the pain of producing one.

15.6 Empirical solutions and ensemble dressing:
the probabilistic forecaster’s flux correction

If a succession of forecasts are available, based on the same forecasting system, of the
same generic situation, then workable solutions to the problem of model error may be
derived from a consideration of past verification statistics. Consider for simplicity a
linear prediction system in which all errors are Gaussian. If it is found that the variance
between the forecast verification and ensemble mean is systematically greater than
the within-ensemble variance by a factor of two, the error can be corrected simply by
inflating the forecast variance above that of the ensemble spread. Systematic forecast
biases can also be corrected in this empirical way.

Much more sophisticated post-processing is required to account for non-linearity,
discussed in Smith (this volume), but the principle is the same: the ensemble is treated
as one source of information in a probabilistic forecast, along with many others. In
some respects we might compare this kind of empirical ‘ensemble dressing’ with the
application of empirically determined flux adjustments in climate models. It works,
and turns an unusable ensemble forecasting system (or climate model) into something
potentially highly informative, but at the same time it could seem disconcertingly ad
hoc. The question arises whether problems might be being papered over that would,
if resolved, increase the utility of the forecast still further. Whatever our view on
ensemble dressing, however, the fundamental problem is that it cannot be applied to
what are often the most interesting forecasting situations: forecasting unprecedented
or near-unprecedented events.

15.7 Probabilistic forecasts of one-off events:
the verification problem

Empirical solutions may be highly effective in compensating for the impact of
model error in generic forecasting situations for which a large number of verification
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instances can be collected. Problems arise when a forecast is to be made of an event
which happens relatively seldom, or worse still is entirely unprecedented. The most
obvious example of this nature is the problem of forecasting anthropogenic climate
change, but similar problems arise on much shorter timescales as well. For example,
in El Niño forecasting, only a couple of events have been observed in the kind of detail
necessary to initialise a modern seasonal forecast, which is far too few to develop
any kind of post-hoc corrections on ensemble spread. Moreover, each El Niño event
evolves in a rather different way, making it likely that different sources of model
error may be important in forecasting different events. Hence there is no guarantee
that an empirical correction scheme, even if based on several El Niño events, will
work for the next one.

The solution to this problem is intimately tied up in our basic understanding of what
we mean by an ‘improved’ or even ‘accurate’ estimate of uncertainty in a forecast
of the climate of 2050 or 2100. Assessing (and hence, in principle, improving) the
accuracy of estimates of uncertainty in a probabilistic weather forecasting system is
at least conceptually straightforward. We can examine a sequence of forecasts of a
particular variable and keep track of how often the real world evolves into, say, the
fifth percentile of the predicted distribution (Smith, 2000; ECMWF, 2002). If this
occurs roughly 5% of the time, then the error estimates based on our forecasting
system are acceptable. If it always occurs 10% of the time, then our error estimates
can be recalibrated accordingly. But how can we evaluate a probabilistic forecast of
anthropogenic climate change to 2050 when we will only have a single validation
point, and that one available long after the forecast is of historical interest only?

This problem has led some commentators to assert (Schneider, 2002) that any
estimate of uncertainty in forecast climate change will always be fundamentally sub-
jective, ultimately representing current scientific opinion rather than an objectively
verifiable or falsifiable assertion of fact. While accepting that there will always be an
element of subjectivity in the choice of methodological details or the choice of climate
model(s) used in the analysis, we argue that this subjective element, including the
dependence of results on the climate model(s) used, can and should be second order,
quantified and minimised as far as possible. To resign ourselves to any other position
on an issue as contentious as climate change is to risk diverting attention from the
science itself to the possible motivations of the experts or modelling communities on
which current scientific opinion rests. The presence of subjective aspects in uncer-
tainty estimates in forecasts need not preclude methodological restrictions: while
we accept that there is a degree of subjective judgement in uncertainty estimates, it
ought to be possible to provide limits or constraints on this subjectivity, particularly
regarding specifying how and where judgements should (and should not) be made in
the forecast process (see Section 15.9 for details).

Although this sounds a relatively abstract issue, there are deeply practical conse-
quences: the headline result of Wigler and Raper (2001) was that warming rates
at the upper end of the range quoted in the IPCC 2001 Scientific Assessment
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(Houghton et al., 2001) were extremely unlikely. This conclusion depended, to first
order, on those authors’ decision to assume (admirably clearly footnoted) that there
was only a 1 in 20 likelihood of the climate sensitivity (equilibrium warming on
doubling carbon dioxide) exceeding 4.5 K, despite the fact that the available formal
surveys of expert opinion (Morgan and Keith, 1995) and estimates based on the anal-
ysis of climate observations (Andronova and Schlesinger, 2000; Forest et al., 2002;
Knutti et al., 2002; Gregory et al., 2002) suggest a substantially higher upper bound
at this confidence level. Statements of the form ‘this is our opinion (or, perhaps less
provocative but still problematic, our model), and these are its consequences’ are
unlikely to engender the kind of confidence in the non-scientific community required
to justify far-reaching political and economic decisions.

How can we avoid the charge of subjectivism or ‘model-relativism’? The solution
(Allen and Stainforth, 2002) is to focus on whether or not a probabilistic forecast
for a particular climate variable has converged, rather than being sidetracked onto
the unanswerable question of whether or not it is correct. In a similar vein (and, of
course, not by coincidence), Smith (2002) argues that we should look for consistency
of results across classes of models.

A forecast distribution for a particular variable has converged if it depends pri-
marily on the observations used to constrain the forecast and not, to first order, on
the climate model used or subjective opinions of the forecasters. Hence, in claiming
that a forecast distribution (of 2100 global temperature, for example, or north-west
European winter rainfall in the 2030s or, most challenging of all (Roulston and Smith,
2002), some multivariate combination thereof) has converged, we are claiming that
the forecast distribution is unlikely to change substantially due to the further devel-
opment of climate models or evolution of expert opinion, although uncertainties are
likely to continue to be reduced as the real-world signal evolves and more observa-
tions are brought to bear on the problem (Stott and Kettleborough, 2002).

A claim of convergence is testable and falsifiable. For instance, it might be found
that increasing model resolution systematically and substantially alters the fore-
cast distribution of the variable in question, without the introduction of any new
data. We can use our physical understanding of the system to assess whether this
is likely to happen in any given instance, depending on the robustness of the con-
straints linking the forecast variable to observable quantities. In a complex non-linear
system, however, any physically based arguments will need to be tested through
simulation.

15.8 Stable inference from data: a pragmatic approach
to STAID forecasting

Once we have agreed on what we are trying to do in the treatment of model error
in a probabilistic forecast of a one-off event, there will doubtless be many different
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approaches to achieving this end. In these final sections, we outline one approach and
discuss the implications for the design of climate forecasting systems. In essence,
our approach is inspired directly by the pragmatic approach taken for many years
to model tuning. All models contain some tunable parameters which must be set
initially at relatively arbitrary values and subsequently adjusted in the process of
model development to optimise the fit between model output and observed climate.
We simply propose extending this approach to optimise the fit between the distribution
of models in a perturbed-physics ensemble and known uncertainties in observable
properties of the system being modelled that are directly related to the forecast
quantity of interest. The key difference is that when a model is being tuned the usual
practice is to adjust the parameter in question and repeat the run, whereas when an
ensemble is being tuned, it may be unrealistic to rerun it, so the weights assigned to
ensemble members need to be adjusted instead.

What do we mean by ‘known uncertainties’ and ‘observable properties’? We will
focus on the ‘ideal’ climate problem, in which the timescales of interest are much
longer than the longest timescale of predictability in the system, so the role of the
initial conditions can be ignored. A possible extension to problems in which initial
conditions are important is discussed qualitatively in the final section. Suppose x̃ f

is a particularly interesting quantity (externally driven global warming 2000–30, for
example) derived from the full description of the system at the forecast time, x f ,
and suppose also that we find, across the members of a perturbed physics ensemble,
that there is a consistent linear relationship between x̃ f and xa , where xa is an
observable property or set of observable properties of the system over the analysis
period (externally driven warming 1950–2000).

We use the term ‘observable property’ loosely to mean a quantity whose distribu-
tion can be constrained primarily by observations with only limited use of modelling,
not necessarily something that is directly observable. The requirement of a linear
relationship between x̃ f and xa may seem restrictive, but it can be satisfied by con-
struction through an appropriate redefinition of xa provided there is a monotonic and
single-valued relationship between them. Aficionados of complexity in the climate
system will doubtless protest that only very few forecast variables will satisfy the
requirement of a monotonic, single-valued relationship to a finite set of observable
quantities, but before dismissing this approach out of hand, recall that we are focusing
here on climate variables, or the statistical moments of the weather attractor, which
are generally much better behaved than the chaotic trajectory of the system over the
attractor itself. Moreover, we do not require that this relationship be exact, simply
that it should explain a significant fraction of the variance of the forecast variable of
interest over the range consistent with observations: the more the variance explained,
the more STAID the forecast.

Let us represent all underdetermined ‘tunable inputs’ (Goldstein and Rougier,
2004) to the forecasting system for which we do not have a prior distribution, includ-
ing structural uncertainties, as q. Inputs for which a prior distribution is available that
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we can be sure is independent of the observations used in the forecast initialisation
are treated like p above. P(q) is undefinable because we have no way of sampling the
space of all possible models and no way of saying how far apart two models are even
if we could, but we need to assume some sort of distribution for q, P̂(q), in order to
get started. The crux of the solution is that we should design the forecasting system
to minimise the impact of P̂(q) on the forecast quantity of interest, and only claim
forecasts are STAID to the extent that they can be shown not to depend on P̂(q) (there
is a direct analogy with the analysis of the role of the a priori in satellite retrievals).

The statement that there is a consistent relationship between x̃ f and xa which does
not depend on the choice of model is tantamount to the claim that

P(x̃ f |xa, q) = P(x̃ f |xa) ∀(q). (15.8)

This claim remains falsifiable even if it appears to be the case for all models (values of
q) tested to date, if the incorporation of a new process either changes the relationship
between x̃ f and xa (sometimes called a transfer function; Allen et al., 2000) or renders
it dependent on new tunable inputs whose values are not constrained by observations.
Such claims will be on strongest ground when they can be supported by a fundamental
physical understanding of why there must be a consistent relationship between x̃ f

and xa which any valid model must share, like energy conservation. Many, however,
will remain ‘emergent constraints’ on which models appear to have converged but
are not necessarily dictated by the underlying physics.

Similarly, the claim that xa can be constrained primarily by observations is equiv-
alent to the claim

P(xa|y, q) = P(xa|y) ∀(q). (15.9)

If there are no other constraints on the observing system, so P(y) and P(xa) are both
uniform, then P(xa|y) = P(y|xa), meaning the likelihood of xa taking a certain value
in the light of the observations can be equated with the likelihood of us obtaining
these observations given that it does take that value.

Whether or not it is reasonable to regard P(xa) as uniform over the range con-
sistent with the observations will depend on the variable in question. For relatively
well observed quantities like the underlying rate of global warming, this could be a
reasonable assumption since, if models were to simulate warming rates consistently
lower or higher than that observed, our response would be to revise the models or
look for missing forcings, not revise our assessment of how fast the world was warm-
ing up. This is precisely what happened before the introduction of sulphate aerosol
cooling in the early 1990s: models forced with greenhouse gas increases alone were
consistently overpredicting the observed rate of warming, so the community con-
cluded, correctly, that all models were missing some crucial aspect of the physics
(aerosol-induced cooling), not that the observations were in error, which was treated
as a primary observable. The ‘attributable warming’ shown in Figure 15.1 is a slightly
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more derived quantity, but could still be regarded as a primary observable that our
ensemble of models should be constrained to fit, and not vice versa.

An estimate of the distribution of xa can be obtained from an ensemble of ‘hindcast’
simulations:

P̃(xa|y) = P(xa|y, q)P̂(q|y)

P̂(q|xa, y)
� P(y|xa)P̂(q|y)

P̂(q|xa, y)
(15.10)

where the second, more tentative, equality only holds when the above statements
about xa being primarily constrained by observations are true. P̂(q|y) represents a
sample of models (values of the tuning inputs) obtained by perturbing parametrisa-
tions by collecting models and model components from a range of different sources
(an ‘ensemble of opportunity’). It is not an estimate of any distribution, because
the distribution of all possible models is undefined, and (no matter what the experts
claim) it is conditioned on the observations: we don’t know how much, but our objec-
tive is to make it the case that we don’t care. The denominator P̂(q|xa, y) represents
the frequency of occurrence of models in this sample in which the simulated xa lies
within a unit distance from any given value, or the observed density of models in the
space spanned by xa , given the observations. Its role in Eq. (15.10) is rather like a
histogram renormalisation in image processing: it ensures we end up with the same
weight of ensemble members in each decile of the P(xa|y) distribution, forcing a flat
inset histogram in Figure 15.1.

Suppose y and xa each have only a single element, being the externally forced
global temperature trend over the past 50 years (Figure 15.2); y is observed to be
0.15 K per decade, ±0.05 K/decade due to observational uncertainty and internal
variability. For simplicity of display, we assume internal variability is independent
of q, but relaxing this assumption is straightforward. The curve in Figure 15.2 shows
P(y|xa) and the vertical lines show simulated xa from a hypothetical ensemble which,
like the CMIP-2 ensemble shown in Figure 15.1, is biased with respect to the obser-
vations in both mean and spread. For simplicity, we have assumed a large initial-
condition ensemble is available for each model version (value of q), so the xa from
the models are delta functions.

A likelihood-weighted perturbed-physics ensemble would estimate the distribu-
tion of P(xa|y) from

P ′(xa|y) = P(y|xa)P̂(q|y), (15.11)

meaning weighting the ensemble members by some measure of their distance from
observations and estimating the distribution from the result. This would only give
the correct answer if P̂(q|xa, y) is uniform across the range consistent with the
observations: note that this requires many more models that are almost certainly
inconsistent with the observations than producing an ensemble that is consistent
with the observations in the sense of providing a flat histogram in the inset panel of
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Figure 15.2 (Top panel) Schematic distribution of externally forced trends
consistent with an observed trend of 0.15(±0.05)K/decade, P(xa |y). Locations of
vertical lines show model simulations from a hypothetical untargeted ensemble,
P̂(q, y), with heights of lines showing likelihood-based weights P(y|xa). (Bottom
panel) solid and dashed lines show estimates of P(xa |y) based on Eq. (15.10) with
ensembles of 50 and 10 000 members respectively, while dotted histogram shows an
estimate based on Eq. (15.11), which is biased in both mean and spread.

Figure 15.1. In this case, of course, P̂(q|xa, y) is not uniform (the vertical lines are not
uniformly distributed over the 0–0.3 K/decade interval), so the likelihood-weighted
perturbed-physics ensemble gives the wrong answer (dotted histogram).

A histogram-renormalised likelihood-weighted perturbed-physics ensemble (a bit
of a mouthful, so let’s just call it STAID) given by Eq. (15.10) gives the correct
answer, but at a price. Because we need to compute the density of models in the
space spanned by the observable quantity xa , we need to ensure we have a large
enough ensemble to populate this space. Sophisticated density-estimation methods
would help (we have used a very unsophisticated one), but these would depend on
assumptions about the smoothness of the response to variations in tunable inputs
that could only be tested by simulation. The problem is that, for a given level of
smoothness, the requisite ensemble size increases geometrically with the rank of xa .
In this case, xa has only a single element, and estimates P̂(xa|y) from Eq. (15.10) are
shown by the solid and dashed histograms in the figure, using 50- and 10 000-member
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ensembles respectively. While both are substantially closer to the true uncertainty
range, there are significant distortions in the tails of the distribution (which are rele-
vant to many policy decisions) estimated from the smaller ensemble. If no members
of the ensemble happen to lie in a particular region consistent with recent climate
observations, and we aren’t justified in interpolating from adjacent regions, then no
amount of reweighting can help establish what would happen if they did. So STAID
forecasting needs large ensembles. The key advantage of the STAID ensemble, how-
ever, is that its dependence on P̂(q) is second order. Provided the ensemble is big
enough to populate the space spanned by xa , the impact of that troublesome prior is
integrated out.

So far, this all looks like a very laborious way of recovering P(xa|y) which we have
already said we are prepared to equate with P(y|xa), so why bother? We are interested
in xa because it is linearly related to some forecast quantity, x̃ f , independent of both
q and y. Hence

P̃(x̃ f |y) = P(x̃ f |xa)P̃(xa|y)

P(xa|x̃ f )
∀(q, y), (15.12)

where the transfer function P(x̃ f |xa)/P(xa|x̃ f ) is provided, ideally, by fundamen-
tal physics or, in practice, by the emergent constraints indicated by the ensem-
ble. Provided the transfer function is linear, then having determined the weights
on ensemble members necessary to recover an unbiased estimate of P(xa|y) and
established that the relationship between x̃ f and xa is consistent across the ensem-
ble and not dependent on q, we simply apply those same weights to the forecast
ensemble to arrive at an estimate of P(x̃ f ) which is not, to first order, dependent on
P̂(q).

The requirement of a linear transfer function, or that P(x̃ f |xa)/P(xa|x̃ f ) is inde-
pendent of q, means that renormalising the ensemble to ensure a uniform predictive
prior distribution in xa automatically ensures a uniform predictive prior distribu-
tion in x̃ f . We noted above that it will always be possible in principle to redefine
our observables to force a linear transfer function, but this does have counterintu-
itive consequences when the most obvious observable quantities are non-linear in
the forecast variable of interest. A perfect example of this problem is given by the
climate sensitivity, S, or long-term equilibrium warming response to an increase in
greenhouse gas levels followed by indefinite stabilisation. For fundamental physical
reasons, observable properties of the climate system that we have available scale with
the strength of atmospheric feedbacks, λ, which is inversely proportional to the sen-
sitivity, not with the sensitivity itself. As a result, P(x̃ f |xa)/P(xa|x̃ f ) is proportional
to S−2, so normalising the ensemble to provide a uniform prior in xa will significantly
downweight the likelihood of a high climate sensitivity.

This is clearly incorrect, since the fact that directly observable properties of the
climate system change less with sensitivity as sensitivity increases does not, in itself,
make a high value of the sensitivity unlikely. If we had two observable quantities, one
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of which is linear in sensitivity and the second linear in λ, or S−1, sampling uniformly
in the second observable would make it appear to contain more information about
high values of sensitivity, by automatically reducing the upper bound, whereas the
reverse is clearly true. We need to be very careful not to rule out high values of the
sensitivity by such, possibly inadvertent, sleight of hand.

Jewson and Caballero (2003) also note the importance of normalising out the
impact of the prior when conditioning an ensemble with probabilistic information.
They are conditioning a climatological time-series model of local weather using a
probabilistic forecast whereas we are conditioning a perturbed-physics ensemble
using probabilistic information about ranges of past warming rates consistent with
recent observations, but the underlying objective is the same: a smooth progression
of estimated distributions, making maximal use of available information, throughout
the hindcast and forecast period.

Renormalising by prior density is a simple enough manoeuvre, required by a 300-
year-old theorem, but it has very profound implications for experimental design.
Very few forecast quantities of interest will be found to depend exclusively on only a
single observable climate variable. That said, given the strong constraints linking dif-
ferent variables in climate models, the number of effectively independent observable
dimensions might be relatively small (fewer than half a dozen) at least for large-scale
forecast quantities. Sampling a four-dimensional space at decile resolution for the
computation of P(q|xa, y) requires, however, a 0(104)-member ensemble of climate
models, and if we also allow for initial-condition ensembles to increase the signal-to-
noise and boundary-condition ensembles to allow for uncertainty in past and future
forcing, the desired ensemble size runs into millions. Fortunately, such ensembles are
now feasible using public-resource distributed computing (Allen, 1999; Stainforth
et al., 2002; Allen and Stainforth, 2002).

Interestingly, if we give up the chase for a defensible prior encompassing model
error, we no longer have any universal ‘best’ set of weights to apply to a perturbed-
physics ensemble: the weights will depend on the forecast quantity of interest. The
reason is that they are determined by whatever it takes to make the ensemble consis-
tent with current knowledge and uncertainty in observable quantities on which that
forecast quantity is found to depend, and different forecast quantities will depend on
different observables. There is nothing inconsistent about this, since model errors are
likely to have a different impact on different variables, but it does mean that forecast
applications need to be integrated much more closely into the forecasting system
itself. If a climate impact, for example, depends on some combination of tempera-
ture and precipitation, we cannot simply combine results from a weighted ensemble
targeting temperature with another targeting precipitation: we need to recompute the
weights to identify the observable variables that specifically constrain the function of
interest. The good news, however, is that provided the initial ensemble is big enough
to be space filling in the relevant observables, then this is simply a post-processing
exercise which does not require us to rerun the models.
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15.9 The effects of prior beliefs on probabilistic
climate forecasts

This section, based on Frame et al. (2005), provides a practical application of STAID
probabilistic forecasting to the problem of constraining climate sensitivity, or the
equilibrium warming response to doubling carbon dioxide levels. Climate sensitiv-
ity is generally considered a key determinant of climate change (Morgan and Keith,
1995; Houghton et al., 2001), in particular of the risk that a given greenhouse gas sta-
bilisation level might result in a ‘dangerous’ long-term equilibrium warming. Many
recent studies (Andronova and Schlesinger, 2000; Forest et al., 2002; Knutti et al.,
2002; Gregory et al., 2002; Murphy et al., 2004) have attempted to constrain climate
sensitivity by comparing models with recent observations, and these studies have
reported a surprisingly wide range of distributions. Here we show that much of this
variation arises from different prior assumptions regarding climate sensitivity before
any physical or observational constraints are applied. This apparent arbitrariness can
be resolved by focusing on the intended purpose of the forecast, consistent with the
approach proposed in the preceding section.

We demonstrate our point with a simple global energy balance model (EBM) and
diffusive ocean (Hansen et al., 1985), although the reasoning applies to any model
in which atmospheric feedbacks scale linearly with surface warming and in which
effective oceanic heat capacity is approximately constant under twentieth-century
climate forcing. The diamonds in Figures 15.3 and 15.5 show the average warming
trend caused by greenhouse gas increase over the twentieth-century (vertical axis)
as a function of effective heat capacity of the troposphere–land–ocean system (hori-
zontal) and the climate sensitivity S (symbol size: larger sizes correspond to higher
sensitivities) for a range of different settings of model parameters. The black contour
encloses the region consistent (at the 5% level) with observations of twentieth-century
greenhouse warming and the effective heat capacity.

We isolate the greenhouse warming signal using a pattern-based attribution anal-
ysis (Stott and Kettleborough, 2002) allowing for uncertainty in both greenhouse
and other forcings (Allen et al., 2000). This estimate of attributable warming does
not depend on climate sensitivity, although it does rely on the accuracy of patterns
of temperature change and variability simulated by a climate model. Heat capacity
is inferred from the observed change in global mean oceanic heat content (Levitus
et al., 2000, 2005) over the 1957–94 period divided by the corresponding change
in decadal-mean surface temperature, allowing for the uncertainty in both quanti-
ties. Model parameters are chosen to sample heat capacity approximately uniformly,
so the points are evenly spaced in the horizontal. The only difference between
Figures 15.3 and 15.5 is the way we sample model parameters. In Figure 15.3,
following Andronova and Schlesinger (2000), Forest et al. (2000) and Knutti
et al. (2002), parameters are chosen to sample S uniformly over the range 0.17 to
20 ◦C.
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Figure 15.3 Relationship between climate sensitivity (represented by the size of the
diamonds), effective ocean heat capacity and twentieth century warming attributable
to changes in greenhouse gases. Diamonds show simulation results based on uniform
sampling of climate sensitivity, S, between 0 and 20 ◦C. Black contour encloses the
region consistent with observations at the 5% level.

Weighting each of the runs in Figure 15.3 by the likelihood of obtaining these
observations (specifically, the observed level of model-data discrepancy; Forest
et al., 2000) if that combination of sensitivity and effective heat capacity is cor-
rect and estimating a ‘posterior’ distribution for S from the weighted ensemble (the
dash-dot curve in Figure 15.4) gives a 5–95% range for climate sensitivity of 1.2–
13.5 ◦C. Two factors contribute to this high upper bound. First, for any given ocean
heat capacity, the relationship between sensitivity and transient warming to date is
non-linear (Allen et al., 2000; Stott and Kettleborough, 2002), which tends to con-
centrate the diamonds in Figure 15.3 at higher values of past warming. Second, this
sampling of model parameters implies a uniform distribution for S before any com-
parison with observations, meaning a sensitivity between 2 and 3 ◦C is assumed to
be as likely as one between 3 and 4 ◦C, or 9 and 10 ◦C.

An alternative approach is taken by Murphy et al. (2004): using a complex climate
model they ran an ensemble of equilibrium 2×CO2 experiments with expert-specified
ranges of parameters, sampled parameters uniformly over these ranges and assumed
that changes to parameters have an approximately linear impact on λ, the increase
in energy radiated to space per degree of warming, which is proportional to 1/S. If
a single parameter dominates changes in λ, as is the case in our simple model (and
as also happens to be the case in Murphy et al., 2004, for high sensitivities (another
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Figure 15.4 Distributions of climate sensitivity based on these observations,
assuming a uniform initial distribution in sensitivity (dotted), and in feedback
strength (short-dashed), as well as in forecast 1990–2100 warming under the A1FI
(long dashed) and B1 (very short dashes) scenarios and in TCR (solid curve).

parameter change yields low sensitivities)), these two assumptions, in this case, imply
a sensitivity between 2 and 3 ◦C is as likely, before any physical or observational
constraints are applied, as one between 3 and 6 ◦C, or between 1 and 1.2 ◦C. The
implications of such a uniform sampling of λ, for our simple model are shown in
Figure 15.5: the relationship between sensitivity, warming and heat capacity is the
same as in Figure 15.3, but the location of the diamonds is very different. If we weight
by comparison with observations as before, we now find a low chance (<3%) of a
sensitivity greater than 4.5 K. This leads to the dashed distribution in Figure 15.4
and a 5–95% range for sensitivity of 0.6–4 K.

These two approaches yield very different values for sensitivity, particularly in
terms of the upper bound. Which approach is correct? We argue that it depends on
what you want to forecast. This can be illustrated by considering the implications of
different priors on forecasts of twentieth-century attributable warming: i.e. attempting
to reconstruct the data that forms the constraint with which we began, shown in
Figure 15.6. The distribution of twentieth-century warming implied by a uniform
prior in sensitivity peaks above our best-guess observed warming because of the
points clustering in the upper half of the region enclosed by the contour; while the
distribution implied by the reciprocal of sensitivity peaks below our original best
guess. As a result, neither curve adequately reconstructs the distribution of observed
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Figure 15.5 As Figure 15.3, but showing simulation results based on a uniform
sampling of feedback strength, or λ ∝ S−1.
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Figure 15.6 Distributions of twentieth-century attributable greenhouse warming
based on original data (thick grey curve) and hindcast using a neutral prior in
sensitivity (dash-dotted), feedback strength (dashed), A1FI (long dashed, near grey
band) and B1 scenarios (short dashes, near grey band) and TCR (solid line)
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greenhouse warming consistent with observed greenhouse warming. However, a
distribution based on a uniform prior in transient climate response (solid black curve)
does an excellent job of reconstructing the data.

As discussed above, many parameters in climate models do not correspond to
directly observable quantities for which we can define an objective prior distribution
(Kennedy and O’Hagen, 2001; Goldstein and Rougier, 2005). Equally plausible
approaches using the same model and observations can yield very different estimates
of the risk of high climate sensitivity. Transient and volcanic responses both fail to give
an upper bound on sensitivity (Frame et al., 2005; Wigley et al., 2005). This perhaps
intuitively surprising result is to be expected on physical grounds in any study that
focuses on the transient response: a Taylor expansion of the transient temperature
response to any external forcing F given a constant effective heat capacity c and
feedback parameter λ is proportional to (λdt)/c. Thus, the first sensitivity-dependent
term to emerge in the limit of high sensitivity, short timescale or high heat capacity
(or any combination thereof) is proportional to λ, not S. A linear relationship between
λ and climatology is assumed a priori in Murphy et al. (2004).

If the relationship between the observational data and λ is linear, then the relation-
ship between the data and S is non-linear, with the rate of change tending towards
zero as S increases. In practical terms, this means that a change in climate system
properties that takes a 5 ◦C to a 10 ◦C sensitivity has less impact on any of these
observable properties of the climate system than one that takes a 0.9 ◦C to a 1 ◦C
sensitivity.

Problems in which one can, equally credibly, form priors in a quantity and its
reciprocal are instances of Von Kries’s variant (Keynes, 1921; Rosenkrantz, 1977),
of Bertrand’s paradox (Bertrand, 1889). Bertrand’s paradox is largely about the
underdetermined nature of randomness in problems that call for random sampling
(Weatherford, 1982). Though there appears to exist no canonical solution to the gen-
eral problem(s), we believe that clarifying the question is a useful way out, because it
presents a methodological way forward. On this view we need to clarify the purpose
of the forecast distribution, and choose our prior so as to minimise our biases and
maximise our ignorance in the forecast quantity, before any data are considered. This
amounts to an application of the principle of indifference across the forecast variable.
The principle of indifference (Weatherford, 1982; van Fraassen, 1989) states that if
one has reasons for believing each element of a set of propositions is equally likely,
then one’s degree of belief in each of the propositions should be the same. It is a way
of distributing one’s ignorance evenly over a set of possibilities that, before the data
are considered, are thought to be equally likely. To avoid biasing forecasts, it is desir-
able to use a prior that is neutral in the forecast quantity of interest, not the incidental
system parameters that are used to derive it. In this case one wants to express one’s
indifference to warming rates before the data are available. Any other choice implies
non-uniform ignorance across this forecast quantity, which implies additional infor-
mation. Our choice of sampling strategy has not introduced such information about
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the likelihood of high or low warming rates, yet, as is apparent from Figures 15.1,
15.3 and 15.4 it skews our forecasts.

A considerable literature exists regarding possible ways of constructing non-
informative priors (Howson and Urbach, 1993; Kass and Wassermann, 1996; Jaynes,
2003) and, in particular, addressing Bertrand’s paradox (Heidbreder, 1996), but gener-
ally the attention has been focused on issues to do with finding invariances, exploiting
symmetries, and so on in a way that will solve a canonical problem regarding the
formation of prior beliefs. The area remains controversial. In the case(s) described
here the focus of the problem dictates a particular strategy. We are not trying to solve
Bertrand’s paradox in all its forms; we are trying to avoid biasing the forecast of a
particular variable, given some combination of models and data. This comparatively
limited goal argues for a particular approach: one based around the principle of indif-
ference applied to the forecast variable in question. This amounts to constructing a
‘prior’ which is uniform (or neutral) in the forecast quantity before any data are
considered.

One of the most common alternative approaches – which does purport to offer
a canonical solution to Von Kries-like problems – is to attempt to exploit symme-
tries in the relations between the quantities under scrutiny. This approach seeks to
find invariant quantities that relate the relevant parameters. In the case where we
can, equally credibly, form uniform priors in X and 1/X , this approach invites us
to find relations that are invariant under multiplication. A log-normal formulation
can fulfil this requirement (Rosenkrantz, 1977), though it would not appear to be
a portable solution across all variables and relationships of interest to climate sci-
entists. In any case, the log-normal formulation still requires choices to be made
about the parameters (mean and standard deviation) of the distribution. Such choices
have long formed part of ‘expert-elicited’ priors about climate sensitivity, but there
appear to be no compelling non-subjective methods for forming one’s ideas about the
parameters of such distributions: the distributions that have formed the basis of the
scientific community’s ranges for sensitivity have been admirably and transparently
documented (Wigley and Raper, 1993; Houghton et al., 2001) as being the result of
expert subjective decisions, rather than as ranges that fall out of formal uncertainty
estimates. Because this approach gives basically the same result as the suggested
‘uniform prior in the forecast variable’ while (a) requiring poorly constrained, sub-
jective decisions about the parameters of the distribution and (b) holding over a more
restricted range of climate-relevant relationships, we suggest that the most sound
methodological approach is to condition one’s ensemble forecasts on a uniform prior
in the forecast variables of interest.

This is a practical methodological solution which attempts to make clear to the
forecast user the relative roles of untestable prior assumptions versus observational
or physical constraints. For example, users may wish to know ‘what does this study
tell me about X, given no knowledge of X before the study was performed?’ This
requires sampling non-observable parameters to simulate a uniform distribution in
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X, the forecast quantity of interest, not the incidental system parameters that are used
to derive it, before other constraints are applied.

For all transient climate change scenarios, future warming and hence climate
impacts are related non-linearly to sensitivity, such that a distribution based on a
uniform prior in either S or λ would be biased in the forecast quantity. A uniform prior
in S (λ) implies a prior distribution for 1990–2100 warming that is skewed towards
high (low) values. To avoid prejudging policy, we ought to be using forecasts that are
neutral in the relevant warming rates, rather than interesting system properties like S
or λ.

The uncomfortable conclusion is that there is no single ‘correct’ distribution on
which to condition one’s forecasts: the appropriate prior and hence uncertainty range
depend on the scenario for which an estimate of sensitivity is required. Starting
from a uniform prior distribution of S (Andronova and Schlesinger, 2000; Forest
et al., 2002; Knutti et al., 2002) is appropriate only in the special case of forecasting
long-term equilibrium warming under a stabilisation scenario, while starting from a
uniform distribution of λ (Murphy et al., 2004) may be more relevant to studies of
atmospheric feedbacks or, as we discuss below, to the question of what distribution
of stabilisation carbon dioxide concentrations is consistent with as target (2 K, for
example) equilibrium warming (Figure 15.7). The relevant relationships here are
between temperature and forcing and between forcing and concentration (Eq. 15.13).
Forcing is related to concentrations of carbon dioxide by:

F = F2x

ln2
× ln

CO2

CO2pre
(15.13)

in which CO2pre corresponds to preindustrial concentrations of carbon dioxide
(275 ppmv), and F2x = 3.74 (corresponding to HadCM3’s value for forcing in
response to a doubling of CO2).

So, since F ∝ λ, we should form the relevant prior to be uniform in λ. The
three forecast distributions for carbon concentration and sensitivity are shown in
Figure 15.7, and in this case – because of the proportionality between λ and the CO2

level consistent with a 2 K warming – we advocate using the dashed curve.
The implications of this point are shown by extending these weighted ensembles to

2100 under the IPCC A1FI and B1 scenarios (Houghton et al., 2001). If we begin with
a uniform distribution for S the weighted ensemble suggests a >8% (>3.6%) chance
of 1990–2100 warming >5.0 ◦C (>3.0 ◦C) under the A1FI (B1) scenario. If we begin
with a uniform distribution for λ the ensemble implies only a 1.1% (0.3%) chance
of the same outcome. The approach we recommend here – sampling neutrally in the
forecast quantity – implies the chances of 1990–2100 warming exceeding 5.0 ◦C
(3.0 ◦C) under A1FI (B1) are 3.6% and 1.5%, respectively. This agrees well with the
approach taken by Allen et al. (2000), Stott and Kettleborough (2002) and Gregory
et al. (2002), who sampled uniformly in the observable quantities used to constrain the
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Figure 15.7 Distributions of stabilisation concentrations of carbon dioxide consis-
tent with a 2 K target using a neutral prior in sensitivity (dotted), feedback strength
(dashed), and TCR (solid curve).

forecast, and yields a distribution close to the solid line in Figure 15.4 and a chance of
1990–2100 warming exceeding 5.0 ◦C (3.0 ◦C) under A1FI (B1) of 3.6% and 1.4%,
respectively. This agreement stems from the well-constrained relation between past
and future warming under non-stabilisation scenarios (Allen et al., 2000), so it is
contingent upon the details of future emissions.

While, in principle, we need a different sampling for every scenario or forecast
variable, in practice the response to almost any scenario except long-term stabilisation
is almost linearly related to the transient climate response (TCR, or the global mean
temperature change which results from a 1% per annum increase of CO2 over 70
years) (Houghton et al., 2001). Sampling sensitivity to give a uniform predictive
prior distribution in TCR gives an approximately uniform distribution in most policy-
relevant variables, including both past attributable warming and 1990–2100 warming
under all SRES emissions scenarios. After weighting by observations as before, this
approach implies a 5–95% range of uncertainty in S of 1.2–5.0 ◦C, with a median of
2.3 ◦C, suggesting that traditional ranges of uncertainty in S (Houghton et al., 2001),
may have greater medium-term policy relevance than recent more formal estimates
using uniform priors in S or λ.
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15.10 Practical implications for weather and
climate forecasting

Consider the following scenario: a small number of members of a perturbed-physics
or multimodel ensemble indicate a storm of unprecedented magnitude striking Paris
in a couple of days’ time. Examination of the ensemble statistics indicates that the
magnitude of this storm is strongly correlated with the depth of a depression now
forming off Cape Hatteras, independent of the model considered or perturbation made
to model physics. Of course, the immediate response is to scramble our adaptive
observation systems to get more data on this depression, but all available adaptive
observation systems have been redeployed to some trouble spot in a remote corner
of the globe. Worse still, there is a technical problem with the computer, the system
manager is on a tea break (inconceivable at ECMWF, but for the sake of argument),
so there is no chance of rerunning any members of the ensemble. The Mayor of Paris
has heard rumours in the press and is on the line demanding an estimate of the chance
that his roof is going to get blown off. Sounds tough? Welcome to climate research.

Suppose most members of the ensemble display a depression off Cape Hatteras
which is consistent with the depth of the observed depression but 90% of the model
depressions, xa , are weaker than the observed best-guess depth y. If we adopted a
likelihood-weighted perturbed-physics approach, we would simply weight by the
distance from observations (independent of sign), which would have the desirable
effect of downweighting ensemble members whose depressions are much weaker
than observed, but would leave a bias between the ensemble-based estimate of the
depth of the depression and a model-free observation-based estimate. If we were
very confident in our prior selection procedure for the inclusion of models into our
ensemble, then this bias is desirable: the ensemble system is telling us the observations
are, more likely than not, overestimating the depth of the depression. If, however,
as this chapter has argued, we can never have any confidence in a prior selection
procedure that purports to encompass model error, then we certainly shouldn’t be
revising the observations in the light of any model-based prior. Instead, Eq. (15.10)
would imply we should renormalise the ensemble histogram to give equal weight to
the 90% of members that underpredict the depression (and hence, if the relationship
is monotonic, are likely to underpredict the storm) as to the 10% that overpredict:
bad news for the Mayor.

Crucially, a rival forecasting centre which finds the same relationship between
depression and storm but whose prior model selection is such that 90% of ensemble
members overpredict the depth of the depression would, if also using Eq. (15.10) to
apply a histogram renormalisation, give the Mayor the same message: good news for
the scientific reputation of the forecasters. The storm is unprecedented, so neither
forecast is verifiable in the conventional sense, but we can at least make sure they are
STAID.
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This kind of reassessment of probabilities in the light of expert judgement about
the origins of biases goes on all the time already, and in time it is conceivable to
imagine extended-range forecasting systems in which multimodel perturbed-physics
ensembles are searched automatically for observable precursors to forecast events
of interest, and then reweighted to ensure the space spanned by these observables
is representatively populated. Tim Palmer asked us to discuss how the treatment of
model error might apply to shorter-timescale problems than the climate timescale
we normally deal with, and so we have had a go, conscious that there is a substan-
tial literature on these shorter-term issues with which we are only vaguely familiar
(apologies in advance to all the relevant authors we have failed to cite). In the shorter
term, however, the ideas proposed in this chapter are likely to have much more rele-
vance to the climate research problem, where we have the time and resources to do
the problem properly, and hence no excuse not to.

The conventional climate modelling approach (tuning a maximum-feasible-
resolution model to obtain an acceptably stable base climate, followed by a sequence
of simulations using only a single version thereof) provides no new information
unless the new model’s forecasts happen to lie completely outside the forecast distri-
bution consistent with current observations based on a lower resolution set of models.
Given the large number of underdetermined parameters in even the highest-resolution
models, the question of whether a single version of a high-resolution model displays
a larger or smaller response to external forcing than previous models is vacuous. The
interesting question, in the context of probabilistic climate forecasting, is whether the
increase in resolution has systematically altered the range of behaviour accessible to
the model under a comprehensive perturbation analysis, which cannot be addressed
for a model being run at the maximum resolution feasible for a single integration or
initial-condition ensemble.

The challenge is to use climate models to identify constraints on the response to
various possible forcing scenarios: i.e. using models to establish what the climate
system cannot (or is unlikely to) do, a much more demanding task than using them
to describe some things it might do. Such constraints are likely to be fuzzy so, for
many variables of interest, the spread of responses in currently available models may
be too small to determine them effectively, as was the case for the CMIP-2 results,
taken alone, in Figure 15.1. Large ensembles of models with deliberately perturbed
physical parametrisations may be needed to provide enough diversity of response
to identify these constraints. Adjoint-based optimal perturbation techniques used in
shorter-range ensemble forecasting (Palmer, 2000) may not be extendable, even in
principle, to the climate problem (Lea et al., 2000), further increasing the size of
ensembles required.

If constraints can be identified that, on physical grounds, we might expect any cor-
rectly formulated climate model to share, then inferences based on these constraints
are likely to be robust. Some constraints will be obvious (like energy conservation) but
these will typically not be enough to constrain many useful forecast quantities. Others
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will be more subtle and open to falsification, like the constraint that the sensitivity
parameter (a measure of the net strength of atmospheric feedbacks) does not change
in response to forcings up to 2–3 times preindustrial CO2. This is a property shared
by almost all climate models available to date but it could, in principle, be falsified
if higher-resolution models were to display systematically non-linear sensitivities.
Hence a probabilistic forecast of a particular variable that depends on the linearity
of atmospheric feedbacks is more open to falsification than one that depended solely
on energy conservation, which brings us round full-circle. We will depend on the
expert judgement of modellers to assess the reliability of our probabilistic forecasts
(the likelihood that they will be falsified by the next generation of models), but, in a
crucial step forward, our reliance on expert judgement will be second order. We need
experts to assess the reliability of our uncertainty estimates rather than to provide
direct input into the uncertainty estimates themselves.
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Observations, assimilation and the improvement
of global weather prediction – some results from
operational forecasting and ERA-40

Adrian J. Simmons
European Centre for Medium-Range Weather Forecasts, Reading

Basic aspects of the atmospheric observing system and atmospheric data assimilation
are summarised. Characteristics of the assimilation of observational data from the late
1950s onwards in the ERA-40 reanalysis project, and of medium-range forecasts run
from the ERA-40 analyses, are used to illustrate improvement in the observing system
and to place in context the improvement of the operational forecasts of the European
Centre for Medium-Range Weather Forecasts (ECMWF) over the past 25 years.
Recent advances in operational forecasting are discussed further. It is shown that the
analyses of two centres, ECMWF and the Met Office, have converged substantially,
but that there remain nevertheless significant differences between these analyses, and
between the forecasts made from them. These differences are used to illustrate several
aspects of data assimilation and predictability. Inferences from differences between
successive daily forecasts and from spectra of forecast errors are also discussed for
the ECMWF system.

16.1 Introduction

This chapter is based on the introductory lecture given to the Annual ECMWF Sem-
inar for 2003, which was devoted to data assimilation. The subject had last been
addressed in the Seminar Series in 1996. In the opening lecture on that occasion, the
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late Roger Daley discussed how, over the preceding 15 years, data assimilation had
evolved from being a minor and often neglected subdiscipline of numerical weather
prediction to become not only a key component of operational weather forecasting
but also an approach that was important for environmental monitoring and estimation
of the ocean state. The years since then have seen numerical weather prediction reap
considerable benefit from the earlier and ongoing investments in the scientific and
technical development of data assimilation. The application to environmental mon-
itoring has advanced with the emergence of a broad user-base and new initiatives
in reanalysis, and ocean-state estimation has become established operationally as a
component of seasonal forecasting systems. Moreover, as can be seen generally in
the Proceedings of the 2003 Seminar (available from www.ecmwf.int), considerable
advances continue to be made in the techniques and range of application of data
assimilation.

The principal aims of this chapter are to illustrate some basic aspects of atmo-
spheric data assimilation, predictability and the improvement of forecasts. To do this,
results are drawn from the recently completed ERA-40 reanalysis of the atmospheric
observations made since mid 1957 (Uppala et al., 2005), and from ECMWF’s opera-
tional analyses and forecasts. Some results from the operational forecasting systems
of the UK’s Met Office and the US National Centers for Environmental Prediction
(NCEP) are also used. Attention is concentrated on analyses and deterministic fore-
casts for the extratropical troposphere, predominantly for the 500 hPa height field.
This is partly because of the continuing widespread use of such forecasts (in addition
to newer products such as from ensemble prediction or related directly to weather
elements), partly because it is for the 500 hPa height field that the most compre-
hensive records are available, and partly to enable the simplest of messages to be
presented. Significant improvements have also been achieved in ensemble prediction
(discussed by Buizza in this volume) and weather-element forecasts, and in gen-
eral analysis and forecasting for the tropics and stratosphere, although in each case
additional challenges have had to be faced.

The basics of the atmospheric observing system and data assimilation are discussed
in the following section. Section 16.3 presents some results from ERA-40, discussing
the evolution of the observing system since 1957 and the corresponding evolution
of analysis characteristics. The changes over time in the accuracy of forecasts run
from the ERA-40 analyses are also discussed, and compared with changes in the
accuracy of ECMWF’s operational forecasts. Further aspects of the improvement
in operational forecasts are presented in Section 16.4. Section 16.5 draws some
inferences relating to data assimilation and predictive skill derived from studies of
the differences between analyses and forecasts from ECMWF and the Met Office, and
from the differences between successive ECMWF forecasts. The scale-dependence
of forecast error is discussed in Section 16.6, which is followed by some concluding
remarks.
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16.2 Basic aspects

Figure 16.1 presents maps of the operational coverage of atmospheric data received
at ECMWF for the six-hour period beginning at 0900 UTC on 21 November
2004. Colour versions of such maps are presented daily on the ECMWF website
(www.ecmwf.int). Data of each of the types illustrated are assimilated operationally
at ECMWF, although in the case of ozone, data from the ERS-2 satellite (denoted
by the orbits confined to the vicinity of Europe and the North Atlantic in the bottom
right panel of Figure 16.1) are no longer assimilated, having been replaced by data
from the SCIAMACHY instrument on ENVISAT, orbits from which are not included
in the figure. Data from ENVISAT are also used in the analysis of initial conditions
for the ocean-wave model that is coupled to the ECMWF atmospheric model (Janssen
et al., 2002)

The atmospheric observing system illustrated in Figure 16.1 comprises a range
of in-situ and remotely sensed measurements. These different types of measurement
have different accuracies and different temporal and spatial coverage. Some mea-
surements are of quantities such as wind and temperature that are prognostic model
variables, values of which are required to initiate forecasts. Others provide informa-
tion that is only indirectly related to the model variables, the radiances in different
parts of the electromagnetic spectrum measured from satellites in particular.

Data assimilation is a process in which a model integration is adjusted intermit-
tently to bring it in line with the latest available observations related to the model’s
state variables. It is shown schematically in Figure 16.2 for a six-hourly assimila-
tion with a three-dimensional (spatial) analysis of observations such as the three-
dimensional variational (3D-Var) system used by ECMWF previously for its main
operations (Andersson et al., 1998), recently for ERA-40 and currently for short-
cut-off analyses from which forecasts are run to provide boundary conditions for
the short-range limited-area models of ECMWF Member States. 3D-Var was also
used until recently by the Met Office (Lorenc et al., 2000) and is used today by
NCEP (Parrish and Derber, 1992), not only in operations but also in continuing the
pioneering reanalysis (Kalnay et al., 1996; Kistler et al., 2001) carried out by NCEP
in collaboration with the US National Center for Atmospheric Research (NCAR).

As illustrated in Figure 16.2, the six-hour ‘background’ forecast from the pre-
ceding analysis is adjusted by adding an ‘analysis increment’. The increment is
determined from an analysis of the ‘innovations’, the differences between observa-
tions and equivalents derived from the background forecast. These differences may
be computed at the actual times of the observations, but are assumed to be valid at the
main synoptic hour for which the analysis is carried out. This was what was done for
ERA-40, for example. The analysis for a particular time in the configuration shown
makes direct use of observations taken within three hours of analysis time, and is
influenced by earlier observations through the information carried forward in time
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Figure 16.2 Schematic of the data assimilation process for a six-hourly three-
dimensional data assimilation such as used for ERA-40. The ordinate denotes a
model variable, temperature for example. Circles denote observations.

(and spread in space) by the background forecast. The weighting given to the innova-
tions in the analysis procedure depends on the expected errors of the observations and
background forecast; in variational analysis this is achieved by minimising the sum of
error-weighted measures of the deviations of analysed values from the observed and
background values. The variational approach in particular enables direct assimilation
of raw radiances measured by satellite, as basic analysed variables can be adjusted
to improve jointly the fits of simulated model-based radiances to measured radiances
and the fits to measurements of other types.

The analysis increment is typically small compared with the change made by
the background forecast from the preceding analysis. An example is presented in
Figure 16.3, which shows maps of the mean-square changes in 500 hPa height pro-
duced by the background forecasts from 0600 UTC to 1200 UTC (left) and by
the 1200 UTC analyses (centre) for the year 2001 from the 3D-Var ERA-40 data
assimilation. The main Atlantic and Pacific storm tracks are evident in the northern
hemisphere plot of the background changes, as is a local maximum over the Mediter-
ranean. Larger changes occur in the southern hemisphere storm track encircling
Antarctica. Mean-square analysis increments for 2001 are typically smaller than the
background-forecast changes by an order of magnitude or more, as can be seen from
the extratropical averages printed on each map. Also shown in the figure (right) are
the corresponding increments for 1958. The differences between the increments for
the two years are discussed in the following section.

The quality of the background forecast depends both on the quality of the preced-
ing analysis and on the quality of the forecast model. The predominant role of the
background model rather than the analysis increment in evolving the estimated state
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Figure 16.3 Mean-square increments in 500 hPa height (dam2) for the ERA-40
background forecasts from 0600 UTC to 1200 UTC for the year 2001 (left) and for
the 1200 UTC ERA-40 analyses for the years 2001 (centre) and 1958 (right), shown
for the northern (upper) and southern (lower) hemispheres. Values averaged over
each extratropical hemisphere are shown in the bottom-right corner of each map.

of the atmosphere is indicative of the need for as accurate as possible a model to
enable as accurate as possible an analysis. A good model representation of synoptic-
and planetary-scale dynamics and thermodynamics is needed to capture the main
evolution of a field such as 500 hPa height, but a good model representation of local
weather elements is needed as well, not only for direct analysis and prediction of
such elements but also to enable correct extraction of the information related to larger
scales that is contained in the observations of these elements.

ECMWF and Météo-France were the first to use four-dimensional variational
(4D-Var) data assimilation for operational global data assimilation (Courtier et al.,
1994; Rabier et al., 2000; Mahfouf and Rabier, 2000). They were joined in this
regard by the Met Office in October 2004, and by Canada and Japan in early 2005.
4D-Var takes the time of each observation more consistently into account. The basic
approach is illustrated schematically in Figure 16.4. An adjustment to the background
forecast valid at the beginning of the assimilation window is determined iteratively
to reduce the discrepancy between the observations within the assimilation window
and the equivalent forecast values, with the adjustment limited to be consistent with
the estimated errors of the observations and background forecast. Figure 16.4 shows
the case of a 12-hourly window as implemented at ECMWF. Specific analysis times
are marked six-hourly in the diagram because in the ECMWF system ocean-wave
and land-surface conditions are adjusted at these times through separate analysis
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Figure 16.4 Schematic of the data assimilation process for the twelve-hourly
four-dimensional data assimilation used operationally at ECMWF.

procedures. Haseler (2005) discusses the configuration recently implemented at
ECMWF, which was developed to ensure as early as possible a delivery of forecast
products without significant loss of accuracy. Background forecasts are run from the
0600 and 1800 UTC analyses. They are used in the cycled 12-hour 4D-Var analyses,
and also in six-hour 4D-Var analyses for 1200 and 0000 UTC produced with a shorter
cut-off for data receipt than used for the cycled 12-hour analyses. Ten-day determin-
istic and ensemble forecasts are initiated from the shorter-cut-off six-hour 4D-Var
analyses.

16.3 Some results from ERA-40

ERA-40 is a project in which observations made from September 1957 to August 2002
were analysed using a six-hourly 3D-Var version of the ECMWF data-assimilation
system (Uppala et al., 2005). The assimilating model used the same 60-level vertical
resolution as introduced in 1999 for operational forecasting at ECMWF, but the
much lower horizontal resolution of T159 rather than the T511 spectral truncation
used operationally since November 2000, with corresponding use of around 125 km
rather than 40 km grid resolution. The data assimilation was based on a version
(denoted cycle 23r4) of the forecasting system operational in the second half of 2001,
modified to include a few newer features subsequently introduced operationally in
cycles 25r1 and 25r4.

The global observing system changed considerably over the 45 years covered by
ERA-40. The ever-present observation types were the synoptic surface observations
from land stations and ships, and the soundings from radiosonde and pilot balloons.
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Table 16.1 Average daily counts of various types of observation supplied
to the ERA-40 data assimilation, for five selected periods

1958–66 1967–72 1973–8 1979–90 1991–2001

SYNOP/SHIP 15313 26615 28187 33902 37049
Radiosondes 1821 2605 3341 2274 1456
Pilot balloons 679 164 1721 606 676
Aircraft 58 79 1544 4085 26341
Buoys 0 1 69 1462 3991
Satellite radiances 0 6 35069 131209 181214
Satellite winds 0 0 61 6598 45671
Scatterometer 0 0 0 0 7575
PAOBs 0 14 1031 297 277

The quality of radiosonde measurements improved over the period, but geographical
and temporal coverage declined. In the years before availability of satellite sounding
data, fixed ocean weather ships provided regular data over the North Atlantic and
North Pacific, continuing a network established in 1946 with ten ships in the Atlantic
and three in the Pacific. Only the ‘Polarfront’ (located off the coast of Norway)
remained in 2002. General radiosonde coverage from land and island stations also
declined in the 1990s, due both to closure of some stations and to a reduction in the fre-
quency of soundings from others. Counts of measurements at stratospheric levels have
risen nevertheless, and measurement biases have declined (e.g. Haimberger, 2005).

Other observation types have more than compensated for the decline in radiosonde
coverage, at least over oceanic areas. Table 16.1 shows average daily counts of the
different types of observation used in ERA-40’s analysis of the primary meteorolog-
ical variables. Averages are shown for five different epochs spanning the reanalysis
period, each representative of a particular state of the observing system. The year
1973 was a key one that saw radiances from the first of the VTPR sounding instru-
ments flown on the early NOAA series of operational polar-orbiting satellites. Pseudo
surface-pressure observations (PAOBs) derived from satellite imagery over the south-
ern oceans provided a further data source and many more aircraft data were assimi-
lated from this time onwards. A major enhancement of the observing system was in
place by the beginning of 1979 for FGGE, the First Global Experiment of the Global
Atmospheric Research Programme. VTPR data were replaced by data from the three
TOVS sounding instruments on new NOAA platforms; winds derived by tracking
features observed from geostationary satellites first became available in significant
numbers; and there were substantial increases in buoy and aircraft data. Observation
counts declined for a while after 1979, but recovered during the 1980s. The frequency
and coverage of wind and temperature measurements from aircraft increased substan-
tially in the 1990s. There was also a substantial increase in the number and quality of
wind estimates derived from geostationary satellite data. Newer satellite instruments
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include microwave imagers providing information on total water-vapour content and
marine surface wind speed, active microwave instruments providing information on
ocean winds and waves, and more advanced microwave and infrared sounders. In all,
almost 30 satellite-borne instruments currently provide data that are assimilated in
the operational ECMWF forecasting system, contributing to an unprecedented level
of analysis and forecast accuracy (Simmons and Hollingsworth, 2002; Uppala et al.,
2005). Uppala et al. also provide more detail on the observations used in ERA-40,
including qualifying comment on the numbers presented in Table 16.1.

The improvement in the observing system over the past four decades is reflected
in a marked reduction in the general magnitude of analysis increments over the
period of ERA-40. The maps for 1958 and 2001 presented in Figure 16.3 show the
mean-square increments in 500 hPa height to be much smaller in 2001 over land and
neighbouring ocean regions where there are marked increments in 1958. Isolated
small-scale maxima over the oceans in 1958 indicate where radiosonde data from
islands and the fixed weather ships correct the background forecast. Local impact
still occurs in 2001 for isolated radiosonde stations over Antarctica and northern
Russia, but is of smaller magnitude. Increments are particularly large along the west
coast of North America in 1958, where background forecast error that developed over
the poorly observed Pacific Ocean is corrected on its first encounter with the North
American radiosonde network. Larger increments occur in 2001 than in 1958 over
oceanic regions that are almost devoid of observations in 1958, due to assimilation
of the satellite, buoy and aircraft data that today provide coverage of such regions.
Smaller increments in 2001 over regions well covered by radiosonde data in both
1958 and 2001 can arise both from more-accurate background forecasts and from
more-accurate radiosonde measurements.

Generally smaller analysis increments can also result from improvements in data
assimilation systems. Uppala et al. (2005) compare 500 hPa height increments for
1979 from ERA-40 and from the earlier ERA-15 reanalysis, which used the optimal
interpolation method superseded by 3D-Var for ECMWF operations in early 1996.
Increments are generally smaller for ERA-40 than for ERA-15. This is a good result
for ERA-40 if it stems from a greater accuracy of the background forecasts (in closer
agreement with the observations) rather than from a failure of the analysis to draw
sufficiently closely to observations. The former appears to be the case, as the 24-hour
ERA-40 forecasts generally match radiosonde data better than the 24-hour ERA-15
forecasts. Increments in 500 hPa height are also generally smaller for ERA-40 than
for the NCEP/NCAR reanalysis (Kistler et al., 2001).

Figure 16.5 shows time series of background and analysis fits to surface pressure
measurements from land stations and ships and to 500 hPa temperature measurements
from radiosondes, for the extratropical northern and southern hemispheres. A general
improvement in the fit to the measurements occurs over the period of ERA-40,
especially for the southern hemisphere, where values approach those for the northern
hemisphere for the most recent years. Changes in data coverage can affect these
values, as increased coverage in the subtropics, where variance is lower, would tend
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Figure 16.5 Daily values of the root-mean-square background (grey) and analysis
(black) fits to 1200 UTC SYNOP and SHIP measurements of surface pressure (hPa,
left) and radiosonde measurements of 500 hPa temperature (K, right) over the
extratropical northern (upper) and southern (lower) hemispheres.

to reduce values in plots such as these in which no area-weighting is applied. However,
the sudden improvement in fit to surface pressure data for the southern hemisphere at
the beginning of 1979 is almost certainly a consequence of the major improvement
of the whole observing system that took place at the time. A smaller improvement at
the beginning of 1973 can also be seen. The fit of the analysis to the radiosonde data
is poorer in the 1980s than earlier as the analysis has to match TOVS radiance data
as well as radiosonde data in the later years. However, the fit of the background field
is unchanged in the northern hemisphere and improves in the southern hemisphere,
a sign of an analysis that has been improved overall by the availability of the new
data.

Further evidence of the improvement of the analyses over time is provided by
objective verification of the medium-range forecasts that have been run routinely
from the ERA-40 analyses using the same T159 version of the model used in the
ERA-40 data assimilation. Anomaly correlations of three-, five- and seven-day 500
hPa height forecasts are presented for the period of the reanalysis in Figure 16.6.
Results are shown for selected regions for which the availability of radiosonde data
throughout the period gives confidence in the accuracy of the verifying ERA-40
analyses. Corresponding operational results are also shown for the second half of
the period. Forecast quality is relatively high throughout for the three northern hemi-
sphere regions shown, with levels of skill for the ERA-40 forecasts that from the outset
are higher than or similar to those of the operational ECMWF forecasts from the early
1980s. The quality of the ERA-40 forecasts is most uniform over time for East Asia,
which is consistent with its location downstream of a land mass that is covered by
conventional observations and for which the effect of any improvements in some
components of the observing system is most likely to have been obscured by decline
of the radiosonde coverage upstream over the former Soviet Union. Improvement is
a little more evident for Europe and more evident still for North America, which,
lying downstream of the broad expanse of the Pacific Ocean, benefits more than the
other two regions from improvement in oceanic data coverage.
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Figure 16.6 Twelve-month running mean anomaly correlations (%) of 3-, 5- and
7-day 500 hPa height forecasts for East Asia (25N–60N, 102.5E–150E), Europe
(35N–75N, 12.5W–42.5E), North America (25N–60N, 120W–75W) and Australia/
New Zealand (45S–12.5S, 120E–175E), from 1200 UTC ERA-40 forecasts from
1958 to 2001 (denoted by shading limits) and from operational 1200 UTC ECMWF
forecasts from 1980 to 2001 (denoted by lines). Values plotted for a particular month
are averages over that month and the 11 preceding months, so that the effect of an
operational forecasting-system change introduced in that month is seen from then
onwards.

The consequence of improved oceanic data coverage is seen most strikingly in
the results shown for the Australasian region. Here, the accuracy of medium-range
forecasts is very much poorer than elsewhere prior to establishment of the observing
system for FGGE in 1979. Forecast scores in fact decline early in the period, which
may be a consequence of degradation of observational coverage following the end
of the International Geophysical Year of 1958. They begin to pick up only in the
1970s, most likely due to the assimilation of VTPR sounding data backed up by the
PAOBs. They subsequently jump substantially when data from the enhanced FGGE
observing system are first assimilated at the end of 1978; the improvement amounts
to about a two-day gain in practical predictability in the medium range.

The ERA-40 data assimilation system was largely as used operationally at
ECMWF in the second half of 2001, but with lower horizontal resolution and 3D-
rather than 4D-Var analysis. The medium-range forecasts for 2001 from ERA-40
are accordingly not as accurate as the corresponding operational forecasts. However,
improvement of the operational system has occurred at such a pace that the ERA-40
forecasts are similar in skill to the operational forecasts of the late 1990s. Figure
16.6 shows very similar interannual variations in skill between the ERA-40 and
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Figure 16.7 Root-mean-square errors of 3- and 5-day forecasts of 500 hPa height
(upper; m) and mean-sea-level pressure (lower; hPa) for the extratropical northern
(left) and southern (right) hemispheres. Results from ECMWF, the Met Office and
NCEP are plotted in the form of annual running means of all monthly data exchanged
by the centres from January 1989 to October 2004. ECMWF 4-day forecast errors
are also shown. Values plotted for a particular month are averages over that month
and the 11 preceding months.

operational forecasts at this time. This indicates that the fluctuations in operational
performance were not related to short-term problems in the performance of the oper-
ational forecasting system, but rather were due to fluctuations in the predictability
of the atmosphere associated with interannual variations in the atmospheric circula-
tion or possibly with variations in the observing system. The ERA-40 analyses and
forecasts provide a basis for future study of such fluctuations in predictability.

16.4 Recent improvements in operational forecasts

Figure 16.7 presents root-mean-square errors of forecasts of 500 hPa height and mean-
sea-level pressure for the extratropical northern and southern hemispheres. Time
series from 1990 onwards are shown for three-day and five-day forecasts from three
global prediction systems, that of ECMWF and those of the Met Office and NCEP, the
two national centres that come closest to matching ECMWF’s performance according
to these measures of forecast accuracy. ECMWF results for the four-day range are
also presented. The plots show annual running means derived from the verification
statistics that forecasting centres exchange monthly under the auspices of the World
Meteorological Organization. Each centre’s forecasts are verified by comparison with



440 Adrian J. Simmons

its own analyses. Results are presented for initial forecast times of 1200 UTC for
ECMWF and the Met Office, and 0000 UTC for NCEP. Additional Met Office results
from 0000 UTC have been available since 1995, but are not plotted as they are very
similar to those presented for 1200 UTC.

Figure 16.7 shows a general trend towards lower forecast errors in both hemi-
spheres, for both 500 hPa height and mean-sea-level pressure. The improvement
since 1996 in ECMWF forecasts for the northern hemisphere amounts to around a
one-day extension of the forecast range at which a given level of error is reached,
today’s four- and five-day forecasts being respectively about as accurate on average
as the three- and four-day forecasts of six or seven years ago. The rate of improvement
over this period has been especially rapid in forecasts for the southern hemisphere,
amounting to a one-day gain in predictability in just three to four years. Improve-
ment has been rather faster for ECMWF than for the other two centres shown; the
difference in skill currently equates to a difference in practical predictability of a
little more than 12 hours for the northern hemisphere and close to one day for the
southern hemisphere.

The starting point for the rapid recent improvement in ECMWF forecasts shown in
Figure 16.7 was the operational introduction of four-dimensional variational (4D-Var)
data assimilation (Rabier et al., 2000; Mahfouf and Rabier, 2000) in late November
1997. The improvements in short-range ECMWF forecasts since then can be linked
directly to a series of subsequent forecasting-system changes. Table 16.2 shows the
changes with most impact at one-day range, when they were implemented and the
reductions in one-day forecast errors measured during preoperational trials. In most
cases impact is larger in the southern than in the northern hemisphere. Simmons and
Hollingsworth (2002) showed that the actual annual-mean root-mean-square errors
of one-day 500 hPa height forecasts over the five years up to 2001 matched well
the errors that would have occurred had the changes introduced between November
1997 and November 2000 given exactly the same average forecast improvements in
operational use as were measured in the preoperational trials. The same result holds
when the calculation is extended to include the latest changes to the forecasting
system and data use. It indicates that the overall recent improvement in short-range
forecasts is due overwhelmingly to changes to the forecasting system and availability
of data rather than to circulation regimes that were unusually easy to predict in the
last few years.

Verification of forecasts by comparison with radiosonde observations confirms the
improvements shown in Figure 16.7. Figure 16.8 presents root-mean-square errors
of three-, four- and five-day ECMWF forecasts of 500 hPa height and 850 hPa wind
verified against radiosondes, from 1995 onwards. Values for the northern hemisphere
500 hPa height are quite similar to those from verification against analyses at these
forecast ranges. The only difference of note for the southern hemisphere is that the
rapid reduction in height forecast errors begins some six months earlier in 1997 in
Figure 16.8 than in Figure 16.7. This earlier fall in error measured by comparison
with radiosonde data appears to be associated with the introduction in May 1997 of a
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Table 16.2 The operational changes to the ECMWF forecasting system over the
past seven years that had the largest impact on root-mean-square errors of one-day
500 hPa height forecasts for the extratropical northern and southern hemispheres
as measured in preoperational trials

Reduction in
rms error (m)

IFS
cycle

Date of
change N Hem S Hem Principal nature of change

18r1 1997/11/25 0.47 1.77 4D-Var, with six-hourly cycling
21r1 1999/05/05 0.22 0.90 Direct assimilation of microwave (MSU and

new AMSU) radiances

21r4 1999/10/12 1.49 2.31 Background error statistics from ensemble data
assimilation; use of microwave imager (SSM/I)
marine wind data; corrected use of humidity
observations; higher resolution in the planetary
boundary layer; improved parametrisations of
cloud, convection and orography

22r3 2000/06/27 0.57 1.94 New background and observation error
variances; additional ATOVS data; improved
parametrisations of land-surface, sea-ice and
longwave radiation

23r1 2000/09/12 0.42 0.65 Twelve-hourly 4D-Var and related data
assimilation refinements

23r3 2000/11/21 0.80 0.66 Increased (T511/T159) model/analysis
resolution; increased angular resolution in wave
model

26r3 2003/10/07 0.58 0.42 Assimilation of high-resolution infrared (AIRS)
radiances and additional geostationary and
AMSU radiances; revised use of low-resolution
infrared (HIRS) radiances; use of additional
wind-profiler data; new humidity analysis;
improvements to radiation parametrisation and
ocean-wave data assimilation

new formulation for the background error constraint in the then-operational 3D-Var
system (Derber and Bouttier, 1999). This change brought a marked improvement in
tropical forecasts, and may thus have given a greater improvement in verification
against those radiosondes located in the southern subtropics than in verification
against analyses over the whole southern extratropics. A major element of recent
changes to the forecasting system has been wider utilisation and new methods of
assimilation of satellite data, so it is particularly reassuring to see a large reduction
in forecast errors as measured against the southern hemisphere radiosonde network.
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Figure 16.8 Root-mean-square errors of 3-, 4- and 5-day ECMWF 500 hPa height
(upper; m) and 850 hPa vector wind (lower; m/s) forecasts for the extratropical
northern (left) and southern (right) hemispheres, plotted in the form of annual
running means of monthly data for verification against radiosondes from July 1994 to
October 2004. Values plotted for a particular month are averages over that month and
the 11 preceding months.

The levels of skill of northern and southern hemisphere forecasts cannot be com-
pared simply in terms of root-mean-square errors because of interhemispheric dif-
ferences in natural levels of variance. Comparison can, however, be made directly in
terms of anomaly correlation coefficients, which are closely related to mean-square
errors normalised by corresponding variances (e.g. Simmons et al., 1995). The left-
hand panel of Figure 16.9 presents anomaly correlations of 500 hPa height based on
ECMWF’s operational three-, five- and seven-day forecasts from January 1980 to
October 2004. Running 12-month means of the monthly-mean skill scores archived
routinely over the years are plotted for the two hemispheres. Corresponding results
for the forecasts run from the ERA-40 analyses are presented in the right-hand panel.

Figure 16.9 shows a higher overall rate of improvement in the operational forecasts
for the southern hemisphere. In the early 1980s, the skill levels of the three- and five-
day forecasts for this hemisphere were only a little better than those of the five- and
seven-day northern hemisphere forecasts. At the time this was not surprising in view
of the sparsity of conventional ground-based and aircraft observations in the southern
hemisphere (Bengtsson and Simmons, 1983). Today, however, the skill at a particu-
lar forecast range in the southern hemisphere is only a little lower on average than
that at the same range in the northern hemisphere. The ERA-40 results show some
increase in time in forecast accuracy for the southern hemisphere, which indicates
improvement of the observing system over time if there is no significant trend in the
underlying predictability of the atmosphere. It is nevertheless clear from Figure 16.9
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Figure 16.9 Anomaly correlation coefficients of 3-, 5- and 7-day operational
ECMWF 500 hPa height forecasts for the extratropical northern and southern
hemispheres, plotted in the form of annual running means of archived monthly-mean
scores for the period from January 1980 to October 2004 (left) and corresponding
forecasts to December 2001 from ERA-40 (right). Values plotted for a particular
month are averages over that month and the 11 preceding months. The shading shows
the differences in scores between the two hemispheres.

that most of the improvement in operational forecasts from 1980 to 2001 has stemmed
from better data assimilation and modelling techniques and higher resolution (sup-
ported by substantial increases in computer power) rather than from net improvement
of the observing system. The data assimilation improvements include a considerable
refinement in the use of satellite data, which provide a more important component
of the observing system in the southern than the northern hemisphere, as shown
by observing-system experiments such as reported by Bouttier and Kelly (2001).
It should be noted, however, that some of the most recent improvement in opera-
tional forecasts has come from using types of satellite data that were not assimilated
in ERA-40: frequent water-vapour radiances from geostationary satellites (Köpken
et al., 2004), high-latitude winds derived by tracking features in images from polar-
orbiting satellites (Bormann and Thépaut, 2004) and radiances from the first in a new
generation of high-resolution infrared sounders (McNally et al., 2006).

Interannual variations in skill are also evident in Figure 16.9, especially for the
northern hemisphere at the five- and seven-day time ranges. In particular, there is a
pronounced minimum in the northern hemisphere scores arising from relatively poor
performance over the year to August 1999. A corresponding maximum can be seen
in the time series of root-mean-square errors shown in the left panels of Figure 16.7.
This is evident for the Met Office forecasts as well as for those of ECMWF.

16.5 Analysis and forecast differences

Several aspects of the performance of data assimilation and forecast systems, and of
predictability in general, can be illustrated by comparing results from the systems of
different centres, or by comparing successive forecasts from one particular centre.
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Table 16.3 Root-mean-square differences between ECMWF and Met
Office 500 hPa height analyses (m) over the extratropical northern and
southern hemispheres for December to February (DJF) from 1997/8 to
2003/4 (labelled 1998 to 2004) and for June to August (JJA) from 1998
to 2004

N Hem DJF S Hem DJF N Hem JJA S Hem JJA

1998 14.1 21.2 10.6 29.7
1999 15.6 21.4 10.3 27.4
2000 12.2 16.3 8.9 17.0
2001 9.8 11.6 8.2 14.2
2002 10.1 11.5 8.3 12.3
2003 7.8 10.2 6.7 12.1
2004 7.5 10.3 8.4 11.2

16.5.1 Differences between ECMWF and Met Office analyses
and forecasts

Table 16.3 presents root-mean-square differences between ECMWF and Met Office
analyses of 500 hPa height evaluated over the extratropical northern and southern
hemispheres. Results are shown for the periods from December to February (DJF)
and from June to August (JJA) for each of the past seven years. Differences between
the analyses have been reduced substantially over these years, particularly for the
southern hemisphere. The fact that the analyses from the two centres have become
much closer to each other does not necessarily imply that both sets have become
much more accurate, but given the substantial improvements in forecast accuracy
achieved by both centres it may be inferred that both centres’ analyses have indeed
become significantly closer to the truth.

Maps of the mean-square differences between the two sets of analyses show
reductions over time at virtually all locations. Difference patterns remain largely the
same, however. Figure 16.10 shows them for DJF 2003/4 and JJA 2004 over the
two hemispheres. They are relatively small over substantial areas of the northern
continental land masses, but are larger over much of central Asia where radiosonde
coverage is poorer than over other northern land areas, and also over far northern land
regions and the western boundaries of Europe and America, where the background
fields of the data assimilation suffer from the lower accuracy of upstream analyses
over the Arctic, Pacific and Atlantic oceans. Differences are larger over the mid- and
high-latitude oceans, particularly in the southern hemisphere, and largest generally at
polar latitudes. Local minima occur nevertheless at the South Pole and around parts
of the coastline of Antarctica, reflecting the availability of radiosonde observations
that both sets of analyses fit quite closely.
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Figure 16.10 Mean-square differences (m2) between the 500 hPa height analyses
of ECMWF and the Met Office for the northern (upper) and southern (lower)
hemispheres computed over the periods December–February 2003–4 (left) and
June–August 2004 (right). Contours are drawn at intervals of 25, 50, 100, 200, 400
and 800 m2.

The largest northern hemisphere differences (and by inference relatively large
analysis errors) occur over the Arctic in summer, where in-situ measurements are
sparse and satellite data are difficult to use in the lower troposphere due to the nature
of the underlying surface. The geographically and seasonally fixed background-error
correlations used in the ECMWF analysis system may also be less representative
for this region than elsewhere. Propagation and amplification of forecast error that
originates from analysis error over the Arctic is a known source of medium-range
error over Europe in summer. It was, for example, particularly prevalent in the summer
of 1999 (Klinker and Ferranti, 2000; Simmons et al., 2000). Another region that has
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Figure 16.11 Correlations (%) as functions of forecast range computed for the
500 hPa height field over the extratropical northern (black) and southern (grey)
hemispheres for 1200 UTC verifying dates in the periods December–February
2003–4 (left) and June–August 2004 (right). The upper panels show the correlations
between the errors of ECMWF and Met Office operational forecasts (with the
forecast from a particular system verified against subsequent analyses from the same
system). The lower panels show the correlations between the differences in the
forecasts and the differences in the verifying analyses of ECMWF and the Met Office.

proved to be a source of medium-range prediction error for Europe is the convectively
active eastern USA in late spring and summer; here the analysis differences can be
seen in Figure 16.10 to be larger in JJA than DJF.

The fact that differences between the analyses of ECMWF and the Met Office (and
between ECMWF and NCEP for that matter) have become substantially smaller in
recent years does not imply for certain that analysis errors have declined, as the data
assimilation systems of the different centres could have converged to such an extent
that each share common pronounced errors. In this case, however, one would expect
that the short-range forecast errors of the centres would be highly correlated, which
is not the case.

The upper panels of Figure 16.11 show correlations between ECMWF and
Met Office forecast errors (with verification against each centre’s own analyses)
computed for DJF 2003/4 and JJA 2004. They are plotted as functions of fore-
cast range, for the extratropical northern and southern hemispheres. Under perfect-
model assumptions and neglecting error in the verifying analyses, such correlations
would asymptote to the value 50% for large forecast ranges (when the two sets of
forecasts and the verifying analyses can be regarded as three sets of random deviations
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Figure 16.12 Root-mean-square errors of 500 hPa height forecasts (m) for the
extratropical northern (upper) and southern (lower) hemispheres verifying at
1200 UTC in the periods December–February 2003–4 (left) and June–August 2004
(right). Results are shown for the operational forecasts from ECMWF (black, solid)
and the Met Office (grey, solid) at the forecast range indicated on the ordinate. Also
shown (black, dashed) are the errors of operational ECMWF forecasts verifying at
the same times but initiated 12 hours earlier (plotted with 12-hour shift in the forecast
range).

from climatology). The panels show that correlations close to 50% are in fact reached
quite early in the forecast range, after about day 2. Correlations are weaker at shorter
time ranges. Extrapolating correlations and the measured forecast errors themselves
(shown in Figure 16.12) enables estimates of analysis errors to be made (Simmons
and Hollingsworth, 2002). This gives 500 hPa height analysis errors of about 4.5 m
for the northern hemisphere in both seasons and for the southern hemisphere in sum-
mer, and 5.5 m for the southern hemisphere winter, in the case of ECMWF. These
values are close to half the typical observation error of radiosonde measurements.

The lower panels of Figure 16.11 show corresponding correlations between dif-
ferences in the forecasts and differences in the verifying analyses of ECMWF and
the Met Office. The correlations are 100% at the start of the forecast range, when the
forecast difference is equal to the analysis difference. The correlation drops towards
zero with increasing forecast range, as the assimilation of observations drives succes-
sive (verifying) analyses and subsequent background forecasts further away from the
free-running forecast. The correlation falls slightly more quickly for the winter than
the summer hemisphere. It takes of the order of five days for sufficient observations
to have been assimilated for 500 hPa height analysis differences to lose virtually all
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memory of earlier differences in background forecasts. A similar estimate for the
memory of the ECMWF system has been derived from the initial growth of dif-
ferences in ensemble data assimilation and from the initial degradation of forecast
quality in data-denial experiments (Fisher et al., 2005).

If the correlation between differences in forecasts and differences in verifying
analyses illustrated in Figure 16.11 is representative of the correlation between true
forecast error and error in the verifying analyses, then estimates can be made of the
effect of error in the verifying analysis on the measured forecast errors. Simmons and
Hollingsworth (2002) discuss this, and show that the effect appears to be rather small.
Measured hemispheric root-mean-square errors of recent 500 hPa height forecasts
are estimated to be within a metre or so of the true errors at the one- and two-day
ranges. In contrast, root-mean-square errors of short-range forecasts verified against
radiosonde data tend to be dominated by the observation error of the radiosonde
measurements, as shown for example by Simmons and Hollingsworth (2002) for
the 500 hPa height field and by Simmons et al. (2005) in a study of stratospheric
temperature and wind forecasts.

Figure 16.12 compares root-mean-square errors of ECMWF and Met Office
500 hPa height forecasts as functions of forecast range, evaluated over the extra-
tropical northern and southern hemispheres. Results are shown for all forecasts from
1200 UTC start times verifying in DJF 2003/4 and JJA 2004. ECMWF forecasts
verifying at 1200 UTC but starting from 0000 UTC are also shown, with the forecast
range shifted by 12 hours in the plots so that, for example, a 36-hour forecast error
is plotted as if the range was 24 hours.

Figure 16.12 shows that the forecasts from ECMWF are considerably more accu-
rate on average than those from the Met Office made with the same starting time,
by around 12 hours or a little more in the northern hemisphere and by more still in
the southern hemisphere, as judged by the forecast range at which a particular level
of error occurs. The advantage is at least 12 hours throughout the forecast range.
The implication is that the initial analysis error is considerably lower in the ECMWF
system, leading to lower subsequent forecast errors at all ranges.

A further indication of the link between reducing forecast error in the very short
range (and by implication reducing analysis error) and reducing error in the medium
range is provided by smoothed time series of the ranges at which ECMWF’s oper-
ational 500 hPa height forecasts have reached certain levels of anomaly correlation
over the past two decades. In recent years the improvement of forecasts as measured
by the increases in these forecast ranges has been by an amount that varies little
beyond a day or so ahead. Improvements in medium-range 500 hPa height forecasts
thus appear to have stemmed directly from model, analysis and observing-system
improvements that have reduced analysis and short-range forecast error.

Figure 16.12 can be interpreted as showing that the value of the difference in
performance between the ECMWF and Met Office assimilation systems is more than
the value of the latest 12 hours of observations, at least as regards the hemispheric
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Figure 16.13 Root-mean-square errors and differences of 500 hPa height forecasts
(m) for the extratropical northern hemisphere verifying at 1200 UTC in the periods
December–February 2003–4 (left) and June–August 2004 (right). Errors are shown
for the operational 1200 UTC forecasts from ECMWF (black, solid) and the Met
Office (grey, solid) at the forecast range indicated on the ordinate. Also shown are the
differences between these ECMWF and Met Office forecasts (grey, dashed), and the
differences between these ECMWF forecasts and ECMWF forecasts verifying at the
same times but initiated 12 hours earlier (black, dashed).

accuracy of analyses and forecasts of 500 hPa height. Forecasts from an analysis that
uses the most recent observations are not necessarily more accurate than forecasts
from an analysis for an earlier synoptic hour that has been produced by a better data
assimilation system. In designing an operational forecasting system, compromises
have to be made regarding the data cut-off (the wall-clock time at which the data
assimilation is started), the times by which forecast products have to be delivered,
and the complexity (and hence computational cost) of the data assimilation and
forecast model integration. Traditionally, the data cut-off for short-range prediction
has been determined first and foremost by the need to receive the bulk of the latest
radiosonde ascents, and a quite stringent limit is placed on the time that can be
taken by the forecast-production process. The increasing importance of asynoptic
observations, particular from satellites, and the development of more accurate but
more computationally demanding data assimilation systems and forecast models
are making appropriate choices less clear. Whatever choices are made, analysis and
forecast accuracy remains dependent on the amount of data available for assimilation,
and effective telecommunication systems to ensure rapid transmission of information
from the point of measurement (satellite or otherwise) to forecasting centres remain
a key requirement for optimal operational forecasting.

Figure 16.13 casts a different light on the performance of the 1200 UTC ECMWF
and Met Office forecasts. It repeats (for the northern hemisphere) the plots of
root-mean-square errors of the 500 hPa height forecasts, and adds plots of the
root-mean-square differences between the 1200 UTC ECMWF and Met Office fore-
casts and between the 1200 UTC ECMWF forecasts and the 12-hour older ECMWF
forecasts made from 0000 UTC. Results for the southern hemisphere are essentially
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similar. The main point of note is that the 1200 UTC ECMWF forecasts differ from
the corresponding Met Office forecasts by a little more than they differ from the ver-
ifying analyses (consistent with the forecast error correlations of about 50% noted
earlier). The ECMWF and Met Office forecasts do not predominantly share common
errors that have resulted from each analysis system having drawn the same inac-
curate observations. Instead, differences in data analysis (quality control decisions,
basic analysis methods and specified error statistics) and the growth of differences
through the background forecasts of the data assimilation cycles result in two anal-
yses which, were it not for the overall superiority of the ECMWF system, would
essentially be two randomly drawn and equally likely estimates of the true state of
the atmosphere. As such the two analyses would provide two sets of initial conditions
for an ideal ensemble prediction system. Reproducing such variability among anal-
yses is a challenge for ensemble data assimilation systems aimed at providing either
optimal perturbations for ensemble prediction or flow-dependent background-error
estimates for improved data assimilation.

The 1200 UTC ECMWF forecasts can be seen in Figure 16.13 to be much closer to
the earlier 0000 UTC ECMWF forecasts than they are either to the verifying analyses
or to the 1200 UTC Met Office forecasts. The observations that are assimilated over
one 12-hour assimilation window are clearly insufficient to remove dependence of
the 1200 UTC analysis on the background forecast initiated 12 hours earlier. Thus,
whilst the 1200 UTC Met Office 500 hPa height forecast is on average similar in
accuracy to the earlier 0000 UTC ECMWF forecast, it provides a more distinct
possible alternative to the (probably more correct) 1200 UTC ECMWF forecast.

16.5.2 Differences between successive ECMWF forecasts

Lorenz (1982) discussed the comparison of root-mean-square forecast errors with
root-mean-square differences between ECMWF forecasts started a day apart and
verifying at the same time. He argued that if the forecast model in operational use
at the time was realistic enough for small differences in initial conditions to cause
forecasts to diverge at a rate close to that at which separate but similar atmospheric
states diverge, then the rate of growth of the forecast differences would provide a
limit to the potential accuracy of the forecast that could not be surpassed without
analysis or model changes which reduced the one-day forecast error. The evolution
of the forecast differences (or ‘perfect-model’ errors) would in particular provide a
basis for estimating the intrinsic rate of growth of initially small forecast errors.

Measures of the differences between successive numerical forecasts valid for the
same time are indicators of forecasting-system performance that are also of direct
relevance to bench forecasters. These measures provide indications of the consistency
of the forecasting system, the extent to which the latest forecast is consistent with the
forecast provided 121 or 24 hours earlier. High consistency (low values for measures
of the differences between successive forecasts) is clearly a desirable feature if it
stems from a basic high accuracy of the forecasts. For forecasts of limited accuracy the
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Figure 16.14 Root-mean-square forecast errors (solid) and root-mean-square
differences between successive forecasts (dashed), based on 1200 UTC ECMWF
500h Pa height (m) forecasts for the extratropical northern hemisphere verifying in
the periods December–February 1980–1 and 2003–4 (left) and June–August 1981
and 2004 (right).

situation is less clear. Inconsistent forecasts in such cases provide the forecaster with
indications of a less predictable situation and of possible alternative developments,
but if issued to end users may unduly undermine confidence in the forecasts.

Figure 16.14 compares root-mean-square errors and root-mean-square differences
between successive daily 1200 UTC operational forecasts of 500 hPa height for the
extratropical northern and southern hemispheres for DJF 1980/1 (the period studied
by Lorenz, 1982) and 2003/4, and for JJA 1981 and 2004. The 2003/4 errors are
substantially lower than the 1980/1 errors throughout the forecast range. The relative
difference is largest at short range; 2003/4 values are about a third of 1980/1 values
at day 1. The gap between the forecast-error and forecast-difference curves is much
smaller in 2003/4 than in 1980/1, indicative of model improvement since 1981. This
is known to include a significant reduction in the systematic component of forecast
error (Simmons et al., 1995; Ferranti et al., 2002).

The model improvements over the past two decades have brought with them, as
an unavoidable by-product, a faster rate of amplification of forecast errors, and a
faster rate of growth of inconsistency between successive forecasts (Simmons and
Hollingsworth, 2002). Lower absolute values for forecast errors and the differences
between successive forecasts have occurred nevertheless, due to the very much lower
starting point for the growth of errors and inconsistency that has been provided by the
substantial reduction in analysis and short-range forecast error. Figure 16.15 shows,
for both extratropical hemispheres, the difference (or inconsistency) curves plotted
for each DJF from 1980/1 to the present. Evident in this figure is the general reduction
in one-day forecast errors, with a distinct fall in particular between 1999/2000 and
2000/1, consistent with the operational changes listed in Table 16.2. Also evident is
a much more rapid growth rate of differences following model changes in the late
1980s and early 1990s. Both are more pronounced for the southern than the northern
hemisphere. The increased consistency of forecasts in recent years stems mainly
from the reduction in short-range forecast error, as doubling times for small forecast
differences have not increased (Simmons and Hollingsworth, 2002).
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Figure 16.15 Root-mean-square differences between successive 1200 UTC forecasts
of 500 hPa height (m) as functions of forecast range. Results are shown for each
December–February period from 1980–1 to 2003–4, for the extratropical northern
(upper) and southern (lower) hemispheres.
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There is a relatively slow growth of differences for 1999/2000, especially in the
southern hemisphere. This is due to a deficiency in the operational humidity analysis
between October 1999 and April 2000. The lower stratosphere was much too moist
over this period, leading through the radiation parametrisation in the medium-range
forecasts to a changed structure of potential vorticity near the tropopause and a
consequent damping of tropospheric transient-eddy activity. What looked at first sight
to be a systematic model error in fact was due to a bias in the analysis of a field that
adjusted only slowly towards reality as the forecast range increased. The relatively
fast growth of differences for 1991/2 was due to teething problems with a new semi-
Lagrangian advection scheme and a new 31-level vertical resolution, both of which
were introduced in September 1991 and caused excessive transient eddy activity.

16.6 Dependence of forecast error on horizontal scale

The dependence of forecast error on horizontal scale is of interest as regards pre-
dictability and forecasting-system performance in general, and more specifically as
regards the potential for improved analysis of smaller scales.

Figure 16.16 presents log-linear plots of spectra of the global error (measured
by verification against analyses) of operational one-day ECMWF 500 hPa height
forecasts for each DJF since 1980/1. Results are shown for wave numbers up to 40,
the highest wave number for which operational forecast results were saved in the early
years. Spectra of the temporal variance of error rather than the mean-square error
are presented to avoid the plots being complicated by the relatively large time-mean
component of error that occurred at low wave numbers early in the period.

Figure 16.16 shows that one-day 500 hPa height forecast errors have been substan-
tially reduced over time at the large synoptic scales represented by a band of wave
numbers centred around about wave number nine. In the early years there was a quite
pronounced spectral peak of error at these wave numbers. Error is more uniformly
distributed across the spectrum for more recent years, with the flattest spectrum for
the latest years. The sharp decrease in small-scale error with increasing wave number
seen for the first few years presumably reflects the characteristics of the forecast (and
assimilating) model of the time rather than a low level of actual small-scale error.
Subsequent forecasting-system changes resulted in an increase in small-scale error,
and only following the system changes made in 1999 and 2000, not least changes
to model and analysis resolution (Table 16.2), does the one-day error as measured
against analyses drop across the whole spectral range for which results are presented.

Spectra of mean-square errors for DJF 2003/4 are presented in Figure 16.17 for
forecast ranges from 12 hours to 10 days. Log-log plots are shown for wave numbers
up to the limit of the model’s T511 truncation. Results are presented for 850 hPa
temperature and vorticity as there is relatively more amplitude in small scales for
these fields (especially vorticity) than for 500 hPa height.
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Figure 16.16 Log-linear plot of the spectra of the variance of the global 500 hPa
height forecast error (m2) at one-day range for forecasts verifying in each
December–February period from 1980–1 to 2003–4.
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Figure 16.17 Log-log plot of the spectra of the mean-square global 850 hPa forecast
errors for temperature (K2) and relative vorticity (10−12 s2) at forecast ranges from 12
hours to 10 days, for forecasts verifying at 1200 UTC in the period from 1 December
2003 to 29 February 2004.

The spectrum of 850 hPa temperature error for 12-hour forecasts is rather flat
over a quite wide range of wave numbers. A more peaked error spectrum evolves
with increasing forecast range, with error continuing to grow throughout the 10 days
near the spectral peak and at longer wavelengths. The spectral peak in vorticity error
shifts from short towards synoptic scales as the forecast range increases. At smaller
scales error largely saturates within the forecast range, but a slow component of error
growth is evident near the truncation limit. Boer (1994) reported similar small-scale
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Figure 16.18 Spectra of 850 hPa forecast errors in temperature and relative vorticity
as in Figure 16.17, but shown in a linear-linear plot for wave numbers 150 and above.

behaviour for an earlier version of the ECMWF forecasting system, although he has
subsequently shown such behaviour to be much weaker in Canadian Meteorological
Centre forecasts (Boer, 2003).

A clearer picture of the small-scale behaviour emerges when graphs are redrawn
using linear-linear axes, as shown in Figure 16.18 for wave numbers 150 and higher.
The figure shows more clearly that there are essentially two timescales for the growth
of error in small spatial scales. There is rapid growth and apparent saturation early
in the forecast range of a component of error that is likely to represent intrinsic
dynamics with small temporal as well as spatial scales. This component decreases
markedly in amplitude with decreasing scale, as would be expected given the model’s
high damping rates for the smallest scales. There is also a second component of error
(with a less marked decrease in amplitude with decreasing scale) that evolves much
more slowly throughout the forecast range. It is likely that this arises from small-scale
components of the temperature and vorticity fields that are directly forced by large-
scale dynamical and thermodynamical processes that have much slower intrinsic
error growth rates.

16.7 Concluding remarks

A general introduction to the atmospheric observing system and to the way that data
from this system are assimilated into numerical models to provide the starting point
for numerical weather forecasts has been given. The improvement in synoptic-scale
weather prediction that has resulted from improvements made to the observing and
forecasting systems has been illustrated, and some general aspects of predictability
have been discussed. Use has been made of results from the ERA-40 reanalysis
project and from the operational forecasting activities of ECMWF and other centres.

The results from ERA-40 show that there has been a clear long-term improvement
in the observing system. This is especially so for the southern hemisphere, for which
ERA-40 provides striking evidence of the substantial benefit of the changes made to
the observing system in the build-up to FGGE in the late 1970s. ERA-40 also shows
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nevertheless that a modern data assimilation system is capable of providing analyses
of the state of the northern hemisphere more than 40 years ago that are of sufficient
accuracy to yield forecasts that remain skilful well into the medium range. Lack
of today’s analysis and modelling techniques and computer power appear to have
been more of a hindrance to general northern hemisphere forecast quality 40 years
ago than lack of today’s observing system. It must, however, be kept in mind that
this remark applies to routine synoptic-scale prediction beyond a day or two ahead,
and not necessarily to the short-range prediction of severe weather events where
satellite imagery (and observing systems such as ground-based radar) can play such
an important role. Moreover, the newer observing systems have had to compensate
for a decline in radiosonde coverage over key oceanic and high-latitude regions.

There has been a particularly large improvement in operational forecasts over the
past seven or so years. Evidence discussed here and elsewhere indicates that improve-
ments have stemmed in particular from improved data assimilation (improved assim-
ilating models as well as improved analysis techniques), helped by the availability of
new or improved types of observation. It should be noted that attention has been con-
centrated here on the accuracy of forecasts of 500 hPa height, and to a lesser extent
wind and temperature in the free troposphere, rather than on forecasts of weather
elements such as near-surface temperature, cloud and precipitation. The latter bene-
fit directly from model improvements as well as from the improved definition of the
synoptic environment that is documented by the type of verification presented here.
General forecast improvements have been achieved by many centres, and it has been
demonstrated how the initial analyses of two centres, ECMWF and the Met Office,
have converged substantially. Nevertheless, significant (and informative) differences
in analyses and forecasts remain.

The spectral breakdown of error shows that there has been a distinct recent
improvement in the handling of smaller scales of motion in the ECMWF system.
In the system’s incremental 4D-Var data assimilation, the spectral truncation of the
highest-resolution minimisation is at wave number 159 and the assimilation period
is 12 hours. For this system, forecast error is still some way from saturation after
12 or even 24 hours for a range of wave numbers higher than 159, suggesting that
there may well be scope for extending the resolution of the minimisation. This might
be a rather optimistic view given that the small-scale short-range forecast ‘errors’
considered here are determined by verifying against an analysis that at small scales is
very heavily influenced by the model background forecast. A clear benefit accrued,
however, from the resolution changes made in November 2000.
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The study in Section 16.5 utilized 500 hPa height analyses and forecasts made available
by the Met Office to ECMWF on a routine basis.

Note
1. Forecasts at 12-hourly frequency using comparable data cut-off times have been

produced regularly by ECMWF only since 28 March 2001.
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The ECMWF Ensemble Prediction System

Roberto Buizza
European Centre for Medium-Range Weather Forecasts, Reading

There are two key sources of forecast error: the presence of uncertainties in the initial
conditions and the approximate simulation of atmospheric processes achieved in the
state-of-the-art numerical models. These two sources of uncertainties limit the skill
of single, deterministic forecasts in an unpredictable way, with days of high/poor
quality forecasts randomly followed by days of high/poor quality forecasts. One way
to overcome this problem is to move from a deterministic to a probabilistic approach to
numerical weather prediction, and try to estimate the time evolution of an appropriate
probability density function in the atmosphere’s phase space. Ensemble prediction is
a feasible method to estimate the probability distribution function of forecast states.
The European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble
Prediction System (EPS) is one of the most successful global ensemble prediction
systems run on a daily basis. In this chapter the ECMWF EPS is described, its forecast
skill documented, and potential areas of future development are discussed.

17.1 The rationale behind ensemble prediction

The time evolution of the atmospheric flow, which is described by the spatial distribu-
tion of wind, temperature, and other weather variables such as specific humidity and
surface pressure, can be estimated by numerically integrating the mathematical dif-
ferential equations that describe the system time evolution. These equations include
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Newton’s laws of motion used in the form ‘acceleration equals force divided by
mass’ and the laws of thermodynamics. Numerical time-integration is performed by
replacing time-derivatives with finite differences, and spatial-integration either
by finite difference schemes or spectral methods. In the ECMWF model, dynam-
ical quantities such as pressure and velocity gradients are evaluated in spectral space,
while computations involving processes such as radiation, moisture conversion, tur-
bulence, are calculated on a mesh of grid points, each representing a geographical
point in space.

Numerical integration starts from the system’s initial conditions constructed using
meteorological observations made all over the world. At ECMWF, observations are
assimilated in a dynamically consistent way using a four-dimensional scheme to
estimate the actual state of the atmosphere (Talagrand and Courtier, 1987; Courtier
and Talagrand, 1987; Courtier et al., 1994). The fact that only a limited number
of observations are available (limited compared with the degrees of freedom of the
system) and that part of the globe is characterised by a very poor coverage introduces
some uncertainties in the system’s initial conditions. The presence of these initial
uncertainties is the first source of forecast errors.

Data assimilation and forward time integration is performed using models
designed to simulate physical processes associated with radiative transfer, turbulent
mixing and moist processes. These processes are active at scales smaller than the grid
size used in the numerical integration, and thus remain unresolved in terms of model-
resolved variables and can only be approximated. The problem of the simulation of
these unresolved processes using model-resolved variables is referred to as parametri-
sation, and is one of the most difficult and controversial areas of weather modelling
(Holton, 1992). At ECMWF, the assimilation and forecasting system (Simmons
et al., 1989; Courtier et al., 1991; Simmons et al., 1995) includes a parametrisation
of many physical processes such as surface and boundary layer processes (Viterbo
and Beljaars, 1995), radiation (Mocrette, 1990) and moist processes (Tiedtke, 1993;
Jacob, 1994). The approximate nature of the parametrisation schemes included in the
numerical weather prediction models is one of the key reasons of model uncertainties,
and is the second source of forecast errors.

These two sources of forecast errors cause weather forecasts to deteriorate with
forecast time. It is worth stressing that initial conditions will always be only approx-
imately known, since all data are characterised by an error that depends on the
instrumental accuracy. Observational errors, usually in the smaller scales, amplify
and through non-linear interactions spread to longer scales, eventually affecting the
skill of the longer scales (Somerville, 1979). Similarly, numerical models will never
be able to resolve all physical processes: thus, numerical weather prediction has to
find a way to deal with these two sources of forecast error, and take them into account
when generating weather predictions.

One way to take these sources of forecast errors into consideration is to move from
a single deterministic to a probabilistic approach, whereby the weather prediction
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problem is stated in terms of the time evolution of an appropriate probability density
function in the atmosphere’s phase space. Although this problem can be formu-
lated exactly through the continuity equation for probability (Liouville equation; see
Ehrendorfer, 1994 and this volume), ensemble prediction based on a finite number of
deterministic integrations appears to be the only feasible method to predict the prob-
ability density function beyond the range of linear error growth. An ensemble system
can take into account the two sources of model errors, for example by using different
initial conditions and different parametrisation schemes in each ensemble member,
and then using the ensemble of forecasts to estimate the probability of occurrence of
any event of interest.

Since December 1992, the US National Center for Environmental Predictions
(NCEP, previously NMC; Tracton and Kalnay, 1993) and ECMWF (Palmer et al.,
1993) have been producing operationally global ensemble forecasts. These opera-
tional implementations followed the theoretical and experimental work of, among
others, Epstein (1969), Gleeson (1970), Fleming (1971a, 1971b), Leith (1974) and
Lorenz (this volume). In 1998, ECMWF and NCEP were followed by the Meteo-
rological Service of Canada (MSC; Houtekamer et al., 1996). Today, these three
centres can be considered the leaders in the field of operational ensemble pre-
diction, which includes nine centres running a global system on a daily basis
(ECMWF in the UK, MSC in Canada, NCEP and the US Navy in the USA,
BMRC in Australia, CPTEC in Brazil, NMC in China, JMA in Japan, and KMA in
Korea).

In this chapter, the ECMWF EPS is described, its performance is documented,
and plans for future developments are discussed. Two appendices present some
methodological details: the singular vector technique used to generate the EPS initial
perturbations is discussed in Appendix A, and the accuracy measures most com-
monly used to assess the accuracy of probabilistic forecasts are briefly revised in
Appendix B.

17.2 The ECMWF Ensemble Prediction System (EPS)

17.2.1 The development and implementation of the EPS

The fact that ensemble prediction systems should simulate the effect both of initial
uncertainties and of model uncertainties was shown, for example, by the works
of Downton and Bell (1988), Richardson (1998) and Harrison et al. (1999), who
studied the relative importance of the initial and model uncertainties on the forecast
error. Downton and Bell and Richardson compared forecasts given by the UK Met
Office and the ECMWF forecasting systems, and indicated that forecast differences
between the ECMWF and the UK Met Office operational forecasts could be linked
mainly to differences between the two operational analyses, rather than between
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the two forecast models. Harrison et al. (1999) compared multimodel, multianalysis
ensemble systems constructed using the ECMWF and the UK Met Office analysis
and forecast systems, and concluded that the impact of model uncertainties on the
forecast error should not be ignored, especially in the medium range (say after forecast
day 3).

The first version of the ECMWF EPS (Palmer et al., 1993; Molteni et al., 1996),
implemented operationally in December 1992, and its subsequent upgrades reflected
the key conclusion of these studies that initial uncertainties are the most important
sources of forecast error in the short forecast range, but then model errors also play a
role. The first version of the EPS included only a simulation of initial uncertainties, but
since October 1998 the EPS also included a stochastic scheme designed to simulate
the random model errors due to parametrised physical processes (Buizza et al., 1999).
Table 17.1 lists the key upgrades of the ECMWF from the implementation of a 33-
member T63L19 system (spectral truncation T63 with 19 vertical levels) in December
1992. This list includes:

� In December 1996, an upgrade to a 51-member TL159L31 system, with
spectral triangular truncation T159 with linear grid (Buizza et al., 1998).

� In March 1998, the introduction of the evolved singular vectors (Barkmeijer
et al., 1999).

� In October 1998, the introduction of the stochastic physics scheme (Buizza et
al., 1999).

� In November 2000, a second major resolution upgrade to a TL255L31 system
(Buizza et al., 2003).

� In January 2002, the introduction of tropical initial perturbations (Barkmeijer
et al., 2001).

17.2.2 The EPS configuration operational in 2004

Formally, each ensemble member ej can be written as the time integration

e j (d, t) = e j (d, 0) +
t∫

t=0

[A(e j , t) + P ′
j (e j , t)]dt (17.1)

of the perturbed model equations

∂e j

∂t
= A(e j , t) + P ′

j (e j , t), (17.2)

where A and P ′ identify the contribution to the full equation tendency of the non-
parametrised and parametrised physical processes. For each grid point x = (λ, φ, σ )
(identified by its latitude, longitude and vertical hybrid coordinate), the perturbed
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parametrised tendency (of each state vector component) is defined as

P ′
j (e j , t) = [1 + 〈r j (λ, φ, t)〉D,T ]P(e j , t), (17.3)

where P is the unperturbed diabatic tendency, and <. . .> D,T indicates that the same
random number rj has been used for all grid points inside a D × D degree box and
over T time steps (Buizza et al., 1999).

The introduction of space and time coherence in the stochastic perturbations was
based on the assumption that organised systems have some intrinsic space and time
scales that may span more than one model time step and more than one model grid
point. Making the stochastic uncertainty proportional to the tendency was based on the
concept that organisation (away from the notion of a quasi-equilibrium ensemble of
subgrid processes) is likely to be stronger, as the parametrised contribution becomes
stronger. In the EPS, the time-t forecast from the initial day d is computed integrating
Eq. (17.1) starting from perturbed initial conditions

e j (d, 0) = e0(d, 0) + δe j (d, 0), (17.4)

where each initial perturbation δej(d,0) is generated using singular vectors com-
puted to maximise the total energy norm over a 48-hour time interval (Buizza and
Palmer, 1995), and scaled to have an amplitude comparable to analysis error esti-
mates. Appendix A gives a brief summary of the singular vector definition, while for
a more detailed description of the singular vector characteristics and a discussion of
the nature of singular vector growth the reader is referred to Hartmann et al. (1995)
and Hoskins et al. (2000).

The use of singular vectors (Buizza and Palmer, 1995) is a key feature of the
ECMWF EPS that distinguishes it from the other two leading global ensemble sys-
tems implemented at MSC and NCEP (Buizza et al., 2005). Singular vectors identify
perturbations of maximum growth during a finite time interval, named the optimisa-
tion time interval: small errors in the initial conditions along these directions would
amplify most rapidly and affect the forecast accuracy. Singular vectors are usually
located in regions of strong barotropic and baroclinic activity: at initial time, they
have most of their energy confined in the small scale and are confined vertically in
the lower troposphere. During the optimization time interval, they change shape and
grow in scale, and vertically propagate upward. As an example, Figure 17.1 shows the
amplification rate (i.e. the singular value) of the leading 25 northern hemisphere sin-
gular vectors used in the EPS started at 12 UTC of 1 December 2003, and Figure 17.2
shows the average vertical distribution of total energy and the total energy spectra for
these singular vectors. These two figures summarise two of the key characteristics
of the singular vectors: the decreasing spectra of singular values, the upward energy
propagation during the optimisation time interval coupled with the conversion of
initial-time potential energy into final-time kinetic energy, and the upscale energy
propagation from the small to the large (synoptic) scales.
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Figure 17.1 Amplification rates (i.e. singular values) of the leading 25 singular
vectors used in the operational EPS started at 12 UTC of 1 December 2003. These
singular vectors were computed at T42L40 resolution, with simplified dry physics, a
48-h optimisation time interval, and final time total energy norm maximised over the
northern hemisphere extratropics (latitude λ ≥ 30◦ N).

The EPS configuration operational in 2004 (Table 17.1) includes 50 perturbed
members and one unperturbed member (the control forecast) run at TL255L40 res-
olution: the control starts from the unperturbed analysis, while the 50 perturbed
members start from perturbed initial conditions generated by adding to the unper-
turbed analysis a linear combination of the leading singular vectors growing to have
maximum energy, at optimisation time, inside three sets of area covering the whole
globe (Appendix A). During this linear combination, the leading singular vectors are
rescaled to have amplitude comparable to analysis error estimates (Molteni et al.,
1996; Buizza et al., 2005). Formally, each initial perturbation is defined as

δe j (d, 0) =
NA∑

A=1

{
NSV∑
i=1

[
αA

i, jv
A
i (d, 0) + β A

i, jv
A
i (d − t, t)

]}
, (17.5)

where v A
i (d,0) is the i-th initial-time singular vector growing between d and d + t

inside, the number of different regions NA varies between 2 and 8 (Appendix A), and
the number of selected singular vectors NSV is set to 25. Analogously, v A

i (d − t, t)
is the i-th final-time t singular vector growing between d − t and d inside area A.
Following the latest changes introduced in 2004, the coefficients αi,j and βi,j are
sampled from a Gaussian distribution (Ehrendorfer and Beck, 2003), still with the
constraint that, on average, the ensemble standard deviation (which is a measure of
the average distance of a single member from the ensemble mean) is comparable to
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Figure 17.2 (Top panel) Average initial-time total (dashed line) and kinetic (dotted
line) energy, final-time total (solid line) and kinetic (chain-dashed line) energy
vertical cross-section. (Bottom panel) Average initial-time (dashed line) and final-
time (solid line) total energy spectra. The averages have been computed considering
the leading 25 singular vectors used in the operational EPS started at 12 UTC of 1
December 2003.

the error of the ensemble mean (which is a measure of the distance of the analysis
from the ensemble mean). This guarantees that, on average, the analysis has the same
distance from the ensemble mean as a perturbed member.

Figure 17.3 shows the EPS ensemble-mean forecast and the ensemble standard
deviation, which is a measure of the ensemble spread, at initial and at three forecast
steps, for the EPS started on 1 December 2004. The ensemble standard deviation
at initial time shows the areas where the EPS initial perturbations were located,
and their average amplitude. Figure 17.3 shows that the initial perturbations were
located in regions of strong gradient (e.g. the exit of the North Atlantic jet stream)
and intense baroclinic activity (e.g. the area of cyclonic depression over Spain).
Figure 17.3 also indicates how the ensemble standard deviation can be used to
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Figure 17.3 (Top left panel) Initial time ensemble mean (which coincides with the
unperturbed analysis) and standard deviation. (Top right panel) Ensemble mean and
standard deviation at forecast day 2. (Bottom left panel) Ensemble mean and
standard deviation at forecast day 4. (Bottom right panel) Ensemble mean and
standard deviation at forecast day 6. Fields shown refer to the 500 hPa geopotential
height field of the EPS started at 12 UTC of 1 December 2003. Contour interval for
ensemble mean is 80 m; contour shading for the ensemble standard deviation is 5 m
at initial time, 15 m at day 2, 30 m at day 4 and 45 m at day 6.

estimate predictability: regions with small standard deviation (i.e. with small ensem-
ble spread) should be more predictable than regions with large values, since in these
regions the verifying analysis should be closer to the forecast states. If we con-
sider Europe, for example, the ensemble standard deviation is small compared with
the other regions during the early forecast range, but starts being relatively large at
forecast day 4.

The average distance between the perturbed forecasts and the control is another
measure of the ensemble spread, which can be compared with distance of the control
forecast from the analysis. In a perfect ensemble system, the average (computed for
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Figure 17.4 (Top left panel) Ensemble spread ‘spaghetti’ diagram of the EPS started
at 12 UTC of 1 December 2003 over Europe, with spread measured by the anomaly
correlation coefficient between each perturbed member and the control. (Top right
panel) As top left panel but for the skill of the perturbed members (dotted line), the
control (solid line with full circles) and the ensemble mean (dashed line with
squares), with skill measured by the anomaly correlation coefficient between each
forecast and the verifying analysis. (Bottom panels) As top panels but for the EPS
started at 12 UTC of 11 December 2003.

a large sample of cases) ensemble spread should be comparable to the average error
of the control forecast. Furthermore, as mentioned above, a small ensemble spread
should indicate a predictable case, or, in other words, a small control error. These two
characteristics can be checked, for example, using so-called spaghetti diagrams of
ensemble spread and forecast error, with spread and error measured by the anomaly
correlation coefficient.

Figure 17.4 shows the ‘spaghetti diagrams’ of the spread of each ensemble
perturbed-member from the control forecast and the forecast error measured using the
anomaly correlation coefficient between the forecast and the verifying analysis, for
two cases (1 December and 11 December 2003) over Europe. Considering the EPS
started on 1 December, the growth of ensemble spread of each individual member
with the forecast time reflects the growth of the ensemble standard deviation shown in
Figure 17.3. It is worth pointing out that the skill of the individual ensemble member
starts crosses the 0.6 value at around forecast day 4, the time when the ensemble
spread over Europe starts being relatively large (0.6 is usually considered the lower
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limit for a skilful forecast). Note also that for this case, the skill of the control, the
ensemble perturbed members and the ensemble mean fall below the 0.6 threshold
after forecast day 7.5.

Figure 17.4 also shows the spread and skill spaghetti diagram for the EPS started
on 11 December. Note that between forecast day 4 and 6 the ensemble spread is
smaller in this second case, and thus one would expect this second situation to be
more predictable in this forecast period. Indeed, the skill of the control and the
perturbed members is shown to be higher in this second case. Finally, it is worth
pointing out that in both cases the skill of the ensemble-mean forecast is higher than
the skill of the control forecast: this reflects the fact that by averaging all ensemble
members, small-scale unpredictable features have been filtered out, thus providing a
smoother but more skilful forecast.

17.2.3 Comparison of the methodologies used at MSC,
NCEP and ECMWF

At MSC, the ensemble initial perturbations are generated by randomly perturbing
each observation and by generating a set of initial analyses by running the MSC
data assimilation system with a set of different models. Because the analysis and
forecast system is repeated several times with different random input, the perturbed-
observation method can be considered as a classical example of a Monte Carlo
approach (see, for example, Hamill, this volume). The rationale behind the MSC
choice of using non-selective, purely random ensemble perturbations is presented in
Houtekamer et al. (1996) and by Anderson (1997). At NCEP, the ensemble initial
perturbations are generated in a similar way as at ECMWF, but bred vectors (Toth and
Kalnay, 1993) are used instead of singular vectors. The bred vector method is based on
the argument that fast-growing perturbations develop naturally in a data-assimilation
cycle and continue to grow as short- and medium-range forecast errors. Bred vectors
can be considered as a non-linear extension of the Lyapunov vectors (Boffetta et al.,
1998). In the NCEP ensemble, the bred vectors are rescaled to follow the geographi-
cally varying level of estimated analysis uncertainty (Iyengar et al., 1996). Table 17.2
lists the key characteristics of the ECMWF, MSC and NCEP ensemble prediction
systems.

Buizza et al. (2005) compared three subsets of the ECMWF, MSC and NCEP EPS
defined by only 10 perturbed members starting at 00 UTC, for a three month period
(May, June and July 2002). It is worth quoting directly from this work the consensus
position that emerged on some key aspects of the three ensemble systems:

� Overall, the ECMWF EPS exhibits the most skilful performance when
measured using root-mean-square error, anomaly correlation, Brier skill
score and the area under a relative operating characteristic curve.
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Table 17.2 Key characteristics of the MSC, ECMWF and NCEP ensemble systems

MSC ECMWF NCEP

Simulation model
uncertainty

Yes (different
models)

Yes (1 model + stoch
phys)

No

Simulation initial
uncertainty

Yes (analysis
cycles)

Yes (singular vectors) Yes (bred vectors)

Hor-res pert members TL149 TL255 (d0–10) T126(d0–3.5) >

T62(d3.5–16)
Vertical levels (c&pf) 23 and 41, 28 40 28
Top of the model 10 hPa 10 hPa 3 hPa
Perturbed members

per cycle
16 50 10

Cycles per day 1 (0UTC) 2 (0, 12UTC) 4 (0, 6, 12, 18UTC)
Forecast length 10 days 10 days 16 days
Operational impl. February

1998
December 1992 December 1992

From Buizza et al. (2005).

� When a measure called perturbation versus error correlation analysis (Wei
and Toth, 2003) is used to assess the correlation between perturbation and
forecast-error patterns, the ECMWF EPS does not show any superior
performance. At short lead times, the error patterns are best described by the
NCEP EPS if one considers the small scales and by the MSC EPS if one
considers the large scales.

� The superior skill of the ECMWF EPS may be mostly due to its superior
model and data-assimilation systems, and should not be considered as proof
of a superior performance of singular vector-based initial perturbations. In
other words, at MSC and NCEP ensemble performance is negatively affected
in the short range by the relatively low quality of the ensemble of
data-assimilation systems, and in the long range by the relatively low model
resolution.

� As for statistical reliability, the superior outlier statistics of the MSC EPS
may be due to the use of multiple model versions. This technique may
capture large-scale model-related errors in longer lead times.

� The spread in the (single-model) ECMWF EPS grows faster than that in the
other two systems due to a combined effect of sustained singular
vector-based perturbations’ growth and of the stochastic simulation of
random model errors.

� There are indications that the stochastic simulation of random model error
scheme implemented in the ECMWF EPS improves the forecast statistical
reliability.
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Considering these 10-member ensembles, Buizza et al. (2005) showed that the
ECMWF EPS probabilistic forecasts of geopotential height anomalies had about
one day more skill than the other two ensembles at around forecast day 5. The reader
is referred to Buizza et al. (2005) for a detailed discussion of these results.

17.3 EPS performance from May 1994 to September 2004

The ECMWF EPS forecasts are used to generate deterministic products (e.g. the
forecasts given by the EPS control or the ensemble mean) and probabilistic products,
such as the probability of occurrence of some selected events (e.g. the probability
of occurrence of positive anomalies, or of positive/negative anomalies greater than
or smaller than one standard deviation of monthly variability). The accuracy of
deterministic and probabilistic forecasts has been assessed using a range of accuracy
measures, but for reason of space attention will be focused hereafter to 500 hPa
geopotential height fields over the northern hemisphere and Europe, from 1 May
1994 to 1 September 2004. Appendix B briefly summarises the definition of the
three most common measures used hereafter to assess the accuracy of probabilistic
forecasts: the area under the relative operating characteristic curve, the Brier score
and skill score, the ranked probability score and skill score. The reader is referred to
Wilks (1995) for a comprehensive discussion of accuracy measures that can be used
to assess different attributes of forecast accuracy (see also Toth et al., this volume).

Skill values have been translated into predictability gains, measured in days-per-
decade (d/de), using the following formula:

gain(t)1994−2004 = sk(2004, t) − sk(1994, t)

〈sk(t + 12h) − sk(t − 12h)〉1994−2004
, (17.6)

where sk(Y, t) is a measure of the skill of the t-day forecast issued in the Yth year,
and 〈. . .〉1994–2004 denotes the average between 1994 and 2004.

Considering deterministic forecasts, Figure 17.5 shows the time evolution of
the skill of the control and the ensemble-mean 5- and 7-day forecasts over the
northern hemisphere. Results indicate a continuous improvement, equivalent for
the control 5-day (7-day) forecast to a predictability gain of 0.95 (0.98) d/de,
and for the ensemble mean to a gain of 1.40 (1.66) d/de. Considering probabilis-
tic forecasts, Figure 17.6 shows the time evolution of the area under the relative
operating characteristic curve, the Brier score and skill score, the ranked proba-
bility score and skill score of 5- and 7-day probabilistic forecasts over the north-
ern hemisphere. These results indicate predictability gains ranging between 2 and
3.3 d/de.

Figure 17.7 summarises the predictability gains of the deterministic and proba-
bilistic forecasts achieved between 1994 and 2004, for both the northern hemisphere
and Europe. It is worth pointing out that the accuracy of the probabilistic forecasts
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Figure 17.5 (Top panel) Monthly average anomaly correlation coefficient of the
control (bold solid black line) and the ensemble mean (bold solid grey line) 5-day
forecasts of 500 hPa geopotential height fields over the northern hemisphere. Thin
lines show linear regression curves. (Bottom panel) As top panel but for the 7-day
corresponding forecasts.
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EPS ROCA[f>c], BSS[f>c] and RPSS - NH Z500 d+5
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Figure 17.6 (Top panel) Monthly average area under the relative operating
characteristic curve (higher bold solid black line) and Brier skill score (lower bold
solid black line) of the 5-day probabilistic forecasts of positive anomalies, and
ranked probability skill score (grey bold solid line) of the 5-day probabilistic
forecasts of 500 hPa geopotential height fields over the northern hemisphere. Thin
lines show linear regression curves. (Bottom panel) As top panel but for the 7-day
corresponding forecasts.
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Predictability gains (linear trend estimates) - NH Z500
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Figure 17.7 (Top panel) Gains in predictability, computed using Eq. (17.6), of 5-day
(black bars) and 7-day (grey bars) forecasts of 500 hPa geopotential height fields
over the northern hemisphere, computed from different forecasts:
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has improved by about twice the value shown by the deterministic forecasts. This
improvement first of all confirms the fact that the EPS benefits from ameliorations of
the ECMWF data assimilation and forecast model, but also indicates that the changes
introduced in the EPS configurations listed in Table 17.1 played an important role
in improving the value of the EPS. Although it is difficult to identify clearly which
of the changes of the EPS configurations (Table 17.1) had the largest impact on the
EPS scores, published works suggest that the improvements shown in Figure 17.7
are mainly due to the increases of the EPS resolution in 1996 and 2000 (Buizza et al.,
1998, 2003), the increase in the ensemble size in 1996 (Buizza et al., 1998; Buizza
and Palmer, 1998; Mullen and Buizza, 2002), the introduction of evolved singular
vectors (Barkmeijer et al., 2001) and of stochastic physics in 1998 (Buizza et al.,
1999; Mullen and Buizza, 2001).

17.4 Future developments of the ECMWF EPS

One of the most important advances in numerical weather prediction of the last
15 years has been the operational implementation of ensemble prediction systems.
Ensemble systems provide a possible way to estimate the probability distribution
function of forecast states, and have been shown to be particularly useful, if not neces-
sary, to provide early warnings of extreme weather events (Buizza and Hollingsworth,
2001). The economic value of information generated using ensemble forecasts has
been recognised not only in meteorology (Richardson, 2000, this volume; Lalau-
rette and van der Grijn, 2005; Mylne, 2005) but also in business applications (Smith
et al., 2001), more specifically in real business applications in the energy sector
(Taylor and Buizza, 2003, 2004) and in ship routeing (Saetra, 2004).

At ECMWF, work is in progress to improve the current system in three key areas:

(a) the simulation of initial uncertainties

(b) the simulation of model imperfection

(c) the system design.

←
Figure 17.7 (cont.)
� Bars 1–2: the control anomaly correlation coefficient
� Bars 3–4: the ensemble-mean anomaly correlation coefficient
� Bars 5–6 and 7–8: the area under the relative operating characteristics of the

probabilistic forecast of positive anomalies given by the control (5–6) and the EPS
(7–8)

� Bars 9–10: the ranked probability skill score of the EPS
� Bars 11–12: the Brier skill score of the probabilistic prediction of positive

anomalies
� Bars 13–14 and 15–16: the Brier skill score of the probabilistic prediction of

positive anomalies greater-than and smaller-than 1 standard deviation.
(Bottom panel) As top panel but for Europe.
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In the area of the simulation of initial uncertainties, developments are expected in the
definition of the norm used to compute the singular vectors, in the use of moist, higher-
resolution singular vectors, and in the combination of ensemble data assimilation and
singular vectors. In the area of the simulation of model uncertainties, developments
are expected in the simulation of the effect of near-grid-scale and subgrid-scale
processes. Finally, in the area of system design, changes in the ensemble size and
resolution are under investigation.

17.4.1 Simulation of initial uncertainties
Definition of the initial-time norm used in the singular
vectors’ computation

The current EPS uses singular vectors computed with initial- and final-time total
energy norm, i.e. without using any information of analysis error statistics. One way
to use this type of information would be to use a norm defined by the Hessian of the
cost function of the three-dimensional (or four-dimensional) variational assimilation
system (3D/4D-Var) to define singular vectors (Barkmeijer et al., 1998). These so-
called Hessian singular vectors would be constrained at initial time by analysis error
statistics and still produce fast perturbation growth during the first few days of the
forecast.

Use of higher-resolution, 24-hour, moist singular vector

Considering the second point, the current EPS uses extratropical singular vectors
computed at T42L40 resolution and simplified dry physics to grow over a 48-
hour time period. Coutinho et al. (2004) have shown that the inclusion of large-
scale latent heat release results in a shift to smaller horizontal scales and enhanced
growth, and to a change in their location that depends on the availability of mois-
ture. They have also shown that while for the dry singular vectors a T42 resolution
is sufficient, the moist singular vectors require a T63 resolution to resolve their
structure and growth. Furthermore, they have suggested that a 24-hour optimisation
time appears to be more appropriate for the moist singular vectors because of the
larger growth. Work is in progress to test the use of these singular vectors in the
EPS.

Combined use of ensemble data assimilation and singular vectors

An ensemble approach to data assimilation was tested a few years ago (Buizza and
Palmer, 1999), and work is now resuming to assess whether a combined use of dif-
ferent perturbation methods could be beneficial for the EPS. Following Houtekamer
et al. (1996), but with the ECMWF approach to represent model uncertainties, the
plan is to generate an ensemble of initial perturbations using the ECMWF 3D- and/or
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Figure 17.8 Schematic of a possible future configuration of the ECMWF EPS, the
‘caterpillar’ system. The caterpillar is a probabilistic assimilation and prediction
system, whereby the EPS initial conditions (full black circles) are defined using a
combination of ensemble data assimilation and singular vectors, and the ensemble
forecasts (arrows) are run with a higher resolution in the short and medium forecast
range (say during week 1) and a lower resolution in the long forecast range (say
week 2).

4D-Var data assimilation schemes. This, combined with the use of a variable resolu-
tion during the forecast integration (see Section 17.4.3), could lead to the development
and implementation of the ECMWF probabilistic data-assimilation and prediction
system (the ‘caterpillar’ system), schematic illustrated in Figure 17.8.

17.4.2 Simulation of model imperfection
Simulation of near-grid and subgrid scale processes

Work is in progress to revise the current scheme used to simulate the effect of random
model errors linked to the parametrisation of physical processes. A new scheme, des-
ignated the Cellular Automaton Stochastic Backscatter Scheme (Shutts, 2004), has
been designed to introduce kinetic energy sources during the numerical integration
to counteract for energy dissipation processes at the near-grid scale. Results indicate
that this new scheme may be more effective in generating effective spread in the EPS,
especially in the medium- and long-forecast range. Substitution of the old with the
new scheme, or a combined use of the two schemes, is under investigation.
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17.4.3 System design
Ensemble size

Earlier sensitivity results (Buizza and Palmer, 1998; Mullen and Buizza, 2002) have
indicated that an increase in ensemble size between 10 and about 30 induces sizeable
positive impacts, but the impact decreases if size is further increased. Later work
has suggested on the one hand that a larger ensemble size is required to predict rare
events, but on the other hand that if ensemble forecasts are first postprocessed then
the impact of an ensemble size increase is smaller (Wilks, 2002). The plan is to
reassess whether the current membership should be revised or not.

Variable Resolution EPS (VAREPS)

The rationale behind VAREPS is that the predictability of small scales is mainly
lost relatively early in the forecast range. Therefore, while forecasts benefit from
a resolution increase in the early forecast range, they do not suffer so much from
a resolution reduction in the long range. Thus, it is more cost efficient to use any
extra computer resources to increase the EPS’s resolution as much as possible in
the early forecast range rather than implement a more modest resolution increase
over the whole forecast range. Furthermore, resources saved by running at higher
resolution only during the early forecast range give the possibility to extend the
EPS’ forecasts from day 10 to day 14 with a limited extra cost. Work to implement
VAREPS, with a TL399L40 resolution and a 1200 s time step between day 0 and day
7 and a TL255L40 resolution with a 2700 s time step from day 7 to day 14, is
progressing. Developments in these areas, sustained by improvements in data
assimilation and numerical modelling should further increase the value of the
ECMWF EPS and promote its use in other sectors. The sector where the oper-
ational use of ensemble systems is expected to start in the near future is
hydrology (Gouweleeuw et al., 2004). The use of ensemble methods in hydrol-
ogy will further convince users that ensemble predictions are extremely valu-
able because they not only offer an estimate of the most probable future state
of a system but they also provide an estimate of the range of possible future
outcomes.
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Appendix A Singular vectors’ definition
and methodology

Lorenz (1965) was the first author to indicate that perturbation growth in realistic
models is related to the eigenvalues and eigenvectors of the operator product of the
tangent forward linear and adjoint operators, i.e. to the singular values and singu-
lar vectors of the tangent forward operator. Subsequently, Farrell (1982), studying
the growth of perturbations in baroclinic flows, showed that, although the long time
asymptotic behaviour is dominated by discrete exponentially growing normal modes
when they exist, physically realistic perturbations could present for finite time inter-
vals amplification rates greater than the most unstable normal mode amplification
rate. In later works, Farrell (1988, 1989) confirmed Lorenz’s (1965) indications that
the singular vectors could be computed solving the eigenvalue problem of the prod-
uct of the tangent forward and adjoint model propagators. Considering the more
complex system of the atmospheric flow, singular vectors were computed, for exam-
ple, by Borges and Hartmann (1992) using a barotropic model, and by Molteni and
Palmer (1993) using a barotropic and a three-level quasi-geostrophic model at spec-
tral triangular truncation T21. Buizza et al. (1993) first identified singular vectors
in a primitive equation model with a large number of degrees of freedom. In this
appendix, the methodology followed at ECMWF to compute the singular vectors is
briefly reviewed.

A.1 Linearised model equations

Let χ be the state vector of a generic autonomous system, whose evolution equations
can be formally written as

∂χ

∂t
= A(χ ). (17.7)

Denote by χ (t) an integration of Eq. (17.7) from t0 to t. The time evolution of a small
perturbation x around the time evolving trajectory χ (t) can be described, in a first
approximation, by the linearised model equations

∂x

∂t
= Al x, (17.8)

where

Al = ∂ A(x)

∂x

∣∣∣∣
χ (t)

is the tangent operator computed at the trajectory point χ (t). Denote by L(t,t0) the
integral forward propagator of the dynamical Eq. (17.8) linearised about a non-linear
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trajectory χ (t):

x(t) = L(t, t0)x(t0), (17.9)

that maps a perturbation x at initial time t0 to the optimisation time t.

A.2 Inner product

Consider two perturbations x and y, and a positive definite Hermitian matrix E. Denote
by (. . . ; . . .)E the inner product between the two vectors

(x ; y)E = 〈x ; Ey〉, (17.10)

where 〈. . . ; . . 〉 identifies the canonical Euclidean scalar product,

〈x ; y〉 =
N∑

i=1

xi yi . (17.11)

Denote by ‖. . .‖E the norm associated with the inner product (. . . ; . . )E,

‖x‖2
E = (x ; x)E = 〈x ; Ex〉. (17.12)

A.3 Adjoint operator

Denote by L*E the adjoint of L with respect to the inner product (. . . ; . . )E,

(L∗E x ; y)E = (x ; Ly)E . (17.13)

The adjoint of L with respect to the inner product defined by E can be written
in terms of the adjoint L* defined with respect to the canonical Euclidean scalar
product,

L∗E = E−1L∗E . (17.14)

A.4 Singular values and singular vectors

From the definitions above, it follows that the squared norm of a perturbation x at
time t can be computed as

‖x(t)‖2
E = (x(t0); L∗E Lx(t0))E . (17.15)

From Eq. (17.15) it follows that the problem of finding the phase space directions
x for which ‖x(t)‖2

E/‖x(t0)‖2
E is maximum can be reduced to the computation of

the eigenvectors vI (t0) with the largest eigenvalues σ 2
i , i.e. to the solution of the
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eigenvalue problem

L∗E Lvi (t0) = σ 2
i vi (t0). (17.16)

The square roots of the eigenvalues, σ i, are called the singular values and the eigen-
vectors vi (t0) the (right) singular vectors of L with respect to the inner product E
(see, for example, Noble and Daniel, 1977). The singular vectors with largest singular
values identify the directions characterised by maximum growth. The time interval
t − t0 is called the optimisation time interval.

At optimisation time t, the i-th singular vector evolves into

vi (t) = L(t, t0)vi (t0), (17.17)

a vector with total norm equal to

‖vi (t)‖2
E = σ 2

i . (17.18)

Since any perturbation x(t)/‖x(t0)‖E can be written as a linear combination of the
singular vectors vi (t), it follows that

max‖x(t0)‖E �=0

( ‖x(t)‖E

‖x(t0)‖E

)
= σ1, (17.19)

which implies that maximum growth as measured by the norm ‖...‖E is associated
with the dominant singular vector v1.

At ECMWF, the singular vectors are computed by solving the eigenvalue problem
defined in Eq. (17.4) using a Lanczos iterative method (Golub and Van Loan, 1983).

A.5 Local projector operator (in physical space)

Denote by xg the grid point representation of the state vector x, by S the spectral-
to-grid point transformation operator, xg = Sx, and by Gxg the multiplication of the
vector xg, defined in grid point space, by the function g(s):

g(s) = 1∀s ∈ �

g(s) = 0∀s /∈ �
, (17.20)

where s defines the coordinate of a grid point, and� is a geographical region. Consider
a generic vector x. The application of the local projection operator T defined as

T = S−1GS, (17.21)

to the vector x sets the vector x to zero for all grid points outside the geographical
region �.

The projection operator T can be used either at initial or at final time, or at both
times. As an example, these operators can be used to solve the following problem:
find the perturbations with (a) the fastest growth during the time interval t − t0, (b)
unitary E0-norm at initial time and (c) maximum E-norm inside the geographical
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region � at optimisation time. The solution to this problem is given by the singular
values of the operator

K = E−1/2T L E−1/2
0 . (17.22)

A.6 Singular vectors in the ECMWF EPS

At the time of writing (2004), the EPS initial perturbations are generated using
localised singular vectors computed by solving the eigenvalue problem defined in
Eq. (17.6) for up to eight different regions in the following configuration:

� T42 spectral truncation and 40 vertical levels

� 48 hour optimisation time interval

� total energy norm, computed inside a localised region

� simplified dry physical processes in the extratropics (Buizza, 1994)

� moist tangent forward and adjoint physics (Mahfouf, 1999) in the tropics

� no moisture perturbations

� regions:

◦ the northern hemisphere extratropics (latitude north of 30◦ N)

◦ the southern hemisphere extratropics (latitude south of 30◦ S)

◦ up to six tropical regions, selected to cover areas of tropical cyclone
development.

Appendix B Accuracy measures of
probabilistic forecasts

The three measures most commonly used to assess the accuracy of probabilistic
forecasts are briefly reviewed hereafter. The reader is referred to Stanski et al. (1989)
and Wilks (1995) for more details.

B.1 The Brier score and skill score

The most common measure of accuracy of a probabilistic forecast is the Brier score
(BS; Brier, 1950):

BS = 1

Ng

NG∑
g=1

(p f,g − og)2, (17.23)

which is the mean-squared error of the forecast probability pf ,g = pf (λ,φ), where the
index g = 1, NG denotes the forecast/event pairs of all considered grid points. The
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observed probability function is defined to be og = 1 if the event occurs, and og =
0 if the event does not occur. The Brier skill score (BSS) is defined with respect to
a reference forecast (e.g. a climatological forecast, a forecast based on the sample
climate, or consistency)

BSS = BS − BSref

0 − BSref
. (17.24)

In this work, the reference forecast has been defined by the sample climatology. One
of the properties of the BS is that it can be considered a strictly proper score, in the
sense that the BS cannot be improved by forecasting something other than one’s true
beliefs about future weather events (i.e. hedging, see Wilks, 1995).

B.2 The area under the relative operating
characteristic curve

A second measure of probabilistic forecast accuracy is the area under a relative
operating characteristic curve (ROC) defined in signal detection theory (Mason, 1982;
Stanski et al., 1989). Consider a forecast probability distribution pf (λ, φ), stratified
according to observation into 51 categories. For any given probability threshold j, the
entries of this table can be summed to produce the four entries of a 2 × 2 contingency
table:

a j =
51∑

k= j+1
xk b j =

51∑
k= j+1

yk

c j =
j∑

k=1
xk d j =

j∑
k=1

yk

(17.25)

From each of the j-th contingency tables, the probability of detection PODj and the
probability of false detection PFDj can be computed. The 51 pairs (PFDj,PODj) can
be plotted one against the other on a graph. The result is a smooth curve called the
relative operating characteristic curve.

B.3 The ranked probability score and skill score

The ranked probability score (RPS; Epstein, 1969; Wilks, 1995) is another measure
of probabilistic forecast accuracy. Given a set of events related to the same variable
and characterised by a different amount (e.g. consider precipitation events charac-
terised by different rainfall amounts), the RPS can be considered an extension of the
Brier score to multicategory events (Wilks, 1995). Let Jev be the number of (ranked)
forecast events, pj

f ,g the forecast probability for the j-th event and o j
g the observed

probability function (with ok
g = 1 if the k-th event is observed, and o j

g = 0 for j �= k),
where g = 1,Ng denotes the g-th grid point. The grid point ranked probability score
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RPSg is computed from the squared error of the cumulative forecast and observed
probabilities

R P Sg =
J∑

m=1

[(
m∑

j=1

p j
f,g

)
−

(
m∑

j=1

o j
g

)]2

. (17.26)

The area-average ranked probability score RPS is defined as

R P S = 1

Ng

Ng∑
g=1

R P Sg. (17.27)

As for the Brier skill score, the ranked probability skill score RPSS is defined with
respect to a reference forecast

R P SS = R P Sref − R P S

R P Sref
. (17.28)

In this work, the reference forecast has been defined by the sample climatology.
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Limited-area ensemble forecasting:
the COSMO-LEPS system

Stefano Tibaldi, Tiziana Paccagnella, Chiara Marsigli,
Andrea Montani, Fabrizio Nerozzi
ARPA-SIM, Bologna

18.1 Introduction

The improvement of quantitative precipitation forecasting (QPF) is still one of the
major challenges in numerical weather prediction (NWP). Despite the constant
increase of computer power resources, which has allowed the development of more
and more sophisticated and resolved NWP models, accurate forecasts of extreme
weather conditions, especially when related to intense and localised precipitation
structures, are still difficult beyond day 2 (Mullen and Buizza, 2001) and, in rare
and selected cases, even at 24 hours. This limitation is due, among other reasons,
to the inherently low degree of predictability typical of the relevant physical phe-
nomena. The probabilistic approach has been recently increasingly explored to try to
come to terms with the chaotic behaviour of the atmosphere and to help forecasting
phenomena with low deterministic predictability.

In addition to this, almost twenty years ago Henk Tennekes, at the time member
of the ECMWF (European Centre for Medium-Range Weather Forecasts) Scientific
Advisory Committee, raised the question of the opportunity of producing a-priori
estimates of forecast skill stating that ‘no forecast is complete without a forecast of
the forecast skill’. It is not an overstatement to say that his bold assertion contributed
greatly to the development, at least at ECMWF, of forecast skill studies, estimates and
prediction techniques (e.g. Palmer and Tibaldi, 1988) and to the related development
of statistical-dynamical prediction methods like ensemble forecasting.

Predictability of Weather and Climate, ed. Tim Palmer and Renate Hagedorn. Published by Cambridge University Press.
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In fact, global ensemble prediction systems, implemented operationally for several
years now by some of the major meteorological centres (Tracton and Kalnay, 1993;
Molteni et al., 1996; Houtekamer et al., 1996), have become extremely important
tools to tackle the problem of predictions beyond day 3-to-4 and are becoming more
and more the bread-and-butter of operational forecasters all around the world. In
order, however, to fully exploit the potential of the stochastic-dynamic approach –
that is, to predict within a certain detail the evolution of the probability density
function (pdf) of the meteorological system (or at least of some important observable
variable) in the atmosphere’s phase space – the population of the ensemble should
be of the same order of magnitude as the dimensionality of the unstable subspace
of the phase space itself (Montani, 1998). This implies a number of integrations
probably much higher than what can be achieved by present-day operational ensemble
populations (order 50 at most). Furthermore, probabilistic global ensemble systems
are usually run at a coarser resolution with respect to (single) deterministic global
predictions. Hence, ensemble skill in forecasting intense and localised events in the
short and medium range is currently still limited. In order to enhance the present-
day prediction capabilities of operational ensemble systems, several approaches have
been attempted.

As far as global models are concerned, the horizontal resolution of the ECMWF
Ensemble Prediction System (EPS) was increased at the end of 2000 (Buizza et al.,
1999) and is now based on a TL255L40 model (spectral model with triangular trun-
cation at wave number 255 and 40 vertical levels), approximately equivalent to a
grid spacing of 80 km (Buizza, this volume). During 1999, ECMWF also developed
a Targeted Ensemble Prediction System (TEPS; Hersbach et al., 2000), where the
perturbations applied to the analysis to obtain the different initial conditions were
selected in order to maximise the 48-hour total energy perturbation growth over the
European area (about 35N–75N, 40W–30E), instead of over the whole extratropical
northern and southern hemisphere as is the case in the operational EPS. This TEPS
system was based on a T159L40 model (the same EPS configuration in operation at
that time) and was developed within an ECMWF special project as a collaboration
amongst KNMI (Royal Meteorological Institute of the Netherlands), ARPA-SIM
(the Hydro-Meteorological Service of Emilia-Romagna Region of Italy, formerly
ARPA-SMR) and the Norwegian Meteorological Institute (DNMI). The project aim
was to increase the ensemble spread over the European area in the short range and
early medium range. Results concluded that TEPS performs marginally better than
EPS in the 72-to-96 hour forecast range in terms of probabilistic prediction of severe
events over Europe while, for shorter ranges, the two systems have comparable skill
(Hersbach et al., 2000).

As an alternative approach (trading ensemble size for model horizontal resolution),
a smaller-size global ensemble, but at a higher resolution, was tested by Molteni et al.
(2001). Although the system turned out to be very expensive from a computational
point of view, it also gave promising results in the probabilistic prediction of heavy
precipitation.
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In recent years, much attention has been devoted to the development of a multi-
model multi-analysis ensemble system (MMAE) based on the UK Met Office and
ECMWF ensembles. It was found that, in a large number of cases, MMAE almost
invariably performs at least as well as the best individual ensemble and, sometimes,
better than either of the two single-model ensemble systems (Mylne et al., 2002).

Regarding short-range global ensembles, Météo-France has recently developed
an 11-member global ensemble system referred to as PEACE (Prévision d’Ensemble
à Courte Échéance), where the initial perturbations are generated using the targeted
singular vector technique. This system, operational since June 2004, is run up to 60
hours. A systematic evaluation of the system is currently being performed. In addition
to this, the UK Met Office is experimenting with a global ensemble system for short-
range predictions based on perturbations of initial conditions, model parameters and
physics. The main purpose of this ensemble is to provide boundary conditions to
a regional ensemble. First results show positive impact in the prediction of surface
parameters (Arribas, 2004).

Turning to limited-area model (LAM) applications of the ensemble technique,
different approaches are being explored, taking also into account the constraints
imposed by lateral boundary conditions on inner domain growing perturbations. One
of the possible approaches is the use of the LAM to perform a dynamical downscaling
of the different global ensemble forecasts produced by the driving global EPS. Other
methodologies rely on inducing perturbations during the limited-area model run
employing different techniques based on changing physical schemes, perturbing
model parameters or applying stochastic perturbations on physical tendencies.

As for operational implementations, NCEP (the US National Centers for Envi-
ronmental Predictions) developed the first operational multi-initial-condition multi-
model Short-Range Ensemble Forecasting system (SREF; Tracton et al., 1998; Du
et al., 2003). This system is composed of 15 elements, five members from the Regional
Spectral Model and 10 members from the Eta model; members from the same model
are differentiated by changing the convection scheme. Perturbations on initial condi-
tions are based on ‘regional’ breeding cycles. SREF has been operationally running
since May 2001; the system is now run for 63 hours twice a day (at 9 and 21 UTC)
at the horizontal resolution of 32 km.

At the DNMI, a limited-area ensemble (LAMEPS) was generated by nesting the
operational limited-area model (HIRLAM) in each element of a 21-member TEPS
set (Frogner and Iversen, 2001, 2002). This approach (sometimes referred to as the
‘brute-force’ approach, BFA) appears to provide better results than global TEPS for
the prediction of heavy rainfall events, but the computational burden makes it difficult
to afford on an operational basis. The semi-operational version of the system is called
NORLAMEPS, where TEPS and LAMEPS are combined to obtain a 41-member
ensemble (Haakenstad and Frogner, 2004).

The UK Met Office is currently planning to implement a limited-area ensemble
system of about 16 members at 24 km horizontal resolution over a European domain,
with initial and boundary conditions provided by the global ensemble, while Météo
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France is testing a LAMEPS system based on coupling PEACE with the regional
model ALADIN (10 km of horizontal resolution, 11 members, 48 hours forecast
range).

In the framework of the SRNWP (Short Range Numerical Weather Prediction
project of the EUMETNET network) cooperation, a ‘poor-man’ ensemble (PEPS)
has been implemented at Deutscher Wetterdienst by collecting and combining many
(19 at present) operational deterministic limited-area models (www.dwd.de/PEPS).
The system has been operationally running since December 2004.

A few years ago, ARPA-SIM proposed the LEPS methodology (Limited-area
Ensemble Prediction System; Molteni et al., 2001; Marsigli et al., 2001; Montani
et al., 2001, 2003a), which will be described in more detail in Section 18.2. The LEPS
methodology attempts to combine the benefits of the probabilistic approach with
the high-resolution capabilities of the LAM integrations, limiting the computational
investment. The method is based on an algorithm to select a number of members out
of a global ensemble system. The selected ensemble members (called representative
members, RMs) provide initial and boundary conditions to integrate a limited-area
model. The ensemble size reduction is necessary to keep the overall computational
load operationally affordable. The transfer of information from the large scale to the
mesoscale can be viewed as a dynamical downscaling of the forecast provided by
the global-model probabilistic system. The good results of the early experimenta-
tion phase of the LEPS system led the limited-area modelling consortium COSMO
(COnsortium for Small-scale Modelling; www.cosmo-model.org) to the decision
of implementing the LEPS technique within the COSMO framework on a regular
basis, giving rise to COSMO-LEPS (Montani et al., 2003b) as further described in
Section 18.2.

In Section 18.3, some case studies produced using LEPS are analysed in order to
investigate in some more detail the behaviour of the system, while Section 18.4 is
devoted to an objective and more systematic evaluation of the COSMO-LEPS system
performance. Some conclusions and future plans are outlined in Section 18.5.

18.2 The COSMO-LEPS system

As already mentioned in the introduction, the LEPS methodology is based on the
idea of reducing the number of LAM integrations needed by an order of magnitude
by retaining a hopefully large amount of the global ensemble information while
decreasing the number of ensemble elements subjected to LAM runs. This is achieved
by, first, grouping the global ensemble members into a number of clusters and then
choosing a ‘representative member’ (RM) within each cluster. Each RM is considered
to be representative of the possible evolution scenario associated with each particular
cluster and provides both initial and boundary conditions for a high-resolution LAM
integration.
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During the entire preliminary phase of the experimentation of LEPS, the LAM
used has been LAMBO (Limited-Area Model BOlogna), the limited-area model
running operationally at the time at ARPA-SMR, a hydrostatic LAM based on an
early version of the NCEP Eta model (Mesinger et al., 1988; Janjic, 1990). The sys-
tem was then constituted by five LAMBO integrations driven by five RMs selected
from five clusters derived from the operational ECMWF EPS set of global fore-
casts. LAMBO was integrated at a horizontal resolution of approximately 20 km and
with 32 vertical levels (domain: 1–25E, 36–50N). Montani et al. (2001, 2003a) and
Marsigli et al. (2001, 2004) have shown that, over a number of test cases (includ-
ing episodes in or close to mountain areas) and for all forecast ranges (from 48
to 120 hours), the LEPS system performs better than the ECMWF EPS (or the
Targeted EPS) in probabilistic quantitative prediction of heavy precipitation events,
both in terms of a better geographical localisation of the regions most likely to be
affected by the events and of a more realistic intensity of the associated rainfall
patterns.

Following the encouraging results of the early experimental phase, the regular
(daily) generation of a pre-operational limited-area ensemble prediction system, the
COSMO-LEPS system, was started in November 2002 on the ECMWF comput-
ing system (Montani et al., 2003b) under the auspices of the COSMO Consortium,
which involves the operational meteorological institutions of Germany, Italy, Switzer-
land, Greece and Poland cooperating on the development of the limited-area non-
hydrostatic model Lokal Modell (LM). COSMO-LEPS has been designed from the
outset for the ‘short-to-medium range’ timescale (48–120 hours).

The first step of the procedure is the application of a cluster analysis procedure
to the merge of the two most recent ECMWF operational global ensembles. The
ECMWF Ensemble Prediction System (EPS) is now based on a TL255L40 model
(global spectral model with triangular truncation at wave number 255 and 40 vertical
levels), corresponding to a horizontal resolution on a linear latitude-longitude grid
of about 80 km, and is formed by 51 members (Buizza, this volume).

Two successive 12-hour-lagged EPS ensembles (started at 00 and 12 UTC) are
therefore grouped together so as to generate a 102-member so-called superensemble.
The introduction of this superensemble technique was aimed at increasing the spread
of the starting global ensemble, thereby improving the spanning of the phase space
(Montani et al., 2003a).

A multivariate hierarchical cluster analysis is then performed on the resulting 102
members, so as to group all elements into ten clusters of different populations; the
clustering algorithm being based on the Complete Linkage method (Wilks, 1995)
with the number of clusters fixed to ten. The clustering variables are the geopotential
height, the two components of the horizontal wind and the specific humidity at three
pressure levels (500, 700, 850 hPa) and at two forecast times (fc+96h and fc+120h
for the ‘youngest’ EPS, started at 12 UTC). The cluster domain covers the region
30N–60N, 10W–30E (see Figure 18.1).
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Figure 18.1 COSMO-LEPS operational domain (outlined area) and clustering area
(shaded rectangle).

The configuration just described has been running since June 2004. From Novem-
ber 2002 to June 2004, COSMO-LEPS was based on five (instead of ten) RMs
selected clustering three (instead of two) 12-hour lagged consecutive EPS (also the
EPS starting at 12 UTC of the previous day was used). The reasons for such changes
were based on the results of an objective verification exercise, reported in some detail
in Section 18.4.

Within each cluster, one representative member (RM) is selected according to the
following criteria: the RM is that element closest to the members of its own clusters
and most distant from the members of the other clusters; distances are calculated
using the same variables and the same metric as in the cluster analysis; in this way,
ten RMs are selected, one for each cluster. Each RM provides initial and boundary
conditions for the integrations of LM, which is run ten times for 120 hours, always
starting at 12 UTC. LM is run with a horizontal resolution of about 10 km and with
32 levels in the vertical.
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Assuming a relationship between cluster population and the probability of occur-
rence of its associated RM, probability maps are generated by assigning to each LM
integration a weight proportional to the population of the cluster from which the RM
was selected.

A number of deterministic and probabilistic products are routinely produced and
disseminated to the COSMO community for regular pre-operational evaluation. The
deterministic products for each of the ten LM runs are: precipitation, mean sea
level pressure, 700 hPa geopotential, 850 hPa temperature. The main probabilistic
products include: probability of 24-h cumulated rainfall exceeding 20, 50, 100, 150
mm, probability of daily Tmax exceeding 20, 30, 35, 40 degrees C, probability of
daily Tmin below −10, −5, 0, +5 degrees C, probability of daily Vmax exceeding
10, 15, 20, 25 m/s, probability of 24-h cumulated snowfall exceeding 1, 5, 10, 20 mm
of equivalent water.

COSMO-LEPS product dissemination started in November 2002 and at the time
of writing (early 2005) the system is being tested to assess its usefulness in met
operations rooms, particularly in terms of the assistance given to forecasters in cases
of extreme events. In addition to COSMO partners, COSMO-LEPS products are
made available also to other interested ECMWF member states.

18.3 Results from selected case studies

As examples of the capability of COSMO-LEPS to predict, already at the short and
early-medium range, the occurrence of local severe weather, the behaviour of the
system is presented for two heavy precipitation events that recently occurred over
the alpine area. For each of the two case studies, the experimentation included:

� rerunning of the global ECMWF-EPS (hor. res.: 80 km, 40 vertical levels;
forecast range: 120 hours), archiving model output every 3 hours (1 EPS per
case study; no superensemble technique applied);

� nesting LM (hor. res. 10 km; 35 vertical levels; forecast range: 120 hours) in
each EPS member (brute-force approach), in a configuration identical to the
operational set-up;

� evaluating different ensemble-size reduction techniques, the clustering
variables being exactly the same as in the operational suite (Z, U, V, Q at 500,
700, 850 hPa, at the forecast ranges fc+96h and fc +120h);

� assessing the quality of 5-member, 10-member, . . . , 51-member
COSMO-LEPS.

18.3.1 Description of the case studies

In this section, we report a short description of the two case studies (more details can
be found in Montani et al., 2001).
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1. Friuli event: a mesoscale convective system developed due to the intrusion of
cold air masses travelling from west to east. Precipitation maxima exceeding
300 mm/day were recorded over Friuli (north-east Italy) between 28 and 29
August 2003, secondary rainfall peaks being observed also over the Ticino
area.

2. Piedmont event: an upper-level trough over France caused moist
south-westerly flow to blow over the Alps for several days, this leading to
widespread heavy precipitation over north-western Italy as well as over
Switzerland; rainfall peaks above 150 mm/day were observed between 15 and
16 November 2002.

The two panels of Figure 18.2 show the observed precipitation cumulated over a 24-
hour period starting at 12 UTC, for each case study. It is worth pointing out that, while
the former case refers to a localised weather event (mesoscale convective system),
the latter case deals with a heavy precipitation event for which the large-scale forcing
plays a major role (mid-tropospheric trough). Therefore, the analysed case studies
span two different types of flood events, on which the performance of COSMO-LEPS
system can be assessed.

In the following two subsections the behaviour of COSMO-LEPS at different
prediction ranges is analysed, as well as the impact of ensemble size on the quality
of the probabilistic forecast.

18.3.2 Behaviour of the system at the different
forecast ranges

The behaviour of the COSMO-LEPS system for the Piedmont case (right panel of
Figure 18.2) is investigated considering the probabilistic forecast of the events ‘24-
hour rainfall exceeding 20 mm’ and ‘24-hour rainfall exceeding 50 mm’ for three
different forecast ranges (2, 3 and 4 days). Figure 18.3 shows the consistency of
the rainfall probability maps for these events (top-row panels for the 20 mm event;
bottom-row panels for the 50 mm event). All maps verify at 12 UTC of 16 November
2002. It can be noticed that, already at the 96-hour range (top-left and bottom-left
panels, respectively), a high probability of occurrence is predicted over northern
Italy, in the areas where heavy precipitation was actually observed. This kind of
information would enable a hypothetical bench forecaster to issue a flood warning,
to be either confirmed or dismissed on the basis of forecasts at ranges closer to the
predicted event. Thanks to the relatively long lead time (four days), preventive actions
could have been taken so as to limit damage as much as possible.

The possibility of a heavy rainfall scenario is confirmed and reinforced by the 72-
and 48-hour forecasts (middle-column and right-column panels, respectively), the
probability of occurrence exceeding 90% in the correct locations.
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Similar considerations apply also for the Friuli case, where the performance of
COSMO-LEPS is again accurate and consistent (Figure 18.4). Despite this case study
being characterised by a local-forcing and the predictability being more limited than
in the previous one, the probability maps indicate, as much as 96 hours before the
event, the possibility of a heavy rainfall scenario (24-hour cumulated rainfall above
the 50 mm threshold) over north-eastern Italy, as evident in the bottom-left panel of
Figure 18.4. This critical situation is confirmed by the 3-day and 2-day probabilistic
forecasts, where also the Ticino (central Alps) area is correctly highlighted as a region
possibly affected by heavy precipitation.

18.3.3 Impact of the ensemble reduction and comparison
with the ECMWF EPS

As described in Marsigli et al. (2001) and Molteni et al. (2001), the main motivations
behind the ensemble-size reduction of LEPS methodology are dictated by comput-
ing power limitations as well as by the (supposed) possibility to capture, thanks to
the clustering-selection technique, alternative weather patterns, with higher or lower
probability of occurrence. This latter aspect is critical and deserves further investi-
gation. In fact, it is not fully clear the extent to which the ensemble-size reduction
may induce a loss of information about the spectrum of possible atmospheric flows
and thus affect the overall performance of LEPS.

In order to assess the impact of the ensemble-size reduction on the rainfall prob-
abilistic prediction, the cluster analysis has been performed several times with the
number of clusters increasing from 5 to 51 generating limited-area ensembles, with
a corresponding increasing population from 5 to 51. Attention is focused on the
4-day predictability of the event ‘24-hour precipitation exceeding 50 mm’; the per-
formances of the 5-member, 10-member and 51-member ensembles are assessed both
for the global EPS and for the limited-area LEPS (the system configurations will be
referred to as EPS5, EPS10, EPS51, LEPS5, LEPS10 and LEPS51, respectively).

Figure 18.5 illustrates the results obtained for the Piedmont case: it is clear that
EPS forecasts (top-row panels) underestimate the rainfall intensity, since the prob-
ability of occurrence is, in all configurations, well below 30% and, additionally,
poorly localised. It can also be noticed that only the EPS51 configuration (top-right
panel) shows three different areas over northern Italy that are highlighted as possible
locations of heavy precipitation (as actually happened); nevertheless, the probability
values are very low and poor guidance would have been given to a forecaster involved
in alert procedures.

The situation is completely different when the better description of orographic and
mesoscale-related processes comes into play in the high-resolution forecasts of the
LEPS system. The bottom-left panel of Figure 18.5 indicates that the LEPS5 system
is already able to highlight the possibility of occurrence of a heavy precipitation event
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in the correct locations. As the population of the LEPS system increases (bottom-
middle and bottom-right panels), the results obtained are very similar, the probability
of occurrence being only slightly modified.

As concerns the Friuli case, the top-row panels of Figure 18.6 show that EPS
rainfall probability maps (for precipitation exceeding 50 mm/day) fail completely
to indicate north-eastern Italy as an area possibly affected by heavy rainfall. In the
EPS51 configuration (top right) a weak signal is evident over the Ticino region,
where heavy precipitation was actually observed; but also in this case the probability
is below 30%. By contrast, the information provided by LEPS forecasts is much more
accurate than that to be found in the global runs. The bottom-row panels show that
both the Ticino and the Friuli area are highlighted as regions most likely to be hit by
the severe weather event and the pattern of the probability maps is roughly unchanged
as the LEPS population increases from 5 to 51. Regarding high probability values
over the Liguria region, it is worth noting that this false alarm is not due in particular
to the LEPS ensemble system but rather to a generalised systematic error of the model
in this region.

From the above results, the impact of the ensemble-size reduction on the forecast
accuracy does not seem to be crucial, since, for both cases, the heavy rainfall sce-
nario is properly captured in the ‘LEPS5’ as well as in the ‘LEPS51’’configuration.
This result is, however, very encouraging: at least for these two case studies, the
clustering-selection technique highlights the most important evolution scenarios and
enables the generation of reliable and accurate probability maps. It is clear that the
results obtained by these studies may not have any statistical significance, since
they are based on only two cases, both characterised by heavy precipitation events.
Nevertheless, the outcome of these experiments is important, since it can indicate
the potential of COSMO-LEPS methodology, so justifying future investigation and
system development.

18.4 Statistical evaluation

In this section, a more systematic and objective evaluation of the COSMO-LEPS
forecast performance is presented, so as to assess overall abilities and shortcomings of
this prediction system. The attention remains focused on the probabilistic prediction
of heavy precipitation, one of the main causes of damage and loss of life over Europe.

The local effects of precipitation are related to two main characteristics: the cumu-
lative volume of water deployed over a specific region and the rainfall peaks which
occur within this region. The relative importance of these two features of the intense
event is related to the geomorphological features of the area affected. Both these
aspects need to be taken into account when the verification of precipitation is con-
cerned. This is accomplished by considering respectively the mean precipitation over
an area as well as the precipitation maxima in the same area.
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For this new probabilistic system to be shown as potentially valuable, it has to be
compared with the state-of-the-art ensemble system, namely ECMWF EPS, which is
already available to European national weather services at no extra cost. Therefore,
we investigate the extent to which the high-resolution forecast details and intensities
provided by the COSMO-LEPS system produce real added value with respect to the
global EPS (Marsigli et al., 2005).

COSMO-LEPS forecasts are here verified on the basis of the traditional prob-
abilistic scores: Brier Skill Score (Wilks, 1995), ROC area (Mason and Graham,
1999), Cost-loss Curve (Richardson, 2000), Percentage of Outliers (Buizza, 1997).
Results are shown for the autumn 2003 period (September, October and November).

From the results shown in Tibaldi et al. (2003), no positive impact of the weighting
procedure was detected regarding probabilistic forecast of precipitation; therefore,
the results presented in this section refer to probabilities computed giving the same
weight to each of the reduced-ensemble members.

This analysis is relative to the COSMO-LEPS configuration which has been run-
ning pre-operationally from November 2002 to June 2004: five RMs were selected
clustering three 12-hour lagged consecutive EPS (FORMER SUITE). Since June
2004 the suite was changed (10 RMs selected from a superensemble of two EPSs,
CURRENT SUITE) according to the results shown in the following subsections.

Verification is subdivided into two main streams: a verification of the methodology
on which COSMO-LEPS is based (Section 18.4.1) and a verification of the system
performance against other available probabilistic systems (Section 18.4.2).

18.4.1 Analysis of the methodology

The superensemble approach, grouping together three consecutive EPSs, has been
adopted to enlarge the size of the ensemble on which the RM selection algo-
rithm is applied. This allows us to increase the ensemble spread and to explore
better the phase space, even if a price in terms of skill is paid: the older the
EPS, the less skilful its members are likely to be. In order to evaluate the com-
parative effects of the increased spread and of the decreased skill, the representa-
tive members chosen with the FORMER-SUITE methodology are compared with
those chosen using only one or two EPS. Furthermore, the impact of the reduced-
ensemble size is also evaluated by comparing each 5-RMs configuration with the
correspondent 10-RMs configuration. The six examined configurations are listed in
Table 18.1.

This analysis is performed in terms of 24-hour precipitation. The forecast values
at each grid point are compared with a proxy for the true precipitation that occurred,
chosen as the +24 hour forecast by the ECMWF deterministic model (horizontal
resolution 40 km). The extent to which this proxy is a good approximation for the
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Table 18.1 Characteristics of the analysed COSMO-LEPS configurations

Configuration name
EPS on which the cluster
analysis is based

Number of RMs
selected Suite name

3eps-5rm 3 12-hour lagged EPS 5 RMs FORMER SUITE
2eps-5rm 2 12-hour lagged EPS 5 RMs
1eps-5rm 1 12-hour lagged EPS 5 RMs
3eps-10rm 3 12-hour lagged EPS 10 RMs
2eps-10rm 2 12-hour lagged EPS 10 RMs CURRENT SUITE
1eps-10rm 1 12-hour lagged EPS 10 RMs

Figure 18.7 Brier skill score and percentage of outliers for different configurations
of representative members.

truth is not crucial, because this is a comparison between different configurations of
the same model. The period chosen for this test is September–November 2003 and
the verification area is the entire clustering area (the shaded rectangle in Figure 18.1).

Regarding the 5-RM ensembles, results show that the Brier Skill Score
(Figure 18.7, left panel) is highest when the clustering is based on the most recent
EPS only (1eps-5rm, solid line with circles), while it is lowest for the 3eps-5rm (solid
line with crosses). The difference between the two is not so large, but it is clearly
detectable at every forecast range. The 2eps-5rm (solid line with triangles) has an
intermediate skill, closer to the 1eps-5rm.

The percentage of outliers of the systems is also shown. This is the percentage of
times the ‘truth’ falls out of the range spanned by the forecast values. The percentage
of outliers (Figure 18.7, right panel) of the 1eps-5rm (solid line with circles) is rather
higher than the other two, for every forecast range, while there is almost no difference
in terms of outliers between the 2eps-5rm (solid line with triangles) and the 3eps-5rm
(solid line with crosses).
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These results would seem to suggest that the use of just two EPS in the superensem-
ble can be a good compromise, permitting us to decrease the percentage of outliers
significantly but leading only to a small decrease of the skill.

Regarding the impact of the ensemble size, the difference between each 5-member
ensemble and the corresponding 10-member ensemble is remarkable, being about
0.1 in terms of Brier Skill Score for every configuration. This is shown in the left
panel of Figure 18.7, comparing each solid line with the dotted line carrying the
same symbols. The impact of doubling the ensemble size is almost the same for
every configuration and is larger than the impact of changing the number of EPSs on
which the cluster analysis is performed (two or three).

These results led to two major modifications of the COSMO-LEPS methodology,
as applied to the pre-operational suite, at the beginning of June 2004: since this date
the superensemble has been constructed by using only the two most recent EPSs and
the number of clusters has been fixed to ten, nesting Lokal Modell on each of the ten
selected RMs.

18.4.2 Comparison of the limited-area ensemble
with global ensembles

In order to quantify the added value brought about by the mesoscale probabilistic
system, COSMO-LEPS is compared with ECMWF EPS. The comparison has to take
into account two important issues: the difference in the number of ensemble members
and the difference in terms of model resolution.

As far as the population of the ensembles is concerned, it is worth pointing out
that the verification is carried out during the period September–November 2003,
when the pre-operational COSMO-LEPS population was fixed to five members.
Therefore, COSMO-LEPS is compared not only with the operational EPS (51 mem-
bers), but also with the reduced EPS ensemble made up by the five representa-
tive members. This permits us to quantify the impact of the increased resolution
alone.

The problem of the different resolutions of the two systems (10 km for COSMO-
LEPS and 80 km for EPS) is tackled by upscaling both systems to an even lower-
resolution common interface: the grid-point forecasts of both models are averaged
over boxes of 1.5×1.5 degrees.

The comparison is performed in terms of 24-hour precipitation against observed
data. In order to compare properly forecast values over boxes and observed values
on station points, the observations within a box are averaged and the obtained values
are compared with the averaged forecast values. The comparison is carried out over a
large fraction of the COSMO-LEPS domain. In fact, a very dense network of stations
(about 4000) recording daily precipitation (cumulated from 06 to 06 UTC) are made
available by Germany, Switzerland and Italy; see Figure 18.8.
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Figure 18.8 Network of about 4000 stations in Germany, Switzerland and Italy
recording daily precipitation (cumulated from 06 to 06 UTC the following day). The
network was used to compute daily mean and maximum precipitation in 1.5 × 1.5
degree boxes used to verify forecasts in Section 18.4.2.
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Figure 18.9 Average forecasts against average observations: ROC area values for
precipitation over 1.5 × 1.5 boxes exceeding 20 mm/24 h. The crosses are relative to
the COSMO-LEPS system, the squares to the 51-member EPS and the triangles to
the 5-RM EPS.

The three ensemble systems compared are:

� the COSMO-LEPS system, made up of five members, 10 km of horizontal
resolution, referred to as ‘cleps’;

� the EPS reduced-ensemble made up by the five representative members
chosen from the superensemble, 80 km of horizontal resolution, referred to as
‘epsrm’;

� the operational 51-member ECMWF EPS starting at the same initial time as
COSMO-LEPS (the ‘youngest’ EPS constituting the superensemble), 80 km
of horizontal resolution, referred to as ‘eps51’;

In Figure 18.9, the average observed value of each box is compared with the
average forecast value relative to the same box, for each of the three forecasting
systems. The event considered is ‘precipitation exceeding 20 mm/24 h over 1.5 × 1.5
degree boxes’. Since the observed and forecast values are averaged over an area of
1.5 × 1.5 degrees, this threshold has been chosen as representative of an intense
precipitation event.

In terms of relative operating characteristic (ROC) area, the eps51 configuration
(Figure 18.9, solid line with squares) shows the best scores at this threshold for every
time range. The ensemble size, therefore, plays a major role in the computation of the
probabilistic indices, making it difficult to carry out a proper comparison between
cleps and eps51. When the two systems with the same ensemble size are compared,
cleps (solid line with crosses) has higher scores than those of epsrm (solid line with
triangles).

A comparison in terms of precipitation maxima has also been performed: the
maximum forecast value within a 1.5 × 1.5 box is compared with the maximum
observed value in the same box.

The ROC area values for cleps (Figure 18.10, line with crosses) are higher (and
therefore better) than both the epsrm (line with triangles) and eps51 (line with
squares), indicating that COSMO-LEPS is more skilful in forecasting correctly high
precipitation values over a rather large area. It is worth pointing out that these results
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Figure 18.10 Maximum forecasts against maximum observations: ROC area values
for precipitation over 1.5 × 1.5 boxes exceeding 20 (left panel) and 50 (right panel)
mm/24 h. The crosses are relative to the COSMO-LEPS system, the squares to the
51-member EPS and the triangles to the 5-RM EPS.

Figure 18.11 Maximum forecasts against
maximum observations: cost–loss curves
for precipitation over 1.5 × 1.5 boxes
exceeding 50 mm/24 h (90 hour forecast
range). The solid line is relative to the
COSMO-LEPS system, the dotted line to
the 51-member EPS and the dashed line to
the 5-RM EPS.

are based on a relatively large number of occurrences (about 600 and 150 for the
20 and 50 mm thresholds, respectively).

The same conclusions apply when the cost–loss curves relative to the three systems
are considered for the event ‘maximum precipitation exceeding 50 mm/24 h’ at the 90-
hour forecast range (Figure 18.11). To keep the diagram readable, only the envelope
curve is plotted for each system.

The curve relative to cleps (solid line) is well above the curves of both eps51 and
epsrm. This is especially true for low cost–loss ratios (left portion of the x-axis),
where the global model ensembles have almost no value.

18.5 Summary and concluding remarks

Since the day, almost 20 years ago, in which Henk Tennekes stated, during a meeting
of the Scientific Advisory Committee of the European Centre for Medium-Range
Weather Forecasts, that ‘no forecast is complete without a forecast of the forecast
skill’, the demand has been ever increasing for numerical forecasting tools which
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should have the capability at the same time of providing quantitative estimates of
forecast reliability and of casting quantitative forecasts of various meteorological
parameters in terms of probabilities. Consistently with this, among ECMWF’s oper-
ational users, output from the now twice-daily EPS system is eroding more and more
the historical primacy detained by the single, daily, purely deterministic, highest pos-
sible resolution, ‘main’, 12:00 GMT, 10-day forecast run, which for a long time has
represented by far the main source of reliable, good-quality, numerical short- and
medium-range forecast information.

EPS products, however, suffer from a number of drawbacks, most of them related
to the comparatively low resolution of the global model used to produce them. The
size of the ensemble, i.e. the number of the forecasts which compose it, is a very
important factor in producing a sufficiently adequate ‘exploration’ of the phase space
of all possible future atmospheric states which are compatible with our imperfect
knowledge of the atmospheric initial conditions. This imposes a compromise between
model resolution and the total number of elements needed in the ensemble, i.e.
the model resolution has to be kept low enough to make the total computational
requirements affordable. This has as a consequence that in the EPS model a number
of local (mainly orography-related) atmospheric features/phenomena/processes are
still misrepresented or underestimated. Orographically related local and/or intense
precipitation is one of the best possible such examples, but not the only one. This
carries with it a reduced capability of the EPS system to provide useful guidance in
cases of intense meteorological events (often catastrophical in terms of consequences
on life and property), notably those characterised by large rainfall amounts, possibly
leading to floods.

In the attempt, therefore, to push the point of compromise between resolution and
number-of-elements further toward a better representation of local effects (such as
the one typical of high-resolution limited-area models), without having to sacrifice
too much to completeness of the sampling of the atmospheric phase space, the LEPS
(Limited-area Ensemble Prediction System) was developed at ARPA-SIM. The basic
goal is to obtain most of the advantages of a brute-force approach, which can hardly
be afforded on an operational basis (run a high-resolution LAM integration from
each and every element of an ECMWF EPS, for example), without having to pay the
full computational cost.

The LEPS idea is in fact very simple: once all EPS elements have been grouped
in clusters, from all the elements of each cluster a most ‘representative member’
(RM) is defined, which carries with it a weight proportional to the population of
the cluster it represents and from which a high-resolution LAM is integrated. The
LAM integrations can be combined, using the cluster-population weights, to produce
all statistically based predictions typical of a complete EPS system, such as for
example the probability for a meteorological variable to overcome given thresholds
as a function of space and time.

Preliminary case-study-based results were considered promising enough to launch
a COSMO-LEPS pre-operational, daily experimentation exercise, carrying out
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nesting, in LEPS mode, a limited-area model (Lokal Modell) within the ECMWF EPS
model output. At the time of writing (January 2005) the experimentation is carried out
constructing a 102-element superensemble from two 12-hour lagged operational EPS
ensembles and integrating ten times a 10-km mesh version of LM once a day for 120
hours. The limited-area model integrations using Lokal Modell are carried out on a
domain covering the geographical territory of all countries participating in COSMO.
The experiment is carried out on the ECMWF computer system, to minimise file
transfer requirements. This extended pre-operational test started during the first week
of November 2002 on computer resources coming from the ECMWF member states
which are also COSMO partners (that is, Germany, Greece, Italy and Switzerland).

As examples of the high quality of COSMO-LEPS products it was shown that,
for cases of heavy precipitation events, the system is able to predict the possibility
of a flood event four days in advance and to confirm (and reinforce) the scenario as
the forecast range gets shorter.

The impact of the large ensemble-size reduction on the forecast accuracy has been
studied for a number of case studies. It is found that the heavy rainfall scenarios are
already captured when the limited-area ensemble size is reduced from 51 to either
5 or 10 members. This result is very encouraging: for these particular case studies,
the clustering-selection technique highlights the most important evolution scenarios
and enables the generation of reliable and accurate probability maps.

A statistical analysis of the methodology on which COSMO-LEPS was based for
the first part of experimentation (November 2002 to June 2004) was also undertaken,
focusing the attention on the prediction of precipitation. The results indicate that
the use of two EPS in the superensemble is a reasonable compromise between the
decrease in the percentage of outliers (the cases for which no LEPS member comes
close to the observed rainfall intensity) and a modest decrease of the forecast skill. In
addition to this, it was found that doubling the ensemble size permitted us to halve the
percentage of outliers. These results led us to modify the COSMO-LEPS operational
suite at the beginning of June 2004 as follows: use of two EPS (instead of three) to
construct the superensemble and increase the limited-area ensemble size from 5 to
10 members.

As a final step, an objective verification of the COSMO-LEPS system was shown
for autumn 2003 for forecasts up to 120 hours. It was found that, as far as precipita-
tion averaged over 1.5 × 1.5 degree boxes is concerned, the operational full-size EPS
exhibits a higher skill than COSMO-LEPS. This appears to be due to the higher popu-
lation of the global model ensemble. In fact, when COSMO-LEPS is compared with a
reduced size (comparable population) version of the EPS, the limited-area ensemble
has noticeably greater skill. By contrast, COSMO-LEPS outperforms both full-size
and reduced-size EPS in terms of prediction of precipitation maxima over the boxes.

These results could be conducive to a truly operational implementation of the
system to assist forecasters and agencies involved in civil protection tasks for the
issue of warnings about localised severe weather and are strengthening the value of
ensemble forecasting systems at ranges shorter than the full medium range.
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At ECMWF, a seasonal forecast system has been operating for several years. This
system is described and some results presented. The forecasts are made by fully cou-
pled atmosphere ocean models covering the globe. A multimodel forecast system is
also well advanced. This approach avoids to some degree the tendency for individual
models to be too confident in their predictions. Model error is still a major issue and
considerable effort is needed to improve the models.

19.1 Introduction

For several years now ECMWF has been running, operationally, a seasonal forecast
suite. This consists of an ocean data assimilation system to provide initial conditions
for the forecast, a fully coupled ocean–atmosphere model to create the forecast
ensemble and a post-processing procedure to generate forecast products. This system
is being generalised to include other coupled models and to produce multimodel
products. In this chapter we will consider the various components of the forecasting
system.

Weather forecasts have a limited forecast range on account of the chaotic nature
of the atmosphere (see Lorenz, this volume); depending on what variable one seeks
to predict and on what scale, the predictability horizon might be roughly ten days.1

Why then do we think we can predict climate months or even years ahead? The

Predictability of Weather and Climate, ed. Tim Palmer and Renate Hagedorn. Published by Cambridge University Press.
C© Cambridge University Press 2006.
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information on which the predictability of such long timescale processes is based
cannot be simply atmospheric (Palmer and Anderson, 1994). The longer timescales
come mainly from the ocean, which has a much larger heat capacity and slower
dynamics than the atmosphere. Including ocean variability can give rise to enhanced
atmospheric predictability if we are dealing with processes that depend on both media
interacting. By contrast, it is quite possible to have some memory in the ocean and
some predictability of ocean variability but with little or no associated atmospheric
predictability if the ocean is not driving the atmosphere by the predictable part of its
variability (Latif et al., 2002, and Latif et al., this volume). So including the ocean in
the forecast system does not of necessity lead to enhanced atmospheric predictability.
The ocean may have greater predictability than the atmosphere but unfortunately, in
general, we are more interested in atmospheric prediction than ocean prediction. See
Timmermann and Jin (this volume) for a discussion of coupled processes involving
fast and slow systems relevant to ENSO.

The largest source of climate variability on interannual timescales is that associated
with El Niño, or ENSO (El Niño–Southern Oscillation) as it is frequently now referred
to. Originally the ocean variability was associated with El Niño and the atmospheric
variability was associated with the Southern Oscillation. These are now known to
relate to the same process though it took several decades to appreciate that this was
the case and that they are manifestations of a coupled atmosphere–ocean process.
El Niño is mainly located in the tropical Pacific but its reach extends to almost
all parts of the globe. Of course in distant regions other processes may also be
affecting climate variability and ENSO may not be the dominant process. ENSO
involves a positive feedback between the sea surface temperature (SST) gradient
along the equator and the winds blowing along the equator. It also involves ocean
dynamics whereby information in the west equatorial Pacific can influence events
in the east equatorial Pacific months later. To the extent that we know enough about
the processes by which this information is propagated via equatorial Kelvin waves
and how these come to later influence the atmosphere, one has a basis for prediction.
The tropical Atlantic and Indian oceans may have zonal modes of this type too
but they are less dominant than in the Pacific, less clearly identifiable against a
relatively noisier background and of shorter duration. There is some indication that
there may also be meridional modes of climate variability but again these have not
been clearly identified. See McCreary and Anderson (1991), Neelin et al. (1998),
Wang and Picaut (2004) and Philander (2004) for some review articles on ENSO, and
the chapters by Shukla and Kinter, Krishnamurti et al., Molteni et al., and Palmer, this
volume.

In middle latitudes the ocean seems to act much less favourably for seasonal fore-
casts. SST variability in middle latitudes does not influence the atmosphere as strongly
as at the equator. In low latitudes, the atmosphere exhibits convection throughout the
depth of the troposphere, the location and intensity of which is influenced by the
SST. In most of what follows we will discuss primarily tropical processes associated
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with ENSO. The influence of El Niño and La Niña (when the east equatorial Pacific
is cold) on the atmosphere can extend to higher latitudes and indeed to other oceans
through the so-called atmospheric bridge.

The ECMWF seasonal forecasting strategy was to develop a single coupled
atmosphere–ocean suite to predict simultaneously the SSTs and the atmospheric
variability. This is the so-called one-tier approach. Others have tried a two-tier sys-
tem, to first predict SST and then calculate the atmospheric response to these SSTs
(Behringer et al., 1998). While the two-tier approach may have some short-term
advantages in that it avoids, to some degree, climate drift, it was felt unlikely to be a
good long-term strategy. The strategy of two-tier forecasting is potentially flawed as
it does not properly represent ocean–atmosphere interaction. In addition, the climate
drift in a one-tier approach is not small compared with the signal one is trying to
predict and this is likely to reduce the skill achievable. However, seasonal forecasting
is a relatively new endeavour and experience will tell which approach is best.

The first coupled model forecast system at ECMWF was assembled in 1996 and
real-time forecasts produced in 1997. This system was called System-1 (S1). For
reasons that will become clear later, related to the handling of model error, these
forecast systems are not changed frequently. In fact S1 was running until March
2003. Its successor, S2, has been running operationally since January 2002 (Anderson
et al., 2003). S3 is in development for implementation in 2006.

In Section 19.2, we will consider the ECMWF coupled system, concentrating on
the ocean component, and in Section 19.3 we will present some results. The use of
dynamical models for seasonal forecasting is now becoming more widespread, but
before these were available, forecasts were made by statistical methods. In Section
19.4 dynamical model results are compared with operational statistical systems.

19.2 The ECMWF system

19.2.1 Introduction

In this section we will describe the current ECMWF seasonal forecast system. Other
systems based on coupled models will differ in detail but in principle the ECMWF
system is representative of the components needed. Since the information on the
climate system on which a forecast is based lies in the upper ocean, it is necessary
to know the state of the ocean at the start of the forecast quite well. For this purpose
we have an ocean analysis system to use the available ocean observations.

19.2.2 The ocean observing system

Ocean observations are mainly of thermal data (T) and mainly in the upper 500 m.
Some salinity (S) measurements are now available but only in usable numbers in
the last few years. There are few measurements of velocity, except in the surface
layer. Figure 19.1 shows the thermal data coverage in a typical 10-day window. Most
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OBSERVATION MONITORING
XBT probes: 577 profiles  Argo floats: 1513 profiles   Moorings: 936 profiles

Figure 19.1 Data coverage for a 10-day period centred on 1 February 2005 showing
the TRITON/TAO/PIRATA mooring array in the Pacific/Atlantic oceans (black
triangles), the voluntary ship network (black crosses) and the ARGO floats (grey
diamonds). The moorings report daily in the Pacific to the east of the Dateline and in
the Atlantic. Hourly reports are received from moorings west of the Dateline.

observations are now received at operational centres such as ECMWF within a day
or so of being taken. Although the coverage in Figure 19.1 looks reasonable, it is
barely adequate. Ten or twenty years ago the coverage was much worse. It is thanks
to the Tropical Ocean Global Atmosphere (TOGA) programme that the coverage is
as good as it now is. Starting in 1985, TOGA steered oceanography to a free and
open exchange of data, most of it in real time, and so usable in current operational
forecast systems. See Anderson et al. (1998) for a comprehensive analysis of the
TOGA experiment.

The array of triangles in the tropical Pacific and Atlantic oceans in Figure 19.1
is the TRITON/TAO/PIRATA. The straight or slightly curved lines of data are from
merchant ships (Voluntary Observing Ships) making measurements of temperature to
a depth of ∼500 m; a few measure salinity. The diamonds are ARGO float measure-
ments from buoys which drift at ∼1000 m, but every 10 days pop up to the surface,
measuring temperature and often salinity, and relay the information via satellite to a
ground station for onward distribution.

When data are received at ECMWF, each individual observation is checked. It is
compared against the model first guess and also with an analysis performed without
the datum being checked. The actual quality control is quite complex and will not be
covered in detail here. See Smith et al. (1991) for further discussion.

19.2.3 The ocean analysis system

The scheme currently in operational use is OI (Optimal Interpolation) using a time
window of 10 days: all observations in the 10-day window are taken to apply at the
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Figure 19.2 Vertical section along the equator of the temperature anomaly. The
section on the left corresponds to the Indian, the middle section to the Pacific and the
right section to the Atlantic. (a) The end of 1997. (b) The end of June 2004. Solid
contours indicate that the water is anomalously warm, dashed contours that it is cold.
The contour interval is 1 K. From the ECMWF operational ocean analysis system.

centre of the window. Although only T is analysed directly, velocity and salinity are
corrected. Burgers et al. (2002) and Balmaseda (2003) describe the velocity correc-
tion. Salinity is corrected by applying an S correction such that the T–S relationship is
preserved below the surface mixed layer. In the ocean when T changes, so generally
does S in such a way as to preserve the T–S relationship. Further details are given in
Troccoli et al. (2002).

A novel feature of the ocean analysis system is that not just a single analysis but
multiple analyses are performed. The purpose of the analysis is to provide initial
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conditions for monthly and seasonal forecasts. Such forecasts must be probabilistic.
This implies that an ensemble of forecasts must be made. In our case the ensemble
size is 40. The ensemble is there to sample uncertainty arising from the chaotic
nature of the atmosphere. However, it should also take into account uncertainty in
the ocean initial conditions. One method of representing this uncertainty is through
running an ensemble of ocean analyses. In our case the size of the ocean analysis
ensemble is five. This ensemble of analyses is not an ensemble Kalman filter (EnKF);
the ensemble size is too small to estimate analysis error covariances. Hamill (this
volume) discusses EnKF methods. See also Palmer (2000) for an excellent discussion
of many aspects of ensemble generation.

Almost all the information on which an atmospheric analysis is based comes from
observations of the atmosphere. In the case of the ocean, a substantial amount of
information on the ocean state can be obtained not through ocean observations but
through atmospheric observations – in fact all the observations that are involved
directly or indirectly in defining the surface wind, heat and freshwater fluxes. For
seasonal forecasting the most important of the surface forcings is the wind, but it
has uncertainty. We estimate this uncertainty and then force an ensemble of five
ocean analyses with wind fields that are perturbed commensurate with the estimated
uncertainty. In addition, the sea surface temperature (SST) field is not known suffi-
ciently accurately. So perturbations to SST are also applied. This is discussed more
fully in Vialard et al. (2005), who show the spread generated by different ensemble
generation strategies.

Figure 19.2 shows sections along the equator from the surface down to 300 m, the
part of the ocean most active in El Niño. Two times are shown: the end of December
1997 at the peak of El Niño and the end of June 2004 preceding the weak El Niño
of 2004. Panel (a) shows the huge mass of anomalously warm water in the central
east Pacific during the height of the 1997 El Niño. It also shows anomalously cold
water in the west Pacific. This cold water had no surface expression but over the
next few months it travelled eastwards, eventually surfacing and bringing an end to
the El Niño. Figure 19.3 (colour plate) shows the forecasts made at the time, which
captured the peak and decline of El Niño reasonably well.

Figure 19.2(b) shows quite a lot of anomalously warm water in the central Pacific
in June 2004. The central east Pacific is cool. The big question at that time was, ‘Is
there another big El Niño on its way?’ The forecasts are shown in Figure 19.4(b).
The subsequently observed SST is also plotted, showing that indeed these forecasts
verified very well: there would be warming over the next six months, but not to very
large amplitude. This was even more surprising since there were several intraseasonal
oscillations. These impose a signal in the ocean, which travels eastwards along the
equator and sometimes leads to a rapid growth in El Niño – though not on this
occasion. The ocean signal of the intraseasonal oscillations can be clearly seen in
Figure 19.4(a), as well as the eastward propagation. The presence of ISOs can really
confuse the prediction of El Niño: the temptation is to think that because there is a
significant anomaly in the ocean which will travel eastwards, it will lead to warming
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Figure 19.3 (See also colour plate section.) Plot of forecasts of Niño-3 for various
start times throughout the large 1997–8 El Niño. Niño-3 is the region in the equatorial
Pacific bounded between 5S to 5N and 150W to 90W. Different lines of the same
colour indicate different ensemble members. The background indicates the location
of Niño-3. This plot was produced by CLIVAR based on data from ECMWF.

SSTs in the central east equatorial Pacific. Frequently the signal propagates eastwards
but dies as it approaches the eastern Pacific, with little impact on SSTs. See Lengaigne
et al. (2004) for further discussion.

A set of experiments to show the impact of assimilating ocean data on forecast
quality was performed by Alves et al. (2004). Four sets of ocean analyses were created
and four ensembles of forecasts were run from these analyses. Two different wind
products were used and for each, experiments with and without data assimilation
were performed. The forecasts based on analyses with data assimilation were clearly
better than those without: the root-mean-square (rms) errors were smaller and the
anomaly correlations were higher at all forecast lead times. Any results probably
apply only to the system being tested, as improvements in either the ocean model or
the forcing fields through improved atmospheric analyses could change the results.
As wind fields get better, then analyses without data will also improve, narrowing
the gap between the forecasts initialised from analyses performed with and without
ocean data assimilation.

19.3 Some results

19.3.1 Introductory remarks

As mentioned in the introduction, in a fully coupled atmosphere–ocean model, as
used at ECMWF, there is nothing to constrain the model climate to that of nature.
Climate drift can and does occur. In fact drift occurs in the atmospheric model and
leads to erroneous land temperatures. In the coupled model the SST can also drift.



19 Operational seasonal prediction 521

Longitude

AUG

2004 JUL

SEP

OCT

NOV

DEC

2005 JAN

(a)
T

im
e

-0.04

-0.02

-0.02

0.02

0.
02

0.02

0.02

0.02

0.02

0.04

0.
04

0.04

0.04

0.06

0.06

0.06

0.06

0.08

0.08

0.08

0.08

0.1

0.1

0.12

0.12

0.12

0.14

0.14

50°E 100°E 150°E 160°W 110°W 60°W 10°W

FEB
2004

MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

−1

0

1

2

A
no

m
al

y (
de

g 
C

)

(b)

Figure 19.4 (a) A plot of the sea level along the equator as a function of time
showing the signals imposed on the ocean by the intraseasonal oscillation (MJO) and
the eastward propagation of these signals. The contour interval is 2 cm, with the zero
contour not plotted. (b) Plot of forecasts of SST in the Niño-3 region started from
1 July 2004. The thin curves give the individual ensemble members. The dashed
curve shows the subsequently observed SST.
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Figure 19.5 Plot of anomaly correlation of 6-month forecasts of sea surface
temperature from S2. Dark shading, mainly in the equatorial Pacific, indicates high
correlations (high skill). Skill in the Atlantic is considerably lower at this time range
(the latter half of a 6-month forecast).

As the drift is not small compared with the signal one is trying to predict, a strategy
to deal with it is essential. That used at ECMWF is to calculate the model climate as
a function of lead time from an extensive set of integrations of the model spanning
many past years. The difference between the actual forecast and the model climate is
then a measure of the predicted anomaly. This is discussed more fully in Stockdale
(1997), Stockdale et al. (1998) and van Oldenborgh et al. (2005).

The El Niño of 1997/8 was the most intense in the last 100 years, apart possibly
from 1982/3. Predictions of El Niño developing and of its magnitude were generally
not good (Landsea and Knaff, 2000). The forecasts by the ECMWF S1 were, by
contrast, quite accurate, though by no means perfect. In particular the forecasts from
around spring 1997 underpredicted the amplitude (Vitart et al., 2003; Anderson
et al., 2003). The predictability of the 1997 El Niño and the role which the February
MJO (Madden Julian Oscillation or intraseasonal oscillation) played is still under
debate (Kessler and Kleeman, 2000).

The overall skill of a forecast system can be indicated from the anomaly correla-
tion. Figure 19.5 shows the anomaly correlation of sea surface temperature from S2
illustrating that the skill in the tropical Pacific is much higher than in the Atlantic and
Indian oceans and that skill falls off rapidly with latitude. The overall skill is very
similar to that of S1 (not shown here but see Anderson et al., 2003).

The rms error of forecasts for the Niño-3 region is shown in Figure 19.6. The
skill of the system beats persistence at all lead times. This is true for all start months
although you cannot see this from the figure. The correlation of predicted SST with
observed SST is also higher than that from persistence. So, in that sense coupled
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Figure 19.6 The growth of error in the forecasts of NINO-3 (solid curve) together
with the ensemble spread (dashed). The fact that the latter is less than the former
indicates that the model is too confident. The two curves should be close in a
well-balanced system. The dot-dashed curve indicates the skill of persistence and
shows that the model easily beats persistence at all lead times.

model forecasts are good. Figure 19.6 also shows the growth of the spread in the
ensemble (dashed curve). This grows less fast than the error. One can interpret this
result in two ways. The negative interpretation says that the spread is smaller than
the error and therefore the forecast system is poorly calibrated: the model forecasts
are too confident when in fact the observed SST frequently lies outside the range
spanned by the forecast ensemble.

An alternative, more optimistic, interpretation is to take the model estimate of
spread as a measure of potential predictability by interpreting one ensemble member
as truth and measuring the differences of other members from that. This then gives the
potential limit of predictability in the absence of model error. Our system is far from
that limit. So by working harder and reducing model error we should (hopefully)
be able to improve the forecasts. Of course the current model might underestimate
the limits to predictability since the model does not do a good job of reproducing
intraseasonal variability (Madden Julian Oscillation) which, it is thought, might play
a role in limiting predictability of ENSO (Waliser, this volume). However, even if the
optimistic interpretation of the limit of predictability were correct, the reality is that
we are not there. We have to work with the practical reality that for now our model
is not well calibrated. This limitation is not specific to ECMWF but applies to other
models as well.

One way of improving the forecast reliability is to sample model error in the
ensemble probability distribution function (pdf) and one way to do that is to develop
a multimodel approach. This has already been done in the context of DEMETER
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in a non-real-time mode (see Hagedorn et al., this volume). At ECMWF we are in
the process of developing a real-time operational multimodel forecast system. This
currently consists of forecasts from the Met Office and Météo France as well as
ECMWF. The amplitude of the wind perturbations used in the Met Office system
is half that of ECMWF as they draw less strongly to the data in the ocean analysis
and their coupled model is more active – perhaps too active – whereas the ECMWF
coupled model is not active enough (Anderson et al., 2003).

In order to get some feel for the potential improvement in forecast skill as a result
of the multimodel approach, we plot in Figure 19.7 the rms error for the Niño-3.4
region for the three models that will participate in real-time multimodel predictions at
ECMWF. The models are actually from DEMETER and as such are earlier versions
than will be used in real-time operational applications but they should give a fairly
good assessment of what to expect. The error growth is shown for two regions, one
in the Pacific and one in the Atlantic. Both are equatorial. Consistent with Figure
19.5, the skill in the Atlantic is lower than in the Pacific: actually the error growth is
similar but the size of the interannual signal is smaller in the Atlantic, so the error
is more serious. This can also be seen in the anomaly correlation (not shown) which
drops more rapidly in the Atlantic than the Pacific.

A selection of graphical products from the seasonal forecast system is displayed on
the ECMWF website. Spatial maps of 2-metre temperature, precipitation and mean
sea level pressure are shown, in the form of probabilities for tercile and 15 percentile
categories as well as the ensemble mean anomaly and the probability of exceeding
the climate median. The Niño SST indices include the Niño-3.4 and Niño-4 regions
as well as Niño-3, and the ocean analysis plots include several meridional sections,
as well as zonal and horizontal maps. Website addresses are given at the end of this
chapter.

19.3.2 Further verification

For a correct interpretation of seasonal predictions the user needs to complement
the forecast products with knowledge of the forecast skill. It is not possible in this
chapter to show all the verification that has been done but an extensive assessment
is available on the ECMWF website2. Estimates of model bias for a wide range
of variables, including zonal averages, time series of a set of indices of SST and
large-scale patterns of variability such as the Southern Oscillation Index (SOI), the
Pacific North American Pattern (PNA) and the North Atlantic Oscillation (NAO)
are available. A suite of verification scores for deterministic (e.g. spatial anomaly
correlation and mean square skill score error (MSSE)) and probabilistic forecasts
can be viewed for the operational system (S2).

The robustness of verification statistics is always a function of the sample size. For
the operational seasonal forecast system, the sample size of 15 years is considered
barely sufficient. Verification is performed in cross-validation mode (Michaelson,
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Figure 19.7 Plot of the rms error averaged over 20 years of forecasts from three
models (ECMWF, Met Office and Météo France) as a function of lead time. The
heavy solid line indicates the multimodel and the dotted line indicates persistence.
Two regions are shown: Niño-3.4 in the central east equatorial Pacific where all
forecasts significantly beat persistence, and ATL3 in the central-east equatorial
Atlantic where the skill of the forecasts relative to persistence is modest. In both
cases, however, the multimodel seems the best.

1987) using the whole set of forecast data available, i.e. both hindcasts and real-time
forecasts. The seasonal forecast skill depends strongly on the season; so forecasts
are evaluated separately for different starting months. Rainfall is a very important
variable, but it is difficult to verify as observations are difficult to make. Global
Precipitation Climatology Project (GPCP) data are used to verify precipitation. Other
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atmospheric parameters are verified against the ERA-40 reanalysis (Uppala et al.,
2005).

19.3.3 Single-value forecast scores

The most usual way to summarise the information from an ensemble of forecasts
into one value is to use the grand mean of all members. Although such values are
often referred to as deterministic forecasts, the grand mean acts to remove random,
unpredictable errors from the forecast. As a consequence, ensemble-mean charts are
unrealistic, if compared with analyses, as many small-scale features are smoothed
out, but they are usually the best single-value estimates, if evaluated using root mean
square error measures. For such forecasts, verification of anomaly correlation based
on all the years available and mean square skill score (MSSS) are provided both as
global maps and averaged over predefined areas (Murphy, 1988).

19.3.4 Probabilistic scores

The full content of the information provided by the seasonal ensemble forecasts
is only accessible in multivalued, probabilistic mode. Basic methods for verifying
probabilistic forecasts have been in use for several years at ECMWF for medium-
range EPS products and the methodology is now being naturally extended to seasonal
forecasts. The relative operating characteristics (ROC) curve in Figure 19.8 shows,
for a range of different probability thresholds, hit rates versus false-alarm rates of
forecasts of a particular event in different regions. Values lying above the diagonal
indicate the forecasts have skill; one would like the area above the diagonal to be
as large as possible. (See Buizza, this volume, including appendices.) The event
thresholds are defined with respect to terciles from model and verifying climatologies.
Figure 19.8(a) shows the ROC diagrams for 2-metre temperature summer forecasts
for the northern hemisphere. This figure indicates that on average there is skill in
predictions several months ahead for the extratropics. For some regions such as
Europe forecast skill can be limited, however. Figure 19.8(b) is a ROC curve for the
prediction of tropical rainfall anomalies for June to August, indicating that there is
skill in the forecast of rainfall anomalies in the tropics, even though rainfall is a very
chaotic variable. Grid point values of ROC scores and ranked probability skill scores
are available on the Web as global maps.

19.4 Statistical prediction

In principle, numerical models that represent the dynamics of the atmosphere, ocean
and land should be able to give better seasonal forecasts than purely statistical
approaches, because of their ability to handle a wide range of linear and non-linear
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Figure 19.8 (a) ROC diagrams for 2 meter temperature anomaly being in the upper
tercile. The forecasts are for a lead time 2–4 month forecasts (i.e. JJA for forecasts
starting in May) for the period 1987–2002. Results for the northern extratropics.
(b) As for (a) but for tropical precipitation.

interactions and their potential ability to do so in a changing climate. In practice,
model deficiencies are still a substantial source of error (Latif et al., 2001; Palmer
et al., 2004). If the climate record were sufficiently long, then statistical methods
should be able to do a reasonable job. In practice, the climate record on which to
train statistical models is short and this also limits their applicability.

Van Oldenborgh et al. (2005) sought to determine to what extent the present gener-
ation of numerical forecast models is able to challenge existing operational empirical
methods for seasonal forecasting. They compared the seasonal forecasting perfor-
mance of S1 and S2 with the Markov model by Xue et al. (2000) and the Constructed
Analogue (CA) model by van den Dool (1994) and van den Dool and Barnston (1994),
which are in operational use at the National Centers for Environmental Prediction,
USA.

Both dynamical models are better at forecasting the Niño-3 index than the statis-
tical models, including some other non-operational statistical models they included
in their evaluation. Figure 19.9 intercompares the seasonal dependence of the skill of
the different models. Plotted is the correlation coefficient of the monthly indices at
lead time +3 as a function of the target season. The anomaly correlation coefficient
is used as the skill measure, since it is not affected by the biases in the mean state
and amplitude of the variability. The first-order forecast, the ensemble mean, is used.
Figure 19.9 shows that the statistical models have a marked seasonality in skill, which
is much less evident in the dynamical models. The statistical models show the spring
persistence barrier as the low predictability of June–August Niño-3 (Webster, 1995;
Balmaseda et al., 1995). Overall, the coupled models are better able to predict El
Niño than statistical models.
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Figure 19.9 Plot of the skill in predicting NINO-3 SSTs in the ECMWF coupled
models S1 and S2, the Markov model, and the Constructed Analogue model (CA).
The multimodel consisting of S1, S2, Markov and CA is also plotted.

The relatively small seasonality in the skill of the dynamical models is probably
in part due to the assimilation and propagation of subsurface oceanic information: a
Kelvin wave takes about two months to cross the Pacific Ocean, and slower oceanic
processes give some skill beyond that time. A statistical model using subsurface
information also has better skill in crossing the spring barrier (Balmaseda et al.,
1995; Xue et al., 2000; McPhaden, 2003; Balmaseda, 2003).

A multimodel average could combine the strong points of the dynamical and
statistical models. Figure 19.9 shows that the multimodel is slightly better than the
dynamical models in predicting winter values of Niño-3 but gives worse forecasts
in summer. This is related to the poor skill of the statistical models in crossing the
predictability barrier.

19.5 Conclusions

The seasonal forecasting system at ECMWF has been described briefly. Its ability to
forecast El Niño-type SST variability is useful and well established internationally,
although the forecasts are not yet completely reliable. Based on a limited sample of
∼15 years, the statistics suggest that there are many areas and parameters for which
the atmospheric forecasts have skill, but the results are geographically variable and
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subject to sampling error. Model error is a serious source of forecast error but this
can be partly addressed by the use of several models. Work is well advanced to
include the Met Office and Météo France models as part of the seasonal forecasting
system and hopefully to include other models later. There is much work still to
be done to improve model forecasts, and to improve the representation of forecast
uncertainties.

The skill of the ECMWF seasonal forecast models has been compared with that
of a set of statistical forecast models used operationally for predicting ENSO; based
on anomaly correlation, the physically based models are better than operational sta-
tistical models. The move towards multimodel forecasting provides a context for
producing more accurate and reliable forecasts than individual models. No multi-
model product combining all the existing models yet exists but such an idea is being
discussed.
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Notes
1. There are atmospheric phenomena with a longer timescale such as the intraseasonal

oscillation (∼40–60) days and some aspects of these may have predictability beyond
ten days. (See Waliser, this volume.)

2. The website at www.ecmwf.int/products/forecasts/d/charts/seasonal/ verification
provides a comprehensive documentation of skill levels, using methods that have been
agreed at the international (WMO) level for the evaluation of long-range forecast
systems.

Spatial distribution of the mean errors (biases) are provided at www.ecmwf.int/
products/forecasts/d/charts/seasonal/verification/bias/.
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In this chapter we present a short overview of the Florida State University (FSU)
superensemble methodology for weather and seasonal climate forecasts and cite some
examples on application for hurricanes, numerical weather prediction (NWP) and
seasonal climate forecasts. This is a very powerful method for producing a consensus
forecast from a suite of multimodels and the use of statistical algorithms. The message
conveyed here is that the superensemble reduces the errors considerably compared
with those of the member models and of the ensemble mean. This is based on results
from several recent publications, where varieties of skill scores such as anomaly
correlation, root-mean-square (rms) errors and threat scores have been examined.
The improvements in several categories such as seasonal climate prediction from
coupled atmosphere–ocean multimodels and NWP forecasts for precipitation exceed
those of the best models in a consistent manner and are more accurate compared with
the ensemble mean. It is difficult to state, soon after a forecast is made, as to which
among the member models would have the highest skill. The superensemble is very
consistent in this regard and is thus more reliable. In this study, we show walk-through
tables that illustrate the workings of the superensemble for a hurricane track and
heavy rain forecast for a flooding event. A number of features of the superensemble –
number of training days, behaviour as the number of models increased, reduction of
systematic errors and use of a synthetic superensemble – illustrate the strength of
this new forecast experience.

Predictability of Weather and Climate, ed. Tim Palmer and Renate Hagedorn. Published by Cambridge University Press.
C© Cambridge University Press 2006.
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20.1 Introduction

Ensemble averaging from either multimodel or even from several runs of the same
model has been an active area of research and operation in global modelling
(Baumhefner, 1968; Palmer et al., 1992; Mullen and Baumhefner, 1994; Kalnay
et al., 1996; Buizza, this volume). Invariably the clear message emerges from these
studies that an ensemble mean has somewhat higher skill than the member models.
The notion of a multimodel superensemble was first proposed some five years ago
(Krishnamurti et al., 1999). Here the skills of recent past performances of a number of
models were assessed in order to define a training phase of a multimodel superensem-
ble. This was carried out via a vast array of statistics, which was later carried over to
a forecast phase. Several major refinements of this simple methodology have been
brought out by forecasts of hurricanes/typhoons (track, intensity, and timing), precip-
itation and floods, global NWP and seasonal climate. It was necessary to collect the
ongoing forecasts from a diverse group of operational and research modellers in order
to evaluate the skill of superensemble methodology in the above areas of interest. A
series of papers dwell on the performance of the FSU superensemble in each of the
above areas: Krishnamurti et al. (1999, 2000a, 2000b, 2001, 2002, 2003a, 2003b),
Stefanova and Krishnamurti (2002), Williford et al. (2003), Kumar et al. (2003),
Yun et al. (2003) and Ross and Krishnamurti (2005). The most recent advancement
has come from the design of what we call a synthetic multimodel superensemble
for seasonal climate forecasts (Yun et al., 2005). This chapter is intended to pro-
vide an introduction to this powerful methodology that carries a higher skill than
participating models and their ensemble mean.

20.2 Superensemble methodology

Figure 20.1 illustrates the conventional procedure that is being used for the construc-
tion of a multimodel superensemble for global NWP. This includes the training phase
to the left of time 0, where the forecasts from multimodels are regressed against the
observed (assimilated) estimates. This being done for m multimodels at n grid points
(along the horizontal and vertical) for p variables and q time intervals constituted
as many as m*n*p*q statistical coefficients (which came to around 107 for a rea-
sonably high resolution global model). This degree of detail for the construction of
the superensemble was found necessary. The superensemble grid was at a common
denominator resolution (T126 – triangular truncation at 126 waves, corresponding
to approximately 110 km latitude/longitude transform grid resolution) interpolated
from the participating member model forecasts. For NWP we used as many as 11
global models (Krishnamurti et al., 2001). The methodology for this conventional
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Figure 20.1 A schematic outline of the FSU superensemble that includes training
and forecast phases. It also requires the observed analysis fields during the training
phase. The training phase statistics are passed to the forecast phase.

procedure consists of a definition of the superensemble forecast:

S = O +
N∑

i=1

ai (Fi − Fi ), (20.1)

where S is the superensemble prediction, O is the observed time mean, ai are the
weights for individual models i, Fi is the predicted value from model i, Fi is the time
mean of prediction by model i for the training period, and N is number of models.

The weights ai are computed at each of the transformed grid points by minimising
the objective function G for the mean square error of the forecasts:

G =
t=train∑

t=0

(St − Ot )
2, (20.2)

where t denotes the length of a training period.
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In the conventional superensemble methodology, a collection of a sequence of
individual forecasts from several models is subjected to a multiple regression against
the observed (or assimilated) counterpart fields. These multiregression coefficients
are collected during the training phase of the superensemble. The length of this
training data phase varies for each type of forecast addressed in this chapter. This
statistic, collected during the training phase, is simply passed on to a forecast phase
of the superensemble. In this forecast phase, we again have forecasts from the same
member models that are corrected based on their past collective behaviour. This
type of weighted bias removal is more effective than a bias removed ensemble mean.
The latter assigns a weight of 1.0 to all models after bias removal. The superensemble
includes fractional and even negative weights depending on past behaviour of member
models.

A variant of the above formulation was necessary for improved skills for seasonal
climate forecasts. From the member model forecast data sets we generate additional
data sets named the ‘Synthetic Datasets’. We found a significant improvement in
the skills of the seasonal climate forecasts using this variant of the superensemble.
The synthetic data set is created from a combination of the past observations and
past forecasts. We determine a consistent spatial pattern among the observations and
forecasts. This is simply a linear regression problem in the empirical orthogonal
function (EOF) space. Sets of such synthetic data are then obtained, one for each
available forecast, for the creation of superensemble forecasts. A method of creating
the synthetic data and the associated statistical procedure is given in Appendix A.

20.3 Hurricane/typhoon forecasts

Many modelling groups from the USA, UK and Japan provide data sets from their
daily real-time hurricane/typhoon forecasts. These data sets are used for consensus
forecasts. In our studies, the hurricane and typhoon forecasts are carried out using a
one-dimensional superensemble. The formulation of the one-dimensional forecasts is
centred along the track of the minimum pressure of the storm. The data sets employed
for the one-dimensional problem are the latitude and longitude positions of the centre
of the storm, the timing along the track including landfall, the intensity along the
track and the heading angle of the storm.

We started hurricane/typhoon forecasts with the FSU superensemble in 1998
(Krishnamurti et al., 1999; Williford et al., 2003; Kumar et al., 2003). The track
forecast skills of the FSU superensemble show significant improvement over those
of the member models. Over the Atlantic basin, during the 1998 season, the improve-
ments over the best model from the superensemble were 20, 70, and 120 km for days
1, 2 and 3 of forecasts. It is worth noting that these skills are higher than those of
the ensemble mean as well. The performance of the superensemble was somewhat
similar during the subsequent years. The position and intensity errors for year 2002
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Figure 20.2 Atlantic hurricane forecast skills of multimodels and the superensemble
for 2002. (a) Track errors in km and (b) intensity error in mph. Various models in this
list include: NHC (National Hurricane Center Consensus forecast), AVN (NCEP
Aviation Model), GFD (NOAA/Princeton Geophysical Fluid Dynamics Institute
Hurricane Model), NGP (Navy NOGAPS Model), UKM (UK Met Office Model),
ENSM (ensemble mean), FSU SENS and FSU SE EXP(FSU superensemble
experiment). The intensity models include SHIFOR (SHFR) and SHIPS (SHPS);
these are statistical in-house intensity models of NHC. Suffix ‘I’ stands for
interpolated versions of the model forecasts.

for all of the hurricanes that traversed the Atlantic, Caribbean, and the Gulf of Mex-
ico regions are presented in Figure 20.2. During the first 72 hours of forecasts, the
position errors of the superensemble are less than those of the member models and
the ensemble mean. The errors increase from roughly 90 km at hour 12 to around
400 km at hour 72. The intensity forecast errors from the superensemble relative
to the ensemble mean and the member models are quite similar to those above.
The superensemble errors are clearly lower than those of the member models. The
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intensity errors increase from roughly 10 mph (at hour 12) to around 32 mph (at hour
120). Thus, at the larger time range of forecasts, the intensity error can be as large as
a category of wind intensity.

In order to illustrate the workings of the superensemble, it is possible to walk
through the computation of superensemble forecasts. An example of such tabulation
for Hurricane Lenny of November 1999 is presented in Table 20.1. This shows the
walk-through computation for a forecast at hour 72 of forecasts. First we shall address
the latitudinal positions of forecasts. Column one lists four models i. The second col-
umn provides the weights ai for these four models; these entries were obtained from
the training phase behaviour of these four models. The next column provides the nor-
malised forecast increments for each model (F ′

i ) with respect to the forecast mean
(Fi ), where prime denotes increments. The superensemble function ai (F ′

i − F ′
i ) for

each member model and the superensemble forecast, i.e. O + ai (F ′
i − Fi ), are shown

in the next two columns. The last two columns show the forecast position increments
and the forecast errors. Below that are the entries for the observed position (OBS;
latitude) of the storm at hour 72, the superensemble based forecast (SUP) and the
ensemble mean (ENS). We note here that the mean latitudinal position error for
Hurricane Lenny was 0.5 degrees latitude for the superensemble, which was lower
than that of all member models. The lower part of the same table shows entries for the
longitudinal errors. The number of models at hour 72 were somewhat reduced since
the longitudinal positions were too far off (outliers) and were not used for the con-
struction of the superensemble. The overall longitudinal error of the superensemble
is −2.53 degrees and was still the least among the different model members.

The superensemble forecast of Hurricane Lenny was unique in another important
manner. Generally, if we have a suite of forecasts from multimodels, they will show
some spread in the distribution of these tracks. The ensemble mean generally resides
within the envelope of this spread. The superensemble-based track forecasts can even
lie outside such an envelope. Lenny was clearly one such storm; Figure 20.3 illustrates
such a spread of tracks. This is a special strength of the superensemble since it is
able to portray such bias corrections from the past performance of these models.
The intensity forecasts have generally been quite poor from the numerical prediction
modelling. The issues of adequate model resolution, treatment of physics, lack of
microphysics, hydrostatic versus non-hydrostatic motions are some of the important
factors that preclude a proper modelling of the cloud’s life cycle and the hurricane
intensity. These do seem to impact the growth and maintenance of the hurricane scale
motions. The multimodel superensemble does improve intensity skills slightly over
those of the member models and the ensemble mean.

The timing within track forecasts, especially for the landfall, is an important
practical and scientific issue. In principle, it is possible to tailor forecasts of landfall
parameters such as position, intensity, timing and the heading angle. This calls for the
construction of a single parameter superensemble from multimodel forecast data sets.
This landfall forecast is the lowest dimension superensemble. Powell and Aberson
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Figure 20.3 Hurricane Lenny: 72 hours forecast tracks. Forecasts from NHC
in-house model VICBAR (VBRi), UK Met Office forecast (UKMI), official forecast
of the NHC (OFCL), the NCEP aviation model (OHPC), the FSU superensemble
SENS and the observed best track (BEST) are shown in this diagram.

(2001) have addressed the landfall issues from large samples of past forecasts over
the Atlantic. Using those data sets and recent multimodel inventories, we have also
addressed these landfall issues. Figure 20.4 provides some of these research findings
for the forecasts of landfall time 24 hours prior to the event. It is possible to improve
the timing of landfall of hurricanes within hours 0 to 24, 24 to 48 and 48 to 72 of
forecasts by 1.2, 2.8 and 8.5 hours compared with the best models. Although this
gain in timing is not substantial, nevertheless it suggests the possibilities of further
improvements. Those improvements can come about from member model forecasts
and superensemble methodologies that can contribute towards improved landfall-
based forecasts.

Forecasts of tropical cyclones covering the entire Pacific Ocean were also studied
using this same methodology (Kumar et al., 2003). The statistical summary for the
1998, 1999 and 2000 seasons for track and intensity forecasts of typhoons up to
120 hours of forecast is presented in Figure 20.5. These results essentially reconfirm
similar findings on the skill score of the hurricane forecasts for the Atlantic Ocean.
The forecasts and error reduction by the superensemble over the Pacific Ocean were
in general somewhat larger compared with those of the Atlantic basin; the reasons
for that are not quite apparent at this stage.
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Figure 20.4 Timing errors at the landfall of hurricanes from the Atlantic during
1999 and 2000. These errors are in the last one-day of forecast prior to landfall.
Models include FSU control and FSU with physical initialisation, several versions of
NHC’s in-house models, operational dynamical models and the FSU ensemble and
superensemble (dark bar).

Further improvements in hurricane and typhoon forecasts are possible from the
generation and use of synthetic model components. A variant for the superensem-
ble procedure, called the quadratic synthetic approach, is tested for this purpose
(Szymczak, 2004). This method uses a quadratic regression technique to generate
space-smoothed track for each model forecast and these space-smoothed tracks act
as additional proxy members. In most instances we do see some improvements in
the latitude and longitude locations of the storm centre from the use of the synthetic
superensemble. We have noted that by having 2n models in place of n original mod-
els, it is possible to reduce the forecast errors generally. Several such innovations
are possible for further small but significant improvements on hurricane/typhoon
forecasts.

20.4 Medium-range numerical weather prediction

A total of eleven global multimodels are used for the construction of the multimodel
superensemble at the Florida State University. This is an ongoing real-time effort.
The data sets include six global operational models’ daily forecasts from NCEP/EMC
in the USA, JMA in Japan, NOGAPS the US Navy’s global model, BMRC the
Australian model, RPN the Canadian model and the UKMO model from England.
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Figure 20.5 Track and intensity forecast errors for typhoons over the Pacific Ocean
during 1998–2000. The models included here are from ECMWF, NCEP’s MRF, US
Navy’s NOGAPS, Japan JMA-GSM, Japan JMA-TYM, the ensemble mean and the
superensemble. Track errors are in km and the intensity errors are in mph. JMA
forecasts are available through 84 hrs only.

Besides those, we use a suite of five versions of the FSU model (Krishnamurti
et al., 2001). For the training phase of the NWP superensemble for heavy rain events,
we use satellite-based rainfall estimates from the NASA satellite TRMM and the US
DMSP satellites. The rainfall estimates are derived from several rain rate algorithms
developed by Kummerow et al. (1998, 2000), Huffman et al. (1995), Turk et al.
(2001), Olson et al. (1990, 1996), Ferraro (1997) and Ferraro et al. (1998). These
algorithms are based on the microwave scattering temperatures regressed to ground
truth estimates of rainfall rates. Several versions of the FSU global spectral model are
subjected to physical initialisation (which is a rain rate initialisation procedure) using
these different rain rate estimates. A detailed account of this procedure is described in
Krishnamurti et al. (2001). The different initialisations provide additional forecasts
for the construction of the NWP superensemble.
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Figure 20.6 Recent skill (equitable threat score and bias score) of precipitation
forecasts from real-time FSU superensemble for day 1 (a,b), day 3 (c,d) and day 5
(e,f) for the period from 15 August to 14 September 2003. Skills for different
member models, ensemble mean and superensemble are shown here for the global
tropics (40S–40N).

The skills of precipitation forecasts from the superensemble have been quite high
compared with those of the member models. The metrics for the measure of skill
include anomaly correlation, rms error and probabilistic equitable threat scores.
Recent skills of equitable threat score and bias score for global tropics (40◦ S to
40◦ N) are illustrated in Figure 20.6. These skills are computed for the month from
15 August to 14 September 2003 for day 1 (Figure 20.6 a and b), day 3 (Figure 20.6
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Table 20.2 Walking through a day 3 superensemble precipitation forecast
Multimodel superensemble precipitation forecast from h48 to h72. Valid from
20020709/12 UTC thru 20020710/12 UTC. Valid at 15.43 deg N, 120.00 deg E (western
shore of Luzon, Philippines)

Precipitation (mm)

Model Coef. ai

Pcp.
Fi

Mean
Pcp Fi ai (Fi − Fi )

O = 26.14
O + (Fi − Fi )

Error (mm)
Fi – OBS

BMRC 0.60191 88.38 31.52 34.23 83.00 −22.06
FSUFER 0.01805 19.38 11.40 0.14 34.12 −91.06
JMA 0.08609 60.46 12.73 4.11 73.87 −49.98
NCEP 0.22313 91.68 15.89 16.91 101.92 −18.76
NRL 0.22343 57.33 10.64 10.43 72.82 −53.11
RPN 0.08697 78.36 20.21 5.06 84.29 −32.08
FSUCTL 0.43546 24.98 18.00 3.04 33.12 −85.46
FSUOLS 0.08800 23.94 11.46 1.10 38.61 −86.50
FSUTRM 0.06130 20.32 11.23 0.56 35.22 −90.12

ENSMEAN 51.65 −58.79
OBS 110.44
SUPENS 101.71 −8.73
BIAS-REM
ENSMEAN 61.89 −48.55

c and d) and day 5 (Figure 20.6 e and f) from the real-time FSU superensemble. The
illustrations include the skills of member models, the ensemble mean and those of the
superensemble. Operational models skills of precipitation threat scores are generally
around 0.3 or lower for day 1 to day 5 of forecasts. In this regard some higher skills,
as much as 0.5 to even 0.6, have been possible from the use of the superensemble.

Many instances of flooding arise from landfall of hurricanes and other severe
weather phenomena. The precipitation superensemble provides some useful guidance
for floods. Many such examples are presented in Krishnamurti et al. (2003b). We
shall next present a walk-through illustration (Table 20.2) on heavy rains that resulted
in flooding over the western shore of northern Philippines (near Luzon) from the
landfall of Typhoon Halong of July 2002. Table 20.2 is analogous to Table 20.1.
The day 3 of forecasts (between hours 48 and 72) over a grid location 15.43 N
and 120 E are illustrated. Here the various vertical columns show the models, the
training coefficients ai , the predicted model precipitation Fi , the mean of the predicted
precipitation Fi during the training phase, the function ai (Fi − Fi ), the observed mean
precipitation during the training phase O , the superensemble function O + ai (Fi −
Fi ) and the forecast error for each model. Also shown is the observed rain during
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Figure 20.7 (See also colour plate section.) Geographical distribution of statistical
weights for different member models in the northern hemisphere. Colour scale of the
fractional weights is shown at the bottom.
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this event. The superensemble forecasts, the bias removed ensemble mean and their
errors are shown in the lower part of the same table. Overall, it is clear that the best
rainfall forecast of 101.7 mm/day (observed 110.4 mm/day) was achievable from this
exercise. It is the accumulated effort for such point-by-point improvements which
result in providing higher regional and global skills for the superensemble.

The multimodel superensemble for global NWP (i.e. for all other variables) is
also being constructed using the data sets from the same 11 models. Here the training
database for all variables came from the real-time data assimilation from ECMWF
(at 0.5 degrees latitude/longitude resolution) that is used as a benchmark for forecast
validation as well. Detailed assessments of the NWP superensemble are published
in Ross and Krishnamurti (2005) and Krishnamurti et al. (2002, 2003a). Some of the
main findings thus far are:

(a) Roughly 120 days of data sets for the training phase seem to provide the best
results for the superensemble.

(b) Typically weights from the participating models show a great degree of
regional variability from one model to another. The superensemble weights
can be positive or negative; Figure 20.7 (colour plate) illustrates the spread of
weights for day 6 of forecasts for the 500 hPa heights for the northern
hemisphere (Krishnamurti et al., 2003a). It was our experience that the best
models were not necessarily the best in all regions. Some overall
improvements of skill to the superensemble did come from the poorer models
over certain regions.

(c) Major model changes always lead to problems for the applicability of training
phase statistics into the forecast phase. This requires a monitoring of the
modelling change activities of the participating models of the superensemble.

(d) As one increases more and more member models for the construction of the
superensemble we note that the superensemble errors keep decreasing and
levelling off somewhat. The ensemble mean, however, seems to have
increasing errors as the number of models are increased (Figure 20.8). The
latter assigns a weight of 1.0 for all models, even after bias correction,
whereas the fractionally weighted combination of member models of the
superensemble appears clearly superior. Poorer models upon bias correction
do not meet the same levels of performance as the top models.

(e) The largest reduction of rms errors from the superensemble was noted for the
meridional wind component v. The meridional wind carries more of the
divergent wind (zonally averaged v is entirely divergent) compared with the
zonal wind.

(f) The improvement as well as the overall skill of the southern hemisphere
anomaly correlation of the 500 hPa heights exceeded those of the northern
hemisphere (Table 20.3; Krishnamurti et al., 2003a). The seasonal skills for
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Table 20.3 Six -day global 500 hPa geopotential height anomaly
correlation for the period 20 August–17 September 2000

Day-1 Day-2 Day-3 Day-4 Day-5 Day-6

Superensemble 0.992 0.979 0.958 0.928 0.881 0.799
Ensemble mean 0.983 0.962 0.935 0.891 0.827 0.756
Model-1 0.984 0.967 0.936 0.889 0.824 0.713
Model-2 0.981 0.957 0.932 0.880 0.796 0.623
Model-3 0.963 0.930 0.885 0.815 0.706 0.579
Model-4 0.962 0.925 0.871 0.786 0.697 0.578
Model-5 0.956 0.918 0.858 0.767 0.665 0.549
Model-6 0.941 0.889 0.846 0.739 0.632

Figure 20.8 Global mean rms error of total wind from superensemble and ensemble
mean as a function of number of models.

the best model and the superensemble were: NH: 0.69 and 0.75; SH: 0.71 and
0.81. The southern hemisphere forecast skills have been greatly improving in
recent years.

(g) The reductions of the systematic errors by the superensemble were very
robust (Ross and Krishnamurti, 2005). Shown in Figure 20.9 (colour plate)
are typical magnitudes of the systematic errors for the best model, for a model
with the lowest skill, for the ensemble mean and for the superensemble.
These are results for the total wind field at the 850 hPa level covering daily
48-h forecasts for an entire year 2000. The results for other variables
demonstrate similar improvements for the reduction of the systematic errors.
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Figure 20.10 Anomaly correlation of 500 hPa heights as a function of forecast days:
thin lines show results for member models, thick dark lines in the top of each panel
show results for the superensemble. Top two panels: day 1 and day 6 forecasts for
southern hemisphere. Middle two panels: day 1 and day 6 forecasts for northern
hemisphere. Bottom two panels: day 1 and day 6 forecasts for the entire globe.

(h) The day-to-day superensemble forecast is generally very consistent. The
500 hPa anomaly correlation of geopotential height for northern hemisphere,
southern hemisphere and entire globe in Figure 20.10 (Krishnamurti et al.
2003a) shows that regardless of the daily up and down swings in the
performance of the member model’s skills, the superensemble stays
consistently as the one with the highest skill at both day-1 and day-6
forecasts. Also shown in this string of forecasts are the anomaly correlations
for the ensemble mean that demonstrates less of a consistency. As
multimodels provide forecasts for the next week, one does not know which of
the member models would provide the best forecast; however, we can
anticipate that the forecast provided by the superensemble can be most
reliable in that regard. This is clearly apparent in Figure 20.10.

A post-processing algorithm based on multiple regressions of synthetic multi-
model solutions towards observed fields during a training period is one of the best
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solutions for extended prediction. Our study shows that the proposed technique fur-
ther reduces the forecast errors below those of the conventional superensemble tech-
nique and increases the predictive skill of forecasts. The usefulness of these improved
two-week forecasts is still open to question since an anomaly correlation of around
0.5 still has a marginal value. Small further improvements of the member models and
of the superensemble strategies can move these skills to 0.6 (or higher) for two-week
forecasts.

20.5 Seasonal climate forecasts

This is clearly one of the most difficult forecasting areas. For seasonal timescale,
the perennial question as to whether it will be cold or warm or wet or dry over
a given region has been a major challenge. Clearly some progress has emerged
in seasonal model forecasts when strong SST anomaly signals are present, espe-
cially in the El-Niño scenarios. The seasonal climate forecasts for these situations
have improved by many modelling groups: Frederiksen et al. (2001), Goddard
et al. (2001), Roads et al. (2001), Kanamitsu et al. (2002, 2003), Wang et al. (2002),
Voldoire et al. (2002), Palmer et al. (2004) and Anderson (this volume). However,
climate anomalies abound in all scenarios and many difficulties in forecasts stem
from weak bottom boundary-forcing situations where a more important role may
even come from the internal variabilities. In our earlier study on seasonal climate
forecasting (Krishnamurti et al., 2002), it was noticed that the superensemble-based
anomaly forecasts have higher skill compared with the bias-removed ensemble mean
of member models, individual bias removed ensemble mean of the member models
and the climatology. Our applications of the proposed synthetic superensemble (Yun
et al. (2005) show that many improvements in seasonal forecast skills are possible
above those of the participating member models when a suite of models is used. A
brief description of the method is given in Appendix A. These results are outlined
here.

In a recent BAMS paper Palmer et al. (2004) reported on the seasonal forecast
capabilities from the use of several coupled atmosphere–ocean multimodels. This is
a well-known DEMETER data set (Hagedorn et al., this volume) and is available
online at the ECMWF website www.ecmwf.int/research/demeter/verification. The
DEMETER consists of coupled atmosphere–ocean models that include three cou-
pled models from France (CERFACS, LODYC, METEO FRANCE), the ECMWF
coupled model, the UK Met Office coupled model, an Italian model (INGV), and
a model from Germany (MPI). Each of these models had carried out several years
of seasonal forecast experiments. In our study, we used 15 years of data covering
the period from 1987 to 2001, and each of these models provided an ensemble of
nine experiments based on separate initial conditions for respective start date. In
our data compilations we include as many as 4000 individual seasonal forecasts
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from the DEMETER and FSU coupled model data sets. The FSU suite of four
coupled atmosphere–ocean models uses permutation of physical parametrisation
algorithms: Arakawa Schubert and Kuo cumulus parametrisations and a band and a
simple emissivity/absorptivity model for the radiative transfers. Same initial states
are provided to each of these models for their respective seasonal runs (Krishna-
murti et al., 2002). We have compared the monthly and seasonal forecast skills of
these member models, of the ensemble mean, and those from our conventional and
the synthetic superensemble. In all, as many as 67 forecast experiments per season
were available from each of these models. Our preliminary studies were in three
parts, results based on European coupled model data sets (the DEMETER data set),
those based on FSU coupled models and those based from combining all of these
models.

The metrics for forecast evaluation include standard deterministic ensemble mean
scores such as anomaly correlation coefficient (ACC), root mean square error (RMSE)
and mean square skill score (MSSS). We have also examined probabilistic skill
measures such as reliability diagrams, relative operating characteristic (ROC), Brier
skill scores, equitable threat scores, potential economic value curves and significance
tests for these skill scores, scatter diagrams of area-averaged skill measures and
probability density functions of grid point skill scores. Some of these follow the
studies of Palmer et al. (2004). The performance of the FSU synthetic superensemble
method is assessed by comparing its cross-validated skill in terms of RMSE and ACC
with the corresponding simple ensemble mean and the conventional superensemble.
We also looked at the geographical distribution for the skills of precipitation, surface
temperature and the low-level winds over some regions of interest. For the synthetic
superensemble data set, we note a very marked decrease of the RMS scores and
some increase of the ACC for both precipitation and surface temperature forecast
compared with those of the member models and their ensemble mean. The spread
in the RMS is reduced compared with those of the member models. However, the
spread in ACC is seen enhanced compared with member models. This shows the
effects of the intermodel spreads.

The cross-validated RMS and ACC for precipitation and the surface tempera-
ture from the DEMETER models using the synthetic superensemble are shown in
Figure 20.11. The skill scores are for the global belt between 0o to 60o N latitudes.
Each of the DEMETER coupled models were run for six months of duration. We con-
sidered forecasts for the month 2 through 4, since a 1-month lead time for the forecast
was inherent in the DEMETER database. The results presented here are averages for
the months 2 through 4 of forecasts. These illustrations show the skill scores for
the seven DEMETER models – each one of these is in fact an ensemble mean from
nine individual model runs. Synthetic ensemble mean and the superensemble from
synthetic data are also presented here. We note a drastic reduction of errors in terms
of RMSE for the precipitation and surface temperature for the years 1987 through
2001. The 14-year summary of the mean scores is also presented on the right side
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Figure 20.11 (a) Cross-validated rms and ACC of the DEMETER multimodel and
synthetic superensemble (0◦–60◦N northern hemispheric summer, June-July-August,
average of precipitation forecasts for 2 through 4 months). (b) Same as (a) but for
surface temperature.

of Figure 20.11. Compared with the member models, this time mean demonstrates a
45% improvement for the overall RMSE. The improvements are quite similar for the
ACC of precipitation and temperature. The improvements for the ACC are around
50% of the original values of the individual models. We had noted similar improve-
ments for the lower level winds (850 hPa), both for the North American and the
Indian monsoon regions.
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Figure 20.12 Seasonal precipitation forecast skills (rms error and anomaly
correlation) from four FSU models over the northern hemisphere belt 0◦ to 60◦N.
Results from 15 seasons are shown here. Also shown are the results from the
ensemble mean, the synthetic ensemble mean and the synthetic superensemble. The
small box on the right shows 15 season average skills for the rms and the anomaly
correlation for seasonal precipitation forecasts.

Apart from the statistical skill scores, we have also examined the geographical
distributions of the precipitation, surface temperature and lower level winds for the
summer season (not shown here). The simple ensemble mean was unable to capture
the intensity of precipitation, fine structure and intensity of the surface thermal gradi-
ents and strength of the wind at 850 hPa, compared with the respective observations,
whereas the synthetic ensemble mean and the synthetic superensemble forecast were
able to capture both the gradients and intensity seen for the precipitation, surface tem-
perature and winds reasonably well. For all these three fields over the North American
region, the agreement of synthetic superensemble forecasts with the observations was
excellent compared with the simple ensemble mean. Over the Asian monsoon region
also we noted that the synthetic ensemble mean and the synthetic superensemble
forecasts are able to capture the intensity and the contrasts of the precipitation dis-
tributions for the Asian monsoon system. All these results confirm that for seasonal
climate forecasts it is necessary to go beyond a simple ensemble mean.

Histograms in Figure 20.12 show the cross-validated RMS and ACC of northern
hemisphere (0o to 60o N) summer season precipitation from a suite of four FSU
member coupled atmosphere–ocean models, their ensemble mean, ensemble mean
of the synthetic forecasts and the synthetic superensemble forecasts respectively.



20 The superensemble approach 553

These are averages for one to three months of forecasts. We find that the RMSE for
the member models are quite similar for each of the years from 1987 through 2002.
For the simple ensemble mean the skill scores are slightly less compared with the
results for the member models. However, for the synthetic forecasts we note a drastic
reduction in these errors. The magnitude of the reduction of error is around 65%
compared with the individual member models. The ACC of precipitation forecasts
indicates a significant reduction in error for synthetic superensemble compared with
those of the individual member models and their ensemble mean. Overall, we note
a 50% improvement for the ACC score for the tropical belt (30o N to 30o S). The
errors in tropics are slightly higher compared with those of the northern hemisphere.
The new synthetic scheme is able to reduce the model errors over the tropical belt
by significant amounts (more than 50% in RMSE and around 40% in ACC). This is
a major improvement on the performance of current day single models for seasonal
climate forecasting using statistical-dynamical methods.

Next, we have taken all of the DEMETER plus the FSU models to construct an
overall synthetic superensemble. Figure 20.13 shows the precipitation forecasts for
the Asian summer monsoon for the year 2000 from this synthetic superensemble tech-
nique. Forecasts from different members of the DEMETER, their ensemble mean,
ensemble mean of FSU member models and the FSU superensemble are shown in this
figure. The Xie–Arkin precipitation data set is used as the observational benchmark
for training and for validating these forecasts. We note that a straightforward ensem-
ble mean is unable to capture the intensity (amplitude) of the monsoon rains, while
the member models have many difficulties in representing the geographical distri-
bution of precipitation. Much superior performance of the synthetic superensemble
is clearly apparent from this illustration, where the forecasts from the superensem-
ble closely match to the observed precipitation over the Asian monsoon region. The
anomaly forecasts for 2000 from the FSU superensemble, shown in Figure 20.14, are
further evidence of the superior performance of this approach. The observed anomaly
for 2000 (a wet year over central/peninsular India and southern Indochina) carries
an alternating (west to east) anomaly pattern. Below normal values over the cen-
tral Arabian Sea, a wet area over central/peninsular India, a below normal anomaly
over the northern Bay of Bengal and a wet anomaly over southern Indochina are
seen in these observed fields. These features are reasonably reproduced by the FSU
synthetic superensemble. Among the DEMETER models, the alternating (west to
east) pattern was only seen for the LODYC model of France and the UKMO coupled
model. These two did capture the general features quite well although the north-
ern India rainfall had a somewhat excessive spread of heavy rains, which was also
reflected in the UKMO model forecasts. The FSU ensemble mean (bottom left panel
of Figure 20.14) does not capture the below normal rain over the central Arabian
Sea. Overall, the synthetic superensemble seems to carry the seasonal forecasts of
these wet and dry spells somewhat better than the member models and the ensemble
mean.
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Figure 20.13 An example of a seasonal monsoon rainfall forecast (for June, July,
August 2000) in mm/day. Panels illustrate, from top left: observed estimates,
DEMETER coupled models (7 panels), ensemble mean of DEMETER coupled
models, ensemble mean of FSU models and the synthetic superensemble.

20.6 Summary and future work

Watching the performance of several multimodels, it became evident that large errors
abound in the numerical prediction of weather and seasonal climate. Single mod-
els carry large systematic errors. A suite of multimodels does provide a means for



20 The superensemble approach 555

Figure 20.14 Same as Figure 20.13 but for precipitation anomaly forecasts.

the improvement of the collective skills via various ways of ensemble averaging.
Improvement of the skills of single models was faster during the decades of the
1970s and 1980s, when faster supercomputers, improved data sets (space and surface
based), data assimilation methodologies, improved resolutions, improved physics and
the massively parallel computer software contributed to a rapid improvement. These
improvements in skill have slowed down somewhat in recent years. An example worth
citing here is that of skill improvements from a switch to improved cloud-radiation
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transfer algorithms for the medium-range NWP models after some four to five years
of dedicated work (Lee, 2000). A single model was improved by this procedure to
yield an increase of the anomaly correlation of geopotential height by 0.02 at the 500
hPa level. The use of a superensemble using multimodels yields an improvement
of nearly 0.2 for the same variable. This conveys the importance of multimodels –
however, the slow progress in the skill improvements of single models must continue
since any kind of ensemble averaging still relies critically on the performance of the
member models.

We have summarised here the results of multimodel forecast experiments with
the ensemble/superensemble approach carried out at Florida State University. Dur-
ing the past three years we have experimented on the issue of improved skills from
multimodel forecasts of hurricanes (track, intensity and timing), global NWP, heavy
rains associated with flood and the seasonal climate forecasts. In all of these areas,
we noted an ascending order of skill from the member models, the ensemble mean
and the superensemble. We learned that performing an ensemble averaging (after
bias removal of individual member models) increased the skill above those of mem-
ber models, but not to the level of the multimodel superensemble; the latter distin-
guishes between poorer and better models regionally. Consistently the multimodel
superensemble provided superior skills compared with these other ways of looking
at forecasts for the hurricane, NWP and heavy rainfall issues. We developed an array
of deterministic and probabilistic skills (the METRICS) for forecast evaluation. The
thorny issue of seasonal climate anomaly forecast remained only marginally better
than that of the climatological values, when the conventional superensemble was
used.

An extension of the multimodel superensemble was next carried out using an
additional suite of proxy models called the synthetic superensemble components.
This shows the most promise for seasonal climate anomalies. In several tests, with a
large array of coupled atmosphere–ocean multimodel forecasts (using the European
DEMETER model plus a suite of FSU models) we noted somewhat increasing skills
for the seasonal climate forecast issues. Our preliminary examinations of these algo-
rithms suggest that the rms error can be reduced by almost a factor of 3 compared with
those of member models. This suggests that the proposed method somewhat improves
the current state of the art for the climate anomaly forecasts. Thus, further research
is expected to be most rewarding. The issue of usefulness of a forecast may not be
necessarily met over all regions even from this prescription. Further work is clearly
needed to address the usefulness issue. Variants of the synthetic superensemble are
also being explored in the areas of hurricane, NWP and heavy rain forecasts. Pre-
liminary tests of these seem quite promising and are summarised here. We recognise
the difficulties in assessing the useful skills for improving regional high-resolution
mesoscale forecasts. That will be another major area of thrust using the multimodel
superensemble strategies.
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Appendix A: Method for synthetic data generation

The time series of observation can be written as a linear combination of EOFs such
as

O(x, t) =
∑

n

Pn(t) . φn(x), (20.3)

where n is the number of modes selected. The two terms on the right-hand side of
the above equation represents the time (principal component PC) and space (EOF)
decomposition respectively. PC time series P(t) represents how EOFs (spatial pat-
terns) evolve in time. PCs are independent of each other. Similarly the forecast data
can be projected into the PCs and EOFs as below for i member models,

Fi (x, T ) =
∑

n

Fi,n(T ) . ϕi,n(x). (20.4)

Here index i represents a particular member model; i can vary from 1 to m. We are
interested in knowing the spatial patterns of forecast data, which evolve in a consistent
way with the EOFs of the observation for the time series considered. Here we use a
regression relationship between the observation PC time series and a number of PC
time series of forecast data:

P(t) =
∑

n

αi,n Fi,n(t) + ε(t). (20.5)

In the above equation the observation time series P(t) is expressed in terms of a linear
combination of forecast time series F(t) in EOF space. The regression coefficients
αn are found such that the residual error variance E (ε2) is a minimum. Once the
regression coefficients are determined, the PC time series of synthetic data can be
written as:

Freg
i (T ) =

∑
n

αi,n Fi,n(T ). (20.6)

Then the synthetic data set is reconstructed with EOFs and PCs as:

Fsyn
i (x, T ) =

∑
n

Freg
i,n (T ) . φn(x). (20.7)
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These synthetic data (m sets) generated from m member models’ forecasts are now
subjected to the conventional FSU superensemble technique (Krishnamurti et al.,
2002) described in Section 20.2 of this chapter.
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Predictability and targeted observations

Alan J. Thorpe, Guðrún Nı́na Petersen
University of Reading

The aim of this chapter is to provide a summary of the development of the ideas
behind, and experiments undertaking, so-called targeted observations of the atmo-
sphere. The scientific issue is the assessment of the role of such targeted observations
in improving the skill of numerical weather predictions for time periods up to two
weeks ahead. Particular reference will be made to the problem of forecasting extra-
tropical cyclones. Within the context of the international programme THORPEX, a
vision of the numerical weather prediction (NWP) system of the future will be given
involving a two-way interaction between the observing system and the NWP system.

21.1 Introduction

Severe windstorms and precipitation cause substantial societal and economic impact.
It is therefore important to consider how we can accelerate improvements in predictive
skill. There have been tremendous strides forward taken in numerically predicting
the weather, and the three day forecasts of surface pressure are now about as accurate
as the one day forecasts were 20 years ago. This is one of the greatest scientific
achievements of the twentieth century, with huge societal and economic benefits.
These advances in numerical weather prediction arise from developments in mod-
elling as well as in making and utilising observations. Ensemble predictions enable us
to do probability estimations, the observational capability of satellites have increased
tremendously and there have been great advances in variational data assimilation.

Predictability of Weather and Climate, ed. Tim Palmer and Renate Hagedorn. Published by Cambridge University Press.
C© Cambridge University Press 2006.
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However, inaccuracy in initial conditions as well as uncertainties in model for-
mulations still remain a problem. They still cause significant failures in high impact
weather forecasts and an inability to significantly extend the range of skilful predic-
tions into ‘week 2’. The influence of the tropics on extratropical forecasts is poorly
described and there is inadequate skill in predicting mesoscale weather such as pre-
cipitation.

Storms are the principal natural hazard in north-western Europe. In fact, it has been
estimated that an individual has a higher chance of being killed in a UK windstorm
than in a hurricane in Florida. The societal and economic impact of such windstorms
can be large: for example, two storms in December 1999 caused 100 fatalities as
well as blowing down 400 million trees, 3.5 million electricity users were affected
for up to 20 days, 12% of mobile phone transmitters were inoperative and 3 million
people were left without water. The annual average insurance loss due to European
windstorms is around 1.2 to 1.7 billion. In fact the total insurance loss due to
windstorms can be compared to the loss in the USA due to hurricanes.

To improve predictive skill of such storms a range of scientific developments
are taking place. Model improvements are being made using process studies from
research field experiments, and observations from the new generation of satellite
instruments can improve initial conditions. Nevertheless significant data-poor regions
will remain, such as in cloud layers in both the extratropics and the tropics.

The concept of dynamically determined adaptive observing was first discussed
during the meeting in October 1994 of the First Prospectus Development Team of
the US Weather Research Program (Emanuel et al., 1995). The idea was developed
further during planning for the ‘Fronts and Atlantic Storm-Track Experiment’ (Joly
et al., 1997), during the meeting in May 1995 of the Second Prospectus Development
Team of the US Weather Research Program (Dabberdt and Schlatter, 1996) and at
a workshop at National Center for Atmospheric Research (NCAR) in May 1995
(Snyder, 1996). In Emanuel et al. (1995), it is noted that ‘Another intriguing technique
that should be explored is to use ensemble forecasting methods to make a priori
estimates of the distribution of sensitivity to observational error, so that programmable
observation platforms, such as unmanned aerial vehicles or programmed deployment
of dropsondes from commercial aircraft, can be directed to focus on sensitive regions.
Adaptive observational strategies may serve to help optimize observations in aid
of numerical weather prediction.’ That report concludes by saying that ‘Advanced
applications of adjoint techniques to numerical weather prediction may reveal, in
near real time, those parts of the atmosphere that are particularly susceptible to
initial error, allowing us to target such regions for observational scrutiny and thereby
greatly reduce numerical forecast errors.’

Dabberdt and Schlatter, 1996 used the term adaptive to mean the same as on-
demand. To avoid any confusion here we shall use the term targeting in the following
way. Targeting is the process of locating regions in which observations would max-
imally improve the skill of a weather forecast, using knowledge of the ‘flow-of-the
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day’ or more generally dynamically determined information obtained from the fore-
cast model. Such observations will be called targeted observations. The regions that
targeting locates are usually referred to as sensitive regions. Sensitive regions are the
localised zones of the atmosphere from which analysis errors grow significantly and
thereby degrade forecast skill. The sensitive regions depend strongly on many factors
including the forecast time-range and the verification region. Sensitive regions may
exist in geographical zones, e.g. in areas where flare-up of tropical convection leads
to downstream wave-train propagation, they may be associated with certain weather
types, such as an extratropical storm track or tropical cyclone genesis regions or they
might be flow dependent in zones from where analysis errors grow rapidly.

The use of adjoint products to predict the location of sensitive regions was first
suggested in 1995. It is now possible, in principle, to make such predictions opera-
tionally, that is ‘target’, and thereby also decide how optimally to make observation
in the sensitive area and design perturbations for regionally targeted ensembles.

21.2 Theory of predicting the location of sensitive regions

Since the idea of adaptive observing using dynamical means was first raised in 1995,
a number of distinct, but related, mathematical methods to identify the location of
sensitive regions have been proposed and tested. This class of methods builds upon
the use of the perturbations to initial conditions that are used in operational ensemble
prediction systems. It uses a full non-linear forecast trajectory, which here we call
the preliminary forecast, and estimates of the (linear) growth of small perturbations
to the trajectory.

Before summarising the different variants within this class of methods, it is useful
to note that another class of more empirical methods of targeting has also been
proposed. An example of this second class is the so-called water vapour-potential
vorticity method described by Demirtas and Thorpe (1999). Localised mismatches
between an analysis and a timely water vapour satellite image can be interpreted as a
tropopause-level potential vorticity analysis error. Inversion of the potential vorticity
error allows (balanced) targeted wind and temperature ‘observations’ to be available
to the forecast model. Other examples include the practice of bogusing hypothetical
observations creating a tropical cyclone vortex in analyses to enable such cyclones to
be more effectively initiated. Also weather forecasters can apply their experience to
suggest subjectively key, or sensitive, regions where synoptic development may be
most strongly affected by analysis errors. Browning et al. (2000) provide a perspective
on the forecasting of ex-Hurricane Lili and compare the empirical class with the class
based on linear growth of perturbations. The conclusion is that the sensitive regions
highlighted by the two classes are in similar locations at least for that case.

We now return to the linear perturbation class of methods. One might wish that
the targeting method was in some senses statistically optimal in that over a number
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of cases the predicted locations of the sensitive regions would lead, if targeted obser-
vations were obtained therein, to a significant reduction in forecast error (Berliner
et al., 1999). The required estimates of the change in the forecast error covariance due
to the addition of targeted observations could be found using an extended Kalman
filter. However, this is not currently feasible due to the large dimension of the state
space of the numerical weather prediction model.

In principle the problem of finding sensitive regions is one of estimating where
analysis errors may be large and of estimating the rate at which such errors will grow
during the forecast. Targeting is, in simplified terms, aimed at finding regions with
potentially large analysis errors that will also grow rapidly. Lorenz and Emanuel
(1998) and Hamill and Snyder (2002) focus on locations where initial condition
uncertainty is large or where targeted observations would reduce the analysis error
the most. By contrast, Buizza and Montani (1999) and Montani et al. (1999) focus on
estimating the growth rate of singular vectors during the forecast. The leading singular
vectors (SV) are the structures that grow the most rapidly, in a linear sense, over a
fixed forecast period. As well as the SV method, adjoint sensitivities (Langland and
Rohaly, 1996) and quasi-inverse linear integrations (Pu et al., 1997) use the adjoint
or tangent-linear of the full forecast model trajectory.

It is important to also take into account the characteristics of the data assimilation
system, and various methods for targeting have been proposed that aim to do so.
Baker and Daley (2000) and Doerenbecher and Bergot (2001) examine sensitivity
with respect to the observations. By contrast, Bishop and Toth (1999) and Bishop et al.
(2001) use the already computed ensemble members. These are manipulated by linear
combination to evaluate the likely forecast error reduction resulting from a localised
analysis error reduction presumed to have arisen from targeted observations located
there. These are referred to as the ensemble transform (Kalman filter) methods. These
methods include a number of approximations, e.g. the size of the ensemble is usually
too small to give a good estimate of the background error covariance, the description
of the observation network is crude, and observations up to and at the verification time
are excluded. Differences between covariances described by the methods and in the
operational data assimilation, on which the ensemble is based, impact the results and,
as for the other methods in this class, a linear assumption has to be made (Bishop and
Toth, 1999). However, despite these assumptions the ensemble transform Kalman
filter (ETKF) is a valuable tool and targeting in ETKF sensitive areas has decreased
forecast errors substantially (see Section 21.4).

Another way to predict the likely forecast error reduction resulting from deploy-
ment of targeted observations is by a reduced-rank state estimation using the leading
order Hessian singular vectors (Leutbecher, 2003). In this way the dependence of the
likely forecast error reduction on the particular deployment of observations within
the sensitive region can be evaluated.

For further details of these various methods, and other related ones, the reader is
referred to the published papers quoted herein. To provide one example of what is
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possible we now present some results from Leutbecher et al. (2002) on the Lothar
storm that caused significant damage and loss of life in France and neighbouring
countries on 26 December 1999. Observing system simulation experiments over a
48-hour forecast period were carried out using the European Centre for Medium-
Range Weather Forecasts (ECMWF) forecast model and its 4D-Var assimilation
system. Both total energy and Hessian singular vectors were computed for com-
parison purposes. A truth trajectory (using the Météo-France analysis and ECMWF
model) and a poor forecast (using the ECMWF analysis and model) were selected
from an ensemble of forecasts. It was then possible to locate sensitive regions with
the poor forecast trajectory and transplant soundings taken from the analysis leading
to the truth trajectory as the theoretical targeted observations.

The sensitive region was formed from a weighted average of the first five singu-
lar vectors and is shown in Figure 21.1 for both total energy (TESV) and Hessian
(HSV) singular vectors. There is clearly significant overlap between the two pre-
dictions of the sensitive region. However, there is a distinct difference: while the
TESV sensitive region covers the east coast of North America, the HSV region
doesn’t. The reason for this difference is that the HSV take into account an obser-
vational network. The east coast of North America is an area of dense observations,
where the initial errors are more constrained than over the ocean and other remote
areas.

In order to assess whether these linear estimates of the most sensitive region
are accurate, a set of 14 test sensitive regions was defined. The impact of adding
40 targeted soundings into each of these was found by integration of the full non-
linear forecast model. In this way the optimal zone for observations (OZO) could
be found and compared with the sensitive regions highlighted in Figure 21.1. The
OZO was well estimated by the HSV providing evidence for the accuracy of this
targeting method. In Figure 21.2 the evolution of the forecast error for Lothar is
shown using targeted observations in a variety of locations. It can be seen that putting
these observations in the HSV region is almost as good as in the OZO, showing the
potential power of targeting in reducing forecast error.

In Figure 21.3 the implications of the forecast error reduction in total energy for
the sea-level pressure field is shown. The verification is the truth forecast and it is
clear that the ECMWF forecast exhibited a significant error, in this case, at 48-hour
range. The final frame shows the excellent improvement possible by including 40
targeted soundings in the sensitive region.

21.3 Experimental testing of targeting in FASTEX

The first opportunity to test the real-time targeting of observations came in the Fronts
and Atlantic Storm-Track Experiment, FASTEX, which took place during January
and February 1997. FASTEX involved research aircraft, ship and additional routine
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Figure 21.1 Sensitive regions for Lothar predicted based on (a) total energy and
(b) Hessian singular vectors. The box indicates the verification area. From
Leutbecher et al. (2002).

radiosondes being utilised to provide an enhanced observational description of the
evolution of extratropical cyclones across the North Atlantic storm track. Real-time
targeting calculations were made by a variety of centres: ECMWF, Météo France,
US National Centers of Environmental Prediction (NCEP) and US Naval Research
Laboratory (NRL). These allowed the location of sensitive zones to be predicted
and various research aircraft to be directed into these regions to release dropson-
des. The resulting profiles thereby produced targeted observations for later inclusion
in the operational forecast suites. A number of sample hindcasts with and without
the targeted observations were then carried out by the various participating groups.
Results of these various studies were published in the Quarterly Journal of the Royal
Meteorological Society Special Issue on FASTEX (October C 1999). The overall
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Figure 21.1 (cont.)

conclusion was that there were cases of significantly improved skill when using the
targeted observations but also there was a significant number of small and even nega-
tive impact cases. One important point to bear in mind was that many of the cyclones
in FASTEX were relatively well forecast using the routine observing network and
so the potential for improvements by including additional targeted observations was
somewhat limited.

The study that used the ECMWF forecast system gave some of the more encour-
aging results, which may reflect the relative sophistication of the data assimilation
system and the quality of the model in terms of both resolution and parametrisations.
In Figure 21.4 we show results from Montani et al. (1999). This study used the
ECMWF total energy norm singular vectors to provide the estimates of the locations
of the sensitive regions in the western Atlantic sector. Dropsonde data obtained in



Figure 21.2 Evolution of the forecast error for Lothar including 40 targeted profiles
in various locations. TESV: total energy singular vectors; HSV: Hessian singular
vectors, OZO: optimal zone for observing; RDS: random distribution scheme. From
Leutbecher et al. (2002).

(b)(a)

(c)

Figure 21.3 Observation system simulation experiments for Lothar. Mean sea level
pressure on 26 December 1999, 12 UTC. (a) 48-hour forecast from the ECMWF
analysis, (b) the truth forecast and (c) ECMWF forecast with 40 targeted soundings.
Contour interval is 5 hPa. The figure is adapted from Leutbecher et al. (2002).
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Figure 21.4 Scatter plot over SVs’ verification regions for FASTEX cases,
comparing the rms forecast error (m) of 500 hPa and 1000 hPa geopotential height
for forecasts including the FASTEX dropsondes with those without the targeted
supplementary data. The forecast error is averaged over a verification region over
north-west Europe. From Montani et al. (1999).

the predicted sensitive area were used as the targeted observations. Figure 21.4 shows
a scatter plot of the forecast error (root-mean-square) of 500 hPa and 1000 hPa height
fields averaged over a verification region in north-west Europe encompassing the UK.
Forecast periods, every 6 hours, between 30 and 48 hours are included and the error
is plotted for forecast reruns with the targeted observations included against those
where they were not included. Very few points are below the dashed line (representing
zero error reduction) indicating that in most cases the targeted observations reduced
the forecast error. The error reduction is particularly large when the control forecast,
without the targeted observations, exhibited large prediction errors. On average
the gain in forecast accuracy is about 15% with the largest error reduction being about
37%.

21.4 An operational system for the Pacific: WSR
programme

The FASTEX field campaign in the north Atlantic sector in early 1997 was followed
by a targeting trial of a similar type in the north Pacific in early 1998 (NORPEX;
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Langland et al., 1999). NOAA, via activities in NCEP, built on the success of these
field campaigns by establishing the Winter Storm Reconnaissance (WSR) field pro-
gramme in early 1999 (Toth et al., 1999). Toth et al. (2002) note that ‘The aim of the
WSR program is to reduce forecast errors for significant winter weather events over
the contiguous US and Alaska in the 24–96 hour lead time range through the use
of adaptive observations over the data sparse northeast Pacific’. NOAA and USAF
manned aircraft flew from bases in Hawaii and Alaska to launch dropsondes into
predicted sensitive regions.

The WSR 1999, and the follow-up WSR 2000, exercises were successes with the
majority of the forecasts with targeted observations having significantly improved
skill. The National Weather Service made the WSR programme operational in January
2001 and has run it for 60 days every winter, covering the 24–60 hours forecast time
range over the Pacific coast. The programme is now run utilising the Ensemble
Transform Kalman Filter (ETKF) to locate sensitive regions.

The WSR programme is operational in the sense that the flights are triggered by
forecasters. The process involves case selection followed by automated sensitivity
calculations being triggered and choice of predesigned flight tracks in the light of
the location of the sensitive regions being made. This chain of events is under the
complete control of the forecasters, with no input from the research scientists. For
further information about the WSR programme see, for example, Majumdar et al.
(2002), Szunyogh et al. (2002) and Holland et al. (2004).

During WSR 2001 there were a total of 27 flights/cases during a one-month
period. Forecasts were improved in 60–70% of all WSR cases and the average rms
error reduction in the 24–96 hour forecasts in the preselected verification regions
was about 10%, with some cases in excess of 25%. This implies a lead-time gain
for a 2-day forecast of about 12 hours. Similar results have been found for the other
WSR programmes. In Figure 21.5, adapted from Szunyogh et al. (2002), we see
the propagation in WSR 2000 of the regions of positive forecast improvement from
the location of targeted observations in the Pacific eastwards until at 72 hours the
improvement covers many parts of the USA and Canada.

21.5 Cloudy sensitive regions

The WSR programme utilises the availability of manned meteorological research
aircraft to make targeted observations. There is a wide potential for many other
observing methods to be used for targeting. These methods, which could ultimately be
made operational, include targeting of satellite data, ASAP ship soundings, AMDAR
aircraft reports, supplementary mobile and fixed-location soundings as well as other
supplementary in-situ instruments. New satellite instruments will provide huge data
sets, but targeting is essential for selective dynamic utilisation of the huge data flows
from satellites and determining locations for higher scan rates.
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Figure 21.5 Forecast error reduction in geopotential height (%, shaded) due to
soundings over the mid Pacific during WSR 2000, at (a), (c), (e) the 300 hPa pressure
level and (b), (d), (f) for surface pressure at 24, 48 and 72 h lead times. Contours
show the time mean of geopotential height at (a), (c), (e) the 300 and (b), (d), (f)
1000 hPa pressure level. From Szunyogh et al. (2002).

However, in cloud layers and below cloud-base the new satellite instruments will
have poor resolution. Figure 21.6 shows the huge volume of GOES satellite derived
winds in three layers at a single analysis time in mid Pacific. Given such huge data
volumes there is a need to thin such data sets for real-time data assimilation. Further-
more, due to the satellite observation error estimate being uncertain, it is possible
that a huge volume of information from satellites might deteriorate the analysis that
forecasts are based on. One way to carry out such thinning is via dynamical targeting.
If we retain only the data in the layer 400–699 hPa, which is known from the singular
vector calculations to be a key sensitive region, then far fewer data are available (see
Figure 21.7). This dramatic reduction in data availability in the sensitive region is
because of the difficulty of sensing from satellites in significant cloud layers.
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Figure 21.6 Satellite winds from GOES on 4 February 2001 00 UTC. Image
courtesy of Chris Velden/CIMSS.

Figure 21.7 Satellite winds from GOES on 4 February 2001 00 UTC. Only winds in
the sensitive layer 400–699 hPa are shown. Image courtesy of Chris Velden/ CIMSS.
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Figure 21.8 Sensitive regions (striped and hatched) occur within cloud layers
(shaded). Adapted from Leutbecher et al. 2002.

Calculations made by Leutbecher et al. (2002) of the location of the sensitive
region for the Lothar storm are shown as striped and hatched regions in Figure 21.8.
Also plotted are the model cloudy regions, given with continuous grey shading. It
can be seen that there is a large overlap between cloud layers and sensitive regions.

Given that the currently planned generation of satellite instruments will have poor
resolution in cloud layers, it is clear that other sources of targeted observations will
have to be investigated.

Fortunately there is substantial potential to enhance the observing system with
new low-cost in-situ instruments. This opens up the exciting prospect of targeting
additional mobile in-situ instruments into these zones.

21.6 THORPEX: A Global Atmospheric Research
Programme

An internationally coordinated programme of research and field experimentation is
needed to determine the optimal utilisation of satellite and in-situ observing systems,
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leading to an improved global observing system and advances in data assimilation
methodologies. The aim of such a programme would be to enable forecast skill to
make a ‘leap forward’ necessary to solve the problems described earlier.

The Global Atmospheric Research Programme, GARP, led to the Global Weather
Experiment called the First GARP Global Experiment, FGGE, in 1979. This led to
a significant acceleration in NWP skill improvements.

Recent advances in, for example, data assimilation, ensemble prediction and tar-
geting suggest that it is now possible to make another leap forward. It is time for a
second GARP, which is called THORPEX: A Global Atmospheric Research Pro-
gramme. For more detailed information on THORPEX see www.wmo.int/thorpex.
THORPEX was established in 2003 and is one of the most ambitious, fundamental,
complex and promising international efforts in the field of atmospheric and related
sciences. It is a decade-long international research programme aiming to accelerate
improvements in the accuracy of one-day to two-week high-impact weather forecast
for the benefit of the society and the environment. It is clear that one of the major
societal challenges of the twenty-first century is to reduce the impact of weather-
related hazards. Skilful weather forecasts can decrease this impact. THORPEX is
based on collaboration between the operational and research community as well as
users of forecast products.

In order to achieve its goals THORPEX needs to facilitate advances in predictabil-
ity theory, data assimilation and understanding of dynamical processes. By using
probabilistic forecasts that quantify the likelihood of an event we can now provide
more specific information on the likely outcome of an event. Probabilistic forecasts
are especially valuable tools for predicting events of low probability but high risk, i.e.
extreme events. Data assimilation is the process leading to an estimate of the state of
the atmosphere and the ocean at a particular time – an analysis – as well as measuring
the uncertainty associated with the analysis. The uncertainties in the analysis arise
from uncertainties in the observations, the first-guess forecasts and approximations
in the assimilation schemes. There have been recent advances in many aspects of
assimilation and observing systems, e.g. improvement in assimilation algorithms,
targeting techniques and an increased volume and quality of atmospheric observa-
tions. These advances provide an opportunity to make substantial improvements in
the forecast skill. The limits of predictability depend on the properties of the atmo-
sphere that are forecast. Increased knowledge of the global-to-regional influences of
the evolution and predictability of high-impact weather can increase the spatial and
temporal range of predictability.

THORPEX will explore the idea of a reactive two-way flow of information
between the observational and NWP systems and develop a design of an interac-
tive forecast system. Until now this flow has been one way from observations into
the NWP system. An interactive system allows information to flow between forecast
users, NWPs, data assimilation systems and observations to maximise forecast skill.
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We can, for example, dynamically utilise satellite and other data, so we can determine
the optimal mix of diverse observational types and design ensembles so as to target
supplementary observations.

THORPEX is structured with four subprogrammes of research:

1. Predictability and Dynamical Processes

2. Observing Systems

3. Data Assimilation and Observing Strategies

4. Societal and Economic Applications.

THORPEX must also facilitate development of a diverse range of in-situ observing
technologies to supplement satellite data in cloudy sensitive regions. As mentioned
in Section 21.5 there is a range of new and innovative in-situ low cost instruments
under current development capable in principle of obtaining targeted observations.
THORPEX will act as a spur to the development and testing of these instruments,
which include:

(a) driftsonde

(b) robotic aircraft

(c) aircraft-deployable ocean surface data buoys

(d) rocketsonde

(e) bi-directional radiosondes.

In Figure 21.9 we show a schematic of the NCAR driftsonde system involving a zero-
pressure balloon flying in the stratosphere with a gondola holding 24 dropsondes. The
launch times of the driftsonde and the deployment time of the individual dropsondes
will allow targeting to be implemented. The design specification of the driftsonde is
that the total cost of each sounding of the atmosphere is similar to that of a routine
radiosonde profile.

An example of the type of coverage possible over the north Pacific sector from
four launch sites in Japan is given in Figure 21.10.

A number of observing system tests and regional campaigns are planned during
THORPEX. One such campaign, The North Atlantic THORPEX Regional Campaign
(NA-TReC), was carried out in 2003 (see Section 21.7).

As a culmination of THORPEX research it is envisaged that there will be a ‘THOR-
PEX Global Experiment’ by analogy with FGGE. This will last for a year, say in
2009 or 2010, and include all candidate in-situ systems and available remote sensing
systems. The experiment will consider all predictable spatial and temporal scales out
to 14 days and the data from the experiment will be available in real time.

THORPEX aims to assist global coordination to develop the observing system for
weather forecasting; for example, it has strong links with the Commission for Basic



Figure 21.9 A schematic figure of a driftsonde system. Illustration courtesy of Hal
Cole, UCAR.

Figure 21.10 Simulated driftsonde profile coverage on data assimilation time, after
three days of deployment from 100 hPa. The carrier balloons were launched from
four sites in Japan. Each dot represents a separate carrier balloon/gondola and GPS
dropsonde profile location at 0000 or 1200 UTC. Stars are profile locations at 0600
or 1800. Illustration courtesy of Rolf Langland, NRL.
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Systems and the EUropean Composite Observing System (EUCOS). It also needs
to coordinate with the design of the Global Climate Observing System so that
advances will also benefit climate. THORPEX is a programme of the World
Weather Research Programme and is supported by the Working Group on Numerical
Experimentation.

21.7 The North Atlantic THORPEX Regional Campaign

The North Atlantic THORPEX Regional Campaign (NA-TReC) took place from 17
October to 15 December 2003. The NA-TReC was organised and run by EUCOS but
other organisations played a vital role including the 18 European National Met Ser-
vices that are members of EUMETNET, National Oceanic and Atmospheric Admin-
istration (NOAA), National Aeronautics and Space Administration (NASA), Envi-
ronment Canada, EUMETSAT, National Center for Atmospheric Research (NCAR),
German Aerospace Center (DLR) and NRL.

The campaign’s main objectives were to test the real-time quasi-operational tar-
geting of observations using a variety of platforms, such as AMDAR, ASAP ships,
extra radiosonde ascents, research aircraft and meteorological satellites. The focus
of the campaign was on short range, 24 to 72 hour forecasts, regional scale numer-
ical weather prediction over Europe and the eastern coast of North America. The
campaign utilised different targeting techniques: SV methods, the ETKF and adjoint
models. The sensitive area calculations were carried out at ECMWF, UK Met Office,
Météo France, NCEP and NRL. The targeted region in each case was selected using
all available sensitive area predictions. During the field campaign 21 cases were
targeted and 23 000 additional AMDAR observation reports generated, as well as
65 extra ascents from ASAP ships, 214 additional radiosonde ascents and 277 air-
craft dropsonde profiles. In addition, satellites were applied to make targeted obser-
vations of rapid scan winds (Mansfield et al., 2005). Further information regard-
ing the planning of targeted observations can also be found in Leutbecher et al.
(2004).

Figure 21.11 (colour plate) shows an example of sensitive area predictions by
the TESV and the ETKF methods. The contours show the forecast mean sea level
pressure while the shaded areas represent the regions predicted sensitive by each
method. The area that was targeted in this case is shown by the bold boxes. Even
though there are similarities in the sensitive area predictions, in this case there are
obvious differences between the two predictions. A possible explanation is that the
verification areas are not of the same size, but that doesn’t explain all differences,
for example that the centre of the surface low is predicted highly sensitive by the
ETKF method but is outside the 1 × 106 km contour for the TESV method. One
of the scientific objectives of the NA-TReC is to contribute to the understanding
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Figure 21.11 Sensitive area predictions for NA-TReC 7. (a) A prediction based on
total energy singular vectors, and (b) a prediction based on the ETKF. The shaded
areas are the sensitive area predictions, the darkest shade showing the most sensitive
area. The sizes of the areas are 8, 4, 2 and 1 × 106 km2. The contours show the mean
sea level pressure (hPa) forecast for 66 hours in (a) and 72 hours in (b). The grey
rectangle in (a) and the ellipse in (b) represent the verification area, and the bold
boxes outline the region that was actually targeted.

of differences between the targeting methods as well as the impact of the targeted
observations.

Figure 21.12 shows the locations of the targeted observations associated with this
NA-TReC 7. The AMDAR observations cover the targeted areas quite well, while
extra radiosonde ascents are only at the eastern coast of Canada. In addition to the
observations shown in the figure, there were satellite observations. The observations
in the Mediterranean region are in relation to another case.
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Figure 21.12 An overview of the targeted observations 28 October 2003. The
crosses represent AMDAR observations, the dots radiosonde ascents and an ASAP
ship radiosonde ascent.

This is the first time that the real-time targeting control of such a complex set
of observing platforms has been attempted and the campaign might be considered
an essential preparation for future targeting field campaigns. However, it is possible
that the number of cases in the campaign is not sufficiently large to give significant
results regarding the different targeting techniques.

21.8 Concluding remarks

Building on the ideas of targeting observations we can propose a vision of the way
numerical weather prediction could be done in the future. This vision involves a pre-
liminary forecast being made using observations from the routine observing system
and the NWP model. Ensembles of the future will involve an ensemble design that
is optimised for particular customer needs. As computing resources become more
readily available, suites of ensembles each separately designed for different cus-
tomers can be contemplated. Part of the output from the ensemble design step is the
identification of sensitive regions in which to make additional targeted observations
to improve the skill of each particular ensemble. The additional targeted observa-
tions are then ingested into the data assimilation system and the production of the
optimised ensemble occurs. This represents a two-way flow between observations
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Figure 21.13 NWP system with the new step 3 to include targeted observations. The
advent of dynamical targeting allows the new step 3 to be introduced into the NWP
system. It consequently allows, in principle, information to flow to and fro between
the observing system and the NWP system in an interactive way to optimise forecast
skill. The international programme THORPEX will carry out global testing and
refinement of these ideas to assess the potential impact on operational forecast skill.

and the model, with the data assimilation system acting as the flow controller. It can
be described as a four-step process:

Step 1: Preliminary forecast
Observations from the routine observing system with the highest
resolution model version used for that problem, generating what we call
here the routine analysis and the preliminary numerical forecast. The
information flows from the observing system to the model.

Step 2: Perturbation computation
Computation of a set of initial condition perturbations, from a simpler
(probably lower resolution and simpler physics) version of the model,
using the preliminary numerical forecast trajectory and customer-targeted
metrics such as maximum error growth over north-west Europe. There will
be a suite of these sets of perturbations, depending on the metrics chosen,
feeding, in principle, a suite of ensembles.

Step 3: Targeted observations
Definition of sensitive regions for additional targeted observations to be
obtained for that particular member of the ensemble suite, serving
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particular customers’ needs. Either additional targeted observations can be
made, or otherwise discarded observations utilised, in the sensitive
regions, if resources permit. Now the information flows from the model
back to the observing system. These targeted observations are used along
with the routine observations to generate an improved analysis.

Step 4: Ensemble computation
Addition of the perturbations, from step 2, to the improved analysis to
initialise the individual ensemble members within that particular member
of the suite of ensembles. The ensemble forecast is produced and
disseminated to the relevant customers.

This structure of the NWP system is shown schematically in Figure 21.13.
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Reliability and resolution are the two main attributes of forecast systems. These
attributes statistically relate the performance of a forecast system to verifying data
in an abstract sense. Forecast attributes have been separately defined in the literature
for systems that generate forecasts of particular formats or types. In this chapter,
statistical reliability and resolution are defined in a general sense, irrespective of
the type or format of a forecast. Statistical reliability is concerned only with the
form of forecasts, whereas statistical resolution is concerned only with the predictive
capability of a forecast system, related to the time evolution of the system that is
being forecast.

The two main attributes are independent characteristics of a forecast system and
can be quantitatively assessed by a host of different verification measures. The general
definition of forecast attributes allows a systematic discussion of the relationship
between the verification and calibration of forecasts. Calibration as defined here is
an adjustment of the form of the forecasts, to match the distribution of verifying
observations that follow the issuance of forecasts of a particular form.

Resolution, as the inherent predictive value of forecast systems, is the attribute
most sought after by developers of forecast systems. Reliability, however, is equally
important in real world applications. That calls for the generation of a long enough

Predictability of Weather and Climate, ed. Tim Palmer and Renate Hagedorn. Published by Cambridge University Press.
C© Cambridge University Press 2006.

584



22 Evaluation and calibration of weather forecasts 585

record of hindcasts to allow for a good calibration of forecasts, or, preferably, for
improvements in forecast systems that directly lead to better reliability.

22.1 Introduction

There exists a vast array of statistics for the description of various aspects of forecast
systems, such as those discussed for weather and climate in this volume by Allen et
al., Anderson, Buizza, Hagedorn et al., Kalnay et al., Krishnamurti et al., Lalaurette
and der Grijn, Mylne, Tibaldi et al., Waliser, and Webster et al. Some of these statistics
are based solely on the forecast system investigated, while others, called verification
statistics, depend both on the forecast values and the corresponding observations from
the system that is being forecast (the atmosphere in the case of weather forecasts).
The specifics of these statistics or forecast verification measures are not the subject
of the present study. Interested readers can find a review of many of these statistics,
with additional references, for example, in a recent handbook edited by Joliffe and
Stephenson (2003).

Instead, this study focuses on the underlying statistical verification attributes
of forecast systems. The main statistical forecast verification attributes, statistical
reliability and statistical resolution (from here on, reliability and resolution), have
long been discussed in the literature (see, for example, Murphy and Daan, 1985,
and references therein). Yet these attributes have been discussed only with respect
to particular forecast formats (single value, categorical, or one or another of the
probabilistic forecast format types; see, e.g., Stansky et al., 1989; Wilks, 1995; Joliffe
and Stephenson, 2003) and not for weather forecasts of any type in general.

Sections 22.2 and 22.3 will introduce a general definition and discuss some char-
acteristics of statistical forecast verification attributes (in short, forecast attributes),
respectively. Section 22.4 will explore the statistical limits of measuring forecast
attributes. Based on the general definition of the forecast attributes, and on an analy-
sis of the statistical limitations in assessing them, an examination of the relationship
between forecast verification and the calibration of weather forecasts (that is, the
enhancement of certain statistical properties of the forecasts) follows in Section
22.5. Section 22.6 will explore the significance of the two main forecast attributes
to developers and users of forecast systems, while Section 22.7 offers a summary of
the main findings of this study.

22.2 Definition of forecast attributes

Forecast attributes, as their name suggests, are abstract concepts that the various veri-
fication statistics, using different metrics, quantify. Taking an example from physics,
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length is an attribute that can be measured by a number of different metrics. As
mentioned in the Introduction, forecast attributes have been discussed so far in the
context of specific types of forecasts (see, e.g., Murphy and Daan, 1885; Stansky
et al., 1989; Wilks, 1995; Toth et al., 2003). Forecast attributes are defined below in
a general sense, allowing for a comprehensive discussion of weather forecasts and
their statistical calibration.

The verification attributes discussed below are defined in a statistical sense, which
is related to forecast systems, and not to individual forecasts generated by them.
Forecasts can be of any format but are assumed to belong to a finite number of
different ‘classes’, called Fi. The set of verifying observations corresponding to
a large number of forecasts of the same class are characterised by an empirical
frequency distribution, called observed frequency distribution (ofd), and marked
by oi.

22.2.1 Reliability

When defining the first forecast attribute, statistical reliability, consider a particular
forecast class, Fi. Consider further the frequency distribution of observed outcomes
that follow forecasts from class Fi, that is oi. If forecast Fi has the exact form of oi for
all forecast classes (i), the forecasts are statistically consistent with the observations
and the forecast system is called (perfectly) reliable. Different measures of reliabil-
ity are based on various methods for comparing forecast Fi and the corresponding
observed frequency distribution oi for all forecast classes (i), and measuring their
difference.

22.2.2 Resolution

The second forecast attribute, statistical resolution, is defined as a forecast system’s
ability to distinguish, ahead of time, between different outcomes of the natural system
(in case of weather forecasts, the future state of the real atmosphere).

For a more formal definition of resolution, let us assume that the observed events
are classified into a finite number of classes, marked by Oi. If each observed class Oi

is preceded by a distinctly different forecast class Fi, the forecast system is said to
have perfect resolution. Conversely, if the forecast is the same prior to each observed
class Oi (i.e., the forecasts do not vary, Fi = F for all i), or if the forecasts vary but the
observed frequency distribution oi following the issuance of different forecasts Fi is
the same (i.e., oi = c, the climatological distribution, for all i), the forecast system
has no resolution at all.

Resolution in a forecast system can be measured by the degree of separation
among the frequency distributions of observed events (oi), conditioned on different
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forecast classes (Fi). In practice, this can be achieved by comparing the observed
frequency distributions (oi), constructed from observed events that follow different
forecast classes, with the overall climatological distribution of observations (c, that
is the reference for a forecast system with no resolution). Different measures of
resolution are based on various methods for carrying out this comparison.

22.3 Some characteristics of forecast attributes

(a) Reliability and resolution are two independent attributes. Reliability is
concerned only with the statistical consistency between each class of
forecasts Fi and the corresponding distribution of observations oi that follow
such forecasts, whereas resolution is not affected at all by this consistency. By
contrast, resolution reflects how well different forecast classes can separate
cases with different subsequent observed events, whereas reliability is
unaffected by this property of forecast systems.

While the format and the actual values used by a forecast system are
irrelevant to its resolution, they are critical for its reliability. By contrast, a
forecast system with perfect reliability does not necessarily have good
resolution. Two examples are interesting to note here. A forecast system
always issuing the observed climatological distribution has perfect reliability
and no resolution by definition, while a system using forecast anomalies that
are systematically reversed compared with observed anomalies would have
perfect resolution but no reliability.

(b) In principle, reliability can always be statistically ‘enforced’ or corrected.
This is true as long as both the forecast and observed systems are stationary in
time, and there is a long enough record of forecast-observed data pairs. This
is because reliability reflects only the statistical consistency between forecast
and observed distributions. All one has to do to achieve the desired
consistency is to replace the forecasts in a given forecast class with the
frequency distribution of observations that follow such forecasts.

(c) Unlike reliability, resolution cannot be improved by statistically correcting
the forecasts so they follow the distribution of ensuing verifying observations.
This is because resolution does not depend on statistical consistency.
Resolution reflects the inherent value of forecast systems, and can be
improved only through the modification of the forecast scheme based on
additional knowledge about the temporal evolution of the observed system.

(d) Reliability and resolution, as defined above, are general attributes of forecast
systems. They can be interpreted for systems generating forecasts of any type,
such as single value, categorical, or probabilistic.
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It is interesting to note that single value (out of a continuum) forecasts can be perfectly
reliable only if they have perfect resolution as well. This is the only way the observed
frequency distribution would exactly match the Dirac function form of the forecasts.

As mentioned earlier, forecast attributes have been interpreted in the past for
forecasts issued in specific formats (i.e. not necessarily in the general form of a
probability distribution). While this can be useful for special purposes, it must be
noted that such narrow definitions of forecast attributes are not fully consistent with
the general definition introduced in this study.

Consider, for example, the case of a forecast system with less than perfect reso-
lution that issues single value forecasts. In this case, it could be possible to define
statistical reliability (or statistical consistency, as it is also often referred to; see,
e.g., Wilks, 1995) as a lack of conditional systematic bias. According to this narrow
definition, a forecast system is considered reliable if for all forecast values the fre-
quency distribution of corresponding observations has the same mean as the forecast
value. It is easy to see that this feature is a necessary but not sufficient condition for
reliability as defined in the present study. In fact, the no-spread single value fore-
casts, even if they have no systematic bias, will have less than perfect reliability for
any system with less than perfect resolution. Such a narrow definition of reliability
will have an implication for statistical calibration as well, as will be discussed in
Section 22.5.

22.4 The limits of assessing reliability and resolution

22.4.1 Measures of forecast attributes

As discussed by Toth et al. (2003) for forecasts in probabilistic format, some existing
verification measures assess reliability, some resolution, while still others provide a
combined measure of both. Note that some measures can be calculated for selected
subsets of all forecast cases – like the reliability and resolution components of the
Brier score verifying for only one of a set of categorical events. These measures
can be related to reliability and resolution as defined in the present study only if the
measure is aggregated over all observed categories.

22.4.2 Factors limiting the statistical accuracy
of verification statistics

While forecast attributes can theoretically be defined assuming that the number of
forecast cases goes to infinity, in practice verification measures are always computed
based on finite samples. Therefore, verification results can be considered estimates
whose accuracy will depend on the sample size. Knowledge about the uncertainty
in verification results is important (see, e.g., Hamill, 1997), especially when one
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compares two or more competing forecast systems. In such cases it is especially
important to assess the statistical significance of the comparative verification results
(see, e.g., Candille and Talagrand, 2005). The associated uncertainty in the verifica-
tion results can be reduced only through increasing the sample size, which is often
impossible when evaluating real life forecast systems.

Another factor limiting the accuracy of verification estimates is the uncertainty
in the verifying data (Candille, 2003). Observations used to verify forecasts are
generally associated with measurement and other errors. For properly assessing reli-
ability and resolution of a forecast system, such errors in the observations need to be
carefully accounted for, otherwise the results will either be biased and/or will look
statistically more certain than they are. Observational errors can be considered in
forecast verification by replacing an observed value (Delta function) with a proba-
bility density function (pdf) that reflects the observational uncertainty. The use of
incorrect observational error estimates (such as assuming perfect observations in the
presence of errors, as in the case of most verification studies) will introduce errors
in the verification (and pursuant calibration) results.

A third factor influencing the accuracy of forecast verification statistics is the
choice of the level of granularity introduced in the calculations, which is a function
of the level of detail sought in the results. The granularity of verification studies can
be controlled through a number of choices.

First, forecasts can theoretically take an infinite number of forms. Yet, when in
practice a finite sample of forecasts are evaluated statistically, forecasts of a similar
form must be grouped into a finite number of classes. For more detailed verification
statistics one might possibly wish to establish a large number of forecast classes.
The number of different classes is limited, however, by the requirement that there be
enough forecast cases in each of the classes established.

Second, forecast probability distributions can theoretically be defined and manip-
ulated as continuous functions. In practice, however, calculations are always carried
out over finite intervals. And because the sample size is limited, the width of the
intervals cannot be reduced arbitrarily, otherwise most intervals would contain no
data points.

Finally, if the overall sample size is small, one may need to group together forecast–
observed pairs from similar geographical regions and/or similar parts of the annual
cycle.

In practice, when choosing the level of granularity in verification calculations, one
seeks a compromise between having a large enough sample for all forecast classes and
verification intervals, while retaining as many classes, intervals, and geographical,
seasonal distinctions as possible, given the total number of forecast–observation pairs
(Atger, 2003). Obviously, the larger the overall sample of forecast–observation pairs
is for verification, the more questions about the performance of the forecast system
can be answered. As we will see in the next section, the same holds true for the number
of adjustment types that can be made as part of a statistical calibration algorithm.
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22.5 Calibration

The goal of calibration is to make the form for each class of forecasts statistically
more consistent with the distribution of the corresponding verifying observations.
Calibration, as defined here, is the replacement of the forecast, whatever form it
may have (i.e. single value, categorical, or probabilistic), with an estimate of the
corresponding odf (which describes the distribution of observations that in the past
followed the issuance of forecasts from the same forecast class). The success of
calibration can be measured by comparing the reliability of the calibrated forecasts
with that of the raw, uncalibrated forecasts.

Note that calibration is directly related to the verification of statistical reliability,
since both are based on estimating the distribution of observations following different
forecast classes. While verification assesses the statistical reliability of a forecast
system over a period in the past, calibration adjusts the forecasts with the intention to
make them more consistent with observed statistics in the future. Calibration is based
on the assumption that the statistical behaviour of the forecast and observed systems,
as analysed over a period in the past, will not change in the future. Calibration,
therefore, is subject to an additional limitation beyond those discussed with respect
to verification, namely that the quality of calibration will suffer if either the natural or
the forecast system is non-stationary in time. As with verification, the use of a small
sample size, errors in describing uncertainty in the verifying observations, and an
inappropriate choice for the level of granularity in the calculations will also adversely
affect calibration results.

There are a number of ways that forecasts from different classes, geographical
regions or different parts of the annual cycle can be grouped together for computing
verification statistics that are also needed for calibration. The resulting formation
of larger subsamples allows a more robust statistical estimate of the underlying
distribution of the observations corresponding to a broader group of forecasts – at the
expense of reducing the level of details in the verification, and consequently in the
pursuant calibration results. Therefore, careful compromises are needed when the
level of granularity is chosen for the computation of statistics for calibration. Allow
too many details in the verification (i.e. use too many different forecast classes), and
the calibration will suffer from sampling noise. Conversely, the lack of enough detail
in verification (i.e. grouping forecasts from areas with distinctly different verification
statistics together; see Atger, 2003) can also adversely affect the calibration by leaving
the biases present in the smaller subsamples uncorrected.

It should be noted that calibration, as discussed earlier with respect to verifica-
tion, can be introduced in a narrower sense than that defined above. Forecasts, for
example, can be corrected only to reduce their systematic bias in the first moment.
An application based on such a narrow definition of calibration will necessarily be
limited since other, higher moment aspects of the forecasts will not be statistically
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corrected. By contrast, calibration, if applied in a general sense as defined above on
single value, categorical, or any other type of forecasts, will naturally change the
format of the forecasts to the more general probabilistic format.

22.6 Significance of attributes to forecast developers
and users

Neither the reliability nor the resolution of real life weather forecast systems is
perfect. What is the significance of either attribute to the developers or users of
weather forecasts? Is one or the other attribute more important?

22.6.1 Developers’ perspective

We recall that the inherent value of forecast systems lies in their ability to predict
future events, as reflected in the statistical resolution of forecast systems. This is
equivalent to a forecast system issuing uniquely different signals prior to different
observed events. For example, if a system systematically gives a prediction of ‘heavy
snow’ (or ‘red’) and ‘light snow’ (or ‘blue’) prior to observed rain and no rain events
respectively, it has a high resolution.

Since the forecast signals issued by this forecast system are significantly different
from the subsequent observed verification events, however, the forecasts have poor
reliability. If such behaviour is systematic, the forecasts can be calibrated and the
developers of the forecast system may be content with the good resolution and may
not be overly concerned with the apparent lack of reliability.

22.6.2 Users’ perspective

It must be noted that when forecasts from the system described above are taken by the
users at their ‘face value’, they can be worthless or even harmful. A user who believes
what the forecast says and acts on that information can be seriously hurt (e.g. Zhu
et al., 2002). Even forecast systems with high predictive skill (high resolution) have
no value to users unless they also have good reliability. This explains why users often
emphasise reliability in their evaluation of forecast systems, based on the principle
of ‘do no harm’.

22.6.3 Need for calibration

Generally, a long enough record of observed–forecast pairs will allow an adjustment
or calibration of the forecast signal to match the distribution of observations that
follow a particular forecast class. Incidentally, a similarly long record of observed-
forecast pairs may be needed for the precise assessment of resolution in a forecast
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system (see Section 22.4). In the case of a forecast system with high resolution,
calibration can significantly enhance the utility of forecast systems. This underlies
the need for the provision of a large enough set of hindcasts (forecasts generated
on past events). Exactly how large a hindcast dataset is needed for calibration is the
subject of ongoing research. A large enough hindcast dataset will allow a proper
assessment of both the resolution and reliability of the forecast system, and will
facilitate a subsequent calibration of the forecasts in case the forecast system lacks
statistical reliability. In such a case, statistical reliability can be achieved through a
statistical adjustment via calibration.

22.6.4 Value of forecasts

As discussed above, beyond resolution, the users also critically depend on the reli-
ability of the forecasts. It is therefore important that when (typically after they are
calibrated) the value of forecast systems is assessed for the users, both resolution
and reliability are considered.1 One can argue that for a forecast system to show
genuine improvement, its resolution must be measurably enhanced. An experimental
forecast system with enhanced resolution, but an insufficient hindcast data set for
calibration, however, may degrade utility. One may argue that enhanced resolution
forecast systems be operationally implemented only if their reliability is not affected
negatively, or if at least a sufficient hindcast dataset is generated to ameliorate any
problem with reliability through calibration.

22.6.5 Future directions

As forecast systems mature, there is a natural tendency to use more detail from the
forecasts. For that to happen, one needs to include more detail in the calibration of
the forecasts as well. That, as discussed earlier, calls in turn for longer periods of past
observed–forecast pairs. Unfortunately, the number of such pairs is usually severely
limited due to the lack of long periods of detailed observations. This is of particular
concern when extreme events are considered. Such events, by definition, occur rarely
(Zhu and Toth, 2001). Therefore, their statistical calibration is especially problematic
(Legg and Mylne, 2005). Yet these rare events are often of the greatest interest to users.

It follows that as forecast and application methods improve and more details are
demanded from a system, the potential value added by statistical calibration will
likely diminish. Since under such conditions statistical corrections are of little or
no help, directly improving the reliability of a forecast system itself will become
more important and sometimes will offer the only tractable solution. When the real-
ism of models representing weather systems (that is directly related to reliability) is
improved, the changes may also lead to improvements in predictive skill (i.e. resolu-
tion). Prediction of tropical storms is a prime example of a situation where the role of
statistical calibration is limited due to the highly non-linear nature of these systems.
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If a storm, due to model deficiencies (e.g. too low spatial resolution), is not predicted
(well) by a forecast system, the insertion (modification) of a storm into the forecast
via statistical inference/calibration may require an impractically large training data
set. In such cases the reliability (and utility) of the forecasts can be improved only
by enhancing the realism of the numerical weather prediction model itself.

22.7 Conclusions

This study introduced a distinction between the abstract notion of forecast system
attributes and the statistical measures used to assess them. Unlike earlier studies, a
general definition of the forecast attributes was proposed, irrespective of the format
of the forecasts. Both of the two main attributes, reliability and resolution, were
interpreted in a statistical sense. Reliability was defined as a perfect match between
the form of a forecast and the distribution of verifying observations that follow the
issuance of that particular forecast form. A forecast system is said to have perfect
resolution, by contrast, if it consistently gives different signals prior to the occurrence
of different observations.

Reliability and resolution were shown to be independent of each other. Of the two
attributes, forecast system developers are more concerned about resolution since that
is related to the intrinsic predictive capability of forecast systems. For the users who
take the weather forecasts at face value, reliability is equally or even more important.
This is because users who use the raw (uncalibrated) forecasts act upon the actual
form of the forecasts, and it is reliability that is used to assess how this form compares
statistically with what is being observed.

A number of verification measures exist for the assessment of reliability and
resolution. These measures, like any other statistics based on finite samples, are
subject to sampling and other types of errors. These same errors were also shown to
affect calibration, where the reliability of forecast systems is enhanced. Calibration
was defined in general terms as the replacement of the form of the forecasts by the
distribution of observations that follow the issuance of any particular forecast form,
based on a set of observed–forecast data pairs.

It follows from the general definition of the main forecast attributes and calibration
that the general format of forecasts is that of a probability density function (pdf)
since that is the only format that can, in general, be consistent with the distribution of
ensuing observations. A pdf format allows the forecast system to reflect case-by-case
variations not only in the expected first moment of future weather parameters but also
in the higher moments, such as error variance. For example, forecasts in pdf format
can distinguish, given a certain expected value, between cases with higher and lower
uncertainty (Toth et al., 2001). Such information is known to have potentially great
economic value for the users (Zhu et al., 2002), yet cannot be provided by a forecast
system using a single value format. To what extent ensemble forecast systems can
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provide useful information beyond the first moment of the distribution is still an open
question (see, e.g., Atger, 1999).
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Predictability from a forecast
provider’s perspective

Ken Mylne
Met Office, Exeter

For a forecast provider, predictability means striking a balance between the needs
of an end user to make decisions and the limitations of what is scientifically pos-
sible. Scientifically the best information is probabilistic, normally generated from
ensemble forecasts, but to make effective use of this information we need to under-
stand the decision-making process of the user. This chapter will discuss some of the
issues related to the calculation of relevant probabilities, and how to transmit that
information to users and help them with decision-making.

23.1 Introduction

Predictability is not a new issue for forecast providers, such as the UK Met Office.
Forecasters have always dealt with uncertainty, usually describing it subjectively
with terms such as ‘mainly in the north-west’, or ‘a risk of patchy fog affecting the
airfield, but you should get in OK’. The second example here immediately shows
an understanding by the forecaster of the decision which the pilot has to make,
and many forecasters’ daily jobs involve providing bespoke services to individual
customers. By understanding those customers’ businesses, forecasters are able to pro-
vide them with information on some of the risks and uncertainties which impinge on
their activities and affect their decision-making, and tune their forecasts accordingly.
Nevertheless, two major changes in recent years are altering the way we deal with
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forecast uncertainty. First, new methods, such as ensemble prediction, are improving
the ability of forecast providers to assess uncertainty quantitatively, in an objective
and verifiable fashion. Second, forecast services are increasingly provided automati-
cally in order to minimise costs and delays, and allow flexible production of forecasts
for many sites. Use of objective methods allows us to include consistent measures of
uncertainty in these automatically generated forecasts. The challenge is therefore to
find ways of expressing uncertainty which are meaningful and useful to customers.
We also need to work with end users to help them understand what the numbers mean
and how to make use of them in risk management and decision-making.

This chapter will discuss the use of probabilities in providing forecast services to
customers, and describe some of the ways that ensembles are used in the Met Office
to support and improve our services.

23.2 Predictability – refining climatology

For a forecast provider like the Met Office, predictability is about balancing customer
desires for certainty, with what is actually predictable. Customers would like certainty
to ease decision-making but this is normally impossible due to the effects of chaos
and processes we cannot resolve. So what can we predict with any certainty? A good
starting point is climatology. Past statistics can tell us the climatological frequency
of an event: for example, if snow falls on 17 out of every 100 January days, the
daily probability of snow in January is 17%. Assuming the climatology is static and
representative, this provides a perfectly reliable probability forecast, although it has
no resolution beyond the seasonal variation of the climate. (Following Murphy, 1973,
reliability measures how well forecast probabilities match the frequency of obser-
vation, while resolution measures the ability of the forecasts to discern subsamples
with different relative frequencies of the event; see Wilks, 1995.) A good benchmark
for any forecast system is therefore that it should improve on climatology. Where
we have no predictive capability, climatology provides the best available guidance
to a customer. For example, an insurance company providing cover against possible
weather disruption many months ahead will assess risks and set premiums based on
climatology.

As well as setting a benchmark for the skill of probability forecasts, climatology is
also useful in interpreting probabilities. A common criticism of probability forecasts
is that forecasters are simply ‘covering themselves’ or ‘don’t know’, particularly
when a mid-range probability such as 50% is issued. However, a forecast of 50%
can be extremely informative. Consider the following forecast issued in November:
‘There’s a 50% probability of snow in London tomorrow.’ While not impossible,
climatology tells us that snow in London is rare in November, so a 50% probability
for the next day is indicating a very high risk compared with normal. This forecast
therefore contains a strong signal, even though the forecaster could quite honestly
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Figure 23.1 A schematic illustration of methods of generating probability forecasts
for a variable x which has a climatological distribution shown by the dotted line. xd

represents a deterministic forecast value, and the thick solid curve represents a
distribution of forecast errors. The thin solid line represents an ensemble forecast. xw

is a warning threshold for which the probability of exceedence is required.

say ‘I do not know if it will snow in London tomorrow’. By presenting the forecast
relative to climatology, the signal is made much clearer. More generally, there is
nothing wrong with an individual forecast of 50% provided it is part of a large set
of forecasts issued with a range of probabilities. Even where forecasts have good
resolution and can discriminate well between events and non-events, there will be
some occasions when the occurrence or otherwise of an event is marginal. To issue
a more categorical forecast on such an occasion would be misleading.

Climatology thus provides a baseline for predictability, and any forecast should be
an attempt to refine the probability to give more information. Figure 23.1 illustrates
forecasts of a parameter x which has a climatological distribution shown by the dotted
line. There are several standard ways to generate forecasts of x based on numerical
weather prediction (NWP). A deterministic forecast is the outcome of a single run of
an NWP model, and gives a single solution xd. Over a number of previous forecasts
it is possible to generate statistics of the errors of xd, and from these the deterministic
forecast may be supplemented by an error distribution function as shown by the solid
curve, providing a simple estimate of the forecast probability density function (pdf).
In Figure 23.1 this is illustrated with a Gaussian distribution but the method may
also be applied using different functional forms. A gamma distribution may be more
appropriate for parameters such as rainfall which typically have a skewed climato-
logical distribution (Wilks, 1995). Whatever distribution is used, its mathematical
form does not generally vary with the meteorological situation or the value of the
deterministic forecast. On occasions when the deterministic forecast is extreme, and
therefore of particular interest, the pdf from the error distribution is least likely to
be representative of the true forecast probabilities, and may even predict significant
probabilities for values of x well outside the climatological range.
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By contrast, an ensemble forecast attempts to sample the forecast pdf in a mete-
orologically consistent way, taking account of the synoptic situation and thus the
variable predictability of the atmosphere. Ensemble pdfs may take on more com-
plex forms, including multimodal distributions as illustrated by the thin solid line in
Figure 23.1. Assuming the climatology of the ensemble model provides a reasonable
approximation to that of the real atmosphere, the ensemble pdf should always be
consistent with climatology, even in extreme meteorological situations.

Each of these forecast methods provides increasingly sophisticated refinements
of the climatological distribution, from which forecasts of x may be expressed as
probabilities. The distributions in Figure 23.1 could be used to generate probabilities
of exceeding the warning threshold xw, given by the area under the pdf to the right of
xw. In this schematic example, climatology gives a low probability (around 7%) in
the tail of the distribution. Used simplistically, the deterministic forecast would give
a probability of zero, but when enhanced by the Gaussian it gives a probability of
24%; the ensemble suggests a probability around 38%. While the ensemble method is
clearly the most expensive way to generate probability forecasts, its flow-dependent
nature means that for most applications it is likely to give better results than other
methods. An important area of research for operational centres is to assess for which
types of forecast the additional information in ensemble forecasts is of sufficient
value to justify the cost of generating them.

23.3 Interpretation and verification of
probability forecasts

Describing uncertainty quantitatively is only beneficial if the numbers can be shown
to be meaningful and of value to the end user. The event to which a numerical
probability is attached must be unambiguous and relevant to the user’s application
– both provider and customer must be clear exactly what the probability refers to.
For example, if a forecast states there is ‘a 30% probability of rain in England’, does
this mean 30% at any one location, or ‘somewhere in England’? Is this a 30% risk
of a trace being recorded, or of a downpour? It must be clearly stated exactly what is
being predicted. The following example is much more meaningful: ‘30% probability
of more than 5 mm of rain at Heathrow Airport between 1200 and 1800’.

The user must then understand how to interpret and verify probabilities. If the
forecast probability of exceeding xw is 10%, and xw is indeed exceeded, this neither
makes the forecast right nor wrong. But out of 100 independent forecasts of 10%, xw

should be exceeded 10 times. If this is the case the forecasts are said to be perfectly
reliable. A single probability forecast cannot be right or wrong, and verification must
be done over many forecasts. A reliability diagram plots the frequency of occur-
rence of an event against the forecast probability, and is readily understood by most
users.
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Reliability is not sufficient on its own for probability forecasts to be useful. Clima-
tology provides perfectly reliable probabilities, but contains no forecast information
specific to the occasion. Useful forecasts also need to have discrimination. Discrim-
ination indicates the ability of the forecast system to distinguish between occasions
when an event does occur from ones when it does not and is related to the slope on a
reliability diagram – if the graph is horizontal, the probability of the event occurring is
independent of the forecast probability, and the forecasts are useless. Discrimination
may be measured quantitatively by the relative operating characteristic (ROC) taken
from signal detection theory (Stanski et al., 1989), but ROC is difficult to interpret for
end users. A much more user-oriented measure of discrimination is whether forecasts
have economic value in decision-making, as discussed by Richardson elsewhere in
this volume. A full discussion of verification methods for probability forecasts is
provided by Jolliffe and Stephenson (2003), and some examples will be shown in the
remainder of this chapter.

23.4 Use of ensemble forecasts at the Met Office

23.4.1 Long-range forecasting

In monthly and seasonal-range forecasts, predictability is inherently low, and fore-
cast systems aim to skew the climatological distribution slightly in the right direction.
Long-range predictability comes from slowly varying changes in sea-surface tem-
perature (SST), and is greatest in the tropics where the atmosphere is more directly
forced by SST. Forecasts are based on multimodel ensembles of coupled atmosphere
and ocean models, including both ECMWF and Met Office models, to estimate time-
averaged behaviour of the atmosphere compared with climatology. When run over
extended periods the climates of the models may differ significantly from the real cli-
mate, so model climatologies are determined by running the models over many past
seasons. Forecasts are then expressed as anomalies relative to model climatology, and
may be interpreted or calibrated by reference to real climatology. Probabilities issued
are frequently close to climatology, due to low predictability, but verification shows
that there is nevertheless some discrimination. Forecasts can therefore have value for
users who can adjust their actions in response to small changes in probability and ben-
efit in the long term, averaged over a number of occasions. Skill is greatest in the trop-
ics, but some extratropical areas also have useful skill. The Met Office issues seasonal
forecasts on its website (http://www.metoffice.gov.uk/weather/seasonal/index.html),
and monthly forecasts are provided to a number of customers.

23.4.2 Medium-range forecasting

Medium-range forecasting (3–10 days) has been transformed since the mid 1990s
by the availability of the ECMWF EPS (Ensemble Prediction System). Prior to that
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forecasts were essentially deterministic, based heavily on the Met Office’s global
model, with statements about confidence and uncertainty based on the agreement
or otherwise of a few other models. Today the main deterministic products are still
produced, including isobaric charts with frontal systems, but they are now based
on what is perceived to be the most probable solution taking account of both the
EPS and the other models available. Forecasters have access to a wide range of
tools for visualisation of the ensemble, and use field modification software (Carroll,
1997) to produce meteorologically consistent fields representing the most probable
outcome. Figure 23.2 presents results from monthly verification, assessing day 3
(T+72) and day 5 (T+120) mean sea level pressure (MSLP) forecasts before and
after modification, and shows that in most months the forecasters are able to improve
on the unmodified products (Hewson, 2004).

In addition to generating the most-probable chart solution, medium-range guid-
ance forecasters are also able to generate alternative solutions where the EPS sug-
gests a different solution with a probability of occurrence of more than about 20%.
Such alternatives are normally derived from clustering of ensemble members, and
probabilities based on numbers of members in different clusters. Chart products are
supplemented with detailed discussion of confidence and the risks indicated by the
ensemble. Guidance includes tables giving confidence ranges for temperature and
probabilities for rainfall accumulations at a number of locations.

While the use of ensembles has helped forecasters to improve the quality of
conventional deterministic products, the greatest potential in ensemble forecasts is
in the generation of probabilistic forecasts. The remainder of this section will focus
on development of services which take full account of probability to aid end users in
risk management.

23.4.3 Forecasting severe weather

Much emphasis is now being put on improving predictions of severe weather. Since
the development of severe weather is frequently highly non-linear, this is an appro-
priate application of ensembles; at the same time it is a particularly demanding
application. It is also difficult to verify since severe weather occurs relatively rarely,
so data samples are small. For long-range forecasting we noted that model clima-
tology is often significantly different from real climatology – the same is true in the
medium or short range when considering severe weather, since many severe devel-
opments depend on quite small-scale processes which are not fully resolved. It is
therefore often necessary to calibrate forecasts rather than interpreting model output
directly.

Over recent years the Met Office has started to use the EPS to generate early
warnings of severe weather in support of the UK National Severe Weather Warning
Service (NSWWS). Early warnings can be issued up to five days in advance when
the probability of an event occurring ‘somewhere in the UK’ is 60% or more, this
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Figure 23.2 The difference between monthly rms errors in mean sea-level pressure
with and without forecaster modification at (a) day 3 and (b) day 5 (Hewson, 2004).

threshold being specified by the NSWWS customers. In addition to an overall UK
probability, probabilities are also given for 12 local regions. In the past probabilities
were assessed subjectively, and forecasters rarely had confidence to issue warnings
more than 36 hours in advance. In order to encourage earlier issue and reduce the
overall miss rate, the First-Guess Early Warning (FGEW) system was developed to



23 A forecast provider’s perspective 603

provide forecasters with consistent and verified objective probabilities from the EPS
(Legg and Mylne, 2004).

FGEW warnings provide a good example of the need to calculate the relevant
probability for the application, in this case that severe weather will occur somewhere
within the UK (or a subregion). In calculating probabilities an ensemble member is
therefore counted if it generates severe weather at any grid point in the region. Also,
at 3–5 days ahead the precise timing of severe weather is not critical so the probability
calculation looks inside a time window of ±12 hours. As a result, probabilities are
much higher than those seen at fixed times at individual grid points. As well as
calculating probabilities relevant to users, verification of a system such as FGEW
also needs to be user oriented. Standard verification methods normally compare
forecasts with observations (or analyses) at fixed times, whereas FGEW verification
has to make allowance for the fact that warnings are of variable length and may be
verified by an observation which only overlaps with part of the warning period. From
a user perspective it would be misleading to count such a warning as a false alarm
during the non-overlapping period (assuming the warning is not excessively long).
In the case of FGEW, scores were calculated for each calendar day, and warnings
spanning more than one day were allocated to the first day to avoid double counting,
but each system must be designed according to the needs of the end users.

The 60% probability threshold defined for the issue of early warnings reflects
customer desire for high confidence, but in practice this is rarely attained. The devel-
opment of severe weather normally involves the non-linear interaction of quite small-
scale flow anomalies in the atmosphere. Small differences in the position, intensity,
or timing of such anomalies in the model can lead to large differences in forecast
evolution. Most members of an ensemble will therefore produce different interactions
from what happens in the atmosphere, and although the ensemble can be expected
to include members with severe events, it would be unusual for it to predict high
probabilities of severe weather. This indeed turns out to be the case in practice.

Figures 23.3 and 23.4 show examples of verification of 4-day forecasts from the
FGEW system which illustrate that most of the forecast information is contained in
low-probability forecasts. Figure 23.3 shows a reliability diagram for early warnings
of heavy rain, with a corresponding histogram of the number of times each forecast
probability was issued (sharpness diagram). The histogram shows that forecasts were
rarely issued with high probabilities. (Note that because the events are rare the prob-
ability bins used have been concentrated towards the low probability end, and that
most forecasts give probabilities below 10%.) Forecasts issued at lower probabilities,
below about 30%, provide excellent reliability with the curve lying close to the ideal
diagonal. At higher probabilities the reliability diagram is very noisy due to small
data samples, but there is some indication of the right general trend, with severe
weather increasingly more likely to occur when higher probabilities are issued. It
was noted above that for severe weather it is important to calibrate the forecasts
relative to model climatology. This was done for the FGEW system by adjusting
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Figure 23.3 Reliability (top) and sharpness (bottom) diagrams for FGEW warnings
of heavy rainfall events in the UK four days ahead. Data period: 1 Oct 2001 to 12 Feb
2003.

the severe weather event threshold to optimise the overall probability bias over an
initial training period in the winter 2000–1; verification results shown here are taken
from a subsequent period from October 2001 to February 2003, and confirm that the
calibration was quite successful. Sample climatology for the verification period is
0.124 and mean forecast probability was 0.139, giving a forecast frequency bias of
1.10, close to the ideal value of 1.0.

The ROC (Stanski et al., 1989) curve shown in Figure 23.4 for 4-day severe gale
warnings shows that the system has considerable ability to discriminate occasions
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Figure 23.4 ROC curve for FGEW probabilities of severe gale events in 12 local
regions four days ahead. Data period: 1 Oct 2001 to 12 Feb 2003.

when gales are more likely to occur. (ROC points lying on the main diagonal represent
‘no-skill’; points above the line show discrimination ability.) However, the points in
a ROC curve nearer the top right of the graph give hit rates and false alarm rates
corresponding to the lowest probability thresholds, so most of the discrimination
ability is due to low probability forecasts. Note that although quite high hit rates
(vertical axis) can be achieved for these low probability forecasts, this is at the cost
of large numbers of false alarms. Although the false alarm rates plotted (horizontal
axis) look quite small, they represent large numbers of false alarms because they are
expressed as a fraction of all non-events.

Together, the reliability and ROC diagrams show that the first-guess system is
able to provide some reliable probabilistic information on the likelihood of severe
weather, but only on rare occasions is it able to provide the high probabilities that
most customers would require before taking any protective action.

Verification results shown are for 4-day FGEW forecasts. ROC scores for differ-
ent lead times show useful discrimination of events up to six days ahead. As lead
time reduces, the main difference is that more events are predicted with higher prob-
abilities. A common problem for forecasters using deterministic NWP is that the
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Figure 23.5 Example of a ‘stacked probability chart’ generated from the marine
wave model within the EPS, showing the risks of exceeding various significant
wave-height thresholds at a site in the North Sea for days 1 to 10 ahead.

forecast can change dramatically between runs of the model, particularly when the
atmosphere is in an unstable state during development of severe weather. Before the
advent of FGEW, forecasters rarely had the confidence to issue early warnings until
very close to the event. By using the EPS, FGEW provides early alerts with low prob-
abilities, with probabilities usually increasing as an event comes nearer. Combined
with the verifiable skill of FGEW, this gives forecasters confidence to issue warnings
earlier and more frequently.

The FGEW system also illustrates the difficulty of meeting customer requirements
for high-confidence forecasts where predictability is low. While the system has some
considerable skill in identifying the possibility of severe weather, and some ability
to produce unbiased, reliable probabilities, the fundamental low predictability of the
severe weather means that on most occasions early warning can only be given at low
probability. If users were able to make use of such warnings their ability to mitigate
the effects of severe weather could be much increased, and this will be discussed
later in Section 23.6.

23.4.4 Site-specific forecasts

Most weather forecast customers require site-specific forecasts for their particular
locations, so the Met Office has invested significant effort in extracting site-specific
weather parameters from each EPS member to allow the generation of probabil-
ity forecasts. Ensemble forecasts for around 300 sites are held in a database for
product generation, and several graphical tools are available to display forecasts for
customers. Figure 23.5 shows an example of a stacked probability chart generated
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from the marine wave model within the EPS, showing the risks of exceeding various
significant wave-height thresholds at a site in the North Sea. This chart, generated
routinely for use by offshore oil industry customers, is designed for risk assessment
and is ideal for the identification of ‘weather windows’ in which weather-sensitive
work can be carried out. This example shows a safe window between about 36 and
72 hours ahead for operations requiring a safety threshold of 4.0 m, and up to 120
h ahead if the operator is prepared to accept, for example, a 10% risk of exceeding
this threshold.

Interpolating weather parameters directly from NWP model grids to specific loca-
tions can be subject to large errors as the NWP model cannot resolve the subgrid-scale
features which are important in generating the microclimate of a real site. An NWP
model can only attempt to represent weather parameters as an average over a grid
box, and the true resolution of a model is around five grid lengths. To allow for
this the Met Office applies a multivariate Kalman filter to relate values interpolated
from model fields to observed weather parameters statistically (Mylne et al., 2002).
Parameters such as temperature are related to model temperatures, but also to wind
direction, which is particularly important in coastal locations, so the Kalman filter
provides more than just a simple bias correction. Use of the Kalman filter also allows
the derivation of parameters which may not be available directly from the model,
but which are available from site observations and which are required by customers,
such as maximum and minimum temperatures. Figure 23.6 shows an example of
maximum and minimum temperature forecasts derived from model fields using the
Kalman filter for days 1 to 10 ahead. Temperatures are here presented using a ‘box
and whisker’ plot to indicate the spread of uncertainty. Some end users prefer to be
presented with an uncertainty range as indicated by this type of plot, with a given
level of confidence, rather than probabilities for given events.

Figure 23.7 shows an example of a reliability diagram for 3-day forecasts of wind
speed exceeding Beaufort Force 7. The line marked with triangles indicates wind-
speed probabilities interpolated directly from model fields and shows that the wind
is significantly over-forecast, as forecast probabilities are consistently too high. This
bias is very largely corrected by the Kalman filter (diamonds) which produces a curve
close to the ideal slope of 45 degrees. The improvement is also shown by the marked
reduction in the reliability score.

23.5 Short-range predictability

So far we have been discussing medium- and long-range prediction, but most forecast
customers are primarily interested in short-range forecasts (1–2 days). At this range
operational NWP is still largely deterministic. Forecasts have improved steadily due
to increased resolution, improved model formulation and data assimilation, and better
use of observations, but there are still many uncertainties in the forecasts issued.
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Figure 23.6 Example of maximum and minimum temperature forecasts for 10 days
ahead presented as box and whisker plots. The central box represents the inter-
quartile range, and the whiskers represent the 95% confidence range, while the
horizontal line in the box gives the median value.
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Reliability Score

KFMOS   0.000843913

RAW    0.00356677

Figure 23.7 Reliability (top) and sharpness (bottom) diagrams for ensemble
forecasts of wind-speed exceeding Beaufort force 7 at around 50 sites in the British
Isles for the year ending 31 August 2004. Triangles indicate wind-speed probabilities
from raw model fields; diamonds are after application of the Kalman filter.
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Uncertainty in the short-range detail is assessed subjectively by forecasters with few
objective tools to help them, but research is now starting into whether these issues
can be addressed with ensembles.

Large synoptic-scale errors are rare in the short range, but typically involve rapid
cyclogenesis and are therefore critically important. Much more common are errors in
subsynoptic details such as frontal waves, quantitative precipitation, convection and
weather parameters of importance to customers like cloud height and visibility. The
latest computers now allow the possibility of NWP models with grid lengths as low
as 4 km or even 1 km, which can start to resolve processes such as convection. While
these models offer the possibility of forecasting great detail in mesoscale weather
systems, such details are likely to be highly sensitive to small errors, and the long-term
vision for the future of forecasting is to run such models in ensembles to assess the
predictability of mesoscale weather systems. As a step towards this goal a number of
NWP centres are now developing regional ensembles. The Met Office is developing
an ensemble based on a regional model covering the Atlantic and Europe with a
horizontal resolution of around 20 km. This resolution will only start to address some
of the uncertainty issues, particularly rapidly developing synoptic-scale systems, but
also lays the foundation for the future development of high resolution ensembles to
address issues such as probabilities of localised heavy precipitation.

23.6 Real-world customers and probabilities

Customers ideally want high confidence categorical forecasts on which to base deci-
sions. Limited predictability of many parameters means that this is often not possible,
and the most informative products we can provide are probabilities such as 2%, 50% or
80%. Some of the most important forecasts for society and for business are for severe
or extreme events. As demonstrated with the FGEW forecasts, it is frequently only
possible to predict such events with low probabilities, especially for small localised
areas. To balance customer requirements with scientific predictability we need to ask
what users really need, and the answer is normally ‘decisions’. So how can we help
them make decisions from probabilities? In another chapter, David Richardson uses
measures of economic value to assess forecasts, and the same approach can be used
to guide decision-making with probability forecasts. By working with a customer
to analyse their losses L associated with a weather event, and their costs C of pro-
tecting against that event, we can identify the cost–loss ratio C/L . Given this, the
user’s best strategy is to protect against the event whenever the probability is greater
than C/L . Averaged over many occasions, and provided the forecast probabilities
are reliable, this strategy will maximise savings. Even if forecasts are not perfectly
reliable, analysis of past forecast performance can allow us to identify the optimal
decision threshold for a particular customer. Figure 23.8 presents an example of
forecast value for a particular customer with C/L = 0.2 plotted against a decision
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Figure 23.8 Examples of relative forecast value plotted against probability threshold
Pt for probability forecasts of wind speed exceeding force 5. The values of
equivalent deterministic forecasts are shown in the columns at the right-hand side of
each graph. Forecast lead times are: 48 h (solid line), 96 h (dotted), 144 h
(dot-dot-dot-dash) and 192 h (dashed).

threshold Pt. These curves are based on verification of uncalibrated probability fore-
casts interpolated directly from the EPS with no post-processing. For the user the best
decision threshold is the Pt which maximises the value, so for 48 h or 96 h forecasts
(solid and dotted lines) the user’s best strategy is to protect against the weather when
the probability exceeds 30%. Normally one would expect the customer’s optimum
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threshold to be 20%, because C/L = 0.2, but because the forecasts are imperfectly
calibrated they actually do better using 30%. (For further details see Mylne, 2002.)

In practice, real-world decision-making is usually much more complex, and more
sophisticated decision tools are required, but methods such as this point the way to
how forecast providers can work with their customers to maximise the benefit from
forecasts where predictability is low. With increasing automation of forecast prod-
ucts, providers like the Met Office are increasingly working with customers to help
them optimise decision-making, rather than simply providing a best-guess weather
forecast. The use of probability products is a key part of this optimisation. After
several years of introducing the ideas to customers we are now making significant
progress in several sectors, notably severe weather warnings, the offshore oil industry
(where potential losses are often massive) and weather derivatives traders who are
very used to managing risk and basing decisions on small probabilities. Nevertheless,
there are still very few customers who are prepared to take action on the basis of a
probability as low as 10%, and much more work is required before society can take
full advantage of the potential benefits of ensemble forecasts.

23.7 Conclusions

Predictability is an issue for forecasters and customers on all time-scales, and ensem-
bles are now well-established tools to aid assessment of predictability at long and
medium ranges. Ensembles are used to improve the quality of deterministic forecasts
by identifying the most probable solutions, and to supplement them with confidence,
information and alternative solutions. Forecasters are also provided with probabilistic
guidance to help with risk assessment of severe weather. Many tools are now avail-
able to provide high-quality automatic probability forecasts to customers, who are
starting to see the benefits in some sectors. Research is progressing to predictability
issues in short-range forecasting.
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Ensemble forecasts: can they provide useful
early warnings?

François Lalaurette
Ecole Nationale de la Météorologie, Toulouse

Gerald van der Grijn
European Centre for Medium-Range Weather Forecasts, Reading

24.1 Medium-range forecasts

The design of ensemble methods for medium-range weather forecasting ten years
ago was aiming mainly at addressing the problem of limited predictability of supra-
synoptic weather regimes within the 6–10 days range. From this point of view, it has
been shown since then that the ensembles have delivered improved forecasts com-
pared with a purely deterministic approach, both improving single-value estimates
by removing stochastic errors (ensemble mean) and providing reliable and still sharp
estimates of the probability distributions of large scale flow patterns such as blocking
(Chessa and Lalaurette, 2001; Pelly and Hoskins, 2003).

Severe weather forecasts seem, however, to be clearly beyond reach of such
medium-range, global and therefore relatively coarse grid models. Indeed the expe-
rience in trying to use medium-range forecasting systems to be alerted of the risk
of severe weather more than one day in advance is very limited. On most occa-
sions, civil security services are alerted not earlier than the day before the event,
while public warnings are only issued on the same day – tropical cyclones being a
notable exception to this common rule. The reasons usually given by forecasters as
to why they do not use numerical forecasts in the early medium range are mainly
twofold:

1. The global numerical models are generating nothing looking remotely like
severe weather.

Predictability of Weather and Climate, ed. Tim Palmer and Renate Hagedorn. Published by Cambridge University Press.
C© Cambridge University Press 2006.
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2. If one takes signatures from the global models that are associated with severe
weather, there is no consistency in the forecast from one day to the next: the
rate of false alarms would be far too high to be considered.

The current status of development of global models used for medium-range fore-
casting is such that the first item can be debated. ECMWF has been running in spectral
space with truncation T511 (roughly 40 km) and 60 vertical levels since 2000 and
is expected to go for T799 (25 km) and 91 levels by 2005/6, a resolution that was
considered not so long ago to be suitable for mesoscale modelling. Running a global
model also has many advantages compared with a limited area approach, as it is eas-
ier to keep the forecasts under control of a global observing system without having
to take care of the propagation of information through lateral boundary conditions.

The following sections will aim at providing evidence that global numerical
weather prediction (NWP) models nowadays generate weather patterns that can be
associated with severe weather. It will then be shown that there is some predictive
signal to be detected up to between three to five days ahead using the improved signal
detection capability offered by running an ensemble of forecasts. Indeed, although
there is certainly a degree of chaotic behaviour in the generation of extreme weather,
some signal can be extracted out of this chaos by using these dynamical Monte Carlo
techniques that could prove useful for some actions to be based on early warnings.

24.2 Severe weather in medium-range forecast models

Rainfall is one of the weather events that is likely, when coming in large amounts, to
cause severe disruptions and loss of human life due to the floods that it can generate on
different timescales. Because it is so important in the hydrological cycle to ensure a
correct energy balance in global models, considerable efforts have been spent in recent
years to try to improve their representation, with the result that they now compare
much better to real observations. As an example of such a trend, the distribution
of rain events in the model is compared for two different years with observations
in Figure 24.1. As expected, events with daily rainfall in excess of 60 mm/day are
poorly represented by the model. For such events a more accurate representation
of small-scale processes would be needed, when small-scale convection and local
orographic enhancement effects are of paramount importance in order to capture the
essence of the most extreme scenarios. The trend over recent years though has clearly
been towards an improvement, with a larger proportion of forecasts generating events
in excess of 50 mm/day, bringing them closer to observations. At the other end of the
spectrum, smaller amounts are generally generated in excessively large proportions.
This is partly due to a resolution effect – such small amounts are usually resulting
from an average over the model grid of more intense but localised events. Using more
than single observations to validate the model precipitation fluxes usually validates
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Figure 24.1 Cumulative distributions of rainy events in the model (thick lines,
1999–2000 dashed and 2002–3 full) and observations (thin lines, 1999–2000 dashed,
2002–3 dotted).

this interpretation by showing a much better agreement between model rainfall and
observation aggregated within the model grid (Cherubini et al., 2002).

The ability for the model to generate severe storms has improved in recent years,
although the direct comparison from model wind speed over land with observations
shows a relatively large, negative bias. Among the reasons why this occurs is that
modellers are more concerned when designing boundary layer representations to
have a good momentum budget than to optimise on-site validation of local effects.
However, a step towards the post-processing of maximum wind-gust values based
both on explicit model winds and the subgrid-scale representation of turbulent fluxes
was taken in 2000 at ECMWF, resulting in a better adequacy between model and
observations. An example of signatures now to be found for a typical, small-scale
storm over western Europe is given in Figure 24.2, where a good agreement between
the short-range forecast and observations can be seen.

To identify the ability for models to generate severe weather signatures is only
one side of the story of course, which tells nothing of the rate of success and failure
with which the model then generates three or four days in advance. Severe weather
events are usually not seen by the models as the most likely scenarios at these
ranges, but forecasters have expressed an interest in using even small probabilities of
severe weather occurrence as a useful early warning that will help them focus their
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monitoring of the situation when the severe weather eventually comes closer. The
definition of thresholds on which to base such probabilities is, however, difficult,
as it is very dependent on the local climate. In fact, it could be argued that in any
populated area indigenous populations have remarkably well adapted their activities
to the local climate: what is considered a severe cold outbreak in Montreal or Cairo is
not likely to be the same type of event, and the same could probably be said for severe
storms in Reykjavik and Berlin. In order to generate maps where all locations are a
priori equally likely to be hit by an unusual event, it has been proposed (Lalaurette,
2003) to map the severity of events with respect to the local climate distribution. In
this way, and provided that we use the model to picture the local climate, orographic
or land–sea map effects should be handled consistently in the climate and the model
forecast, making the measure of departures more meaningful.

24.3 An extreme forecast index

Although the models currently generate severe weather systems consistently through-
out the medium range, their forecast skill quickly declines over the first few days. In
the case of the Halloween storm shown in Figure 24.2, this resulted in both an error
in the location and the intensity of the storm (Figure 24.3) – although the model cor-
rectly predicted the large-scale rapid, perturbed flow that was to affect the area. Such
errors in the smaller scales are to be expected for unstable systems where small errors
in the analysis quickly amplify. It is therefore of interest to see whether the Ensemble
Prediction System (EPS) is able to tackle these uncertainties in a probabilistic way.

The distribution of ensemble wind forecasts valid for the same time near Dover is
also reported in Figure 24.3(b). Although far from the 25 m/s sustained wind speed
that was observed, some of the members did indicate that the situation was deviating
from ‘normal’. This is easier to see when the climate distribution based on EPS
forecasts valid for this time of the year and this location are also reported, as is the
case here. For example, although a value of 15 m/s that is exceeded by 33 members
out of 50 here would not be considered as a severe weather event in Dover, it is to be
found only in slightly more than 1% of the EPS records at this time of the year and
this location.

The inspection of such local, empirical EPS distributions of parameters such as
wind, temperature or rainfall is, however, not something that could easily become
part of the routine work of any forecaster: the amount of information that would be
needed before an assessment of the situation can be made would be far too large to
be achievable in time for the forecast to be of any use. As has been the case each time
a practical use of ensemble forecasts has been considered, some aggregation of the
available information has to be made. Early attempts have mostly aimed at clustering
large-scale scenarios on the basis of their similarity over subcontinental areas. Such
an approach, although helpful to describe the large-scale evolution of the weather, is
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unlikely to provide a useful information for severe events, as scenarios that can look
similar on the large scale can generate very different kinds of local events. It is rather
proposed here to scale the EPS distributions with respect to the climate.

To each proportion p of the climate records is attached a quantile qc(p) (Wilks,
1995). How much a given EPS forecast deviates from the climate therefore can be
measured by p − Ff (p) where Ff (p) is the proportion of EPS members that lies
below qc(p). These differences are then integrated in probability space to provide the
Extreme Forecast Index (EFI; Lalaurette, 2003):

EFIn = (n + 1)

1∫
0

(p − Ff (p))ndp (24.1)

The result from such a procedure is that differences between any climate and forecast
probability distributions functions (pdf) are scaled between −1 and +1 (−1 if the
pdf in the forecast is entirely shifted below the minimum climate record, +1 if it is
entirely shifted beyond the maximum). If the pdf from the forecast is the same as
that for the climate, then EFI = 0. n is an odd number that controls how selective the
index is to large values. An alternative formulation offering better selection near the
tails of the distribution has arbitrarily been given the order n = 0:

EFI0 = 2

π

1∫
0

p − Ff (p)√
p(1 − p)

dp (24.2)

An example generated from 90 h forecast EPS distributions based from 26 October
12 UTC is shown in Figure 24.4. It shows that although the deterministic forecast
was misplacing the event, enough EPS members did have it at the right location for
the EFI to reach high values where the event happened (Figure 24.3b). Indeed the
EFI3 value at Dover reached +75%, clearly indicating a well above normal level of
risk for gale force winds four days in advance.

Geographical maps of the type shown in Figure 24.3(b) are available for ECMWF
Member States on www.ecmwf.int. Several case studies have been looked at, and
forecasters have expressed a keen interest for this type of product. It is not intended
of course as an automated warning system – rather a ‘warning light’ that ensures
a potentially dangerous event does not go unnoticed by the forecaster. From this
point, more detailed investigations of the full probability distributions, either locally
or by isolating ‘worse case’ synoptic scenarios should help in detecting dynamical
signatures from future observations and making well-informed decisions such as
issuing public warnings.

Another useful application of the EFI is to explore the predictability of severe
weather in the early medium range. Case studies are indeed well known to be biased
estimators of severe weather forecast performance: there is always some kind of signal
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Figure 24.4 Extreme Forecast Index map for the ‘Halloween’ storm.

that the forecaster should in retrospect have been aware of. By contrast, conducting
a verification study using forecasters’ expertise in real time or delayed mode is both
costly in terms of human resources and biased in its own way by the forecaster’s
perspective. Day 3 to day 5 forecasts are moreover hardly ever looked at in the
context of severe weather. Strategies to explore the potential benefit of using such
forecasts should be explored first before any serious consideration is given as to
whether or not the range of warnings can be extended for some users.

As a first step in this direction, 6–30 h model forecasts have been used as a proxy for
daily precipitation analyses – a reasonable choice in the absence of a comprehensive
verification network (Rubel and Rudolf, 2001). The events targeted were those with
daily rainfall exceeding 95% of the model climate records, and the verification period
was December 2001 to April 2002. Results in terms of hit rates and false alarm rates
are shown for Europe in Figure 24.5 for different values of the EFI, both for the
EPS and the control, the single-value forecast. Results in terms of the ROC curves
look rather positive, with a large portion of the curve lying well above the zero-skill
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Figure 24.5 Verification of EPS forecasts that daily rainfall exceeds 95% of the
model climate records (Q95). Left: ROC curves. Right: Same, but false alarms are
scaled with respect to total number of forecast occurrence; each point corresponds to
a different EFI threshold (triangles are 50%, 30% and 0%, while the circles are for
the Control forecasting exactly the Q95 value)

diagonal. The longer the forecast range, the larger becomes the benefit from using
an ensemble – indeed at the 6–30 h range, the verification used here is biased in
such a way that the control forecast would be perfect, while the ensemble would still
generate some false alarms and miss some events.

Although these results indicate without doubt that there is a skill in the early
medium range to forecast moderately severe weather events, it should be realised
that to achieve large hit rates, a significant number of false alarms will be generated
as well. This fact is in a way hindered by the rarity of the event on the ROC curves. If
instead of a false alarm rate per number of non-occurring events, the curves are shown
with respect to the number of warnings issued, it can be seen on Figure 24.5 that to
achieve a hit rate of 50%, 60 to 80% of the ‘warnings’ would be wrong. Whether
or not this is an acceptable result is certainly user dependent. It stresses in any case
that using early warnings for severe weather has to be carefully balanced. There is
certainly more than pure randomness in the skill achieved, as a ‘no-skill’ rate of false
alarms per warning issued should be 95% when one forecasts an event occurring only
in 5% of the cases. The rate of hits/false alarms generated by using such an early
warning system would clearly be very far from what can be obtained by waiting until
a few hours before the event. But because there are protection measures that cannot
wait until the last minute to be taken – for example, releasing water from reservoirs
in the case of floods, evacuating of populations for tropical cyclones, interrupting air
and rail traffic for a major storm event – there may be some value attached to such
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early warning procedures. This would mostly be the case if such warnings were used
for early planning purposes such as putting extra staff in pre-alert mode or moving
rescue facilities closer to the areas expected to be affected by severe weather.

24.4 Tracking tropical cyclones in the EPS

Earlier studies (Barkmeijer et al., 2001; Puri et al., 2001) have shown that tropical
cyclone (TC) forecasts could benefit from ensemble techniques, provided that sin-
gular vector (SV) perturbations include some representation of diabatic processes
and target areas for error growth are defined in the vicinity of TC locations rather
than using the entire tropical region. In order to validate and disseminate TC forecast
products, a tracker has been developed in line with developments in other centres
(van der Grijn, 2002). No TC genesis is handled at present – only those TCs that have
been reported by the WMO regional centres (RSMCs) with responsibility for TC are
tracked. The algorithm currently uses model data on a 0.5◦ by 0.5◦ latitude-longitude
grid. Starting from the analysis, TCs are tracked for 120 h every 12 h (EPS) and 6 h
(T511) using an algorithm adapted from Sinclair (1994).

The skill of the deterministic TC forecasts has been assessed for April 2002 to June
2004. The results are shown in Figure 24.6. Scores are given for the high resolution
T511 model (OPER) and lower resolution EPS control model (CTRL). The sample
size decreases rapidly with increasing forecast step due to all TCs not surviving for
the 5-day period considered in the verification, which is partly an observed feature
(some TCs die during this period) and partly a model failure to maintain the TC
activity. The forecast error in core pressure is always positive: TCs in the analysis
and forecasts are on average weaker than observed. This is especially the case for the
CTRL. However, this positive bias in core pressure seems to decrease, or at least to
saturate, later in the forecast. Apparently the model is more capable of developing
TCs with a realistic core pressure in the forecast than analysing them in the initial
conditions, a feature that may be related to the limited resolution of both structure
(background) functions and incremental 4D-Var (T159 inner loops).

Of particular importance for practical applications is the distance error in tracking
TCs. It is on average 100 km in the analysis and increases almost linearly to around
500 km at D + 5. Model resolution does not seem to have much impact on this error.
Both resolution forecasts have a slow bias and a tendency to recurve too quickly.

24.5 ‘Strike probability’ and probabilistic verification
of TC forecasts

Conventional probability maps are useful in assessing the likelihood of a certain
event at a specific location. However, a drawback of such a probability map is that
probability values do not always ‘add up’. In theory, probability values can be very
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Figure 24.7 Tracking Tropical Cyclone Isabel in the EPS: probability to get closer
than 120 km from the TC centre within 5 days from forecast start date. The observed
location of Isabel landfall is also reported.

low even when all EPS members support a specific event (e.g. 10 m wind speed
exceeding 25 m/s). This is the case when the EPS members predict the event at
different locations for a given time step. To enhance the signal for severe weather
one must think of a different type of probability: a forecaster is often more interested
in whether a TC will affect a certain area than when that TC will hit a specific location;
the exact location of the TC is of less importance – within a certain margin, the TC
is likely to be equally (or even more) devastating if its centre does not exactly follow
the forecasted track, or passes along it with a slight time delay.

The concept of ‘strike probability’ originates from this idea. The strike probability
is defined as the probability that a TC will pass within 120 km from a given location
at any time during the next 120 hours. The strike probability is based on the relative
number of members that predict this event, each member having an equal weight.

One of the features of a strike probability map as presented in Figure 24.7 is the
elimination of the time dimension and therefore its advantage is its simplicity. It
allows the forecaster to make a quick assessment of the high-risk areas regardless
of the exact timing of the event. Another feature of a strike probability map is that
it gives the forecaster an estimate of the skill that can be expected from the CTRL.
This is because on average the CTRL track error should be equal to the ensemble
track spread. In other words, the width of the probability plume is a direct measure
of the spread in the EPS and would ideally be a good indicator of the expected
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Figure 24.8 Reliability diagram (left) and ROC (right) for the forecast probability
that a TC will pass within 120 km any time during the first 120 hours of the forecast.
Grey lines: cycle 23r4 (no TC targeting), black lines: cycle 24r3 (with TC targeting).
From van der Grijn (2002).

error in the CTRL. In the case shown in Figure 24.6 though, rather than the spread
of the EPS tracks it is their bimodal mode that is more remarkable – although the
T511 recurved the hurricane track too much, the EPS gave an early indication of
an alternative location for landfall that might have been a useful indication for a
forecaster planning early warnings.

The strike probability can be used to assess the skill of the EPS with respect to TC
forecasting. Figure 24.8 illustrates this both in terms of reliability and signal detection
(ROC). A clear improvement in reliability can be seen from the pre-operational testing
of the model change (cy24r3) that was to introduce new TC targeting in January 2002.
However, the system is overconfident in the high probability range. A 95% probability
forecast only verifies in 60% of the cases. This might be an indication that the spread
is still too low in the early forecast steps. Relative operating characteristics (ROC)
curves also show the positive impact of targeting on the detection of TC.

24.6 Summary and perspectives

Preliminary work aiming at designing new products that could be used for early
warnings of severe weather conditions has been described in this chapter. Although
a probabilistic approach is likely to be desirable in order to be able to extract the
signal from the numerical forecasts in a way that can be tailored to the user’s needs,
the quality of the product ultimately relies on the quality of the numerical model
itself – from this viewpoint, the forecast quality has improved quite significantly
in recent years, and this is what makes it possible to think of extending the range
of warnings for severe weather into the early medium range. Development of the
EPS system is also of paramount importance if one expects to sample properly the



24 Ensemble forecasts and early warnings 627

tails of the forecast distributions – those that matter in the early medium range when
severe weather is only a possible, but low probability, scenario. Some results showing
the impact of improving the sampling of tropical cyclone perturbations have been
illustrated here in Figure 24.8.

Signal detection of severe weather events in the early medium range is likely to be
difficult. Although one can find some comfort in the fact that the preliminary results
shown here for tropical cyclones and large precipitation events indicate high rates
of successful forecasts, it cannot be disputed that these are achieved provided that
preliminary action is taken on the basis of very small probabilities – thus generating
very high false alarm rates. The skill achieved by the EPS system in this context
is, however, not negligible: it has been shown that the false alarms are reduced
significantly compared with a random forecast system, and even compared with a
single-value (EPS control) system (Figure 24.5). Further, careful evaluations of the
impact of such products on early decision-making in pre-operational environments
should convince some users of the benefit of such products.
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25

Predictability and economic value

David S. Richardson
European Centre for Medium-Range Weather Forecasts, Reading

25.1 Introduction

To many people, probability forecasts are still much less familiar than traditional
deterministic forecasts. Two issues are often raised as practical problems for the use
of probabilities. First, there is a common perception that probability forecasts have
no place in the real world, where users need to make hard yes/no decisions. Secondly
there is the feeling that probability forecasts are difficult to assess – ‘probability
forecasts are never wrong’, the scores are complicated, and different scores tend
to show different ‘skill’. As an illustration of this last point, Figure 25.1 shows
two examples of the evaluation of probabilistic skill for the ECMWF Ensemble
Prediction System (EPS; Buizza, this volume; Palmer et al., 1993; Molteni et al.,
1996; Buizza et al., 2003). The ROC skill score (based on the area under the relative
operating characteristic (ROC) curve; Richardson, 2000, 2003) shows substantial
skill, remaining above 40% throughout the 10-day forecast range. However, the
Brier skill score (BSS; Wilks, 1995) decreases quickly so that there is no skill at all
beyond day 8. Clearly, the two skill measures present contrasting perceptions of the
performance of the EPS. This raises the obvious question of whether the forecasts
are skilful or not and, perhaps more importantly, are the forecasts useful or not? It
should be noted that these questions are not restricted to probability forecasts but
are equally relevant to the more traditional deterministic forecasts. It is perhaps just
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Figure 25.1 Skill of ECMWF EPS probability forecasts of 500 hPa height anomalies
more than 2 standard deviations above normal over the extratropical northern
hemisphere for spring 2002. (a) ROC area skill score (ROCSS) and (b) Brier (BSS)
skill score.

unfamiliarity with using probability forecasts and with the scores used to evaluate
them that makes the issues more apparent.

To understand how probability forecasts can be used, whether they give benefits to
the user and how this relates to the various skill measures, it is necessary to consider
the decision-making process of individual users. In general this is a complex process,
specific to each user, which may not easily be modelled (e.g. Smith, this volume,
and references therein). Nevertheless, it is useful to study a simple decision-making
model in order to illustrate some of the important concepts. This provides an initial
user perspective on the use and evaluation of probability (and deterministic) forecasts.

First the simple cost–loss decision model is introduced. This provides a useful
introduction and framework for understanding the concept of forecast value and how
probability forecasts can be used in making yes/no decisions. The model is used to
explore how the benefit of forecast information can vary between users, the value of
probability forecasts compared with deterministic forecasts, and also the difference
between Brier and ROC skill scores. Despite the benefits of the cost–loss model, there
are a number of obvious limitations. Two apparent deficiencies of the model are that
it assumes that the consequences of the user’s actions can be expressed numerically
(for example as financial costs and losses) and that the users are assumed to be
risk-neutral (they are only concerned with long-term average expense). In the final
section, the concept of ‘utility’ is introduced to generalise the decision model and
show that the results from the earlier sections can have wider application.

25.2 The cost–loss decision model

The simple cost–loss decision model has a history dating back to the early twentieth
century (Ångström, 1922; Liljas and Murphy, 1994). For a recent comprehensive
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Table 25.1 Costs and losses associated with different
actions and outcomes in the cost-loss model

Event occurs

Yes No
Action taken Yes C C

No L 0

introduction see Richardson (2003). Consider a user, or decision-maker, who is sen-
sitive to a specific adverse weather event X. Palmer (this volume) introduced the case
of the builder Charlie whose concrete-laying work is disrupted by the occurrence of
frost. For other users, X might be the occurrence of ice on the road, or more than a
certain amount of precipitation in a given period. If this event occurs and the user has
not taken any preventative action then they suffer a financial loss L. Alternatively,
the user could take action at a cost C that would protect against this potential loss.
The costs and losses of the various combinations of action and outcome are shown
in Table 25.1. The aim of the user is to minimise their overall expense by deciding
on each occasion whether to protect or not.

Over a large number of cases, let ō be the fraction of occasions when X occurs.
If the user always protects then the cost will be C on every occasion and the average
expense (per case) will be

EA = C (25.1)

Alternatively, if the user never takes action, the loss L will only be incurred when X
happens, so the average expense will be

EN = oL . (25.2)

Assuming the user knows o but has no additional forecast information, then the
optimal strategy is either always or never protect, depending on which gives the
lower overall expense. This gives a baseline against which improvements from using
forecast information can be judged, which we will call the climatological expense,
EC, where

EC = min(C, oL). (25.3)

Another useful reference point is provided by the expense associated with perfect
forecast information: the user would only protect if X was going to occur and the
average expense would be

EP = oC. (25.4)
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Table 25.2 Contingency table for deterministic forecast of
specified event over a set of cases, showing fraction of
occasions for each combination of forecast and outcome

Event occurs

Yes No
Event forecast Yes a b

No c d
o 1 − o

A deterministic forecasting system gives a simple yes/no prediction for X to occur.
The performance of the forecast system over a large set of cases can be summarised in
a contingency table as shown in Table 25.2. Note that a, b, c and d are the fraction of
occasions on which the various combinations of forecast and observation occurred,
so they sum to 1. The average expense of using the deterministic forecast is obtained
by multiplying the corresponding cells of Tables 25.1 and 25.2:

EF = aC + bC + cL (25.5)

The difference in expense between EF and EC is a measure of the saving the user can
make by using the forecast, compared with having only climatological information.
We can define the relative value of the forecasts by comparing this saving with the
maximum possible saving that could be made from perfect deterministic forecasts

V = EC − EF

EC − EP
. (25.6)

From now on we will refer to V simply as the ‘value’ of the forecasts.
In Table 25.2, the entries a, b, c, and d together describe the quality of the forecasts.

Various measures of quality can be defined using these terms. Two such measures
are the hit rate H = a/(a + c) and the false alarm rate F = b/(b + d). It is often
convenient to write the expression for V in terms of H and F. Using the various
expressions for the different expenses, this gives

V = min(α, o) − F(1 − o)α + Ho(1 − α) − o

min(α, o) − oα
(25.7)

where α ≡ C/L is known as the cost–loss ratio of the user. A number of points should
be noted from this expression for V. Value depends on two independent measures
of forecast quality (H and F here, but you could choose other measures). This is
key to differences noted previously (Figure 25.1) between different skill scores – a
single score is not enough to give information relevant to a range of different users.
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Figure 25.2 Value V of ECMWF deterministic control forecasts of more than 1 mm
precipitation in 24 hours at day 5 over northern hemisphere extratropics for winter
2001–2.

Value also depends on the event through the climatological frequency o, and on the
individual user through the cost–loss ratio.

For a given weather event and forecast system, o, H and F are fixed and V is then
only a function of C/L. Figure 25.2 shows the variation of V with C/L for precipitation
forecasts from the deterministic control forecast of the ECMWF EPS. It is clear from
Figure 25.2 that forecast value varies considerably between users with different cost–
loss ratios. While users with C/L∼0.3 may receive up to 40% of the value they would
obtain from perfect deterministic forecasts, others (C/L above 0.6 or below 0.2) will
get no benefit from these forecasts.

The shape of the value curve is typical. It is straightforward to show that maximum
value is obtained for users with C/L = o and that the maximum value is given by

Vmax = H − F ≡ P (25.8)

where P is the Peirce skill score (also known as the Kuipers score or true skill
statistic; Mason, 2003; see Richardson, 2000, for the derivation of this equivalence).
This provides a first link between skill and value. P can be interpreted as a measure
of potential forecast value as well as being a skill score. But P only indicates the
maximum possible value and does not show how the forecasts will benefit users
with C/L different from o . It can also be shown that the range of C/L for which
the forecasts give positive value is related to a different skill measure, the Clayton
skill score (Wandishin and Brooks, 2002). This is just one example illustrating that
different skill measures can be related to different aspects of forecast value. It may
therefore be important when evaluating forecast performance to bear in mind the
purpose of the evaluation and to use a range of performance measures.
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Figure 25.3 Value of the ECMWF probability forecast for more than 1 mm preci-
pitation in 24 hours at day 5 over the northern hemisphere extratropics for winter
2001–2. The curves show the variation of V with C/L for probability thresholds
pt = 0.2 (solid), 0.5 (dashed) and 0.8 (dotted).

25.3 Probability forecasts

The use of deterministic forecasts in the cost–loss decision framework is straightfor-
ward: take action whenever the event is forecast; otherwise do nothing. In contrast,
probability forecasts may at first sight appear inappropriate when a firm yes/no deci-
sion needs to be made. The cost–loss model gives a simple illustration of the way
that probability forecasts can be used in such situations, and the benefits that may be
obtained.

Given forecast information as a probability, the user is faced with the decision
of whether the probability of adverse weather is high enough for protective action
to be needed. The user needs to set a probability threshold pt and take action if the
forecast probability exceeds that threshold. This choice of pt effectively converts
the probability forecast to a deterministic one: forecasts with probability higher than
pt become ‘yes’ forecasts while the remainder become ‘no’ forecasts. The resulting
deterministic forecast can be evaluated as in the previous section to obtain H (pt),
F(pt) and V (pt). Different choices of pt will result in different values for H, F
and V.

Figure 25.3 shows V(C/L) for three choices of pt for EPS probability forecast
corresponding to the control forecast of Figure 25.2. Different users will benefit
more from different choices of pt. In general users with lower C/L will benefit more
from acting at lower probability thresholds while those with high C/L will gain more
from acting only when there is greater certainty about the event. For example a user
with C/L = 0.2 will have a relatively high potential loss and will benefit substantially
by taking action at pt = 0.2. Users with much higher relative costs would lose out
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Figure 25.4 Value of the ECMWF deterministic control forecast (solid) and EPS
probability forecast (dash-dotted) for more than 1 mm precipitation in 24 hours at
day 5 over the northern hemisphere extratropics for winter 2001–2. The probabi-
lity forecast curve shows the optimal value, obtained when each user chooses the
most appropriate pt.

by taking action when the chance of the event is so low, but they would benefit from
using a higher threshold probability.

It is, then, important that probability forecasts are used with care. An inappropriate
or arbitrary choice of pt may substantially reduce the benefit of the forecasts to a user.
Moreover, it is not possible to choose a suitable pt without knowing the cost–loss
ratio of the user. It is straightforward to show that for reliable probability forecasts
(Wilks, 1995; Toth et al., this volume) the optimal choice is pt = C/L (Richardson,
2000). In other words, each user should take action when the probability of the event
exceeds their own cost–loss ratio. Consider just those occasions when the probability
of the event is a specific value q. Then taking action incurs the constant cost C. The
alternative is not to act and accept the consequences: if the event occurs the loss is
L, while if it does not occur there is no expense. The average expense of not acting
is then Lq. So to minimise the average expense the user should act if C/L < q, but
accept the risk otherwise. In this way, pt = C/L can be seen to be the appropriate
choice for threshold probability. If the probability is higher than pt the user should
act; if not it is better to risk the loss.

Probability forecasts that are not completely reliable can generally be corrected
for these biases by calibrating, or relabelling, the forecast probabilities (Zhu et al.,
1996, 2002). In this way the users can treat the forecast probabilities at face value and
gain maximum benefit. In general, users should be presented with reliable, calibrated
forecasts. Each user should then take action when the probability of the event exceeds
their own cost–loss ratio.

The optimal value that would be obtained when each user chooses the most appro-
priate pt is shown in Figure 25.4, together with the corresponding curve for the
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deterministic control forecast. All users will gain more from using the probabilities
than from the control forecast, and by allowing different users to take action at dif-
ferent probability thresholds the ensemble probabilities benefit a much wider range
of users. This benefit should also be compared with the limited benefits provided by
any single choice of pt (Figure 25.3).

25.4 Skill and value

We have already noted the relationship between value and certain skill measures for
deterministic forecasts. In this section we explore the link between skill and value for
probability forecasts. This will for instance help us understand the striking difference,
shown in Figure 25.1, between the perception of EPS skill that would be obtained
when using the Brier skill score (BSS) or the ROC area skill score (ROCSS).

The skill scores are single overall summary measures of forecast performance.
Yet we have seen that forecast value varies greatly between users depending on their
particular costs and losses. There is no simple relationship between either of the skill
scores and the value to individual users. However, we can imagine that it could be
useful to have some summary measure of value that reflects the overall benefit to the
range of users of the forecast data. For example, if we knew the appropriate C and L
for each user we could work out the total saving that the group of users would make
from the forecasts. In general little is known about the circumstances of individual
users and of course the cost–loss model will not be appropriate in many cases. It turns
out that the Brier skill score is equal to the overall value that would be obtained for a
set of users distributed uniformly through the range of possible C/L (see Richardson,
2001 for details).

Figure 25.5 shows EPS value for a heavy precipitation event. This is a rather rare
event (o = 0.02) and the value is concentrated around low C/L users. The Brier skill
score, being a measure of the overall value for all possible users, is low: BSS = 0.06.
However, ROCSS = 0.65, similar to the maximum value of around 0.6. In fact,
ROCSS is closely linked to maximum value. For deterministic forecasts, the rela-
tionship is exact (ROCSS = Vmax). For probability forecasts ROCSS is always greater
than Vmax (see Richardson 1999, 2000, for more discussion on this relationship).

Which skill measure is more appropriate depends on the distribution of users.
Although little is known about real-world costs and losses, general economic con-
siderations tend to suggest that lower values of C/L are more likely than higher
values (Roebber and Bosart, 1996). The few studies that have applied the simple
cost–loss model to financial decisions seem to support this. Examples include C/L
of 0.03 for raisin drying (Kolb and Rapp, 1962), 0.02–0.05 for orchardists (Murphy,
1977), 0.01–0.12 for fuel loading of aircraft (Leigh, 1995; Keith 2003), 0.125 for
winter road gritting (Thornes and Stephenson, 2001). With this in mind, the BSS and
ROCSS can be seen as indicating lower and upper bounds respectively for the value
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Figure 25.5 Value of the ECMWF EPS probability forecast for more than 20 mm
precipitation in 24 hours at day 5 over the northern hemisphere extratropics for
winter 2001–2. The probability forecast curve shows the optimal value, obtained
when each user chooses the most appropriate pt. (a) Plotted on regular axis for C/L.
(b) Logarithmic axis for C/L.

of the forecasts. The important factor to remember is that value is very much user
dependent. Any summary measure condenses information and will not reflect the
benefits to be gained by individual users. Unless details of the decision making and
associated costs of specific users or groups of users are known, caution is needed in
interpreting summary skill measures. In general, a range of measures, including for
example both BSS and ROCSS, should be used.

25.5 Effect of resolution and ensemble size

Just as different users will benefit differently from the EPS, so the benefits of changes
to the EPS configuration will also be different. Figure 25.6 shows an example of the
potential improvement for different users from the introduction of a higher-resolution
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Figure 25.6 Improvement in value for high-resolution EPS compared with previous
system for moderate 850 temperature anomalies over 57 winter cases. The benefit of
the new system is shown using a Relative Improvement index (RI, where RI = 100%
is equivalent to a 1-day gain in skill) for selected cost/loss ratios: C/L = 0.02
(white), C/L = 0.05 (light grey), C/L = 0.10 (dark grey) and C/L = 0.25 (black).

system for the ECMWF EPS (Buizza et al., 2003; Buizza, this volume). This is
shown as a percentage relative improvement in value RI(V), defined so that RI = 0
indicates no change compared to the previous system and RI = 100% indicates an
improvement equivalent to a one-day gain in skill (Buizza et al., 2003). In this
example, while all users benefit substantially the gains are substantially higher for
users with low C/L.

The potential benefits of additional ensemble members will also be different in
different circumstances. Figure 25.7 shows the effect of ensemble size on the value of
an otherwise perfectly specified (completely reliable) ensemble system (Richardson,
2001). Figure 25.7(a) shows the value of 10-member (dashed line) and 50-member
(solid line) ensembles for a common event (climatological frequency 0.5); the dash-
dotted curve shows the maximum potential value that would be achieved with larger
ensemble size (the large-ensemble limit). Increasing ensemble size from 10 to 50
members benefits all users. There is less to be gained from further increases in
ensemble size. Figure 25.7(b) shows corresponding curves for a less common event
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Figure 25.7 Variation of value with ensemble size. Curves show V as a function of
C/L for 10-member (dashed) and 50-member (solid) ensembles compared with the
potential value for the underlying distribution (large-ensemble limit; dash-dotted) for
an idealised perfectly reliable probability forecast system. The two panels correspond
to a common event (a; o = 0.5) and a rarer event (b; o = 0.05); the underlying
predictability, given by the Brier skill score for the underlying probability
distribution, is the same in both cases.

(climate frequency 0.05; note the logarithmic x-axis). Here the benefit of increas-
ing ensemble size depends considerably on the cost–loss ratio of the users. While
increasing from 10 to 50 members gives general benefit, the main gains for further
increases in size are for low C/L. The Brier skill scores for the ensembles in both
cases is the same (1/7). Less predictable events (lower Brier skill score) will show
more sensitivity to ensemble size; for more predictable events, the importance of
ensemble size is less. Further details are given in Richardson (2001).

As noted in the previous section, the Brier skill score is equal to the overall value
for a set of users whose cost–loss ratios C/L are distributed uniformly throughout
(0,1) (Murphy, 1966; Richardson, 2001). Figure 25.7 shows that for much of this
interval the benefit of more than around 50 members will be slight. Both theoreti-
cal (Richardson, 2001) and empirical (Talagrand et al., 1997) studies confirm that
increasing ensemble size to around 50 members can improve Brier skill scores espe-
cially for relatively low predictability events, but that further increases in size have
little impact on this skill measure.

However, Figure 25.7 also shows that larger ensembles may give significant gains
for users with low cost–loss ratios. The overall value for groups of users whose
C/L distribution is not uniform can be calculated using a generalised skill score,
G (Richardson, 2001). The effect of ensemble size on G is shown in Figure 25.8
(from Richardson, 2001) for four distributions of users, weighted toward low C/L
for a rare event (climatological frequency o = 0.01). Each curve shows how skill
changes as the ensemble size is increased; the different curves represent different
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Table 25.3 Costs and losses associated with different
actions and outcomes in the general cost–loss model

Event occurs

Yes No
Action taken Yes C11 C12

No C21 C22

levels of predictability of the underlying distribution – lower curves correspond to
lower intrinsic predictability. The behaviour is not always straightforward. In Figures
25.8(a) and 25.8(b), overall skill initially decreases with increasing ensemble size
(see Richardson, 2001). Although not seen in these figures, it is even possible that the
curves may cross, indicating that an intrinsically more predictable system may have
lower value to some users (Murphy and Ehrendorfer, 1987). Figure 25.8(d) shows
(as in Figure 25.7b) that for some sets of users the sensitivity to ensemble size is
much greater than is apparent from the Brier skill score, with potential benefits for
ensembles of several hundred members. Which measure is most appropriate depends
of course on the users of the product, but the properties of the scores being used must
always be borne in mind.

25.6 Utility

We have used the cost–loss model as a simple example to illustrate the decision-
making process of a user. In this model we assumed that the consequences of the
actions can be expressed directly as financial costs and losses, that the cost C gives
complete protection against the loss L, and that the user is only concerned with
minimising the long-term average expense. In this section we show that the results
presented so far are also valid in the more general situation where each of these
assumptions is relaxed.

First, consider the general case where each combination of action and outcome
results in a different expense (Table 25.3). For a fixed forecast probability q, the mean
expense of taking action is

EA = C11q + C12(1 − q) (25.9)

and the mean expense of not acting is

EN = C21q + C22(1 − q). (25.10)

As before, these expressions can be used to find the probability threshold pt above
which the user should take action:

pt = C12 − C22

C21 − C22 + C12 − C11
= β. (25.11)
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β is a generalised version of the simple cost–loss ratio α = C/L. Each term in the
above expression can be written as a cost relative to the expense of the ‘default’
outcome where no action is taken and the adverse weather does not occur, so there is
not loss of generality in setting this term C22 to zero as in Table 25.1. The remaining
terms can be interpreted as follows. C12 is simply the cost of taking the protective
action, and C21 is the total loss that would be experienced if the adverse event occurred
and no action was taken. In this more general situation we allow for the possibility
that the action does not fully protect against the loss, so that C11 is greater than
C12. The denominator of β is the part of the loss which can be protected by taking
action, so β still has the interpretation of the ratio of the cost of taking action to the
protectable loss.

The expression for forecast value can be derived in this more general situation
(Richardson, 2000). The expression for V is the same as in Eq. (25.7), just with β

replacing α. All the subsequent results apply equally to this general situation.
So far we have considered the different outcomes in terms of the financial con-

sequences and have assumed the user acts to minimise the long-term mean expense.
A further generalisation is to move away from the strict financial interpretation of
the outcomes and introduce the concept of the utility of the outcomes. Rather than
working directly with the costs Ci j in Table 25.3, consider a function U (Ci j ) that
represents in a more general sense the usefulness of this consequence to the user. All
the previous derivations can again be made using the utilities U (Ci j ) instead of the
costs Ci j . In this case, the user aims to maximise the expected utility of his decisions
(utility is a positive concept) rather than minimise the expected expense. Again, the
same expression is found for value, with α now representing a ratio of the utilities
instead of costs.

In terms of utility, the threshold probability above which the user should take
action is

pt = U (C12) − U (C22)

U (C21) − U (C22) + U (C12) − U (C11)
= γ. (25.12)

If U is a linear function of the costs then β = γ , this utility ratio is the same as
the cost–loss ratio: the threshold probability for maximising utility is the same as
for minimising the expense. Users with linear utility functions are described as risk-
neutral.

The relationship between utility and threshold probability is easiest to understand
in the original cost–loss situation. On each occasion the user has to choose between
the certainty of paying the cost C for protection and the risk of a greater potential loss
L; pt is the probability at which the user is indifferent between these two alternatives.
For the risk-neutral user, this threshold was measured simply in terms of the mean
expense of the two options and the threshold probability was shown to be pt = C/L.

Now consider the threshold probability in terms of utility

pt = U (C) − U (0)

U (L) − U (0)
= γ. (25.13)
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Consider the utilities of the four possible outcomes. The best outcome for the user is
where there is no expense (no action is taken and the event does not occur). This then
has maximum utility and we are free to choose U (0) = 1. The worst outcome for the
user is when the expense is greatest (loss L). This outcome has minimum utility and
we choose U (L) = 0. These choices for maximum and minimum utility allow utility
to be interpreted as a probability: the threshold probability and utility ratio become

pt = 1 − U (C) = γ. (25.14)

So the utility of taking action is equivalent to the threshold probability at which the
user is prepared to act. For a linear utility function (risk-neutral user) our choices for
U(0) and U(L) mean that U (C) = 1− C/L, so that pt = C/L. However, a user may
be concerned about the immediate impact of a substantial loss L and may be prepared
to pay C at lower probabilities to reduce the occurrence of this loss. This concern
can be described by giving the user a higher utility for taking action U(C). This will
lower the threshold probability, so the user will take action at lower probabilities
than would be indicated by a simple cost–loss analysis. Such a user is described as
risk-averse: they are unwilling to risk the loss simply on the basis of minimising
long-term expense.

In this section we have introduced a number of generalisations of the cost–loss
model. The expression for value from the cost–loss model is equally valid for all two-
state, two-action decisions (as long as the consequences or utilities do not change
with time). All the results presented in earlier sections are equally valid for the general
case. Users who are averse to risk (probably the majority) will have higher utility
ratios (and so act at lower probability thresholds) than would be suggested by the
cost–loss ratios in the original model.

From a practical perspective the use of utility has several advantages. Users do not
need to be able to express the consequences of their actions in financial terms. They
do not even need to know precisely what the consequences are. Users do need to be
able to express their preference for different outcomes. It is assumed that the user can
choose the best and worst consequences. These are given utility 1 and 0 respectively.
The utility of intermediate consequences is then deduced by preferences expressed
by users when they are offered a (hypothetical) choice between the certainty of a
particular outcome or the possibility of either the best or worst outcome with a given
probability. This is perhaps easier to obtain from the user than a precise evaluation
of the costs and losses associated with each action.
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During the last decade our understanding of processes that determine the variability
of the atmosphere and the climate system have improved to the extent that predictabil-
ity of some phenomena has become established. The predictability, at least in the
short- and long-term timescales, has on rare occasions been translated into useful
predictions. However, the value of forecasts (i.e. how the forecasts are interpreted
and their value to a user group) has not improved at the same rate. Arguably, the
problem lies with the psychological and physical separation of the scientist or tech-
nician who makes the forecasts, and decision-makers and user communities who
utilise the forecasts. Furthermore, the separation is exaggerated by the fact that for
any one forecast there are many potential applications for different user communities
each with unique needs. This added complexity makes it impossible in a practical
sense for a forecaster to communicate with all users. Instead, for a given probabilistic
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Figure 26.1 (a) The South Asian region showing the Brahmaputra and Ganges
catchment areas and Bangladesh. Areas for which precipitation forecasts are
routinely made (central India, the Indian states of Orissa and Rajasthan, Bangladesh
and the two major river catchment areas) are indicated on the map. (b) Entry points
of the Ganges and the Brahmaputra into Bangladesh. River discharge is forecast on
all three timescales at these points.

forecast sets of decision tools need to be constructed for each user class. Clearly, this
cannot be accomplished by a forecasting centre but requires input of intermediaries
(organisational or personnel) and the user communities themselves.

We describe one attempt to provide probabilistic forecasts over an overlapping
set of timescales with decision models to bridge the forecaster–user separation. Such
a model allows user communities to make interrelated longer-term strategic and
shorter-term tactical decisions and to hedge in an iterative sense against uncertainty.
Central to this scheme is the marriage of quantitative user community information (a
cost function) with probabilistic forecasts to produce risk-based decision tools. We
refer to this model as a ‘user metric’. To illustrate the philosophy of the scheme, we
use as examples applications of rainfall forecasts over India and predictions of river
discharge for the Brahmaputra and the Ganges, both of which have been utilised
experimentally in Bangladesh in a quasi-operational setting since the summer of
2004 (see Figure 26.1 for locations). The scheme consists of three overlapping sets of
forecasts: seasonal (1–6 months) which commences in April and is issued each month,
intraseasonal (20–30 days) issued every 5 days and short-term forecasts (1–10 days)
issued daily. The short-term and seasonal forecasts use ensemble information from
the European Centre for Medium-Range Weather Forecasts’ (ECMWF) operational
and experimental models, statistical dressing of the output and, where necessary,
a suite of hydrological models. For the intermediate timescale predictions (20–30
days) we use a Bayesian physically based empirical model.
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26.1 Introduction

26.1.1 Environmental forecasting in South Asian
monsoon climates

Of all populations, those who inhabit the monsoon regions are most vulnerable to
weather and climate variability and most in need of accurate and timely environ-
mental forecasts. In India, for example, farming areas that depend upon rainfall
(non-irrigated land) map directly on to the most impoverished regions in the country.
Inhabitants of these ‘rain-fed’ regions are most susceptible to weather and climate
anomalies where unexpected periods of drought or heavy rainfall can have dire con-
sequences. Irrigated sectors of the country are less susceptible to short-term weather
variability, at least in terms of short-term droughts. But there is an equal suscepti-
bility to periods of heavy rainfall especially near harvesting times, or to prolonged
drought such as occurred in the summer of 2002. In fact, all sectors of the country
are susceptible to intraseasonal variability. With some certainty, it can be argued that
in all regions of South Asia timely and skilful forecasts of weather and climate ren-
dered into a form useful to the user communities would reduce the impact of extreme
meteorological and hydrological events and lead towards an improvement of agri-
cultural practices. In irrigated lands skilful and timely forecasts would lead to better
water resource management and the partition of use between irrigation and power
generation.

Figure 26.2(a) shows the variability of central Indian rainfall and illustrates the
multiple timescales that dominate the weather and climate of South Asia. Precip-
itation is displayed for four years (1999–2002) as 5-day averages from the spring
through to autumn. The background curve is the long-term climatological precipi-
tation. Each year is different, indicating distinct interannual variability. Within each
season there are marked periods of prolonged precipitation (‘active’ periods) and
rainfall minima (‘break’ periods). These occur randomly throughout the monsoon
summer season as indicated by the smoothness of the long-term climatological pre-
cipitation. Within each of the active periods there is considerable rainfall variability
(Figure 26.2b, c). These higher frequency rainfall events denote monsoon weather.

During the last decade there have been marked advances in our understanding of
the variability of monsoon rainfall over a wide range of timescales (see, e.g., review
by Webster et al., 1998) perhaps because of the attention the tropics has received in the
World Climate Research Programme’s (WCRP) Tropical Ocean Global Atmosphere
project (TOGA) and the more recent Climate Variability and Predictability project
(CLIVAR). A major scientific objective of CLIVAR is to understand the interannual
and intraseasonal dynamics of the atmosphere–ocean–land system of the monsoon
with the aim of translating this scientific understanding into a predictive capability.

Despite the scientific advances, predictability has remained elusive on timescales
longer than a few days, In essence, forecasting of monsoon weather embedded in
the large-scale monsoon circulation is little different from forecasting weather at
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Figure 26.2 (a) Pentad rainfall for central India (see Figure 26.1) from GPI rainfall
for the period 1986–2002. Units mm/day. Adapted from Webster and Hoyos (2004).
(b) Details of the summer pentad rainfall for central India for the years 1999 to 2002.
The background smooth curve represents the long-term climatological average.
Sequences of high and low periods of rainfall dominate the seasonal rainfall. These
are the active (wet) and break (dry) periods of the monsoon. Adapted from Webster
and Hoyos (2004).
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Figure 26.2 (cont.) (c) Depiction of the daily rainfall (grey lines) and the pentad
rainfall (black lines). Within each active period there is higher frequency variability.
These peaks and valleys constitute monsoon weather.

higher latitudes and depends to a large degree on the quality of the model and the
initial data. Forecasting or even simulating intraseasonal 20–40 day variability by
numerical techniques has proven extremely difficult despite the fact that next to the
annual cycle variance in this spectral band the monsoon dominates.

Numerical attempts to foreshadow seasonal variations of the monsoon have not
been particularly successful at this stage either. Empirical schemes, which have been
the main method of forecasting interannual monsoon variability, attempt to relate
large-scale forcing from the El Niño–Southern Oscillation (ENSO) phenomenon to
the future state of the monsoon. However, since the mid 1980s, skill using empiri-
cal methods has diminished significantly. For example, when the largest El Niño of
the twentieth century occurred in 1997–8, the Indian monsoon was essentially nor-
mal. During a relatively weak El Niño (2002–3) India suffered the worst drought in
decades. Both of these recent years defied the canonical El Niño–Indian monsoon–
drought relationship suggested by Rasmusson and Carpenter (1982). Similar anoma-
lous responses (or lack of response) were found in Australia, which was spared the
canonical drought in 1997–8 but faced the worst drought in a hundred years in 2002.
It may be argued that the impact of these two El Niños depended on subtle differences
in the westward extent of the anomalous warm pool. For example, recent research
results suggest:

‘The differences in ocean and large-scale atmospheric structure over the tropics
and Australia during the 2002/3 and 1997/8 El Niño have been compared using
the NCEP re-analysis. There were large scale differences in the tropical circu-
lation that may explain the different impacts of the two El Niño’s, which may be
related to the location of the SST maxima in the tropical Pacific.’

(Personal communication: Drs. Guomin Wang and Harry Hendon, Bureau
of Meteorology Research Centre, Melbourne, Australia)
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It is true that our ability to forecast ENSO variability is one of the great triumphs
of climate dynamics but forecasting future subtle spatial differences in the location
and magnitude of the Pacific sea surface temperature anomaly may have to await
considerable technological advances and may lie somewhere in the future. Even if
such forecasts could be produced, there is the question of the lack of predictability
across the boreal spring (e.g. Webster and Yang, 1992) and the minimal lead time
that would be available to implement the forecast in India. These are the realities that
must be faced in dealing with interannual prediction in the monsoon regions.

26.1.2 The concept of a ‘useful’ forecast

Even if a forecast of El Niño, and its influence on the South Asian monsoon,
were available, would that in itself constitute a useful prediction? Here we define
‘useful prediction’ in its broadest sense. A useful forecast, for example, requires
a bridging of the gap between a ‘broad-brush’ seasonal forecast over a large area
(e.g. a forecast of the seasonal anomaly in the All India Rainfall, an index rep-
resenting rainfall over the entirety of India) to a forecast that can help a deci-
sion maker in a particular location (e.g. a farmer, water resource manager, dis-
trict agricultural extension officer, governmental official, politician, etc.) to take
action to hedge against uncertainty in the future state of weather and climate. For
example, consider the role of the agricultural extension officer whose purpose is
to transfer highly technical information to members of an agricultural community
who may not be privy to environmental considerations or technical advances that
would help in agricultural practices. The officer’s role is to provide advice on issues
such as type of crop or species to be used in a given state of the environment,
what type of pesticide or fertiliser should be applied and to advise on the quantity
and the timing of their application. But from where, and in what form, does the
agricultural officer receive information to make these suggestions to the farming
community? And how does the officer receive training in order to convey this infor-
mation in a confident and credible manner? In the Climate Forecast Application in
Bangladesh (CFAB) project, we have attempted to bridge the gap between proba-
bilistic forecasts and their application in real circumstances.

Zhu et al. (2002) postulated a necessary condition for the provision of a use-
ful forecast. They note that each day individuals, communities, administrations and
so on have to make decisions to hedge against uncertainty. For example, should
one plant a crop today or wait until tomorrow or the following week to take
advantage of a proposed rainy period or avoid a rainless period following plant-
ing? Should one spray pesticide on one particular day or another in order to opti-
mise the impact of the chemical and minimise the loss through excessive rainfall?
Consider a farmer who needs to obtain the maximum yield from his crop. He is
faced with many choices: he could wait and harvest a crop at full maturation (say
in ten days) and possibly achieve full yield, but would be taking the chance that
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adverse weather or floods may seriously reduce the yield. He could harvest partially
throughout the forecast period, perhaps taking advantage of current weather and the
potential that part of his crop might reach maturation, or he could harvest totally and
immediately knowing that there would be a reduction in total yield but that there
would be no further risk of falling below that level. Without environmental informa-
tion, the strategy that the farmer may decide on can be chosen at random. Without
probabilistic information about the future state of the environment, it is not possible
to undertake a cost–benefit or risk analysis and hedge against uncertainty. Following
Zhu et al. (2002), only probabilistic information is useful.

But, the problem of providing ‘useful forecasts’ goes beyond producing a prob-
abilistic forecast of the rainfall for the coming season. No matter how skilful the
forecast may be, there is no guarantee that the forecast will be useful to a regional
user group. The problem also goes beyond the downscaling of large-scale fore-
casts to some region. That is itself a major problem. Part (a) of Figure 26.3 (colour
plate; from Webster and Hoyos, 2004) underlines the problem of inferring regional
anomalies from macroscale forecasts. Even when the overall rainfall is decidedly
above or below average, there are many regions which are of the opposite in sign
to the average. Only in the cases of extreme anomalies (e.g. 2002) would most dis-
tricts in India tend to be below average. The same problem exists in the temporal
variation of rainfall. Figure 26.3(b) shows the variability of rainfall over central India
binned as functions of the overall monsoon rainfall. The active and break periods
possess minimal temporal clustering relative to the overall seasonal rainfall. That is,
irrespective of the total rainfall for the season, there is no knowing when the first
active or break period or any subsequent variability of the monsoon will occur. This
means that even in a ‘good’ monsoon year, it is possible that the first break will be
so timed as to adversely impact the crop yield. Thus a useful forecast is one that pro-
vides relevant climate variables at the local level on a timescale that allows changes
in plans if necessary.

The definition of what the relevant climate variables are is made by the user com-
munity. For example, the agricultural extension officer is aware of the environmental
conditions that will allow some pest to thrive. The officer is also aware of the effec-
tiveness of a particular pesticide and the environmental conditions that will allow
it to eradicate the pest. The officer may want to know if there is a window of four
rainless days that can be used for application in order to compare the cost of applying
the pesticide versus the profit from a successful application relative to the predicted
weather. Of course, providing all of the information that a user may want may not
be possible for all users in all environmental circumstances. But the message here is
that the user is an essential partner in the development of useful forecasts and that
the user can provide quantitative information.

It is obvious from Figures 26.2 and 26.3 that monsoon variability occurs on mul-
tiple timescales. Within the summer rainy season there are successive active (wet)
and break (dry) monsoon periods on timescales of 20–40 days acting in a sense
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Figure 26.3 (See also colour plate section.) (a) Maps of departures from climatology
of the total regional summer precipitation for three classifications of overall monsoon
rainfall. (i) All India rainfall >115%, (ii) All India rainfall about average and (iii) All
India rainfall <90%. Irrespective of the All India rainfall, there are regions of
drought or flood in all classifications. Noting that most seasons fall within ±10%
from normal, it is clear that even an excellent seasonal rainfall forecast will be
difficult to downscale to the regional level.
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Figure 26.3 (See also colour plate section.) (cont.) (b) Schematic temporal
variability of summer monsoon precipitation: a seasonal anomaly in precipitation can
be made up from many temporal combinations of precipitation. Each panel shows a
20% deficit (matching the overall of 2002) distributed in different ways. Panel
(i) uniformly reduced throughout the summer; (ii) a late monsoon and an early
withdrawal; (iii) a normal early and late monsoon with a prolonged mid-season break
(similar to 2002); and, (iv) a series of short-lived active and break periods. A perfect
forecast of the overall seasonal anomaly provides no information about how the
precipitation will be distributed throughout the summer season.

of an evolving envelope within which weather is modulated. Within an active period
extreme rainfall events may be embedded, increasing the potential for flooding. By
contrast, breaks in the monsoon, occurring at times that are agriculturally sensitive
(particularly planting and harvesting), may be devastating, such as in 2002 over
most of India. Thus, the information needed for a decision-maker (e.g. our agricul-
tural extension officer) also has different timescales. Therefore, another necessary
condition for a useful forecast is that it must cover the major variance intervals
in a particular climate system. For the monsoons, this means seasonal variability,
intraseasonal variability and monsoon weather.

For example, consider the problem of a decision-maker who has been told that there
is a high probability to expect a slightly below average seasonal monsoon rainfall
on the scale of the subcontinent. The agricultural expert may decide to choose a
drought-resistant seed but he is still faced with the immediate problem of when to
plant. To optimise planting it is necessary to know the probability of not only when
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the first rains will occur but also the probable duration of these early season rains.
That is, besides an indication of the overall seasonal rainfall, the timing of the onset
must be known and the timing of the first break in the monsoon and how long it will
persist.

26.1.3 An example: the drought of 2002

The summer of 2002 provides a useful example (Figure 26.2a) where the overall
seasonal precipitation for the season turned out to be 20% below average although
official forecasts predicted only slightly below average seasonal rainfall. Note that the
official Indian Meteorological Department forecast was deterministic: that is, there
was no probability attached to the forecast. But the problem encountered by India
during 2002 came not from the failure of the overall forecast (or its determinism)
following the monsoon onset. With a seemingly successful onset of rain in June
(albeit slightly later than average) planting commenced. However, the prolonged
break period in July was not predicted. Subbiah (2004) comments on the midsummer
drought and what might have occurred if forecasts on intraseasonal timescales had
been available.

The dry spell starting from mid-July to the first week of August 2002 in most
parts of India caused serious dislocations in water management and agricultural
operations. The revival of monsoon conditions in the second week of August
[see Figure 26.2c] eased the water stress situation to some extent. Assuming that
a prediction of the July drought had been available by the third week of June
2002, and of the revival of the monsoon rains by second week of July 2002, the
forecasts would have made the following differences. In most parts of India
agriculture operations start in second week of June and farmers make heavy
investments during this period for land preparation, seedbed preparation, nursery
raising and transplanting of seedlings. The water resource managers make
decisions on allocation of water for various purposes (irrigation, hydroelectricity
generation) on the assumption of normal rains. The prediction of likely dry spell
in mid-June with a lead-time of weeks could have motivated farmers to postpone
agriculture operations, saving investments worth billions of dollars. The water
resource managers could have introduced water budgeting measures, such as
minimizing water availability for water consuming crops and maximizing water
for low water consuming crops, and by rationing water use for hydroelectric
power. Similarly, the prediction of the revival of monsoon rains by the second
week of July would have motivated the planners and farmers to undertake
contingency crop-planning by mobilizing resources such as seed availability and
credit for choosing suitable crop varieties, carrying out mid-season corrections
and undertaking crop life saving measures. These actions would have helped to
preserve farm income and ensured food security and reduce relief expenditure
by at least 60% of the present cost (i.e., around 6 billion US $ ). Water resources
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could have been used to raise fodder crop in northwest India thus reducing the
need for transportation of fodder from distant places at a huge cost. In summary,
a 20-day forecast during monsoon 2002 in India could have mitigated the
impacts of the droughts in several parts of India to a significant extent.

Subbiah’s comments on the 2002 drought in India describe well the forecast
requirements of the agricultural and water resource managers in South Asia. There
are no simple solutions and it is necessary to think beyond normal techniques and
procedures to gain useful information.

26.1.4 Summary of requirements

We can summarise the list of general requirements for functional environmental
predictions for a user community.

(a) The forecasts must match the timescales of the major phenomenological time
periods in the particular region if they are pertinent to the user community in
question. For example, in the monsoon regions forecasts should include
predictions of seasonal anomalies, intraseasonal variability, and weather.

(b) A suite of forecasts should be constructed that are temporally overlapping in
order to allow strategic decisions to be made at the longest time period and
tactical corrections to be made on the shorter timescales.

(c) The forecasts must be probabilistic. Only in this manner can a user of the
forecast make a reasoned cost–loss analysis.

(d) The forecast should be user specific or be rendered into information that is
useful and understandable to the user.

(e) User information should be included into the forecast process.

(f) The expectations of a user community should understand the rule that the
longer the lead time of a forecast, the less regionally specific a forecast will
be. Statistical downscaling techniques or historical data may help but it
should be realised that there are basic uncertainty issues that limit the veracity
of a forecast.

It is clear that the problem of creation of useful forecasts comes from an interaction
between a user community and the provider of the forecast. It is clear also that quite
often the desires of the user and the abilities of the forecaster may not match. However,
through the interaction of the forecaster and the user, the question of what is possible
can be addressed.

In the following paragraphs we will outline a forecasting system that provides the
user community with a best use of available information. We will use the example of
an operational system that we have implemented in Bangladesh for the forecasting
of river discharge into the country in addition to regional precipitation forecasts. This
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system, broadly described as the ‘three-tier’ forecasting system, produces overlap-
ping forecasts on seasonal, 20–30 days and 1–10 days. We will then address the
problem of how to interface the products of the physical scientist with the needs
of the user community through the development of a ‘user metric’ which allows a
simple depiction of hedging strategies.

26.2 Examples of tiered overlapping forecasts

We provide two examples of forecasts utilising the three-tier system described earlier.
We choose Bangladesh (where summer flooding is a major problem) and rainfall in
the Ganges catchment region and in central India. The latter two regions are major
agricultural regions in India. Bangladesh is a deltaic country that lies at the confluence
of three major rivers – the Ganges, the Brahmaputra and the Meghna – and is thus
susceptible to flooding from one or a combination of all three rivers. Flooding occurs
each year in Bangladesh but in different parts of the country and with sufficient
irregularity throughout summer to disrupt planting and harvesting cycles and cause
local social disruptions. Occasionally the flooding is severe and prolonged as in the
summer of 1998 when 90% of the country was inundated for nearly three months.
Bangladesh flooding is often out-of-phase with rainfall over peninsular and central
India. For example, during the summer of 2002, while most of India was under severe
drought conditions, floods occurred over Bangladesh as the Brahmaputra passed its
critical discharge levels. This occurred because during break periods of the monsoon,
precipitation shifts north over the foothills of the Himalayas in the catchment area
of the Brahmaputra. Flooding during active periods of the monsoon comes from the
overflow of the Ganges.

We discuss briefly the progress that has been made during the last three years in
developing a three-tier forecast system of river discharge, flood warning and precipi-
tation for Bangladesh and a number of regions of India under the auspices of CFAB.
The CFAB project was formed as a joint effort between Georgia Institute of Technol-
ogy, University of Colorado, the Asian Disaster Preparedness Centre (ADPC) and
ECMWF. The basic aims of CFAB lie in four main areas:

(a) The generation of a river discharge and precipitation operational forecasting
system that would be available in real time with forecasts provided on a
three-tier time system: seasonal outlooks (1–6 months), intermediate (20–30
days) and short term (1–10 days) using state-of-the-art models or with models
developed specifically for the regional problem. These timescales were
chosen as they match statistically significant spectral maxima that are found
in monsoon variables. In addition, they were chosen to allow strategic
decisions to be made relative to seasonal outlooks and tactical decisions or
reorientations at the intermediate and short timescale.
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(b) Creation of a collaborative enterprise between international (US and Europe)
and Bangladeshi (and eventually Indian) partners for the forecasting of the
probability of floods on timescales of days to months leading to the transfer
of the techniques and technology to our appropriate partners.

(c) The development of an infrastructure that allows the application of the
forecasts by regional scientists, engineers, agricultural extension workers,
disaster relief organisations.

(d) The development of methods and decision tools so that the forecasts are
directly applicable to the user sectors.

(e) The transfer of the forecasting technology to the Bangladeshis in a form that
is immediately usable in an operational sense and modifiable for other uses
and eventually to the larger monsoon community of Asia and Africa.

Considerable progress has been achieved in the implementation of (a), (b) and (c).
During the summer of 2003 and 2004, operational forecasts were made available for
the long-term and short-term forecasts during the entire season on an experimental
basis. Seasonal outlooks (i.e. river discharge forecasts at 1, 2, 3, 4, 5, 6 months) were
provided each month. Short-term forecasts (1–10 days) were issued each day for
both 2003 and 2004. These latter forecasts were used extensively by various water
resource groups in Bangladesh. Intermediate 20–30 day forecasts were issued every
five days starting in the middle of the 2004 season.1

Forecasting river discharge and translating these forecasts to flood forecasts is
a special challenge in Bangladesh. If floods in Bangladesh can be forecast with
sufficient lead time and accuracy, actions could be taken across the country that
could lessen the impact of the floods. However, until recently, the ability to forecast
floods in Bangladesh has not existed for the following reasons:

(a) Floods can be forecast at a point downstream by knowing the river flow at
some point upstream in conjunction with a local precipitation forecast
coupled to a hydrological/land use model. Based on this information, simple
regression forecasts can give fairly accurate short-term estimates of river
discharge. However, Bangladesh does not receive any upstream river flow
information from India and the only information that Bangladeshi flood
forecasters have are the river flows they measure at staging points where the
two major rivers enter Bangladesh and at other points within Bangladesh
(Figure 26.1). From these data it has been possible to forecast flood levels in
the interior and in the south of Bangladesh but with only two days lead.
CFAB decided to extend the lead time by assuming that the Ganges and the
Brahmaputra were ungauged river basins and by using a variety of model
types.

(b) The physical factors that determine the rainfall over the Ganges/Brahmaputra
catchments have only recently been understood. Hitherto, numerically based
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deterministic (or probabilistic) forecasts of rainfall on any timescales have not
been available to the Bangladeshis. In fact, to date the Bangladeshis do not
have any numerical meteorological capability. India has some but this is
restricted to relatively short range.

In the following sections of the chapter, we show examples of the three-tier fore-
casting system for Bangladesh and India. In essence, a good hydrological forecast
must arise essentially from a good precipitation forecast, especially since we have
to treat the Ganges and Brahmaputra as ungauged river basins. In the next section,
we will outline briefly the techniques employed in each of the three tiers but leave
details of the schemes to published papers and the websites listed at the end of the
chapter.

26.3 Techniques for tiered forecasting

There exists within the World Climate Research Programme (WCRP) a large number
of components, each dealing with different timescales and each, to some degree, with
simulation and prediction. A recently adopted programme, Predictability Assessment
of the Climate System (PACS), has been to set up in order to address the com-
mon needs of the diverse WCRP programs. PACS calls for a ‘seamless modelling
approach’ in which one ‘unified’ model would attempt to forecast variability and
climate on all timescales. With this vision, variability on the timescales of weather
(1–10 days) would be predicted with the same model as intraseasonal variability
(20–40 days) or interannual variability and so on. Such a proposal has many positive
aspects. For example, Palmer and Webster (1994) suggested that a unified model
approach would lead to better predictions on all timescales on the assumption that
the best climate model would be a weather prediction model and, conversely, the best
weather prediction model would be the best climate model. The rationale was that a
model used for the dual purpose of weather and climate prediction would undergo
significant and continual scrutiny on many timescales. In this manner, systematic
errors in seasonal means, for example, which could influence the frequency and tim-
ing of weather events, could be minimised. At the other end of the scale, systematic
high frequency errors could be minimised before they produce errors that erode lower
frequency spectral bands.

In the future, through the concept of the unified model one may look forward
to significant advances in prediction, on the one hand, and efficient utilisation of
resources, on the other. Unfortunately, there are real and pressing problems that
need to be addressed immediately and we do not have the luxury of waiting until the
unified model concept is implemented. In addition, there are distinct model problems
that preclude the use of a unified model at this time. In particular, models have
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great difficulty in predicting, or even simulating, intraseasonal variability. Given
the importance of the intraseasonal climate mode in the monsoon regions (see
Figures 26.2a, b), this is a considerable problem. Clearly, other techniques will have
to be used to fill this predictability gap.

Rather than using one model to predict the three pertinent timescales, we take the
more pragmatic approach and use three different techniques for each of the tiers. The
shortest and longest predictions use ECMWF model output although from different
models. The intermediate prediction timescale uses a Bayesian empirical technique
using sets of observed data. The overall philosophy of the overlapping approach is
shown schematically in Figure 26.4.

26.3.1 Seasonal trends (1–6 months)

We have the choice of developing empirical forecasts for the prediction on seasonal
timescales or using output from coupled ocean–atmosphere models. We choose the
latter as estimates of probability flow in a simpler manner from the numerical model.
The system is summarised below:

Models

The extended forecasts are based on the European Centre for Medium-Range Weather
Forecasts, 41-member seasonal ensemble precipitation forecast. The ECMWF sea-
sonal model utilises an ocean model based on HOPE (Hamburg Ocean Primitive
Equation model) version 2 (Latif et al., 1994).

The atmospheric component of the coupled ECMWF seasonal model is the
ECMWF IFS (Integrated Forecast System) model version 23r4. Except for reso-
lution, this is the same model as was used for numerical weather prediction (NWP),
in early 2001. It is also the same cycle as is used in ERA-40, except that there
are 40 levels in the vertical, compared with the 60 used in ERA-40 and the hori-
zontal resolution used for the atmospheric component is TL95. The spectral repre-
sentation is used only for the dynamical part of the model calculations. All of the
model physical parametrisations (including clouds, rain and the land surface) are
calculated on a Gaussian grid with about 1.875◦ spacing. The atmospheric model
uses a two time-level semi-Lagrangian scheme for its dynamics with a 1-hour time
step.

Precipitation forecasts

CFAB computes ‘relative’ forecasts of monthly-average precipitation for Bangladesh
and regions in India. CFAB distributes the rainfall forecasts to Bangladesh. The fore-
casts assess the probability that precipitation in a given month will be in the lowest,
second, third, fourth, or highest quintile. To produce these relative forecasts, the first



660 Peter J. Webster et al.

1            2            3           4            5            6

1            2            3           4            5            6

1            2            3           4            5

1    2    3    4              5
       1    2    3             4    5
              1    2             3   4   5
                    1             2    3   4   5

1  2  3  4  5  6  7  8  9 10
1  2  3  4  5  6  7  8  9 10

1  2  3  4  5  6  7  8  9 10
1  2  3  4  5  6  7  8  9 10

forecasts in months
April

May

June

..........

forecasts in pentads

forecasts in days

July 5
July 10
July 15
July 20
............

July 21
July 22
July 23
July 24
..............

............................................

.........................

......................................

m
o

n
th

 o
f f

o
re

ca
st

p
en

ta
d

 o
f f

o
re

ca
st

d
ay

 o
f f

o
re

ca
st

Figure 26.4 Schematic of overlapping three-tier forecast scheme. The scheme
consists of distinct sets of forecasts. At the longest timescale, 6-month projections
are made each month starting in April and continuing through September. The
forecasts are made with a combination of the ECMWF coupled ocean–atmosphere
climate model and a statistical-hydrological model mix. Within any one-month
period, 5-pentad forecasts are made using the Bayesian empirical scheme of Webster
and Hoyos (2004). This second tier of forecasts is enclosed in the grey box. Within
any 5-day period, there are 1–10 day forecasts made each day using a combination of
ECMWF operational forecast output and statistical-hydrological models. These
forecasts are enclosed within the black box.

step is to develop ‘model-space’ climatology of catchment-averaged precipitation
using the ECMWF seasonal model to compare against observations (see Hopson,
2005). ‘Model-space’ climatologies are developed for each month of the monsoon
season and for each forecast lead time (i.e. 1-month, 2-month, etc.) individually, and
are derived using the 5-member ensemble precipitation hindcasts from 1987 to 2001
and 40-member ensembles from 2002 to the present of the ECMWF seasonal model
using the ‘kernel’ approach (see Hopson, 2005). The implicit assumption is made
that taking all ensemble members together over this time span sufficiently defined
the climatological ‘attractor’. Using this model-space climatology, the current year’s
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forecasts are compared with the climatology to determine the forecast’s relative rank-
ing (nearest quantile) within this model space. Once the quantiles of all the forecasts
are determined, they are binned into the larger categories if desired (i.e. 0 to 20). Note
that these calculations were done in ‘model space’ solely because large biases in the
forecasts mean that the forecasts cannot directly be compared with the ‘observed’
climatology.

To produce ‘actual-valued’ precipitation forecasts of monthly averaged precip-
itation (as opposed to the relative forecasts discussed above), an observational-
climatology was also determined using rain-gauge data from 1979 to 1996, and
combined rain-gauge and satellite-derived precipitation data from 1996 to the present
using data from the Global Precipitation Climatology Project (1996 to the present)
and from the CMORPH project (2002 to the present). Using a ‘quantile-to-quantile’
mapping technique developed by Hopson (2005), the forecast quantiles discussed
above were used to extract the equivalent quantiles in ‘observational space’. In this
way significant biases were removed and forecasts were made that corresponded
statistically to the ‘observed’ climatology.

Discharge forecasts

The principle behind CFAB’s discharge forecasts is that monthly averaged precip-
itation is significantly correlated with monthly averaged discharge. Therefore, if,
say, above or below average monthly precipitation is forecast, this directly implies
a forecast of above(below)-average monthly discharge. To explore this relationship
between precipitation and discharge, monthly averaged observed precipitation was
correlated with lagged monthly averaged discharges for the Ganges (at the entry point
of the Ganges into Bangladesh at Hardinge Bridge), the Brahmaputra (at the border
entry point at Bahadurabad), and the combined border Ganges–Brahmaputra river
discharge were derived for the months of June through September for 17 years (1987–
2003). The following correlations were calculated and are shown in the following
tables.

In Table 26.1, it should be noticed that the optimal lag for discharge after precipi-
tation for the Ganges catchment is at 23 days, with a Pearson correlation coefficient
of 0.76; the optimal lag for the Brahmaputra is 10 days, with a correlation of 0.60;
for the combined catchments the optimal lag is 17 days with a correlation of 0.65.
These are all statistically significant. Armed with these correlations, forecasts of
precipitation can then be used to derive discharge.

26.3.2 Intraseasonal variability (20–30 days)

Given the difficulty numerical models have in simulating and predicting intraseasonal
variability in the tropics and subtropics, we use empirical schemes to forecast on
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Table 26.1 Correlations of monthly-averaged precipitation with monthly-averaged
discharge at different lags for the (a) Ganges, (b) Brahmaputra and (c) combined
basins
The Pearson correlation coefficient, Spearman rank correlation, and Kendall rank correlation
are given at 0-day lag, optimal-day lag, and 29-day lag.

Correlations

Lag Pearson Spearman Kendall

(a) Ganges 0-day 0.39 0.37 0.25
23-day 0.76 0.81 0.61
29-day 0.71 0.75 0.54

(b) Brahmaputra 0-day 0.41 0.37 0.26
10-day 0.60 0.56 0.41
29-day 0.42 0.42 0.31

(c) Ganges and Brahmaputra 0-day 0.42 0.39 0.27
17-day 0.65 0.66 0.28
29-day 0.54 0.52 0.37

the intermediate tier. Specifically, we use the physically based Bayesian scheme of
Webster and Hoyos (2004).

Model

The model is based on the concept that separating the time series of predictands and
predictors into significant physical bands determined from the predictand time series
and treating each band separately will minimise the influence of high frequency errors
projecting onto the lower frequency signal. This is accomplished by first selecting a
predictand such as precipitation over Ganges catchment or Brahmaputra discharge
into Bangladesh. Long-term time series of the data is analysed to assess the major
spectral bands. In the monsoon regions there is a strong signal in the intraseasonal
band. Composite analysis (e.g. Lawrence and Webster 2002) is then undertaken to
assess the morphology of the intraseasonal variability relative to the intraseasonal
peaks and valleys such as those observed in Figure 26.2. From the composite analysis
a set of predictors can be determined. Both the predictor set (Table 26.2) and the
predictand is band-passed to produce time series. These sets are regressed using an
evolving regression scheme (see Webster and Hoyos, 2004) and recombined to form
the prediction.

Discharge and precipitation predictions

The precipitation fields that are predicted are on the scale of Indian states (e.g. Orissa,
Rajasthan) or regions (Ganges catchment, central India). Forecasts are made of 5-day
(pentad) fields so that for a 20-day forecast, four lags are advanced. The forecasts are
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Table 26.2 Predictors used in the multiple input single output (MISO) statistical
prediction scheme. Predictors are chosen so as to constitute a complete description
of the evolution of the MISO

Predictors

# Field Region Data source

1 Arabian Sea 10 m zonal wind 10◦N–15◦N, 65◦E–75◦E NCEPa

2 Central India OLR 15◦N–25◦N, 70◦E–85◦E NOAAb

3 Central India soil moisture 15◦N–25◦N, 70◦E–85◦E NCEPa

4 Equatorial Indian Ocean 200 mb zonal wind 5◦S–5◦N, 70◦E–85◦E NCEPa

5 Somalia Jet 925 mb meridional wind 2◦S–8◦N, 65◦E–75◦E NCEPa

6 Arabian Sea 10 m meridional wind 10◦N–15◦N, 65◦E–75◦E NCEPa

7 Central India surface pressure 15◦N–25◦N, 70◦E–85◦E NCEPa

8 Equatorial Indian Ocean 10 m zonal wind 5◦S–5◦N, 70◦E–85◦E NCEPa

9 Equatorial Indian Ocean OLR 5◦S–5◦N, 70◦E–85◦E NOAAb

10 Tropical 200 mb easterly jet index 20◦N–30◦N,
70◦E–100◦E

NCEPa

a NCEP/NCAR reanalysis data has been obtained from http://www.cdc.noaa.gov/cdc /reanal-
ysis/. The data are described by Kalnay et al. (1996).
b Estimates of outgoing longwave radiation from the National Oceanic and Atmospheric
Administration (NOAA) polar-orbiting satellites (Gruber and Krueger, 1984; Liebmann and
Smith, 1996).

made for the Ganges and Brahmaputra river discharge and for Indian rainfall districts
every five days throughout the summer commencing in May.

26.3.3 Short-term (1–10 days)
Model

Predictions of precipitation surface energy fluxes come from the operational ECMWF
model. Each day, 51 ensemble members are used to determine future states over
prescribed regions of South Asia. Statistical corrections similar to those discussed
in Section 26.3.1 above are employed. The manner in which the output from the
ECMWF model is statistically dressed is complicated and beyond the detail required
in this overview. Details may be found in Hopson (2005).

Hydrology Models

The ECMWF model provides ensembles of precipitation forecasts that are used to
force hydrological models. Two distinct hydrologic modelling approaches are used
in a multimodel format: the ‘data-based modelling’ (Beven, 2000) and ‘distributed
modeling’ (similar to the US National Weather Service). Both models are described
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in detail by Hopson (2005). The two-model approach, employed for both the Ganges
and Brahmaputra basins, has certain attributes and drawbacks. Hopson (2005) shows
that the results from the combination of models are better than either model used
singly. Observed discharge of the two rivers is used to train models.

Prediction

Forecasts of regional precipitation and river discharge are made each day with lags
of 1 to 10 days. Considerable thought has gone into producing output that is easily
understood and useful to the user.

26.4 Examples of the three-tiered forecasts

An example of the seasonal outlook for the combined Brahmaputra and Ganges river
discharge can be seen in Figure 26.5. The forecasts were initialised in May 2004. The
upper panel shows the ‘plume’ of forecasts from the 41 member ensemble while the
lower panel shows the probability density functions (pdf) in the form of graphs and pie
charts for the different forecast lags. The general expectation for seasonal forecasts
for areas as small as Bangladesh (1.4 × 105 km2 or roughly the size of Wisconsin or
half the area of the UK) would be that they would possess low skill simply because
as the length of the forecast increases, uncertainty increases as the inverse of the area
of the forecast. However, almost all the river inflow into Bangladesh is accumulated
in a catchment area 12 times the size of Bangladesh. As river discharge is essentially
a weighted spatial and temporal integral of the rainfall over the catchment, a greater
skill can be expected in seasonal outlooks of river discharge. In essence, the skill of
forecasts of river discharge into Bangladesh is the integrated skill of the precipitation
forecast over the much larger catchment areas of the Ganges and the Brahmaputra.

Figure 26.5 shows that as early as May 2004, the model predicted excessive
discharge in the July–August period. Although 2004 was a relatively normal year
compared with the great flood year of 1998, extensive flooding did occur throughout
the country during July and early August. The flooding can be inferred from Fig-
ure 26.6, which plots the Ganges and Brahmaputra river discharge throughout the
monsoon season. The danger (or flooding) level was reached by the Brahmaputra
and shows that the danger level (dashed line) was exceeded during this period. Even
though the current seasonal model is configured to give forecasts of the combined
discharge of the Brahmaputra and the Ganges, it is clear that there is some skill in
the forecast.

Figure 26.7 shows a summary of the 2004 forecast of the central India region
(defined in Figure 26.1) issued every five days for 20 days in advance. These are
depicted as the black curve starting in mid June. The shaded swarth shows the
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Figure 26.6 Brahmaputra and Ganges discharge into Bangladesh during 2004. Solid
curves show the pentad discharge while the dashed curves show the daily values. The
two horizontal lines show the Brahmaputra and Ganges danger levels. The
Brahmaputra exceeded danger levels in July/August whereas the Ganges remained
below flood levels throughout the summer.

probability distribution of the forecast made at the end of July. The pdfs are shown
below in the same form as Figure 26.6.

Short-term forecasts (1–10 days) are shown in Figure 26.8(a) and (b) in two
formats. Both panels refer to 10-day forecasts of river discharge. Figure 26.8(a)
shows the results of 10-day forecasts in ensemble mode. The observed Brahmaputra
discharge (solid curve) falls within the spread of the ensemble members throughout
most of the summer of 2004. The scheme also predicts with considerable accuracy
exceedance of the danger level (horizontal dashed line: see Figure 26.6) 10 days in
advance. Using the spread of the ensemble members, it is an easy task to compute the
probability of the exceedance of the danger level. This is shown in Figure 26.8(b). We
have found that the threshold probability forecasting format depicted in Figure 26.8(b)
is the easiest form of presentation for a user community to understand.

26.5 Communication of forecasts

Whereas the forecasting of an environmental event or the prediction of the probability
of the exceedance of some limit (e.g. Figure 26.8b) is an academic achievement,
there is no value unless the forecast is understood and applied by a user community.
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Figure 26.7 20-day forecast of Central Indian rainfall rate for the year 2004 using
the Bayesian scheme developed by Webster and Hoyos (2004). Upper panel shows
the observed pentad rainfall in the 20–40 day period band (grey) and the forecast
(black line) made 20 days prior. The figure also shows a probability distribution of
the forecast made in late July. The second and third panels show the probability
density functions in two formats for 1, 2, 3, and 4 pentads following the forecast day.

Providing an understandable probability forecast is a challenge in both developed
and developing societies. We have approached this problem by the development of a
utility called the User Metric (Figure 26.9). The principal aim of a User Metric is to
allow the transformation of probabilistic forecasts (difficult to understand and apply)
to a usable assessment of aggregate risk (easy to understand) so that a deterministic
decision of future action can be made (easy to apply). A User Metric should have the
following properties:

(a) Incorporation of a probabilistic forecast of some pertinent parameter (e.g.
river discharge, rainfall variability; upper left panel of Figure 26.9). This is
supplied by the physical scientists/forecast offices using the forecast modules
described above. We note that the probability density function will change
with each forecast.
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Figure 26.8 (a) Example of short-term discharge forecasts into Bangladesh for
Brahmaputra. Ten-day forecasts made in the June–October time period in 2004. The
forecasts use the ECMWF ensemble precipitation forecasts in combination with
statistical and distributed hydrological models. The members of the ensemble relative
to the observed discharge (solid curve) are shown as the shaded lines. The method
successfully forecasts the exceedance of the danger or flood level 10 days in advance.
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Figure 26.8 (cont.) (b) Alternative representation of (a) in the form of the
probability of exceedance of flood level (dashed curve) made 10 days in advance.
The observed fraction of discharge relative to flood level is shown as the solid curve.
This form of representation of a probabilistic forecast has been shown to be easily
understood and, hence, very useful to a user community.

(b) Incorporation of local knowledge of the impact of an environmental event of a
given severity. This can be in the form of a costing function provided by the
user community (top right panel of Figure 26.9). The costing function
provides a quantification of the impact of a range of meteorological events
(impact of no rain, moderate rain, heavy rain, etc., on yield of a particular
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Figure 26.9 The components of the User Metric. The upper left panel shows the
probability density function of some phenomenon (e.g. rain rate) produced by an
environmental prediction group. Different user groups or the same user group at
different times will have a cost function associated with each of the probabilities.
This family of user dependent outcomes can be seen in the upper right hand panel.
Using some institutional context (e.g. individual, market based) a family of aggregate
risk analyses can be made which reflect the optimal decision for the particular user
group. For the same forecast pdf, the aggregate risk analysis may be different. By
contrast for one user group and a different forecast, there will be a different optimal
strategy. The purpose of the bottom panel is to provide the user with one readily
understandable diagram that takes into account the forecasts, pdf and the particular
user circumstances.
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crop) of differing severity on a particular application. The cost function is
independent of a particular forecast and merely states the user’s view of the
impact of an environmental state. For example, at the time of planting of a
crop, no rainfall would be disastrous, moderate rainfall is beneficial, but too
much rainfall may cause floods. However, later in the season, say at harvest
time, there would be a completely different costing function on the same
parameters.

(c) An easily comprehensible and visually decipherable representation of risk. It
is necessary to combine the probabilistic predictions with the costing
functions to provide an aggregate risk analysis (bottom panel of Figure 26.9).
Such a measure provides a user community with an optimal at a particular
time for a given circumstance. This visual analysis will aid the user
community in making reasoned decisions by the generation of an aggregate
risk analysis.

The concept illustrated in Figure 26.9 is relatively straightforward. The question
may be whether or not a farmer should harvest all of his crop ahead of maturation
(thus having zero risk of environmental damage but accepting a lower yield), wait
until maturation (taking a chance of reduced yield due to environmental factors but
noting that there is a chance that full yield will be achieved) or harvesting partially
in order to spread risk and benefits. The problem then is choosing the best strategy to
hedge against uncertainty. First, the farmer knows that if heavy rains occur there will
be a certain quantifiable reduction of yield. Also, if the forecast calls for a very high
probability of dry weather then the harvesting strategy will be clear. Both of these are
components of a user-produced costing function. But for a wider range of possible
future states, the strategy is less clear and it is necessary to combine the probabilistic
forecast with the costing strategy to come up with an optimal hedging strategy.

A basic tenet of our work is that we believe that there is important and valuable
information in estimating risk of the occurrence of some event to which the user
community is sensitive (e.g. floods), even when this risk is small but non-zero. Prob-
abilistic forecasts offer the only way in which reasoned decisions can be made by
the user community or relief organisation. There appears to us no need to make deci-
sions without computing probabilities of occurrence and ascertaining the cost/benefit
relationship of a particular event in agreement with Zhu et al. (2002). Finally, the
User Metric offers a simple way to incorporate information from the user commu-
nity, combine it with probabilistic forecasts from numerical or statistical models, and
provide an easily interpretable graphic from which reasoned decisions can be made.

26.6 Concluding remarks

Perhaps the most important conclusion that can be made from this study is that the
creation of a useful forecast is not an easy task. Clearly, it is not possible for an
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operational entity such as ECMWF to be able to anticipate the needs and incor-
porate the cost functions of all user communities. A successful end-to-end system
requires the injection of engineering decision tools such as those introduced into
the Bangladesh system by the CFAB group. That is, intermediate groups are needed
between the forecaster and the user community. With the advent of ENSO forecasts
in the late 1990s, the first attempts were made to produce end-to-end prediction
systems but these rarely resulted in satisfactory results. The intermediary groups in
these schemes were principally social scientists lacking perhaps in the engineering
approach necessary to produce quantitative interpretations of probabilistic forecasts
and the development of quantitative decision tools with which engineers are familiar.
Whereas we can point to some success with the CFAB project it should be remem-
bered that the bridge to other user groups would require different decision models
and interpretations of probabilistic forecasts. CFAB, perhaps in the mode of linking
forecasts and users through engineering systems, stands as a template upon which
other systems can be patterned or improved.
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DEMETER and the application
of seasonal forecasts

Renate Hagedorn, Francisco J. Doblas-Reyes, T. N. Palmer
European Centre for Medium-Range Weather Forecasts, Reading

A multimodel ensemble-based system for seasonal-to-interannual prediction has
been developed in a joint European project known as DEMETER (Development of
a European Multi-Model Ensemble System for Seasonal to Interannual Prediction).
The DEMETER system comprises seven global coupled atmosphere–ocean models,
each running from an ensemble of initial conditions. Comprehensive hindcast evalua-
tion demonstrates the enhanced reliability and skill of the multimodel ensemble over
a more conventional single-model ensemble approach. In addition, applications of
seasonal ensemble forecasts have been incorporated into the DEMETER system. As
an example of this innovative end-to-end system strategy, the use of DEMETER data
in malaria forecasting processes is discussed. The strategy followed in DEMETER
deals with important problems such as communication across disciplines, downscal-
ing of climate simulations, and use of probabilistic forecast information. This illus-
trates the economic value of seasonal-to-interannual prediction for society as a whole.

27.1 Introduction

Seasonal-timescale climate predictions are now made routinely at a number of opera-
tional meteorological centres around the world, using comprehensive coupled models
of the atmosphere, oceans, and land surface (Stockdale et al., 1998; Mason et al.,
1999; Alves et al., 2002; Kanamitsu et al., 2002). They are clearly of value to a
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wide cross-section of society, for personal, commercial and humanitarian reasons
(Thomson et al., 2000; Hartmann et al., 2002b). However, the successful transition
from research activity to full operational practice has led some potential users of
seasonal forecasts to have unrealistic expectations of what is practicable (‘We are
getting married in six months time – should we order a marquee for the wedding
reception, or will it be dry that day?’). Notwithstanding predictable signals arising
from atmosphere–ocean coupling (Shukla and Kinter, this volume; Timmermann
and Jin, this volume), the overlying atmosphere is intrinsically chaotic, implying that
predicted day-to-day evolution of weather is necessarily sensitive to initial condi-
tions (Palmer, 1993; Shukla, 1998). In practice, the impact of such initial-condition
sensitivity can be determined by integrating forward in time ensembles of fore-
casts of coupled ocean–atmosphere models; the individual members of the forecast
differing by small perturbations to the starting conditions of the atmosphere and
underlying oceans. The phase-space dispersion of the ensemble gives a quantifiable
flow-dependent measure of the underlying predictability of the flow.

However, if uncertainties in initial conditions are the only perturbations repre-
sented in a seasonal-forecast ensemble, then the resulting measures of predictability
will not be reliable; the reason being that the model equations are also uncertain. More
specifically, although the equations for the evolution of climate are well understood at
the level of partial differential equations, their representation as a finite-dimensional
set of ordinary differential equations, for integrating on a digital computer, inevitably
introduces inaccuracy (Palmer, this volume).

At present, there is no underlying theoretical formalism from which a probabil-
ity distribution of model uncertainty can be estimated – as such a more pragmatic
approach must be sought. One approach relies on the fact that global climate mod-
els have been developed somewhat independently at different climate institutes. An
ensemble comprising such quasi-independent models is referred to as a multimodel
ensemble.

In order to advance the concept of multimodel ensemble prediction and to explore
the utility of such a forecast system for potential end users, the DEMETER project
(Development of a European Multi-Model Ensemble System for Seasonal to Interan-
nual Prediction) was conceived, and successfully funded under the European Union
Vth Framework Environment Programme. A description of the DEMETER coupled
models, the DEMETER hindcast integrations, the archival structure, and the common
diagnostics package used to evaluate the hindcasts, is described in Section 27.2. Some
meteorological and oceanographic results, comparing these single and multimodel
ensemble hindcasts, are described in Section 27.3. As mentioned at the beginning of
this chapter, there is considerable interest amongst a wide cross-section of society
for seasonal climate forecast information. However, as also mentioned, some users
will be disappointed in what can realistically be achieved, whilst others may find
great economic value in the predictions. How can one distinguish viable applications
from unrealistic applications? It might be easy to dismiss as unrealistic the potential
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customer who wants to know whether it will rain in the afternoon six months from
today, but is the demand of a health official who wants to use seasonal predictions
to predict malaria prevalence six months ahead, and whose malaria model requires
daily weather parameters as input, also unrealistic?

A general methodology for assessing the value of ensemble forecasts for such
users was introduced in Richardson (2000) and further discussed in Richardson (this
volume). In particular, if these users have quantitative application models requiring
forecast weather information as input (Hartmann et al., 2002a), these models can
be directly linked to the output of individual members of the forecast ensemble.
The net result is a probability forecast, not of weather as such, but of a variable
directly relevant to the user. Hence, in the case of the health official, the ensemble
will produce a probability distribution of malaria prevalence. The potential useful-
ness of the ensemble forecasts can then be judged by asking whether the forecast
probability distributions of malaria prevalence are sufficiently different from clima-
tological probability distributions for the health official to be able to make decisions
or recommendations on preventive measures, for example distribution of bed nets
or anti-malaria spraying actions. In the DEMETER project, there are applications
partners both in tropical disease prediction and also in agronomy. Some of the results
of these end users in DEMETER are described in Section 27.4. As a result of DEME-
TER, real-time multimodel ensemble seasonal predictions are now routinely made at
the European Centre for Medium-Range Weather Forecasts (ECMWF). This devel-
opment, and other plans that derive from DEMETER, are outlined in the concluding
section of this chapter.

27.2 The DEMETER system

27.2.1 Coupled models and initialisation procedures

The DEMETER system comprises seven global coupled ocean–atmosphere models.
A brief summary1 of the different coupled models used in DEMETER is given in
Table 27.1

For each model, except that of the Max Planck Institute (MPI), uncertainties in the
initial state are represented through an ensemble of nine different ocean initial con-
ditions. This is achieved by creating three different ocean analyses: a control ocean
analysis is forced with momentum, heat and mass flux data from the ECMWF 40-year
reanalysis (Uppala, 2005; ERA-40 henceforth), and two perturbed ocean analyses are
created by adding daily wind stress perturbations to the ERA-40 momentum fluxes.
The wind stress perturbations are randomly taken from a set of monthly differences
between two quasi-independent analyses. In addition, in order to represent the uncer-
tainty in sea surface temperatures (SSTs), four SST perturbations are added and sub-
tracted at the start of the hindcasts. As in the case of the wind perturbations, the SST
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perturbations are based on differences between two quasi-independent SST analyses.
Atmospheric and land-surface initial conditions are taken directly from the ERA-40
reanalyses. A separate ensemble initialisation procedure is used for the MPI model.

27.2.2 Definition of hindcast experiments

The performance of the DEMETER system has been evaluated from a comprehensive
set of hindcasts over a substantial part of the ERA-40 period. Only hindcasts for the
period 1980 to 2001 will be discussed in this chapter.

In order to assess seasonal dependence on skill, the DEMETER hindcasts have
been started from 1 February, 1 May, 1 August, and 1 November initial conditions.
Each hindcast has been integrated for six months and comprises an ensemble of nine
members. In its simplest form, the multimodel ensemble is formed by merging the
ensemble hindcasts of the seven models, thus comprising 7×9 ensemble members.
To enable a fast and efficient post-processing and analysis of this complex data set,
much attention was given to the definition of a common archiving strategy for all
models; the ECMWF’s Meteorological Archival and Retrieval System (MARS) was
used for this purpose. A subset of atmosphere and ocean variables, both daily data
and monthly means, have been stored into MARS. Special attention was given to the
time-consuming task of ensuring that all model output complies with agreed data
formats and units.

A significant part of the DEMETER data set (monthly averages of a large subset
of surface and upper-air fields) is freely available for research purposes through an
online data retrieval system installed at ECMWF.2

27.2.3 Diagnostics and evaluation tools

The need to provide a common verification methodology has been recognised by the
World Meteorological Organization Commission for Basic Systems (WMO-CBS),
and an internationally accepted standardised verification system (SVS) is being pre-
pared. A comprehensive verification system to evaluate all DEMETER single models
as well as the multimodel DEMETER ensemble system has been set up at ECMWF. It
has been run periodically to monitor hindcast production, to check correct archiving
and to calculate a common set of diagnostics.

The DEMETER verification system is designed with a modular structure so as to
easily incorporate new evaluation tools provided by project partners or other sources.
The basic set of diagnostics is summarised as follows:

� Global maps and zonal averages of the single-model bias are shown relative
to a model climatology. Hindcast anomalies are computed by removing the
model climatology for each grid point, each initial month, and each lead time
from the original ensemble hindcasts. A similar process is used to produce the
verification anomalies.
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� Time series of specific climate indices, e.g. related to area averaged SSTs,
precipitation and circulation patterns are displayed.

� Standard deterministic ensemble-mean scores, such as anomaly correlation
coefficient (ACC), root mean square skill score (RMSSS), and mean square
skill score (MSSS) are shown.

� Probabilistic skill measures: reliability diagrams, relative operating
characteristic (ROC) score, Brier score, ranked probability skill score (RPSS),
and potential economic value curves are calculated and displayed.
Significance tests are applied to most of the skill measures.

� The skill of single-model ensembles is compared with that of multi-model
ensembles using scatter diagrams of area-averaged skill measures and
probability density functions (pdfs) of grid-point skill scores.

Both anomalies and scores have been computed using a cross-validation ‘leave-one-
out’ method. To generate the anomaly or the score for a particular time t, only data
at other times different from t have been used.

The main verification data set used in this system is ERA-40. This is consistent
with the general concept of producing the DEMETER hindcasts, in which ERA-
40 is used as forcing for the ocean analyses and as atmospheric and land-surface
initial conditions. Effectively, it is assumed that we are ‘living in the ERA-40 world’.
However, because of the modularity of the validation system, it is possible to validate
the model data with more than one verification data set. In fact, precipitation has been
verified against the Global Precipitation Climatology Project (GPCP) dataset.3

27.3 Hindcast skill assessment

A sample of results from the DEMETER standard verification system is presented in
this section. To view a more comprehensive set of verification diagnostics the reader
is referred to the DEMETER website.4

The scientific basis for seasonal atmospheric prediction relies on the premise that
the lower boundary forcing, in particular SST, can impart significant predictability on
atmospheric development (Palmer and Anderson, 1994). Thus, one of the prerequi-
sites for successful seasonal forecasts is the ability to represent and predict accurately
the state of the ocean. A basic problem, faced when attempting to predict SST with
coupled models, is the bias in the model forecasts, which may be comparable to the
magnitude of the interannual anomalies to be predicted. Since SSTs in the tropical
Pacific are a major source of predictability in the atmosphere on seasonal timescales,
model performance in the tropical Pacific is of particular interest. To demonstrate the
typical level of skill in this area, Table 27.2 shows the anomaly correlation coefficient
(ACC) of the ensemble mean for the single-model ensembles and the multimodel
ensemble for the SSTs averaged over the NINO-3.4 area. The correlation has been
computed for the 1-month and 3-month lead seasonal hindcasts starting in February,
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Table 27.2 Ensemble-mean bias and anomaly correlation coefficient
(ACC) for the 1-month and 3-month lead seasonal average of sea surface
temperature over the NINO-3.4 area calculated using all start dates for
the years 1980–2001
Note that the bias for the multimodel ensemble and the persistence hindcast are
not defined since the multimodel ensemble is based on single-model anomalies,
which are constructed with regard to the single-model bias, and persistence uses
observed anomalies.

Model 1-month lead 3-month lead

Bias/K ACC Bias/K ACC

DEMETER multimodel – 0.95 – 0.89
CERFACS −0.34 0.94 0.07 0.86
ECMWF −0.87 0.93 −1.50 0.86
INGV −0.60 0.92 −0.76 0.82
LODYC −0.96 0.95 −1.52 0.89
Météo-France −0.03 0.93 0.43 0.83
Met Office −0.53 0.92 1.45 0.81
MPI −2.07 0.86 −3.42 0.66
Persistence – 0.80 – 0.62

May, August, and November. Therefore, the values verify during the seasons MAM,
JJA, SON, and DJF for the 1-month lead hindcasts, and MJJ, ASO, NDJ, and FMA
for the 3-month lead hindcasts. Results suggest that the single-model ensembles gen-
erally perform well as El Niño–Southern Oscillation (ENSO) prediction systems. For
the sake of comparison, the ACC for a persisted-SST hindcast has been included. This
hindcast is made by persisting initial SST anomaly for the six months corresponding
to the coupled model integration. For instance, the 6-month-long persistence hind-
casts starting on 1 February are obtained from the anomaly on the previous January.
Both the multimodel ensemble and the single models perform at levels comparable
to dedicated ENSO prediction models and much better than persistence, especially in
the 3-month lead time range. In addition, note the high correlation of the multimodel
ensemble for both lead times, proving it to be the most skilful system for the 3-month
lead hindcasts. The coupled model climate may differ from the observed climatology
as a result of model ocean–atmosphere interactions. The bias of the single models
is generally in the range of ±1 K (Table 27.2). These are typical figures for current
leading coupled models. As is the case for most variables and areas, there appears
to be no clear relationship between bias and anomaly forecast skill, though this is a
topic that needs further investigation.

Figure 27.1 shows 1980–2001 time series of ACC of precipitation for all single
models and the multimodel ensemble, for summer (JJA, May start date) over the
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Figure 27.1 Time series of the ensemble-mean anomaly correlation coefficients for
the multimodel (thick filled bars) and all individual models (thin open bars). (a)
1-month lead summer (JJA) precipitation in the tropics (latitudinal band of 30◦ S
–30◦ N); (b) 1-month lead winter (DJF) precipitation in the northern extratropics
(latitudinal band of 30◦ N–90◦ N). Additionally, the time average over the whole
period 1980–2001 is shown at the end of each plot.
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tropics (Figure 27.1a) and winter (DJF, November start date) over the northern extra-
tropics (Figure 27.1b). The skill in the northern extratropics is considerably less than
in the tropics. In both regions the variability in prediction skill, both from year to
year and between different models, is clearly evident. The occurrence of higher skill
during ENSO events is consistent with relatively large ACC for 1982–83, 1987–88
and 1997–98. This, in turn, is consistent with the link between ENSO activity and
seasonal predictability found in many studies (e.g. Brancovic and Palmer, 2000). In
general, the identity of the most skilful single model varies with region and year.
Finally, this figure illustrates the relatively skilful performance of the multimodel
ensemble. In most years the multimodel ensemble skill is close to the best single-
model skill and is the most skilful when performance is averaged over all years. This
highlights the greater reliability of the multimodel ensemble system.

To further summarise atmospheric hindcast skill, Figure 27.2 shows indices of
the winter (DJF, November start date) Pacific North American (PNA) and North
Atlantic Oscillation (NAO) patterns for the multimodel ensemble. The indices are
computed by projecting every ensemble member anomaly onto a predefined pattern.
To compute the reference patterns, an empirical orthogonal function (EOF) analysis
of the 500-hPa geopotential height has been performed for the winter monthly mean
anomalies using National Centers for Environmental Prediction (NCEP) reanalyses
for the period 1949–2000. The EOF analysis was carried out using data over the
regions 20◦ N–87.5◦ N and 110◦ E–90◦ W for the PNA and 20◦ N–87.5◦ N and
90◦ W–60◦ E for the NAO, and the leading EOF retained. The spatial covariance
between the monthly anomaly patterns was then calculated for every single member
of the hindcast ensemble and the reference pattern was computed. The monthly
covariances were averaged to produce seasonal means. Figure 27.2 displays the index
against time using a box-and-whisker representation in which the central box and each
whisker contain one third of the ensemble members. The value obtained computing
the spatial covariance between the reference pattern and the ERA-40 anomalies is also
displayed. Comparison of the interannual variations of ERA-40 and ensemble-mean
values gives a visual impression of ensemble-mean hindcast skill. The verification
lies within the ensemble range in all but two cases for both indices. Table 27.3 shows
the correlation between the two time series for the multimodel and the single-model
ensembles. The multimodel ensemble shows one of the highest correlations among
all the models for both indices. In addition, the multimodel ensemble correlation
can be considered non-zero with a 95% confidence level using a two-sided t-test,
which is not always the case for the single-model ensembles. However, it should be
noted that scores based on indices are less robust than scores based on large area
correlations, when calculated with relatively short time series. For example, the high
PNA correlation for some single models may be explained by good predictions in
1982 and 1997. Note that, while PNA index hindcast skill tends to be quite satisfactory
(Figure 27.2a), NAO index skill is lower but always positive. Figure 27.2b indicates
that the multimodel ensemble can produce a useful signal in years when the observed
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Figure 27.2 Time series of the 1-month lead winter (DJF) PNA (a) and NAO
(b) index. The multimodel ensemble spread is depicted by the box-and-whisker
representation with the whiskers containing the lower and upper tercile of the
ensemble. The diamonds represent the ensemble mean, the ERA-40 anomalies being
displayed by black bullets. The horizontal lines around the solid zero line mark the
tercile boundaries of the ERA-40 (dashed) and hindcast data (dotted).

NAO index is large in magnitude, such as 1987, 1988 and 1997. These years may
in themselves account for the high correlation coefficient obtained in Table 27.3.
Nevertheless, the model signal in some years is weak (little shift of the predicted
index away from zero) as in 1992 and 1995, when the observed index was large in
magnitude.

Considerable effort has been devoted to the validation of the ensembles as proba-
bility forecasts. The dotted and dashed lines in Figure 27.2 correspond to the ensemble
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Table 27.3 Ensemble-mean correlation and ranked probability skill score
for the PNA and NAO indices calculated from the 1-month lead hindcasts
started in November (DJF seasonal average) for the years 1980–2001
Statistically significant values (95% confidence level) are printed in bold letters

Correlation RPSS

Model PNA NAO PNA NAO

DEMETER multimodel 0.41 0.54 0.18 0.10
CERFACS 0.16 0.30 −0.19 0.16
ECMWF 0.39 0.10 0.24 −0.12
INGV 0.23 0.20 −0.02 0.04
LODYC 0.46 0.43 0.10 0.00
Météo-France 0.23 0.55 −0.11 0.01
Met Office 0.31 0.18 0.22 −0.12
MPI 0.32 0.14 0.10 0.02

and ERA-40 tercile boundaries. The corresponding probabilistic skill measure used
is the ranked probabilistic skill score (RPSS) based on these tercile categories. Hind-
cast performance is summarised in Table 27.3. RPSS is defined so that positive values
imply higher skill than climatology forecasts and perfect forecasts have a skill score
of 1. The skill of the multimodel ensemble for the PNA index is close to the skill
of the best models and statistically significant at the 95% confidence level, in good
agreement with the correlation results. Also, for the NAO index, RPSS values are
generally high and tend to be statistically significant, which was not the case for the
correlation. RPSS statistical confidence has been assessed by computing the distri-
bution of the skill score from a random set of hindcasts obtained from scrambling
the available hindcasts and verifications.

The above demonstrated superiority of the multimodel compared with single-
model performance can also be found when considering the reliability of the predic-
tions, with reliability having a precise technical meaning in this context. A forecast
system is called reliable if the predicted probability of an event matches its frequency
of occurrence when it was forecast. That is, when considering all cases where an event
is predicted to occur with a 40% probability, this event should verify in exactly 40%
of these cases, not less and not more. As one example (out of many), the reliabil-
ity diagrams of the seven single models as well as the multimodel are shown in
Figure 27.3 for the seasonal averages of the 2m-temperature in summer (May start
date, 1-month lead time) averaged over the tropical band (±30◦). The reliability
diagram displays the accumulated proportion of forecast probabilities versus the
accumulated observed frequency of the event. Every single-model ensemble proves
to be overconfident, which is characterised by a too shallow slope of the line joining
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Figure 27.3 Reliability diagrams for the positive anomalies of seasonal averages of
the 2m-temperature in summer (May start date, 1-month lead time) averaged over the
tropical band (± 30◦) for the period 1980–2001. The straight horizontal and vertical
lines display the average observed frequency and forecast probability of the event.
The size of the bullets represents the relative forecast frequency. The seven single-
model results are given in (a) to (g), the multimodel reliability diagram is shown in (h).
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Figure 27.3 (cont.)

the points in the diagram (Figure 27.3a–g). By contrast, the reliability diagram for the
multimodel ensemble fits much better the diagonal (Figure 27.3h). This implies that,
given a prediction with a specific probability, the multimodel will verify on average
the same proportion of observed events, while the single-model ensembles will assign
low (high) probabilities to cases that are observed a higher (lower) proportion of times.

In spite of the clear improvement of the multimodel ensemble performance over
the single-model ensembles, an important question arises. Is the improvement in the
multimodel ensemble merely due to increased ensemble size or does the additional
information from different models add to the performance? In order to separate the
benefits that derive from combining models of different formulation to those derived
simply from the accompanying increase in ensemble size, a 54-member ensemble
hindcast has been generated with the ECMWF model alone for the period 1987–99
using the May start date. Figure 27.4 shows the reliability diagram for the same case
as in Figure 27.3 (1-month lead positive anomalies of 2m-temperature in summer over
the tropical band (±30◦)), but here for the 54-member single-model ensemble and
an equally sized multimodel ensemble. The multimodel ensemble for this example
was constructed by randomly selecting 54 members out of the 63 available from
the seven single-model ensembles. Although the increase in ensemble size in the
single-model results in improved reliability compared with the 9-member ensemble
predictions (Figure 27.3), it still does not outperform the multimodel with the same
ensemble size. This indicates that the additional information coming from the other
single models adds to the improvement seen in the multimodel results.

The different rate of increase in skill related to adding more ensemble members
either from different models or the same model can be seen in Figure 27.5. As
expected, for both single and multimodel hindcasts, the skill generally increases when
adding more ensemble members. In the case of the 18-member/2-model ensembles,
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Figure 27.4 As Figure 27.3 but for the period 1987–1999. (a) Single-model,
(b) multimodel, both ensembles consisting of 54 members.
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Figure 27.5 RPSS of 1-month lead time summer precipitation hindcasts for the
period 1987–99 calculated over the tropical band (± 30◦). The RPSS of the single
models is given in the first column, each horizontal bar representing the value of one
single model with 9 ensemble members. The next columns of wide horizontal bars
mark the RPSS of all possible multimodel combinations composed of 2, 3, 4, 5, and
6 models. The slim horizontal bars beside the wide multimodel bars mark the RPSS
of a single model with the same ensemble size as the respective multimodel (18, 27,
36, 45, and 54). For each multimodel realisation a single model was constructed
by randomly choosing the same number of members as in the corresponding
multimodel.
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the multimodel skill varies considerably depending on the quality of the contributing
single models. Combining two of the poorer models leads to a lower RPSS compared
with the 18-member single-model ensembles constructed from one of the best single
models. However, already in the case of the 27-member/3-model ensembles, the
single and multimodel results are well separated. Every multimodel combination
of three single models beats all single-model realisations with the same ensemble
size. Furthermore, the gap between single and multimodel increases even more when
including further models into the multimodel, though it seems to stabilise with six
or more models included.

The above demonstration of the superiority of the multimodel compared with
single-model results has been made under the assumption of using a simple equal
weight multimodel. The key for the success of the multimodel concept is that the
combination of the single models, with all its strengths and weaknesses, leads to a
more reliable forecast system. A logical question arising from this argument is: Why
do we have to combine strengths and weaknesses of the single models? Is it not
possible to eliminate the weaknesses and keep only the strengths? In a more detailed
analysis of the performance of the single models (not shown here) it seemed that,
for example, the SST predictions of one particular single model are often worse than
average. If this were a robust feature, giving a lower weight to the SST forecasts of
this particular model might be a way of improving the multimodel ensemble even
more. However, this concept of applying different weights to the single models when
combining them to the multimodel ensemble forecast, is not as straightforward as it
might seem at first glance. Various methods of finding optimal weights exist, and for
a detailed analysis of all constraints and pitfalls related to these methods the reader
is referred to Doblas-Reyes et al. (2005).

27.4 Applications

One of the main objectives of DEMETER is a demonstration of the utility of seasonal
climate forecasts through the coupling of quantitative application models to the global
climate prediction models. DEMETER data have been used as forcing for a variety
of end-user applications such as crop yield forecasting in Europe (Cantelaube and
Terres, 2005), ground-nut yield in India (Challinor et al., 2005), malaria prevalence in
South Africa (Morse et al., 2005) or predictions of river streamflow in southern Brazil
(C. A. S. Coelho, personal communication). In view of the limited space available
in this chapter, we will concentrate on a brief description of results from a malaria
transmission simulation model (MTSM) integrated into the DEMETER end-to-end
system.

Malaria is estimated to kill between 700 000 and 2 700 000 annually with over
75% of the victims being African children. The disease is caused by a parasite that
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is passed between humans by mosquitoes, the vector. Malaria only occurs in areas
where environmental conditions are suitable for both the parasite and vector and these
conditions are sustained for a number of months. Epidemics are often the consequence
of climate anomalies like higher than normal precipitation and temperatures which
increase vector breeding and survivorship as well as parasite development rates. The
temperature drives the development of the parasite within the vector and it also drives
the developmental life cycle of the vector. For both developmental cycles there are
lower temperature thresholds and, within certain upper bounds, higher temperatures
lead to greater rates of development. Precipitation is important in providing breeding
sites for mosquitoes and for increasing the humidity of the air, which increases the
survivorship of the vectors.

Using the whole 63-member DEMETER hindcast data set, probabilistic hind-
casts of simulated malaria prevalence scenarios for regions of tropical Africa have
been produced. The MTSM has been run out to 180 days with bias-corrected 2m-
temperature and precipitation data from each of the 63 DEMETER ensemble mem-
bers as forcing. These 6-month integrations have been performed for four start dates
a year (1 February, 1 May, 1 August, and 1 November) over the period 1987–2001.
For a thorough assessment of the actual value of these predictions, a comparison
of simulated and observed malaria prevalence should be performed. However, for
most parts of Africa adequate clinical data are not available, so that our assessment is
restricted to a so-called tier-2 validation (see Morse et al., 2005, for a more detailed
explanation of the tier-2 validation concept). That is, instead of comparing the appli-
cation model output with real observations, the probabilistic MTSM output produced
with DEMETER data as input is compared with MTSM output produced with ERA-
40 reanalyses as forcing. In this way, the performance of the malaria model itself
is of secondary importance, but the usefulness of the forcing data, in our case the
DEMETER multimodel ensemble hindcasts, is evaluated.

An example for a comparison between DEMETER and ERA-40 driven malaria
predictions at a grid point in South Africa (17.5◦ S, 25.0◦ E) is given in Figure 27.6.
All of these 1-month lead time predictions of the March/April/May seasonal average
malaria prevalence capture the ERA-40 driven MTSM reference output. The spread
of the ensemble members varies between lower and upper tercile, with the largest
spread generally found in the lower tercile. Most of the lower tercile values have
temperatures close to 18◦C during the critical stages of the parasite development,
which would lead to very slow development rates.

The results presented here cannot be assumed to be universal, as different results
may be found in different African regions or other parts of the world or, obviously,
other application models. However, extended studies have shown that skilful forecasts
of actual malaria prevalence are also possible for other parts of Africa, and that
decision-makers can use this information for improved resource allocation (Thomson
et al., 2000).
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Figure 27.6 Predicted malaria prevalence from the 1-month lead February start date
MTSM forecast (March/April/May prediction). The spread of the MTSM forecasts
driven by DEMETER ensemble hindcasts is depicted by the box-and-whisker
representation with the whiskers containing the lower and upper tercile of the
ensemble. The diamonds represent the ensemble mean, the reference MTSM forecast
driven by ERA-40 data being displayed by black bullets.

27.5 Summary

As part of the European-Union funded DEMETER project, a multimodel ensemble
system based on seven European global coupled ocean–atmosphere models has been
described and validated in hindcast mode using ECMWF ERA-40 reanalysis data.
Output from the DEMETER system, suitably downscaled, has been applied to end-
user models like malaria prediction or crop yield models. Results indicate that the
multimodel ensemble is a viable pragmatic approach to the problem of representing
model uncertainty in seasonal-to-interannual prediction, and will lead to a more
reliable forecasting system than that based on any one single model.

In the limited space available in this chapter, a few illustrative examples of results
from the DEMETER project have been given. However, we invite readers to visit the
DEMETER website4 where an extensive range of diagnostics and skill scores used
to evaluate the DEMETER system are presented.

In addition to these specific diagnostics and skill scores, visitors to the DEME-
TER website can download (in GRIB or NetCDF format) gridded data from a large
data set comprising monthly mean fields for a large number of variables from the
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DEMETER hindcasts, including ERA-40 verification. We thus encourage scien-
tists and potential users of seasonal forecasts to perform their own analysis of the
DEMETER data (perhaps to assess skill for specific regions and variables of inter-
est not covered in our standard analysis). More generally, we offer this DEME-
TER data set for education training purposes, both in the developed and developing
world.

As a result of the success of DEMETER, real-time multimodel forecasting is
now being established as part of the operational seasonal forecast suite at ECMWF
(Anderson, this volume). At the time of writing, the coupled systems of ECMWF,
Met Office and Météo-France are included in this multimodel mix. It is possible that
other models may be included at a later stage.

In the European Union FP-6 project ENSEMBLES, a successor system to DEME-
TER will be used to explore the use of multimodel ensembles not only for seasonal-to-
interannual timescales, but also for decadal timescales for which scientific evidence
of predictability has emerged in recent years. For this purpose it is planned to ensure
that the model components used for seasonal-to-decadal ensemble prediction, are, as
far as practicable, identical to those used for century-timescale anthropogenic climate
change. In this way, the reliability of century-timescale climate change projections
can be assessed by running essentially the same ensemble systems on timescales
for which verification data exists. We believe that a unification and rationalisation
of research and development across these timescales will enhance enormously the
credibility of our science.

Acknowledgements
The DEMETER project has been funded by the European Union under the contract
EVK2-CT-1999–00024. The authors would like to thank M. Alonso-Balmaseda, D.
Anderson, L. Ferranti, M. Fuentes, C. Gibert, D. Lucas, T. Stockdale, J. Vialard, F. Vitart,
for their invaluable help and support. The project would not have been possible without
the technical support of the ECMWF staff and consultants. Furthermore, we would like to
thank all DEMETER partners for their contributions to the project, in particular Andy
Morse and Moshe Hoshen for the MTSM results described in more detail in this
contribution.

Notes
1. Detailed information on the models and the initialisation procedures can be found on

the DEMETER website: www.ecmwf.int/research/demeter/general/docmodel/
index.html.

2. Model hindcasts can be retrieved in GRIB and NetCDF formats from www.ecmwf.int/
research/demeter/data. A tool to display the fields is also available.

3. The GPCP dataset can be found online at http://cics.umd.edu∼yin/GPCP.
4. www.ecmwf.int/research/demeter/verification
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Plate 1.11 The changing
probability of extreme seasonal
precipitation for Europe in boreal
winter. (a) The probability (in %)
of a ‘very wet’ winter defined from
the control CMIP2 multimodel
ensemble with twentieth-century
levels of CO2 and based on the
event E: total boreal winter
precipitation greater than the mean
plus two standard deviations. (b)
The probability of E but using data
from the CMIP multimodel
ensemble with transient increase in
CO2 and calculated around the time
of CO2 doubling (years 61–80 from
present). (c) The ratio of values in
(b) to those in (a), giving the
change in the risk of a ‘very wet’
winter arising from human impact
on climate. From Palmer and
Räisänen (2002).
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Plate 2.4 September–November 2000 300 hPa geopotential height anomalies from climate.
From Blackburn and Hoskins (personal communication).
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Plate 2.6 The block of 21 September 1998. Shown are the 250 hPa geopotential height field
and the θ on PV2 field. From Pelly and Hoskins (2003a).



Plate 6.4 Illustration of covariance localisation. (a) Correlations of sea-level pressure directly
estimated from 25-member ensemble with pressure at a point in the western Pacific (colours).
Solid lines denote ensemble mean background sea-level pressure contoured every 8 hPa. (b) As
in (a), but using 200-member ensemble. (c) Covariance localisation correlation function. (d)
Correlation estimate from 25-member ensemble after application of covariance localisation.



Background error (shaded) and 3D- Var analysis increments

Background error (shaded) and LEKF analysis increments 

Plate 7.6 Simulation of data assimilation in a quasi-geostrophic model, assimilating potential
vorticity observations at a particular day (15 June). The colours represent the 12 hr forecast
(background) error and the contours the analysis corrections. (Top) 3D-Var. (Bottom) local
ensemble Kalman filter. Figures courtesy of Matteo Corazza.



Plate 7.12 Example of a 6 hr trace of the 500 mb height forecast error covariance showing the
potential use of LEKF for adaptive observations. Regions in blue and purple do not need
immediate observations. Midlatitude areas marked with red have large errors but a low
effective ensemble dimension, so that they are prime areas for targeting. Tropical regions with
large errors (ovals), by contrast, have also large effective ensemble dimension, presumably
because the error growth is dominated by convection.
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a.) simulated Nino3 SSTA (red), interannual wavelet variance (black)

Plate 10.9 (a) NINO-3 SSTA simulated by the ECHAM4/OPYC3 model (red) and its
interannual wavelet energy (black). (b) Observed NINO-3 SSTA time series (red) and its
interannual wavelet energy (black), 10-year forecast of interannual wavelet energy (dashed)
using non-linear prediction techniques.
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Plate 11.1 Canonical structure of an MJO event based on 5-day average (i.e. pentad)
NCEP/NCAR Reanalysis (Kalnay et al., 1996) and CMAP rainfall data (Xie and Arkin, 1997)
from 1979 to 2000. Data were bandpassed filtered with a 30–90 day filter and then separated
into boreal winter (Nov–Apr) and summer (May–Oct). Extended EOF (EEOF) analysis with
+/–5 pentad lags was performed on tropical rainfall (30N to 30S, 30E to 180E) to identify the
dominant ‘mode’ for the winter and summer separately. Composite events were constructed by
selecting events if the EEOF amplitude time series exceeded 1 standard deviation (N = 43 (49)
for winter (summer)). The resulting composites have dimensions lag (−5 to +5 pentads),
latitude and longitude. In the plots above, only 4 panels of the boreal winter composite are
shown, each separated by 2.5 pentads (i.e. 12.5 days). Plots show composite rainfall and
850 hPa wind vectors for (left) boreal winter and (right) boreal summer. Only values that
exceed the 90% confidence limit are shown.



Plate 12.5 Composite, ensemble-mean AGCM simulation of January–February–
March seasonal mean difference of 500 hPa geopotential height. Average of three years with
warm SST anomalies in the eastern tropical Pacific (1983, 1987 and 1992) minus average of
two years with cold SST anomalies (1985 and 1989). The ensemble of 10 model simulations
were made with observed SST specified as lower boundary conditions and slightly different
initial conditions in each ensemble member. The model used is the COLA atmospheric GCM.



0 50 100 150 200
time (a)

10

15

20

25

30
ove

rtur
ni

ng
 a

t 3
0N

 (
S

v)

THC indices, ECHAM5/MPI-OM1
control vs. 1% integrations

(a)

1850 1900 1950 2000 2050 2100
time (a)

−3

−2

−1

0

1

2

3

no
rm

al
is

ed
 a

no
m

al
ie

s

North Atlantic THC and dipole SST index
1% CO2, ECHAM5/MPI-OM1

THC index
dipole SST index

(b)



4

3

2

Oct

Observed SST

Jan
1997

Apr Jul Oct

S
S

T
 (

°C
)

Jan
1998

Apr Jul Oct Jan
1999

Apr

Source: ECMWF

1

0

Ð1

Ð2

Niño-3

Plate 19.3 Plot of forecasts of Niño-3 for various start times throughout the large 1997–8 El
Niño. Niño-3 is the region in the equatorial Pacific bounded between 5S to 5N and 150W to
90W. Different lines of the same colour indicate different ensemble members. The background
indicates the location of Niño-3. This plot was produced by CLIVAR based on data from
ECMWF.

←
Plate 13.9 (a) Time series of the annual mean anomalies of the maximum overturning (Sv) at
30◦N in the control integration (black line) and in the greenhouse warming simulations
(coloured lines). Note that the evolutions in the greenhouse warming simulations closely follow
those of the control integration for several decades, indicating a very high level of THC
predictability. (b) Time series of the simulated annual mean Atlantic dipole SST index (dashed
line) and annual mean anomalies of the maximum overturning at 30◦ N (solid line) in the
longest of the greenhouse warming simulations. The dipole SST index is defined as the
difference between North Atlantic (40–60◦ N and 50–10◦ W) and South Atlantic (10–40◦ S and
30◦ W–10◦ E) SST. Note that SST and overturning are highly correlated at timescales beyond
several years in the greenhouse warming simulation. This implies that future changes in the
THC can be monitored by observing SSTs. The time series were normalised with their
respective standard deviations (Latif et al., 2004).



Plate 20.7 Geographical distribution of statistical weights for different member models in the
northern hemisphere. Colour scale of the fractional weights is shown at the bottom.
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Plate 21.11 Sensitive area predictions for NA-TReC 7. (a) A prediction based on total energy
singular vectors, and (b) a prediction based on the ETKF. The shaded areas are the sensitive
area predictions, the darkest shade showing the most sensitive area. The sizes of the areas are
8, 4, 2 and 1 × 106 km2. The contours show the mean sea level pressure (hPa) forecast for
66 hours in (a) and 72 hours in (b). The grey rectangle in (a) and the ellipse in (b) represent the
verification area, and the bold boxes outline the region that was actually targeted.
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Plate 26.3 (a) Maps of departures from climatology of the total regional summer precipitation
for three classifications of overall monsoon rainfall. (i) All India rainfall >115%, (ii) All India
rainfall about average and (iii) All India rainfall <90%. Irrespective of the All India rainfall,
there are regions of drought or flood in all classifications. Noting that most seasons fall within
±10% from normal, it is clear that even an excellent seasonal rainfall forecast will be difficult
to downscale to the regional level.
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Plate 26.3 (cont.) (b) Schematic temporal variability of summer monsoon precipitation: a
seasonal anomaly in precipitation can be made up from many temporal combinations of
precipitation. Each panel shows a 20% deficit (matching the overall of 2002) distributed in
different ways. Panel (i) uniformly reduced throughout the summer; (ii) a late monsoon and an
early withdrawal; (iii) a normal early and late monsoon with a prolonged mid-season break
(similar to 2002); and, (iv) a series of short-lived active and break periods. A perfect forecast of
the overall seasonal anomaly provides no information about how the precipitation will be
distributed throughout the summer season.
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