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To Carol






Creep phenomena have so far been investigated only in terms of old-
style technology. For a number of decades, the usual way of tackling
similar problems was to apply simple and exact tests (e.g. tensile tests)
to the very complex and impure materials used in industry and then
to subject the results of these tests to a subtle mathematical analysis.
As to the prospects of this way of proceeding, we need only to realize
that a piece of iron is far more complicated a structure than, for
example, a watch. Now imagine subjecting a watch, without opening
it, to a compression test; further trying to draw mathematical
conclusion from its undoubtedly very interesting stress—strain curve,
and finally dissolving the watch in acids to determine its chemical
composition. Although the most accurate experimental tools may be
used, and the highest degree of mathematical skill displayed, I doubt
whether in this way much valuable information could be obtained
about how the watch is working and how it could be improved. A
much more promising way is to take the watch to pieces to observe its
design and then to study the technological properties of its parts.
Translated into terms of our present problem: we must first learn the
properties of single crystals, in particular the laws of their plasticity;
then we may proceed to a study of polycrystalline metals with more
chances of succeeding than hitherto.

E. Orowan, Trans. AIME, 131, 412 (1938).
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Preface

The physics of high-temperature plastic deformation of solids has recently
become an object of interest for earth scientists (structural geologists,
tectonicians, physicists of the Earth and planetary interiors) as well as for
materials scientists. The reasons for this interest are, however, somewhat
different. On the one hand, the materials scientist wants to understand the
mechanical behaviour of metals and ceramics to design new materials able
to withstand more severe conditions or to process them at a lesser cost of
energy and matter. The earth scientist, on the other hand, faced with rocks
naturally deformed at large strains or with planetary mantles flowing
viscously with characteristic times of millions of years, would like to have a
physical basis for the extrapolation of laboratory constitutive equations to
inaccessible conditions of strain rate and time, as well as for the diagnosis of
past conditions from the present microstructure of deformed minerals. In
both cases, the materials (alloys, ceramics or rocks) are often complex,
polyphase aggregates whose deformation cannot in general be reduced to
that of their simpler constituents. It is, however, impossible to dispense with
the important step of understanding the physical processes at play in the
deformation of single crystals and single-phase polycrystals.

The present text-book is intended for geologists or geophysicists
interested in high-temperature deformation of Earth materials and wishing
to get acquainted with the methods of materials science as well as with the
most important models and recent experimental results, without getting
lost in the jungle of the materials science literature. By the same token, the
book is obviously also intended for materials scientists starting in the field
of high-temperature deformation. Examples are drawn from the field of
metals, ceramics or minerals, as the case may be, in the hope of
demonstrating the largely non-specific character of high-temperature
deformation.

The reader (senior undergraduate or graduate student) is not required to
have any special background other than elementary thermodynamics and
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knowing what a crystal is; the necessary concepts are introduced at the start
and developed as needed (up-to-date, key references are provided) until the
reader possesses the tools to understand the physics that lies behind the
most elaborate models or subtle controversies (if these are really
important!). This book does not claim to give a neutral account of the state
of the art (although it is hoped to be dispassionate) and it obviously reflects
my own views when universal consensus has not yet been reached.

Chapter 1 gives the indispensable background on mechanical tests. The
physical agents of high-temperature plastic deformation are lattice defects:
vacancies, dislocations, grain boundaries; these will be introduced in
chapter 2. Chapter 3 is devoted to a general exposition of the dependence of
steady-state creep rate on temperature and applied stress with the relevant
thermodynamic formulation. Chapter 4 deals with recovery-controlled and
glide-controlled creep models. The effect of hydrostatic pressure, especially
relevant to Earth materials, is treated in chapter 5. Structural modifications
(polygonization and dynamic recrystallization) usually accompany high-
temperature deformation, and they are often used as a means to determine
the palaeo-stresses in naturally deformed rocks; chapter 6 is devoted to
these phenomena and to a discussion of their use in geology. Chapter 7
deals with deformation by transport of matter (diffusion creep) and
superplastic deformation (involving grain-boundary sliding) and chapter 8
with deformation enhanced by phase transformations (transformation
plasticity). Finally, chapter 9 briefly introduces deformation mechanism
maps and isomechanical classes,

All chapters start with an abstract and some end with a list of
recommended readings. The book ends with a bibliographical list of all
papers referred to and with an index.

I warmly thank Andrew Putnis, who persuaded me to write this book,
made arrangements for its publication and commented on the manuscript.
Mervyn Paterson started everything and I also gratefully remember many
delightful talks with him on the subject of creep of crystals. Philippe Gillet
read the manuscript and gave the viewpoint of the user; I thank himas I do
colleagues and friends who contributed illustration material and preprints.

Paris, October 1983



1

Mechanical background

1.1
1.1.1

To understand the physics of high-temperature deformation of
crystals, we first need to describe the rheological behaviour of the
solid in terms of mechanical and physical variables (stress, strain,
temperature, pressure .. .). The description is embodied in constitutive
equations, obtained by means of mechanical tests. In the present
chapter, we summarily introduce the fundamental notions needed:
stress, strain, and the various rheological constitutive equations. At
high temperatures many materials flow viscously and viscous
behaviour is therefore especially important. The principal methods of
mechanical testing — creep at constant stress, deformation at constant
strain-rate and stress relaxation — are presented and compared. The
role of the variables in the constitutive equation is discussed: time, a
special kinematic variable, explicitly appearing in transient creep only;
strain, usually not a good variable, except when it coincides with the
structural variables; strain-rate and stress. Minimum creep-rate,
steady-state creep-rate and constant-structure creep-rate generally
correspond to different conditions and must not be confused. We are
concerned here with uniform deformation, but it may be useful to
consider briefly the criteria for non-uniformity (i.e. localization) of
deformation. Shear localization is a plastic instability manifesting itself
as a stress drop on stress-strain curves,

Definitions

Stress and strain
To investigate the physics of the deformation processes in crystals

itis first necessary to obtain a description of the phenomenon in terms of the
relevant variables. We are dealing with deformation, i.e. a change of shape
of a crystal or an aggregate of crystals, in response to external forces; this is
obviously a problem in continuum mechanics. The solid must first be
considered as a continuous body, endowed with material properties
represented by constants, dependent on temperature and pressure. The
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change of shape and the external forces must be given precise expressions,
susceptible of being measured in the course of mechanical tests.

(i) Let us first consider the external forces. Forces applied to the external
surface of a body at rest must clearly be felt inside the body; in other words,
a small volume element inside the body is subjected, on its surface, to forces
transmitted through the bulk of the body.

Let us consider (fig. 1.1) a point P inside the body and the three mutually
orthogonal planes going through P, normal to the reference coordinate
axes Ox,, Ox,, Ox;; these three planes together with a fourth one normal to
an arbitrary direction define an infinitesimal tetrahedron. Let F, be the
force per unit area applied to the face of the tetrahedron normal to Ox, at
any point P,and let 6,,, 0, ,, 6,3 be the components of the vector F, along
the axes Ox,, Ox,, Ox3, respectively. The quantities ¢,,, 0,5, 6,5 and 74,,
034, 033 may be defined, in the same way, as the components of F, and F,4
applied to the faces of the tetrahedron normal to Ox, and Ox;.

The vector F, is called the stress vector on plane Px,x;, normal to Ox,,at
point P. If we see plane Px,x; as dividing the body into a positive part (on
the side of Px,) and a negative part, we can say that the stress vector F,
represents the action of the negative part on the positive part of the solid at

Fig. 1.1. Stresses: The faces of an elementary tetrahedron isolated
inside a solid are subjected to resultant forces (per unit area) from the
rest of the solid (stress vectors). The stresses are the nine components
parallel to the coordinate axes of the stress vectors acting on the faces
parallel to the coordinate planes,

O3
&

‘"
327

X3

ETPL R T
O3 O3y :

4

F3
Lt
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P. The components o;; along the j axis (j=1, 2, 3) of the stress vector
relative to the plane normal to the i axis (i=1, 2, 3) are called the stress
components or the stresses for short. The nine ,; components define the
stress tensor at point P:

01y T2 O3

021 032 O3 (L.1)

O3y 032 O33

At the outer surface of the body the state of stress is imposed by the
applied external forces.

It can be shown that in most cases (when there is no body torque) the
stress tensor is symmetrical, i.e. ¢,;=0;, the number of independent stress
components being reduced to six.

The stress tensor defines entirely the state of stress at point P in the body,
i.e. the stress vector T on any plane going through P and normal to an
arbitrary direction n (n,, n,, n3) can be determined knowing all the o,;. It
follows from the equilibrium condition of an infinitesimal tetrahedron
whose fourth face is normal to n, that:

b T=Som (=123 i
i

Coming back to the table of the stress components, we can distinguish
the diagonal components o;; called normal stresses and the off-diagonal
ones oy, (i#)) called the tangential or shear stresses. By an appropriate
change of coordinates a given stress tensor may always be put under a
diagonal form, where the only non-zero terms are the diagonal ones
6,,0,,0; called the principal stresses.

The sum of all diagonal terms is independent of the coordinate system; it
is called the trace of the tensor. The hydrostatic pressure is equal, by
definition, to one third of the trace:

> P=3(0,,+0;,+033)=%(0, +0,+03) (L3)

It is always possible to decompose a given stress tensorinto a hydrostatic
part and a deviatoric part with a trace equal to zero:

Ty Oy2 0,3 P 0 0 all_P 0 0
O3y G032 033 = 0 P 0 + 0 622"}) 0
O3, 033 033 0 0 P 0 0 0'33—P

(1.4)

(ii) Let us now move to a definition of the deformation. Under the action
of the applied forces, a point of coordinates x; in the body moves by a
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displacement vector u(x;). If the displacement vector is the same for all the
points of the body we have a rigid-body translation. If the displacement
inside the body is not uniform, ie. if we have a gradient of displacement
between two neighbouring points, the distance between them is altered,
with the consequence that a small volume element, say a cube, will suffer a
change in dimensions and shape (and become a parallelepiped). A measure
of these changes is embodied in the gradient-of-displacement tensor, whose
nine components are the values of du,/dx; (i,j=1,2,3). Better still, the
symmetrical part of the gradient-of-displacement tensor can be directly
related to the change in the element of length, if the displacement gradients
are infinitesimal. We will define the infinitesimal strain tensor g; as the
symmetrical part of the displacement-gradient tensor and use it as a
measure of the deformation:
L fow Ou

| 4 sl-j—i(a—%-l-a—xi) (1.5)

By definition, the strain tensor is symmetrical. The diagonal terms ¢; are
called the stretches (positive or negative) and represent the relative length
changes of segments parallel to the coordinate axes; the off-diagonal terms
are called the shear strains and are related to the shape change. The physical
meaning of the ¢;; is visualized in fig. 1.2 in the case of a two-dimensional
deformation: a surface element initially square changes into a parallelo-

Fig. 1.2. Strains (two-dimensional case): Square OACB is deformed
into a lozenge OA'C'B'". Stretches (g;;) represent the relative length
change of segments parallel to the axis (¢,, =(04'— 0A4)/04 =
(0OA” — 0A)/0A); shear strains represent the change of shape
Er2=62 =(x+p)2=7/2).

dx, du
axlld"'
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gram and the angle between the Ox; and Ox; axes takes the values 90° —y,;
where y;; the shear angle is equal to:

As for the stress tensor, we can define the trace, equal here (to first order)
to the dilatation or relative volume change:

AV——s o _6u,+6u2 dus
y M TR T, Tox, O,

(L.7)

The strain tensor can be decomposed into a diagonal part corresponding
to a dilatation without shape change and a part with zero trace
corresponding to shape change at constant volume.

1.1.2  Rheology

Rheology is the branch of physics closest to mechanics. It gives a
phenomenological account of the mechanical behaviour of matter which
involves its material properties: the free fall of a ball of putty, a ball of steel
or the contents of a glass of water is described in an identical manner by
classical mechanics, but the behaviour of these materials is entirely different
when they reach the ground; it can be described by constitutive equations
which, in addition to continuum mechanics parameters, like stress or strain,
involve ‘material’ parameters, characteristic of the materials. The material
parameters depend on temperature, pressure and the microstructure at all
scales of the materials, but rheology considers them only as phenomeno-
logical constants and does not concern itself with the microscopic physics
that determines them. It is the purpose of this book to examine the physical
processes underlying the high-temperature rheological behaviour of
materials and it obviously must be described first. It is convenient to define
types of rheological behaviour — elasticity, plasticity, viscosity — and we will
briefly review their characteristics and constitutive equations. Although
many complex materials (polymers, foodstuffs, paints, etc.) exhibit
properties which participate of several types simultaneously, crystals are
relatively simple and their behaviour can usually be described in the
framework of one type.

(1) Elasticity

The elastic behaviour is particular in that it is the only one that is
thermodynamically reversible. An elastic body subjected to a state of stress
o;;instantaneously acquires strains ¢;;, and elastic strain energy is stored in
the body; upon release of the stresses, the strains instantaneously disappear
(fig. 1.3(a)) and the stored energy is integrally restored without any
dissipation into heat (for a perfectly elastic body).
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The constitutive relation (Hooke’s law) is then a true mechanical
equation of state relative to well-defined thermodynamic states, inde-
pendent of the path followed to reach them. It linearly relates the stress
tensor to the resulting strain tensor:

Fig. 1.3. Rheological behaviours: Strain ¢ is represented as a surface
as a function of stress and time ¢=f (s, r). The paths of stress a(t) and
strain g(t) are represented by simple and double arrows respectively.
(a) Elasticity: ¢ =0/y, ¢ is time independent. (b) Newtonian viscosity:
e=(a/n)t or €=ga/n, ¢ varies linearly with time at a rate proportional
to stress. (¢) Bingham solid: for stresses higher than a threshold stress
o1, the behaviour is viscous, not necessarily linear. (d) Rigid, perfectly
plastic solid: for stresses lower than gp, £=0, the stress cannot be
higher than ¢p and ¢ =0y is strain-independent. ¢; is the permanent
plastic strain at time ¢. (¢) Rigid plastic solid with hardening: ¢ =ap
increases with e,

{a}

Eo

€q

]
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> Oy= ZCUHEH (1.8)
L1

The elastic constants ¢; 5, represent material properties, dependent on the
interatomic forces in the solid. The number of elastic constants depends on
the symmetry of the structure: for triclinic crystals there are 21 independent
constants and only three for cubic crystals (see Nye, 1957). For isotropic
solids, like glasses or polycrystalline aggregates with no preferred
orientation, there are only two elastic constants, 4 and g, and the
constitutive equation takes the simpler form:

> 0= Z &+ 28 (1.9)
where

Z ﬁ‘-i=ﬁ| 1 +£22 +£33 =AV/V
i

is the trace of the strain tensor.

Simple states of stress often used are: uniaxial compression or tension,
where the only non-zero stress component is ¢, , = ¢,,hydrostatic compres-
sion where ¢, =0,=03=P, and simple shear where the only non-zero
component is, say, ¢, 3.

N.B.In all that follows, and for all rheological behaviours, we will use the
plain symbols ¢ and ¢ for the relevant stress and strain components in any
state of stress, i.e. ¢ and ¢ will represent the shear stress and shear strain of
simple shear, the engineering normal stress and strain of uniaxial compres-
sion or extension and the absolute value of the normal stress and strain of
pure shear. Although this practice would be frowned upon by people
trained in mechanics, it has no harmful consequences if we are mostly
interested in the stress dependence of the constitutive equations, as is the
case. Anyway, it is easy to adapt the general equation in terms of unspecified
¢ and ¢ to any particular case by using appropriate geometrical factors.

For uniaxial compression, it is interesting to define Young’s modulus

oy (3442

ey Atp
Note that, even though 6,=a3=0, ¢, and &4 are not zero. Also, there is a
hydrostatic component P=g¢/3.

For hydrostatic compression, the useful elastic constant is the modulus of
incompressibility or bulk modulus:

(1.10)

V
=P = 111
B=—P =331+2) (L11)
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For simple shear, the relevant modulus is the shear modulus u. Hooke’s
law takes then the simple form:
> o=2pe (1.12)
where ¢ and ¢ are the only non-zero components of stress and strain.

As the elastic constants depend on the interatomic forces in the crystal,
they mildly depend on temperature and pressure. This anharmonic effect
causes a departure from linearity in Hooke’s law, negligible in most
experimental conditions, but which must be taken into account for the high
pressures existing deep inside the Earth.

The elastic constants have the dimension of stresses and are measured in
pascals (newton/m?) or bars (1 MPa= 10 bars). Typical values for u range
between 100 kbars and 1 Mbar, for most materials.

Table 1.1 gives values of u, B and their pressure and temperature
derivatives, when known, for selected materials. Note that all single crystals
are elastically anisotropic and that the shear modulus corresponds to
different elastic constants (or linear combinations of them) for various
orientations of the shear plane and direction with respect to the crystal

Table 1.1

. dB dB dp du
Crystal Density B dP)T aT )P U 3 P)r 3 T)p
Aluminium Al 270 082 44 -0.16 026 18 -01
Copper Cu 892 133 54 0.5 1.7 -02
Gold Au 19.30 1.6 6.1 03 13 -01
Iron Fe 786 1.7 59 08 2 -02
Lead Pb 11.34 042 5.5 0.1 13 —-01
Magnesium Mg 174 032 39 0.17 13 -01
e-Cobalt  Co 890 1.83 4.3 0.58 18 -027
Silicon Si 234 098 4.2 0.7 05 -005
Halite NaCl 249 014 54 0.14 026 21 0.05
Periclase = MgO 360 1.62 42 -015 130 24 -02
Rutile TiO, 426 2.1 66 —-05 11 1.8 -03
Calcite CaCO, 271 0.9 0.37
Quartz Si0, 265 03 6.5 047 03
Corundum Al,O, 397 24 4.3 1.99 1.6
Forsterite Mg,Si0, 322 129 53 —015 081 18 —0.13
Garnet 4.1 1.5 54 -02 09 14 -01

(Mg, Fe);Al,81,0,,

Ice H,O 090 0073 0.025

The bulk modulus B and the shear modulus u are given in Mbar, their pressure and
temperature derivatives are respectively dimensionless and given in kbar/°C. All
values are reduced to atmospheric pressure (1 bar) and room temperature.
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lattice: for instance in cubic crystals the modulus relevant to shear on (001)
along [100] is c,4," whereas it is 3(c,, —c,,) for shear on (110) along [ 110].
However, the elastic anisotropy is usually rather small and taking it into
account will seldom drastically change things.

(i) Viscosity

Viscous behaviour is essentially dissipative, hence irreversible. In the
simplest case of the viscous fluid, an instantaneously applied shear stress,
even extremely small, causes the fluid to flow, i.e. to deform with time at a
rate measured by the shear strain-rate £ =de/dt, dissipating power at the
rate ¢¢; in the case of the linear viscous fluid the resulting strain-rate is
proportional to the applied stress (fig. 1.3(b)):
» o=né (1.13)

The viscosity # is a material constant, and in the case of the linear viscous
fluid it is independent of the stress (N ewtonian viscosity). In many instances,
the viscosity is non-Newtonian and depends on the stress (usually
decreasing as the stress increases), and the strain-rate—stress relationship is
no longer linear. If the stress is removed after a given time there remains a
permanent strain ¢ = (g/n)t; all of the mechanical energy has been dissipated
into heat.

If the flow starts only if the stress is greater than a threshold value, the
behaviour is that of a Bingham solid.

o <ar: .t,:=0 } (L.14)
gzor: E=(0—ar)n

The viscosity can be Newtonian or not (fig. 1.3(c)); for stresses much
larger than the threshold stress (which may be small) the distinction
between a fluid and a solid is somewhat academic: whether or not there was
a finite threshold stress, the main point is that the flow rate £ depends on the
stress. The flow can be characterized by an effective viscosity =0 /€ or by
the stress sensitivity of the strain-rate d log £/d log o.

Viscosity is expressed in poises (cgs unit or 1 barye s)orin Pas (1 Pas=
10 poise): its values for different materials are spread over a considerable
range of magnitudes: #=10"?% poise for water at room temperature and
n~ 10?2 poise for the rocks of the Earth’s mantle. It is usually strongly
temperature dependent and decreases as temperature increases. As we will

T Thestress and strain tensors being symmetrical, the indices i and jand k and I can be
interchanged in ¢;,. The elastic constants are normally writen c,,, where m and n
stand for the pairsijand kl with the following convention: Indicesmorn: 1,2,3,4, 5,
6 respectively correspond to pairs ij or kl: 11,22,33,23 or 32,13 or 31,12 or 21.
Thus, for example, ¢, =c,,3; and c;,=C3333
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see later, high-temperature creep of solids under constant stress can be
considered as a viscous flow process and it is one of the purposes of the
present book to investigate the elementary physical mechanisms respon-
sible for the viscosity and its dependence on various parameters. The
microscopic flow processes have a spectrum of relaxation times usually
dominated by one characteristic time 1. A given material may appear to flow
as aviscous fluid ona time scale longer than t, whereas it will behave as a rigid
(or elastic) solid on shorter time scales. To express this fact, Reiner (1969)
introduced the Deborah number,’ D, ratio of the time of relaxation to the
time of observation t,:

D=— (1.15)
to

For a very small D, the material behaves as a fluid and for a very large D it
behaves as a solid.

It is easy to calculate a global value of  in the case of viscoelastic bodies
which have viscous and elastic properties (most materials are in this
category) represented by the viscosity 5 and the shear modulus u. Analogue
mechanical systems can be built using springs and dashpots.

The Maxwell body is represented by a spring and a dashpot in series (fig.
1.4(a)); the total strain-rate is the sum of the elastic and viscous strain-rates
and the constitutive equation is:

¥ ot (1.16)

The Kelvin—Voigt body is represented by a spring and a dashpot in
parallel (fig. 1.4(b)); here the stresses are additive and the constitutive
equation is:

de
> o‘=pt£+r;a (1.17)

If a constant strain &, is suddenly imposed on a Maxwell body, the stress
relaxes from the elastic values pug,, to zero for infinite time (fig. 1.4(a)):

G = [Eg EXP (-—%) (1.18)

If a constant stress ¢ is suddenly imposed on a Kelvin—Voigt body, the
strain increases from zero to the elastic value oy/u for infinite time (fig.
1.4(b)):

s=“—°[1—exp(—£)] (1.19)
r T

1 After the prophetess Deborah, who prophesied that the mountains would flow
before the Lord (Judges 5.5).
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For both cases the relaxation time is the same:

> i (1.20)
u

The rocks of the Earth’s mantle have a viscosity of the order of 10! Pa s
and a shear modulus of the order of 10! Pa; t is then of the order of 10'°s
(300 years); it is therefore obvious that the mantle transmits as an elastic
body seismic waves with periods of a few seconds and flows as a viscous
fluid on a time scale of millions of years. A ball of polydimethyl siloxane
(otherwise known as silly putty) bounces elastically better than a steel ball if
thrown, but if at rest on a table it flows under its own weight, and turns into
a puddle.

(iil) Plasticity

A perfectly plastic solid suffers no permanent deformation if the
applied stress is lower than a threshold stress called limit of plasticity or
yield stress, 6. When the stress reaches o it remains constant at that value
while a permanent strain which can take any value appears (fig. 1.3(d)). In

Fig. 1.4. Viscoelastic bodies can be represented by various arrays of
elastic springs (shear modulus p) and viscous dashpots (viscosity 1),
with a relaxation time 7. (a) Maxwell body: spring and dashpot in
series. For an imposed strain, the stress relaxes exponentially to zero.
(b) Kelvin—Voigt body: spring and dashpot in parallel. For an
imposed stress, the strain exponentially reaches its elastic value.

a

{b)

€9
063 €glee — — — -
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the case of a plastic solid with work-hardening, the applied stress must be
increased above the yield stress to obtain larger and larger strains (fig.
1.3(d)).

Plastic deformation is a shear strain at constant volume that can be caused
only by shear stresses; hydrostatic pressure cannot cause permanent strains in
non-porous solids.

Plastic deformation is a dissipative, irreversible process, but time does
not appear explicitly in the constitutive equations:

6<op: £=0 }

osan emfid) (1.21)

However, in practice, plastic deformation is achieved in conditions where
plastic strain is imposed at constant strain-rate £ (see § 1.1.3) and the stress
necessary to achieve the strain is determined by the properties of the
material, so that, in effect, a perfectly plastic solid, strained at constant &,
flows under constant stress exactly as a linear Bingham solid. A single crystal,
subjected to shear stresses, deforms elastically at first; if the applied stress
becomes higher than the limit of plasticity (or equivalently, elastic limit) the
crystal yields plastically by slip (or glide) over a dense crystallographic
plane in a dense direction. A slip system is denoted by the Miller indices of
the slip plane and the slip direction: (hk!)[ uvw]. Slip on one given system in
crystals of one material is characterized by the limit of plasticity on that slip
system, which must be expressed by the shear stress acting on a slip plane
along the slip direction. In uniaxial tests (see below) the limit of plasticity is
usually measured by the axial yield stress, which varies according to the
orientation of the sample with respect to the axial stress. Schmid & Boas
(1950) showed that yield always occurred for the same value of the resolved
shear stress on the slip plane in the slip direction. The plastic limit for single
crystals is therefore called the critical resolved shear stress or CRSS. The
plastic limit for polycrystals depends on the possible slip systems in the
grains and on the preferred orientation or ‘texture’ of the grains in the
sample. According to the active microscopic processes the CRSS may or
may not depend on temperature and strain-rate. If it does, and it usually
does at high temperatures, it is again possible to describe the behaviour of
crystals by using Deborah’s number: for a given relaxation time (i.e. for a
given T, if £is high, i.e. if o in (1.15) is small, the stress does not relax and can
go to high values before the crystal yields; if £ is small, the stress cannot
increase and rapidly relaxes and it is possible to obtain an almost perfect
plastic behaviour at low yield stresses, equivalent to a viscous behaviour
(fig. 1.5). Similarly, for a given strain-rate it is often possible to obtain an
almost constant stress (no work-hardening) at high temperatures (fig. 1.5(a)
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and (b)). It is, indeed, the appearance of this behaviour which serves to
define operationally the domain of high temperatures. For laboratory
strain-rates, the (fuzzy) limit between low and high temperatures is usually
between 03T, and 0.8T,, where T, is the absolute melting temperature,
depending on the materials; it is generally lower for metals and higher for
minerals,

1.1.3  Mechanical tests

Mechanical tests at various temperatures provide the
experimental data which must constrain the physical interpretations of the
rheological behaviour. Despite theirimportance, it is out of the scope of this
book to give a technical description of even the most usual tests and we will
only review them summarily.

Fig. 1.5. Stress-strain curves at imposed strain-rate and constant
temperatures for various materials. Note that for large strains and
high temperatures strain-hardening vanishes (steady state). (a) Silicon
steel (after Immarigeon & Jonas, 1974). (b) Carrara marble
(polycrystalline calcite) (after Schmid et al., 1980) deformed under

3 kbar confining pressure. (c) MgO 1.8% Al,O; spinel single crystals
(after Duclos, 1981) deformed in compression along (110) axis
(€=6x10"%5"1), Note yield point at lower temperatures.
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(i) Stress regimes

Most mechanical tests are performed in nominally uniform stress
regimes, the most usual being uniaxial stress, in tension or compression,
where the only non-zero principal stress component &, acts along the
sample axis (fig. 1.6(a)). (Note that there is a hydrostatic pressure P=¢,/3.)
In this type of test the sample is put under stress by dead-weight loading or
by a motor-driven machine whose crosshead moves at constant speed
pushing on the sample or pulling it. To obtain some plastic deformation in
brittle materials, like most minerals or rocks, it is necessary to prevent them
from failing by fracture before they have a chance to deform plastically; this
is achieved by superposing a confining hydrostatic pressure on the uniaxial
stress (fig. 1.6(b)), thus preventing microcracks from growing. The confining
pressure may be obtained by squeezing a solid pressure-transmitting
medium (talc, sodium chloride, etc.) in which the sample is embedded; this
is the principle of the Griggs apparatus — in this case the pressure is only
approximately hydrostatic and owing to solid friction the stress is rather
poorly known, but the confining pressures may be rather high (up to
20 kbar). The other solution consists in using a gas as a pressure transmitter
(argon for instance), in which case the pressure is really hydrostatic, but it is
usually limited to lower values for safety reasons (see Paterson, 1978). This
type of test is often called triaxial (¢,,0,=03).

Fig. 1.6. Mechanical tests: (a) uniaxial compression, (b) uniaxial
compression, with confining pressure P, (¢) four-point bending of a
thin sheet, (d) torsion of a bar, under torque I,

é; o, +P
| l
/03= P
—t -—g,=P
7
' I
(a) {6}

F

F
r
1
g (=D

fe) {d)




Definitions 17

It is common in rock mechanics to use ¢, — o5 as a measure of the applied
shear stress and to refer to it by the unfortunate appellation ‘differential
stress’.

Mechanical tests in conditions other than uniaxial or triaxial are little
used and only when no other test is practicable: they involve non-uniform
stress states and their interpretation is accordingly more difficult.

Bending tests (fig. 1.6(c)) are sometimes used when the material is brittle
(i.e. fails at small strains) and available in thin strips only (e.g. carbides). The
sample rests on two knife-edges and is loaded in its middle (three-point
bending) or in two symmetrically located points (four-point bending). For
thin specimens a measurable deflection can be observed even at very small
strains, but the stresses are compressive or extensive on opposite sides of the
neutral plane, which complicates the analysis.

Impression creep is an indentation creep test in which the indenteris a rod
with a flat end; tests on several materials give results comparable with those
of conventional uniaxial creep tests (Chu & Li, 1977; Yu & Li, 1977).

Samples in the shape of helical springs may be loaded axially in
compression or tension. The advantage of this kind of test is that the tensile
strains involved are very small for a large displacement of the ends. The
shear stresses (maximum at the surface) and shear strains may be calculated
for a given compression or extension of the spring (see Reiner, 1969). This
test has been used for quartz samples machined from single crystals (Ayensu
& Ashbee, 1977) as well as for metal wire springs hanging freely under their
own weight (Crossland et al., 1973).

For ductile materials at high temperature, torsion tests performed on
rodlike samples (fig. 1.6(d)) have the interest of allowing stable deformation
to large strains (several hundred per cent). The shear stresses and strains are
very non-uniform, increasing from zero at the axis to a maximum value at
the surface; however, it is often possible to relate the macroscopic torque to
the angular velocity, in the same way as the axial stress is related to the
strain-rate in uniaxial tests (Rossard & Blain, 1958).

(i) Uniaxial tests

Uniaxial tests differ essentially by the way the sample is stressed:
we can distinguish three main varieties, giving complementary information
on the rheological behaviour of the materials.

(a) Creep tests. The sample is dead-weight loaded in tension or in
compression and its length is continuously measured with time. The load
can be continuously or periodically adjusted to take into account the
variation in cross-section of the sample as its length varies at constant
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volume, and so keep the value of the axial stress constant. The first modern
creep experiments under constant stress were done by Trouton & Rankine
(1904) on lead. Andrade (1910, 1914), a pioneer in creep research,
investigated the behaviour of many metals (Pb, Sn, Fe, Cu, Hg, etc.) at
various stresses and temperatures. He found that after a transient, ‘even for
large extensions, the rate settles down to constant value if the stress is kept
constant’. The results of creep experiments are first obtained as a curve
giving the length variation with time which must be transformed into the
variation of longitudinal strain (or stretch) with time. We have seen (§1.1.1)
that the infinitesimal stretch of a segment of length /, aligned with Ox, axis
(the stress axis), is:
_dl
Tl

As the length ! varies with time from an initial value I, to a final value I(t),
we obtain the instantaneous value of the total strain at time ¢ by integration
of (1.22) from I, to [

)
= [0 [l20]
o

de (1.22)

l ly ly
or
| 2 g(t)=In [I iA—:(—Q] (1.23)
o

where the signs + and — respectively correspond to extension and
compression, Al(t) is the total length change at time ¢t and Al/l; =g, is the
length change relative to the initial length. We see that the instantaneous
strain, or natural strain or true strain, refers to the actual length of the
sample at time ¢ and that it differs from the strain ¢, for large strain (table
1.2); for strain up to a few per cent, however, the difference is negligible and
&y may be used.

The slope of the creep curve g(t) (fig. 1.7) immediately gives the creep rate
£(¢t). When an apparent steady state has been reached, i.e. when the creep
curve can be reasonably assimilated to a straight line over a long enough
time, the slope is then constant and represents the value of the ‘steady-state’
creep-rate £(a, T)corresponding to the constant stress ¢ and temperature T.
The viscosity is immediately obtained: n =g¢ ™. It is important to notice
that in creep experiments the sample flows, so to speak, at its own pace,
instead of being driven at an imposed rate. The result is that even a brittle
single crystalline specimen can creep in compression under atmospheric
pressures without failing, provided that it does not contain microcracks liable
to grow and that enough care is taken in aligning the specimen and applying
the stress. In polycrystals, however, incompatibilities at grain boundaries
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give rise to internal stresses, which may cause cracks to nucleate. Tensile
creep tests usually end by necking (a plastic instability) and failure.

(b) Constant strain-rate tests. The sample is held between grips or
platens in a ‘mechanical testing machine’ and extended or compressed as
the crosshead is driven up or down at constant speed. The machine drive
can be mechanical (motor and screws) or hydraulic or a combination of
both. The force exerted is measured by a load cell and recorded as a function
of time. The length of the sample varies linearly with time, hence the strain-
rate £, relative to the initial length is constant, but the true strain-rate is not.
Although it is commonly used, the name ‘constant strain-rate test’ is
therefore misleading: the true strain-rate can be considered constant only at
small strains (see table 1.2). The force-time curve is usually transformed
into a true stress-time/strain curve. The true strain is obtained using
eq. (1.23) and the stress is obtained by dividing the applied force F by the
cross-section area A of the sample; the variation of the cross-section during
deformation must be taken into account for large strains; as plastic
deformation occurs at constant volume, Al (where [ is the length of the
sample), it follows that:

A= =
A°I0+AI 142

Fig. 1.7. Creep curves at constant stress and temperature. Single
crystals of sodium chloride deformed in compression along {100} axis
(after Poirier, 1972). 1 - T=780°C, 6=>50 g/mm?; 2 - T=780°C,
=30 g/mm?; 3 - T=780°C, 6=25 g/mm?; 4 - T=765"°C,

=10 g/mm?.
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The true normal stress, when strain is uniform, is therefore given by:

F
0=A—0[I +£o) (1.24)

where A, is the initial cross-section area, £, is negative for compression and
positive for tension. In the case of single crystals the shear stress gy, resolved
on the slip plane, in the slip direction, is given by Schmid’s formula:

> Gr=0 COS |/ cOs 1 (1.25)

where i is the angle between the load axis and the normal to the slip plane
and A the angle between the load axis and the slip direction (fig. 1.8).
The rheological behaviour of a material can be expressed by a creep curve
£(t) at o =const or a stress—strain curve a(g) at £ =const, and we can now
compare these curves (fig. 1.9), keeping in mind that strain-rate appears as
the slope of the creep curve and that a variation of ¢ visible on the stress—

Table 1.2. Natural strain ¢ and strain relative to the initial length &,
(compression)

eo(%) 01 1 5 10 15 20 30 40 50
e(%) o1 1 49 9.5 14 18.2 26.2 337 40.6

Fig. 1.8. Schmid’s formula: In a single crystalline sample, the load axis
makes an angle y with the normal to the slip plane, and an angle 4
with the slip direction. The resolved shear stress is given by og=
(F/A) cos i cos A.
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strain curve will correspond to a variation of the derivative of ¢ on the creep
curve: work-hardening is seen on the creep curve as decrease of the slope
with time; perfect plastic behaviour corresponds to a linear creep curve
(steady state) and work-softening corresponds to an increase of the slope of
the creep curve. The phenomenon known as yield point sometimes seen on
stress-strain curves (fig. 1.9(d) and fig. 1.5) is due to a plastic instability: the
solid yields for a load which it cannot sustain once the deformation has
started, there is a stress drop followed by a region of slow variation of o and
eventually work-hardening appears; the corresponding creep curve is
sigmoidal and exhibits an inflexion point. Whether a plastic instability in a
sample manifests itself as a load drop or not depends on the hardness of the
machine: when the crosshead moves at constant speed there is a deforma-

Fig. 1.9. Comparison of stress—strain curves (¢ =const.) and creep
curves (o =const.) for materials with various properties: (a) work-
hardening, decelerating creep-rate, (b) no work-hardening, steady-state
creep, (c¢) work-softening, accelerating creep-rate, (d) yield point,
sigmoidal creep curve.
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tion not only of the sample but of the whole machine (load cell, screws, etc.)
which can be formally described as a spring with a rigidity constant k. If the
machine is hard (k large), a rapid variation in length of the sample is
immediately felt and the load relaxes visibly; if the machine is soft (k small),
the rapid variation in length of the sample is absorbed by the machine and
the load drop is ironed out.

(c) Stress relaxation. Hard deformation machines may be used for
another type of test which can give useful information on the rheology, if
properly interpreted. Let us consider the common case of an elasto-plastic
material with hardening deformed in compression at constant crosshead
speed in a hard machine whose stiffness can be represented by an elastic
modulus k (fig. 1.10). Let deformation proceed past the elastic limit into the
plastic domain until the flow stress reaches a value g, (for time 1,); at that
moment stop the crosshead, i.e. freeze the total strain at its current value g,;
the stress will decrease with time and would go to zero for infinite time (if the
solid is free from internal stresses). The curve o(t) is the stress-relaxation
curve.

The total strain g, is composed of three parts: the elastic strain of the
sample ¢, the elastic strain of the machine &, and the plastic strain &, of the
sample.

Eo=&yt+Eg+Ep (1.26)
If ¢, =constant, then £,=0 and we can write

Fig. 1.10. Stress relaxation f(g, o, t)=0 surface (see fig. 1.3). At time t,,
the total strain ¢, is kept constant, its elastic part (vertical hatching)
transforms with time into plastic strain (stippling). The projection of
the surface onto the (o, t) plane is the stress-relaxation curve.
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Eu+ée+ép=0 (1.27)
Now,
pe=flyl 1.28
ey t+eg= tE c (1.28)
where E is Young’s modulus of the sample, hence
p 1 1\de
Ep=— (;'FE)E (1.29)

This means that, even though the total strain is kept constant, the plastic
strain of the sample still increases at a rate proportional to the rate of stress
relaxation; what happens is that the elastic strain energy stored in the
machine and the sample dissipates irreversibly into plastic deformation of
the sample. The total strain is kept constant through an increase in plastic
strain and a decrease in elastic strain. With a stiff machine, the relaxation is
rapid and in the limit of infinite stiffness only the elasticity of the sample is
involved, i.e. the elastic strain of the sample turns into plastic strain; stress
relaxation is then representative of physical processes taking place in the
sample. Conversely, with a soft machine the relaxation is long and is much
more representative of the machine than of the sample,

Stress relaxation is used to obtain information on thermally activated
processes, as we will see below (chapter 3) (Guiu & Pratt, 1964; Rutter et al.,
1978), but we must again emphasize that this method gives physically
meaningful results only if the experiment is very well controlled.
Essentially:

(i) the machine must be very hard —a hydraulic machine is the best;
(i) as the relaxation is then very rapid at the beginning, data
acquisition must be very fast;
(iii) the test must be rigorously isothermal, which demands excellent
temperature control.

(i) The samples

The dimensions and shape are important parameters in
mechanical tests and they are not without influence on the creep curve or
the stress—strain curve.

(a) Polycrystalline specimens obviously must have dimensions at least
an order of magnitude greater than the grain size, if the results are to be
reproducible. For compression tests, the aspect ratiois also very important:
if the sample is too slender it may buckle; if the sample is a flat disk the
boundary conditions at the platens become predominant and the strain and
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the stress become very non-uniform, the hydrostatic pressure increases in
the sample as it is squeezed, and the conditions are those obtained in
Bridgman’s anvils (Jackson & Waxman, 1963).

The best values of the aspect ratio are in the range of 2:1 to 3:1. Absence
of lubrication at the platens usually causes barrelling of the sample for large
strains hence non-uniformity of strain, but lubrication is not easily achieved
at high temperatures as many lubricants do not withstand high tempera-
tures. Besides, the lubricant is squeezed out of the interface, unless it is
stored in grooves (Immarigeon & Jonas, 1971).

(b) Compression testing of simple crystals is rather delicate, especially
when there is one easy slip system. Mechanical tests may give different
results for different aspect ratios and orientation of the slip planes with
respect to the load axis, according to whether the slip planes meet the free
lateral surface or the platens (fig. 1.11(a)). In the latter case the strain non-
uniformity may be stronger, but in the former case there is also a non-
uniformity due to the fact that the slip planes tend to rotate to an
orientation normal to the load axis (parallel to it for tensile tests) and that
the rotation is impeded at the platens (fig. 1.11(b)); this may result in a
canting of the specimen and meaningless stress—strain or creep curves. This

Fig. 1.11. Compression tests of single crystals. (a) Left: slender
specimen, slip planes meet the free lateral surface. Right: squat
specimen, slip planes meet the compression platens. (b) Rotation of
slip planes towards an orientation normal to the load axis. Rotation is
impeded at the platens. (¢) Duplex slip, no lubrication at the platens.
The slip planes are bent and the sample takes a barrel shape.
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is avoided when there are two slip systems equally inclined to the load axis
(duplex slip) but here, too, absence of lubrication results in barrelling of the
sample for large strains and bending of the planes (figs. 1.11(c)and 1.12)(see
also Bretheau & Dolin, 1978). For large strains the rotation of the planes
must be taken into account when calculating the resolved shear stress (eq.
(1.25)). Finally, it is unfortunately not superfluous to say that the samples
must be examined after deformation, at all scales of observation.

1.2 Constitutive relations

1.2.1  State variables, time, strain

Constitutive relations describe the rheological properties of
materials. We have already given (§1.1.2) characteristic constitutive
equations for simple rheological behaviours, but most crystalline solids
behave in a complex way and we have to decide which is the dominant
rheology whose constitutive equation best describes the deformation. In
particular, constant strain-rate tests produce stress—strain curves
apparently independent of time and the theory of plasticity based on this
kind of test is indeed a time-independent theory (e.g. Spencer, 1968), Creep
tests, on the other hand, are interpreted in the framework of viscous flow. It
must be emphasized that the difference is only apparent, Orowan (1940) was
probably the first to point out that plastic properties of one material cannot
be described by o—¢ curves (as is done in the theory of plasticity) but by a
rate of flow £, at different stresses, temperatures and states of strain-
hardening that depend not only on strain but on the whole history of the
sample. Hart (1976), again, remarks that one must look for constitutive laws
that can describe the time and temperature dependence of plastic flow and
that ‘the deformation that is commonly described as time-independent
plasticity is in fact a rate process that is not qualitatively different from the
high-temperature creep’.

The most desirable general constitutive equation will therefore have the

form:

flo,é e, é...), T, P]=0 (1.30)
where o, ¢, T, P are external state variables describing the state of the system
and y is an internal state variable possibly depending on ¢ and its
derivatives with respect to time &, £, etc. (i.e. integrating all the history of the
sample). Time itself must not explicitly appear in the constitutive equation if
it is to be a true mechanical equation of state (describing unambiguously a
state, as PV =nR Tdoes for perfect gases); the reason is that it is not a state
variable but a path or coordinate variable, as a function of which the state
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Fig. 1.12. Bending of planes in compressed samples of sodium
chloride. Cleavage follows the bent {100} planes (not slip planes)
normal and parallel to the load axis. Height of sample: top — 8.4 mm;
bottom — 5.6 mm (courtesy V. Pontikis).
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variables may vary; its status is not the same as that of T, ¢ or &: it is
impossible to fix a value of time, as one fixes the temperature or the stress.
Besides, time and variables depending on time cannot simultaneously appear
as independent variables and be treated as such in a constitutive relation
(McCartney, 1976).

The total plastic strain ¢ is not a good state variable and the state of
strain-hardening cannot be described in terms of ¢ only. This is almost
obvious if one realizes that the same total strain may result from very
different histories which may have left completely different imprints on the
internal state of the crystal.

1.2.2  Creep regimes: primary, quasi-steady-state
The general constitutive equation (1.30) is often put in the form:
E=E(6.y, T, P) (1.31)

The strain-rate é is determined as the slope of the creep curve &(t); it is
therefore necessary to examine the shape of the creep curve and see whether
its slope can be constant (independent of time).

In compression tests, the creep curve normally starts by a primary,
transient regime during which the creep-rate decreases in time; it is usually
(but not always) followed by a quasi-steady-state regime during which the
creep curve can be assimilated to a straight line within experimental scatter;
eventually, as strain increases and the end constraints at the platens become
important, the strain-rate decreases more markedly (fig. 1.13(a)). In tension,
after the primary regime, the quasi-steady-state regime is followed by an
unstable regime during which the strain-rate increases, the specimen suffers
necking and eventually fails (fig. 1.13(b)). The primary regime was first
described by Andrade (1910); he found that it could be fitted by the
expression:

I=1y(1 +Bt'3)expkt (1.32)
where |, and ] are respectively the initial length of the sample and its length

at time ¢, § and k are constants. The equation of the creep curve, in its
modemn form &(t), is easily derived:

*dl
s=J T=ao+ln (14" +kt (1.33)
(1]
For small values of ¢, hence of &, this is equivalent to:
B exveg+ Pt +kt (1.39)
The total strain is seen as the superposition of a primary transient creep
in ¢'® on a viscous steady-state creep with creep rate k.
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The law in ¢'/3, known as Andrade’s law, gives a very good fit to the
primary regime of practically all materials: steel, concrete, nylon, graphite,
etc. (see Kennedy, 1962). It is clearly useless to try to interpret it in terms of a
particular physical process.

The quasi-steady-state regime is usually treated as a steady-state regime
and its creep-rate variation with stress and temperature is often taken as the
equation of state of creep. Some caution, however, is in order: first, the fact
that a portion of the creep curve appears linear or not over a certain time
interval often depends on the time scale of the creep curve. It is apparent in
fig. 1.14 that a portion of curve seen as concave towards the time axis on a
certain scale becomes convincingly straight on a scale six times greater, and
this without even taking the experimental scatter into account. The only
way to decide whether it is appropriate to consider a quasi-steady-state
regime is to plot the strain-rate against the true strain. If the strain-rate

Fig. 1.13. Typical creep curves. (@) Compression: the creep-rate
decreases in time but a quasi-steady-state portion (II) can be found
after the primary creep regime (I) and before the tertiary creep regime
(ITD). (b) Tension: the creep-rate first decreases in the primary creep
regime (), a quasi-steady-state regime follows (II). The accelerating
tertiary creep (III) leads to failure.

€
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(b)
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tends towards a limit for large strains, we can take this limit as quasi-steady-
state creep-rate (fig. 1.15), it is clearly smaller than the apparently constant
creep-rate of the final portion of the curve. Second, we are not sure that the
minimum creep-rate thus determined is really a steady-state creep-rate and
this is why we always use the prefix quasi. For instance, in the case of tensile
tests, the minimum creep-rate in the region of the inflexion point can hardly
be seen as a steady-state creep-rate since it increases eventually until failure
occurs: a steady-state flow should be stable and never end. We will see in the
next subsection that, in general, minimum creep-rate is not equivalent to
steady-state creep-rate (if a steady state exists at all).

1.23 A mechanical equation of state
We shall, here, summarize the analysis of Hart (1970), which

applies to the isothermal deformation of ‘well-behaved’ polycrystals (e.g.
face-centred cubic metals like aluminium) deforming by intragranular slip.
Hart investigates the conditions for a plastic equation of state to exist — it
may be noted that its existence is completely independent of whether or not
there exists a steady state.

Let us consider a relation between o, ¢ and £ and describe incrementally
the deformation history by:

> dlng=yde+mdlné (1.35)

where do, de, dé are the increments of stress, strain and strain-rate
respectively. The logarithms are introduced for convenience reasons as we
will use log o—log £ plots.

Fig. 1.14. Steady-state regime? The same creep curve is shown using
two different time scales. The decelerating creep curve A exhibits a
spurious steady-state portion between t, and ¢, if the time scale is
multiplied by 6 (curve B).
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For a given path:
dlne 0

dlne
m=— 8')5 (1.37)
0 = da/d%), is the work-hardening coefficient of the stress—strain curves, mis
the strain-rate sensitivity of the stress.
Eq. (1.34) can be written:

1
ds=—cllna—-?dlns’ (1.38)
7
An equation of state exists if (1.38) can be integrated and if its solutions do
not depend on the integration path. The condition is that y and m be
functions of ¢ and £ only:

Fig. 1.15. Quasi-steady-state regime can be identified on a creep curve
&(t) by plotting the creep-rate against the creep strain. If &(t) tends
towards a limit, the limit can be taken as quasi-steady-state creep-rate
£gss:

€

€ass
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y=1l0, £)
m=mi(o, a‘}} (1.39)

It can be shown that if the condition (1.39) is fulfilled and, even if the more
restrictive condition that de be a total differential is not fulfilled, it is always
possible to find an integrating factor F such that F de is integrable. If F #1,
¢ is not a good state variable.

Putting dy=F de we can find a family of curves

y=ylo,¢€) (1.40)

solutions of the equation, that we will call hardness curves; the hardness yis
the structural parameter introduced in the equation of state (1.31). In the
log o—-log € plot, constant-structure curves corresponding to given values of
y can be drawn (fig. 1.16). The parameter y can be operationally defined in
several ways all corresponding to the same state of hardening of the crystal.
The meaning of the constant-structure lines is the following: if a sample is
loaded at stress o, and deforms at the rate £, and if, without changing the
structure (ie. with negligible strain), the stress is suddenly increased to o,
(or decreased to ¢,), then £, will change to &, or ¢, on the same constant-
structure line. Stress relaxation allows a sampling of a wide range of stresses
and strain-rates with very small plastic strain and is a choice technique (if
well applied) to obtain these curves (Hart & Solomon, 1973). If the stress is
changed by a stress jump during a creep test, usually by a small amount, one

Fig. 1.16. Typical constant-structure curves for various values of the
hardness parameter y. Stress jumps and stress relaxation correspond
to moving the representative point (o, ¢) on the same constant-
structure curve,

—— |0g &
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can obtain the slope of the curve (assimilated to a straight line), i.e. the
strain-rate sensitivity of the stress:

dlne dlneg
"‘=m);am a) (141}

This is a technique commonly used (see chapter 3).

There is, however, another way to plot log ¢ against log ¢ which leads
to different curves and different values of the strain-rate sensitivity of the
stress:in a constant-stress creep test, one can usually associate a value of the
quasi-steady-state creep-rate with the value of the stress and plot log o
against log & for different tests (i.e. different o, ¢ couples). The curve
obtained is not a constant-structure curve, since there is no reason for
structure to remain constant along the creep curve as strain increases. If
there exists a real steady state, then it must correspond to zero strain-
hardening in constant strain-rate tests, hence y=0 in (1.35). The curve
obtained in the logao-logé plot is the y=0 curve, different from the
y=const. curves (fig. 1.16). Its slope 1/n is the strain-rate sensitivity of the
stress in steady state but it is different from m. (We have called the slope 1/n
because it is common to plot log £ against log ¢ and obtain n as the stress
sensitivity of the strain-rate. It is the stress exponent of the power law
E=Ad")

In tension tests the minimum creep-rate corresponds to the start of the
plastic instability at the inflexion point of the creep curve, for which we have
the Considére criterion (see below):

do
g)é =0 (1.42)

or y=1. It clearly does not correspond to a steady state (Hart, 1981). For
compression tests it is in most cases doubtful that a steady state is reached
and the quasi-steady state probably corresponds to y>0 (slight strain-
hardening).

The values obtained for é In /2 In £ in conditions of constant y or y are
different. Usually,

E> m (1.43)

n

This has been repeatedly verified (Mitra & McLean, 1967; Pontikis &
Poirier, 1975) (figs. 1.17 and 1.18).

Hart (1976, 1981) has proposed a general mechanical equation of state,
which takes into account all the relevant rheological properties of
crystalline solids and gives a good description of the constant structure
log o-log £ curves found by load relaxation:
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(e8]
é*=(%)nf exp (—%) (1.45)

a* is the hardness (it is our y, defined here in an appropriate way), A is a
material constant (A =0.15 for aluminium), f is a rate constant, Q describing
the temperature dependence is an activation energy (see chapter 3), i is the
shear modulus and n is the stress sensitivity of quasi-steady-state creep-rate.

The Hart equation of state also accounts for the experimental fact that
there is a scaling relation with respect to ¢ and € among the curves of
different hardness: the constant-hardness curves can all be brought into
coincidence by translations along straight lines of slope m (Hart &
Solomon, 1973).

with

1.3 Stability of deformation

Plastic instability occurs when it becomes easier to deform the
sample where it has already been deformed than elsewhere; conversely the
deformation is stable, when it is easier to start deformation elsewhere than
pursue it where it has begun. Plastic instability, therefore, always manifests
itself by a localization of deformation, whereas stable deformation must be
uniform at the scale of the sample.

Fig. 1.17. Constant strain-hardening curves (y =const.) including the
steady-state curve (y=0) do not give the same value of the strain-rate
sensitivity as the constant-structure curves (y=const.).

log o
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The appearance of plastic instability and the conditions leading to it have
been the object of detailed analyses (see Hart, 1967; Jonas et al., 1976). We
will only derive a simple criterion for instability in tension and shear and
review the physical conditions leading to it.

Let us consider, for example, the case of constant strain-rate traction tests
(the conclusions are identical for creep tests); for an increment of strain
along the stress—strain curve, we have from eq. (1.35):

dlno=yde (1.46)
since d In £=0; y is still given by (1.36).
Now if A is the cross-section area of the sample, and F the force applied to
the sample, we have:
F=04 (1.47)
We will choose for an instability criterion the condition that the load-
carrying capacity decrease with increasing strain, i.e.:

Fig. 1.18, Minimum creep-rate curve (A) and constant-structure curve
(B) for AgCl single crystals (after Pontikis & Poirier, 1975). Slope of
A~-1/m=1/3; slope of B—1/n=1/53.
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din F
de

From (1.47), we have:
dInF=dlncr+dlnA
de de de
The instability may appear for d In F/de=0, i.e.:

dlne din 4

de de

Plastic deformation occurs at constant volume, so for a sample of length [
and cross-section area A:

<0 (143)

(1.49)

Al=const
or
di
dlndA+dIni=dIn A+T=dlnA+ds=0
or
din4 -1
3
hence:
dine
& =y=1 (1.50)
or:
| 2 :ﬁ—a=a (1.51)

This is known as the Considére criterion; it defines the stress above which
necking occurs in a stress—strain test (fig. 1.19).
In shear, where the area 4 remains constant, we would have:

dho_
=

The variation of ¢ (or log ¢) with strain can be decomposed into two
kinds of terms: the terms that express strain-hardening and those that
express strain-softening; they correspond to various physical processes.
Instability will occur when the sum of the strain-softening terms (negative)
balances the sum of the strain-hardening terms (positive), so that there is a net
strain-softening. Obviously it is then easier to deform an already strained
region (i.e. at lower stress) than to start deformation elsewhere. There are
several potential strain-softening processes (Jonas & Luton, 1978; Poirier,
1980) of which the most important are:

0 (1.52)
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— Dynamic recrystallization, a process whereby strain-hardened
grains are replaced by new unstrained grains (see chapter 6). This
leads to oscillations, or peaks, in the stress—strain curve, hence to
strain-softening in the regions with negative slope (Rossard &
Blain, 1958). It has been shown, in the case of magnesium, that

Fig. 1.19. Considére construction. The strain for which necking can
occur is determined by sliding a segment of unit length AB along the
axis of abscissae, until a tangent drawn from A touches the curve at
C, above B (do/de=tan a=CB/AB=g/1).

(]

]
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Fig. 1.20. Strain softening due to dynamic recrystallization in
magnesium causes plastic instability (shear bands) (after Ion ez al.,

1982).
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under conditions leading to a stress peak (T =260°C, é=10"5%/s)
the dynamically recrystallized grains were concentrated in a single
shear band which accommodated all subsequent deformation (Ion
et al., 1982) (fig. 1.20).

— Adiabatic heating, when deformation is thermally activated (see
chapter 3) if there is little or no heat exchange during deformation,
owing to low thermal diffusivity and/or rapid deformation, the
heat dissipated during straining may raise the temperature of the
sample enough to make deformation considerably easier.

Readings

W. D. Means, Stress and strain, Springer-Verlag, New York (1976), 339 pp. A
crystal-clear introduction to basic concepts of continuum mechanics
for geologists.

M. Reiner, Deformation, strain and flow, H. K. Lewis, London (1969), 347 pp.
An illuminating introduction to rheology by one of its founding
fathers.

A. H. Cottrell, The mechanical properties of matter, Wiley, New York (1964),
430 pp. From physics to mechanics of materials at the undergraduate
level. A gem of a book.
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The agents of deformation:
lattice defects

21

Plastic deformation of crystals is carried by lattice defects: the
migration of vacancies is responsible for deformation by transport of
matter, the propagation of dislocations is responsible for deformation
by slip, in polycrystals grain-boundary motion may also be a source
of deformation.

Vacancies are point defects: vacant sites in the crystal lattice. For
entropic reasons there exists an equilibrium concentration of vacancies
dependent on the temperature. The vacancies migrate by exchange
with neighbouring ions; their migration obeys diffusion equations
(Fick’s laws) identical to those ruling the diffusion of heat.

Dislocations are linear defects at the boundary between an area on
which slip has taken place and the rest of the crystal, as yet
‘unslipped’. They create an internal strain field and stress field
extending through the whole crystal and whose strength decreases as
the inverse of the distance to the dislocation. It is through their strain
field that dislocations ‘see’ an applied stress and move, thus increasing
the slipped area. Dislocation motion is impeded by a thermally
activated lattice friction force (Peierls’ force) and by obstacles.
Orowan’s equation is a microscopic equation of state relating the
strain-rate to the dislocation density velocity.

Grain boundaries in a chemically homogeneous material are two-
dimensional defects separating grains whose lattices have different
orientations. They can often be described as arrays of dislocations.
Recrystallization is a change in the granular structure involving
motion of grain boundaries.

Generalities

A perfect crystal, i.e. a crystal whose lattice periodicity would be

nowhere disturbed, will respond elastically to an applied shear stress and
will acquire no permanent strain as long as the stress remains inferior to the
theoretical elastic limit, high enough to break all chemical bonds simul-
taneously across a slip plane and allow plastic slip as described in §1.1.2.

The theoretical elastic limit is of the order of a tenth of the shear modulus
(1/10) for all crystals; under these conditions, deformation would involve
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such high stresses that it would become practically impossible: there would
be no metallurgy and no ductile tectonics in a world of perfect crystals. It is
clearly not the case and the explanation for the relative ease of deformation
in crystals lies in the fact that crystals do not deform all at once: strain
occurs progressively — a view consistent with the realization that plasticity
is a flow process —at a lesser cost in power. Real crystals are not perfect but
contain defects where periodicity is locally broken; some of the most
important defects are potentially deformation ‘carriers’: their motion in a
stress field produces an elementary deformation (a quantum of strain, so to
speak) in the sense that makes the applied forces do mechanical work. In
principle, if we know the values of the quantum of strain corresponding to a
given defect (i.e. its strength), the concentration of defects and their velocity,
we can obtain a microscopic equation of state for steady state (similar to
Ohm’s law for electrical current): flow rate=concentration of carriers x
strength x velocity.

(i) Vacancies are point defects — vacant sites in the crystal lattice; they
can migrate by exchanging ions with neighbouring sites. We will
see that in a given stress regime, there exist gradients in the vacancy
concentration; vacancies flow down the concentration gradient,
which corresponds to a flow of matter in the opposite sense,
achieving deformation of the crystals by what is known as diffusion
creep (see chapter 7). Vacancies are the agents of deformation by
transport of matter.

(i) Dislocations are line defects bounding areas in the crystal where
slip has already taken place. The outward propagation of disloca-
tions under stress makes the ‘slipped’ area increase at the expense
of the as-yet unslipped crystal. Dislocations are the agents of
deformation by slip.

(iii) Grain boundaries are two-dimensional defects separating crystals
of different lattice orientations. In certain conditions, their shear
strength can be relaxed and adjoining grains can slide along the
grain boundary, which results in macroscopic straining with
little deformation inside the grains (much in the way of a wet
sandbag). Grain boundaries are the agents of intergranular
deformation.

In the following sections, we will give a brief and elementary account of
these three types of defects, introducing at the arm-waving level the features
or properties that will be used later, and leaving aside rigorous general
treatments and mathematical developments, which the reader will find in
articles (given in references) and in specialized books (see list of readings).
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2.2 Vacancies and diffusion

221 Thermodynamics

A vacancy is a vacant lattice site in a crystal. To define the
thermodynamic quantities that we will use later, let us ‘prepare’ a crystal
containing one vacancy by the following thought experiment (fig. 2.1):

(i) Takea piece of crystal containing n atoms at P and T'(for simplicity
we will consider a chemical element with only one type of atoms).

(i) Extract an atom from inside by cutting the Z bonds linking it to its
neighbours (Z is the coordination), thus leaving a vacancy.

(iii) Deposit the atom on the surface, at a step on a ledge, so that the
external area is left unchanged; some bonds are restored in the
process. The total number of atoms has not changed but the
process of formation of one vacancy is accompanied by a variation
of volume ¥, internal energy E and entropy S (between final and
initial state).

The variation of volume is obviously close to the value of the atomic volume
Q, but it is not equal to it owing to a relaxation of the crystal around the
vacancy (inward or outward); it is called the volume of formation of a
vacancy, AV;. The variation of energy corresponds to the energy of the net
numbers of broken bonds; it is called energy of formation of a vacancy, AE;.
Finally, the entropy of formation, AS;, corresponds to changes in the
vibrational atomic frequencies in the vicinity of the defect.

We can therefore define the enthalpy, AH;, and the Gibbs free energy,
AGy, of formation of one vacancy:

> AH,=AE,+PAV; @2.1)

Fig. 2.1. Formation of one vacancy (principle): An atom inside the
crystal is brought to a step on a ledge at the surface (the volume
increases but not the area).
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(1) (2) (3)
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If n, vacancies are formed, the change in free energy of the crystal (with the
perfect crystal as reference state) is:

AG=n, AG; (2.3)
but to write the free energy change AG, we must take into account a

configurational entropy term AS,_ due to the fact that the n, vacancies can be
distributed among the n sites in W different ways:

AG=n,AG—TAS, (24)
Now by definition:
AS.=kIn W 25

where k is Boltzmann’s constant. As vacancies are indistinguishable, Wis
equal to the number of ways n, objects can be selected from a set of n
identical objects:

=n(n—l}(n-—2}--'(n—n,+l)_ n!

w 1:2:3-...n, " (n—n)!n,!

(2.6)

A good approximation of AS, can be obtained using Stirling’s formula:
In(xH=xnx—x

and by making the reasonable assumption that n, <n; eq. (2.4)finally can be
written:

AG=zn, AG,—kTh, (1 +In -'-’—) 27)
n,

We see that as n, increases, the increase in entropy can balance the increase
in enthalpy so that, for a given temperature, there is a value of n, that
corresponds to a minimum in free energy, i.e. to an equilibrium situation,
for AG/on, =0.

The value of the equilibrium atomic fraction of vacancies for a given
temperature is:

[ N,E%=exp (— ﬂ) 2.8)

2.2.2 Diffusion

Diffusion of vacancies by exchange with atoms is a random-walk
process, described by Einstein’s relation:

(R*)=TtsI* 29
where (R?) is the mean square distance covered by a vacancy during time ¢,

I is the jump frequency and 8! the jump distance. The diffusion coefficient of
vacancies is defined by:
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(R*) T
D,= =—3
Y6t 6 0
The jump frequency (total number of jumps of a vacancy per second) is a
thermally activated quantity proportional to an attempt frequency v
(& 10'3 s) and to the probability that an atom, assisted by thermal energy,
succeeds in overcoming the potential barrier:

r=2Zv exp(—-AGm) @.11)

(2.10)

kT

where Z is the coordination and AG,, the free energy of migration. The jump
distance depends on the crystal structure and the direction. For cubic
crystals of cell parameter a, it is easily shown that: Z51%/6=a? In general,
D, is written:

| 2 D,=D,, exp (— %) 2.12)

where AH , is the activation enthalpy for migration and D, includes the
entropic term, The self-diffusion coefficient is the diffusion coefficient of the
atoms of the crystal (in the case of compounds one can define a self-diffusion
coefficient for each species). The self-diffusion coefficient is not equal to the
diffusion coefficient of the vacancies: a vacancy is surrounded by atoms and
its probability to jump is equal to the number of neighbouring atoms times
the probability for any of the neighbours to jump into the vacancy; an atom
in the crystal can jump only if a vacancy is on a nearest-neighbour site and
the probability of that occurrence is equal to the atomic fraction of
vacancies present in the crystal. The self-diffusion coefficient Dy, can be
written:

> D,=D,N, (2.13)
or
AH+AH,
DM = DO exXp (— —k?“——-) (214}
The quantity
AH, =AH;+AH, (2.15)

is the activation enthalpy for self-diffusion; it can be written
AHsd=AEsd +PAVsd {2.16)

where AV, is the activation volume for self-diffusion (see chapter 4). AH, and
AV, can be experimentally determined by measuring the diffusion
coefficients for different temperatures and pressures (fig. 2.2)
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o1

AH,, = —k——"ID “‘ 2.17)
1)

AV, = kT’ IEPD"' (2.18)

Values of D, and AH, for typical metals, ceramics and minerals are given in
table 2.1, See also Freer (1981) for a review on diffusion in silicate minerals.

The mathematics of diffusion being universal, whatever the particle or
physical quantity that diffuses, vacancy diffusion obeys the two laws
(equivalent to Fourier’s laws in the case of heat conduction) called here
Fick’s laws:

> J=—D,grad C (2.19)
d

-3 o€ =DViC (2.20)
ot

or in the simple case of unidirectional diffusion (along axis Ox)

J=-D, i (2.21)
ox

ac o*C
e 222
at Y ox? (222

C is the concentration of vacancies (number per unit volume) related to
the atomic fraction by:

Fig. 2.2. Determination of the activation enthalpy and activation
volume for diffusion. (a) Activation enthalpy AH, is determined from
the slope of the plot In D against 1/T at constant pressure.

(b) Activation volume AV, is determined from the slope of the plot
In D against P at constant temperature.

(a) (&)



Table 2.1. Diffusion data for a few typical crystals

Diffus- AH
ing T D, (kcal/  D(T,,)
Crystal species  (°C) (cm?/s) mol) (cm*/s) Reference
Al Al 460-650 1.71 34 1.71 x 10" % Lundy & Murdock, J. Appl. Phys., 33, 1671 (1962)
Cu Cu 685-1062 020 471 436 x107° Kuper et al., Phys. Rev., 98, 1870 (1961)
Fe Fe 809-905 1.9 572  543x10~'" Buffington et al., Acta Metall., 9, 434 (1961)
Fe Fe 1064-1393 0.18 645  7.05x107'% Buffington et al., Acta Metall., 9, 434 (1961)
Mgl c Mg 500630 1.78 332  166x107% Combronde & Brebec, Acta Metall,, 19, 1393 (1971)
Mglc Mg 500-630 1.75 33 1.83x10™% Combronde & Brebec, Acta Metall., 19, 1393 (1971)
NaCl Na* 500-750 33.16 455 7.15x107° Béniére et al., J. Phys. Chem. Sol., 31, 825 (1970)
cl- 500-750 61 49.2  2.18x107° Béniére & Chemla, C.R. Acad. Sci. Paris, 267, 633
(1968)
MgO Mg* 1000-2400 4.19x107* 635 292x107? Wuensch et al., J. Chem. Phys., 58, 5258 (1973)
0z~ 1300-1750 25x107% 624 501 x107'* Oishi & Kingery, J. Chem. Phys., 33, 905 (1960)
ALO, 0%~ 1500-1780 1900 152 1.59 x 10~'* Oishi & Kingery, J. Chem. Phys., 33, 480 (1960)
Si0, 0?- 1000-1220 37x107° 55 3.7x107'7 Haul & Dumbgen, Z. Electro. Chemie, 66, 636 (1962)
Mg,SiO, 0%~ 1275-1625 35x107% 89 29.3x107'* Reddy et al., J. Geophys. Res., 85, 322 (1980)
1300-1600 23x107% 70 Jaoul et al., J. Geophys. Res., 88, 613 (1983)
Si** 1300-1700  1.5x107% 90 1.87 x107*¢ Jaoul et al., “‘Anelasticity in the Earth’ (1981)
NaAlSi,O, 0?%" 450-750 98x107¢ 334 797x107'* Yund et al., Phys. Chem. Min., 7, 185 (1981)
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N,
C=7 (2.23)

where (2 is the atomic volume.

J is the flux of vacancies (number per second flowing through unit area)
flowing down the concentration gradient, which represents here the driving
force.

2.2.3  Diffusion in binary ionic crystals

In ceramics and minerals the problem of diffusion of the species
constituting the crystal is considerably more complicated than in metals. It
is always possible to describe the diffusion of one given species by exchange
with vacancies on its own sublattice, but there are additional constraints
arising from the fact that the crystal is constituted by ions with electrical
charges that are not screened by a sea of almost free electrons as in metals.
As a consequence, extraction of an ion leaves an oppositely charged
vacancy. However, (i) the crystal must remain electrically neutral, which
imposes a relation between the concentrations of the vacancies of anions
and cations, and (ii) there must be no net electrical current flowing, which
imposes a relation between the fluxes of anions and cations.

In addition to these conditions stemming from the existence of charged
ions, there is another complication of thermodynamic nature in the general
case when more than two species diffuse in the same mineral: the flux of one
ion depends on the concentration gradients of all others; the diffusion can
be described in the framework of irreversible thermodynamics by a system
of linear equations relating the fluxes of species i to the chemical potential
gradient of species j and diffusion coefficient matrices must be introduced.
(See Lasaga, 1979, for the case of multicomponent diffusion in silicates.)

We will restrict ourselves here to the much simpler case of binary ionic
crystals (alkali halides and oxides) and establish some of the results that we
will use later on.

(i) Vacancy concentration and diffusion regimes

Let us consider a pure binary ionic compound, whose anions and
cations have equal and opposite charges (e.g. Na*Cl~ or Mg2*0O?"). If
diffusion occurs by exchange with vacancies, the diffusion coefficients of
cations and anions on their own sublattices will be given by relations
identical to (2.13):

D.=D,N,
DS = D\ra Na
where D and D,, N and N,, D,. and D,, are the coefficients of self-diffusion

(2.24)
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of cations and anions, and the atomic fractions and diffusion coefficients of
cationic and anionic vacancies respectively. Thermal cationic and anionic
vacancies are formed in pairs (Schottky pairs) and it can be shown that at
equilibrium the product of their atomic fractions is a constant depending
only on temperature (the ‘solubility product’ of the pair, so to speak):
AS, AH
N =N2= =l il
N, N.=Ng=exp (kT)exp( T (2.25)
where N,, N_are the atomic fractions of anionic and cationic vacancies, and
AS;and AH; the entropy and enthalpy of formation of the Schottky pairs.
With the electrical neutrality condition
N.,=N, (2.26)
we find:

AS; AH;
N,=N_=exp (2”) exp ( M,) (2.27)
The activation enthalpies for diffusion of the anions and cations are
respectively, after (2.15):

AH;

AH, = T +A.Hm (228}
AHC=A—;I—5+AH,,, (2.29)

AH,, and AH, are the migration enthalpies of anions and cations. The
cations, smaller in general, are often more mobile than the anions; they give
the principal contribution to the ionic electrical conductivity which in first
approximation is proportional to the diffusion coefficient of the cations.
This diffusion regime, where vacancies are thermally created, is the only one
possible for theoretically pure crystals and even for slightly impure crystals
at high temperature, as we will see presently. Let us now consider the same
crystal but with a small concentration of aliovalent cationic impurities in
substitution (for instance Ca’* in NaCl). We consider only cationic
impurities because anionic impurities are often too big to enter in
substitution into the lattice, but the reasoning would be the same.

IfaCa?" ion replacesa Na " ion, there is an excess of one positive charge,
which is compensated by the non-thermal creation of one negatively
charged cationic vacancy (extrinsic vacancy). If the atomic fraction of
impurities is C, the electrical neutrality condition is written:

N, +C=N, (2.30)
Hence, with (2.25):
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N3=N,C +N,) (2.31)
The solutions of this equation are:
C 4NZ\'12
N, —‘2— [(I +‘E;i—) = 1] (2.32)
2\1/2
Nc=§ [(1 +4Ci;’) i 1] (2.33)

If C < N, ie. if the atomic fraction of impurities is very small compared
with that of thermal vacancies, diffusion is controlled by the formation and
migration of thermal vacancies and the activation enthalpies are given by
(2.28) and (2.29). This is the intrinsic regime.

If C > N, the concentration of thermal vacancies becomes negligible and
the concentration of cationic vacancies is now fixed by the concentration of
impurities:

N.=C (2.34)
The vacancies are freely available for diffusion, no formation enthalpy has
to be spent and

AH . =AH,, (2.35)

Conversely, the concentration of anionic vacancies is much reduced and
the self-diffusion coefficient of the anions decreases. This is the extrinsic
regime, which occurs for impure crystals below a temperature that depends
on the impurity content (the more impure the crystal, the more the extrinsic
regime extends to high temperatures). For still lower temperatures, or more
impure crystals, the extrinsic vacancies may remain bound to the impurity
ion whose extra charge they compensate. In that case, they become
available for diffusion only if the complex is dissociated and we have:

AHF%MH,M (2.36)

where AH, is the binding energy of the impurity—vacancy complex.

The intrinsic, extrinsic and association regimes are responsible for
domains with different slopes on the Arrhenius plot for cation diffusion (or
ionic electrical conductivity) (fig. 2.3).

It is obviously unwise to extrapolate diffusion coefficients to higher or
lower temperatures, when the whole Arrhenius plot is not known.

(ii) Influence of oxygen partial pressure on diffusion in oxides

The concentration of vacancies is often sensitive to oxygen partial
pressure, in the case of oxides. As an example of one of the possible
situations, let us examine the case of a binary oxide where the metallic ion
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can react with gaseous oxygen to increase its oxidation degree. In the case of
wiistite FeO we have:

10(g) +2Fe?* - 0%~ + VE +2Fe’* 2.37)
VE represents a vacancy in the Fe?* sublattice, with effective charge 2— ;

Fe3* is a ferric ion in the Fe?* sublattice associated with a hole (h).
The law of mass action for reaction (2.37) gives

[VEIAY

_Fpg‘?__=K (2.38)
and charge conservation imposes

[Vil=[h] (2.39)
hence

[VE]ocpdy

If the cations Fe? * diffuse by a vacancy mechanism, we see that their self-
diffusion coefficient Dy, depends on oxygen partial pressure:

De.oc[VE] e pof? (2.40)
See Chen & Peterson (1980) for the more general case of magnesio-wiistite
(ngFel —x)o'

(iii) Transport of matter in binary ionic crystals
Ruoff (1965) has treated the case of binary ionic crystals A,By,
stoichiometric and where both species diffuse by a vacancy mechanism,

Fig. 2.3. Diffusion regimes in ionic crystals. 1. Intrinsic regime
(thermal vacancies) AH =AH/2+ AH,,. II. Extrinsic regime (charge-
compensating vacancies) AH=AH,,. IIl. Association regime (impurity—
vacancy pairs) AH=AH,/2+AH .

InD,
|
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Transport of matter by diffusion implies that a molecular group must be
transported, although not as a unit.

For steady state, the flux J, of vacancies of the i species (i= A, B) is given
by:

J‘=Civt=CiM(Ft (2.41}
where C; is the concentration of vacancies, v; their drift velocity, which is
equal to their mobility M, times the driving force F; for diffusion.

The driving force can be expressed in terms of the chemical potential y; of
the vacancies, of their charge g; and of the electric field E

F;= —(grad y; +4;E) (242)
With Nernst relation relating the diffusion coefficient D to the mobility

D,=MkT (2.43)
we have

Ji= "%% (grad y; +¢;E) (2.44)

The condition of zero net current is written:

gaJa+4stp=0 (2.45)
For intrinsic diffusion, we have:

BCr=0aCy (2.46)
and

oga+Pge=0 (2.47)
Taking the expression of the chemical potential

p=pd+kT ((%,) (2.48)
we have

grad ui=kTgra; G (2.49)
which, with egs. (2.44) to (2.47) gives:

(x+B)Ds
BD,+uDy
Using the atomic fractions of A and B —n, =o/(x + ) and ny = B/(2t + B) — we
can define an effective diffusion coefficient:
__ DyDy
. Dyng+Dgn,

The fluxes of A and B can then be written, using Fick’s law with the same
effective diffusion coefficient D':

;=—D' grad C; (2.52)

Jy=—(Dy grad C,) (2.50)

I

(2.51)
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224  Short-circuit diffusion

Vacancies are point defects and it is easily conceivable that they
may migrate along the highly imperfect cores of linear or two-dimensional
crystalline defects, more rapidly than in the bulk of the crystal. Indeed, there
is good evidence that vacancies diffuse easily along dislocations (pipe
diffusion) and grain boundaries (grain-boundary diffusion). Experimental
measurements of short-circuit diffusivity are difficult and the data are
scarce; it is, however, possible to reach some conclusions:

(i) Pipe diffusion

Self-diffusion coefficients in dislocations are many orders of
magnitude larger than in the lattice. For instance, the pipe-diffusion
coefficient of oxygen in albite is five orders of magnitude larger than in bulk
(Yund et al., 1981). The quantity obtained by fitting experimental results to
models is D A, (in cm*/s) where D, is the diffusion coefficient along the
dislocation and A, the effective cross-sectional area of the pipe (considering
the dislocation as a tube). As for bulk diffusion, it is possible to write:

Duts=Duteesp (<41 @.53)

The activation energy AH, is lower than AH for bulk self-diffusion (see
Balluffi, 1970). Typically: 0.4 <AH,/AH <0.7,e.g.:

Ag AH;=170kcal/mol AH =45 kcal/mol
Al AH;=19.6 kcal/mol AH =30.1 kcal/mol

Pipe diffusion will therefore be important at lower temperatures, when bulk
diffusion is very slow.

(i) Grain-boundary diffusion

Diffusivity along grain boundaries is also considerably faster than
in the lattice. The experimental results are given in terms of Dy, 6 where 6 is
an effective width of the grain boundary, which here, too, is a phenomeno-
logical parameter without much physical significance (see Martin &
Perraillon, 1980).

AH

Here, too, the activation energy is of the order of half the activation
energy for lattice diffusion (table 2.2). Grain-boundary diffusion is a process
dominant at lower temperatures. Diffusion may be considerably faster in
migrating grain boundaries than in static ones (Smidoda et al., 1978).
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23 Dislocations and slip

23.1  Definitions

We can operationally define a dislocation loop as the line that
bounds a closed area over which slip has taken place (i.e. the part of the solid
on one side of the area has been translated with respect to the other
side by a slip vector b). As the loop expands under stress (see below) the
slipped area increases and so does the shear strain. The dislocation loop is
characterized by the slip vector or Burgers vector b, which is quantized in
the case of a crystal (it can only be a vector of the Bravais lattice). A segment
of dislocation normal to its Burgers vector has an edge character and the
dislocation line lies at the edge of an extra half plane (fig. 2.4); a segment of
dislocation parallel to its Burgers vector has a screw character and the
atomic planes are distorted in the shape of a helicoid whose axis is the
dislocation line (fig. 2.4). An edge segment can only slip on the slip (or glide)
plane defined by the dislocation line and the Burgers vector and it slips
normally to itself; a screw segment also slips normally to itself but can
theoretically slip on any atomic plane containing it. When the loop reaches
the surface of the crystal it leaves a step of width b (fig. 2.5).

A dislocation is a linear defect, it distorts the atomic planes in the crystal
(see fig. 2.4), and therefore introduces an internal strain." (The internal
strain is caused by the presence of a dislocation; it is ‘exteriorized’, so to
speak, as the dislocation leaves the crystal.) A dislocation is therefore the
source of an internal stress field, related to the strain field by Hooke’s law. It
can be shown that all stress components vary with the distance r to the
dislocation as:

B o oC % (2.55)

where u is the elastic shear modulus and b the length of the Burgers vector.
It follows that a crystal containing dislocations has an internal energy

Table 2.2. Grain-boundary diffusion

Crystal T(°C) Dy, (cm?/s)  AHgy, (kcal/mol)  AH (kcal/mol)
Ag 50-500 0.03 20.2 45
Fe 950-1100 2 40 65
Pb 200-260 0.81 15.7 26

From Martin & Perraillon (1980).

+ The internal strain is the source of the diffraction contrast making the dislocations
visible in transmission electron microscopy.
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(stored elastic energy) greater than a dislocation-free crystal. The internal
energy per unit length of dislocation in a cylinder of radius R is

b? R

where K~ 1 is a constant depending on the character of the dislocation
(screw or edge) and b, is the radius of the ‘core’ within which the atomic
displacements are too important for the elastic theory to be applied (b is of
the order of a few b). In a crystal containing a density of dislocations p (equal
to the length of line per unit volume), the stress fields mutually cancel in the
average at a distance R oc 1/p'/2 which can be used in (2.56).

A stress field exerts a force on a dislocation, normal to the line, causing a
loop to expand (thus producing strain) if the force has a component in the
glide plane. In the simple case, where the stress field reduces to a shear stress
parallel to the Burgers vector of a straight edge dislocation, the force on the

Fig. 2.4. Dislocation loop. (a) Half a rectangular dislocation loop is
shown in a crystal schematized by a stack of lattice planes (vertical).
The extra half plane above the edge portion at left is seen to wind
itself helicoidally around the screw portion (back) until it ends up as
the extra half plane below the edge portion at right. Each ‘turn of the
screw’ corresponds to a displacement by the Burgers vector b, parallel
to the screw portion and normal to the edge portions. The ‘slipped’
area is stippled.

B
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dislocation is parallel to the Burgers vector and its magnitude F is easily
computed by writing that the work done by the shear stress ¢ during slip
over a distance b is equal to the work done by the force F on the dislocation
over the length of the crystal (producing the same slip); one finds that

[ F=ob (2.57)

A segment of dislocation pinned at its extremities bows out under stress,
with a radius of curvature proportional to pb/s; under a given stress,
segments longer than a critical length

_ 2ub

> =% (2.58)

can go through the semi-circular unstable configuration and emit
expanding dislocation loops, while the segment springs back to the initial
position to bow out again and so forth (fig. 2.6). Operation of these ‘mills’ or

(b) Front view of the half-loop. Flipping the bond OM to ON makes
the edge portion propagate towards the left (in the sense of b). (¢) Top
view of the whole loop, oriented continuously (dashed arrows);
opposite-sign extra half planes correspond to Burgers vectors of edge
portions that would be in opposite sense if the dislocation lines were
oriented in the same sense (i.e. not in continuity).

(b}

(c)

¢
]
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Frank—Read sources is the principal process through which dislocations are
created and renewed during deformation of crystals.

Dislocations moving through the crystal interact elastically: a
dislocation moving in the stress field of others feels a force and vice versa. If
the dislocations attract but lie in parallel glide planes they tend to form
walls (tilt walls in the case of edge dislocation with the same Burgers vector)
(fig. 2.7); if they can cross, they react to form stable junctions (fig. 2.8) whose
Burgers vector is such that the geometric sum of the Burgers vectors at a
triple node is equal to zero. If the dislocations repel but are forced together
by the stress, they eventually cross, each leaving on the other a jog equal in
length and direction to its own Burgers vector (fig. 2.9). Crossing with
formation of jogs can be helped by thermal agitation, whereas it is
energetically very difficult to destroy a junction.

Reactions between dislocations leading to junctions and eventually to
tangles, thus greatly impeding glide of other dislocations, are one of the
most important processes of strain hardening.

Fig. 2.5. Propagation of slip: the widening of the dislocation loop
under stress causes the slipped area to increase until the dislocation
moves out of the crystal leaving a step on the surface equal in length
to its Burgers vector.
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Fig. 2.6. Frank—Read source. (a) Dislocation segment of length I, stress
¢ increases with ¢, the source is activated for 6> .. (b) Constant stress
o, distribution of segments of various lengths, the segments of length
I>1_ are activated.

{a} (b)
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Fig. 2.7. Tilt wall: Stable array of edge dislocations with the same
Burgers vector in parallel planes.
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232 Dislocation cores, Peierls stress and splitting

The dislocation core is the region close to the dislocation line (a few
Burgers vectors wide) where the crystalline order is highly defective; the
elastic theory cannot be applied in the core and in all elastic calculations the
core of a dislocation is replaced by a hollow cylinder of radius b,. However,

Fig. 2.8. Stable junction formed by reaction of dislocations of Burgers
vector b, and b,. The junction has Burgers vector b, (b, +b,+b,=0).

Fig. 2.9. Jog formed on an edge dislocation E crossing a screw
dislocation S: the jog is caused by the helicoidal distortion of the glide
plane due to the presence of the screw.

S




Dislocations and slip 57

this approximation, perfectly valid as long as we want to determine the
long-range stress field, breaks down if we are interested in the mobility of
the dislocation. Indeed, it is within the core that the bonds are broken and
that the processes controlling the propagation of the dislocation take place.
If we consider a dislocation line lying along a crystallographic direction, in
a potential trough, it must overcome an energy hill to move into the
neighbouring potential trough. The stress necessary to move the
dislocation over the hills can be computed in the framework of a dislocation
model in a periodic lattice (the Peierls—Nabarro dislocation). The ‘Peierls
force’ is the maximum value of the derivative with respect to the distance of
the energy of the Peierls dislocation W and reflects the lattice friction force
on the dislocation; the ‘Peierls stress’ is related to the force by (2.57). It can
be shown that

_Lldwy 2 4xl
o= dx “‘_Ke"p( b) [#5)

where { is the width of the core, spread on the glide plane, and proportional
to the distance d between planes. It is then clear that dislocations glide more
easily on close-packed planes (with large d) because their cores are more
widely spread in them, which leads to a lower Peierls stress (or lower lattice
friction).

The overcoming of a potential hill occurs progressively by lateral
spreading of double kinks (fig. 2.10) whose formation is thermally activated.

In certain structures the cores of screw dislocations can be spread on
several planes simultaneously; the dislocations are then straight and
prevented from gliding on one plane by the spreading on others (they are
sessile): glide can only occur if the applied stress, helped by thermal
agitation, causes the spreading to concentrate on one plane (this is the case
for BCC metals at low temperatures).

In many structures whose Bravais lattice is not simple, the spreading of
the core can take an extreme form and may be analysed as a ribbon of
stacking fault bounded by two partial dislocations whose Burgers vectors
are not Bravais lattice vectors but geometrically add up to the Burgers
vector of the total dislocation. This is called splitting or dissociation of
dislocations (fig. 2.11). (See fig. 2.12 for the case of FCC crystals.) The
stacking fault is a planar defect corresponding to a ‘fault’ in the normal
stacking of the structure (e.g. in FCC crystals the stacking ABCABC . ..
may become ABCACABC .. .) and possesses a specific energy y.

The partial dislocations repel elastically and tend to increase the width of
the ribbon of stacking fault at a cost of energy, until an equilibrium width is
reached, which is inversely proportional to the stacking-fault energy. Split
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screw dislocations are thus confined to the plane where they are split and
can change glide planes (or cross-slip) only if the stacking-fault ribbon
recombines over a certain length to allow the bowing out of the dislocation
on the other plane (fig. 2.13). This process, thermally activated, results in
wavy slip lines at the scale of the optical microscope.

233 Climb of edge dislocations

An edge dislocation can move in the plane normal to its glide plane
by a slow process (climb) involving transport of matter by diffusion to or
from the extra half plane. Climb occurs progressively by migration of jogs
on the dislocation line through emission or absorption of vacancies (fig.
2.14).

A dislocation line climbs with a velocity

.=Cp; (2.60)
where C;is the concentration of jogs of height and length b (number of jogs
per unit length) and v; the migration velocity of jogs. Consider, for instance,

Fig. 2.10. (a) Peierls potential troughs corresponding to dense
crystallographic direction. A dislocation aligned in the bottom of a
trough is pushed forward by the applied stress (with a force F=gb)
and dragged backwards by Peierls stress with a force f= —dW/dx.
The dislocation can overcome the hill between two troughs by
spreading apart of two kinks (b).

w

(a) F =ob

f=opb

(b}
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the case of an undissociated dislocation where the jogs migrate by
absorption of vacancies. If ¢ vacancies arrive per second on the unit length
of dislocation line and are immediately absorbed, each jog of length b
receives ¢b vacancies and migrates by b for each vacancy, i.c.

= ¢b? (2.61)
Assuming C;~ 1 (dislocation ‘saturated’ with jogs), we have:
v, =¢b? (2.62)

Now, ¢ is related to the flux of vacancies J through a cylinder of radius b,

Fig. 2.11. Splitting of dislocations in talc into four partials separated
by stacking-fault ribbons. Transmission electron microscopy. Scale
bar=1 pm (courtesy P. Delavignette).
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surrounding the dislocation, by

¢=2nbJ

and J is given by Fick’s law (2.19):

J=-—D,grad C,

The agents of deformation: lattice defects

(2.63)

(2.64)

The concentration gradient of vacancies between the dislocation and the
bulk of the crystal is due to the fact that the applied stress ¢ modifies the

E]]

AQ®

Fig. 2.12. Splitting of edge dislocations in the FCC structure. (a) Top
view of three dense (111) planes in position ABC. The Burgers vector
is 4[110] and the corresponding (110) extra half plane is double
(bracket). Slip of one Burgers vector involves moving in two steps b,
and b,. (b) Split dislocation: the first partial has Burgers vector b,, the
second has b,. They are separated by a stacking-fault ribbon
ABCACABC. (c) Side view of an undissociated 5[ 110] dislocation.
Note the double extra {110} half planes. (d) Splitting of the dislocation
(A[110]—%{121} +4[211]) is achieved by pushing apart the two halves
of the double extra half plane producing the stacking fault
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equilibrium concentration of vacancies at the dislocation by increasing the
formation energy of vacancies by ¢Q, the work done against the stress
during the formation of the vacancy (Q=b? is the atomic volume).

1 AG+aQ aQ
C,—ﬁcxp(—T)-Co exp (_ﬁ) (2.65)

where C, is the concentration of vacancies in the bulk, far from the
dislocation, at a distance A.

Hence
o5 Co Y
grad C, ~ T e [exp ( kT) 1] (2.66)
and if 6Q < kT
af)
grad C‘, x— CO m (267}

Fig. 2.13. Cross-slip: a screw dislocation split in plane P, slips in it.
To cross-slip onto plane P,, the stacking-fault ribbon must locally
constrict. The constricted portion develops in P, where it can split
again.

P 2 Pﬁ

Py

Fig. 2.14. Climb of an edge dislocation: the dislocation line climbs by
an interatomic distance when a jog travels along its length by
absorbing (A) or emitting (E) vacancies.
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with equations (2.60) to (2.67) we obtain

B aQd
v.x2nb°D,C,y YT (2.68)
or with b*D,Co=D,N,=Dg (2.13)
2n o}
’ Ue ~T Dsd ﬁ (2.69)

234 Orowan’s equation
Orowan’s equation relates the strain-rate caused by glide (or
climb) of dislocations to the density, strength and velocity of the mobile
dislocations. It is in fact a microscopic constitutive equation which lies at
the basis of most equations describing the various deformation processes.
Consider a crystal in the shape of a parallelepiped with dimensions i, [, L
(fig. 2.15) and one straight edge dislocation, of length / and Burgers vector b,
sweeping its glide plane over the distance L (or a screw dislocation of length
L, sweeping the same glide plane over [); when the dislocation has swept
across the whole crystal, the average shear strain is
b
“h
and if the dislocations sweeps only a distance AL
5L
For N parallel dislocations, we have

NI
B—VbAL

Fig. 2.15. Orowan’s equation. (a) A straight edge dislocation, sweeping
its glide plane over AL creates shear strain e=bAL/hL. (b) Two
straight edge dislocations create a pure shear strain by climbing in
opposite senses.
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where V=Llh is the volume of the crystal, or
e=pbAL (2.70)
with p= NI/V, density of mobile dislocations.
The same expression holds for more realistic situations (curved
dislocations on various glide planes) taking p and AL as average values.
The strain-rate is then:

de_ d [ do . dAL
a a[pAL}—bI:AL + ] (2.71)

=% " ac Par

In most cases, it is reasonable to assume that the dislocation density does
not vary much at the time scale considered and eq. (2.71) can be written
> §=pbv 2.72)
where v is the average velocity of the dislocations. This expression can be
used for quasi-steady-state creep, but obviously not in cases of sigmoidal
creep or when there is a yield point (see §1.1.3), since the rapid increase in
strain-rate (or decrease in stress) is due in those cases to a sudden increase in
the dislocation density.

Orowan’s equation (2.72) is clearly a transport equation as mentioned
above (§2.1.1); it can be cast in the shape of a microscopic constitutive
relation by expressing the velocity and the density as functions of the
applied stress, temperature and pressure.

Shear strain can also be produced by climb of an equal number of edge
dislocations of opposite sign exchanging vacancies at constant total
volume: the pure shear strain resulting from the increase in area of the extra
half planes of one family at the expense of those of the other (fig. 2.15(b)) can
be put in the form of (2.70); Orowan’s equation is valid whether the
dislocations move by glide or by climb.

24 Grain boundaries and recrystallization

24.1  Definitions
A grain boundary is a two-dimensional lattice defect that introduces
a misorientation in the lattice with no long-range stress field. As a
consequence, a single crystal containing a high-angle grain boundary is best
described as two crystals differing in orientation, on each side of the grain
boundary; a low-angle grain boundary is, however, seen as a defect in a
single crystal.
A grain boundary is characterized by three parameters describing the
relative orientation of the lattices on each side of it as the result of a
rotation about an axis (two parameters to define the rotation axis + 1 for the
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angle) and two parameters fixing the orientation of the boundary itself in
one of the lattices (altogether five degrees of freedom).

A twist-boundary is normal to its axis of rotation and a tilt boundary
contains its axis of rotation. A general boundary has both tilt and twist
components (as a general dislocation has edge and screw components).

The general analysis of grain boundaries has been done in considerable
detail in the case of cubic lattices (see Bollmann, 1970; Priester, 1980);
although many of the concepts introduced do not apply directly to the case
of non-cubic lattices, the general results derived remain valid on the whole.
In cubic lattices, it is useful to introduce the Coincidence Site Lattice (CSL)
or lattice of the sites common to both lattices. The degree of coincidence of
the lattices of each grain is expressed by the twin index Z equal to the inverse

of the proportion of sites in coincidence (e.g. for cubic crystals Z=35 for a
rotation of 37° about [100] (fig. 2.16)). A coincidence boundary contains

coincidence sites. It is also useful to introduce the Displacment Shift

Complete Lattice (DSCL), whose lattice vectors are the sums and
differences of lattice vectors of the two adjoining crystals.

242  Grain-boundary dislocations

The lattice misorientation introduced by grain boundaries can
formally be expressed as the misorientation introduced by a planar array of
dislocations. Indeed, low-angle grain boundaries (or subgrain boundaries)
are dislocation walls whose dislocations can be seen by transmission
electron microscopy (see chapter 6). The misorientation 6 is inversely

Fig. 2.16. Coincidence site lattice for a cubic crystal: rotation §=37°
about [100], Z=5. Lattice A - circles; lattice B —triangles; coincidence
site lattice—squares. The DSCL is drawn (thin lines) in the lower left

quadrant.
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proportional to the dislocation spacing in the sub-boundary. For a tilt wall
(see fig. 2.17):

b
> o= (2.73)

where d is the spacing of edge dislocations and b their Burgers vector. Twist
walls are arrays of screw dislocations and are related to tilt walls much in
the way screw dislocations are related to edge dislocations. Indeed, a small
parallelepiped inside a crystal, misoriented by rotation about an axis
parallel to one of its edges is bounded by four tilt walls and, necessarily, two
twist walls (fig. 2.18).

There is obviously no clear-cut distinction between low-angle and high-
angle grain boundaries ; the conventional limit is usually set at a misorienta-
tion of about 10 or 15° which correspond roughly to the dislocation spacing
below which the cores would be contiguous. When a grain boundary can be
analysed in terms of dislocations, these are called intrinsic grain-boundary
dislocations (GBD). The primary intrinsic GBDs are responsible for the
misorientation and secondary intrinsic GBDs accommodate small
deviations from the nearest coincidence orientation of the lattices or the
boundary (Hirth, 1972; Hirth & Balluffi, 1973). The stress fields of the
intrinsic GBDs mutually cancel at a short distance from the boundary,

Fig. 2.17. Low-angle tilt boundary made up of parallel edge
dislocations of Burgers vector b, distant by 4. Misorientation
0=2 tan (0/2)=b/d.
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comparable to the dislocation spacing. Extrinsic GBDs can be trapped in
the boundary, coming from the neighbouring grains.

243  Energy of grain boundaries

The energy per unit area of a low-angle boundary is easily
computed as equal to the energy per unit length of a dislocation (given by
(2.56) with R =d) multiplied by the number 1/d of dislocations per unit
length; with (2.73) we obtain:

_ b LA
E=1 [m (bJ In e] @.74)

The energy increases with increasing misorientation up to about 15°,
when (2.74) ceases to be valid (fig. 2.19). The energy of high-angle
boundaries is roughly independent of 6, except for coincidence orientations,
where it is lower. For a given lattice misorientation, the grain-boundary
energy depends on the orientation of the boundary plane.

244  Structure of grain boundaries

The structure of grain boundaries on the atomic scale has been the
object of active investigation in recent years. Analysis of grain boundaries
by X-ray and electron diffraction, as well as the high-resolution trans-
mission electron microscopy (Gronsky, 1979; Hall er al., 1982; Bristowe &
Sass, 1980; Krivanek et al., 1977), has finally dealt the last blow to the old
idea that grain boundaries were an amorphous layer between grains:
crystalline order persists on each side of the boundary up to a defective core

Fig. 2.18. Rotated block inside a crystal bounded by four tilt
boundaries (ABCD) and two twist boundaries, parallel to the plane of
the page.
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region, one or two atomic distances thick, which can be analysed using
several convergent approaches. In what we can call a crystallographic
approach, the grain boundary is described by a ‘fit-misfit’ model (Balluffi e
al., 1982); in the regions of ‘fit’ there is partial lattice matching across the
boundary and the regions of ‘misfit’ are line defects with dislocation and/or
boundary step character, described by using the concept of DSC lattice. The
structure of the core can also be described as a packing of deltahedra (fig.
2.20) (polyhedra with equilateral triangles as faces); this approach is useful
to understand the segregation of impurities to the boundary; it is
compatible with the description of low-angle boundaries as dislocation
walls since dislocation cores can also be seen as composed of deltahedra
(Ashby et al., 1978). Computer modelling has been widely used in metals for
which reasonably good interatomic pair potentials are known (Vitek et al.,
1979; Bristowe & Sass, 1980). Molecular dynamics have been used for FCC
solid rare gases; a structural transition towards a partially disordered
structure is found at high temperature (Cicotti et al., 1983).

In ceramic oxides and minerals, the problem of the boundary structure is
much more complicated than in metals owing to the existence of several
electrostatically interacting charged species (Balluffi er al., 1981).

Fig. 2.19. Dependence of the relative grain-boundary energy on
misorientation 8: nickel oxide, 1520 °C, symmetrical tilt boundaries
(after Dhalenne et al., 1982).
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245  Grain-boundary migration and sliding
Grain boundaries can move in their plane (sliding) or normal to it
(migration).

Grain-boundary sliding (sometimes over large distances) occurs under
applied shear stress. It is an important strain-producing process in
superplastic deformation (chapter 8) and it is usually evidenced by the offset
of a fiducial grid scribed on the specimen. Only high-angle boundaries
usually slide, as the dislocations in low-angle boundaries are generally free
to respond to the stress by moving in their own glide planes. Sliding can be
explained in terms of climb and glide of grain-boundary dislocations, which
may be the cause of some accompanying migration of the boundary (Pond
et al., 1978). Migration of grain boundaries can also occur under stress and
produce strain: it has been documented in creep experiments on aluminium
(Exell & Warrington, 1972) and NaCl (Guillopé & Poirier, 1979) and can be
accounted for by the propagation of ledges (steps) associated to extrinsic
grain-boundary dislocations (Guillopé & Poirier, 1980). When a tilt grain
boundary migrates under stress, it leaves behind a slope or talus at the
surface of the crystal, corresponding to the shear caused by the motion of
the component dislocations (fig. 2.21).

There are, however, other driving forces than applied stress for the
migration of grain boundaries and they are mostly responsible for the
important phenomenon of recrystallization (see §2.4.7).

Let us consider a grain boundary separating two crystals 1 and 2 (fig.
2.22). The volumes of the two grains and the area of the boundary are
respectively V,(x), V,(x) and A(x), where x denotes the position of the
boundary on an axis normal to it, g, and g, > g, are the free energies per

Fig. 2.20. A £=5 (8=137°) [100] tilt boundary in FCC crystals
composed of stacks of capped trigonal prisms along [100] (Ashby et
al., 1978).
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unit volume of grains 1 and 2. Motion of the boundary by dx in the
direction of 2 will replace a volume d¥ of grain 2 by the same volume of
grain 1, while the area of the boundary changes by dA. There is a net change
in total free energy dG and the driving force is

dG v d4

F=—a;—(gz—g1)gx*—ggba_ 2.75)

where g, is the free energy per unit area of the grain boundary. We see that

Fig. 2.21. Grain-boundary migration and sliding: NaCl crystals
cleaved along (100) plane (scale bar=0.1 mm). {(a) Grain-boundary
migration under stress. The grain boundary migrating towards the
right leaves a sloping talus behind. (b) Grain-boundary sliding leaves a
step on the surface. The boundary has migrated towards the left inside
the crystal after sliding took place (courtesy M. Guillopé).
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the driving force for migration under no applied stress can be decomposed
into a volume driving force and a surface driving force. The difference in
specific free energy Ag=g,—g, may have various physical sources:

(i)

(ii)

(iii)

A difference in dislocation density between the grains. The grain
with the higher density, hence the higher free energy, is consumed
by the dislocation-free grain, dislocations are absorbed by the
boundary (Pond & Smith, 1977). This is the basis of strain-induced
boundary migration (SIBM) in annealed deformed crystals, a
fundamental process in primary recrystallization.

A difference in elastic strain energy (due to the anisotropy of elastic
constants) between the two grains differently oriented with respect
to an applied stress that causes only elastic deformation (Kamb,
1961). This is the basis of the so-called stress-induced recrystalliza-
tion, which, in most cases, is probably negligible at high tempera-
tures where plastic flow occurs and where Ag due to stored
dislocations is much greater than Ag due to anisotropy of elastic
energy. (See Paterson, 1973.)

A difference in chemical potential of one of several species across
the grain boundary in the case of alloys or minerals with slight
differences in chemical composition. Diffusion-induced grain-
boundary migration (DIGM) has been recently documented
(Hillert & Purdy, 1978) in thin pure iron specimens exposed to zinc
vapour at 600 °C; transport of zinc into the specimen resulted
almost entirely from boundary diffusion coupled with grain-
boundary sweeping; all the original volume was eventually
transformed into a recrystallized high-zinc alloy. This
phenomenon has been actively investigated in recent years
(Shewmon, 1981; Balluffi & Cahn, 1981; Chongmo & Hillert,

Fig. 2.22. Grain-boundary migration. The grain boundary migrates by
dx from position 1 to 2; it increases its area by d4 and the volume of
the left-hand-side grain increases by dV at the expense of the right-
hand-side grain.




Grain boundaries and recrystallization 71

1982). The possibility of a chemical driving force for boundary
migration in mica has been suggested by Etheridge & Hobbs
(1974).

In most of the cases of boundary migration, it is possible to find a
mechanism for migration involving motion of grain-boundary dislocations
and of their associated steps (Rae & Smith, 1980; Balluffi & Cahn, 1981).

The surface driving force leads to minimization of the total grain-
boundary area. It is responsible for secondary recrystallization, or more
properly grain growth, a stage which follows primary recrystallization and
during which the dislocation-free new grains reach an equilibrium
structure, the smaller grains being consumed by the bigger ones.

246  Mobility of grain boundaries

The velocity of migrating grain boundaries has been investigated
under various conditions and driving forces (see Smith et al., 1979). The
relation between velocity v and driving force F is usually written:

v=MF (2.76)

where M is the mobility.

The mobility increases with temperature, and may vary with the
misorientation, the degree of coincidence, etc., but there is so far no
consistent pattern and it is not possible to make general statements.

The effect of small concentrations of impurities on the mobility of grain
boundaries may be considerable; it has been investigated by Liicke &
Stiiwe (1971). Impurity atoms are attracted to the defective core of a grain
boundary and at a boundary at rest the concentration of impurity atoms C
is higher than the bulk concentration Cy:

Cx)=C, exp(—k‘—;f)) 2.77)
where x is the distance to the boundary and U(x) the interaction energy.
For steady-state motion of the grain boundary, the impurity atoms diffuse
into a moving potential well and the diffusion flux of atoms following the
boundary is equal to the advective flux of atoms toward the moving
boundary; a steady-state concentration of impurities at the boundary,
C(x, v, Cy), sets up, which depends on the velocity ¢ of the boundary. The
total drag force exerted by impurity atoms on the boundary is:

dU(x’ 278)

f[U, Co) J‘ Clx U, CQ)
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The grain-boundary velocity is therefore:
v=M[F—f(v,Cy)] (2.79)

Q
M ocexp ( T
The drag force is equal to zero for zero and infinite velocity and it can be
qualitatively represented by a bell-shaped curve. Eq. (2.79) can then be
graphically solved (fig. 2.23). For concentration higher than a critical value
C., two velocity regimes are possible at constant temperature (i.e. M=
const):

with

- at low driving forces F, the velocity is low, the grain boundary is
‘loaded’ with impurities and its velocity is controlled by the
diffusion of impurities;

— at high driving forces, the grain boundary can tear itself from the

Fig. 2.23. Grain-boundary mobility. The grain-boundary velocity v is
found by graphically solving the equation that expresses the velocity v
as a function of the driving force F, the mobility M and the impurity
drag force that in turn depends on v; the solutions are found at the
intersection of the bell-shaped curve representing the drag force
y=f(v) with the straight line y=F —v/M. There is one solution for
F<F, and F>F,; and two unstable solutions for F,<F<F, for
concentration above a critical value C,. For C<C, there is only one
solution.
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impurities and the free boundary moves faster, with its intrinsic
velocity.

The surface v(F, C) can be seen as a ‘cusp catastrophe’ surface (fig. 2.24)
(Woodcock & Davis, 1978).

24.7 Static recrystallization

Static recrystallization is a modification of the grain structure (size,
shape, orientation of grains) that occurs during high-temperature
annealing following deformation (dynamic recrystallization occurs during
deformation; it will be treated in chapter 6).

Recrystallization involves grain-boundary migration and the driving
forces for recrystallization are the same as for grain-boundary migration
(§2.4.5).

Primary recrystallization is driven by the free energy difference between
deformed grains with a high dislocation density and dislocation-free grains;
it can be described with the same formalism as phase transformations by
nucleation and growth. It follows from eq. (2.75) that above a critical size a

Fig. 2.24. Cusp catastrophe set for the velocity of the grain boundary
as a function of driving force F and impurity content C. For high C
and low F, the boundary is loaded with impurities (low v); for low C
and high F, the boundary is free (high v).
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Fig. 2.25. Strain-induced boundary migration in aluminium (¢=40%,
1 h anneal at 328 °C). Each grain locally bulges into its neighbour.
(Scale bar=50 um) (courtesy R. Doherty.)

Fig. 2.26. Strain-induced boundary migration in olivine: peridotite
xenolith from Eglazines, France (scale bar=2.7 mm) (courtesy
J. C. Mercier).
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dislocation-free nucleus can spontaneously grow, resulting in a decrease of
the total free energy. Experimental evidence supports the idea that nuclei
are not formed by statistical fluctuations but can be identified as local
bulges on high-angle grain boundaries: any kind of boundary formed
during deformation can locally bow out if its misorientation is high enough
and the bulge can grow by strain-induced boundary migration (SIBM) (fig.
2.25) (Bailey & Hirsch, 1962). The high-angle grain boundaries may be
kink-band or twin boundaries, e.g. in galena (McClay & Atkinson, 1977),
enstatite (Etheridge, 1975), mica (Etheridge & Hobbs, 1974) or olivine (fig.
2.26). SIBM also occurs at the boundaries of deformation bands, highly
misoriented regions in a crystal due to local divergence in the sense of
rotation of slip planes during deformation (Bellier & Doherty, 1977,
Inokuti & Dobherty, 1978).

When all deformed grains have been swept by grain boundaries and
cleaned of most dislocations, the polycrystal may still lower its free energy
by reducing the total grain-boundary area (Deeley, 1895). This is achieved
by grain growth, which results in an equilibrium polygonal texture or even
in single crystals in some cases (Lacroix, 1903).
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Phenomenological and
thermodynamical analysis of
quasi-steady-state creep

The phenomenological parameters expressing the dependence of creep
rate on temperature and stress are introduced. The apparent
activation energy may vary with temperature (curved Arrhenius plot)
when several ‘parallel-concurrent’ or ‘series—sequential’ processes
operate. The creep-rate—stress logarithmic plot is usually curved over a
large stress range: at low stresses it can be assimilated to portions of
straight lines (power-law creep) but this fails at high stresses when the
stress dependence of creep-rate may be exponential, reflecting a stress
dependence of the apparent activation energy.

Thermally activated processes of dislocation motion are analysed in
the light of the theory of absolute reaction rates. At an activation site
(flow unit) a dislocation segment has to overcome an energy barrier to
contribute an elementary strain. The energy to overcome the barrier
(visualized by the force—distance diagram) is provided by the applied
stress and the thermal agitation. The thermodynamic activation
parameters are defined and their experimental determination is
discussed.

31 Phenomenology

3.1.1 Generalities
Phenomenological analysis of high-temperature deformation is
best done on quasi-steady-state, constant-stress creep-test results, since
they directly provide time-independent empirical equations of state of the
form: é=f(c, T, P). Phenomenological parameters expressing the
dependence of the creep-rate on temperature and applied stress are
analysed in the framework of a thermodynamical theory of deformation
(see below) and, when possible, compared with the values expected if certain
physical processes control the creep-rate. (Note that the process that
controls the creep-rate £, i.e. the dislocation average velocity in Orowan’s
equation (2.72), is not necessarily the same as the one that produces the
strain.)
The creep-rate at constant stress usually increases exponentially with
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temperature (Andrade, 1910, 1914; Chevenard, 1922); it is therefore
convenient to plot In £ against 1/T, thus fitting the creep-rate to an
Arrhenius-type law:

a‘ocexp(—ﬁ%;)

where Q, proportional to the slope of the In é-1/T plot is the apparent
activation energy of creep.

The creep-rate increases with the applied stress ¢ and it is usual to plot
log € against log ¢ in the hope of obtaining a straight line by virtue of the
log-log plot. When this happens, and it happens most of the time if the
stress interval is small enough, the creep-rate depends on the stress by a
power law £ oc ¢”: n is the stress exponent; it is the inverse of the strain-rate
sensitivity of the stress defined by eq. (1.37):

n_I_dhé
"m dhhoe
The empirical mechanical equation of state can then be written:
b imigrexp( -2 G3.1)
RT

This equation has been proposed for creep by Dorn (1956). Zener &
Hollomon (1944) suggested the use of the parameter

Z=¢Eexp (R%,—) (3.2)

to investigate the strain-rate dependence of the stress in constant strain-rate
tensile experiments; the parameter Z or Zener—Hollomon parameter has, in
fact, been widely used to investigate the stress dependence of the creep-rate,
using experiments at various temperatures.

It may be helpful to visualize the temperature and stress dependence of
the strain-rate by a three-dimensional plot using as coordinate axes:
x=1/T, y=In o, z=In £&. The mechanical equation of state is then repre-
sented by a surface In é=£(1/T, In o) (fig. 3.1), whose intersections by planes
y=const. and x = const. represent the variation of strain-rate with tempera-
ture (Arrhenius plot) and applied stress respectively. The domain of
experimental conditions (¢ and T) can be delineated in the plane z = const.
Projection of the sections onto the coordinate planes followed by rotation
of the planes about the x and y axes provides a convenient way of physically
correlating the Arrhenius plot and stress—strain curves (fig. 3.1(b)) (Poirier,
1976).

We have represented in fig. 3.1 the most general case, where the



78

Analysis of quasi-steady creep

Fig. 3.1. (a) Representation of the mechanical equation of state by a
surface In £=/(1/T, In o). (b) Projection of the surface on the
coordinate planes: (In € 1/T) — Arrhenius plots at constant stress;
(In &, In ¢) — o, € plots at constant temperature; (In o, 1/T) -
experimental conditions.
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(In, 1/T,In¢) surface is not a plane, even though it usually can be
assimilated to a plane in a small interval of temperature and stress (i.e. the
Arrhenius plot is a straight line with slope —Q/R and the logarithmic
strain-rate-stress curve is a straight line with slope n). Experiments over
wider intervals frequently yield curved curved Arrhenius plots
(temperature-dependent apparent activation energy) and curved strain-
rate-stress plots (stress-dependent n). Furthermore, it may be that for a
given temperature the apparent activation energy decreases as stress
increases, which corresponds to n decreasing as temperature increases at
constant stress (fig. 3.1(b)); we will see the significance of the stress-
dependent activation energy in §3.2.

31.2  Curvature of the Arrhenius plot

If the strain-rate is controlled by a unique, thermally activated
process, the Arrhenius plot is a straight line over the whole temperature
range investigated and the apparent activation energy of creep is equal to
the activation energy of the controlling process. However, it is often the case
that several potential rate-controlling processes exist, with different
activation energies, with the result that the Arrhenius plot is curved in the
temperature range where the activity of the mechanisms is comparable.
Two cases must be distinguished (Gifkins, 1970; Langdon & Mohamed,
1977):

(i) The processes are independent or parallel-concurrent, they are simul-
taneously active and each contributes (directly or indirectly) a strain ¢;, the
strain-rates are additive, thus in a rheological diagram, parallel-concurrent
processes must be represented by dashpots in series. The total strain-rate is
given by:

£= Z 3.,'

For the simpler (and rather frequent) case of two parallel-concurrent

processes the temperature dependence of the creep-rate is given by:

gT)=¢q, exp(—g—,},)+éoz exp(—g—;)
The Arrhenius plot is the sum of two exponentials (fig. 3.2(a)); if Q, >Q,,
process 1 gives the dominant contribution to the creep rate at high
temperatures and process 2 is dominant at low temperatures: in the
temperature range where the activity of both processes is comparable, the

Arrhenius plot is curved. In any given temperature range, the faster process
dominates creep.
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(i1} The processes are independent and act in series (series—sequential
processes). Process 2 cannot operate until process 1 has taken place and vice
versa (mutually accommodating processes); the time lengths during which
each process operates are additive, thus the inverses of strain-rates are
additive (if each process contributes a strain):

1 1
F Y

Fig. 3.2. Arrhenius plots for two rate-controlling processes.

(a) Parallel-concurrent processes, the faster process controls the
overall rate. (b) Series—sequential processes, the slower process controls
the overall rate.
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For two series-sequential processes, the temperature dependence of the
creep-rate is given by:

§"1(T)=¢éo exp (}%—,) +E€g7 €xp (,3_’:")
Here, in any given temperature range, the slower process dominates the
creep-rate, but not necessarily the creep strain, since the slower process
must operate for the faster one to be able to proceed, but it may be that the
slower process contributes directly little strain and only allows the other
process, with a greater strain contribution, to operate. The process with the
higher activation energy is dominant at lower temperatures (fig. 3.2(b)).

3.1.3  Curvature of the creep-rate-stress plot

The log é-log o plot is seldom linear over a wide range of applied
stresses, and the power-law equation (3.1) usually does not hold at high
stresses. It is, of course, possible to find empirical equations that fit the
experimental points over the whole range of applied stresses, but are devoid
of any physical meaning. The most successful one has been proposed by
Garofalo (1963) and can be conveniently written as the variation with stress
of the Zener—Hollomon parameter (3.2);

Z = A[sinh (a0)]" (3.3)
With an adequate choice of constants, such an expression may, in some
cases, hold over about 15 orders of magnitude of strain-rates (fig. 3.3)
(Jonas, 1969),

Another approach consists in fitting several straight lines, each corre-
sponding to one power law and presumably corresponding to physically
meaningful parallelconcurrent processes: at low stresses, processes related
to creep by transport of matter by diffusion (n=1 or 2), then recovery-creep
processes controlled by diffusion (Weertman creep, see chapter 4) withn=3
to 5; for high enough stresses, thermally activated processes with a stress-
dependent activation energy may appear. The creep rate then increases
exponentially with stress (§3.2) and the log £&-log o plot is no longer a
straight line (power-law breakdown). Curves in the o, T experimental
conditions planes separate domains where each process is dominant
(fig. 3.4).

It must be kept in mind that a power-law exponent n found by fitting a
straight line through experimental points in a small stress range does not
necessarily correspond to a power-law creep process (e.g. Weertman creep)
even if it has a value compatible with it: it may be that a curve
corresponding to an exponential dependence on ¢ can be assimilated to a
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Fig. 3.3. Zener-Hollomon parameter Z as a function of the applied
stress: Z = A [sinh (xo)]". Data for aluminium deformed by extension,
compression, torsion and tensile creep (Jonas, 1969).
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straight line over the stress range considered, thus yielding a spurious
power exponent. Indeed, in some cases, it is possible to analyse an
experimental log é-log ¢ curve in terms of one physically meaningful creep
law (with a complicated stress dependence) as well as in terms of several
power-law regimes. The consequences are not trivial when one wishes to
extrapolate the experimental law outside of the experimental stress range,
as for instance in the case of olivine, (Mg, Fe),Si0,, an important
constituent of the Earth’s mantle (Poirier & Vergobbi, 1978) (fig. 3.5). Jonas
(1969) has clearly shown that the Zener-Hollomon parameter correspond-
ing to the same experimental data can sometimes be convincingly plotted
against log ¢ (power law) or against ¢ (exponential dependence) with
obviously contradictory results for extrapolations.

Fig. 3.4. Composite surface In £=f{(In o, 1/T) for several creep
processes: (1) diffusion creep, n=1; (2) power-law diffusion-controlled
creep, n=13, same activation energy as (1); (3) cross-slip-controlled
creep.
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314 The power-law equation

As we have seen above, the power-law equation describes quite
well the creep of a considerable number of materials in the stress range that
corresponds to laboratory experimental conditions. We will see in chapter 4
that for many elements (mostly metals) the activation energy for creep is
reasonably close to the activation energy for self-diffusion (Sherby & Burke,
1967) (see §4.2 for a discussion of the correlation); the existence of models
for diffusion-controlled power-law creep (Weertman, 1968) further justified
the introduction of a power-law creep equation under the form proposed by
Mukherjee et al. (1969) (Dom equation):

o g Uk (@Y
> a2 (p) (34)

Fig. 3.5. Log é-log ¢ plot for experimental results on creep of olivine
normalized to 1400 °C with Q=125 kcal/mol. All data points are
within the stippled area and the solid curve is a fit by a cross-slip-
controlled law, the dashed curve is a fit by a climb-controlled creep
law (after Poirier & Vergobbi, 1978).
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where D is the self-diffusion coefficient, u the shear modulus and 4 a
dimensionless constant. However, a compilation of many experimental
data for various materials (Brown & Ashby, 1980) shows that A and n are
not independent:

ARCF 370 (3.5

with C, = 1025.
The Dorn equation can now be written in the form known as Norton’s
law by engineers:

é=Bf(T)(:—O)" (36)

where the stress is normalized to a reference stress o= u/C,, = p/1025, close
to the yield stress, rather than to the shear modulus. The coefficient B=
Co % 7% is then truly a constant independent of n.

32 Thermodynamics of creep

321  The absolute reaction-rate theory

The thermodynamical analysis of plastic deformation by disloca-
tion motion stems from the theory of the viscous flow of molecular fluids
proposed by Eyring (1936). The flow rate is considered as resulting from the
successful operation of ‘flow-units’, where the strain carrier moves by
overcoming an energy barrier with the help of the applied stress and
thermal agitation. The formalism is the same as the one used for chemical
reactions: the absolute reaction-rate theory. Let us consider a segment of
dislocation as a flow-unit and assume that the number of times per second
that the dislocation segment overcomes the energy barrier in the sense in
which the applied stress ¢ does work can be written as a thermally activated
reaction rate:

[0) —abAA] (37)

v*=v0cxp[—T

where Q, is the height of the energy barrier and ebAA is the work done by
the applied stress, helping in overcoming the barrier and thus effectively
lowering the height of the barrier; A4 is the area swept in the glide plane
while the dislocation segment moves up to the saddle point on top of the
barrier (activation area), bis the Burgers vector or the distance between two
successive energy troughs, v, is the attempt frequency.

The theory rests on the essential assumption that once the barrier has
been overcome and the dislocation segment has fallen into the next trough,
all its energy is thermalized, it must then acquire anew the total energy to
overcome the following barrier as a purely random process.
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(i) Ifthedislocation sitsin the trough after overcoming the barrier, it may
also jump back, with a frequency:

- +obAA
v =v,exp [—QOT] (3.8)
The net forward reaction rate is then
ok s Qo ., [obAA
v=v*—vy —vocxp( kT)smh( T ) (3.9
which can be linearized if the stress is small, i.e. if 6bAA <kT:
_ . obAA Qo
V=V — exp ( kT) (3.10)

(ii) If, after going over the saddle point, the dislocation is unstable and
slips rapidly over a distance A until it is blocked in front of another barrier,
it cannot jump back and we have then:

- A
v=v*=voexp|:—Q—°—ka-f—)-é‘fl~]=voexp (—%) (3.11)

Let I be the length of the segment of dislocation freed after each successful
jump, the elementary strain after each successful jump is /b%/Vin the first
case and [Ab/Vin the second one; Vis the volume of the crystal (see § 2.3.4).

The strain-rate can be written:

é=NIb*v (3.12)
for case (i) with v given by (3.9) and
£=NIAbv (3.13)

for case (ii) with v given by (3.11).
N is the number of flow-units (or activation sites) per unit volume.

322 The force—distance diagram

The quantities involved in the thermally activated overcoming of
obstacles are conveniently visualized on the ‘force-distance’ diagram (fig.
3.6). F (in ordinates) is the force exerted on the dislocation segment of length
! by the applied stress:

F=0obl

The reaction coordinate (in abscissae) is the distance travelled by the

dislocation during the activation process. The energy barrier is represented
as a hill, of height o bl, rising over a plain of altitude a;bl; o, 1s the average
value of the spatially fluctuating long-range internal stress, caused by the
other dislocations. The wavelength of the internal stress is large and the
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maxima cannot be overcome with the help of thermal agitation: a part of
-the applied stress must therefore be used to move the dislocation against the
internal stress; the rest, or effective stress, ., helps in overcoming the
obstacle.

We can write:

0=0;+0Cq (3.14)

The dislocation is pushed by the applied stress up the slope of the hill at a
height o.4/b above the plain; the remaining height to the hill top can be
ascended only with the help of thermal agitation.

The diagram corresponds to a fixed value of strain-rate ¢ and
temperature T.

() At T=0theobstacle can be overcome only if the applied stress is at
least equal to o;+0p.

(i) For 0> T> T, the obstacle can be overcome with the help of the
applied stress and thermal agitation, provided it is not too high or
too wide, in which case thermal agitation would be ineffectual and
the deformation could only be athermal (fig. 3.7(a, b)).

(iii) For T>T,, T, being the temperature at which thermal agitation
can provide the total energy needed to overcome the barrier
(kT.> oy bAA), the barrier has disappeared, the dislocation moves
athermally under ¢ =g, (fig. 3.7(c)).

We see that the deformation can be thermally activated only if the thermal
energyis of the order of magnitude of the energy barrier; if it is much lower or

Fig. 3.6. Force—distance diagram for thermally activated overcoming
of obstacles (T =const, ¢=const). lboy height of the barrier, lbg force
provided by applied stress, o =g; + g, (internal stress + effective stress).
Hatched area: energy provided by o. Stippled area: energy provided
by thermal agitation.
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much higher the deformation has to be controlled by some other, athermal
process.

In the case of thermally activated deformation, the dislocation can jump
over the barrier v times per second, for given ¢ and T.

— For constant strain-rate conditions, at a given temperature T, the
effective stress has just the right value for the obstacles to be
overcome at the frequency corresponding to the imposed strain-
rate.

- For constant stress conditions, at a given temperature, thermal
agitation can cause the dislocations to overcome the obstacles ata
definite frequency only, to which corresponds a definite creep-rate.

If the imposed strain-rate is higher, the dislocation must jump success-
fully over the barrier at a higher frequency v, hence, for a given temperature,
the part of the energy to be thermally provided must be smaller, which can
be achieved only at the price of a higher effective stress (hence applied stress)
(fig. 3.8). A thermally activated process is strain-rate-sensitive and an increase
in strain-rate produces the same effect as a decrease in temperature.

3.2.3  Activation quantities

To make the step from the absolute reaction-rate analysis, based
on the consideration of one activation event, to the thermodynamic
macroscopic analysis, we must make the assumption that we can average
over the crystal the characteristics of all the flow-units, we will therefore
deal with average quantities. We must then define the system and choose
the variables.

Fig. 3.7. Evolution of the force-distance diagram with T. The thermal
part of the energy (stippled area) increases with 7. A smaller applied
stress is needed to drive the process at a constant rate.
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(i) The choice of the system depends on how the stress variable is chosen
(Hirth & Nix, 1969):

— If we take the applied stress ¢ as stress variable, the system has to
be the whole crystal, but ¢; must be known.

- If we take instead the effective stress 6.4 =0 — 0;, the closed system
considered is local: a small volume, about the size of the
dislocation segment, around the activation site.

In what follows, we will choose the applied stress as a variable.

(ii) Once the system is chosen, we must express the free energy of
activation AG in terms of the chosen variables and use that expression to
write the strain-rate (see Evans & Rawlings, 1969, and Hirth & Nix, 1969).
We will consider here the case where egs. (3.11) and (3.13) are appropriate.
The free energy of activation of the process is equal to the difference of free
energy between the final and the initial states and must be provided by
thermal agitation. In the initial state (1), the dislocation is in equilibrium
under stress in front of the obstacle (on the slope of the hill).

The final state (2) is the activated state in which the dislocation is in the
saddle-point position, in thermodynamic equilibrium (assumption
required by the absolute reaction-rate theory). Let us consider a reversible
and isothermal virtual displacement of the dislocation (along the reaction
coordinate x) from the initial to the final state:

2

2
AG= J' [oa(x, T)+ai(x, T)]b:dx-obf ldx (3.15)

1

Fig. 3.8. Evolution of the force—distance diagram with strain-rate. For
the process to take place at a faster rate (right), at the same
temperature, the thermal part of the energy (stippled area) is reduced
and the mechanical part is increased, hence the stress increases.
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Assuming that / does not depend on x and putting
Ax=x;—x,=f(0)
we can write:

AG=AG,(T)—abAA (3.16)
where

AGy(T) =r [og(x, T)+a;(x, T)]bl dx
1

AA(s)=IAx is the activation area, representative of the extent of the
obstacle in the glide plane.
We can write:

AG,(T)=AH,— TAS (3.17)
AH, is the activation enthalpy (for zero applied stress) and AS is the
activation entropy. The most important source of entropy is the variation

of the shear modulus p with temperature (o5 and ¢, are proportional to p).
Using (3.11), (3.13), (3.16) and (3.17), we obtain:

. AS AH,—abAA
£=NIAbv, exp (?) exp l:— —OkT——:' (3.18)
or
. AH,—abAA
£=§, exp [— T—] (3.19)
The activation quantities are defined in terms of AG by:
0AG
AS= -?)c (3.20)
()
AH=AG+TAS= 1 (3.21)
(r)
1 0AG
Ad= ~3 —5‘?—)1— (3.22)

The product bAA4 in (3.19) has the dimensions of a volume and is
sometimes improperly called activation volume. This practice is to be
condemned since it introduces a confusion with the real activation volume
AV = 0AG/0P); expressing the hydrostatic pressure dependence,

The activation quantities can be expressed in terms of the variations of
the strain-rate with 7 and ¢ and are thus amenable to experimental
determination.
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3.24  Experimental determinations

(1) The activation enthalpy AH is identical to the ‘apparent
activation energy’ Q (§3.2.1):
d1n (€/€,)
ayTy J,
It can be determined by measuring the slope of an Arrhenius plot of steady-
state creep-rates at various temperatures determined on different specimens
or by ‘temperature jumps’ by changing the temperature from 7, to T, as

rapidly as possible and measuring €, and ¢, when it comes back to quasi-
steady state.

AH=Q=—k (3.23)

L AlE  In(/)
A(/T) " YL-UT,

Note that, in eq. (3.23), k is the Boltzmann constant, hence AH is the
activation enthalpy per atom and is often expressed in electron volts per
atom. It is often convenient to consider the activation enthalpy per mole,
expressed in calories or joules; in (3.19) and (3.23) k is then replaced by
R=kN, (N,=Avogadro’s number) which is conveniently expressed in
calories/mole: R =2 cal/mol (1 eV/atom ~ 23 000 cal/mol).

In many cases, £, is supposed to be independent of temperature (e.g. eq.
(3.24)), this, however, is not strictly true since £, depends on the shear
modulus g, which in turn depends slightly on temperature (§ 1.1.2). This is
especially true when & is fitted by a power-law equation, where the stress
dependence is entirely contained in the pre-exponential term; in the case of
Dorn’s equation:

g A(%) exp (—%) (3.25)

It can be shown that the apparent activation energy given by (3.23) is in
fact:

AH =

(3.24)

Qupp=0—nR L dr (3.26)
Failure to take the dependence of the elastic moduli on Tinto account
may result in a slight curvature of the Arrhenius plot (Barrett et al., 1964).

(i)} The activation area AA is given by:

_kT dln {s‘/éo))
T

AA
b do

(3.27)
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If £, is assumed to be independent of stress we have

kT 0Iné
Ad=7— m)T (3.28)
or in the power-law case:
Adui L Y (3.29)
b o

AA can be determined from the plot In € against In ¢ or from stress jumps
during the same creep experiment (the values found may be different, see
§ 1.2.3). The stress sensitivity of the strain-rate, hence the activation area,
can also be determined from stress-relaxation curves (Guiu & Pratt, 1964,
Rutter et al., 1978).

In stress relaxation, we transform the elastic strain into plastic strain:

£=— Mg
where M is the effective elastic modulus of the machine-plus-specimen
system (§ 1.1.3).
We have:
dln(—d) dlné b

= =7 M (3.30)

The activation area is therefore determined from the slope of the In (—d)-¢
plot (fig. 3.9).

If there is no recovery, the internal stress o; does not decrease during
relaxation and only the effective stress o, decreases, the stress tends
towards o, for infinite time.

Other methods for obtaining an approximate value of the internal stress
are the stress-dip method (Solomon & Nix, 1970) and the strain-dip method
(Ahlquist & Nix, 1969).

Fig. 39. Determination of the internal stress g; and the activation
area AA (b) from stress-relaxation experiments (a).
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Fig. 3.10. (a) Stress-dip method for determining the internal stress ;.
(b) Strain-dip method for determining the internal stress o;.
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In the stress-dip method (fig. 3.10(a)), the stress is relaxed by steps until an
inverse transient is observed when re-establishing the stress; in the strain-
dip method (fig. 3.10(b)), for creep tests, the applied stress is lowered by steps
during a creep test until a negative creep-rate is observed when re-
establishing the stress. This method is somewhat controversial and stress
drops have often been found to result only in an incubation period of zero
creep-rate (Birch & Wilshire, 1974; Bergman, 1975).



4

Dislocation creep models

Creep, and let no more be said!
M. ARNOLD (‘The Last Word’, st. 1)

Two varieties of elementary creep processes can be distinguished: in
the first one, the obstacles to dislocation motion are on the scale of
the dislocation core and are overcome by thermal agitation helped by
the stress (glide-controlled creep); in the second one, the obstacles are
too large to be overcome by thermal agitation but they may disappear
by diffusion-controlled recovery (recovery-controlled creep) -
dislocation motion is not directly thermally activated but it is
controlled by a thermally activated process. Models for creep resorting
to both types are reviewed. The stress exponent n and the activation
energy Q are very weak constraints on the models. Specific problems
relative to metallic alloys and ceramics and minerals are discussed:
climb dissociation of dislocations, creep of olivine, creep in hydrogen
oxide — ice.

41 Generalities

The purpose of creep models is to give a physical basis to the
empirical constitutive relations. For dislocation creep, the problem is in fact
to express the average dislocation velocity in Orowan'’s equation (§ 2.3.4) in
terms of temperature- and stress-dependent processes. The average velocity
of dislocations can be written:

AL
ty+1o
where AL is the distance the dislocation glides after overcoming an
obstacle, t, is the time taken to glide over AL and t,, is the time taken to
overcome the obstacle (assuming that the strain associated with the
overcoming is negligible).
Two different cases may be distinguished (table 4.1):

=

4.1)

(i) The obstacles to dislocation motion have dimensions on the scale of the
dislocation core (i.e. a few interatomic distances) — they can be overcome by
thermal agitation helped by an effective stress, as seen in §3.2. The
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dislocation motion is then truly thermally activated and the activation
enthalpy is stress-dependent. Two cases can then be envisaged:

- Thedislocation glides rapidly after overcoming the obstacle until it

meets another one at a distance A (eq. (3.13)). We have thenin (4.1):
AL=A and ¢, <t,.

This situation may occur if the obstacle consists in unravelling
an attractive junction at high stresses or if localized obstacles must
be overcome by cross-slip of screw dislocation, as in FCC metals at
intermediate temperatures.

The dislocation, after overcoming the obstacle, glides over AL=b
and immediately meets the next obstacle; in that case we may
speak of glide-controlled creep (§4.2); the controlling and strain-
producing process being glide itself and the obstacles being the
Peierls hills, there is no difference between ¢, and ¢, The creep
kinetics obviously depend much on the dislocation core structure
and may be analysed in terms of creation and mobility of double
kinks or in terms of spread cores. This situation arises at low or
intermediate temperatures in BCC or HCP metals; at high
temperatures, the lattice obstacles are too easily overcome by
thermal agitation and other processes control the strain-rate with
the result that dislocation motion may be indirectly thermally

Table 4.1. Dislocation creep mechanisms

Distributed on the

OBSTACLES scale of the core Localized

can be Lattice friction Nodes, barriers, attractive
OVERCOME junctions

by thermal agitation GLIDE- Cross-slip may be active
with help of ¢ CONTROLLED

AH(o) CREEP

can Mutually locking split
DISAPPEAR screw dislocations

by thermally Network growth
activated cross-slip Internal stress

AH (o) RECOVERY-CONTROLLED

CREEP

can Mutually locking edge
DISAPPEAR dislocations

by diffusion- Network growth

controlled climb Internal stress

AH RECOVERY-CONTROLLED

CREEP
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activated or athermal (see below). In minerals, however, where the
bonding is ionocovalent or covalent, the Peierls stresses are high,
even at elevated temperatures, as evidenced by the frequent
straight dislocations along crystallographic directions, and glide-
controlled creep may be prevalent (see §4.6).

(i) The obstacles to dislocation motion are too wide to be overcome by
thermal agitation; however, they may disappear through the operation of a
thermally activated process. This situation arises when the obstacles are
created by other dislocations (fluctuating internal stress field or localized
tangles or barriers formed by mutually locked-up dislocations). These
obstacles can dissolve away by climb-controlled mutual annihilation of the
dislocations, climb itself being controlled by diffusion, which in tum is
thermally activated; the obstacles disappear and release dislocations at a
rate that follows an Arrhenius kinetics. It is, however, important to realize
that this process is in fact only indirectly thermally activated as the
activated step pertains to the migration of vacancies, not to the motion of
dislocations. The activation enthalpy is stress independent. We may speak
of recovery-controlled creep or, in terms of its stress dependence, of power-
law creep (see §4.3). In that case, AL=A and t, <t,, but ¢, is determined by
the diffusion-controlled climb velocity of the dislocations.

Cross-slip of screw dislocations towards one another with subsequent
mutual annihilation may also be a way for obstacles to disappear,
analogous to mutual annihilation of edge dislocations by climb (Poirier,
1976), hence it may be considered as a recovery process, leading to indirect
thermal activation of dislocation motion. In this case, however, there is a
stress dependence of the activation enthalpy (see §§4.2 and 4.3).

It follows from what we have seen in chapter 3 that, depending on the
relative values of the activation enthalpies of the processes, there may exist
temperature and stress domains where glide-controlled and recovery-
controlled processes act as parallel-concurrent processes. If the creep-rate
is really thermally activated (i.e. glide-controlled or cross-slip-controlled)
the activation energy is stress dependent; from Orowan’s equation and the
fact that the dislocation density depends linearly on o? (see §4.3.2), we can
expect the creep rate to be of the form:

i (O exp| —2©@)
g 2]
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42 Creep by thermally activated dislocation motion

We consider here the processes that must be analysed in terms of
stress-assisted thermal overcoming of obstacles (localized or uniformly
distributed, as Peierls hills).

42.1 Localized obstacles

(i) Cross-slip of screw dislocations can play an important role in
the overcoming of obstacles. It is possible to decompose the thermally
activated process in the following steps (Friedel, 1964) (fig. 4.1).

A pre-existing constriction on a split screw dislocation (e.g. a constricted
intersection jog) can separate into two constrictions; the small region in
between the constrictions can split into the cross-slip plane, if it reaches a
critical size — it can bow out under the action of the applied stress and
become unstable in the cross-slip plane. Escaig (19684a) has calculated the
elastic energy of the saddle-point configuration and derived an expression
for the stress-dependent activation energy of cross-slip in the case of face-
centred cubic metals. For high stresses the expression of Q (¢) is not analytic
but can be numerically computed (fig. 4.2); for low stresses an asymptotic
form of the general equation gives a linear dependence in stress for the
activation enthalpy:

_ ub? b\ ab
o-sgeal (1-3) -5 “

Fig. 4.1. Cross-slip of a screw dislocation (after Friedel). 1. Pinching of
the stacking-fault ribbon. 2. Splitting of a portion into the cross-slip
plane. 3. Spreading of a split segment into the cross-slip plane.

/ g
77 7 7
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where u is the shear modulus; b, the Burgers vector; b, and d, the width of
the unsplit and split dislocation respectively; ¢, the applied stress; yg, the
stacking-fault energy and A and « are coefficients.

Cross-slip of screw dislocations is responsible for the stage III with
parabolic hardening (following the linear hardening stage II), observed in
the stress—strain curves of face-centred cubic metals (Friedel, 1964) and in
alkali halides (Davidge & Pratt, 1964; Strunk, 1975) (fig. 4.3). The screw
dislocations piled up in front of sessile Lomer—Cottrell locks cross-slip onto
other {111} planes, or in some cases onto {110} and {100} planes (Le Hazif
& Poirier, 1975; Caillard & Martin, 1982) (fig. 4.4).

The creep of aluminium at intermediate temperatures (0.25 to 0.5T,,) is
likely to be controlled by cross-slip (Dorn & Jaffe, 1961). The work of
Myshlyaev (1976) and, above all, the remarkable experiments on creep of
thin samples of aluminium inside a transmission electron microscope by
Caillard & Martin (1982, 1983) have shown that the controlling steps take
place in the dislocation walls formed during the deformation and that cross-
slip is the rate-controlling mechanism. The role of cross-slip in the knitting
and unravelling of dislocation walls has been theoretically analysed by
Friedel (1977).

The analysis of published high-temperature creep data on silicon and
germanium (Siethofl, 1983) shows a good agreement with Escaig’s (1968a)

Fig. 4.2. Variation of the activation energy for cross-slip with stress. Q
and ¢ are expressed as dimensionless quantities. The figures on the
curves are values of A=dg/b, (after Escaig, 1968a).
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Fig. 4.3. The stress-strain curve of NaCl single crystals. Stage I: easy

glide. Stage II: linear hardening. Stage III: cross-slip (for ¢ > oyy).
(After Davidge & Pratt, 1964.)

1200

Oy

800

Stress (g/mm?)

Strain {%)

Fig. 44. Cross-slip in aluminium. Slip traces in a foil crept in situ in
HVEM at 520 °C. TEM at 100 keV (courtesy D. Caillard).
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model (fig. 4.5) and strongly suggests that high-temperature creep in these
covalent materials is cross-slip-controlled.

(i) Attractive junctions between dislocations are usually extremely
resistant and their destruction requires much more energy than thermal
agitation can provide in normal conditions; as a consequence other easier
processes control the creep-rate. In some cases, however, creep cannot take
place without the attractive junctions being destroyed and this can occur at
high temperatures under high stresses. Guyot (1968) has analysed in this
way the creep of sintered aluminium powder (SAP) where particles of
alumina trap dislocations and produce strong tangles which must be
unravelled for creep to proceed; the activation energy is very high and
increases with temperature (fig. 4.6) (in fact, it increases with decreasing

Fig. 4.5. Creep of silicon. Data points from Myshlyaev et al. (1969)
fitted to Escaig’s (1968a) cross-slip control theory (after Siethoff, 1983).

10"1-

1300°C 1200°C
o
i0= b 1100°C
10 ¢ 1000°C
= o
E 10°% b
£
&
w
10} &
107 ¢
107 |
i L i i i (] B
20 40 60 80 100 120

Stress (MPa)



Creep by thermally activated dislocation motion 101

stress, as higher-temperature experiments are conducted at lower stresses).
A theoretical calculation of the activation energy for destroying the
junction is in good agreement with the experimental observations.

4.2.2  Glide-controlled creep

(i) Dislocation glide controlled by the thermally activated
overcoming of the Peierls hills has been essentially studied in body-centred
cubic metals at low temperatures, for constant strain-rate experiments. The
macroscopic elastic limit corresponds to the temperature-independent
stress at which straight and sessile screw dislocations begin to move (Escaig,
1967). The variation with temperature of the macroscopic elastic limit was
interpreted in two equivalent ways, either with the double-kink formalism

Fig. 4.6. Activation energy as a function of temperature for SAP
(sintered aluminium powder) containing 3.6, 8.3, 11.7% Al,O, particles
(after Guyot, 1968).
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(Guyot & Dorn, 1967) or with the following model of the core structure (see
Vitek, 1974): the core of the screw dislocation is seen as simultaneously
spread on several potential glide planes, in zone with the dislocation
(Kroupa & Vitek, 1964); the stacking-fault ribbons prevent glide in planes
other than their own, the result being that the dislocation is blocked unless a
high enough stress in conjunction with thermal agitation constricts locally
the dislocation and allows the formation of a double kink (Escaig, 19685).
This can be seen as ‘continuous’ cross-slip, the glide on each plane being
limited to the distance to the next trough and the whole process starting
anew on the same, or possibly a different, plane (this is the origin of
apparently non-crystallographic ‘pencil glide’).

In BCC metals, this process is mostly effective at rather low temperatures
but it may operate as a high-temperature creep process in hexagonal close-
packed metals and may be important in some minerals, where the range of
processes limited to low temperatures in metals may be considerably
extended upwards.

(i) In HCP metals, prism slip at high temperature may be controlled by
cross-slip of screw dislocations from the basal plane; Friedel (1959) and
Escaig (1968b) analysed it in a way similar to the one used for BCC metals:

~ if the width of the splitting is small (d, < 2b,) the activation energy
has the form predicted by Friedel

B
Q=a+ 43)

- if the dislocation is widely split (d,> 3b), the activation energy
becomes stress-independent.

Vagarali & Langdon (1981) investigated the creep behaviour of
magnesium at high temperatures (600 K < T'< 750 K) and stresses above
2.5 MPa; they found that the activation energy depended on stress as in eq.
4.3):

0= 140+2QE (Q in kJ/mol, ¢ in MPa)

The agreement with Friedel’'s model and the occurrence of abundant
non-basal slip led the authors to the conclusion that creep was controlled
by the cross-slip of dislocations from the basal to the prism planes.

(iii) An earlier model by Weertman (1957) considered the case where
dislocation glide is controlled by the Peierls stress (overcoming of the
Peierls hills by motion of double kinks). After moving a distance L, the
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dislocations annihilate by climbing to dislocations of opposite sign created
on neighbouring slip planes but the temperature is high enough for climb to
be easier than glide (¢, <1, in eq. (4.1)); we have therefore glide-controlled
creep.

The dislocation velocity is then given by the absolute reaction-rate
theory as:

V= vL%exp[—- Q_(_l-_—j;cr_ﬂl')] 4.4)

where v is the frequency of vibration of the dislocation segments, a the
distance between Peierls hills and t the Peierls stress. The creep-rate is
calculated by Orowan’s formula é = pv,b where the dislocation density p is
equal to the product of the density of sources M by the number of
dislocations in a pile-up of length L under the applied stress ¢ (oc bL) and by
the average length of a loop (oc L). The velocity is also proportional to L.
With the relation

20
2 __
- @4.5)
we obtain:
2.5 i
b i=12vaM 03 (E) exp [— W} (4.6)

At low stresses the creep-rate follows a power law with n=2.5 (assuming
that M is stress-independent) and at higher stresses the exponential
dependence on ¢ comes in, giving a curved log £-log o plot (see §3.1.3).
Weertman derived this model to explain the high-temperature behaviour of
creep in zinc where the activation energy is higher than the self-diffusion
activation energy, but he pointed out that this model could be useful in the
case of non-metallic crystals with high Peierls stresses.

43 Power-law creep or recovery-controlled creep

43.1 Bailey-Orowan equation

We are concerned here with real power-law creep, i.e. with quasi-
steady-state creep, with a constitutive equation of the form £ oc 6", where the
stress exponent n has a physical meaning and does not simply arise from the
fit of a straight line through data points on a log é-log o plot. Power-law
creep is recovery-controlled and is only indirectly thermally activated
through the processes controlling recovery, of which the principal is
diffusion. At high temperatures, the obstacles that can be overcome by
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thermally activated motion of dislocations eventually disappear (see §§ 3.2.2
and 4.1) i.e. o the height of the barrier becomes equal to zero, since thermal
agitation provides the totality of the energy needed to overcome the barrier.
The only obstacles that remain to dislocation motion are the long-period,
smooth undulations of the internal stress field and these have to be
overcome by the applied stress alone. We will use the activation formalism
once more to show that it leads in this case to the power-law formulation.
Let us write again the expression of the activation free energy:

"2
AG=| [og(x, T)+0o,(x, T)]bl dx—cb r ldx (3.15)
J1 1

Taking o5 =0, we have:

2
AG=| (o;—0o)bldx=(c;—0c)bAA @.7

W1

where AA is the activation area. Hence:

£= g’o exp [(_(T____EM] (4.8)

kT

Now, the well-known fact that crystals harden when strained and soften
when annealed at high temperatures can be translated in terms of internal
stress: the internal stress increases with strain and decreases as the
annealing time ¢ increases.

After a time d¢ at high temperature during which the strain produced is d,
the internal stress varies by:

> Ac,=hde—rdt (4.9
where h and r are coefficients, which we will not write as partial derivatives
of stress with respect to strain and time, an objectionable formulation since
strain and time are not independent variables (McCartney, 1976); we will
simply call h the strain-hardening rate and r the recovery rate.

For constant applied stress, (4.8) can be written:

Mhe—rijead ‘;’;}"M ] 4.10)

where ¢ is the strain rate at time ¢ and &, the strain rate at t=0.
Equation (4.10) can be integrated from t=0 to ¢ (McLean, 1966) and
yields:

> g= .} In (é—"hé)+£r (4.11)

£=¢£, exp l:

AA bh r h

The first term of the right-hand side of eq. (4.11) describes the primary part
of the creep curve (compare eq. (1.33) for Andrade creep) and the second
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term, the steady-state part with a creep rate:

r

[ 8;=h (4.12)

Eq. (4.12) is known as the Bailey-Orowan equation.

From (4.12) and (4.9), we see that the internal stress ¢, remains constant
during steady-state creep, and from egs. (4.8) and (4.10) that the applied
stress has to be just equal to the internal stress for creep to proceed at
constant rate. In other terms:

0—0,=0,4=0 (4.13)
and the exponential dependence in stress disappears. As we will see later,
the stress dependence of the recovery rate can take a power-law form; as to
the temperature dependence, it is also contained in the recovery rate r,
which is often diffusion-controlled. Mitra & McLean (1966) have verified
the validity of eq. (4.12) by measuring the values of r and h:

(i) r was determined by suddenly lowering the applied stress by Ag
during steady-state creep; a zero-creep period followed during the time At
necessary for o, to decrease to adjust itself to the new stress (fig. 4.7). The
experiment was done for several values of Ac and extrapolated to Ag=0:

r=lim (%) (4.14)

Note that the shape of the curve after a stress drop is a long-standing object
of controversy (see Takeuchi & Argon, 1976a). However, it seems that the
existence of zero creep is compatible with an athermal recovery control

Fig. 4.7. Zero creep following stress drop. The recovery rate is taken
as the limit of Ag/At for Ac— 0 (after Mitra & McLean, 1966).
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mechanism (Poirier, 1977) and reliable experiments seem to confirm it
(Bergman, 1975).

(i) h was determined as the strain-hardening coefficient on a stress—
strain curve after creep, for the same value of o/u as in the creep experiment.
The agreement in the case of nickel and aluminium is quite good. It is
obvious that in the case of recovery-controlled creep the thermal activation
formalism is not appropriate. If, nevertheless, the creep-rate were expressed
as in eq. (3.19), the activation area AA should be found to depend on stress
as 1/a, thereby effectively eliminating stress from the exponential. Such a
dependence has indeed been found by Balasubramanian & Li (1970) for a
great number of metals, alloys, semi-conductors and ionic solids (fig. 4.8).
The stress dependence of the recovery rate can be calculated if the
average mesh size [ of the three-dimensional Frank dislocation network is
taken as the factor that governs the internal stress:
0;0C % 4.15)
Friedel (1964, p. 239) has shown that the mesh of the network can grow
by climb of dislocations, owing to exchange of vacancies between them, so
that the total energy decreases; the rate of increase dl/d¢ of the average mesh
size is shown to be inversely proportional to its size, and proportional to the
self-diffusion coefficient D.

dl b?
d_t%Df?’f (4.16)
It follows (McLean, 1966) that:
do; do; dI ub? 8
i, e Lk W : 4.17
dr_dl dr‘ID(:)xD‘" Al

As g; =0 for steady-state recovery creep, we have a power-law dependence
with n=3. The interesting idea of recovery by network growth has generated
a spate of creep models, more or less equivalent and probably unnecessarily
sophisticated (e.g. Burton, 1982a).

The model presented by Nabarro (1967) must be given special attention:
it is a network growth model, in which climb of the dislocations does not
just equilibrate the internal stress with the applied stress but also produces
the creep strain (it is, in fact, a model of creep by transport of matter between
dislocations). The steady-state creep-rate is also found to be of the form:

§oc Dg?
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Fig. 4.8. Activation area for creep of BCC metals and covalent semi-

conductors, varies as 1/¢ (after Balasubramanian & Li, 1970).
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43.2 Equivalence of the Bailey—-Orowan and Orowan equations

We will show here that the formulation of quasi-steady-state
creep-rate by Orowan’s equation €=pbv (§2.3.4) can be obtained by
expressing r and h in terms of dislocations in the Bailey-Orowan equation
E=r/h.

We can accept that the internal stress increases during deformation
because the dislocation density increases (mobile dislocations are created
but may later be immobilized in networks).

The strain-hardening coefficient h may be written:

do; _do; dp
h‘EE‘@ de (1%
From eq. (2.70), e=pAL, we obtain
do; 1
o g 4.1
dp bAL gh]

where AL is the average distance travelled in slip or climb by the strain-
producing dislocations. The recovery rate can similarly be written:
do; de; dp
==
dt dp de
where dp/dr is the rate of annihilation of dislocations. Assuming a first-
order kinetics for dislocation annihilation:

dp_p

dr t

(4.20)

4.21)

where 1 is the lifetime of dislocation. If strain is produced by rapid slip of
dislocations that have overcome an obstacle during the time ¢, (see eq. (4.1)),
we have then:

d
Rlg=— 422
=l Vo 4.22)
where d is the height of the obstacle and v, the velocity of the overcoming
process. If the obstacles are overcome by climb, vy =v,, given by (2.69). Egs.
(4.20), (4.21), (4.22) yield:
ds, v
s N 423
r dppd (4.23)
Hence:

PN
h d

Eq. (4.24) is a form of Orowan’s equation modified only by the dimension-

less ratio of the distance travelled by the dislocation during the strain-

0, 4.24)
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producing step to the distance travelled during the overcoming of an
obstacle.

It is easy to prove that the ‘natural’ stress dependence for any climb-
controlled recovery creep is a power law with stress exponent n=3
(Weertman, 1972; Stocker & Ashby, 1973a; Brown & Ashby, 1980). We
have only to express the stress dependence of the climb velocity and of the
dislocation density. In its linearized form, the climb velocity depends
linearly on the stress: v.oca. As for the dislocation density, for whatever
uniform repartition of dislocations (as, for instance, two- or three-
dimensional networks), it must be of the form:

1

where [ is a characteristic length of the dislocation array (e.g. mesh size for a
three-dimensional network).

As the stress field of dislocations varies as the inverse of the distance, any
dislocation configuration in equilibrium will have a characteristic length:

A (4.26)
where g, is the internal stress field. It follows that

pcol 4.27)
and, if we remember that 6 =0,, carrying (2.69) and (4.27) into (4.24) yields:

£oc Da?

A power-2 dependence comes from the dislocation density and a power-1
from the climb velocity. The physics of the power-law creep boils down to a
geometrical relation (4.25), the 1/r dependence of dislocation stress fields and
a climb velocity linearized in stress.

433 The Weertman model

In the crowd of all the basically equivalent recovery-creep models
that clutter the literature, Weertman’s (1968, 1972) model stands apart and
must be given special attention, because of its importance in the literature as
the first physical model of creep, and also because nearly all the other
models can be derived from it.

In this model, dislocations are produced by sources in parallel planes,
distant by d, and their edge portions are mutually trapped, forming relaxed
multipoles (fig. 4.9); when the head dislocations annihilate by climbing
toward each other over d/2, the blocked loops can then glide over the
average distance L/2 (L radius of the head loop)and another loop is emitted
by the source.
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In Orowan’s equation, we can write from (4.1)

t?—Lv
==t

since ty=v.d/2>t, and AL=L/2, hence:

E=pb % U, (4.28)

(similar to 4.21).
The active dislocation density is equal to the product of the density of
sources M by the number of dipoles per source (taken as equal to ~ L/6d) by
the average length of a loop: 2z x L/2:
MI?
6d

Assuming that there is only one source per region of radius L and height d,
we have

(4.29)

1

Hence:
ol
P=6d
Carrying (4.31) into (4.28), expressing L by (4.30), and using an expression of
the climb velocity analogous to (2.69), we find:

. D T 4.5}41

4.31)

Fig. 4.9. Weertman’s model. Edge dislocations emitted by sources (S)
in parallel planes are mutually trapped and climb towards each other
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We see that if the density of sources is assumed to be stress-independent, the
power law has a stress exponent n=4.5. This is one of the reasons of the
popularity of the model, as n =45 is often found in creep experiments. With
the assumption that M =p/d, we find n=3.

Weertman (1972) has shown that by making various assumptions on the
stress dependence, or absence thereof, of several parameters or by
introducing stress concentration factors (especially in the case of pile-ups of
dislocations against subgrain boundaries), it is possible — somewhat
artificially — to obtain stress exponents as high as 6. Some of the considered
‘ad hoc’ assumptions are no doubt valid, especially when their effect is
limited to raising n up to 4 or 5. It seems clear, however, that power
exponents higher than 5 do not indicate ‘real’ power-law creep and result
from the inadequacy of the log £-log ¢ plot in those cases.

434 Power-law creep and self-diffusion

Until quite recently, it was an undisputed belief that diffusion-
controlled power-law creep obtained at temperatures higher than about
half the absolute melting temperature and for all solids: metals, alloys,
ceramics, minerals, etc. (Mukherjee et al., 1969; Weertman, 1972 ; Takeuchi
& Argon, 1976q). The rationale for this belief lay in the interpretation of a
considerable body of experimental data and an apparently impressive
correlation between activation energies for creep and activation energies
for diffusion (self-diffusion in the case of metals, diffusion of the slower
species in the case of ceramics and minerals, diffusion of the solvent or the
solute in alloys); in the rarer cases where activation volumes for creep and
diffusion had been measured, they were also found to be similar. Poirier
(1978) critically re-examined the source of the data and found that some
doubts might be raised as to the general applicability of the statement that
all materials creep by diffusion-controlled power-law creep above 0.5T,,. In
many cases, it was found that Arrhenius plots built from original unedited
data were noticeably curved and that the more or less straight portions,
with a slope compatible with the self-diffusion activation energy, did not
necessarily lie at the highest temperatures (fig. 4.10). The activation volumes
for creep and diffusion were sometimes found equal, in temperature
domains where the apparent activation energy was not equal to the self-
diffusion energy; besides, it can be shown that the activation volume
essentially reflects the dependence on pressure of the activation energy
through the dependence on pressure of the elastic moduli (see chapter 5),
hence the activation volume for creep should be roughly the same for glide-
or diffusion-controlled processes and cannot be used as a valid criterion.
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Diffusion-controlled creep certainly exists in some temperature range,
but it isnot the sole high-temperature mechanism and whether it is active or
not in a given temperature domain depends on the relative values of the
activation energies for diffusion and for the competing process. Cross-slip is
a potential competitor for diffusion, as it can act as a parallel-concurrent
process along with climb of edge segments; it may for instance control the
creep of hexagonal metals above 0.77,, and of copper between 0.5and 0.7T;,.
The view that high-temperature creep might be controlled by cross-slip has
met with a strong opposition (Sherby & Weertman, 1979). The main
argument put forward is the following: if the edge segments climb and if the
screw segments do not cross-slip because it is too difficult, the kinks that
will necessarily connect the edge and screw segments are able to move
conservatively down the screw segments, which are forced to move up
through the motion of these kinks without cross-slipping (?); climb is thus
rate-controlling: now, if the screw segments cross-slip easily, the jogs on the
edge segments cannot move conservatively and climb is again rate-
controlling. The unstated and unquestioned assumptions are evidently:

(i) that a non-conservative diffusion process is necessarily always
more difficult than any other, and

Fig. 4.10. Arrhenius plots for several metals. The plots are
conveniently displayed by not labelling the axis. Values of Q are given
in kcal/mol. The double lines indicate the regions where 0 =0, (after
Poirier, 1978).
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(ii) that a kink always moves easily along a screw dislocation, even if
the dislocation is split and cannot cross-slip easily.

We prefer to believe that climb and cross-slip are somehow symmetrical
and that cross-slip and climb both acting as parallel-concurrent processes
(fig. 4.11) may control the creep-rate in different domains (Poirier, 1976,
1979) (see §4.2). The curvature of the Arrhenius plot is not seen by Sherby &
Weertman (1979) as an argument against diffusion-controlled creep in some
domains, but as due to the operation of pipe diffusion (with a lower
activation energy) at lower temperatures. This is certainly a possibility,
although it could not explain the departure from bulk-diffusion activation
energy at high temperatures. Spingarn et al. (1979) have proposed a creep
model where climb is controlled by bulk diffusion and pipe diffusion in
parallel. The climb velocity by pipe diffusion is found to be:

Db ob?
I* RT
where Dj is the pipe-diffusion coefficient, and ! the length of the dislocation
segment. Using Orowan’s equation
£=pb(v?+v?) 4.39)
where ©%* and o! are the climb velocity by bulk and pipe diffusion
respectively, the creep-rate can be written:

kb AV (A}
- BfoeslS)al)

Fig. 4.11. Climb and cross-slip as parallel-concurrent processes. Edge
portions climb towards each other by migration of jogs (J). Split screw
portions (hatched) cross-slip towards each other by migration of
kinks (K).
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The effective diffusion coefficient depends on the stress through the
dislocation density, for in (4.32), 1/I12 ~(1/b)?(¢/)?, which introduces a ¢
dependence for v,.

This model gives a curved Arrhenius plot, as well as an apparent value of
n higher than 3 in a limited stress range. However, the results predicted by
the model are not in good agreement with the behaviour of a number of
pure metals and the predicted creep-rates are significantly lower than the
measured creep-rates.

So far, without discounting a possible effect of pipe diffusion on the
curvature of Arrhenius plots, it is difficult not to recognize that diffusion-
controlled creep is probably not the only active mechanism at high
temperatures. Let us emphasize again that the determination of the stress
exponent n and the activation energy Q in limited domains of stress and
temperature do not provide enough information to pinpoint the creep process:
nand Q are very weak constraints. In most cases, examination of dislocation
configurations by transmission electron microscopy is a must.

435 Harper-Dormn creep

Harper & Dorn (1957) found evidence that aluminium poly-
crystals deformed in tensile creep at high temperature (647 °C=0.99T,,)
exhibited a Newtonian viscous behaviour at very low stresses: the Zener—
Hollomon parameter varied linearly with stress (fig. 4.12) for stresses lower
than 131b/in? (0.09 MPax3.3x107° ). Although this behaviour is
usually associated with Nabarro-Herring diffusion creep (see chapter 7),
Harper & Dorn found that their results were incompatible with it. In
particular, they observed primary creep and recovery following stress drop,
phenomena that do not exist in Nabarro-Herring creep; also the observed
creep rates were three orders of magnitude greater than those calculated for
Nabarro—Herring creep; and finally the results of an experiment on a single
crystal agreed very well with the results on polycrystals (diffusion creep is
noticeable only in fine-grained materials, see chapter 7).

For stress higher than 13 Ib/in?, the normal power-law behaviour, with
n=~4, was found. The authors concluded that the low-stress (n=1) regime
could not be attributed to diffusion creep and suggested that an unspecified
dislocation climb process was operating.

Owing to the difficulty of conducting creep experiments at very low
stresses and to the lack of reproducibility of results, Harper-Dorn creep did
not achieve the status of a recognized creep process until quite recently,
when more systematic experiments were conducted mostly on aluminium,
aluminium alloys and a few other metals (see Yavari et al., 1982).

Examination, by etch-pits and TEM, of samples of Al 5% Mg alloy
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deformed in the Harper—Dorn creep regime revealed that the dislocation
density was quite low (p ~5 x 103/cm?) and independent of stress and that
dislocation segments seen in TEM were mostly of edge character, no
subgrains being seen (Yavari et al., 1982). These results led Langdon &
Yavari (1982) to propose that Harper-Dorn creep arises from the climb of
edge dislocations under saturated conditions (i.e. when the concentration of
jogs is high enough for climb to be controlled by vacancy diffusion to and
from the dislocations; this is assumed in most climb-controlled-creep
models). Although this is not explicitly stated, it seems that Langdon &
Yavari consider that strain is produced by climb of the edge dislocations;
their model therefore is equivalent to Nabarro’s (1967) with constant
dislocation density, i.e. to diffusion creep by exchange of vacancies between
dislocations rather than grain boundaries. Mohamed & Ginter (1982) also
investigated Harper-Dorn creep in aluminium but achieved large creep
strain (e ~20%) in quasi-steady-state, which supports the contention that
Harper-Dorn creep results from a genuine creep process and is not just a
transient. They suggest that the dislocation multiplication necessary to
obtain large strains proceeds by a cross-slip mechanism.

Fig. 4.12. Zener-Hollomon parameter as a function of stress for
aluminium. Note the linear variation of Z with ¢ (slope on the log-log
plot) at low stresses (after Harper & Do, 1957).
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Harper—Dorn creep has also been found in non-metallic materials. Coath
& Wilshire (1977) and Dixon-Stubbs & Wilshire (1982) investigated the
creep behaviour of lime, CaO, at T=1473 K; for both polycrystals and
single crystals they found a low-stress regime with n=1 and a high-stress
regime with n=35 (fig. 4.13). For single crystals, the Newtonian creep
appears at stresses lower than 20 MPa (or about 2 x 10™# y); as in the
experiments on aluminium, the creep curve exhibits a primary stage and
zero-creep recovery periods follow stress drops. The authors reasonably
conclude that there is no fundamental difference in the processes occurring
at high and low stresses; they suggest that the low-stress behaviour may be
accounted for by a recovery-controlled network growth model (§4.3.1) with
stress-independent dislocation density. The same behaviour is exhibited by
single crystalline KZnF 5, a fluoride with cubic perovskite structure (Poirier
et al., 1983), which crept at low stresses (5x 107° u<6<2.3x 10™* y) and
high temperature (T =091.,).

It seems therefore quite reasonable to account for Harper—Dorn creep by
the operation of the same processes as control power-law creep at higher
stresses, the difference being that the dislocation density is stress-dependent
at high stresses and stress-independent at low stresses. Simple inspection of
Orowan’s equation (4.24) shows that the only remaining stress dependence
comes from the climb velocity and is therefore linear.

Harper-Dorn creep might be rather frequent at low stresses in ceramics
and minerals where, due to high Peierls stresses, dislocations would tend to

Fig. 4.13. Stress dependence of strain-rate for single crystalline and
polycrystalline lime (Ca0), at 1473 K; n=1 at low stresses and n=5
at high stresses (after Dixon-Stubbs & Wilshire, 1982),
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be quite straight and little responsive to stress increases as long as the
stresses remain low (o/u~105-10"*). However, dislocations have to
multiply to allow large strains (up to 30% in KZnF;), and, whatever
multiplication process operates, it must be stress-insensitive at low stresses.

44 Creep of solid-solution alloys

44.1 Empirical classification

Sherby & Burke (1967) and Cannon & Sherby (1970a) proposed to
divide solid-solution metallic alloys into two categories, on the basis of
certain characteristic behaviours.

(i) Class I alloys, exhibiting:

- a power-law dependence in stress with nx3,

- little or no primary creep,

- no dependence on the stacking-fault energy yr,

- little or no formation of subgrains (polygonization) during creep.
(ii) Class II alloys, exhibiting:

- a power-law dependence in stress with n=5,

- normal primary creep,

— a dependence on the stacking-fault energy,

— creep polygonization.

Class II alloys were therefore thought to deform by the same process as
pure metals, i.e. climb-controlled power-law creep, the dislocations gliding
without hindrance from the solute atoms. Class I alloys were thought to
deform by a glide-controlled process in which interaction between solute
atoms and dislocations leads to a linear viscous motion of dislocations (see
§4.4.3).

Using a compilation of experimental results on various alloys, these
authors proposed that alloys could be assigned a category on the basis of
the values of two key parameters: the elastic Young’s modulus of the
solvent, E, and the size difference between solute and solvent atoms, e.
Alloys having a large Young’s modulus would belong to class II; alloys for
which e is large would belong to class I (strong interaction between
dislocations and solute atoms). These criteria, however imprecise, were
nevertheless found to break down in certain cases; besides, the stress level
and the solute concentration should obviously have an influence in
determining which behaviour an alloy would exhibit.

Mohamed & Langdon (1974) established a more sophisticated criterion
by equating empirical expressions for climb-controlled and viscous glide-
controlled creep rate. (Their classes I and II are respectively identical to
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Sherby & Burke’s classes II and 1) In their derivation, they used an
empirical correlation between climb-controlled creep-rate and stacking-
fault energy (fig. 4.14)

s:oc(”—‘”)3 (4.36)
ub

and they assumed that the diffusion coefficient for solute atoms was roughly
equal to the weighted diffusion coefficient proposed after Herring, by
Weertman (1968) for climb in alloys:
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Fig. 4.14, Empirical correlation between creep-rate and stacking-fault
energy. Creep-rate, stacking-fault energy and the constant applied
stress are expressed as dimensionless quantities (after Mohamed &
Langdon, 1974).
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where D¥, D¥ and N,, Ny are respectively the tracer diffusion coefficient of
constituents A and B of the binary AB alloy and the atomic fractions of A
and B.

Using experimental results on an alloy Al 39, Mg to fix the adjustable
parameters, Mohamed & Langdon find that the criterion for viscous glide
is:

1012 2 3 2
8 x10'%g (yF) T 438)

K2(1—v) \ub/) ~ ecb®
where k is Boltzmann constant, v Poisson’s ratio, ¢ the solute concentration
and all the other symbols have been defined above. According to this
relation, viscous glide is favoured over climb-controlled creep at high
stresses and lower temperatures and for large stacking-fault energies, large
size factor of solute and high solute concentration.

Cannon & Sherby (1970b) proposed to extend the concept of two classes
to solid-solution ‘alloys’ of ionic compounds; creep experiments on NaCl-
K Cl solid solution led them to conclude that they behaved as class I alloys,
a solute atmosphere of Na* and K * ions, in a ratio different from the
average composition, diffusing along with the dislocations during glide-
controlled creep.

44.2 Viscous-glide creep models

Weertman (1957) first proposed a creep model in which
dislocations glide with a linear viscous dependence on stress of their
velocity. In steady-state creep, dislocations in pile-ups move ahead when
the head dislocations annihilate by climb; another dislocation is then
created at the source. As in the case of glide controlled by Peierls’ stress
(§4.3.2), climb is easier than glide. The average velocity of dislocations in the
pile-up is shown to be proportional to ¢bn, where n, the number of
dislocations in the pile-up, is given by noc bL (L 1s the length of the pile-up).
The average glide velocity is therefore:

v, =Ac?b’L
where A depends on the microcreep viscous mechanism. For a constant
density of sources M (related to L by 4.5) and an average length of
dislocation proportional to L, the creep rate is:

goc AI*Ma*b? oc Ab%a? 4.39)

Weertman’s theory does not take into account the details of the viscous-

glide mechanism, it only uses the assumption that it is linear, i.e. the velocity
of one dislocation is proportional to the stress (the apparent dependence of
v, On o2 comes from the fact that the number of dislocations in a pile-up is
proportional to ¢, and the effective stress on a dislocation is anoca?).
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Several viscous drag processes can be envisaged:

— Segregation of solute atoms in an atmosphere around the moving
dislocations (Cottrell’s atmosphere) that must diffuse to follow the
dislocation.

- Chemical interaction of solute atoms with the different structure of
a stacking fault resulting in segregation of solute atoms on the fault
ribbon of extended dislocations (Suzuki effect).

— Destruction of short-range order through the motion of
dislocation (Fisher's mechanism).

— Local ordering of solute atoms in the stress field of the dislocation
(Snoek mechanism), etc.

More recently, models more elaborate than Weertman’s have been
proposed for glide-controlled climb involving drag by Cottrell's atmo-
spheres (Takeuchi & Argon, 1976b; Burton, 1982b). Despite their
sophistication (or possibly because of it and of the great number of
assumptions they rely on) it is not clear that they contribute much to the
physical understanding of creep in solid solutions.

Takeuchi & Argon (1979) have investigated in more detail the physical
process of viscous drag of a Cottrell atmosphere on glide and climb by
computer simulation.

4.4.3  Discussion: stacking-fault energy and diffusion coefficient

Understanding the physical processes of creep in solid-solution
alloys is a formidable task because it compounds most of the difficult
problems in physical metallurgy, especially if the alloys are concentrated;
let us list a few:

— What is the structure of the alloy at the atomic scale ? Even though
at high temperature the alloy is in the solid-solution domain, the
phase diagram is usually complicated at low temperatures and this
may result in short-range order or clustering in certain
composition ranges, with momentous consequences on the
dislocation motion.

— What is the specific mode of interaction of solute atoms with
dislocations: Cottrell atmospheres, segregation on the line or on
stacking faults made wider by the segregation itself ?

— What diffusion coefficients must be used? Even in dilute alloys
there are five different jump frequencies for a vacancy instead of
one in pure metals (W, —exchange of a vacancy with a solvent atom
far from the solute; W; — vacancy turning around a solute atom;
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W, — exchange of a vacancy with a solute atom; W, — jump of a
vacancy removing it from the vicinity of a solute atom; W, ~ jump
ofa vacancy bringing it in the vicinity of a solute atom), the number
of jump frequencies increases with the clustering of solute atoms
(pairs, triplets, etc.) and the atomistic problem of diffusion is
intractable in concentrated alloy.

Before discussing in somewhat more detail some of these problems, it is
necessary to strike a note of caution as to the interest or validity of general
models of creep of alloys resting on empirical compilation of stress
exponents and activation energies of creep for various alloys. It is my
personal opinion (hence subject to dissent) that the concept of two classes of
alloys, although possibly comfortable, is a definite hindrance in the quest
for physical processes.

As we have already seen, the stress exponent n has little physical
significance per se and cannot be used to discriminate between mechanisms,
even in the case of pure metals. Now, it is certainly true that in some alloys
glide is easier than climb and climb is easier than glide in others, but there is
no reason to believe that this is reflected by a change from 5 to 3 in the value
of n.

The case of concentrated alloys is especially worrisome because of the
complexities of the low-temperature phase diagrams. What are we to make
of the fact that in gold-nickel alloys n decreases from 5.6 in pure Au and Ni
to about 3 for intermediate compositions (fig. 4.15), when we know that
there is a miscibility gap in the phase diagram at lower temperature ? What

Fig. 4.15. Variation of stress exponent with composition for gold-
nickel solid-solution alloys (after Sellars & Quarrell, 1961),
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about the variation of n across the concentration range from 0 to 1, in lead-
indium alloys (fig. 4.16)?

All criteria for viscous glide (e.g. eq. (4.38)) are based on some microscopic
model, like the drag of a solute atmosphere, which has physical meaning
only for dilute alloys. Indeed, what is the solute and what is the solvent in a
50 at.%; solid-solution alloy ? What is an atmosphere around a dislocation ?
If we take ¢ =1 in eq. (4.38), creep should be even more glide-controlled than
with ¢ =102 despite the fact that we are dealing with ‘pure solute’, but it is
indicated nowhere in the model that it is to be restricted to dilute alloys, and
the compilation on which the alloy classes concept rests includes concen-
trated alloys (see Table I in Cannon & Sherby, 1970a).

Two parameters are especially worth discussing: the stacking-fault
energy and the diffusion coefficient.

(i) The idea that the stacking-fault energy y is a relevant parameter that
should be introduced in the creep-rate expression was first put forward by
Barrett & Sherby (1965) for pure metals. Even though the correlation
between ¢ and y, seems satisfying (fig. 4.14), it is fraught with difficulties.
Firstly, y¢ is not an independent variable like Tor o; different values of y¢
correspond to different pure metals, each with its own dislocation core
structures. Secondly, the observation that in many alloys (e.g. CuAl) the
width of the split dislocations considerably increases with the solute
concentration (in the solid-solution range) has often been construed as

Fig. 4.16. Variation of stress exponent with composition for lead-
indium alloys (data points from Weertman, 1960).
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meaning that, for instance, aluminium lowers the stacking-fault energy of
copper. This formulation is not correct, since, in adding aluminium atoms
to copper we produce an alloy in which the solute atoms segregate to the
stacking faults (Suzuki effect) with the result that the width of the
equilibrium split dislocations increases (see Hirth, 1970, for a thermo-
dynamic treatment); once again, the stacking-fault energy of copper has not
been reduced — we have changed copper into an alloy with a lower value of
yr. Moreover, the values of y- are most of the time determined by measuring
the width of dislocations or extended triple nodes in TEM at room
temperature, but at high temperatures where creep occurs the equilibrium
concentration of solute atoms at the stacking fault decreases (solute
evaporation) and the width of the dislocation accordingly decreases (hence
the apparent value of y. increases). It is quite possible that there is an effect
of the dislocation width on creep, indeed it is to be expected that kink and
jog formation on extended dislocations should be more difficult, with
obvious consequences on glide and climb (Burton, 1982¢; Argon & Moffatt,
1981), but a correlation between high-temperature creep rate and room-
temperature stacking-fault energy of alloys is meaningless and its existence,
at best, fortuitous: Orlova et al. (1971) have found no correlation in the case
of Cu—Al alloys up to 16 at.%;, Al Finally, jog and kink migration on an
extended dislocation is presumably different in pure metals and in alloys
with solute segregation on the fault.

(ii) In diffusion-controlled creep models for pure metals, the self-
diffusion coefficient appears in the expression of the climb velocity by the
product N,D, (eq. (2.13)) where N, and D, are respectively the atomic
fraction and the diffusion coefficients of vacancies. For a dilute solid
solution, it is still appropriate to use the self-diffusion coefficient of the
solvent. For a concentrated alloy AB where the atomic fractions of
constituents A and B are comparable, the notion of solute and solvent
disappears, vacancies are not identifiable as vacancies of A or B (as in ionic
crystals with distinct sublattices), they are simply vacant sites into which
atoms of A and B jump with different jump frequencies. The diffusion
coefficient to be used in any diffusion-controlled creep model of alloys must
be a mean diffusion coefficient D= N, D, ; it should be expressed in terms of
the tracer diffusion coefficients of A and B in AB, D} and D§, which can be
experimentally determined. Brebec & Poirier (1975), in a general thermo-
dynamical treatment, have considered two extreme cases:

— The alloy remains homogeneous, i.e. there are no concentration
gradients of A and B, then:
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5=% (NADf +NyD}) (4.40)

6lnyA_l+aln'yB

=1 =
=t omN, T T,

(4.41)

¢ 1s Darken’s thermodynamic factor, where N,, Ny and 7y,, ys are
respectively the atomic fractions and the activity coefficients of A and B.
The correlation factor f'is close to 1.

This case corresponds to a transient regime before steady-state diffusion
is established.

— In the steady state, matter is transported at constant composition, but,
as the two species A and B diffuse at different rates, concentration gradients
are set up tending to slow the faster species and accelerate the slower one;
then (if there is no coupling between fluxes of A and B):

1 1 /N, N,
55 (5? 8 5.?) (4.42)
or
_ DD}
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®N.D,+N,D} “ad)

This expression is almost identical to the one derived by Weertman
(1968) after Herring.

The activation energy of D can be calculated as a function of N, (or Ng);
no agreement is found between its variation and that of the activation
energy of creep in the case of gold—nickel and copper—nickel alloys.

Finally let us note that there is no justification in using the chemical or
interdiffusion coefficient D determined by experiments of diffusion on
couples of pure metals A and B:

D=@(NyD¥+N,D§) (4.44)

D corresponds to diffusion in steep concentration gradients in A and B
but with a zero concentration gradient of vacancies, which is inconsistent
with diffusion-controlled creep in a homogeneous alloy. (Note that (4.44) is
different from (4.40).) Besides, D does not tend towards the self-diffusion
coefficient of pure metals if N, or N, is made to tend to zero.

In conclusion, we see that in the case of concentrated alloys, empirical
classifications do not lead to physical models. Needless to say, the
application of such classifications to ceramics or minerals (e.g. Cannon &
Sherby, 1973) should be avoided.
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45 High-temperature deformation of ceramics and minerals

451  Generalities

Ceramics and minerals are ionocovalent compounds differing only
in their origin: ceramics are artificial and minerals natural. Ceramics can be
made as pure as possible, whereas there is no such thing as a ‘pure’ mineral:
the ceramic forsterite has the formula Mg,SiO, and Fe ions can substitute
for Mg as an impurity, but natural (Mg, Fe),SiO, is the mineral olivine,
which can be seen as a solid solution between two end members: Mg,SiO,
and Fe,Si0O,.

The specificity of ceramics and minerals resides in their having several
sublattices, partially or totally occupied by ions of various natures, sizes and
electrical charges. The crystal structure is the result of a compromise
between steric and electrostatic requirements; it determines the nature of
point defects, the structure of dislocations, as well as the possible
interaction between these defects (see Mitchell et al., 1979 for a review).

(i) Point defects: vacancies and interstitials of each species are elec-
trically charged but they can enter neutral associations. There are in general
four different types of vacancies which do not necessarily play the same role
in high-temperature diffusion:

— Constitutional vacancies are sites which are necessarily empty in a
given crystal structure; they do not in general contribute to
diffusion since exchanging a constitutional vacancy with an ion
creates a defect in the structure.

— Stoichiometry vacancies are vacant sites which involve a departure
from the formula unit (e.g. in Fe, _,O there are vacant iron sites
and therefore vacant oxygen sites to preserve electrical neutrality);
in oxides, the concentration of stoichiometry vacancies depends on
the partial pressure of oxygen.

— Extrinsic vacancies are created to preserve electrical neutrality
when the formula cations are replaced by aliovalent cations (with
different charge but about the same size).

— Intrinsic or thermal vacancies, whose concentration depends on
temperature. Some of the consequences of this variety of point
defects on diffusion have been reviewed in §2.2.3.

(i) Dislocations: owing to the fact that the unit cell of ceramics and
minerals is often of large dimensions, the Burgers vector of perfect
dislocation is large, hence the dislocations are very energetic and tend to
dissociate to lower their energy; the existence of several sublattices gives
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rise to a rich variety of dissociation schemes and stacking faults.

In most oxides, the oxygen ions form a close-packed framework and the
glide dislocations dissociate into partials whose motion would cause the
cations in the layers between the oxygen close-packed planes to move into
sites with the wrong coordination (e.g, tetrahedral instead of octahedral).
The cations therefore have to relocate themselves into proper sites and this
may be effected by a motion synchronized with that of the dislocation
(although not necessarily in the same direction). This process, known as
synchroshear, was first proposed by Kronberg (1957) for basal slip in Al,O,
(fig. 4.17) and later by Hornstra (1960) for {111} slip in the spinel structure.
Even for unextended dislocations, the core structure is complicated, kinks
and jogs are electrically charged (fig. 4.18), which often imparts a net
electrical charge to the dislocation. This results in the dislocation being
surrounded by a screening atmosphere of oppositely charged point defects.
The interaction (elastic or electrical) of point defects with the dislocation
core may modify the stoichiometry around the core (or accommodate the
non-stoichiometry).

Climb is a complicated process: for instance, the motion by one unit cell
vector of a jog in an edge dislocation of olivine Mg,SiO, whose unit cell
comprises 4 formula units, involves the transport of 16 oxygen ions, 8
magnesium ions and 4 silicon ions. Climb is controlled by the diffusion of the
slower species, which despite common belief is not necessarily the bulkier
anion (e.g. in olivine Si** diffuses more slowly than O?~, see table 2.1).

The high-temperature plastic properties of oxides have been reviewed by
Bretheau et al. (1979) (their tables 4 and 6 give a compilation of creep
experiments on oxides). As it would be out of the scope of this book to
review here the plastic properties of ceramics and minerals (see Paterson, in
preparation), we will only deal briefly here with three specific cases which
illustrate the kind of problems met in oxides and silicates: (i) climb
dissociation of dislocations and its consequences, (ii) high-temperature
creep of olivine single crystals, (iii) creep mechanism in hydrogen oxide ice.

45.2 Climb dissociation of dislocations

The crystalline structure of many oxides is such that certain
dislocations can easily dissociate in a plane other than the glide plane. This
type of dissociation has been particularly investigated in the spinel
structure, which we will use as an example.

The spinel structure AB,0, is a very widespread structure that can be
analysed as a face-centred cubic (cubic close-packed) framework of oxygen
ions whose tetrahedral and octahedral interstices are partly filled with small
metallic cations with different electrical charges (Smith, 1982) (fig. 4.19).
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Among the most important spinels we can mention: spinel Mg2 *AL3*O,,
magnetite Fe? " Fe3 * O, , chromite Fe?*Cr3 *O,, . . . and the high-pressure
silicate phase of the Earth’s upper mantle - Mg3 *Si**O,. The formula may
be written in a different way, which makes the degree of non-stoichiometry
apparent: e.g. MgO nAl,O;, where n=1 for stoichiometric spinel; n can
take values larger than 1 (e.g. 2 or 3). Dislocations with Burgers vector b=
1(110) can dissociate into two partials by the reaction (fig. 4.20):

1K110)— (1105 + 1110}

Fig. 4.17. Synchroshear in Al,0,. (a) Dissociation of a dislocation
with (1120) Burgers vector into quarter partials. (b) Positions of two
layers of oxide ions and an octahedral site in between the layers (A)
before and after quarter partial slip. Solid arrows represent the
displacement of the upper layer, the dotted arrow indicates the motion
of the atom in A (following the octahedral site in its new location)
during slip (Kronberg, 1957).
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The corresponding stacking fault may lie in the {111} slip plane (glissile
fault) but another configuration is possible in which the stacking fault lies in
the climb plane (110). The fault in (110) plane with displacement vector
R =1}[110] has a very low specific energy (Veyssiére et al., 1975) as it does
not affect the oxygen sublattice (fig. 4.21). The dissociation in the climb

Fig. 4.18. Charged jogs on an edge dislocation in NaCl. Edge
dislocation with b=1[110], along [001]. The double extra half plane
lies parallel to the plane of the paper (open symbols below the plane).
Three possible configurations: negative jog (left), neutral (middle),
positive (right) (after Poirier, 1972). Circles — cations; squares — anions.

@ L0+ O © Toid H Toel-iO-
® B ¢ '

Fig. 4.19. Spinel structure. Large spheres represent oxygen ions, small
black spheres represent ions in tetrahedral sites and cross-hatched

spheres ions in octahedral sites.
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Fig. 4.20. Dissociation of a dislocation with $(110) Burgers vector in
the spinel structure (after Bretheau et al., 1979).

Fig. 4.21. Stacking fault 4{110] (110) in the spinel structure. The
oxygen ions are not represented and the metallic ions are represented
inside their coordination polyhedra (tetrahedra and octahedra)
{(Madon & Poirier, 1980),
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plane can take place by climb of the two partials in opposite directions, one
of the partials absorbing the vacancies created at the others. The partials
recede from each other as the fault widens at little cost in energy (fig. 4.22).
The process involving exchange of matter between the two partials is
globally conservative on the scale of the crystal (Veyssi¢re et al., 1978).

Climb dissociation of dislocations in MgAl,O, spinel of various
stoichiometries has been directly observed by transmission electron
microscopy: the dislocations are sessile and very straight and the partials
can be resolved by the weak-beam technique (Donlon et al., 1979 ; Duclos et
al., 1978; Doukhan et al., 1979). Several dissociation planes are possible —
{100}, {110} and even {113} for spinel with n=1.8 (Doukhan et al., 1982);
the dissociation plane may continuously change along the dislocation (fig.
4.23). Climb dissociation of dislocations resulting into faulted dipoles has
also been observed in sapphire («-Al,O;) by Mitchell et al. (1976) and
Phillips & Cadoz (1982), and in pyrite FeS, by Levade er al. (1982) (figs.
4.24 4.25). Climb dissociation of the dislocations makes them sessile and a
dislocation that has reached an orientation in which it can split in its climb
plane should in principle be prevented from further slipping. Under these
conditions, creep strain may, however, result from the operation of the
following processes:

Fig. 4.22. Climb dissociation of dislocations in the spinel structure.
(a) Schematic (after Veyssiére et al., 1978).
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(i) Pure climb of the dislocations in their climb planes, as proposed by
Duclos et al. (1978) for almost stoichiometric spinel. This process is also
thought to be rate-controlling in the high-temperature creep (1550< T <
1800 °C) of yttrium oxide (Y,04 (Gaboriaud, 1981); this oxide has a cubic

(b) Configuration (Doukhan et al., 1982),

. a2(ne]
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structure, related to that of fluorite CaF, and the dislocations with {100)
Burgers vector may split in their climb planes with a fault of low energy;
climb is controlled by the diffusion of the slower ion, in this case the Y3*
cation.

Fig. 4.23. TEM of dislocations dissociated in climb in MgO 1.8%
Al,O; spinel. (a) Straight sessile dislocations. (b)) Weak beam image:
the dissociation plane changes along the dislocation line (courtesy
N. Doukhan).
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(1i) Viscous glide of the split dislocations in their glide planes, controlled
by the ‘diffusion’ of the fault ribbon (Duclos et al., 1982). Stoichiometry
vacancies in spinels with high n facilitate the cationic rearrangements
required by the motion of the fault normal to its plane.

As climb dissociation of dislocations is controlled by diffusion, it must
become easier as temperature increases; this may lead to an unusual
variation of the mechanical properties with temperature (fig. 4.26): In
constant-strain-rate tests, the flow stress normally decreases as temperature

Fig. 4.24. TEM of dipole loop in Al,O; deformed at 1450 °C (scale
bar=0.1 pm) (¢ axis along the arrow). The dissociation plane varies
along the loop (courtesy J. Riviére & J. Cadoz).
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increases up to a certain temperature, then the flow stress starts increasing
with temperature until its variation becomes ‘normal’ again and it starts
decreasing. This behaviour was first recognized in pure magnesium single
crystals deformed by slip on the pyramidal {1122} (1123) system (Stohr &
Poirier, 1972); it was explained by the thermally activated splitting of the
¢ +a edge dislocations out of their glide plane (fig. 4.27). Climb splitting of ¢
dislocations in the basal plane may well be the cause of the total absence of ¢
[0001] glide in all hexagonal metals while pure climb of ¢ dislocation may
cause considerable strain (Edelin & Poirier, 1973). A remarkable increase of
the flow stress with temperature has recently been observed in andalusite
Al,SiO; between 500 °C and 900 °C (fig. 4.28) (Doukhan & Paquet, 1982);
it was attributed to the dissociation of the [ 001 ] dislocations out of the (110)
glide plane. Climb dissociation might also be the cause of the decrease in

Fig. 4.25. TEM of dislocations dissociated in climb in pyrite FeS,.

Dislocation with b=[010]. (a) The edge portion arrows are dissociated
in climb in (010); (b) the mixed portion arrows are dissociated in glide.
{Courtesy C. Levade)
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creep-rate as temperature increases observed in fluoperovskite KZnF;
between 750 °C and 800 °C (Poirier et al., 1983).

It is quite probable that, as investigations on ionocovalent crystals
become more numerous, the ‘unusual’ temperature dependence of flow

Fig. 4.26. Hardening with temperature caused by climb dissociation.
Solid curve: stress at constant strain-rate. Dashed curve: creep-rate at
constant stress. A: Normal behaviour with increasing T. B: Slip
becomes more difficult due to thermally activated climb dissociation.
C: Temperature becomes high enough for stacking faults to diffuse or
for some other process to take over.

o

=T

Fig. 4.27. Climb dissociation of c+a edge dislocations in magnesium
(TEM) (scale bar=0.5 um) (Stohr & Poirier, 1972).
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stress or creep-rate will become more and more usual and that climb
dissociation of dislocations will be found responsible in many cases.

453  Creep of olivine single crystals

Olivine (Mg, Fe),S8i0, is an essential constituent of the Earth’s
upper mantle, down to a depth of about 400 km. High-temperature creep
processes therefore control the convection in the mantle, which explains the
interest geophysicists take in the investigations of creep in olivine. The need
for a rheological law valid at very low strain-rates (§x 10~ '%/s) and low
applied stresses (presumably between 0.1 and 10 MPa) has led to
extrapolating creep laws determined by laboratory experiments. It is,
however, clear that a reasonable extrapolation can only be done if we have
an idea of the possible physical processes and of their relative importance in
the whole range of relevant stresses and temperatures. We will summarily

Fig. 4.28. Hardening with temperature of andalusite Al,SiO;: Stress—
strain curves at §=2x 1073 s~ '. Temperatures in °C are indicated on
each curve (after Doukhan & Paquet, 1982).
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review the evidence which points to the presence of both climb- and glide-
controlled creep, but is not yet sufficient for definite conclusions to be
drawn. Olivine is a generic name for a series of minerals with continuous
substitution of Fe for Mg, from the magnesian end member, forsterite
(Mg,Si0,), to the ferrous end member, fayalite (Fe,SiO,). The oxygen ions
form a quasi-hexagonal-close-packed framework, but the cation filling
gives the structure an orthorhombic symmetry. The point defect chemistry
has been reviewed by Smyth & Stocker (1975) and the slip systems have
been reviewed and analysed in terms of the HCP lattice of oxygens by
Poirier (1975) (fig. 4.29).

Numerous experiments have been conducted on natural olivine rocks
(dunites) under pressure (see Nicolas & Poirier, 1976, and Paterson, in
preparation) but as we are interested here in the physical process, we will
only review the creep experiments on single crystals at ambient pressure. All
experiments were performed in dead-weight-loading uniaxial creep on
samples of various orientations; the results were analysed in terms of

Fig. 4.29. HCP lattice of oxygen ions in olivine. Crystallographic
directions are given in Miller indices (orthorhombic system) and
Miller—Bravais indices (four indices) for HCP system. The four SiO,
tetrahedra of a unit cell are represented (after Poirier, 1975).
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power-law creep. The experiments were conducted on natural San Carlos
olivine with 92 mol % forsterite (Kohlstedt & Goetze, 1974; Durham et al.,
1977) and on synthetic forsterite, which has the advantage that creep is
insensitive to the oxygen partial pressure (Durham et al., 1979; Darot &
Gueguen, 1981). The results are summarized in table 4.2. It appears, once
more, that the mere knowledge of values of n and Q is completely
insufficient to narrow down the field of possible mechanisms. Analysis of
the shape change of the deformed specimens led Durham & Goetze (1977a)
to ascribe a part of the creep strain to climb of dislocations; however, the
activation energy for creep is always larger than the activation energy for
diffusion of oxygen or silicon (~90 kcal/mol) (Jaoul et al., 1981; Jaoul &
Houlier, 1983).

The observation of dislocation structures in deformed specimens by a
decoration technique and by optical microscopy (Kohlstedt et al., 1976)
revealed various characteristic configurations according to the orientation
of the samples and the active slip systems, in particular apparently straight
edge dislocations in tilt boundaries when the (010) [100] slip system is
active (Durham et al., 1977). Despite its interest, the decoration technique
does not allow the determination of the dislocation Burgers vectors and
sometimes led to gratuitous assumptions. On the basis of observations of
straight [ 100] screw dislocations by electron microscopy (Phakey ez al.,
1972) or decoration (Durham et al., 1977), Poirier & Vergobbi (1978)
investigated the possibility for [100] screw dislocations to dissociate on
several planes simultaneously (as it occurs in BCC metals); they found that
such a sessile configuration was possible (fig. 4.30) and they envisaged the
possibility of creep controlled by glide (or equivalently cross-slip) of [ 100]
screws, which would account for a value of n close to 2 at low stresses and a
power-law break-down at high stresses (Kohlstedt & Goetze, 1974).
Gueguen & Darot (1982) observed deformed samples in transmission
electron microscopy; they found that the [ 100] edge dislocations were not
straight on the scale of the electron microscope but that [001] screw
dislocations were quite straight; this led these authors to propose that creep
might be due to the operation of two parallel-concurrent processes: climb
of [ 100] edge dislocations controlled by Si** diffusion and glide or cross-
slip of [001] screw dislocations. This is a distinct possibility (§4.3.4), but it
must be realized that we still know too little on the climb and glide
processes in olivine to select a definite model with any degree of confidence.

454  Dislocation creep processes in ice
Ice, H,0, is a very common mineral in its polymorphic variety ice
I,,, which is the stable one at temperatures and pressures prevailing on the



Table 4.2. Creep experiments on single crystals of olivine

T (°C) o (MPa) Orientation Composition n Q (kcal/mol) Reference

1430-1650 5-150 Various Fo 92 varies witho 125 Kohlstedt & Goetze, 1974
1400-1600 10-60 B Fo 92 37 125 Durham & Goetze, 1977a
1500-1600 1040 D Fo 92 3.5 125 Durham & Goetze, 1977a
1550-1650 15-50 B Fo 100 2.6 140 Durham & Goetze, 1977b
1480-1680 3-30 D Fo 100 29 160 Durham et al., 1979
1400-1650 10-100 A Fo 100 2.6 110 Darot & Gueguen, 1981
1400-1600 20-100 B Fo 100 36 137 Darot & Gueguen, 1981
1500-1610 30-100 C Fo 100 27 143 Darot & Gueguen, 1981

Orientations: A, B, C — the stress axis makes an angle of 45° with [ 100] and [010],[100] and [001],[010] and [001], respectively; D —
the stress axis makes equal angles with [100], [010] and [001].
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Earth’s surface (— 50 °C < T<0 °C; 1 <P <200 bar). Other polymorphic
varieties at low temperatures and/or higher pressures exist as primary
constituents of the ice moons of the outer planets Jupiter and Saturn (see
Poirier, 1982). The peculiar properties of hydrogen bonds give rise to
special processes controlling dislocation motion in ice.

(1) Hexagonal ice I, has a wiirtzite-type structure: the oxygen ions form
layers of puckered hexagonal rings stacked in an ABAB sequence (fig. 4.31);
the O?~ ions are tetrahedrally coordinated. Protons forming the bonds
between the oxygens are disordered but follow Bernal-Fowler rules: there
must be two protons close to any oxygen ion and only one proton per bond.
Infringement of these rules results in point defects specific to the ice
structure: the Bjerrum defects, consisting in bonds with no proton (L defect)
or two protons (D defect). A dislocation moving through the lattice
necessarily creates Bjerrum defects in the array of disordered protons
obeying the Bernal-Fowler rules (Glen, 1968) (fig. 4.32); as the energy of
these defects is quite high (0.64 eV/atom) this would result in a very large
Peierls stress close to the theoretical elastic limit (~0.1y) unless the
dislocation meets diffusing Bjerrum defects, which rearrange the protons
ahead of the dislocation and allow the kinks to move sideways without
having to create the defects. The dislocations are therefore subjected to a

Fig. 4.30. Core of a [100] sessile dislocation in olivine, split on (010)
and (001) planes (hard sphere model). The ions are in unrelaxed
positions (after Poirier & Vergobbi, 1978).
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Fig. 4.31. Ice I, structure. Puckered hexagonal rings of oxygen ions
stacked in an ABAB sequence. There are two sets of basal planes: the
shuffle set (S) and the glide set (G) (after Whitworth, 1978).

Fig. 4.32. Motions of a dislocation in ice creates Bjerrum defects.

(a) Perfect lattice obeying the Bernal-Fowler rules. {The trace of the
basal planes is horizontal.) (b) Edge dislocation moving on the shuffle
set S. (¢) After the passage of the dislocation, there is a D-defect on
BC’ bond (2 protons) and an L-defect on CD’ bond (0 proton),
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viscous drag and their motion is said to be controlled by proton
rearrangement; this process occurs at low stresses. With the usual
assumption of a ¢ dependence of the dislocation density, we obtain a creep
law of the form:

_9 +Q"") (4.45)

kT
where Q¢ and Q,, are respectively the enthalpies of formation and migration
of Bjerrum defects (see Mai et al., 1977, and Goodman et al., 1981). This
mechanism is consistent with the fact that doping with HF considerably
lowers the creep stress and the creep activation energy (Jones & Glen,
1969): it is known that the dissolution of HF in ice creates L-Bjerrum-
defects.

Indeed, ice at high temperatures (T > — 50 °C ~0.8T,,) creeps according
to a power law with n=3 and an activation energy of about 60 kJ/mol (for
recent reviews on the creep of ice, see Weertman, 1973, 1983; Duval et al.,
1983; Goodman et al., 1981). The value of the activation energy for creep is
close to the value for diffusion of H* and of oxygen; this leaves open the
possibility of some contribution of a climb-controlled mechanism to the
creep rate, but the arguments for glide control seem quite compelling
(Weertman, 1983). It seems. however, that the dislocation velocities
calculated for the proton-rearrangement mechanism are much lower than
the velocities observed experimentally for basal glide (the easy slip system in
ice), This discrepancy has been attributed by Whitworth (1980, 1983) to the
fact that there exist two sets of basal planes with different structures (fig.
4.31): the shuffle set S which cuts less bonds but involves a reorientation of
bonds after the passage of a dislocation, and the glide set G which cuts more
bonds. Now, the same situation arises in covalent crystals (Si or Ge) which
possess the sphalerite (diamond cubic) structure in which the puckered
hexagons forming {111} planes are stacked with the ABC sequence, and it
has been shown (Friedel, 1964) that glide occurs preferentially on the glide
set despite the greater number of bonds to cut because the dislocations can
easily dissociate on this set. Whitworth (1980, 1983) showed that proton
disorder is less of an obstacle to the motion of partials in the glide set than to
the motion of dislocations in the shuffle set, as usually assumed (e.g. fig.
4.32).

For higher stresses (¢ >2 x 10~ *y) the power law breaks down and the
rate-limiting process is no longer kink motion but kink nucleation. The
corresponding creep law does not have a straightforward dependence on
stress (Mai et al., 1977; Goodman et al., 1981).

The first experiments made on ice under pressure at low temperatures
(Durham et al., 1984) show that, even though the stress exponent is n=4

s’ocaaexp(
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over the whole temperature range investigated (158 K < T'<268 K), the
apparent activation energies for creep take different values in three
domains:

31 kJ/mol for 158K <T<195K
61kJ/mol for 195K<T<243K
91 kJ/mol for 243 K<T<268K

The result is that ice deforms more easily at low temperatures than would be
predicted by extrapolation of results obtained above — 50 °C (fig. 4.33).

(i)y The creep properties of the other polymorphic varieties of ice are
almost totally uninvestigated, except for ice VI whose viscosity has been
measured in a sapphire-anvil cell (Poirier et al., 1981). The interesting
crystalline structures of the high-pressure varieties of ice (see Parsonage &
Staveley, 1978) permit some speculation on the possible dislocation
processes. In particular, the densest form of ice, ice VII, stable above about
20 kbar and 0°C, has an oxygen lattice that can be described as two
interpenetrating sphalerite (or diamond cubic) lattices with no hydrogen
bonds between them. In this case, any dislocation gliding on a {111} plane
must use the shuffle set of at least one lattice (fig. 4.34); as the protons are

Fig. 4.33. Arrhenius plot for the flow stress of ice I, (P=50 MPa, £=
3.5 % 107%/s). The activation energy falls from 91 kJ/mol near the
melting point to 31 kJ/mol at — 115°C (after Durham et al., 1984).
From top to bottom £=3.5x 1074, 3.5x 1075, 3.5 x 107%/s.
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Fig. 4.34, Structure of ice VII: Two interpenetrating diamond cubic
lattices (projection on (110) plane). Glide on (111) planes necessarily
involves the shulffle set of one of the lattices: 1 and 3 — shuffle sets of
lattices A and B; 2 - shuffle set of lattice A, glide set of lattice B; 4 -
glide set of lattice A, shuffle set of lattice B.

disordered, one can expect a high Peierls stress for glide in ice VIL The
structure of ice VIII (below 0 °C, but still above 20 kbar) differs from that of
ice V11 only in that the protons are ordered ; one can then expect that it will
deform more easily than ice VII (Poirier, 1982).



5

The effect of hydrostatic
pressure on deformation

The effect of hydrostatic pressure on deformation is of secondary
interest in materials science but it is very important in geophysics, as
the hot silicate Earth’s mantle extends down to depths where the
hydrostatic pressure reaches values higher than 1 Mbar. The structure
and composition of the Earth are summarily presented according to
the latest models, and it is shown that the possibility of creep, hence
convection in the lower mantle, is directly linked to the variation of
the activation volume with pressure,

The effect of pressure on mechanical properties, either diffusion- or
glide-controlled, is shown, in most cases, to be a manifestation of the
anharmonicity of the crystals. It can be expressed in terms of the
variation of the elastic constants with pressure. The effect is small in
the case of athermal processes but may be large for the thermally
activated processes, for which the energy barrier can be elastically
modelled. Another indirect effect has its source in the dependence on
pressure of the diffusivity of impurities (such as water-related species
in quartz).

Elastic models for the activation volume of creep are reviewed and
applied to the Earth's lower mantle.

5.1 Generalities: high-pressure deformation and geodynamics

The effect of hydrostatic pressure P on the flow stress or creep-rate
of non-porous materials is much less important than the effect of
temperature: indeed, for values of P currently obtained in the laboratory (a
few tens of kilobars), there is only a second-order difference between the
creep-rate under pressure and at one atmosphere pressure. As a
consequence, after a few exploratory experiments, the materials science
community has, by and large, lost interest in the field of deformation under
pressure: the scientific or technological return was too small for a high
experimental investment. In geophysics, however, the rheological
properties of minerals and rocks at high temperatures and pressures inside
the Earth constitute a topic of prime importance; as pressure increases
more rapidly than temperature with depth and reaches very high values (fig.
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5.1),its role in flow processes cannot be neglected. After a brief and sketchy
survey of the Earth’s structure and composition and of the relevant
rheological problems, we will review the physical basis of the effect of
pressure on flow stress and creep-rate.

5.1.1 The structure and composition of the Earth

Despite some obviously exaggerated claims (Verne, 1864), there
has been no exploration of the inside of the Earth, and we must therefore
rely on Earth models to obtain some information as to its structure and
composition.

Seismological models use the propagation of seismic (elastic) waves
through the Earth to obtain profiles of sound velocity, density and elastic
constants with depth (table 5.1). The Earth can be divided into three
concentric shells where the sound velocity varies more or less smoothly

Fig. 5.1. Variation of pressure and possible variation of temperature
with depth in the Earth. 1. T(z) from Anderson (1982). 2. T(z) from
Jeanloz & Richter (1979). 3. P(z) from Anderson (1982) (dashed curve).
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with depth, separated by sharp discontinuities: the crust, the mantle and the
core. Elastic equations of state are used to extrapolate back the densities
and moduli to atmospheric pressure; these quantities can then be compared
with the values for mixtures of known minerals or of minerals stable only at
very high pressures and obtained by laboratory synthesis. The outcomeis a
petrological Earth model. Current Earth models differ only in details and
for our present purposes it is sufficient to describe the Earth as follows (table
5.1):

(i) The crust extends to a depth of about 40 km under the continents; it is

therefore only a thin veneer on the Earth, whose mean radius is 6371 km.
The continental crust is light and has a mostly granitic composition: the

Table 5.1. Seismological elastic Earth model

Bulk Shear
Depth z Density p Pressure P modulus B modulus p
(km) (Mbar) (Mbar) (Mbar)
Crust
10 2.8 0.0003 0.54 0.35
Upper mantle
50 3.3 0.015 1.13 0.72

100 3.35 0.025 1.25 0.63

200 34 0.072 1.28 0.65

420 3.55 0.141 1.76 0.82

420 3.77 0.141 2.16 0.96

570 3.95 0.199 2.35 1.11

670 4,08 0.239 248 1.22
Lower mantle

670 4.38 0.239 305 1.64
1000 4.57 0.387 3.54 1.85
1500 485 0.621 432 215
2000 5.12 0.8369 5.13 2.44
2500 5.37 1.135 595 271
2890 5.55 1.354 6.35 291
QOuter core
2890 9.91 1.354 6.58 0
4000 11.32 2.461 10.31 0
5150 12.14 3.289 12.77 0
Inner core
5150 1271 3.289 13.63 1.50
6370 13.01 3.632 14.24 1.65

After Dziewonski et al., 1975.
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main minerals are Si0, as quartz and alkali feldspars (K, Na)AlSi;Og. The
pressure in the lower crust is of the order of 10 kbar and the temperature
about 700 to 800 °C. The rocks of the lower crust undergo plastic
deformation during mountain building and their rheological properties are
actively investigated in laboratory experiments where pressure is only a
means of preventing early fracture and achieving plastic strain (see
Paterson, 1978 and in preparation).

(i) The mantle extends from the base of the crust down to 2900 km, it
therefore constitutes about 809, of the total volume of the Earth. In first
approximation, its chemical composition can be thought constant through-
out its thickness; it is essentially that of a peridotite composed in equal
molar proportions (Liu, 1979) of olivine

[Mg,8i0,]o o[ Fe,S8i04]0.,
and aluminous pyroxene

[MgSiO;3 ], 51 [FeSiO3]0.00[ AL,O3]0 4

The mantle can be divided into two regions, separated by a seismic
discontinuity, and corresponding to the stability domains of different
mineral structures with the same chemical composition (Liu, 1979; Bassett,
1979; Bell, 1979).

The upper mantle extends down to about 700 km its principal minerals
are olivine (Mg, Fe),SiO, and pyroxene (Mg, Fe)SiO;, stable at atmos-
pheric pressure and which transform into denser phases as the pressure
increases in the tramsition zomne (between 400 and 700 km). Olivine
transforms into spinel (Mg, Fe),SiO, and pyroxene transforms into garnet;
the silicon ions remain 4-coordinated. The 700-km seismic discontinuity
between upper and lower mantle corresponds to phase transitions to the
densest silicate structures synthesized so far: the (Mg, Fe)SiO; minerals
take the perovskite structure (fig. 5.2) where silicon is 6-coordinated (SiO¢
octahedra instead of SiO, tetrahedra at lower pressures); the spinel
transforms into perovskite and magnesiowiistite:

(Mg, Fe),Si0, — (Mg, Fe)Si0; + (Mg, Fe)O
As a result, perovskite (Mg, Fe)SiO; is the principal constituent of the
lower mantle.

(tif} The core is essentially an iron-nickel alloy; it is mostly in the liquid
state, except near the centre, and it will not concern us here.

5.1.2 Convection in the viscous mantle
The hot, crystalline silicate mantle is the seat of convection
currents, i.e. it undergoes high-temperature creep. That this is so results
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from the constraints of plate tectonics on an Earth that does not expand
(there must be inner return currents to close the cells that drive the plates
apart) and from the constraints of plausible thermal models (the internal
heat cannot be evacuated by conduction alone, convection must take place)
(see Uyeda, 1978). The necessity of high-temperature creep of the silicate
mantle was rapidly recognized, and rheological laws for mantle materials
were extrapolated from laboratory experiments on olivine and peridotites
(McKenzie, 1967; Gordon, 1971; Stocker & Ashby, 1973b; Weertman &
Weertman, 1975; Weertman, 1978; Ashby & Verrall, 1978; Gueguen &
Nicolas, 1980). Profiles of the variation of viscosity with depth (fig. 5.3) were
constructed for the upper mantle, usually on the basis of diffusion-
controlled creep mechanisms. Thus, it was predicted that viscosity would
first decrease and then increase with depth; this, of course, is what can be
expected from any diffusion-controlled creep law with given values of the
activation energy and of the activation volume, when the temperature and
pressure vary with depth as in fig. 5.1: the temperature increases faster than
pressure at first, causing an overall increase in the creep-rate, but below a
depth of about 100 km the temperature increases slowly whereas pressure
keeps on increasing at roughly the same rate and reaches high values,
eventually more than cancelling the softening effect of temperature (fig. 5.3).
These results were extrapolated to the lower mantle, assuming a similar
creep law for its material and an activation volume independent of

Fig. 5.2. Perovskite structure (MgSiO;). Mg?* ions: empty circles,
O~ jons: stippled circles. Si** ion: solid circle, in the octahedron of
oxygen ions. Mg and O ions are the same size and form together an
FCC lattice.
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pressure; the lower-mantle viscosity was then usually thought to increase to
very high values, precluding convection, despite the fact that the analysis of
the viscoelastic postglacial rebound of the Scandinavian and Canadian
shields was compatible with an almost constant viscosity of 1021-10?2 poise
throughout the whole mantle. The view that convection takes place only in
the upper mantle has recently come under attack, and the lower mantle is
now seen by many geophysicists as convecting, either together with the
upper mantle or separately (O’Connell, 1977; Davies, 1977; Elsasser et al.,
1979; Jeanloz & Richter, 1979; Richter & McKenzie, 1981; Spohn &
Schubert, 1982 ; Peltier & Jarvis, 1982). Clearly, the problem of finding the
variation of viscosity of the mantle with depth is one involving the pressure
dependence of creep-rate and we will examine it in this light in § 5.3.1, but it
must be kept in mind that the variation of viscosity with depth also depends
strongly on the temperature profile T'(z) (geotherm), which in turn depends
on whether or not the viscosity is low enough to allow the heat to be
evacuated by convection.

Fig. 5.3. Qualitative variation of viscosity with depth in the Earth
expected for a diffusion-controlled mantle creep law: noc

exp [(@ + PAV)/RT] and constant activation volume AV, The profiles
P(z) and T(z) are qualitatively reasonable.
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5.2 The physical basis of the effect of pressure on flow stress

As hydrostatic pressure does not cause shear strain, its effect on
flow can only be indirect: it must originate in a volume variation AV at
some stage in the chain of processes leading to the flow stress or creep-rate.

If we refer to Orowan’s equation £ = pvb, we see that pressure can affect it
in two ways: through the dislocation density or through the dislocation
velocity (in glide or climb). In many cases, the effect of pressure can be
simply ascribed to anharmonicity of the crystals, i.e. to the variation of the
elastic constants with pressure.

521  Effect of pressure on dislocation creation
Pressure can affect dislocation creation and multiplication in
several ways.

(i) In non-cubic crystals, the linear compressibility is anisotropic, ie. a
single crystal subjected to hydrostatic pressure will not contract by an equal
amount in all directions. The application of hydrostatic pressure P to a
polycrystal of such a material will cause internal stresses at grain
boundaries. Paterson (1963) calculated that for calcite the local normal
stresses on grains vary from 0.82P parallel to c-axis to 1.09P perpendicular
to c-axis. If the temperature is high enough, the local stresses may relax by
creation of dislocations and plastic deformation near the grain boundaries,
even though no shear stress is applied externally (Gelles, 1966). This effect is
obviously transient and occurs only during the establishment or changes of
pressure, its influence on the dislocation density, hence on the flow stress or
creep-rate, of polycrystals deformed under pressure is negligible (Oguchi et
al., 1972a). It is, however, possible in some cases to reduce the yield stress by
maintaining elastically heterogeneous materials to high pressure prior to
deformation (pressurization). This was found to be beneficial in the case of
brittle chromium which could be deformed to 609 strain after pressuriza-
tion at 10 kbar (Bullen er al., 1964): mobile dislocations were created at
elastic heterogeneities.

(i) The introduction of dislocations in a crystal is accompanied by a slight
volume expansion (i.e. a crystal containing dislocations has a lower density
than a perfect crystal). This is, in fact, a consequence of anharmonicity: the
presence of dislocations causes internal strains in the crystal, with a
corresponding stored elastic energy proportional to the elastic moduli; the
free energy of the self-strained crystal containing dislocations is therefore
lowered by a volume expansion (causing an anharmonic decrease of the
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elastic moduli). Seeger & Haasen (1958) have calculated the volume
expansion &V per unit length of dislocation:

1(dB 1{duy u
=—|—=-— ——=—= 5.1
ov B[dP I]Ed+u[dp B]ss 5.

where B and p are the bulk and shear modulus respectively; E, and E, are
the dilatation and shear part, respectively, of the dislocation line energy per
unit length; they are proportional to In (R/b,) (see eq. (2.56)) where b,, is the
core radius and R the radius of the cylinder around the dislocation where
the energy is stored.

For an edge dislocation:

e

_1pb?[ 54uB R
Ea=3 4 | BB +dn? o

2 ub? [9B% +42ub + 44> R
T34n | (3B +4p)? ] n (b_o)
If the dislocations are assimilated to parallel lines, with density p we have:
1
“iap”
Taking by~ b, and assuming p~10® cm ™2, we can calculate the volume

expansion AV per length b of edge dislocation (the formation volume of a
dislocation, so to speak):

and

for aluminium AV =1.7 atomic volume
sodium chloride AV =3.9 molecular volume
forsterite AV =0.9 molecular volume

This expansion is rather small: in the case of forsterite it corresponds to
an overall dilatation of about 10~ 7. Pressure works against the volume
expansion and it must follow that dislocation multiplication is somewhat
more difficult under pressure. This must be reflected by an increase of the
work-hardening coefficient, hence a slight increase in the flow stress under
pressure. Haasen & Lawson (1958) found Ac/ex1%, for copper and
aluminium under 5 kbar pressure and explained it in this way.

(iti) The critical stress for the activation of Frank—Read sources increases
linearly with the shear modulus (eq. (2.58)). If the flow stress is controlled by
the production of dislocations at Frank—Read sources it should increase
with pressure as the shear modulus.
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522 Effect of pressure on dislocation velocity

(1) Athermal flow processes

The stress field of dislocations varies as ub/r, where u is the shear
modulus and r the distance from the dislocation. Therefore, the stress
needed to overcome long-range athermal obstacles, such as the internal
stress-field undulations, will linearly depend on the shear modulus: the
same is true of the stress needed to overcome obstacles formed by
dislocation configurations (junctions, tangles, etc.). Whenever the flow
stress is controlled by such a mechanism, we can expect that it will increase
with pressure as the shear modulus: the flow stress ¢, at pressure P is
related to g, at atmospheric pressure by:

du

— P
ap=L2yg —p0+dp G —(I+dm’u)a (5.2)
: Ho ¢ Ho ’ dp ° ’

The effect is important if p, is small: in the case of the metal potassium
deformed at constant strain rate at 77 K (0.27;,) the flow stress increases by
429 for a pressure of 5kbar (Chua & Ruoff, 1975) (fig. 5.4), in good
agreement with an increase in shear modulus of 35%. Other metals
deformed at room temperature under 12 kbar exhibit an increase in flow
stress comparable to the increase in shear modulus: about 9% for
aluminium (Yoshida & Oguchi, 1970), 8%, and 39; respectively for zinc and
zirconium (Oguchi et al., 1972a) and 29 for pure iron (Oguchi et al., 1972b).

Alkali halide single crystals (KCI, NaCl, KBr, K1, Rbl, CsBr, LiF) were
tested under a pressure of 4 kbar at room temperature (Davis & Gordon,
1968); whereas crystals hardened by irradiation, in which flow was
presumably controlled by elastic interactions, did exhibit an increase in
flow stress comparable with the modulus increase, the soft crystals behaved
erratically; direct measurement of dislocation mobility under pressure by
etch pits in KCI (Haworth & Gordon, 1970) showed no detectable effect of
pressure on velocity, in apparent contradiction with the important effect
reported on the flow stress (Davis & Gordon, 1968). Single crystals of MgO
compressed along [ 100] at 10 kbar showed a negligible effect of pressure on
the flow stress (Auten et al., 1976). On the whole, the experiments performed
sofar do not lead to any firm conclusion, probably because the crystals were
not extremely pure and the flow mechanisms were not clearly identified.

(i) Flow controlled by overcoming of Peierls barriers
Pure nickel wafers deformed at room temperature between
rotating anvils under pressures up to 150 kbar exhibited a strong increase in
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flow stress with pressure, an order of magnitude greater than the modulus
increase (Jesser & Kuhlmann-Wilsdorf, 1972). This effect was attributed to
a pressure dependence of the Peierls stress: the core of the dislocations
expanding and contracting as the dislocation moves from one valley to
another (‘breathing’ of the core). The observed stress increase for 150 kbar
corresponds to a dilatation of 10~ atomic volume per length b of
dislocation; this is in effect a ‘migration volume’ of dislocations while the
Seeger and Haasen effect (see above) corresponds to a ‘formation volume’,
The so-called strength-differential effect in martensitic steels is explained in
the same way (Fletcher et al., 1974): the flow stress is significantly greater in
uniaxial compression than in uniaxial tension; this is attributed to the
existence of a formation volume for the kink pairs, more energy being
expended to form a kink pair against the hydrostatic pressure component
of the compression regime than in the tensile regime.

Fig. 5.4. Load-elongation curves for potassium at T=77 K and
various pressures (after Chua & Ruoff, 1975).
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(iii) Cross-slip
Whatever the model for cross-slip, it involves some constriction of
dissociated dislocations. If a second-order volume expansion is associated
to stacking faults (as it is to the core) it is reasonable to expect hydrostatic
pressure to favour constriction of dislocations, hence to lower the stress oy
for cross-slip (see fig. 4.3). Indeed, such an effect has been found in NaCl
single crystals compressed at room temperatures and at pressures up to
10 kbar (Aladag et al., 1970); the crystals exhibited a relative decrease in oy
(fig. 5.5):
dlnoy
T

Further experiments on polycrystals (grain size ~ 100 pm) confirmed this
effect: the flow stress at ¢ =59, was reduced by 20% (fig. 5.6) and wavy
coarse slip lines were observed; the effect of pressurization before the tests
was shown to be insignificant, as expected (Auten et al., 1973).

The lowering of ay; with increasing pressure in NaCl is attributed to the

—0.1 kbar™!

Fig. 5.5. Pressure dependence of the flow stress at the beginning of
stage IT and III (cross-slip) in NaCl single crystals (at RT). Stage II
(linear hardening) is independent of P. (Experiments on two different
crystals.) (After Aladag et al., 1970.)
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dilatation associated with the stacking faults on {110} planes, predicted by
Fontaine (1968). Fontaine & Haasen (1969) calculated the stacking-fault
width d as a function of pressure and found that:

i
Yo+ P

where p is the shear modulus, y, the stacking-fault energy at atmospheric
pressure and « a constant proportional to the dilatation in the lattice in the
vicinity of the stacking fault. The increase in y with P outweighs the increase
in u and the stacking-fault width decreases with increasing pressure
(linearly, in first approximation) which obviously favours cross-slip. The
value found for d In g /dP is in good agreement with the experiments
(Haasen et al., 1970). Belzner & Granzer (1977) calculated the influence of
hydrostatic pressure on the energy of the 4[110] (110) edge dislocation in
NacCl, taking into account the discrete atomistic configuration of a finite
stacking fault. They found that the dissociation of a dislocation into two
partials is not energetically favourable for P> 2.4 kbar.

The same effect was found for the metal beryllium (Bedére et al., 1970):
the critical resolved shear stress for prismatic slip exhibited a marked
decrease from 6 =5.75 kbarat atmospheric pressure to 5.30 kbar at 10 kbar
pressure; this, too, was attributed to the effect of pressure on cross-slip
thought to control prismatic slip in hexagonal metals (§4.2.2).

Fig. 5.6. Pressure dependence of the flow stress of NaCl polycrystals
(at RT) (after Auten er al., 1973).
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52.3 Effect of pressure on hydrolytic weakening in quartz

Natural quartz SiO, is usually very strong, indeed almost
undeformable under normal laboratory conditions, in a dry environment.
However, quartz could be easily deformed at 900-1000 °C, under 15 kbar
confining pressure. (Flow stress of 200 MPa under a strain-rate ¢ 10~ /s
(Griggs, 1967).) The confining medium was talc, which released water in this
temperature range. The same unexpected mechanical weakness was also
found in synthetic quartz crystal, hydrothermally grown, which had a high
grown-in concentration of hydroxyl ions OH (Griggs & Blacic, 1965;
Hobbs et al., 1972; Blacic, 1975). The weakness appeared above a critical
temperature which decreased for increasing OH content (measured by
infrared spectroscopy). Kekulawala et al. (1978) found that natural
amethyst with an infrared absorption spectrum similar to that of synthetic
‘wet’ quartz behaved in similar manner in mechanical tests (fig. 5.7).
Conversely, mechanically weak quartz, synthetic or natural, is easily made
very strong by heating at atmospheric pressure and precipitating water into
bubbles. The weakening effect of water in the lattice was attributed to the

Fig. 5.7. Stress—strain curves for different varieties of quartz
(§=10"%/s, T=800 °C, P=300 MPa). The heat-treated specimens were
heated at 900°C for 49 h (wet synthetic quartz) and 27 h (amethyst)
(after Kekulawala et al., 1978).
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hydrolysis of Si—O—Si bonds, the migration of H,O replacing the strong
covalent bonds by weaker SiOH---HOSi hydrogen bonds (Frank-Griggs
hypothesis), thus making dislocation glide easier (Griggs, 1967). Trans-
mission electron microscopy of weak quartz samples led McLaren &
Retchford (1969) to propose that migration of water to dislocation made
climb, hence recovery, easier. Finally, Hobbs et al. (1972) and Griggs (1974)
adapted to the case of quartz the model for deformation of covalent semi-
conductor crystals of Alexander & Haasen (1968), assuming that water
diffusion to dislocations controlled their multiplication rate. However,
what is really the nature of the ‘water’ that diffuses to dislocations is not
clear. The mechanical weakness of quartz seems correlated to the existence
of a broad ‘gel type’ IR absorption band different from the molecular water
‘ice’ band (Paterson & Kekulawala, 1979). Recently McLaren et al. (1983)
suggested that the hydroxyl defect responsible for hydrolytic weakening of
quartz might be the (4H)s, defect: four protons substituting for one Si**
ion. Pressure was found to play an important role in hydrolytic weakening.
Whereas the effect was originally found in natural quartz heated in a wet
environment at 15 kbar (Griggs, 1967), it was impossible to reproduce at
pressures of 3 to 5 kilobars: natural quartz heated in water at these lower
pressures remained very strong (Kekulawala et al., 1978, 1981) but became
weak if heated in water at 15kbar confining pressure (Mackwell &
Paterson, 1983) (fig. 5.8).

The coupled weakening effect of water and high pressures was also found
in albite NaAlSi;O4 (Tullis et al., 1979) (fig. 5.9). Whatever the largely
unknown mechanism for hydrolytic weakening can be, it must involve the
dissolution and migration in the lattice of some sort of ‘water’ defect; the
fact that no hydrolytic weakening occurs at lower pressures could then be
due to a low solubility and/or diffusion of *water’. Indeed, the solubility of
water increases with hydrostatic pressure (Kekulawala er al., 1981) and so
does its diffusivity (Blacic, 1981). Mackwell & Paterson (1983) showed that
the solubility of water in quartz did not considerably increase from 3 to
15 kbar, whereas diffusivity increased by six orders of magnitude. However,
annealing hydroxyl-rich synthetic quartz in water at 15 kbar does make it
stronger! The problem of hydrolytic weakening is clearly not yet solved.

53 Effect of pressure on recovery- and glide-controlled creep

531 Generalities
We have shown in chapter 4 that the steady-state creep-rate of
crystals can in general be expressed as:
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LAY AG
a—ao(;) exp (_ﬁ) (5.3)

where the preexponential term (o/u)" reflects the stress dependence of the
enthalpy of activation of the process controlling the average velocity of the
dislocations. The variation of AG with hydrostatic pressure is expressed in
the activation volume for the rate-controlling process:

0AG

AV:ﬁ)r (5.4

(i) In the case of glide-controlled (or cross-slip-controlled) creep, AG is
stress-dependent and n = 2; it is usually possible to derive an expression for
AG from an elastic model of the activated configuration. Whatever the
model may be, it leads to an expression of AG proportional to ub® or uQ (Q:
atomic volume). The activation volume, whose physical basis is some
anharmonic expansion of the dislocation core, can then be expressed in terms
of the pressure dependence of the shear modulus and the atomic volume.

Fig. 5.8. Effect of hydrothermal heat treatment under high pressure on
the flow stress of natural quartz (after Mackwell & Paterson, 1983)
(P=300 MPa, T=900°C, é=10"5/s).
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(i) In the case of diffusion-controlled creep, through climb of
dislocations, n=3, and n=1 for diffusion creep by transport of matter
(chapter 7); in both cases AG is the activation free energy of diffusion of the
controlling species. As we will see below, it is also possible, on the basis of
elastic models of vacancies, to find an expression for the activation volume in
terms of the pressure dependence of the elastic constants.

The pressure dependence of the creep-rate is embodied in the apparent
activation volume for creep:

dlné
V.=-— )
AV.= —kT 55 (5.5)
with (5.3) and (5.4) we obtain:
B Jln g, Oln u
AV.=—kT P +nkT P +AV (5.6)

If the first two terms on the right-hand side are negligible compared with
AV, which is usually the case, the apparent activation volume for creep is
approximately equal to the activation volume of the rate-controlling
process.

Measurements of activation volume for creep are experimentally difficult
and so far they have been mostly conducted on materials with low melting

Fig. 5.9. Weakening effect of pressure on high-temperature yield
strength of albite, Hale albite rock, £=3 x 10~%/s (after Tullis et al.,
1979). Circles — 10 kbar; triangles — 15 bar.
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point: lead (Butcher & Ruoff, 1961; De Vries et al, 1963a), indium
(Chevalier et al., 1967) (fig. 5.10), tin (De Vries et al., 1963b), cadmium and
zinc (De Vries & Gibbs, 1963). The activation volume for creep is usually
close to the atomic volume, hence to the activation volume for diffusion (see
Sherby et al., 1970, for tables of data, and Poirier, 1978, for a critical review).
The case of aluminium is particularly interesting: McCormick & Ruoff
(1969) (fig. 5.11) found AV =12.9 cm®/mol (x 1.3 at.vol.) in good agreement
with the value found for self-diffusion (Beyeler & Adda, 1968) in the high-
temperature range (7> 0.6T,,) where the activation energies for creep and
diffusion also coincide. AV decreases with temperature. At temperatures
between 0.3 and 0.5T, it is equal to about 0.7 at. vol,, in the range where
cross-slip is thought to control creep-rate, in agreement with the value that
can be calculated from the pressure dependence of elastic constants
(Poirier, 1978). There are very few measurements of the activation volume
for creep in non-metals. Ross et al. (1979) measured AVfor olivine between
1100 °C and 1350 °C for confining pressures up to 15 kbar; they found a
mean volume AV x 13.4 cm®/mol; although it is comparable to the ionic
volume of the oxygen anion (11.6 cm®/mol) it cannot be used to constrain
any physical mechanism for creep in the present state of affairs (see §4.5.3).
The activation volume for creep in caesium chloride CsCl (B2 structure)
was measured between 150 °C and 400 °C for confining pressures up to
40 kbar by Heard & Kirby (1981), the value AG= 53 cm?/mol

Fig. 5.10. Creep curves of indium at various pressures (T =348 K,
o= 1.8 bar) (after Chevalier et al., 1967).
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(=1.2 mol. vol.) was found to be compatible with an intrinsic vacancy
diffusion mechanism.

532 Correlations and models for the activation volume

Owing to the scarcity of experimental measurements of activation
volumes for diffusion and creep and to their complete absence in the
relevant pressure range, estimates of the mantle viscosity (especially for the
lower mantle) must rely on estimates of the activation volume at high
pressure. Sammis er al. (1981) have recently given a clear critical review of
the known estimation methods as well as up-to-date tables of experimental
results. Note that all the estimations briefly reviewed below refer to
activation volumes for diffusion in the intrinsic regime (i.e. for pure crystals
at high temperatures).

(i) Correlation between AV and melting temperature

For many materials, mostly metals, there is a reasonably good
correlation between the activation enthalpy for diffusion and the absolute
melting temperature T,, (see Sherby et al., 1977):

Fig. 5.11. Temperature dependence of the activation volume for creep
of aluminium at 0 and 3 kbar (after McCormick & Ruoff, 1969). The
dashed line indicates the value of the diffusion activation volume from
Beyeler & Adda (1968).
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AH ~gRT,, with g~18 for metals and 30 for silicates
or
9Ty

Weertman (1970) suggested that the equation (5.7) could be used at all
pressures provided that the actual melting point T, (P) be used. From eq.
(5.7) and the definition of the activation volume comes

dT, din T,
AV=gR —>=AH z 5.8
9% ap P 18)
and with Clapeyron’s equation
dT,, Ay,
m_ m 5.9
dP As, ©9)
where Av,, and As,, are the variations of volume and entropy at melting
Av,
V= —a 5.10
AV=gR As, (5.10)

Eq. (5.10) justifies the fact that crystals which contract at melting (Pu, Ge,
Si, Bi, Sb, Ga, Ice) have a negative activation volume.

Sammis et al. (1981) give another expression for (5.8), assuming a linear
relation AH =AH,+ PAV, with AV independent of P:

AH,—=
AV= —c(l:;: (5.11)
T,—P P
Comparison with experimental data shows a good agreement between
experimental and calculated values of AV for metals (fig. 5.12); the
agreement is not so good for alkali halides — values of AV calculated from
(5.11) are at least 50°% too large (this is confirmed by Heard & Kirby (1981),

who find the calculated value for CsCl too large by 57%).

(i) Elastic models
On the basis of simple models for vacancies, Keyes (1958) found
that the correlation

4
AV=z AH (5.12)

where B is the bulk modulus, was reasonably verified by the experimental
data then available.

The activation volume can be calculated in terms of the activation free
energy by assuming that the internal energy is entirely due to the elastic
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distortion and dilatation energy associated with the point defects
responsible for diffusion (usually vacancies). Keyes (1963) assumed that the
energy was only due to shear strain around the defect and found that:

dinp 1
AV-AG[—(F)T—-B—T] (5.13)

where p is the shear modulus and B the isothermal bulk modulus. This can
be seen simply (if less rigorously) by writing:

AGoc yQ (5.14)
where Q is the atomic volume. Then:
dAG dln AG
AV=—--21\) =AG 5.15
P )T P ),. Bak3)

Eq. (5.13) follows immediately.

Comparison of values of AVcalculated by (5.13) with experimental values
shows that Keyes' approach leads to a systematic underestimation of AV
(Sammis et al., 1981); the assumption that the energy is entirely dilatational
is better although it leads to a slight overestimation of AV.

Fig. 5.12. Correlation between experimental and calculated diffusion
activation volume for various crystals. The solid line was calculated
with eq. (5.11) (Sammis et al., 1981).
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In most cases the observed values of AV lie between the shear and
dilatational model estimates.

As the activation free energy for diffusion is not always known, it is
interesting to find the variation of AV with P, purely in terms of the elastic
constants and their pressure derivative. O'Connell (1977) assumed that the
activation volume for diffusion is approximately equal to the formation
volume of vacancies and considered the vacancy as a cavity in the solid
under pressure, for which it is possible to define an effective bulk modulus
B.=(4/9)B. O’Connell's procedure amounts to expanding the bulk
modulus of the cavity to first order in P:

aP

__°° __ B.0)
~B, == B,._(O)[l 27 P] (5.16)

B.(0)
where B,(0) and B((0) are the bulk modulus of the cavity and its pressure
derivative for zero pressure.

Integrating eq. (5.16) gives, in effect, a Murnaghan’s equation of state for
the cavity (vacancy):

AV(P) { B.(0) p B0

AV(0) '[ B.(0) ]
Karato (1981a) uses a similar approach by writing that the pressure
dependence of AV is the same as that of the atomic volume and using
directly the Birch equation of state.

It is also interesting to note that the variation of AV with P can be very
simply found by taking the derivative of AV, given by Keyes’ relation (5.15),
and using the definition of AV,

Let us write (5.13) as

(5.17)

AV =AAG (5.18)
with
dlnpg 1
- i 5.1
JoP B 5:19)
we have:
dAV AG 04 dln A
P =A P +AGE—AAV+AV P
or

dm AV . dln A

P oP
We see now that, with all the assumptions of Keyes’ model, we have an
expression of the derivative of AV only in terms of the elastic constants B
and p and their derivatives with respect to P. This expression should

(5.20)
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obviously be valid for all processes (diffusional or not) for which the
activation enthalpy is proportional to the shear modulus (eq. (5.14)). It can
be especially valuable for creep in the lower mantle where the only known
parameters are the seismically determined elastic constants.

The semi-empirical approach of Karato (19815) requires assumptions
regarding many physical quantities such as ionic radius or dielectric
constants which are generally unknown, but are reflected in the
anharmonic behaviour of elastic constants.

533  Application to the lower mantle

As soon as it is realized that the activation volume for creep must
decrease as pressure increases, it follows that, for reasonable values of the
activation energy for creep, the influence of pressure on viscosity cannot
counteract the influence of temperature below a certain depth, so that even
for flat, near adiabatic, geotherms the viscosity of the lower mantle does not
increase much with depth and can even decrease, irrespective of the
pressure dependence chosen for AV (Sammis et al., 1977; O’Connell, 1977;
Karato, 1981aq).

We will demonstrate it again here by using egs. (5.19) and (5.20) to
calculate the variation of AV with depth using the seismically determined
actual values of the elastic constants at all depths (Dziewonski et al., 1975,
see table 5.1) (fig. 5.13). The ratio n(z)/n, of the viscosity at a depth z to that

Fig. 5.13. Depth dependence of the activation volume for creep of the
lower mantle (normalized to AV, at 670 km). AV(z) was calculated
using egs. (5.19) and (5.20) and the seismic elastic constants of
Dziewonski er al. (1975).
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at the top of the lower mantle (z=670 km} is calculated by assuming that
the value of the activation enthalpy for creep at 670 km is AH, = 120 kcal/
mol and AH,=170kcal/mol and that AV, at 670 km is given by Keyes’
relation (5.12) (respectively 7 and 10 cm?/mol). The geotherm T'(z) chosen is
that of Anderson (1982) (fig. 5.1).

Then:

niz) AH+P AV, AH, +PAV
~ —exp[ RT, 6P| s (5.21)

We see in fig. 5.14 that, after an increase of not more than an order of
magnitude, the viscosity could decrease for most of the extent of the lower
mantle and that it could be lower near the core boundary than at 670 km,
even if the value of AV}, is higher than given by (5.12): for AH ;=120 kcal/
mol and AV, = 10 cm®/mol, emp /Mo &3 x 107 2; by contrast the same value
of AH, and a constant value of AV, =10 cm3/mol would give newmp/fo >
2x 103,

As long as we do not know the values of the relevant activation
parameters for the lower mantle, the variation of its viscosity with depth
will remain unknown. However, we can certainly conclude that the idea of a
constant-viscosity lower mantle is perfectly reasonable.

Fig. 5.14. Possible variation of the viscosity of the lower mantle with
depth (viscosity normalized to #, at 670 km). Calculated using the
variation of the activation volume given in fig. 5.13 and various values
of the activation enthalpy AH, and activation volume AV, at 670 km.
1. AH 5= 120 kcal/mol, AV, =7 cm3/mol. 2. AH ;=170 kcal/mol, AV,=
10 cm3/mol. 3. AHy= 120 kcal/mol, AV,=10cm3/mol. 4. AH,=

120 kcal/mol, AV(z)=10 cm?/mol,

log.o%

1

—5}




168 The effect of hydrostatic pressure on deformation
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Creep polygonization and
dynamic recrystallization

The most important microstructural evolution during creep consists in
the formation of misoriented subgrains (polygonization) separated by
dislocation walls. The walls result from the rearrangement of the
geometrically necessary dislocations that accommodate the plastic
incompatibilities between grains or between single crystalline sample
and platens. The subgrain structure is in a state of dynamic evolution,
walls being created, migrating under stress and being destroyed; the
misorientation of the walls increases with strain until a recrystallized
grain structure is created by rotation, without migration. For higher
stresses and temperatures, the driving force for migration of the
boundaries, as well as their mobility, increases and the boundaries
may migrate. The subgrain size and the recrystallized grain size both
depend only on the applied stress and decrease as the stress increases.
Empirical relations between grain size or subgrain size and stress are
found experimentally and are used to estimate the stress responsible
for the natural deformation of rocks. However, the view that the
subgrain or grain sizes are in equilibrium at a given stress is
unfounded. The subgrain size is not an independent variable and has
no real effect on the creep-rate unless it can be independently fixed.
Grain refinement due to dynamic recrystallization does not seem
sufficient to cause a change of creep mechanism from power-law to
diffusion creep.

6.1 Generalities

The most conspicuous structural feature of high-temperature
recovery creep of metals, ceramics and minerals, consists in the ‘fragmenta-
tion’ of crystals into ‘subgrains’. Subgrains are blocks of constant crystalline
orientation, containing few dislocations, separated by dislocation walls
(Jenkins & Mellor, 1935; Wyon & Crussard, 1951; McLean, 1952). The
misorientation between neighbouring subgrains can vary from a few
seconds of arc, for loose dislocation walls, to about 10° (see § 2.4.2). There is
a hierarchy of scales of subgrains, each subgrain being usually divided in
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smaller subgrains of lesser misorientation. This phenomenon is known as
creep polygonization.

Subgrain boundaries form during primary creep; after a few per cent
strain, they are usually fully developed and constitute a stable steady-state
substructure. The substructure is in fact in a state of dynamic evolution,
sub-boundaries being formed and destroyed; however, the mean subgrain
size (at all scales) remains constant as strain increases; it varies roughly as
the inverse of the applied stress and does not usually depend on
temperature.

The misorientation usually increases with strain and it may reach such
high values (8> 15°) that it becomes more proper to talk of grains than of
subgrains. For higher temperatures and applied stress, the high-angle
boundaries may migrate, giving rise to a new recrystallized grain structure.
The phenomenon of modification of the grain structure during creep is
known as dynamic recrystallization.

6.2 Creep polygonization

6.2.1  Observation techniques

Polygonization can be revealed by several techniques based on the
observation either of the subgrain boundaries or of the misorientation
between subgrains.

(i) Observation of the boundaries

The boundaries of the finer-scale substructure can be directly
observed by transmission electron microscopy, a technique which allows a
precise characterization of the boundaries and of the dislocations that
compose them (e.g. Bretheau et al., 1981, for Cu,0; Caillard & Martin,
1982, for aluminium) (fig. 6.1). However, this technique is not adequate for
investigating the coarser substructure, and it must be complemented by
other techniques. Boundaries can be revealed at the surface by etch pits,
obtained by dipping the samples in suitable reagents (Robinson, 1968;
Mendelson, 1961; Wegner & Christie, 1974, 1983) (fig. 6.2). In transparent
crystals, methods can sometimes be found for decorating the boundaries; in
olivine, for instance, heating in air at 900 °C causes iron oxide particles to
precipitate on dislocations making them visible in optical microscopy
(Kohlstedt et al., 1976) (fig. 6.3). Boundaries can also be seen and analysed,
using non-destructive X-ray topographic methods (Weissman & Kalman,
1969); the reflection Berg—Barrett method, in particular, is often used on
massive single crystalline creep samples (fig. 6.4).
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(i) Observation of the misorientation

Misoriented subgrains exhibiting differences in reflectivity can
often be seen at the surface of creep samples, with the naked eye or a low-
power microscope.

Transparent birefringent (non-cubic) crystals can be examined in 30-um-
thick petrographic thin sections, in polarized light; the misoriented
subgrains exhibit various degrees of extinction and can be clearly seen (fig.
6.5).

Polarized light can also be used in reflection in the case of opaque metals
with transparent birefringent coatings, like aluminium or magnesium (Ion
et al., 1982). Subgrains can be seen by orientation contrast in X-ray
topograms. Creep substructures in electronically conducting crystals are
clearly revealed in electronic images obtained with a scanning electron
microscope or an electron microprobe; the crystalline contrast results from
intensity variations in the anomalous absorption when the subgrain
orientation varies near the Bragg angle (Maurice et al., 1973) (fig. 6.6).

6.2.2 Formation and evolution of the substructure
Even though creep polygonization practically always
accompanies high-temperature recovery creep, its existence does not result

Fig. 6.1. Subgrain boundaries in olivine (Pallasite meteorite ‘Imilac’).
Transmission electron microscopy (scale bar: 1 um) (courtesy A. M.
Marie).
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from any intrinsic necessity but can be seen as contingent. In fact, the
subgrain boundaries constitute a lower-energy configuration for the
population of excess dislocations of one sign needed to accommodate
locally the strain gradients (or the incompatibility) when the deformation is
not uniform. This is always the case for polycrystals, each grain deforming
on differently oriented slip systems; internal stresses arise near grain
boundaries and can be relaxed at high temperatures by excess dislocations
or ‘geometrically necessary’ dislocations (Ashby, 1970). For the same reason,
the local curvature of the glide planes (see §1.1.3) can be taken up by
dislocations of one sign (Nye, 1953) which evolve by glide and climb toward
a lower-energy configuration of parallel tilt boundaries. The boundary

Fig. 6.2. Subgrain boundaries in NaCl, deformed at 680 °C, 6=
35 g/mm?. Etch pits.
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conditions imposed by the neighbouring grains also often give rise to
rotations of the slip planes in opposite senses and create misoriented
regions separated by diffuse boundaries (deformation bands). It is therefore
not surprising that the creep substructure is finer in the regions of the grain
boundaries where the strain gradient is larger: the grains in a polycrystal
often exhibit a ‘core and mantle’ structure (Gifkins, 1976). Single crystals
deformed in creep also exhibit polygonization in most cases; this is due to
the fact that they are deformed between hard unyielding platens with no
lubrication so that the glide planes must rotate and acquire a curvature
(§ 1.1.3). In rare cases, where the lubrication is good and the single crystal
can deform in a uniform fashion, no creep substructure appears, even for
large strains: this was the case for a single crystal of olivine deformed by
Durham et al. (1977). Most studies on the formation of the substructure
have been conducted on single crystals, by etch-pit techniques: the
principal results were reviewed by Takeuchi & Argon (1976a). The process
of formation of the substructure is identical in most cubic crystals, whether
they are metals like copper (Hasegawa et al., 1971) or molybdenum (Clauer
et al., 1970), oxides like MgO (Hiither & Reppich, 1973) or MgAl, O, spinel
(Doukhan et al., 1973), or halides like NaCl (Poirier, 1972) or AgCl
(Pontikis & Poirier, 1975). In a first stage, during primary creep, parallel

Fig. 6.3. Subgrain boundaries in olivine (xenolith from San Quintin,
Baja California, Mexico). Decoration by oxidation. Tilt boundaries in
plane (100) (scale bar: 100 pm) (courtesy J. C. Mercier).
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Fig. 6.4. Subgrain boundaries in deformed spinel, Berg- Barrett
technique (scale bar=0.1 mm) (courtesy R. Duclos).

- < 0 ’ - e

Fig. 6.5. Subgrains in naturally deformed olivine (xenolith from Black
Rock Summit, Nevada), optical microscopy, plane-polarized light
(scale bar=1 mm) (courtesy J. C. Mercier).
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Fig. 6.6. Subgrains in gold single crystal deformed by 229, at,, T=
840 °C and o =200 g/mm?. Electronic image (scale bar=1 mm).
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dislocation tilt walls form, normal to the primary slip direction, accom-
panied by twist walls parallel to the slip planes; as the strain increases, the
dislocation content of the walls (hence their misorientation) increases. If a
secondary slip system comes into play, as is the case for many cubic crystals
tested in conditions of duplex slip, new dislocation walls eventually
subdivide the elongate cells into smaller equiaxed subgrains. The resultant
steady-state structure is more or less equiaxed, but not always uniform. If
there is only one predominant slip system, as in olivine (Durham et al., 1977)
or rutile (Hirthe & Brittain, 1963), the characteristic creep substructure
consists of parallel tilt subgrain boundaries.

The mean steady-state coarse subgrain size (or tilt boundary spacing) d,
does not depend on temperature; it characteristically decreases as the
applied stress increases according to the empirical law:

d o\ *
o) g (e 5 |
b K(u) -

where p has a valueclose to 1 or slightly smaller (0.7 <p < 1); the constant K
has a value of about 10 for metals and 25 to 80 for ionic crystals and oxides
(Takeuchi & Argon, 19764) (fig. 6.7). We may notice that for eq. (6.1) to be
dimensionally correct (and for K to be dimensionless), p must be equal to 1
(which it is in most cases). The inverse relationship between subgrain size
and stress has been used to estimate the stress to which naturally deformed
samples were subjected; we will discuss this procedure in § 6.4 but we may
already point out here that the coarse subgrain size alone may reflect the
stress state during creep. The small-scale microstructure inside the coarse
grains consists of free dislocations (with a density proportional to ¢?) and
dislocation walls that can be seen in TEM to form, migrate and be
destroyed (Caillard & Martin, 1982). Transmission electron microscopy of
specimens previously deformed in creep provides an empirical relation of
the same type as (6.1). However, the dislocation microstructure inside the
coarse subgrains is very labile and responds rapidly to any changes in the
stress conditions; it is therefore quite possible that the cell structure
observed in TEM after creep reflects only the stress-free anneal inevitable at
the end of the experiments, during which dislocations may rearrange into a
lower-energy configuration. In the same manner, no undue emphasis
should be put on the observation, often made in TEM, that the dislocation
wall misorientation increases only slightly with strain (Takeuchi & Argon,
1976a); it may reflect nothing more than the post-creep rearrangement of
free dislocations whose density increases with strain.

On the other hand, the coarse subgrain walls keep a longer memory of
the creep conditions, even though they constantly evolve and migrate
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during creep. The coarse subgrain boundaries have been observed to
migrate during creep in aluminium (Exell & Warrington, 1972) and sodium
chloride (Guillopé & Poirier, 1979), contributing 10 to 20% of the total
creep strain (by what is, in effect, collective dislocation slip). In many cases,
the subgrain boundaries were observed to increase in misorientation with
strain up to large values (becoming in fact high-angle grain boundaries in
some cases). Progressive misorientation of the boundaries was thus
reported in aluminium (McLean, 1952), nickel (Richardson et al., 1966) and
quartz (Hobbs, 1968); evidence for progressive misorientation in naturally
deformed minerals was given in the case of quartz (White, 1973) and olivine
(Poirier & Nicolas, 1975).

6.2.3  Subgrain size and creep-rate
The problem of the existence of a dependence of creep-rate on
subgrain size has been the object of much debate, although it does in fact

Fig. 6.7. Correlation between normalized subgrain size d/b and
applied stress t/p, for single crystals of various structures (Takeuchi &
Argon, 1976a).
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boil down to a problem of terminology. The case for a subgrain-size
dependence of the creep-rate (Sherby et al., 1977) is built around the
observation that the stress exponent of the creep-rate determined by a
stress-drop technique is higher than the one determined by the slope of the
log é-log o plot; in other words, the constant-structure exponent N =1/mis
higher than the ‘steady-state’ exponent n (see § 1.2.3). As the most obvious
structural feature of creep is the subgrain size d, it is reasonable to assume
that the subgrain size is the structure parameter and that ‘creep at constant
structure’ means ‘creep at constant subgrain size’. It has indeed been
verified, by etch-pit measurements on silver chloride, that the subgrain size
following a stress drop remains equal to the subgrain size given by eq. (6.1)
with p=1 for the higher stress (Pontikis & Poirier, 1975). The creep rate
may be written:

§=Kd" """ (6.2)
For ‘steady-state’ creep:
deco™?
The classical power-law dependence:
Eaco”
obviously follows.
Then, clearly, the ‘steady-state’ creep-rate does not depend on the
subgrain size since d is not an independent variable and can be expressed in

terms of stress. The form of eq. (6.2) is therefore interesting only if d can be

independently fixed and remains stable during creep; then, for a given d
Eocg”

with N>n.

This situation was thought to arise after a stress drop, when the higher-
stress subgrain size was preserved during subsequent creep or after a long
stress-free anneal (Pontikis & Poirier, 1975). However, it was pointed out by
Miller et al. (1977) that only a very small strain occurred following stress
decrease and that it was insufficient to allow any significant change in
subgrain size; considering the origin we have proposed for the subgrain
boundaries, it seems indeed reasonable to link the subgrain size with strain
rather than time elapsed since the stress reduction. Then the only remaining
case in which d would be stable would be that of alloys containing dispersed
particles of a second phase, which could effectively anchor subgrain
boundaries and stabilize a subgrain size independent of applied stress (e.g.
in TD nickel).

Thus, the controversy about whether creep-rate depends or not on
subgrain size does not concern steady-state creep but only the creep stage
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following immediately a stress drop, which is interpreted in different ways
(Parker & Wilshire, 1976; Miller er al., 1977, Sherby et al., 1977). This is
probably not a major problem.

6.3 Dynamic recrystallization

6.3.1 Recrystallization processes

We will define dynamic recrystallization as a deformation-induced
reworking of the grain sizes, shapes or orientations with little or no chemical
change (Poirier & Guillopé, 1979). As the change of grain structure was
usually observed after high-temperature deformation in metals that also
easily recrystallized statically (see § 2.3.2), the existence of recrystallization
duringcreep or constant strain-rate deformation was denied for a long time.
It is now well accepted, and its occurrence in metals, minerals and organic
crystals can be followed optically in situ (Urai et al., 1980; Means, 1983) or
through its effects on the creep curves or stress—strain curves (figs. 6.8, 6.9,
6.10).

Dynamic recrystallization and dynamic recovery were long seen as
competing phenomena in metals (Hardwick et al., 1961). Indeed, this view
was reasonable as long as the only process for dynamic recrystallization
was thought to be nucleation and growth of new grains by grain-boundary

Fig. 6.8. Effect of dynamic recrystallization on creep curves of pure
nickel polycrystals (T=965 °C) (after Richardson et al., 1966).

19 MPa
17 MPa

0.07+ 21 MPa

0.06

0.05

0.04 +

Strain

0.03

12 MPa
0.02

0.01

Time {h}



180 Creep polygonization and dynamic recrystallization

migration; the driving force for grain-boundary migration being due to the
difference in strain energy between deformed grains and dislocation-free
nuclei (§2.4.5), it obviously decreases by a large amount when the
dislocations in the deformed grains rearrange into lower-energy configura-

Fig. 6.9. Effect of dynamic recrystallization on stress—strain curves of
pure nickel polycrystals (T=934 °C) (after Luton & Sellars, 1969).
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Fig. 6.10. Effect of dynamic recrystallization on stress—strain curves of
copper single crystals (after Gottstein & Kocks, 1983).
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tions by polygonization. However, it seems now clear that polygonization,
far from impeding recrystallization, may further it, as we will see presently.

The grain-structure modification in polycrystals or single crystal may be
achieved in two ways, which we will call ‘rotation recrystallization’ and
‘migration recrystallization’ (Poirier & Guillopé, 1979).

(i) Rotation recrystallization

This results from progressive misorientation, without appreciable
migration, of the subgrain boundaries formed during creep polygonization:
the grains ‘fragment’ into subgrains which eventually become so mis-
oriented that they truly become individual grains (fig. 6.11); however, they
usually retain some orientation kinship that allows the reconstitution of the
former parent grain (Poirier & Nicolas, 1975; Urai, 1983). This type of
recrystallization has been observed in many materials: quartz (Hobbs,
1968; White, 1973), calcite (Schmid et al., 1980), NaNO; (Tungatt &
Humphreys, 1981), NaCl (Guillopé & Poirier, 1979), olivine (Poirier &
Nicolas, 1975; Karato et al., 1980), bischofite MgCl,, 6H,0O (Urai, 1983); it
has also been observed in hot worked aluminium (Perdrix et al., 1981), a
metal that was supposed to polygonize and not recrystallize owing to its
high stacking-fault energy. Rotation recrystallization is clearly not
competitive with polygonization, indeed it necessarily results from it at

Fig. 6.11. Rotation recrystallization in NaCl single crystal deformed
by 70% at T=600 °C and 6=40 g/mm? Etch pits. Subgrains are
labelled with their misorientation in degrees with respect to the
subgrain 0 (near the centre) 30 denotes a 30° rotation in the counter-
clockwise sense and 30 a 30° rotation in the clockwise sense) (scale
bar=1 mm) (courtesy M. Guillopé).
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large strains, if the incompatibilities are maintained. The boundaries can
migrate slowly under stress (§6.2.2) in the low-velocity regime characteristic
of impurity-loaded boundaries (§2.4.6).

(i) Migration recrystallization

This results from the rapid migration of grain boundaries between
dislocation-free nuclei and deformed grains (fig. 6.12), exactly as in static
primary recrystallization (see §2.4.7). In fact, there is no evidence for the
existence of nuclei arising from statistical fluctuations in the classical sense
of the nucleation theory; rather, the ‘nuclei’ seem to be constituted by
dislocation-free regions of subgrains (or whole small subgrains) bounded by
a mobile stretch of high-angle boundary that can bulge out into a deformed
neighbouring grain by strain-induced boundary migration (SIBM). The
driving force, as in static recrystallization, arises from the strain-energy
difference between deformed and virgin grains. The strain energy in a
volume is proportional to the dislocation density p. and to the area of
subgrain and grain boundaries (of specific energy .., and y,,) it contains. In
the deforming grain, the dislocation density is usually proportional to ¢
and the area of subgrain and grain boundaries per unit volume is inversely
proportional to the subgrain and grain sizes, which in turn decrease with

Fig. 6.12. Migration recrystallization in NaCl single crystal. The
vertical grain boundary (left) moves towards the left, consuming the
heavily polygonized grain at left. The new grain (right) is being
polygonized in turn (scale bar=0.1 mm) (courtesy M. Guillopé).
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increasing stress (§ 6.2.2 and §6.3.3). The result is, that the driving force F for
a grain boundary between a region of deformed grains of size D, , containing
subgrains of size d, and a dislocation density p, and a recrystallized region
of grain size D,oco ~'-% can be written (Poirier & Guillopé, 1979):

1
F~3 l:y,,, (D—— Ac' '2) + Byssbcr] +Cpa*

1

The driving force is an increasing function of the applied stress. For high
driving forces and high intrinsic mobilities (i.e. at high stress and
temperature), the grain boundaries can free themselves from the pinning
impurity atoms (§ 2.4.6) and move at high velocity, consuming the deformed
material. Obviously, in the case of dynamic recrystallization, the newly
formed grains behind the moving boundary get deformed and polygonized;
this eventually lowers the driving force, leading to an exhaustion of the
recrystallization process or to recrystallization waves, depending on the
interplay between the kinetics of recrystallization and deformation (Sellars,
1978).

For a given impurity concentration, there should therefore exist a curve
in the stress-temperature plane between the domain where the grain
boundaries cannot move rapidly and only rotation recrystallization is
possible (low ¢ and T) and the domain where the migration recrystal-
lization can occur (high ¢ and T). Such a curve was determined for NaCl
(Guillopé & Poirier, 1979) and NaNOs, an analogue of calcite (Tungatt &
Humphreys, 1981) (fig. 6.13(b)). Two regimes of velocity for boundary
migration were also observed in bischofite’ (Urai, 1983) and dynamic
recrystallization in this material results from a complex interplay between
rotation and migration recrystallization.

From all the known examples of these processes, it is seen that rotation
and migration recrystallization are not exclusive and that in most cases
rotation recrystallization first occurs, a high-angle boundary structure is
then built up, sometimes as a ‘core and mantle’ structure in the grains. For
strain larger than a critical strain (about 40 to 60% in most cases), the
driving force and the intrinsic mobility (linked to the misorientation angle)
of the boundary may be high enough (if the temperature is also high
enough) and the migration recrystallization may start. It often starts in the
‘mantle’ region close to grain boundaries and the small subgrains may be
seen as ‘nucler’, enlarging by SIBM ; most often, the resulting structure may
be equiaxed due to the impingement of neighbouring grains (e.g. in

+ The high-velocity regime corresponds to a mechanism not found in metals or most
minerals: the strained grains dissolve in a water film at the boundary and the new
crystals grow by redeposition of the dissolved material,
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Fig. 6.13, Boundary between rotation and migration recrystallization
domains. (@) NaCl deformed in creep (o, T plane). Circles: pure NaClL
Triangles: NaCl doped with 500 ppm Sr?*. Squares: natural halite
from Dieuze mines. Empty symbols: rotation recrystallization. Closed
symbols: migration recrystallization. (After Guillopé, 1981.) (b) NaNO,
deformed at constant ¢ (after Tungatt & Humphreys, 1981).
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magnesium, 0.8%; aluminium, alloy; Ion et al., 1982). The impurity content
of the crystals is obviously an important factor and it is seen that the
limiting curve between rotation and migration recrystallization moves
toward higher stresses and temperatures for impure crystals (Guillopé &
Poirier, 1979) (fig. 6.13(a)).

6.3.2  Recrystallized grain size

As polygonized subgrains, dynamically recrystallized grains form
a continuously evolving structure, characterized by a mean grain size D,
which depends only on the applied stress:

D [e\""
k(%) o

Eq. (6.3)is similar to eq. (6.1) for subgrains, but the value of the exponent r
is usually somewhat larger than 1 and close to rx 1.2 (table 6.1) (fig. 6.14).

The size of the recrystallized grains does not usually depend on
temperature; however, Ross et al. (1980) found that they could fit better the
data from their experiments on dunite (olivine) under pressure, with
dehydrating talc as a confining medium, by adopting a weak temperature
dependence (Q ~ 14 kcal/mol); the temperature dependence disappeared
when they used a dry confining medium.

In most cases, the grain size is given without mentioning whether it
results from rotation or migration recrystallization. In the cases where the
two regimes have been clearly observed and the corresponding grain sizes
measured, D is larger for migration than for rotation recrystallization
(Guillopé & Poirier, 1979; Tungatt & Humphreys, 1981) (fig. 6.15).

We must realize here an important difference between the equation for
subgrains (6.3), which can be written

Table 6.1. Correlation between recrystallized grain size and applied
stress, D/b=K(a/u)™"

Material K r Reference

Quartzite (wet) 2.65 1.40 Mercier et al. (1977)
Quartzite (wet) 231 0.90 Christie et al. (1980)
Olivine (dry) 38 1.18 Karato et al. (1980)
Dunite (dry) 62 1.27 Ross et al. (1980)

Dunite 69 1.23 Mercier et al. (1977)
Pyrite 22 111 Cox et al. (1981)

Halite (rotation) 13.3 1.18 Guillopé & Poirier (1979)
Halite (migration) 178 1.28 Guillopé & Poirier (1979)

Nickel 2% 10* 1.33 Luton & Sellars (1969)
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d o\!

and the equation for recrystallized grains, which can be written:

-1.2
2=K'(3) (6.5)
b u

Eq. (6.4) is easily understood physically: even if the details of the process
leading to a particular value of K are still obscure, the form of the equation
is satisfying: a characteristic dimension of the dislocation structure is
inversely proportional to a stress (here, it must be assumed that the applied
stress is proportional to the internal stress, but we have seen it is reasonable,
most of the time). Such is not the case for eq. (6.5); the experimental evidence
definitely rules out the possibility of disregarding the fact that the exponent
is not equal to 1; even if the equation is artificially made dimensionally
correct by normalizing D and o, there remains that it has no obvious
physical sense and that it must be considered as an empirical relation. So

Fig. 6.14. Relation between recrystallized grain size and applied stress
for various materials (see table 6.1). 1 — Wet quartzite (Mercier et al.,
1977). 2 — Halite, rotation (Guillopé & Poirier, 1979). 3 — Pyrite (Cox
et al., 1981). 4 — Olivine (Karato et al., 1980). 5 — Dunite (Mercier et al.,
1977). 6 — Halite, migration (Guillopé & Poirier, 1979). 7 - Wet
quartzite (Christie et al., 1980).
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Fig. 6.15. (a) Relation between recrystallized grain size and applied
stress for NaCl: subgrains — /u=20 b/d; grains (rotation) — a/u=
9(b/D)°-®%; grains (migration) — a/u = 57(d/D)%"® (after Guillopé, 1981).
(b) Relation between recrystallized grain size and temperature for
NaNO; (after Tungatt & Humphreys, 1981).
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far, all the attempts to justify ‘theoretically’ the grain-size—stress relation
have been remarkably unconvincing. The popular and widely quoted
‘theoretical’ expression derived by Twiss (1977) does in fact rest on
extremely shaky foundations: the fundamental assumption on which it is
based is that ‘the formation of subgrains and recrystallized grains must be
energetically favourable processes’. By the simple argument used to
determine the critical size above which an embryo can spontaneously grow
during a phase transformation (see §8.2.2), Twiss (1977) determines the
critical grain size for which the decrease in volume strain energy is exactly
compensated by the increase in surface energy and assumes that it will be
the ‘equilibrium grain size’; it is, however, an unstable equilibrium as the
critical size found corresponds to an energy maximum: a grain larger than
the critical size can always lower the energy of the system by growing. *After
some manipulations’, the expression for the critical grain size reduces to a
form similar to (6.3) with 1.3<r<1.5, but entirely devoid of physical
meaning.

So far, it seems that the recrystallized grain-size—stress relation is a useful
one but it is empirical. There must be a good physical reason at the bottom
of it and I suspect that the fact that the exponent is different from 1 comes
from the averaging procedure which extracts a unique grain size from a
usually multimodal distribution of grain sizes. As pointed out by Schmid, in
the discussion following White’s (1979) paper, the notion of one equilibrium
grain size at any stress is dangerous as there are cases when no unique grain
size is found even after 309 shortening.

6.3.3 Effect of dynamic recrystallization on mechanical properties

In many, but not all, cases, dynamic recrystallization causes a
noticeable softening of the crystals, which is manifested by a stress drop on
the stress—strain curves (figs. 6.9, 6.10) and a creep-rate increase on the creep
curves (fig. 6.8). This effect is obviously due to the replacement of a more or
less strain-hardened substructure with free dislocations and imperfect
subgrain boundaries with long-range stress fields, by an annealed,
dislocation-free structure (at least in the first stages); its importance
depends, of course, on the initial and final structures (types of sub-
boundaries, orientation of the new grains with respect to the applied stress,
etc.) and of how fast the recrystallized structure is acquired.

In the case of the rotation recrystallization, no important effect is
expected (since the initial and final structures differ only by the mis-
orientation of boundaries) and, indeed, none is found (Guillopé & Poirier,
1979). In the case of migration recrystallization, the effect is less repro-
ducible in single crystals than in polycrystals. In most cases, there is a strain-
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rate increase in creep tests, when recrystallization has affected enough
volume in the sample, but the effect is usually more brutal in pure crystals
than in impure ones (Richardson et al., 1966). In constant strain-rate tests
(most often torsion tests, because they allow large strains, up to the critical
strain, to be reached), the stress—strain curves exhibit a stress drop (e.g. in
nickel, Gottstein & Kocks, 1983, or in magnesium, Ion et al., 1982) or
periodic oscillations (Rossard & Blain, 1958; Glover & Sellars, 1973; Luton
& Sellars, 1969). The oscillations usually occur only at large values of the
applied stress (or of the Zener-Hollomon parameter); they reflect the
occurrence of dynamical recrystallization waves that subside after a while
when the straining is fast enough, to start again when the driving force has
regained sufficient strength (Jonas et al., 196Y9; Sellars, 1978).

The softening accompanying dynamic recrystallization may be a cause of
plastic instability (§ 1.3) and may give rise to shear zones or ductile faulting,
e.g. in magnesium (Ion et al., 1982) or olivine (Post, 1977).

Taking into account the fact that dynamic recrystallization may cause
the grain size to decrease if the stress is high enough, it has been suggested
(White, 1976; Twiss, 1976) that the creep mechanism of minerals in
geophysical settings leading to recrystallization might change from power-
law creep to grain-size-dependent creep mechanism, active in fine-grained
materials (see chapter 7). This view was criticized by Zeuch (1983), in the
case of olivine, on the grounds that the activation energy for the creep of
recrystallized olivine (Karato et al., 1982) was higher than the one predicted
for diffusion creep. Although the argument does not lack validity, the
experimental basis is rather weak in this case, since Karato et al. (1982)
measured an apparent activation energy for creep, on samples undergoing
dynamic recrystallization (i.e. using an average value of a fluctuating creep-
rate), thus clearly finding values devoid of any physical significance.
Etheridge & Wilkie (1979), more convincingly, defended the thesis that
grain refinement is never sufficient to take the creep process out of the
power-law field into the diffusion-creep field; we will give here a brief
analysis similar in principle to theirs: let us express the viscosity of power-
law creep and of diffusion creep by transport of matter by bulk diffusion
(Nabarro—Herring creep) or by grain-boundary diffusion (Coble creep) (see
chapter 7).

The viscosity of power-law creep is stress-dependent and grain-size-
independent:

-2
npLe =K, (E) (6.6}

The viscosity of diffusion creep is stress-independent (Newtonian) and
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grain-size-dependent:

D 2
e =K 1(3) 6.7)

D 3
Nec=Kj3 (3) (6.8)

Eliminating » from (6.6), (6.7) and (6.8), we find the equations of the linear
boundaries between the fields of the various creep mechanisms in the log o—
log D plane:

log (§)=% log (ﬁ—;) —log (E) (6.9)

n T e L B
83 )=3le g, —3l08( (6.10)

Now, the final recrystallized grain size and the applied stress are related by
eq. (6.3) with ra1.2, hence:

D [
log (3)=log K,—12log (;) (6.11)

It turns out that, in most cases, the values of the constants, K|, K,, K3, K,
lead to a situation similar to that shown in fig. 6.16: the line defining the
recrystallized grain size lies entirely in the power-law-creep field, i.e. no
change in creep mechanism is possible for realistic values of the starting
grain size. However, there does not seem to be any clear physical reason
why it should always be so in all cases (the recrystallized grain size is not in
‘equilibrium’ with stress). Schmid et al. (1977) found a situation where
diffusion creep occurs in apparently recrystallized fine-grained limestone.

64 Geological palaeopiezometers

An important problem in geology and geophysics consists in
finding an estimate for the applied stress that caused the visible deforma-
tion of crust and mantle rocks (mostly quartz and olivine). The existence of
empirical relations between the applied stress and various microstructural
parameters (dislocation density, subgrain size, recrystallized grain size) in
the case of metals spurred the geological community to investigate whether
these relations were also valid for minerals. Experiments on creep and
dynamic recrystallization of minerals, as we have already seen, yielded
similar relations. The next step was to use these empirical relations to
estimate the applied stress from microstructural measurements on
naturally deformed rocks. The so-called ‘palaecopiezometers’ were then
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used to estimate the palaco-stress in crustal shear zones (e.g. Kohlstedt &
Weathers, 1980; Christie & Ord, 1980) or constructing stress profiles in the
lithosphere (Mercier et al., 1977; Mercier 1980) from the microstructure of
peridotite xenoliths. The three palacopiezometers — dislocation density p
proportional to ¢2, subgrain size proportional to ¢ ~', recrystallized grain
size proportional to o ~!-2 — have been repeatedly assessed in the literature
(Nicolas & Poirier, 1976; White, 1979; Ross et al., 1980). We will only
review here the principal problems that arise when the laboratory empirical
relations are applied to naturally deformed rocks.

6.4.1  Dislocation density
Although the relation poca® is found to be valid in most
experiments where the stress has been held at a constant value, its

Fig. 6.16. Recrystallized grain size and creep mechanisms. The
boundaries between creep domains (PLC — power-law creep; NHC -
Nabarro-Herring creep; CC — Coble creep) have been calculated for
olivine using Ashby & Verrall (1978) rheological equations. The
recrystallized-grain-size-stress line (dashed) is taken from Karato et
al’s (1980) experiments; it lies entirely in the PLC field for reasonable
values of grain size and stress. An example of grain-size evolution
from an initial state (circle) is given.
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application to naturally deformed rocks poses many problems (White,
1979; Nicolas & Poirier, 1976), the principal of which has its source in the
fact that the dislocation density is not very stable against changes in
temperature and stress. As a result, the average dislocation density in a
deformed monomineralic rock most often reflects a late stage of stress-free
anneal or a low-temperature high-stress emplacement stage, but it is seldom
representative of the main strain-producing episode, except when it is a
major episode and when all palaecopiezometers give the same answer (as
was apparently the case for the quartzite in the shear zone investigated by
Kohlstedt & Weathers, 1980). In the majority of the cases, the stress found
by using the dislocation density is unreliable and sometimes quite high
(Christie & Ord, 1980).

6.4.2  Subgrain size

As we have seen, there are several scales of subgrains, and
measuring the size of small subgrains by transmission electron microscopy
yields a higher stress than measuring the size of the larger subgrains seen
optically. There is now a tendency to consider that the larger, more
misoriented subgrains visible by decoration or optically are the only ones
that are representative of the major straining episode. From laboratory
experiments on NaCl (Pontikis & Poirier, 1975) and olivine (Ross et al.,
1980), it is also generally accepted that the subgrain size varies rapidly
during a stress increase but is stable against a stress decrease, hence it would
be representative of the maximum stress experienced by the mineral. As we
have seen, this is probably correct, unless a later episode at lower stress has
produced a large enough strain, possibly allowing the structure to evolve,
which does not seem likely in most cases.

6.43  Recrystallized grain size
The recrystallized grain size in the migration regime apparently
adjusts rapidly to a change of stress, either an increase or a decrease (Ross et
al., 1980), so it would reflect the last high-temperature, major stress episode
(and not the maximum-stress episode). However, even this palacopiezo-
meter, thought to be the most reliable (Ross et al., 1980; Mercier, 1980), is
beset by problems. The first one is the fact that, in most cases, the
recrystallized grain size is not unique but bimodal, with finer grains near
grain boundaries of the former grains; the second one is that there are two
mechanisms for recrystallization, rotation and migration, that yield
different grain sizes, so it would be necessary to know which mechanism has
been responsible for the observed grain size.
Apparent discontinuities in stress along a profile in depth in the
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lithosphere might be spurious and result from the crossing at some depth of
the boundary between two recrystallization regimes giving different grain
sizes (Mercier, 1980),

Finally, in many cases (quartzites, marbles) the grain boundaries may be
stabilized against migration by a dispersed second phase (generally flaky
minerals like mica that lie along grain boundaries); the grain size, then, has
no relation whatsoever with the applied stress (White, 1979).
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Diffusion creep, grain-boundary
sliding and superplasticity

7.1

At high temperature and low stresses, deformation of fine-grained
materials proceeds by mutually accommodating grain-boundary
sliding and transport of matter. According to which mechanism
provides the greater amount of strain, one speaks of diffusion creep or
grain-boundary sliding but they are never really dissociated.

Diffusion creep was predicted theoretically before being observed. If
the transport of matter occurs by lattice diffusion, it is Nabarro-
Herring creep and the viscosity varies as the grain size squared; if the
transport of matter occurs by grain-boundary diffusion, it is Coble
creep and the viscosity varies as the grain size raised to the third
power.

Grain-boundary sliding accommodated by diffusion creep is
described by the same kind of equations as diffusion creep. In most
materials, if the grain size is small and stable there is a domain of
strain-rate where the strain-rate sensitivity is higher than for
dislocation creep and where tensile deformation can take place in a
stable manner up to very large strains: it is the superplastic domain.
Models for superplastic flow account for the high strain-rate
sensitivity and the possibility of large strains, by grain-boundary
sliding during grain-shifting events, locally accommodated by diffusion
creep or climb and glide of grain-boundary dislocations in the mantle
of the grains.

Generalities

Intragranular creep by dislocation motion is not the only high-

temperature deformation mode of crystals. We have already mentioned
(§2.1) that strain can be achieved by transport of matter by diffusion
(diffusion creep) or by shear along the grain boundaries (grain-boundary
sliding or GBS). Intragranular dislocation slip may not be uniform and we
have seen that the plastic incompatibilities are usually relieved by
geometrically necessary dislocation which can rearrange into poly-
gonization walls, but intragranular creep in a polycrystal, on the whole,
need not be otherwise accommodated. Such is not the case for diffusion
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creep or grain-boundary sliding. GBS creates voids or overlaps that have to
be accommodated by diffusion creep, and diffusion creep, by deforming the
grains, also creates voids or overlaps that must be accommodated by GBS
(fig. 7.1). Indeed, diffusion creep creates the driving force for GBS and vice
versa. These processes are therefore strongly coupled and mutually accom-
modating,; one cannot exist without the other. However, it does not
necessarily follow that both carry the same amount of strain (as in climb-
controlled dislocation creep, for instance, climb provides little strain as
compared with slip). We will therefore consider the two end-members of a
continuum: GBS-controlled diffusion creep, in which most of the strain is
due to transport of matter, and diffusion-creep-controlled GBS, in which
most of the strain is due to GBS. We will then deal with the case of
superplasticity, which also proceeds by mutually accommodating GBS and
diffusion creep, but is usually studied separately on account of its low stress
sensitivity of the strain-rate which imparts to superplastic materials the
property of deforming up to large tensile strains without plastic instability.

7.2 Diffusion creep

721  Nabarro—Herring creep

Nabarro (1948) was the first to propose that a non-hydrostatic
stress field could give rise to different vacancy concentrations on surfaces of
a crystal with different orientations with respect to the stress field, hence
cause a flux of vacancies between surfaces and a flux of ions in the opposite
sense. Thus the transport of matter induced by the non-hydrostatic stress
field would cause a pure shear deformation, making the applied stress do

Fig. 7.1. Relation between grain-boundary sliding and diffusion creep.
In a model two-dimensional polycrystal deformed in pure shear, GBS
creates voids that must be filled by diffusion creep or conversely
diffusion creep causes GBS.
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work on the sample. Obviously this process can be ofimportance only if the
flux of vacancies is large, 1.e. if there are enough sources (grain boundaries)
and if the vacancy mobility is high enough. As a result, diffusion creep
would be expected at very high temperatures and for very small grain sizes;
the latter requirement also implies that dislocation sources cannot operate
in small grains (unless the stress is quite high) and so diffusion creep would
not be swamped by dislocation creep. Nabarro also pointed out that
diffusion creep could well be effective in the Earth’s mantle, an idea that was
later taken up by Gordon (1965).

Diffusion creep stands alone among the creep processes, in that a
rheological equation was first theoretically proposed and the phenomenon
was actually proved to be real only 15 years later when Squires et al. (1963)
and Harris & Jones (1963) noticed it ina Mg0.5%, Zralloy (fig. 7.2). We will
first give a simple calculation (following Nabarro) leading to the mechan-
ical equation of state for diffusion creep; then we will briefly consider the
more elaborate thermodynamic treatments and more realistic boundary
conditions.

Let us consider the ideal case of a small isolated cubic crystal (of size d), in
a pure shear-stress regime (fig. 7.3). Let us assume that vacancies are only
created and absorbed at the surfaces and that they can diffuse in the bulk
with a diffusion coefficient D,.

At a given temperature T, the thermal equilibrium concentration of
vacancies in the crystal is Co= N, /b*, where N, is the equilibrium atomic
fraction and b® = Q is the atomic volume (see § 2.2.1). Creation of a vacancy
at the face AB (fig. 7.3) is helped by the tensile stress, whereas it is necessary
to work against the compressive stress to create a vacancy at face BC. The
equilibrium concentrations of vacancies at the faces AB and BC, respec-
tively, are:

N

C*=C,exp (kT) (7.1)
_ ab®

C~=C,exp (_ﬁ) (7.2)

Although there is local equilibrium for vacancies at the surfaces, the
crystal is not in global equilibrium and vacancies will flow down the
concentration gradient from faces AB and CD to faces AD and BC.

The flux of vacancies is given by Fick’s equation:

Cr—-C~
d

Where « is a numerical factor depending on the shape of the grain and the

boundary conditions. The number ¢ of vacancies transported through a

J=—D, grad C~aD, (7.3)



7x 10785, T=500°C,

0.1 mm). (Courtesy R. B. Jones.)
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Fig. 7.2. Diffusion creep in Mg 0.5% Zr alloy. Annealing 1 h at 600 °C
in H, created ZrH, precipitates. Material transnorted by diffusion to

the grain boundaries normal to the tensile stress is free from

precipitates and appears as denuded zones (¢

a




198 Diffusion creep and superplasticity

face of area d? per second is:
p=Jd® (7.4)
To the flow of vacancies corresponds a flow of atoms in the opposite
sense so that forming a vacancy corresponds to letting an atom (of volume
b®) pop out at the surface. If the total volume ¢b? arriving per second at a

surface is spread evenly, it creates a layer of thickness ¢b*/d? and the sample
therefore elongates with a strain-rate:

1 ¢b® b?

From (7.5), (7.4), (7.3), (7.2), (7.1) we may write:

. D,Cob® . . [ab®

E=u d;‘ sinh (E’F) (7.6)
For small stresses, ob> <k T, we can write:

D,Cob® ab®
7 T (1.7

as D,Cob*=D, N, =D, coefficient of self-diffusion, we finally obtain:

. DyuoQd
> =g 8

We see that diffusion creep is Newtonian viscous (§oce) and that the
viscosity is grain-size-dependent, which is not the case for dislocation creep.
Herring (1950, 1951) rigorously formalized the problem of creep by

Fig. 7.3. Principle of Nabarro—Herring creep. The concentration of
vacancies at faces in tension C7* is higher than in bulk C,, at faces in
compression C~ < C,. Vacancies flow from faces in tension to faces in
compression and matter flows in the opposite sense.

f f
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lattice diffusion in a polycrystal, which earned it the name: Nabarro—
Herring creep.

Herring expressed the flux of matter in terms of the chemical potential (or
partial molar free energy) of atoms and vacancies. The diffusion flux, in
atoms per unit area and second is:

J = 6
where the velocity v is given by Einstein’s equation:
DF
v= k_T (79)
The driving force F is:
F=—grad (u—p,) (7.10)

where p and g, are respectively the chemical potential of atoms and
vacancies. Hence:

J= grad (u—pu,) (7.11)

D
QKT

It is then reasonably assumed that the flux is conservative, i.e. div J=0
inside the crystal; it follows that the Laplacian of (u— p,) is also equal to
Zero:

Viu—p,)=0 (7.12)

It is then possible to determine the diffusion flux, if the value of (u — ) is
known at the boundaries. Note that the values of (¢ — u,) determined inside
the crystal are useful to find the diffusion flux but have no thermodynamical
meaning, as the chemical potential of the atoms of a solid under non-
hydrostatic stresses can be defined only at the surface (see Kamb, 1961;
Paterson, 1973); the same is true of the chemical potential of the vacancies.
At the surfaces, (1 — ) can be expressed as a linear function of the normal
stress on the surface. Herring finally finds an expression for ¢ identical to
eq. (7.8).

Herring considered an ideal polycrystal formed of identical spherical
grains, for the cases where tangential stress relaxation is possible or not at
the grain boundaries (i.e. possibility or impossibility of GBS); the coefficient
« takes different values for the two cases:

=16 if GBS is impossible
a=40 if GBS is possible
In both cases, the stress ¢ appearing in eq. (7.8) is the shear stress; if one uses

the engineering stress in tension or compression, the coefficient must be
replaced by «/3.
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N.B. It is easy to convince oneself of the necessity of the factor 1/3 by
using the correspondence principle between elasticity and viscosity. For
shear stresses, we have ¢ = ¢ for elastic solids and o =& for viscous fluids,
and, for engineering normal stresses, we have o= Ee¢ and o =n'¢ respec-
tively. Now for incompressible elastic solids (v=0.5) we have E =3y, hence
for incompressible viscous fluids "= 37.

722 Coble creep

Coble (1963) investigated the case of a polycrystal where transport
of matter would occur not by lattice diffusion but by grain-boundary
diffusion. Assuming that the grains were spherical (as did Herring) and that
GBS was possible he found:

. 148Dy 6002
> TTdkT
where D,, is the grain-boundary diffusion and é the grain-boundary
thickness. Formula (7.13) applies to the case where o is the engineering
stress; for o being a shear stress we would replace ¢ by 30, hence:

. 141D,,60Q

© &PkT

The important difference between Nabarro-Herring and Coble creep lies
in the fact that, for the latter, the creep-rate depends on the inverse of 4°
rather than the inverse of 4% and also that it depends on the grain-boundary
diffusion. The activation energy for grain-boundary diffusion being smaller
than for lattice diffusion, Coble creep can be important at temperatures less
high than those necessary for Nabarro—Herring creep (fig. 7.4). The
geologically important phenomenon of deformation by pressure solution,
with transport of matter in a liquid film at the grain boundaries, can be
treated exactly as Coble creep (McClay, 1977).

(7.13)

(7.14)

7.2.3  Experimental observations
As already mentioned, Nabarro-Herring creep was first observed

in Mg 0.5% Zr alloys (Squires et al., 1963); Harris & Jones (1963) calculated
the strain from the width of the denuded zones near the grain boundaries in
tension and found a good agreement with Herring’s formula.

Nabarro-Herring creep was also demonstrated in ‘zero creep’
experiments on thin wires (see Jones, 1969). Later, Nabarro—Herring and
Coble creep were found to be active in many metallic and ceramic systems
(see Burton, 1977, for an extensive review).

In most cases there is a transition stress for a given grain size, below
which the Newtonian creep takes over from dislocation creep as can be
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expected (figs. 7.5 and 7.6). There obviously is also a critical grain size below
which power-law creep gives way to diffusion creep. Raj & Ghosh (1981)
have shown that a more realistic bimodal distribution of grain sizes in a
material gives rise to a transition regime spread out over three or four
orders of magnitude in stress-rate. Experiments at very low stresses show
that there often exists a small threshold stress below which no creep occurs,
i.e. that the viscous flow is of Bingham rather than Newton type (Crossland
et al., 1973; Crossland, 1974). The fact that the grain boundaries are not
perfect sources or sinks for vacancies, i.e. that there can be some degree of
interface-reaction control of the creep-rate, may be at the origin of the
threshold stress (Ashby, 1969).

Subgrain boundaries may also act as sources and sinks of point defects,
as originally suggested by Friedel (1964), and Coble creep may occur by
transport of matter along the subgrain boundaries by pipe diffusion;
indeed, in some cases there is a better agreement between the observed and
the calculated viscosity if the latter takes into account the subgrain size
rather than the grain size (Crossland, 1974); the observed viscosity,
however, remains smaller than the calculated omne, even after this
modification,

Fig. 7.4. Nabarro-Herring and Coble creep fields in the strain-rate—
temperature—grain-size space.
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Fig. 7.5. Linear ¢—¢ plot for dislocation creep and diffusion creep.
Diffusion creep dominates at stresses lower than o, (for constant grain
size).
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Dislocation creep

. Diffusion creep

Al

- f;t 0

Fig. 7.6. Log é-log o plot for creep of f-cobalt. At low o, diffusion
creep (n=1); at high ¢, power-law creep (n>1). From top to bottom,
temperatures and grain sizes are 760°, 105 pm, and 620°, 46 pm (after
Sritharan & Jones, 1979).
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7.3 Mutually accommodating grain-boundary sliding and diffusion
creep

Herring (1950) and Coble (1963) calculated the diffusion creep-rate
of an isolated spherical grain with extreme boundary conditions on the
tangential stress at the surface (relaxation or absence of relaxation). The
extension to the real polycrystals of the mechanical equations of state is not
straightforward and must take into account the fact that the grains are
polyhedra that must remain in contact during compatible plastic deforma-
tion. Lifshitz (1963) first analysed the conditions for compatibility at the
grain boundaries, taking into account the necessity for grain-boundary
sliding as well as the consequences of the existence of shorter diffusion paths
near the edges of the grains. The coupling between diffusion creep and GBS
was analysed by Raj & Ashby (1971), Stevens (1972) and Gifkins (1976). Raj
& Ashby considered the general problem of sliding at a non-planar grain
boundary; they considered in particular the cases of purely elastic and of
diffusional accommodation of GBS. They modelled the shape of the
boundaries of two-dimensional grains by a Fourier series; fig. 7.7 shows the
elementary sinusoidal shape of a boundary subjected to a shear stress and
accommodating the sliding by local diffusional creep. They showed that
GBS in a model polycrystal of hexagonal tiles with non-planar boundaries
can be accommodated elastically only over very short distances (x50 A)
and that GBS may proceed only if there is local accommodation by plastic
slip of dislocations or by transport of matter,

Considering transport of matter both by lattice and grain-boundary
diffusion, Raj & Ashby find a mechanical equation of state for diffusion-
creep-controlled GBS of a two-dimensional polycrystal of grain size d, with
sinusoidal grain boundaries:

D 40Q2
d’kT

> i=a (7.15)

Fig. 7.7. Grain-boundary sliding accommodated by diffusion creep for
a sinusoidal grain boundary (after Raj & Ashby, 1971).
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The coefficient « has the same value as in eq. (7.8) for Nabarro-Herring
creep when tangential stresses are relaxed at the boundary: a =40, D 4is an
effective diffusion coefficient:

nd Dy,

e 2 7.
D Dﬁ[l-i-l Dw] (7.16)

where Dy and Dy, are the coefficients of lattice and grain-boundary self-
diffusion respectively, & is the grain-boundary thickness and A the wave
length of the sinusoidal profile of the grain boundaries (or basic periodicity
of the boundaries). Note that for lattice diffusion alone, (7.16) gives the same
expression for creep-rate as the Herring theory and for grain-boundary
diffusion alone (7.16) is practically identical with the Coble expression (7.14)
if A~2d.

74 Structural superplasticity

74.1  Generalities

Some fine-grained materials, subjected to tensile tests at high
temperature and low strain-rate, may stretch without necking, up to
unusually high elongations of the order of 1000%; they are then said to
behave superplastically. Superplasticity is a behaviour, not a definite
phenomenon like superfluidity in liquid helium; its definition is therefore
loose, and there is no unique theory of superplasticity.

The possibility of reaching very large elongations without necking, i.e. of
deforming in a stable manner, is a manifestation of a high strain-rate
sensitivity of the stress (high m, see § 1.3). Glasses, pitch, and ‘silly putty’ are
typical examples of solids (generally amorphous) that behave in a brittle
fashion under a shock (the high stresses reached at high strain-rates relax by
fracture) and flow viscously without instabilities if the load is applied
slowly.

Rosenhain et al. (1920) were the first to discover that some metallic alloys
could behave in the same way as pitch: if the ternary eutectic alloy Zn
4% Cu 7% Al was ‘bent rapidly or given a blow, it broke without apparent
flow while, if the bending was carried out slowly, it was quite possible to
bend the sheet through 180”; they concluded that the alloy contained an
important proportion of amorphous phase, a logical conclusion in the
light of our present knowledge, since we know that the effect is linked to
the presence of many grain boundaries (fine-grained material) and that
Rosenhain thought that grain boundaries were amorphous layers. How-
ever, the first remarkable investigation on superplasticity was done
by Pearson (1934) on Sn 38% Pb and Bi 44%; Sn alloys, obtaining elonga-
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tions of nearly 2000°%. He clearly saw most of the characteristics of
superplasticity, and recognized the importance of grain size.

Most of the superplastic alloys were two-phased eutectics and the high-
temperature superplasticity was later attributed to the phase transforma-
tion, rather than to the resulting microstructure, by the Soviet investigators
who were active in the field of transformation plasticity (see chapter 8). The
confusion was spread in the West by the review of Underwood (1962); it was
dispelled by the work of Backofen and his team at MIT who investigated
numerous eutectic and eutectoid systems: e.g. Al 22% Zn (Backofen et al.,
1964), Sn 38% Pb (Avery & Backofen, 1965).

Superplasticity was later found in many metallic systems, e.g. Ni—Fe—
Cr alloys (Hayden et al., 1967) (see recent reviews by Edington et al., 1976,
Taplin et al., 1979; Padmanabhan & Davies, 1980).

It is, however, not enough for a material to possess a very low value of
strain-rate sensitivity to be effectively superplastic. If such were the case,
Newtonian diffusion creep, with m = 1, which is a stable deformation mode,
would always lead to superplasticity; it obviously does not, for the only
reason that the creep-rate is very low (it would take a year to obtain an
elongation of 1000%; at the creep-rate of 3 x 10™7/s typical of Nabarro—
Herring creep). Even before looking into the possible mechanisms for
superplasticity, we can predict that they will belong to the class of grain-
boundary sliding, possibly accommodated by diffusion creep, for only GBS
can provide the large strains needed, while local accommodation by
diffusion creep involves a shorter diffusion path than when diffusion creep is
the main strain-producing mechanism.

In the Earth Sciences community, one never deals with large elongation
of minerals and rocks but rather with deformation in simple shear or
compression; the criterion of stable deformation without necking is
therefore almost irrelevant; nevertheless, the word ‘superplasticity’ has
unfortunately been introduced to refer to diffusion-creep (or otherwise)
accommodated grain-boundary sliding, which indeed is at the origin of
superplasticity, when there is superplasticity. In that sense, ‘superplastic
flow’ has been experimentally demonstrated to occur in Carrara marble
deformed in compression (Schmid et al., 1977) and it has been inferred, on a
microstructural basis, in some mylonites (Boullier & Gueguen, 1975).

74.2  Characteristics of the superplastic regime
Any model of superplasticity or ‘superplastic flow’ must account,
at least partially, for the following features:

(1) The strain-rate sensitivity m is higher than for dislocation creep in the
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superplastic domain: 0.5 <m <0.7 instead of m~0.2 for dislocation creep.

Over the entire experimental range of strain-rates, the curve log ¢ against
log é is usually sigmoidal (fig. 7.8), the superplastic domain corresponds to
the part of the curve near the inflexion point where m=d log a/d log ¢ is
maximum, at lower strain-rates than the dislocation-creep domain. As the
value of m is an important clue to the existence of superplasticity,
experimental methods for determining it must be critically assessed
(Nuttall, 1971). There are two methods for determining m; by strain-rate
jump during a tensile test, or by plotting log ¢ against log ¢ for various
experiments at the same strain and taking the slope of curve. The two
methods usually do not yield the same value for m, except when strain-
hardening is zero (y=0, see §1.2.3) (Tonejc & Poirier, 1977).

(i) The logo—logé curve, hence the domain of superplasticity, is
displaced towards higher strain-rates as the grain size decreases (fig. 7.9). A
small grain size is therefore essential to obtain superplasticity for reason-
able strain-rates.

(i) The grains usually remain equiaxed, even after very large strains, i.e.
the elongation of the grains, if any, is much smaller than the total elongation
of the sample; there is usually no dislocation substructure inside the grains
and the latter preferred orientation is weak or absent. These observations
point to grain-boundary sliding as the main source of strain in the

Fig. 7.8. Superplastic regime. Log o—log € curve is sigmoidal (for a
given grain size). The high strain-rate sensitivity m in the region of the
inflexion point corresponds to superplasticity.
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superplastic regime. Grain-boundary sliding is indeed important and often
accompanied by rotation of the grains (Taplin et al., 1979): grains in the
process of switching neighbours have also been observed in situ in ZnAl
specimens deformed in a 1 MeV electron microscope (Naziri et al., 1973,
1975). Superplasticity has been obtained at room temperature in fine-
grained aluminium wetted by liquid gallium (Marya & Wyon, 1975): the
liquid gallium forms a low-melting-point eutectic layer at the grain
boundaries and allows easy GBS.

Most superplastic alloys are fine-grained two-phase eutectics with a
comparable volume fraction of each phase (microduplex texture); the role of
interfaces between phases must therefore be considered. It seems that the
essential function of the microduplex texture is to prevent the grain growth
of both phases. The topology and the connectivity of the phases are
obviously important factors, unfortunately little investigated; it must be
pointed out that they can only be known by a tedious method of serial
section of the samples (and not by simple inspection of a few micrographs):
the CdZn eutectic was investigated in this manner (Tonejc & Poirier, 1977);
it was found that the harder Zn-rich phase was unconnected despite its high
volume fraction (26%) and was present as spheroidal globules at fourfold
junctions, probably due to interfacial energy effects; the role of the
interfaces between phases was probably very small in this case.

It must also be noted that the presence of a second phase is not necessary
to superplasticity: for example, Gifkins (1976) found that solid-solution

Fig. 7.9. Superplasticity in Cd 25.6% Zn eutectic alloy (T'=210°C):

log a-log & curves for various grain sizes can be brought together by a
translation in the direction of line t. At constant stress, §ocd ™22, The
grain sizes in pum are 3, 7, 10 for curves 1, 2, 3 respectively (after
Tonejc & Poirier, 1977).
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alloys of lead and thallium (mainly Pb 2.5% TI) exhibited superplasticity;
the stability of the grain size was attributed to the confinement of activity to
the ‘mantle’ leaving the ‘core’ of the grains undeformed and inhibiting
recrystallization. Finally the activation energy of the strain-rate is often
smaller than the lattice self-diffusion activation energy (see Mohamed &
Langdon, 1976, for a discussion of the experimental methods for
obtaining Q).

743  Microscopic models

Many microscopic models of superplastic behaviour have been
proposed, which generally find some support in a somewhat wide spectrum
of experimental results on various materials, while never quite succeeding
in accounting for all observations. The major models have recently been
reviewed and discussed by Gifkins & Langdon (1978). We will focus here
only on those we find more interesting and fruitful in their approach.
Among these, the model of Ashby & Verrall (1973) holds a special place, for,
even though it has (correctly) been criticized over points of greater or lesser
importance, it has introduced a new approach, which later authors have
used and modified in their models.

Ashby & Verrall realized that it was impossible to account for the fact
that grains remained equiaxed after very large strains by uniform deforma-
tion, since the elongation of all grains should be equal to the total
elongation. This is obviously why we have to have grain-boundary sliding,
but here it was introduced in a new form: the basic unit of deformation is
thought to be a neighbour-switching event, as happens in the deformation of
an oil emulsion consisting of ‘grains’ of oil separated by very thin
boundaries of detergent. The change in configuration of a four-grain unit in
a two-dimensional model polycrystal, by grain-boundary sliding with
diffusional creep accommodation, provides a large strain without
appreciable deformation of the grains (fig. 7.10). The mechanical equation
of state is obtained by writing that the mechanical power fed into the system
by the applied stress is dissipated by four irreversible processes:

- diffusion of matter in the lattice and along the grain boundaries to
accommodate GBS locally (with much shorter diffusion paths
than in uniform diffusion creep).

— grain-boundary sliding itself, assumed to be Newtonian viscous
(the power dissipated by this process is found here to be quite
small),

— fluctuation of grain-boundary area, when the four-grain configura-
tion goes through the saddlepoint position (fig. 7.10). This term
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introduces a small threshold stress, below which deformation is
not possible. Although the existence of a threshold stress has been
controverted, it still seems the easiest way to account for the
decrease in m at very low strain-rates (sigmoidal o, £ curve). Burton
(1971) showed that, owing to the properties of the logarithmic plot
(=0 is removed at infinity), a threshold stress must result in a
sigmoidal curve (fig. 7.11).

- interface reactions, expressing the fact that grain boundaries are
not perfect sources and sinks for vacancies.

In the simpler case where the condition for interface reaction is relaxed
(perfect sources and sinks) the final equation takes the form:

Q 0.72I 336D
> é=100—(o——)o,,(1+ “’) (7.17)

kTd? d? dDy

where I' is the specific grain-boundary energy and all the other symbols
have their usual meaning. With the exception of the threshold stress, eq.
(7.17) looks very much like eq. (7.15) for GBS accommodated both by lattice
and grain-boundary diffusion.

The model gives a Newtonian viscosity (m = 1), which is indeed seldom
found in the superplastic domain: m is usually closer to 0.5 (¢oca?).
However, if one takes the interface reaction into account, the constitutive
equation has an asymptotic form in which éocg? This model has
successfully explained a number of experimental results (e.g. the low-stress
creep of fine-grained UO, (Chung & Davies, 1979)).

The major limitation of Ashby & Verrall's model is that it is two-
dimensional; the neighbour-switching event that is at the core of the model
obviously can take a different topological configuration in a real three-
dimensional crystal. Besides, the model conserves the area in two dimen-

Fig. 7.10. Neighbour-switching event in the superplastic regime: a
group of four grains suffers a 559 strain without deformation of the
grains, except locally in the intermediate state to accommodate grain-
boundary sliding (after Ashby & Verrall, 1973).

(O (A
P




210 Diffusion creep and superplasticity

sions (equivalent to conserving the volume in three dimensions), but this
property is not easily got rid of in extending the model to three dimensions
where the area is not conserved.

Gifkins (1978) proposed another grain-switching model which takes into
account the third dimension and made it the central element of a new model
that uses basically the same approach as a previous one (Gifkins, 1976). The
main points are the following.

Strain is always produced by GBS, but here, rather than assuming a

Fig. 7.11. The sigmoidal shape of the log s—log ¢ curve may be
spurious and due to the removal of £=0 to infinity in the logarithmic
scale (a). Plotting on a linear scale makes a threshold stress apparent
(b). Data for Pb-Sn eutectic at RT (after Burton, 1971).
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Newtonian viscosity, Gifkins considers the motion of grain-boundary
dislocations as the agent of GBS. The sliding produces stress concentration
at the triple edges, which gives rise to a 6* dependence of the strain-rate,
Accommodation of GBS in the superplastic domain takes place in the
‘mantle’ of the grains by grain-boundary dislocations dissociating into
crystal dislocations and then gliding and climbing. This flow in the mantle
of width ~0.07d allows grains to rotate. At the same time, grains move in
the third dimension so that a grain may appear from above or below at the
centre of a four-grain unit (fig. 7.12), as observed by Naziri et al. (1973, 1975).

Fig. 7.12. Elongation by grain-boundary sliding and accommodation
by emergence of grains from one layer to the next. A gap forms
between four grains and is filled by an emerging grain (after Gifkins,
1978).

Fig. 7.13. Effect of a mixture of grain sizes on superplastic flow:

log 6-log € curves calculated for two grain-size distributions (insert).
Circles correspond to the experimental data for Ti 6% Al 4%, V alloy
(after Ghosh & Raj, 1981), T=1200 K.

Stress (MPa)

2 8131529

0.1F

i L L i
1073 0~ 1073 1072
Strain rate (s™')




212 Diffusion creep and superplasticity

The resulting equation has the form:
. 64QD,,0*
S
ukTd

All models usually consider a unique grain size d, an obviously unrealistic
assumption. Ghosh & Raj (1981) investigated the consequences of the
existence of a distribution of grain sizes. However, they started from simple
assumptions on the flow mechanism, ignoring grain-boundary sliding and
using for the ¢—€ curve an equation that simply combines the contributions
of Coble creep and power-law creep. Also, they assumed that the average
strain-rate of each grain was the same as the imposed strain-rate. Despite
the inappropriateness of these assumptions to the superplastic domain, the
model has some merit in showing the influence of a grain-size distribution.
Assuming a mixture of grain sizes with a predominance of larger grains,
they find that the transition region between power-law creep and diffusion
creep is spread over a much larger interval of strain rates than with a unique
grain size. They find a good agreement with experiments on a Ti 69, Al 4%,
V alloy (fig. 7.13) (which incidentally shows that the assumptions on the
mechanisms taking place in the superplastic domain are often not critical
for the fitting of a theoretical curve to experimental results).

(7.18)
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Transformation plasticity

Transformation plasticity is a weakening of the mechanical properties
of a polycrystal while it is undergoing a phase transformation. It must
be distinguished from other processes linked to phase transitions, like
the so-called ‘Transformation-Induced Plasticity’ which makes steels
tougher.

After a brief review of the thermodynamics and kinetics of phase
transformations, the experimental evidence for transformation
plasticity in metals and ceramics is presented. The macroscopic model
of Greenwood & Johnson, inspired from ‘yielding creep’ models, is
reviewed: it considers that the internal stresses caused by the volume
change of grains overcome the yield strength of the solid and make it
flow under small stresses. Microscopic models are presented, in which
the internal stress is relaxed by dislocations that move under the
applied stress.

81 Introduction

We will define transformation plasticity as a weakening of the
mechanical properties of polycrystal, while it is undergoing a phase
transformation. The manifestations of transformation plasticity are:

(i} anenhanced creep-rate, above the thermal creep-rate, in the case of
creep at constant stress.
(ii) a stress drop, in the case of constant strain-rate tests.

These manifestations cease when the phase transformation is over.
Transformation plasticity, therefore, has nothing to do with the change in
mechanical properties consecutive to a phase transition (e.g. the creep-rate
of a-Fe changes to the creep-rate of y-Fe after the «—y transformation is
completed); it is really a manifestation of the interaction between phase
transformations and plastic deformation.

The definition we have given also excludes an important but very
different phenomenon: Transformation-Induced Plasticity (TRIP), which
is at the basis of the interesting properties of the TRIP steels (Zackay et al.,
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1967). Low-alloy steels (generally close to a composition Fe 9 wt.%, Cr 8%,
Ni 4% Mo 2% Mn 29 Si 0.25% C) are usually quenched, tempered and
heat-treated to achieve higher tensile strengths, but the improvement in
tensile strength is accompanied by a deterioration of the ductility, i.e.
necking occurs at low strains causing early failure in tension by plastic
instability. The instability appears because the strain-hardening coefficient
is not high enough (see § 1.3). The idea of Zackay & Parker was to introduce
strong barriers (stronger than dislocation tangles) to dislocation motion.
The quenched and tempered austenitic alloy are thermodynamically
metastable and straining favours the formation of martensite; strain-
induced martensite plates act as the desired strong barriers, the strain-
hardening coefficient goes up and elongations at rupture can reach 25%.
The treatment conducive to martensite formation must be applied during
straining, as it is the strain-hardening coefficient that must be raised.

It is therefore clear that the increase in ductility at no point involves a
lowering of the flow stress; on the contrary, the idea of TRIP is to have at
the same time a high strength and a high strain-hardening.

The transformation plasticity that constitutes the subject of the present
chapter is sometimes also called by the unwieldy name, ‘transformational
superplasticity’; it was first described by Sauveur (1924) in iron bars
submitted to torsion tests in a temperature gradient: twisting was
concentrated in the portions of the bar where the a—y transition occurred;
Sauveur clearly stated that it seemed likely to him that ‘when iron
undergoes its alpha-gamma transformation, it acquires a temporary
plasticity, which greatly exceeds the plasticity of gamma iron at consider-
ably higher temperatures’. Wassermann {1937) noticed transformation
plasticity in Fe 30° Ni austenitic steels during martensite formation. The
Soviet workers after Bochvar (see Presnyakov & Chervyakova, 1959)
investigated Al-Zn and Al-Cu alloys during the entectoid precipitation;
they coined the work ‘superplasticity’ for the effect they noticed and which
they explained by a ‘vigorous transfer of atoms by diffusion accompanying
the process of precipitation’. As the phase transition also produces a fine-
grained texture leading to structural superplasticity, it is not clear that they
observed a real transformation-plasticity effect, although there most likely
is one.

Greenwood & Johnson (1965) proposed a mechanical explanation for
transformation plasticity, which accounted for the experimental results, but
did not propose any microscopic mechanism.

The interest in transformation plasticity was never very active in the
metallurgical community, but the Earth Sciences community has recently
realized that the conjunction of phase transformations and high-
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temperature deformation in the tectonically active regions of the crust and
in the mantle could make transformation plasticity a relevant mechanism
(e.g. Gordon, 1971 ; Sammis & Dein, 1974 ; Parmentier, 1981 ; Poirier, 1982).

In the next section we will provide a short review of the concepts of phase
transformations and kinetics, useful for our purpose; we will then proceed
to review the experimental results and the models.

8.2 A short summary of thermodynamics and kinetics of phase
transformations

821 Equilibrium thermodynamics

We will limit ourselves in this summary to polymorphic (or
allotropic) phase transformations, i.e. those that involve only one com-
ponent, which (in the simplest case) can change from one crystalline
structure to another. In the pressure—temperature plane one can define the
domains of stability of each phase, in which the free energy G is minimal for
the stable phase.

The domains of each phase are separated by an equilibrium boundary,
locus of the points in the P, T plane for which the free energies of both
phases are equal. It must be kept in mind that the strain energy stored in a
crystal as dislocations has to be taken into account in the calculation of the
free energy as it will alter the equilibrium curve: thus a phase « more stable
than § in given P, T conditions in the undeformed state can become less
stable (higher G) if it is deformed. There are many, altogether arbitrary,
schemes of classification of transformations (Roy, 1973; Rao & Rao, 1978);
we will mention here only the concept of order of a transition due to
Ehrenfest. For first-order transitions, there is a discontinuity in the first
derivatives of the free energy — the entropy S and the specific volume V:

oG
ﬁ)f‘s

G
ﬁ),""

For second-order transitions, only the second derivatives of G present a
discontinuity. As we will see below, the transitions involved in transforma-
tion plasticity and, indeed, most of the important transitions, are first-order
and are therefore characterized by a volume change AV and a latent heat
L=TAS.

At equilibrium AG=0, it follows that the slope of the boundary in the
P, Tplanes is given by the Clausius—Clapeyron rule:
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dP _AS
dT AV
First-order transitions can be effected by nucleation and growth of the
product phase, controlled by diffusion or by propagation of the interface by
motion of dislocations. The latter mechanism is particularly relevant to
phase transformations involving a change in the stacking of ions, from
hexagonal close-packed (ABABA) to cubic close-packed (ABCABC) and
vice versa; it has been observed for the e—f cobalt transition or the wiirtzite—
sphalerite (ZnS) transition and it is perhaps active in many close-packed
systems, given suitable P, T conditions (e.g. olivine-spinel; Poirier, 1981).
Martensitic transformations are shear, diffusionless transformations,
characterized by crystallographic orientation relations between parent and
daughter phase and by the rapidity of the transformation. They usually are
athermal and shear-stress- or strain-sensitive.

822 Kinetics
Thermally activated transformations proceed at a certain reaction

rate when the system is maintained at constant P and T. The reaction rate
d X/dtis defined as the derivative with respect to time of the volume fraction
of transformed phase X = V};/V;,, where ¥} is the volume of the transformed
phase at time ¢t and ¥, the initial volume of the parent phase.

The kinetics of the isothermal reaction is known when one knows X (¢),
the expression of the volume fraction as a function of time; it is given as a
solution of a differential equation which can take two essential forms:

dx
d—£=K(T}[1—Xte)J (8.1)

The right-hand side of the equation is linear in X ; the reaction is said to
be first-order (nothing to do with the order of the transformation). If

i—f:mr)xu}[l - X(t)] 8.2)

the reaction is said to be second-order. (The right-hand side is of the second
degree in X.) K(T) is the reaction constant.

For a first-order reaction (corresponding to the exhaustion of nucleation
sites or to unidimensional growth of one phase as in the thickening of
plates), integration of (8.1) yields:

X(t)y=1—exp(—Ki) (8.3)
The reaction-rate constant K (T') has the dimension of ¢ ~*. It is useful to

define a characteristic time for the reaction t=1/K(T) (fig. 8.1).
In many cases, however, the reaction is more rapid than first-order and
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can be empirically represented by:

dx

I=1<:u'*)[(1 - X)) 8.4)
and

X(t)=1—exp[-K(T)"] (8.5)

with n=m + 1. For the first-order reaction we had m=0and n=1. It must
emphatically be said that n in (8.5) is not the order of the reaction, even
though n=1 for a first-order reaction,

The kinetic equation (8.5) is said to be of the Avrami—~Johnson—Mehl type
(fig. 8.2). Different values of n correspond to different conditions of
nucleation and growth.

Fig. 8.1. First-order reaction kinetics. Volume fraction of transformed
phase plotted against time. 7 is the characteristic time. X =

1—exp(—t/7).

X
|

0.63

= [

Fig. 8.2. Avrami kinetics. X =1—exp(—t/7)". For small ¢ (dilute
transformed phase), X oc t* (dashed curve).

X
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We will only consider here the elementary principles of the calculation of
the volume fraction of transformed phase by nucleation and growth, when
the transformed phase is still dilute (i.e. at the beginning of the trans-
formation).

Let «and f be the transforming and transformed phase respectively ; for «
to transform to f, the P, T'conditions must plot in the stability domain of
phase, i.e. the free-energy variation between f and «: Ag,, (per unit volume),
must be negative. Agg, can easily be calculated, knowing P, T and the values
of AV and AS for the transformation:

Ags,=AV(P—P)=AS(T,—T) (8.6)

where P, and T, are the equilibrium pressure and temperature forconstant 7'
and constant P respectively (fig. 8.3). The formation of an embryo of phase
in a is accompanied by a decrease of free energy owing to the formation of a
volume of B but also by an increase due to the formation of an «—f interface
with specific energy y. For a spherical embryo of radius r, the total free
energy of the system varies by:

AG=Ag;, 4nr® +4nrty 8.7
The critical radius above which the embryo can spontaneously grow and

become a nucleus is the value for which the incremental variation in volume
free energy is compensated by the variation in surface energy (fig. 8.4)

2y
Ag P

(8.8)

ro=

Fig. 8.3. Clapeyron curve in the P, T plane between equilibrium fields
for phases o and P. It is possible to define an equilibrium pressure at
T, P.(T), and an equilibrium temperature at P, T,(P), for
transformation paths leading to A(P, T).

P
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(For heterogeneous nucleation, on a dislocation or grain boundary for

instance, eq. (8.7) should include an extra negative term representing the

energy of the portion of defect suppressed by the presence of the nucleus.)
The energy barrier for nucleation is the value of AG for r=r,

3
"3 Agg,
and the nucleation rate (number of nuclei formed by unit time and unit
volume) for homogeneous nucleation is:

I=Nyv, cxp(—if) (8.10)

As Ag¥oc 1/Agy,, the nucleation rate is higher far from the Clapeyron than
close to it. The growth of the nucleus by dr causes the free energy of the
system to decrease by:

(8.9)

Ag*=§;AG-dr 8.11)

Fig. 8.4. Free energy against radius for a growing spherical domain of
transforming phase. Below the critical radius r, the embryo is not
stable. Above r. the embryo becomes a nucleus that can
spontaneously grow, lowering AG for the system. Ag¥ is the nucleation
free-energy barrier.

AG

A

AG = r?
I}

Embryo Growing nucleus
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If there is an interface energy barrier to growth Agg, the growth rate by
thermally activated fluctuations is:

_dr AR —exp (-2
R—d‘ocexp( kT)[l exp( kT)]

or, if Ag*/kT<1
* *
Rocti,r exp(—?{i?f) (8.12)

For uniform nucleation, the number of nuclei formed during time dz is
proportional to the untransformed volume V,, to the nucleation rate I and
to dr; the transformed volume at time ¢ resulting from the growth of all
nuclei formed at times 7 <t is therefore:

=
%=f $n[R(t—1)]PIV, dr (8.13)
=0
For a dilute system V; < V,, hence V,~ ¥, and for I =const.:

x=T2_T [r3p (8.14)
Vo 3

The non-dilute case is more complicated, owing to the impingement of
growing nuclei; in the general case, the Avrami equation can be
theoretically justified and the exponent n depends on the geometry of
growth; for a triaxial growth (spheres) as seen above, n=4, for uniaxial
growth (needles, or thickening plates), n= 2. If the nucleation rate decreases
with time, n can take lower values. Finally, for grain-boundary nucleation it
is possible to tend towards first-order reactions, if the plates of § thicken at
grain boundaries (Cahn, 1956). The kinetics of a transformation is
conveniently expressed by Time—Temperature—Transformation (TTT) plots
(see Putnis & McConnell, 1980), sections of the surface X (T, log t) by X =
const planes.

For instance, in the case of a transformation from a high Ttoa low T
phase obtained by cooling the system, the nucleation will become easier and
easier as the system is driven far from the equilibrium boundary, whereas
growth will be easier at the highest temperature close to the equilibrium
boundary. The TTT plots (fig. 8.5) show clearly that there is an incubation
time before the transformation becomes noticeable and that it becomes
infinite at the Clapeyron (no nucleation) and at too low temperatures (no
growth).

For athermal transformations like martensitic transformations (e.g. in
steels) the amount of transformed phase does not depend on time but only
on the temperature at which the system is cooled (fig. 8.6).

Finally, the case of non-isothermal transformation kinetics must be
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mentioned since it is, in fact, the current case in transformation plasticity: in
the general Avrami equation (8.5) the reaction rate is temperature-
dependent; now, if the temperature varies with time, so will the reaction
rate, and the differential equation (8.4) cannot be integrated as simply.
For a constant heating rate T, the temperature corresponding to the

Fig. 8.5. Time-Temperature-Transformation curve for a nucleation
and growth isothermal transformation. The transformation (for
cooling) takes place between the curve X =¢ (vanishingly small
quantity of transformed phase) and X =1 (complete transformation).
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Fig. 8.6. Time-Temperature-Transformation curve for a martensitic
transformation, The amount of transformed phase depends only on
the final temperature (between M, and M,) and does not depend on

time.
T
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maximum reaction rate can be calculated for a first-order reaction (Meisel
& Cote, 1983).

83 Experimental evidence for transformation plasticity

After the first results of Sauveur (1924), the transformation
plasticity of iron and austenitic steels at the a—y or martensitic transition
was investigated by de Jong & Rithenau (1959, 1961), Oelschlagel & Weiss
(1966) and Kot & Weiss (1970) in particular. Greenwood and Johnson
(1965) carried out experiments on several metals (Zr, Ti, Co, U, Fe-C); the
specimens were in either sheet or rod form, they were stressed by dead-
weight loading (tensile creep) and the temperature was cycled about the
transition temperature; the elongation was not measured continuously but
the overall length change after a complete cycle was measured and
converted to strain per cycle. In all cases the strain per complete two-way
cycle (heating and cooling) was found to be proportional to the stress in the
range of low stresses (the thermal creep was negligible); at higher stresses
there was a deviation from linearity, probably corresponding to the
appearance of noticeable thermal creep. These experiments were used in
support of the model proposed by Greenwood and Johnson (see below).
More recently the transformation plasticity of titanium at the o—pf
transition was studied by Chaix & Lasalmonie (1981); the specimens were
subjected to creep in compression at a temperature below the transition
point, the temperature was then increased and the strain measured
continuously (fig. 8.7). The strain per half-cycle (heating or cooling),
connected to the normal thermal creep strain of both phases, was found to
be proportional to the applied stress and independent of grain size and of
the heating rate (fig. 8.8); the results are in good agreement with the theory
of Greenwood & Johnson. However, the internal stress calculated is slightly
smaller than the yield stress of the weaker phase, which suggests that
thermally activated creep is active in the process of transformation
plasticity. Zamora & Poirier (1983) investigated the transformation
plasticity of cobalt at the &-f transition (417 °C) at constant strain-rate in
compression. The stress—strain curve exhibits a stress drop (softening) much
larger than that expected from thermal softening (fig. 8.9). The ratio of the
stress drop to the stress expected if there were no phase transition is Ac/o =
0.40 independent of the heating rate.

With the exception of one experiment on quartz at the «—f transition in
three-point bending (Chaklader, 1963), the only experiments on non-metals
were made on CsCl (Sammis & Dein, 1974) with only qualitative results,
and oxides: Bi,O; (Johnson et al., 1975), Bi, WO, and Bi,MoOg (Winger et
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al., 1980) and the eutectoid system Bi,O3;—Sm,0; (Smyth et al., 1975). The
case of Bi, WOy and Bi, MoOj is especially interesting since the specimens
(tested in compression creep) exhibited a strain per cycle, linearly dependent
on ¢, but inversely dependent on grain size (fig. 8.10); heating through the
transition at high stresses produced large strains. The strain is therefore
produced by a time-dependent, grain-size-sensitive creep mechanism (as in
the case of Bi,O3, Johnson et al., 1975) which is thought to be grain-
boundary sliding. As the strain is continuously measured, the maximum
strain-rate is known and the strain-rate sensitivity m can be determined; its
high value (m=0.85) confirms that the active mechanism is grain-boundary
sliding and that we have here a real case of transformation superplasticity,
governed by the internal stresses produced during the transition (see below)
and different from structural superplasticity of a fine-grained eutectic
produced by the transition; here the superplasticity occurs while the
transition is in progress.

84 Macroscopic and microscopic models

Greenwood & Johnson (1965) proposed a general macroscopic
model for transformation plasticity based on purely mechanical concepts:
in a polycrystal undergoing a phase change of the first order, the grains that
transform suffer a volume change AV, this creates internal stresses between

Fig. 8.7. Enhanced creep during a—f phase transformation in titanium.
The creep curve was recorded while temperature was increasing. ey is

the permanent strain corresponding to transformation plasticity (after
Chaix & Lasalmonie, 1981).
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Fig. 8.8. Strain per half-cycle for titanium as a function of stress. Top:
o—f (heating). Bottom: f—u (cooling) (after Chaix & Lasalmonie,
1981).
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Fig. 8.9. Stress drop during &-f phase transformation in cobalt. The
stress—strain curve was recorded while temperature was increasing at a
rate T'=2°C/min (straight line) (¢=2 x 10~%/s). The dashed curve
represents the calculated stress—strain curve as it would be if there
were no phase transformation and only a temperature increase (after
Zamora & Poirier, 1983).
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Fig. 8.10. Transformation plasticity in Bi, WO,. (a) Strain per cycle as
a function of stress for two grain sizes. (b) Strain-rate sensitivity m for
3 pm grain size (after Winger et al., 1980).
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grains, when they reach the value of the yield stress (elastic limit) of the
weaker phase the polycrystal behaves as though its elastic limit were
vanishingly small and gives way plastically to an externally applied stress
that would be too small to cause appreciable thermal creep. The applied
stress merely guides the deformation, so that the strain corresponding to
both senses of the transition (x— f or f— a)is always of the same sign. This
idea was first proposed by Roberts & Cottrell (1956) to account for the
remarkable behaviour of x-uranium which, under neutron irradiation, at
100 °C, creeps at a rate of about 3 x 10~ */s under stresses one hundredth of
the normal yield stress of uranium at that temperature. Roberts & Cottrell
related this phenomenon to the well-known ‘radiation growth’ that takes
place in uranium: stress-free single crystals when neutron irradiated
lengthen in one direction and shrink in another as a consequence of the
anisotropic nucleation and growth of dislocation loops caused by the
collapse of irradiation-generated point-defect clusters.! They recognized
that the anisotropic growth of neighbouring grains created internal stresses
large enough to bring the grains to the point of plastic yielding. Later,
Cottrell (1964, p. 338) generalized this approach to other cases, when an
anisotropic deformation of the grains induced by non-mechanical causes
(like, for instance, thermal expansion) creates internal stresses (in the case of
thermal expansion, one needs to cycle the temperature to regenerate the
internal stresses). He stated that ‘under a small externally applied stress,
such a material behaves like a Newtonian fluid, whatever its intrinsic plastic
properties, because its yield strength has already been overcome by the
stresses’. This is known as ‘yielding creep’. Greenwood & Johnson used this
approach for the case of a rigid ideal plastic material undergoing a phase
transition under a small tensile stress. They calculated the accommodation
strain due to AV/V in the direction of the applied stress using the linear
Levy—von Mises relation of the macroscopic theory of plasticity (linking the
increment of strain to the stress deviator). They find the strain per cycle:

g== — — 8.15)

where AV/V is the volume change at the transformation and Y the yield
strength of the weaker phase. The model of Greenwood & Johnson
considers only the volume change (and not the shape change) at the
transformation and it is time-independent since it uses the theory of
plasticity. The model generally agrees quite well with the experiments
whenever the overall strain per cycle is considered, but, being time-

1 Incidentally, irradiation creep occurring in the stainless steel cladding of nuclear

fuel pins also involves the nucleation and growth of anisotropic populations of
dislocation loops (see Caillard er al., 1980).
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independent, it obviously is inadequate to account for the creep-rate
enhancement during the phase transition. Kot & Weiss (1970) proposed a
microscopic model in which they consider that the internal stress o due to
the transformation is added to the applied stress and drives the dislocations
faster; assuming a dependence of the dislocation velocity on stress of the

form:
V=0, EXp =
# g

the resulting creep-rate is

) (8.16)

If ¢ < o the expression can be linearized in 6. Kot & Weiss finally find an
expression for the strain per cycle similar to that of Greenwood & Johnson,

In opposition to these models in which the internal stress is unrelaxed
and does not relax during creep, Poirier (1982) proposed a microscopic
model where the total transformation strain (shape and volume change) is
relaxed and accommodated by an extra density of dislocations which can
then move under the applied stress and create an extra creep-rate. The
model need not assume that the thermal creep is small, and it takes into
account the kinetics of the phase transition. For the simple case considered
by Greenwood & Johnson (zero thermal creep and transformation strain
purely dilatational) the transformation creep rate reduces to:

s'=cA7VaX(1—X) (8.17)

£=pbv, exp (_o o

where X (¢} is the volume fraction of transformed phase. For a first-order
kinetics, the strain per half-cycle can be calculated by integration:
_Cc AV
£E= —ZE 7 T

The expression (8.18) is linear in ¢ and AV/V like the one found by
Greenwood & Johnson, but it also depends on the reaction rate K (7).

Paterson (1983) improved this model by taking recovery into account,
thus introducing a lifetime for the extra dislocations created to accommo-
date the internal stresses. The resulting creep-rate thus depends on the
kinetics of phase transformation (creation of dislocations), the kinetics of
deformation (motion of dislocations) and the kinetics of recovery
(annihilation of dislocations). Finally, extra dislocations may also be
produced as a consequence of the frequently observed drop in shear
modulus just before a phase transition. As the critical length for the
activation of a Frank-Read source varies as /o, a drop in modulus may

(8.18)
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cause shorter dislocation segments to act as sources under the same stress,
thus increasing the dislocation density and causing an extra creep-rate
(Poirier, 1982).

Readings

A. Putnis & J. D. C. McConnell, Principles of mineral behaviour, Elsevier, New
York (1980), 257 pp. A very good review of the thermodynamics and
kinetics of phase transformations and application to minerals,

C. N. R. Rao & K. J. Rao, Phase transitions in solids, McGraw-Hill (1978),
330 pp. A clear and complete textbook on all phase transitions in
solids.
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Scaling and classification

After examining the various high-temperature deformation
mechanisms in the preceding chapters, it is proper to step back and
take a look at all the possible deformation mechanisms for a given
material according to mechanical criteria. This is a considerable job,
but it has recently been done for us in a book by Frost & Ashby
(1982). Our last chapter will therefore be nothing more than a sketchy
summary of the subject matter of their book.

9.1  Scaling

Prior to any attempt to compare and classify objects or
behaviours, one must make sure to compare only comparable quantities.
We have already seen that a temperature of 100°C has not the same
meaning for indium, which melts at 157 °C, and magnesium oxide, which
melts at 2852 °C. It follows that the comparison of the deformation behaviour
of materials can only be made on the basis of properly scaled, dimensionless
quantities (hydrodynamicists proceed in the same way).

The obvious and widely used normalizing parameters for temperature
and stress are the absolute melting temperature and some elastic modulus
(preferably p), so that the dimensionless parameters are T/T, and o/u.
However, this choice is not the only one and it may not even be the best
(Frost & Ashby, 1982): energies per molar volume have the dimension of
stresses, and energies over the Boltzmann constant k have the dimension of
temperature. The criterion for a good scaling parameter is the possibility of
shrinking the cloud of data points onto a single curve with a minimum
scatter. Then the best scaling parameter for temperature is uQ/k and the
best one for stresses is the cohesive energy per molar volume AH,/Q.
However, for practical purposes T, and u are more convenient, Strain rates
can be normalized using Dy, /Q*/°, where Dy, is the diffusion coefficient at
the melting temperature. It is interesting to attempt a classification of
various materials according to their mechanical properties. Frost & Ashby
define isomechanical groups: ‘The members of a group are mechanically



230

(a)

(b)

Scaling and classification

Fig. 9.1. Isomechanical groups. (a) Materials classed according to the
value of dimensionless parameter Q,/RT,, (Q, =activation energy for
volume diffusion, T, =melting point in degrees K). (b} Materials
classed according to the value of dimensionless parameter uQ/kT,,. 1,
shear modulus at RT, Q atomic or molar volume. T, melting point in
degrees K (Frost & Ashby, 1982).
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similar and by proper scaling, their mechanical properties can be brought
more or less into coincidence. The same scaling separates and distinguishes
this group from other groups’.

Good dimensionless material properties used to identify the isomechan-
ical groups are uQ/kT,, (fig. 9.1) and Q,/RT,, where Q, is the activation
energy for volume diffusion.

In this way the division into groups takes into account not only the
structure but also the bonding: crystals with the rock-salt structure, for
instance, can be divided into four groups: alkali halides (NaCl, LiF, AgCl,
...), simple oxides (MgO, FeO, ...), lead sulphide (PbS, PbTe,...), metal
carbides (TiC, VC,. . .). The notion of isomechanical group is of the highest
relevance for geophysics: since most of the mantle materials (except olivine)
are high-pressure materials synthesized in very small quantities, the only

Fig. 9.2. Deformation-mechanism maps for various materials — grain
size 100 um. (a) Pure iron. (b) Pure silicon. (c) MgO. (d) Ice I, (Frost
& Ashby, 1982).
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way, so far, to obtain some information on their viscosity is to investigate
analogue materials, chosen on the basis of a common structure (which
ensures that dislocations can be described in the same way) and, if possible,
with the same chemical bonding. The information one can obtain in this
manner can obviously be extrapolated to the actual material with a higher
degree of confidence if the relations between isomechanical groups are
better known. For instance, the high-temperature behaviour of the crystals
with perovskite structure is still unknown except for preliminary experi-
ments on KZnF, (Poirier et al., 1983); fluoride perovskites presumably
form an isomechanical group, and so do, presumably, the oxide perovskites
(BaTiO3, MgSiOj, .. ) but are these groups related in the same way as the
groups for crystals with fluorite structure (CaF,, BaF,, ThO,, Ca0,)?

Fig. 9.2(b) TEMPERATURE (°C)
0 200 600 1000 1400
"' —+ t t e t } }
|
|_mavsmon toeruc e | o~ 51O
(FOR UNIAXIAL COMPRESSION) d =100 pmw

|
PLASTICITY N\paRTaLs

MICROHARDNESS

%4

6-5
3 B
% k

TENSILE FRACTURE
SINGLE CRYSTALS

Hm e — = T — T

SHEAR STRESS AT 20 °C (MN/m?2)

NORMALISED SHEAR STRESS,

"“A CRYSTALS
1o \
e | b _| N
L \DIFFUSIONAL FLOW \
© MYSHLYAEV ET AL (1969]) l
X SYLWESTROWICZ (1962) '
+ TREFILOV AND MILMAN (1 '
ol LO.1
1o o Ty

0.2 0.4 0-6 0.8
HOMOLOGOUS TEMPERATURE, %M



Deformation maps 233
92 Deformation maps

The mechanical behaviour of each material of a group must then
be characterized for all the possible physical conditions; the information
can be condensed in deformation-mechanism maps first proposed by Ashby
(1972). The idea consists in describing the mechanical behaviour of the
material in terms of constitutive equations fitted to experimental data and
representing the equations by a surface in a multidimensional-variable
space:

f& 6, TP, po,,..)=0 9.1)

Any variable can be singled out to be expressed as a function of the
others,

The surface is constituted of several portions, each corresponding to a
dominant mechanism (e.g. giving the highest £) and separated by ‘curves’
determined by equating two constitutive laws. The surfaces can be
conveniently projected on any one of the coordinate planes, and contoured
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for definite values of another variable, to give deformarion maps. The most
common choice is to use projections on the plane of normalized tempera-
ture and stress (T/T,, o/u) with strain-rate contours. All the other
parameters have to be kept constant (grain size for instance). Grain size d
can be used in deformation maps, but only if it is an independent variable.
Examples of deformation maps for materials of various isomechanical
groups are given in fig. 9.2 (Frost & Ashby, 1982).

Deformation maps are extremely useful as a means to obtain synthetic
information on the overall mechanical behaviour of a material (including
low-temperature deformation or fracture), as a guide for extrapolation, for
instance to geophysical conditions. However, as pointed out by Frost &
Ashby, it must be recognized that ‘the maps are no better (and no worse)
than the equations and data used to construct them’. Caution must
therefore be exerted in extrapolating towards domains where absolutely no
experimental data exist.
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The present book could therefore end with a plea to experimentalists in
materials science to publish their data in an untreated form, so that more
reliable deformation maps for more materials can be constructed, as
physical models and constitutive laws are perfected.

Readings

H. J. Frost & M. F. Ashby, Deformation-mechanism maps, Pergamon Press
(1982), 166 pp. Obviously!
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creep curves, 19
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expansion due to dislocations, 152
grain-boundary migration, 68, 69, 177
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stacking fault, 156
stress-strain curve, 99
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Ni TD (thoria dispersed), 178
Ni Fe Cr alloys, 205
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olivine (MgFe),Si0,, 83, 125, 126,
140, 149, 190, 216, 231
activation volume, 161
creep, 84, 136-9
decoration, 170, 173
palaeopiezometers, 191, 192

polygonization, 171, 173, 174, 176, 177
recrystallization, 75, 181, 185, 189, 191

Pb, 9, 18, 51, 161

Pb In alloys, 121

Pb Sn alloys, 210

Pb 2.5% TI, 208

periclase, see MgO
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rutile TiO,, 9, 176

sapphire, see alumina

Si, 9, 98, 100, 142, 163, 232
Sn, 18, 161
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spinel, 126, 127, 148, 173, 174
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creep of MgO 1.8% Al,O,, 14, 130, 132

dissociation of dislocations, 130-2
steels, 28, 220
austenitic, 214, 222
martensitic, 154
TRIP 213, 214
silicon, 14
Ti, 2224
Ti 6% AL 4% V, 211
tale, 16, 59, 157, 185

U, 222, 226
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wiistite FeO, 48
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Zn Al alloys, 207
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absolute reaction-rate theory, 85, 86, 103
activation area, 90-2, 104, 106, 107
activation energy

creep, 77, 89, 91, 104, 111-14

cross-slip, 98

diffusion, 111, 112, 231
activation enthalpy

creep, 91, 95,97

diffusion, 42, 43, 50
activation volume

creep, 90, 111, 159-65

diffusion, 42, 43, 111
adiabatic heating, 37
alkali halides, 45, 98, 153, 231
Andrade’s law, 28
anharmonicity, 9, 151, 159
anisotropy

elastic, 9, 10, 70, 151

growth, 226
Arrhenius plot, 47, 77-80, 91, 111-14, 143
athermal processes, 87, 153, 220
Avrami kinetics, 217, 220-2

BCC metals, 57, 95, 101, 107, 138
Bailey-Orowan equation, 103-9
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bending of slip planes, 25, 26, 173
Berg-Barrett technique, 170, 174
Bernal-Fowler rules, 140, 141
Bingham solid, 6, 10, 13, 201
Bjerrum defects, 140, 141
Bridgman’s anvils, 24

bulk modulus, 8, 9, 147, 165
Burgers vector, 51, 52, 125

CSL {Coincidence Site Lattice), 64
catastrophe, 73

Clapeyron’s equation, 163, 215, 218, 219
climb, 58-62, 63, 109, 112

climb dissociation, 126-36

Coble creep, 191, 200, 201, 212
compression tests, 16, 19, 23, 24, 32
Considére’s criterion, 32, 35, 36
constitutive equation, 5, 6, &, 11, 13, 25-7
convection, 148-50

Cottrell atmosphere, 119, 123
creep
glide-controlled, 95, 101-3, 158
irradiation, 226
minimum, 29, 32
primary, 27, 104, 117, 170, 173
recovery-controlled, 95, 96, 101-17, 158
cross-slip-controlled, 83, 84, 96, 98, 100,
102, 112, 115
steady-state, 18, 27, 29, 30, 32, 63, 76-93,
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tertiary, 28
viscous glide, 119
yielding, 226
zero, 93, 105, 200
critical resolved shear stress (CRSS), 13, 20
cross-slip, 58, 61, 95-101, 138, 155, 161

DSCL (Displacement Shift Complete
Lattice), 64, 67
Deborah number, 11, 13
decoration, 170, 173, 192
deformation mechanism maps, 231-5
deltahedra, 67
diffusion, 40-50
in alloys, 118, 119, 123, 124
grain-boundary, 50
in ionic crystals, 45-9
pipe. 50, 113, 201
and power-law creep, 111-14
diffusion creep, 83, 114, 189, 194-204, 205,
212
dilatation, 5, 152, 154, 156, 164
dislocation core, 52, 56-8. 95, 102, 140, 154
dislocation density, 52, 63, 70, 108, 110,
176, 182, 191
dislocation walls, see subgrain boundaries
dislocations, 39, 51-63
geometrically necessary, 172, 194
grain-boundary, 64, 211
splitting of, 56-8, 126-36, 138
volume expansion due to, 151, 152
Dorn’s equation, 84, 85, 91

Earth, 9, 140, 145-8, 168
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196, 215, 231
elastic constants, 8, 9
elastic limit, 38, 101, 226
elasticity, 5-10
electrical conductivity, 46, 47
equation of state, 25, 29-33, 39, 62, 77, 78
etch pits, 170, 172, 173, 178, 181

FCC crystals, 57, 60, 67, 68, 95, 97, 98
Fick’s law, 43, 49, 60, 196
force-distance diagram, 86-9
Frank-Read sources, 54, 55, 152, 227

grain boundary, 18, 39, 63-73, 180, 209
see also diffusion, dislocations

grain ‘core & mantle’ structure, 173, 183,
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grain growth, 75

grain size, 185-8, 189, 190, 192, 200-2, 206,
207, 211, 212, 225, 234

Griggs’ apparatus, 16

HCP metals, 95, 102, 134
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98, 99, 135, 152, 153, 206, 214
see also strain hardening rate
hardness, 31, 33
of machine, 21, 23
Harper-Dorn creep, 114-17
Hooke’s law, 6,9

impression creep, 17

impurities, 46, 71, 182
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Kelvin—Voigt body, 11

Keyes’ model, 163-165
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lubrication, 24, 173

martensite, 214

martensitic transformation, 216, 220, 221
Maxwell body, 11

mechanical tests, 2, 14-25

microcracks, 16, 18

microduplex texture, 207

Nabarro—Herring creep, 114, 191, 195-202
necking, 19, 27, 35, 36, 204

Norton’s law, 85

nucleation & growth, 73, 179, 216, 217-20
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Orowan’s equation, 62-3, 94, 103, 108, 116,
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oxides, 44-9, 67, 126, 176, 231

oxygen partial pressure, 47, 138

palaeopiezometers, 190-3
parallel-concurrent processes, 79, 112, 113
Peierls stress, 56-8, 96, 101, 102, 103, 116,
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pencil glide, 102
phase transformation, 73, 188, 213, 215-22
plasticity, 12-14, 25
transformation, 213-28
transformation-induced (TRIP), 213
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power law, 77, 81, 84-5, 103, 106, 109, 117,
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power-law breakdown, 81, 142
power-law creep, 83, 96, 103-14, 189, 191,
201, 212
pressure, 3, 13, 16, 24, 14568
protons, 140, 142, 144, 158

recovery, 104, 105, 108, 227
recrystallization
dynamic, 36, 37, 170, 179-90
migration, 182-5
primary, 71, 73
rotation, 181, 182
static, 73-5
secondary, 71
rheology, 5-14

scaling, 33, 229-32
Schmid’s law, 20
Schottky pairs, 46
series-sequential processes, 80
shear modulus, 9, 38, 147, 153
silicates, 43, 45, 148, 149
silly putty’, 12, 204
slip, 13, 39, 51, 54
slip planes, 20, 24, 25, 38, 172
solid-solution alloys, 117-24
stacking fault, 57, 59, 97, 102, 117, 122,
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state variables, 25-7
strain, 1, 4, 5, 6, 10, 12, 13, 17, 23, 27, 51,
178
strain-hardening rate, 104, 106, 108
strain-rate sensitivity of the stress, 30, 32,
33, 206, 207, 225
strength-differential effect, 154
stress, 1-6, 10, 13, 16, 17, 176, 177, 185-8,
190, 192
effective, 87, 94
engineering, 8, 199, 200
internal, 51, 86, 87, 92, 93, 104, 105, 108,
109, 186, 223, 226, 227
critical resolved shear stress, 13, 20
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stress relaxation. 13, 22-23, 31, 92, 199

stress sensitivity of the strain rate, 10, 32

stretch, 4, 18

subgrain misorientation, 65, 169, 176, 177,
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subgrain size, 170, 176, 177-9, 192

subgrains, 64, 169-179, 181, 201

substructure, see subgrains, polygonization

superplasticity, 195, 204-12

Suzuki effect, 123

synchroshear, 126, 127

temperature, 9, 91, 146, 147, 222
melting, 14, 162, 163, 229
thermally activated processes, 23, 79, 81.
85-90, 216
time, 25, 28, 104
relaxation, 11-13
Time-Temperature-Transformation (TTT)
curve, 220, 221

torsion tests, 16, 17

transmission electron microscopy (TEM),
51, 59, 64, 98, 99, 115, 122, 132, 133,
134, 135, 138, 158, 170, 171, 176, 192,
207

twin, 64, 75

vacancies, 39, 40-1, 46, 49, 125, 133, 196—
200
viscosity, 6, 10-12, 18, 114, 189, 198, 226
of the Earth’s mantle, 10, 12, 149-50,
166-7

water, 10, 183
water weakening, 157, 158, 160

yield point, 14, 21
Young’s modulus, 8, 117

Zener-Hollomon parameter, 77, 81-3, 114,
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